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Abstract: In terms of high precision requested deforma-
tion analyses, evaluating laser scan data requires the ex-
act knowledge of the functional and stochastic model. If
this is not given, a parameter estimation leads to insuffi-
cient results. Simulating a laser scanning scene provides
the knowledge of the exact functional model of the sur-
face. Thus, it is possible to investigate the impact of ne-
glecting spatial correlations in the stochastic model. Here,
this impact is quantified through statistical analysis.

The correlation function, the number of scanning
points and the ratio of colored noise in the measurements
determine the covariances in the simulated observations.
It is shown that even for short correlation lengths of less
than 10 cm and a low ratio of colored noise the global test
as well as the parameter test are rejected. This indicates a
bias and inconsistency in the parameter estimation. These
results are transferable to similar tasks of laser scanner
based surface approximation.

Keywords: terrestrial laser scanner, deformation analysis,
spatial correlation, stochastic model

1 Motivation

Using terrestrial laser scanners (TLS) to acquire geometric
properties of surfaces has been proven to be a solid proce-
dure in tasks of industrial and classical survey [7, 10]. New
TLSmeasurewith a rate of up to onemillion points per sec-
ond and generate a highly dense three-dimensional point
cloud with a 3D point accuracy of a few millimeters [17].
Accordingly, they have a high spatiotemporal resolution.

This leads to the advantage of quick scanning, com-
pletely capturing the whole visible surface with no need
ofmarked points. Hence, this instrument is especially use-
ful to acquire the geometry of large or rather inaccessible
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areas, such as dams [20] or other buildings [2, 14]. If mea-
sured in several epochs, also changes of these geometries
can, thus, be detected. This procedure leads to laser scan-
ner based deformation analyses which are currently in fo-
cus of engineering geodesy [6].

A deformation analysis has to decide whether a de-
formation between two surfaces exists or not [27], i.e., if
the difference between a measured point cloud and a ref-
erence is significant. The result of this decision depends
on the stochastic characteristics of the point cloud. They
are defined by the covariance matrix of the observations
which consists of variances and covariances. Usually, the
variances are approximately known from a-priori informa-
tion or empirical investigations [12]. Yet, the correlations
and, thus, the covariances are unknown and therefore ne-
glected [3]. Determining the stochastic model is complex
and there is no common approach to detect the unknown
correlations in the observations yet [6].

Figure 1 shows the systematic residuals that occur
when simulating the scan of a plane of 0.5 × 0.5 m in
10 m distance with existing correlations between the scan
points. Due to these systematic structures, correlations
have a formative effect on laser scans. The residuals of
points which lie near to each other have similar magni-
tudes and signs. By showing four different realizations
of the same stochastic process, the random component
of correlation gets obvious. If this stochastic process and
theunderlying correlations are completely unknown, a de-
formation analysis can most probably not distinguish be-
tween systematic measurement errors and areal deforma-
tions.

Figure 1: Different realizations of correlated observations and their
residuals v .

The simulation will be explained in detail later on.
As consequence for a least-squares adjustment based

on these observations degraded by unknown correlations,
the parameter estimates may be inaccurate on the one
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hand. On the other hand, the corresponding standard de-
viations may be too optimistic or pessimistic, depending
on the sign of the correlations [6]. Hence, due to the ne-
glect of correlations, the parameter estimation may be bi-
ased and inconsistent. Both effects will be analyzed based
on statistical tests in this paper.

Consequently, the significance of parameter changes
at deformation analyses cannot be judged straightforward
since the corresponding global test of the adjustment re-
lies on a realistic stochastic model. Instead, most laser
scanner based deformation analyses proof the object’s de-
formation by assessing the parameters’ accuracy empiri-
cally or based on experience (e.g., [5]).

Only few investigations have been published covering
this issue but do not provide final solutions (Section 2.2).
Therefore, this paper investigates the difference of know-
ing correlations in a parameter estimation compared to
neglecting those in a simulated laser scan of a plane. In
this way, it is possible to investigate and quantify effects of
various factors in the process of a parameter estimation.
This procedure is similar to a geodetic sensitivity analy-
sis following Schwieger (2005) [34]: By varying selected
input variables (here: correlations), the response of the
output variables (here: estimated parameters and their co-
variance matrix) is studied using sensitivity values (here:
global test, parameter test).

The paper is structured as follows: Section 2 illustrates
the causes of correlations in TLS to provide a physical and
mathematical basis. The process of generating correlated
observations in a simulation environment is described in
Section 3. The evaluation of the results is presented
in Sections 4 and 5. The acquired results are discussed in
Section 6, followed by the conclusion and outlook in Sec-
tion 7.

2 Basics of correlations in laser
scans

The present section describes the physical causes of cor-
relations in laser scans (Section 2.1). Furthermore, Sec-
tion 2.3 shows how they are mathematically integrated in
the stochastic model of the observations. Studies regard-
ing correlations in TLS are presented in Section 2.2. Thus,
this section defines the basis for handling correlations in
a parameter estimation.

2.1 Causes of correlations in laser scans
In most cases, measurements are handled as uncorrelated
and, thus, stochastic independent. This does not reflect

Figure 2: The three components of the measurements: trend, signal
and noise. The trend is defined by the surface of the object. The
signal includes correlating effects, caused by various influences.

the reality due to systematic effects which influence the
uncertainties of multiple points in a similar way. All ef-
fects causing variances and covariances are generally dis-
tinguished as [31]:
– Scanner mechanism (calibration, settings),
– Atmospheric conditions (temperature, pressure),
– Object properties (color, reflection),
– Scanning geometry (incidence angle).

The scanner mechanism comprises the instrument’s me-
chanical inaccuracies as well as the scanning settings.
Considering minor changes in the manufacture and time-
conditioned deterioration, laser scanners have to be cali-
brated [11]. Since the accuracy in the estimation of calibra-
tion parameters is limited, there are remaining fractions
which cannot be determined by the calibration approach.
Those are affecting the observations systematically [7],
leading to similar systematic errors of neighbored points.
Furthermore, the instrument’s warm up process and inter-
val of usage cause slight changes in the measuring units
due to the operating temperature [17], which changes in
time.

In terms of scanning settings, different measuring op-
tions like the resolution or quality levels [17] lead to vary-
ing correlations between the distance measurements of
neighbored points. Consequently, effects related to the
scanner mechanism cause both spatial and temporal cor-
relations.

As the laser scanner’s laser beam is send through
the surrounding space (Figure 2), atmospheric conditions
affect the stochastic characteristics of the distance mea-
surements. Accordingly, temperature, atmospheric pres-
sure and humidity have to be taken into account as cor-
relating sources [31]. These factors change with time and
space.
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The object interacts directly with the laser beam and,
hence, impacts the spatial correlations between the mea-
sured distances. A white object color, for example, leads
to systematically longer measured distances compared to
a black one [25]. Also the reflection, shape, roughness and
entering depth, which are mostly all related to the object
material, are factors for systematic influences on the ob-
servations [31].

The last listed cause for correlations in laser scanning
is the scanning geometry. Primary, the distances and in-
cidence angles depend on the position of the instrument
related to the object. Both affect the random and system-
atic errors in the distance measurements and hence cause
spatial correlations [24]. Narrow angles and long distances
lead to overlapping footprints of the laser beam and, con-
sequently, same information in neighbored points [31].

Summarizing, correlations at laser scanning are due
to spatial as well as temporal effects and affect both angle
as well as distance measurements. Herein, the spatial cor-
relations of the distance measurements can be assumed
to be of most relevance for deformation analyses [6], since
most of the previously listed factors influence and corre-
late the distance measurements, not the angle measure-
ments. Hence, spatial correlations of the distance mea-
surement are analyzed in the present study. In prospective
studies, the angle measurements should also be consid-
ered.

A measurement scene is schematically presented in
Figure 2. The true shape of the object denotes the deter-
ministic trend (functional model) in the measured point
cloud. The functional model is usually expressed through
a mathematical function [4, 15] which requires the knowl-
edge of the surface’s shape [31, 26].

If the trend is known, the measurements can be re-
duced by it. The remaining result consists of the stochastic
signal and a random noise. These two components define
the variances and covariances and, thus, the stochastic
model. The stochastic signal includes all mentioned cor-
relating effects and is defined as the colored noise. The
random noise consists of all non correlating effects and
is described as white noise. Yet, there is no common ap-
proach in seperating those components in real measure-
ments (Section 2.3).

2.2 Preliminary investigations

TLS are still compulsory treated as ‘black boxes’ [32], since
the exact construction and internal software corrections
are not known in detail to the operator. Hence, there are
many difficulties in detecting and handling correlations in

laser scans and this task has not yet been solved. Contrary,
for GNSS, methods for detecting and integrating correla-
tions in the data processing exist due to a more profound
knowledge about the relevant aspects (colored noise/au-
tocorrelation in GPS, [18, 16]).

Following Schwieger (1999) [33], Kauker et al. (2016)
compute an elementary error model of the scanned points
[30]. Every spatiotemporal influence on a measured point
is described as either a functional correlating, stochastic
correlating or non-correlating error. All these errors are
quantified based on assumptions and used to generate a
synthetic covariance matrix [29]. This covariance matrix
is applied in a simulation. Variances and correlations are
calculated. The results detect high spatial correlations be-
tween the measured points.

Another approach is applied by Koch (2008) [23]. He
repeatedly measured a wooden panel with a low resolu-
tion so that less than 50 points are generated on it. He col-
lates the scans as time series of the measured points. The
average 3Dposition of eachpoint is subtracted as the trend
of a function (as shown in Figure 2). The resulting residu-
als are used to calculate empirical auto covariance func-
tions. This leads to a detection of high temporal correla-
tions between the point coordinates. It has to be kept in
mind that the definition of the detected correlations is not
covering all effectsmentioned in Section 2.While perform-
ing repeated measurements, some unchanged systematic
effects might not be taken into account.

Consequently, all mentioned studies focus either on
quantifying the theoretical effect of each correlation
source on the correlation of measured scan points or aim
at empirically revealing correlations. Nevertheless, the
knowledge about correlations at laser scanning is still lim-
ited. Contrary to these previous studies, the present one in-
vestigates how much a parameter estimation is degraded
due to this limited knowledge about correlations. The cor-
responding results can help at assessing the relevance of
actually quantifying correlations at laser scanning in fu-
ture studies.

2.3 Building of a more realistic stochastic
model

Analyzing the data in terms of deformations and other
high precision applications requires a correct functional
and stochastic model in the appropriate adjustment to de-
scribe the measured situation in a sufficient way. Using
a simulation approach allows an exact model definition.
Nevertheless, the difficulties in devising these models for
measured point clouds are explained in the following.
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As written in Section 2.1, the stochastic model is de-
fined by the variances and covariances of the measure-
ments and, though, the covariancematrix Σll (eq. 1). If cor-
relations are not known, the covariance matrix equals a
diagonal matrix:

Σll =(

(

σ2s1 0 0 0 …
0 σ2β1 0 0 …
0 0 σ2t1 0 …
0 0 0 σ2s2 …
⋮ ⋮ ⋮ ⋮ ⋱

)

)

. (1)

Here, σ2si , σ
2
βi and σ

2
ti denote the variance of the polar mea-

surements distance s, vertical angle β, and horizontal di-
rection t of a point i. If no correlations are integrated in
the covariance matrix, only a white noise is assumed [18].
However, correlations do exist in laser scans (Section 2.1)
and, hence, colored noise has to be taken into account. Ac-
cordingly, the variances in eq. (1) are defined as follows,
where the variance of the distance measurement is used
exemplarily:

σ2si = σ
2
csi + σ

2
wsi
. (2)

Here, the proportion of the variance regarding the colored
noise is calculated as σ2csi = rc ⋅ σ

2
si . Equally, the proportion

regarding the white noise can be calculated: σ2wsi
= rw ⋅ σ2si .

Hence, every variance consists of a ratio of white rw and
colored noise rc , while their sum equals rw + rc = 1. Conse-
quently, for calculating the covariances between two ob-
servations, the correlation coefficient has to be used [35]

ρsi,j =
σsi,j

σcsi ⋅ σcsj
, (3)

which, in general, describes the stochastic dependencies
between two random values li, lj . Equivalent, the covari-
ance σsi,j can be calculated when the other factors of eq.
(3) are known. Finally, the covariance matrix in eq. (1) can
be rewritten as:

Σll =(

(

σ2s1 0 0 ρσcs1σcs2 …
0 σ2β1 0 0 …
0 0 σ2t1 0 …

ρσcs1σcs2 0 0 σ2s2 …
⋮ ⋮ ⋮ ⋮ ⋱

)

)

. (4)

Thismatrix shows the correlationbetween twoneighbored
points regarding the distance measurements.

Consequently, for building a realistic covariance ma-
trix, several aspects have to be known: the ratio of white
noise rw , the ratio of colored noise rc , both leading to the
level of complete noise, as well as the correlation coeffi-
cient between the observations ρ. While this has only been
shown for the distance measurement’s here, it might also
be relevant for the angle measurements.

3 Simulating and evaluating
correlations in laser scans

As written in Section 2, the exact magnitude and func-
tional shape of correlations are unknown. Hence, for the
simulation of correlated observations, certain assump-
tions have to be suggested. First, a description of the corre-
lation function is neededwhich defines the correlation be-
tween twomeasured points on the object. In the next step,
these correlations have to be integrated in the stochastic
model where covariances can be calculated. Last, the gen-
erated covariancematrix can be used to add the stochastic
information to simulated observations. Thiswhole process
is presented in Section 3.1 and 3.2.

The object used in this simulation is a 0.5 × 0.5 m
plane. The distance between laser scanner and plane
equals 10m. The scan geometry is shown in Figure 3where
the red dots denote the scan points. The adjustment of the
point cloud is explained in Section 3.3.

Figure 3: Scan geometry of the simulated scanning scene. The X, Y
and Z axis define the object coordinate system (black). The x, y and z
axis define the laser scanner coordinate system (green).

For analyzing the consistency and unbiasedness, Sec-
tion 3.4 presents the statistical tests in terms of the sensi-
tivity analysis (Section 1) which are used to evaluate the
result of the parameter estimation.

3.1 Simulating correlation coefficients

In this study, correlations are assumed to decrease with
an increasing distance between the points on the object.
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This assumption is reasonable considering Section 2.1. To
describe this behavior a quadratic exponential function is
used [1]. Thus, the correlation function is defined as

Ri,j = exp( − (
Di,j

k
)2). (5)

Ri,j denotes the correlation between the point i and j and
is equal to the defined correlation coefficient ρ (eq. 3). The
distance Di,j between each of these points on the object is
known, while the correlation length k has to be defined.
This factor determines the correlation’s decrease. Figure 4
shows possible correlation functions with different corre-
lation lengths k.

Figure 4: Quadratic exponential function (eq. 5) with different cor-
relations lengths k to describe the correlations in a simulated laser
scan. The correlation coefficient ρ can be picked out of the function.

The correlation length k is defined as the distance
between two points at which eq. (5) equals exp(−1) ≈
37%. That means if the distance between two points is
smaller than the correlation length, the correlation is
larger than 37%.

In reality, the correlation length is not known, further-
more one does not knowwhether eq. (5) describes all phys-
ical influences of correlations. Also, other possible corre-
lation functions do not assign the causes of correlations
to certain systematic effects yet (Section 2.1). To character-
ize the correlations, a list of various functions, e.g., linear
exponential functions or radial basic functions, exist in
literature [1, 9]. Here, a quadratic exponential function is
chosen as initial guess. The general outcome of the study
is unaffected by the assumed function. The effect of dif-
ferent functions describing correlations could be investi-
gated in a proper study. In general, the correlation func-
tion should decrease exponentially with the distance be-

tween two points on the object based on the influencing
sources named in Section 2.1.

Likementioned, the stochasticmodel is usually adiag-
onal matrix due to unknown correlations (eq. 1). However,
if the correlation function is known as in this simulation,
covariances can be calculated.

In Figure 4, the approach to define the correlation co-
efficients ρ is shown exemplarily for the correlation func-
tion with a correlation length of k = 0.2 m (green). Here,
two points being approximately 15 cm apart from each
other are correlated by ρ ≈ 58%. Directly neighbored points
would be correlated with even more than 90%. Regarding
eq. (3), these values are integrated in the stochastic model
and, thus, used to calculate the covariances. Following,
every entry is filled, so that the whole given stochastic in-
formation is integrated in the covariance matrix (eq. 4).

It can be seen that the spatial correlations are only in-
tegrated between the distance observations as described
in Section 2.3. As a result, the covariances are known and
the stochastic model can be generated as in eq. (4).

3.2 Correlating scan points

Calculating the covariances with regard to the ratio of col-
ored noise is defined in eq. (2). This stochastic informa-
tion is added to noise free observations to generate corre-
lated observations. Therefore, the cholesky factorization is
used. The cholesky factorization of a positive definite ma-
trix is defined as [22]

Σll = ZZT , (6)

where Z denotes a regular lower triangularmatrix [21]. The
transformation we are looking for is obtained through

lC = lG + Z ⋅ ϵ, (7)

with ϵ ∼ 𝒩(0, I), a standard normal distributed vector,
which is created randomly. I denotes the identity matrix.
lG defines the noise free observations and is marked by a
G due to the geometrical generating process. Now, the cor-
related observations lC include the stochastic information
since their distribution is lC ∼𝒩(lG ,Σll).

As seen in Figure 1, different realizations of ϵ consid-
ering the same correlation length lead to completely dif-
ferent systematic errors. In Section 2.1, the formative in-
fluence of correlations was explained. Now, the plotted
points can be indicated as the product Z ⋅ ϵ, which can
be specified as correlated residuals. The resulting impacts
on parameter estimations will be quantified in Sections 4
and 5.
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In Figure 5, two different correlation functions for a
correlation length of k = 0.05 m and k = 0.20 m are illus-
trated. It showshowonepoint in themiddle of the scanned
plane is correlated to the other approx. 900 points on the
surface. Todefinea characteristic variablewhichdescribes
the strength of correlation in the point cloud of the scan,
nc is defined. It denotes the number of points being corre-
lated with more than ρ > 37% (see Section 3.1) to a point in
the middle of the plane n>37% (points lying above the red
circle in Figure 5), compared to the number of all points
nall . Hence, nc is described as the rate of correlated points
nc = n>37%/nall . This ratio does not change due to a chang-
ing point density.

Figure 5: 3D correlation function of the simulated plane for a corre-
lation length of k = 0.05 m and 0.20 m. Points which lies above the
red circle are correlated with more than exp(−1) = 37% to the point
in the middle of the function.

In Figure 5 left, nc is approx. 5%. Compared to Figure 5
right, this denotes a low impact of correlations, since the
rate of correlated points is more than 54% here.

3.3 Plane approximation of the scan points

After simulating the correlated point cloud, a parameter
estimation can be applied. The plane approximation is re-
alized through a Gauss-Helmert model with a reduction to
a Gauss-Markov model [13]. All the equations and descrip-
tions for applying such an adjustment are presented in [8].

The used variances are taken from the Leica ScanSta-
tion P20 Laser Scanner accuracies [17]. The standard de-
viations of the distance is defined as σs = 2 mm, while an-
gle measurements have a standard deviation of σt = σt =
2.5 mgon.

The functional model of a plane in the three-
dimensional space is defined through

nx ⋅ x + ny ⋅ y + nz ⋅ z = d. (8)

It is described by 4 parameters [28]. The estimated param-
eters p̂ consist of the normal vector [ ̂nx , ̂ny , ̂nz]T and the

distance d to the coordinate system’s origin. The Carte-
sian coordinates x = s sin(β)cos(t), y = s sin(β) sin(t) and
z = scos(β) of one point are calculated based on the obser-
vation triplet s,β, t. Thus, all observed points n consist of 3
observations each, which leads to a total ofm = n ⋅ 3 obser-
vations [8]. The redundancy accordingly equals f =m − u.

In the simulation, different point clouds can be gener-
ated. The correlation length k, the resolution of points on
the object and the ratio of colored noise rc is modified. The
influence on the parameter estimation of changing those
factors is investigated in Sections 4 and 5.

3.4 Evaluating parameter estimates

To quantify the effect of unknown correlations in a param-
eter estimation of the plane, the results have to be ana-
lyzed. To evaluate the results following a sensitivity anal-
ysis [34], two statistical tests are formulated: the global
test (Section 3.4.1) and the parameter test (Section 3.4.2).
The global test is used to investigate the consistency of the
adjustment, the parameter test investigates the unbiased-
ness. In general, a statistical test proves if an estimated
value complies with a theoretical value, regarding a sig-
nificance level 1 − α, where α denotes the error probability
[35]. If it not complies, the test is rejected. Here, α is set to
1 %. Furthermore, it is shown how the estimated parame-
ters are investigated regarding the true parameters which
are known due to the simulation (Section 3.4.3).

3.4.1 Global test

A rejection of the global test is caused by either a wrong
variance factor (see Section 3.4), functional model (eq. 8)
or stochastic model Σll (eq. 4). Since the investigations
are implemented in a simulation, the variance factor and
the functional model are exactly known. Consequently, a
rejection of a test is ascribed to a false stochastic model
(which is also known but is handled as unknown).

The test statistic TG for the global test is formulated as
follows:

TG = f ⋅
̂s2

σ20
∼ χ2f . (9)

which is a χ2f distributed value. The empirical variance ŝ2

is calculated by the resulting residuals ̂v and the matrix of
weights P and is checked against the theoretical variance
σ20 (a-priori information) in consideration of f . With

̂s2 = v̂
TPv̂
f
, (10)
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and the relation between P and the cofactor matrix Qll

Σll = σ20P−1 = σ20Qll , (11)

the test statistic can be transformed into

TG =
v̂TQ−1ll v̂
σ20
= v̂TΣ−1ll v̂. (12)

Here, the global test is formulated as a two sided test. This
implicates calculating both quantile with half of the error
probability α

2 :

P{χ2f ,α/2 ≤ TG ≤ χ2f ,1−α/2} = 1 − α. (13)

For a better depiction of the results, the test statistic and
the quantile are scaled by f ,

TG
f
=
v̂TΣ−1ll v̂

f
∼ℱf ,∞. (14)

Since f is the expectation value of an arbitrary
χ2f -distribution [35], values of around 1 are obtained. This
is equal to a Fisher distribution with f and∞ as the two
degrees of freedom.

Finally, eq. (13) can be formulated as

P{ℱf ,∞,α/2 ≤
TG
f
≤ℱf ,∞,1−α/2} = 1 − α. (15)

3.4.2 Parameter test

The test statistic TP proves the difference between the es-
timated parameters p̂ and their true values p considering
the stochastic information from the covariance matrix of
the estimated parameters Σ ̂p ̂p. Hence, the parameter test
proves the unbiasedness of the parameter estimation:

TP =
1
h
(p̂ − p)TΣ−1p̂p̂(p̂ − p) ∼ℱh,f , (16)

where h denotes the number of parameters. TP is also
Fisher distributed but tested one sided

TP ≤ℱh,f ,1−α . (17)

A rejection denotes that the difference between estimated
and expected parameters is significant [27, 8]. This test for-
mulation can be used in a simulation thanks to the knowl-
edge of the true objects parameters p.

3.4.3 Estimated parameters and their covariance matrix

The parameter test only provides the decision of accep-
tance. As part of this test p̂ − p and Σ ̂p ̂p are calculated. To
get a more detailed view, the change of those two compo-
nents is analyzed separately in Section 5.2.

As the expressiveness of the dimensionless normal
vector is limited, it is transformed to a vertical Θ̂ and hori-
zontal angle Φ̂ indicating the orientation of the estimated
plane:

Θ̂ = arccos(
̂nz

√ ̂n2x + ̂n2y + ̂n2z
) (18)

Φ̂ = arctan(
̂ny
̂nx
). (19)

The variance propagation of this transformation has to be
taken into account [8]. The new parameter vector p̂a =
[Θ̂, Φ̂,d]T and covariance matrix Σ ̂pap̂a are obtained and
used in Section 5.2

4 Impact of correlations on the
consistence of the parameter
estimation

As described in Section 2.3, the stochastic model in this
simulation is not modeled correctly, since Σll is a diago-
nal matrix (eq. 1). Consequently, this leads to an inconsis-
tency of the adjustment which reflects the situation in the
reality. Thus, it has to be investigated, whether one would
notice the inconsistent modeling. Hence, the objective in
this section is to analyze, how the correlations between the
scanned points have to be increased until the global test
detects an inconsistent stochastic model (Section 3.4.1).

As the way to generate correlated observations and
evaluate the results is provided (Section 3), different sim-
ulated scenarios can be investigated. In further conse-
quence, three factors are analyzed: the correlation length
(Section 4.2), the spatial resolution on the object (Sec-
tion 4.3) and the ratio of colored noise (Section 4.4). For
each investigation one factor is changed, while the oth-
ers stay the same. In general, 995 points are generated,
whereby the lowest distance between two points is at least
1.58 cm. The ratio of colored noise is assumed to be rc =
70%.

The scan geometry and the scanned object stays the
same. That means the TLS scans a 0.5 m × 0.5 m plane in
a distance of 10 m. The variances of the measurements are
defined in Section 3.4.

4.1 Knowledge about correlations

Figure 1 already showed that correlations have a formative
effect. If there were no correlations in laser scans, the re-
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sulting residuals of a plane approximation would appear
as random noise as it can be seen on the left side of Fig-
ure 6. The effect of increasing the correlation length grad-
ually is also shown.

Figure 6: Increasing the correlation length in the observations.

The higher the correlations, the more systematic
the residuals, concerning their magnitude and direction.
Thus, the correlation length determines the areal extent of
the systematic influence on the residuals. Therefore, the
following investigations all contain the increase of the cor-
relation length. Hence, Figure 6 shows the generated ob-
servations in a descriptive way.

4.2 Correlation length

In this simulation, two cases are investigated:
1. Theobservations are correlated according to Section 3.

The covariancematrix is filled with the corresponding
covariances. This is the theoretical case for validating
the results.

2. Theobservations are correlated according to Section 3.
However, the covariance matrix is a diagonal matrix
(eq. 1). This corresponds to the real situation, since it is
assumed that there is no knowledge about the existing
correlations (Section 2). This case is of ahigher interest
here.

For both cases, the global test is implementedwith the set-
tings according to the begin of this section, while increas-
ing the correlation length for the observations. Figure 7
shows the results of the first case.

Here, every light blue line denotes the test statistic of
one realization of the standard normal distributed vector
ϵ (eq. 7). In terms of reducing the random variations, the
mean test statistic is marked by the blue line and calcu-
lated as the average of 100 realizations (20 are shown). The
confidence region is defined by the two red lines. It is con-
stant due to the constant number of points (see eq. 15).

Figure 7: Implementation of the global test for the first case while
increasing the correlations.

Figure 8: Implementation of the global test for the second case
while increasing the correlations.

The correlation length (eq. 5) is increased in steps of
δk = 0.01 m until k = 0.2 m is reached. The generated ob-
servations change successively as shown in Figure 6.

The test statistics show small differences, however
they have a similar functional behavior. As can be seen for
the mean statistic, the test is accepted even if the correla-
tion is set the highest. Hence, the global test attests a cor-
rect stochastic model in the adjustment. This consistent
modeling was expected, since the covariance matrix Σll
considered the covariances. Thus, if the correlations were
known, the adjustment would be consistent.

This setup is also performed for the second casewhere
the correlations are handled as unknown (Figure 8).

Here, a different result occurs. The single test statis-
tics (light blue) are rejected at a correlation length from
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k = 0.02 m to k > 0.20 m. They vary due to the random
process. The mean test statistic is getting smaller while
increasing the correlation length. It is rejected at approx.
k = 0.08 m. This entails the effect of neglecting correla-
tions in the stochasticmodel: the global test is rejected at a
certain point of correlation length. This denotes an incon-
sistent modeling.

4.3 Spatial resolution

The next investigations are performed for the second case
regardingdifferent settings to see how the level of rejection
differs. Since increasing the correlation length leads to a
rejection of the global test, the resolution as another factor
is considered. Therefore, the same setup as in Figure 8 is
applied for different numbers of scanned points. The vary-
ing resolutions sequentially lead to 25, 49, 100, 225 and 995
points on the object (Figure 9). For a better overview, only
eachmean test statistic (out of 100 realizations) is plotted.

The functions of the test statistics do not distinguish
much. However, the confidence region changes due to the
changing redundancy f (see eq. 15). This is represented by
the red dotted line for 25 scan points and by the red nor-
mal line for 995 points (Figure 9). The other boundaries lie
between these lines.

Figure 9: Global test for different number of scanned points due to
the change of resolution.

Accordingly, a higher object resolution leads to an ear-
lier rejection of the global test. Table 1 denotes the value of
correlation length at which the respective test statistic is
rejected. Also the related rate of correlated points nc (Sec-
tion 2.1) as well as the point spacing between two neigh-
bored points is presented.

Table 1: Global test: Parameter estimation for a different number
of points which are respectively rejected at different correlation
lengths k. Also the ratio of correlated points nc and the point spac-
ing are plotted.

numb. of points k at rejection nc point spacing

25 > 20 cm 49 % 8.97 cm
49 > 20 cm 49 % 6.63 cm

100 16.3 cm 31 % 4.75 cm
225 11.9 cm 17 % 3.21 cm
995 7.5 cm 7 % 1.58 cm

The rejection for a resolution of 25 or 49 points on
the object cannot be seen in this Figure 9. It will be re-
jected at a higher correlation length of approx. k = 0.25 m.
Thus, it needs a rate ofmore than 49%of correlated points
until the global test is rejected. For 995 points, already a
small correlation length of 7.5 cm detects a false stochas-
tic model. According to a smaller point spacing of 1.58 cm,
systematic effects cause a higher correlation between the
scanned points. Thus, already a rate of 7 % of correlated
points on the scanned plane leads to an inconsistent mod-
eling.

Consequently, a higher resolution leads to a more dis-
tinct detection of the inconsistency due to a smaller confi-
dence region in the global test (eq. 15).

4.4 Ratio between colored and white noise

Until now, the ratio of colored noise rc (eq. 2) was set to
70 %. Now, the ratio changed while using a constant res-
olution of 995 points. If rc is set higher, correlating ef-
fects have a stronger influence on the variances than the
random effects (eq. 2). Moreover, the covariances will get
larger, since the correlations are positive.

In Figure 10, the global test shows the change of the
test statistic due to different rc (15 %, 30 %, 45 %, 60 %,
75 %). The confidence region stays the same for every set-
ting because the resolution is fixed (eq. 15). It can be seen
that the higher the rate of colored noise, the earlier the
global test is rejected. This is an expected result since the
covariances increase according to eq. (2).

Table 2 shows the correlation length at which the test
is rejected. The number of points on the object stays the
same. Thus, for a higher ratio of colored noise (more than
45 %), a small ratio of correlated points (nc < 10 %) leads
to a distinct rejection of the test. Hence, setting the ratio
of colored noise rc higher leads to an earlier detection of
the inconsistent stochasticmodel. It has to be kept inmind
that the correlations will not change while increasing rc .
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Figure 10: Global test for different ratios of colored noise rc (eq. 2).

Table 2: Parameter test: Parameter estimation for a different ratio of
colored noise which are respectively rejected at different correlation
lengths k. Also the ratio of correlated points nc is plotted.

ratio rc k at rejection nc

0.15 > 20 cm 49 %
0.30 13.6 cm 23 %
0.45 8.8 cm 9 %
0.60 7.6 cm 7 %
0.75 6.9 cm 6 %

However, the covariances increase as it can be seen in eq.
(2). Thus, knowing the true value of colored to white noise
is important to know for assessing the impact of correla-
tions.

5 Impact of correlations on the
unbiasedness of the parameter
estimation

Using the global test enables detecting the inconsistent
stochasticmodel in the parameter estimation. Besides, the
estimated parameters p̂ and their covariance matrix Σ ̂p ̂p
can be investigated. Now, since the expected values p of
the plane are indeed known in the simulation, a validation
in terms of unbiasedness can be implemented. Sections 5.1
and 5.2 show the results.

5.1 Results of the parameter test

Using the parameter test leads to similar conclusions as
the global test doeswhen regarding the correlation length,

Figure 11: Parameter test for different ratios of colored noise rc
(eq. 2).

resolution and ratio of colored noise (Sections 4.2–4.4).
But in difference to these previous results, the parameter
test is declined already for shorter correlation lengths k.
Figure 11 shows the results for different ratios of colored
noise analogous to Figure 10 for the global test. If a test
statistic lies above the red line, the one sided parameter
test is rejected (eq. 17). Here, the horizontal axis is scaled
compared to Figure 10 to focus on the correlation lengths
at which the test is declined. With the parameter test, the
wrong stochastic model can already be detected at about
a quarter of the correlation length at which the global test
is declined.

5.2 Estimated parameters and covariance
matrix

To investigate the absolute change of estimated parame-
ters, the vertical angle Θ̂, horizontal angle Φ̂ (eq. 18, 19)
and the distance ̂d are examined separately.

In Figure 12, the known correlations are not imple-
mented in Σll (second case of Section 4.2). This is simu-
lated with the same settings as presented in Section 4 (995
scanpoints, rc = 70%). Here, the resolution and the ratio of
colored noise are fixed. Figure 12 shows the difference be-
tween estimated parameters and true values: |p̂ − p|. The
3 ̂σ level of the estimated parameters is plotted and used to
highlight the significance of these differences. The correla-
tions between the estimated parameters are neglected by
this.

As the correlation length increases, the estimated pa-
rameter values change. In contrast to the parameter esti-
mates, the standard deviations are unaffected from the in-
creasing correlation. This is due to the fact that the known
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Figure 12: Difference of estimated parameters due to the true values
for the implementation of the second case.

correlations are not integrated in the stochastic model
here. These certainties lead to the decline of the parameter
test with increasing correlation length.

For comparison, the covariance matrix of the obser-
vations is now additionally filled with the known corre-
lations (first case of Section 4.2). The resulting parameter
estimates and their 3 ̂σ are shown in Figure 13 similar to
Figure 12.

On the one hand, the true stochastic model leads to
less biased parameter estimates compared to Figure 12. On
the other hand, the estimated standard deviations nowde-
pend on the correlation length. This time, these certainties
lead to the acceptance of the parameter test independent
from the correlation length.

Consequently, the parameter estimates are unbiased
and the estimated parameter precision is more realistic if
the correlations were known.

6 Discussion
Theprevious sectionsprovide the impact of neglecting cor-
relations in a parameter estimation of a laser scan. In Sec-
tion 4, the inconsistency of the stochastic model is indi-
cated due to the rejection of the global test (Figure 4). Sec-
tion 5 shows the resulting bias in the estimated parame-
ters. Here, the parameter test indicates a significant differ-
ence between the estimated and the expected values (Fig-
ure 11).

These results are already obtained considering rela-
tively low correlations. As seen in Figure 5, a correlation
length of k = 0.05 m causes a 5% ratio of correlated points
(Section 3.2). Sections 5.1 and 4.2 state that this areal ex-
tent of correlations already causes an impact on the con-
sistence and unbiasedness of the parameter estimation re-

Figure 13: Estimated parameters of the plane for the implementation
of the first case.

garding the simulated number of points and ratio of col-
ored noise.

The comparison between global test (consistency) and
parameter test (bias) reveals one further important out-
come: Even at short correlation lengths, the parameters
are estimated biasedly – indicated by a declined param-
eter test. At the same time, the consistence of the adjust-
ment is still given – indicated by an accepted global test.
In real applications, only the global test can be performed
since the true parameters are not known. Hence, the ac-
cepted global test might indicate in these cases that the es-
timation is successful, although the estimated parameters
are indeed biased concerning the used stochastic model
that neglects correlations.

As to capture the mentioned application of a defor-
mation analysis (Section 2.1), the given statements above
point out critical issues. Since the correlations have a for-
mative effect on the scanned point cloud (Figure 1), results
in high precision approaches might not be able to distin-
guish between deformations and correlations. Thus, ne-
glecting correlations leads to an inconsistent estimation of
deformationparameters and their covariance information.
Furthermore, the estimated parametersmight appear to be
biased. A statistical analysis of the deformation following
[27] is not applicable in this case.

Finally resumed, if the unknown correlation in laser
scanmeasurementswere known the parameter estimation
would improve:
– the estimated parameters would be unbiased
– the estimated covariance matrix of the parameters

would be more realistic.

Both points combined lead to a deformation analysis
that would allow for a detection of even small parameter
changes between two epochs.
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7 Conclusion and outlook
This study investigates the impact of unknown correla-
tions in laser scans on the results of a parameter estima-
tion in terms of a sensitivity analysis as written in [34].
Therefore, several point clouds of a plane are simulated
which vary in the correlation length, the ratio of colored
noise and the number of points. The higher the values of
these factors are, the more increases the covariance be-
tween the scanned points. An adjustment is implemented
to estimate the object parameters and it’s covariance ma-
trix and to reveal the impact of the correlations on these
estimations. Statistical analysis is used to evaluate the re-
sults.

If the correlation length is increased, the global test is
declined at some point indicating an inconsistent stochas-
tic model. A similar behavior is achieved using the pa-
rameter test indicating biased parameter estimates. Of im-
portance is that the parameter test – that can only be
used if the true parameters are known – is declined al-
ready with shorter correlation lengths than the global test.
This means: Even if the global test attests a parameter es-
timation to be successful, it might be biased due to un-
known correlations. Therefore, the determination of cor-
relations at laser scanning is an important task for laser
scanner based deformation analyses or other applications
with high demands regarding accuracy.

Hence, it is important to investigate the existing cor-
relations in laser scans. In a further step, the empirical
calculation of a covariance function could be examined.
Kuhlmann (2001) [18] shows an improving effect in terms
of statistical tests when using such an empirically covari-
ance matrix in the adjustment of a GPS measurement.
There are also other ways to yield statistical information.
Kauker et al. (2016) [30] try tomodel the covariancematrix
using empirical values and functional relations.

Therefore, a way to acquire correlations empirically
has to be designed. This could be realized by reference ob-
jects whose geometries are known with superior accuracy
to eliminate the trend in the observations as shown in Fig-
ure 2. In case of laser scanners, a measuring arm or laser
tracker are able to provide point accuracies of better than
0.1 mm [19]. Measuring a large object could help to investi-
gate andquantify the correlating effects of scanner andob-
ject characteristics, scan geometry and atmosphere while
modifying these factors.
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