
Bonn 2020

Institut für Geodäsie und Geoinformation

Schriftenreihe

UNIVERSITÄT BONN igg

Emanuele Palazzolo

Active 3D Reconstruction
for Mobile Robots

66

Emanuele Palazzolo • Active 3D Reconstruction for Mobile Robots

Diese Dissertation zur Erlangung des Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.)
wurde an der Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität
Bonn vorgelegt.

Referent: Prof. Dr. Cyrill Stachniss

1. Korreferent: Prof. Dr. Philippe Giguère

Tag der mündlichen Prüfung: 19. Dezember 2019

Diese Dissertation ist auf bonndoc - dem Publikationsserver der Universität Bonn
elektronisch publiziert:
https://nbn-resolving.org/urn:nbn:de:hbz:5-57126

Schriftenreihe des Instituts für Geodäsie und Geoinformation
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Herausgeber: Prof. Dr. Jan-Henrik Haunert

Prof. Dr.-Ing. Theo Kötter
Prof. Dr.-Ing. Heiner Kuhlmann
Prof. Dr.-Ing. Jürgen Kusche
Prof. Dr. techn. Wolf-Dieter Schuh
Prof. Dr. Cyrill Stachniss

Die Aufnahme dieser Arbeit in die Schriftenreihe wurde von den Herausgebern
der Reihe einstimmig beschlossen.

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt.
Abdruck auch auszugsweise nur mit Quellenangabe gestattet.
Alle Rechte vorbehalten.

Schriftenreihe Heft 66

Bonn 2020 2699-6685 (Online)

Inaugural-Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Landwirtschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn
Institut für Geodäsie und Geoinformation

Active3DReconstruction
forMobileRobots

von

Emanuele Palazzolo
aus

Turin, Italien

Bonn 2020

Referent:
Prof. Dr. Cyrill Stachniss, University of Bonn, Germany

Korreferent:
Prof. Dr. Philippe Giguère, Laval University, Québec, Canada

Tag der mündlichen Prüfung: 19 Dezember 2019

Erscheinungsjahr: 2020

Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn

Zusammenfassung

Die Abbildung der Umgebung durch die Rekonstruktion dreidimen-
sionaler Modelle wird konventionell durch Fachpersonal mit spezi-
ellem Messequipment wie Kameras oder terrestrischen Laserscannern
durchgeführt. Diese Verfahrensweisen sind allerdings mit hohen Kos-

ten und einem erheblichen Zeitaufwand verbunden. Der Einsatz von Robotern
ermöglicht hingegen automatisierte Verfahren sowie die Bestimmung dreidimen-
sionaler Modelle innerhalb von für den Menschen unzugänglichen Umgebungen
und deren Verwendung für Verbraucheranwendungen. Die vollständig autonome
Rekonstruktion von 3D-Modellen ist jedoch eine nicht-triviale Aufgabenstellung
und Schwerpunkt vieler Forschungsarbeiten. Die in dieser Arbeit vorgestellten
Techniken befassen sich mit offenen Problemstellungen zur aktiven Rekonstruk-
tion von 3D-Modellen. Für eine automatisierte Rekonstruktion muss der Roboter
zum einen selbständig die optimalen Aufnahmepositionen bestimmen und zum
anderen die Beobachtungen zeitgleich zur Erkundung der Umgebung in ein Mo-
dell integrieren. In dieser Arbeit adressieren wir zunächst die echtzeitfähige Inte-
gration von Sensorbeobachtungen in dichte, dreidimensionale Modelle. Im zwei-
ten Schritt bestimmen wir die optimalen Aufnahmepositionen des Sensors, um
die unbekannte Umgebung so effizient wie möglich zu rekonstruieren. Anschlie-
ßend präsentieren wir eine Methodik zur Rekonstruktion von 3D-Modellen, die
im Gegensatz zu klassischen Ansätzen keine vollständig statische Umgebung vor-
aussetzt. Mit der entwickelten Methodik zielen wir insbesondere auf langfristige
Veränderungen innerhalb der Szene ab und präsentieren einen Ansatz zur de-
ren echtzeitfähigen Identifikation und Integration in ein bestehendes 3D-Modell.
Abschließend adressieren wir die Identifikation von dynamischen Elementen in-
nerhalb der Szene sowie deren Behandlung während der Messung.

Im ersten Teil dieser Arbeit präsentieren wir unter Annahme einer statischen
Umgebung eine Methodik zur Lösung der beiden erstgenannten Aufgabenstellun-
gen, die eine echtzeitfähige Rekonstruktion von 3D-Modellen basierend auf einem
kommerziellen RGB-D Sensor ermöglicht. Der vorgestellte Ansatz zeichnet sich
insbesondere durch eine hohe Effizienz hinsichtlich der Laufzeit und des Speicher-
bedarfs aus. Darüber hinaus ist unsere Methode insbesondere robust gegenüber
Szenen in denen strukturelle Merkmale unzureichend vertreten sind. Zusätzlich

iii

stellen wir eine Methodik zur iterativen Berechnung der nächstbesten Aufnahme-
positionen vor, welche die aus den Messungen erhaltene Information maximiert.
Der vorgestellte Ansatz ist für Kleindrohnen, auch micro aerial vehicles (MAV)
genannt, optimiert und berücksichtigt deren spezifischen Beschränkungen.

Im zweiten Teil dieser Arbeiten präsentieren wir eine Methodik für nicht-
statische Umgebungen und adressieren die beiden letztgenannten Aufgabenstel-
lungen. Basierend auf einer kurzen Bildsequenz identifiziert unser Ansatz Regio-
nen des 3D-Modells, die von langfristigen Veränderungen innerhalb der Szene
betroffen sind. Die von uns vorgestellte Methodik läuft echtzeitfähig auf einem
Roboter, der basierend auf dieser Information explizit die von Veränderungen
betroffenen Regionen berücksichtigen kann. Abschließend präsentieren wir eine
echtzeitfähige Methodik zur Rekonstruktion dreidimensionaler Modelle innerhalb
dynamischer Umgebungen, die nicht-statische Elemente identifiziert und aus den
Messungen herausfiltert.

Insgesamt leistet diese Arbeit mehrere Beiträge im Kontext der roboterba-
sierten Rekonstruktion dreidimensionaler Modelle sowie dem Umgang mit Ver-
änderungen innerhalb der Szene. Im Vergleich zum aktuellen Stand der Technik
ermöglichen die in unserer Arbeit vorgestellten Ansätze ein robusteres, echtzeit-
fähiges Tracking von RGB-D Sensoren sowie die Behandlung von dynamischen
Elementen. Darüber hinaus präsentieren wir eine effizientere Technik zur Aus-
wahl der Aufnahmepositionen für die Exploration der Umgebung mittels MAV
sowie eine effiziente, echtzeitfähige Identifikation von Veränderungen innerhalb
der Szene basierend auf 3D-Modellen aus Bilddaten, die wesentlich schneller ist
als vergleichbare bestehende Methoden. In Bezug auf Robustheit und Effizienz
erweitert unsere Methodik damit den aktuellen Stand der Technik.

iv

Abstract

Mapping the environment with the purpose of building a 3D model
that represents it, is traditionally achieved by trained personnel, us-
ing measuring equipment such as cameras or terrestrial laser scan-
ners. This process is often expensive and time-consuming. The use

of a robotic platform for such a purpose can simplify the process and enables
the use of 3D models for consumer applications or in environments inaccessible
to human operators. However, fully autonomous 3D reconstruction is a complex
task and it is the focus of several open research topics. In this thesis, we try to
address some of the open problems in active 3D environment reconstruction. For
solving such a task, a robot should autonomously determine the best positions
to record measurements and integrate these measurements in a model while ex-
ploring the environment. In this thesis, we first address the task of integrating
the measurements from a sensor in real-time into a dense 3D model. Second, we
focus on where the sensor should be placed to explore an unknown environment
by recording the necessary measurements as efficiently as possible. Third, we re-
lax the assumption of a static environment, which is typically made in active 3D
reconstruction. Specifically, we target long-term changes in the environment and
we address the issue of how to identify them online with an exploring robot, to
integrate them in an existing 3D model. Finally, we address the problem of iden-
tifying and dealing with dynamic elements in the environment, while recording
the measurements.

In the first part of this thesis, we assume the environment to be static and we
solve the first two problems. We propose an approach to 3D reconstruction in real-
time using a consumer RGB-D sensor. A particular focus of our approach is its
efficiency in terms of both execution time and memory consumption. Moreover,
our method is particularly robust to situations where the structural cues are
insufficient. Additionally, we propose an approach to compute iteratively the
next best viewpoint for the sensor to maximize the information obtained from
the measurements. Our algorithm is taylored for micro aerial vehicles (MAV)
and takes into account the specific limitations that this kind of robots have.

In the second part of this work, we focus on non-static environments and we
address the last two problems. We deal with long-term changes by proposing an

v

approach that is able to identify the regions that changed on a 3D model, from a
short sequence of images. Our method is fast enough to be suitable to run online
on a mapping robot, which can direct its effort on the parts of the environment
that have changed. Finally, we address the problem of mapping fully dynamic
environments, by proposing an online 3D reconstruction approach that is able to
identify and filter out dynamic elements in the measurements.

In sum, this thesis makes several contributions in the context of robotic map
building and dealing with change. Compared to the current state of the art, the
approaches presented in this thesis allow for a more robust real-time tracking
of RGB-D sensors including the ability to deal with dynamic scenes. Moreover,
this work provides a new, more efficient view point selection technique for MAV
exploration, and an efficient online change detection approach operating on 3D
models from images that is substantially faster than comparable existing methods.
Thus, we advanced the state of the art in the field with respect to robustness as
well as efficiency.

vi

Acknowledgements

A wise man once told me that pursuing a Ph.D. is not about the title, but
about the journey. He was right. During these years I have learned
a lot and I have grown both professionally and personally, but most
importantly I have met amazing people, without whom this thesis

would probably not exist. First of all, I would like to thank Cyrill Stachniss
for being the best supervisor I could have. He always supported me during my
time in Bonn, he taught me a lot and without him I would have surely quit my
Ph.D. halfway through, out of frustration. Thanks to him, I had the opportunity
to travel around the world, attend amazing conferences, meet the best people in
our field and have tons of fun. I will always be grateful for the huge contribution
he made on my work and my life.

I would also like to thank Philippe Giguère for agreeing to review this thesis.
During his time in our lab we engaged in several fruitful discussions. Our joint
efforts led to a paper submission, which constitutes a significant part of this work.
I hope he enjoyed our collaboration as much as I did, on both a professional and
personal level.

I would like to extend my gratitude to all the people in the lab. They are
not only colleagues, but also friends. I enjoyed the company of Jens Behley,
Igor Bogoslavskyi, Xieyuanli Chen, Nived Chebrolu, Mathias Hans, Thomas
Läbe, Philipp Lottes, Andres Milioto, Lorenzo Nardi, Johannes Schneider, Ig-
nacio Vizzo, Olga Vysotska, and Jan Weyler inside and outside the lab. They
were always helpful and ready to support me whenever I needed it. Also, a very
big thanks to Birgit Klein, for helping me with any bureaucratic matter whenever
I needed it, both related to work or personal. Without her, I would still be stuck
figuring out German bureaucracy.

During my time in Bonn I met several interesting people. Without all of my
friends I would not have been able to enjoy so much these years. They are too
many to list them all, but I would like to particularly thank my best friend Elena
Nardi. She is literally always ready to help me, support me and listen to my
complaints in front of a beer (or many). We had a lot of fun together and I could
not have survived the process of writing this thesis without her. Second, I would
like to thank Gwydyon Marchelli for the several cocktails, dinners, lunches, and

vii

basically my entire social life during my last few months of writing. He is always
extremely supporting about every aspect of my life and ready to cheer me up
with his weird sense of humor.

I would like to spend a few words to thank my friends outside Bonn, who
never let me down despite the distance. Again, they are too many to list them all
here, but I would like to especially thank Stefano Casti, who has been my best
friend since we were 14. He never stopped caring for me, in my best and worst
times and for this I will always be grateful to him. I also want to thank Steve
Heim for always giving me good advice and for the great trips together. I am
sure our friendship will survive no matter where we will end up in the world.

Last, but not least, I would like to thank my family. I have no words to
describe their unconditional love and support, wherever I am in the world and
whatever I do. They have been my first teachers and they always push me to
give my best no matter what I do. Without them, I would not have lived this
amazing life.

To all the people I mentioned here and to all my other friends, you made me
the person I am today and my achievements are also yours. Thank you.

The work presented in this thesis is partially supported by the DFG through
the Mapping on Demand project, grant number FOR 1505: Mapping on Demand
and through German’s Excellence Strategy EXC-2070-390732324: PhenoRob.
The financial support of the DFG is gratefully acknowledged.

viii

Contents

1 Introduction 1
1.1 Mapping the Environment with Robots 1
1.2 Main Contributions . 2
1.3 Publications . 4

2 Basic techniques 5
2.1 Least-Squares . 5

2.1.1 Non-Linear Least-Squares Problem 5
2.1.2 Gauss-Newton Algorithm 6
2.1.3 Levenberg–Marquardt Algorithm 7
2.1.4 Huber Estimator . 7

2.2 Information Theory . 8
2.2.1 Entropy . 8
2.2.2 Information Gain . 9

2.3 RGB-D Sensors . 10
2.4 3D Map Representation . 12

2.4.1 Truncated Sign Distance Function 12
2.4.2 Compressing a Voxel Grid using Octrees 14

I Static Environments 17

3 SLAM with RGB-D Sensors 19
3.1 Efficient RGB-D SLAM . 19

3.1.1 Voxel Hashing for Efficient Storage 20
3.1.2 Pose Estimation . 21
3.1.3 Efficient Implementation on the GPU 24

3.2 Experimental Evaluation . 24
3.2.1 Performance . 25
3.2.2 Memory Consumption . 26
3.2.3 Runtime . 27

3.3 Related Work . 27

ix

Contents

3.4 Conclusion . 29

4 Information-Driven Autonomous Exploration 31
4.1 Autonomous Exploration for MAV 32

4.1.1 Information Gain-Based Exploration 34
4.1.2 Restricting the Possible Viewpoints 35
4.1.3 Measurement Uncertainty 36
4.1.4 Approximating the Information Gain 37
4.1.5 Combining Information from Multiple Measurements . . . 38
4.1.6 Storing Information . 39
4.1.7 Changes in the Direction of Flight 40
4.1.8 Time-Dependent Cost Function 40

4.2 Experimental Evaluation . 41
4.2.1 Experimental Setup . 43
4.2.2 Precision of the Reconstruction 43
4.2.3 Path Smoothness . 45
4.2.4 Path Length . 46
4.2.5 Execution Time . 48
4.2.6 Time-Dependent Cost Function 48
4.2.7 Real World Experiment 49

4.3 Related Work . 50
4.4 Conclusion . 52

II Non-Static Environments 55

5 Change Detection in Non-Static Environments 57
5.1 Image-Based Geometric Change Detection 57

5.1.1 Camera Pose Estimate . 59
5.1.2 Inconsistencies Between Image Pairs 60
5.1.3 Inconsistency Detection using Multiple Images 62
5.1.4 Segmentation and Data Association 64
5.1.5 Estimating the Location of Change 64

5.2 Experimental Evaluation . 66
5.2.1 Qualitative Evaluation . 66
5.2.2 Quantitative Evaluation 67
5.2.3 Execution Time . 70
5.2.4 Comparison to the Approach by Taneja et al. 70

5.3 Related Work . 71
5.4 Conclusion . 74

x

Contents

6 SLAM in Dynamic Environments 75
6.1 ReFusion: 3D Reconstruction in Dynamic Environments 76

6.1.1 Model Representation and Pose Estimation 78
6.1.2 Dynamics Detection . 78
6.1.3 Carving of Model and Free Space Management 80
6.1.4 Handling Invalid Measurements 81

6.2 Depth-Enhanced Neural Network-Based Dynamic Filtering 82
6.3 Experimental Evaluation . 83

6.3.1 Performance on the TUM RGB-D Dataset 84
6.3.2 Performance on the Bonn RGB-D Dynamic Dataset 86
6.3.3 Model Accuracy . 88

6.4 Related Work . 90
6.5 Conclusion . 94

7 Conclusion 95
7.1 Summary of the Key Contributions 95
7.2 Open Source Contributions . 97

xi

Chapter 1

Introduction

1.1 Mapping the Environment with Robots

Building a 3D model of the environment is important for many appli-
cations. It allows for inspecting a building, monitoring a construction
site, planning a patrolling path for automated security robots, etc.
However, the process that leads to such a model is generally relatively

slow and expensive, since it often requires trained personnel operating professional
equipment, such as calibrated cameras or terrestrial laser scanners. Moreover, for
certain applications it is not possible to map the environment using the tradi-
tional techniques. For instance, in a rescue scenario it might be too dangerous to
send trained operators for scanning the environment, although having a 3D model
could greatly help planning the rescue operations. Another example is augmented
reality, which requires the 3D model of the environment for a realistic interaction
between virtual objects and real world. In this case, the user is not trained and
does not have the equipment for building a 3D model beforehand.

With the advent of inexpensive sensors and robotic platforms, an alternative
approach for mapping the environment in 3D is the use of mobile robots. Consider
the already mentioned rescue scenario. A robot could be deployed for exploring
the dangerous environment and identify risks or people in danger before a team
of humans takes action. We distinguish two main challenges for achieving such
a task. First, the robot has to be able to reconstruct in 3D the environment
online, i.e., it has to incrementally update the map as it receives information from
its sensors. Second, the robot must autonomously navigate the environment to
efficiently acquire information from the sensors.

Typically, when solving these challenges, the general assumption is that the
environment is static, i.e., it does not change over time. However, in the real
world, this is usually not the case. Consider for example a city, where old buildings
are continuously demolished and new buildings are erected. The 3D model of

1

1.2. Main Contributions

such cities needs to be constantly updated to reflect the real state of the world.
A different example is a room populated with people. In this case, the people are
not part of the room to be mapped and need to be discarded when building the
model. The two mentioned examples illustrate two different types of non-static
environments. In the first case, the environment changes in the long term, and
such changes need to be integrated in a previously existing model. In contrast, in
the second case, the environment contains dynamic elements during the mapping
process. These elements interfere with the process and must not be included in
the model.

In this thesis, we address the problem of active 3D reconstruction with robots,
and we focus in particular on the four above mentioned problems. Specifically, we
first present a solution for creating a model in real-time using a cheap, consumer
sensor. Second, we address the problem of selecting the best viewpoints in the
environment to maximize the information obtained from the sensors. Third,
we deal with the long term changes of the environment, that should be added
in the model. Finally, we tackle the problem of discarding dynamic elements
that interfere with the mapping process. All the presented algorithms are able to
operate online on a robotic platform, and are tested on real-world data. Moreover,
all the methods presented in this thesis have been published at peer-reviewed
international workshops, conferences, and journals. Furthermore, some of them
have been made available as open source software. Finally, during our work we
recorded new datasets for testing our approaches, which we released publicly and
provided a benchmark for evaluating future work.

This thesis is organized as follows. We first provide, in Chapter 2, the basic
knowledge necessary to better understand the thesis. In Part I, we address the
problem of autonomously reconstructing static environments in 3D using a robot.
In particular, in Chapter 3 we focus on reconstructing dense 3D models using a
consumer RGB-D sensor, while in Chapter 4 we present an exploration algorithm
that selects the best viewpoints to reconstruct the environment. In Part II, we
address the two aforementioned cases of non-static environment. Specifically, in
Chapter 5, we propose an algorithm that detects the changes of the environment
w.r.t. an existing model, in order to update it, while in Chapter 6, we propose a
technique to detect dynamic elements of the environment during the reconstruc-
tion process, with the purpose of filtering them out from the sensor information.

1.2 Main Contributions
In this thesis, we address several challenges that arise when performing au-
tonomous reconstruction with robots. We propose a novel approach for each
of the mentioned problems. The first contribution of this work is a novel ap-

2

Chapter 1. Introduction

proach for simultaneous localization and mapping with an RGB-D sensor. Our
approach allows to incrementally build a dense mesh of the environment, while
it accurately tracks the pose of the sensor. Our technique is based on the work
of Canelhas et al. [16], in combination with voxel hashing [81] to efficiently store
the model of the environment and enable the reconstruction of larger scenes. In
addition, we propose a novel technique to exploit RGB information to make the
algorithm robust in situations where only poor structural information is available.
Finally, our implementation exploits the GPU to achieve real-time performance.
The approach has been tested on a popular benchmark and its performance sur-
passes the state of the art in situations with low structural information. The
method is explained in-depth in Chapter 3.

The second contribution of this thesis is a novel approach for autonomous
exploration, which targets specifically micro aerial vehicles [87]. Our method se-
lects iteratively the next viewpoint that provides the best information gain for
the sensor. The information gain computation is based on the sensor model pro-
posed by Pizzoli et al. [91]. In addition, we take into account the cost of reaching
a new viewpoint in terms of distance and predictability of the flight path for a
human observer. Finally, our approach additionally selects paths that reduce the
risk of crashes when the expected battery life comes to an end, while still maxi-
mizing the information gain in the process. We thoroughly tested our approach
and the experiments show that it offers an improved performance compared to
other state-of-the-art algorithms in terms of precision of the reconstruction, ex-
ecution time, and smoothness of the path. The method is described in-depth in
Chapter 4.

The third contribution of this thesis is a change detection algorithm that
operates on a short sequence of images to detect changes in a 3D model [88]. Our
approach finds inconsistencies between pairs of images by re-projecting an image
onto another one by passing through the given 3D model. This process leads to
ambiguities, which we resolve by combining multiple images such that the 3D
location of the change can be estimated. A focus of our approach is that it can
be executed fast enough to allow the operation on a mobile system. We tested
it on existing datasets as well as on our own image sequences and 3D models,
which we publicly shared. Our experiments show that our method quickly finds
changes in the geometry of a scene. Moreover, we released the implementation of
our approach as open source code. Further details are described in Chapter 5.

The fourth contribution of this thesis is a technique to detect and reject dy-
namic elements in the environment that builds on top of our RGB-D SLAM al-
gorithm [84]. For detecting dynamics, we exploit the residuals obtained after an
initial registration together with the explicit modeling of free space in the model.
We evaluated our approach on existing datasets and provide a new dataset con-

3

1.3. Publications

sisting in highly dynamic scenes. We publicly shared our dataset, together with
the ground truth for both the trajectory of the RGB-D sensor, obtained by a
motion capture system, and the model of the static environment, built using a
high-precision terrestrial laser scanner. Our experiments show that our approach
often surpasses other state-of-the-art dense SLAM methods, in terms of both
tracking accuracy and model accuracy. Moreover, we released the implementa-
tion of our approach as open source code. The method is described in-depth in
Chapter 6.

In sum, this thesis presents four contributions, that target different challenges
in the context of active 3D environment reconstruction for mobile robots. All our
approaches are designed to work online on a robot, and have been tested on real-
world data, showing improved performance compared to the state of the art. In
addition, we publicly released two new datasets and two open-source libraries in
the context of change detection and 3D reconstruction of dynamic environments.

1.3 Publications
Parts of this thesis have been published in the following peer-reviewed workshop,
conference and journal articles:

• E. Palazzolo and C. Stachniss. Change Detection in 3D Models Based on
Camera Images. In 9th Workshop on Planning, Perception and Navigation
for Intelligent Vehicles at the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2017

• E. Palazzolo and C. Stachniss. Information-Driven Autonomous Explo-
ration for a Vision-Based MAV. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W3:59–66, 2017

• E. Palazzolo and C. Stachniss. Effective Exploration for MAVs Based on
the Expected Information Gain. Drones, 2(1), 2018

• E. Palazzolo and C. Stachniss. Fast Image-Based Geometric Change De-
tection Given a 3D Model. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2018

• E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss. ReFusion:
3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploit-
ing Residuals. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2019

4

Chapter 2

Basic techniques

2.1 Least-Squares

To reconstruct in 3D the environment online, and localize the used sen-
sor in the model, we present in this thesis a simultaneous localization
and mapping technique, in Chapter 3 and Chapter 6. Such tech-
niques are often formulated as a minimization problem solved using

the non-linear least-squares method. The least-squares method is an approach
that minimizes the sum of squared errors to approximate the solution of an overde-
termined system. In this section, we provide a short overview of the non-linear
least-squares formulation used in the context of robot mapping and we describe
the most common algorithms to find a solution.

2.1.1 Non-Linear Least-Squares Problem
Given a vector of values x =

[
x⊤
1 , . . . ,x⊤

n

]⊤ and a set of functions fi(x), with
i = 1, . . . ,m, the problem consists in minimizing the cost fuction E(x) defined
as:

E(x) =
m∑
i=1

(fi(x))2, (2.1)

where m ≥ n. In particular, we want to find the value x∗ such that:

x∗ = argmin
x

E(x). (2.2)

In this thesis, fi(x) will always represent errors between estimated values
hi(x) and measured ones zi. We define such error as:

ei(x, zi) = hi(x)− zi, (2.3)

where hi(x) maps the state x to a predicted measurement and is, in general, non-
linear. Therefore, linearizations are needed in practice. From Equation (2.3), we

5

2.1. Least-Squares

define the residuals as the individual squared error terms:

ri = ei(x, zi) = ei(x, zi)
⊤Λiei(x, zi), (2.4)

where Λi is the information matrix, also called weights matrix. Thus, Equa-
tion (2.1) is rewritten as:

E(x) =
m∑
i=1

ei(x, zi). (2.5)

2.1.2 Gauss-Newton Algorithm
The Gauss-Newton algorithm is a numerical approach to solve non-linear least
squares problems. The idea is to approximate the residuals by their Taylor ex-
pansion, in the neighborhood of a linearization point x̆. Therefore, the error in
Equation (2.3) is espressed w.r.t. x̆, plus an update vector ∆x:

ei(x̆ +∆x, zi) ≈ ei(x̆, zi) + Ji∆x = ĕi + Ji∆x, (2.6)

where Ji is the Jacobian:
Ji =

∂ei(x, zi)

∂x

∣∣∣∣
x=x̆

. (2.7)

Given this approximation, we can write the linearized version of Equation (2.5)
as:

E(x̆ +∆x) =
m∑
i=1

ei(x̆ +∆x, zi) (2.8)

=
m∑
i=1

ei(x̆ +∆x, zi)Λiei(x̆ +∆x, zi) (2.9)

≈
m∑
i=1

(ĕi + Ji∆x)⊤Λi(ĕi + Ji∆x) (2.10)

=
m∑
i=1

∆x⊤J⊤
i ΛiJi∆x + 2J⊤

i Λiĕi∆x + ĕ⊤
i Λiĕi (2.11)

=
m∑
i=1

∆x⊤Hi∆x + 2bi∆x + ci (2.12)

= ∆x⊤

(
m∑
i=1

Hi

)
∆x + 2

(
m∑
i=1

bi

)
∆x +

m∑
i=1

ci (2.13)

= ∆x⊤H∆x + 2b∆x + c. (2.14)

Since Equation (2.14) is in quadratic form, we can obtain the increment ∆x∗

that, applied to the current guess, gives a better solution. Specifically, ∆x∗ is
computed by solving the linear system:

H∆x∗ = −b. (2.15)

6

Chapter 2. Basic techniques

Note that, in practice, this system is often solved using sparse Cholesky factoriza-
tion, since H is a symmetric positive semidefinite matrix. In this way, we avoid
the computationally expensive operation of inverting H. The solution is optimal
for the linearized approximation of Equation (2.5). However, since such equation
is non-linear, we need to apply the increment and iterate the procedure until no
substantial improvement is made.

2.1.3 Levenberg–Marquardt Algorithm
The Gauss-Newton algorithm has the problem that the computed increment ∆x∗

can overshoot the optimal estimate, leading to an increase of Equation (2.5), i.e.,
taking it further away from the minimum. The Levenberg-Marquardt algorithm
tries reduce this problem by solving a dampened version of Equation (2.15):

(H + λI)∆x∗ = −b, (2.16)

where I is the identity matrix, and λ is the dampening factor, which is dynamically
updated at every iteration.

2.1.4 Huber Estimator
A common problem of the least squares formulation is the fact that it is sensitive
to outliers. In particular, as Equation (2.5) is quadratic, outliers results in large
residuals and strongly influence the optimization process. Therefore, a possible
solution is to use a robustified version of Equation (2.5):

E(x) =
m∑
i=1

ρ(ei(x, zi)), (2.17)

where ρ(e) is a robust kernel. A common choice of ρ(e) is the Huber kernel [40]:

ρ(e) =

e2 e < k

2k|e| − k2 otherwise
, (2.18)

where k is a small constant. In this way, the error terms close to zero will be
scaled quadratically, while the large values will be scaled linearly.

7

2.2. Information Theory

2.2 Information Theory
The focus of this thesis is the autonomous 3D reconstruction of the environment.
To achieve full autonomy, a fundamental component is the exploration algorithm
described in Chapter 4. This kind of algorithms is based on the information the-
ory [71]. Information theory is the mathematical study of coding of information,
and it is based on several measures that are important in robotics algorithms.
In this section, we summarize the definitions that are useful for understanding
exploration algorithms in robotics.

2.2.1 Entropy

The entropy is the average rate at which information is produced by a stochastic
source of data. Given a random variable X with possible values {x1, . . . , xn}, we
define its entropy H(X) as:

H(X) = −
n∑

i=1

p(xi) ln p(xi), (2.19)

where p(xi) is the probability that X = xi. Given a second random variable Y ,
we can define the amount of information needed to describe the outcome of X,
given that the value of Y is known, as the conditional entropy H(X | Y):

H(X | Y) =
m∑
j=1

p(yj)H(X | Y = yj), (2.20)

where:

H(X | Y = yj) = −
n∑

i=1

p(xi | yj) ln p(xi | yj). (2.21)

The aforementioned definitions assume the random variables taking discrete
values. In case X and Y are continuous random variables, it is necessary to
replace the sum with an integral over all the possible values of X or Y . Thus, we
define the entropy of a continuous random variable X as:

H(X) = −
∫

p(x) ln p(x) dx, (2.22)

and the conditional entropy as:

H(X | Y) =

∫
p(y)H(X | Y = y)dy, (2.23)

with x and y values of X and Y , respectively.

8

Chapter 2. Basic techniques

2.2.2 Information Gain
The most important measure for exploration algorithms is the information gain.
This quantity is the amount of information obtained about one random variable
through observing another random variable. The information gain can be defined
using the entropy and the conditional entropy as:

I(X,Y) = H(X)−H(X | Y). (2.24)

More explicitly, the information gain is defined as:

I(X, Y) =
m∑
j=1

n∑
i=1

p(xi, yj) ln
(

p(xi, yj)

p(xi)p(yj)

)
, (2.25)

or, in the continuous case:

I(X,Y) =

∫∫
p(x, y) ln

(
p(x, y)

p(x)p(y)

)
dx dy. (2.26)

9

2.3. RGB-D Sensors

Figure 2.1: Example of RGB-D sensors. From left to right: Microsoft Kinect, Asus Xtion Pro
Live, Intel RealSense D435. Courtesy of Microsoft, Asus and Intel.

Figure 2.2: Output images of RGB-D sensors. Left: RGB image. Right: Depth image. The
brighter a pixel is, the farther away it is from the sensor.

2.3 RGB-D Sensors
In this thesis, to perform online 3D reconstruction of the environment, we rely
on RGB-D SLAM algorithms, see Chapter 3 and Chapter 6. The input of these
algorithms is not only a sequence of RGB images, but also the 3D position of
each pixel w.r.t. the sensor. This is possible thanks to RGB-D sensors. This
kind of sensor has become very popular in computer vision and robotics since
Microsoft introduced its Kinect in 2010 as an interaction device for the gaming
console Xbox 360. Since then, many cheap RGB-D sensors became available on
the market, either based on structured light or on time of flight [106]. Figure 2.1
shows some examples of RGB-D sensors, such as the Asus Xtion Pro Live or the
Intel RealSense D435.

The output of these sensors is depicted in Figure 2.2. The left image in the
figure is an RGB image, i.e., each pixel stores the color of a point in the real world.
The right image is a depth image, i.e., each pixel stores the Z coordinate of that
point w.r.t. the reference frame of the sensor, conventionally the one shown in
Figure 2.3. Given the depth image, and knowing the intrinsic parameters of the
camera, we can compute, for every pixel p =

[
u v

]⊤
, its 3D position x:

x =

u−cx
fx

D(p)
v−cy
fy

D(p)
D(p)

 , (2.27)

10

Chapter 2. Basic techniques

X

Z

Y
Figure 2.3: Reference frame of an RGB-D sensor. X is pointing right, Y is pointing down and
Z is pointing forward w.r.t. the camera.

where D(p) : R2 → R is a function that maps a pixel to its depth, cx and cy
are the coordinates of the principal point of the camera, fx and fy are the focal
lenghts in terms of pixels of the camera.

11

2.4. 3D Map Representation

Figure 2.4: Left: an example of point cloud. Right: an example of mesh.

2.4 3D Map Representation
For every task this thesis focuses on, it is necessary to store efficiently the 3D
map of the environment. There are different techniques to achieve that, according
to the application. Common representations for 3D models are point clouds,
which are lists of all the points of the model, or polygon meshes, which are
a collection of vertices, edges and faces that describe the shape of the model,
see Figure 2.4 for an example. We use the latter representation in Chapter 5.
However, such representations generally require a large amount of memory for
storage. Moreover, they describe exclusively the shape of the environment, and it
is hard to encode additional information that might be required. Therefore, for
online applications, it is necessary to use a different representation. Specifically,
the 3D space is usually discretized and the map is represented in a 3D grid,
where each cell, or voxel, stores some information about the portion of space that
contains. This information could be for example whether the space is occupied
or not, the average cordinates of the points in that space, etc. In this thesis, we
use such discrete representation in Chapter 3, Chapter 4 and Chapter 6. In this
section, we describe the two techniques that we use to efficiently represent the
map of the environment in this thesis.

2.4.1 Truncated Sign Distance Function
Typical model representations only store information about the free and occu-
pied space. However, knowing the distance from the closest point in space that
is occupied can be useful in many applications, such as localization, mapping,
obstacle avoidance, etc. To this end, it is useful to represent the 3D model using
truncated signed distance function, or TSDF, as originally proposed by Curless
and Levoy [25]. The idea is to represent the world with a 3D voxel grid in which
each voxel contains an SDF value. The SDF is a function VSDF(x) : R3 → R that

12

Chapter 2. Basic techniques

Figure 2.5: A 2D example of TSDF. Darker cells are closer to the surface. Green cells are in
front of the surface. Red cells are behind the surface.

returns, given a point in space, its distance to the nearest surface. This distance
has a positive sign if the point is in front of the surface and a negative sign if the
point is behind it. In this way, the surface is implicitly represented by the set
of points for which VSDF(x) = 0. In practice, the SDF values are truncated to a
given maximum value. This is because the SDF is computed from a sensor with
a projective model, thus the computed distances are more inaccurate the farther
from the surface they are. Moreover, it is impossible to accurately compute the
negative side of the SDF since it is occluded by the surface itself. Voxels with an
SDF outside the truncation region are commonly just set to the maximum value.
Figure 2.5 shows an example of SDF in 2D.

Additionally, each voxel contains a weight w, that represents how reliable
the SDF value is at that location. This leads to an improved robustness to
outliers. The most common weighting functions are uniform weighting and linear
weighting [25], but alternative functions have also been proposed (e.g. exponential
weighting [15]). Thus, the existing model is updated using a running weighted
average:

VSDF(x)t+1 =
VSDF(x)tw(x)t + VSDF(x)w(x)

w(x)t + w(x) , (2.28)

w(x)t+1 = min(w(x)t + w(x), wmax), (2.29)

where wmax is a maximum weight, that increases the robustness to possible chang-
ing elements in the environment.

To enable the direct use of color information in the camera tracking, and to
enable texturing of the mesh, it is possible to store, for each voxel, the color
obtained by projecting it onto the RGB image. The colors are updated among
multiple scan using the same running average as in Equation (2.28):

R(x)t+1 =
R(x)tw(x)t +R(x)w(x)

w(x)t + w(x) , (2.30)

13

2.4. 3D Map Representation

Figure 2.6: Left: an example of octree. Right: space subdivision in octants.

where R(x) represents the red value of the color. The green and blue values G(x)
and B(x) are computed in an identical way.

The TSDF representation is heavily used in dense RGB-D mapping approaches,
such as the ones described in Chapter 3 and Chapter 6. The surface can be ex-
tracted from this representation in a highly parallelizable way using the marching
cubes algorithm [70], usually implemented on the GPU.

2.4.2 Compressing a Voxel Grid using Octrees

In the introduction of Section 2.4, we mentioned how representing the space in a
voxel grid can be useful for online applications. However, representing the grid
as a full, multi-dimensional array of voxels has its limitations. In particular, the
voxel grid has the shape of a rectangular cuboid, and contains a number of voxel
n computed as:

n =
lwh

s
, (2.31)

where l, w and h are, respectively, the length, width and height of the cuboid,
and s is the voxel size, i.e., the length of one side of a voxel. Equation (2.31)
shows that increasing s is the only way of reducing the memory occupied by a
large volume, but that leads to a less detailed model. Moreover, if the mapped
area has not the shape of a cuboid, the voxel grid will contain a large number
of unused voxels. Therefore, for many applications, such as the one described in
Chapter 4, it is necessary to compress the grid.

To this end, one technique that has proved to be very efficient is the use of
octrees [74]. An octree is a tree data structure in which each node has exactly
eight children, as depicted on the left side of Figure 2.6. By using an octree, it is

14

Chapter 2. Basic techniques

Figure 2.7: Coarse to fine visualization of an octree-based model.

possible to partition a 3D space into eight octants. Following this principle, each
node represents a protion of space, and its children represent the eight octants
of that portion, i.e., eight smaller portions of space, see right side of Figure 2.6.
In this way, the model is represented in a coarse-to-fine fashion, in which similar
voxels are compressed in a single node, while volumes containing more details are
represented by a larger number of smaller voxels. Figure 2.7 shows the different
levels of an octree-based model. Each picture shows a deeper level of the octree
compared to the previous one, i.e., in each successive picture the voxels are eight
times smaller.

15

Part I

Static Environments

17

Chapter 3

Simultaneous Localization and
Mapping with RGB-D Sensors

Mapping and localization are essential capabilities of robotic systems
operating in real-world environments. This task is usually solved
online in an alternating fashion, where one determines the pose
w.r.t. the map built so far and then use the estimated pose to

update the map. Sensors that provide dense depth information such as an RGB-
D camera or a stereo camera, enable the creation of a map dense enough to
provide a 3D model of the environment in real time, during the SLAM process.
For such a purpose, a common approach is to represent the environment in the
form of a TSDF. As explained in Section 2.4.1, such representation allows to
efficiently extract a 3D mesh of the environment when needed. In this way, it is
possible to deploy a robot that scans the environment with its sensor and builds,
in real time, the desired 3D reconstruction.

In this chapter, we present an approach for the tracking of an RGB-D sen-
sor, while reconstructing in 3D the environment. In particular, we focus on the
efficiency of the algorithm, both in terms of memory consumption and speed.
Moreover, our technique exploits RGB information to be robust in environments
with low structural information.

3.1 Efficient RGB-D SLAM
The main contribution of this chapter is an efficient SLAM algorithm based on
a TSDF and inspired by the work of Canelhas et al. [16] combined with voxel
hashing [81]. It provides a greatly reduced memory consumption and thus allows
for mapping of larger areas, while being able to maintain real-time performance
by exploiting the GPU. In addition, we integrate color directly into a voxelized
representation of the TSDF allowing us to use color for tracking without an

19

3.1. Efficient RGB-D SLAM

explicit projection or raycasting.
Extensive evaluations on the TUM RGB-D dataset [125] show the versatility

and robustness of our approach reaching in most settings better performance
than the original approach by Canelhas et al. [16]. In addition, we show that our
improvements lead to better results in situations with low geometric detail and
in situations where we want to map larger areas.

In sum, we make three key claims: our RGB-D mapping approach is (i) ro-
bust to scenes that contain low structural information, as long as the texture
information is enough, (ii) able to allocate voxels only when necessary, leading to
a reduced memory consumption, and (iii) able to achieve real-time performance,
i.e., it runs faster than the framerate of an RGB-D sensor, which typically is
30 Hz.

3.1.1 Voxel Hashing for Efficient Storage
Storing the TSDF in a 3D grid as described in Section 2.4.1 is common in RGB-D
mapping approaches. However, to reduce the memory consumption and enable
reconstructions of larger scenes, we do not store the SDF in a real grid. Instead,
we only allocate the voxels within the truncation region, i.e., around obstacles,
and index them using a spatial hashing function, in a similar way as the one
proposed by Nießner et al. [81].

The idea is to represent the world sparsely by only allocating small blocks of
voxels (in our implementation 8 × 8 × 8 voxels) inside the truncation region of
the TSDF. These blocks are serially stored in an array and indexed using a hash
table. Each entry of the hash table stores the pointer to the voxel block array
and the 3D location of the block. To deal with collisions of the hash function,
the hash entries are organized into buckets, hence the need of the 3D location
of the block stored into the entry. To access a voxel block, we first compute the
hash function to identify the location of the bucket containing the block. For this
purpose we use the commonly used hash function (e.g., [132], [81], [59]):

h(x, y, z) = (p1x⊕ p2y ⊕ p3z) mod M, (3.1)

where p1 = 73856093, p2 = 19349669, p3 = 83492791, M is the number of buckets,
⊕ is the logical XOR operator, and mod is the modulo operator.

Using the result of Equation (3.1), we access a bucket of entries and check
for each entry in the bucket if the 3D location of the block corresponds to the
desired one. Once we locate such entry, we access the voxel block in the array,
using the stored pointer. Figure 3.1 illustrates the described data structure.

In our implementation, we fuse an RGB-D scan given its pose by first allo-
cating all the voxel blocks within the camera frustum and the truncation region,

20

Chapter 3. SLAM with RGB-D Sensors

Voxel

Blocks

Hash

Table

Bucket

3
D

 S
tr

u
ct

u
re

Storage in Memory

Figure 3.1: Example of how the data structure used for voxel hashing works. Instead of storing
a full grid, we only store voxel blocks that are addressed by a hash table.

identified by performing a ray casting from the camera pose. Then, for each al-
located voxel inside the camera frustum, we project its center onto the RGB and
depth images and update respectively its color and its SDF value as described in
Section 2.4.1.

3.1.2 Pose Estimation
For estimating the pose of the sensor, we use a point-to-implicit approach such
as the ones by Canelhas et al. [16] and Bylow et al. [15]. In contrast to KinectFu-
sion [79] and similar methods, our approach does not generate synthetic images
from the model. Instead, we use an alternative technique and directly align a
point cloud to the SDF. The reason for that is that the SDF provides by defini-
tion the distance of a point to the closest surface, i.e., it is possible to use the
SDF value directly as an error function, as we explain in the rest of this sec-
tion. In addition to the existing point-to-implicit techniques, we exploit the color
information contained in the model to improve the alignment.

Each frame of an RGB-D sensor consists into a depth image and a color
image. Given a pixel p =

[
u v

]⊤
, we define the functions D(p) : R2 → R and

I(p) : R2 → R, which map a pixel respectively to its depth and its intensity. We
denote with x the 3D point resulting from the back-projection of a pixel p, as
explained in Section 2.3

We represent a camera pose as a 3D transformation T ∈ SE(3). A small rigid-
body motion can be written in minimal form using the Lie algebra representation:

ξ =
[
∆α ∆β ∆γ ∆x ∆y ∆z

]⊤
. (3.2)

The vector ξ ∈ se3 can be converted into the corresponding Lie group SE(3) by

21

3.1. Efficient RGB-D SLAM

computing T′ = exp(ξ̂), where:

ξ̂ =

0 −∆γ ∆β ∆x

∆γ 0 −∆α ∆y

−∆β ∆α 0 ∆z

0 0 0 0

 . (3.3)

To represent the current model, we use a voxel-based representation where we
store, in each voxel, TSDF and color information. We define the functions VSDF(x)
and VI(x), that return respectively the SDF and the intensity at position x. As
our representation is a discrete space, we obtain the SDF and intensity values at
non-integer positions using trilinear interpolation.

Similarly to Canelhas et al. [16] and Bylow et al. [15], we directly exploit the
SDF to define the error function, as such function directly represents the distance
of a point from the surface. Thus, we define the error function relative to the
depth as:

Ed(ξ) =
N∑
i

∥∥∥VSDF(exp(ξ̂)Txi)
∥∥∥2︸ ︷︷ ︸

ri

, (3.4)

where N is the number of pixels in the image, and xi, i ∈ 0 . . . N is the 3D point
corresponding to the i-th pixel, computed using Equation (2.27). The value ri
corresponds to the residual for the i-th pixel.

We additionally exploit the color information to improve the alignment. In
contrast to most of the state-of-the-art approaches (e.g., [140, 136]), we do not
create an artificial image from the model. Instead, we directly operate on the
color information stored in the voxels. As we store in each voxel the color of the
closest point of the surface, we define the error function relative to the color as
the photometric error between the intensity of the pixels of the current image,
and the intensity of the corresponding voxels in the model:

Ec(ξ) =
N∑
i

||VI(exp(ξ̂)Txi)− I(pi)||2, (3.5)

the joint error function is given by:

E(ξ) = Ed(ξ) + wcEc(ξ), (3.6)

with wc weighting the contribution of the intensity information w.r.t. the depth
information.

The goal is to find the camera motion ξ∗ that minimizes the error function:

ξ∗ = argmin
ξ

E(ξ). (3.7)

22

Chapter 3. SLAM with RGB-D Sensors

We solve this equation by using the least-squares approximation. We linearize
the objective function with a first order Taylor approximation and rewrite the
problem in a quadratic form. To do that, we need to compute the Jacobians Jd,i

and Jc,i relative to the SDF and the color of point xi. The Jacobian relative to
the SDF is:

Jd,i =
∂VSDF(exp(ξ̂)Txi)

∂ξ
, (3.8)

and using the chain rule, we obtain:

Jd,i =
∂VSDF(exp(ξ̂)Txi)

∂ exp(ξ̂)Txi

∂ exp(ξ̂)Txi

∂ξ
. (3.9)

The first term of Equation (3.9) is computed numerically from the voxelized model
by evaluating the gradient in each of the three directions, with sub-voxel precision
using trilinear interpolation. The second term of Equation (3.9) is computed by:

∂ exp(ξ̂)Txi

∂ξ
=

 0 zi −yi 1 0 0

−zi 0 xi 0 1 0

yi −xi 0 0 0 1

 . (3.10)

We compute Jc,i in an analogous way. Having computed the Jacobians, we write
the matrix H and the vector b as:

H = Hd + wcHc, (3.11)
b = bd + wcbc, (3.12)

with:

Hd =
N∑
i

J⊤
d,iJd,i, (3.13)

Hc =
N∑
i

J⊤
c,iJc,i, (3.14)

bd =
N∑
i

Jd,iVSDF(exp(ξ̂)Txi), (3.15)

bc =
N∑
i

Jc,i(VI(exp(ξ̂)Txi)− I(pi)). (3.16)

Note that for computing Hd and bd, we use a Huber estimator to increase the
robustness w.r.t. gross errors [16]. Finally, we can compute the increment using
Levenberg-Marquardt as:

ξ∗ = −(H + λI)−1b, (3.17)

23

3.2. Experimental Evaluation

where I is the identity matrix and λ a regularization term. The new increment is
applied to the current transformation and the whole process is iteratively repeated
for a given number of iterations or until the norm of the difference between the
current increment and the previous one is below a given treshold. As it is typical
for this type of approaches, we perform the optimization on three different coarse-
to-fine sub-sampling of the input images. Furthermore, we linearly increase λ with
the number of iterations, in order to increasingly dampen the increment, the more
the solution get close to optimal [16].

3.1.3 Efficient Implementation on the GPU

A focus of our approach is its real-time performance, i.e., the registration and
integration of new scans must be faster than the framerate of the sensor, which
is typically 30 Hz. To achieve the required performance, we implemented most of
the algorithm on the GPU, using the CUDA API by NVIDIA. In particular, the
scan fusion algorithm described in Section 3.1.1 consists in two steps, both highly
parallelizable. In the first step, we allocate the necessary voxel blocks using ray
casting. We project a ray for each pixel of the depth image. Since each pixel is
independent from the others, we compute each ray on a different thread on the
GPU. The second step is the update of the model. To this end we consider each
allocated voxel in the camera frustum using a different thread and update them
simultaneously.

The second main block of our approach is the pose registration, see Sec-
tion 3.1.2. In our implementation, we process every pixel of a new RGB-D image
concurrently. For each pixel, we compute the terms of the Jacobians and the
relative terms of Equation (3.13) to Equation (3.16) on a different thread on the
GPU, summing them together using atomic operations. In our experience, this
results more efficient than performing a parallel reduction. We then evaluate
Equation (3.17) on the CPU using Cholesky decomposition.

3.2 Experimental Evaluation
The focus of this chapter is a real-time capable TSDF-based mapping approach
that is able to operate in environments with little structural information. Our
experiments are designed to show the capabilities of our method and to support
our key claims, which are: our approach (i) is robust to scenes that contain
low 3D structural information, as long as there is texture information available,
(ii) is able to allocate voxels only when necessary, leading to a reduced memory
consumption, and (iii) is able to achieve real-time performance, i.e., it runs faster
than the framerate of an RGB-D camera, which is typically 30 Hz.

24

Chapter 3. SLAM with RGB-D Sensors

Table 3.1: Parameters of our approach in all experiments.

Parameter Value

Voxel size 0.01m
Truncation distance τ 0.1m
Huber constant 0.02

Initial regularization parameter λ 0.002

Weight wc 0.1

Table 3.2: Absolute Trajectory Error (RMS) [m] on different scenes of TUM dataset. The values
illustrate the RMS absolute distance between the estimated and the ground truth trajectory.

Dataset Ours SDFT [16] EF [140] EF⋆ [140] MPR [28]

fr1/xyz 0.028 0.020 0.013 0.013 0.128
fr1/desk 0.097 0.082 0.032 0.030 0.106
fr1/floor 0.501 0.675 0.484 0.469 0.805
fr3/nst_far 0.040 1.317 0.284 0.284 0.894
fr3/nst_near 0.076 1.968 0.024 0.027 1.925
fr3/nst_loh 0.152 1.528 0.034 0.045 0.445

Max 0.501 1.968 0.484 0.469 1.925

We evaluate our approach on the TUM RGB-D dataset [125] and compare it
with four other state-of-the-art methods, i.e., SDF Tracker (SDFT) [16], Elastic-
Fusion (EF) [140], and multi-cue photometric point cloud registration (MPR) [28].
In particular we use the open-source implementations of ElasticFusion and MPR,
and the code provided by the author of SDF Tracker. We denote with EF⋆

the results of ElasticFusion without loop closures, since no other method in our
evaluation closes loops. We run every approach with the respective default pa-
rameters provided by the authors. For our approach, we used the parameters
listed in Table 3.1.

3.2.1 Performance
The first experiment is designed to show the performance of our approach and
to support the claim that it is well suited for scenes that contain low structural
geometric information, but texture.

Table 3.2 and Table 3.3 show the absolute trajectory error and the relative pose
error for some scenes of the TUM dataset, respectively. The absolute trajectory
error values illustrate the RMS absolute distance between the estimated and
the ground truth trajectory, while the relative pose error values illustrate the

25

3.2. Experimental Evaluation

Table 3.3: Relative Pose Error (RMS) on different scenes of TUM dataset. The values illustrate
the RMS drift of the trajectory over one second.

Dataset Ours SDFT [16] EF [140] EF⋆ [140] MPR [28]

fr1/xyz [m/s] 0.024 0.026 0.018 0.018 0.041
[deg/s] 1.092 1.538 0.932 0.932 2.351

fr1/desk [m/s] 0.059 0.064 0.043 0.040 0.061
[deg/s] 2.200 4.044 3.171 2.769 3.333

fr1/floor [m/s] 0.189 0.241 0.217 0.170 0.282
[deg/s] 7.827 9.512 10.830 6.708 10.020

fr3/nst_far [m/s] 0.044 0.299 0.300 0.300 0.249
[deg/s] 1.209 2.552 8.538 8.538 2.746

fr3/nst_near [m/s] 0.022 0.253 0.015 0.013 0.250
[deg/s] 1.250 7.587 0.758 0.737 7.634

fr3/loh [m/s] 0.027 0.737 0.014 0.012 0.026
[deg/s] 1.428 24.56 0.689 0.591 1.276

Max [m/s] 0.189 0.737 0.300 0.300 0.282
[deg/s] 7.827 24.56 10.830 8.538 10.020

RMS drift of the trajectory over one second. In scenes containing structural
information, i.e., fr1/xyz and fr1/desk, our approach is on par with SDF tracker.
On the more challenging fr1/floor dataset, which contains few geometric cues and
scarce texture information, our approach outperforms SDF Tracker and is on par
with EF, which also exploits color information to track the sensor. In scenes where
structural information is mostly absent our approach is substantially better than
SDF Tracker. In particular, on the fr3/nostructure_texture_far (fr3/nst_far)
dataset, ElasticFusion also fails, while our approach is able to correctly track
the camera and reconstruct the environment. On the fr3/long_office_household
(fr3/loh) dataset, SDF Tracker fails due to the size of the mapped area, but
our approach is able to extend the reconstructed volume as needed by allocating
voxel blocks. Finally, the worst performance of our approach is on par with
ElasticFusion in terms of absolute trajectory error, and the best in terms of
relative pose error, meaning that our approach is robust to failure.

3.2.2 Memory Consumption

The second experiment is to support the claim that our approach is able to
allocate voxels only when necessary thanks to the voxel hashing, i.e, our approach

26

Chapter 3. SLAM with RGB-D Sensors

fr1/xyz fr1/desk fr1/floor fr3/nst far fr3/nst near fr3/loh

Scene

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r

of
V

ox
el

s

×108 Number of voxels per scene

Voxel Hashing
Full Grid

Figure 3.2: Number of voxels allocated to map different scenes using voxel hashing and using
a full voxel grid.

requires less memory to map a scene when compared to approaches that use a full
voxel grid. Figure 3.2 shows the number of allocated voxels using our approach
vs. the number of voxels that would be necessary to allocate using a full voxel
grid (without hashing). To compute the number of voxels in the full grid, we
first mapped the scene with our approach and then computed the extent of the
model along the three axes. From Figure 3.2 it is evident how the use of voxel
hashing leads to a significantly smaller memory consumption and thus enable the
exploration of larger areas.

3.2.3 Runtime
The last experiment shows that our approach runs fast enough to support online
processing of RGB-D data in real-time. We tested our approach on a desktop
computer equipped with an Intel Core i7 CPU and an Nvidia GeForce GTX 1080
Ti GPU. Our implementation runs at 46.8 Hz on average on RGB-D images of
resolution 320×240. We also tested our approach using VGA resolution images
(640×480) and we achieve 22 Hz on average.

3.3 Related Work
With the advent of cheap RGB-D cameras, many approaches for localization and
mapping using such sensors were proposed [147]. One classic technique to regis-
ter point clouds resulting from RGB-D scans is the Iterative Closest Point (ICP)
algorithm [11]. More recently Steinbrücker et al. [120] proposed an energy mini-
mization algorithm that is two order of magnitude faster than ICP. An alternative
approach was proposed by Kerl et al. [63]. Their Dense Visual Odometry (DVO)
approach registers two consecutive RGB-D frames directly upon each other by
minimizing the photometric error. It runs in real-time on a single CPU core
and has a small, constant memory footprint. Della Corte et al. [28] generalized

27

3.3. Related Work

this approach by introducing support for multiple cues such as depth, color and
normal information in a unified way.

A technique that recently became very popular is to represent the map in
the form of Truncated Sign Distance Function (TSDF), see Section 2.4.1. The
seminal paper of Newcombe et al. [79] (KinectFusion) showed the prospects of
TSDF-based RGB-D mapping by generating accurate, high detailed maps using
only depth information and paved the way for several improvements increasing the
versatility and fidelity of RGB-D mapping. Such approach was then extended [56]
to be robust to dynamics by using outliers from the registration step to segment
out dynamic elements and reconstruct them with a second GPU.

To increase the space that can be mapped, different options were investi-
gated. Whelan et al. [139] proposed Kintinuous, an extension of KinectFusion
that support large-scale by maintaining the TSDF representation for the cur-
rently mapped region and saving the rest of the map as triangular mesh. Chen
et al. [20], instead, support large-scale by representing the grid using a hierar-
chical data structure. Steinbrücker et al. [119, 121] use an octree instead of a
voxel grid, whereas Nießner et al. [81] propose to use voxel blocks that can be
addressed via a hashing function and these blocks only need to be allocated close
to the mapped surface. Thus, it is possible to cover a large area with only few
voxels. Kähler et al. [60] extend this idea by using a hierarchy of voxel blocks
with different resolutions.

Another popular extension of TSDF-based techniques is the use of additional
global optimization methods to improve the mapping. Zhou and Koltun [144] em-
ploy a typical TSDF frame-to-model registration combined with an offline global
graph-based optimization. In addition, they preserve geometric detail of detected
densely scanned points of interest in the scene. In a follow-up work [145], they
perform frame-to-model registration for small fragments of frames, followed by an
offline global non-rigid optimization that allows fragments to deform. In another
follow-up work [22] they use a line processes-based offline global optimization to
resolve inconsistencies in the model. A more recent approach by Dai et al. [27]
is BundleFusion. It is a TSDF-based method with voxel hashing for storing the
map, but in addition they perform online bundle adjustment in a hierarchical
way, i.e., first in a chunk of consecutive frames, then between chunks. Millane
et al. [76] also use online bundle adjustment, but they represent the map with
overlapping TSDF subvolumes localized through feature-based camera tracking.
These subvolumes are periodically fused together.

To alleviate the need for raycasting for generating the model image for regis-
tration, Canelhas et al. [16] and Bylow et al. [15] proposed to directly exploit the
TSDF for evaluation of the residuals and computation of the jacobians within
the error minimization. Slavcheva et al. [116], instead, directly minimize the dif-

28

Chapter 3. SLAM with RGB-D Sensors

ference between pairs of SDFs, together with global pose optimization and the
inclusion of surface normal information. In a follow-up work [115, 117], they en-
able larger-scale reconstruction by performing the registration over multiple SDF
volumes anchored at informative, geometry-rich locations. Finally, a noteworthy
approach is the one by McCormac et al. [73]. They store per-object TSDFs and
perform object-level SLAM by constructing a graph map of reconstructed objects.

Besides using a TSDF, other approaches use other map representations. One
example is the use of surfels, which are disks with a normal and a radius. Keller
et al. [62] use surfels to represent the model of the environment and Whelan
et al. [140] extend the approach with a deformation graph enabling loop closures.

Most RGB-D approaches use only the depth for mapping and color for visu-
alization, but some [6, 119, 140, 136] also exploit color for estimating the pose
of the sensor. Especially in situations with only little geometric information, like
flat walls, texture can help to find a correct pose. Our approach uses the direct
TSDF evaluation proposed by Canelhas et al. [16] and Bylow et al. [15]. In ad-
dition, we store the model using voxel hashing [81] to substantially reduce the
memory consumption and we add the integration of color to enable mapping of
areas where depth information is ambiguous.

3.4 Conclusion
In this chapter, we presented a TSDF-based mapping approach able to track the
pose of the sensor even in environments with only few structural cues. Our ap-
proach tracks the sensor by exploiting directly the TSDF information and the
color information encoded in voxels. The TSDF is represented using voxel hash-
ing, in such a way that voxel blocks are only allocated when needed. Furthermore,
most computations are parallelized on a GPU, to enable real-time performance.
We evaluated our approach on the popular TUM RGB-D dataset and provided
comparisons to other state-of-the-art techniques. Our experiments show that our
approach leads to an improved pose estimation in situations with low structural
information.

29

Chapter 4

Information-Driven Autonomous
Exploration

The 3D reconstruction approach described in Chapter 3 allows a robot or
a human carrying a sensor to easily model the environment by acquir-
ing scans from different points of view. The natural following step is to
enable a robot to perform the modeling autonomously, with minimal

or no human supervision. When performing autonomous 3D reconstruction, the
exploration strategy determines the efficiency with which an accurate 3D model
of the environment can be obtained. The problem of exploration consists of se-
lecting the best viewpoints to cover the environment with the available sensors
to obtain an accurate 3D model. When no a priori information about the envi-
ronment is available, a popular approach to this problem is the iterative selection
of the next-best-view. This approach consists in selecting online the next pose
for the sensor that best satisfies certain criteria, usually related to the amount of
information acquired by the new observations and the cost of actually executing
the next action. Since no information about the environment is initially available,
this kind of approach works in a greedy fashion, i.e., it is executed online during
the mission and considers, at each iteration, the new measurements acquired by
the sensor to plan the next pose. Therefore, the algorithm needs to store the in-
formation coming from the measurements, as well as which portion of the space
has already been explored. Usually, this information is stored in a voxel grid,
that is used as a map and is updated whenever a new measurement is available.
Each voxel contains all the data needed for computing the next-best-view and
has three possible states: unknown, free or occupied.

Due to their ability to move freely in all the three dimensions, micro aerial
vehicles (MAVs) offer superior mapping capabilities compared to ground vehicles.
Specifically, their small size and low weight allow for a high degree of mobility
even in challenging environments. However, the use of MAVs introduces sev-

31

4.1. Autonomous Exploration for MAV

(a) (b)

Figure 4.1: Given a scene containing an object of interest (on the left), our algorithm computes
the best viewpoints to efficiently map the environment (on the right).

eral challenges that an efficient 3D mapping pipeline must address. The main
issue is the reduced payload that this kind of vehicle can carry. This restricts
the available sensors mostly to cameras, instead of typically heavier 3D laser
scanners. Moreover, the typical flight time of MAVs is limited and, when flying
autonomously, the robot has to land safely when the battery life comes to an
end. Finally, for outdoor flights, most countries require either manual piloting or
a continuous supervision of the MAV by a human operator. In case of autonomous
flight monitored by a human, the trajectory of the robot must be predictable and
legible [32]. From our experience, an operator can more easily predict the MAV’s
trajectory if it is free of abrupt changes of direction and thus we prefer explo-
ration paths of such type. In this chapter, we present an autonomous exploration
approach for MAVs that takes the above mentioned objectives into account and
outputs, during the mission, the next pose to which the robot has to move. It
was developed in the context of the DFG research unit Mapping on Demand.

4.1 Autonomous Exploration for MAV

The main contribution of this chapter is an exploration approach that selects
in real-time the next-best-view that maximizes the expected information gain of
new measurements. In addition, we take into account the cost of reaching a new
viewpoint in terms of distance and predictability of the flight path for a human
observer. Finally, our approach selects a path that aims to reduce the impact of
crashes when the expected battery life comes to an end, while still maximizing
the information gain in the process.

We assume the environment to be unknown, but we limit the space of the
mission to given boundaries, in the form of a bounding box. We also assume

32

Chapter 4. Information-Driven Autonomous Exploration

to have in real-time 3D measurements from the sensor, e.g., in the form of a
pointcloud or a range image, dense enough w.r.t. the resolution of the voxel
map. This data can come for example from a stereo camera, or from multiple
observations by a monocular camera. Instead of constraining our approach to a
specific sensor, we take into account directly the 3D data, which can come from
any existing algorithm or sensor. Moreover, our approach requires the pose of the
vehicle to be known. In our implementation, we obtain such information from a
VO/IMU/DGPS combination as described in [108], but any other online SLAM
system could be used.

Given a bounding box that contains the object of interest, for example a
building that should be explored, such as the one in Figure 4.1a, our approach
greedily selects, in real time, the next best viewpoint that maximizes a utility
function that focuses on:

• reducing the uncertainty in the 3D model,

• producing a flight path with a small number of abrupt turns,

• producing a progressively safer path the longer the MAV is flying to avoid
crashes, and

• allowing a safe landing at the starting point within a user-specified time
constraint.

We constrain the motion of the MAV on a hull that initially surrounds the
given bounding box and then is iteratively refined to always fit the known map at
that given point in time. On this hull, we sample the candidate next-best-views
and compute an approximation of the expected uncertainty reduction by taking
into account the properties of the camera used for reconstruction. Moreover,
we take into account a cost function that prevents the MAV to perform abrupt
turns, to help a human operator to better supervise the mission. Additionally,
the cost function has a time-dependent component that prevents the MAV from
flying above obstacles, reduces progressively its altitude and pushes it towards its
starting point, allowing a safe landing within a specified time limit. Figure 4.1b
shows an example of a path computed by our algorithm, together with the map
acquired during the exploration.

We implemented our approach in C++ using ROS and tested it in simulation
as well as in a real indoor environment, along with other state-of-the-art algo-
rithms. We claim that our approach (i) yields a map with a low uncertainty in
the probabilistic model, (ii) avoids abrupt changes of direction during the flight,
(iii) does not generate a longer path by taking into account the aforementioned as-
pects, and (iv) is able to compute the next-best-view online and in real-time. Our

33

4.1. Autonomous Exploration for MAV

experimental evaluation backs up these claims and shows that our approach leads
to better results compared to some of the current state-of-the-art algorithms.

4.1.1 Information Gain-Based Exploration
Information gain-based exploration is a frequently used approach for exploration.
By moving to the unknown space and making observations, the robot acquires
a certain amount of new information with its sensors until the whole space is
explored and no further significant amount of new information can be obtained.
More precisely, information gain-based exploration seeks to select viewpoints re-
sulting in observations that minimize the expected uncertainty of the robot’s
belief about the state of the world. In this chapter, we focus on autonomous
exploration with a MAV with the goal of obtaining an accurate model of the
scene. Since the problem of finding the optimal sequence of viewpoints for a
complete exploration is NP-complete, it is hard to compute the optimal solution
for an exploring MAV online. In order to apply the exploration approach with
the available computational resources, we have to make approximations. In this
section, we describe the information gain-based approach. In the following sec-
tions, we focus on the specific approximations and implementation details of our
algorithm.

We describe the uncertainty in the belief of the state of the world through the
entropy H(S):

H(S) = −
∫

p(s) ln p(s) ds, (4.1)

where S is the state of the world, and s is a possible configuration of the state
of the world. Using Equation (4.1), we compute the expected information gain I

to estimate the amount of new information obtained by taking a measurement Z
while following the path P:

I(S,ZP) = H(S)−H(S | ZP), (4.2)

where P is a collision-free path from the current position to the viewpoint P.
Note that P can be a simple straight line if there are no obstacles along it, or
can be computed by a fast, low level path planner such as [82]. The second term
of Equation (4.2) is the conditional entropy, defined as:

H(S | ZP) =

∫
p(z | P)H(S | ZP = z) dz, (4.3)

where z is an observation potentially obtained along the path P .
Unfortunately, reasoning about all the potential observations is intractable in

nearly all real world applications. Specifically, to obtain the optimal solution it is

34

Chapter 4. Information-Driven Autonomous Exploration

(a) (b)

Figure 4.2: (a) The movements of the MAV are constrained to a hull (red dotted line) that
is initially built around the user-specified bounding box (blue area delimited by dashed green
border). (b) The hull is then adapted according to the new explored (yellow squares) and
unknown (gray squares) voxels.

necessary to take into account in advance all the possible sequences of viewpoints,
which grows exponentially with the dimension of the measurement space and the
number of measurements to be taken. To solve this problem, we approximate
the conditional entropy so that it is efficient to compute and we perform the
exploration in a greedy fashion by iteratively select only the next best viewpoint.

Additionally, in practice the action of actually recording a measurement has
a cost, e.g., the distance that the robot has to travel or the time it takes to reach
the new pose from its current one. Therefore, we aim at maximizing the expected
information gain I while minimizing the cost of acquiring the new measurement
and define to this purpose a utility function U as:

U(P) = I(S, ZP)− cost(P), (4.4)

so that selecting the next viewpoint turns into solving:

P∗ = argmax
P

U(P). (4.5)

4.1.2 Restricting the Possible Viewpoints
As explained in Section 4.1.1, we require several approximations to achieve online
computation. One of the most important issue to address is the selection of a set
of next viewpoint candidates. In principle, this set contains the infinite possible
poses that a sensor mounted on a MAV can assume in an infinite 3D world.

As a first step, we delimit the space to explore to lie inside a user-specified
bounding box, which can for example surround a building or an object. We define
a hull that initially surrounds the bounding box (see Figure 4.2a) and we constrain
the motion of the MAV to the hull. Whenever the robot has to select a new
viewpoint, we dynamically adapt the hull to fit the explored building or object
according to the map built so far (see Figure 4.2b). Additionally, we constrain
the orientation of the MAV such that the sensor, which has typically a fixed

35

4.1. Autonomous Exploration for MAV

bα
β

+

d

a

x

x+

β

γ

Ii Ij

P Pji

Figure 4.3: The measurement uncertainty of a depth point from two images can be computed
through x and x+ as elaborated in the REMODE approach [91] for 3D reconstruction from
monocular images.

vertical orientation, is always pointing towards the vertical axis passing through
the centroid of the bounding box. In this way, we obtain a two-dimensional
manifold on which each point is directly mapped to a six-dimensional pose. To
compute the set of candidate viewpoints, we sample uniformly a fixed amount
of points on the manifold (100 in our experiments, see Section 4.2) every time a
new viewpoint needs to be selected. These approximations considerably speed up
the computation, but introduce some limitations. In particular, the constrained
orientation might lead to a suboptimal exploration in case of stuctures with a
particular shape, e.g., an L-shaped building with the concave corner facing towads
the centroid of the bounding box and at an excessive distance from it. In this
case, alternative solutions can be adopted, but it is important to consider the
impact of them on the computational demands.

4.1.3 Measurement Uncertainty

We compute the measurement uncertainty of the sensor as the uncertainty of
the depth obtained from two images, using the formulation proposed by Pizzoli
et al. in their dense reconstruction approach [91].

Given a pair of images Ii and Ij, we compute the variance in the depth estimate
of a 3D point x as

σ2
j =

(∥∥x+
∥∥− ∥x∥

)2
, (4.6)

where x+ is obtained by back-projecting the uncertainty of measuring the point
x in the image plane from image Ij. Figure 4.3 shows an illustration of the
estimation.

We then compute the norm of x+ from the two angles β+ and γ and the base
vector b, see Figure 4.3. To compute these angles, we first need to define the

36

Chapter 4. Information-Driven Autonomous Exploration

direction d of the 3D point from Ii, which is defined as

d =
x
∥x∥ (4.7)

and can directly be obtained given a calibrated camera. The vector a from the
second projection center to the 3D point is a = x− b, exploiting the base vector
b between both camera. This allow us to define the angle α between the base
vector b and the direction d as

α = arccos
(

d · b
∥b∥

)
, (4.8)

as well as the angle β between the base vector b and a:

β = arccos
(
− a · b

∥a∥ · ∥b∥

)
. (4.9)

Under the assumption that we can localize a point in an image with a standard
deviation of σimg, we define the angle β+, which is defined through β plus the un-
certainty of localizing the point in the image mapped into the space of directions:

β+ = β + 2 arctan
(
σimg

2f

)
, (4.10)

where f is the focal length of the camera. Typical feature points can be computed
with an uncertainty σimg of 0.3 px to 1 px. In our current implementation, we use
a constant uncertainty of 1 px.

As three angles within a triangle need to sum to π, we can compute the third
angle γ

γ = π − α− β+, (4.11)

and finally ∥x+∥, which in turn is used to compute σ2
j according to Equation (4.6):

∥∥x+
∥∥ = ∥b∥ sin β+

sin γ
. (4.12)

In practice, we need two views of a 3D point in order to obtain a Gaussian
estimate. The uncertainty of the resulting Gaussian, directly depends on the
angle γ. The closer γ approaches 90◦, the larger the uncertainty reduction.

4.1.4 Approximating the Information Gain
The main goal of our approach is to find the viewpoint that best reduces the
uncertainty in the belief about all the points. This uncertainty reduction is given
through the expected change in entropy of this belief. Thus, the mutual infor-
mation for a Gaussian point estimate turns into

I(Sj, Z
k) =

1

2
ln
(
σ2
x,k + σ2

x,j

σ2
x,k

)
, (4.13)

37

4.1. Autonomous Exploration for MAV

I
I I

i

j
k

P
P Pkj

i

x

x+

Figure 4.4: Illustration of the reduction of the uncertainty in the estimate about the 3D point
location given a third image. The figure depicts the distributions of the uncertanty of the depth
of a point estimated using a single image (yellow), two images (cyan) and three images (green).

where Zk refer to the observations obtained at the camera location Pk, while σ2
x,j

and σ2
x,k, computed using Equation (4.6), are respectively the current uncertainty

of point x from view Ij and the estimated uncertainty of the same point from
view Ik.

As a result of the Equation (4.13), the expected uncertainty reduction that
results from a new image depends on the current uncertainty of the point esti-
mate and on the measurement uncertainty, which itself depends on the geometric
configuration of the new viewpoint with respect to the previous viewpoints.

4.1.5 Combining Information from Multiple Measurements
Starting from the formulation of the measurement uncertainty between two im-
ages, we can extend it to multiple images. Intuitively, the more views we add, the
smaller the uncertainty becomes, i.e., any new observation of the point reduces
its uncertainty, which is the main goal of our exploration strategy. Figure 4.4
shows how adding a third image reduces the uncertainty of the measured depth
of a 3D point. If the point is seen by a single view of a monocular camera, we can
compute the direction of the point, but not its depth. Therefore, the uncertainty
is represented by a uniform distribution, shown in yellow in Figure 4.4. After the
second view is obtained, the uncertainty of the depth is normally distributed and
can be obtained as explained in Section 4.1.3, see the cyan-colored distribution
in Figure 4.4. From the third view on, the uncertainty is further reduced, see the
dark green Gaussian in Figure 4.4 for an example.

As the correlation between the measurements is unknown, to combine the
information from a new image with all the previous ones and compute the total

38

Chapter 4. Information-Driven Autonomous Exploration

uncertainty, we use the covariance intersection algorithm. Given two distributions
of means µ1, µ2 and covariance matrices Σ1,Σ2, it is possible to combine them
in a third distribution of mean µ3 and covariance matrix Σ3, computed as

Σ3 =

(
ω(Σ1)

−1 + (1− ω)(Σ2)
−1

)−1

(4.14)

µ3 = Σ3

(
(Σ1)

−1µ1 + (Σ2)
−1µ2

)
, (4.15)

where ω is a weighting parameter obtained typically by minimizing the deter-
minant or the trace of Σ3. To compute ω, we adopt the closed-form solution
proposed by Reinhardt et al. [98]. We approximate the distribution resulting
from two images to be univariate, assuming the uncertainty only in the depth
of the point seen from the first image, which in turn is assumed without uncer-
tainty. Note that, to reduce the computational load, we compute the covariance
intersection only between each new view and the first 10 from which the point
has been seen.

4.1.6 Storing Information
To store the map of the volume to explore, i.e., the portion of the 3D space
contained into the bounding box, we discretize it into voxels. For each voxel,
we store the total uncertainty of the portion of space inside of it, as well as
the viewpoints from which it has been observed. Note that we treat all the
points in one voxel alike, i.e., we compute the expected uncertainty reduction
per voxel only. Furthermore, as it is typical for occupancy grids, we assume
each voxel independent from the others, therefore the total entropy is the sum of
the entropies of each voxel. Voxels that are still unexplored have the maximum
uncertainty, as no information exists about the state of the cell.

Each time the algorithm needs to choose a new viewpoint, it computes the
total expected information gain of each candidate viewpoint by casting rays from
that point and summing the expected information gain of all the voxels hit by the
rays. Note that, since we acquire images at a constant framerate, for each candi-
date viewpoint we evaluate the information gain for all the intermediate images,
by subsampling a computed path between the current position and the possible
next one. When a new observation is obtained, we update the uncertainty stored
in each voxel seen by the new image. We efficiently store the voxelized map using
octrees with the C++ library Octomap [52]. This library can represent voxels
with three states (occupied, free, and unknown) in an occupancy grid. The API
of Octomap allows for automatically updating the states of the voxels by using
ray casting, given a depth image and the sensor’s pose. In our implementation

39

4.1. Autonomous Exploration for MAV

we use a maximum resolution of 0.125 m3, as we discretize the space into voxels
with a size of 0.5 m × 0.5 m × 0.5 m.

4.1.7 Changes in the Direction of Flight
As mentioned in Section 4.1.1, the action of actually recording the next measure-
ment has a cost, represented by the second term of Equation (4.4). We define this
cost by taking into account the particular needs of an exploration algorithm for
MAVs, as explained in this section and in the following one. A relevant problem
of using autonomous MAVs is that in most countries a human operator is required
to supervise the mission at all times, to intervene in case of malfunction or other
emergencies. To this purpose, it is helpful if the operator is able to predict the
trajectory of the robot, so that he or she can promptly take control of the MAV
if it is about to perform a dangerous action. According to our experience, this is
substantially simpler if the MAV avoids erratic motion, i.e., its trajectory is short
and avoids abrupt changes of direction. Our approach achieves such a behavior
by using the cost function:

cost(P) = d(P) + θ(P), (4.16)

where d(P) grows linearly with the length of the path P between the current
location of the robot and point P, while θ(P) is a function that grows linearly
with the maximum change in orientation that must be executed by the MAV
along the path.

4.1.8 Time-Dependent Cost Function
Most available MAVs have a limited battery life. When planning a mission, it
is essential to take the expected battery life into account to prevent the drone
from crashing and eventually to allow a safe landing at the starting point. We
achieve this by adding a time-dependent component to our cost function. Given
a user-specified time limit for the mission, the algorithm dynamically computes a
critical time value tcritical, based on the trajectory needed to move the MAV from
the current location to the starting point. In our implementation, this trajectory
is computed by a low-level planner [82]. Once the elapsed-time reaches tcritical,
the algorithm adds the starting point to the list of possible next points and the
time-dependent cost function activates. This has the effect of favoring the robot
to:

• fly towards the starting point (for landing),

• avoid flying above obstacles to allow for a potential emergency landing, and

40

Chapter 4. Information-Driven Autonomous Exploration

• fly closer to the ground to prevent possible impacts if the battery dies.

Note that, since the starting point is now part of the set of candidate next points,
the MAV will land on it as soon as it is close enough.

Thus, we extend Equation (4.16) by adding the time dependent components,
and we obtain the new cost function:

cost(P , t) = d(P) + θ(P) + T (t)
[
f(t) + dstart(t) + z(t)

]
, (4.17)

where:

• T (t) =

1 if t ≥ tcritical

0 if t < tcritical

• f(t) grows linearly with the elapsed time if in the map there are occupied
voxels (excluding the ground) in the area below the MAV, it is equal to 0

otherwise;

• dstart(t) grows linearly with the elapsed time and is proportional to the
distance between the current position and the starting point;

• z(t) grows linearly with the elapsed time and is proportional to the current
altitude of the MAV.

These terms can be chosen in different ways. In our implementation, we represent
the cost function as a weighted sum of the different terms, where the weights are
tuned by hand. The functions f(t), dstart(t), and z(t) have dynamic weights that
range between wmin and wmax and are computed as:

w(t) =

(
telapsed

tmax
− 0.8

)
wmax − wmin

0.2
+ wmin. (4.18)

Table 4.1 shows the weigths that we use in our experiments. Note that, since
the robot might still explore unknown space, this approach does not guaran-
tee its return to the starting point, but the whole process allows the MAV to
increase its safety while still maximizing the information gain. The cost func-
tion in Equation (4.17), plugged in Equation (4.4), contributes together with the
information-gain to the utility fuction we use to select the next best view.

4.2 Experimental Evaluation
The main focus of our exploration algorithm is to select viewpoints for the pur-
pose of an accurate 3D reconstruction of the environment. Therefore, each new
viewpoint has the purpose of exploring new voxels and reducing the uncertainty of

41

4.2. Experimental Evaluation

Figure 4.5: Simulated environment in V-REP simulator. The scene contains the Frankenforst
building and the MAV.

Table 4.1: Weights used in the cost function in our implementation.

Function Weight [s]

d(P) 1000
θ(P) 30000
f(t) wmin = 5000, wmax = 6000

dstart(t) wmin = 5000, wmax = 12000

z(t) wmin = 300, wmax = 4000

the already observed ones. Additionally, the selected viewpoints favor the MAV
to follow a path free of sharp changes of direction to allow a human operator
to predict more easily its trajectory. Furthermore, the algorithm takes the time
into account for a safer flight and landing when the robot is about to run out of
battery. Finally, our system has to be fast enough for a real-time execution, as
the next best view is selected online while the MAV is flying.

Our experiments are designed to show the capabilities of our method and
specifically to support the key claims we made in the introduction, which are:
(i) our approach yelds a map with a low uncertainty in the probabilistic model,
(ii) it avoids abrupt changes of direction during the flight, (iii) it does not generate
a longer path by taking into account the aforementioned aspects, and (iv) it is
able to compute the next best viewpoint in real-time and online on an exploring
system.

We furthermore provide comparisons to two recent state-of-the-art meth-
ods: the exploration algorithm based on Proximity Count VI proposed by Isler
et al. [55] and the one proposed by Vasquez-Gomez et al. [135]. We used the
existing open source implementation by Isler et al. [55] of both the algorithms,
while we implemented our approach from scratch using C++ and ROS.

42

Chapter 4. Information-Driven Autonomous Exploration

4.2.1 Experimental Setup

We tested the three approaches with identical settings on a simulated environ-
ment, using the V-REP simulator by Coppelia Robotics. We set all the param-
eters for the algorithms to the default values provided by Isler et al. [55], with
the exception of the camera calibration, the ray caster resolution (reduced by a
factor of 2), and the ray caster range of 20 m.

The robot in our simulation is a quadcopter with a camera mounted on the
front and facing downwards with an angle of 45◦, as typically vision sensors on
MAVs are mounted with angles ranging from 0◦ to 90◦. The camera has a field of
view of 86◦, a resolution of 2040 by 2040 pixels and a constant framerate of 20 Hz.
We assume to know the pose of the sensor, that in practice can be obtained from
a SLAM system such as the one proposed by Schneider et al. [108], which runs
at 100 Hz on a MAV and operates with an uncertainty of few centimeters. As
our algorithm is independent of the sensor used, we obtain the depth information
directly from the simulator instead of computing it from the images acquired by
the camera. In a real case scenario, this information can come for example from
a structure from motion algorithm, or from a stereo camera.

As the object to explore, we selected a building at the University of Bonn called
Frankenforst (Figure 4.1a), and we imported in the virtual scene a 3D model of
such building obtained from terrestrial laser scans, see Figure 4.5. We specified
a bounding box around the bulding with a size of 29 m × 32 m × 25 m, which
delimits the volume to explore. As starting locations for the MAV, we sampled
10 locations equally spaced on a circle on the ground around the building. As
our algorithm has a random component, we performed every test 10 times, with
the robot starting from each of these 10 locations, performing a vertical takeoff
and then starting the exploration mission.

During the execution of our algorithm, every time a new viewpoint had to
be selected, we recomputed the hull representing the action space of the robot
at a distance of 5 m from the occupied voxels in the map and we sampled 100
points on it (see Section 4.1.2). Note that for the comparison with the existing
methods [55, 135], we disabled our time-dependent cost function and introduced
a boolean cost function in the other two algorithms to prevent collisions, as
the implementation by Isler et al. [55] does not provide a functioning collision
avoidance system. We stopped the three algorithms after 40 viewpoints were
approached.

4.2.2 Precision of the Reconstruction

The first evaluation is designed to support the claim that our approach selects
viewpoints that increase the number of observed voxels and reduce the uncertainty

43

4.2. Experimental Evaluation

(a) Our Approach (b) Vasquez-Gomez et al.

Low

uncertainty

Medium

(acceptable)

Uncertainty

High

uncertainty

Figure 4.6: Result of the execution of our algorithm (a) and the approach by Vasquez-Gomez
et al. [135] (b) after 40 computed viewpoints. The black line represents the trajectory and the
model in the center is the result of the mapping. The voxels are colored according to their
uncertainty.

of the already observed ones. We evaluate the precision of the 3D reconstruction
by measuring the uncertainty of the observations obtained from the camera, using
the formulation explained in Section 4.1.3.

Figure 4.6a shows the path and the map resulting from the execution of our
algorithm after 40 computed viewpoints. Each voxel is colored according to the
total uncertainty of the points it contains, with the colormap shown in Figure 4.6.
For an accurate 3D reconstruction, the uncertainty should be “medium” or lower
(from green to yellow in our colormap). The figure shows qualitatively that most
of the voxels in the map have an uncertainty lower than the acceptable value,
i.e., it is possible to accurately reconstruct the building in 3D from the acquired
images.

As a quantitative evaluation, Figure 4.7 and Figure 4.8 show how the normal-
ized global uncertainty and the total number of explored voxels in the map evolve
during the exploration. The figure shows mean values and standard deviations
over our 10 tests described above. We define the normalized global uncertainty
as:

σ2
global =

∑N
i=1 σ

2
i

σ2
max

, (4.19)

where σ2
i is the uncertainty of the i-th voxel, N is the number of voxels in the map

and σ2
max is the maximum possible uncertainty, i.e., the sum of the uncertainty

of every voxel before the exploration starts. At the beginning of the exploration,
every voxel has infinite uncertainty, simulated in practice by a large fixed value
(in our implementation 10,000,000). Note that the metric we use depends on
this maximum value. Therefore, we set the value identically for all algorithms
so that the obtained performance measure allows for a fair comparison between

44

Chapter 4. Information-Driven Autonomous Exploration

0 5 10 15 20 25 30 35 40

Selected viewpoints

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

un
ce

rt
ai

nt
y

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.7: Global uncertainty of the map at each selected viewpoint (mean values and std. de-
viations).

0 5 10 15 20 25 30 35 40

Selected viewpoints

0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
vo

xe
l

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.8: Total number of explored voxels in the map at each selected viewpoint (mean values
and std. deviations).

the approaches. Moreover, since we use an octree to store the map, to compute
this measure we expand the tree to obtain all the voxels on the same level, i.e.,
we convert the map to a simple voxel grid for this evaluation. Both Figure 4.7
and Figure 4.8 show an advantage of our approach. Moreover, by looking at the
std. deviations it is clear that none of the algorithms are affected by the starting
point of the flight, and in general the results are consistent among different flights.

4.2.3 Path Smoothness
A particular focus of our approach is the shape of the flight path. From our
experience, a human supervisor, who is required by law in several countries,
can more easily predict the trajectory of the MAV if it is free of abrupt turns.
Our second evaluation supports our second claim, namely that our approach is

45

4.2. Experimental Evaluation

40 60 80 100 120 140 160 180

Angle [◦]

0

20

40

60

80

100

C
um

.c
ha

ng
es

of
di

re
ct

io
n

(%
)

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.9: Cumulative histogram of the changes of direction.

able to select viewpoints that favor a path that avoids sharp changes of direction.
This is qualitatively visible in Figure 4.6, where the path chosen by our approach,
compared to the one by Vasquez-Gomez et al. [135], is fairly regular and basically
performs larger turns only if the model requires it.

To compare this aspect between the different algorithms, we considered the
angles of each change of direction, and counted them. The histogram in Figure 4.9
shows the cumulative percentage of changes of direction for angles between 40◦

and 180◦, divided in 10 intervals. As the figure shows, the other approaches have
no preference at all when choosing the direction to take for the next viewpoint
(the bars have a linear trend). Our algorithm, on the other hand, chooses in 80%
of the cases a point at an angle below 100◦, thanks to our utility function, which
takes this measure into account.

4.2.4 Path Length

An important aspect of an exploration algorithm is the length of the path that
the robot needs to follow to complete the procedure. In this section, we support
our third claim, i.e., our algorithm has performances aligned to the current state
of the art in terms of path length, despite its utility function, which is designed
for a more predictable path.

Figure 4.10 shows the total path length after approaching each next viewpoint.
The best performing algorithm in this case is the one by Vasquez-Gomez et al.,
due to its utility function, specifically designed to create overlaps between the
views. Our approach, instead, is aligned to the one by Isler et al. We also consider
the uncertainty reduction and relate it to the travelled distance, see Figure 4.11.
The plot shows that after 350 m the three algorithms show a similar performance,
with a slight advantage of our approach. Therefore, the longer distance between

46

Chapter 4. Information-Driven Autonomous Exploration

0 5 10 15 20 25 30 35 40

Selected viewpoints

0

200

400

600

800

1000

1200
Pa

th
le

ng
th

[m
]

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.10: Path length at each selected viewpoint.

0 100 200 300 400 500 600 700

Path length [m]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

un
ce

rt
ai

nt
y

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.11: Map uncertainty versus traveled distance.

47

4.2. Experimental Evaluation

0 200 400 600 800 1000 1200 1400

Time [s]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

un
ce

rt
ai

nt
y

Our Approach
Proximity Count (Isler 2016)
Vasquez-Gomez

Figure 4.12: Map uncertainty versus elapsed time.

Table 4.2: Average time and std. deviation to compute a viewpoint with the different algorithms.

Algorithm Average time and std. deviation [s]

Our algorithm 1.31 (±0.41)
Proximity count [55] 6.53 (±1.56)
Vasquez-Gomez 6.58 (±1.56)

the single viewpoints is compensated by a better reduction of the uncertainty.
Thus, we can conclude that our strategy to select viewpoints for a more regular
path does not substantially affect the total length.

4.2.5 Execution Time
The final comparison we make is between the execution time of the three ap-
proaches. Table 4.2 shows the average time spent to compute the next view-
point on a single core of a regular Intel Core i7 CPU. In our tests, our approach
performed about 5 times faster. In addition to that, Figure 4.12 shows the un-
certainty against the elapsed time. As can be seen, our approach reduces the
uncertainty faster while the time elapses and it is fast enough to be used in
real-time.

4.2.6 Time-Dependent Cost Function
The last aspect of our algorithm is its capability of selecting viewpoints that favor
the MAV to move back to its starting point before it runs out of battery, while
still taking into account the information gain expected from the new viewpoints.
Figure 4.13 shows a path computed with a time limit. At first, the algorithm
explores normally the building (black continuous path), but when the critical

48

Chapter 4. Information-Driven Autonomous Exploration

Take-off point

on the ground

Critical time

reached

Exploration

starts

here

Figure 4.13: Path computed with the time-dependent cost function enabled. The square mark-
ers represent the path generated after the critical time, which moves the MAV back to the
starting point.

time is reached, as shown by the square markers, the MAV flies towards the
starting point, while still trying to reduce the uncertainty, keeping a low altitude
and avoiding flying above obstacles.

4.2.7 Real World Experiment

We finally provide a test of our algorithm in the real world. We created a test en-
vironment composed by a structure of boxes in an indoor scene, see Figure 4.14b.
We use a ZED stereo camera, which provides, out-of-the-box and in real time, the
depth information computed from the stereo images. We run our algorithm with
similar settings as the simulated tests, eventually scaled to the size of the new
environment. In particular, we used the same weights for the cost function (see
Table 4.1) and sampled the same number of candidate next viewpoints at each
iteration (100), but we increased the map resolution by reducing the voxel size to
0.05 m per side, and we reduced the distance of the hull (representing the action
space of the robot) from the occupied voxels in the map to 1 m. Figure 4.14a
shows some frames acquired by the camera during the execution of the algorithm.
Figure 4.14d shows the final map of the structure and the actual trajectory of the
camera, after 60 computed viewpoints.

To test the use of our algorithm for a real 3D reconstruction case, we used
the recorded image sequence as input for an offline, out-of-the-box dense recon-
struction approach. Figure 4.14c shows the final dense pointcloud. Note that no
contribution for the dense reconstruction approach itself is claimed here.

49

4.3. Related Work

(a)

(b) (c)

(d)

Figure 4.14: Real world experiment: (a) Two examples of camera frames. (b) Test environment.
(c) Obtained model. (d) Voxel map and followed path.

4.3 Related Work
The aim of the information-gain exploration problem is to select actions for the
robot that lead to informative measure from its sensors. A popular approach
to this problem is frontier-based exploration [142], which consists of selecting the
next viewpoint on the boundary between the known free space and the unexplored
space. This technique is widely used for 2D exploration, for example by Bourgault
et al. [14], who focus on maximizing localization accuracy, Stachniss et al. [118],
who represent the posterior about maps and poses using Rao-Blackwellized par-
ticle filters or, more recently, Perea Ström et al. [124], who additionally make
predictions about the structure of the environment using previously acquired
information. Frontier-based exploration is less popular when it comes to 3D
exploration with MAVs, but some recent works have shown promising results.
Fraundorfer et al. [43], for example, combine a frontier-based approach with a
Vector Field Histogram+ algorithm and the Bug algorithm to efficiently explore
both in dense and sparse environments. Shen et al. [112] identify frontiers us-
ing a stochastic differential equation that simulates the expansion of a system of
particles with Newtonian dynamics to explore indoor environments. Cieslewski
et al. [23], instead, extend the classical frontier-based approach for rapid explo-
ration. The idea is to generate velocity commands to reach frontiers in the current
field of view, instead of planning trajectories as it is typical for this approach.
A related, but different approach is the one proposed by Bircher et al. [13], who
employ a planner based on a receding horizon, using a random tree.

When applied to vision sensors for 3D reconstruction, the problem of explo-

50

Chapter 4. Information-Driven Autonomous Exploration

ration is commonly called active vision [3], active perception [9], or next best
view [110]. Hoppe et al. [48] particularly focus on recostruction and propose a
stucture-from-motion algorithm that provides, in real time, a visual feedback to a
human operator. Dunn et al. [33], instead, start from an existing model and aim
at refining it by choosing the next best view that best reduces its uncertainty.
They represent the structure with adaptive planar patches and combine the co-
variance matrices of the patches and the texture properties of the object to select
the next best view. Kriegel et al. [67] require less previous knowledge and focus
on the completion of 3D objects. They employ a laser scanner and their algorithm
is based on surfaces and not on volumetric representations. They select the next
best view by taking into account the boundaries of the surface and the occluded
areas. Pito [90] also presents a surface-based algorithm to map 3D objects with
a range scanner. The general idea is to select the next best view that covers as
much unseen space as possible while satisfying certain overlap constraints. Quin
et al. [96] propose an alternative application of a next-best-view algorithm, tar-
geting the full exploration of an environment with an RGB-D sensor mounted on
a manipulator in a fixed position in the environment itself. The algorithm favors
points that are close to the current one in the configuration space of the robot
as possible next best viewpoints. Kranin et al. [66], on the other hand, consider
a fixed sensor and use a manipulator to move an object in front of it. Their
next-best-view algorithm is information-gain based, but additionally takes into
account the manipulator occlusions. Potthast and Sukhatme [93] target cluttered
environments, and propose a solution based on probabilistic methods to compute
the potential information gain of the candidate viewpoints. Trummer et al. [133],
in contrast to most of the previous approaches use an intensity camera instead
of a range scanner. They mount the camera on a manipulator and compute the
optimal next best view on a sphere around the object of interest.

Most of these approaches focus on recostruction of small objects, while we
are interested in large scenarios such as the recostruction of a building. One
possibility is to perform the computations offline given some a priori information
of the environment. Bircher et al. [12] propose an approach for computing a path
to explore a large building with an MAV. They solve a traveling salesman problem
to find the best path that connects the viewpoints that are sampled by knowing
the mesh of the building to explore. Their focus is on inspection path planning,
meaning that they are not interested in exploring an unknown environment, but
rather in covering a known one. Schimd et al. [107], similarly, exploit a previously
known 2.5D model of the environment to compute every non-redundant viewpoint
and solve a traveling salesman problem to minimize the path length. However,
they assume the given model to be coarse and their goal is, similarly to ours,
an accurate 3D reconstruction from the images acquired during the exploration.

51

4.4. Conclusion

Another interesting approach is the one proposed by Schade et al. [111], who
explore the environment by planning a path, using the gradient of a harmonic
function based on the boundaries between known and unknown space on a 2D
plane of a 3D occupancy grid.

The vast majority of the state of the art consists of small variations of the
main techniques described above. For example, Haner et al. [49] do not only
compute the next best view, but also take into account a whole set of future
imaging locations. Mostegel et al. [77] focus more on localization stability rather
than reconstruction and Sadat et al. [103] focus on maximizing feature richness.
Similarly to our approach, many greedy information gain-based exploration ap-
proaches boil down to an algorithm that samples candidate viewpoints, computes
a utility function that takes into account the expected information gain and other
factors, and selects the viewpoint with the maximum utility function. Delmerico
et al. [29] describe a general framework for this kind of methods and compare
different approximations for the information gain, such as the one by Vasquez-
Gomez et al. [135], which optimizes the overlap between views and the angle
of the sensor w.r.t. the surface, while also taking into account occluded areas.
Forster et al. [41] use a similar approach, but additionally consider the texture of
the explored surface in their approximation of the information gain. Bai et al. [8]
also employ a similar method, but select the next best view using a deep neu-
ral network, to avoid the commonly used (but computationally expensive) ray
casting for computing the approximated information gain. In contrast to that,
Charrow et al. [18] use a two step approach, consisting in generating a set of
trajectories, choosing the one that maximizes the information-theoretic objective
and refining it with a gradient-based optimization.

Finally, there are several approaches that do not focus on 3D reconstruc-
tion, but on different goals, such as Freundlich et al. [44], who plan the next
best view to reduce the localization uncertainty of a group of stationary targets,
Atanasov et al. [7], who focus on decentralized multi-sensor exploration or Stras-
dat et al. [123] who address the problem of which landmark is useful for effective
mapping.

4.4 Conclusion
In this chapter we presented a novel approach for vision-based autonomous ex-
ploration on MAVs. Our approach iteratively samples candidate viewpoints and
greedily selects the optimal one using a utility function. This function takes into
account the expected information gain from the new view, the distance from the
current position to the new point and the change of direction of motion. Ad-
ditionally, a time-dependent component in the function allows for a safer flight

52

Chapter 4. Information-Driven Autonomous Exploration

and landing when the MAV is about to run out of battery. We implemented our
approach in C++ and ROS and evaluated it in simulated and real environments.
We compared the approach to two state-of-the-art methods and our experiments
show that our algorithm allows for a precise exploration while flying on a trajec-
tory comparably free of abrupt changes of direction of motion, without sacrificing
the path length and in an online, real-time fashion.

53

Part II

Non-Static Environments

55

Chapter 5

Change Detection in Non-Static
Environments

Building 3D models of the environment is a frequently addressed prob-
lem in robotics as they are needed for a wide range of applications.
For most applications that include autonomous behavior, such mod-
els should correspond as well as possible to the current state of the

environment. In the first part of this thesis, we focused on how to build such
models from the acquired sensor data and how to select the best viewpoints for
acquiring such data autonomously. However, we always assumed a static envi-
ronment, while in practice this is not the case. In case the environment changed
substantially, existing models must be updated. For this purpose, the possibility
of directing a mapping or exploring robot directly towards the possible regions
that have changed instead of repeating the whole mapping process is advanta-
geous. Therefore, it is important to reliably identify locations in a 3D model that
have changed.

In this chapter, we address the problem of finding changes between a previ-
ously built 3D model and its current state based on a short sequence of keyframe
images recorded in the environment, see Figure 5.1 for an illustration. Two as-
pects are important here: first, we want to reliably locate changes in the model
and second, the approach should have a limited computational demand so that
it can be executed on a mobile platform, allowing an exploring or mapping robot
to plan its next action according to the location of change.

5.1 Image-Based Geometric Change Detection
The main contribution of this chapter is a new and fast approach for identifying
differences between an existing 3D model and a short sequence of images recorded
in the environment. For finding inconsistencies, we do not build a new 3D model

57

5.1. Image-Based Geometric Change Detection

(a) 3D model (b) Current image

Change

(c) Result

Figure 5.1: Our approach aims at quickly finding changes in the environment based on an
existing 3D model and a sequence of (currently recorded) images.

from the newly obtained image data and compare the result to the existing one.
Instead, we back-project the currently obtained image onto the 3D model and
then project it to a viewpoint at which another image of the current sequence
has been taken. Through a comparison between the re-projected images and the
one observed in reality, we can identify possible regions of change. To eliminate
ambiguities, this process is executed for multiple image pairs. Typically, 4-5
keyframe images are sufficient to find areas of change and then estimate the
3D location where the geometry has changed. Compared to existing approaches
for visual change detection such as the work by Taneja et al. [130] or Ulusoy
et al. [134], our method is substantially faster towards execution on a mobile
robot. Note that our approach only compares images from the current sequence
with each other, i.e., no current image needs to be compared to an old one.
This makes our approach robust to seasonal changes, weather conditions, or any
changes that are usually present when taking image sequences at two distinct
points in time.

58

Chapter 5. Change Detection in Non-Static Environments

Our approach identifies the approximate area of change fast enough to be
executed on a navigating robot, which sets it apart from several related other
techniques. We identify inconsistencies by comparing the acquired images to
re-projected images that would have been obtained assuming the 3D model is
correct, in combination with a forward intersection of the potentially inconsis-
tent regions. We implemented our approach in C++ and tested it on existing
datasets and on our own. Our experiments show that our method quickly finds
the approximate location of the change in the scene and is fast enough to poten-
tially guide an exploring ground robot or UAV seeking to map the changes in the
environment. We publicly share both our open source implementation1 and our
own dataset including the 3D models2.

We make two key claims: our approach is able to (i) identify the location of
changes in the environment, in the form of 3D volumes in the world coordinate
frame, using a 3D model and a sequence of images, and (ii) it is fast enough
to be executed on a mobile robot, i.e., analyzing a sequence of keyframe images
does not take longer than recording it, e.g., a few seconds for a sequence of five
keyframe images.

Our approach aims at spotting areas in an environment that have changes
with respect to a previously built 3D model. It does so by exploiting a sequence
of around five images through evaluating how the projections of image content
from one image to the model and back to another image look like. In terms of
computational demands, this process is substantially more efficient than gener-
ating a new, dense 3D model and comparing it directly with the given one. The
first step is to detect possible inconsistencies of an image with its neighboring
images assuming that the 3D model is correct. After computing pairwise in-
consistency hypotheses, we fuse them to eliminate the intrinsic ambiguities and
estimate the location of change by triangulation. Given that we look for inconsis-
tencies between the 3D model and new images, our approach only finds changes
from images where the rays corresponding to pixels intersect with the 3D model.

Note that in this chapter we assume a good pose estimate for the camera.
We obtain the (approximate) location of the 3D model and the viewpoint of the
images as described in Section 5.1.1 below.

5.1.1 Camera Pose Estimate
Our algorithm requires an estimate of the viewpoints of the images w.r.t. the 3D
model. We obtain this through direct georeferencing fusing GPS, IMU, and visual
odometry, as described in [108]. The approach employs the iSAM2 algorithm, and
provides uncertainty information about all sensor poses in the form of a covariance

1https://github.com/PRBonn/fast_change_detection
2http://www.ipb.uni-bonn.de/data/changedetection2017

59

https://github.com/PRBonn/fast_change_detection
http://www.ipb.uni-bonn.de/data/changedetection2017

5.1. Image-Based Geometric Change Detection

(a) Image I1 (b) Image I2

(c) Re-projection of I1 onto I2 (d) Inconsistencies

Figure 5.2: A pair of images, the first image re-projected onto the second, and the inconsistencies
between them.

matrix. In case no GPS information is available, approaches for camera to 3D
model localization such as [17] can be used, although we did not directly try that
here.

5.1.2 Inconsistencies Between Image Pairs
Through this chapter, as it is critical to distinguish between 2D and 3D entities,
we use a slightly different notation compared to the rest of this thesis. In partic-
ular, we write with capital letters not only matrices, but also some of the vectors
representing 3D entities.

Given the calibration matrix and the pose at which the camera took an image
I, we can compute the projection of an arbitrary 3D point Xworld onto the image
plane resulting in a 2D point at pixel x:

x = PXworld, (5.1)

where x is expressed in homogeneous coordinates and P = [KR|−KRt] is the
3×4 camera projection matrix composed by the 3×3 matrix KR and the 3×1

60

Chapter 5. Change Detection in Non-Static Environments

II

r

r r

rX

XX

1 2

1→2

1→21

1 c

x1
x1→2

x1→2
x1

'

'

'

'

'

Figure 5.3: Re-projection procedure. The gray rectangle represents the known 3D model, while
the yellow square is a change not present in the original model. Using two images, a point Xc,
not present in the model, is re-projected onto two pixels x1→2 and x′

1→2.

vector −KRt, with K the calibration matrix of the camera, R and t the rotation
and translation that transform the world coordinates into camera coordinates.

By inverting Equation (5.1), we compute the ray from the projection center
of the camera through the pixel to the 3D world. This allows us to back-project
each pixel of I onto the 3D model assuming the known intrinsic parameters K
and the rotation matrix R from the extrinsic parameters:

r = RTK−1x, (5.2)

where r is the direction of the ray in world coordinates.
To detect inconsistencies between a pair of images consisting of the images I1

and I2, we create a new image I1→2 that represents the content of I1 as seen
from the view point of I2 given the 3D model. Given that we know, from Equa-
tion (5.2), the view direction r1, we compute the intersections X between the
rays and the 3D model and project X onto the image plane of I2 to obtain I1→2

(see Figure 5.2c for a real example):

x1→2 = P2 X, (5.3)

where P2 is the camera projection matrix corresponding to image I2. In this way,
we obtain a new image I1→2 that can be compared with I2. Since the exact poses
of the cameras are unknown and the 3D model is not perfect, the point x1→2 has
an uncertainty represented by the covariance matrix Σ := Σx1→2x1→2 . To consider
this uncertainty, we compute, for every pixel of I2 the minimum Euclidean norm
of the intensity difference to each pixel of I1→2 in a neighborhood Ni,j around the
projected pixel. We compute the size of this neighborhood by propagating the

61

5.1. Image-Based Geometric Change Detection

pose uncertainty, obtained while recording the images, into the image points (see
Section 5.1.1). In detail, we search within the 3σ area given by Σ and select the
pixel with the smallest difference:

D1→2(i, j) = min
k,l∈Ni,j

||I2(i, j)− I1→2(k, l)||2 , (5.4)

where i, j, k, l are pixel coordinates and the neighborhood Ni,j is defined as:

Ni,j =

∀(k, l) ∈ I1→2

∣∣∣∣∣∣
[
i− k

j − l

]T

Σ−1

[
i− k

j − l

]
< d2

 , (5.5)

where d2 = 11.82 is the critical value of the χ2
2 distribution corresponding to a

probability of 99.73%, i.e., the 3σ boundary on the normal distribution. Finally,
we normalize D1→2 to values between [0, 1]. Figure 5.2d shows the result of this
procedure.

If there is no change in the 3D model between the acquisition time and the
time when the images have been taken, all pixels in I1 should correctly re-project
onto I2. Therefore, I2 and I1→2 should be identical and D1→2 should be small
or equal to 0 for each pixel. If there is, however, a change in the model, pixels
corresponding to the change re-project onto the wrong place in I2. Thus, D1→2

allows us to identify the changes, as long as not all pixels in the current images
have the same RGB value, i.e., represent a large homogeneous area.

The process, however, has ambiguities. As Figure 5.3 illustrates, a single point
Xc corresponding to a change in the 3D model generates two pixel locations, x1→2

and x′
1→2, in D1→2, one corresponding to the change in I1 re-projected onto I2

and one corresponding to the change in I2 re-projected onto I1. To eliminate
this ambiguity, we use multiple pair-wise image comparisons as described in the
following section.

5.1.3 Inconsistency Detection using Multiple Images
The ambiguity produced by the re-projection of an image onto another one can
be eliminated by considering multiple image pairs. Figure 5.4 shows how a pixel
belonging to the same change in a third image I3 re-projects onto I2 at two
different locations. It is important to note that one of the two points is mapped
to the same location as a change detected by re-projecting I1 onto I2. Thus, the
pixels that re-project onto the same region of I2 from the other images represent
the real change.

To localize the changes, we therefore compare an image with its m neighboring
keyframe images. For each image It, we store an inconsistency image Dt resulting
from the pixel-wise minimum over all the inconsistency images obtained from the

62

Chapter 5. Change Detection in Non-Static Environments

II

r

r

r

r

XX

1 2

1→2

1

1

1→2

I3

|
|
|

r
3→2

r
3

X X

|
|
|

' '' ' '' '''

'''

''' '''

r
3

r
3→2

Figure 5.4: Ambiguity elimination using multiple images. When re-projecting I1 and I3 onto
I2, only one ray (therefore one pixel) is coincident. The thick red line represents that coincident
ray.

(a) (b) (c) (d) (e)

Figure 5.5: (a) The statue (here manually marked in green) is not in the model. (b) Incon-
sistencies between 2 images (m = 1). (c) Inconsistencies between 3 images (m = 2). (d)
Inconsistencies between 4 images (m = 3). (e) Original image masked with the segmented area
obtained from the inconsistency image with m = 3.

neighboring images re-projected onto It:

Dt(i, j) = min{Ds→t(i, j), ∀s ∈ S(t)}, (5.6)

where S(t) is the set of m neighboring keyframe images of It. In our implemen-
tation, we typically use the four closest images in time to It. Note that, for the
algorithm to work, the baseline between the images must be sufficient, therefore
the images must be recorded with a fixed minimum distance between each other.
Figure 5.5 depicts the output of Equation (5.6), for m = 1, 2, and 3. Even though
it is not easy to see in Figure 5.5, the noise in the total inconsistency image is
substantially smaller when using more than m = 2 neighboring images. Thus,
we stick to m = 4, although using m = 2 is theoretically sufficient. This means
that we use a sequence of 5 keyframe images for the change detection.

63

5.1. Image-Based Geometric Change Detection

(a) (b) (c)

Figure 5.6: (a) Example triangulation with five images. The white lines are the back-projected
rays and the white point represent the triangulated point. (b) Sigma points projected in 3D.
(c) The result of our algorithm, i.e. the 3D region where the change is.

5.1.4 Segmentation and Data Association
The procedure explained so far enables us to identify the pixels in each image
where changes occur. For reliably computing the regions of change, we first filter
out the noise with an erosion-dilation procedure, then apply a standard border
following algorithm [127]. We discard all the regions with a contour shorter than
a threshold (in our implementation 50 px for images with horizontal resolution of
500 px) to filter out noise and changes that are too small. The next step is to
associate the regions from the images with each other. To do that, we compute
and compare hue-saturation histograms region-wise and perform standard cross-
correlation together with a simple geometric consistency check using the epipolar
lines.

5.1.5 Estimating the Location of Change
Once we obtain the segmented 2D regions and the association between them, we
proceed to estimate the 3D location of the change. To simplify the notation in
the remainder of this section, the following equations will refer to a single change
in images, i.e., dropping an index referring to individual regions. The whole
procedure is repeated for every region of detected change.

To estimate the 3D volumes in which the changes occur, we first compute, for
every region identified as a change, the mean location xt and spread in form of the
covariance Σt in the image. We then compute, for each change, a 3D point X in
the 3D world coordinates by triangulating the mean location in each image [42].
Specifically, we setup a system of equations in the form:

AX = 0, with A =

S(x1)P1

...
S(xn)Pn

 , (5.7)

where A is a 3n× 4 matrix composed by 3× 4 blocks, n is the number of images,

64

Chapter 5. Change Detection in Non-Static Environments

Pt is the projection matrix relative to image It, and S(xt) is the skew symmetric
matrix corresponding to the mean pixel xt, in homogeneous coordinates, i.e.:

xt =

xt

yt
wt

 , S(xt) =

 0 −wt yt
wt 0 −xt

−yt xt 0

 . (5.8)

We solve this system using singular value decomposition and retrieve X by
taking the right-singular vector of A belonging to its smallest singular value (see
Figure 5.6a for an example of triangulation). For each change in the image, we
additionally compute the K sigma points v(k)

t (k = 1 . . . K) corresponding to
xt and Σt and project the sigma points to the 3D space to estimate the region
of change in 3D. Using the sigma points allows for a better propagation of a
Gaussian through a non-linear function than first-order error propagation, see [58]
for details. To compute the 3D position of the sigma points, we define for each
image a plane Ât passing through X with normal equal to the direction of the
ray rt obtained through Equation (5.2) for xt.

We define the plane in homogeneous coordinates as a 4-dimensional vector:

Ât =

[
rt
d

]
, (5.9)

where the last element d = rT
t X is the distance between the camera and X. The

projection of v(k)
t on Ât is the intersection V(k)

t between the plane and the ray r(k)t

generated from v(k)
t . We compute V(k)

t by expressing r(k)t in Plücker coordinates
as a line L(k)

t joining the camera projection center Ct and a point Y = Ct + r(k)t

along the ray:

L(k)
t =

[
Lh

L0

]
=

[
Ct − Y
Ct × Y

]
, (5.10)

where Ct and Y are expressed in inhomogeneous coordinates. From L(k)
t , we

compute the transposed Plücker matrix:

ΓT(L(k)
t) =

[
S(L0) Lh

−LT
h 0

]
, (5.11)

where S(L0) is the skew symmetric matrix corresponding to L0. Finally, we obtain
V(k)

t as:

V(k)
t = ΓT(L(k)

t)Ât. (5.12)

We repeat this procedure for the sigma points from each mean and covariance
matrix of the same region in every image. In this way, we can quickly estimate the
approximate 3D location of the change without computing a dense reconstruction
of the scene, see Figure 5.6b. The mean and the covariance of the position of
these points represent the 3D area where the change occurs, see Figure 5.6c.

65

5.2. Experimental Evaluation

(a) (b) (c)

Figure 5.7: Results of our experiments on three different outdoor datasets. For each dataset,
the top image shows the changes (here manually marked in green), while the bottom image
shows the 3D region, identified by our algorithm, where the changes are.

5.2 Experimental Evaluation
The focus of this work is a comparably fast approach to identify changes in a given
3D model using a sequence of new images. Thus, our experiments are designed
to show the performance of our approach and to support the two claims that we
made in the beginning of the chapter, i.e., our method (i) can localize changes in
the environment using a 3D model obtained in the past and a sequence of new
keyframe images, and (ii) can be executed fast enough to run on an exploring
robot, i.e., the average execution time should be in the order in which the sequence
is recorded, here in the order of a few seconds for around five keyframe images.

We perform the evaluations on own datasets, as well as on a subset of the Scan-
Net dataset provided by Dai et al. [26]. Furthermore, we use the dataset provided
by Taneja et al. [130] to provide a comparison with their method. Throughout
all the experiments, we use a sequence of n = 5 images and for each image of
the sequence, we compute the inconsistencies with m = 4 neighboring images,
i.e., for these sequences all the neighboring images. Before the execution of the
algorithm, we resize every image to a fixed width of 500 pixels.

5.2.1 Qualitative Evaluation
The first experiment is designed to illustrate the capability of our approach to
localize a change in 3D given a model and a small sequence of images. Figure 5.7
depicts the results of the algorithm on three different outdoor datasets, while
Figure 5.8 shows the results on three indoor scenes from the ScanNet dataset [26].

66

Chapter 5. Change Detection in Non-Static Environments

(a) (b) (c)

Figure 5.8: Results of our experiments on three different indoor scenes from the ScanNet
dataset [26]. For each dataset, the top image shows the changes (here manually marked in
green), while the bottom image shows the 3D region, identified by our algorithm, where the
changes are.

In all our tests, the localized 3D regions reflect the actual position of the changes.
This information can allow an exploring or mapping robot to inspect the changed
regions in more detail and collect more observations to update the previously built
model.

5.2.2 Quantitative Evaluation
To provide a quantitative evaluation, we project the 3D results of our approach
onto the original 2D images in the sequence and we compare the 2D projection to a
manually labeled ground truth. To get the final score for a dataset, we compute

(a) (b)

Figure 5.9: (a) The house does not occlude the lamp. (b) The lamp is occluded: it is impossible
to guess its bounding box. Background modified for better visibility.

67

5.2. Experimental Evaluation

Figure 5.10: Result of our algorithm projected on the original image. The statue (manually
segmented from the image) is not present in the model. The green ellipse is the projection of
the result of our algorithm on the image. Background modified for better visibility.

0 10 20 30 40 50 60 70 80 90

Score (%)

0

1

2

3

4

5

N
um

be
r

of
da

ta
se

ts

IoU
Coverage/TPR

Figure 5.11: Evaluation on our outdoor datasets. The plot represents the number of datasets
on which our approach achieved a score above a certain threshold.

the average score among all the images in the sequence. We use two different
evaluation criteria. The first one is the intersection over union (IoU), which is
one of the most commonly used metrics for image segmentation [36]. Formally, the
IoU is computed by considering the intersecting area between the evaluated and
the ground-truth regions and divide it by the area of the union of the two regions.
The common approach is to compute the IoU using bounding boxes. However,
since we are evaluating the changes projected in a sequence of images, occlusions
may happen between multiple changes and that makes it impossible to evaluate
the bounding box of a single change, see Figure 5.9 for an example. Therefore,
we compute the intersection over union directly between the segmented ground
truth and the projected ellipsoid used to indicate the change in our approach.
As Figure 5.10 shows, the intersection over union is not always representative of

68

Chapter 5. Change Detection in Non-Static Environments

0 10 20 30 40 50 60 70 80 90

Score (%)

0

3

6

9

12

15

N
um

be
r

of
da

ta
se

ts

IoU
Coverage/TPR

Figure 5.12: Evaluation on the indoor ScanNet datasets. The plot represents the number of
datasets on which our approach achieved a score above a certain threshold.

the quality of our detection. In this case, the algorithm successfully identified
the change, but the IoU score is only 44%. This results from the fact that
we correctly identify the location of change, but have a substantial discrepancy
between the two shapes, as we only compute an ellipsoid. Thus, we additionally
provide the measurement of coverage (or True Positive Rate) of our results, i.e. the
intersecting area between our detection and the ground truth, over the full area
of the ground truth. This allows us to measure whether the change is properly
covered or not. In the case of Figure 5.10 the coverage score is 97%, meaning
that the algorithm is able to detect the change appropriately.

To test our algorithm, we recorded five outdoor datasets. To also consider
other datasets, we additionally used the ScanNet dataset by Dai et al. [26], which
provides indoor scenes recorded with an RGB-D camera. Here, we selected 15
scenes, we removed some objects from the 3D models and run our algorithm
on a sequence of RGB images containing the missing objects. Figure 5.11 and
Figure 5.12 show the number of datasets (on the y axis) over a certain threshold
(on the x axis). The blue dotted line is the 50% threshold, which is the one
commonly used in the image segmentation literature [36]. On all our datasets
and on 12 out of 15 ScanNet datasets, the IoU score is over 40%. This shows that
our algorithm is generally able to detect the position of the changes, although
with a significant approximation in terms of shape (given that we only compute
the ellipsoid and not the exact 3D structure). The coverage score, considerably
higher, further supports this claim.

69

5.2. Experimental Evaluation

Table 5.1: Average execution time for different datasets.

Dataset Average execution time [s]

Outdoor data 1.64±0.19
ScanNet (indoor) 1.95±1.08
All 1.88±0.94

Table 5.2: Results for the datasets by Taneja et al.

Structure Speedcam

IoU 51% 52%
Coverage 86% 88%
Time [s] 1.43 1.13

5.2.3 Execution Time
The next experiment is designed to support the claim that our approach runs
fast enough for processing on an exploring robot. We therefore measured the
execution time of our approach on a common, lightweight laptop with an Intel
Core i7 processor and an embedded Intel GPU. All the operation were executed
on a single core of the CPU except for the re-projection operations, which are
implemented in OpenGL and therefore executed by the integrated GPU of the
Intel processor. Table 5.1 shows the average execution time needed to process
sequences of five images from different datasets as well as the standard deviation.
The numbers support our second claim, namely that the computations can be
executed fast enough for operation on an exploring robot. On all datasets, the
whole process takes less than 2 s, which is shorter than the time needed to record
the five keyframe images. Even though the process is clearly not real-time in a
strict sense, it is fast enough to be executed on a real robot at a low frequency
to trigger exploration or additonal mapping actions.

5.2.4 Comparison to the Approach by Taneja et al.
Finally, we want to briefly compare our results with those obtained by Taneja
et al. [130]. The comparison is done based on two of the datasets that they provide
and report on. We chose the “Speedcam” dataset, as it is the only one for which
the authors provide the ground truth, and the “Structure” dataset, as it is the
one that appears more often in their paper. We created the ground truth for the
second dataset by segmenting the pictures manually, as it is not provided by the
authors. Figure 5.13 and Table 5.2 illustrate the results of our algorithm on the
datasets. Their approach uses a computationally expensive graph cut labeling on

70

Chapter 5. Change Detection in Non-Static Environments

(a) Structure (b) Speedcam

Figure 5.13: Results of our approach on the datasets by Taneja et al. For each dataset, the top
image shows the changes (here manually marked in green), while the bottom image shows the
3D region, identified by our algorithm, where the changes are.

a 3D voxelization of the scene. Their method typically provides a more accurate
estimate of the region of change (in the order of 25×25×25 cm3 voxels) than our
estimate using the mean and covariance.

The disadvantage of their method, however, is the computational demands as
they require computation times in the order of 1 min per region (reported by the
authors, see [130]), whereas we can process the same datasets in about 1 second.
Thus, for most robotics applications, where an online feedback is expected, our
approach is better suited.

To summarize, our evaluation shows that our method can estimate the 3D
location of changes in the environment. At the same time, the algorithm is fast
enough to be used by an exploring robot to focus on the areas that have changed.

5.3 Related Work
Building 3D models can be an expensive process as it requires a good coverage
of the environment and potentially dedicated sensors or equipment. To reduce
this cost, it is important to identify, on an existing model, the parts that have
changed, and direct the exploration towards those locations. For this reason, 3D

71

5.3. Related Work

change detection is an increasingly popular topic, see [95].
In the past, many 2D change detection algorithms have been proposed [97].

Several of such methods are affected by lighting conditions, seasonal changes,
weather conditions, and other differences that may occur between the record-
ing of the old and the new images. However, under certain conditions, the 2D
approaches can still be useful, e.g. for monitoring a tunnel surface, as proposed
by Stent et al. [122]. Another limitation of 2D approaches is that the images
often do not provide information on the actual 3D location of the change. Saku-
rada et al. [105] try to overcome these problems by estimating the probabilistic
density of the depth from the old set of images and by comparing it with the
depth computed from the new set of images. Eden et al. [34] compare 3D lines
in the images instead of using color or intensity information. A more recent ap-
proach by Sakurada and Okatani [104] instead uses a deep convolutional neural
network to detect changes in omnidirectional images. Alcantarilla et al. [1] also
use a deep convolutional neural network, but they additionally combine it with a
dense reconstruction technique. A different approach is to formulate the problem
of change detection as an optimal image labeling problem in the Markov Ran-
dom Field framework, as proposed by Kovsecka [65], to detect different kind of
changes between images of street scenes.

Change detection is a very popular topic in the remote sensing community [53].
Heller et al. [51] propose a framework for change detection using satellite and
aerial images, by building digital elevation models and comparing 3D geome-
tries. Crispell et al. [24] also focus on aerial and satellite imagery and introduce
a variable-resolution probabilistic 3D model based on an octree to enable change
detection. Malpica et al. [72], instead, combine satellite imagery and laser scanner
data for updating buildings for a vector geospatial database. The buildings are
detected using support vector machines. Dini et al. [30] obtain the depth informa-
tion using high-resolution stereoscopic satellite images and detect changes against
a GIS database, by creating digital surface models, detecting height changes, and
filtering the result to remove noise. Chen et al. [19], in contrast, focus solely on
aerial RGB-D images from a UAV. They detect changes by computing a depth
difference map and a grayscale difference map and using random forest classifi-
cation and component connectivity analysis techniques to segment the changes
out.

Another approach to 3D change detection is to build a 3D model from the new
images through Multi-View Stereo and then compare the new model with the old
one. However, this is often a rather time consuming activity. Golparvar-Fard
et al. [46] use this approach combined with a support vector machine classifier to
obtain an updated voxelized model of the environment.

If a depth sensor is available, the change detection can be performed directly

72

Chapter 5. Change Detection in Non-Static Environments

on the pointcloud data. An example of this approach is the work of Girardeau
et al. [45], which detects changes between two ground LiDAR scans using octrees.
A similar approach was used more recently by Kang et al. [61]. They focus on
detecting disappearing changes in building models in the form of terrestrial point
clouds, using an approach based on the Hausdorff distance. Andreasson et al. [5]
also employ pointclouds obtained from a laser scanner, but they additionally
integrate color information from a camera. They store the model using a normal
distribution transform representation and perform change detection by computing
a spatial difference probability and a color difference probability between a new
point and the reference model. Choi et al. [21] detect changes between two
LiDAR datasets by performing a subtraction between digital surface models and
by classifying surface patches into pre-defined classes. Xiao et al. [141] use an
alternative representation that is occupancy-based, but stores scanning rays and
local point distributions rather than voxels. The change detection is performed
by combining the advantages of the used representation and a point-to-triangle
distance-based method. Finally, another possibility of comparing pointclouds is
to compact the data using a Gaussian Mixture Model and finding the consistent
matching in the Gaussian Mixture Model feature space, as proposed by Nunez
et al. [83].

With the advent of cheap RGB-D cameras, a problem that has become popular
in the robotics community is to map the static part of the environment, while
segmenting out the dynamic part. This is mostly achieved by detecting changes
between consecutive frames and identifying which objects are movable and which
are static. An example of such approach is the work by Finman et al. [39], which
detect changes in RGB-D maps by computing the 3D-difference of the models
and use such changes to train segmentation algorithms. A similar approach is
the one by Ambruş et al. [4] which performs change detection between pointclouds
by identifying clusters of points that represent the change, and the one by Fehr
et al. [38], which is based on a TSDF representation and use the detected changes
to build a database of dynamic objects.

If a previously built 3D model is available but no updated depth information,
a popular and effective approach is to infer the changes of the environment using
the 3D model and a sequence of newly acquired images. One way to achieve this
is to maintain a voxelized model of the environment and detect the probability of
change in it by comparing the color of a voxel and the color of the pixels in the
images onto which it projects. Examples of this approach are the one by Ulusoy
and Mundy [134] or the one by Pollard et al. [92].

Another relevant strategy that uses an existing 3D model and newly acquired
images is to identify changes by re-projecting images onto each other by passing
through the existing model and compare the inconsistencies in the re-projection.

73

5.4. Conclusion

Taneja et al. [130] use this technique on pairs of images, and apply a graph
cut minimization to label the changed area in 3D in a voxelized model. This
technique is also effective for large scale change detection [131]. In addition, Qin
et al. [94] combine the pairwise detected inconsistencies by counting the rays
that hit every pixel for each image, in order to get rid of the ambiguities. They
stop at the image level and do not estimate the 3D location of the change. A
similar strategy, proposed by Fehr et al. [37], is to project the current model
into keyframes on a sparse grid of image coordinates and measure the number of
samples whose re-projection rays intersects with the model.

In this chapter, we use a re-projection technique similar to [130] and [94] to
identify the changed regions in the images. We resolve ambiguities by fusing mul-
tiple images and introduce a fast way for estimating the rough location of change
in 3D. The whole process takes only a few seconds for an image sequence. In
contrast to that, state-of-the-art approaches such as [130] or [134] have execution
times in the order of minutes.

5.4 Conclusion
In this chapter, we presented a novel approach to identify geometric changes
between the current state of the environment and a previously built 3D model
using a short sequence of images. Our approach operates by identifying the
changes in the images by re-projecting them onto each other, passing through the
3D model. We eliminate the ambiguities about possible changes by combining
the inconsistencies from multiple pairs of images. We are then able to estimate
the locations of changes in 3D and identify the changed region through a mean
3D point and a covariance matrix. The computational time of the whole process
using multiple images is in the order of seconds. We implemented and evaluated
our approach on different datasets. The experiments show that our method can
correctly identify the changes in the environment with only five images and a
total computational time of less than 2 s, which make the algorithm suitable for
running on mobile robots.

74

Chapter 6

Simultaneous Localization and
Mapping in Dynamic
Environments

In Chapter 3, we described a SLAM algorithm that allows for estimating a
3D model of the environment using an RGB-D sensor in an online fashion.
In Chapter 3, we assumed the environment to be static during the mapping
process, the real world, however, contains dynamic elements. SLAM is

especially challenging in dynamic environments, since moving objects may cause
wrong correspondences, deteriorate the ability to estimate correct poses and hence
corrupt the map. Thus, a robot needs to estimate, simultaneously to the mapping
process, which parts of the environment are static or moving.

In this chapter, we propose ReFusion, a novel approach for dense indoor map-
ping that is robust to dynamic elements moving trough the scene while mapping.
Our approach is completely geometric and does not rely on an explicit semantic
interpretation of the scene. More specifically, we do not need to employ a deep
neural network to detect specific dynamic classes, as other recent approaches
do [102, 10]. In contrast to other recent purely geometric approaches [100, 109],
we do not represent the model using surfels, but in the form of a truncated sign
distance function (TSDF). This allows our technique to directly generate a high
quality mesh of the environment. Moreover, the TSDF representation can be
useful for planning, since it provides, by definition, the distance to the closest
obstacle.

75

6.1. ReFusion: 3D Reconstruction in Dynamic Environments

RGB-D input data

Model reprojected onto image plane of viewpoints above

3D model

Figure 6.1: Result of our approach. Top: RGB frames from our dataset containing dynamics.
Center: Reconstructed model without dynamics reprojected onto the image planes of the two
frames from above. Bottom: Final mesh without the dynamics.

6.1 ReFusion: 3D Reconstruction in Dynamic
Environments

The main contribution of this chapter is a novel and efficient SLAM algorithm,
based on a TSDF representation, that is robust to dynamics via geometric fil-
tering. It can be seen as an extension of our approach presented in Chapter 3.
We propose to detect dynamics by exploiting the residuals obtained from the
registration, in combination with the explicit representation of free space in the
environment. This allows our approach to be class agnostic, i.e., it does not rely
on a detector trained on specific categories of dynamic objects. Figure 6.1 illus-
trates the capabilities of our method. It shows two RGB frames from a dynamic
scene and the resulting model built by our approach. As can be seen, all the
dynamic objects are removed from the model. We release the implementation of
our approach as open source software1.

1https://github.com/PRBonn/refusion

76

https://github.com/PRBonn/refusion

Chapter 6. SLAM in Dynamic Environments

Residuals

Mask

SDF

3D Reconstruction

Dynamics
IdentificationPose Estimation

Depth

Mask

RGB-D

Figure 6.2: Overview of our approach. Given data from the RGB-D sensor, we first perform
an initial pose estimation. Then, we use the obtained residuals, together with the depth infor-
mation, to identify dynamic parts of the scene. The filtered images are then used to refine the
pose T w.r.t. the TSDF given by our 3D reconstruction. With the updated sensor pose, we
finally integrate the measurements into our 3D reconstruction of the environment.

We evaluate ReFusion on the TUM RGB-D dataset [125], as well as on our
own dataset, showing the versatility and robustness of our approach, reaching in
several scenes equal or better performance than other dense SLAM approaches.
In addition, we publicly release our dataset2, containing 24 highly-dynamic scenes
recorded with an RGB-D sensor, together with ground truth trajectories obtained
using a motion capture system. Furthermore, we provide a ground truth 3D model
of the static parts of the environment in the form of a high resolution point cloud
acquired with a terrestrial laser scanner. To the best of our knowledge, this is
the first dataset containing dynamic scenes that also includes the ground truth
model for the static part of the environment.

In sum, we make two key claims about our RGB-D mapping approach: it (i) is
robust to dynamic elements in the environment and provides a camera tracking
performance on par or better than state-of-the-art dense SLAM approaches, and
(ii) provides a dense 3D model that contains only the static parts of the en-
vironment, which is more accurate than other state-of-the-art approaches when
compared to the ground truth model.

Figure 6.2 illustrates the key processing steps of the proposed approach. Given
the color and depth information of an RGB-D sensor, like Microsoft’s Kinect, we
first perform an initial pose estimation by exploiting directly the TSDF of our
model representation explained in Chapter 3. By observing the residuals obtained
from such registration, we detect the dynamic elements in the scene. With the
filtered sensor information, where we discard regions containing dynamics, we
further refine the pose of the sensor. With this refined estimated pose, we then
integrate the sensor measurements, i.e., depth and color, into the model.

2http://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset

77

http://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset

6.1. ReFusion: 3D Reconstruction in Dynamic Environments

(a) RGB Image (b) Residuals

(c) Raw mask (d) Final mask

Figure 6.3: Steps of the mask creation. (a) Example RGB frame. (b) Residuals obtained from
the registration. (c) Initial mask obtained from the residual. (d) Final refined mask after the
floodfill algorithm.

6.1.1 Model Representation and Pose Estimation
The approach presented in this chapter is an extension of the SLAM technique
presented in Chapter 3. Specifically, the two approaches share the same model
representation based on TSDF and storage realized with voxel hashing. Moreover,
both algorithms estimate the pose of the sensor using a point-to-implicit technique
that exploits both geometric and color information. For further information about
the basic SLAM algorithm, we refer to Chapter 3.

6.1.2 Dynamics Detection
To detect dynamic parts of the environment, we first perform an initial regis-
tration of the current RGB-D frame with respect to the model, as described in
Section 3.1.2. Then, we compute for each pixel pi its residual ri w.r.t. the model
as defined in Equation (3.4), i.e., the squared error of the distance of the point
to the model. Figure 6.3b illustrates the residuals obtained from the registration

78

Chapter 6. SLAM in Dynamic Environments

Algorithm 1: floodfill for generating MD.
Input: pixels of residual mask MR

Result: Mask MD

Let Q be a queue containing all the pixels to be masked.
Let N (p) be the set of neighbors of pixel p
Add all pixels from MR to queue Q
while Q ̸= ∅ do

Add all pixels inside Q to MD

foreach p ∈ Q do
foreach n ∈ N (p) do

if ||D(p)−D(n)|| < θ ·D(p) then
Add n to Q if n /∈ MD

end
end
Remove p from Q

end
end

of the RGB-D frame depicted in Figure 6.3a. We select a threshold t as:

t = γτ 2, (6.1)

where τ is the truncation distance used in our TSDF representation and γ is a
value between 0 (everything is masked) and 1 (nothing is masked). Figure 6.4
shows a histogram of the residuals obtained after the initial registration of one
image. The figure shows how most of the residuals concentrate below a certain
value, except the ones belonging to dynamic parts of the environment. Every
residual exceeding t contributes to the creation of a binary mask, as illustrated in
Figure 6.3c. Such threshold-based segmentation is often not perfect and may fail
to capture the whole dynamic object. Since we have depth information available,
we use the eroded mask MR to initialize a depth-aware flood fill algorithm,
summarized in Algorithm 1, related to the region growing approaches used in [62,
102]. Given an initial region, defined by MR, the algorithm consists in adding
neighboring pixels to that region as long as their depth does not differ more
than a threshold θ. Finally, the mask is dilated again to cover eventual border
pixels left out by the floodfill. Figure 6.3d shows the resulting mask after all the
processing steps. We then perform a second registration without masked pixels
and integrate the RGB-D information ignoring the masked pixels into the model
using the newly obtained pose.

79

6.1. ReFusion: 3D Reconstruction in Dynamic Environments

Dynamic

Static

Figure 6.4: Histogram of residuals obtained after the registration of an image containing dy-
namic elements. The red ellipse highlights the residuals resulting from the dynamic parts. By
considering only pixels with residuals under the threshold t, we can identify the dynamic parts
of the image.

Positive SDF

Negative SDF

Free space

Clipping plane

Mapped object

Figure 6.5: Explicit representation of free space. Every voxel inside the camera frustum that is
not occluded and is outside the truncation distance is marked as free, see the grey cells in the
figure.

6.1.3 Carving of Model and Free Space Management

One weakness of TSDF approaches is that they cannot keep track of perceived
free space. However, being aware of the previously measured free space is a way
to reject dynamic objects, as opposed to detecting them from their motion, which
can be tricky given that the camera might also move. Assuming we would have
free-space information, we can define a constraint for rejecting dynamics: a voxel
that was found to be reliably empty can never contain a static object. Indeed,
if a new range image points to a voxel being occupied, it can only be so because
a dynamic object has entered it. Therefore, we can safely reject it. Doing so,
we sidestep the notoriously difficult problem of tracking dynamic moving points,
as done in [100, 102], but our technique only works if free-space information

80

Chapter 6. SLAM in Dynamic Environments

(a) (b)

Figure 6.6: (a) Raw depth from the RGB-D sensor. Out-of-range values are highlighted in red.
(b) Our virtual refined depth from 10 adjacent frames. (about 0.3 s delay)

is explicitly stored in the model. To integrate free-space information, we mark
as free every non-occluded voxel in the camera frustum outside the truncation
region (up to a clipping plane), see Figure 6.5 for an illustration. Note that this
is particularly helpful in case of measurements of points that are too far from
the sensor to be integrated into the TSDF. In our current implementation, we
assign to free voxels an SDF value equal to the truncation distance τ . Doing this
for every voxel in the frustum is suboptimal in terms of memory consumption.
This may be improved by maintaining an octree-based representation of the free
space.

Another consideration regarding free space is that if a previously static object
moves, its voxels must be removed from the map. This corresponds to the fact
that if a voxel previously mapped as static is detected as empty subsequently,
this voxel used to contain a dynamic object and should, therefore, be marked as
free. This behavior is automatically achieved by the TSDF representation, i.e.,
we update the SDF stored in the voxel by performing a weighted average between
the current value and the truncation distance τ . Therefore, if a voxel is detected
as free long enough, it will be reliably marked as free.

6.1.4 Handling Invalid Measurements
Marking free voxels in the camera frustum is effective as long as we know from
the sensor that those regions of space are empty. However, common commercial
RGB-D cameras return depth images that contain invalid measurements, i.e.,
pixels with a depth value of zero, as exemplarily shown by red pixels in Fig-
ure 6.6a. These measurements are invalid either because they are out-of-range
(too close to the sensor or too far from it) or because they are not measurable,
e.g., because of scattering media, reflecting surfaces, etc. For our approach to

81

6.2. Depth-Enhanced Neural Network-Based Dynamic Filtering

work in every possible case, it is necessary to distinguish between out-of-range
and non-measurable values. Two methods to handle such cases are possible.

The first option is to make no distinction and not consider zero values, as it is
commonly done in other RGB-D mapping approaches. In this case, our approach
will work correctly when the whole scene is in the measurement range of the
depth sensor. If there are out-of-range values, dynamic objects will be incorrectly
added to the model, thus affecting its quality.

The second method is to “correct” non-measurable values if possible. To this
end, we create a temporary model from n consecutive frames and generate virtual
depths from the registered poses. Then, we fill in the original depth images by re-
placing every zero value with the corresponding value of the virtual depth. In this
way, non-measurable values are usally reduced thanks to multiple observations
from slightly different viewpoints. The remaining values are assumed to come
from out-of-range measurements of the camera and are replaced with a high fixed
depth value. Figure 6.6b shows an example of a virtual depth image obtained
with this technique. This solution, however, assumes that nothing appears in
front of the camera that is closer than the minimum range of the depth sensor.

In theory, this assumption can be relaxed in case we add an additional sensor,
e.g., a simple sonar on top of the RGB-D sensor, that detects whether there are
objects too close to the camera. Moreover, a disadvantage of this method is that
the actual model is then generated with a delay of n frames, which might be
suboptimal for some robotics applications.

In the following experiments, we employ the second option for modeling the
sequences of the TUM RGB-D dataset, since the depth images contain out-of-
range values. For the sequences of our dataset, we employ the first option, since
the recorded depth is always within the valid range of the depth sensor.

6.2 Depth-Enhanced Neural Network-Based Dy-
namic Filtering

In contrast to our approach, described in Section 6.1, the current trend in the state
of the art is to identify specific category of dynamic elements using a convolutional
neural network (CNN), and remove them from the environment [10, 101]. To
provide a comparison between our geometric approach and a CNN-based one, we
implemented an algorithm based on our basic SLAM system (see Chapter 3) in
combination with a CNN-based segmentation of people. We basically pre-process
the RGB-D information using a CNN to remove people from the images before
the registration, see Figure 6.7.

For the segmentation of people, we use an encoder-decoder CNN architec-

82

Chapter 6. SLAM in Dynamic Environments

RGB

Dynamics

Segmentation

Depth

(depth image)

Pose Estimation

3D Reconstruction

Depth
RGB

Depth
RGB

S
D

F

Figure 6.7: Overview of our CNN-based baseline approach. Given an image from the RGB-D
sensor, we first compute the masked RGB and depth images with our dynamics segmentation
to filter dynamics caused by people (depicted by green masks). The filtered images are then
used to estimate the pose T w.r.t. the SDF given by our 3D reconstruction. With the updated
pose of the sensor, we finally integrate the measurements into our 3D reconstruction of the
environment.

ture [75] predicting pixel-wise labels, based on the inception architecture [128]
and using residual connections [50]. The network was trained on the MS COCO
dataset [69] people segments and the segmentation runs at 65Hz using an image
of size 640 × 480, and achieving a validation Jaccard index of 85%. Thus, the fil-
tering can be performed at real-time speed, and further classes of dynamic objects
can be added in a straight forward way. Such segmentation is not perfect and
can fail to capture the whole body of the person. Therefore, we use the eroded
RGB mask MRGB to initialize a depth-based flood fill algorithm, in a similar
way as described in Algorithm 1. Given the RGB-D mask MD, we found that a
composition of a dilated MRGB and MD performs better then just using either
one. We found that the flood fill otherwise misses parts that got eroded, but just
the dilation of the RGB mask misses parts that can be extracted from the depth
map. Using the computed masks, we perform the registration and fuse the data
in the model as described in Chapter 3, ignoring the masked pixels.

6.3 Experimental Evaluation
The main contribution of this work is a TSDF-based mapping approach that is
able to operate in environments with the presence of highly dynamic elements
by relying solely on geometric information, i.e., our approach is completely class
agnostic and does not require tracking of objects. Our experiments show the ca-
pabilities of our method and support our key claims, which are: (i) our approach
is robust to dynamic elements in the environment and provides a camera track-

83

6.3. Experimental Evaluation

Table 6.1: Parameters of our approach in all experiments.

Parameter Value

Voxel size 0.01m
Truncation distance τ 0.1m
Huber constant 0.02

Initial regularization parameter λ 0.002

Weight wc 0.025

floodfill threshold θ 0.007

Residual threshold weight γ 0.5

ing performance on par or better than state-of-the-art dense SLAM approaches,
and (ii) provides a dense 3D model that contains only the static parts of the en-
vironment, which is more accurate than other state-of-the-art approaches when
compared to the ground truth model.

We provide comparisons with StaticFusion (SF) [109], DynaSLAM (DS) [10]
and MaskFusion (MF) [102]. As our approach does not rely on deep neural
networks, we make a distinction in our comparison between the pure geometric
approach of DynaSLAM (G) and the combined deep neural network+geometric
approach (N+G). Moreover, we provide the results of the SLAM system presented
in Chapter 3, combined with a CNN (Section 6.2). We refer to such system as
Base+CNN. We tested all approaches on the dynamic scenes of the TUM RGB-
D dataset [125], as well as on our dataset, designed to contain highly dynamic
scenes. We obtained the reported results by using the open source implementa-
tions available for the different approaches, with the exception of MaskFusion,
where we only report results from the original paper [102].

In all experiments, we used the default parameters provided by the open
source implementations of the approaches. For our approach, we used the set
of parameters shown in Table 6.1, which we determine empirically, but similar
values for those parameters gave comparable results.

In the presented tables, we separate the approaches that rely solely on geomet-
ric information, from approaches that rely also on neural networks. We highlight
in bold the best result among the first category of approaches, as we focus mainly
at class agnostic approaches.

6.3.1 Performance on the TUM RGB-D Dataset

The first experiment shows the performance of our approach with the TUM RGB-
D dataset [125]. Note that, since the depth information from these sequences
contains out-of-range values, we used the approach described in Section 6.1.4

84

Chapter 6. SLAM in Dynamic Environments

Figure 6.8: Final mesh obtained using our approach on the walking_static sequence, in which
two people are continuously walking through the scene.

Table 6.2: Absolute Trajectory Error (RMS) [m] on dynamic scenes of TUM dataset.

Purely geometric Requires CNN
Ours SF DS (G) DS (N+G) MF Base+CNN

Dense approach 3 3 7 7 3 3

sitting_static 0.009 0.014 0.009 0.007 0.021 0.008
sitting_xyz 0.040 0.039 0.009 0.015 0.031 0.063
sitting_halfsphere 0.110 0.041 0.017 0.028 0.052 0.181
walking_static 0.017 0.015 0.014 0.007 0.035 0.024
walking_xyz 0.099 0.093 0.085 0.017 0.104 0.065
walking_halfsphere 0.104 0.681 0.084 0.026 0.106 0.156

Max 0.110 0.681 0.085 0.028 0.106 0.181

to obtaine a refined depth, with the temporary model created from n = 10

consecutive frames, which corresponds to a model computation that is delayed
by approximately 0.3 s, which should be acceptable for most setups.

Table 6.2 shows the results of all considered approaches on six sequences of the
TUM dataset. From this table, it is clear that DynaSLAM outperforms the other
methods. However, DynaSLAM is a feature-based approach and, in contrast to
the other approaches, does not provide a dense model. The four dense mapping
approaches show in most of the cases similar results, except for the sequence
walking_halfsphere, where StaticFusion lost track due to the excess of dynamic
elements at the beginning of the sequence, and the sequence sitting_halfsphere,
where our approach and Basic+CNN show worse performance. In terms of 3D
reconstruction, our approach is always able to create a consistent mesh of the

85

6.3. Experimental Evaluation

Dynamic object
(not removed)

Figure 6.9: Final mesh obtained using our approach on the walking_xyz sequence. In this
sequence, the camera follows the person on the right at the beginning and then never revisits
that location. Therefore, the person is added in the model.

environment, see Figure 6.8 for an example.
The only case where the model built by our approach shows artifacts is on

the walking_xyz sequence, where a person remains in the model, see Figure 6.9.
This happens because the person is tracked by the camera at the beginning of
the sequence and the location where the person stops is never revisited again.
Therefore, the algorithm cannot know that the voxels in that location are actually
free. This is confirmed by Figure 6.10, which shows the relative position error
versus the elapsed time. It is evident from the figure that in the first four seconds,
i.e., when the camera tracks the person, the error is particularly high. In sum, we
are on par with state-of-the-art dense mapping approaches in terms of tracking,
but we use a completely different technique based on TSDF instead of surfels.
This allows for example to easily extract a detailed mesh of the environment,
useful for many applications.

6.3.2 Performance on the Bonn RGB-D Dynamic Dataset

The second set of experiments consists of the comparison between the algorithms
on our dataset. Our dataset includes 24 highly dynamic scenes, where people
perform different tasks, such as manipulating boxes or playing with balloons,
see Figure 6.11 for some example RGB frames. These tasks often obstruct the
camera, creating particularly challenging situation for mapping approaches. We
recorded the dataset using an ASUS Xtion Pro LIVE sensor, combined with
an Optitrack Prime 13 motion capture system for the ground truth trajectories.
Additionally a Leica BLK360 terrestrial laser scanner was used to obtain a ground
truth 3D pointcloud of the static environment.

Table 6.3 shows the performance of different approaches on our scenes. The
variety of sequences show interesting phenomena. For example, on the scenes
where the dynamic component is a uniformly colored balloon, DynaSLAM out-

86

Chapter 6. SLAM in Dynamic Environments

0 5 10 15 20 25

Time [s]

0.0

0.1

0.2

0.3

0.4

T
ra

n
sl

a
ti

o
n

a
l

E
rr

o
r

[m
]

Relative Translational Error

Figure 6.10: Relative translational error over time for the walking_xyz sequence. In this plot
it is visible how the relative error is particularly high at the beginning of the sequence, when
the camera is tracking the person. After the first four seconds, the error drops substantially.

Figure 6.11: Example RGB frames from our highly dynamic dataset.

performs the dense approaches, because it cannot detect features on the balloon,
which therefore does not affect the SLAM performance. Our approach performs
best on scenes crowded with people, which are among the most challenging if no
semantic segmentation algorithm is available. On sequences that involve the ma-
nipulation of boxes, the algorithms have mixed results, with our approach being
better in about half of the cases and DynaSLAM being better on the other half.
Note that DynaSLAM with the combined neural network and geometric approach
performs the best in most cases. Moreover, our Base+CNN approach often out-
performs our geometric approach. This is due to the heavy bias of having people
in every sequence of our dataset, therefore the segmentation of people always
helps the algorithm achieving better results. However, the worst performance
of our approach is on par with the worst performance of DynaSLAM (N+G)
and substantially better than the other approaches, showing that our approach
is more robust to failure. This is a desirable quality when deploying robotic sys-
tems. Finally, as discussed in the previous section, our approach is able to build

87

6.3. Experimental Evaluation

Table 6.3: Absolute Trajectory Error (RMS) [m] on our dataset. In this table, we shorten
obstructing_box with o_box and nonobstructing_box with no_box.

Purely geometric Requires CNN
Ours SF DS (G) DS (N+G) Base+CNN

Dense approach 3 3 7 7 3

balloon 0.175 0.233 0.050 0.030 0.142
balloon2 0.254 0.293 0.142 0.029 0.179
balloon_tracking 0.302 0.221 0.156 0.049 0.154
balloon_tracking2 0.322 0.366 0.192 0.035 0.286
crowd 0.204 3.586 1.065 0.016 0.110
crowd2 0.155 0.215 1.217 0.031 0.133
crowd3 0.137 0.168 0.835 0.038 0.255
kidnapping_box 0.148 0.336 0.026 0.029 0.101
kidnapping_box2 0.161 0.263 0.033 0.035 0.134
moving_no_box 0.071 0.141 0.317 0.232 0.056
moving_no_box2 0.179 0.364 0.052 0.039 0.134
moving_o_box 0.343 0.331 0.544 0.044 0.347
moving_o_box2 0.528 0.309 0.589 0.263 0.390
person_tracking 0.289 0.484 0.714 0.061 0.246
person_tracking2 0.463 0.626 0.817 0.078 0.348
placing_no_box 0.106 0.125 0.645 0.575 0.087
placing_no_box2 0.141 0.177 0.027 0.021 0.113
placing_no_box3 0.174 0.256 0.327 0.058 0.137
placing_o_box 0.571 0.330 0.267 0.255 0.818
removing_no_box 0.041 0.136 0.016 0.016 0.038
removing_no_box2 0.111 0.129 0.022 0.021 0.086
removing_o_box 0.222 0.334 0.362 0.291 1.065
synchronous 0.441 0.446 0.977 0.015 0.016
synchronous2 0.022 0.027 0.887 0.009 0.015

Max 0.571 3.586 1.217 0.575 1.065

a consistent model of the environment in most of the cases, see Figure 6.1 for an
example of model from the scene crowd3.

6.3.3 Model Accuracy

The last set of experiments shows that our approach provides an accurate, dense
3D model that contains only the static parts of the environment. To perform

88

Chapter 6. SLAM in Dynamic Environments

(a) (b)

(c) (d)

Figure 6.12: (a) Our test environment. (b) Terrestrial laser scanner. (c) Tilt and turn target.
(d) Calibration setup used to align the sensor’s reference frame with the motion capture system’s
one.

such experiments, we first built a high resolution point cloud of the static part of
our test environment (Figure 6.12a) using a professional terrestrial laser scanner,
the Leica BLK360 (Figure 6.12b). We then aligned the point cloud to our motion
capture system’s reference frame using tilt and turn targets (Figure 6.12c) that we
located with both the laser scanner and the motion capture system. Figure 6.13a
shows a section of our ground truth point cloud.

To align the model created by the algorithms to our ground truth, we trans-
formed it from the reference frame of the RGB-D sensor, to the reference frame
of the motion capture system. We aligned the two frames using the calibration
setup shown in Figure 6.12d, where the markers positioned in the environment
were known in both reference frames.

We compare the models built by our algorithm and by StaticFusion [109] for
the sequences crowd3 and removing_nonobstructing_box w.r.t. the ground truth.
For each point of the evaluated model, we measure its distance from the ground
truth.

89

6.4. Related Work

(a) Ground truth (b) ReFusion (our approach)

Dynamics

(c) StaticFusion

0.4m

0

Figure 6.13: Models from our approach and StaticFusion of the scene crowd3 compared against
the ground truth. The points of the models are colored according to their distance from the
ground truth. The arrow highlights the dynamic parts of the scene still present in the model
from StaticFusion

For a qualitative impression, Figure 6.13 shows the two models of the scene
crowd3 where the points have been colored according to their distance to the
closest point in the ground truth model. In Figure 6.13c, one can see that some
dynamic elements are still present in the final model, represented by the red
points highlighted by the arrow. In contrast, the model from our approach does
not show such artifacts caused by dynamic objects.

For a quantitative evaluation, Figure 6.14 shows the cumulative percentage
of points at a certain distance from the ground truth for the models of the two
considered sequences. The plots show in both cases that the reconstructed model
by our approach is more accurate.

In summary, our evaluation shows that our method is able to robustly track
an RGB-D sensor in highly dynamic environments. At the same time, it provides
a consistent and accurate model of the static part of the environment.

6.4 Related Work
Usually, mapping approaches assume a static environment and therefore han-
dle moving objects mostly through outliers rejection. By discarding information
that disagrees with the current measurements, one can handle implicitly dynamic
objects [79]. Other approaches model the dynamic parts of the environment ex-
plicitly [62, 109] and filter these before the integration into the model. In this
section, we cover works that explicitly deal with dynamic environments. Re-
fer to Section 3.3 for an overview of SLAM techniques in static environments.
We distinguish three main categories of SLAM approaches in dynamic environ-
ments: feature-based approaches, dense background reconstruction approaches,
and dense approaches for non-rigidly deforming scenes.

The first category consists of approaches that are feature-based, but include
some technique to distinguish features belonging to static objects, from features

90

Chapter 6. SLAM in Dynamic Environments

0.0 0.1 0.2 0.3 0.4 0.5

Distance [m]

25

50

75

100

C
u
m

u
la

ti
v
e

%
o
f

P
o
in

ts Sequence: crowd3

StaticFusion

ReFusion (ours)

0.0 0.1 0.2 0.3 0.4 0.5

Distance [m]

20

40

60

80

100

C
u
m

u
la

ti
v
e

%
o
f

P
o
in

ts Sequence: removing nonobstructing box

StaticFusion

ReFusion (ours)

Figure 6.14: Plot of the cumulative percentage of points (y axis) at a specific distance from the
ground truth (x axis).

detected on dynamic elements. A possible approach to this problem is to use an
object tracker to track dynamic objects, and filter them out from the sensor data
before performing SLAM. An example of this is the monocular SLAM pipeline
proposed by Wangsiripitak et al. [138]. More recently, Riazuelo et al. [99] pre-
sented a standard feature-based visual SLAM algorithm, with the addition of an
existing people tracker [57]. After estimating the pose of the sensor, they ad-
ditionally create a dense 3D occupancy map of the environment, and provide,
within this map, the full trajectories followed by the people in the environment.
Another common approach is to compute the scene flow of the current frame
w.r.t. the previous one and detect outliers by looking at the flow vectors. This
is the approach followed for example by Alcantarilla et al. [2]. They propose an
algorithm that uses a stereo camera and detect features using a Harris corner
detector and MU-SURF descriptors. Using the computed features, they estimate
the pose of the sensor using a pose graph-based SLAM algorithm, then compute
the scene flow of the scene. Based on the flow, they remove the moving inliers
and compute the pose of the sensor a second time. A similar approach is the one
proposed by Wang et al. [137], who compute the scene flow of two consecutive
RGB-D frames, and cluster features with similar 3D flow vectors. Then, they

91

6.4. Related Work

choose the largest cluster as the static part of the environment and use the fea-
tures in a pose graph-based SLAM algorithm. Finally, a possible solution is to
reproject features from a keyframe to the current frame to check whether they
are static or dynamic. Tan et al. [129], for example, propose a monocular SLAM
system that adopts this approach, in combination with a prior-based adaptive
RANSAC. Bescos et al. [10] combine a similar geometric approach with a deep
learning segmentation to enable removal of dynamics in an ORB-SLAM2 sys-
tem [78]. Li et al. [68], in contrast to the previously described approaches, do not
use standard features, but depth edge points. The points are weighted according
to the distance between the real point and the one transformed from a keyframe,
so that dynamic points influence less the SLAM algorithm.

The second category consists of approaches that focus on the dense recon-
struction of the static part of the environment, discarding or modeling separately
the dynamic parts. Keller et al. [62] use outliers in point correspondences during
ICP as seed for segmentation of dynamics. Corresponding model surfels inside
the segments are then marked as unstable. Kim et al. [64], instead, focus on ex-
tracting the background using a non-parametric model [35], from multiple depth
images warped to be in the same pose. Using only the background information,
they perform dense visual odometry. In contrast, Rünz et al. [100] explicitly
track moving objects given by a segmentation process using either motion or se-
mantic cues provided by class-agnostic object proposals [89]. In a more recent
work [102], they use a deep learning segmentation, refined with a geometric ap-
proach, to detect objects in the environment. In addition, they reconstruct and
track all the detected objects independently. A different approach is to cluster
and track moving elements of the scene. For example, Sun et al. [126] first detect
moving patches based on ego-motion-compensated image differencing. Then, they
track the detected patches using a particle filter. Finally, they apply a maximum-
a-posteriori estimator on depth images to determine the foreground. Similarly,
Scona et al. [109] extend ElasticFusion [140] to incorporate only clusters that cor-
respond to the static environment. Distinguishing static and dynamic parts of the
environment is achieved by jointly estimating the camera pose and whether clus-
ters are static or dynamic. This is computed by minimizing an energy function
consisting of two terms: the first tries to align images by enforcing photometric
and geometric consistency only for pixels that belong to static clusters, the second
tries to distinguish static from dynamic clusters according to their residuals.

The third category includes the approaches that explicitly model dynamic el-
ements and reconstruct them by allowing the environment to deform non-rigidly.
The first approach to achieve this result in real-time is the one by Zollhöfer
et al. [146]. They use a custom stereo camera to produce RGB-D data and they
first need to acquire a template from scanning the object to reconstruct. Then

92

Chapter 6. SLAM in Dynamic Environments

they register in real-time the scans of the deforming object, by minimizing an
energy function that encourage every visible model vertex to be as close as pos-
sible to the sample data, while using an as-rigid-as-possible regularizer, which
controls the smoothness of deformations and motion. In a later work, Newcombe
et al. [80] propose DynamicFusion, a template-free approach that runs in real-
time on consumer RGB-D cameras. For each frame, they compute a warp field
that transforms the model into the live frame, using an energy function similar
to [146]. They estimate a 6D tranformation for sampled points on the mesh, then
they interpolate them using dual-quaternion blending to obtain the full deforma-
tion field. Innmann et al. [54], with their VolumeDeform, extend DynamicFusion
by adding sparse color feature matching, based on SIFT features, to compute
the scene deformation. Guo et al. [47], instead, extend DynamicFusion by intro-
ducing albedo information to improve the reconstruction. Another extension is
Fusion4D, by Dou et al. [31]. They introduce the possibility of combining the
information from multiple RGB-D cameras. Moreover, instead of using just the
first configuration of the environment as canonical pose, they use multiple key
volumes that they warp to the current frame. In contrast to the previous ap-
proaches, Slavcheva et al. [113] do not represent the deformation field of points
on a mesh, but they operate directly on the SDF. They minimize an energy func-
tion composed by a data term that aligns frames by minimizing the voxel-wise
difference of signed distances, and a regularization term that enforces the defor-
mation field to be approximately Killing, i.e., it generates locally nearly isometric
motions. In a follow-up work, named SobolevFusion [114], they propose to es-
timate the flow field by defining the gradient flow in Sobolev space, leading to
a faster and more detailed reconstruction. Moreover, they estimate the data as-
sociation between voxels by matching the spectrum of the Laplacian matrix of
shapes. Knowing the data association allows them to texture the model using
RGB information. Finally, an approach that tries to combine static and dynamic
reconstruction is MixedFusion, by Zhang et al. [143]. They employ a sigmoid-
based ICP to detect dynamic objects. Then, they reconstruct the static part in
a similar way as KinectFusion [79], and the dynamic parts in a similar way as
DynamicFusion [80].

In this chapter, we propose an approach of the second category, i.e., we recon-
struct the static part of the environment and discard dynamic elements. To detect
dynamics, we rely on the residuals from the registration and on the detected free
space. In this way, our approach is able to identify any kind of dynamics with-
out relying on specific classes or models, and without explicitly tracking dynamic
objects.

93

6.5. Conclusion

6.5 Conclusion
In this chapter, we presented ReFusion, a TSDF-based mapping approach able to
track the pose of the camera in dynamic environments and build a consistent 3D
model of the static world. Our approach tracks the sensor by exploiting directly
the TSDF information and the color information encoded in voxel blocks that
are only allocated when needed. Our method filters dynamics using an algorithm
based on the residuals from the registration and the representation of free space.
We evaluated our approach on the popular TUM RGB-D dataset, as well as on
our Bonn RGB-D dynamic dataset, and provided comparisons to other state-of-
the-art techniques. Our experiments show that our approach leads to an improved
pose estimation and 3D reconstruction in the presence of dynamic elements in
the environment, compared to other state-of-the-art dense SLAM approaches.

94

Chapter 7

Conclusion

Using a robot to build a 3D model of the environment has several at-
tractive properties. An autonomous robotic platform exploring and
mapping the environment eliminates the need of deploying trained
personnel operating specialized equipment to scan the environment.

This opens the possibility of using 3D models for several consumer applications,
such as augmented reality or gaming, as well as for applications where the en-
vironment is not easily accessible by humans, such as rescue operations in dis-
aster scenarios. In this thesis, we addressed several problems in the context of
autonomous 3D reconstruction with robots. In particular, we presented an ap-
proach to fuse in real-time the measurements from the sensor into a dense 3D
model, and we proposed a strategy to select the best viewpoints to take such
measurements, in an unknown environment. Moreover, we tackled two different
cases of non-static environments, by proposing an algorithm to detect long-term
changes in a given 3D model from a sequence of images, and a technique to deal
with dynamic elements, while we record the measurements. We tested all the
approaches on real world data, and we designed our algorithms to work online on
a robotic platform equipped with consumer-available sensors. In the remainder
of this section, we briefly summarize the contributions of our work.

7.1 Summary of the Key Contributions
The first problem we addressed is the 3D reconstruction of the environment in
real-time using an RGB-D sensor. We proposed a novel approach for dense SLAM
able to track the sensor even in situation with scarce structural information.
Moreover, our approach is implemented on the GPU and is efficient in terms of
both execution time and memory consumption. This means that our approach
is able to reconstruct larger areas compared to conventional grid-based methods,
while maintaining a real-time performance, i.e., our approach is faster than the

95

7.1. Summary of the Key Contributions

framerate of the sensor. We tested our algorithm on a publicly available dataset
and provided a comparison with other state-of-the-art methods. Our experiments
show that our approach performs better that the state of the art in situations
with low structural cues.

The second problem we addressed is the selection of the best viewpoints to
take the measurements necessary to build the 3D model of the environment au-
tonomously. We proposed an approach that targets specifically MAVs, as they
are particurlarly suitable for 3D exploration, due to their capabilities. Our algo-
rithm selects iteratively the next best viewpoint that maximizes the information
acquired from the sensor. Moreover, it takes into account the distance from the
current position to the new point and the change of direction of motion. Finally,
our method includes specific safety features in case the battery of the robot is
about to come to an end. We tested our approach in both simulated and real
environments, and compared it with other state-of-the-art methods. Our ex-
periments show that our technique surpasses the state of the art in terms of
uncertainty reduction, path smoothness and execution time.

The third problem we addressed is the detection of long-term changes in the
environment, that have to be added in an outdated 3D model. We proposed a
novel technique to detect changes between the current state of the environment
and a given 3D model, using a short sequence of images. We detect the changes
by reprojecting images onto each other, passing through the model. We then
eliminate the ambiguities by combining the inconsistencies from multiple images.
Finally, we triangulate the changes in 3D. The whole process takes less than two
seconds, allowing it to be executed online on a robot. We tested our approach on
existing datasets, as well as on our own, which we publicly share. Our experiments
show that our method reliably identifies the changes in the environment w.r.t. an
existing model, allowing a mapping or exploring robot to target those parts for
its following measurements.

Finally, we targeted the problem of identifying dynamic elements in the mea-
surements, with the purpose of filtering them out. We proposed an apprach that
employs the residuals from the pose registration, in combination with an explicit
representation of the free space, to build a consistent model of the static part of
the environment. We tested our approach on a publicly available benchmark, as
well as on our own dataset. The experiments show that our approach is more
robust than the other tested dense SLAM algorithms, in terms of both tracking
accuracy and consistency of the 3D model. In addition to our novel method, our
contribution consists in a dataset for RGB-D SLAM containing several highly
dynamic scenes. We provide for every scene the ground truth trajectory acquired
with a motion capture system. In addition, we provide a ground truth 3D point
cloud of the static environment recorded using a terrestrial laser scanner.

96

Chapter 7. Conclusion

Overall, we proposed solutions to several important problems in the context of
active 3D reconstruction with mobile robots. We demonstrated the effectiveness
of our methods in real-world situations, often surpassing the state of the art.
Although the four addressed challenges are not the only ones that arise when
targeting the topic of this thesis, the algorithms that we proposed are crucial
components of a fully working autonomous exploring robot, and can be directly
integrated in the complete pipeline of the system.

7.2 Open Source Contributions
The work described in this thesis led to the release of datasets and open source
software. Here we provide a list of links where the software and the datasets are
published:

• Fast Change Detection C++ Library, presented in Chapter 5:
https://github.com/PRBonn/fast_change_detection

• Change Detection Dataset, presented in Chapter 5:
http://www.ipb.uni-bonn.de/data/changedetection2017

• ReFusion C++ Library, presented in Chapter 6:
https://github.com/PRBonn/refusion

• Bonn RGB-D Dynamic Dataset, presented in Chapter 6:
http://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset

97

https://github.com/PRBonn/fast_change_detection
http://www.ipb.uni-bonn.de/data/changedetection2017
https://github.com/PRBonn/refusion
http://www.ipb.uni-bonn.de/data/rgbd-dynamic-dataset

Bibliography

[1] P.F. Alcantarilla, S. Stent, G. Ros, R. Arroyo, and R. Gherardi. Street-View
Change Detection with Deconvolutional Networks. In Proc. of Robotics:
Science and Systems (RSS), 2016.

[2] P.F. Alcantarilla, J.J. Yebes, J. Almazán, and L.M. Bergasa. On Com-
bining Visual SLAM and Dense Scene Flow to Increase the Robustness of
Localization and Mapping in Dynamic Environments. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 1290–1297, 2012.

[3] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active Vision. Intl. Jour-
nal of Computer Vision (IJCV), 1(4):333–356, 1988.

[4] R. Ambruş, N. Bore, J. Folkesson, and P. Jensfelt. Meta-Rooms: Building
and Maintaining Long Term Spatial Models in a Dynamic World. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
1854–1861, 2014.

[5] H. Andreasson, M. Magnusson, and A. Lilienthal. Has Somethong Changed
Here? Autonomous Difference Detection for Security Patrol Robots. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 3429–3435, 2007.

[6] H. Andreasson, R. Triebel, and W. Burgard. Improving Plane Extraction
from 3D Data by Fusing Laser Data and Vision. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 2656–2661,
2005.

[7] N. Atanasov, J. Le Ny, K. Daniilidis, and G.J. Pappas. Decentralized Active
Information Acquisition: Theory and Application to Multi-Robot SLAM.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
4775–4782, 2015.

[8] S. Bai, F. Chen, and B. Englot. Toward Autonomous Mapping and Explo-
ration for Mobile Robots through Deep Supervised Learning. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2017.

99

Bibliography

[9] R. Bajcsy. Active Perception. Proceedings of the IEEE, 76(8):966–1005,
1988.

[10] B. Bescos, J.M. Fácil, J. Civera, and J. Neira. DynaSLAM: Tracking, Map-
ping, and Inpainting in Dynamic Scenes. IEEE Robotics and Automation
Letters (RA-L), 3(4):4076–4083, 2018.

[11] P.J. Besl and N.D. McKay. A Method for Registration of 3D Shapes.
IEEE Trans. on Pattern Analalysis and Machine Intelligence (TPAMI),
14(2):239–256, 1992.

[12] A. Bircher, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel, and
R. Siegwart. Structural Inspection Path Planning via Iterative Viewpoint
Resampling with Application to Aerial Robotics. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 6423–6430, 2015.

[13] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart. Receding
Horizon ”Next-Best-View” Planner for 3D Exploration. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[14] F. Bourgault, A.A. Makarenko, S.B. Williams, B. Grocholsky, and H.F.
Durrant-Whyte. Information Based Adaptive Robotic Exploration. In
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), volume 1, pages 540–545, 2002.

[15] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-Time Cam-
era Tracking and 3D Reconstruction Using Signed Distance Functions. In
Proc. of Robotics: Science and Systems (RSS), volume 2, 2013.

[16] D. Canelhas, T. Stoyanov, and A. Lilienthal. SDF Tracker: A Parallel
Algorithm for On-Line Pose Estimation and Scene Reconstruction from
Depth Images. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 3671–3676, 2013.

[17] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard. Monocular Camera
Localization in 3D LiDAR Maps. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2016.

[18] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel, N. Michael,
and V. Kumar. Information-Theoretic Planning with Trajectory Optimiza-
tion for Dense 3D Mapping. In Proc. of Robotics: Science and Systems
(RSS), 2015.

100

Bibliography

[19] B. Chen, Z. Chen, L. Deng, Y. Duan, and J. Zhou. Building Change
Detection with RGB-D Map Generated from UAV Images. Neurocomputing,
208:350–364, 2016.

[20] J. Chen, D. Bautembach, and S. Izadi. Scalable Real-Time Volumetric
Surface Reconstruction. ACM Transactions on Graphics, 32(4):113, 2013.

[21] K. Choi, I. Lee, and S. Kim. A Feature Based Approach to Automatic
Change Detection from LiDAR Data in Urban Areas. ISPRS Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
18:259–264, 2009.

[22] S. Choi, Q. Zhou, and V. Koltun. Robust Reconstruction of Indoor Scenes.
In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 5556–5565, 2015.

[23] T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid Exploration
with Multi-Rotors: A Frontier Selection Method for High Speed Flight.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2017.

[24] D. Crispell, J. Mundy, and G. Taubin. A Variable-Resolution Probabilistic
Three-Dimensional Model for Change Detection. IEEE Trans. on Geo-
science and Remote Sensing, 50(2):489–500, 2012.

[25] B. Curless and M. Levoy. A Volumetric Method for Building Complex Mod-
els from Range Images. In Proc. of the Intl. Conf. on Computer Graphics
and Interactive Techniques (SIGGRAPH), pages 303–312. ACM, 1996.

[26] A. Dai, A.X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner.
ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017.

[27] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. BundleFusion:
Real-Time Globally Consistent 3D Reconstruction using On-the-fly Surface
Reintegration. ACM Transactions on Graphics, 36(4):76a, 2017.

[28] B. Della Corte, I. Bogoslavskyi, C. Stachniss, and G. Grisetti. A General
Framework for Flexible Multi-Cue Photometric Point Cloud Registration.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2018.

[29] J. Delmerico, S. Isler, R. Sabzevari, and D. Scaramuzza. A Comparison of
Volumetric Information Gain Metrics for Active 3D Object Reconstruction.
Autonomous Robots, pages 1–12, 2017.

101

Bibliography

[30] G.R. Dini, K. Jacobsen, F. Rottensteiner, M. Al Rajhi, and C. Heipke. 3D
Building Change Detection using High Resolution Stereo Images and a GIS
Database. ISPRS Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 39:299–304, 2012.

[31] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S.R. Fanello, A. Kowdle,
S.O. Escolano, C. Rhemann, D. Kim, J. Taylor, K. Pushmeet, V. Tankovich,
and S. Izadi. Fusion4D: Real-time Performance Capture of Challenging
Scenes. ACM Trans. on Graphics (TOG), 35(4):114, 2016.

[32] A.D. Dragan, K.C.T. Lee, and S.S. Srinivasa. Legibility and Predictability
of Robot Motion. In Proc. of the ACM/IEEE Intl. Conf. on Human-Robot
Interaction, 2013.

[33] E. Dunn and J. Frahm. Next Best View Planning for Active Model Im-
provement. In Proc. of British Machine Vision Conference (BMVC), pages
1–11, 2009.

[34] I. Eden and D.B. Cooper. Using 3D Line Segments for Robust and Effi-
cient Change Detection from Multiple Noisy Images. In Proc. of the Eu-
rop. Conf. on Computer Vision (ECCV), pages 172–185, 2008.

[35] A. Elgammal, D. Harwood, and L. Davis. Non-parametric Model for Back-
ground Subtraction. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 751–767, 2000.

[36] M. Everingham, L. Van Gool, C.K. Williams, J. Winn, and A. Zisserman.
The Pascal Visual Object Classes (VOC) Challenge. Intl. Journal of Com-
puter Vision (IJCV), 88(2):303–338, 2010.

[37] M. Fehr, M.T. Dymczyk, S. Lynen, and R. Siegwart. Reshaping Our Model
of the World Over Time. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2016.

[38] M. Fehr, F. Furrer, I. Dryanovski, J. Sturm, I. Gilitschenski, R. Siegwart,
and C.C. Lerma. TSDF-Based Change Detection for Consistent Long-Term
Dense Reconstruction and Dynamic Object Discovery. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2017.

[39] R. Finman, T. Whelan, M. Kaess, and J.J. Leonard. Toward Lifelong
Object Segmentation from Change Detection in Dense RGB-D Maps. In
Proc. of the Europ. Conf. on Mobile Robotics (ECMR), pages 178–185,
2013.

102

Bibliography

[40] A.W. Fitzgibbon. Robust Registration of 2D and 3D Point Sets. Journal
on Image and Vision Computing (IVC), 21(13-14):1145–1153, 2003.

[41] C. Forster, M. Pizzoli, and D. Scaramuzza. Appearance-based Active,
Monocular, Dense Reconstruction for Micro Aerial Vehicles. In Proc. of
Robotics: Science and Systems (RSS), 2014.

[42] W. Förstner and B. Wrobel. Photogrammetric Computer Vision – Statistics,
Geometry, Orientation and Reconstruction. Springer Verlag, 2016.

[43] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee,
Lorenz Meier, Petri Tanskanen, and Marc Pollefeys. Vision-Based Au-
tonomous Mapping and Exploration Using a Quadrotor MAV. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
4557–4564, 2012.

[44] Charles Freundlich, Philippos Mordohai, and Michael M Zavlanos. A Hy-
brid Control Approach to the Next-Best-View Problem using Stereo Vision.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
4493–4498, 2013.

[45] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault. Change Detec-
tion on Points Cloud Data Acquired with a Ground Laser Scanner. ISPRS
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 36(part 3):W19, 2005.

[46] M. Golparvar-Fard, F. Pena-Mora, and S. Savarese. Monitoring Changes of
3D Building Elements from Unordered Photo Collections. In Proc. of the
Int. Conf. on Computer Vision (ICCV) Workshops, pages 249–256, 2011.

[47] K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, and Y. Liu. Real-Time Geometry,
Albedo, and Motion Reconstruction using a Single RGB-D Camera. ACM
Trans. on Graphics (TOG), 36(3):32, 2017.

[48] Christof H., Manfred K., Markus R., Andreas W., Stefan K., Horst B., and
Gerhard R. Online Feedback for Structure-from-Motion Image Acquisition.
In Proc. of British Machine Vision Conference (BMVC), pages 70.1–70.12,
2012.

[49] S. Haner and A. Heyden. Optimal View Path Planning for Visual SLAM.
In Proc. of the Scandinavian Conference on Image Analysis, pages 370–380,
2011.

103

Bibliography

[50] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image
Recognition. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[51] A.J. Heller, Y.G. Leclerc, and Q. Luong. Framework for Robust 3D Change
Detection. In Sensors, Systems, and Next-Generation Satellites, volume
4540, pages 639–650, 2001.

[52] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on
Octrees. Autonomous Robots, 34:189–206, 2013.

[53] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley. Change Detec-
tion from Remotely Sensed Images: From Pixel-Based to Object-Based Ap-
proaches. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS),
80:91–106, 2013.

[54] M. Innmann, M. Zollhöfer, M. Nießner, C. Theobalt, and M. Stam-
minger. VolumeDeform: Real-time Volumetric Non-rigid Reconstruction.
In Proc. of the Europ. Conf. on Computer Vision (ECCV), pages 362–379,
2016.

[55] S.R. Isler, R. Sabzevari, J. Delmerico, and D. Scaramuzza. An Information
Gain Formulation for Active Volumetric 3D Reconstruction. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[56] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinect-
Fusion: Real-time 3D Reconstruction and Interaction using a Moving Depth
Camera. In ACM Symposium on User Interface Software and Technology,
pages 559–568, 2011.

[57] O.H. Jafari, D. Mitzel, and B. Leibe. Real-Time RGB-D Based People
Detection and Tracking for Mobile Robots and Head-Worn Cameras. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
5636–5643, 2014.

[58] S.J. Julier and J.K. Uhlmann. A New Extension of the Kalman Filter
to Nonlinear Systems. Proc. of the SPIE Conf. on Reconnaissance and
Electronic Warfare System, 3068:182–193, 1997.

[59] O. Kähler, V.A. Prisacariu, C.Y. Ren, X. Sun, P. Torr, and D. Murray. Very
High Frame Rate Volumetric Integration of Depth Images on Mobile De-
vices. IEEE Trans. on Visualization and Computer Graphics, 21(11):1241–
1250, 2015.

104

Bibliography

[60] O. Kähler, V.A. Prisacariu, J. Valentin, and D. Murray. Hierarchical Voxel
Block Hashing for Efficient Integration of Depth Images. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2016.

[61] Z. Kang and Z. Lu. The Change Detection of Building Models Using Epochs
of Terrestrial Point Clouds. In Proc. of the IEEE Intl. Workshop on Multi-
Platform/Multi-Sensor Remote Sensing and Mapping, pages 1–6, 2011.

[62] M. Keller, D. Lefloch, M. Lambers, and S. Izadi. Real-time 3D Recon-
struction in Dynamic Scenes using Point-based Fusion. In Proc. of the
Intl. Conf. on 3D Vision (3DV), pages 1–8, 2013.

[63] C. Kerl, J. Sturm, and D. Cremers. Robust Odometry Estimation for RGB-
D Cameras. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 3748–3754, 2013.

[64] D.H. Kim and J.H. Kim. Effective Background Model-Based RGB-D Dense
Visual Odometry in a Dynamic Environment. IEEE Trans. on Robotics
(TRO), 32(6):1565–1573, 2016.

[65] J. Košecka. Detecting Changes in Images of Street Scenes. In Proc. of the
Asian Conf. on Computer Vision (ACCV), pages 590–601, 2012.

[66] M. Krainin, B. Curless, and D. Fox. Autonomous Generation of Com-
plete 3D Object Models Using Next Best View Manipulation Planning. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
5031–5037, 2011.

[67] S. Kriegel, T. Bodenmüller, M. Suppa, and G. Hirzinger. A Surface-Based
Next-Best-View Approach for Automated 3D Model Completion of Un-
known Objects. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 4869–4874, 2011.

[68] S. Li and D. Lee. RGB-D SLAM in Dynamic Environments using
Static Point Weighting. IEEE Robotics and Automation Letters (RA-L),
2(4):2263–2270, 2017.

[69] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context.
In Proc. of the Europ. Conf. on Computer Vision (ECCV), pages 740–755,
2014.

[70] W.E. Lorensen and H.E. Cline. Marching Cubes: a High Resolution 3D
Surface Construction Algorithm. In Proc. of the Intl. Conf. on Computer

105

Bibliography

Graphics and Interactive Techniques (SIGGRAPH), volume 21, pages 163–
169, 1987.

[71] D. MacKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2004.

[72] J.A. Malpica, M.C. Alonso, F. Papí, A. Arozarena, and A. Martínez
De Agirre. Change Detection of Buildings from Satellite Imagery and Li-
DAR Data. International Journal of Remote Sensing, 34(5):1652–1675,
2013.

[73] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fu-
sion++: Volumetric Object-Level SLAM. In Proc. of the Intl. Conf. on 3D
Vision (3DV), pages 32–41, 2018.

[74] D. Meagher. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer. Technical
Report, 1980.

[75] A. Milioto and C. Stachniss. Bonnet: An Open-Source Training and De-
ployment Framework for Semantic Segmentation in Robotics using CNNs.
Worshop on Perception, Inference, and Learning for Joint Semantic, Ge-
ometric, and Physical Understanding, IEEE Int. Conf. on Robotics & Au-
tomation (ICRA), 2018.

[76] A. Millane, Z. Taylor, H. Oleynikova, J. Nieto, R. Siegwart, and C. Cadena.
C-Blox: A Scalable and Consistent TSDF-based Dense Mapping Approach.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2018.

[77] C. Mostegel, A. Wendel, and H. Bischof. Active Monocular Localization:
Towards Autonomous Monocular Exploration for Multirotor MAVs. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
3848–3855, 2014.

[78] R. Mur-Artal and J.D. Tardós. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. on
Robotics (TRO), 2017.

[79] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:
Real-Time Dense Surface Mapping and Tracking. In Proc. of the Intl. Sym-
posium on Mixed and Augmented Reality (ISMAR), pages 127–136, 2011.

106

Bibliography

[80] R.A. Newcombe, D. Fox, and S.M. Seitz. DynamicFusion: Reconstruction
and Tracking of Non-Rigid Scenes in Real-Time. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 343–
352, 2015.

[81] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D
Reconstruction at Scale using Voxel Hashing. Proc. of the SIGGRAPH
Asia, 32(6), 2013.

[82] M. Nieuwenhuisen and S. Behnke. Layered Mission and Path Planning
for MAV Navigation with Partial Environment Knowledge. In Intelligent
Autonomous Systems 13, pages 307–319. Springer, 2016.

[83] P. Núñez, P. Drews, A. Bandera, R. Rocha, M. Campos, and J. Dias.
Change Detection in 3D Environments Based on Gaussian Mixture Model
and Robust Structural Matching for Autonomous Robotic Applications.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), pages 2633–2638, 2010.

[84] E. Palazzolo, J. Behley, P. Lottes, P. Giguère, and C. Stachniss. ReFu-
sion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras
Exploiting Residuals. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2019.

[85] E. Palazzolo and C. Stachniss. Change Detection in 3D Models Based on
Camera Images. In 9th Workshop on Planning, Perception and Navigation
for Intelligent Vehicles at the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2017.

[86] E. Palazzolo and C. Stachniss. Information-Driven Autonomous Explo-
ration for a Vision-Based MAV. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, IV-2/W3:59–66, 2017.

[87] E. Palazzolo and C. Stachniss. Effective Exploration for MAVs Based on
the Expected Information Gain. Drones, 2(1), 2018.

[88] E. Palazzolo and C. Stachniss. Fast Image-Based Geometric Change De-
tection Given a 3D Model. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2018.

[89] P.O. Pinheiro, T. Lin, R. Collobert, and P. Dollár. Learning to Refine Ob-
ject Segments. In Proc. of the Europ. Conf. on Computer Vision (ECCV),
pages 75–91, 2016.

107

Bibliography

[90] R. Pito. A Solution to the Next Best View Problem for Automated Surface
Acquisition. IEEE Trans. on Pattern Analalysis and Machine Intelligence
(TPAMI), 21(10):1016–1030, 1999.

[91] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE: Probabilistic,
Monocular Dense Reconstruction in Real Time. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 2609–2616, 2014.

[92] T. Pollard and J.L. Mundy. Change Detection in a 3D World. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1–6, 2007.

[93] C. Potthast and G.S. Sukhatme. A Probabilistic Framework for Next Best
View Estimation in a Cluttered Environment. Journal of Visual Commu-
nication and Image Representation (JVCIR), 25(1):148–164, 2014.

[94] R. Qin and A. Gruen. 3D Change Detection at Street Level Using Mobile
Laser Scanning Point Clouds and Terrestrial Images. ISPRS Journal of
Photogrammetry and Remote Sensing (JPRS), 90:23–35, 2014.

[95] R. Qin, J. Tian, and P. Reinartz. 3D Change Detection – Approaches
and Applications. ISPRS Journal of Photogrammetry and Remote Sensing
(JPRS), 122:41–56, 2016.

[96] P. Quin, G. Paul, A. Alempijevic, D. Liu, and G. Dissanayake. Efficient
Neighbourhood-Based Information Gain Approach for Exploration of Com-
plex 3D Environments. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 1343–1348, 2013.

[97] R.J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image Change Detec-
tion Algorithms: a Systematic Survey. IEEE Trans. on Image Processing,
14(3):294–307, 2005.

[98] M. Reinhardt, B. Noack, and U.D. Hanebeck. Closed-Form Optimization
of Covariance Intersection for Low-Dimensional Matrices. In Proc. of the
Int. Conf. on Information Fusion, pages 1891–1896, 2012.

[99] L. Riazuelo, L. Montano, and J.M.M. Montiel. Semantic Visual SLAM in
Populated Environments. In 2017 European Conference on Mobile Robots
(ECMR), pages 1–7, 2017.

[100] M. Runz and L. Agapito. Co-Fusion: Real-Time Segmentation, Tracking
and Fusion of Multiple Objects. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2017.

108

Bibliography

[101] M. Rünz and L. Agapito. MaskFusion: Real-Time Recognition, Tracking
and Reconstruction of Multiple Moving Objects. arXiv preprint, 2018.

[102] M. Rünz, M. Buffier, and L. Agapito. MaskFusion: Real-Time Recognition,
Tracking and Reconstruction of Multiple Moving Objects. In Proc. of the
Intl. Symposium on Mixed and Augmented Reality (ISMAR), pages 10–20,
2018.

[103] S.A. Sadat, K. Chutskoff, D. Jungic, J. Wawerla, and R. Vaughan. Feature-
Rich Path Planning for Robust Navigation of MAVs with Mono-SLAM. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), pages
3870–3875, 2014.

[104] K. Sakurada and T. Okatani. Change Detection from a Street Image Pair
using CNN Features and Superpixel Segmentation. In Proc. of British
Machine Vision Conference (BMVC), pages 61–1, 2015.

[105] K. Sakurada, T. Okatani, and K. Deguchi. Detecting Changes in 3D Struc-
ture of a Scene from Multi-View Images Captured by a Vehicle-Mounted
Camera. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 137–144, 2013.

[106] H. Sarbolandi, D. Lefloch, and A. Kolb. Kinect Range Sensing: Structured-
Light versus Time-of-Flight Kinect. Journal of Computer Vision and Image
Understanding (CVIU), 139:1–20, 2015.

[107] K. Schmid, H. Hirschmüller, A. Dömel, I. Grixa, M. Suppa, and
G. Hirzinger. View Planning for Multi-View Stereo 3D Reconstruction us-
ing an Autonomous Multicopter. Journal of Intelligent and Robotic Systems
(JIRS), 65(1-4):309–323, 2012.

[108] J. Schneider, C. Eling, L. Klingbeil, H. Kuhlmann, W. Förstner, and
C. Stachniss. Fast and Effective Online Pose Estimation and Mapping for
UAVs. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
pages 4784–4791, 2016.

[109] R. Scona, M. Jaimez, Y.R. Petillot, M. Fallon, and D. Cremers. Static-
Fusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic
Environments. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2018.

[110] W. Scott, G. Roth, and J. Rivest. View Planning for Automated 3D Object
Reconstruction Inspection. ACM Computing Surveys, 35(1), 2003.

109

Bibliography

[111] R. Shade and P. Newman. Choosing Where to Go: Complete 3D Ex-
ploration with Stereo. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 2806–2811, 2011.

[112] S. Shen, N. Michael, and V. Kumar. Autonomous Indoor 3D Exploration
with a Micro-Aerial Vehicle. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), pages 9–15, 2012.

[113] M. Slavcheva, M. Baust, D. Cremers, and S. Ilic. KillingFusion: Non-Rigid
3D Reconstruction without Correspondences. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 1386–1395, 2017.

[114] M. Slavcheva, M. Baust, and S. Ilic. SobolevFusion: 3D Reconstruction of
Scenes Undergoing Free Non-Rigid Motion. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 2646–2655, 2018.

[115] M. Slavcheva and S. Ilic. SDF-TAR: Parallel Tracking and Refinement in
RGB-D Data using Volumetric Registration. In Proc. of British Machine
Vision Conference (BMVC), 2016.

[116] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic. SDF-2-SDF: Highly Accurate
3D Object Reconstruction. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 680–696, 2016.

[117] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic. SDF-2-SDF Registration for
Real-Time 3D Reconstruction from RGB-D Data. Intl. Journal of Computer
Vision (IJCV), pages 1–22, 2018.

[118] C. Stachniss, G. Grisetti, and W. Burgard. Information Gain-based Ex-
ploration Using Rao-Blackwellized Particle Filters. In Proc. of Robotics:
Science and Systems (RSS), pages 65–72, Cambridge, MA, USA, 2005.

[119] F. Steinbrucker, C. Kerl, and D. Cremers. Large-Scale Multi-Resolution
Surface Reconstruction from RGB-D Sequences. In Proc. of the IEEE
Intl. Conf. on Computer Vision (ICCV), pages 3264–3271, 2013.

[120] F. Steinbrücker, J. Sturm, and D. Cremers. Real-Time Visual Odometry
from Dense RGB-D Images. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), pages 719–722, 2011.

[121] F. Steinbrücker, J. Sturm, and D. Cremers. Volumetric 3D Mapping in
Real-Time on a CPU. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2014.

110

Bibliography

[122] S. Stent, R. Gherardi, B. Stenger, and R. Cipolla. Detecting Change for
Multi-View, Long-Term Surface Inspection. In Proc. of British Machine
Vision Conference (BMVC), pages 127–1, 2015.

[123] H. Strasdat, C. Stachniss, and W. Burgard. Which Landmark is Useful?
Learning Selection Policies for Navigation in Unknown Environments. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), Kobe,
Japan, 2009.

[124] D. Perea Ström, F. Nenci, and C. Stachniss. Predictive Exploration Consid-
ering Previously Mapped Environments. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2015.

[125] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
Benchmark for the Evaluation of RGB-D SLAM Systems. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2012.

[126] Y. Sun, M. Liu, and M.Q.H. Meng. Improving RGB-D SLAM in Dynamic
Environments: a Motion Removal Approach. Journal on Robotics and
Autonomous Systems (RAS), 89:110–122, 2017.

[127] S. Suzuki and K. Abe. Topological Structural Analysis of Digitized Bi-
nary Images by Border Following. Computer vision, graphics, and image
processing, 30(1):32–46, 1985.

[128] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going Deeper With Convolutions. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2015.

[129] W. Tan, H. Liu, Z. Dong, G. Zhang, and H. Bao. Robust Monocular SLAM
in Dynamic Environments. In Proc. of the Intl. Symposium on Mixed and
Augmented Reality (ISMAR), pages 209–218, 2013.

[130] A. Taneja, L. Ballan, and M. Pollefeys. Image Based Detection of Geometric
Changes in Urban Environments. In Proc. of the IEEE Intl. Conf. on
Computer Vision (ICCV), pages 2336–2343, 2011.

[131] A. Taneja, L. Ballan, and M. Pollefeys. City-Scale Change Detection in
Cadastral 3D Models Using Images. In Proc. of the IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 113–120, 2013.

[132] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M.H. Gross.
Optimized Spatial Hashing for Collision Detection of Deformable Objects.

111

Bibliography

In Proc. of Vision, Modeling, Visualization (VMV), volume 3, pages 47–54,
2003.

[133] M. Trummer, C. Munkelt, and J. Denzler. Online Next-Best-View Planning
for Accuracy Optimization Using an Extended E-Criterion. In Proc. of the
Intl. Conf. on Pattern Recognition (ICPR), pages 1642–1645, 2010.

[134] A.O. Ulusoy and J.L. Mundy. Image-Based 4D Reconstruction Using 3D
Change Detection. In Proc. of the Europ. Conf. on Computer Vision
(ECCV), pages 31–45, 2014.

[135] J.I. Vasquez-Gomez, L.E. Sucar, R. Murrieta-Cid, and E. Lopez-Damian.
Volumetric Next-Best-View Planning for 3D Object Reconstruction with
Positioning Error. Intl. Journal of Advanced Robotic Systems, 11, 2014.

[136] A.S. Vempati, I. Gilitschenski, J. Nieto, P. Beardsley, and R. Siegwart.
Onboard Real-time Dense Reconstruction of Large-scale Environments for
UAV. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2017.

[137] Y. Wang and S. Huang. Motion Segmentation Based Robust RGB-D
SLAM. In Proc. of the World Congress on Intelligent Control and Au-
tomation, pages 3122–3127, 2014.

[138] S. Wangsiripitak and D.W. Murray. Avoiding Moving Outliers in Visual
SLAM by Tracking Moving Objects. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), pages 375–380, 2009.

[139] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDon-
ald. Kintinuous: Spatially Extended KinectFusion. In Proc. RSS Workshop
on RGB-D: Advanced Reasoning with Depth Cameras, 2012.

[140] T. Whelan, S. Leutenegger, R. S. Moreno, B. Glocker, and A. Davison.
ElasticFusion: Dense SLAM Without A Pose Graph. In Proc. of Robotics:
Science and Systems (RSS), 2015.

[141] W. Xiao, B. Vallet, M. Brédif, and N. Paparoditis. Street Environment
Change Detection from Mobile Laser Scanning Point Clouds. ISPRS Jour-
nal of Photogrammetry and Remote Sensing (JPRS), 107:38–49, 2015.

[142] B. Yamauchi. A Frontier-Based Approach for Autonomous Exploration. In
Proc. of the IEEE Intl. Symp. on Computer Intelligence in Robotics and
Automation (CIRA), pages 146–151, 1997.

112

Bibliography

[143] H. Zhang and F. Xu. MixedFusion: Real-Time Reconstruction of an Indoor
Scene with Dynamic Objects. IEEE Trans. on Visualization and Computer
Graphics, 24(12):3137–3146, 2018.

[144] Q. Zhou and V. Koltun. Dense Scene Reconstruction with Points of Interest.
ACM Transactions on Graphics, 32(4):112, 2013.

[145] Q. Zhou, S. Miller, and V. Koltun. Elastic Fragments for Dense Scene
Reconstruction. In Proc. of the IEEE Intl. Conf. on Computer Vision
(ICCV), pages 473–480, 2013.

[146] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu,
A. Fitzgibbon, C. Loop, C. Theobalt, and M. Stamminger. Real-Time Non-
Rigid Reconstruction using an RGB-D Camera. ACM Trans. on Graphics
(TOG), 33(4):156, 2014.

[147] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein, and
A. Kolb. State of the Art on 3D Reconstruction with RGB-D Cameras. In
Eurographics - State-of-the-Art Reports (STARs), volume 37, 2018.

113

List of Figures

2.1 Examples of RGB-D sensors. 10
2.2 Output images of an RGB-D sensor. 10
2.3 Reference frame of an RGB-D sensor. 11
2.4 Mesh and point cloud examples. 12
2.5 Example of TSDF. 13
2.6 Octree. 14
2.7 Coarse to fine visualization of an octree-based model. 15

3.1 Data structure for voxel hashing. 21
3.2 Voxels allocated using voxel hashing versus a full voxel grid. . . . 27

4.1 Illustration of our exploration algorithm. 32
4.2 Dynamically adapting hull. 35
4.3 Measurement uncertainty of a depth point from two images. . . . 36
4.4 Measurement uncertainty of a depth point from multiple images. . 38
4.5 Simulated environment in V-REP simulator. 42
4.6 Qualitative evaluation of our exploration algorithm. 44
4.7 Global uncertainty at each selected viewpoint. 45
4.8 Total number of explored voxels at each selected viewpoint. . . . 45
4.9 Cumulative histogram of the changes of direction. 46
4.10 Path length at each selected viewpoint. 47
4.11 Map uncertainty versus traveled distance. 47
4.12 Map uncertainty versus elapsed time. 48
4.13 Path computed with the time-dependent cost function enabled. . 49
4.14 Real world experiment. 50

5.1 Illustration of our change detection approach. 58
5.2 Inconsistencies computation between a pair of images. 60
5.3 Re-projection procedure. 61
5.4 Ambiguity elimination using multiple images. 63
5.5 Combining the inconsistencies between multiple images. 63
5.6 3D region computation. 64

115

List of Figures

5.7 Results of our experiments on outdoor scenes. 66
5.8 Results of our experiments on indoor scenes. 67
5.9 Changes occlusion. 67
5.10 Result of our algorithm projected on the original image. 68
5.11 Evaluation on our outdoor datasets. 68
5.12 Evaluation on the indoor ScanNet datasets. 69
5.13 Results of our approach on the datasets by Taneja et al. 71

6.1 Result of our approach. 76
6.2 Overview of our approach. 77
6.3 Steps of the mask creation. 78
6.4 Histogram of residuals after the registration of an image. 80
6.5 Explicit representation of free space. 80
6.6 Virtual depth. 81
6.7 Overview of our CNN-based baseline approach. 83
6.8 Final mesh obtained using our approach. 85
6.9 Final mesh obtained using our approach. 86
6.10 Relative translational error over time. 87
6.11 Example RGB frames from our highly dynamic dataset. 87
6.12 Dataset recording. 89
6.13 Models compared against the ground truth. 90
6.14 Cumulative percentage of points at a specific distance. 91

116

List of Tables

3.1 Parameters of our approach in all experiments. 25
3.2 Absolute Trajectory Error (RMS) on TUM dataset. 25
3.3 Relative Pose Error (RMS) on TUM dataset. 26

4.1 Weights used in the cost function in our implementation. 42
4.2 Average time and std. deviation to compute a viewpoint. 48

5.1 Average execution time for different datasets. 70
5.2 Results for the datasets by Taneja et al. 70

6.1 Parameters of our approach in all experiments. 84
6.2 Absolute Trajectory Error (RMS) on TUM dataset. 85
6.3 Absolute Trajectory Error (RMS) on our dataset. 88

List of Algorithms

1 floodfill for generating MD. 79

117

In der Schriftenreihe des Instituts für Geodäsie und Geoinformation
der Rheinischen Friedrich-Wilhelms-Universität Bonn sind erschienen:

2699-6685 (Online)

Heft 66 Emanuele Palazzolo
2020 Active 3D Reconstruction for Mobile Robots

Heft 65 Olga Vysotska
2020 Visual Place Recognitionin Changing Environments

Heft 64 Kaihong Huang
2020 Extrinsic Calibration and Ego-Motion Estimation for Mobile Multi-Sensor Systems

Heft 63 Christian Merfels
2020 Sensor fusion for localization of automated vehicles

Heft 62 Igor Bogoslavskyi
2020 Robot Mapping and Navigation in Real-World Environments

Heft 61 Johann Christian Rose
2020 Automatische, hochaufgelöste 3D-Phänotypisierung von

Trauben und Beeren der Weinrebe unter Feldbedingungen

Heft 60 Florian Zimmermann
2020 Analysis and mitigation of site-dependent effects in static and kinematic

GNSS applications
--
ISSN 1864-1113

Heft 59 Sebastian Halsig
2018 Atmospheric refraction and turbulence in VLBI data analysis

Heft 58 Sebastian Alexander Kropp
2017 Hochwasserrisiko und Immobilienwerte

Heft 57 Sujit Kumar Sikder
2017 Exploring Urban Structure to Approach Energy Optimization

Heft 56 Asad Asadzadeh
2017 Conceptualizing the concept of disaster resilience:

a hybrid approach in the context of earthquake hazard

Heft 55 Stefan Paulus
2017 Potentiale von Laserscannern zur Phänotypisierung von Pflanzen für

den Einsatz im Hochdurchsatz-Screening

Heft 54 Proceedings of the First International Workshop on VLBI Observations of
2017 Near-field Targets

Heft 53 Christian Eling
2016 Entwicklung einer direkten Georeferenzierungseinheit zur Positions-
 und Orientierungsbestimmung leichter UAVs in Echtzeit

Heft 52 Maike Schumacher
2016 Methods for assimilating remotely-sensed water storage changes into
 hydrological models

Heft 51 Christoph Holst
2015 Analyse der Konfiguration bei der Approximation ungleichmäßig abgetasteter Oberflächen

auf Basis von Nivellements und terrestrischen Laserscans

Heft 50 Lutz Rolf Roese-Koerner
2015 Convex Optimization for Inequality Constrained Adjustment Problems

Heft 49 Jan Martin Brockmann
2015 On High Performance Computing in Geodesy

Applications in Global Gravity Field Determination

Heft 48 Judith Leek
2015 The application of impact factors to scheduling VLBI Intensive sessions

with twin telescopes

Heft 47 Thomas Artz
2015 Determination of Sub-daily Earth Rotation Parameters from VLBI Observations

Heft 46 Roelof Rietbroek
2015 Retrieval of Sea Level and Surface Loading Variations from Geodetic

Observations and Model Simulations: an Integrated Approach

Heft 45 Ehsan Forootan
2014 Statistical Signal Decomposition Techniques for Analyzing Time-Variable

Satellite Gravimetry Data

Heft 44 Erich Weiß
2014 Lebensbilder der preußischen Verwaltung des 19. und 20. Jahrhunderts im Wandel

Eine Sammlung biographischer Miniaturen

Heft 43 Neysa Jacqueline Setiadi
2014 Assessing People´s Early Warning Response Capability to Inform Urban

Planning Interventions to Reduce Vulnerability to Tsunamis
Case Study of Padang City, Indonesia

Heft 42 Nils Leber
2013 Entwicklungsperspektiven metropolitaner Peripherien im Rahmen

Stadtregionaler Planungs‐ und Entwicklungsprozesse am Beispiel
Nordrhein‐Westfalen

Heft 41 Sophie Schetke
2013 Socio‐environmental impacts of settlement growth under conditions of fostered

infill development: a methodological framework for a multicriteria assessment

Heft 40 Ribana Roscher
2013 Sequential Learning Using Incremental Import Vector Machines for Semantic

Segmentation

Heft 39 Michael Ying Yang
2013 Hierarchical and Spatial Structures for Interpreting Images of Man-made Scenes

Using Graphical Models

Heft 38 Sabine Daniela Bauer
2013 Automatische Detektion von Krankheiten auf Blättern von Nutzpflanzen

Heft 37 Martin Drauschke
2013 Ein hierarchischer Ansatz zur Interpretation von Gebäudeaufnahmen

Heft 36 Timo Dickscheid
2013 Robust Wide-Baseline Stereo Matching for Sparsely Textured Scenes

Heft 35 Alexander Barth
2013 Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences

Heft 34 Richard Steffen
2013 Visual SLAM from image sequences acquired by unmanned aerial vehicles

Heft 33 Till Rumpf
2013 Finding spectral features for the early identification of biotic stress in plants

Heft 32 Christian Siemes
2012 Digital Filtering Algorithms for Decorrelation within Large Least Squares

Problems

Heft 31 Silvia Becker
2012 Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur

Modellierung der dynamischen Ozeantopographie

Heft 30 Annette Eicker / Jürgen Kusche (eds.)
2013 Lecture Notes from the Summer School of DFG SPP1257 Global Water Cycle

Heft 29 Matthias Siemes
2012 Ein Beitrag zur koordinatengesteuerten Aussaat von Rübenpflanzen mittels

Multi-Sensor-System und Filteransatz

Heft 28 Jörg Schmittwilken
2012 Attributierte Grammatiken zur Rekonstruktion und Interpretation von Fassaden

Heft 27 Markus Rembold
2012 Die Anerkennung und Feststellung von Grundstücksgrenzen
 Ein Beitrag zur Entwicklung des Liegenschaftskatasters im Lande
 Nordrhein-Westfalen in Vergangenheit, Gegenwart und Zukunft

Heft 26 Lihua Li
2012 Separability of deformations and measurement noises of GPS time series
 with modified Kalman filter for landslide monitoring in real-time

Heft 25 Benedikt Frielinghaus
2012 Ökonomisches Entscheidungstool zur Wohnbaulandentwicklung
 Wirtschaftlichkeitsanalysen potenzieller Wohnbauflächen auf der Ebene des
 Flächennutzungsplanes

Heft 24 Enrico Kurtenbach
2011 Entwicklung eines Kalman-Filters zur Bestimmung kurzzeitiger Variationen
 des Erdschwerefeldes aus Daten der Satellitenmission GRACE

Heft 23 Sarah Böckmann
2011 Robust determination of station positions and Earth orientation parameters
 by VLBI intra-technique combination

Heft 22 20th Meeting of the European VLBI Group for Geodesy and Astronomy
2011 Proceedings

Heft 21 Philipp Zeimetz
2011 Zur Entwicklung und Bewertung der absoluten GNSS-Antennenkalibrierung
 im HF-Labor

Heft 20 Alessandra Roy
2011 Effects on the Geodetic-VLBI Observables Due to
 Polarization Leakage in the Receivers

Heft 19 Dietmar Weigt
2011 Auswirkungen von Flughäfen insbesondere von Fluglärm auf den
 Immobilienmarkt am Beispiel des Marktsegments „individuelles Wohnen“

Heft 18 Anno Löcher
2011 Möglichkeiten der Nutzung kinematischer Satellitenbahnen zur
 Bestimmung des Gravitationsfeldes der Erde

Heft 17 Basem Elsaka
2010 Simulated Satellite Formation Flights for Detecting the
 Temporal Variations of the Earth’s Gravity Field

Heft 16 2nd International Conference on Machine Control & Guidance
2010 Proceedings

Heft 15 Alexandra Weitkamp
2009 Brachflächenrevitalisierung im Rahmen der Flächenkreislaufwirtschaft

Heft 14 Akbar Shabanloui
2008 A New Approach for a Kinematic-Dynamic Determination of Low Satellite Orbits

Based on GNSS Observations

Heft 13 Frank Friesecke
2008 Stadtumbau im Konsens!?

Zur Leistungsfähigkeit und Fortentwicklung des städtebaulichen Instrumentariums unter
Schrumpfungsbedingungen

Heft 12 Heinz Rütz
2008 Zur Kostenanalyse der privaten Umlegung

als Teil der konsensualen integrierten Baulandentwicklung

Heft 11 Gaby Alexandra Boele-Keimer
2008 Kommunales Kennzahlenmanagement

am Beispiel von Vermessungs- und Katasterämtern in Nordrhein-Westfalen

Heft 10 Annette Eicker
2008 Gravity Field Refinement by Radial Basis Functions

Heft 9 Torsten Mayer-Gürr
2008 Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen

Heft 8 Boris Kargoll
2008 On the Theory and Application of Model Misspecification Tests

Heft 7 Hamza Alkhatib
2008 On Monte Carlo Methods

Heft 6 Klaus Borchard
2008 Annäherungen an Städtebau und Raumentwicklung

Heft 5 Jens Jähnke
2008 Zur Teilmarktbildung beim Landerwerb der öffentlichen Hand

Heft 4 Atef Abd-Elhakee Makhloof
2008 The Use of Topographic Isostatic Mass Information

Heft 3 Markus Vennebusch
2008 Singular Value Decomposition and Cluster Analysis

Heft 2 Christian Beder
2007 Grouping Uncertain Oriented Projective Geometric Entities

Heft 1 Klaus Börger
2007 Geodäsie und Quantenphysik

Bonn 20202699-6685 (Online)

	Introduction
	Mapping the Environment with Robots
	Main Contributions
	Publications

	Basic techniques
	Least-Squares
	Non-Linear Least-Squares Problem
	Gauss-Newton Algorithm
	Levenberg–Marquardt Algorithm
	Huber Estimator

	Information Theory
	Entropy
	Information Gain

	RGB-D Sensors
	3D Map Representation
	Truncated Sign Distance Function
	Compressing a Voxel Grid using Octrees

	I Static Environments
	SLAM with RGB-D Sensors
	Efficient RGB-D SLAM
	Voxel Hashing for Efficient Storage
	Pose Estimation
	Efficient Implementation on the GPU

	Experimental Evaluation
	Performance
	Memory Consumption
	Runtime

	Related Work
	Conclusion

	Information-Driven Autonomous Exploration
	Autonomous Exploration for MAV
	Information Gain-Based Exploration
	Restricting the Possible Viewpoints
	Measurement Uncertainty
	Approximating the Information Gain
	Combining Information from Multiple Measurements
	Storing Information
	Changes in the Direction of Flight
	Time-Dependent Cost Function

	Experimental Evaluation
	Experimental Setup
	Precision of the Reconstruction
	Path Smoothness
	Path Length
	Execution Time
	Time-Dependent Cost Function
	Real World Experiment

	Related Work
	Conclusion

	II Non-Static Environments
	Change Detection in Non-Static Environments
	Image-Based Geometric Change Detection
	Camera Pose Estimate
	Inconsistencies Between Image Pairs
	Inconsistency Detection using Multiple Images
	Segmentation and Data Association
	Estimating the Location of Change

	Experimental Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Execution Time
	Comparison to the Approach by Taneja et al.

	Related Work
	Conclusion

	SLAM in Dynamic Environments
	ReFusion: 3D Reconstruction in Dynamic Environments
	Model Representation and Pose Estimation
	Dynamics Detection
	Carving of Model and Free Space Management
	Handling Invalid Measurements

	Depth-Enhanced Neural Network-Based Dynamic Filtering
	Experimental Evaluation
	Performance on the TUM RGB-D Dataset
	Performance on the Bonn RGB-D Dynamic Dataset
	Model Accuracy

	Related Work
	Conclusion

	Conclusion
	Summary of the Key Contributions
	Open Source Contributions

