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Chapter 1

Introduction

In this thesis, we consider the problem of computing fast circuits implementing
certain Boolean functions. A circuit models the physical implementation of a
Boolean function on a computer chip via elementary building blocks called gates.
Mostly, given Boolean input variables t0, . . . , tm−1, we are interested in And-Or
path circuits, i.e., circuits realizing functions of type

t0 ∨
(
t1 ∧

(
t2 ∨

(
t3 ∧

(
t4 ∨ (t5 ∧ . . .)

))))
.

Figure 1.1 shows two circuits on inputs t0, . . . , t4 which contain And (red) and
Or (green) gates. The circuit C1 is a classical And-Or path circuit – a path with
gates alternating between And and Or. By comparing the Boolean functions f(C1)
and f(C2) computed by C1 and C2, we see that C1 and C2 are logically equivalent:

f(C1) = t0 ∧
(
t1 ∨

(
t2 ∧ (t3 ∨ t4)

))
= t0 ∧

(
(t1 ∨ t2) ∧

(
t1 ∨ (t3 ∨ t4)

))
=

(
t0 ∧ (t1 ∨ t2)

)
∧
(
(t1 ∨ t3) ∨ t4

)
= f(C2)

Hence, C2 is also an And-Or path circuit on the same inputs. Note that
depth(C1) = 4 and depth(C2) = 3, where the depth of a circuit is the length of
its longest path. Naturally, one is interested in fast circuits, and essentially, this
means circuits with a low depth: Signals are propagated through the circuit, and a
computation at a gate can only be performed once all signals are available.

In this model, it is implicitly assumed that all input signals are available at the
same time. However, on a computer chip, this is rarely the case. Instead, usually,
individual prescribed input arrival times are given. We recursively define the arrival
time at a vertex as the maximum arrival time of its predecessors plus 1; and the
delay of a circuit as maximum arrival time of any vertex. Given input variables
t0, . . . , tm−1 and arrival times a(t0), . . . , a(tm−1) ∈ N, the And-Or Path Circuit
Optimization Problem asks for a delay-optimum And-Or path circuit on inputs
t0, . . . , tm−1 with respect to the prescribed arrival times. Regarding the arrival times
indicated in Figures 1.1(a) and 1.1(b), we have delay(C1) = 5 and delay(C2) = 6.

7
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(a) We have depth(C1) = 4
and delay(C1) = 5.
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(b) We have depth(C2) = 3
and delay(C2) = 6.

Figure 1.1: Two equivalent And-Or path circuits C1 and C2.

Hence, depending on the arrival time profile, different circuits implementing a given
Boolean function are preferable.

There are two main applications for the And-Or Path Circuit Optimization
Problem that are considered in this thesis: First, And-Or path optimization can
be used for logic restructuring of timing-critical paths in chip design. Secondly, the
carry bits of adder circuits can naturally be computed via And-Or paths.

Let us shortly explain the correlation of And-Or paths and binary addition.
Let two binary numbers a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) with bits ordered
by increasing significance be given (note the difference to the And-Or path index
order). Then, in the standard method for binary addition, the carry bits are defined
recursively by

c0 = 0 ,

ci+1 = (ai ∧ bi)∨
(

(ai ⊕ bi)∧ci
)

for i ∈ {0, . . . , n− 1} ,

where the term ai ⊕ bi is true if and only if exactly one of ai and bi is true. In
other words, the carry bit ci+1 is true if and only if it is generated in position i as
gi := ai ∧ bi is true, or it is carried over, also propagated, from position i− 1 as ci
is true and pi := ai ⊕ bi is true. As for i ≥ 0, we have

ci+1 = (ai ∧ bi) ∨
(

(ai ⊕ bi) ∧ ci
)

= (ai ∧ bi)︸ ︷︷ ︸∨
(

(ai ⊕ bi)︸ ︷︷ ︸∧
(

(ai−1 ∧ bi−1)︸ ︷︷ ︸∨( (ai−1 ⊕ bi−1)︸ ︷︷ ︸∧ci−1

)))

= gi ∨
(

pi ∧
(

gi−1 ∨
(

pi−1 ∧ . . .
)))

each carry bit ci+1 is actually an And-Or path on inputs gi, pi, . . . , p1, g0. From the
carry bits, the sum of a and b can be computed easily via

(a+ b)i =

{
ci ⊕ pi if i ∈ {0, . . . , n− 1} ,
cn if i = n .
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p0g0p1g1p2g2

c1c2c3

(a) An adder circuit consisting of
an And-Or path where all carry
bits can be read off.

g2 p2 g1 p1 g0 p0

c3 c1c2

(b) An adder circuit composed of
depth-optimum And-Or path cir-
cuits for each carry bit.

Figure 1.2: Two adder circuits for 3-bit binary numbers.

Thus, as in the literature, for us, an adder circuit is a circuit using only And2
and Or2 gates that computes all the carry bits based on the inputs gi, pi, . . . , p1, g0.
Figure 1.2 depicts two extreme types of adder circuits: The adder in Figure 1.2(a) has
the minimum number of gates (also size) possible. The adder in Figure 1.2(b) has the
minimum depth possible as it computes each carry bit by a depth-optimum And-Or
path circuit. If circuit size is disregarded, the delay optimization problems for And-
Or paths and adders are equivalent, so the main objective in adder optimization is
computing all the carry bits with a reasonable total size.

In this thesis, we present algorithms for the computation of fast And-Or path
and adder circuits regarding depth or delay optimization.

In Chapter 2, we introduce the mathematical objects studied in this thesis and
give a survey on previous work about the optimization of And-Or path and adder
circuits. In order to classify our results, we mention some of these statements here: A
well-known lower bound on the depth of any binary circuit on 2n inputs is

⌈
log2(2n)

⌉
.

Kraft’s inequality [Kra49] yields a generalization of this lower bound with respect
to input arrival times a0, . . . , an−1 ∈ N: A lower bound on the delay of any binary
circuit is given by d log2W e where W =

∑n
i=0 2ai . Moreover, Commentz-Walter

[Com79] showed that there is an asymptotic lower bound of

log2 n+ log2 log2 n+ const

on the depth of And-Or path circuits and hence also for adder circuits.
In Chapter 3, we present a recursive algorithm for depth optimization of And-

Or paths which computes linear-size And-Or path circuits with a depth of at most
log2 n+ log2 log2 n+ const in time O(n log2 n). These are the first known And-Or
path circuits that, up to an additive constant, match the lower bound by Commentz-
Walter [Com79] and, at the same time, have a linear size. The And-Or path circuits
due to Grinchuk [Gri08] have a similar depth, but a size in the order of O(n log2 n).

In Chapter 4, we generalize our algorithm from Chapter 3 to delay optimization.
Here, we construct And-Or path circuits with delay at most

log2W + log2 log2 n+ log2 log2 log2 n+ const
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and size at most O(n log2 n) in time O(n log2
2 n). This algorithm has already been

published in Brenner and Hermann [BH19], but with a worse size and running time
estimation. The previously best upper bound d log2W e+ 2

√
2 log2 n+ const on the

delay was achieved by the circuits from Spirkl [Spi14].
In Chapter 5, we consider the delay optimization problem for generalized And-

Or paths, a generalization of And-Or paths where gate types do not necessarily
alternate. We present an exact algorithm with a running time of at most O(3n) and,

restricted to And-Or paths, of O
((√

6
)n)

. For depth optimization of And-Or

paths, we can further reduce the running time to O(n2.02n). Using sophisticated
pruning techniques, we drastically improve our empirical running times. The only
exact algorithms known so far consider the special case of depth optimization of
And-Or paths, where the fastest algorithm is due to Hegerfeld [Heg18]. The largest
instance we can solve has 64 inputs, while for Hegerfeld, it has 29 inputs. The
running time of our algorithm is below 1.5 seconds for up to 60 inputs, and below 3
hours for the other instances. Based on our computations, we deduce the optimum
depths of n-bit adder circuits for all n ≤ 8192 that are a power of 2. To the best of
our knowledge, for any n ≥ 32, we are the first to discover and prove this result.

In Chapter 6, we present a dynamic program with running time O(n4) for delay
optimization of And-Or paths which has been published previously in Brenner and
Hermann [BH20]. Our dynamic program fulfills the same delay guarantee as the
theoretical algorithm from Chapter 4 and almost always computes delay-optimum
solutions: Using our exact algorithm from Chapter 5, we demonstrate that on a
testbed with 25000 And-Or path instances with up to 28 inputs, our dynamic
program is delay-optimum on more than 95% of all instances, the maximum difference
from the optimum delay is 1, and the average difference is 0.04. This is a significant
improvement compared to the previously best implemented polynomial algorithms
by Held and Spirkl [HS17b] and Rautenbach, Szegedy, and Werber [RSW06]: the
circuit with best delay among their solutions is only optimum on 10% of the instances,
deviates from the optimum by up to 4 and on average by 1.64.

Our dynamic program for delay optimization of And-Or paths is core routine of
a logic restructuring framework called BonnLogic which has also been published
in Brenner and Hermann [BH20]. BonnLogic is part of the BonnTools, a tool
suite containing optimization algorithms for the design of computer chips. In IBM’s
industrial chip design flow, BonnLogic is applied to revise the logical structure of
the most timing-critical paths. In Chapter 7, we describe BonnLogic in detail and
demonstrate its efficiency and effectiveness on a testbed of recent 7nm chips.

Finally, in Chapter 8, we show an algorithm with running time O(n log2 n) for the
construction of linear-size adder circuits. Its core routine is our depth optimization
algorithm for And-Or paths from Chapter 3. Our linear-size adder circuits have a
depth of at most

log2 n+ log2 log2 n+ log2 log2 log2 n+ const ,

which improves the best known upper bound on the depth of linear-size adder
circuits. The previously best known linear-size adder circuits have a depth of at
most log2 n+ 8

√
log2 n+ 6 log2 log2 n+ const and were published by Held and Spirkl

[HS17a]. Hence, regarding the depth of linear-size adder circuits, we decreased the
gap to the lower bound by Commentz-Walter [Com79] significantly from the order
of O

(√
log2 n

)
to the order of O(log2 log2 log2 n).
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Contributions

Several results of this thesis are joint work with Ulrich Brenner and Jannik Silvanus.
Regarding the depth optimization algorithm for And-Or paths in Chapter 3, the

size optimization technique and analysis from Sections 3.3 and 3.4 has been developed
jointly with Ulrich Brenner. He first proved that a circuit size of O(m log2 log2m)
can be obtained, and I refined his construction to yield a linear size of 27m. In many
iterations, we reduced the bound on the circuit size to 4.15m.

Chapter 4 has been published previously in Brenner and Hermann [BH19], in
concise form and with a worse analysis of circuit size and running time. The general
idea for the delay optimization algorithm for And-Or paths and the proof of its delay
guarantee via a statement like Theorem 4.1.2 are due to myself. Ulrich Brenner had
the idea to strengthen the induction hypothesis as in Theorem 4.1.6 to circumvent
the difficulties of the inductive proof of Theorem 4.1.2, see Remark 4.1.4. Together,
we iteratively improved the result.

The exact algorithm for delay optimization of generalized And-Or paths in
Chapter 5 is based on a new structural result, Theorem 5.2.9, which gives insights on
the structure of certain delay-optimum solutions. The structure theorem has been
discovered together with Ulrich Brenner and proven rigorously by myself. From this,
the exact algorithm naturally follows. Running time analysis, practical implementa-
tion and speed-ups are joint work with Jannik Silvanus.

Chapters 6 and 7 have been developed by myself and have been published previ-
ously in concise form in Brenner and Hermann [BH20].

The adder optimization algorithm presented in Chapter 8 has been developed
jointly with Ulrich Brenner. Together, we developed a first variant of the algorithm
yielding linear-size adder circuits with a worse depth bound than presented in The-
orem 8.3.6. Based on this, we alternatingly improved the result.





Chapter 2

Preliminaries

In this chapter, we present the main problems considered in this thesis. Sections 2.1
and 2.2 introduce the mathematical objects we will work on: Boolean functions,
Boolean formulae, and circuits. In Section 2.3, we present several types of optimiza-
tion problems related to these objects. In this thesis, we will be mostly interested
in finding fast adder circuits and And-Or path circuits, and these special circuit
classes are introduced in Sections 2.4 and 2.5. Section 2.6 surveys previous work
regarding adder and And-Or path optimization.

2.1 Boolean Functions and Boolean Formulae
Our notation regarding Boolean functions is based on Crama and Hammer [CH11]
and Savage [Sav98]. All results presented in this section can be found in Crama and
Hammer [CH11] or Commentz-Walter [Com79], sometimes with different proofs.

We denote the set of natural numbers including zero by N.

2.1.1 Basic Definitions

The most important basic objects considered in this thesis are Boolean functions.
We will state introductory definitions before seeing some examples.

Definition 2.1.1. A Boolean variable is a variable assuming values in {0, 1}.
Given n ∈ N, a Boolean function with n Boolean input variables (short,
inputs) is a function f : {0, 1}n → {0, 1}. Every α ∈ {0, 1}n with f(α) = 1
(respectively, f(α) = 0) is a true point (respectively, false point) of f .

We will often view the values 1 and 0 as abstract symbols rather than integers.
Then, we will also write true for 1 and false for 0, respectively.

Given a Boolean function f : {0, 1}n → {0, 1}, we will often denote the input
variables by x0, . . . , xn−1 and abbreviatory write x = (x0, . . . , xn−1) for the ordered
vector of inputs. With this, we can express the value of f on input variables
x = (x0, . . . , xn−1) by f

(
(x0, . . . , xn−1)

)
= f(x) ∈ {0, 1}.

Definition 2.1.2. Given a Boolean function f : {0, 1}n → {0, 1}, we call n the arity
of f , and f an n-ary Boolean function. Given Boolean input variables x ∈ {0, 1}n,
we also write |x| for the number n of entries of x.

13



14 Chapter 2. Preliminaries

Definition 2.1.3. Let a Boolean function f : {0, 1}n → {0, 1}, an input xi with
i ∈ {0, . . . , n− 1}, and a value α ∈ {0, 1} be given. The restriction of f to xi = α
is the function f |xi=α : {0, 1}n−1 → {0, 1} which is defined by

f |xi=α
(
(x0, . . . , xi−1, xi+1, . . . , xn−1)

)
= f

(
(x0, . . . , xi−1, α, xi+1, . . . , xn−1)

)
.

Definition 2.1.4. A Boolean function f : {0, 1}n → {0, 1} depends essentially
on an input xi with i ∈ {0, . . . , n− 1} if f |xi=0 and f |xi=1 are different.

A common way to define a Boolean function is to provide its truth table, i.e.,
a list of all the points in {0, 1}n together with their function values.

Definition 2.1.5. The Boolean function

f : {0, 1}2 → {0, 1}, f
(
(x0, x1)

)
=

{
1 if x0 6= x1

0 otherwise

is called Xor function or Boolean exclusive disjunction. We also write
f
(
(x0, x1)

)
= x0 ⊕ x1.

A truth table for the Xor function is shown in Figure 2.1. Note that a Boolean
function can also be defined by a complete list of its true points (or of its false points).

x0 x1 f
(
(x0, x1)

)
0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.1: Truth table of Xor.

Another possibility to define a Boolean function is expressing it as a composition
of elementary building blocks. We will do this in a recursive fashion based on the
following three operations. Here, we consider Boolean variables as abstract symbols.

Definition 2.1.6. We define three operations on {0, 1}.
The binary And operation · ∧ · : {0, 1} × {0, 1} → {0, 1}, also called Boolean

conjunction, is defined by

x ∧ y =

{
1 if x = y = 1,

0 otherwise.

The binary Or operation · ∨ · : {0, 1} × {0, 1} → {0, 1}, also called Boolean
disjunction, is defined by

x ∨ y =

{
1 if x = 1 or y = 1,

0 otherwise.

The unary Not operation · : {0, 1} → {0, 1}, also called Boolean negation, is
defined by

x =

{
1 if x = 0,

0 otherwise.
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Note that if we interpret the elements of {0, 1} as numbers, the conjunction of
x, y ∈ {0, 1} is actually the product of x and y, i.e., x ∧ y = x · y.

We can view Boolean conjunction and disjunction as Boolean functions on 2
input variables and Boolean negation as a Boolean function on 1 input variable. The
following definitions show how they can be used to describe more complex Boolean
functions.

Definition 2.1.7. Given n ∈ N and Boolean variables x0, . . . , xn−1, a Boolean
formula on the input variables x0, . . . , xn−1 is defined as follows:

(i) The constants 0, 1 and the variables x0, . . . , xn−1 are Boolean formulae on
x0, . . . , xn−1.

(ii) If φ and ψ are Boolean formulae on x0, . . . , xn−1, then (φ ∨ ψ), (φ ∧ ψ) and φ
are Boolean formulae on x0, . . . , xn−1.

(iii) Any Boolean formula φ on x0, . . . , xn−1 arises from finitely many applications
of the rules (i) and (ii).

We also write φ
(
(x0, . . . , xn−1)

)
or φ(x) to denote a Boolean formula on input

variables x = (x0, . . . , xn−1), and call n the arity of a of φ.

We omit the parentheses if the formula is clear from the context.

Definition 2.1.8. Given Boolean input variables x = (x0, . . . , xn−1) and a Boolean
formula φ(x), the Boolean function fφ : {0, 1}n → {0, 1} realized by φ(x) is
defined recursively as follows: For every point (α0, . . . , αn−1) ∈ {0, 1}n, the value of
fφ
(
(α0, . . . , αn−1)

)
is obtained by substituting αi for xi for all i ∈ {1, . . . , n} in the

formula φ and by recursively applying Definition 2.1.6 to compute the value of the
resulting formula.

Given a Boolean function f realized by a Boolean formula φ, we call φ a real-
ization of f .

In the following example, we will see realizations for the Xor function defined in
Definition 2.1.5.

Example 2.1.9. Consider the Xor function f : (x0, x1) 7→ x0 ⊕ x1 from Defini-
tion 2.1.5. From the definition, we deduce the following two realizations of f :

φ1

(
(x0, x1)

)
= (x0 ∧ x1) ∨ (x0 ∧ x1)

φ2

(
(x0, x1)

)
= (x0 ∨ x1) ∧ (x0 ∧ x1)

Here, we omit the redundant parentheses around the entire formula.

By Definition 2.1.8, a Boolean formula realizes a unique Boolean function, but
as shown in Example 2.1.9, a Boolean function might have several realizations.
For switching between different realizations, we list elementary properties of the
operations defined in Definition 2.1.6.

Proposition 2.1.10. Let Boolean variables x, y, z ∈ {0, 1} be given. Let ◦ denote
any operation among ∧ and ∨. The following properties hold:
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Commutativity:

x ◦ y = y ◦ x (2.1)

Associativity:

(x ◦ y) ◦ z = x ◦ (y ◦ z) (2.2)

Substitution of constants:

x ∧ 0 = 0 x ∧ 1 = x

x ∨ 0 = x x ∨ 1 = 1 (2.3)

Absorption rules:

x ∧ x = x x ∧ x = 0

x ∨ x = x x ∨ x = 1

x ∨ (x ∧ y) = x x ∧ (x ∨ y) = x (2.4)

Distributivity:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (2.5)

De Morgan’s laws:

(x ∧ y) = x ∨ y (x ∨ y) = x ∧ y (2.6)

Using these identities, we can now simplify Boolean functions that look compli-
cated at first glance.

Example 2.1.11. For φ
(
(x, y, z)

)
=
(

(x ∧ y) ∨
(
(x ∧ y) ∧ z

))
∨ (x ∧ z), we have

φ
(
(x, y, z)

)
=
(

(x ∧ y) ∨
(
(x ∧ y) ∧ z

))
∨ (x ∧ z)

(2.2)
=
(

(x ∧ y) ∨
(
x ∧ (y ∧ z)

))
∨ (x ∧ z)

(2.5)
= x ∧

((
y ∨ (y ∧ z)

)
∨ z
)

(2.5)
= x ∧

((
(y ∨ y) ∧ (y ∨ z)

)
∨ z
)

(2.4)
= x ∧

(
(y ∨ z) ∨ z

)
(2.2)
(2.4)
= x .

In this example, we have seen numerous Boolean formulae realizing the same
Boolean function.

Definition 2.1.12. We call two Boolean formulae φ and ψ equivalent if φ and ψ
realize the same Boolean function. If φ and ψ are equivalent, we write φ = ψ.
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In this thesis, we will often consider the problem of a finding Boolean formula
with certain properties realizing a concrete Boolean function. A common way to
solve this problem is to derive a Boolean formula from known Boolean formulae for
similar functions. The following simple example illustrates this.

Example 2.1.13. By Example 2.1.9, we know that the Boolean formulae
φ1

(
(x0, x1)

)
= (x0 ∧ x1) ∨ (x0 ∧ x1) and φ2

(
(x0, x1)

)
= (x0 ∨ x1) ∧ (x0 ∧ x1) both

realize the Xor function f : (x0, x1) 7→ x0 ⊕ x1. Based on this, we want to find
realizations for the Boolean function

g
(
(x0, x1, x2)

)
:=

{
1 if exactly one of x0, x1 is true and x2 is true ,
0 otherwise .

The definition of g implies that for any realization φ of f , the Boolean formula

ψ
(
(x0, x1, x2)

)
:= φ

(
(x0, x1)

)
∧ x2

is a realization of g. In particular, both

ψ1

(
(x0, x1, x2)

)
:= φ1

(
(x0, x1)

)
∧ x2 =

(
(x0 ∧ x1) ∨ (x0 ∧ x1)

)
∧ x2

and
ψ2

(
(x0, x1, x2)

)
:= φ2

(
(x0, x1)

)
∧ x2 =

(
(x0 ∨ x1) ∧ (x0 ∧ x1)

)
∧ x2

are realizations of g.

This concept is summarized more formally in the following remark.

Remark 2.1.14. Given Boolean functions f, g, h : {0, 1}n → {0, 1} with h(x) =
f(x)∧g(x), any two realizations φf of f and φg of g yield a realization φh := φf ∧φg
of h. The same statement holds when replacing ∧ by ∨; and given Boolean functions
f, g : {0, 1}n → {0, 1} with f(x) = g(x), any realization φg of g yields a realization
φf := φg of f .

In order to avoid the notational overhead of switching between Boolean formulae
and Boolean functions, the following remarks introduce simplified notation.

Remark 2.1.15. Consider two realizations φ, ψ of a Boolean function f . Since f is
the unique Boolean function realized by φ and ψ by Definition 2.1.8 and we write
φ = ψ for equivalent Boolean formulae, we may write f = φ and f = ψ.

Remark 2.1.16. Let φ : {0, 1}n → {0, 1} be a Boolean formula, and let
f0, . . . , fn−1 : {0, 1}k → {0, 1} be Boolean functions. If we identify φ with its real-
izing Boolean function fφ as in Remark 2.1.15, we can define a Boolean function on
k variables by

α 7→ fφ
(
f0(α), . . . , fn−1(α)

)
for each α ∈ {0, 1}k, where the right-hand side simply uses function composition.

In particular, for Boolean functions f, g : {0, 1}k → {0, 1}, the functions f ∧ g,
f ∨ g, and f are defined by

(f ∧ g)(α) = f(α) ∧ g(α) ,

(f ∨ g)(α) = f(α) ∨ g(α) ,

f(α) = f(α)

for each α ∈ {0, 1}k.
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Remark 2.1.17. Note that Proposition 2.1.10 allows us to omit redundant brackets
in the description of a Boolean function whenever we are not interested in the concrete
representation by a Boolean formula. For example, we can extend the binary And
operation to an n-ary And function by

n−1∧
i=0

xi = x0 ∧ x1 ∧ . . . ∧ xn−2 ∧ xn−1 , (2.7)

where we may assume an arbitrary bracing due to associativity. Additionally, the
commutativity rule (2.1) allows us to permute the variables arbitrarily in Equa-
tion (2.7). Analogously, we can define the n-ary Or function by

n−1∨
i=0

xi = x0 ∨ x1 ∨ . . . ∨ xn−2 ∨ xn−1 , (2.8)

Example 2.1.18. Remarks 2.1.14 and 2.1.15 allow us to formulate Example 2.1.13
in a much more compact way:

g
(
(x0, x1, x2)

)
=
((

(x0 ∧ x1) ∨ (x0 ∧ x1)
))
∧ x2 =

((
(x0 ∨ x1) ∧ (x0 ∧ x1)

))
∧ x2 .

2.1.2 Normal Forms and Monotonicity
It is well-known that for every Boolean function f , there is a Boolean formula
realizing f . We prove this statement via prime implicants.

Definition 2.1.19. Let f : {0, 1}n → {0, 1} be a Boolean function with inputs
x = (x0, . . . , xn−1). A literal of f is a possibly negated input variable of f , i.e.,
xi or xi for some i ∈ {0, . . . , n − 1}. Consider a Boolean formula of the form
ι
(
(x0, . . . , xn−1)

)
= li1 ∧ . . . ∧ lik , where li1 , . . . , lik are literals of f . The formula ι is

an implicant of f if for any α ∈ {0, 1}n with ι(α) = 1, we have f(α) = 1. We write
lit(ι) =

{
li1 , . . . , lik

}
for the set of literals of ι. We call ι a prime implicant of f if

there is no other implicant of f with lit(π) ( lit(ι). The set of all prime implicants
of f is denoted by PI(f).

Observation 2.1.20. Let f : {0, 1}n → {0, 1} be a Boolean function on inputs
x0, . . . , xn−1. Then, for any input xi with i ∈ {0, . . . , n− 1}, the function f depends
essentially on xi if and only if there is a prime implicant of f containing xi.

Theorem 2.1.21. Let f : {0, 1}n → {0, 1} be a Boolean function. Then, the
Boolean formula φ(x) =

∨
π∈PI(f) π(x) is a realization of f .

Proof. Let α ∈ {0, 1}n. We check that α is a true point of f if and only it is a true
point of fφ.

If φ(α) = 1, then there is some π ∈ PI(f) with π(α) = 1. As π is a prime
implicant of f , this implies that f(α) = 1.

Now assume that f(α) = 1. Consider the Boolean formula

ι(x) =
∧

i:αi=1

xi ∧
∧

i:αi=0

xi .

Then, ι is an implicant of f . Let π be a prime implicant of f whose literals are a
subset of the literals of ι. Then, π(α) = 1, hence φ(α) = 1.
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Hence, every Boolean function has a realizing Boolean formula. Furthermore, we
can deduce the following statement.

Corollary 2.1.22. A Boolean function is uniquely determined by the set of its prime
implicants.

The realization of f given by Theorem 2.1.21 is an example for a disjunctive
normal form of f . More generally, a disjunctive normal form (DNF) of f is a
realization of the form

φ
(
(x0, . . . , xn−1)

)
=

m−1∨
k=0

( ∧
i∈Ak

xi ∧
∧
i∈Bk

xi

)
(2.9)

with m ∈ N and Ak, Bk ⊆ {0, . . . , n− 1} with Ak∩Bk = ∅ for each k = 0, . . . ,m−1.
A conjunctive normal form (CNF) of f is a realization of the form

φ
(
(x0, . . . , xn−1)

)
=

m−1∧
k=0

( ∨
i∈Ak

xi ∨
∨
i∈Bk

xi

)

with m ∈ N and Ak, Bk ⊆ {0, . . . , n− 1} with Ak∩Bk = ∅ for each k = 0, . . . ,m−1.
The following theorem states that every Boolean function has a conjunctive normal
form. It is not hard to give a proof for this similar to the proof of Theorem 2.1.21,
but at the end of Section 2.1.3, we will be able to provide a more elegant proof.

Theorem 2.1.23. Any Boolean function f : {0, 1}n → {0, 1} can be realized by a
disjunctive normal form and by a conjunctive normal form.

Given α, β ∈ {0, 1}n, we write α ≤ β if αi ≤ βi for all i ∈ {0, . . . , n− 1}. Using
this notation, we can define monotone Boolean functions.

Definition 2.1.24. A Boolean function f : {0, 1}n → {0, 1} is monotone if for all
α, β ∈ {0, 1}n with α ≤ β, we have f(α) ≤ f(β). A Boolean formula φ ismonotone
if it does not contain any negations.

Most functions considered in this thesis are monotone. In Corollary 2.1.26, we
shall see that for any monotone Boolean function, there is a representing mono-
tone Boolean formula, so the two apparently very different definitions of monotone
functions and formulae fit together.

Lemma 2.1.25 (Crama and Hammer [CH11]). Let f : {0, 1}n → {0, 1} be a mono-
tone Boolean function. Then, every prime implicant of f is monotone.

Proof. Assume that there is a prime implicant π of f of the form π = xi∧ l1∧ . . .∧ lk
for some i ∈ {0, . . . , n− 1} and l1, . . . , lk being literals different from xi and xi. By
monotonicity of f , the formula π′ = xi ∧ l1 ∧ . . . ∧ lk is also an implicant of f . But
then the formula

π′′ := π ∨ π′ = (xi ∧ l1 ∧ . . . lk) ∨ (xi ∧ l1 ∧ . . . ∧ lk) = l1 ∧ . . . ∧ lk

is another implicant of f , contradicting π being a prime implicant of f .

Together with Theorem 2.1.21, this lemma implies the following statement.
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Corollary 2.1.26 (Crama and Hammer [CH11]). For any monotone Boolean func-
tion, there is a monotone Boolean formula.

However, a non-monotone Boolean formula may still realize a monotone Boolean
function, see, e.g., Example 2.1.11.

For monotone Boolean functions, function decomposition and (prime) implicants
behave in a canonical way.

Lemma 2.1.27. Consider Boolean functions f, g, h : {0, 1}n → {0, 1} with f =
g∨h. Then, any implicant of g or h is an implicant of f . Furthermore, if f, g, h are
all monotone, then any (prime) implicant of f is an (prime) implicant of g or of h.

Proof. Let f, g, h : {0, 1}n → {0, 1} be Boolean functions on input variables
x0, . . . , xn−1, and let ι = li1 ∧ . . . ∧ lik be an implicant of g. For any α =
(α0, . . . , αn−1) ∈ {0, 1}n with αi1 ∧ . . . ∧ αik = 1, we have g(α) = 1, so f(α) =
g(α) ∨ h(α) = 1 ∨ h(α) = 1. Thus, ι is an implicant of f . By symmetry of Or, the
same holds for implicants of h.

Assume additionally that f, g, h are monotone and let κ be an implicant of f .
Assume that κ is not an implicant of g or h. Then, there are αg, αh ∈ {0, 1}n with

κ(αg) = κ(αh) = 1 and (2.10)
g(αg) = h(αh) = 0. (2.11)

Define α ∈ {0, 1}n by αi = αgi ∧ αhi for i ∈ {0, . . . , n − 1}. Now, as κ is a
product of literals, Equation (2.10) implies κ(α) = 1. Furthermore, as g and h
are monotone and α ≤ αg, αh, Equation (2.11) implies g(α) = f(α) = 0 and thus
f(α) = g(α) ∨ h(α) = 0, which contradicts κ being an implicant of f .

Hence, κ is an implicant of g or h, without loss of generality of g. Now assume
that κ is a prime implicant of f , but not a prime implicant of g. Then, there is an
implicant λ of g whose literals are all contained in κ. But by the first statement of
this lemma, λ is an implicant of f , contradicting to the assumption that κ is a prime
implicant of f . Thus, κ is a prime implicant of g.

For non-monotone functions, the second statement of this lemma does not hold:
E.g., for the function fφ

(
(x, y, z)

)
=
(

(x ∧ y) ∨
(
(x ∧ y) ∧ z

))
∨ (x ∧ z) = x from

Example 2.1.11, x is an implicant of fφ, but not of (x ∧ y) ∨
(
(x ∧ y) ∧ z

)
or x ∧ z.

2.1.3 Duality
Proposition 2.1.10 is invariant under the following operation: Exchange all ∧ and ∨
gates, and exchange all 1 and 0 symbols. This remarkable concept is called duality.

Definition 2.1.28. Let φ be a Boolean formula. The dual Boolean formula φ∗

of φ can be obtained from φ by interchanging all ∧ and ∨ operations, and all 1 and
0 symbols.

Definition 2.1.29. Let f : {0, 1}n → {0, 1} be a Boolean function. The dual
Boolean function f∗ : {0, 1}n → {0, 1} of f is defined by

f∗
(
(x0, . . . , xn−1)

)
= f

(
(x0, . . . , xn−1)

)
.

Abusing notation, we write x := (x0, . . . , xn−1) and thus f∗(x) = f(x).
Dualization of Boolean formulae and functions is an involution, as can directly

be seen from Definitions 2.1.28 and 2.1.29.
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Proposition 2.1.30. Given a Boolean formula φ, we have (φ∗)∗ = φ. Given a
Boolean function f , we have (f∗)∗ = f .

The following theorem shows why Definition 2.1.29 is the appropriate way to
define a dual Boolean function.

Theorem 2.1.31. Let φ by a Boolean formula. If φ is a realization of the Boolean
function fφ, then φ∗ is a realization of f∗φ.

Proof. Let r ∈ N denote the total number of operations in φ. We prove the statement
by induction on r.

If r = 0, then φ is either a constant or a variable, and the definitions yield
φ∗(0) = 1 = 0 = f∗(0), and φ∗(1) = 0 = 1 = f∗(1), and φ∗(x) = x = x = f(x).

Now assume that r > 0, i.e., we can write φ = ψ ∧ ρ, φ = ψ ∨ ρ or φ = ψ for
some Boolean formulae ψ and ρ, and we can inductively assume that the statement
holds for ψ and ρ.

If φ = ψ, we have φ∗ =
(
ψ
)∗

= ψ∗ by Definition 2.1.28, and φ∗ realizes f∗φ since

fψ∗(x)
Rem. 2.1.14

= fψ∗(x)

Prop. 2.1.30,
(IH)
= f∗ψ(x)

Def. 2.1.29
= fψ(x)

Rem. 2.1.14
= fφ(x)

Def. 2.1.29
= f∗φ(x) .

Otherwise, if

φ = ψ ∧ ρ , (2.12)
we have

fφ = fψ ∧ fρ (2.13)

by Remark 2.1.14. Hence, we have

φ∗(x)
(2.12)

= (ψ ∧ ρ)∗(x)
Def. 2.1.28

=
(
ψ∗ ∨ ρ∗

)
(x) .

By induction hypothesis and Remark 2.1.14, φ∗ = ψ∗ ∨ ρ∗ realizes the function
f∗ψ ∨ f∗ρ . But (

f∗ψ ∨ f∗ρ
)

(x)
Rem. 2.1.16

= f∗ψ(x) ∨ f∗ρ (x)

Def. 2.1.29
= fψ(x) ∨ fρ(x)

(2.6)
= fψ(x) ∧ fρ(x)

(2.13)
= fφ(x)

Def. 2.1.29
= f∗φ(x) .

Note that the crucial step here was applying De Morgan’s laws (2.6). Hence, φ∗

realizes f∗φ.
If φ = ψ ∨ ρ, the proof works analogously by exchanging all ∧ and ∨ operations.
This proves the induction step and hence the theorem.
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In particular, we can deduce the following statement about dual formulae.

Corollary 2.1.32. If φ and ψ are equivalent Boolean formulae, then the dual for-
mulae φ∗ and ψ∗ are also equivalent.

Proof. Since φ and ψ are equivalent, they realize the same Boolean function f . By
Theorem 2.1.31, both φ∗ and ψ∗ realize f∗ and hence are equivalent.

Using the concept of duality, we can now prove Theorem 2.1.23.

Proof of Theorem 2.1.23. Given a Boolean function f : {0, 1}n → {0, 1}, a disjunc-
tive normal form of f exists by Theorem 2.1.21. In order to show that there is a
conjunctive normal form of f , consider the dual function f∗ of f . Again, Theo-
rem 2.1.21 yields a disjunctive normal form φ for f∗. By Theorem 2.1.31, the dual
formula φ∗ realizes (f∗)∗

Prop. 2.1.30
= f . This is a conjunctive normal form of f .

2.2 Circuits
A circuit is a model for the physical implementation of a Boolean function on a
computer chip. Usually, a small set of building components called gates imple-
menting elementary Boolean functions is available on a chip. By combining these
building components to circuits, more complicated Boolean functions can be im-
plemented. Note that this is very similar to the concept of Boolean formulae (cf.
Definition 2.1.7) that are decomposed of the operations defined in Definition 2.1.6.
Our notation related to graph theory is based on Korte and Vygen [KV18].

Definition 2.2.1. A basis is a set Ω of Boolean formulae. Each element φ ∈ Ω is
called a gate.

Definition 2.2.2. A circuit C = (V, E) over the basis Ω is an acyclic directed graph
with labeled vertices V = I ·∪G such that the following conditions are satisfied:

• Each vertex v ∈ I fulfills δ−(v) = ∅ and δ+(v) 6= ∅ and is labeled either with a
distinct Boolean variable xv or with a constant (0 or 1). The vertices in I are
called inputs of C.

• Each vertex v ∈ G fulfills k := |δ−(v)| ≥ 1 and is labeled with a k-ary gate
φ ∈ Ω together with a fixed ordering v0, . . . , vk−1 of the predecessors δ−(v) of
v. The vertices in G are called gates of C. We denote the gate type φ ∈ Ω
of a gate vertex v ∈ G by gt(v) := φ ∈ Ω.

• There is a subset ∅ ( O ⊆ V that we call the set of outputs of C. We demand
each vertex with δ+(v) = ∅ to be an output, but there may be other outputs.

Given a circuit C, we also write V(C), E(C), I(C), O(C), G(C) for its nodes,
edges, inputs, outputs, and gates, respectively.

Given a circuit C over a basis Ω and a vertex v ∈ V(C), the Boolean formula
φv corresponding to v is defined recursively as follows:

• If v ∈ I(C), then φv = xv.

• Consider v ∈ G(C). Let φ ∈ Ω denote the gate associated with v, and
v0, . . . , vk−1 the ordered predecessors of v. Then φv = φ(φv0 , . . . , φvk−1

).
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Now assume that | O(C)| = 1. Then, we denote the unique output of C by out(C)
and call φC := φout(C) the Boolean formula corresponding to the circuit C.
The Boolean function fC realized by the circuit C (also, computed by C),
is defined to be fC := fφC .

Usually, a fixed basis Ω is considered, e.g., the basis consisting of exactly the
elementary Boolean formulae defined in Definition 2.1.6.

Definition 2.2.3. A circuit C is monotone if each gate is labeled with a mono-
tone Boolean formula. The basis Ωmon := {And2,Or2} is called the standard
monotone basis. The basis Ωnmon := {And2,Or2,Not} is called the standard
non-monotone basis. A circuit is called binary if each gate has at arity most 2.

As every (monotone) Boolean function has a realizing (monotone) Boolean for-
mula by Theorem 2.1.21 (Corollary 2.1.26) and every formula can be represented by
a circuit, we obtain the following corollary.

Corollary 2.2.4. For every (monotone) Boolean function f : {0, 1}n → {0, 1},
there is a (monotone) circuit over Ωnmon (Ωmon) realizing f .

A typical basis that is used for circuits on a computer chip is shown in Figure 7.1
(page 192).

Definition 2.2.5. Two circuits are called equivalent if they realize the same
Boolean function.

When visualizing circuits, the three types of gates in the standard non-monotone
basis are drawn as in Figure 2.2. The colors may vary in our pictures, but the shapes
of the gates are fixed.

x0 x1

x0 ∧ x1

(a) An And2 gate.

x0 x1

x0 ∨ x1

(b) An Or2 gate.

x0

x0

(c) A Not gate.

Figure 2.2: Different types of gates.

Example 2.2.6. Figure Figure 2.3 depicts small circuits over Ωnmon on the inputs
x0, x1, x2, x3 with a single output each. The inputs with their associated variables are
drawn at the top, and the directed graph is plotted from top to bottom (omitting
edge directions) using the gate symbols from Figure 2.2. The circuit outputs are
marked with an arrow; but when there are no outputs other than the vertices with
out-degree 0, we may omit this arrow. We do not specify the ordering of gate inputs
in the pictures when the gate is a Boolean formula whose associated Boolean function
is invariant under permutation of the inputs.

The circuit C1 shown in Figure 2.3(a) has the corresponding Boolean formula

φ1

(
(x0, x1, x2, x3)

)
=
(
(x0 ∧ x1) ∧ x2

)
∨
(
x1 ∧ x2 ∧ x3

)
,
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x0 x1 x2 x3

(a) Circuit C1.

x0 x1 x2 x3

(b) Circuit C2.

x0 x1 x2 x3

(c) Circuit C3.

Figure 2.3: Three equivalent circuits C1, C2, and C3 realizing the
Boolean formulae φ1, φ2, and φ3 from Example 2.2.6, respectively.

while the circuits C2 and C3 shown in Figures 2.3(b) and 2.3(c) both have the
corresponding Boolean formula

φ2

(
(x0, x1, x2, x3)

)
=
(
x0 ∧ (x1 ∧ x2)

)
∨
(
x1 ∧ x2 ∧ x3

)
.

Still, C2 and C3 have a different number of gates since in C3, the gate corresponding
to x1 ∧ x2 has two successors while C2 has two gates corresponding to x1 ∧ x2. As
φ1 = φ2, all three circuits realize the same Boolean function.

Hence, each circuit is associated with a Boolean formula, but there can be
different circuits with the same corresponding Boolean formula. In the restricted
set of circuits where each gate has exactly 1 successor, each circuit corresponds
uniquely to a Boolean formula.

Definition 2.2.7. A circuit with out-degree at most 1 for each gate vertex is called
a formula circuit.

Observation 2.2.8. For each Boolean formula φ, there is a unique formula circuit
Cφ over Ωnmon corresponding to φ.

The next definition introduces naming conventions in the context of circuits.

Definition 2.2.9. Consider a circuit C and a vertex v ∈ V(C). The fanout of v
is the number fanout(v) := |δ+(v)| of outgoing edges of v. The set Vv(C) ⊆ V(C)
of all vertices w ∈ V(C) such that there is a directed path from w to v is called the
input cone of v. By Iv(C), we denote the set of inputs in the input cone of v. The
circuit Cv with E(Cv) = E(C)∩

(
V(Cv)× V(Cv)

)
, inputs Iv(C), gates G(C)∩Vv(C)

and a single output v is called the circuit subordinate to v. Any circuit whose
gates are a subset of G(C) is called a sub-circuit of C. If v ∈ G(C), then the fanin
or arity of v is the number |δ−(v)| of incoming edges of v.

The concept of duality (cf. Section 2.1.3) naturally extends from Boolean formu-
lae to circuits.

Definition 2.2.10. Given a circuit C, the dual circuit C∗ arises from C by
interchanging all And and Or gates and all 0 and 1 symbols.

Theorem 2.2.11. For any circuit C, we have φC∗ = φC
∗ and fC∗ = fC

∗. Further-
more, for any Boolean formula φ, we have Cφ∗ = C∗φ.
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Proof. By Definitions 2.1.28 and 2.2.10, the duals of Boolean formula and circuits
are both defined via exchanging And and Or operators (gates), thus φC∗ = φC

∗ and
Cφ∗ = C∗φ certainly hold. As φC∗ realizes fC∗ and, by Theorem 2.1.31, φC∗ realizes
fC
∗, this implies fC∗ = fC

∗ by Corollary 2.1.32.

2.3 Optimization Problems
Given a Boolean function f , by Theorem 2.1.21, there exists a Boolean formula
realizing f , and by Corollary 2.2.4, there exists a circuit realizing f . But often, there
are multiple Boolean formulae and circuits realizing f , see, e.g., Example 2.2.6.
Thus, finding the best formula or the best circuit realizing f regarding a certain
objective function is a natural problem. We introduce different quality measures in
Section 2.3.1 and examine them in the subsequent sections.

2.3.1 Quality Measures
The application of circuits in chip design yields several quality measures.

Definition 2.3.1. Consider a circuit C. The depth of a vertex v ∈ V(C) is

depth(v) := max
P directed path in C ending in v

|E(P )| .

The depth of C is the maximum depth of any vertex v ∈ V(C).

In other words, the depth of a circuit C is the maximum number of gates on any
directed path from an input of C to an output of C.

If a circuit models a part of computer chip, the input variables of the circuit
represent signals computed by other circuits. As these signals are not necessarily
available simultaneously, we can generalize Definition 2.3.1 as follows.

Definition 2.3.2. Consider a circuit C on inputs x = (x0, . . . , xn−1). Assume that
input arrival times a(x0), . . . , a(xn−1) ∈ R are given, i.e., input xi has arrival time
a(xi) ∈ R for each i ∈ {0, . . . , n− 1}. Recursively, we define arrival times a(v) ∈ R
for all v ∈ G(C) by setting

a(v) := max
w∈δ−(v)

{
a(w)

}
+ 1 .

Moreover, we define the delay of C with respect to arrival times a as

delay(C; a) := max
v∈O(C)

a(v) .

When the arrival times a can be deduced from the context, we also write delay(C) :=
delay(C; a).

Definition 2.3.1 covers the special case of Definition 2.3.2 when the input arrival
times are all 0.

The delay of a circuit C models the time when the function at the outputs of C
is available given that the input signals arrive at prescribed times. In our practical
application in chip design, a weakness of our delay model is that it ignores the fact
that signals slow down when they are distributed too often, see Section 7.1. Thus,
we need to take care of the following measuring unit.

Definition 2.3.3. Given a circuit C, the fanout fanout(C) of C is the maximum
fanout of any vertex in C.
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Besides speed, the size, power consumption and production cost of a chip are
important factors. These are estimated by the following metric.

Definition 2.3.4. Given a circuit C, the size of C is the number of gates of C.

Observation 2.3.5. Given a circuit C with a single output that contains only gates
with fanin at most 2, we have size(C) ≤ 2depth(C) − 1.

For a formula circuit, size and fanout are closely related.

Observation 2.3.6. Let C be a formula circuit over a basis Ω containing only
formulae with arity exactly 2. Then, we have

2| G(C)| = | E(C)| =
∑

v∈I(C)

fanout(v) + | G(C)| − |O(C)| .

This implies size(C) = | G(C)| = ∑v∈I(C) fanout(v)− |O(C)|.

Example 2.3.7. In Figure 2.4, we plot again the equivalent circuits from Fig-
ure 2.3, but with certain arrival times drawn in blue. We have depth(Ci) = 4 and
fanout(Ci) = 2 for all i ∈ {1, 2, 3}, but delay(C1) = 8, delay(C2) = delay(C3) = 7.
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(a) Circuit C1.
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(b) Circuit C2.

5 2 1 2

x0 x1 x2 x3

3

6 4

5

7

(c) Circuit C3.

Figure 2.4: Three circuits realizing the function f from Exam-
ple 2.3.7. The blue numbers refer to arrival times.

We can define similar properties of Boolean formulae via their associated circuits.

Definition 2.3.8. Consider a Boolean formula φ with inputs x = (x0, . . . , xn−1)
and the associated formula circuit Cφ. We define the depth (size) of φ to be the
depth (size) of Cφ. Assuming that input xi has arrival time a(xi) ∈ N for each
i ∈ {0, . . . , n− 1}, we define the delay of φ to be the delay of Cφ.

Using this definition and duality (see Theorem 2.2.11), it is easy to see that the
introduced quality measures are invariant under dualization.

Proposition 2.3.9. Given a circuit C on Boolean inputs x0, . . . , xn−1 with input
arrival times a(x0), . . . , a(xn−1) ∈ R, we have size(C∗) = size(C), depth(C∗) =
depth(C), and delay(C∗; a) = delay(C; a). Given a Boolean formula φ, we have
size(φ∗) = size(φ), depth(φ∗) = depth(φ), and delay(φ∗; a) = delay(φ; a).
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2.3.2 Delay Optimization

In this thesis, we focus on the delay optimization problems for certain classes of
Boolean functions.

Boolean Formula Delay Optimization Problem
Instance: A Boolean function f : {0, 1}n → {0, 1} on inputs x = (x0, . . . , xn−1),

input arrival times a(x0), . . . , a(xn−1) ∈ R.
Task: Find a Boolean formula realizing f(x) with minimum possible delay.

Circuit Delay Optimization Problem
Instance: A Boolean function f : {0, 1}n → {0, 1} on inputs x = (x0, . . . , xn−1),

arrival times a(x0), . . . , a(xn−1) ∈ R, and a basis Ω.
Task: Compute a circuit over Ω realizing f(x) with minimum possible delay.

Remark 2.3.10. In general, when the input function is given by a Boolean formula,
the above two problems are NP-hard already for the special case of depth optimiza-
tion. To see this, we show that a polynomial-time algorithm finding depth-optimum
Boolean formulae for And-Or paths could be used to solve the Satisfiability
Problem in polynomial time:

Given a Boolean formula φ(x) with Boolean input variables x = (x0, . . . , xn−1),
the Satisfiability Problem asks whether there is an α ∈ {0, 1}n with φ(α) = 1.
I.e., φ is not satisfiable if and only if φ evaluates to 0 for all α ∈ {0, 1}n. Hence, φ is
satisfiable if and only if a depth-minimum equivalent formula ψ for φ fulfills ψ 6= 0.

In this thesis, we consider this problem only for certain types of Boolean functions.
As the delay of a Boolean formula is defined as the delay of its unique correspond-

ing circuit (see Definition 2.3.8), the Boolean Formula Delay Optimization
Problem is a special case of the Circuit Delay Optimization Problem with
basis Ω := Ωnmon where only formula circuits are considered. Sometimes, we restrict
the solution space for either problem to monotone solutions. As our research interest
is motivated by chip design, we usually focus on the Circuit Delay Optimiza-
tion Problem, but sometimes, we also explicitly make use of the fact that our
solutions are formula circuits. If there are no constraints on size and fanout, the
Boolean Formula Delay Optimization Problem and the Circuit Delay
Optimization Problem are clearly equivalent:

Theorem 2.3.11. Let a Boolean function f : {0, 1}n → {0, 1} on input variables
x0, . . . , xn−1 with arrival times a(x0), . . . , a(xn−1) ∈ R be given. Fix a basis Ω ∈
{Ωmon,Ωnmon }. For this instance, the optimum delays of any two solutions of
the Boolean Formula Delay Optimization Problem and Circuit Delay
Optimization Problem coincide.

Proof. Consider optimum solutions φopt and Copt for the Boolean Formula De-
lay Optimization Problem and Circuit Delay Optimization Problem, re-
spectively. As any Boolean formula yields a formula circuit with the same delay by
Definition 2.3.8, we have delay(φopt) = delay(Cφopt) ≥ delay(Copt).

For the reverse statement, it suffices to apply the following claim to Copt.
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x0 x1 x2 x3 x4

(a) A circuit C on 5 inputs.

x0 x1 x3

(b) Reduced circuit C |x2=0.

Figure 2.5: Illustration of Observation 2.3.14. Note that here, C |x2=0

does not depend essentially on x4.

Claim. For any circuit C over Ω, there is an equivalent formula circuit F over Ω with
delay(F ) = delay(C).
Proof of claim: We call a gate g in C with fanout(g) > 1 bad. Let d ∈ N be the
largest depth of any bad gate in C. We prove the statement by induction on d.

If d = 0, then the circuit C is already a formula circuit.
If d > 0, consider a bad gate g with depth exactly d. Denote the successors

of g by v0, . . . , vf−1, where f ≥ 2. Replace g by f copies g0, . . . , gf−1, where
each gi, i = 0, . . . , f − 1, has the same predecessors as g, but only has vi as a
successor. Denote the circuit arising from C by applying this to every bad gate
with depth d by C ′. Then, C ′ is a circuit over Ω that is equivalent to C, we have
delay(C ′) = delay(C), and the largest depth of any bad gate is at most d − 1. By
induction hypothesis, there is a formula circuit F equivalent to C ′ and thus to C
with delay(F ) = delay(C ′) = delay(C).

Note that the circuit in Figure 2.4(b) arises from the circuit in Figure 2.4(c) by
the procedure described in the proof of Theorem 2.3.11. In this case, the number of
gates increases by 1 and the number of edges by 2.

Note that in the claim in Theorem 2.3.11, the circuits C and C ′ have the same
corresponding Boolean formula. This implies the following statement.

Corollary 2.3.12. For any circuit C over Ωnmon or Ωmon, the Boolean formula φC
corresponding to C fulfills delay(φC) = delay(C).

In the theoretical chapters of this thesis, we will often assume that the input
arrival times are integral. In this case, if additionally the Boolean formulae in
the basis have all arity r or less, there is a lower bound by Golumbic [Gol76] on
the optimum solution of the Circuit Delay Optimization Problem stated in
Theorem 2.3.15. For this, we need to introduce the concept of reduced circuits, for
which an example is shown in Figure 2.5.

Definition 2.3.13. Consider a monotone Boolean function f : {0, 1}n → {0, 1} on
input variables x0, . . . , xn−1, an index i ∈ {0, . . . , n− 1} and a value α ∈ {0, 1}.
Consider a circuit C for f over Ωmon. The reduced circuit C |xi=α arises from
C as follows: Replace xi by α and apply the following to each gate g ∈ G(C) in
topological order:
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Assume that there is a predecessor v ∈ δ−(g) which is a constant (otherwise, do
nothing for g), and denote the other predecessor of g by w.

Case 1: Assume that gt(g) = And and v = 0, or gt(g) = Or and v = 1. Replace
each edge (g, y) ∈ δ+(g) by (v, y). If g ∈ O(C), then let O(C) :=

(
O(C)\{g}

)
∪{v}.

Case 2: Otherwise, replace each edge (g, y) ∈ δ+(g) by (w, y), and if g ∈ O(C),
then let O(C) :=

(
O(C)\{g}

)
∪ {w}.

Remove g from V(C).

Observation 2.3.14. Consider a Boolean function f : {0, 1}n → {0, 1} on input
variables x0, . . . , xn−1 with arrival times a(x0), . . . , a(xn−1) ∈ R, an index i ∈
{0, . . . , n− 1} and a value α ∈ {0, 1}. Consider a circuit C for f and the reduced
circuit C |xi=α. Then, C |xi=α is a circuit for the restricted function f |xi=α.
Moreover, we have delay(C |xi=α) ≤ delay(C) and size(C |xi=α) ≤ size(C). If
fanout(xi) > 0, then we have size(C |xi=α) < size(C).

Theorem 2.3.15 (Cf. Golumbic [Gol76]). Consider a Boolean function f : {0, 1}n →
{0, 1} on inputs x0, . . . , xn−1 with input arrival times a(x0), . . . , a(xn−1) ∈ N. As-
sume that f depends essentially on all its inputs. Furthermore, let r ∈ N, r ≥ 2, and
a basis Ω containing only Boolean formulae of arity at most r be given. Then, for
any circuit C over Ω computing f , we have

delay(C) ≥
⌈

logr

(
n−1∑
i=0

ra(xi)

)⌉
.

Proof. We prove the statement by induction on d := depth(C).

If d = 0, we have n = 1 and the delay of C is a(x0) which is also the right-hand
side of the claimed inequality.

For d ≥ 1, let g := out(C) be the unique output of C. Denote the predecessors
of g by v0, . . . , vk−1 with k ≤ r. For each j ∈ {0, . . . , k − 1}, let Ij ⊆ I(C) denote
the inputs that Cvj depends on essentially. Let Cj denote the reduced circuit arising
from Cvj by fixing each xi ∈ I(C)\Ij to false. As C depends essentially on all its

inputs, we have I =
⋃
j Ij . Since depth(Cj)

Obs. 2.3.14
≤ depth(Cvj ) < d for all j,

the induction hypothesis holds for all Cj . Choose j∗ ∈ {0, . . . , k − 1} such that



30 Chapter 2. Preliminaries

∑
xi∈Cj∗ r

a(xi) is maximum. We have

delay(C) = max
j∈{0,...,k−1}

delay(Cvj ) + 1

Obs. 2.3.14
≥ max

j∈{0,...,k−1}
delay(Cj) + 1

(IH)
≥ max

j∈{0,...,k−1}

⌈
logr

( ∑
xi∈Cj

ra(xi)

)⌉
+ 1

choice of j∗
=

⌈
logr

( ∑
xi∈Cj∗

ra(xi)

)⌉
+ 1

≥ logr

(
r
∑

xi∈Cj∗
ra(xi)

)
choice of j∗,

k≤r
≥ logr

(
k−1∑
j=0

∑
xi∈Cj

ra(xi)

)
I=
⋃
i Ij≥ logr

(
n−1∑
i=0

ra(xi)

)
.

Since delay(C) ∈ N, we conclude delay(C) ≥
⌈
logr

(∑n−1
i=0 r

a(xi)
)⌉

.

Werber [Wer07] states an alternative proof that reduces the lower bound to
Kraft’s inequality [Kra49], see also Proposition 2.3.22. For the special case of depth
optimization, Theorem 2.3.15 implies

depth(C) ≥ d logr ne

which was proven by Winograd [Win65].
We mostly consider binary circuits and hence choose r = 2 in the preceding

theorem. For this case, the following definition will be convenient.

Definition 2.3.16. The weight of inputs x = (x0, . . . , xn−1) with arrival times
a(x0), . . . , a(xn−1) ∈ N is

W (x; a) :=
n−1∑
i=0

2a(xi) .

When the arrival times can be derived from the context, we abbreviatory write
W (x) := W (x; a).

Remark 2.3.17. Abusing notation, we write W (xi) := 2a(xi) for the weight of an
input xi with arrival time a(xi). Note that if a(xi) ≥ 0, we have W (xi) ≥ 1.

2.3.3 Symmetric Function Optimization

A class of functions for which the Boolean Formula Delay Optimization
Problem and the Circuit Delay Optimization Problem coincide and can be
solved optimally and efficiently is defined as follows.
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Algorithm 2.1: Delay optimization for symmetric functions
Input: A commutative and associative operation

◦ : {0, 1} × {0, 1} → {0, 1}, n ∈ N, n ≥ 1, inputs x = (x0, . . . , xn−1)
with arrival times a(x0), . . . , a(xn−1) ∈ R.

Output: A circuit C over the basis Ω = {◦} computing x0 ◦ . . . ◦ xn−1.

1 Let x0, . . . , xn−1 be the inputs of C.
2 Let Q :=

{
v ∈ V(C) : δ+(v) = ∅

}
.

// Define gates.
3 while |Q| ≥ 2 do
4 Choose v, w ∈ Q, v 6= w, with a(v), a(w) minimum.
5 Add a new ◦-gate g with predecessors v and w to C.
6 Set Q := Q \ {v, w} ∪ {g}.
7 Let out(C) be the unique vertex v ∈ Q.
8 return C.

Definition 2.3.18. Let ◦ : {0, 1} × {0, 1} → {0, 1} denote a commutative and
associative operation. For any n ∈ N, the Boolean function f : {0, 1}n → {0, 1},
f
(
(x0, . . . , xn−1)

)
= x0 ◦ . . . ◦ xn−1 is called symmetric. A circuit realizing a

symmetric function is also called symmetric.

Symmetric Function Delay Optimization Problem
Instance: n ∈ N, Boolean input variables x = (x0, . . . , xn−1) with arrival

times a(x0), . . . , a(xn−1) ∈ N, a commutative and associative operation
◦ : {0, 1} × {0, 1} → {0, 1}.

Task: Compute a circuit over Ω = {◦} realizing x0 ◦ . . . ◦ xn−1 with minimum
possible delay.

Example 2.3.19. Since ∧ and ∨ are commutative and associative by Proposi-
tion 2.1.10, the n-ary And and Or functions are symmetric. Furthermore, the
n-ary Xor function is a symmetric function since ⊕ is obviously commutative, but
also associative since x⊕ (y⊕ z) is true if and only if an odd number of the variables
x, y, z is true.

Definition 2.3.20. Given input variables x0, . . . , xn−1, we denote the n-ary And
function by sym

(
(x0, . . . , xn−1)

)
=
∧n−1
i=0 xi and its dual function – the n-ary Or

function – by sym∗
(
(x0, . . . , xn−1)

)
=
∨n−1
i=0 xi.

Algorithm 2.1, which is a variant of Huffman coding [Huf52], computes a solu-
tion to the Symmetric Function Delay Optimization Problem. By Theo-
rem 2.3.15, for integral arrival times, this circuit has delay at least

⌈
log2

(
W (x; a)

)⌉
.

The following theorem states that this delay is actually attained.

Theorem 2.3.21 (Golumbic [Gol76] and Van Leeuwen [Lee76]). Let a commutative
and associative operation ◦ : {0, 1}×{0, 1} → {0, 1}, inputs x0, . . . , xn−1 with n ≥ 1
and arrival times a(x0), . . . , a(xn−1) ∈ N be given. Algorithm 2.1 computes an opti-
mum solution C to the Symmetric Function Delay Optimization Problem
with

delay(C) =
⌈

log2

(
W (x; a)

)⌉
.
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If we assume that the inputs are sorted by increasing arrival time, then Algorithm 2.1
can be implemented to run in time O(n); otherwise, in time O(n log2 n).

The proof of the delay bound is due to Golumbic [Gol76] (see Werber [Wer07]
for a concise proof), while Van Leeuwen [Lee76] showed that the algorithm can be
implemented to run in linear time after sorting.

Theorem 2.3.21 is closely related to Kraft’s inequality, which was stated in a very
different form by Kraft [Kra49] and can be re-proven easily now.

Proposition 2.3.22 (Kraft’s inequality, Kraft [Kra49]). Given a commutative and
associative operation ◦ : {0, 1}×{0, 1} → {0, 1}, inputs x0, . . . , xn−1 with n ≥ 1 and
arrival times a(x0), . . . , a(xn−1) ∈ N, there exists a circuit S computing x0◦. . .◦xn−1

with delay at most d ∈ N if and only if
n−1∑
i=0

2a(xi)−d ≤ 1 . (2.14)

Proof. By Theorem 2.3.21, a circuit S for x0 ◦ . . . ◦ xn−1 with delay at most d ∈ N
exists if and only if

⌈
log2

(
W (x; a)

)⌉
≤ d. As d is an integer, this condition is

equivalent to log2

(
W (x; a)

)
≤ d, thus to∑n−1

i=0 2a(xi) ≤ 2d, which is again equivalent
to condition (2.14).

We shall now generalize Kraft’s inequality and Huffman coding to fractional
arrival times using standard techniques (cf. Bartoschek et al. [Bar+10]).

Proposition 2.3.23. Let a commutative, associative operation ◦ : {0, 1}×{0, 1} →
{0, 1} and inputs x0, . . . , xn−1 for n ≥ 1 with arrival times a(x0), . . . , a(xn−1) ∈ R
be given. There exists a circuit S computing x0 ◦ . . . ◦ xn−1 with delay d ∈ R if and
only if

n−1∑
i=0

2−dd−a(xi)e ≤ 1 . (2.15)

Proof. First, we prove the following claim:
Claim. Proposition 2.3.22 still holds if a : {x0, . . . , xn−1 } → Z.
Proof of claim: Define modified arrival times ã(xi) := a(xi) − α, where α :=
mini∈{0,...,n−1}

{
a(xi)

}
. Now, ã(xi) ≥ 0 for all i ∈ {0, . . . , n− 1}, and a circuit

S on inputs x0, . . . , xn−1 has delay d with respect to arrival times a if and only
if it has delay d̃ := d − α with respect to arrival times ã. By Proposition 2.3.22,
this is equivalent to

∑n−1
i=0 2ã(xi)−d̃ ≤ 1 and hence, by definition of ã and d̃, to∑n−1

i=0 2a(xi)−d ≤ 1.
Now consider arbitrary fractional arrival times a : {x0, . . . , xn−1 } → R. A circuit

S has delay d ∈ R if and only if for any directed path P from any input xi to out(S),
we have a(xi) + |P | ≤ d, i.e., if and only if

max
i∈{0,...,n−1},P : xi out(S)

{
|P | − (d− a(xi))

}
≤ 0 .

Since |P | and 0 are integers, this is equivalent to

max
i∈{0,...,n−1},P : xi out(S)

{
|P | −

⌈
d− a(xi)

⌉}
≤ 0 .

In other words, this means that for modified arrival times ã(xi) := −
⌈
d− a(xi)

⌉
∈ Z,

the circuit S has delay 0. By the claim, this is equivalent to condition (2.15).
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Hence, the delay of an optimum symmetric circuit on inputs x0, . . . , xn−1 with
fractional arrival times a(x0), . . . , a(xn−1) ∈ R is the minimum value d ∈ R such that

m−1∑
i=0

2−dd−a(ti)e ≤ 1 .

Recall from Theorem 2.3.21 that the optimum delay of a symmetric tree S on
inputs x0, . . . , xn−1 with integral arrival times a(x0), . . . , a(xn−1) can be read off from

the weight of the inputs: delay(S) =

⌈
log2

(∑n−1
i=0 2a(xi)

)⌉
. However, for fractional

arrival times, this is not the case.

Example 2.3.24. Let ε > 0 and k, l ∈ N with k = 2l and k and l sufficiently
large such that k2ε− 1 ≥ k. Consider two instances for the Symmetric Function
Delay Optimization Problem: Let Boolean input variables x = (x0, . . . , xk−1)
with arrival times a(xi) = ε for all i ∈ {0, . . . , k − 1} and Boolean input variables
y = (y0, y1) with arrival times a(y0) = 0, a(y1) = log2(k2ε − 1) be given. Then, we
have

∑k−1
i=0 2a(xi) = k2ε and

∑1
i=0 2a(yi) = 1 + (k2ε − 1) = k2ε. A full binary tree on

the inputs of x has delay log2 k + ε = l + ε, while an optimum symmetric tree on y

is y0 ◦ y1, which has delay log2(k2ε − 1) + 1
k2ε−1≥k
≥ log2 k + 1 = l + 1.

Still, we can estimate the delay of a symmetric tree for inputs with fractional
arrival times up to an additive error of 1:

Observation 2.3.25. Let Boolean input variables x = (x0, . . . , xn−1) with fractional
arrival times a(x0), . . . , a(xn−1) ∈ R be given. Consider an optimum symmetric tree
S on inputs x. Define arrival times al(xi) =

⌊
a(xi)

⌋
and au(xi) =

⌈
a(xi)

⌉
for

all i ∈ {0, . . . , n− 1}. Note that delay(S; al) ≤ delay(S; a) ≤ delay(S; au). By

Theorem 2.3.21, we have delay(S; al) =

⌈
log2

(∑
i=0 2ba(xi)c

)⌉
and delay(S; au) =⌈

log2

(∑
i=0 2da(xi)e

)⌉
≤
⌈

log2

(∑
i=0 2ba(xi)c

)⌉
+ 1. Together, this implies

⌈
log2

(∑
i=0

2ba(xi)c
)⌉
≤ delay(S; a) ≤

⌈
log2

(∑
i=0

2ba(xi)c
)⌉

+ 1 .

However, Huffman coding computes an optimum solution also for fractional
arrival times:

Proposition 2.3.26. Given a commutative and associative operation ◦ : {0, 1} ×
{0, 1} → {0, 1}, input variables x0, . . . , xn−1 with n ≥ 1 and arrival times
a(x0), . . . , a(xn−1) ∈ R, Huffman coding (Algorithm 2.1) computes an optimum so-
lution to the Circuit Delay Optimization Problem for symmetric functions
over {◦}. If we assume that the inputs are sorted by increasing arrival time, then
Algorithm 2.1 can be implemented to run in time O(n log2 n).

Proof. By the proof of Proposition 2.3.23, an optimum symmetric circuit for inputs
x0, . . . , xn−1 and arrival times a : {x0, . . . , xn−1} → R can be computed using Huff-
man coding (Algorithm 2.1) on auxiliary arrival times ã(xi) := −

⌈
d− a(xi)

⌉
∈ Z

for i ∈ {0, . . . , n − 1} once the optimum delay d ∈ R is known. But note that for
choosing the vertices v and w in line 4 with respect to ã, the vertices v and w with
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minimum a(v), a(w) are always a valid choice. Hence, Huffman coding with respect
to the original arrival times also computes an optimum solution.

It is not clear whether Van Leeuwen’s linear-time algorithm from [Lee76] for
integral arrival times can be extended to the fractional case. However, using a heap,
Algorithm 2.1 can be implemented to run in O(n log2 n).

2.4 Adder Circuits
We now formally introduce binary addition and the problem of finding fast circuits
for binary addition, which is one of the main topics considered in this work.

Definition 2.4.1. Let n ∈ N. The summation function for n-bit binary num-
bers is defined as sn : {0, 1}2n → {0, 1}n+1, sn

(
(a, b)

)
= a + b, where we view

a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) as two n-bit binary numbers with most
significant bit n− 1.

Basic Adder Optimization Problem
Instance: n ∈ N.
Task: Compute a circuit over Ω = {And,Or,Not,Xor} realizing the sum-

mation function sn : {0, 1}2n → {0, 1}n+1.

In literature, a solution to this problem is usually constructed via carry bits, see,
e.g., Weinberger and Smith [WS58] and Knowles [Kno99]:

Definition 2.4.2. Consider two binary numbers a = (a0, . . . , an−1) and b =
(b0, . . . , bn−1) with most significant bit n − 1. For i ∈ {0, . . . , n− 1}, we call
gi := ai ∧ bi ∈ {0, 1} the i-th generate signal and pi := ai ⊕ bi ∈ {0, 1}
the i-th propagate signal for a and b. Recursively, we define the carry bits
c0, . . . , cn ∈ {0, 1}:

c0 = 0

ci+1 = gi ∨ (pi ∧ ci) for 0 ≤ i ≤ n− 1 (2.16)

Said in words, once the carry bit ci is computed, we can determine the carry bit
ci+1 since this is true if and only if

• ci+1 is generated at position i since ai and bi are both true, i.e., gi = ai ∧ bi is
true, or

• ci+1 is propagated from position i− 1 since ci is true and exactly one of ai and
bi is true, i.e., pi = ai ⊕ bi is true.

From the carry bits, we can easily read off the sum:

Observation 2.4.3. Given two binary numbers a = (a0, . . . , an−1) and b =
(b0, . . . , bn−1) with most significant bit n − 1, propagate signals p0, . . . , pn−1, and
carry bits c0, . . . , cn, we have

(
sn
(
(a, b)

))
i

=

{
ci ⊕ pi if i ∈ {0, . . . , n− 1} ,
cn if i = n .

(2.17)
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Since computing the propagate and generate signals as in Definition 2.4.2 and
computing the sum from the propagate signals and carry bits as in (2.17) requires
only a constant depth and linear size, most researchers including ourselves solve the
following problem instead of the Basic Adder Optimization Problem.

Adder Optimization Problem
Instance: n ∈ N
Task: Construct a circuit over Ωmon = {And2,Or2} on n input pairs

p0, g0, . . . , pn−1, gn−1 computing all the carry bits c1, . . . , cn.

Definition 2.4.4. A circuit solving the Adder Optimization Problem for some
n ∈ N is called an adder circuit or, short, adder. A family of circuits (An)n∈N>0

where circuit An solves the Adder Optimization Problem on n input pairs
p0, g0, . . . , pn−1, gn−1 is called a family of adder circuits. Given n ∈ N, 0 ∈
{1, . . . , n}, and an adder circuit An, we denote the output of An computing the
carry bit ci by outi(An).

By Equation (2.16), an adder circuit on n input pairs p0, g0, . . . , pn−1, gn−1 does
not depend essentially on p0. However, to simplify notation, we mention p0 as an
input in Definition 2.4.4.

Remark 2.4.5. By Equation (2.16), the carry-bit function is monotone. Thus, by
Corollary 2.1.26, there is always a monotone formula for each carry bit, and hence a
circuit over Ωmon = {And,Or} solving the Adder Optimization Problem. On
the contrary, the summation function sn is non-monotone: E.g., for n = 1, a = (1),
b0 = (0) and b1 = (1) with b0 < b1, we have s1

(
(a, b0)

)
= (0, 1) ≮ (1, 0) = s1

(
(a, b1)

)
.

Hence, a circuit solving the Basic Adder Optimization Problem is always non-
monotone. However, it is an open question whether – beyond the computation of the
propagate signals and the final sum – inverters can help to construct adder circuits
with, say, a good depth (see also Section 2.6.1).

Expanding the recursive carry-bit definition (2.16) for a few steps, we obtain

ci+1 = gi ∨ (pi ∧ ci)
= gi ∨

(
pi ∧

(
gi−1 ∨ (pi−1 ∧ ci−1)

))
= gi ∨

pi ∧(gi−1 ∨
(
pi−1 ∧

(
gi−2 ∨

(
pi−2 ∧ . . . (p1 ∧ g0)

)))) . (2.18)

Thus, each carry bit ci+1 can be computed by a path-like formula on inputs
gi, pi, gi−1, pi−1, . . . , g1, p1, g0, where gates alternate between And and Or. We call
such functions And-Or paths (see Definition 2.5.1), and optimizing And-Or paths
is a crucial step in adder optimization and of this thesis.

The circuit that directly emerges from Equation (2.18) applied for computing all
carry bits is called a ripple-carry adder. A ripple-carry adder on n = 3 input pairs
is shown in Figure 2.6(a).

Observation 2.4.6. The ripple carry adder for n input pairs has depth and size
2n− 2.
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p0g0p1g1p2g2

c1c2c3

(a) A ripple-carry adder, see Ob-
servation 2.4.6.

g2 p2 g1 p1 g0 p0

c3 c1c2

(b) An adder circuit arising from
applying Remark 2.4.7 to depth-
optimum And-Or path circuits.

Figure 2.6: Two adder circuits on n = 3 input pairs.

Instead of computing each carry bit by a standard And-Or path circuit as in
the ripple carry adder, one might use fast And-Or path circuits to compute each
carry bit separately. Figure 2.6(b) gives an example with n = 3 input pairs where
each carry bit is realized by a depth-optimum And-Or path circuit.

Remark 2.4.7. Given n And-Or path circuits (AOPi)i=1,...,n, where AOPi is an
And-Or path circuit on i input pairs, we can construct an adder circuit on n input
pairs. The delay of the arising circuit is d(AOPn), while its size is

∑n
i=1 s(AOPi).

Hence, when the only objective function is delay, the fastest adder circuits (as
defined in Definition 2.4.4) can be obtained by applying the best possible And-Or
path optimization algorithms to compute all the carry bits separately. If all carry-bits
are computed independently, this leads to a size at least quadratic in n as the And-
Or paths have at least a size linear in n. Thus, the main task in adder optimization
is to find fast adder circuits that still have a linear size. This problem is examined
in Chapter 8.

2.5 And-Or Path Circuits
An And-Or path is a function of the form

t0 ∨
(
t1 ∧

(
t2 ∨

(
t3 ∧

(
t4 ∨ (t5 ∧ . . .)

))))
(2.19)

or

t0 ∧
(
t1 ∨

(
t2 ∧

(
t3 ∨

(
t4 ∧ (t5 ∨ . . .)

))))
(2.20)

for input variables t = (t0, . . . , tm−1). Note that here, we reverse the indexing
compared to the notation used for adder circuits (see Equation (2.18)). We formalize
this concept as follows.
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Definition 2.5.1. Let Boolean input variables t = (t0, . . . , tm−1) for some m ∈ N
with m > 0 be given. Define the Boolean function g(t) by

g(t) =


t0 m = 1 ,

t0 ∧ t1 m = 2 ,

t0 ∧
(
t1 ∨ g

(
(t2, . . . , tm−1)

))
m ≥ 3 ,

and let g∗(t) be the dual Boolean function of g(t). We call g(t) and g∗(t) And-Or
paths on m inputs. We also call m the length of the And-Or paths g(t) and g∗(t)
on input variables t = (t0, . . . , tm−1).

Using Theorem 2.1.31, for m ∈ N>0, we obtain

g∗(t) =


t0 m = 1 ,

t0 ∨ t1 m = 2 ,

t0 ∨
(
t1 ∧ g∗

(
(t2, . . . , tm−1)

))
m ≥ 3 .

Moreover, for m ∈ N>1, we have

g(t) = t0 ∧ g∗
(
(t1, . . . , tm−1)

)
and

g∗(t) = t0 ∨ g
(
(t1, . . . , tm−1)

)
.

t0 t1 t2 t3 t4 t5

(a) Standard And-Or path
circuit for g

(
(t0, . . . , t5)

)
.

t0 t1 t2 t3 t4

(b) Standard And-Or path
circuit for g∗

(
(t0, . . . , t4)

)
.

Figure 2.7: Two standard And-Or path circuits.

In cases when it is irrelevant whether an And-Or path on inputs t ends with an
And gate or with an Or gate, we often denote the And-Or path by h(t).

Definition 2.5.2. A circuit realizing an And-Or path function is called an And-
Or path circuit. Given an And-Or path h(t), we call the Boolean formula
for h(t) given by Equation (2.19) or Equation (2.20) a standard And-Or path
realization and the corresponding circuit the standard And-Or path circuit
for h(t).

The standard circuits for the And-Or paths g
(
(t0, . . . , t5)

)
and g∗

(
(t0, . . . , t4)

)
can be seen in Figure 2.7.

As g(t) and g∗(t) are dual Boolean functions, Theorem 2.1.31 implies the following
corollary.
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Corollary 2.5.3. Given Boolean input variables t, any Boolean formula (or circuit)
over Ωmon = {And2,Or2} for g(t) can be transformed into a Boolean formula (or
circuit) over Ωmon = {And2,Or2} for g∗(t) with same delay and size by exchanging
all And and Or gates and vice versa.

We can now formulate one of the main problems considered in this thesis.

And-Or Path Circuit Optimization Problem
Instance: m ∈ N, Boolean input variables t = (t0, . . . , tm−1), arrival times

a(t0), . . . , a(tm−1) ∈ N.
Task: Compute a circuit over Ωmon = {And2,Or2} realizing g(t) or g∗(t) with

minimum possible delay.

By Corollary 2.5.3, this problem is well-defined. Note that finding a depth-
optimum And-Or path circuit is the special case of the And-Or Path Circuit
Optimization Problem when all arrival times are 0, i.e., a ≡ 0.

When restricting the set of solutions to formula circuits (or, equivalently, Boolean
formulae), we obtain the following problem.

And-Or path Formula Optimization Problem
Instance: m ∈ N, Boolean input variables t = (t0, . . . , tm−1), arrival times

a(t0), . . . , a(tm−1) ∈ N.
Task: A monotone Boolean formula realizing g(t) or g∗(t) with minimum pos-

sible delay.

By Theorem 2.3.11, the delays of optimum solutions of the And-Or Path Cir-
cuit Optimization Problem and the And-Or path Formula Optimization
Problem coincide; but note that general circuits might have fewer gates and lower
maximum fanouts than formula circuits.

2

3

4

5

4 2 1 0 1

t0 t1 t2 t3 t4

(a) Circuit C1 with depth(C1) = 4
and delay(C1) = 5.

4 2 1 0 1

t0 t1 t2 t3 t4

3 3

45

6

(b) Circuit C2 with depth(C2) = 3
and delay(C2) = 6.

Figure 2.8: Two circuits with given input arrival times realizing
g
(
(t0, . . . , t4)

)
.
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Example 2.5.4. The circuits C1 and C2 shown in Figure 2.8(a) and Figure 2.8(b)
both realize the And-Or path g

(
(t0, . . . , t4)

)
. This can be verified by comparing the

Boolean formulae corresponding to C1 and C2:

φC1 = t0 ∧
(
t1 ∨

(
t2 ∧ (t3 ∨ t4)

))
(2.5)
= t0 ∧

(
(t1 ∨ t2) ∧

(
t1 ∨ (t3 ∨ t4)

))
(2.2)
=

(
t0 ∧ (t1 ∨ t2)

)
∧
(
(t1 ∨ t3) ∨ t4

)
= φC2

Regarding depth optimization, C2 is better than C1, but with respect to the
indicated blue arrival times, the delay of C1 is better than the delay of C2. For these
two concrete instances of the And-Or path Formula Optimization Problem,
we can show that C1 and C2 are optimum solutions, respectively: As any binary
circuit on 5 inputs has a depth of at least d log2 5e = 3, the circuit C2 is depth-
optimum. The delay 5 of C1 is optimum for the blue arrival times since the input t0
with arrival time 4 has depth at least 1 in any And-Or path circuit.

When computing delay-optimum And-Or path circuits for a given set of arrival
times in Chapter 5, the following natural generalization of And-Or paths arises.

Definition 2.5.5. Let Boolean input variables t = (t0, . . . , tm−1) and an (m − 1)-
tuple Γ = (◦0, . . . , ◦m−2) of gate types ◦0, . . . , ◦m−2 ∈ Ωmon = {And2,Or2} be
given. We call a Boolean function of the form

h(t; Γ) := t0 ◦0
(
t1 ◦1

(
t2 ◦2

(
. . . ◦m−3 (tm−2 ◦m−2 tm−1)

)))
(2.21)

a generalized And-Or path. Similarly as in Definition 2.5.2, we call the Boolean
formula in Equation (2.21) the standard realization and the corresponding circuit
the standard circuit for h(t; Γ).

Generalized And-Or Path Circuit Optimization Prob-
lem
Instance: m ∈ N, Boolean input variables t = (t0, . . . , tm−1), gate types Γ =

(◦0, . . . , ◦m−2), arrival times a(t0), . . . , a(tm−1) ∈ R.
Task: Compute a circuit over Ωmon = {And2,Or2} realizing h(t; Γ) with

minimum possible delay.

Though, our main interest lies in the optimization of And-Or paths.
In order to understand (generalized) And-Or paths more thoroughly, it is helpful

to divide the inputs into two groups, similarly as in Equation (2.18).

Definition 2.5.6. Let h(t; Γ) be a generalized And-Or path of length m ≥ 1.
An input ti of h(t; Γ) is called a generate signal (or a propagate signal) if the
unique successor of ti in the standard And-Or path circuit for h(t; Γ) is an Or
gate (or an And gate). The signal partition of h(t; Γ) is the unique partition
(t0, . . . , tm−1) = P0 ++ . . . ++ Pc of the inputs into maximal consecutive sub-tuples
P0, . . . , Pc called input groups such that for each b ∈ {0, . . . , c}, the sub-tuple Pb
contains only propagate or only generate signals.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2 P3 P4

Figure 2.9: A generalized And-Or path with its signal partition.

Figure 2.9 visualizes the signal partition of the inputs for a concrete generalized
And-Or path.

We can now characterize the true points of generalized And-Or paths.

Proposition 2.5.7. Let h(t; Γ) be a generalized And-Or path of length m ≥ 2. A
value α ∈ {0, 1}m is a true point of h(t; Γ) if and only if at least one of the following
conditions is fulfilled:

(i) There is a true generate signal αi, i ∈ {0, . . . ,m− 1}, and all propagate signals
αj with j < i are true.

(ii) The input tm−1 is a propagate signal and all propagate signals in α are true.

Proof. We prove the statement by induction on m.
For m = 2, the statement can be verified directly both for h(t; (And)) = g(t) =

t0 ∧ t1 and h(t; (Or)) = g∗(t) = t0 ∨ t1.
Now consider any m ≥ 3 and assume that the statement is already proven for all

generalized And-Or paths of length strictly less than m.
Using Definition 2.5.5, we can write h(t; Γ) = t0 ◦0 h(t′; Γ′), where t′ =

(t1, . . . , tm−1) and Γ′ = (◦1, . . . , ◦m−2).
First assume that ◦0 = And. Thus, the true points of h(t; Γ) are exactly those

α ∈ {0, 1}m with α0 = 1 and (α1, . . . , αm−1) ∈
(
h(t′; Γ′)

)−1
(1). Since t0 is a

propagate signal of h(t; Γ), the statement follows by induction hypothesis.
Now, we may assume that ◦0 = Or. A value α ∈ {0, 1}m is a true point

of h(t; Γ) if and only if t0 is true – in which case condition (i) is fulfilled – or if
(α1, . . . , αm−1) is a true point of h(t′; Γ′) – in which case the statement is true by
induction hypothesis.

From Proposition 2.5.7, we can deduce the prime implicants of And-Or paths:
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t0 t1 t2 t3 t4 t5

(a)

t0 t1 t2 t3 t4 t5

(b)

t0 t1 t2 t3 t4 t5

(c)

t0 t1 t2 t3 t4 t5

(d)

Figure 2.10: All prime implicants of the And-Or path
f∗
(
(t0, . . . , t5)

)
. Figures 2.10(a) to 2.10(d) illustrate one minimal true

point each: The corresponding true inputs are boxed; in green if they
are generate signals and in red if they are propagate signals.

Corollary 2.5.8. Consider a generalized And-Or path h(t; Γ) on Boolean input
variables t = (t0, . . . , tm−1). The prime implicants of h(t; Γ) areti ∧ ∧

j<i,tj propagate signal

tj : ti generate signal or i = m− 1

 .

Figure 2.10 shows all prime implicants for the And-Or path f∗
(
(t0, . . . , t5)

)
.

An important implication of this corollary is the following statement.

Corollary 2.5.9. Any generalized And-Or path h(t; Γ) on Boolean input variables
t = (t0, . . . , tm−1) depends essentially on all of its inputs.

Proof. Let ti with i ∈ {0, . . . ,m− 1} be an input of h(t; Γ). By Corollary 2.5.8,
there is a prime implicant of h(t; Γ) that contains ti. Hence, by Observation 2.1.20,
h(t; Γ) depends essentially on ti.

2.6 Previous Work
When circuit size is not taken into account, delay optimization for And-Or paths and
adders is equally hard: every And-Or path circuit yields an adder circuit with the
same delay and vice versa (cf. Equation (2.18) and Remark 2.4.7). Also, lower bounds
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on delay hold for both problems simultaneously. Naturally, the adder optimization
problem has been studied more widely in previous work.

Section 2.6.1 summarizes the previously known lower bounds on depth and delay
for And-Or path circuits and adder circuits. In Section 2.6.2, we present well-known
strategies to construct And-Or path circuits in a recursive fashion, i.e., to construct
circuits for And-Or paths of length m based on circuits for And-Or paths with
length strictly smaller than m. These strategies are the basic ingredient for all And-
Or path and adder optimization algorithms. In Sections 2.6.3 and 2.6.4, we will
discuss the previously best known algorithms for depth and delay optimization of
And-Or paths and adders, respectively.

2.6.1 Lower Bounds

A simple lower bound on the delay of any solution to the And-Or Path Circuit
Optimization Problem and the And-Or path Formula Optimization Prob-
lem can be derived from Theorem 2.3.15 as follows.

Proposition 2.6.1. The delay of any And-Or path circuit over Ωmon =
{And2,Or2} on inputs t = (t0, . . . , tm−1) with arrival times a(t0), . . . , a(tm−1) ∈ N
is at least d log2W e, where W :=

∑m−1
i=0 2a(ti) as defined in Definition 2.3.16.

Proof. Since And-Or paths depend essentially on all their inputs by Corollary 2.5.9,
the lower bound d log2W e on the delay of any binary circuit shown in Theorem 2.3.15
is valid for And-Or path circuits.

For arbitrary arrival times, Proposition 2.6.1 gives the best known lower bound
on the delay of And-Or path circuits. But regarding the asymptotic behavior of
the depth of And-Or path circuits, there are several interesting results. Commentz-
Walter, partially together with Sattler, showed lower bounds on the product of size
and depth of any monotone [Com79] and non-monotone [CS80] Boolean formula. In
these two works, only And-Or paths ending with an And gate are considered, and
they have m = 2n inputs. Hence, we use this notation in the this section.

Definition 2.6.2. Given m ∈ N, the product complexity of And-Or paths is

Pmon(n) := min
{

size(φ) · depth(φ) : φ is a Boolean formula

for g
(
(t0, . . . , t2n−1)

)}
,

and the monotone product complexity is

Pnmon(n) := min
{

size(φ) · depth(φ) : φ is a monotone Boolean formula

for g
(
(t0, . . . , t2n−1)

)}
.

Theorem 2.6.3 (Commentz-Walter and Sattler [CS80]). For any n ∈ N with n ≥ 17,
we have

Pnmon(n) ≥ n log2 n log2 log2 n

8 log2 log2 log2 log2 n
.

From this, a lower bound on the depth of And-Or path circuits can be deduced
easily as follows.
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Corollary 2.6.4. For any α ∈ (0, 1), there is Nα ∈ N such that for all n ∈ N,
n ≥ Nα, and any circuit C over Ωnmon = {And2,Or2, Inv} for an And-Or path
of length 2n, we have

depth(C) ≥ log2 n+ α log2 log2 log2 n .

Proof. Consider α ∈ (0, 1) and assume that for all Nα ∈ N, there is n ≥ Nα such
that an And-Or path circuit C over Ωnmon for g

(
(t0, . . . , t2n−1)

)
with depth(C) <

log2 n + α log2 log2 log2 n exists. Choose Nα such that for every n ≥ Nα, we have
(log2 log2 n)1−α ≥ 16 log2 log2 log2 log2 n. There is some n ≥ Nα and a circuit C for
g
(
(t0, . . . , t2n−1)

)
with

depth(C) < log2 n+ α log2 log2 log2 n . (2.22)

By Corollary 2.3.12, the Boolean formula φ corresponding to C fulfills depth(φ) =
depth(C). Hence, we have

Pnmon(n) ≤ size(φ) · depth(φ)

Obs. 2.3.5
≤ 2depth(φ) depth(φ)

depth(φ)=depth(C),
(2.22)
< 2log2 n+α log2 log2 log2 n(log2 n+ α log2 log2 log2 n)

= n(log2 log2 n)α(log2 n+ α log2 log2 log2 n)

α≤1
≤ 2n log2 n(log2 log2 n)α .

Together with the lower bound on Pnmon(n) given by Theorem 2.6.3, this yields

(log2 log2 n)1−α < 16 log2 log2 log2 log2 n ,

a contradiction to the choice of Nα.

For α = 0.15, Khrapchenko [Khr07] makes this statement more precise.

Corollary 2.6.5 (Khrapchenko [Khr07]). For any n ≥ 2232 and any And-Or path
circuit C over Ωnmon on 2n inputs, we have

depth(C) ≥ log2 n+ 0.15 log2 log2 log2 n .

When restricting the set of possible solutions to monotone formulae, Commentz-
Walter shows a stronger lower bound and a matching upper bound on the product
complexity.

Theorem 2.6.6 (Commentz-Walter [Com79]). We have Pmon(n) ∈ Θ(n log2
2 n).

In this case, she also derives an implied bound on the depth of monotone And-Or
path realizations.

Corollary 2.6.7 (Commentz-Walter [Com79]). Let d(n) denote the optimum depth
of any circuit over Ωmon realizing g

(
(t0, . . . , t2n−1)

)
. We have

d(n) = log2 n+ Ω(log2 log2 n) .

From Theorem 2.6.6, we can also derive the following lower bound.
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Corollary 2.6.8. There is some α ∈ R and some Nα ∈ N such that for all n ≥ Nα,
any circuit C over Ωmon for g

(
(t0, . . . , t2n−1)

)
fulfills

depth(C) ≥ log2 n+ log2 log2 n+ α .

Proof. Assume on the contrary that for all α ∈ R and for all Nα ∈ N, there is n ≥ Nα

and a circuit C for g
(
(t0, . . . , t2n−1)

)
with depth(C) < log2 n+ log2 log2 n+ α.

By Theorem 2.6.6, there are β ∈ R>0 and Nβ ∈ N such that for all n ≥ Nβ , we
have

Pnmon(n) ≥ βn log2
2 n . (2.23)

Choose α := min{−1, log2(β)− 1} ∈ R<0 and Nα := Nβ . Let n ≥ Nα such that
a circuit C of g

(
(t0, . . . , t2n−1)

)
with

depth(C) < log2 n+ log2 log2 n+ α . (2.24)

exists. By Corollary 2.3.12, the Boolean formula φ corresponding to C fulfills
depth(φ) = depth(C). We conclude

size(φ) · depth(φ)
Obs. 2.3.5
≤ 2depth(φ) depth(φ)

depth(φ)=depth(C),
(2.24)
< n log2 n2α(log2 n+ log2 log2 n+ α)

α<0
< 2α+1n log2

2 n

α<log2(β)−1

≤ βn log2
2 n ,

which contradicts (2.23).

Hitzschke [Hit18] showed that asymptotically, the additive constant α in Corol-
lary 2.6.8 can be chosen arbitrarily close to −4:

Remark 2.6.9. Hitzschke [Hit18] specified and improved the lower bounds on the
depth of And-Or path circuits by Commentz-Walter [Com79]. We review his result
for monotone circuits. Assume that n is of the form n = 22k with k ∈ N. Only for
k ≥ 7, Hitzschke’s (and thus Commentz-Walter’s) lower bound is stronger than the
lower bound

⌈
log2(2n)

⌉
on the depth of any binary circuit on 2n inputs. For k ≥ 18,

Hitzschke shows that log2 n+ log2 log2 n− 4.01 is a lower bound on the depth of any
And-Or path circuit over Ωmon on n inputs, and that asymptotically, the additive
constant approaches −4.

Hence, apart from Proposition 2.6.1, none of the statements in this section yields
a lower bound on the depth of And-Or path formulae for a small number of inputs.
In order to check whether a certain realization has optimum delay, Proposition 2.6.1
remains the only lower bound known.

2.6.2 Recursion Strategies
For And-Or paths with a very short length, depth-optimum or even delay-optimum
formulae or circuits are easy to find.

Observation 2.6.10. In Proposition 5.2.6, we will see that for m ≤ 3, the standard
realization is delay-optimum for any prescribed arrival times a(t0), . . . , a(tm−1) ∈ N;
and that for m = 4, the standard realization of g(t) with depth 3 is depth-optimum.
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For m = 5, Figure 2.8(b) (page 38) shows a realization for g(t) with depth 3. This is
the optimum depth achievable for this instance as by Proposition 2.6.1, a realization
with depth 2 does not exist.

For larger m, a common strategy to find And-Or path realizations with good
delay is to reduce the problem to the construction of And-Or paths of strictly smaller
lengths. In order to derive several approaches that follow this general strategy, an
important ingredient is the characterization of the true points (see Definition 2.1.1)
of g(t) and g∗(t) from Proposition 2.5.7.

First, we shall see that the characterization of true points immediately yields a
circuit for an And-Or path of length m with logarithmic delay.

Proposition 2.6.11. Consider an And-Or path h(t) with length m, and let arrival
times a(t0), . . . , a(tm−1) ∈ N be given. There is a circuit C for h(t) with delay

delay(C) ≤ log2

(
W (t; a)

)
+ log2m+ 2 .

Proof. Assume first that tm−1 is a generate signal. By Proposition 2.5.7, we have

h(t) =
∨

ti generate signal

ti ∧

 ∧
tj propagate signal, j<i

tj

 . (2.25)

Now, we construct a circuit C realizing h(t): For a fixed generate signal ti,
we can use Theorem 2.3.21 in order to compute a delay-optimum circuit for
ti ∧

∧
tj propagate signal, j<i tj with delay at mostlog2

2ti +
∑

tj propagate signal, j<i

2tj

 ≤
⌈

log2

(
W (t; a)

)⌉
.

Based on this, each input of the Or in Equation (2.25) thus has arrival time at
most

⌈
log2

(
W (t; a)

)⌉
. Applying Theorem 2.3.21 again to construct the Or-tree,

the resulting circuit C has a delay of at mostlog2

 ∑
ti generate signal

2

⌈
log2(W (t;a))

⌉ ≤ log2

(
m2log2(W (t;a))+1

)
+ 1

= log2

(
2mW (t; a)

)
+ 1

= log2

(
W (t; a)

)
+ log2m+ 2 .

If tn−1 is a propagate signal of h(t), then tn−1 is a generate signal for the dual
function h∗(t). Hence, by the first part, we can find a realization φ for h∗(t) with
delay at most log2

(
W (t; a)

)
+ log2m+ 2, and by Theorem 2.1.31, φ∗ is a realization

of h(t)
Prop. 2.1.30

=
(
h∗(t)

)∗ with the same delay.

Plugging together Propositions 2.6.1 and 2.6.11 and using that the delay of a
circuit with integral arrival times is integral, we obtain the following corollary.

Corollary 2.6.12. Let an And-Or path h(t) on inputs t = (t0, . . . , tm−1) with
arrival times a(t0), . . . , a(tm−1) ∈ N and a delay-optimum circuit C realizing h(t)
with respect to arrival times a be given. We have⌈

log2

(
W (t; a)

)⌉
≤ delay(C) ≤

⌊
log2

(
W (t; a)

)
+ log2m

⌋
+ 2 .
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In the rest of this section, we shall see recursion formulas that help improving
the upper bound on the optimum delay. All these recursion formulas can be found in
Grinchuk [Gri08] (although with different proofs), and in different form and for cer-
tain special cases also in earlier works. In particular, we will use the characterization
of the true points of And-Or paths given in Proposition 2.5.7 in order to describe
several well-known variants of a recursive strategy to optimize And-Or paths. The
key idea for these is depicted in Figure 2.11 and proven in Lemma 2.6.13.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t′ t′′

(a) The standard And-Or path circuit for
g∗
(
(t0, . . . , t11)

)
.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

t′ t′′

(b) The circuit for g∗
(
(t0, . . . , t11)

)
as in-

dicated by Lemma 2.6.13 with k = 7.

Figure 2.11: Illustration of the split from Lemma 2.6.13.

Lemma 2.6.13. Let input variables t = (t0, . . . , tm−1) and an odd integer k with
1 ≤ k < m be given. Then, we have

g∗(t) = g∗
(
(t0, . . . , tk−1)

)
∨
(

sym
(
(t1, t3, . . . , tk)

)
∧ g∗

(
(tk+1, . . . , tm−1)

))
and

g(t) = g
(
(t0, . . . , tk−1)

)
∧
(

sym∗
(
(t1, t3, . . . , tk)

)
∨ g
(
(tk+1, . . . , tm−1)

))
.

Proof. By Corollary 2.5.3, it suffices to prove the first statement. For this, we show
that the true points of g∗(t) as given in Proposition 2.5.7 are exactly the true points
of the function

h(t) := g∗
(
(t0, . . . , tk−1)

)
∨
(

sym
(
(t1, t3, . . . , tk)

)
∧ g∗

(
(tk+1, . . . , tm−1)

))
. (2.26)

This is done in the subsequent claims.
Claim 1. Any true point α ∈ {0, 1}m of g∗(t) is a true point of h(t).
Proof of claim: First, we consider only true points α of g∗(t) that fulfill condition
(i) of Proposition 2.5.7 with a true generate signal αi with i ≤ k − 1 for which all
propagate signals αj with j < i are true. Then, (α0, . . . , αk−1) is a true point of
g∗
(
(t0, . . . , tk−1)

)
by Proposition 2.5.7, and, by definition of h(t), a true point of

h(t).
Secondly, consider all other true points α of g∗(t). By Proposition 2.5.7,

α1, α3, . . . , αk must all be true, and (αk, . . . , αm−1) must be a true point of
g∗
(
(tk+1, . . . , tm−1)

)
. Hence, by Equation (2.26), α is also a true point of h(t).
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s0 s1 s2 t0 t1 t2 t3 t4

Figure 2.12: The standard circuit of the extended And-Or path
f
(
(s0, s1, s2), (t0, . . . , t4)

)
. We have n = 3 and m = 5. The gates fed

by alternating inputs are colored red (And) and green (Or); the gates
fed by symmetric inputs are colored yellow.

Claim 2. Any true point α ∈ {0, 1}n of h(t) is a true point of g∗(t).
Proof of claim: In the realization of h(t), the gate preceding the final output is an
Or gate. Thus, if α ∈ {0, 1}n is a true point of h(t), then one of the two sub-circuits
of this Or gate must have a true output.

If g∗
(

(α0, . . . , αk−1)
)

= 1, then (α0, . . . , αk−1) is a true point of the func-

tion g∗
(

(α0, . . . , αk−1)
)

and thus α a true point of g∗((α0, . . . , αm−1)) by Propo-
sition 2.5.7.

On the other hand, if
(

sym
(
(α1, α3, . . . , αk)

)
∧ g∗

(
(αk+1, . . . , αm−1)

))
= 1, then

α1, α3, . . . , αk are all true and g∗
(
(αk+1, . . . , αm−1)

)
is true. Hence, by Proposi-

tion 2.5.7, α is a true point of f∗(t).

In particular, Lemma 2.6.13 together with Remark 2.1.14 implies that once we
have found realizations φ of g∗

(
(t0, . . . , tk−1)

)
, ψ of sym

(
(t1, t3, . . . , tk)

)
and τ of

g∗
(
(tk+1, . . . , tm−1)

)
, the Boolean formula φ ∨ (ψ ∧ τ) realizes g∗(t). One way to do

this would be to compute φ and τ by recursively applying Lemma 2.6.13 and by
computing ψ using Huffman coding as described in Theorem 2.3.21.

However, it turns out to be beneficial to consider the function

sym
(
(t1, t3, . . . , tk)

)
∧ g∗

(
(tk+1, . . . , tm−1)

)
as one entity instead of searching for realizations for sym

(
(t1, t3, . . . , tk)

)
and

g∗
(
(tk+1, . . . , tm−1)

)
separately. Thus, we introduce the following definition.

Definition 2.6.14. Let n,m ∈ N with m > 0 and Boolean input variables
s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1) be given. We call each of the functions

f(s, t) = sym(s) ∧ g(t) and f∗(s, t) = sym∗(s) ∨ g∗(t)

an extended And-Or path on n+m inputs. We call t the alternating inputs
and s the symmetric inputs of the extended And-Or paths f(s, t) and f∗(s, t).

Note that each extended And-Or path is a generalized And-Or path, see
Definition 2.5.5. In particular, they also have standard realizations and standard
circuits, and they depend essentially on all of their inputs (see Definition 2.5.5



48 Chapter 2. Preliminaries

and Corollary 2.5.9). Figure 2.12 shows the standard circuit for an extended And-Or
path with 3 symmetric inputs and 5 alternating inputs.

In order to reformulate Lemma 2.6.13 using extended And-Or paths in a compact
way, we define a subset of input variables that contains each second input variable.

Definition 2.6.15. Given input variables t = (t0, . . . , tm−1), we define the input
variables

t̂ :=

{
(t1, t3, t5, . . . , tm−2) for m odd,
(t0, t2, t4, . . . , tm−2) for m even.

Now, we can generalize Lemma 2.6.13 as follows.

Corollary 2.6.16. Let input variables t = (t0, . . . , tm−1) and an odd integer k with
1 ≤ k < m be given. Denote by t′ the odd-length prefix t′ = (t0, t1, . . . , tk−1) of t,
and by t′′ the remaining inputs of t, i.e., t′′ = (tk, . . . , tm−1). Then, we have

g∗(t) = g∗
(
t′
)
∨ f
(
t̂′, t′′

)
and g(t) = g

(
t′
)
∧ f∗

(
t̂′, t′′

)
.

Proof. By Corollary 2.5.3, it suffices to prove the first statement. We have

g∗(t) Lem. 2.6.13
= g∗

(
(t0, . . . , tk−1)

)
∨
(

sym
(
(t1, t3, . . . tk)

)
∧ g∗

(
(tk+1, . . . , tm−1)

))
= g∗

(
t′
)
∨
(

sym
(
(t1, t3, . . . tk−2)

)
∧
(
tk ∧ g∗

(
(tk+1, . . . , tm−1)

)))
Def. 2.5.1

= g∗
(
t′
)
∨
(

sym
(
t̂′
)
∧ g
(
(tk, . . . , tm−1)

))
Def. 2.6.15,
Def. 2.6.14= g∗

(
t′
)
∨ f
(
t̂′, t′′

)
.

Note that this is a generalization of Lemma 2.6.13 because the formula
sym

(
(t1, t3, . . . , tk)

)
∧ f∗(tk+1, . . . , tm−1) restricts the set of possible realizations of

the function f
(
t̂′, t′′

)
to those that arise from realizations for sym

(
(t1, t3, . . . , tk)

)
and f∗(tk+1, . . . , tm−1) concatenated by an And. Now, we have the freedom to
realize f

(
t̂′, t′′

)
arbitrarily.

Since the realizations for And-Or paths implied by Corollary 2.6.16 are based on
realizations for extended And-Or paths, we generalize this statement such that it
also can compute realizations for extended And-Or paths. We will call the arising
method to realize extended And-Or paths in a recursive fashion an alternating
split because it leaves the symmetric inputs of the original extended And-Or path
untouched while the alternating inputs are split into two groups.

Corollary 2.6.17 (Alternating split, odd prefix). Let Boolean input variables s =
(s0, . . . , sn−1) and t = (t0, . . . , tm−1) and an odd integer k with 1 ≤ k < m be given.
Denote by t′ the odd-length prefix t′ = (t0, t1, . . . , tk−1) of t, and by t′′ the remaining
inputs of t, i.e., t′′ = (tk, . . . , tm−1). Then, we have

f∗(s, t) = f∗
(
s, t′
)
∨ f
(
t̂′, t′′

)
(2.27)

and

f(s, t) = f
(
s, t′
)
∧ f∗

(
t̂′, t′′

)
. (2.28)



2.6. Previous Work 49

Proof. Due to Corollary 2.5.3, it suffices to prove the first statement. Using Corol-
lary 2.6.16 and Definition 2.6.14, this holds due to

f∗(s, t) Def. 2.6.14
= sym∗(s) ∨ g∗(t)

Cor. 2.6.16
= sym∗(s) ∨

(
g∗
(
t′
)
∨ f
(
t̂′, t′′

))
(2.2)
=

(
sym∗(s) ∨ g∗

(
t′
))
∨ f
(
t̂′, t′′

)
Def. 2.6.14

= f∗
(
s, t′
)
∨ f
(
t̂′, t′′

)
.

Figure 2.13 shows an illustration of the alternating split with a prefix of length
5. We use standard circuits for f∗

(
(s0, s1)(t0, . . . , t4)

)
and f∗

(
(s1, t1, t3), (t5, . . . , t9)

)
for illustration purposes. Any circuits realizing these functions could be used here.
Recall that one possible realization for the latter function appears in Figure 2.11(b).

s0 s1 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

s t′ t′′

(a) The standard And-Or path cir-
cuit for the extended And-Or path
f∗
(
(s0, s1), (t0, . . . , t9)

)
.

s0 s1 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

s t′ t′′

(b) A circuit realizing the function
f∗
(
(s0, s1), (t0, . . . , t9)

)
as indicated by

Corollary 2.6.17 with k = 5.

Figure 2.13: Illustration of the alternating split with an odd prefix.

There is a slightly different split that allows splitting off an even-length prefix of
t. Here, we use the notation x++y :=

(
x0, . . . , xq−1, y0, . . . , yr−1

)
to concatenate two

tuples of disjoint input variables x =
(
x0, . . . , xq−1

)
and y = (y0, . . . , yr−1); and for

input variables x, x′ with x =
(
x0, . . . , xq−1

)
and x′ =

(
x0, . . . , xq−1

)
with q ≤ r, we

write x \ x′ :=
(
xq, . . . , xr−q

)
.

Corollary 2.6.18 (Alternating split, even prefix). Let Boolean input variables s =
(s0, . . . , sn−1) and t = (t0, . . . , tm−1) and an even integer k with 2 ≤ k < m be given.
Denote by t′ the even-length prefix t′ = (t0, t1, . . . , tk−1) of t, and by t′′ the remaining
inputs of t, i.e., t′′ = t \ t′. Then, we have

f∗(s, t) = f∗
(
s, t′
)
∧ f∗

(
s++ t̂′, t′′

)
(2.29)

and
f(s, t) = f

(
s, t′
)
∨ f
(
s++ t̂′, t′′

)
. (2.30)
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Proof. Again, it suffices to prove the first statement. We first consider the case that
s = (). Here, we apply the alternating split with an odd prefix of length k + 1
(Corollary 2.6.17) to the modified instance arising from t by adding an auxiliary
input variable t−1. This yields the realization

g
(
(t−1, t0, . . . , tm−1)

)
=

g
(
(t−1, . . . , tk−1)

)
∧ f∗

(
(t0, t2, t4, . . . , tk−2), (tk, . . . , tm−1)

)
. (2.31)

Form this, we deduce a realization for g∗(t) since

g∗(t) Def. 2.5.1
= g |t−1=1

(
(t−1, t0, . . . , tm−1)

)
(2.31)

= g |t−1=1

(
(t−1, t0, . . . , tk−1)

)
∧ f∗

(
(t0, t2, t4, . . . , tk−2), (tk, . . . , tm−1)

)
Def. 2.5.1,
Def. 2.6.15= g∗

(
t′
)
∧ f∗

(
t̂′, t′′

)
. (2.32)

This proves Equation (2.29) in the case that s = (). For arbitrary s, we have

f∗(s, t) Def. 2.6.14
= sym∗(s) ∨ g∗(t)

(2.32)
= sym∗(s) ∨

(
g∗
(
t′
)
∧ f∗

(
t̂′, t′′

))
(2.5)
=

(
sym∗(s) ∨ g∗

(
t′
))
∧
(

sym∗(s) ∨ f∗
(
t̂′, t′′

))
Def. 2.6.14

= f∗
(
s, t′
)
∧ f∗

(
s++ t̂′, t′′

)
.

s0 s1 t0 t1 t2 t3 t4 t5 t6

s t′ t′′

(a) The standard And-Or path circuit for
f∗
(
(s0, s1), (t0, . . . , t6)

)
.

s0 s1 t0 t1 t2 t3 t4 t5 t6

s t′ t′′

(b) A circuit for f∗
(
(s0, s1), (t0, . . . , t6)

)
as in Corollary 2.6.18 with k = 4.

Figure 2.14: Illustration of the alternating split with an even prefix.

Figure 2.14 illustrates the alternating split with an even prefix t′ on an extended
And-Or path with 2 symmetric inputs and 7 alternating inputs. Note that for non-
trivial symmetric inputs s, the alternating split is much more convenient in the case
that the prefix is odd since for an even prefix, the symmetric inputs s appear in both
recursive realizations.
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Similarly as Lemma 2.6.13 is a special way to use the alternating split from
Corollary 2.6.17, the following recursion formula is a special case of the realization
in Corollary 2.6.18.

Corollary 2.6.19. Let Boolean input variables t = (t0, . . . , tm−1) and an even
integer k with 2 ≤ k < m be given. Then, we have

g∗(t) = g∗
(
(t0, t1, . . . , tk−1)

)
∧
(

sym∗
(
(t0, t2, . . . , tk−2)

)
∨ g∗

(
(tk, . . . , tm−1)

))
and

g(t) = g
(
(t0, t1, . . . , tk−1)

)
∨
(

sym
(
(t0, t2, . . . , tk−2)

)
∧ g
(
(tk, . . . , tm−1)

))
.

The definition of extended And-Or paths implies other ways to realize extended
And-Or paths recursively. We shall call these symmetric splits.

Observation 2.6.20 (Symmetric splits). Given Boolean input variables s =
(s0, . . . , sn−1) and t = (t0, . . . , tm−1), we have

f(s, t) = sym(s) ∧ g(t) , (2.33)
f∗(s, t) = sym∗(s) ∨ g∗(t) . (2.34)

Furthermore, if k < n, we have

f(s, t) = sym
(
(s0, . . . , sk−1)

)
∧ f
(
(sk, . . . , sn−1), t

)
(2.35)

and

f∗(s, t) = sym∗
(
(s0, . . . , sk−1)

)
∨ f∗

(
(sk, . . . , sn−1), t

)
. (2.36)

More generally, for k ≤ n and any k-elemental sub-tuple s′ = (si0 , . . . , sik−1
) of s, we

have

f(s, t) = sym(s′) ∧ f
(
s\s′, t

)
(2.37)

and

f∗(s, t) = sym∗(s′) ∧ f∗
(
s\s′, t

)
. (2.38)

If m is small, f(s, t) and f∗(s, t) are actually symmetric functions by Defini-
tions 2.5.1 and 2.6.14. Hence, in this case, we can compute delay-optimum solutions
for them by Theorem 2.3.21:

Observation 2.6.21. Assume that m ≤ 2 – hence both f(s, t) and f∗(s, t) are
symmetric functions – and that all input arrival times are integral. Then, f(s, t) and
f∗(s, t) can be realized by delay-optimum formulae with delay exactly⌈

log2

(
W (s) +W (t)

)⌉
.

In other words, they can be realized with delay d ∈ N if and only if

W (s) +W (t) ≤ 2d .
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2.6.3 Adder Optimization Algorithms
Most adder circuits known so far are prefix adders, so we will first introduce this
concept before presenting the fastest known prefix adders. In a prefix adder, the
inputs are grouped into pairs of consecutive propagate and generate signals as in
the following definition. We will see that this is an elegant way to construct adder
circuits with a good size, but not all adder circuits are prefix adders. In particular,
the delay of any prefix adder is away from the optimum by a factor up to 1.44. Hence,
afterwards, we will turn to non-prefix adders. For both types of adders, we will first
review adder circuits that optimize circuit depth and later consider the more general
case of delay optimization for prescribed arrival times.

Definition 2.6.22. The adder prefix operator _ ◦p _ : {0, 1}2×{0, 1}2 → {0, 1}
is defined by (

y1

x1

)
◦p
(
y0

x0

)
=

(
y1 ∨ (x1 ∧ y0)

x1 ∧ x0

)
for input pairs (x0, y0), (x1, y1) ∈ {0, 1}2.

A very useful property of the adder prefix operator is its associativity.

Proposition 2.6.23. The adder prefix operator is associative.

Proof. For three input pairs (x0, y0), (x1, y1), (x2, y2) ∈ {0, 1}2, we have((
y2

x2

)
◦p
(
y1

x1

))
◦p
(
y0

x0

)
=

(
y2 ∨ (x2 ∧ y1)

x2 ∧ x1

)
◦p
(
y0

x0

)
=

((
y2 ∨ (x2 ∧ y1)

)
∨
(
(x2 ∧ x1) ∧ y0

)
(x2 ∧ x1) ∧ x0

)

=

(
y2 ∨

(
x2 ∧

(
y1 ∨ (x1 ∧ y0)

))
x2 ∧ (x1 ∧ x0)

)
=

(
y2

x2

)
◦p
(
y1 ∨ (x1 ∧ y0)

x1 ∧ x0

)
=

(
y2

x2

)
◦p
((

y1

x1

)
◦p
(
y0

x0

))
.

The following way how to use parallel prefix graphs for the construction of adder
circuits was described, among others, by Knowles [Kno99]. Assume that we compute
an adder circuit on n input pairs p0, g0, . . . , pn−1, gn−1. Defining auxiliary variables
zi = (gi, pi) ∈ {0, 1}2 for all i = 0, . . . , n− 1, by Equation (2.18), we have(

ci+1

pi ∧ pi−1 ∧ . . . ∧ p0

)
=

(
gi
pi

)
◦p
(
gi−1

pi−1

)
◦p . . . ◦p

(
g0

p0

)
= zi ◦p zi−1 ◦p . . . ◦p z0 (2.39)

for every i = 0, . . . , n− 1. Hence, an adder circuit on n input pairs can be obtained
from a circuit computing zi ◦p zi−1 . . . ◦p z0 for all i = 0, . . . , n − 1. As the adder
prefix operator is associative by Proposition 2.6.23, any bracketing of the right-hand
side of Equation (2.39) will lead to a valid adder circuit. Thus, the following problem
is closely related to the Adder Optimization Problem:
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z2

z1

z2 ◦ z1

g2

g1p2

p1

p1 ∧ p2

g2 ∨ (p2 ∧ g1)

Figure 2.15: Translating an adder prefix gate into 3 logic gates.

Parallel Prefix Problem
Instance: An associative operator ◦ : {0, 1} × {0, 1} → {0, 1}, n ∈ N.
Task: Construct a circuit over Ω = {◦} on inputs z0, . . . zn−1 computing the

prefixes Zi := zi ◦ zi−1 ◦ . . . ◦ z0 for all i = 0, . . . , n− 1.

We call an associative operator ◦ : {0, 1} × {0, 1} → {0, 1} a prefix operator
and a gate representing the prefix operator a prefix gate. A circuit solving the
Parallel Prefix Problem is called a parallel prefix graph, and a circuit
computing a single prefix zn−1 ◦ zn−2 ◦ . . . ◦ z0 is called a prefix graph.

When ◦ = ◦p is the adder prefix operator from Definition 2.6.22, then a solution
for the Parallel Prefix Problem contains an adder circuit, but not every adder
circuit can be obtained this way. We call the gates arising from the adder prefix
operator adder prefix gates. Another special case of the Parallel Prefix
Problem is the following problem:

Parallel And-Prefix Problem
Instance: n ∈ N.
Task: Construct a circuit over Ω = {And2} on inputs z0, . . . zn−1 computing

the And tree zi ∧ zi−1 ∧ . . . ∧ z0 for all i = 0, . . . , n− 1.

We call a circuit solving the Parallel And-Prefix Problem an And-prefix
circuit.

In Equation (2.39), we see that for the adder prefix operator ◦p, a solution to
the Parallel Prefix Problem also contains a solution to the Parallel And-
Prefix Problem. But of course, with ◦ = And, the Parallel And-Prefix
Problem on its own is also a special case of the Parallel Prefix Problem.

An adder circuit that arises from a parallel prefix graph with ◦ = ◦p by using
Equation (2.39) and then mapping back each adder prefix gate to And and Or gates
as in Figure 2.15 is called a prefix adder. We also call And and Or gates logic
gates and a graph consisting of logic gates a logic graph in order to highlight the
contrast to the parallel prefix graph consisting of prefix gates. In Figure 2.15, we
see that transforming a parallel prefix graph into a logic graph means replacing each
prefix gate by 3 logic gates. Hence, a prefix-gate size of n yields a logic-gate size of
3n, and a prefix-gate depth of d yields a logic-gate depth between d and 2d.
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p0g0p1g1p2g2

c1c2c3

(a) The ripple-carry adder
on n = 3 input pairs.

z0z1z2

(b) The serial prefix graph
on n = 3 inputs.

p0g0p1g1p2g2

c1c2c3

(c) Logic graph for Fig-
ure 2.16(b).

Figure 2.16: A ripple-carry adder and its corresponding prefix graph,
the serial prefix graph.

Name Depth Size Max. Fanout

Sklansky [Skl60] log2 n
1
2n log2 n

1
2n+ 1

Ofman [Ofm62] 2 log2 n− 1 3n− log2 n− 2 1
2 log2 n

Kogge and Stone [KS73] log2 n n log2 n− n
2 2

Ladner and Fischer [LF80] log2 n+ f 2
(

1 + 2−f
)
n ≥ n · 2−f−1 + 1

Brent and Kung [BK82] 2 log2 n− 1 1
2(5n− log2 n− 8) 2

Table 2.1: Overview of parallel prefix graphs for n inputs, where n
is a power of two. Depth, size and fanout are measured in the prefix
graph, not in the corresponding logic graph.

For our overview of prefix adders, we shall assume that n is a power of two.
First, note that the ripple-carry adder introduced in Section 2.4 is a prefix adder

corresponding to the serial prefix graph (see Zimmermann [Zim98]) which con-
sists of a single path of prefix gates with depth n− 1 and size n− 1. Figure 2.16(b)
depicts the serial prefix graph for n = 3 corresponding to the ripple-carry adder in
Figure 2.16(a). Figure 2.16(c) shows the graph that arises from transforming each
prefix gate in Figure 2.16(b) into logic gates as in Figure 2.15. In this special case,
the yellow And gates are not needed for the actual adder circuit in Figure 2.16(a).
While the size of the ripple-carry adder is optimum, its depth is far away from the
lower bound d log2 ne on the depth of any binary circuit. As the prefix operator is as-
sociative by assumption, each prefix can be computed with optimum depth d log2 ne
using Huffman coding (see Theorem 2.3.21). However, if each prefix is computed sep-
arately using Remark 2.4.7 with this method, the size of the arising circuit is O(n2).
This method is also called the unoptimized tree-prefix algorithm [Zim98].

In the previous decades, there have been numerous attempts to find parallel
prefix graphs with a better trade-off between depth and size than these two extreme
constructions. Table 2.1 summarizes the most important works. The first prefix
graph with logarithmic depth and linear size was introduced by Ofman [Ofm62].
In practice, the construction by Kogge and Stone [KS73] is widely used as it has
optimum prefix-gate depth and a maximum fanout of 2. See [Zim98] for an overview
on these and other constructions for parallel prefix graphs. We especially note the
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method by Ladner and Fischer [LF80] which we will use as a sub-routine in Chapter 8.

Theorem 2.6.24 (Ladner and Fischer [LF80]). Let ◦ be any binary associative
operator. For any n ∈ N>0 and any constant 0 ≤ f ≤ dlog2 ne, the Parallel
Prefix Problem can be solved with depth at most dlog2 ne + f and size at most
2
(

1 + 2−f
)
n.

In particular, for any 0 ≤ f ≤ dlog2 ne, there is a circuit Sfn solving the Par-

allel And-Prefix Problem with depth
(
Sfn
)
≤ dlog2 ne + f and size

(
Sfn
)
≤

2
(

1 + 2−f
)
n.

Furthermore, for any 0 ≤ f ≤ dlog2 ne, there is a circuit solving the Adder Op-
timization Problem and the Parallel And-Prefix Problem on n input pairs
at the same time. For the adder circuit, the resulting depth is at most 2(dlog2 ne+f),
while for the And-prefix circuit, it is at most dlog2 ne+f . The total size of the circuit
is bounded by 6

(
1 + 2−f

)
n.

The Ladner-Fischer circuits for the parallel prefix problem are constructed by
induction on n. Following the detailed size analysis by Wegener [Weg87], it is not
hard to show that the number of steps for the construction of the circuit for n
inputs and 0 ≤ f ≤ d log2 ne is bounded by 2

(
1 + 2−f

)
n. This implies the following

statement.

Proposition 2.6.25. Given n ∈ N>0 and 0 ≤ f ≤ d log2 ne, the parallel prefix
circuits by Ladner and Fischer [LF80] can be computed in time O(n).

In a enumerative approach with heuristic pruning, Roy et al. [Roy+14] evaluate
the delay of prefix adders regarding arrival times computed after physical design, but
the optimization goal is depth and not delay. In Roy et al. [Roy+15], the authors
propose a polynomial-time variant. Choi [Cho04] constructs a prefix adder with
optimum prefix delay, but with a quadratic number of gates. Modifications of the
adder prefix operator have led to improved constructions for a small numbers of
inputs, e.g., the so-called Ling-adders or Jackson adders, see, e.g., a comparison with
other adders by Keeter et al. [Kee+11].

In Figure 2.15, we see that the adder prefix operator is unbalanced in the sense
that in its corresponding logic graph, the inputs g1 and p2 traverse 2 logic gates, while
the inputs g2 and p1 only traverse 1 logic gate. Thus, there are also prefix adders
that optimize logic-gate depth (or logic-gate delay) directly in order to overcome the
problem that the transition from prefix gates to logic gates might double the depth.

Assume that input arrival times a(p0), a(g0), . . . , a(pn−1), a(gn−1) ∈ N are given.
In adder circuit optimization, most works assume that a(pi) = a(gi) for all i ∈
{0, . . . , n− 1}. The following works use the value V =

∑n−1
i=0 2a(gi) to estimate the

delay of their circuits which is similar as our instance weight from Definition 2.3.16.
See also Remark 2.6.27 for a comparison.

Rautenbach, Szegedy, and Werber [RSW07] provide a prefix adder with logic-
gate delay 2 log2 V + 6 log2 log2 n +O(1) using at most O(n log2 log2 n) logic gates.
Held and Spirkl [HS17b] improved this result to a logic-gate delay of 1.441 log2 V +
5 log2 log2 n+ 4.5 and a size of at most 6n log2 log2 n logic gates. Both variants have
a maximum fanout of at least

√
n.
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Held and Spirkl [HS17b] give a lower bound of

logϕ

n−1∑
i=0

ϕa(gi)

− 1 (2.40)

on the delay of And-Or path circuits on n input pairs constructed via prefix
graphs (thus also of prefix adders), where ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio.
Consequently, even in the case of depth optimization, any prefix adder (in particular
any adder from Table 2.1) has a logic-gate depth of at least 1.44 log2 n− 1.

Thus, we now consider non-prefix adders. A non-prefix adder with depth log2 n+
7
√

2 log2 n+ 14 and size 9n has been proposed by Khrapchenko [Khr67]. Gashkov,
Grinchuk, and Sergeev [GGS07] provided improvements for concrete small values of
n. For arbitrarily large n, but still only for n that are a power of 2, the construction
has been improved by Held and Spirkl [HS17a] to a depth of

log2 n+ 8
⌈√

log2 n
⌉

+ 6

⌈
log2

⌈√
log2 n

⌉⌉
+ 2

and size of at most 13.5n (even at most 9.5n if n ≥ 4096). In particular, the
maximum fanout of the circuits by Held and Spirkl [HS17a] is 2, while it is up to
linear for the circuits by Khrapchenko [Khr67]. This is the previously best known
upper bound on the depth of a linear-size adder circuit with n input pairs.

Some other algorithms for adder optimization regard input arrival times, but
most lack provable guarantees: For adders with general arrival times, there are
a greedy heuristic by Yeh and Jen [YJ03] and a dynamic program by Liu et al.
[Liu+03], but for both, no theoretical guarantee is shown. Oklobdzija [Okl94],
Stelling and Oklobdzija [SO96a], and Stelling and Oklobdzija [SO96b] minimize the
delay of adders for certain input arrival time patterns occurring in multiplication
units. However, these approaches cannot be extended to arbitrary input arrival
times.

Spirkl [Spi14] provides adder circuits for delay optimization regarding n input
pairs p0, g0, . . . , pn−1, gn−1 with a(pi) = a(gi) for each i ∈ {0, . . . , n− 1}. Spirkl
[Spi14] claims that an upper bound on the delay of her adder circuits is given by

d log2 V e+ 5
√

2 log2 n+ 2 log2 log2 n+ 16 ,

where again V =
∑n−1

i=0 2a(gi), and that the size of her circuits is at most 11n. There
are known problems with this analysis. Probably, these could be fixed in a way that
the depth remains log2 V +O

(√
log2 n

)
and the size O(n), but some constants will

increase.

2.6.4 And-Or Path Optimization Algorithms

The depth optimization problem for And-Or paths is actually solved from an
asymptotic point of view (when size and fanout are not considered):

Theorem 2.6.26 (Grinchuk [Gri08]). Given m ∈ N, m ≥ 2, an And-Or path on
m+ 1 inputs can be realized by a circuit C with depth at most

depth(C) ≤ log2m+ log2 log2m+ 3 .
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The work of Commentz-Walter [Com79] implies that, asymptotically, this depth
bound is optimum up to an additive constant, see also Corollary 2.6.8; and Hitzschke
[Hit18] estimates this constant to be roughly 8 asymptotically, see also Remark 2.6.9.
Grinchuk does not analyze the size or fanout of the circuits arising from his proof.
But using that they are formula circuits with a special structure, it is not hard to
see that the maximum fanout is bounded by the depth, so logarithmic in m, and by
Observation 2.3.6, the size is thus at most O(m log2m).

The crucial ideas that make Grinchuk’s circuits so fast are

(i) the introduction of extended And-Or paths, see Definition 2.6.14, and

(ii) the dualization concept that allows optimizing g(t) as well as g∗(t), see Theo-
rem 2.1.31.

In particular, Item (ii) allows Grinchuk to use recursion formulas for both g(t)
and g(t∗), e.g., the alternating split with both an odd (see Corollary 2.6.17) and an
even prefix (see Corollary 2.6.18); and Item (i) allows him to apply these splits also
to extended And-Or paths.

In [Gri13], Grinchuk provides several other algorithms that allow him to construct
circuits with best depths known so far for up to 2000000 inputs. He actually provides
several algorithms – an exact algorithm with a running time of Ω(4m), together with
heuristic modifications that potentially lead to sub-optimum solutions, but allow
practical running times. He says that his exact algorithm can only be used for up to
twenty or thirty inputs.

The idea of Grinchuk’s exact algorithm is to compute the optimum achievable
depth for all Boolean functions on m inputs in a bottom-up dynamic program,
where each Boolean function is identified by its truth table. Naively, his dynamic
programming table thus would have 22m entries. Grinchuk’s main contribution is
the observation that a truth table of size m – called a “passport” in [Gri13] – suffices
to identify a monotone And-Or path circuit. This way, he can reduce the table size
to 2m, which implies a running time of Ω(4m) to compute all table entries.

The fastest exact algorithm for depth optimization of And-Or paths is due to
Hegerfeld [Heg18]. He in fact proposes two enumeration algorithms constructing
depth-optimum And-Or path circuits over Ωmon of small length. He can also enu-
merate monotone And-Or path circuits with non-optimum depth with an increase
in – nevertheless exponential – running time, which leads to optimum solutions with
respect to delay for certain arrival time profiles. In particular, for up to 19 inputs,
he constructs all circuits that are depth-optimum and, among all depth-optimum
circuits, size-optimum. Furthermore, for up to 29 inputs, he constructs a depth-
optimum formula circuit that has optimum size among all formula circuits C where
for each vertex v ∈ V(C), the sub-circuit Cv has optimum depth. The running time

of this algorithm is O
((√

6
)m)

.

The previously best known approaches for delay optimization of And-Or paths
with arbitrary prescribed input arrival times lack the ideas (i) and (ii). Table 2.2
summarizes these results. For each algorithm, we show two upper bounds on the
delay of the resulting circuit with respect to different instances as in the following
remark.

Remark 2.6.27. Recall that for us, an instance of the And-Or Path Circuit
Optimization Problem consists of inputs t0, . . . , tm−1 with arbitrary input arrival
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Work Delay Size Max. Fanout

[RSW06] 1.441 log2 V + 3 4n− 3 3
1.441 log2W + 3 2m+ 1 3

[HS17b] 1.441 log2 V + 2.674 3n− 3 2
1.441 log2W + 2.674 1.5m 2

[RSW03], (1 + ε)dlog2 V e+ 3
ε + 5 (n− 1)

(
1
ε + 2

)
2

[Spi14] (1 + ε)dlog2W e+ 3
ε + 5 m

2

(
1
ε + 2

)
2

[RSW03], (1 + ε)dlog2 V e+ 3
ε + 5 6n− 6 2

1
ε

[Spi14] (1 + ε)dlog2W e+ 3
ε + 5 3m 2

1
ε

[Spi14] dlog2 V e+ 2
√

2 log2 n+ 6 (n− 1)
(√

2 log2 n+ 3
)

2

dlog2W e+ 2
√

2 log2m− 1 + 6 m
2

(√
2 log2m− 1 + 3

)
2

[Spi14] dlog2 V e+ 2
√

2 log2 n+ 6 6n− 6 2
√

2 log2 n + 1

dlog2W e+ 2
√

2 log2m− 1 + 6 3m 2
√

2 log2 m−1 + 1

Table 2.2: The previously best known algorithms for the And-Or
Path Circuit Optimization Problem on inputs t0, . . . , tm−1 with
arrival times a(t0), . . . , a(tm−1) ∈ N. For each method, the first line
states the original delay bound, assumingm = 2n and a(t2i) = a(t2i+1)
for all i ∈ {0, . . . , n− 1} and V =

∑n−1
i=0 2a(t2i); and the second line

considers arbitrary m, arbitrary arrival times and W =
∑m−1

i=0 2a(ti).

times a(t0), . . . , a(tm−1) ∈ N. However, based on the relation to adder circuits, all
works mentioned in Table 2.2 assume that m is even and a(t2i) = a(t2i+1) for all
i ∈ {0, . . . , n− 1}. Furthermore, they use V =

∑n−1
i=0 2a(t2i) to formulate their delay

bounds, while we use W =
∑m−1

i=0 2a(ti) from Definition 2.3.16. Hence, for instances
with a(t2i) = a(t2i+1), we have V = W

2 . But if we use an adder circuit which
assumes that a(t2i) = a(t2i+1) on an instance where this is not fulfilled, for each
i = 0, . . . , n − 1, we need to set both a(t2i) and a(t2i+1) to their maximum value.
In the worst case, we thus have V = W . Moreover, if m is odd, we need to add an
artificial input.

Hence, when stating upper bounds on the delay for the approaches in Table 2.2
on our more general instances, we need to assume that V = W and n =

⌈
m
2

⌉
.

As one of the applications of our And-Or path optimization algorithms is opti-
mizing a critical path on computer chips (see Chapter 7), our algorithms allow an
arbitrary number of inputs and arbitrary arrival times. Hence, by the above remark,
our algorithms have a natural practical advantage over the algorithms from Table 2.2
on such instances.

The circuits presented in Table 2.2 have a linear or almost linear size, but, when
restricted to depth optimization, i.e., when W = m, a significantly worse depth
bound than the circuits by Grinchuk [Gri08]. For the sake of a better comparison,
we describe the algorithms by Rautenbach, Szegedy, and Werber [RSW06] and Held
and Spirkl [HS17b] in detail using our own notation as they are the only algorithms
from Table 2.2 that have been implemented in practice.

Assume for simplicity that m = 2n is even. Rautenbach, Szegedy, and Werber



2.6. Previous Work 59

[RSW06] run a dynamic program for the computation of And-Or paths of type g(x)
(i.e., ending with an And gate), for given Boolean inputs x = (x0, . . . , x2n−1). The
table entries are the And-Or paths g(t) on consecutive subsets t of x. For each table
entry, the best realization that can be obtained using the alternating split

g(t) = g
(
(t0, t1, . . . , tk−1)

)
∨
(

sym
(
(t0, t2, . . . , tk−2)

)
∧ g
(
(tk, . . . , tr−1)

))
(2.41)

explained in Corollary 2.6.19 for some even k ∈ N with 2 ≤ k < m is chosen. Here,
the symmetric tree sym

(
(t0, t2, . . . , tk−2)

)
is not realized via Huffman coding (see

Theorem 2.3.21), but recursively, following the same scheme as the recursion for the
computation of the And-Or paths. This way, the authors can save gates and obtain
a linear size, but their delay bound is by a factor of up to 1.441 away from the lower
bound of d log2W e (cf. Equation (2.40)). Note that the dynamic program table has
n2 entries, explaining the running time of O(n3) since there are O(n) possibilities to
choose the split position in (2.41).

Held and Spirkl [HS17b] consider the computation of the dual And-Or path
function g∗(t) and apply the alternating split from Lemma 2.6.13 i.e.,

g∗(t) = g∗
(
(t0, . . . , tk−1)

)
∨
(

sym
(
(t1, t3, . . . , tk)

)
∧ g∗

(
(tk+1, . . . , tr−1)

))
(2.42)

for odd k ∈ N with 1 ≤ k < m. Again, the symmetric trees are built according to the
alternating split. Instead of running a dynamic program to compute the optimum
solution with respect to these restructuring options, the authors choose the optimum
splitting options directly by analyzing so-called Fibonacci trees. This leads to a
running time of O(n log2 n), where the assumption is made that all additions take
constant time. The size and delay improvement compared to [RSW06] are due to a
slightly more careful construction and analysis. As we shall make use of this result in
our constructions and comparisons, we highlight it in the following theorem. Recall
that by Remark 2.6.27, our assumptions on the input differs from those in [HS17b],
so the bounds stated here differ slightly from the original bounds shown in Table 2.2.

Theorem 2.6.28 (Held and Spirkl [HS17b]). Given m inputs t = (t0, . . . , tm−1), a
circuit for the And-Or path f(t) with depth at most 1.441 log2W + 2.674, size at
most 1.5m and maximum fanout 2 can be constructed in time O(m log2m).

In Chapter 8, we will use this algorithm to construct all carry bits of an adder
circuit in the special case of depth optimization:

Corollary 2.6.29. For any n ∈ N, there is an adder circuit on n input pairs with
depth at most 1.441 log2 n+ 2.674 and a size of at most 3

2(n2 − n).

Proof. We apply Remark 2.4.7 with the carry-bit computation method from Held
and Spirkl [HS17b], see Theorem 2.6.28, in order to obtain an adder circuit. Its
depth is 1.441 log2 n+ 2.674, while its size is at most

n∑
i=1

(3i− 3) = 3
n∑
i=1

i− 3n = 3
n(n+ 1)

2
− 3n =

3

2

(
n2 − n

)
.

It is no coincidence that [RSW06] and [HS17b] achieve a very similar delay bound
of roughly 1.441 log2 V : Both circuit constructions can be viewed as optimum prefix
graphs as defined in Section 2.6.3: Using the adder prefix operator(

y1

x1

)
◦p
(
y0

x0

)
=

(
y1 ∨ (x1 ∧ y0)

x1 ∧ x0

)
,
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from Definition 2.6.22, we have(
g∗
(
(t0, . . . , tk−1)

)
t1 ∧ t3 ∧ . . . ∧ tk

)
◦p
(

g∗
(
(tk+1, . . . , tr−1)

)
tk+2 ∧ tk+4 ∧ . . . ∧ tr−1

)
=

(
g∗
(
(t0, . . . , tk−1)

)
∨ ((t1 ∧ t3 ∧ . . . ∧ tk) ∧ g∗

(
(tk+1, . . . , tr−1)

)
t1 ∧ t3 ∧ . . . ∧ tr−1

)
,

so computing an optimum prefix graph is in fact the same idea as computing g∗(t)
best possible via splits of type (2.42). Similarly, the alternating split in (2.41) can
be expressed using the adder prefix operator.

As shown in Equation (2.40), Held and Spirkl [HS17b] proved that the delay of
an And-Or path circuit derived from a prefix graph will deviate from the optimum
by a factor of 1.44 in the worst case. Moreover, they show that the delays of the
And-Or path circuits by Held and Spirkl [HS17b] and Rautenbach, Szegedy, and
Werber [RSW06] are only by an additive margin of 5 away from the optimum logic-
gate delay of any prefix graph. Hence, in order to obtain And-Or path circuits
which are closer to the lower bounds, we need to consider non-prefix circuits.

Rautenbach, Szegedy, and Werber [RSW03] presented And-Or path circuits
on n input pairs with delay at most (1 + ε)dlog2 V e + cε (for any ε > 0), where
cε is a number depending on ε only. Spirkl [Spi14] specified the delay bound to
(1 + ε)dlog2 V e+ 6

ε + 8 + 5ε and improved it to (1 + ε)dlog2 V e+ 3
ε + 5. Note that

Table 2.2 gives two result rows with this delay, but with different sizes and fanouts
that can be traded off.

Moreover, Spirkl [Spi14] described non-prefix circuits with a delay of at most

dlog2 V e+ 2
√

2 log2 n+ 6 (2.43)

and sizes and fanouts as in the table, where again there are two variants. For any
ε > 0, this is actually a better delay bound than (1 + ε)dlog2 V e+ 3

ε + 5: The latter
function assumes its minimum for ε =

√
3

d log2 V e , as can be seen by computing its

derivative. Thus, we have

εd log2 V e+
3

ε
+ 5 ≥ 2

√
3 log2 V + 5 ≥ 2

√
3 log2 n+ 5 ≥ 2

√
2 log2 n+ 6 .

Note that for this choice of ε, the circuits from rows 5-6 in the table also outperform
the circuits from rows 3-4 in the table when considering size and fanout. Any of
these four circuits can be constructed in running time O(n log2 n). Up to now, the
delay stated in Equation (2.43) obtained by [Spi14] was the fastest delay known for
And-Or path circuits with non-uniform input arrival times.
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Improved Bounds for Depth Optimization

In this section, we consider the depth optimization problem for And-Or paths.

And-Or path Circuit Depth Optimization Problem
Instance: m ∈ N.
Task: Compute a circuit over Ωmon = {And,Or} realizing an And-Or path

on m inputs with minimum possible depth.

We will describe an algorithm that constructs the currently fastest known circuits
for And-Or paths with respect to depth, whose idea is largely based on Grinchuk
[Gri08]. The main result proven in [Gri08] is the following theorem.

Theorem 2.6.26 (Grinchuk [Gri08]). Given m ∈ N, m ≥ 2, an And-Or path on
m+ 1 inputs can be realized by a circuit C with depth at most

depth(C) ≤ log2m+ log2 log2m+ 3 .

Grinchuk [Gri08] focuses on the existence result covered by this theorem. He
proves in an algorithmic fashion that a realization with the claimed depth exists, but
he does not explicitly state the algorithm or analyze the size of the arising circuits.
In Section 3.1, we will present a modified algorithm with running time O(m log2m)
that allows us to improve the additive constant in Theorem 2.6.26 by roughly 1.5
in Section 3.2. However, the main advantage of our algorithm over Grinchuk’s is
that we can prove in Section 3.4 – based on new symmetric tree constructions in
Section 3.3 – that the arising circuits have a size linear in the number of inputs. Our
circuits are hence the first circuits known that fulfill the best possible asymptotic
depth bound (cf. Commentz-Walter [Com79], Corollary 2.6.7) and have a linear size.

Remark. The notation for (extended) And-Or paths used by Grinchuk [Gri08]
differs from ours: We always consider an And-Or path f(t) = f

(
(t0, . . . , tm−1)

)
with m inputs, while Grinchuk analyzes an And-Or path with m + 1 inputs, i.e.,
the And-Or path f(t) = f

(
(t0, . . . , tm)

)
. This notational difference needs to be

taken into account when comparing the depth bounds. As a consequence, we adapt
the definitions inherited from Grinchuk’s proof to our notation.

Note that the depth bound claimed in [Gri08] is actually by 1 better than the
bound stated in Theorem 2.6.26. But there appears to be a gap in the proof of
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Lemma 7 in [Gri08] for which it is unknown whether it can be closed. The upper
bound stated in Theorem 2.6.26 follows easily from the existing part of the proof of
Grinchuk’s Lemma 7.

3.1 Algorithm
The depth optimization algorithm by Grinchuk [Gri08] is a recursive approach using
some of the recursion strategies presented in Section 2.6.2 that work on extended
And-Or paths rather than on And-Or paths only. Instead of estimating the
depth of a good circuit realizing f

(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
for given n,m ∈ N,

Grinchuk proves Theorem 2.6.26 the following way: He fixes a depth bound d ∈ N and
a number of symmetric inputs n and determines up to which number of alternating
inputs m extended And-Or paths can be realized by a circuit with depth d. From
this, he derives the claimed depth bound. For this approach, the following definition
is essential.

Definition 3.1.1 (Grinchuk [Gri08]). Given d, n ∈ N, the capacity of d and n is

m(d, n) := max
{
m ∈ N : There is a circuit for f

(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
with depth at most d .

}
,

where m(d, n) := −∞ in case there is no such m.

Note that we also allow m(d, n) = 0 in Definition 3.1.1. Furthermore, note that
by Corollary 2.5.3, we have

m(d, n) = max
{
m ∈ N : There is a circuit for f∗

(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
with depth at most d .

}
.

Finding an exact formula for m(d, n) for general d, n ∈ N is an open problem,
but we will give a lower bound on m(d, n) in Proposition 3.1.14. For this, we first
state basic properties about the capacity and compute it exactly for small values of
d and n.

Observation 3.1.2 (Grinchuk [Gri08]). For d, n ∈ N, we have m(d+1, n) ≥ m(d, n)
and m(d, n) ≤ m(d, n− 1).

Lemma 3.1.3. For d, n ∈ N, we have m(d, n) ∈ N if and only if n ≤ 2d.

Proof. When n ≤ 2d, by Observation 2.6.21, the function f
(
(s0, . . . , sn−1), ()

)
is symmetric and can be realized with depth d. Hence, we have m(d, n) ≥ 0
for n ≤ 2d. Vice versa, if there is some m ∈ N such that a realization for
f
(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
with depth at most d exists, then the lower bound

from Proposition 2.6.1 implies n ≤ 2d.

For small values of d and n, the capacity can be computed easily.

Lemma 3.1.4 (Grinchuk [Gri08]). We have:

m(0, 0) = 1 m(0, 1) = 0

m(1, 0) = 2 m(1, 1) = 1 m(1, 2) = 0

m(2, 0) = 3 m(2, 1) = 3 m(2, 2) = 2 m(2, 3) = 1 m(2, 4) = 0

For all d ∈ {0, 1, 2} and n ∈ N with n > 2d, we have m(d, n) = −∞.



3.1. Algorithm 63

Proof. The last statement holds due to Lemma 3.1.3.
For n,m ∈ N with m ≤ 2, Observation 2.6.21 yields a realization of

f((s0, . . . , sn−1), (t0, . . . , tm−1)) with delay
⌈

log2(m+ n)
⌉
. This implies m(0, 0) ≥ 1,

m(0, 1) ≥ 0, m(1, 0) ≥ 2, m(1, 1) ≥ 1, m(1, 2) ≥ 0, m(2, 2) ≥ 2, m(2, 3) ≥ 1 and
m(2, 4) ≥ 0. The realization f

(
(), (t0, t1, t2)

)
= t0 ∧ (t1 ∨ t2) implies m(2, 0) ≥ 3,

and the realization f
(
(s0), (t0, t1, t2)

)
= (s0 ∧ t0) ∧ (t1 ∨ t2) implies m(2, 1) ≥ 3.

Now we shall see that m(d, n) does not exceed the computed lower bounds. By
Proposition 2.6.1, the depth of f

(
(s, t)

)
is at least

⌈
log2(n+m)

⌉
. This implies

m(0, 0) ≤ 1, m(0, 1) ≤ 0, m(1, 0) ≤ 2, m(1, 1) ≤ 1, m(1, 2) ≤ 0, m(2, 1) ≤ 3,
m(2, 2) ≤ 2, m(2, 3) ≤ 1 and m(2, 4) ≤ 0. From Observation 2.6.10, we conclude
that m(2, 0) = 3.

For larger values of d and n, Grinchuk [Gri08] gives a lower bound on m(d, n)
in two steps: First, he bounds m(d, n) from below by a recursively defined function
M(d, n), where each M(d, n) is an even natural number. The function M(d, n) is
directly connected to Grinchuk’s recursion formulas. Secondly, he gives a numerical
lower bound on the values M(d, n) from which he can derive this depth bound. We
proceed differently: We skip the intermediate step of defining M(d, n) and directly
give a numerical lower bound onm(d, n) which is marginally stronger than Grinchuk’s
bound. This leads to a slightly better depth bound and simplifies the size analysis of
the arising circuit. In order to be able to prove a linear size bound in Corollary 3.4.21,
we also use slightly different recursion formulas than Grinchuk in our algorithm.

Definition 3.1.5. We define the function µ : N>0 × N→ R by

µ(d, n) :=
2d − n− 2

d
+ 2 .

Unlike Grinchuk’s approach, in this work, µ(d, n) will not always be a lower
bound on m(d, n), but

⌊
µ(d, n)

⌋
will, as we will prove in Proposition 3.1.14.

Observation 3.1.6. Given d, n,m ∈ N with d ≥ 1, we have m ≤ µ(d, n) if and only
if n ≤ 2d − d(m− 2)− 2.

We will develop an algorithm (see Algorithm 3.1) that, given m and n, computes
a circuit for an extended And-Or path with n symmetric and m alternating inputs
with depth at most d, where d is minimum with m ≤ µ(d, n).

Definition 3.1.7. Given n,m ∈ N we define

dmin(n,m) := min
{
d ∈ N>0 : m ≤ µ(d, n)

}
.

As limd→∞ µ(d, n) =∞, the value dmin(n,m) is well-defined.

Lemma 3.1.8. Table 3.1 shows the value dmin(n,m) for all 1 ≤ m ≤ 9 and
0 ≤ n ≤ 11.

Proof. Given n,m ∈ N and d = dmin(n,m), we have m ≤ µ(d, n). Hence, Observa-
tion 3.1.6 implies the following inequalities:

• For d = 1, we have n ≤ 2− 1(m− 2)− 2 = 2−m.

• For d = 2, we have n ≤ 4− 2(m− 2)− 2 = 6− 2m.

• For d = 3, we have n ≤ 8− 3(m− 2)− 2 = 12− 3m.
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m
n

0 1 2 3 4 5 6 7 8 9 10 11

1 1 1 2 2 2 3 3 3 3 3 4 4
2 1 2 2 3 3 3 3 4 4 4 4 4
3 2 3 3 3 4 4 4 4 4 4 4 5
4 3 4 4 4 4 4 4 5 5 5 5 5
5 4 4 4 5 5 5 5 5 5 5 5 5
6 5 5 5 5 5 5 5 5 5 5 5 6
7 5 5 5 5 5 5 6 6 6 6 6 6
8 5 6 6 6 6 6 6 6 6 6 6 6
9 6 6 6 6 6 6 6 6 6 6 6 6

Table 3.1: The value dmin(n,m) for all 3 ≤ m ≤ 9 and 0 ≤ n ≤ 11
as calculated using Lemma 3.1.8. Cells are colored by the containing
number dmin(n,m).

• For d = 4, we have n ≤ 16− 4(m− 2)− 2 = 22− 4m.

• For d = 5, we have n ≤ 32− 5(m− 2)− 2 = 40− 5m.

• For d = 6, we have n ≤ 64− 6(m− 2)− 2 = 74− 6m.

From these statements, together with the minimum choice of d, the table follows.

We need some basic properties about µ(d, n) before being able to state our depth
optimization algorithm.

Lemma 3.1.9. Given d, n ∈ N with d ≥ 2, we have µ(d, n) < 2d.

Proof. The function x 7→ 2x(x− 1)− 2x+ 2 is strictly monotonely increasing for all
x ≥ 2 as its derivative is

ln(2)2x(x− 1) + 2x − 2 = 2x
(
ln(2)x− ln(2) + 1

)
− 2 ,

which is positive for x ≥ 2. Hence, we have

µ(d, n) =
2d − n− 2

d
+ 2 ≤ 2d − 2

d
+ 2

d≥2
< 2d ,

where the last inequality can be seen directly for d = 2, and holds for d ≥ 3 by
monotonicity of the aforementioned function.

Lemma 3.1.10. For d, n ∈ N with d ≥ 1 and n < 2d, we have µ(d, n) ≥ 1.

Proof. We have

µ(d, n) =
2d − n− 2

d
+ 2

n≤2d−1
≥ −1

d
+ 2

d≥1
≥ 1 .

Lemma 3.1.11. Given d, n,m with 2 ≤ m ≤ µ(d, n), we have n ≤ 2d − 2.

Proof. By Observation 3.1.6, we have n ≤ 2d − d(m− 2)− 2
m≥2
≤ 2d − 2.

The next two lemmas give concrete realizations for f(s, t) when either the number
m of alternating inputs is small or the expected depth is small.



3.1. Algorithm 65

Lemma 3.1.12. Let integers d, n,m ∈ N with d ≥ 1, 0 ≤ n < 2d and m ≤ µ(d, n) be
given. Then, for m ≤ 2, there is a circuit for f((s0, . . . , sn−1), (t0, . . . , tm−1)) with
depth at most d.

Proof. Under the assumptions of this lemma, we have

m+ n ≤ 2d − n− 2

d
+ 2 + n =

2d + (d− 1)n− 2

d
+ 2

n≤2d−1,
d≥1
≤ 2d + (d− 1)(2d − 1)− 2

d
+ 2

=
d2d − d− 1

d
+ 2

= 2d − 1

d
+ 1

d>0
< 2d + 1 ,

and as both m + n and 2d are natural numbers, we even have m + n ≤ 2d. For
m ≤ 2, by Observation 2.6.21, this implies that f(s, t) is a symmetric tree that can
be realized with depth d.

Lemma 3.1.13. Let integers d, n,m ∈ N with 1 ≤ d ≤ 3, 0 ≤ n < 2d, and
m ≤ µ(d, n) be given. Then, there is a circuit for f((s0, . . . , sn−1), (t0, . . . , tm−1))
with depth at most d.

Proof. Lemma 3.1.12 proves the statement in the case that m ≤ 2, so assume that
m ≥ 3. Note that it suffices to show the lemma for d = dmin(n,m). From Table 3.1,
we can read off the values of n and m for which we need to verify that a circuit for
f(s, t) with depth d exists.

For d = 1, by Table 3.1, there is no m ≥ 3 fulfilling the conditions of this lemma.
For d = 2, Table 3.1 and m ≥ 3 imply m = 3 and n = 0, and the standard

realization of f(s, t) = g(t) has depth m− 1 = 2.
For d = 3, Table 3.1 and m ≥ 3 imply m = 3 and n ∈ {1, 2, 3} or m = 4

and n = 0. For m = 3, note that the definition of extended And-Or paths
(cf. Definition 2.6.14) implies

f(s, t) = sym
(
(s0, . . . , sn−1, t0, t1 ∨ t2)

)
. (3.1)

This is an instance of the Symmetric Function Delay Optimization Problem
with arrival times being 0 for the first n + 1 inputs and arrival time 1 for the last
input, i.e., an instance with weight n+ 1 + 2 = n+ 3 ≤ 6. An optimum symmetric
tree on this instance with delay 3 can be constructed e.g., via Huffman coding
(cf. Theorem 2.3.21), which implies that the realization (3.1) yields depth 3. For
m = 4, the standard realization of f(s, t) = g(t) has depth m− 1 = 3.

Finally, we will now see that
⌊
µ(d, n)

⌋
is a lower bound on m(d, n) when n < 2d.

Proposition 3.1.14. Consider integers d, n ∈ N with d ≥ 1 and 0 ≤ n < 2d. For all
Boolean input variables s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1) with m ≤ µ(d, n),
there is a circuit for f(s, t) with depth at most d. In other words, we have m(d, n) ≥⌊
µ(d, n)

⌋
.
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Proof. We prove the statement by induction on d.
Case 1: Base case. Assume that d ≤ 3.
In this case, Lemma 3.1.13 proves the statement.
Case 2: Induction step. Assume that the proposition is true for some d ≥ 3 and

all 0 ≤ n < 2d. Given d, n,m ∈ N with 0 ≤ n < 2d+1 and

m ≤ µ(d+ 1, n) (3.2)

and input variables s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1), we need to find a
circuit for f(s, t) with depth at most d+ 1.

Case 2.1: Assume that m ≤ µ(d, n).
By induction hypothesis, there is a circuit for f(s, t) with depth d ≤ d+ 1.
Case 2.2: Assume that m ≤ 2.
In this case, a circuit for f(s, t) with depth d+ 1 is provided by Lemma 3.1.12.
Case 2.3: Assume that

m > µ(d, n) (3.3)
and

m ≥ 3 . (3.4)

Case 2.3.1: Assume that n ≥ 2d.
In this case, we use the symmetric split

f(s, t) = sym(s′) ∧ f
(
s\s′, t

)
(3.5)

from Equation (2.37) with k := 2d ≤ n and a sub-tuple s′ = (si0 , . . . , sik−1
) of s. For

the depth analysis, it is not important how s′ is chosen, we can imagine for simplicity
that s′ = (s0, . . . , sk−1). In fact, we choose s′ as in Algorithm 3.4.

In order to show that Equation (3.5) yields depth d, it suffices to show that
both sym(s′) and f

(
(sk, . . . , sn−1), t

)
can be realized with depth at most d. The

symmetric tree sym(s′) can be realized by a circuit with depth d = d log2 k e using
Huffman coding (Theorem 2.3.21) as s′ has k entries.

As m ≤ µ(d + 1, n) by assumption (3.2) and m ≥ 3 by assumption (3.4),
Lemma 3.1.11 implies n ≤ 2d+1 − 2. Hence, we have

|s\s′| = n− k ≤ 2d+1 − 2− 2d = 2d − 2

and

m
(3.2)
≤ µ(d+ 1, n)

Def. 3.1.5
=

2d+1 − n− 2

d+ 1
+ 2

k=2d
=

2d − (n− k)− 2

d+ 1
+ 2

n−k≤2d−2
≤ 2d − (n− k)− 2

d
+ 2

= µ(d, n− k) .

By induction hypothesis, we can find a circuit for f
(
s\s′, t

)
with depth d. Together,

this shows that the split (3.5) yields a circuit of the Boolean function f(s, t) with
depth d+ 1.
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Case 2.3.2: Assume that n < 2d.
Case 2.3.2.1: Assume that m ≤ µ(d, 0).
As m ≤ µ(d, 0) and n < 2d, the And-Or path g(t) = f((), t) can be realized

with depth d by induction hypothesis. Since n < 2d, this means that the symmetric
split

f(s, t) = sym(s) ∧ g(t)

from Equation (2.33) yields depth d+ 1.
Case 2.3.2.2: Assume that m > µ(d, 0).
By Lemma 3.1.10, we have µ(d, n) ≥ 1, so we may choose a maximum odd integer

k with

k ≤ µ(d, n) . (3.6)

Assumption (3.3) implies that k < m. This allows us to apply the alternating split

f(s, t) = f
(
s, t′
)
∧ f∗

(
t̂′, t′′

)
(3.7)

from Equation (2.28) with k as length of the odd-length prefix t′ = (t0, . . . , tk−1).
Recall that t̂′ = (t1, t3, . . . , tk−2) and t′′ = (tk, . . . , tm−1). Due to n < 2d and
Equation (3.6), the induction hypothesis allows us to realize f

(
s, t′
)
with depth d.

Hence, for proving that Equation (3.7) yields depth d + 1, it remains to show that
f∗
(
t̂′, t′′

)
can be realized with depth d. As the number of inputs of t̂′ and t′′ is

exactly k−1
2 and m − k, respectively, by induction hypothesis, for this it suffices to

show the following claim.
Claim 1. We have 0 ≤ k−1

2 < 2d and

m− k ≤ µ
(
d,
k − 1

2

)
. (3.8 )

Proof of claim: Since k is odd, we have k−1
2 ∈ N. Moreover, since d ≥ 2, we have

k − 1

2

(3.6)
≤ µ(d, n)− 1

2

Lem. 3.1.9
<

2d − 1

2
< 2d .

Now it remains to show (3.8 ). Since k is the maximum odd integer fulfilling (3.6),
we have k + 2 > µ(d, n) and thus

µ

(
d,
k − 1

2

)
+ k =

2d − k−1
2 − 2

d
+ 2 + k

= k − k − 1

2d
+

2d − 2

d
+ 2

= k

(
1− 1

2d

)
+

2d − 2

d
+ 2 +

1

2d
d≥1,

k+2>µ(d,n)
> (µ(d, n)− 2)

(
1− 1

2d

)
+

2d − 2

d
+ 2 +

1

2d

Def. 3.1.5
=

2d − n− 2

d

(
1− 1

2d

)
+

2d − 2

d
+ 2 +

1

2d

=
2d − 2

d

(
2− 1

2d

)
−
(

1− 1

2d

)
n

d
+ 2 +

1

2d
. (3.9)
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We will now rewrite the first term of (3.9).

2d − 2

d

(
2− 1

2d

)
=

2d+1 − 4

d
− 2d − 2

2d2

=

(
1 +

1

d

)
· 2d+1 − 4

d+ 1
− 2d − 2

2d2

=
2d+1 − 2

d+ 1
− 2

d+ 1
+

1

d
· 2d+1 − 4

d+ 1
− 2d − 2

2d2

=
2d+1 − 2

d+ 1
+
−4d2 + 4d2d − 8d− 2d(d+ 1) + 2(d+ 1)

2d2(d+ 1)

=
2d+1 − 2

d+ 1
+

(3d− 1)2d − 4d2 − 6d+ 2

2d2(d+ 1)
. (3.10)

From this, we deduce

µ

(
d,
k − 1

2

)
+ k

(3.9)
>

2d − 2

d

(
2− 1

2d

)
−
(

1− 1

2d

)
n

d
+ 2 +

1

2d

(3.10)
=

2d+1 − 2

d+ 1
+

(3d− 1)2d − 4d2 − 6d+ 2

2d2(d+ 1)
− n(2d− 1)

2d2
+ 2 +

1

2d

=
2d+1 − 2

d+ 1
+

(3d− 1)2d − 4d2 − 6d+ 2− n(2d− 1)(d+ 1) + d(d+ 1)

2d2(d+ 1)
+ 2

=
2d+1 − 2

d+ 1
+

(3d− 1)2d − 4d2 − 6d+ 2− n(2d2 + d− 1) + d2 + d

2d2(d+ 1)
+ 2

=
2d+1 − n− 2

d+ 1
+ 2 +

(3d− 1)2d − 3d2 − 5d+ 2− n(d− 1)

2d2(d+ 1)

Def. 3.1.5
= µ(d+ 1, n) +

(3d− 1)2d − 3d2 − 5d+ 2− n(d− 1)

2d2(d+ 1)

(3.2)
≥ m+

(3d− 1)2d − 3d2 − 5d+ 2− n(d− 1)

2d2(d+ 1)
.

Thus, in order to prove Equation (3.8 ), it suffices to show that

(3d− 1)2d − 3d2 − 5d+ 2− n(d− 1) ≥ 0 . (3.11 )

But we have

(3d− 1)2d − 3d2 − 5d+ 2− n(d− 1)

n≤2d−1
≥ (3d− 1)2d − 3d2 − 5d+ 2− (2d − 1)(d− 1)

= (3d− 1)2d − 3d2 − 5d+ 2− 2d(d− 1) + d− 1

= 2d+1d− 3d2 − 4d+ 1

> d(2d+1 − 3d− 4) .

The last term is positive as the function d 7→ 2d+1 − 3d − 4 is strictly monotonely
increasing for d ≥ 3 (as its derivative d 7→ ln(2)2d+1− 3 is positive for all d ≥ 3) and
evaluates to 3 for d = 3. This proves (3.11 ), (3.8 ) and thus the claim.
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We conclude that realization (3.7) yields a circuit for f(s, t) with depth at most
d+ 1 in case 2.3.2.2.

This finishes the proof of the induction step (case 2) and hence of the proposition.

Algorithm 3.1 (page 74) states the algorithm to compute a circuit for f(s, t)
which arises from the proof of Proposition 3.1.14.

Note that we do not explicitly state how the occurring optimum symmetric cir-
cuits are constructed. E.g., we could apply Huffman coding [Huf52], see Theo-
rem 2.3.21, and construct each symmetric circuit as a formula circuit on the inputs.
Then, the circuit computed by Algorithm 3.1 would be a formula circuit with a size
in O(m log2(m + n) + n), see Theorem 3.4.1. As we construct various symmetric
trees during Algorithm 3.1, a better idea is to use the output of non-trivial symmet-
ric circuits in multiple symmetric circuits. We shall see in Theorem 3.4.19 that this
leads to a size of O(m + n). As long as we always construct optimum symmetric
circuits, this does not make a difference regarding the depth analysis of the arising
circuit. Relatedly, we do not specify how the subset s′ of s is chosen in line 11 as for
the depth analysis, this is irrelevant. Thus, we postpone these topics until the size
discussion in Section 3.4.

3.2 Depth Analysis
In order to give an upper bound on the depth of the circuits computed by Algo-
rithm 3.1, we need several technical lemmas.

Lemma 3.2.1. For x ∈ R with x > e, the function φ(x) = x
lnx is strictly monotonely

increasing.

Proof. The statement can be shown by proving that the first derivative of φ is strictly
positive for x > e. We have

d

dx
φ(x) =

lnx− 1

ln2 x
=

1

lnx

(
1− 1

lnx

)
,

and this is positive as both factors of the right-hand side function are positive for
x > e.

Lemma 3.2.2. For x ≥ 2, the function φ(x) = 2x

x is strictly monotonely increasing.

Proof. As x ≥ 2, we may equivalently show that the function y 7→ y
log2 y

is mono-
tonely increasing for y ≥ 4. This follows from Lemma 3.2.1 because y

log2 y
= ln 2 y

ln y
and ln 2 > 0.

Lemma 3.2.3. Let c := 0.58 and n,m ∈ N with m ≥ 3. Consider the function

ϑ(n,m) = 2c(m+ n) log2m− (m− 2)
(
log2(m+ n) + log2 log2m+ c

)
− n− 2 .

We have
ϑ(n,m) ≥ 0 .

Proof. We first prove the statement for n = 0 and then for n > 0.
Case 1: Assume that n = 0.
Note that ϑ(0,m) = 2cm log2m− (m− 2)(log2m+ log2 log2m+ c)− 2.
Case 1.1: Assume that 3 ≤ m ≤ 7.
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Figure 3.1: The functions κ(m), ϑ(0,m), and mλ(m) from the proof
of Lemma 3.2.3. Here, we have ϑ(0,m) = mλ(m)+κ(m), and we show
that ϑ(0,m) ≥ 0 for all m ≥ 3. For a better comparison with mλ(m),
we also show the function −κ(m).

In this cases, we prove the statement by explicitly enumerating all cases:

ϑ(0, 3) = 2c · 3 log2 3− (log2 3 + log2 log2 3 + c)− 2 > 2 > 0

ϑ(0, 4) = 2c · 4 · 2− 2(2 + 1 + c)− 2 > 2 > 0

ϑ(0, 5) = 2c · 5 log2 5− 3(log2 5 + log2 log2 5 + c)− 2 > 3 > 0

ϑ(0, 6) = 2c · 6 log2 6− 4(log2 6 + log2 log2 6 + c)− 2 > 3 > 0

ϑ(0, 7) = 2c · 7 log2 7− 5(log2 7 + log2 log2 7 + c)− 2 > 2 > 0

Case 1.2: Assume that m ≥ 8.
Writing

λ(m) := (2c − 1) log2m− log2 log2m− c
and

κ(m) := 2(log2m+ log2 log2m+ c)− 2 ,

we have
ϑ(0,m) = mλ(m) + κ(m) . (3.12)

Figure 3.1 depicts the functions ϑ(0,m), κ(m) and mλ(m); and λ(m) is plotted in
Figure 3.2. We will examine these functions in a series of claims.
Claim 1. The function λ(m) is monotonely increasing in m for m ≥ 8.
Proof of claim: The derivative of λ(m) is

d

dm
λ(m) =

2c − 1

ln(2)m
− 1

ln(2)m lnm
=

1

ln(2)m

(
2c − 1− 1

lnm

)
. (3.13)

Since ln(2)m > 0, we have d
dmλ(m) > 0 if and only if

2c − 1− 1

lnm
> 0 ,
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Figure 3.2: The functions ν(m), d
dmϑ(0,m), and λ(m) from the proof

of Lemma 3.2.3. Here, we have d
dmϑ(0,m) = λ(m) + ν(m).

which is fulfilled for m ≥ 8 since c ≥ 0.57. Thus, λ(m) is monotonely increasing in
m for m ≥ 8.

Based on the computations in Claim 1, we can compute the derivative of the
function mλ(m):

d

dm

(
mλ(m)

)
= λ(m) +m

d

dm
λ(m)

(3.13)
= λ(m) +

1

ln(2)

(
2c − 1− 1

lnm

)
(3.14)

We compute the derivatives of κ(m) and ϑ(0,m):

d

dm
κ(m) = 2

(
1

ln(2)m
+

1

ln(2)m lnm

)
(3.15)

d

dm
ϑ(0,m)

(3.12)
=

d

dm
(mλ(m)) +

d

dm
κ(m)

(3.14),
(3.15)

= λ(m) +
1

ln(2)

(
2c − 1− 1

lnm

)
+

2

ln(2)m
+

2

ln(2)m lnm

= λ(m) +
2c − 1

ln(2)
+
−m+ 2 lnm+ 2

ln(2)m lnm

Writing

ν(m) :=
2c − 1

ln(2)
+
−m+ 2 lnm+ 2

ln(2)m lnm
,

we have
d

dm
ϑ(0,m) = λ(m) + ν(m) .

Figure 3.2 depicts these three functions.
Claim 2. Let m ≥ 8. The function ν(m) is monotonely decreasing for m ≤ 33 and
monotonely increasing for m ≥ 33.
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Proof of claim: We compute the derivative of ν(m):

d

dm
ν(m) =

(
−1 + 2

m

)
ln(2)m lnm− (−m+ 2 lnm+ 2) ln(2)(lnm+ 1)

ln2(2)m2 ln2m

=

(
−1 + 2

m

)
m lnm− (−m+ 2 lnm+ 2)(lnm+ 1)

ln(2)m2 ln2m

=
−m lnm+ 2 lnm+m lnm− 2 ln2m− 2 lnm+m− 2 lnm− 2

ln(2)m2 ln2m

=
m− 2 ln2m− 2 lnm− 2

ln(2)m2 ln2m

Note that ν(m) is monotonely increasing if and only if the function ν̃(m) :=
m − 2 ln2m − 2 lnm − 2 fulfills ν̃(m) ≥ 0. In order to see when this is the case,
we compute the derivative of ν̃(m):

d

dm
ν̃(m) = 1− 4 lnm

m
− 2

m

Note that each summand of d
dm ν̃(m) is monotonely increasing (for −4 lnm

m , this
follows from Lemma 3.2.1 and m ≥ 8 > e), hence so is d

dm ν̃(m). From this, by
plugging in m = 11, 12 in d

dm ν̃(m), we deduce

d

dm
ν̃(m)

{
< 0 for 8 ≤ m ≤ 11 ,

> 0 for m ≥ 12 .

In other words, the function ν̃(m) is decreasing for 8 ≤ m ≤ 11 and increasing for
m ≥ 12. Evaluating ν̃(m) for m ∈ {8, 33, 34}, we see that for m ≥ 8, m ∈ N, we have
ν̃(m) ≥ 0 if and only if m ≥ 34. Hence, for m ≥ 8, the function ν(m) is monotonely
decreasing in the range 8 ≤ m ≤ 33 and monotonely increasing for 34 ≤ m.
Claim 3. Let m ≥ 8. The function ϑ(0,m) is monotonely decreasing for m ≤ 33 and
monotonely increasing for m ≥ 34.
Proof of claim: We make a case distinction based on whether m is at most 33.

Case 1.2.1: Assume that 8 ≤ m ≤ 33.
In this case, Claim 2 implies that ν(m) is monotonely decreasing. Furthermore,

by Claim 1, the function λ(m) is monotonely increasing in m.
These two statements imply that for 8 ≤ m ≤ 19, we have

d

dm
ϑ(0,m) = λ(m) + ν(m) ≤ λ(19) + ν(8) < −0.56 + 0.56 = 0 ,

for 20 ≤ m ≤ 32, we have

d

dm
ϑ(0,m) = λ(m) + ν(m) ≤ λ(32) + ν(20) < −0.427 + 0.425 < 0 ,

and for m = 33, we have

d

dm
ϑ(0,m) = λ(33) + ν(33) < −0.418 + 0.414 < 0 .

Case 1.2.2: Assume that m ≥ 34.
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In this case, Claims 1 and 2 imply that both λ(m) and ν(m) are monotonely
increasing functions, respectively. Here, we thus have

d

dm
ϑ(0,m) = λ(m) + ν(m) ≥ λ(34) + ν(34) > −0.41 + 0.41 = 0 .

This proves Claim 3.
From Claim 3, we deduce that

ϑ(0,m) ≥ ϑ(0, 33) > 0.1 > 0 for 8 ≤ m ≤ 33

and
ϑ(0,m) ≥ ϑ(0, 34) > 0.1 > 0 for m ≥ 34 .

This proves this lemma in the case that n = 0.
Case 2: Assume that n > 0.
Here, we show that

d

dn
ϑ(n,m) ≥ 0 (3.16 )

for all n ≥ 0, m ≥ 3, which implies that for n > 0, we have ϑ(n,m) ≥ ϑ(0,m)
case 1
≥ 0.

We compute

d

dn
ϑ(n,m) = 2c log2m−

m− 2

ln(2)(m+ n)
− 1 =: κ(n,m) .

Since κ(n,m) ≥ κ(0,m) for all n,m ∈ N, it suffices to show κ(0,m) ≥ 0 for all m ≥ 3
in order to prove Equation (3.16 ). But κ(0, 3) = 2c log2 3− 1

3 ln(2) − 1 > 0 for c ≥ 0,
and for m ≥ 4, we have

κ(0,m) = 2c log2m−
m− 2

ln(2)m
− 1

= 2c log2m+
1

ln(2)

(
2

m
− 1

)
− 1

m>0
≥ 2c log2m−

1

ln(2)
− 1

m≥4
≥ 2c log2 4− 1

ln(2)
− 1

c≥0.29
> 0 .

This proves Equation (3.16 ) and thus the lemma in the case that n > 0.

Finally, we are set to analyze the depth of the circuits computed by Algorithm 3.1.

Theorem 3.2.4. Given input variables s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1)
with m + n > 0, Algorithm 3.1 computes a circuit C(s, t) for the Boolean function
f(s, t) with depth

depth(C(s, t)) =
⌈

log2(m+ n)
⌉

for m ≤ 2 and
depth(C(s, t)) ≤ log2(m+ n) + log2 log2m+ 1.58

for m ≥ 3.
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Algorithm 3.1: Depth optimization for extended And-Or paths
Input: Symmetric inputs s = (s0, . . . , sn−1) and alternating inputs

t = (t0, . . . , tm−1).
Output: Circuit C(s, t) computing f(s, t).

1 if m ≤ 2 then
2 return Optimum circuit for sym

(
(s0, . . . , sn−1, t0, . . . , tm−1)

)
.

3 Let d := dmin(n,m). // Hence, n < 2d.
4 if d ≤ 3 then // Hence, m ∈ {3, 4}.
5 if m = 3 then
6 return Optimum circuit for sym

(
(s0, . . . , sn−1, t0, t1 ∨ t2)

)
.

7 if m = 4 then // Hence, n = 0.
8 return Standard circuit for g(t).

9 else if n ≥ 2d−1 then
10 Choose k := 2d−1.
11 Choose s′ ⊆ s with |s′| = k.
12 Compute an optimum circuit S′ for sym

(
s′
)
.

13 return S′ ∧ C
(
s\s′, t

)
.

14 else
15 if m ≤ µ(d− 1, 0) then
16 Compute an optimum circuit S for sym

(
(s0, . . . , sn−1)

)
.

17 return S ∧ C
(
(), t
)
.

18 Choose 1 ≤ k < m maximum with k odd and k ≤ µ(d− 1, n).
19 Set t′ := (t0, . . . , tk−1) and t′′ := t\t′.

20 return C
(
s, t′
)
∧
(

C
(
t̂′, t′′

))∗
.

Proof. For m ≤ 2, Algorithm 3.1 computes an optimum circuit of f(s, t) with depth⌈
log2(m+ n)

⌉
in line 2.

For m ≥ 3, we shall see that the algorithm always computes a realization with
depth at most d := dmin(n,m), cf. line 3. Since m ≥ 2, we have n < 2d by
Lemma 3.1.11. Hence, Proposition 3.1.14 yields a circuit for f(s, t) with depth d.
The rest of Algorithm 3.1 performs the same steps as the proof of Proposition 3.1.14,
hence computes a realization of f(s, t) with depth at most d.

Now let
d̃ :=

⌊
log2(m+ n) + log2 log2m+ 1.58

⌋
.

If we can show that
m ≤ µ

(
d̃, n
)
, (3.17 )

then, by definition of d = dmin(n,m), we have d ≤ d̃ and the theorem is proven.
Recall that µ

(
d̃, n
)

= 2d̃−n−2
d̃

+ 2. By Lemma 3.2.2, for fixed n, the function

x 7→ 2x−n−2
x + 2 is monotonely increasing in x for x ≥ 2. As d̃ ≥ log2(m + n) +

log2 log2m+ 0.58
m≥3
≥ 2, for proving Equation (3.17 ), it hence suffices to show

m ≤ 2log2(m+n)+log2 log2m+0.58 − n− 2

log2(m+ n) + log2 log2m+ 0.58
+ 2 . (3.18 )
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The right-hand side of (3.18 ) can be simplified as

2log2(m+n)+log2 log2m+0.58 − n− 2

log2(m+ n) + log2 log2m+ 0.58
+ 2 =

20.58(m+ n) log2m− n− 2

log2(m+ n) + log2 log2m+ 0.58
+ 2 .

Hence, (3.18 ) is implied if we can prove that for n,m ∈ N with m ≥ 3 and c := 0.58,
we have

2c(m+ n) log2m− (m− 2)
(
log2(m+ n) + log2 log2m+ c

)
− n− 2 ≥ 0 .

This is precisely the statement of Lemma 3.2.3. Hence, Equation (3.18 ) is fulfilled
and the circuit computed by Algorithm 3.1 has depth at most d̃.

For And-Or paths, Theorem 3.2.4 yields the following delay guarantee.

Corollary 3.2.5. Given input variables t = (t0, . . . , tm−1) withm ≥ 2, Algorithm 3.1
computes a circuit for g(t) with depth at most

log2m+ log2 log2m+ 1.58 .

This is the same asymptotic depth bound as for the circuits by Grinchuk [Gri08],
see also Theorem 2.6.26, but the additive constant is slightly better. An improvement
by more than a constant is not possible due to the matching lower bound given by
Commentz-Walter [Com79], see also Corollary 2.6.8. As Hitzschke [Hit18] made
these lower bounds more precise, see Remark 2.6.9, our circuits are optimum up to
an additive constant of roughly 6.58.

3.3 Leftist Circuits and Triangular Sets
This section is a preparation for Section 3.4, where we will show that the circuits
constructed in Algorithm 3.1 can be implemented with linear size. As we construct
numerous symmetric trees during Algorithm 3.1, we cannot effort each them to
have a size linear in the number of inputs independently. Hence, the key idea of this
construction is that we build two so-called leftist symmetric circuits, one And circuit
and one Or circuit, and use these when constructing symmetric And and Or trees
in Algorithm 3.1. This way, we can show that the amount of additional gates needed
to construct a single symmetric tree is logarithmic in the number of inputs. More
details follow in Section 3.4, but here, we will introduce leftist circuits.

Definition 3.3.1. Let n ∈ N and a commutative and associative operator ◦ be
given. A circuit S on inputs x0, . . . , xn−1 over Ω = {◦} is called ordered if

• the underlying undirected graph of S is acyclic and

• for each vertex v ∈ V(S), there is an interval Iv ⊆ {0, . . . , n− 1} such that
Iv(S) = {xi : i ∈ Iv}.

This yields a partial order on V(S): We say that a vertex v ∈ V(S) is left of a
vertex w ∈ V(S) if Iv ∩Iw = ∅ and max{ i ∈ Iv } < min{ i ∈ Iw }, and right of w if w
is left of v. The two predecessors of any gate vertex are related with respect to this
partial order. Thus, we may call the predecessors left and right, respectively. We
extend the definitions of left and right from vertices to sets of verticesW1,W2 ⊆ V(S)
with W1 ∩W2 = ∅: We say that W1 is left (right) of W2 if for any pair of vertices
(w1, w2) ∈W1 ×W2, the vertex w1 is left (right) of the vertex w2.
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Algorithm 3.2: Leftist circuit construction
Input: A commutative and associative operation

◦ : {0, 1} × {0, 1} → {0, 1}, n ∈ N, n ≥ 1.
Output: A leftist circuit S on inputs x = (x0, . . . , xn−1) over the basis

Ω = {◦}.
1 Let S be a circuit on inputs x = (x0, . . . , xn−1) with no gates.
2 Let i := 0.
3 while n ≥ 2 do
4 Let k ∈ N be maximum with k ≤ log2 n.
5 Add an ordered full symmetric ◦-tree Tk on xi, . . . , xi+2k−1 to S.
6 Set i := i+ 2k.
7 Set n := n− 2k.

8 Let O(S) :=
{
v ∈ V : |δ+(v)| = 0

}
.

9 return S

Note that if n = 2d for d ∈ N, then there is a unique connected ordered circuit
with optimum depth d on inputs x0, . . . , xn−1. Otherwise, if 2d−1 < n < 2d for some

d ∈ N, we consider the binary decomposition n =
∑b log2 nc

k=0 ak2
k with ak ∈ {0, 1}

of n. We partition the n inputs into groups of 2k inputs for each k with ak = 1. On
each input group, we construct a connected ordered circuit Tk with depth k. This
yields an ordered (but unconnected) circuit. Algorithm 3.2 does exactly this, where
the Tk are sorted from left to right by increasing k.

Definition 3.3.2. A circuit arising from Algorithm 3.2 is called leftist.

Figure 3.3(a) (page 80) depicts a leftist Or tree on n = 14 inputs.

Definition 3.3.3. Let n ∈ N and a leftist circuit S on inputs x0, . . . , xn−1 be given.
A subset K ⊆ I(S) of the inputs is called consecutive if there are 0 ≤ a < b ≤ n−1
with K = {xi : a ≤ i ≤ b}.

Definition 3.3.4. Consider n ∈ N and a leftist circuit S on inputs x0, . . . , xn−1.
Given a subset K ⊆ I(S), let B(K,S) ⊆ V be defined as

B(K,S) :=
{
v ∈ V : Iv(S) ⊆ K and Iw(S) * K ∀ w ∈ δ+(v)

}
.

We call the elements of B(K,S) boundary vertices of K with respect to S.

In Figure 3.3(a) (page 80), the boundary vertices of K with respect to S are
marked blue.

Note that in a leftist circuit S, for every vertex v ∈ V(S), the sub-circuit Sv
subordinate to v is a full binary tree. Furthermore, given a subset K of the inputs
with boundary set B := B(K,S), we have⋃̇

v∈B
Iv(S) = K . (3.19)

In particular, there is an ordering b0, . . . , b|B(K,S)|−1 of the boundary vertices such
that bj is left of bj+1 for all j ∈

{
0, . . . , |B(K,S)| − 1

}
.
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Definition 3.3.5. Let n ∈ N and a leftist circuit S on inputs x0, . . . , xn−1 be given.
Consider a subset K ⊆ I(S) of the inputs with boundary vertices B := B(K,S).
The boundary tree sequence of K with respect to S is the sequence T0, . . . , T|B|−1

of binary trees subordinate to the boundary vertices, sorted from left to right. We
call K triangular if there is some J ∈

{
0, . . . , |B| − 1

}
such that the inputs of

T0, . . . , TJ are consecutive, the inputs of TJ+1, . . . , T|B|−1 are consecutive, and

depth(Tj) < depth(Tj+1) for 0 ≤ j < J − 1,

depth(Tj) > depth(Tj+1) for J + 1 ≤ j < |B| − 1 . (3.20)

We call T0, . . . , TJ the increasing part of the tree boundary sequence, and
TJ+1, . . . , T|B|−1 the decreasing part of the tree boundary sequence.

Note that for a given set, the boundary tree sequence is unique; but the value
J in the definition of a triangular set is not necessarily unique. The consecutive set
K in Figure 3.3(a) (page 80) is triangular, where the boundary vertices are marked
blue and we can choose J = 2 or J = 3. The set N\K in Figure 3.3(a) is not
triangular as condition (3.20) is not fulfilled for the boundary tree sequence, which
contains trees with depths 2, 0, and 0. In Figure 3.4 (page 82), the sets N , K and
N\K are all triangular. The following lemma gives some criteria for when a set K is
triangular. Later, in Proposition 3.3.13, we shall see a sufficient condition for N\K
to be triangular when K is triangular.

Lemma 3.3.6. Let n ∈ N and a leftist circuit S on inputs x0, . . . , xn−1 be given.
Then, the following statements hold:

(i) The empty set is triangular.

(ii) The set K = {x0, . . . , xn−1 } is triangular.

(iii) If ∅ 6= K ⊆ I(S) is triangular and xi is the right-most or left-most vertex in
K, then K\{xi } is triangular.

(iv) Let K ⊆ I(S) be a consecutive subset of the inputs. Then, K is triangular.

Proof. For the empty set, the boundary tree sequence is empty, hence the first
statement.

If K contains all inputs of S, then the boundary tree sequence consists of exactly
the trees of the leftist circuit S. As their depths are strictly decreasing by definition
of a leftist circuit, K = {x0, . . . , xn−1 } is triangular, hence the second statement.

Now assume that K ⊆ I(S) is triangular with xi being its right-most vertex.
Let B := B(K,S) and let T0, . . . , T|B|−1 be the boundary tree sequence of K with
respect to S. Then, T|B|−1 is the unique tree in the sequence which contains xi. Let
d denote the depth of T|B|−1.

If d = 0, then K\{xi } is certainly triangular.
Thus, assume that d > 0. As xi is the right-most vertex of T|B|−1 and T|B|−1 is

a full binary tree, deleting xi and all its successors from T|B|−1 results in a sequence
T ′0, . . . , T

′
d−1 of full binary trees, ordered from left to right. The boundary tree

sequence of K\{xi } is given by T0, . . . , T|B|−2, T
′
0, . . . , T

′
d−1. As xi is the right-most

vertex of T|B|−1, the inputs of these trees are consecutive, and if the inputs of T|B|−2

and T|B|−1 are consecutive, the inputs of T|B|−2 and T ′0 are also consecutive. As K
is triangular and depth(T ′j) = d− j− 1 for all j ∈ {0, . . . , d− 1}, Equation (3.20) of
Definition 3.3.5 is fulfilled for this sequence. Hence, K\{xi } is triangular.
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The proof works analogously if xi is the left-most vertex of K. This proves the
third statement.

The fourth statement follows from the second and the third statement as we
can obtain any consecutive set K from {x0, . . . , xn−1 } by successively deleting the
right-most or left-most vertex.

Before showing in Theorem 3.3.12 how we can use leftist circuits in order to save
gates, we state some basic properties about leftist circuits.

Lemma 3.3.7. Let S be a leftist circuit on inputs x0, . . . , xn−1. Then, the circuit
S′ arising from deleting x0, . . . , xn−1 (with their successors being the inputs of S′) is
again a leftist circuit.

Proof. By definition, S consists of a collection of connected ordered trees Tk of depth
k for each k with non-trivial coefficient in the binary decomposition of n. When
removing x0, . . . , xn−1, for every k with k > 0, the tree Tk is transformed into a
connected ordered tree T ′k−1 with 2k−1 inputs and depth k − 1. A possible tree T0

with depth 0 is simply removed. This is exactly the leftist circuit that Algorithm 3.2
produces with the successors of x0, . . . , xn−1 as inputs.

Lemma 3.3.8. Let S be a leftist circuit on inputs x0, . . . , xn−1 and K ⊆ I(S)
be triangular with |K| = k and B := B(K,S). Furthermore, let S′ be the leftist
circuit arising from S by deleting the input vertices (see Lemma 3.3.7), and let K ′ :={
v ∈ V(S) : depth(v) = 1 and w ∈ K ∀ w ∈ δ−(v)

}
. Then, the following statements

are fulfilled:

(i) We have |B| ≤ k.

(ii) We have B = B(K ′, S′) ·∪ (K ∩B).

(iii) The set K ′ is triangular with respect to S′.

(iv) For k ≥ 2, we have |K ∩B| ≤ 2, and |K ∩B| ≡ k mod 2, and

|K ′| =


k−1

2 if k odd,
k
2 if k even, |K ∩B| = 0 ,
k−2

2 if k even, |K ∩B| = 2 .

Proof. The first two statements follow directly from the definitions.
The third statement follows from the second: The boundary tree sequence for K

with respect to S can be transformed into a boundary sequence for K ′ with respect
to S′ by deleting trees with depth 0 and removing the vertices with depth 0 for the
other trees.

For proving the fourth statement, note that as K is triangular, there are at most
2 boundary trees with depth 0, hence |K∩B| ≤ 2. Furthermore, by Equation (3.19),
the inputs of the boundary trees form a partition of K, and each boundary tree with
depth at least 1 contains an even number of vertices. Hence, we have |K ∩ B| ≡ k
mod 2. Together with the second statement, this implies the estimation of |K ′|.

Lemma 3.3.9. Consider k, n ∈ N with n ≥ k ≥ 3. Let a leftist circuit S on inputs
x0, . . . , xn−1 and a triangular subset K ⊆ I(S) with |K| = k be given. Then, for
B := B(K,S), we have

|B| ≤ 2 log2 k − 1 .



3.3. Leftist Circuits and Triangular Sets 79

Proof. As in Lemma 3.3.7, let S′ be the leftist circuit arising from S by deleting the
input vertices, and let K ′ :=

{
v ∈ V(S) : depth(v) = 1 and w ∈ K ∀ w ∈ δ−(v)

}
.

We prove the statement by induction on k.
For 3 ≤ k ≤ 6, we show the statement explicitly. We have

|B| Lem. 3.3.8,(ii)
= |B(K ′, S′)|+ |K ∩B|

Lem. 3.3.8,(i)

≤ |K ′|+ |K ∩B|

Lem. 3.3.8,(iv)
=


|K|−1

2 + 1 if |K| odd
|K|
2 + 0 if |K| even, |K ∩B| = 0
|K|−2

2 + 2 if |K| even, |K ∩B| = 2

k∈{3,4,5,6}
≤ 2 log2 k − 1 .

Now, we may assume k ≥ 7. For k ≥ 7, property (iv) of Lemma 3.3.8 implies |K ′| ≥
3. As K ′ is triangular by Item (iii) of Lemma 3.3.8, we may apply the induction
hypothesis to the setK ′ and the circuit S′, which yields |B(K ′, S′)| ≤ 2 log2(|K ′|)−1.
This implies

|B| Lem. 3.3.8,(ii)
= |B(K ′, S′)|+ |K ∩B|

(IH)
≤ 2 log2

(
|K ′|

)
− 1 + |K ∩B|

Lem. 3.3.8,(iv)
=


2 log2

(
k−1

2

)
− 1 + 1 if k odd

2 log2

(
k
2

)
− 1 + 0 if k even, |K ∩B| = 0

2 log2

(
k−2

2

)
− 1 + 2 if k even, |K ∩B| = 2

≤ 2 log2 k − 1 .

This proves the induction step and hence the lemma.

The following theorem states that given a leftist circuit S on all inputs, we can
construct an optimum symmetric tree for any triangular subsetK of the inputs (plus,
possibly, some more inputs) while adding only few gates to S. Figure 3.3(b) shows
the constructed tree for S and K from Figure 3.3(a).

Proposition 3.3.10. Let n ∈ N and a leftist circuit S on n inputs x0, . . . , xn−1

be given. Let K ⊆ I(S)} be a triangular set of inputs with boundary vertices
B := B(K,S). Furthermore, let inputs L (not necessarily inputs of S) with K∩L = ∅
be given. Consider arrival times a(y) = 0 for each y ∈ K and a(y) ∈ N for each
y ∈ L. A delay-optimum symmetric tree on K ·∪ L with respect to arrival times a
can be constructed (while possibly reusing the gates in S) using at most |B|+ |L| − 1
additional gates.

Proof. Let H denote the circuit arising from Huffman coding (see Theorem 2.3.21)
on input set B ·∪ L, where an input v ∈ B has arrival time a(v) = log2 | Iv(S)| and
an input v ∈ L has arrival time a(v). Since S is leftist, we have a(v) ∈ N for all
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

K

(a) A leftist Or tree S on n = 14 inputs with
the set B = B(K,S) of boundary vertices for K =
{x5, . . . , x12 } marked blue.

x5 x6 x7 x8 x9 x10 x11 x12

K

(b) Circuit resulting from Huff-
man coding on the set B from
Figure 3.3(a).

Figure 3.3: Illustration of the proof of Theorem 3.3.12 with K =
{x5, . . . , x12 } and L = ∅. Note that |B| = 4 = 2 log2(|K|)− 2.

Algorithm 3.3: Computation of boundary vertices
Input: A leftist circuit S on inputs x0, . . . , xn−1, a consecutive subset

K = (xa, . . . , xb) of the inputs, precomputed data from
Lemma 3.3.11.

Output: The set B := B(K,S).
1 Let B := ∅.
2 Let i := a.
3 while i ≤ b do
4 Choose j maximum such that a right ancestor sj(xi) of depth j exists

and Isj(xi)(S) ⊆ K.
5 s := sj(xi)
6 B := B ∪ {s}
7 i := r(s) + 1.

8 return B.

v ∈ B. Thus, the delay of H with respect to arrival times a is exactly⌈
log2

 ∑
v∈B ·∪L

2a(v)

⌉ =

⌈
log2

∑
v∈B
| Iv(S)|+W (L)

⌉
(3.19)

=
⌈

log2

(
|K|+W (L)

)⌉
,

which is the optimum possible delay of a symmetric tree on inputs K and L by
Theorem 2.3.15. Hence, S ∪H contains a delay-optimum symmetric tree on K ·∪ L.
Since H contains exactly |B|+ |L| − 1 gates, this proves the proposition.

As stated in Theorem 2.3.21, Van Leeuwen [Lee76] showed that Huffman coding
can be performed in linear time if the inputs are sorted by increasing arrival time.
Hence, given an input set K which is triangular with respect to a leftist circuit S,
once the set B(K,S) of boundary vertices is known, sorted by increasing depth,
we can construct an optimum symmetric tree on S (plus a constant number |L| of
additional inputs) in time O(|B(K,S)|).

Hence, we now give an algorithm for determining the boundary vertices in the
case thatK is consecutive. Here, given a vertex v ∈ V(S), we denote the indices of the
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left-most and right-most input in Iv(S) by l(v) and r(v), respectively. Furthermore,
given an input xi and a vertex v ∈ V(S), we call v a right ancestor of xi if there
is a set of vertices

{
sj(xi) ∈ V(S) : j ∈ {0, . . . , r}

}
for some r ≥ 0 with sj(xi) being

a left predecessor of sj+1(xi) for all j ∈ {0, . . . , r − 1}, xi = s0(xi) and v = sr(xi).
Note that sj(xi) has depth j in S as S is leftist. Let ri denote the highest depth
(and index) of any right ancestor of input xi.

Given a consecutive subset K ⊆ I(S) of a leftist circuit S, we use Algorithm 3.3
to determine the boundary vertices. The following lemma shows that the algorithm
works correctly in general and estimates its running time.

Lemma 3.3.11. Let a leftist circuit S on inputs x0, . . . , xn−1 and a consecutive
subset K ⊆ I(S) of size k := |K| be given. Assume that the following data of size
O(n log2 n) is available:

• For every input xi and the set
{
sj(xi)

}
0≤j≤ri of right ancestors of xi with

depth j, we store a pointer to sj(xi) in an array with constant-time access.

• For every vertex v ∈ V, we store the index r(v) of the right-most input in I(v).

• For every i ∈ {0, . . . , n− 1}, we store the highest depth ri of any right ancestor
of input xi.

Then, Algorithm 3.3 computes the set B := B(S,K) of boundary vertices in time
O(log2 k). The algorithm can be implemented with the same running time if the
output set B has to be sorted by increasing depth.

Proof. As a first step, we prove that Algorithm 3.3 works correctly.
We first see by induction on i that whenever a vertex is added to B, it is a

boundary vertex. So consider an iteration of the while-loop (lines 3 to 7) where a
vertex s := sj(xi) is added to B in line 6. In line 4, j chosen maximum such that a
right ancestor sj(xi) of depth j exists and Isj(xi)(S) ⊆ K. Thus, in order to show
that s := sj(xi) is a boundary vertex, it remains to show that if s has a successor
t, then It(S) * K. Assume that s has a successor t and that It(S) ⊆ K. By
maximality of j, the vertex s must be a right predecessor of t. If a = i, then we
immediately have It(S) * K. If i > a, we must have It(S) * K since otherwise, we
would have skipped i in the while-loop (lines 3 to 7). Hence, s is a boundary vertex.

Assume now that there is a boundary vertex v that is not added to B by
Algorithm 3.3. If in some iteration of the while-loop (lines 3 to 7), we have i = l(v),
then v is added to B. So assume that l(v) is skipped, meaning that xl(v) ∈ Is(S)
for some s considered in line 5. But two ancestors s and v of an input xl(v) cannot
be in B simultaneously by (3.19), so this is a contradiction.

This proves the correctness of Algorithm 3.3.
Now, we analyze its running time. As in each iteration, one vertex is added to

B, there are at most B iterations, and by Lemma 3.3.9, we have B ∈ O(log2 k). The
index j computed in line 4 is exactly j := min

{⌊
log2(b− i+ 1)

⌋
, ri

}
. Thus, using

the precomputed data, each iteration can be implemented to run in constant time,
so the total running time of Algorithm 3.3 is O(log2 k).

If, during the algorithm, we use buckets to store the boundary vertices ordered
by their depth, the total running time does not increase as there are at most d log2 k e
possible depths.
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

N

K

Figure 3.4: Illustration of Proposition 3.3.13 and Algorithm 3.4. The
gates shown form a leftist circuit on inputs x0, . . . , x13. The sets N , K,
N\K of inputs are all triangular. The blue vertices are the boundary
vertices of N with respect to S.

Indeed, for the leftist circuit S and the consecutive subset K shown in Fig-
ure 3.3(a), the algorithm works correctly: The vertices xi chosen in lines 2 and 7 are
x5, x6, x8, and x12, and exactly the blue vertices are added to B.

From the previous statements, we obtain the main theorem of this section.

Theorem 3.3.12. Let n ∈ N and a leftist circuit S on n inputs x0, . . . , xn−1 be
given. Let K ⊆ I(S)} be a triangular set of inputs with k := |K|. Furthermore, let
inputs L (not necessarily inputs of S) with l := |L| ≥ 0 and K ∩ L = ∅ be given.
Consider arrival times a(y) = 0 for each y ∈ K and a(y) ∈ N for each y ∈ L, where
L is sorted by increasing arrival time. A delay-optimum symmetric tree on K ·∪ L
with respect to arrival times a can be constructed in time O(log2 k + l), assuming
the precomputed data from Lemma 3.3.11 is given. The number of additional gates
(while possibly reusing the gates in S) is at most k + l − 1 for k ≤ 2 and at most
2 log2 k + l − 2 for k ≥ 3.

Proof. If k ≤ 2, we obtain an optimum solution with exactly k + l − 1 gates by
Huffman coding, see Theorem 2.3.21. Van Leeuwen [Lee76] showed that Huffman
coding can be performed in linear time if the inputs are sorted by increasing arrival
time, so for constant k, the running time is O(l).

Now assume that k ≥ 3. By Proposition 3.3.10, we can compute the delay-
optimum symmetric tree on K ·∪ L by Huffman coding on the vertices of B(K,S)
and L. By Lemma 3.3.9, this set has cardinality 2 log2 k + l − 2. From this, the
bound on the number of gates follows. By Definition 3.3.5, the inputs belonging to
the increasing and decreasing part of the boundary sequence of K are consecutive
sets, hence we can apply Lemma 3.3.11 to both to obtain B(K,S) in time O(log2 k),
using the precomputed data. Huffman coding on B(K,S) and L can be performed
in time O(log2 k + l).

We will use this theorem for the construction of symmetric circuits during our
And-Or path optimization algorithm Algorithm 3.1 in Section 3.4. Here, we will
also need Algorithm 3.4 which, given a triangular set N , extracts a triangular subset
K of a certain size such that also N\K is triangular, and such that we can prove in
Proposition 3.3.18 that K and N\K cannot be both large simultaneously. Figure 3.4
gives an example for Algorithm 3.4.
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Algorithm 3.4: Determining a triangular subset K of a triangular set N
Input: A leftist circuit S on inputs x0, . . . , xr−1, a triangular set N ⊆ I(S)

with 2d−1 ≤ n < 2d inputs.
Output: A triangular set K ⊆ N with |K| = 2d−1.

1 Let T0, . . . , T|B(N,S)|−1 denote the boundary tree sequence for N w.r.t. S.
2 if ∃ j with depth(Tj) = d− 1 then
3 return I(Tj)

4 else
5 Set D := max

{
d′ ∈ N : ∃ j0 < j1 with depth(Tj0) = depth(Tj1) = d′

}
.

6 Choose j0 < j1 such that depth(Tj0) = depth(Tj1) = D.
7 return

⋃j1
j=j0
I(Tj)

Proposition 3.3.13. Let r ∈ N and a leftist circuit S on r inputs x0, . . . , xr−1 be
given. Consider a triangular subset N of the inputs with cardinality |N | = n ≥ 1.
Let d ∈ N≥1 be the unique integer with 2d−1 ≤ n < 2d, and let k := 2d−1. Then,
Algorithm 3.4 computes a subset K ⊆ N with |K| = k such that both K and N\K
are triangular.

Proof. We use the notation from Algorithm 3.4.
First, we need to show that the value D in line 5 exists. Thus, assume that there

is no tree Tj with depth d − 1. As n < 2d, the maximum depth of any tree Tj is
hence d− 2. By Definition 3.3.5, the boundary tree sequence contains at most 2 full
binary trees with the same number 2d

′ of inputs for each d′ ∈ {0, . . . , d− 2}. Based
on this, the value D in line 5 exists as otherwise, there is at most one tree per depth,
and we obtain the contradiction

2d−1 ≤ n ≤
d−2∑
d′=0

2d
′

= 2d−1 − 1 < 2d−1 .

Thus, Algorithm 3.4 correctly computes a set K ⊆ N .
It is easy to see that K and N\K are triangular with respect to S as Tj0 , . . . , Tj1

is the boundary tree sequence for K and T0, . . . , Tj0−1, Tj1+1, . . . , T|B(N,S)−1| is the
boundary tree sequence for N\K with increasing part T0, . . . , Tj0−1 and decreasing
part Tj1+1, . . . , T|B(N,S)−1|.

It remains to show that |K| = 2d−1. If K is constructed in line 3, this is certainly
the case, so assume that K is constructed in line 7 as K =

⋃j1
j=j0
I(Tj). For every

i ∈ {D, . . . , d− 2}, the sequence T0, . . . , T|B(N,S)|−1 must contain a tree with depth
i as otherwise, there is I > D such that no tree with depth I exist, which implies

2d−1 ≤ n

≤ 2
D∑
i=0

2i +
d−2∑

i=D+1

2i − 2I

=
d−2∑
i=0

2i +
D∑
i=0

2i − 2I

≤ 2d−1 + 2D+1 − 2I − 2

I>D
< 2d−1 ,
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a contradiction. From this, we conclude that

k =

j1∑
j=j0

| I(Tj)| = 2 · 2D +
d−2∑

i=D+1

2i = 2D+1 + 2d−1 − 1− (2D+1 − 1) = 2d−1 .

Corollary 3.3.14. Let r ∈ N and a leftist circuit S on r inputs x0, . . . , xr−1 be
given. Consider a triangular subset N of the inputs with cardinality |N | = n ≥ 1,
and another input vertex xi which is directly to the right of N such that N ∪ {xi }
is triangular. Let K ⊆ N be the triangular set computed by Algorithm 3.4. Then,
(N\K) ∪ {xi } is triangular.

Proof. By the proof of Proposition 3.3.13, the set (N\K) is triangular with boundary
tree sequence T0, . . . , Tj0−1, Tj1+1, . . . , T|B(N,S)−1|, with increasing part T0, . . . , Tj0−1

and decreasing part Tj1+1, . . . , T|B(N,S)−1|.
As the inputs of Tj1+1, . . . , T|B(N,S)−1| and xi are consecutive, adding xi to (N\K)

results in a new tree with depth d′, where d′ is minimum such that there is no
tree among Tj1+1, . . . , T|B(N,S)−1| with depth d′, and all trees with smaller depth
are removed from the boundary tree sequence (note that d′ = 0 may also occur).
This new boundary tree sequence fulfills Equation (3.20) of Definition 3.3.5, hence
(N\K) ∪ {xi } is triangular.

We will see in Proposition 3.3.18 that either the number of trees in the boundary
tree sequence of K is small or N\K is small. For estimating what “small“ means
here, we need the following function and some numerical estimations.

Definition 3.3.15. Define the function ρ : N→ R≥0 by

ρ(n) =

{
n if n ∈ {0, 1, 2} ,⌊

2 log2(n− 1)
⌋

if n ≥ 3 .

Observation 3.3.16. The function n 7→ ρ(n) from Definition 3.3.15 is monotonely
increasing in n.

Lemma 3.3.17. For n ≥ 3, the following inequalities are fulfilled:

log2 n− 1.9 ≤ log2(n− 1)

b2 log2 nc − 1 ≤
⌊

2 log2(n− 1)
⌋⌊

2 log2(n+ 1)
⌋
− 2 ≤

⌊
2 log2(n− 1)

⌋
Proof. For n = 3, we have log2 n − 1.9 < 0 < 1 = log2(n − 1); and the left- and
right-hand side of the second and third inequality equals 2.

For n ≥ 4, we have

(n− 1)
√

2− n = n
(√

2− 1
)
−
√

2
n≥4
> 0

and thus log2 n < log2(n− 1) + 0.5, which implies the first statement. Furthermore,
we obtain 2 log2 n < 2 log2(n − 1) + 1. After rounding, this implies the second
statement, and applied twice, it yields 2 log2(n+ 1) < 2 log2(n− 1) + 2, from which
the third statement follows by rounding.
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Proposition 3.3.18. Let r ∈ N and a leftist circuit S on r inputs x0, . . . , xr−1 be
given. Consider a triangular subset N of the inputs with cardinality |N | = n ≥ 1.
Let d ∈ N>0 be the unique integer with 2d−1 ≤ n < 2d. Let k := 2d−1. Let K ⊆ N be
the output of Algorithm 3.4 given S and N , and let B := B(K,S) be the boundary
vertices of K with respect to S. Then, the following statements are fulfilled:

(i) We have n− k ≤ 2d−|B|+1 − 2.

(ii) If n− k ≥ 1, we have |B|+ 2 log2(n− k) ≤ 2 log2 n.

(iii) If n− k ≥ 2, we have |B|+
⌊

2 log2(n− k − 1)
⌋
≤
⌊

2 log2(n− 1)
⌋
.

(iv) For n ≥ 16, we have |B|+ ρ(n− k) ≤ ρ(n).

Proof. We use the notation from Algorithm 3.4.
If K is constructed in line 3, we have |B| = 1. This implies

n− k
n<2d,k≥1
≤ 2d − 2

|B|=1
= 2d−|B|+1 − 2 ,

hence the first statement.
Otherwise, K is constructed in line 7. By the choice of D in line 5 and the

proof of Proposition 3.3.13, in this case, K contains exactly one tree for each depth
i ∈ {D + 1, . . . , d− 2} and exactly 2 trees of depth D. This implies |B| = (d− 2)−
D + 1 + 1 = d−D. Hence, we have

n− k ≤ 2
D−1∑
i=0

2i = 2
(

2D − 1
)

= 2
(

2d−|B| − 1
)

= 2d−|B|+1 − 2 .

This shows the first statement.
Now assume that n − k ≥ 1. Hence, there is some λ ∈ (1, 2) with n = λ2d−1.

From the first statement and k = 2d−1, we obtain

n = k + n− k ≤ 2d−1 + 2d−|B|+1 − 2 . (3.21)

This implies

λ =
n

2d−1

(3.21)
≤ 2d−1 + 2d−|B|+1 − 2

2d−1
≤ 1 + 22−|B| . (3.22)

In order to prove the second statement, we will show that

2 log2 n− 2 log2(n− k)− |B| ≥ 0 . (3.23 )

We have

2 log2 n− 2 log2(n− k)− |B|
Def. λ,k

= 2 log2(λ2d−1)− 2 log2((λ− 1)2d−1)− |B|
= 2 log2 λ+ 2(d− 1)− 2 log2(λ− 1)− 2(d− 1)− |B|
= 2

(
log2 λ− log2(λ− 1)

)
− |B| . (3.24)
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The function x 7→ log2 x − log2(x − 1) is strictly monotonely decreasing for x > 1
as its derivative 1

ln(2)x − 1
ln(2)(x−1) = − 1

ln(2)x(x−1) is negative for all x > 1. Hence, we
obtain

2 log2 n− 2 log2(n− k)− |B|
(3.24)

= 2
(
log2 λ− log2(λ− 1)

)
− |B|

(3.22)
≥ 2

(
log2

(
1 + 22−|B|

)
− log2

(
1 + 22−|B| − 1

))
− |B|

= 2

(
log2

(
1 + 22−|B|

)
− 2 + |B|

)
− |B|

= 2 log2

(
1 + 22−|B|

)
+ |B| − 4 .

The first summand is always positive. Thus, for |B| ≥ 4, Equation (3.23 ) follows
immediately. In the other cases, we prove the statement explicitly:

2 log2

(
1 + 22−1

)
+ 1− 4 = 2 log2 3− 3 > 0

2 log2

(
1 + 22−2

)
+ 2− 4 = 2− 2 = 0

2 log2

(
1 + 22−3

)
+ 3− 4 = 2 log2 1.5− 1 > 0

Hence, we have proven the second statement.
In order to see the third statement, assume that n − k ≥ 2. Recall the above

remark that the function x 7→ log2 x− log2(x− 1) is strictly monotonely decreasing
for x > 1. Together with the second statement, this implies

2 log2(n− 1)− 2 log2(n− k − 1)− |B|
≥ 2 log2(n− 1)− 2 log2 n+ 2 log2(n− k)− 2 log2(n− k − 1)

≥ 0 .

From this, as B and 0 are integral, we obtain⌊
2 log2(n− 1)

⌋
−
⌊

2 log2(n− k − 1)
⌋
− |B| ≥ 0 ,

hence the third statement.
For proving the fourth statement, we distinguish two cases.
Case 1: Assume that n− k ≤ 2.
By the first statement, we have n−k ≤ 2d−|B|+1−2. This implies log2(n−k+2) ≤

d− |B|+ 1 and thus

|B| ≤ d+ 1− log2(n− k + 2)
k=2d−1

= log2 k − log2(n− k + 2) + 2 . (3.25)

From this, we obtain

ρ(n)− ρ(n− k)− |B|
n≥16,
n−k≤2

=
⌊

2 log2(n− 1)
⌋
− (n− k)− |B|

(3.25)
≥

⌊
2 log2(n− 1)

⌋
− (n− k)−

(
log2 k − log2(n− k + 2) + 2

)
n≥16
≥ log2(n− 1) + log2(15)− 1− (n− k)− log2 k + log2(n− k + 2)− 2

> log2(n− 1)− (n− k)− log2 k + log2(n− k + 2) + 0.9 . (3.26)
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For k = n, this reduces to log2(n− 1)− log2 n+ 1.9 ≥ 0, which is fulfilled by n ≥ 16
and Lemma 3.3.17, so the fourth statement is proven. For 1 ≤ n − k ≤ 2 and thus
n− 2 ≤ k ≤ n− 1, we prove it by⌊

2 log2(n− 1)
⌋
− ρ(n− k)− |B|

(3.26)
≥ log2(n− 1)− (n− k)− log2 k + log2(n− k + 2) + 0.9

n−2≤k≤n−1
≥ log2(n− 1)− 2− log2(n− 1) + log2(3) + 0.9

> 0.48

> 0 .

Case 2: Assume that n− k ≥ 3.
Here, by definition of ρ (see Definition 3.3.15), we have ρ(n) =

⌊
2 log2(n− 1)

⌋
since n ≥ 16 > 3 and ρ(n − k) =

⌊
2 log2(n− k − 1)

⌋
as n − k ≥ 3. Hence, in this

case, the fourth statement coincides with the third statement.
This finishes the proof of the fourth statement and hence of this proposition.

3.4 Size and Fanout Analysis
We shall now analyze Algorithm 3.1 (page 74) with respect to other metrics pre-
sented in Section 2.3.1. The description of Algorithm 3.1 suggests to construct
each occurring symmetric circuit on r inputs with r − 1 gates, independently from
other symmetric circuits which may compute the same sub-function at intermediate
stages. This yields a formula circuit for f(s, t), and its properties are examined in
Theorem 3.4.1. In the rest of this section, we will give an alternative implementation
with a significantly lower size.

Theorem 3.4.1. Assume that in Algorithm 3.1 (page 74), all symmetric cir-
cuits are constructed as formula circuits on the inputs. Given input variables
s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1) with m ≥ 2, the circuit C(s, t) computed by
Algorithm 3.1 is a formula circuit with

size(C(s, t)) ≤ m depth(C(s, t)) + n− 1

and
fanout(C(s, t)) ≤ depth(C(s, t)) .

Proof. For m = 2, both bounds are fulfilled since we construct a symmetric tree
in line 2 with size at most m + n − 1 and maximum fanout 1. Thus, assume that
m ≥ 3 and let I denote the inputs of C(s, t). Since C(s, t) is a formula circuit,
Observation 2.3.6 yields size(C(s, t)) =

∑
v∈I fanout(v) − 1. Hence, both the size

and fanout bound are implied by the following claim:
Claim. Assume that m ≥ 3 and choose d := dmin(n,m) ∈ N as computed in line 3 of
Algorithm 3.1. In the circuit C(s, t), each of the symmetric inputs has fanout exactly
1 and each of the alternating inputs has fanout at most d.
Proof of claim: We prove the claim by induction on d. Note that for d = 3, each
computed realization has maximum fanout 1.

Thus, we may assume that d > 3. Both in lines 13 and 17, the returned realization
consists of the disjunction of two circuits on disjoint input sets. Due to the fact that
any symmetric circuit has maximum fanout 1 and by induction hypothesis, in these
two cases, C(s, t) fulfills the claimed fanout bounds.
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In line 20, we return C(s, t) = C
(
s, t′
)
∧
(

C
(
t̂′, t′′

))∗
. By induction hypothesis

applied to the two sub-circuits, every input in s has fanout 1 in C(s, t), every input
in t′ has fanout at most (d − 1) + 1 = d in C(s, t) and every input in t′′ has fanout
at most d− 1 < d in C(s, t).

This proves the induction step and hence the claim.

Hence, the formula circuit C(s, t) computed by Algorithm 3.1 has a size in the
order of O(m log2(m+ n) + n). By sharing gates for the construction of symmetric
trees using Theorem 3.3.12, we will be able to reduce this to a linear size of O(m+n)
in Theorem 3.4.19. In order to state the algorithm, we introduce a notation for the
input variables in the outermost call of Algorithm 3.1.

Definition 3.4.2. Consider the application of Algorithm 3.1 to symmetric inputs
s =

(
s0, . . . , sq−1

)
and alternating inputs t = (t0, . . . , tr−1). We define the global

inputs x =
(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
by

xi =


s i

2
for i < 2q even,

undefined for i < 2q odd,
ti−2q for i ≥ 2q .

We can now use two interchangeable ways to denote the input of Algo-
rithm 3.1: we may either apply the algorithm to symmetric inputs s =
(s0, s1, . . . , sq−1) and alternating inputs t = (t0, . . . , tr−1), or to global inputs
x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
, and can easily convert one notation

into the other. When applying Algorithm 3.1 recursively, we use the global notation
for the outermost call of the algorithm, and write s and t for the inputs considered
in the current recursion step. Then, this notation allows us to identify the position
of the currently considered inputs si and ti among the global inputs x.

Definition 3.4.3. Assume that Algorithm 3.1 (page 74) is applied to global inputs
x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
. To each input, we assign a parity:

We call an input xi with i ∈ {0, . . . , 2q+ r− 1} even if i is even and odd otherwise.

Using this notation, Algorithm 3.5 states the precise algorithm: We construct
large leftist And and Or circuits on the even and odd inputs, respectively (see
Definition 3.3.2), and use these to construct symmetric trees during Algorithm 3.1
via Theorem 3.3.12. For this, we use that in Lemma 3.4.6, we will show that s and
s ++ (t0) are both triangular. Furthermore, for the construction of the subset s′ of
s in line 11 of Algorithm 3.1, we use Algorithm 3.4. In Theorem 3.4.19, we shall
see that this leads to a linear number of gates. The size analysis requires a deeper
understanding of Algorithm 3.1. We start with an easy observation that can be
verified by induction on the algorithm.

Observation 3.4.4. Assume that Algorithm 3.1 (page 74) is applied to global
inputs x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
. In each recursive call of

Algorithm 3.1 (page 74) for symmetric inputs s = (s0, . . . , sn−1) and alternating
inputs t = (t0, . . . , tm−1), there is some j ∈ {0, . . . , r − 1} with ti = x2q+j+i for all
0 ≤ i ≤ m− 1.
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Algorithm 3.5: Depth optimization for extended And-Or paths via leftist
circuits
Input: Global inputs x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
.

Output: A circuit computing f
(
(x0, x2, . . . , x2q−2), (x2q, . . . , x2q+r−1)

)
.

1 Construct a leftist And-circuit S0 on all even inputs x0, x2, . . . .
2 Construct a leftist Or-circuit S1 on all odd inputs x2q+1, x2q+3, . . . .
3 Precompute the data from Lemma 3.3.11 for both S0 and S1.
4 Apply Algorithm 3.1 (page 74) to compute a circuit for

f
(
(x0, x2, . . . , x2q−2), (x2q, . . . , x2q+r−1)

)
while constructing all arising

symmetric circuits using Theorem 3.3.12 and computing s′ in line 11 via
Algorithm 3.4.

In other words, t is a consecutive subset of x.
Note that Algorithm 3.1 computes a circuit for the And-Or path f(s, t). In

order to compute a circuit for its dual f∗(s, t), we can simply call the algorithm to
compute a circuit C for f(s, t) and return C∗. In particular, this is what happens in
line 20. As we want to use gates of the leftist circuits S0 and S1 in symmetric trees
built during Algorithm 3.1, we need to determine the parity of the inputs in s and t
depending on whether f(s, t) or f∗(s, t) is computed.

Lemma 3.4.5. Assume that Algorithm 3.1 (page 74) is applied to global inputs
x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
. Consider a recursive call of Al-

gorithm 3.1 with symmetric inputs s = (s0, . . . , sn−1) and alternating inputs t =
(t0, . . . , tm−1). Then, for the computation of f(s, t) (or f∗(s, t), respectively), every
input in s as well as t0 is even (or odd, respectively).

Proof. In the outermost call of the algorithm with s =
(
x0, x2, . . . , x2q−2

)
and

t =
(
x2q, x2q+1, . . . , x2q+r−1

)
, the statement is true by Definition 3.4.3.

Thus assume that the statement holds in some call of the algorithm with sym-
metric inputs s = (s0, . . . , sn−1) and alternating inputs t = (t0, . . . , tm−1). We need
to show that all recursive calls (i.e., lines 13, 17 and 20) maintain this property. It
is easy to see that it suffices to show the statement for the computation of f(s, t).

In this case, we can inductively assume that each input in s as well as t0 is
even. In the recursive calls computing f

(
s\s′, t

)
(line 13) and f((), t) (line 17), this

immediately yields that all symmetric inputs and t0 are even. In line 20, there are
two recursive calls. For the computation of f

(
s, t′
)
, the symmetric inputs are again

even by induction hypothesis, and so is t′0 = t0. Note that t̂′ consists of the inputs
t1, t3, t5, . . . , tk−2 of t with k odd, and that t′′0 = tk. For the recursive computation
of f∗

(
t̂′, t′′

)
, Observation 3.4.4 thus implies that all inputs in t̂′ and t′′0 are odd.

As in line 11, we apply Algorithm 3.4 to s, we need to show that s is triangular.
Furthermore, we will use in Lemma 3.4.12 that s++ (t0) is triangular.

Lemma 3.4.6. Assume that Algorithm 3.1 (page 74) is applied to global inputs x =(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
. Let a leftist And circuit S0 on x0, x2, . . .

and a leftist Or circuit S1 on x2q+1,2q+3 , . . . be given. Consider a recursive call
of Algorithm 3.1 with symmetric inputs s = (s0, . . . , sn−1) and alternating inputs
t = (t0, . . . , tm−1) for the computation of f(s, t) (or f∗(s, t), respectively). Then, the
sets s and s++ (t0) are triangular with respect to S0 (or S1, respectively).
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Proof. By Lemma 3.4.5, for the computation of f(s, t) (or f∗(s, t)), all inputs in s
and t0 are even (or odd). Hence, they are inputs of the leftist circuit S0 (or S1).

By induction on the algorithm, we will prove that s and s++ (t0) are triangular.
In the outermost call, s and s ++ (t0) are both consecutive input sets of the leftist
tree S0. Hence, by Lemma 3.3.6, s and s++ (t0) are triangular with respect to S0.

For the inductive step, we assume without loss of generality that f(s, t) is com-
puted. Now, we may assume that s and s ++ (t0) are triangular with respect to S0.
We show that the statement remains true for each recursive call (i.e., lines 13, 17
and 20).

In line 13, we recursively realize f(s\s′, t), where s′ is computed using Algo-
rithm 3.4. Hence, by Proposition 3.3.13, s\s′ is triangular, and by Corollary 3.3.14,
(s\s′) ++ t0 is triangular.

In line 17, we recursively compute f((), t), and the empty set and { t0 } are both
triangular by Lemma 3.3.6.

In line 20, we recursively compute f(s, t′) and f∗(t̂′, t′′). For f(s, t′), the state-
ment is true by induction hypothesis. By Observation 3.4.4, t is a consecutive subset
of the global inputs, and by Lemma 3.4.5, t0 is even. Thus, the inputs of t̂′ and t′′0
are all odd and a consecutive subset of inputs of S1. Hence, by Lemma 3.3.6, both
t̂′ and t̂′ ++ (t′′0) are triangular with respect to S1.

This proves the induction step and hence the lemma.

In order to prove that the size of our And-Or path circuits is linear in the number
of inputs, we partition the gates into groups and estimate how many gates are used
per group.

Definition 3.4.7. Consider the circuit C(s, t) computed by Algorithm 3.5 for sym-
metric input s and alternating inputs t. We distinguish five types of gates used in
C(s, t):

(i) gates of the leftist circuits S0 and S1 in lines 1 and 2 of Algorithm 3.5

(ii) one concatenation gate per any alternating split in line 20 of Algorithm 3.1

(iii) gates constructed in base-case solutions in lines 1 to 8 of Algorithm 3.1

(iv) gates used in symmetric circuits in line 13 or line 17 of Algorithm 3.1

(v) one concatenation gate per any split in line 13 or line 17 of Algorithm 3.1

We also call the gates of types (iii) to (v) additional gates.

Note that this indeed defines a partition of all the gates used in C(s, t). Counting
the gates of types (i) and (ii) will be easy, the important step will be counting the
additional gates of types (iii) to (v).

Lemma 3.4.8. Consider the circuit C(s, t) computed by Algorithm 3.5 for symmetric
input s and alternating inputs t. For m ≥ 2, the circuit C(s, t) contains at most
m+ n− 2 gates of type (i).

Proof. The gates of type (i) are the gates contained in the two symmetric circuits S0

and S1 computed in lines 1 to 2 of Algorithm 3.5. Note that as m ≥ 2, the circuit
S0 has exactly n+

⌈
m
2

⌉
inputs and the circuit S1 has exactly

⌊
m
2

⌋
inputs. For both
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S0 and S1, the number of gates is at most the number of inputs minus 1. Hence, the
total number of gates in S0 and S1 is most

n+

⌈
m

2

⌉
− 1 +

⌊
m

2

⌋
− 1 = n+m− 2 .

In order to count the gates of type (ii), we prove that there are only linearly
many alternating splits in Algorithm 3.1.

Observation 3.4.9. By induction, one can see that when Algorithm 3.1 (page 74)
is called for alternating inputs r ≥ 1, then any m considered during recursive calls
fulfills m ≥ 1.

Lemma 3.4.10. Assume that Algorithm 3.1 (page 74) is applied to global inputs
x =

(
x0, x2, . . . , x2q−2, x2q, x2q+1, . . . , x2q+r−1

)
with r ≥ 1. Then, the number of

alternating splits used in Algorithm 3.1 is at most r − 1.

Proof. We prove the statement by induction on the execution of Algorithm 3.1.
Consider a call of Algorithm 3.1 to inputs s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1).

In all the base cases (i.e., m ≤ 2 or d ≤ 3), we do not perform an alternating
split, thus the statement is valid since we always have m ≥ 1 by Observation 3.4.9.

Thus, assume that we compute C(s, t) recursively. If we use any of the splits in
line 13 or line 17, we do not perform an alternating split in the current recursive call.
As in both splits, we apply recursion to some set of symmetric inputs and alternating
inputs t, by induction hypothesis, we perform at most m−1 alternating splits during
the computation of f(s, t). Finally, consider the case that we use an alternating split

C(s, t) = C
(
s, t′
)
∧
(
C
(
t̂′, t′′

))∗
with t′ = (t0, . . . , tk−1) in line 20. By induction hypothesis, we perform at most k−1
alternating splits for the computation of C

(
s, t′
)
, and at most m− k− 1 alternating

splits for the computation of
(
C
(
t̂′, t′′

))∗
. Adding the current alternating split, we

need at most m− 1 alternating splits for the computation of C(s, t).

From this, the number of gates of type (ii) directly follows.

Corollary 3.4.11. Consider the circuit C(s, t) computed by Algorithm 3.5 (page 89)
for symmetric input s and alternating inputs t. Form ≥ 1, the circuit C(s, t) contains
at most m− 1 gates of type (ii).

In the following lemma, we estimate the number of additional gates for small
values of n and m. Here, we need to examine the concrete realizations constructed
for f(s, t).

Lemma 3.4.12. Consider the circuit C(s, t) computed by Algorithm 3.5 (page 89) for
symmetric inputs s = (s0, . . . , sn−1) and alternating inputs t = (t0, . . . , tm−1) with
m ≥ 1. The number of additional gates (types (iii) to (v)) needed for the construction
of C(s, t) is shown in Table 3.2 for the following values of m and n:

• 1 ≤ m ≤ 2 and n ∈ N arbitrary

• d ≤ 4 and all m,n ∈ N with dmin(n,m) = d
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m
n

0 1 2 3 4 5 6 7 8 9 10 n > 10

1
2 m+ 2 log2(n+ 1)− 3
3 m+ 5
4 m+ n− 1 m+ 2 log2 n− 2
5
6
7
8

Table 3.2: Number of additional gates needed for the construction
of C(s, t) in the cases 3 ≤ m ≤ 8 and 0 ≤ n ≤ 10 considered in
Lemma 3.4.12. Cells with the same color contain the same formula for
the number of additional gates.

• d = 5, 6 ≤ m ≤ 8 and all n ∈ N with dmin(n,m) = d

Proof. For the values dmin(n,m), see Table 3.1 (page 64).
Case 1: Assume that 1 ≤ m ≤ 2.
In this case, we compute C(s, t) as an optimum symmetric tree on m + n ≥ 1

inputs in line 2 of Algorithm 3.1 (page 74). By Lemma 3.4.6, the set s ++ (t0) is
triangular with respect to S0. Setting K = s ++ (t0) and L = (t1, . . . , tm−1), we
have |K| = n+ 1 ≥ 3 and |L| = m− 1. By Theorem 3.3.12, for the construction of
C(s, t), we need at most m+ n− 1 gates if n ≤ 1, and 2 log2(n+ 1) +m− 1− 2 =
m+ 2 log2(n+ 1)− 3 additional gates otherwise.

This bounds the number of additional gates for m ∈ {1, 2}, i.e., the first two
rows of Table 3.2. In particular, by Table 3.1, this covers all cases of m and n with
dmin(n,m) = 1.

Case 2: Assume that m ≥ 3.
Let d := dmin(n,m) as in line 3 of Algorithm 3.1. We traverse the remaining

cases of m and n in order of increasing d. Thus, we may assume that the num-
ber of additional gates needed in the circuit C(m′, n′) as shown in Table 3.2 with
dmin(m′, n′) < d has already been verified.

Case 2.1: Assume that d ≤ 3.
Here, we construct C(s, t) in line 6 or line 8 of Algorithm 3.1. If m = 4 and thus

n = 0 by Table 3.1, we construct a standard circuit using m+ n− 1 gates in line 8.
Otherwise, by Table 3.1, we have m = 3 and n ≤ 3. By Lemma 3.4.6, the set s++(t0)
is triangular with respect to S0. Hence, we can compute a delay-optimum symmetric
circuit for sym

(
(s0, . . . , sn−1, t0, t1 ∨ t2)

)
via Theorem 3.3.12 in line 6. Note that this

is a depth optimum circuit for f(s, t). By Theorem 3.3.12, this requires m + n ≥ 1
gates if n ≤ 1 and 2 log2(n+ 1) +m− 1− 2 = m+ 2 log2(n+ 1)− 3 additional gates
otherwise.

Case 2.2: Assume that d = 4.
Here, Table 3.1 yields m ≤ 5.
Case 2.2.1: Assume that n ≥ 2d−1.
As n ≥ 2d−1 = 8, Table 3.1 together with m ≥ 3 implies m = 3 and n ≤ 10, and

we apply the symmetric split f(s, t) = sym(s′)∧f(s\s′, t) in line 13 of Algorithm 3.1,
where s′ with |s′| = 8 is computed by Algorithm 3.4. By Proposition 3.3.13, both
s′ and s\s′ are triangular. Using Theorem 3.3.12 to construct a circuit for sym(s′),
we need at most 2 log2 8 − 2 = 4 additional gates. As n − 8 ≤ 2 and m = 3, for
constructing C(s\s′, t), we need at most
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• m+ n− 8− 1 = m+ n− 9 additional gates if n− 8 ∈ {0, 1},

•
⌊
m+ 2 log2(3)− 3

⌋
= 3 additional gates if n− 8 = 2

by the already computed numbers of additional gates in Table 3.2 for d ∈ {2, 3}.
Adding the split gate, in total, if n = 8, this makes at most 4+m+n−9+1 = m+4 =
m+2 log2 n−2 additional gates; if n = 9, this makes at most 4+m+n−9+1 = m+5
additional gates; and if n = 10, this makes at most 4 + 3 + 1 = m + 5 additional
gates.

Case 2.2.2: Assume that n < 2d−1 and m ≤ µ(4− 1, 0).
Note that we have n < 2d−1 = 8 and 3 ≤ m ≤ µ(4− 1, 0) = 8−2

3 + 2 = 4. We use
the simple split

f(s, t) = sym(s) ∧ f
(
(), (t0, . . . , tm−1)

)
in line 17 of Algorithm 3.1. By Table 3.1, we have 4 ≤ n ≤ 7 form = 3 and 1 ≤ n ≤ 6
for m = 4. Here, as s is triangular by Lemma 3.4.6, by Theorem 3.3.12, for realizing
sym(s), if n ∈ {1, 2}, we need n− 1 gates, and at most 2 log2 n− 2 additional gates
otherwise; and at most m − 1 gates for C

(
(), (t0, . . . , tm−1)

)
by Table 3.2. In total,

if m = 4 and n ∈ {1, 2}, we need exactly n− 1 +m− 1 + 1 = m+ n− 1 additional
gates, and otherwise at most 2 log2 n− 2 +m− 1 + 1 = m+ 2 log2 n− 2 additional
gates.

Case 2.2.3: Assume that n < 2d−1 and m > µ(4− 1, 0).
If n < 2d−1 = 8 and m > µ(d− 1, 0) = 4, we have m = 5 and n ≤ 2 by Table 3.1.

For any 0 ≤ n ≤ 2, we choose k = 3 in line 18 since

3 <
10

3
=

23 − 2− 2

3
+ 2 ≤ µ(d− 1, n) ≤ 23 − 2

3
+ 2 = 4 .

Hence, we perform the alternating split

C(s, t) = C
(
s, (t0, t1, t2)

)
∧ C∗

(
(t1), (t3, t4)

)
in line 20 of Algorithm 3.1. Recall that in this case, the concatenation gate is no
additional gate by Definition 3.4.7. For computing C

(
s, (t0, t1, t2)

)
, by Table 3.2, if

n ≤ 1, we need at most 3 + n − 1 = n + 2 additional gates, and if n = 2, we need
at most

⌊
3 + 2 log2(3)− 3

⌋
= 3 additional gates. By Table 3.2, the computation of

C∗
(
(t1), (t3, t4)

)
requires 2 + 1 − 1 = 2 gates. In total, if n ≤ 1, we need at most

n + 2 + 2
m=5
= m + n − 1 additional gates for constructing f(s, t), and if n = 2, we

need at most 3 + 2 = 5 = m+ 2 log2 n− 2 additional gates for constructing f(s, t).
Case 2.3: Assume that d = 5.
Here, we have 6 ≤ m ≤ 8 by assumption, and Table 3.1 implies

• n ≤ 10 for m = 6,

• n ≤ 5 for m = 7, and

• n = 0 for m = 8.

In any case, we have n < 2d−1 = 16, and we perform the alternating split in line 20
of Algorithm 3.1 since by Table 3.1, we have dmin(0,m) = d. Hence, we choose k
maximal with k ≤ µ(d − 1, n) = 16−n−2

4 + 2 = 5.5 − n
4 . For 0 ≤ n ≤ 2, this means

k = 5, while for 3 ≤ n ≤ 10, this means k = 3.
Case 2.3.1: Assume that n ≤ 2.
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Here, we have k = 5 and perform the alternating split

C(s, t) = C
(
s, (t0, t1, t2, t3, t4)

)
∧ C∗

(
(t1, t3), (t5, . . . , tm−1)

)
.

We read off the number of additional gates used for the two sub-circuits from
Table 3.2: For C

(
s, (t0, t1, t2, t3, t4)

)
, if n ≤ 1, we need at most 5 + n − 1 = n + 4

additional gates, and, if n = 2, we need at most 5 + 2 log2 n−2 = 5 additional gates.
For C∗

(
(t1, t3), (t5, . . . , tm−1)

)
and hence m− 5 ∈ {1, 2} alternating inputs, we need

at most
⌊
m− 5 + 2 log2(2 + 1)− 3

⌋
= m − 5 additional gates. Thus, in total, if

n ∈ {0, 1}, we need at most n+4 +m−5 = m+n−1 additional gates, and if n = 2,
we need at most 5 +m− 5 = m+ 2 log2 n− 2 additional gates.

Case 2.3.2: Assume that 3 ≤ n ≤ 10.
Now, we have k = 3 and perform the alternating split

C(s, t) = C
(
s, (t0, t1, t2)

)
∧ C∗

(
(t1), (t3, . . . , tm−1)

)
.

The circuit C
(
s, (t0, t1, t2)

)
is constructed using the following number of additional

gates as already computed in Table 3.2:

• For n = 3, we need 3 + 2 log2(3 + 1)− 3 = 4 additional gates.

• For 4 ≤ n ≤ 8, we need at most 3 + 2 log2 n− 2 = 2 log2 n+ 1 additional gates.

• For n ∈ {9, 10}, we need at most 3 + 5 = 8 additional gates.

The circuit C∗
(
(t1), (t3, . . . , tm−1)

)
can be built using at most m− 3 + 1− 1 = m− 3

additional gates by Table 3.2. Summing up these numbers, we obtain the last entries
of Table 3.2:

• For m ∈ {6, 7} and n = 3, we need at most 4 + m − 3 = m + 1 =
bm+ 2 log2 n− 2c additional gates.

• For m = 6 and 4 ≤ n ≤ 8, and for m = 7 and 4 ≤ n ≤ 5, we need at most
2 log2 n+ 1 +m− 3 = m+ 2 log2 n− 2 additional gates.

• For m = 6 and n ∈ {9, 10} we need at most 8 + m − 3 = m + 5 additional
gates.

This bounds the number of additional gates used for the computation of f(s, t) for
all stated cases of m and n.

We now give a common upper bound for the number of additional gates in the
cases considered in Lemma 3.4.12 and Table 3.2 in Corollary 3.4.13.

Corollary 3.4.13. Consider the circuit C(s, t) computed by Algorithm 3.5 (page 89)
for symmetric inputs s = (s0, . . . , sn−1) and alternating inputs t = (t0, . . . , tm−1)
with m ≥ 1. For all m,n appearing in Table 3.2 (see Lemma 3.4.12), the number of
additional gates in C(s, t) is at most m+ ρ(n)− 1.

Proof. We partition all cases to consider based on the coloring of Table 3.2.
First consider the red part, i.e., the cases 1 ≤ m ≤ 2 and n ≥ 2, and m = 3,

n ∈ {2, 3}. Here, by Table 3.2, we need at most m + 2 log2(n + 1) − 3 additional
gates. If n ≤ 2, we have at most⌊

m+ 2 log2(3)− 3
⌋

= m < m+ 1 ≤ m+ ρ(n)− 1
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additional gates, and for n ≥ 3, we have

⌊
m+ 2 log2(n+ 1)− 3

⌋ n≥3,
Lem. 3.3.17≤ m+

⌊
2 log2(n− 1)

⌋
− 1

n≥3
= m+ ρ(n)− 1 .

Now consider the blue part, i.e., the cases m ∈ {1, . . . , 7} and n ∈ {0, 1}, m = 4
and n = 2, or m = 8 and n = 0. This implies that n ≤ 2, hence we need at most
m+ n− 1

n≤2
= m+ ρ(n)− 1 additional gates.

For the yellow part (i.e., m = 3 and n ∈ {4, . . . , 8}; m = 4 and n ∈ {3, . . . , 6};
m = 5 and n = 2; m = 6 and n ∈ {2, . . . , 8}; m = 7 and n ∈ {2, . . . , 5}), we need
at most bm+ 2 log2 n− 2c additional gates. For n = 2, we have m+ 2 log2 n− 2 =
m < m+ 2− 1 = m+ ρ(n)− 1. for 3 ≤ n ≤ 8, we have

bm+ 2 log2 n− 2c
n≥3

Lem. 3.3.17≤ m+
⌊

2 log2(n− 1)
⌋
− 1

n≥3
= m+ ρ(n)− 1 .

For the green part (i.e., m ∈ {3, 6} and n ∈ {9, 10}), we need at most

m+ 5
n≥9
≤ m+ 2 log2(n− 1)− 1

n∈{9,10}
= m+ ρ(n)− 1

additional gates.
Note that this a complete enumeration of all cases by Table 3.2.

For general n and m, we will estimate the number of additional gates needed for
the realization of f

(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
in Lemma 3.4.18, but we still need

some technical preparations. The following lemmas introduce important functions
that are used when proving Lemma 3.4.18. Note that we show three of these functions
in Figure 3.5.

Lemma 3.4.14. For n ∈ N≥1, consider the finite series Sn :=
∑n

k=2
(k−1)2

2k−2 . We
have

Sn = 12− 4

2n

(
n2 + 2n+ 3

)
. (3.27)

Moreover, we have ∑
k≥19

(k − 1)2

2k−2
≤ 0.006 . (3.28)

Proof. We prove Equation (3.27) by induction on n.
For n = 2, we have

Sn = 1 = 12− 4

4
(4 + 4 + 3) .

For n ≥ 2, we have

Sn+1 =
n+1∑
k=2

(k − 1)2

2k−2

(IH)
= 12− 4

2n

(
n2 + 2n+ 3

)
+

n2

2n−1

= 12− 4

2n

(
0.5n2 + 2n+ 3

)
= 12− 4

2n+1

(
n2 + 4n+ 6

)
= 12− 4

2n+1

(
(n+ 1)2 + 2(n+ 1) + 3

)
.
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Figure 3.5: The functions (d−1)2

2d−2 for d ≥ 6 from Lemma 3.4.14,
ψ : N≥6 → R from Lemma 3.4.16, and φ : N≥1 → R from Lemma 3.4.17.

This proves the induction step and hence Equation (3.27).
To see that Equation (3.28) is fulfilled, note that Equation (3.27) implies

∞∑
k=2

(k − 1)2

2k−2
≤ 12 . (3.29)

From this, we conclude
∞∑

k=19

(k − 1)2

2k−2
=

∞∑
k=2

(k − 1)2

2k−2
−

18∑
k=2

(k − 1)2

2k−2

(3.29)
≤ 12−

18∑
k=2

(k − 1)2

2k−2

(3.27)
= 12−

(
12− 4

218

(
182 + 2 · 18 + 3

))
=

1304

218

< 0.006 .

Notation 3.4.15. For x ∈ R, let flodd(x) := max{y ∈ Z : y odd, y ≤ x}.

Lemma 3.4.16. For d ∈ N, d ≥ 6, and γ ≤ 0, define ψ(d) ∈ R≥0 by

ψ(d) :=

ρ

flodd

(
2d−1−2
d−1

)
+1

2

+ γ

⌊
2d−1−2
d−1

⌋
+ 3

.
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We have

ψ(d) ≤ (d− 1)2

2d−2
.

Proof. We have

2d−1 · 2(d− 1)− (2d−1 + d− 3) = 2d−1(d− 3) + d(2d−1 − 1) + 3
d≥6
> 0 (3.30)

and hence

flodd
(

2d−1−2
d−1

)
+ 1

2
≤

2d−1−2
d−1 + 1

2
=

2d−1 + d− 3

2(d− 1)

(3.30)
≤ 2d−1 . (3.31)

Furthermore, we have⌊
2d−1 − 2

d− 1

⌋
+ 3 ≥ 2d−1 − 2

d− 1
+ 2 =

2d−1 + 2d− 4

d− 1

d≥2
≥ 2d−1

d− 1
. (3.32)

As both the nominator and denominator of ψ(d) are positive for d ≥ 6, we can
conclude from these inequalities that

ψ(d) =

ρ

flodd

(
2d−1−2
d−1

)
+1

2

+ γ

⌊
2d−1−2
d−1

⌋
+ 3

(3.31) ,
Obs. 3.3.16≤

ρ
(

2d−1
)

+ γ⌊
2d−1−2
d−1

⌋
+ 3

Def. 3.3.15
(3.32)
≤

⌊
2 log2

(
2d−1 − 1

)⌋
− γ

2d−1

d−1

γ≤0
≤ 2(d− 1)2

2d−1
.

In the following lemma, we will require an upper bound on ψ(d) for all d ≥ 6. The
previous lemma suggests to use (d−1)3

2d−1 as this upper bound. But in Figure 3.5, we see

that the difference (d−1)3

2d−1 − ψ(d) is very large for small d, though quickly decreases
to a value close to 0. Hence, in the following proof, we evaluate ψ(d) explicitly for
d ≤ 18 in Table 3.3 and use the upper bound from Lemma 3.4.16 only for d ≥ 19.

Lemma 3.4.17. Define the function φ : N≥1 → R by

φ(d) =

{
−1.15 for d ≤ 5,
φ(d− 1) + ψ(d) for d ≥ 6.

Then, φ(d) is negative and monotonely increasing for all d ≥ 1.

Proof. Note that the correlation of φ(d) and ψ(d) for d ≥ 6 is visualized in Figure 3.5.
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d Upper bound on ψ(d) Upper bound on
∑d

d′=6 ψ(d′)

6 0.1112 0.1112
7 0.2308 0.3420
8 0.2381 0.5801
9 0.1765 0.7566
10 0.1356 0.8922
11 0.0953 0.9875
12 0.0635 1.0510
13 0.0378 1.0888
14 0.0237 1.1125
15 0.0145 1.1270
16 0.0087 1.1357
17 0.0049 1.1406
18 0.0029 1.1435

Table 3.3: Upper bounds on ψ(d) and
∑d

d′=6 ψ(d′) for d ∈
{6, . . . , 18}. All bounds on ψ have been calculated by a C++ program
using floating-point interval arithmetic and rounding to fixed precision
afterwards. The upper bound 1.1435 on

∑18
d′=6 ψ(d′) is used in the

proof of Lemma 3.4.17.

As ψ(d) ≥ 0 for all d ≥ 6, the second statement is clearly fulfilled. Hence, in
order to prove the first statement, we show that

φ(5) +
∑
d≥6

ψ(d) < 0 .

But we have

φ(5) +
∑
d≥6

ψ(d) = φ(5) +

18∑
d=6

ψ(d) +
∑
d≥19

ψ(d)

Lem. 3.4.16
≤ φ(5) +

18∑
d=6

ψ(d) +
∑
d≥19

(d− 1)2

2d−2

Table 3.3,
(3.28)
≤ φ(5) + 1.1435 + 0.006

< φ(5) + 1.15

= 0 .

Now, in Lemma 3.4.18, we can finally bound the number of additional gates used
in the circuit C

(
(s0, . . . , sn−1), (t0, . . . , tm−1)

)
by αm+ ρ(n) + γ for some α ≥ 1 and

γ ∈ R to be defined. We prove the statement by induction on d := dmin(n,m), and in
order to make the induction step work, we need to show a stronger upper bound on
the number of additional gates, namely

(
α+ φ(d)

)
m+ ρ(n) + γ. This is a stronger

bound since φ(d) ≤ 0 by Lemma 3.4.17, and we will see in the following proof that
φ(d) is defined in a way such that
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• α+φ(d) = 1 for d ≤ 5, which ensures that the upper bound is valid in the case
of small d (see also Corollary 3.4.13), i.e., cases 1 and 2.2.2.1 of the proof,

• and φ(d) = φ(d − 1) + ψ(d) for d ≥ 6, which will be the definition needed for
d ≥ 6 in case of the alternating split in line 20 of Algorithm 3.1, i.e., in case
2.2.2.2 of the proof.

Lemma 3.4.18. Given input variables s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1)
with m ≥ 1, the number of additional gates (types (iii) to (v) of Definition 3.4.7)
used in C(s, t) is at most

Φ(d,m, n) :=
(
α+ φ(d)

)
m+ ρ(n) + γ ,

where d := dmin(n,m) and φ(d) as in Lemma 3.4.17, ρ(n) as in Definition 3.3.15,
α = 2.15, and γ = −1.

Proof. Figure 3.5 (page 96) depicts the function φ(d) from Lemma 3.4.17.
Case 1: Assume that d ≤ 4 or m ≤ 2.
By Corollary 3.4.13, we need at most m+ ρ(n)− 1 additional gates in this case.

By Lemma 3.4.17, we have φ(d) ≥ −1.15 = −α+1 for all d ∈ N>1. Hence, we have

Φ(d,m, n) =
(
α+ φ(d)

)
m+ ρ(n) + γ ≥ m+ ρ(n)− 1 ,

which finishes the proof when d ≤ 4 or m ≤ 2.
Case 2: Assume that m ≥ 3 and d ≥ 5.
We follow the course of Algorithm 3.1 (page 74). Note that the value d in

our proof coincides with the value d chosen in Algorithm 3.1, and recall that by
Lemma 3.1.11, we have n < 2d since m ≥ 2.

Case 2.1: Assume that n ≥ 2d−1.
The assumption d ≥ 5 implies that n ≥ 2d−1 ≥ 16. In this case, we perform a

symmetric split in line 13. Recall that k = 2d−1. By Lemma 3.4.5, all symmetric
inputs are even, and by Lemma 3.4.6, s is triangular. Let s′ be the output of
Algorithm 3.4 when applied to input set s′ and leftist tree S0 as in line 11 of
Algorithm 3.1. We construct the symmetric tree on s′ using Proposition 3.3.10
with |B| − 1 additional gates, where B := B(s′, S) is the set of boundary vertices
of s′ with respect to S. By induction hypothesis, we can assume that we need at
most Φ(d− 1,m, n− k) additional gates for the computation of f

(
(sk, . . . , sn−1), t

)
.

Adding the concatenation gate, we in total use |B| + Φ(d − 1,m, n − k) additional
gates. Note that

Φ(d,m, n)−
(
|B|+ Φ(d− 1,m, n− k)

)
=

(
α+ φ(d)

)
m+ ρ(n) + γ − |B| −

(
α+ φ(d− 1)

)
m− ρ(n− k)− γ

Lem. 3.4.17
≥ ρ(n)− ρ(n− k)− |B|

n≥16,
Prop. 3.3.18,(iv)

≥ 0 .

Hence, the number of additional gates used in this case is at most Φ(d,m, n).
Case 2.2: Assume that n < 2d−1.
Case 2.2.1: Assume that m ≤ µ(d− 1, 0).
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Note that n > 0 as m > µ(d−1, 0) by the choice of d = dmin(m,n). We construct
a realization in line 17 using the simple split

f(s, t) = sym
(
(s0, . . . , sn−1)

)
∧ f
(
(), t
)
.

By induction hypothesis, the circuit for f
(
(), t
)
requires Φ(d − 1,m, 0) addi-

tional gates. Denoting the number of additional gates needed in the circuit for
f
(
(s0, . . . , sn−1)

)
by σ, we need at most σ + Φ(d − 1,m, 0) + 1 additional gates in

this case. We need to show that this is at most Φ(d,m, n). As we have

Φ(d,m, n)−
(
σ + Φ(d− 1,m, 0) + 1

)
= (α+ φ(d))m+ ρ(n) + γ −

(
σ + (α+ φ(d− 1))m+ ρ(0) + γ + 1

)
ρ(0)=0

= (φ(d)− φ(d− 1))m+ ρ(n)− σ − 1

Lem. 3.4.17
≥ ρ(n)− σ − 1 ,

it remains to show that ρ(n)− σ − 1 ≥ 0.
As s is triangular by Lemma 3.4.6, we can construct the symmetric tree on s via

Theorem 3.3.12 using at most n − 1 gates if n ≤ 2 and at most σ ≤ b2 log2 nc − 2
additional gates otherwise. For n ≤ 2, this shows the statement as ρ(n) = n in this
case. For n ≥ 3, as ρ(n) =

⌊
2 log2(n− 1)

⌋
, we have

ρ(n)− σ − 1 ≥
⌊

2 log2(n− 1)
⌋
− b2 log2 nc+ 2− 1

n≥3,
Lem. 3.3.17≥ 0 .

Case 2.2.2: Assume that

m > µ(d− 1, 0) , (3.33)

i.e., that we perform an alternating split

f(s, t) = f
(
s, t′
)
∧
(
f
(
t̂′, t′′

))∗
with a prefix of odd length k in line 20. We consider the case d = 5 separately.

Case 2.2.2.1: Assume that d = 5.
Here, Table 3.1 yields m ≤ 8. Furthermore, Equation (3.33) implies

m > µ(d− 1, 0) =
24 − 2

4
+ 2 = 5.5

and thus m ∈ {6, 7, 8}. Hence, Tables 3.1 and 3.2 contain all relevant cases. By
Corollary 3.4.13, we need at most m+ρ(n)−1 additional gates in any of these cases.
Hence,

Φ(5,m, n) =
(
α+ φ(5)

)
m+ ρ(n) + γ

d=5
= m+ ρ(n)− 1

is an upper bound on the number of additional gates, which proves the statement
for d = 5.

Case 2.2.2.2: Assume that d ≥ 6.
By induction hypothesis, we need at most Φ(d − 1, k, n) additional gates for

C
(
s, t′
)
and at most Φ

(
d− 1,m− k, k−1

2

)
additional gates for

(
C
(
t̂′, t′′

))∗
. Note
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that the concatenation gate is already counted in the case of an alternating split
(gate type (ii)). In total, we have at most

Φ(d− 1, k, n) + Φ

(
d− 1,m− k, k − 1

2

)
=

(
α+ φ(d− 1)

)
k + ρ(n) + γ +

(
α+ φ(d− 1)

)
(m− k) + ρ

(
k − 1

2

)
+ γ

=
(
α+ φ(d− 1)

)
m+ ρ(n) + ρ

(
k − 1

2

)
+ 2γ

additional gates. We need to show that this is at most Φ(d,m, n) =
(
α+ φ(d)

)
m+

ρ(n) + γ. Hence, it suffices to show

ρ

(
k − 1

2

)
+
(
α+ φ(d− 1)

)
m+ γ ≤

(
α+ φ(d)

)
m.

Since for d ≥ 6, by Lemma 3.4.17, we have

φ(d)− φ(d− 1) = ψ(d) ,

it remains to show that
ρ

(
k − 1

2

)
+ γ ≤ ψ(d)m. (3.34 )

Due to assumption (3.33), we have m > µ(d− 1, 0) = 2d−1−2
d−1 + 2. As m is integral,

this implies

m ≥
⌊

2d−1 − 2

d− 1

⌋
+ 3 .

Furthermore, by the choice of k in line 18, k is the maximum odd integer with
k ≤ µ(d− 1, n), in other words,

k = flodd
(
µ(d− 1, n)

)
= flodd

(
2d−1 − n− 2

d− 1
+ 2

)
≤ flodd

(
2d−1 − 2

d− 1

)
+ 2 .

Using these two bounds, the fact that ψ(d) ≥ 0 for all d ≥ 6 by its definition
in Lemma 3.4.16 and the fact that ρ is increasing by Observation 3.3.16, inequal-
ity (3.34 ) is hence implied by

ρ

flodd
(

2d−1−2
d−1

)
+ 1

2

+ γ ≤ ψ(d)

⌊ 2d−1 − 2

d− 1

⌋
+ 3

 ,

which holds with equality by definition of ψ for γ = −1 by Lemma 3.4.16.
Hence, the induction step also holds in case 2.2.2.2 and the lemma is proven.

Now, we can finally state and prove the main theorem of this section.

Theorem 3.4.19. Given input variables s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1)
with m ≥ 2, Algorithm 3.5 (page 89) computes a circuit C(s, t) with

size(C(s, t)) ≤ 4.15m+ n+ ρ(n)− 4 ,

where ρ(n) =

{
n if n ∈ {0, 1, 2}⌊

2 log2(n− 1)
⌋

if n ≥ 3
as in Definition 3.3.15.
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Proof. We partition the gates of C(s, t) as in Definition 3.4.7.

(i) There are at most m+ n− 2 gates contained in the leftist trees S0 and S1 by
Lemma 3.4.8.

(ii) There are at most m− 1 alternating-split gates by Corollary 3.4.11.

(iii) - (v) Let d := dmin(n,m). By Lemma 3.4.18, there are at most

Φ(d,m, n) =
(
α+ φ(d)

)
m+ ρ(n) + γ

Lem. 3.4.17≤ αm+ ρ(n) + γ

α=2.15,
γ=−1

= 2.15m+ ρ(n)− 1

additional gates.

Adding up all these gates yields the claimed size bound.

Lemma 3.4.20. Given symmetric inputs s = (s0, . . . , sn−1) and alternating inputs
t = (t0, . . . , tm−1), Algorithm 3.5 (page 89) has running time O((m + n)(log2 n +
log2m)).

Proof. Constructing the leftist trees S0 and S1 takes time O(m+n), and computing
the data from Lemma 3.3.11 takes time O((m+n) log2(m+n)). It remains to bound
the running time of Algorithm 3.1 (page 74).

Recall that in each recursive call of Algorithm 3.1, t is a consecutive set of the
inputs by Observation 3.4.4 and s is triangular by Lemma 3.4.6, i.e., s consists of
two consecutive input sets by Definition 3.3.5. Hence, we can pass on s and t during
the algorithm via a constant number of indices.

Note that in each recursive call of Algorithm 3.1, we build at least one gate.
Hence, by Theorem 3.4.19 there are at most O(m+ n) recursive calls.

In a single recursive call, the running time is dominated by lines 3 and 18 and
the construction of symmetric trees using Theorem 3.3.12. Using binary search,
line 18 can be executed in time O(log2m), and, as by Theorem 3.2.4, we have
d ∈ O(log2(m+ n)), line 3 can be executed in time O(log2 log2(m+ n)). Note that
each symmetric tree computed has s as inputs, plus potentially t0 and t1. As s and
s++ (t0) are both triangular by Lemma 3.4.6, by Theorem 3.3.12, computing a single
symmetric tree requires time at most O(log2 n) using the precomputed data from
Lemma 3.3.11.

In total, this means that Algorithm 3.1 runs in time O((m+n)(log2m+log2 n)).

For the special case of And-Or paths, plugging together Corollary 3.2.5, Theo-
rem 3.4.19, and Lemma 3.4.20 yields the following result.

Corollary 3.4.21. Given input variables t = (t0, . . . , tm−1) with m ≥ 2, Algo-
rithm 3.5 (page 89) computes a circuit for g(t) with depth at most

log2m+ log2 log2m+ 1.58

and size at most
4.15m− 4

in running time O(m log2m).



Chapter 4

Improved Bounds for Delay Optimization

In this chapter, we consider the And-Or Path Circuit Optimization Problem,
i.e., we aim at constructing And-Or path circuits with a good delay with respect to
prescribed input arrival times. Most theorems and proofs of this chapter have been
published previously in more compact form in Brenner and Hermann [BH19].

In this chapter, we will generalize our algorithm from Chapter 3 from depth opti-
mization to delay optimization. We prove that for an And-Or path g

(
(t0, . . . , tm−1)

)
with input arrival times t0, . . . , tm−1 ∈ N, our algorithm computes And-Or path cir-
cuits with a delay of at most

log2W + log2 log2m+ log2 log2 log2m+ 4.3 ,

where W :=
∑m−1

i=0 2a(ti). This is the best known upper bound on the delay of
And-Or path circuits known so far. It improves significantly in comparison to the
previously best upper bound of

d log2W e+ 2
√

2 log2m− 1 + 6

by Spirkl [Spi14], in particular in comparison to the asymptotic lower bound of
log2m+log2 log2m+const for the special case of depth optimization by Commentz-
Walter [Com79]. For arbitrary arrival times, d log2W e is the only lower bound
known.

Improving the analysis of our algorithm slightly, we decrease the size bound stated
in [BH19] from O(m log2m log2 log2m) to O(m log2m), and the running time bound
from O(m2 log2m) to O(m log2

2m).
Recall that in Section 2.6.2, we saw recursive techniques for the construction

of And-Or path circuits (see, e.g., Corollaries 2.6.17 and 2.6.18). The most gen-
eral variants of these recursion strategies use extended And-Or paths (cf. Defini-
tion 2.6.14) as intermediate solutions. Thus, just as in [Gri08] and Chapter 3, we
shall optimize extended And-Or paths and not only And-Or paths. In these proofs,
the depth is estimated by a reverse argument: Given a fixed depth bound d and a
fixed number n of symmetric inputs s, one determines how many alternating inputs
t an And-Or path may have such that f(s, t) can be realized with depth at most d.

For delay optimization, we shall proceed similarly: Given a fixed delay bound d
and symmetric inputs s with a fixed weight w, we will determine in Section 4.1 for
which alternating inputs t a realization of f(s, t) with delay d can be guaranteed. In
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Section 4.2, we will deduce the arising upper bound on the delay of And-Or path
circuits with prescribed arrival times. Finally, in Section 4.3, we will analyze our
circuits and our algorithm.

4.1 Bounding the Weight
In this section, we ideally would like to characterize exactly for which alternating
inputs t a realization f(s, t) with delay d is possible if d and s are fixed. However,
even for small d, the set of these alternating inputs has a very complicated structure
Instead, we will thus distinguish different sets of inputs by their weight only, and
will bound the maximum weight W such that any alternating inputs t with weight
at most W admit realizing f(s, t) with a fixed delay d and symmetric inputs s with
a fixed weight w. The goal of this section is proving the following theorem.

Definition 4.1.1. For ζ = 1.9, the function ν : N≥2 × N→ R is defined by

ν(d,w) = ζ
2d−1 − w
d log2 d

.

Theorem 4.1.2. Let d,w ∈ N with d > 1 and 0 ≤ w < 2d−1 be given. Consider
Boolean input variables s and t with W (s) = w and

W (t) ≤ ν(d,w) .

Then, we can construct a circuit realizing f(s, t) with delay at most d.

When applied to inputs with all-zero arrival times and hence depth optimization,
this theorem says that for d, n,m ∈ N with d ≥ 2, 0 ≤ n < 2d−1 and m ≤ ζ 2d−1−n

d log2 d
,

we can construct a circuit realizing an And-Or path with n symmetric inputs and
m alternating inputs with depth at most d. Note that this statement is similar to
the stronger Proposition 3.1.14: Here, based on [Gri08], we prove that this is even
true for m ≤ 2d−n−2

d + 2. Up to constants, these bounds thus differ by a factor of
log2 d which we lose due to the generalization to arbitrary arrival times.

Just as an upper bound on the depth of And-Or path circuits can be deduced
from Proposition 3.1.14, Theorem 4.1.2 will yield an upper bound on the delay of
And-Or path circuits for inputs with prescribed arrival times.

Remark 4.1.3. In Theorem 4.2.4, Theorem 4.1.2 will allow us to deduce the desired
upper bound of log2W + log2 log2m + log2 log2 log2m + 4.3 on the delay of And-
Or path circuits. In the proof of Theorem 4.2.4, we will see that the choice of the
constant ζ influences the additive constant (here 4.3) in the delay bound only. If we
chose ζ := 1, we would need to replace the additive constant by 5. An improvement
of the additive term to 4.2 would only be possible for ζ ≥ 1.992, for which we cannot
prove Theorem 4.1.2.

Most parts of the proof of Theorem 4.1.2 will work for any ζ with 1 ≤ ζ < 2;
only in Lemma 4.1.16, we demand ζ ≤ 1.9.

We would like to prove Theorem 4.1.2 by induction on d based on the restructur-
ing methods presented in Section 2.6.2, similarly to the proof of Proposition 3.1.14
based on [Gri08]. The main recursion strategy will again be the alternating split
with an odd prefix (see Corollary 2.6.17): Given inputs s = (s0, . . . , sn−1) and
t = (t0, . . . , tm−1) and an odd integer k with 1 ≤ k < m, we have

f(s, t) = f
(
s, (t0, . . . , tk−1)

)
∧ f∗

(
(t1, t3, . . . , tk−2), (tk, . . . , tm−1)

)
,
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or, when recalling the auxiliary notation t′ = (t0, . . . , tk−1), t′′ = (tk, . . . , tm−1) and
t̂′ = (t1, t3, . . . , tk−2), we have

f(s, t) = f
(
s, t′
)
∧ f∗

(
t̂′, t′′

)
. (4.1)

The following remark indicates why an inductive proof of Theorem 4.1.2 using the
alternating split will not work for arbitrary arrival times.

Remark 4.1.4. Suppose that Theorem 4.1.2 holds for some d ≥ 2 and all 0 ≤ w <
2d−1. In order to prove Theorem 4.1.2 for d+ 1, we need to show that, given input
variables s and t with 0 ≤ w := W (s) < 2d and W (t) ≤ ν(d + 1, w), the extended
And-Or path f(s, t) can be realized with delay d + 1. In the case that w < 2d−1,
we would like to apply the alternating split (4.1). If we choose the prefix t′ of t such
that

W (t′) ≤ ν(d,w) (4.2)

(assuming this is possible), the induction hypothesis and the assumption w < 2d−1

allow us to construct a circuit for f(s, t′) with delay d. Thus, in order to construct a
circuit with delay d+ 1 for f(s, t), it remains to prove that f∗(t̂′, t′′) admits a circuit
with delay d. Again, by induction hypothesis, we need to show thatW (t′′) ≤ ν(d,w).
But the only fact we know about W (t′′) is that

W (t′′) = W (t)−W (t′) . (4.3)

Even if we choose the prefix t′ maximal with (4.2), this will not give us a mean-
ingful upper bound on W (t′′) since W (t′) might be arbitrarily small in comparison
to W (t) due to the presence of arbitrary arrival times.

Note that this is what distinguishes our proof from Grinchuk’s [Gri08]: For
all-zero arrival times, choosing t′ maximal with (4.2) works well, since then, by
maximality, we have W (t′) > ν(d, n)− 2, hence Equation (4.3) yields

W (t′′) = W (t)−W (t′) < W (t)− ν(d, n)− 2 .

It turns out that this upper bound on W (t′′) suffices to prove that f∗(t̂′, t′′) can be
realized with delay d.

When arbitrary arrival times are present, a different proof idea is needed.

As a consequence, instead of directly proving Theorem 4.1.2 by induction, we
strengthen the induction hypothesis and prove the stronger Theorem 4.1.6.

Definition 4.1.5. Let m ∈ N. For inputs t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ N, we denote by Λt the weight of the last two (or fewer) entries
of t, i.e.,

Λt :=


0, m = 0 ,

W (t0), m = 1 ,

W (tm−2) +W (tm−1), m > 1 .

Theorem 4.1.6. Let d,w ∈ N with d ≥ 2 and 0 ≤ w < 2d−1 be given. Consider
Boolean input variables s and t with W (s) = w and

W (t) ≤ ν(d,w) +
d− 1

d
Λt . (4.4)

Then, we can construct a circuit realizing f(s, t) with delay at most d.
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Note that since Λt ≥ 0, Theorem 4.1.6 implies Theorem 4.1.2. The proof of
Theorem 4.1.6 is the most important step to prove the new delay guarantee and
covers the rest of this section.

First, we note how requirement (4.4) can be rewritten.

Observation 4.1.7. Consider d,w ∈ N with d ≥ 2 and 0 ≤ w < 2d−1 and
Boolean input variables s and t with W (s) = w. The following three statements
are equivalent:

W (t) ≤ ν(d,w) +
d− 1

d
Λt

m−3∑
i=0

W (ti) +
Λt
d
≤ ν(d,w) (4.5)

d
m−3∑
i=0

W (ti) + Λt ≤ dν(d,w) (4.6)

Note that the sums in Observation 4.1.7 are empty in case m ≤ 2. Nevertheless,
the three statements are equivalent.

Next, we give an upper bound on W (t) + w in the setting of Theorem 4.1.6.

Lemma 4.1.8. Assuming the conditions of Theorem 4.1.6, we have

W (t) + w ≤

2d−1 if d ≥ 2ζ ,
2d

log2 d
otherwise .

(4.7)

Proof. Using inequality (4.6), we obtain

W (t)+w
(4.6)
≤ dν(d,w)+w

Def. 4.1.1
= dζ

2d−1 − w
d log2 d

+w =
ζ2d−1 + (log2 d− ζ)w

log2 d
. (4.8)

If d ≥ 2ζ , along with the condition w < 2d−1, this implies

W (t) + w
(4.8)
≤ ζ2d−1 + (log2 d− ζ)w

log2 d
≤ 2d−1(ζ + log2 d− ζ)

log2 d
= 2d−1 .

Otherwise, if d < 2ζ , the condition w ≥ 0 yields

W (t) + w
(4.8)
≤ ζ2d−1 + (log2 d− ζ)w

log2 d
≤ ζ2d−1

log2 d

ζ<2
<

2d

log2 d
.

The equivalent requirements (4.4), (4.5) and (4.6) as well as Lemma 4.1.8 will be
used extensively when proving Theorem 4.1.6. In this proof, we proceed by induction
on d. In Lemmas 4.1.9 and 4.1.10, we will show as a base case that Theorem 4.1.6
holds for d ≤ 3 and m ≤ 2. Then, in Theorem 4.1.11, we will prove the inductive
step: Assuming that Theorem 4.1.6 holds for some d ≥ 3 and all 0 ≤ w < 2d−1, we
will prove the statement for d+ 1 and all 0 ≤ w < 2d and m ≥ 3.

Lemma 4.1.9. Assuming the conditions of Theorem 4.1.6 for m ≤ 2, we can
construct a circuit for f(s, t) with delay d.

Proof. Recall from Observation 2.6.21 that for m ≤ 2, the function f(s, t) is a
symmetric binary tree which can be realized with delay d by Huffman coding if and
only if W (t) + w ≤ 2d. But this holds by inequality (4.7).
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Lemma 4.1.10. Assuming the conditions of Theorem 4.1.6 for d = 2, 3, we can
construct a circuit for f(s, t) with delay d.

Proof. The case m ≤ 2 is already covered by Lemma 4.1.9.
Now let m ≥ 3. Requirement (4.5) yields

m−3∑
i=0

W (ti) +
Λt
d

(4.5)
≤ ν(d,w) = ζ

2d−1 − w
d log2 d

ζ<2
<

2d − 2w

d log2 d
.

Note that W (ti) ≥ 1 for all i ∈ {0, . . . ,m− 1}. For d = 2, these two observations
lead to the contradiction

2
m≥3
≤ m− 2 +

2

2

m≥3,
W (ti)≥1

≤
m−3∑
i=0

W (ti) +
Λt
2

4.1.10
<

4− 2w

2 · 1
w≥0
≤ 2 ,

i.e., for d = 2, we always havem ≤ 2 and have already proven the required statement.
Similarly, if d = 3, we obtain

1 +
2

3

m≥3
≤ m− 2 +

2

3

m≥3,
W (ti)≥1

≤
m−3∑
i=0

W (ti) +
Λt
3

4.1.10
<

8− 2w

3 · log2(3)
<

{
2 w = 0
4
3 w ≥ 1

.

If w ≥ 1, this is a contradiction. For w = 0, the only case where this is no
contradiction is m = 3 with arrival times a(t0) = a(t1) = a(t2) = 0. With these
arrival times, f(s, t) = t0 ∧ (t1 ∨ t2) yields a circuit with delay 2 < 3.

Theorem 4.1.11. Assume inductively that for some d ≥ 3 and all 0 ≤ w < 2d−1,
Theorem 4.1.6 holds. Then, given inputs s and t with w := W (s) such that 0 ≤ w <
2d, m ≥ 3 and

W (t) ≤ ν(d+ 1, w) +
d

d+ 1
Λt , (4.9)

we can construct a circuit for f(s, t) with delay at most (d+ 1).

First, we prove the following auxiliary lemma.

Lemma 4.1.12. Assuming the conditions of Theorem 4.1.11, we have

ν(d, 0) +
d− 1

d
Λt − ν(d+ 1, w)− d

d+ 1
Λt ≥ ζ

2d−1 log2(d+ 1)− (2d − w) log2 d

d log2 d log2(d+ 1)
.

Proof. Using the bound on Λt implied by inequality (4.6), using d + 1 instead of d,



108 Chapter 4. Improved Bounds for Delay Optimization

we calculate

ν(d, 0) +
d− 1

d
Λt − ν(d+ 1, w)− d

d+ 1
Λt

Def. 4.1.1
= ζ

2d−1

d log2 d
− ζ 2d − w

(d+ 1) log2(d+ 1)
+
d2 − 1− d2

d(d+ 1)
Λt

= ζ
2d−1(d+ 1) log2(d+ 1)− (2d − w)d log2 d

d(d+ 1) log2 d log2(d+ 1)
− 1

d(d+ 1)
Λt

(4.6)
≥ ζ

2d−1(d+ 1) log2(d+ 1)− (2d − w)d log2 d

d(d+ 1) log2 d log2(d+ 1)
− 1

d(d+ 1)
(d+ 1)ν(d+ 1, w)

Def. 4.1.1
= ζ

2d−1(d+ 1) log2(d+ 1)− (2d − w)d log2 d

d(d+ 1) log2 d log2(d+ 1)
− 1

d
ζ

2d − w
(d+ 1) log2(d+ 1)

= ζ
2d−1(d+ 1) log2(d+ 1)− (2d − w)d log2 d− (2d − w) log2 d

d(d+ 1) log2 d log2(d+ 1)

= ζ
2d−1 log2(d+ 1)− (2d − w) log2 d

d log2 d log2(d+ 1)
.

This is the only ingredient needed to prove Theorem 4.1.11 for the case that
2d−1 ≤ w < 2d. In this case, the weight w of the symmetric inputs s is so large that
we already need delay d to construct a symmetric tree on s. Hence, intuitively, we
do not waste a lot if we use a symmetric split that constructs the circuits for s and
t independently as in Equation (4.10). The following lemma proves that this indeed
yields a realization with delay d+ 1.

Lemma 4.1.13. Theorem 4.1.11 holds for all w satisfying 2d−1 ≤ w < 2d.

Proof. The symmetric split (2.33) yields the realization

f(s, t) = sym(s) ∧ g(t) . (4.10)

Since w < 2d, Theorem 2.3.21 allows the construction of a symmetric tree on inputs
s with delay d. Thus, it remains to show that f((), t) = g(t) can be realized by a
circuit with delay d. By induction hypothesis, this is true if W (t) ≤ ν(d, 0) + d−1

d Λt.
In order to show this, as W (t) ≤ ν(d+ 1, w) + d

d+1Λt by (4.9), it suffices to show

ν(d+ 1, w) +
d

d+ 1
Λt ≤ ν(d, 0) +

d− 1

d
Λt .

Subtracting the left-hand side from the right-hand side, we prove this via

ν(d, 0) +
d− 1

d
Λt − ν(d+ 1, w)− d

d+ 1
Λt

Lem. 4.1.12
≥ ζ

2d−1 log2(d+ 1)− (2d − w) log2 d

d log2 d log2(d+ 1)

w≥2d−1

≥ ζ
2d−1(log2(d+ 1)− log2 d)

d log2 d log2(d+ 1)

≥ 0 .

Hence, the symmetric split (4.10) yields a realization for f(s, t) with delay d+ 1.

In the case 0 ≤ w < 2d−1, we need a bound on the difference of the logarithms
of two consecutive integers.
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Observation 4.1.14. For d ≥ 3, we have d ≥ ln(2)(d+ 1) and thus

log2(d+ 1)− log2 d =
ln(d+ 1)− ln d

ln(2)
=

∫ d+1

d

1

ln(2)x
dx ≥ 1

ln(2)(d+ 1)
≥ 1

d
.

Furthermore, for simplicity, we note two direct consequences of Equation (4.7)
and Equation (4.5).

Lemma 4.1.15. Assuming the conditions of Theorem 4.1.11, we have

W (t) + w ≤ 2d (4.11)

and
m−3∑
i=0

W (ti) < 2d−1 . (4.12)

Proof. Inequality (4.11) is directly implied by Equation (4.7) since d + 1 ≥ 4 > 2ζ .
For proving inequality (4.12), we compute

m−3∑
i=0

W (ti)
(4.5)
≤ ζ

2d − w
(d+ 1) log2(d+ 1)

w≥0
ζ<2
<

2d+1

(d+ 1) log2(d+ 1)

d≥2
≤ 2d−1 .

Moreover, we will need the following technical lemma.

Lemma 4.1.16. For d ∈ N, d ≥ 3, we have

2d log2 d−
(

log2 d+
1

d

)
ζ2d−1 +

(
2 +

1

ζ
d log2 d

)
log2 d log2(d+ 1) ≥ 0 .

Proof. Note that for d ≥ 7, the statement is already implied by

2d log2 d−
(

log2 d+
1

d

)
ζ2d−1 ζ=1.9

= 2d−1

(
0.1 log2 d−

1.9

d

)
d≥7
≥ 0 .

For 3 ≤ d ≤ 6, we have

2d log2 d−
(

log2 d+
1

d

)
ζ2d−1 +

(
2 +

1

ζ
d log2 d

)
log2 d log2(d+ 1)

ζ=1.9
= log2 d

(
0.1 · 2d−1 +

(
2 +

1

1.9
d log2 d

)
log2(d+ 1)

)
− 1.9

d
2d−1

d≥3
≥ log2(3)

(
0.1 · 22 +

(
2 +

1

1.9
3 log2(3)

)
2

)
− 1.9

d
2d−1

> log2(3)(0.4 + 4.5 · 2)− 1.9

d
2d−1

> 14− 1.9

d
2d−1 .

As the function x 7→ 2x−1

x is monotonely increasing for x ≥ 2 by Lemma 3.2.2, the
value 14− 1.9

6 · 26−1 is a lower bound on the value of the function d 7→ 14− 1.9
d 2d−1

for 3 ≤ d ≤ 6. As 14− 1.9
6 · 26−1 > 3 > 0, this proves the lemma.
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Now, we will prove Theorem 4.1.11 for the case that 0 ≤ w < 2d−1. Here, we
will use that w is small enough such that the induction hypothesis allows to realize
f(s, t′) with delay d for some prefix t′ of t. Based on this, we will show that the
alternating split (2.28) will yield a realization for f(s, t).

Lemma 4.1.17. Theorem 4.1.11 holds for each w satisfying 0 ≤ w < 2d−1.

Proof. We prove this lemma via a case distinction. By assumption, we have m ≥ 3.
In case 2, we will consider a prefix t′ of the inputs t with weight at most ν(d,w)

in order to proceed similarly as indicated in Remark 4.1.4 and before this lemma.
If the weight of t0 is already larger than this, such a prefix does not exist. We deal
with this situation in case 1.

Case 1: Assume that
W (t0) > ν(d,w) . (4.13)

The alternating split (2.28) applied with prefix-length k = 1 yields

f(s, t) = f
(
s, t′
)
∧ f∗

(
t̂′, t′′

)
= f

(
s, (t0)

)
∧ f∗

(
(), (t1, . . . , tm−1)

)
. (4.14)

By inequality (4.11), we have W (t0) + w ≤W (t) + w ≤ 2d. Hence, by Theo-
rem 2.3.21, the symmetric tree f

(
s, (t0)

)
can be realized with delay d. Thus, it

remains to check inductively that f∗
(
(), (t1, . . . , tm−1)

)
can be realized by a circuit

with delay d. For this, note that requirement (4.9) and condition (4.13) imply

W ((t1, t2, . . . , tm−1)) = W (t)−W (t0) < ν(d+ 1, w) +
d

d+ 1
Λt − ν(d,w) ,

which we claim to be at most ν(d, 0) + d−1
d Λt. This can be shown by

ν(d, 0) +
d− 1

d
Λt − ν(d+ 1, w)− d

d+ 1
Λt + ν(d,w)

Lem. 4.1.12
≥ ζ

2d−1 log2(d+ 1)− (2d − w) log2 d

d log2 d log2(d+ 1)
+ ζ

2d−1 − w
d log2 d

= ζ
2d−1 log2(d+ 1)− (2d − w) log2 d+ (2d−1 − w) log2(d+ 1)

d log2 d log2(d+ 1)

= ζ
(2d − w)(log2(d+ 1)− log2 d)

d log2 d log2(d+ 1)

w<2d

≥ 0 .

Thus, realization (4.14) yields a delay of d + 1 for f(s, t), which proves the lemma
for the case that W (t0) > ν(d,w).

Case 2: Assume that W (t0) ≤ ν(d,w).
Therefore, we may consider a maximum odd-length prefix t′ = (t0, t1, . . . , tk−1)

of t with 0 ≤ k ≤ m odd such that

W
(
t′
)
≤ ν(d,w) . (4.15)

We define t′′ := (tk, . . . , tm−1).
If t′′ is empty, there is nothing to show since, by induction hypothesis, we can

construct a circuit for f(s, t) = f(s, t′) with a delay of d < d+ 1 due to w < 2d−1.
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Otherwise, we will realize f(s, t) by a circuit with delay d+1 using the alternating
split (2.28) for some prefix t∗ of t to be determined, i.e.,

f(s, t) = f
(
s, t∗

)
∧ f∗

(
t̂∗, t∗∗

)
, (4.16)

where t∗ = (t0, t1, . . . , tl−1) for some 0 ≤ l < m − 1, t∗∗ := (tl, . . . , tm−1) and
t̂∗ =

(
t∗1, t

∗
3, . . . , t

∗
l−2

)
= (t1, t3, . . . , tl−2). The rough idea is to choose t∗ = t′, and to

add the first two inputs of t′′ to t∗ if their weight is small. Our main argument, which
is presented in case 2.2.2, requires that {tk, tk+1} ∩ {tm−2, tm−1} = ∅, i.e., that t′′
has at least 4 elements. Thus, in case 2.1, we handle the t′′ with at most 2 elements,
and in case 2.2.1 those with exactly 3 elements.

Case 2.1: Assume that |t′′| ≤ 2.
We set t∗ := t′, thus t∗∗ = t′′. By induction hypothesis and due to w < 2d−1,

inequality (4.15) allows us to realize f(s, t∗) by a circuit with delay d. Since t∗ has
at most 2 elements, by Observation 2.6.21, we can realize f∗

(
t̂∗, t∗∗

)
as a binary tree

with delay d since W
(
t̂∗
)

+W (t∗∗) ≤W (t)
(4.11)
≤ 2d.

Case 2.2: Assume that |t′′| ≥ 3.
Let t̃ := (t0, . . . , tk+1). We need to find an appropriate prefix t∗ of t for realiza-

tion (4.16) such that both f(s, t∗) and f∗(t̂∗, t∗∗) can be realized by a circuit with
delay d by induction hypothesis. We choose t∗ depending on the weight of t̃:

(a) If W
(
t̃
)
≤ ν(d,w) + d−1

d Λt̃, we set t∗ := t̃.

(b) Otherwise, we set t∗ := t′. Note that in this case, we particularly have

W (t∗) = W (t′) = W
(
t̃
)
− Λt̃ > ν(d,w) +

d− 1

d
Λt̃ − Λt̃ = ν(d,w)− 1

d
Λt̃ .

Figure 4.1 visualizes the case distinction. In either case, the weight of t∗ will be of
the form

W (t∗) = ν(d,w) + δ with − 1

d
Λt̃ ≤ δ ≤

d− 1

d
Λt̃ . (4.17)

The function f(s, t∗) can be realized by a circuit with delay d by induction hypothesis
due to w < 2d−1 and, in case (a), the upper bound on δ, and in case (b), the choice
of t∗ such that (4.15) is fulfilled. Consequently, in either case, it remains to show
that f∗

(
t̂∗, t∗∗

)
can be realized by a circuit with delay d.

The case that |t′′| = 3 still needs to be treated separately.
Case 2.2.1: Assume that |t′′| = 3.
Here, case (a) is easy since we have t∗∗ = (tm−1), hence f∗

(
t̂∗, t∗∗

)
is a binary

tree which can be realized with delay d by Huffman coding since W (t) ≤ 2d due to
inequality (4.11).

In case (b), the following claim constructs a realization for f∗
(
t̂∗, t∗∗

)
, and

Figure 4.2 illustrates the current setting.

Claim 1. Given that |t′′| = 3 and

W
(
t̃
)
> ν(d,w) +

d− 1

d
Λt̃ , (4.18)
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s0 s1 s2 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Λt̃

Λt = Λt′

t′ t′′

t∗ := t̃ t∗∗

(a) In the case that W
(
t̃
)
≤ ν(d,w) + d−1

d Λt̃, we set t∗ := t̃.

s0 s1 s2 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Λt̃

Λt = Λt′

t∗ := t′ t∗∗ := t′′

t̃

(b) In the case that W
(
t̃
)
> ν(d,w) + d−1

d Λt̃, we set t∗ := t′.

Figure 4.1: Illustration of the choice of t∗.

the realization
f∗
(
t̂′, t′′

)
= (t̂′ ∨ tk) ∨ (tk+1 ∧ tk+2)

yields delay d.
Proof of claim: We show that the two sub-formulas t̂′ ∨ tk and tk+1 ∧ tk+2 both can
be realized by a circuit with delay d− 1. A binary tree t̂′ ∨ tk with delay d− 1 can
be found using Theorem 2.3.21 since

W
(
t̂′
)

+W (tk)
|t′′|≥3

≤
m−3∑
i=0

W (ti)
(4.12)
< 2d−1 .

As Λt = W (tk+1)+W (tk+2), it remains to show Λt ≤ 2d−1, so assume on the contrary
that

Λt > 2d−1 . (4.19)

Due to d + 1 ≥ 4, we may apply (4.7) and have 2d−1
(4.19)
< Λt

(4.7)
< 2d. First assume

that
W (tk+2) ≥W (tk+1), (4.20)

which implies
W (tk+2) = 2d−1 and W (tk+1) ≤ 2d−2 . (4.21)

Note that Λt̃ = W (tk) +W (tk+1).
By combining

W (t)− Λt
(4.9)
≤ ν(d+ 1, w)− Λt

d+ 1
= ν(d+ 1, w)− W (tk+1) +W (tk+2)

d+ 1
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s0 s1 s2 t0 . . . tk−1 tk tk+1 tk+2

Λt̃

Λt = Λt′

t∗ := t′ t∗∗ := t′′

t̃

Figure 4.2: Illustration of the setting of Claim 1, where we have
|t′′| = 3 and W

(
t̃
)
> ν(d,w) + d−1

d Λt̃.

and

W (t)− Λt = W
(
t̃
)
−W (tk+1)

(4.18)
> ν(d,w) +

d− 1

d
Λt̃ −W (tk+1)

= ν(d,w) +
d− 1

d

(
W (tk) +W (tk+1)

)
−W (tk+1)

W (tk)≥1

≥ ν(d,w) +
d− 1

d
− W (tk+1)

d
,

we obtain

0 < ν(d+ 1, w)− ν(d,w)− W (tk+1) +W (tk+2)

d+ 1
− d− 1

d
+
W (tk+1)

d

= ζ
2d − w

(d+ 1) log2(d+ 1)
− ζ 2d−1 − w

d log2 d
+
W (tk+1)− dW (tk+2)− d2 + 1

d(d+ 1)

= ζ
(2d − w)d log2 d− (2d−1 − w)(d+ 1) log2(d+ 1)

d(d+ 1) log2 d log2(d+ 1)

+
W (tk+1)− dW (tk+2)− d2 + 1

d(d+ 1)

w<2d−1

< ζ
2d−1

(d+ 1) log2(d+ 1)
+
W (tk+1)− dW (tk+2)− d2 + 1

d(d+ 1)

(4.21)
≤ ζ

2d−1

(d+ 1) log2(d+ 1)
+

2d−2 − d2d−1 − d2 + 1

d(d+ 1)

ζ<2
<

d2d + log2(d+ 1)
(

2d−2 − d2d−1 − d2 + 1
)

d(d+ 1) log2(d+ 1)

< 0 ,
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where the last step can be verified explicitly for d = 3, and for d ≥ 4 is implied by

d2d + log2(d+ 1)
(

2d−2 − d2d−1
)

= 2d−2
(
4d+ log2(d+ 1)(1− 2d)

)
d≥4
≤ 2d−2

(
4d+ log2(5)(1− 2d)

)
= 2d−2

(
d
(
4− 2 log2(5)

)
+ log2(5)

)
< 2d−2

(
−0.64d+ log2(5)

)
d≥4
≤ 2d−2

(
−2.56 + log2(5)

)
< 0 .

This is a contradiction, which proves the claim.
If assumption (4.20) is not fulfilled, we exchange the inputs tk+1 and tk+2, which

leaves the function f(s, t) and Λt unchanged. Now, we apply the lemma to the
modified instance. Note that we are again in case 2 and have |t′′| ≤ 3. As Λt > 2d−1

still holds and now, assumption (4.20) is fulfilled, case 2.2.1 (b) is excluded. Hence,
we must be in case 2.1 or 2.2.1 (a) and a realization for f(s, t) with delay at most
d + 1 is provided by the proof in the respective case. See Equation (4.27) for the
arising realization of f(s, t).

Now, we may assume that t′′ contains at least 4 elements.
Case 2.2.2: Assume that |t′′| ≥ 4.
In particular, we have {tk, tk+1} ∩ {tm−2, tm−1} = ∅. Note that since t∗ does not

contain any of the last two elements of t, we have W (t̂∗)
(4.12)
< 2d−1 and thus, by

induction hypothesis, it suffices to prove that

W (t∗∗) ≤ ν(d,W (t̂∗)) +
d− 1

d
Λt∗∗ . (4.22 )

We have

W (t∗∗) = W (t)−W (t∗)
(4.9)
≤ ν(d+ 1, w) +

d

d+ 1
Λt −W (t∗) .

SinceW (t̂∗) ≤W (t∗) and ν(_,_) is monotonely decreasing in the second parameter
by Definition 4.1.1, we have ν(d,W (t∗)) ≤ ν(d,W (t̂∗)). Furthermore, we have
Λt∗∗ = Λt. Inequality (4.22 ) is thus implied if we prove the following claim.

Claim 2. We have ν(d,W (t∗)) + d−1
d Λt − ν(d+ 1, w)− d

d+1Λt +W (t∗) ≥ 0 .

Proof of claim: Here, we use that, as we are in case 2.2.2, we have {tk, tk+1} ∩
{tm−2, tm−1} = ∅, and that these four inputs are not contained in t′. Hence, we have

W (t′) + Λt̃ +
Λt
d+ 1

case 2.2.2
≤ W (t)

(4.5)
≤ ν(d+ 1, w) . (4.23)



4.1. Bounding the Weight 115

We first only bound the summands in the claim that depend on W (t∗) or Λt:

− ζ W (t∗)
d log2 d

+
d− 1

d
Λt −

d

d+ 1
Λt +W (t∗)

= W (t∗)
(

1− ζ

d log2 d

)
− 1

d(d+ 1)
Λt

d log2 d>ζ,
(4.17)
≥

(
ν(d,w)− 1

d
Λt̃

)
d log2 d− ζ
d log2 d

− 1

d(d+ 1)
Λt

Def. 4.1.1
= ζ

(2d−1 − w)(d log2 d− ζ)

d2 log2
2 d

− d log2 d− ζ
d2 log2 d

Λt̃ −
1

d(d+ 1)
Λt

= ζ
(2d−1 − w)(d log2 d− ζ)

d2 log2
2 d

− 1

d

(
Λt̃ +

Λt
d+ 1

)
+

ζΛt̃
d2 log2 d

(4.23)
≥ ζ

(2d−1 − w)(d log2 d− ζ)

d2 log2
2 d

− 1

d

(
ν(d+ 1, w)−W (t′)

)
+

ζΛt̃
d2 log2 d

Def. 4.1.1,
W (t′)≥1

≥ ζ
(2d−1 − w)(d log2 d− ζ)

d2 log2
2 d

− ζ 2d − w
d(d+ 1) log2(d+ 1)

+
1

d
+

2ζ

d2 log2 d

(4.24)

Based on inequality (4.24), the left-hand side of the inequality in the claim can be
bounded from below by

ν(d,W (t∗)) +
d− 1

d
Λt − ν(d+ 1, w)− d

d+ 1
Λt +W (t∗)

Def. 4.1.1
= ζ

2d−1 −W (t∗)
d log2 d

+
d− 1

d
Λt − ζ

2d − w
(d+ 1) log2(d+ 1)

− d

d+ 1
Λt +W (t∗)

(4.24)
≥ ζ

(2d−1 − w)(d log2 d− ζ)

d2 log2
2 d

− 2d − w
d(d+ 1) log2(d+ 1)

+
1

ζd
+

2

d2 log2 d

+
2d−1

d log2 d
− 2d − w

(d+ 1) log2(d+ 1)


= ζ

(
2d − w
d log2 d

− ζ 2d−1 − w
d2 log2

2 d
− (2d − w)(d+ 1)

d(d+ 1) log2(d+ 1)
+

1

ζd
+

2

d2 log2 d

)

=
ζ

d2 log2
2 d log2(d+ 1)

 log2(d+ 1)

(
(2d − w)d log2 d− ζ(2d−1 − w)

)

− (2d − w)d log2
2 d+

(
2 +

1

ζ
d log2 d

)
log2 d log2(d+ 1)

 , (4.25)

which is required to be non-negative.
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Using the bound log2(d+ 1) ≥ log2 d+ 1
d stated in Observation 4.1.14, we obtain

log2(d+ 1)

(
(2d − w)d log2 d− ζ(2d−1 − w)

)
− (2d − w)d log2

2 d

ζ<d log2 d,
Obs. 4.1.14≥

(
log2 d+

1

d

)(
(2d − w)d log2 d− ζ(2d−1 − w)

)
− (2d − w)d log2

2 d

= (2d − w) log2 d−
(

log2 d+
1

d

)
ζ(2d−1 − w)

ζ≥1,w≥0
≥ 2d log2 d−

(
log2 d+

1

d

)
ζ2d−1 . (4.26)

With this inequality, we have

log2(d+ 1)

(
(2d − w)d log2 d− ζ(2d−1 − w)

)
− (2d − w)d log2

2 d+

(
2 +

1

ζ
d log2 d

)
log2 d log2(d+ 1)

(4.26)
≥ 2d log2 d−

(
log2 d+

1

d

)
ζ2d−1 +

(
2 +

1

ζ
d log2 d

)
log2 d log2(d+ 1) .

By Lemma 4.1.16, this (and, consequently, Equation (4.25)) is non-negative for all
d ≥ 3. This proves Claim 2.

By Claim 2 and the induction hypothesis, we can find a realization with delay d
for f(t̂∗, t∗∗). Split (4.16) hence provides a realization with delay d+ 1 for f(s, t) in
case 2.2.2. This concludes the proof.

Later, in Section 6.1, we will make use of the following observation, which allows
us to use a different realization than provided by Lemma 4.1.17 in a special case.

Observation 4.1.18. Consider again case 2.2.1 (b) of the proof of Lemma 4.1.17 in
the case that 2d−1 < Λt < 2d and W (tk+1) > W (tk+2). Here, the realization used is
of the following form:

f(s, t) = f
(
s, t′ ++ (tk, tk+2)

)
∧ f∗

(
t̂′ ++ (tk), tk+1

)
(4.27)

By the proof, this realization yields a circuit with delay at most d+1. AsW (tk+1) =

2d−1, the sub-circuit for f∗
(
t̂′ ++ (tk), tk+1

)
will have delay at least d. Together, this

implies that this realization yields delay exactly d+ 1.
We must have m < 8 as otherwise, we have

2d−1
(
log2(d+ 1)− 2ζ

)
+ log2(d+ 1)6(d+ 1)

d≥3
≥ 22(2− 2ζ) + 2 · 6 · 4

ζ=1.9
= − 7.2 + 48

> 0 (4.28)

and thus

Λt
(4.6)
≤ ζ

2d − w
log2(d+ 1)

− (d+ 1)

m−3∑
i=0

W (ti)

w≥0,
m≥8
≤ ζ

2d

log2(d+ 1)
− 6(d+ 1)

(4.28)
≤ 2d−1 ,
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which contradicts the assumption that Λt > 2d−1. As m = |t′| + |t′′|, the prefix t′

has an odd number of elements and t′′ has 3 elements, we thus have m ∈ {4, 6}.
In order to realize f(s, t) in this case, we could alternatively apply the alternating

split with an even prefix, i.e., Corollary 2.6.18, with prefix (t0, . . . , tk):

f(s, t) = f
(
s, (t0, . . . , tk)

)
∨ f
(
s++ (t0, t2, . . . , tk−1), (tk+1, tk+2)

)
. (4.29)

The function f
(
s, (t0, . . . , tk)

)
can be realized with delay at most d

k∑
i=0

W (ti) = W (t)− Λt
(4.9)
≤ ζ

2d − w
(d+ 1) log2(d+ 1)

− Λt
d+ 1

(4.30)

and thus

ν(d,w)−
k∑
i=0

W (ti)

(4.30)
≥ ζ

2d−1 − w
d log2 d

−
(
ζ

2d − w
(d+ 1) log2(d+ 1)

− Λt
d+ 1

)

=
ζ(2d−1 − w)(d+ 1) log2(d+ 1)− ζ(2d − w)d log2 d

d(d+ 1) log2 d log2(d+ 1)
+

Λt
d+ 1

w<2d−1

≥ − ζ2d−1d log2 d

d(d+ 1) log2 d log2(d+ 1)
+

Λt
d+ 1

Λt>2d−1

≥ − ζ2d−1

(d+ 1) log2(d+ 1)
+

2d−1

d+ 1

=
2d−1

(
log2(d+ 1)− ζ

)
(d+ 1) log2(d+ 1)

d+1≥4,
ζ<2
> 0 .

The function f
(
s++ (t0, t2, . . . , tk−1), (tk+1, tk+2)

)
is a symmetric tree which can

be realized with at most delay d as w +W (t) ≤ 2d, which holds by Lemma 4.1.8 as
d+ 1 ≥ 4 > 2ζ .

Hence, in this case, the realization (4.29) has delay at most d + 1 and could be
used instead of (4.27) for computing f(s, t). We will make use of this in Section 6.1.

Using the important Lemma 4.1.17, we can now prove all open theorems from
this section.

Proof of Theorem 4.1.11. Lemma 4.1.17 proves the theorem in the case that 0 ≤ w <
2d−1, while Lemma 4.1.13 proves it for the remaining case that 2d−1 ≤ w < 2d.

Proof of Theorem 4.1.6. For m ≤ 2, Lemma 4.1.9 yields a realization for f(s, t)
with delay d. For larger m, we prove the theorem by induction on d. For d ≤ 3,
the required realization can be constructed using Lemma 4.1.10. Now we may
assume that the theorem holds for some d ≥ 3, and prove the inductive step via
Theorem 4.1.11.

Proof of Theorem 4.1.2. As for all input variables t, we have Λt ≥ 0, the statement
is directly implied by Theorem 4.1.6.
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Algorithm 4.1 states the algorithm for the construction of a formula circuit realiz-
ing the extended And-Or path f(s, t) for given symmetric inputs s = (s0, . . . , sn−1)
and alternating inputs t = (t0, . . . , tm−1) arising from the proof of Theorem 4.1.2:
In line 5, we compute the minimum d ∈ N such that W (t) ≤ ν(d,w) + d−1

d Λt, where
w = W (s). Note that in line 5, we have w < 2d−1 since otherwise, we would obtain
a contradiction to Λt ≤W (t) since

W (t) ≤ ζ 2d−1 − w
d log2(d)

+
d− 1

d
Λt ≤

d− 1

d
Λt < Λt .

Thus, Theorem 4.1.2 provides a circuit realizing f(s, t) with delay d. Lemma 4.1.9
computes this realization for m ≤ 2 (see line 4), and Lemma 4.1.10 for d ≤ 3 (see
line 7). For d ≥ 4 and m ≥ 3, Lemma 4.1.13 (see line 10) and Lemma 4.1.17 (see
lines 12 to 29) construct the circuit using recursion. Here, sometimes the dual of the
recursively computed circuit is needed, which can be obtained easily by exchanging
all And and Or gates (see Theorem 2.1.31). Altogether, Algorithm 4.1 computes a
realization with delay d by Theorem 4.1.2.

Theorem 4.1.19. Consider m,n ∈ N with m ≥ 3. Given symmetric inputs
s = (s0, . . . , sn−1) and alternating inputs t = (t0, . . . , tm−1) and with arrival times
a(s0), . . . , a(sn−1), a(t0), . . . , a(tm−1) ∈ N, Algorithm 4.1 computes a circuit realiz-
ing the extended And-Or path f(s, t) with delay at most d, where d ∈ N is chosen
minimum with

W (t) ≤ ν(d,W (s)) +
d− 1

d
Λt .

4.2 Delay Analysis
Based on Theorem 4.1.19, we directly show in Proposition 4.2.3 that there is a circuit
realizing the And-Or path g(t) with delay at most log2W (t) + log2 log2W (t) +
log2 log2 log2W (t) + 4.8. Afterwards, we will prove a stronger result: By modifying
the instance, we can reduce the dependency on W (t). The modification is based on
two ideas: First, we can round up small arrival times to a common value without
losing too much regarding the maximum delay. Secondly, shifting all arrival times
by some number does not change the problem. These two modifications allow us to
reduce the problem to instances with a total weight of at most 2m. This leads to a
delay bound of log2W (t)+log2 log2m+log2 log2 log2m+7.1 proven in Remark 4.2.5.
In a further step, we make use of the fact that for a small number m of inputs, the
delay bound of the circuits constructed in Held and Spirkl [HS17b] is better than ours.
By this, we obtain our final delay bound of log2W (t)+log2 log2m+log2 log2 log2m+
4.3 in Theorem 4.2.4.

The next two lemmas are a common technical preparation for these results.

Lemma 4.2.1. The function κ : x 7→ 2x−1

x log2 x
is strictly monotonely increasing for all

x ≥ 3.

Proof. To prove the statement, we compute the derivative of κ:

d

dx
κ(x) =

ln(2)2x−1x log2 x− 2x−1
(

log2 x+ x 1
ln(2)x

)
x2 log2

2 x

= 2x−1
log2 x

(
ln(2)x− 1

)
− 1

ln(2)

x2 log2
2 x
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Algorithm 4.1: Delay optimization for extended And-Or paths
Input: Inputs s = (s0, . . . , sn−1) and t = (t0, . . . , tm−1),

arrival times a(s0), . . . , a(sn−1), a(t0), . . . , a(tm−1) ∈ N.
Output: Circuit C(s, t) computing f(s, t).

1 Set w := W (s).
2 if m ≤ 2 then
3 Construct C(s, t) via Huffman coding [Huf52] (Theorem 2.3.21).
4 return C(s, t)

5 Choose d ∈ N minimum with W (t) ≤ ν(d,w) + d−1
d Λt. // Hence, w < 2d−1.

6 else if d ≤ 3 then // Hence, d = 3,m = 3, n = 0.
7 return C(s, t) := t0 ∧ (t1 ∨ t2)

8 else if w ≥ 2d−2 then
9 Recursively compute C(s, ()) and C((), t).

10 return C(s, t) := C(s, ()) ∧ C((), t)

11 else
12 if W (t0) > ν(d− 1, w) then
13 Recursively compute C(s, (t0)) and C((), (t1, . . . , tm−1)).

14 return C(s, t) = C(s, (t0)) ∧
(
C
(
(), (t1, t2, . . . , tm−1)

))∗
15 else
16 Choose a maximum odd-length prefix t′ of t with W (t′) ≤ ν(d− 1, w).
17 Set t′′ := t\t′.
18 if |t′′| = 3 and Λt > 2d−2 and W (tm−1) < W (tm−2) then
19 Recursively compute C(s, t) := C(s, (t0, . . . , tm−3, tm−1, tm−2)).
20 return C(s, t).

21 Set t̃ := t′ ++ (t′′0, t
′′
1).

22 Set t∗ :=

t′ if |t′′| ≤ 2 or W
(
t̃
)
> ν(d− 1, w) + d−2

d−1Λt̃ ,

t̃ otherwise .
23 Set t∗∗ := t\t∗.
24 Recursively compute C(s, t∗).
25 if |t′′| = 3 and t∗ = t′ then
26 Compute C∗

(
t̂′, t′′

)
=
(
t̂′ ∨ t′′0

)
∨
(
t′′1 ∧ t′′2

)
directly.

27 else

28 Recursively compute C∗
(
t̂∗, t∗∗

)
:=

(
C
(
t̂∗, t∗∗

))∗
.

29 return C(s, t) := C(s, t∗) ∧ C∗
(
t̂∗, t∗∗

)
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Figure 4.3: Illustration of the various functions from Lemma 4.2.2 in
the range 3 ≤ x ≤ 800.

For x ≥ 3, we have ln(2)x−1 ≥ 1 and log2 x ≥ 1
ln(2) , hence

d
dxκ(x) is strictly positive

and κ(x) strictly monotonely increasing for all x ≥ 3.

Lemma 4.2.2. For the parametrized function

ϑc,α : x 7→ (α− 1) log2 x− log2 log2 x− log2 log2 log2 x− c ,
the following statements hold:

(i) The function ϑ−0.815,1.441 is negative for all 7 ≤ x ≤ 499.

(ii) The function ϑ3.8,3.5 is positive for all x ≥ 3.

(iii) The function ϑ2.3,1.8 is positive for all x ≥ 500.

(iv) The function ϑ5.1,4.27 is positive for all x ≥ 3.

Figure 4.3 depicts the functions ϑc,α(x) in all four cases.

Proof. For the cases (ii) and (iv), we consider x = 3 separately. Here, we have

ϑc,α(3) = (α− 1) log2 3− log2 log2 3− log2 log2 log2 3− c

=

{
(3.5− 1) log2 3− log2 log2 3− log2 log2 log2 3− 3.8 in case (ii)
(4.27− 1) log2 3− log2 log2 3− log2 log2 log2 3− 5.1 in case (iv)

>

{
0.08 in case (ii)
0.008 in case (iv)

> 0 .
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Figure 4.4: Illustration of the function d
dxϑ−0.815,1.441(x) from the

proof of Lemma 4.2.2 in the range 7 ≤ x ≤ 100.

For all other cases, we compute the derivative of ϑc,α:

d

dx
ϑc,α(x) =

α− 1

ln(2)x
− 1

ln2(2)x log2 x
− 1

ln3(2)x log2 x log2 log2 x

=
1

ln(2)x

(
α− 1− 1

ln(2) log2 x

(
1 +

1

ln(2) log2 log2 x

))

Figure 4.4 shows the derivative of ϑ−0.815,1.441(x).
In the cases (ii) and (iv), for x ≥ 4, we have 1 + 1

ln(2) log2 log2 x
≤ 2.45 and hence,

as α ≥ 3.5, we have

α− 1− 1

ln(2) log2 x
· 2.172 > α− 2.8 > 0 .

Thus, d
dxϑc,α(x) is positive for x ≥ 4 in the cases (ii) and (iv).

In case (iii), we have x ≥ 500 and 1 + 1
ln(2) log2 log2 x

≤ 1.46 and hence, as α = 1.8,
we have

α− 1− 1

ln(2) log2 x
· 1.46 > α− 1.3 > 0 .

Hence, d
dxϑ2.3,1.8(x) is positive.

In case (i), for 7 ≤ x ≤ 37, we have 1 + 1
ln(2) log2 log2 x

≥ 1.6 and hence, as
α = 1.441, we have

α− 1− 1

ln(2) log2 x
· 1.6 < α− 1.443 < 0 ;

and for 38 ≤ x ≤ 499, we have 1 + 1
ln(2) log2 log2 x

≤ 1.604 and hence, as α = 1.441,
we have

α− 1− 1

ln(2) log2 x
· 1.61 > α− 1.441 = 0 .
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Hence, d
dxϑ−0.815,1.441(x) is negative for 7 ≤ x ≤ 37 and positive for 38 ≤ x ≤ 499.

From this, we can conclude the proof:

ϑ−0.815,1.441(x)
7≤x≤37
≤ ϑ−0.815,1.441(7) <−0.01 < 0

ϑ−0.815,1.441(x)
38≤x≤499
≤ ϑ−0.815,1.441(4) <−0.05 < 0

ϑ3.8,3.5(x)
x≥4
≥ ϑ3.8,3.5(4) = 0.2 > 0

ϑ2.3,1.8(x)
x≥500
≥ ϑ2.3,1.8 > 0.04 > 0

ϑ5.1,4.27(x)
x≥4
≥ ϑ5.1,4.27 = 0.44 > 0

We will now bound the delay of the circuits arising from Theorem 4.1.19.

Proposition 4.2.3. Let m ∈ N with m ≥ 3, Boolean variables t0, . . . , tm−1 and
arrival times a(t0), . . . , a(tm−1) ∈ N be given. There is a circuit realizing the And-
Or path g(t) with delay at most

log2W (t) + log2 log2W (t) + log2 log2 log2W (t) + 4.8 .

Proof. Let d :=
⌊

log2W (t) + log2 log2W (t) + log2 log2 log2W (t) + 4.8
⌋
. By Theo-

rem 4.1.19, it suffices to show that W (t) ≤ ν(d,w), i.e., that

W (t) ≤ ζ 2d−1

d log2 d
.

By Lemma 4.2.1, the right-hand side function is strictly increasing for d ≥ 3, so it
suffices to show that

W (t) ≤ ζ 2d
′−1

d′ log2 d
′ (4.31 )

for d′ := log2W (t) + log2 log2W (t) + log2 log2 log2W (t) + 3.8. For W (t) ≥ m ≥ 3,
we have

d′ ≤ 3.5 log2W (t)

by Lemma 4.2.2, case (ii). Thus, Equation (4.31 ) is implied by

W (t) ≤ ζ 2d
′−1

3.5 log2W (t) log2(3.5 log2W (t))
,

which is equivalent to

3.5W (t) log2W (t) log2(3.5 log2W (t)) ≤ ζ2log2W (t)+log2 log2W (t)+log2 log2 log2W (t)+2.8 ,

and hence to

3.5 log2 log2W (t) + 3.5 log2(3.5) ≤ ζ22.8 log2 log2W (t) ,

which is true since W (t) ≥ 3 and ζ ≥ 1.9.

By transforming the instance and using different algorithms for small instances,
we can improve this delay bound as shown in the following theorem.
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Theorem 4.2.4. Let m ∈ N with m ≥ 3, Boolean variables t0, . . . , tm−1 and arrival
times a(t0), . . . , a(tm−1) ∈ N be given. There is a circuit realizing the And-Or path
g(t) with delay at most

log2W (t) + log2 log2m+ log2 log2 log2m+ 4.3 .

Proof. We compute auxiliary arrival times ã : { t0, . . . , tm−1 } → N by setting

ã(ti) := max
{

0, a(ti)−
⌈

log2W (t)− log2m
⌉}

for all i ∈ {0, . . . ,m− 1}. Let W̃ := W (t; ã). We partition the input indices
{0, . . . ,m− 1} into

I1 :=
{
i ∈ {0, . . . ,m− 1} : ã(ti) = 0

}
and I2 := {0, . . . ,m− 1} \ I1 .

Then, we have

W̃ =
∑
i∈I1

2ã(ti) +
∑
i∈I2

2ã(ti)

= |I1|+
∑
i∈I1

2a(ti)−d log2W (t)−log2me

≤ m+ 2−dlog2W (t)−log2me
∑
i∈I2

2a(ti)

≤ m+
2log2m

2log2W (t)
W (t)

= 2m. (4.32)

Note that this bound is best possible as in the case that a(t0) = . . . = a(tm−1) = 0

and a(tm−1) very large in comparison to m, the sum W̃ gets arbitrarily close to 2m.
Let c := 4.3 be the additive constant in the delay bound of this theorem. Define

d̃ := b log2m+ log2 log2m+ log2 log2 log2m+ c− 1c .
We shall now first construct a circuit C with delay d̃ for inputs with arrival times ã
in the following claim; from this, we shall later deduce the theorem.
Claim. There is a circuit C realizing the And-Or path g(t) with delay(C; ã) ≤ d̃.
Proof of claim: Let M := 500. For m < M , we give a realization for g(t) without
using our results. Note that ã(ti) = log2W (ti; ã) ≤ log2 W̃ ≤ log2m + 1 for all
i = 0, . . . ,m− 1. Hence, the standard realization CSm for m inputs has delay at most⌊

maxi=0,...,m−1 ã(ti) +m− 1
⌋
≤ bm+ log2mc. Hence, we have

delay(CS3 ) ≤ b3 + log2 3c = 4 = b log2 3 + 3.3c < d̃

delay(CS4 ) ≤ b4 + log2 4c = 6 = b log2 4 + log2 log2 4 + 3.3c < d̃

delay(CS5 ) ≤ b5 + log2 5c = 7 = b log2 5 + log2 log2 5 + log2 log2 log2 5 + 3.3c = d̃ ,

implying that for 3 ≤ m ≤ 5, choosing C := CSm solves the claim.
If 7 ≤ m < M , we have⌊

1.441 log2 W̃ + 2.674
⌋ (4.32)

≤
⌊

1.441 log2(2m) + 2.674
⌋

= b1.441 log2m+ 4.115c
Lem. 4.2.2
≤ b log2m+ log2 log2m+ log2 log2 log2m+ c− 1c
= d̃ .
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For m = 6, we also have b1.441 log2m+ 4.115c = 7 = d̃. Since by Theorem 2.6.28,
the And-Or path optimization method by Held and Spirkl [HS17b] computes a
circuit with delay at most

⌊
1.441 log2 W̃ + 2.674

⌋
, this proves the claim for 6 ≤

m < M .
Hence, assume m ≥M . For proving the claim, by Theorem 4.1.19, it is sufficient

to show

2m ≤ ζ 2d̃−1

d̃ log2 d̃
. (4.33 )

Recall that the mapping x 7→ 2x−1

x log2 x
is strictly increasing for x ≥ 3 by Lemma 4.2.1.

For ˜̃
d := log2m + log2 log2m + log2 log2 log2m + c − 2, we have d̃ ≥ ˜̃

d
m≥M=500

> 3.
Moreover, for m ≥M , we have

log2m+ log2 log2m+ log2 log2 log2m+ c− 2 ≤ 1.8 log2m (4.34)

by Lemma 4.2.2, case (iii), Thus, we have

ζ
2d̃−1

d̃ log2 d̃

d̃≥ ˜̃
d>3,

Lem. 4.2.1≥ ζ
2

˜̃
d−1

˜̃
d log2

˜̃
d

(4.34)
≥ ζ

2
˜̃
d−1

1.8 log2m log2(1.8 log2m)

def. ˜̃
d

= ζ
m log2 log2m2c−3

1.8 log2(1.8 log2m)
.

Equation (4.33 ) is hence valid if

1.8 log2 log2m+ 1.8 log2(1.8) ≤ ζ2c−4 log2 log2m. (4.35 )

Since ζ2c−4 > 2.3, this statement is fulfilled for large enough m, so it suffices to
prove it for m = M . Here, we have

1.8 log2 log2M + 1.8 log2(1.8) < 7.3 < 7.4 < ζ2c−4 log2 log2m.

This proves Equation (4.33 ) and hence the claim.
Since we have a(ti) ≤ ã(ti) +

⌈
log2W (t)− log2m

⌉
for all i ∈ {0, . . . ,m− 1},

the circuit C fulfills

delay(C; a)

≤ d̃+
⌈

log2W (t)− log2m
⌉

= b log2m+ log2 log2m+ log2 log2 log2m+ c− 1c+
⌈

log2W (t)− log2m
⌉

≤ log2W (t) + log2 log2m+ log2 log2 log2m+ c .

Remark 4.2.5. In the proof of the previous theorem, we apply method [HS17b] for
small instances. Without this trick, we would obtain a delay bound of

log2W (t) + log2 log2m+ log2 log2 log2m+ 7.1

by altering the proof of Theorem 4.2.4 as follows: Now, we have c = 7.1 and
M := 3. For these values, the constant 1.8 in Equation (4.34) increases to 4.27
by Lemma 4.2.2, case (iv), and Equation (4.35 ) still holds.
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Remark 4.2.6. For sufficiently large values of m, the delay bound in the previous
theorem can be improved slightly to

log2W (t) + log2 log2m+ log2 log2 log2m+ 3.1 + ε

for any constant ε > 0: Note that the factor 1.8 in inequality (4.34) can be decreased
to a value arbitrarily close to 1 if m is sufficiently large. Thus, we may choose c such
that the factor ζ2c−4 in inequality (4.35 ) becomes arbitrarily close to 1 for large
values of m. This leads to the stated delay bound.

4.3 Analysis of Algorithm and Circuit
We shall now analyze the delay optimization algorithm presented in Theorem 4.2.4,
which has Algorithm 4.1 (page 119) as its core routine, and the circuits arising from
this algorithm.

Our main objective when designing good circuits for And-Or paths is delay.
Still, there are other metrics to be regarded during circuit construction such as the
size, i.e., the total number of gates used in the circuit, and maximum fanout, i.e.,
the maximum number of successors of any input or gate.

Proposition 4.3.1. The circuit C computed in Proposition 4.3.3 fulfills

size(C) ≤ m(log2m+ log2 log2m+ log2 log2 log2m+ 3.3)− 1

and
fanout(C) ≤ log2m+ log2 log2m+ log2 log2 log2m+ 3.3 .

Proof. We follow the proof of Proposition 4.3.3. For m ≤ 5, we construct the
standard realization with size m − 2 and maximum fanout 1, and for 6 ≤ m < M ,
we apply the method from Held and Spirkl [HS17b] with size at most 1.5m and
maximum fanout 2 as described in Theorem 2.6.28. Both types of circuits fulfill the
required bounds.

Now assume thatm > M , where C arises from applying Algorithm 4.1 (page 119)
to modified arrival times ã as defined in the proof of Theorem 4.2.4. In order to prove
the fanout bound, we show the following claim.
Claim. In the circuit computed by Algorithm 4.1 (page 119), each gate has fanout
exactly 1, each input in s has fanout exactly 1 and each input in t has fanout at
most d, where d is as computed in line 5 of Algorithm 4.1.
Proof of claim: Note that each gate constructed has fanout 1 and that a fanout
higher than 1 occurs at the inputs only. We prove the bound on the maximum
fanout of the inputs by induction on d.

Note that in the realizations computed by Lemmas 4.1.9 and 4.1.10 which are
used in lines 3 and 7, respectively, each input has fanout 1. In the realization
C(s, t) := C(s, ()) ∧ C((), t) provided in line 10, the inputs of the two recursive
constructions are disjoint. Hence, by induction hypothesis, we have fanout 1 for all
inputs in s and fanout d− 1 < d for all inputs in t.

By Equation (4.27), using the notation from the proof of Lemma 4.1.17 and
Algorithm 4.1, the circuit computed in line 19 is C(s, t) = C

(
s, t′ ++ (tk, tk+2)

)
∧

C∗
(
t̂′ ++ (tk), tk+1

)
. As C∗

(
t̂′ ++ (tk), tk+1

)
is a symmetric tree, all its inputs will

have fanout 1. The circuit C
(
s, t′ ++ (tk, tk+2)

)
will be computed by recursion with

fanout at most 1 for inputs in s and fanout at most d−1 for the inputs in t. Summing
up, this yields the required fanout bounds.
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In the realizations in lines 14 and 29, we perform the split C(s, t) = C(s, t∗) ∧
C∗
(
t̂∗, t∗∗

)
, where t∗ = (t0) in line 14. By induction hypothesis, the circuit C(s, t∗)

has fanout at most 1 for inputs in s and fanout at most d− 1 for inputs in t∗. Since
inputs of s do not occur in C∗

(
t̂∗, t∗∗

)
, it remains to show that inputs of t have

fanout at most d in C(s, t).
In line 14, this holds as no input of t occurs in both sub-circuits and by induction

hypothesis, the inputs of C∗
(
t̂∗, t∗∗

)
have depth at most d−1 < d. In the realization

of C∗
(
t̂∗, t∗∗

)
in 26, each input of t has fanout at most 1 in C∗

(
t̂∗, t∗∗

)
, which proves

the claimed fanout bounds. Otherwise, we construct C∗
(
t̂∗, t∗∗

)
recursively in line 28

and we inductively can assume that the inputs of t̂∗ have fanout at most 1 and the
inputs of t∗∗ fanout at most d − 1 in this realization. Together with the recursive
fanout bounds for C(s, t∗), this shows the claimed fanout bounds for C(s, t).

The claim implies

fanout(C) ≤ delay(C; ã)
Thm. 4.2.4
≤ log2m+ log2 log2m+ log2 log2 log2m+ 3.3 ,

which shows the proposed bound on the maximum fanout.
As for m ≥ M , by the claim, the constructed circuit is a formula circuit, the

fanout bound together with Observation 2.3.6 implies that

size(C) =
∑
v∈I

fanout(v)− 1

≤ m(log2m+ log2 log2m+ log2 log2 log2m+ 3.3)− 1 .

The following lemma is a preparation for the running time analysis in Proposi-
tion 4.3.3.

Lemma 4.3.2. Let alternating inputs t = (t0, . . . , tm−1) and symmetric inputs s =
(s0, . . . , sn−1) with arrival times a(t0), . . . , a(tm−1), a(s0), . . . , a(sn−1) ∈ N be given.
For w = W (s), consider the minimum value d ∈ N such thatW (t) ≤ ν(d,w)+ d−1

d Λt.
Then, we have d ∈ O(log2(W ′)), where W ′ = W (t) + w.

Proof. Consider the modified instance with no symmetric inputs and alternating in-
puts t0, . . . , tm−1, s0, . . . , sn−1, with arrival times as for the original instance. Choose
d′ ∈ N minimum with W ′ ≤ ν(d′, 0) + d′−1

d′ Λt. Applying Theorem 4.2.4 to this mod-
ified instance yields d′ ≤ log2W

′ + log2 log2(m + n) + log2 log2 log2(m + n) + 4.3.
But we have

min

{
d′ : W ′ ≤ ν(d′, 0) +

d′ − 1

d′
Λt

}
= min

{
d′ : W (t) + w ≤ ζ 2d−1

d log2 d
+
d′ − 1

d′
Λt

}

≥ min

{
d : W (t) +

w

d log2 d
≤ ζ 2d−1

d log2 d
+
d− 1

d
Λt

}

= min

{
d : W (t) ≤ ν(d,w) +

d− 1

d
Λt

}
,

which implies that d ≤ d′ ∈ O(log2(W ′)).
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Proposition 4.3.3. There is an algorithm that computes the circuit in Theo-
rem 4.2.4 for given m ≥ 3 in time O(m log2

2m).

Proof. As main subroutine, we will use Algorithm 4.1 (page 119).
Claim. Let input variables s = (s1, . . . , sn−1) and t = (t0, . . . , tm−1) with arrival
times a : { t0, . . . , tm−1, s0, . . . , sn−1 } → N be given. The number of computation
steps of Algorithm 4.1 to compute the circuit C(s, t) realizing f(s, t) is bounded by

O
(

size(C) log2

(
size(C)

)
+m

(
log2 log2(W ′) + log2m

))
,

where W ′ = W (t) +W (s).
Proof of claim: For proving the bound on the number of computation steps of
Algorithm 4.1, we bound the number of steps to construct symmetric trees in line 3,
the number of recursive calls to Algorithm 4.1 except for those leading to m ≤ 2,
and the number of steps needed for a single call excluding the recursive calls (i.e.,
lines 9, 13, 19, 24 and 28) and symmetric tree constructions (i.e., line 3).

First, we derive the total number of computation steps needed to construct
symmetric trees in line 3 during the algorithm. The total number of inputs involved
in symmetric trees (counting inputs multiply if they occur in multiple symmetric
trees) is at most 2 size(C) as C is a binary circuit. The number of computation steps
of a single application of Huffman coding to r inputs isO(r log2 r) by Theorem 2.3.21.
As this is super-linear, the total number of steps to perform Huffman coding for any
symmetric tree can be bounded by O

(
size(C) log2

(
size(C)

))
.

Secondly, we bound the number of recursive calls to Algorithm 4.1 that do not
lead to m ≤ 2. These calls are performed in lines 9, 13, 19, 24 and 28.

The calls in lines 13, 24 and 28 all result from alternating splits, i.e., a split of
the form

f(s, t) = f(s, t∗) ∧ f∗(t̂∗, t∗∗) (4.36)

for some subset t∗ of t. Note that the inputs of t∗ might not be consecutive in the
overall instance. Furthermore, by Observation 4.1.18, the recursive call in line 19
results in an alternating split in the next recursive call; and the recursive computation
of C((), t) in line 9 either results in an alternating split in the next recursive call,
or in a call of line 19. Hence, the total number of calls to lines 9, 13, 24 and 28 is
linear in the number of alternating splits. By induction on d, one can observe that
the function mapping an alternating split as in Equation (4.36) occurring during
the algorithm to (t∗∗)0 is injective. This bounds the number of recursive calls of
Algorithm 4.1 to lines 9, 13, 24 and 28 by O(m).

Thirdly, we estimate the number of steps of a single call of Algorithm 4.1.
The only case when the inputs of t are not consecutive is when inputs of t were

swapped in line 19. But by Observation 4.1.18, this only occurs for constant m. So
apart from computing symmetric trees (as n might not be a constant), the number
of computation steps of a single call of Algorithm 4.1 is constant in this case.

Hence, we may now assume that t is a consecutive subset of the inputs.
In line 5, we compute d as the minimum integer satisfyingW (t) ≤ ν(d,w)+d−1

d Λt.
By Lemma 4.3.2, we have d ∈ O(log2(W ′)), so d can be computed by binary search
in O(log2 log2(W ′)) steps.

For estimating the running time for the prefix computation in line 16, we use that
t is consecutive by assumption. If we precompute the weight for each consecutive
prefix of the overall alternating inputs of Algorithm 4.1, computing the prefix t′
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in line 16 (or finding out that no such prefix exists) requires O(log2m) steps using
binary search. Here, the weight of a consecutive tuple of alternating inputs (ti, . . . , tj)
can be computed in constant time by W (ti, . . . , tj) = W (t0, . . . , tj)−W (t0, . . . , tj).
The precomputation requires O(m) steps.

Apart from this, there are only constantly many steps in each recursive call.
Hence, the number of steps needed for each recursive call of Algorithm 4.1, ex-

cluding lines 3, 9, 13, 24 and 28, is at most O(log2 log2(W ′) + log2m). Since there
are at most O(m) recursive calls and size(C) log2

(
size(C)

)
steps for performing Huff-

man coding, we have at most O
(

size(C) log2

(
size(C)

)
+m

(
log2 log2(W ′) + log2m

))
steps in total, which finishes the proof of the claim.

Now we can prove the proposition. We follow the proof of Theorem 4.2.4, also
using its notation. We compute the modified instance with arrival times ã and
weight W̃ in linear time. For m ≤ 5, we construct the standard And-Or path
realization in linear time, and for 6 ≤ m < M , we construct the circuit described
in [HS17b] in time O(m log2m) (see also Theorem 2.6.28). For m ≥ M , we call
Algorithm 4.1 with the modified arrival times ã. Since W̃ ∈ O(m), the sizes of all
numbers occurring in the algorithm are polynomial in m. By Proposition 4.3.1, we
have size(C) ∈ O(m log2m). Applying the claim with s = (), hence n = 0, and
W ′ = W̃ ∈ O(m), we obtain a total running time of

O
(

size(C) log2

(
size(C)

)
+m

(
log2 log2(W ′) + log2m

))
= O

(
m log2

2m+m(log2 log2m+ log2m)
)

= O
(
m log2

2m
)
.

Combining the results from Theorem 4.2.4, Proposition 4.3.3 and Proposi-
tion 4.3.1, we conclude Chapter 4 with the following theorem.

Theorem 4.3.4. Given inputs t = (t0, . . . , tm−1) with m ≥ 3 and with arrival
times a(t0), . . . , a(tm−1) ∈ N and W :=

∑n−1
i=0 2a(ti) as in Definition 2.3.16, we can

construct an And-Or path circuit C on t with

delay(C) ≤ log2W + log2 log2m+ log2 log2 log2m+ 4.3 ,

size(C) ≤ m(log2m+ log2 log2m+ log2 log2 log2m+ 3.3)− 1 ,

and
fanout(C) ≤ log2m+ log2 log2m+ log2 log2 log2m+ 3.3

in running time O(m log2
2m).

Remark 4.3.5. For given m ≥ 3, with the additional use of buffers, the circuit C
constructed in Theorem 4.3.4 can be transformed into a logically equivalent circuit
C ′ with maximum fanout 2,

delay(C ′) ≤ log2W + 2 log2 log2m+ log2 log2 log2m+ 5.3

and
size(C ′) ≤ 2m(log2m+ log2 log2m+ log2 log2 log2m+ 3.3)−m− 1 .

To see this, first note that the standard And-Or path circuit and the circuit
constructed in [HS17b] which we use for instances with m < M already have a
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maximum fanout of 2 or even 1, respectively. Secondly, note that the circuit C
constructed in Proposition 4.3.3 for m ≥ M is a formula circuit by the claim in
Proposition 4.3.1, i.e., only inputs have fanout larger than 1. Write

f := log2m+ log2 log2m+ log2 log2 log2m+ 3.3

for the maximum possible fanout of C. For each input ti, we can replace the outgoing
edges of ti by a delay-optimum buffer tree with maximum fanout 2 for each buffer
(note this can also be computed by Theorem 2.3.21). This increases the size by
at most m(f − 1) and, since we can assume that m ≥ 500, the delay by at most
log2 f ≤ log2 log2m+ 1. This yields the stated properties of the transformed circuit.





Chapter 5

Exact Delay Optimization Algorithm

In this chapter, we present an exact algorithm for the Generalized And-Or Path
Circuit Optimization Problem. On general instances, our algorithm has a
running time of up to O(3m), and for the special case of And-Or paths, even only

O
((√

6
)m)

. For depth optimization of And-Or paths, the running time is further

reduced to O(m2.02m).
The theoretical running time of the formula enumeration algorithm for depth

optimization of And-Or paths by Hegerfeld [Heg18] is O
((√

6
)m)

. Hegerfeld

computes a depth-optimum formula circuit which has optimum size among all depth-
optimum formula circuits C where for each vertex v ∈ V(C), the sub-circuit Cv is
depth-optimum. We can also compute such a circuit, but besides offer a significantly
faster mode where size is ignored and only a delay-optimum circuit is computed.

In contrast to Hegerfeld, in practice, we apply very efficient pruning techniques
which drastically reduce the empirical running time. The largest instance Hegerfeld
can solve has 29 inputs, while our algorithm with size optimization can solve instances
with up to 42 inputs; without size optimization even up to 64 inputs. Our running
times on 26 inputs are 2.1 seconds with size optimization and 0.007 seconds without
size optimization, while Hegerfeld’s running time is 17 hours. Our largest running
time without size optimization on any of these instances is less than 3 hours.

From our computations, we deduce the optimum depths of adder circuits on 2k

bits, where k ≤ 13. As far as we know, we are the first to obtain such a result.
Recall from Corollary 2.3.12 that for every circuit, there is a formula with the

same delay, hence also a formula circuit with the same delay. This allows us to focus
on formula circuits in this chapter.

In Section 5.1, we develop a generic approach that can extend a circuit optimiza-
tion algorithm working only for integral arrival times to fractional arrival times. In
Section 5.2, we analyze the structure of certain formula circuits for generalized And-
Or paths which have minimum delay. From this, in Section 5.3, we derive our exact
algorithm, which is refined for the case of depth optimization of And-Or paths in
Section 5.4. Practical speed-ups are presented in Section 5.5. In Section 5.6, we show
computational results, i.e., our practical running times and the computed optimum
adder depths.

131



132 Chapter 5. Exact Delay Optimization Algorithm

5.1 From Integral to Fractional Arrival Times
In Proposition 5.1.3, we present a generic approach to extend a given circuit con-
struction algorithm which works on integral arrival times only to fractional arrival
times while only losing a running time factor of O(n). In Theorem 5.1.5, we improve
the additional running time factor to O(log2 n) using a specific binary search.

Definition 5.1.1. Consider a Boolean function f : {0, 1}n → {0, 1} with input
variables x0, . . . , xn−1 and let S denote a non-empty set of circuits realizing f . We
call a circuit C ∈ S an S-optimum circuit for f with respect to arrival times
a(x0), . . . , a(xn−1) ∈ R if delay(C; a) ≤ delay(C ′; a) for all C ′ ∈ S. We say that an
algorithm A is S-optimum if it always computes an S-optimum circuit for f .

For example, let f be a generalized And-Or path f = h(t; Γ) with inputs
t = (t0, . . . , tm−1) and gate types Γ = (◦0, . . . , ◦m−2) and S be the set of all
formula circuits for f . Then, in Algorithm 5.1, we will see an S-optimum algorithm.
However, in our practical implementation of Algorithm 5.1 which applies the speed-
up techniques from Section 5.5, we will assume that the arrival times are integral.
Hence, in this section, we will show how to extend an S-optimum algorithm A which
is defined only for integral arrival times to fractional arrival times. For this, we need
the following lemma.

Lemma 5.1.2. Given a Boolean function f with input variables x0, . . . , xn−1, a
non-empty set S of circuits for f , the following statements are fulfilled:

(i) Consider arrival times a and a number α ∈ R. Let arrival times ã be given
by ã(xi) = a(xi) + α for each i ∈ {0, . . . , n− 1}. Then, a circuit C ∈ S is
S-optimum for arrival times a with delay d ∈ R if and only if it is S-optimum
for arrival times ã with delay d+ α ∈ R.

(ii) Consider arrival times a, ã with a(xi) ≤ ã(xi) for all i ∈ {0, . . . , n− 1} and
two circuits C, C̃ ∈ S. Assume that C is S-optimum with respect to arrival
times a. Then, we have delay(C; a) ≤ delay(C̃; ã).

Proof. The first statement holds as for any circuit C, we have delay(C; ã) =
delay(C; a) + α.

To see the second statement, note that C̃ is a circuit for f with delay
delay(C̃; a) ≤ delay(C̃; ã) as a(xi) ≤ ã(xi) for each i ∈ {0, . . . , n− 1}. As C is
S-optimum for arrival times a and C̃ ∈ S, we have delay(C; a) ≤ delay(C̃; a). To-
gether, this yields the second statement.

Proposition 5.1.3. Consider a Boolean function f : {0, 1}n → {0, 1} with input
variables x0, . . . , xn−1 and a non-empty set S of circuits for f . Assume that algorithm
A is an S-optimum algorithm with running time O(r(n)) which is only defined for
integral input arrival times. Then, there is an S-optimum algorithm A′ for arbitrary
fractional input arrival times with running time O(r(n)n). We call A′ the linear-
search extension of algorithm A.

Proof. By Lemma 5.1.2, (i), we may assume that all arrival times are non-negative.
Given a fractional number b ∈ R, let fp(b) := b−bbc ∈ [0, 1) denote the fractional

part of b. Let F :=
{

fp(a(xi)) : i ∈ {0, . . . , n− 1}
}
.
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Consider the following algorithm A′: For each α ∈ F , we create an instance with
integral arrival times

aα(xi) =

{⌈
a(xi)

⌉
if fp(a(xi)) > α⌊

a(xi)
⌋

otherwise
for each i ∈ {0, . . . ,m− 1} . (5.1)

For every α ∈ F , we apply algorithm A to the instance with modified arrival times
aα(xi) ∈ N to obtain a circuit Cα ∈ S realizing f . We output a circuit Cα∗ which
has best delay with respect to arrival times a among all circuits created.

As |F | ≤ n and the running time of algorithm A is r(n) by assumption, the
running time algorithm A′ is at most O(r(n)n).

In order to prove S-optimality of A′, for each α ∈ F , also consider the instance
with arrival times ãα(xi) resulting from a(xi) by rounding up to the next fractional
number bi with fp(bi) = α. Note that for each i ∈ {0, . . . , n− 1}, we have

aα(xi) = ãα(xi)− α . (5.2)
This implies

delay(Cα; a)
a≤ãα
≤ delay(Cα; ãα)

(5.2)
= delay(Cα; aα) + α . (5.3)

Now, consider a circuit C ∈ S with optimum delay d := d(C; a) ∈ R among all
circuits in S. Consider an input xj for which there is a path P : xj  out(C) with
a(xj) + |P | = d. In particular, we have fp(xj) = fp(d). Let α∗ := fp(xj). We will
show that Cα∗ fulfills delay(Cα∗ ; a) = d.

Note that delay(C; ãα∗) = d. Furthermore, we have

delay(C; aα∗)
(5.2)
= delay(C; ãα∗)− α∗ = d− α∗ . (5.4)

As the circuit C is S-optimum for arrival times a, and, by S-optimality of
algorithm A, the circuit Cα∗ is S-optimum for arrival times aα∗ , we obtain

d ≤ delay(Cα∗ ; a)
(5.3)
≤ delay(Cα∗ ; aα∗) + α∗ ≤ delay(C; aα∗) + α∗

(5.4)
= d . (5.5)

So in fact, all inequalities in Equation (5.5) are fulfilled with equality and Cα∗ is S-
optimum with respect to arrival times a. Hence, our algorithm A′ is S-optimum.

For improving the running time of algorithm A′, we need the essential property
that algorithm A is monotone in the following sense:

Observation 5.1.4. Consider again the proof of Proposition 5.1.3, in particular
the set F :=

{
fp(a(xi)) : i ∈ {0, . . . ,m}

}
and the modified arrival times aα defined

in Equation (5.1) for each α ∈ F . Then, for α1, α2 ∈ F with α1 < α2, we have
aα1(xi) ≥ aα2(xi) ≥ aα1(xi) − 1 for each i ∈ {0, . . . ,m− 1}. As in the proof, let
Cα1 , Cα2 ∈ S be the S-optimum circuits for arrival times aα1 and aα2 computed by
algorithm A, respectively. By Lemma 5.1.2, (i), the circuit Cα1 is S-optimum for
arrival times aα1(xi) − 1. Note that delay(Cα1 ; aα1 − 1) = delay(Cα1 ; aα1) − 1. By
Lemma 5.1.2, (ii), we thus have

delay(Cα1 ; aα1) ≥ delay(Cα2 ; aα2) ≥ delay(Cα1 ; aα1)− 1 .

Using this observation, we can derive our final algorithm for instances with
fractional arrival times.
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α 0.0 0.3 0.4 0.5 0.7 0.8

delay(Cα; aα) 6 6 6 5 5 5
delay(Cα; aα) + α 6.0 6.3 6.4 5.5 5.7 5.8

Table 5.1: Example illustrating the proof of Theorem 5.1.5. We have
α∗ = 0.5.

Theorem 5.1.5. Consider a Boolean function f : {0, 1}n → {0, 1} with input
variables x0, . . . , xn−1 and a non-empty set S of circuits for f . Assume that algorithm
A is an S-optimum algorithm with running time O(r(n)) which is only defined for
integral input arrival times. Then, there is an S-optimum algorithm A′ for arbitrary
fractional input arrival times with running time O(r(n) log2 n). We call A′ the
binary-search extension of algorithm A.

Proof. We use the same notation as in the proof of Proposition 5.1.3. Denote the
elements of F by α0, . . . , α|F |−1, where αj < αj+1 for every j ∈

{
0, . . . , |F | − 2

}
.

Define the function
dint : F → N, α 7→ delay(Cα; aα) .

By Observation 5.1.4, the function dint is monotonely decreasing in α and assumes
at most two values.

By Proposition 5.1.3, there is α∗ ∈ F such that Cα∗ is S-optimum for arrival
times a. By Equation (5.3), for all α ∈ F , we have delay(Cα; a) ≤ delay(Cα; aα)+α,
and by Equation (5.5), equality holds for α = α∗. Hence, we have

α∗ = min

{
α ∈ F : dint(α) = dint

(
α|F |−1

)}
.

Using binary search on F , we can determine α∗ in O(log2 |F |) = O(log2m) steps.
Table 5.1 shows an example how to find α∗.

5.2 Structure Theorem
Our structure theorem and our algorithm presented in Section 5.3 both reduce
the problem of optimizing a given generalized And-Or path to smaller instances
of a specific form. For introducing these generalized And-Or paths, recall from
Definition 2.5.6 that a generalized And-Or path comes with a signal partition, i.e.,
a unique partition of the inputs into maximal disjoint sets that are all propagate or
all generate signals.

Notation 5.2.1. Let h(t; Γ) with t = (t0, . . . , tm−1) and Γ = (◦0, . . . , ◦m−2) be a
generalized And-Or path with signal partition (t0, . . . , tm−1) = P0 ++ . . .++ Pc. Let
b, b′ ∈ {0, . . . , c} with b ≤ b′.

We denote the minimum index i ∈ {0, . . . ,m− 1} with ti ∈ Pb by l(b) and the
maximum index i ∈ {0, . . . ,m− 1} with ti ∈ Pb by r(b).

For an n-tuple (x0, . . . , xn−1) and an index i ∈ {0, . . . , n− 1}, we use the
standard notation (x0, . . . , x̂i, . . . , xn−1) to denote the (n − 1)-tuple arising from
x by deleting the entry xi. Given i ∈ {0, . . . ,m− 1}, we define h(t; Γ)t̂i as the
generalized And-Or path arising from h(t; Γ) by removing ti, i.e.,

h(t; Γ)t̂i :=


h
(

(t0, . . . , t̂i, . . . , tm−1); (◦0, . . . , ◦̂i, . . . , ◦m−2)
)

if i ≤ m− 2 ,

h
(

(t0, . . . , tm−2)); (◦0, . . . , ◦m−3)
)

if i = m− 1 .
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2 P3 P4

(a) Standard circuit for h(t; Γ) with
SAnd = { t0, t5, t6, t8, t9, t10, t11 } and SOr =
{ t1, t2, t3, t4, t7, t11 }.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2 P3 P4

(b) Standard circuit for h(t; Γ)SAnd
1

=

h(t; Γ)t̂6 with SAnd
1 = { t0, t5, t8, t9, t10, t11 }

and SAnd
2 = { t6 }.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1

(c) Std. circuit for h(t; Γ)SOr
1

= h(t; Γ)[0:4]
with SOr

1 = { t1, t2, t3, t4 }, SOr
2 = { t7, t11 }.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2

(d) Standard circuit for h(t; Γ)SOr
1

with
SOr
1 = { t2, t11 } and SOr

2 = { t1, t3, t4, t7 }.

Figure 5.1: Circuits for several generalized And-Or paths on subsets
of t = (t0, . . . , t11) arising from the generalized And-Or path h(t; Γ)
from Figure 5.1(a) as in Notation 5.2.1. We also show the respective
signal partitions, and the respective input set S◦1 is marked blue.

We extend this notation to removal of a subset F =
{
ti0 , . . . , tif−1

}
of inputs by

h(t; Γ)
F̂

:=

((
h(t; Γ)t̂i0

)
t̂i1

)
...

Furthermore, given 0 ≤ i ≤ j ≤ m − 1, we define h(t; Γ)[i:j] as the generalized
And-Or path arising from h(t; Γ) by deleting all inputs tk with k < i or k > j.

Given a gate type ◦ ∈ {And,Or}, we denote the set of all signals ti with ◦i = ◦
plus tm−1 by S◦. We call this set the same-gate input set of the generalized And-
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Or path h(t; Γ) and the gate type ◦. Consider a partition S◦ = S◦1 ·∪S◦2 with S◦1 6= ∅.
Let i1 ∈ {0, . . . ,m− 1} be maximum with ti1 ∈ S◦1 . We write

h(t; Γ)S◦1 :=
(
h(t; Γ)[0:i1]

)
Ŝ◦2
.

Note that the same-gate input set S◦ always contains the input tm−1. In the
entire chapter, tm−1 will play a special role among the inputs.

Figure 5.1 shows a generalized And-Or path and gives several examples of
smaller generalized And-Or paths arising from a partition of SAnd or SOr.

Observation 5.2.2. Let h(t; Γ) with t = (t0, . . . , tm−1) and Γ = (◦0, . . . , ◦m−2)
be given. Consider a gate type ◦ ∈ {And,Or}, and a partition S◦ = S◦1 ·∪ S◦2
of the same-gate input set of h(t; Γ) with S◦1 , S

◦
2 6= ∅. Let ik ∈ {0, . . . ,m− 1} be

maximum with tik ∈ S◦k . Then, h(t; Γ)S◦k is a generalized And-Or path depending
essentially on exactly the inputs from S◦k plus all signals tj with ◦j 6= ◦ and j < ik.
Furthermore, for every i < ik such that h(t; Γ)S◦k depends essentially on ti, the signal
ti is a propagate signal (generate signal) of h(t; Γ)S◦k if and only if it is a propagate
signal (generate signal) of h(t; Γ).

In Theorem 5.2.9, we will see that for any generalized And-Or path h(t; Γ) with
input arrival times, there is always a delay-optimum formula circuit C which arises
from a partition S◦ = S◦1 ·∪ S◦2 into non-empty subsets.

But first, in Proposition 5.2.4, we give basic insights on the structure of any
circuit realizing a given generalized And-Or path. For this, we need the following
observation. It can be seen easily by considering the standard realization for h(t; Γ)
as C (which is possible because a Boolean function is independent of the realizing
circuit). Figures 5.1(a) to 5.1(c) illustrate this observation in the case that i = 6 and
ti is a propagate signal.

Observation 5.2.3. Let h(t; Γ) with t = (t0, . . . , tm−1) and Γ = (◦0, . . . , ◦m−2) be
a generalized And-Or path. Let C be a circuit realizing h(t; Γ). Assume that ti is
an input with ti ∈ Pb for some b ∈ {0, . . . , c}, and consider α ∈ {0, 1}.

(i) If ti is a generate signal and α = 0, or if ti is a propagate signal and α = 1, then
we have f

(
C|ti=α

)
= h(t; Γ)t̂i . In particular, f(C|ti=α) depends essentially on

t0, . . . , ti−1, ti+1, . . . , tm−1.

(ii) Assume that b > 0. If ti is a propagate signal and α = 0, or if ti is a generate
signal and α = 1, then we have f(C|ti=α) = h(t; Γ)[0:r(b−1)]. In particular,
f(C|ti=α) depends essentially on t0, . . . , tr(b−1) and does not depend essentially
on tl(b), . . . , tm−1.

Proposition 5.2.4. Let h(t; Γ) with t = (t0, . . . , tm−1) and Γ = (◦0, . . . , ◦m−2) be
a generalized And-Or path with signal partition (t0, . . . , tm−1) = P0 ++ . . . ++ Pc.
Consider a circuit C realizing h(t; Γ). Then, the following statements hold:

(i) Any input ti is connected to the output.

(ii) If m ≥ 2, any input ti has depth at least 1 in C.

(iii) For input ti ∈ Pb with b > 0, each directed path Q from ti to out(C) contains
at least one And gate and at least one Or gate. In particular, ti has depth at
least 2 in C.
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t0 t1 t2 t3

Figure 5.2: A depth-optimum And-Or path on 4 inputs.

Proof. From the fact that generalized And-Or paths depend essentially on all their
inputs (cf. Corollary 2.5.9), the first two statements follow immediately. To see the
third statement, note that by Observation 5.2.3, for any ti ∈ Pb with b > 0 and for
any α ∈ {0, 1}, the function f(C |ti=α) depends essentially on t0. This is not the
case if some directed path from ti to out(C) contains only gates of the same type.

From this proposition, we can derive the following lower bound on the delay of
any circuit for a given generalize And-Or path that we will use in our algorithm in
Section 5.3.

Corollary 5.2.5. Let m ∈ N with m ≥ 2. Let inputs t = (t0, . . . , tm−1) with
arrival times a(t0), . . . , a(tm−1) ∈ R and gate types Γ = (◦0, . . . , ◦m−2) be given. Let
(t0, . . . , tm−1) = P0 ++ . . . ++ Pc be the signal partition of h(t; Γ). Consider a circuit
C realizing h(t; Γ). Then, we have

delay(C) ≥ max

{
max
ti∈P0

a(ti) + 1, max
ti∈Pb:b>0

a(ti) + 2

}
.

A simple application of this statement is shown now.

Proposition 5.2.6. For 1 ≤ m ≤ 3, the standard And-Or path circuit for
g
(
(t0, . . . , tm−1)

)
is delay-optimum regardless of the input arrival times. The stan-

dard And-Or path circuit for g
(
(t0, . . . , t3)

)
is depth-optimum.

Proof. For m = 1, the statement is trivial.
For m ∈ {2, 3}, the statement follows directly from Corollary 5.2.5.
Now let m = 4 and g(t) = t0 ∧

(
t1 ∨ (t2 ∧ t3)

)
. Figure 5.2 depicts the standard

circuit for g(t). We claim that its depth of 3 is optimum for a circuit realizing g(t),
so assume there is a circuit C for g(t) with depth 2.

By Proposition 5.2.4, (iii), any directed path from t2 or t3 to out(C) contains
exactly one And gate and exactly one Or gate. Let α ∈ {0, 1} be given by 0 if
out(C) = And and by 1 otherwise, and let β ∈ {0, 1} be given by β = α.

Now, if t2 and t3 have a common direct successor vertex v ∈ G(C), we have
C |t2=t3=α= α. But in Figure 5.2, we can see that g(t) |t2=t3=α depends essentially
on t1 if α = 0 and on t0 if α = 1, so this is a contradiction.

Thus, t2 and t3 both have fanout 1 and have different successor vertices v 6=
w ∈ G(C) with v, w 6= out(C) and gt(v) = gt(w). As C depends essentially on t0
and t1, the second inputs of v and w are t0 and t1, and as gt(v) = gt(w), we may
assume that t0 ∈ δ−(v) and t1 ∈ δ−(w). But then, we have C |t2=t3=β= β, again a
contradiction to the fact that C |t2=t3=β depends essentially on t1 or t0.

Hence, the standard And-Or path circuit is depth-optimum for m = 4.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2 P3 P4

v2

v1

v

(a) Here, we have f(Cv1) = h(t; Γ)S◦
k
with

SOr
1 = { t1, . . . , t4 } and f(Cv2) = h(t; Γ)S◦

2

with SOr
2 = { t7, t11 }.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

P0 P1 P2 P3 P4

v2

v1

v

(b) Here, we have f(Cv1) = h(t; Γ)S◦
k

with SOr
1 = { t1, t3, t4, t11 } and f(Cv2) =

h(t; Γ)S◦
2
with SOr

2 = { t2, t7 }.

Figure 5.3: Two possible circuits arising from Lemma 5.2.8 applied
to the generalized And-Or path from Figure 5.1(a).

From now on, we restrict ourselves to formula circuits. Our idea for analyzing
the structure of delay-optimum formula circuits realizing a given generalized And-
Or path is based on Lemma 1 from Commentz-Walter [Com79]. However, she
only considers And-Or paths, and not generalized And-Or paths, and gives only
a partial description of the structure of And-Or path circuits, not a complete
characterization. The main objects considered in both her and our proof are prime
implicants.

Observation 5.2.7. Let a generalized And-Or path h(t; Γ) on input variables
t0, . . . , tm−1 and gate types Γ = (◦0, . . . , ◦m−2) be given. Recall from Notation 5.2.1
that SOr contains all input variables ti that are generate signals or fulfill i = m− 1.
Hence, by Corollary 2.5.8, the prime implicants of h(t; Γ) are given by ti ∧ ∧

j<i,tj propagate signal

tj : ti ∈ SOr

 .

Now consider any two prime implicants π, ρ ∈ PI(h(t; Γ)) with π 6= ρ. Let i ∈
{0, . . . ,m− 1} maximum with ti ∈ lit(π). Then, we have ti /∈ lit(ρ).

The following lemma is the main ingredient of our structure theorem, Theo-
rem 5.2.9. We consider a formula circuit C implementing a generalized And-Or
path h with out(C) = Or. If C is delay-optimum for given arrival times and, among
all delay-optimum circuits, size-optimum, then we will show that the two sub-circuits
of out(C) are again generalized And-Or paths on a subset of the inputs, where each
input of SOr is contained in exactly one of the two sub-circuits. Figure 5.3 shows
two examples for such circuits for the generalized And-Or path from Figure 5.1(a).

Lemma 5.2.8. Let m ∈ N≥2, inputs t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ R and gate types Γ = (◦0, . . . , ◦m−2) be given. Consider a delay-
optimum formula circuit C for h(t; Γ) with minimum number of gates. Assume that
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gt(out(C)) = Or, and let SOr be the same-gate input set of h and Or. Denote the
predecessors of v := out(C) by v1 and v2. Write h := h(t; Γ), and f1 := f(Cv1), and
f2 := f(Cv2). Then, the following statements are fulfilled:

(i) We have PI(h) = PI(f1) ·∪ PI(f2).

(ii) There is a partition SOr = SOr
1 ·∪ SOr

2 with SOr
1 , SOr

2 6= ∅ such that for all
k, l ∈ {1, 2} with k 6= l, the function fk depends essentially on all inputs of
SOr
k and on no input of SOr

l .

(iii) Let k ∈ {1, 2}. Consider the generalized And-Or path hk := h(t; Γ)SOr
k

. Then,
we have fk = hk.

Proof. As gt(out(C)) = Or, by Lemma 2.1.27,

(a) any implicant of f1 or f2 is an implicant of h, and

(b) any prime implicant of h is a prime implicant of f1 or f2.

Item (b) implies PI(h) ⊆ PI(f1) ∪ PI(f2). It remains to prove that PI(fk) ⊆ PI(h)
for each k ∈ {1, 2} and that PI(f1) ∩ PI(f2) = ∅.

By Item (a), any prime implicant ρ of f1 is an implicant of h and must hence
contain a prime implicant π of h. By Item (b) and the definition of prime implicants,
we have ρ = π, or π is a prime implicant of f2. Note that ρ = π would imply
ρ ∈ PI(h)). Hence, to prove the first statement, it suffices to show the following
claim.

Claim. If there are ρ ∈ PI(f1) and π ∈ PI(h) with lit(π) ⊆ lit(ρ) and π ∈ PI(f2),
then C is not a size-minimum delay-optimum circuit for h.
Proof of claim: Choose i ∈ {0, . . . ,m− 1} maximum such that ti is contained in π.

As C is a formula circuit, we have G(C1) ∩ G(C2) = ∅. Consider the circuit B
arising from C by replacing C1 with the reduced circuit C1 |ti=0. Note that B is
again a formula circuit. Write g := f(B), and for k ∈ {1, 2}, write Bk := Bvk and
gk := f(Bk). As ρ contains ti, by Observation 2.1.20, f1 depends essentially on ti.
Hence, by Observation 2.3.14, we have delay(B) ≤ delay(C) and size(B) < size(C).
It remains to show that B and C are logically equivalent.

Let α ∈ {0, 1}m. As B is monotone and arises from C by fixing an input to 0,
we have g(α) = 0 whenever h(α) = 0. Thus, assume that h(α) = 1. Then, there is
ψ ∈ PI(h) with ψ(α) = 1.

Case 1: We have ψ ∈ PI(f2).
Here, as B2 = C2, we have g2(α) = f2(α) = 1 and thus g(α) = 1.
Case 2: We have ψ /∈ PI(f2).
By Item (b), we have ψ ∈ PI(f1). As π ∈ PI(f2), we must have ψ 6= π. By the

choice of ti, Observation 5.2.7 implies that ti /∈ lit(ψ). As any implicant ι of f1 with
ti /∈ lit(ι) is an implicant of g1, we have ψ ∈ PI(g1). This implies g(α) = 1.

Thus, B is a delay-optimum formula circuit for h with better size than C.

Now, we show the second statement. For each k ∈ {1, 2}, let SOr
k consist of the

inputs among SOr that fk depends on essentially. By Observation 2.1.20, a Boolean
function depends essentially on an input ti if and only if ti is contained in any of its
prime implicants. By Observation 5.2.7, for each input ti ∈ SOr, there is exactly
one prime implicant of h containing ti. Thus, we have SOr = SOr

1 ·∪ SOr
2 .
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Now, assume the conditions of the third statement. Additionally, let ik ∈
{0, . . . ,m− 1} maximum with tik ∈ SOr

k . By Corollary 2.5.8 and the first two
statements, the prime implicants of fk are ti ∧ ∧

j<i,tj propagate signal of h

tj : ti ∈ SOr
k

 ;

and by Corollary 2.5.8 and the definition of hk, the prime implicants of hk are ti ∧ ∧
j<i,tj propagate signal of hk

tj : ti generate signal of hk or i = ik

 .

Note that both for fk and for hk, the maximum index of any essential input is ik.
By Observation 5.2.2, an input ti of hk with i < ik is a generate signal (propagate
signal) of hk if and only if it is a generate signal (propagate signal) of h contained
in SOr

k . Moreover, tik ∈ SOr
k by definition of ik. Hence, we have PI(fk) = PI(hk).

By Corollary 2.1.22, we deduce hk = fk, hence the third statement.

Theorem 5.2.9 (Structure theorem). Let inputs t = (t0, . . . , tm−1) with arrival
times a(t0), . . . , a(tm−1) ∈ R and gate types Γ = (◦0, . . . , ◦m−2) be given. Consider
a delay-optimum formula circuit C for h(t; Γ) with minimum number of gates. Let
◦ := gt(out(C)) and let S◦ denote the same-gate input set for h(t; Γ) and ◦. Denote
the predecessors of v := out(C) by v1 and v2. Write f1 := f(Cv1), and f2 := f(Cv2).
Then, there is a partition S◦ = S◦1 ·∪ S◦2 into non-empty subsets such that for each
k, l ∈ {1, 2} with l 6= k, the function fk depends essentially on the inputs of S◦k, but
not on those of S◦l . Moreover, for each k ∈ {1, 2}, we have

fk = h(t; Γ)S◦k .

Proof. By duality, it suffices to consider the case gt(out(C)) = Or. In this case, the
statements hold by Lemma 5.2.8.

As a consequence of this theorem, we can derive an upper bound on the maximum
number of inputs an And-Or path may have such that an And-Or path circuit with
fixed depth d exists. Recall that this number is denoted bym(d, 0) in Definition 3.1.1.
The upper bound presented in the following corollary can be seen easily; probably,
much stronger bounds can be derived from Theorem 5.2.9.

Corollary 5.2.10. Let d ∈ N≥1 be given. We have m(d+ 1, 0) ≤ 2m(d, 0).

Proof. Let m ∈ N maximum such that an And-Or path h(t) on m inputs t =
(t0, . . . , tm−1) can be realized by a circuit with depth d + 1. As d ≥ 1, we have
m ≥ 3. Consider a formula circuit C for h(t) with depth d+1 and minimum number
of gates. We need to show that m ≤ 2m(d, 0).

Dualization allows us to assume that out(C) = Or. We apply the structure
theorem, Theorem 5.2.9, to C. This implies that there are circuits C1 and C2 with
depth at most d that realize generalized And-Or paths f1 and f2, respectively, such
that C = C1∨C2. Consider the partition SOr = SOr

1 ·∪SOr
2 of the same-gate signals

of h(t) as in Theorem 5.2.9.



5.3. General Algorithm 141

Let DOr := { t0, . . . , tm−1 }\SOr. As h(t) is an And-Or path and m ≥ 3, we
have DOr 6= ∅. As h(t) is an And-Or path and tm−1 ∈ SOr, for every ti ∈ DOr, we
have ti+1 ∈ SOr. Hence, the function

ϑ : DOr → SOr, ti 7→ ti+1

is well-defined. For k ∈ {1, 2}, letDOr
k := ϑ−1

(
SOr
k

)
. Note thatDOr = DOr

1 ·∪DOr
2 .

Now, for each k 6= l ∈ {1, 2}, let Bk denote the reduced circuit arising from Ck
by fixing all inputs ti ∈ Dl to α := 1, and let gk := f(Bk). Then, as all inputs in Dl

are propagate signals, by considering the standard circuit for h(t), we observe that
gk = (fk)

D̂Or
l

. By construction, the essential variables of gk are the variables of SOr
k

and DOr
k . Let tjk be the essential variable of gk with jk maximum.

Consider k ∈ {1, 2}. We show that gk is an And-Or path: First note that by
Observation 5.2.2 and the choice of α, every input of gk except for tjk is a propagate
signal (generate signal) of gk if and only if it is a propagate signal (generate signal
of h(t). By definition of ϑ, for any two generate signals ti, tj of gk with i < j < jk,
the propagate signal tj−1 = ϑ−1(tj) of h(t) is an input of gk. Furthermore, for any
two propagate signals ti 6= tj of gk with i < j < jk, the generate signal ti+1 = ϑ(ti)
of h(t) is an input of gk. Hence, the inputs of gk (except for tjk) are alternatingly
propagate and generate signals and gk is an And-Or path.

Let m1 and m2 be the numbers of inputs of B1 and B2, respectively. As

{ t0, . . . , tm−1 } = SOr ·∪DOr = SOr
1 ·∪ SOr

2 ·∪DOr
1 ·∪DOr

2 ,

we have m1 + m2 = m. As B1 and B2 are both And-Or path circuits with depth
at most d, we have m1,m2 ≤ m(d, 0). Together, this implies

m = m1 +m2 ≤ 2m(d, 0) .

For the special case when all input arrival times are equal, we conjecture that
partitions of the same-gate inputs into two “non-overlapping“ sets are always best
for the delay.

Conjecture 5.2.11. Consider Theorem 5.2.9 for the case of uniform input arrival
times and let S◦ = S◦1 ·∪ S◦2 be a partition as in the theorem. Then, for all inputs
ti ∈ S◦1 and tj ∈ S◦2 , we have i < j.

We will see in Section 6.3 why we assume this statement to be satisfied. For
non-uniform arrival times, we already know that the conjecture is not fulfilled, see
Figure 6.12 (page 189).

5.3 General Algorithm
The structure theorem from the previous section motivates an exact algorithm for
the Generalized And-Or Path Circuit Optimization Problem: Consider a
generalized And-Or path h(t; Γ) with prescribed input arrival times. Assume that
we know a delay-optimum formula circuit for all generalized And-Or paths on strict
sub-vectors of t. Then, by Theorem 5.2.9, for ◦ = And or for ◦ = Or, there is
a partition S◦ = S◦1 ·∪ S◦2 such that C := h(t; Γ)S◦1 ◦ h(t; Γ)S◦2 is a delay-optimum
formula circuit for h(t; Γ).

There is a map κ from the sets of generalized And-Or paths arising from recur-
sive applications of the structure theorem to the non-empty subsets of t0, . . . , tm−1
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Algorithm 5.1: Exact algorithm for delay optimization of generalized
And-Or paths
Input: Boolean input variables t = (t0, . . . , tm−1) with arrival times

a(t0), . . . , a(tm−1) ∈ R, and gate types Γ = (◦0, . . . , ◦m−2).
Output: Optimum delay of any circuit over Ωmon computing h(t; Γ).

1 foreach ∅ 6= I ⊆ { t0, . . . , tm−1 } do
2 Set d(I) :=∞.

3 return compute_opt({ t0, . . . , tm−1 })
// Assume that ∅ 6= I ⊆ { t0, . . . , tm−1 }.

4 procedure compute_opt(I)
5 Assume that I =

{
ti0 , . . . , tir−1

}
with 0 ≤ i0 < . . . < ir−1 ≤ m− 1 and

let Γ′ :=
(
◦i0 , . . . , ◦ir−2

)
.

6 if d(I) <∞ then
7 return d(I)

8 if r = 1 then
9 Set d(I) = a(tir−1).

10 return d(I)

11 foreach ◦ ∈ {And,Or} do
12 Let S◦ ⊆ I consist of all signals tij with ◦ij = ◦ and tir−1 .
13 foreach partition S◦ = S◦1 ·∪ S◦2 with S◦1 , S

◦
2 6= ∅ do

14 foreach k ∈ {1, 2} do
15 Let Ik denote the input set of h

((
ti0 , . . . , tir−1

)
; Γ′
)
S◦k
.

16 Let dk := compute_opt(Ik).

17 Set d(I) = min
{
d(I),max{d1, d2 }+ 1

}
.

18 return d(I)

which maps each generalized And-Or path to its essential inputs. This map is in-
jective as for h(t; Γ) by Observation 5.2.2, every input ti with i < ik (with ik as in
Observation 5.2.2) that is essential for the generalized And-Or path h(t; Γ)S◦k is a
propagate signal (generate signal) of h(t; Γ)S◦k if and only if it is a propagate signal
(generate signal) of h(t; Γ).

Hence, we may identify a generalized And-Or path considered during recursive
applications of Theorem 5.2.9 with the set of its essential inputs. Algorithm 5.1
describes our algorithm which recursively applies Theorem 5.2.9 and stores the
computed delays d(I) for subsets I of { t0, . . . , tm−1 } in a dynamic programming
table of size at most 2m − 1.

It is not hard to see that κ is actually a bijection: Given some subset ∅ 6= I (
{ t0, . . . , tm−1 }, we need to find a series of partitions according to Theorem 5.2.9
such that the generalized And-Or path with essential inputs I arises. Choose
i ∈ {0, . . . ,m− 1} maximum with ti ∈ I. Assume that ti is a generate signal
(the other case follows by duality). First, use an Or gate and partition the same-
gate signals SOr of h(t; Γ) and Or into those contained in I and the rest. Then,
h(t; Γ)SOr∩I is a generalized And-Or path with the generate signals contained in I,
plus all propagate signals tj of h with j < i. Afterwards, partition the propagate
signals of h(t; Γ)SOr∩I into those contained in I and the rest. This yields the



5.3. General Algorithm 143

generalized And-Or path with essential input set I.
In the following theorem, we estimate the running time of Algorithm 5.1.

Theorem 5.3.1. Let input variables t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ R and gate types Γ = (◦0, . . . , ◦m−2) be given. Then, Algo-
rithm 5.1 computes the optimum delay of any circuit realizing the generalized And-
Or path h(t; Γ). The dynamic programming table needed to store the delay of all
generalized And-Or paths considered during the computation has 2m − 1 entries.
Denoting by g and p the number of generate signals and propagate signals among
t0, . . . , tm−2, the algorithm can be implemented to run in time O(3g2p + 2g3p). In

particular, if h(t; Γ) is an And-Or path, then the running time is O
((√

6
)n)

. By

backtracking, we can obtain a delay-optimum formula circuit for h(t; Γ).

Proof. We have already argued that a generalized And-Or path arising from recur-
sive application of Theorem 5.2.9 can be identified with the set of its essential inputs
via a bijection κ. Hence, by induction on m and Theorem 5.2.9, we can see that
Algorithm 5.1 computes the optimum delay of any formula circuit for h(t; Γ). By
Theorem 2.3.11, this is the optimum delay of any circuit for h(t; Γ). The dynamic
programming table has size exactly 2m − 1.

Let T := { t0, . . . , tm−1 }. The running time of Algorithm 5.1 is dominated by
enumerating all partitions of the respective set S◦ in line 13 for the two cases that
◦ = And or ◦ = Or for all subsets ∅ 6= I ⊆ T . A partition of S◦ into 2 non-empty
subsets corresponds to choosing a subset S◦1 ⊆ S◦\

{
tik
}
and setting S◦2 := S◦\S◦1 .

By Observation 5.2.2, the generalized And-Or paths h(t; Γ)SOr
1

and h(t; Γ)SOr
2

are
uniquely determined by I, SOr and SOr

1 .
Hence, it remains to bound the number of sets SOr

1 ( SOr ( I considered during
the algorithm. For fixed I, SOr and SOr

1 , the following holds: A propagate signal
of h may by in I or in T\I. Each generate signal of h has three options: it is
contained in SOr

1 , in SOr\SOr
1 or in { t0, . . . , tm−1 }\SOr. Hence, there are at most

3g2p partitions for the case that the split gate is an Or.
Similarly, when ◦ = And, we have 3p2g partitions. Summing up yields the

running time bound.
When h(t; Γ) is an And-Or path, we have p, g ∈

[⌊
n
2

⌋
,
⌈
n
2

⌉]
. Hence, the running

time follows from the previous statement.

We call a circuit C strongly delay-optimum if each sub-circuit of C has
optimum delay. Note that the formula circuit constructed by our algorithm is
strongly delay-optimum. Our algorithm can naturally be adapted to compute a size-
optimum circuit among all strongly delay-optimum circuits by storing both delay
and size for each generalized And-Or path in line 17 and updating it accordingly.
However, for computing a delay-optimum circuit with minimum size among all delay-
optimum circuits, we would need to store multiple candidate circuits for each sub-
circuit (cf. Section 6.1.4, where this is done for another algorithm) which we did not
implement so far.

In Figure 5.4, we show two depth-optimum formula circuits for the And-Or path
g
(
(t0, . . . , t14)

)
. The circuit in Figure 5.4(a) is a circuit with best depth and size 17

computed by Algorithm 6.3, while the circuit in Figure 5.4(b) is size-optimum among
all strongly delay-optimum formula circuits, hence a possible output of Algorithm 5.1.
Note that in Figure 5.4(a), the left predecessor of the output gate computes an And-
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t13t12t11t10t9t8t7t6t5t4t3t2t1t0

(a) A size-optimum formula circuit for g(t) with size 17.

t13t12t11t10t9t8t7t6t5t4t3t2t1t0

(b) A size-optimum circuit among all strongly delay-optimum
formula circuits for g(t) with size 18.

Figure 5.4: Two formula circuits for the And-Or path g(t) with
t = (t0, . . . , t13) with optimum depth 5. They only differ in the left
sub-circuit of the final output.

Or path on 5 inputs with a depth of 4 and a size of 5. In Figure 5.4(b), we instead use
an implementation with depth 3 and size 4, which increases the size by 1, but makes
the circuit strongly delay-optimum. This can be verified using the lower bound of
d log2 ne on each sub-circuit with n inputs.

Note that in Figure 5.4(b), Conjecture 5.2.11 is fulfilled. For instance, for the
outermost partition, we have SAnd = { t0, t2, t4 } ·∪ { t6, t8, t10, t12, t13 }.

There are two other exact algorithms for the special case of depth optimization
of And-Or paths. Grinchuk [Gri13] provides an exact algorithm for depth opti-
mization of And-Or paths, but with a running time of Ω(4m), see Section 2.6.4.
The theoretical running time of our algorithm for the special case of And-Or paths
coincides with the running time of the formula enumeration algorithm by Hegerfeld
[Heg18] for depth optimization, see his Theorem 4.2.16. However, for depth opti-
mization of And-Or paths, we shall improve our algorithm to obtain a running
time of O(m2.02m) in Theorem 5.4.6. In his algorithm, Hegerfeld does not directly
enumerate formula circuits for And-Or paths, but so-called rectangle-good proto-
col trees for Karchmer-Wigderson games (see Karchmer and Wigderson [KW90]) for
And-Or paths, which originate from the area of communication complexity. From
these, he derives his formula circuits.

Hegerfeld [Heg18] computes a formula circuit with optimum size among all
strongly delay-optimum formula circuits, although he states that he even computes
a size-optimum formula circuit among all delay-optimum formula circuits. For in-
stance, for the And-Or path on 14 inputs, Hegerfeld reports a size of 18 (see Ta-
ble 5.4), but in Figure 5.4(a), we saw a depth-optimum formula circuit with size 17.
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We shall see in Table 5.4 that the practical running times of Hegerfeld’s algorithm
are much worse than ours. One reason for this is our more efficient practical
implementation which we present in Section 5.5. Another reason is that for depth
optimization of And-Or paths, the algorithm and its running time can further be
improved as in described the following section.

5.4 Improved Algorithm for Depth Optimization
In the case of uniform arrival times, we partition all generalized And-Or paths into
so-called sp-equivalence classes, where two generalized And-Or paths with signal
partitions P0 ++ . . . ++ Pc and P ′0 ++ . . . ++ P ′c′ are considered as sp-equivalent if and
only if c = c′ and |Pb| = |P ′b| for all b ∈ {0, . . . , c}. Then, up to renaming of the
input variables, any two sp-equivalent And-Or paths are either logically equivalent
or dual to each other. In both cases, they have the same optimum depth.

Recall that we can identify each generalized And-Or path considered during the
algorithm by its inputs. Whenever we compute an optimum circuit for inputs t′ dur-
ing the algorithm, we instead compute an optimum solution for the sp-representative
t̃. We define t̃ by mapping the inputs of t′ to certain inputs in { t0, . . . , tm−1 }.

Assume that t′ =
(
ti0 , . . . , tij

)
with 0 ≤ i0 < . . . , < ij ≤ m− 1. We first map ti0

to t0. If ti0 and t0 have different gate types, we need to dualize, i.e., change the gate
type for all other inputs as well. For all r = 1, . . . , j, we map tir to the next input
with the appropriate gate type. As always, the last input tir has no specified gate
type and is mapped to the next free input. For instance, given an And-Or path on
inputs t = (t0, . . . , t10) with gate types Γ = {∧,∨, . . . ,∧}, the generalized And-Or
path on inputs t′ := (t2, t5, t6, t8, t9, t10) (we may omit the gate types here as they
can be read off from Γ) is mapped to its sp-representative t̃ := (t0, t1, t2, t4, t5, t6).

Furthermore, during partitioning, we avoid generating redundant partitions: For
instance, considering again the sp-representative t̃ from above, we have SAnd =
{ t0, t2, t4, t6 }. Here, the partitions SAnd = { t0, t2 } ·∪ { t4, t6 } and SAnd = { t0, t4 } ·∪
{ t2, t6 } lead to the generalized And-Or paths f1 on (t0, t1, t2) and f2 on (t1, t4, t5, t6),
or g1 on (t0, t1, t4) and g2 on (t1, t2, t5, t6), respectively. For both f1 and g1, the sp-
representative is the generalized And-Or path on (t0, t1, t2), and for both f2 and g2,
it is the generalized And-Or path on (t0, t1, t2, t3).

More generally, two partitions S◦ = S◦1 ·∪ S◦2 and S◦ = T ◦1 ·∪ T ◦2 lead to the same
sp-representatives if |S◦1 ∩ Pb| = |T ◦1 ∩ Pb| for every b ∈ {0, . . . , c}. Hence, it suffices
to consider those S◦1 for which S◦1 ∩ Pb is a prefix of Pb for all b ∈ {0, . . . , c}.

We call the procedure to restrict all computations and partitions to sp-
representatives the depth normalization. This leads to an improved analysis of
Algorithm 5.1 in the case of depth optimization of And-Or paths.

Theorem 5.4.1. Let an And-Or path h(t) on inputs t = (t0, . . . , tm−1) with uni-
form arrival times a(t0) = . . . = a(tm−1) be given. Assume that Algorithm 5.1 with
depth normalization is applied to compute an optimum circuit realizing h(t). Then,
the dynamic programming table needed to store the depth of all generalized And-Or
paths considered during the computation has exactly Fm+1 = O(ϕm) entries, where
Fm+1 is the (m+ 1)-th Fibonacci number and ϕ = 1+

√
5

2 ≈ 1.618 is the golden ratio.

Proof. We show that the indicator vectors (x0, . . . , xm−1) of sp-representatives are
exactly the 0-1 strings of length m with the following properties:

(i) We have x0 = 1.
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(x2i, x2i+1) Allowed values for (x2i−2, x2i−1)

(0, 1) all but (1, 0), (2, 0)
(1, 0) all
(1, 1) all
(2, 0) all but (1, 0)
(2, 1) all but (1, 0)

Table 5.2: Extension rules for Qn.

(ii) Whenever for some i ∈ {2, . . . ,m− 1}, we have xi = 1, then xi−1 6= 0 or
xi−2 6= 0.

(iii) Let i ∈ {0, . . . ,m− 1} maximum with xI = 1. Then, i = 0 or xi−1 = 1.

For any sp-representative, all conditions are fulfilled: The first property is valid
as all generalized And-Or paths considered have at least 1 input and the first input
is always mapped to t0. The second property holds as otherwise, ti−2 could have
been chosen instead of ti. The last property holds as the last input is always mapped
to the next free position, ignoring gate types.

For the other direction, it is easy to see that for any input vector t′ whose indicator
vector satisfies the conditions above, the sp-representative is again t′.

Denote the set of 0-1 strings of length n with the properties above by Gn. We
will inductively show that |Gn| = Fn+1.

We have |G1| = |
{

(1)
}
| = 1 = F2 and |G2| = |

{
(1, 0), (1, 1)

}
| = 2 = F3.

Now, consider n ≥ 3. We construct Gn by adding prefixes to elements of Gn−1

and Gn−2: By prepending (1) to any element of Gn−1, we obtain all elements
of Gn that start with (1, 1). By prepending (1, 0) to elements of Gn−2, we ob-
tain all elements of Gn starting with (1, 0, 1) and, additionally, the invalid element
(1, 0, 1, 0, 0, . . . , 0) which violates the third rule. Moreover, so far, we miss all ele-
ments of Gn starting with (1, 0, 0). But by the second condition, the only such valid
element is (1, 0, 0, . . . , 0). Together with the induction hypothesis, we obtain

|Gn| = |Gn−1|+
(
|Gn−2| − 1

)
+ 1 = Fn + Fn−1 = Fn+1 .

Using similar, but more involved techniques, we will estimate the running time
of Algorithm 5.1 with depth normalization in Theorem 5.4.6. For this, we will prove
that the partitions considered in the algorithm essentially correspond to elements of
the set Qn defined as follows.

Definition 5.4.2. Let Q1 :=
{

(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)
}
, and for n ∈ N≥2,

let Qn be the set of 0-1-2 strings (x0, . . . , x2n−1) of length 2n such that for all
i ∈ {0, . . . , n− 1}, the following conditions are fulfilled:

(i) We have (x2i, x2i+1) ∈ Q1.

(ii) If i > 0, the entries (x2i−2, x2i−1, x2i, x2i+1) satisfy the extension rules from
Table 5.2.

For instance, we have (2, 1, 1, 0) ∈ Q2 and (1, 0, 2, 0) /∈ Q2. Note that the rules
imply that there are no consecutive zeroes.
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Lemma 5.4.3. Let n ∈ N≥1. Then, we have |Qn| ∈ O(βn1 ), where

β1 =
1

3

(
5 +

3

√
1

2

(
97− 3

√
69
)

+
3

√
1

2

(
97 + 3

√
69
))

< 4.08

is the unique real root of the polynomial π(x) := x3 − 5x2 + 4x− 1.

Proof. We will show that for n ≥ 4, we have

|Qn| = 5|Qn−1| − 4|Qn−2|+ |Qn−3| . (5.6)

From this, the statement can be deduced as follows: The characteristic polynomial
π(x) of |Qn| has three distinct roots β1, β2, β3 with

β1 ≈ 4.08 , β2 ≈ 0.46− 0.18i , β3 ≈ 0.46 + 0.18i .

Using Theorem 6.7.8 in Conradie and Goranko [CG15], it follows that there are
coefficients λ1, λ2, λ3 ∈ C such that for all n ∈ N≥1, we have |Qn| = λ1β

n
1 + λ2β

n
2 +

λ3β
n
3 . Since |β2| = |β3| < β1, we obtain |Qn| ∈ O(βn1 ).
Now, we show Equation (5.6). The idea it to construct Qn from Qn−1, Qn−2,

and Qn−3 by adding suffixes.
Let Q′n := {a++ b : a ∈ Qn−1, b ∈ Q1 }. Clearly, Qn ⊆ Q′n, but not all elements

of Q′n satisfy the extension rules. Let

Q′′n =
{
a++ b : a ∈ Qn−2, b ∈

{
(1, 0, 0, 1), (2, 0, 0, 1), (1, 0, 2, 0), (1, 0, 2, 1)

}}
.

Then, by Table 5.2 we have Q′n\Qn ⊆ Q′′n. It remains to determine |Q′′n\
(
Q′n\Qn

)
|.

As Qn ∩Q′′n = ∅, we have Q′′n\
(
Q′n\Qn

)
= Q′′n\Q′n.

Note that elements in Q′n fulfill the extension rules from Table 5.2 for all i ≤ n−2,
while elements in Q′′n fulfill the extension rules for all i ≤ n−3. Hence, an element in
Q′′n\Q′n must violate the extension rule for i = n− 2. Since no extension rule forbids
appending (1, 0), all elements in Q′′n\Q′n end with (2, 0, 0, 1). Furthermore, the only
forbidden entry before (2, 0) is (1, 0). Hence, we have

Q′′n\Q′n ⊆
{
a++ (1, 0, 2, 0, 0, 1) : a ∈ Qn−3

}
.

As before (1, 0), any entry is allowed, we even have equality.
Together, we have

|Qn| = |Q′n| − |Q′n\Qn|

= |Q′n| −
(
|Q′′n| −

∣∣∣Q′′n\(Q′n\Qn)∣∣∣)
= |Q′n| − |Q′′n|+

∣∣Q′′n\Q′n∣∣
= 5|Qn−1| − 4|Qn−2|+ |Qn−3| .

This proves Equation (5.6) and thus the lemma.

In order to use the sets Qn for estimating our running time, we need the following
intermediate construction.

Definition 5.4.4. For n ∈ N≥1, let Rn =
⋃n
i=1{a ++ 02(n−i) : a ∈ Qi} be the set

of strings of length 2n arising from an element of any Qi with i ∈ {1, . . . , n} by
appending 2(n− i) zeroes.
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Observation 5.4.5. Note that by Definition 5.4.4 and Lemma 5.4.3, we have

|Rn| =
n∑
i=1

|Qi| ∈ O

 n∑
i=1

βi1

 = O
(
βn1
)
.

Theorem 5.4.6. In the case of Theorem 5.4.1, the running time of Algorithm 5.1
with depth normalization is at most O(mαm), where

α :=
√
β1 =

√√√√1

3

(
5 +

3

√
1

2

(
97− 3

√
69
)

+
3

√
1

2

(
97 + 3

√
69
))
≤ 2.02

and β1 is defined as in Lemma 5.4.3.

Proof. We count the number of partitions of S◦ considered by the algorithm for sp-
representatives. As in Theorem 5.4.1, we encode this situation in strings with certain
properties and then estimate the number of these strings.

Consider an sp-representative h(t′; Γ′) with input set I = {ti0 , . . . , til−1
} such

that 0 ≤ i0 < . . . < il−1 ≤ m − 1. Let I = P0 ++ . . . ++ Pc be the signal partition
of h(t′; Γ′), and consider a partition S◦ = S◦1 ·∪ S◦2 of its same-gate inputs. Due to
depth normalization, S◦1 ∩ Pb is a prefix of Pb for all b ∈ {0, . . . , c}. Let x denote
the 0-1-2 string arising from t by mapping each input that is not contained in I to 0,
each input ti ∈ S◦1 to 2 and each input ti ∈ S◦2 to 1, and each other input of I to 1.

Note that this is the same proof idea as in Theorem 5.4.1, where we had 3 possible
states for the generate signals and 2 possible states for the propagate signals.

We define

x′ :=

{
x++ (0) if t0 ∈ S◦,
(0) ++ x otherwise,

and x′′ :=

{
x′ if m odd,
x′ ++ (0) otherwise.

Now, x′′ has 2n entries, where n :=
⌈
m+1

2

⌉
. We will show that x′′ ∈ Rn. From this,

the result follows: The mapping (I, S◦, S◦1 , S
◦
2) 7→ x′′ is clearly injective. Hence, |Rn|

is an upper bound on the number of partitions considered. Since normalization can
be implemented with a running time of O(m), we obtain a total running time of

O(m|Rn|) = O(mβn1 ) = O(mβ
m/2
1 ) = O(mαm) .

Thus, it suffices to prove the following claim.
Claim. We have x′′ ∈ Rn.
Proof of claim: All elements of S◦\{til−1

} correspond to even entries of x′′. Due to
depth normalization, x does not contain two consecutive zeroes except for trailing
zeroes. As t0 ∈ I by normalization and hence x0 6= 0, the same holds for x′ and x′′.

Now, it remains to show that for any i ∈ {1, . . . , n− 1} with x2i 6= 0 or x2i+1 6= 0,
the extension rules of Table 5.2 are fulfilled for (x2i−2, x2i−1, x2i, x2i+1). The case
that (x2i−2, x2i−1, x2i, x2i+1) = (x2i−2, 0, 0, 1) with x2i−2 6= 0 is already excluded as
there must not be consecutive zeroes before a 1. The case (x2i−2, x2i−1, x2i, x2i+1) =
(1, 0, 2, x2i+1) with x2i+1 arbitrary cannot occur as here, the entries in t′ correspond-
ing to x2i−2 and x2i are in the same input group P ′b for some b ∈ {0, . . . , c}, hence,
by normalization, we have x2i−2 ≥ x2i. All other configurations are permitted.

Hence, we have x′′ ∈ Rn.
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This proves the theorem.

Apparently, the sequence (|Qn|)n∈N is given by sequence A012814 in the OEIS
[Slo], which consists of every 5th entry of the Padovan sequence, see sequence
A000931 in the OEIS. The growth rate of the Padovan sequence is given by ρ := 5

√
β1

which is also known as the plastic number. Hence, the running time of our

algorithm can also be expressed as O
(
m
(
ρ5/2

)m)
.

5.5 Practical Implementation
In this section, we assume that all input arrival times are integral as this allows more
efficient speed-up techniques and exact integer arithmetic. When fractional input
arrival times are given, we use the binary-search extension from Theorem 5.1.5 to
reduce the problem to several integral instances with a running time increase of at
most a factor of O(log2m).

We implemented Algorithm 5.1 in a C++ program, using 64-bit bit sets to
encode the generalized And-Or path instances via the bijection κ to subsets of
{ t0, . . . , tm−1 }. In order to obtain good practical running times, we implemented
several speed-up techniques. On most instances, these in particular imply that we
only compute the delay for only a fraction of the generalized And-Or paths from
our dynamic programming table, see Table 5.5. Hence, we store the table in a hash
set, which violates the worst-case running time guarantee of Algorithm 5.1, but is
much faster in practice and, more important, much less memory-consuming.

For describing our speed-up techniques, assume that we apply Algorithm 5.1 to a
generalized And-Or path h(t; Γ) with m inputs and arrival times a(t0), . . . , a(tm−1).
Moreover, when the procedure compute_opt is applied to a subset I ⊆ { t0, . . . , tm−1 }
with I =

{
ti0 , . . . , tir−1

}
for 0 ≤ i0 < . . . < ir−1 ≤ m − 1, we denote the

corresponding generalized And-Or path by h(t′; Γ′) and its signal partition by
P0 ++ . . .++ Pc.

When we apply our algorithm for depth optimization, we use the depth nor-
malization as in Theorem 5.4.1. Most of the other speed-ups techniques are based
on lower bounds and upper bounds on the delay. For a generalized And-Or path
h(t′; Γ′), we maintain not only the best delay of a circuit for h(t′; Γ′) computed so
far (and, in the size-optimization mode, the best possible size for the best possible
delay), but also a lower bound on its delay. Furthermore, when calling the procedure
compute_opt, we assume that we are given a parameter D and are supposed to find
a circuit with best delay among all solutions with delay at most D. For the two
sub-functions considered in partitioning, we hence may use an upper bound of D−1
when computing their table entries.

Now, it is possible that we do not find a solution when applying the procedure
compute_opt. In this case, we may update the lower bound to D + 1. On the other
hand, if during partitioning, we find a solution with delay d ≤ D, in case of the
non-size-optimization mode, we are only interested in another solution if it has delay
strictly smaller than d, and in case of the size-optimization mode, if it has delay at
most d. Hence, we may update the upper bound D to d − 1 or d in the respective
mode for the remaining partitions to be considered. Note that if we allowed fractional
arrival times, we would not be able to subtract 1 here.

For the outermost call of the algorithm, we set D =∞. We call the mechanism
that handles upper bounds during the algorithm upper bound propagation.
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Having very good lower and upper bounds has a high impact on the running
time, so we carefully use any information available to update our bounds.

Assume now that we apply compute_opt to compute a table entry, i.e., to find
an optimum circuit for the generalized And-Or path h(t′; Γ′) with input set I with
delay at most D. Before starting our partitioning process (see Section 5.5.2), we
compute several lower bounds as in the following section. If any of these is larger
than D, we know that there is no circuit with delay at most D for h(t′; Γ′) and need
not start the partitioning process.

5.5.1 Lower Bounds
A basic lower bound that can be computed quickly for any generalized And-Or
path h(t′; Γ′) arises from the lower bounds in Theorem 2.3.15 and Corollary 5.2.5,
i.e.,

max

{⌈
log2W (t′)

⌉
,max

{
max
ti∈P0

a(ti) + 1, max
ti∈Pb:b>0

a(ti) + 2

}}
,

where W (t′) =
∑ir−1−1

j=i0
2a(tij ) as in Definition 2.3.16. as in Definition 2.5.6. Note

that the first lower bound requires integral arrival times.
We use two other reducing lower bounds that each consider a specific reduced

generalized And-Or path h(t′′; Γ′′) of h(t′; Γ′) with similar structural complexity.
For h(t′′; Γ′′), we recursively apply the algorithm with depth bound D. Either there
is no solution, in which case D + 1 is a lower bound on the optimum delay for
h(t′′; Γ′′), thus also for h(t′; Γ′); otherwise, we know the optimum delay for h(t′′; Γ′′),
which is a lower bound for h(t′; Γ′). This usually yields a strong lower bound, but is
very time-consuming.

First, only in the special case of depth optimization, we consider the generalized
And-Or path h(t′′; Γ′′) arising from h(t′; Γ′) by keeping only the largest input group
in the signal partition completely and condensing each other input group to a single
input (except for the last group, which keeps 2 inputs). In the case of depth
optimization, only the input-group sizes matter, so there are only O(m3) of these
generalized And-Or paths, and it is not harmful to solve them optimally.

Secondly, also in the case of delay optimization, we consider a reduced generalized
And-Or path h(t′′; Γ′′) that arises from removing a single input of h(t′; Γ′) in a way
that hopefully the optimum delay of any circuit for h(t′′; Γ′′) is the same as for
h(t′; Γ′). Hence, among all inputs with the minimum arrival time, we remove an
input of the largest input group. Empirically, we see that in the case of depth
optimization, this lower bound is tight in 97% of its applications. This matches the
observation that if we iteratively apply this lower bound m times, starting with a
generalized And-Or path with optimum depth d, the optimum depth changes only
d times, where d� m.

5.5.2 Partitioning the Same-Gate Inputs
For determining a solution with delay D for a generalized And-Or path h(t′; Γ′) –
if it exists –, we enumerate partitions S◦ = S◦1 ·∪ S◦2 of its same-gate input set S◦

for all ◦ ∈ {And,Or} in line 13 of Algorithm 5.1. In our implementation, we first
choose ◦ := ◦0 as the gate type of the input group P0 as empirically, this more often
yields a good circuit, and afterwards the other gate type. For both, we enumerate
partitions of S◦ and recursively try to find a solution with delay at most D.

We avoid generating too many partitions of a set S◦ by enumerating the partitions
in a specific order. In a recursive approach, one by one, we assign the inputs to one
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of the subsets of S◦. Here, just as in standard branch-and-bound algorithms, we
follow the idea to make the most important decisions first. Recall from the proof of
Theorem 5.3.1 that by convention, the last input tir−1 is always contained in S◦2 .

Now, we first enumerate the highest input index il for which input til goes in
to the other part, S◦1 . Once til is fixed, we have completely determined which of
the inputs with different gate type than ◦ are contained in in both h(t′; Γ′)S◦1 and
h(t′; Γ′)S◦2 , or only in h(t′; Γ′)S◦2 . Based on this, we compute another lower bound,
the cross-partition Huffman bound, by Huffman coding on all inputs of h(t′; Γ′),
where those inputs that are contained in both sub-functions are counted twice, and
may stop when this lower bound exceeds D.

As til is the input with the highest index in S◦1 , we already know that all inputs
ti ∈ S◦ with i > il must be in S◦2 . It remains to enumerate those ti ∈ S◦ with i < il.
They are assigned to the sets S◦1 and S◦2 recursively, in the order of decreasing arrival
time, and in case of ties, inputs with larger indices are considered first. For each
input, we first put it into S◦2 and recursively continue with the other inputs; and
then put it into S◦1 and go into recursion. This way, we in particular prioritize the
construction of consecutive sets S◦1 and S◦2 , which often allows finding an optimum
solution quickly (cf. Section 6.3).

Now, assume that we try to compute a circuit for h(t′; Γ′) with delay at most D
via a fixed partition S◦ = S◦1 ·∪S◦2 . Before computing a solution, we evaluate all lower
bounds available for the two sub-instances, and stop if any of the lower bounds is
larger than D− 1. Otherwise, we recursively compute the table entries of h(t′; Γ′)S◦1
and h(t′; Γ′)S◦2 with delay bound D− 1. As already mentioned, based on whether we
did find a solution or not, we may update the lower bound for h(t′; Γ′).

Note that the lower bound L on the best delay achievable for h(t′; Γ′) is also a
lower bound for all generalized And-Or path on a superset of the inputs I of h(t′; Γ′).
Hence, if we have updated L for h(t′; Γ′), in lower bound propagation, we also
update the lower bound for certain generalized And-Or paths whose inputs are a
superset of I. Doing this for all supersets would be to costly; so we only update lower
bounds of supersets which are already contained in our dynamic programming table
and arise from adding a single input. For those whose lower bounds are improved,
we recurisvely repeat this procedure.

If we did not find a solution with delay at most D for the current partition, we
might discard a part of our enumeration tree in subset enumeration pruning:
Consider the inputs of S◦ in the order tj0 , . . . , tjl in which we enumerate whether to
put them into S◦1 or S◦2 . When considering an input tji , we have already assigned
the inputs tj0 , . . . , tji−1 to one of the two subsets. If we add tji to S◦2 , the set
S◦2 is minimal among all sets that will arise from enumerating assignments for the
elements tji+1 , . . . , tjl . The first assignment that will be tried for tji+1 , . . . , tjl is to
put them all into S◦1 . Hence, when the computation of a solution with delay at
most D for this generalized And-Or path was not successful because the And-Or
path h(t′; Γ′)S◦2 had too large delay, we already know that all other partitions with
tj0 , . . . , tji unchanged will also not lead to delay at most D. Hence, we can skip this
part of our enumeration tree. The same holds when adding tji to S◦1 .

Finally, we note that the running time for the computation of a table entry
highly depends on D. Hence, when computing a table entry with a lower bound of
L, in delay probing, we in fact loop over all possible delays d ∈ {L, . . . ,D} with
increasing d and try to find a solution with delay d. The first value d for which a
solution is found is then the optimum delay of any circuit for h(t′; Γ′).
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Integral arrival times Fractional arrival times

# inputs With size opt. No size opt. With size opt. No size opt.

10 0.001 0.000 0.005 0.000
20 0.442 0.002 2.248 0.008
30 2374.234 0.012 5790.565 0.092
40 - 0.096 - 44.388
50 - 8.294 - 8.223
60 - 3.514 - ∗106.860

Table 5.3: Average running times of Algorithm 5.1 on 10 randomly
generated And-Or path instances for each number of inputs. For frac-
tional arrival times and the non-size-opt mode, we omit one instance
with 60 inputs because there, the memory limit of 400 GB was reached
and the run could not finish.

5.6 Computational Results
In Section 5.6.1, we examine the empirical running time of our algorithm, in partic-
ular the quality of our speed-up techniques. We will see that for up to 64 inputs, we
can compute the optimum depth of any And-Or path circuit. From this, together
with a theoretical result, we will derive the optimum depth of n-bit adder circuits
for n that are a power of two for up to n = 8192 bits in Section 5.6.2.

5.6.1 Running Time Comparisons
In Table 5.3, we state the average running single-threaded times of our algorithm
on delay-optimization And-Or path instances on two testbeds: one with integral,
one with fractional arrival times. For each of these testbeds and each number
n ∈ {10, 20, 30, 40, 50, 60} of inputs, we created 10 instances with random arrival
times from the interval [0, n]. Later, we use the same testbed for the running time
analysis of Algorithm 6.3 in Table 6.2.

On both testbeds, we show the running times of our algorithm executed single-
threadedly on a machine with two Intel(R) Xeon(R) CPU E5-2699 v4 processors,
both for the computation of the optimum delay (“No size opt.”), and of the optimum
delay and optimum size of a strongly delay-optimum formula circuit (“With size
opt.”). We see that running times are much higher in the size optimization mode.
Here, solving the first instance of the integral testbed with 40 inputs already took
18 hours, so we cannot display the average running times for more than 30 inputs.
Without size optimization, almost any instance can be solved in a few seconds, only
for one instance with 60 inputs, our memory limit of 400 GB was reached. This run
is not counted in the statistics. The effectiveness of our pruning strategies varies
drastically depending on the arrival time profile, thus also our running times. For
instance, for the integral runs with size optimization, the running times on instances
with 30 inputs vary from 35 up to 14969 seconds. By examining instances with a
high running time, we could most likely further improve our speed-up techniques.

Now, we consider the And-Or path Circuit Depth Optimization Prob-
lem. Note that up to duality, for this, there is exactly one instance for a fixed
number of inputs. In Table 5.4, we give a comparison of Algorithm 5.1 with the
formula enumeration algorithm by Hegerfeld [Heg18]. On any instance solved both
by Hegerfeld’s algorithm and our algorithm, the computed optimum depths coin-
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cide; and using our size-optimization mode, we verify that Hegerfeld computes the
optimum size of any strongly depth-optimum circuit on each instance.

Hegerfeld’s running times are taken from [Heg18]; our runs were executed on a
machine with two Intel(R) Xeon(R) CPU E5-2687W v3 processors. All of Hegerfeld’s
runs with up to 27 inputs are also run with a single thread, but the runs for 28 and
29 inputs were executed in parallel and the stated running time is the wall time
multiplied by the number of threads. For our algorithm, we again show running
times for the computation of the optimum depth and optimum size of a strongly
depth-optimum formula circuit (“With size opt.”), and for the computation of the
optimum depth only (“No size opt.”). Hegerfeld always computes a size-optimum
strongly depth-optimum formula circuit.

For up to 14 inputs, Hegerfeld’s algorithm runs less than a second. The largest
instance he can solve has 29 inputs.

# Inputs Depth Size [Heg18] [s] Algorithm 5.1 [s]

With size opt. With size opt. No size opt.

1 0 0 0 0.000 0.000

2 1 1 0 0.000 0.000

3 2 2 0 0.000 0.000

4 3 3 0 0.000 0.000
5 3 5 0 0.000 0.000
6 3 6 0 0.000 0.000

7 4 7 0 0.000 0.000
8 4 9 0 0.000 0.000
9 4 10 0 0.000 0.000
10 4 13 0 0.000 0.000

11 5 13 0 0.001 0.000
12 5 14 0 0.002 0.000
13 5 16 0 0.004 0.000
14 5 18 0 0.005 0.000
15 5 20 1 0.007 0.000
16 5 21 2 0.008 0.000
17 5 24 4 0.008 0.000
18 5 25 11 0.009 0.000
19 5 29 27 0.015 0.002

20 6 27 71 0.234 0.005
21 6 28 180 0.358 0.007
22 6 31 463 0.588 0.008
23 6 32 1035 0.923 0.008
24 6 35 2893 1.259 0.007
25 6 36 7214 1.631 0.007
26 6 38 22661 2.097 0.007
27 6 40 60598 2.401 0.007
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# Inputs Depth Size [Heg18] [s] Algorithm 5.1 [s]

With size opt. With size opt. No size opt.

28 6 42 ≤ 480960 2.680 0.007
29 6 44 ≤ 2775000 2.763 0.007
30 6 47 2.927 0.008
31 6 49 2.991 0.008
32 6 53 3.068 0.009
33 6 57 3.159 0.010

34 7 51 1822 0.300
35 7 53 2921 0.861
36 7 55 5145 0.978
37 7 57 8064 0.958
38 7 59 13949 0.961
39 7 61 19539 0.957
40 7 63 33778 0.974
41 7 65 53287 0.954
42 7 67 87514 0.945
43 7 70 143409 0.939
44 7 ≤73 0.945
45 7 ≤76 0.958
46 7 ≤77 0.941
47 7 ≤83 1.285
48 7 ≤84 1.406
49 7 ≤84 1.399
50 7 ≤85 1.404
51 7 ≤89 1.410
52 7 ≤90 1.405
53 7 ≤93 1.407
54 7 ≤94 1.409
55 7 ≤98 1.415
56 7 ≤99 1.410
57 7 ≤104 1.406
58 7 ≤105 1.395
59 7 ≤109 1.413
60 7 ≤110 1.425

61 8 ≤ 111 4574
62 8 ≤ 113 8468
63 8 ≤ 114 9729
64 8 ≤ 117 9037

Table 5.4: Running times of Algorithm 5.1 compared with the enu-
meration algorithm by Hegerfeld [Heg18]. All reported running times
are single-threaded. For 28 and 29 inputs, Hegerfeld ran his algorithm
in parallel; here, the reported running times are the wall time multi-
plied by the number of threads. Dashed lines separate instances with
the same optimum depth.
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Our algorithm can solve all instances with up to 64 inputs. Note that our im-
plementation uses 64-bit bit sets to encode the generalized And-Or path instances,
hence, we currently cannot consider larger instances. By adjusting the bit sets used,
this technicality can be overcome. However, we do not expect to solve an instance
with 110 inputs, where the next change in depth is likely, see Table 5.6.

In order to examine the quality of our various speed-up techniques, we define 5
scenarios: in scenario 1, we run the basic algorithm without any enhancements; in
scenario 5, we enable all speed-up techniques from Section 5.5. The intermediate
scenarios all add a selection of speed-ups to the previous scenario:

• Scenario 1: No speed-ups.

• Scenario 2: Add depth normalization.

• Scenario 3: Add upper bound propagation, basic lower bound.

• Scenario 4: Add cross-partition Huffman bound, subset enumeration pruning.

• Scenario 5: Add reducing lower bounds, lower bound propagation, delay prob-
ing.

For each scenario, we ran the algorithm with all depth optimization instances
with at least 21 inputs – we only state results for an instance-scenario pair if the
running time is at most 8 hours. For each run, we store the number E of table entries
for which the partitioning process has been started at least once and the number P
of partitions considered. In Table 5.5, we show the logarithms of these numbers,
rounded to the nearest integer, and the running times.

In general, for fixed m, the number of entries and partitions and the running
time reduces significantly with increasing scenario number. From scenario 3 on,
we can solve the instance with 34 inputs within the running time limit of 8 hours,
which is the first instance with an optimum depth of 7. Using all pruning techniques
in scenario 5, we can solve any instance with up to 64 inputs within 3 hours. In
particular, note that in contrast to scenarios 1 - 4, in scenario 5, the running time
does not necessarily increase with increasing m. In a range of inputs where the
optimum depth does not increase (e.g., from 34 up to 60 inputs), our reducing lower
bounds have a high impact.

Note that, as estimated by Theorem 5.3.1, for each number m of inputs, for
scenario 1, we have E ≈ 2m, and the running time increases by a factor of roughly√

6 when m increases by 1. For scenario 2, we have checked that – as proven in
Theorem 5.4.1 – the exact number of entries for m inputs is exactly the Fibonacci
number Fm+1. Note that fromm tom+1, the running time grows roughly by a factor
of α = 2.02, which matches the running time guarantee shown in Theorem 5.4.6.

5.6.2 Optimum Depths of Adder Circuits

From Table 5.4, we now know depth-optimum And-Or path circuits for up to 64
inputs. Furthermore, based on Corollary 5.2.10, given d ∈ N, we can deduce an
upper bound on the maximum number m = m(d, 0) for which an And-Or path on
m inputs can be realized by a circuit with depth d.

For example, our results from Table 5.4 directly yield m(7, 0) = 60. By Corol-
lary 5.2.10, we have m(8, 0) ≤ 2 · 60 = 120. Applying this corollary again, we obtain
m(9, 0) ≤ 2m(8, 0) ≤ 240. Iterative application of Corollary 5.2.10 hence yields the
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

m log2E log2 P T [s] log2E log2 P T [s] log2E log2 P T [s] log2E log2 P T [s] log2E log2 P T [s]

21 21 29 35.4 14 23 1.6 10 19 0.1 10 15 0.0 9 13 0.0
22 22 30 94.6 15 24 3.5 11 19 0.1 10 16 0.0 9 14 0.0
23 23 31 237.9 16 25 6.9 11 20 0.2 11 16 0.0 9 14 0.0
24 24 32 630.6 16 26 15.4 11 20 0.2 11 16 0.0 9 14 0.0
25 25 34 1540.4 17 27 32.1 11 20 0.2 11 16 0.0 9 14 0.0
26 26 35 4055.7 18 28 69.7 11 20 0.2 11 16 0.0 9 14 0.0
27 27 36 10034.2 18 29 142.4 11 21 0.3 11 17 0.0 9 14 0.0
28 28 38 25055.1 19 30 315.9 11 21 0.4 11 17 0.0 9 14 0.0
29 20 31 642.0 12 22 0.8 11 17 0.0 9 14 0.0
30 20 32 1406.2 12 23 1.4 11 17 0.0 9 14 0.0
31 21 33 2939.7 12 24 2.6 11 17 0.0 9 14 0.0
32 22 34 6445.6 12 25 6.8 11 17 0.0 9 14 0.0
33 22 35 13062.4 12 26 14.3 11 17 0.0 9 14 0.0

34 17 31 623.0 16 26 14.1 11 19 0.3
35 18 33 1666.7 17 27 34.2 12 21 0.9
36 19 33 3066.7 18 27 45.4 12 21 1.0
37 19 34 6013.4 18 28 60.9 12 21 1.0
38 20 35 9211.6 19 28 75.8 12 21 1.0
39 20 36 15861.5 19 28 92.2 12 21 1.0
40 21 36 22140.3 19 29 109.8 12 21 1.0
41 20 29 135.7 12 21 1.0
42 20 29 145.1 12 21 0.9

· · · · · · · · ·
59 21 29 224.7 12 22 1.4
60 21 29 226.6 12 22 1.4

61 18 32 4574.9
62 18 33 8468.1
63 18 33 9729.8
64 18 33 9037.3

Table 5.5: Comparison of speed-up scenarios. The number of table entries computed is denoted by E, the number of partitions
computed by P , and the running time in seconds by T . Dashed lines separate ranges of instances with the same optimum depth.
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Lower bound Old upper bound New upper bound
d [Gri13] [Heg18] and Cor. 5.2.10 Alg. 5.1 and Cor. 5.2.10

0 1 1 1
1 2 2 2
2 3 3 3
3 6 6 6
4 10 10 10
5 19 19 19
6 33 38 33
7 60 76 60
8 109 152 120
9 202 304 240
10 375 608 480
11 698 1216 960
12 1311 2432 1920
13 2466 4864 3840
14 4645 9728 7680
15 8782 19456 15360
16 16627 38912 30720
17 31548 77824 61440
18 60059 155648 122880

Table 5.6: Lower and upper bounds on m(d, 0) for d ∈ {0, . . . , 18}.

upper bounds on m(d, 0) for small d as shown in the third column of Table 5.6.
Applying the same with the results by Hegerfeld [Heg18] yields the second column.

In the first column of Table 5.6, we show the best available lower bounds on
m(d, 0) as computed by the heuristics from Grinchuk [Gri13], i.e., for each d in the
table, we report the maximum valuem for which an And-Or path circuit with depth
d is known.

Comparing the first and the third column, we directly see that up to 60 inputs,
the circuits from [Gri13] are optimum. But m(7, 0) ≤ 60 implies that for m ≥ 61, a
depth of at least 8 is needed, so Grinchuk’s circuits are actually optimum for up to 109
inputs. Moreover, m(8, 0) ≤ 120 implies that for 121 ≤ m ≤ 202, Grinchuk’s circuits
also have optimum depth, and so on. The ranges of inputs m for which we know an
optimum And-Or path realization resulting from this are shown in Table 5.7. Here,
in the left column, we show the ranges of inputs for which an optimum solution
is known as derived from the results of Hegerfeld [Heg18], Grinchuk [Gri13], and
Corollary 5.2.10; and in the right column, we exchange Hegerfeld’s results by ours.

Recall from Equation (2.18) that the final carry cn bit of an n-bit adder is an
And-Or path on 2n − 1 inputs and that – when circuit size and fanout are not
regarded – optimum adder circuits on n bits yield optimum And-Or path circuits
on 2n − 1 inputs, and vice versa. Hence, in particular, Tables 5.4 and 5.7 yield the
optimum depths of all adder circuits with 2k inputs for k ≤ 13. We show these in
Table 5.8.
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d [Gri13],[Heg18], Cor. 5.2.10 [Gri13], Alg. 5.1, Cor. 5.2.10

0 1 ≤ m ≤ 1 1 ≤ m ≤ 1
1 2 ≤ m ≤ 2 2 ≤ m ≤ 2
2 3 ≤ m ≤ 3 3 ≤ m ≤ 3
3 4 ≤ m ≤ 6 4 ≤ m ≤ 6
4 7 ≤ m ≤ 10 7 ≤ m ≤ 10
5 11 ≤ m ≤ 19 11 ≤ m ≤ 19
6 20 ≤ m ≤ 33 20 ≤ m ≤ 33
7 39 ≤ m ≤ 60 34 ≤ m ≤ 60
8 77 ≤ m ≤ 109 61 ≤ m ≤ 109
9 153 ≤ m ≤ 202 121 ≤ m ≤ 202
10 305 ≤ m ≤ 375 241 ≤ m ≤ 375
11 609 ≤ m ≤ 698 481 ≤ m ≤ 698
12 1217 ≤ m ≤ 1311 961 ≤ m ≤ 1311
13 2433 ≤ m ≤ 2466 1921 ≤ m ≤ 2466
14 3841 ≤ m ≤ 4645
15 7681 ≤ m ≤ 8782
16 15361 ≤ m ≤ 16627
17 30721 ≤ m ≤ 31548

Table 5.7: Numbers m of inputs for which we can show that the
optimum depth of an And-Or path circuit on m inputs is d.

n 2n− 1 d

1 1 0
2 3 2
4 7 4
8 15 5

16 31 6
32 63 8
64 127 9

128 255 10
256 511 11
512 1023 12
1024 2047 13
2048 4095 14
4096 8191 15
8192 16383 16

Table 5.8: Optimum depths of adder circuits for n input pairs, where
n is a power of 2. The middle column shows the number of inputs of
the And-Or path computing the most significant carry bit.



Chapter 6

And-Or Path Optimization in Practice

In this chapter, we develop a delay optimization algorithm for And-Or paths that
is used for logic optimization in the IBM VLSI design flow, see also Chapter 7.

Our exact delay optimization algorithm from Chapter 5 is not suitable for this
purpose: In practice, circuit size as an important secondary criterion. Our exact
algorithm computes only strongly delay-optimum formula circuits, which is a disad-
vantage for size. Moreover, already our current size optimization mode has too high
average running times (e.g., 2.2 seconds for 20 inputs, see Table 5.3), with significant
outliers (e.g., more than 9 hours for one instance with 30 inputs).

Instead, we now describe a polynomial-time algorithm which computes very good
solutions in practice, as we will demonstrate. The key idea of our algorithm is
to compute the best possible circuit over Ωmon = {And2,Or2} resulting from
a recursive application of the recursion strategies described in Section 2.6.2 in a
dynamic program. The algorithm has been published in concise form in Brenner and
Hermann [BH20].

In Section 6.1, we describe and analyze our algorithm, which has a running time
of O(m4) and allows an effective size reduction technique. We will show that our
algorithm fulfills the best known asymptotic delay guarantee of Theorem 4.2.4, see
Theorem 6.1.14.

In Section 6.3, we explain the differences of our algorithm to the exact algorithm
from Chapter 5. We conjecture that in the special case of uniform arrival times, our
dynamic programming algorithm always computes optimum solutions.

In Section 6.2, we show experimental results: On a testbed containing 25000 And-
Or path instances with 4 up to 28 inputs, we will demonstrate that our algorithm
from Section 6.1 yields significantly better results on small instances compared to the
previously best implemented algorithms, i.e., the methods of Held and Spirkl [HS17b]
and Rautenbach, Szegedy, and Werber [RSW06]. Even more, we will show that the
delays of our circuits are now much closer to the optimum delays computed by the
exact algorithm from Chapter 5. We find delay-optimum solutions on more than
95% of the considered instances with integral arrival times, the average difference
from the optimum delay is roughly 0.04 and the maximum difference 1. For the best
delay among the circuits computed by Held and Spirkl [HS17b] and Rautenbach,
Szegedy, and Werber [RSW06], the average difference to the optimum is 1.64, the
maximum difference is 4, and only 10% of their circuits are delay-optimum.

159
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6.1 Dynamic Program for Delay Optimization
As in Chapter 4, we in fact present an algorithm for the optimization of extended
And-Or paths (cf. Definition 2.6.14), not only for And-Or paths. This is motivated
by the fact that extended And-Or paths allow a more flexible recursive circuit
construction, see Section 2.6.2. Hence, let symmetric inputs s = (s0, . . . , sn−1) and
alternating inputs t = (t0, . . . , tm−1) be given. We are interested in computing
circuits for the extended And-Or paths f(s, t) and f∗(s, t). Using the notation
from Section 2.6.2, there are three recursive ways to compute f(s, t) from circuits
for smaller extended And-Or paths which have been introduced in Corollary 2.6.17,
Corollary 2.6.18 and Observation 2.6.20:

f(s, t) = f
(
s, t′
)
∧ f∗

(
t̂′, t′′

)
for a prefix t′ of t with |t′| < m odd (6.1)

f(s, t) = f
(
s, t′
)
∨ f
(
s++ t̂′, t′′

)
for a prefix t′ of t with |t′| < m even (6.2)

f(s, t) = sym
(
(s0, . . . , sk−1)

)
∧ f
(
(sk, . . . , sn−1), t

)
for k < n (6.3)

By applying any of these splits, we reduce the problem of optimizing an extended
And-Or path f(s, t) to two problems on instances with strictly fewer inputs: Either,
we split off a prefix of the alternating inputs and construct a circuit for f(s, t) based
on circuits for two smaller extended And-Or paths (cf. Equations (6.1) and (6.2));
or we split off a prefix of the symmetric inputs, for which we build an optimum binary
tree, construct an extended And-Or path on the remaining symmetric inputs and
t, and combine these two circuits to a circuit for f(s, t) (cf. Equation (6.3)).

Recall that by Corollary 2.5.3, a circuit for f∗(s, t) can be obtained from a circuit
for f(s, t) by dualization.

Our algorithm is a dynamic program that, given s and t, computes a delay-
optimum circuit for f(s, t) that can be obtained using the recursion formulas Equa-
tions (6.1) to (6.3). Regarding instances with integral arrival times, as a preparation,
we present a straight-forward algorithm in Section 6.1.1 and our final algorithm in
Section 6.1.2. An extension of both algorithms to fractional arrival times is shown
in Section 6.1.3; and in Section 6.1.4, we describe how we heuristically improve the
number of gates of our circuits.

As a common preparation, we now introduce notation allowing to describe our
algorithms in a dynamic-programming fashion.

Notation 6.1.1. Given Boolean input variables t = (t0, . . . , tm−1) and indices
i, j, k ∈ {0, . . . ,m− 1} with i ≤ j ≤ k and j − i even, we write

fi,j,k = f
((
ti, ti+2, . . . , tj−4, tj−2

)
,
(
tj , . . . , tk

))
and

f∗i,j,k = f∗
((
ti, ti+2, . . . , tj−4, tj−2

)
,
(
tj , . . . , tk

))
.

We denote the number of inputs of fi,j,k by N(fi,j,k) ∈ N. Note that

N(fi,j,k) =
j − i

2
+ k − j + 1 .

In other words, the functions fi,j,k are extended And-Or paths on exactly those
subsets of the inputs t0, . . . , tm−1 that have a consecutive range of alternating inputs
and, preceding this range, symmetric inputs that contain every second input. Note
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that in particular f0,0,m−1 = g(t) is the And-Or path on all inputs t. We can
now rewrite the three splits (6.1) to (6.3) using this notation. For odd prefix length
l = 2λ+ 1 ∈ N with 1 ≤ l ≤ k − j and thus λ ∈ N, 0 ≤ λ ≤ k−j−1

2 , we have

fi,j,k = fi,j,j+2λ ∧ f∗j+1,j+2λ+1,k , (6.4)

for even prefix length l = 2λ with 2 ≤ l ≤ k − j and thus λ ∈ N, 1 ≤ λ ≤ k−j
2 , we

have

fi,j,k = fi,j,j+2λ−1 ∨ fi,j+2λ,k , (6.5)

and for 1 ≤ λ ≤ j−i
2 , we have

fi,j,k = fi,i+2λ−2,i+2λ−2 ∧ fi+2λ,j,k . (6.6)

Note that once j − i is even, in each of these splits, the difference of the “j” and “i”
indices is even for any occurring sub-function. Thus, every split in (6.1) to (6.3) can
be represented using the functions fi,j,k for indices i, j, k with j− i even as defined in
Notation 6.1.1. Furthermore, note that indeed, each sub-formula occurring in (6.4)
to (6.6) has strictly fewer inputs that fi,j,k.

6.1.1 Binary-Circuit Dynamic Program
In this section, we formulate a first dynamic program for And-Or path optimization,
the binary-circuit dynamic program. In the next section, we will see a motiva-
tion for this name. Algorithm 6.1 states our algorithm, which works as follows.

Let input variables t = (t0, . . . , tm−1) with arrival times a(t0), . . . , a(tm−1) ∈ N
be given. For every 0 ≤ i ≤ j ≤ k ≤ m− 1 with j − i even, Algorithm 6.1 computes
a circuit Ci,j,k for fi,j,k in the respective iteration of the loop in lines 2 to 7:

In line 4, we compute Ci,j,k whenever fi,j,k is a symmetric function, i.e., if
k ∈ {j, j + 1}. Here, Ci,j,k is a delay-optimum circuit computed by Huffman coding,
[Huf52], see Theorem 2.3.21.

In the case that k > j + 1, we have N(Ci,j,k) = j−i
2 + k − j + 1 ≥ 2. Hence,

we may assume that for all 0 ≤ i′ ≤ j′ ≤ k′ ≤ m − 1 with j′ − i′ even and
N(fi′,j′,k′) < N(fi,j,k), a circuit Ci′,j′,k′ realizing fi′,j′,k′ has already been computed.
We may use these circuits while applying the recursion formulas (6.4), (6.5) and (6.6)
with any valid λ in order to build a circuit for fi,j,k. Note that split (6.4) requires a
circuit for the function f∗j+1,j+2λ+1,k which can be obtained easily by dualizing the
circuit Cj+1,j+2λ+1,k. The list C of candidate circuits in line 6 is never empty since
in the case that k > j + 1, split (6.4) with λ = 0 is always a valid split.

Consequently, Algorithm 6.1 always computes a circuit C0,m−1,m−1 realizing
the And-Or path f0,m−1,m−1 on inputs t = (t0, . . . , tm−1). Using the following
observation, we will show that the delay of C0,m−1,m−1 is always at least as good as
the delay of the circuit computed by Algorithm 4.1.

Observation 6.1.2. For any i, j, k ∈ {0, . . . ,m− 1} with i ≤ j ≤ k even, Algo-
rithm 6.1 computes a realization Ci,j,k with best possible delay among all circuits
arising from the construction of optimum symmetric trees on input vectors of the
form ti, ti+2, . . . , tj−2, tj or ti, ti+2, . . . , tj−2, tj , tj+1, the recursive application of (6.4)
to (6.6) and the dualization of circuits.

Proposition 6.1.3. Let Boolean input variables t = (t0, . . . , tm−1) with arrival
times a(t0), . . . , a(tm−1) ∈ N be given. Consider the circuits C and C ′ computed
by Algorithm 6.1 and Algorithm 4.1 for this instance, respectively. Then, we have

delay(C) ≤ delay
(
C ′
)
.
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Algorithm 6.1: Binary-circuit dynamic program for delay optimization of
And-Or paths
Input: Boolean input variables t = (t0, . . . , tm−1) with arrival times

a(t0), . . . , a(tm−1) ∈ N.
Output: A circuit over Ωmon computing f0,0,m−1.

1 for l← 1 to m do
2 for 0 ≤ i ≤ j ≤ k < m s.t. j − i even and N(fi,j,k) = l do
3 if k ∈ {j, j + 1} then
4 Ci,j,k := circuit for fi,j,k computed by Huffman coding [Huf52]

(see Theorem 2.3.21)
5 else
6 C := list of candidate circuits for fi,j,k arising from applying split

(6.4), (6.5) or (6.6) with any valid λ
7 Ci,j,k := argmin

{
d(C) : C ∈ C

}
8 return C0,0,m−1

Proof. Assume that Algorithm 4.1 is applied for the realization of the And-Or path
g
(
(t0, . . . , tm−1)

)
= f0,0,m−1. Here, by Observation 4.1.18, the recursive call in line 19

can be avoided by instead using split (4.27). We show that with this modification,
all recursive constructions of Algorithm 4.1 can be expressed by (possibly recursive
applications of) the splits Equations (6.4) to (6.6):

• The symmetric split in line 10 is split (6.6) with λ = j−i
2 .

• The split in line 14 is an alternating split (6.4) with a prefix of length 1.

• The split in line 29 is the alternating split as in Equation (6.4).

• The split (4.27) which is used to avoid the recursive call in line 19 is an
alternating split with an even prefix as in Equation (6.5).

This shows that whenever Algorithm 4.1 (modified according to Observation 4.1.18)
is applied recursively, the realized function is of the form fi,j,k for some 0 ≤ i ≤ j ≤
k < m− 1 with j − i even.

Now we verify that each explicit construction in Algorithm 4.1 can also be found
by Algorithm 6.1:

• The binary trees in line 4 of Algorithm 6.1 can be computed in line 4 of
Algorithm 6.1.

• The realization g(t) = t0 ∧ (t1 ∨ t2) computed in line 7 of Algorithm 6.1 can
be obtained by applying Equation (6.4) with prefix length 1 to g(t), and then
by using the symmetric tree t1 ∨ t2 which is dual to one of the symmetric trees
constructed in line 4.

• The construction in line 26 is an alternating split (6.4) with an odd prefix of
length 1.

Hence, all explicit and recursive constructions in Algorithm 4.1 can be performed by
Algorithm 6.1. By Observation 6.1.2, this implies delay(C) ≤ delay(C ′).
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The way Algorithm 6.1 is formulated, we construct a formula circuit for f0,0,m−1.
However, in practice, we try to avoid building the same sub-circuit twice and in-
stead re-use the function computed by its output gate, see, e.g., the circuit in Fig-
ure 6.2(a). Our precise size improvement strategy is presented in Section 6.1.4, and
in Section 6.2, we will see that in practice, our circuits seem to have a linear size.
From a theoretical view, we can show that the size of the formula circuit constructed
by Algorithm 6.1 is at most quadratic in the number of inputs.

Proposition 6.1.4. Let Boolean input variables t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ N be given. Consider 0 ≤ i ≤ j ≤ k with j − i even. Then, the
circuit Ci,j,k computed by Algorithm 6.1 has size at most (k − j + 1)(k − i+ 1)− 1.
In particular, the circuit C0,0,m−1 for f0,0,m−1 computed by Algorithm 6.1 has size at
most m2 − 1.

Proof. The second statement is a special case of the first statement. We prove the
first statement by induction on N(fi,j,k).

If k ∈ {j, j + 1}, then we construct Ci,j,k as a binary tree with size at most k− i
in line 4. As k ≥ j, this can be bounded from above by (k − j + 1)(k − i + 1) − 1,
so the size bound is fulfilled.

This covers the case N(fi,j,k) ≤ 1, so assume now that N(fi,j,k) ≥ 2, where Ci,j,k
is constructed in lines 6 to 7. We consider three different cases based on the type of
split that is used to construct Ci,j,k.

First assume that Ci,j,k = Ci,j,j+2λ ∧C∗j+1,j+2λ+1,k for some 0 ≤ λ ≤ k−j−1
2 as in

Equation (6.4). Then, we have

size(Ci,j,k)

= size
(
Ci,j,j+2λ

)
+ size

(
C∗j+1,j+2λ+1,k

)
+ 1

(IH)
≤ (j + 2λ− j + 1)(j + 2λ− i+ 1) + (k − (j + 2λ+ 1) + 1)(k − (j + 1) + 1)− 1

= (k − j + 1) max
{
j + 2λ− i+ 1, k − (j + 1) + 1

}
− 1

j+2λ≤k,
j≥i
≤ (k − j + 1)(k − i+ 1)− 1 .

Now assume that Ci,j,k = Ci,j,j+2λ−1 ∨ Ci,j+2λ,k for some 1 ≤ λ ≤ k−j
2 as in

Equation (6.5). Then, similar to the first case, we obtain

size(Ci,j,k)

≤ size
(
Ci,j,j+2λ−1

)
+ size

(
Ci,j+2λ,k

)
+ 1

(IH)
≤ (j + 2λ− 1− j + 1)(j + 2λ− 1− i+ 1) + (k − (j + 2λ) + 1)(k − i+ 1)− 1

j+2λ≤k,
j≥i
≤ (k − j + 1) max{j + 2λ− i, k − i+ 1} − 1

j+2λ≤k
= (k − j + 1)(k − i+ 1)− 1 .

Finally, in case of the split Ci,j,k = Ci,i+2λ−2,i+2λ−2 ∧ Ci+2λ,j,k with 1 ≤ λ ≤ j−i
2 as
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in Equation (6.6), we have

size(Ci,j,k) = size
(
Ci,i+2λ−2,i+2λ−2

)
+ size

(
Ci+2λ,j,k

)
+ 1

(IH)
≤ 1 · (i+ 2λ− 2− i+ 1) + (k − j + 1)(k − (i+ 2λ) + 1)− 1

= (2λ− 1) + (k − j + 1)(k − i− 2λ+ 1)− 1

k≥j
< (k − j + 1)(k − i)− 1 .

This proves the induction step and hence the first statement.

The following theorem summarizes all important properties of Algorithm 6.1.

Theorem 6.1.5. Given Boolean input variables t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ N, Algorithm 6.1 computes a circuit C realizing the And-Or
path g(t) = f0,0,m−1 with

delay(C) ≤ log2W + log2 log2m+ log2 log2 log2m+ 4.3

and

size(C) ≤ m2 − 1

in running time O(m4).

Proof. The size bound is proven in Proposition 6.1.4. We now prove the delay bound.
Let C ′ denote the circuit computed by Theorem 4.2.4 on the same instance. We

show that delay(C; a) ≤ delay(C ′; a), following the proof of Theorem 4.2.4.
For m < 500, C ′ is a standard And-Or path circuit or the circuit computed by

the algorithm by Held and Spirkl [HS17b] (for modified arrival times).
First assume that C ′ is the standard And-Or path circuit. Note that the

standard And-Or path circuit for f0,0,m−1 can be created by recursive applica-
tion of Equation (6.4) with λ = 0 and finally constructing the symmetric circuit
fm−2,m−2,m−1. Hence, by Observation 6.1.2, we have delay(C; a) ≤ delay(C ′; a).

Now assume that C ′ is computed by Held and Spirkl [HS17b]. Recall from
Section 2.6.4 that this circuit arises from recursive application of split (2.42) which
is a special case of the alternating split (6.4). Note that Held and Spirkl [HS17b]
construct special binary trees that follow the recursion of the alternating split, but
as we always compute optimum binary trees in line 4, Observation 6.1.2 still implies
delay(C; a) ≤ delay(C ′; a).

For m ≥ 500, the circuit C ′ is computed by Algorithm 4.1 (page 119) (on
modified arrival times). In the proof of Proposition 6.1.3, we have seen that all
initial and recursive circuit constructions used to construct C ′ can also be performed
by Algorithm 6.1. Hence, by Observation 6.1.2, we have delay(C; a) ≤ delay(C ′; a).

From delay(C; a) ≤ delay(C ′; a) and Theorem 4.2.4, the delay bound follows.
In order to derive the running time bound, note that line 4 is executed O(m2)

times, while lines 6 and 7 are executed O(m3) times. By Theorem 2.3.21, Huffman
coding can be implemented in time O(m) after sorting and in time O(m log2m) if
sorting is needed. For a single execution of lines 6 and 7, the running time is in the
order of O(m) as there are 3 types of splits and at most m choices for λ per split.
Hence, the total running time is in O(m2 ·m log2m+m3 ·m) = O(m4).
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In Section 6.2, we shall see that for most small instances, the solution computed
by Algorithm 6.1 is much better than the solution computed by Theorem 4.2.4,
the algorithm from Held and Spirkl [HS17b] or Rautenbach, Szegedy, and Werber
[RSW06], see Figure 6.6 (page 179). However, the comparison with optimum delays
in Figure 6.8 (page 182) shows that there is still much room for improvement. Thus,
we will present a refined algorithm in Section 6.1.2. The following example shows
that binary trees occurring in the middle of the circuit cannot be optimized by Al-
gorithm 6.1; but it also explains the structure of circuits computed by Algorithm 6.1
on an example instance.

10912640511214

t9t8t7t6t5t4t3t2t1t0
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(a) The standard And-Or path circuit for
f0,0,9 with prescribed input arrival times
and computed gate arrival times.
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(b) A circuit for the instance on the left
with delay 16 computed by Algorithm 6.1
as described in Example 6.1.6.

Figure 6.1: Applying Algorithm 6.1 (page 162) to compute the And-
Or path f0,0,9.

Example 6.1.6. Figure 6.1(b) depicts the solution computed by Algorithm 6.1 when
run on the instance from Figure 6.1(a). The structure of the solution can be described
as follows: At the output gate, we see that the alternating split with an odd prefix
(see Equation (6.4)) has been applied with λ = 2:

f0,0,9 = f0,0,4 ∧ f∗1,5,9
The sub-function f0,0,4 is realized by the standard circuit, while f∗1,5,9 is realized by
the alternating split with an odd prefix (see Equation (6.4)) with λ = 0:

f∗1,5,9 = f∗1,5,5 ∨ f6,6,9

Figure 6.2(a) depicts a candidate solution contained in C for f0,0,9 which is not
delay-optimum and thus not output by the algorithm. To simplify explanations, we
have marked important splits in the picture.

Splits 1 and 2: In these cases, the alternating split with an odd prefix (see
Equation (6.4)) is used with λ = 0:

f0,0,9 = f0,0,0 ∧ f∗1,1,9
f∗1,1,9 = f∗1,1,1, ∨ f2,2,9
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split 1

(a) Another circuit implementing the
And-Or path from Figure 6.1(a) which
has been considered by Algorithm 6.1, but
has delay 17.

10912640511214

t9t8t7t6t5t4t3t2t1t0

52

76

10137

11

12

13

14

15

(b) Circuit with optimum delay 15 arising
from the circuit in Figure 6.2(a) by per-
forming Huffman coding on the group of
Or gates.

Figure 6.2: The circuit on the left-hand side is a candidate solution of
Algorithm 6.1 (page 162) for f0,0,9 obtained by the recursion formulas
(6.4) to (6.6) as described in Example 6.1.6. The circuit on the right-
hand side cannot be computed by Algorithm 6.1, but is delay-optimum
for the instance in Figure 6.1(a) as the critical input t0 traverses only
1 gate, which is best possible.

There is nothing to be done for the computation of f0,0,0 = t0 or f∗1,1,1, = t1.
Split 3: Now, we apply the alternating split with an even prefix (see Equa-

tion (6.5)) with λ = 2:
f2,2,9 = f2,2,5 ∨ f2,6,9

The sub-function f2,2,5 is realized by the standard circuit.
Split 4: Here, the alternating split with an even prefix (see Equation (6.5)) is

applied with λ = 1:
f2,6,9 = f2,6,7 ∨ f2,8,9

As the two arising sub-functions are symmetric, they can be constructed using
Huffman coding. Note that the circuit for t2 ∧ t4 ∧ t6 is used in both sub-circuits.

In Figure 6.2(a), one can see very well where Algorithm 6.1 (page 162) lacks
flexibility: Each drawn split line partitions the circuit into three parts: two sub-
circuits, and a concatenation gate. The algorithm optimizes the two sub-circuits
separately and does not cross these split lines during optimization. In this concrete
example, re-arranging the Or concatenation gates as shown in Figure 6.2(b) is not
possible for Algorithm 6.1. However, this would lead to a circuit with delay 15
which is by one better than the delay of the circuit in Figure 6.1(b) computed by
Algorithm 6.1.

6.1.2 Undetermined-Circuit Dynamic Program
The drawback of Algorithm 6.1 (page 162) described in Example 6.1.6 leads us
to refining Algorithm 6.1 with respect to symmetric trees whose gates belong to
different sub-circuits. The resulting algorithm, which has been published previously
by Brenner and Hermann [BH20], is presented in Algorithm 6.3. The key idea is to
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postpone the construction of symmetric trees until all their inputs are known. This
motivates the following definition.

Definition 6.1.7. A circuit C with a single output is called an undetermined
circuit if

• all its gates are And or Or gates and

• all gate vertices with the possible exception of out(C) have fan-in two.

We denote the gate type of out(C) by gt(C) ∈ {And,Or}.

Note that any circuit over the basis Ωmon = {And2,Or2} is an undetermined
circuit. Another two undetermined circuits are shown in Figure 6.3.

Different to Algorithm 6.1 (page 162), we now allow undetermined circuits as
implementations of the functions fi,j,k in intermediate solutions. Of course, the
circuit we finally compute still must be a circuit over Ωmon = {And2,Or2}. We
extend the definition of the weight of circuit inputs to undetermined circuits in order
to compare different implementations realizing the same Boolean function.

Definition 6.1.8. Given an undetermined circuit C on Boolean inputs t0, . . . , tm−1

with input arrival times a(t0), . . . , a(tm−1) ∈ N, we define the weight of C as

W (C) :=
∑

v∈δ−1(out(C))

2a(v) .

Given the weight of an undetermined circuit, we can estimate the delay of a
canonical logically equivalent circuit over Ωmon.

Lemma 6.1.9. Given an undetermined circuit C on inputs t0, . . . , tm−1 with integral
arrival times a(t0), . . . , a(tm−1) ∈ N, we can construct an equivalent circuit C̃ over
Ωmon = {And2,Or2} with delay

(
C̃
)

=
⌈

log2(W (C))
⌉
.

Proof. Initialize C̃ with the circuit obtained from C by deleting out(C). Now, C̃ is
a circuit over Ωmon, but has multiple outputs, say v0, . . . , vk−1. Propagate the input
arrival times through C̃ to compute arrival times a(v0), . . . , a(vk−1). Applying Huff-
man coding (see Theorem 2.3.21) with v0, . . . , vk−1 as inputs and a(v0), . . . , a(vk−1)
as input arrival times yields a circuit H with delay d log2(W (C))e. Adding all gates
and edges of H to C̃ yields the required circuit.

The rough idea of Algorithm 6.3 is again to compute a dynamic programming
table which contains a circuit Ci,j,k for fi,j,k for every 0 ≤ i ≤ j ≤ k ≤ m−1 with j−i
even, but now, all intermediate solutions Ci,j,k are undetermined circuits. Hence,
we call Algorithm 6.3 the undetermined-circuit dynamic program in order
to highlight the contrast to the binary-circuit dynamic program in Algorithm 6.1.
Again, we apply the alternating splits (6.4) and (6.5) in order to recursively compute
Ci,j,k, but the symmetric split (6.6) is used only with λ = 1, i.e.,

fi,j,k = fi,i,i ∧ fi+2,j,k . (6.7)

In the proof of Proposition 6.1.12, we shall see that the other symmetric splits are
not needed anymore in Algorithm 6.3.

The three types of splits are extended to undetermined circuits as follows.
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1024312201112

t12t11t10t9t8t7t6t5t4t3t2t1t0

(a) An undetermined circuit for f0,4,8 with
weight 22 + 21 + 20 + 26 = 71.

1024312201112

t12t11t10t9t8t7t6t5t4t3t2t1t0

(b) An undetermined circuit for f5,9,12
with weight 22 + 21 + 24 + 23 = 30.

Figure 6.3: Two undetermined circuits and their weights.

1024312201112

t12t11t10t9t8t7t6t5t4t3t2t1t0

(ti, . . . , tj−1) (tj , . . . , tj+2λ) (tj+2λ+1, . . . , tk)

out(C1), fi,j,j+2λ
out(C2), f

∗
j+1,j+2λ+1,k

c0, fi,j,k

(a) Combining the undetermined circuits
from Figure 6.3 to a circuit for f0,4,12 ac-
cording to split (6.4) with λ = 2. This
does not yield an undetermined circuit.

1024312201112

t12t11t10t9t8t7t6t5t4t3t2t1t0

(ti, . . . , tj−1) (tj , . . . , tk)

out(C), fi,j,k

(b) Undetermined circuit C arising from
applying Algorithm 6.2 to the circuits C1

and C2 from Figure 6.4(a). We have
W (C) = 22 + 21 + 20 + 26 + 25 = 103.

Figure 6.4: Computing an undetermined circuit for fi,j,k with i = 0,
j = 4 and k = 12 using the alternating split (6.4) with prefix-length
5 = 2λ+ 1 and Algorithm 6.2 (page 169).

Let us consider a circuit C for fi,j,k arising from the split

fi,j,k = fi,j,j+2λ ∧ f∗j+1,j+2λ+1,k

with λ ∈ N and 0 ≤ λ ≤ k−j−1
2 as in Equation (6.4). Now, the circuits Ci,j,j+2λ

for fi,j,j+2λ and C∗j+1,j+2λ+1,k for f∗j+1,j+2λ+1,k are both undetermined circuits. Ac-
cording to the split, using an And gate, we can combine them to a circuit C ′ for
fi,j,k, but this will not necessarily be an undetermined circuit, see the example in
Figure 6.4(a). In Figure 6.4(b), we can see how C ′ is turned into an undetermined
circuit C for fi,j,k in this case.

The general procedure how to merge two undetermined circuits C1 and C2 is
described in Algorithm 6.2: When gt(Ci) coincides with the gate type ◦ of the
concatenation gate, the inputs of out(Ci) are simply connected to out(C), otherwise,
the symmetric tree at out(Ci) may be completed using Lemma 6.1.9. This means
that we do not decide for an implementation of the symmetric tree computing the
logic function at out(Ci) until we know that no other possible inputs of the symmetric
tree will emerge in later steps of the algorithm.

In Algorithm 6.2, we see that the computed circuit C highly depends on whether
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Algorithm 6.2: Merging undetermined circuits
Input: Two undetermined circuits C1 and C2 computing Boolean functions

h1 and h2, respectively, depending on inputs with integer arrival
times; a gate type ◦ ∈ {And,Or}.

Output: An undetermined circuit C computing h1 ◦ h2.

1 Let C be the union of the circuits C1 and C2.
2 Add a ’◦’-gate v0 to C.
3 for i← 1 to 2 do
4 Let v1, . . . , vk be the inputs of out (Ci).
5 if gt(Ci) = ◦ then
6 Remove out (Ci) from C and add edges (v1, v0), . . . , (vk, v0) to C.

7 else
8 Construct a circuit C̃i over Ωmon computing hi using Lemma 6.1.9.
9 Add all edges and gates from C̃i to C.

10 Add an edge
(

out
(
C̃i

)
, c0

)
to C.

11 return C

gt(Ci) = And or gt(Ci) = Or. As a consequence, our dynamic programming table
now contains two undetermined circuits for every occurring fi,j,k: circuits Ai,j,k and
Oi,j,k which have minimum weight among all recursively constructed circuits with
gt(Ai,j,k) = And and gt(Oi,j,k) = Or, respectively. Here, we use the weight of
the undetermined circuits to decide which circuit to store as by Lemma 6.1.9, two
undetermined circuits C1 and C2 withW (C1) ≤W (C2) fulfill delay(C1) ≤ delay(C2).

Apart from that, Algorithm 6.3 is very similar to Algorithm 6.1, but due to the
use of undetermined circuits, we may omit some initial symmetric tree constructions.

The following lemma implies that Algorithm 6.3 correctly computes a circuit for
f0,0,m−1.

Lemma 6.1.10. Consider the application of Algorithm 6.3 to Boolean input variables
t = (t0, . . . , tm−1) with arrival times a(t0), . . . , a(tm−1) ∈ N. Let 0 ≤ i ≤ j ≤ k < m
with j−i even be given. If k−j ≤ 1, we have Ai,j,k =

∧
l∈{ i,i+2,...,j−2,j } tl. Otherwise,

both Ai,j,k and Oi,j,k exist.

Proof. We prove the statement by induction on N(fi,j,k) ∈ N.
When k − j = 0, the circuit Ai,j,k =

∧
l∈{ i,i+2,...,j−2,j } tl is computed in line 4.

For k − j = 1, a candidate circuit for Ai,j,k can be obtained the following
way: The realization fi,j,k = fi,j,j ∧ f∗j+1,j+1,k arises from the alternating split
(6.4) with λ = 0 in line 6. By the first case, we have Ai,j,j =

∧
l∈{ i,i+2,...,j−2,j } tl

and Aj+1,j+1,k =
∧
l=j+1 tl = tj+1. After application of Algorithm 6.2, we obtain

A =
∧
l∈{ i,i+2,...,j−2,j } tl as a candidate circuit for Ai,j,k. As A has optimum weight

among all possible realizations for fi,j,k, we have Ai,j,k = A.
Now assume that k−j ≥ 2, which implies N(fi,j,k) ≥ 2. By induction hypothesis,

for all functions fi′,j′,k′ such that 0 ≤ i′ ≤ j′ ≤ k′ ≤ m − 1 with j′ − i′ even
and N(fi′,j′,k′) < N(fi,j,k), a realization Ai,j,k is computed. Hence, a candidate
realization for Ai,j,k can be obtained via the alternating split Equation (6.4) with
an odd prefix length 2λ + 1 with λ = 0, i.e., fi,j,k = fi,j,j ∧ f∗j+1,j+1,k. For Oi,j,k,
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Algorithm 6.3: Undetermined-circuit dynamic program for delay opti-
mization of And-Or paths
Input: Boolean input variables t = (t0, . . . , tm−1) with arrival times

a(t0), . . . , a(tm−1) ∈ N.
Output: A circuit over Ωmon computing f0,0,m−1.

1 for l← 1 to m do
2 for 0 ≤ i ≤ j ≤ k < m s.t. j − i even and N(fi,j,k) = l do
3 if k = j then
4 Ai,j,j :=

∧
l∈{ i,i+2,...,j−2,j } tl

5 C := list of candidate undetermined circuits for fi,j,k arising from
applying split (6.4), (6.5) or (6.7) with any valid λ, followed by
application of Algorithm 6.2.

6 Ai,j,k = argmin
{
W (C) : C ∈ C with gt(C) = And

}
7 Oi,j,k = argmin

{
W (C) : C ∈ C with gt(C) = Or

}
8 if m ≤ 2 then
9 C := A0,0,m−1

10 else
11 C := argmin

{
W (A0,0,m−1),W (O0,0,m−1)

}
12 Apply Lemma 6.1.9 to transform C into a circuit C̃ over Ωmon .
13 return C̃

a candidate circuit can be obtained via the alternating split Equation (6.5) with an
even prefix length 2λ with λ = 1, i.e., fi,j,k = fi,j,j+1 ∧ f∗i,j+2,k. Hence, the list C in
line 5 contains undetermined circuits both with And and Or as output gate type,
and Ai,j,k and Oi,j,k both exist.

A similar statement as Observation 6.1.2 can be shown for Algorithm 6.3.

Observation 6.1.11. Let inputs variables t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ R be given. We call a circuit C for g(t) a split circuit if it
arises from the construction of optimum symmetric trees on input vectors of the
form ti, ti+2, . . . , tj−2, tj , the recursive application of (6.4), (6.5) and (6.7) followed
by Algorithm 6.2 and the dualization of circuits. Moreover, we call a circuit C for
g(t) split-optimum if it is a split circuit that has optimum delay among all split
circuits for g(t). For integral arrival times, Algorithm 6.1 computes a split-optimum
circuit for g(t).

The following theorem states that regarding delay, the circuit computed by
Algorithm 6.3 is always at least of good as the one computed by Algorithm 6.1.

Proposition 6.1.12. Let Boolean input variables t = (t0, . . . , tm−1) with arrival
times a(t0), . . . , a(tm−1) ∈ N be given. Consider the circuits C and C̃ computed by
Algorithm 6.1 and Algorithm 6.3 for this instance, respectively. Then, we have

delay(C̃) ≤ delay(C).

Proof. For 0 ≤ i ≤ j ≤ k < m with j − i even, let Ci,j,k be as in Algorithm 6.1 and
Ai,j,k and Oi,j,k as in Algorithm 6.3. We will first prove the following claim.
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Claim. For every 0 ≤ i ≤ j ≤ k < m with j − i even, we have

delay(Ci,j,k) ≥
{⌈

log2(W (Ai,j,k))
⌉

if gt(Ci,j,k) = And,⌈
log2(W (Oi,j,k))

⌉
otherwise .

Proof of claim: We prove the claim by induction on N(fi,j,k).
If k ∈ {j, j + 1}, Algorithm 6.1 constructs an optimum symmetric tree Ci,j,j

with gt(Ci,j,k) = And for fi,j,k. In this case, by Lemma 6.1.10, we have Ai,j,j :=∧
l∈{ i,i+2,...,j−2,j } tl. Thus, we have

⌈
log2(W (Ai,j,j))

⌉
=

log2

 ∑
l∈{ i,i+2,...,j−2,j }

2a(tl)

 = delay(Ci,j,j) .

Now assume that k ≥ j + 2. We have N(fi,j,k) = j−i
2 + k − j + 1 ≥ 2.

Hence, by induction hypothesis, we can assume that the statement holds for all
0 ≤ i′ ≤ j′ ≤ k′ ≤ m− 1 with j′ − i′ even and N(fi′,j′,k′) < N(fi,j,k),

The circuit Ci,j,k is computed by a split of type (6.4), (6.5), or (6.3).
Case 1: Assume that the split is of type (6.4) or (6.5).
Let C1 and C2 denote the circuits used in the split by Algorithm 6.1. By

Lemma 6.1.10, the table computed by Algorithm 6.3 contains circuits C ′1 and C ′2
where for each r ∈ {1, 2}, C ′i is equivalent to Ci and gt(Cr) = gt(C ′r). By induction
hypothesis, we have

⌈
log2(W (C ′r))

⌉
≤ delay(Cr) for each r ∈ {1, 2}. Hence, the

circuit C ′ arising from merging C ′1 and C ′2 by Algorithm 6.2 fulfills

W (C ′) ≤ 2d log2W (C′1)e + 2d log2W (C′2)e ≤ 2delay(C1) + 2delay(C2) .

Thus, assuming without loss of generality that delay(C1) ≤ delay(C2), this implies

⌈
log2(W (C ′))

⌉
≤

⌈
log2

(
2delay(C1) + 2delay(C2)

)⌉
≤

⌈
log2

(
2 · 2delay(C2)

)⌉
delay(C2)∈N

= delay(C2) + 1

= max
{

delay(C1),delay(C2)
}

+ 1

= delay(Ci,j,k) . (6.8)

Case 2: Assume that Ci,j,k is computed via a symmetric split (6.3), i.e., Ci,j,k =
Ci,i+2λ−2,i+2λ−2 ∧ Ci+2λ,j,k for some 1 ≤ λ ≤ j−i

2 .
An undetermined circuit A′i,j,k for fi,j,k can be obtained by recursive application

of split of type (6.7), i.e.,

fi,j,k = fi,i,i ∧
(
fi+2,i+2,i+2 ∧

(
. . . ∧

(
fi+2λ−2,i+2λ−2,i+2λ−2 ∧ fi+2λ,j,k

)))
, (6.9)

followed by Algorithm 6.2 after every split. As Ai,j,k is a split-optimum circuit for
fi,j,k, we have W (Ai,j,k) ≤W (A′i,j,k), and it suffices to show that⌈

log2

(
W (A′i,j,k

)⌉
≤ delay(Ci,j,k) . (6.10 )
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By Lemma 6.1.10, both Ai+2λ,j,k and Oi+2λ,j,k have been computed, and a trivial
realization Ar,r,r = tr has been computed for all r ∈ { i, i+ 2, . . . , i+ 2λ− 2}. Let
C ′i+2λ,j,k be the circuit among Ai+2λ,j,k and Oi+2λ,j,k with the same output gate type
as Ci+2λ,j,k. Then, by induction hypothesis, we have⌈

log2

(
W (C ′i+2λ,j,k)

)⌉
≤ delay(Ci+2λ,j,k) . (6.11)

As all the outer gates in Equation (6.9) are And gates, we have

W (A′i,j,k) ≤
∑

r∈{ i,i+2,i+2λ−2}
W (tr) + 2

⌈
log2

(
W (C′i+2λ,j,k)

)⌉

Alg. 6.1, l. 4
≤ 2delay(Ci,i+2λ−2,i+2λ−2) + 2

⌈
log2

(
W (C′i+2λ,j,k)

)⌉
(6.11)
≤ 2delay(Ci,i+2λ−2,i+2λ−2) + 2delay((Ci+2λ,j,k)) .

From this, we can show Equation (6.10 ) the same way as in Equation (6.8) of case 1.
This proves the induction step and hence the claim.
In the case that m ≤ 2, Algorithm 6.3 outputs the circuit Ã0,0,m−1 over Ωmon

arising from A0,0,m−1 by application of Lemma 6.1.9. This is an optimum symmetric
tree for fi,j,k, so the statement holds.

When m ≥ 3, Algorithm 6.3 outputs the circuit C̃ over Ωmon arising from the
weight-optimum circuit among A0,0,m−1 and O0,0,m−1 by application of Lemma 6.1.9.
From the claim, we hence deduce

delay
(
C̃
)

Lem. 6.1.9
= min

{⌈
log2(W (A0,0,m−1))

⌉
,
⌈

log2(W (O0,0,m−1))
⌉}

claim
≤ delay(C0,0,m−1) .

As in Proposition 6.1.4, we can show that if the circuits in Algorithm 6.3 are
implemented as formula circuits, their size is at most quadratic. In practice, our
circuits will have roughly linear size (see Section 6.2) as we heuristically optimize
size as described in Section 6.1.4.

Proposition 6.1.13. Let Boolean input variables t = (t0, . . . , tm−1) with arrival
times a(t0), . . . , a(tm−1) ∈ N be given. Consider 0 ≤ i ≤ j ≤ k with j − i even.
Let Ai,j,k and Oi,j,k (the latter only for k ≥ j + 2) be the undetermined circuits
computed by Algorithm 6.3, and let Ãi,j,k and Õi,j,k be the binary circuits arising from
applying Lemma 6.1.9 to Ai,j,k and Oi,j,k, respectively. Then, we have size(Ãi,j,k),
size(Õi,j,k) ≤ (k−j+1)(k− i+1)−1. In particular, the circuit C0,0,m−1 for f0,0,m−1

computed by Algorithm 6.3 has size at most m2 − 1.

Proof. We prove the statement by induction on N(fi,j,k). For k ≤ j+1 (in particular
for N(fi,j,k) ≤ 1), the circuit Ai,j,k is a binary tree with size k − i < (k − j + 1)(k −
i+ 1)− 1 as k = j.

Thus, assume now that N(fi,j,k) ≥ 2 and k ≥ j + 2, where we construct Ai,j,k
and Oi,j,k in lines 5 to 7. Without loss of generality, we only prove the statement for
Ai,j,k. Assume that we use a split that builds Ai,j,k from undetermined circuits
C1 and C2. Note that the size of Ãi,j,k is independent of the symmetric tree
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constructed for out(Ai,j,k). Thus, we can assume that Ai,j,k = C̃1 ∧ C̃2, where
C̃i arises from Ci by application of Lemma 6.1.9 for i ∈ {1, 2}. Hence, we have
size(Ãi,j,k) ≤ size(C̃1) + size(C̃2) + 1. For C̃1 and C̃2, the induction hypothesis
is fulfilled. From here, the proof of the induction step can be continued as in
Proposition 6.1.4 as every split performed in Algorithm 6.3 is also performed in
Algorithm 6.1.

In the next theorem, we summarize the characteristics of Algorithm 6.3.

Theorem 6.1.14. Given Boolean input variables t = (t0, . . . , tm−1) with arrival
times a(t0), . . . , a(tm−1) ∈ N, Algorithm 6.3 computes a split-optimum circuit C̃
realizing the And-Or path g(t) = f0,0,m−1 with delay at most

delay(C̃) ≤ log2W + log2 log2m+ log2 log2 log2m+ 4.3

and size at most
size(C̃) ≤ m2 − 1

and can be implemented to run in time O(m4).

Proof. Split-optimality of C̃ holds by Observation 6.1.11, and the size bound is
proven in Proposition 6.1.13. The delay guarantee follows from combining Proposi-
tion 6.1.12 and Theorem 6.1.5.

The running time guarantee is also implied by Theorem 6.1.5 since Algorithm 6.3
performs a strict subset of splits of Algorithm 6.1; only the running time of Algo-
rithm 6.2 for the combination of sub-solutions by is additional (up to constant steps).

Note that during the course of Algorithm 6.3, we only need to know the weight
and output gate type of an undetermined circuit, not its concrete structure. Hence,
it suffices to actually construct symmetric trees in the final circuit C̃0,0,m−1 only.
By postponing Huffman coding (Theorem 2.3.21), Algorithm 6.2 boils down to
computing the output gate, summing up the weights of C1 and C2 and – eventually –
rounding them up to the next power of 2. These tasks can be performed in constant
time. Hence, lines 1 to 7 of Algorithm 6.3 can be implemented to run in time O(m4)
when no circuit is actually constructed.

For the construction of the final circuit C̃, we now perform backtracking on the
performed splits. For each split, we apply Algorithm 6.2, this time with application
of Huffman coding [Huf52] (see Theorem 2.3.21), which takes time O(r log2 r) for
each call on r inputs. As the size of C̃ has been proven to be at most quadratic in
m, we have r ∈ O(m2) for each Huffman coding call. Hence, all Huffman coding
calls together take time at most O(m2 log2m), which does not increase the overall
running time.

We conclude that Algorithm 6.3 can be implemented to run in time O(m4).

Using Algorithm 6.3, we will in particular compute the optimum solution as
depicted in Figure 6.2(b) for the instance from Example 6.1.6.

6.1.3 Extension to Fractional Arrival Times
In this section, we consider the And-Or Path Circuit Optimization Problem
for instances t = (t0, . . . , tm−1) with fractional arrival times a(t0), . . . , a(tm−1) ∈ R.

Our And-Or path optimization algorithm is dedicated to be used in the IBM
design flow to optimize critical paths, see Chapter 7. We will see in Section 7.3.1
that the simple delay model regarded by our algorithm can be extended to incor-
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porate physical attributes. But for this, we need fractional arrival times, where
already the decimal places may represent, e.g., large distances or large gate delays.
Hence, we do not round fractional arrival times to integers, but solve instances with
fractional arrival times best possible, i.e., compute a split-optimum circuit (cf. Ob-
servation 6.1.11).

For instances with fractional arrival times, Algorithm 6.3 can also be applied
to compute a split-optimum circuit, but with slight modifications which increase
the running time by at least a factor of m. Later in this section, we show another
approach which increases the running time only by a factor of log2m.

First, we examine the Symmetric Function Delay Optimization Prob-
lem, which is a sub-problem we need to solve. Note that the weight of inputs is
only defined for integral arrival times in Definition 2.3.16. The reason for this is
that – as demonstrated in Example 2.3.24 – the delay of a symmetric circuit on
inputs x0, . . . , xn−1 with arrival times a(x0), . . . , a(xn−1) cannot be determined from∑n−1

i=0 2a(xi) only, different as in the case when all arrival times are integral. How-
ever, in Proposition 2.3.26, we have shown that Huffman coding [Huf52] can solve
the Symmetric Function Delay Optimization Problem optimally also for
fractional arrival times, in running time O(n log2 n). Furthermore, with

Wu(x; a) :=
n−1∑
i=0

2ba(xi)c , (6.12)

by Observation 2.3.25, the optimum delay is in the interval[⌈
log2

(
Wu(x; a)

)⌉
,
⌈

log2

(
Wu(x; a)

)⌉
+ 1

]
.

For Algorithm 6.3, this has the following consequences: In the sub-routine Algo-
rithm 6.2, we cannot spare performing Huffman coding as we have done for integral
arrival times in the proof of Theorem 6.1.14. Hence, Algorithm 6.2 requires at least
linear running time. Furthermore, we need to store several circuits from the list C
computed in line 5 to be sure to compute split-optimum circuits: For two candidate
circuits C1 6= C2 ∈ C with gt(C1) = gt(C2), by Observation 2.3.25, we can only
discard C2 if Wu(C2; a) > 2Wu(C1; a), where Wu from Equation (6.12) is extended
to undetermined circuits as W is in Definition 6.1.8. Hence, we need to store more
than one candidate per gate type for each fi,j,k. Finally, in line 11, we need to choose
a circuit with best delay among all candidate circuits for f0,0,m−1.

The arising running time is hence at least in the order of Ω(m5 log2m), but in
practice much higher due to the higher number of candidate circuits as demonstrated
in Table 6.2.

With these modifications to Algorithm 6.3, we can ensure that the computed
circuit is split-optimum also for non-integral arrival times. We call this algorithm
the explicit extension of Algorithm 6.3 to fractional arrival times.

Proposition 6.1.15. Let input variables t = (t0, . . . , tm−1) with fractional arrival
times a(t0), . . . , a(tm−1) ∈ R be given. The explicit extension of Algorithm 6.3 to
fractional arrival times computes a split-optimum circuit C for g(t) in running time
Ω(m5).

As a faster and easier alternative, we can reduce the And-Or Path Circuit
Optimization Problem with fractional arrival times to its integral variant as in
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Section 5.1. For this, given inputs t = (t0, . . . , tm−1), let S denote the set of split
circuits for g(t). Then, an algorithm A is S-optimum if and only if it computes a
split-optimum circuit for g(t). Hence, applying Proposition 5.1.3 or Theorem 5.1.5
with this set S and Algorithm 6.3, we can compute split-optimum And-Or path
circuits for fractional arrival times:

Proposition 6.1.16. Let input variables t = (t0, . . . , tm−1) with fractional arrival
times a(t0), . . . , a(tm−1) ∈ R be given. The linear-search extension of Algorithm 6.3
computes a split-optimum And-Or path circuit for g(t) in running time O(m5).

Theorem 6.1.17. Let input variables t = (t0, . . . , tm−1) with fractional arrival
times a(t0), . . . , a(tm−1) ∈ R be given. The binary-search extension of Algorithm 6.3
computes a split-optimum circuit C for g(t) in running time O(m4 log2m).

6.1.4 Heuristically Optimizing Circuit Size

Up to now, our And-Or path optimization algorithms presented in Algorithms 6.1
and 6.3 construct formula circuits. We will see in this section that the algorithms can
be modified to compute a split-optimum circuit with size at most the optimum size
of a split-optimum formula circuit. Moreover, we encourage the algorithms to save
gates by re-using sub-circuits. Thus, we incorporate two steps for size improvement
into both algorithms. We only describe these ideas for the case of Algorithm 6.3, for
Algorithm 6.1, they can be applied similarly.

As a first heuristic, we avoid the construction of sub-circuits that realize the same
Boolean function as, e.g., in Figures 6.2(a) and 6.2(b) (page 166). Here, we save 2
gates by using the sub-circuit computing the function t2 ∧ t4 ∧ t6 twice.

Note that in Algorithm 6.3, all gates constructed are contained in binary trees
which are realized using Huffman coding [Huf52], see Algorithm 2.1. Hence, during
Huffman coding, we re-use sub-trees that have already been constructed. In order
to enlarge the possibility that gates can be shared in multiple symmetric trees, we
introduce a tie-breaker when choosing the vertices v and w to be merged in line
line 4 of Algorithm 2.1. The tie-breaker is based on the set of inputs in the input
cone of the respective vertices. E.g., in Figure 6.2(b) (page 166), we see that the
symmetric trees t2 ∧ t4 ∧ t6 and t2 ∧ t4 ∧ t6 ∧ t8 ∧ t9 have a common prefix. Thus,
for two vertices v1 and v2, in Huffman coding, we prefer merging v1 over merging v2

if | Iv1 | < | Ivw |, or if | Iv1 | = | Ivw | and the smallest input index in Iv1 is smaller
than the smallest input index in Ivw .

Our second measure for size improvement is to store more than one candidate
undetermined circuit for the function fi,j,k for each possible output gate type in
lines 6 and 7 of Algorithm 6.3. For each gate type, we keep a set of candidates
with different delay and size properties which in particular contains a split-optimum
solution. Then, during the circuit construction at the end of the algorithm, we can
use smaller sub-circuits in delay-wise uncritical parts of the circuit.

We now describe in detail which candidate circuits for fi,j,k to store. The idea
is to store a candidate circuit Ci,j,k for fi,j,k if it is not dominated by any other
candidate with respect to delay and size. As the circuit construction is performed
at the very end of the algorithm, we do not know the accurate circuit sizes during
the algorithm. Still, we can give an upper bound s(Ci,j,k) on the size of Ci,j,k by
assuming that it is constructed as a formula circuit: For initial constructions, let
s(Ci,j,k) = m+n−1, and for splits Ci,j,k = C1∧C2, let s(Ci,j,k) = s(C1)+s(C2)+1.
Now, we can define our dominance criterion.
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Definition 6.1.18. Let Boolean input variables t = (t0, . . . , tm−1) with arrival times
a(t0), . . . , a(tm−1) ∈ N and 0 ≤ i ≤ j ≤ k < m with j − i even be given. Consider
two undetermined circuits C1 and C2 for fi,j,k. We say that C1 dominates C2 if

gt(C1) = gt(C2) and W (C1) ≤W (C2) and s(S1) ≤ s(C2) .

For each possible output gate type, we do not store only one candidate circuit
Ai,j,k or Oi,j,k, but a list of candidate undetermined circuits for fi,j,k that do not
dominate each other regarding Definition 6.1.18. Hence, when applying a split for
the computation of fi,j,k, we need to combine any two non-dominated circuits for
the respective sub-functions, and to store the result if it is not dominated by another
candidate circuit.

This way, for each occurring weight, we keep the candidate undetermined circuit
for fi,j,k with smallest size among all candidates with at most the same weight. In
particular, when we finally choose an undetermined circuit for f0,0,m−1, a weight-
optimum circuit is contained among the candidates. As we actually optimize the
delay of the corresponding binary circuit, we may choose an undetermined circuit
for f0,0,m−1 which has best size among all candidate undetermined circuits which
lead to the optimum delay.

Using this size optimization strategy, the size of the circuit we compute is always
at least as good as the best size of any split-optimum formula circuit for f0,0,m−1.

As the size of the circuit C̃ computed by Algorithm 6.3 is at most m2 − 1 by
Proposition 6.1.13, the number of different sizes that can occur for non-dominated
circuits is bounded by this number. Hence, the number of non-dominated circuits for
fi,j,k for fixed i, j, k is bounded by m2. Thus, storing and merging all non-dominated
candidates increases the total running time by at most a factor O(m4). In Table 6.2,
we will see that in practice, the running time increase is rather in the order of O(m2).

Remark 6.1.19. Recall that in the explicit extension of Algorithm 6.3 to fractional
arrival times described in Section 6.1.3, we use a different weight definition

Wu(C; a) =

⌈
log2

( ∑
v∈δ+(out(C))

2ba(v)c
)⌉

from Equation (6.12), and that we already keep multiple candidate circuits for each
fi,j,k in order to compute a split-optimum solution. Similarly, in Definition 6.1.18,
we have to replace the weight criterion by Wu(C1) ≤ 2Wu(C2), which significantly
increases the number of candidate circuits and hence the running time, see Table 6.2.

Both the binary and linear extension apply Algorithm 6.3 to integral arrival
times, hence these are not affected by this remark.

6.2 Computational Results
In this section, we examine the quality of the circuits computed by our algorithms
from Sections 6.1.1 and 6.1.2, compared with each other and previous And-Or path
optimization algorithms, but also with our delay-optimum solutions from Chapter 5.
All tests were executed on a machine with two Intel(R) Xeon(R) CPU E5-2699 v4
processors, using a single thread.

First, we examine small depth-optimization instances. In Table 6.1, for each
d ∈ {0, . . . , 8} and any stated And-Or path optimization algorithm, we show the



6.2. Computational Results 177

d 0 1 2 3 4 5 6 7 8

Algorithm 5.1 1 2 3 6 10 19 33 60 64∗

Algorithm 6.1 1 2 3 6 10 19 33 60 109
Algorithm 6.3 1 2 3 6 10 19 33 60 109
[RSW06] 1 2 3 6 9 15 25 41 67
[HS17b] 1 2 3 5 8 14 24 40 66

Table 6.1: Maximum number m of inputs for which the respective
method computes an And-Or path circuit with depth d. As Algo-
rithm 5.1 works on 64-bit bitsets, the maximum instance it can solve
has 64 inputs. Once this technicality is overcome, we expect to com-
pute the optimum depth for up to 109 inputs within a few hours per
instance.

maximum number of inputs m for which the respective algorithm computes an And-
Or path circuit g

(
(t0, . . . , tm−1)

)
with depth d.

As Algorithm 5.1 always computes depth-optimum solutions, from the table, we
can conclude that both Algorithms 6.1 and 6.3 compute depth-optimum solutions
for instances with up to 109 inputs. For 110 or more inputs, we need a depth of at
least 9, and it is unknown whether this is best possible. A comparison with Table 5.7
would yield more instances where Algorithm 6.3 is optimum. In Section 6.3, we will
examine the difference of Algorithms 6.1 and 6.3 to our exact algorithm and state in
Conjecture 6.3.1 that we believe that both Algorithms 6.1 and 6.3 always compute
optimum solutions regarding depth optimization.

The algorithms by Rautenbach, Szegedy, and Werber [RSW06] and Held and
Spirkl [HS17b] on many instances compute a solution which is by 1 worse than the
optimum. In fact, for 110 inputs [HS17b] even needs depth 10 and is hence by 2
away from the optimum. Note that [RSW06] have an advantage over [HS17b] on our
instances as they natively compute And-Or path of type g

(
(t0, . . . , tm−1)

)
and not

g∗
(
(t0, . . . , tm−1)

)
, so there are a few instances where they have a better depth.

Now, we examine instances with non-uniformal arrival times. Recall that by
Proposition 5.2.6, for up to 3 inputs, the standard And-Or path circuit is an op-
timum solution to the And-Or Path Circuit Optimization Problem. Thus,
instances with less than 4 inputs are not interesting for our comparisons. Further-
more, in our practical application in the IBM design flow (cf. Chapter 7), typical
instances have up to 15 inputs, see Table 7.1.

Hence, we computed two test sets TI and TF containing instances for the And-
Or Path Circuit Optimization Problem with integral and fractional arrival
times (with up to 4 digits), respectively. Each of the two test sets is of the following
form: For each n ∈ {4, 28}, there are 1000 instances with n inputs with arrival times
chosen uniformly from the interval [0, n]. Results look very similar when the arrival
time patterns are more balanced, e.g., when we restrict the interval our random
arrival times are chosen from to a range of [0, log2 n+ 2].

For each of the instances I in TI and TF, we computed

• the optimum delay opt(I) computed by Algorithm 5.1,

• the circuit CB(I) (binary-circuit dynamic program) resulting from Algo-
rithm 6.1 (page 162), with heuristic size optimization as in Section 6.1.4,
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(a) Delay gains on test set TI.
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(b) Delay gains on test set TF, rounded down to integers.
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(c) Delay gains on test set TF, rounded down to multiples of 0.1.

Figure 6.5: Delay gains of the circuits CU (I) computed by Algo-
rithm 6.3 (page 170) over CP (I), the circuit with best delay among
those computed by Held and Spirkl [HS17b] and Rautenbach, Szegedy,
and Werber [RSW06], and the optimum delays opt(I) computed by
Algorithm 5.1.
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(a) Delay gains on test set TI.
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(b) Delay gains on test set TF, rounded down to integers.
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(c) Delay gains on test set TF, rounded down to multiples of 0.1.

Figure 6.6: Delay gain of the circuits CB(I) computed by Algo-
rithm 6.1 (page 162) over CP (I), the circuit with best delay among
those computed by Held and Spirkl [HS17b] and Rautenbach, Szegedy,
and Werber [RSW06], and the optimum delays opt(I) computed by
Algorithm 5.1.
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• the circuit CU (I) (undetermined-circuit dynamic program) resulting from Al-
gorithm 6.3 (page 170) with heuristic size optimization as in Section 6.1.4,
where for fractional arrival times, we use the binary-search extension from
Theorem 6.1.17,

• the circuit CP (I) (previous work) with best delay among those constructed by
Held and Spirkl [HS17b] and Rautenbach, Szegedy, and Werber [RSW06].

Note that for these instance sizes, our algorithm from Theorem 4.2.4 will compute
the same solution as [HS17b], so its delay will not be better than the delay of CP (I).

In Figure 6.5, we compare the circuits CB(I), CU (I), CP (I) and the optimum
solution opt(I) for each instance I in test set TI and TF: Each coordinate in any
of these plots corresponds to one instance, and instances are grouped by their
numbers of inputs in vertical lines. The color of an instance I is chosen based
on the (in case of TF rounded) delay gain of CU (I) over CP (I). More precisely,
for the case of integral arrival times (see Figure 6.5(a)), instances are colored by
delay(CP (I)) − delay(CU (I)); and for the case of fractional arrival times, they are
colored by

⌊
α
(
delay(CP (I))− delay(CU (I))

)⌋
, where α = 1 in Figure 6.5(b) and

α = 10 in Figure 6.5(c). In Figure 6.5(c), dotted lines separate the instance groups
with different colors. The blue lines in Figures 6.5(a) and 6.5(b) indicate the portion
of instances I for which delay(CU (I)) = opt(I): For all instances I in a colored part
which are drawn below the blue line, the circuits CU (I) are delay-optimum, and for
those above the blue line, they are not.

Recall from Sections 6.1.2 and 6.1.3 that Algorithm 6.3 and all its extensions
to fractional arrival times compute split-optimum And-Or path circuits as defined
in Observation 6.1.11. In Section 2.6.2, we observed that all recursion options of
[HS17b] and [RSW06] can be described using the splits used in Observation 6.1.11,
so all delay gains are positive values. In general, the delay gain increases with
increasing number of inputs.

As shown in the legend, the delay gain varies between 0 (yellow) and 4 (dark
green). For testbed TI, there are 5 instances with a delay gain of 4, with numbers
of inputs between 20 and 28. We see in Figure 6.5(a) that on a large fraction of
the instances I in TI, the delay of CU (I) is better than the delay of CP (I), and on
instances with at least 18 inputs, even better by 2 or more.

Figure 6.5(c) shows that on almost every instance in TF, CU (I) has better delay
than CP (I), and for instances with at least 18 inputs, the delay of CU (I) is better
than the delay of CP (I) by at least 1.4. However, even for 28 inputs, the fraction
of the instances of TF with delay gain 2 or more is only about 3/5, and there is no
instance with a delay gain of at least 4.

In Figures 6.5(a) and 6.5(b), we see that the delay of the circuits CU (I) –
in contrast to the circuits CP (I) – is very often optimum. For test set TF, the
delay difference of our algorithm looks much worse than for test set TF, but in
Figure 6.8(b), we will see that most of the non-optimum circuits CU (I) only deviate
from the optimum by at most 0.4. In fact, the average delay difference of the circuit
CU (I) to opt(I) is roughly 0.04 on both testbeds.

Figure 6.6 compares the circuits CP (I) with the circuits CB(I) computed by
Algorithm 6.1. We see that delay improvements of CB(I) over CP (I) are still high,
but much lower than for CU (I). In particular, for the test set TF, there are barely
any instances where CB(I) has optimum delay and CP (I) does not, and the amount
of instances with a delay gain of ≥ 2 is very low.
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Figure 6.7: For any d ∈ {0, . . . , 5}, we show the portion of instances I
in test set TI for which the delay difference of the circuit computed by
the respective algorithm to the optimum solution opt(I) computed by
Algorithm 5.1 is d. We compare the solution CU (I) computed by Al-
gorithm 6.3 (page 170), the solution CB(I) computed by Algorithm 6.1
(page 162), and the circuit CP (I) with the best delay among those of
[HS17b] and [RSW06].

Now, we analyze the delay differences of CU (I), CB(I) and CP (I) to the optimum
solution in more detail. For the testbed TI, the delay differences are depicted in
Figure 6.7. For each value d on the x-axis, we plot the percentage of the instances
from testbed TI for which the respective circuits have delay difference exactly d to
opt(I).

We see that on 95.75% of the integral instances, the delay of CU (I) is optimum,
and that its delay difference to the optimum is always at most 1. The delay of CB(I)
is optimum only for 50.00% of the instances, but also never away from the optimum
by more than 1. In contrast, CP (I) differs from the optimum by up to 4, and on
43.33% of the instances by 2.

For the test set TF, we show two plots in Figure 6.8. Both show the rounded
delay differences of the respective circuits to the optimum solution. In Figure 6.8(a),
we show all instances and round delay differences down to integers. The comparison
of the three algorithms looks similar as for the test set TI, but all algorithms seem
to perform worse than on test set TI. However, there are many instances with a
fractional delay difference which is rounded down in the plots.

Hence, in Figure 6.8(b), for every algorithm, we restrict ourselves to the part of
Figure 6.8(a) with delay difference at most 1 and plot the delay differences rounded
down to multiples of 0.1. Again, the y-axis displays the percentage of all instances
which are solved with the rounded delay gain as on the x-axis. Now, we see that for
CU (I), actually only 0.06 percent of the instances have a delay difference of 1 to the
optimum, and that on more than 96 % of the instances, the delay difference to the
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(a) Delay differences to the optimum solutions rounded up to integers for instances
I in test set TF. All instances with delay difference 0 are solved delay-optimally.
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(b) More detailed extract of Figure 6.8(a) in the interval (0, 1]. Here, delay
differences are rounded up to multiples of 0.1.

Figure 6.8: For any d ∈ {0, . . . , 5}, we show the portion of instances
I in test set TF for which the rounded delay difference of the circuit
computed by the respective algorithm to the optimum solution opt(I)
computed by Algorithm 5.1 is d. We compare the solution CU (I)
computed by Algorithm 6.3 (page 170), the solution CB(I) computed
by Algorithm 6.1 (page 162), and the circuit CP (I) with the best delay
among those of [HS17b] and [RSW06].
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optimum is at most 0.4.
On average, the delay difference of CU (I) to the optimum is about 0.04 both on

testbeds TI and TF, while it is roughly 1.64 for CP (I) on TI and roughly 1.68 for
CP (I) on TF.

We have verified that for all instances I in testbeds TI and TF with up to 5
inputs, our circuits CU (I) are always delay-optimum. However, already for 6 inputs,
using our optimum algorithm, we discovered that there is an instance where CU (I)
does not have optimum delay, see Figure 6.12 (page 189).

We shall now analyze the sizes and fanouts of our circuits CU (I) computed by
Algorithm 6.3 (page 170). As for fractional arrival times, we use the binary-search
extension of Algorithm 6.3, each solution computed is obtained from an instance
with integral arrival times by modifying only arrival times. Hence, we only analyze
sizes and fanouts of CU (I) for I in the testbed TI.

In Figure 6.9, we compare the sizes of our circuits CU (I) with those of CP (I) for
all I in testbed TI. Each blue circle represents a set of instances (the number of in-
stances being linear in the circle’s area) with delay gain delay(CP (I))−delay(CU (I))
as on the x-axis and size increase size(CU (I))/ size(CP (I)) as on the y-axis. For each
occurring delay gain, the black dot marks the average size increase for all instances
with this delay gain.

In these experiments, during circuit construction, we always re-use existing gates
in Huffman coding as described in Section 6.1.4. However, we will see in Table 6.2
that the other size improvement strategy described in Section 6.1.4 – storing all non-
dominated candidates with respect to weight and size – is very time-consuming, so
we also show circuit sizes when disabling this feature. This way, we still compute a
split-optimum solution, but with worse circuit size.

In Figure 6.9(a), our circuits CU (I) are computed with the heuristic size opti-
mization strategy from Section 6.1.4. The number of gates used in our circuits CU (I)
is typically higher than in the circuits CP (I), but mostly, the size increase is in range
of 20%. Note that for instances with delay gain 0, the sizes of our circuits CU (I) are
comparable with the sizes of the circuits CP (I), and on average, we even compute
smaller circuits. The average size increase rises with increasing delay gain.

If we do not store all non-dominated candidates with respect to weight and size
as in Section 6.1.4, we obtain the size increases as shown in Figure 6.9(b). Both the
average and maximum size increase are much higher than in Figure 6.9(a), so this
size improvement technique is very effective.

In Figure 6.10, we plot the fanout distribution in the circuits CU (I) for the
instances I from test set TI. For each number of inputs on the x-axis, we gather all
vertices with fanout at least 1 for all instances I with this number of inputs. Each
vertex is colored by its fanout. In Figure 6.10(a), we plot all vertices with fanout at
least 1. As here, vertices with fanout at least 4 can barely be seen, in Figure 6.10(b),
we only plot those vertices.

First note that Figure 6.10(a) indicates that the total number of inputs and ver-
tices (without outputs) grows roughly linearly with the number of inputs. Hence, in
practice, the average size of our circuits CU (I) computed by Algorithm 6.3 (page 170)
seems to be linear in the number of inputs, more precisely, in a range of about 1.5n.
For reference, for the circuits computed by Held and Spirkl [HS17b], the number of
vertices is 1.2n on average.

Now, consider the fanouts. In Figure 6.10(a), we see that the majority of the
vertices has fanout 1. Also considering Figure 6.10(b), the number of vertices
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(a) Comparison of the sizes of the circuits CP (I) with the circuits CU (I) computed by
Algorithm 6.3 (page 170) with the size heuristic size optimization from Section 6.1.4.
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(b) Comparison of the sizes of the circuits CP (I) with the circuits CU (I) computed by
Algorithm 6.3 (page 170) without storing all non-dominated candidates as in Section 6.1.4.

Figure 6.9: Comparison of the size (number of gates) of the circuit
CP (I), the circuit with best delay among those computed by the algo-
rithms from Held and Spirkl [HS17b] and Rautenbach, Szegedy, and
Werber [RSW06], with the circuits CU (I) computed by Algorithm 6.3
(page 170) with or without storing all non-dominated candidate cir-
cuits regarding weight and size as in Section 6.1.4 for instances I in
testbed TI.
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with fanout k decreases rapidly with increasing k. As expected, the amount of
vertices with high fanouts increases with increasing number of inputs. The maximum
occurring fanout is 9, and less than 0.8% of all vertices have fanout at least 4.

This indicates that after buffering, our circuits will still have good delays. In
Section 7.1, we will see that in our application in chip design, a fanout of mo re than
2 or 3 at a vertex v is often not desired in practice. Instead, often, a so-called buffer
tree will be inserted after v in order to ensure that all gates have fanout at most 2.
The circuits computed by Held and Spirkl [HS17b] and Rautenbach, Szegedy, and
Werber [RSW06] in fact have a maximum fanout of 2.

Thus, in another experiment, we evaluated the delay of our circuits CU (I) after a
simple buffering: For each vertex v with k >= 3 successors, we add a delay penalty
of d log2 k e − 1. This assumes that a symmetric buffer tree is built; in practice,
required arrival times at the successors would be respected in order to avoid long
buffer chains on delay-critical parts of the circuit. Figure 6.11 depicts the delay gain
of our circuits CU (I) over CP (I) with this delay model. As in CP (I), the maximum
fanout is 2 anyway, the delay remains the same here; in our circuits, the delay is
sometimes worse than with our usual delay model. But often, vertices with higher
fanout are not critical, hence buffering does not influence the total delay.

In Figure 6.11, we see that on a tiny fraction of the instances I of testbed TI, the
buffered delay of CP (I) is better than for our circuits CU (I), but only by 1. Still,
for both test sets, on the majority of the instances, our circuits CU (I) have a better
buffered delay than CP (I), and the overall distribution of the delay gains is not much
worse than for the original delay model as in Figure 6.5(a).

As our buffering penalty is pessimistic, we assume that the impact of buffering is
much less in practice. Furthermore, one could incorporate buffering in Algorithm 6.3:
Although it is an open question whether it is possible to optimize a buffered delay in
Algorithm 6.3, it would not be hard to incorporate fanout in the dominance criterion
from Definition 6.1.18 which is already used for size optimization.

Finally, in Table 6.2, we show a running time comparison of different versions of
Algorithm 6.3. Here, both for integral and fractional arrival times, for each number
n ∈ {10, 20, . . . , 100}, we created 10 instances with random arrival times on n inputs
in the interval [0, n]. These are precisely the testbeds used for the running time
analysis of our exact algorithm from Chapter 5 in Table 5.3.

On each of the instances with integral arrival times, we ran Algorithm 6.3 with
and without storing all non-dominated candidates regarding weight and size as in Sec-
tion 6.1.4. On each instance with fractional arrival times, we ran the three extensions
of Algorithm 6.3 to fractional arrival times from Section 6.1.3 with size improvement
enabled: the binary-search extension from Theorem 6.1.17, the linear-search exten-
sion from Proposition 6.1.16, and the explicit extension from Proposition 6.1.15. In
Table 6.2, in the row with #inputs = n, we show the average running time of the
respective algorithm on the instances with n inputs. We do not show the running
time of the algorithm by Held and Spirkl [HS17b] as it is less than 0.001 seconds on
any instance.

The value λ shown in the last row is a hint on the asymptotic running time
of the respective algorithm A: Assuming that the running time of algorithm A is
bounded by some polynomial π, and on this instance set, the running time is already
dominated by π’s variable with highest degree, the running time of algorithm A on
n inputs will by roughly in the order of nλ.

On instances with integral arrival times, we see that the average running time
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(a) Fanout distribution of CU (I) for all instances I in test set TI.
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(b) Figure 6.10(a) restricted to the vertices with fanout at least 4.

Figure 6.10: Fanout distribution of the circuits CU (I) computed by
Algorithm 6.3 (page 170) for all instances of test set TI.
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Figure 6.11: Comparison of the buffered delay of the circuit CU (I)
computed by Algorithm 6.3 (page 170) with CP (I), the circuit with
best delay among those computed by Held and Spirkl [HS17b] and
Rautenbach, Szegedy, and Werber [RSW06], and the optimum delay
opt(I) computed by Algorithm 5.1 on test bed TI.

of Algorithm 6.3 without storing all non-dominated candidates is smaller than 0.7
seconds for each number of inputs. When all non-dominated candidates are com-
puted, running times are still at most 0.06 seconds for up to 30 inputs, but increase
up to 88 seconds for up to 100 inputs. Hence, computing a split-optimum circuit
is very fast, but computing a split-optimum circuit with a good size is slower. For
Algorithm 6.3 without storing all non-dominated candidates, we have λ = 3.923,
which matches the running time guarantee of O(m4) given in Theorem 6.1.14. We
explained in Section 6.1.4 that storing all non-dominated candidates will increase the
running time by a factor of at most S2, where S is the size of the constructed circuit.
As Figure 6.10(a) suggests the assumption that the circuit size grows roughly linear
in m, when all non-dominated candidates are stored, λ ≈ 6 is as expected.

For instances with fractional arrival times, the average running time of the binary-
search extension of Algorithm 6.3 is indeed roughly log2m times the average running
time of Algorithm 6.3 with size optimization enabled. Also, λ = 6.517 is not much
higher than for the integral algorithm. As expected, for the linear-search extension
of Algorithm 6.3, the average running times are roughlym times the integral running
times, and we have λ ≈ 7. In particular, the average running times are much higher
than for the binary-search extension. The running time of the explicit extension of
Algorithm 6.3 is even higher, and we have λ = 8.714. As expected, the maximum
number of candidates per fi,j,k is much higher for the explicit extension than for
the binary extension – e.g., for the instances with 50 inputs, by a factor of 5 up
to 40 higher. This number contributes a quadratic factor to the running time; and
additionally, in the explicit extension, we need to perform Huffman coding for every
merge of 2 candidates.

In our practical application in chip design, see Section 7.3, we use the binary-
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Integral arrival times Real arrival times

# inputs No size opt. With size opt. Binary Linear Explicit

10 0.000 0.000 0.001 0.001 0.001
20 0.001 0.007 0.019 0.092 0.069
30 0.005 0.054 0.310 1.351 1.281
40 0.017 0.290 1.808 10.287 14.787
50 0.035 1.179 5.884 56.195 99.164
60 0.067 3.739 26.693 224.705 808.890
70 0.147 9.665 78.845 770.667 3221.723
80 0.281 20.185 207.164 2021.854 8972.769
90 0.423 46.051 351.129 4526.578 34365.340
100 0.662 87.701 696.301 10162.449 85267.046

λ 3.923 5.863 6.517 7.215 8.714

Table 6.2: Average running times of Algorithm 6.3 on 10 randomly
generated And-Or path instances for each number of inputs. For
integral arrival times, we show running times both with and with-
out the size optimization from Section 6.1.4 which comptues all non-
dominated candidates. For fractional arrival times, we show the run-
ning times of all three extensions of Algorithm 6.3 to fractional ar-
rival times from Section 6.1.3. In the last row, for each algorithm A
with average running time r(A,n) for n inputs, we show the value
λ(A) = log100/20

(
r(A,100)
r(A,20)

)
.

search extension of Algorithm 6.3 to fractional arrival times. We shall see in Sec-
tion 7.4 that we can certainly afford this running time: Mostly, our instances have
only up to 20 inputs, where the average running time of our algorithm is 0.015 sec-
onds or less. Other parts of our flow presented in Section 7.3 consume the majority
of the running time, see Table 7.1. As we apply the And-Or path optimization
algorithm several hundred times during our flow, the running times of our exact
algorithm from Chapter 5 as presented in Table 5.3 are too high for this application,
at least if size optimization is enabled.

6.3 Comparison with Exact Algorithm
In this section, we correlate the algorithms of Algorithms 5.1, 6.1 and 6.3. In order to
understand the difference between Algorithm 6.1 and Algorithm 5.1, let us consider
the structure theorem, Theorem 5.2.9, for the case of extended And-Or paths. For
this study, we assume that Conjecture 5.2.11 is fulfilled.

So consider inputs t = (t0, . . . , tm−1) with uniform input arrival times a(t0) =
. . . = a(tm−1) ∈ R and gate types Γ = (◦0, . . . , ◦m−1). Assume that h(t; Γ) is an
extended And-Or path, i.e., its signal partition { t0, . . . , tm−1 } = P0 ++ . . . ++ Pc
fulfills |P1| = . . . = |Pc−1| = 1 and |Pc| = 2. Consider a size-optimum circuit C
among all depth-optimum formula circuits for h(t; Γ).

For k ∈ {1, 2}, let ik denote the maximum index of any input in S◦k . Without
loss of generality, we may assume that i2 = m − 1. By Conjecture 5.2.11, for each
tj ∈ S◦2 , we have i1 < j. Consider the circuit C = C1 ◦ C2 arising from applying
Algorithm 5.1 to inputs t0, . . . , tm−1, and assume that ◦ = And (the case ◦ = Or
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ure 6.12(a) computed by
Algorithm 5.1.

Figure 6.12: An instance where Algorithm 6.3 (page 170) does not
compute a delay-optimum solution.

works analogously by dualizing).
We show that C can be constructed via one of the splits (6.1), (6.2) or (6.3). By

Observation 6.1.2, Algorithm 6.1 computes a circuit with best delay achievable with
these splits, so this would imply that Algorithm 6.1 and, by Proposition 6.1.12, also
Algorithm 6.3, are also exact algorithms in the case of uniform arrival times.

Case 1: We have ti1 ∈ P0.
In particular, in this case, we have ◦0 = And. The function h(t; Γ)SAnd

1
is a

symmetric function on a consecutive prefix of P0, and the function h(t; Γ)SAnd
2

is an
extended And-Or path arising from h(t; Γ) by deleting a consecutive prefix of P0.
Hence, C = C1 ∧ C2 arises from a symmetric split as in Equation (6.3).

Case 2 We have ti1 /∈ P0.
Now, we have

f1 = h(t; Γ)SAnd
1

= h(t; Γ)[0:i1]

and
f2 = h(t; Γ)SAnd

2
=

∧
i<i1,◦i=Or

ti ∧ h(t; Γ)[i1+1:m−1] ,

i.e., f1 and f2 are both extended And-Or paths. As ti1 ∈ SAnd, we have ◦i1 = And
and ◦i1+1 = Or. Hence, the number of inputs of f1 that are not contained in P0

is even if and only if ◦0 = Or. Moreover, the inputs of P0 are contained in f2 if
and only if ◦0 = Or. Hence, the circuit C = C1 ∧ C2 arises from an odd split
Equation (6.1) if ◦0 = And and an from even split Equation (6.2) if ◦0 = Or.

Thus, Conjecture 5.2.11 implies the following conjecture.

Conjecture 6.3.1. For uniform arrival times, both Algorithms 6.1 and 6.3 compute
optimum solutions for all extended And-Or paths.

As by Table 6.1 (page 177), this is statement is satisfied for all And-Or path in-
stances with up to 109 inputs, we assume this conjecture as well as Conjecture 5.2.11
to be true.

For the case of nun-uniform arrival times, already for 6 inputs, there is an And-
Or path instance with certain input arrival times where Conjecture 5.2.11 is not
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fulfilled. We show this instance in Figure 6.12(a). In the circuit in Figure 6.12(b)
computed by Algorithm 6.3 (page 170), we are not able to connect the input t2 with
arrival time 4 to the output via only two gates because the And-Or path on the last
3 inputs has delay 5. In the circuit in Figure 6.12(c) which is a possible output of
Algorithm 5.1, t2 has depth 2 because this realization can cut out the inputs t1 and
t2 from the And-Or path, which is not possible in our algorithm.

Indeed, it is easy to verify that the function computed by the right predecessor
of out(C) in Figure 6.12(c) is the generalized And-Or path t0 ∧ (t1 ∨ t3 ∨ (t4 ∧ t5)),
which is not an extended And-Or path. Furthermore, the partition of the same-gate
signals SAnd of h(t; Γ) in this case is SAnd

1 = { t0, t4, t5 } for the left sub-circuit and
SAnd

2 = { t2 } for the right sub-circuit.



Chapter 7

BonnLogic: A Logic Restructuring Flow

In this chapter, we consider a practical application of And-Or path optimization:
logic restructuring in VLSI (very large scale integration) design, i.e., chip design.
The Research Institute for Discrete Mathematics at the University of Bonn develops
a VLSI software suite called BonnTools in a long-term cooperation with IBM,
see, e.g., Korte, Rautenbach, and Vygen [KRV07] or Held et al. [Hel+11]. Hundreds
of VLSI chips have been designed with the BonnTools, among those the latest
POWER and mainframe processors.

The BonnTools contain optimization algorithms for most important sub-
problems arising in chip design. In particular, there are several timing optimization
algorithms which ensure that all signals on a chip meet their respective deadlines.
One of these timing optimization tools is BonnLogic, a tool that revises the log-
ical structure of timing-critical parts of a chip during the VLSI design flow. An
earlier version of BonnLogic was published by Werber, Rautenbach, and Szegedy
[WRS07] and, with more details, by Werber [Wer07]. The current version has been
published previously in Brenner and Hermann [BH20].

In Section 7.1, we give a brief introduction into VLSI design with a focus on
timing optimization. An overview of the previous work on logic optimization in chip
design is given in Section 7.2. In Section 7.3, we describe BonnLogic in detail,
and in Section 7.4, we demonstrate its effectiveness and efficiency in experiments on
recent 7nm real-world instances.

7.1 VLSI Design
Physically, a VLSI chip consists of multiple layers: At the bottom, there is the
placement layer where the transistors are located. Transistors are connected by
wires which run in several wiring layers and via layers. Each wiring layer contains
axis-aligned wires, usually all running in the same direction. Different wiring layers
are connected by via layers.

The logic functionality of a computer chip can be modeled by a netlist consisting
of cells, pins, and nets: The external connection points of a chip are called primary
input and output pins. Each primary output pin models a Boolean function
that depends not only on the primary input pins, but also on bits from earlier
computations, which are stored in register cells. Logic cells implement elementary
Boolean functions such as And and Inv which together model the Boolean functions

191
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Buf Inv Nand Nor Xor Xnor Aoi Oai

Figure 7.1: A typical CMOS library. Buffer gates denoted by Buf
compute the identity function, inverter gates have already been in-
troduced in Figure 2.2. Often, there are no And and Or gates, but
only their inverted counterparts Nand and Nor, with up to 4 inputs.
Additionally, there are Xor and Xnor gates, where Xnor is the in-
verted counterpart of Xor with up to 4 inputs. Furthermore, there
are two-level gates which are decomposed of two levels of And and Or
gates, plus an inverter. E.g., given inputs a0, a1, b1, b2 ∈ {0, 1}, the
Aoi21 gate computes the function (a0 ∧ a1) ∨ b1, and the Oai22 gate
computes (a0 ∨ a1) ∧ (b1 ∨ b2).

computed by the chip. Each cell has a set of pins for its connection to other cells, or
to primary input and output pins. Each such connection is modeled by a net, a set
of pins that need to be electrically connected by wires. Each net contains a single
driver and arbitrarily many sinks and distributes the electrical signal of the driver
to all its sinks. A driver may be a primary input pin or the output pin of a cell,
and a sink may be a primary output pin or the input pin of a cell.

Note that when there are no register cells, the logic functionality of a netlist can
be modeled by a circuit (Definition 2.2.2). On a chip, the set of Boolean functions for
which logic cells are available – which we called a basis in Definition 2.2.1 – is called
a library, and elements of the library are called gates or gate types. Nowadays’
transistors are CMOS transistors, i.e., complementary metal–oxide–semiconductor
transistors. Such devices inherently invert their input signals, so inverting gates
can be built using less transistors compared to non-inverting gates. Many CMOS
libraries do not contain And and Or gates, but only their inverted counterparts. A
typical CMOS library is shown in Figure 7.1.

Apart from the gate type, a logic cell also captures physical data (a physical
shape, a physical location on the chip area, locations for its pins), internal tran-
sistors, and electrical properties. Hence, there are numerous different logic cells
implementing the same Boolean function. Usually, for one gate, there are logic cells
with different gate sizes, i.e., transistor sizes, and Vt levels, i.e., transistor voltages,
which have a huge impact on the timing properties of a logic cell. In different regions
of a computer chip, different gate sizes are used in order to trade off speed with area
or power consumption.

The standard industrial method for analyzing the timing behaviour of a netlist
is static timing analysis, which goes back to Hitchcock, Smith, and Cheng [KC66;
HSC82]. In contrast to Definition 2.3.2, in this context, the term delay refers to the
time difference between two events. For example, the time a signal needs to traverse
a cell or a wire is called cell delay or wire delay, respectively. Assuming that cell
delay and wire delay are given by black-box functions, and assuming that we know
the arrival time of signals at each primary input pin and the output pin of each
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register cell, we can propagate arrival times through the netlist (actually, through a
so-called timing graph which is a refinement of the netlist, but this is not important
for our purpose). At the primary output pins and the input pins of register cells,
there might be a required arrival time indicating the latest acceptable arrival
time. Required arrival times can be propagated backwards through the netlist. At
a pin, the difference between required arrival time and arrival time is called slack.
The slack is non-negative if and only if the signal arrives in time.

Wire delay and cell delay are always approximations as an exact analysis of
the timing behaviour of real hardware is impossible. Delay depends on numerous
parameters, e.g., physical distances, electrical capacitances and resistances of cells
and wires, and slews (the time the voltage function needs to switch from 10% to
90%). E.g., cells with larger transistor sizes can drive higher capacitive loads, i.e.,
longer wires or more successors.

There are various delay models that differ in accuracy, complexity and simpli-
fying assumptions. A wire delay model that is widely used in timing optimization
because it is quite precise and can be computed efficiently is the Elmore delay
model by Elmore [Elm48]. Here, the netlist is modeled as an electrical network of
resistances and capacitances, and the delay of a wire for a net with only one sink
is asymptotically quadratic in the length of the wire. Hence, long connections can
be sped up by inserting buffers at regular distances in order to make the total wire
delay grow only linearly. With more computational effort, capacitances can be mod-
eled more accurately by approximately solving differential equations as in the RICE
evaluation by Ratzlaff and Pillage [RP94].

Estimating the delay on the most critical parts of a chip is easier. Here, we know
that wires will be buffered optimally, so it is justified to assume that the delay of
a wire grows linearly with its physical length. Additionally, we may assume that
for each gate, the fastest gate size and Vt level will be chosen, and that the number
of successors of cells and slews are low. Hence, the delay of logic cells usually does
not vary much in comparison to the differences in locations and arrival times. Cell
delay can thus be approximated by a constant (or a different constant for each gate).
This simple delay model is a virtual timing model, and it yields reasonably good
approximations in timing-critical regions of a computer chip (see, e.g., Otten [Ott98]
and Alpert et al. [Alp+06]).

Typical measures for the timing criticality of a computer chip are worst slack,
i.e., the worst slack of any path on the chip, and sum of negative endpoint slacks,
i.e., the sum over the negative slacks of all paths between timing endpoints (register
cells or primary inputs / outputs).

In Figure 7.2, we plot two similar netlist for the same computer chip, called i6.
This chip is a 7nm chip that is currently designed by IBM, and the netlist is not yet in
a final state that is going into production. The grey blocks are macros, i.e., mostly
rectangular areas of the chip which are blocked and cannot be changed. Macros
may contain regular structures of register cells or, hierarchically, another computer
chip. Thus, macros also have pins and incident nets. The chip i6 itself is a macro
of another computer chip on a higher hierarchical level. The colored objects are the
cells. The color of a cell indicates its timing criticality regarding the RICE delay
model [RP94] on a scale from blue over green (both mean positive slack) to yellow,
red, and violet (negative slack). The black line shows the most timing-critical path
of either netlist. i6 is one of the designs on which we examine the behaviour of our
logic restructuring tool BonnLogic, see Table 7.1. Figures 7.2(a) and 7.2(b) show
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(a) Initial state of i6 with worst slack -38.9 ps and sum of negative endpoint slacks -19.7 ns.

(b) State of i6 after application of BonnLogic to the instance from Figure 7.2(a) with
worst slack -23.9 ps and sum of negative endpoint slacks -13.6 ns.

Figure 7.2: Chip i6 from Table 7.1 before and after application of
BonnLogic. The large grey blocks are macros. The colored object
are the cells, and colors are chosen based on timing criticality, where
blue cells are most uncritical and violet cells are most critical. The
black line indicates the most timing-critical path.
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the netlist before and after application of BonnLogic. Although on a global view,
the netlist and slack distribution looks very similar, worst slack and sum of negative
endpoint slack improve significantly.

As modern computer chips contain billions of transistors, the VLSI design process
is divided into many different steps. At first, the abstract logical description of a
chip is modeled in a hardware description language (HDL), see Mermet [Mer93] for
an overview. The logic synthesis step (see also Section 7.2) turns the abstract logic
specification of a chip into a netlist.

During physical design, a placement (i.e., physical locations for all cells) and
a routing (i.e., realizations of all nets by electrical wires on the wiring and via
layers) is computed for the netlist. See Nam and Cong [NC07] and Markov, Hu,
and Kim [MHK15] for a survey on placement algorithms, Gester et al. [Ges+13] for
detailed information on routing and Alpert, Mehta, and Sapatnekar [AMS08] for a
good overview on both topics. During placement and routing, it is important to
ensure that the timing requirements of all signals are met and power consumption
and manufacturing costs are low (which usually corresponds to a low area consump-
tion by cells and wires). There are also dedicated timing optimization algorithms.
Classical timing optimization tools are gate sizing, Vt assignment and buffering
algorithms, or mixtures of these. Timing optimization algorithms that change the
logical structure of the netlist are called logic optimization algorithms. We discuss
logic optimization in detail in the next section. For a comprehensive overview on
timing optimization see Sapatnekar [Sap04], Held [Hel08], or Schorr [Sch15].

After physical design, the layout verification step tests whether the physical
layout works correctly. At the end, the chip is produced in the fabrication step.

7.2 Previous Work on Logic Optimization
In general, finding a logically equivalent implementation of a given circuit with, say,
minimum depth is an NP-hard problem, see Remark 2.3.10.

A sub-problem which is often considered both in literature and in practice is
the two-level logic minimization problem. Here, the solution space is restricted
to disjunctive normal forms, see Equation (2.9). A classical two-level optimization
problem asks for a disjunctive normal form with minimum size. The corresponding
decision problem is NP-complete if the input is given as a truth table, and it is even
ΣP

2 -complete if the input is given by a disjunctive normal form (see the survey of
Umans, Villa, and Sangiovanni-Vincentelli [UVS06]). For the definition of the class
ΣP

2 , which follows NP in the polynomial hierarchy, see Garey and Johnson [GJ79],
Section 7.2). Roughly, a problem is in ΣP

2 if it can be solved in polynomial time
assuming that an oracle from the class NP may be used.

The first exact algorithm for the two-level optimization problem is the Quine-
McCluskey approach (see, e.g., Crama and Hammer [CH11]) which has been de-
veloped by Quine [Qui52] and extended by McCluskey [McC56]. The algorithm
generates all prime implicants and then finds a subset that suffices for a disjunctive
normal form via set covering. Many practical algorithms for two-level optimization
are based on the Quine-McCluskey approach, but avoid the generation of all prime
implicants, e.g., the Espresso algorithms (Rudell and Sangiovanni-Vincentelli [RS87]
and McGeer et al. [McG+93]) and the Scherzo tool (Coudert [Cou94]).

In practice, logic synthesis is divided into two stages: First, a technology-
independent logic description is computed and optimized, e.g, a description by a
circuit containing only And2 and Inv gates (called AIG), or containing sums of
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products (called SIS). Here, multi-level logic minimization, the generalization of
two-level optimization to an arbitrary number of levels, is applied. There are exact
integer programming methods for the general problem, but they are only viable for
very small circuits, (see Muroga [Mur91]). Heuristic approaches are described, e.g.,
in the surveys by Devadas, Ghosh, and Keutzer [DGK94] and Hachtel and Somenzi
[HS06]. The two main ideas here are to rewrite Boolean formulae using algebraic
operations and to examine so-called “don’t cares” – truth value assignments at gates
that can never occur. These ideas are also the basis for industrial logic synthesis
tools like BooleDozer (see Stok et al. [Sto+96]), ABC (see Brayton and Mishchenko
[BM10]), and the Synopsys Design Compiler (see [Syn20]).

These tools also cover the second step in logic synthesis, i.e., computing a
technology-dependent description that is both fast and compact making use of all
gates in the library. This step is called technology mapping. Although technology
mapping is usually only allowed to change the given circuit locally, the established
versions of technology mapping for area optimization are shown to be NP-hard on
general circuits by Keutzer and Richards [KR89].

But on tree-like circuits where the underlying undirected graph contains no
cycles, the technology mapping problem for, e.g., area optimization under delay
constraints, is solvable in polynomial time by dynamic programming (see Chaudhary
and Pedram [CP92]). Hence, the netlist is often partitioned into tree-like sub-
circuits, where technology mapping is performed independently. This technique
goes back to Keutzer [Keu87], whose algorithm was the starting point for modern
technology mapping. Technology mapping usually tries to cover the input circuit by
graphs representing the available gate types. Thus, there is the inherent problem
that the solution significantly depends on the input circuit. There were multiple
enhancements of Keutzer’s algorithm over the years, which in particular try to
overcome this problem and to extend technology mapping to general circuits. Often,
they are based on so-called Boolean matching, see, e.g., Mailhot and Di Micheli
[MD93] and Chatterjee et al. [Cha+06]. Here, as a preprocessing step, a hash table
is computed which contains the truth table of the Boolean function for each library
gate. During technology mapping, the truth table for sub-circuits is compared to the
stored Boolean functions in order to determine possible replacement gates.

When area is ignored and only delay is optimized, the technology mapping
problem is solvable in polynomial time on general circuits, see Kukimoto, Brayton,
and Sawkar [KBS98].

The BonnTools software suite contains the technology mapping algorithm by
Elbert [Elb17]. This is a fully polynomial-time approximation scheme (FPTAS) for
optimizing a trade-off of delay and size on circuits with a single output and a constant
number of gates with more than one successor. More details about this algorithm
are given in Section 7.3.2.

During logic synthesis, no physical information has been computed yet, so it is not
yet known which parts of the chip may turn out to be timing-critical during physical
design. As a tight production schedule often does not allow iterating the whole design
process, starting with a logic synthesis step based on timing-information, there are
logic optimization algorithms especially designed to run during physical design.

Many approaches work on arbitrary Boolean functions and hence can only re-
place sub-functions of constant size by alternative realizations (see e.g., Stok et al.
[Sto+96], Cortadella [Cor03], Trevillyan et al. [Tre+04], Mishchenko et al. [Mis+11],
and Amarú et al. [Ama+17]). Here, the new solution is logically correct by con-
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struction, but a more global logic restructuring is hardly possible. Plaza, Markov,
and Bertacco [PMB08] apply logic modifications (similar to cloning methods) after
placement to improve the delay of critical paths that have been placed with detours.
But this approach is also restricted to local changes because the logical equivalence
of different implementations is shown by enumerating possible input truth assign-
ments.

7.3 Flow Description
Logic synthesis is one of the first steps in the design process and for the following
steps, the logical description typically remains fixed. However, during physical de-
sign, it may turn out that the chosen implementation of the logic functionality was
not the best choice, e.g., with respect to placement or timing. Now it would be
desirable to find a better suited logically equivalent representation. As described in
Section 7.2, other logic optimization techniques used for fixing timing problems dur-
ing physical design work only locally on small fractions of the netlist, and often do
not have provable approximation guarantees. In contrast to these methods, Bonn-
Logic can resynthesize combinatorial paths of arbitrary length and thus resolve
more complex timing problems.

BonnLogic is a timing optimization flow that is used in several steps of IBM’s
physical design flow: for assertion generation before placement, i.e., generation of
(required) arrival times for certain pins, for optimizing timing late in the pre-routing
physical design flow, and for executing engineering change orders (ECOs). Here, we
focus on the second application.

In a global view, timing optimization needs to be done in a careful way in order
to find good trade-offs between signal speed and area / power consumption. Still,
the most timing-critical part of a chip needs to be well-optimized as it is the limiting
factor for the clock frequency of a computer chip. There are other timing and in
particular logic optimization algorithms in the BonnTools that optimize timing
globally. BonnLogic, however, is a tool for optimizing the most critical paths.

BonnLogic was originally developed by Werber, Rautenbach, and Szegedy
[WRS07] and has been improved significantly during the last years, see a previous
publication by Brenner and Hermann [BH20]. The idea of BonnLogic is to improve
worst slack by iteratively restructuring the most critical path. As observed by
Werber, Rautenbach, and Szegedy [WRS07] (see also Section 7.3.1), optimizing a
path can be reduced to optimizing an And-Or path, cf. Definition 2.5.1. Hence,
the essential component of BonnLogic is an And-Or path optimization algorithm
– in the original version by Werber, Rautenbach, and Szegedy [WRS07], this is
the algorithm from Rautenbach, Szegedy, and Werber [RSW06]; and in the current
version, this is Algorithm 6.3, which has a much better approximation guarantee
(cf. Theorem 6.1.14 and Table 2.2) and performs much better on most instances, see
Section 6.2.

As BonnLogic is used during physical design, placement and timing information
need to be taken into account during optimization. In Section 7.3.1, we hence adapt
the simple delay model used in Algorithm 6.3 to respect placement, buffering and
gate sizing effects. As we do not fully account for different kinds of gates or different
gate sizes that might be available, our framework involves a technology mapping step
(cf. Section 7.3.2) and powerful gate sizing and buffering routines (cf. Section 7.3.3).
As buffering and gate sizing perform accurate delay computations, which are very
complex, this is by far the most time-consuming part of our flow and we need to
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Figure 7.3: Flow chart for our logic optimization framework (cf. Section 7.3) with the path restructuring step in green.
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limit its usage.
We now outline our logic optimization flow in detail before describing different

sub-steps in the subsequent sections. The flow is illustrated in Figure 7.3. All
parameters mentioned are chosen technology-dependently, but can also be modified
by users.

BonnLogic iteratively optimizes the worst slack of the currently most timing-
critical combinational path until the overall worst slack does not improve significantly
anymore. A single iteration works as follows:

Let P denote a most critical path. During a preoptimization step, we first try
to improve the slack of P without changing its logical structure in order to diminish
disruptions. To this end, we apply detailed optimization to P as described in
Section 7.3.3. If a threshold slack improvement of δmin is exceeded, we keep the
changes imposed by preoptimization and start the next iteration.

Otherwise, we discard the preoptimization’s changes and perform the path re-
structuring step (central, green part of Figure 7.3). This step works using internal
data structures and internal virtual delay models; the netlist is not changed before
detailed optimization (Section 7.3.3). Due to the inaccuracy of our timing model, we
consider the possibility to optimize any sub-path S of P up to a maximum length
of mmax. First, we apply a normalization step (Section 7.3.1) in order to extract
an And-Or path S′ from S on which we run Algorithm 6.3 to determine the global
structure of the replacement circuit. Then, the technology mapping routine from
Elbert [Elb17] (see also Section 7.3.2) locally modifies S to benefit from all gates
available in the library. After having optimized all sub-paths of P , we store all
restructuring possibilities in a list L, sorted by decreasing estimated slack gain.

For only the most promising fraction of restructuring options, we apply the time-
consuming detailed optimization (cf. Section 7.3.3): First, we tentatively apply
detailed optimization to the topmost k candidates in L. If the actual slack gain of
the best solution exceeds δtarget, we choose this solution; otherwise, we iteratively
decrease δtarget by a fixed value and try out the next k candidates in L until we
reach δtarget or L is empty. Afterwards, we choose the restructuring candidate C
with best actual slack gain δC for P among all detailed-optimized solutions. This
way, we usually apply detailed optimization to only a few instances, but still find
a good restructuring option. If δC ≥ δmin and if no side path slack has worsened
beyond the initial slack of P , we implement this netlist change, possibly retaining
parts of P needed for side outputs. If the change is implemented and the slack gain
over the last numit iterations exceeds a threshold δit, we start the next iteration;
otherwise, we stop.

Note that this is a simplified flow description. E.g., in practice, we optimize the
second critical path or the most critical path between register cells when P cannot
be further optimized.

7.3.1 Delay Model and Normalization
Our And-Or path optimization algorithm, Algorithm 6.3, expects as an input an
alternating path of And2 and Or2 gates with prescribed input arrival times, and
assumes that gates have a unit delay and connections do not impose any delay (see
the delay model defined in Definition 2.3.2). However, the most critical path P
contains arbitrary gates with varying delays, and the physical locations of the path
inputs might be far apart, inducing undeniably high wire delays even after buffering.
A normalization step thus transforms P into a piece of netlist whose core part is
an And-Or path with appropriately modified input arrival times.
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t0 t1 t2 t3 t4 t5

(a) Sub-path S containing
an inverter, an Or2, an
Or3, and an Oai gate. In-
put t5 is most critical.

t0 t1 t2 t3 t4 t5

(b) Netlist resulting from
Figure 7.4(a) by pushing
inverters away from the
critical path.

t0 t1 t2 t3 t4 t5

(c) Netlist resulting from
Figure 7.4(a) by perform-
ing Huffman coding for the
Or3 gate.

Figure 7.4: Normalizing a sub-path S (Figure 7.4(a)) of the critical
path P . In the resulting netlist in Figure 7.4(c), the extracted And-Or
path S′ is colored. Critical connections are drawn in red.

Before explaining our normalization, we revise our timing model. As we work on
the most critical path, the buffering routine applied in Section 7.3.3 will compute
delay-optimum solutions. Hence, it is realistic to assume a virtual timing model (see
Alpert et al. [Alp+06] and Otten [Ott98]), which is briefly introduced in Section 7.1.
Thus, we may assume a linear wire delay and estimate the wire delay between two
physical positions p1 and p2 by ddist ·||p1−p2||1 for a constant ddist ∈ R. The traversal
time through a gate is approximated by a constant dgate ∈ R. The constants dgate
and ddist are chosen based on an analysis of typical values on the respective design.
In particular, ddist is computed by analyzing long buffer chains as described by
Bartoschek et al. [Bar+06]. As on the critical path, there are rather low fan-outs
and slews, the delay of gates with different types and sizes still varies, but not much
in comparison to the differences in arrival times. Hence, assuming a realistic constant
gate delay suffices to determine the logical structure of the circuit.

Since we work on the most timing-critical part of the design, we place the circuit
C computed by Algorithm 6.3 such that each path is embedded delay-optimally
accepting possible netlength increases. For instance, placing all gates at l(out(C))
would ensure this, implying that each path from an input ti to out(C) has a wire
delay of ddist · ||l(ti)− l(out(C))||1, where l indicates physical coordinates on the chip.
In fact, we choose a placement that is netlength-optimum among all delay-optimum
placements: We determine l(out(C)) based on its successors in the netlist and place
each gate at the median position of its predecessors and out(C), see Teichmann
[Tei13]. Thus, the delay of C is

max
Q : ti out(C)

{
a(ti) + ddist · ||l(ti)− l(out(C))||1 + dgate · |Q|

}
,

where the maximum ranges over all directed paths Q in C from any input ti to
out(C). Applying Algorithm 6.3 with modified arrival times

a′(ti) :=
1

dgate

(
a(ti) + ddist · ||l(ti)− l(out(C))||1

)
for all i ∈ {0, . . . , n− 1} hence yields a circuit with optimum wire delay with respect
to physical locations.
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Now, we can describe our normalization of a sub-path S of P with the help
of Figure 7.4. Let x denote the most critical input of S. We replace each gate
in S by a representation using And2, Or2 and Inv gates (in Figure 7.4, this can
be derived easily from Figure 7.4(a) and is not shown explicitly). This does not
necessarily yield a path, but we can recover the original critical path by following
the signal flow of x, obtaining a path S′. By applying De Morgan’s transformations
(see also Equation (2.6)) in reverse topological order, we remove inverters from S′

while possibly adding inverters at the inputs of S′ (see Figure 7.4(b)). Note that
this increases the delay of any path in S by at most the delay of one inverter. Now,
S′ is a generalized And-Or path (see Definition 2.5.5), and for its optimization, we
use the following simple translation to And-Or paths: We use Huffman coding (see
Theorem 2.3.21) on chains of And gates (and Or gates) in S′ to move less critical
gates into S\S′ in order to make S′ an And-Or path (see Figure 7.4(c)). As we also
need to incorporate physical distances and gate and distance delay during Huffman
coding, we use our virtual timing model as defined above. This way, S′ becomes an
And-Or path that – with input arrival times a′ – can be passed to Algorithm 6.3.

7.3.2 Technology Mapping

After computing a circuit using Algorithm 6.3, we invoke a technology mapping
step. Its purpose is to change the newly created circuit locally to improve worst
slack and the physical area occupied by gates by making use of all gates available
on the design. We use the dynamic programming algorithm by Elbert [Elb17]
which applies Boolean matching (see also Section 7.2) to cover the input circuit
by graphs representing the available gate types. This algorithm works with a virtual
delay model that generalizes the model described in Section 7.3.1: Gates have pin-
dependent delay parameters to incorporate that the time needed to traverse a gate
varies from pin to pin, and for each gate type, the pin-dependent gate delay values
are computed separately. Wire delay is estimated depending on the optimum layer
for the given distance.

Elbert’s algorithm computes an optimum technology mapping with respect to
any fixed trade-off of arrival time and number of gates, but the running time grows
exponentially in the number l of gates with more than one successor. In our applica-
tion, l is usually very small, hence we can afford this running time (cf. the running
time discussion at the end of Section 7.4). For constant l, Elbert [Elb17] also pro-
vides a fully polynomial-time approximation scheme. On general circuits, computing
a size-optimum technology mapping is NP-hard by Keutzer and Richards [KR89].

7.3.3 Detailed Optimization

The application of our logic restructuring flow in a late stage of physical design
implies that the input netlist will already be highly optimized with respect to timing.
Most importantly, each gate will have an appropriate gate size and Vt level, long
connections will have a proper layer assignment and will be well-buffered. Hence, in
order to construct competitive replacement logic, these effects need to be regarded.

As a consequence, depending on the actual stage of the design, our detailed
optimization step invokes powerful buffering, layer assignment and gate sizing
routines. In all these steps, slacks are computed using the timing engine IBM
EinsTimer. When applied late in physical design, EinsTimer uses the RICE delay
model by Ratzlaff and Pillage [RP94]. This is much more accurate than our virtual
delay models used in Sections 7.3.1 and 7.3.2, but also much more time-consuming.
Hence, we must control the detailed optimization effort very strictly.
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When used in late physical design, we apply the gate sizing routine by Held
[Hel09] on all gates touched by logic optimization. This is a preparation for the fol-
lowing buffering step as it is important that during buffering, slacks can be estimated
accurately. For buffering, we use the buffering tool with an integrated layer assign-
ment by Bartoschek et al. [Bar+09] on all nets in a small neighborhood. This regards
that the timing behavior also might have changed at gates we have not touched in
optimization. After buffering, we apply gate sizing again, in particular on newly
inserted buffers.

As we work on the most critical fraction of the design, Vt assignment can be done
conveniently by using the fastest Vt levels available.

An incremental placement legalization makes sure that the placement remains
legal throughout all netlist changes.

7.4 Computational Results
We examine the behavior of BonnLogic on real-world IBM chips in a late, pre-
routing stage of physical design, which is our main industrial application. Table 7.1
shows results on 8 recent 7nm instances, i1 up to i8, and a single older instances
from the 22nm technology, i9.

For each chip, we show two rows: The ’init’ row displays the state of the chips
before BonnLogic is applied: a timing-driven placement has been computed using
the algorithm by Brenner et al. [Bre+15], followed by various timing optimization
steps, among those our buffering and gate sizing sub-routines (see Section 7.3.3, Held
[Hel09] and Bartoschek et al. [Bar+09]). The initial netlist cannot be improved any
further by classical timing optimization. The ’BL’ (BonnLogic) row shows results
after applying our logic optimization flow to this netlist. Here, the IBM timing
EinsTimer engine uses the RICE delay model (see Ratzlaff and Pillage [RP94]) to
evaluate timing, both during optimization and for our statistics.

For measuring the impact of BonnLogic on timing, we display worst slack (WS)
and sum of negative endpoint slacks (SNES). On instance i9, which is the only 22nm
instance, worst slack and sum of negative endpoint slacks improve vastly, which is
the case as on this chip, the netlist contains a large, dense connected component
of logic cells which is timing-critical. On recent designs, this is rarely the case, and
path delays are often dominated by wire delay, so BonnLogic cannot improve worst
slack so easily. Still, on most of the 7nm instances, we can improve both worst slack
and sum of negative endpoint slacks significantly in comparison to the initial state
of the netlist.

We see that our timing improvements do not disrupt global objectives: number
of gates, area, netlength, and routability are barely effected by BonnLogic. Here,
to check routability, we use the ACE5 estimate by Wei et al. [Wei+12], the average
congestion of the 5 % most congested resources, weighted by usage, computed using
the global router by Müller, Radke, and Vygen [MRV11].

Figure 7.2 (page 194) depicts the chip i6 before and after application of Bonn-
Logic. The overall structure of the chip as well as its slack distribution look similar
in both pictures. However, the amount of cells that are violet (i.e. the most timing-
critical), reduces drastically on the right half of the chip. In particular, the path
that is most timing-critical in the initial netlist from Figure 7.2(a) has improved by
at least 15 ps and is now not timing-critical anymore. In Figure 7.2(b), the most
critical path lies in a completely different region of the chip.

Our program was implemented in C++, and all tests were executed on a machine
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Unit Run WS [ps] SNES [ns] #Gates Area Netlength ACE5 Ttotal [s] TAOP [s] # Calls Max. # inputs

i1 init −107.0 −26.1 22 412 83%
BL −103.9 −26.0 22 431 +0.01 % +0.00 % 82% 409 0.171 1650 8

i2 init −14.1 −1.7 38 048 93%
BL −14.0 −1.6 38 067 +0.02 % +0.00 % 93% 50 0.017 132 7

i3 init −65.0 −67.4 64 230 97%
BL −53.3 −57.2 64 249 +0.04 % +0.09 % 96% 140 0.083 914 7

i4 init −16.9 −1.1 78 193 110%
BL −2.5 −0.1 77 851 -0.28 % -0.14 % 110% 230 0.166 1528 8

i5 init −173.6 −335.4 212 210 94%
BL −151.8 −332.9 212 236 +0.01 % +0.01 % 94% 306 0.259 2178 8

i6 init −38.9 −19.7 268 473 87%
BL −23.9 −13.6 268 336 -0.00 % +0.03 % 88% 272 0.342 1254 13

i7 init −69.3 −182.8 274 723 95%
BL −55.1 −168.9 274 863 +0.03 % +0.02 % 95% 400 0.116 984 8

i8 init −124.5 −656.3 332 695 92%
BL −115.5 −640.9 332 787 -0.00 % +0.02 % 92% 253 0.103 724 5

i9 init −396.4 −101.8 379 707 95%
BL −216.6 −90.8 379 931 +0.02 % +0.04 % 95% 1 019 1.998 16 362 7

Table 7.1: Performance of our logic restructuring framework on 8 recent 7nm real-world instances and an older 22nm real-world
instance, i9.
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with two Intel(R) Xeon(R) CPU E5-2667 v2 processors, using a single thread. The
column Ttotal shows the total running time of our flow, which is usually a few minutes.
Even on instance i9, where slack improvements are very high, BonnLogic only
runs 16 minutes. In the last three column, we show the total running time TAOP
of all calls to our And-Or path optimization algorithm, Algorithm 6.3, (including
normalization), the number of calls to this algorithm and the maximum number of
inputs of the And-Or path optimized in any of these calls.

Note that the total running time BonnLogic is roughly proportional to the
number of calls to Algorithm 6.3. Still, the running time of normalization and
Algorithm 6.3 is below 0.4 seconds for instances i1 up to i8, and only 2 seconds for
i9. Also, the running time of the technology mapping step (which is not displayed
in the table) is below 4 seconds for instances i1 up to i8, and roughly 18 seconds for
instance i9.

However, the number of And-Or path instances considered also is proportional
to the number of calls to detailed optimization, and this step dominates the running
time of BonnLogic. In particular, the gate sizing step takes much time because
it performs many expensive queries to EinsTimer. When a more efficient, but less
accurate timing model than RICE timing is used in EinsTimer, the running time of
detailed optimization is much lower.

The maximum number of inputs of any And-Or path which is optimized during
BonnLogic is often 7− 8, and 13 for instance i6.

Results on publicly available benchmarks are not presented due to the lack of
comparable results. For instance there is the EPFL combinational benchmark suite
by Amarú, Gaillardon, and De Micheli [AGD15], which provides a set of circuits
designed to challenge logic optimization tools. However, the only published results
on for this benchmark set optimize LUT-6 depth, not circuit depth. Here, each
gate is implemented as a look-up table, and for every Boolean function with up to 6
inputs, a gate is available. LUT-6 gates are used in FPGA (field-programmable gate
array) design, see, e.g., Vemuri, Kalla, and Tessier [VKT02].



Chapter 8

Faster Linear-Size Adder Circuits

In this chapter, we consider the Adder Optimization Problem. Recall from
Definition 2.4.4 that, given n input pairs p0, g0, . . . , pn−1, gn−1, we write An to denote
an adder circuit on n input pairs, and, for i ∈ {1, . . . , n}, we write outi(An) to denote
its output computing the carry bit

ci = gi−1 ∨

pi−1 ∧
(
gi−2 ∨

(
pi−2 ∧

(
gi−3∨

(
pi−3 ∧ . . . (p1 ∧ g0)

)))) .

We will construct several families (An)n∈N of adder circuits with a linear size and a
very good depth. For this, we additionally use the following abbreviatory notation.

Notation. Given a circuit C, we write d(C) := depth(C) and s(C) := size(C) .

Our core idea for adder optimization is to apply our And-Or path optimization
algorithm from Chapter 3. Given m ∈ N, by Corollary 3.4.21, this algorithm
constructs a circuit for an And-Or path with length m with a depth of at most
log2m+ log2 log2m+ 1.58 and linear size 4.15m− 4. This is the best depth bound
for And-Or path circuits known so far, and it is only by a constant away from the
asymptotic lower bound due to Commentz-Walter [Com79] shown in Corollary 2.6.8.
As depth optimization for adders and And-Or paths are equivalent tasks as long as
no other objectives are regarded, applying our And-Or path algorithm for computing
each carry bit separately solves the Adder Optimization Problem optimally up
to a constant. But this yields circuits with a quadratic size, which is undesirable.
Hence, the main goal of this chapter is to apply our And-Or path optimization
algorithm in a careful way such that the total size remains linear.

To this end, we proceed in several steps: In Section 8.1, we construct a family of
adder circuits

(
A1
n

)
n∈N with d(A1

n) ≤ log2 n + log2 log2 n + 3.58 and sub-quadratic
size s(A1

n) ≤ 6.6n log2 n. In Section 8.2, we will see a general method for lineariz-
ing the size of adder circuits, increasing the depth only by an additive term of
log2 log2 log2 n + const. In Section 8.3, this will be applied to linearize the adder
family

(
A1
n

)
n∈N, which leads to an adder family

(
A2
n

)
n∈N with

d(A2
n) ≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 8.6

and s(A2
n) ≤ 22.7n. If we allow the additive constant in the depth bound to increase

from 8.6 to 9.4, then, applying our linearization framework with slightly different

205
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Algorithm 8.1: 2-part adder construction framework
Input: n ∈ N, n ≥ 2, and n input pairs p0, g0, . . . , pn−1, gn−1, adder circuits

(Ak)k<n, And-prefix circuits (Sk)k<n, And-Or path circuits
(AOPk)k<n.

Output: An adder circuit Cn on p0, g0, . . . , pn−1, gn−1.

1 kl ←
⌊
n
2

⌋
, kr ←

⌈
n
2

⌉
.

2 Pr ←
(
p0, g0, . . . , pkr−1, gkr−1

)
, Pl ←

(
pkr , gkr , . . . , pn−1, gn−1

)
.

3 Compute an adder circuit Akl on Pl.
4 Compute an adder circuit Akr on Pr.
5 Compute an And-prefix circuit Skl on the inputs pi with i > kr of Pkl .
6 Compute an And-Or path circuit AOPkr on the inputs of Pkr .
7 for i← 1 to kr do
8 Let outi(Cn) := outi

(
Akr
)
.

9 for i← 1 to kl do
10 Let outkr+i(Cn) := outi

(
Akl
)
∨
(

outi
(
Skl
)
∧AOPkr

)
.

11 return Cn.

parameters, we can construct adder circuits A3
n with s(A3

n) ≤ 17.6n. The running
time needed to construct A2

n is O(n log2 n), while it is O(n log2 log2 n) for A3
n.

Hence, the depth of both A2
n and A3

n is by an additive term of log2 log2 log2 n+
const away from the lower bound on depth by Commentz-Walter [Com79] shown
in Corollary 2.6.8. This has significantly improved the gap to the lower bound in
comparison with the previously best depth of

log2 n+ 8
⌈√

log2 n
⌉

+ 6

⌈
log2

⌈√
log2 n

⌉⌉
+ 2

achieved by the adder circuits of Held and Spirkl [HS17a] (here, n needs to be a
power of 2), for which the gap is in the order of O

(√
log2 n

)
. The size of the circuits

by Held and Spirkl is at most 13.5n, and even at most 9.5n if n ≥ 4096. As for
their analysis, Held and Spirkl assume that n is a power of two, for arbitrary n, their
depth bound increases by a constant, and their size bound increases up to a factor
of 2. Thus, there are arbitrarily large instances where our circuits A3

n have a better
size than the circuits by Held and Spirkl [HS17a].

8.1 Fast Adder Circuits with Sub-Quadratic Size
Our idea for constructing fast adder circuits with a sub-quadratic size is to apply
the And-Or path optimization algorithm from Chapter 3 only for the computation
of some carry bits. Hence, we use the generic procedure described in Algorithm 8.1
as a core routine for constructing our first family of adders.

Algorithm 8.1 works as follows: We partition the input pairs into two parts
Pr =

(
p0, g0, . . . , pkr−1, gkr−1

)
and Pl =

(
pkr , gkr , . . . , pn−1, gn−1

)
of roughly equal

sizes kl and kr as defined in line 1. Note that we have

kl + kr =

⌊
n

2

⌋
+

⌈
n

2

⌉
=

{
n n even
n−1

2 + n+1
2 , n odd

= n ,

so this is indeed a correct partition of all input pairs. On the parts Pr and Pl, we
construct an adder circuit Akl and Akl , respectively. Hence, for the part Pr, we have
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already computed all the carry bits for Cn in Akr . Additionally, we construct an
And-Or path circuit AOPkr circuit on part Pr and an And-prefix circuit Skr on Pr.
Using these two circuits and Akl , for the part Pl, the carry bits can be computed by
applying the alternating split presented in Lemma 2.6.13, see also Figure 8.1(a). The
carry bit ckr can be read off from AOPkr . Thus, Algorithm 8.1 correctly computes
all the carry bits and hence an adder circuit on n input pairs.

g5 p5 g4 p4 g3 p3 g2 p2 g1 p1 g0 p0

Pl Pr

c6

(a) Computing the carry bit c6 for 6 input
pairs as in line 10 of Algorithm 8.1 via
the alternating split from Lemma 2.6.13.
On Pl, we indicate an adder circuit and an
And-prefix circuit, and on Pr an And-Or
path circuit by trivial implementations.

Pl Pr

Akl Akr

Skl AOPkr

(b) All components constructed in Algo-
rithm 8.1. On Pl, we see the adder circuit
Akl

in blue and the And-prefix circuit Skl

in yellow; and on Pr, we see the adder cir-
cuit Akr in blue and the And-Or path cir-
cuit AOPkr in green.

Figure 8.1: Illustration of Algorithm 8.1.

In Figure 8.1(b), we depict all circuits used to construct the adder circuit in
Algorithm 8.1. The following lemma estimates the depth and size of this circuit.

Lemma 8.1.1. Given n ∈ N with n ≥ 2, adder circuits (Ak)k<n, And-prefix circuits
(Sk)k<n, and And-Or path circuits (AOPk)k<n, Algorithm 8.1 computes an adder
circuit Cn with

d(Cn) ≤ max
{
d
(
Akr
)
, d
(
Akl
)

+ 1, d
(
AOPkr

)
+ 2, d

(
Skl
)

+ 2
}

and
s(Cn) ≤ s

(
Akr
)

+ s
(
Akl
)

+ s
(
AOPkr

)
+ s
(
Skl
)

+ 2kl .

Proof. The size of Cn arises from adding up the sizes of all sub-circuits, increased
by 2kl since for each i ∈ {kr + 1, . . . , n}, the ith carry bit is computed using two
additional gates in line 10 (in Figure 8.1(a), for c6, these are the two blue gates).

For the depth estimation, we consider two different cases. If i ≤ kr, the depth of
the ith carry bit is simply the depth of Akr , see line 8. If i > kr, the ith carry bit is
computed in line 10 with a depth of at most

max
{
d
(
Akl
)

+ 1, d
(
AOPkr

)
+ 2, d

(
Skl
)

+ 2
}
.

As the depth of the adder circuit Cn is the maximum depth of any of its carry bits,
the depth bound follows.

Note that in Algorithm 8.1, we actually compute the carry bit outkr(Cn) twice
– once by the And-Or path, once by the last output of Akr . We do this as it does
not harm the overall analysis and simplifies notations.
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We now derive an adder family
(
A1
n

)
n∈N with a good depth and size in the order

of O(n log2 n). For small n, we construct existing adder circuits. For large n, we use
Algorithm 8.1 in a recursive fashion: We apply Algorithm 8.1 with the And-Or path
circuit from Corollary 3.4.21 as AOPkr and the circuit Sfkl by Ladner and Fischer
[LF80] with f = 3 as Skl , see also Theorem 2.6.24. The adder circuits Akl and Akr
are computed recursively using Algorithm 8.1. In order to bound the depth and size
of the arising circuits, we need two numerical inequalities.

Lemma 8.1.2. For 3 ≤ n ≤ 20, the following statements are fulfilled.

(i) We have 0.441 log2 n ≤ log2 log2 n+ 0.906.

(ii) We have 1.5
(
n2 − n

)
≤ 6.6n log2 n.

Proof. We prove the first statement via a case distinction: For 3 ≤ n ≤ 11, we have

0.441 log2 n
n≤11
< 1.53 < 1.57

n≥3
< log2 log2 n+ 0.906 ;

and for 12 ≤ n ≤ 20, we have

0.441 log2 n
n≤20
< 2 < 2.7

n≥12
< log2 log2 n+ 0.906 .

To prove the second statement, we need that by Lemma 3.2.2, the function
x 7→ 2x

x is monotonely increasing for x ≥ 2. Hence, the function x 7→ log2 x
x is

monotonely decreasing for x ≥ 4. Consequently, for n ≥ 4, we have

6.6 log2 n− 1.5(n− 1) = n

(
6.6 log2 n+ 1.5

n
− 1.5

)
4≤n≤20,
Lem. 3.2.2≥ n

(
6.6 log2 20 + 1.5

20
− 1.5

)
> n(1.501− 1.5)

> 0 .

Multiplying with n yields the second statement for n ≥ 4. For n = 3, we have

1.5
(
n2 − n

)
= 9 < 31 < 6.6n log2 n ,

so the second statement is fulfilled for all 3 ≤ n ≤ 20.

The following theorem describes our concrete strategy for computing the adder
family

(
A1
n

)
n∈N and analyzes the resulting depth and size.

Theorem 8.1.3. Let n ∈ N with n ≥ 3 and c := 6.6 be given. We can construct an
adder circuit A1

n on n input pairs with depth

d(A1
n) ≤ log2 n+ log2 log2 n+ 3.58

and size

s(A1
n) ≤ cn log2 n

in running time O
(
n log2

2 n
)
.
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Proof. First, by induction on n, we will see the depth and size bounds.
Case 1: Assume that 3 ≤ n ≤ 20.
We apply the And-Or path optimization algorithm by Held and Spirkl [HS17b]

to compute each carry bit separately as described in Corollary 2.6.29. The arising
circuit A1

n has depth

d(A1
n)

Cor. 2.6.29
≤ 1.441 log2 n+ 2.674

n≤20,
Lem. 8.1.2,(i)

≤ log2 n+ log2 log2 n+ 3.58

and size

s(A1
n)

Cor. 2.6.29
≤ 1.5(n2 − n)

n≤20,c=6.6,
Lem. 8.1.2,(ii)

≤ cn log2 n .

Case 2: Assume that n ≥ 21.
We may assume inductively that for all i < n, an adder A1

i with the stated depth
and size can be constructed. Hence, we may apply Algorithm 8.1 using the following
sub-circuits:

• We use Akl := A1
kl

and Akr := A1
kr
. By induction hypothesis, we have

d
(
Akl
) (IH)
≤ log2(kl) + log2 log2(kl) + 3.58

kl≤n2≤ log2 n+ log2 log2 n+ 2.58 , (8.1)

d
(
Akr
) (IH)
≤ log2(kr) + log2 log2(kr) + 3.58

kr≤n
≤ log2 n+ log2 log2 n+ 3.58 , (8.2)

s
(
Akl
) (IH)
≤ ckl log2(kl) , (8.3)

s
(
Akr
) (IH)
≤ ckr log2(kr) . (8.4)

• For the computation of the And-prefix circuit Skl on the kl input pairs of Pl,
we use the Ladner-Fischer circuit S3

kl
, see Theorem 2.6.24 and [LF80]. Note

that the choice f = 3 fulfills the requirement f
n≥9
≤ dlog2 kle . Then, we have

d(Skl) ≤ d log2 kl e+ 3 =

⌈
log2

⌊
n

2

⌋⌉
+ 3 ≤ log2 n+ 3 (8.5)

and

s(Skl) ≤ 2

(
1 +

1

23

)
kl = 2.25kl . (8.6)

• As And-Or path circuit AOPkr , we use the circuit from Corollary 3.4.21. Since
kr ≤ n+1

2 and AOPkr has 2kr − 1 ≤ n inputs, by Corollary 3.4.21, we have

d(AOPkr) ≤ log2 n+ log2 log2 n+ 1.58 (8.7)
and

s(AOPkr) ≤ 4.15n− 4 . (8.8)
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For the depth of A1
n, these observations together with Lemma 8.1.1 imply

d(A1
n)

Lem. 8.1.1
≤ max

{
d
(
Akr
)
, d
(
Akl
)

+ 1, d
(
AOPkr

)
+ 2, d

(
Skl
)

+ 2
}

(8.1),(8.2),
(8.7),(8.5)
≤ max{log2 n+ log2 log2 n+ 3.58, log2 n+ 5}
n≥7
≤ log2 n+ log2 log2 n+ 3.58 .

It remains to compute the size of A1
n. As n ≥ 21, we have

log2 kr
kr=d n2 e
≤ log2

(
n+ 1

2

)
= log2

(
n · n+ 1

2n

)
= log2 n− 1 + log2

(
1 +

1

n

)
n≥21
≤ log2 n− 0.932 . (8.9)

Moreover, for 0 ≤ α ≤ 1, we have

αkr + kl =

{
(α+ 1)n2 if n even
αn+1

2 + n−1
2 if n odd

α≤1
≥ n

α+ 1

2
+
α− 1

2
. (8.10)

Based on these two inequalities, we can bound the total size of the recursively
computed adder circuits by

s(Akr) + s(Akl)
(8.4),(8.3)
≤ ckr log2(kr) + ckl log2(kl)

(8.9),kl≤n2≤ c
(
kr(log2 n− 0.932) + kl(log2 n− 1)

)
kr+kl=n= c(n log2 n− 0.932kr − kl)

(8.10)
≤ c

(
n log2 n− n

0.932 + 1

2
− 0.932− 1

2

)
= c

(
n
(

log2 n− 0.966
)

+ 0.034

)
. (8.11)

In total, the size of A1
n is hence at most

s(A1
n)

Thm. 8.1.1
≤ s(Akr) + s(Akl) + s(AOPkr) + s(Skl) + 2kl

(8.11),(8.8),(8.6)
≤ c

(
n
(

log2 n− 0.966
)

+ 0.034

)
+ 4.15n+ 2.25kl + 2kl

kl≤n2≤ cn log2 n− 0.966cn+ 0.034c+ 6.275n

= cn

(
log2 n− 0.966 +

0.034

n
+

6.275

c

)
n≥21,
c≥6.6
≤ cn

 log2 n− 0.966 + 0.002 + 0.951


< cn log2 n .
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Finally, for proving the running time bound, it suffices to consider the case n ≥ 21.
We show that there is a constant α such that we can compute our circuit in αn log2 n
elementary steps.

In each call of Algorithm 8.1, we apply two recursive calls to instances with size of
at most n+1

2 each, so we may assume inductively that each of them can be performed

with at most αn+1
2 log2

(
n+1

2

)
steps. By Corollary 3.4.21, there is a constant β such

that the And-Or path AOPkr with at most n inputs can be computed with βn log2 n
steps. The rest of one call of Algorithm 8.1 (including the computation of Skl = S3

kl
,

see Proposition 2.6.25) takes linear time, so assume that we need γn steps for this.
For n ≥ 21, we have

αn log2

(
n+ 1

2

)
n≥21
≤ αn log2

2

(
n

1.9

)
< αn(log2 n− 0.96)2

= αn log2
2 n− 1.92αn log2 n+ 0.9216αn , (8.12)

so in total, the number of steps for computing A1
n can be bounded by

2α
n+ 1

2
log2

(
n+ 1

2

)
+ βn log2 n+ γn

= αn log2

(
n+ 1

2

)
+ α log2

(
n+ 1

2

)
+ βn log2 n+ γn

(8.12)
≤ αn log2

2 n− 1.92αn log2 n+ 0.9216αn+ α log2

(
n+ 1

2

)
+ βn log2 n+ γn .

This is at most αn log2 n if α is chosen sufficiently large compared to β and γ.

8.2 An Adder Linearization Framework
In this section, we develop a framework that linearizes a given adder family (Bn)n∈N
with sub-quadratic size in a way that depth does not increase too much. The idea
of this linearization goes back to Ofman [Ofm62] and Khrapchenko [Khr67], but
we perform some crucial changes in order to obtain a best possible depth. See
Remark 8.2.7 for a comparison of the two linearization frameworks.

Algorithm 8.2 is a method for solving the Adder Optimization Problem on
n input pairs that is an extension of Algorithm 8.1. It depends on oracles solving the
Adder Optimization Problem, the And-Or path Circuit Depth Optimiza-
tion Problem and the Parallel And-Prefix Problem. In Theorem 8.2.4, we
present our linearization framework which uses this algorithm.

Algorithm 8.2 constructs a circuit Cn as follows: Given k ∈ N>0 and l =
⌈
n
k

⌉
, in

lines 1 to 6, we partition the inputs into l consecutive parts P (0), . . . , P (l−1), where
each group has nj ≤ k input pairs. On each part P (j), we compute an adder circuit
A

(j)
nj . In part P (0), we can directly read off the carry bits of Cn from A

(0)
nj in line 9.

For computing the carry bits of Cn in part P (j) for j > 0, as in Algorithm 8.1, we
use the alternating split from Lemma 2.6.13 in line 16. For this, we need an adder
circuit A(j)

nj and an And-prefix circuit S(j)
nj on P (j), and an And-Or path circuit

AOP
(j)
Nj

on the input parts P (j−1), . . . , P (0). These are constructed in lines 11 to 13.
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Algorithm 8.2: l-part adder construction framework
Input: n ∈ N, n ≥ 2, n input pairs p0, g0, . . . , pn−1, gn−1, a family of adder

circuits (Ak)k∈N, a family of And-prefix circuits (Sk)k∈N, a family
of And-Or path circuits (AOPk)k∈N.

Output: An adder circuit Cn on p0, g0, . . . , pn−1, gn−1.

1 Choose k ∈ N>0 and l := dn/ke.
2 for j ← 0 to l − 2 do
3 P (j) := (pjk, gjk, . . . , p(j+1)k−1, g(j+1)k−1).

4 P (l−1) := (p(l−1)k, g(l−1)k, . . . , pn−1, gn−1).
5 for j ← 0 to l − 1 do
6 nj ← |P (j)|, Nj ← n0 + . . .+ nj−1.

7 Construct an adder circuit A(0)
n0 on P (0).

8 for i← 1 to n0 do
9 Let outi(Cn) := outi

(
A

(0)
n0

)
.

10 for j ← 1 to l − 1 do
11 Construct an adder circuit A(j)

nj on P (j).
12 Construct an And-prefix circuit S(j)

nj on P (j).
13 Construct an And-Or path circuit AOP (j)

Nj
on the Nj input pairs in

P (j−1), . . . , P (0).
14 Let outNj (Cn) := AOP (j).
15 for i← 1 to nj do

16 Let outNj+i(Cn) := outi

(
A

(j)
nj

)
∨
(

outi

(
S

(j)
nj

)
∧AOP (j)

Nj

)
.

17 return Cn.

Hence, all carry bits are computed correctly and Cn is an adder circuit on n input
pairs. Figure 8.2 illustrates the circuits computed for part P (j).

Note that Algorithm 8.1 is a special case of Algorithm 8.2 where k = dn2 e.
It is easy to read off the depth and size of Cn from the construction:

Observation 8.2.1. Given n ∈ N, n ≥ 2, the circuit Cn computed by Algorithm 8.2
has depth

d(Cn) ≤ max

{
d(An0), max

j∈{1,...,l−1}

{
d(Anj ) + 1,max

{
d(Snj ), d(AOPNj )

}
+ 2

}}
nj≤k
≤ max

{
d(Ak) + 1, d(Sk) + 2, max

j∈{1,...,l−1}

{
d(AOPNj ) + 2

}}
and size

s(Cn) ≤ s
(
An0

)
+

l−1∑
j=1

(
s(Anj ) + s(Snj ) + s(AOPNj ) + 2(nj − 1)

)

< s(An0) +

l−1∑
j=1

(
s(Anj ) + s(Snj ) + s(AOPNj )

)
+ 2n .
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P (l−1) P (l−2) . . . P (j+1) . . . , g
(j)
i , p

(j)
i , . . . P (j−1) . . . P (1) P (0)

A
(j)
nj

S
(j)
nj

AOP
(j)
Nj

Figure 8.2: Illustration of the circuits constructed for part P (j) in
lines 11 to 13 of Algorithm 8.2.

g11 p11 g10 p10 g9 p9 g8 p8 g7 p7 g6 p6 g5 p5 g4 p4 g3 p3 g2 p2 g1 p1 g0 p0

P (3) P (2) P (1) P (0)

Figure 8.3: Circuit arising from applying Corollary 8.2.2 to l = 4
input parts with k = 3 input pairs each.

Algorithm 8.2 will be the main ingredient of our linearization framework. How-
ever, we will not linearize the size of the circuit Ak, but of an adder circuit Bl with
l input pairs which we will introduce now. For this, we compute the And-Or paths
AOPNj for j = 1, . . . , l−1 in line 13 in a special way. Here, given j ∈ {0, . . . , l − 1},
we write a(P (j)) := sym

((
pjk, pjk+1, . . . , pjk+nj−1

))
for the And function on all

“p-inputs“ of part P (j), and h∗(P (j)) := g∗(gjk+nj−1, pjk+nj−1, . . . , gjk+1, pjk+1, gjk)

for the And-Or path on all inputs of P (j) but pjk.

Corollary 8.2.2. Let n pairs of Boolean input variables g0, p1, g1 . . . , pn−1, gn−1 and
a partition of the input pairs into l parts P (l−1), . . . , P0 be given. We have

g∗(gn−1, pn−1, . . . , g1, p1, g0)

= g∗
(
h∗(P (l−1)), a(P (l−1)), . . . , h∗

(
P (1)), a(P (1)), h∗(P (0))

))
.
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Bl

S
(3)
n3 S

(2)
n2 S

(1)
n1

P (3)

AOP
(3)
n3

P (2)

AOP
(2)
n2

P (1)

AOP
(1)
n1

P (0)

AOP
(0)
n0

Figure 8.4: Illustration of the construction of the And-Or paths
AOP

(j)
Nj

for each j ∈ {0, . . . , l − 1} as in Lemma 8.2.3.

Proof. Applying Lemma 2.6.13 iteratively yields

g∗(gn−1, pn−1, . . . , g0)

= h∗(P (l−1)) ∨
(
a(P (l−1)) ∧ g∗

(
P (l−2) ++ . . .++ P (0)

))
= h∗(P (l−1)) ∨

(
a(P (l−1)) ∧

(
h∗(P (l−2)) ∨

(
a(P (l−2)) ∧

(
. . . ∨ (a(P1) ∧ h∗(P0))

))))

= g∗
(
h∗(P (l−1)), a(P (l−1)), . . . , h∗

(
P (1))), a(P (1))), h∗(P (0))

))
.

Figure 8.3 illustrates this corollary on l = 4 input parts: In yellow, we show the
And trees on every part P (j), in red and green the And-Or paths on every part
P (j), and in dark and light blue the And-Or path that has the outputs of the former
mentioned circuits as inputs. In order to compute all the And-Or paths AOPNj for
j = 1, . . . , l − 1, we need the output of the blue And-Or path after each Or gate.
Hence, the blue part can be realized by an adder circuit as in the following lemma.

Lemma 8.2.3. In addition to the input of Algorithm 8.2, let a family (Bk)k∈N of
adder circuits be given. For each j ∈ {0, . . . , l − 1}, compute an And-Or path
circuit AOPnj on input part P (j). Compute an adder circuit Bl on l input pairs

AOP (0)
n0
, outn1

(
S(1)
n1

)
, AOP (1)

n1
, . . . , outnl−1

(
S(l−1)
nl−1

)
, AOP (l−1)

nl−1
.

For j ∈ {1, . . . , l − 1}, we have AOP (j)
Nj

= outj(Bl).

Proof. This is a direct consequence of Corollary 8.2.2.

Our linearization framework is Algorithm 8.2 with this lemma applied for the
computation of the And-Or paths AOP (j)

Nj
in line 13 of Algorithm 8.2. Figure 8.5

shows all the circuits used in the linearization framework. These are the circuits
used in the adder construction framework from Figure 8.2, where the And-Or paths
AOP

(j)
Nj

for each j ∈ {0, . . . , l − 1} are computed using Lemma 8.2.3 as depicted in

Figures 8.3 and 8.4. Here, we need another adder Bl and And-Or paths AOP (j)
nj .

After analyzing the depth and size of the resulting family of adders, we shall explain
why this is actually a linearization framework for the adder family (Bl)l∈N.
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P (3)

S
(3)
n3

P (2)

S
(2)
n2

P (1)

S
(1)
n1

P (3)

A
(3)
n3

AOP
(3)
n3

P (2)

A
(2)
n2

AOP
(2)
n2

P (1)

A
(1)
n1

AOP
(1)
n1

P (0)

A
(0)
n0

AOP
(0)
n0

Bl

Figure 8.5: Illustration of the adder linearization framework from
Theorem 8.2.4.

Theorem 8.2.4. Let n ∈ N with n ≥ 2, two families of adder circuits (Ak)k∈N
and (Bl)l∈N, a family of And-prefix circuits (Sk)k∈N, and a family of And-Or path
circuits (AOPk)k∈N be given. Using Lemma 8.2.3 for the computation of the And-
Or paths in line 13, Algorithm 8.2 computes an adder circuit Cn on n input pairs
with depth

d(Cn) ≤ max
{
d(Ak) + 1, d(Bl) + max

{
d(AOPk), d(Sk)

}
+ 2

}
and size

s(Cn) ≤ s(An0) +
l−1∑
j=1

(
s(Anj ) + s(AOPnj ) + s(Snj )

)
+ s(Bl) + 2n.

Proof. By construction, the depth of AOPNj can be bounded by

d(AOPNj )
Lem. 8.2.3
≤ d(Bl) + max

{
d(AOPn0), max

j=1,...,l−1

{
d(AOPnj ), d(Snj )

}}
nj≤k
≤ d(Bl) + max

{
d(AOPk), d(Sk)

}
. (8.13)

Hence, we obtain a total depth of

d(Cn)
Thm. 8.2.1
≤ max

{
d(Ak) + 1, d(Sk) + 2, max

j∈{1,...,l−1}

{
d
(
AOPNj

)
+ 2

}}
(8.13)
≤ max

{
d(Ak) + 1, d(Sk) + 2, d(Bl) + max

{
d(AOPk), d(Sk)

}
+ 2

}
= max

{
d(Ak) + 1, d(Bl) + max

{
d(AOPk), d(Sk)

}
+ 2

}
.

The size bound follows directly from Observation 8.2.1 and Lemma 8.2.3.

The preceding theorem gives a construction method for a family of adder circuits
(Cn)n∈N based on other families of adder circuits (Bl)l∈N and (Ak)k∈N, And-Or path
circuits and And-prefix circuits. We will see in Theorem 8.2.6 that this is actually
a linearization of the family (Bl)l∈N once the sizes of the And-Or path circuits,
And-prefix circuits, and (Ak)k∈N are linear. For this, we will use the adder circuits
from the following proposition as family (Ak)k∈N.
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Proposition 8.2.5. For each n ∈ N, there is an adder circuit An with s(An) ≤ 3.5n
and d(An) ≤ n+ 2.

Proof. For n ≤ 1, we can construct an adder circuit with depth and size 0.
For n ≥ 2, we apply Algorithm 8.1 to the following circuit families:

• We use the ripple-carry adder (see Observation 2.4.6) to compute the adder
circuits Akl and Akr . From Akr , we can also read off the And-Or path AOPkr .

• For Skl , we use an And-path Skl = pn−1 ∧ (pn−2 ∧ (. . . ∧ (pkr+1 ∧ pkr+1))) as
And-prefix circuit on Pl.

Denote the resulting circuit by An. The depth of An is at most

d(An)
Lem. 8.1.1
≤ max{d(Akl) + 1, d(Akr) + 2, d(Skl) + 2}

Obs. 2.4.6
= max{2kl − 1, 2kr, kl}
= 2kr

≤ n+ 2 .

As Akr and AOPkr have identical gates, the size of An is

s(An)
Lem. 8.1.1
≤ s(Akr) + s(Akl) + s(Skl) + 2kl

Obs. 2.4.6
≤ 2kr − 2 + 2kl − 2 + kl − 2 + 2kl

< 2kr + 5kl

≤ 3.5n .

Theorem 8.2.6. Let a family of adder circuits (Bl)l∈N with depth d(Bl) ≤ log2 l +
δ(l) and size s(Bl) ≤ lσ(l) be given, where σ, δ : N→ R≥0 are monotonely increasing
functions. Then, for any n ∈ N, there is a linear-size adder circuit Cn with

d(Cn) ≤ max
{
σ(n), d(Bn) + log2 log2(σ(n))

}
+ const .

Proof. We apply the linearization from Theorem 8.2.4 to the adder family (Bl)l∈N,
using the following other circuits: For the adder family (Ak)k∈N, we use the circuits
from Proposition 8.2.5; for the And-prefix circuit family (Sk)k∈N, we use the Ladner-
Fischer circuits

(
S0
k

)
k∈N from Theorem 2.6.24 with f = 0; and for the And-Or paths

AOPk, we use the circuit from Corollary 3.4.21 (with m ≤ 2k inputs since we have
k input pairs). Thus, we have

d(Ak) ≤ k + 2 , s(Ak) ≤ 3.5k ,

d(AOPk) ≤ log2(2k) + log2 log2(2k) + 1.58 , s(AOPk) ≤ 9.3k − 4 ,

d(Sk) ≤ dlog2 ke , s(Sk) ≤ 2

(
1 +

1

20

)
k = 4k .

We choose k :=
⌈
σ(n)

⌉
, and l :=

⌈
n
k

⌉
. This implies

s(Bl) ∈ O
(
lσ(l)

)
= O

(
n

σ(n)
σ(n)

)
= O(n) .
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As also the sizes of Ak, AOPk, and Sk are linear in k, we obtain

s(Cn)

Thm. 8.2.4
≤ s(An0) +

l−1∑
j=1

(
s(Anj ) + s(AOPnj ) + s(Snj )

)
+ s(Bl) + 2n

∈ O(n) .

For analyzing the depth of Cn, note that d(AOPk) ≥ d(Sk). We conclude

d(Cn)
Thm. 8.2.4
≤ max

{
d(Ak) + 1, d(Bl) + max

{
d(AOPk), d(Sk)

}
+ 2

}
≤ max

{
k + 3, log2 l + δ(l) + log2(2k) + log2 log2(2k) + 3.58

}
= max

{
σ(n), log2 n− log2 k + δ(l) + log2 k + log2 log2 k

}
+ const

≤ max
{
σ(n), d(Bn) + log2 log2(σ(n))

}
+ const .

In particular, if the size of Bl is in the order of O(n log2 n), as for the adder
from Theorem 8.1.3, we can linearize the adder family (Bl)l∈N with a depth increase
of only log2 log2 log2 n (up to an additive constant). When the size of Bl is even
smaller, the depth increase will also become smaller.

Remark 8.2.7. Our linearization framework presented in Theorems 8.2.4 and 8.2.6
is closely related to the linearization by Ofman [Ofm62] and Khrapchenko [Khr67],
see Gashkov, Grinchuk, and Sergeev [GGS07] for a concise description. In Corol-
lary 3.4.21, we present the first family of And-Or path circuits with asymptotically
optimum depth of log2 n + log2 log2 n + const and, at the same time, a linear size.
Hence, we use these circuits for construction of the And-Or paths AOPnj in Theo-
rem 8.2.4.

Instead, Ofman [Ofm62] and Khrapchenko [Khr67] use last carry bit of the adder
circuits Ak to compute AOPnj . This way, the depth of Ak is critical for the depth
of Cn – very different to our approach, where in Theorem 8.2.6, we may use a
circuit with a high depth of k + 3. The best possible result for Ofman [Ofm62] and
Khrapchenko [Khr67] is achieved by applying their linearization iteratively, which
lead to a much higher depth increase in the order of O

(
4
√

log2 n
)

and linear-size

adder circuits with a depth of log2 n+
√

2 log2 n+O
(

4
√

log2 n
)
.

Another linearization technique, which is also based on Khrapchenko [Khr67],
is described concisely in Held and Spirkl [HS17a]. Given an adder family (Bl)l∈N
and τ ≤ log2 n − 1, this linearization constructs adder circuits with depth at most
d(Bn/2τ ) + 2τ and size at most s(Bn/2τ ) + 5n. If we used this linearization with
our family of adder circuits from Theorem 8.1.3 with a size of O(n log2 n) as Bl,
we would need to choose τ = log2 log2 n. This would lead to a much larger depth
increase in the order of O(log2 log2 n).

Note that in Theorem 8.2.6, we omit the additive constant in the depth and the
multiplicative constant in the size of the linearized adder Cn. In order to tune these
constants, we will perform a more careful analysis in the next section. Moreover, we
use slightly different sub-circuits than in Theorem 8.2.6.

8.3 Linear-Size Adder Circuits
Using the linearization framework presented in Theorem 8.2.4, we can now linearize
the size of the adder circuits from Theorem 8.1.3. We discuss two results: First,
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in Theorem 8.3.6, we present a linear-size adder with the best depth we can obtain
with our approach. Secondly, in Proposition 8.3.7, we show how to decrease the size
of this adder substantially if the depth is allowed to increase by a small constant.

Again, in both cases, we will use other adder circuits when the number of inputs
is small. For this, we need a technical lemma.

Lemma 8.3.1. For 4 ≤ n ≤ 8192, we have

2dlog2 ne ≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 8.6 .

Proof. Define the function νr : x 7→ log2 log2 x + log2 log2 log2 x + 6.6 − log2 x for
x ≥ 4. For x ≤ 4096, we will prove the stronger statement that

νr(x) ≥ 0 . (8.14 )

Note that for x ≤ 97 < 26.6 and thus log2 x < 6.6, this is clearly fulfilled.
Thus, assume that x ≥ 98. The derivative of νr(x) is

d

dx
νr(x) =

1

ln2(2)x log2 x
+

1

ln3(2)x log2 x log2 log2 x
− 1

ln(2)x

=
ln(2) log2 log2 x+ 1− ln2(2) log2 x log2 log2 x

ln3(2)x log2 x log2 log2 x
.

This function is negative as its denominator is always positive and for its nominator,
we have

ln(2) log2 log2 x+ 1− ln2(2) log2 x log2 log2 x

= 1 + ln(2) log2 log2 x(1− ln(2) log2 x)

x≥98
≤ 1− 3.58 ln(2) log2 log2 x

x≥98
< 0 .

Thus, for 98 ≤ x ≤ 4096, we have νr(x) ≥ νr(4096) ≥ 0.02 > 0. This proves
Equation (8.14 ).

Now, we may assume that 4096 < x ≤ 8192, i.e., 12 < log2 x ≤ 13. This implies

log2 x+ log2 log2 x+ log2 log2 log2 x+ 8.6
n>4096
> 12 + log2 12 + log2 log2 12 + 8.6

> 26

x≤8192
≥ 2d log2 xe.

This proves this lemma for all 4 ≤ x ≤ 8192.

For bounding the depth and size of our adder circuits, we need three more
numerical lemmas. Each of them contains two statements as a preparation for
Theorem 8.3.6 and Proposition 8.3.7, respectively.

Lemma 8.3.2. For x ≥ 8192 and r ∈ {1, 2}, the function

νr(x) :=
x

logr2 x+ 1

is monotonely increasing in x.
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Proof. We have
d

dx

(
logr2 x

)
=
r(log2 x)r−1

ln(2)x
(8.15)

and thus

d

dx
νr(x)

(8.15)
=

logr2 x+ 1− x r(log2 x)r−1

ln(2)x(
logr2 x+ 1

)2 =
logr−1

2 x
(

log2 x− r
ln(2)

)
+ 1(

logr2 x+ 1
)2 .

As r ≤ 2, the term log2 x− r
ln 2 is surely positive for x ≥ 8192, so d

dxνr(x) > 0.

Lemma 8.3.3. For x ≥ 8192 and r ∈ {2, 3}, the function

νr(x) :=
(log2 x)r

x log2 log2 x

is monotonely decreasing in x.

Proof. We have
d

dx

(
logr2 x

)
=
r(log2 x)r−1

ln(2)x
, (8.16)

and
d

dx
(x log2 log2 x) = log2 log2 x+ x

1

ln2(2)x log2 x
. (8.17)

Hence, the derivative of νr is

d

dx
νr(x)

(8.16),
(8.17)

=

r(log2 x)r−1

ln(2)x x log2 log2 x− (log2 x)r
(

log2 log2 x+ x 1
ln2(2)x log2 x

)
x2(log2 log2 x)2

=

r(log2 x)r−1 log2 log2 x
ln(2) − (log2 x)r log2 log2 x− (log2 x)r−1

ln2(2)

x2(log2 log2 x)2
.

This is strictly negative for x ≥ 8192 as

r(log2 x)r−1 log2 log2 x

ln(2)
− (log2 x)r log2 log2 x−

(log2 x)r−1

ln2(2)

< (log2 x)r−1 log2 log2 x

(
r

ln(2)
− log2 x

)
r≤3,
x≥8192
< 0 .

Hence, for x ≥ 8192, we have d
dxνr(x) < 0, which proves the statement.

Lemma 8.3.4. Let k, l, n ∈ N≥1 with n ≥ 8192 and l =
⌈
n
k

⌉
be given. We have

log2 l + log2 log2 l + log2 k + log2 log2(2k) + 8.16

≤ log2 n+ log2 log2 n+ log2 log2 log2 n+

8.6 if k = d log2 ne,
9.4 if k =

⌈
log2

2 n
⌉
.
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Proof. Case 1: We have k = d log2 ne.
With n ≥ 8192, we have

n

k

k=d log2 ne
≥ n

log2 n+ 1

n≥8192,
Lem. 8.3.2≥ 585 (8.18)

and thus

log2 l
l=d nk e
≤ log2

(
n

k
+ 1

)
(8.18)
≤ log2

(
n

k

)
+ 0.003 = log2 n− log2 k + 0.003 . (8.19)

Furthermore, we have

log2 log2(2k)
k=d log2 ne
≤ log2

(
1 + log2(log2 n+ 1)

)
n≥8192
≤ log2

(
1 + log2

(
14

13
log2 n

))
< log2(log2 log2 n+ 1.11)

n≥8192
< log2(1.3 log2 log2 n)

< log2 log2 log2 n+ 0.38 . (8.20)

Case 2: We have k =
⌈

log2
2 n
⌉
.

With n ≥ 8192, we have

n

k

k=d log2 ne
≥ n

log2
2 n+ 1

n≥8192,
Lem. 8.3.2≥ 48 (8.21)

and thus

log2 l
l=d nk e
≤ log2

(
n

k
+ 1

)
(8.21)
≤ log2

(
n

k

)
+ 0.03 = log2 n− log2 k + 0.03 . (8.22)

Furthermore, we have

log2 log2(2k)
k=d log2 ne
≤ log2

(
1 + log2

(
log2

2 n+ 1
))

n≥8192
≤ log2

(
1 + log2

(
170

169
log2

2 n

))
< log2(2 log2 log2 n+ 1.009)

n≥8192
< log2(2.28 log2 log2 n)

< log2 log2 log2 n+ 1.19 . (8.23)
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For both cases together, from these inequalities, we conclude

log2 l + log2 log2 l + log2 k + log2 log2(2k) + 8.16

(8.19),
(8.22)
≤ log2 n− log2 k + log2 log2 l + log2 k + log2 log2(2k) + 8.16

+

0.003 if k = d log2 ne
0.03 if k =

⌈
log2

2 n
⌉

≤ log2 n+ log2 log2 n+ log2 log2(2k) +

8.163 if k = d log2 ne
8.19 if k =

⌈
log2

2 n
⌉

(8.20),
(8.23)
< log2 n+ log2 log2 n+ log2 log2 log2 n+

8.6 if k = d log2 ne
9.4 if k =

⌈
log2

2 n
⌉ .

Lemma 8.3.5. Let k, l, n ∈ N≥1 with n ≥ 8192 and l =
⌈
n
k

⌉
be given. If k =

d log2 ne, then we have

(6.6 log2 l − 4)l ≤ 6.6n .

If k =
⌈

log2
2 n
⌉
, then, we have

(6.6 log2 l − 4)l ≤ 0.51n .

Proof. Case 1: Assume that k = d log2 ne.
Here, we have

l =

⌈
n

k

⌉
k≥log2 n≤

⌈
n

log2 n

⌉
≤ n

log2 n
+ 1 (8.24)

and thus

log2 l
(8.24)
≤ log2

(
n

log2 n
+ 1

)
n≥8192
≤ log2

(
1.002

n

log2 n

)
≤ log2 n− log2 log2 n+ 0.003 . (8.25)

Hence, we obtain

(6.6 log2 l − 4)l
(8.25)
≤

(
6.6(log2 n− log2 log2 n+ 0.003)− 4

)
l

n≥8192,
(8.24)
≤

(
6.6(log2 n− log2 log2 n+ 0.003)− 4

)( n

log2 n
+ 1

)
≤ 6.6n− 6.6n

log2 n
log2 log2 n+

0.02n

log2 n

+ 6.6 log2 n− 6.6 log2 log2 n+ 0.02− 4n

log2 n
− 4

< 6.6n− 6.6n

log2 n
log2 log2 n+ 6.6 log2 n

= 6.6n+
6.6n log2 log2 n

log2 n

(
−1 +

log2
2 n

n log2 log2 n

)
.
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The last term can be bounded from above by 6.6n as

log2
2 n

n log2 log2 n

n≥8192,
Lem. 8.3.3≤ log2

2(8192)

8192 log2 log2(8192)
≤ 0.006 < 1 .

This shows the first statement.
Case 2: Assume that k =

⌈
log2

2 n
⌉
.

We have

l =

⌈
n

k

⌉ k=d log2
2 ne
≤

⌈
n

log2
2 n

⌉
≤ n

log2
2 n

+ 1 . (8.26)

and thus

log2 l
(8.26)
≤ log2

(
n

log2
2 n

+ 1

)
n≥8192
≤ log2

(
1.03

n

log2
2 n

)
≤ log2 n− 2 log2 log2 n+ 0.05 . (8.27)

This implies

(6.6 log2 l − 4)l
(8.27)
≤

(
6.6(log2 n− 2 log2 log2 n+ 0.05)− 4

)
l

n≥8192,
(8.26)
≤

(
6.6(log2 n− 2 log2 log2 n+ 0.05)− 4

)( n

log2
2 n

+ 1

)
≤ 6.6

n

log2 n
− 13.2n

log2
2 n

log2 log2 n+
0.33n

log2
2 n

+ 6.6 log2 n− 13.2 log2 log2 n+ 0.33− 4n

log2
2 n
− 4

< 6.6
n

log2 n
− 13.2n

log2
2 n

log2 log2 n+ 6.6 log2 n

n≥8192
≤ 0.51n+

n log2 log2 n

log2
2 n

(
−13.2 + 6.6

log3
2 n

n log2 log2 n

)
.

The last term can be bounded from above by 0.51n as

6.6
log3

2 n

n log2 log2 n

n≥8192,
Lem. 8.3.3≤ 6.6

log3
2(8192)

8192 log2 log2(8192)
≤ 0.08 < 13.2 .

This proves this lemma.

Using the previous lemmas, we now prove the main theorem of this chapter.

Theorem 8.3.6. Let n ∈ N with n ≥ 4 be given. In running time O(n log2 n), we
can construct an adder circuit C2

n on n input pairs with depth

d(C2
n) ≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 8.6

and size
s(C2

n) ≤ 22.7n .
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Proof. If 4 ≤ n ≤ 8192, we use the adder circuit by Ladner and Fischer [LF80] with
size at most 12n and depth at most 2dlog2 ne, see Theorem 2.6.24 with f = 0. Its
size is sufficiently small because 22.7 > 12; and its depth is sufficiently small by
Lemma 8.3.1.

Hence, assume that n ≥ 8192. We apply the linearization from Theorem 8.2.4
to the adder family (Bl)l∈N :=

(
A1
l

)
l∈N from Theorem 8.1.3 with k = d log2 ne and

thus l =
⌈
n
k

⌉
. For the adder family (Ak)k∈N, we use the circuits from Proposi-

tion 8.2.5. For the And-prefix circuit family (Sk)k∈N, we use the Ladner-Fischer
[LF80] circuits

(
S3
k

)
k∈N from Theorem 2.6.24 with f = 3, which is viable as

d log2 k e ≥ log2 log2 n
n≥8192
≥ 3.7. This leads to a size of s(Sk) ≤ 2

(
1 + 1

23

)
k = 2.25k.

For the And-Or paths AOPk, we use the circuit from Corollary 3.4.21 (with at most
2k inputs). Thus, we have

d(Ak) ≤ k + 2 , s(Ak) ≤ 3.5k ,

d(Bl) ≤ log2 l + log2 log2 l + 3.58 , s(Bl) ≤ 6.6l log2 l ,

d(AOPk) ≤ log2(2k) + log2 log2(2k) + 1.58 , s(AOPk) ≤ 8.3k − 4 ,

d(Sk) ≤ dlog2 ke+ 3 , s(Sk) ≤ 2.25k . (8.28)

We denote the adder circuit resulting from Theorem 8.2.4 applied with this setting
by A2

n.

We now bound the depth of A2
n. Since k

n≥8192
≥ 13, we have

log2(2k) + log2 log2(2k) + 1.58
k≥13
≥ log2 k + log2 log2(26) + 2.58

≥ log2 k + 2.23 + 2.58

≥ dlog2 ke+ 3

= d(Sk) . (8.29)

Furthermore, we have

log2 l + log2 log2 l + log2(2k) + log2 log2(2k) + 5.16

> log2 l + log2 k + 6.16

l=d nk e
≥ log2 log2 n+ 6.16

k=d log2 ne
≥ k + 5.16

(8.28)
= d(Ak) + 3.16 . (8.30)

Therefore, the depth of our adder circuit can be bounded by
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d(A2
n)

Thm. 8.2.4
≤ max

d(Bl) + max
{
d(AOPk), d(Sk)

}
+ 2, d(Ak) + 1


(8.28),
(8.29),
(8.30)

= log2 l + log2 log2 l + 3.58 + log2(2k) + log2 log2(2k) + 1.58 + 2

= log2 l + log2 log2 l + log2 k + log2 log2(2k) + 8.16

Lem. 8.3.4
≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 8.6 .

The size of A2
n can be bounded by

s(A2
n)

Thm. 8.2.4
≤

l−1∑
j=0

s(Anj ) +
l−1∑
j=1

s(Snj ) +
l−1∑
j=1

s(AOPnj ) + s(Bl) + 2n

(8.28)
<

l−1∑
j=0

(3.5nj + 2.25nj + 8.3nj − 4) + 6.6l log2 l + 2n

= 16.05n+ (6.6 log2 l − 4)l

Lem. 8.3.5
≤ 16.05n+ 6.6n

< 22.7n .

For proving the running time, it suffices to consider the case n > 8192. Then,
we construct adder circuits Bl on l = dnk e inputs using Theorem 8.1.3, which can be
executed in time O(l log2

2 l) = O(n log2 n) (see Theorem 8.1.3). For the construction
of the l And-Or paths AOPk, we apply the algorithm from Corollary 3.4.21 with
a running time of O(k log2 k) for each And-Or path, which yields a running time
of O(lk log2 k) = O(n log2 log2 n) for constructing all these And-Or paths. The
remaining part of the algorithm (including the computation of the And-prefix circuit
family S (see Proposition 2.6.25) and adder family A (see Proposition 8.2.5) can be
done in linear time.

Thus, we get an overall running time of O(n log2 n).

These circuits are the fastest linear-size adder circuits known so far. With a
depth increase of only 0.8, we can reduce the size significantly as follows.

Proposition 8.3.7. Let n ∈ N with n ≥ 4 be given. In running time O(n log2 log2 n),
we can construct an adder circuit C3

n on n input pairs with depth

d(C3
n) ≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 9.4

and size
s(C3

n) ≤ 17.6n .

Proof. Consider again the proof of Theorem 8.3.6. We proceed similarly, but choose
k differently and use different adder circuits Ak.

If 4 ≤ n ≤ 8192, we again use the adder circuit by Ladner and Fischer [LF80]
with size at most 12n and depth at most 2dlog2 ne, see Theorem 2.6.24 with f = 0.
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Its size is sufficiently small because 17.6 > 12; and its depth is sufficiently small by
Lemma 8.3.1.

Thus, assume that n ≥ 8192. We again apply the linearization from Theo-
rem 8.2.4 with Bl and AOPk chosen as in Theorem 8.3.6, but with Sk and Ak
both computed by the Ladner-Fischer parallel prefix circuit from [LF80] with f = 3,
see also Theorem 2.6.24. This way, we obtain

d(Ak) ≤ 2
(
d log2 k e+ 3

)
d(Sk) ≤ d log2 k e+ 3

s(Ak) + s(Sk) ≤ 6.75k , (8.31)

and the bounds regarding Bl and AOPk from Equation (8.28) still hold.
This time, we choose k =

⌈
log2

2 n
⌉
and l =

⌈
n
k

⌉
. Note that the choice of f is

valid as
log2 k ≥ log2(log2

2 n) = 2 log2 log2 n
n≥8192
> 7 > 3 .

Denote the arising adder circuit by A3
n.

Note that Equation (8.29) is still valid as k is larger than before. For bounding
the depth of Ak, we calculate

2

⌈
log2

⌈
log2

2 n
⌉⌉

≤ 2

⌈
log2

(
1 + log2

2 n
)⌉

n≥8192
≤ 2

⌈
log2

(
1.006 log2

2 n
)⌉

< 2d0.009 + 2 log2 log2 ne
< 4 log2 log2 n+ 2.018 (8.32)

and thus

d(Ak)

(8.31),
k=d log2

2 ne
≤ 2

⌈
log2

⌈
log2

2 n
⌉⌉

+ 6

(8.32)
< 4 log2 log2 n+ 8.018

n≥5315
≤ log2 n+ 10.16

l=d nk e
≤ log2 l + log2 k + 10.16

k≥169
< log2 l + log2 log2 l + log2(2k) + log2 log2(2k) + 6.16 . (8.33)

Hence, the depth of A3
n can be bounded by

d(A3
n)

Thm. 8.2.4
≤ max

d(Bl) + max
{
d(AOPk), d(Sk)

}
+ 2, d(Ak) + 1


(8.28),
(8.29),
(8.32)

= log2 l + log2 log2 l + 3.58 + log2(2k) + log2 log2(2k) + 1.58 + 2

= log2 l + log2 log2 l + log2 k + log2 log2(2k) + 8.16

Lem. 8.3.4
≤ log2 n+ log2 log2 n+ log2 log2 log2 n+ 9.4 .
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For the size of A3
n, we obtain

s(A2
n)

Thm. 8.2.4
≤

l−1∑
j=0

s(Anj ) +
l−1∑
j=1

s(Snj ) +
l−1∑
j=1

s(AOPnj ) + s(Bl) + 2n

(8.31),
(8.28)
<

l−1∑
j=0

(6.75nj + 8.3nj − 4) + 6.6l log2 l + 2n

= 17.05n+ (6.6 log2 l − 4)l

Lem. 8.3.5
≤ 17.05n+ 0.51n

< 17.6n .

For proving the running time, it again suffices to consider the case n > 8192.
For k =

⌈
log2

2 n
⌉
, constructing the adder circuits Bl using Theorem 8.1.3 takes

time O(l log2
2 l) = O(n) (see Theorem 8.1.3). For the construction of the l And-

Or paths AOPk using Corollary 3.4.21, we need a running time of O(lk log2 k) =
O(n log2 log2 n). Again, the remaining part of the algorithm (including the compu-
tation of Ak and Sk (see Proposition 2.6.25) can be done in linear time.

Thus, we get an overall running time of O(n log2 log2 n).



Summary

We have considered the problems of designing algorithms for the computation of fast
circuits both for And-Or paths and for binary addition.

A measure for the speed of a circuit which is often considered in the literature
is circuit depth. However, on a computer chip, it is more realistic to assume that
the input signals are available at individual prescribed arrival times. Circuit delay
is natural a generalization of circuit depth to arrival times. In the following, let
n ∈ N be the number of inputs, and in case arrival times are present, denote them
by a0, . . . , an−1 ∈ N.

We have improved the best known upper bounds on the optimum depth and
delay significantly both for adder and And-Or path circuits.

Regarding depth optimization of And-Or path circuits, we have proposed the
first polynomial-time algorithm constructing circuits which have a linear size and, at
the same time, a depth of log2 n+log2 log2 n+const. By Commentz-Walter [Com79],
this is the best possible asymptotic depth guarantee for And-Or paths and for adder
circuits. For adder circuits, we achieve such a depth bound with a size of O(n log2 n).
Furthermore, we have introduced an algorithm constructing linear-size adder circuits
with a depth of log2 n + log2 log2 n + log2 log2 log2 n + const, improving the gap to
the lower bound from O

(√
log2 n

)
to O(log2 log2 log2 n). Both the And-Or path

and the adder optimization algorithm have a running time of O(n log2 n).

For delay optimization of And-Or path circuits, we have presented an algorithm
with running time O(n log2

2 n) with a delay guarantee of log2W + log2 log2 n +
log2 log2 log2 n + const, where W =

∑n−1
i=0 2ai . This significantly improves upon

the previously best delay of d log2W e + 2
√

2 log2 n + const in comparison to the
lower bound of d log2W e.

Moreover, we have presented the first exact delay optimization algorithm for
generalized And-Or paths. Before, there were only exact algorithms for depth
optimization of And-Or paths. Our algorithm has a theoretical running time of

O(3n), and for And-Or paths even only O
((√

6
)n)

. For the special case of depth

optimization of And-Or paths, the running time is improved to O(n2.02n). For this



case, an exact algorithm with running time O
((√

6
)n)

was known before.

Using efficient pruning techniques, we have shown that we can drastically improve
our empirical running time. This way, we have computed depth-optimum And-Or
path circuits for up to 64 inputs, while the previously best exact algorithm could
only solve instances with up to 29 inputs due to running time issues. Running our
algorithm takes up to 1.5 seconds on any of these instances with up to 60 inputs, and
less than 3 hours on the remaining 4 instances. For And-Or path instances with
non-uniform input arrival times, our average running time on a set of instances with
60 inputs is less than 2 minutes, but the maximum running time is 24 minutes.

Together with one of our theoretical results, our computations yield the optimum
depths of n-bit adder circuits for all n = 2k with k ≤ 13, which – to the best of our
knowledge – have not been known before for any n ≥ 32.

For practical applications, we have proposed a dynamic program with running
time O(n4) which fulfills the best known theoretical delay guarantee, but is also very
efficient and computes very good solutions in practice. On an artificial testbed, we
have demonstrated that this algorithm outperforms the previously best implemented
algorithms. Moreover, using our exact algorithm, we computed the optimum delay
achievable on each instance of this testbed. We have observed that our practical
algorithm computes a delay-optimum solution on 95% of these instances, while the
previously best known algorithms compute optimum circuits only for 10% of the
instances.

We have presented a logic optimization tool for chip design called BonnLogic
which optimizes the logical structure of the most timing-critical paths with our
practical algorithm as a core routine. BonnLogic is successfully applied in the
chip design flow of IBM. We have demonstrated the effectiveness and efficiency of
BonnLogic on recent real-world chips.



Index

A

absorption rules . . . . . . . . . . . . . . . . . . . . . . 16
adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
adder circuit . . . . . . . . . . . . . . . . . . . . . . . . . 35
Adder Optimization Problem . . . .35
adder prefix gates . . . . . . . . . . . . . . . . . . . . 53
adder prefix operator . . . . . . . . . . . . . . . . . 52
additional gate . . . . . . . . . . . . . . . . . . . . . . . 90
alternating split . . . . . . . . . . . . . . . . . . . . . . 48
And-Or path . . . . . . . . . . . . . . . . . . . . . . . . 37

length of an. . . . . . . . . . . . . . . . . . . . . .37
standard circuit of an . . . . . . . . . . . . 37
standard realization of an . . . . . . . . 37

And-Or path circuit . . . . . . . . . . . . . . . . .37
And-Or path Circuit Depth Opti-

mization Problem . . . . . . . . . 61
And-Or Path Circuit Optimization

Problem . . . . . . . . . . . . . . . . . . . 38
And-Or path Formula Optimiza-

tion Problem . . . . . . . . . . . . . .38
And-prefix circuit . . . . . . . . . . . . . . . . . . . .53
arity of a Boolean formula. . . . . . . . . . . .15
arity of a Boolean function . . . . . . . . . . . 13
arity of a gate . . . . . . . . . . . . . . . . . . . . . . . . 24
arrival time . . . . . . . . . . . . . . . . . . . . . . . . . . 25
associativity . . . . . . . . . . . . . . . . . . . . . . . . . 16

B

Basic Adder Optimization Problem
34

basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
standard monotone . . . . . . . . . . . . . . 23
standard non-monotone . . . . . . . . . . 23

binary-circuit dynamic program . . . . . 161
binary-search extension . . . . . . . . . . . . . 134

Boolean conjunction . . . . . . . . . . . . . . . . . 14
Boolean disjunction . . . . . . . . . . . . . . . . . . 14
Boolean exclusive disjunction. . . . . . . . .14
Boolean formula

equivalent. . . . . . . . . . . . . . . . . . . . . . . .16
monotone . . . . . . . . . . . . . . . . . . . . . . . . 19

Boolean Formula Delay Optimiza-
tion Problem . . . . . . . . . . . . . .27

Boolean function . . . . . . . . . . . . . . . . . . . . . 13
monotone . . . . . . . . . . . . . . . . . . . . . . . . 19
n-ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
symmetric . . . . . . . . . . . . . . . . . . . . . . . 31

Boolean input variable . . . . . . . . . . . . . . . 13
Boolean negation. . . . . . . . . . . . . . . . . . . . .14
Boolean variable . . . . . . . . . . . . . . . . . . . . . 13
boundary tree sequence . . . . . . . . . . . . . . 77

decreasing part of a . . . . . . . . . . . . . . 77
increasing part of a . . . . . . . . . . . . . . 77

buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C

carry bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
cell

logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
register . . . . . . . . . . . . . . . . . . . . . . . . . 191

cell delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

binary . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Boolean formula corresponding to a

23
Boolean function realized by a . . . 23
equivalent. . . . . . . . . . . . . . . . . . . . . . . .23
formula . . . . . . . . . . . . . . . . . . . . . . . . . . 24
leftist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
monotone . . . . . . . . . . . . . . . . . . . . . . . . 23

229



230 Index

ordered symmetric . . . . . . . . . . . . . . . 75
reduced . . . . . . . . . . . . . . . . . . . . . . . . . . 28
symmetric . . . . . . . . . . . . . . . . . . . . . . . 31

Circuit Delay Optimization Prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . 27

commutativity . . . . . . . . . . . . . . . . . . . . . . . 16

D

De Morgan’s laws . . . . . . . . . . . . . . . . . . . . 16
delay of a Boolean formula . . . . . . . . . . . 26
delay of a circuit . . . . . . . . . . . . . . . . . . . . . 25
depend essentially . . . . . . . . . . . . . . . . . . . . 14
depth of a Boolean formula. . . . . . . . . . .26
depth of a circuit. . . . . . . . . . . . . . . . . . . . .25
depth of a vertex . . . . . . . . . . . . . . . . . . . . . 25
distributivity . . . . . . . . . . . . . . . . . . . . . . . . . 16
driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
dual Boolean formula . . . . . . . . . . . . . . . . 20
dual Boolean function . . . . . . . . . . . . . . . . 20
dual circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E

Elmore delay model . . . . . . . . . . . . . . . . . 193
explicit extension . . . . . . . . . . . . . . . . . . . 174
extended AND-OR path . . . . . . . . . . . . . 47

alternating inputs of an . . . . . . . . . . 47
global inputs of an . . . . . . . . . . . . . . . 88
symmetric inputs of an. . . . . . . . . . .47

F

false . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
false point . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
family of adder circuits . . . . . . . . . . . . . . . 35
fanin of a gate . . . . . . . . . . . . . . . . . . . . . . . 24
fanout of a circuit . . . . . . . . . . . . . . . . . . . . 25
fanout of a vertex . . . . . . . . . . . . . . . . . . . . 24

G

gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22, 192
logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

gate size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
gate sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 195
gate type . . . . . . . . . . . . . . . . . . . . . . . . 22, 192
generalized And-Or path . . . . . . . . . . . . 39

standard circuit of a . . . . . . . . . . . . . 39
standard realization of a . . . . . . . . . 39

Generalized And-Or Path Circuit
Optimization Problem . . . .39

generate signal . . . . . . . . . . . . . . . . . . . 34, 39

I

implicant of a Boolean function . . . . . . 18
prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

input cone of a vertex . . . . . . . . . . . . . . . . 24
input group of a generalized And-Or

path . . . . . . . . . . . . . . . . . . . . . . . . . 39
input of a Boolean function . . . . . . . . . . 13
input of a circuit . . . . . . . . . . . . . . . . . . . . . 22

L

library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
linear-search extension . . . . . . . . . . . . . . 132
literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
logic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
logic optimization . . . . . . . . . . . . . . . . . . . 195
logic synthesis . . . . . . . . . . . . . . . . . . . . . . 195

M

macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
monotone product complexity . . . . . . . . 42
multi-level logic minimization . . . . . . . 196

N

net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
normal form

conjunctive . . . . . . . . . . . . . . . . . . . . . . 19
disjunctive . . . . . . . . . . . . . . . . . . . . . . . 19

O

output of a circuit. . . . . . . . . . . . . . . . . . . .22

P

Padovan sequence . . . . . . . . . . . . . . . . . . . 149
Parallel And-Prefix Problem . . 53
parallel prefix graph. . . . . . . . . . . . . . . . . .53
Parallel Prefix Problem . . . . . . 52 f.
physical design . . . . . . . . . . . . . . . . . . . . . . 195
pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

input . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
output . . . . . . . . . . . . . . . . . . . . . . . . . . 192

placement. . . . . . . . . . . . . . . . . . . . . . . . . . .195
plastic number . . . . . . . . . . . . . . . . . . . . . . 149
prefix adder . . . . . . . . . . . . . . . . . . . . . . . . . . 53
prefix graph . . . . . . . . . . . . . . . . . . . . . . . . . . 53
prefix operator . . . . . . . . . . . . . . . . . . . . . . . 53
primary input pin . . . . . . . . . . . . . . . . . . . 191



Index 231

primary output pin . . . . . . . . . . . . . . . . . 191
product complexity . . . . . . . . . . . . . . . . . . 42
propagate signal . . . . . . . . . . . . . . . . . . 34, 39

R

realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
required arrival time . . . . . . . . . . . . . . . . 193
restriction of a Boolean function. . . . . .14
RICE evaluation . . . . . . . . . . . . . . . . . . . . 193
ripple-carry adder . . . . . . . . . . . . . . . . . . . . 35
routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

S

S-optimum algorithm . . . . . . . . . . . . . . . 132
S-optimum circuit . . . . . . . . . . . . . . . . . . .132
same-gate input set . . . . . . . . . . . . . . . . . 135
serial prefix graph . . . . . . . . . . . . . . . . . . . . 54
signal partition of a generalized And-Or

path . . . . . . . . . . . . . . . . . . . . . . . . . 39
sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
size of a Boolean formula . . . . . . . . . . . . .26
size of a circuit . . . . . . . . . . . . . . . . . . . . . . .26
slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
slew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
split circuit . . . . . . . . . . . . . . . . . . . . . . . . . 170
split-optimum. . . . . . . . . . . . . . . . . . . . . . .170
static timing analysis . . . . . . . . . . . . . . . 192
strongly delay-optimum . . . . . . . . . . . . . 143
sub-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
substitution of constants . . . . . . . . . . . . . 16
sum of negative endpoint slacks . . . . . 193
summation function . . . . . . . . . . . . . . . . . . 34
Symmetric Function Delay Opti-

mization Problem . . . . . . . . . 31
symmetric split . . . . . . . . . . . . . . . . . . . . . . 51

T

technology mapping . . . . . . . . . . . . . . . . . 196
transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
triangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
true point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
two-level logic minimization . . . . . . . . . 195

U

undetermined circuit . . . . . . . . . . . . . . . . 167
weight of an . . . . . . . . . . . . . . . . . . . . 167

undetermined-circuit dynamic program
167

unoptimized tree-prefix algorithm . . . . 54

V

virtual timing model . . . . . . . . . . . . . . . . 193
Vt assignment . . . . . . . . . . . . . . . . . . . . . . . 195
Vt level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

W

weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 f.
wire delay. . . . . . . . . . . . . . . . . . . . . . . . . . .192
worst slack . . . . . . . . . . . . . . . . . . . . . . . . . . 193

X

Xor function . . . . . . . . . . . . . . . . . . . . . . . . 14



232 Index



Notation

C∗ Dual of a circuit C. Definition 2.2.10.
Cφ Formula circuit corresponding to a Boolean formula φ.

Definition 2.2.7.
Cv Circuit subordinate to a vertex v of circuit C. Definition 2.2.9.
C |xi=α Reduced circuit of a circuit C with respect to input xi and

α ∈ {0, 1}. Definition 2.3.13.
d(C) Depth of a circuit C. Chapter 8.
dmin(n,m) For n,m ∈ N, we have dmin(n,m) = min

{
d ∈ N : m ≤ µ(d, n)

}
.

Definition 3.1.7.
delay(C) Delay of a circuit C with input arrival times from the context.

Definition 2.3.2.
delay(C; a) Delay of a circuit C with input arrival times a. Definition 2.3.2.
delay(φ) Delay of a Boolean formula φ with input arrival times from the

context. Definition 2.3.8.
delay(φ; a) Delay of a Boolean formula φ with input arrival times a.

Definition 2.3.8.
depth(C) Depth of a circuit C. Definition 2.3.1.
depth(φ) Depth of a Boolean formula φ. Definition 2.3.8.
E(C) Edges of a circuit C. Definition 2.2.2.
f∗ Dual of the Boolean function f . Definition 2.1.29.
fC Boolean function corresponding to a circuit C. Definition 2.2.2.
fφ Boolean function that realizes a Boolean formula φ.

Definition 2.1.8.
f(s, t) Extended And-Or path f(s, t) = s0 ∧ . . . ∧ sn−1 ∧ g(t) with

symmetric inputs s = (s0, . . . , sn−1) and alternating inputs
t = (t0, . . . , tm−1). Definition 2.6.14.

f |xi=α Restriction of a Boolean function f to xi = α ∈ {0, 1}.
Definition 2.1.3.

fanout(C) Maximum fanout of any vertex of a circuit C. Definition 2.3.3.
fanout(v) Fanout fanout(v) = |δ+(v)| of a vertex v in a circuit C.

Definition 2.2.9.
fi,j,k Extended And-Or path

fi,j,k = f((ti, ti+2, . . . , tj−4, tj−2), (tj , . . . , tk)). Notation 6.1.1.
flodd(x) Given x ∈ R, we write flodd(x) = max{y ∈ Z : y odd, y ≤ x}.

Notation 3.4.15.
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G(C) Gates of a circuit C. Definition 2.2.2.
g(t) And-Or path g(t) = t0 ∧ (t1 ∨ (t2 ∧ . . . )) with Boolean input

variables t = (t0, . . . , tm−1). Definition 2.5.1.
gt(C) Gate type of out(C) for an undetermined circuit C.

Definition 6.1.7.
gt(v) Gate type of a gate v in a circuit C. Definition 2.2.2.
h(t; Γ) A generalized And-Or path h(t; Γ) = t0 ◦0

(
t1 ◦1 (. . .)

)
on inputs

t = (t0, . . . , tm−1) with gates Γ = (◦0, . . . , ◦m−2). Definition 2.5.5.
h(t; Γ)[i:j] Restriction of a generalized And-Or path h(t; Γ) to the input

range from ti up to tj for i ≤ j. Notation 5.2.1.
h(t; Γ)

Ŝ
Generalized And-Or path arising from h(t; Γ) by deleting the
input set S. Notation 5.2.1.

h(t; Γ)S◦k Generalized And-Or path h(t; Γ)S◦k =
(
h(t; Γ)[0:ik]

)
Ŝ◦2

.

Notation 5.2.1.
h(t; Γ)t̂i Generalized And-Or path arising from h(t; Γ) by deleting the

input ti. Notation 5.2.1.
I(C) Inputs of a circuit C. Definition 2.2.2.
Iv(C) Inputs in the input cone of a vertex v of a circuit C.

Definition 2.2.9.
lit(ι) Set of literals of an implicant ι of a Boolean function f .

Definition 2.1.19.
m(d, n) Capacity of d and n for d, n ∈ N. Maximum number m of

alternating inputs such that an extended And-Or path with n
symmetric inputs and m alternating inputs can be realized with
depth d. Definition 3.1.1.

N Set of natural numbers including 0. Section 2.1.
O(C) Outputs of a circuit C. Definition 2.2.2.
out(C) Unique output gate of a circuit C. Definition 2.2.2.
outi(A) Output gate of an adder circuit A which computes the ith carry

bit. Definition 2.4.4.
P0 ++ . . .++ Pc signal partition of a generalized And-Or path with input parts

P0, . . . , Pc. Definition 2.5.6.
PI(f) Set of all prime implicants of a Boolean function f .

Definition 2.1.19.
S◦ Set of all same-gate inputs of a generalized And-Or path h(t; Γ)

and a gate type ◦ ∈ {And,Or}. Notation 5.2.1.
s(C) Size, i.e., number of gates, of a circuit C. Chapter 8.
size(C) Number of gates of a circuit C. Definition 2.3.4.
size(φ) Number of gates of a Boolean formula φ. Definition 2.3.8.
sym(x) Logical multiple-input And function

x = (x0, . . . , xn−1) 7→ x0 ∧ . . . ∧ xn−1. Definition 2.3.20.
V(C) Vertices of a circuit C. Definition 2.2.2.
Vv(C) Input cone of a vertex v of a circuit C. Definition 2.2.9.
W (C) Weight

∑
v∈δ−1(out(C)) 2a(v) of an undetermined circuit C with

arrival times a from the context. Definition 6.1.8.
W (t) Weight W (t) = W (t; a) with arrival times a(t0), . . . , a(tm−1) ∈ N

from the context. Definition 2.3.16.
W (t; a) Weight W (t) =

∑n−1
i=0 2a(ti) of inputs t = (t0, . . . , tm−1) with

arrival times a(t0), . . . , a(tm−1) ∈ N. Definition 2.3.16.
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µ(d, n) Given d, n ∈ N, we have µ(d, n) = 2d−n−2
d + 2. Definition 3.1.5.

ν(d,w) Given d,w ∈ N, we have ν(d,w) = ζ 2d−1−w
d log2 d

. Definition 4.1.1.
φ∗ Dual of the Boolean formula φ. Definition 2.1.28.
φC Boolean formula corresponding to a circuit C. Definition 2.2.2.
Ωmon Standard monotone basis Ωmon = {And2,Or2}. Definition 2.2.3.
Ωnmon Standard non-monotone basis Ωnmon = {And2,Or2,Not}.

Definition 2.2.3.
· ∧ · Logical And operation. Definition 2.1.6.∧ · Logical multiple-input And function. Remark 2.1.17.
· ∨ · Logical Or operation. Definition 2.1.6.∨ · Logical multiple-input Or function. Remark 2.1.17.
· ⊕ · Logical Xor operation. Definition 2.1.5.
· Logical Not operation. Definition 2.1.6.
· ◦ · A prefix operator. Section 2.6.3.
· ◦p · Adder prefix operator. Definition 2.6.22.
t̂ Input variables arising from input variables t by deleting every

other variable as in Definition 2.6.15.
·++ · Concatenation of two tuples. For example,

(w, x) ++ (y, z) = (w, x, y, z). Section 2.6.2.
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