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Abstract: Nowadays, the areal deformation analysis has 
become an important task in engineering geodesy. Thereby, 
not only manmade objects are of high interest, also natural 
objects, like plant organs, are focused more frequently. 
Thus, the analysis of leaf growth, i. e. the spatial develop-
ment of the leaf surface, can be seen as a problem of defor-
mation monitoring. In contrast to classical geodetic tasks, 
the absolute size of the deformation of the leaf surface is 
small, but usually great compared to the object size. Due 
to the optical characteristics of leaf surfaces, the point 
clouds, commonly acquired with high precision close-up 
laser scanners, provide a point-to-point distance that is 
small or equal compared to the measurement accuracy. 
Thus, the point clouds are usually processed and the leaf 
area is derived from a triangulation-based surface repre-
sentation (mesh), resulting in a significant uncertainty of 
area calculation. In this paper, we illustrate the lacks of 
the mesh-based leaf area calculation. Using high precision 
gauge blocks as well as a number of tomato leaves, uncer-
tainties of the area derivation are revealed and evaluated. 
The application of a B-spline approximation illustrates 
the advantages of an approximation-based approach and 
introduces the prospect for further research.

Keywords: Close-up Laser Scanning, Plant Growth Analysis, 
Plant Phenotyping, Non-parametric Deformation Analysis

1  Introduction
In this section, the relevance of plant phenotyping as 
well as the connection between plant phenotyping and 

deformation analysis is addressed, followed by the aim 
of the study.

1.1  Relevance of Plant Phenotyping

Due to the increase of the world’s population and the 
resulting food scarcity, the breeding of high quality 
plants has become an important tool to counteract the 
world hunger problems [22]. Plant breeding is focused on 
developing new types of plants – so called genotypes –  
that are more resistant against several environmental 
impacts like draught stress, nutrient availability as well 
as biotic and abiotic stress [8]. The response of the plant 
to environmental conditions is not only a functional 
reaction [9]. Thus, a change in growth rate of fast devel-
oping crops or vegetables is a sensitive and direct indi-
cator of stress [17]. In this context, plant phenotyping 
describes the acquisition of functional and spatial char-
acteristics of genotypes under specific environmental 
conditions.

1.2  Relation to Deformation Analysis

Plant phenotyping, especially the monitoring of plant 
growth, can be addressed as a deformation analysis. 
Thereby, the plant can be seen as a multiple input multiple 
output – system (MIMO), where the input values describe 
the environmental conditions and the output values are 
growth parameters like the leaf area or other phenotypic 
parameters. The spatial change of a plant combines both 
types of deformation, i. e., rigid body movements and 
changes in shapes and dimension [2]: rigid body move-
ments due to a movement of the whole leaf and changes in 
shape and dimension due to the growth. We only consider 
the latter type of deformation here. This deformation can 
be analyzed in one of the common deformation models 
[11]. A classical phenotypic growth analysis is evaluated 
in an identity- or a static deformation model, depending 
on whether additional information, e. g. about water or 
nutrient supply, are available [19] or not [21]. The spatial 
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development of a plant is usually described by growth 
parameters like leaf area or convex hull volume, derived 
from 3D point clouds measured with different 3D imaging 
systems [19, 21].

1.3  Aim of the Study

One of the most frequently applied growth parameters 
is the leaf area. Usually, the leaf area is derived from a 
triangulation-based surface interpolation, a so-called 
mesh, using processed point clouds of various 3D imaging 
systems [1, 14, 19]. In this study, we want to illustrate the 
lacks of the deformation analysis using the leaf area as 
growth parameter, derived from a meshed surface. Using 
high precision gauge blocks as well as leaves of a five of 
tomato plants, we show the dependency of the leaf area 
on the processing of the point cloud. The application of an 
approximation-based approach using uniform B-splines 
improves the area derivation for the gauge block measure-
ments and also for the leaf area calculation.

Hence, the need of using an approximation-based 
approach with a freeform parameterization instead of using 
the mesh-based approach for modeling leafs is highlighted 
in this study. These considerations can be transferred to 
other kinds of deformations analyses of natural objects. 

2  Data Acquisition
In the first two subsections the technical measuring setup 
and the special characteristics of leaf measurements are 
addressed, followed by a description of the data process-
ing and the derivation of the leaf area.

Because phenotyping on organ level is mostly per-
formed using young plants (leaf area < 2500 mm²) and the 
growth rate is often small (only a few mm² per day), mea-
surements were performed with a high precision indus-
trial measuring system. 

2.1   3D Laser Scanner for Leaf Surface 
Acquisition

The laser scanning device used in this study is a combina-
tion of the triangulation-based 2D close-up laser scanner 
“ScanWorks V5” from Perceptron company and a 7 DoF 
articulated measuring arm “Infinite 2.0” from ROMER 
company. This measuring system provides a 3D point 
repeatability of 45 µm and a 3D length accuracy of 69 µm, 

defined as maximum permissible error (mpe). The laser 
scanner works according to the light section method [4]  
and is able to measure 7640 points per profile with a 
maximum profile frequency of 60 Hz in a field of view  
of ~105 mm × 110 mm (middle measuring range). This 
results in point resolution of ~14 µm within one laser line. 
Due to the combination of the laser scanner and the mea-
suring arm, the small measuring range of the scanner is 
extended to a spherical measuring volume with a diam-
eter of ~2.8 m.

2.2  Measuring Leaves Surfaces with Lasers

Measuring plant development using commercial high pre-
cision laser devices is not trivial at all. Compared against 
most of the manmade objects plants provide some special 
characteristics that have to be taken into account:
1. The complexity of the plant structure,
2. the movement of the plant and
3. penetration of the laser beam.

The complexity of the plant mainly affects the complete-
ness of the resulting point cloud. Despite using a sensor 
with highest flexibility, it is not always possible to achieve 
an occlusion free point cloud of the whole plant surface. 
Depending on the species and the age of the plant, the leaf 
structure is more or less complex resulting in an overlap-
ping of leaves or an occlusion of the stem structure.

The movement of the plant can be separated into move-
ments caused by the flow of the air and the proper motion 
of plants, the so called plant tropism [9]. While the plant 
tropism causes a rigid body movement between two meas-
uring epochs, the movement of the air provokes a swing-
ing of the leaf mainly manifesting in high measuring noise. 
Thus, the parameters estimated for the growth analysis 
should be rotation- and translation- invariant and should 
be able to handle a poor signal-to-noise ratio.

The accuracy of the point cloud is also affected by 
the special optical properties of the leaf surface. Leaf sur-
faces consist of different layers providing different optical 
properties [20]. Thus, the emitted laser line is able to pen-
etrate the leaf surface and to interact with the photoactive 
leaf tissue content, the chlorophyll, resulting in a partial 
absorption of the emitted laser ray [6]. While the absorption 
leads to a weakening of the received measuring signal and 
therefore, to higher measuring noise [5] or a signal that is 
not evaluable, the penetration into the leaf structure causes 
a systematic deviation of the distance measurement. This 
systematic deviation is not constant. It rather depends on 
the type of the plant as well as on the physiological state [6].
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Beside the reduced accuracy, the point cloud shows an 
irregular point distribution, cause by the hand-operated 
measuring system. Within one scanline the point-to-point 
distance is nearly constant with a magnitude of about 
14 µm. In contrast, the distance between two consecu-
tive scanlines strongly depends on the moving speed of 
the operator. Thus, to achieve a complete point cloud of 
the leaf surface it has to be scanned several times with 
different orientations of the laser line. Furthermore, the 
distance between two adjacent points is usually small 
compared to the measuring noise.

All these aspects affect the resulting point cloud and 
have to be considered in the processing step before data 
analysis.

2.3  Processing of the Point Cloud

The processing of the point clouds usually consists of 
three main steps [18, 19, 20]. These processing steps were 
performed using the commercial software Geomagic 
Studio and Geomagic Control (3D Systems, USA). 

In the first step, outliers like scanning artefacts, 
caused by overexposure of the sensor, and objects that do 
not belong to the plant were removed manually from the 
raw point cloud.

In a second step, the point cloud of the plant was sep-
arated manually into points representing single leaves 
and stem points. Theoretically, this step can be replaced 
by an automatic classification procedure, like Surface 
Feature Histograms [18]. However, we decided to use a 
manual labeling process because the automatic algorithm 
already requires a processed point cloud with a regular 
point distribution.

To provide a regular point distribution, in the third 
step, the point clouds were thinned out using the algorithm 
provided by Geomagic Control software. Thereby, the soft-
ware reduces the number of points as long as the defined 
minimum point-to-point distance is reached. Against algo-
rithms like noise reduction or surface smoothing, thinning 
only eliminates a subset of points as long as the defined 
point distribution is reached. Thus, the remaining point 
cloud contains a reduced number of raw data points.

2.4  Derivation of the Leaf Area

From the separated and regularly distributed point cloud, 
a mesh was calculated. Thereby, the data points were 
interpolated by a network of triangles following the fun-
damentals of the Delaunay triangulation [3]. 

The interpolation was performed using the algorithm 
implemented in Geomagic Control without any smoothing 
options, so that every vertex in the mesh represents a raw 
data point of the point cloud. Using this representation, 
it is possible to calculate the leaf area by summing up the 
area of all faces of the mesh.

3   Theoretical Impact of Point Cloud 
Processing on the Area Derivation

Because a mesh depicts an interpolation of neighboring 
surface points, the presence of measuring noise has to 
be taken into account. Figure  1 A shows a cross section 
of a surface and the measured point cloud. The distance 
between two neighboring points is partially small com-
pared to measuring noise as it can be expected for mea-
surements performed with the appointed scanning device. 
Meshing the raw point cloud data results in connection 
of all neighboring points (red line) and, therefore, in an 
area that is derived to large. Thinning the point cloud, 
i. e. reducing the number of points (green and blue line), 
causes a kind of surface smoothing and results in a smaller 
area derivation that is closer to the real area. However, an 
extensive smoothing also reduces the level of detail.

Another effect that has to be regarded, concerns the 
boundary of the surface (Figure  1 B). Because the algo-
rithm tries to keep most boundary points, the larger the 
point-to-point distance is set in the thin-out procedure, 
the smoother the boundary is interpolated and the larger 
the area is derived. However, this effect is expected to be 
small compared to the aforementioned one.

Figure 1: A) Cross section of a surface and the measured point cloud. 
B) Topview of the boundary of a surface. The colored lines represent 
the interpolation for an increasing thinning level (R < G < B).
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4   Laboratory Investigations with 
Gauge Blocks

As aready written, in most studies the leaf area is calculated 
based on a mesh-based approach whose weak accuracy is 
revealed by the present study. This is proven, in the first 
step, by laboratory investigations based on gauge blocks. 
In the second step, the results are transferred to the deriva-
tion of leaf areas (see Section 5). Both times, the results of 
the mesh-based approach are compared to the ones of an 
approximation-based approach using B-Splines.

4.1  Experimental Setup

To provide a reference for the area, we used a set of 
gauge blocks with a deviation from the nominal value 
of 0.10 + 0.0002 ⋅ L µm (tolerance), where L equals the 
nominal length of the gauge block in millimeter. The 
width of the blocks was measured using a micrometer 
screw with an accuracy of 0.01 mm (1σ).

Five blocks of different size were setup as shown in 
Figure  2 and measured consecutively under controlled 
environmental conditions. To analyze the repeatability of 
the approach, every gauge block was measured 27 times. 
The resulting point clouds were processed as described 

in Section 2.2 and different thinning levels ranging from 
0.1 mm up to 0.8 mm point-to-point distance were gener-
ated. After the generation of the mesh, the surface area 
was calculated for every repetition (see Section 2.4).

4.2   Results of the Mesh-based Area Derivation

In Table 1, representative results of a gauge block with 
a dimension of 30 x 34.95 mm², i. e. a nominal area of 
1048.5 mm², are shown. It can be seen that the calculated 
area varied with the defined thinning level. The calcula-
tion performed on the raw point cloud resulted in an area 
that was about 5 % larger compared to reference value. 
The larger the point-to-point distance was chosen, the 
smaller the area was calculated. Furthermore, the stan-
dard deviation of the 27 repetitions was higher in case of no 
thinning and 0.1 mm thinning and reached about 3 mm² 
for larger point distances. The minimum deviation from 
the reference area was obtained at a thinning of 0.4 mm. 
However, these results are not generally applicable. As 
we used gauge blocks of different sizes ranging from 
331.5 mm² to 2446.5 mm², larger areas showed partially 
different behavior. While the trend – the stronger the thin-
ning process the smaller the calculated area – pertained 
for all tested objects, the minimum deviation from the 
nominal value was reached for different thinning levels. 
For smaller blocks, the minimum deviation was obtained 
for a thinning with a point-to-point distance of 0.4 mm 
and for larger blocks at 0.8 mm and more.

The results support the theoretical considerations 
in Section 3. The thinning of the point cloud causes a 
smoothing and, therefore, the derived area decreases with 
an increasing point-to-point distance. The averaged area 
values for 0.5 mm to 0.8 mm thinning are even smaller 
than the reference area. This effect can be attributed to 
the thinning procedure. Large thinning leads to reduction 
of important edge points and points at the corners of the 
gauge block resulting too small area values. 

Table 1: Averaged area of a 30 x 34.95 mm2 gauge block for different thinning levels ranging from no thinning to a point-to-point distance of 0.8 mm.

reference area: 1048.5 mm² (± 0.3 mm²)

raw data 0.1 mm 0.2 mm 0.3 mm 0.4 mm 0.5 mm 0.6 mm 0.7 mm 0.8 mm

avg. area [mm²] 1100,013 1073,480 1056,827 1051,389 1048,511 1046,523 1045,108 1043,338 1042,920
std.–dev. [mm²] 9,780 5,654 3,490 3,039 3,002 2,593 2,900 2,942 2,627
std.–dev. [%] 0,9 % 0,5 % 0,3 % 0,3 % 0,3 % 0,2 % 0,3 % 0,3 % 0,3 %

ref.–act. [mm²] –51,513 –24,980 –8,327 –2,889 –0,011 1,977 3,392 5,162 5,580
ref.–act. [%] –4,9 % –2,4 % –0,8 % –0,3 % 0,0 % 0,2 % 0,3 % 0,5 % 0,5 %

Figure 2: A) Front and B) side view of the measuring setup.
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4.3  Approximation-based Area Derivation

In order to avoid the interpolation of a noisy point cloud 
as it is done in the mesh-based approach, the surface is 
approximated this time. Then, the adjusted scan points are 
used to calculate the area. The representation of freeform 
surfaces can be realized by approximation approaches 
like NURBS. Due to the flat surface of the gauge blocks, we 
applied an approximation using B-spline as a simplifica-
tion of NURBS. This procedure is explained in the follow-
ing in more detail. 

4.3.1  B-spline Approximation

B-splines have shown their applicability in geodetic 
applications, e. g. for the analysis of ground move-
ments in height networks [12], and also in non-geodetic 
applications like the analysis of fractured surfaces in 
material research [23] or for the approximation of leaf 
surfaces [10, 15].

The representation of a curve by splines is based on 
the piecewise approximation with polynoms of grade n. 
The extension of the one dimensional curve in a second 
direction enables the approximation of the surface points 
P(x,y) using the tensor product

∑∑ ⋅ ⋅P x y P N x M y( , )= ( ) ( ),i j
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Where Pi,j are the knot points, N and M depict the basis 
function of grade n and m in x- and y-direction, respec-
tively. A further detailed description of splines can be 
found in Niemeier [16], Heunecke et al. [11] as well as 
 Harmening and Neuner [10]. 

For the generation of the knot points for the piecewise 
approximation, the point clouds of the gauge blocks were 
rotated into their principle axes and a regularly distributed 
xy-grid was calculated. In this preliminary approach the 
number of knot points was chosen in a way, that the coarse 
leaf structure is modeled adequate. After the estimation of 
the spline parameters using a Gauss-Markov model, adjusted 
observations were derived with a point-to-point distance of 
0.1 mm. The area was limited by the boundary points of the 
point cloud extracted by an alpha shape approach [7]. Using 
the best-fitting point clouds, meshes were calculated and 
the area was derived as described in Section 2.3.

To compare the results to the existing approach, all 
point clouds of the different thinning levels, generated with 
Geomagic Control were approximated by spline surfaces.

(1)

4.3.2   Results of the Approximation-based Area Derivation

Due to the approximation, the adjusted point clouds as 
well as the generated meshes provided a much smoother 
surface compared to the raw or thinned point clouds. This 
also manifested in the results of the area calculation. For 
all investigated gauge blocks, the standard deviation of 
the random samples was nearly constant for all thinning 
levels providing only a small dispersion. Regarding the 
magnitude, the smaller blocks (~340 mm²) resulted in a 
standard deviation of 0.9 % while the larger blocks (~1000 
up to ~2500 mm²) provided a standard deviation of 0.4 %. 
This is only slightly higher than the mesh-based interpo-
lation but independent from the point distribution and 
density of the point cloud.

Another difference concerns the deviation of the 
calculated area values from the nominal ones. For the 
mesh-based approach, the minimum deviation from 
the nominal area value was reached for different thin-
ning levels depending on the size of the gauge block  
(see Section 4.2). Using splines, with the exception of the 
largest block, the smallest deviations from the nominal 
value were obtained for the approximation of the raw 
point cloud data, with a magnitude of less than 1 % for all 
tested block sizes. Similar to the mesh-based results the 
derived area decreased with an increasing point-to-point 
distance. However, the impact of the thinning procedure 
is much smaller.

These results imply that the approximation-based 
approach is more robust against the point distribution and 
density as well as against the presence of measuring noise.

4.4   Comparison of the Mesh- and the 
Approximation-based Approach

Calculating the surface area from a mesh-based surface 
representation requires a processing of the point cloud, in 
order to avoid an overestimation of the area. Due to pres-
ence of measuring noise, unprocessed point clouds result 
in a highly structured mesh and, therefore, in an area that 
is too large compared to nominal area. To counteract this 
effect the point clouds have to be thinned out. However, 
this thinning procedure has to be adapted to the overall 
size of the object, because larger areas need a larger point-
to-point distance to provide a minimum deviation from 
the nominal area (see Section 4.2).

Using an approximation-based approach, the minimum 
deviation from the nominal area was achieved for raw 
point cloud data. Thus, the derived area is independent of 
the thin-out procedure with a deviation of less than 1 %. 
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Furthermore, the standard deviation of the random samples 
is constant for different point densities and distributions. 
As shown in Section 4.2.3, the area calculation based on the 
approximation-based approach is more reliable and accu-
rate for the investigated point-to-point distances.

5  Derivation of the Leaf Area
In this section, the results of the mesh-based and the 
approximation-based approaches used for the derivation 
of leaf areas of tomato plants are illustrated. 

5.1   Results of the Mesh-based Leaf Area 
Derivation

To check, whether the effects revealed for the gauge 
blocks are directly transferable to plant measurements, a  
random sample of five tomato plants measured over a 
period of 7 days was analyzed using the mesh-based 
approach.

Contrary to the laboratory investigation with gauge 
blocks, in case of leaf surfaces no nominal area values 
were available. Thus, we were only able to analyze the 
variation of the leaf surface for different thinning levels.

Principally, the calculated leaf area for the different 
thinning levels followed a similar trend as it was found for 
the gauge blocks. The larger the point-to-point distance at 
the thin-out procedure was chosen, the smaller the leaf 
area was derived. However, there were significant differ-
ences that have to be stated here.

First of all, calculating the leaf area using the raw 
point cloud data sometimes resulted in area values that 
were smaller compared to the areas calculated from the 
thinned point clouds. Because of the reduced measuring 
accuracy and the systematic deviations (see Section 2.2) 
the ratio of measuring noise and point-to-point dis-
tance became worse resulting in too highly creased 
edges which in turn leads to perforated surface mesh 
(Figure 3).

Another difference concerns the decrease of the leaf 
area with an increasing point-to-point distance: While the 
reduction of the gauge blocks was relatively small, e. g. 
around 5 % for the data presented in Table 1, the mean 
decrease of the leaf area was about 30 %, averaged over all 
five tomato plants and all measuring dates. Furthermore, 
the trend of the reduction was not constant. It differed for 
every single leaf of a plant and changed with every new 
measuring epoch.

This uncertainty in the leaf area calculation, of course, 
affected the derivation of the growth. The absolute growth 
of the leaf area was calculated from the difference of two 
area values of two consecutive measuring epochs using 
the same thinning level. Thereby, the growth for the dif-
ferent thinning levels varied significantly (Figure 4). Due 
to the inconsistent decrease of the leaf area with increa-
sing thinning level, the growth was also not constant for 
a single leaf. In most of the cases, the variation of the 
absolute growth was great compared to the mean growth 
value (cf. leaves no. 2 and 4 in Figure 4), averaged from 
all thinning levels. In some cases, the range of the varia-
tion even exceeded the mean growth value. Consequently, 
small deformations, as they were expected for daily mea-
surements, were not statistically detectable.

These results clearly reveal that the mesh-based 
approach used in many studies does not lead to reliable 
and accurate estimates of the leaf growth. 

Figure 3: A mesh calculated from raw point cloud data providing a 
perforated surface representation.

Figure 4: Absolute growth, i. e. the difference between the areas 
of two consecutive days, of one representative plant at different 
thinning levels. 
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5.2   Application of B-splines to Leaf Surfaces

Applying the B-spline approach, appointed in Section 4.3.1, 
to leaf surfaces imposes some requirements on the shape of 
the leaf surface. Because the approximation is performed 
on a planar grid, the leaf surface should not provide 
high curvature. Furthermore, boundary points should be 
clearly extractable by the used alpha shape approach, i. e. 
deep leaf indentations may cause a systematic deviation. 
To illustrate the general applicability of splines for the 
derivation of leaf areas, we approximated one leaf, pro-
viding a surface with small curvature and only small leaf 
indentations. The approximation was performed on differ-
ent thinning levels in order to compare the results to the 
mesh-based approach.

In Figure 5, the deviations between the approxi mated 
leaf surface and the raw point cloud are illustrated. The 
distribution of the deviations shows that the approxi-
mation represents the rude shape of the leaf. However, 
smaller details, like leaf veins, were smoothed. Finally, 
the comparison resulted in a standard deviation of 91 µm.

As described in Section 4.3.1, the area was calculated 
from meshes generated from the adjusted point clouds of 
the spline approximation. The results of both approaches 
(Table 2) show that the derived leaf area differs signifi-
cantly. Comparable to the results in Section 5.1, the leaf 
area of the mesh-based approach decreased considerably 
(about 25 %) for the different thinning levels. In contrast, 
the leaf area of the approximation-based approach varied 
only little. The decrease reached only about 4 % between 
the smallest and the largest point-to-point distance. 
Furthermore, due to the smoothing of the spline approx-
imation, the magnitude of the area was smaller for all 
thinning levels.

Table 2: Comparison of the mesh-based and the B-spline-based 
leaf area.

thinning level mesh-based 
[mm²]

approx.-based 
[mm²]

raw data 710,727 551,269
0.1 mm 729,872 549,898
0.2 mm 648,709 547,888
0.3 mm 613,970 545,136
0.4 mm 592,005 542,049
0.5 mm 581,631 537,482
0.6 mm 574,069 537,974
0.7 mm 567,416 532,309
0.8 mm 578,672 531,608
range 151,200 19,661
range / avg. 24,3 % 3,6 %

Despite the promising results for the appointed leaf, 
there are limitations regarding the shape of the approxi-
mated leaf. As described in the beginning of this section, 
the uniform implementation of the B-splines, defined on 
a planar grid with equidistant knot points, restricts the 
maximum curvature of the leaf. For the approximation of 
arbitrary leaves, the grid has to be adapted to the shape of 
the leaf surface as it is described for example in Harmening 
and Neuner [10] by using Coons patch. 

6  Conclusion
The investigations illustrated the lacks of the mesh-based 
approach, commonly used for the calculation of the leaf 
area from 3D point clouds. Laboratory experiments with 
high precision gauge blocks revealed deviations from the 
nominal area values varying with the thinning level, i. e. 
the defined point-to-point distance, as well as with the 
absolute size of the measured surface. This effect got rein-
forced on plant surfaces due to the reduced measuring 
accuracy. Leaf area variations caused by different thinning 
levels reached a magnitude of 30 % of the mean leaf area 
on average (see Section 5.1). For the purpose of a deforma-
tion analysis, this uncertainty, as a result of data process-
ing, exacerbates the reliable detection of leaf growth. 

An improvement for the area calculation was obtained 
for the approximation with uniform B-splines. For the 
gauge blocks, the minimum deviation from the nominal 
values was reached by approximating the raw point cloud 
data and the variations caused by different point-to-point 
distances became small.

Promising results were also obtained for the B-spline 
approximation of leaf surfaces. However, the uniform 
implementation of the splines prevented the general 
applicability on arbitrary leaf surfaces. However, non- 
uniform implementations of B-splines like NURBS may 

Figure 5: Deviations [mm] between the B-spline approximation and 
the raw point cloud data.
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improve the approximation of arbitrary, highly curved 3D 
leaf surface shapes and, thus, can improve the leaf area 
calculation and, therefore, the deformation analysis.

The investigations have shown the significance for 
the development of a freeform surface representation of 
natural objects like leaves surfaces. The difficulty of such 
a development is characterized in Holst and Kuhlmann 
[13]. First promising results for the approximation of leave 
surfaces were obtained by Harmening and Neuner [10].
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