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Abstract

Autonomous robots and vehicles are often equipped with multiple sensors to
perform vital tasks such as localization or mapping. The joint system of various
sensors with different sensing modalities can often provide better localization or
mapping results than individual sensor alone in terms of accuracy or complete-
ness. However, to enable improved performance, two important challenges have to
be addressed when dealing with multi-sensor systems. Firstly, how to accurately
determine the spatial relationship between individual sensor on the robot? This is
a vital task known as extrinsic calibration. Without this calibration information,
measurements from different sensors cannot be fused. Secondly, how to combine
data from multiple sensors to correct for the deficiencies of each sensor, and
thus, provides better estimations? This is another important task known as data
fusion.

The core of this thesis is to provide answers to these two questions. We cover, in
the first part of the thesis, aspects related to improving the extrinsic calibration
accuracy, and present, in the second part, novel data fusion algorithms designed
to address the ego-motion estimation problem using data from a laser scanner
and a monocular camera.

In the extrinsic calibration part, we contribute by revealing and quantifying the
relative calibration accuracy of three common types of calibration methods, so
as to offer an insight into choosing the best calibration method when multiple
options are available. Following that, we propose an optimization approach for
solving common motion-based calibration problems. By exploiting the Gauss-
Helmert model, our approach is more accurate and robust than the classical least
squares model.

In the data fusion part, we focus on camera-laser data fusion and contribute
with two new ego-motion estimation algorithms that combine complementary
information from a laser scanner and a monocular camera. The first algorithm
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utilizes camera image information to guide the laser scan-matching. It can
provide accurate motion estimates and yet can work in general conditions without
requiring a field-of-view overlap between the camera and laser scanner, nor an
initial guess of the motion parameters. The second algorithm combines the
camera and the laser scanner information in a direct way, assuming the field-of-
view overlap between the sensors is substantial. By maximizing the information
usage of both the sparse laser point cloud and the dense image, the second
algorithm is able to achieve state-of-the-art estimation accuracy. Experimental
results confirm that both algorithms offer excellent alternatives to state-of-the-art
camera-laser ego-motion estimation algorithms.
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Zusammenfassung

Autonome Roboter und Fahrzeuge sind oft mit mehreren Sensoren ausgerüstet,
um essentielle Aufgaben wie Lokalisierung und Kartierung durchzuführen. Ein
gemeinsames System verschiedener Sensoren mit unterschiedlichen Messprinzipi-
en liefert oft eine erhöhte Genauigkeit und Zuverlässigkeit bezüglich der Loka-
lisierung und Kartierung im Vergleich zu Ansätzen mit nur einem Sensor. Um
jedoch eine Verbesserung zu erreichen müssen zwei Herausforderungen bei der
Verwendung von Mehrsensorsystemen bewältigt werden. Erstens, wie kann die
relative Transformation zwischen den verschiedenen Sensoren bestimmt werden?
Diese Aufgabe ist als extrinsische Kalibrierung bekannt. Ohne diese Information
können die verschiedenen Sensorinformationen nicht kombiniert werden. Zwei-
tens, wie sollen die Daten der verschiedenen Sensoren zur Korrektur der Defizite
der einzelnen Sensoren kombiniert werden? Diese wichtige Aufgabe wird als Da-
tenfusion bezeichnet.

Der Kern dieser Dissertation ist es Antworten auf diese zwei Fragestellungen zu
geben. Im ersten Teil der Arbeit werden Aspekte zur Verbesserung der Genau-
igkeit der extrinsischen Kalibrierung behandelt und vorgestellt. Im zweiten Teil
werden neuartige Algorithmen zur Fusion von Laser- und Kameradaten für die
Schätzung der Eigenbewegung der Sensoren vorgestellt.

Im Teil zur extrinsischen Kalibrierung ist die Offenlegung und Quantifizierung
der relativen Kalibrierungsgenauigkeit von drei verbreiteten Typen der Kali-
brierung ein Beitrag, der Rückschlüsse zur Wahl einer bestimmten Methodik
ermöglicht. Basierend auf diesen Erkenntnissen wird ein Optimierungsverfahren
zur Lösung des gemeinhin als AX=XB bekannten Kalibrierungsproblems vorge-
schlagen. Durch Verwendung des Gauss-Helmert Model ist unser Ansatz genauer
und robuster als herkömmlich verwendete klassische kleinste Quadrate Ansätze.

Im Teil zur Sensordatenfusion fokussieren wir auf die Fusion von Kamera und
Laserdaten und stellen zwei Beiträge zur Bewegungsschätzung der Eigenbewe-
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gung der komplementären Sensorinformationen vor. Beim ersten Ansatz werden
die Vorteile beider Sensoren ausgenutzt – die Fähigkeit der Kamera zur guten Be-
stimmung von Rotationen der Kamera und die Möglichkeit des Lasersensors zur
Bestimmung der Skala durch Registrierung von dreidimensionalen Punktwolken.
Solch ein Ansatz funktioniert mit beliebigen Sensorkonfigurationen, selbst wenn
die Sichtfelder der Sensoren nicht überlappen. Der zweite Ansatz fusioniert die
Sensorinformationen direkt, wobei eine Überlappung der Sichtfelder der Sensoren
angenommen wird. Durch Maximierung der Ausnutzung der Sensorinformationen
sowohl der dünnbesetzten Laserdaten als auch der dichten Kamerabilder ist unser
Ansatz in der Lage hervorragende Ergebnisse bei der Schätzung der Eigenbewe-
gung zu erreichen. Der experimentelle Vergleich mit aktuellen Methoden zeigt,
dass vorgestellte Algorithmen eine gute Alternative darstellen.
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Chapter 1
Introduction

Robotics is certainly one of the key technologies of modern society. Many tech-
nology breakthroughs are happening right in this field. For examples, self-driving
cars are now more of a reality than an imagination. Driver-less vehicles as
shown in Figure 1.1a from the company Waymo [Self-driving technology 2018]
have already run over 1 billion miles on public roads, up to the date of writing.
With this emerging autonomous driving technology, everyone could get around
more easily and safely, especially for children, the elderly, and disabled. Traffic
collisions due to tired, drunk or distracted driving will be reduced. Time spent
commuting could be time spent doing what people want, as the car handles all
of the driving without the need for anyone in the driver’s seat. Besides self-
driving cars, there are also futuristic life-like robots being developed, such as the
BigDog [BigDog, the First Advanced Rough-Terrain Robot 2018] and Atlas [Atlas,
the World’s Most Dynamic Humanoid 2018] from the company Boston Dynamics.
The BigDog, as depicted in Figure 1.1b, is a quadruped robot that can carry heavy
payloads for humans and follow them across snowy or rocky terrains, much like
a pack mule but will not get tired. The Atlas, as depicted in Figure 1.1c, is
the latest most advanced humanoid robot capable of performing surreal athletic
actions such as backflips and parkour. A humanoid robot that is agile as such
will be very useful in disaster-response operations such as looking for survivors
or bodies in the rubble after earthquakes or mining accidents, or to shut down
hazardous facilities in dangerous situations. In addition, there are robots deployed
even on other planets beyond Earth. The Curiosity [Curiosity Rover 2018] as
shown in Figure 1.1d is a car-sized robot rover that has been exploring Mars
since August 2012 and is still in commission as of the date of writing. Its
successful operation has provided invaluable information about the habitability
of Mars, making important preparations for future human exploration and space
colonization.

1



(a) Self-driving car (b) BigDog

(c) Atlas (d) Curiosity

Figure 1.1: Examples of state-of-the-art autonomous mobile robots. (a) Commercial
self-driving cars from Waymo. (b) BigDog, a legged robot serves as a robotic pack
mule. (c) Atlas, a humanoid robot with surreal motor skills, from the company
Boston Dynamics. (d) Curiosity, a Mars rover performing robotic exploration of the
red planet, from NASA. Images originated from (a) https://en.wikipedia.org/
wiki/Waymo (b,c) https://www.bostondynamics.com (d) https://www.nasa.gov/
mission_pages/msl/images/index.html, all accessed in October 2018.

All four robots mentioned here represent the state-of-the-art robotics technology.
They are autonomous robots smart enough to operate in an environment that
is inevitably dynamic and uncertain. And the key enabling factor for that lies
in their sensory systems, which constantly perceive the environment and then
provide necessary information for the robot to act accordingly. With a proper
sensor system setup, robots can adapt to the environment and perform basic
tasks such as navigation, obstacle avoidance, recognition, or manipulation, even
in a challenging environment such as the surface of Mars.

To perform vital tasks such as localization and mapping, autonomous robots often
utilize a joint system of multiple sensors with different modalities. This is because
by fusing measurements from each sensor, a multi-sensor system is often able to

2

https://en.wikipedia.org/wiki/Waymo
https://en.wikipedia.org/wiki/Waymo
https://www.bostondynamics.com
https://www.nasa.gov/mission_pages/msl/images/index.html
https://www.nasa.gov/mission_pages/msl/images/index.html


1.1. Thesis Outline

provide better perception results than individual sensor in terms of completeness
or accuracy. Take the colored 3D map shown in Figure 1.2 for example. This map
is generated from a multi-sensor system consists of a GPS receiver, a camera and
a laser scanner, whose data are depicted in Figure 1.3 respectively. By comparing
Figure 1.2 to individual data plot in Figure 1.3, we can see that the colored 3D
map produced by a multi-sensor system is more informative and hence desirable.

However, before such a map can be generated, two important questions have
to be answered. The first question is how to accurately determine the spatial
relationship between individual sensor on the robot? This is an important task
known as extrinsic calibration. Without this calibration information, measure-
ments from different sensors cannot be fused. For example, to colorize the 3D
laser points shown in Figure 1.3a, the laser points have to be mapped to the pixels
of the image as shown in Figure 1.3b, which certainly can not be done if the laser
scanner and camera has unknown position. Once the extrinsic calibration is
done, the remaining question is then how to combine data from multiple sensors
to better solve the task at hand? This is another important task known as data
fusion.

1.1 Thesis Outline

This thesis focus on extrinsic calibration and data fusion problems of multi-sensor
systems. We cover aspects related to improving the extrinsic calibration accuracy,
and present novel data fusion algorithms designed to address the ego-motion
estimation problem using data from a laser scanner and a monocular camera.
The thesis is organized into eight chapters.

In the next chapter, Chapter 2, “Basic Techniques”, we provide short introduc-
tions to basic concepts and techniques that are relevant to the thesis.

Chapter 3, “Accuracy Comparison of Common Calibration Models”, marks the
beginning of the Part I discussion on extrinsic calibration for multi-sensors sys-
tems. In Chapter 3, we analyze and quantify the calibration accuracy of three
common types of calibration methods named AX=B, AX=YB and AX=XB, to
answer the question of “which method is better and why?”.

Chapter 4, “Estimation Approach for AX=XB Calibration Problems”, continues
the discussion on extrinsic calibration problem, especially on the AX=XB type of
calibration problem. We discuss the overlooked defect of commonly used ordinary
least squares approaches in this context and propose a better estimation approach
using the the Gauss-Helmert framework.
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1.1. Thesis Outline

Figure 1.2: A colored 3D map generated by combing data from a GPS receiver, a laser
scanner and a camera respectively.
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1.1. Thesis Outline

(a) laser scanner data

(b) camera data

(c) GPS data

Figure 1.3: Plots of data from multiple sensors in KITTI dataset: (a) a 3D point cloud
generated by a laser scanner; (b) a 2D image captured by a camera; (c) a set of poses
measured by a GPS device.
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1.2. Thesis Contributions

Chapter 5, “Joint Ego-motion Estimation Through Relative Orientation Estima-
tion and 1-DoF ICP”, begins the Part II discussion on novel camera-laser fusion
algorithms for the ego-motion estimation problem. We present the first approach
that exploits image information to guide ICP-based laser scan-matching. It is
able to improve the ego-motion estimation accuracy and yet does not require an
initial guess of the motion parameters, nor a field-of-view overlap between the
camera and the laser scanner.

Chapter 6, “Joint Ego-motion Estimation Through Relative Orientation Esti-
mation and 1-DoF ICP”, covers the second approach that fuses the camera and
laser scanner information at the lowest level in a direct way, assuming the field-of-
view overlap between the sensors is substantial. By exploiting planar information,
performing occlusion prediction, and utilizing a two-stage registration, the second
approach is able to estimate the ego-motion motion with high accuracy.

Chapter 7, “Related Work”, reviews previous work on sensor extrinsic calibra-
tion problems and reports existing laser-camera fusion approaches. We discuss
strengths and weaknesses of previous research, and explain their relations to our
work presented in this thesis.

We finally conclude the thesis in Chapter 8, “Conclusion”. We summarize the
main insights of this thesis and provide prospects of future work.

1.2 Thesis Contributions

The contributions of the thesis are as follows:

• In Chapter 3, we present a systematic study about the calibration accuracy
of three common types of calibration methods. We perform a rigorous study
on their noise sensitivity from a novel geometric perspective. As a result,
we can reveal and quantify the relative calibration accuracies of the three
methods, thus answering the question of “which method is better and why?”.
Experimental results based on simulations validated our analysis. We are
the first to offer such a comparison and it could give us an insight into
choosing the best calibration method when multiple options are available.

• In Chapter 4, we present a novel approach for solving the AX=XB type of
calibration problem involving multiple sensors. Our approach exploits con-
straints between the motions of individual sensors and formulates the result-
ing error minimization problem using the Gauss-Helmert model [Wolf, 1978].
By exploiting the Gauss-Helmert model, we estimate not only the unknown
extrinsic parameters but also the pose observation errors, thus recovering

6



1.2. Thesis Contributions

the underlying sensor movements that exactly fulfill the geometric con-
straints. Compared to the common ordinary least squares approaches that
estimate only the parameters, our approach is more accurate and robust to
pose measurement noise when estimating extrinsic calibration parameters
for multiple sensors, with minor additional computation burden.

• In Chapter 5, we present a novel approach to joint laser-camera motion
estimation. Our approach estimates the five-DoF relative orientation from
image pairs through feature point correspondences and formulates the re-
maining scale estimation problem as a variant of the ICP problem with only
one DoF. Our approach also exploits the camera information to effectively
constrain the data association between laser point clouds. Our approach is
able to work in general conditions, without requiring a field-of-view overlap
between the camera and the laser scanner, nor an initial guess of the motion
parameters.

• In Chapter 6, we propose a novel direct approach to the joint laser-camera
motion estimation. Our approach is built upon photometric image align-
ment and designed to maximize the information usage of both the image
and the laser scan to compute an accurate frame-to-frame motion estimate,
under the assumption that the field-of-view overlap between the sensors is
substantial. Our approach exploits planar information, performs occlusion
prediction, and employs a two-stage registration. This allows us to estimate
the ego-motions with high accuracy. Experiments on the KITTI and self-
recorded datasets supported this claim.

Parts of this thesis have been published in the following peer-reviewed conference:

• K.H. Huang and C. Stachniss (2018a). “Joint Ego-motion Estimation Using
a Laser Scanner and a Monocular Camera Through Relative Orientation
Estimation and 1-DoF ICP”. in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

• K.H. Huang and C. Stachniss (2018b). “On Geometric Models and Their
Accuracy for Extrinsic Sensor Calibration”. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA)

• K.H. Huang and C. Stachniss (2017). “Extrinsic Multi-Sensor Calibration
For Mobile Robots Using the Gauss-Helmert Model”. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

One work is currently under review:
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1.3. Notation

• K.H. Huang and C. Stachniss (2019). “Accurate Direct Visual-Laser Odom-
etry with Explicit Occlusion Handling and Plane Detection”. In: Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA)

1.3 Notation

Throughout the thesis, we adopt the following mathematical notation conven-
tions:

• Scalars are typed non-bold letters (such as s, i, j, n,N,E) to distinguish
them from vectors and matrices.

• Vectors are typed slanted boldface with lower case letters (such as r, t, ϵ).
A vector of all zeros is denoted as 0.

• Matrices are also typed slanted boldface but with capital letters (such as
R ,A,B). The dimension of a matrix is indicated with A ∈ IRn×m, meaning
the matrix A has n rows and m columns. Identity matrices are denoted as
I , or as In, where the subscript n indicates its dimension. Matrix transpose
is denoted as AT, while A−1 denotes a matrix inverse.

• Random variables are denoted with tilde accents (such as t̃a, t̃b, θ̃,). The
variance of a random scalar is denoted as V , while the covariance matrix of
a random vector is Σ.

• Braces {·} are used to define sets. For example, {ai}Ni=1 denotes a point
cloud of N points, with ai being its elements. IR denotes the set of real
numbers. SO(3) denotes the set of 3D rotation matrices. SE(3) denotes the
set of 3D rigid transformation matrices.

• ∥·∥ denotes the Euclidean vector norm.

• def
= indicates a definition, and ≡ denotes the left and right optimization
problems are equivalent.
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Chapter 2
Basic Techniques

This chapter covers basic concepts and techniques that are relevant to the thesis.
We will introduce in Section 2.1 the concept of uncertainty propagation, which
is heavily used in the first part of the thesis when discussing extrinsic calibration
problems. In Section 2.2, we will cover both closed-form and iterative methods
for rotation-matrix estimation. This is necessary because estimating rotation
matrices is a basic yet non-straightforward problem which we will frequently
encounter throughout the thesis. In the last section 2.3, we will describe the
standard iterative closest point method (ICP) for 3D point clouds registration,
so as to lay a foundation for the later discussion of laser scan-matching algorithms
in the second part of the thesis.

Other concepts or methods related to specific topics will be introduced in the
corresponding chapters.

2.1 Variance Propagation

The values of experimental measurements often contain uncertainties (i.e. ran-
dom errors) due to measurement limitations. Such uncertainties will be propa-
gated if functions are applied to these measurements related random variables.
Variance propagation is a task that tries to find out the resulting variances of the
output variables given the input measurement variances are known. Such a task
is useful and sometimes also known as error propagation.

For readers that are not familiar with the principle of variance propagation, we
present here a short derivation. A more detailed discussion can be found at the
book of Förstner and Wrobel [2016] at pages 42–44.
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2.1. Variance Propagation

First, let us consider a noisy multivariate measurement denoted as

x̃
def
= µx + δx, (2.1)

whose expectation IE (i.e. mean) and variance ID are

IE(x̃) = µx, (2.2)

ID(x̃)
def
= IE(δxδT

x ) = Σxx. (2.3)

According to variance propagation, the target random variable, ỹ, which is com-
puted through a nonlinear function

y = f(x), (2.4)

will approximately have the mean and variance of this form:

IE(ỹ) = f(µx) (2.5)
ID(ỹ) = JΣxxJT, (2.6)

where J def
= ∂f

∂x
is the Jacobian of function f evaluated at µx.

This is due to the fact that

ỹ
def
= µy + δy (2.7a)
def
= f(x̃) (2.7b)
= f(µx + δx) (2.7c)

≈ f(µx) +
∂f

∂x

∣∣∣∣
x=µx

δx +O(|δx|2) (2.7d)

def
= µy + Jδx. (2.7e)

By equating Eq. (2.7a) and (2.7e), we have δy = Jδx up to a first order
approximation. Thus, the variance of x̃ (due to δx) is propagated to ỹ as

Σyy
def
= IE(δyδT

y ) (2.8a)
= IE[(Jδx)(Jδx)T] (2.8b)
= J IE[δxδT

x ] JT (2.8c)
= JΣxxJT. (2.8d)

Equation (2.6) is hence proved.

Base on this principle, we will use variance propagation to perform noise sensi-
tivity analysis for different calibration methods in Section 3.3, and to determine
covariance matrices of intermediate random variables in Section 4.2.2.
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2.2 Estimation of Rotation Matrices

In this section, we cover basic methods used to estimate a rotation matrix out
of a set of corresponding vector pairs. Such a problem will appear in both the
extrinsic calibration and ego-motion estimation problems.

Let us assume there are two corresponding vectors, {(ai, bi)}Ni=1, where bi is the
rotated version of ai but the rotation matrix, R ∈ SO(3), is unknown and to
be determined. We model this as an optimization problem in which the optimal
rotation matrix, R∗, minimizes the deviation between two vector sets:

R∗ def
= argmin

R∈SO(3)

N∑
i=1

∥∥Rai − bi
∥∥2
. (2.9)

Equation (2.9) admits both closed-form and iterative solutions. The closed form
solution is useful as it does not require an initial guess of R and is efficient to
compute. It will be used in Section 2.3 by the ICP point clouds registration
algorithm, as well as in Section 4.2.1 for extrinsic calibration problems. The
iterative approach, on the other hand, is more flexible and can be extended with
useful features such as robust weighting, measurement weighting using the covari-
ance matrix, or to incorporate other objectives for joint estimation of multiple
parameters. It therefore serves as an important building block in the following
chapters.

2.2.1 Closed Form Approach

To derive a closed form solution for Equation (2.9), we rewrite Equation (2.9)
into an equivalent form using the Frobenius matrix norm:

R∗ def
= argmin

R∈SO(3)

∥∥RA− B
∥∥2

F
, (2.10)

in which A def
= [a1 . . . aN ] is a IR3×N matrix whose columns are coordinates of ai,

and B is similarly defined with bi. The resulting Equation (2.10) is known as the
orthogonal Procrustes problem [Gower and Dijksterhuis, 2004] and can be solved
by using singular value decomposition (SVD), which is

R∗ = UV T, (2.11a)

with UDV T def
= svd(BAT) (2.11b)
= svd(

∑N
i=1bia

T
i ). (2.11c)
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2.2. Estimation of Rotation Matrices

To prove this, we first recall some of the properties of a matrix trace:

trace(A) def
=

∑
iAii, (2.12)

∥A∥2F = trace(ATA), (2.13)
trace(A) = trace(AT), (2.14)

trace(A + B) = trace(A) + trace(B), (2.15)
trace(ABC) = trace(BCA) = trace(CAB). (2.16)

The last property (2.16) is of special interest and it means the trace is invariant
under cyclic permutations.

The proof of Equation (2.11) begins with:

argmin
R

∥∥RA− B
∥∥2

F

= argmin
R

trace((RA− B)T(RA− B)) (due to Eq. 2.13)

= argmin
R

trace(ATRTRA + BTB − ATRTB − BTRA)

= argmin
R

trace(ATA + BTB)− 2 trace(ATRTB) (due to Eq. 2.14 & 2.15)

= argmax
R

trace(ATRTB)

= argmax
R

trace(RTBAT) (due to Eq. 2.16)

= argmax
R

trace(RTUDV T) (due to Eq. 2.11b)

= argmax
R

trace(V TRTU︸ ︷︷ ︸
X

D) (due to Eq. 2.16)

≡ argmax
X

trace(XD)

= argmax
X

3∑
i=1

X iiDii. (2.20)

Notice that i) D is a diagonal matrix from the SVD decomposition, its diagonal
elements Dii are all non-negative by definition, ii) X def

= V TRTU is an orthonormal
matrix, its diagonal elements X ii are therefore in the range of [−1, 1]. By combin-
ing these two facts, we can conclude that the objective in the last equation (2.20)
is maximized when all X ii = 1, in other words:

V TRTU def
= X = I . (2.17)

Thus, the solution is R∗ = UV T. In case UV T has a of determinant -1 instead
of 1, to ensure a proper rotation matrix, the solution R∗ is set to

R∗ = UD′V T, (2.18)

12



2.2. Estimation of Rotation Matrices

where D′ def
= diag(1, 1,−1) is a diagonal matrix that negates the column of V

corresponding to the smaller singular value, see [Umeyama, 1991] for a detailed
discussion.

2.2.2 Iterative Least Squares Approach

We can also solve Equation (2.9) with an iterative approach, assuming an initial
guess of R is available and to be refined. Such iterative approach has two key
components: multiplicative update and rotation parameterization.

First, let us assume at the k-th iteration, we would like to apply a multiplica-
tive update to the current rotation estimate, Rk, with an incremental rotation,
∆R ∈ SO(3), i.e.

Rk+1 def
= ∆R Rk, (2.19)

so that Rk+1 remains a proper rotation matrix after the update.

Then, we parameterize the rotation ∆R with a vector ∆r ∈ IR3, in which the
rotation axis is parallel to ∆r, the rotation magnitude is θ def

= ∥∆r∥, and

∆R def
= exp([∆r]×) (2.20a)

= I3 + [∆r]× +
1

2!
[∆r]2× +

1

3!
[∆r]3× + · · · (2.20b)

= I3 +
sin θ
θ

[∆r]× −
1− cos θ2

θ
[∆r]2×. (2.20c)

Equation (2.20c) is given by Rodriguez [1840], and [∆r]× is a skew symmetric
matrix induced by vector ∆r:

[∆r]×
def
=

 0 −∆r3 ∆r2

∆r3 0 −∆r1

−∆r2 ∆r1 0

 . (2.21)

It is important to note that the product of [∆r]× and a IR3 vector (e.g. a) induces
a vector cross product of ∆r and a, which means

[∆r]×a = ∆r × a = −a×∆r = [−a]×∆r. (2.22)

Using the rotation parameterization in Equation (2.20b), we can linearize the
estimation problem with a first order approximation:

∆R ≈ I3 + [∆r]×. (2.23)
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2.2. Estimation of Rotation Matrices

Such an approximation is reasonable if we assume the incremental rotation mag-
nitude θ is small.

Putting Equations (2.9), (2.19) and (2.23) altogether, the iterative rotation esti-
mation problem becomes:

argmin
Rk+1∈SO(3)

N∑
i=1

∥∥Rk+1ai − bi
∥∥2

= argmin
∆R∈SO(3)

N∑
i=1

∥∥∆R Rkai − bi
∥∥2 (due to Eq. 2.19)

≡ argmin
∆r∈IR3

N∑
i=1

∥∥(I3 + [∆r]×)Rkai − bi
∥∥2 (due to Eq. 2.23)

= argmin
∆r∈IR3

N∑
i=1

∥∥[∆r]×Rkai + Rkai − bi
∥∥2

= argmin
∆r∈IR3

N∑
i=1

∥∥[−Rkai]×︸ ︷︷ ︸
Ji

∆r + Rkai − bi︸ ︷︷ ︸
ϵi

∥∥2 (due to Eq. 2.22)

def
= argmin

∆r∈IR3

N∑
i=1

∥∥J i∆r + ϵi
∥∥2
. (2.24)

We end up with a unconstrained linear least squares problem in Equation (2.24),
and the solution to it is

∆r∗ = −
( N∑
i=1

JT
i J i

)−1
N∑
i=1

JT
i ϵi. (2.25)

Once ∆r∗ is determined, we recover the rotation matrix ∆R by using Equa-
tion (2.20c), as well as update the parameter Rk+1 using Equation (2.19). With
the newly estimated Rk+1, we repeat the process again until the result converges.
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2.3 Iterative Closest Point Algorithm

In this section, we will describe the basic iterative closest point algorithm (ICP).
ICP is a popular choice for aligning point clouds, hence often used to estimate
the transformation between two laser scans.

Let us assume there are two point clouds, {ai ∈ IR3}Ni=1 and {bj ∈ IR3}Mj=1. We
would like to register the two point clouds in order to determine the relative
transformation between the two scanning locations. The relative transformation
consists of a rotation R ∈ SO3, and a translation, t ∈ IR3. If a point pair (ai, bj)
belong to the same scene point are correctly registered, we will have the relation

Rai + t = bj. (2.26)

However, both the point correspondences and the transformation are usually
unknown and need to be estimated.

Given an initial guess of R and t, the ICP will first try to associate the two point
clouds by finding for every point ai its closest point in the other point cloud {b}.
If the matching result is denoted as b′i, then

b′i
def
= argmin

bj∈{b}

∥∥Rai + t− bj
∥∥2
, (2.27)

where R and t are held constant. The minimization in Equation (2.27) is often
performed as a k-d-tree based nearest-neighbor search [Bentley, 1975].

Once the point correspondences (ai, b′i) are determined, the ICP performs a
second step to estimate the transformation, by minimizing the point-to-point
matching error:

argmin
R,t

N∑
i=1

∥∥Rai + t− b′i
∥∥2
. (2.28)

The minimization problem in Equation (2.28) admits a closed from solution. To
derive it, we first focus on the parameter t and define ϵi

def
= Rai − b′i as well as

Φ(t)
def
=

N∑
i=1

∥∥Rai + t− b′i
∥∥2 (2.29a)

=
N∑
i=1

tTt+ 2ϵT
i t+ ϵT

i ϵi. (2.29b)

To attain the minimum of Φ(t), let (∂Φ
∂t
)T = 03, which is

N∑
i=1

t+ ϵi = 03. (2.30)
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2.3. Iterative Closest Point Algorithm

Algorithm 1 Standard Point-to-Point ICP
1: Input:

• Point clouds a, b
• Initial transformation parameters (R , t)

2: Output: Estimated transformation parameters (R , t).

3: repeat
4: Transform point cloud a′ ← Ra+ t;
5: Associate point cloud b′ ← argminb ∥a′ − b∥;
6: Compute center of mass ca ← 1

N

∑N
i=1 ai;

7: Compute center of mass cb ← 1
N

∑N
i=1 b

′
i;

8: Compute decomposition UDV T ← svd
(∑

i(b
′
i − cb)(ai − ca)

T);
9: Determine matrix D′ ← diag(1, 1, det(UV T));

10: Update R ← UD′V T;
11: Update t← cb − Rca;
12: until converge or maximum iterations reached
13: return (R , t)

Therefore, the optimal t should be

t∗ = − 1

N

N∑
i=1

ϵi (2.31a)

= − 1

N

N∑
i=1

Rai − b′i (2.31b)

=
1

N

N∑
i=1

b′i − R(
1

N

N∑
i=1

ai). (2.31c)

Now, let us denote the center-of-mass of point cloud {a} as ca
def
= 1

N

∑N
i=1 ai,

and the center-of-mass of point cloud {b′} as cb
def
= 1

N

∑N
i=1 b

′
i, then from Equa-

tion (2.31c), we can recognize that t∗ is the difference between the two centers of
mass with respect to the reference frame of point cloud b, i.e.

t∗ = cb − Rca. (2.32)

With that, we can now solve for the rotation R . By substituting t with Equa-
tion (2.32), the estimation problem in Equation (2.28) becomes:

argmin
R

N∑
i=1

∥∥R(ai − ca) + (b′i − cb)
∥∥2
, (2.33)
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2.3. Iterative Closest Point Algorithm

which is an orthogonal Procrustes problem as described in Section 2.2.1. It has
a closed form solution as

R∗ = UD′V T, (2.34)

with UDV T def
= svd

(∑
i(b

′
i − cb)(ai − ca)

T) and D′ def
= diag(1, 1, det(UV T)).

Once the transformation parameters R and t are updated, the ICP process will
start over again and re-associate the two point clouds. It will repeat the whole
process until convergent, as summarized in Algorithm 1.

The standard ICP algorithm described here is first developed by Besl and McKay
[1992]. There are other more advanced ICP variants nowadays. For a detailed
review and comparison for other ICP variants, we refer readers to the work of
Rusinkiewicz and Levoy [2001] and Pomerleau et al. [2015].
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Part I

Extrinsic Calibration





Chapter 3
Accuracy Comparison of
Common Calibration Models

Extrinsic calibration is an important matter for multi-sensor systems, as mea-
surements from different sensors cannot be fused correctly without accurate cali-
bration information. There are various ways to perform the calibration task, but
it is not straightforward to tell which method is more accurate and should be
preferred when multiple options are available.

In this chapter, we will answer this question by investigating the calibration
accuracy of three common types of calibration methods, each represented by
the equations AX=B, AX=YB, and AX=XB respectively. We will discuss the
advantages and disadvantages of the three calibration models in Section 3.2,
and perform a rigorous study on their noise sensitivity from a novel geometric
perspective in Section 3.3. As a result, we can quantify and compare the relative
calibration accuracy of the three methods, thus answering the question of “which
method is better and why?” in Section 3.4. To validate our analytical findings,
we conduct numerical simulation experiments in Section 3.5.

3.1 Problem Formulation

In this chapter, we consider the calibration problem between only two sensors,
as calibration involving multiple sensors can be formulated in a pair-wise manner
without loss of generality (see more discussion in Section 4.3).

Let us assume there are two sensors (named as a and b) that are rigidly attached to
a robot. Our calibration task is to estimate the unknown relative transformation
matrix (denoted as X ) between sensor a and b.
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3.2. Three Calibration Models

To estimate X , the general calibration procedure involves first setting up an
environment in which the robot can move and the sensors can estimate their own
poses. Then, we move the robot and record the poses (or trajectories) of each
sensor. The obtained pose data (denoted as {Ai} for sensor a and {Bi} for sensor
b) are used to estimate X based on some models (or formulations) as described
in the next section. Depending on which model is used, the pose data {Ai} and
{Bi} could be incremental motions relative to past ego-centric reference frames
of the sensors, or absolute poses with respect to some fixed coordinate systems.
We further denote

X def
=

[
O ξ

0 1

]
∈ SE(3) and Ai,Bi

def
=

[
R i ti

0 1

]
∈ SE(3), i = 1, . . . , N (3.1)

where O and R are SO(3) rotation matrices, ξ and t are IR3 translation vectors.

Once the calibration is done, the transformation X estimated from {Ai} and {Bi}
can be used to fuse the information from the two sensors. For instance, a scene
point pb ∈ IR3 originally observed in sensor b’s frame can now be transferred to
sensor a’s frame with the equation

pa = Opb + ξ. (3.2)

3.2 Three Calibration Models

There are three models commonly used in the extrinsic calibration task, namely
AX=B, AX=YB, and AX=XB.

3.2.1 Model AX=B

Figure 3.1: Stereo camera calibration using model AX=B. Ai and Bi are absolute poses
measured with respect to a common reference frame (i.e. the checkerboard).

In the first model, AX=B, there exists a reference frame common to both sen-
sors, and the pose observations {Ai} and {Bi} are made with respect to that
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global frame. A typical example of this setup is the stereo-camera calibration
as illustrated in Figure 3.1. In this case, both cameras look at a checkerboard
and a common reference frame is built using this checkerboard. As the physical
dimension of the checkerboard is known, the camera poses with respect to the
checkerboard (i.e. Ai and Bi) can be estimated by solving the Perspective-N-Point
problem. Once the camera poses are provided, their relative transformation X
can then be estimated under the formulation

AiX = Bi, ∀i. (3.3)

The camera to LiDAR calibration approaches by Khosravian et al. [2017] and
Pandey et al. [2015] also fit into this model. In their approaches, the ego-
centric frame of either the LiDAR or the camera is chosen as the common
global frame and held fix, i.e. A = I4. Then, by performing image-to-point-
cloud registration, the other sensor poses is estimated and serves as the intended
extrinsic parameter X , i.e. X = B, assuming N = 1.

The estimation of X with this model is straight forward. A pair of poses (i.e.
N = 1) is enough to determine the parameter and the estimation can be made
explicitly from measurements, i.e. X = A−1B. If multiple pairs are available (i.e.
N > 1), then X = averaged(A−1

i Bi). As we will see in Section 3.3 as well as in the
experiments, model AX=B has a good and stable estimation accuracy compared
to the other two models.

The setup of a reference frame common to all sensors often requires control
points, landmarks, or reference objects with known geometry. Hence, we refer
to calibration methods based on model AX=B as marker-based approach. The
requirement of a common frame is, however, a major disadvantage of model
AX=B as they are hard or even impossible to achieve in some cases. For example,
consider calibration problems involving encoders. The encoder of a robot arm
or wheel measures nothing other than its own rotation, therefore setting up a
direct shared measurement frame with other sensors is impossible. This goes the
same for IMU calibrations. Another example for model AX=B hard to apply
is camera-to-camera calibration where the cameras have non-overlapping views
(as illustrated in Figure 3.2). In this case, a single checkerboard is not sufficient
and a more elaborate infrastructure with multiple checkerboards is required. If
more than one calibration objects are involved when using model AX=B, we not
only need to determine their relative transformations in advance but also need to
make sure such information are sufficiently accurate. Otherwise, the estimation
result will be biased and contain systematic errors.

23



3.2. Three Calibration Models

3.2.2 Model AX=YB

Figure 3.2: Camera-to-camera calibration with model AX=YB. Ai and Bi are absolute
poses measured with respect to individual checkerboards.

The applicability problem of model AX=B is mainly due to the requirement of a
single reference frame. If we allow the sensors to have their own global reference
frames, then we can overcome the applicability problem as well as simplify the
calibration process. Such relaxation leads us to the second model, AX=YB,
which introduces another unknown parameter Y to represent the transformations
between the reference frames.

Figure 3.2 depicts how to use model AX=YB to formulate the previous ex-
ample of camera-to-camera calibration with non-overlapping camera views. In
this case, each camera estimates its poses Ai or Bi with respect to their own
checkerboards. The cameras are related to each other by the transformation X ,
while the checkerboards are related to each other by the transformation Y , which
cloud be completely unknown or known but with uncertainties. The pose pair,
Ai and Bi, together with the transformations, X and Y , form a quadrilateral and
the geometric relation reads

AiX = Y Bi, ∀i. (3.4)

Estimating both X and Y requires at least two sets of poses, i.e. N > 1.

Using this model, we can record the sensor poses (i.e. {Ai} and {Bi}) indepen-
dently except time synchronization, hence, the calibration process is simplified
and allows for calibrating all kinds of sensors including IMUs and encoders.

3.2.3 Model AX=XB

An alternative to model AX=YB is the third model AX=XB, which addresses
the applicability problem of model AX=B by using relative motions as pose
measurements instead of absolute ones. In this model, Ai and Bi are incremental
motions relative to past ego-centric frames of the sensors. As illustrated in
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Figure 3.3: Camera-to-camera calibration with model AX=XB. Ai and Bi are
incremental motions relative to past ego-centric frames of the sensors.

Figure 3.3, the past and current sensor frames constitute a quadrilateral and
the geometric relation becomes

AiX = XBi, ∀i. (3.5)

An obvious advantage of this model over model AX=YB is that there is no need
to introduce the additional transformation Y . Besides, using relative motions is
sometimes a more attractive option than using absolute poses, because absolute
poses are not always available or can be subjected to drift. For instances, the
wheel-odometry for ground vehicles provides more accurate instant incremental
motion information than the cumulated absolute ones; absolute poses estimated
by simultaneous localization and mapping algorithms over long trajectories are
inevitable to drift often even with loop-closing. Since model AX=XB utilizes
mainly motion information, we refer to it as motion-based method.

Similar to model AX=YB, model AX=XB can also be used for calibrating all
kinds of sensors and therefore has been widely studied. Previous work by such
as Fassi and Legnani [2005]; Park and Martin [1994] proved that it requires at
least two sets of poses (i.e. N > 1) with non-parallel rotation axes to determine
a unique solution for X .

3.3 Noise Sensitivity Analysis

The three models discussed in the previous section can cover probably most of the
extrinsic calibration problems we can encounter for mobile robots. For a common
calibration problem, we have at least two models to choose from, i.e. the model
AX=YB and AX=XB. For calibrations between cameras and LiDARs, we could
also use model AX=B and thus have three options. Given multiple options, it
is natural to ask “Which one is the best and should be preferred?” To be more
specific, we ask the question of “Which model will provide the output X with less
uncertainty, assuming that the input noise (or uncertainty) level in A and B are
the same for the three models.”
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To answer this question, we analyze the noise sensitivity of each calibration model.
We will first identify the nonlinear function that relates the unknown parameters
(i.e. O and ξ of X ) and the noisy measurements (i.e. R and t of A and B), and
then apply variance propagation (see Section 2.1) to that function to obtain a
theoretical lower bound of the estimation uncertainty.

For translation parameter ξ, we propose to analyze the scalar entity ∥ξ∥ instead
of carrying out an exhaustive variance propagation to each ξ component. This is
because the focus on ∥ξ∥ allows us to make intuitive interpretation and analysis
for each model base on a single equation with only three variables, instead of
three complicated equations with a mixture of twelve variables, which apparently
cannot be compared directly.

For the estimation of the orientation parameter O, several studies exist and hence
will not be covered here. An in-depth discussion of such topic can be found at
[Hartley et al., 2013].

In the following discussion, we use tilde accents to denote noisy measurements (e.g.
t̃a, t̃b, θ̃, . . . ) and use V to denote the corresponding variance of additive noise.
Other entities that appear in variance propagation without accents are meant
to be noise-free latent values. Their values depend on the physical and spatial
configuration of the sensors.

3.3.1 Analysis of Model AX=B

ξ

ta

tb
ϕ

α

β

Figure 3.4: Model AX=B

We start with the analysis of model AX=B. The translation part in equation
AX = B reads

Raξ = tb − ta. (3.6)

Here (Ra, ta) are from A, and (Rb, tb) are from B. We can infer from Equation (3.6)
that

∥ξ∥ = ∥tb − ta∥ (3.7)
=

√
∥tb∥2 + ∥ta∥2 − 2∥ta∥∥tb∥ cosϕ, (3.8)
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where ϕ
def
= ∠(ta, tb) is the angle between vector ta and tb, as depicted in

Figure 3.4. The (noisy) estimated ∥ξ̃∥ is therefore

∥ξ̃∥ =
√
∥t̃b∥2 + ∥t̃a∥2 − 2∥t̃a∥∥t̃b∥ cosϕ. (3.9)

The uncertainty of ∥ξ̃∥ is obtained by applying variance propagation to Equa-
tion (3.9) and reads

V A
∥ξ∥ =

[
∥ta∥ − ∥tb∥ cosϕ

∥ξ∥

]2
V∥ta∥ +

[
∥tb∥ − ∥ta∥ cosϕ

∥ξ∥

]2
V∥tb∥ +O(Vϕ), (3.10)

assuming the noise of ∥t̃a∥ and ∥t̃b∥ are uncorrelated.

If we consider the other two angles α def
= ∠(ξ, −ta) and β

def
= ∠(ξ, tb) within the

vector triangle of Figure 3.4, we can obtain

∥ta∥ = cosϕ∥tb∥+ cosα∥ξ∥ (3.11)
∥tb∥ = cosϕ∥ta∥+ cos β∥ξ∥, (3.12)

and then Equation (3.10) can be simplified to

V A
∥ξ∥ = cos2 α V∥ta∥ + cos2 β V∥tb∥. (3.13)

We can conclude that the more ξ is perpendicular to ta, tb, the less sensitive is ξ̃

to noise. V∥ξ∥ is bounded by

V A
∥ξ∥max = V∥ta∥ + V∥tb∥ (3.14)

when (α, β, ϕ) = {(π, 0, 0), (0, π, 0), (0, 0, π)}, i.e. ta, tb being collinear.

Computing the lower bound for V∥ξ∥ is not as straight forward and it depends on
the ratio of V∥ta∥ and V∥tb∥. To give a rough idea, we can assume V∥ta∥ = V∥tb∥,
then

V A
∥ξ∥min =

1

2

∥ξ∥2

∥ta∥2
V∥ta∥ (3.15)

which is the case if α = β. For example, assume ∥ξ∥ = 20 cm, ∥ta∥ = 1m, ∥tb∥
varies but V∥ta∥ = V∥tb∥ = 1 cm2, then the ξ̃ estimated by model AX=B will have
a standard deviation of 0.014 cm ∼ 1.4 cm in its length.

3.3.2 Analysis of Model AX=XB

We discuss model AX=XB first and leave model AX=YB for last, because there
are similarities between the two models and model AX=XB is simpler to start
with. The translation part in equation AX = XB reads

Raξ + ta = Otb + ξ. (3.16)
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ta
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Figure 3.5: Model AX=XB

Unlike in the model AX=B, the two pose pairs now form a vector quadrilateral
instead of a triangle. Our target is to find the extrinsic parameters, ξ and O, that
“closes” the quadrilateral. Equation (3.16) in its original form does not provide
clear clues for this task. Therefore, we introduce an intermediate entity dt and
rewrite Equation (3.16) as

ta − Otb︸ ︷︷ ︸
dt

= ξ − Raξ. (3.17)

The motivation behind is illustrated in Figure 3.5. By assuming a non-zero
rotation and shifting the upper pose pair to the lower pair, we can transform
the quadrilateral into two triangles that share one side. These two triangles
correspond to the left and right term of Equation (3.17) respectively. The shared
side, dt, is the translation difference between the sensors a and b, as defined by
the left term1. On the other hand, the right term, ξ − Rξ, forms an isosceles
triangle. It relates the unknown entity ξ to its two equal sides, with the included
angle being the rotation magnitude θ of Ra. From the isosceles triangle, we can
infer that

∥dt∥ = 2 sin(θ/2)∥ξ∥. (3.18)

If θ = 0, Equation (3.18) still hold because sin(θ/2) = 0 and ∥dt∥ = 0, but ξ is
no longer unique and could take any values given fixed ta and tb. If θ ̸= 0, then
∥ξ̃∥ reads

∥ξ̃∥ = 1

2 sin(θ̃/2)
∥d̃t∥. (3.19)

By applying variance propagation to Equation (3.19), we obtain the uncertainty
of ∥ξ̃∥:

V C
∥ξ∥ =

[
cos(θ/2)
4 sin2(θ/2)

∥dt∥
]2
Vθ +

[
1

2 sin(θ/2)

]2
V∥dt∥ (3.20)

or
V C
∥ξ∥ =

[
cos(θ/2)
2 sin(θ/2)∥ξ∥

]2
Vθ +

[
1

2 sin(θ/2)

]2
V∥dt∥ (3.21)

1When the robot pivots around sensor b, i.e. tb = 0, then ξ and O are completely decoupled,
and dt is solely the translation measurement of sensor a because dt = ta.
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Figure 3.6: Standard deviation of ∥ξ̃∥ in relation to the rotation θ executed by the
robot with an assumed noise in the inputs of V∥dt∥ = (1 cm)2, Vθ = (1 ◦)2. As can be
seen, rotations of less than 10◦ do not allow for determining ∥ξ∥ well.

due to ∥dt∥ = 2 sin(θ/2)∥ξ∥.

Furthermore, since d̃t is a composition of vectors t̃a and t̃b:

d̃t = t̃a − Ot̃b, (3.22)

its uncertainty V∥dt∥ has a similar form to V A
∥ξ∥ in Equation (3.10), which is

V∥dt∥ =

[
∥ta∥ − ∥tb∥ cosϕ′

∥dt∥

]2
V∥ta∥ +

[
∥tb∥ − ∥ta∥ cosϕ′

∥dt∥

]2
V∥tb∥, (3.23)

but with ϕ′ def
= ∠(ta, Otb). Substituting ∥dt∥ with 2 sin(θ/2)∥ξ∥, Equation (3.23)

can be rewrote as

V∥dt∥ =
1

4 sin2(θ/2)

([
∥ta∥ − ∥tb∥ cosϕ′

∥ξ∥

]2
V∥ta∥ +

[
∥tb∥ − ∥ta∥ cosϕ′

∥ξ∥

]2
V∥tb∥

)
.

(3.24)

From Equation (3.20), we can see that V C
∥ξ∥ consists of two parts. One part is

from translational uncertainty (∥d̃t∥) and the other is from rotational one (θ̃).
The relative angle θ of the pose pairs plays an important role in both parts. In
situations where θ takes small values (e.g. θ < 5◦), the factor 1

sin(θ/2) (and its
power) will be large, meaning any noise in the measurements will be significantly
amplified. We refer to this as a “degeneration zone”. In extreme cases around
θ = 0, the uncertainty (or variance) approaches infinity, because the solution
is not unique and can take any values. Figure 3.6 illustrates this fact. For
example, assume the uncertainty of the pose measurements are Vθ = (1 ◦)2 and
V∥dt∥ = (1 cm)2. Then, for a bad configuration where θ < 5◦, the uncertainty
of the outcome ∥ξ̃∥ will be more than 20 cm, which is huge compared to the
uncertainty of measurement t (1 cm).

In contrast to that, if we have a good configuration with a large θ around 180◦, the
influence of measurement noise will be reduced. The minimum V∥ξ∥ is attained
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3.3. Noise Sensitivity Analysis

for θ = 180◦ with

V C
∥ξ∥min =

1

16

([
∥ta∥ − ∥tb∥ cosϕ′

∥ξ∥

]2
V∥ta∥ +

[
∥tb∥ − ∥ta∥ cosϕ′

∥ξ∥

]2
V∥tb∥

)
. (3.25)

Our simulation experiment in Section 3.5 confirms this bound.

3.3.3 Analysis of Model AX=YB

ζ

ta

tb

ξ

dt
ξ

θ
ψ

Figure 3.7: Model AX=YB

The analysis of model AX=YB is similar to model AX=XB in that they both
form a vector quadrilateral, but model AX=YB has more unknowns (namely X
and Y ). Let us denote O′ as the rotation part of Y , and ζ as the translation
part. Then, the translation part in AX = Y B reads

Raξ + ta = O′tb + ζ, (3.26)

which we rewrite as
ta − O′tb︸ ︷︷ ︸

dt

= ζ − Raξ. (3.27)

In this model, the triangle that relates ξ and dt is no longer isosceles and an
extra unknown side ζ is present, as depicted in Figure 3.7. The geometric relation
becomes

sin θ∥ξ∥ = sinψ∥dt∥ (3.28)

with ψ
def
= ∠(ζ, dt).

If sin θ = 0, (i.e. θ = 0 or π, ξ and ζ are collinear), we have sinψ = 0.
Equation (3.28) still holds but the system becomes degenerated in the sense
that the solution to ξ̃ is not unique, so does ζ̃ because ζ̃ = d̃t+ Raξ̃. Assuming
sin θ ̸= 0, then ∥ξ̃∥ relates to ∥d̃t∥, ψ̃ and θ̃ with

∥ξ̃∥ = sin ψ̃
sin θ̃

∥d̃t∥. (3.29)
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Table 3.1: Overview of V∥ξ∥ for the three models.

Model V∥ξ∥ Degeneration zones

AX=B
[
2 sin(θ/2)

]2
V∥dt∥ 0

AX=XB
[

cos(θ/2)
2 sin(θ/2)∥ξ∥

]2
Vθ +

[
1

2 sin(θ/2)

]2
V∥dt∥ 1

AX=YB
[

cosψ
sinψ ∥ξ∥

]2
Vψ +

[ cos θ
sin θ ∥ξ∥

]2
Vθ +

[ sinψ
sin θ

]2
V∥dt∥ 2

By applying variance propagation to Equation (3.29) and omitting the correlation
terms, the uncertainty of ∥ξ̃∥ is

V B
∥ξ∥ =

[
cos θ sinψ

sin2 θ
∥dt∥

]2
Vθ +

[
cosψ
sin θ ∥dt∥

]2
Vψ +

[
sinψ
sin θ

]2
V∥dt∥ (3.30)

which can be rewrote as

V B
∥ξ∥ =

[
cos θ
sin θ ∥ξ∥

]2
Vθ +

[
cosψ
sinψ ∥ξ∥

]2
Vψ +

[
sinψ
sin θ

]2
V∥dt∥ (3.31)

due to ∥ξ∥ = sinψ
sin θ ∥dt∥.

The uncertainty V B
∥ξ∥ consists of one translation and two rotation parts. We can

identify the two degeneration zones around θ = 0 and θ = π from Equation (3.31),
which are due to the squared cotangent factors of Vψ and Vθ.

The translation part is not as straight forward as in model AX=XB, but we can
show that, assuming ∥ζ∥ > ∥ξ∥, the factor sinψ

sin θ is bounded by

∥ξ∥
∥ζ∥+ ∥ξ∥

<
sinψ
sin θ <

∥ξ∥
∥ζ∥ − ∥ξ∥

, (3.32)

because of Equation (3.28) and ∥ζ∥ − ∥ξ∥ < ∥dt∥ < ∥ζ∥ + ∥ξ∥. From the
perspective of Equation (3.32), we can in theory increase the calibration accuracy
by making ∥ζ∥ larger, e.g, separating the global frames further away from each
other.

3.4 Accuracy Comparison

Given Equations (3.10), (3.21) and (3.31), see also Table 3.1, we are now able to
compare the three models. For this comparison, we assume the same trajectory
and measurement noise.
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3.4. Accuracy Comparison

First, we compare model AX=YB and model AX=XB. From the geometry per-
spective, model AX=XB can be seen as a special case of model AX=YB with
ζ = ξ. In this case, we can exploit this equality for the comparison of the models,
as it implies

ψ = (π − θ)/2. (3.33)

This results in

sinψ
sin θ =

sin(π/2− θ/2)
sin θ =

cos(θ/2)
2 sin(θ/2) cos(θ/2) =

1

2 sin(θ/2) . (3.34)

Given that, the second term of Equation (3.21) and the third term of Equa-
tion (3.31) are equal. Additionally exploiting cot θ = cos θ

sin θ and assuming Vψ = 1
4
Vθ,

we simplify V B
∥ξ∥ − V C

∥ξ∥ for our comparison as follows:

V B
∥ξ∥ − V C

∥ξ∥

= ∥ξ∥2
[
Vθ cot2 θ + Vψ cot2 ψ − Vθ

4
cot2 θ

2

]
(3.35)

= ∥ξ∥2
[
Vθ cot2 θ + Vθ

4
tan2 θ

2
− Vθ

4
cot2 θ

2

]
(3.36)

= Vθ∥ξ∥2
[
cot2 θ + 1

4
tan2 θ

2
− 1

4
cot2 θ

2

]
︸ ︷︷ ︸

g(θ)

. (3.37)

The term g(θ) in Equation (3.37) provides us the insight that, under which
circumstances model AX=XB is better than model AX=YB, or vice versa. We
have 

g(θ) < 0, if θ < π/2

g(θ) = 0, if θ = π/2

g(θ) > 0, otherwise.
(3.38)

See also Figure 3.8 for a plot of this term. The term g(θ) is smaller than zero
(between -0.5 and 0) for θ ∈ [0◦, 90◦), meaning model AX=YB is (slightly) better
than model AX=XB in that range. For θ ∈ [90◦, 180◦], this term is larger than
zero and even approaches infinity, such that model AX=XB is substantially better
than model AX=YB here.

Second, we compare model AX=B to model AX=XB. Equation (3.10) shows that
V A
∥ξ∥ is independent of θ, which is an advantage of model AX=B over AX=YB

and AX=XB. Because the terms related to θ can lead to large uncertainty or
degeneration zones as we saw before. By comparing V A

∥ξ∥ to the theoretical
minimum value of V C

∥ξ∥ from Equation (3.25), we can see that model AX=XB can
in theory outperform model AX=B when θ is large. However, as we will observe
in the experimental evaluation, model AX=B is less sensitive to degenerate cases
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Figure 3.8: Illustration of the function g(θ) in Equation (3.37) depending on the
value of θ. As can be seen, for θ < 90◦, model AX=YB is slightly better than
model AX=XB, but for value larger than 90◦, model AX=YB degenerate quickly.
In contrast, model AX=XB performs well (compare also Figure 3.9).

and thus, should be preferred over model AX=YB and model AX=XB in most
practical situation. Only for large values of θ > 60◦, model AX=XB is better than
model AX=B. Furthermore, model AX=YB never outperforms model AX=B.

3.5 Experimental Evaluation

We conduct Monte Carlo simulations to validate our analytical analysis. We
generate trajectories with controlled configuration parameters for ∥t∥, θ, etc. We
add zero-mean Gaussian noise to the simulated pose measurements and estimate
the extrinsic parameters, O and ξ, with a nonlinear least-squares approach which
will be described later in the Chapter 4. Our estimation approach is based on the
Gauss-Helmert paradigm and is able to provide a statistical optimal solution up
to the Cramer-Rao bound. Meanwhile, all solutions are initialized with ground-
truth values to rule out possible effects of local minima. In the end, we compute
the error as the difference in the length of the vectors ξ and ξ̃, i.e., ∥ξ∥ − ∥ξ̃∥,
and calculate the root mean square (RMSE) for each model. The common setup
for the simulations are ∥ζ∥ = ∥ξ∥ = 1m, ∥t̃a∥ = 10m, and noise variance
are set to V∥ta∥ = V∥tb∥ = (0.01m)2, Vθ = (0.001 rad)2. We generated 1000
trials/trajectories per value of θ and each trajectory consists of 100 poses, all
evaluated for the three models. The result of our Monte Carlo simulations is
depicted in Figure 3.9. It shows the RMSE for each model with varying values
of θ.

For model AX=B, the RMSE plot is almost straight and with minimal variations
as expected. The curve of model AX=YB is dominated by the shape of the
squared cotangent function. We can visually identify the two degeneration zones
around θ = 0◦ and θ = 180◦, which are due to the squared cotangent factor
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Figure 3.9: Result from a simulation experiment for calibrating two sensors with all
three models along the same trajectories. The plot shows the RMSE of the three
models depending on θ with a close-up view for the interval θ ∈ [40◦, 140◦]. As can
be seen, model AX=B performs well, independent of θ. Model AX=XB is better than
model AX=B for θ > 60◦. Model AX=YB never outperforms model and has practically
no advantages over model AX=XB.

of Vψ and Vθ, see Equation (3.31). For model AX=XB, the RMSE plot shows
almost no difference to that of model AX=YB for values θ < 40◦, but it is strictly
decreasing with θ and has only one degeneration zone around θ = 0.

Comparing the three models, we see the situation changes as the value of θ
increases. Model AX=B’s near constant performance remains the best until θ
reaches 60◦, then model AX=XB becomes the best and eventually its RMSE takes
only half of model AX=B’s RMSE when θ = 180◦. Model AX=YB performs the
worst among the three models in this experiment, only in a narrow range (from
80◦ to 100◦) it is close to model AX=B.

The noticeable deviation of model AX=YB’s and AX=XB’s curve begins at θ =
40◦ instead of expected θ = 90◦. A possible explanation is because the correlation
terms we omitted in Equation (3.31) also have a substantial influence on V B

∥ξ∥.
But this does not change our conclusion about the accuracy comparison.
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To sum up, the results of the simulation experiment support our analytical
analysis and suggest that model AX=B is the preferred solution. For controlled
cases with θ > 60◦, one can consider model AX=XB instead. The use of
model AX=YB, however, should be avoided.

3.6 Summary

In this chapter, we presented a systematic study about the calibration accuracy
of three kinds of calibration methods, namely AX=B, AX=XB and AX=YB.
We discussed the advantages and disadvantages of each model and performed a
rigorous study on their noise sensitivity. We showed how the sensor configura-
tion and calibration setup influence the calibration accuracy and answered the
question of “which model is better?”. Contradict to the common conception that
marker-based methods (i.e. model AX=B) are always superior, we showed that
in some cases the motion-based methods (i.e. model AX=XB) can be better
than marker-based approaches. In summary, we conclude that if the calibration
setup allow for using model AX=B, it is a good choice and should be used.
For controlled settings with θ > 60◦, one should also consider model AX=XB
as it can provide better estimates of the parameters and typically requires less
calibration infrastructure. If model AX=B cannot be applied, model AX=XB
is more appropriate than model AX=YB, but for small values of θ both models
degenerate.
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Chapter 4
Estimation Approach for
AX=XB Calibration Problems

In the last chapter, we concluded that calibration methods based on model AX=B
and AX=XB should be preferred after making an accuracy comparison. The
estimation with model AX=B is relatively straightforward, but the one with
model AX=XB is unfortunately not as easy and requires special care to ensure
high calibration accuracy. Yet, model AX=XB is the only option in many cases.
Therefore, in this chapter, we will focus on the estimation approach for AX=XB
calibration problem.

We first introduce the detailed formulation of the problem in Section 4.1 as well
as its simple closed form solution in Section 4.2.1. We then discuss the traditional
least squares estimation approach in Section 4.2.2 and point out its overlooked
defect in the context of AX=XB estimation problem. In Section 4.2.3, we present
our solution based on the Gauss-Helmert paradigm, which estimates not only the
extrinsic parameters but also the pose observation errors, thus recovering the
underlying sensor movements that exactly fulfill the motion constraints. The
reason and advantage of doing so is explained. In Section 4.3, we extend our
approach to cover multi-sensors cases. We implemented our approach and tested
it on real robot. The experiment results are shown in Section 4.4 and confirm
that our approach is able to accurately determine the extrinsic configuration of
each sensor and can largely improve the accuracy when the noise level is high.
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4.1 Problem Formulation

In the following discussion, we utilize the angle-axis representation for rotation
parameterization. Specifically, we use r to denote the angle-axis vector of the
rotational measurements in A and B, i.e. R

R def
= exp([r]×), (4.1)

and use η to denote the unknown rotational parameters in X , i.e. O:

O def
= exp([η]×). (4.2)

Here [·]× is the skew operation as described in Section 2.2.2.

Let us assume there are a number of N motion segments, {Ai,Bi}Ni=1, being used
for the calibration. For each pair of Ai and Bi, we have a constraint equation
AiX = XBi, which can be split into two parts:

Raiξ + tai = Otbi + ξ, (4.3)
RaiO = ORbi. (4.4)

The upper Equation (4.3) is for the translation and the lower Equation (4.4) is
for the rotation, which can be further simplified to

rai = Orbi, (4.5)

due to the angle-axis representation.

When discussing the least squares estimation approaches, we will refer to the
unknown parameters collectively as x and the measurements collectively as li:

x
def
=

[
η

ξ

]
, li

def
=


rai
rbi
tai
tbi

 , i = 1, . . . , N. (4.6)

Also, we define two error functions, gt and gr, from Equation (4.5) and Equa-
tion (4.3):

gt(x, li)
def
= [R(rai)− I3]ξ + tai − O(η)tbi, (4.7)

gr(x, li)
def
= rai − O(η)rbi. (4.8)

These two error functions are at the core of our estimation problem. In the
noise-free case, a true solution x∗ will fulfill

g(x∗, li)
def
=

[
gt(x

∗, li)

gr(x
∗, li)

]
= 0, ∀i. (4.9)
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4.2 Solutions to AX=XB Problems

4.2.1 Closed Form Solution

Closed-form solutions are useful if we have no prior knowledge or initial guess of
the parameters. The AX=XB problem admits a simple closed-form solution if
we decouple the rotation and translation estimation by minimizing the algebraic
errors, gt and gr defined in Equation (4.7) and Equation (4.8), separately.

First of all, the estimation problem of O with Equation (4.5) alone is in essence
an axis-alignment problem (see Hartley et al. [2013]). Let us define

O∗ def
= argmin

O∈SO(3)

N∑
i

∥rai − Orbi∥2, (4.10)

then the closed form solution to O will be:

O∗ = UD′V T, (4.11)

with UDV T def
= svd

(∑N
i rair

T
bi

)
and D′ def

= diag
(
1, 1, det(UV T)

)
, as discussed in

Section 2.2.1.

Once O∗ is estimated, we can fix the value of O in Equation (4.3) and estimate
the translation parameter ξ directly as a linear least squares problem:

ξ∗
def
= argmin

ξ

N∑
i

∥∥[R(rai)− I3]ξ + [tai − O′tbi]
∥∥2
. (4.12)

Besides this approach, there are various closed form methods to address the
AX=XB problem, including methods that can jointly estimate the rotation and
translation by using, for example, dual-quaternion [Daniilidis, 1999].

Closed form methods are useful because they do not require iterations and approx-
imate values of the parameters, their solutions are, however, often far from perfect
due to their statistically suboptimal nature: they never address the statistical
uncertainty of the measurements, but instead, they optimize some heuristically
chosen algebraic expression (Förstner and Wrobel [2016] p.178). Such a strategy
allows them to be solved as (simple) singular value problems but also renders the
solutions vulnerable to measurement noises and outliers, thus less accurate.
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4.2.2 Ordinary Least Squares Based Solution

To obtain a more accurate calibration/estimation result, it is necessary to employ
an iterative refinement process using least squares estimation, which not only
jointly estimates ξ and η, but also fully take into account the measurement
uncertainties. To this end, a widely used least squares estimation approach for
the AX=XB problem is to minimize the weighted sum of squared errors defined
by gt and gr:

argmin
x

N∑
i

∥gt(x, li)∥2W ti
+ ∥gr(x, li)∥2W ri

, (4.13)

where ∥g∥2W
def
= gTWg, and W is a positive-definite weight matrix.

Formulation (4.13) or its variants with different rotation parameterizations are
prominent in the current robotics community, because optimizing such an ordinary-
least-squares problem is easy to implement with the help of popular off-the-self
optimizer such as g2o [Kümmerle et al., 2011] or Ceres [Agarwal and Mierle,
2010]. The work of Strobl and Hirzinger [2006] and Guo et al. [2012] are such
examples.

However, the optimality of choosing such formulation is seldom discussed in most
previous work, and how to set the values of the weight matrices W ri and W ti

is also rarely mentioned. As we will see in the following discussion, there is
a flaw in this formulation, which will limit the estimation accuracy when the
measurement noise-level is high. Therefore, this formulation is only suitable for
low noise situations.

We refer to the solution of Equation (4.13) as the Gauss–Markov model based
solution (GM for short), because a plausible justification is the “Gauss–Markov”
theorem, which says the least squares estimate gives no bias and has minimal
variance if the functional relation l = f(x) is linear and the weights are chosen
to be W = Σ−1

ll , assuming the measurement errors are zero mean and statisti-
cally independent. The Gauss–Markov theorem also holds approximately for a
nonlinear f if the variances of the measurement errors are small compared to the
second derivatives of the functions (Förstner and Wrobel [2016] p.79).

Based on the Gauss–Markov theorem, we see that Equation (4.13) is actually
using the residual vectors gr and gt as the measurement entities l rather than
using the original measurements r and t. The weight matrices W r and W t

should therefore take the inverse of the covariance matrix of the residual vectors,
i.e. W r = Σ−1

grgr and W t = Σ−1
gtgt . The covariance matrices of the residual

vectors, Σgr and Σgt , on the other hand have to be determined by applying
variance propagation to Equation (4.7)–(4.8) because gt and gr are functions of
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r and t. The values of Σgrgr and Σgtgt should be

Σgrgr ≈ J rΣrrJT
r (4.14a)

Σgtgt ≈ J tΣttJT
t + J rΣrrJT

r , (4.14b)

where J r
def
= ∂gr

∂r
and J t

def
= ∂gt

∂t
are the Jacobians, Σtt and Σrr are the covariance

matrices of the measurement noise.

Once the weight matrices are determined, the minimization of Equation (4.13)
can proceed and refine x iteratively. However, r and t are held fixed during the
whole estimation process and so are the Jacobians and the linearized model. If
there are significant errors in the measurement, they will persist and result in a
degraded estimation accuracy. The degradation is confirmed by our experiment
in Section 4.4 and thus motivated us look for a better approach.

4.2.3 Gauss–Helmert Model Based Solution

To tackle the aforementioned degradation problem in high noise situation, we
propose to formulate the estimation problem using what is called the Gauss–
Helmert model [Wolf, 1978], which makes corrections to not only the unknown
parameters x but also the measurements l at each iteration.

To explain the difference between the Gauss–Helmert model and the Gauss–
Markov model, let us denote the “raw” measurement as l0, its noise-free value
as l̄ and the measurement error as ϵ, with the setting

l̄ = l0 + ϵ. (4.15)

Then, both the Gauss–Helmert model and the Gauss–Markov model try to obtain
a maximum likelihood estimation of the parameter x by minimizing the weighted
sum of the squared measurement errors, i.e.,

argmin
x,ϵ

∥ϵ∥2W (4.16)

assuming ϵ follows a normal distribution and W def
= Σ−1

ll is its inverse covariance
matrix.

The key difference lies in the assumptions they make about the relation between
the parameter x and the measurement l. The Gauss–Markov model assumes l is
an explicit function of x, for example

f(x) = l, (4.17)
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while the Gauss–Helmert model, being more general, assumes an implicit con-
straint of the form:

g(x, l) = 0. (4.18)

In the Gauss–Helmert model, the constraint g(x, l) = 0 is strictly enforced and
thus leads to a constrained optimization problem

argmin
x,ϵ

∥ϵ∥2W

s.t. g(x, l0 + ϵ) = 0. (4.19)

We say the Gauss–Helmert model is more general because we can rewrite f(x) = l

as f(x)− l = 0, thus Equation (4.17) is a special case of Equation (4.18). How-
ever, the explicit relation f(x) = l makes the Gauss–Markov model more easy to
solve because the optimization problem

argmin
x,ϵ

∥ϵ∥2W

s.t. f(x) = l0 + ϵ, (4.20)

can be simplified to a well-known ordinary least squares form

argmin
x

∥f(x)− l0∥2W . (4.21)

Notice that in problem (4.21), we only need to make adjustments to the parameter
x because the measurement l can be predicted from f(x). The Gauss–Helmert
model, on the other hand, makes corrections to not only x but also l because the
constraint g(x, l) = 0 generally does not hold for the noisy measurements l0 even
if we are provided with the true parameter x̄. To fulfill the implicit constraint
g(x, l) = 0, the measurement correction ϵ must be estimated explicitly.

Back to our AX=XB calibration problem, it clearly does not belongs to the
f(x) = l type of problem because the parameters, ξ and O, cannot be separated
from the measurements r and t in equation (4.7) and (4.8). Therefore, the
optimality of the formulation (4.13), i.e. the Gauss–Markov model based solution,
cannot be guaranteed. As discussed in previous section, significant errors in r

and t will persist in the weight matrices as well as the linearized model, therefore
leads to a degraded estimation accuracy.

A better approach to the AX=XB calibration problem should be using the Gauss–
Helmert model, which use the error terms gt and gt not as the optimization
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objective but as hard constraints instead, i.e.:

argmin
x,{ϵi}

N∑
i

∥ϵi∥2W i

subject to gt(x, ϵi + l0i ) = 0,

gr(x, ϵi + l0i ) = 0, ∀i, (4.22)

which can be wrote more concisely as

argmin
x,{ϵi}

N∑
i

∥ϵi∥2W i

subject to g(x, ϵi + l0i ) = 0, ∀i, (4.23)

with gr and gt expressed as one constraint function g defined in Equation (4.9),
and W i

def
= Σ−1

lili
.

To solve a nonlinear optimization problem such as Equation (4.23), we follow a
procedure similar to that of the nonlinear ordinary least squares, which iterates
between linearizing the model and adjusting (x, l). To be more specific, let us
assume that in the k-th iteration, we have the corrected measurements, lki , as
well as the estimated parameters, xk, and would like to update them by

lk+1
i = ∆li + lki and xk+1 = ∆x+ xk.

We first linearize the non-linear constraint equation g(x, l) = 0 around (xk, lki )

by:
g(xk, lki ) + Jki∆x+ Lki∆li = 0, (4.24)

with Jki being the Jacobians with respect to the parameters and Lki the Jacobians
with respect to the measurements. With that, our optimization problem (4.23)
becomes

argmin
∆x,{∆li}

∑
i

∥∆li + ϵki ∥2W i
(4.25)

s.t. g(xk, lki ) + Jki∆x+ Lki∆li = 0, ∀i,

in which the terms ϵki
def
= lki − l0i are the corresponding k-th iteration measurement

errors.

Equation (4.25) is in essence an equality-constrained linear optimization problem,
which can be converted into an unconstrained problem using the method of
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Lagrange multipliers. Its solution is:

∆x =
(∑

i

JT
i ΛiJ i

)−1∑
i

JT
i Λici, (4.26a)

∆li = ΣliliLT
i Λi(ci − J i∆x)− ϵki , (4.26b)

with Λi
def
= (LiΣliliLT

i )
−1, (4.26c)

and ci
def
= −g(xk, lki ) + Liϵki . (4.26d)

Using Equation (4.26), we can update the estimate (xk+1, lk+1
i ) and repeat the

process until convergence.

The solution x obtained here is best and unbiased, given the measurement errors
are normally distributed, see [Amiri-Simkooei, 2007]. The term best means
that the solution has minimum variance compared to all other quadratic-based
unbiased estimators. A detail discussion of the necessary and sufficient conditions
for the existence of a unique solution for both the measurement correction as well
as the estimated parameter can be found at [Neitzel and Schaffrin, 2016]. The
theoretical precision of the final solution x is given by

Σxx
def
=

(∑
i

JT
i (LiΣliliLT

i )
−1J i

)−1

. (4.27)

Also note that, compared to the Gauss–Markov model based approach, our
Gauss–Helmert model based approach can obtain not only the extrinsic parame-
ters X from x, but also the corrected sensor trajectories {A} and {B} from l.

4.3 Calibration with Multiple Sensors

We now extend the calibration problem to cases involving more than two sensors.
As we will see in the following discussion, explicitly formulating the multi-sensor
case base on our Gauss–Helmert estimation approach will give us the insight
that there are actually interactions between the sensor pairs, which is a good
reason for us to jointly calibrate the multiple sensors altogether instead of doing
so one-by-one as separate 2-sensor cases.

First, we explicitly formulate the multi-sensor case. Let us assume there are
multiple sensors rigidly attached to the robot, we index these sensors with letters
a, b, . . . ,m and denote their relative pose measurements as

{(rsi, tsi) | s = a, . . . ,m; i = 1, . . . , N}. (4.28)

Without loss of generality, we define sensor a as the base sensor and our objective
is to estimate for each other sensor s ∈ {b, . . . ,m} their relative rotation and
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translation with respect to sensor a:

{(ηas, ξas) | s = b, . . . ,m}. (4.29)

The collective parameter x and measurement l now become:

x
def
=



ηab
...

ηam
ξab
...

ξam


, li

def
=



rai
...

rmi
tai
...

tmi


, i = 1, . . . , N, (4.30)

and the constraints read

gt(x, l)
def
=

 [R(rai)− I3]ξab + tai − O(ηab)tbi
...

[R(rai)− I3]ξam + tai − O(ηam)tmi

 = 0, (4.31)

gr(x, l)
def
=

 rai − O(ηab)rbi
...

rai − O(ηam)rmi

 = 0. (4.32)

For sensors that provide no rotation measurements such as GPS receiver, their
constraints in gr are simply omitted and we can still recover the rotation param-
eter η from the constraint gt. To see that, we assume the robot performs a pure
translation (i.e. R(r) = I3) for example, then gt will become tai − O(ηas)tsi and
has the exact form of gr, meaning the parameter O can also be estimated from
the translation measurements t.

Once the parameters, measurements and constraints are defined for the multi-
sensor calibration case, we employ the Gauss–Helmert model based estimation
approach described in Section 4.2.3 to obtain an estimate of all the extrinsic
parameters as well as the corrected sensor trajectories.

4.3.1 Global Optimality

In the constraint formulation in Equation (4.31) and Equation (4.32), we connect
all the sensors (s = b, . . . ,m) to a base sensor (a) in a star network fashion and
thereby form one joint optimization problem. Despite the fact that the network
is not fully connected, we claim that this does not impact optimality. Let us
refer to sensor a as the root and sensors s = b, . . . ,m as leaves. As shown below,
we can proof that once the root-to-leaf constraints are fulfilled, all leaf-to-leaf
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constraints are fulfilled automatically. Therefore, the star topology does not
impact optimality.

First, assume X ∈ SE(3) are the transformations correspond to the parameters x
estimated by the Gauss–Helmert model, and S = B, . . . ,M ∈ SE(3) are the
relative sensor motions correspond to the corrected measurements l0 + ϵ. Then,
the root-to-leaf constraints are fulfilled by definition after the optimization, i.e.
for all sensors s = b, . . . ,m holds:

AX as = X asS. (4.33)

Without loss of generality, let us consider the leaf nodes m and b as example. If
we set

X bm = X−1
ab X am (4.34)

being the transformation between b and m given the transformations X ab and
X am, then we can prove that following equations are fulfilled:

BX bm = X bmM. (4.35)

We start from Equation (4.33) and set s to b and m respectively to obtain

X−1
ab A = BX−1

ab , (4.36)
AX am = X amM. (4.37)

Then, the left hand side of Equation (4.35) is

BX bm = B[X−1
ab X am] (4.38a)

= [X−1
ab A]X am (4.38b)

= X−1
ab [X amM] (4.38c)

= X bmM. (4.38d)

Thus, Equation (4.35) has been proven. As a result, the fulfillment of the root-to-
leaf constraints automatically satisfies all leaf-to-leaf constraints and thus they do
not need to be modeled explicitly, meaning the star topology is enough to ensure
global optimality.

4.3.2 Advantages of Joint Calibration

Note that Equation (4.32) not only provides the information to estimate the
rotation η, but also an inter-sensor constraint on the rotation measurements
between sensors, due to:

θi
def
= ∥rai∥ = ∥Oabrbi∥ = ∥rbi∥ = · · · = ∥rmi∥. (4.39)
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It means that rotations within the same time step i will be corrected to have the
same magnitude θi, using a weighted average of all the rotation measurements.
Recall that in Equation (3.21) of Section 3.3.2, the rotation uncertainty/error σθ
has a significant influence over the result uncertainty σ∥ξ∥. If we can drive σθ
towards zero, than we can drastically improve the accuracy of ξ. For instance,
the same calculation of σ∥ξ∥ in Section 3.3.2 will be only 11 cm instead of 23 cm
when σθ reduces from 1◦ to (10−4)◦.

This provide two valuable insights into how to improve the overall calibration
accuracy. First, we should jointly estimate the extrinsic parameters altogether
instead of estimating them one-by-one as separate 2-sensor cases. Because the
more sensors are involved, the better sensor trajectories we can recover (e.g., lower
σθ) and thus better calibration result (e.g., lower σ∥ξ∥). Second, base on the first
point, we can even introduce temporary devices with high pose measurement
accuracy to further reduce the trajectory measurement uncertainties during the
calibration, hence improving the calibration accuracy.

4.4 Experimental Results

The experiments are designed to show the capabilities of our Gauss–Helmert
model based calibration method and to support our key claims. We claim that our
approach (i) accurately determines the extrinsic calibration parameters, (ii) can
cope with a noisy initial guess obtained through a direct approach, (iii) provides
more accurate results compared to ordinary least squares using the Gauss–Markov
model, and (iv) can be executed in a reasonable amount of time hence is useful
for real world applications. We perform the evaluations on own real-world as well
as simulated datasets to support these claims.

4.4.1 Real World Data

We first performed the calibration on the real world data. For the real world
setup, we use a quadcopter with two stereo camera pairs (called A and B later
on), one pointing forward and one pointing backwards. Figure 4.1a depicted
example images of this calibration data. In addition to the stereo camera pairs,
we place markers of a motion capture system on the quadcopter to simulate an
additional sensor that has to be calibrated.

We recorded a total of N = 1655 relative motion-segments estimated using our
own visual odometry pipeline [J. Schneider et al., 2016]. Around 25 of the seg-
ments are outliers as the visual odometry lost track. The maximum rotation angle
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(a)

(b)

Figure 4.1: (a) Example stereo images used for calibration. (b) Histogram of the
rotation and translation magnitude of our real world dataset. Left column shows the
rotation (∥r∥, in degree), and right column shows the translation (∥t∥, in meters).
From top to bottom, each row represents stereo pair A, pair B and the motion capture
studio respectively.
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Figure 4.2: Distribution of measurement residuals ϵ after the refinement by our
approach. Columns from left to right are for stereo A, B and Mocap respectively.
Rows from top to bottom are the 6 measurement components, namely r1, r2, r3 for
rotation and t1, t2, t3 for translation. It is clear that the Gaussian noise assumption
holds for our real world dataset to a large extent, and our constraint model is correct
since there is no bias.
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Table 4.1: Standard deviation of the measurement noise

σr [◦] σt [mm]
Stereo pair A 0.0286 2
Stereo pair B 0.0286 3

Mocap 0.573 0.2

Table 4.2: Precision of the estimated parameters ξ,η

σξ1 σξ2 σξ3 ση1
ση2

ση3

Stereo B 2.8 mm 1.90 mm 2.8 mm 0.041◦ 0.032◦ 0.033◦

Mocap 1.43 mm 1.97 mm 1.13 mm 0.165◦ 0.191◦ 0.202◦

of the inlier data is 7.6◦ and the data is recorded at 20 fps. Figure 4.1b depicts a
histogram of the rotation angle and translation magnitude of the gathered data.

We first obtain an initial guess using the SVD-based direct method (i.e. Sec-
tion 4.2.1) then run our approach to obtain an improved solution as well as its
theoretical precision. The covariance matrices are heuristically set to Σrr = σrI3
and Σtt = σtI3 with σr, σt given in Table 4.1. We also assume the measurement
noise are independent and identically distributed random variables. Our approach
converged at the 4th iterations. The theoretical precision given by our approach
is depicted in Table 4.2. They are the square roots of the main diagonal of the
covariance matrix in Equation (4.27).

As this is a real world experiment, the ground truth is not available, so we cannot
make an ground truth comparison. But judging from the measurement residual
distribution (shown in Figure 4.2) given by our model after the estimation, it
is clear that i) the Gaussian noise assumption holds for our dataset to a large
extent, ii) our constraint model is correct and there is no bias in the estimation,
otherwise the residual histograms will not be symmetrically centered around zero.
Therefore we have a good reason to believe that the theoretical precision given
by our approach is plausible.

4.4.2 Accuracy Comparison With Simulated Data

To provide a more quantitative experiments, we performed the analysis of the
accuracy in simulation, which is the second experiment.

We generated in total 30,000 experiments (1000 per noise level), with noise levels
starting with the values shown in Table 4.1 and scaled them with a factor varying
from 1 to 30. With a factor of 30, the rotation error of the motion measurement
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Figure 4.3: Accuracy comparison through Monte-Carlo simulation. The x-axis show
the factor by which we scale the input noise for the translational (upper) and rotational
(lower) component. The plots show the RMSE for the direct SVD approach, the GM as
well as GH model using a noisy initialization, and finally the GH model initialized with
the ground truth as the initial guess. The GH model outperforms the other approaches
as expected and performs identical if initialized with noisy values or the ground truth
ones.

can be as much as ±25◦ according to the 3σ principle, which is quite high
compared to real motion sensors.

This experiment is designed to compare the accuracy of: (i) the SVD-based direct
solution (called SVD), (ii) least squares estimator based on the Gauss–Markov
model (called GM), and (iii) our Gauss–Helmert based approach (called GH).
Both GH and GM are using Equation (4.31) and Equation (4.32) as constraint
function (or residual vectors). The initial guess to GH and GM are ground-truth
values perturbed by uniform additive noise. For reasons of comparison, we also
provided a ground truth initialization. The metric for comparison is the averaged
Root-Mean-Square-Error (RMSE) of the estimated 6 rotation parameters and 6
translation parameters from 1,000 trials.

The result of the simulation is depicted in Figure 4.3. From this plot, we can draw
several conclusions. First, the GH and GM perform always better than SVD. The
only advantage of the SVD is that it is a direct solution and requires no initial
guess. Second, the GH and GM approaches produce identical results as long
as the noise-level is small. Third, as the noise level increases, the performance
of the GM solution degrades while our GH solution does not. The error of the
GH solution grows linearly with the increased input noise, which is the expected
theoretical result. Thus, we can conclude that over the spectrum of all situations,
our GH approach performs best. At the highest noise-levels, GH is better than
GM by 75% in translation (0.0287 vs. 0.1150), and by 71% in rotation (0.0095 vs.
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0.0314) in this simulation setup. Only for situation with low noise (e.g., a factor
smaller than three), GH and GM show the same performance as can be expected
given our explanation in Section 4.2.2. Finally, we can see that the GH approach
produces the same results no matter we use the ground truth for initialization or
a noisy variant of it.

4.4.3 Radius of Convergence

As our approach is in essence an iterative nonlinear optimization, we cannot
guarantee that it will always find the global minimum given arbitrary initial
guess. But in reality, we can obtain an initial guess either by manual or by
utilizing a direct approach. So a more practical question is to ask whether the
radius of convergence of our approach is large enough to converge to the global
optimum given an initial values provided by a direct approach. Here we refer to
the global optimum as the solution generated when using the ground truth as
initial guess.

So we performed a similar experiment as before but with the initial guess coming
from the SVD method, i.e. without any knowledge about the true configuration.
The results are depicted in Figure 4.4 and show that the RMSE curves are
identical for both initializations, despite the fact that the SVD solutions could
deviate from the truth as much as 0.15 m. Hence we conclude that our approach
is robust enough to be used in combination with SVD for providing the start
value for the optimization.

4.4.4 Runtime

For our real world calibration, we considered 1,630 poses extracted from each of
the three sensors. The timings of our Python code running on a i5 notebook
computer are approx. 6 s for the overall approach. Around 600 ms is used for
computing the initial solution using SVD and around 1.2 s-1.5 s is required per
iteration. These timing involves all computations, except the motion estimation
from the sensors itself, in this case the visual odometry. At least in our setup,
computing the visual odometry takes longer than the calibration itself. So the
computation requirements of our approach is acceptable.
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Figure 4.4: Accuracy in relation to the initial guess for different noise levels on the
translational and rotational component. In all cases, the initialized via the SVD result
or with the ground truth produces the same results. Thus, we conclude that we can
safely use SVD to initialize our GH optimization.

4.5 Summary

In this chapter, we considered the estimation problem of the AX=XB calibration
model. We pointed out an overlooked defect of traditional least squares estimation
approach in this context and presented a novel approach to tackle to the problem.
Our approach computes the extrinsic parameters in a statistically sound way
using the Gauss–Helmert model. This allows us to successfully determine the
relative transformations between the origins of the sensor coordinate systems and
the robot’s base. We implemented and evaluated our approach in simulations as
well as on real data. The experiments suggest that our approach can accurately
determine the extrinsic parameters of the individual sensors under realistic con-
ditions. We provided comparisons to a direct SVD approach as well as to the
ordinary Gauss–Markov least squares estimation and furthermore supported all
claims made in this chapter through our evaluation.
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Chapter 5
Joint Ego-motion Estimation
Through Relative Orientation
Estimation and 1-DoF ICP

Using cameras or laser scanners to perform ego-motion estimation is a common
practice in robotics research [Besl and McKay, 1992; Engel et al., 2018; Engel
et al., 2014; Klein and Murray, 2007; Mur-Artal et al., 2015; Z. Zhang, 1994].
But when comparing systems using cameras to those using lasers, we often see
that cameras are slightly better in estimating the angular components, i.e., the
rotation of the movement, whereas laser scanners are superior for estimating the
translation and for obtaining 3D points. Furthermore, cameras provide dense
color information, which can simplify the data association using feature corre-
spondences. Thus, coupling laser scanners and cameras can yield advantages. In
this chapter, we begin the discussion on the second topic of the thesis, focusing on
camera-laser fusion algorithms for ego-motion estimation problem. We assume a
laser scanner and a monocular camera are presented as well as calibrated in the
sensor system.

We will present a novel method to indirectly fuse the laser range data and camera
images to jointly estimate the frame-to-frame motion of a mobile platform. It
exploits image information to guide the ICP-based laser scan-matching process
such that it is able to improve the motion estimation accuracy and yet does not
require an initial guess of the motion parameters, nor a field-of-view overlap
between the camera and the laser scanner. Our method first estimates the
five degrees of freedom (DoF) relative orientation from image pairs through
feature point correspondences (as described in Section 5.2), and then, utilizes such
information to guide both the transformation-estimation and data-association
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steps in the ICP-based laser scan-matching process: i) in the transformation-
estimation step, we formulate the remaining scale estimation problem as a variant
of the ICP problem with only one degree of freedom (as described in Section 5.3),
ii) in the data-association step, we utilize the relative orientation information to
constrain the data association direction between laser point clouds (as described
in Section 5.4), thus significantly reduces the effort for finding the matches and
allows the ICP to converge faster. We implemented our approach and evaluated
it using KITTI data (in Section 5.5). The result shows that our approach
provides accurate trajectory estimates, which are better than those of each sensing
modality alone.

5.1 ICP Based Laser Scan-Matching

Estimating the ego-motion using a 2D or 3D laser scanner through point cloud
alignment is often referred to as scan-matching. Scans are either matched pair-
wise or with respect to a local or global map in order to compute the relative
transformation between the robot’s poses at the different points in time. Popular
approaches for that are the iterative closest point (ICP) algorithm [Besl and
McKay, 1992; Z. Zhang, 1994] (as described in Section 2.3) and its variants, such
as [Segal et al., 2009; Serafin and Grisetti, 2015], or correlative scan matching [Ol-
son, 2009].

We follow the notation in Section 2.3 and refer to the point cloud {ai ∈ IR3}Mi=1 as
the previous point cloud, and {bj ∈ IR3}Nj=1 as the current point cloud. Assume
the two point clouds are generated from two consecutive laser scans, then our task
is to determine the relative rotation R ∈ SO3 and translation t ∈ IR3 between
the two scanning locations, by registering the two point clouds.

As described in Section 2.3, since both the point correspondences and the trans-
formation are unknown, the ICP algorithm iterates between a data-association
step:

b′i
def
= argmin

bj∈{b}

∥∥Rai + t− bj
∥∥2
, (5.1)

and a transformation-estimation step:

argmin
R,t

N∑
i=1

∥∥Rai + t− b′i
∥∥2
. (5.2)

The ICP algorithm is intuitive and powerful. However, it is in essence a greedy
algorithm. The quality of the transformation parameters and the final correspon-
dence highly depends on the initial correspondence.
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Figure 5.1: 2D-to-2D corresponding image points.

5.2 Relative Orientation of the Image Pair

To mitigate the problem of standard ICP, we exploit the image information to
obtain a partial estimate of the transformation, using the relative orientation
derived from the images of consecutive time steps.

In a monocular camera setup, we can estimate five out of the six degrees of
freedom of the transformation between camera viewpoints, purely based on image
point correspondences (e.g. as shown in Figure 5.1). The five parameters consists
of three parameters for rotation R and two parameters for translation direction,
denoted as tdir ∈ S2 (because the scale, which is the length of the translation t,
cannot be determined and thus one uses ∥tdir∥ = 1). This set of five parameters
is often referred to as the relative orientation of the image pair, and it can be
estimated by exploiting the coplanarity constraint:

xT
i Ex′

i = 0, (5.3)

where xi, x′
i are the 2D image coordinates of a corresponding point pairs, and

E is the so-called essential matrix, from which the orientation parameters can be
extracted.

Various direct solutions for computing the essential matrix E exist. We use
Nistér’s five-point algorithm [Nistér, 2004] and SIFT features together with a
standard RANSAC procedure. The relative orientation parameters (R0, tdir) are
extracted from the essential matrix E and verified by standard checks such as
the fact that triangulated image feature points must lie in front of the camera.
Special cases such as zero translation are also handled.
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5.3 1-DoF ICP for Scale Estimate

The key idea of our approach is to first estimate the relative orientation from
the image pair, and then formulate the remaining scale estimation problem as a
variant of the ICP problem with only one degree of freedom. The simplified ICP
problem possesses several attractive properties.

Given the relative orientation (R0, tdir) computed from the image pair, the metric
scale of the translation ∥ttrue∥ is unknown. We denote the unknown scale param-
eter as s and express the scale through the translation vector between the two
poses as

ttrue = s tdir, s ∈ [0,∞). (5.4)

To estimate s, we propose to solve a novel variant of the ICP problem with only
one degree of freedom, which can be expressed through

s = argmin
s≥0

∑
i

∥R0ai + stdir − b′i∥2 (5.5)

or s = argmin
s≥0

∑
i

∣∣nT
i (R0ai + stdir − b′i)

∣∣2 , (5.6)

for the point-to-point and point-to-plane cost function respectively. Efficient
closed form solution can be derived for both equations. To solve Equation (5.5),
we define ei

def
= R0ai − b′i and obtain:

Φ(s)
def
=
∑
i

∥stdir + R0ai − b′i∥2 (5.7)

=
∑
i

∥stdir + ei∥2 (5.8)

=
∑
i

s2 + 2seT
i tdir + eT

i ei. (5.9)

By setting ∂Φ
∂s

= 0, we obtain
∑

i s+ eT
i tdir = 0 and thus

snew = − 1

N

∑
i

eT
i tdir, (5.10)

where N is total number of matched point pairs.

Similarly, for point-to-plane distances according to Equation (5.6), we define
wi

def
= nT

i tdir and obtain

Φ(s)
def
=
∑
i

∣∣nT
i (R0ai + stdir − b′i)

∣∣2 (5.11)

=
∑
i

∣∣snT
i tdir + nT

i (R0ai − b′i)
∣∣2 (5.12)

=
∑
i

∣∣swi + nT
i ei

∣∣2 . (5.13)
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5.3. 1-DoF ICP for Scale Estimate

Figure 5.2: 1-DoF ICP point-to-point cost function evaluated on the KITTI dataset.
The x axis shows the scale parameter deviation from the ground truth (0) and the y
axis shows the averaged point matching error distance (Equation (5.7)). The function
reveals a smooth surface and appears to be, at least in all our experiments, mostly
convex.

Setting ∂Φ
∂s

= 0 leads to
∑

i sw
2
i + win

T
i ei = 0 and thus

snew = −
∑

iwin
T
i ei∑

iw
2
i

. (5.14)

This one degree of freedom ICP problem possesses several attractive properties.
First and foremost, in all our analyzed cases, the cost function has a well dis-
tinguishable global minimum, especially in feature-rich environments. Consider
the KITTI [Geiger et al., 2012a] dataset “odometry sequence 00” as an example.
Figure 5.2 shows a plot of the point-to-point cost function in Equation (5.7)
evaluated over keyframes covering the whole scene. Although the cost function
depends on the scene structure, we found that the curve is smooth, appears to
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5.3. 1-DoF ICP for Scale Estimate

be mostly convex, and that the global minimum represents the true scale well.
Besides from that, the solution space of the scale parameter can also be easily
bounded if additional information is available, as the scale parameter represents
the physical straight line distance that the vehicle has traveled.

Based on the above observation, we propose a two-step approach to efficiently
solve the 1-DoF ICP instead of a standard ICP implementation: 1D grid search
followed by an iterative refinement. The first step is a grid search procedure
that operates in a branch and bounce fashion in order to locate the basin of
the global minimum. Given a search boundaries [smin, smax], we generate a small
number of linearly spaced hypotheses and evaluate the cost (e.g., Equation (5.7)
or Equation (5.11)) for each hypothesis. We then select two of the hypotheses
with minimum cost as the new search boundaries and repeat the process. In
this way, the solution space can be drastically reduced in just a few iterations
and it has a higher chance to avoid shallow local minima that may leads to
registration failures. If a prior, s0, exists, for example from wheel encoders, we
can also incorporate it into the the grid search as an extra hypothesis in the first
iteration. After the grid search has been performed, we then iteratively refine
the grid search solution s using Equation (5.10) (or Equation (5.14)) in an ICP
fashion. This time, the ICP algorithm is likely to reach a global optimum because
of the grid search bootstrapping.

The algorithmic view of our method is given in Algorithm 2. It is worth pointing
out that in the point-to-plane version, we can safely discard any points of the
current scan that has a normal vector perpendicular to tdir, without compromising
the solution. Because nT

i tdir = wi = 0 implies that these points have no influence
on the solution. Such a filtering can greatly reduce the computational effort and
is a big advantage for real-time processing. For example, in the KITTI dataset
sequence 00, we can remove up to 40% of the scan points because they lie on the
ground plane and do not contribute to the scale estimate.

After convergence, we execute one final ICP step that corrects all three transla-
tional parameters (but not the rotation parameters nor changes the data associ-
ation). We observed that such operation leads to slightly better results for the
estimated trajectory in the end.
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5.3. 1-DoF ICP for Scale Estimate

Algorithm 2 1-DoF ICP for scale estimate
1: Input:

• Previous point cloud a, current point cloud b
• Relative orientation R0, tdir
• Initial search boundary smin, smax
• Initial guess s0

2: Parameter:
• Number of hypotheses per iteration n ∈ [3,∞)
• Outlier distance threshold dout

3: Output: Estimated scale s.

▷ Step 1: Grid Search
4: repeat
5: Hypothesis {s1, · · · , sn} ← linspace(smin, smax, n);
6: if first iteration then sn+1 ← s0;
7: for s ∈ {s1, · · · , sn+1} do
8: Transform the previous cloud a′ ← R0a+ stdir;
9: Match current cloud b′ ← argminb ∥a′ − b∥;

10: Calculate cost C(s)←
∑

b′ ∥a′ − b′∥;
11: Update smin, smax ← the two s with lowest cost.
12: until converge or maximum iterations reached
13: s← argmin{smin,smax}C(s)

▷ Step 2: Refinement
14: repeat
15: Transform previous cloud a′ ← R0a+ stdir;
16: Match current cloud b′ ← argminb ∥a′ − b′∥;
17: Remove point pairs whose distance exceeded dout;
18: if using point-to-point then
19: Update s← − 1

N

∑
i e

T
i tdir ▷ from Equation (5.10)

20: else // using point-to-plane
21: Update s← −

∑
i win

T
i ei∑

i w
2
i

▷ from Equation (5.14)

22: until converge or maximum iterations reached
23: return s
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5.4 Relative Orientation Constrained Data As-
sociation

Besides reducing the degree of freedom of the ICP problem from six to one, the
relative orientation can also be used to guide the data association that has to
take place in all ICP iterations. The key observation here is that the previous
frame must be located in the direction tdir with respect to the current one, the
same must hold for the corresponding points, see Figure 5.3 for an illustration.
Therefore, for a previous point ai, we can restrict its matching candidates b′i to
be located near to the ray ri = R0ai + λtdir, instead of arbitrary points in the
whole current point cloud. Ideally, the point b′i should lie exactly on the ray, but
due to noise, we relax the constraint and allow the candidate point to slightly
deviate from the ray.

To achieve this, we propose a modified closest point association procedure as
listed in Algorithm 3. The main idea is to use a temporary coordinate system
with tdir being the X-axis and the current frame’s origin being the origin of that
frame. Any point correspondences that are inconsistent with the direction tdir

will have nonzero Y and Z components in its error vector in this temporary frame.
Thus, we can define a weighted Euclidean distance metric, which heavily punishes
the Y and Z components in this frame, i.e.,

d2(a′
i, bj)

def
= (Qa′

i − Qbj)
T

1 γ

γ

 (Qa′
i − Qbj) (5.15)

= (a′
i − bj)

TQT

1 γ

γ

Q(a′
i − bj) (5.16)

def
= (a′

i − bj)
TW (a′

i − bj), (5.17)

where a′
i = R0ai+stdir, γ ≫ 1 is the penalty weight for the Y and Z components,

and Q is a rotation matrix, which is used to transform the points a′
i and bj from

the current frame into the new temporary frame.

The rotation matrix Q depends on vector tdir and can be generated by applying
QR decomposition to tdir. The orthonormal matrix of the QR decomposition re-
sult is used as Q after transpose. The rows of Q consist of tdir and two orthogonal
complements of tdir in IR3, i.e., Q =

[
tdir v1 v2

]T
and vi ⊥ tdir, i = 1, 2.

The proposed distance metric can be used in a standard k-d tree algorithm with
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b1 3

b2 7

a1

tdir
current

previous(true)

previous(estimate)

r
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Figure 5.3: The relative orientation supports point cloud data association. Given
R0, tdir, point a1 is matched to b1 instead of b2 (which is although closer to a1), because
point b1 is lying on the ray r(λ) = R0a1 + λtdir. Thus, several wrong associations can
be excluded.

Algorithm 3 Constrained Data Association
1: Input:

• Previous point cloud a, current point cloud b;
• Relative orientation and scale R0, tdir, s;

2: Parameter:
• Penalty weight γ ≫ 1;
• Outlier distance threshold dout;

3: Output: Matched point pairs (m, b).

4: Calculate QR decomposition: QR = tdir;
5: Weight matrix W ← Q

[
1
γ
γ

]
QT;

6: Transform previous points a′ ← R0a+ stdir;
7: Match previous points b′ ← argmina(a

′ − b)TW (a′ − b);
8: Remove point pairs with ∥a′ − b′∥ > dout;
9: return point correspondences (a, b′)
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Figure 5.4: The car used to record the KITTI dataset.

minor modifications, while the other parts of ICP algorithm remain the same.

With this distance metric, we can efficiently transfer the knowledge gained from
image feature correspondences into the process of laser point association without
requiring an overlap in the field-of-views of both sensors.

5.5 Experimental Evaluation

In this chapter, we present a novel approach to joint laser-camera ego-motion
estimation. We make the claims that our approach (i) allows for accurate frame-
to-frame alignment from monocular vision and laser range data and that (ii) it is
able to exploit the advantages of both modalities. Our experiments are designed
to support these two claims.

We perform our evaluations on the KITTI dataset [Geiger et al., 2012a], which
is a well known dataset recorded from a sensor vehicle driving in the city of
Karlsruhe in Germany. As depicted in Figure 5.4, the vehicle is equipped with
two sets of stereo cameras, a Velodyne HDL-64E and a GPS/INS system. We use
the KITTI dataset because it is a standard dataset for these type of problems
and we have ground truth available.

5.5.1 Error Evaluation

The first set of experiments is designed to support both claims, i.e., that our
approach can accurate align frames pairwise and that it is able to exploit the
advantages of both modalities.
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Figure 5.5: Cumulative error distribution: Percentage (y-axis) of cumulative errors
(x-axis) in rotation and translation for our approach and laser-only ICP.

Figure 5.5 shows the cumulative error plots for the rotation (left plot) and
the translation (right plot) of our approach in comparison to an optimized,
laser-only ICP. These are the cumulative plots over all sequences of the KITTI
dataset but the plots for the individual datasets looks similar and show the same
characteristics. Within this evaluation, we use the geodesic distance on a unit
sphere to parameterize the rotational error. Given a rotation matrix ∆R , we
compute

erot = arccos
(trace(∆R)− 1

2

)
(5.18)

as the error angle.

Based on the left plot of Figure 5.5, it is clearly visible that the relative orientation
information from the camera provides a better estimate of rotational component
of the ego-motion (blue line) than laser-based ICP (dashed orange line). The
blue line shows the performance of Nistér’s 5-point algorithm and our approach
(as we use the 5-point algorithm for the rotation estimation). The fact that this
approach is better than laser-based ICP can be seen because the blue curve is
always above the dashed, orange one.

We can furthermore show that our approach outperforms laser-only ICP when
estimating the translational part, see right plot of Figure 5.5. The blue line
represents our approach and is always above the dashed, orange one, which
corresponds to laser-only ICP. This is the case for two reasons: First, our point-
to-point data association described in Section 5.4 is better than the regular ICP
data association as we drastically reduce the number of potential matches since we
only need to consider points that are in line with the rotation. This avoids several
wrong data associations. Second, the orientation estimates of our approach
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Figure 5.6: Error in Z direction of sequence 00 for the keyframes.

are better than those of laser-only ICP and they also impact the translation
estimation. Note that no translational error can be provided for the camera-only
case as the scale, i.e., the length of the motion vector, cannot determined using
a monocular camera.

Thus, we can conclude that our approach outperforms visual odometry from
the monocular camera (because we obtain an accurate scale estimate) as well as
laser-based ICP (more accurate orientation and translation).

5.5.2 Trajectory Estimation

This second part of the evaluation also supports the first claim and furthermore
provides a better visual impression about the quality of the estimated trajectories.
We plot the ground truth trajectories, our estimates, and the ones of laser-only
ICP for several KITTI sequences in Figure 5.7. Note that, compared to several
other methods, our approach achieves its performance without any loop-closing.

In all sequences except the top left one, it is rather clear from the shown X/Y
plots that our trajectory estimate is always closer to the ground truth than the
ones obtained by laser-only ICP. For the top left trajectory (sequence 00), this
is more difficult to see. When inspecting the error in the Z component, however,
we can see in Figure 5.6 that our approach clearly outperforms laser-only ICP.
For nearly all keyframes, the error in the height estimate (Z axis) is larger for the
laser-only ICP estimate.
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Figure 5.7: Resulting trajectories from a subset of the KITTI sequence through our frame-to-frame registration without any loop-closing.
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5.6 Summary

In this chapter, we presented a novel approach to ego-motion estimation using a
monocular camera and a laser range finder jointly. Our approach estimates the 5-
DoF relative orientation from the camera images and uses a novel variant of ICP
with 1-DoF to estimate the scale. We can furthermore constrain the possible data
associations among the point clouds given constraints derived from the relative
orientation. We implemented our approach and evaluated it using KITTI data.
In sum, our approach provides accurate trajectory estimates, which are better
than those of each sensing modality alone.
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Chapter 6
Joint Ego-motion Estimation
Through Direct Photometric
Alignment

In this chapter, we propose the second camera-laser fusion algorithm addressing
the ego-motion estimation problem. Unlike the previous method in Chapter 5,
which indirectly fuses the information through image feature point correspon-
dences, the method proposed here is a direct one based on pixel-wise photometric
alignment, and it is designed to achieve superior estimation accuracy through
maximizing the information usage of both the image and the laser scan, assuming
the sensor field-of-view overlap is substantial.

In Section 6.1, we explicitly address the occlusion problem with a prediction
algorithm tailored to deal with sparse laser point clouds. In Section 6.2, to address
issues due to the sparsity of the range measurements, our approach identifies
planar point sets from the laser data and extract the corresponding pixel patches
from image data. The extracted dense planar image patches together with the
sparse non-planar point cloud and pixels information are jointly used to estimate
the frame-to-frame motion. For that, we rely on a homography formulation
(described in Section 6.3) that is capable of incorporating both types of pixel
alignments. In Section 6.4, to achieve high estimation accuracy, our approach
employs a two-stage registration strategy. The first stage is aimed to ensure a
proper initial pose estimate by jointly performing a coarse photometric pixel-
alignments together with a geometric point cloud registration. The resulting
estimate is then refined in the second stage by aligning only pixel intensities at
the finest image level. The motivation behind this strategy is to combine the pho-
tometric and the geometric information while avoiding their respective pitfalls,
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6.1. Occlusion Detection for Sparse Point Clouds

i.e., local minima in photometric alignment and estimation bias in point cloud
registration due to sparse point correspondences. In Section 6.5, we evaluated
the whole algorithm pipeline on different datasets and provided comparisons to
other existing techniques. The evaluation result supported the claim that our
approach can achieve competitive estimation accuracy.

Similar to the discussion of last chapter, we assume the camera and laser scanner
are time synchronized (e.g., by using hardware trigger) and that their relative
transformation on the robot is known (i.e. calibrated). Thus, one can project
a 3D laser point to the camera image and directly obtain the intensity value of
the corresponding image pixel. We denote the previous visual-laser measurement,
which consists of a point cloud {ai ∈ IR3}Ni=1 and an image Ia, using the charac-
ter a, while the current one uses b with point cloud {bj ∈ IR3}Mj=1 and image Ib.
Our task is to estimate the ego-motion of the robot between a and b, which
consists of a relative rotation R ∈ SO3 and translation t ∈ IR3.

6.1 Occlusion Detection for Sparse Point Clouds

Photometric alignment is based on the constant image brightness assumption,
which assumes the intensities of corresponding pixels of a scene point in two (or
more) images are equal. However, this assumption will be violated if the scene
point is occluded during the viewpoint changes. The occluded points are outliers
to the system and will deteriorate the estimation accuracy if they are not removed
from the photometric alignment process.

To overcome the occlusion problem, we propose a novel method to predict which
laser points of a sparse point cloud will be occluded under a certain camera
motion. We then explicitly exclude these points from the motion estimation step.
Compared to the standard Z-buffering approach, which is often used for dense
depth images, our approach is more suitable for dealing with sparse laser point
cloud data.

The key observation of our approach is that whenever parts of a point cloud
are occluded in the current camera view, the relative pixel order of the projected
point cloud in the current image will be different from the previous one. Consider
Figure 6.1 as an example. Assume there are five scene points, which are labeled
from left to right as 1, 2, 3, 4, 5 in the original camera view (Figure 6.1a). After a
camera translation, t, we observe the scene again and obtain a new camera image
by re-projecting the five points, as illustrated in Figure 6.1b. However, points 3
and 4 are occluded in the new view. Note that, at the same time, the pixel order
in the new image becomes 1, 3, 4, 2, 5 from left to right, which is different from
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Figure 6.1: The pixel order of projected 3D points will change if occlusions happened.
(a) In the original view, we label the 3D points from left to right as 1, 2, 3, 4, 5. (b)
After the camera movement t, points 3 and 4 are occluded and lead to a different pixel
order in the new camera image, which is now 1, 3, 4, 2, 5 from left to right. We exploit
such pixel order changes to perform occlusion detection for sparse 3D point clouds.

Figure 6.2: Example result of the occlusion detection algorithm. The red points are
the image projections of the (predicted) occluded points of a laser scan. The occlusions
happen mostly at the borders of objects and switch sides as the viewpoint changes.
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6.1. Occlusion Detection for Sparse Point Clouds

the original order 1, 2, 3, 4, 5.

The phenomenon of pixel order changes is not limited to perspective projection
but also holds true for the spherical projection, and we can exploit such pixel-
order changes to identify occluded scene points. To be more specific, we can first
compare the two sequences and find out which point-sets have been swapped, e.g.
points {3,4} and point 2 in Figure 6.1. One of the point-set is occluded while the
other is not. We identify the occluded one by comparing their depth values and
the larger one is occluded, i.e. points 3 and 4 have larger depths than point 2,
therefore they are occluded.

We generalize this idea and propose Algorithm 4 to perform occlusion detection
for sparse 3D point clouds. Our algorithm takes a row (or a column) of points as
input. A row (or column) means a subset of points having a close or the same
pitch (or yaw) laser beam angle. Another input variable is a translation vector t

representing the new camera position, which is expressed under the original point
cloud coordinate frame. Because rotational camera movements do not induce
scene occlusion, they are therefore not needed in the calculation.

Figure 6.2 shows an example detection result on the KITTI dataset. The red
points are the predicted occluded scene points, projected on images taken at a
different location. Notice how the projected pixels lie on different objects because
of the occlusion. In this example, the occluded points take up to 11% of the total
visible points. It is worth noticing that the occlusion happens not only because of
the camera ego-motion, but also due to the displacement between the camera and
the LiDAR sensors on the vehicle. Therefore, to account for both effects, we use
the camera ego-motion plus the camera-LiDAR displacement as the translation
input t to Algorithm 4.
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Algorithm 4 Occlusion Prediction
1: Input:

• A row of points P
• Translational movement t

2: Output:
• Occlusion mask O

▷ Step 1. Point projection
3: Index list A ← Sort indices of P by {πx(p) | p ∈ P}
4: Index list B ← Sort indices of P by {πx(p− t) | p ∈ P}

▷ Step 2. List comparison
5: Occlusion mask O(·)← False ▷ default: nothing occluded
6: Index a← A.pop()
7: Index b← B.pop()
8: loop size(P) times
9: if a == b then

10: update both a and b ▷ in line 18
11: else
12: if Pz(a) > Pz(b) then ▷ a is behind b thus occluded
13: mark O(a)← True
14: update only a
15: else ▷ b is occluded
16: mark O(b)← True
17: update only b
18: if update a then
19: a← A.pop()
20: if O(a) is True then repeat line 19
21: if update b then
22: b ← B.pop()
23: if O(b) is True then repeat line 22
24: return O
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6.2 Coplanar Point Detection

The depth measurements are often sparse and cover only a small portion of the
image pixels when projected into the camera image (see Figure 6.4c for example).
While most image pixels do not have depth information from the laser, such
depth-less image pixels are either discarded (e.g., in Della Corte et al., 2018) or
falsely assigned with a constant depth the same as their associated pixel (e.g., in
Shin et al., 2018), which are both sub-optimal solutions.

We overcome this problem by exploiting planar regions in the scene, which
are often abundant in structured (urban) environments. A scene plane usually
corresponds to a large number of pixels, and such pixels can also be used to
estimate the motion parameters even without knowing their depth values, because
they can be projected to another image using plane-induced homography given
the plane parameters. Therefore, to include as much as possible pixel information
in the photometric term, our approach explicitly detects scene planes from the
point cloud and use them for estimating the camera motion.

To identify which subset of the laser points are parts of a planar region, we
propose a grid-based method inspired by the work by Weingarten et al. [2003]
and Xiao et al. [2011]. The main idea is to first discretize the point cloud into a
grid of cells and then, for each cell use principal component analysis (PCA) to fit
a plane to the points that are inside the cell.

We also accelerate the detection process by incorporating prior knowledge about
existing planes, e.g., knowledge about the ground plane or previously detected
planes. Given prior plane parameters (n, d), where n is the normal vector of
the plane and d is the plane-to-camera-origin distance, we compute the point-to-
plane distance |nTp − d| for each point p in the new point cloud. Points with
a small distant are identified as inlier points for that plane. These inlier points
are removed from the point cloud and the fitting process is performed again with
the next prior plane parameters until all hypotheses are tested. This process
happens as the first stage of the planar point detection and can identify a large
portion of the planar points. After that, all the remaining (unmatched) points
are then handled by the grid-based detection process. Algorithm 5 summarizes
our proposed coplanar point detection method.
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Algorithm 5 Coplanar Point Detection
1: Input:

• Point cloud IP
• Prior plane parameters {(n, d)}

2: Parameter:
• Grid size s
• Point-to-plane distance threshold ϵ

3: Output:
• Planar points list P
• Plane normal list N

▷ Step 1: Prior Plane Fitting
4: for each prior plane parameters (n, d) do
5: Inliers I ← {p ∈ IP \ P

∣∣ |nTp− d| < ϵ}
6: Planar points list P insert←− Inliers I
7: Plane normal list N insert←− n

▷ Step 2: Discretization
8: Point list L ← {∅}
9: for each point p in the remaining point cloud IP \ P do

10: Cell coordinates (u, v, w)← discretize(p, s)
11: Point list L insert←− item {(u, v, w) : p}
12: Sort point list L by (u, v, w)

13: Cell list C ← {∅}
14: Current cell c← {∅}
15: for each point pi in the sorted point list L do
16: Current cell c insert←− pi
17: if current (u, v, w)i ̸= next coordinates (u, v, w)i+1 then
18: Cell list C insert←− current cell c
19: Current cell c← new cell {∅}

▷ Step 3: Plane Detection
20: for point set {p} of each cell in the cell list C do
21: Eigenvalues λ1 ≤ λ2 ≤ λ3 ← PCA({p})
22: if size({p}) < 7 then ▷ {p} is too sparse.
23: skip this cell
24: if λ1/size({p}) > ϵ then ▷ {p} not planar.
25: skip this cell
26: Normal vector n← eigenvector v1 (for eigenvalue λ1)
27: Plane normal list N insert←− n

28: Planar points list P insert←− {p}
29: return P,N
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6.3 Homography-Based Photometric Alignment
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Figure 6.3: Plane-induced homography relation of two images.

Once we extracted the (dense) planar image patches, they are used together
with the (sparse) non-planar point cloud-projected pixels to estimate the motion
parameters with our homography formulation.

Figure 6.3 shows a plane-induced homography relation of two images. Assume a
laser point ai is located on a 3D plane P with a normal vector n and a plane-to-
camera-origin distance d def

= nTai. Any points p belongs to this plane will satisfy
the equation

nTp = d. (6.1)

Now assume there is an previous image point x
def
= [u, v, 1]T on Ia, its back

projected ray r(λ)
def
= λx intersects the plane P . According to Equation (6.1),

the intersection happens at

nT(λx) = d 7→ λ =
d

nTx
. (6.2)

Therefore, the intersection point is d
nTxx and will have a 3D homogeneous coor-

dinates [
d

nTxx

1

]
≃

[
dx

nTx

]
∈ IR4. (6.3)

Given the relative motion parameters R and t, we can project this intersection
point to the current image Ib and obtain

y ≃
[
R t

] [ dx

nTx

]
= (dR + tnT)x. (6.4)
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With the camera intrinsic matrix K and x, y being in pixel coordinates, Equa-
tion (6.4) becomes

y ≃ K (dR + tnT)K−1x. (6.5)

Therefore, the pixels of a 3D plane in the two images, i.e. x and y, are related
through

y ≃ Hx, (6.6)

where H def
= K (dR + tnT)K−1 is a plane-induced homography.

For an arbitrary laser point that does not lie on a planar region, the homography
formulation in Equation (6.6) is still applicable because it can be seen as a special
case where the pixel by itself defines a fronto-parallel patch, i.e.,

P = {ai} and n = [0, 0, 1]T. (6.7)

In this case, d = [0, 0, 1]ai is the depth of ai, thus ai = dK−1x and the entity Hx

amounts to the standard 3D point projection as

Hx = K (R +
tnT

d
)dK−1x (6.8)

= K (Rai + t
nTai
d

) (6.9)

= K (Rai + t). (6.10)

Base on this homography formulation, we define our photometric cost function
for estimating the motion parameters R and t as

Epho,i
def
=

∑
x∈Pimg(ai)

φ
(
I ′a(x)− Ib

(
π(H i(R , t)x)

)︸ ︷︷ ︸
{epho}

)
(6.11)

where

• φ(·) is a robustification function based on the t-distribution (of five degree
of freedom, as in Kerl et al. [2013]):

φ(e)
def
=

6

5 + e2

σ2

e2 (6.12)

with σ being the standard deviation of all residuals {e};

• x def
= [u, v]T is a pixel coordinates, and x

def
= [u, v, 1]T is its homogeneous

form;
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• π(·) is the Euclidean normalization that transforms homogeneous coor-
dinates into (inhomogeneous) pixel coordinates, i.e. π(x) = x, or more
generally

π([u, v, w]T)
def
= [u/w, v/w]T; (6.13)

• Pimg(ai) denotes a set of neighboring pixels around the image point of ai.
If the image point of ai is denoted as ai def

= π(Kai), then

Pimg(ai)
def
=

{x ∈ Z2 | ∥ai − x∥ ≤ r}, if ai is planar,
{ai}, if non-planar,

(6.14)

where r is a predefined radius;

• Hi(R , t)
def
= K (aT

i niR + tnT
i )K−1 is the homography associated to the laser

point ai. For non-planar points we set ni = [0, 0, 1]T. Otherwise ni is cal-
culated from the laser point cloud using a method described in Section 6.2;

• I ′a(·)
def
= αIa(·) + β is used to model the gain, α, and the bias, β, between

the two intensity images, to account for possible different camera exposure
settings and ambient light changes. Both α and β are unknown parameters
to be estimated during the optimization.

6.4 Two-Stage Registration

Photometric alignment is in essence a highly nonlinear optimization problem with
lots of local minima. To ensure a proper initial estimate and avoid false minima,
we first optimize a joint objective that rewards both consistent photometric
alignment (with smoothed images) as well as tight point cloud registration. For
that, besides the photometric term in Equation (6.11), we also incorporate a
geometric term to account for the point-to-plane point cloud registration errors
as in the ICP:

Egeo,i
def
= φ

(
nT
i (Rai + t− b′i)︸ ︷︷ ︸

{egeo}

)
, (6.15)

where b′i is the nearest-neighbor to the transformed ai in the point cloud b,
determined by using a k-d tree search. For non-planar points, ni refers to the
surface normal of the points.

Combining Equation (6.11) and Equation (6.15), we have in the first registration
stage a minimization problem of the form:

argmin
R,t,α,β

1

σ2
geo

∑
i

Egeo,i +
1

σ2
pho

∑
i∈Vis

Epho,i, (6.16)
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where

• σgeo and σpho are the standard deviation of the residuals {egeo} and {epho};

• i ∈ Vis stands for laser points that are visible and not occluded in both
camera images Ia and Ib, which are smoothed by a Gaussian function and
then down-sampled.

In the second stage of the alignment procedure, the estimation of R and t is
refined by performing photometric alignment at the finest resolution. Therefore,
a cost function similar to Equation (6.16) is used in the second stage, but with
only the photometric term Epho and using raw images.

In both stages, we minimize the objective with a standard iterative Gauss-Newton
optimization algorithm. Our experimental result in Section 6.5 suggests that our
two-stage registration strategy can significantly improve the estimation accuracy.

6.5 Experimental Evaluation

The main focus of this work is a novel direct approach to joint laser-camera
odometry. The experiments are designed to show the capabilities of our method
and to support our key claim that our approach is able to accurately estimate
frame-to-frame motion using monocular vision and laser range data. We perform
the evaluations on own robotic datasets as well as on publicly available ones.

6.5.1 Outdoor LiDAR-Camera Dataset with Ground Truth
Control Points

The first experiment is to verify the proposed method with a mobile robot in
an outdoor environment. The robot is a Clearpath Husky mobile platform
equipped with a 16-beams Velodyne VLP-16 LiDAR and a stereo-camera (we
use images from only the left camera here), as shown in Figure 6.4b. Along
the performed experiment route, there are five geodetic control points on the
ground with precisely measured coordinates around our campus, as illustrated
in Figure 6.4a. We place Apriltag markers [Olson, 2011] on top of the control
points and utilize an auxiliary camera on the robot to detect these markers on
the ground when the robot drives by them. In this way, we obtain the positions
of the robot relative to the control points. We use these positions as ground-
truth locations in the environment to evaluate the trajectory estimated with our
approach. Due to the orientation of the markers are somewhat uncertain, we
compare the point-to-point distances and the result is shown in Table 6.1.
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(a) Experimental route and control points.

(b) Robot platform. (c) Laser points projected into the camera image.

(d) 3D mapping result of the path from control point 4 to 5.

Figure 6.4: Outdoor experiment. We drive a Clearpath Husky robot around the
campus. The experimental path passes by five precisely known geodetic control points,
which are used for the ground truth evaluation.
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Table 6.1: Relative distance error measured at five control points.

Segments 1-2 2-3 3-4 4-5
Ground Truth Point Dist. (m) 114.12 93.86 116.87 103.62

Estimated Trajectory length (m) 213.47 133.16 125.17 110.05

Geometric term only Dist. Error (m) 3.20 1.43 2.60 2.92
Rel. Error (%) 1.49 1.07 2.07 2.65

Photometric term only Dist. Error (m) 0.92 2.25 0.26 0.57
Rel. Error (%) 0.43 1.69 0.21 0.52

Combined Dist. Error (m) 0.26 0.12 0.02 0.35
Rel. Error (%) 0.12 0.09 0.02 0.32

Table 6.2: Comparison on relative translational error
using the KITTI odometry dataset.

Sequences without loops
Approach 01 03 04 10

J. Zhang and Singh [2017] 1.4% 0.9% 0.7% 0.8%
Shin et al. [2018] 1.5% 0.9% 0.7% 0.7%

Our 1.0% 1.1% 0.6% 0.7%

As shown in the last row of Table 6.1, our approach achieves a competitive
accuracy with relative distance errors as low as 0.1%, without using loop-closing.
Figure 6.4d depicts a colored point cloud generated by our approach.

To see the benefit of using the two-stage registration strategy, we also include
in Table 6.1 the results of using only the geometric term or the photometric
term. The result suggests that the accuracy improvements of using two-stage
registration are significant.

6.5.2 Comparison to State-of-the-Art Methods Using KITTI

The second experiment performs evaluations about the motion estimation quality
of our approch using the odometry datasets of the KITTI odometry dataset [Geiger
et al., 2012a]. We performed the motion estimation using the point clouds
from the 64-beams Velodyne LiDAR and the monochromic images from the
camera 0. The results of sequences without loop-closing are reported in Table 6.2
for comparison, including the reported results of Shin et al. [2018] (a photometric-
alignment based visual-laser odometry approach), as well as the state-of-the-art
laser-based approach, LOAM [J. Zhang and Singh, 2017]. The result shown in
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Table 6.2 suggests that our approach perform better or on par with the state-of-
the-art in terms of translational error.

6.6 Summary

In this chapter, we presented a novel direct approach to joint laser-camera odom-
etry. Our method exploits planar information, performs occlusion prediction,
and employs a two-stage registration. This allows us to estimate frame-to-frame
motions with high accuracy. We implemented and evaluated our approach on
different datasets and provided comparisons to other existing techniques. The
evaluation result supported the claim that our approach can achieve competitive
estimation accuracy.
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Chapter 7
Related Work

In this chapter, we review previous work on sensor extrinsic calibration problem,
and report existing laser-camera fusion approaches. We discuss the strengths and
weakness of previous research, and explain their relations to our work presented
in this thesis.

7.1 Extrinsic Calibration

In this thesis, we categorized common calibration methods into three types:
AX=B, AX=YB, and AX=XB. We now briefly survey works that are related
to each method.

7.1.1 Marker-Based Methods

Calibration methods based on model AX=B formed the vast majority of cal-
ibration studies, covering popular exteroceptive sensors such as cameras and
laser scanners. We refer to approaches based on model AX=B as marker-based
approaches, because the setup of a reference frame common to all sensors often
requires using markers, in the form of control points, landmarks, or reference
objects with known geometry.

Marker-based approaches try to estimate the extrinsic parameters directly from
the sensed features by maximizing a quality measure or the agreement of the
sensor data with specific constraints, e.g., [Faugueras and Toscani, 1989; Pandey
et al., 2015; Scaramuzza et al., 2007; Taylor et al., 2015]. Typical sensors that fit
in this paradigm are cameras and laser scanners.

85



7.1. Extrinsic Calibration

For calibration involving cameras, usually a set of point correspondences matched
from different views of the same scene are used. The sum of squared point re-
projection errors is then served as a cost function for an error minimization in the
parameter space, e.g., in the work of [Carrera et al., 2011; Faugueras and Toscani,
1989; Heng et al., 2014; Heng et al., 2013; Zisserman et al., 1995]. There are
also methods operate directly on dense images, using a metric known as Mutual
Information [Shannon, 1948], but they are mainly used for aligning hyperspec-
tral cameras, or medical imaging devices such as Medical Resonance Imaging
(MRI) and Computed Tomography (CT). A survey of mutual-information-based
techniques has been presented by Pluim et al. [2003].

For calibration involving laser scanners, objects with distinguishable shape are
often used as markers, such as flat surface [Fernndez-Moral et al., 2015; Rwekmper
et al., 2015], checkerboard [Geiger et al., 2012b], scene corners [Gomez-Ojeda et
al., 2015], or even trajectories of tracked objects [Schenk et al., 2012].

For camera-laser calibration problems, gradient information can also be used, e.g.,
in the work [Taylor et al., 2013; Taylor et al., 2015] by a metric called gradient
orientation measure. The work of Corsini et al. [2009] provides another solution
if we consider camera-laser calibration as an image-to-geometry registration prob-
lem. In their approach, illumination-related geometric properties such as surface
normals, ambient occlusion and reflection directions, are used to generate a 2D
image from a 3D model, so that mutual-information-based techniques can be used
to register the synthetic image with the photometric one from cameras.

7.1.2 Relative-Motion-Based Methods

Calibration methods based on the model AX=XB forms another popular group,
which we refer as relative-motion-based methods. Unlike the previous marker-
based approaches, this type of methods exploit constraints between the motions
of individual sensors instead of external markers, hence the name. They are
sensor agnostic and can be used to calibrate almost any kind of sensor that can
produce a (relative) trajectory estimate of itself.

The iconic equation AX=XB was first proposed in the work of Shiu and Ahmad [1989].
They try to calibrate a camera that is mounted next to an end-effector of a robotic
arm, as illustrated in Figure 7.1. Such a calibration problem is often referred as
hand-eye calibration, which is a typical case of motion-based extrinsic calibration.

Many previous works are focused on providing a solution to the equation AX=XB
(hence the hand-eye calibration problem). Shiu and Ahmad [1989] provide a
closed-form solution by decoupling the rotation and translation estimation, and
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Figure 7.1: AX=XB hand-eye calibration problem is aimed to calibrate a camera that
is mounted next to an end-effector of a robotic arm.

discussed the solution uniqueness condition. Following works propose various
alternative closed form solutions by using, for example, angle-axis representa-
tion [Park and Martin, 1994], dual-quaternions formulation [Daniilidis, 1999],
screw motion and screw axis [Fassi and Legnani, 2005], or the idea of orthogonal
dual tensors [Condurache and Burlacu, 2016]. Despite the simplicity and being
fast to compute, these direct approaches do not take measurement uncertainties
into full consideration, thus rendering these methods vulnerable to noise. To
improve robustness and accuracy, Dornaika and Horaud [1998] propose to jointly
optimize rotation and translation with nonlinear optimization. The work of Strobl
and Hirzinger [2006] proposes a metric on the special Euclidean group SE(3) and
considered the relative weighting between rotation/translation components in the
error metrics. Besides common least squares formulation, Zhao [2011] propose to
formulate the problem with a L∞ cost function and utilize convex optimization
approach to solve it.

Besides the hand-eye calibration problem, there are also research focused on
other types of sensor. For examples, the study of laser-camera calibration using
motion-based method has been reported by Taylor and Nieto [2015]. Camera-
odometry calibration is another example, which is a popular topic driven by the
needs of information fusion for cars and wheeled mobile robots [Chang et al.,
1993; Guo et al., 2012; Heng et al., 2013; S. Schneider et al., 2013]. To this
end, Guo et al. [2012] proposed a two-step analytical least squares solution to
estimate the rotation and translation separately, assuming only 2D in-plane mo-
tions are available. In contrast to the commonly used offline batch optimization,
S. Schneider et al. [2013] reported an online recursive estimation approach for
camera-odometry calibration, which is based on the Unscented Kalman filter.
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7.1.3 Absolute-Motion-Based Methods

The third type of calibration methods, based on the model AX=YB, also often
appears in the hand-eye calibration studies, e.g., [Dornaika and Horaud, 1998;
Li et al., 2016; Tabb and Yousef, 2015; Wang, 1992; Zhuang et al., 1994],
but they try to simultaneously estimate the hand-eye transformation (i.e. X)
and the pose of the robot in the world (i.e. Y), using absolute positions of
the sensors. Wang [1992] first submitted this formulation explicitly for hand-
eye calibration. Li et al. [2016] addressed the same problem but assumes the
pose measurements are asynchronous. Tabb and Yousef [2015] provided a solu-
tion based on parameterizing the rotation components using Euler angles, while
Zhuang et al. [1994] used quaternion algebra to derive explicit linear solutions
for X and Y. Dornaika and Horaud [1998] used quaternion algebra as well but
also employed a nonlinearly optimization with two penalty functions.

7.1.4 Observability of Parameters

For calibration methods based on model AX=XB and AX=YB, care has to be
taken with respect to the observability. Parameters become unobservable when
the motions experienced by the sensors do not contain enough rotations in 3D,
which leads to incomplete confinement to all the six (or twelve) transformation
parameters during the estimation. Brookshire and Teller [2011] discuss the pa-
rameter observability in an algebraic way by inspecting the rank of the Fisher
information matrix, while a more recent work by Maye et al. [2016] brings the
observability analysis into practical use. They aim to separate the calibration
parameters into observable and unobservable parts in real-time and update only
those parameters that are observable during the optimization. They carry out
the analysis in a numerical way by using rank-revealing QR and singular value
decompositions of the Fisher information matrix.

7.1.5 Noise sensitivity analysis

Observability analysis can, however, merely state whether the parameter is ob-
servable or not. Our work on the noise sensitivity analysis in Chapter 3 can
be seen as a step forward. The noise sensitivity analysis can not only provide
the information about observability, but more importantly, quantify how the
sensor and trajectory configuration relates to the calibration accuracy, given the
existence of measurement noise. There are attempts to provide such a noise
sensitivity analysis. Brookshire and Teller [2012] provided a formal discussion
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on measurement uncertainties and their effects on the calibration result. They
formulate a projected Gaussian noise model for unit dual quaternion SE(3) param-
eterization. By using unit dual quaternion with eight parameters, the rotation
and translation are jointly represented, including their uncertainty. Maximum
likelihood optimization is then carried out under this noise model, which pro-
vides a Cramer-Rao bound for the calibration’s uncertainty. Their analysis is
rigorous, however, covers only the model AX=XB. Dornaika and Horaud [1998]
also performed a sensitivity analysis, but only for their methods and the linear
method developed by Zhuang et al. [1994].

7.1.6 Summary

To the best of our knowledge, no other work exists to provide a systematic noise
sensitivity analysis for all three types of method, nor work exists that bases the
optimization for motion-based calibration on the Gauss–Helmert model, which
jointly optimize the model parameter and measurements together in order to
take the measurement noise into full account.

7.2 Camera-Laser Data Fusion

In the second part of the thesis, we focused on camera-laser fusion and contribute
with two new visual-laser odometry algorithms. Previous work in visual-laser
odometry can be categorized into two groups: visual-odometry-based approaches
and point-cloud-registration-based approaches.

7.2.1 Visual-Odometry-Based Methods

Visual-odometry-based approaches try to apply a visual odometry pipeline with
known pixel depth information coming from the laser scan. For example, the
work of Shin et al. [2018] tries to solve the visual-laser SLAM problem within
the direct sparse odometry (DSO) [Engel et al., 2018] framework. They use the
projected laser points as feature points instead of using the salient gradient points
extracted from the images. With the depth values of the feature points known
and fixed, they perform a multi-frame photometric optimization the same as the
DSO to estimate the poses of the keyframes. The work of J. Zhang et al. [2017]
named depth enhanced monocular odometry has a similar framework.

RGB-D image registration [Della Corte et al., 2018; Kerl et al., 2013; Newcombe
et al., 2011] tries to solve a similar problem, but they are using devices such
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Figure 7.2: Microsoft Kinect, a RGB-D camera which can provide color (RGB) as well
as depth (D) images.

as the Microsoft Kinect camera or stereo cameras, which can provide dense 3D
information in the form of depth images along with regular RGB color informa-
tion, as depicted in Figure 7.2. Numerous methods are tailored to such dense
3D measurements with large overlapping fields of view. Recent examples are
KinectFusion by Newcombe et al. [2011], DVO by Kerl et al. [2013] and MPR
by Della Corte et al. [2018]. Of which, the multi-cue photometric point cloud
registration approach (MPR) [Della Corte et al., 2018] tries to jointly register
color, depth, and normal information within a unified framework by considering
the depth and normal information as channels of a multi-channel image. All three
RGB-D registration methods utilize projective data association to speed up the
registration process and to jointly exploit the depth and color cues.

However, a common problem for visual-laser odometry methods based on visual-
odometry or RGB-D image registration is they are only applicable to the laser
points that are visible in the camera image. Since these approaches do not
consider the laser points that are outside the field of view of the camera, much
of the range measurements will be discarded with sensors like Velodyne LiDARs,
which can provide a 360 degrees scan. Such setting renders the system less
accurate and vulnerable to texture-less scenes. In extreme cases, where there
is no overlap between the fields-of-view of the scanner and the camera, these
approaches will no longer work.
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7.2.2 Point-Cloud-Registration-Based Methods

In contrast to that, the point cloud registration (ICP) based approaches try to
align the whole point cloud with the help of image information in various aspects.
For example, the methods by Pandey et al. [2011] and J. Zhang and Singh [2015]
simply use the visual odometry result as an initial guess to the ICP process,
making the ICP less likely to be trapped in local minima. A more advanced way
to fuse the information is to use image/color information to guide and accelerate
the data association process [Joung et al., 2009; Men et al., 2011; Naikal et al.,
2009]. The works of Joung et al. [2009] and Men et al. [2011] treat the color
information as the fourth channel input to the ICP, allowing a faster convergence
rate than normal ICP as reported by Men et al. [2011]. The color information is
not used in the error minimization process in Men’s approach, which is in contrast
to the work of Joung et al. [2009], whose error function incorporates the color
consistency of matched points. They both use color data to filter out unlikely
point candidates before ICP. The work of Naikal et al. [2009] achieves the same
goal but employs a different strategy. The data association is established through
image patch matching instead of using a k-d tree-based closest point assignment.
They project scan points onto the respective images so that the 3D points can
be associated to image patches around the projected location. A patch matching
process is then carried out across images by minimizing a bidirectional sum of
absolute differences. The resulting patch correspondences eventually determine
the scan point correspondences. The visual odometry result is furthermore used
to provide a search window for the patch matching process.

The common problem for aforementioned ICP based approaches is, however, due
to the inevitable outlier point correspondences, the true solution may not neces-
sarily locate at the exact minimum of the ICP cost function. This is especially
the case when the point cloud is sparse. Furthermore, only the laser points with
the improved correspondences are used to estimate the relative transformation.
Therefore, to achieve better accuracy, it is necessary to optimize a joint objective
that rewards both tight point cloud alignment (via a geometric term) as well as
consistent image appearance (via a photometric term), to obtain better estimation
accuracy.

7.2.3 Summary

To address the problems mentioned before, we proposed in Chapter 5 a novel
visual-laser odometry approach that is able to work with general sensor config-
urations without requiring a field-of-view overlap, while still be able to exploits
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the camera information to effectively constrain the ICP data association. And in
Chapter 6, assuming the field-of-view overlap between the sensors is substantial,
we proposed another visual-laser odometry approach that tries maximize the
information usage of both sensor to achieve excellent estimation accuracy.
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Chapter 8
Conclusion

Autonomous robots and vehicles often utilize a multi-sensor system to perform
vital tasks such as localization or mapping. The joint system of various sensors
with different sensing modalities is capable of providing better localization or
mapping results than individual sensor alone in terms of accuracy, completeness
or robustness. However, before any multi-sensor system can be put into use,
two import matters have to addressed. Firstly, how to accurately determine the
relative transformations (i.e. the spatial relationship) between individual sensors
on the robot? This is a vital task known as extrinsic calibration. Without this
calibration information, measurements from different sensors cannot be fused.
Secondly, how to combine data from multiple sensors to exploit their respective
sensing advantages and thus better solve the perception task? This is another
important task known as data fusion. Both subjects have significant impacts on
the performance of a multi-sensor system.

8.1 Summary

In this thesis, we focus on extrinsic calibration and camera-laser data fusion
problems for multi-sensor systems. We addressed aspects related to improving
the extrinsic calibration accuracy and presented novel data fusion algorithms
for the ego-motion estimation problem using data from a laser scanner and a
monocular camera.

We started with examining the relative calibration accuracies of three common
types of calibration methods in Chapter 3. We performed a rigorous study
on the noise sensitivity of each method from a novel geometric perspective.
By quantifying and comparing the relative calibration accuracies of the three
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methods, we are able to answer the question of “which method is better and
why?”. We are the first to offer such a systematic comparison and the result could
give us an insight into choosing the best calibration method when multiple options
are available. We then addressed the estimation problem of the common AX=XB
type of calibration problem in Chapter 4. The main challenge in this context is
how to obtain a statistically-optimal solution for the calibration parameters when
working with an implicit constraint model such as the AX=XB transformation
equation. We first pointed out an overlooked defect of common least squares
approach in the context, and presented a better approach which can fully take
into account the measurement uncertainties. Our approach utilizes the Gauss-
Helmert paradigm to estimate not only the extrinsic parameters but also the
pose observation errors, thus recovering the underlying sensor movements that
exactly fulfill the motion constraints. Compared to traditional least squares
approaches, our approach can provide statistically-optimal estimates that are
more accurate and robust to noise. Besides, we considered not only the calibration
of a sensor pair but also the case involving multiple sensors, allowing our approach
to calibrate multiple sensors simultaneously. Our propgram is open sourced and
can be accessed in https://github.com/PRBonn/extrinsic_calibration.

We also contributed, in the second part of the thesis, with two novel data fusion
algorithms to address the ego-motion estimation problem, using complementary
data from a laser scanner and a monocular camera. Our first algorithm in
Chapter 5 exploits the advantages of both sensors in a such way that it is able
to work in general conditions without requiring a field-of-view overlap between
the camera and the laser scanner, nor an initial guess of the motion parameters.
This is achieved by utilizing the 5-DoF relative orientation information estimated
from image pairs through feature point correspondences. We demonstrated how
to use such information to guide both the transformation-estimation and data-
association steps within the ICP-based laser scan-matching process. The result-
ing approach can provide accurate trajectory estimates, which are better than
those of each sensing modality alone. We presented our second algorithm in
Chapter 6, which combines the camera and the laser scanner information in a
direct way, assuming the field-of-view overlap between the sensors is substantial.
By maximizing the information usage of both the sparse laser point cloud and
the dense image, our algorithm is able to achieve excellent estimation accuracy.
Several novel techniques are utilized in this algorithm. For examples, we explicitly
address the occlusion problem using a prediction algorithm tailored to deal with
sparse laser point clouds; we presented a method to address issues due to the
sparsity of the laser measurements, by exploiting planar point sets from the
laser data; We employed a homography formulation capable of incorporating
the alignment of both dense planar image patches and sparse pixels for non-
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planar point cloud; We presented a two-stage registration strategy which can
combine the photometric and the geometric information while avoiding their
respective pitfalls, i.e., local minima in photometric alignment and estimation
bias in point cloud registration due to sparse point correspondences. Combining
all these techniques, our approach is able to achieve state-of-the-art ego-motion
estimation accuracy.

In summary, the approaches presented in this thesis allow us to answer the
following questions:

• Which extrinsic calibration method is more accurate?

• How to obtain a statistically-optimal calibration result using relative-motion-
based calibration method?

• How to accurately estimate the ego-motion of a robot using a laser scanner
and a monocular camera?

8.2 Future Work

Despite the encouraging results presented in this thesis, there are promising areas
via which this research could be continued.

One interesting research direction for extrinsic calibration is to develop hybrid
calibration methods that combine model AX=B and model AX=XB, in other
words, methods that utilize information from both calibration objects and sensor
motions. This would be beneficial for sensors such as cameras and laser scanners.
It could provide a way to solve both the applicability problem of model AX=B
as well the observability problem of model AX=XB.

Regarding our camera-laser ego-motion approaches, one possible way of improv-
ing is to complete the pipeline by adding functions such as loop-closing, re-
localization, pose-graph optimization backend, point cloud integration etc. These
components were beyond the scope of this thesis but they are useful for real world
applications.

Finally, the coding aspect of this work is currently not in a form that are production-
ready. Work could be done to improve the quality of the code to allow non-expert
users to make use of the system.
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