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Abstract

The present work is concerned with the simulation of the periodontal ligament
response to force in the initial phase of orthodontic tooth movement. This is
based on two previous investigations at the Universitätsklinikum Bonn, namely
the in vitro experiment of Papadopoulou et al. (2013) with specimens of porcine
mandibular premolars, and the in vivo experiment of Konermann et al. (2017)
on human upper first incisors.

For the curve fit of the in vitro experiment a model function, assuming vis-
coelasticity, was introduced. The viscoelastic model function was augmented
by a ramp rise time term, to account for observed dependence of the response
on actuator velocity, and a previous load history term, to account for the effect
of the previous tests on the current test. The correlation coefficient of a curve
fit for all tests grouped together was R2 = 0.98. Next, a curve fit of the in
vivo experiment was done. Good correlation was found for a simplified model
function, without viscoelastic term (R2 = 0.96). Presumably due to the short
test duration viscoelastic effects were not evident. For both tests, in vitro and in
vivo, the ramp rise time term improved correlation.

The finite element model of Papadopoulou et al. (2013) was adapted for
this investigation. The present work indicates that the macroscopic response
of the periodontal ligament to an external load can be simulated with a poro-
visco-hyperelastic model. For the hyperelastic model of the ground substance,
Storåkers constitutive model was used, and parameters identified herein are in
good agreement with values published in Bergomi et al. (2011). The simula-
tion showed that poroelastic behaviour will gradually cease when viscoelastic
relaxation progresses. This followed also from dimensionless analysis. As a
consequence, for slow loading, or if initial response to fast loading is not of
interest, a visco-hyperelastic model may suffice.

The curve fit of the model function conceived herein is in good agreement
with measured data. The model function includes a ramp rise time term, which
could not be covered with the poro-visco-hyperelastic simulation. A suppo-
sition to explain this effect on the micro scale is to assume strain rate harden-
ing. For soft tissues strain rate effects were observed by other investigators, e.g.
David Bell et al. (2018) and Burgin et al. (2014), however the underlying mi-
crostructural mechanism is still unknown. Papadopoulou et al. (2013) did not
randomise the test sequence with respect to ramp rise time. Therefore, it can
not be excluded that the effect is due to test sequence. To clarify this objection,
further tests with randomised test sequence are recommended.
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Zusammenfassung

In dieser Arbeit wird die Simulation der Reaktion des Periodontiums auf äuße-
re Kräfte in der ersten Phase einer orthodontischen Zahnbewegung behandelt.
Dies basiert auf In-vitro-Versuchen von Papadopoulou et al. (2013) an Proben
des Prämolars von Schweinen und In-vivo-Untersuchungen von Konermann
et al. (2017) an menschlichen Schneidezähnen.

Für die Regression der In-vitro-Daten wurde eine Modellfunktion einge-
führt, die viskoelastisches Verhalten beschreibt. Diese wurde durch zwei Aus-
drücke erweitert. Der erste beschreibt eine Abhängigkeit von der Geschwindig-
keit des Aktuators, der zweite den Einfluss vorangegangener Tests auf den
aktuellen Test. Eine Regression aller Tests ergab den Korrelationskoeffizient
R2 = 0,98. Anschließend wurde eine Regression der In-vivo-Daten durchge-
führt. Eine gute Korrelation wurde für eine vereinfachte Modellfunktion ohne
Viskoelastizität gefunden (R2 = 0,96). Vermutlich waren viskoelastische Effekte
aufgrund der kurzen Testdauer nicht erkennbar. Für beide Versuche, in vitro
und in vivo, verbesserte der Ausdruck für die Geschwindigkeit des Aktuators
die Korrelation.

Das Finite-Elemente-Modell von Papadopoulou et al. (2013) wurde ange-
passt. Die vorliegende Arbeit zeigt, dass die makroskopische Reaktion des
Periodontiums auf eine externe Last mit einem poro-visko-hyperelastischen
Modell simuliert werden kann. Für das hyperelastische Material wurde das
Modell von Storåkers verwendet. Die hierfür gefundenen Parameter stimmen
gut mit den Werten von Bergomi et al. (2011) überein. Die Simulation zeigt, dass
poroelastisches Verhalten ausklingt, wenn viskoelastische Relaxation fortschrei-
tet. Dies lässt auch eine dimensionslose Analyse erwarten. Daher kann für eine
langsame Belastung, oder wenn die anfängliche Reaktion auf schnelle Belas-
tung nicht von Interesse ist, ein visko-hyperelastisches Modell ausreichen.

Die Modellfunktion beinhaltet einen Ausdruck der eine Abhängigkeit von
der Geschwindigkeit des Aktuators beschreibt. Dieser Effekt konnte nicht mit
der poro-visko-hyperelastischen Simulation abgedeckt werden. Eine mögliche
Erklärung ist dehnratenabhängige Verfestigung. Auch David Bell et al. (2018)
und Burgin et al. (2014) haben dehnratenabhängig Effekte an biologischen Ge-
weben beobachtet, die zugrundeliegenden mikro-mechanischen Mechanismen
sind noch unbekannt. Die Versuchsreihe von Papadopoulou et al. (2013) wurde
nicht bezüglich der Geschwindigkeit des Aktuators randomisiert. Daher kann
ein Sequenzeffekt nicht ausgeschlossen werden. Um diesen Einwand auszuräu-
men, werden Versuche mit randomisierter Test Sequenz empfohlen.
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Chapter 1

Introduction

For decades, orthodontic tooth movement (OTM) has been subject of extensive
research. A classification of OTM is given in Davidovitch and Krishnan (2015),

The magnitude of orthodontic forces has received significant atten-
tion. It was previously reported ... that light pressure produces
favorable tooth displacement, resulting in minimal discomfort and
pain to the patient, whereas heavy pressure, exceeding 20–25 g/cm2

of root surface (Schwarz, 1932) produces a classical three-phase re-
action ... In 1962, Burstone suggested that, if the rates of OTM were
plotted against time, there would be three phases of OTM: the initial
phase, a lag phase, and a postlag phase ... The initial phase is char-
acterized by a period of very rapid movement, which occurs imme-
diately after application of force to the tooth. This rate is attributed
to the displacement of the tooth within the PDL space and bending
of the alveolar bone. This phase is followed by a lag period, when
no or low rates of tooth displacement occur. This lag results from
hyalinization of the PDL in areas of compression. No further tooth
movement will occur until cells complete the removal of all necrotic
tissues. During the third phase, the rate of movement gradually or
suddenly increases. 1

The present work is concerned with simulation of the periodontal ligament
(PDL) response to force in the initial phase of orthodontic tooth movement.
This is based on two previous investigations at the Universitätsklinikum Bonn,
namely the in vitro experiment of Papadopoulou et al. (2013) with specimens
of porcine mandibular premolars, and the in vivo experiment of Konermann
et al. (2017) on human upper first incisors. In the first experiment, biochemical
in vivo processes are not present. For both tests, test time was well within the
limits of OTM initial phase.

1The references in the citation are Schwarz (1932) and Burstone (1962).
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Exemplary, a review of biochemical processes involved in orthodontic tooth
movement is found in Schroeder (1986) and the edited volume of Krishnan and
Davidovitch (2015). The periodontium is a compound of several tissues that
support the teeth. It includes the gingiva, the cementum, the periodontal lig-
ament and the alveolar bone proper. The textbook of Hand and Frank (2015)
describes the periodontal ligament function and structure,

The periodontal ligament attaches the tooth root to alveolar bone,
and it serves to absorb and resist the forces of occlusion on the tooth.
It consists of collagenous fiber bundles ... The collagen fibrils and
other extracellular matrix components are synthesized and main-
tained by periodontal ligament fibroblasts. Type I collagen is the
major constituent of the fibers, ... The periodontal ligament fiber
bundles are embedded, as Sharpey’s fibers, in cementum on the root
and in the alveolar bone facing the tooth. The embedded portions
of Sharpey’s fibers are fully mineralized in acellular cementum and
partially mineralized in cellular cementum and bone. Interstitial
areas containing loose connective tissue, blood vessels, and nerves
are present between the fiber bundles in the periodontal ligament.
These interstitial areas are continuous with openings through the
alveolar bone (Volkmann’s canals) to the marrow spaces of the alve-
olar process.

In general, a ligament is soft tissue that connects bone to bone and its me-
chanical function is to guide and restrict relative motion of joints. A tendon
is a soft tissue that connects muscle to bone and its mechanical function is to
carry tensile loads from muscle to bone. Tendons and ligaments are similar in
composition and structure. In Chap. 16 of Cowin and Doty (2007) tendons and
ligaments are described,

Tendons and ligaments are constituted mainly of fibers of fibrous
type I collagen and are dense, often parallel-fibered, tissues. ... Gen-
erally, tendons and ligaments consist of about 20 % cellular material
and about 80 % extracellular material; the extracellular material is
further subdivided into about 30 % solids and 70 % water. These
extracellular solids are collagen, the ground substance, and a small
amount of elastin (1 to 2 % of dry weight). The collagen content is
generally over 75 % and is somewhat greater in tendons than in lig-
aments ... in tendons of the extremities the collagen may be up to
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99 % of dry weight. ... The ground substance in ligaments and ten-
dons consists of proteoglycans (PGs) (up to about 20 % of the solids)
along with structural glycoproteins, plasma proteins, and a variety
of small molecules. ... Although the exact mechanical roles of PGs in
ligaments and tendons are unknown, as they are in bone, it is likely
that the large PG aggregates function similarly to those in articular
cartilage, binding extracellular water to create a gel-like material ex-
trafibrillar matrix. ... The broad, general description of the structure
of tendons and ligaments is that the collagenous fibers composing
the tendons have a parallel arrangement and that the collagenous
fibers composing ligaments may not be completely parallel but are
close to parallel with one another. ... A broad general description of
the fiber structure of unstressed tendons is that they exhibit gentle
planar sinusoidal waviness. ... The waviness in unstressed tendons
is called the “crimp” of collagen.

The collagen fibre axes of tendons and ligaments are aligned with the pre-
dominant loading direction in vivo. Tensile tests of tendons and ligaments are
typically done with specimens, where collagen fibre axes are aligned with the
load direction. The stress strain curve observed depicts a progressive beha-
viour and is typically divided into three regions (e.g. Holzapfel (2001)): At first,
in the toe region, small force levels are necessary to elongate the tissue initially.
Then, in the heel region, with increased load a progressively increased force is
observed. The crimped collagen fibres gradually line up with load direction
and at the end of the heel region, when collagen fibres are straightened, a tran-
sition into the linear region is observed. Here the stress strain curve is domi-
nated by the straightened collagen fibres. At the end of the linear region, with
gradual failure of highly stretched fibre bundles, drops in the stress strain curve
and ultimate failure is observed. When subject to dynamic loads tendons and
ligaments show viscoelastic behaviour. Minns et al. (1972) associated this with
the shear interaction of the interfibre matrix, that is, with the interaction of the
collagen fibres with the ground substance proteoglycans.

Now we want to elaborate on points, that distinguish the periodontal liga-
ment from other ligaments. As mentioned above, the common ligament is
loaded in tension, whereas under forces of occlusion, regions of tension and
compression are observed in the periodontal ligament. Therefore it is antici-
pated that compression behaviour has a significant contribution to the overall
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response of the periodontal ligament. With respect to that, it may have sim-
ilarities to cartilage. A second point is the vascular system of the periodontal
ligament, which is not found in the common ligament. Cowin and Doty (2007)
state for bone tissue a vascular relaxation time of 1.36 µs and argued that: ‘even
under accidental impact loading, the stress rise time never approaches the vas-
cular porosity relaxation time.’ On these grounds, for the tests considered here,
the contribution of the vascular system may be negligible. However, after load-
ing, blood pressure variations in the vascular system may play a significant role
in the recovery of the periodontal ligament in vivo.

Concluding, a numerical model of the periodontal ligament should capture
the progressive characteristic of the stress strain curve and the viscous beha-
viour mentioned above. It is clear that linear elastic models are not sufficient.
The progressive characteristic suggests to choose a suitable hyperelastic con-
stitutive material model. To account for viscous effects a viscoelastic model, a
poroelastic model or a combination of these models is conceivable.

At this point it is instructive to distinguish the basic principle of the vis-
coelastic and poroelastic phenomenological model. Assume a representative
control volume of the periodontal ligament exhibits only viscoelastic behaviour.
Then, there is no flow of the interstitial fluid across the boundary of the control
volume. The viscous behaviour could be due to the above mentioned interac-
tion of the collagen fibres with the ground substance proteoglycans. Contrary,
if the periodontal ligament exhibits only poroelastic behaviour, then a net flow
across the boundary of the control volume is possible. This could be due to a
pressure gradient induced flow of the interstitial fluid. It is conceivable that
both effects take place at the same time.

A review of models for periodontal ligament is found in Fill et al. (2012).
They point out the discrepancies in the literature of the various model ap-
proaches used and in the periodontal ligament’s mechanical properties pub-
lished. Previous periodontal ligament models, the author would like to high-
light, are the quasi-linear viscoelastic model used by Toms et al. (2002) and the
poro-hyperelastic model used by Bergomi et al. (2011). The findings of Fill et al.
(2012) are,

Results: The review revealed that significant variations exist, some
on the order of six orders of magnitude, in the PDL’s elastic con-
stants and mechanical properties. Possible explanations may be at-
tributable to different modelling approaches and behavioural as-
sumptions.
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Significance: The discrepancies highlight the need for further re-
search into determining what the key factors that contribute to tooth
movement are, their correlations and their degree of impact. Despite
the PDL’s definitive role in orthodontic tooth movement, proposed
models of the PDL’s mechanical behaviour thus far have been un-
satisfactorily inadequate. Hence, there is a need to develop a robust
PDL model that more accurately simulates the PDL’s biomechanical
response to orthodontic loads. Better understanding of the PDL’s
biomechanical behaviour under physiologic and traumatic loading
conditions might enhance the understanding of the PDL’s biologic
reaction in health and disease.

Obviously, the author agrees with the conclusion. Though part of the dis-
crepancies may be revealed by a thorough investigation considering first prin-
ciples and bias towards recent publications.

This work is structured as follows: First, in Chap. 2, suitable constitutive
models, and basic concepts of poroelasticity and viscoelasticity are discussed.
Than, in Chap. 3, an attempt is made, based on dimensionless analysis, to clas-
sify the experimental setup and distinguish poroelasticity and viscoelasticity.
In Chap. 4, a curve fit of the in vitro experiment of Papadopoulou et al. (2013)
and the in vivo experiment of Konermann et al. (2017), is described. For this,
a model function, assuming viscoelasticity, is introduced. In order to improve
correlation, the model function is successively refined, taking additional effects
identified into account. In Chap. 5, the in vitro experiment of Papadopoulou et
al. (2013) is simulated. First, in a static analysis, parameters of two constitutive
models were identified. Then, visco-hyperelastic and poro-visco-hyperelastic
response were simulated, and model parameters identified, that maximise cor-
relation to the suitable model function. Finally, in Chap. 6, summary, discussion
and conclusion follows.





Chapter 2

Review of Constitutive Models,
Poro- and Viscoelasticity

2.1 Constitutive Models

2.1.1 Introduction

Stresses inside a body result from deformation of the material caused by ex-
ternal and internal loads. Constitutive equations relate the stress in a material
body to a measure of deformation, such as strain, and must satisfy certain phys-
ical principles. For example, constitutive equations must be objective, i.e. they
must be frame invariant. A Cauchy-elastic or elastic material is one for which
the stress field at time t and point x solely depends on the state of deforma-
tion and temperature at that time, and there is no dependence on the history
of these variables. A material is called Green-elastic or hyperelastic, if there ex-
ists a Helmholtz free-energy potential Ψ, whose derivative with respect to a strain
measure gives the corresponding stress, and whose derivative with respect to
temperature gives the heat flux vector. When the potential is only a function
of a strain measure, the potential is called strain energy density function and is
often denoted by U . As a consequence, the work done by the stresses during
isothermal deformation depends only on the initial and final state, that is, the
work done is path independent.

The strain energy density function U must be invariant when the material
body undergoes a rigid body rotation. This implies that U depends only on
the stretch component of the deformation measure. For an isotropic material the
behaviour is identical in any material direction, i.e. U must be a function of the
invariants of the deformation measure.

Ogden (1972) proposed a strain energy density function as a linear combina-
tion of the strain invariants, given by the principle stretches λi, i ∈ {1, 2, 3}, that

7
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has the form

U (λ1, λ2, λ3) =
N∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) , (2.1)

where N is the number of terms summed, and µi and αi are material constants
that are determined by curve fitting of experimental data. For incompressible
material, which implies λ1λ2λ3 = 1, with N = 1 and α1 = 2 the neo-Hookean
form proposed by Treloar (1943), and with N = 2, α1 = 2 and α2 = −2 the
Mooney–Rivlin form proposed by Mooney (1940) and Rivlin (1948), follows.
Various other strain energy density functions have been proposed, that are not
derived from the Ogden model. Arruda and Boyce (1993) derived a strain en-
ergy density function from statistical models of chain orientations in polymers.
Based on thermodynamic equations of state of a real gas, Kilian et al. (1986)
suggested by analogy the van der Waals stain energy potential. The Yeoh (1990)
and Marlow (2003) model are functions of the first strain invariant.

Various parameters of the strain energy density function are determined
by curve fitting to test data. The Ogden, Mooney-Rivlin and van der Waals
model require experimental data from multiple test modes, e.g. uniaxial and
equibiaxial, for curve fitting. ‘If limited test data are available for calibration,
the Arruda-Boyce, van der Waals, Yeoh, or reduced polynomial forms provide
reasonable behaviour. When only one set of test data (uniaxial, equibiaxial,
or planar test data) is available, the Marlow form is recommended. In this
case a strain energy potential is constructed that will reproduce the test data
exactly and that will have reasonable behaviour in other deformation modes.’
(ABAQUS (2016), Analysis Users Guide, Chap. 22.5.1).

2.1.2 A Hyperelastic Constitutive Model for Compressible Ma-

terial - The Storåkers Model

For compressible materials, the strain energy density function U is split up in a
deviatoric Udev and a volumetric Uvol part,

U(Î , J) = Udev(Î) + Uvol(J), (2.2)

with the first deviatoric strain invariant Î = λ̂2
1 + λ̂2

2 + λ̂2
3, defined in terms of

the deviatoric stretches λ̂i = J−
1
3λi, and the determinant of the deformation

gradient J .
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Storåkers (1986) proposed the strain energy density function

U
(
λ̂, J

)
=

N∑
i=1

2µi
α2
i

[(
λ̂αi1 + λ̂αi2 + λ̂αi3 − 3

)
+

1

βi

(
J−αiβi − 1

)]
, (2.3)

where N is the number of terms used, µi, αi and βi are material parameters,
λ̂i = J−

1
3λi, i ∈ {1, 2, 3} are the deviatoric stretches, and J is the determinant

of the deformation gradient. Observe that the first term, in round brackets,
represents the deviatoric part, which is defined analogue to an Ogden Material
Eq. 2.1, except that deviatoric stretches are used, and the second term represents
the volumetric part.

According to ABAQUS (2016), Analysis User’s Manual, Chap. 19.5.2, ‘ The
coefficients µi are related to the initial shear modulus, µ0, by

µ0 =
N∑
i=1

µi,

while the initial bulk modulus, K0, follows from

K0 =
N∑
i=1

2µi

(
1

3
+ βi

)
.

For each term in the energy function, the coefficient βi determines the degree of
compressibility. βi is related to the Poisson’s ratio, νi, by the expressions

βi =
νi

1− 2νi
and νi =

β1

1 + 2βi
.

Thus, if βi is the same for all terms, we have a single effective Poisson’s ratio,
ν.’

Storåkers (1986) showed, that for an uniaxial state of stress, and with N = 1,
the stress-stretch relation is

σ =
2µ

α

(
λ−α

1+3β
1+2β − 1

)
λα−1. (2.4)
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2.1.3 A First-Invariant Hyperelastic Constitutive Model - The

Marlow Model

The constitutive model described in this chapter was published by Marlow
(2003), based on earlier work of Gough et al. (1999).

The invariants of the left Cauchy-Green deformation tensor b = FFT , with
deformation gradient F, are,

I (b) = tr(b) , (2.5a)

II (b) = tr(b2) , (2.5b)

III (b) = det(b) . (2.5c)

The invariants can be written in terms of the principle stretches λi, i ∈ {1, 2, 3},

I (b) = λ2
1 + λ2

2 + λ2
3 , (2.6a)

II (b) = λ4
1 + λ4

2 + λ4
3 , (2.6b)

III (b) = λ2
1 λ

2
2 λ

2
3 . (2.6c)

Assuming incompressible material, the determinant of the deformation gradi-
ent F is 1, and from Eq. 2.6c follows

λ2
3 =

1

λ2
1λ

2
2

. (2.7)

The first invariant, Eq. 2.6a, can be written with Eq. 2.7, in terms of the first and
second principle stretch:

I (b) = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

= I(λ1, λ2) . (2.8)

Consider a uniaxial load, with the force applied in e1 direction. Then σ1 6= 0,
σ2 = σ3 = 0, and ε2 = ε3 = −νε1, where ν is Poisson’s ratio. Therefore, λ2 = λ3,
and from Eq. 2.7 follows

λ2 =
1√
λ1

. (2.9)

With Eq. 2.9, we can write Eq. 2.8 in terms of the first principle stretch

I(b) = λ2
1 +

2

λ1

= I(λ1) . (2.10)

Equation 2.10 is a mapping of the uniaxial stretch λ1 to the first invariant of
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the left Cauchy-Green deformation tensor. We split the domain in compression
and tension. That is, in compression (0, 1) 3 λ1 → I(λ1) ∈ (∞, 3), in tension
(1,∞) 3 λ1 → I (λ1) ∈ (3,∞), and with minimum at I (λ1 = 1) = 3.

Consider a general deformation, with a particular value of the first invariant
at a material point called Î . Assuming uniaxial load and incompressible mate-
rial, we can find the first principle stretch λ1, with the same first invariant Î , by
rearranging Eq. 2.10,

λ3
1 − λ1Î + 2 = 0 . (2.11)

This is a third order polynomial. Consider the discriminant (Bronstein et al.
(2005), Chap. 1.6.2.3) of the polynomial. For Î = 3 the discriminant is zero, i.e.
we have three real roots, with one double root λ1 = 1. For Î > 3, the discrimi-
nant is greater than zero, i.e. we have three distinct real roots. Taking into ac-
count Descartes’ Rule of Signs ( e.g. Bronstein et al. (2005), Chapter 1.6.3.2), and
noting that the polynomial in λ1 has two sign changes, whereas the polynomial
in −λ1 has one sign change, we conclude that there are two positive real roots
and one negative root of the cubic polynomial. The negative root can be dis-
carded, since stretch is greater than zero. Further, the polynomial is already in
reduced form. The roots may be obtained using Cardano’s formula (Beyer (1984)).
Applied to our cubic in λ1, we can find the roots dependent on first invariant
at a material point Î ∈ (3,∞), and establish the limits limÎ→3(λk) = (−2, 1, 1).
For Î → ∞ we have limÎ→∞(λk) = (−∞, 0,∞). A plot of the roots of Eq. 2.11
is shown in Fig. 2.1. The positive roots represent the compression and tension
part for an uniaxial test.

For a general deformation at a material point, with λ1 > 1, λ2, λ3 ∈ (0, 1),
and corresponding first invariant Î > 3, we find a unique equivalent stretch
λ1 > 1, with the same first invariant, which henceforth will be called λt. A
similar argument can be made for compression with λ1 ∈ (0, 1) , λ2, λ3 > 1.

Suppose from a uniaxial tension test, we have the uniaxial stress, σt = σ1,
versus strain, εt = ε1 = λ1 − 1, diagram. The corresponding strain energy den-
sity function is obtained by integrating the uniaxial stress strain graph. For the
lower boundary of the integral we choose zero, since in the absence of stretch,
the strain energy density must be zero, i.e. U(I = 3) = 0 . The upper boundary
of the integral is εt = λt(I )− 1:

U(I ) =

∫ λt(I )−1

0

σt(εt)dεt . (2.12)
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FIGURE 2.1: Roots of Eq. 2.11, that is, the principle stretch
λk, k ∈ {1, 2, 3}, depending on the first invariant Î , representing
left to right, a non physical solution (red), uniaxial compression
(green) and uniaxial tension (blue).

For uniaxial tension, the strain energy density function Eq. 2.12 will repro-
duce the measured stress-strain response used in the integral precisely.

Consider equibiaxial tension, with σ11 = 0 , σ22 = σ33 = σeb, and λ2 = λ3 = λeb.
Than, with the incompressibility condition and Eq. 2.6c follows λ1 = λ−2

eq . The
first invariant of the Cauchy-Green deformation tensor is I(λeb) = 2λ2

eb + λ−4
eb .

Observe that for equibiaxial tension and uniaxial compression, there is a biject-
ive mapping of the deformation, and therefore also of the strain energy den-
sity. Taking the derivative of the strain energy density function with respect
to stretch, gives the corresponding stress, σeb = (∂U(I )/∂I )(∂I /∂λeb), and ob-
serving that there is a factor of 2 in front of the integral in the biaxial case, we
find

σeb =
λeb + λ−5

eb

λt(Ieb) + λt(Ieb)−2
σt(λt(Ieb)− 1) . (2.13)

Consider plane strain1, then by definition λ3 = 1. Call the first principle

1 Marlow (2003) used the term planar traction.
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stretch λ1 = λp. By virtue of the incompressibility condition and Eq. 2.6c, the
second principle stretch is λ2 = λ−1

p , and the first invariant of the Cauchy-Green
deformation tensor is I(λp) = λ2

p + λ−2
p + 1 . Again, taking the derivative of the

strain energy density function with respect to stretch gives

σp =
λp + λ−3

p

λt(Ip) + λt(Ip)−2
σt(λt(Ip)− 1) . (2.14)

For compressible material, the deviatoric part of the strain energy density is
defined by the Marlow model Eq. 2.12, and the volumetric part by appropriate
volumetric response data, e.g. the bulk modulus.
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2.2 Poroelasticity

2.2.1 Introduction

The subject of poroelasticity is the study of fluid filled, porous media. Terzaghi
(1923) proposed a model of one-dimensional soils consolidation, to account for
the influence of pore fluid on the quasi static deformation of clay soils. Ren-
dulic (1936) generalised this theory to the three-dimensional case. Develop-
ment of the three dimensional, linear theory of poroelasticity, taking compres-
sion of the pore fluid and solid phase into account, is in principle due to Biot
(1941). Later works include the effect of dynamic loading and stress waves, Biot
(1956a) and Biot (1956b), and of nonlinear elasticity, Biot (1973). Rice and Cleary
(1976) used canonical notation of solid mechanics and linked poroelastic para-
meters to the limiting behaviour of drained and undrained response, which,
in the opinion of the author, considerably elucidated physical interpretation
of asymptotic poroelastic phenomena. An alternative approach to the subject,
based on Truesdell’s metaphysical principles (Truesdell, 1969) and mixture the-
ory, was used by e.g. Bowen (1980), Boer and Ehlers (1986), and Coussy (1995).
Their derivation of the governing equations was based on mixture theory, how-
ever the numerical implementation resorted to the effective stress principle of
poroelasticity. This may have motivated the remark of Cheng and Detournay
(1993), ‘Alternative theories have also been developed using the formalism of
mixtures theory, in practice they do not offer any advantage over the Biot the-
ory.’

According to Verruijt (2013), ‘The linear theory of poroelasticity (or consol-
idation) has now reached a stage where there is practically general consensus
on the basic equations, see e.g. Cheng and Detournay (1993), Boer (2000), Wang
(2000), Rudnicki (2001), Coussy (2004), Gambolati (2006) and Verruijt (2008).
Unfortunately, there is no general agreement on the definitions and the nota-
tions of the basic physical parameters in the theory of poroelasticity or consol-
idation.’

The presentation of poroelastic theory in this chapter is restricted to linear
elastic solids and follows along the lecture notes of Rice (1998), revision 2013, at
Harvard University. Notation used by Cheng and Detournay (1993), in partic-
ular the concept of porosity and fluid mass content, were added, to ease com-
prehension and provide quantities accessible by measurement.
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2.2.2 Constitutive Equations for Ideal Poroelasticity

The stress-strain relations for a linear elastic isotropic solid, with no pore pres-
sure effects present, is given by (e.g. Bonet and Wood (2008))

σij = 2µεij + λεkkδij , (2.15)

where εkk is the trace of the strain tensor εij , and δij is the Kronecker delta,
defined by δij = 1 if i=j and δij = 0 else. Note that, to describe the behaviour
of a linear elastic isotropic solid, two independent elastic constants, the Lamè
coefficients µ and λ, are sufficient. They are related to Young’s modulus E, Poisson
ratio ν, and the shear modulus G by

µ = G =
E

2(1 + ν)
, (2.16)

λ =
νE

(1 + ν)(1− 2ν)
. (2.17)

With this, the stress-strain relation for a linear elastic isotropic solid is

σij =
E

1 + ν
εij +

νE

(1 + ν)(1− 2ν)
εkkδij . (2.18)

Taking the trace of Eq. 2.18 gives

εkk =
1− 2ν

E
σkk =

σkk
3K

, (2.19)

where K is the bulk modulus

K =
E

3(1− 2ν)
, (2.20)

relating hydrostatic stress, defined by

σh =
σkk
3

(2.21)

and volume dilatation εkk. Substitute Eq. 2.19 into Eq. 2.18 and inverting the
stress-strain relation gives

εij =
1 + ν

E
σij −

ν

E
σkkδij . (2.22)
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For reasons that become obvious later, we rewrite the stress-strain Eq. 2.18 and
Eq. 2.22, using the elastic constants shear modulus G and bulk modulus K

σij = 2Gεij + (K − 2G

3
)εkkδij , (2.23)

εij =
1

2G
σij − (

1

6G
− 1

9K
)σkkδij . (2.24)

For porous media, assume that the total stresses can be additively decom-
posed into effective stresses, i.e. the part of the total stresses that governs the
deformation of solid phase, and the pore pressure contribution. When pore
pressure p in the liquid phase is present, the change in stress is proportional to
the pore pressure in the liquid phase. The proportionality factor is called Biot–
Willis coefficient α. Based on stress-strain Eq. 2.23, the effective stress for a linear
elastic isotropic solid, with pore pressure effects present, is total stress minus
the pore pressure contribution:

σij = 2Gεij + (K − 2G

3
)εkkδij − αpδij . (2.25)

Inverting Eq. 2.25, strain is the sum of an effective stress and the pore pressure
contribution:

εij =
1

2G
σij − (

1

6G
− 1

9K
)σkkδij +

α

3K
pδij . (2.26)

We now consider the additive split of the stress and strain tensor in a devi-
atoric part (σ′ij , ε′ij) and a volumetric part (also called spherical or hydrostatic
part), i.e.

σij = σ′ij +
1

3
σkkδij , (2.27)

εij = ε′ij +
1

3
εkkδij . (2.28)

Substituting Eq. 2.28 into Eq. 2.25 gives:

σij = 2Gε′ij +Kεkkδij − αpδij . (2.29)



Chapter 2. Review of Constitutive Models, Poro- and Viscoelasticity 17

Comparing Eq. 2.27 and Eq. 2.29, we observe that the stress-strain Eq. 2.29 con-
sists of a uncoupled deviatoric and volumetric response:

σ′ij = 2Gε′ij , (2.30a)
σkk
3

= Kεkk − αp . (2.30b)

Consider Eq. 2.30 and assume constant strain. Than, if pore pressure is in-
creased by ∂p, normal stresses are decreased by −α∂pδij and ∂σkk = −α3∂p.

Substituting Eq. 2.27 into Eq. 2.26, we find the uncoupled strain-stress rela-
tion:

εij =
1

2G
σ′ij +

1

9K
σkkδij +

α

3K
pδij , (2.31)

with deviatoric and volumetric response

ε′ij =
1

2G
σ′ij , (2.32a)

εkk =
1

3K
σkk +

α

K
p . (2.32b)

2.2.3 Drained and Undrained Boundary Condition

The bulk modulusK is the bulk modulus with drained boundary condition. Drain-
ed boundary condition corresponds to deformation of the porous media, with
pore fluid allowed to flow in or out of the representative elementary volume,
and constant pore pressure. Alternatively, one can consider the long term re-
sponse, when pore pressure comes back to its original value, after instantan-
eous deformation response.

On the other hand, undrained boundary condition refers to the case where pore
fluid is not allowed to flow in or out of the deforming porous media. In general,
undrained deformation will induce a pore pressure change. Alternatively, one
can consider the instantaneous deformation response, when the time period
is too short for pore fluid to move in or out of the representative elementary
volume.

It is well known, that the trace of the deviatoric stress tensor is zero and
that deviatoric deformation does not involve volume change, that is σ′kk = 0

and ε′kk = 0 (e.g. Bonet and Wood (2008)). Therefore deviatoric deformation
does not cause a pressure change in the pore fluid, and the shear modulus G
is identical for drained and undrained boundary condition. This is also evi-
dent from Eq. 2.32, observing that deviatoric and volumetric response are un-
coupled.
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Consider a porous material of representative elementary volume V , in a
stress and pressure free reference state, containing the volume of fluid Vf and
the mass of fluid Mf . Then porosity n, and fluid mass content m, are defined as

n =
Vf
V
, (2.33)

m =
Mf

V
. (2.34)

We assume, that the pore space is connected and fully saturated with fluid, i.e.
there is no trapped fluid, and pore space is equal to the void space. With the
density of the fluid ρf = Mf/Vf , it is evident that

m = ρfn . (2.35)

The variation in fluid mass content

δm = δρfn+ ρfδn (2.36)

is due to two effects, the variation in fluid density, and the variation in poros-
ity. The variation in fluid density can be accounted to volume dilatation of the
fluid (εkk)f = dV f/Vf = −p/Kf , where Kf is the bulk modulus of the fluid.
Consider a representative elementary fluid volume of constant mass in refer-
ence configuration dV f and deformed configuration dvf . From conservation
of mass ρ0

fdV f = ρfdvf , we obtain the relation for fluid density ρfJf = ρ0
f ,

with Jf = dvf/dV f . We can now write the variation in fluid density as δρf =

ρf − ρ0
f = (1− Jf )ρf . Recalling the basic kinematic equation J = 1 + εkk (Bonet

and Wood, 2008), we have δρf = ρfp/Kf . With this, the variation in fluid mass
content is

δm = ρfn
p

Kf

+ ρfδn . (2.37)

The variation of fluid volume δVf of a sample of porous material can be de-
composed into two parts, the variation due to compression or dilation of the
interstitial fluid δV1f , and the variation in fluid content δV2f . Assuming full
saturation, the variation in fluid content is equal to the fluid flow through the
boundary. Divided by the representative elementary volume of the porous ma-
terial V we get

δn = δn1 + δn2 , (2.38)
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δn1 =
δV1f

V
= n

δV1f

Vf
= −n p

Kf

, (2.39)

δn2 =
δV2f

V
=
δm

ρf
, (2.40)

where δn1 is the variation of porosity due to dilation of the interstitial fluid, and
δn2 is the variation of porosity due to variation in fluid content. This is often
abbreviated with ζ = δn2.

Now consider an infinitesimal deformation of a porous material. The incre-
ment of work per unit volume (strain energy density) is the sum of the strain
energy density increment in the solid σijdεij and fluid phase dwf = pdV f/V =

pdn. For undrained boundary condition, there is no fluid passing the boundary,
i.e. δn2 = 0. Then, the variation in porosity is δn = δn1 = −np/Kf , multiplied
by a infinitesimal pressure increment dp = −Kf (εkk)f = Kf (dV f/Vf ), we find
δndp = −pdn. Together, we can write the increment of work per unit volume,
to deform a porous material, in two equivalent forms:

dw = σijdεij + pdn = σijdεij − δndp . (2.41)

Differentiating Eq. 2.41 with respect to strain and pressure, and substituting the
stress-strain Eq. 2.25 gives

∂2(dw)

∂εij∂p
=
∂σij
dp

=
−∂(δn)

∂εij
= −αδij . (2.42)

Rearrange Eq. 2.42 and integrate, to get the porosity variation δn. Analogue
to volumetric stress response, the porosity variation is a function of dilation
and pressure, i.e. δn = δn(εkk, p). Therefore, the integration constant must be a
linear function of pressure:

δn = αεkk + bp , b ∈ R . (2.43)

Substitute in Eq. 2.37, the variation of mass becomes

δm = ρfn
p

Kf

+ ρf (αεkk + bp)

and rearranging gives

δm = ρfαεkk + ρf (
n

Kf

+ b)p .
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By choosing

b =
α2

Ku −K
− n

Kf

, (2.44)

where Ku is the bulk modulus of the undrained response, we finally find

δm = ρfαεkk +
ρfα

2

Ku −K
p . (2.45)

For undrained response, variation of fluid mass content is zero, that is δm = 0,
and we find

αp = −(Ku −K)εkk .

Substitution in the stress strain Eq. 2.25 gives

σij = 2Gεij + (K − 2G

3
)εkkδij + (Ku −K)εkkδij .

After collecting terms, the stress strain equation for the undrained response
follows:

σij = 2Gεij + (Ku −
2G

3
)εkkδij . (2.46)

Notice that, by appropriate choice of b, Eq. 2.44, pressure is eliminated from the
undrained stress strain equation.

Substituting b, Eq. 2.44, in the variation of porosity, Eq. 2.43, gives

δn = αεkk + (
α2

Ku −K
− n

Kf

)p =
δm

ρf
− n p

Kf

= δn2 + δn1 . (2.47)

The variation fluid content ζ is then

ζ = δn2 =
δV2f

V
=
δm

ρf
= αεkk +

α2

Ku −K
p . (2.48)

Substituting ekk, Eq. 2.32, in Eq. 2.48 we find

ζ =
α

K
(
σkk
3

+
αKu

Ku −K
p)

or
ζ =

α

K
(
σkk
3

+
p

B
) , (2.49)

where
B =

Ku −K
αKu

(2.50)

is the Skempton pore pressure coefficient.



Chapter 2. Review of Constitutive Models, Poro- and Viscoelasticity 21

If no fluid is allowed to leave the sample we refer to undrained boundary
condition. The variation in fluid content is then zero and with Eq. 2.49 we find

B = − ∂p

∂σkk/3

∣∣∣∣∣ ζ=0

. (2.51)

That is, Skempton’s pore pressure coefficient can be interpreted to be the ratio of
change in induced pore pressure to the change in applied stress, for undrained
boundary conditions (Skempton, 1954). In a confined compression test, Skemp-
ton’s pore pressure coefficient can be calculated from measured pore pressure
change ∂p and applied confining pressure change −∂σkk/3. From Eq. 2.49 fol-
lows p = −Bσkk/3, and with Eq. 2.48 we find

εkk =
σkk
3Ku

∣∣∣∣∣ ζ=0

. (2.52)

The undrained bulk modulus Ku can be estimated from confining pressure
change and corresponding volume dilation εkk = δV/V .

If fluid is allowed to leave the sample, we refer to drained boundary condi-
tion. With drained boundary condition, pore pressure is allowed to return to
its initial value, that is p = 0. With Eq. 2.32b follows

εkk =
σkk
3K

∣∣∣∣∣ p=0

, (2.53)

that is, the drained bulk modulus K can be estimated from applied confining
pressure change and corresponding volume dilation. From Eq. 2.48 follows

ζ = αεkk

∣∣∣∣∣ p=0

. (2.54)

Recalling that the variation in fluid content can be calculated from the fluid
volume passing the boundary ζ = δVf/V , and that volume dilation is εkk =

δV/V , the Biot–Willis coefficient can be written as

α =
δVf
δV

∣∣∣∣∣ p=0

. (2.55)

This gives a physical interpretation of the Biot–Willis coefficient α as the ratio of
the fluid volume passing the boundary, which equals the fluid volume lost in a



22 Chapter 2. Review of Constitutive Models, Poro- and Viscoelasticity

material element, to the volume change of that element under drained bounda-
ry condition. The volume of fluid lost by an element cannot be greater than the
total volume change of that element. Therefore, the upper limit of α is one.

2.2.4 Confined Compression Test

Provided sample size is sufficient, a confined compression test can be used for
estimation of poroelastic parameters. Typically, a cylindrical plug of the sample
is put in a rigid, cylindrical chamber between two end plates. This is placed in
a pressure vessel, where a confining pressure can be applied. To test drained
boundary condition, end plates with drainage holes are used. For undrained
boundary condition impenetrable end plates are used. Refer to Zimmerman
et al. (1985) for a description of a device with control of confining and pore
pressure. An overview of drained and undrained test conditions is given in
Tab. 2.1. Recall that three poroelastic parameters are independent. The fourth
parameter can be calculated with Eq. 2.50.

TABLE 2.1: Undrained and drained test overview

Test Boundary Condition Measurement Poroelastic Parameter

drained σkk/3 δV/V K
p = 0 δVf/V α

undrained σkk/3 δV/V Ku

ζ = 0 p B

Examples of confined compression test of articular cartilage, with plug dia-
meter of ca. 5 mm, are found in e.g. Ateshian et al. (1997) and Boschetti et al.
(2004). To the best knowledge of the author, confined compression tests for
smaller tissue samples were not performed to date. An alternative approach
are tests with microneedles, that allow measurements down to cellular and
subcellular length scale. For a first overview refer to Sharpe (2008), Chap. 30:
Mechanical Testing at the Micro/Nonoscale.

2.2.5 Conservation of Fluid Mass, Darcy’s Law and Diffusion

Equation

Taking the time derivative of Eq. 2.48, gives

∂ζ

∂t
= α

∂εkk
∂t

+
α2

Ku −K
∂p

∂t
. (2.56)
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Consider a porous media, that occupies the region Ω, and with boundary ∂Ω .
With fluid flux vector q, the total volume of fluid that passes through a surface
element dA, per unit time, is q · ndA, where n is the outward unit normal vector
of the surface. The integral over the boundary ∂Ω gives the total volumetric
flux of fluid leaving the region per unit time. The variation in fluid content
integrated over the region Ω must be equal to total flux into the region. The
surface integral is transformed with the Gauss divergence theorem:∫

Ω

∂ζ

∂t
dΩ = −

∫
∂Ω

q · ndA Gauss
= −

∫
Ω

∇ · qdΩ ,

∫
Ω

(
∂ζ

∂t
+ ∇ · q)dΩ = 0 . (2.57)

For Eq. 2.57 to be true for the entire region, the integrand must vanish identi-
cally, and therefore:

∂ζ

∂t
+∇ · q = 0 . (2.58)

Combining Eq. 2.58 and Eq. 2.56, we find the so called storage equation:

α
∂εkk
∂t

+ S
∂p

∂t
= −∇ · q , (2.59)

where
S =

α2

Ku −K
(2.60)

is the storage coefficient. Combining the storage Eq. 2.59 and Eq. 2.58, we find

S =
∂ζ

∂p

∣∣∣∣∣ ∂εkk=0

. (2.61)

That is, the storage coefficient can be interpreted as the increase of the amount
of fluid, per unit volume of porous media, as a result of an increase of pore
pressure, at constant volumetric strain (Biot and Willis, 1957).

Consider a fully saturated porous material with isotropic solid phase and
bulk modulus Ks. Suppose we apply at the boundary a hydrostatic pressure
p = p0. Then, the stress in the solid is σij = −p0δij . This stress will cause the
dilation εkk = σkk/3Ks = −p0/Ks, corresponding strain εij = −p0δij/3Ks, and
change in porosity δn = −np0/Ks = nεkk in the solid phase.
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Substituting in Eq. 2.25

−p0δij = 2G
−p0

3Ks

δij + (K − 2G

3
)
−p0

Ks

δij − αp0δij ,

we find an expression for the Biot–Willis coefficient (Biot and Willis, 1957):

α = 1− K

Ks

, with α ∈ [0, 1] . (2.62)

The bulk modulus of the solid phase Ks is higher than the bulk modulus of the
porous media with drained boundary condition K. Assuming incompressible
solid phase, the upper limit α = 1 is observed. Substituting above mentioned
hydrostatic boundary pressure conditions in Eq. 2.47, we find

n
−p0

Ks

= α
−p0

Ks

+ (
α2

Ku −K
− n

Kf

)p0 ,

and an expression for the undrained bulk modulus follows:

Ku = K +
α2KsKf

nKs + (α− n)Kf

, with Ku ∈ [K,∞) . (2.63)

Darcy’s law is an empirical equation for seepage flow in porous media. It
states, that the volume flux qi of the fluid, relative to the solid, is proportional
to the pressure gradient:

qi = − k

µf

∂p

∂xi
, (2.64)

where the pore fluid viscosity µf has units Pa s, the intrinsic permeability k

has units m2. The volume flux qi has units m/s and is also called discharge-,
seepage- or filter-velocity. According to Cheng and Detournay (1993), ‘The in-
trinsic permeability k is generally a function of the pore geometry. In particular,
it is strongly dependent on porosity.’

Conservation of fluid mass requires that the variation in fluid mass content
per unit time ∂(δm)/∂t is equal to the net inwards flux across the boundary
−∂(ρfqi)/∂xi, or

∂(ρfqi)

∂xi
+
∂(δm)

∂t
= 0 . (2.65)

Substituting in Darcy’s Law Eq. 2.64 and mass variation Eq. 2.45, with εii =

1/2(ui,i + ui,i) = ui,i, we get the partial differential equation

− k

µf
p,ii + α

∂

∂t
(ui,i +

α

Ku −K
p) = 0 . (2.66)
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Consider the equilibrium equation σij,i = 0. Substituting Eq. 2.25, with εij,i =

1/2(ui,ji + uj,ii), the partial differential equations for the three coordinate direc-
tions (free index j) are

(K +
1

3
G)ui,ij +Guj,ii − αp,j = 0 . (2.67)

Differentiating with respect to (.),j , and by virtue of Schwarz’ theorem, we find

(K +
4

3
G)ui,ijj − αp,jj = 0 (2.68)

and after some algebraic manipulations

ui,ijj =
Ku −K

K + (4/3)G
(ui,ijj −

α

Ku −K
p,jj) . (2.69)

Substituting p,jj from Eq. 2.68 in the partial differential Eq. 2.66, and together
with Eq. 2.69, gives

c∇2(ui,i +
α

Ku −K
p) =

∂

∂t
(ui,i +

α

Ku −K
p) , (2.70)

where c is the diffusion coefficient

c =
k(Ku −K)(K + 4G/3)

µfα2(Ku + 4G/3)
. (2.71)

Observe that the terms in brackets on left and right hand side of the partial
differential Eq. 2.70 are identical. It has the form of a diffusion equation. Ac-
cording to Eq. 2.45, the terms in brackets multiplied by ρfα are the variation in
fluid mass content. That is, Eq. 2.70 is a diffusion equation in terms of variation
in fluid mass content:

c∇2(δm) =
∂

∂t
(δm) . (2.72)

After some algebraic manipulations, the diffusion equation can also be written
in terms of pore pressure (Zimmerman (2000)):

(
k

µf

Ku −K
α2

)∇2p− (
Ku −K

α
)
∂εkk
∂t

=
∂p

∂t
. (2.73)

Note that the diffusion equation in terms of pressure, Eq. 2.73, has a source
term, which couples the rate of change in dilation ∂εkk/∂t.
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2.2.6 Some Remarks on the Numerical Implementation

Early contributions to the numerical implementation of poroelasticity with the
finite element method are, for example, from Sandhu and Wilson (1969), Chris-
tian (1968) and Ghaboussi and Wilson (1973). For an introduction refer to the
textbook of Zienkiewicz et al. (2005), Chap. 18.3: Soil-pore fluid interaction.
Based on the variational formulation of the stress-strain Eq. 2.25 and the stor-
age Eq. 2.59, coupled equations in terms of the nodal unknowns displacement
and pore pressure are derived.

Later contributions based on bipahsic mixture theory, like Levenston et al.
(1998) and Ehlers and Markert (2001), assumed incompressible solid and fluid
phases. With this assumption we have α = 1, K = Ku and S = 0. Therefore,
in the storage Eq. 2.59, the time derivative of pressure term is zero, and the
corresponding term in Eq. 18.75 in the textbook of Zienkiewicz et al. (2005) can
be neglected.

As a final remark, observing the analogy of the poroelastic diffusion Eq. 2.73
and the heat diffusion equation, one could solve poroelastic problems with pro-
cedures implemented for thermal analysis (Zimmerman, 2000; Capone, 2010).
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2.3 Viscoelasticity

2.3.1 Introduction

According to the definition of Pandolfi (2012), a continuum is said to be vis-
coelastic if it exhibits elastic and viscous material behaviour at the same time,
that is, if its state of stress depends on deformation, rate of deformation and
temperature.

Various phenomenological models have been proposed. For an introduction
into the theory of viscoelasticity refer to the textbooks of e.g. Findley and Lai
(1976), Christensen (1982) and Severino and Guillermo (2012), as well as the
articles of Simo (1987) and Reese and Govindjee (1998).

Here, the Generalised Maxwell Model for isothermal condition is described,
following the paper of Kaliske and Rothert (1997).

2.3.2 Phenomenological Viscoelastic Model

One Dimensional Linear Viscoelasticity

A one dimensional viscoelastic behaviour can be modelled with the basic con-
stitutive rheological elements of an elastic spring, called Hooke-element and a
viscous damper, called Newton-element. Hooke’s law states that elastic stress σe
is proportional to elastic strain εe:

σe = µεe , (2.74)

where the proportionality factor is the spring stiffness µ. Assuming viscous
response is governed by a Newtonian fluid, the viscous stress σv is proportional
to the strain rate ε̇v:

σv = ηε̇v , (2.75)

where the proportionality factor is the viscosity η. The connection in series of a
Hooke-element and a Newton-element is called Maxwell-element (Fig. 2.2). The
total strain of the Maxwell-element ε, is the sum of the elastic and viscous strain

ε = εe + εv , (2.76)

whereas the stress in the Hooke-element and the Newton-element are identical

σ = µεe = ηε̇v . (2.77)
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σe
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εe σv

η

εv σ

η
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ε

FIGURE 2.2: From left to right: Hooke-, Newton- and Maxwell-
element.

Taking the time derivative of Eq. 2.76 and substituting Eq. 2.77 gives the differ-
ential equation of the Maxwell-element:

ε̇ =
σ̇

µ
+
σ

η
. (2.78)

Consider the response of the Maxwell-element to a relaxation test, where
strain input changes from zero to ε0 at t0 = 0. With the unit step function u( ),
the strain input for the relaxation test is ε(t) = ε0u(t − t0). With the initial
condition σ0 = µε0, the solution of Eq. 2.78 is

σ(t) = µε0e
−t/τ , (2.79)

where τ = η/µ is the time constant of the Maxwell-element. Dividing Eq. 2.79
by ε0 gives the relaxation function

Γ(t) :=
σ(t)

ε0

= µe−t/τ , (2.80)

which is characteristic for the viscoelastic material. The response of a Maxwell-
element to a relaxation test (Eq. 2.79) in normalised form (divided by µε0) is
plotted in Fig. 2.3. The initial value is σ(t = 0)/µε0 = 1. After t = τ stress has
reduced to 36.8 % and after t = 4τ stress has reduced to 1.83 %. For long times
stress reduces to zero, σ(t→∞) = 0. The slope of the curve at t/τ = 0 is 1 and
the tangent at t = 0 intercepts the time axis at t = τ . This property can be useful
when evaluating measured relaxation curves.
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FIGURE 2.3: Relaxation test of a Maxwell-element.

We now consider a generalised Maxwell-element (Fig. 2.4), where a finite
number of Maxwell-elements j = 1, .., N are connected in parallel to a single
Hooke-element. The response of a generalised Maxwell-element to a relaxation
test is obtained by adding the contribution of the parallel elements

σ(t) = µ0ε0 +
N∑
j=1

µjε0e
−t/τj (2.81)

and the corresponding relaxation function is

Γ(t) = µ0 +
N∑
j=1

µje
−t/τj . (2.82)

Dividing Eq. 2.82 by µ0 gives relaxation function in normalised form

γ(t) :=
Γ(t)

µ0

= 1 +
N∑
j=1

γje
−t/τj , (2.83)

where γj = µj/µ0 and τj = µj/ηj .
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FIGURE 2.4: Generalised Maxwell-element.

We now consider the response of a generalised Maxwell-element to relaxa-
tion test with i = 1, ..,M incremental strain inputs δεi at time ti:

ε(t) =
M∑
i=1

δεi u(t− ti) . (2.84)

The response of a material to a given load is, according to the Boltzmann super-
position principle2, independent of the response of the material to any previous
loads already applied to the material. As a consequence, the response to each
incremental load δεi is independent of those due to the previous incremental
loads, and the response to the complete load history equals the sum of the in-
dividual responses:

σ(t) =
M∑
i=1

σi(t− ti) =
M∑
i=1

Γ(t− ti) δεi u(t− ti) . (2.85)

In the limiting case of infinitesimal strain input dε, the total stress is given by
the integral:

σ(t) =

∫ t

0

Γ(t− ti) u(t− ti) dε . (2.86)

Provided the strain input history is differentiable with respect to time, the in-
tegral reduces to

σ(t) =

∫ t

0

Γ(t− s) ∂ε
∂s

ds , (2.87)

where

Γ(t− s) = µ0 +
N∑
j=1

µje
−(t−s)/τj . (2.88)

2Boltzmann (1874)
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Substituting Eq. 2.88 into Eq. 2.87 and dividing the integral into the elastic and
viscoelastic part gives

σ(t) =

∫ t

0

µ0
∂ε

∂s
ds+

∫ t

0

N∑
j=1

µje
−(t−s)/τj ∂ε

∂s
ds

= µ0 ε(t) +
N∑
j=1

∫ t

0

µje
−(t−s)/τj ∂ε

∂s
ds

= σ0(t) +
N∑
j=1

hj(t) .

(2.89)

The stress response is composed of the elastic stress component

σ0(t) = µ0ε(t) (2.90)

and the sum of the internal stress variables hj(t), which represent the response
of the N Maxwell-elements

hj(t) =

∫ t

0

µje
−(t−s)/τj ∂ε(s)

∂s
ds . (2.91)

Substituting Eq. 2.90 in Eq. 2.91 gives

hj(t) =

∫ t

0

γje
−(t−s)/τj ∂σ0(s)

∂s
ds . (2.92)

Analogue to Eq. 2.78 the differential equation of Maxwell-element j, corres-
ponding to Eq. 2.92 is

ḣj +
1

τj
hj = γjσ̇0 . (2.93)

Numerical integration of Eq. 2.92 is accomplished by a recurrence relation
similarly proposed by Hermann and Peterson (1968) and Taylor et al. (1970).
For the time interval [tn, tn+1] we define the time step ∆t = tn+1 − tn and write
the exponential term e−tn+1/τj = e−(tn+∆t)/τj = e−tn/τje−∆t/τj . Integration of the
deformation history is split into the interval [0, tn], where the integrated result
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at tn is known and the present interval [tn, tn+1], where the result at tn+1 is un-
known. Substituting into Eq. 2.92 gives

hj(tn+1) = γj

∫ tn+1

0

e−(tn+1−s)/τj ∂σ0(s)

∂s
ds

= γje
−∆t/τj

∫ tn

0

e−(tn−s)/τj ∂σ0(s)

∂s
ds+ γj

∫ tn+1

tn

e−(tn+1−s)/τj ∂σ0(s)

∂s
ds

= e−∆t/τjhj(tn) + γj

∫ tn+1

tn

e−(tn+1−s)/τj ∂σ0(s)

∂s
ds .

(2.94)

Up to this point no numerical approximation was involved and the recursive
equation provides the exact value of the current internal stress variable hj(tn+1).
The derivative in the integral is written in discrete form. For ease of notation
we use superscript n for tn:

∂σ0(s)

∂s
= lim

∆s→0

∆σ0(s)

∆s
= lim

∆t→0

σn+1
0 − σn0

∆t
. (2.95)

Substituted in Eq. 2.94

hn+1
j = e−∆t/τjhnj + γj

∫ tn+1

tn

e−(tn+1−s)/τj σ
n+1
0 − σn0

∆t
ds (2.96)

and integration provides the recursive equation for the internal stress variable

hn+1
j = e−∆t/τjhnj + γj

1− e−∆t/τj

∆t/τj
[σn+1

0 − σn0 ] . (2.97)

Then, the current stress at tn+1 is

σn+1 = µ0ε
n+1 +

N∑
j=1

hn+1
j (2.98)

and the viscoelastic stiffness is

Cn+1 =
∂σn+1

∂εn+1
= µ0(1 +

N∑
j=1

γj
1− e−∆t/τj

∆t/τj
) . (2.99)

For constant stiffness µ0 and fixed time step ∆t the viscoelastic stiffness
is constant (Eq. 2.99). For the recursive estimation of the internal stress vari-
able hn+1

j in Eq. 2.97 knowledge of the previous stress state σn0 and hnj , with
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j = 1, .., N is necessary. These variables are available from the previous time
step tn. The stress at the Hooke-element σn+1

0 can be estimated from the strain
increment of the current step. ‘The shown strain-driven integration algorithm
is unconditionally stable for small and large time steps and it is second order
accurate’ (Kaliske and Rothert, 1997).

Finite Viscoelasticity

In this section we extend the viscoelastic model to the three dimensional case
and finite strain. ‘Experimental investigations have shown that in many cases
viscoelastic behaviour is mainly related to the isochoric part of the deforma-
tion. Thus, the volume dilation is considered as being purely elastic. In con-
trast to total viscoelasticity introduced before, a volumetric and isochoric split
of the stresses is required to formulate separate material properties’ (Kaliske
and Rothert, 1997). Based on a local multiplicative decomposition of the de-
formation gradient into volume preserving and dilational part, which to the
best of knowledge of the author goes back to Flory (1961), stress tensor is split
into a deviatoric and volumetric part. For ease of notation we use bold face
letters for second order tensors in Eq. 2.27, with tr() denoting the trace operator
and I the second order unit tensor:

σ = σ′ +
1

3
tr(σ) I . (2.100)

The first part σ′ is the deviatoric stress tensor, which involves the volume
preserving (isochoric) response. The second part 1/3tr(σ) I is the volumetric
stress tensor, also called spherical or hydrostatic strees tensor. It involves dila-
tional volumetric response conserving the shape.

Isochoric finite viscoelasticity is associated to the deviatoric response. In
analogy Eq. 2.98 and Eq. 2.97 are written for the deviatoric response

σ′ n+1 = σ′0
n+1 +

N∑
j=1

H′j
n+1 , (2.101)

H′j
n+1 = e−∆t/τjH′j

n + γj
1− e−∆t/τj

∆t/τj
[σ′0

n+1 − σ′0
n] (2.102)

and Eq. 2.99 becomes

Cv n+1 = Ce n+1
vol + Ce n+1

iso (1 +
N∑
j=1

γj
1− e−∆t/τj

∆t/τj
) . (2.103)
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The forth order viscoelastic stiffness tensor Cv contains a volumetric term
Ce
vol and an isochoric term Ce

iso multiplied by a constant. The elastic stiffness
tensor, analogue to µ0 of linear viscoelasticity, is Ce = Ce

vol + Ce
iso . For hyper-

elastic materials the stiffness tensors can be obtained from the appropriate strain
energy density function (see e.g. Bonet and Wood (2008)). Again, for the recur-
sive estimation of the internal stress variable H′j

n+1 in Eq. 2.102 knowledge of
the previous stress state σ′0

n and H′j
n, with j = 1, .., N is necessary. These vari-

ables are available from the previous time step tn.
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Dimensionless Analysis

3.1 Dimensionless Analysis and the Péclet Number

Consider the deformation of a representative control volume of a porous mate-
rial with fluid filled, interconnected pores. If the material behaves viscoelastic,
there is a viscous interaction between the fluid and the porous material, how-
ever the fluid remains at its location. That is, there is no flow of the interstitial
fluid across the boundary of the control volume. On the other hand, if the ma-
terial behaves poroelastic, a net flow across the boundary of the control volume
is admissible, which could be due to a pressure gradient induced flow of the
interstitial fluid through the porous material.

Dimensionless numbers are used to characterise physical processes. In the
context of mass transfer1 in a continuum, the dimensionless number, defined
by the ratio of advection to diffusion mass flux, is called Péclet number2. The
advection mass flux, i.e. the mass per time passing the boundary due to bulk
fluid motion with velocity v, is ρf v, where ρf is the density of the fluid. The dif-
fusion mass flux is D∇ρf , where D is the mass diffusion coefficient (units: m2/s).
Upon replacement of the gradient by a characteristic length L of the experiment,
the Péclet number is

Pe =
L v

D
. (3.1)

From the definition it is clear that for Pe � 1 advection mass flux is dominant
and for Pe � 1 diffusion mass flux is dominant.

In the context of poroelasticity, advection mass flux is due to bulk fluid mo-
tion forced by a pressure gradient, usually described by Dray’s Law. The dif-
fusion mass flux is due to a mass density gradient of the interstitial fluid and
usually described by Fick’s Law. For a viscoelastic material, an important char-
acteristic describing the relaxation behaviour is the time constant τv. The test

1For an introduction to mass transfer refer to textbooks like Incropera and DeWitt (1985).
2For an analogue definition of the Péclet number in heat transfer refer to Eckert (1949).

35
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time t is made dimensionless by dividing through the time constant τv, i.e. the
normalised time is t/τv. If in Eq. 3.1 velocity is replaced by v = L/t, the product
of Péclet number and normalised time becomes

Pe · t
τv

=
L2

D τv
=
L2

L2
d

. (3.2)

This is again a dimensionless number, defined as the quotient of the character-
istic length L and the material specific diffusion length Ld, squared. For a given
test L2/D τv is constant, and characterises the dimensionless length (L/Ld)

2 of the
experimental setup. The material specific diffusion length

Ld =
√
D τv (3.3)

can be interpreted as the distance of mass transfer due to diffusion, within the
time characteristic for viscoelastic relaxation.

For a given characteristic length L of the experiment, the diffusion time is
td ∝ L2/D and the advection time is ta ∝ L/v. With that, the Péclet number

Pe =
L v

D
=
L2

D

v

L
=
td
ta

(3.4)

can be interpreted as the ratio of diffusion time and advection time, which can
be considered as the dimensionless time of the experimental setup. If td � ta

advection mass flux is dominant, and if td � ta diffusion mass flux is dominant.
The upper plot of Fig. 3.1 shows the Péclet number and the middle plot

shows L2/Dτv versus normalised time on a double logarithmic scale. A green
line was plotted for Pe = 1 and cyan lines were plotted for Pe = 0.1 and
Pe = 10. The lower plot shows a exponential decay function (blue line) on
semilogarithmic scale.
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FIGURE 3.1: Plot Péclet number, normalised length and exponen-
tial decay function versus normalised time. The red line is for the
PDL in situ with L = 0.1mm, D = 1 · 10−10 m2 s−1 and τv = 10 s.
The green line is Pe = 1, cyan lines are for Pe = 0.1 and Pe = 10.

3.2 Application to the Periodontium and Discussion

Consider an in situ test of the periodontium. In the presence of an external
load on the tooth, part of the interstitial fluid is likely to move to the alveolar
bone. Therefore, an obvious choice for the characteristic length is the width of
the periodontal ligament, which is in the order of magnitude of 0.1 mm. Based
on experiments with cells and tissue tested with atomic force microscopes and
nanoindentation by Charras et al. (2009) and Rosenbluth et al. (2008), the mass
diffusion coefficient D is in the order of magnitude of 1 · 10−10 m2 s−1. The time
constant τv is in the order of magnitude of 10 s (Toms et al., 2002). With these
figures, we can estimate the constant L2/Dτv and find from Eq. 3.2 the Péclet
number as a function of inverse normalised time:

Pe =
L2

Dτv

( t
τv

)−1

. (3.5)
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Figure 3.1 shows a plot of Eq. 3.5 (red line) with above mentioned constants
for the PDL in situ. For t/τv � 10−1 viscoelastic relaxation is marginal and
advection, i.e. poroelastic behaviour, is dominant. For t/τv > 10−1 viscoelastic
relaxation is noticeable (e−0.1 = 0.905), at t/τv = 1 viscoelastic relaxation is in
progress (e−1 = 0.368) and at t/τv = 10 viscoelastic relaxation is practically
completed (e−10 = 0.000). Between t/τv = 1 and t/τv > 102 transition from ad-
vection to diffusion is observed and for t/τv > 102 diffusion mass flux becomes
dominant.

Concluding, for an in situ relaxation test of the periodontium, it is anti-
cipated that poroelastic behaviour will be observed during the initial phase of
the test, and poroelastic behaviour will gradually cease between t/τv = 1 and
t/τv = 10. Further, viscoelastic behaviour is anticipated to be noticeable after
about t/τv = 10−2. Taking into account that in practice several time constant for
viscoelastic relaxation were reported (e.g. Toms et al. (2002)), it is anticipated
that, after the initial phase, viscoelastic behaviour will be observed throughout
the test.



Chapter 4

Curve Fit of Test Data

4.1 Curve Fit - In Vitro Test of Papadopoulou

4.1.1 Test Data

For the in vitro measurements done by Papadopoulou et al. (2013), actuator
displacement x(t) was input as a function of time t. The displacement of the ac-
tuator rose at constant speed, vramp = dramp/tramp, between t = 0 and the ramp
rise time t = tramp, to the maximum actuator displacement dramp. Thereafter,
the actuator displacement stayed constant at dramp, until the measurement was
finished at time tmax :

x = x(t) =

{
vramp · t, 0 ≤ t ≤ tramp

dramp, tramp < t ≤ tmax
. (4.1)

An overview of the measurements done is shown in Tab. 4.1. The first
column list the test number. In the following three columns, the time of day
when the test was started tstart, the ramp rise time tramp, and maximum actu-
ator displacement dramp, as encoded in the measurement log file name, are lis-
ted. Subsequently, it was assumed that tFmax is the actual ramp rise time of the
actuator. The next two columns provide the measured peak force Fmax, and the
time when this peak force occurred tFmax. Actuator force values were recorded
at a sample interval tsample.

Observe that for test number 13, 15, 16, 17 and 18 the ramp time encoded
in the file name tramp, deviates considerably form the peak force time tFmax,
recorded in the measurement protocol. Apparently, this was due to an issue
with the actuator displacement controller. Exemplary, in Fig. 4.1 test number 1,
2, 11 and 12 are plotted. The force curve of test No. 1 shows a kink at ca. 200
seconds, even though there was no change of the actuator input. Due to these
peculiarities, test number 1, 13, 15, 16, 17 and 18 were discarded from curve fit.

39
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Consider Fig. 4.1, small jumps in the measured force are observed. Due to
scaling of the force axis, this is clearly visible for tests with lower peak force,
in particular test number 11. For test 11 and 12, in response to actuator dis-
placement until ramp rise time, respectively 60 s and 120 s, a progressive force
characteristic is observed. For all tests, after the maximum force is reached at
ramp rise time, a force decay with decreasing slope is observed.

TABLE 4.1: Papadopoulou et al. (2013) test – overview for speci-
men 14.

test tstart tramp dramp tsample tmax tFmax Fmax trest
- hh:mm s mm s s s N s

1 10:59 5 0.1 0.2 605.1 5.4 2.5 -
2 11:20 5 0.2 0.2 605.1 6.4 9.5 655
3 12:21 10 0.1 0.2 610.1 10.6 1.6 3055
4 12:36 10 0.2 0.2 610.1 10.4 8.1 290
5 12:54 20 0.1 0.2 620.1 21.0 1.0 470
6 13:14 20 0.2 0.2 620.1 20.6 6.7 580
7 13:31 30 0.1 0.2 630.1 30.6 0.9 400
8 13:49 30 0.2 0.2 630.1 30.8 5.9 450
9 14:07 60 0.1 0.2 660.2 60.5 0.7 450
10 14:30 60 0.2 0.2 660.1 61.9 4.6 720
11 14:50 120 0.1 0.5 720.0 120.2 0.5 540
12 15:12 120 0.2 0.5 720.0 123.2 4.3 600
13 15:32 300 0.1 0.5 900.3 191.3 0.4 480
14 15:57 300 0.2 0.5 900.3 305.4 3.8 600
15 16:30 450 0.1 0.5 1050.0 191.8 0.4 1080
16 17:11 450 0.2 0.5 1050.0 391.6 3.0 1410
17 17:36 600 0.1 0.5 1200.2 193.8 0.3 450
18 18:01 600 0.2 0.5 1200.2 387.1 3.2 300

4.1.2 Model Function

A well known method for solving partial differential equations is separation
of variables. Analogue, the model function for actuator force Y (x, t, p) is as-
sumed to be the product of a function of actuator displacement F (x, pF ) and a
function of time G(t, pG), with time t ∈ [0, tmax], actuator displacement x(t) and
parameters p = [pF , pG] of F and G:

Y (t, p) = F (x(t), pF ) ·G(t, pG) . (4.2)

The Boltzmann superposition principle is employed. That is, response to
the complete load history is the sum of the individual responses due to i =
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FIGURE 4.1: Plot of test No. 1, 2, 11 and 12.

1, ..,M incremental displacement inputs δxi at time ti, with actuator displace-
ment defined in Eq. 4.1 approximated by x(t) =

∑M
i=1 δxi u(t − ti), where u is

the unit step (Heaviside) function.
Consider the plot to test data, Fig. 4.1. Force increases with actuator dis-

placement x(t) and a progressive characteristic is observed. This could be ap-
proximated by a polynomial, with constant term set to zero in order to satisfy
F (x = 0) = 0. A first curve fit was done with a polynomial of second order.
The polynomial order was successively increased to improve approximation
of the progressive characteristic. It was observed that the coefficients of the
power series terms changed sign and decreased. This led to the idea, recalling
the power series of ex, that this could be described by an expression of the form
ex−1, which requires the estimation of two parameters instead of n parameters,
for a polynomial of order n without constant term. Concluding, the proposed
equation for F (x, pF ), with parameters pF = {p1, p2} is

F (x, pF ) = p1(ep2·x − 1) . (4.3)

Sensitivity of Eq. 4.3 to parameter changes p1 and p2 are plotted in Fig. 4.2
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FIGURE 4.2: Sensitivity to parameter changes of Eq. 4.3, the model
function for displacement F (x, pF ) = p1(e

p2·x − 1).

upper left and right. Observe that changes of the parameters p1 or p2 effects
both, initial slope at x = 0 and the value of F at e.g. x = 1.

Consider the derivative of F with respect to x. By changing the factor in
front of the bracket from p1 to p1/p2, the gradient at x = 0 becomes independent
of p2. Than, for a fixed value of p1 we can choose p2 to fit F at a selected point,
e.g. x = dramp, to a desired value, without altering the initial slope at x = 0.
Therefore Eq. 4.3 is changed to

F (x, pF ) =
p1

p2

(ep2·x − 1) . (4.4)

Observe that Eq. 4.4 is analogue to the equation proposed by Fung (1967)1 for
the quasi static one-dimensional passive response of soft tissue in integrated
form.

1 ∂T (λ)
∂λ = E + βT (λ) with T traction, λ stretch, E Young’s modulus, β a constant.
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In order to keep F (x = dramp) constant for varying initial slope, with pnew1 =

c p1 and constant c ∈ R+ \ 0, we find pnew2 from the nonlinear equation

pnew2 (ep2dramp − 1)− c p2 (ep
new
2 dramp − 1) = 0 . (4.5)

With this in mind, we can use p2 and p1 to curve fit the model function
of the two ramp displacements 0.2 and 0.1 mm independently, provided the
parameters of G(t, pG) do not depend on ramp displacement. This means, we
can first fit the model function to ramp displacement 0.2 mm tests and than find
constant c, with pnew1 = c p1 and pnew2 adapted according to Eq. 4.5, that best fits
the ramp displacement 0.1 mm test data, without altering the response to ramp
displacement 0.2 mm input for times larger than the ramp rise time.

Consider again the plot of test data, Fig. 4.1. For the response right of the
peak force point, i.e. where the actuator displacement input remains constant,
a decay of the force with time is observed and the force appears to converge
against an equilibrium value. This suggests to define G(t, pG) as the sum of an
exponential decay function and a constant term, to cover the steady state re-
sponse. The structure of G(t, pG) was defined analogue to a viscoelastic stress
relaxation function. According to ABAQUS (2016), Analysis User’s Guide, Chap.
19.7.1, ‘The number of terms in the Prony series should be typically not more
than the number of logarithmic “decades” spanned by the test data. The num-
ber of logarithmic “decades” is defined as n = lg(tmax/tmin), where tmax and
tmin are the maximum and minimum time in the test data, respectively.’ With
the figures from Tab. 4.1 we estimate n = lg(1200/0.5) = 3.38. Therefore three
exponential terms, with time constants τi = 1/pj; i, j ∈ {(1, 5), (2, 7), (3, 9)} are
used and the proposed equation for G(t, pG), with parameters pG = {p3, ..., p9}
is

G(t, pG) = p3 + p4e
−p5·t + p6e

−p7·t + p8e
−p9·t . (4.6)

Collecting terms, the proposed model function is

Y (t, p) = F (x(t), pF ) ·G(t, pG) ,

F (x(t), pF ) =
p1

p2

(ep2·x − 1) ,

G(t, pG) = p3 + p4e
−p5·t + p6e

−p7·t + p8e
−p9·t .

(4.7)
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The bounds of the parameters are

pi ∈ (0,∞) for i = 1, 2, 5, 7, 9 and (4.8)

pi ∈ (0, 1) for i = 3, 4, 6, 8 . (4.9)

The sum of the coefficients for the viscoelastic material was chosen to be
unity, in line with the viscoelastic material model implemented in ABAQUS
(2016) . This is an equality constraint:

p3 + p4 + p6 + p8 = 1 . (4.10)

The smallest time constant τmin = 1/max(pi); i ∈ {5, 7, 9} should be larger than
minimum time of the measured data, i.e. the sampling interval tmin, and the
largest time constant τmax = 1/min(pi); i ∈ {5, 7, 9} should be smaller than the
measurement time tmax. The time constants τ of the viscoelastic constitutive
model are separated by at least a factor C. For the curve fit C = 8 was chosen.
These conditions provide the inequality constraints:

p9 ≥ 1/tmax p5 ≤ 1/tmin and (4.11)
p5

p7

≥ C
p7

p9

≥ C with C = 8 . (4.12)

4.1.3 Curve Fit Procedure

Problem Definition in Terms of Constrained Optimisation

For an introduction to nonlinear regression refer to textbooks like Draper and
Smith (1998) and Deuflhard and Hohmann (2002). Denote the reading points
of the measured actuator force curve with (ti, yi); i = 1, . . . ,m, where m is the
number of readings and yi is the actuator force at time ti. We want to find
the parameters p of the model function Eq. 4.7, Y (t, p), that best approximates
measurement points and fulfil the equality and inequality constrains for the
parameters. This can be stated as a constrained optimisation problem, which is
customary written as (Chong and Zak, 2013)

min f(x) x ∈ Rn ,

subject to hi(x) = 0 for i = 1, . . . , k ,

gj(x) ≤ 0 for j = 1, . . . , l ,

(4.13)
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where f : Rn → R is the function to be optimised, also referred to as objective
function, hi : Rn → R with k ≤ n are the equality constraints and gj : Rn → R are
the inequality constraints.

The difference between measured value yi at time ti and predicted value
Y (ti, p) is called error or residual. For the curve fit we want to minimise the sum
of the squared residuals. With x = [ti, yi, p], the objective function is

f(x) =
m∑
i=1

(yi − Y (ti, p))
2 . (4.14)

For nonlinear least squares curve fit the Levenberg-Marquardt method (Leven-
berg, 1944; Marquardt, 1963) implemented in GNU Octave (Eaton et al., 2017)
was used. Refer to the GNU Octave documentation of the function leasqr for
details. The equality constraint is given by Eq. 4.10. Inequality constraints were
derived from Eq. 4.11 and 4.12. The range of the parameters, that is Eq. 4.8 and
Eq. 4.9, represent inequality constraints, however bounds of parameters were
specified directly.

To mention is that in addition to Eq. 4.14 a weighting can be specified, i.e.
sum of weighted squares of the residuals is minimised. This could be used to
weight measured values if there is a known measurement error dependency.

Remarks on the Coefficient of Multiple Correlation

The coefficient of multiple correlation indicates how well measured and pre-
dicted values correlate. It is used throughout this work and therefore briefly
discussed here. We start with some definitions. The sum of the squares of the
difference of the measured value yi and the mean value ȳ is called total sum of
squares:

SStot =
m∑
i=1

(yi − ȳ)2 .

The sum of the squares of the deviations of the predicted curve fit value Y (ti, p)

from the mean value ȳ is called regression sum of squares:

SSreg =
m∑
i=1

(Y (ti, p)− ȳ)2 .
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The sum of the squares of the difference of the measured value yi and the pre-
dicted curve fit value Y (ti, p) is called residual sum of squares:

SSres =
m∑
i=1

(yi − Y (ti, p))
2 .

The coefficient of multiple correlation is than defined by (Neter et al., 2004)

R2 = 1− SSres
SStot

. (4.15)

In the case of linear regression it can be shown that, at the minimum, the residual
is orthogonal to the range of the model function (Deuflhard and Hohmann,
2002) and therefore

SStot = SSreg + SSres .

With that R2 can be written as

R2 =
SSreg
SStot

. (4.16)

Motivated by this expression we can interpret R2 as a measure of the part of
the total variation that is explained by the regression. For linear regression the
limits ofR2 are 0 ≤ R2 ≤ 1. The lower limit is obtained if SSreg = 0, respectively
SStot = SSres, i.e. if the regression curve fits the data no better than a horizontal
line through the mean value of the measured date. The upper limit is obtained
if SSreg = SStot, respectively SSres = 0, that is if the regression curve passes
through all measured data points.

For nonlinear regression we resort to Eq. 4.15. Here the notation R2 is mis-
leading in the sense that R2 can have negative values. This is the case when
SSres > SStot, i.e. if the regression curve fits the data worse than a horizontal
line through the mean value of the measured date. Again, the upper limit of R2

is obtained when the residuals are zero.
As a final remark, high values of the coefficient of multiple correlation R2

only tell that the regression curve is close to the measured values, it does not
tell whether the chosen model function is physically meaningful. To illustrate
the point, one could fit a degree m − 1 polynomial that passes through the m
measurement points2, however this may be a poor model, that is pointless to
understand the physical processes involved.

2Follows from the Fundamental Theorem of Algebra, see e.g. Bronstein et al. (2005)
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Pre-processing of the Measured Data

Consider Tab. 4.1, test No. 10 has about 3300 measurement points. In principle
it is feasible to do the curve fit with all measurement points. However, a pre-
liminary investigation has shown that it is sufficient to use a reduced number
of data points. Apart from computing time savings, there are further reasons
to use a reduced number of data points. The model function Eq. 4.7 consists of
a displacement function with two parameters and a time function with seven
parameters. The time function is made up of exponential functions with time
constants separated by about one order of magnitude. By using an appropri-
ate method for selecting points, one can attempt to give all parameters equal
weight, which should improve the curve fit.

Consider Fig. 4.3. The response for 0 ≤ t ≤ tramp, i.e. left of the peak force
point, is dominated by the displacement function. The displacement function
has two from nine parameters. Therefore, as an initial estimate 20 % of the data
points are placed in the first interval. To give the response close to the peak force
point a higher weight, the points are biased towards the peak force point by
decreasing the distance according to a geometric series. For t > tramp actuator
displacement remains constant, the displacement function does not change and
the response is governed by the time function. The time function is made up
from three decaying exponential terms. For larger times the exponential terms
decay successively, according to their time constants. To give the exponential
terms equal weight the distance between the data points is increased according
to a geometric sequence. This reduces the weight of the long term response,
where the first two exponential terms have already decayed and there is little
change in the actuator force. In Fig. 4.3 the measured data of test No. 10 and the
selected points are plotted. Preliminary analysis showed that a weight of 14 %

for the first interval and approximately 40 points are sufficient for an acceptable
curve fit.
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FIGURE 4.3: Measured and selected points of test No. 10.

As discussed in Chap. 4.1.1, small jumps in the measured force were ob-
served. Using the measured force value at the selected point may be mislead-
ing. For example, if there is an systematic error in the recorded force that re-
peats with a pattern, it could be that forces are used at the low or high level, if
points are selected with the same pattern. The steps in the recorded force could
be due to delay effects or the data transmission rate of the digital data recording
equipment.

To avoid these issues, local interpolations of the data around the selected
points were performed and the interpolated force values were used for sub-
sequent analysis. For the interpolations local curve fits with second-order poly-
nomials were used. Depending on the position, data from up to three selected
neighbouring points were used for the interpolation. For the first point, with
F (t = 0) = 0 and the peak force point, with t = tramp, the measured values were
retained. The value of the last point, with t = tmax, was interpolated from the
last time interval. An example is shown in Fig. 4.4.
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FIGURE 4.4: Interpolation of measured data (test No. 10 at 27.44 s).

Quasi-Static Response and Initial Estimate for Parameter p1 and p2

For a quasi-static load the model function reduces to Eq. 4.4 and the derivative
with respect to x is

∂F (x)

∂x
= p2F (x) + p1 (4.17)

Observe that this is a first order polynomial, i.e. a plot of ∂F (x)/∂x versus F (x)

should be a straight line for quasi-static load condition. In practice, measure-
ments are taken over time and we replace ∂F (x)/∂x with help of the chain
rule by (∂F (x)/∂t)(∂t/∂x), i.e. we evaluate the time derivative of the measured
force, divided by the velocity of the actuator input displacement, at constant
actuator displacement velocity. An alternative approach would be to evaluate
the steady state response, i.e. at several defined constant displacement inputs,
evaluate the steady state force and estimate ∂F (x)/∂x from these data. Con-
sidering Fig. 4.1 we observe that steady state response is not achieved within
the time of measurement. Therefore, we cannot evaluate the measurements of
Papadopoulou et al. (2013) with the steady state approach.

Test No. 12 and No. 14, which are the valid tests closest to the quasi static
condition, were evaluated with the first approach. The partial derivative of
∂F (x)/∂t was approximated with the difference quotient of the measured force
and time data. The partial derivative ∂t/∂x is the inverse of the actuator velo-
city, which is readily obtained from actuator displacement and ramp time. With
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that, the estimate of ∂F (x)/∂x is obtained. The parameters p1 and p2 are calcu-
lated using a first order polynomial curve fit of the estimated ∂F (x)/∂x values.
A plot of the evaluation is shown in Fig. 4.5 and the fitted parameters p1 and p2

of Eq. 4.17 are given in Tab. 4.2.
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FIGURE 4.5: Initial estimate for parameter p1 and p2 of Eq. 4.17
based on test No. 12 and 14.

TABLE 4.2: Initial estimate for parameter p1 and p2.

test No. p1 p2

12 3.08 17.7

14 4.22 18.2

Taking into account that the largest time constant of the viscoelastic model
anticipated has the same order of magnitude as the actuator ramp time of test
No. 12 and 14, dynamic effects are present. Therefore the quasi static assump-
tion does not hold and the estimate of parameter p1 and p2 can only be con-
sidered as a first starting point.

Curve Fit Algorithm

The previous section provided an initial estimate for the parameters of the dis-
placement function, p1 and p2. Apart from the equality and inequality con-
straints, no initial estimates of the remaining parameters are known. To make
sure that the result of the curve fit is independent of initial values for the para-
meters pi; i ∈ {3, . . . , 9} a full factorial experiment (analysis) was conducted. The
constants of the time function, i.e. parameters pi; i ∈ {3, 4, 6, 8}, were set in
eight levels. Taking equality constraint Eq. 4.10 into account, and assume the
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lower limit of (pi)min = 0.1, the upper limit (pi)max = 0.7 follows. The time con-
stants were τj = 1/pi; (j, i) ∈ {(1, 5), (2, 7), (3, 9)}. The upper and lower limits
of the interval for the time constants are obtained from Eq. 4.11 and Eq. 4.12.
The intervals are than defined by [Ci−1τmin, τmax/C

3−i]i; i = 1, 2, 3. The interval
was set in five levels, with intermediate level values increased according to a
geometric sequence.

The full factorial experiment was realised in GNU octave with nested loops
for the parameter. If the equality and inequality constrains were met, the model
function was evaluated and the coefficient of multiple correlation R2 was cal-
culated. Than, if the R2 value was larger than a threshold, the Levenberg-
Marquardt curve fit procedure, including all parameters, was executed. Inputs,
optimised parameters and corresponding results were stored in a text file for
later evaluation.

The full factorial experiment results in 35 · 48 = 512000 combinations. After
checking constraints 1820 evaluations of the model function remained. The
threshold was chosen so that the Levenberg-Marquardt curve fit was executed
about 20 times for an investigation. The last step should be kept to a min-
imum because each Levenberg-Marquardt curve fit execution noticeably in-
creases computation time.

Algorithmus 1 : CURVE FIT PROCEDURE

Input : Measurement protocols (text files)
Output : A table with parameters and R2 values (text file)

1 Read Input
2 Pre-process measured data
3 Input p1, p2 and test number(s)

4 begin FULL FACTORIAL EXPERIMENT on pi, i ∈ {3, . . . , 9}
5 if equality and inequality constraints are satisfied then
6 Calculate Y (t, p), R2

7 Write p, R2 to Output
8 if R2 > threshold then
9 Execute a Levenberg-Marquardt curve fit with all parameters

10 Write p, R2 to Output
11 end
12 end
13 end
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Post-processing of the Curve Fit Results

Output of Algorithm 1 is a table with columns containing a flag, that indi-
cates a function evaluation or a Levenberg-Marquardt curve fit, the corres-
ponding parameters and R2 value. For the Levenberg-Marquardt curve fits
sanity checks were performed. The first check was whether one of the time
constant parameters converged against the upper or lower constraint given by
Eq. 4.11. The second check was whether one of the coefficients of the time func-
tion pi; i ∈ {3, 4, 6, 8} converged against zero. These conditions indicate that
one of the exponential terms is superfluous. Therefore the corresponding curve
fits were discarded from further evaluation.

The remaining Levenberg-Marquardt curve fits, with R2 values above a
threshold, were used for further evaluation. It is not assured that all Levenberg-
Marquardt curve fits approach the global minimum of Eq. 4.14 and the data
may contain local minima. If this is the case the average of the parameter values
would be misleading. Instead, the remaining curve fits were clustered based
on similarity of the time constants and the average of the parameters within
the dominant cluster with highest R2 value was calculated. With the averaged
parameter values further Levenberg-Marquardt curve fits were done, until the
third relevant digit of the recalculated parameters were settled and R2 value
was maximal.

4.1.4 Curve Fit of Individual Tests to Model Function Eq. 4.7

Curve fits of model function Eq. 4.7 to individual tests were performed. Results
are listed in Tab. 4.3. A plot of the curve fit with lowest R2 value, i.e. test No. 4
with R2 = 0.9673, is shown in Fig. 4.6.

Discussion

Curve fits of individual tests approximate test data well. However, observe
that time constants vary considerably between individual test. For example, the
first time constant τ1 of the test with 0.1 mm ramp displacement varies between
0.20 s for test No. 9, and 14.5 s for test No. 7. The first time constant τ1 of the
test with 0.2 mm ramp displacement varies between 0.20 s for test No. 8 and 10,
and 8.00 s for test No. 14. Similar observations are made for the other parame-
ters and this is also reflected in the large standard deviation. Recalling that all
tests were made with the same specimen, one would expect lower variation in
estimated parameters, at least for tests with the same actuator displacement.
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TABLE 4.3: Curve fit of individual tests with actuator displace-
ment 0.1 mm (odd test No.) and 0.2 mm (even test No.) to model
function Eq. 4.7. Identified parameters of the model function, R2,
mean and standard deviation (S.D.) of the curve fit.

test p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 R2

- - - - - s - s - s -

3 17.1 7.89 0.178 0.480 3.38 0.116 30.7 0.226 395 0.9998
5 17.0 12.1 0.157 0.526 1.30 0.262 13.6 0.055 269 0.9971
7 5.70 18.0 0.277 0.592 14.5 0.058 169. 0.073 2520 0.9907
9 4.91 23.9 0.185 0.036 0.20 0.745 25.0 0.034 200 0.9841

11 3.49 26.1 0.151 0.153 5.65 0.608 45.2 0.088 2880 0.9967

2 18.6 9.49 0.307 0.249 6.27 0.126 57.9 0.318 506 0.9964
4 6.86 16.2 0.321 0.108 1.76 0.193 53.9 0.378 788 0.9673
6 13.6 13.1 0.251 0.431 1.32 0.159 18.9 0.159 310 0.9988
8 9.77 14.3 0.273 0.280 0.20 0.293 20.3 0.154 383 0.9931

10 8.72 14.9 0.239 0.279 0.20 0.344 28.0 0.138 374 0.9985
12 8.00 14.9 0.140 0.325 6.48 0.322 66.4 0.213 1490 0.9981
14 8.83 14.4 0.174 0.309 8.00 0.400 169. 0.117 2208 0.9967

mean 10.2 15.4 0.221 0.314 4.11 0.302 58.2 0.163 1027 -
S.D. 5.12 5.26 0.064 0.169 4.30 0.205 54.4 0.105 982. -

4.1.5 Curve Fit of Test Groups to Model Function Eq. 4.7

A curve fit using model function Eq. 4.7 to tests with 0.2 ramp displacement, i.e.
test No. 2, 4, 6, 8, 10, 12 and 14, grouped together was performed. Results are
found in Tab. 4.4 and a plot is shown in Fig. 4.7. The correlation coefficient is
R2 = 0.7636. The maximum force Fmax is shown in the lower left diagram. The
curve fit of the maximum force follows the trend of the measured data, however
increased deviation for test No. 6, 8, 10 and 12 is observed. The force at the end
of the measurement Ftmax for each test is shown in the lower right diagram.
Though curve fit of test No. 12 matches the test data well, the general trend
of the remaining tests is not captured, in particular the progressively increased
force characteristic observed for short ramp rise times of test No. 2, 4, 6 and 8
is not reproduced. Note that for test No. 4 an outlier is observed.

TABLE 4.4: Parameters for curve fit of model function Eq. 4.7 to
tests with dramp = 0.2mm, i.e. test No. 2, 4, 6, 8, 10, 12 and 14

dramp p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 R2

mm - - - - s - s - s -

0.2 15.6 10.9 0.137 0.219 4.30 0.353 34.4 0.291 798 0.7636
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FIGURE 4.6: Curve fit of model function Eq. 4.7 to test No. 4,
R2 = 0.9673

0 50 100 150 200 250 300
3

4

5

6

7

8

9

tramp (s)

F
m
a
x

(N
)

measured
curve fit

10

0 200 400 600

t (s)

800350
300

250
200

tramp (s)

150
100
50
00

F
or
ce

(N
)

2
4
6
8

10

350 0 50 100 150 200
2.5

3

3.5

4

tramp (s)

F
tm
a
x

(N
)

4.5

1000
350

300
250

200
tramp (s)

150
100
50

-2
-1.5

-1
-0.5

er
ro
r

(N
)

0
0.5

1
1.5

250 300

measured
curve fit

0 200 400 600

t (s)

800

350

1000

a b

c d

FIGURE 4.7: Curve fit of model function Eq. 4.7 to tests with
dramp = 0.2mm, i.e. test No. 2, 4, 6, 8, 10, 12 and 14, R2 = 0.7636:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.
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Improved Model Function - Ramp Rise Time Term

Observe that for low ramp rise times tramp, the response between t >> tramp

and tmax shows a nearly constant error, i.e. difference between measured and
fitted actuator force.

Attempts to improve correlation with additional exponential decay terms in
G(t, pG) were not successful. With four exponential terms, depending on ini-
tial parameters, the lowest time constant converged to the lower limit given by
the sample interval tsample or one factor in front of a exponential function con-
verged to zero. This indicates that the additional exponential term in G(t, pG) is
superfluous.

Model function Eq. 4.7 describes a visco-elastic response and we may need
an additional term in the model function that takes the described behaviour
into account and further reduces the difference between curve fit and measured
data. Considering Fig. 4.7 lower right, it is observed that above mentioned error
decays with ramp rise time tramp. The error should also be a proportional to
actuator displacement. Therefore the model function Eq. 4.7 is augmented by
an additional term H(x, pH), that is proportional to actuator displacement and
decays with ramp rise time tramp :

Y (t, p) = F (x(t), pF ) ·G(t, pG) +H(x(t), pH) ,

F (x, pF ) =
p1

p2

(ep2·x − 1) ,

G(t, pG) = p3 + p4e
−p5·t + p6e

−p7·t + p8e
−p9·t ,

H(x, pH) = p10 · x · e−p11·tramp ,

(4.18)

with parameters p = {pF , pG, pH}. Bounds of the additional parameters pH =

{p10, p11} are:

pi ∈ (0,∞) for i = 10, 11 .

Since actuator ramp velocity is inversely proportional to the actuator ramp
time, the additional term H(x, pH) could also be written dependent on actu-
ator ramp velocity. This indicates that there may be a velocity dependent effect
present.
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4.1.6 Curve Fit of Test Groups to Model Function Eq. 4.18

A curve fit of model function Eq. 4.18 to tests with 0.2 mm ramp displacement,
i.e. test No. 2, 4, 6, 8, 10, 12, 14 and to tests with 0.1 mm ramp displacement,
i.e. test No. 3, 5, 7, 9, 11 grouped together was performed. Results are listed in
Tab. 4.5 and plots are shown in Fig. 4.8 and Fig. 4.9. The correlation coefficients
are R2 = 0.9776 and R2 = 0.9748. Compared to Chap. 4.1.5 curve fit improved.
Consider Fig. 4.8 lower left, the curve fit better replicates the measured charac-
teristic. Test No. 2 shows largest Ftmax deviation.

TABLE 4.5: Parameters for curve fit of model function Eq. 4.18 to
tests with dramp = 0.2mm (test No. 2, 4, 6, 8, 10, 12, 14) and to tests
with dramp = 0.1mm (test No. 3, 5, 7, 9, 11).

dramp p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 p10 1/p11 R2

mm - - - - s - s - s - s -

0.2 7.66 13.8 0.291 0.216 3.87 0.261 33.1 0.232 400 20.2 14.1 0.9776

0.1 7.85 15.7 0.192 0.247 1.45 0.419 11.6 0.142 116 7.72 15.5 0.9748
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FIGURE 4.8: Curve fit of model function Eq. 4.18 to tests with
dramp = 0.2mm ramp displacement (test No. 2, 4, 6, 8, 10, 12, 14),
R2 = 0.9776:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.
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FIGURE 4.9: Curve fit of model function Eq. 4.18 to tests with
dramp = 0.1mm ramp displacement (test No. 3, 5, 7, 9, 11),
R2 = 0.9748:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.

Improved Model Function - Prior Load History Term

Considering Tab. 4.1 it is observed that the rest time trest, that is, the difference
between the start time of the current test and the end time of the previous test,
varied considerably from test to test.

Assume visco elastic material behaviour is valid. If the rest time is not con-
siderably larger than the largest time constant of the visco elastic material, the
influence of residual strains due to the previous tests may not be neglected.
To illustrate the point consider the response of a Maxwell Element to the three
pulses x(t) shown in Fig. 4.10. The total displacement of the Maxwell Element
x(t) is the sum of the spring displacement xs(t) and damper displacement xd(t),
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FIGURE 4.10: Response of a Maxwell element F (x(t)) to a pulse
input x(t) depending on time constant τ .

i.e. x(t) = xs(t) + xd(t). The force in the spring f = µxs(t), with spring stiffness
µ, and the force in the damper f = η ˙xd(t), with viscosity η, are equal. Differ-
entiating the total displacement with respect to time and substituting the time
derivative of spring and damper displacement leads to the differential equation

˙f(t) +
1

τ
f(t) = µ ˙x(t) ,

with time constant τ = η/µ. To solve the differential equation we take the
Laplace Transformation3 and find, with initial conditions equal to zero:

f(s) =
µs

1/τ + s
x(s) .

The pulse signal x(t) can be written in the time domain in terms of two unit
step functions u(t − t0), with t0 set to the corresponding start time tps and end
time tpe of the pulse

x(t) =
3∑

k=1

[ u(t− tps)− u(t− tpe) ]k .

3 see e.g. Bronstein et al. (2005), Chap. 15.2
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Taking the Laplace Transformation

x(s) =
3∑

k=1

[
e−tps s

s
− e−tpe s

s
]k

and substituted into F (s) gives

F (s) =
3∑

k=1

[
µ

1/τ + s
(e−tps s − e−tpe s)]k .

The inverse Laplace Transformation provides the solution in the time domain

F (t) = µ
3∑

k=1

[ e−(t−tps)/τ u(t− tps)− e−(t−tpe)/τ u(t− tpe) ]k . (4.19)

A plot of F (t), with µ = 1, for time constant τ = 1/4 s and τ = 4 s, is given in
Fig. 4.10. In the first case the time constant is 1/4 of the pulse width of 1 s and
1/8 of the rest time of 2 s. At the end of the pulse the contribution of the first
positive unit step has decayed to e−4 = 0.018 and at the end of the rest time the
contribution of the second negative unit step has decayed to e−8 = 3.4 · 10−4.
This means at the start of the next pulse, the contribution of the previous pulse
is negligible. In the second case the time constant is 4 times the pulse width
of 1 s and 2 times the rest time of 2 s. At the end of the pulse the contribution
of the first positive unit step has decayed to e−(1/4) = 0.779 and at the end of
the rest time the contribution of the second negative unit step has decayed to
e−(1/2) = 0.607. This means at the start of the next pulse, the contribution of the
previous pulse is significant. This is also observed in the lower plot of Fig. 4.10.

Consider Tab. 4.1 and 4.3. For test No 4 the rest time was 290 s and the largest
time constant of the previous test is 395 s. This means that the rest time is smal-
ler than the largest time constant. Therefore the contribution of the previous
test No. 3 to the response of test No. 4 is present. However for test No. 4, the
actuator displacement of the previous test No. 3 was 0.1 mm, with correspond-
ing low actuator force magnitude and low contribution of test No. 3 residual
strain to the actuator force response of test No. 4. For test No. 7 the rest time
was 400 s and the largest time constant of the previous test is 310 s. This means
that the rest time is smaller than the largest time constant. Therefore the con-
tribution of the previous test No. 6 to the response of test No. 7 is present. For
test No. 7, the actuator displacement of the previous test No. 6 was 0.2 mm,
with corresponding high actuator force magnitude and large contribution of
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test No. 6 residual strain to the actuator force response of test No. 7. Similar
observations can be made for the other tests.

Concluding, for odd numbered tests, if the largest time constant of the pre-
vious test is not considerably smaller than the rest time of the current test, a
significant contribution of the previous test residual strain to the response of
the current test is anticipated.

In order to take into account the residual strain effects of previous tests on
the current test, we introduce in Eq. 4.18 an additional term K(t, pK) analogue
to Eq. 4.19. Only the contribution of the exponential function in G(t, pG) with
the largest time constant is taken into account, since, by virtue of the inequality
constraints, the decay of the other exponential terms is at least by a factor of
e−8 = 3.4 · 10−4 smaller. We sum the contribution of all tests before the current
test. The actuator displacement of the previous test is approximated by a pulse
of height dramp, starting at the end of the ramp and ending at the end of the
test. The time variable t of the current test starts at zero. As fixed reference time
for the previous test we choose start of test No. 1. We provide the start time
of the current test tstart and the pulse start times tps and pulse end times tpe of
the previous tests relative to this reference. The measured force was set to zero
at the start of the test. Therefore we have to subtract K(t = 0, pK) to satisfy
Y (x, t = 0, p) = 0. The augmented model function is than

Y (t, p) = F (x(t), pF ) ·G(t, pG) +H(x(t), pH) +K(t, pK)−K(t = 0, pK) ,

F (x, pF ) =
p1

p2

(ep2·x − 1) ,

G(t, pG) = p3 + p4e
−p5·t + p6e

−p7·t + p8e
−p9·t ,

H(x, pH) = p10 · x · e−p11·tramp ,

K(t, pK) =
testNo.−1∑

k=1

[ F (dramp, pF ) p8 (e−p9(tstart−tps+t) − e−p9(tstart−tpe+t)) ]k ,

(4.20)

with pK = {p8, p9, tstart, {tps, tpe, dramp}k}. Two parameters form pG and known
test data are required for calculation of K(t, pK). Hence, no additional para-
meter is introduced.
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4.1.7 Curve Fit of Test Groups to Model Function Eq. 4.20

A curve fit of model function Eq. 4.20 to tests with 0.2 mm actuator displace-
ment, i.e. test No. 2, 4, 6, 8, 10, 12, 14 and to tests with 0.1 mm actuator displace-
ment, i.e. test No. 3, 5, 7, 9, 11 grouped together was performed. Results of the
curve fit are shown in Tab. 4.6 and plots are shown in Fig. 4.11 and Fig. 4.12.
The correlation coefficients are R2 = 0.9782 and R2 = 0.9882. Compared to Sec.
4.1.6 curve fit improved. For test with 0.2 mm actuator displacement a marginal
improvement is observed. Consider Fig. 4.12 lower left, the replication of the
measured Ftmax trend improved versus Fig. 4.9. Considering Tab. 4.6, observe
that time constants estimated are similar, however the factors in front of the ex-
ponential terms are significantly different. This indicates a different behaviour
of 0.2 mm and 0.1 mm actuator displacement test.

TABLE 4.6: Parameters for curve fit of model function Eq. 4.20 to
tests with dramp = 0.2mm (test No. 2, 4, 6, 8, 10, 12, 14) and to tests
with dramp = 0.1mm (test No. 3, 5, 7, 9, 11).

dramp p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 p10 1/p11 R2

mm - - - - s - s - s - s -

0.2 8.10 13.7 0.275 0.239 3.21 0.252 31.1 0.234 372 20.4 13.8 0.9782

0.1 14.9 9.27 0.027 0.663 2.99 0.156 47.6 0.154 381 14.3 10.1 0.9882
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FIGURE 4.11: Curve fit of model function 4.20 to tests with
dramp = 0.2mm, i.e. test No. 2, 4, 6, 8, 10, 12 and 14, R2 = 0.9782:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.
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FIGURE 4.12: Curve fit of model function 4.20 to tests with
dramp = 0.1mm, i.e. test No. 3, 5, 7, 9 and 11, R2 = 0.9882:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.

4.1.8 Curve Fit of All Valid Tests to Model Function Eq. 4.20

A curve fit of model function Eq. 4.20 to all valid tests, i.e. test No. 2 to 12 and
14 was performed. Results of the cure fit are shown in Tab. 4.7, a plot with para-
meters of curve fit result No. 1 is shown in Fig. 4.13. Compared to Sec. 4.1.6 the
curve fit correlation coefficient R2 deteriorated. There was no unique solution,
instead three parameter sets, with similar correlation coefficient were found.
Observe that, compared to Sec. 4.1.7, time constants estimated are different.
There we mentioned, that the factors in front of the exponential terms are sig-
nificantly different for 0.2 and 0.1 mm actuator displacement test. The results
indicate that it may not be possible to find a parameter set which fit both test
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conditions equally well. This assertion is supported by the observation that the
curve fit procedure did not find a unique solution.

TABLE 4.7: Curve fit of model function Eq. 4.20 to all valid tests,
i.e. test No. 2 to 12 and 14.

No. p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 p10 1/p11 R2

- - - - - s - s - s - s -

1 3.16 21.6 0.273 0.268 2.14 0.221 17.1 0.238 140. 20.6 10.0 0.9774
2 4.36 20.5 0.216 0.534 4.36 0.224 131. 0.026 1047 19.2 10.2 0.9744
3 2.64 21.0 0.252 0.424 22.7 0.247 308. 0.077 2468 19.3 10.5 0.9795
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FIGURE 4.13: Curve fit of model function Eq. 4.20 to all valid
tests, i.e. test No. 2 to 12, and 14, R2 = 0.9774:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.
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Based on Sec. 4.1.7 results for the curve fit of model function Eq. 4.20 to tests
with actuator displacement dramp = 0.2 mm, parameter p1 and p2 were varied ac-
cording to Eq. 4.5 and a maximum of the correlation coefficient was found with
c = 0.30. Results of the cure fit are shown in Tab. 4.8, a plot is given in Fig. 4.14.
Observe that, by virtue of Eq. 4.5, the response of the actuator displacement
dramp = 0.2 mm tests did not change after the point where actuator displace-
ment is kept constant, i.e. for times larger than tramp. Therefore the Fmax and
the Ftmax curve of the actuator displacement dramp = 0.2 mm tests are identical
to Fig. 4.11. The Fmax curve of the actuator displacement dramp = 0.1 mm tests
replicates measured characteristics well. However for the Ftmax curve of the
actuator displacement dramp = 0.1 mm tests a deviation versus measured char-
acteristics is observed. Overall, the correlation coefficient R2 improved versus
Tab. 4.7.

TABLE 4.8: Parameters of model function Eq. 4.20 for curve fit of
all valid tests, based on results in Tab. 4.6 for actuator displace-
ment dramp = 0.2mm, parameter p1 and p2 varied according to
Eq. 4.5 with c = 0.30.

p1 p2 p3 p4 τ1 p6 τ2 p8 τ3 p10 1/p11 R2

- - - - s - s - s - s -

2.43 21.8 0.275 0.239 3.21 0.252 31.1 0.234 372. 20.4 13.8 0.9800
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FIGURE 4.14: Curve fit of model function Eq. 4.20 for all
valid tests, based on results in Tab. 4.6 actuator displacement
dramp = 0.2mm, parameter p1 and p2 varied according to Eq. 4.5
with c = 0.30, R2 = 0.9800:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test;

d, force at the end of the test, measured (red) and curve fit
(blue), versus ramp rise time of the test.
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4.2 Curve Fit - In Vivo Test of Konermann

4.2.1 Test Data

An overview of the in vivo measurements done by Konermann et al. (2017) is
shown in Tab. 4.9. Actuator displacement x(t) was input as a function of time
t defined as follows: The displacement of the actuator rose at constant speed
vramp = dramp/tramp, between t = 0 and the ramp rise time t = tramp, to the
maximum actuator displacement dramp. Thereafter the actuator displacement
decreased with constant speed vramp to zero at time t = tmax = 2 tramp.

x = x(t) =

{
vramp · t, 0 ≤ t ≤ tramp

vramp · (2 tramp − t), tramp < t ≤ tmax
(4.21)

TABLE 4.9: Overview of the in vivo test, Konermann et al. (2017).

test tstart tramp dramp tsample tmax tFmax Fmax trest

- hh:mm:ss s mm s s s N s

1 17:04:07 0.2 0.2 0.02 0.4 0.24 15.9 -

2 17:04:46 0.5 0.2 0.05 1.0 0.55 14.8 38.6

3 17:05:19 1.0 0.2 0.05 2.0 1.0 14.5 32.0

4 17:05:57 2.0 0.2 0.10 4.0 2.0 13.4 36.0

5 17:06:33 5.0 0.2 0.25 10.0 5.0 12.5 32.0

6 17:07:17 10.0 0.2 0.50 20.0 10.0 11.7 34.0

4.2.2 Model Function

We come back to the final version of the model function Eq. 4.20 in Chap. 4.1.
Now, the displacement function x(t) is given by Eq. 4.21. Assuming the in
vivo test is dominated by the PDL behaviour, the model function should be
adequate to describe the in vivo test response. Consider Tab. 4.9, the sampling
rate is 0.2 s and the longest test duration is 20 s. For the in vitro tests in Chap.
4.1, the smallest time constant was about 4 s. Therefore, assuming the smallest
time constant of the in vivo test has about the same order of magnitude, it is
presumed that at most one exponential decay term of the time function G(t, pG)

can be estimated. Preliminary investigations showed that this is in fact the case.
Therefore, only one exponential term of the time functionG(t, pG) was retained.
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The model function is than

Y (t, p) = F (x(t), pF ) ·G(t, pG) +H(x(t), pH) +K(t, pK)−K(t = 0, pK) ,

F (x, pF ) =
p1

p2

(ep2·x − 1) ,

G(t, pG) = p3 + p4e
−p5·t ,

H(x, pH) = p10 · x · e−p11·tramp ,

K(t, pK) =
testNo.−1∑

k=1

[ F (dramp, pF ) p4 (e−p5(tstart−tps+t) − e−p5(tstart−tpe+t)) ]k .

(4.22)

Equality and inequality constraints carry over from Chap. 4.1. The curve fit
procedure is, with the exception that the pre-processing step was skipped due
to smaller number of data points, identical to Chap. 4.1.3.

4.2.3 Curve Fit of all Tests to Model Function Eq. 4.22

A first curve fit of model function Eq. 4.22, without the H(x, pH) and K(t, pK)

term, was done for all tests grouped together. Results are listed in Tab. 4.10.
The coefficient of multiple correlation is R2 = 0.99524. Consider a plot of the
results in Fig. 4.15, a dependency of the peak force on ramp time is observed.
This is of the same kind as seen for the in vitro measurement in Chap. 4.1.6.

A second curve fit of model function 4.22, without the K(t, pK) term, was
done for all tests grouped together. Results are listed in Tab. 4.10. The coefficient
of multiple correlation improved to R2 = 0.9637. Observe that the coefficient
in front of the exponential decay term p4 is zero. That is, the curve fit identi-
fied that the exponential decay term of G(t, pG) has no contribution. Therefore
it could be omitted without deteriorating the curve fit. Consider a plot of the
results in Fig. 4.16, the dependency of peak force on ramp rise time, and the
force ascent and descent branch are captured well. However there is a differ-
ence between measured and curve fitted peak force. The measured force curve
shows a broadly rounded peak response, that may be due to compliance of the
measurement chain. Increasing the weight of the peak force in the curve fit
procedure could improve the fit of the peak force at the expense of the fit of the
ascent and descent branch.

A third curve fit of model function Eq. 4.22 with all terms was done for all
tests grouped together. Results are listed in Tab. 4.10. The coefficient of mul-
tiple correlation is R2 = 0.9637. The parameters p1 and p2, and the dependency
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of peak force on ramp rise time, i.e. p10 and p11, are marginally different com-
pared to the second curve fit. Again, the coefficient in front of the exponential
decay term p4 is zero. With that, the K(t, pK) term should be negligible, how-
ever the small contribution of this term may have lead to the slightly different
parameters estimated.

Concluding, because of the negligible effect of the G(t, pG) and K(t, pK)

terms identified, these terms are omitted in Eq. 4.22. The model function is
than

Y (t, p) = F (x(t), pF ) +H(x(t), pH) ,

F (x, pF ) =
p1

p2

(ep2·x − 1) ,

H(x, pH) = p10 · x · e−p11·tramp .

(4.23)

With model function 4.23 a fourth curve fit was done. Results are listed in
Tab. 4.10. The coefficient of multiple correlation is to the fourth significant digit
identical to second and third curve fit. Corresponding parameters of the model
function are almost identical.

TABLE 4.10: Parameters for curve fit of model function Eq. 4.22
(No. 1 – without H(x, pH) and K(t, pK), No. 2 without K(t, pK),
No. 3 – with all terms) and model function Eq. 4.23 (No. 4) for all
tests grouped together.

curve fit p1 p2 p3 p4 τ1 p10 1/p11 R2

- - - - - s - s -

1. 33.5 7.14 0.94 0.06 2.61 - - 0.9524

2. 27.6 8.07 1.00 0.00 200. 14.9 1.36 0.9637

3. 27.5 8.10 1.00 0.00 200. 15.0 1.38 0.9637

4. 27.6 8.08 - - - 14.9 1.36 0.9637
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FIGURE 4.15: Curve fit of all tests to model function Eq. 4.22
without H(x, pH) and K(t, pK) term, R2 = 0.9524:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test.
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FIGURE 4.16: Curve fit of all tests to model function Eq. 4.22
without K(t, pK) term, R2 = 0.9637:

a, measured (red) and curve fit force (blue) versus time t and
ramp rise time tramp of the test;

b, error, that is curve fit minus measured force versus time t
and ramp rise time tramp of the test;

c, peak force, measured (red) and curve fit (blue), versus ramp
rise time tramp of the test.



Chapter 5

Simulation of the Papadopoulou
Test

5.1 Triangulation, Boundary and Initial Conditions

5.1.1 Triangulation

The finite element model of the specimen, shown in Fig. 5.1, is based on the
surface geometry described in Papadopoulou et al. (2013). Net generation was
done with 10-node tetrahedron elements. Element type C3D10MP (ABAQUS
(2016)), with displacement and pore pressure degree of freedom active at all
nodes, modified second-order interpolation of displacement and pore pressure
and with hourglass control was used. For the purpose of this work, element
quality of the surface model was further improved and domains were then
meshed with a lower growth rate for element length from the surface to the
centre of the domain. In this way, starting from the surface, layers of approx-
imately 0.5 mm thickness were generated. A cortical bone thickness of 2 mm

and an alveolar bone thickness of 0.5 mm was assumed and material properties
were assigned to the corresponding layers. Smooth transition from cortical to
cancellous bone was modelled by means of assigning the average property of
cortical and cancellous bone to the 4th cortical element layer. Cancellous bone
properties were assigned to the remaining part of the bone domain.

The tooth domain was not differentiated into enamel, dentine, pulp and ce-
mentum. Here, the tooth is loaded in bending, and the pulp is close to the
neutral axis of bending. Therefore, variation of pulp stiffness has a small effect
on the overall tooth stiffness, and the assumption of a homogeneous tooth do-
main, which was also used in previous investigations (e.g. Papadopoulou et al.
(2013)), is considered justified.

73
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(A) Specimen (B) Tooth and PDL

FIGURE 5.1: Finite element model of the specimen.

5.1.2 Boundary Conditions

The lower third part of the mandible specimen was embedded in an acrylic
resin during experimentation and fixed to the test bed. This was represented
with Dirichlet boundary conditions for displacements at the corresponding sur-
face. The acrylic resin prevents fluid flow. This was represented with Neumann
boundary conditions for pressure at the affected surface.

Actuator displacement was applied to a reference point at the same position
as the centre of the actuator contact surface in the experiment. The accuracy of
the reference point position was within 0.1 mm of the test setup (Papadopoulou
et al. (2013)). Nodes at the tooth surface within the contact area of the actuator
were coupled to the reference node with multi point constraints.

5.1.3 Initial Condition - Void Ratio

ABAQUS (2016) uses void ratio e, defined as the ratio of the volume of voids to
the volume of solid material, instead of porosity n. Recalling that porosity is
the ratio of void volume to total volume, conversion of porosity in Tab. 5.1 to
void ratio is given by e = n/(1 − n). The void ratio at the nodes was defined
as initial condition. At the interfaces between domains, e.g. between PDL and
alveolus, the average value of affected domains was used.
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5.1.4 Initial Condition - Pore Pressure

Pore pressure calculated is the variation with respect to ambient pressure. There-
fore initial value of pore pressure was set to zero.

5.2 Material Properties

Continuum models of bone have been subject of extensive research. For a tho-
rough review refer to the papers of Cowin (1999) and Oftadeh et al. (2015), the
edited volume of Cowin (2001) and the textbook of Cowin and Doty (2007). At
the macroscopic scale two major forms of bone tissue are distinguished. The
first is called cortical bone, which is a relatively dense, compact material, that
forms most of the outer shell of the bone. At microscopic scale, adult cortical
bone tissue can be lamellar, osteonal or woven. The second is called cancellous
bone, also referred to as trabecular bone or spongy bone. It is generally found
within the confines of cortical bone. Cancellous bone is built up of short struts
of bone material, the so-called trabeculae. These are interconnected and give
the material a spongy appearance. Both, cortical and cancellous bone possess
porosity and corresponding permeability and according to Cowin and Doty
(2007), ‘The isotropic small strain, compressible poroelastic model is an appro-
priate model for the study of bone fluid movement and bone fluid pressures.’

5.2.1 Mandible - Cortical Bone

Citing Cowin and Doty (2007), Chap. 11.5, ‘A visual inspection of cortical bone
tissue suggests that, like a tree, it has shape-intrinsic orthotropic elastic sym-
metry. The degree of textured anisotropy of bone tissue also varies with ana-
tomic site (and from individual to individual); thus, some cortical bone tissue
might be transversely isotropic, or even isotropic.’

For the specimen of the Papadopoulou et al. (2013) test no information of
trabeculae orientation is available. Further the focus of the present investiga-
tion is not on the micro structural behaviour of the trabeculae. At macroscopic
scale, isotropic material behaviour is deemed appropriate and was assumed
for cortical bone of the mandible. Poroelastic constants were taken from Cowin
and Doty (2007), Chap. 11.6, in particular: Young’s modulus E = 14.58 GPa,
Poisson’s ratio νs = 0.325, Lacunar–Canalicular porosity n = 0.05, intrinsic per-
meability k = 1.47 · 10−20 m2 and fluid viscosity µ = 1.0 · 10−3 Pa s.
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5.2.2 Mandible - Cancellous Bone

For human mandibular condyle Renders et al. (2007) measured cancellous bone
porosity with cubic specimens of edge length 4 mm taken from the centre of the
condyle. They reported a porosity of n = 0.793± 0.051. To the best knowledge
of the author, sound values of cancellous bone porosity and permeability for
the human mandible in the vicinity of the alveolus have not been published to
date. Due to the size of the mandible, the minimum specimen size necessary
and observed variation of the spongy appearance of mandible sections direct
measurement is deemed not feasible.

According to Cowin (2001), ‘The published values of permeability of cancel-
lous bone range over three orders of magnitude and depend strongly on poros-
ity and anatomical site.’ Observed porosity in Cowin (2001), Fig. 25.3, ranges
from 0.30 to 0.95 and at a porosity of 0.8 measurements of human femoral neck,
human calcaneus and bovine proximal tibia are depicted. For these data, in-
trinsic permeability is readily available from Eq. 25.22 and Eq. 25.23 in Cowin
(2001) and the intrinsic permeability, with porosity rounded to one significant
digit n = 0.8, is k = 1.0 · 10−9 m2. Notice that measured intrinsic permeability,
depicted in Cowin (2001), Fig. 25.3, for porosity n = 0.8, vary about one or-
der of magnitude. Taking the above mentioned inhomogeneity of the observed
spongy appearance of the mandibular section into account, the variations of
permeability may be even larger.

The article of Oftadeh et al. (2015), ‘highlights the high dependency of the
mechanical properties of trabecular bone on species, age, anatomic site, load-
ing direction, and size of the sample under consideration.’ and reviews pro-
posed anisotropic, orthotropic, transversely isotropic and isotropic constitutive
models based on micro finite element methods and mechanical testing. For the
specimen of the Papadopoulou et al. (2013) test no information of trabeculae
orientation, which is required for a anisotropic constitutive model, is available.
In the present investigation the main focus is not on the micro structural beha-
viour of the trabeculae. Furthermore, according to Cowin (2001), Chap. 15.7,
‘Most of the trabeculae, however, are loaded in compression or bending. For
these loading modes, only the longitudinal Young’s modulus is of importance.
Consequently, the anisotropic tissue material can be well represented as an iso-
tropic material with an “effective” isotropic tissue modulus that represents the
longitudinal stiffness of the bone tissue.’

A summary of relations for Young’s modulus of cancellous bone is found
in Oftadeh et al. (2015), Tab. 2. The relation between apparent density ρapp and
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effective isotropic tissue modulus Emean of Hodgskinson and Currey (1992),
Tab. 2.2, is cited by Cowin (2001), Eq. 15.12, in the form

Emean = 0.003715 · ρapp1.96 , (5.1)

with ρapp in kg/m3 and Emean in MPa. The curve fit of Hodgskinson and Currey
(1992) used 24 samples, and for the original curve in double logarithmic form,
a coefficient of multiple correlation of R2 = 0.941 was reported.

A commonly used parameter to characterise cancellous bone is bone volume
fraction, defined as bone volume over total volume, Vv = BV /TV . With this
notation, apparent density, also called structural density or bone density, is de-
fined as bone mass per total volume, ρapp = mb/TV and tissue density is defined
as bone mass per bone volume, ρtissue = mb/BV . The relationship between
apparent and tissue density becomes

ρapp = BV /TV · ρtissue . (5.2)

A frequently cited value for the tissue density of human cancellous bone is
1.874 g/cc (Gong et al. (1964)). For above mentioned porosity of n = 0.8 and
assuming saturation condition is valid, i.e. total volume is bone volume plus
void volume, the bone volume fraction is Vv = 0.2. With Eq. 5.2 and Eq. 5.1,
Young’s modulus is than Emean = 0.41 GPa. This value is well within the range
reported in literature, e.g. Oftadeh et al. (2015). Nevertheless it should be kept
in mind that the value can vary considerably. Following Cowin (2001), Chap.
15.7, a Poisson’s ratio of ν = 0.3 is assumed.

5.2.3 Mandible - Alveolar Bone

Poroelastic constants for alveolar bone, taken from Bergomi et al. (2011), are:
Young’s modulus E = 0.345 GPa, Poisson’s ratio ν = 0.31 and intrinsic per-
meability k = (5.29± 3.81) · 10−14 m2. Bergomi et al. (2011) stated no values
for alveolar bone porosity. After visual inspection of alveolus perforation of
mandible specimen, the same porosity as for cancellous bone was assumed, i.e.
n = 0.8.
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5.2.4 Tooth

Material constants for the tooth, taken from Bergomi et al. (2011), are: Young’s
modulus E = 15.0 GPa, Poisson’s ratio ν = 0.31 and intrinsic permeability
k = (3.88± 3.84) · 10−17 m2. For porosity the same value as for cortical bone
was assumed, i.e. n = 0.05.

5.2.5 Periodontal Ligament

Bergomi et al. (2011) used a poro-hyperelastic constitutive model of the PDL,
based on a modified version of Ogden’s strain energy potential and porosity-
dependent permeability, to identify poroelastic constants. They measured a
porosity value of n = 0.70± 0.17 and identified a intrinsic permeability value
at reference configuration of k = 8.81 · 10−15 m2. The porosity value n = 0.70

was used herein.

5.2.6 Bulk Modulus

The bulk modulus for hard tissue is defined by two elastic constants. For in-
stance, with Young’s modulus and Poisson’s ratio, by Eq. 2.20.

To set the scene for soft tissue Wells and Liang (2011) is quoted, ‘The litera-
ture is bereft of data for the bulk modulus of soft tissues. Surprisingly, standard
biomechanics textbooks (such as [Fung (1993)]) are almost completely silent in
this respect.’ Numerous investigators assume incompressibility. For simple
geometries, with this assumption some closed form solutions are readily avail-
able (see e.g. Rice and Cleary (1976), Holmes and Mow (1990)). This may have
contributed to the popularity of the incompressibility assertion.

Sonography is a well established examination method in medicine. For
pressure waves, the adiabatic bulk modulus Ka is related to the velocity of
sound c and density ρ by equation Ka = c2ρ (Trendelenburg (1939), Chap. 21).
According to the reference book of Duck (1990), Tab. 15.1, the bulk modulus
for soft tissues calculated from measurements of the ultrasonic sound velocity
and tissue density ranges from about 1.8 GPa to 2.6 GPa. The bulk modulus of
substances accessible to direct measurement, like sea water (2.34 GPa), paraffin
oil (1.62 GPa) and polypropylene (1.1 to 1.4 GPa) (Kaye and Laby, 1995), are
of a similar magnitude. In terms of poroelasticity, adiabatic bulk modulus Ka

corresponds to the undrained bulk modulus Ku of the soft tissue. Cowin and
Doty (2007), Chap. 11.6, argue that, ‘In the case of soft tissues the bulk moduli
of the soft tissue matrix and the pore water are almost the same ... Thus, for soft
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tissues the incompressibility assumptions of the fluid and solid constituents
are a reasonable approximation.’ With the first argument the bulk modulus of
the periodontal ligament solid matrix would be in the order of magnitude of
2.2 GPa.

5.2.7 Permeability

The intrinsic permeability k (units m2) assumed for the different domains is
listed in Tab. 5.1. Permeability in ABAQUS (2016) is consistent with Darcy’s
permeability constant, today commonly referred to as hydraulic conductivity K
(units m/s). Another term frequently used is coefficient of permeability, defined
as κ = k/µ (units m3s/kg), where µ is the dynamic viscosity of the fluid. The
relation between these constants is (Cowin (2001), Eq. 25.3 )

K =
kρg

µ
= κρg , (5.3)

where ρ is the density of the interstitial fluid and g is the acceleration of gravity.
Here, the value at see level, g = 9.807 m/s2, was assumed.

In biomechanics permeability is commonly estimated by virtue of Eq. 2.64,
i.e. the coefficient of permeability κ is calculated from measurement of the pres-
sure gradient across the specimen and the volume flux (e.g. Bergomi et al.
(2011)). A measurement of the dynamic viscosity and density of the fluid is
not required. Permeability in ABAQUS (2016) is defined by specifying the hy-
draulic conductivity K and the specific weight γ = ρg. It is evident from the
discrete version of Eq. 2.64, that the coefficient of permeability κ is relevant
for simulation. Hence, the specific weight γ, specified in conjunction with the
hydraulic conductivity K, cancels out and is merely a means to define the coef-
ficient of permeability κ.

5.2.8 Interstitial Fluid

In accordance with Cowin and Doty (2007), Tab. 11.3, and Bergomi et al. (2011),
who conducted tests with specimens that were fully immersed in physiolo-
gical saline at ambient temperature and pressure, a dynamic viscosity of µ =

1.0 · 10−3 Pa s is assumed. For values taken from Bergomi et al. (2011), the spe-
cific weight stated therein, γ = 9965 N m−3, is used. For the remaining domains,
density of physiological saline solution (9 g NaCl per litre) at ambient temper-
ature (22 ◦C) is assumed, i.e. ρ = 1.0046 · 103 kg/m3 (McCutcheon et al. (1993)).
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Regarding compressibility Cowin and Doty (2007), page 359, is adopted, ‘The
bulk modulus for salt water is 2.3 GPa, and it is assumed that bone fluid has
this bulk modulus.’

5.2.9 Summary

A summary of poroelastic constants used for mandible and tooth is found in
Tab. 5.1.

TABLE 5.1: Summary of Poroelastic Constants used for Mandible
and Tooth.

Property Units Cortical Cancellous Alveolar Tooth
Bone Bone Bone

Young’s Modulus E GPa 14.58 0.41 0.345 15.0
Poisson’s Ratio ν − 0.325 0.3 0.31 0.31

Intrinsic Permeability k m2 1.47 · 10−20 1.0 · 10−9 5.29 · 10−14 3.88 · 10−17

Porosity n − 0.05 0.8 0.8 0.05
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5.3 Static Analysis

5.3.1 Linear Elastic Constitutive Model

A geometric nonlinear analysis, with linear elastic material behaviour, was per-
formed. For estimation of the tangent stiffness an actuator displacement of
0.01 mm and for estimation of the secant stiffness an actuator displacement of
0.2 mm was applied as a ramp function at the reference node. The correspond-
ing reaction force was evaluated. As a target for the reaction force, the static
value of the model function Eq. 4.20, with parameters from Tab. 4.8, was used.
A parametric study was conducted, with Poisson’s ratio ranging from 0.15 to
0.45 in steps of 0.05 and a initial Young’s modulus of 0.5 MPa. For the next
iteration, Young’s modulus was scaled according to the ratio of target and cal-
culated reaction force value from the current iteration. After a few iterations
the reaction force matched the target value to four digits. Figure 5.2 shows a
plot of the tangent and secant reaction force curve. Poisson’s ratio, tangent and
secant Young’s modulus of the final iteration and corresponding tangent and
secant bulk modulus, calculated with Eq. 2.20, are given in Tab. 5.2.
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FIGURE 5.2: Reaction force versus actuator displacement of target
curve (blue) and simulated response (magenta) with linear elastic
constitutive model.
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TABLE 5.2: Static linear elastic analysis: Young’s modulus, Pois-
son’s ratio of final iteration and corresponding bulk modulus.

Young’s modulus Poisson ratio bulk modulus
MPa − MPa

tangent secant tangent secant

0.0568 0.967 0.15 0.0270 0.460
0.0564 0.962 0.20 0.0314 0.534
0.0552 0.941 0.25 0.0368 0.628
0.0527 0.900 0.30 0.0439 0.750
0.0484 0.828 0.35 0.0538 0.919
0.0412 0.706 0.40 0.0686 1.18
0.0288 0.497 0.45 0.0961 1.66

5.3.2 Hyperelastic Model for Compressible Material - Storåkers

Model

A geometric nonlinear analysis, with the hyperelastic constitutive model for
compressible material described in Chap. 2.1.2, was performed. The strain ener-
gy density function, Eq. 2.3, was used with one term, i.e. N = 1. With that,
three material parameters, µ, α and β are unknown. The actuator displacement
dramp = 0.2 mm was applied as a ramp function at the reference node and the
corresponding reaction force was evaluated. As target for the reaction force
curve, the static part of the model function Eq. 4.20, with parameters from Tab.
4.8, was used. The difference between target force and calculated reaction force
is a measure of the error e and should be minimal with respect to a suitable
norm ‖ ‖. With that the problem can be stated as

find µ, α, β ∈ R>0 such that ‖e‖ = min . (5.4)

A parametric study was conducted to identify the material parameters. Re-
calling Chap. 2.1.2, with N = 1 the first parameter µ is identical to the initial
shear modulus. Considering the linear elastic response and static target curve
in Fig. 5.2, the initial shear modulus must be considerably smaller than the se-
cant Young’s modulus identified in Chap. 5.3.1 and larger than zero. Therefore
the parameter µ was varied from 0.02 to 0.05 in steps of 0.01. The second para-
meter α must be larger than one for a progressive characteristic. The parameter
α was varied from 10 to 40 in steps of 10. The third parameter β is related
to Poisson’s ratio ν, which must be greater than zero and smaller than 0.5. In
the parameter study ν was varied from 0.1 to 0.4 in steps of 0.1. The chosen
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parameter values resulted in 43 = 64 parameter combinations and the study
was executed and evaluated with parametric study utilities of ABAQUS (2016).
Exemplary reaction force curves are shown in Fig. 5.3. The target curve is in
the range spanned by parameter combination 1, with all parameters at smal-
lest level, and parameter combination 64, with all parameters at largest level.
Several parameter combinations resulted in reaction force curves which inter-
cepted the target curve. This was deemed unfavourable, since it indicates a low
initial slope followed by an excessive progression or vice versa. Reaction force
curves that came closest to the target curve without intercepting were para-
meter combination 11 (µ = 0.04, α = 30 and ν = 0.1) as lower and parameter
combination 43 (µ = 0.04, α = 30 and ν = 0.3) as upper bound.
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FIGURE 5.3: Reaction force versus actuator displacement of tar-
get curve (blue) and simulated response (magenta) with Storåkers
constitutive model and parameter combination 1, 11, 43 and 64.

Further the error, i.e. calculated reaction force minus target force, was evalu-
ated for actuator displacement 0.1 and 0.2 mm and the mapping R3

>0 7→ R2, that
is the mapping from the parameters to the errors, was considered. Based on the
region identified with the parameter study, parameter intervals were refined
and the corresponding errors were estimated by means of optimal interpolation
(Ref. Barth et al. (2008)) implemented in the Octave optiminterp function. Com-
pared to a finite element analysis this considerably reduced computational cost.
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The parameters identified by means of optimal interpolation are µ = 0.0337,

α = 31.68 and ν = 0.238 and the corresponding errors estimated are smaller
than 0.001 N.

Based on the parameters identified, a second parameter study was conduc-
ted. The last significant digit of each parameter was incremented and decre-
mented three times by one unit and the parametric study was executed and
evaluated with parametric study utilities of ABAQUS (2016). The parameter
combination with lowest error was µ = 0.0338, α = 31.68 and ν = 0.236. The
corresponding error is smaller than 0.001 N at actuator displacement 0.1 mm

and 0.2 mm. Around actuator displacement 0.18 mm a deviation of 0.2 N is ob-
served (Fig. 5.4). The stress-strain curve for uniaxial loading according to Eq.
2.4, with Storåkers constitutive model and parameters identified, is shown in
Fig. 5.5.
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FIGURE 5.4: Reaction force versus actuator displacement for tar-
get curve (blue) and simulated response (magenta) with Storåkers
constitutive model and final parameters µ = 0.0338, α = 31.68
and ν = 0.236.
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FIGURE 5.5: Stress versus strain for an uniaxial load according
to Eq. 2.4 and Storåkers constitutive model with final parameters
µ = 0.0338, α = 31.68 and ν = 0.236.

5.3.3 First-Invariant Hyperelastic Model - Marlow Model

Recall from Chap. 2.1.3, that for uniaxial tension the strain energy density func-
tion Eq. 2.12 will reproduce the measured stress-strain response used in the
integral precisely. Since measured stress strain data are not available, it is as-
sumed that there is a mapping of the actuator displacement versus target force
curve to the strain versus stress curve of the PDL. At zero actuator displace-
ment the reaction force is zero and this corresponds to the zero strain and stress
point. A candidate for the mapping is to assume that strain ε is proportional to
actuator displacement x, and stress σ is proportional to the target force F , given
by the static part of the model function Eq. 4.20, with parameters from Tab. 4.8.

For a chosen mapping and corresponding stress - strain curve, the reaction
force is calculated with a geometric nonlinear analysis, using the Marlow con-
stitutive model and actuator displacement dramp = 0.2 mm, applied as a ramp
function at the reference node. It was assumed that Poisson’s ratio is identical
to the value identified in Chap. 5.3.2. The difference between target force and
calculated reaction force is a measure of the error e and should be minimal with
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respect to a suitable norm ‖ ‖. With that the problem can be stated as:

find a, b ∈ R>0 (F, x) 7→ (σ, ε) = (aF, bx) such that ‖e‖ = min . (5.5)

The minimisation problem Eq. 5.5 can be split in two parts. With assumed
initial values for a and b the model is simulated. First, for a fixed value of b, that
is for fixed strain mapping, the value of a is multiplied by the ratio of the target
to calculated reaction force at actuator displacement dramp = 0.2 mm, the stress
mapping is updated with the new a value and the model is simulated again.
The first step is repeated until the calculated reaction force at actuator displace-
ment dramp = 0.2 mm is within specified error tolerance1. Second, in an outer
loop, the value of b is varied and the first step is repeated, until the calculated
reaction force at actuator displacement dramp = 0.1 mm is within specified error
tolerance. The bisection method was used for the variation of b.

Considerable computational cost can be saved with reasonable initial val-
ues. The test was non-destructive. Therefore the upper strain limit should be
well below ultimate strain, say roughly εmax < 0.3...0.4, corresponding to b < 2.
The numerical value of the maximum target reaction force is higher than ulti-
mate stress reported in e.g. Toms et al. (2002), hence a < 1.

An ABAQUS (2016) CAE Python script was written to carry out the de-
scribed minimisation algorithm. An error limit of 0.001 N was used at actuator
displacement 0.1 mm and 0.2 mm, and parameters found are a = 0.0274044, b =

1.19350. Figure 5.6 shows the corresponding reaction force curve. Around ac-
tuator displacement 0.18 mm a deviation of 0.1 N is observed. The respective
stress versus strain curve of Marlow constitutive model is shown in Fig. 5.7.

1 The first, inner loop converges against the target force at actuator displacement dramp =
0.2mm. Since the model consists of various domains with different material properties, several
iterations are necessary. This can be attributed to the various domain stiffness arranged in
series. For a model with only one (Marlow) domain the reaction force would be exact after one
iteration. This is because Eq. 2.12 is homogeneous.
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FIGURE 5.6: Reaction force versus actuator displacement of tar-
get curve (blue) and simulated response (magenta) with Marlow
constitutive model and parameters of Eq. 5.5 a = 0.0274044 and
b = 1.19350.
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FIGURE 5.7: Stress versus strain of Marlow constitutive model,
with parameters of Eq. 5.5 a = 0.0274044 and b = 1.19350.
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5.3.4 Discussion - Constitutive Model

With the linear elastic constitutive model, the reaction force versus actuator
displacement curve was estimated that passes through the zero point and the
target force at actuator displacement 0.01 mm and 0.2 mm (Fig. 5.2). Therefore,
corresponding Young’s modulus estimated can be considered as a tangent and
secant modulus respectively.

Considering Tab. 5.2, we observe that the Young’s modulus found depends
on the Poisson’s ratio. Young’s modulus decreases and Bulk modulus increases
with increased Poisson’s ratio. Based on this analysis, without further inform-
ation, it is not possible to deduce on the valid Young’s modulus. Often investi-
gators assume a Poisson’s ratio and state the corresponding Young’s modulus.
If the Poisson’s ratio is not based on direct measurements this approach is ques-
tionable.

The shear modulus can be estimated from Young’s modulus in Tab. 5.2 and
Eq. 2.16. For the Poisson’s ratio ν = 0.236, identified with the Storåkers model,
the tangent shear modulus is G = 0.0344 MPa. This value is slightly larger than
the value identified with the Storåkers model µ = G = 0.0338 MPa. It is an-
ticipated that the tangent shear modulus estimated would approach the value
identified with Storåkers model, if the second point used for tangent approx-
imation, i.e. actuator displacement 0.01 mm, approaches the zero point.

Both, the Storåkers and the Marlow hyperelastic constitutive model identi-
fied reproduce the target force curve accurately. The parameters of model func-
tion, Tab. 4.8, were optimised for actuator displacement 0.1 mm and 0.2 mm.
The difference between target force and calculated reaction force, i.e. the error,
at these points is smaller than 0.001 N. At actuator displacement 0.18 mm a de-
viation of 0.2 N is observed for the Storåkers model and a deviation of 0.1 N is
observed for the Marlow model.

For the Marlow model the deviation at 0.18 mm is presumably due to the
nonlinearity introduced by the domain stiffness arranged in series. For only
one domain the Marlow model would reproduce the stress-strain response pre-
cisely. For the Storåkers model the deviation at 0.18 mm is slightly larger. Ob-
serve that the corresponding strain energy density function, Eq. 2.3, depend-
ence on strain invariants is in polynomial form, the target curve is however a
exponential function. This may explain the slightly larger deviation compared
to the Marlow model. If a polynomial function were chosen to represent the
static part of the model function the fit of the Storåkers model should further
improve. Concluding, the slightly larger deviation of the Storåkers model at
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actuator displacement 0.18 mm may be considered as artefact and should not
be used as argument to prefer one model over the other.

In terms of computational cost the Marlow model was 1.8 % more expensive
than the Storåkers model. In Chap. 2.1.3 we have seen that for the Marlow
model stretches are mapped to an equivalent stretch, which involves additional
computations and may explain the slightly increased computational cost.

Considering the mode of deformation of the periodontal ligament, regions
of compression and tension are observed. The Marlow model maps both, com-
pression and tension stretches to an equivalent tension stretch with correspond-
ing stress. The stress-strain curve identified for the Marlow model reproduces
the target force curve well. However the stress-strain curve is an average curve
and estimated stress may deviate from the actual compression or tension stress
in the periodontal ligament. In contrast Storåkers model involves no mapping
of the stretches. Stress is estimated directly from the strain energy density func-
tion, with parameters identified to match both, compression and tension region.
On these grounds Storåkers model was chosen for subsequent analysis.

The parameters identified for the Storåkers constitutive model, µ = G =

0.0338 and ν = 0.236, and Eq. 2.16 and 2.20, lead to the bulk modulus K =

0.365 MPa. This is four orders of magnitude lower than the adiabatic bulk mod-
ulus for soft tissue, K = 2.2 GPa, deduced in Chap. 5.2.6. The adiabatic bulk
modulus values for soft tissue are based on measurements of the ultrasonic
sound velocity and tissue density. They represent the bulk modulus of the soft
tissue as a whole. Taking into account porosity and bulk modulus of the in-
terstitial fluid, the adiabatic bulk modulus values for soft tissue deduced may
be dominated by the interstitial fluid contribution. The result presented in this
Chapter for the Storåkers model, in particular the Poisson’s ratio of ν = 0.236

identified, does not support the incompressibility assertion, which is equivalent
to ν = 0.5.

As a final remark, based on harmonic tension–compression tests at 0.1, 0.5

and 1 Hz on hydrated bovine periodontal ligament, with cylindrical specimen
of diameter (5.8± 0.1) mm, Bergomi et al. (2011) reported values for the Storå-
kers model of µ = 0.03, α = 20.9 and ν = 0.257. These are in good agreement
with the values identified here, i.e. µ = 0.0338, α = 31.68 and ν = 0.236. In
particular µ, which can be interpreted as the initial shear modulus, and ν, the
Poisson’s ratio, are in good agreement. A larger difference is observed for the
exponent α, which primarily controls the progression of the stress-strain curve.
Bergomi et al. (2011) used a poroelastic simulation, with Storåkers constitutive
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model. The transient part of the response is governed by Darcy’s Law and the
long term response is determined by hyperelastic part. Therefore, their values
identified for the Storåkers model are related to the long term response. On the
contrary, the values for the Storåkers model identified here are related to the
instantaneous response of the visco-hyperelastic model. This may explain the
difference in the exponent α observed.
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5.4 Visco-Hyperelastic Analysis

5.4.1 Transient Response

A transient static, geometric nonlinear simulation with visco hyperelastic ma-
terial was performed. Storåkers constitutive model, with parameters identified
in Chap. 5.3.2, was used. For viscoelastic material definition the corresponding
curve fit parameters from Tab. 4.8 and option instantaneous moduli was used2.
Model parameters are listed in Tab. 5.3, No. 1. The actuator displacement was
applied as a ramp function at the reference node, according to Eq. 4.1, and the
resulting reaction force was evaluated.

As a target for the reaction force the viscoelastic part of the model function
Eq. 4.20, with parameters from Tab. 4.8, was used. The coefficient of multiple
correlation of the viscoelastic target force with respect to measured data is R2 =

0.8386. This value is lower than reported in Tab. 4.8, because the ramp rise time
term, H(x, pH) and the prior load history term, K(t, pK), which are not part of
the viscoelastic model, were omitted.

Figure 5.8 shows a plot of the viscoelastic target force, labelled curve fit, and
the simulated response. The simulated response accords with principle trends
of the target curve, however simulated response shows a higher force level, in
particular for actuator displacement 0.2 mm. The coefficient of multiple corre-
lation of the simulated response with respect to the viscoelastic target force is
R2 = 0.6639.

Derivation of the target curve assumed a spatially homogeneous stress dis-
tribution. This would hold for a specimen loaded in simple tension. In the
in vitro test of Papadopoulou et al. (2013) the tooth was loaded in lateral di-
rection, resulting in regions of compression and tension in the periodontal lig-
ament. Therefore a spatially inhomogeneous stress distribution is observed,
which may explain the difference in target and simulated response.

In order to improve accordance of simulated to target response a parameter
study was conducted. The difference between the viscoelastic target force and

2ABAQUS (2016) code used for viscoelastic material definition:

*HYPERFOAM, N=1, MODULI=INSTANTANEOUS

<my>, <alpha>, <ny>

*VISCOELASTIC, TIME=PRONY

<p4>, <p4>, <tau1>

<p6>, <p6>, <tau2>

<p8>, <p8>, <tau3>
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simulated reaction force is a measure of the error e and should be minimal with
respect to a suitable norm ‖ ‖. With that the problem can be stated as:

find α, p4, p6, p8 ∈ R>0 such that ‖e‖ = min . (5.6)

Parameters chosen for the study are the constants that determine the weighting
of the viscoelastic elements, that is p4, p6 and p8, as well as exponent α of the
Storåkers constitutive model.

Considering Fig. 5.8, it is clear that there should be a higher weight on
the first viscoelastic term with lowest time constant, that is p4 should increase.
Again, the equality constraint Eq. 4.10 holds and the long term response is de-
termined by p3 = 1−(p4 +p6 +p8), which must be greater than zero3. This limits
the admissible parameter combinations of p4, p6 and p8. A preliminary study
showed, that for a balanced long term response between actuator displacement
0.1 mm and 0.2 mm tests, α should decrease. As a measure for the error the
coefficient of multiple correlation, R2, between the viscoelastic target force and
simulated reaction force, was used (‖e‖ → 0+ for R2 → 1−). In addition the er-
ror of all tests at the time when the peak force occurred tFmax, at the test finish
time tmax and at an intermediate time was evaluated.

To solve the minimisation problem Eq. 5.6, the same approach as described
in Chap. 5.3.2 was used. That is, for selected parameter combinations the re-
sponse was simulated. In the region where the error was minimal a refined
parameter study was conducted by means of optimal interpolation (Ref. Barth
et al. (2008)). The thus found refined parameter region was verified by simula-
tion.

The final, optimised parameter combination is listed in Tab. 5.3, No. 2 and
a plot of the corresponding simulation result is shown in Fig. 5.9. The coeffi-
cient of multiple correlation of the simulated response with respect to the vis-
coelastic target force has improved to R2 = 0.9285. The simulated response
follows closer the target curve, in particular the long term response coincides
well.

3In the material definition p3 is not defined explicitly. It follows from the equality constraint.
Ref.: ABAQUS (2016), Theory Manual.
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TABLE 5.3: Parameters used for visco hyperelastic simulation
with Storåkers constitutive model. R2 with respect to viscoelastic
target force.

No. µ α ν p4 τ1 p6 τ2 p8 τ3 R2

- - - - - s - s - s -

1 0.0338 31.68 0.236 0.239 3.21 0.252 31.1 0.234 372. 0.6639

2 0.0338 29.7 0.236 0.45 3.21 0.20 31.1 0.08 372. 0.9285
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FIGURE 5.8: Viscoelastic Model: Viscoelastic target force, la-
belled curve fit (viscoelastic part of Eq. 4.20 with parameters
from Tab. 4.8) versus simulated force (geometric nonlinear
visco-hyperelastic, Storåkers constitutive model, parameters from
Tab. 5.3, No. 1). The value R2 = 0.6639 is with respect to the
viscoelastic target force. The figures are:

a, curve fit (blue) and simulated (magenta) force versus time t
and ramp rise time tramp of the test;

b, error, that is simulated minus curve fit force versus time t
and ramp rise time tramp of the test;

c, peak force, curve fit (blue) and simulated (magenta), versus
ramp rise time tramp of the test;

d, force at the end of the test, curve fit (blue) and simulated
(magenta), versus ramp rise time of the test.
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FIGURE 5.9: Viscoelastic Model: Viscoelastic target force, labelled
curve fit (viscoelastic part of Eq. 4.20 with parameters from Tab.
4.8) versus simulated force (geometric nonlinear visco hypere-
lastic, Storåkers constitutive model, parameters from Tab. 5.3, No.
2). The value R2 = 0.9285 is with respect to the viscoelastic target
force. The figures are:

a, curve fit (blue) and simulated (magenta) force versus time t
and ramp rise time tramp of the test;

b, error, that is simulated minus curve fit force versus time t
and ramp rise time tramp of the test;

c, peak force, curve fit (blue) and simulated (magenta), versus
ramp rise time tramp of the test;

d, force at the end of the test, curve fit (blue) and simulated
(magenta), versus ramp rise time of the test.
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5.4.2 Steady State Response

In Chap. 5.3.4, the difference in the Storåkers constitutive model exponent α
reported by Bergomi et al. (2011) and given here was mentioned. It was ar-
gued that this could be due to the difference in poro-hyperelastic and visco-
hyperelastic (with option instantaneous) approach used to identify the paramet-
ers.

To clarify the issue, the visco-hyperelastic model with Storåkers constitutive
equation and parameters from Tab. 5.8, No. 2, was simulated using static solu-
tion with option long term. This is equivalent to the transient steady state solu-
tion. Next, the response was simulated using the static solution option instant-
aneous. The long term response is determined by p3 = 1 − (p4 + p6 + p8) =

0.27, whereas for the instantaneous response all terms of the visco-hyperelastic
model are used. Therefore, it is obvious that the reaction force increases with
option instantaneous. Next, the coefficient α was reduced to achieve the same
reaction force at actuator displacement 0.2 mm as in the first simulation. This
was achieved with α = 20.87. A plot of the reaction force versus actuator dis-
placement for the three cases is shown in Fig. 5.10.
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FIGURE 5.10: Visco-hyperelastic material with Storåkers con-
stitutive model (µ = 0.0338, ν = 0.236): steady state response, re-
action force versus actuator displacement with static solution op-
tion long term (α = 29.7) and instantaneous (α = 29.7 and α =
20.87).
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5.4.3 Tooth and Mandibular Bone Stiffness Contribution

Deducing the model function in Chap. 4, an underlying assumption was, that
the measured reaction force is dominated by the behaviour of the periodontal
ligament. To validate this assumption, the visco-hyperelastic model, with Storå-
kers constitutive law, was simulated. The simulation was repeated with tooth,
mandibular bone, and tooth and mandibular bone successively modelled ri-
gid4. The three domains are arranged in series. The stiffness of the specimen
cvhe, defined as reaction force divided by actuator displacement of the visco-
hyperelastic simulation, has contributions of the tooth ctooth, the periodontal
ligament cPDL, and the mandibular bone cbone. As a first approximation, stiff-
ness is estimated from the equation for three springs arranged in series:

1

cvhe
=

1

ctooth
+

1

cPDL
+

1

cbone
. (5.7)

This neglects, if present, geometric nonlinear effects and possible interactions
of the domains. It is straight forward to estimate the stiffness terms from the
four reaction force curves shown in Fig. 5.11. For example, with tooth and
mandibular bone rigid, we have 1/ctooth = 1/cbone = 0, and the contribution of
the periodontal ligament cPDL, follows. After estimation of the stiffness terms,
total stiffness estimated with Eq. 5.7 was compared to the stiffness obtained
directly from the simulation. Deviation was smaller than 4 % at the peak force,
and about 1 % at the end of the test.

From Eq. 5.7 a partition of unity follows, which provides the contribution of
each domain to total specimen compliance:

1 =
cvhe
ctooth

+
cvhe
cPDL

+
cvhe
cbone

. (5.8)

This is shown in Fig. 5.11. A linear elastic constitutive model was assumed
for tooth and mandibular bone. Therefore, their stiffness is constant. Storåkers
constitutive model was assumed for the PDL, which results in a corresponding
progressive stiffness characteristic. After the peak force, with constant actuator
displacement, the stiffness of the PDL decreases due to stress relaxation. As a
consequence, the stiffness of the specimen cvhe decreases, and the contribution
of the PDL to the total compliance cvhe/cPDL increases. An increase from about
60 % to 80 % is observed in Fig. 5.11. Concluding, the contribution of the PDL

4ABAQUS (2016) code used for rigid domain definition: *RIGID BODY, REF NODE=node
number, ELSET=element set name
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to the total compliance is dominant, nevertheless, tooth and mandibular bone
stiffness have a significant effect on the reaction force. This may contribute to
explain the observed difference between target force and simulated response,
in Chap. 5.4.1.
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FIGURE 5.11: Visco-hyperelastic response of Test No. 2.:
a, simulated force versus time for baseline Fvhe, with rigid

tooth, rigid bone, and rigid tooth and bone;
b, compliance contribution cvhe/c(...) of PDL, tooth, and bone.

5.4.4 Discussion - Visco-Hyperelastic Analysis

After parameter optimisation the simulated response matches well the visco-
elastic target force curve. Correlation could possibly be further improved, on
the expense of computational cost, by including also the time constants in the
parameter optimisation. However the discrepancy of the homogeneity assump-
tion in the model function remains. In Chap. 5.4.3 we have seen that the contri-
bution of the PDL to the total compliance is dominant, nevertheless, tooth and
mandibular bone stiffness have a significant effect on the reaction force.

To improve the situation two routes are proposed. First, one could try to
improve the model function by taking the spacial inhomogeneity and the con-
tribution of tooth and mandibular bone compliance into account. This could be
done by series arrangement of springs for the tooth, PDL and bone. In addition
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the spatial inhomogeneity of the PDL could be modelled by parallel arrange-
ment of several force elements, with suitably reduced displacement input. A
priori, the weighting of these force elements and the suitable reduction in dis-
placement input per force element is unknown. The second approach would
be to use a co-simulation, where visco-hyperelastic response is simulated and
compared to a target force, which is the measured force corrected with the
ramp rise time term H(x, pH) and the prior load history term K(t, pK). Since
these terms contain parameters of the simulation model, the target force has
to be updated for each parameter combination. The second approach is com-
putationally expensive, however spacial inhomogeneity is taken into account
correctly.

One may argue to identify the parameters of the simulated visco-hyperelastic
response with respect to measured force directly, that is, to neglect the ramp rise
time term H(x, pH) and the prior load history term K(t, pK). This would dis-
regard the effect of the ramp rise time, respectively the ramp velocity, identified
in Chap. 4.1.5. A visco-hyperelastic simulation cannot depict this effect5. As
a consequence, the coefficient of multiple correlation is anticipated to be poor,
presumably lower than the value in Tab. 4.4, that was for actuator displacement
dramp = 0.2 mm only.

As a final remark, as suspected in Chap. 5.3.4, the different exponents of
the Storåkers constitutive model reported can be explained by the difference in
poro-hyperelastic and visco-hyperelastic (with option instantaneous) approach
used to identify the parameters. To reiterate the point, in the poro-hyperelastic
simulation by Bergomi et al. (2011), the transient part of the response is gov-
erned by Darcy’s Law and the long term, steady state response is determined
by the hyperelastic part. The values for the Storåkers model identified here are
related to the instantaneous response. In fact, the exponent α = 20.87, identified
with visco-hyperelastic model and option instantaneous, that gives the same
static reaction force at actuator displacement 0.2 mm as the visco-hyperelastic
model with option long term, is in good agreement with the value α = 20.9,
reported by Bergomi et al. (2011).

5Observe that Eq. 2.98 has no input-strain-rate dependency.
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5.5 Poro-Visco-Hyperelastic Analysis

5.5.1 Transient Response

The poro-visco-hyperelastic analysis is based on the visco-hyperelastic model
described in Chap. 5.4.1. The model includes the poroelastic parameters and
boundary conditions mentioned in Chap. 5.2 and the visco-hyperelastic para-
meters in Tab. 5.3, No. 2. In addition, a Neumann boundary condition (free
draining) was specified at the free PDL surface, adjacent to the alveolar crest,
where gingiva was removed from the specimen. For the PDL strain dependent
permeability, based on the relation proposed by Argoubi and Shirazi-Adl (1996)
and adopted in the investigation of Bergomi et al. (2009) 6, was assumed:

k = k0

(
n

n0

)2

eM(λ−1) . (5.9)

Here, k is the permeability, n is the porosity,M ∈ R+\0 is a constant greater than
zero, λ is the stretch, and the subscript 0 refers to the reference state, i.e. λ = 1.
As starting point, values published by Bergomi et al. (2009) were assumed, that
is k0 = 8.81 · 10−15 m2 and M = 14.2. Though not explicitly stated in literature,
Eq. 5.9 was derived for compression strains. Therefore, it was assumed that in
tension permeability remains constant, i.e. k = k0 for λ ≥ 1.0. The solution
procedure was changed to poro-elasticity7.

A plot of the poro-visco-hyperelastic response, versus the visco-hyperelastic
response, for test No. 2, is shown in Fig. 5.12. In the bottom of the plot, the
difference between poro-visco-hyperelastic response and visco-hyperelastic re-
sponse is shown. With the chosen parameters, the maximal difference at peak
force is about 0.04 N. The difference between poro-visco-hyperelastic and visco-
hyperelastic peak force for all tests with actuator displacement 0.2 mm is shown
in Fig. 5.13. The difference decreases with ramp rise time.

6In the paper of Bergomi et al. (2009) the n/n0 ratio is stated without exponent. However,
the original paper of Argoubi and Shirazi-Adl (1996) and the review paper of Riches et al. (2002)
show the exponent two. The quadratic term was used here.

7ABAQUS (2016) poro-elastic analysis procedure is invoked with: *SOILS,
CONSOLIDATION
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5.5.2 Parameter Study

Various parameters deemed relevant for Darcy’s flow were varied. The effect
of decreasing the initial permeability k0 is shown in Fig. 5.14, and the effect of
increasing the exponent M is shown in Fig. 5.15. For both, an increase of the
peak force, for a short duration, is observed. Further, the permeability of the
alveolar bone was varied. The response is shown in Fig. 5.16, and again, an in-
crease of the peak force for a short duration is observed with decreased alveolar
bone permeability. The effect of decreasing the cancellous bone permeability k
is shown in Fig. 5.17. Decreasing the cancellous bone permeability by two or-
ders of magnitude has a negligible effect on the response.

Next, the influence of the Neumann boundary condition (free draining) was
investigated. In Fig. 5.18 the poro-visco-hyperelastic response with Neumann
boundary condition, without Neumann boundary condition at the free PDL
surface, and in addition, with alveolar bone permeability decreased by ca. 1/2,
that is k = 10−15 m2, is shown. Without Neumann boundary condition, that
is, without free draining at the PDL surface, peak force is slightly increased,
and a small increase in the steady state force level is observed. Decreasing the
permeability of the alveolar bone increases peak force.
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FIGURE 5.14: PDL parameter k0 variation: Poro-
visco-hyperelastic response Fpvhe, with M = 14.2 and
k0 = 8.81 · 10−15 m2, versus k0 = 1.0 · 10−15 m2, and
k0 = 1.0 · 10−16 m2.
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5.5.3 Discussion – Poro-visco-hyperelastic Analysis

Tooth and cortical bone permeability were not varied in the parameter invest-
igation. They are three, respectively six orders of magnitude lower than alve-
olar bone permeability (Ref. Tab. 5.1). Therefore, pore fluid flow in tooth and
cortical bone is deemed negligible. For the tooth, this was also concluded by
Bergomi et al. (2011).

Darcy’c Flow Contribution

Considering Fig. 5.12, the poro-visco-hyperelastic response shows, for a short
duration, a slight increase of the peak force versus the visco-hyperelastic re-
sponse. Shortly after the initial peak, responses are practically identical. The
difference between poro-visco-hyperelastic and visco-hyperelastic peak force,
shown in Fig. 5.13, decreases with ramp rise time, or equivalently, increases
with actuator velocity. An animation of flow velocities reveals that Darcy’s flow
ceases shortly after the initial peak force. This observation is in agreement with
the presumption made in Chap. 3. That is, poroelastic behaviour will gradually
cease when visco-elastic relaxation progresses. The results here indicate that
the line drawn in Fig. 3.1, for the PDL in situ, should be shifted down about 2
orders of magnitude. Part of this maybe due to the actual mass diffusion coeffi-
cient D, which could be larger than assumed. The first time constant identified
here, τ1 = 3.21 s, is smaller than assumed.

PDL, Alveolar Bone, and Cancellous Bone Permeability

According to Fig. 5.14 and Fig. 5.15, changing the PDL permeability, by de-
creasing initial permeability k0, or increasing the exponent M of Eq. 5.9, will
both increase the poro-visco-hyperelastic peak force.

Next, in Fig. 5.16, with decreased permeability of the alveolar bone, an in-
creased peak force is observed. The results indicate that, with suitable choice
of the parameters, peak force and width of the peak can be increased. For all
cases, duration of increased force level versus the visco-hyperelastic response
is short. Again, Darcy’s flow ceases shortly after the initial peak force.

The effect of cancellous bone permeability on the response, shown in Fig.
5.17, is negligible. According to Cowin (2001), Fig. 25.3, permeability decreases
two orders of magnitude going from porosity 0.8, used here, to 0.4. This rep-
resents the lower bound, that is, lower values of cancellous bone permeability
are not shown in the diagram. Recalling Tab. 5.1, cancellous bone permeability
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used here, is about five orders of magnitude higher than alveolar bone per-
meability. Therefore, alveolar bone represents the determinative resistance to
interstitial fluid flow and cancellous bone permeability, within physically justi-
fied limits, has a negligible effect on the response. Concluding, it appears that
alveolar bone permeability has a essential role defining interstitial fluid flow
from the PDL.

Neumann Boundary Condition

The effect of removing the Neumann boundary condition (free draining) at the
free PDL surface, adjacent to the alveolar crest, where gingiva was removed
from the specimen, is shown in Fig. 5.18. A slight increase in the peak force is
observed. In addition, force level of the long term response is ca. 0.02 N higher
than the visco-hyperelastic response. Again, with decreased permeability of
the alveolar bone, an increased peak force is observed. However, long term
response is not changed. It may be argued that, in vivo, the PDL is sealed at
the alveolar crest, by the gingival fibre bundles. This assertion is supported by
the observation that, for tendons, according to Cowin and Doty (2007), page
588, the permeability in fibre direction is about 2.5 times greater than perpen-
dicular to the fibre direction. That is, gingival fibre bundles would represent a
barrier for interstitial fluid flow. However, gingiva was removed from the spe-
cimen at the alveolar crest. It is thus unlikely, that the PDL was sealed in the
test. Therefore, the assumed Neumann boundary condition (free draining) is
deemed justified. Nevertheless, in vivo, the hypothesised sealing effect of the
gingival fibre bundles, and the influence shown in Fig. 5.18, may be relevant.
That is, a slightly increased peak force, and more important, a slightly increased
long term force plateau may be observed in vivo, which may be attributed to
a increased pore pressure at the alveolar bone, without free draining. When
removing the external load, increased pore pressure at the alveolar bone may
contribute to the restoring mechanism, that drives the tooth back to its original
position.

Ramp Rise Time Term

Recalling the model function Eq. 4.20, measured data were approximated by
the sum of a viscoelastic term, a ramp rise time term, and a prior load his-
tory term. In the simulation, the viscoelastic term is covered by the transient
visco-hyperelastic analysis in Chap. 5.4.1. The prior load history term can be
discarded. It represents the influence of prior tests, on the current test, during
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measurement. Simulations were started in the reference state8, i.e. for simula-
tions done, there is no influence of the previous tests. Left over is the ramp rise
time term. It represents a force that is proportional to the actuator displacement,
and decays exponentially with ramp rise time. Clearly, the difference between
poro-visco-hyperelastic response and visco-hyperelastic response shown in Fig.
5.12, that is the contribution of Darcy’s flow to the reaction force, does not de-
pict this characteristic. It could explain an increased force for short ramp rise
time, or equivalently for high actuator velocity. However, contrary to the ramp
rise time term, it ceases shortly after the initial peak force. Therefore, in this
investigation, no final parameters for Darcy’s flow were deduced.

Trapped vs. Free Interstitial Fluid and Vascular System

Based on light and scanning electron microscope investigation of rabbit incisor
periodontal ligaments, sliced in transverse, oblique, and axial (median) planes,
Sloan (1978) distinguished three zones, the alveolar, middle, and cemental zone,
respectively occupying about 40 %, 50 %, and 10 % of the total ligament width.
Considering the axial (median) plane, Sloan (1978) observed that, ‘the middle
zone appeared as an undulating, sheet-like continuum of fibers which formed
a series of compartments.’ Resting upon that, Zhurov et al. (2007) argued, ‘Al-
though the PDL has a porous structure, the fluid cannot move easily between
compartments ... Therefore, there is no need to consider fluid flows in a por-
ous medium explicitly in our model.’ However, in the opinion of the author,
there is no evidence, that the interstitial fluid remains trapped in the interstitial
areas. Considering sections of the periodontal ligament, e.g. Hand and Frank
(2015), Fig. 6.13, collagen fibre bundles, interstitial areas and blood vessels are
observed. In addition, there may be free interstitial fluid between the fibre
bundles. The measurement of Bergomi et al. (2011) showed the presence of
interstitial fluid flow. Also, the simulation done here showed that Darcy’s flow
contribution is expected in the initial phase of the Papadopoulou et al. (2013)
test, before visco-hyperelastic response prevails.

Upon these observations, it might be argued to split porosity according to
trapped interstitial fluid, free interstitial fluid, and vascular fluid (blood)9. The
porosity value used here, based on Bergomi et al. (2011), was ‘assessed by meas-
uring the volume of fluid blotted out of the PDL under a compressive force’.

8One could start simulation in deformed state after the rest time of the previous test. How-
ever, there are no measurement records of the load time history between the test and it would
be computationally expensive.
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This might have contained vascular fluid. Therefore, for interstitial fluid flow,
actual porosity could be smaller than measured. One could argue that the con-
tribution of the vascular system should be modelled. As mentioned in Chap.
1, Cowin and Doty (2007) state for bone tissue a vascular relaxation time of
1.36 µs and argued that, ‘even under accidental impact loading, the stress rise
time never approaches the vascular porosity relaxation time.’ If this holds true,
the vascular system will not contribute significantly to the reaction force, and
may be negligible for the tests considered here. This is also supported by the ob-
servation that blood pressure is about 100 mmHg (13.3 kPa), stresses in the PDL
during test is in the order of magnitude 1 MPa, i.e. two orders of magnitude
higher.

Still, porosity of the PDL could be reduced to take the portion of the trapped
interstitial fluid and bold in the vascular system into account. This has an ef-
fect on the permeability, since intrinsic permeability is dependent on porosity
(Cheng and Detournay, 1993). Here we have done parameter studies, changing
PDL permeability three orders of magnitude, and did not infer on a particular
value. Small adjustments of porosity, of a couple of percent, do not alter the
conclusions of the parameter study.

Further, the effect of trapped fluid, if it exists, was certainly present in the
measurement. Identified parameters of the constitutive model are based on the
measured reaction force curves. Therefore, the effect of the trapped fluid is
taken into account by the identified parameters of the constitutive model.

9 ABAQUS (2016) implemented two fluids in the porous medium. One, the ‘wetting liquid’
is split into a free and trapped part. The other can be relatively compressible. This could be
utilised to refine the model.





Chapter 6

Summary – Discussion – Conclusion

6.1 Summary

In Chap. 3, the experimental setup was classified based on dimensionless ana-
lysis. Regions where poroelasticity or viscoelasticity dominate were distinct.
Dimensionless analysis indicates that initially poroelasticity is observed, how-
ever viscoelasticity will prevail after an initial transition phase.

Then, in Chap. 4, a curve fit of the in vitro experiment of Papadopoulou
et al. (2013) is described. A model function, assuming viscoelasticity, was in-
troduced. The viscoelastic model function was augmented by a ramp rise time
term, to account for observed dependence of the response on ramp rise time,
and a previous load history term, to account for the effect of the previous
tests on the current test. Curve fits of individual tests, tests with actuator dis-
placement 0.1 mm and 0.2 mm, and of all tests grouped together, were done.
The final curve fit of all tests grouped together had a correlation coefficient of
R2 = 0.9800. Parameters are listed in Tab. 4.8.

Next, a curve fit of the in vivo experiment of Konermann et al. (2017) was
done. Good correlation was found for a simplified model function, without
viscoelastic effect. Final parameters, with correlation coefficient of R2 = 0.9637,
are listed in Tab. 4.10, No. 4. Presumably due to the short test duration (the test
duration was between 0.4 s and 20 s) viscoelastic effects were not evident. For
both tests, in vitro and in vivo, the ramp rise time term improved correlation.

In Chap. 5, the in vitro experiment of Papadopoulou et al. (2013) was simu-
lated. Parameters for the Storåkers and the Marlow hyperelastic constitutive
model were identified. Based on the argument, that stress is estimated directly
from the strain energy density function, with parameters identified to match
both, compression and tension regions, Storåkers constitutive model was se-
lected for subsequent analysis. Parameters of the Storåkers constitutive model

109
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found here (Chap. 5.4.4) are in good agreement with values published by Ber-
gomi et al. (2011). The parameters of the visco-hyperelastic model were optimi-
sed to match the viscoelastic target force curve. The final parameters are listed
in Tab. 5.3, No. 2, and the coefficient of multiple correlation is R2 = 0.9285.

Then, in Chap. 5.5, the poro-visco-hyperelastic model was simulated and
sensitivity to selected model parameters was studied. The poro-visco-hyper-
elastic response shows, for a short duration, a slight increase of the force level
versus the visco-hyperelastic response, and Darcy’s flow decays shortly after
the initial peak force. This behaviour was anticipated based on the dimension-
less analysis in Chap. 3. Peak force is sensitive to various model parameters.
Permeability of the PDL and also permeability of the alveolar bone have a sig-
nificant effect. The ramp rise time term could not be explained with Darcy’s
flow contribution to the simulated poro-visco-hyperelastic response. Therefore,
no final parameters for Darcy’s flow were concluded.

6.2 Discussion

Corresponding topics are discussed at the end of each chapter: Chap. 3.2 –
Dimensionless Analysis, Chap. 5.3.4 – Constitutive Model, Chap. 5.4.4 – Visco-
hyperelastic Analysis, and Chap. 5.5.3 – Poro-visco-hyperelastic Analysis. Here,
some additional, chapter overreaching points are discussed.

6.2.1 Poro-Visco-Hyperelastic Model

In Chap. 3 and Chap. 5.5 it was concluded, that poroelastic behaviour will
gradually cease when viscoelastic relaxation progresses. Poroelasticity is, due
to the additional degree of freedom for pressure, computationally more expen-
sive. In addition, the Neumann boundary condition (free draining) poses a
discontinuity1, with associated numerical challenge. For slow loading, or if ini-
tial response to fast loading is not of interest, a visco-hyperelastic model may
suffice.

1 ABAQUS (2016), Users Manual, Chap. 30.4.6, Pore fluid flow: ‘In all cases the freely drain-
ing flow type represents discontinuously nonlinear behaviour, and its use may require appro-
priate solution controls.’
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6.2.2 Sequence Effect and Strain Rate Hardening

In Chap. 5.5, it was shown that the ramp rise time term of model function Eq.
4.20 could not be explained by Darcy’s flow contribution to the poro-visco-
hyperelastic response. Darcy’s flow contribution represents a short duration,
additional force, that increases inversely with actuator velocity and ceases short-
ly after actuator displacement remains constant. This behaviour, that after a
initial poroelastic contribution viscoelastic behaviour prevails, was also expec-
ted from dimensionless analysis in Chap. 3. The ramp rise time term represents
a force, that is proportional to the actuator displacement and decays exponen-
tially with ramp rise time, or equivalently decays with inverse ramp velocity. A
tempting supposition, to explain this effect on the micro scale, would be to as-
sume strain rate hardening. A higher strain rate, due to higher actuator velocity,
would result in a higher stress level. In favour of this presumption is that for
both, the in vitro and the in vivo experiment, the ramp rise time term improved
the correlation coefficient. Before endeavour this route, the possibility that the
observation is a result of the test sequence should be clarified. Recall that the
test sequence of Papadopoulou et al. (2013) was not randomised. That is, tests
were done with ramp time 5 s, 10 s, 20 s, 30 s, 60 s, 120 s, 300 s, 450 s and 600 s, in
the stated sequence. Properties of the specimen may have altered in the course
of the experiment. In particular, tests with high actuator velocity, and associ-
ated high stress, were done first. To avoid these concerns, a random test order
should be used.

Strain rate hardening has been observed by other investigators. For the rat
middle cerebral arteries, David Bell et al. (2018) observed, ‘Although both in
vivo stiffness and failure stress increased significantly with strain rate, failure
stretch did not depend on rate.’ According to Burgin et al. (2014), ‘The mechani-
cal properties of articular cartilage vary enormously with loading rate, and how
these properties derive from the composition and structure of the tissue is still
unclear.’ For biological composites Chintapalli et al. (2014) adapted a strain rate
hardening model, which follows a general constitutive model for metals stated
in Meyers (1994), that captures strain hardening as well as rate effects. Whether
this model is suitable for soft biological tissues is in question, in particular since
the underlying microstructural mechanism is not known.
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6.2.3 Parameter Identification by Means of a Model Function

versus Finite Element Simulation

In this work, a model function, that was successively refined to take observed
effects into account, was used to identify model parameters. In other works,
e.g. Bergomi et al. (2011) and Seifzadeh et al. (2012), model parameters are
identified directly by means of finite element simulation. In both cases men-
tioned, the specimen was a cylindrical plug and a axisymmetric model was
used. Compared to the specimen used here, this considerably reduced model
size and associated computational cost, which makes direct parameter identi-
fication with finite element simulation an option. In principle this is, on the
expense of computational cost, also feasible for the model used here. How-
ever, parameter identification by means of a model function has some merits:
First, computational cost is considerably reduced, even compared to a rough,
simplified finite element model. It requires, and arguably fosters, a thorough
anticipation of the physical processes involved, to come up with a meaningful
model function, that describes relevant effects in the most basic form. However,
there is certainly a limit to what extend this can be achieved. For example, in
Chap. 5.4 we found that a single Maxwell element could not describe the re-
action force, resulting from a spacial inhomogenous stress distribution in the
PDL, with desired accuracy. As a consequence, parameters identified by means
of the model function had to be further optimised by means of finite element
simulation.

6.2.4 Optimisation Strategy

Suffice to say that optimisation has been a subject of intensive research for
decades. To categorise the optimisation strategies used herein, refer to the
introduction in the contribution of Roshanian et al. (2018) to the proceedings
of the Twelfth World Congress of Structural and Multidisciplinary Optimisa-
tion. In this context, the model defined by optimal interpolation of points,
predicted with a finite element analysis, would be referred to as optimum in-
terpolation meta-model. Similar meta-models, based on interpolation, appeared
in the second half of the 1990s. Evaluation of the meta-model is computation-
ally cheap. Therefore full factorial experiments were feasible.

Throughout this work several minimisation problems had to be solved. In
Chap. 4.1.3, based on a model function, a full factorial experiment was used,
and at points, where the coefficient of multiple correlation was better than a



Chapter 6. Summary – Discussion – Conclusion 113

threshold, a Levenberg-Marquardt curve fit was executed to further optimise
parameters. Evaluation of the model function is computationally cheap, which
made a full factorial experiment an option.

In Chap. 5 optimal parameters of the finite element model were identified on
several occasions. Evaluation of the finite element model is computationally ex-
pensive. Therefore, in Chap. 5.3.2 and Chap. 5.4.1, for limited number of para-
meter combinations the response was simulated with the finite element model.
In the parameter region where the norm of the error was minimal, a refined
parameter study was conducted by means of optimal interpolation (e.g. Barth
et al. (2008)). The thus found optimal parameters were further refined and veri-
fied by simulation with the finite element model. For the second step, initially
response surface methods were tried. However optimal interpolation, which
does not require assumptions on the nature of the response surface, worked
superior. It is computationally cheap, which allowed a refined full factorial
experiment in the identified parameter region at low cost.

As a final remark, defining the meta-model in a suitable way is of utmost
importance. For the minimisation problems stated here, we wanted to min-
imise the norm of the error, which is, by definition of a norm, a positive real
number. Assume we want to interpolate between known points, where the er-
ror changes sign. Provided the function of the error is continuous, there is at
least one zero of the error between these points, with corresponding minimum
(zero) of the norm of the error. Interpolating the error, there is a good chance to
find the zero. However, interpolating the norm of the error will give a positive
real number, and it is unlikely to find the minimum. Concluding, for the min-
imisation problems stated herein, a optimal interpolation meta-model based on
error will perform superior.

6.3 Conclusion

• The present work indicates that the macroscopic response of the period-
ontal ligament to an external load can be simulated with a poro-visco-
hyperelastic model. For the hyperelastic model of the ground substance,
Storåkers constitutive model was used, and parameters identified herein
are in good agreement with values published in Bergomi et al. (2011).
Given that the experimental setup was completely different, the agree-
ment is remarkable. The simulation showed that poroelastic behaviour
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will gradually cease when viscoelastic relaxation progresses. This fol-
lowed also from dimensionless analysis. As a consequence, for slow load-
ing, or if initial response to fast loading is not of interest, a visco-hyper-
elastic model may suffice.

• The curve fit of the model function conceived herein is in good agreement
with measured data. The model function includes a ramp rise time term,
which could not be covered with the poro-visco-hyperelastic simulation.
A supposition to explain this effect on the micro scale is to assume strain
rate hardening. For soft tissues strain rate effects were observed by other
investigators, e.g. David Bell et al. (2018) and Burgin et al. (2014), however
the underlying microstructural mechanism is still unknown. Papado-
poulou et al. (2013) did not randomise the test sequence with respect to
ramp rise time. Therefore, it can not be excluded that the effect is due to
test sequence. To clarify this objection, further tests with randomised test
sequence are recommended.

• In addition to randomised test sequence, subsequent tests should bear in
mind the time required for viscoelastic relaxation. To minimise the resid-
ual effect of the previous on the current test, rest time between individual
tests should be at least four times the largest time constant anticipated.
Alternatively one could consider making the unloading phase part of the
test protocol. That is, unloading with the actuator would provide addi-
tional information that could be used.

• The final parameters of the visco-hyperelastic simulation with Storåkers
constitutive model identified herein are listed in Tab. 6.1. The parameters
of the Storåkers constitutive model are: the initial shear modulus µ, the
exponent α and the effective Poisson’s ratio ν. The parameters gi and
τi, with i ∈ {1, 2, 3}, are the modulus ratios and time constants of the
corresponding Maxwell-elements.

TABLE 6.1: Final parameters of the visco-hyperelastic simulation
with Storåkers constitutive model.

µ α ν g1 τ1 g2 τ2 g3 τ3

- - - - s - s - s

0.0338 29.7 0.236 0.45 3.21 0.20 31.1 0.08 372.
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