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Abstract

Dynamic electron correlation methods are known to have a computational cost that

scales with a high power of the system size: for example, O (N5) for second-order Møller-

Plesset perturbation theory (MP2), and O (N7) for coupled cluster with single, double

and perturbative triple excitations (CCSD(T)). Domain-based local pair natural orbital

(DLPNO) methods reduce this scaling, while maintaining a modest prefactor, using sev-

eral approximations: most critically by expanding the virtual space in truncated sets of

pair natural orbitals (PNOs), which are combined with the domain approximation and

orbital pair screening.

The first part of this work consists of the implementation of MP2 in the DLPNO

framework, drawing closely upon the previously existing DLPNO-CCSD method. Sev-

eral improvements were introduced in the process: (1) The transformation routine for

one-external three-index integrals was replaced with a formally linear scaling algorithm,

which treats sparsity relationships in a systematic framework. (2) A new domain selec-

tion criterion was introduced based on the differential overlap integral between occupied

localised orbitals and redundant projected atomic orbitals. (3) An improved, more ac-

curate procedure to screen orbital pairs was developed. DLPNO-MP2 was confirmed

to reproduce energy differences computed with the canonical resolution of the identity

(RI-)MP2 method to within chemical accuracy, and its performance was demonstrated in

large-scale calculations. A simple unrestricted variant of DLPNO-MP2 was implemented

for open-shell calculations.

The second and major part of this thesis is the development of the analytical gradient

for the closed-shell DLPNO-MP2 method. Importantly, the exact derivative of the entire
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energy was taken. Mathematical contributions to account for the relaxation of PNOs

were described for the first time in the context of local correlation methods. Calcula-

tions of electric field gradients with exact and approximate derivatives emphasise the

importance of the individual contributions. Additionally, a procedure was introduced to

circumvent singularities in the coupled-perturbed localisation equations, which are caused

by continuously degenerate localised orbitals.

Extensively testing the DLPNO-MP2 gradient in geometry optimisations showed that

it reproduces covalent RI-MP2 bond lengths to well within 0.1 pm. Errors in interatomic

distances between non-covalently interacting system parts do not exceed 1 % with default

thresholds and 0.3 % with tight thresholds. The DLPNO-MP2 gradient becomes sub-

stantially more efficient than the RI-MP2 gradient beyond ca. 70 atoms, while a similar

computational effort is incurred in smaller applications. Among the most demanding cal-

culations demonstrated in this work were the geometry optimisation of a host-guest com-

plex containing 205 atoms and more than 4000 basis functions, and a single-point gradient

calculation for crambin with 644 atoms and over 12 000 basis functions. Spin-component

scaling and double-hybrid density functionals are supported by the implementation.
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Chapter 1

Introduction

To understand and predict the behaviour of the electrons in a chemical system, it is

necessary to solve the many-electron Schrödinger equation to a high degree of accuracy.

While a precise solution can be achieved formally through full configuration interaction

(CI) in a (near-)complete basis set, the associated computational cost rises exponentially

with the size of the system, allowing its usage only for a small number of electrons. Mean-

ingful results for particular problems can be obtained with approximate wave function

methods, which recover a sufficiently large part of the electron correlation energy.[1, 2]

From a conceptual viewpoint, it is useful to distinguish between dynamic and static

contributions to the correlation energy. If a single Slater determinant dominates the

full CI expansion of the exact wave function, the correlation energy is regarded as be-

ing of dynamic nature. For such problems, truncated coupled cluster schemes provide

a systematically improvable hierarchy of methods to obtain accurate electronic energies.

Other types of dynamic correlation methods include Møller-Plesset perturbation theory,

albeit the energy may diverge at higher orders of the expansion; and truncated config-

uration interaction, which is, however, not size consistent and not size extensive. The

computational cost of these methods typically increases polynomially as a higher power of

the system size, e.g. O (N5) for second-order Møller-Plesset perturbation theory (MP2),

O (N6) for coupled cluster with single and double excitations (CCSD), and O (N7) for

the perturbative triple excitations correction in the CCSD(T) method.
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Whenever a single Slater determinant cannot represent a wave function that is at least

qualitatively correct, it becomes necessary to employ static correlation approaches such

as the complete active space self-consistent field method (CASSCF). As the active space

is limited to include only the few most important orbitals, a large part of the dynamic

correlation energy needs to be recovered using multi-reference counterparts of single-

reference methods such as Møller-Plesset perturbation theory, truncated configuration

interaction or coupled cluster.

The steep scaling of the computational expense for dynamic correlation methods

places firm upper boundaries upon the size of the problems that can be investigated.

Implementations which perform such calculations on supercomputing facilities, instead

of personal computers or small-scale clusters, are able to push these limits only to a lim-

ited degree.[3–6] Over the past decades this has created a desire for approximate methods,

which exploit the locality of dynamic correlation to reduce the computational cost for

larger systems.

Local correlation methods were introduced in the 1980s by Pulay and Saebø.[7–11]

After performing a localisation of the occupied orbitals, individual domains were deter-

mined for each of them. The virtual space in those methods was spanned in a basis of

projected atomic orbitals (PAOs). Despite their unfortunate property of being linearly

dependent, PAOs circumvent the requirement for a localisation of the virtual molecular

orbitals, which remains a substantial technical challenge despite recent progress.[12–14]

Excitations were included from occupied MOs only to those PAOs that are members of

the respective domains. Several further important ideas were contained in those early

contributions, such as merging of domains for orbital pairs, the approximate treatment of

weak pairs,[10] or the Hylleraas functional formulation of MP2 in a local, non-orthogonal

basis.[9] The approximations were designed to recover the canonical counterpart of the

respective methods in the absence of truncation, and ca. 96 % to 99 % of the canonical

total correlation energy were reproduced with truncations in place.

Domain-based local correlation methods were refined subsequently by Werner, Schütz

and their co-workers, who created production quality implementations of MP2[15] and
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coupled cluster.[16–18] These were combined to great benefit[19, 20] with the resolution

of the identity technique for the two-electron integrals,[21, 22] which is also called density

fitting by some authors. By truncating auxiliary functions to fitting domains, exploiting

locality in the transformation routine, employing multipole screening of orbital pairs,

and in the case of coupled cluster also introducing a refined hierarchy of pair approxima-

tions, it was demonstrated that formally linear scaling local correlation algorithms can

be developed.[19]

Even though ca. 98 % of the canonical correlation energy are reproduced with do-

mains of up to four atoms per occupied orbital,[23] PAO-based truncation is not suffi-

cient to achieve a satisfactory compromise between accuracy and efficiency. The total

dynamic correlation energy of a mid-sized molecule is typically in the order of magnitude

of 10 MJ mol−1. Errors in electronic energy differences, for example reaction energies, be-

come relevant in a range of 1 kJ mol−1 or above. While it would be necessary to reproduce

99.99 % of the correlation energy to attain this degree of accuracy, in practice there is

some extent of error cancellation. In our experience, around 99.9 % of the canonical cor-

relation energy should be reproduced. This observation is in agreement with benchmark

calculations.[24–26] PAOs from around 30 atoms need to be selected for each orbital pair,

which makes such calculations very costly to perform.

While the domain approximation primarily relies on the spatial locality of the func-

tions involved, approaches based on pair natural orbitals (PNOs) use information about

the electron correlation itself to truncate the wave function more effectively. First pro-

posed by Edmiston and Krauss as “pseudonatural orbitals”,[27, 28] PNO-based electron

correlation methods were implemented in the 1970s by Meyer[29, 30] and by Ahlrichs and

co-workers,[31, 32] and used to perform calculations for molecules containing a few atoms.

Even though Pulay still employed a variant of PNOs to accelerate calculations in his earli-

est work on local correlation,[7] the idea subsequently fell out of favour, probably because

of the high computational and storage effort associated with the transformed four-index

integrals in PNO basis. In the context of local correlation, Neese and co-workers resur-

rected the concept of pair natural orbitals in 2009, creating implementations of CEPA
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(coupled electron pair approximation) and CCSD that could be used for systems with

100 atoms.[33, 34] The PNOs were constructed as the eigenvectors of the virtual part

of the unrelaxed semicanonical MP2 density for each pair of localised occupied orbitals.

Efficient routines for the calculation and handling of two-electron integrals in PNO basis

were developed using a local RI approximation, which truncates auxiliary functions to fit-

ting domains for orbital pairs. To reduce the computational cost further, weak pairs were

treated at an approximate MP2 level. This first generation of local correlation methods

in the ORCA quantum chemistry software[35, 36] is referred to as the local pair natural

orbital (LPNO) approach.

Expanding the PNOs in a basis of canonical virtual MOs leads to some fifth-power

scaling steps in the LPNO approach. In the domain-based local pair natural orbital

coupled cluster method (DLPNO-CCSD(T)) by Riplinger and Neese,[37, 38] the pair

natural orbital approach was therefore combined with the domain approximation, using

projected atomic orbitals instead of virtual MOs as a basis to expand the PNOs. The

majority of computationally significant steps in that method featured a formally linear

scaling with system size, permitting calculations to be performed for systems containing

many hundred atoms.

An alternative virtual basis for local correlation are orbital-specific virtuals (OSVs),

which effectively correspond to PNOs of diagonal pairs (where double excitations originate

from the same occupied spatial orbital).[39] The scheme was explored in the context of

MP2[40] and coupled cluster.[41, 42] Krause and Werner compared PAOs, OSVs and

PNOs as different bases to expand the virtual space, concluding that PNOs are the most

compact representation to achieve a specific target accuracy.

The first part of this thesis in Chapter 2 describes the development and implementa-

tion of a local MP2 method named DLPNO-MP2, which was published by us in ref. [43].

It is closely related to the DLPNO-CCSD method,[37] but addresses several further as-

pects. In the original formulation of DLPNO-CCSD, the transformation of the one-

external three-centre RI integrals became a bottleneck in large-scale calculations. The

DLPNO-MP2 method incorporates an improved integral transformation routine, with

4



an associated computational cost that scales linearly with system size. To simplify the

bookkeeping associated with sparse quantities that occur as a result of truncations in

local correlation methods, the sparse map formalism is introduced and discussed. It is

applied in the context of the linear scaling integral transformation, but can also be used

in a broader context. A new scheme was introduced for domain construction, which uses

a differential overlap criterion and thereby incorporates information about both the oc-

cupied and the virtual space. Finally, as part of this work it was recognised that the

dipole-based prescreening procedure in the first implementation of DLPNO-CCSD was

not sufficiently accurate, leading to the development of an improved method. In addi-

tion to the closed-shell DLPNO-MP2 method, the chapter describes a simple unrestricted

implementation for open-shell calculations.

Subsequently, several other developments within the DLPNO framework were made,

including: an improved implementation of DLPNO-CCSD(T), which incorporates the

sparse maps framework and the linear scaling transformation routine for the one-external

integrals;[44, 45] an open-shell version of the coupled cluster implementation, which is

consistent with the closed-shell variant;[46] a multilevel scheme permitting treatment of

different system parts at different accuracy levels;[47] explicitly correlated local MP2 and

CCSD methods;[48, 49] local variants of n-electron valence state perturbation theory

(NEVPT2)[50] and multi-reference coupled cluster;[51, 52] a local energy decomposition

scheme for the analysis of molecular interactions;[53] and techniques for excited states.[54]

While our work on DLPNO-MP2 was in progress, a similar local MP2 method was

published by Werner and co-workers.[55] The latter work is also based on domains and

PNOs, albeit with OSVs in an intermediate step, and results in a linear scaling imple-

mentation. Related PNO-based developments by Werner and co-workers include linear

scaling coupled cluster,[56, 57] explicitly correlated versions of local MP2 and CCSD,[58,

59] complete active space perturbation theory (CASPT2)[60] and spin-restricted open-

shell MP2.[61]

Local correlation methods based on pair natural orbitals were also developed by Hättig

and co-workers. Particularly relevant in the context of this work is their cubically scaling

5



PNO-MP2 implementation, which spans the pair natural orbitals in a basis of OSVs.[62]

Other developments include PNO-based explicitly correlated coupled cluster,[63, 64] and

methods for excited states.[65, 66]

Aside from the aforementioned methods, a number of other concepts have been ex-

plored in the development of local correlation methods. Ayala and Scuseria, and later

Ochsenfeld and co-workers, developed reduced scaling implementations of MP2 through

combining the Laplace transformation technique with integral screening.[67–69] Also,

the AO-based coupled cluster method by Scuseria and Ayala,[70] and the triatomics in

molecules approach by Head-Gordon and co-workers[71–73] need to be mentioned in this

context.

Fragmentation methods take a different approach to exploit the locality of electron

correlation: the correlation energy is broken down into contributions by fragments, which

are calculated entirely independently. Examples include the cluster-in-molecule method

(CIM),[74–76] the incremental method[77–79] and the divide-expand-consolidate (DEC)

scheme.[80–82] An advantage of fragmentation methods is that they are easier to paral-

lelise than “direct” local correlation methods; a disadvantage is that the subsystems need

to be particularly large. As was shown by Guo and co-workers, a cluster-in-molecules

scheme based on RI-MP2 is competitive with DLPNO-MP2, but CIM calculations based

on CCSD(T) become unfeasible for realistic examples. However, a CIM scheme could

be constructed successfully by fragmenting the DLPNO-CCSD(T) energy.[83] The lat-

ter approach is somewhat related to the developments by Kállay, Rolik, Nagy and their

co-workers, who combine the cluster-in-molecules scheme with local natural orbitals and

other approximations.[84–87]

Many interesting quantities are accessible in quantum chemistry via energy deriva-

tives. For example, the gradient and the Hessian are needed to determine equilibrium

geometries or vibrational frequencies, respectively; electrostatic derivatives provide ac-

cess to electrostatic multipole moments and polarisabilities, and magnetic derivatives to

nuclear magnetic resonance shifts or hyperfine coupling constants. Mixed derivatives

with respect to nuclear coordinates and external fields are needed for properties such as
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infrared absorption or Raman intensities.[88]

The development of derivatives for local correlation methods is affected by two obsta-

cles. Firstly, methods such as Møller-Plesset perturbation theory or coupled cluster are

non-variational. This interdependency between the wave function parameters needs to

be considered explicitly; in contrast to fully variational methods, the Hellmann-Feynman

theorem cannot be used to calculate molecular properties. Secondly, local approxima-

tions for the energy tend to make the derivatives more complex. Compared with the

multitude of local correlation schemes that have been proposed to calculate energies with

MP2, coupled cluster and related methods, the development of analytical derivatives has

been attempted less often.

Notably, Werner, Schütz and their co-workers developed analytical gradients for sev-

eral PAO-based local correlation methods. Of particular relevance for the present work

is their implementation of the local MP2 gradient.[89–91] Moreover, the gradient was de-

veloped for local variants of the excited state methods second-order approximate coupled

cluster (CC2)[92, 93] and algebraic diagrammatic construction (ADC(2)).[94] Beyond

MP2 as a ground state method, the gradient was explored for local quadratic configura-

tion interaction with singles and doubles (QCISD).[95] Second-order magnetic properties

have been implemented for PAO-based local MP2.[96–98]

Ochsenfeld and co-workers implemented the analytical gradient and NMR shieldings

for their Laplace transform-based reduced scaling MP2 schemes.[99–101] Among frag-

mentation methods, analytical gradients were developed for the MP2 implementation

in the divide-expand-consolidate framework,[102, 103] and most recently for the cluster-

in-molecules MP2 scheme.[104] Electrostatic properties have been examined within the

incremental scheme.[105, 106]

First-order properties can be calculated with DLPNO-CCSD in its closed-shell and

open-shell variants using the orbital-unrelaxed density matrix.[107, 108] McAlexander

and Crawford explored optical response properties by simulating the behaviour of coupled

cluster with several truncation schemes including PNOs.[109]

As the major part of this thesis, the analytical gradient has been developed and im-
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plemented for the closed-shell DLPNO-MP2 method. It is described in Chapter 3, which

is based on our publications in ref. [110] and [111]. The accuracy of the gradient has

been examined in an extensive set of benchmark calculations, and the performance is

demonstrated with large-scale calculations. An important goal was to obtain the exact

gradient of the DLPNO-MP2 energy, without omitting any contributions or introducing

further approximations beyond those taken for the energy itself. The relevance of this

approach is shown through calculations of the electric field gradient at atomic nuclei.

Since well-converged localised orbitals are needed to calculate the gradient accurately,

section 3.2.4 describes the implementation of a second-order method for orbital locali-

sation. In addition, a method was introduced to eliminate singularities in the gradient

caused by continuously degenerate localised orbitals.

Concurrently with our work, an approximate analytical gradient for PNO-MP2 was

developed by Frank and Hättig.[112] Limitations in the latter work include the omission of

PNO and OSV relaxation. To the best of our knowledge, our publications describing the

DLPNO-MP2 gradient are the first account of an exact analytical gradient for any PNO-

based method. Very recently, Yang and co-workers have reported the implementation of

the analytical gradient for an OSV-based MP2 method.[113] While some of the algebraic

details of their derivation differ from this work, it incorporates the relaxation of OSVs in

a similar way.

In many cases, dispersion-corrected density functional theory (DFT) provides a supe-

rior accuracy to MP2 at a fraction of the cost.[114, 115] Empirical schemes building upon

MP2 were developed such as spin-component scaled variants of MP2 (SCS-MP2),[116–

118] or double-hybrid density functionals (DHDFs).[119, 120] Indeed, double-hybrids were

shown to be consistently more accurate than lower DFT rungs for the energetics of main-

group systems.[114, 121] They were also found to provide accurate results for molecular

geometries,[122, 123] vibrational frequencies,[124] dipole moments[125] and nuclear mag-

netic resonance shifts.[126] Even though there exist exceptions such as hydrogen bond-

ing, for which the vast majority of density functionals provide a worse description than

MP2,[127] for the majority of applications double-hybrids are likely going to be the more

8



useful alternative. The implementation of DLPNO-MP2 and of its closed-shell gradient

support spin-component scaling and double-hybrid density functionals, and some initial

results for geometry optimisations with DHDFs are provided.
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Chapter 2

Linear scaling second-order

Møller-Plesset perturbation theory

with pair natural orbitals

2.1 Theory

2.1.1 Orbital-invariant Møller-Plesset perturbation theory

Second-order Møller-Plesset perturbation theory is among the simplest methods to ap-

proximate the correlation energy, which is missing in the Hartree-Fock approach, and

therefore it is explained in many general textbooks on quantum chemistry.[2, 128] This

work is concerned primarily with the restricted closed-shell Hartree-Fock (RHF) formu-

lation. The Hartree-Fock energy in terms of occupied spatial molecular orbitals i, j is

given by the following expression:

ERHF = VNN + 2
∑
i

hii +
∑
ij

[2 (ii|jj)− (ij|ij)] , (2.1)

VNN is the repulsion energy between the nuclei, hpq are matrix elements of the one-electron

integrals in molecular orbital basis, and (pq|rs) represent the two-electron repulsion in-
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tegrals between real orbitals:

(pq|rs) =

∫ ∫
p(r1)q(r1)r(r2)s(r2)

|r1 − r2|
dr1dr2 (2.2)

The ground state Slater determinant Φ0, with the orbitals chosen to minimise the

expectation value of the Hamiltonian 〈Φ0|Ĥ|Φ0〉, is an eigenfunction of the Fock opera-

tor F̂ :
F̂ =

∑
pq

FpqÊpq

Fpq = hpq +
∑
i

[2 (ii|pq)− (ip|iq)]
(2.3)

In this expression for closed-shell restricted orbitals, Êpq is the spin-adapted replacement

operator â†pαâqα + â†pβâqβ. Self-consistent field (SCF) programs usually produce canonical

orbitals, which make the Fock matrix diagonal:

Fpq = εpδpq (2.4)

As the Slater determinant is invariant to unitary transformations among the orbitals that

it is constructed from, other choices such as localised orbitals are equally valid solutions

to the Hartree-Fock problem. Only the Fock matrix elements between occupied orbitals

i and virtual orbitals a need to vanish,

Fia = 0, (2.5)

which is equivalent with the Brillouin theorem.

Møller-Plesset theory regards the Fock operator as describing an unperturbed system,

and treats the difference between the actual Hamiltonian and the Fock operator as a

perturbation,

(
Ĥ(0) + V̂

) (
Φ0 + Ψ(1) + Ψ(2) + . . .

)
=
(
E(0) + E(1) + E(2) + . . .

) (
Φ0 + Ψ(1) + Ψ(2) + . . .

)
, (2.6)
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where Ĥ(0) = F̂ and V̂ = Ĥ − F̂ . The energy contributions of different order are given

by Rayleigh-Schrödinger perturbation theory:

E(0) = 〈Φ0|Ĥ(0)|Φ0〉

E(1) = 〈Φ0|V̂ |Φ0〉

E(2) = 〈Φ0|V̂ |Ψ(1)〉
...

(2.7)

In these expressions the wave function is subject to intermediate normalisation, so that

〈Φ0|Ψ(m)〉 = 0 for m > 0. The normalisation factor 1/
√
N ! of an N -electron Slater deter-

minant ensures that it satisfies 〈Φn|Φn〉 = 1 by construction.

Provided that the orbitals are canonical, excited determinants Φn>0 are eigenfunctions

of the operator F̂ with eigenvalues E(0)
n , each of which is a sum of the respective spin

orbital energies. This results in the following expression for the first-order perturbed

wave function:

|Ψ(1)〉 = −
∑
n>0

|Φn〉
〈Φn|V̂ |Φ0〉
En − E0

(2.8)

The zeroth-order energy is simply the sum of the energies of the restricted canonical

orbitals,

E(0) =
∑
i

2εi, (2.9)

while the Hartree-Fock energy equals the total energy at first order:

E(0) + E(1) = ERHF (2.10)

Finally, the second-order term is the well-known MP2 correlation energy for canonical

orbitals:

E(2) = −
∑
ijab

(ia|jb) [2 (ia|jb)− (ib|ja)]

εa + εb − εi − εj
(2.11)

If the orbitals are not canonical, the situation becomes more complicated. Since the

Fock matrix F is not diagonal, the excited determinants Φn>0 obtained by replacing

any occupied orbitals with virtual ones are in general no eigenfunctions of F̂ . As a
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consequence, Eqs. (2.8) and (2.11) cannot be used in conjunction with an arbitrary orbital

basis.

Møller-Plesset perturbation theory can be reformulated in a more general form using

the Hylleraas functional:[129]

E2 [Ψ] = 2 Re
〈

Ψ
∣∣∣ V̂ − E(1)

∣∣∣Φ0

〉
+
〈

Ψ
∣∣∣ Ĥ(0) − E(0)

∣∣∣Ψ〉 (2.12)

Since the Hylleraas functional has been discussed in the literature,[2, 130] only its most

relevant properties in the context of this work will be mentioned here. Evaluating E2

with a function Ψ = Ψ(1) + χ yields the second-order perturbed energy together with an

additional term:

E2

[
Ψ(1)
n + χ

]
= E(2) +

〈
χ
∣∣∣ Ĥ(0) − E(0)

∣∣∣χ〉 (2.13)

Crucially, the second term is positive with an arbitrary χ, and it only becomes zero if χ

is proportional to the ground state determinant Φ0, or in the trivial case χ = 0.

This establishes a variational principle, permitting Ψ(1) and E(2) to be found in an

arbitrary basis by minimising the value of the Hylleraas functional,

E2 [Ψ] ≥ E(2), (2.14)

yielding the actual value E(2) if and only if Ψ = Ψ(1) (provided that Ψ is orthogonal

to Φ0).

The first-order perturbed wave function will be parameterised in this work through

doubly excited singlet configuration state functions, following the generator state formal-

ism:[131]

Ψ(1) =
∑
i≥j

∑
ab

T ijabΨ
ab
ij with Ψab

ij =
1

1 + δij
ÊaiÊbjΦ0 (2.15)

In addition, amplitudes with interchanged indices i, j are defined as

T jiab = T ijba. (2.16)
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As the set of functions Ψab
ij is not orthogonal, it is advantageous to construct a dual

basis Ψ̃ab
ij , which forms a biorthogonal system together with Ψij

ab. These contravariant

configuration state functions have associated amplitudes T̃ ijab:

T̃ ijab =
1

1 + δij

(
4T ijab − 2T ijba

)
(2.17)

A modification is made for the development of local correlation methods. Instead

of exciting the electrons into a common set of virtual orbitals a, b, the virtual functions

aij, bij are made specific to each occupied orbital pair i, j:

Ψ(1) =
∑
i≥j

∑
aijbij

T ijaijbijΨ
aijbij
ij (2.18)

Pulay and Saebø provided an expression for the Hylleraas functional,[9] which is re-

produced below in a form that is equivalent to their original work:

E2 =
∑
i≥j

∑
aijbij

[
2 (iaij|jbij) T̃ ijaijbij + FaijbijD

ij
aijbij

]
−
∑
ij

FijDij (2.19)

The equation contains the virtual orbital-unrelaxed pair-specific difference density con-

tributions Dij
aijbij

,

Dij
aijbij

=
∑
c̃ij d̃ij

[
T ijaijcijScijdij T̃

ij
bijdij

+ T ijcijaijScijdij T̃
ij
dijbij

]
, (2.20)

and the occupied orbital-unrelaxed difference density contributions Dij ,

Dij =
∑
k

(1 + δik)
∑
ajkbjk

∑
ckidki

T jkajkbjkSbjkckiT̃
ki
ckidki

Sdkiajk . (2.21)

In order to calculate the MP2 energy via the Hylleraas functional, its minimum with

respect to the amplitudes Tij needs to be found. This results in a set of linear equations,

Rij
aijbij

= 0, (2.22)
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with the residual

Rij
aijbij

= (iaij|jbij) +
∑
cijdij

FaijcijT
ij
cijdij

Sdijbij +
∑
cijdij

SaijcijT
ij
cijdij

Fdijbij

−
∑
k

Fik ∑
ckjdkj

SaijckjT
kj
ckjdkj

Sdkjbij + Fkj
∑
cikdik

SaijcikT
ik
cikdik

Sdikbij

 . (2.23)

Substituting the residual expression into the Hylleraas functional Eq. (2.19) leads to the

equation

E2 =
∑
i≥j

∑
aijbij

[
(iaij|jbij) +Rij

aijbij

]
T̃ ijaijbij , (2.24)

which simplifies accordingly for E(2) once Rij = 0 has been established.

2.1.2 Local MP2 in a basis of projected atomic orbitals

In their seminal contributions, Pulay and Saebø showed that a local MP2 method (LMP2)

can be formulated using domains of projected atomic orbitals.[7, 9] The LMP2 method

was greatly refined by Werner, Schütz and co-workers.[15] By combining the RI approx-

imation for the two-electron integrals with local fitting, and introducing prescreening

techniques, they created an efficient, linear scaling implementation.[19]

Redundant projected atomic orbitals (PAOs) are obtained as a projection of atomic

basis functions µ onto the space of virtual orbitals:

|µ̃′〉 = Nµ̃′

[
1−

∑
i

|i〉 〈i|

]
|µ〉 (2.25)

In the space spanned by the atomic basis functions,
∑

p |p〉 〈p| is the identity operator

if p is a summation over all orbitals. Since the total number of PAOs is identical with

the number of basis functions, but the space spanned is that of the virtual orbitals, the

full set of PAOs is always linearly dependent. While unnormalised PAOs (Nµ̃′ = 1) are a

common choice in the literature, for practical purposes we prefer to use a factor Nµ̃′ that

normalises the PAOs to one, 〈µ̃′|µ̃′〉 = 1.

Numerous methods exist to obtain a local representation of occupied orbitals.[132–
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135] Localising virtual orbitals, on the other hand, represents a substantial technical chal-

lenge, despite some recent progress.[12–14] PAOs have a local spatial extent, because the

one-particle density matrix decays exponentially with the distance in extended systems

with a band gap (Kohn’s conjecture[136, 137]). Deriving from atomic basis functions,

PAOs are formally associated with specific atoms. Each occupied orbital i is assigned a

subset of PAOs µ̃′ referred to as the domain {i}. Different domain construction schemes

exist in the Literature, e.g. Boughton-Pulay domains,[23] which have been extended by

Werner and co-workers with criteria based on bonding and interatomic distances.[138]

The preceding implementation of DLPNO-CCSD employed criteria based on Mulliken

populations and basis function coefficients of the PAOs.[37] Tew has recently published

the principal domain scheme, which requires the computation of semicanonical MP2 den-

sities.[139]

In this work we use the differential overlap (DOI) between occupied orbitals and

PAOs:

DOIiµ̃′ =

√∫
i2(r)µ̃′2(r)dr (2.26)

PAOs µ̃′ are part of the domain of orbital i if the differential overlap DOIiµ̃′ exceeds a

predefined threshold TCutDO. Moreover, if at least one PAO centred on a specific atom

is member of a domain {i}, then all PAOs associated with the atom are included in the

domain, even if the corresponding differential overlap integrals are below the threshold.

An advantage of the differential overlap criterion is that it explicitly probes the interaction

between the MOs and the virtual functions, unlike other criteria that only consider the

extent of the MOs explicitly, and take the locality of the PAOs for granted.

Pair domains are defined for orbital pairs ij as the union of the respective orbital

domains: {ij} = {i} ∪ {j}. In a first step, the linearly dependent set of {ij} member

functions is transformed to a reduced set of linearly independent pair-specific functions,

the non-redundant PAOs µ̃ij. To simplify the energy calculation, an orthogonal transfor-

mation is determined in a second step such that the non-redundant PAOs make the Fock

matrix diagonal, Fµ̃ij ν̃ij → εµ̃ijδµ̃ij ν̃ij . In such a basis of pseudo-canonical non-redundant
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PAOs with energies εµ̃ij , the residual equation (2.23) becomes:

Rij
µ̃ν̃ = (iµ̃|jν̃) + [εµ̃ + εν̃ − Fii − Fjj]T ijµ̃ν̃

−
∑
k 6=i

Fik
∑
η̃λ̃

Sµ̃η̃T
kj

η̃λ̃
Sλ̃ν̃ −

∑
k 6=j

Fkj
∑
η̃λ̃

Sµ̃η̃T
ik
η̃λ̃
Sλ̃ν̃ (2.27)

For simplicity, the subscripts ij have been dropped. Non-redundant PAOs belonging to

the same orbital pair are orthogonal, Sµ̃ij ν̃ij = δµ̃ij ν̃ij , but among functions belonging to

different pairs there is generally a non-vanishing overlap, which leads to the sum over k

in Eq. (2.27).

A local RI approximation is employed in DLPNO-MP2. The two-electron integrals

are factorised with an auxiliary basis set as:

(iµ̃|jν̃) =
∑
KL

(iµ̃|K)
(
V−1

)
KL

(L|jν̃) (2.28)

As an additional approximation, the sum over auxiliary functions K,L is restricted to

the respective fitting domain: K,L ∈ {ij}RI. In DLPNO-MP2, a fitting domain {i}RI

includes auxiliary functions from all atoms that have a Mulliken population for orbital

i above a threshold TCutMKN. Fitting pair domains are constructed as unions of the

respective domains for individual orbitals: {ij}RI = {i}RI ∪ {j}RI.

2.1.3 Local MP2 in a basis of pair natural orbitals

While 98 % of the total correlation energy can typically be reproduced with PAOs from as

few as four to six atoms per localised orbital,[23] domains containing ca. 20-30 atoms are

usually needed to recover 99.9 %. With a triple-zeta basis set, this corresponds to around

1000 PAOs. Compared with the simpler energy equation for canonical MP2, evaluating

Eq. (2.27) leads to a too high cost. This expense can be reduced considerably using pair

natural orbitals (PNOs), as has also been proposed by Werner and co-workers while this

work was underway.[55]

By neglecting off-diagonal Fock matrix elements Fi 6=j in Eq. (2.27), approximate am-
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plitudes T̆ ijµ̃ν̃ can be evaluated through a straightforward analytic expression:

T̆ ijµ̃ν̃ = − (iµ̃|jν̃)

εµ̃ + εν̃ − Fii − Fjj
(2.29)

This is referred to as the semicanonical approximation: the pseudo-canonical, non-

redundant PAOs diagonalise the Fock matrix, while the Fock matrix projection onto

the localised occupied orbitals is generally non-diagonal. However, the off-diagonal ele-

ments are typically at least an order of magnitude smaller than those on the diagonal.

These amplitudes are used to construct the semicanonical virtual pair density D̆ij:

D̆ij = T̆ij† ˜̆Tij + T̆ij ˜̆
Tij† (2.30)

Diagonalisation of this pair density yields approximate PNOs d̄ijµ̃ãij :

D̆ijd̄ij = nãij d̄
ij (2.31)

If only those pair natural orbitals with an associated eigenvalue exceeding a truncation

threshold are retained, nãij > TCutPNO, this leads to a rapidly converging expansion of the

virtual space for each orbital pair.[33] In this truncated basis, the residual equation (2.27)

becomes:

Rij

ãb̃
=
(
iã
∣∣∣jb̃)+ [εã + εb̃ − Fii − Fjj]T

ij

ãb̃

−
∑
k 6=i

Fik
∑
c̃d̃

Sãc̃T
kj

c̃d̃
Sd̃b̃ −

∑
k 6=j

Fkj
∑
c̃d̃

Sãc̃T
ik
c̃d̃
Sd̃b̃ (2.32)

With the converged amplitudes, the energy of the Hylleraas functional in PNO basis

is given by a simple expression:

EDLPNO-MP2 =
∑
i≥j

∑
ãb̃

(
iã
∣∣∣jb̃) T̃ ij

ãb̃
(2.33)

In analogy to previous work,[33] the correlation energy contains a correction ∆EPNO
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for PNO truncation. It is determined as the energy change that results from a direct

projection of the semicanonical amplitudes to the truncated pair natural orbital basis:

∆EPNO =
∑
i≥j

∑
µ̃ν̃

(iµ̃|jν̃)
˜̆
T ijµ̃ν̃ −

∑
ãb̃

(
iã
∣∣∣jb̃) ˜̆

T ij
ãb̃

 (2.34)

The largest part of the computational effort to solve Eq. (2.32) is expended upon the

sum over k. Therefore, it is beneficial to skip small contributions if the magnitude of

the occupied Fock matrix elements, |Fik| or |Fkj|, is below a cutoff FCut, as was done in

ref. [15]. Even though the cost to evaluate the residual equation (2.32) would become

formally linear scaling in the asymptotic limit if orbital pairs are prescreened, additionally

skipping terms with small Fock matrix elements can lead to an earlier onset of linear

scaling. An attempt to reduce the computational effort for the summation term with a

second, more aggressively truncated set of PNOs did not lead to satisfactory results.

2.1.4 Prescreening of orbital pairs

As the total number of orbital pairs grows quadratically with system size, an overall

linear scaling of the method can only be achieved if the number of pairs that make a

relevant contribution to the energy is proportional to the size of the system. The first

published implementation of DLPNO-CCSD included a quadratically scaling prescreening

procedure with a very small prefactor of the computational cost function, which eliminates

a large number of electron pairs before entering expensive integral generation routines.[37]

Energies of pairs were estimated using the following equation:

εOSV−DIP
ij = − 8

|Rij|6
∑
ãib̃j

[
〈i|r|ãi〉 〈j|r|b̃j〉

]2

εãi + εb̃j − Fii − Fjj
(2.35)

Rij = 〈i|r|i〉 − 〈j|r|j〉 (2.36)

It was assumed that the semicanonical approximation is sufficiently accurate for screen-

ing purposes. For each orbital i, a truncated virtual space was spanned using pseudo-
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canonical orbital-specific virtuals ãi (OSVs) with energies εãi . The concept of OSVs had

been introduced previously by Chan and co-workers.[39] Integrals
(
ib̃j

∣∣∣jãi) were ignored

based on the assumption that the truncated OSVs are located near their associated or-

bitals, and therefore the overlap with other distant occupied orbitals may be ignored.

Most crucially, the two-electron integrals
(
iãi

∣∣∣jb̃j) were approximated using dipole in-

tegrals, which permitted a very fast evaluation of the expression. Rij represents the

distance vector between the centres of orbitals i and j. Orbital pairs were discarded

if their estimated energy was below a specified theshold, commonly set to 1 µEh, and

a contribution εOSV−DIP
ij was added for each omitted pair. Multipole-based approxima-

tions for prescreening purposes had already been discussed in earlier work by Werner and

co-workers.[140]

We have observed, however, that Eq. (2.35) sometimes considerably underestimates

the actual local MP2 energy even of the most distant orbital pairs. This may lead to

neglect of pairs that ought to be treated at MP2 level. Therefore, Eq. (2.35) is replaced

with a a more complete expression,

εDIP
ij = −4

∑
µ̃iν̃j

(
M ij

µ̃iν̃j

)2

εµ̃i + εν̃j − Fii − Fjj
, (2.37)

where M ij
µ̃iν̃j

is the proper dipole approximation for the electrostatic interaction between

the charge distributions |iµ̃i〉 and |jν̃j〉:

M ij
µ̃ν̃ =

riµ̃rjν̃

|Rij|3
− 3

(
riµ̃Rij

) (
rjν̃Rij

)
|Rij|5

with riµ̃ = 〈i|r|µ̃〉 (2.38)

For simplicity, the orbital subscripts of the virtual functions have been dropped. riµ̃

is a shorthand notation for the corresponding dipole integrals. Since the overlap of the

occupied functions |i〉 and the virtual functions |µ̃i〉 is zero, the product |iµ̃i〉 does not have

a net charge, and the dipole moment is, in general, the lowest non-vanishing multipole

moment.

Instead of OSVs, Eq. (2.37) uses non-redundant pseudo-canonical PAOs µ̃ to span the
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virtual space. The necessary domains {i} for prescreening may be smaller than those for

the subsequent local MP2 calculations, and are constructed using a threshold TCutDOPre.

Circumventing the construction of OSVs, which are generated as PNOs for pairs i = j,

is more efficient in this context.

As will be shown in Section 2.3.2, Eq. (2.37) converges correctly for the most distant

pairs, but the energy of many pairs around 1 µEh is still underestimated considerably. For

orbitals that are not very far away from each other, the dipole approximation may not

be sufficient to estimate pair energies: first, higher multipole moments become significant

and second, the assumption of non-overlapping charge distributions may break down.

It is a viable option to incorporate higher moments into pair prescreening.[140, 141]

We have, however, implemented the following refined procedure that uses only dipole

integrals:

1. Pairs of occupied orbitals should only be screened out if the spatial distributions of

their probability densities are almost non-overlapping. The first criterion is based

on the differential overlap of the orbitals DOIij:

DOIij =

√∫
i2(r)j2(r)dr (2.39)

Pairs are not excluded from the subsequent MP2 calculation unless DOIij is below

the threshold TCutDOij. Section 2.3.2 demonstrates that the dipole estimate of the

energy εDIP
ij becomes increasingly reliable for pairs with a small differential overlap

of the localised MOs.

2. The dipole approximation may underestimate a pair energy because of an acciden-

tal orthogonality of the dipole moments. Therefore, we compute an upper bound

to the interaction energy by assuming collinear orientation, which maximises the

interaction energy as a function of the angle:

εCOL
ij = − 16

|Rij|6
∑
µ̃ν̃

|〈i|r|µ̃〉|2 |〈j|r|ν̃〉|2

εµ̃ + εν̃ − Fii − Fjj
(2.40)
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In order to screen a pair out, this upper boundary estimate needs to be below the

threshold TCutPre.

3. If both criteria DOIij < TCutDOij and
∣∣εCOL
ij

∣∣ < TCutPre are fulfilled simultaneously,

the pair does not become subject to a more accurate treatment at the MP2 level.

Instead, its energy is estimated using εDIP
ij as defined in Eq. (2.37).

2.1.5 Sparse maps

2.1.5.1 Sparsity relationships

All reduced scaling algorithms take advantage of sparsity in some way; specifically, this

may mean avoiding storage of matrix elements below a given tolerance, or skipping terms

in computations that are deemed to make a negligible contribution to the result. Com-

puter code that exploits sparsity tends to be more complex, and therefore also more error

prone and difficult to maintain. In order to simplify both the discussion and the imple-

mentation of such sparsity relationships, this section formalises concepts and provides a

well-defined framework for discussion.

The first type of sparsity that we define is additive sparsity, which arises when a

function is expanded as a linear combination of other functions, e.g. an MO |i〉 that is

expressed in a basis of atomic orbitals |µ〉:

|i〉 =
∑
µ

cµi |µ〉 (2.41)

A sparse matrix c will have a non-negligible number of elements with a magnitude below

a given tolerance threshold ε. For example, if |i〉 represents a localised molecular orbital,

then the basis set coefficients will take smaller values in its tails. Indices |cµi| > ε

exceeding the tolerance threshold are collected in a sparse map L (i→ µ) generated by

the matrix c. The sparse map is a set of lists,

L (i→ µ) = {L (i1 → µ) , L (i2 → µ) , . . . } , (2.42)
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with each list representing the sparsity relationship between a given function |i〉 and the

indices of its non-vanishing basis set coefficients:

L (i→ µ) = {µn : | cµni| > ε } (2.43)

In this regard, a map that encodes additive sparsity is related to the compressed sparse

row or compressed column format.[142]

The second type of sparsity that we define is multiplicative sparsity, which may exist

between functions f and g occurring in products f · g. This can be demonstrated for the

Coulomb integrals J and exchange integrals K:

Jµν =
∑
ηλ

Pηλ (µν|ηλ) (2.44)

Kµη =
∑
νλ

Pνλ (µν|ηλ) (2.45)

Multiplicative sparsity is generated by the products of the local functions µ(r)ν(r) and

η(r)λ(r), that decline rapidly with the distance of the respective atomic centres. The

asymptotically exponential decay of the density matrix P with distance also generates

a sparsity relationship, which would make construction of the exchange matrix linear

scaling in principle (although this is not reached in actual implementations).[143] Efficient

schemes for exchange evaluation make use of such sparsity relationships, for example the

LinK[144] and COSX[145] algorithms.

Two-electron integrals in atomic orbital basis (µν|ηλ) are commonly screened using

the Schwarz criterion,[146] which in itself reduces the number of integrals from O(N4) to

O(N2):

|(µν|ηλ)| ≤
√

(µν|µν) (ηλ|ηλ) (2.46)

More elaborate screening techniques have also been discussed. Gill and co-workers in-

vestigated additional criteria based on Hölder’s inequality with a different partitioning

of the two-electron integrals.[147] The multipole-based QQR criterion was suggested by

Ochsenfeld and co-workers.[148, 149]
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The number of all possible target RI integrals (iµ̃′|K) scales as O(N3) with system

size, and the required number of operations to perform a transformation from the initial

AO basis integrals (µν|K) grows as O(N4). In order to construct an algorithm that scales

linearly, it is clearly necessary to reduce both the number of integrals and the number of

operations needed to O(N). The Schwarz inequality is not suited to screen the required

set of transformed integrals (iµ̃′|K), as it requires the computation of (iµ̃′|iµ̃′). However, a

sparsity relationship between the localised MOs i and the redundant PAOs µ̃′ is generated

by the differential overlap DOIiµ̃′ , which has been defined in Eq. (2.26) to determine

domains. The differential overlap determines if the two functions have got sufficiently

large values in a joint region of space. Moreover, ref. [43] shows numerically that the DOI

approximates the equivalent Schwarz prescreening integral, usually underestimating the

latter by up to an order of magnitude:

√∫
i2(r)µ̃′2(r)dr ≈

√
(iµ̃′|iµ̃′) (2.47)

The DOI criterion DOIiµ̃′ > ε therefore generates a sparse map L (i→ µ̃′). Unlike the

Schwarz integrals, however, the DOI can be calculated in a linear scaling prodecure by

numerical integration on a grid, as shown in ref. [43].

2.1.5.2 Operations on sparse maps

In order to construct algorithms using sparse maps, it is necessary to define general

operations that can be performed using maps:

• Inversion of a sparse map L (f → g) creates a map L (g → f) = L−1 (f → g). The

inverted sparse list L (gi → f) contains element fk if and only if the original sparse

list L (fk → g) contains gi:

L (g → f) = L−1 (f → g)

L (gi → f) = { fk : gi ∈ L (fk → g) }
(2.48)

• A union can be made, firstly, between two different sparse maps that address the
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same function space. Secondly, a union can be made between sparse lists that are

part of the same map. In the latter case, elements are included in the united list if

they are in any of the original lists:

L (fi → g) ∪ L (fj → g) = { gk : gk ∈ L (fi → g) ∨ gk ∈ L (fj → g) } (2.49)

• An intersection is defined analogously to the union. Only elements that are mem-

bers of both lists in question are retained:

L (fi → g) ∩ L (fj → g) = { gk : gk ∈ L (fi → g) ∧ gk ∈ L (fj → g) } (2.50)

• Chaining two maps L (f → g) and L (g → h) creates a third map L (f → h). In

the chained map L (f → h), a given element hl is included if and only if there is a

gk in the sparse list L (fi → g) which in turn connects to hl in the list L (gk → h):

L (f → h) = L (f → g) ◦ L (g → h)

L (fi → h) = {hl : ∃gk : gk ∈ L (fi → g) ∧ hl ∈ L (gk → h) }
(2.51)

Further operations will be needed that are specific to basis functions, shells or atoms:

• Contraction. When constructing maps for functions that can be assigned to partic-

ular atoms, for example for basis functions or PAOs, it is often desirable to include

all functions for contributing atoms. The differential overlap criterion DOIiµ̃′ alone

likely generates a map L (i→ µ̃′) that includes a subset of PAOs from each atom

in each list. On the other hand, domains in DLPNO-MP2 contain all PAOs from

atom A if the differential overlap criterion is exceeded for at least one of its func-

tions. Formally, such a contraction can be made using the following chain of maps,

with L (A→ µ̃′) representing the list of PAOs for a given atom:

L (i→ µ̃′A) = L (i→ µ̃′) ◦ L−1 (A→ µ̃′) ◦ L (A→ µ̃′) (2.52)
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The functions g in the map L (f → gA) are said to be contracted to atoms. Like-

wise, one can define a contraction to shells, L (f → gS), which includes all member

functions g of a shell if at least one function from the same shell is contained in the

original map L (f → g).

• An expansion is similar to a contraction, meaning that all functions f belonging to

atom A are assigned an identical mapping to functions g:

L (fA → g) = L−1 (A→ f) ◦ L (A→ f) ◦ L (f → g) (2.53)

As above, L (A→ f) is a list of functions f for atom A. In a map L (fA → g)

expanded to atoms, each sparse list is the union of the original lists L (f → g) for

functions f belonging to the same atom. Similarly, a map L (fS → g) expanded to

shells combines lists belonging to functions of the same shell.

Contractions and expansions can be combined: in the sparse map L (fA → gA), all

functions f belonging to the same atom are expanded to have identical sparse lists,

and each list is contracted to include all functions g from a given atom.

2.1.6 Linear scaling RI integral transformation

In order to compute the RI-MP2 energy, it is necessary to calculate the RI integrals

(ia|K). Naturally, the number of such integrals scales as O(N3) with the system size,

and the transformation from the basis function integrals (µν|K) requires a computational

effort scaling as O(N4). The simplest approach to generate the integrals (iµ̃′|K) for the

DLPNO-MP2 method is to pre-calculate integrals for all combinations of MOs i, PAOs

µ̃′ and auxiliary functions K in the beginning, and to access each subset of integrals

that is needed for any particular orbital pair during the calculation. As for RI-MP2,

however, the storage effort and the number of instructions scale as O(N3) and O(N4)

with system size, respectively. It is necessary to introduce a modified procedure achieving

an overall linear scaling of the method, as the transformation can become a bottleneck

for calculations with hundreds of atoms.
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Figure 2.1: Illustration of
the sparsity relationships for
the transformation of the
three-index integrals.

The RI integrals are given by the equation

(iµ̃′|K) =
∑
νη

cνiP̃ηµ̃′ (νη|K) , (2.54)

and the first step in the transformation is to generate integrals (νη|K) for each auxiliary

function K at a time (or, in practice, for entire shells of auxiliary functions at once). One

index is transformed to the occupied localised MO basis first, (νη|K)→ (iη|K), and the

other index is transformed to the redundant PAO basis second, (iη|K)→ (iµ̃′|K). These

transformation steps are usually implemented as matrix multiplications, for which highly

optimised computational routines are available. With the number of auxiliary functions

growing linearly in system size, it is necessary to ensure that the number of integrals and

the number of operations per auxiliary function remains constant in the asymptotic limit.

We refer to this relatively straightforward, but important principle as the linked index

rule.

Figure 2.1 illustrates the sparse maps that are relevant in the context of the integral

transformation. Between the MOs and the atomic basis functions there is an additive

sparsity relation L (i→ µ), which can be generated through the coefficient matrices of the

localised MOs. Analogously, there is an additive sparsity relation between the redundant

PAOs µ̃′ and the basis functions ν, L (µ̃′ → ν), encoded through the PAO coefficient

matrix P̃νµ̃′ . Both maps are contracted to atoms, and the PAOs are expanded in addition,

28



expressed as L (i→ µA) and L (µ̃′A → νA).

The multiplicative sparse maps L (i→ µ̃′) are generated by the differential overlap

integrals DOIiµ̃′ , and in addition the PAOs are contracted to atoms, L (i→ µ̃′A). Fitting

domains of auxiliary functions {i}RI are determined using the Mulliken populations of

each orbital i. Hence, the Mulliken populations of the orbitals generate a sparsity rela-

tionship L (i→ KA). The auxiliary functions are contracted to atoms by construction.

If suitable linked index relationships have been established that connect K to the

atomic basis functions µ and ν, truncating the map L (µ→ ν) is not necessary to achieve

linear scaling. It can, however, reduce the computational prefactor by eliminating in-

tegrals (µν|K) that are close to zero. The first implementation of DLPNO-MP2 as

published in ref. [43] did not truncate the sparse map L (µ→ ν). However, a subse-

quently improved version of the code exploits this sparsity relationship through Schwarz

prescreening. As a multiplicative relation it could also be generated by a differential

overlap criterion DOIµν , but in this case it is not necessary to replace the well-established

and efficient Schwarz screening.

Clearly, the sparse lists L (i→ µ̃′) and L (i→ K), which are identical with the respec-

tive domains {i} and {i}RI, do not represent the complete set of three-index integrals that

are needed for a given orbital i: integrals (iν̃ ′|jµ̃′) would be neglected for pair domains

{ij} if ν̃ ′ is a member of {j}, but not of {i}. The same problem would also apply to the

auxiliary functions. On the other hand, it may be assumed that such integrals indeed

become negligible if the PAOs in the respective domains {i} and {j} are sufficiently far

apart. One could generate maps L2 (i→ µ̃′) using a secondary threshold TCutDO2, which

is substantially tighter than domain threshold TCutDO: TCutDO2 < TCutDO. This would

establish a linked index relationship, which exploits multiplicative sparsity by neglecting

only sufficiently small integrals with little impact on the overall accuracy. Indeed, this

reasoning was the original motivation behind introducing the differential overlap into

the sparse map infrastructure. In practice, this concept was not successful: every cutoff

TCutDO2 that neglected any RI integrals used in the subsequent DLPNO-MP2 calculation

led to entirely uncontrollable errors in the energy. This does not rule out that a very tight
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threshold could in principle be used successfully in very large systems, but calculations

under realistic circumstances can only be performed if all integrals are calculated.

A map extension needs to be performed to obtain maps that encode all required

integrals:

Lext (i→ µ̃′) = L (i→ j) ◦ L (j → µ̃′) (2.55)

Lext (i→ K) = L (i→ j) ◦ L (j → K) (2.56)

In the equations (2.55) and (2.56), L (i→ j) represents the orbital pairs that remain

after prescreening. Therefore, the extended map Lext (i→ µ̃′) contains the unions of the

domain {i} with domains {j} for all remaining orbital pairings L (i→ j) of i.

Without screening of orbital pairs, each list Lext (i→ µ̃′) would simply contain the

complete set of redundant PAOs µ̃′ in the system, and Lext (i→ K) the complete set of

auxiliary functions. Only those PAOs or auxiliary functions that are not connected to

any orbitals in the system would be excluded. The latter sometimes occurs if the system

contains ghost atoms, for example in counterpoise-corrected calculations.

DLPNO-MP2 calculations are performed with pair prescreening, so that each orbital

i is only paired with other sufficiently close localised orbitals j. Since the extended lists

Lext (i→ µ̃′) and Lext (i→ K) represent an asymptotically constant number of indices µ̃′

and K, the total number of integrals becomes proportional to the number of orbitals i,

thus scaling linearly with system size.

The integral transformation according to Eq. (2.54) is performed via matrix multipli-

cations, and it is driven by auxiliary functions. For each function K, the complete blocks

of MOs and PAOs are given by the following maps:

L (K → i) = L−1
ext (i→ KA) (2.57)

L (K → µ̃′) = L−1
ext (i→ KA) ◦ Lext (i→ µ̃′A) (2.58)

Because of the chaining in Eq. (2.58), the map L (K → µ̃′) may contain some combina-

tions of auxiliary functions and PAOs that are not needed in the actual integrals, but
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this does not change the scaling.

The additive sparsity relationship between localised MOs or PAOs and the respective

basis functions permits some basis function coefficients to be truncated. For each auxiliary

function K, there is one block of AOs µ that are transformed to MO basis, and one

different block of AOs ν that are transformed to redundant PAOs. These blocks are

determined by the following chained map:

L
(
K → µMO

)
= L−1

ext (i→ KA) ◦ L (i→ µA) (2.59)

L
(
K → νPAO

)
= L−1

ext (i→ KA) ◦ Lext (i→ µ̃′A) ◦ L (µ̃′A → νA) (2.60)

The “MO” and “PAO” superscripts have been introduced to distinguish between the re-

spective spaces that the AOs span. A threshold TCutC is used to truncate basis set

coefficients with |cµi| < TCutC for MOs or |P̃νµ̃′| < TCutC for PAOs.

Eqs. (2.59) and (2.60) yield superblocks of atomic orbitals that are much larger than

the individual lists L (i→ µA) or L (µ̃′A → νA). This raises the question if it would not

be preferable to sacrifice large matrix multiplications in favour of retaining smaller AO

blocks, which would result in fewer arithmetic operations and a substantially reduced

number of integrals (µν|K) that need to be computed. However, Section 2.3.3 will show

that basis function coefficients need to be truncated very conservatively, which justifies

using these very large maps.

2.2 Implementation

The DLPNO-MP2 method was implemented as part of the ORCA quantum chemistry

package.[35, 36] An outline of the computational steps in a DLPNO-MP2 calculation is

provided by the scheme in Algorithm 1. The first step is a localisation of the occupied

orbitals. In this work we performed all calculations with Foster-Boys orbitals,[132, 133]

however, any type of suitable localised orbitals can be used in principle. As pointed out

by Bistoni and co-workers, in practice it is necessary to use different PNO truncation

thresholds for pairs of valence orbitals and for pairs of core orbitals.[150] We elaborate
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Algorithm 1 Pseudocode to illustrate the DLPNO-MP2 algorithm. All truncation
thresholds are printed on the right side of the listing.
1: Localise the molecular orbitals
2: Determine the projected atomic orbitals
3: Calculate the integrals DOIiµ̃′ , DOIij
4: Generate map L (i→ µ̃′A) for prescreening . TCutDOPre

5: Perform the prescreening giving pair list (ij), . TCutDOij, TCutPre

estimate energy ∆EPre of screened out pairs
6: Calculate map L (i→ µA) . TCutC

7: Calculate map L (µ̃′ → νA) . TCutC

8: Calculate map L (i→ µ̃′A) . TCutDO

9: Calculate map L (i→ KA) . TCutMKN

10: Construct extended maps using screened pair list (ij)
11: Perform linear scaling integral transformation (iµ̃′|K)
12: for all pairs (ij) do
13: Construct pair domains from non-extended maps
14: Construct local exchange operator (iµ̃|jν̃)
15: Construct semicanonical amplitudes T̆ ijµ̃ν̃
16: Construct semicanonical pair density D̆ij := T̆ij† ˜̆Tij + T̆ij ˜̆

Tij†

17: Diagonalise pair density to obtain PNOs ãij . TCutPNO

18: Transform (iµ̃|jν̃)→
(
iã
∣∣∣jb̃) , T̆ ijµ̃ν̃ → T̆ ij

ãb̃
and store on disk

19: Estimate PNO energy error ∆EPNO

20: end for
21: repeat
22: for all pairs (ij) do
23: Residual Rij

ãb̃
:=
(
iã
∣∣∣jb̃)+ (εã + εb̃ − Fii − Fjj)T

ij

ãb̃
(in PNO basis)

24: for all k ∈ L (j → k) do
25: if k 6= j and |Fik| ≥ FCut then . FCut

26: Rij := Rij − FikSij,kjTkjSkj,ij

27: end if
28: end for
29: for all k ∈ L (i→ k) do
30: if k 6= i and |Fkj| ≥ FCut then . FCut

31: Rij := Rij − FkjSij,ikTikSik,ij

32: end if
33: end for
34: end for
35: DIIS extrapolation of the amplitudes T ij

ãb̃
and residuals Rij

ãb̃

36: Amplitude update: T ij
ãb̃
→ T ij

ãb̃
−Rij

ãb̃
/ (εã + εb̃ − Fii − Fjj)

37: EDLPNO−MP2 := 0
38: for all pairs (ij) do
39: EDLPNO−MP2 := EDLPNO−MP2 +

∑
ãb̃

(
iã
∣∣∣jb̃)T ij

ãb̃

40: end for
41: until EDLPNO−MP2 converged and Rij ≈ 0
42: Calculate total correlation energy EC := EDLPNO−MP2 + ∆EPNO + ∆EPre
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upon this in Section 2.3.1.2. In order to retain a distinction between core and valence or-

bitals, the respective subsets of canonical orbitals are localised separately. If all electrons

are correlated, localisations are therefore performed once for the core and once for the

valence orbitals, whereas only the valence orbitals need to be localised for a frozen-core

calculation.

Several matrices are calculated in a full basis of the entire system: for example, the

Fock matrix Fµ̃′ν̃′ and the overlap matrix Sµ̃′ν̃′ are calculated once for all redundant PAOs,

leading to a (N3) computational and O(N2) storage requirement. The largest of these

is usually the RI metric VPQ, containing the Coulomb repulsion integrals between two

auxiliary functions. It is beneficial to store the matrix on disk rather than in memory

during those parts of the DLPNO-MP2 calculation that do not require it.

Following the construction of the maps and the orbital pair prescreening, the three-

centre electron repulsion integrals are calculated in the integral transformation routine

as outlined in Algorithm 2. The necessary space to store all integrals (iµ̃′|K) for a large

system may be substantially larger than the available amount of memory, thus neces-

sitating storage on disk. ORCA provides a data structure named “matrix container” to

store higher-order tensors as sets of matrices. The first step of the integral transformation

produces a matrix of integrals (iµ̃′|K) for each auxiliary function K, which is labelled

IKiµ̃′ . Consequently, integrals are read most efficiently from disk if they share the same K.

On the other hand, the DLPNO-MP2 calculation usually requires access to integrals for

a specific orbital i at a time, so that it is preferable to arrange the data in the matrix

container in terms of separate matrices I iKµ̃′ for each given occupied orbital i. The sort-

ing step IKiµ̃′ → I iKµ̃′ is an I/O-intensive and significant part of the overall computational

expense for the integral transformation, but it is necessary to ensure efficient data access

in the subsequent calculation.

After the calculation of the semicanonical amplitudes and the PNO construction,

three further matrix containers are retained on disk: the transformation matrices dijµ̃′ã

from redundant PAOs of each domain {ij} to the respective PNOs, the transformed

integrals
(
iã
∣∣∣jb̃), and a guess for the amplitudes T ij

ãb̃
.

33



Algorithm 2 Pseudocode illustrating the implementation of the asymptotically linear
scaling integral transformation routine.
1: for all auxiliary basis function shells KS do
2: for all basis function shells µS in L (KS → µS) do . Primitive integrals
3: for all basis function shells νS in L (KS → νS) do
4: Compute integrals (µν|K)
5: end for
6: end for
7: for all MOs i ∈ L (K → i) do . Actual transformation
8: for all ν ∈ L (K → ν) do
9: (iν|K) := 0

10: for all µ ∈ L (K → µ) do
11: (iν|K) := (iν|K) + cµi (µν|K)
12: end for
13: end for
14: end for
15: for all MOs µ̃′ ∈ L (K → µ̃′) do
16: for all MOs i ∈ L (K → i) do
17: (iµ̃′|K) := 0
18: for all ν ∈ L (K → ν) do
19: (iµ̃′|K) := (iµ̃′|K) + P̃νµ̃′ (iν|K)
20: end for
21: end for
22: end for
23: Store (iµ̃′|K) on disk
24: end for
25: Sort integrals: leading index K to leading index i

In order to calculate the PNO residual in Eq. (2.32), overlap matrices such as Sãij b̃ik

need to be generated. This is most efficiently achieved in memory during each iteration

with the following steps:

1. For a given pair ij, identify all k such that either pair ik has not been screened out

and Fkj is above the threshold, or kj has not been screened out and Fik is above

the threshold:

L (ij → k) = { k : k ∈ L (i→ k) ∧ |Fkj| > FCut }

∪ { k : k ∈ L (j → k) ∧ |Fik| > FCut } (2.61)

2. Extract the rectangular matrix Sµ̃′ν̃′ . The column indices ν̃ ′ are members of the

union of the respective domains {ik} and {kj}, while the row indices µ̃′ are members
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of domain {ij} only:

µ̃′ ∈ {ij} (2.62)

ν̃ ′ ∈
⋃

k∈L(ij→k)

[{ik} ∪ {kj}] (2.63)

3. Transform the row indices of the matrix to the PNO basis of pair ij, Sµ̃′ν̃′ → Sãij ν̃′ .

4. For each pair ik (or kj), transform the appropriate columns of the matrix to the

respective PNO basis, e.g. Sãij ν̃′ → Sãij b̃ik .

The residual equation in PNO basis, Eq. (2.32), is solved using an iterative algorithm

that is based on the Jacobi method. If the amplitudes T ij
ãb̃

are mapped onto a one-

dimensional vector, then the coefficient matrix of the associated linear equation system

has [εã + εb̃ − Fii − Fjj] as its diagonal entries. Accordingly, with T
ij[n]

ãb̃
and Rij[n]

ãb̃
as the

respective amplitudes and residuals in the n-th iteration, the amplitude update with the

Jacobi algorithm is given by:

T
ij[n+1]

ãb̃
= T

ij[n]

ãb̃
−

R
ij[n]

ãb̃

εã + εb̃ − Fii − Fjj
(2.64)

With the Jacobi method alone, the iterative algorithm often performs poorly. A

drastic improvement is achieved through incorporating convergence acceleration by direct

inversion in the iterative subspace (DIIS).[151] In each iteration n, improved amplitudes

Tij[n]DIIS and associated residuals Rij[n]DIIS are obtained by DIIS extrapolation. The

update in Eq. (2.64) is then performed using Tij[n]DIIS and Rij[n]DIIS rather than Tij[n] and

Rij[n].

With the DIIS-enhanced Jacobi algorithm, convergence is usually achieved within

a modest number of iterations; divergence was only observed for systems with a near-

linearly dependent atomic basis set in practice. Level shifting and damping can be used in

addition. An algorithm based on the Jacobi method is likely suitable to solve the residual

equations, because the off-diagonal Fock matrix elements Fij are usually substantially

smaller than the diagonal ones in a localised orbital basis.
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Figure 2.2: Systems used to investigate the DLPNO-MP2 thresholds. (A) Sildenafil
(B) ATP4– (C) Anthracene dimer (D) Vancomycin

2.3 Results

2.3.1 Selection of truncation thresholds

2.3.1.1 Computational approach

Correlation energies are typically in a range of several Hartree for mid-sized molecules

to tens of Hartree for systems containing hundreds of atoms. Achieving an accuracy

of 1 kJ mol−1 for a system with a correlation energy of 10 MJ mol−1 would require the

ability to reproduce ca. 99.99 % of the total correlation energy. On the other hand,

quantum chemical methods tend to rely on error cancellation in energy differences, and

the absolute error in the total energy calculated with any approximate size-extensive

method is expected to increase linearly with system size. Therefore, our aim is to define

thresholds for DLPNO-MP2 so that 99.9 % of the total RI-MP2 correlation energy is

reproduced. Subsequent benchmark calculations will demonstrate that this is an adequate

default accuracy target. In this section, the approximations are investigated one threshold

at a time. All calculations were performed with the Foster-Boys localisation method[132,

133] and with frozen core settings.

2.3.1.2 Truncated pair natural orbitals

The pair natural orbital truncation threshold TCutPNO is examined using three systems:

sildenafil; a weakly bonded anthracene dimer; and the adenosine triphosphate anion
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Basis functions Auxiliary functions

System Atoms def2-TZVP def2-TZVPD def2-TZVP/C aug-cc-pVTZ/C

Sildenafil 63 1209 1512 2995 4919
ATP4– 43 1312 2647 3961
Anthr. dimer 48 988 1216 2428 3888
Vancomycin 176 3593 8875

Table 2.1: Numbers of atoms and basis functions in the investigated systems that are
depicted in Figure 2.2.

(ATP4– ) in gas phase (Figure 2.2). These three systems are on the one hand large enough

to examine the truncations, which may not become effective to the same extent in smaller

molecules, but on the other hand they are small enough to perform these calculations

without excessive computational cost. The numbers of atoms and basis functions are

shown in Table 2.1. In order to isolate the effect of PNO truncation, all other thresholds

were set to zero in the calculations.

Figure 2.3 shows the percentage of the total RI-MP2 correlation energy reproduced

using a given threshold. The accuracy is increased substantially by the PNO energy

correction ∆EPNO, particularly for the more aggressive thresholds. Results with the

diffuse def2-TZVPD basis are very similar to those with the def2-TZVP set. In order

to recover 99.9 % of the correlation energy, a threshold of TCutPNO = 1× 10−8 is chosen

as the default value. Evidently, this is lower than the cutoff used in DLPNO-CCSD, for

which 3.33× 10−7 is recommended as the default value and 1.0× 10−7 as a threshold for

tight convergence.[24, 33, 37] Apparently, a larger number of PNOs is needed to achieve

a comparable accuracy with DLPNO-MP2.

Bistoni and co-workers pointed out that the default PNO truncation threshold used

in the DLPNO-CCSD method is not sufficient for core orbital pairs:[150] as the denomi-

nator is often much larger than with valence orbitals, the semicanonical amplitudes tend

to be much smaller, and thus a lower PNO truncation threshold is needed to recover

a comparable fraction of the correlation energy. They suggested scaling the threshold

TCutPNO, which was determined for valence correlation, by a factor of 0.01 for core and

core-valence correlation pairs.
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(a) Results calculated with the def2-TZVP basis and def2-TZVP/C for correlation fitting.
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(b) Results calculated with the def2-TZVPD basis and aug-cc-pVTZ/C for correlation fitting.

Figure 2.3: Percentage of the total RI-MP2 correlation energy recovered with a given
TCutPNO. All other truncation thresholds are zero. The “corrected” results include the
energy correction ∆EPNO.

We found that the solution to scale the PNO threshold is also appropriate for DLPNO-

MP2. Therefore, the threshold TCutPNO is used for valence orbital pairs and TCutPNO(Core)

for pairs with one or two core orbitals. It is set to TCutPNO(Core) = 0.01× TCutPNO by

default. Note that this does not affect our calculations reported in this section and in

ref. [43], as they were performed with frozen core settings.
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2.3.1.3 Truncated domains of auxiliary functions

Fitting domains are determined using the Mulliken populations of individual orbitals.

Figure 2.4 shows the convergence of the correlation energy with respect to RI-MP2 using

different values of the TCutMKN threshold. In these calculations, the pair natural orbitals

were truncated using the previously determined threshold TCutPNO = 10−8, whereas all

remaining threshold were left at zero.

At a value of TCutMKN = 10−3, as used in previous work,[33, 37] the energies are almost

converged. Relative to results with fitting domains that encompass the entire system, the

error is below 0.005 %, and thereby within the accuracy target by more than an order of

magnitude. With the diffuse basis set def2-TZVPD, the fitting domains are considerably

larger than with def2-TZVP. On the other hand, this larger size appears to be necessary

to recover a comparable fraction of the canonical correlation energy.

Comparing DLPNO-MP2 results for def2-TZVPD in combination with different aux-

iliary sets, the errors relative to the respective RI-MP2 energies are about twice as

large with def2-TZVP/C as with aug-cc-pVTZ/C. The fitting domains contain iden-

tical atoms in both cases, so it is possible that the more numerous and diffuse functions

of aug-cc-pVTZ/C result in a more accurate fit with a given domain size.

2.3.1.4 Truncated domains of projected atomic orbitals

Calculations to determine the newly introduced domain threshold TCutDO were performed

in the presence of the already established cutoffs TCutPNO = 10−8 for the PNOs and

TCutMKN = 10−3 for the fitting domains. We choose a default threshold of TCutDO = 10−2,

which reproduces ca. 99.9 % of the RI-MP2 energy (Figure 2.5).

With the basis set def2-TZVPD, the domains using the same differential overlap cutoff

are somewhat larger than with def2-TZVP. Nevertheless, the error relative to RI-MP2

increases with the diffuse basis set; this indicates that larger domains are needed to

reproduce a given accuracy target if a basis set contains very diffuse functions.
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def2-TZVPD
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Figure 2.4: Percentage of the total RI-MP2 correlation energy recovered with a given
TCutMKN. In the asymptotic limit, the remaining error is due to the PNO truncation with
TCutPNO = 10−8. The blue lines associated with the right axis show the average number
of atoms in the fitting pair domains.
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(b) Results calculated with the def2-TZVPD basis and aug-cc-pVTZ/C for correlation fitting.

Figure 2.5: Fraction of the total RI-MP2 correlation energy recovered with a given domain
threshold TCutDO. In the asymptotic limit, the remaining error is accounted for by the
PNO and fitting domain truncations. The blue lines associated with the right axis show
the average number of atoms for the pair domains.

2.3.1.5 Fock matrix truncation

The cutoff FCut for internal Fock matrix elements was determined using calculations

for vancomycin (depicted in Figure 2.2) with the def2-TZVP basis. This molecule is

sufficiently large to examine truncation errors that would be less apparent in smaller

systems.

Figure 2.6 shows the error in the total correlation energy. TCutPNO, TCutDO and
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Figure 2.6: Magnitude of the error in the correlation energy caused by Fock matrix
truncation with a given FCut for vancomycin in def2-TZVP basis. Inset: the signed error
in a selected range. Below a cutoff of 10−3Eh, the error changes its sign. The total
correlation energy is −18.3Eh. Default values are used for TCutPNO, TCutMKN and TCutDO.

TCutMKN were set to their previously determined default values, but no further truncations

were involved. Since the error is relatively sensitive with respect to larger thresholds, a

conservative cutoff FCut = 1× 10−5Eh is chosen, resulting in an insignificant error well

below 1 µEh. This finding agrees with the results of Schütz and Werner.[15] If pair pre-

screening is enabled, which will be discussed later, 66 % of terms are dropped with this

threshold.

2.3.1.6 Definition of default accuracy settings

While the default cutoffs have been selected to provide a reasonable compromise between

accuracy and efficiency, in some cases it may be desirable to perform calculations that re-

produce RI-MP2 even more closely, for example when investigating weak interactions. In

analogy with previous work on DLPNO-CCSD(T),[24] we define LoosePNO, NormalPNO

and TightPNO settings as represented in Table 2.2.

The two approximations with the largest impact on the accuracy are the pair natural

orbital and domain truncations. For each accuracy setting, TCutPNO is scaled up or down

by a factor of 10, and TCutDO by a factor of 2. Errors resulting from any of the other
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Threshold LoosePNO NormalPNO TightPNO

TCutPNO 1× 10−7 1× 10−8 1× 10−9

TCutDO 2× 10−2 1× 10−2 5× 10−3

TCutMKN 1× 10−3

FCut 1× 10−5

TCutPre 1× 10−6

TCutDOij 1× 10−5

TCutDOPre 3× 10−2

TCutC 1× 10−3

Table 2.2: Truncation thresholds in the DLPNO-MP2 method.

approximations are at least an order of magnitude smaller, and therefore the remaining

thresholds are left unchanged. While NormalPNO is meant to reproduce around 99.9 %

of the RI-MP2 correlation energy, TightPNO settings would typically yield an accuracy of

> 99.95 %. LoosePNO settings are expected to reproduce only ca. 99.7 % of the reference

value.

2.3.2 Pair prescreening

An improved procedure for pair prescreening of orbital pairs was introduced in Sec-

tion 2.1.4. As shown in Figure 2.7 for vancomycin, the new dipole energy expression

yields a reasonably good estimate for the semicanonical pair energy of very distant pairs.

Nonetheless, the semicanonical energies of many pairs around 1 µEh are underestimated

by a considerable margin. As opposed to that, the collinear modification of the dipole

approximation overestimates the semicanonical pair energies, and it can be used as a

reliable upper bound for the pair energy.

Figure 2.8 contains a plot of the relative error in the dipole energies,
(
εDIP
ij − εSC

ij

)
/εSC

ij ,

against the differential overlap of the MOs, DOIij. It shows that the error of the dipole

approximation is consistently below 40 % for all pairs with a differential overlap below

10−5. In order to arrive at a reliable and accurate procedure, pairs are only screened

out if their collinear dipole energy is below TCutPre = 1 µEh, and at the same time the

differential overlap of the occupied MOs TCutDOij is below TCutDOij = 1× 10−5. The

energy contribution of the screened-out pairs, however, is calculated with the actual
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Figure 2.7: Pair energies for vancomycin in def2-TZVP basis. The black dots show the
semicanonical energy of a pair with TCutDO = 1× 10−2. Proper dipole and collinear
dipole energies of the respective pairs are shown by the red and blue dots, and have
been calculated with TCutDOPre = 3× 10−2. All pairs are ordered by their semicanonical
energy.

Figure 2.8: Error in the dipole pair energy relative to the respective semicanonical energy
of pair ij plotted against the differential overlap of the orbitals, DOIij. The data was
calculated for vancomycin in def2-TZVP basis.

dipole approximation. A reduced differential overlap threshold of TCutDOPre = 3× 10−2

was found to be sufficient to construct domains of PAOs in the dipole expressions.

For vancomycin in def2-TZVP basis, this conservative procedure removes 16 266 out

of 36 856 orbital pairs from the remaining local MP2 calculation. The contribution of

these pairs accounts for 0.0033 % of the correlation energy; an error of only 0.0003 % in

44



the total correlation energy remains after adding the dipole correction.

On the other hand, the old prescreening procedure as used in the first implementa-

tion of DLPNO-CCSD removed 25 460 pairs accounting for 0.032 % of the correlation

energy. An error of 0.011 % remained in the total correlation energy after adding the

energy correction, which is less accurate than the new treatment by more than an order

of magnitude. With the deprecated prescreening procedure, the error was almost in a

comparable range as the deviations introduced by the PNO and domain approximations,

especially in combination with tight thresholds.

2.3.3 Truncating atomic orbital coefficients in the RI integral

transformation

This section provides a detailed analysis of atomic orbital coefficient truncation in the

RI integral transformation. We first consider individual truncation for each MO and

PAO. This implies that a set of basis coefficients will be retained according to the map

L (i→ µA) for each MO i. Similarly, one individual set of coefficients will be used for

all PAOs centred on the same atom according to the map L (µ̃′A → νA). While this

does not correspond to the procedure in the integral transformation routine, which uses

superblocks of AO coefficients as described previously, it is a more straightforward ap-

proach for an error analysis. In addition, this approach is more similar to the integral

transformation routine reported by Werner and co-workers,[55] albeit they use a different

criterion to select basis set coefficients, and perform a fitting of the truncated MOs and

PAOs to reduce errors.

Table 2.3 shows the total correlation energy of vancomycin with different choices of

TCutC. The error incurred from MO coefficient truncation (Table 2.3a) is controllable

and well within the 99.9 % accuracy target with a cutoff TCutC = 10−2, leading to maps

L (i→ µA) containing basis functions from 35 atoms on average. Interestingly, the error

is reduced by an order of magnitude with prescreening of orbital pairs.

By contrast, truncating PAOs (Table 2.3b) leads to excessive errors unless a very

conservative threshold is used. Even with TCutC = 10−3, which includes AO coefficients
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Correlation energy / Eh

TCutC no pair prescreening with pair prescreening Atoms

10−2 −18.314 052 905 770 −18.311 105 040 428 35.1
10−3 −18.311 730 112 266 −18.311 293 162 660 92.3
10−4 −18.311 549 912 531 −18.311 266 679 686 148.1
10−5 −18.311 548 215 432 −18.311 266 604 688 171.2

0 −18.311 548 208 086 −18.311 266 604 344 176.0

(a) Atomic basis functions are truncated individually for each MO using the maps in L (i→ µA).

Correlation energy / Eh

TCutC no pair prescreening with pair prescreening Atoms

10−2 −11 467.257 109 350 041 −10 852.520 210 865 197 73.7
10−2 −18.472 749 534 494 −18.355 932 985 249 135.4
10−4 −18.311 571 831 156 −18.311 267 088 375 168.4
10−5 −18.311 548 218 125 −18.311 266 604 344 175.7

0 −18.311 548 208 086 −18.311 266 604 344 176.0

(b) Atomic basis functions are truncated individually for PAOs using the maps in L (µ̃′A → νA).

Table 2.3: DLPNO-MP2 correlation energy of vancomycin (def2-TZVP) with different
values of the atomic orbital cutuff TCutC, with or without prescreening of orbital pairs.

from 135 atoms for each PAO on average, the error in the total correlation energy is 0.2 %

or 0.9 % with and without prescreening, respectively. This behaviour is likely a result of

linear dependencies in the PAO space, as will be demonstrated next.

Since the dimension of the space spanned by the redundant PAOs in each domain

is not known a priori, the first step in the transformation to non-redundant PAOs is

to determine the rank of the overlap matrix of PAOs, Sµ̃′ν̃′ , with µ̃′, ν̃ ′ ∈ {ij}. This

is accomplished by diagonalising the overlap matrix and discarding eigenvectors with

associated eigenvalues below a threshold with the default value SCut = 10−8. A tighter

value for this threshold leads to a more complete recovery of the external space, but also

to larger coefficients in some of the non-redundant PAO vectors.

As the transformation matrix between redundant and non-redundant PAOs is deter-

mined using overlap integrals without truncation, neglecting even minimal contributions

of atomic basis functions to the integrals (iµ̃′|K) can lead to large errors. Table 2.4 shows

errors in the total energy calculated with different overlap cutoffs SCut. Basis set coeffi-
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Correlation energy error / Eh

SCut no pair prescreening with pair prescreening

10−6 −0.044 −0.019
10−7 −0.156 −0.043
10−8 −0.161 −0.045
10−9 −0.161 −0.045

Table 2.4: Error in the total correlation energy of vancomycin (def2-TZVP) caused by
AO coefficient truncation, calculated with different overlap cutoffs SCut. Basis functions
were truncated for PAOs individually with a cutoff TCutC = 10−3.

cients of PAOs are truncated using the threshold TCutC = 10−3 in each case. Reducing

SCut increases the errors, as the non-redundant eigenvectors of Sµ̃′ν̃′ are multiplied with

the inverse square root of the associated eigenvalues, resulting in larger coefficients for

some of the vectors. On the other hand, if basis functions are truncated for MOs but not

for PAOs, then the results are only marginally affected by SCut.

While Werner and co-workers did not provide an analysis of errors resulting from AO

coefficient truncation for their PNO-LMP2 implementation, they also found that large

AO blocks are required. Indeed, they chose to disable PAO truncation by default, thus

making their method formally quadratically scaling.

In contrast to the previous analysis, the integral transformation implemented in the

DLPNO-MP2 method performs basis set truncation to produce entire superblocks of AOs.

When calculating the RI integrals (iµ̃′|K) for a specific functionK, the common AO block

for all MOs is defined through the map Lext (K → i) ⊂ L (i→ νA), where the map from

auxiliary functions to MOs is obtained by inverting the extended map from MOs to aux-

iliary functions, Lext (K → i) = L−1
ext (i→ KA). An even larger block of AOs is obtained

for PAOs, specified by the map Lext (K → i) ⊂ Lext (i→ µ̃′A) ⊂ L (µ̃′A → νA). While this

approach was introduced for computational convenience, it also ensures accurate results,

as will be illustrated below.

In vancomycin, the maps from auxiliary functions K to PAOs µ̃’ are so extensive that

each sparse list contains all PAOs in the entire molecule. Therefore, the corresponding

AO blocks contain all basis functions in the molecule (unless an inappropriately loose

threshold TCutC is chosen that excludes all basis functions on an atom from all PAOs).
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TCutC Energy / Eh AOs

10−1 −47.642 453 703 426 2844
10−2 −18.315 396 006 719 3386
10−3 −18.311 266 715 618 3579
10−4 −18.311 266 604 344 3593

0 −18.311 266 604 344 3593

Table 2.5: Correlation energy of vancomycin (def2-TZVP) with different thresholds TCutC.
The MOs are truncated to AO superblocks given by Lext (K → i) ⊂ L (i→ νA). Numbers
of AOs per block (rightmost column) are averaged over shells of auxiliary functions.

MOs truncated PAOs truncated

TCutC Energy / Eh AOs Energy / Eh AOs

10−1 −49.987 054 208 335 1178 −39.901 165 401 502 3012
10−2 −39.901 353 476 710 2159 −39.901 165 401 501 3988
10−3 −39.901 165 442 252 2779 −39.901 165 401 501 4578

0 −39.901 165 401 501 8787 −39.901 165 401 501 8787

Table 2.6: Correlation energy of a linear H–(CH2CHCl)75 –H chain (def2-TZVP) with
different TCutC. Either the MOs or the PAOs were truncated to superblocks of basis
functions. The number of AOs per block was averaged over shells of auxiliary functions.

The size of the AO coefficient block for the MOs can still be influenced by choosing a

different TCutC, as shown in Table 2.5. While the accuracy target for DLPNO-MP2 can

be met with the cutoff value 10−2, we make the more conservative choice TCutC = 10−3

for both MOs and PAOs, which yields an error below the Microhartree range. This may

be considered a safer choice: the size of the AO blocks depends not only on TCutC, but

also on the size of the Lext (i→ KA) maps (determined by TCutMKN), and in the case of

PAOs also the Lext (i→ µ̃′A) maps (determined by TCutDO). Most crucially, via the map

extension both sets of maps depend strongly on the screened orbital pair list.

In the calculations with vancomycin, superblocks of basis functions for PAOs spanned

the entire molecule. No substantial impact of PAO truncation is to be expected for three-

dimensional molecules containing about 200 atoms. Further calculations were performed

for a linear H–(CH2CHCl)75 –H chain using the def2-TZVP basis. Table 2.6 shows that

the error in the energy is entirely negligible with a threshold of 10−3, while 48 % of the

basis functions are dropped for the PAOs in the integral transformation, and 68 % for the

MOs. Further gains for very large systems could possibly be made with more ambitious
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tuning of TCutC, however, uncontrollable errors can be caused by too aggressive truncation

of PAOs, as shown above.

As these results emphasise that the long tails of PAOs need to be taken into account,

one cannot help but wonder whether a more compact and linearly independent alternative

to PAOs could be found. In this context, the discussion by Jørgensen and co-workers on

the localisability of virtual molecular orbitals is of relevance.[12–14]

Instead of truncating MOs and PAOs only in the RI integral transformation, one

could consider using truncated MOs and PAOs throughout the entire DLPNO-MP2 cal-

culation. As the transformation between redundant and non-redundant PAOs would be

determined using the already truncated PAOs, the aforementioned difficulties could in

principle be overcome. However, truncated PAOs are not an exact representation of the

virtual space, as they are not strictly orthogonal to the occupied orbitals. When testing

such a procedure, the domain-specific Fock matrix in non-redundant PAO basis some-

times had eigenvalues below the LUMO energy of the system; this contamination with

occupied space components can be interpreted as a violation of the Pauli principle. One

could attempt to refit PAOs under the constraint that they remain strictly orthogonal to

the occupied MOs, and use those PAOs throughout the entire calculation. However, we

found that the simpler approach to use superblocks of atoms orbitals with a truncation

threshold of TCutC = 10−3 is satisfactory.

These results emphasise that even small errors in the RI integrals can lead to large

overall errors. Under practical circumstances, it is not possible to discard integrals (iµ̃′|K)

if the specific combination of i and µ̃′ appears in any pair domain. Therefore, using the

extended maps Lext (i→ µ̃′) and Lext (i→ K) in the integral transformation is mandatory

to ensure that all required integrals are computed.

2.3.4 Benchmark calculations

Four benchmark sets were employed in order to investigate the accuracy of the DLPNO-

MP2 method for energy differences: the test set for chemical reaction energies by Friedrich

and Hänchen,[152] conformational energies of melatonin[153] and 1,4-butanediol,[154] as
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Figure 2.9: Mean absolute and maximum absolute errors in the benchmark sets:
(1) Reaction set by Friedrich and Hänchen (def2-TZVP)
(2) Conformers of 1,4-butanediol (def2-TZVP)
(3) Conformers of melatonin (def2-TZVP)
(4) S66 set without counterpoise correction (def2-TZVP)
(5) S66 set without counterpoise correction (def2-TZVPD)
(6) S66 set with counterpoise correction (def2-TZVP)
(7) S66 set with counterpoise correction (def2-TZVPD)

well as the S66 set.[155] The same four sets had been used previously to investigate the

accuracy of DLPNO-CCSD(T).[24] Reference energies were computed with the RI-MP2

method. All DLPNO-MP2 calculations were performed with NormalPNO settings and,

unless noted otherwise, using the def2-TZVP basis set. A graphical summary of the

results is provided in Figure 2.9.

2.3.4.1 Chemical reactions

The performance of DLPNO-MP2 for chemical reaction energies was investigated using

the test set by Friedrich and Hänchen, which contains 51 reactions of organic molecules

(Figure 2.10). On average, reaction energies calculated with DLPNO-MP2 deviate by

0.05 kcal mol−1 from RI-MP2, with a largest error of 0.17 kcal mol−1.

To put these errors into context, the mean absolute deviation of MP2-F12/B reaction

energies from CCSD(T)(F12*) results were reported as 11.6 kJ mol−1 (2.8 kcal mol−1),

with a largest error of −56.2 kJ mol−1 (−13 kcal mol−1).[152] The two explicitly corre-

lated methods are approximations to the respective complete basis set limits of MP2 and
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Figure 2.10: Errors in reaction energies for the test set by Friedrich and Hänchen.

CCSD(T), which shows that the deviations introduced by the approximations in DLPNO-

MP2 are almost two order of magnitude below the estimated intrinsic error of the MP2

method. Sufficiently small molecules to perform canonical coupled cluster calculations

were chosen for this test set. Therefore, it would be necessary to investigate reactions

of larger molecules to draw more general conclusions about the limiting behaviour of the

local approximations.

The direction of the reactions in the test set has been specified such that the electronic

contribution to the reaction energy is negative. With a few exceptions, the MP2 reaction

energies are also negative. In most cases, DLPNO-MP2 slightly overestimates the reaction

energy.

2.3.4.2 Conformational energies

Relative energies of conformers were investigated for different geometries of 1,4-butanediol

and of melatonin. The energy differences were determined with respect to the energeti-

cally lowest conformer, which is predicted correctly by both RI-MP2 and DLPNO-MP2.

RI-MP2 conformational energies of 1,4-butanediol are reproduced by DLPNO-MP2

with high accuracy (Figure 2.11), incurring a mean absolute error of 0.01 kcal mol−1 and

a largest error of 0.03 kcal mol−1. Such a good agreement is likely achieved because of the

small molecular size (16 atoms), so that the local approximations do not become fully
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Figure 2.11: Errors in relative conformational energies of 1,4-butanediol.
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Figure 2.12: Errors in relative conformational energies of melatonin.

effective.

The errors in the relative energies of melatonin conformers with 33 atoms are signifi-

cantly larger (Figure 2.12), with a mean absolute error of 0.15 kcal mol−1 and a maximal

error of 0.24 kcal mol−1. In most cases, the energy difference between the lowest and the

higher lying conformers is underestimated.

The estimate of the intrinsic root mean square error of the MP2 method for the

melatonin conformer energies is 0.91 kcal mol−1 (and 0.47 kcal mol−1 for the 12 lowest-

lying conformers).[153] This exceeds the additional error introduced in DLPNO-MP2.

However, TightPNO thresholds may be preferable for accurate calculations.
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2.3.4.3 Noncovalent interactions

The S66 set contains geometries of non-covalently bonded molecule dimers with different

types of interactions. Firstly, interaction energies in dimers were calculated without

counterpoise correction as E(AB)− E(A)− E(B), where E(AB) is the energy of the

dimer, and E(A) and E(B) are the respective energies of the monomer fragments. Second,

counterpoise corrected energies were calculated as E(AB)− E(A∗)− E(B∗), with E(A∗)

and E(B∗) as the respective energies of the monomers in the dimer basis set. Geometry

relaxation is not accounted for in the definition of S66. The calculations were performed

using the def2-TZVP set with def2-TZVP/C, and in addition also using the def2-TZVPD

set in combination with the aug-cc-pVTZ/C auxiliary basis. Results are presented in

Figure 2.13.

A maximum deviation of 0.30 kcal mol−1 between DLPNO-MP2 and RI-MP2 is ob-

tained for dimer interaction energies using the def2-TZVP basis without counterpoise

correction (Figure 2.13a). With the def2-TZVPD basis, the maximum error increases

to 0.48 kcal mol−1. The mean absolute errors are 0.10 kcal mol−1 with the def2-TZVP

set and 0.14 kcal mol−1 with def2-TZVPD. However, averaging over the entire set is not

necessarily meaningful, as the systems in S66 span a very broad range of sizes: for the

smallest dimer in the test set, (H2O)2, DLPNO-MP2 reproduces more than 99.99 % of

the total RI-MP2 correlation energy with the default truncation thresholds. As the er-

ror relative to the total RI-MP2 correlation energy increases by an order of magnitude

for larger systems, the largest errors are most relevant to assess the performance of the

method. The results on threshold investigation in Section 2.3.1 suggest that the domain

approximation is primarily responsible for the larger errors with the diffuse basis set.

DLPNO-MP2 predicts weaker bonding strengths of the monomers than RI-MP2 in

most cases. The error of the MP2 method itself in the basis set limit has been reported as

0.45 kcal mol−1 (mean unsigned error) or 0.69 kcal mol−1 (root mean square error) for the

S66 set.[155] While this means that even the largest deviations incurred from the local

approximations are within the accuracy margins of the MP2 method, it may be advisable

to use tighter thresholds when high precision is required.
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(a) Deviations of DLPNO-MP2 dimerisation energies from RI-MP2, each calculated without
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(b) Deviations of DLPNO-MP2 dimerisation energies from RI-MP2, each calculated with coun-
terpoise corrections.

Figure 2.13: Errors in dimer interaction energies for the S66 set calculated with the
def2-TZVP and def2-TZVPD basis sets.

With the counterpoise correction used for both DLPNO-MP2 and RI-MP2, the max-

imal error reduces to 0.1 kcal mol−1 (Figure 2.13b). The mean absolute error is below

0.03 kcal mol−1; again, however, the averaged value is of limited meaning in this context.

As before, the binding strength of the monomers is underestimated slightly in most cases.

The closer agreement between the counterpoise-corrected DLPNO-MP2 and RI-MP2

dimerisation energies appears to be the consequence of a more fortuitous error cancel-
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lation. In the dimer basis, the relative error in the correlation energy of the monomers

is close to that of the dimers, so that approximately 99.9 % of the respective RI-MP2

correlation energy is reproduced for both the monomers and the dimers in the larger

examples. Without counterpoise correction, a larger proportion of the RI-MP2 energy is

recovered in the monomer basis than in the dimer basis, leading to a systematic lowering

of the monomer energies relative to the dimer.

2.3.5 Computational efficiency

2.3.5.1 Scaling of the integral transformation routine

Achieving optimal efficiency in a sparse integral transformation requires a compromise.

On the one hand, truncating quantities to the largest possible extent may reduce the

formal operation count and the amount of raw data that needs to be handled. On the

other hand, using the efficient BLAS level 3 operations, in particular matrix multipli-

cation, requires retaining a block-structure of the data. The computational effort for

the integral transformation will be compared with the non-local routine implemented in

ORCA, which is used for RI-MP2.

Figure 2.14 compares the performance of the local and non-local integral transforma-

tion routines for linear alkane chains with the implementation that we used in ref. [43].

Each calculation was performed on one CPU core using the def2-TZVP basis and the as-

sociated auxiliary basis set. With the relatively conservative thresholds used for DLPNO-

MP2, linear scaling sets in beyond about 60 carbon atoms. For smaller systems we ob-

served little discernible overhead for the local transformation compared with the non-local

one.

With default truncation thresholds, the domains quickly reached a constant size,

encompassing PAOs from about 16 atoms per orbital, and the fitting domains contained

auxiliary functions from six atoms per orbital. On the other hand, the maps L (i→ µ)

and L (µ̃′ → ν) contained functions from about 45 atoms (MO to AO) and 70 atoms

(PAO to AO), respectively, thus emphasising the extent of the tails of the localised MOs

and of the PAOs. The extended domains reached constant sizes of 80 atoms in the
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Figure 2.14: Timings for the transformation of RI integrals from (µν|K) to (iµ̃′|K) for
linear alkane chains. The calculations were performed with the def2-TZVP basis on
one CPU core. All geometries were constructed with bond lengths rC−C = 1.55Å and
rC−H = 1.09Å, and with tetrahedral angles of 109.4712◦. Inset: crossover between the
local and non-local transformation routines.

case of Lext (i→ µ̃′) (MOs to PAOs), and 70 atoms for Lext (i→ K) (MOs to auxiliary

functions).

2.3.5.2 Scaling of the DLPNO-MP2 algorithm

Linear alkane chains were used to examine the scaling of the DLPNO-MP2 method with

system size. Figure 2.15 shows wall clock times determined with the def2-TZVP ba-

sis. The efficient RIJCOSX approximation[145] was used to accelerate the Hartree-Fock

calculations. “VeryTightSCF” convergence criteria as documented for ORCA were used

together with a standard model potential guess.

The crossover between wall clock times for canonical RI-MP2 and for DLPNO-MP2

occurs at a chain length of around 25 carbon atoms. More importantly, the DLPNO-

MP2 calculations required consistently less computational effort than the preceding RHF

calculations, even though the latter were accelerated with the RIJCOSX method.

In typical calculations, the three most expensive components are the transformation

of the three-centre electron repulsion integrals; the calculation of the semicanonical am-

plitudes with PNO generation; and the iterative solution of the residual equations in
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Fock calculations for linear alkane chains using the def2-TZVP basis. The HF calculations
were performed with the efficient RIJCOSX approximation. Inset: crossover between
DLPNO-MP2 and RI-MP2.

PNO basis. All of these exhibit an asymptotically linear scaling.

A breakdown of timings for different chain lengths is provided in Table A.7 in the

Appendix. There are further parts of the calculation which do not scale linearly with

system size. These include localisation of the occupied orbitals, calculation of the Fock

and overlap matrices between all redundant PAOs in the system, calculation of the dipole

integrals 〈i|r|µ̃′〉, grid setup for numerical evaluation of the differential overlap integrals,

and the prescreening of orbital pairs. Orbital localisation can be made linear scaling in

principle.[156]

2.3.5.3 Timings for representative systems

Alkane chains represent an ideal case for local correlation methods, as their linear struc-

ture permits a large number of contributions to be screened out. While this makes them

well-suited to examine the asymptotic scaling behaviour of the algorithm, they are not

representative for practical applications.

Table 2.7 contains detailed timings for several molecules, among which sildenafil, van-

comycin and crambin possess a three-dimensional structure. In particular, the calculation
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C150H302 Sildenafil Vancomycin PVC75 Crambin (def2-SVP) Crambin (def2-TZVP)

No. of basis functions 6462 1209 3592 8787 6187 12 075
HF (RIJCOSX) 77 149 6644 68 591 I27 241 II18 461 II70 982
MO localisation 715 14 255 20 868 2160 10 608
DOI 948 34 274 1263 2387 4973
Dipole integrals 178 4.6 75 1371 460 3098
Prescreening 65 0.2 18 172 54 302
Screened out pairs / % 87 7 44 87 72 71
Three-index integral transformation 6801 303 13 995 22 754 177 756 1 601 289
Semicanonical amplitudes 2353 1696 21 139 14 320 54 814 372 503
PNO generation 930 663 7389 4834 4587 59 930
LMP2 iterations 1313 1575 15 250 16 517 24 925 164 886
No. of iterations 8 12 13 22 13 13
LMP2 (total) 13 768 4296 58 510 83 790 268 021 2 223 402

Table 2.7: Detailed timings in seconds for some selected systems. Unless noted otherwise, the calculations were performed with the
def2-TZVP basis on one CPU core. (PVC75: A H–(CH2CHCl)75 –H chain.) Default cutoffs were used in all calculations.
IParallel execution on eight cores.
IIParallel execution on 16 cores.
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for crambin (644 atoms) with the def2-TZVP basis is the most demanding single-point

energy calculation performed in this work.

The time required to calculate the DLPNO-MP2 correlation energy is comparable to

or even below that of the preceding Hartree-Fock calculation (multiplied with the number

of CPU cores where appropriate). Note that the SCF procedure in these calculations was

accelerated with the RIJCOSX approximation. Approximately comparable amounts of

time were typically spent on the three major parts of the algorithm: the three-index

integral transformation; formation of the semicanonical amplitudes together with PNO

generation; and the LMP2 iterations in PNO basis. However, the timing for crambin is

dominated by the computational cost of the RI integral transformation.

Finally, it is worth noting that the three major steps—performing the integral trans-

formation, calculating the semicanonical amplitudes with the PNOs, and performing the

LMP2 iterations—taken together account for over 97 % of the wall clock time. All of

these components were shown to exhibit an asymptotically linear scaling with system

size.

2.3.5.4 Memory requirements

Two major aspects determine the memory requirements of large-scale DLPNO-MP2 cal-

culations, the first of which are various two-index integrals stored in global matrices.

These include the overlap and Fock matrices in redundant PAO basis, the repulsion inte-

grals (K|L) between auxiliary functions, and the dipole integrals 〈i|r|µ̃′〉, which are used

during orbital pair prescreening. These quantities are calculated initially for the entire

system, and local matrices for specific domains are subsequently extracted during the

calculation.

While the number of operations to calculate these matrices scales with up to O (N3),

they did not appear as a major contribution to the overall wall clock times, even for the

largest systems investigated. The O (N2) size of these quantities in memory eventually

becomes a determining factor. This was most apparent for the linear systems, which place

comparably modest requirements otherwise. The maximum amount of memory used by
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the MP2 module during calculations with the def2-TZVP basis was 4.2 GB for C150H302

(6462 basis functions), 8.5 GB for C150H227Cl75 (8787 basis functions), and 16.3 GB for

C300H602 (12 912 basis functions).

Transforming the three-centre electron repulsion integrals is the second step which de-

termines the memory footprint. It is dominant for calculations on large, three-dimensional

systems.

In the first phase of the integral transformation (calculation of the integrals), a matrix

of size N(µ) × N(ν) needs to be stored in memory for each auxiliary function K in a

given shell. The superblock of basis functions µ to expand the occupied molecular or-

bitals is encoded by the sparse map Lext (K → i) ◦ L (i→ µA). For the PAOs, the sparse

map Lext (K → i) ◦ Lext (i→ µ̃′A) ◦ Lext (µ̃′A → νA) provides the superblock of atomic ba-

sis functions ν. Once an index has been transformed to the occupied MO basis, a much

smaller amount of memory is required for the integrals.

In the second phase of the integral transformation (sorting of the already computed

integrals), at least one matrix of size N(K)×N(µ̃′) needs be stored in memory for each

occupied orbital i at a time. The numbers of auxiliary functions K and PAOs µ̃′ are de-

termined by the sparse lists Lext (i→ K) and Lext (i→ µ̃′), respectively. Asymptotically,

the sizes of these matrices would become independent of the molecular size. The routine

uses all available memory up to a user-specified threshold to store the sorted integrals in

memory, which minimises the number of requests for disk access.

In order to perform a DLPNO-MP2 calculation without abortion or performance

penalties due to lack of memory, 2.1 GB were sufficient for vancomycin in def2-TZVP basis

(3593 basis functions), and 6.5 GB for crambin in def2-SVP basis (6187 basis functions).

Even though the memory consumption for crambin in def2-TZVP (12 075 basis functions)

was not monitored at the point of performing this single-point energy calculation, we

estimate it at ca. 25 GB.
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2.4 Unrestricted local MP2 with pair natural orbitals

2.4.1 Møller-Plesset theory with unrestricted orbitals

In the unrestricted Hartree-Fock method (UHF), spin up and spin down orbitals have dif-

ferent spatial components. The UHF energy is represented in the following equation,[128]

EUHF = VNN +
∑
σ=α,β

σ∑
i

hii +
1

2

∑
σ=α,β

∑
τ=α,β

σ∑
i

τ∑
j

(ii|jj)− 1

2

∑
σ=α,β

σ∑
ij

(ij|ij) , (2.65)

with spin orbitals labelled as i, j. A superscript in each summation sign indicates if the

orbitals are of α spin or of β spin. Only real orbitals are considered in this work.

The ground-state Slater determinant is an eigenfunction of the unrestricted Fock

operator:

F̂ =
∑
σ=α,β

σ∑
pq

F σ
pqâ
†
pâq

F σ
pq = hpq +

∑
τ=α,β

τ∑
i

(ii|pq)−
σ∑
i

(ip|iq)
(2.66)

Similar to the spin-restricted case, the MP2 energy in a basis of unrestricted canonical

orbitals is provided in the following equation:[128]

E(2) = −1

2

∑
σ,τ

σ∑
ia

τ∑
jb

(ia|jb)2

εa + εb − εi − εj
+

1

2

∑
σ

σ∑
ijab

(ia|jb) (ib|ja)

εa + εb − εi − εj
(2.67)

In a non-canonical basis of molecular orbitals, the MP2 energy can be calculated via

the Hylleraas functional:[157]

E2 =
∑
ijab

(ia|jb)T ijab +
1

2

∑
ijabc

FcbT
ij
abT

ij
ac −

1

2

∑
ijkab

FkjT
ij
abT

ik
ab (2.68)

For simplicity, the labels i, j, k and a, b, c refer to the respective occupied and virtual

orbitals of both α and β spin. As a consequence of the antisymmetry of a Slater deter-

minant, the amplitudes are bound to the following permutation relation:

T ijab = −T ijba = −T jiab = T jiba (2.69)
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The set of amplitudes that minimises the Hylleraas functional is found by solving the

residual equations Rij
ab = 0, with the residual

Rij
ab = (ia|jb)− (ib|ja) +

∑
c

FacT
ij
cb +

∑
c

T ijacFcb −
∑
k

FikT
kj
ab −

∑
k

FkjT
ik
ab . (2.70)

After the set of equations has been solved, the amplitudes can be used to calculate the

second-order energy:

E(2) =
1

2

∑
ijab

(ia|jb)T ijab (2.71)

2.4.2 Approximations in the unrestricted local MP2 method

Following an unrestricted Hartree-Fock calculation, different sets of orbitals iα and iβ are

obtained for the spin up and spin down electrons. Accordingly, the two orbitals sets are

localised separately. The unoccupied space is represented using projected atomic orbitals:

|µ̃′σ〉 = Nµ̃′σ

[
1−

σ∑
i

|i〉 〈i|

]
|µ〉 (2.72)

Note that the α PAOs µ̃′α are obtained by a projection of the atomic orbitals onto the

space spanned by the virtual α MOs, and the β PAOs likewise by a projection onto the

unoccupied β space.

In consequence, there are four types of pair domains:

1. Domains of α PAOs for pairs of two α MOs: {iαjα} = {iα}α ∪ {jα}α

2. Domains of β PAOs for pairs of two β MOs: {iβjβ} = {iβ}β ∪ {jβ}β

3. Domains of α PAOs for opposite-spin pairs: {iαjβ}α = {iα}α ∪ {jβ}α

4. Domains of β PAOs for opposite-spin pairs: {iαjβ}β = {iα}β ∪ {jβ}β

Because the differential overlap criterion takes into account the properties of the virtual

functions, a domain of α PAOs obtained for a given α MO, {iα}α, is different from the

domain of β PAOs {iα}β for the same α spin MO. Likewise, two different domains {iα}β
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and {iβ}α are obtained for each β MO. However, there is only one fitting domain {iσ}RI

for each spin orbital, as it is determined using the populations of each MO.

RI integrals contain only combinations of orbitals and PAOs with the same spin. The

extended maps, which are used in the integral transformation, need to include PAOs of

both same-spin and opposite-spin molecular orbital pairs:

Lext (iα → µ̃′α) = L (iα → jα) ◦ L (jα → µ̃′α) ∪ L (iα → jβ) ◦ L (jβ → µ̃′α) (2.73)

Lext (iα → K) = L (iα → jα) ◦ L (jα → K) ∪ L (iα → jβ) ◦ L (jβ → K) (2.74)

The preceding examples for α spin apply in an identical manner to β spin. Truncation

of the atomic orbital coefficients during the integral transformation is performed in an

analogous manner to the closed-shell DLPNO-MP2 method.

Pair natural orbitals are constructed similarly to Hansen and co-workers’ unrestricted

local pair natural orbital (UHF-LPNO-CCSD) approach.[158] Semicanonical amplitudes

for same-spin pairs are calculated in a non-redundant virtual basis spanned by the PAOs

in the pair domain {iσjσ}:

T̆ iσjσµ̃σ ν̃σ
= −(iσµ̃σ|jσν̃σ)− (iσν̃σ|jσµ̃σ)

εµ̃σ + εν̃σ − Fiσiσ − Fjσjσ
(2.75)

For opposite-spin pairs, the semicanonical amplitudes are rectangular matrices. The

virtual spaces for spin up and spin down electrons are spanned by PAOs in the domains

{iαjβ}α and {iαjβ}β, respectively:

T̆
iαjβ
µ̃αν̃β

= − (iαµ̃α|jβ ν̃β)

εµ̃α + εν̃β − Fiαiα − Fjβjβ
(2.76)

PNOs for same-spin pairs are calculated through diagonalisation of their virtual pair

density contribution:

D̆iσjσ = T̆iσjσT̆iσjσ† (2.77)

Two sets of PNOs need to be constructed for opposite-spin pairs. They are obtained from
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the respective virtual pair density contributions in α PAO basis,

D̆iαjβ(α) = T̆iαjβT̆iαjβ†, (2.78)

and in β PAO basis:

D̆iαjβ(β) = T̆iαjβ†T̆iαjβ . (2.79)

A significant shortcoming of the unrestricted PNO construction scheme is its inconsis-

tency with the restricted closed-shell approach. Given a set of orbitals for a closed-shell

system without any symmetry breaking, UHF-DLPNO-MP2 produces a different energy

than the RHF-DLPNO-MP2 method. This is an inherent feature of the UHF-based

PNO construction scheme, which cannot be made universally consistent with the RHF

case simply by using a different truncation threshold. All other approximations in the

RHF and UHF variants of DLPNO-MP2 are consistent, though.

To circumvent the difficulties resulting from PNO construction for unrestricted oc-

cupied orbitals, Saitow and co-workers implemented the DLPNO-CCSD method with

a PNO construction scheme derived from n-electron valence state perturbation theory

(NEVPT).[46] This approach requires a set of restricted open-shell reference orbitals.

The doubly occupied and unoccupied orbitals are treated analogously to the inactive

occupied and virtual orbitals in a NEVPT2 calculation based on a CASSCF reference

wave function, while the singly occupied molecular orbitals are treated analogously to the

active space. While this approach to construct PNOs is substantially more complicated

than straightforward unrestricted Møller-Plesset perturbation theory, it produces only

one set of PNOs for each spin-free orbital pair, and it is consistent with the closed-shell

variant of DLPNO-CCSD. Krause and Werner developed a spin-restricted open-shell vari-

ant of PNO-based local MP2.[61] Their method constructs the perturbed wave function

in terms of spin-adapted configurations, and thereby also uses only one set of PNOs per

orbital pair.

Residual equations analogous to Eq. (2.70) need to be solved to determine the ampli-
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tudes. The specific expression for same-spin pairs is

Riσjσ
ãσ b̃σ

=
(
iã
∣∣∣jb̃)− (ib̃∣∣∣jã)+ [εã + εb̃ − Fii − Fjj]T

ij

ãb̃

−
σ∑
k 6=i

Fik

σ∑
c̃d̃

Sãc̃T
kj

c̃d̃
Sd̃b̃ −

σ∑
k 6=j

Fkj

σ∑
c̃d̃

Sãc̃T
ik
c̃d̃
Sd̃b̃ with σ = α, β, (2.80)

and for opposite-spin pairs it is:

R
iαjβ

ãαb̃β
=
(
iã
∣∣∣jb̃)+ [εã + εb̃ − Fii − Fjj]T

ij

ãb̃

−
α∑
k 6=i

Fik

α∑
c̃

β∑
d̃

Sãc̃T
kj

c̃d̃
Sd̃b̃ −

β∑
k 6=j

Fkj

α∑
c̃

β∑
d̃

Sãc̃T
ik
c̃d̃
Sd̃b̃. (2.81)

Unambiguous spin indices have been omitted on the right-hand sides of the equations

for simplicity. There are three sets of linear equations to be solved independently: to

determine the amplitudes for α-α pairs, for β-β pairs, and for α-β pairs. As in the

closed-shell DLPNO-MP2 method, negligible internal Fock matrix elements are dropped

during the residual construction.

Same-spin amplitudes are stored only for iσ > jσ, exploiting their permutational

symmetry Tji = −Tij. A full square matrix is stored for each pair, as this format is most

suited for matrix operations, even though this leads to a redundancy with respect to the

exchange of the virtual indices, T ij
ãb̃

= −T ij
b̃ã
. Opposite-spin pair amplitudes are handled

via their permutationally unique components T iαjβ
ãαb̃β

.

After the amplitudes have been determined, the second-order correlation energy is

calculated via:

E(2) =
∑
σ=α,β

σ∑
i>j

σ∑
ãb̃

(
iã
∣∣∣jb̃)T ij

ãb̃
+

α∑
iã

β∑
jb̃

(
iã
∣∣∣jb̃)T ij

ãb̃
(2.82)

An energy correction for PNO truncation, ∆EPNO, is included similarly as in the closed-

shell method. For this purpose, the difference is taken between the energies calculated

with the semicanonical amplitudes before and after their projection to the truncated PNO

basis.
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Figure 2.16: Structure of the
4-acetamido-TEMPO radical.

The pair-prescreening procedure has been defined in a consistent way with its closed-

shell counterpart. Firstly, an orbital pair is screened out only if the differential overlap of

the spatial components, as defined in Eq. (2.39), is below the threshold TCutDOij. Secondly,

the collinear dipole energy of the pair is calculated:

ε
COL(UHF)
ij = − 4

|Rij|6
∑
µ̃ν̃

|〈i|r|µ̃〉|2 |〈j|r|ν̃〉|2

εµ̃ + εν̃ − Fii − Fjj
(2.83)

Since εCOL(UHF)
ij is related by a factor of 1

4
to its closed-shell counterpart in Eq. (2.40), a

spin orbital pair is screened out only if
∣∣∣εCOL(UHF)
ij

∣∣∣ < 1
4
TCutPre.

All orbital pairs that have been excluded from the subsequent MP2 calculations are

accounted for with the contribution

ε
DIP(UHF)
ij = −

∑
µ̃iν̃j

(
M ij

µ̃iν̃j

)2

εµ̃i + εν̃j − Fii − Fjj
. (2.84)

It is related to the expression for spatial orbitals in Eq. (2.37) by a factor of 1
4
.

2.4.3 Thresholds and performance

With the exception of the PNO truncation, all other approximations in the UHF-DLPNO-

MP2 method are consistent with its RHF counterpart, and therefore the associated

thresholds are left unchanged. The PNO truncation threshold is investigated in this

section.

The influence of TCutPNO was examined for the 4-acetamido-TEMPO radical, which is

depicted in Figure 2.16. All other truncation thresholds were set to zero. The calculations
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EC(αα)/Eh EC(ββ)/Eh EC(αβ)/Eh EC(total)/Eh

−0.333 983 −0.330 999 −2.025 985 −2.690 968

(a) RI-MP2 correlation energy and its spin components.

TCutPNO % of EC(RI-MP2)

αα ββ αβ total

10−7 99.55 99.53 99.71 99.67
10−8 99.74 99.73 99.87 99.84
10−9 99.86 99.86 99.95 99.92
10−10 99.94 99.93 99.98 99.97

(b) Percentages of the RI-MP2 correlation energy recovered with different pair natural orbital
truncation thresholds. The energy correction for PNO truncation ∆EPNO has been included.

TCutPNO PNOs (αα) PNOs (ββ) α-PNOs (αβ) β-PNOs (αβ)

10−7 11.3 11.7 10.0 10.0
10−8 22.1 22.7 20.5 20.5
10−9 40.7 41.7 38.7 38.7
10−10 70.1 71.6 67.6 67.6

(c) Average number of PNOs per pair.

Table 2.8: Pair natural orbital truncation examined for the 4-acetamido-TEMPO radical
(doublet state) using the def2-TZVP basis. All other truncation thresholds were set to
zero.

were performed with the def2-TZVP basis, and the core orbitals were frozen.

Table 2.8b shows the recovered percentages of the total RI-MP2 correlation energy,

and of its contributions by same-spin and opposite-spin pairs. Despite including the

PNO truncation correction ∆EPNO, a smaller fraction of the total correlation energy is

recovered than would be expected with RHF-DLPNO-MP2 using the same threshold. A

second observation is that a smaller percentage of the energy is recovered for same-spin

pairs than for opposite-spin pairs. However, the former contribute a much smaller part

of the total energy than the latter. Counterintuitively, similar numbers of PNOs are

obtained on average for same-spin and opposite-spin pairs with the same TCutPNO, as

shown in Table 2.8c.

For a direct comparison between the RHF and UHF variants of DLPNO-MP2, the

calculations were repeated with the cation of 4-acetamido-TEMPO. The behaviour of
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EC(αα/ββ)/Eh EC(αβ)/Eh EC(total)/Eh

−0.331 442 −2.032 541 −2.695 424

(a) RI-MP2 correlation energy and its spin components.

TCutPNO % of EC(RI-MP2)

αα/ββ αβ total RHF-DLPNO-MP2

10−7 99.54 99.72 99.68 99.90
10−8 99.74 99.88 99.84 99.96
10−9 99.86 99.95 99.93 99.99
10−10 99.94 99.98 99.97 100.00

(b) Percentages of the RI-MP2 correlation energy recovered with different pair natural orbital
truncation thresholds. The energy correction for PNO truncation ∆EPNO has been included.

TCutPNO UHF-DLPNO-MP2 RHF-DLPNO-MP2

PNOs (αα/ββ) PNOs (αβ) PNOs

10−7 11.7 10.3 23.6
10−8 22.9 21.1 44.2
10−9 42.2 39.9 77.8
10−10 72.8 70.0 127.7

(c) Average number of PNOs per pair.

Table 2.9: Pair natural orbital truncation examined for the closed-shell 4-acetamido-
TEMPO cation using the def2-TZVP basis. All other truncation thresholds were set to
zero.

UHF-DLPNO-MP2 for the doublet radical in Table 2.8 and for the singlet cation in Ta-

ble 2.9 is very similar. In a calculation with a UHF reference, TCutPNO needs to scaled with

a factor of 0.1 to obtain a comparable number of PNOs per pair as with an RHF reference

(Table 2.9b). Nevertheless, the percentage of the total correlation energy recovered with

the tighter threshold is still somewhat smaller than in the RHF case.

A comparison of the RHF and UHF variants of DLPNO-MP2 for the closed-shell

molecule sildenafil is presented in Table 2.11. In these calculations, the differential overlap

threshold for domain selection TCutDO was set to its respective “LoosePNO”, “NormalPNO”

and “TightPNO” values, and the influence of TCutPNO on the correlation energy and the

wall clock time was examined. Default values were used for all remaining cutoffs. As

an additional modification, calculations were performed not only with identical values of
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Threshold LoosePNO NormalPNO TightPNO

TCutPNO 1× 10−8 1× 10−9 1× 10−10

TCutDO 2× 10−2 1× 10−2 5× 10−3

Table 2.10: Truncation thresholds in the UHF-DLPNO-MP2 method.

TCutPNO for all pairs, but also with a tighter threshold for same-spin pairs to recover their

energy more accurately.

As previously, the calculations confirm that the TCutPNO settings used in RHF-DLPNO-

MP2 are not adequate for the UHF variant, and even scaling them with a factor of 0.1

still leads to somewhat less accurate energies. This finding is qualitatively consistent with

the observations of Hansen and co-workers for the UHF-LPNO-CCSD method.[158] The

computational expense for the entire UHF-DLPNO-MP2 calculation with this tighter

cutoff is by a factor of 3 to 5 larger than that for RHF-DLPNO-MP2. Choosing a tighter

threshold for the same-spin pairs than for opposite-spin pairs does not lead to a worth-

while improvement in the relation between accuracy and performance; therefore, TCutPNO

is assigned the same value for all valence pairs. In this context, it is worth mentioning that

spin component-scaled MP2[116] and related schemes reduce the same-spin contribution

and increase the opposite-spin contribution with empirical parameters.

The chosen default settings are summarised in Table 2.10. As in the case of RHF-

DLPNO-MP2, the threshold for pairs with one or two core orbitals is obtained by scaling

TCutPNO with a factor of 0.01.
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TCutPNO % of EC(RI-MP2) tDLPNO−MP2 / s

αα/ββ αβ αα/ββ αβ total

10−7 10−7 99.43 99.56 99.53 2152
10−8 10−7 99.65 99.56 99.59 2343
10−8 10−8 99.65 99.74 99.71 2595
10−9 10−8 99.79 99.74 99.75 2898

(a) UHF-DLPNO-MP2 calculations with TCutDO = 2× 10−2 to determine a TCutPNO value for
“LoosePNO” settings.

TCutPNO % of EC(RI-MP2) tDLPNO−MP2 / s

αα/ββ αβ αα/ββ αβ total

10−8 10−8 99.70 99.81 99.78 3662
10−9 10−8 99.84 99.81 99.82 4214
10−9 10−9 99.84 99.89 99.88 4541
10−10 10−9 99.91 99.89 99.90 5531

(b) UHF-DLPNO-MP2 calculations with TCutDO = 1× 10−2 to determine a TCutPNO value for
“NormalPNO” settings.

TCutPNO % of EC(RI-MP2) tDLPNO−MP2 / s

αα/ββ αβ αα/ββ αβ total

10−9 10−9 99.85 99.91 99.90 6461
10−10 10−9 99.93 99.91 99.92 7610
10−10 10−10 99.93 99.95 99.95 9434
10−11 10−10 99.97 99.95 99.96 11 005

(c) UHF-DLPNO-MP2 calculations with TCutDO = 5× 10−3 to determine a TCutPNO value for
“TightPNO” settings.

TCutPNO TCutDO % of EC(RI-MP2) tDLPNO−MP2 / s

LoosePNO 10−7 2× 10−2 99.77 590
NormalPNO 10−8 1× 10−2 99.92 1070
TightPNO 10−9 5× 10−3 99.97 3396

(d) Closed-shell calculations with RHF-DLPNO-MP2 using its default settings.

Table 2.11: Percentages of the correlation energy recovered with UHF-DLPNO-MP2 for
sildenafil (closed-shell), and the total wall clock times for the MP2 module. The calcu-
lations were performed with the def2-TZVP basis using four parallel processes. Default
values were used for the remaining thresholds. The domain cutoff TCutDO was set as
specified in the descriptions.
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Chapter 3

Analytical gradient for domain-based

local pair natural orbital Møller-Plesset

perturbation theory

3.1 Theory

3.1.1 Introductory aspects of derivative theory

3.1.1.1 The Lagrangian method for derivatives

As a convenient, powerful and general tool, the Lagrangian approach is well-established

in the theory of analytical derivatives for quantum chemical methods. However, literature

that can act as an accessible introduction is scarce, and often limited to lecture notes or

proceedings such as in ref. [88]. Therefore, a brief introduction will be provided in this

section.

Consider an energy expression E that is subject to external variables x, and is pa-

rameterised using a set of variables t:

E = E(x, t(x)) (3.1)

x represents external variables entering the molecular Hamiltonian, such as nuclear coor-
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dinates or an external field. Parameters may include, for example, coefficients of molec-

ular orbitals, or excitation amplitudes in the case of a correlated method; for the sake of

simplicity, all of them are represented as t in this argument. Differentiation of the energy

expression yields by the chain rule:

dE

dx
=
∂E

∂x
+
∂E

∂t

dt

dx
(3.2)

In fully variational methods the energy expression is stationary with respect to all

parameters, ∂E
∂t

= 0, which permits a relatively straightforward evaluation of derivatives.

If the method builds upon an atomic orbital basis with the one-electron integrals hµν ,

the two-electron integrals (µν|ηλ) and the overlap integrals Sµν , the derivative expression

becomes:

dE

dx
=
∂VNN
∂x

+
∑
µν

Dµν
∂hµν
∂x

+
∑
µνηλ

Γηλµν
∂ (µν|ηλ)

∂x
+
∑
µν

Wµν
∂Sµν
∂x

(3.3)

D is the reduced one-particle density matrix. Similarly, Γ is the two-particle density

tensor, and W is the energy-weighted density matrix:

Dµν =
∂E

∂hµν
(3.4)

Γηλµν =
∂E

∂ (µν|ηλ)
(3.5)

Wµν =
∂E

∂Sµν
(3.6)

VNN represents the internuclear repulsion.

Many correlated methods, for example Møller-Plesset perturbation theory or coupled

cluster, are not variational. A naïve implementation of derivatives would need to calcu-

late the response dt
dx

in Eq. (3.2) for each perturbation. In practice, this is not necessary

to obtain first derivatives. Handy and Schaefer developed the Z-vector method: by identi-

fying a set of suitable intermediates, they showed that it is sufficient to solve only one set

of coupled-perturbed self-consistent field (CP-SCF) equations instead of calculating the
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response of the molecular orbitals for each perturbation.[159] Similarly, it was shown for

coupled cluster theory that the response of the amplitudes does not need to be determined

to calculate first derivatives.[160–162]

Rice and Amos realised that integral derivatives in atomic orbital basis never need to

be transformed or stored to calculate an analytical gradient.[163] The Lagrangian method

was developed by Jørgensen and Helgaker, who constructed a formalism that conveniently

and methodically incorporates the aforementioned advantages.[164, 165]

Suppose that the parameters t in Eq. (3.1) are determined entirely through a set of

constraints gn:

gn(x, t(x)) = 0 (3.7)

A Lagrangian function can thus be constructed for the energy:

L(x, t(x),λ(x)) = E(x, t(x)) +
∑
n

λn(x)gn(x, t(x)) (3.8)

Since each constraint gn(x) is zero, its total derivative with respect to the external pa-

rameters vanishes, dgn
dx

= 0. Therefore, the total derivative of the Lagrangian equals that

of the energy:
dL
dx

=
dE

dx
(3.9)

The Lagrangian is made stationary with respect to the parameters t, which leads to

a set of linear equations to determine the Lagrange multipliers λn:

∂L
∂t

=
∂E

∂t
+
∑
n

λn
∂gn
∂t

= 0 (3.10)

As a consequence of the stationarity, the total derivative of the Lagrangian with respect

to the external parameters equals the partial derivative:

dL
dx

=
∂L
∂x

+
∂L
∂t

dt

dx
+
∂L
∂λ

dλ

dx
=
∂L
∂x

(3.11)

Combining Eq. (3.9) and Eq. (3.11) shows that the total derivative of the energy equals
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the partial derivative of the Lagrangian:

dE

dx
=
∂L
∂x

(3.12)

In order to obtain the derivatives of a nonvariational method, it is thus necessary to

construct a Lagrangian with a sufficient set of constraints for all parameters first. Second,

equations for the Lagrange multipliers need to be derived by ensuring stationarity with

respect to all parameters (Eq. (3.10)). Finally, it becomes possible to calculate derivatives

of the energy through an expression equivalent to Eq. (3.3) by taking the partial derivative

of the Lagrangian (Eq. (3.12)). The quantity

Dµν =
∂L
∂hµν

(3.13)

assumes the character of a response density, which is the counterpart of the reduced

one-particle density matrix in variational methods.

3.1.1.2 Orthogonal parameterisation of molecular orbitals

The setup of a Lagrangian is facilitated by choosing a convenient parameterisation for the

molecular orbitals. Molecular orbital coefficients C(0)
µp , which solve the self-consistent field

equations for the unperturbed problem, do not represent an orthogonal set of functions if

the basis functions change, e.g. following a displacement of the nuclei. One possibility is to

parameterise the perturbed coefficients through a general matrix V, so that C = C(0)V.

This parameterisation requires an additional orthogonality constraint C†SC = 1 in the

Lagrangian.

In this work we follow a different approach by Helgaker and Almlöf.[166] The unper-

turbed coefficients C(0) are first subject to symmetric orthogonalisation to produce a set

of orthonormal molecular orbitals (OMO):

|OMOi〉 =
∑
µ

∑
j

C
(0)
µj

(
S−

1
2

)
ji
|µ〉 (3.14)
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The matrix S contains the overlap of the unperturbed orbitals in the perturbed basis:

S = C(0)†SC(0) (3.15)

The actual perturbed molecular orbitals are obtained from the OMOs via a unitary

transformation:

|i〉 =
∑
j

Uji |j〉 (3.16)

In order to parameterise the unitary matrix U, the exponential of an antihermitian matrix

κ is used:

U = exp (κ) with κ† = −κ (3.17)

A full parameterisation of molecular orbitals is thus given as follows:

C = C(0)S−
1
2 exp (κ) with κ† = −κ (3.18)

Derivatives of the molecular orbital coefficients with respect to the parameters κ are

given by the expression
∂Cµr
∂κpq

∣∣∣∣
κ=0

= Cµpδqr − Cµqδpr. (3.19)

The only independent parameters are in the upper triangle of κ.

3.1.1.3 Closed-shell coupled-perturbed Hartree-Fock equations

Each self-consistent RHF solution satisfies Brillouin’s theorem:

Fia = 0 (3.20)

For a set of orthonormal orbitals, this is a necessary and sufficient condition. Differen-

tiating it with respect to an arbitrary external perturbation x leads to equations that

determine the first-order response of the molecular orbital parameters:

∂Fia
∂x

+
∑
p<q

∂Fia
∂κpq

dκpq
dx

= 0 (3.21)
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The derivative with respect to the rotation parameters κ is taken using Eq. (3.19).

While the Brillouin condition is invariant to first order with respect to purely occupied

or virtual rotations,
∂Fia
∂κjk

=
∂Fia
∂κbc

= 0, (3.22)

stationarity with respect to the mixing of occupied and virtual orbitals leads to the

coupled-perturbed Hartree-Fock equations,[167, 168] which are expressed in terms of the

exponential parameters κ below:

(εa − εi)κ(1)
ia +

∑
jb

Aia,jbκ
(1)
jb = F (1)

ia (3.23)

It was assumed that the unperturbed orbitals are canonical. F is the Fock matrix cal-

culated using the unperturbed molecular orbital coefficients together with the perturbed

AO basis integrals. The derivative dκ
dx

was replaced with the first-order response κ(1), and

∂F
∂x

with F (1). Apq,rs is the Fock response tensor:

Apq,rs = 4 (pq|rs)− (pr|qs)− (ps|qr) (3.24)

If a general matrix V is used to parameterise the orbitals C = C(0)V instead of the

matrix exponential in Eq. (3.18), then the relation between the respective first-order

response expressions is given by:

V(1) = κ(1) − 1

2
S(1) (3.25)

Eq. (3.23) determines the rotation parameters κ(1)
ia between occupied and virtual or-

bitals. The diagonal elements are fixed by definition, since κ is antihermitian:

κ(1)
pp = 0 (3.26)

This leaves the off-diagonal occupied and virtual rotation parameters κ(1)
i 6=j and κ

(1)
a6=b un-

defined. Since the Hartree-Fock energy is invariant to unitary transformations in the
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occupied or virtual orbital subspaces, these may be chosen arbitrarily.

A stronger constraint could be imposed by enforcing that the perturbed orbitals re-

main canonical, thus leaving the perturbed Fock matrix in a diagonal shape:

Fpq = 0 p 6= q (3.27)

Determining the response of this equation as before leads to additional expressions for

the occupied and virtual orbital rotation coefficients:

κ
(1)
ij =

F (1)
ij −

∑
kcAij,kcκ

(1)
kc

εj − εi
i < j (3.28)

κ
(1)
ab =

F (1)
ab −

∑
kcAab,kcκ

(1)
kc

εb − εa
a < b (3.29)

Under the condition that the perturbed orbitals remain canonical, the coupled-perturbed

Hartree-Fock equations become singular in the presence of degenerate orbitals εi = εj or

εa = εb. In practice, it is therefore preferable to avoid this requirement.

3.1.1.4 Construction of a Lagrangian for canonical MP2

In their early contribution, Pople and co-workers developed an approach to calculate

the MP2 gradient through direct differentiation of the energy in a basis of canonical or-

bitals.[169] This requires the coupled-perturbed self-consistent field (CP-SCF) equations

to be solved separately for each perturbation, in the case of the gradient 3N times if the

system contains N nuclei. As shown by Handy and Schaefer, this is unnecessary: only a

single set of CP-SCF-type equations needs to be solved if the gradient is calculated via

the Z-vector approach.[159]

Jørgensen and Helgaker introduced the Lagrangian method in the context of the

canonical MP2 energy.[164] Following the first variant of their approach loosely, the La-

grangian for the RHF formulation of MP2 with orbitals parameterised as in Eq. (3.18)
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and nuclei at positions R becomes:

L(R,κ, ε, z) = ERHF +
∑
ijab

[2 (ia|jb)− (ib|ja)] (ia|jb)
εi + εj − εa − εb

+
∑
p≥q

zpq (Fpq − εpδpq) (3.30)

The constraint ensures that the perturbed orbitals remain canonical, and the orbital

energies are introduced as an additional set of parameters. As pointed out by Handy

and co-workers, a strictly canonical coupled-perturbed self-consistent field approach is

unstable due to singularities caused by degenerate orbitals.[170] This was elaborated

upon in Section 3.1.1.3.

Since derivatives of degenerate eigenvalues (and hence of orbital energies) are not

generally well-defined, Helgaker and co-workers introduced an improved Lagrangian for

MP2.[165] The constraint on the orbitals is made weaker, such that they are only re-

quired to satisfy Brillouin’s theorem. This, in turn, requires an expression for the MP2

energy that is invariant to unitary transformations among the occupied or virtual orbital

subspaces. The Hylleraas functional, which was discussed earlier, is particularly suited

for this purpose.[9] A Lagrangian for the closed-shell energy may be written down in the

following form, which is somewhat different from the original expression in ref. [165]:

L(R,κ, z,T) = ERHF + EMP2
2 +

∑
ia

ziaFia (3.31)

EMP2
2 =

∑
i≥j

∑
ab

2 (ia|jb) T̃ ijab +
∑
ab

FabDab −
∑
ij

FijDij (3.32)

Dab =
∑
i≥j

∑
c

[
T ijacT̃

ij
bc + T ijcaT̃

ij
cb

]
(3.33)

Dij =
∑
k

(1 + δik)
∑
ab

T kjab T̃
ik
ab (3.34)

Since the Lagrangian functional L contains the Hylleraas functional, it is stationary

with respect to the amplitudes T ijab by construction. Derivatives of L with respect to

occupied and virtual orbital rotation parameters κij and κab vanish as a consequence of

the orbital invariance. The remaining Lagrange multipliers zia are determined through

the stationarity requirement for the Lagrangian with respect to the parameters κia.
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3.1.2 Lagrangian approach for the DLPNO-MP2 gradient

As the starting point in the derivation of the analytical gradient for DLPNO-MP2, an

appropriate Lagrangian needs to be defined, which contains all necessary constraints for

the approximations involved. The molecular orbitals are parameterised through symmet-

ric orthogonalisation of the unperturbed coefficients, followed by a rotation with a matrix

exponential as defined in Eq. (3.18).

In the formulation of the gradient, the truncated PNOs ãij will be used, and in addition

also the discarded set of PNOs ã′ij for each pair. We refer to this set of functions as the

complementary PNOs. The two sets of retained and discarded PNOs taken together

correspond to untruncated PNOs ã′′ij:

{ ã′′ij } = { ãij } ∪ { ã′ij } (3.35)

The full set of PNOs is represented in a basis of redundant PAOs through the coeffi-

cients d′′ijµ̃′ã′′ :

|ã′′ij〉 =
∑
µ̃′

d′′ijµ̃′ã′′ |µ̃
′〉 (3.36)

As a consequence of the PNO truncation, the matrix d′′ij can be grouped into columns

containing the coefficients of the retained PNOs dij, and the remaining columns d′ij

representing the complementary PNOs:

(
d′′ij

)
=

(
dij d′ij

)
(3.37)

There is no obvious closed-form function to express PNOs as a function of the molec-

ular orbitals. Therefore, we introduce an exponential parameterisation of the coefficients

for the untruncated PNOs:

d′′ij = d′′ij(0)S−
1
2 exp

(
θij
)

with θij = −θij† (3.38)

The matrix θij is antisymmetric and specific to each orbital pair. S represents the overlap
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matrix of the unperturbed PNO coefficients d′′ij(0) in a basis of perturbed PAOs:

Sã′′b̃′′ =
∑
µ̃′ν̃′

d
′′ij(0)
µ̃′ã′′ Sµ̃′ν̃′d

′′ij(0)

ν̃′b̃′′
(3.39)

Evidently, the idea for the parameterisation of the PNOs in Eq. (3.38) is closely related

to the MO parameterisation in Eq. (3.18). However, further explanation is needed, as the

redundant PAOs are linearly dependent. The set of non-redundant PAOs—which span

the same space as the untruncated PNOs—is determined through diagonalisation of the

matrix Sµ̃′ν̃′ , where the redundant PAOs µ̃′, ν̃ ′ are restricted to the pair domain {ij}. The

eigenvectors of Sµ̃′ν̃′ with non-zero associated eigenvalues represent an orthonormal set of

non-redundant PAOs in the space spanned by the redundant PAO basis. By construction,

the overlap matrix S(0)

ã′′b̃′′
for the unperturbed system is of full rank. Provided that the

eigenvalues of the matrix Sã′′b̃′′ evolve continuously upon an infinitesimal perturbation, the

rank of Sã′′b̃′′ does not change, and
∑

µ̃′ d
′′ij(0)
µ̃′ã′′ |µ̃′〉 thus represents a linearly independent

set of functions for the pair domain in the perturbed system. Discontinuities may occur

after a reassignment of the domain {ij}, but this requires a finite perturbation, which does

not concern this argument. This linearly independent set of functions is then subjected

to symmetric orthogonalisation, and an orthogonal transformation to the final set of

perturbed PNOs.

Orbital prescreening employs small domains of PAOs for each orbital. The corre-

sponding matrix πiµ̃′ν̃ transforming redundant to non-redundant PAOs is parameterised

as follows:

πi = πi(0)S−
1
2 with Sµ̃ν̃ =

∑
η̃′λ̃′

π
i(0)
η̃′µ̃ Sη̃′λ̃′π

i(0)

λ̃′ν̃
(3.40)

It differs from the PNO parameterisation in two regards. Firstly, non-redundant PAOs

are determined for the domain of each orbital i individually, whereas pair domains are

not used in prescreening. Secondly, there is no further rotation of the orthogonalised

functions, since the entire non-redundant PAO space of each orbital domain is used to

calculate the pair energy contribution.

The function presented in Eq. (3.41) contains the complete Lagrangian for DLPNO-
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MP2 including all of its energy contributions. Its individual components will be explained

one-by-one in the remainder of this section.

L
(
R,κ,θij,Tij, “Tij, tij, z, zLoc,vij,wij

)
= ERHF + EDLPNO

2 + ∆EPNO + ∆EPre
2

+
∑
ia

ziaFia +
∑
i<j

zLocij sij +
∑
i≥j

∑
ãb̃′

vij
ãb̃′
D̆ij

ãb̃′
+
∑
ã′′b̃′′

wij
ã′′b̃′′

R̆ij

ã′′b̃′′

 (3.41)

z, zLoc, vij and wij are Lagrange multipliers for a total of four different constraints.

The closed-shell Hartree-Fock energy function ERHF (Eq. (2.1)) is included as part of the

total energy.

EDLPNO
2 is the Hylleraas functional in PNO basis representing the DLPNO-MP2 en-

ergy. It is a special case of Eq. (2.19) for pair natural orbitals:

EDLPNO
2 =

∑
i≥j

∑
ãb̃

[
2
(
iã
∣∣∣jb̃) T̃ ij

ãb̃
+ Fãb̃D

ij

ãb̃

]
−
∑
ij

FijDij (3.42)

Dij

ãb̃
and Dij represent the virtual pair contribution and the occupied contribution to the

unrelaxed density, respectively:

Dij

ãb̃
=
∑
c̃

[
T ijãc̃T̃

ij

b̃c̃
+ T ijc̃ãT̃

ij

c̃b̃

]
(3.43)

Dij =
∑
k

(1 + δik)
∑
ãb̃

∑
c̃d̃

T jk
ãb̃
Sb̃c̃T̃

ki
c̃d̃
Sd̃ã (3.44)

Pair natural orbitals ã and b̃ in Eq. (3.44) belong to pair kj, whereas c̃ and d̃ belong to

pair ik. Note that all PNOs of the same orbital pair are orthogonal. Importantly, the

functional is invariant with respect to orthogonal transformations among PNOs belonging

to the same orbital pair.

Unlike the canonical MP2 energy in its orbital-invariant formulation, the DLPNO-

MP2 energy depends on the specific choice of localised orbitals. This mandates an ad-

ditional constraint ensuring that the perturbed occupied orbitals satisfy the appropriate

localisation criterion.[89, 90] In this work we use Foster-Boys orbitals,[132, 133] which
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maximise the localisation sum
∑

i 〈i | r | i〉
2. The second constraint is thus obtained by

requiring that the localisation sum is stationary with respect to orthogonal transforma-

tions among occupied orbitals:

sij = rij
[
rii − rjj

]
= 0 with rpq = 〈p|r|q〉 (3.45)

Its associated Lagrange multipliers are zLoc
ij . The set of constraints actually implemented

in the code is slightly more complicated:

1. Separation of valence and core orbitals needs to be ensured via a constraint Fmi = 0,

where m represents core orbitals and i valence orbitals. This is not only necessary

in frozen core calculations, but also if all electrons are correlated, as different PNO

cutoffs apply to both sets of orbitals.

2. The constraint sij = 0 needs to be satisfied for the valence orbitals i, j.

3. If all electrons are correlated, the constraint smn = 0 needs to be satisfied for the

core orbitals m,n, as the valence and core orbitals are localised separately. This

condition is not needed for frozen core calculations.

For simplicity, the equations presented in this document will be derived with the con-

straint in Eq. (3.45), however, the actual implementation makes use of the three conditions

explained above.

A further set of constraints is needed for the additional variables that were introduced

to parameterise the pair natural orbitals. The subset of retained PNOs is selected through

the eigenvalues of the semicanonical virtual pair density matrix D̆ij (see Eq. (2.31)).

However, an eigenvalue constraint should not be used, as the derivative of degenerate

eigenvalues is not well-defined in general. Instead, we introduce a block-diagonality con-

straint for the semicanonical density: D̆ij

ãb̃′
= 0. It is analogous to the Brillouin condition

for the orbitals, and it ensures that the two eigenvector subspaces of retained and dis-

carded PNOs do not mix upon a perturbation. The associated pair-specific Lagrange

multipliers are vij
ãb̃′
. As the Hylleraas functional in PNO basis (Eq. (3.42)) is invariant to
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orthogonal transformations within the subspace of retained PNOs, the block-diagonality

constraint is both necessary and sufficient.

Semicanonical amplitudes T̆ij are introduced as an additional set of parameters via

the semicanonical density in the PNO constraint. They minimise the Hylleraas functional

ESC
2 =

∑
i≥j

2
∑
ã′′b̃′′

(
iã′′
∣∣∣jb̃′′) ˜̆

T ij
ã′′b̃′′

+
∑
ã′′b̃′′

Fã′′b̃′′D̆
ij

ã′′b̃′′
− (Fii + Fjj)

∑
ã′′b̃′

T̆ ij
ã′′b̃′′

˜̆
T ij
ã′′b̃′′

 , (3.46)

and therefore the perturbed T̆ij need to satisfy the semicanonical residual equation as

the fourth constraint, with associated Lagrange multipliers wij:

R̆ij

ãb̃
=
(
iã′′
∣∣∣jb̃′′)+

∑
c̃

[
Fã′′c̃′′T̆

ij

c̃′′b̃′′
+ T̆ ijã′′c̃′′Fc̃′′b̃′′

]
− (Fii + Fjj) T̆

ij

ã′′b̃′′
= 0 (3.47)

We found that the equations to determine the Lagrange multipliers become redundant

if the amplitudes T̆ij are used as parameters in the Lagrangian. This is resolved through

a reparameterisation of the amplitudes in terms of the variables “Tij:

T̆ij = exp
(
−θij

)
“Tij exp

(
θij
)

(3.48)

To account for the energy error caused by PNO truncation, the contribution ∆EPNO

is included in the Lagrangian, as defined in Eq. (2.34):

∆EPNO =
∑
i≥j

∑
ã′′b̃′′

(
iã′′
∣∣∣jb̃′′) ˜̆

T ij
ã′′b̃′′
−
∑
ãb̃

(
iã
∣∣∣jb̃) ˜̆

T ij
ãb̃

 (3.49)

The first term represents the semicanonical correlation energy in the untruncated PNO

space, and it is therefore invariant to any PNO rotations. In the second term, the energy

contribution is obtained by projecting the semicanonical amplitudes to the truncated

PNO basis. It is invariant to orthogonal transformations among the retained PNOs.

The expression to estimate the energy of screened-out pairs in Eq. (2.37) uses pseudo-

canonical non-redundant PAOs, which were constructed for prescreening domains. To be

included as part of the Lagrangian, the energy is reformulated in terms of a Hylleraas
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functional, which is invariant with respect to orthogonal transformations among the non-

redundant PAOs:

∆EPre
2 =

∑
i>j

1S(ij)

[
8
∑
µ̃ν̃

M ij
µ̃ν̃t

ij
µ̃ν̃ +

∑
µ̃′ν̃′

Fµ̃′ν̃′D
v(Pre)
µ̃′ν̃′ −

∑
ij

FijD
o(Pre)
ij

]
(3.50)

The indicator function 1S has a value of 1 if the pair ij was screened out, and 0 other-

wise. M ij
µ̃ν̃ is the dipole approximation for the two-electron integrals (iµ̃|jν̃) as defined

in Eq. (2.38). The functional includes the virtual contribution Dv(Pre)
µ̃′ν̃′ and the occupied

contribution Do(Pre)
ij to the unrelaxed density matrix:

D
v(Pre)
µ̃′ν̃′ = 4

∑
ij

1S(ij)
∑
η̃λ̃ρ̃

πiµ̃′η̃t
ij

η̃λ̃
tij
ρ̃λ̃
πiν̃′ρ̃ (3.51)

D
o(Pre)
ij = 4δij

∑
k

1S(ik)
∑
µ̃ν̃

(
tikµ̃ν̃
)2 (3.52)

The amplitudes tijµ̃ν̃ have been introduced in the Hylleraas functional for prescreening as

a new set of parameters.

To summarise, the independent parameters in the Lagrangian L are the MO rota-

tion coefficients κpq, the PNO rotation coefficients θij
ã′′b̃′′

, the PNO-basis amplitudes T ij
ãb̃
,

the variables “T ij
ã′′b̃′′

to parameterise the semicanonical amplitudes, and the amplitudes

tijµ̃ν̃ to estimate the energy contribution of screened-out pairs. zia, zLoc
ij , vij

ãb̃′
and wij

ã′′b̃′′

are Lagrange multipliers. As will be illustrated below, all of the energy contributions

ERHF, EDLPNO
2 , ∆EPNO and ∆EPre

2 have well-defined values if the four constraints in the

Lagrangian are satisfied:

1. The Hartree-Fock energy ERHF is constant subject to all orbital parameter varia-

tions δκ that satisfy the Brillouin condition Fia = 0.

2. The value of the DLPNO-MP2 energy EDLPNO
2 depends, firstly, on the localised

orbitals, which are fully constrained through the Brillouin and the localisation con-

ditions. Secondly, it depends on the choice of PNOs through θij, which is subject to

the block-diagonality condition for the semicanonical density matrix. Thirdly, the
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amplitudes T ij
ãb̃

appear only in this functional. Thus, L and EDLPNO
2 are minimised

by identical sets of parameters.

3. The PNO correction ∆EPNO depends, firstly, on the choice of occupied molecular

orbitals, which are fully constrained. Secondly, it depends on the PNOs and on

the semicanonical amplitudes, both of which are subject to the appropriate condi-

tions. Therefore, the value of ∆EPNO is constant subject to permissible parameter

variations δκ, δθij and δ “Tij.

4. The value of the prescreening correction ∆EPre
2 is determined by the fully con-

strained localised MOs, and by the amplitudes tij, which appear only in the Hyller-

aas functional for prescreening. Therefore, L and ∆EPre
2 are minimised by identical

parameters.

3.1.3 Expressions for the nuclear gradient

As per Eq. (3.12), an expression for the DLPNO-MP2 gradient is obtained after taking

the partial derivative of the Lagrangian with respect to external perturbations. The

quantities that depend on nuclear coordinates explicitly are primarily the integrals in AO

basis, thus leading to the following equation for the derivative Ex:

Ex =V x
NN +

∑
µν

[
P SCF
µν +D′′µν

]
hxµν +

∑
µν

WµνS
x
µν +

3∑
n=1

∑
µν

Qn
µν 〈µ|rn|ν〉

x

+
∑
µνηλ

[
1

2
P SCF
µν P SCF

ηλ − 1

4
P SCF
µη P SCF

νλ + P SCF
µν D′′ηλ −

1

2
P SCF
µη D′′νλ

]
(µν|ηλ)x

+
∑
K

∑
µν

ΓKµν (µν|K)x +
∑
KL

γKL (K|L)x

(3.53)

V x
NN is the derivative of the nuclear repulsion energy, and, likewise, the superscript x

indicates the corresponding derivatives of the integrals in AO basis.

The total one-electron density matrix is a sum of the density of the reference wave

function,

P SCF
µν = 2

∑
i

CµiCνi, (3.54)
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and the orbital-relaxed MP2 difference density

D′′µν = D′µν +
1

2

[∑
ia

CµiziaCνa +
∑
ia

CνiziaCµa

]
. (3.55)

We refer to D′µν as the PNO-relaxed difference density, as it is the sum of the unre-

laxed difference density and another contribution originating from the constraint for the

semicanonical amplitudes. The PNO-relaxed density is a sum of a purely occupied con-

tribution D′oij and a purely virtual contribution D′vµ̃′ν̃′ in redundant PAO basis:

D′µν =
∑
η̃′λ̃′

P̃µη̃′D
′v
η̃′λ̃′

P̃νλ̃′ −
∑
ij

CµiD
′o
ijCνj (3.56)

The virtual part is further partitioned into a sum over PNO-relaxed density contri-

butions D′ijµ̃′ν̃′ and an unrelaxed prescreening density component Dv(Pre)
µ̃′ν̃′ :

D′vµ̃′ν̃′ =
∑
i≥j

[
D′ijµ̃′ν̃′ +D

v(Pre)
µ̃′ν̃′

]
(3.57)

D′ijµ̃′ν̃′ =
∑
ãb̃

dijµ̃′ãD
ij

ãb̃
dij
ν̃′b̃

+
1

2

∑
η̃λ̃ρ̃

d′′ijµ̃′η̃

[
wij
η̃λ̃
T̆ ij
ρ̃λ̃

+ wij
λ̃η̃
T̆ ij
λ̃ρ̃

+ T̆ ij
η̃λ̃
wij
ρ̃λ̃

+ T̆ ij
λ̃η̃
wij
λ̃ρ̃

]
d′′ijν̃′ρ̃ (3.58)

Eq. (3.58) contains non-redundant PAO indices µ̃, since they span the same space as the

untruncated PNOs ã′′; this reflects the way that the equation is implemented in the code.

Dij

ãb̃
is the unrelaxed pair density defined in Eq. (3.43).

Similarly, the occupied contribution D′oij contains the two unrelaxed difference density

contributions Dij

ãb̃
and D

o(Pre)
ij , which originate from the two respective Hylleraas func-

tionals for the MP2 energy in PNO basis, and for the prescreening contribution to the

energy. The middle term accounts for the relaxation of the PNOs:

D′oij = Dij +
∑
k≥l

δij (δik + δil)
∑
µ̃ν̃

wklµ̃ν̃T̆
kl
µ̃ν̃ +D

o(Pre)
ij (3.59)

Note that the energy correction for PNO truncation, ∆EPNO, contributes to the density

only indirectly, as it affects the values of the Lagrange multipliers.

The contributions of the three-centre electron repulsion integrals to the gradient are

86



calculated by contracting the integral derivatives with the two-body density tensor

ΓKiµ̃′ =
∑
j

(1 + δij)G
i(ij)
Kµ̃′ . (3.60)

Each orbital pair ij contributes individual terms to the two-body density defined as

follows:
G
i(ij)
Kµ̃′ =

∑
ν̃η̃

Xj
Kν̃g

ij
η̃ν̃d
′′ij
µ̃′η̃

G
j(ij)
Kµ̃′ =

∑
ν̃η̃

X i
Kν̃g

ij
ν̃η̃d
′′ij
µ̃′η̃

(3.61)

Density-fitted three-centre integrals are represented by X i
Kµ̃:

X i
Kµ̃ =

∑
L

(
V−1

)
KL

(iµ̃|L) with VKL = (K|L) (3.62)

The intermediate gijµ̃ν̃ , which is defined in Eq. (3.63), contains a contribution from the

PNO-basis Hylleraas functional in the first term, from the constraint for the semicanonical

amplitudes in the second term, and from the PNO truncation energy correction in the

third and fourth terms:

gijµ̃ν̃ = 2
∑
ãb̃

Sµ̃ãT̃
ij

ãb̃
Sν̃b̃ + wijµ̃ν̃ +

˜̆
T ijµ̃ν̃ −

∑
ãb̃

Sµ̃ã
˜̆
T ij
ãb̃
Sν̃b̃ (3.63)

In order to calculate the gradient contribution by the three-centre integrals, a trans-

formation of the two-body density tensor to the atomic orbital basis is performed:

ΓKµν =
∑
iη̃′

CµiΓ
K
iη̃′P̃νη̃′ (3.64)

Two-centre electron repulsion integrals between auxiliary basis functions are contracted

with the matrix γ:

γKL = −
∑
i≥j

X i
Kµ̃g

ij
µ̃ν̃X

j
Lν̃ (3.65)

Dipole integrals 〈µ | r | ν〉 contribute to the DLPNO-MP2 energy through the Foster-

Boys localisation constraint, and as part of the energy correction for prescreening ∆EPre
2 .
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The derivatives of these integrals are contracted with the dipole density matrices Qn
µν ,

with the index n representing x, y, z-coordinates:

Qn
µν =

1

2

∑
ij

CµiCνjz
Loc
ij

(
riin − rjjn

)
+
∑
i

CµiCνi
∑
j

zLocij rijn +Qn(Pre)
µν (3.66)

In this expression, Qn(Pre)
µν represents a contribution which originates from the prescreening

correction,

Qn(Pre)
µν =

1

2

{∑
iη̃′

[
Cµiy

α,n
iη̃′ P̃νη̃′ + Cνiy

α,n
iη̃′ P̃µη̃′

]
+
∑
i

Cµiy
β,n
i Cνi

}
. (3.67)

The intermediate yα,n contains dipole contributions in a mixed basis of MOs and

PAOs,

yα,niµ̃′ = 8
∑
j

1S(ij)
∑
ν̃η̃

πiµ̃′ν̃t
ij
ν̃η̃

[
rjη̃n
|Rij|3

− 3

(
Rijrjη̃

)
Rij
n

|Rij|5

]
, (3.68)

while the intermediate yβ,n contains contributions purely in MO basis:

yβ,ni =
∑
j

1S(ij)

[
48

|Rij|5
∑
µ̃ν̃

(
riµ̃rjν̃

)
tijµ̃ν̃ −

240

|Rij|7
∑
µ̃ν̃

(
Rijriµ̃

) (
Rijrjν̃

)
tijµ̃ν̃

]
Rji
n

−
∑
j

1S(ij)
48

|Rij|5
∑
µ̃ν̃

[(
Rijriµ̃

)
tijµ̃ν̃r

jν̃
n + riµ̃n t

ij
µ̃ν̃

(
Rijrjν̃

)]
(3.69)

In order to calculate the gradient contributions of the overlap integrals, the energy-

weighted density W needs to be computed. Overlap matrices appear explicitly in the

pair projection terms of the PNO-basis Hylleraas functional EDLPNO
2 and as part of the

redundant PAOs, but they are also introduced through the orthogonal parameterisations

of the MO and PNO coefficients.

In order to collect contributions to the energy-weighted density W, terms originating

from the symmetric orthogonalisation of the MOs are identified through the derivative of

the MO parameterisation in Eq. (3.18):

∂Cµp
∂x

∣∣∣∣
κ=0

= −1

2

∑
νη

∑
q

CµqCνqS
x
νηCηp (3.70)

88



A slightly more complicated expression is obtained for the derivatives of the normalised

redundant PAO coefficients in atomic orbital basis:

∂P̃µν̃′

∂x

∣∣∣∣∣
κ=0

= −1

2

∑
ηλ

∑
p

CµpCηpS
x
ηλP̃λν̃′

+
1

2
Nν̃′

∑
η

∑
a

CµaCηaS
x
ην −

1

2
Nν̃′P̃µν̃′

∑
η

SxνηP̃ην̃′ (3.71)

Finally, quantities in a basis of PNOs—or non-redundant PAOs—introduce contribu-

tions to the energy-weighted density via the derivatives of redundant PAO coefficients

(see Eq. (3.71)) and of the overlap matrix in AO basis:

∂d′′ijµ̃′ã′′

∂x

∣∣∣∣∣
κ=0,θij=0

= −1

2

∑
b̃′′

∑
ν̃′η̃′

d′′ij
µ̃′b̃′′

d′′ij
ν̃′b̃′′

∂

∂x

[∑
λρ

P̃λν̃′SλρP̃ρη̃′

]
d′′ijη̃′ã′′ (3.72)

Non-redundant PAO coefficient matrices πiµ̃′ν̃ in the Hylleraas functional for screened-out

pairs contribute to W analogously to Eq. (3.72).

The expression for the complete energy-weighted density is collected in the following

equation with intermediates Yα to Yε that will be defined below:

Wµν =
1

2

[∑
ip

CµiY
α
ipCνp −

∑
p

∑
η̃′

CµpY
β
pη̃′P̃νη̃′ +

∑
a

CµaNν̃′Y
β
aν̃′

−
∑
ν̃′

P̃µν̃′Nν̃′Y
γ
ν̃′ +

∑
η̃′λ̃′

P̃µη̃′Y
δ
η̃′λ̃′

P̃νλ̃′ −
∑
ip

CµiY
ε
ipCνp

 (3.73)

The intermediate Yα originates from matrices with molecular orbital indices:

Y α
ip = −

∑
K

∑
µ̃′

ΓKiµ̃′ (pµ̃′|K)−
∑
µν

Aip,µνD
′
µν +

∑
k

ALoc
ip,kz

Loc
ik

−
∑
µ̃′

3∑
n=1

yα,niµ̃′ r
pµ̃′

n −
3∑

n=1

yβ,ni ripn (3.74)

A is the Fock response tensor, which has been defined in Eq. (3.24). The Foster-Boys
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localisation constraint gives rise to terms containing the localisation response tensor ALoc:

ALoc
ip,k = rkp

(
rkk − rii

)
− 2rikrip (3.75)

We have defined zLoc as an antisymmetric matrix to simplify the equations,

zLoc = −zLoc†, (3.76)

even though only the entries in its upper diagonal appear as an independent set of mul-

tipliers in the Lagrangian.

Intermediate Yε contains further contributions originating from derivatives of MO

coefficients. Unlike Yα, it is only needed to calculate the energy-weighted density for the

gradient, but not for solving the Z-vector equations (Section 3.1.4):

Y ε
ij = 4Fij − 2

∑
k

D′oikFkj +
∑
kc

Aij,kczkc

Y ε
ia =

∑
k

Fikzka +
∑
b

zibFba +
∑
kc

Aia,kczkc

(3.77)

The intermediate Yβ originates from derivatives of redundant PAO coefficients:

Y β
pµ̃′ =

∑
i

∑
K

ΓKiµ̃′ (ip|K) + 2
∑
ν̃′

Fpν̃′D
′v
ν̃′µ̃′ +

∑
ν̃′

Spν̃′Y
δ
ν̃′µ̃′ +

∑
i

3∑
n=1

yα,niµ̃′ r
ip
n (3.78)

Clearly, the Fock and overlap matrix elements in the second and third terms of Eq. (3.78)

vanish if p is an occupied orbital, so that Y β
iµ̃′ only contains the first and the fourth term.

Yγ is an intermediate connected to the normalisation factors of redundant PAOs:

Y γ
µ̃′ =

∑
i

∑
K

ΓKiµ̃′ (iµ̃′|K) + 2
∑
ν̃′

Fµ̃′ν̃′D
′v
µ̃′ν̃′ +

∑
ν̃′

Sµ̃′ν̃′Y
δ
µ̃′ν̃′ +

∑
i

3∑
n=1

yα,niµ̃′ r
iµ̃′

n (3.79)

Finally, intermediate Yδ originates from derivatives of terms containg overlap matrices
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in a redundant PAO basis. This includes matrices in PNO basis via dij†Sdij:

Y δ
µ̃′ν̃′ =

∑
i≥j

[
ξijµ̃′ν̃′ + ξijν̃′µ̃′ − 2

∑
ã

dijµ̃′ãτ
ij
ãν̃′

]
− yδµ̃′ν̃′ − yδν̃′µ̃′ (3.80)

The preceding equation contains the intermediate τij, which is defined as follows:

τ ijãµ̃′ =
∑
k

∑
b̃c̃ẽ

Fik

[
T̃ ij
ãb̃
Sb̃c̃T

jk
c̃ẽ + T̃ ji

ãb̃
Sb̃c̃T

kj
c̃ẽ

]
dkjµ̃′ẽ

+
∑
k

∑
b̃c̃ẽ

Fkj

[
T̃ ij
ãb̃
Sb̃c̃T

ki
c̃ẽ + T̃ ji

ãb̃
Sb̃c̃T

ik
c̃ẽ

]
dikµ̃′ẽ (3.81)

τ ijaµ̃′ needs to be determined for all indices µ̃′ that are members of the domains of the

pairs ik and kj with all possible k: µ̃′ ∈
⋃
k { {ik} ∪ {kj} }. Exceptions are pairs ik and

kj that have been screened out, or if an associated Fock matrix elements Fkj or Fik is

below the corresponding cutoff.

Further intermediates entering Yδ are

ξijµ̃′ν̃′ =
∑
η̃

∑
λ̃′

d′′ijµ̃′η̃d
′′ij
λ̃′η̃

{
−1

2

∑
K

[
G
i(ij)
ν̃′K

(
iλ̃′
∣∣∣K)+G

j(ij)
ν̃′K

(
jλ̃′
∣∣∣K)]

−
∑
ρ̃′

Fλ̃′ρ̃′D
′ij
ρ̃′ν̃′ +

∑
ρ̃′

∑
ã

Sλ̃′ρ̃′τ
ij
ãρ̃′d

ij
ν̃′ã

}
(3.82)

and another contribution originating from the prescreening energy correction:

yδµ̃′ν̃′ = 4
∑
ij

1S(ij)
∑
η̃λ̃ρ̃χ̃

πiµ̃′η̃Fη̃λ̃t
ij

λ̃ρ̃
tijχ̃ρ̃π

i
ν̃′χ̃, (3.83)

3.1.4 Expressions for the Z-vector equations

The Lagrange multipliers are determined by making the Lagrangian stationary with re-

spect to its parameters. For the PNO block-diagonality condition, a set of stationar-

ity equations needs to be derived with respect to variations of the PNO coefficients,
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∂L
∂θij
ã′′ b̃′′

= 0. Derivatives of the PNO coefficients in Eq. (3.38) are given by the expression

∂d′′ijµ̃′c̃′′

∂θij
ã′′b̃′′

∣∣∣∣∣
θij=0

= d′′ijµ̃′ã′′δb̃′′c̃′′ − d
′′ij
µ̃′b̃′′

δã′′c̃′′ , (3.84)

which can be used directly to take the derivative of the Lagrangian.

Derivatives of L with respect to parameters mixing retained PNOs θij
ãb̃

or discarded

PNOs θij
ã′b̃′

among themselves are zero by construction. Therefore, the equations to de-

termine vij
ãb̃′

originate from stationarity with respect to parameters θij
ãb̃′

mixing the two

subspaces, ∑
c̃

D̆ij
ãc̃v

ij

c̃b̃′
−
∑
c̃′

vijãc̃′D̆
ij

c̃′b̃′
= −∂E

DLPNO
2

∂θij
ãb̃′

− ∂∆EPNO

∂θij
ãb̃′

. (3.85)

The left-hand side of Eq. (3.85) is the derivative of the block-diagonality constraint for

PNOs, which contains the semicanonical density that is parameterised through the am-

plitudes defined in Eq. (3.48):

D̆ij = exp
(
−θij

) [
“Tij† “̃Tij + “Tij “̃Tij†

]
exp

(
θij
)

(3.86)

Since the semicanonical residual equation is invariant to PNO rotations, ∂R̆ij

∂θij
= 0,

the contributing terms on the right-hand side of Eq. (3.85) are the derivatives of the

PNO-basis Hylleraas functional and of the energy correction for PNO truncation:

∂EDLPNO
2

∂θij
ãb̃′

= −2
∑
c̃

[
T̃ ijãc̃

(
ib̃′
∣∣∣jc̃)+ T̃ ijc̃ã

(
ic̃
∣∣∣jb̃′)+Dij

ãc̃Fc̃b̃′
]

+ 2
∑
µ̃′

τ ijãµ̃′Sµ̃′b̃′ (3.87)

∂∆EPNO

∂θij
ãb̃′

=
∑
c̃

[
(iã|jc̃) ˜̆

T ij
b̃′c̃

+ (ic̃|jã)
˜̆
T ij
c̃b̃′

+
(
ib̃′
∣∣∣jc̃) ˜̆

T ijãc̃ +
(
ic̃
∣∣∣jb̃′) ˜̆

T ijc̃ã

]
(3.88)

The PNO Z-vector equations in Eq. (3.85) are most easily solved for the Lagrange

multipliers vij
ãb̃′

by transforming the set of functions ã and b̃′ to the eigenvector representa-

tion of the semicanonical density D̆ij, such that the left-hand side becomes nãvijãb̃′−v
ij

ãb̃′
nb̃′ .

Eq. (3.87) contains the quantity τ ijãµ̃′ , which has been defined previously in Eq. (3.81).

Equations to determine the Lagrange multipliers wij
ã′′b̃′′

associated with the semi-

canonical residual constraint are derived from the stationarity condition ∂L
∂ “T ij

ã′′ b̃′′
= 0 of
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the Lagrangian with respect to the semicanonical amplitude parameters. Since the non-

redundant PAOs span the same space as the untruncated PNOs, it is most convenient

to represent the semicanonical Z-vector equations in a basis of pseudo-canonical non-

redundant PAOs, which diagonalise the Fock matrix with eigenvalues εµ̃:

(εµ̃ + εν̃ − Fii − Fjj)wijµ̃ν̃ = −
∂
∑

ãb̃′ v
ij

ãb̃′
D̆ij

ãb̃′

∂ “T ijµ̃ν̃
− ∂∆EPNO

∂ “T ijµ̃ν̃
(3.89)

The right-hand side of the equations contains the derivatives of the PNO block-

diagonality constraint with respect to the semicanonical amplitude parameters

∂
∑

c̃d̃′ v
ij

c̃d̃′
D̆ij

c̃d̃′

∂ “T ijµ̃ν̃
=
∑
η̃

[(
v̄ijµ̃η̃ + v̄ijη̃µ̃

) ˜̆
T ijη̃ν̃ +

˜̆
T ijµ̃η̃

(
v̄ijη̃ν̃ + v̄ijν̃η̃

)]
with v̄ijµ̃ν̃ =

∑
ãb̃′

Sµ̃ãv
ij

ãb̃′
Sν̃b̃′ , (3.90)

and of the energy correction for PNO truncation:

∂∆EPNO

∂ “T ijµ̃ν̃
=

4 (iµ̃|jν̃)− 2 (iν̃|jµ̃)−
∑

ãb̃ Sµ̃ã

[
4
(
iã
∣∣∣jb̃)− 2

(
ib̃
∣∣∣jã)]Sν̃b̃

1 + δij
. (3.91)

Eqs. (3.85) and (3.89) determine the Lagrange multipliers for the PNO and semicanonical

constraints. Importantly, the equations sets are solved independently for each pair of

orbitals.

In order to calculate the multipliers z and zLoc associated with the Brillouin constraint

and the orbital localisation constraint, respectively, the Lagrangian needs to be made

stationary with respect to the molecular orbital variations ∂L
∂κpq

. With the derivative of

MO coefficients ∂C
∂κ

that was provided in Eq. (3.19), the following expression is obtained

for the derivative of redundant PAO coefficients:

∂P̃µν̃′

∂κia
= Nν̃′ (CµiSaν + CµaSiν)−Nν̃′SiνSaν̃′P̃µν̃′ with Spν =

∑
η

CηpSην

∂P̃µν̃′

∂κij
=
∂P̃µν̃′

∂κab
= 0

(3.92)
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Projected atomic orbitals are invariant with respect to orthogonal transformations among

occupied or among virtual molecular orbitals.

PNO coefficients depend upon molecular orbital parameters via the symmetric or-

thogonalisation in their parameterisation, which contains a matrix in PAO basis. This

introduces a non-vanishing derivative with respect to MO rotations mixing occupied and

virtual contributions:

∂d′′kl
µ̃′b̃′′

∂κia
= −1

2

∑
ν̃′η̃′

Nν̃′SiνSaη̃′
∑
c̃′′

d′′klν̃′c̃′′

[
d′′klν̃′c̃′′

(
d′′kl
η̃′b̃′′
− Sν̃′b̃′′δν̃′η̃′

)
+d′′kl

ν̃′b̃′′

(
d′′klη̃′c̃′′ − Sν̃′c̃′′δν̃′η̃′

)]
∂d′′klµ̃′c̃′′

∂κij
=
∂d′′klµ̃′c̃′′

∂κab
= 0

(3.93)

The Z-vector equations are thus derived by substituting Eqs. (3.19), (3.92) and (3.93).

A set of coupled-perturbed localisation (CP-L) equations needs to be solved to determine

the orbital localisation Lagrange multipliers zLoc:

∑
k

[
ALoc
ij,kz

Loc
ik − ALoc

ji,kz
Loc
jk

]
= −Lij (3.94)

Aip,k is the localisation response tensor defined in Eq. (3.75). The right-hand side of the

CP-L equations contains the derivative of the remaining terms in the Lagrangian with

respect to rotation parameters among occupied orbitals,

Lij =
∑
µ̃′

∑
K

ΓKjµ̃′ (iµ̃′|K)−
∑
µ̃′

∑
K

ΓKiµ̃′ (jµ̃′|K)− 2
∑
k

FikD
′o
kj + 2

∑
k

FkjD
′o
ik + LPre

ij .

(3.95)

ΓKiµ̃′ was introduced as the two-body density in Eq. (3.60). D′o is the occupied orbital

block of the PNO-relaxed density defined in Eq. (3.59), which includes the prescreening

contribution to the unrelaxed density.

An additional term originating from the energy correction for screened-out pairs is
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contained in Lij:

LPre
ij =

∑
µ̃′

3∑
n=1

[
yα,njµ̃′ r

iµ̃′

n − y
α,n
iµ̃′ r

jµ̃′

n

]
+

3∑
n=1

rijn

[
yβ,nj − y

β,n
i

]
. (3.96)

Finally, the Lagrange multipliers associated with the Brillouin condition are deter-

mined through stationarity of the Lagrangian with respect to the mixing of occupied and

virtual orbitals: ∑
b

zibFba −
∑
j

Fijzja +
∑
jb

Aia,jbzjb = Lia (3.97)

The Fock response tensor Apq,rs was defined in Eq. (3.24).

Derivatives of the remaining terms in the Lagrangian with respect to κia are contained

on the right-hand side of the equation:

Lia = Y α
ia +

∑
µ̃′

[
Y β
iµ̃′Nµ̃′Saµ + Y β

aµ̃′Nµ̃′Siµ

]
−
∑
µ̃′

Y γ
µ̃′N

2
µ̃′SiµSaµ (3.98)

The intermediate quantities Yα, Yβ and Yγ were introduced in Eqs. (3.74), (3.78) and

(3.79), respectively.

It is most convenient to solve the Z-vector equations (3.97) in a basis of canonical

molecular orbitals. In that case, the left-hand side of the equations becomes identical

with that of the coupled-perturbed Hartree-Fock equations (3.23). The canonical CP-

SCF equations can be solved using well-established procedures.

3.1.5 Treatment of localisation orbital Hessian singularities

Under specific circumstances, the coupled-perturbed localisation equations can become

singular. This subsection elaborates on the underlying cause, and presents a solution

that was developed as part of this work.

Orthogonal transformations among occupied orbitals can be parameterised through

the exponential of a matrix κ′ij. Note that it is a different set of parameters from the

matrix κ that was introduced to parameterise the full orbital space, and the indices of κ′
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are restricted to the occupied space:

Cµi =
∑
j

C0
µj [exp (κ′)]ji with κ′ji = −κ′ij (3.99)

The localisation constraint in the Lagrangian is derived by ensuring stationarity of the

Foster-Boys localisation criterion with respect to variations of the parameters κ′:

∂

∂κ′ij

∑
k

∣∣rkk∣∣2 = 4rij
(
rjj − rii

)
= −4sij

(3.100)

sij in Eq. (3.45) is, thus, simply the orbital gradient scaled by a factor of −1
4
.

The orbital Hessian of the Foster-Boys criterion in this parameterisation takes the

following form:

HLoc
ij,kl =

∂2

∂κ′ij∂κ
′
kl

∑
m

|rmm|2
∣∣∣∣∣
κ′=0

=8 [δik − δil − δjk + δjl] r
ijrkl + 4 [δik + δjl] r

ikrjl − 4 [δil + δjk] r
ilrjk

− 2δikr
jl
[
rjj + rll

]
+ 2δilr

jk
[
rjj + rkk

]
+ 2δjkr

il
[
rii + rll

]
− 2δjlr

ik
[
rii + rkk

]
(3.101)

Provided that the orbital gradient is zero, the response matrix of s, which is contained

in the coupled-perturbed localisation equations, is identical with the orbital Hessian up

to a constant prefactor:

∂sij
∂κkl

∣∣∣∣
κ=0

= −1

4
HLoc
ij,kl if s (κ = 0) = 0 (3.102)

The CP-L equations (3.94) for an appropriate set of localised orbitals may be expressed

in terms of HLoc:
1

4

∑
k<l

HLoc
ij,klz

Loc
kl = Lij (3.103)

Eq. (3.102) is not true if the orbital gradient of the localisation criterion does not equal
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zero; this would be the case if the orbitals did not originate from a converged localisation

procedure. Such a special case will not be considered in this work, as the starting point

is assumed to be a set of well-defined localised orbitals.

Since Foster-Boys orbitals maximise
∑

i |rii|
2, all eigenvalues of the matrix HLoc are

negative (with each row or column corresponding to one independent parameter κ′ij for

i < j). The CP-L equations (3.94) are a system of linear equations with a positive-

semidefinite coefficient matrix, since the response of s is just the orbital Hessian of the

localisation sum multiplied by −1
4
.

Under specific circumstances, some eigenvalues of HLoc may be small or zero, which

leads to singular CP-L equations. In the following analysis, eigenvectors are labelled

as un and eigenvectors as ωn:

∑
k<l

HLoc
ij,klu

n
kl = ωnu

n
ij with unji = −unij (3.104)

Eigenvalues ωn = 0 commonly occur as the consequence of a continuous degeneracy. In

such a case there is not a discrete set of solutions to the orbital localisation problem,

but instead there is an entire continuum of orthogonal transformations that satisfy the

localisation criterion.

As a trivial example for a continuous degeneracy, the orbitals of a linear molecule

can be rotated collectively around the internuclear axis by an arbitrary angle without

affecting the localisation criterion. More complicated cases of continuous degeneracy

may occur in specific symmetry groups, which was recognised by England.[171] Later,

Scheurer and Schwarz derived rules for the Foster-Boys, Von Niessen and Edmiston-

Ruedenberg schemes, which specify if a continuous degeneracy is allowed or forbidden

depending on the symmetry group of the electronic density. Rather interestingly, they

found that the symmetry groups with either allowed or forbidden continuous degeneracy

are identical among all three localisation methods.[172, 173]

The CP-L equations are analysed most conveniently by transforming Eq. (3.103) into
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the eigenvector basis of HLoc. This leads to the transformed right-hand side vector

L̄n =
∑
i<j

Liju
n
ij, (3.105)

and to the transformed Lagrange multipliers

z̄Locn =
∑
i<j

zLocij unij = 4
L̄n
ωn
. (3.106)

Two different cases can be distinguished for an eigenvalue ωn = 0 from a formal viewpoint:

• L̄n = 0 means that the energy is invariant to orbital variations along un. Constrain-

ing the first-order response, κ(1), in the direction of this eigenvector is unnecessary.

A valid solution is to relax the constraint by eliminating the transformed multiplier

z̄Loc
n = 0. Along the remaining directions, the multipliers z̄Loc

m 6=n are determined as

usual.

• L̄n 6= 0 is a pathologic case: the energy is not constant for different orbitals that

belong to the same continuously degenerate set, making it ill-defined.

In practice, a numerically sound distinction between these two cases may not always

exist. Moreover, an energy calculated using continuously degenerate localised orbitals

may nonetheless be physically meaningful, provided that it changes sufficiently little

with other orbitals from the same set.

Singular CP-L equations are the consequence of an unfortunate interplay between the

localisation criterion and the orbital-dependence of the local correlation energy. However,

using a different localisation criterion is not an acceptable solution, unless it artificially

breaks the symmetry of the molecule.

The π orbitals of benzene in the Pipek-Mezey localisation scheme are a notorious

example for continuously degenerate orbitals (whereas in the Foster-Boys scheme there

is a discrete two-fold degeneracy). Werner and Pflüger suggested domain merging as a

workaround in local correlation methods for this case.[138] Toyota and co-workers pro-

posed the minimum orbital-deformation method, which effectively maps a set of localised
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reference orbitals onto slightly perturbed geometries, and thereby aims to circumvent

discontinuous localised orbitals along a potential energy surface.[174, 175] All of these

methods require some degree of user intervention.

In the context of the DLPNO-MP2 gradient, a more general and automatic approach

is introduced through a modification of the localisation condition in the Lagrangian. The

localisation sum is constrained to remain stationary along modes of the orbital Hessian

with a non-zero eigenvalue only,

s̄n =
∑
i<j

siju
n
ij = 0 for |ωn| > 0. (3.107)

It is assumed that the eigenvectors are constant, so that determining their response is not

necessary to calculate the gradient. In addition, the response of the orbital parameters

is restricted to remain orthogonal to eigenvectors with singular eigenvalues:

κ̄n′ =
∑
i<j

κiju
n′

ij = 0 for |ωn′ | ≈ 0 (3.108)

The underlying idea is that the perturbed orbitals should remain similar to the original

orbitals, which is achieved by eliminating the response κ(1) along continuously degener-

ate modes. Both conditions together define the modified localisation constraint for the

DLPNO-MP2 Lagrangian:

L ←
∑
n

z̄Locn s̄n +
∑
n′

z̄Locn′ κ̄n′

=
∑
i<j

∑
k<l

zLocij

[
δij,kl −

∑
n′

un
′

ij u
n′

kl

]
skl +

∑
i<j

∑
k<l

∑
n′

zLocij un
′

ij u
n′

klκkl (3.109)

n′ enumerates the eigenvectors associated with singular eigenvalues.

In the resulting procedure, a modified set of CP-L equations is solved to determine

the Lagrange multipliers:
1

4

∑
k<l

H̃Loc
ij,klz

Loc
kl = Lij, (3.110)

This is directly related to Eq. (3.103). However, H̃Loc corresponds to an orbital Hessian

99



of the Foster-Boys localisation sum with its singular eigenvalues shifted to one:

H̃Loc
ij,kl =

∑
ī<j̄

∑
k̄<l̄

[
δij,̄ij̄ −

∑
n′

un
′

ij u
n′

īj̄

]
HLoc
īj̄,k̄l̄

[
δkl,k̄l̄ −

∑
n′

un
′

klu
n′

k̄l̄

]
+
∑
n′

un
′

ij u
n′

kl (3.111)

After the modified CP-L equations have been solved, the final Lagrange multipliers are

replaced by a projection:

zLocij →
∑
k<l

zLockl

[
δkl,ij −

∑
n′

un
′

klu
n′

ij

]
. (3.112)

Specifically, this affects the density matrix for the dipole integrals in Eq. (3.66) and the

intermediate quantity in Eq. (3.74), where zLoc is used.

This resulting procedure may be understood as shifting the singular eigenvalues of

the Foster-Boys orbital Hessian in the CP-L equations, and then removing components

of the solution along the singular eigenvectors by projection.

3.2 Implementation

3.2.1 General aspects

As the DLPNO-MP2 method itself, the gradient for DLPNO-MP2 was implemented

within the ORCA package.[35, 36] The four different types of Z-vector equations need to

be solved in the following order:

1. The PNO equations to calculate vij for each pair.

2. The semicanonical equations to calculate wij for each pair.

3. The coupled-perturbed localisation (CP-L) equations to determine zLoc.

4. A set of coupled-perturbed self-consistent field (CP-SCF) equations to determine z.

Each of these steps requires the Lagrange multipliers of the previous equation set to

be determined, e.g. vij (1) is needed to solve the semicanonical equations (2) for the

same pair, which determine wij. On the other hand, the solutions of the equations
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appearing lower in the list do not affect any of their preceding equation sets, so that the

semicanonical or PNO equations are not coupled backwards to the solution of the CP-L

or CP-SCF procedures.

Algorithm 3 Outline of the overall procedure to calculate the DLPNO-MP2 gradient.
1: Energy calculation . Details in Algorithm 1
2: Processing of pair-specific gradient terms . Details in Algorithm 4
3: Calculate RI metric gradient

∑
KL γKL (K|L)x

4: Calculate prescreening contributions: Dv(Pre),Do(Pre),Qn(Pre),yα,n,yβ,n,yδ, LPre
ij

5: Sort two-body density ΓiKµ̃′ → ΓKiµ̃′
6: Calculate

∑
Kµ̃′ ΓKiµ̃′ (pµ̃′|K) ,

∑
iK ΓKiµ̃′ (ip|K) (integral direct) for Yα,Yβ, Lij

7: Three-index integral gradient
∑

µν

∑
K ΓKµν (µν|K)x

8: Solve CP-L equations for zLoc

9: Calculate Fock response
∑

µν Aip,µνD
′
µν for Y α

ip

10: Finalise contributions for Yα, Yβ, Lia and W
11: Solve CP-SCF equations for z
12: Calculate Fock response

∑
µν Aip,jbzjb for Y

ε
ip in W

13: Dipole gradient
∑3

n=1

∑
µν Q

n
µν 〈µ|rn|ν〉

x

14: Gradient contributions
∑

µν

[
P SCF
µν +D′′µν

]
hxµν ,

∑
µνWµνS

x
µν

15: Calculate Fock gradient with (µν|ηλ)x

An outline of the complete procedure is provided in Algorithm 3. After the energy

has been calculated, all pair-dependent quantities involving PNOs are processed in the

beginning of the gradient calculation. All subsequent steps (except for the inexpensive

prescreening contributions) involve only processing of global quantities without further

reference to pair-specific information. This includes solving the CP-L and CP-SCF equa-

tions, and calculating the derivatives of integrals in an atomic orbital basis.

The CP-L equations feature a quadratic matrix of size n(n−1)
2

, where n is the number

of occupied orbitals in the relevant sub-block. Therefore, the equation system is solved

iteratively using the conjugate gradient algorithm with diagonal preconditioning (see

ref. [176] for an introduction). Note that the CP-L equations can be expressed in terms

of a positive-definite quadratic matrix (Eq. (3.103)). An iterative Jacobi algorithm with

DIIS extrapolation was found to exhibit inferior performance. In addition, it is possible to

construct the full Hessian matrix to apply a LAPACK linear equation solver via Cholesky

decomposition, but this approach is only feasible for sufficiently small systems.

Before solving the CP-L equations, singular and near-singular eigenvalues of the or-
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bital localisation Hessian are removed using the procedure described in Section 3.1.5.

Since the number of rows and columns of the Hessian matrix each grow quadratically

with system size and only its few smallest eigenvalues are needed, it is diagonalised using

the Davidson method by default.[177, 178] The eigenvectors need to be determined to

a sufficiently high precision; otherwise, singular and non-singular components could be

mixed, and numerical artefacts propagated to the CP-L equations.

By default, the eigenvalues are converged to an accuracy of 10−6 times the singular

eigenvalue threshold, which will be determined in Section 3.3.3. The diagonalisation

residual is converged to 0.1 times the threshold for the iterative solution of the CP-L

equations. As an alternative to Davidson diagonalisation, it is also possible to build

the full Hessian matrix for diagonalisation via the appropriate LAPACK solver, but this

option is only attractive for sufficiently small systems.

The time needed to solve the Hartree-Fock and the CP-SCF equations has a large

impact on the overall cost of the calculation. Our implementation fully integrates the

RIJCOSX technique,[145] which accelerates the evaluation of the Fock response function

and the solution of the CP-SCF equations; the computation of Fock matrix gradient;

and, of course, the SCF procedure itself. The integration of RIJCOSX with the RI-

MP2 method has been described in an earlier publication,[179] so that it could be inter-

faced with the DLPNO-MP2 gradient via the appropriate function calls. Derivatives of

the dipole integrals have been implemented analytically using the McMurchie-Davidson

scheme[180] for the final version of the DLPNO-MP2 gradient, while numerical integra-

tion on a grid was performed in preliminary implementations.

The correctness of the gradient was verified by comparison with numerical derivatives,

and by ensuring convergence to the RI-MP2 gradient with tightening thresholds. Since

this thesis contains results obtained with different software versions, the interested reader

is referred to ref. [110, 111] for details on the numerical verification of the respective

gradient implementations.

The DLPNO-MP2 gradient supports spin-component scaling and double-hybrid den-

sity functionals. An implementation of the DHDF gradient with RI-MP2 in ORCA has
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been described previously,[181] and the DLPNO-MP2 gradient interfaces the same code

to calculate additional terms for the Fock response function and the gradient.

3.2.2 Processing of pair-dependent terms in the DLPNO-MP2

gradient

The first part of the gradient calculation, shown in Algorithm 4, processes pair-specific

terms in PNO basis and their related contributions. From the DLPNO-MP2 energy

calculation, the PNO-basis amplitudes T ij
ãb̃

and the integrals
(
iã
∣∣∣jb̃) are carried forward

to the gradient on disk alongside the matrices dijµ̃′ã, which transform the redundant PAOs

of domain {µ̃′}ij to the truncated set of PNOs ã. In order to avoid potentially excessive

storage requirements, pair-specific matrices that are entirely in non-redundant PAOs basis

are not stored on disk. Therefore, non-redundant PAOs and the semicanonical amplitudes

“T ijµ̃ν̃ are recalculated for each pair and processed in memory only.

Solving the PNO-specific Z-vector equations requires a set of complementary PNOs

(CPNOs) ã′. Even though they are readily available as a by-product during PNO con-

struction, in the gradient calculation they need to be reconstructed as the orthogonal

complement to the PNOs that were stored on disk.

Different numerical procedures could be used for complementary PNO construction,

e.g. singular value decomposition or QR factorisation of the overlap matrix 〈µ̃|ã〉, which

is identical with the matrix d̄ijµ̃ãij defined in Eq. (2.31). An alternative is to diagonalise

d̄ijd̄ij†, since all its eigenvalues are either 1 (for PNOs) or 0 (for CPNOs). Neither

singular value decomposition nor diagonalisation (in their LAPACK implementations)

were sufficiently stable in practice, failing on some occasions for this highly degenerate

problem. A fully reliable procedure was arrived at through the diagonalisation of the

matrix

(
1− d̄ijd̄ij†

)
B
(
1− d̄ijd̄ij†

)
− d̄ijd̄ij†Bd̄ijd̄ij† = B− d̄ijd̄ij†B−Bd̄ijd̄ij†, (3.113)

with a suitable positive-definite matrix B chosen to lift the degeneracy of the eigenvalues.
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Algorithm 4 Computation of pair-dependent quantities for the DLPNO-MP2 gradient.
1: if size(Γ) < available memory then
2: for all i ≥ j do
3: PairContributions(i, j, . . . )
4: Γi := Γi + Gi(ij) . Eq. (3.60)
5: Γj := Γj + Gj(ij)

6: end for
7: else
8: for all i do
9: for all j do

10: PairContributions(i, j, . . . )
11: Γi := Γi + (1 + δij) Gi(ij) . Eq. (3.60)
12: end for
13: end for
14: end if
15:
16: function PairContribution(i, j, . . . )
17: Calculate non-redundant PAOs for pair ij
18: Calculate semicanonical amplitudes T̆ij . Eq. (2.29)
19: Calculate intermediate quantity τij . Eq. (3.81)
20: Calculate complementary PNOs d′ij . PNOs dij from disk
21: Solve the PNO Z-vector equations to obtain vij . Eq. (3.85)
22: Solve the semicanonical Z-vector equations to obtain wij . Eq. (3.89)
23: Calculate Gi(ij) . Eq. (3.61)
24: if i ≥ j then . Quantities not needed to compute Gi(ij)

25: Calculate Gj(ij)

26: Add pair contribution to γ . Eq. (3.65)
27: Add pair contributions to the density D′v and D′o . Eqs. (3.57, 3.59)
28: Calculate pair contributions to Yγ and Yδ . Eqs. (3.79, 3.80)
29: end if
30: end function

In our implementation, B was simply chosen as a diagonal matrix with its elements evenly

spaced between 1 and 2. As a result, CPNOs are obtained as eigenvectors with associated

eigenvalues distributed between 1 and 2 (while eigenvalues associated with PNOs are

found between −2 and −1); numerical problems with highly degenerate eigenvalues are

circumvented.

Implementing an efficient algorithm to calculate the two-body density ΓKiµ̃′ is not

entirely straightforward, as a compromise between the demands for memory, disk and the

number of calculated terms needs to be achieved. Further constraints are imposed by the

parallelisation concept of the ORCA software, which uses the Message Passing Interface

(MPI) for communication and replicates data structures across processes. During the
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construction of the two-body density, it is most convenient to store it as a set of matrices

ΓiKµ̃′ , meaning that for each orbital there is one matrix with its rows indexed by auxiliary

functions and its columns indexed by redundant PAOs. A number of quantities need to

be calculated to determine the two-body density contribution by each pair: this includes

re-determining the non-redundant PAOs and complementary PNOs, and solving the Z-

vector equations for the PNOs and the semicanonical amplitudes. Because of the overhead

associated with these steps, it is preferable to perform them only once for each pair,

though in practice it is always possible to do so no more than twice. We investigated the

following algorithms to accumulate contributions by each pair:

1. Provided that the entire two-body density ΓKiµ̃′ tensor can be stored in memory by

each process, random access is possible to any of its elements, so that the con-

tributions Gi(ij) and Gj(ij) by each pair can be added in memory. As shown in

Algorithm 4, this results in an efficient and simple procedure which iterates over

each pair ij only once, but it can only be used for sufficiently small systems. The

program automatically selects this procedure if sufficient memory is available to

store the entire two-body density in memory.

2. For larger systems, it becomes inevitable to store the two-body density on disk. A

simple algorithm can be implemented by nesting loops iterating over the occupied

orbitals i and j, so that contributions Gi(ij) are accumulated for all j, but only one

i at a time. As shown in Algorithm 4, this is the procedure selected automatically

if the entire two-body density Γ is too large to be stored in the memory allocated to

a single process. A disadvantage of this approach is that all quantities necessary to

calculate Gi(ij), such as the non-redundant PAOs and the semicanonical amplitudes,

or the Lagrange multipliers associated with the PNO and semicanonical constraints,

need to be calculated twice for all pairs with i 6= j. The calculation is parallelised

by splitting the outermost loop over orbitals i. Pair-specific contributions that are

not required to construct the two-body density are calculated only for pairs with

i ≥ j. Therefore, the orbitals i need to be distributed appropriately over the parallel

processes such that the load is balanced adequately.
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3. An experimental algorithm was tested, which passes all pairs only once, but can be

used regardless of the system size. It is shown in the scheme Algorithm 5. Required

fragments of the two-body density are read from disk and retained in a memory

buffer. Once the buffer fills all available memory, its contents are written back to

disk. A disadvantage of this algorithm is the increased demand for disk read and

write access via the operating system. Moreover, each parallel process needs to

store a fully dimensioned local copy of the Γ contributions for all indices.

Algorithm 5 Experimental buffering algorithm to compute the two-body density (not
used in practice).
1: Initialise buffer (Γ)
2: for all i ≥ j do
3: . . .
4: Estimate memory for the following steps
5: if necessary memory > available memory then
6: Write buffer content to disk, empty buffer
7: end if
8: for all K ∈ {ij}RI do
9: if ΓiKµ̃′ not in buffer then

10: Load entire row ΓiKµ̃′ for i and K into buffer
11: end if
12: if ΓjKµ̃′ not in buffer then
13: Load entire row ΓjKµ̃′ for j and K into buffer
14: end if
15: end for
16: Add Gi(ij) to buffered Γi

17: Add Gj(ij) to buffered Γj

18: . . .
19: end for
20: Write buffer to disk, empty buffer

Variant (3) was the first to be implemented for the DLPNO-MP2 gradient. However,

its performance with several parallel processes on one node was found to be somewhat

unpredictable for larger systems, and often limited by disk access. Therefore, it was

abandoned in favour of automatically using one out of variants (1) or (2). Approach

(2) is sufficiently general for all system sizes; modest performance improvements can be

achieved by switching to (1) whenever possible, as shown by the results in Section 3.3.8.

After completion of this step, the two-body density is reordered such that the associated
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container indexes matrices by auxiliary functions, storing them as ΓKiµ̃′ .

Matrix containers in ORCA are usually read by retrieving an entire matrix at once.

When accessing the RI integrals (iµ̃′|K) for a specific orbital i, this implies reading all

entries mapped by Lext (i→ µ̃′) and Lext (i→ K). Compared with the actual sizes of the

pair domains {ij} and {ij}RI, it results in reading more data than necessary; for large

systems with several thousand basis functions, only a few percent of the data read from

disk for each pair ij is actually used. On the other hand, retrieving only the necessary

matrix elements selectively would result in an excessive number of operating system calls.

A suitable compromise was achieved by reading the entire row of a matrix from the

container if at least one entry from the respective row is required. Blocks of adjacent

rows are always read in a single operation. Basis functions belonging to the same shell

and to the same atoms are stored sequentially. Therefore, at most one reading operation

per atom is required to retrieve the integrals (iµ̃′|K) for a specific orbital i with a given

pair domain µ̃′ ∈ {ij} and fitting domain K ∈ {ij}RI, but reading of unnecessary data is

reduced substantially.

3.2.3 Sparse maps

As shown in Section 2.1.6, the RI integrals required to calculate the DLPNO-MP2 energy

are determined by the extended maps Lext (i→ µ̃′) and Lext (i→ K). Since the integrals

in AO basis (µν|K) are transformed by matrix multiplications for each K, a complete list

of all generated integrals is not given by the preceding maps, but rather by L (K → i)

and L (K → µ̃′) as specified in Eqs. (2.57, 2.58). Accordingly, the full set of AO basis

integrals that are calculated prior to the transformation is mapped by L
(
K → µMO

)
and

L
(
K → νPAO

)
in Eqs. (2.59, 2.60).

Next, the necessary maps for the gradient will be examined. The two-body density is

first generated as a set of matrices ΓiKµ̃′ indexed by the MO i. Inspection of Eq. (3.60)

shows that all indices µ̃′ and K are members of pair domains {ij} or fitting pair domains

{ij}fit. Therefore, the complete lists are given by Lext (i→ µ̃′) and Lext (i→ K), the same

as for the RI integrals. After the reordering procedure ΓiKµ̃′ → ΓKiµ̃′ , the matrices for each
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Algorithm 6 Algorithm to contract the two-body density with RI integrals.
1: Bα

ip := 0 . Buffer matrices Bα,Bβ

2: Bβ
pµ̃′ := 0

3: for all auxiliary basis function shells KS do
4: for all basis function shells µS in L (KS → µS) do . Primitive integrals
5: for all basis function shells νS in L (KS → νS) do
6: if (µν|µν) > Schwarz screening threshold then
7: Compute integrals (µν|K)
8: end if
9: end for

10: end for
11: for all functions K in KS do
12: ΓKiν :=

∑L(K→µ̃′)
µ̃′ ΓKiµ̃′P̃

′
νµ̃′ . Terms in (pµ̃′|K)

13: Iηi :=
∑L(K→νPAO)

ν ΓKiν (ην|K) . Buffer matrix I

14: Bα
ip := Bα

ip +
∑L(K→ηMO)

η CηpIηi

15: (iν|K) :=
∑L(K→ηMO)

η Cηi (ην|K) . Terms in (ip|K)

16: (ip|K) :=
∑L(K→νPAO)

ν Cνp (iν|K)

17: Bβ
pµ̃′ := Bβ

pµ̃′ +
∑L(K→i)

i ΓKiµ̃′ (ip|K)
18: end for
19: end for
20: Y α

ip := Y α
ip −Bα

ip

21: Y β
pµ̃′ := Y β

pµ̃′ +Bβ
pµ̃′

22: Lij := Lij −Bα
ij +Bα

ji

K have row indices i and column indices µ̃′, which are members of the maps L (K → i) and

L (K → µ̃′). These maps are more complete, as the chaining step introduces combinations

of i and µ̃′ for a givenK that may not have been present in the original maps. The missing

elements in ΓKiµ̃′ are included as zeros.

In order to calculate the three-centre integral gradient, each matrix ΓK is transformed

to AO basis as in Eq. (3.64), and directly summed together with the integral derivatives

(µν|K)x. As for the integrals themselves, the maps of AO indices for the derivatives

are L
(
K → µMO

)
and L

(
K → νPAO

)
. In addition, all three-centre integrals used at

any stage of the energy or gradient calculation are subject to Schwarz screening in the

final implementation. It would also be possible to define separate screening criteria for

derivatives of integrals, but this approach was not followed in the present work.

An additional set of integrals is calculated for the term
∑

K

∑
µ̃′ ΓKiµ̃′ (pµ̃′|K), which

contributes to Y α
ip in Eq. (3.74). Evidently, the respective PAOs are members of the map
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L (K → µ̃′), whereas the index p includes all occupied and virtual molecular orbitals.

As the term originates from orbital rotations, the appropriate maps for the AOs are

L
(
K → µMO

)
and L

(
K → νPAO

)
. The processing is performed through an integral direct

procedure. Optimal performance is achieved by arranging the matrix multiplications

such that one index is always in the occupied orbital basis, as shown in the pseudocode

in Algorithm 6. The computational expense of this procedure is comparable with the

in-memory transformation of the RI integrals (iµ̃′|K), while the more expensive explicit

formation of the two-external integrals (aµ̃′|K) is circumvented.

Another set of integrals is needed for the term
∑

i

∑
K ΓKiµ̃′ (ip|K) contributing to Y β

pµ̃′

in Eq. (3.78). The occupied indices i are members of L (K → i), while p enumerates all

occupied and virtual orbitals. As before, the necessary AO basis RI integrals (µν|K) are

listed by the maps L
(
K → µMO

)
and L

(
K → νPAO

)
. In this step, the most efficient pro-

cedure is to perform an integral direct transformation to (ip|K), followed by summation

over i (Algorithm 6).

3.2.4 Rational function optimisation of localised orbitals

Calculating accurate derivatives requires well-converged localised orbitals, as the La-

grangian includes the orbital gradient of the localisation criterion, Eq. (3.45), among its

constraints. However, the commonly employed method of Jacobi sweeps[135, 182, 183] is,

under practical circumstances, often not suited to find a solution with a vanishing orbital

gradient.

Leonard and Luken suggested a combined approach of a first-order method for the

initial iterations and a second-order method for later iterations of a localisation pro-

cedure.[184] Specific modifications needed to be made for systems with a singular or

near-singular orbital Hessian of the localisation criterion. Subotnik and co-workers de-

veloped a first-order method in combination with DIIS to localise orbitals.[185] Later,

they published a modification of the algorithm that can rectify convergence to a saddle

point by a displacement along a normal mode, which is determined by Davidson diago-

nalisation.[186] A trust-region Newton-Raphson method for orbital localisation was im-
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plemented by Høyvik and co-workers.[12] Sun described the “co-iterative augmented Hes-

sian” method, which couples the optimisation step in the augmented Hessian method to

Davidson diagonalisation, and demonstrated its performance for orbital localisation.[187]

The Newton-Raphson method for minimisation of a function f approximates the latter

as a second-order Taylor series,

f(x) ≈ f0 + g†x +
1

2
x†Hx, (3.114)

with the gradient g and the Hessian matrix H of f . An iterative step is determined as

the minimum of the quadratic model function, provided that H is positive definite:

x = −H−1g (3.115)

A disadvantage of this second-order local optimisation method is the need to introduce

explicit step size control for poorly behaved f and, more crucially, its inability to deal

with functions that feature a singular (or near-singular) Hessian matrix. Moreover, the

optimisation may converge to saddle points if there are positive and negative eigenvalues

of H.

Rational function optimisation (RFO) approximates the target function f through

f(x) ≈ f0 +
g†x + 1

2
x†Hx

1 + x†x
, (3.116)

which is identical with the quadratic Taylor series up to second order. An accessible

explanation of the method was published by Banerjee and co-workers.[188]

The minimum of this function is found by solving the following eigenvalue problem:



H11 . . . H1n g1

... . . . ...
...

Hn1 . . . Hnn gn

g1 . . . gn 0





x1

...

xn

1


= λ



x1

...

xn

1


. (3.117)
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For a function f of n variables x1, . . . , xn, the left-hand matrix is an “augmented” Hessian

of dimension (n+ 1)× (n+ 1). Note the unusual normalisation of the eigenvectors, which

have a scaling factor that makes the n+ 1-th element equal to 1.

The eigenvalues of the augmented Hessian bracket the eigenvalues hi of the Hessian

H, so that λi ≤ hi ≤ λi+1. At a stationary point with g = 0, one of the eigenvalues

equals zero, whereas the remaining values λ become identical with the eigenvalues of the

Hessian H. A local minimum is found by following the vector x associated with the lowest

eigenvalue λ1, whereas vectors associated with eigenvalues λ2, . . . , λn lead towards saddle

points and λn+1 towards a maximum. This ability to converge towards specific stationary

points of the target functions, and to optimise functions with a singular Hessian, makes

rational function optimisation an attractive choice for orbital localisation.

An orbital optimisation procedure based on RFO was implemented to obtain well-

converged localised orbitals for correlated calculations. The orthogonal transformation

of the occupied orbitals may be parameterised as Cµi =
∑

j C
0
µj [exp (κ′)]ji following

Eq. (3.99), with an antisymmetric matrix κ′ji = −κ′ij. The only independent parameters

are thus in the upper triangle of the matrix, κ′i<j, and the gradient and Hessian of the

Foster-Boys localisation criterion are given in Eq. (3.100) and Eq. (3.101), respectively.

With n occupied orbitals, the augmented Hessian is a square matrix of size n(n−1)
2

+ 1.

Forming the full matrix and diagonalising it becomes unfeasible for a large number of

orbitals. On the other hand, most elements of the Hessian are zero, and only one eigen-

value needs to be determined, which makes the problem well-suited for the Davidson

diagonalisation method without explicit formation of the full matrix.[177, 178]

An outline of the orbital localisation routine is provided in Algorithm 7. The initial

set of localised orbitals is determined using a conventional procedure with Jacobi sweeps

(which in turn uses pivoted Cholesky decomposition as a guess[189]). These already

local orbitals are refined through RFO. Depending on the size of the augmented Hessian

matrix, the algorithm either forms the full matrix for diagonalisation via LAPACK, or

employs Davidson diagonalisation; the default boundary for switching between the two

diagonalisation methods is set at a size of 2000× 2000.
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Algorithm 7 Rational function optimisation of Foster-Boys orbitals. Several default
thresholds have been included as numbers.
1: Determine guess orbitals with Jacobi sweeps
2: TolE := 1.0× 10−6 . eigenvalue tolerance for Davidson diag.
3: TolR := 1.0× 10−6 . residual tolerance for Davidson diag.
4: CorrectStructure := false . eigenvalue structure
5: Newton := false . flag for Newton-Raphson iterations
6: for iter < MaxIter do
7: Calculate g
8: if |g| < TolG and CorrectStructure then
9: break

10: end if
11: TolR := min (1.0× 10−3 × |g| ,TolR) . threshold adjustment
12: if Newton then
13: Solve Hx = −g
14: else
15: Diagonalisation: −

(
H g
g† 0

)(
x
x′

)
= λ

(
x
x′

)
. thresholds TolE, TolR

16: if g†x < 0 then
17: x := −x
18: end if
19: if |x| > 0.2 then
20: Scale to |x| = 0.2
21: end if
22: TolE := min (1.0× 10−3 × |λ1| ,TolE) . threshold adjustment
23: CorrectStructure := false
24: if λ2 > 0 and |λ1| < 1.0× 10−3 × λ2 then
25: CorrectStructure := true
26: end if
27: if CorrectStructure and slow convergence then
28: Newton := true
29: end if
30: end if
31: Cayley update of the orbitals with the parameters x
32: end for

Since the Foster-Boys criterion is maximised, the optimisation needs to follow the

largest eigenvalue, or alternatively the smallest eigenvalue of minus the augmented Hes-

sian matrix. The convergence thresholds of the iterative Davidson diagonalisation are

set to successively tighter values as the optimisation progresses: the eigenvalue threshold

by default to 10−3 times the smallest eigenvalue from the previous iterations, and the

residual threshold to 10−3 times the smallest gradient norm.

The implementation deviates from Eq. (3.117) in determining the length and direction
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of the step. First, the parameters are scaled down if the resulting step length exceeds a

predefined threshold, by default 0.2. Second, the product of the gradient with the step

vector is used to assess if the localisation criterion would be increased to first order, and

the sign is flipped if necessary.

Convergence of the localisation procedure is determined firstly using the norm of

the gradient, and secondly by ascertaining that the eigenvalues have the correct signs.

Singular eigenvalues are ignored in this analysis. With Davidson diagonalisation of the

augmented Hessian matrix, the RFO may fail to achieve sufficiently tight convergence

due to numerical noise. If the correct eigenvalue structure has already been verified

and slow convergence is detected using a set of heuristic criteria, the algorithm switches

to Newton-Raphson optimisation instead of RFO. The linear equation system is solved

iteratively to avoid formation of the full Hessian matrix.

Precise numerical evaluation of a matrix exponential is not straightforward, even

though solutions have been developed and implemented.[190] Instead, the orbital update

in the localisation is performed via the Cayley transform:

Cay

(
1

2
κ′
)

=

(
1− 1

2
κ′
)−1(

1 +
1

2
κ′
)

(3.118)

The matrix defined thereby is orthogonal[191]. Moreover, its Taylor expansion,

Cay

(
1

2
κ′
)

= 1 + κ′ +
1

2
κ′2 +

1

4
κ′3 + . . . , (3.119)

shows that it is identical with the matrix exponential of κ′ up to second order. These

properties permit the Cayley transform to be used instead of the matrix exponential for

an orbital update with the same parameters, but the orthogonal matrix in Eq. (3.118) is

determined straightforwardly by solving a linear equation system.

Unlike Jacobi sweeps, the localisation method described in this section systemati-

cally determines a local maximum of the Foster-Boys criterion, and converges its orbital

gradient to high precision. The choice of a well-behaved numerical procedure to obtain

localised orbitals can influence even the single-point energies calculated with a local cor-
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relation method significantly. Appendix C demonstrates this using DLPNO-CCSD(T)

energies calculated for two benchmark sets.

3.2.5 Scaling of the computational cost

The major components of a DLPNO-MP2 energy calculation, which are the RI integral

transformation, the PNO construction and the MP2 iterations, are formally linear scaling.

This was verified in Section 2.3.5 for alkane chains as a model system. However, large-

scale calculations on systems of practical relevance with a more complicated structure

usually do not operate in the asymptotic regime, and therefore exhibit a higher-than-

linear scaling. Second, otherwise unimportant components with a higher-order scaling

become relevant in calculations on very long linear chains, thereby defying an analysis of

the “asymptotic” scaling. Nevertheless, this subsection considers the scaling of different

steps in the DLPNO-MP2 gradient implementation from a formal viewpoint, which will

be verified with calculations at a later stage.

Pair-dependent contributions for the gradient are evaluated in one or two loops over

all orbital pairs. The number of quantities per pair are limited by the sizes of the domains

of PAOs and auxiliary functions, and the respective number of PNOs, all of which become

asymptotically constant with increasing system size. Due to orbital pair prescreening,

the number of remaining orbital pairs, and hence the computational expense for this

part of the calculation, has an O (N) scaling. Pair prescreening itself, and the associated

contributions to the gradient, scale quadratically with the number of orbitals, but their

overall impact on the computational expense is insignificant.

The cost of the RI integral gradient,
∑

µνK ΓKµν (µν|K)x, is O (N). Calculating terms

involving the integrals (pµ̃′|K) and (ip|K) leads to an O (N2) scaling, as p stands for

all molecular orbitals in the system. The number of MOs i, PAOs µ̃′, and associated

atomic basis functions connected to a specific auxiliary functionK become asymptotically

constant (albeit only for very large systems).

A substantial amount of the computational cost is incurred by the Fock response

function and the CP-SCF equations, as well as the gradient of the two-electron integrals
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in the Fock operator. The scaling of these components will generally depend on any

approximations taken to accelerate Fock matrix construction, and therefore it is not spe-

cific to DLPNO-MP2. The O (N4) scaling of Hartree-Fock is reduced to O (N2) with the

help of integral screening techniques.[146, 192] While the cost to calculate the exchange

energy formally reduces to O (N) in the large-scale limit, actual linear scaling is not

achieved in practical applications.[143] RIJCOSX typically features an O (N2) scaling in

practice, even though the chain-of-spheres exchange integration itself is asymptotically

linear scaling in principle.

An O (N3) expense is incurred from calculating the residual of the coupled-perturbed

localisation equations (3.94). Likewise, the cost to diagonalise the Hessian of the Foster-

Boys criterion with the Davidson method scales with the third power of the system size,

since the number of trial vectors is system-independent. As a consequence, the rational

function optimisation of the localised orbitals, which performs several diagonalisations,

has an O (N3) scaling.

There is a fixed number of further steps, which involve operations on matrices or

vectors in a non-truncated basis. For example, multiplications of matrices that are in a

basis of all AOs, MOs or redundant PAOs of a given system scale with the third power of

the system size. Generally, these steps account only for a small part of the overall cost.

3.3 Results

3.3.1 Electric field gradients with exact and approximate energy

derivatives

The purpose of this subsection is to assess the quality of the relaxed DLPNO-MP2 den-

sity for first-order property calculations, and to examine the importance of individual

constraints in the DLPNO-MP2 Lagrangian.

Different quantities could be used, for example electrostatic multipole moments, root

mean square deviations of natural occupation numbers from RI-MP2, or the integrated

root-mean-square error of the density itself. We chose electric field gradients (EFGs),
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which were found to be very sensitive regarding different factors such as the electronic

structure method, the basis set, the molecular geometry, or relativistic corrections.[193–

195]

A molecule with nuclei of atomic number ZA at positions RA and an electronic particle

density ρ generates an electrostatic potential V ,

V (r) =
∑
B

ZB
|r−RB|

−
∫

ρ(r′)

|r− r′|
dr′, (3.120)

where the total DLPNO-MP2 electron density is given through the respective SCF and

relaxed MP2 contributions:

ρ(r) =
∑
µν

(
P SCF
µν +D′′µν

)
µ∗(r)ν(r) (3.121)

Nuclei with an electric quadrupole moment interact with an inhomogeneous electric

field, leading to quadrupole splitting interactions that are relevant in the context of several

spectroscopic techniques, e.g. nuclear magnetic resonance (NMR), nuclear quadrupole

resonance (NQR), rotational and Mössbauer spectroscopies. The interaction strength of

an electric quadrupole with the electric field is determined by the electric field gradient,

i.e. the Hessian matrix of the electrostatic potential:

Vmn(r) =
∂2V (r)

∂rm∂rn
(3.122)

Specifically, the EFG at nucleus A due to the electrons and all remaining nuclei is given

by:

V A
mn(RA) = −

∑
B 6=A

ZB

[
δmn

|RA −RB|3
− 3

(RA
m −RB

m)(RA
n −RB

n )

|RA −RB|5

]
+

∫
ρ(r)

[
δmn

|r−RA|3
− 3

(rm −RA
m)(rn −RA

n )

|r−RA|5

]
dr (3.123)

A representation of the EFG tensor, which is independent of the absolute orientation

of the coordinate system, is obtained by diagonalising VA. The eigenvectors are taken as
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local x-, y-, and z-axes, assigned by the magnitudes of the eigenvalues:

|Vzz| ≥ |Vyy| ≥ |Vxx| (3.124)

The largest eigenvalue determines the nuclear quadrupole coupling constant (NQCC) CQ:

CQ =
eQVzz
h

(3.125)

In the preceding equation, Q is the nuclear quadrupole moment of the nucleus in question.

Furthermore, the eigenvalues determine the asymmetry parameter η:

η =
Vyy − Vxx

Vzz
(3.126)

We calculated electric field gradients for the Cl nucleus of chlorothiazide and the S

nucleus of the taurine zwitterion. Nuclear quadrupole coupling constants derived from

solid-state NMR measurements have been reported for chlorothiazide with the 35Cl iso-

tope[196] and for taurine with the 33S isotope.[197]

Molecular geometries for both compounds are available in the Cambridge Structural

Database.[198] The atomic coordinates in chlorothiazide were extracted from the X-ray

diffraction structure[199] (CSD reference QQQAUG18), and the hydrogen positions were

refined using a constrained optimisation with the BP86 functional[200, 201] together

with the D3BJ dispersion correction[202, 203] and the def2-TZVP basis set. Atomic

coordinates for taurine were obtained from neutron diffraction data[204] (CSD reference

TAURIN03) without further optimisation.

In order to isolate the influence of the PNO-specific constraints on the overall accu-

racy, calculations were first performed using different values for TCutPNO, while all other

thresholds were set to zero. Densities were calculated using the complete Lagrangian, and

separately by omitting specific constraints. Figure 3.1 shows the MP2 contribution to the

principal component Vzz of the electric field gradient as a function of the PNO truncation

threshold. These calculations were performed for isolated molecules of chlorothiazide
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(a) Electric field gradient at the Cl nucleus of chlorothiazide.
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(b) Electric field gradient at the S nucleus of taurine.

Figure 3.1: MP2 contribution to the largest principal component of the electric field
gradient (Vzz) as a function of TCutPNO. The cc-pwCVTZ basis set was employed.

or taurine in vacuum using the cc-pwCVTZ basis set for all non-hydrogen atoms[205]

and cc-pVTZ for the hydrogens,[206] with appropriate auxiliary sets for correlation fit-

ting.[207, 208] All electrons were correlated in the EFG calculations.

There is a good agreement between the EFGs calculated using the formally complete

relaxed DLPNO-MP2 and RI-MP2 densities. Especially for loose values of TCutPNO, re-

sults are improved by including the derivative of the PNO energy correction ∆EPNO. On

the other hand, omitting the constraints for the PNOs and for the semicanonical ampli-
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tudes introduces unacceptably large errors and an erratic, non-monotonous convergence

behaviour. With the default threshold TCutPNO = 10−8, the errors in the correlation

contribution to the electric field gradient amount to 20 % when these constraints are

omitted, whereas errors of only ca. 1 % are incurred using a Lagrangian with the full set

of constraints.

The observed large errors resulting from omitted constraints originate primarily from

valence pair contributions. At the point of performing these calculations, the gradient

for DLPNO-MP2 with frozen core orbitals had not been implemented yet; however, we

performed calculations with TCutPNO(Core) = 0, which eliminated any virtual space trun-

cation for all pairs involving at least one core orbital. As shown in Appendix B.1.1, this

only had a small influence on the EFG errors with a given PNO truncation threshold for

valence orbital pairs.

While the preceding results were obtained with PNO truncation only, for practical

applications it is more relevant to examine EFGs with standard settings for all thresh-

olds. In addition, the intrinsic MP2 error relative to experimental results should be taken

into account. To reproduce the experimental nuclear quadrupole coupling constant of

chlorothiazide with RI-MP2, it was sufficient to perform a calculation with an isolated

molecule in vacuum using the cc-pwCVQZ set[205] (with cc-pVQZ[206] for the hydro-

gen atoms). For 35Cl we used the quadrupole moment of −81.7(8) mb determined by

Sundholm and Olsen,[209] as recommended in the tabulation by Stone.[210] According

to Eq. (3.125), RI-MP2 yields a nuclear quadrupole coupling constant of −74.59 MHz,

which is in a fair agreement with the experimentally derived value of −73.04(8) MHz for

chlorothiazide in the solid state.[196]

Since taurine is present as a zwitterion in the solid state, there is a large intermolec-

ular contribution to the electric field gradient. In consequence, calculations performed

with an isolated molecule do not reproduce the experimental value: while the nuclear

quadrupole coupling constant was determined as 1.36(2) MHz experimentally,[197] a value

of −6.75 MHz was obtained using RI-MP2 with cc-pwCVQZ. We used −69.4(4) mb as the

quadrupole moment of the 33S nucleus, which was obtained by Stopkowicz and Gauss.[194]
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(a) Central molecule shown with car-
bon atoms in bronze colour, spectator
molecules with carbons in light blue.

(b) The four taurine molecules embedded in
point charges.

Figure 3.2: Model to calculate the nuclear quadrupole moment of taurine.

In order to calculate a more realistic value for the nuclear quadrupole coupling con-

stant, an adequate representation of the environment needed to be created, which also

accounted for the computational limitations of the preliminary DLPNO-MP2 deriva-

tives implementation that the EFG calculations were performed with. A central taurine

molecule in cc-pwCVQZ basis (with cc-pVQZ basis for the hydrogens) was supplemented

with three neighbouring molecules in cc-pVTZ basis (Figure 3.2a). Two of the molecules

are hydrogen-bonded to the SO3
– group of the central molecule. The third molecule has a

hydrogen atom of its NH3
+ group at a distance of 2.79Å to the central sulphur nucleus. In

addition, the four molecules were embedded in 470 point charges representing additional

235 molecules (Figure 3.2b): a charge of −0.938 was placed at the positions of sulphur

atoms, and the opposite charge at the nitrogen atom positions. The values were chosen

to reproduce the calculated dipole moment of a taurine zwitterion in vacuum. All atomic

coordinates were extracted from neutron diffraction data.[204] The RIJCOSX method

was used with the GridX6 settings to accelerate the SCF and CP-SCF procedures, which

we found to give negligible errors for the electric field gradient.

Figure 3.3 shows nuclear quadrupole coupling constants calculated for chlorothiazide

and taurine with LoosePNO, NormalPNO and TightPNO settings (as defined in Ta-

ble 2.2) using the complete and approximate Lagrangians. Corresponding data tables
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(b) Quadrupole coupling constant at the 33S nucleus of taurine.

Figure 3.3: Nuclear quadrupole coupling constants calculated with DLPNO-MP2 using
different threshold settings and the cc-pwCVQZ basis. The horizontal dotted lines mark
results calculated with Hartree-Fock and RI-MP2, and experimental values from solid-
state NMR experiments.[196, 197]
Grouping of the DLPNO-MP2 results: (1) charge density calculated with all constraints,
and including the derivative of the PNO correction ∆EPNO, (2) charge density calculated
with all constraints, but without the derivative of ∆EPNO, (3) constraints specific to
PNOs and the semicanonical amplitudes are omitted, but the localisation constraint is
considered, (4) the localisation constraint is also omitted.

are provided in Appendix B.1.2. With default (NormalPNO) and tight thresholds, the

NQCC of taurine deviates from the canonical RI-MP2 result by 0.05 MHz and 0.03 MHz,

respectively, which is somewhat smaller than the difference to the experimental result. A
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somewhat larger deviation of 0.2 MHz is observed with loose settings. Errors for chloroth-

iazide are in a similar range, showing that EFGs can be calculated reliably using the

relaxed DLPNO-MP2 density with default or tight thresholds.

Omitting constraints for the PNOs and for the semicanonical amplitudes leads to very

large errors: for chlorothiazide, the deviations from RI-MP2 are comparable to the entire

MP2 correlation contribution to the NQCC (Figure 3.3a). The NQCCs of taurine have

not only a wrong absolute value, but also the wrong sign if constraints related to the

PNOs are omitted (Figure 3.3b).

EFGs of chlorothiazide and taurine are two selected examples with particularly dra-

matic errors caused by a simplified Lagrangian. In preliminary calculations, we found

that such cases represent a minority, whereas the errors were much smaller for many other

examples. However, a general derivatives implementation needs to produce accurate re-

sults without exceptions, which means that the complete set of constraints, including

relaxation of the PNOs, is needed to calculate the orbital-relaxed density.

Datta and co-workers used an implementation of the orbital-unrelaxed closed-shell

DLPNO-CCSD density to calculate electric dipole moments.[107] They found that wave

function truncation in local correlation methods can have a strong influence on the accu-

racy of correlation contributions to orbital-unrelaxed molecular properties. This finding is

in agreement with results by other authors: e.g. Saitow and Neese, who calculated hyper-

fine couplings using an implementation of the unrelaxed density for open-shell DLPNO-

CCSD;[108] McAlexander and Crawford, who calculated dynamic polarisabilities and

optical rotations using a simulated CCSD code with PAOs, OSVs and PNOs;[109] Ku-

mar and Crawford, who calculated dynamic polarisabilities using a frozen virtual natural

orbital approach;[211] and Korona and co-workers, who calculated static polarisabilities

using numerical derivatives of the PAO-based local CCSD energy.[212]

While the results presented in our work show that relaxation of PNOs is important for

orbital-relaxed properties, it does not lead to the conclusion that this is necessarily also

the case for the orbital-unrelaxed density. To the contrary, numerically calculated orbital-

unrelaxed DLPNO-CCSD dipole moments—which thereby include PNO relaxation—by
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Datta and co-workers suggest that a deeper understanding of contributions beyond PNO

relaxation may be necessary to improve the accuracy of unrelaxed properties.[107]

The preliminary implementation used to calculate the EFGs reported in this sub-

section did not yet include a derivative of the energy correction for screened-out orbital

pairs. However, the corresponding energy contributions were −2 µEh for the chloroth-

iazide molecule, and −37 µEh for the system of four taurine molecules embedded in point

charges. Repeating the calculation for taurine without orbital prescreening did not result

in any significant numerical difference for the electric field gradient.

3.3.2 Molecular geometries with exact and approximate gradient

schemes

This subsection investigates the influence of constraints in the Lagrangian on the equi-

librium structures of a few organic systems. The geometry optimisations were performed

with the def2-TZVP basis. Because of the limitations of the preliminary gradient im-

plementation used for these calculations, all electron were correlated, and the deriva-

tive of the prescreening contribution to the energy was not included in the gradient.

The calculations were performed for four systems: 1,5-dibromo-4,8-dichloronaphthalene

and RESVAN, each with starting geometries from the LB12 set by Grimme and co-

workers[213]; and 1,1’-bi-2-naphthol (BINOL) and the adenine-thymine dimer, with their

starting geometries determined using HF-3c.[214] Unless noted otherwise, all geometry

optimisations were performed with the TightOpt convergence settings.

Figure 3.4 shows the structures of the four systems. The accuracy of the optimised

geometries was judged by comparing selected interatomic distances, or the dihedral angle

in the case of BINOL, between DLPNO-MP2 and RI-MP2. NormalPNO and TightPNO

settings lead to accurate structures, which reproduce covalent bond lengths in RI-MP2

equilibrium geometries to well within 0.1 pm. Larger errors are caused by LoosePNO

settings, which are not intended for general production use.

Table 3.1 shows geometric parameters determined using the gradient with complete

and approximate Lagrangians. As for the electric field gradients (Section 3.3.1), the
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dih	/	°
77.60
75.91
75.83
75.61

rCl-Br	/	pm
313.3
313.1
313.0
313.0

rO-H	/	pm
191.5
191.2
190.8
190.7

rS-S	/	pm
397.0
388.9
386.6
385.8

rN-H	/	pm
178.6
177.8
177.3
177.1

LoosePNO					NormalPNO					TightPNO					RI-MP2

Figure 3.4: Structures optimised with RI-MP2 and DLPNO-MP2 in comparison. The
calculations were performed with the def2-TZVP basis, and all electrons were correlated.

calculations were performed using (1) a complete Lagrangian with all constraints, (2)

a Lagrangian with the full set of constraints, but without the derivative of the PNO

energy correction ∆EPNO, (3) a Lagrangian without constraints specific to PNOs and the

semicanonical amplitudes, and (4) a Lagrangian with the Brillouin constraint only.

Omitting the gradient contribution ∇∆EPNO somewhat increases the deviations from

RI-MP2 geometries with a given set of DLPNO-MP2 truncation thresholds. Leaving

out the PNO-specific constraints further increases errors, and may also lead to conver-

gence difficulties of geometry optimisations, as is the case for the adenine-thymine dimer

with NormalPNO settings (Table 3.1c). Unlike for EFGs, no catastrophic failures were

observed; however, establishing this as a general conclusion for an approximate nuclear

gradient without PNO-specific constraints would require much more extensive testing.

On the other hand, geometry optimisations performed without the localisation constraint

converge to structures with very large errors, most blatantly evident for the dihedral angle

in BINOL (Table 3.1d).

Screened-out orbital pairs contribute −1 µEh to the total correlation energy of the

adenine-thymine dimer, −0.4 µEh for RESVAN, −0.1 µEh for BINOL, and −0.2 µEh for
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(c) TightPNO (TightOpt)

Figure 3.5: Electronic energy of the adenine-thymine dimer in the last steps of the re-
spective geometry optimisations. The energy of the final step (EOpt) has been subtracted
from all values. In between the geometries of the optimisation steps, single-point energies
were calculated for linearly interpolated coordinates, R(α) = (1− α)Rk + αRk+1.
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rBr···Cl / pm

Settings (1) (2) (3) (4)

LoosePNO 313.3 313.5 313.9 313.1
NormalPNO 313.1 313.1 313.2 312.3
TightPNO 313.0 313.0 313.0 312.2

RI-MP2 313.0

(a) Distance between the Br and Cl atoms in 1,5-dibromo-4,8-dichloronaphthalene.

rS···S / pm

Settings (1) (2) (3) (4)

LoosePNO 397.0 401.5 401.7 399.7
NormalPNO 388.9 390.5 389.9 385.4
TightPNO 386.7 387.0 387.2 383.0

RI-MP2 385.8

(b) Distance between the S atoms in RESVAN.

rN–H···O / pm rN–H···N / pm

Settings (1) (2) (3) (4) (1) (2) (3) (4)

LoosePNO I191.5 I192.3 II− 185.8 I178.6 I179.8 II− 175.2
NormalPNO 191.2 191.3 I190.3 184.0 177.8 178.1 I178.5 173.7
TightPNO 190.8 190.9 190.8 184.1 177.3 177.4 177.4 172.8

RI-MP2 190.7 177.1

(c) Hydrogen bond lengths in the adenine-thymine dimer.
IConverged only with “NormalOpt” settings, but not with “TightOpt”.
IIDid not converge.

dihedral / ◦

Settings (1) (2) (3) (4)

LoosePNO 77.60 78.87 78.33 105.34
NormalPNO 75.91 76.31 77.81 106.30
TightPNO 75.83 75.92 75.93 107.30

RI-MP2 75.61

(d) Dihedral angle in BINOL.

Table 3.1: Geometric parameters obtained with exact and approximate gradients of the
DLPNO-MP2 energy (see Figure 3.4). Meaning of the column labels:
(1) Including all constraints and the derivative of ∆EPNO.
(2) Including all constraints without the derivative of ∆EPNO.
(3) Excluding the constraints for the PNOs and the semicanonical amplitudes.
(4) As in (3), but also excluding the localisation constraint.
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1,5-dibromo-4,8-dichloronaphthalene. Accordingly, the change in the energy contribution

∆EPre is significantly below 1 µEh in each case, and thus irrelevant in these geometry

optimisations.

In order to gain more insight into the geometry convergence difficulties observed for

the adenine-thymine dimer with loose thresholds (Table 3.1c), we have analysed single-

point energies for the final steps of the geometry optimisation. Figure 3.5 shows energies

of linearly interpolated structures between subsequent optimisation steps. LoosePNO

thresholds lead to steps of up to 20 µEh in the potential energy surface, and convergence

of a geometry optimisation is rather based on a coincidental fulfilment of the criteria.

With NormalPNO settings the discontinuities are reduced to a few µEh, and the endpoint

of the optimisation is more clearly identifiable as a minimum, even though there are a

few lower-lying points in its vicinity. TightPNO settings reduce the steps in the PES to

< 1 µEh, and the continuous parts of the curve possess a more uniform slope.

3.3.3 Singularities of the localisation orbital Hessian

This subsection investigates systems with a singular or near-singular orbital Hessian of the

Foster-Boys localisation scheme: a weakly bonded dimer of benzene and ethyne (system

50 from the S66 benchmark set[155]), bis(cyclopentadienyl)magnesium (MgCp2), and the

transition metal complex KAMDOR from the LB12 set of Grimme and co-workers[213].

The systems are depicted in Figure 3.6.

Foster-Boys localisation of the valence orbitals of ethyne leads to a set of two orbitals

that are purely of σ-character, and three bent orbitals that mix σ- and π-contributions

(Figure 3.7). Rotating those three orbitals collectively around the molecular axis by

any angle leaves the localisation criterion unchanged. Accordingly, the orbital Hessian

of the localisation function has one eigenvalue of zero, corresponding to the rotation

mode. This is not a unique feature of the Foster-Boys scheme: any localisation method

that does not artificially break the symmetry of linear molecules would lead to this type

of continuous rotational degeneracy. On the other hand, rotating all orbitals together

around the internuclear axis also leaves the DLPNO-MP2 energy unchanged.
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(a) benzene-ethyne dimer

(b) MgCp2
(c) KAMDOR

Figure 3.6: Structures of systems used to investigate singularities of the orbital Hessian
of the localisation criterion.

(a) The five localised valence orbitals.

(b) The three bent orbitals can
be rotated collectively around the
molecular axis without affecting
the localisation criterion.

Figure 3.7: Molecular orbitals of ethyne after Foster-Boys localisation.

The point group of the benzene-ethyne dimer is C6v. According to Scheurer and

Schwarz, continuous degeneracy may occur in molecules belonging to this group.[173]

While most eigenvalues of the Foster-Boys localisation Hessian were in a range of about

−2 to −500, one had a value of −4× 10−7. The latter results in an instability of the

DLPNO-MP2 derivatives for the dimer.

The lowest and highest natural occupation numbers of the relaxed DLPNO-MP2

density matrix in def2-TZVP basis with NormalPNO thresholds are −0.58 and −2.52,

respectively. This is not caused by any intrinsic pathology of the MP2 method for this
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Figure 3.8: Foster-Boys orbitals representing the second shell of magnesium in MgCp2.

system, since all eigenvalues of the relaxed RI-MP2 density are between 0.0000 and 2.0000.

After eliminating the eigenvector of the localisation Hessian associated with the near-

zero eigenvalue, the lowest and highest occupation numbers of the relaxed DLPNO-MP2

density are also recovered as 0.0000 and 2.0000, respectively.

Calculations for MgCp2 were performed with the cc-pwCVTZ basis, and all electrons

were correlated. We found that the pathological effects were more pronounced with this

basis than with def2-TZVP. Natural occupation numbers of the relaxed RI-MP2 density

were in a range of 0.0000 to 1.9997, while the smallest and largest values of the DLPNO-

MP2 (NormalPNO) density were −0.23 and 2.22, respectively.

We used an MgCp2 structure in a staggered arrangement of D5d symmetry, for which

a continuous degeneracy is possible.[173] Among the Foster-Boys LMOs, four orbitals can

be identified as the subvalence shell of Mg, with a shape resembling sp3 hybrid orbitals of

2s and 2p contributions (Figure 3.8). The smallest eigenvalue of the localisation Hessian

(−5× 10−7) corresponds to a rotation of the three orbitals that point toward the edges

of the upper cyclopentadienyl ring. Two further small eigenvalues (−2× 10−5 each) are

associated with an eigenvector that mixes all four orbitals.

After removing the respective three eigenvectors corresponding to the smallest eigen-

values, lowest and highest natural occupation numbers of−0.0002 and 1.9997 are obtained

for the relaxed DLPNO-MP2 density; the same result is achieved even by eliminating only

the one eigenvector associated with the smallest eigenvalue. As the core definition for

Mg in ORCA includes the 1s orbital only, the same pathological effects would occur in a

frozen-core calculation.[150]

KAMDOR is a complex of chromium and osmium with nine carbonyl ligands, and
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one trimethylphosphine ligand bound to the Os atom. In def2-TZVP basis, the natural

occupation numbers of the RI-MP2 density are in a range of −0.0578 to 2.0114. The

lowest and highest natural occupation numbers of the DLPNO-MP2 (NormalPNO) are

−0.21 and 2.15, which are much further outside the range between zero and two.

The smallest eigenvalue of the localisation Hessian is −4× 10−5, associated with a

rotation of the three bent valence orbitals of the CO ligand that is on the same axis as

the two metal atoms (the upper ligand in Figure 3.6c). The structure of the KAMDOR

complex is of Cs symmetry, for which a continuous degeneracy is not allowed.[173] How-

ever, disregarding the trimethylphosphine ligand at the opposite end of the molecule, the

remaining fragment is of C4v symmetry, for which a continuous degeneracy is possible.

This may explain the existence of the small eigenvalue of −4× 10−5, which is sufficiently

close to zero, but larger than comparable values between 10−7 and 10−6 obtained for the

other two systems. After removing the eigenvector associated with this eigenvalue, the

lowest and highest natural occupation numbers of the relaxed DLPNO-MP2 density are

−0.0572 and 2.0119, which is close to the RI-MP2 results.

In order to establish an automatic procedure for eigenvector removal, we will next

examine a quantitative relationship between small eigenvalues and errors in the density.

For this purpose, we created distorted structures of the three systems. Each atom was

displaced by a step of 0.1 pm, 0.3 pm, 1 pm, 2 pm and 5 pm in a randomly chosen direction.

Breaking the symmetry of these systems with small displacements permits very small

eigenvalues of the localisation Hessian to be examined more systematically.

For each structure, an “uncorrected” relaxed density matrix was calculated using the

unmodified localisation constraint in the Lagrangian. In addition, a “corrected” density

was calculated by removing only the one eigenvector of the localisation Hessian that is

associated with the smallest eigenvalue. Even though it may be necessary to remove

several eigenvectors for a given system in practice, this investigation is limited to one

eigenvector for simplicity.

Root mean square deviations (RMSD) between natural occupation numbers calculated

with RI-MP2 and DLPNO-MP2 are shown in Figure 3.9. In the presence of a very small
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Figure 3.9: Root mean square deviation of the natural occupation numbers between the
DLPNO-MP2 and RI-MP2 relaxed densities. Each system is represented by an undis-
torted and five slightly distorted geometries. The position of each point on the horizontal
axis is determined by the magnitude of the smallest eigenvalue of the localisation Hes-
sian. “Corrected” density matrices were calculated after removing one eigenvector asso-
ciated with the smallest eigenvalue, whereas the “uncorrected” data points represent raw
DLPNO-MP2 results without removing any eigenvectors.
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localisation Hessian eigenvalue there is a very large deviation of the natural occupation

numbers from the RI-MP2 reference. However, with increasing magnitude of the smallest

eigenvalue, the RMSD decreases strongly. Correcting the localisation constraint in the

Lagrangian by removing the eigenvector associated with the smallest eigenvalue leads

to density matrices that are in close agreement with the RI-MP2 natural occupation

numbers in every case. If the smallest eigenvalue has a sufficiently large magnitude, the

“corrected” and “uncorrected” results become almost indistinguishable.

We conclude from the data shown in Figure 3.9 that 3× 10−4 is an appropriate eigen-

value cutoff. However, all calculations of the DLPNO-MP2 gradient in the remainder of

this work and in the production implementation remove eigenvectors associated with all

eigenvalues below the given threshold, not only with the smallest one.

3.3.4 Accuracy of the gradient

As it was shown before that DLPNO-MP2 reproduces RI-MP2 energies closely, one may

assume that standard settings such as “NormalPNO” or “TightPNO” also lead to an accu-

rate analytical gradient. This will be verified below with single-point gradient calculations

using structures from the Baker[215] and S66x8 sets[155]. Data tables are presented in

Appendix B.3.

The Baker set contains 30 structures ranging from three (water) to 29 atoms (men-

thone). As it was originally designed to test geometry optimisers, the nuclear coordinates

differ strongly from their equilibrium positions. Figure 3.10 shows the root mean square

deviations between the DLPNO-MP2 and RI-MP2 gradients calculated for each structure.

Whereas the gradients are almost identical for the smallest molecules, the deviation

converges to a range of 10−4Eh a0
−1 to 10−5Eh a0

−1 for the larger systems with Nor-

malPNO or TightPNO thresholds. Larger errors are encountered for benzidine, where

most of the deviation from the RI-MP2 gradient is caused by a slight distorting force

with DLPNO-MP2 towards an alternating lengthening and shortening of aromatic bonds

between carbon atoms. This is likely an artefact of the interplay between the Foster-Boys

orbitals (resembling a Lewis structure of benzene) and the DLPNO approximations.
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Figure 3.11: Root mean square deviation between the DLPNO-MP2 and the RI-MP2
gradients over all dimers in the S66x8 test set [RMS(RMSD)]. The position of the data
points on the horizontal axis is determined by the distance scaling factor.

The S66x8 set was designed to examine the performance of quantum chemical methods

for potential energy surfaces of weakly interacting systems. It contains the dimers of the

S66 set,[155], but the distances of the monomers are scaled by eight different factors

between 0.9 and 2. To represent the data for the 528 structures in a condensed and

meaningful way, we calculated the root mean square of the root mean square gradient
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deviations, RMS(RMSD), for the 66 dimers at each of the eight different distances:

RMS(RMSD) =

√√√√ 1

66

66∑
s

[∇EDLPNO-MP2(s)−∇ERI-MP2(s)]
2

NAtoms(s)
(3.127)

Figure 3.11 shows RMS(RMSD) values for DLPNO-MP2 with different threshold

settings. Close to the equilibrium distances, the typical errors are 1.5× 10−4Eh a0
−1,

6× 10−5Eh a0
−1 and 2× 10−5Eh a0

−1 for LoosePNO, NormalPNO and TightPNO, re-

spectively. The errors tend decrease slightly from shorter to longer distances between the

monomers.

3.3.5 Geometry optimisation benchmarks

The most important practical application of the nuclear gradient is likely to perform

geometry optimisations of molecular systems. In this regard, two questions need to be

answered: is the convergence of geometry optimisations comparable to RI-MP2, and how

large are the errors relative to RI-MP2 equilibrium geometries?

To address these questions, we have performed optimisations of the structures from

the Baker set,[215] the ROT34 set,[122, 123] the S66 set,[155] the LB12 set,[213] and a few

organometallic compounds containing main group metals and zinc. All calculations were

performed using the def2-TZVP basis and with the frozen core approximation. Unless

noted otherwise, the optimisations were carried out in redundant internal coordinates,

with the “TightOpt” settings to enforce strict convergence criteria which permit even small

deviations between molecular structures to be identified. By default, ORCA employs

“tight” SCF settings in all geometry optimisations.

3.3.5.1 Rotational constants of molecules

The ROT34 set by Grimme and co-workers[122, 123] contains twelve organic molecules

with 18 to 35 atoms each. It was designed to examine rotational constants as an in-

direct measure for the quality of equilibrium geometries. Geometry optimisations were

performed using both DLPNO-MP2 and RI-MP2, and the results of the DLPNO-MP2
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Thresholds MRE (%) SD (%) Min (%) Max (%)

LoosePNO −0.157 0.106 −0.404 0.053
NormalPNO −0.064 0.049 −0.170 0.025
TightPNO −0.025 0.022 −0.070 −0.017

Table 3.2: Error statistics for equilibrium constants Be in the ROT34 set as computed
with DLPNO-MP2, using RI-MP2 as a reference: ∆Be = BDLPNO-MP2

e −BRI-MP2
e . MRE:

mean relative error, SD: standard deviation of the relative error, and Min/Max: minimal
and maximal relative errors

-0.30% -0.20% -0.10% 0.00%
ΔBe relative to RI-MP2

LoosePNO
NormalPNO
TightPNO

Figure 3.12: Errors in rotation constants for the ROT34 represented as normal distri-
butions, with RI-MP2 as the reference. The corresponding numerical data is shown in
Table 3.2.

calculations were compared to RI-MP2 as a reference. For consistency with the original

publications on ROT34, only the largest rotational constant of triethylamine is included

in the statistics (and hence there is a total of 34 rotational constants to compare instead

of 36).

As shown in Table 3.2 and Figure 3.12, DLPNO-MP2 slightly underestimates rota-

tional constants in comparison with RI-MP2, which means that the structures are some-

what larger than the MP2 equilibrium geometries. The magnitudes of the mean relative

errors are 0.16 % with LoosePNO, 0.06 % with NormalPNO, and 0.03 % with TightPNO.

A comparison with the deviations from experimentally derived rotation constants puts

these values into context: Risthaus and co-workers determined that the overall devia-

tions for this benchmark set are 0.45 % with RI-MP2/def2-QZVP, and 0.21 % with the
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Basis set MRE (%) SD (%) Min (%) Max (%)

def2-SVP −0.043 0.034 −0.106 0.027
def2-TZVP −0.064 0.049 −0.170 0.025
def2-QZVPP −0.050 0.044 −0.138 0.052

Table 3.3: Error statistics for equilibrium constants Be in the ROT34 set as computed
with DLPNO-MP2, using RI-MP2 as a reference. MRE: mean relative error, SD: standard
deviation of the relative error, and Min/Max: minimal and maximal relative errors

dispersion-corrected double-hybrid density functional RI-B2PLYP-D3/def2-QZVP.[123]

Errors incurred by truncations with NormalPNO or TightPNO settings are thus sub-

stantially smaller than the method-specific errors of MP2 itself, or of typical empirical

schemes based on MP2.

Upon analysing bond lengths for part of the molecules in the Baker test set, Frank

and Hättig reported that errors in geometries optimised with their PNO-MP2 method

increase with basis set size.[112] To investigate a possible basis set dependence, we have

performed additional optimisation for the ROT34 set with basis sets of double zeta and

quadruple zeta quality using NormalPNO thresholds. The statistical results in Table 3.3

do not show any clear tendency with the size of the basis set, but the errors always stay

in the small range observed with def2-TZVP.

3.3.5.2 Structures of organic molecules

Baker’s test set[215] was originally designed to investigate the performance of algorithms

for geometry optimisation. Hence, the starting coordinates differ substantially from the

corresponding equilibrium structures. In some cases, we encountered convergence diffi-

culties, which required a few manual interventions to obtain comparable geometries:

• Benzidine, pterin and ACANIL01, all of which contain amino groups, feature planar

starting structures in the Baker set. In their MP2 minimum geometries, however,

the amino groups are not planar; the RI-MP2 optimisations of these three molecules

with the planar starting structures converged to saddle points. On the other hand,

the LoosePNO-level optimisations of benzidine and pterin converged directly to the

non-planar minima with lower energies, which were used as starting points to obtain
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Figure 3.13: Baker test set: root mean square deviation of all covalent bond lengths in
each molecule between DLPNO-MP2 and RI-MP2. The molecules are ordered by their
number of atoms, increasing from left to right.

structures with RI-MP2 and with NormalPNO and TightPNO settings.

A LoosePNO optimisation of ACANIL01 led to an initially unconverged structure.

The latter was used as a starting point for the RI-MP2 optimisation and for further

DLPNO-MP2 optimisations with LoosePNO, NormalPNO and TightPNO settings,

all of which then converged to the correct minima.

• No convergence with “TightOpt” settings could be achieved for caffeine with thresh-

olds at LoosePNO level. In this case, the geometry convergence criteria needed to

be relaxed to “NormalOpt”.

An automated analysis of the optimised geometries was performed using a script.

Covalent bonds were assigned between all atoms that were separated by no more than

1.2 times the sum of their covalent atomic radii. All angles and dihedrals between bonds

in this framework were calculated, too.

Figure 3.13 shows root mean square deviations over all bond lengths in each molecule.

All RMSDs are below 0.02 pm with NormalPNO thresholds and 0.01 pm with TightPNO

thresholds. As a further trend evident from the graph, errors are almost negligible for

smaller molecules, but increase towards the larger systems where the local approximations

become more effective. Therefore, it is not particularly meaningful to perform a statistical

137



Figure 3.14: Largest errors occurring in any molecules of the Baker test set. The un-
derlined values highlight the maximal errors determined among all bond lengths, angles
and dihedrals in all of the structures. Values that are not underlined are only shown for
comparison. Atoms belonging to the respective bonds, angles and dihedrals are shown in
their element colours, whereas all remaining atoms are coloured in light cyan.

analysis for the Baker set with DLPNO-MP2, but instead it is more interesting to examine

the largest errors occurring in any of the molecules.

Figure 3.14 illustrates the largest errors in bond lengths, bond angles and dihedrals

that were observed in any of the molecules. Relative to RI-MP2, the magnitudes of the

respective largest errors with NormalPNO/TightPNO thresholds are 0.07 pm/0.04 pm for

bond lengths, 0.06◦/0.03◦ for bond angles and 0.6◦/0.3◦ for dihedrals.

Even though the single-point gradient at the starting geometry of benzidine is slightly

imbalanced (see Section 3.3.4), there is no significant tendency towards bond length alter-

nation in the aromatic rings of the optimised structure: the largest deviations of intra-ring

bond lengths between DLPNO-MP2 and RI-MP2 are 0.04 pm with LoosePNO thresh-

olds, 0.01 pm with NormalPNO thresholds and 0.005 pm with TightPNO thresholds. All

of these errors are well within the overall accuracy margins observed for DLPNO-MP2

equilibrium geometries with the respective threshold settings.

In their recent investigation of the OSV-MP2 gradient, Yang and co-workers included

a comparison with the DLPNO-MP2 method for geometry optimisations of molecules

from the Baker test set.[113] For the dihedral angle in benzidine they report a deviation

of the DLPNO-MP2 geometries by 1◦ to 2◦ from the RI-MP2 result, which is an order

of magnitude larger than observed in the present work. However, they used RIJCOSX
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with unreported grid settings for the DLPNO-MP2 calculations only, which is a possible

cause of significant errors in torsional angles that exceed the intrinsic error of DLPNO-

MP2.[123] In addition, a geometry optimisation of benzidine with the starting structure

from the test set may accidentally converge to a saddle point with planar amino groups,

or to one of the different local minima.

3.3.5.3 Non-covalently bonded dimers

Geometry optimisations of the dimers in the S66 set[155] were performed to investigate

the performance of the DLPNO-MP2 gradient for weakly interacting systems. In a few

cases, ensuing difficulties required manual intervention to obtain comparable equilibrium

structures:

• The optimisation of the water-methylamine dimer in its geometry from the S66 set

failed to converge to a minimum with RI-MP2/def2-TZVP. Instead, we flipped the

water molecule around the O–H···N hydrogen bond in the starting geometry for all

optimisations of this dimer.

• An initially unconverged geometry of the peptide-ethene dimer with LoosePNO

settings was found to possess a lower RI-MP2 single point energy than the converged

structure from the RI-MP2 optimisation. Therefore, the RI-MP2 optimisation and

all DLPNO-MP2 optimisations were restarted from that structure, and convergence

was subsequently achieved in all cases.

• All optimisations of the pentane-acetamide dimer were restarted from an initially

unconverged TightPNO structure, as it was found to have the lowest RI-MP2 single-

point energy. Convergence was subsequently achieved in all cases.

• Optimisations of the cyclopentane-neopentane dimer with LoosePNO and Nor-

malPNO settings converged to a higher-lying point than the RI-MP2 and TightPNO

optimisations. Therefore, the LoosePNO and NormalPNO optimisations were restarted

with the converged RI-MP2 structure.
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Figure 3.15: S66 set: errors in centre-of-mass distances between monomers in DLPNO-
MP2 equilibrium geometries. RI-MP2 dimer geometries were taken as the reference. The
dimers are ordered by their total number of atoms, increasing from left to right.

The accuracy of the dimer equilibrium geometries was assessed via the distances be-

tween the respective monomers. Figure 3.15 shows the errors in centre-of-mass distances

calculated using DLPNO-MP2. LoosePNO results have been omitted from the graph,

but all numbers are reported in Appendix B.4. The error range varies across the set,

increasing from the smallest system (water dimer) to the largest dimers, which contain

34 atoms.

As before, the most useful quantities are the maximum errors: the largest absolute

and relative deviations in centre-of-mass distances are 3.5 pm and 0.91 %, respectively,

with NormalPNO, and 1.4 pm and 0.34 % with TightPNO. Unacceptably large errors

are encountered with LoosePNO (10 pm or 2 %), which is certainly not a suitable set

of thresholds for noncovalent interactions. DLPNO-MP2 tends to predict slightly larger

distances between monomers than RI-MP2.

3.3.5.4 Long bonds in molecules

The LB12 set contains twelve molecules compiled by Grimme and co-workers to test

the geometry optimisation of structures that present a challenge to electronic structure

methods.[213] For each structure, they specified an interatomic distance which should be

examined, typically representing either a long covalent bond or a short distance between
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Figure 3.16: A few example structures from the LB12 benchmark set. RI-MP2 distances
and signed relative deviations of DLPNO-MP2 are provided for the highlighted distances.
The full set of results is provided in Table 3.4.

noncovalently interacting molecule fragments. While ten of the structures contain main

group elements only, two systems are organometallic complexes containing either Rh and

Cr (HAPPOD) or Os and Cr (KAMDOR). Table 3.4 reports distances in the equilibrium

structures optimised with RI-MP2, and the corresponding DLPNO-MP2 errors. A few

examples are illustrated in Figure 3.16.

The following complications were encountered during the geometry optimisations:

• In order to converge the HAPPOD structure with LoosePNO thresholds, the ge-

ometry convergence settings needed to be relaxed to “NormalOpt”, while the SCF

convergence criteria needed to be tightened to “VeryTightSCF”.

• Geometry convergence could not be achieved for KAMDOR with LoosePNO or

NormalPNO settings.

• Initially, the RI-MP2 and DLPNO-MP2 optimisations of BHS converged to a geom-

etry which, as the starting structure, was of C3 symmetry with the Si–H bonds on

a straight line. Subsequent DLPNO-MP2 optimisations performed with RIJCOSX

to determine timings, however, led to a structure of C1 symmetry with a shorter

Si···Si distance. Even without RIJCOSX, the geometry featured a lower RI-MP2

energy than the C3 structure, suggesting that the latter is an unstable stationary
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∆r/pm r/pm

Name Atoms Distance LoosePNO NormalPNO TightPNO RI-MP2

DIAD 82 C–C 0.66 0.39 0.20 168.23
FLP 88 P–B 0.54 0.25 0.12 209.57
DTFS 14 Si–N 1.94 0.78 0.33 214.91
MESITRAN 33 Si–N 0.93 0.37 0.13 249.80
S82+ 8 S–S 0.28 0.17 0.07 329.82
HAPPOD 28 Rh–Cr I4.53 1.82 0.81 284.77
KAMDOR 33 Os–Cr II− II− 0.64 269.28
PP 32 C–C 0.58 0.16 0.05 307.91
BRCLNA 18 Br–Cl 0.30 0.11 0.05 313.82
C2Br6 8 Br–Br 0.42 0.22 0.08 341.73
RESVAN 39 S–S 9.36 2.98 0.91 390.66
BHS 76 Si–Si 3.17 1.40 0.63 433.37

Table 3.4: Interatomic distances in the LB12 test set. The reference values for the
specified interatomic distances (r) were obtained with RI-MP2. Errors in distances (∆r)
are reported for DLPNO-MP2.
IConvergence was achieved with “NormalOpt” settings.
IIGeometry optimisations did not converge.

point on the potential energy surface. Therefore, the RI-MP2 and DLPNO-MP2

optimisations of BHS without RIJCOSX were started from the structure optimised

using DLPNO-MP2(RIJCOSX).

In comparison with RI-MP2, DLPNO-MP2 predicts slightly larger interatomic dis-

tances. The largest errors were found to be below 0.8 % with NormalPNO settings and

below 0.3 % with TightPNO settings.

3.3.5.5 Structures of metal-containing compounds

In order to examine the accuracy of the DLPNO-MP2 gradient for systems with some

degree of ionic bonding, further optimisations were performed for compounds containing

main group metals or zinc. The structures are illustrated in Figure 3.17. For each system,

we specify a distance to be compared between geometries optimised with DLPNO-MP2

and RI-MP2:

1. Trimethylaluminium dimer (Al2Me6): the distance between the aluminium atoms

is inspected.
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Figure 3.17: Structures of systems used to examine the geometry optimisation of metal-
containing compounds. The arrows indicate distances that are used to compare structures
optimised with different methods.

2. Ethyllithium tetramer (Li4Et4): the lithium atoms are in a tetrahedral arrangement,

and the entire complex is of D2d symmetry. There are two types of symmetry-

equivalent bonds between Li atoms: two bonds of equal length, which are inspected

here, and four further bonds.

3. Bis(cyclopentadienyl)magnesium (MgCp2): the distance between the centres of

mass of the Cp ligands is inspected.

4. Bis(cyclopentadienyl)tin (SnCp2): the distance between the centres of mass of the

Cp ligands is inspected.

5. Magnesium porphine: the Mg–N distance is inspected.

6. Zinc acetylacetonate (Zn(acac)2): the Zn–O distance is inspected.

The starting structures for the geometry optimisations were pre-optimised with the

PBEh-3c method.[213] Results for specific distances in the optimised structures are shown

in Table 3.5. Generally, the errors for the six systems are in a range that would be

expected from the preceding benchmark calculations. In DLPNO-MP2 optimisations

143



∆r/pm r/pm

Name Distance LoosePNO NormalPNO TightPNO RI-MP2

Al2Me6 Al–Al 0.36 0.11 0.03 261.58
Li4Et4 Li–Li 0.44 0.17 0.10 237.10
MgCp2 Cp–Cp I0.47 0.16 0.03 397.07
SnCp2 Cp–Cp 2.85 1.51 0.60 467.05
Mg porphine Mg–N 0.1 <0.05 <0.03 205.0
Zn(acac)2 Zn–O I0.3 0.1 <0.05 194.7

Table 3.5: Specific distances in compounds containing metal atoms. Total distances (r)
are reported for RI-MP2, and deviations (∆r) for DLPNO-MP2.
IGeometry optimised with “NormalOpt” settings.

LoosePNO NormalPNO TightPNO RI-MP2

r(Cp−Cp)/pm 469.90 468.56 467.65 467.05
r(Sn−Cp)/pm 237.99 237.80 237.70 237.64
∠(Cp−Sn−Cp)/◦ 161.67 160.25 159.27 158.64

Table 3.6: Geometric parameters in SnCp2 optimised with DLPNO-MP2 using different
thresholds, and with RI-MP2. The table shows the distance between the centres of mass
of the Cp ligands; the distance of the Sn atom to the centres of the Cp rings; and, for
illustration purposes, also the angle between the lines connecting the Sn atom to the Cp
ring centres.

of MgCp2 and Zn(acac)2 with LoosePNO thresholds, the geometry convergence settings

needed to be relaxed to “NormalOpt”.

The largest errors were observed for the distance between the cyclopentadienyl ligands

in SnCp2. As demonstrated in Table 3.6, this is primarily a consequence of an increase

in the angle between the two lines connecting the Sn atom to the centres of the Cp

ligands. On the other hand, the variation in the distance of the Sn atoms to the ligands

is significantly smaller.

3.3.6 Geometry optimisation with double-hybrid density func-

tionals

A particularly interesting use case of DLPNO-MP2 is its combination with double-hybrid

density functionals. While hybrid functionals mix the “DFT” component of the exchange

energy EDFT
X with a portion aX of Hartree-Fock exchange EHF

X , in double-hybrids the
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correlation functional EC is mixed with an MP2-like energy contribution EMP2
C :

EXC = (1− aX)EDFT
X + aXE

HF
X + (1− aC)EDFT

C + aCE
MP2
C (3.128)

The orbitals are determined self-consistently using the exchange-correlation functional

EXC without the MP2-type contribution. Afterwards, the perturbative correction is added

using the previously converged orbitals and orbital energies. Since the RI-MP2 gradient

had been combined with double-hybrid density functionals before,[181] extending the

procedure to the DLPNO-MP2 gradient was straightforward.

Geometry optimisations were performed using the functionals B2PLYP,[119] B2GP-

PLYP,[216] DSD-BLYP[217] and DSD-PBEP86.[218] In all cases, the D3 correction with

Becke-Johnson damping was included.[202, 203] Note that the ORCA software contains

several different parameterisations of the DSD functionals: this work used the versions

documented as combinations of the “DSD-BLYP” and “DSD-PBEP86” keywords together

with “D3” in ORCA 4.1. The calculations were performed with the def2-TZVP basis set,

and core orbitals were frozen. In order to reduce the impact of grid artefacts, the “Grid7”

setting in ORCA was used.

Figure 3.18 shows the error distributions obtained in geometry optimisations of the

molecules in the ROT34 set. The reference geometries were obtained using the respective

functionals with RI-MP2 employed for the perturbative contribution. While B2PLYP and

B2GP-PLYP build upon “regular” MP2, in the DSD functionals the spin components are

scaled differently. For comparison, therefore, we include DLPNO-SCS-MP2 results with

Grimme’s original scaling parameters[116] alongside the previously discussed DLPNO-

MP2 error distributions.

A fair comparison of a DHDF result to experiment needs to be made with a sufficiently

large basis set. While data on the performance of DHDFs for geometries is less extensive

than for energetics, the ROT34 set has been examined previously with the B2PLYP-D3

functional using the def2-QZVP basis set.[123] This yielded relative errors in rotational

constants of 0.21(23) % to within a standard deviation, and a total spread of 1.1 %.

Even with “LoosePNO” thresholds, a narrower error distribution is obtained with all
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(a) LoosePNO settings for DLPNO-MP2

(b) NormalPNO settings for DLPNO-MP2

(c) TightPNO settings for DLPNO-MP2

Figure 3.18: Errors in rotational constants for the ROT34 set with double-hybrid density
functionals and SCS-MP2. In each case, values obtained using the respective method
without DLPNO approximations serve as the reference.
Boxes: relative errors within one standard deviation of the mean.
Whiskers: complete range of relative errors.
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functionals. With “NormalPNO” thresholds, only a few outliers are in a similar range

as the intrinsic B2PLYP-D3 error; and with “TightPNO”, the errors become negligible

without exception.

The errors of DHDFs with DLPNO approximations are usually smaller than those

of DLPNO-MP2, and in the remaining cases do not exceed the latter by a big margin.

Among the DHDFs, the DSD functionals tend to be more sensitive to the local approxi-

mations. We note in passing that the error distributions of DLPNO-SCS-MP2 are mostly

comparable to those of DLPNO-MP2.

Among the benchmark systems used to examine the performance of the DLPNO-

MP2 gradient, the ROT34 set was one of the less challenging. Therefore, an equally good

performance of DLPNO-based double-hybrid density functionals in more difficult applica-

tions cannot be taken for granted. Nonetheless, the results suggest that the combination

of DLPNO-MP2 with double-hybrid density functionals is a worthwhile approach for the

geometry optimisation of large systems, and encourage further exploration.

3.3.7 Domain sizes and basis set superposition error

In multiple past publications on local correlation methods with small domains, the re-

spective authors concluded that domain truncation reduces the extent of the basis set

superposition error (BSSE).[219–221] This idea gained popularity in parts of the local cor-

relation community, anecdotally evidenced by the fact that two anonymous peer-reviewers

of our publication in ref. [111] commented independently upon a possible reduction of

the BSSE (or lack thereof) in DLPNO-MP2. Indeed, one of the reviewers suggested that

recovering the BSSE is actually a disadvantage of DLPNO-MP2 compared to methods

that employ smaller domains: since the approximations behind DLPNO-MP2 were de-

signed with the goal to reproduce RI-MP2 as closely as possible, the same would apply

to pathologies such as the basis set superposition error. This section investigates how the

BSSE and the overall accuracy are affected by the domain size for a few selected cases.

The electronic contribution to the dimerisation energy of two monomers is given by
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the difference

∆E = EAB(AB)− EA(A)− EB(B). (3.129)

In this equation, EAB(AB) represents the energy of the dimer AB. Likewise, EA(A)

and EB(B) are the energies of the monomers calculated with their respective sets of

basis functions. With finite basis sets, this expression tends to overestimate the binding

strength. If one calculates the energy of one monomer using the basis functions of both

monomers taken together, then, because of the variational principle, the resulting energy

is lower than that of the monomer in its own basis. This effect introduces an additional

bias known as the basis set superposition error, caused by the “more complete” basis of

the dimer relative to the monomers.

To address this problem, Boys and Bernardi suggested the counterpoise correction,[222]

whereby the electronic contribution to the dimerisation energy is determined with monomer

energies EAB(A) and EAB(B) calculated using the basis set of the dimer AB:

∆ECP = EAB(AB)− EAB(A)− EAB(B) (3.130)

Even though the counterpoise correction sometimes exhibits a tendency to underbind

dimers,[223, 224] we take the difference

δEBSSE = ∆ECP −∆E (3.131)

as an estimate for the extent of the intermolecular BSSE.

Potential energy curves were calculated for three systems in the S66 set:[155] (a) the

water dimer, (b) a dimer of methanol with methylamine, and (c) the neopentane dimer

(Figure 3.19). To construct coordinates for dimers (a) and (b), the lengths of the hydrogen

bonds were varied in steps of 0.1 pm, while the structures of the monomers themselves

and their relative orientations were kept fixed. For the neopentane dimer (c), the distance

between the centres of the monomers was varied in steps of 1 pm.

This approach is consistent with the S66x8 set; however, instead of calculating an
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(a) water dimer

(b) MeOH ·MeNH2

(c) neopentane dimer

Figure 3.19: Non-covalently bonded dimers used to investigate the basis set superposition
error with different domain sizes.

interpolated potential energy surface using only a few points, the energy curve can be

examined closely for discontinuities. At each of the geometries, we calculated single-

point DLPNO-MP2 energies with different domain cutoffs TCutDO. Default values (“Nor-

malPNO”) were used for all other thresholds.

At first, the effect of the basis set superposition error will be investigated for energies.

Table 3.7 shows dimerisation energies ∆E and counterpoise contributions δEBSSE for

those geometries which are closest to the S66 reference coordinates. All DLPNO-MP2

calculations were performed with the def2-TZVP basis. For comparison, the table also

includes values calculated with RI-MP2, and at SCF level.

To estimate the basis set incompleteness error, explicitly correlated calculations were

performed using RI-MP2-F12 with and without counterpoise correction (the implemen-

tation of MP2-F12 in ORCA is described in ref. [226] and the references therein). For the

latter calculations, we used the cc-pVTZ-F12 basis[227] together with the complementary

auxiliary basis set cc-pVTZ-F12/OptRI[228] and the auxiliary set aug-cc-pVQZ/C.[208]
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(H2O)2 MeOH ·MeNH2 (C5H12)2
TCutDO ∆E δEBSSE ∆E δEBSSE ∆E δEBSSE

0.01 −23.49 3.37 −34.42 5.33 −6.63 2.00
0.02 −23.48 3.36 −34.29 5.26 −5.40 0.95
0.04 −23.44 3.32 −33.87 4.71 −3.95 0.14
0.06 −23.35 3.25 −33.85 4.52 −3.42 0.02
0.08 −23.35 3.25 −32.01 3.51 −2.58 0.12
0.10 −23.32 3.21 −31.10 2.93 −2.58 0.12
0.15 −21.68 2.00 −30.05 2.87 −2.58 0.12
0.20 −21.68 2.00 −30.05 2.87 −2.58 0.12

SCF −18.28 1.39 −20.14 1.97 6.89 0.13
RI-MP2 −23.57 3.40 −34.57 5.44 −6.98 2.24
RI-MP2-F12 −20.95 0.27 −32.50 0.26 −7.34 0.13
CCSD(T)/CBSI −20.83 −31.90 −7.30

Table 3.7: Interaction energies ∆E and BSSE error estimates δEBSSE for non-covalently
bonded dimers with different DLPNO-MP2 domain thresholds TCutDO. All energies are
reported in kJ mol−1.
SCF, RI-MP2 and DLPNO-MP2 energies were calculated using the def2-TZVP basis.
RI-MP2-F12 energies were calculated with the cc-pVTZ-F12 basis.
IThe reported Coupled Cluster results are revised S66 reference values from ref. [225].

Comparing results with and without counterpoise correction shows that most of the BSSE

is eliminated in the explicitly correlated calculations. Finally, Table 3.7 also includes cou-

pled cluster results obtained by Kesharwani and co-workers.[225]

With the default threshold of TCutDO = 0.01, dimerisation energies ∆E calculated with

DLPNO-MP2 are in a reasonably good agreement with RI-MP2; likewise, the extent of

the BSSE is similar. Increasing the domain threshold TCutDO reduces the extent of the

counterpoise correction δEBSSE, but at different rates for the three systems:

• The water dimer was studied with local correlation methods by Saebø and co-

workers,[219] and by Schütz and co-workers.[220] Increasing the TCutDO from the

default value of 0.01 to 0.10 leads to compact domains, each of which spans the

three atoms of the water molecule where the respective molecular orbital resides.

Nonetheless, a large part of the BSSE is recovered. Increasing TCutDO even further

to 0.15 or 0.20 leads to the smallest domains that are still viable in a chemical sense:

each domain contains PAOs from only one or two atoms in the case of oxygen lone

pairs or O–H bonding orbitals, respectively. This leads to a significant reduction
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of the BSSE from 3.4 kJ mol−1 to 2.0 kJ mol−1. However, 1.4 kJ mol−1 of δEBSSE

are accounted for by the Hartree-Fock energy, whereas the remaining 0.7 kJ mol−1

originate from the local MP2 contribution even with such small domains. Dimerisa-

tion energies approach the RI-MP2-F12 and CCSD(T)/CBS results with decreasing

domain size, likely as a result of error cancellation.

• For the dimer of MeOH with MeNH2, a reduction of δEBSSE is achieved with decreas-

ing domain sizes. Unlike for the water dimer, a domain threshold of TCutDO = 0.10

(leading to domains of two to three atoms) already achieves the largest possible

part of the reduction in δEBSSE. Again, however, the BSSE is only lowered from

5.4 kJ mol−1 to 2.9 kJ mol−1, of which 2.0 kJ mol−1 are due to the SCF contribu-

tion. While RI-MP2 in def2-TZVP basis overbinds the dimer, reducing the do-

main size ultimately leads to underbinding compared with both RI-MP2-F12 and

CCSD(T)/CBS.

• For the neopentane dimer, the contribution δEBSSE is halved with TCutDO = 0.02,

which is used in combination with a different PNO cutoff in the “LoosePNO” set-

tings, and the correlation contribution is effectively eliminated with TCutDO = 0.04.

Rather curiously, with even smaller domains the SCF and correlation contribu-

tions to δEBSSE have opposite signs: with such small domains, DLPNO-MP2 pro-

duces monomer correlation energies that are higher in the dimer basis than in the

monomer basis. While RI-MP2/def2-TZVP slightly underbinds the two monomers

(in comparison with both the complete basis and the coupled cluster results), re-

ducing domain sizes leads to a much more severe underestimation of the bonding

strength.

Particularly in the case of the two hydrogen-bonded dimers, it is unsurprising that

a significant fraction of the basis set superposition error remains even with minimalistic

domains that span PAOs from two atoms for covalent orbitals, and from only one atom for

lone pairs: while PAOs µ̃′ are centred on the same atoms as the localised MOs, significant

AO coefficients P̃νµ̃′ may still spread over the entire dimer. Likewise, orthogonalisation
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(H2O)2 MeOH ·MeNH2 (C5H12)2
TCutDO r rCP r rCP r rCP

0.01 195.4 201.7 192.0 198.4 533 545
0.02 195.4 202.6 192.0 198.4 539 545
0.04 195.6 203.5 192.0 198.0 549 550
0.06 196.1 201.8 192.0 198.4 554 554
0.08 196.2 201.8 194.7 200.7 559 560
0.10 196.3 201.8 195.8 199.0 559 560
0.15 198.7 202.9 197.4 200.4 559 560
0.20 198.7 202.9 197.4 200.4 559 560

RI-MP2 195.3 201.7 192.5 198.3 531 544
RI-MP2-F12 195.1 195.4 191.6 191.8 525 525
CCSD(T)/CBSI 195.8 193.4 526

Table 3.8: Optimal distances between monomers in non-covalently bonded dimers along
a one-dimensional potential energy curve. DLPNO-MP2 results were calculated with
different domain thresholds TCutDO. Distances r were calculated without the counterpoise
correction, whereas rCP represent the minimum of the counterpoise-corrected energy. All
distances are reported in pm.
SCF, RI-MP2 and DLPNO-MP2 energies were calculated using the def2-TZVP basis.
RI-MP2-F12 energies were calculated with the cc-pVTZ-F12 basis.
IThe reported Coupled Cluster results are revised S66 reference values from ref. [229]

.

tails of occupied molecular orbitals may extend beyond one monomer.

The features of the potential energy surfaces will be examined next. Graphs with

sections of dissociation curves calculated using selected domain thresholds are shown in

Figure 3.20. Table 3.8 lists minimum energy distances determined for the three dimers

using DLPNO-MP2, RI-MP2 and RI-MP2-F12. Counterpoise-corrected distances were

determined in addition. Revised distances reported for the S66 set by Brauer and co-

workers[229] have been included in Table 3.8 for comparison.

• Water dimer: despite the basis set incompleteness and superposition errors, RI-

MP2/def2-TZVP agrees very well with RI-MP2-F12. On the other hand, the min-

imum of the counterpoise-corrected energy, rCP, overestimates the hydrogen bond

length by more than 6 pm. While DLPNO-MP2 with default thresholds is in good

agreement with the RI-MP2 result, reducing the domain size leads to an overesti-

mation of the interatomic distance by several pm.

Boese and co-workers performed unconstrained geometry optimisations of the wa-
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Figure 3.20: Potential energy surfaces calculated using DLPNO-MP2 with different do-
main selection thresholds TCutDO are represented by black solid lines. For comparison,
the red dashed lines show RI-MP2 energies, and the red dotted lines show counterpoise-
corrected RI-MP2 energies. All values represent dimerisation energies relative to the
separated monomers.
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ter dimer with MP2 close to the basis set limit, obtaining an equilibrium distance

of 290.5 pm to 290.7 pm between the two oxygen atoms. In much earlier work,

Schütz and co-workers determined O···O distances using their local MP2 method

with basis sets of triple-ζ or quadruple-ζ quality, which overestimate the complete

basis set result by 2 pm to 5 pm.[220] Since their canonical MP2 results calculated

with the same basis sets are in much better agreement with the numbers by Boese

and co-workers, this supports our finding that small domains lead to a substantial

overestimation of the hydrogen bond length.

• MeOH ·MeNH2 dimer: with relatively large domains, DLPNO-MP2 predicts a

slightly too short hydrogen bond for TCutDO ≤ 0.06. This is an artefact of a small

roughness in the potential energy surface, since the overall minimum at 192.0 pm

coincides with a discontinuity of 14 µEh in the energy. It is caused by a reassign-

ment of the auxiliary function domains, and would therefore be present even if the

PAO domains were not truncated altogether. On the other hand, unconstrained ge-

ometry optimisation of the MeOH ·MeNH2 dimer, which includes the gradient and

the step size among its convergence criteria, leads to very similar hydrogen bond

lengths of 191.7 pm and 191.9 pm with RI-MP2 and DLPNO-MP2 using default

thresholds, respectively.

With reduced domain sizes the discontinuities become much larger, as shown in Fig-

ure 3.20a: with TCutDO = 0.10, PAO domain reassignment causes a step of 0.35 mEh

in the energy at a distance of approximately 1.8Å.

• Neopentane dimer: DLPNO-MP2 with default thresholds is in good agreement

with RI-MP2 for the distance between the centres of the monomers. The basis set

incompleteness error with RI-MP2/def2-TZVP is 6 pm, whereas the counterpoise-

corrected result overestimates the distance by 20 pm. Even the domain threshold

TCutDO = 0.02, used as part of the “LoosePNO” settings, leads to a visible roughness

in the potential energy surface (Figure 3.20b). Smaller domains cause errors of ca.

20 pm to 30 pm in the distance between the monomers.
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While structures optimised using DLPNO-MP2 with default thresholds are in a rea-

sonably good agreement with RI-MP2, the shortcomings of local MP2 with smaller do-

mains are consistent with the literature. Liakos and Neese compared structures of alkane

chains in hairpin conformations, which were optimised using different methods. These

included geometries calculated with the local correlation method DF-LMP2 using the

cc-pVTZ basis set by Lüttschwager and co-workers;[230] and equivalent structures op-

timised by Byrd and co-workers using RI-MP2 with the same basis set.[231] Distances

between carbon atoms in the DF-LMP2 structures deviated by up to 0.5Å from their

RI-MP2 counterpart, which is 13 % of the interatomic distance. The authors argued that

there are substantial errors in the coordinates obtained with DF-LMP2.[232]

Our results confirm the assumption that sufficiently small domains reduce the ex-

tent of the BSSE in the correlation energy, but without eliminating it completely. As

demonstrated for non-covalently interacting systems, however, the overall truncation er-

rors become very substantial, and can vastly exceed any errors that are inherent to basis

set incompleteness or the MP2 method itself. On the other hand, DLPNO-MP2 repro-

duces RI-MP2 closely, including most of the BSSE. In our opinion, it is preferable to

reproduce the canonical method with all its shortcomings, and to eliminate basis set

artefacts systematically where necessary, rather than by cancellation of different errors.

Moreover, it is possible to perform a basis set extrapolation of the gradient.[233] Explic-

itly correlated variants of local correlation methods have been developed successfully to

perform energy calculations;[48, 58, 63] however, implementing an analytical gradient for

such methods would likely amount to a difficult undertaking.

To conclude our case against local correlation methods with small domains, we will

refer to the recent work by Dornbach and Werner, who reported difficulties performing

geometry optimisations of some conjugated molecules: in particular, they found that

large errors occur with small domains for 1,3,5-heptatriyne, and that optimisations are

difficult to converge for anthracene.[91] To resolve the latter problem, the authors perform

a symmetry adaption of the starting structure.

To examine if the same problems occur with DLPNO-MP2, we performed optimisa-
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tions of these systems using identical starting geometries (obtained from the benchmark

set by Friedrich and Hänchen[152]) and the same basis set (aug-cc-pVTZ[234] for the

carbon atoms and cc-pVTZ[206] for the hydrogens). The DLPNO-MP2 calculations were

performed with default thresholds. Reassuringly, the optimisations of both molecules

converged within an identical number of steps as the respective RI-MP2 calculations,

without needing to modify the starting structure. The deviations in any carbon-carbon

bond length relative to the RI-MP2 structure did not exceed 0.04 pm, and were thus

effectively negligible. This illustrates that combining large domains with pair natural

orbitals paves an efficient and robust pathway towards obtaining accurate structures.

3.3.8 Computational performance of the DLPNO-MP2 gradient

To investigate the computational performance of the DLPNO-MP2 gradient, we per-

formed single-point calculations and geometry optimisations of large systems. Wall-clock

times for single-point energy and gradient calculations are presented in Table 3.9. The

calculations were performed for cassyrane (structure from the ROT34 set[123]), silde-

nafil (structure from ref. [43]), BHS, DIAD and FLP from the LB12 set,[213] taxol and

vancomycin (structures calculated with PBEh-3c from ref. [235]), and the host-guest com-

pletes C60@catcher, morpholine@RA4, BQ@mcycle and DAAD@ADDA from the S30L

test set.[236]

All calculations were performed using the def2-TZVP basis set and the RIJCOSX

approximation. The GridX7 settings was used for chain-of-spheres-exchange (COSX)

integration, as it is, in our experience, the least expensive option which is not prone to

produce artefacts in optimised geometries. Nonetheless, it offers a substantial speedup

over regular Hartree-Fock with basis sets of at least triple-ζ quality. To examine the

behaviour of the code under realistic conditions, each calculation was performed on one

cluster node with 24 CPU cores and 256 GB of memory; each process was permitted to use

up to 8 GB of memory with the “MaxCore” setting in ORCA. A graphical representation

of data is provided in Figure 3.21.

For smaller systems, the computational cost of gradient calculations with DLPNO-
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Figure 3.21: Wall-clock times to perform single-point energy and gradient calculations
for representative systems on 24 CPU cores. DLPNO-MP2 and RI-MP2 data includes
all steps in the respective energy and gradient calculations, but excludes the time for the
SCF procedure. For comparison, the time for a single-point SCF energy and gradient
calculation is shown by the blue line. All calculations were performed with def2-TZVP
and RIJCOSX (GridX7). Default settings were used for DLPNO-MP2.

Figure 3.22: Wall-clock times to perform geometry optimisations of various systems.
All calculations were performed with the def2-TZVP basis, “NormalPNO” settings and
RIJCOSX (GridX7) using 24 parallel processes on one node.
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System properties Wall-clock time / s

Name Atoms Basis functions NormalPNO TightPNO RI-MP2 SCF iterations SCF gradient

cassyrane 35 535 114 135 128 58 17
sildenafil 63 1209 889 1136 1490 291 76
DIAD 82 1392 1848 2392 2675 560 176
BHS 76 1586 1906 2559 4388 548 153
FLP 88 2059 5680 9091 19 742 1036 280
taxol 113 2228 5906 8453 27 959 1210 337
DAAD@ADDA 133 2373 4958 6143 37 915 1171 307
BQ@mcycle 144 2764 8697 12 216 - 1886 514
vancomycin 176 3593 17 969 23 774 - 3217 845
C60@catcher 148 3888 37 255 86 394 - 5221 1374
morpholine@RA4 205 4130 27 817 42 391 - 4867 1301

Table 3.9: Timings for single-point energy and gradient calculations for representative systems on one node with 24 CPU cores. For
DLPNO-MP2 and RI-MP2, the time to perform the SCF calculation has been excluded. All calculations were performed with the
def2-TZVP basis and RIJCOSX (GridX7).

% of the wall-clock time

Name EnergyI Pair loop (#passes) (pµ̃′|K), (ip|K) (µν|K)x CP-LII CP-SCFIII Fock gradient

cassyrane 13 11 (1) 1 1 0.7 41 29
BHS 17 17 (1) 2 1 0.3 43 17
FLP 18 36 (2) 2 1 0.6 30 10
C60@catcher 20 38 (2) 3 1 0.4 28 8
morpholine@RA4 15 23 (2) 6 2 0.5 41 11

Table 3.10: Contributions of major steps to the overall computational cost of calculations with “NormalPNO” thresholds.
IIncluding all steps necessary to calculate the correlation energy, e.g. localising the orbitals and calculating (iµ̃′|K).
IIIncluding diagonalisation of the Foster-Boys orbital Hessian.
IIIIncluding standalone Fock response evaluation.
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MP2 is comparable to RI-MP2. Significant gains over RI-MP2 are made for sildenafil,

which contains 63 atoms. For systems with around 80 to 90 atoms or more, the cost of

the RI-MP2 calculations increases very rapidly.

Using DLPNO-MP2 with default thresholds, on the other hand, calculating the entire

single-point gradient, including the SCF iterations, typically requires four to six times

as long as a comparable calculation at the SCF level, even with the efficient RIJCOSX

approximation. This permits single-point calculations for systems containing as many

as 200 atoms to be performed at triple-ζ level within one working day. Increasing the

accuracy level to “TightPNO” increases the cost by a factor of about 1.5 to 2.

Contributions of individual steps to the cost of the DLPNO-MP2 gradient are shown in

Table 3.10. With “NormalPNO” settings, 40 % to 60 % of the time are needed to calculate

the DLPNO-MP2 energy (including all necessary steps such as orbital localisation and the

RI integral transformation), and to process the pair-specific contributions in the gradient

calculation. With the given computational resources, calculations for systems containing

up to ca. 80 atoms were performed with the memory-based algorithm, which passes all

pairs only once, whereas for larger systems the code switched to the disk-based algorithm,

which passes pairs twice.

Contracting the two-body density with the appropriate three-centre integrals (and

derivatives thereof) amounts to a modest fraction of the overall cost at about 5 % to

10 %. Less than 1 % of the total time was needed for steps towards solving the CP-L

equations; around 80 % to 90 % of that time was spent diagonalising the orbital Hessian

of the Foster-Boys localisation criterion to remove potential singularities, and only the

remaining fraction was needed for the actual CP-L solution.

Ca. 40 % to 60 % of the overall time were expended to calculate the Fock response, to

solve the CP-SCF equations, and to compute the gradient of the Fock operator. These

steps are identical in the DLPNO-MP2 and RI-MP2 gradients, and independent of any

approximations taken for DLPNO-MP2 itself. On the other hand, choosing a technique

that is efficient for Fock matrix formation and Fock response construction is beneficial

for the overall performance of the DLPNO-MP2 gradient.
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Figure 3.22 depicts structures of systems for which geometry optimisations were per-

formed, and lists the elapsed wall-clock times. The optimisations were performed with

default convergence settings (“NormalOpt”) in redundant internal coordinates. With the

exception of the C60@catcher complex, which consists of very rigid fragments, we used

additional features to enhance the convergence behaviour of the geometry optimisations.

First, automatic trust radius adjustment was specified with a starting value of 0.1 a.u.

Second, the newly implemented “AddExtraBonds” feature of ORCA [C. Riplinger, 2018]

was used to enforce sufficient connectivity in redundant internal coordinates: additional

bonds were added automatically, so that all atoms within a distance of 5Å were connected

by a path of no more than 8 bonds. This feature was incorporated in ORCA in order to

reduce oscillations of molecular fragments, which occur in optimisations of large systems

with methods such as density functional theory or semiempirical approaches; it is not

specific to DLPNO-MP2. The results show that MP2 geometry optimisations of systems

containing 100 to 200 atoms can be performed with a triple-ζ basis within a timespan of

a few days to a few weeks on a single cluster node.

While they are hardly representative examples for actual applications, linear alkane

chains are particularly suited to investigate the scaling behaviour of the code with sys-

tem size. We have performed single-point energy and gradient calculations with the

def2-TZVP basis. As the COSX integration in the CP-SCF solver incurred very high

memory demands for chains with more than 100 carbon atoms, the RIJONX method was

used to solve the SCF and CP-SCF equations instead: it employs the RI approximation

for the Coulomb integrals in the Fock operator, but applies only conventional screening

techniques for the exchange integrals.

Figure 3.23 shows results for timings calculated using eight parallel processes on one

compute node with 128 GB of memory; each processes was restricted to occupy up to

12 GB of memory. The RI-MP2 method incurs a very steep increase in its cost for chains

containing more than 20 carbon atoms. Indeed, calculating the gradient for C50H102 with

RI-MP2 requires as much time as for C200H402 with DLPNO-MP2 (Figure 3.23a). Pro-

cessing all pair-specific quantities is associated with a linearly scaling cost (Figure 3.23b),
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Figure 3.23: Scaling behaviour of the DLPNO-MP2 gradient for linear alkane chains,
calculated with the def2-TZVP basis and RIJONX on eight CPU cores.

as the number of screened pairs grows linearly. Up to C100H202, the program was able to

store the two-body density in memory, thus requiring only one pass over all pairs.

As discussed previously, the cost to contract the two-body density with the integrals

(pµ̃′|K) and (ip|K) scales quadratically, whereas the RI integral gradient (µν|K)x scales

linearly (Figure 3.23c). We experienced difficulties to converge the Davidson diagonali-

sation of the localisation Hessian for very long alkane chains, presumably due to a large

number of similar eigenvalues. This was resolved by reducing the number of requested

roots from the default value of 32 to eight: even though the localisation orbital Hessian

of an alkane chain is not singular, this still permitted us to compute the cost scaling.
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Insulin Crambin

Atoms 787 644
Basis cc-pVDZ def2-TZVP
Basis functions 7604 12 075
SCF / h I17 I57
DLPNO-MP2 / h I69 II194

DLPNO-MP2 steps / %

EnergyIII 25 11
Pair loop 10 6
(pµ̃′|K), (ip|K) 6 9
(µν|K)x 2 3
Hessian diagonalisation 17 1
CP-L 1 0.2
CP-SCFIV 32 64
Fock gradient 5 6

Table 3.11: Times to perform a single-point energy and gradient calculation for insulin
and crambin. Each calculation was executed on one node with 24 CPU cores and 384 GB
of memory.
I24 cores used
II12 cores used
IIIIncluding all necessary steps to calculate the DLPNO-MP2 correlation energy.
IVIncluding standalone Fock response evaluation.

Figure 3.23d shows the time per iteration for the Davidson solver to diagonalise the lo-

calisation Hessian, and the time per step to solve the CP-L equations with the conjugate

gradient method, both of which scale cubically with the system size.

Finally, two large-scale single-point gradient evaluations were performed to demon-

strate the capabilities of the implementation. Using the divide-expand-consolidate RI-

MP2 (DEC-RI-MP2) method, Bykov and co-workers calculated the gradient of insulin

(C257H382N65O77S6 – ) with the cc-pVDZ basis in 10 h on 6000 nodes of a supercom-

puter.[103]

We repeated the calculation using the atomic coordinates from their work. Two-

electron integrals in the SCF and CP-SCF procedures were subject to a regular treatment.

On one compute node with 24 processor cores and 384 GB of memory, the entire DLPNO-

MP2 calculation with “NormalPNO” thresholds finished in 69 h (see Table 3.11). Further

17 h were spent on the Hartree-Fock calculation. There is a reassuring agreement with

the gradient published by Bykov and co-workers: with a root mean square deviation of
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6× 10−4Eh a0
−1, the two gradients agree within the accuracy range that was reported

for the DEC-RI-MP2 gradient.

In addition, we calculated the gradient for crambin (C202H317N55O64S62+) with the

def2-TZVP basis using “NormalPNO” thresholds. The SCF calculation with the RI-

JONX approximation finished in 57 h with 24 parallel processes. Because of its larger

memory demands, the subsequent DLPNO-MP2 calculation was performed with 12 par-

allel processes on a compute node with 384 GB of memory. This calculation finished in

eight days. Almost two thirds of the time were required to compute the Fock response

and to solve the CP-SCF equations with the RIJONX approximation (Table 3.11).

163



164



Chapter 4

Conclusion

The first part of this thesis describes the implementation of DLPNO-MP2.[43] It is closely

related to the previously developed DLPNO-CCSD method,[37] but improves several

technical aspects. A major bottleneck in large-scale calculations with DLPNO-CCSD

used to be the transformation of the three-index RI integrals, which we replaced with

a formally linear scaling routine. Reduced scaling transformation of integrals was also

discussed by Werner and co-workers.[19, 55] Interrelations between sparse quantities are

complex to discuss and error-prone to implement, but this task is greatly facilitated by

the sparse maps formalism.

By means of the differential overlap integral between MOs and PAOs, a new domain

construction scheme was introduced, which is based upon the spatial extent of both the

occupied and the virtual functions. As it was discovered that the prescreening method

used originally with DLPNO-CCSD significantly underestimates the energies of many

orbital pairs, a new procedure was introduced that significantly reduces the associated

error.

The DLPNO-MP2 method shares many similarities with the PNO-LMP2 method by

Werner and co-workers, but also a number of differences.[55] DLPNO-MP2 expands the

PNOs directly in a basis of PAOs, while PNO-LMP2 uses OSVs as an intermediate basis.

The domain selection scheme in PNO-LMP2 is based on populations and interatomic con-

nectivity. An important conceptual difference concerns the threshold selection: whereas
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standard settings for DLPNO-MP2 (“NormalPNO”) have been chosen to reproduce ca.

99.9 % of the total RI-MP2 correlation energy for mid-sized molecules, the PNO-LMP2

method of Werner and co-workers recovers 99.7 % of the canonical correlation energy by

default. In principle, both methods are systematically improvable by choosing tighter

thresholds. Werner and co-workers advocate the viewpoint that local truncation errors

can and should be removed together with the basis set incompleteness error through an

F12 correction,[55] but this opinion is disputed by other authors.[48, 237] In addition,

derivatives of explicitly correlated methods are complicated to implement in general.[238]

A simple unrestricted variant of DLPNO-MP2 was introduced for open-shell calcula-

tions, with a PNO construction scheme based on the work of Hansen and co-workers.[158]

A disadvantage of the method is that the pair natural orbitals are inconsistent with the

closed-shell scheme. As a consequence, the energies of both closed-shell and open-shell

species need to be calculated with the unrestricted formalism when targeting energy

differences. An approximately fourfold computational expense is required to obtain an

almost comparable accuracy as with the RHF-based method. In this regard, PNO con-

struction schemes working with a restricted open-shell reference offer a better trade-off

between accuracy and computational expense.[46, 61]

The core part of this thesis is the implementation of the analytical gradient for the

closed-shell DLPNO-MP2 method. Complete derivatives were taken for all energy con-

tributions, leading to the exact gradient of the DLPNO-MP2 energy. To the best of

our knowledge, our publications in ref. [110, 111] were the first to describe the analyti-

cal derivatives for a PNO-based method without neglecting terms or introducing further

approximations.

The impact of individual Lagrangian constraints and derivative contributions was ex-

amined with electric field gradient calculations and geometry optimisations of several sys-

tems. While the relevance of the localisation constraint was well-known beforehand,[89]

an appropriate treatment of PNO relaxation can also be necessary to calculate sensitive

first-order properties accurately. Since the correction term for PNO truncation increases

the accuracy of the energy, its derivative improves optimised geometries somewhat. On
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the other hand, the correction for screened out pairs contributes relatively little to the to-

tal gradient or the density, possibly as a consequence of the very conservative truncation

criteria.

Localised orbitals of systems belonging to specific symmetry groups may be continu-

ously degenerate. In those cases, the second derivative matrix of the localisation criterion

with respect to orbital variations has one or several eigenvalues of zero, which causes sin-

gular coupled-perturbed localisation equations. We circumvented the ensuing difficulties

by introducing a modification of the localisation constraint in the Lagrangian. Since this

finding is not directly related to the PNO approximation or to other truncations that

are specific to DLPNO-MP2, it is of general relevance for derivatives of local correlation

methods that are not invariant to the choice of localised orbitals.

Testing geometry optimisations extensively shows that RI-MP2 equilibrium structures

are reproduced accurately. The investigated systems span a wide variety of bonding

situations, predominantly between main group elements. Errors in the lengths of covalent

bonds are usually below 0.1 pm with default thresholds. In more complicated situations

with a substantial influence of weak interactions on the structure, interatomic distances

are typically reproduced with errors of up to 1 % using “NormalPNO” settings and up

to 0.3 % with “TightPNO” settings. Molecular sizes are usually slightly overestimated in

comparison with RI-MP2.

Discontinuities of the potential energy surface represent a well-known problem of local

correlation methods.[239] To circumvent the ensuing difficulties, Werner and co-workers

suggested domain merging as a workaround.[240] Subotnik and Head-Gordon proposed

introducing smoothing functions into residual equations for amplitudes.[73, 241] While

small discontinuities are present in potential energy surfaces calculated with DLPNO-

MP2, owing to the large domains they are usually on a scale of a few µEh and can be

reduced systematically by choosing tighter thresholds. Reassuringly, our geometry op-

timisations were not subject to significant convergence problems when performed with

“NormalPNO” or “TightPNO” settings, while “LoosePNO” cannot be recommended for

broad usage. This is not unlike choosing an appropriate integration grid for the exchange-
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correlation functional in DFT calculations, or for the exchange integrals calculated with

the COSX method. When difficulties with geometry optimisations occurred despite ade-

quate threshold settings, they were often connected either to the starting structure or to

the geometry optimiser.

The time needed to perform a DLPNO-MP2 gradient calculation for modestly sized

systems is comparable to RI-MP2. With increasing system size, however, the cost re-

mains within the same order of magnitude as for a Hartree-Fock calculation: even with

the efficient RIJCOSX approximation for the Coulomb and exchange integrals in the Fock

matrix, computing the energy and gradient with default DLPNO settings typically re-

quires 4-5 times as long as a comparable calculation at SCF level. We were able to perform

DLPNO-MP2 optimisations of systems containing more than 100 atoms in a few days,

and up to 200 atoms with ca. 4000 basis functions in a few weeks with the def2-TZVP

basis on a single cluster node. The most demanding single-point gradient calculation was

completed for the small protein crambin with the def2-TZVP basis, containing 644 atoms

and over 12 000 basis functions.

Unlike the impressive large-scale computations performed with the divide-expand-

consolidate method on thousands of supercomputer nodes,[103] the calculations reported

in this work used regular cluster hardware. In comparison with methods that expand

the virtual space directly in projected atomic orbitals, a higher accuracy and greater

robustness of the results can be expected for DLPNO-MP2. While there is a popular

belief that small domains reduce the BSSE,[219–221] they also lead to large errors and

markedly discontinuous potential energy surfaces. In combination with pair natural or-

bitals, DLPNO-MP2 uses domain sizes that would be very costly or prohibitive otherwise.

In a very recent publication, Yang and co-workers reported the analytical gradient

for the OSV-MP2 method, which expands the truncated orbital-specific virtuals in the

full basis of virtual molecular orbitals.[113] The working equations are derived directly

via the appropriate response equations, which is more similar to the Z-vector method by

Handy and Schäfer.[159] Relaxation of the OSVs is accounted for in a comparable way to

the approach for the PNOs in the DLPNO-MP2 gradient. The conclusions of Yang and
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co-workers about the accuracy of DLPNO-MP2 geometries are potentially misleading, as

they employed the RIJCOSX approximation with unreported grid settings in their own

DLPNO-MP2 calculations (see Section 3.3.5.2). Both the DLPNO-MP2 and OSV-MP2

gradients were found to offer substantial computational savings over RI-MP2 for systems

with up to 116 atoms, while the cost of DLPNO-MP2 scales more favourably for glycine

chains in the reported timings.

Benchmark sets for local correlation methods need to include systems that are not

only varied and challenging, but that also contain a sufficiently large number of atoms

to produce meaningful results. In the case of DLPNO-MP2, the local approximations do

not become fully effective for molecules containing less than ca. 20 to 30 atoms. Results

obtained from calculations on significantly smaller systems may underestimate errors

encountered in a more realistic scenario, and thereby also distort a statistical analysis.

While the MP2 method often falls short of achieving chemical accuracy, it is the

building component of empirical schemes such as SCS-MP2 or double-hybrid density

functionals. In particular, DHDFs were shown to outperform lower DFT rungs consis-

tently for main group compounds.[121] For this reason, one of the likeliest application

scenarios of this work is to make gradient calculations with double-hybrid DFT feasible

for larger systems. Preliminary results for geometry optimisations suggest that the er-

rors incurred by the DLPNO approximations are comparable to or smaller than for plain

DLPNO-MP2, and significantly smaller than the intrinsic errors of DHDFs.

Despite the continuously evolving power of broadly available computational systems,

in the near future the DLPNO-MP2 gradient is most likely to remain useful for geometry

optimisations of structures containing ca. 70 to 150 main group element atoms. Several

such calculations have been performed with a triple-zeta basis in a few days or less,

and are therefore within reach for routine calculations if particularly accurate results are

desired. Another possible application area is to calculate properties for large systems.
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Appendix A

Data tables: DLPNO-MP2 energy

A.1 Threshold selection

Tables A.1 to A.3 show the correlation energy calculated with different PNO trunca-

tion thresholds TCutPNO. All other truncation thresholds were set to zero. A graphical

representation of the data is provided in Figure 2.3.

Correlation energies obtained with different fitting domain truncation thresholds are

shown in Table A.4. In those calculations, the PNO truncation threshold was set to its

default value of TCutPNO = 1× 10−8, while the remaining truncation thresholds were left

at a value of zero. The data was plotted in Figure 2.4.

Table A.5 lists correlation energies calculated with different domain truncation thresh-

olds TCutDO. The PNO and fitting domain cutoffs were set to their default values of

TCutPNO = 1× 10−8 and TCutMKN = 1× 10−3, while the remaining truncation thresholds

were set to zero. A plot of the data is provided in Figure 2.5.
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TCutPNO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−6.5 −5.838 439 0 99.4349 −5.878 387 4 99.4186 −5.879 051 3 99.4195
10−7.0 −5.855 111 7 99.7189 −5.895 528 9 99.7086 −5.896 188 2 99.7093
10−7.5 −5.863 327 2 99.8588 −5.904 114 4 99.8538 −5.904 749 9 99.8541
10−8.0 −5.867 394 9 99.9281 −5.908 324 0 99.9250 −5.908 938 9 99.9249
10−8.5 −5.869 460 7 99.9633 −5.910 475 6 99.9613 −5.911 085 7 99.9613
10−9.0 −5.870 518 0 99.9813 −5.911 583 3 99.9801 −5.912 192 1 99.9800
10−9.5 −5.871 059 1 99.9905 −5.912 155 9 99.9898 −5.912 765 7 99.9897
10−10.0 −5.871 334 9 99.9952 −5.912 449 8 99.9947 −5.913 061 1 99.9947
10−10.5 −5.871 474 2 99.9976 −5.912 600 7 99.9973 −5.913 213 6 99.9972
10−11.0 −5.871 545 1 99.9988 −5.912 678 8 99.9986 −5.913 292 8 99.9986
10−11.5 −5.871 580 8 99.9994 −5.912 718 6 99.9993 −5.913 333 5 99.9993
10−12.0 −5.871 598 4 99.9997 −5.912 739 0 99.9996 −5.913 354 3 99.9996

(a) Correlation energy EDLPNO−MP2, omitting the correction for PNO truncation.

TCutPNO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−6.5 −5.859 414 0 99.7922 −5.900 210 0 99.7877 −5.900 814 4 99.7876
10−7.0 −5.864 313 2 99.8756 −5.905 247 3 99.8729 −5.905 874 5 99.8731
10−7.5 −5.867 184 7 99.9245 −5.908 205 9 99.9230 −5.908 812 6 99.9228
10−8.0 −5.869 021 5 99.9558 −5.910 064 6 99.9544 −5.910 663 8 99.9541
10−8.5 −5.870 142 7 99.9749 −5.911 208 3 99.9737 −5.911 809 7 99.9735
10−9.0 −5.870 795 6 99.9860 −5.911 885 0 99.9852 −5.912 489 4 99.9850
10−9.5 −5.871 168 6 99.9924 −5.912 275 7 99.9918 −5.912 883 6 99.9917
10−10.0 −5.871 377 1 99.9959 −5.912 496 4 99.9955 −5.913 106 9 99.9954
10−10.5 −5.871 490 4 99.9978 −5.912 618 8 99.9976 −5.913 231 2 99.9975
10−11.0 −5.871 551 2 99.9989 −5.912 685 6 99.9987 −5.913 299 5 99.9987
10−11.5 −5.871 583 0 99.9994 −5.912 721 1 99.9993 −5.913 336 0 99.9993
10−12.0 −5.871 599 2 99.9997 −5.912 740 0 99.9996 −5.913 355 2 99.9996

(b) Correlation energy EDLPNO−MP2 + ∆EPNO, which includes the correction for PNO trunca-
tion.

Table A.1: Correlation energy calculated for sildenafil using different thresholds TCutPNO.
No other truncations were applied. In addition, the percentage of the RI-MP2 correlation
energy recovered is shown.
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TCutPNO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−6.5 −4.345 718 7 99.3260 −4.370 899 0 99.3024 −4.371 571 2 99.3029
10−7.0 −4.360 462 3 99.6630 −4.386 225 0 99.6506 −4.386 883 6 99.6507
10−7.5 −4.367 793 3 99.8306 −4.393 843 6 99.8236 −4.394 510 6 99.8240
10−8.0 −4.371 323 9 99.9113 −4.397 540 2 99.9076 −4.398 196 1 99.9077
10−8.5 −4.373 197 6 99.9541 −4.399 484 2 99.9518 −4.400 144 4 99.9519
10−9.0 −4.374 153 3 99.9759 −4.400 486 0 99.9745 −4.401 140 2 99.9746
10−9.5 −4.374 657 3 99.9875 −4.401 017 0 99.9866 −4.401 667 5 99.9865
10−10.0 −4.374 913 8 99.9933 −4.401 290 7 99.9928 −4.401 941 7 99.9928
10−10.5 −4.375 050 3 99.9964 −4.401 435 9 99.9961 −4.402 087 3 99.9961
10−11.0 −4.375 124 0 99.9981 −4.401 514 7 99.9979 −4.402 166 6 99.9979
10−11.5 −4.375 163 7 99.9990 −4.401 557 7 99.9989 −4.402 210 3 99.9989
10−12.0 −4.375 184 7 99.9995 −4.401 581 1 99.9994 −4.402 234 1 99.9994

(a) Correlation energy EDLPNO−MP2, omitting the correction for PNO truncation.

TCutPNO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−6.5 −4.364 374 3 99.7524 −4.390 489 3 99.7474 −4.391 133 6 99.7473
10−7.0 −4.368 777 4 99.8531 −4.395 016 9 99.8503 −4.395 662 8 99.8501
10−7.5 −4.371 260 0 99.9098 −4.397 539 1 99.9076 −4.398 183 9 99.9074
10−8.0 −4.372 802 7 99.9451 −4.399 120 3 99.9435 −4.399 765 1 99.9433
10−8.5 −4.373 813 2 99.9682 −4.400 148 5 99.9669 −4.400 801 7 99.9669
10−9.0 −4.374 399 2 99.9816 −4.400 754 6 99.9806 −4.401 404 4 99.9806
10−9.5 −4.374 753 1 99.9896 −4.401 122 6 99.9890 −4.401 770 9 99.9889
10−10.0 −4.374 950 7 99.9942 −4.401 331 4 99.9938 −4.401 981 5 99.9937
10−10.5 −4.375 064 1 99.9968 −4.401 451 3 99.9965 −4.402 102 3 99.9964
10−11.0 −4.375 129 1 99.9982 −4.401 520 3 99.9980 −4.402 172 1 99.9980
10−11.5 −4.375 165 5 99.9991 −4.401 559 8 99.9989 −4.402 212 3 99.9989
10−12.0 −4.375 185 3 99.9995 −4.401 581 9 99.9994 −4.402 234 8 99.9994

(b) Correlation energy EDLPNO−MP2 + ∆EPNO, which includes the correction for PNO trunca-
tion.

Table A.2: Correlation energy calculated for the anthrecene dimer using different thresh-
olds TCutPNO. No other truncations were applied. In addition, the percentage of the
RI-MP2 correlation energy recovered is shown.
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TCutPNO def2-TZVPD def2-TZVPD
def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh %

10−6.5 −6.164 746 0 99.4964 −6.164 902 1 99.4975
10−7.0 −6.180 405 7 99.7491 −6.180 537 3 99.7498
10−7.5 −6.188 222 2 99.8753 −6.188 346 2 99.8758
10−8.0 −6.192 057 2 99.9372 −6.192 147 4 99.9372
10−8.5 −6.193 969 8 99.9680 −6.194 052 3 99.9679
10−9.0 −6.194 930 0 99.9835 −6.195 012 7 99.9834
10−9.5 −6.195 430 0 99.9916 −6.195 515 0 99.9915
10−10.0 −6.195 684 3 99.9957 −6.195 770 6 99.9957
10−10.5 −6.195 814 1 99.9978 −6.195 901 4 99.9978
10−11.0 −6.195 879 9 99.9989 −6.195 968 3 99.9989
10−11.5 −6.195 914 0 99.9994 −6.196 002 9 99.9994
10−12.0 −6.195 931 4 99.9997 −6.196 020 7 99.9997

(a) Correlation energy EDLPNO−MP2, omitting the correction for PNO truncation.

TCutPNO def2-TZVPD def2-TZVPD
def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh %

10−6.5 −6.185 037 6 99.8239 −6.185 153 1 99.8243
10−7.0 −6.189 477 7 99.8955 −6.189 573 6 99.8957
10−7.5 −6.192 043 0 99.9370 −6.192 128 1 99.9369
10−8.0 −6.193 659 2 99.9630 −6.193 731 5 99.9628
10−8.5 −6.194 641 9 99.9789 −6.194 714 2 99.9786
10−9.0 −6.195 211 7 99.9881 −6.195 289 6 99.9879
10−9.5 −6.195 542 2 99.9934 −6.195 624 9 99.9933
10−10.0 −6.195 728 0 99.9964 −6.195 813 4 99.9964
10−10.5 −6.195 830 9 99.9981 −6.195 918 0 99.9980
10−11.0 −6.195 886 3 99.9990 −6.195 974 6 99.9990
10−11.5 −6.195 916 4 99.9995 −6.196 005 3 99.9995
10−12.0 −6.195 932 2 99.9997 −6.196 021 5 99.9997

(b) Correlation energy EDLPNO−MP2 + ∆EPNO, which includes the correction for PNO trunca-
tion.

Table A.3: Correlation energy calculated for the ATP4– anion using different thresholds
TCutPNO. No other truncations were applied. In addition, the percentage of the RI-MP2
correlation energy recovered is shown.
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TCutMKN def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−2.0 −5.866 583 8 99.9585 −5.906 067 5 99.9324 −5.908 073 1 99.9562
10−2.5 −5.868 316 3 99.9880 −5.909 574 3 99.9917 −5.910 412 1 99.9957
10−3.0 −5.868 756 7 99.9955 −5.909 805 4 99.9956 −5.910 524 1 99.9976
10−3.5 −5.868 922 8 99.9983 −5.909 953 9 99.9981 −5.910 603 7 99.9990
10−4.0 −5.868 977 4 99.9992 −5.910 023 7 99.9993 −5.910 635 3 99.9995
0 −5.869 021 5 100.0000 −5.910 064 6 100.0000 −5.910 663 8 100.0000

(a) Energies for sildenafil.

TCutMKN def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−2.0 −4.369 661 6 99.9282 −4.396 899 9 99.9495 −4.398 789 5 99.9778
10−2.5 −4.372 263 9 99.9877 −4.398 577 8 99.9877 −4.399 521 8 99.9945
10−3.0 −4.372 637 0 99.9962 −4.398 936 2 99.9958 −4.399 691 4 99.9983
10−3.5 −4.372 745 5 99.9987 −4.399 029 7 99.9979 −4.399 723 3 99.9990
10−4.0 −4.372 773 3 99.9993 −4.399 107 6 99.9997 −4.399 751 5 99.9997
0 −4.372 802 7 100.0000 −4.399 120 3 100.0000 −4.399 765 1 100.0000

(b) Energies for the anthracene dimer.

TCutMKN def2-TZVPD def2-TZVPD
def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh %

10−2.0 −6.192 282 5 99.9778 −6.193 104 7 99.9899
10−2.5 −6.193 131 5 99.9915 −6.193 474 3 99.9958
10−3.0 −6.193 408 2 99.9959 −6.193 610 5 99.9980
10−3.5 −6.193 541 4 99.9981 −6.193 673 3 99.9991
10−4.0 −6.193 623 3 99.9994 −6.193 711 7 99.9997
0 −6.193 659 2 100.0000 −6.193 731 5 100.0000

(c) Energies for the ATP4– anion.

Table A.4: Correlation energies calculated with different thresholds TCutMKN. The PNO
threshold was set to the standard value TCutPNO = 1× 10−8, but no other truncation
were applied. The percentages are those of the DLPNO-MP2 energy with TCutMKN = 0
and the specified TCutPNO.
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TCutDO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−1.50 −5.857 221 5 99.8034 −5.894 660 1 99.7437 −5.895 271 0 99.7419
10−1.75 −5.864 982 8 99.9357 −5.903 002 1 99.8849 −5.903 665 8 99.8840
10−2.00 −5.867 185 4 99.9732 −5.905 739 4 99.9312 −5.906 419 5 99.9306
10−2.25 −5.868 201 8 99.9905 −5.907 873 0 99.9673 −5.908 572 2 99.9670
10−2.50 −5.868 571 8 99.9968 −5.908 934 0 99.9853 −5.909 643 9 99.9851
10−2.75 −5.868 691 3 99.9989 −5.909 366 0 99.9926 −5.910 078 7 99.9925
10−3.00 −5.868 735 4 99.9996 −5.909 607 1 99.9966 −5.910 322 4 99.9966
0 −5.868 756 7 100.0000 −5.909 805 4 100.0000 −5.910 524 1 100.0000

(a) Energies for sildenafil.

TCutDO def2-TZVP def2-TZVPD def2-TZVPD
def2-TZVP/C def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh % EC / Eh %

10−1.50 −4.358 174 6 99.6693 −4.380 173 1 99.5735 −4.380 814 4 99.5709
10−1.75 −4.367 982 2 99.8935 −4.392 401 3 99.8514 −4.393 108 8 99.8504
10−2.00 −4.371 472 3 99.9734 −4.396 432 6 99.9431 −4.397 160 7 99.9425
10−2.25 −4.372 289 9 99.9921 −4.398 008 1 99.9789 −4.398 752 0 99.9786
10−2.50 −4.372 537 8 99.9977 −4.398 585 2 99.9920 −4.399 335 1 99.9919
10−2.75 −4.372 618 6 99.9996 −4.398 883 2 99.9988 −4.399 636 1 99.9987
10−3.00 −4.372 634 4 99.9999 −4.398 932 5 99.9999 −4.399 687 6 99.9999
0 −4.372 637 0 100.0000 −4.398 936 2 100.0000 −4.399 691 4 100.0000

(b) Energies for the anthracene dimer.

TCutDO def2-TZVPD def2-TZVPD
def2-TZVP/C aug-cc-pVTZ/C

EC / Eh % EC / Eh %

10−1.50 −6.184 588 2 99.8576 −6.184 751 9 99.8570
10−1.75 −6.189 325 0 99.9341 −6.189 500 3 99.9336
10−2.00 −6.191 812 5 99.9742 −6.192 001 1 99.9740
10−2.25 −6.192 817 4 99.9905 −6.193 014 5 99.9904
10−2.50 −6.193 135 8 99.9956 −6.193 336 7 99.9956
10−2.75 −6.193 266 1 99.9977 −6.193 467 1 99.9977
10−3.00 −6.193 362 2 99.9993 −6.193 564 0 99.9992
0 −6.193 408 2 100.0000 −6.193 610 5 100.0000

(c) Energies for the ATP4– anion.

Table A.5: Correlation energy calculated with different thresholds TCutDO. The PNO
and fitting domain threshold were set to their respective default values, and no other
truncation were applied. The percentages are those of the DLPNO-MP2 energy with
TCutDO = 0.
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Energies calculated with different occupied Fock matrix truncation thresholds FCut

are shown in Table A.6 for vancomycin with the def2-TZVP basis. The truncation

thresholds for PNOs, PAOs and auxiliary functions were set to their default values of

TCutPNO = 1× 10−8, TCutMKN = 1× 10−3 and TCutDO = 1× 10−2. All remaining thresh-

olds were set to zero. The data is represented graphically in Figure 2.6.

FCut energy / Eh truncation error / Eh

10−2.00 −18.306 593 079 605 4.825× 10−3

10−2.50 −18.311 034 733 384 3.834× 10−4

10−3.00 −18.311 415 790 297 2.350× 10−6

10−3.25 −18.311 432 610 517 −1.447× 10−5

10−3.50 −18.311 428 233 514 −1.009× 10−5

10−3.75 −18.311 422 910 129 −4.770× 10−6

10−4.00 −18.311 420 523 158 −2.383× 10−6

10−4.25 −18.311 418 984 655 −8.447× 10−7

10−4.50 −18.311 418 463 731 −3.238× 10−7

10−4.75 −18.311 418 261 340 −1.214× 10−7

10−5.00 −18.311 418 184 232 −4.426× 10−8

10−5.50 −18.311 418 143 703 −3.734× 10−9

10−6.00 −18.311 418 140 262 −2.930× 10−10

0 −18.311 418 139 969 0.0

Table A.6: Energies for vancomycin with the def2-TZVP calculated with different FCut.
The thresholds TCutPNO, TCutMKN and TCutDO were set to their default values. No other
truncations were applied.
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A.2 Timing results

Table A.7 shows wall clock times for individual components of the DLPNO-MP2 energy

calculation determined for alkane chains of different length.

wall clock times / s

C100H202 C150H302 C200H402 C250H502 C300H602

no. of basis functions 4312 6462 8612 10 762 12 912
HF (RIJCOSX) 44 071 77 149 128 912 199 392 I63 262

MO localization 215 715 1992 3234 4888
F and S in AO basis 73 242 671 1206 1831
calculation of PAOs 21 70 208 363 547
F and S in PAO basis 27 91 267 461 703
grid setup for DOI 284 873 2648 4880 6890
DOI calculation 44 75 157 196 212
dipole integrals 58 178 499 831 1255
prescreening 27 65 151 215 276
screened out pairs / % 81 87 90 92 94
map setup 36 116 353 520 731
(iµ̃′|K) transformation 3937 6801 11 256 13 671 14 381
semicanonical amplitudes 1466 2353 4144 4831 5575
PNO generation 529 818 1435 1597 1678
LMP2 iterations 804 1313 2404 2887 2819
no. of iterations 8 8 9 9 9

LMP2 (total) 7543 13 768 26 350 35 203 42 190

Table A.7: Breakdown of the DLPNO-MP2 timings on one CPU core for long alkane
chains.
IExecution in parallel on 16 cores.
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Appendix B

Data tables: DLPNO-MP2 gradient

B.1 Electric field gradient calculations

B.1.1 Convergence of electric field gradient errors with the PNO

truncation threshold

Table B.1 shows electric field gradients computed with different pair natural orbital trun-

cation thresholds for chlorothiazide and taurine, as presented in Figure 3.1. It includes

results calculated with the complete Lagrangian and with approximate schemes. Re-

sults were calculated with the cc-pwCVTZ basis, and all truncation thresholds except for

TCutPNO were set to zero. As defined in the default settings, the PNO truncation threshold

for pairs involving at least one core orbital was adjusted to TCutPNO(Core) = 10−2×TCutPNO.

In addition, results are shown with TCutPNO(Core) = 0: this reproduces the full virtual

space for pairs involving at least one core orbital, and permits PNO truncation only for

pure valence pairs.

B.1.2 Electric field gradients with standard threshold settings

Table B.2 shows nuclear quadrupole coupling constants calculated for chlorothiazide and

taurine in cc-pwCVQZ basis. The taurine molecule was supplemented with three specta-

tor molecules and embedded in point charges, as shown in Figure 3.2.
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TCutPNO(Core) = 10−2 × TCutPNO TCutPNO(Core) = 0

TCutPNO (1) (2) (3) (4) (1) (2) (3) (4)

10−7 3.9331 3.9407 3.9528 3.9547 3.9327 3.9400 3.9590 3.9604
10−8 3.9315 3.9333 3.8885 3.8899 3.9316 3.9334 3.8942 3.8953
10−9 3.9309 3.9314 3.9362 3.9368 3.9309 3.9314 3.9369 3.9374
10−10 3.9307 3.9307 3.9343 3.9344 3.9307 3.9307 3.9344 3.9346
10−11 3.9306 3.9306 3.9267 3.9267 3.9306 3.9306 3.9267 3.9268
10−12 3.9305 3.9305 3.9243 3.9244 3.9305 3.9305 3.9244 3.9244

HF 4.1436
RI-MP2 3.9305

(a) Cl nucleus of chlorothiazide

TCutPNO(Core) = 10−2 × TCutPNO TCutPNO(Core) = 0

TCutPNO (1) (2) (3) (4) (1) (2) (3) (4)

10−7 0.4570 0.4610 0.4471 0.4466 0.4560 0.4599 0.4468 0.4473
10−8 0.4549 0.4559 0.4290 0.4294 0.4549 0.4559 0.4292 0.4295
10−9 0.4546 0.4548 0.4698 0.4699 0.4546 0.4548 0.4698 0.4699
10−10 0.4545 0.4545 0.4491 0.4491 0.4545 0.4545 0.4491 0.4491
10−11 0.4545 0.4545 0.4541 0.4541 0.4545 0.4545 0.4541 0.4541
10−12 0.4545 0.4545 0.4547 0.4547 0.4545 0.4545 0.4547 0.4547

HF 0.5675
RI-MP2 0.4545

(b) S nucleus of taurine

Table B.1: Largest principal component Vzz of the electric field gradient tensor in atomic
units with different PNO truncation thresholds. Meaning of the column labels:
(1) Including all constraints and the derivative of ∆EPNO.
(2) Including all constraints without the derivative of ∆EPNO.
(3) Excluding the constraints for the PNOs and the semicanonical amplitudes.
(4) As in (3), but also excluding the localisation constraint.
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CQ / MHz

Settings (1) (2) (3) (4)

LoosePNO −74.356 −74.562 −77.627 −77.243
NormalPNO −74.542 −74.594 −78.716 −78.320
TightPNO −74.587 −74.596 −73.421 −73.014

HF −79.159
RI-MP2 −74.585
Experiment[196] −73.04(8)

(a) NQCC for the 35Cl nucleus of chlorothiazide. The uncertainty of ±0.8 mb in the nuclear
quadrupole moment translates into an error range of ±0.7 MHz for the calculated result.

CQ / MHz

Settings (1) (2) (3) (4)

LoosePNO 1.512 1.523 −3.295 −3.312
NormalPNO 1.351 1.353 −2.632 −2.648
TightPNO 1.327 1.330 −2.553 −2.568

HF 1.911
RI-MP2 1.297
Experiment[197] 1.36(2)

(b) NQCC for the 33S nucleus of taurine. The uncertainty of ±0.4 mb in the nuclear quadrupole
moment translates into an error range of ±7 kHz for the calculated result.

Table B.2: Nuclear quadrupole coupling constants (NQCCs) calculated with DLPNO-
MP2 using the complete and approximate Lagrangians. Results using HF and RI-MP2,
and experimentally determined values are shown for comparison. Meaning of the column
labels:
(1) Including all constraints and the derivative of ∆EPNO.
(2) Including all constraints without the derivative of ∆EPNO.
(3) Excluding the constraints for the PNOs and the semicanonical amplitudes.
(4) As in (3), but also excluding the localisation constraint.
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B.2 Localisation Hessian singularities

Table B.3 shows errors in the natural occupation numbers of the relaxed density for

slightly distorted geometries. The data is plotted in Figure 3.9.

eigenvalue root mean square maximum

uncorrected corrected uncorrected corrected

3.77× 10−7 6.40× 10−2 4.59× 10−5 5.83× 10−1 3.53× 10−4

1.72× 10−5 2.37× 10−3 4.59× 10−5 2.43× 10−2 3.55× 10−4

4.05× 10−5 6.77× 10−5 4.59× 10−5 5.16× 10−4 3.55× 10−4

2.54× 10−4 4.62× 10−5 4.61× 10−5 3.61× 10−4 3.61× 10−4

4.71× 10−4 5.06× 10−5 5.06× 10−5 3.65× 10−4 3.65× 10−4

7.03× 10−4 6.82× 10−5 6.82× 10−5 4.86× 10−4 4.86× 10−4

(a) benzene-ethyne dimer

eigenvalue root mean square maximum

uncorrected corrected uncorrected corrected

1.29× 10−5 1.00× 10−1 3.48× 10−4 1.56 5.63× 10−3

2.52× 10−5 1.15× 10−3 8.01× 10−4 1.28× 10−2 1.12× 10−2

4.37× 10−5 9.38× 10−3 3.57× 10−4 1.49× 10−1 5.68× 10−3

2.05× 10−4 4.23× 10−4 3.76× 10−4 5.64× 10−3 5.64× 10−3

3.88× 10−4 3.61× 10−4 3.49× 10−4 5.77× 10−3 5.74× 10−3

1.85× 10−3 8.93× 10−4 8.91× 10−4 3.20× 10−3 3.21× 10−3

(b) KAMDOR

eigenvalue root mean square maximum

uncorrected corrected uncorrected corrected

5.25× 10−7 1.73× 10−2 7.47× 10−5 2.26× 10−1 1.11× 10−3

4.02× 10−6 2.33× 10−4 9.52× 10−5 3.40× 10−3 1.14× 10−3

1.36× 10−5 2.63× 10−4 7.55× 10−5 4.41× 10−3 1.09× 10−3

3.63× 10−5 7.40× 10−5 7.40× 10−5 1.08× 10−3 1.08× 10−3

1.61× 10−4 7.27× 10−5 7.27× 10−5 1.08× 10−3 1.08× 10−3

3.27× 10−4 9.55× 10−5 9.55× 10−5 1.53× 10−3 1.53× 10−3

(c) MgCp2

Table B.3: Deviations between natural occupation numbers calculated with the relaxed
DLPNO-MP2 and RI-MP2 densities. The leftmost column shows the smallest eigenvalue
(by absolute value) of the Foster-Boys orbital Hessian calculated for each structure. “Un-
corrected” values were calculated using the unmodified Lagrangian, the “corrected” values
after removing the eigenvector associated with the smallest eigenvalue.
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B.3 Single-point geometric gradient calculations

B.3.1 Baker test set

Tables B.4 and B.5 show errors in the DLPNO-MP2 gradient for the Baker test set. The

molecules are ordered by the number of atoms. A plot of the root mean square errors is

provided in Figure 3.10.

Name Atoms RMS gradient error / Eh a0
−1

LoosePNO NormalPNO TightPNO

water 3 5.93× 10−6 1.61× 10−7 1.99× 10−7

acetylene 4 4.15× 10−5 1.59× 10−5 1.02× 10−5

ammonia 4 1.24× 10−5 2.06× 10−6 1.84× 10−6

hydroxysulphane 4 8.11× 10−5 2.28× 10−5 3.05× 10−6

allene 7 2.21× 10−5 1.14× 10−5 6.73× 10−7

methylamine 7 7.75× 10−5 2.61× 10−5 6.84× 10−6

ethane 8 7.60× 10−5 1.70× 10−5 9.33× 10−6

disilyl ether 9 3.52× 10−5 4.09× 10−6 3.06× 10−6

ethanol 9 1.03× 10−4 3.21× 10−5 1.15× 10−5

furan 9 1.12× 10−4 4.08× 10−5 8.80× 10−6

acetone 10 7.77× 10−5 4.03× 10−5 2.64× 10−5

benzene 12 9.44× 10−5 2.63× 10−5 7.58× 10−6

1,3-difluorobenzene 12 1.82× 10−4 5.66× 10−5 3.14× 10−5

1,3,5-trifluorobenzene 12 2.53× 10−4 1.16× 10−4 1.03× 10−4

benzaldehyde 14 1.26× 10−4 4.17× 10−5 1.50× 10−5

2-hydroxybicyclopentane 14 2.18× 10−4 9.87× 10−5 7.49× 10−5

ACHTAR10 16 9.46× 10−5 3.80× 10−5 1.73× 10−5

difuropyrazine 16 3.41× 10−4 1.45× 10−4 8.94× 10−5

mesityl oxide 17 1.43× 10−4 4.74× 10−5 1.52× 10−5

neopentane 17 1.20× 10−4 2.73× 10−5 1.46× 10−5

pterin 17 3.41× 10−4 1.19× 10−4 4.85× 10−5

1,5-difluoronaphthalene 18 3.38× 10−4 1.22× 10−4 5.04× 10−5

naphthalene 18 3.16× 10−4 9.09× 10−5 3.28× 10−5

1,3,5-trisilylacyclohexane 18 1.19× 10−4 2.25× 10−5 1.20× 10−5

ACANIL01 19 1.65× 10−4 6.51× 10−5 2.99× 10−5

histidine 20 2.07× 10−4 7.03× 10−5 3.10× 10−5

dimethylpentane 23 1.91× 10−4 5.08× 10−5 1.98× 10−5

caffeine 24 3.56× 10−4 1.36× 10−4 5.35× 10−5

benzidine 26 2.93× 10−3 1.12× 10−3 2.86× 10−4

menthone 29 2.26× 10−4 8.54× 10−5 3.00× 10−5

Table B.4: Root mean square (RMS) deviations of the DLPNO-MP2 nuclear gradient
from RI-MP2 for molecules in the Baker test set.
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Name Atoms Largest gradient error / Eh a0
−1

LoosePNO NormalPNO TightPNO

water 3 6.90× 10−6 2.28× 10−7 2.36× 10−7

acetylene 4 5.87× 10−5 2.24× 10−5 1.43× 10−5

ammonia 4 2.00× 10−5 2.12× 10−6 1.94× 10−6

hydroxysulphane 4 1.11× 10−4 3.29× 10−5 4.23× 10−6

allene 7 3.82× 10−5 2.05× 10−5 7.40× 10−7

methylamine 7 1.42× 10−4 5.17× 10−5 1.27× 10−5

ethane 8 1.49× 10−4 3.14× 10−5 1.85× 10−5

disilyl ether 9 7.05× 10−5 6.24× 10−6 4.46× 10−6

ethanol 9 1.95× 10−4 6.33× 10−5 2.35× 10−5

furan 9 2.14× 10−4 8.21× 10−5 1.51× 10−5

acetone 10 1.54× 10−4 7.57× 10−5 4.84× 10−5

benzene 12 1.30× 10−4 3.57× 10−5 1.03× 10−5

1,3-difluorobenzene 12 2.58× 10−4 9.00× 10−5 5.39× 10−5

1,3,5-trifluorobenzene 12 3.50× 10−4 1.67× 10−4 1.60× 10−4

benzaldehyde 14 2.53× 10−4 9.74× 10−5 3.37× 10−5

2-hydroxybicyclopentane 14 4.20× 10−4 2.06× 10−4 1.68× 10−4

ACHTAR10 16 2.02× 10−4 9.37× 10−5 4.49× 10−5

difuropyrazine 16 5.81× 10−4 3.07× 10−4 2.11× 10−4

mesityl oxide 17 3.33× 10−4 1.10× 10−4 3.05× 10−5

neopentane 17 2.37× 10−4 5.14× 10−5 2.82× 10−5

pterin 17 9.11× 10−4 3.13× 10−4 9.22× 10−5

1,5-difluoronaphthalene 18 5.30× 10−4 1.97× 10−4 7.90× 10−5

naphthalene 18 5.00× 10−4 1.44× 10−4 5.16× 10−5

1,3,5-trisilylacyclohexane 18 2.66× 10−4 4.66× 10−5 2.67× 10−5

ACANIL01 19 3.89× 10−4 1.64× 10−4 7.87× 10−5

histidine 20 4.15× 10−4 1.42× 10−4 6.31× 10−5

dimethylpentane 23 3.86× 10−4 1.14× 10−4 4.72× 10−5

caffeine 24 8.86× 10−4 3.18× 10−4 1.11× 10−4

benzidine 26 5.83× 10−3 2.29× 10−3 5.39× 10−4

menthone 29 4.80× 10−4 2.03× 10−4 6.54× 10−5

Table B.5: Largest deviations of the DLPNO-MP2 nuclear gradient from RI-MP2 for
molecules in the Baker test set.
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B.3.2 S66x8 test set

Tables B.6 to B.8 show the root mean square deviation between single-point gradients calculated with DLPNO-MP2 and RI-MP2 for

the dimers in the S66x8 test set. The bottom row of each table contains the root mean square of root mean square deviations for each

relative distance between the monomers. A graphical representation of the latter data is shown in Figure 3.11.

Distance scaling factor 0.90 0.95 1.00 1.05 1.10 1.25 1.50 2.00

Dimer gradient RMSD / Eh a0
−1

Water-Water 4.66× 10−5 4.37× 10−5 3.81× 10−5 3.45× 10−5 3.12× 10−5 2.41× 10−5 1.57× 10−5 9.75× 10−6

Water-MeOH 7.43× 10−5 7.25× 10−5 7.13× 10−5 6.76× 10−5 6.42× 10−5 7.17× 10−5 6.13× 10−5 6.35× 10−5

Water-MeNH2 7.20× 10−5 6.80× 10−5 6.41× 10−5 6.21× 10−5 6.05× 10−5 6.58× 10−5 5.17× 10−5 5.34× 10−5

Water-Peptide 1.07× 10−4 1.03× 10−4 1.01× 10−4 1.01× 10−4 1.00× 10−4 1.06× 10−4 9.49× 10−5 8.65× 10−5

MeOH-MeOH 9.30× 10−5 8.70× 10−5 8.58× 10−5 8.41× 10−5 8.27× 10−5 8.21× 10−5 7.29× 10−5 7.45× 10−5

MeOH-MeNH2 9.09× 10−5 9.32× 10−5 8.98× 10−5 8.71× 10−5 8.16× 10−5 7.82× 10−5 7.28× 10−5 6.72× 10−5

MeOH-Peptide 1.15× 10−4 1.11× 10−4 1.09× 10−4 1.06× 10−4 1.02× 10−4 9.92× 10−5 9.56× 10−5 9.32× 10−5

MeOH-Water 8.18× 10−5 7.80× 10−5 7.66× 10−5 7.51× 10−5 7.30× 10−5 6.87× 10−5 6.19× 10−5 5.71× 10−5

MeNH2-MeOH 7.97× 10−5 7.69× 10−5 7.76× 10−5 8.07× 10−5 7.91× 10−5 7.14× 10−5 7.01× 10−5 7.10× 10−5

MeNH2-MeNH2 8.81× 10−5 9.00× 10−5 8.80× 10−5 8.46× 10−5 8.19× 10−5 7.37× 10−5 6.60× 10−5 6.78× 10−5

MeNH2-Peptide 1.40× 10−4 1.35× 10−4 1.28× 10−4 1.26× 10−4 1.24× 10−4 1.22× 10−4 1.19× 10−4 1.17× 10−4

MeNH2-Water 8.02× 10−5 7.79× 10−5 7.80× 10−5 7.42× 10−5 7.19× 10−5 6.08× 10−5 7.13× 10−5 5.21× 10−5

Peptide-MeOH 1.40× 10−4 1.33× 10−4 1.29× 10−4 1.23× 10−4 1.20× 10−4 1.06× 10−4 9.83× 10−5 9.58× 10−5

Peptide- MeNH2 1.33× 10−4 1.25× 10−4 1.23× 10−4 1.22× 10−4 1.16× 10−4 1.06× 10−4 9.27× 10−5 8.74× 10−5

Peptide-Peptide 1.35× 10−4 1.35× 10−4 1.30× 10−4 1.28× 10−4 1.25× 10−4 1.18× 10−4 1.10× 10−4 1.02× 10−4

Peptide-Water 1.27× 10−4 1.26× 10−4 1.24× 10−4 1.28× 10−4 1.23× 10−4 1.14× 10−4 1.08× 10−4 1.03× 10−4

Uracil-Uracil (BP) 3.60× 10−4 3.65× 10−4 3.67× 10−4 3.69× 10−4 3.74× 10−4 3.66× 10−4 3.80× 10−4 3.85× 10−4

Water-Pyridine 9.24× 10−5 9.56× 10−5 9.46× 10−5 8.87× 10−5 9.33× 10−5 8.84× 10−5 8.95× 10−5 9.58× 10−5

MeOH-Pyridine 1.07× 10−4 1.08× 10−4 1.07× 10−4 1.02× 10−4 9.19× 10−5 8.94× 10−5 9.39× 10−5 9.66× 10−5
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AcOH-AcOH 1.34× 10−4 2.25× 10−4 1.05× 10−4 1.03× 10−4 9.94× 10−5 1.05× 10−4 9.66× 10−5 8.58× 10−5

AcNH2-AcNH2 1.10× 10−4 1.05× 10−4 1.01× 10−4 9.66× 10−5 9.26× 10−5 9.13× 10−5 8.61× 10−5 8.44× 10−5

AcOH-Uracil 2.67× 10−4 2.69× 10−4 2.69× 10−4 2.73× 10−4 2.61× 10−4 2.63× 10−4 2.60× 10−4 2.75× 10−4

AcNH2-Uracil 2.73× 10−4 2.73× 10−4 2.62× 10−4 2.67× 10−4 2.66× 10−4 2.58× 10−4 2.63× 10−4 2.84× 10−4

Benzene-Benzene (π-π) 1.82× 10−4 1.73× 10−4 1.55× 10−4 1.42× 10−4 1.30× 10−4 1.02× 10−4 9.53× 10−5 9.41× 10−5

Pyridine-Pyridine (π-π) 1.88× 10−4 1.76× 10−4 1.72× 10−4 1.61× 10−4 1.57× 10−4 1.23× 10−4 1.01× 10−4 1.01× 10−4

Uracil-Uracil (π-π) 2.93× 10−4 2.87× 10−4 2.76× 10−4 2.65× 10−4 2.54× 10−4 2.25× 10−4 2.10× 10−4 2.06× 10−4

Benzene-Pyridine (π-π) 1.86× 10−4 1.78× 10−4 1.62× 10−4 1.53× 10−4 1.38× 10−4 1.08× 10−4 9.84× 10−5 9.74× 10−5

Benzene-Uracil (π-π) 3.73× 10−4 3.13× 10−4 2.96× 10−4 2.77× 10−4 2.62× 10−4 2.33× 10−4 2.06× 10−4 2.10× 10−4

Pyridine-Uracil (π-π) 2.64× 10−4 2.43× 10−4 2.22× 10−4 2.07× 10−4 1.96× 10−4 1.79× 10−4 1.72× 10−4 1.68× 10−4

Benzene-Ethene 1.32× 10−4 1.21× 10−4 1.27× 10−4 1.14× 10−4 1.01× 10−4 8.18× 10−5 7.89× 10−5 7.91× 10−5

Uracil-Ethene 2.23× 10−4 2.22× 10−4 2.18× 10−4 2.17× 10−4 2.12× 10−4 2.05× 10−4 1.96× 10−4 1.93× 10−4

Uracil-Ethyne 2.25× 10−4 2.17× 10−4 2.14× 10−4 2.11× 10−4 2.06× 10−4 1.94× 10−4 1.82× 10−4 1.78× 10−4

Pyridine-Ethene 1.37× 10−4 1.26× 10−4 1.19× 10−4 1.18× 10−4 1.14× 10−4 8.90× 10−5 8.47× 10−5 8.45× 10−5

Pentane-Pentane 1.93× 10−4 1.85× 10−4 1.73× 10−4 1.71× 10−4 1.66× 10−4 1.50× 10−4 1.29× 10−4 1.21× 10−4

Neopentane-Pentane 1.59× 10−4 1.52× 10−4 1.42× 10−4 1.34× 10−4 1.27× 10−4 1.20× 10−4 1.11× 10−4 1.07× 10−4

Neopentane-Neopentane 1.39× 10−4 1.40× 10−4 1.29× 10−4 1.21× 10−4 1.14× 10−4 1.05× 10−4 9.47× 10−5 9.16× 10−5

Cyclopentane-Neopentane 1.74× 10−4 1.69× 10−4 1.61× 10−4 1.56× 10−4 1.50× 10−4 1.39× 10−4 1.25× 10−4 1.19× 10−4

Cyclopentane-Cyclopentane 1.98× 10−4 1.90× 10−4 1.81× 10−4 1.79× 10−4 1.72× 10−4 1.61× 10−4 1.46× 10−4 1.41× 10−4

Benzene-Cyclopentane 2.00× 10−4 1.90× 10−4 1.76× 10−4 1.63× 10−4 1.62× 10−4 1.44× 10−4 1.27× 10−4 1.24× 10−4

Benzene-Neopentane 1.57× 10−4 1.46× 10−4 1.37× 10−4 1.32× 10−4 1.28× 10−4 1.09× 10−4 1.00× 10−4 9.98× 10−5

Uracil-Pentane 2.46× 10−4 2.38× 10−4 2.33× 10−4 2.29× 10−4 2.24× 10−4 2.10× 10−4 2.01× 10−4 1.95× 10−4

Uracil-Cyclopentane 2.84× 10−4 2.80× 10−4 2.68× 10−4 2.55× 10−4 2.49× 10−4 2.44× 10−4 2.26× 10−4 2.27× 10−4

Uracil-Neopentane 2.23× 10−4 2.21× 10−4 2.19× 10−4 2.15× 10−4 2.14× 10−4 2.08× 10−4 1.92× 10−4 1.85× 10−4

Ethene-Pentane 1.44× 10−4 1.36× 10−4 1.30× 10−4 1.28× 10−4 1.32× 10−4 1.18× 10−4 1.08× 10−4 1.04× 10−4

Ethyne-Pentane 1.54× 10−4 1.48× 10−4 1.46× 10−4 1.49× 10−4 1.46× 10−4 1.22× 10−4 1.11× 10−4 1.09× 10−4

Peptide-Pentane 1.90× 10−4 1.84× 10−4 1.77× 10−4 1.75× 10−4 1.68× 10−4 1.58× 10−4 1.35× 10−4 1.25× 10−4

Benzene-Benzene (TS) 1.53× 10−4 1.48× 10−4 1.40× 10−4 1.36× 10−4 1.35× 10−4 1.33× 10−4 1.26× 10−4 1.26× 10−4
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Pyridine-Pyridine (TS) 1.23× 10−4 1.17× 10−4 1.15× 10−4 1.09× 10−4 1.04× 10−4 1.05× 10−4 1.05× 10−4 1.03× 10−4

Benzene-Pyridine (TS) 1.34× 10−4 1.28× 10−4 1.23× 10−4 1.18× 10−4 1.15× 10−4 1.13× 10−4 1.05× 10−4 1.03× 10−4

Benzene-Ethyne (CH-π) 1.40× 10−4 1.25× 10−4 1.18× 10−4 1.09× 10−4 9.96× 10−5 9.56× 10−5 8.22× 10−5 8.28× 10−5

Ethyne-Ethyne (TS) 9.06× 10−5 6.61× 10−5 5.36× 10−5 4.34× 10−5 3.67× 10−5 3.15× 10−5 2.28× 10−5 1.65× 10−5

Benzene-AcOH (OH-π) 1.39× 10−4 1.39× 10−4 1.27× 10−4 1.23× 10−4 1.23× 10−4 1.13× 10−4 1.05× 10−4 1.03× 10−4

Benzene-AcNH2 (NH-π) 1.71× 10−4 1.65× 10−4 1.61× 10−4 1.54× 10−4 1.53× 10−4 1.56× 10−4 1.50× 10−4 1.55× 10−4

Benzene-Water (OH-π) 1.55× 10−4 1.63× 10−4 1.14× 10−4 1.07× 10−4 1.02× 10−4 8.94× 10−5 8.59× 10−5 8.48× 10−5

Benzene-MeOH (OH-π) 1.33× 10−4 1.24× 10−4 1.20× 10−4 1.20× 10−4 1.14× 10−4 1.04× 10−4 9.15× 10−5 8.79× 10−5

Benzene-MeNH2 (NH-π) 1.29× 10−4 1.22× 10−4 1.14× 10−4 1.09× 10−4 1.04× 10−4 9.29× 10−5 8.68× 10−5 8.60× 10−5

Benzene-Peptide (NH-π) 1.70× 10−4 1.63× 10−4 1.53× 10−4 1.40× 10−4 1.35× 10−4 1.19× 10−4 1.03× 10−4 9.99× 10−5

Pyridine-Pyridine (CH-N) 9.36× 10−5 8.85× 10−5 8.86× 10−5 8.67× 10−5 7.84× 10−5 8.16× 10−5 8.19× 10−5 7.97× 10−5

Ethyne-Water (CH-O) 5.85× 10−5 4.34× 10−5 3.96× 10−5 3.67× 10−5 3.18× 10−5 2.20× 10−5 2.16× 10−5 1.67× 10−5

Ethyne-AcOH (OH-π) 1.12× 10−4 1.02× 10−4 9.38× 10−5 8.81× 10−5 8.83× 10−5 8.00× 10−5 7.28× 10−5 6.44× 10−5

Pentane-AcOH 1.53× 10−4 1.49× 10−4 1.46× 10−4 1.43× 10−4 1.41× 10−4 1.31× 10−4 1.19× 10−4 1.14× 10−4

Pentane-AcNH2 1.69× 10−4 1.65× 10−4 1.61× 10−4 1.56× 10−4 1.51× 10−4 1.36× 10−4 1.23× 10−4 1.19× 10−4

Benzene-AcOH 1.62× 10−4 1.49× 10−4 1.39× 10−4 1.33× 10−4 1.27× 10−4 1.17× 10−4 1.08× 10−4 1.07× 10−4

Peptide-Ethene 1.23× 10−4 1.17× 10−4 1.14× 10−4 1.09× 10−4 1.13× 10−4 1.03× 10−4 8.86× 10−5 8.65× 10−5

Pyridine-Ethyne 1.11× 10−4 1.07× 10−4 1.05× 10−4 1.03× 10−4 1.03× 10−4 1.04× 10−4 1.07× 10−4 1.10× 10−4

MeNH2-Pyridine 1.21× 10−4 1.14× 10−4 1.14× 10−4 1.12× 10−4 1.12× 10−4 1.04× 10−4 9.46× 10−5 9.22× 10−5

RMS(RMSD) 1.69× 10−4 1.64× 10−4 1.56× 10−4 1.51× 10−4 1.47× 10−4 1.38× 10−4 1.30× 10−4 1.30× 10−4

Table B.6: Root mean square deviation between the DLPNO-MP2 and RI-MP2 gradients for dimers in the S66x8 test set. LoosePNO
thresholds were used for the DLPNO-MP2 calculations. The values are given in Eh a0

−1.
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Distance scaling factor 0.90 0.95 1.00 1.05 1.10 1.25 1.50 2.00

Dimer gradient RMSD / Eh a0
−1

Water-Water 1.35× 10−5 1.15× 10−5 9.92× 10−6 1.08× 10−5 9.90× 10−6 5.90× 10−6 3.04× 10−6 2.00× 10−6

Water-MeOH 3.21× 10−5 3.22× 10−5 2.72× 10−5 2.71× 10−5 2.74× 10−5 3.63× 10−5 2.36× 10−5 2.25× 10−5

Water-MeNH2 2.81× 10−5 2.59× 10−5 2.54× 10−5 2.45× 10−5 2.40× 10−5 3.43× 10−5 2.19× 10−5 2.12× 10−5

Water-Peptide 4.41× 10−5 4.35× 10−5 4.24× 10−5 4.13× 10−5 4.03× 10−5 5.16× 10−5 4.11× 10−5 3.67× 10−5

MeOH-MeOH 3.73× 10−5 3.52× 10−5 3.39× 10−5 3.23× 10−5 3.17× 10−5 3.74× 10−5 2.82× 10−5 2.68× 10−5

MeOH-MeNH2 3.54× 10−5 3.37× 10−5 3.24× 10−5 3.24× 10−5 3.07× 10−5 3.17× 10−5 2.96× 10−5 2.65× 10−5

MeOH-Peptide 5.08× 10−5 5.01× 10−5 4.85× 10−5 4.77× 10−5 4.65× 10−5 4.76× 10−5 4.50× 10−5 4.24× 10−5

MeOH-Water 2.74× 10−5 2.86× 10−5 2.63× 10−5 2.69× 10−5 2.56× 10−5 2.44× 10−5 2.16× 10−5 2.09× 10−5

MeNH2-MeOH 3.21× 10−5 3.09× 10−5 3.01× 10−5 3.72× 10−5 3.80× 10−5 2.72× 10−5 2.62× 10−5 2.70× 10−5

MeNH2-MeNH2 3.39× 10−5 3.22× 10−5 3.23× 10−5 3.18× 10−5 3.13× 10−5 3.01× 10−5 2.66× 10−5 2.57× 10−5

MeNH2-Peptide 5.06× 10−5 4.96× 10−5 4.95× 10−5 4.73× 10−5 4.68× 10−5 4.66× 10−5 4.69× 10−5 4.32× 10−5

MeNH2-Water 2.80× 10−5 2.71× 10−5 2.63× 10−5 2.64× 10−5 2.49× 10−5 2.42× 10−5 3.41× 10−5 2.15× 10−5

Peptide-MeOH 6.03× 10−5 5.63× 10−5 5.46× 10−5 5.27× 10−5 5.39× 10−5 5.05× 10−5 4.88× 10−5 4.19× 10−5

Peptide- MeNH2 5.67× 10−5 5.37× 10−5 5.46× 10−5 5.32× 10−5 5.21× 10−5 4.99× 10−5 4.46× 10−5 3.82× 10−5

Peptide-Peptide 6.22× 10−5 6.05× 10−5 5.76× 10−5 5.53× 10−5 5.43× 10−5 5.21× 10−5 4.74× 10−5 4.37× 10−5

Peptide-Water 4.64× 10−5 4.35× 10−5 4.22× 10−5 4.09× 10−5 4.38× 10−5 4.06× 10−5 3.94× 10−5 3.55× 10−5

Uracil-Uracil (BP) 1.43× 10−4 1.44× 10−4 1.45× 10−4 1.43× 10−4 1.50× 10−4 1.46× 10−4 1.55× 10−4 1.50× 10−4

Water-Pyridine 3.75× 10−5 4.88× 10−5 4.09× 10−5 4.38× 10−5 3.95× 10−5 3.69× 10−5 3.43× 10−5 5.98× 10−5

MeOH-Pyridine 3.87× 10−5 3.99× 10−5 3.84× 10−5 3.78× 10−5 3.65× 10−5 3.08× 10−5 3.48× 10−5 5.67× 10−5

AcOH-AcOH 6.87× 10−5 7.92× 10−5 4.31× 10−5 4.31× 10−5 4.30× 10−5 5.55× 10−5 4.83× 10−5 4.31× 10−5

AcNH2-AcNH2 4.26× 10−5 4.10× 10−5 4.12× 10−5 3.96× 10−5 4.09× 10−5 3.43× 10−5 3.63× 10−5 4.00× 10−5

AcOH-Uracil 1.07× 10−4 1.32× 10−4 9.87× 10−5 1.02× 10−4 1.02× 10−4 9.95× 10−5 9.48× 10−5 1.05× 10−4

AcNH2-Uracil 9.87× 10−5 1.05× 10−4 9.59× 10−5 9.58× 10−5 9.33× 10−5 9.11× 10−5 9.54× 10−5 1.05× 10−4

Benzene-Benzene (pi-pi) 5.79× 10−5 4.94× 10−5 4.49× 10−5 4.13× 10−5 3.91× 10−5 2.97× 10−5 2.52× 10−5 2.45× 10−5
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Pyridine-Pyridine (pi-pi) 7.23× 10−5 6.61× 10−5 5.63× 10−5 4.98× 10−5 5.61× 10−5 4.92× 10−5 3.02× 10−5 3.82× 10−5

Uracil-Uracil (pi-pi) 1.13× 10−4 1.09× 10−4 1.06× 10−4 1.05× 10−4 1.00× 10−4 8.49× 10−5 8.08× 10−5 8.33× 10−5

Benzene-Pyridine (pi-pi) 6.47× 10−5 6.48× 10−5 6.14× 10−5 6.05× 10−5 5.90× 10−5 4.37× 10−5 2.71× 10−5 3.22× 10−5

Benzene-Uracil (pi-pi) 1.39× 10−4 1.08× 10−4 1.03× 10−4 9.84× 10−5 9.87× 10−5 9.09× 10−5 7.89× 10−5 8.33× 10−5

Pyridine-Uracil (pi-pi) 9.56× 10−5 8.61× 10−5 8.05× 10−5 7.90× 10−5 7.87× 10−5 7.47× 10−5 7.60× 10−5 6.93× 10−5

Benzene-Ethene 3.47× 10−5 3.81× 10−5 4.21× 10−5 3.36× 10−5 2.88× 10−5 2.36× 10−5 2.03× 10−5 2.07× 10−5

Uracil-Ethene 8.77× 10−5 8.39× 10−5 8.59× 10−5 8.43× 10−5 8.36× 10−5 8.24× 10−5 7.97× 10−5 7.73× 10−5

Uracil-Ethyne 8.46× 10−5 8.32× 10−5 7.94× 10−5 7.96× 10−5 7.84× 10−5 8.45× 10−5 7.76× 10−5 7.36× 10−5

Pyridine-Ethene 4.01× 10−5 3.83× 10−5 3.60× 10−5 4.26× 10−5 4.15× 10−5 5.54× 10−5 3.06× 10−5 3.03× 10−5

Pentane-Pentane 8.03× 10−5 7.84× 10−5 7.83× 10−5 8.10× 10−5 7.96× 10−5 6.65× 10−5 5.70× 10−5 4.79× 10−5

Neopentane-Pentane 6.33× 10−5 6.13× 10−5 6.15× 10−5 5.94× 10−5 5.65× 10−5 5.31× 10−5 4.40× 10−5 3.94× 10−5

Neopentane-Neopentane 4.01× 10−5 3.85× 10−5 3.69× 10−5 3.55× 10−5 3.38× 10−5 3.23× 10−5 3.03× 10−5 2.98× 10−5

Cyclopentane-Neopentane 5.48× 10−5 5.45× 10−5 5.13× 10−5 4.95× 10−5 4.78× 10−5 4.39× 10−5 3.80× 10−5 3.57× 10−5

Cyclopentane-Cyclopentane 6.76× 10−5 6.55× 10−5 6.37× 10−5 6.22× 10−5 5.97× 10−5 5.31× 10−5 4.55× 10−5 4.04× 10−5

Benzene-Cyclopentane 6.30× 10−5 6.12× 10−5 5.65× 10−5 5.35× 10−5 4.97× 10−5 4.69× 10−5 3.71× 10−5 3.35× 10−5

Benzene-Neopentane 4.68× 10−5 4.76× 10−5 4.67× 10−5 4.15× 10−5 3.75× 10−5 3.50× 10−5 2.78× 10−5 2.77× 10−5

Uracil-Pentane 1.05× 10−4 1.01× 10−4 9.99× 10−5 1.00× 10−4 9.83× 10−5 8.85× 10−5 8.10× 10−5 7.69× 10−5

Uracil-Cyclopentane 1.06× 10−4 1.02× 10−4 9.79× 10−5 9.57× 10−5 9.47× 10−5 8.92× 10−5 7.93× 10−5 8.45× 10−5

Uracil-Neopentane 7.96× 10−5 7.64× 10−5 7.34× 10−5 7.35× 10−5 7.32× 10−5 7.06× 10−5 6.49× 10−5 6.36× 10−5

Ethene-Pentane 5.54× 10−5 5.54× 10−5 6.16× 10−5 6.00× 10−5 5.78× 10−5 5.17× 10−5 4.51× 10−5 4.01× 10−5

Ethyne-Pentane 5.89× 10−5 5.83× 10−5 5.53× 10−5 5.53× 10−5 5.74× 10−5 5.21× 10−5 4.39× 10−5 4.15× 10−5

Peptide-Pentane 7.64× 10−5 7.51× 10−5 7.45× 10−5 7.32× 10−5 7.09× 10−5 6.70× 10−5 5.43× 10−5 4.43× 10−5

Benzene-Benzene (TS) 4.17× 10−5 3.99× 10−5 3.72× 10−5 3.39× 10−5 3.14× 10−5 2.72× 10−5 2.52× 10−5 2.47× 10−5

Pyridine-Pyridine (TS) 3.95× 10−5 4.09× 10−5 4.42× 10−5 4.34× 10−5 4.12× 10−5 4.40× 10−5 4.08× 10−5 3.75× 10−5

Benzene-Pyridine (TS) 4.67× 10−5 4.63× 10−5 4.36× 10−5 4.12× 10−5 3.93× 10−5 3.55× 10−5 3.13× 10−5 3.16× 10−5

Benzene-Ethyne (CH-pi) 4.79× 10−5 3.45× 10−5 3.56× 10−5 3.01× 10−5 2.62× 10−5 2.42× 10−5 2.14× 10−5 2.21× 10−5

Ethyne-Ethyne (TS) 5.83× 10−5 2.62× 10−5 1.99× 10−5 1.35× 10−5 1.08× 10−5 1.38× 10−5 1.03× 10−5 4.43× 10−6

Benzene-AcOH (OH-pi) 4.52× 10−5 4.27× 10−5 4.02× 10−5 3.88× 10−5 3.68× 10−5 3.29× 10−5 3.08× 10−5 3.13× 10−5
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Benzene-AcNH2 (NH-pi) 4.93× 10−5 5.00× 10−5 4.98× 10−5 4.76× 10−5 4.17× 10−5 4.44× 10−5 3.87× 10−5 3.46× 10−5

Benzene-Water (OH-pi) 6.47× 10−5 8.28× 10−5 6.49× 10−5 5.00× 10−5 4.11× 10−5 2.70× 10−5 2.25× 10−5 2.23× 10−5

Benzene-MeOH (OH-pi) 3.99× 10−5 4.06× 10−5 3.62× 10−5 3.44× 10−5 3.28× 10−5 3.48× 10−5 2.81× 10−5 2.61× 10−5

Benzene-MeNH2 (NH-pi) 4.32× 10−5 3.69× 10−5 3.31× 10−5 3.23× 10−5 3.29× 10−5 3.48× 10−5 2.61× 10−5 2.54× 10−5

Benzene-Peptide (NH-pi) 6.08× 10−5 5.63× 10−5 5.40× 10−5 5.67× 10−5 5.57× 10−5 4.81× 10−5 4.21× 10−5 3.88× 10−5

Pyridine-Pyridine (CH-N) 4.40× 10−5 4.20× 10−5 6.16× 10−5 6.33× 10−5 6.86× 10−5 6.55× 10−5 5.49× 10−5 3.82× 10−5

Ethyne-Water (CH-O) 1.61× 10−5 1.38× 10−5 1.17× 10−5 9.82× 10−6 1.07× 10−5 7.29× 10−6 5.71× 10−6 5.89× 10−6

Ethyne-AcOH (OH-pi) 5.39× 10−5 4.73× 10−5 3.91× 10−5 3.81× 10−5 4.27× 10−5 4.03× 10−5 3.76× 10−5 3.19× 10−5

Pentane-AcOH 6.34× 10−5 6.53× 10−5 6.37× 10−5 6.29× 10−5 6.30× 10−5 6.04× 10−5 5.02× 10−5 4.46× 10−5

Pentane-AcNH2 7.34× 10−5 7.25× 10−5 7.11× 10−5 6.71× 10−5 6.58× 10−5 6.19× 10−5 5.23× 10−5 4.61× 10−5

Benzene-AcOH 4.97× 10−5 4.35× 10−5 4.16× 10−5 3.89× 10−5 3.71× 10−5 3.77× 10−5 3.40× 10−5 3.43× 10−5

Peptide-Ethene 4.88× 10−5 5.18× 10−5 5.11× 10−5 4.91× 10−5 4.71× 10−5 4.67× 10−5 3.96× 10−5 3.79× 10−5

Pyridine-Ethyne 3.07× 10−5 2.97× 10−5 3.17× 10−5 2.91× 10−5 2.81× 10−5 2.66× 10−5 2.47× 10−5 5.76× 10−5

MeNH2-Pyridine 4.43× 10−5 4.78× 10−5 4.24× 10−5 3.94× 10−5 4.05× 10−5 3.44× 10−5 3.43× 10−5 3.40× 10−5

RMS(RMSD) 6.36× 10−5 6.22× 10−5 5.88× 10−5 5.76× 10−5 5.69× 10−5 5.41× 10−5 4.96× 10−5 4.93× 10−5

Table B.7: Root mean square deviation between the DLPNO-MP2 and RI-MP2 gradients for dimers in the S66x8 test set. NormalPNO
thresholds were used for the DLPNO-MP2 calculations. The values are given in Eh a0

−1.
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Distance scaling factor 0.90 0.95 1.00 1.05 1.10 1.25 1.50 2.00

Dimer gradient RMSD / Eh a0
−1

Water-Water 4.84× 10−6 4.62× 10−6 4.14× 10−6 5.22× 10−6 4.40× 10−6 2.60× 10−6 1.09× 10−6 1.03× 10−6

Water-MeOH 9.81× 10−6 9.45× 10−6 9.14× 10−6 9.27× 10−6 9.24× 10−6 1.82× 10−5 4.97× 10−6 5.02× 10−6

Water-MeNH2 8.63× 10−6 6.39× 10−6 6.01× 10−6 6.03× 10−6 5.91× 10−6 1.77× 10−5 4.47× 10−6 4.25× 10−6

Water-Peptide 1.70× 10−5 1.58× 10−5 1.52× 10−5 1.44× 10−5 1.40× 10−5 2.54× 10−5 1.34× 10−5 1.26× 10−5

MeOH-MeOH 1.11× 10−5 1.01× 10−5 1.05× 10−5 9.36× 10−6 9.80× 10−6 1.66× 10−5 5.68× 10−6 5.49× 10−6

MeOH-MeNH2 9.71× 10−6 9.48× 10−6 8.27× 10−6 8.35× 10−6 8.01× 10−6 8.14× 10−6 8.07× 10−6 5.13× 10−6

MeOH-Peptide 1.51× 10−5 1.49× 10−5 1.52× 10−5 1.47× 10−5 1.40× 10−5 1.37× 10−5 1.30× 10−5 1.18× 10−5

MeOH-Water 6.72× 10−6 1.03× 10−5 8.42× 10−6 8.19× 10−6 6.80× 10−6 5.25× 10−6 4.06× 10−6 3.62× 10−6

MeNH2-MeOH 8.66× 10−6 7.88× 10−6 7.69× 10−6 1.59× 10−5 1.56× 10−5 6.12× 10−6 5.42× 10−6 5.68× 10−6

MeNH2-MeNH2 9.13× 10−6 9.38× 10−6 1.04× 10−5 9.43× 10−6 8.63× 10−6 8.55× 10−6 6.62× 10−6 5.33× 10−6

MeNH2-Peptide 1.63× 10−5 1.63× 10−5 1.62× 10−5 1.73× 10−5 1.63× 10−5 1.68× 10−5 1.72× 10−5 1.15× 10−5

MeNH2-Water 7.56× 10−6 7.30× 10−6 6.98× 10−6 6.47× 10−6 6.34× 10−6 5.67× 10−6 1.74× 10−5 4.28× 10−6

Peptide-MeOH 1.97× 10−5 1.87× 10−5 1.80× 10−5 1.78× 10−5 2.05× 10−5 1.63× 10−5 1.73× 10−5 1.90× 10−5

Peptide- MeNH2 2.30× 10−5 2.21× 10−5 1.58× 10−5 1.86× 10−5 1.79× 10−5 1.83× 10−5 1.82× 10−5 1.32× 10−5

Peptide-Peptide 2.43× 10−5 2.35× 10−5 2.36× 10−5 2.29× 10−5 2.20× 10−5 1.67× 10−5 1.53× 10−5 1.85× 10−5

Peptide-Water 1.61× 10−5 1.65× 10−5 1.61× 10−5 1.50× 10−5 1.41× 10−5 1.37× 10−5 1.33× 10−5 1.24× 10−5

Uracil-Uracil (BP) 4.45× 10−5 4.86× 10−5 5.00× 10−5 4.76× 10−5 5.06× 10−5 5.20× 10−5 4.71× 10−5 4.59× 10−5

Water-Pyridine 2.20× 10−5 3.51× 10−5 2.31× 10−5 2.98× 10−5 2.39× 10−5 2.25× 10−5 2.29× 10−5 5.43× 10−5

MeOH-Pyridine 1.47× 10−5 1.59× 10−5 1.58× 10−5 1.58× 10−5 1.59× 10−5 1.27× 10−5 2.16× 10−5 4.94× 10−5

AcOH-AcOH 4.53× 10−5 4.26× 10−5 2.31× 10−5 2.35× 10−5 2.36× 10−5 3.37× 10−5 2.62× 10−5 2.13× 10−5

AcNH2-AcNH2 2.15× 10−5 2.13× 10−5 2.10× 10−5 2.19× 10−5 2.15× 10−5 1.99× 10−5 2.54× 10−5 2.89× 10−5

AcOH-Uracil 4.57× 10−5 4.48× 10−5 4.36× 10−5 4.47× 10−5 4.24× 10−5 4.15× 10−5 3.29× 10−5 3.55× 10−5

AcNH2-Uracil 3.51× 10−5 3.89× 10−5 3.44× 10−5 3.57× 10−5 3.63× 10−5 3.53× 10−5 3.18× 10−5 3.58× 10−5

Benzene-Benzene (pi-pi) 1.72× 10−5 1.70× 10−5 1.57× 10−5 1.45× 10−5 1.42× 10−5 1.18× 10−5 9.28× 10−6 7.94× 10−6
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Pyridine-Pyridine (pi-pi) 3.49× 10−5 3.26× 10−5 2.71× 10−5 2.57× 10−5 3.30× 10−5 2.72× 10−5 1.29× 10−5 2.58× 10−5

Uracil-Uracil (pi-pi) 4.26× 10−5 3.99× 10−5 3.91× 10−5 3.70× 10−5 3.46× 10−5 2.75× 10−5 2.81× 10−5 3.25× 10−5

Benzene-Pyridine (pi-pi) 2.85× 10−5 3.31× 10−5 3.39× 10−5 3.92× 10−5 3.77× 10−5 1.92× 10−5 1.09× 10−5 1.91× 10−5

Benzene-Uracil (pi-pi) 3.24× 10−5 3.04× 10−5 2.97× 10−5 2.78× 10−5 2.65× 10−5 2.67× 10−5 2.50× 10−5 3.07× 10−5

Pyridine-Uracil (pi-pi) 3.10× 10−5 2.81× 10−5 3.02× 10−5 3.26× 10−5 3.25× 10−5 3.28× 10−5 3.76× 10−5 2.84× 10−5

Benzene-Ethene 1.13× 10−5 1.14× 10−5 9.98× 10−6 1.99× 10−5 1.38× 10−5 8.46× 10−6 7.23× 10−6 7.11× 10−6

Uracil-Ethene 2.87× 10−5 2.58× 10−5 2.78× 10−5 2.72× 10−5 2.68× 10−5 2.80× 10−5 2.77× 10−5 2.55× 10−5

Uracil-Ethyne 2.90× 10−5 2.79× 10−5 2.66× 10−5 2.91× 10−5 2.84× 10−5 3.43× 10−5 2.96× 10−5 2.69× 10−5

Pyridine-Ethene 1.72× 10−5 1.73× 10−5 1.66× 10−5 2.10× 10−5 2.04× 10−5 4.41× 10−5 2.03× 10−5 2.07× 10−5

Pentane-Pentane 2.96× 10−5 2.95× 10−5 2.74× 10−5 2.74× 10−5 2.56× 10−5 2.25× 10−5 1.79× 10−5 1.28× 10−5

Neopentane-Pentane 2.51× 10−5 2.35× 10−5 2.31× 10−5 2.31× 10−5 2.21× 10−5 1.90× 10−5 1.59× 10−5 1.32× 10−5

Neopentane-Neopentane 1.74× 10−5 1.69× 10−5 1.79× 10−5 1.61× 10−5 1.59× 10−5 1.53× 10−5 1.42× 10−5 1.43× 10−5

Cyclopentane-Neopentane 2.06× 10−5 1.93× 10−5 1.83× 10−5 1.80× 10−5 1.80× 10−5 1.74× 10−5 1.57× 10−5 1.50× 10−5

Cyclopentane-Cyclopentane 2.48× 10−5 2.34× 10−5 2.17× 10−5 2.08× 10−5 1.95× 10−5 1.76× 10−5 1.69× 10−5 1.49× 10−5

Benzene-Cyclopentane 2.21× 10−5 2.15× 10−5 2.10× 10−5 1.95× 10−5 1.80× 10−5 1.63× 10−5 1.41× 10−5 1.27× 10−5

Benzene-Neopentane 1.94× 10−5 1.88× 10−5 1.81× 10−5 1.67× 10−5 1.60× 10−5 1.35× 10−5 1.24× 10−5 1.21× 10−5

Uracil-Pentane 3.93× 10−5 3.67× 10−5 3.60× 10−5 3.59× 10−5 3.51× 10−5 3.00× 10−5 2.50× 10−5 2.24× 10−5

Uracil-Cyclopentane 3.79× 10−5 3.77× 10−5 3.73× 10−5 3.31× 10−5 3.32× 10−5 3.03× 10−5 2.60× 10−5 2.90× 10−5

Uracil-Neopentane 3.30× 10−5 3.10× 10−5 2.91× 10−5 2.86× 10−5 2.73× 10−5 2.75× 10−5 2.35× 10−5 2.32× 10−5

Ethene-Pentane 1.96× 10−5 1.94× 10−5 1.81× 10−5 1.69× 10−5 1.66× 10−5 1.67× 10−5 1.53× 10−5 1.05× 10−5

Ethyne-Pentane 1.85× 10−5 1.83× 10−5 1.80× 10−5 1.69× 10−5 1.64× 10−5 1.52× 10−5 1.31× 10−5 1.06× 10−5

Peptide-Pentane 2.70× 10−5 2.64× 10−5 2.46× 10−5 2.40× 10−5 2.39× 10−5 2.09× 10−5 1.77× 10−5 1.35× 10−5

Benzene-Benzene (TS) 1.82× 10−5 2.11× 10−5 1.51× 10−5 1.40× 10−5 1.41× 10−5 1.02× 10−5 8.99× 10−6 8.10× 10−6

Pyridine-Pyridine (TS) 1.87× 10−5 2.26× 10−5 2.41× 10−5 2.25× 10−5 2.19× 10−5 2.96× 10−5 3.07× 10−5 2.56× 10−5

Benzene-Pyridine (TS) 2.11× 10−5 1.95× 10−5 2.03× 10−5 2.02× 10−5 1.99× 10−5 2.11× 10−5 1.90× 10−5 1.92× 10−5

Benzene-Ethyne (CH-pi) 2.09× 10−5 1.37× 10−5 1.10× 10−5 1.11× 10−5 9.66× 10−6 1.09× 10−5 7.45× 10−6 7.45× 10−6

Ethyne-Ethyne (TS) 2.64× 10−5 1.20× 10−5 9.29× 10−6 3.95× 10−6 2.93× 10−6 6.14× 10−6 3.17× 10−6 1.58× 10−6

Benzene-AcOH (OH-pi) 2.27× 10−5 2.15× 10−5 2.15× 10−5 2.05× 10−5 1.93× 10−5 1.52× 10−5 1.48× 10−5 1.25× 10−5
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Benzene-AcNH2 (NH-pi) 2.12× 10−5 2.09× 10−5 1.97× 10−5 1.85× 10−5 1.53× 10−5 1.75× 10−5 1.31× 10−5 1.20× 10−5

Benzene-Water (OH-pi) 1.14× 10−5 1.04× 10−5 1.08× 10−5 2.15× 10−5 1.60× 10−5 1.09× 10−5 7.36× 10−6 7.25× 10−6

Benzene-MeOH (OH-pi) 1.41× 10−5 1.98× 10−5 1.56× 10−5 1.64× 10−5 1.32× 10−5 1.05× 10−5 9.49× 10−6 7.49× 10−6

Benzene-MeNH2 (NH-pi) 1.45× 10−5 1.50× 10−5 1.28× 10−5 1.13× 10−5 1.07× 10−5 9.98× 10−6 8.83× 10−6 7.47× 10−6

Benzene-Peptide (NH-pi) 2.12× 10−5 2.04× 10−5 1.95× 10−5 2.85× 10−5 2.86× 10−5 2.74× 10−5 2.71× 10−5 2.16× 10−5

Pyridine-Pyridine (CH-N) 2.56× 10−5 2.60× 10−5 5.40× 10−5 5.56× 10−5 6.41× 10−5 5.95× 10−5 4.73× 10−5 2.58× 10−5

Ethyne-Water (CH-O) 5.56× 10−6 4.89× 10−6 4.85× 10−6 4.03× 10−6 3.89× 10−6 3.69× 10−6 1.71× 10−6 2.07× 10−6

Ethyne-AcOH (OH-pi) 3.42× 10−5 2.51× 10−5 1.83× 10−5 1.78× 10−5 2.16× 10−5 2.09× 10−5 1.91× 10−5 1.41× 10−5

Pentane-AcOH 2.27× 10−5 2.22× 10−5 2.21× 10−5 2.22× 10−5 2.47× 10−5 2.25× 10−5 1.68× 10−5 1.43× 10−5

Pentane-AcNH2 2.67× 10−5 2.55× 10−5 2.49× 10−5 2.38× 10−5 2.25× 10−5 2.02× 10−5 1.85× 10−5 1.56× 10−5

Benzene-AcOH 2.08× 10−5 1.59× 10−5 1.55× 10−5 1.48× 10−5 1.40× 10−5 1.89× 10−5 1.70× 10−5 1.72× 10−5

Peptide-Ethene 1.54× 10−5 1.51× 10−5 1.49× 10−5 1.46× 10−5 1.44× 10−5 1.53× 10−5 2.26× 10−5 2.16× 10−5

Pyridine-Ethyne 1.20× 10−5 1.19× 10−5 1.42× 10−5 1.28× 10−5 1.27× 10−5 1.26× 10−5 1.01× 10−5 5.20× 10−5

MeNH2-Pyridine 1.46× 10−5 1.91× 10−5 1.53× 10−5 1.57× 10−5 1.90× 10−5 1.29× 10−5 1.94× 10−5 2.07× 10−5

RMS(RMSD) 2.39× 10−5 2.34× 10−5 2.26× 10−5 2.30× 10−5 2.30× 10−5 2.26× 10−5 1.97× 10−5 2.12× 10−5

Table B.8: Root mean square deviation between the DLPNO-MP2 and RI-MP2 gradients for dimers in the S66x8 test set. TightPNO
thresholds were used for the DLPNO-MP2 calculations. The values are given in Eh a0

−1.
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B.4 Geometry optimisations

B.4.1 ROT34 test set

Rotational constants for the molecules in the ROT34 test set calculated using DLPNO-MP2 with different basis sets and threshold settings

are provided in Tables B.10 and B.11. Table B.9 shows the RI-MP2 reference results calculated with different basis sets. The data was

discussed in Section 3.3.5.1.

molecule rotational constant / MHz

def2-SVP def2-TZVP def2-QZVPP

A B C A B C A B C

Ethynyl-cyclohexane 4261.887 1377.507 1116.501 4285.885 1394.25 1129.924 4300.878 1398.551 1133.374

Isoamyl-acetate 3289.969 728.968 704.523 3316.071 725.795 704.254 3317.489 726.249 704.786

Diisopropylketone 3042.761 1279.628 1240.819 3067.107 1292.071 1245.223 3076.974 1291.78 1252.23

Bicyclo[2.2.2]octadiene 2741.127 2653.365 2633.326 2758.982 2674.285 2648.406 2766.957 2682.678 2656.596

Triethylamine 2321.078 (2321.067) (1339.714) 2332.938 (2332.897) (1332.083) 2344.107 (2344.046) (1334.248)
Vitamin C 1448.709 784.67 590.945 1453.416 773.483 584.151 1458.666 775.197 585.137

Serotonin 1150.542 662.728 450.862 1169.317 660.88 455.539 1174.999 660.67 456.644

Aspirin 1165.708 759.633 510.1 1165.132 765.611 512.987 1173.109 767.856 515.087

Cassyrane 859.749 751.579 513.309 861.073 756.512 514.287 864.282 757.885 515.587

Limonene 3052.667 718.331 679.97 3079.342 724.501 685.216 3090.155 726.101 687.328

Lupinine 1437.966 818.283 679.736 1434.087 821.896 681.106 1438.886 823.937 682.982

Proline derivative 1497.749 1075.201 721.55 1522.121 1068.709 721.408 1525.84 1073.698 723.866

Table B.9: Rotational constants for the RI-MP2 equilibrium geometries of the molecules in the ROT34 test set. The calculations were
performed with the def2-SVP, def2-TZVP and def2-QZVPP basis sets.
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molecule rotational constant / MHz

LoosePNO NormalPNO TightPNO

A B C A B C A B C

Ethynyl-cyclohexane 4282.886 1393.053 1128.843 4284.938 1393.733 1129.485 4285.523 1394.121 1129.81

Isoamyl-acetate 3314.736 722.862 701.581 3315.614 724.562 703.126 3316.03 725.335 703.829

Diisopropylketone 3066.175 1290.141 1243.393 3067.024 1291.321 1244.533 3067.119 1291.786 1244.927

Bicyclo[2.2.2]octadiene 2756.8 2672.668 2647.188 2758.451 2673.991 2648.132 2758.76 2674.088 2648.32

Triethylamine 2330.941 (2330.915) (1331.191) 2331.978 (2331.949) (1331.565) 2332.602 (2332.558) (1332.069)
Vitamin C 1454.181 770.881 582.505 1453.776 772.428 583.461 1453.662 772.971 583.823

Serotonin 1168.445 659.052 454.523 1168.89 660.197 455.126 1169.145 660.615 455.37

Aspirin 1161.533 764.876 511.969 1163.284 765.377 512.441 1164.318 765.526 512.783

Cassyrane 859.446 755.318 513.28 860.29 756.128 513.875 860.826 756.326 514.129

Limonene 3078.569 723.557 684.249 3079.328 724.185 684.778 3079.302 724.362 685.074

Lupinine 1431.906 820.243 679.44 1433.331 820.971 680.305 1433.896 821.493 680.805

Proline derivative 1519.413 1067.609 720.042 1521.37 1068.132 720.848 1522.039 1068.446 721.211

Table B.10: Rotational constants for the DLPNO-MP2 equilibrium geometries of the molecules in the ROT34 test set. The calculations
were performed with the def2-TZVP basis set using different accuracy settings.
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molecule rotational constant / MHz

def2-SVP def2-QZVPP

A B C A B C

Ethynyl-cyclohexane 4261.759 1377.174 1116.218 4300.174 1398.169 1133.038

Isoamyl-acetate 3290.385 728.203 703.836 3319.207 725.299 703.816

Diisopropylketone 3042.564 1279.039 1240.296 3076.645 1291.057 1251.779

Bicyclo[2.2.2]octadiene 2740.785 2653.071 2633.371 2766.438 2682.412 2656.417

Triethylamine 2320.365 (2320.33) (1339.076) 2343.427 (2343.337) (1333.849)
Vitamin C 1449.1 783.841 590.388 1458.99 774.207 584.461

Serotonin 1150.367 662.202 450.594 1174.656 660.186 456.331

Aspirin 1164.949 759.297 509.849 1171.895 767.602 514.704

Cassyrane 858.907 751.383 512.996 863.797 757.57 515.285

Limonene 3052.531 718.141 679.616 3089.955 725.79 687.078

Lupinine 1437.47 817.705 679.308 1438.291 823.359 682.425

Proline derivative 1497.016 1074.891 721.11 1524.031 1073.594 723.337

Table B.11: Rotational constants for the DLPNO-MP2 equilibrium geometries of the molecules in the ROT34 test set. The calculations
were performed using NormalPNO thresholds with the def2-SVP and def2-QZVPP basis sets. Results for the def2-TZVP set are provided
in Table B.10.
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B.4.2 Baker test set

Table B.12 contains the root mean square error of bond lengths for molecules in the Baker

set. A graphical representation of the data is provided in Figure 3.13.

Name Atoms RMSD(r) / pm

LoosePNO NormalPNO TightPNO

water 3 0.0011 0.0005 0.0005
acetylene 4 0.0014 0.0017 0.0019
ammonia 4 0.0024 0.0009 0.0009
hydroxysulphane 4 0.0065 0.0018 0.0003
allene 7 0.0015 0.0008 0.0007
methylamine 7 0.0076 0.0031 0.0011
ethane 8 0.0063 0.0015 0.0006
disilyl ether 9 0.0097 0.0014 0.0010
ethanol 9 0.0102 0.0044 0.0017
furan 9 0.0105 0.0068 0.0012
acetone 10 0.0151 0.0078 0.0055
benzene 12 0.0085 0.0016 0.0014
1,3-difluorobenzene 12 0.0186 0.0062 0.0029
1,3,5-trifluorobenzene 12 0.0191 0.0064 0.0051
benzaldehyde 14 0.0157 0.0066 0.0022
2-hydroxybicyclopentane 14 0.0179 0.0062 0.0025
ACHTAR10 16 0.0181 0.0068 0.0032
difuropyrazine 16 0.0326 0.0101 0.0035
mesityl oxide 17 0.0291 0.0092 0.0038
neopentane 17 0.0222 0.0057 0.0028
pterin 17 0.0294 0.0113 0.0035
1,5-difluoronaphthalene 18 0.0341 0.0118 0.0042
naphthalene 18 0.0333 0.0109 0.0054
1,3,5-trisilylacyclohexane 18 0.0321 0.0049 0.0033
ACANIL01 19 0.0249 0.0097 0.0042
histidine 20 0.0335 0.0130 0.0113
dimethylpentane 23 0.0368 0.0082 0.0035
caffeine 24 0.0370 0.0153 0.0061
benzidine 26 0.0369 0.0143 0.0052
menthone 29 0.0437 0.0172 0.0068

Table B.12: Root mean square deviations of bond lengths between DLPNO-MP2 and
RI-MP2. The RMSD was calculated over all covalent bonds in each molecule.
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B.4.3 S66 test set

Table B.13 provides distances between the centres of mass of the monomers in the S66 set.

The calculations were performed using DLPNO-MP2 with different threshold settings,

and for comparison with RI-MP2. A graphical representation of errors in the distances

is provided in Figure 3.15.

Dimer Atoms Distance / pm

RI-MP2 Loose Normal Tight

Water-Water 6 291.47 291.75 291.57 291.51

Water-MeOH 9 301.18 301.92 301.47 301.29

Water-MeNH2 10 298.78 299.55 299.01 298.91

Water-Peptide 15 381.25 382.03 381.60 381.41

MeOH-MeOH 12 335.49 336.47 336.17 335.76

MeOH-MeNH2 13 331.41 333.91 331.70 331.52

MeOH-Peptide 18 411.54 413.47 412.34 411.77

MeOH-Water 9 320.25 320.61 320.42 320.33

MeNH2-MeOH 13 351.08 352.78 351.70 351.29

MeNH2-MeNH2 14 344.47 346.27 345.17 344.78

MeNH2-Peptide 19 347.61 352.82 350.06 348.80

MeNH2-Water 10 298.92 299.60 299.15 299.04

Peptide-MeOH 18 381.97 386.32 383.42 382.40

Peptide- MeNH2 19 385.00 387.19 386.12 385.35

Peptide-Peptide 24 463.40 468.40 465.52 464.06

Peptide-Water 15 378.31 379.06 378.51 378.41

Uracil-Uracil (BP) 24 571.10 572.09 571.54 571.26

Water-Pyridine 14 425.85 426.54 426.10 425.95

MeOH-Pyridine 17 443.12 445.14 444.03 443.45

AcOH-AcOH 16 393.99 394.52 394.16 394.06

AcNH2-AcNH2 18 421.74 422.31 421.98 421.84

AcOH-Uracil 20 499.60 500.42 499.84 499.68

AcNH2-Uracil 21 506.16 507.07 506.66 506.28

Benzene-Benzene (pi-pi) 24 366.54 371.51 367.99 367.02

Pyridine-Pyridine (pi-pi) 22 352.78 357.50 353.97 353.19

Uracil-Uracil (pi-pi) 24 306.18 309.70 307.20 306.58

Benzene-Pyridine (pi-pi) 23 360.04 364.39 361.33 360.48

Benzene-Uracil (pi-pi) 24 328.41 332.67 329.49 328.82

Pyridine-Uracil (pi-pi) 23 324.38 328.28 325.57 324.81

Benzene-Ethene 18 335.60 341.24 336.82 335.95

Uracil-Ethene 18 325.54 329.99 326.70 325.92

Uracil-Ethyne 16 320.09 324.05 322.16 320.38

Pyridine-Ethene 17 330.94 335.23 332.03 331.26
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Pentane-Pentane 34 383.35 390.81 386.85 383.73

Neopentane-Pentane 34 456.74 464.56 459.68 457.86

Neopentane-Neopentane 34 530.64 540.60 534.12 531.96

Cyclopentane-Neopentane 32 470.99 479.92 473.92 472.07

Cyclopentane-Cyclopentane 30 425.11 431.62 427.62 426.06

Benzene-Cyclopentane 27 388.68 393.53 390.35 389.27

Benzene-Neopentane 29 443.05 448.11 445.01 443.69

Uracil-Pentane 29 349.49 355.24 351.68 350.28

Uracil-Cyclopentane 27 370.36 375.31 372.32 371.00

Uracil-Neopentane 29 429.18 435.24 431.08 430.15

Ethene-Pentane 23 375.63 380.75 377.93 375.79

Ethyne-Pentane 21 362.03 368.47 363.89 362.63

Peptide-Pentane 29 359.78 365.01 361.48 360.46

Benzene-Benzene (TS) 24 479.36 482.94 480.63 480.02

Pyridine-Pyridine (TS) 22 478.85 482.47 479.96 479.27

Benzene-Pyridine (TS) 23 480.35 483.76 481.62 480.88

Benzene-Ethyne (CH-pi) 16 406.30 408.65 407.34 406.59

Ethyne-Ethyne (TS) 8 437.23 438.69 437.99 437.40

Benzene-AcOH (OH-pi) 20 405.75 408.70 406.81 406.17

Benzene-AcNH2 (NH-pi) 21 413.28 418.27 414.64 414.64

Benzene-Water (OH-pi) 15 322.38 324.04 322.95 322.62

Benzene-MeOH (OH-pi) 18 337.81 340.09 338.60 338.10

Benzene-MeNH2 (NH-pi) 19 353.26 355.91 354.11 353.66

Benzene-Peptide (NH-pi) 24 404.82 408.01 405.89 405.26

Pyridine-Pyridine (CH-N) 22 582.24 583.94 583.02 582.62

Ethyne-Water (CH-O) 7 390.81 391.27 390.99 390.85

Ethyne-AcOH (OH-pi) 12 391.88 392.88 392.31 392.05

Pentane-AcOH 25 371.41 376.63 373.61 372.48

Pentane-AcNH2 26 356.00 360.93 357.92 356.75

Benzene-AcOH 20 371.28 374.96 372.73 371.83

Peptide-Ethene 18 358.67 360.94 358.67 359.37

Pyridine-Ethyne 15 529.63 530.53 530.00 529.78

MeNH2-Pyridine 18 357.23 362.04 359.00 357.75

Table B.13: Distances between the centres of mass of the monomers in the S66 set.
DLPNO-MP2 calculations were performed with different threshold settings (LoosePNO,
NormalPNO, TightPNO), and the def2-TZVP set was used throughout. The original
ordering of the systems from ref. [155] was preserved in this table.

199



200



Appendix C

Influence of the orbital localisation

convergence on reaction energies

Results of local correlation calculations depend, to some extent, on the localisation crite-

rion for the occupied orbitals. Even with the same mathematical criterion, the numerical

procedure can influence the results, depending on the specific set of orbitals that it con-

verges to.

Calculations with DLPNO-CCSD(T)[44] were performed for reaction energies in the

ISOL24 set[242] (Table C.1), and for dimerisation energies in the S66 set (Table C.2)

without counterpoise corrections. The def2-TZVP set was used in all calculations. In

each case, the localised orbitals were determined with the Foster-Boys criterion: either

using the default procedure with Jacobi sweeps, or with rational function optimisation

as described in Section 3.2.4.

While most reaction energies in the ISOL24 set agree between the two localisation pro-

cedures, in a few cases (e.g. 1, 12, 18) there are significant deviations of up to 1 kJ mol−1.

These are usually the consequence of the two procedures converging to different stationary

points.

For the majority of examples in the S66 set, the dimerisation energies are sufficiently

close for practical purposes. However, the respective dimerisation energies of systems 49

and 58 differ by ca. 4 kJ mol−1. In both cases, the Jacobi sweep procedure converges to
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a saddle point for a pyridine monomer geometry, whereas the AHFB procedure correctly

locates a local maximum.

Reaction ∆E/kJ mol−1 Reaction ∆E/kJ mol−1

default AHFB default AHFB

1 292.91 293.77 13 131.55 131.41
2 163.48 163.48 14 14.75 14.75
3 38.45 38.45 15 18.34 18.35
4 291.74 291.74 16 85.96 85.96
5 138.46 138.46 17 41.88 40.89
6 92.08 91.99 18 110.87 110.15
7 74.63 74.63 19 73.11 73.11
8 79.78 79.78 20 20.61 20.57
9 93.69 93.69 21 48.79 48.78
10 22.16 22.15 22 4.32 4.17
11 159.62 159.54 23 109.11 108.88
12 0.63 1.46 24 63.13 63.13

Table C.1: Reaction energies in the ISOL24 set calculated with DLPNO-CCSD(T) using
the def2-TZVP basis set. In each case, Foster-Boys orbitals were calculated either using
the Jacobi sweep scheme (default) or using rational function optimisation (AHFB).
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Dimer ∆E/kJ mol−1 Dimer ∆E/kJ mol−1

default AHFB default AHFB

1 −22.38 −22.38 34 −13.78 −13.78
2 −24.27 −24.27 35 −9.14 −9.14
3 −29.48 −29.48 36 −5.93 −5.93
4 −32.63 −32.64 37 −8.46 −8.46
5 −25.23 −25.23 38 −10.39 −10.39
6 −32.52 −32.52 39 −16.50 −16.50
7 −33.96 −33.96 40 −13.11 −13.11
8 −22.82 −22.82 41 −21.10 −21.10
9 −13.07 −13.07 42 −18.18 −18.18
10 −18.03 −18.03 43 −16.08 −16.08
11 −22.33 −22.33 44 −7.19 −7.19
12 −31.34 −31.34 45 −6.65 −6.65
13 −26.38 −26.37 46 −17.15 −17.15
14 −32.34 −32.33 47 −13.75 −13.75
15 −34.82 −34.82 48 −16.06 −16.06
16 −23.19 −23.19 49 −11.03 −15.35
17 −65.75 −65.75 50 −13.26 −13.27
18 −27.79 −27.79 51 −5.93 −5.84
19 −30.69 −30.69 52 −20.56 −20.56
20 −73.74 −73.73 53 −18.25 −18.25
21 −62.83 −62.83 54 −16.24 −16.24
22 −75.37 −75.30 55 −19.35 −19.35
23 −74.71 −74.69 56 −14.91 −14.91
24 −15.90 −15.72 57 −23.81 −23.72
25 −20.40 −20.40 58 −12.03 −16.31
26 −44.99 −44.99 59 −13.61 −13.61
27 −18.46 −18.47 60 −18.05 −18.05
28 −28.42 −28.41 61 −11.58 −11.58
29 −32.29 −32.30 62 −14.16 −14.16
30 −7.07 −7.07 63 −17.03 −16.93
31 −15.01 −15.02 64 −11.97 −11.97
32 −15.98 −16.04 65 −16.58 −16.58
33 −9.10 −9.10 66 −16.91 −16.91

Table C.2: Dimerisation energies in the S66 set calculated with DLPNO-CCSD(T) using
the def2-TZVP basis set. In each case, Foster-Boys orbitals were calculated either using
the Jacobi sweep scheme (default) or using rational function optimisation (AHFB).
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