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Abstract

An expedient aim in robotics research is to enable robot systems to enter areas
which are inaccessible or too dangerous to humans, such as disaster scenarios. For
autonomous navigation in these environments, robust and reliable perception is
key. One fundamental perception problem is to build maps of unknown environ-
ments and to localize within them simultaneously.

This thesis presents an approach to simultaneous localization and mapping
(SLAM) using local multiresolution. Local multiresolution corresponds well to the
measurement density and accuracy of most range sensors and allows for efficient
and concise map representations. The proposed map data structure is designed
for memory-efficient aggregation of measurements and enables online mapping and
localization. To align acquired sensor data, a probabilistic registration method is
proposed, exploiting the properties of the map data structure.

Local multiresolution maps from different view poses are aligned with each other
to create an allocentric map of the environment. Optimization of the view poses
yields a globally consistent dense 3D map of the environment. Continuous regis-
tration of local maps with the global map allows for tracking the robot pose in
real time.

Furthermore, a method for reassessing previously aggregated measurements, to
account for registration errors due to missing information or erroneous sensor data
is proposed. In order to incorporate corrections when refining the alignment,
the individual sensor poses of the measurements in the local map are modeled
as a sub-graph in a hierarchical graph structure. Sensor poses in the sub-graphs
are optimized to account for drift and misalignments in the local maps. Each
sub-graph maintains a continuous-time representation of the sensor trajectory to
interpolate measurements between discrete sensor poses.

The proposed methods are evaluated on different datasets and compared to
state-of-the-art methods, with the results indicating superior accuracy and effi-
ciency. Particular applications demonstrate that they have been successfully em-
ployed on different robotic platforms, such as micro aerial vehicles and ground
robots, in different research projects and robot competitions.
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Zusammenfassung

Ein Ziel in der Robotikforschung ist es, Robotersystemen den Eintritt in Berei-
che zu ermöglichen, die für Menschen unzugänglich oder zu gefährlich sind, wie
beispielsweise Katastrophenszenarien. Für autonome Navigation in diesen Umge-
bungen, ist eine robuste und zuverlässige Wahrnehmung entscheidend. Ein grund-
legendes Wahrnehmungsproblem in der Robotik besteht darin, Karten von unbe-
kannten Umgebungen zu erstellen und sich gleichzeitig in ihnen zu lokalisieren.

Kern dieser Arbeit ist ein Ansatz zur simultanen Lokalisierung und Kartierung
(Simultaneous Localization and Mapping, SLAM) basierend auf lokaler Multire-
solution. Lokale Multiresolution entspricht der Charakteristik, in Bezug auf Mess-
dichte und Genauigkeit, der meisten Entfernungssensoren und ermöglicht eine ef-
fiziente Repräsentation der Umgebung. Die vorgeschlagene Kartendatenstruktur,
gennant Lokale Multi-Resolutions-Karten, ist ausgelegt für Speicher-effiziente Ag-
gregation von Messungen und ermöglicht Online-Kartierung und Lokalisierung.
Um erfasste Sensordaten zu registrieren, wurde ein probabilistisches Verfahren
entwickelt, welches die Eigenschaften der Kartendatenstruktur nutzt.

Lokale Multi-Resolutions-Karten aus verschiedenen Schlüsselposen werden mit-
einander registriert um eine allozentrische Repräsentation der Umgebung zu er-
stellen. Optimierung der Schlüsselposen ergibt eine global konsistente, dichte 3D-
Karte. Die fortlaufende Registrierung von lokalen Karten mit der globalen Karte
ermöglicht die Lokalisierung des Roboters in Echtzeit.

Weiterhin wird eine Methode zum Korrigieren zuvor aggregierter Messungen
und Aussbessern von Registrierungsfehler, die aufgrund fehlender Informationen
oder fehlerhafter Sensordaten entstehen, vorgestellt. Um diese Korrekturen in der
Repräsentation zu berücksichtigen, werden die Sichtposen einzelner Messungen in
der lokalen Karte als Teilgraph in einer hierarchischen Graphenstruktur model-
liert. Die Sichtposen der Messungen eines Teilgraphen werden optimiert, um Drift
und Fehlausrichtungen in den lokalen Karten zu berücksichtigen. Um Posen von
Messungen zwischen diskreten Sensorpositionen zu interpolieren, verwaltet jeder
Untergraph eine zeitkontinuierliche Repräsentation der Sensortrajektorie.

Die vorgeschlagenen Methoden werden anhand verschiedener Datensätze evalu-
iert und mit Methoden die Stand der Forschung sind verglichen, wobei die Ergeb-
nisse der Evaluation höhere Genauigkeit und Effizienz aufweisen. Auërdem wird
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Zusammenfassung

der Einsatz der Methode auf unterschiedlichen Roboterplattformen, wie Flug- oder
Bodenroboter gezeigt.
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1. Introduction

Recent advancements in robotics and artificial intelligence led to a number of vari-
ations in our every-day live, making our work easier but also inducing an economic
revolution by reducing physical labor. While superseding human labor by intelli-
gent machines is contentious, the increase of computing power and advancements
in artificial intelligence and robotics facilitates an expedient aim in robotics: mak-
ing our lives safer. For instance, enabling robot systems to enter areas inaccessible
or too dangerous for humans—such as disaster scenarios—or taking up on activ-
ities where humans tend to fail—such as driving—will safe a tremendous amount
of lives. However, while today’s intelligent machines can reliably operate in well
specified narrow situations, our aspired live-saving rescue robot needs the ability
to autonomously navigate in unknown, diverse environments.

Autonomous navigation requires perceptual capabilities that are self-evident for
humans. These capabilities include the ability to build an internal representation
of the environment from perceptual inputs. This internal representation, called
the map, is used to infer about location from new perceptual inputs and to plan
paths. When entering an unknown environment, we simultaneously build this rep-
resentation and localize within. In robotics this problem is known as simultaneous
localization and mapping (SLAM). SLAM has been studied in the robotics com-
munity for decades, aiming to allow robots to navigate autonomously in scenarios
where a map is not available beforehand. Consequently, a number of approaches
addressing the SLAM problem exist (Cadena et al., 2016). However, SLAM is
an extensive problem and it depends on a number of aspects, such as the type of
the robot, the configuration of the environment, and the desired performance re-
quirements. Thus, depending on the specific aspects, research in this field deserves
more or attention or is more mature. For instance, for a wheeled robot platform,
equipped with a 2D laser range finder and wheel encoders, moving on a planar
indoor environment the SLAM problem is sometimes considered as solved and reli-
able approaches exist. In contrast, SLAM on a highly dynamic platform—such as
a micro aerial vehicle (MAV)— with limit computing resources in a cluttered 3D
environment is still actively discussed in the research community. Here, especially
considering the vast amount of data today’s sensors produce, efficiency, scalability
and robustness are major limiting factors. For example, a modern lidar sensor pro-
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1. Introduction

duces up to 1 million 3D measurements per second that need to be processed with
a certain performance, to allow for consistent mapping and robust localization.

Often the huge amount of data and the aforementioned limitations are addressed
by relaxing the problem. For example, by modeling the environment in lower di-
mensionality, such as projecting 3D measurements in a 2D representation. Further-
more, various simplification to the geometry of data and environment, by consider-
ing only significant parts of the data or modeling the environment by compressing
geometry. On the contrary, these relaxations require assumptions about the envi-
ronment, for example supposing that geometry in the environment is either planar
or has a certain structure, which can not be assumed in general. Similarly, mod-
eling the environment in lower dimensionality makes certain assumptions about
the environment which are not feasible in many situations, such as representing
the environment in a 2D map for overhanging structures, or robots that move on
non-planar trajectories.

This thesis presents an approach to SLAM that differs from the previously men-
tioned approaches. Based on the idea, that a proper representation of the geome-
try in the environment is key, a map representation is proposed to facilitate online
mapping and localization.

Central to our approach are so-called local multiresolution grid maps, which
is a concise map representation, allowing for efficient aggregation of sensor mea-
surements in a dense map, modeling the geometry of the environment. Local
multiresolution grid maps partition the environment in 3D volume pixels (voxels)
with varying resolution. Local multiresolution hereby refers to the property of
having a fine resolution close to the robot and a coarser resolution farther away.
This inherent discretization correlates with the characteristics in relative distance
accuracy and measurement density of modern 3D lidars and reduces memory and
computational requirements without loosing information. Furthermore, local mul-
tiresolution grid maps are robot-centric maps that move with the robot resulting
in a constant number of grid cells necessary to model the robots surrounding, inde-
pendent of the traveled distance. The latter allows to accomplish constant memory
consumption and computation time. Chapter 3 details local multiresolution grid
maps as the central data structure in this thesis.

However, to aggregate sensor measurements in local multiresolution grid maps—
and thereby building a dense representation of the geometry in the environment—
registration of newly acquired sensor data is key. Registration means to estimate
the sensor motion between the current sensor measurement and the map by align-
ing them. For this alignment, a probabilistic registration method is presented in
Chapter 4, leveraging the local multiresolution property and allowing for efficient
and accurate registration. It allows to align new sensor data to a local multireso-
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1.1. Scientific Contributions

lution map, but also for the alignment of two maps with each other.
The latter allows to generate spatial constraints between two maps from differ-

ent view poses. These spatial constraints and the local maps from different view
poses are used to model the environment in a graph-based structure. When the
robot revisits a part of the environment, a spatial constraint between the current
local map and the previously acquired map allows to compensate for accumulated
inaccuracies in the motion estimate (called drift). The graph is optimized in order
to minimize the accumulated error. The resulting pose graph maps larger environ-
ments and provides a allocentric frame of reference for localization. Registration
of scans to the local map—and thereby estimating the sensor’s motion with re-
spect to a local frame—is called the front-end. In contrast, construction of the
pose graph, its optimization and the alignment of the current local map to it, is
called the back-end. The proposed back-end using local multiresolution maps is
described in Chapter 5.

Inaccuracies, caused by wrong data associations or missing information, may
remain. For example, incrementally mapping the environment necessitates boot-
strapping from sparse sensor data at the beginning—resulting in relatively poor
registration accuracy, compared to aligning with a dense and accurate map. Con-
sequently, map quality degrades due to misaligned sensor data. To overcome
degradation of the map quality, Chapter 6 proposes an approach for reassessing
the registration of previously added 3D scans. By modeling individual 3D scans
of a local map as a sub-graph, we build a hierarchical graph structure, enabling
refinement of the map in case misaligned measurements when more information
is available. Furthermore, the sensor trajectory is modeled by a continuous-time
representation, allowing to incorporate refinement results on on the finest-possible
granularity.

1.1. Scientific Contributions
This thesis contains the following contributions:

A robot-centric 3D map representation for efficient aggregation of lidar mea-
surements coined local multiresolution grid map is proposed in Chapter 3.
Local multiresolution grid maps discretize the environment in voxels, having
a fine resolution close to the robot and coarser resolution farther away, which
correlates with the sensor’s characteristics in relative distance accuracy and
measurement density. Furthermore, it’s an egocentric representation cen-
tered around the robot. Aggregated measurements in local multiresolution
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1. Introduction

grid maps move according to the robot’s motion, preventing costly repro-
cessing of the data. This allows efficient local mapping with constant com-
putational and memory requirements. Compared to other grid-based map
representations, local multiresolution allows to considerably reduce the num-
ber of grid cells without losing information.

Surfel-based registration for local multiresolution grid maps using an efficient,
probabilistic approach, is proposed in Chapter 4. To allow for accurate ag-
gregation of measurements and precise estimation of the sensor’s motion,
an efficient probabilistic registration approach, leveraging the local multires-
olution property, is presented. Surface-elements (surfels) that summarize
the statistics of the measurements in a grid cells are used for registration of
new sensor measurements to the map in an Expectation Maximization (EM)
framework. The local multiresolution property allows a coarse-to-fine strat-
egy allowing for robust and accurate registration. Evaluation of the approach
shows superior over state-of-the-art methods.

A graph-based allocentric mapping approach using local multiresolution grid
maps is proposed in Chapter 5. To facilitate allocentric mapping and lo-
calization, while taking advantage of the properties of local multiresolution,
a pose graph consisting of local maps from different view poses is presented.
By surfel-based registration, spatial constraints between view poses are used
to construct to pose graph. Accumulated drift is minimized by spatial con-
straints between nearby view poses. Graph optimization globally minimizes
the accumulated error and find the most likely configuration of constraints
in the graph.

A hierarchical refinement method allowing for reassessing the registration of pre-
viously added measurements. By modeling individual 3D scans of a local
map as a sub-graph, we build a hierarchical graph structure, enabling refine-
ment of the map in case misaligned measurements when more information is
available. Furthermore, the approach preserves efficient local and allocentric
mapping, as with our previous method. In summary, the contribution of
our work is a novel combination of a hierarchical graph structure—allowing
for scalability and efficiency—with local multiresolution maps to overcome
alignment problems due to sparsity in laser measurements, and a continuous-
time trajectory representation.
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1.2. Open-Source Software

1.2. Open-Source Software
To facilitate developing robotic applications, contributing to the system, and for
comparing and reproducing results, parts of the described methods are published
open-source1, making it available to other researchers. The current release includes
an implementation of local multiresolution grid maps, surfel-based registration
and the allocentric mapping back-end. Furthermore, most data sets used in the
experiments were made publicly available2.

1.3. Publications
Parts of this thesis have been published in conference proceedings and journals.
The publications are provided in chronological order:

• D. Droeschel and S. Behnke (2018). “Efficient Continuous-time SLAM for
3D Lidar-based Online Mapping”. In: Proc. of the IEEE Int. Conference on
Robotics and Automation (ICRA)

• D. Droeschel et al. (2017). “Continuous mapping and localization for auto-
nomous navigation in rough terrain using a 3D laser scanner”. In: Robotics
and Autonomous Systems 88, pp. 104 –115

• D. Droeschel and S. Behnke (2017). “MRSLaserMap: Local Multiresolution
Grids for Efficient 3D Laser Mapping and Localization”. In: RoboCup 2016:
Robot World Cup XX. ed. by S. Behnke et al. Cham: Springer International
Publishing, pp. 319–326

• D. Droeschel et al. (2015). “Multilayered Mapping and Navigation for Au-
tonomous Micro Aerial Vehicles”. In: Journal of Field Robotics (JFR)

• D. Droeschel et al. (Oct. 2014c). “Omnidirectional Perception for Light-
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2. Sensors and Robotic Platforms

This chapter gives an overview over the robotic plat-
forms, especially the sensor setup, used for data collec-
tion and experimental evaluation in this thesis. Fur-
thermore, efforts in building custom light detection
and ranging (LIDAR) sensor and necessary methods
for data acquisition and preprocessing are briefly sum-
marized.

The following chapters introduce methods that have been developed for omni-
directional distance sensor, such as 3D LIDAR sensors. Although the approach
is not limited to LIDAR sensors in general, it leverages certain characteristics of
them, such as the distance-related measurement density and noise characteristics.

This chapter gives an overview of the sensors and the robotic platforms that
have been used for experimental evaluation of the proposed methods. Depending
on the application and the employed robotic platform, different requirements and
constraints are imposed. These include measurement range, measurement rate,
size and weight of the sensors. After introducing three different MAV platforms
with different sensor setups, a mobile ground robot with a combination of wheeled
and legged limbs is described. Compared to the mobile ground robot, MAVs are
highly dynamic and have strong size and weight requirements. Furthermore, de-
pending on the measurement rate of the employed LIDARs, additional sensors
might be required to capture the motion during acquisition. The additional mo-
tion estimate is used to compensate distortion of the measurements during one
revolution of the LIDAR sensor.

The methods developed in this thesis are intended to enable autonomous navi-
gation of these robots. Thus, experiments assessing the applicability of the sensor
setup for obstacle detection complete this chapter.
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2.1. Micro Aerial Vehicles
MAVs such as quadrotors have attracted attention in the field of robotics. Their
size and weight limitations pose a challenge in designing sensory systems. Most of
today’s MAVs are equipped with ultra sound sensors and camera systems due to
their minimal size and weight. While these small and lightweight sensors provide
valuable information, they suffer from a limited field-of-view (FoV) and are sensi-
tive to illumination conditions. Only few systems Bachrach et al., 2009; Grzonka
et al., 2009; Shen et al., 2011; Tomić et al., 2012 are equipped with 2D laser range
finders (LRFs) that are used for navigation.

In contrast, the following subsections describe two custom-built continuously
rotating laser scanners that are minimalistic in terms of size and weight and thus
particularly well suited for obstacle perception and localization on MAVs, allowing
for environment perception in all directions.

2.1.1. Lightweight Continuously Rotating Laser Scanners

Figure 2.1 shows the first MAV used in this thesis. It is equipped with a custom-
built continuously rotating laser scanner. The sensor consists of a Hokuyo UTM-
30LX-EW 2D LRF, which is rotated by a Robotis Dynamixel MX-28 servo actuator
to gain a three-dimensional FoV. As shown in Figure 2.1, the scanning plane is
parallel to the axis of rotation, but the heading direction of the scanner is twisted
slightly away from the direction of the axis—in order to enlarge its FoV.

The 2D LRF is electrically connected by a slip ring, allowing for continuous
rotation of the sensor. The axis of rotation is pitched downward by 45˝ in forward
direction, which places the core of the MAV upwards behind the sensor as depicted
in Figure 2.1. Hence, the sensor can measure in all directions, except for a conical
blind spot pointing upwards behind the robot.

The 2D laser scanner has a size of 62 mmˆ62 mmˆ87.5 mm and a weight of
210 g. Together with the actuator (72 g) and the slip ring, the total weight of
the 3D scanner is approximately 400 g. It has an apex angle of 270˝ and an
angular resolution of 0.25˝, resulting in 1080 distance measurements per 2D scan,
called a scan line. The measurement accuracy is specified by the manufacturer
with ˘30mm at 0.1 ´ 10m distance ( ˘50mm at 10 ´ 30m ). The Dynamixel
actuator rotates the 2D LRF at one rotation per second, producing 40 scan lines
and 43,200 distance measurements per full rotation. Slower rotation is possible if
a higher angular resolution is desired. For our setup, a half rotation leads to a
full 3D scan of most of the environment. Hence, we can acquire 3D scans with up
to 21,600 points with 2 Hz. Figure 2.2 shows a resulting 3D scan from a parking
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2.1. Micro Aerial Vehicles

(a)

Stereo cameras 3D laser scanner

(b)

(c) (d) (e) (f)

Figure 2.1.: The MAV equipped with a 3D laser scanner and a stereo camera system
(a). CAD drawings of (b) our MAV and (c) the continuously rotating laser scanner. The
Hokuyo 2D LRF is mounted on a bearing and rotated around the red axis. Its mirror is
rotated around the green axis, resulting in a 2D measurement plane (blue). (d) Photo
of the sensor. (e + f) CAD drawings illustrating the FoV of individual scans of the laser
scanner (blue) from side and top view. The black dashed line illustrates the center of
the measurement plane. The 2D LRF is rotated around the red axis.

garage. The offset between the scanned plane section and the rotation axis results
in a different FoV for two different half rotations which is shown in Figure 2.3a.
In this way, occlusion from small parts of the MAV is reduced significantly.

The Hokuyo UTM-30LX-EW is able to measure up to three echoes of a single
emitted light pulse. The number of echoes for a light pulse depends on the surface
of the measured objects, i.e., shape and reflectivity. For example, transparent
materials, vegetation or edges of buildings often yield more than one echo. Often,
the second echo comes from a structure in the original pulse direction, behind a
partial occlusion, which means that it can be treated as an additional distance
measurement. Measurements from the first and the second echo are shown in
Figure 2.3b.
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2. Sensors and Robotic Platforms

Figure 2.2.: Indoor 3D scan acquired with our continuously rotating laser scanner.
Color encodes height.

2.1.2. Lightweight Continuously Rotating Dual Laser Scanner
The second MAV platform used in this thesis is shown in Figure 2.4. The actuators
for rotation are similar to the previous setup, resulting in the same horizontal
angular resolution and rotational velocity. Furthermore, the update rate of the
sensor for acquiring full 3D scans is also 2 Hz. In contrast to the first rotating
laser scanner, the sensor combines two Hokuyo UST-20LX LRFs mounted on a
bearing plate. Figure 2.4 illustrates the scanner arrangement, showing that one
scanning plane is parallel to the axis of rotation while the other is twisted by
45°. This arrangement results in a cylindrical blind spot of the first scanner and
a conical, upward pointing blind spot for the twisted scanner. Hence, this setup
maximizes the FoV and results in a minimal blind spot. Since the blind spot
is pointing upwards, it does not degrade mapping or obstacle detection in our
scenario. Furthermore, due to the scanner arrangement, a half rotation of the
bearing plate results in a complete 3D scan.

Each 2D laser range finder has a scanning frequency of 40Hz with 1, 080 mea-
surements per scan plane resulting in 43, 200 measurements per second. Figure 2.4
shows resulting point clouds of the environment perceived by each laser and the
combined point cloud. Each scanner weights 143 g (without cables). The whole
sensor assembly weights 420 g including motor, a network switch, and a slip ring
allowing for continuous rotation.

Preprocessing

The wide FoV of the laser scanner inherently leads to many measurements lying
on the MAV itself. Considering the complex structure of the MAV, with moving
parts like propellers, measurements that belong to the robot’s body are removed in
a preprocessing step. This so-called self filter approximates the model of the MAV
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(a) (b)

Figure 2.3.: Accumulated 3D scans of an indoor environment. (a) The color encodes
the different half rotations of the scanner. Moving the optical center of the 2D LRF away
from the rotation axis of the actuator results in different self-occlusions of the scans from
the first (green) and the second (red) half rotation. (b) Measurements from first echo
(yellow) and the second echo (purple). In case of partial occlusions, e.g., by the MAV
itself, multi-echo detection leads to an increase of distance measurements.

by a cylinder with the diameter and height of the MAV. Furthermore, we use a
modified shadow filter to remove not only incorrect measurements at the edges
of the geometry, but also erroneous measurements caused by the fast rotating
propellers. Filtering results are shown in Figure 2.5.

3D Scan Assembly

Due to the relative slow rotation of the 2D laser scanner, compared to the motion
of the robot, the first two MAV platforms are equipped with additional sensors,
allowing to recover the sensor motion during one half rotation of the sensor. Thus,
when assembling 3D scans from raw laser scans, for the rotation of the sensor
w.r.t. the MAV and for the motion of the robot during acquisition, is accounted.

First, measurements of individual scan lines are undistorted with regards to
the rotation of the 2D laser scanner around the servo rotation axis (red axis in
Figures 2.1 and 2.4). Here, the rotation between the acquisition of two scan lines is
distributed over the measurements by using spherical linear interpolation. Second,
the motion of the MAV during acquisition of a full 3D scan is compensated. To
this end, a motion estimate from the low-level filters running on the Pixhawk
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(a) (b) Laserscanners Photo (c) Laserscanners CAD

(d) Laser scanner 1 (e) Laser scanner 2 (f) Combined scans

Figure 2.4.: The MAV (a) has been designed for inventory and short-range inspection
tasks in indoor environments. Photo (b) and CAD (c) drawing of our 3D laser scanner
with the FoV of the individual 2D laser scanners (blue). (b) Scanner 1 (right), and
scanner 2 (left) have diverse FoVs. They are mounted on a bearing and rotated around
the red axis. (c) Scanner 1 is rotated to the back of the image plane to show the 270°
opening angle of the scanner. Scanner 2 is in the front, showing the twisted scan plane.
(d-f) Point clouds from the rotating 3D laser scanner. While the individual scanner show
substantial blind spots, nearly no occlusions occur in the combined scan.

(a) (b) (c)

Figure 2.5.: Demonstration of the employed scan filters. A 3D scan assembled from
one half rotation of the 3D laser scanner is shown from a top-view. Color encodes height.
The MAV (depicted by the axes) passes the obstacle on the left. The red points close
to the MAV are spurious measurements caused by the MAV itself and the occluded
transition between the obstacle and the MAV. (a) Unfiltered 3D scan. (b) Filtered 3D
scan using the self filter only. Spurious measurements remain. (c) Filtered 3D scan using
self filter and modified shadowing filter. Spurious measurements are removed.
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2.2. The Mobile Manipulation Robot Momaro

incorporating inertial measurement unit (IMU) and visual odometry measurements
are incorporate. The 6D motion estimate is used to assemble the individual 2D
scan lines of each half rotation to a 3D scan as shown in Figure 2.6.

2.1.3. MAV with Static Mounted 3D Laser Scanner

The third MAV used in this thesis is shown in Figure 2.7. It is based on the DJI
Matrice 600 platform with a diameter of d « 170 cm and is equipped with ample
onboard computer, a Intel NUC6i7KYK with an Intel® Core™ i7-6770HQ quad-
core CPU running at 2.6{3.5GHz and 32GB of RAM. As primary environment
perception sensor, a Velodyne Puck LITE™ lidar is deployed. It features a low
weight of 590 g and yields 300,000 range measurements per second in 16 horizontal
scan lines at a vertical angle of 30° in up to 20Hz. Its maximum range is 100m.
Due to the larger FoV, compared to the Hokuyo 2D sensor, rotation of the sensor
is not necessary.

2.2. The Mobile Manipulation Robot Momaro
Momaro is equipped with four articulated compliant legs that end in pairs of
directly driven, steerable wheels. The combination of legs and steerable wheels
allows for omnidirectional driving and stepping locomotion. To perform a wide
range of manipulation tasks (Rodehutskors et al., 2015), Momaro is equipped with
an anthropomorphic upper body with two 7 degrees of freedom manipulators that
end in dexterous grippers.

Momaro’s main sensor for environmental perception is a continuously rotating
laser scanner on its sensor head (see Figure 2.8). It consists of a Hokuyo UTM-
30LX-EW 2D laser scanner which is rotated around the vertical axis by a Robotis
Dynamixel MX-64 servo actuator to gain a 3D FoV. Hence, the sensor can measure

(a) (b)

Figure 2.6.: Side view on an indoor 3D scan with flat ground. (a) Assembled 3D scan
without considering sensor movement during the scan acquisition. (b) We incorporate
visual odometry to correct for the sensor movement.
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Computer

Velodyne Puck LITETM lidar

CameraRFID Reader

Figure 2.7.: Left: the DJI Matrice 600 MAV platform equipped with a Velodyne Puck
LITE™ lidar, fast onboard computer, two synchronized global shutter color cameras
and an RFID reader. The landing feet are retractable to allow for true 360° perception.
Right: four consecutive scans from the Velodyne Puck LITE™ lidar during flight. Last
scan is light blue.

in all directions, except for a cylindrical blind spot around the vertical axis centered
on the robot. The 2D LRF is electrically connected by a slip ring, allowing for
continuous rotation of the sensor.

The Hokuyo 2D laser scanner has an apex angle of 270˝ and an angular resolution
of 0.25˝, resulting in 1080 distance measurements per 2D scan, called a scan line.
The Dynamixel actuator rotates the 2D laser scanner at 0.2 rotations per second,
resulting in 200 scan lines per full rotation. Slower rotation is possible if a higher
angular resolution is desired. For our current setup, we acquire one full 3D scan
with up to 216,000 points per rotation every 5 seconds (shown in Figure 3.8a).

A PIXHAWK IMU is mounted close to the laser scanner, which is used for
motion compensation during scan aggregation and attitude estimation.

2.3. Experiments
Due to varying shape and reflectance properties of objects, not all obstacles are
perceived in every 3D laser scan (one half rotation of the scanner). Especially far-
ther away from the robot, multiple scans may be necessary in order to adequately
detect an obstacle.

The intuitions behind these experiments are the following: if a certain object
can only be perceived (at least once) in n 3D laser scans, it is sufficient for reliable
collision avoidance if our local mapping approach can reliably aggregate n 3D
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3D laser

PIXHAWK IMU

Rotation axis

Velodyne PUCK

Figure 2.8.: Left: the mobile manipulation robot Momaro taking a soil sample during
the DLR SpaceBot Camp. Right: Momaro’s sensor head, with continuously rotated
Hokuyo (top) and Velodyne Puck LITE™ (bottom). The laser scanner is rotated by an
actuator around the red axis to allow for an omnidirectional field-of-view. The IMU is
used to compensate for motion during scan acquisition and for estimating the attitude

laser scans without inducing inconsistencies in the egocentric obstacle map (e.g.
blurring effects due to drifts in the pose estimates). Obviously, whether or not an
obstacle can be avoided also depends on the distance to the obstacle and movement
direction and speed of the MAV. Both can be neglected if the sensor is able to
detect all types of obstacles in the immediate vicinity of the MAV (and the MAV
is not flying too fast).

For assessing the probability of detecting objects in the vicinity of the robot,
we have chosen seven test obstacles differing, amongst other characteristics, in
size (diameter), color and material (reflectivity), and transparency. Referring to
the experiment setup in Figure 2.9a, the objects are mounted on a tripod holder.
The MAV is positioned with distances to the holder of 1 m to 10 m. For each
distance, a total of 30 3D scans are captured. We visually inspect the acquired
data and count the 3D scans in which at least a part of the object is visible in the
distance measurements and estimate the average detection probability. For the
estimation of the detection probabilities, we considered roughly the same lengths
for all obstacles (1 m, which is also the minimum safety distance during navigation).
That is, the probabilities primarily depend on diameter and reflection properties
rather than object length.

As can be seen in the plots (Figure 2.9b) and the detailed results (Figure 2.9c),
all types of obstacles are detected at 1 m distance, and with an aggregation period
of 10 s up to 3 m (for the transparent plexiglass tube). Obstacles with better
visibility like the metal rod, the cardboard and plastic tubes, are reliably detected
up to 10 m away from the robot.

Based on the achievable results, we distinguish, respectively, different obstacle

29
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(a) Left: Different object types, from left to right: cable (I0.75 cm), aluminium
broomstick (I2.7 cm), plexiglass tube (I5 cm), cardboard tube (I7.5 cm), rectan-
gular metal rod (I4 cm), blue plastic tube (I11 cm). Middle and right: experiment
setup with object holder, measuring tape and flying multicopter.
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(b) Detection probabilities over increasing distance by object (standing).

Object Distance
1m 2m 3m 4m 5m 6m 7m 8m 9m 10m

Rectangular metal rod 100.0 100.0 96.6 93.3 90.0 83.3 66.6 60.0 50.0 43.3
Blue plastic tube 100.0 100.0 96.6 93.3 86.6 70.0 50.0 43.3 26.6 23.3
Cardboard tube 100.0 90.0 83.3 73.3 70.0 70.0 60.0 50.0 36.6 35.0
Aluminium broomstick 100.0 53.3 50.0 36.6 35.0 20.0 16.6 16.6 20.0 16.6
Black metal rod 100.0 97.0 83.0 73.0 50.0 36.0 13.0 16.0 6.6 3.3
Cable 100.0 86.6 56.6 16.6 06.6 03.3 00.0 00.0 00.0 00.0
Plexiglass tube 100.0 40.0 20.0 06.6 03.3 00.0 00.0 00.0 00.0 00.0

(c) Detailed detection probabilities in percent (standing MAV).

Figure 2.9.: Assessing the probabilities of detecting different types of objects in different
distances, measured over 30 3D scans for each obstacle and distance. We count the 3D
scans in which at least a part of the object is visible in the measurements and estimate
the average detection probability.
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2.4. Summary

types (and distances) and detection probabilities: objects that can be reliably
detected when aggregating over 2.5 s (5 scans) are considered safe and easy to
detect (green in table Figure 2.9c), obstacles that cannot be detected at least once
in 10 s (20 scans) are considered especially dangerous and very hard to detect (red
in Figure 2.9c), and obstacles of moderate detection probability (yellow in table
Figure 2.9c) can be reliably handled by scan aggregation when not flying too fast.

2.4. Summary
This chapter briefly introduced the robot platforms and sensor setups used in the
experiments of the following chapters. While most of the experiments has been
carried out on the MAV platforms, additional evaluation has been conducted on
data sets acquired with the mobile ground robot. Evaluation on different robot
platforms allows for assessing the versatility of the approach. Furthermore, this
chapter shows experiments assessing the detection probability of different objects
measured with the custom-built continuously rotating 3D LIDAR scanner. The
experiments indicate the necessity of sensor data aggregation over multiple mea-
surements in a data structure presented in Chapter 3, in combination with an
efficient registration approach as described in Chapter 4.
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In this chapter, we present an efficient 3D multireso-
lution map that we use to aggregate sensor measure-
ments. By using local multiresolution, we gain com-
putational efficiency by having a high resolution in the
near vicinity of the robot and a lower resolution with
increasing distance from the robot, which correlates
with the sensor’s characteristics in relative distance
accuracy and measurement density. Compared to uni-
form grids, local multiresolution leads to the use of
fewer grid cells—without losing relevant information—
and consequently results in lower computational costs.

For fully autonomous operation, robots need to map the environment they op-
erate in. Mapping means building a spatial model that reflects the geometry of
the world. Such a model is typically used for navigation—to localize the robot—or
for manipulation to avoid collisions with objects. We refer to this spatial model
as map. While the mapping process itself consists of multiple steps which will be
addressed in the following chapters, this chapter focuses on the underlying data
structure—the map. Maps are built from sensory data, for example by aggregating
measurements from a laser scanner. These sensors provide an enormous amount
of data that has to be stored and processed efficiently.

There is a multitude of different map types (Thrun, 2002) and properties to
distinguish them. First of all, they can be categorized in metric and topological
maps. Metric maps model geometry and and reflect scale, distances and direction.
In contrast, topological maps simplify the environment to a graph that relates
between subparts. Another important property of a map is the ability to model
the occupancy of the environment. For example, in an occupancy grid map (Elfes,
1987), each cell is assigned with a probability which reflects the occupancy believe
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of the cell, based on the measurements and a model of the sensor. This occupancy
information allows to distinguish between occupied, free, but also unknown parts of
the environment. For certain applications—such as navigation or manipulation—
this information is vital. Furthermore, maps can be distinguished in egocentric
and allocentric maps. In egocentric maps, the robot is in the origin and the map
is centered around it. In other words, if the robot is moving, an egocentric map
needs to be updated to preserve the structure that reflects the geometry of the
world. In contrast, the origin of an allocentric map is independent of the robot
position. Thus, the robot moves inside an allocentric map, whereas an egocentric
map moves with the robot.

An example of a metric map—which has been prevalent in robotics in the last
decades—are occupancy grid maps (Elfes, 1987). Occupancy grid maps discretize
the environment in equally sized cells, which aggregate measurements of the spa-
tial area they correspond to. While this discretization of measurements in uniform
gird maps is feasible in 2D for robots moving on a planar surface, the aggrega-
tion of measurements in a fine-grained 3D grid becomes intractable due to the
number of cells. Consequently, using uniform grid maps to store 3D point clouds
from laser scanners often results in a trade-off between memory efficiency and
accuracy. Especially for beam-based distance sensors—where the measurement
density decreases with the distance to the sensor—uniform grid maps do not re-
flect the measurement properties correctly and result in large number of unused
cells, increasing memory consumption and general computation requirements.

In this chapter, we present a data structure for mapping that is used to aggre-
gate sensory data, such as measurements from a 3D laser scanner. The presented
data structure—coined local multiresolution grid map—is designed for memory ef-
ficiency and has two important properties. First, it is a local map, according to
its egocentric property. Second, the data structure has the multiresolution prop-
erty. For map data structures, multiresolution means having varying resolution
in different areas of the map. Combining the two properties results in an robot-
centric multiresolution map, which means a high resolution in the close proximity
to the sensor and a lower resolution with increasing distance. Compared to uni-
form grid maps, local multiresolution leads to the use of fewer grid cells without
loosing information and consequently results in lower computational costs. Since
the local multiresolution property correlates with a rough approximation of the
sensor’s characteristics in relative distance accuracy and measurement density, the
loss of information compared to a regular grid can be neglected. Each cell in the
map summarizes its attributed measurements by Gaussian statistics in a surface
element (surfel).

The presented data structure is used to map the environment by aggregating
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Figure 3.1.: Local multiresolution grid map with a higher resolution in the close prox-
imity to the sensor and a lower resolution with increasing distance. Aggregated mea-
surements from a continuously rotating laser scanner are depicted by colored points.
Color encodes height from ground. The data has been acquired during flight with a
MAV (center of the map).

measurements from consecutive time steps, e.g., scans from a 3D laser scanner.
Aggregating measurements from consecutive time steps necessitates a robust and
reliable estimate of the sensor’s motion. Therefore, newly acquired scans need to
be aligned with the so far aggregated map by means of scan registration. The
aggregated map is then used for different tasks of autonomous navigation, such
as collision detection, mapping, and localization. Figure 3.1 shows an example
of a local multiresolution grid map and measurements acquired with continuously
rotating laser scanner mounted on a MAV during flight. Furthermore, the figure
illustrates the mentioned property of beam-based distance sensors in regards of
measurement density. Close to robot, measurements have a higher density than
farther away.

3.1. Related Work
Mapping has been heavily researched in the robotics community in the last decades
and a variety of approaches exist.

Storing and processing of 3D data are important problems in many research
fields, such as computer graphics or robotics. Thus, a variety of approaches exist
for different purposes or applications. In the following, we discuss data structures
that are used in robotics. We focus on metric map representations—modeling the
geometry of the environment—compared to topological representations, which will
be addressed later.
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Although directly storing 3D measurements in point clouds has been used in
robotics for SLAM, e.g., by Cole and Newman (2006) and Nüchter et al. (2007b), it
inferiors in terms of memory efficiency. Furthermore, it does not model unmapped
areas—called free space.

The first important map representation in robotics modeling free space are oc-
cupancy grid maps, which where pioneered by Elfes (1987) and Moravec (1988).
Occupancy grid maps discretize the environment in uniform grids. Each grid
cell stores information about its occupancy—being free, occupied or unknown.
While occupancy grid maps are still popular in robotics for 2D mapping, the
use of fine-grained grids to represent the environment in 3D—especially in larger
environments—bears the problem of memory efficiency and scalability. Thus, a
trade-off between efficiency and accuracy has to be made when using standard grid
maps. To this end, a number of approaches try to tackle the problem of memory
efficiency by extending or compressing the grid map data structure, allowing for
3D mapping.

Hebert et al. (1989) propose elevation maps, extending 2D grid maps by adding
a height for every grid cell. While elevation maps only model a single surface,
multi-level surface maps (Triebel et al., 2006) store multiple heights in each grid
cell, allowing to model environments with more than on surface, such as bridges
for example. Another approach in extending 2D grid maps by attributing in-
formation about the height to grid cells is presented in (Wolcott and Eustice,
2015). The authors propose using Gaussian mixture models to characterize the
height distribution of measurements in a grid cell. The main drawback of these
methods is—while being more memory efficient than plain grid maps—that they
do not represent the real environment and therefore cannot be used for localiza-
tion. Ryde and Hu (2010) overcome this problem by storing lists of occupied
voxels. However, compared to standard occupancy grid maps, these approaches
do not model free space. In contrast, multi-volume occupancy grids (MVOGs)
proposed by Dryanovski et al. (2010) model free space by additionally storing
lists of free voxels. An alternative representation to occupancy grid maps are
so-called coverage maps Rocha et al., 2005; Stachniss and Burgard, 2003a,b. In
contrast to occupancy grid maps—where a cell’s occupancy is either occupied or
free—coverage maps store information about the amount a cell is covered by an
object.

A more complex representation that is often used for 3D mapping are octrees.
Octrees model the environment in a tree-based structure where every node in the
tree represents a cubic volume. Children of a node recursively subdivide its volume
into eight sub-volumes. Compared to standard grid maps, octrees allow to model
the environment without storing unused grid cells since the recursive subdivision
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of nodes is based on individual measurements. Octrees allow to represent the
environment in different resolutions, depending on the depth to which the tree
is traversed. Thus, octrees also have the multiresolution property, but compared
to our approach, resolution does not depend on the location in the map, but on
the distribution of measurements. In contrast, resolution in the presented map
data structure depends on the distance to the sensor, called local multiresolution,
while octrees are better described by global multiresolution. While octrees for
mapping has been proposed decades ago (Meagher, 1982; Payeur et al., 1997), they
gained their real popularity recently with the increase of achievable 3D sensors.
For example Hornung et al. (2013) propose OctoMap, a complete framework for
octree-based multiresolution mapping, which also models free space and provides
a compression method.

Another way in reducing the number of cells in occupancy grid maps was pro-
posed by Khan et al. (2015). They adapt the resolution by fusing neighboring cells
to rectangular cuboids based on occupancy probabilities. The results reported by
the authors, show that this approach leads to the use of fewer grid cells and faster
access time for occupied cells, but slower insertion due to the fusion process, com-
pared to OctoMap. Einhorn et al. (2011) generalize the idea of octrees to Nd-trees
where, that subdivide a d-dimensional volume recursively into Nd children. Both
of these approaches consider mapping in 3D with a voxel being the smallest map
element.

Belter et al. (2012) also propose to use local grid maps with different resolutions.
In contrast to our approach, different map resolutions are used for different sensors,
resulting in an uniform grid map for each sensor.

While occupancy grids and octrees model the occupancy for each cell, Biber
and Strasser (2003) introduce the Normal-Distribution Transform (NDT), which
assigns a Gaussian probability distribution to each cell, summarizing attributed
measurements. Similar to occupancy grids, the environment is subdivided into
cells or voxels, but instead of a single probability for each cell reflecting the oc-
cupancy, NDT reflects the distribution of measurements in the cell. The normal
distributions in the cells are used to register a new scan to the model. The exten-
sion to three dimensions (3D Normal-Distribution Transform (3D-NDT)) for point
set registration is presented in Magnusson et al. (2007), subdividing the environ-
ment in 3D voxels. Similar to 3D-NDT, multi-resolution surfel maps (Stückler
and Behnke, 2014) match Gaussian statistics to register RGB-D images or laser
scans (Schadler et al., 2013). The approach uses octrees to discretize the environ-
ment to allow for multi-resolution queries.

Another alternative representation to occupancy grid maps is the signed distance
function (SDF) introduced in Curless and Levoy (1996). While being more popular
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in graphics and 3D reconstruction, they have been used for SLAM with RGB-D
cameras (Newcombe et al., 2011).

The presented data structure bears similarities to 3D-NDT and multi-resolution
surfel maps by summarizing measurements by Gaussian statistics, but compared to
the previous approaches efficiently enforces subdivision of the environment based
on the distance to the sensor.

3.2. Local Multiresolution Grid Maps
Local multiresolution grid maps are intended to better reflect the properties of
beam-based, omnidirectional distance sensors by having a high resolution in the
close proximity to the sensor and a lower resolution with increasing distance. They
consist of multiple robot-centered uniform grid maps with different resolutions,
called levels. Each grid map is concentrically embedded in the next level with
coarser resolution and doubled cell length. Figure 3.2 illustrates the structure of
a local multiresolution map with four levels. Each level has 8 ˆ 8 ˆ 8 cells, each
of them corresponding to a spatial area. The total number of cells sums up to
512 cells per level and 2048 cells for the local multiresolution map. In contrast,
modeling the environment in an uniform grid map with the same resolution as the
finest resolution in the multiresolution map would result in 262144 grid cells.

The total area that can be modeled by a local multiresolution map is defined by
the size of the coarsest level. This size, the number of levels, and the resolution
are chosen based on characteristics of the sensor. Since the origin of the map,
and thus the map itself, moves with the robot, measurements vanish when being
farther away from the robot than the size of the map. Consequently, this results
in a constant upper-bound for memory consumption, independent of the size and
the structure of the environment.

Each level consists of a uniform grid map with gird cells storing 3D point mea-
surements along with the occupancy information of the cell and cell statistics. The
map’s cells are stored in a circular buffer allowing for efficient translation of the
map (Section 3.2.1). Multiple circular buffers are interlaced to obtain a map with
three dimensions. The length of the circular buffers depends on the resolution and
the size of the map.

The occupancy information represents the cell’s probability of being free or
occupied and is described in Section 3.2.3. It is updated when new measurements
are added to the map and can be used to distinguish free from unknown space.
Furthermore, it helps to address spurious measurements in the map, for example
caused by dynamic in the environment. The statistics of the cell summarize the
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Figure 3.2.: An illustration of a local multiresolution map with four levels. Each level
(indicated by color) is a uniform grid map with 8ˆ8ˆ8 cells, centered around the robot.
While the number of cells for each level is constant, resolution doubles.

3D measurements in a surfel as described in Section 3.2.2. Furthermore, a surface
normal n P R3—i.e., the (unit-length) vector pointing from the surfel to the sensor
origin—is stored for each surfel.

When using a local multiresolution map to aggregate measurements from a 3D
laser scanner, the individual distance measurements from the sensor can be referred
to as a point in a 3D coordinate system. A multitude of such measurements, for
example from one sensor sweep or rotation is called a 3D scan in the following.
Every cell in the map stores multiple measurements from different 3D scans. For
storing these measurements, every cell has a measurement buffer that is imple-
mented as a fixed-size circular data structure. Besides memory allocation, circular
buffers allow for constant time insertion, which is important for efficiency. If the
capacity of the circular buffer is exceeded, old measurements are discarded and
replaced by new measurements. The capacity of the buffer corresponds to the
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Figure 3.3.: One-dimensional illustration of a local multiresolution map with three
levels (orange, blue, red) and 8 cells per level. Along with the occupancy information,
every grid cell maintains a circular buffer (green) with its associated measurement points
(black). If the capacity of the buffer is exceeded, old measurements are discarded and
replaced by new measurements. Local multiresolution results in an overlap between the
coarser levels in the center of the map.

maximum number of measurements a cell can store and is equal for all cells in the
map. Thus, a constant maximum number of measurements is stored in every grid
cell. The capacity of the measurement buffers needs to be chosen according to the
measurement density and the resolution, size and number of levels of the map.

Stacking the finer level maps in the center results in an overlapping region of the
maps. These overlapping regions store redundant information, since measurements
in the coarser level are also included in the finer levels. While this redundancy
could be easily neglected, it is stored to initialize grid cells on the finer levels, as
described in next section. Figure 3.3 shows a 1D schematic illustration of the map
organization and the cell’s measurement buffer.

When adding 3D measurements to a cell, the point coordinates are transformed
in the cell’s local coordinate frame, and back to the map’s coordinate frame when
accessing. The transformation into the cell’s coordinate frame allows for efficient
shifting of cells without the necessity to transform all measurements. Furthermore,
it facilitates generation of the cell’s surface statistics.

3.2.1. Retaining the Local Multiresolution Property

To gain the advantage of local multiresolution maps the egocentric property of the
map has to be adhered. Thus, if the robot moves, the map has to be rearranged,
according to the movement of the robot, such that the sensor is centered in the map
again. Since reconstructing the map on every sensor update is computationally
demanding, we aim for an efficient rearrangement of the map. A key requirement
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Figure 3.4.: One-dimensional illustration of the hybrid local multiresolution map.
Along with the occupancy information, every grid-cell (blue) maintains a circular buffer
with its associated measurement points (black). The map is centered around the robot
and in case of a robot motion, ring buffers are shifted according to the translational
parts of the movement, maintaining the egocentric property of the map. Cells at coarser
levels are used to retain points from vanishing cells at finer levels and to initialize newly
added cells (red arrows).

for an efficient rearrangement is to store the map in a coordinate system which
is independent from the robot orientation. Therefore, rotation of the robot can
be taken in to account by maintaining the orientation of the robot in the map’s
coordinate system. Thus, the robot motion can be simplified to the translational
parts of the movement.

Rearranging the map according to the translation of the robot in the map coor-
dinate frame can be easily accomplished by shifting cells. To allow for shifting grid
cells in constant time, cells are stored in a circular buffer. In case of a translation
of the robot, the circular buffers are shifted whenever necessary to maintain the
egocentric property of the map. In case of a translation equal or larger than the
cell size, the circular buffers for respective dimensions are shifted. For sub-cell-
length translations, the translational parts are accumulated and shifted if they
exceed the length of a cell.

Due to the individual sizes of the different map layers, each level is shifted
independent of the other levels. When a map layer is shifted, new cells are added
to the circular buffers of the respective dimension. Thus, grid cells at the end of
the level fall out of the map at the end. Furthermore, empty cells are added at the
other end of the map. In order gaps int , measurement from the coarser level are
retained to initialize empty cells. Figure 3.4 illustrates shifting of cells the process.

Since rotating the map would necessitate to shuffle all cells, local multiresolution
maps are oriented independent of the robot’s orientation. Therefore the orientation
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Figure 3.5.: Surfels (colored ellipses) are estimated in each grid cell from the attributed
points (black circles). New measurements are added to a grid cell by combining surfels
from old measurements (green ellipse) and new measurements (red ellipse) to a single
surfel (blue ellipses).

between the map and the robot is maintained and used to rotate measurements
when accessing the map.

3.2.2. Local Surface Representation

Due to the large amount of data generated by today’s laser range sensors, each
grid summarizes the measurements covered by its volume in a surfel. The surfel
represents the shape of the measured surface by a local probability density function
(PDF). Thus, for each cell, the sample mean µ P R3 and covariance Σ P R3

is computed from its attributed points P “ tp1, . . . , pmu. In other words, we
now have a piecewise continuous description of the geometry measured in the
cell’s volume. Subdividing the environment and summarizing points by estimating
parameters of a normal distribution has been introduced by Biber and Strasser
(2003) and extended to 3D by Magnusson et al. (2007).

When adding new measurements to a cell, surfels are combined by updating
mean and covariance as depicted in Figure 3.5. Calculating the mean vector
and covariance matrix from a point distribution necessitates careful considera-
tions about the numerical stability and efficiency. Following Stueckler (2014), an
efficient one-pass update scheme is used to update mean and covariance when
adding points to grid cells. Inspired by Chan et al. (1979), the algorithm calcu-
lates sample mean and covariance by storing the sum SpPq :“

ř

pPP p and sum of
squares SSpPq :“

ř

pPP ppT of the points in P . From this, mean µpPq “ 1
|P|

SpPq

and covariance ΣpPq “ 1
|P|´1

SSpPq ´ µµT are calculated. For two point sets PA
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and PB, S and SS are updated by

SpPA Y PBq Ð SpPAq ` SpPBq,

SSpPA Y PBq Ð SSpPAq ` SSpPBq `
δδT

NANBpNA ` NBq
,

(3.1)

where

Np¨q Ð |Pp¨q|,

δ Ð NBSpPAq ´ NASpPBq. (3.2)

By storing S and SS for each grid cell, new measurements can be added without
iterating over all aggregated measurements in the cell. Similar to Stueckler (2014),
numeric stability is enforced by requiring a minimum sample size of |P | ě 10 and
stop adding measurements when |P | ě 10, 000. Algorithm 1 describes how points
are added to a grid cell and µ and Σ are updated.

3.2.3. Occupancy Representation
Each cell in the local multiresolution map stores information about its occupancy,
i.e., the probability of the cell being occupied. This probability helps to asses
if a cell is part of a measured object, free space or unknown. Using a sensor
model, which reflects the characteristics of the measurements, it is maintained
when adding measurements to the map. In the following we refer to free space
as the parts of the map that have been traversed by measurements, i.e., cells that
are on the ray between the sensor and a measured object. In contrast unknown
space are cells that have not been traversed by the other measurements, e.g., when
occluded by another object or outside the measurement range of the sensor. Lastly,
cells are occupied if measurements from an object are inside the cell.

This information is useful for a number of reasons. First, it helps to address and
cancel out spurious measurements that are caused by dynamic objects in the scene.
Second, depending on the application—for instance if the map is used for autono-
mous navigation—knowledge if parts of the map are free or unknown is important
for motion planning. Furthermore, it helps to cancel out abandoned measurements
which are caused by wrong motion estimates or registration failures.

To estimate the occupancy of a cell based on sensor measurements, a beam-
based inverse sensor model is used to reflect the measurement characteristics of
the sensor (Thrun et al., 2005). Integrating measurements into the map thereby
consists of determining the affected cells for a each measurement and updating
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Algorithm 1: Add points to surfel
Data: Points P “ tp1, . . . , pNP

u, aggregated sum S, aggregated sum of
squares SS, and number of aggregated points N .

Result: Mean µ and covariance Σ.
sum and squared sum of P
SpPq, SSpPq Ð 0
for pk P P do

δ Ð SpPq ´ NPpk
SpPq Ð SpPq ` pk

SSpPq Ð SSpPq ` δδT

NP pNP `1q

update aggregated sum and sum of squares
if NP ą 0 and NP ă 10, 000 then

if N “ 0 then
S Ð SpPq

SS Ð SSpPq

N Ð NP

else
δ Ð NPS ´ NSpPq

S Ð S ` SpPq

SS Ð SS ` SSpPq ` δδT

N
NP pN ` NP q

N Ð N ` NP

update mean and covariance
µ Ð 1

N
S

Σ Ð 1
N´1

SS ´ µµT

the probability of the cells based on the inverse sensor model. For measurement
zi, the affected cells C “ tc1, . . . , cmu are all cells on the line of sight between
the sensor origin and the measurement zi. To determine C, ray casting between
sensor origin and measurement is performed with an approximated 3D Bresenham
algorithm (Amanatides and Woo, 1987). When the measurement falls inside the
map, the last cell cm on the ray contains the measurement zi and is called the
endpoint cell. Figure 3.6 illustrates the integration of measurements. According
to the sensor model the probability of the endpoint cell cm being occupied is
increased, whereas the probability of cells traversed by the ray tc1, . . . , cmu are
decreased.

Based on the measurements z1:t, the probability ppc|z1:tq of a cell c being occupied
is calculated using a binary Bayes filter and log-odds notation (Moravec, 1988).

44



3.2. Local Multiresolution Grid Maps

Figure 3.6.: Two-dimensional schematic illustration of the occupancy mapping. Mea-
surements are integrated into the local multiresolution grid map by ray-casting from the
origin (center of the map) to the endpoints of the measurements. Cells along the ray
(red) are updated. The color of the grid cells depicts the state of the cell, being occupied
(black), free (white) or unknown (gray). The measured surface is outlined by the green
curve.

The odds of cell c being occupied is defined as ppc|z1:tq

1´ppc|z1:tq
and can be calculated by

ppc|z1:tq

1 ´ ppc|z1:tq
“

ppc|ztq

1 ´ ppc|ztq

1 ´ ppcq

ppcq

ppc|z1:t´1q

1 ´ ppc|z1:t´1q
, (3.3)

from the new measurement zt, the previous measurements z1:t´1 and the prior
ppcq. With this recursive formulation ppc|z1:tq can be updated based on the previous
estimate ppc|z1:t´1q and a uniform prior ppcq. It can be further transformed to a
logarithmic representation

log
ppc|z1:tq

1 ´ ppc|z1:tq
“ log

ppc|ztq

1 ´ ppc|ztq
` log

1 ´ ppcq

ppcq
` log

ppc|z1:t´1q

1 ´ ppc|z1:t´1q
. (3.4)

The advantage of the logarithmic representation is twofold: it allows to substi-
tute multiplications by computational less expensive additions and is numerical
more stable at probabilities close to zero or one. Since ppcq is a uniform prior,
Equation (3.4) can be simplified to

l1:t “ lt ` l1:t´1, (3.5)

with l1:t being the log-odds at t. By precomputing lt the recursive formulation
can be solved efficiently by incrementally updating the log-odds value of the cells.
For the beam-based inverse sensor model, two specific log-odds values lhit, lmiss are
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Sensor origin

Endpoint

Figure 3.7.: Left: When integrating measurements by ray-casting from the sensor
origin (yellow point) to the endpoint (cyan point) the ray (dashed red) traverses free
cells (blue striped) and occupied cells (blue solid). Grid discretization may lead to
wrongly decreased occupancy probability for cells that are occupied. Right: to avoid
wrongly decreasing occupied cells, the Mahalanobis distance between the surfel and the
closest point on the ray is considered (green).

precomputed. For cells that are traversed by the beam, not being the endpoint,
lt “ lmiss and for cells where the beam is reflected in the cell lt “ lhit. To asses
occupancy, for example for navigation planning, the probability ppc|z1:tq can be
recovered from the stored log-odds value by

ppc|z1:tq “ 1 ´
1

1 ` exppl1:tq
. (3.6)

Thresholding the probability ppc|z1:tq leads to discrete states for the cell c.
In contrast to static environments, where the log-oods values of a cell usually

converge to a single value, dynamics in the environment necessitate changing of
the cell’s occupancy during mapping. Thus, a clamping update policy is used to
limit the stored log-odds value (Yguel et al., 2008). Thus, l1:t is clamped based on
the two thresholds lmax, lmin by

l1:t “ maxpminplt ` l1:t´1, lmaxq, lminq. (3.7)

Based on the precomputed log-odds values lhit, lmiss, the thresholds control the
number of measurements necessary for the transition between a cell’s state being
occupied to free. The inherent discretization of grid maps results in an undesir-
able effect when the ray traverses cells, that are partially occupied by a different
multiple surfaces. For example when measuring a flat surface in a shallow angle,
as described by Hornung et al. (2013). The discretization results in canceling out
occupied cells during traversal. The authors suggest to only decrease occupancy
of cells that have not been covered by any endpoint of the current scan. In other
words, after ray-casting, traversed cells are grouped into endpoint cells and non-
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endpoint cells and only the occupancy of non-endpoint cells is decreased. While
this method helps to avoid canceling out occupied cells during one scan, it does
not prevent canceling out cells when the sensor moves.

For local multiresolution grid maps, the distribution of measurements inside the
cells is known and modeled by the surfel. In the aforementioned case, when the ray
traverses occupied cells due to discretization, the surfel can be used to decide if the
ray measures through the point distribution in the cell. As depicted in Figure 3.7,
the vector vr being the vector from the surfel mean to the closest point on the
ray is calculated. vr can be easily calculated by projecting the surfel mean on the
sensor ray.

The Mahalanobis distance

DMpvrq “
a

pvr ´ µcqTΣ´1
c pvr ´ µcq, (3.8)

measures the distance between the surfel mean taking into account the distri-
bution of measurements in the cell. For non-empty cells that are traversed during
ray-casting, DMpvrq is calculated to decide if the ray is likely to measure through
the surfel.

3.3. Experiments and Results
This section describes the evaluation of the presented data structure. After assess-
ing qualitative results from data sets recorded during the the DARPA Robotics
Challenge (DRC) 1 memory consumption is evaluated. For example Figure 3.8
shows resulting grid cells, surfels, and aggregated points, recorded by a continu-
ously rotating laser scanner on the mobile manipulation robot Section 2.2. For
the same sensor setup, the occupancy mapping described in the previous section is
demonstrated in a dynamic environment as shown in Figure 3.11. The impact of
the different map parameters are not subject to this evaluation, but will be assessed
in the following chapter together with the presented registration approach.

3.3.1. Memory Consumption
In the following experiments, memory usage of the presented data structure is
evaluated. Compelling evaluation of memory utilization depends on a variety of
factors, such as parameters—in case of local multiresolution maps, size, number
of levels, resolution and the number of points per cell—but, even more important,
on the characteristics of the data set used for the evaluation. Therefore, a publicly

1http://www.theroboticschallenge.org/
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(a) 3D scan (b) Points in map

(c) Grid cells in map (d) Surfels in map

Figure 3.8.: The local multiresolution grid map during the first DRC competition run.
(a): The 3D scan acquired with our continuously rotating laser scanner. (b): 3D points
stored in the local multiresolution map. Color encodes height from ground. (c): The
multiresolution grid structure of the map. Cell size (indicated by color) increases with
the distance from the robot. (d): For every grid cell a surfel es summarizes the 3D points
in the cell. Color encodes the orientation of the surfel.

available data set is used in the following experiment. Following Hornung et al.
(2013), an indoor data set2, recorded on the computer science campus at Univer-
sity of Freiburg, is used to evaluate memory consumption with respect to map
parameters. The data set consists of 66 scans from a SICK LMS laser scanner.
The laser scanner was mounted on a pan-tilt unit to gain a 3D FoV.

2The FR-079 corridor dataset is available at: http://ais.informatik.uni-freiburg.de/
projects/datasets/octomap/
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Figure 3.9.: Memory usage (logarithmic scale) for different number of levels in the map.
66 scans from the FR-079 have been added to the map. The map size was chosen 50m,
and the number of points per cell is fixed to 50. The cell size of the finest resolution is
always 5cm.

In terms of registration accuracy, the most crucial parameters are the number
of levels and the resolution, since they directly affect the size of the grid cell and
therefore, the size of the surfels. While small surfels allow fine and accurate reg-
istration, wider surfels are necessary to recover larger transformations between
scans. Thus, the right tradeoff between fine grid cells for accuracy and coarse sur-
fels for robustness has to be found. Furthermore, both parameters affect memory
consumption heavily, as shown in Figure 3.9. In this experiment, all 66 scans from
the dataset are added to local multiresolution maps with different parameters for
the number of levels and resolution. This comparison is only meaningful if the
same order of fidelity, in terms of registration accuracy is given between the differ-
ent parameter combinations. Therefore, the cell size of the finest level in a map is
required to equal between the parameter combinations, while the number of levels
is alternated. Hence, the resolution of the map is chosen based on the number of
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Figure 3.10.: Memory usage for a map with 6 levels and different number of points per
cell. 66 scans from the FR-079 have been added to the map. The map size was chosen
50m and the cell size of the finest resolution is 5cm.

map levels.
Based on the experiment in Hornung et al. (2013), a cell size of the finest level

of 5cm is used. It has to be mentioned, that the OctoMap data structure as it
is presented in Hornung et al. (2013) is not intended as map representation for
accurate registration, but for compact and efficient modeling of the geometry and
free space in the environment. In contrast to OctoMaps, where the resolution
limits the granularity of the geometry which can be represented, the resolution in
local multiresolution maps limits the size of the surfels, which itself represent the
distribution of measurements Based on the experiment in Hornung et al. (2013),
a cell size of the finest level of 5cm is used. in a volume. In other words, since
a surfel represents finer granularity as the an Octree cell—being either unknown,
free, or occupied—resolution of the in a local multiresolution map can be much
coarser, while still capturing similar details of the geometry. Obviously, an Octree
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can also store surfels in the leaf notes and capture similar details (Stückler and
Behnke, 2014). The severe effect of local multiresolution, in terms of difference in
memory consumption in orders of magnitude, is shown in Figure 3.9.

The second crucial parameter affecting memory consumption of local multires-
olution maps, is the number of points stored in each cell. Figure 3.10 shows the
memory consumption in relation to the number of points that can be stored in a
cell. The results confirm the assumption, showing increasing memory utilization
in relation to the number of points that can be stored in the cell. However, due to
the ability to incrementally update surfels without the need to store the individual
measurements it summarizes. However, the current implementation to retain the
local multiresolution property when the robot moves requires at least a minimal
amount of points to initialize empty grid cells, but for this, a minimum amount of
50 points per cell are sufficient and show same results in terms of registration qual-
ity as storing e.g., 1000 points per cell. Furthermore, the current implementation
uses the cell points for visualization.

3.4. Summary
This chapter introduced local multiresolution grid maps as a concise environment
representation. Besides introducing local multiresolution grid maps, efficient ag-
gregation of measurements in surfels and occupancy mapping with local multires-
olution grid maps are described. The data structure is the foundation for the
methods presented in the following chapters. The main intuition behind local
multiresolution grid maps is the advantage of having a constant upper-bound for
memory consumption, independent of the size and the structure of the environ-
ment, which is an important property when developing robotics applications.

The evaluation shows that local multiresolution reduces memory consumption
and runtime. However, evaluating the properties of the map representation in
terms of registration quality is assessed in the following chapter which introduces
a registration method exploiting properties of local multiresolution maps.

As presented, local multiresolution grid maps capture the geometry of the scene,
disregarding reflectance, color or texture information. While capturing geometry
solely achieved sufficient results in this thesis, future work could exploit incorpo-
rating other modalities. Here, the surfels of a local multiresolution grid map could
be used to accommodate texture, color or reflectance information.
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Figure 3.11.: Filtering dynamic objects as the door during the DRC Finals. After
opening the door, abandoned measurements are filtered from the local multiresolution
map. Camera image and the point-based representation of the map at 4 different time
steps (columns). Color encodes height from the ground.
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4. Efficient Registration of Local
Multiresolution Maps

In this chapter, an efficient and accurate registration
method is presented, leveraging the properties of the
map data structure presented in the previous chapter.
Gaussian point statistics in the grid cells are matched
in a probabilistic registration approach.

The presented method allows to align new 3D scans
with the map, utilizing the multi-resolution property in
a coarse-to-fine approach. Experiments demonstrate
superior accuracy and efficiency of the registration ap-
proach compared to state-of-the-art methods.

The previous chapter presented a concise data structure designed for efficient
aggregation of sensor measurements. In order to aggregate sensor data, mea-
surements need to be aligned to other measurements. Aligning measurements is
considered as registration and has been researched since decades. Consequently,
a variety of different registration methods exist, all having different strengths and
weaknesses or being designed for different sensor modalities or applications.

Registration usually considers two sensor measurements—for instance measured
at different times—and aims to find a rigid transformation that aligns the two
measurements, minimizing the displacement between them. The displacement is
commonly modeled as cost function that represents the quality of the alignment.
Minimizing the cost function, and thus finding the best alignment, is usually formu-
lated as optimization problem. When registering consecutive sensor measurements,
the transformations to align the measurements can be considered to describe the
motion of the sensor. Thus, the sensor trajectory can be reconstructed from the
alignments. Thus, incremental registration of consecutive measurements from a
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laser scanner, is often referred to as Lidar Odometry.
In case of local multiresolution grid maps, where surfels summarize sensor mea-

surements, the objective is to find the transformation that aligns the new mea-
surements with the surfels in the aggregated map. The inherent structure of local
multiresolution maps thereby implicitly enables a coarse-to-fine approach, since
cells farther away from the sensor result in larger surfels for coarse registration—
allowing to recover larger displacements between the sensor measurements—and
closer cells, resulting in smaller surfels allow a fine and accurate registration. Thus,
the coarse-to-fine approach increases robustness while still being accurate.

Summarizing the measurements by surfels thereby has the advantage of having
several orders of magnitudes less map elements to be considered for registration.
Thus, for registering 3D scans with a map, we also represent the scans in local
multiresolution grid maps. By that, registration of new measurements to the map
consists of finding a transformation that minimizes the distance between the surfels
in the so-called scene map—being the map built from the new sensor data—with
the aggregated map, the model map. The registration of two local multiresolution
maps with each other is considered as an optimization problem, minimizing an
error function that models this surfel distance. In order to define this error func-
tion, the question of data association—i.e., determining correspondence between
surfels of the scene and model map—is crucial and heavily influences registra-
tion performance. We define a probabilistic surfel association, assigning surfels
within a Gaussian mixture model. For every scene surfel a number of model sur-
fels is considered and the transformation, minimizing the displacement between
the associations is searched. Sometimes, reconsidering these associations during
registration, might become necessary. In this case, new associations are searched
based on the last estimated transformation. The result is an iterative method,
that finds associations and minimizes the displacement between the associations
until either the displacement between the surfels satisfies a criteria, or has not
changed during a number of iterations.

In the this chapter, after reviewing related work and the state-of-the art, the
surfel-based registration method is described, followed by an experimental evalua-
tion of the proposed method, comparing it to state-of-the-art registration methods.

4.1. Related Work

One of the first algorithms for scan registration and also the origin of most of to-
day’s algorithms, is the iterative closest points (ICP) algorithm (Besl and McKay,
1992). The method finds a rigid transformation between the scene and the model,
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by iteratively minimizing point distances between the point clouds. Each itera-
tion of the ICP algorithm consist of searching corresponding points and calcula-
tion of the transformation between the correspondences, usually by a closed-form
solution (Arun et al., 1987). Minimizing these point-to-point distances bears a
number of problems. First of all, finding point correspondences is computation-
ally demanding—especially with the huge amount of measurements provided by
today’s sensors. Thus, research many works in this area focuses on improving the
computational efficiency (Rusinkiewicz and Levoy, 2001), e.g., by accelerating the
correspondence search (Nüchter et al., 2005, 2007a).

Furthermore, when minimizing point-to-point distances, the assumption is made
that each point in the scene scan matches another point in the model scan, which
is unrealistic for real-world data. Thus, a number of approaches improve data
association by incorporating more suitable cost functions. A well-known example
is the Generalised-ICP (GICP) algorithm, proposed by Segal et al. (2009). The
algorithm unifies the ICP formulation for various error metrics such as point-to-
point, point-to-plane, and plane-to-plane. Extensions to overcome the sparseness
an non-uniform point density have been proposed by Holz and Behnke (2015).
In general, minimizing the point-to-plane distance outperform point-to-point ap-
proaches (Pomerleau et al., 2013a). The disadvantage when minimizing point-to-
plane distance, are the computational requirements to estimate the surface normals
and mesh reconstruction. For an extensive survey on these and other registra-
tion algorithms for 3D point clouds we refer to the recent works of Pomerleau et
al. (Pomerleau et al., 2013a; Pomerleau et al., 2013b).

Another group of registration algorithms are so-called feature-based methods.
The idea is to extract salient features from the measurements that are used for
data association, instead of the point-to-point associations. Features include ge-
ometric (Johnson and Hebert, 1999; Rusu et al., 2009; Tombari et al., 2010) or
image features from the reflectance information (Böhm and Becker, 2007). Instead
of single 3D points, features are matched and the number of elements to consider
during data association is reduced. However, feature extraction usually requires
expensive preprocessing of the sensor data and registration performance mainly
depends on the properties of the extracted features.

Instead of considering the individual scan points, algorithms such as the NDT
algorithm by Biber and Strasser (2003) for 2D, or the 3D-NDT (Magnusson et al.,
2007; Stoyanov et al., 2012) for 3D, discretize point clouds in a grid structure and
align Gaussian statistics within grid cells to perform scan registration. Instead
of a uniform grid map for estimating the Gaussian statistics, Ulaş and Temeltaş
(2013) propose to use multiple layers of grids, with different cell sizes. Recently,
multi-resolution surfel maps have been proposed that match Gaussian statistics in
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4. Efficient Registration of Local Multiresolution Maps

multi-resolution voxel representations to efficiently and accurately register RGB-D
images (Stückler and Behnke, 2014) and 3D laser scans (Schadler et al., 2013).

Recently, probabilistic methods for point set registration became popular and
show promising results (Evangelidis et al., 2014; Horaud et al., 2011; Jian and
Vemuri, 2011; Mateo et al., 2014; Myronenko and Song, 2010; Tamaki et al., 2010).
Instead of assigning binary correspondences, multiple soft assignments are are
established and a probability is associated to each assignment. Most approaches
are based on the EM (Dempster et al., 1977) for exploiting soft assignments and
optimizing for the transformation. Probabilistic methods tend to be more accurate,
by mitigating the assumption that each point in the scene corresponds to a model
point, but are usually slower due to the increased number of associations.

This chapter presents a registration approach that combines multiple ideas that
have been proposed in other works. Similar to Magnusson et al. (2007) point
clouds are discretized into voxels and Gaussian statistics summarize points in a
volume. While Magnusson et al. (2007) discretizes in a uniform grid, the presented
approach uses local multiresolution having different voxel sizes depending on the
distance to the sensor and thus better reflects the properties of beam-based, om-
nidirectional distance sensors. Furthermore, instead of using binary associations,
soft associations as in (Tamaki et al., 2010) are used. Data asscociation is consid-
ered as latent variable as in (Mateo et al., 2014).

4.2. Surfel-Based Registration
We register a 3D scan P “ tp1, . . . , pP u with the points Q “ tq1, . . . , qQu in the
local grid map of the environment. We formulate the registration of the 3D scan
with the local environment map as optimizing the joint data-likelihood

ppP | θ,Qq “

P
ź

k“1

pppk | θ,Qq. (4.1)

Instead of considering each point individually, we map the 3D scan into a local
multi-resolution grid and match surfels, i.e.,

ppP | θ,Qq «

N
ź

i“1

ppxi | θ, Y qPx,i . (4.2)

By this, several orders of magnitudes less map elements are used for registration.
We denote the set of surfels in the scene (the 3D scan) by X “ tx1, . . . , xNu and
write Y “ ty1, . . . , yMu for the set of model surfels in the environment map. E.g.,
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Figure 4.1.: Probabilistic surfel association: Instead of associating each scene surfel
to a single model surfel (left), a scene surfel (red ellipses) is assigned to multiple model
surfels, so-called soft associations.

a surfel xi summarizes its attributed Px,i points by their sample mean µx,i and
covariance Σx,i. We assume that scene and model can be aligned by a rigid 6
degree-of-freedom (DoF) transformation T pθq from scene to model. Our aim is to
recover the relative pose θ of the scene towards the model. An exemplary surfel
map together with its originating points is shown in Figure 4.2.

4.2.1. Gaussian Mixture Observation Model

We explain each transformed scene surfel as an observation from a mixture model,
similar as in the coherent point drift (CPD) method Myronenko and Song, 2010.
A surfel xi is observed under the mixture defined by the model surfels and an
additional uniform component that explains outliers, i.e.,

ppxi | θ, Y q “

M`1
ÿ

j“1

ppci,jq ppxi | ci,j, θ, Y q, (4.3)

where ci,j is a shorthand for the 1-of-(M+1) encoding binary variable ci P BM`1

with j-th entry set to 1. Naturally, ci indicates the association of xi to exactly one
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of the mixture components. The model is a mixture on Gaussian components for
the M model surfels through

ppxi | ci,j, θ, Y q :“

N
“

T pθqµx,i;µy,j,Σy,j ` RpθqΣx,iRpθqT ` σ2
j I

‰

, (4.4)

where σj “ 1
2
ρ´1
y,j is a standard deviation that we adapt to the resolution ρy,j of

the model surfel. We set the likelihood of the uniform mixture component to
ppci,M`1q “ w. For this uniform component, the data likelihood of a surfel xi is

ppxi | ci,M`1, θq “
Px,i

P
N p0; 0, RpθqΣx,iRpθqT ` σ2

j Iq. (4.5)

For the prior association likelihood, we assume the likelihood of xi to be associated
to one of the points in the model map to be equal. Hence, for each Gaussian
mixture component j P t1, . . . ,Mu we have ppci,jq “ p1´wq

Qy,j

Q
. By modeling the

scene surfels as samples from a mixture on the model surfels, we do not make a
hard association decision between the surfels sets, but a scene surfel is associated
to many model surfels.

4.2.2. Registration through Expectation-Maximization

The alignment pose θ is estimated through maximization of the logarithm of the
joint data-likelihood

ln ppP | θ,Qq «

N
ÿ

i“1

Px,i ln
M`1
ÿ

j“1

ppci,jq ppxi | ci,j, θ, Y q. (4.6)

We optimize this objective function through EM (Bishop, 2006; Dempster et al.,
1977). The component associations c “ tc1, . . . , cNu are treated as latent variables
to yield the EM objective

Lpq, θq :“
N
ÿ

i“1

Px,i

M`1
ÿ

j“1

qpci,jq ln
ppci,jq ppxi | ci,j, θ, Y q

qpci,jq
, (4.7)

for which we exploit qpcq “
śN

i“1

śM`1
j“1 qpci,jq. In the M-step, the latest estimate q

for the distribution over component associations is held fixed to optimize for the
pose θ

pθ “ argmax
θ

Lpq, θq (4.8)
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Figure 4.2.: The point-based representation (left) of our local environment map and
corresponding surfels (right).

with

Lpq, θq :“ const . `

N
ÿ

i“1

Px,i

M`1
ÿ

j“1

qpci,jq ln ppxi | ci,j, θ, Y q. (4.9)

This optimization is efficiently performed using the Levenberg-Marquardt method
as in Stückler and Behnke, 2014. The E-step obtains a new optimum pq for the
distribution q by the conditional likelihood of the cluster associations given the
latest pose estimate θ

pqpci,jq “
ppci,jq ppxi | ci,j, θ, Y q

řM`1
j1“1 ppci,j1q ppxi | ci,j1 , θ, Y q

. (4.10)

In order to evaluate these soft assignments, we perform a local search in the local
multi-resolution surfel grid of the model. We first look-up the grid cell with a
surfel available on the finest resolution in the model map at the transformed mean
position of the scene surfel. We consider the surfels in this cell and its direct
neighbors for soft association.

4.3. Experiments and Evaluation
Several works address the benchmarking of registration methods. A comparative
evaluation of ICP and NDT in terms of registration accuracy was presented by
Magnusson et al. (2009). Wulf et al. (2007) compare ICP-based pairwise and in-
cremental registration (Nüchter et al., 2007b) and a 3D-variant (Borrmann et al.,
2008) of Lu-Milios-style graph SLAM (Lu and Milios, 1997). A recent effort for
benchmarking SLAM algorithms for RGB-D cameras including datasets and per-
formance metrics for pose accuracy is the RGB-D SLAM Dataset and Benchmark1

by Sturm et al. (2012). In order to compare constructed maps based on their qual-
ity, Schwertfeger et al. proposed a fiducial map metric (Schwertfeger et al., 2010).

1http://vision.in.tum.de/data/datasets/rgbd-dataset
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The data sets used in the evaluation are captured on different robot platforms,
with different sensors, and in different environments. The first dataset provides
ground-truth pose information from an indoor motion capture (MoCap) system.
Thus, the mapping accuracy can be quantified by comparing the estimated tra-
jectory with the one provided by the MoCap system. In particular, metrics such
as the absolute trajectory error (ATE) from Sturm et al. (2012) to measure pose
accuracy are used. For data sets where ground-truth data is not available, an
entropy-based metric measuring the map quality is used. The metric is described
in the next section.

4.3.1. Measuring Map Quality

Evaluating registration quality by means of measuring the deviation from ground
truth data is the preferred method when evaluating mapping approaches. How-
ever, ground truth data is not always available, furthermore, it usually limits the
scenarios for evaluation, by being restricted to a certain volume or environment.
Furthermore, gathering ground truth data usually involves changing the environ-
ment and the robot, e.g., by installing a motion capture system and markers.
Thus, a measure to assess the quality of registration results is necessary.

An additional measure, that is independent from external devices and ground
truth data is proposed and used during the evaluation. The overall idea is to
evaluate registration quality based on the resulting aggregated map quality. As
quantitative measure for the quality of a map, the mean map entropy (MME)
is proposed. It coincides with the noise in the map and thus allows to measure
sharpness or crispness. In other words, lower MME indicates sharpness or less
noise in the map. It has to be mentioned, that the MME measure and absolute
value depends on the data set and therefore does not allow to compare maps from
generated on different data sets.

The entropy h for a map point qk is calculated by

hpqkq “
1

2
ln |2πeΣpqkq|, (4.11)

where Σpqkq is the sample covariance of mapped points in a local radius r around
qk. We select r “ 0.3m in our evaluation. The mean map entropy HpQq is
averaged over all map points

HpQq “
1

Q

Q
ÿ

k“1

hpqkq. (4.12)
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Figure 4.3.: Visualization of the mean map entropy measure. The resulting entropy
on an synthetic, wedge-shaped point cloud. The color of a point indicates the value of
the metric, from red/yellow (low) to green/blue (high).

Figure 4.3 illustrates the resulting measure based on a synthetic generated point
cloud with increasing noise level. It shows that the MME increases with the noise
in the data. Additionally, the experiment shows that the MME decreases at the
borders of the point cloud, resulting from the lower number of points in the radius
around the points at the border.

In a second experiments, the MME is calculated on a data set where ground truth
data from a motion capture system is available. To compare the measure to the
ground truth data and to assess the reliability, the data set has been registered in
a variety of runs with different parameters for the registration method, resulting in
different MMEs. Figure 4.4 shows the resulting correlation between the deviation
of the ground truth sensor trajectory by means of the ATE and the calculated
MME. The figure shows that for runs where the ATE is low, also the MME is low.
Thus, it confirms the significance of the proposed measure.

A particular shortcoming of the metrics, however, is that they can only be
applied in case of globally consistent trajectory estimates. Large registration errors
can cause the map of all aligned laser scans to contain regions where points are
scattered. In these regions, both the neighborhood searches for the computation of
the metrics and our assumption of roughly aligned environmental structures fail.
Consequently, both metrics may yield smaller values than those obtained from
correct trajectory estimates. Moreover, in case of similar ATEs, the MME can in
the aforementioned cases suggest that a solution actually being worse is better.
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Figure 4.4.: Correlation between the proposed map quality measure MME and the
ATE of the poses over multiple runs on the same data set with different parameters.

4.3.2. Motion Capture Dataset
The data set has been recorded in a lab environment equipped with an OptiTrack
motion capture system. The system consists of 12 cameras (Flex:V100 ). It allows
to measure objects that are equipped with special markers, providing accurate pose
information at high frame rates (100 Hz). However, the system is restricted by the
capture volume of approximately 2ˆ2ˆ3 m. Measurements have been acquired
with an MAV equipped with a continuously rotating laser scanner, described in
Section 2.1.1. Furthermore, it is equipped with a camera system, providing visual
odometry information. During the 46 s flight, visual odometry and laser data for
92 3D scans have been recorded. Figure 4.5 shows the resulting map from the
presented method.

To assess the registration accuracy, the results of the registration method are
compared to the ground truth poses of the motion capture system. Prior to the
experiment, the system has been calibrated and the clock of the system has been
synchronized to the MAV computer, ensuring calibrated time stamps between
the measurements. In order to compare results, the registration results between
consecutive measurements is aggregated resulting in an incremental trajectory.
To quantify the deviation between the motion capture system and the estimated
trajectory, the ATE is calculated. Furthermore, the acquired data is also processed
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Figure 4.5.: Top-down view of the resulting map of the lab environment. The map
has been registered with the presented surfel-based registration method. The thin walls
indicate accurate registration.

with two other registration methods, ICP and GICP (Segal et al., 2009).
For this comparison, all three methods aggregate the registered sensor data in a

local multiresolution grid map. While the presented method aligns the data utiliz-
ing the surfels, ICP and GICP make use of the 3D point measurements stored in
the map. Due to the later, map parameters for the experiment have been adapted
to store all points, ensuring comparison on the same input data. Throughout the
experiments, four resolution levels are used for the map with a cell length of 0.25 m
at the finest level, which yields a cell length of 2 m at the coarsest level. Note that
the parameters for the local multiresolution grid map are not significant for the
ICP and GICP, since the map is configured to aggregate all measurements. On
the other hand, the map parameters impact the cell size and by that the size and
distribution of surfels used for registration with by the presented method. While
the parameters for this experiment were determined empirically, a more method
for parameter optimization is shown in the later experiments.

The visual odometry that has been calculated from the camera information on
the MAV is used as motion prior for all three registration methods. As base
line, the visual odometry is also treated as individual method in the following
evaluation. The resulting trajectories of the presented method, GICP, and the
ground truth trajectory are shown in Figure 4.6. The figure visually shows that
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Figure 4.6.: Absolute trajectory error ATE of the scan registration using the multires-
olution map. Points of the trajectory are projected on the xy-plane.

the trajectory resulting from our method is closer to the ground truth. Table 4.1
summarizes the ATE for different methods, confirming that the trajectory of the
presented method has a lower deviation from the ground truth. Besides the ATE,
the MME is of the resulting maps is evaluated. Therefore, a point cloud is assem-
bled from the sensor measurements using the poses from the estimated trajectory.
This assembled point cloud is considered as map for evaluating the MME and an
example is shown in Figure 4.5. Similar to the ATE, the resulting MME indicates
the accuracy of the presented method.

In summary, the results indicate that all scan registration methods improve the
motion estimate produced by visual odometry. The surfel-based method results
in a lower ATE compared to ICP and GICP. The results in mean map entropy
confirm improved accuracy by the presented registration method.

4.3.3. Parameter Optimization

The registration methods that are included in the evaluation have different pa-
rameters that affect the behavior of the method. Depending on the scenario or
the data set, different parameter values sometimes lead to a significantly different
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registration result. In order to have a fair comparison between the different reg-
istration methods, we optimize these parameters using Hyperopt (Bergstra et al.,
2013) and the Tree-of-Parzen-Estimators (Bergstra et al., 2011). The parameters
of the registration methods are described in the following.

As parameters of the ICP algorithm, we use dmax as general distance threshold
and ICPrecp to assure symmetric correspondences. Correspondences are rejected
if the point-to-point distance exceeds this threshold dmax .

The second algorithm in our evaluation is the GICP. We optimize the parame-
ters dmax , ε , and GICPinner . As for the ICP algorithm, dmax is a correspondence
threshold. The parameter ε models the noise in the data and the GICPinner deter-
mines the maximum number of inner iterations to optimize the transformation.

The parameters of the 3D-NDT (Magnusson et al., 2007) are dmax , ε , NDTres

, and NDTstep . While the first two parameters are similar to the parameters of
GICP, NDTres controls the cell size in which the normal distribution is computed
and NDTstep is the step size used for transformation optimization.

For the presented surfel-based soft assignment registration method (Surfel) we
also use a parameter Sprior to model the noise in the data. Besides that, we use
three parameters to weight the soft assignments. First, Ssize weights assignments
by the surfel size. Second, Spoints weights soft assignments by the number of
points they encompass. And lastly, Sneighbor weights by the number of surfels in
the vicinity.

In addition to parameters of the registration methods, we also optimize for the
parameters of the underlying multiresolution grid map: the resolution of the map,
the number of map levels, and the maximum number of points that are stored in
each grid cell (cell capacity).

We use one dataset from the MoCap system to optimize the parameters of the
different registration methods (training dataset) and another dataset of the MoCap

ATE [m] MME
RMSE mean median std min max mean

VO 0.151 0.134 0.129 0.059 0.024 0.324 -3.112
ICP 0.040 0.035 0.034 0.019 0.006 0.117 -3.411
GICP 0.034 0.031 0.030 0.014 0.005 0.088 -3.363
ours 0.021 0.019 0.016 0.010 0.005 0.061 -3.572
Visual Odometry (VO), Iterative Closest Point (ICP) and Generalized-ICP ( GICP)

Table 4.1.: ATE, map entropy, and run-time of our surfel registration method, in
comparison to visual odometry (VO), ICP, and GICP.
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Parameter Value Range

IC
P dmax : 2.5206 [2.5 - 30]

ICPrecp False {True, False}

G
IC

P dmax 12.3845 [2.5 - 30]
ε 0.4169 [0 - 1]
GICPinner 13 [5 - 30]

N
D

T
dmax 9.7048 [2.5 - 30]
ε 0.8568 [0.1 - 0.9]
NDTres 0.1431 [0.05 - 1]
NDTstep 0.6596 [0.05 - 0.95]

Su
rfe

l

Sprior 0.25 [0.05 - 0.95]
Ssize 0.45 [0.05 - 1]
Spoints 0.9 [0.1 - 1]
Sneighbor 10 [1 - 10]

Table 4.2.: Parameter values of the evaluated registration methods after optimization.

system to evaluate the different methods (test dataset).
Before comparing the different registration methods, we search, for each method

individually, for the best parameters that minimize the ATE in the training dataset.
Parameter search is performed using Hyperopt as previously described. We report
the found parameter sets in Table 4.2.

To illustrate the applied parameter estimation, we first optimize a single param-
eter for a single method (the Ssize factor of the surfel registration). We show the
results of this optimization in Figure 4.7. The minimum ATE can be achieved for a
Ssize factor of roughly 0.375. In the actual parameter optimization, it is not only
a single parameter being optimized but the set of all parameters the registration
method has. In comparison, in this particular example, the best found parame-
ter set includes Ssize = 0.45. This clearly shows how the different parameters
influence each other and the achievable result.

After optimizing the parameters on the training dataset, we evaluate the dif-
ferent registration methods on two test datasets. The first test dataset was also
acquired in our MoCap volume. We report the results obtained using the different
metrics in Table 4.3.

In terms of pose accuracy, both ICP and GICP could not improve the initial
pose estimates from visual odometry. We note that in the smaller MoCap volume,
the visual odometry produces already very accurate relative pose estimates and a
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Figure 4.7.: Optimized Ssize parameter of the surfel registration method. The plot
shows the characteristics of the parameter in relation to the ATE (other parameters
fixed).

Method ATE-RMSE [m] GT-RMSE [m] MME []

M
ot

io
n

ca
pt

ur
e VO 0.029977 0.0058409 -2.52013

ICP 0.033751 0.0036989 -3.65248
GICP 0.039058 0.0031005 -3.41114
NDT 0.025246 0.0021494 -3.74142
Mesh 0.024969 0.0019273 -3.80589
Surfel 0.024224 0.0020391 -3.80874

Fr
an

ke
nf

or
st

VO — 0.2722540 -2.33082
ICP — 0.0660561 -2.65460
GICP — 0.0640025 -2.55505
NDT — 0.0697013 -2.63396
Mesh — 0.0421434 -2.72391
Surfel — 0.0937490 -2.81387

Table 4.3.: Results for the two datasets (pose accuracy, and map quality).
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globally consistent trajectory. Hence, it is not surprising that plain registration
methods could not considerably improve the ATE. However, by accurately align-
ing the acquired laser scans, they achieve better values in the MME and scores,
compared to visual odometry. This is caused by the fact that the acquired laser
scans are locally better aligned than in case of the visual odometry while the global
trajectory is slightly more inaccurate, e.g., due to small drifts.

The surfel registration could achieve very good values in almost all metrics. It
produces a considerably more accurate trajectory estimate, compared to visual
odometry solely. Furthermore, the laser scans are very well aligned. The surfel
registration is also the fastest of the compared algorithms. Note, however, that
especially the parameter optimization focused only on the accuracies of trajectory
and map rather than runtime. The map obtained from this best trajectory estimate
is shown in Figure 4.5. Only in the GT-RMSE map quality metric, the mesh-
based registration achieves a better score than the surfel registration. It follows
a very similar mechanism of aligning Gaussian statistics to perform robust scan
registration, but on approximate surface reconstructions of the 3D scans.

The mesh-based registration is considerably slower than the surfel registration,
but achieves both a comparable ATE and comparable map quality metrics. Over-
all, both approaches achieve very similar results although they follow two com-
pletely different approaches. An interesting fact is that the local window alignment
applied in the mesh-based registration achieves a considerably better trajectory
estimate (without any drifts) compared to the pairwise registration as reported
in Holz and Behnke, 2014. In fact, the obtained scores in both absolute trajectory
estimate and MME do not rank behind the globally optimized trajectory in Holz
and Behnke, 2014. A likely cause is the aforementioned simplicity of the environ-
ment allowing for robustly optimizing the trajectory although it is only optimized
in local windows.

The second test dataset—the Frankenforst outdoor dataset—has been recorded
during a flight along the facade of a building of Gut Frankenforst—a research
station operated by the Institute for Veterinary Research at the University of Bonn
(see Figure 5.10). In the acquired laser scans the building, surrounding vegetation
with trees and the ground are visible. This dataset is far more challenging since
the surroundings of the building are cluttered and the scene contains fewer visible
distinct environmental structures compared to the small indoor motion capture
volume. Due to missing ground truth pose estimates in this dataset, we cannot
compute the ATE and only report the other performance measures in Table 4.3.

For this dataset, all registration methods improved the initial visual odometry
estimates. Here, the trajectory estimate by the visual odometry shows a significant
drift. The map obtained from the mesh-based registration achieves the best GT-
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Figure 4.8.: Resulting map of the Frankenforst outdoor dataset obtained by the surfel
registration (lowest MME).

RMSE. Furthermore, by using a constant number of edges between scans being
aligned and a constant size of the local window, it achieves nearly constant-time
updates and the best runtime for this dataset. In terms of MME the surfel-
based registration shows the best results. The map obtained by the surfel-based
registration is shown in Figure 5.10.

4.3.4. Runtime Evaluation
Table 4.4 reports the measured runtimes, i.e., the average processing time of one
3D laser scan for the different approaches and the optimized parameter sets. The
runtime was not used in the parameter optimization. Instead, we focus on the
accuracy of the estimated trajectory and optimize the parameters w.r.t. the ATE.
Consequently, some approaches show larger processing times than others simply
because of using parameters that achieve (slightly) better ATE scores at the cost
of considerably longer runtimes. However, Table 4.4 shows that the presented
method is not only accurate but also efficient.

4.3.5. Robustness Evaluation
Besides registration accuracy, the robustness of the registration method is assessed.
In order to evaluate the robustness, two consecutive 3D scans are aligned with each
other, similar to Magnusson et al. (2009). The result of an initial registration, with
manual verification of the alignment, is considered as reference for the experiment.
After systematic translation and rotation of the of the scene scan, the registration
result is compared to the reference alignment and registration errors are assessed
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Method MoCap1 MoCap2 Frankenforst

ICP 0.2903 ˘ 0.1087 1.6659 ˘ 0.3866 1.0264 ˘ 0.3828
GICP 1.7695 ˘ 0.8139 1.3534 ˘ 1.1927 0.3196 ˘ 0.2355
NDT — 5.2497 ˘ 1.7360 2.0627 ˘ 0.7125
Mesh — 0.1097 ˘ 0.0382 0.1314 ˘ 0.0415
Surfel 0.0511 ˘ 0.0273 0.0466 ˘ 0.0140 0.3508 ˘ 0.1522

Table 4.4.: Resulting run times for the datasets. Runtimes are measured per 3D scan
being registered and given with mean and standard deviation.

by rotational and translational differences. The scans were acquired with the MAV
and lidar sensor described in Section 2.1.3. Figure 4.9 shows the scans and a sam-
ple instance with a rotation around the z-axis of 80°. Similar to Magnusson et al.
(2009) we translate the scene scan along the x- and y-axis, and rotate around
z-axis. Choosing only two axes for translation and one for rotation is motivated
by the assumption that most displacements between consecutive scans are in the
horizontal plane. For instance, the MAV used in the experiment is equipped with
an IMU measuring rotations around the x- and y-axis, but fails to reliably measure
rotations around z-axis. Furthermore, limiting the the systematic displacements
to three parameters in total, allows concise visualization of the result. For the
following experiment, the registration of the scene scan to the model scan is con-
sidered Successful, if the translational error ϵt and rotational error ϵr is not larger
than 0.1 m and less than 5° respectively. Furthermore, a registration result is con-
sidered as Weak Success if the translational error is less than 1.0 m with the same
rotational threshold as before. Registration results exceeding these thresholds are
considered as Failure.

Since the aim of the experiment is to assess the robustness and limitations of the
registration method, the range in which scans are translated and rotated is chosen
based on the ratio between the number of successful and failed registrations. For
the scans shown in Figure 4.9 translations between -4 m and 4 m with a step size
of 1 m and rotations between -80° and 80° with a step size of 20° are evaluated.
Results are shown in Figure 4.10. From the 729 different combinations of rotation
and translations, 553 are were considered as successful (75%) and the others are
considered as failure.
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Figure 4.9.: Two consecutive scans (orange and blue) for evaluating registration robust-
ness. Left: after initial registration of the scene scan (blue) to the model scan (orange)
and manual verification of the alignment, the scene scan is systematically translated.
Right: The scene scan (blue) rotated around the z-axis by 80°.

4.4. Summary
The chapter presented an efficient method for registering 3D scans using local
multiresolution grid maps. The method does not match individual scan points, but
utilizes the condensed representation of the measurements as surfels. These surface
elements are aligned efficiently and at high accuracy in a registration framework
which overcomes the discretization in a grid through probabilistic assignments.

In experiments, results of the proposed method are compared to ground-truth
data from a motion capture system and GICP, a state-of-the-art registration al-
gorithm, as well as standard point-based ICP. Overall, the local multiresolution
surfel approach is more accurate and results in sharper maps as indicated by the
lower ATE and map entropy. Besides that, it is computational more efficient,
allowing to register scans and to build local 3D maps in-flight in real-time.

The method is evaluated on data of a light-weight 3D laser scanner mounted on
a micro aerial vehicle. The registration of this data is particularly challenging due
to the sparsity of the data. Besides a comparison of the surfel-based registration
method to state-of-the-art registration methods, a metric for assessing the quality
of the resulting maps is proposed. In addition, we determined optimal sets of
parameters for all algorithms—except for the mesh-based registration—in a hyper
parameter optimization.

Besides an accurate alignment, robustness is an important property of a reg-
istration algorithm. Robustness is evaluated by systematically translating and
rotating the scene scan to assess limitations of the proposed registration method.
The experiment shows, besides extreme translations and rotations, the method is
able to recover the alignment. In most cases where the scan was rotated up to
80°the method was not able to find the correct alignment. However, these cases are
not really realistic when incrementally matching consecutive scans with a sensor
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-4.0 m -2.0 m 0.0 m 2.0 m 4.0 m

-4.0 m

-2.0 m

0.0 m

2.0 m

4.0 m

-80°

-40°

0°

40°

80°

ϵt ď 0.1m ^ ϵr ă 5˝

ϵt ă 1.0m ^ ϵr ă 5˝

ϵt ě 1.0m _ ϵr ě 5˝

Figure 4.10.: Results of the robustness evaluation. The scene scan is systematically
translated along the x- and y-axis between -4 m and 4 m (same axis in the plot) and
rotated around the z-axis between -80° and 80°. The rotational displacements are shown
by a half circle with each rotation angle on the corresponding angle in the circle (0° is
horizontal) with a step size of 20°. The registration result is depicted by either a green
circle (Success), a yellow filled circle (Weak Success), or a red star (Failure).
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setup as described in Section 2.1.3.
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5. Allocentric Mapping with Local
Multiresolution Maps

The previous chapters presented an efficient egocen-
tric map data structure and the registration method
to aggregate sensor measurements. The presented lo-
cal multiresolution grid maps are egocentric, allowing
to track the robot only in a local frame and modeling
the geometry of the robot’s direct vicinity. While this
property is beneficial in terms of memory and com-
putational resources, it does not allow to map larger
environments.

This chapter presents an approach to build allo-
centric maps from local multiresolution grid maps, by
modeling local maps in a graph-based structure. By
taking advantage of the incrementally built local maps,
it allows to combine efficient local mapping with glob-
ally consistent allocentric mapping of larger environ-
ments.

As shown in the previous chapters, local multiresolution allows for efficient local
mapping and registration in terms of memory and computational requirements.
Even more important than efficiency is the ability to roll the map according to
the motion of the robot. By that, the number of grid cells stays constant dur-
ing operation, independent of the environment. This enables to define constant
upper bounds for memory consumption and computation. The main reasoning
behind this is, that the local multiresolution map captures enough of the vicin-
ity of the robot, to allow robust motion estimation by means of scan registration
and reliable collision avoidance. In limited environments, e.g., as the motion cap-
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5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.1.: An allocentric map of the mock-up disaster scenario during the DRC.
Local multiresolution maps from different view poses (grey discs) are aligned to each
other resulting in a graph structure.

ture volume, where the local map captures the entire environment, this suffice
for navigation. Furthermore, in open environments where an accurate external
pose tracking system, such as a motion capture system or global positioning sys-
tem (GPS) is available, local perception might be adequate.

However, in most realistic scenarios, the size of the environment significantly
exceeds the dimension of the volume shown in the previous chapter, and limiting
the workspace to one that can be covered by a MoCap system is also not an
option. While MoCap systems limit the workspace of the robot to the capture
volume, global navigation satellite systems (GNSS) such as GPS, provide pose
information as geolocation anywhere on earth, where there is a free line of sight
to at least four satellites. However, the requirement of having a certain number
of unobstructed connections to satellites is not met in most urban environments.
Furthermore, atmospheric effects and multipath reflections of the signal result in
degraded accuracy of the pose. In summary, assuming a reliable localization from
an external pose tracking system is negligent.

Here, the idea of SLAM comes into play, by providing a localization pose with
respect to a simultaneously built map of the environment. If a global reference,
such as the geolocation from the GNSS is not vital, the localization pose with
respect to an allocentric map can be used instead. In contrast, if global reference
is necessary, SLAM might be used to overcome degraded pose accuracy of the
GNSS system.

The key idea is, to build a global consistent representation of an unknown en-
vironment while simultaneously localizing relative to this map, from noisy sensor
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measurements. In contrast to sole local mapping, as described in the previous
chapter, global consistent mapping allows to compensate for accumulated drift
and provides an allocentric reference frame. An example for an allocentric map is
shown in Figure 5.1.

This chapter describes an approach to SLAM utilizing the efficient local mapping
approach described in the previous chapter by globally registering local dense 3D
maps with each other. Graph optimization yields a globally consistent, dense 3D
map of the environment. Continuous registration of local maps with the global
map allows for tracking the 6D robot pose in real time.

By using local multiresolution maps the environment can be modeled as sparse
graph of key poses, gaining scalability and robustness. Furthermore, the approach
allows online operation and is designed for mapping and localization on limited
resources, during operation.

5.1. Related Work
The SLAM problem is one of the fundamental problems in robotics, and thus
has been studied in the robotics community since decades (Stachniss et al., 2016;
Thrun et al., 2005). The current de-facto standard in robotics, is to formulate the
SLAM problem as maximum a posteriori estimation in a factor graph (Kschischang
et al., 2006), going back to the work of Lu and Milios (1997).

Building maps with 3D laser scanners in the field of autonomous navigation
has been studied for mobile ground robots (Anderson and Barfoot, 2013; Bosse
and Zlot, 2009; Elseberg et al., 2012; Maddern et al., 2012; Magnusson et al.,
2007; Nüchter et al., 2005; Stoyanov and Lilienthal, 2009) and also for MAVs in
2D (Bachrach et al., 2009; Grzonka et al., 2009, 2012; Huh et al., 2013; Shen
et al., 2011; Tomić et al., 2012) and recently in 3D (Cover et al., 2013; Scherer
et al., 2012; Takahashi et al., 2008; Thrun et al., 2003). While the many methods
assume the robot to stand still during 3D scan acquisition, some approaches also
integrate scan lines of a continuously rotating laser scanner into 3D maps while
the robot is moving (Anderson and Barfoot, 2013; Bosse and Zlot, 2009; Elseberg
et al., 2012; Maddern et al., 2012; Stoyanov and Lilienthal, 2009).

A common research topic in SLAM with 3D laser scanners is how to maintain
high run-time performance and low memory consumption simultaneously. En-
suring scalability, when processing the vast amount of data produced by modern
sensors, remains challenging. Approaches addressing this problem reduce the com-
plexity of the graph, e.g., by sparsification or pruning of unnecessary parts in the
graph (Stachniss and Kretzschmar, 2017; Teniente et al., 2011) For instance, Kret-
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zschmar et al. (2011) propose an information-theoretic approach to select nodes
that can be removed without significant loss of information and thereby compress
the pose graph. Similarly, the method of Carlevaris-Bianco and Eustice (2013)
aims at reducing the number of nodes in a graph. The approach produces a sparser
approximation of the constraints in the graph and thereby reduces inference com-
plexity. Konolige et al. (2010) use a combination of sparse bundle adjustment and
graph-SLAM.

Another way addressing computational and scalability challenges is to partition
the pose graph in submaps (Bosse et al., 2004; Hess et al., 2016; Lenac et al., 2017;
Ni and Dellaert, 2010; Zhao et al., 2013). The presented approach in this chapter
also partitions the graph in submaps, where each submap is a local multiresolution
map.

Belter et al. (2012) also propose to use local grid maps with different resolutions.
In contrast to our approach, different map resolutions are used for different sensors,
resulting in an uniform grid map for each sensor. Herbert et al. propose elevation
maps (Hebert et al., 1989), extending 2D grid maps by adding a height for every
grid cell. While elevation maps only model a single surface, multi-level surface
maps (Triebel et al., 2006) store multiple heights in each grid cell, allowing to model
environments with more than on surface, such as bridges for example. Pfaff et al.
(2007) propose a method for detecting loop closures in elevation maps. Fankhauser
et al. (2014) use local elevation maps and handle drift by propagating uncertainties
of the robot pose through the map.

5.2. Graph-SLAM with Local Multiresolution Maps

We model the allocentric map as a graph of robot poses, also called view poses.
Each view pose vi captures the 6D robot pose at step i and is augmented with the
local multiresolution map at step i. The allocentric map is build by aligning mul-
tiple local multiresolution maps, acquired from different view poses. The different
view poses are modeled as nodes V “ tv1, . . . , vMu in a graph G “ pV ,Zq that are
connected by edges Z. The graph representation is shown in Figure 5.2. When the
robot traverses the environment, new nodes are generated based on the distance
to the last node. The new node is aligned with the last node by surfel-based reg-
istration. The registration result T pi, jq between a new node vi and the previous
node vj imposes a spatial constraint modeling an edge zij P Z. The uncertainty
of the T pi, jq is captured by the covariance matrix Ωi,j that is calculated from the
assigned surfels from registration, as described in Section 5.2.1.

From the graph of spatial constraints, we infer the probability of the trajectory
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5.2. Graph-SLAM with Local Multiresolution Maps

Figure 5.2.: Graph representation of the optimization problem at hand: The vertex
set V, correspond to the estimation variables, i.e., the poses of the local multiresolution
maps. The edge sets Z represent spatial constraints from aligning two local maps to
each other.

estimate given all relative pose observations

ppV | Zq9
ź

zi,jPZ
ppvji | vi, vjq. (5.1)

Each spatial constraint is a normally distributed estimate with mean and covari-
ance. Optimization of the pose graph is efficiently solved using the g2o framework
by (Kuemmerle et al., 2011), yielding maximum likelihood estimates of the view
poses V .

Modeling the robot trajectory as a discrete set of poses and the relative trans-
formations between the robot poses as constraints allows to formulate SLAM as
an optimization problem. This formalism is considered as factor graph and esti-
mating the robot poses consists of finding a set of variables that align the nodes
as close as possible. This is defined by the error term ei,j between node vi and
node vj. ei,j becomes zero when zi,j “ pv´1

i vjq. Consequently, the optimization
problem can be formulated as

Fpxq “
ÿ

i,j

eTi,jpxi, xjqΩi,jei,jpxi, xjq
loooooooooooooomoooooooooooooon

Fi,j

(5.2)

x˚ “ argmin
x

Fpxq (5.3)

“ argmin
x

ÿ

k:“i,j

eTk pxqΩkekpxq. (5.4)

and the optimal configuration of the nodes can be found by minimizing the sum
of squares of Equation (5.4). Note that two things are crucial in order to allow this
approach to work. First of all, the system has to be overdetermined, meaning that
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minimizing the sum of squares of Equation (5.4) requires to have more observations
than states. In the context of slam, so-called loop closures are key to achieve this
overdeterminism. Secondly, finding a good estimate for covariance matrix Ωi,j is
important.

In the absence of noise and registration inaccuracies, this process would lead to
an allocentric representation of the environment by view poses and local maps.
However, noise in the sensor measurements and even slight misalignments by the
registration accumulate over the entire robot trajectory and result in a displace-
ment of the estimated robot pose. The accumulated error is called drift.

To accommodate drift, spatial constraints between close-by view poses that are
not in temporal sequence, are added. The later is usually called loop closure and
occurs e.g., when the robot re-enters parts of the environment already visited. A
spatial constraint between the current view pose and an old view pose of the same
part of the environment, captures the relative error between the accumulated pose
and the registration result. The relative error allows for optimizing the view poses
to minimize the accumulated error and yields global consistency of the view poses.

5.2.1. Spatial Constraints Between Local Multiresolution Maps
We denote edges e “ ppVe, V

1
e q, Te, Ieq P E as spatial constraint between the local

maps Ve and V 1
e with the relative pose Te and the information matrix Ie, which

represents the uncertainty of the relative pose Te.
Besides the relative pose between two local multiresolution maps, a measure

of uncertainty, called the information matrix, is necessary in order to model an
edge in the pose graph. In other words, the quality of the registration has to be
determined from the two maps and the estimated transformation between them.
A common approximation for the pose uncertainty ΣTe is introduced by Censi
(2007) and can be computed by

ΣTe «

ˆ

B2L

Bx2

˙´1
B2L

BzBx
Σpzq

B2L

BzBx

T ˆ

B2L

Bx2

˙´1

, (5.5)

where x is the pose estimate ΣTe in parametrized form x “ pt,qqT with transla-
tion t and quaternion q, L is the objective function from Equation (4.7), z the
associated surfels between the two maps, and Σpzq the covariance of the associated
surfels. Thus, Ie is the (symmetric and positive semi-defined) inverse of the covari-
ance matrix ΣTe from registration, capturing the certainty of a spatial constraint
along the observable dimensions.

The graph is initialized from a local multiresolution map and extended while
the robot traverses the environment by adding new view poses. New view poses
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5.2. Graph-SLAM with Local Multiresolution Maps

are added when the robot moved sufficient far and a spatial constraint between
the generated view pose and the previous is added to the graph. In other words,
new view poses are generated based on the distance between the current robot
pose and the closest view pose in the graph. Consequently, the distance threshold
to generate new view poses controls the density of the graph. A reasonable choice
for this parameter is based on the sensor range.

In addition to edges between the previous node and the current node, we add
spatial constraints between close-by view poses that are not in temporal sequence.
These constraints enable loop closure when the robot revisits parts of the envi-
ronment. Since checking all nodes for possible loop closures is computationally
intractable, we determine a probability

pchkpvcmpq “ N
`

dpxref, xcmpq; 0, σ2
d

˘

(5.6)

that depends on the linear distance dpxref, xcmpq between the current view pose xref

and a possible candidate xcmp. According to pchkpvq, we choose a node v from the
graph and determine a spatial constraint between the nodes.

5.2.2. Pose Graph Optimization

From the graph of spatial constraints, we infer the probability of the trajectory
estimate given all relative pose observations

ppV | Eq9
ź

eijPE
ppxj

i | xi, xjq. (5.7)

Each spatial constraint is a normally distributed estimate with mean and covari-
ance. Optimization of the pose graph is efficiently solved using the g2o framework
by (Kuemmerle et al., 2011), yielding maximum likelihood estimates of the view
poses V .

Note that this formulation—and consequently the the optimization of the factor
graph—only depends on an initial odometry estimate and constraints between
local maps from registration. Typically the formulation as factor graph includes
modeling landmarks that the robot perceives from different view poses. However,
the presented approach allows to model the problem without the formulation of
landmarks in the factor graph.
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5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.3.: A top-down view of the resulting map. The point color (green to purple)
encodes the distance from the ground. The yellow points, connected by red lines, show
the trajectory of the pose graph optimization.

5.3. Experiments
This section describes the experiments that have been conducted to evaluate the
presented approach. The experiments are carried out on different robotic plat-
forms, such as MAVs and mobile ground robots, and different laser scanners, to
gain variety in the sensor data. Besides a qualitative assessment of the resulting
map data, experiments involving an integrated system are shown. The latter are
performed to demonstrate robustness, efficiency and versatility of the approach.
However, a quantitative evaluation e.g., based on data with ground-truth infor-
mation is difficult due to a missing reference systems, such as a MoCap system or
highly accurate GPS.

In the first experiment, a data set has been acquired with an MAV during flight
in a parking garage. The MAV was controlled by a human operator following it.
The data sequence contains 200 3D scans and the overall trajectory length is 73 m,
covering the complete parking garage. The sensor used in this experiment is a con-
tinuously rotating lidar described in Section 2.1.1. Throughout the experiments,
four levels are used for the map with a cell length of 0.25 m at the finest level,
which yields a cell length of 2 m at the coarsest level.

Figure 5.3 shows the resulting allocentric map and trajectory after pose graph
optimization. For this figure, we chose an orthogonal top-down perspective to get
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(a) (b)

Figure 5.4.: The resulting map of the parking garage after pose graph optimization
from different views. Points corresponding to the ceiling of the parking garage have
been cut out for visualization. Color encodes the distance from the ground. a) vertical
artifacts (red circle) are caused by a human safety pilot following the MAV; b) after
filtering for dynamic obstacles.

(a) (b) (c)

Figure 5.5.: Top-down views of resulting maps. Using our surfel registration method
and and global graph optimization (a), our surfel registration method without global
graph optimization (b), and GICP registration with global graph optimization (c).

an indication about the consistency of the aligned 3D scans by the parallel walls.
In contrast, Figure 5.4 shows the resulting map from different perspectives, which
allows for a better interpretation of the scene. Here, cars and pillars in the parking
garage can be identified in the globally aligned 3D scans.

To assess the improvement of the map accuracy that can be attributed to global
pose graph optimization, Figure 5.5 compares the resulting maps of different reg-
istration methods. Figure 5.5b) shows that without pose graph optimization, the
trajectory aggregates drift which results in inconsistencies indicated by the mis-
alignment of the walls. Figure 5.6 shows that even lamps hanging from the ceiling
are modeled by the 3D point cloud.

We compare our registration method to a state-of-the-art method by aligning
the sparse 3D scans by the Generalised-ICP (GICP) (Segal et al., 2009). Note

83



5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.6.: The structure of the ceiling showing hanging lamps in a photo (left) and
the resulting 3D map (right).

that, similar to our pipeline, scans are assembled by visual odometry and pose
graph optimization is used to globally align the local dense 3D maps to have a
fair comparison. Figure 5.5c shows that the resulting 3D map is less accurate and
smeared. In terms of run-times our method is computationally more efficiency
with 145 ˘ 50ms compared to GICP with 1555 ˘ 613ms. Here, mean run-times
and standard deviation over the complete dataset are reported.

In a second experiment we acquire data in an outdoor scenario mapping a gas
station during flight. The resulting global maps are shown in Figure 5.7. The
resulting map shows that the geometry of the environment is reconstructed cor-
rectly, but shows a slight degradation in map quality and sharpness, compared to
the previous experiment in the parking garage. The main reason for this degra-
dation is the limited sensor range of the employed Hokuyo 2D LRF. While the
parking garage provides sufficient structure in the sensor’s FoV in every direction
to register acquired scans accurately, the environment around the gas station does
not. Experiments with a sensor which allows for higher measurement range are
shown in the following experiment.

The previous experiments where carried out with the sensor platform described
in Section 2.1.1. The platform has a number of limitations, such as the maximum
measurable range of the Hokuyo LRF, the update rate and measurement density
of the continuously rotating 3D scanner, but also limited flight time of the MAV
platform. The latter does not allow for more comprehensive experiments including
longer trajectories with loop closure.

Compared to this, the following experiment was performed with the MAV and
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(a) (b)

(c) (d)

Figure 5.7.: (a+c) photo of the scene from different perspectives. (b+d) the resulting
allocentric maps acquired during flight with an MAV.

lidar sensor described in Section 2.1.3. The platform allows for longer flight times,
resulting in longer trajectories with a variety of geometric structure. The ex-
periment includes mixed indoor and outdoor environments, changes in elevation,
vegetation, and building facades. Throughout the experiments, six levels are used
for the map with a cell length of 0.25 m at the finest level, which yields a cell
length of 8 m at the coarsest level.

The resulting allocentric map and estimated trajectory after graph optimization
is shown in Figure 5.8. The overall length of the trajectory is 820 m including
open areas and challenging hallways. The MAV starts in the courtyard of the
building complex, traverses the environment around the building, and returns to
the courtyard by entering the same hallway. Due to the length of the trajectory
loop closure is crucial in this experiment. The resulting map shows that the envi-
ronment has been reconstructed accurately and that the approach scales to larger
environments. However, a current limitation of the implementation is that the
local multiresolution maps, including the aggregated 3D measurements are stored
in memory. Thus, the memory of the onboard computer poses a limitation of the
size of the environment that can be reconstructed. The robot in this experiment
was equipped with 32 GB memory and ~26 GB were utilized by the local multires-
olution maps. It has to be mentioned, that the size of the local multiresolution
is mainly caused by storing the original 3D point measurements—which are only
used for visualization—and only a fraction is induced by the surfel elements that
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Figure 5.8.: Top-down view of the resulting allocentric map with trajectory (top) and
photo of the scene (bottom) of the Courtyard data set. The data set has been acquired
with a manual controlled MAV with an overall trajectory length of 820 m. Colored points
depict trajectory of the of the robot, from start (blue) to end (red). The green spheres
show the view poses of the local multiresolution maps.
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Figure 5.9.: Evaluation of the integrated system by mapping an old manor house. The
resulting trajectory (black) traversed by the MAV from top and side view. Color encodes
the height from the ground.

are necessary for registration. Consequently, a more efficient data structure for vi-
sualization (e.g., a mesh) or serialization of the point measurements to disk, allows
to reconstruct even larger environments.

So far, the data used in the experiments was manually acquired by a human
pilot controlling the MAV. While this is sufficient to show that the geometry
of the environment can be reconstructed, it does not assess the robustness of
the approach. Therefore, the following experiments were conducted in an inte-
grated system that add planing and control components, leveraging the presented
approach for mapping and localization, and implement a fully autonomous nav-
igation system. Consequently, these experiments are more challenging since an
integrated system poses requirements on robustness and run-time. Furthermore,
the controller executes planed trajectories not as smooth as the human pilot.

5.3.1. Autonomous Mapping of Outdoor Environments
The following describes the evaluation of the approach integrated into one working
MAV mapping system. Since planning and navigation components are not part of
this thesis, they are not further described and referred to Droeschel et al. (2015)
for details. The experiment describes one exemplary mapping session of the MAV.

The main goal of this experiment was to autonomously map an old manor house
as shown in Figure 5.10a. The scenario involves vegetation such as trees and bushes
and is difficult to traverse from all sides by humans. Therefore, a manual flight by
a human pilot controlling the MAV was not possible in this scenario.

The user manually defined a set of mission-relevant view poses given the coarse
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(a) (b)

(c) (d)

Figure 5.10.: Evaluation of the integrated system by mapping an old manor house. (a
+ c) Photos of the scene. (b + d) the resulting global maps after the mission. Color
encodes the height from the ground.

LoD 2 world model. These view poses, consisting of a GPS position and view di-
rection, were roughly specified to cover the building facade from all sides. Then,
they are processed by a mission control layer, incorporating the mission planner. In
this experiment, only the local mapping components (described in Chapter 3) were
used by the navigation layer, allowing for reactive obstacle avoidance. Therefore,
the planner incorporates information of occupied cells in the local multiresolution
map to plan a collision free trajectory. The overall flight duration was approxi-
mately 8 minutes and the traversed trajectory is shown in Figure 5.9. The MAV
successfully traversed the building in all experiments without colliding with an
obstacle.

Although the allocentric mapping and localization system was not necessary for
the navigation planner to traverse the view poses, it was mapping the environment
during mission to gain a 3D reconstruction of the building facade. Resulting 3D
maps of the are shown in Figure 5.10. It can be seen that our method is able to
successfully map the building. Even details of the structure of the facade, such as
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Figure 5.11.: We conducted indoor flight experiments in a 20 x 16 x 6 m hall. The
trajectories show the laser-based localization estimates of 10 consecutive autonomous
flights. From left to right: map topview, closeup of the trajectories, 3D view. Obser-
vation poses are depicted by black arrows, the blue arrow shows the return pose. The
map color encodes height.

windows and doors are represented in the map.

5.3.2. Autonomous Navigation in GNSS-denied Environments
In outdoor environments as the one in the previous experiment, GPS can be used
as external positioning system and—assuming sufficient accuracy—the navigation
planner can navigate based on the measured GPS position. In contrast, GNSS-
denied environments, such as warehouses or parking garages necessitate localiza-
tion without external reference systems. The allocentric mapping and localization
system presented in this chapter serves as such and allows indoor localization
without an external reference system.

This section describes the evaluation of the approach by integrating it in an
MAV mapping and inspection system described in Nieuwenhuisen et al. (2016).
The following describes one exemplary indoor inspection session of the MAV. The
main goal of this experiment was to autonomously navigate to certain predefined
waypoints in a hall employing solely means of localization that are available in
both indoor and outdoor environments. Localization was performed employing
the presented approach. Since the laser scanner acquires complete 3D scans with
a relatively low frame rate, an egomotion estimate from visual odometry and
measurements from an IMU are incorporated to track the pose of the MAV between
two 3D scans.

A first manual flight was conducted to acquire the allocentric map, that is later
used for localization. Based on this map a mission with six observation poses—plus
a return pose 2 m above the start pose was defined. A mission planner plans paths
between every pair of mission poses and determines the best visiting order. After
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Figure 5.12.: Top: Mapping results. Left: Resulting point cloud after pose graph
optimization acquired by a manual flight along a warehouse aisle (color depicts height).
Right: Photo of the mapped aisle. Bottom: Localization result. The MAV trajectory
(red arrows) is tracked by means of laser scan registration, combined with visual odom-
etry and IMU measurements. This yields 6D pose estimates. Shown is a flight through
a warehouse aisle. In the side-view (left), the relation to the accurately mapped storage
units can be seen. In the top-down view (right), it can be seen that the pose is tracked
despite considerable self similarity of the shelves. Map color encodes height.

takeoff, the global planner begins to continuously plan paths to the next mission
relevant pose. The local obstacle avoidance keeps the MAV successfully away
from obstacles like hanging cables or people walking around in the hall. In these
experiments, the allocentric paths are planned in a grid with a cell size of 0.5 m.
An excerpt from the map, the inspection poses, and the traversed trajectories of
ten missions are shown in Figure 5.11. The MAV successfully reached all poses in
the experiments without colliding with an obstacle and was localized all the time.

The integrated system was also evaluated in an indoor warehouse system. The
considered application scenario is an automatic warehouse inventory, performed
by an autonomous MAV. The MAV and laser scanner used in this experiment is
described in Section 2.1.2. Similar to the previous experiment, the initial map was
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Figure 5.13.: 3D map from the initial manual flight. The top-down view (right) shows
the dimensions of the acquired map of the 100 ˆ 60m warehouse. The camera perspec-
tive is highlighted in green. The warehouse contains tight, self-repetitive, and cluttered
structures like shelves and stock, and larger, far-away structures like walls. For robust
localization, the MAV has to employ a map of the structure of the large building.

built from data acquired in a manual flight, using the presented mapping approach.
This map was used to specify view poses that the robot traversed during mission.
Figure 5.12 shows the resulting allocentric map and localization poses.

In these indoor experiments, the presented approach allowed for accurate recon-
struction of the geometry of the environment and reliable localization throughout
the experiments. However, similar to the outdoor experiments in the previous sec-
tion, the employed 3D scanners pose limitations on update rate and measurement
range. This is especially problematic in warehouse environments, where the local
structure of the aisles show high ambiguity.

Figure 5.13 show results of the system on the subsequent hardware platform
described in Section 2.1.3. Due to the higher measurement range and update rate
of the laser sensor, the system allows for faster navigation in larger environments
(Beul et al., 2018).

5.3.3. Mapping in Rough Terrain

This section describes the application of the presented mapping and localization
on a the mobile manipulation robot Momaro described in section Section 2.2. The
robot has been developed according to the requirements of the DARPA Robotics
Challenge1 (DRC). The goal of the DRC was to foster research for robots that are
able assist humans in responding to catastrophic situations, such as the nuclear
disaster at Fukushima in 2011. Being teleoperated over a limited network connec-
tion, the robots had to solve eight tasks relevant to disaster response. While the
DRC showed the potential of robots for tasks found in disaster response scenarios,
it also showed that fully autonomous navigation and manipulation in unstruc-

1http://www.theroboticschallenge.org/
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5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.14.: Top: The mock-up disaster scenario of the DRC. Bottom: The resulting
allocentric map generated from the data of our first competition run. Color encodes the
height from ground.
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Figure 5.15.: Overview of our mapping, localization and navigation system. The mea-
surements are processed in preprocessing steps described in Section 2.1.2. The resulting
3D point cloud is used to estimate the transformation between the current scan and the
map (Chapter 4). Registered scans are stored in a local multiresolution map (Chap-
ter 3). Keyframe views of local maps are registered against each other in a SLAM graph
(Section 5.2). A 2.5D height map is used to assess drivability.

tured environments—also due to the lack of applicable perception methods—is
still beyond the state of the art.

Since the robots could be teleoperated during the competition, we did not use our
allocentric mapping and localization at the DRC. The local mapping components
were used to build an egocentric map of the robot’s direct vicinity. This map
was used by the manipulation operator when planning motions. Besides that, the
navigation operator used the resulting local maps and height images build from it
to assess driveability. Also, the result of the registration corrects odometry drift of
the robot when aligning to a previously acquired local map. Figure 5.14 shows the
resulting allocentric map generated from the dataset of our first-day competition.
Besides the allocentric map, selected local multiresolution maps of the pose graph
are shown. Although reference data is not available, one can see that the resulting
allocentric map is globally consistent and accurate, as indicated by the straight
walls and plain floor. Also the local maps look clear and accurate.

Our team was able to solve seven out of eight tasks in the shortest time of all
teams who solved seven tasks, which yielded a fourth place in the final ranking
as the best European team. While we attribute part of our success to our flexible
teleoperation solutions (Rodehutskors et al., 2015), the quality of the 3D environ-
ment perception and thus the situational awareness of the operator crew played
a large part and was a necessary precondition for developing said teleoperation
interfaces. Further information on our DRC competition entry is available of our
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5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.16.: Photo and the corresponding local map of the battery pack—one of the
objects to manipulate during the SpaceBot Camp. Color encodes distance from ground.

website2, including a video or our first day competition run3.
In contrast to the DRC, where robots could be teleoperated for navigation,

the DLR SpaceBot Camp 2015 focused on autonomy. Based on a coarse map of
the environment, the robot had to explore a previously unknown planetary-like
environment and to perform a set of mobile manipulation tasks.

At the DLR SpaceBot Camp, robots had to conduct an exploration mission in
a (simulated) extraterrestrial planetary environment. The mission was—based on
a rough height image of the environment—to explore and map the environment
and to manipulate objects in it. In contrast to the DRC, the robots did not have
a permanent network connection that allowed for teleoperation. Consequently—
in addition to local mapping—the allocentric mapping described in this chapter
was used to allow for fully autonomous navigation. An overview of the system
architecture is shown in Figure 5.15.

The planetary-like environment was specially challenging due to the rough sur-
face of the terrain, consisting of different types of stones and soil that caused slip in
odometry and high-frequent motion of robot and sensor. Due to the relative small
wheels of our robot, an accurate terrain map was necessary to assess driveability.
The environment and the resulting allocentric map are shown in Figure 5.17. It was
continuously built during autonomous navigation guided by waypoints specified on
the rough height map. One can see, that although the robot was autonomously
navigating in rough terrain the resulting allocentric map is accurate and precisely
models the environment.

Figure 5.18 shows the allocentric map at different time steps. The figure shows
how the map is extended during a mission. New nodes (i.e., local multiresolution
maps) are added to the pose graph and new nodes are connected to existing nodes
by edges. During a mission, the map is used for localization as shown in Figure 5.19
and to assess traversability for navigation as shown in Figure 5.20. An overview

2Website of our DRC entry http://www.nimbro.net/Rescue
3Video of first day DRC competition run http://youtu.be/NJHSFelPsGc
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Figure 5.17.: Left: Photo of the planetary-like environment at the DLR SpaceBot
Camp consisting of different types of stones and soil. Right: The resulting 3D map built
by our mapping component from data that has been collected during our run. Color
encodes distance from ground.

Figure 5.18.: The allocentric map from a top view at different time steps, consisting of
1 (left), 7 (middle) and 14 (right) key frames. Color encodes height. The nodes in the
pose graph (grey circles) are connected by spatial constraints (black lines). The robot
model shows the current position of the robot.

of the integrated system architecture is shown in Figure 5.15.

Our system was able to solve all tasks with few interventions by the operator
crew over the degraded communication link, such as stopping navigation before
a scheduled communication blackout or re-triggering a failed manipulation task.
Further information on our SpaceBot Camp entry is available of our website4,
including a video or our demonstration run5.

Figure 5.21 shows the results of the Hokuyo lidar-based mapping for the UBO
hall dataset. In addition to the resulting graph structure and a top-view of the
map, different detail views demonstrate the reconstruction quality. Note that for
visualization the ceiling has been cut off.

4Website of our DLR SpaceBot Camp entry http://www.nimbro.net/Explorer
5Video of SpaceBot Camp demonstration run http://youtu.be/q_p5ZO-BKWM
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5. Allocentric Mapping with Local Multiresolution Maps

Figure 5.19.: The resulting allocentric map from two different perspectives with the
localization poses (black circle) from our run. Color encodes height from ground.

Figure 5.20.: Navigation planning during (left, middle) and after exploration (right)
of the SpaceBot Camp arena. The top row shows the calculated traversability costs
for each cell. The bottom row shows inflated costs used for A* path planning. The
orange dot represents the current robot position, the blue square the target position.
The planned path is shown in green. Red areas indicate insufficient measurements for
traversability analysis. Yellow areas correspond to absolute obstacles, which the robot
may not traverse. In the middle situation, a small battery pack (20 cm ˆ 10 cm ˆ 4 cm)
can be seen in the uninflated costs (marked with red circle, also shown in Figure 5.16).
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Figure 5.21.: Top-down view of the lidar-based allocentric 3D map from an indoor
environment. Color encodes height from the ground. Four detail views of the resulting
map with corresponding camera images (blue boxes) from different view poses (blue
dashed circles) are shown. The yellow boxes connected by black lines depict the graph-
based structure of the allocentric map.

5.4. Summary
This chapter presents an approach to SLAM approach using the map representa-
tion and registration method described in the previous chapters. The proposed
method aligns local maps from different view poses with each other to construct
an allocentric pose graph of the environment. In experiments, qualitative results
from data sets acquired on different MAVs and from a mobile ground robot are
shown. However, quantitative evaluation e.g., based on data with ground-truth
information is difficult due to missing reference systems, such as a MoCap system
or highly accurate GPS.

The presented approach in this chapter allows to optimize the view poses of the
local maps by registering local maps from different view poses with each other.
When the robot revisits parts of the environment, adding loop closure constraints
allows to minimize accumulated odometry and registration errors. However, reg-
istration errors that have been accumulated during aggregation of the local map,
are not addressed. Here, Chapter 6 presents an approach that allows to address
this degeneration of the local maps.
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In this chapter, the so far presented approach is ex-
tended to allow for refining alignments during online
mapping. The method is based on efficient local map-
ping and a hierarchical optimization back-end. The
local maps are used in a multi-level graph for allocen-
tric mapping and localization. In order to incorporate
corrections when refining the alignment, the individ-
ual 3D scans in the local map are modeled as a sub-
graph and graph optimization is performed to account
for drift and misalignments in the local maps. Fur-
thermore, in each sub-graph, a continuous-time rep-
resentation of the sensor trajectory allows to correct
measurements between scan poses. The approach is
evaluated in multiple experiments by showing qualita-
tive results and map quality is assessed based on the
map entropy.

Modern 3D laser-range scanners have a high data rate, making online SLAM
computationally challenging. Recursive state estimation techniques are efficient
but commit to a state estimate immediately after a new scan is made, which may
lead to misalignment of measurements.

Laser-based mapping and localization has been widely studied in the robotics
community and applied to many robotic platforms (Cole and Newman, 2006;
Kohlbrecher et al., 2011; Magnusson et al., 2007; Nüchter et al., 2005). The variety
of approaches that exists either focus on efficiency, for example when used for auto-
nomous navigation, or on accuracy when building high-fidelity maps offline. Often,
limited resources—such as computing power on a micro aerial vehicle—necessitate
a trade-off between the two. A popular approach to tackle this trade-off is to lever-
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Figure 6.1.: We propose a hierarchical continuous-time SLAM method, allowing for
online map refinement. It generates highly accurate maps of the environment from
laser measurements. Yellow squares: coarse nodes; Blue circles: fine nodes; Red dots:
continuous-time trajectory.

age other sensor modalities to simplify the problem. For example, visual odometry
from cameras and inertial measurement units (IMU) are used, to estimate the mo-
tion of the laser-range sensor over short time periods. The motion estimate is used
as a prior when aligning consecutive laser scans, allowing for fast and relatively
accurate mapping.

Often inaccuracies remain, for example caused by wrong data associations in
visual odometry. These inaccuracies lead to misalignment and degeneration in
the map and require costly reprocessing of the sensor data. To this end, graph-
based optimization is popular to minimize accumulated errors (Frese et al., 2005;
Kuemmerle et al., 2011; Olson et al., 2006). However, depending on the granularity
of the modeled graph, optimization is computationally demanding for large maps.

Another difficulty in laser-based SLAM is the sparseness and distribution of
measurements in laser scans. As a result, pairwise registration of laser scans
quickly accumulates errors. Registering laser scans to a map, built by aggregating
previous measurements, often minimizes accumulated error.

However, errors remain, e.g., due to missing information. For example, incre-
mentally mapping the environment necessitates bootstrapping from sparse sensor
data at the beginning—resulting in relatively poor registration accuracy, compared
to aligning with a dense and accurate map.

The previous chapters showed that local multiresolution in combination with a
surfel-based registration method allows for efficient and robust mapping of sparse
laser scans. The key data structure in our previous work is a robot-centric mul-
tiresolution grid map to recursively aggregate laser measurements from consecutive
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3D scans, yielding local mapping with constant time and memory requirements.
While being efficient, the approach presented in this chapter does allow for re-
assessing previously aggregated measurements in case of registration errors and
poor or missing motion estimates from visual odometry. By modeling individual
3D scans of a local map as a sub-graph, a hierarchical graph structure is built,
enabling refinement of the map in case misaligned measurements when more in-
formation is available. Furthermore, the approach preserves efficient local and
allocentric mapping.

6.1. Related Work

Mapping with 3D laser scanners has been investigated by many groups (Cole
and Newman, 2006; Kohlbrecher et al., 2011; Magnusson et al., 2007; Nüchter
et al., 2005). While many methods assume the robot to stand still during 3D scan
acquisition, some approaches also integrate scan lines of a continuously rotating
laser scanner into 3D maps while the robot is moving (Anderson and Barfoot,
2013; Bosse and Zlot, 2009; Elseberg et al., 2012; Maddern et al., 2012; Stoyanov
and Lilienthal, 2009). The mentioned approaches allow creating accurate maps of
the environment under certain conditions, but do not allow an efficient assessment
and refinement of the map.

Measurements from laser scanners are usually subject to rolling shutter artifacts
when the sensor is moving during acquisition. These artifacts are expressed by
a deformation of the scan and, when treating laser scans as rigid bodies, these
artifacts degrade the map quality and introduce errors when estimating the sensor
pose. A common approach to address this problem is to model a deformation in
the objective function of the registration approach. Non-rigid registration of 3D
laser scans has been addressed by several groups (Anderson et al., 2015; Brown
and Rusinkiewicz, 2007; Elseberg et al., 2010; Ruhnke et al., 2012; Zlot and Bosse,
2014).

Ruhnke et al. (Ruhnke et al., 2012) jointly optimize sensor poses and mea-
surements. They extract surface elements from range scans, and seek for close-by
surfels from different scans. This data association contributes to the error term of
the optimization problem but also results in a relatively high state space. Thus,
their approach can build highly accurate 3D maps but does not allow for online
processing.

Furthermore, rolling shutter effects can be addressed by modeling the sen-
sor trajectory as a continuous function over time, instead of a discrete set of
poses. Continuous-time representations show great advantages when multiple
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sensors with different temporal behavior are calibrated (Furgale et al., 2013) or
fused (Mueggler et al., 2017), but also to compensate for rolling shutter effects,
e.g., for data from a RGB-D camera (Kerl et al., 2015). Continuous-time trajectory
representations have been used for laser-based mapping in different works (Alis-
mail et al., 2014; Kaul et al., 2016; Patron-Perez et al., 2015). While most of the
continuous-time approaches use a spline to represent the trajectory, Anderson et
al. (Anderson et al., 2015) employ Sparse Gaussian Process Regression.

Kaul et al. (Kaul et al., 2016; Zlot and Bosse, 2014) present a continuous-
time mapping approach using non-rigid registration and global optimization to
estimate the sensor trajectory from a spinning laser scanner and an industrial-
grade IMU. The trajectory is modeled as a continuous function and a spline is
used to interpolate between the sensor poses.

Recently, Hess et al. presented Google’s Cartographer (Hess et al., 2016). By
aggregating laser scans in local 2D grid maps and an efficient branch-and-bound
approach for loop closure optimization. Results of Google’s Cartographer have
been improved by Nüchter et al. (Nüchter et al., 2017). Their method refines
the resulting trajectory by a continuous-time mapping approach, based on their
previous work (Elseberg et al., 2013).

Grisetti et al. present a hierarchical graph-based SLAM approach (Grisetti et
al., 2010). Similar to the presented approach, a hierarchical pose graph repre-
sents the environment on different levels, allowing for simplifying the problem and
optimizing parts of it independently.

Following Grisetti et al. (2010), the problem is modeled as hierarchical graph,
allowing to optimize simplified parts of the problem independently. Compared to
their approach we aggregate scans in local sub-maps to overcome sparsity in the
laser scans. Furthermore, local sub-graphs are augmented with a continuous-time
representation of the trajectory, allowing to address the mentioned rolling shutter
effects.

6.2. Hierarchical Refinement
The system aggregates measurements from a laser scanner in a robot-centric local
multiresolution grid maps. If available, information from other sensors, such as an
IMU or wheel odometry to account for motion of the sensor during acquisition,
are incorporated. Furthermore, these motion estimates are used as prior for the
registration.

Local maps that are added to the pose graph are subject to the refinement,
reassessing the alignment of 3D scans when more information is available. After
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Figure 6.2.: Schematic illustration of our mapping system. Laser measurements are
preprocessed and assembled to 3D point clouds. The resulting 3D point cloud is used
to estimate the transformation between the current scan and map. Registered scans are
stored in a local multiresolution map. Local multiresolution maps from different view
poses are registered against each other in a SLAM graph. During mapping, parts of the
graph are refined and misaligned 3D scans are corrected.

realigning selected 3D scans from a local map, the sensor trajectory is optimized:
first for refined local maps, then for the complete pose graph. Figure 6.2 shows an
overview of our mapping system. Since local mapping, allocentric mapping and
refinement are independent from each other, our system allows for online mapping
while refining previously acquired sensor data when more information is available.

The mapping approach is modeled in a hierarchical graph-based structure as
shown in Figure 6.3. The coarsest level is a pose graph, representing the allocentric
6D pose of local maps M “ tm1, . . . ,mMu with nodes. Each local map aggregates
multiple consecutive 3D scans and represents the robot’s vicinity at a given view
pose.

They are connected by edges EP imposing a spatial constraint from registering
two local maps with each other by surfel-based registration. We denote edges
E “ ppME,M

1
Eq, TE, IEq P EP as spatial constraint between the local maps ME

and M 1
E with the relative pose TE and the information matrix IE, which is the

inverse of the covariance matrix from registration.
The scan poses of a local map Mj are modeled by vertices S “ ts1, . . . , sSu in

a sub-graph Gj. They are connected by edges ED. Registering a scan SE to a local
map ME poses a spatial constraints E “ ppSE,MEq, TE, IEq P ED with the relative
pose TE and the information matrix IE.

The 3D scans of the local maps consist of a number of so-called scan lines. A
scan line is the smallest element in our optimization scheme. Depending on the
sensor setup, a scan line consists of measurements acquired in a few milliseconds.
For the Velodyne VLP-16 used in the experiments, a scan line is a single firing
sequence (1,33 ms). We assume the measurements of a scan line to be too sparse
for robust registration. Thus, we interpolate the poses of scan line acquisitions
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Figure 6.3.: Hierarchical graph representation of the optimization problem at hand:
The vertex sets M,S, and L correspond to the estimation variables, i.e., the poses
of the local multiresolution maps (M), the 3D scans (S), and scan lines (L) of the
Velodyne VLP-16. The edge sets EP and ED represent constraints from registration: EP
from aligning two local maps to each other and ED from aligning a 3D scan to a surfel
map. From S a continuous-time representation of the trajectory is estimated by a cubic
B-spline, allowing to interpolate the pose for each measurement of the 3D scan (L).

with a continuous-time trajectory representation for each sub-graph, as described
later.

Optimization of the sub-graphs and the pose graph is efficiently solved using
the g2o framework by (Kuemmerle et al., 2011), yielding maximum likelihood
estimates of the view poses S and M. On their local time scale, sub-graphs are
independent from each other, allowing to minimize errors independent from other
parts of the graph. Optimization results from sub-graphs are incorporated in the
higher level pose graph, correcting the view poses of the local maps. Therefore,
we define the last acquired scan node in a local sub-graph as reference node and
update the pose of the map node according to it.

During operation, we iteratively refine sub-graphs in parallel, depending on the
available resources. Global optimization of the full graph is only performed when
the local optimization has changed a sub-graph significantly or a loop closure con-
straint was added. Similarly, if global optimization was triggered by loop closure,
sub-graphs are refined when the corresponding map node changed. To determine
if optimization of a sub-graph necessitates global optimization or vice-versa, we
compare the refined pose of the representative scan node sr in a sub-graph to
the view pose of the corresponding map node. For our experiments, we choose a
threshold of 0.01m in translation and 1° in rotation.
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6.2.1. Local Sub-Graph Refinement

After a local map has been added to the pose graph, the corresponding sub-graph
GM is refined by realigning selected 3D scans with its local map. Realigning only
selected 3D scans, instead of all scans in a sub-graph, allows for fast convergence
while resulting in similar map quality, as shown later in the experiments.

For a sub-graph, we determine a 3D scan sk for refinement by the spatial con-
straints and their associated information matrix, which is the inverse of the co-
variance matrix Σ of the registration result. Following (Kerl et al., 2013), we
determine a scalar value for the uncertainty in the scan poses based on the en-
tropy HpT,Σq9ln

`∣∣Σ∣∣˘. It allows to select the 3D scan with the largest expected
alignment error.

Furthermore, the same measure is used to compare the spatial constraints that
have been added to the local map after sk, to determine if realigning sk can decrease
the alignment error. The selected 3D scan is then refined, by realigning it to its
local map, resulting in a refined spatial constraint in the sub-graph. From the
sub-graph of spatial constraints, we infer the probability of the trajectory estimate
given all relative pose observations

ppGM | EDq9
ź

edij PED

ppsji | si, sjq. (6.1)

The sensor trajectory is optimized for each local sub-graph independently. Results
from sub-graph optimization are later incorporated when optimizing the allocentric
pose graph.

6.2.2. Local Window Alignment

Registration errors are often originated from missing information in the map, e.g.,
due to occlusions or unknown parts of the environment. Thus, registration quality
can only increase if the map has been extended with measurements that provide
previously unknown information. In other words, realigning a 3D scans can only
increase the map quality if more scans—in best case from different view poses—
have been added to the map. Therefore, we increase the local optimization window
by adding 3D scans to a local map from neighboring map nodes in the higher level.
For example, when the robot revisits a known part of the environment, loop closure
is performed and scan nodes from neighboring map nodes are added to a local map.
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Figure 6.4.: Scan line poses (green squares) originated from odometry measures are
refined (red squares) by interpolating with a continuous-time trajectory representation
built from scan poses (blue dots) in a local sub-graph (gray).

6.2.3. Continuous-Time Trajectory Representation
Acquiring 3D laser scans often involves mechanical actuation, such as rotating
a mirror or a diode/receiver array, during acquisition of the scan. Especially
for 3D laser scans—where the acquisition of measurements for a full scan can
take multiple hundred milliseconds or seconds—a discretization of the sensor pose
to the time where the scan was acquired, leads to artifacts degrading the map
quality. However, since a finer discretization of the scan poses makes the state
size intractable, temporal basis functions have been used to represent the sensor
trajectory (Furgale et al., 2012).

We represent the trajectory of the sensor as cubic B-spline in SEp3q due to their
smoothness and the local support property. The local support property allows to
interpolate the trajectory from the discrete scan nodes in our local sub-graph.
Following (Lovegrove et al., 2013), we parameterize a trajectory by cumulative
basis functions using the Lie algebra.

To estimate the trajectory spline, we use the scan nodes s0, . . . , sm with the
acquisition times ts0 , . . . , tsm as control points for the trajectory spline and denote
the pose of a scan node si as Tsi . In our system, scan poses follow a uniform
temporal distribution. In other words, the difference between the acquisition times
of consecutive scans can be assumed to be constant.

As illustrated in Figure 6.4, we use 4 control points to interpolate the sensor
trajectory between two scan nodes si and si`1. For time t P

“

tsi , tsi`1

˘

the pose
along the spline is defined as

T puptqq “ Tsi´1

3
ź

j“1

exp
`

rBjpuptqqΩi`j

˘

. (6.2)

Here, rB is the cumulative basis, Ω is the logarithmic map, and uptq P r0, 1q trans-
forms time t in a uniform time (Lovegrove et al., 2013). Finally, the spline trajec-
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Figure 6.5.: The resulting 3D map from an out/in-door environment. Color encodes
height from the ground.

tory is used to update the scan line poses between two scan nodes.

6.2.4. Loop-Closure and Global Optimization
After a new local map has been added to pose graph, we check for one new con-
straint between the current reference mref and other map nodes mcmp. We deter-
mine a probability

pchkpvcmpq “ N
`

dpmref,mcmpq; 0, σ2
d

˘

(6.3)

that depends on the linear distance dpmref,mcmpq between the view poses mref

and mcmp. According to pchkpmq, we choose a map node m from the graph and
determine a spatial constraint between the nodes.

When a new spatial constraint has been added, the pose graph is optimized
globally on the highest level. When the optimization modifies the estimate of
a map node, the changes are propagated to the sub-graph. Similarly, when a
sub-graph changed significantly, global optimization of the highest level is carried
out.

6.3. Experiments
We assess the accuracy of our refinement method on two different data sets with
different sensor setups. The first data has been recorded with a MAV equipped
with a Velodyne VLP-16 lidar sensor. The second data set has been recorded
in the Deutsches Museum in Munich and is provided by the Google Cartographer
team (Hess et al., 2016). Throughout the experiments, we use a distance threshold
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of 5 m for adding new map nodes to the graph.
To measure map quality, we calculate the mean map entropy (MME) (Droeschel

et al., 2014a) from the points Q “ tq1, . . . , qQu of the resulting map. The entropy
h for a map point qk is calculated by

hpqkq “
1

2
ln |2πeΣpqkq|, (6.4)

where Σpqkq is the sample covariance of mapped points in a local radius r around
qk. We select r “ 0.5m in our evaluation. The mean map entropy HpQq is
averaged over all points of the resulting map

HpQq “
1

Q

Q
ÿ

k“1

hpqkq. (6.5)

It represents the crispness or sharpness of a map. Lower entropy measures
correspond to higher map quality.

To examine the improvement of the map quality and the convergence behavior of
our method, we first run the experiments without online refinement and perform
the proposed refinement as a post-processing step. In each iteration, we refine
one scan in every sub-graph and run local graph optimization. Local sub-graphs
are refined in parallel and after refining all sub-graphs, global optimization is
performed. To assess the number of iterations necessary for refinement, entropy
measurements are plotted against the number of iterations. Afterwards, we run the
proposed method with online refinement and compare the resulting map quality.

Evaluation was carried out on an Intel® Core™ i7-6700HQ quadcore CPU run-
ning at 2.6GHz and 32GB of RAM. For the reported runtime, we average over 10
runs for each data set.

6.3.1. Courtyard

The first data set has been recorded by a MAV during flight in a building courtyard.
The MAV in this experiment is a DJI Matrice 600, equipped with a Velodyne VLP-
16 lidar sensor and an IMU, measuring the attitude of the robot. The Velodyne
lidar measures « 300,000 range measurements per second in 16 horizontal scan
rings, has a vertical field of view of 30° and a maximum range of 100m.

It measures the environment with 16 emitter/detector pairs mounted on an
array at different elevation angles from the horizontal plane of the sensor. The
array is continuously rotated with up to 1200 rpm. In our experiments, a scan
line corresponds to one data packet received by the sensor, i.e., 24 so-called firing
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Figure 6.6.: a) The resulting map entropy for the courtyard data set with and without
continuous-time trajectory interpolation (CT) Section 6.2.3. b) The resulting map en-
tropy for the Deutsches Museum data set with and without our covariance based scan
selection (COV Selection) described in Section 6.2.1 and continuous-time trajectory in-
terpolation (CT). Scan selection leads to faster convergence of our method.

sequences. During one firing sequence (1,33 ms) all 16 emitter/detector pairs are
processed.

In total, 2000 scans were recorded during 200 s flight time. Controlled by a
human operator, the MAV traversed a building front in different heights. The
resulting graph consists of 16 map nodes with several loop closures, resulting in
27 edges between map nodes.

Figure 6.5 shows the environment and a resulting map. In a first experiment,
we compare the method from our previous work with the proposed method. The
resulting point clouds are shown in Figure 6.7. The figure shows, that the proposed
method corrects misaligned 3D scans and increases the map quality. Figure 6.6a
shows the resulting entropy plotted against the number of iterations when running
the refinement as post-processing step. During one iteration, a single 3D scan in
each map node is refined. We measure an average runtime of 54ms per iteration
for refining a single map node and 380ms per iteration for refining all 16 map
nodes in parallel.

6.3.2. Deutsches Museum

For further evaluation, we compare our method on a data set that has been
recorded at the Deutsches Museum in Munich. The data set is provided by Hess et
al. (Hess et al., 2016). Two Velodyne VLP-16 mounted on a backpack are carried
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w/o Refinement Refined

Figure 6.7.: Resulting point clouds from the Courtyard data set. Left: results from
the presented method without refinement. Right: results from the presented method.
Color encodes the height.

through the museum. Parts of the data set contain dynamic objects, such as mov-
ing persons. The provided data set includes a calibration between the two laser
scanners—one mounted horizontal, one vertical. We use the provided calibration
between the two sensors as initial calibration guess and refine it by adding ad-
ditional constraints to our pose graph and the local sub-graphs. Similar to the
alignment of two local maps, we refine the calibration parameters by our surfel-
based method, registering the scans of the graph from the horizontal scanner to
the scans of the graph from the vertical scanner.

Following (Nüchter et al., 2017), we select a part of the data set and run our
method on it. Besides visual inspection of the resulting point cloud we compute
the entropy as described before. Figure 6.6b shows the convergence behavior of
our method with and without the covariance-based scan selection. It indicates
that our covariance-based scan selection leads to faster convergence. Furthermore,
we compare the presented method with the method from our previous work. We
also compare our method to Google’s Cartographer (Hess et al., 2016) and the
continuous-time slam method from (Elseberg et al., 2013) that has been evaluated
in (Nüchter et al., 2017). We summarize our results for each method in Table 6.1.
The resulting point clouds from the three different floors are shown in Figure 6.9.
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Method MME
Cartographer (Hess et al., 2016) -2.04
Droeschel et al. (Droeschel et al., 2017) -2.12
Nüchter et al. (Nüchter et al., 2017) -2.34
Ours -2.42

Table 6.1.: Resulting best mean map entropies (MME) for the data set recorded at
Deutsches Museum.

6.4. Summary
This chapter presents an hierarchical, continuous-time approach for laser-based
3D SLAM. The method is based on efficient local mapping and a hierarchical
optimization back-end. Measurements from a 3D laser scanner are aggregated
in local multiresolution maps, by means of surfel based registration. The local
maps are used in a graph-based structure for allocentric mapping. The individual
3D scans in the local map model a sub-graph to incorporate corrections when
refining these sub-graphs. Graph optimization is performed to account for drift
and misalignments in the local maps. Furthermore, a continuous-time trajectory
representation allows to interpolate measurements between discrete scan poses.
Evaluation shows that our approach increases map quality and leads to sharper
maps. In summary, the contribution of the chapter is a novel combination of
a hierarchical graph structure—allowing for scalability and efficiency—with local
multiresolution maps to overcome alignment problems due to sparsity in laser
measurements, and a continuous-time trajectory representation.
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Figure 6.8.: Resulting point clouds from a part of the trajectory of the Deutsches
Museum data set. Left: results from (Nüchter et al., 2017). Right: results from our
method. Red (dashed) circles highlight distorted parts of the map. Color encodes the
height.

Figure 6.9.: Resulting point clouds from the complete trajectory of the Deutsches
Museum data set. The three point clouds show the floors of the resulting allocentric
map. Color encodes the height.
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Autonomous navigation requires perceptual capabilities that are self-evident for
humans. These capabilities include the ability to build an internal representation
of the environment from perceptual inputs. This internal representation, called
the map, is used to infer about location from new perceptual inputs and to plan
paths. When entering an unknown environment, we simultaneously build this rep-
resentation and localize within. In robotics this problem is known as simultaneous
localization and mapping (SLAM). SLAM has been studied in the robotics com-
munity for decades, aiming to allow robots to navigate autonomously in scenarios
where a map is not available beforehand. Consequently, a number of approaches
addressing the SLAM problem exist (Cadena et al., 2016). However, SLAM is
an extensive problem and it depends on a number of aspects, such as the type
of the robot, the configuration of the environment, and the desired performance
requirements. Thus, depending on the specific aspects, research in this field de-
serves more or attention or is more mature. For instance, for a wheeled robot
platform, equipped with a 2D laser range finder and wheel encoders, moving on a
planar indoor environment the SLAM problem is sometimes considered as solved
and reliable approaches exist. In contrast, SLAM on a highly dynamic platform—
such as a MAV— with limit computing resources in a cluttered 3D environment is
still actively discussed in the research community. Here, especially considering the
vast amount of data today’s sensors produce, efficiency, scalability and robustness
are major limiting factors. For example, a modern lidar sensor produces up to
1 million 3D measurements per second that need to be processed with a certain
performance, to allow for consistent mapping and robust localization.

Often the huge amount of data and the aforementioned limitations are addressed
by relaxing the problem. For example, by modeling the environment in lower di-
mensionality, such as projecting 3D measurements in a 2D representation. Further-
more, various simplification to the geometry of data and environment, by consider-
ing only significant parts of the data or modeling the environment by compressing
geometry. On the contrary, these relaxations require assumptions about the envi-
ronment, for example supposing that geometry in the environment is either planar
or has a certain structure, which can not be assumed in general. Similarly, mod-
eling the environment in lower dimensionality makes certain assumptions about
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the environment which are not feasible in many situations, such as representing
the environment in a 2D map for overhanging structures, or robots that move on
non-planar trajectories.

This thesis presents an approach to SLAM that differs from the previously men-
tioned approaches. Based on the idea, that a proper representation of the geome-
try in the environment is key, a map representation is proposed to facilitate online
mapping and localization.

Central to our approach are so-called local multiresolution grid maps, which
is a concise map representation, allowing for efficient aggregation of sensor mea-
surements in a dense map, modeling the geometry of the environment. Local
multiresolution grid maps partition the environment in 3D voxels with varying
resolution. Local multiresolution hereby refers to the property of having a fine
resolution close to the robot and a coarser resolution farther away. This inherent
discretization correlates with the characteristics in relative distance accuracy and
measurement density of modern 3D lidars and reduces memory and computational
requirements without loosing information. Furthermore, local multiresolution grid
maps are robot-centric maps that move with the robot resulting in a constant num-
ber of grid cells necessary to model the robots surrounding, independent of the
traveled distance. The latter allows to accomplish constant memory consumption
and computation time. Chapter 3 details local multiresolution grid maps as the
central data structure in this thesis.

However, to aggregate sensor measurements in local multiresolution grid maps—
and thereby building a dense representation of the geometry in the environment—
registration of newly acquired sensor data is key. Registration means to estimate
the sensor motion between the current sensor measurement and the map by align-
ing them. For this alignment, a probabilistic registration method is presented in
Chapter 4, leveraging the local multiresolution property and allowing for efficient
and accurate registration. It allows to align new sensor data to a local multireso-
lution map, but also for the alignment of two maps with each other.

The latter allows to generate spatial constraints between two maps from differ-
ent view poses. These spatial constraints and the local maps from different view
poses are used to model the environment in a graph-based structure. When the
robot revisits a part of the environment, a spatial constraint between the current
local map and the previously acquired map allows to compensate for accumulated
inaccuracies in the motion estimate (called drift). The graph is optimized in order
to minimize the accumulated error. The resulting pose graph maps larger environ-
ments and provides a allocentric frame of reference for localization. Registration
of scans to the local map—and thereby estimating the sensor’s motion with re-
spect to a local frame—is called the front-end. In contrast, construction of the

114



7.1. Future Directions

pose graph, its optimization and the alignment of the current local map to it, is
called the back-end. The proposed back-end using local multiresolution maps is
described in Chapter 5.

Inaccuracies, caused by wrong data associations or missing information, may
remain. For example, incrementally mapping the environment necessitates boot-
strapping from sparse sensor data at the beginning—resulting in relatively poor
registration accuracy, compared to aligning with a dense and accurate map. Con-
sequently, map quality degrades due to misaligned sensor data. To overcome
degradation of the map quality, Chapter 6 proposes an approach for reassessing
the registration of previously added 3D scans. By modeling individual 3D scans
of a local map as a sub-graph, we build a hierarchical graph structure, enabling
refinement of the map in case misaligned measurements when more information
is available. Furthermore, the sensor trajectory is modeled by a continuous-time
representation, allowing to incorporate refinement results on on the finest-possible
granularity.

Extensive evaluation on different datasets, with different robotic platforms and
sensor setups, has been carried out to assess the versatility, robustness, efficiency
and accuracy of the approach. The experiments demonstrate that the approach al-
lows for efficient—in both memory and computation—and accurate reconstruction
of the environment. Furthermore, it allows to localize the robot in the environment

7.1. Future Directions

The presented approach is based purely on geometry. While this is sufficient in
most environments, it might pose a challenge in scenes without sufficient 3D struc-
ture. Here additional information, such as intensity from the lidar measurements
or color from additional camera sensors might be beneficial. Incorporating texture
into the approach mainly involves adding the information to surfels and incorpo-
rating this information in the registration method. Incorporating texture from
color cameras involves calibration, synchronization, and occlusion handling. In
contrast, utilizing the intensity information of the LRF, which corresponds to the
reflectance of the measured surface is straightforward since it is already associated
with the depth measurement. For example, the intensity information could lever-
aged for registration by introducing an additional term in the objective function,
which corresponds to the similarity of the intensity.

The local multiresolution maps as described, aggregate the individual 3D mea-
surements for each grid cell along with the surfel that summarizes them. The
main reason for storing 3D points in each cell is the ability to regenerate surfels
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from past measurements when the map has been translated and new grid cells are
initialized from the coarser levels. Furthermore, the 3D measurements are used for
visualization. Increasing memory efficiency can be accomplished by reducing the
number of points stored for each cell, for instance by downsampling. Furthermore,
new surfels on the finer levels might be generated from surfels of the coarser levels
directly instead of the points they summarize. One way to accomplishing this
could be to project the surfel information in the finer grid cell or to sample points
in the surfel volume.

Loop-closure is one of the most important parts of a SLAM approach, since it
allows to reduce accumulated drift when revisiting known parts of the environment.
Currently, edges between the actual key frame and key frames from previously
visited parts of the environment are added only based on distance. While this is
sufficient for manageable amounts of drift (see experiments) larger environments
might necessitate methods for place recognition. This would allow to add spatial
constraints between key poses not only based on distance, but also based on their
appearance or texture. Here, surfels can be used for efficient computation of feature
descriptors.

Dynamic objects are currently addressed by modeling occupancy in each grid
cell and adapting the occupancy when new measurements are incorporated. This
adaptation is addressed by ray casting in the grid cells. Another source of infor-
mation for dynamics in the environment can come from data association during
registration. Associations that do not comply with the estimated motion from the
majority of associations indicate dynamics. In contrast to that, implicit model-
ing of dynamic objects might improve accuracy and allows a variety of tracking
approaches to be incorporated. Besides modeling dynamics in the map, the in-
formation can also be leveraged in the data association step during registration.
Neglecting surfels that are likely to be part of a dynamic object, improves robust-
ness.
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A. Acronyms

MAV micro aerial vehicle

MVOG multi-volume occupancy grid

SLAM simultaneous localization and mapping

GNSS global navigation satellite systems

GPS global positioning system

FoV field-of-view

MoCap motion capture

IMU inertial measurement unit

ICP iterative closest points (Besl and McKay, 1992)

GICP Generalised-ICP by Segal et al. (2009)

NDT Normal-Distribution Transform by Biber and Strasser (2003)

3D-NDT 3D Normal-Distribution Transform by Magnusson et al. (2007)
by Arun et al. (1987)

EM Expectation Maximization by Dempster et al. (1977)

voxel volume pixel

surfel surface element

ATE absolute trajectory error

MME mean map entropy

LIDAR light detection and ranging

LRF laser range finder
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A. Acronyms

DRC DARPA Robotics
Challengehttp://www.theroboticschallenge.org/

ATE absolute trajectory errorSturm et al. (2012)
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