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Abstract

Shekoufeh GORGI ZADEH

Fast, Accurate and Steerable Segmentation of Drusen in
Optical Coherence Tomography

Age-related macular degeneration (AMD) is known to be the leading cause of
irreversible blindness in developed countries. One of the early appearing biomark-
ers of AMD are drusen. Drusen are extracellular deposits that develop between the
retinal pigment epithelium (RPE) layer and Bruch’s membrane (BM). Drusen size,
number, and location are among the most important biomarkers for staging AMD.
In addition, assessment of these biomarkers is essential for testing new treatments
and identifying AMD risk factors. Optical coherence tomography (OCT), on the
other hand, is a 3D imaging technique in which the layer structure and the above-
mentioned biomarkers can be seen. Particularly in epidemiological studies that may
contain thousands of images, manual drusen quantification in OCT is infeasible.
Thus it is necessary to use automated segmentation algorithms.

Many drusen segmentation algorithms first segment the RPE layer of the retina,
then they segment the drusen. These algorithms use bilateral or median filters to
reduce the speckle noise of OCT images, prior to their main segmentation pipeline.
In this thesis we first propose a novel multi-scale anisotropic fourth-order diffusion
(MAFOD) filter that is well suited for stable localization of ridges and valleys. It
allows to smooth along ridges at multiple scales while sharpening them in the per-
pendicular direction. Compared to other existing diffusion filters as well as bilateral
filter, MAFOD better restores the center line of elongated structures. This makes it
a suitable filter for many different applications, including the preprocessing of OCT
images. In particular for common drusen segmentation algorithms that would first
segment the RPE layer of the retina, which is a ridge structure.

Our motivation for the next work was to create a baseline for our newly de-
veloped segmentation approach. We evaluated one of the state-of-the-art drusen
segmentation algorithms, which was proposed by Chen et al. [ Medical Image Anal-
ysis 17.8 (2013), pp. 1058–1072 ], on a new set of data. Through the evaluation, we
found a substantially inferior performance than the reported results in the original
paper. We identified multiple factors that might explain this, including lower ax-
ial resolution, greater diversity of drusen load, and simultaneous presence of other
pathologies in our data-set, compared to the data-set that was described in the orig-
inal paper. This motivated us to refine the state-of-the-art algorithm even further by
adding additional steps, including using MAFOD filter for preprocessing the data.
Even though we did not achieve the accuracy reported in the original publication,
our refined algorithm significantly improved the performance of the state-of-the-art
algorithm. In addition, our results highlight that the current way of evaluating al-
gorithms does not allow to reliably infer, how good the results are going to be on
an independent data-set, and that there is a need to do more work on the proper
replication and validation of algorithms in the field of medical image analysis.
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At the time this work was started, all the available drusen segmentation algo-
rithms were using traditional segmentation methods, such as image thresholding or
active contours. It was expected that using CNNs could lead to better segmentation
results. Therefore we presented the first CNN-based drusen segmentation pipeline.
In particular, we evaluated three different choices of integrating a CNN into the
segmentation pipeline, and found that all outperformed the state-of-the-art method.
Among the three proposed pipelines for drusen segmentation, the one with a CNN
trained for segmenting RPE and BM layers combined with shortest path finding and
polynomial fitting was the most successful.

Despite providing high segmentation accuracy, still, some of CNN’s results re-
quired further correction. To address this, our final major contribution to this topic
was designing an interactive visual system for retinal layer and drusen segmenta-
tion. The interactive system allows the user to apply a pretrained CNN on a set
of data and then lets them correct the results. To speed up the correction, the sys-
tem guides the user to those images where the segmentation is more likely to have
failed. To do so, we derived two uncertainty measures from the CNN, and visualize
them. In addition, we designed intelligent tools that take user-specified constraints
as well as the 3D context information into account to propose improved segmen-
tations. Compared to state-of-the-art correction tools, through a small user study,
we observed a time reduction of 53% for layer segmentation correction and 73% for
drusen segmentation correction. We expect that this system can be used for both seg-
mentation correction and rapid creation of larger training sets for CNNs. We hope
that our system with its uncertainty visualization and intelligent tools can inspire
similar semi-automated tools for other CNN-based segmentation tasks.
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Chapter 1

Introduction

1.1 Motivation

Understanding and preventing neurodegenerative diseases is one of the main chal-
lenges in medicine. Age related macular degeneration (AMD) is one example, that
is characterized by progressive degeneration of central regions of the retina. This
has made AMD the reason for about 8% of blindness worldwide, and the leading
cause of blindness in developed countries [196]. Particularly AMD affects people
older than 60 years and is likely to become more prevalent due to population age-
ing. Figure 1.1 shows the prevalence of AMD across 10 European countries.

In addition, anatomically, the retina layer of the eye is known to be an extension
of the brain [106]. Therefore understanding neurodegenerative changes in the retina
can help to better understand, or diagnose brain’s neurodegenerative disorders like
Alzheimer’s disease at their earlier stages [76].

One key feature of AMD is the formation of drusen around or in the macula,
which is at the central region of the retina. Drusen are extracellular deposits that lift
the retinal pigment epithelium (RPE) layer, as it is illustrated in Figure 1.2. Although
different laser treatments for drusen have been proposed [41, 56, 136], still none has
been proven to be broadly effective.

FIGURE 1.1: Prevalence of early and late AMD in Europe from 1990
to 2013. Early and late AMD are different stages of this disease. The
plots show the 95% confidence interval of AMD prevalence across
different age categories. This study was done by Colijn et al. [23]
in 2017, using the European Eye Epidemiology (E3) consortium. The
data used in this study was collected from 14 population-based co-
horts with a total of 42, 080 individuals from 10 different European

countries.
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FIGURE 1.2: The left image is an example of Drusen formed on the
retinal layer. On the right, Retinal pigment epithelium (RPE) layer
(magenta), and Bruch’s membrane (BM) layer (yellow) are marked

over the 2D slice of optical coherence tomography.

One of the non-invasive techniques for retinal imaging is optical coherence to-
mography (OCT). It can be utilized to render a 3D scan by taking series of 2D images.
OCT can be used to assess drusen size, number, or extent [192]. For clinical trials,
in which new treatments are evaluated, estimating drusen load before and after the
treatment is essential. However, this requires drusen size assessment in hundreds
of images, which is heavily time consuming if done manually. In addition, AMD is
known to be caused by a mixture of environmental and genetic risk factors such as
smoking, age or family history [84]. In order to identify correlation between these
risk factors and AMD progression, assessment of drusen size, number and location
becomes necessary in thousands of images. For this reason designing a semi- or
fully-automated drusen segmentation technique becomes essential.

1.2 Contributions

The research on drusen segmentation can be divided into different categories based
on the underlying image modality or based on the proposed algorithm, i.e., whether
it is semi-automated or fully-automated. Usually drusen segmentation algorithms
first segment the RPE layer. Then by fitting a low degree polynomial onto RPE layer,
they estimate an ideal drusen-free RPE. With this, the area between the two layers
is considered as drusen [18, 31, 55]. From the different fully-automated algorithms
that work on OCT scans, we identified the method by Chen et al. [18] as the state-
of-the-art, based on their reported high accuracy.

In order to create a baseline, we replicated the algorithm by Chen et al. [18].
We evaluated their algorithm on our data-set that was more heterogeneous, and
had a greater diversity of drusen load, and different image quality compared to the
data-set that was described in the original paper. Consequently we observed a seg-
mentation accuracy that was significantly lower than the reported results by Chen
et al. [18]. This motivated us to improve their segmentation pipeline by adding local
histogram equalization and several additional regularization steps.

In addition we propose a novel multi-scale anisotropic fourth-order diffusion
(MAFOD) filter, that is suitable for enhancing ridge- and valley-like structures. It
allows to selectively smooth along ridges or valleys at multiple scales, while sharp-
ening them in the perpendicular direction. In this thesis, we show that compared
to other existing filters, MAFOD is better suited for restoring the center-line of elon-
gated structures. This makes it a suitable filter for many different applications, in-
cluding the preprocessing of OCT images. In particular, for those segmentation algo-
rithms that would first segment RPE layer, because RPE is a ridge structure in OCT
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FIGURE 1.3: Drusen segmentation (red) using our proposed pipeline.
In this example the best performing pipeline, i.e., the one with a CNN

that segments RPE and BM layers (cyan) first, was used.

images. By replacing the bilateral filter, which was proposed in Chen et al. [18] algo-
rithm with MAFOD, we could improve our refined drusen segmentation algorithm
further.

The fact that recently convolutional neural networks (CNNs) have substantially
improved medical image segmentation [5], and that no one had used CNNs for
drusen segmentation, motivated us to use a CNN for this task. In particular, we
evaluated three different ways of integrating a CNN into the segmentation pipeline.
In our first pipeline we trained a network to directly segment drusen. In the sec-
ond pipeline, we trained the network to first segment RPE and bruch’s membrane
(BM) layers. From the RPE and BM layers, drusen are segmented by first rectify-
ing the RPE layer, using the BM layer, and then fitting a polynomial on the RPE
layer to estimate a drusen-free RPE. In the end the area between the drusen-free
RPE and RPE layer was considered as drusen. In the third pipeline, we trained the
network to segment the RPE/BM complex. We treated the upper and lower bound-
ary of the complex as RPE and BM layers for further drusen segmentation. All three
pipelines outperformed the state-of-the-art method by Chen et al. [18], and the best
performance was achieved when the CNN was used for segmenting the RPE and
BM layers first (see Figure 1.3).

Medical images that come from different imaging devices can have different
characteristics such as contrast level, making it hard for a CNN trained on a spe-
cific data-set to perform equally well on a data-set from a different device. Instead
of retraining the CNN with the new data, as part of our collaboration with Wu et
al. [198], we preprocessed each image by matching their histogram to the average
histogram of the data-set that was used to train the CNN. Figure 1.4 illustrates how
this preprocessing step improved the segmentation.

Despite the high accuracy of CNNs for image segmentation, they can sometimes
fail to correctly segment the object of interest. In particular, for sensitive applications
this will require a human rater to check/correct the final results. This motivated us to
introduce a system that allows to use a pretrained CNN for automatic RPE and BM
layer segmentation. Then, this system uses the internal states of the CNN to provide
two uncertainty measures, which numerically estimate CNN’s uncertainty for the
segmentation. The uncertainty measures are visualized to guide the user to those
image slices that are more likely to have an erroneous segmentation. In addition,
our interactive system offers multiple intelligent tools, that utilize the inner states
of the CNN, and the context of each 2D image slice in the 3D volume, for helping
the user to correct the segmentation in a timely manner. Compared to the correction
time required when users had no guidance and could only use other conventional
tools, we observed a speed-up by a factor of two for retinal layers segmentation
correction, and by more than a factor of three for drusen segmentation correction.
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FIGURE 1.4: Segmentation results on the input (left) from a different
device type, before (middle) and after (right) the histogram matching

step.

1.3 Relationship to prior and concurrent works

As mentioned earlier, most of the drusen segmentation algorithms use an enhancing
filter on the input image prior to the main segmentation pipeline. For instance Chen
et al. [18] use a bilateral filter, or Iwama et al. [68] use a median filter to denoise B-
scans before binarizing them. Given the elongated shape of the retina in B-scans, we
show that our proposed fourth-order multiscale anisotropic diffusion filter is better
suited when we are interested in extracting the ridges. Our filter not only preserves
the ridge location, but it can also enhance them. Another anisotropic fourth-order
diffusion filter was proposed by Hajiaboli et al. [59]. However, their filter was par-
ticularly designed to enhance edges.

For evaluation of the state-of-the-art algorithm for drusen segmentation,
amongst other fully automated algorithms [31, 55, 68] that use classical image pro-
cessing approaches, we picked the method by Chen et al. [18]. This decision was
made according to the review by Wintergerst et al. [192] on algorithms for the au-
tomated analysis of AMD biomarkers in OCT, and the reported accuracy in Chen et
al.’s paper. However, after applying their algorithm on a completely new data-set,
we observed a significantly lower accuracy, which motivated us to improve their
segmentation pipeline (see Chapter 6).

In the recent years deep learning has become popular for retinal image analysis
[161]. In particular, convolutional neural networks (CNNs) have improved the seg-
mentation of AMD biomarkers [74, 98, 158]. Our work in Chapter 7 utilizes a CNN
for drusen segmentation. In 2019 Asgari et al. [7] used a separate decoder per target
class, i.e., RPE, BM, and RPE/BM complex in the U-Net. They show an improvement
in segmentation when these modifications are used, compared to multiple baselines,
including the standard U-Net for direct drusen segmentation, and the standard U-
Net trained for RPE and BM layer segmentation. In contrast to our work, they as-
sume outer boundary of RPE and BM layers overlap in non-pathological regions.
Even though they use a U-Net trained to segment RPE and BM layers as one of their
baselines, a comparison to our complete segmentation pipeline (including shortest
path finding and false positive elimination step) is not reported in their work. In
another work, Asgari et al. [8] use the standard U-Net architecture and extend it
with the spatial pyramid pooling components, allowing it to utilize a larger context
for segmentation.

Despite the great improvement in medical image segmentation accuracy using
deep learning, the results are still not perfect and these networks often need large
and comprehensive training data-sets. For these reasons semi-automated algorithms
are still widely used [124]. Particularly for drusen segmentation, Farsiu et al. [40]
provided a GUI that allowed drusen number area and volume estimation in OCT
scans. Later on Jain et al. [72] developed a similar user-interactive method to esti-
mate area covered by drusen in OCT scans. In both cases an active contour-based
RPE segmentation method was used. Other semi-automated algorithms focus only
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on segmentation of retinal layers [117, 139]. In addition we present an interactive
system, that uses an uncertainty score obtained from the trained convolutional neu-
ral network, to guide the user to those poorly segmented regions by the neural net-
work. The user is provided with a set of intelligent tools for correcting these failures,
speeding up the correction process.

1.4 Outline and publications

Chapter 2 provides background knowledge on age related macular degeneration
(AMD), optical coherence tomography, drusen, and drusen segmentation algo-
rithms. Chapter 3 familiarizes the reader with basic concepts of convolutional
neural networks that are necessary to discuss our main fully- and semi-automated
drusen segmentation pipelines. Chapter 4 provides mathematical background and
an overview of diffusion filters.

The main research contribution of this dissertation is based on four publications
that are presented in Chapters:

• Chapter 5: Gorgi Zadeh et al. “Multi-scale Anisotropic Fourth-Order
Diffusion Improves Ridge and Valley Localization” Journal of Mathematical
Imaging and Vision 59.2 (2017): 257-269. URL: https://doi.org/10.1007/
s10851-017-0729-1 [204].

• Chapter 6: Wintergerst and Gorgi Zadeh et al. “Replication and Refinement
of an Algorithm for Automated Drusen Segmentation on Optical Coherence
Tomography” Scientific Reports 10.1 (2020): 1-7. URL: https://doi.org/10.
1038/s41598-020-63924-6 [191].

• Chapter 7: Gorgi Zadeh et al. “Cnns enable accurate and fast segmentation
of drusen in optical coherence tomography” Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support Springer, Cham,
(2017): 65-73. URL: https://doi.org/10.1007/978-3-319-67558-9_8 [51].

• Chapter 8: Gorgi Zadeh et al. “Intelligent interaction and uncertainty visu-
alization for efficient drusen and retinal layer segmentation in Optical Co-
herence Tomography” Computers & Graphics 83 (2019): 51-61. URL: https:
//doi.org/10.1016/j.cag.2019.07.001 [205].

In addition, we published:

• Gorgi Zadeh et al. “Uncertainty-Guided Semi-Automated Editing of CNN-
based Retinal Layer Segmentations in Optical Coherence Tomography.” Visual
Computing for Biology and Medicine (2018): 107-115. URL: https://doi.org/
10.2312/vcbm.20181235 [50].

This work got extended into [205] later on.
We also contributed to the following research studies, in which our drusen seg-

mentation pipeline was used, but which are not part of this dissertation:

• Wu et al. “Secondary and Exploratory Outcomes of the Subthreshold Nanosec-
ond Laser Intervention Randomized Trial in Age-Related Macular Degenera-
tion: A LEAD Study Report.” Ophthalmology Retina 3.12 (2019): 1026-1034.
URL: https://doi.org/10.1016/j.oret.2019.07.008 [198].

This was a 36-month trial study to test the effect of subthreshold nanosecond
laser (SNL) treatment on slowing down AMD progression from early to late

https://doi.org/10.1007/s10851-017-0729-1
https://doi.org/10.1007/s10851-017-0729-1
https://doi.org/10.1038/s41598-020-63924-6
https://doi.org/10.1038/s41598-020-63924-6
https://doi.org/10.1007/978-3-319-67558-9_8
https://doi.org/10.1016/j.cag.2019.07.001
https://doi.org/10.1016/j.cag.2019.07.001
https://doi.org/10.2312/vcbm.20181235
https://doi.org/10.2312/vcbm.20181235
https://doi.org/10.1016/j.oret.2019.07.008
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stage. Our pipeline [51] was used to automatically segment drusen. These
segmentations were used to investigate the influence of the laser treatment on
the changes in drusen volume.

• Pondorfer et al. “Association of Visual Function Measures with Drusen Vol-
ume in early stages of Age-Related Macular Degeneration”. Investigative Oph-
thalmology & Visual Science 61.3 (2020), 55-55. URL: https://doi.org/10.
1167/iovs.61.3.55 [132].

In this work, association between measurements from visual function tests and
drusen volume in AMD is investigated. In this study our drusen segmentation
pipeline [51] was used to estimate drusen volume in 100 OCT scans.

Chapter 9 concludes all the proposed methods and discusses future possibilities
to extend these works.

https://doi.org/10.1167/iovs.61.3.55
https://doi.org/10.1167/iovs.61.3.55
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Chapter 2

OCT image analysis for AMD

2.1 Optical Coherence Tomography (OCT)

Optical Coherence Tomography (OCT) is a non-invasive diagnostic technique which
works similar to ultrasound, except it uses light waves instead of sound waves. OCT
imaging was first introduced by Huang et al. [65] and has gained wide popularity
in ophthalmology, as it can be utilized to render an in-vivo cross-sectional image of
biological systems such as the retina.

FIGURE 2.1: A simple sketch of a basic OCT.

OCT measures the echo time delay and the magnitude of the back-scattered light
beam to image within tissues. The spatial resolution achieved by OCT can be in
1− 15µm scale, which is of one to two orders of magnitude finer than the spatial
resolution achieved by conventional ultrasound [133]. OCT is a highly sensitive in-
terferometric technique. As Figure 2.1 illustrates, a very basic OCT consists of a
low-coherence light source, whose light beam is split into two beams through a cou-
pler. One beam is directed to a reference arm, which consists of a reference mirror,
and the other beam is directed onto a sample arm, which consists the sample of
interest. The back-scattered light beams from the reference mirror and the sample
are again recombined at the coupler, creating interference patterns. These patterns
are then recorded by a detector. When both light beams travel the same distance,
they create a certain interference pattern. Therefore by changing the position of the
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FIGURE 2.2: A three dimensional OCT scan is generated by taking
a series of B-scans in XY plane. Each B-scan is generated by taking
a series of A-scans in transverse positions in X direction. The red
vertical line over the B-scan shows an A-scan which corresponds to

back-scattered light intensity along the axial direction.

reference mirror and monitoring the recorded interference pattern at the detector,
one can measure the magnitude of the back-scattered beam knowing the axial depth
within the sample from which the light is reflected [133]. In a time domain OCT
(TD-OCT) the reference arm is quickly scanned over a distance that corresponds to
the intended scanning depth range [119].

Figure 2.2 illustrates an example use of OCT for retinal imaging. The depth pro-
file of a sample structure is reconstructed by measuring the intensity of reflected
or back-scattered light beam versus depth in an Axial scan (A-scan). The two-
dimensional cross-sectional image (B-scan) of the sample structure is generated by
measuring a series of A-scans at different transverse positions. Finally the complete
three-dimensional image is reconstructed by taking a series of B-scans. In addition to
popularity in ophthalmology for retinal imaging, OCT is also used in other medical
research areas such as endoscopic imaging of gastro-intestinal and cardiovascular
systems.

Recent spectral domain OCT (SD-OCT), also known as Fourier domain OCT sys-
tems has increased the scan rate, resolution and speed. In SD-OCT a spectrometer
is used to measure the cross-spectral density at the detection arm. This replaces the
mechanical scanning of the reference arm technique, which is used in TD-OCT [119].
This allows to quickly and continuously image a 6mm area of the retina, which de-
creases the chance of missing pathologies in scans compared to TD-OCT systems
[194].

2.2 Retinal layers

For diagnosing and studying many ocular diseases, anatomical and pathological
analysis of retinal layers and their thickness is crucial [65]. Figure 2.3 shows the
international nomenclature for the classification of retinal and choroidal layers on
SD-OCT images of a normal eye [174]. In this dissertation Nerve Fiber Layer known
as RNFL, and RPE (Retinal Pigment Epithelium)/Bruch’s membrane complex are
particularly interesting.



2.3. Age related Macular Degeneration (AMD) 9

FIGURE 2.3: SD-OCT image, that shows the international nomencla-
ture for the classification of retinal and choroidal layers. The image is

labeled according to an article by Staurenghi et al. [174].

2.3 Age related Macular Degeneration (AMD)

One common ocular disease, which is the major cause for irreversible vision loss
world-wide, i.e., more than 20% of the ageing population might have it [100], is age
related macular degeneration (AMD). This disease mostly develops at the central
retina and is chronic and progressive, which at its later stages causes severe visual
loss [100]. AMD is a complex trait disease with multiple genetics, lifestyle and med-
ical risk factors [37]. Lim et al. [100] list some of the risk factors, with age being
the major one. Some other major risk factors include, cigarette smoking, obesity,
nutritional factors such as low dietary intake of particular vitamins, cardiovascular
diseases, genetic markers and so on.

2.3.1 Wet and dry AMD

There are two different known late AMD stages: wet AMD and dry AMD.
Wet AMD, also known as neovascular or exudative AMD, happens when blood

vessels grow abnormally in the choriocapillaris (see Figure 2.3) through the BM, that
eventually causes leaking fluid, lipids, and blood, leading to fibrous scarring below
the macula. At earlier stages of wet AMD, the choroidal vessels start as capillaries,
which are seen to develop into veins later on. Hemorrhagic or serous RPE and retinal
detachment might be observed in this form of AMD.

Wet AMD is the minority type. About 85 to 90% of patients with AMD, suffer
from the dry form of the disease. The patient who develop wet AMD are on average
70.5 years old, whereas those who develop dry AMD are younger with 56.8 years old
on average [168]. In late dry AMD, also known as nonexudative AMD, geographic
atrophy (GA), which is the atrophy of RPE, choriocapillaris, and photoreceptors,
occurs [100]. Figure 2.4 shows a sample B-scan of a patient who has developed GA.
In severe cases a secondary degeneration of photoreceptors that lies on top of the
degenerating RPE cells happens [206].
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Drusen Geographic Atrophy

FIGURE 2.4: Two B-scan samples that represent drusen (left), that
have lifted the RPE layer up, and geographic atrophy (GA) (right).

2.3.2 Drusen

One of the early appearing signs of AMD are soft drusen [69], that are focal depo-
sition of acellular detritus between RPE and BM layers (see Figure 2.4), and appear
as small yellow deposits in the macula. They can lead to RPE degeneration and
secondary BM thickening [11]. Many studies have shown a positive correlation be-
tween estimated drusen maximum size and total drusen area with the risk of pro-
gression into advanced AMD in color fundus photography (CFP) [27]. Green et al.
[53] lists four different types of drusen; 1) soft drusen 2) hard drusen 3) crystalline
drusen and 4) cuticular or basal laminar drusen. However not all drusen types are
associated with AMD. Hard drusen are smaller than 50 microns in diameter and are
common in young people. This druse type is not a sign of AMD and is not noted to
increase in number with age. Similar to hard drusen, basal laminar drusen are small
in size and appear as white deposits and are observed in normal aging eyes [171].
Unlike the other two drusen types, soft drusen are usually larger than 50 microns in
diameter and are known to be an early sign of AMD. Finally crystalline drusen are
the soft drusen that are predisposed to geographic atrophy [153]. The Age-Related
Eye Disease Study (AREDS) breaks the signs of AMD development into the follow-
ing four categories [100]:

1. None or a few small drusen (with diameter < 63µm).

2. Multiple small drusen or few intermediate drusen (63− 124µm in diameter),
or retinal pigment epithelium abnormalities.

3. Extensive intermediate drusen, or at least one large drusen (≥ 125µm in diam-
eter, or geographic atrophy not involving the fovea.

4. GA involving the fovea or any of the features of neovascular age-related mac-
ular degeneration.

Reticular drusen are yet another form of yellowish subretinal lesions that are
arranged in a network. Through a population-based study, Klein et al. [86] found an
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association between long-term cumulative incidence of reticular drusen, also known
as pseudo drusen, and high development risk of late AMD.

In order to assess AMD progression, and understand the disease better through
epidemiological studies, it becomes necessary to use semi- or fully automated algo-
rithms, as manual grading of drusen in volumetric data is unfeasible. The SD-OCT
data-set, which was used in this dissertation is collected from patients that mostly
fall into categories 2 and 3, i.e., the intermediate AMD.

The following section briefly summarizes some of the most important and state
of the art semi- and fully-automated algorithms, that are developed for drusen seg-
mentation and quantification task.

2.4 Drusen segmentation

There are many algorithms developed for the segmentation of drusen from color
fundus photographs (CFPs). CFPs are useful for assessing the en-face, which is the
2D view in axial direction, of the macula. Duanggate and Uyyanonvara [33] pro-
vide a review of automated drusen segmentation algorithms for this modality. It
includes texture-based approaches, e.g. [99, 126], histogram-based approaches, e.g.
[138], morphological approaches, e.g. [155], multi-level approaches, e.g. [12] and
fuzzy logic approaches [154]. In general the common challenge for drusen segmen-
tation in CFPs is the varying background of drusen, making it difficult to reliably
localize drusen boundary [18]. Moreover CFPs are 2D images, therefore they are not
suitable for assessing drusen volume. This makes high resolution OCTs an attractive
alternative modality for drusen segmentation.

In their survey, Wintergerst et al. [192] list various semi- or fully-automated algo-
rithms for analysis of AMD biomarkers in OCTs. Out of those, seven algorithms are
mentioned for drusen segmentation. Some of these algorithms only focus on esti-
mating the area covered by drusen or drusen volume, and some other on estimating
drusen number or maximum drusen diameter. Most of drusen segmentation algo-
rithms segment RPE and sometimes BM layers prior to segmenting drusen. In this
chapter these algorithms, in addition to other recent ones, are reviewed.

2.4.1 Semi-automated algorithms

Farsiu et al. [40] proposes a semi-automated algorithm for drusen number, area
and volume estimation. They provide a graphical user interface (GUI) to fine-tune
a pipeline of image thresholding, shortest path finding, and active contours to seg-
ment the RPE layer of the retina. Then the GUI can be used to fit a second or fourth
order polynomial to the estimated RPE curve. The estimated polynomial is consid-
ered as healthy/normal (drusen-free) RPE. Finally the area between RPE and the
normal RPE is marked as drusen.

Jain et al. [72] uses the semi-automated active contour-based RPE segmentation
similar to Farsiu et al.’s method, to estimate the area covered by drusen from SD-
OCT images. They also develop another user-interactive method that works only
on color fundus photography images. It allows users to select a region of inter-
est (excluding other reflective structures), to help developing a background model.
Using the background model, drusen are segmented. They compare drusen bur-
den assessment from these two different modalities and show larger drusen in eyes
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(a) (b)

FIGURE 2.5: (a) Red curves show the selected sub-volume for gener-
ating en-face projection. Top curve passes through the tallest druse in
the whole volume. (b) Intensity of pixels between RPE and drusen-

free RPE are replaced with their maximum in each column.

with hyperpigmentation were better segmented in SD-OCT. There are other semi-
automated tools, that instead of drusen, mainly focus on segmentation of retinal
layers [117, 139].

2.4.2 Fully automated algorithms

In the work by Gregori et al. [55], the authors automatically estimate drusen volume
and area, using a proprietary RPE segmentation algorithm, commercially available
on the Cirrus HD-OCT software. The same polynomial fitting strategy, as described
in Section 2.4.1, is used to estimate a drusen-free RPE. By computing the distance be-
tween RPE and ideal RPE, a drusen height map is estimated. To reduce the number
of falsely detected drusen due to noise, the authors propose to use a height thresh-
old. Diniz et al. [31] uses these elevation maps to identify drusen clusters and esti-
mate drusen count as well as the size of each individual druse.

Iwama et al. [68], first use a median filter to denoise B-scans and then binarize
them. Unlike the above-mentioned algorithms, here drusen are computed between
RPE layer and Bruch’s membrane (instead of the estimated drusen-free RPE). Finally
they assess drusen area and their maximal diameter in the en-face projection of the
retina.

The method by Chen et al. [18] is considered as one of the state-of-the-art for
drusen segmentation, according to their reported accuracy. First they use a bilateral
filter to denoise the B-scans to better estimate RNFL and RPE layers. In the second
step, they automatically remove the RNFL complex by considering a band around
the bottom boundary of background (the vitreous of the eye), which they already
extract by a simple image thresholding. Due to high reflectivity of RPE layer, another
thresholding is used to segment RPE. Small regions, with area less than 150 pixels
in their data-set, are removed from the binary maps. Finally RPE curve is extracted
by finding the center line of the binary RPE component. In the next step they use
a third order polynomial to fit on the RPE layer in order to estimate the drusen-
free RPE. The area between RPE and drusen-free RPE is then marked as drusen.
The pipeline proposed by Chen et al. [18] has a false positive elimination (FPE)
step, that discards any drusen that appear only in one B-scan. In addition, by using
selective summed-voxel projection (SVP), they generate an en-face projection of the
volume. To generate the en-face projection image, a sub-volume of the complete
OCT volume is selected so that the upper boundary of the sub-volume goes through
the peak of the tallest druse in the whole volume, in parallel to the drusen-free RPE.
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FIGURE 2.6: Selective SVP (en-face projection) of an OCT volume
with 145 B-scans of size 496 × 512. The resulting en-face is of size

145× 512. Brighter regions indicate drusen.

The drusen-free RPE is considered as the lower boundary of the sub-volume. To
make drusen brightness be more in-line with their height, the intensity of pixels in
each column between RPE and ideal RPE is replaced with their maximum intensity
value as illustrated in Figure 2.5. Finally pixels in the sub-volume are summed up
together column-wise to create the projection image. Figure 2.6 shows an example
of the en-face projection.

If the average intensity within a druse area compared to the average intensity
of its boundary is less than 4, or if the ratio of width and height of druse on the
en-face projection is less than 6, it is considered as false positive and is removed. In
the end, drusen segmentation is smoothed with a Gaussian filtering. In the work by
de Sisternes et al. [166], the algorithm by Chen et al. [18] was successfully used for
longitudinal study, where predicting AMD progression was the main focus.

2.4.3 Machine learning approaches

The algorithms discussed so far are mostly categorized as the classical image pro-
cessing methods, that mainly rely on a set of mathematical functions applied to
OCT images. These algorithms can be categorized either as rule-based, which are
deterministic models that require no training, or as the traditional machine learning
approaches. Usually the traditional machine learning approaches require less data
to develop a set of features and a statistical model for the analysis. In contrast, super-
vised deep learning approaches are able to learn their own representation/features
when enough annotated images are available. This makes them very powerful, but
often harder to interpret. Thus each of these approaches have their own specific
strength and weakness points that make them suitable for specific research ques-
tions [161].

Ren et al. [142] use image patches with and without drusen from CFP, and a
support vector machine (SVM) to create a probabilistic segmentation of drusen. De-
spite reaching a high accuracy, as CFP images do not contain any information on
geometry of the RPE, they are not enough for drusen volume estimation [55].

In the recent years deep learning has become popular for retinal segmentation
tasks [161]. Many of these algorithms use convolutional neural networks (CNNs)
to segment different biomarkers of AMD such as intraretinal fluid [158], subretinal
fluid, pigment epithelial detachment, and subretinal hyperreflective material [98],
or geographic atrophy [74] in OCT. Particularly very recently CNNs are used for
segmentation of drusen. Chapter 7 presents (to our knowledge) the first research
work that uses deep learning for drusen segmentation.
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After our approach was published, other groups also introduced CNN-based
systems for drusen segmentation. De Fauw et al. [28] used deep learning for diag-
nosis and referral in retinal diseases. In their pipeline they use 3D U-Nets to create
tissue segmentation maps for 15 different classes including drusen. In the next step
these maps are used to train a classification network to create diagnosis probabilities
and referral suggestions.

In 2019 Asgari et al. [7] used separate decoders for different target class, i.e.,
RPE, BM, and RPE/BM complex in the U-Net. Their work is under the assump-
tion that RPE and BM layers are overlapped in non-pathological regions, which is in
contrast to our work. To increase regularization effect, they added extra connections
between these class-specific decoders. They show an improvement in segmenta-
tion using these modifications compared to training a U-Net for directly segmenting
drusen, and a U-Net for segmenting RPE and BM layers. From their experiments,it
is not clear if the complete pipeline (including shortest path finding and false pos-
itive elimination steps) of our work in Chapter 7 has been used as the baseline. In
order to use a larger context for the segmentation, in another work, Asgari et al. use
spatial pyramid pooling in the U-Net [8]. This extension can particularly help with
segmenting drusen in advanced AMD, as they cover a larger area.



15

Chapter 3

Convolutional neural networks for
image segmentation

The segmentation pipeline that we propose in Chapter 7 uses a convolutional neural
network (CNN) for layer and drusen segmentation. In addition Chapter 8 utilizes
the prediction maps from a CNN to guide users to highly likely erroneous segmenta-
tions. For this reason in this chapter a background on CNNs for image segmentation
is presented.

Convolutional Neural Networks (CNNs/ConvNets) [94] are most commonly
used for analyzing data with grid-like topology such as visual imagery. The convo-
lutional operators allow CNNs to have translation invariance property for classifica-
tion, and translation equivariance property for segmentation tasks. These networks
have become very popular during the recent years amongst many researchers for
significantly improving the state-of-the-art results in semantic image segmentation
[46]. CNNs replace the classical hand-crafted feature selection with an automatic
mechanism.

Image segmentation tasks can be divided into two sub-categories; semantic seg-
mentation and instance segmentation. In semantic segmentation different instances
of the same category are not differentiated. It aims to assign each pixel in an in-
put image as belonging to a semantic class label. Pixels that belong to no class are
regarded as background. Researchers have already designed CNNs for semantic
segmentation [17, 107, 123, 146]. On the contrary, in instance segmentation [16, 26,
105], the aim is to assign each pixel to differentiate between multiple instances of the
same object class. In this dissertation, we are interested in semantic segmentation of
drusen.

The field of image segmentation using CNNs is so broad that we do not exhaus-
tively survey it here. There are many reviews published on different CNN archi-
tectures used for image segmentation [46, 102, 209]. Our goal in this chapter is to
discuss the major building blocks of a CNN and provide necessary details for better
understanding Chapters 7 and 8.

3.1 Artificial neural networks

To have a universal function that maps an input image into a per pixel label, amounts
to a highly complex function. Artificial neural networks allow to have a general
learnable function, which learns this mapping through training. An artificial neural
network is a connected network of artificial neurons.
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3.2 Artificial neurons

The following schematic describes a simplified biological neuron.

FIGURE 3.1: A simple sketch of a biological neuron.

Artificial neuron structure is inspired by biological neurons, however rigidly fol-
lowing the constraints of biological networks is neither productive nor necessary, as
they can lead to a need for very complex and time consuming simulations for artifi-
cial intelligence applications. Therefore the inspiration is taken from biology and is
adapted to the available computing infrastructures. Schematic in Figure 3.2 shows
the commonly used artificial neuron and its correspondence to a biological neuron.
The input connection corresponds to dendrites, the summation and activation func-
tion corresponds to neuron’s soma, output connections correspond to axons, and
weights are simplified version of synapses [90]. To put it mathematically, an artifi-
cial neuron is defined as follows [2]

yk = f

(
n

∑
i=0

wkixi

)
, (3.1)

where f is called the transfer (activation) function, that transfers the activation signal
into one output yk of the kth neuron; wk are the weights of the kth neuron, and x is
the input to the neuron as illustrated in Figure 3.2. Usually x0 is assigned to 1, which
makes wk0 = bk to be the bias.

3.2.1 Activation function

The activation function in a neural network determines how the neuron works, i.e.,
it sets the condition for a neuron to fire (pass the information to the neighbouring
neurons) [2]. Simplest activation function is binary

f (x) =

{
1
0

∑n
i=0 wixi > 0

o.w.
. (3.2)

In this case, a neuron works like a linear classifier, where weights w define the clas-
sification hyperplane. However binary activation function is not used in practice as
it is not differentiable and does not allow multi-value outputs. Different activation
functions work better for different types of problems. One of the most commonly
used activation functions is logistic Sigmoid, because its output is a value between
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FIGURE 3.2: Artificial neuron schematic. Here the bias w0 = b is
shown separately.

0 and 1. Thus the output can be interpreted as the probability of the neuron to fire
[71]. Logistic sigmoid is defined by

f (x) =
1

1 + e−(∑ wixi)
. (3.3)

For very high or very low values the gradient vanishes when logistic sigmoid is
used. This causes the network not to learn anymore. In addition, this activation
function is known to have a low convergence rate.

Another common activation function, which is used in this dissertation is the
Rectified Linear Unit (ReLU). It is defined as

f (x) = max
(
∑ wixi, 0

)
, (3.4)

and has a faster convergence rate than the sigmoid function [25].
Assuming the output of the last layer of the network is s = ∑ wihi, where vector

h is the input to the last layer, usually the softmax function is used as the activation
function to represent the probability distribution over M different classes at the end
of a classifier network. Vector pi ∈ RM is computed as

pi =
esi

∑j esj
. (3.5)

As presented in [49], softmax function maps the output scores s into an interpretable
vector p with

M

∑
l=1

pi,l = 1.

Some other commonly used activation functions are Leaky ReLU [199] and Tanh
[113].
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FIGURE 3.3: Graph of a feed-forward, fully connected neural network
with two hidden layers..

3.2.2 Fully connected layers

A neural network is a collection of neurons ordered in layers. A layer is called fully
connected if the neurons are connected to all neurons in the adjacent layer. Any
layer between the input and output is called hidden, as their value is not observed
directly. A network that has no loops is called feed-forward neural network [49].
Figure 3.3 shows a feed-forward classifier network, that maps input x into categories
{y1, y2, y3}, with two hidden layers – first one having n neurons, and the second k
neurons. Each connection has its own weight w. Number of layers and neurons play
the major role for determining the learning capacity of a network.

A single layer network works as a linear classifier as it uses a linear combination
of inputs to make a decision. It is possible to add as many hidden layers as de-
sired, although stacking further hidden layers without using non-linear activation
functions in between still works as a linear classifier.

3.3 Deep neural networks

Stacking multiples hidden layers on top of each other creates deep neural networks.
In general deep learning is part of the machine learning field, with the key advantage
that it allows learning features that represent the data for the problem at hand. In
other words, it allows computers to understand the world in terms of a hierarchy
of features. The computer learns more complex concepts through a combination
of simpler ones in the hierarchy [49]. Deep learning is not only popular for image
segmentation, but also for object detection [141], image captioning [79], image super-
resolution [95], or even generating art [45].

3.4 Convolutional neural networks

When working with images, using fully connected layers is wasteful and can im-
mediately lead to a huge number of parameters. In CNNs instead of making full
connections, neurons in a layer are only connected to a small region of the previous
layer. Mathematically speaking, CNNs use convolution operation instead of gen-
eral matrix multiplication. In addition convolution operator allows the CNN to be
translation equivariant, which means the translation operated on the input image is
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detectable in the output feature set [21]. A typical CNN has three major building
blocks:

1. Convolution layer

2. Activation layer (commonly ReLU)

3. Pooling layer

FIGURE 3.4: Example of a convolution layer with 6 convolution ker-
nels of size 5× 5. Input has 3 channels of size 32× 32. Each kernel
is expanded to fit input channel-size. Each convolution kernel results

in an activation map.

3.4.1 Convolution layer

In a discrete 2D setting, convolution operation is defined as

s(i, j) = (x ∗W)(i, j) =
M

∑
m

N

∑
n

x(i−m, j− n)W(m, n), (3.6)

where W is called the convolution kernel/filter of size M × N, and s is referred to
as feature/activation map. In CNNs, weights are spatially arranged as convolution
kernels. As Figure 3.4 and Equation 3.6 show, for each pixel (i, j) in a feature map,
convolution of the corresponding kernel and input is computed. Each convolution
filter results in a separate activation map. The final activation volume will be the
input volume to the next CNN’s layer.

Usually in shallower layers more primary features (e.g. edges) are detected, and
deeper layers can learn to capture more complex features by combining simpler ones
from previous layer. In addition, the receptive field of neurons, which is the region
of the input volume that a neuron is affected by, increases in deeper layers. This
means neurons in deeper layers can be indirectly connected to a large part of input
image [49].

Strided convolution

By setting a stride for the convolution one can decide on the step size of the kernel
when it traverses over the input image. If the stride is larger than 1, input image is
down-sampled [172]. This down-sampling can decrease the computational cost and
make feature representation more manageable.
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1-dilated convolution 2-dilated convolution 4-dilated convolution

FIGURE 3.5: Dilated convolution with a 3 × 3 convolution kernel.
Blue squares indicate the pixels of the input image, used in the con-

volution. Larger dilation increases the receptive field of the CNN.

Dilated convolution

Yu and Koltun [203] proposed using dilated convolutions for improving semantic
image segmentation. Figure 3.5 schematically shows the extent of a dilated convolu-
tion with different dilation values. Dilation convolutions allow exponential expan-
sion of the receptive field without loss of resolution or coverage [203]. This type of
convolution layer is specially useful when one desires to reach a high coverage over
the input image without making the network too deep.

3.4.2 Pooling Layer

Another down-sampling technique is pooling layer, which replaces a neighborhood
with its summary statistics. For instance maximum pooling [211], minimum pool-
ing, average pooling, or L2 norm pooling, replace a rectangular neighborhood with
its maximum, minimum, average or L2 norm value. Using summary statistics of
sub-regions means that if the input is translated by a small amount, the output of
the pooling do not change, i.e., pooling helps to reduce the effect of small transla-
tions of input [49].

FIGURE 3.6: Example of 2× 2 maximum pooling with stride (steps)
size 2.

3.4.3 Up Convolution

Some CNNs also contain up convolution layer, also known as deconvolution layer.
This layer is used to learn an up-sampling step, as illustrated in Figure 3.8. It works
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as a reverse of convolution. With the up-convolution, the elements of input work as
up convolution filter multipliers as they are being copied to the output. Values are
summed up in points where they overlap. The following example clarifies this:

FIGURE 3.7: Elements of input work as up convolution filter multi-
pliers. In this example ∗−1 is the up-convolution operation.

3.5 Learning the weights

Learning is the process of finding proper weights w to optimize the neural network
with respect to an ideal function. This is usually done by setting the weights to some
initial random values. Then the weights are iteratively updated so that the map-
ping from the input training data matches the ground truth. The matching quality
between the prediction from the network and the true labels is realized via a loss
function.

3.5.1 Loss Function

Loss (cost) function quantifies how close a given neural network is to an ideal, with
respect to a training data-set [49]. For classification tasks, hinge loss and cross en-
tropy loss are the most commonly used loss functions, where the first is well suited
for hard classification problems and the second is best when probabilities are of
greater interest. For a multi-class classification, the cross entropy loss is defined
as

Li = −
M

∑
l=1

yi,l log pi,l , (3.7)

where M is the number of classes, yi,l is a binary value, which is 1 when the class
label l is the correct classification class for observation i, and pi,l is the probability of
observation i to belong to class l.

3.5.2 Weight update

Neural networks are trained using gradient descent algorithm. In other words, in
order to reduce loss L, each weight parameter is updated in the direction of the
negative gradient of loss w.r.t. the same parameter.

Backpropagation of gradients

Given a random initialization for weights w, gradient descent iteratively minimizes
the loss function as follows:

Wt+1 = Wt − εt∇W L
(

x(i:i+n), Wt

)
, (3.8)
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where t is the iteration step; ∇W L is the gradient of loss with respect to current
weights Wt; ε is the learning rate; and x is a batch of N vectors, and x(i:i+n) is a mini-
batch of n vectors that have been sampled from it. In this notation, in each iteration,
L is computed over n input subjects. Using the same mini-batches in each epoch
can lead to a bias in gradient estimation [49], thus in this notation the mini-batches
are randomly drawn i.i.d. from the available data. More details on choosing n is
provided in the next subsection.

Each iteration consists of a forward and a backward pass. Through the for-
ward pass, the values are propagated from the input x through the hidden layers
to a predicted output, where loss (L) is computed. Gradient of loss (∇W L) is com-
puted through back-propagating [150] the gradients to the beginning of the network.
Weights are updated to minimize the loss. In order to compute the gradient of each
node of the network during back-propagation the chain rule is applied [49].

For training deep networks, it is common to start with larger learning rates and
then gradually decrease it with respect to iteration number t. There are more com-
plex learning rate decays such as exponential decay or 1

t decay. In Chapter 7 a fixed
number of epochs are used to decrease the learning rate.

Gradient descent optimization algorithms

There are different ways of updating the weight parameters, each well suited for
different type of optimization tasks. If the entire training set is used in one single
batch (n = N, where N is the size of training set) in the optimization algorithm,
the optimization is called batch gradient descent [49]. However for large data-sets
using the complete training set is challenging and very slow. In addition it is not
easy to incorporate new data into training. Instead, one can use one training subject
(n = 1) for weight update in each iteration. This optimization algorithm is called
stochastic gradient descent (SGD), which addresses both of the potential problems of
batch gradient descent. However the downside of this approach is that updating the
weights per training subject makes the steps taken towards the minima noisy. This
can lead to a slower convergence to the minima of the loss function. As a solution
the mini-batch gradient descent falls somewhere between the two methods and takes
more than one and less than the complete training set in each iteration [49].

As learning with SGD can be slow sometimes, the momentum algorithm [131] can
be used to speed up the learning. With hyperparameter momentum µ ∈ [0, 1) and
velocity v, the weight update rule is defined as

vt+1 = µ× vt − ε∇W L(x, Wt)
Wt+1 = Wt + vt+1.

(3.9)

Velocity v is gradually increased over the training iterations if the gradient is con-
sistent. It makes the optimization steps not only depend on the current sample,
but also heavily on the previously seen samples. In this thesis SGD with momen-
tum (µ = 0.99) is used, which is the default in U-Net architecture [146]. Adaptive
Moment Estimation (Adam) [83] is another optimizer that uses the first and second
moments of the gradients to compute an adaptive learning rate for each parameter.
This optimizer scales the learning rate with respect to the exponential moving aver-
age of the gradients. The authors show that this optimizer works well compared to
other adaptive learning method algorithms. There are many research has been done
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in developing a fast optimizer. Other optimizers include Nesterov accelerated gradi-
ent (NAG) [120], Nesterov-accelerated Adaptive Moment Estimation (Nadam) [32]
and Adadelta [207]. Sebastian Ruder [149] reviews and compares these algorithms.

3.5.3 Weight initialization

When SGD is applied to loss functions, there is no guarantee for convergence and the
result is sensitive to the initial values of the parameters [49]. For instance initializing
all the weights with 0 will lead to exactly the same weight update everywhere which
is not desirable. Another way is to initialize the weights with small random numbers
picked using a zero-centered Gaussian distribution with 0.01 standard deviation.
This works fine for shallow networks, however it could cause early death of neurons
if used in deeper settings.

Xavier et al.[48] pick wis randomly from a Gaussian distribution with
√

1
N as

the standard deviation, where N is the number of input connections to each neu-
ron. Since at each layer the weighted sum of inputs is computed, picking wis with
variance 1

N better preserves the variance of the input, which helps to avoid satura-
tion of neurons in deeper layers. Saturation phenomenon happens when the neuron
outputs values near the asymptotic end of its activation function. For instance with
sigmoid activation function, which has non-zero mean, at the asymptotic ends the
gradient in the backward flow becomes almost zero. This prevents lower layers from
learning useful features.

He et al. [63] showed that, when ReLU activation function is used, weight initial-

ization via unit Gaussian with standard deviation of size
√

2
N works better. In this

thesis the approach by He el al. is used for weight initialization. Biases are initialized
with zero.

3.6 Regularization

3.6.1 Network size

Typically deep learning algorithms are applied to complex domains such as images,
text or audio. For each application it is not easy to find a model of the right size or
number of parameters. By increasing the number of layers and neurons in a net-
work, the capacity for learning complex functions increases. However the high
capacity of the network can lead to overfitting problem. An overfitted network
performs very well on training data, but not on new inputs. To avoid overfitting
problem, regularization can be used. Here three of the regularization techniques are
presented.

L2 regularization of loss

One of the simplest ways for regularization is to use parameter norm as penalty, i.e.,
the loss function is penalized using the sum of all squared weights,

L =
1
N ∑

i
Li + λ ‖W‖2

2 . (3.10)

Parameter λ is used to adjust the intensity of the regularization. L2 regularization is
also known as ridge regression or Tikhonov regularization [49].
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Drop out

With drop out technique, during training neurons (including their input and output
connections) are randomly dropped. This prevents the neurons from co-adapting
[173].

Data Augmentation

A good classifier should be invariant to different transformations of input. Therefore
one can extended the training set by producing augmented data via transforming in-
put x for the same label y. For example images can be randomly cropped, translated,
mirrored, or warped to greatly improve generalization [49]. This approach is spe-
cially well suited for image segmentation, which can be regarded as a pixel-wise
classification problem. However in this case the labels must be adapted by under-
going the same transformations input.

3.6.2 Batch Normalization

The gradient-based updating of weights is under the assumption that other layers
do not change while updating each parameter. However, in practice, all layers are
updated simultaneously. Changing the parameters in a layer can result in a differ-
ent output distribution, which can lead to unexpected results. Particularly in deeper
networks smaller changes in shallower layers can escalate as they propagate through
the network, and consequently slow down the training process. To tackle this issue,
Ioffe and Szegedy [67] proposed batch normalization, which normalizes the data
through the network. Usually the batch normalization step is done before the ac-
tivation functions, by subtracting the batch mean from the output of the previous
layer and dividing it by the batch standard deviation. Using batch normalization
within the network can help in different ways, such as faster learning rate, higher
accuracy, and less sensitivity to weight initialization [67].

3.7 Image Segmentation Using CNNs

In 2015, Long et al. [107] proposed replacing the fully connected layers in the ex-
isting well-known classification architectures with convolution layers creating fully
convolutional networks (FCNs). This enabled to create spatial maps instead of clas-
sification scores for imagary data. However these likelihood maps had a far lower
resolution than the input due to pooling layers. Therefore, Long et al. [107] up-
sampled the likelihood maps into the input dimension via a final layer with decon-
volutional filters. Their model not only allowed inputs with arbitrary sizes, but also
improved segmentation accuracy substantially [44].

Noh et al. [123] proposed the deconvolution network by using a deeper decon-
volution path, with multiple layers of unpooling and deconvolution to learn the
up-sampling. The unpooling layer reverses the pooling operation by using switch
variables, that are used to remember the original location of the activations while
pooling. Noh et al. [123] use a convolution network (path), which corresponds to
a feature extractor, and a deconvolution network (path), which uses the extracted
features to produce segmentation maps.
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FIGURE 3.8: U-Net architecture.

Later on Ronneberger et al. [146] built the U-Net architecture upon the idea
of FCNs and deconvolution network. In their architecture authors used skip-
connection between down-sampling and up-sampling paths, which allowed to im-
prove the segmentation even further. Next section provides more details on this
architecture. In 2016, Çiçek et al. [20] extended the idea of U-Net for volumetric
input data.

Further improvements on the U-Net architecture were proposed later on. For
example Milletari et al. [118] used U-Net layout with ResNet-like residual blocks
and a Dice loss layer to minimize the segmentation error. In 2018, Roy et al. [148]
showed that employing concurrent spatial and channel-wise squeeze and excitation
blocks can further improve segmentation performance. Zhou et al. [212] was one of
the many to used the idea of the deeply-supervised nets [97] to improve the U-Net.
With the deeply-supervised approach, supervision through loss function is provided
not only at the output layer, but also at the hidden layers. Another common exten-
sion to U-Net is the idea of spatial pyramid pooling. For instance Asgari et al. [8]
shows that U-Net with spatial pyramid pooling layers better segments drusen in
OCT scans. Garcia-Garcia et al. [44] extensively compares many different segmenta-
tion algorithms with respect to their efficiency, accuracy multi-modality and etc.

3.7.1 U-Net Architecture

In this thesis the original U-Net architecture [146], which was the state of the art for
medical image segmentation at the time, was picked for semantic segmentation in
OCT data. U-Net consists of two major paths, i.e., the contracting and the expand-
ing paths, with multiple transfer connections between them as illustrated in Figure
3.8. Each level of the contracting path consists of two back to back 3× 3 convolu-
tion layers, followed by ReLU activation functions. Then through 2× 2 maximum
pooling layers, the resolution of feature maps are decreased. In the original U-Net
architecture, this pattern is repeated for four levels until the final bottle neck level
is reached. At this stage due to convolution and pooling operations the resolution
of the segmentation is highly reduced, thus the expanding path of the network is
designed to upsample the prediction. The expanding path consists of four levels,
each with two 3× 3 convolution layers followed by ReLU, and up convolutions to
do the upsampling job. In each level, the last feature map from the correspond-
ing level in contracting path is cropped and concatenated to the first feature map



26 Chapter 3. Convolutional neural networks for image segmentation

in expanding path. This helps restoring small details in the segmentation and gives
the network a symmetric U-shape architecture. Since through the network, image
boundary information is lost, Ronneberger et al. [146] propose to pad input images
by mirroring them at their boundaries. They also proposed an overlap-tile strategy
to allow segmentation for arbitrarily large input images.

The expanding path makes U-Net a suitable architecture for fine-grained image
segmentation, which is essential for various medical image analysis problems.
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Chapter 4

Ridge and valley enhancement
using partial differential equations

Many drusen segmentation algorithms that work on OCT images, first segment the
RPE layer from retina [18, 40, 51, 72]. For instance Chen et al. [18] finds the RPE
layer by finding the center-line of an initial estimation of RPE. To find this initial
estimation, first the noise of B-scan is reduced by applying bilateral filter. Then his-
togram statistics are used to find a threshold for binarizing the B-scan. However,
specially for tubular structure detection and segmentation [35, 36, 88, 89, 93] or find-
ing the approximate core-line of elongated, anisotropic shapes such as RPE layer,
ridge-enhancing filters can be a more effective preprocessing step. In this chapter a
brief background on ridges and valleys, and partial differential equations that can
help enhancing them is provided.

4.1 Ridges and Valleys

So far different definitions for ridges and valleys has been proposed and there are
discussions about finding out which definition is correct [87]. If the intensity value at
each pixel is interpreted as height, then an image can be viewed as a heightfield or a
landscape. With this in mind, one of the intuitive definitions for ridges/valleys is the
watershed definition, that defines a watershed ridge as a line structure that separates
the rain water to flow into two different valleys of a land [189]. With this definition,
if we assume a 2D image u as a scalar field, ridges can be extracted from the gradient
vector field gi,j and hessian tensor field Hi,j of u at pixel position (i, j). Valleys are the
counterpart of a ridge, defined as ridges of inverted image−u. Ridges and valley to-
gether are referred to as creases. One approach for estimating gradients and hessians
is to first reconstruct a continuous heightfield from the discrete samples of image u,
and then analytically compute the gradients and the hessians densely. However this
approach is quite costly. Instead, one can compute these values discretely, and then
interpolate between the precomputed gradients and hessians if needed. In a discrete
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setting gi,j and Hi,j are defined as

gi,j =

[ ui+1,j−ui−1,j
2hxui,j+1−ui,j−1
2hy

]
, (4.1)

Hi,j =

[
Dxxu Dxyu
Dyxu Dyyu

]
, (4.2)

where Dxxu =
ui−1,j − 2ui,j + ui+1,j

h2
x

, (4.3)

Dyyui,j =
ui,j−1 − 2ui,j + ui,j−1

h2
y

, (4.4)

and Dxyui,j = Dyxui,j =
ui−1,j−1 + ui+1,j+1 − ui−1,j+1 − ui+1,j−1

4h2
xh2

y
, (4.5)

where hx and hy are the pixel size in x and y directions. By extracting the topological
skeleton of the gradient vector field g, ridges are extracted [189]. The topological
skeleton of a 2D vector field is a set of critical points and separatrix stream lines. De-
pending on the eigenvalues of the underlying Hessian matrix Hx,y, a critical point
can fall into 6 different categories; 1) Repelling node (also known as source or maxi-
mum), where both eigenvalues are positive and real, 2) Attracting node (also known
as sink or minimum), where both eigenvalues are negative and real, 3) Saddle point,
where eigenvalues have different signs and are real, 4) Center, where both eigen-
values are imaginary and equal but with different signs, 5) Repelling focus, where
the real part of both eigenvalues are positive and equal, and their imaginary parts
are equal with different signs, 6) Attracting focus, which is similar to repelling focus
except that the real parts are negative. Since Hessian matrix of a smooth function is
symmetric and real, thus the gradient vector field of image u can only have the first
three types of critical points. A separatrix stream line separates different regions
with different asymptotically flow behaviour. One way to extract separatrices is to
follow the eigenvectors of the Hessian at saddle points. More details on topological
structures of a gradient vector field can be found in the Ph.D. thesis of Tino Weinkauf
[189].

One major drawback of the watershed ridge and valley definition is that one
cannot determine if a point is on a ridge or valley line (separatrix), only by looking
at its local neighborhood. This can be achieved only through a global process. Thus
Eberly et al. [34] proposed an alternative definition, called height ridge definition,
that has similar results to the watershed ridge definition in practice, and also allows
to locally check if a point is on a ridge or valley line.

Eberly et al. [34] define ridges in 2D gray-scale images as points of image u, that
are a local maximum in at least one direction. Eigenvalues of the Hessian matrix at
each point (i, j) corresponds to the two principal curvatures of the surface at that
point. When the surface is smooth, the hessian matrix is symmetric, therefore it has
real eigenvalues λ1, λ2, and orthogonal eigenvectors ν1,ν2. In definition by Eberly et
al. [34], ridges are:{

0-dimensional ridge |g| = 0 and λ1,2 < 0
1-dimensional ridge g · ν2 = 0 and λ2 < 0

, (4.6)

where λ1 ≥ λ2 are eigenvalues of H and ν1,2 are the corresponding eigenvectors.
Mathematically speaking, ridge lines are where the projection of gradient vector
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on the eigenvector with strongest negative eigenvalue (convexity) vanishes. Given
these definitions, next section describes how ridges can be extracted from scalar
fields.

4.2 Ridge extraction

Peikert and Sadlo [127] suggested using raw features in order to extract ridges as
defined in Eq. 4.6. Raw feature points of a 2D image is defined as the zero contour
of scalar field d:

d = det(g|Hg), (4.7)

where det(.) is the determinant, and g|Hg is a matrix whose first column is gradient
vector g and its second column is the vector resulted from Hg multiplication. The
extraction of ridges in this thesis was inspired by the method proposed in [164], that
uses marching square algorithm [163].

In order to be able to find raw feature points even within pixels, one can linearly
interpolate g and H on pixel edges. For instance for the pixel edge between pixel
(i, j) and (i + 1, j), fg(α) is the the function that computes g at position α as

fg(α) =

[gi.j
]

x + α
([

gi+1,j
]

x −
[
gi,j
]

x

)
[
gi.j
]

y + α
([

gi+1,j
]

y −
[
gi,j
]

y

) , (4.8)

and fH(α) linearly estimates the hessian on the same edge as

fH(α) =

[Hi,j
]

xx + α
([

Hi+1,j
]

xx −
[
Hi,j
]

xx

) [
Hi.j
]

xy + α
([

Hi+1,j
]

xy −
[
Hi,j
]

xy

)
[
Hi,j
]

yx + α
([

Hi+1,j
]

yx −
[
Hi,j
]

yx

) [
Hi,j
]

yy + α
([

Hi+1,j
]

yy −
[
Hi,j
]

yy

) .

It may happen that a ridge ends somewhere inside a pixel (not on edges). These
ending points are called the degenerate points of tensor field H and can be extracted
by solving the following system

(1− α)(1− β)Hi,j + α(1− β)Hi+1,j

+(1− α)βHi,j+1 + αβHi+1,j+1 =

(
c 0
0 c

)
, (4.9)

here c is constant. This equation can have up to two solutions for 0 ≤ α ≤ 1 and
0 ≤ β ≤ 1.

Given Equations 4.8, 4.2, and 4.9, with marching square algorithm, for every
pixel, roots of d (Equation 4.7) are computed, to extract raw feature points. The
extracted raw feature points are connected to each other if their connection mini-
mizes the average of d in the middle of connection lines, as well as minimizing the
number of intersections between connection lines. Finally the degenerate points are
connected to raw feature points, satisfying the same minimization conditions.

4.3 Scale space

In the previous section we saw that the extraction of ridges depends on estimation
of curvature of the image function using Hessians and image gradient, where both
are estimated in a small neighborhood. On the other hand, in real applications,
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ridges can appear at different scales. For example, in an angiography image, vessels
can have different cross-sectional thickness. For this reason, for noisy images or for
ridges in higher scales, an extra step is necessary to know the right scale of the struc-
tures of interest. Figure 4.1 shows that how neglecting the scale of ridges can result
in very poor ridge extraction. Scale space framework can be helpful in this regard. A
scale space framework consists of the original image and simplified versions of the
original, where the level of simplification is increased by increasing the scale.

Gaussian scale space is one of the well known scale spaces, that is constructed by
convolving original image u with a Gaussian kernel

Gσ =
1

2πσ2 e−
(x2+y2)

2σ2 ,

where σ indicates the scale of the resulting image. Larger σ increases the width of
the Gaussian kernel, therefore the convolution will result in a smoother image.

4.4 Scale selection using vesselness measure

In addition to the scale space representation of the image, a method is needed to
automatically estimate the scale of the underlying ridge at each point.

For automatic scale selection, Frangi et al. [42] introduced the vesselness measure
that can as well be used for background suppression. The vesselness measure uses
the eigenvalue and eigenvector information of the Hessian Hσ at scale σ

Hσ = σ2

[
∂2uσ

∂x2
∂2uσ
∂x∂y

∂2uσ
∂y∂x

∂2uσ

∂y2

]
, (4.10)

where uσ = u ∗ Gσ and σ2 is multiplied to the Hessian matrices to compensate for
loss of intensity contrast. Otherwise, the magnitude of derivatives for larger σ would
be reduced, making it hard to compare the values at multiple scales [101]. Given λ1
and λ2 to be the eigenvalues of Hσ with |λ1| ≤ |λ2|, an ideal ridge is where

λ1 ≈ 0 and |λ1| � |λ2| . (4.11)

On the other hand, if λ1 = λ2, the underlying structure is a perfect blob. In order to
avoid them, Frangi et al. [42] use

RB =
λ1

λ2
, (4.12)

with RB ∈ [0, 1]. For suppressing background pixels, Frangi et al. [42] use the fact
that the magnitude of derivatives over tubular structures are larger compared to
background. This is measured by S as

S = ‖Hσ‖F =
√

λ2
1 + λ2

2 .

Using S andRB , vesselness measure is defined as

Vσu =


0 if λ2 > 0(

e
−R

2
B

2β2

)(
1− e−

S2

2c2

)
otherwise

, (4.13)
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Input Without scale selection With scale selection

FIGURE 4.1: On the left, the input contains ridges at different scales.
In the middle ridges (in red) of input are extracted. On the right the
ridges are extracted using Gaussian scale space and vesselness mea-

sure for scale estimation.

for bright ridges over a dark background. In order to tune Vσu to be more sensitive
toward tubular shapes or toward suppression of background pixels, Frangi et al.
[42] suggests to use β = 0.5 and c = 1

2 (max(S)) since they seem to work fine for
most cases.

To estimate the scale of the underlying ridge for each pixel, the scale at which the
vesselness measure is maximal is selected

Vu = max
σ=σmin,...,σmax

Vσu. (4.14)

Scale selection is done in a range of expected scales {σmin, ..., σmax} in the image. In
order to suppress background, any pixel that Vu < θ is set to 0. The value of θ can
be set empirically.

Another approach for automatic scale selection is proposed by Lindeberg [101],
where he uses the normalized ridge strength. As in this work the focus is only on
enhancing tubular structures, the scale selection using the vesselness measure [42] is
more suited.

Given the scale of the underlying ridge at each pixel, the Hessian matrix and
gradient vector can be computed at the proper scale before the extraction process,
which leads to a more plausible result as shown in Figure 4.1.

So far we showed why ridge extraction is important in image analysis, and how
Gaussian scale space and vesselness measure can aid the extraction process. Even
though Gaussian smoothing helps to remove the noise and to locate large-scale
ridges, it blindly smoothes out all underlying structures leading to dislocated ridges
and destroyed bifurcations at coarser scales [193]. One way to deal with this prob-
lem is to trace ridges back from coarse to fine scale to find their correct location [193].
Alternatively, instead of Gaussian scale space, nonlinear diffusion equations can be
used to create a scale space that not only is able to preserve the important underlying
structures, but also can help to enhance them.

4.5 Diffusion (heat) equation for image processing

Partial differential equations (PDEs) describe the relation between an unknown mul-
tivariable function and its partial derivatives. They can be used to model natural
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phenomena such as flow of heat through a conductor material [22]. One of the well-
known and frequently used PDEs in the context of image processing is the diffusion
(heat) equation, that considers pixel intensities of image u as a heat distribution. Pix-
els with higher intensity are considered hot and those with lower intensity as colder.
With the diffusion equation the flow of the intensity (heat) over artificial time t is
modeled as following

∂tu = div(D.∇u), (4.15)

where D is called the diffusion tensor, and div(.) is the divergence operator. This
equation shows that the intensity flow happens between regions with intensity dif-
ference (∇u), with a speed proportional to D.

4.5.1 Diffusion tensor D

The diffusion process highly depends on how D, that is a positive definite matrix, is
defined:

• For a constant diffusion everywhere, one can define D = g, with g being a
scalar constant. This is called homogeneous diffusion. If D is defined as a function
of location x, i.e., D = D(x), it is called inhomogeneous.

• For a diffusion that depends on the evolving signal u, i.e., D = D(u). This is
called nonlinear diffusion, presented by Perona and Malik [128].

• For a diffusion that varies in different directions, D must be defined as a tensor,
and the diffusion is called anisotropic[185].

4.6 Nonlinear diffusion filtering

Nonlinear diffusion filtering can be used to smooth out an image, yet preserve or
even enhance its relevant structures. This is achieved by defining the diffusion func-
tion to depend on the evolving image and location of diffusion.

4.6.1 Perona and Malik model

In 1990 Perona and Malik [128] introduced the following diffusivity function, that
changes the amount of diffusion depending on the underlying gradient magnitude
(serving as edge indicator):

g(|∇u|2) = 1

1 + |∇u|2
λ2

(λ > 0), (4.16)

where |∇u| =
√

∂xu2 + ∂yu2. In this equation λ is called the contrast parameter. With
this formulation, the diffusion converges to 0 over strong edges, but increases over
weaker ones. In their diffusion model, Perona and Malik [128] show that, wherever
|∇u| > λ, backward diffusion occurs. As its name suggests, backward diffusion re-
verses the smoothing effect, meaning that over time t, edges become even sharper.
On the other hand if |∇u| ≤ λ, forward diffusion smoothes out the underlying edges.
This dual diffusivity behaviour depends on the chosen diffusivity function. Didas
et al. [30] list some of the well known diffusivity functions and their behaviour.

Choosing the best value for contrast parameter depends on the features of u. For
instance in [110] authors select different λ at each pixel with respect to the geometry
of the underlying structure. In this work, a constant λ is used all over the image.
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4.7 Numerical solver

Some PDEs have a closed form solution (analytical solution), but in most cases such
as the diffusion equation with Perona and Malik [128] diffusivity function requires a
numerical solution. In addition, PDEs may have more than one unique solution. In
such cases boundary (initial) conditions are used to get a unique solution.

In order to find the solution of a PDE at time T, i.e, u(x; t = T), one can start
at the initial condition u(x; t = t0) = u0, then take small steps τ toward future and
accumulate the changes numerically u(x; t = t0 + kτ) until t = T is reached.

4.7.1 Discretization

The first step of numerically solving a PDE is to discretize it. Given the diffusion
equation for 2D signal u

∂tu = ∂x(g(|∇u|2)∂xu) + ∂y(g(|∇u|2)∂yu) , (4.17)

one can discretize it using any of the following schems: Explicit Euler forward dis-
cretization, Semi-Implicit discretization, or Implicit discretization [188]. The explicit dis-
cretization is the simplest one. In matrix-vector notation it can be written as

uk+1 − uk

τ
= A(uk)uk.

Here k is the step number and τ is the step size. Elements of matrix A(uk) are
computed using the diffusivity function g, and a discrete approximation of |∇u| =√

∂2
x + ∂2

y with ∂x =
ui+1,j−ui−1,j

hx
, where hx is the pixel size in x-direction, and (i, j)

are pixel indices. Derivative in y-direction ∂y can be discretized similar to ∂x. This
numerical scheme is called `2 stable if

∥∥uk+1
∥∥

2 ≤
∥∥uk
∥∥

2, meaning that through dif-
fusion process `2 norm of input image u must not increase. In order to guarantee `2
stability for the explicit diffusion scheme, time step τ must be restricted to very small
numbers, which makes this approach very slow. If matrix A is replaced with an ar-
bitrary symmetric, positive semi-definite matrix P, the explicit scheme is stable if the
eigenvalues of matrix I − τP are in range [−1, 1], meaning that τ ≤ 2

ρ(P) , where ρ(P)
is the largest modulus of P’s eigenvalues that can be estimated with Gershgorin’s
theorem. In contrast to the explicit scheme, the semi-implicit scheme

uk+1 − uk

τ
= A(uk)uk+1, (4.18)

and fully implicit scheme

uk+1 − uk

τ
= A(uk+1)uk+1, (4.19)

guarantee absolute stability regardless of size of τ. However for larger τ the accu-
racy decreases. Plus the fully-implicit scheme leads to nonlinear system of equations
that are way more complicated to solve [188].

4.7.2 Fast explicit diffusion scheme

Weickert et al. [187] proposed the Fast Explicit Diffusion (FED) that is well-suited to
solve parabolic PDEs. Unlike the explicit scheme that requires a fixed step size τ, the
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fast scheme applies cycles of varying time step sizes. In these cycles, up to 50% of the
steps can violate the stability condition, and yet at the end of the cycle approximate
a stable filter. Consequently the FED can speed-up the diffusion by several orders of
magnitude compared to the explicit scheme. Further details on the FED scheme are
presented in Chapter 5.

4.7.3 Regularization

To numerically solve the diffusion equation, the derivative of image u must be com-
puted. However the differentiation is not well-posed, i.e., small changes in the orig-
inal image, e.g. due to noise, leads to arbitrary changes in its derivatives that do
not continuously depend on the initial changes. In addition, the Perona and Malik
model can enhance or preserve strong noisy oscillations as important image struc-
tures. Therefore it is important to regularize the original image [180]. One way to
do the regularization is to use Gaussian smoothing, i.e., uσ = u ∗ Gσ, where Gσ is a
Gaussian with standard deviation σ.

4.7.4 Boundary Condition

As images are signals on a finite domain, the diffusion process at the image borders
must be carefully defined. Here Neumann boundary condition is used, which sets
the values outside of the boundary so that

∂nu |∂Ω = 〈∇u, n〉 |∂Ω = 0, (4.20)

where Ω ∈ [0, M]× [0, N] is the domain of image u, and n is the normal vector of the
boundary. With this boundary condition, no intensity will leave or enter the image,
making sure the average intensity remains constant during the diffusion process
[30].

4.8 Anisotropic nonlinear diffusion filtering

So far the diffusion equations introduced here were all isotropic, meaning that the
diffusion process is always parallel to∇u. However, isotropic diffusion fails to prop-
erly enhance or remove noise over the structures of interest, as diffusivity g → 0 in
those area. To solve this, Graham [52] proposed the idea of using anisotropic dif-
fusion in image processing that allows to have different diffusivity values in differ-
ent directions. To steer the diffusion, later on Joachim Weickert used the structure
tensors, that can identify the orientation of 1-D structures by considering how the
gradient changes in a small neighborhood [70], as follows:

Sρ,σ := Gρ ∗ (∇uσ ⊗∇uσ) := Gρ ∗ (∇uσ.∇uT
σ ) . (4.21)

Since the structure tensor is computed from the tensor product of the local gradient
vector, its first eigenvector is parallel to ∇uσ with eigenvalue µ1 = |∇uσ|2, and its
second eigenvector is perpendicular to ∇uσ with µ2 = 0 as the second eigenvalue
(when ρ = 0). With this, it is possible to define two different diffusion functions
λ1 and λ2, one for describing diffusivity along ∇uσ and one for the perpendicular
direction. These two functions can be put together in a diffusion tensor as

D = VΛVT, (4.22)
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t = 0 t = 50 t = 300 t = 700

FIGURE 4.2: Coherence-enhancing filter at different time points with
σ = 1, ρ = 3, λ = 3.5 and τ = 0.03. The input image is the same as

the one in [15].

where V is a square matrix whose columns are the eigenvectors of S and Λ is a
diagonal matrix whose diagonal elements are λ1 and λ2. Finally the anisotropic
diffusion equation can be written as

∂tu = div (D (∇uσ)∇u) . (4.23)

4.8.1 Coherence-enhancing anisotropic diffusion

In order to enhance creases, Weickert proposed the coherence enhancing anisotropic
diffusion[186], where the eigenvalues of the coherence-enhancing tensor is defined
as λ1 := α

λ2 := α + (1− α)exp

(
−1

(µ1−µ2)
2

)
.

In this definition α ∈ (0, 1), and µ1, µ2 are the eigenvalues of the structure tensor S.
With this definition, over elongated 1-D structures where µ1 ≥ µ2, diffusion along
the structure (in ⊥ ∇uσ direction) is increased compared to the across direction,
while over the blob-like structures with µ1 ≈ µ2, diffusion becomes isotropic.

As mentioned earlier, convolving the image with a Gaussian kernel such as in
[87, 101, 109, 116] tends to destroy crease bifurcations or merge them [169]. Using the
anisotropic second order diffusion filter in Equation 4.23 improves image coherence,
nevertheless it still destroys crease junctions and deforms nonlinear structures as
illustrated in Fig. 4.2.

4.8.2 Creaseness enhancing diffusion filter

In order to preserve crease junctions and nonlinear structures, Sóle et al. [169] pro-
posed the creaseness enhancing diffusion (CED) filter 1. In order to estimate surface
curvature they normalize the regularized Hessian matrices and define a multilocal
normalized Hessian by convolving them with a Gaussian kernel Gρ,

Hρ,σ = Gρ ∗
1√

1 + ‖∇uσ‖2

[
∂xxuσ ∂xyuσ

∂yxuσ ∂yyuσ

]
.

1In the literature sometimes CED filter is used as an abbreviation for coherence enhancing diffu-
sion, introduced by Joachim Weickert [186]. In this thesis CED corresponds to creaseness enhancing
diffusion filter.
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Input Ridges of Input

Enhanced with CED filter Ridges of enhanced image

FIGURE 4.3: CED filter for enhancing ridges. In this experiment, α =
1, β = 0.5, σ = 1 and ρ = 0.5.

Then Sóle et al. [169] define a creaseness measure as

µ =
k̃1 − k̃2

k̃1 + k̃2
,

where k̃1 = max(|k1|, |k2|) and k̃2 = min(|k1|, |k2|) and k1,2 are the eigenvalues of
Hρ,σ. In order to be able to selectively enhance either ridges or valleys, they define
ridgeness µr and valleyness µv measures, considering the sign of strongest eigen-
value (k1)

µr =

{
k̃1−k̃2

k̃1+k̃2
if k1 < 0

0 if k1 ≥ 0
and µv =

{
0 if k1 ≤ 0
k̃1−k̃2

k̃1+k̃2
if k1 > 0

.

Finally µr and µv are used to define the eigenvalues of the creaseness diffusion tensor,
i.e., {

λ1 := ε

λ2 := αµr + βµv
,

where α, β ∈ [0, 1] and are there to tune the amount of diffusion in presence of ridges
or valleys. Along the crease, diffusion is set to λ2 and in the perpendicular direction,
to ε ∈ (0, 1). Using the eigenvectors of Hσ,ρ, creaseness diffusion tensor D is com-
puted using Equation 4.22. Figure 4.3 shows how CED filter can be used to enhance
mostly ridges. To roughly extract ridges for this visualization, the Multilocal level-
set extrinsic curvature (MLSEC) [108] was used. With this extraction method (unlike
the previous method in Section 4.2), maximum resolution for ridges is one pixel.
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Even though CED filter improves crease enhancement at junctions and over non-
linear structures, it has two drawbacks:

• Image contrast is not taken into account to steer the filter, leading to unwanted
enhancement of undesired background structures.

• The filter is only able to enhance creases that are at a certain scale (constant
value of parameter σ).

4.8.3 Vesselness enhancing diffusion filter

In order to overcome the issues of CED filter, Cañero et al. [15] introduced the ves-
selness enhancing diffusion (VED) filter that uses the vesselness measure (see Sec-
tion 4.4) to detect and suppress background enhancement and to enhance creases at
multiple scales. Cañero et al. [15] define their vesselness diffusion tensor using the
following eigenvalues {

λ1 := ε

λ2 := V · k̃1−k̃2

k̃1+k̃2

,

where V is computed by Equation 4.14, and k̃1, k̃2 are computed from eigenvalues of
the multilocal normalized Hessian, which is computed at the automatically selected
scales.

4.9 Fourth order diffusion equations

All the diffusion filters discussed so far were second order filters. When these fil-
ters are used to enhance features, they lead to staircase artifact as the solution for
these filters are piecewise constant [202]. Figure 4.4 shows the staircase artifact. One
way to overcome this problem is to increase the order of derivatives in the diffusion
equation. Lysaker et al. [112] show that using a fourth order diffusion equation not
only removes the noise faster, but also leads to piecewise linear solutions, that is
desirable for preserving ramp edges. However for sixth order diffusion equation,
Lysaker et al. observered ripples appearing near step-like edges. Thus they con-
cluded the fourth order diffusion filter is best suited for image enhancement as it
does not suffer from staircase artifact and does not lead to unwanted ripples. The
fourth order diffusion equation proposed in [112] is defined as follows:

∂tu =− ∂xx(D(‖H(u)‖2
F)uxx)− ∂yx(D(‖H(u)‖2

F)uxy) (4.24)

− ∂xy(D(‖H(u)‖2
F)uyx)− ∂yy(D(‖H(u)‖2

F)uyy)

where ‖H(u)‖F is the Frobenius norm of matrix H(u).

4.9.1 Crease enhancement

In 2009 Didas et al. [30] showed that depending on the underlying diffusivity func-
tion, the fourth order diffusion Equation 4.24 can be used to enhance image curva-
ture. For example when Perona and Malik diffusivity function is used, in regions
with |∂xxu| >

√
3λ, second and fourth order backward diffusion occurs, leading to

edge and curvature enhancement. Over regions with |∂xxu| < λ forward diffusion
smooths the signal, and over the remaining parts second order forward diffusion
and fourth order backward diffusion occur.
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Original image Noisy

Second order diffusion filter Fourth order diffusion filter

FIGURE 4.4: Unlike second order diffusion filter with Perona and Ma-
lik diffusivity function, fourth order diffusion filter with the same dif-

fusivity, restores ramp edges without causing staircase artifact.

To numerically solve Equation 4.24, it can be discretized as

uk+1 = uk − τ
(

Dxx

(
g(
∥∥∥Hk

i,j

∥∥∥
F
)Dxxuk

i,j

)
+ Dxy

(
g(
∥∥∥Hk

i,j

∥∥∥
F
)Dyxuk

i,j

)
+Dyx

(
g(
∥∥∥Hk

i,j

∥∥∥
F
)Dxyuk

i,j

)
+ Dyy

(
g(
∥∥∥Hk

i,j

∥∥∥
F
)Dyyuk

i,j

))
,

where Dxx , Dxy, Dyx and Dyy are defined in Section 4.1. Since creases are elongated
structures, it is desirable to enhance them in cross-sectional direction, and at the
same time smooth along them. However Equation 4.24 is isotropic, leading to the
same diffusion for all directions. It is shown that those images filtered with Equation
4.24 usually have speckle noise [59]. Plus, for getting a good feature preservation
effect, the filter has a low convergence rate [112, 201].

4.10 Anisotropic fourth order diffusion equation

Hajiaboli [59] proposed the following non-linear anisotropic fourth order diffusion
filter

ut = −∇2
(

g (‖∇u‖)2 uηη + g (‖∇u‖) uξξ

)
. (4.25)

where η and ξ are two different directions, defined as:

η =
1√

u2
x + u2

y

[
ux
uy

]
,

ξ =
1√

u2
x + u2

y

[
−uy
ux

]
,
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and the second order derivative of image u, in these directions can be computed
using:

uηη =
uxxu2

x + 2uxuyuxy + uyyu2
y

u2
x + u2

y
,

uξξ =
uxxu2

y − 2uxuyuxy + uyyu2
x

u2
x + u2

y
.

Given that g(‖∇u‖) ∈ (0, 1], thus g(‖∇u‖)2 ≤ g(‖∇u‖), which leads to less or
equal diffusion in η direction compared to the diffusion in ξ direction. Consequently
their filter allows to choose different diffusivities along and across the 1-D feature di-
rections. Plus they show, compared to the fourth-order diffusion model introduced
by Lysaker et al. [112], their filter has a better convergence rate, and results in less or
no speckle noise [59]. In Chapter 5 we introduce a diffusion model that generalizes
Hajiaboli’s filter. Our proposed filter is particularly designed to enhance ridges or
valleys at multiple scales.
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Chapter 5

Multi-scale anisotropic
fourth-order diffusion improves
ridge and valley localization1

5.1 Abstract

Ridge and valley enhancing filters are widely used in applications such as vessel de-
tection in medical image computing. When images are degraded by noise or include
vessels at different scales, such filters are an essential step for meaningful and stable
vessel localization. In this work, we propose a novel multi-scale anisotropic fourth-
order diffusion equation that allows us to smooth along vessels, while sharpening
them in the orthogonal direction. The proposed filter uses a fourth order diffusion
tensor whose eigentensors and eigenvalues are determined from the local Hessian
matrix, at a scale that is automatically selected for each pixel. We discuss efficient
implementation using a Fast Explicit Diffusion scheme and demonstrate results on
synthetic images and vessels in fundus images. Compared to previous isotropic and
anisotropic fourth-order filters, as well as established second-order vessel enhancing
filters, our newly proposed one better restores the centerlines in all cases.

5.2 Introduction

In image analysis, ridges and valleys are curves along which the image is brighter or
darker, respectively, than the local background [35]. Collectively, ridges and valleys
are referred to as creases. Reliable detection and localization of creases in noisy
images is an important and well-studied problem in medical image analysis, one
very common application being the detection of blood vessels [42].

Often, ridges and valleys occur at multiple scales, i.e., their cross-sectional ra-
dius varies throughout the image. For example, the stem of a vessel tree is thicker
than its branches. Gaussian scale spaces are a classic strategy for extracting creases
at different scales [101]. However, the fact that Gaussian filters do not offer any spe-
cific mechanisms for preserving creases gave rise to image filters such as coherence
enhancing diffusion [185], crease enhancement diffusion (CED) [169], and vessel-
ness enhancement diffusion (VED) [15]. They are based on second order anisotropic
diffusion equations with a diffusion tensor that, in the presence of crease lines,
smoothes only along, but not across them. In addition, the VED filter includes a
multi-scale analysis that automatically adapts it to the local scale of creases.

1The content of this chapter has been previously published: Gorgi Zadeh et al. “Multi-scale
Anisotropic Fourth-Order Diffusion Improves Ridge and Valley Localization” Journal of Mathematical
Imaging and Vision 59.2 (2017): 257-269. URL: https://doi.org/10.1007/s10851-017-0729-1 [204].

https://doi.org/10.1007/s10851-017-0729-1


42 Chapter 5. Multi-scale anisotropic fourth-order diffusion filter

Input Second-order
diffusion

Fourth-order
diffusion

FIGURE 5.1: On smoothly shaded surfaces, second-order Perona-
Malik diffusion creates a staircasing artifact that is avoided by fourth-

order diffusion.

In this work, we argue that using fourth-order instead of second-order diffusion
to enhance creases allows for a more accurate localization of their centerlines. We
propose a novel fourth-order filter that introduces a fourth-order diffusion tensor to
specifically enhance ridges, valleys, or both, in a scale-adaptive manner. Increased
accuracy of the final segmentation is demonstrated on simulated and real-world
medical images.

5.3 Related Work

Diffusion-based image filters treat image intensities as an initial heat distribution
ut=0, and solve the heat equation ∂tu = div(g∇xu) for larger values of an artificial
time parameter t, corresponding to increasingly smoothed versions of the image. If
the diffusivity function g is constant, the diffusion is linear and uniformly smoothes
image u. If g = 1, the solution at time t can be obtained as the convolution u ∗ Gσ

with a Gaussian kernel Gσ with standard deviation σ =
√

2t [185].
Since linear diffusion fails to preserve important image structures, Perona and

Malik [128] introduced the idea of using nonlinear diffusion equations. By making
the scalar diffusivity g a function of the spatial gradient magnitude ‖∇xu‖, they
reduce the amount of smoothing near image edges, and thus preserve edges. One
such diffusivity function is

g
(
‖∇xu‖2

)
=

1

1 + ‖∇xu‖2

λ2

, (5.1)

where λ is called the contrast parameter, and determines the minimum strength of
edges that should be preserved [128].

Perona-Malik diffusion turns smoothly shaded surfaces into piecewise constant
profiles, an effect that is often referred to as a staircasing artifact, and that can be
seen in the central “Pepper” image in Figure 5.1. To avoid this effect, higher-order
diffusion replaces the two first-order spatial derivatives in the heat equation with
second-order derivatives. More recently, higher-order PDEs were also generalized
to implicit surfaces [54] and image colorization [129].

In a one-dimensional setting, discrete variants of higher order data regularization
can be traced back to a 1922 article by Whittaker [190]. A first approach for higher
order regularization in image processing involving the absolute value of all second
order partial derivatives has been proposed by Scherzer [157]. The resulting method
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FIGURE 5.2: Second-order diffusion filter and fourth-order diffusion
filter applied on a 1-D input signal. Both filters use the Perona-Malik

diffusivity function.

has the drawback of not being rotationally invariant. An extension of classical reg-
ularization by choosing (∆u)2 as argument of the penalizer in the smoothness term
has been proposed by You and Kaveh [201]. Their method introduces speckle arti-
facts around edges that require some post-processing. Both problems can be solved
by using the squared Frobenius norm of the Hessian matrix ‖H(u)‖2

F as argument
of the penalizer. This has been proposed by Lysaker et al. [112].

Two very similar higher order methods based on evolution equations without
underlying variational formulation have been introduced by Tumblin and Turk [181]
and Wei [184]. They use fourth-order evalution equations of the form

∂tu = −div
(

g(m)∇∆u
)

, (5.2)

where m is the gradient norm [181] or the Frobenius norm of the Hessian [184].
Didas et al. [30] have generalized higher order regularization methods and the

corresponding partial differential equations to arbitrary derivative orders. They
have shown that, when combined with specific diffusivity functions, fourth-order
equations can enhance image curvature analogous to how, by careful use of for-
ward and backward diffusion, second-order equations can enhance, rather than just
preserve, image edges [185].

Figure 5.2 shows a simple one-dimensional example with the Perona-Malik dif-
fusivity function (5.1). The edge enhancement of nonlinear second-order diffusion,
which leads to a piecewise constant result, and the curvature enhancement of non-
linear fourth-order diffusion, which leads to a piecewise linear result, are clearly
visible. Obviously, localizing the maximum will be much easier and more reliable in
case of the sharp peak created by fourth-order diffusion than in the extended plateau
that results from second-order diffusion.

It is this curvature-enhancing property of fourth-order diffusion that we exploit
in our novel filter. We combine it with the idea of anisotropic diffusion, which was
introduced to image processing by Weickert [185] to address another limitation of
the Perona-Malik model. Namely, a consequence of preserving edges by locally re-
ducing the amount of smoothing is that the neighborhoods of edges remain noisy.
Anisotropic diffusion ∂tu = div(D∇xu) replaces the scalar diffusivity g by a second-
order diffusion tensor D, which makes it possible to reduce smoothing orthogonal
to, but not along image features, and therefore to denoise edges more effectively
than isotropic nonlinear diffusion, while still avoiding to destroy them.

We generalize this approach to a novel anisotropic fourth-order diffusion equa-
tion that smoothes along the crease, while creating a sharp peak in the orthogonal
direction, to clearly indicate its center. We are aware of only one previous formula-
tion of anisotropic fourth order diffusion, proposed by Hajiaboli [59]. However, it



44 Chapter 5. Multi-scale anisotropic fourth-order diffusion filter

has been designed to preserve edges, rather than enhance creases. Consequently, it
is not well-suited for our purposes, as we will demonstrate in the results. Moreover,
it differs from our approach in that it does not make use of a fourth-order diffusion
tensor, and includes no mechanism for scale selection.

Despite the long history of research in this area, improved filtering and detection
of ridges continues to be an active topic in medical image analysis. Our work on im-
proving localization through fourth-order diffusion complements recent advances.
For example, the SCIRD ridge detector by Annunziata et al. [4], or the vesselness
measure by Jerman et al. [73] that gives better responses for vessels of varying con-
trasts, could replace the vessel segmentation by Frangi et al. [42] that we use as a
prefiltering step. Several recent works [43, 61, 156, 177] have addressed diffusion in
crossings and bifurcations, and could be combined with our work to improve the
performance of our filter in such cases.

5.4 Method

5.4.1 Anisotropic Fourth-order Diffusion

Building on work of Lysaker et al. [112], Didas et al. [30] formulate nonlinear fourth-
order diffusion as

∂tu =− ∂xx(g(‖H(u)‖2
F)uxx)− ∂yx(g(‖H(u)‖2

F)uxy)

− ∂xy(g(‖H(u)‖2
F)uyx)− ∂yy(g(‖H(u)‖2

F)uyy),
(5.3)

where ‖H(u)‖2
F is the Frobenius norm of the Hessian matrix of image u, and

uxy = ∂xyu. We propose the following novel anisotropic fourth-order diffusion model,
which combines the ideas of higher-order diffusion with that of making diffusivity
a function of both spatial location and direction:

∂tu =− ∂xx
[
D(Hρ(uσ)) : H(u)

]
xx

− ∂yx
[
D(Hρ(uσ)) : H(u)

]
xy

− ∂xy
[
D(Hρ(uσ)) : H(u)

]
yx

− ∂yy
[
D(Hρ(uσ)) : H(u)

]
yy .

(5.4)

Equation (5.4) introduces a general linear map D from the Hessian matrix H to a
transformed matrix. Linear maps from matrices to matrices are naturally written as
fourth-order tensors, and we use the “double dot product” D : H as a shorthand for
applying the map D to the Hessian matrix H. This results in a transformed matrix
T, and we use square brackets [T]ij to denote its (i, j)th component. Formally,

[T]ij =
[
D(Hρ(uσ)) : H(u)

]
ij

=
2

∑
k=1

2

∑
l=1

[
D(Hρ(uσ))

]
ijkl [H(u)]kl .

(5.5)

In this notation, we can define second-order eigentensors E of D corresponding
to eigenvalue µ by the equation D : E = µE. An alternative notation, which will
be used for the numerical implementation in Section 5.4.4, writes the Hessian and
transformed matrices as vectors. This turns D into a matrix whose eigenvectors
are nothing but the vectorized eigentensors as defined above. Similar to others [10,
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81], we find the fourth-order tensor and “double dot” notation more appealing for
reasoning at a higher level, because it allows us to preserve the natural structure of
the involved matrices.

Using our square bracket notation, an equivalent way of writing one of the terms
from Equation (5.3), ∂ji(g(‖H(u)‖2

F)uij), is ∂ji
[
g(‖H(u)‖2

F)H(u)
]

ij. Thus, the differ-
ence between the model from Equation (5.3) and our new one in Equation (5.4) is to
replace the isotropic scaling of Hessian matrices using a scalar diffusivity g, with a
general linear transformation D, which acts on the second-order Hessian in analogy
to how the established second-order diffusion tensor acts on gradients in second-
order anisotropic diffusion. Due to this analogy, we call D a fourth-order diffusion
tensor.

In our filter, D is a function of the local normalized Hessians, which are defined
as

Hρ(uσ) = Gρ ∗
(

1√
1 + ‖∇uσ‖

H (uσ)

)
, (5.6)

where regularized derivatives are obtained by convolution with a Gaussian kernel,
uσ := u ∗ Gσ. Its width σ should reflect the scale of the crease, as will be discussed
in Section 5.4.3. Since scale selection might introduce spatial discontinuities in the
chosen σ, the normalized Hessians are made differentiable by integrating them over
a neighborhood, for which we use a Gaussian width ρ = 0.5 in our experiments. As
shown in [62], and used for vesselness enhancement diffusion in [15], the inverse
gradient magnitude factor is used to make the eigenvalues of Hρ(uσ) match the sur-
face curvature values.

We emphasize that, unlike in a previous generalization of structure tensors to
higher order [165], the reason for going to higher tensor order in Equation (5.4) is
not to preserve information at crossings; this is a separate issue that was recently
addressed by others [61], and that we plan to tackle in our own future work. In
our present work, our goal is to smooth along ridges and valleys, while sharpening
them in the orthogonal direction. This sharpening requires the curvature-enhancing
properties of fourth-order diffusion, and a fourth-order diffusion tensor is a natural
consequence of making fourth-order diffusion anisotropic.

5.4.2 Fourth-order Diffusion Tensor D
We now need to construct our fourth-order diffusion tensor D so that it will smooth
along creases, while enhancing them in the perpendicular direction. Similar to We-
ickert’s diffusion tensors [185], we will construct D in terms of its eigentensors Ei
and corresponding eigenvalues µi, as defined above.

Didas et al. [30] have shown that fourth-order diffusion with the Perona-Malik
diffusivity [128] allows for adaptive smoothing or sharpening of image curvature,
depending on a contrast parameter λ. In particular, in the 1-D case, only forward
diffusion (i.e., smoothing) happens in regions with |∂xxu| < λ, while only backward
diffusion (i.e., curvature enhancement) occurs where |∂xxu| >

√
3λ. We wish to ex-

ploit this to enhance creases whose curvature is strong enough to begin with, while
smoothing out less significant image features.

This is achieved by deriving the eigenvalues µi of D from the eigenvalues ν1, ν2
of the normalized Hessian Hρ(uσ) using the Perona-Malik diffusivity [128], i.e.,

µi =
1

1 + ν2
i /λ2

, for i ∈ {1, 2}. (5.7)
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If the user wishes to specifically enhance either ridges or valleys, the sign of νi
could be taken into account. For instance, a ridge-like behaviour in the ith direction
is characterized by νi < 0. Therefore, we can decide to smooth out valleys by setting
µi = 1 wherever νi ≥ 0, and enhance ridges wherever νi < 0 by defining µi as before.
Enhancing only valleys can be done in full analogy. In our experiments on synthetic
data, we found that, in terms of the `2 difference between the ground truth and the
filtered image, better results were obtained when enhancing both ridges and valleys.
This is the setting used in all our experiments.

The ridge and valley directions can be found from the eigenvectors e1, e2 of the
normalized Hessian matrix Hρ(uσ), and are reflected in the eigentensors Ei of D by
setting

E1 = e1 ⊗ e1 E3 = 1√
2
(e1 ⊗ e2 + e2 ⊗ e1)

E2 = e2 ⊗ e2 E4 = 1√
2
(e1 ⊗ e2 − e2 ⊗ e1)

. (5.8)

The Ei are orthonormal with respect to the tensor dot product A : B := tr(BTA).
By definition, E4 is antisymmetric. Since Hessians of smooth functions are symmet-
ric, the value of µ4 does not play a role, and is simply set to zero. We define µ3 as the
average of µ1 and µ2.

5.4.3 Scale Selection

In the previous sections, crease orientation was estimated using the eigenvectors
of the regularized and normalized Hessian in Equation (5.6). As in previous ap-
proaches such as vesselness enhancement diffusion (VED) [15], this involves a reg-
ularization parameter σ that should be adapted to the local radius of the crease.
Setting this parameter is referred to as scale selection.

The vesselness measure Vσ by Frangi et al. [42] is maximal at the scale σ that
matches the corresponding vessel size, and has been widely used for detecting
the local radius of vessel like structures. Vσ is obtained from sorted and scale-
normalized eigenvalues |ν̃1| ≤ |ν̃2|, computed as ν̃i := σ2νi from eigenvalues νi
of the Hessian H(uσ) at a given scale σ. The factor σ2 compensates for the loss of
contrast at larger scales [101].

A vesselness measure Vσ should be low in background regions where overall

curvature and thus S =
√

ν̃2
1 + ν̃2

2 are low overall. Moreover, it should detect tubular

structures, where |ν̃1| � |ν̃2|, as opposed to blobs, in whichRB = ν̃1
ν̃2

would be large.
For ridges (ν̃2 < 0), Frangi et al. achieve this by combining S andRB according to

Vσu =


0 if ν̃2 > 0(

e
−R

2
B

2β2

)(
1− e−

S2

2c2

)
otherwise

, (5.9)

where the β and c parameters tune Vσu to be more specific with respect to suppres-
sion of blob shapes or background structures, respectively. We use β = 0.5 and
c = 1

2 (max(S)), as recommended in [42].
The scale for each pixel is selected as the σ for which the maximum

Vu = max
σ=σmin,...,σmax

Vσu is attained, where {σmin, ..., σmax} are the range of expected

scales in the image. For pixels that are part of the background, Vu is low, and it can
be thresholded by parameter θ ∈ [0, 1] for vessel segmentation. This segmentation
indicates the extent of vessels, and is used for our scale-image postprocessing, as
described below.
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Input Scale Image Post Processed

FIGURE 5.3: The color of each pixel in the scale image illustrates the
scale of the underlying vessel. Artifacts near the boundaries are re-

moved in a post processing step.

It has been observed previously [29] that vesselness often fails to correctly esti-
mate the scale of the vessel along its boundary. This can happen in two cases: When
the ridge has a step-like shape, the curvature near the corner points will be much
larger at the finest scale than at all other scales, leading to an underestimation of the
real scale near the boundary. On the other hand, the cross-sectional intensity profile
of vessels may have inflection points near its edges, where ν̃2 changes its sign. In this
case, some points near the boundary will have zero vesselness at the finest scale, but
the sign of ν̃2 will flip, and therefore vesselness becomes non-zero, at coarser scales,
leading to an overestimation of scale. Figure 5.3 shows both scale underestimation
or overestimation at vessel boundaries.

While such effects are less problematic for the VED filter, which uses the same
vesselness measure for scale selection, it can lead to serious artifacts in our filter,
where misestimating the scales at boundaries can cause the curvature-enhancing
diffusion to enhance the boundary of large-scale ridges more than their center.

We avoid such boundary effects by introducing a novel postprocessing of the
computed scales. For each pixel on a vessel, the vessel cross-section containing
that pixel is extracted by following the eigenvector direction that corresponds to
the strongest eigenvalue of the Hessian matrix computed at the scale suggested by
the vesselness measures at each point. Then, all pixels are assigned the scale closest
to the average of all pixels that lie on the same cross-section. This removes the prob-
lem of scale over- or underestimation on the boundaries. Figure 5.3 shows the scale
image before and after being post processed.

5.4.4 Stability

In order to solve Equation (5.4), we discretize it with standard finite differences, and
use an explicit numerical scheme. In matrix-vector notation, this can be written as

uk+1 = uk − τPuk = (I − τP)uk , (5.10)

where uk ∈ Rm is the vectorized image at iteration k, and the exact form of matrix
P ∈ Rm×m will be discussed later. We call a numerical scheme `2 stable if∥∥∥uk+1

∥∥∥
2
≤
∥∥∥uk
∥∥∥

2
, (5.11)
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k = 0, t = 0 k = 4, t = 20

k = 8, t = 40 k = 12, t = 60

FIGURE 5.4: MAFOD filter applied on the noisy synthesized branch
image at different FED cycles k. Value t represents the overall diffu-

sion time at each cycle k.

i.e., the `2 norm of the image is guaranteed not to increase from iteration k to k + 1.
It follows from Equation (5.10) that∥∥∥uk+1

∥∥∥
2
≤ ‖I − τP‖2 ·

∥∥∥uk
∥∥∥

2
, (5.12)

where ‖P‖2 denotes the `2 norm of P, i.e., ‖P‖2 :=
√

ρ(PTP), where ρ(PTP) com-
putes the largest modulus of eigenvalues of the symmetric matrix PTP.

Consequently, the condition in Equation (5.12) is satisfied if

‖I − τP‖2 ≤ 1 . (5.13)

Since P is positive semi-definite, the eigenvalues of I − τP are within the interval
[1− τ ‖P‖2 , 1]. Thus, Equation (5.13) is satisfied if 1− τ ‖P‖2 ≥ −1. This results in
the following constraint on the permissible time step size τ:

τ ≤ 2
‖P‖2

. (5.14)

This clarifies that the restriction on the time step size only depends on ‖P‖2. To
compute it, we will now write down the system matrix P for our discretization of
fourth-order anisotropic diffusion filtering.

Let Lxx, Lxy, Lyx, Lyy be matrices approximating the corresponding derivatives.
For “natural” boundary condition, it is important only to approximate the deriva-
tives at pixels i where the whole stencil fits in the image domain, i.e., where enough
data is available. Let us combine these four matrices pixelwise into one big matrix L
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such that

Lu ≈



...
[Lxxu]i[
Lxyu

]
i[

Lyxu
]

i[
Lyyu

]
i

...


, (5.15)

i.e., the approximations of the four derivatives will be next to each other for every
pixel i.

The 4× 4 matrix form of the fourth-order diffusion tensor in pixel i, acting on(
[Lxxu]i

[
Lxyu

]
i

[
Lyxu

]
i

[
Lyyu

]
i

)T ,

can be written as Di = EMET, where E is an orthogonal matrix containing the vec-
torized E1, E2, E3, E4 from Equation (5.8) as its columns and M is a diagonal matrix
with the eigenvalues µ1, µ2, µ3, µ4 on its diagonal. Due to the choice of the Perona-
Malik diffusivity in our model, ‖Di‖2 ≤ 1.

If we arrange all per-pixel matrices Di in one big matrix D with a 4× 4 block-
diagonal structure,

D =


D1 · · · 0

D2
... D3

...
. . .

0 · · · Dm

 , (5.16)

it is clear that ‖D‖2 ≤ 1, and the whole scheme reads as

uk+1 = uk − τLTDLuk. (5.17)

Substituting into Equation (5.14) yields

τ ≤ 2
‖LTDL‖2

, (5.18)

meaning that, in order to find a stable step size τ, we have to bound∥∥∥LTDL
∥∥∥

2
≤ ‖L‖2

2 ≤ ∑
i,j∈{x,y}

∥∥Li,j
∥∥2

2 , (5.19)

whose value will depend on the exact second-order finite difference stencils. We will
use the same discretization as Hajiaboli [59], i.e.,

uxx ≈
(
ui−1,j − 2ui,j + ui+1,j

)
(∆x)2

uyy ≈
(
ui,j−1 − 2ui,j + ui,j+1

)
(∆y)2

uxy ≈
(
ui−1,j−1 + ui+1,j+1 − ui−1,j+1 − ui+1,j−1

)
4∆x∆y

uyx = uxy ,
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where ∆x and ∆y are the pixel edge lengths in x and y directions, respectively. It is
easy to verify using Gershgorin’s theorem that this results in

τ ≤ 2

16 (∆x)2 + 16 (∆y)2 + 2 (∆x∆y)
, (5.20)

i.e., for ∆x = ∆y = 1, τ ≤ 1/17.

5.4.5 Implementation Using Fast Explicit Diffusion

Since the time step size τ derived in the previous section is rather small, solving
the discretized version of Equation (5.4) numerically using a simple explicit Euler
scheme requires significant computational effort. The recently proposed Fast Ex-
plicit Diffusion (FED) provides a considerable speedup by varying time steps in cy-
cles, in a way that up to half the time steps within a cycle can violate the stability
criterion, but the cycle as a whole still remains stable [187]. Consequently, a much
smaller number of iterations is required to reach the desired stopping time.

The FED scheme is defined as follows:

uk+1,0 = uk,
uk+1,i+1 = (I − τiP(uk

σ))uk+1,i i = 0, . . . , n− 1,
uk+1 = uk+1,n

(5.21)

where index k is the cycle iterator, i is the inner cycle iterator, and n is the number of
sub-steps in each cycle. In order to ensure stability, P(uk

σ) must be constant during
each cycle. For computing τi, first the number of sub-steps in each cycle must be
computed using

n =

⌈
−0.5 + 0.5

√
1 +

12T
Mτmax

⌉
, (5.22)

where T is the diffusion stopping time, M is the number of FED cycles and τmax is the
step size limit that ensures stability. In our experiments we set τmax = 0.05 according
to the limit computed in Section 5.4.4. As it is shown in [187], n determines τi:

τi =
3T

2M (n2 + n) cos2
(
π · 2i+1

4n+2

) , (i = 0, . . . , n− 1) . (5.23)

In order to decrease balancing error within each cycle, τi’s order should be rear-
ranged. In our experiments we have used the κ-cycles method for τi reordering [187].

The fast explicit diffusion framework can be combined with our discretization in
a straightforward manner, and has led to a speedup of around two orders of magni-
tude in some of our experiments. For both τi computation and reordering we have
used the provided source code by Weickert et al. [187]. Figure 5.4 shows our filter
applied on a synthesized image using the FED scheme with different cycle iterators
k, corresponding to different stopping times.

5.4.6 Ridge and Valley Extraction

After enhancing ridges and valleys with our filter, we extract a polygonal represen-
tation of them using a 2D counterpart of an established 3D algorithm [164]. Our
algorithm is based on the idea of marching squares [163] and involves the zero con-
tour of the scalar field d = det(g|Hg), where (g|Hg) indicates a matrix whose first
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Input CED VED

E = 1.096, p = 100% E = 1.116, p = 100%

IFOD Single-scale Gaussian Multi-scale Gaussian

E = 1.579, p = 96% E = 1.263, p = 98% E = 0.566, p = 100%

Bilateral Hajiaboli MAFOD

E = 0.624, p = 99% E = 1.024, p = 92% E = 0.332, p = 100%

FIGURE 5.5: Red curves show the ground truth ridge location, while
blue curves show the location reconstructed from the filtered noisy
image. Our MAFOD filter restores ridge locations from the noisy im-

age with ridges of different scales better than other filters.
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FIGURE 5.6: Each plot shows the intensities on a left to center line of
the 2D images in Figure 5.5. The lines are taken from the middle of
each image. The red dashed lines show the true position of the ridge
points, and the blue lines show the position of local maxima over the

intensity line scan of each filtered image.

Input CED VED

IFOD Single-scale Gaussian Multi-scale Gaussian

Bilateral Hajiaboli MAFOD

column is the local gradient vector g and the second column Hg is the result of mul-
tiplying the gradient vector to the Hessian matrix; det(�) is the matrix determinant.
The zero level set of d is a superset of the creases [127].

Our overall approach of ridge extraction involves two different notions of scale:
The first one refers to the selection of scales at which derivatives are taken, as dis-
cussed in Section 5.4.3; the second one to the stopping time t of our filter. To clarify
their respective roles, we compare our approach to the seminal work by Lindeberg
[101] on ridge extraction in Gaussian scale space.

In Lindeberg’s approach, ridge curves in 2D images sweep out surfaces in three-
dimensional scale space, and curves on these surfaces are found along which a mea-
sure of ridge strength is locally maximal with respect to diffusion time t. An example
of such a measure is

R(uσ) = t4γ
(
uxx + uyy

)2
((

uxx − uyy
)2

+ 4u2
xy

)
. (5.24)

In this approach, stopping time t and the scale σ of derivatives are related by
t = σ2/2, and can thus be considered as one single parameter, whose value is de-
termined automatically. The exponent γ in the normalization factor that is used to
compensate for the loss of contrast at later diffusion times is treated as a tunable
parameter. In our experiments, we set it to γ = 3

4 , as proposed in [101].
Decoupling the t and σ parameters is a price that we pay in our method in or-

der to preserve and enhance creases, for which Gaussian scale space does not have
any mechanism. Our current implementation selects the derivative scale σ auto-
matically, as discussed in Section 5.4.3, but does not have an objective criterion for
setting the stopping time t, unless ground truth is available. In practice, we found
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it relatively simple to tune this parameter based on viewing the corresponding im-
ages, especially given that, after image noise has been removed, results are relatively
stable (cf. Figure 5.4). Future work might investigate automated selection of this pa-
rameter.

Another difference between our approach and Lindeberg’s is that his crease ex-
traction algorithm operates on the full scale space, while ours, similar to previous
work by Barakat et al. [9], works on a single, pre-filtered image. Both approaches
have relative benefits and drawbacks: Scale space crease extraction is challenging
to implement, and requires much more time and memory, especially when dealing
with the four-dimensional scale space resulting from three-dimensional input im-
ages [82]. On the other hand, it might, in rare cases, indicate spatially intersecting
creases at different scales, which our current approach is not able to reproduce.

5.5 Experimental Results

We compare our multi-scale anisotropic fourth-order diffusion (MAFOD) to crease
enhancement diffusion (CED) [169], vesselness enhancement diffusion (VED) [15],
isotropic fourth-order diffusion (IFOD) [112], the anisotropic fourth-order diffusion
by Hajiaboli [59], bilateral, and a multi-scale Gaussian filter. Since it was already
shown in [169] that the coherence enhancing diffusion filter [185] tends to more
strongly deform non linear structures compared to the CED filter, it is not included
in the comparison.

The multi-scale Gaussian filter is defined to approximate Lindeberg’s scale selec-
tion, as described in Section 5.4.6. From a range of stopping times between t = 1 and
t = 30, it first selects an optimal scale for each pixel, by finding the t that maximizes
R(uσ) from Equation (5.24). Then, the intensity of each pixel in the output image is
obtained by convolving the input image with a Gaussian at the locally optimal scale
σ =

√
2t that is then normalized between [0, 1]. The normalization is necessary to

compensate for the intensity range shrinkage after Gaussian blurring.
The crease extraction algorithm from Section 5.4.6 results in a set of polygonal

chains. For each crease line segment in the ground truth, a corresponding segment in
the reconstruction is selected by picking the one with minimum Hausdorff distance
[66] in a neighborhood around the ground truth line segment. This neighborhood is
set to six pixels for the experiments on synthetic data, and to ten pixels for real data.
The average Euclidean distance E between the ground truth and the corresponding
reconstruction is then used to quantify the accuracy of vessel locations in the filtered
image. In addition to E , we show the percentage p of ground truth for which a
corresponding ridge was detected from the filtered images while computing E .

In the experiments on synthesized images, image evolution of all filters, except
for multi-scale Gaussian and bilateral filters, was stopped when the `2 difference be-
tween the filtered image and the noise-free ground truth was minimized. `2 differ-
ence was chosen over E as a stopping criterion due to its much lower computational
cost.

5.5.1 Confirming Theoretical Properties

Our filter has been designed to improve localization accuracy while accounting for
creases at multiple scales and being rotationally invariant. Results on a simple sim-
ulated image with three concentric ridges of different radii, which is contaminated
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Ground Truth CED VED

E = 0.343, p = 98% E = 0.345, p = 100%
Multi-scale Gaussian Bilateral MAFOD

E = 0.506, p = 97% E = 0.341, p = 100% E = 0.302, p = 100%

FIGURE 5.7: In a simulated occluded vessel, restored (blue) curves
again best match the (red) ground truth locations in case of our
MAFOD filter. In addition, MAFOD better preserves the occlusions

than VED.

with zero-mean Gaussian noise with a signal to noise ratio SNR = 6.81, verify that
these design goals are met.

Both Figure 5.5 and Figure 5.6 show that our MAFOD filter restores ridge loca-
tions most accurately as assessed both by visual inspection and Euclidean distance
E . MAFOD outperforms CED, IFOD, Hajiaboli and bilateral filtering since it ac-
counts for different scales. On the other hand, the curvature enhancement of our
filter, which is not part of multiscale VED or Gaussian filters, clearly makes it easier
for the ridge extraction algorithm to localize the centerline, especially in the largest
ridge. IFOD does perform curvature enhancement but, due to its isotropic nature, it
is not effectively guided to act specifically across the ridge. As it is obvious on the
largest circle, the multi-scale Gaussian filter leads to ridge displacement. The result
of the anisotropic fourth-order filter by Hajiaboli clearly illustrates the fact that it
was designed to preserve edges, not to enhance creases.

For the MAFOD filter, scales σ and vesselness threshold θ are the same as for
VED, σ = {0.5, 1.0, ..., 8.5, 9.0}, θ = 0.2. Other parameters are λ = 0.005 for MAFOD,
IFOD, and σ = 1.0 for IFOD; for Hajiaboli, λ = 0.01; for CED, σ = 2.0 and it is set
to enhance both ridges and valleys; for single-scale Gaussian smoothing, σ = 1.25.
For the MAFOD filter, FED stopping time is set to 500, and the number of cycles is
set to 10000. For other fourth-order equations τ = 0.03 and for the second-order
diffusion equations such as the VED and CED filters, τ = 0.2; for the bilateral filter
σspatial = 3.0 and σrange = 1.0.

5.5.2 Simulated Vessel Occlusion

Figure 5.7 shows a second image, simulating an occluded vessel, and corrupted with
Gaussian noise with SNR = 6.40. Our MAFOD filter leads to the most accurate lo-
calization in terms of Euclidean error E . In particular, we observed that VED widens
the occlusions. They are better preserved by our filter, which we set to enhance both
ridges and valleys.

Again, an amount of smoothing that minimized `2 error was used for all filters
except for multi-scale Gaussian and bilateral filters. The parameters for VED and
MAFOD are σ = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, and θ = 0.35; λ = 0.017, stopping time
is 20 and the number of cycles is set to 1000 for MAFOD; for CED, σ = 1.0; for
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Input VED filter Bilateral Filter Ms Gaussian MAFOD filter

ROI 1 E = 1.45 E = 1.36 E = 1.89 E = 1.17

ROI 2 E = 1.31 E = 1.42 E = 1.27 E = 1.04

ROI 3 E = 1.43 E = 1.63 E = 1.62 E = 1.15
p = 89% p = 80% p = 88% p = 92%

FIGURE 5.8: In three ROIs of a fundus image, reconstructed vessel
locations (blue) best match a manually marked ground truth (red)

when our MAFOD filter is used.

the bilateral filter, σspatial = 1.5 and σrange = 1.0. For the numerical solver, we set
τ = 0.05 for the fourth-order equation and for second-order equations, τ = 0.2.

5.5.3 Real Vessel Tree

To demonstrate our filter on a real-world example, we applied it to several ROIs
from an infrared fundus image, on which one of our co-authors (MWMW), who is
an ophthalmologist, manually marked the exact vessel locations to provide a ground
truth for comparison, without being shown the filtered images. Results in Figure 5.8
show that our MAFOD filter outperforms VED, multi-scale Gaussian and bilateral
filters in restoring vessel locations. In ROI 3, at some point the two thickest vessels
run close to each other. By looking at the filtered image with the VED, the two
vessels are erroneously connected to each other in that area, even though they are not
connected in the corresponding extracted valley curves. Our MAFOD filter correctly
avoided connecting the vessels to each other.

Even though vessels generally appear dark (i.e., as valleys) in these images, the
larger ones exhibit a thin ridge at their center, due to a reflex in the infrared im-
age. This leads to an incorrect double response in single-scale filters as shown for
the bilateral filter. CED and IFOD filters suffer from similar problems (results not
shown).

For each filter separately, we carefully tuned the parameters for optimum results.
Specially θ, λ and the stopping time are the parameters that need more careful tuning
compared to others. For the MAFOD filter, we set σ = {0.2, 0.3, 0.5, 1.0, ..., 6.5, 7.0},
λ = 0.005, θ = 0.13, and used a FED scheme with stopping time 12 and cycle number
2. For the VED filter, an explicit Euler scheme is used with 600 iterations and τ =
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Filter VED Bilateral Ms Gaussian MAFOD

Time (sec) 1251 0.16 2.24 6.51

TABLE 5.1: The average filtering time for a single ROI of size 200×
200 pixels in Figure 5.8.

0.2, and the same parameters for scale selection as for MAFOD; for the bilateral
filter, σrange = 0.3 and σspatial = 3.0; for the multi-scale Gaussian filter an additional
Gaussian smoothing with kernel size σ = 2 is applied to the filtered image to blur
out discontinuities from scale selection and thus achieve an even better result. The
computational effort of all filters is reported in Table 5.1.

5.6 Conclusion

We have proposed a new multi-scale fourth order anisotropic diffusion (MAFOD)
filter to enhance ridges and valleys in images. It uses a fourth order diffusion tensor
which smoothes along creases, but sharpens them in the perpendicular direction,
and optionally enables enhancing either ridges or valleys only. Our results indicate
that the curvature enhancing properties of fourth-order diffusion allow our filter to
better restore the exact crease locations than traditional methods. In addition, we
found that our filter better preserves vessel occlusions.

In the future, we would like to extend our 2-D filter to 3-D images, and to better
handle crossings and bifurcations [61].
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Chapter 6

Replication and Refinement of an
Algorithm for Automated Drusen
Segmentation on Optical
Coherence Tomography1

6.1 Abstract

Here, we investigate the extent to which re-implementing a previously published
algorithm for OCT-based drusen quantification permits replicating the reported
accuracy on an independent dataset. We refined that algorithm so that its accuracy
is increased. Following a systematic literature search, an algorithm was selected
based on its reported excellent results. Several steps were added to improve its
accuracy. The replicated and refined algorithms were evaluated on an independent
dataset with the same metrics as in the original publication. Accuracy of the refined
algorithm (overlap ratio 36–52%) was significantly greater than the replicated one
(overlap ratio 24–39%). In particular, separation of the retinal pigment epithelium
and the ellipsoid zone could be improved by the refinement. However, accuracy
was still lower than reported previously on different data (overlap ratio 67–76%).
This is the first replication study of an algorithm for OCT image analysis. Its results
indicate that current standards for algorithm validation do not provide a reliable
estimate of algorithm performance on images that differ with respect to patient
selection and image quality. In order to contribute to an improved reproducibility
in this field, we publish both our replication and the refinement, as well as an
exemplary dataset.

Key Words: automated image analysis, optical coherence tomography, age-
related macular degeneration, algorithm replicability, algorithm reproducibility

6.2 Introduction

To increase our understanding of risk factors for age-related macular degeneration
(AMD), the leading cause of irreversible blindness in the developed world, large,
prospective epidemiological studies on AMD retinal biomarkers are warranted [24,

1The content of this chapter has been previously published: Wintergerst and Gorgi Zadeh et
al. “Replication and Refinement of an Algorithm for Automated Drusen Segmentation on Opti-
cal Coherence Tomography” Scientific Reports 10.1 (2020): 1-7. URL: https://doi.org/10.1038/
s41598-020-63924-6 [191].

https://doi.org/10.1038/s41598-020-63924-6
https://doi.org/10.1038/s41598-020-63924-6
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85, 111, 162]. Increasing amounts of optical coherence tomography (OCT) data are
being generated and need to be assessed. However, as the manual grading of enor-
mous data volumes is unfeasible automated algorithms for OCT image analysis are
needed [1, 159]. To date a variety of different algorithms on quantitative OCT im-
age analysis for AMD biomarkers including drusen, geographic atrophy, pigment
epithelial detachment and intra- and subretinal fluid have been published [78, 192].
However, algorithm quality and performance differ substantially making compari-
son between algorithms challenging [147, 192].

When selecting an algorithm from the literature, one for which high accuracy has
been reported would be preferable. However, this does not guarantee comparable
performance on one’s own data. In particular, accuracy depends not only on the
algorithm itself, but also on the characteristics of the dataset. Frequently, privacy
and legal reasons make it impossible to openly share the data on which algorithms
have been evaluated. At the same time, only very few authors make their software
implementations available. Even though proper validation of an algorithm should
involve testing it on data that was not available during its development, and charac-
terizing conditions under which it can be expected to work well, the reasons above
make this difficult within the field of medical image analysis.

The current best practice for validating medical image analysis algorithms is to
organize so-called “challenges”, in which different teams apply their algorithms to
a common reference image data set. In regards to OCT image analysis both the
“Retinal OCT Classification Challenge (ROCC)” [144] and the MICCAI “Retinal OCT
Fluid Challenge (RETOUCH)” [143] are available and have been used for some of the
respective algorithms published. Challenges are an important tool for algorithm val-
idation, but their open nature implies incomplete coverage, as promising approaches
might be missing because their authors chose not to participate. Moreover, it has
been found that reproducibility and interpretation of their results is limited by the
fact that participants are given the opportunity to adapt their methods to the data
at hand, but often have to do so based on insufficient information. Challenges have
also been shown to rank algorithms in a way that depends not only on their quality,
but also substantially on contestable choices in the ranking scheme [115]. Therefore,
we believe that replication studies, which received almost no attention in the litera-
ture so far, should complement challenges as another tool for algorithm validation.

We conducted such a replication study. Specifically, we re-implemented an al-
gorithm for drusen quantification on OCT proposed by Chen et al. [18], which we
identified as an established algorithm that was reported to achieve strong results in
a previous systematic literature review [192]. Following assessment of its perfor-
mance, we refined this algorithm to better meet the characteristics of our data. Our
results highlight the severe limitations that incomplete algorithm validation poses
for practical use.

6.3 Methods

6.3.1 Image data acquisition

The patient sample is a random subsample from the “Molecular Diagnostics of Age-
related Macular Degeneration” (MODIAMD) study from the University of Bonn,
Germany (Federal Ministry of Education and Research funding number 13N10349)
[175] . Briefly, inclusion criteria were age > 50 years and retinal alterations classi-
fied as Age-Related Eye Disease Study (AREDS) category 3 or 4. Exclusion criteria
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for the MODIAMD study were any other ophthalmic disease potentially compris-
ing the assessment of the retina as was concomitant injection-therapy for AMD. All
study subjects consented to participate in the study. The tenets of the Declaration
of Helsinki were followed and this study was approved by the ethics committee of
the University of Bonn, Germany (ethics committee number: 175/10 and 408/15).
SD-OCT raster scans were acquired using the Spectralis HRA + OCT (Heidelberg
Engineering, Heidelberg, Germany) with a field size of 20◦ x 15◦ centered on the
fovea and an OCT image resolution of 512 x 496. A representative subset of 81
volume scans each with 145 B-scans consisting of at least 15 averaged frames and
with an approximate inter-B-scan distance of 30 µm was used for this study. These
scans were selected from a larger set of 682 OCT volume scans from 98 patients,
keeping about one scan per patient in order to cover a wide range of image quality
and drusen phenotypes. Those volumes that had very few B-scans or insignificant
drusen load were discarded from the final subset. Geographic atrophy was defined
according the cRORA criteria [152].

6.3.2 Replication of Chen et al. algorithm

As described in the work of Chen et al. [18] several techniques are used to denoise
the image, remove the retinal nerve fiber layer (RNFL) and compute the centerline of
the retinal pigment epithelium (RPE) (Figure 6.4 and 6.5). In their algorithm, Chen
et al. first denoise the input, using a bilateral filter with an anisotropic window to
account for the stretch of B-scans in the horizontal direction. Then B-scans are bina-
rized using a threshold 0.3× t to detect and remove the RNFL layer, and with thresh-
old t in order to detect ellipsoid zone and the RPE. The center-line of the estimated
layer is considered as the final estimation of the RPE. In order to detect drusen, a 3rd
degree polynomial is fit on the RPE layer, estimating a drusen-free RPE. The area be-
tween the drusen-free RPE and RPE layer are considered as drusen. After detecting
drusen per B-scan, the en face OCT image was used for a false-positive- elimination-
step as proposed by Chen et al. [18] (Figure 6.6). The details of this algorithm, as
well as the data-specific tuning needed to adjust the algorithm for the MODIAMD
data-set, is provided in the supplementary materials.

We observed that, in Chen’s approach, inclusion of parts of the ellipsoid zone
along the RPE can lead to jumps in the estimated RPE layer, as shown in Figure 6.7
(false positives). Therefore, our work suggests further refinements for a more robust
determination of the RPE layer.

6.3.3 Refinement of the algorithm

Our refined algorithm reduces the above described false positives by better sepa-
rating ellipsoid zone and RPE. In particular we found that shadows can cause the
brightness of the RPE to vary substantially within B-scans, as it can be seen in Figure
6.7. In these cases, it is less suitable to use a global threshold for RPE segmentation.
Therefore, we propose three refinement steps for thresholding, where the segmen-
tation mask of each step is used as a guide to remove irrelevant components of the
mask that is computed at the next step. We also replace the bilateral filter, which is
used for denoising by Chen et al., with the multi-scale anisotropic fourth-order diffu-
sion (MAFOD) filter [204]. This filter was developed specifically to enhance ridges,
which helps better localizing the center-line of the estimated RPE layer (Figure 6.8).

In the first refinement step (Figure 6.9), we perform the thresholding with re-
spect to both denoised input B-scan and a local histogram equalization of the input
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FIGURE 6.1: The input B-scan (left, first row) is filtered with MAFOD
filter (left, second row). The retinal pigment epithelium (RPE) is esti-
mated, twofold enlarged and threshold-positive pixels outside a 20-
pixel band around the RPE centerline (left, third row; red and yel-
low indicate the centerline and the 20-pixel band, respectively) are
removed (left, last row; green and red indicate the upper and lower
boundary of the RPE, respectively). The second, third and fourth re-
finement steps are applied (right, first, second and third row; green
and red indicate the upper and lower boundary of the RPE, respec-
tively) to achieve the final refined algorithm (right, last row). See

supplement for details.

B-scan. In the second refinement step (Figure 6.10), a threshold with respect to the
local histogram equalization of the denoised image, and the denoised image itself
is selected to binarize the B-scan. In the third refinement step (Figure 6.11), a Gaus-
sian blur is applied on the denoised image. Then the same steps as in the second
refinement step are applied on the smoother version of the denoised B-scan. Finally,
in the fourth refinement step, we implemented an improved method for estimating
the lower and upper boundaries of the RPE from the segmentation mask by bound-
ary tracing and polynomial fitting (Figure 6.12). We take the center line between the
upper and lower boundary as the final refined estimation of the RPE layer. Figure
6.1 illustrates the different refinements step-by-step on one B-scan from the original
image till the final refined algorithm. More details on the refined algorithm can be
found in the supplementary materials.

6.4 Results

In exact analogy to Chen et al. [18], algorithm performance was quantitatively eval-
uated by the absolute drusen area difference (ADAD) and overlap-ratio in relation
to the ground truth. Similar to Chen et al. we evaluated the algorithm’s perfor-
mance for a dataset where only B-scans with drusen were included and for a subset
where only the B-scan with most drusen load in each volume scan was included
[18]. Original results from Chen et al. are displayed in Table 6.1 and our results



6.4. Results 61

ADAD [µm] ADAD [%] OR ± SD
B-scans with drusen ( ‘4/340
dataset’)

10.29 ± 8.9 15.70 ± 15.50 76.33 ± 11.29

B-scans with largest drusen
load per volume (‘143/143
dataset’)

19.97 ± 14.68 23.77 ± 13.8 67.18 ± 9.14

TABLE 6.1: Original results from Chen et al.[18]. Image resolution of
the used dataset: 512× 1024 and 128 B-Scans per volume scan; OR =

overlap ratio; SD = standard deviation

of the replicated algorithm are reported in Table 6.2. Performance of the replicated
algorithm was inferior to the reported original algorithm and performance of the
refined algorithm was superior to the replicated one.

Even though we present the same error metrics as used by Chen et al. in order
to facilitate a direct comparison, we noticed two limitations in the way they are de-
fined. First, restricting the evaluation to B-scans in which drusen are present might
conceal some of the false positives that occur in drusen-free B-scans. However, these
are practically relevant, since we want to employ the algorithm fully automatically,
without having to flag drusen present B-scans manually. Second, overlap ratio is a
relative error metric, as is ADAD when expressed in percent. Therefore, comput-
ing based on B-scans can result in inflated estimates in the presence of B-scans with
low drusen load, since even small absolute segmentation errors will correspond to a
large relative error. We also note that based on the information given in the publica-
tion by Chen et al. [18] it is not completely clear how overlap ratio was aggregated,
it is merely stated to be “similar as for the ADAD metrics”.

For these reasons, Table 6.2 presents an additional evaluation, referred to as “vol-
umetric computation”, which is based on the full OCT volumes. Given a three-
dimensional ground truth drusen mask Mi for the ith OCT volume, and a corre-
sponding algorithmic estimate M̂i, our volumetric computation error measures can
be expressed as

ADADi =
∣∣Area (Mi)−Area(M̂i)

∣∣
Overlap Ratioi =

Area
(

Mi ∩ M̂i
)

Area
(

Mi ∪ M̂i
)

where Area(Mi) denotes the overall drusen area, summed over all B-scans of the
ith volume. For error measure E ∈ {ADAD, OR}, mean and standard deviation are
computed according to their established definitions:

µE =
1
N

N

∑
i=1

Ei, σE =

√√√√ 1
N

N

∑
i=1

(Ei − µE)
2

These alternative error metrics differ from the ones used by Chen et al. in two main
ways: First, they also account for false positives in drusen-free B-scans (there were
1,934 drusen-free B-scans in our dataset). Second, mean and standard deviation are
taken over volumetric OCT scans rather than B-scans to avoid an inflated effect of
B-scans with low drusen load on relative error measures. In non-volumetric mea-
sures as proposed in Chen et al. paper, per B-scan ADAD is divided by the number
of A-scans with drusen present in that B-scan. For a fair comparison between the
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Replicated Chen et al. [18]
ADAD ± SD (µm) ADAD ± SD (%) OR ± SD (%)

B-scans with
drusen

17.60 ± 36.70 100.59 ± 304.80 24.52 ± 20.56

B-scans with
largest drusen
load per
volume

19.94 ± 13.54 42.70 ± 22.70 39.24 ± 22.06

Volumetric
Computation

11.96 ± 12.11 46.37 ± 75.36 29.35 ± 17.32

Refined algorithm
ADAD ± SD (µm) ADAD ± SD (%) OR ± SD (%)

B-scans with
drusen

13.28 ± 29.40 73.54 ± 217.80 35.88 ± 25.25

B-scans with
largest drusen
load per
volume

15.64 ± 11.05 36.86 ± 24.34 51.90 ± 23.70

Volumetric
Computation

8.31 ± 6.87 30.05 ± 29.76 42.20 ± 20.47

TABLE 6.2: Comparison of the algorithms to the ground truth . Image
resolution of the used dataset: 512 x 496 and 145 B-Scans per volume

scan. OR = overlap ratio; SD = standard deviation.

volumetric ADAD measure to its non-volumetric alternatives, we divide ADAD by
the sum of the A-scans with drusen for all B-scans in the volume.

Separation of the RPE and the ellipsoid zone, which was a major source of seg-
mentation errors in the replicated algorithm, could be improved by the refined al-
gorithm. Our refinement of this algorithm was able to detect the course of the RPE-
centerline more reliably (Figure 6.2). This suggests that our refined algorithms al-
lows for a more robust determination of the RPE layer than the replicated algorithm.
When comparing the replicated and refined Chen et al. algorithm there were only
two OCT volume scans where the replicated algorithm outperformed the refined
one. It should be noted that algorithm performance was low for both algorithms in
these two OCT volume scans (OR of 13% and 11% for the refined algorithm, and
14% and 15% for the replicated algorithm, respectively). Both of the OCT volume
scans were from eyes with subretinal drusenoid deposits.

The mean drusen load of the complete dataset was 153, 166, 119 µm3 in the
ground truth, 119, 321, 550 µm3 in the replicated algorithm, 125, 837, 159 µm3 in the
refined algorithm. Hence, both algorithms underestimate drusen load, but our re-
fined one less severely. To investigate the role of the false-positive elimination step
for this underestimation, we compared total drusen calculation with and without
false-positive elimination. We found that drusen load was underestimated even
without false positive elimination (replicated algorithm: 132, 385, 230 µm3, refined
algorithm: 132, 555, 984 µm3).

In order to estimate the effect of the drusen load we stratified our results for
small (0 – 26, 465, 894µm3), medium (26, 465, 894 − 92, 630, 630µm3) and large (>
92, 630, 630 µm3) drusen load per volume scan (Figure 6.3). Overlap ratio increased
for all datasets and algorithms with increasing drusen load.
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FIGURE 6.2: Comparison of replicated and refined drusen segmenta-
tion. Results by rebuilt Chen et al. method (left), and from refined

method (right) marked over the input B-scan.

To investigate the effect of geographic atrophy on algorithm performance, we
compared results in B-scans with and without geographic atrophy, which was
present in 17 of our OCT volume scans (21%). As presence of geographic atrophy is
correlated with greater drusen load, and since we found algorithm accuracy depend-
ing on drusen load, we performed a multiple regression analysis for both algorithms
with OR from our volumetric computation as the dependent variable and the binned
drusen load categories “small”, “medium”, and “large” and presence of geographic
atrophy as independent variables. The regression analysis showed a significant as-
sociation with drusen load categories but not with geographic atrophy (see Table
6.3).

6.4.1 Statistical analysis

We used the Wilcoxon signed-rank test to evaluate the segmentation improvement
using our proposed refined algorithm, with respect to ADAD measure in µm. The
Shapiro-Wilk test on the ADAD values showed a non-normal distribution with the
p-values of 6.9x10−12 for ADADs computed per OCT volume, p-value=0 for B-scans
with at least one druse, and p-value=1.1x10−8 for B-scans with largest drusen load
per volume. This motivated us to use a non-parametric version of the paired Stu-
dent’s t-test, i.e., the Wilcoxon signed-rank test. With this test, the p-values for the
paired samples using the replicated and refined Chen et al. algorithms are; 2.4x10−6

for ADADs computed over the complete OCT volumes, p-value=0 for B-scans with
at least one druse, and p-value=1.2x10−5 for B-scans with largest drusen load per
volume. These numbers show a significant segmentation improvement with respect
to ADAD measure, when refined Chen et al. algorithm is used.
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FIGURE 6.3: Algorithm performance stratified for drusen load.

6.4.2 Risk of bias evaluation

Risk of bias for the new drusen segmentation algorithm was evaluated according
to the standardized protocol as published previously [192]. The patient sample was
recruited out of the MODIAMD data with inclusion criteria as stated above. The
algorithm development and testing were performed in separated data subsets, the
reference standard was a manually corrected segmentation of the RPE layer and the
reference standard was objectively compared with the index test (via ADAD and
OR). There were two ophthalmologists as readers for the annotations (ST and MW)
and there were no repetitive measurements by these readers. All included patients
received the same reference standard. Parameters increasing risk of bias are that
subjects were not randomly recruited and there were no repetitive measurements
done.

6.5 Discussion

Re-building an algorithm based on the details provided in the publication we found
its performance to be inferior to the reported results. This was likely due to a more
heterogeneous dataset including a more real-life patient selection and a greater di-
versity in drusen load and differences in image quality. Following this, several re-
finements considerably improved the overall performance of the algorithm in our
image dataset. These findings highlight that automated algorithms have to be used
with caution, particularly when little or no independent evaluation and validation
are available.

We identified multiple factors that might explain the discrepancy between our
results and those reported by Chen et al., the most important being the patient co-
hort. Different from Chen et al., our study population included individuals with
geographic atrophy, making it more heterogeneous and closer to a real-world situa-
tion. In addition, we conjectured that differences in drusen load might explain dif-
ferences in performance. Against this background we performed a multiple regres-
sion analysis which showed no association of algorithm performance with presence
of geographic atrophy, however strong association with drusen load. Therefore, we
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hypothesize differences in drusen load might be an important factor for the observed
difference in algorithm performance. However, this remains speculative as the ab-
solute drusen load was not published by Chen et al.. Another factor concerns image
quality. The reduced axial resolution of 496 pixels compared to the input data of the
Chen et al. algorithm which had an axial resolution of 1024 pixels is likely to reduce
accuracy of the separation of RPE and ellipsoid zone and reduce performance some-
what. Although algorithm accuracy might further improve by exclusion of poor or
reduced image quality , e.g. due to lens opacities, we did not apply any ancillary ex-
clusion criteria additional to the MODIAMD exclusion criteria[175], as our intention
was to investigate algorithm performance in a dataset which is as close to ‘real-life’
conditions as possible.

These differences in patient and image characteristics are unavoidable, since the
data used by Chen et al. is not available to others. Characteristics of OCT image data
can differ greatly, e.g. due to differences between devices or in patient samples. Even
when using the same device, differences in image acquisition are possible based
on varying number of repetitive frames and consecutive image averaging, altered
resolution or field-of-view settings, etc.. Against this background, it is even more
important to provide highly specific details on both the algorithms as well as the
image data used in their creation and evaluation. It also highlights the importance
of testing algorithms on different datasets to achieve a full validation.

As an aside we proposed alternative or additional error metrics which might bear
advantages over the so far used error metrics. However, none of our main results
depend on the choice of error metric and in particular the improvement in algorithm
performance following our refinements is independent of this.

As the refined Chen et al. algorithm still underestimated overall drusen load,
one possible approach to reduce underestimation of drusen load might be the im-
provement of the polynomial fitting step. Both algorithms (as many others) use
polynomial fitting for ideal RPE estimation. However in presence of large drusen or
many small drusen, the estimated ideal RPE is ‘lifted up’, hence, leading to drusen
underestimation. There were only two OCT volume scans where the replicated al-
gorithm outperformed the refined one. Overall performance was low for both OCT
volume scans and both were from eyes with subretinal drusenoid deposits, render-
ing presence of subretinal drusenoid deposits a potential limitation of both the repli-
cated and the refined algorithm. A possible next step would be to statistically com-
pare algorithm performance in eyes with and without subretinal drusenoid deposits.
In case this assumption is confirmed, further refinements might be introduced to
specifically deal with subretinal drusenoid deposits. Our results showed a lower
ADAD in the volumetric computation metric compared to the subsets “B-scans with
drusen” and “B-scans with largest drusen load per volume”. This observation can
be explained by the fact that both algorithms underestimate overall drusen load.
The volumetric computation metric adds the contribution of false positives in the
drusen-free B-scans, which reduces this underestimation, and therefore leads to a
smaller difference between estimated and actual drusen load. The fact that the vol-
umetric computation metric increases OR compared to averaging over all B-scans
with drusen, but not to B-scans with largest drusen load, can be explained by OR
being a relative error measure. Therefore, its volumetric computation variant re-
duces the effect of B-scans with low drusen load, where even small absolute errors
can cause a drastic reduction of OR.

Herein, we focussed on an established segmentation algorithm based on tradi-
tional image processing techniques such as filtering and thresholding. Recently, con-
volutional neural networks (CNNs) and deep learning have become more popular
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also for automated image analysis in ophthalmology [51, 161]. We expect that is-
sues of reproducibility and transferability will become even more relevant when
using deep learning. Reproducing a learning based method involves not just re-
implementation, but also re-training of the algorithm. Consequently, the used train-
ing datasets and their evaluation need to be highly transparent and reproducible.
Moreover, CNNs’ results can be easily skewed by specific targeted manipulation of
the input data, not recognizable by humans [179]. It is even possible to generate
images completely unrecognizable to humans, which deep learning algorithms be-
lieve to be recognizable objects with >99% certainty [122]. This highlights some of
the advantages of conventional, human-designed algorithms, where it is easier to
rationalize the effects of factors such as reduced image resolution, and to ameliorate
them with refinements such as those proposed in our current work.

To our knowledge, within the field of ophthalmic image analysis, we present
the first study on re-implementing an algorithm based on the details provided in its
publication, drawing attention to the important issues of algorithm reliability and
replicability. Our results highlight that more details, both concerning the algorithm
and the data that it is applied to, might be relevant for a proper replication than is
typically given in a publication.

Further strengths of our study are the employment of a more real-life patient
selection as dataset and a detailed step-to-step explanation of the algorithm’s refine-
ment. Furthermore, we also made a comprehensive evaluation of algorithm perfor-
mance, a direct comparison of the replicated and the refined algorithm in the same
dataset and a subgroup analysis for drusen load. A limitation of our study is the
reduced axial resolution as compared to the input data of the original algorithm.
However, this reflects a more realistic real-life dataset.

In conclusion, we replicated a reportedly well-performing algorithm for OCT-
based drusen quantification and found algorithm performance to be inferior to the
reported results for various reasons. Several refinements considerably improved
algorithm performance in our sample but still did not achieve published results.
Replication of a published algorithm based on the details provided in a publication
is challenging and better standards to ensure algorithm reproducibility, reliability
and validity should be established as an increasingly large part of day to day clinical
medicine is informed by automated image analysis algorithms. An important step
towards this goal is to make program code publicly available. The Python code un-
derlying our current manuscript can be found at https://github.com/MedVisBonn/
DrusenSegmentation-ModifiedChen.
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6.10 Supplementary material and methods

6.10.1 Replication of Chen et al. algorithm

In the algorithm proposed by Chen et al. [18], an anisotropic bilateral filter is applied
on the input B-scan, with a window size of 7x19 pixels to account for the stretch in
the horizontal direction of B-scans. In our work, we adapted the window size to
5x15 pixels to match the horizontal stretch in our dataset. In order to detect the
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FIGURE 6.4: Retinal nerve fiber layer removal and retinal pigment
epithelium estimation. Estimation of the retinal nerve fiber layer
(RNFL) (left), thresholding and narrow band around the estimated
RNFL (middle) and estimation of the retinal pigment epithelium cen-

terline (right).

retinal pigment epithelium (RPE) and ellipsoid zone, a threshold t, which is com-
puted using the cumulative histogram, is applied on the denoised B-scan. The left
and middle section of Figure 6.4 show the B-scan before and after thresholding at
t. Since the RNFL layer is bright as well, it will also be detected by threshold t. In
order to remove it, the denoised image is thresholded at 0.3*t. After this, regions of
size less than 50 pixels are removed from the thresholded image. The RNFL is then
estimated using the first pixel that belongs to the foreground pixels in each column.

For estimating the RPE layer, after thresholding the denoised image at t, re-
gions smaller than 50 pixels and all foreground pixels in a neighborhood of 20 pixels
within the RNFL layer are removed from the mask. For further clean up, the lower
boundary of the RPE region is estimated using the last foreground pixel in each
column. Any foreground pixel that falls outside of a 20-pixel neighborhood of the
lower boundary is removed. Finally, the RPE layer is estimated by fitting a 3rd de-
gree polynomial to the points at the center of the RPE region (right section in Figure
6.4). Drusen were defined as the area between the RPE fitted curve as the upper and
the ideal RPE estimation as the lower boundary with a minimum drusen height of
2 pixels (Figure 6.5). After detecting drusen per B-scan, the en face OCT image was
used for a false-positive- elimination-step as proposed by Chen et al. [18] (Figure
6.6.

However, Figure 6.7 (false positives) shows how inclusion of parts of the ellip-
soid zone along the RPE can lead to jumps in the estimated RPE layer.

6.10.2 Refinement of Chen et al. Algorithm

Our proposed refinement of Chen et al. algorithm consists of four refinement steps
and replacement of the bilateral filter with the multi-scale anisotropic fourth-order
diffusion (MAFOD) filter [204].

FIGURE 6.5: Drusen detection. Cropped image of an exemplary B-
scan with the retinal pigment epithelium centerline in red and fitted
curve in yellow (left) and the resulting drusen segmentation with red

domes indicating the detected drusen (right).
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FIGURE 6.6: False Positive Elimination (FPE). Segmented drusen are
displayed as white against black background with and without FPE.

The en-face image is based on the OCT volume scan.

The MAFOD filter was developed specifically to enhance ridge structures, which
appear as bright curves on darker background, e.g., the RPE layer in OCT images.
The MAFOD filter automatically detects the scale of the underlying ridge. It then
uses the eigenvalues and eigenvectors of the local Hessian matrix, computed at
that scale to create a fourth order diffusion tensor, which is utilized to create an
anisotropic diffusion effect. The enhancement results in a more accurate estima-
tion of RPE (see Figure 6.8). Since within each A scan, shadows similarly affect the
brightness of RPE and ellipsoid zone, we address this issue by performing a local
histogram equalization within A scans before applying the thresholding. Moreover,
in order to reduce speckle noise, Chen et al. work with a filtered version of the OCT
scan. Even though we found this noise reduction to be desirable, it also involves a
certain amount of blurring that makes it more difficult to separate RPE from ellip-
soid zone. We balance the advantages and drawbacks of filtering by incrementally
refining the segmentation by Chen et al. in three steps, which are described below,
and are based on the original B-scan, as well as two differently filtered versions. As
a fourth refinement, we propose an improved method for extracting the RPE mid-
dle axis from the segmentation, in a way that filters out some of the remaining false
positives.

In the first refinement step, after initial estimation of RPE using Chen’s method,
we use a local histogram equalization with a window of height 80 pixels and width
of 1 pixel. Since the goal is to find the RPE in this equalized image, a threshold-
ing with respect to both denoised and locally equalized image is used to detect the
brighter regions that are more probable to be part of the RPE. The pixels with values

FIGURE 6.7: Limitation of the replicated algorithm: false positive
drusen. Threshold image and centerline (left) and resulting false pos-

itive drusen detection (right).
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FIGURE 6.8: Replacing bilateral filter with MAFOD filter. Input B-
scan (left), filtered with bilateral filter (middle), and filtered with
MAFOD filter (right). MAFOD filter preserves or enhances center-
line’s intensity value with respect to its neighboring pixels, which
results in a more accurate binary estimation of the RPE layer, and
consequently a more natural shape of the final layer segmentation.

less than 20% of the intensity range in the denoised image, and pixels with values
less than 90% of the intensity range in the locally equalized image are set to be back-
ground (not part of the RPE). The rest are set as foreground pixels. Using the knowl-
edge that the RPE is thin, far away binary components are set to background. Thus
the initial RPE layer estimation that was computed using Chen’s method is used to
set any pixel outside a 20-pixel neighborhood of the estimated RPE as background.
After this step, components smaller than 50 pixels are removed. Then, in order to
fill gaps and holes in the estimated area, a dilation of size 2 is performed (see Figure
6.9). The newly estimated RPE gives us a more accurate boundary of the RPE area
that we will deploy in the further refinement steps.

In the second refinement step as shown in Figure 6.10, a window of size 10 x 1
pixels is used for histogram equalization on the denoised image. Again, a thresh-
old with respect to the denoised image and the locally equalized image is used to
binarize the B-scan, i.e., all pixels that have an intensity less than 20% of the inten-
sity range in the denoised image, and pixels with value less than 80% of the intensity
range in the equalized image itself, are set to background. In addition, pixels that are
outside the estimated RPE area from the first refinement step are removed. Finally,
a dilation followed by erosion filter is used to fill in the small holes on the estimated
RPE.

FIGURE 6.9: First refinement of the retinal pigment epithelium de-
termination. Estimated centerline and local histogram equalization
with window size: 80 × 1. (upper left), thresholding with threshold
t = 0.9 (upper right), removed RNFL and other bright pixels outside
the centerline band (lower left) and double dilation and computation

of upper and lower lines (lower right).
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FIGURE 6.10: Second refinement of the retinal pigment epithelium
determination. Local histogram equalization with a window size of
10 × 1 (left), thresholding with t = 0.8 (middle) and an update of the

upper and lower lines (right) is shown.

In the third refinement step, the same procedure is repeated on a Gaussian
blurred version of the denoised image (see Figure 6.11). We empirically found σ=2
works well on our data-set. The remaining steps are similar to the second refinement
step, except that the boundary of the mask computed from the second refinement
step are used for removing the non RPE pixels, and only one dilation is performed
for filling the gaps.

Drusen detection is based on the middle axis of the RPE. To extract it, Chen et al.
simply took the center of the highest and lowest pixels from the RPE segmentation
mask in each column of the image, and linearly interpolate in case of gaps. To reduce
the impact of small erroneous components that might remain in the final segmenta-
tion mask, in the fourth refinement step, we implemented an improved method for
estimating the lower and upper boundaries of the RPE from the segmentation mask
(see Figure 6.12).

We will explain the procedure in detail for the upper boundary. The lower
boundary is found in complete analogy. For finding the upper boundary, our proce-
dure is based on considering the connected components of the segmentation mask,
and finding two paths through them, from left to right and from right to left. We only

FIGURE 6.11: Third refinement of the retinal pigment epithelium de-
termination. The resulting image after Gaussian blur and local his-
togram equalization with a window size of 10 ×1 and red and green
lines indicating the upper and lower boundaries estimated from the
previous refinement (upper left), thresholding (upper right), the re-
sulting regions produced by shortest path computation (lower left)
and an under estimated druse indicated by a yellow circle (lower

right).
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FIGURE 6.12: Fourth refinement: Improved estimation of the upper
retinal pigment epithelial boundary. Result from previous refinement
(left), Gaussian, local histogram equalization and thresholding with-
out dilation as in the left image (middle) and the improved upper line

estimates (right).

Replicated Chen et al. [18]
coefficient p-value 95% CI

Intercept 9.23 .025 1.19 till 17.28
Binned ‘medium’ relative
to ‘small’ drusen load

11.18 .019 1.90 till 20.46

Binned ‘large’ relative to
‘small’ drusen load

31.57 < .0001 22.58 till 40.57

Presence of geographic
atrophy

-0.035 .992 -6.99 till 6.92

Refined algorithm
coefficient p-value 95% CI

Intercept 20.00 < .0001 10.07 till 29.96
Binned ‘medium’ relative
to ‘small’ drusen load

13.04 .026 1.57 till 24.51

Binned ‘large’ relative to
‘small’ drusen load

35.86 < .0001 24.75 till 46.98

Presence of geographic
atrophy

-3.80 .381 -12.41 till 4.80

TABLE 6.3: Multiple regression analysis for drusen load and pres-
ence of geographic atrophy as independent variables and overlap ra-
tio from volumetric computation as dependent variable. CI = confi-

dence interval.

preserve components that are either larger than 200 pixels, or have been used in the
paths in both directions. Other components are considered as outliers, and are dis-
carded. From left to right path, we start with the topmost pixel of the leftmost com-
ponent. From there, always the highest pixel from the current component is picked
and is heuristically followed over the upper boundary of the same component until
the end is reached. If we reach a column that is not covered by the current compo-
nent, we move to the topmost component in that column and skip empty columns.
After the left-to-right path reaches the image boundary, the last position is used as
an initialization point for the search in the inverse direction using the same tech-
nique. In the end, we only preserve components that are either very large, or have
been used in the paths in both directions. The others are discarded as outliers. As
the final step, a third degree polynomial is fit to the upper and the lower boundary,
separately. The center-line between the fitted curves is considered as the RPE layer.
The python code for both replicated and refinement of Chen et al.’s algorithm can be
found at https://github.com/MedVisBonn/DrusenSegmentation-ModifiedChen.

https://github.com/MedVisBonn/DrusenSegmentation-ModifiedChen
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Chapter 7

CNNs Enable Accurate and Fast
Segmentation of Drusen in Optical
Coherence Tomography1

7.1 Abstract

Optical coherence tomography (OCT) is used to diagnose and track progression of
age-related macular degeneration (AMD). Drusen, which appear as bumps between
Bruch’s membrane (BM) and the retinal pigment epithelium (RPE) layer, are among
the most important biomarkers for staging AMD. In this work, we develop and
compare three automated methods for Drusen segmentation based on the U-Net
convolutional neural network architecture. By cross-validating on more than 50, 000
annotated images, we demonstrate that all three approaches achieve much better
accuracy than a current state-of-the-art method. Highest accuracy is achieved when
the CNN is trained to segment the BM and RPE, and the drusen are detected by
combining shortest path finding with polynomial fitting in a post-process.

7.2 Introduction

Age-related macular degeneration (AMD) is the most common cause of irreversible
vision loss for people over the age of 50 in the developed countries [69]. Drusen, i.e.,
focal deposits of acellular debris between the retinal pigment epithelium layer and
Bruch’s membrane, are usually the first clinical sign of AMD. Their size, number,
and location can serve as biomarkers for disease progression.

Optical Coherence Tomography (OCT) is a fast and non-invasive way of obtain-
ing three-dimensional images of the retina, and is increasingly used to monitor the
onset and progression of AMD [1]. We would like to use OCT in large epidemiolog-
ical studies, which requires detecting and quantifying drusen in tens of thousands
of eyes, and is infeasible by manual analysis.

Even though considerable progress has been made on (semi-)automated quan-
titative OCT image analysis, in recent years [170], current approaches still do not
achieve sufficient accuracy, or require too much interaction, to be practical for use

1The content of this chapter has been previously published: Gorgi Zadeh et al. “Cnns enable ac-
curate and fast segmentation of drusen in optical coherence tomography” Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support Springer, Cham, (2017): 65-73 URL:
https://doi.org/10.1007/978-3-319-67558-9_8 [51].

https://doi.org/10.1007/978-3-319-67558-9_8
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Layer segmentation map Complex segmentation map Drusen segmentation map

FIGURE 7.1: Different label images overlaid on the corresponding B-
scan. The layer segmentation map has different classes for RPE (red)

layer and BM (yellow) layer.

in large-scale studies. The fact that convolutional neural networks (CNNs) have re-
cently achieved excellent results in related biomedical image analysis tasks [146] mo-
tivates us to develop and compare three CNN-based approaches to drusen segmen-
tation. In an evaluation on more than 50, 000 semiautomatically annotated B-scans
(i.e., two-dimensional cross-sectional images acquired by OCT), we demonstrate
that all three approaches outperform a current state-of-the-art technique for drusen
segmentation. Highest accuracy is achieved by combining CNNs with application-
specific post-processing.

7.3 Related Work

Among the many approaches for drusen segmentation [18, 40, 68, 72], we identified
the method by Chen et al. [18] as a state-of-the-art reference, based on the reported
accuracy and its successful use in a longitudinal study [166]. In Section 7.5.2, we will
show that our CNN-based results compare very favorably to this method.

Even though we are not aware of any prior work that would have applied deep
learning to the segmentation of drusen or retinal layers, two very recent works by
Lee et al. [96] and Zheng et al. [210] have used convolutional neural networks to
classify OCT images as either healthy or having AMD. The advantage of a segmen-
tation, as it is achieved in our work, is that it can be used to derive intuitive measures
such as size and number of drusen, which can be entered into progression models
[160, 166], or correlated with genetic or lifestyle variables.

7.4 Method

7.4.1 Data Preparation

In each OCT scan, a three-dimensional volume is covered by a varying number of
noncontiguous two-dimensional slice images, so-called B-scans. Our data set is gen-
erated as part of the MODIAMD (Molecular Diagnostics of Age-related Macular
Degeneration) study, an observational cohort study on intermediate AMD, and it
consists of 52, 377 such B-scans (512× 496 pixels) that belong to 682 OCT scans from
98 different subjects, each having a different number of followup scans taken. Each
eye is scanned with a density of either 19 or 145 B-scans that cover approximately
5− 6 mm. Due to this varying density, we segment B-scans independently; account-
ing for 3D context is left for future work.

The annotations provided with the data are segmentation maps of the RPE and
BM, as shown in Figure 7.1 (left). For each B-scan, a medical expert performed a care-
ful manual correction of an initial segmentation that was created with a proprietary
algorithm, spending about two minutes per B-scan on average.



7.4. Method 75

BM and RPE layers Without rectification With rectification

FIGURE 7.2: Rectification helps to avoid false drusen detections. The
blue curve is the RPE layer, the green curve is the estimated normal

RPE and the red areas show the drusen.

Since a gold standard segmentation of the drusen themselves was not available,
we generated reference drusen maps from the RPE and BM curves. To this end,
we rectified the images by vertically shifting each column so that the BM forms a
straight horizontal line. We then estimated the normal RPE layer by fitting a third
degree polynomial to the segmented RPE in the rectified image, which was then
warped back into the original image coordinates, where drusen were detected as ar-
eas in which the segmented RPE is elevated by more than two pixels above the nor-
mal RPE, cf. Figure 7.1 (right). An experienced rater confirmed that this procedure
led to plausible drusen segmentation masks. Figure 7.2 illustrates how rectification
helps to avoids false positive detections.

7.4.2 Network Architecture and Training

Because of its good performance in related segmentation tasks, we chose the U-Net
architecture [146] as the basis of our methods. It consists of two symmetric paths,
a contracting one that is used to capture image context, and an expanding one to
recover the original resolution.

Since background is a dominant class in all our maps, it is crucial to assign spa-
tially varying pixel weights. Similar to [146], we define weights according to

w(x) = wc(x) + w0Gσ(x), (7.1)

where wc is defined as the overall number of pixels divided by those from class
c, in order to account for class frequencies. In addition, training is focused on the
exact boundaries in the segmentation masks by centering two-dimensional Gaussian
weights Gσ(x) with standard deviation σ on them. We keep the maximum weight
in case weights from neighboring Gaussians overlap.

Since the number of foreground and boundary pixels differs greatly between
our three approaches, we had to adapt the values of w0 and σ accordingly. We will
mention the exact values that were used in each experiment. They were found em-
pirically in a small pilot experiment that involved only a small fraction of all data (3
out of 682 scans for training, one for testing).

Stochastic gradient descent from the caffe framework [75] is used for training.
The momentum is set to 0.99. The initial learning rate is 10−3, and is reduced at
every 200, 000 steps by a factor of 0.1. We stopped the training when the validation
accuracy plateaued, i.e., at 603, 000 iteration. We used the U-Net implementation
provided by the authors, including their augmentation layer, and used the same
overlap-tile strategy with 2 tiles per image. We added batch normalization layers
after ReLu layers to avoid internal covariate shift [67].
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7.4.3 Three Approaches to Drusen Segmentation

The most straightforward way of applying the U-Net to our problem is direct seg-
mentation, i.e., training on the drusen maps derived in Section 7.4.1. We used
weights according to Equation (7.1) with parameters w0 = 150 and σ = 30. As
will be shown in Section 7.5.2, this simple strategy already achieves much better ac-
curacy than a state-of-the-art method. Our main technical contribution is to explore
two more complex approaches, which improve accuracy further by combining the
CNN with application-specific post-processing.

In our layer based approach, we train the U-Net to segment the RPE and BM
layers, and estimate the drusen from the results. In this case, the network is set up to
output four class probabilities for each pixel, i.e., background, RPE layer, BM layer,
and a class that captures cases in which the two layers overlap. We used weights
according to Equation (7.1) with parameters w0 = 100 and σ = 15.

We recover continuous curves that represent the RPE layer and the BM via a
shortest path algorithm. To this end, we convert the combined probability pc+o of
class c (i.e., RPE or BM) and the overlap class o, to a cost χc+o so that, in each image
column, the pixel with highest probability can be traversed at zero cost. This is
achieved by defining

χc+o = − log

(
pc+o

ij

max(pc+o
:j )

)
(7.2)

where max(pc+o
:j ) is the maximum combined probability in column j. Dijkstra’s algo-

rithm is used to find continuous curves that connect the left and right image bound-
aries with the lowest accumulated cost. To obtain smoother curves, we favor non-
diagonal moves over diagonal ones by multiplying the step size to the local path
cost.

Based on these layer estimates, we proceed to detect drusen via rectification,
polynomial fitting and thresholding, in the same way as described in Section 7.4.1.

In our RPE+drusen complex based approach, the U-Net segments the area be-
tween RPE layer and BM, which has been termed RPE+drusen complex in [19], and
which is shown in the center image of Figure 7.1. We simply perform a hard seg-
mentation into RPE+drusen complex or background. We used weights according to
Equation (7.1) with parameters w0 = 30 and σ = 15.

In almost all cases, the largest component of the segmentation connects the left
and right image boundaries, and its upper and lower boundaries can be used as RPE
layer and BM, respectively. In the case of a discontinuity, which is usually due to a
layer atrophy, the respective boundaries of all components are kept as candidates,
and a shortest path is found that connects the left and right image boundaries by
adding the lowest possible number of additional pixels. From the resulting curves,
drusen are detected in the same way as in the layer based approach.

7.5 Experiments and Results

7.5.1 Cross-Validation Setup

We used five-fold cross-validation to evaluate the methods on all available data. To
ensure unbiased results, all scans from the same subject were placed in the same
fold. For each of the three approaches described in Section 7.4.3, this resulted in five
runs with ∼ 70 subjects (∼ 37, 500 images) for training, 8 subjects (∼ 4, 000 images)
for validation, and ∼ 20 subjects (∼ 10, 500 images) for testing. The U-Net was



7.5. Experiments and Results 77

Measure Chen et al. Direct Layer based Complex based
ADAD 92.33± 460.95 28.45± 74.08 7.19± 36.04 11.14± 52.92

OR(drusen) 20.48%± 26.87 41.35%± 31.3 55.88%± 33.85 47.42%± 33.45
OR(complex) - - 82.6%± 7.26 76.74%± 6.9
ADAD(FPE) 55.67± 277.97 15.08± 44.76 4.92± 29.69 9.58± 50.87

OR(FPE,drusen) 24.20%± 31.52 47.90%± 33.23 64.24%± 36.09 58.66%± 35.63

TABLE 7.1: All CNN-based methods achieve much better results than
Chen et al. [18], the previous state of the art. Lowest absolute drusen
area difference (ADAD), and highest overlap ratio (OR), have been
achieved by our layer based approach. The bottom two rows show
the results of after an additional false positive elimination (FPE) step.

trained end-to-end with random initial weights that were sampled from a Gaussian
distribution with a standard deviation of size

√
2/N, with N being the number of

input nodes of each neuron. On a Titan X GPU, each of these 15 experiments took
about three days.

7.5.2 Quantitative Evaluation

We evaluated the drusen segmentation with two quality measures that were pre-
viously established for this application [18]. The overall area covered by drusen
is an important summary of drusen load, and the absolute drusen area differ-
ence (ADAD) measures the error in estimating it. Formally, ADAD(Yk, Xk) =
|Area(Yk)−Area(Xk)|, where Y and X are the ground truth and the predicted seg-
mentation, and k is the B-scan index. Following [18], the mean and standard devia-
tion of ADAD are computed only over the columns that contain a druse.

Since the ADAD does not capture the accuracy of spatially localizing the drusen,
it is complemented by the overlapping ratio (OR), which is defined as OR(Yk, Xk) =
Xk∩Yk

Xk∪Yk , i.e., the ratio of pixels with true positive drusen detections over the sum of
true positives, false positives, and false negatives. Again, mean and standard devia-
tion are computed.

In addition to the final drusen segmentation, our layer based and RPE+drusen
complex based approaches produce a segmentation of the RPE layer and BM. We
compare these two approaches with respect to the accuracy of this intermediate re-
sult by also computing the OR for the area between these two layers.

Table 7.1 compares the errors (ADAD) and accuracies (OR) of our three ap-
proaches over all 52, 377 images. As a baseline, it also includes results from our
reimplementation of the state-of-the-art method by Chen et al. [18], which per-
forms bilateral filtering, detection and removal of the retinal nerve fiber layer (i.e.,
the bright layer that can be seen at the top in Figure 7.2), thresholding based seg-
mentation of the RPE, detection of drusen by comparing the RPE segmentation to
the result of a polynomial fit, and finally false positive elimination using an en face
projection image. The top three rows of the table are the evaluation results without
the false positive elimination (FPE) step, and the two bottom rows are the results
after using the FPE step with similar parameters as in [18].2 Clearly, the FPE step
has a positive overall effect on all methods.

2The selective en face projection relies on an estimate of the RPE layer, which the direct drusen
segmentation does not provide. Thus, only those steps of the FPE that do not rely on the en face could
be applied in case of the direct segmentation.
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Ground truth Layer based approach Chen et al.

FIGURE 7.3: This visual comparison indicates that drusen segmenta-
tion using our approach is more robust to additional pathology such

as GA than the method by Chen et al. [18].

We note that our results from the Chen et al. method are significantly worse than
those reported in [18]. We believe that the main reason for this is the much lower
axial resolution of our B-scans (496 pixels) compared to theirs (1024 pixels). As a
result, layers that they could easily distinguish via thresholding often got merged in
our data. Table 7.1 clearly shows that, at the image resolution available to us, all three
CNN-based approaches were able to segment drusen much more accurately than the
previous state of the art, both with or without the FPE step. Further improvements
are obtained by our customized layer and complex based approaches, which use
higher-level knowledge, e.g., that drusen can be recognized as deviations from a
smooth normal RPE layer, which runs in parallel to the BM. The fact that the layer
based approach achieved highest accuracy might, in part, be due to the fact that it
makes use of continuous CNN-derived class probabilities.

Without the FPE step, all methods take less than a second per B-scan: 0.31 second
for Chen’s method; 0.34 second for the direct drusen segmentation; 0.57 second for
the complex based and 0.81 second for the layer based approach.

7.5.3 Robustness to Additional Pathology

In more advanced stages of AMD, it is important that methods for automated drusen
detection are robust to the presence of additional types of pathology, such as geo-
graphic atrophy (GA), which can be seen from the relative hyperreflectance in the
choroidal layer, at the center of all images in Figure 7.3. Our training data included
correctly annotated images with such pathology, so the CNN should have learned
how to deal with it.

We computed the same measures as in Table 7.1 for a subset of 49 OCT scans that
contained GA. The results were similar, with or without the FPE step. For the layer
based approach, results were ADAD = 2.84± 8.28, OR = 49.87%± 28.08, and for the
complex based approach, ADAD = 5.66± 19.74 and 40.94%± 24.76. The fact that
these numbers are similar to those in the overall dataset illustrates the robustness of
these approaches in the presence of GA.

7.5.4 3D Visualization of Results

As an additional visual check of the segmentation quality, Figure 7.4 shows sum-
maries of the full 3D OCT data in an eye for which a high-resolution scan was avail-
able. Chen et al. [18] propose a selective volume projection that reduces such data
to a 2D en face image in which the drusen stand out as bright spots. Figure 7.4 (left)
shows such an image with the ground truth and CNN-derived drusen segmenta-
tions overlaid as colored curves. It can be seen that they strongly overlap.
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En face image Ground truth Layer based approach

FIGURE 7.4: On the en face image, red curves delineate the ground
truth drusen segmentations, blue curves our segmentation, purple
curves regions where the two overlap. Surface renderings illustrate

that the RPE layer has been reliably detected.

The center and right subfigures visualize the ground truth and segmented RPE
layers in the same eye as 3D surfaces, which have been rectified based on the BM
for better visualization. A high degree of continuity between adjacent B-scans is
observed despite the fact that we process each B-scan independently.

7.6 Conclusion

We present the first three CNN-based approaches for a fully automated segmenta-
tion of drusen in OCT images, which is an important task for diagnosing age-related
macular degeneration and modeling disease progression. On the 52, 377 annotated
images available to us, all three approaches produced much better results than a
state-of-the-art method. Best results were achieved by combining the U-Net archi-
tecture with application-specific post-processing.

After training, segmentations are obtained fast enough for use in epidemiolog-
ical studies, and they have been shown to be robust to the additional presence of
geographic atrophy. In future work, we would like to investigate how to best ac-
count for three-dimensional context that has a highly variable resolution.
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Chapter 8

Intelligent Interaction and
Uncertainty Visualization for
Efficient Drusen and Retinal Layer
Segmentation in Optical Coherence
Tomography1

8.1 Abstract

Convolutional neural networks (CNNs) represent the state of the art for fully au-
tomated medical image segmentation. However, few works have combined CNNs
with interactive user feedback in order to verify and, where necessary, correct their
results. We present an interactive visual system that achieves this for the specific
use case of segmenting drusen, which serve as a biomarker of age related macular
degeneration, from Optical Coherence Tomography. Our main idea is to exploit the
probabilistic nature of CNN-based segmentation. First, we derive two uncertainty
measures from it. We demonstrate that they indicate cases in which automated seg-
mentation is likely to have failed, and that visualizing them makes manual verifica-
tion and correction more efficient. Second, based on the probabilistic information,
we design intelligent tools for segmentation correction, which automatically pro-
pose the most likely alternative segmentation in agreement with user-specified con-
straints. In a small user study, uncertainty visualization and intelligent interaction
reduced the time required to correct retinal layer segmentation by around 53% and,
for drusen segmentation, even by 73%. In the future, we plan to use our system
not only for efficient segmentation correction, but also for rapid creation of larger
training sets.

8.2 Introduction

For most automated image segmentation tasks in computer vision [57] and medical
image analysis [102], current state-of-the-art techniques are based on convolutional
neural networks (CNNs2). In this work, we describe the design, implementation,

1The content of this chapter has been previously published: Gorgi Zadeh et al. “Intelligent in-
teraction and uncertainty visualization for efficient drusen and retinal layer segmentation in Optical
Coherence Tomography” Computers & Graphics 83 (2019): 51-61. URL: https://doi.org/10.1016/j.
cag.2019.07.001 [205].

2Table 8.1 lists all acronyms used in this article.

https://doi.org/10.1016/j.cag.2019.07.001
https://doi.org/10.1016/j.cag.2019.07.001
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FIGURE 8.1: This view of our system illustrates two of our main con-
tributions: The layer segmentation editor (larger subwindow) uses
the proposed uncertainty visualization (shades of red) both on the
RPE (top) and BM (bottom) layers. The heatmap below visualizes
probability (P) and entropy (E) based uncertainty measures, aggre-
gated over two-dimensional B-scans; it can also be used for nav-
igation. The toolbox on the right includes our intelligent interac-
tion tools, including constrained shortest path (CSP), local smoothing
(LS), and semi-automated drusen extraction (SDE). For comparison,
our system also implements traditional tools, such as pen, line, flood

fill, or spline based editing.

and evaluation of a system for fast and efficient proof-reading and editing of CNN-
based segmentations. Few such systems currently exist, but we believe that they are
relevant for two main reasons:

First, even though CNNs substantially advanced the previous state of the art,
they can rarely be relied upon “blindly” in cases where crucial diagnostic or thera-
peutic decisions should be taken based on them. In particular, the accuracy of auto-
mated segmentations can be highly influenced by the presence of other pathologies,
especially if they have not been part of the training data. Even when deriving reli-
able image-based biomarkers for statistical evaluation in scientific or clinical studies,
it is important to ensure that the underlying segmentations are correct.

Second, for achieving high accuracy and robustness, a diverse and large labeled
data set is required. Especially for high-resolution three-dimensional images, cre-
ating such training data fully manually can be a prohibitive effort. To reduce it,
one might consider an iterative approach in which an initial CNN is trained with a
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AMD Age Related Macular Degenration
BM Bruch’s Membrane
CSP Constrained Shortest Path

CNN Convolutional Neural Network
LS Local Smoothing

OCT Optical Coherence Tomography
RPE Retinal Pigment Epithelium
SDE Semi-automated Drusen Extraction

TABLE 8.1: List of all acronyms used in this paper.

dataset of limited size, and is applied to a new, still unlabeled set of data. The re-
sulting segmentations should be corrected by a human rater, and can then be used
to further refine the CNN. This cycle can be repeated for a few times, until a well-
trained CNN is achieved. This strategy should be more efficient than annotating all
images from scratch if suitable tools for correcting CNN-based segmentations are
available.

The use case of our system is segmentation of Optical Coherence Tomography
(OCT), which provides three-dimensional images of the macula as a sequence of 2D
cross-sectional scans, called B-scans. Figure 8.1 shows the 10th B-scan of an OCT
volume with 19 B-scans overall. The retinal layers are visible in OCT, and several
biomarkers can be derived from their segmentation [192]. Among them, we focus
on drusen, which evolve as deposits of extracellular debris under the retinal pigment
epithelium (RPE) layer, the upper of the two layers in Figure 8.1. In a normal eye,
the RPE should run parallel to the Bruch’s membrane (BM), shown as the lower of
the two layers. This work focuses on segmenting the RPE and BM layers, and from
them drusen, as abnormal deviations between the two. For this, we provide a semi-
automated system that implements the following novel features:

1. We derive uncertainty measures from the probabilistic CNN output and visu-
alize them to quickly guide the user towards remaining errors in a CNN-based
segmentation of RPE and BM. This is described in Section 8.5.

2. We introduce intelligent interaction tools that allow for efficient correction of
layer segmentation results, again based on the probabilistic CNN output. In
particular, our constrained shortest path tool forces the layer segmentation to
pass through a point clicked by the user, and automatically provides sugges-
tions for improved segmentations in neighboring 2D slices (B-scans). These
tools are described in Section 8.6.

3. We introduce a semi-automated tool for segmenting drusen based on layer
segmentations of RPE and BM. This is described in Section 8.7.

The remainder of our paper reviews similar systems (Section 8.3), provides the
background that is required to make our paper self-contained (Section 8.4), and re-
ports experiments that were done to evaluate our system (Section 8.8). In particular,
measuring the time that was required by test users to correct segmentations with
uncertainty visualization and intelligent interaction, compared to finishing the same
task with standard tools, indicates a speedup of more than a factor of two.
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FIGURE 8.2: In this overview of the original segmentation pipeline,
the parts that had to be modified for our guided semi-automated edit-
ing framework are highlighted with dashed blue boxes. The individ-

ual stages are explained in Section 8.4.

8.3 Related Work

This work describes a significantly extended version of a system that we presented
previously at a workshop [50]. It now includes multiple novel methods: In partic-
ular, we exploit the 3D nature of retinal layers to transfer the user’s feedback into
adjacent B-scans, and to make automated suggestions for more plausible segmen-
tations. Moreover, we added a novel overview visualization of the uncertainty, as
well as a semi-automated tool for drusen segmentation, a task that was not sup-
ported at all in the earlier version. The user study reported in Section 8.8.1 has been
extended accordingly, and has been made more realistic by including another basic
tool, spline-based layer editing. It confirms the usefulness of all newly introduced
methods.

Semi-automated methods for medical image segmentation have a long history
[124], and several recent works specifically addressed segmentation correction [58,
183]. According to the overview given by Heckel et al. [64], they follow three main
strategies: Making parameter tuning more convenient, integrating additional infor-
mation about the desired result into an automated segmentation (“refinement”), or
correcting segmentations manually, independently from the algorithm that first gen-
erated them. Our intelligent methods belong to the second and third of these cate-
gories: Our constrained shortest path tool (Section 8.6.1) allows the user to specify
points that should lie on the final layer segmentation. This is a classic and widely
used type of interaction [121], which we adapt to work with our specific segmenta-
tion method, and extend to also affect neighboring B-scans. Suggesting improved
segmentations of Bruch’s membrane (Section 8.6.2) uses some internal information
from the segmentation algorithm, while our local smoothing method (Section 8.6.3)
and Semi-automated Drusen Extraction (Section 8.7.1) work independently from the
underlying segmentation method.

Most existing software for visualizing and analyzing data from Optical Coher-
ence Tomography is commercial, and limited information is available on the un-
derlying algorithms. Stratus OCT (Carl Zeiss Meditec, Inc. Dublin, CA) can be
used for measuring retinal nerve fiber layer thickness [14]. Other software includes



8.4. Background on Application and Underlying Segmentation Technique 85

Spectralis HRA+OCT (Heidelberg Engineering, Inc., Heidelberg, Germany), Spec-
tral OCT/SLO (Opko/OTI, Inc., Miami, FL), SOCT Copernicus (Reichert/Optopol
Technology, Inc., Depew, NY), RTVue-100 (Optovue Corp., Fremont, CA), and Cir-
rus HD-OCT (Carl Zeiss Meditec, Inc.). They can all be used for macular thickness
measuring and are compared with each other in [195]. To the best of our knowl-
edge, none of these systems currently offer CNN-based segmentations or specific
mechanisms for highlighting potential segmentation errors.

An alternative open-source system for semi-automated OCT segmentation is
OCTSEG [117]. However, its segmentation is based on edge detection and mini-
mization of a custom energy functional, not on CNNs, the system does not use any
uncertainty visualization, and manual corrections are made completely freehand, as
opposed to our intelligent interactions.

When discussing uncertainty visualization, we will distinguish between segmen-
tation errors, which can be quantified by comparing a given segmentation to a ref-
erence (“ground truth”), and segmentation uncertainty, which has to be inferred
without such a reference.

Examples of visualizing segmentation errors include work by Cárdenes et al.
[13], who visualize segmentation quality with newly derived similarity measures.
Von Landesberger et al. visualize how statistical shape model based segmentations
converge to an expert segmentation [91] and present a system for comparative eval-
uation across larger datasets [92]. Geurts et al. [47] visually compare segmentation
quality to identify the most suitable automated algorithms. Raidou et al. [137] de-
veloped a system for visually exploring segmentation errors both in individuals and
in whole cohorts.

In contrast to these approaches, our goal is to guide the user towards images
where corrections are most likely to be required, even in cases where no ground
truth is available. In this sense, it is similar in spirit to the uncertainty-aware guided
volume segmentation of Praßni et al. [135], or to work by Summa et al. [178] on
quantifying uncertainty in 2D image segmentations. However, they do not directly
apply to our case, since they are specific to different algorithms. Learning shape
and appearance priors is another strategy to detect potential segmentation errors
[151], but cannot easily be applied to segmenting retinal layers in the presence of
pathological anomalies such as drusen.

Since we build on a CNN-based segmentation, we note that numerous recent
works have used visualization to support better understanding of neural networks
[38, 77, 114, 140, 176, 182, 197, 200, 208], to monitor their training [103], and to fa-
cilitate tuning of hyperparameters such as the number of neurons and layers [104,
130, 145]. However, none of them are concerned with using intermediate results to
support correcting individual outcomes, which is our main focus.

Entropy is a natural building block for uncertainty measures, and will be used in
Section 8.5.1. Related measures were used for visualizing segmentation uncertainty
by Potter et al. [134], and another closely related measure was used by Al-Taie et al.
[3]. We will adapt this measure to our needs, combine it with a second uncertainty
measure, and validate it in the context of our application.

8.4 Background on Application and Underlying Segmenta-
tion Technique

On the application side, it is our goal to use OCT imaging for the epidemiologi-
cal study of age related macular degeneration (AMD), which is known to be the
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leading cause for irreversible blindness in most of developed countries [1, 69]. Seg-
menting and measuring disease biomarkers in hundreds of OCT scans can help us
to better understand its causes, and to find effective treatments. Drusen are one of
the early appearing and important biomarkers, since their size, number, and loca-
tion contribute to AMD staging and tracking of disease progression. Drusen and
retinal layer segmentation are widely studied problems in the field of medical im-
age analysis [192]. With the recent popularity of convolutional neural networks for
image segmentation, various groups have started using deep neural networks for
this application [6, 39, 51, 60]. Our system builds on our own prior work [51]. We
previously demonstrated that it allows for a more accurate segmentation of drusen
compared to a traditional state-of-the-art method [18].

Figure 8.2 illustrates the underlying computational pipeline for drusen segmen-
tation. It finds the drusen by first segmenting the RPE and BM layers. In this
pipeline, the convolutional neural network used for layer segmentation is a U-Net
[146], which consists of two symmetric paths, a contracting one that is used to cap-
ture image context, and an expanding one to recover the original resolution. The
network is set up to transform an input B-scan into four probability maps, which in-
dicate the probability of a pixel belonging to the background (top left in Figure 8.2),
RPE layer (bottom left), BM layer (top right), or to a special case in which the two lay-
ers overlap (bottom right). These probability values are obtained by first computing
a score s(l)ij for each label l and pixel (i, j), and then converting it into non-negative

and normalized probabilities p(l)ij via the softmax:

p(l)ij =
exp s(l)ij

∑l′ exp s(l
′)

ij

(8.1)

These maps are the basis for the uncertainty visualization discussed in Section 8.5.
Next, our pipeline extracts a curve representation of the RPE and BM layers from

the probability maps. To this end, the probability maps are first converted into cost
maps using a cost function defined in [51]. In Figure 8.2, the cost map for the BM is
shown on the left, for the RPE on the right. Layer representations are computed us-
ing Dijkstra’s algorithm [167], as paths that connect the left and right image bound-
aries with minimum accumulated cost of the corresponding cost map.

The final steps detect drusen based on the layer segmentations. For this, the
rectification step vertically shifts each column so that the BM layer forms a straight
horizontal line. An ideal (drusen-free) RPE is then estimated by fitting a third de-
gree polynomial to the rectified RPE. Finally, the area that lies below the RPE, but
above the estimated ideal RPE is taken to represent drusen and everything is warped
back into original image coordinates. In a final false positive elimination (FPE) step,
falsely detected drusen with a height of 2 pixels or less are removed from the seg-
mentation [51].

8.5 Visualizing Segmentation Uncertainty

The data that was available to train the CNN mostly contained OCTs with intermedi-
ate AMD. Therefore we found that the automated pipeline fails to create a plausible
segmentation for OCTs that include advanced stages of AMD, and in the presence
of additional pathological changes. Our system guides the user to such problems by
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estimating and visualizing segmentation uncertainty based on the network’s proba-
bility maps.

8.5.1 Uncertainty Estimation

As in [50], two measures are used to estimate segmentation uncertainty. One is based
on entropy (ue), the other one on the probability (up).

For the entropy-based measure, we consider individual columns of the B-scan,
which are called A-scans (axial depth scans). Ideally, the layer probabilities in an
A-scan would be concentrated in a single pixel, indicating that the network has been
certain regarding the exact location of the corresponding layer within that column.
Entropy is a natural measure to quantify the degree to which probabilities are con-
centrated, with a high entropy indicating high uncertainty with respect to layer lo-
calization.

To compute per-column entropy, we first need to compute a column-normalized
probability q(l)ij at each pixel position (i, j) and for each label l ∈ {RPE, BM}. Given

the raw values p(l)ij from the probability maps, it is obtained as

q(l)ij =
p(l)ij

∑i p(l)ij

. (8.2)

Using q(l)ij , our normalized entropy-based uncertainty measure u(l,j)
e ∈ [0, 1] is

then defined as

u(l,j)
e = 1− Gσ ∗ exp

(
∑

i
q(l)ij ln q(l)ij

)
, (8.3)

where the superscript (l, j) indicates column j of retinal layer l. Later on, per-
layer/per-column uncertainties are aggregated into a per-B-scan uncertainty. For
this, a small amount of regularization via Gaussian smoothing Gσ across neighbor-
ing columns becomes important to add robustness, so that isolated columns of high
entropy do not receive an excessive weight. In all our experiments we set σ = 2,
which corresponds to a Gaussian window of size 17 pixels. Over the boundaries,
the values are reflected for the convolution operation.

Even if uncertainty is increased in a relatively small area, and in one of the lay-
ers, we would like to bring this to the expert’s attention. Therefore, per-layer/per-
column uncertainties are aggregated into a per-B-scan uncertainty ue by taking the
maximum over all u(l,j)

e , i.e.,

ue = max
l,j

(
u(l,j)

e

)
. (8.4)

The second uncertainty measure up is computed based on the exact value of the
probability at each point where the final segmented layer is passing through, which
indicates the network’s confidence that the retinal layer exists at that point, i.e.,

u(l,j)
p = 1− Gσ ∗ p(l)j , (8.5)

where p(l)j = p(l)ij are directly taken from the probability map of layer l, at the
row index i where the shortest path traversed column j. Again, regularization via
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FIGURE 8.3: On the right, uncertainties are shown on an en-face im-
age, which is generated by projecting the OCT volume along A-scans;
one such A-scan is shown as a vertical line on the left. In this exam-
ple, the entropy based uncertainty ue is shown for the RPE, but other

uncertainty measures or layers can be chosen.

Gaussian smoothing is used to add robustness, and per-layer/per-column values of
u(l,j)

p are aggregated into a global up by taking the maximum of u(l,j)
p over l and j.

8.5.2 Visual Encoding of Uncertainty

The user can choose between uncertainty measures ue or up for visualization. Fig-
ure 8.1 shows an example where the user has chosen ue. We have assigned different
color maps for ue (orange/red) and up (blue) to clarify which measure is currently
shown. The per-column uncertainty is color coded over each retinal layer. More
saturated colors indicate stronger uncertainties to make them stand out from the
grayscale background.

In the two navigation heatmaps below the subwindow, the ith cell corresponds to
the ith B-scan. They visualize the per-B-scan uncertainties with respect to each mea-
sure. Cells with more saturated colors are more likely to require the user’s attention
for segmentation correction. By clicking on each cell, the corresponding B-scan is
shown to the user in the subwindow.

We have decided to visualize both ue and up because of occasional cases in which
one was more sensitive to segmentation errors than the other [50]. In addition, in
the evaluation (Section 8.8) it is observed that ranking B-scans with respect to both
measures correlates better with a manual and error-based ranking, compared to the
case where only one of the uncertainty measures is used.

In addition to the navigation heatmap, the user can visualize the uncertainty
measures over the en-face projection image as shown on the right in Figure 8.3. The
en-face view is a standard view in OCT that corresponds to a 2D projection of the
volume along axial lines, resulting in a frontal view of the retina. En-face images
are computed using selective summed-voxel projection [18], which first extracts a
narrow sub-volume between two parallel curves that contain the RPE. In practice,
we use the BM layer as the bottom curve; the top curve is determined by the tallest
druse in all B-scans. To enhance the visibility of drusen in the en-face projection,
before summing up voxel intensities of selected sub-volumes in axial direction, the
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B-Scan 33 B-Scan 34 B-scan 35 B-Scan 36 B-Scan 37

FIGURE 8.4: Illustration of the workflow for adding missed drusen
with the constrained shortest path tool; each row shows the updated
result after one click. This action not only changes the layer segmen-
tation in the current B-scan (#35), but also automatically updates RPE
suggestions in the neighborhood. Red is the suggested RPE segmen-
tation; green is the gold standard RPE; blue is the CNN based RPE
segmentation. Here, the gold standard is visualized only to highlight
the accuracy of RPE suggestions; in real-world uses, it is of course

unavailable.

intensity of voxels between RPE and BM are replaced by the maximum intensity in
that column.

Visualizing layer uncertainties on the en-face image gives the user a complete
overview of segmentation errors within the volume. Clicking on a point in the en-
face viewer automatically takes the user to the corresponding B-scan. Within it, the
corresponding A-scan is marked with a vertical line in the editor.

8.6 Methods for Layer Segmentation Editing

Our system provides three intelligent interaction methods for editing layer segmen-
tations: Constrained shortest path, automated proposal of alternative segmentations
based on 3D context, and local smoothing. In addition, our system implements all
standard editing tools.

8.6.1 Constrained Shortest Path Method

Figure 8.4 shows multiple examples in which the shortest path algorithm failed to
follow drusen in the RPE layer. This type of error is very common, and correcting
it freehand is a substantial effort. Therefore, we designed a semi-automated method
that facilitates correcting such errors by clicking on a single point that the desired
layer segmentation must pass through.

To achieve this effect, when the user selects a point using the “constrained short-
est path (CSP)” tool, the cost map of the B-scan, as illustrated in Figure 8.2, is mod-
ified based on the user’s input. In particular, the cost is set to zero at the pixel the
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FIGURE 8.5: The first row shows layer correction with our local
smoothing method: In the examples on the left, a lack of image con-
trast caused a noisy estimate of Bruch’s membrane. On the right, this
has been fixed using polynomial fitting in the region specified by the
gray vertical lines by the user. In addition, the uncertainty color codes
in the navigation heatmaps are updated. The second row shows the
BM layer suggestion using 3D context. The user can completely re-

place the old layer (in red) with the newly suggested (in green).

user clicks on, and the cost of every other pixel in the same image column is set to a
large number. When repeating the shortest path extraction, this modification forces
the new layer segmentation to run through the selected point.

Using exactly the same cost function as in our prior work [51] within the CSP
method sometimes led to implausible spiky results. We found that this is partly
caused by the fact that in the original cost function, the layer probabilities at each
point are divided by the maximum probability within the same column, which
sometimes made vertical moves within the cost map much cheaper than horizon-
tal or diagonal ones. To solve this, we made two modifications: first, we replaced
the maximum over the column with the maximum over the full image,

χ(l) = − log

 p(l+o)
ij

max p(l+o)
::

 , (8.6)

where pij is the probability at position (i, j), χ(l) is the cost image for layer l, and

max(p(l+o)
:: ) is the maximum, taken over the full B-scan, of the combined probability

of l and a special class o that is used to encode layer overlaps. Class o is defined sep-
arately, since the two layers might overlap in some pathological cases. Second, we
allow the user to modify the weight of the cost of making vertical moves compared
to horizontal ones in the software.
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FIGURE 8.6: When the CSP tool is used in one B-scan, a shortest path
in an orthogonal slice is extracted to create RPE suggestions for neigh-
boring B-scans. The second column shows the shortest path found in

the cost map of that slice for the point selected in B-scan #35.

To keep track of the changes made to the layer segmentations, we render mod-
ified layers in yellow. On the en-face projection of edited layers, a small yellow
marker is added near the corresponding B-scan. In addition, as can be seen in Fig-
ure 8.5, the uncertainty values in the navigation heatmaps below the viewer are
updated by setting them to the color code for absolutely certain.

8.6.2 Segmentation Suggestion Using 3D Context

Suggestions for RPE Layer

If a druse is hard to detect and is missed by the layer segmentation pipeline, it is
highly likely to be missed in the neighboring B-scans as well, at least when B-scans
are sampled densely enough. In such scenarios, we use the information provided by
the user for correcting the RPE layer in current B-scan to suggest a segmentation in
the adjacent B-scans. If the user finds the suggested RPE layer plausible, he or she
can replace the existing segmentation by the newly suggested one.

The implementation of this is illustrated in Figure 8.6: When the CSP method
forces the RPE layer to follow a druse at the selected point in a B-scan, in order to
provide plausible segmentation suggestions in the neighborhood, another shortest
path is computed in an orthogonal slice of the OCT volume (A-scan slice, shown in
yellow).
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The second column of Figure 8.6 shows the A-scan slice for the selected point
in a sample B-scan. Using the shortest path in the A-scan slice, we can estimate
where the RPE layer must go through in neighboring B-scans. Figure 8.6 shows the
suggested RPE layers for 4 B-scans in the vicinity of 35th B-scan in the given OCT
volume in red.

The spacing between B-scans is typically much larger than the in-plane resolu-
tion of B-scans. We found that, for this reason, the steep vertical moves permitted
by the original cost function from [51] and discussed in Section 8.6.1 are actually
beneficial here. Therefore, we do not use the modifications from Equation 8.6 in this
case.

Suggestions for BM Layer

To provide suggestions for the BM layer, a 3D cubic B-spline is used to fit a surface to
the original BM segmentation throughout a 3D neighborhood. In Figure 8.5 (bottom
row), the green curve shows where the estimated surface passes through the current
B-scan. This results in the suggested BM segmentation. In order to reduce the effect
of erroneous segmentations on the estimation, segmentation uncertainties are used
as weights during surface fitting, i.e., original segmentation points with higher un-
certainty will have less effect in the fitting process. The user can choose between ue
or up as weights, and tune the size of the neighborhood used for estimation.

8.6.3 Local Smoothing

The local smoothing (LS) tool is introduced to correct automated layer segmenta-
tions that are in the correct location overall, but too “wiggly”. Usually, such segmen-
tation errors happen when the B-scan is noisy or has weak contrast. For correction,
the LS tool allows the user to pick an interval over an specified layer. The original
layer segmentation in that interval is then replaced with a smoothed version, which
is obtained by fitting a low-degree polynomial to the pixel positions of the original
segmentation. The amount of smoothing can be controlled by the user by chang-
ing the polynomial order. The left image in the top row of Figure 8.5 shows a case
where the user has selected an interval over the Bruch’s membrane. On the right,
the resulting corrected layer segmentation is shown.

8.6.4 Basic Tools

Our system implements three basic tools, to be used as a baseline in our evaluation.
The first one is a “pen” that marks or unmarks individual pixels as belonging to
the selected layer. The second one is a “line” tool, which marks or unmarks every
pixel along a line segment drawn by the user. To speed up correction, in both cases,
all previous segmentations are automatically erased from the edited image columns.
This is based on the assumption that the layers run from left to right without looping
back, and agrees with the data format in which ground truth segmentations were
given to us.

The third basic tool is spline-based editing, which fits a layer by a cubic B-spline.
B-spline knots are visualized over the layer. The user can then drag, delete or add
knots in order to reshape the retinal layer. We keep the number of knots of the initial
B-spline small by permitting a certain amount of smoothing, as long as the sum of
squared residuals with respect to the original layer is smaller than a given threshold.
In our experiments, we set this threshold to 50.
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Selecting drusen extent Resulting drusen segmentation

FIGURE 8.7: After selecting a region in which drusen occur (first col-
umn), our semi-automated drusen extraction tool automatically an-

notates them (second column).

8.7 Drusen Segmentation

Given the RPE and BM layers, drusen can be extracted automatically as described in
Section 8.4. However, that approach only works well if drusen are not too wide. The
first column of Figure 8.7 shows two cases where automated drusen segmentation
has failed due to wide drusen. We again provide a specific tool for correcting these
cases.

The drusen editing view not only overlays the drusen segmentation over the
B-scans, but also allows the layer segmentation to be shown over the drusen seg-
mentation (as in Figure 8.7). This works as an extra guide for the user on where the
border of drusen must be. The user is provided with two separate sliders for setting
the opacity of drusen or layer segmentations.

8.7.1 Semi-automated Drusen Extraction

Our semi-automated drusen extraction (SDE) tool annotates drusen based on simply
marking their start and end points on a B-scan, as illustrated in Figure 8.7. It is based
on the fact that the ideal RPE, which coincides with the lower drusen boundary, runs
in parallel to the BM layer. Therefore, it can be extracted using the distance between
RPE and BM layers at the beginning (db) and at the end (de) of the druse. In between,
it is interpolated as

yidealRPE
j = yBM

j + αde + (1− α)ds , (8.7)

where α ranges from 0 to 1 from beginning to the end of the druse, yidealRPE
j is the

location of the ideal RPE at each column j of the image, and yBM
j is the location of the

BM layer at each point. Then, the area between the lower drusen boundary and the
RPE layer is automatically marked as druse. Images in the second column of Figure
8.7 show the drusen that are automatically segmented using this method.

8.7.2 Basic Tools

The first and second basic tools for correcting drusen segmentations are a pen and
line tool that allow marking individual pixels, or pixels along a line, as belonging to
drusen. The third tool is a bucket fill that marks all pixels in a closed area by a single
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Without guidance With guidance
Only basic All All

Time per B-scan (Sec) 11.13 8.13 5.77
Total time (Sec) 1614 1179 836

Total actions (clicks) 423 279 180
Pen 16.8% 0.5% 0%
Line 1.8% 0% 0%

Spline fitting 79.4% 14% 20.3%
CSP - 17.6% 15.9%
LS - 0% 0%

Keep Suggested RPE - 41.5% 55.1%
Keep Suggested BM - 21.2% 5.8%

Undo/Redo 2% 5.2% 2.9%
User A

Without guidance With guidance
Only basic All All

Time per B-scan (Sec) 10.31 6.4 4.43
Total time (Sec) 1495 928 643

Total actions (clicks) 374 151 113
Pen 0% 0% 0%
Line 0% 0% 0%

Spline fitting 99.7% 3.1% 11.8%
CSP - 8.3% 30.3%
LS - 0.1% 0%

Keep Suggested RPE - 69.8% 56.6%
Keep Suggested BM - 17.7% 1.3%

Undo/Redo 0.3% 1% 0%
User B

TABLE 8.2: Each of two test users corrected OCT scans with basic
and all editing tools, and with and without uncertainty guidance.
The first row shows the corresponding average time needed to cor-
rect segmentations in one B-scan. The second row shows the time
spent on correcting one full OCT. The third row shows the number of
total actions (clicks) per experiment, and the remaining rows reveal
the percentages of using the different tools in each experiment. To
ensure that remembering the required modifications is not the main
factor behind the observed efficiency gain, the following order of ex-
periments is used 1) using guidance with all tools 2) without guid-
ance, but with all tools 3) without guidance and with only basic tools.
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click. For simplicity, the bucket fill tool only marks pixels up to the RPE layer. This
feature allows the user to only draw the lower boundary of a druse and quickly fill
in the area between the lower boundary and RPE. The filling tool can also be used
to remove a false segmentation.

8.8 Evaluation

The major goal of our system is to make correction of layer segmentations and
drusen more efficient. To evaluate the extent to which our prototype meets this goal,
we set up multiple experiments in which users were asked to correct the automated
segmentation of OCT scans which had been identified as failure cases of the auto-
mated method. The experimental setup is described and results are reported and
discussed in Section 8.8.1.

In a separate experiment, we investigated the validity of our proposed uncer-
tainty measures. These results are reported and discussed in Section 8.8.2.

8.8.1 Study of the Achieved Efficiency Gain

In order to quantify the benefit from our intelligent interaction tools and uncertainty
visualization, segmentations were corrected repeatedly. In different runs, either all
features of our software were available to users, or the features whose benefit we
wanted to evaluate were excluded. In addition, our software was modified to mea-
sure the time needed to complete the task, and to record the number of times each
of the available tools was used during the process.

In real-world uses of our framework, the human expert will continue to make
corrections until he or she is satisfied with the result. However, in our study, let-
ting the users decide when to stop would have introduced the possibility that faster
task completion might go along with achieving lower accuracy. Therefore, we mod-
ified the software so that it would force the user to continue until a predefined level
of accuracy was reached. Accuracy was computed with respect to a ground truth
reference which had been created previously by an independent expert, using in-
dependent tools. Neither the reference nor the current measure of accuracy were
visible to the user. We used a pilot experiment to determine a specific tolerance level
that we could expect our users to achieve within a reasonable time without revealing
the ground truth to them.

In order to ensure that differences in completion times are not related to differ-
ences in task difficulty, we asked users to repeatedly correct the same dataset. In
our previous work [50], we observed that this introduced a learning effect, where
users became faster in subsequent runs because they remembered the required cor-
rections. Our current experiments were set up so that users could initially use all
available tools, and were limited to more basic tools in subsequent runs. This way,
we ensure that the learning effect can only lead us to underestimate the benefit from
our system.

To avoid further confounding effects, results in our current work are from dif-
ferent users than in our previous workshop paper [50]. Both current users were
previously unfamiliar with our system, and were given about 10 minutes of training
on how to use our tools.
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Only basic All Only basic All
Time per B-scan (Sec) 53.5 14.9 44.9 12.3

Total time (Sec) 535 149 449 123
Total actions (clicks) 150 24 146 23

Pen 0.1% 0% 0% 0%
Line 69.9% 0% 55% 0%
Fill 27.6% 0% 35.8% 0%
SDE - 100% - 100%

Undo/Redo 2.4% 0% 9.2% 0%
User A User B

TABLE 8.3: Each of two test users corrected 10 B-scans in an OCT
volume with basic and all drusen editing tools. The first row shows
the corresponding average time needed to correct segmentations in
one B-scan. The second row shows the time spent on correcting all 10
B-scans. The third row shows the number of total actions (clicks) per
experiment, and the remaining rows reveal the percentages of using
the different tools in each experiment. To ensure that remembering
the required modifications is not the main factor behind the observed
efficiency gain, the following order of experiments is used: 1) with all

tools 2) with basic tools only.

Layer Editing Tools

For the layer correction task, we wanted to investigate the benefits from our intelli-
gent interaction tools and the uncertainty visualization separately. Therefore, each
segmentation was corrected three times. In the first round, users were allowed to use
all of the available tools including the basic tools (pen marker, line marker, spline)
and more advanced ones (CSP, LS, suggestions for RPE and BM). They could navi-
gate through the data based on the per-B-scan uncertainty estimates, and local un-
certainties were color coded on the layers, as discussed in Section 8.5.2. In the second
round, all editing tools were provided, but without any guidance based on the un-
certainty measures. In the final round, users were only allowed to use the basic tools,
and were not shown any uncertainty information.

This experiment used an OCT scan consisting of 145 B-scans. A ground truth
layer segmentation was created by an independent expert, using the OCT manu-
facturer’s software. The target accuracy was considered to be achieved when the
average segmentation error decreased to 5 pixels for the whole OCT scan, and when
there was no B-scan left that included any segmentation errors greater than 12 pixels.

Table 8.2 summarizes the results of these experiments. Both users clearly bene-
fited from our novel editing tools. They reduced the time required for the corrections
by 27% (user A) and 38% (user B), respectively. This went along with a clear reduc-
tion in the number of actions (clicks). Usage statistics suggest that the speedup was
mostly enabled by the constrained shortest path tool, and the associated tool for
suggesting RPE corrections in adjacent B-scans. Suggestions for Bruch’s membrane,
which have been added compared to the previously presented version of our system
[50], have largely replaced usage of the local smoothing tool, which confirms effec-
tiveness of this new tool. Comparing users, A took more than 25% longer than B.
This went along with a reduced usage of our advanced tools, and a more frequent
use of undo and redo.

For both users, guidance from the uncertainty visualization gave an additional
speedup, leading to an overall reduction by 49% (user A) and 57% (user B) of the
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time taken with basic tools only. We note that, even though this result demonstrates
a clear benefit from our system, the speedup reported in our previous work [50] was
even greater. Beside the above-mentioned learning effect, this is primarily due to
introducing the spline-based “basic” tool, which both users relied on heavily when
our intelligent tools became unavailable, and which substantially decreased the time
that was required to perform corrections without them. Since a similar spline-based
tool is also available in the OCT manufacturer’s software, we consider our current
result to be closer to reality.

We also note that part of the benefit from the uncertainty visualization might be
due to the fact that our termination mechanism could have ended the experiment
before the user viewed all B-scans. In practice, we believe that encouraging the
expert to view only part of the data can be beneficial in order to improve the quality
of a given large-scale training set (e.g., [51] used 52,377 B-scans) as much as possible
within a limited time budget. For cases where it may be important to ensure the best
possible accuracy within an arbitrary amount of time, the system may be modified
to enforce inspection of each B-scan.

FIGURE 8.8: Comparing our uncertainty measures to a manual rating
of segmentation quality or to segmentation errors with respect to a
ground truth indicates a clear correlation, which shows that they are

suitable for guiding users to problematic cases.

Drusen Editing Tools

To evaluate the newly added tools for drusen editing, we followed a similar
paradigm as for the layer correction. In particular, users were asked to perform
the correction twice. In the first round, they were allowed to use the basic tools
(pen marker, line marker, flood fill) as well as our Semi-automated Drusen Extrac-
tion (SDE). In the second round, the SDE tool was excluded. In both cases, users
had to correct the drusen segmentations on 10 B-scans, which were selected from
an OCT volume different than the one used for layer correction. The experiments
were terminated when the overall segmentation accuracy had reached at least 85%
intersection over union (IOU) with respect to a ground truth that was created by an
independent expert, without our SDE tool.

Table 8.3 summarizes the results. Both users exclusively used the SDE tool when
it was available, which clearly demonstrates that they found it to be convenient and
effective. We note that eliminating a false detection with a single click could be done
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either with the fill or the SDE tool. Our SDE tool greatly reduced the number of
required actions, by around 84% of the value with basic tools, and the required time,
by 73%.

8.8.2 Validity of Uncertainty Measures

The goal of the two uncertainty measures ue and up that were introduced in Section
8.5 is to draw the expert’s attention to B-scans that are likely to require corrections.
To investigate their validity, i.e., the extent to which they measure what they are
supposed to, we correlated them with human judgment, and with a more traditional
measure of segmentation error.

In particular, we compared rankings of B-scans according to ue and up to two
other rankings: The first one is based on classifying segmentation quality in six dif-
ferent OCT scans with about 365 B-scans in total, on a scale from 1 to 5, 1 indicating
that no further attention by the user is required, 5 indicating a strong need for correc-
tion. This judgment was made by a human rater considering the severity of segmen-
tation failure. The second ranking is based on the segmentation error with respect
to an expert-provided ground truth. For this, the column-wise Euclidean distance
between the automated segmentation and the ground truth was taken. Since many
layer segmentation errors only affect a small region in the data, our error measure
averages the largest 10% of per-column distances in each B-scan.

We use Kendall’s tau-b rank correlation coefficient [80] to compare the rankings
based on our uncertainty measures to the manual and segmentation error based
ones. Tau-b ranges between 1 (identical rankings) and -1 (inverted rankings), and is
applicable to rankings that include ties. This is important since our manual ranking
is based on a discrete scale.

From the six different OCT scans, we obtain six different rank correlation coef-
ficients, which we summarize using boxplots in Figure 8.8. As a reference for the
magnitude of correlations that we can reasonably expect, both plots include a direct
comparison between segmentation error based and manual rankings (black). The re-
maining comparisons are between our uncertainty measures and manual rankings
(left) or segmentation errors (right), respectively. As uncertainty measures, we con-
sider ue, up, and the average of the two. We aggregate them over the B-scan either
using the max (as suggested in Section 8.5.1, shown in blue), or by averaging over
all image columns (red).

These results confirm our choice of max-aggregation by illustrating that it leads
to slightly stronger overall correlations than simple averaging. Also, slightly better
results were obtained when combining ue and up than when using them individu-
ally, which confirms our design decision to display both in the user interface.

The overall correlation between our uncertainty measures and manual or error-
based rankings was similarly strong as the correlation between our two references.
Together with the results from the user study, this validates their suitability for user
guidance.

8.9 Conclusion

Convolutional Neural Networks are the current state-of-the-art approach to medical
image segmentation. Despite their success, it is still quite common that the results
of CNNs require corrections when they were trained on limited data, or when ap-
plying them to images whose characteristics differ from the training data, e.g., due
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to differences in acquisition devices, or in the presence of pathological anomalies.
This establishes a need for systems that make it easier for human experts to localize
regions in which the automated segmentation is likely to have failed, and to effi-
ciently correct any remaining segmentation errors. To our knowledge, compared to
the rapidly growing number of CNN-based segmentation algorithms [102], there is
still relatively little effort in that direction.

We presented a system that implements uncertainty visualization and intelligent
interaction for the specific use case of CNN-based segmentations of retinal layers
and drusen in three-dimensional images from Optical Coherence Tomography. Our
prototype implementation is based on Python and Qt, and is publicly available at
https://github.com/MedVisBonn/OCT-Annotation-Tool. In a small user study, we
found that our system reduced the time for layer correction by 53% compared to
spline-based interaction, which we consider to be the previous state-of-the-art. For
drusen segmentation, we even achieved a reduction by 73%. Moreover, our uncer-
tainty measures were validated against manual quality measures and segmentation
error with respect to an expert-provided ground truth.

We hope that our work can inspire similar tools also for other applications. Even
though our system was originally motivated by the need to ensure reliability of med-
ical segmentations, a promising use case of segmentation correction that we hope to
investigate in the future is the iterative refinement of CNNs, i.e., using segmentation
correction to more efficiently create large and high-quality training data. In this re-
spect, it will have to compete against weakly and semi-supervised alternatives [125].

https://github.com/MedVisBonn/OCT-Annotation-Tool
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Chapter 9

Conclusion

9.1 Contributions to Drusen Segmentation

Ridge-enhancing filter

Our contribution to this topic was that we introduced a multi-scale anisotropic
fourth order diffusion (MAFOD) filter, which enhances ridges and valleys. We
showed that, particularly for RPE layer extraction in B-scans, this filter preserves
RPE location better than the commonly used bilateral filter. MAFOD uses a vessel-
ness measure to automatically estimate the underlying ridge scale in addition to a
fourth order tensor that allows to sharpen creases in perpendicular direction and to
smooth them in parallel direction. We compared our proposed filter to other alterna-
tive second-order and fourth-order diffusion filters and observed that the MAFOD
filter better restores ridge locations. This filter can optionally be adjusted to only
enhance ridges, valleys or both at the same time.

Fully-automated drusen segmentation

We needed to re-implement a state-of-the-art technique as a baseline for our drusen
segmentation pipeline. For this reason we picked the algorithm introduced by Chen
et al. [18]. Since we got much poorer results than reported in that paper, we invested
additional effort to analyze the reasons for this, and to adapt the baseline technique
to our data-set. We identified multiple factors that might explain this; First, our
data-set had half the axial resolution compared to the reported data-set in the origi-
nal paper, which made it more difficult to separate the RPE from the ellipsoid zone.
In addition, our data-set included scans with a greater diversity of drusen load, mak-
ing it a more heterogeneous and more challenging data-set compared to the refer-
ence data-set. Realizing these factors motivated us to refine the baseline using four
additional regularization steps, and by replacing the bilateral filter with the MAFOD
filter. Even though we still could not reproduce the previously reported results, our
refined algorithm significantly improved the performance of the state-of-the-art al-
gorithm. To ensure algorithm reproducibility we made our reproduction of Chen et
al. algorithm as well as our proposed refined algorithm programs publicly available
at https://github.com/MedVisBonn/DrusenSegmentation-ModifiedChen.

In our second contribution to this topic we designed a CNN-based pipeline for
automated segmentation of drusen in OCT images. We tested three different ap-
proaches, i.e., 1) directly segmenting drusen using a CNN, 2) combining a CNN-
based RPE and BM layer segmentation with post-processing steps, and 3) combin-
ing a CNN-based RPE/BM complex segmentation with the post-processing steps
for drusen segmentation. All three produced better results than the state-of-the-art
method by Chen et al. [18], and the second pipeline gave the overall best results. The

https://github.com/MedVisBonn/DrusenSegmentation-ModifiedChen
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drawback of the CNN approach is that it requires a large training data-set, but when
available, the CNN-based approach showed much higher accuracy and robustness
in presence of geographic atrophy.

We used our proposed drusen segmentation pipeline in a laser intervention in
early age-related macular degeneration (LEAD) study [198], whose goal was to in-
vestigate the effect of laser treatment on changes in drusen volume. Initially our
pipeline had a poor performance on LEAD data-set as it was collected using a dif-
ferent scanning device compared to the data-set that was used for training our CNN.
Instead of retraining the CNN with the new data, we solved this issue by preprocess-
ing each image by matching their histogram to the average histogram of the data-set
that was used to train the CNN.

Semi-automated drusen segmentation

Despite being the current state-of-the-art method for medical image segmentation,
still sometimes it can happen for CNNs to fail to correctly perform the segmentation.
One reason might be that the characteristics of the training data-set might not cover
all the possible pathological anomalies of a disease or the data-set can come from
different acquisition devices. So far relatively little work has been done in the di-
rection of detecting and correcting these failed cases. Therefore, for retinal layer and
drusen segmentation, we implemented a system that uses a CNN for the initial layer
segmentation. Then the output maps of the network are utilized to create an uncer-
tainty visualization and intelligent tools for the user. The visualized uncertainty
guides the user to those cases where segmentations by the network are highly likely
to be erroneous. The intelligent tools can be used to correct these failures. Com-
pared to the previous state-of-the-art spline-based interaction, our system reduced
the needed correction time almost by half for retinal layers. For drusen, the time
was reduced by 73%. We evaluated the effectiveness of our uncertainty measures by
finding a large agreement between ranked B-scans with respect to the uncertainty
measures, and a manual ranking of B-scans according to their segmentation qual-
ity, and using the numerical segmentation error with respect to the ground truth.
The code and the pre-trained CNN network for layer segmentation are available at
https://github.com/MedVisBonn/OCT-Annotation-Tool.

9.2 Contributions Beyond Drusen Segmentation

Some of the contributions of this dissertation are not limited to drusen and retinal
layer segmentation, and can serve as useful tools in the field of image processing
and analysis in general.

Our multi-scale fourth order anisotropic diffusion filter allows to selectively en-
hance ridge-like and/or valley-like structures in images. When compared to other
filters, we show that this filter helps to more accurately restore the center-line of such
structures. The MAFOD filter can be used in different applications, such as improv-
ing vessel center-line detection in angiographic images, or when extended to 3D,
can be used as a great visualization tool. For instance, one can represent a brain’s
white matter skeleton in fractional anisotropy images by enhancing and extracting
the ridge surfaces in the image.

Even though CNNs have greatly improved image segmentation, still they can
produce erroneous segmentations. Specially in medical applications, detecting and
correcting the failed cases can be crucial. In this dissertation we proposed two CNN-
based uncertainty measures that quickly guide users to the cases that are more likely

https://github.com/MedVisBonn/OCT-Annotation-Tool
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Input Enh. line & plane Enh. line Enh. plane

FIGURE 9.1: Selectively enhancing crease structures in 3D using the
MAFOD filter. Top row is an overall view of the 3D volume. Sec-
ond row is a XY 2D slice that passes through the middle of the
planar structure. Bottom row represents a XZ cross-sectional slice.
The MAFOD filter can be steered to enhance crease-lines and crease-
surfaces at the same time (second column), or separately (third and

fourth columns).

to have failed. These measures can be used to design similar guidance mechanism
for other CNN-based image segmentation applications. Another transferable idea
from this dissertation is the use of probability maps from the CNN to design fast
segmentation correction tools.

In addition, our results from the evaluation of the Chen et al. [18] approach high-
lighted that the current way of evaluating algorithms does not allow to reliably infer
how good the results are going to be on an independent data-set. This emphasizes
that there is a need to do more work on the proper replication and validation of
algorithms in the field of medical image analysis.

9.3 Future work

The MAFOD filter has the potential to be extended into higher dimensions. Once it
is generalized to 3D, it opens up additional opportunities for fine grained steering
of the filter to selectively enhance crease-lines or crease-surfaces with a steerable 3D
fourth-order tensor. Figure 9.1 illustrates the results of selective crease enhancement
using 3D MAFOD filter. The input is a synthetic 3D image containing a planar sur-
face and a bifurcating tubular structure. The input is contaminated with Gaussian
noise. This Figure shows that MAFOD filter can successfully reduce the noise and
selectively enhance crease-lines and crease-surfaces. It could be also interesting to
investigate filter’s performance on the intersection point between crease-lines and
crease-surfaces (see Figure 9.2).
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Input Enh. line & plane Enh. line Enh. plane

FIGURE 9.2: The effect of MAFOD filter on the intersection point be-
tween a ridge-line and a ridge-surface. Top row is an overall view of
a tubular line that evolves into a planar shape. Second row is a XY 2D
slice that passes through middle of the planar structure. Bottom row
represents a XZ cross-sectional slice. The figure shows that enhanc-
ing only ridge-lines, enhances the boundaries of the ridge-surface as

well.

Our proposed drusen segmentation pipeline consists of multiple engineered
parts, such as shortest path finding in prediction maps, polynomial fitting or the
false positive elimination steps. A general research direction could be to replace
more of these steps with learned steps using neural networks. For instance the false
positive elimination step can be learned by a CNN, using the height maps of the
RPE and BM layers and the enface projection of the OCT volume. Or ideally one
could design a deep neural network architecture to learn the drusen segmentation
end-to-end, which could more effectively make use of the three-dimensional context
of OCT images.

We hypothesize that our interactive framework for retinal layers and drusen seg-
mentation can be used for iteratively creating large training sets. It could be inter-
esting to evaluate the benefits of creating and improving training sets using this ap-
proach, and compare it to semi-supervised or weakly supervised alternatives [125].

Segmentation techniques similar to the ones developed within this dissertation
can be used for the assessment of other AMD biomarkers in OCT. This opens up the
opportunity of understanding the risk factors of AMD by exploring the correlation
between these risk factors and AMD progression over time using thousands of au-
tomatically analysed OCT volumes. In addition, this can speed up the process of
designing and studying possible treatments for AMD.
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