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Spatio-temporal Correlations  
of Terrestrial Laser Scanning
Raumzeitliche Korrelationen beim terrestrischen 
Laserscanning
Stephanie Kauker, Christoph Holst, Volker Schwieger, Heiner Kuhlmann, Steffen Schön

This contribution investigates correlations in terrestrial laser scanning on the scientific level. It summa-
rizes recent approaches to model correlations, to develop measurement scenarios for the determination 
of correlations as well as to identify the influence of the correlations on estimation procedures. It can be 
concluded that the following challenges are remaining: complete synthetic modelling as well as the devel-
opment of appropriate measurement scenarios to determine correlations in an empirical way. Additionally, 
the research has to be extended to the time domain, since deformation analysis implicitly needs to con-
sider temporal correlations if they are existent. Therefore, the general ideas of modelling spatio-temporal 
correlations based on stochastic fields are presented. This will open the field for numerous possibilities 
to integrate modelled correlations into the deformation analysis process.

Keywords:  Terrestrial laser scanning, correlation, synthetic covarinace matrix, stochastic field

Diese Veröffentlichung beschäftigt sich mit der wissenschaftlichen Untersuchung von Korrelationen beim 
terrestrischen Laserscanning. Sie fasst aktuelle Ansätze zur Korrelationsmodellierung, zur Entwicklung von 
Messszenarien zur empirischen Bestimmung von Korrelationen und zur Identifikation des Korrelationsein-
flusses auf diverse Schätzungsergebnisse zusammen. Es wird festgestellt, dass in den Bereichen vollstän-
dige synthetische Modellierung wie auch Entwicklung von Messszenarien zur empirischen Bestimmung 
von Korrelationen wesentliche Herausforderungen verbleiben. Des Weiteren ist für die Deformationsana-
lyse die Betrachtung auf die Dimension Zeit auszudehnen, da hier vorliegende zeitliche Korrelationen 
implizit zu berücksichtigen sind. Daher sind die grundlegenden Ansätze zur Modellierung raumzeitlicher 
Korrelationen auf Basis von Zufallsfeldern dargestellt. Dies eröffnet eine Vielzahl an Möglichkeiten zur 
Integration der so modellierten Korrelationen in den Deformationsanalyse-Prozess.

Schlüsselwörter:  Terrestrisches Laserscanning, Korrelation, Synthetische Kovarianzmatrix, Zufallsfeld

1  INTRODUCTION

Terrestrial laser scanning (TLS) is one surveying method in engineer-
ing geodesy. It allows the acquisition of the complete surrounding 
automatically. Typical applications are among others industrial com-
plexes, cultural heritage, building information modelling and tunnel 
surveys. Although the use of this technique is already wide-spread, 
some details with respect to the characteristics of the instrument as 
well as the resulting measurements are still unknown. This compris-
es the correction of the measurements for systematic effects such 

as the incidence angle effect, and knowledge about the stochastic 
relations among the measurements. These relations, the correlations, 
are the central topic of this contribution, since they play an essential 
part for computing correct variances of estimated quantities, like 
e.g. the radius of a sphere or a cylinder and for the correct statistical 
inference with respect to object deformations. As a typical example 
for this fact, /Holst & Kuhlmann 2014, 2015/ could not prove the 
statistical significance of areal-deformation of a radio telescope.
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The remainder of the contribution is structured as follows. Section 2 gives an 
insight into modelling of correlations in engineering geodesy. Section 3 outlines 
the research related to synthetic modelling of correlations, whereas Section 4 
does the same for their empirical determination and for the potential influence 
of correlations on estimated results. Section 5 gives an overview on stochastic 
fields and their potential applications in terrestrial laser scanning. Section 6 
concludes the contribution.

2  CORRELATIONS IN GEODETIC METROLOGY

Engineering geodesy as well as metrology in general focuses on accurate 
and correct modelling of measurements. Systematic components have to be 
modelled functionally and, if possible, they should be corrected. Random com-
ponents have to be modelled stochastically and are taken into account by using 
fully populated covariance matrices including correlations. Covariances as well 
as correlations may be determined empirically using real data or theoretically 
based on simulations and assumptions. In this contribution both possibilities are 
presented and discussed. In addition, the influence on the parameter estimation 
of geometric primitives is outlined.

Correlations may depend on the spatial distance d  or on the time difference 
t of two points or measurements. The spatial distance may be expressed using 
components like three Cartesian or polar coordinate component differences. In 
general, these correlations are called spatio-temporal correlations. In the con-
text of terrestrial laser scanning, the temporal and the spatial components are 
interrelated, since the measurement process is realized in time and space do-
main simultaneously and, in the case of deformation measurements, space-re-
lated information may be linked in time due to (nearly) identical modelling ap-
proaches or environmental circumstances. 

In probability theory as well as in geodesy, a measurement is regarded as a 
realization of a random variable Z . In case of multiple random variables, they 
form a random vector. Typical examples are the three coordinate components 
of a 3D position or all measurements of one laser scan. If the temporal compo-
nent plays a role, a random vector may be available at defined points in time 
(epochs t ) or even continuously. In these cases the random vectors, and there-
fore the random variables too, are arranged in random fields Z (r, t ) where r 
defines the three dimensional space dependency. The spatio-temporal relation-
ships among all variables are described by joint probability distributions. As 
written before, space and time are interrelated in the case of TLS. 

/Matthias 1986/ already wrote about the importance of considering correla-
tions in the field of metrology. The theoretic determination of correlations was 
introduced first by /Pelzer 1985/ using the model of elementary errors. /Augath 
1985/ applied the model on distance measurement methods and /Heunecke 
2004/ modelled total station measurements. /Schwieger 1999/ modelled cor-
relations for GPS monitoring surveys and their influence on the results of 
deformation analysis. In his work the model of elementary errors was further 
expanded. Another model for a simulative correlation modelling is the Mon-
te-Carlo-based procedure of the /GUM 2008a, 2008b/. /Koch 2008/ used e. g. 
rectangular and triangular probability distributions to model correlated output. 
/Koch et al. 2010/ also presented a method to determine variances and covar-
iances between point coordinates by multiple TLS measurements on a static 
object. /Kutterer et al. 2010/ compared real and Monte-Carlo simulated meas-
urements. They found that one of the TLS error sources, the angular increment 
of the servo-motor, has to be modelled using the rectangular instead of the 
Gaussian distribution, since for this appoach simulated and real measurements 
fitted together.
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3  SYNTHETIC DETERMINATION OF CORRELATIONS

3.1  Synthetic Covariance Matrix

A synthetic covariance matrix reflects the impact of several error 
sources, considering non correlating impacts as well as correlating 
ones, on the variances, covariances and correlations within geodetic 
measurements, e. g. terrestrial laser scanning point clouds or GNSS 
observations. Regarding the requirements using this method the 
authors refer to e. g. /Pelzer 1985/.

By means of the elementary error model which is derived in detail 
in /Pelzer 1985/ and /Schwieger 1999/ a synthetic covariance matrix 
can be set up /Schwieger 2007/. According to the hypothesis of the 
elementary errors /Hagen 1837/, /Bessel 1837/ a random deviation 
is defined by a sum of many, very small elementary errors. On 
condition that each elementary error contains the same absolute 
value the probability of negative and positive sign might be equal. 
The assumption of an infinite number of elementary errors with 
infinitely small absolute values justifies the presumption of standard 
normal distribution. Modelling the impact on the observations 
requires error vectors as well as influencing matrices. The impact on 
the correlations within the point cloud can be modelled by using the 
functional relations between the elementary errors and the observa-
tions. In this approach three different types of impacts have to be 
considered: non-correlating errors x, functional correlating errors g, 
and stochastic correlating errors d. In order to determine influencing 
quantity values, an influencing matrix for each type is required as 
well as error vectors dk, x, gh respectively. Hereby, the influencing 
matrices differ in their structures due to various effects of the ele-
mentary errors on the observations. Each elementary error of the 
non-correlating and stochastic correlating classes influences exact-
ly one measurement quantity functionally which leads to diagonal 
matrices Dk and Gh (see Eq. (1 )). By contrast, the matrix F is not 
structured diagonally, since each functional correlating error may 
affect more than one measurement quantity. For the purpose of il-
lustration, the structures of the influencing matrices are shown be-
low, where the elements of the matrices correspond to the partial 
derivatives of the functional relationships among elementary errors 
and observations with respect to the elementary errors: 
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As a result, the random deviation vector can be computed as 
follows:
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Constructing a synthetic covariance matrix is based on the elemen-
tary error model. First, corresponding covariance matrices of the 
elementary errors have to be defined. The variances, each defining 
the stochastic variability of one random value, are placed on the 
main diagonal. The covariance between two observations is located 
on all off-diagonals. The matrices for the non-correlating errors, 

,kddS , and for the functional correlating errors, xxS , are diagonal 
matrices (see Eq. (3 )). By contrast, the covariance matrix of the 
stochastic correlating errors, ,hggS , may be fully populated due to 
covariances among the elementary errors of this type. 
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Determining variances and covariances, in case of stochastic cor-
relating errors for all groups of errors is challenging due to unknown 
correlations between the elementary errors. Thus, they may be 
specified either by using manufacturers’ information, empirical 
values or by an estimation based on maximum errors or variance 
component estimation. In case the standard deviation is not known 
it may be derived by a maximum possible error and a probability 
distribution. For more details, the authors refer to /Schwieger 1999/.

Applying the law of error propagation on Eq. (2 ) leads to the 
equation of the synthetic covariance matrix:
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3.2  �Application of the Synthetic Covariance Matrix 
to Terrestrial Laser Scanning

In order to apply the synthetic covariance matrix to TLS point clouds, 
three sources of errors have to be considered: the manufacturing 
accuracy of the instrument itself, the atmosphere and the surface 
characteristics of the monitored object /Kauker & Schwieger 2015/. 
Grouping the elementary errors into instrumental, atmospheric and 
object based ones, simplifies the classification of the error sources 
regarding the three types of correlations mentioned in Section 3.1.

3.2.1  Elementary Errors of a Terrestrial Laser Scanner

Here it is assumed that the main error model of a terrestrial laser 
scanner is similar to that of a total station. The following instrumen-
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tal errors are investigated: range noise and angular noise, scale 
error, zero point error, collimation axis error, horizontal axis error, 
vertical index error, tumbling error and eccentricity of the collimation 
axis. Range noise and angular noise are classified as non-correlated 
elementary errors while the remaining instrumental errors are 
grouped to the functional correlated group. Moreover, the functional 
relations between the instrumental errors and the observations are 
necessary in order to fill the influencing matrix. Details as well as 
numerical values for computing the matrices can be found in 
/Kauker & Schwieger 2016a/. /Holst & Kuhlmann 2016/ modelled 
different error sources that may reflect the functionality of the laser 
scanner using another construction model that may be more appro-
priate. For the current simulation the contribution considers the error 
sources described before.

3.2.2  Elementary Errors of the Atmosphere 

Another main impact on the observations is caused by the atmos-
phere. Air temperature, air pressure and marginally also partial 
water vapour pressure affect the speed of propagation of the laser 
beam. Details regarding the functional model can be found in 
/Kauker & Schwieger 2015/. In general, these elementary errors are 
classified in the stochastic correlating group. Thanks to assumed 
homogeneous laboratory measurement conditions, the current anal-
ysis in Section 3.3. does not depend on the atmospheric influences 
on the laser signal path. This changes the elementary error from a 
stochastic to a functional correlating error type. Necessarily, the 
correlations become ±1 and the atmospheric elementary errors are 
modelled functionally /Kauker & Schwieger 2016a/. Each matrix

,hggS  including stochastic correlating errors then will be modelled 
as one variance in xxS  and the influences will be modelled as col-
umn of the matrix F instead of a complete matrix Gh.

3.2.3 � Elementary Errors based on the Monitored 
Objects

The third source of errors is defined by the surface quality and 
colour of the monitored objects. The intensity of the reflection of the 
laser beam on the object’s surface depends mainly on reflectivity, 
roughness, colour, and penetration depth. Based on results from 
previous investigations the elementary errors are classified as sto-
chastic correlating because they cannot be separated yet. Addition-
ally, the angle of incidence influences the scanning result which is 
approximately modelled as functional error by means of Lambert’s 
cosine law where the intensity of the reflected ray is proportional 
depending on the cosine of the angle of the incident ray /Kauker & 
Schwieger 2016b/.

3.3  First Synthetic Results 

Having set all necessary parameters, the synthetic covariance 
matrix can be computed. The input values consist of a synthetic 
point cloud of 30 cm in length and 25 cm in width based on equiva
lent angle grid. The chosen point distance within the synthetic point 

cloud is at about 6 mm at the object and the scanning distance is 
up to 10 m. This is comparable to the resolution levels of the Leica 
HDS 7000 which served as an exemplary instrument. For evaluation 
the following standard deviations of instrumental errors are used.

Error source Standard deviation

Range noise 0.5 mm

Angle noise 125 µrad

Scale error 0.300 018 mm/km 

Zero point error 1.50 mm 

Collimation axis error 0.44 mgon

Horizontal axis error 0.48 mgon

Vertical index error 0.53 mgon

Tumbling error 0.06 mm/m

Eccentricity of the collimation axis 0.08 mm

Tab. 1  I  Standard deviations of instrumental errors

For first investigations, the atmospheric parameters must be 
adjusted to the laboratory conditions by taking into account that the 
variances and covariances are not dependent on their location due 
to the small dimensions of the sample pieces. Subsequently, the 
standard deviations for temperature, pressure and partial water 
vapour pressure are set to st = 0.01 °C, sp = se = 0 hPa, respec-
tively. With the structure of the synthetic covariance matrix (see 
Eq. (5 )), a position error can be calculated as the square root of the 
sum of the respective three coordinate-related variances /Kauker & 
Schwieger 2016a/.
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As a result, the positional standard deviation reaches 3.9 mm over 
the entire area due to the small impacts of elementary errors caused 
by the small size of the grid as well as neglecting atmospheric and 
object based impacts. In the next step, the correlation matrix R

ll

, 
containing spatial correlations within the point cloud, can be com-
puted by means of a synthetic covariance matrix. Due to its struc-
ture, that is equal to the one of 

ll

S , correlations for each coordinate 
axis can be calculated directly. A more thorough analysis shows a 
tiny trend regarding the spatial correlations of the x -coordinates 
which depends on the distances to each other (see Fig. 1 ). With 
respect to the scanning setup the x -axis defines the collimation 
axis, the z -axis represents height and the y -axis is orthogonal to 
both axes. For the other coordinates approximately the same picture 
results. Moreover, the results heavily depend on the scanning reso-
lution and the distance between laser scanner and object. If the size 
of the object increases also smaller correlations will appear. The 
non-changing variances as well as the high correlations are caused 
by the major influence and the low variability of the instrumental 
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errors, the unchanged atmospheric conditions, and the symmetric 
geometry of the configuration of the work piece.

3.4  Recent Challenges

Currently, the synthetic covariance matrix was determined for small 
work pieces under laboratory conditions. This has to be expanded 
to larger objects such as buildings, industrial structures, bridges or 
dams. In this case the atmospheric errors as well as the instrumen-
tal and the object-related errors will have a larger influence. Defining 
variances and covariances for the stochastic correlating group for 
the atmospheric errors is one of the most challenging parts of the 
future modelling. Additionally, for the object-related errors no strict 
functional relations regarding reflectivity, colour, penetration depth 
and roughness are known yet. However, modelling the effect of the 
angle of incidence is challenging as well due to the object charac-
teristics which affect the intensity of the laser beam simultaneously. 
Most of these dependencies are and will be modelled by stochasti-
cal correlating errors, too. 

In addition, the synthetic covariance matrices have to be verified 
or validated by empirically determined variances, covariances and 
correlations. Here, the difficulty of taking all possible error sources 
into account has to be solved. Some recent ideas are documented 
in the following section.

4 � EMPIRICAL DETERMINATION OF CORRELATIONS 
AND THEIR INFLUENCE ON ESTIMATIONS

The empirical determination of correlations is divided into two parts. 
The first one concerns the empirical determination of correlations to 
validate the synthetic correlations simulated in Section 3. The sec-
ond part deals with finding sophisticated test scenarios that help 
revealing existing correlations of laser scans. 

4.1  Empirical Determination of Correlations 

Validating the synthetic covariance matrix requires an empirical 
determination of the variance covariance matrix of the observations. 
For this purpose, multiple scans can be used, directly carried out 
after one another, to justify the assumption of no changes in the 
scanning process, respectively of the environmental influences. 
Determining a variance covariance matrix for empirical measure-
ments requires identical points measured in different epochs. How-
ever, regarding the angular variability being dominated by the true 
horizontal and vertical angle as well as different starting points of 
scans, each point cloud is unique; the scanner will not measure the 
same points in two scans. Thus, it is not possible to identify the 
same point in different point clouds reliably. 

In order to identify almost identical points, algorithms of pattern 
recognition can be used. Here the k -nearest-neighbour-algorithm 
/Geisselmann 1981/ is applied. Having found “almost identical 
points”, residuals v  for each observation lij can be computed:

, with 1, 2, …,  and 1, 2, …, .i j i j i jv l l i n j m= - = = � (6)

n  defines the number of measurements per point and m  the number 
of points in the point cloud. Afterwards, an empirical covariance 
matrix S

ll

 can be determined as follows, where v j , vk define vectors 
of the residuals for one point j  respectively k :
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It is clear, that due to the angular variability and different starting 
points of the scanner the empirical variation does not contribute to 
the uncertainty of the coordinates of the points in the point clouds. 
Nevertheless, as a first approach almost identical points are identi-
fied in order to compute an empirical variance covariance matrix.

As described in Section 3.2 for the theoretical correlation matrix 
an empirical correlation matrix can be calculated in the following. 

For first measurements the terrestrial laser scanner Leica 
HDS 7 000 is used. A small sample piece made of gypsum by a 3D 
printer is scanned. This material is used for testing purposes, in 
order to investigate its reflectivity. The dimensions of the board are 
approximately 30 cm x 25 cm x 0.4 cm. The board is placed 10 m 
in front of the laser scanner. The scanning resolution is 0.036° 
whereof a point distance of 6 mm within the point cloud results. By 
applying the variances the empirical position error (according to 
Helmert) can be calculated for each point within the cloud /Pelzer 
1985/:

2 2 2 ,   = 1, …, .
i i i ix yz x y zs s s s i m= + + � (8)

Fig. 2  shows the result of the calculation of the three dimensional 
positional error which is mainly up to 1.3 mm within the surface. 
Nevertheless, the lower and upper edges cause values up to 5 mm 
standard deviation assumingly caused by the nearest-neighbour-
algorithm. These values represent the dominating impact of noise 
on the measurements and some influences of the non-identical 
points. Moreover, the empirical residuals are smaller than the noise 
modelled in Section 3. The visible pattern is assumed to be caused 
by the rough surface structure.

Fig. 1  |  Correlations of x-coordinates depending on their spacing
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Fig. 3 explores the empirical correlations with respect to the x -coordinates 
which range between – 0.1 and +1. Due to the dominating influence of the 
range noise as well as the result of the angular variability during the scanning 
process the correlations vary between – 1 and +1 across the entire surface. 

This irregular pattern clearly reflects that these first results cannot be used 
for a scientific analysis and interpretation. The complete empirical determination 
is an open research question developing specific measurement configurations.

Consequently, for understanding the amount and the sources of correlations 
in laser scanning, sophisticated test scenarios have to be developed that aim 
at revealing correlations empirically to build up a covariance matrix as written 
in Eq. (4 )1. The setting up of a suited test scenario is closely related to the type 
of elementary errors that is considered. Hence, it differs between aiming at 

1   The setting up of such a test scenario is not trivial; it is stated as a recent challenge in 
Section 4.3.
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Fig. 2  |  Empirical positional standard deviations

Fig. 3  |  Empirical correlations of x-coordinates
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revealing fundamental errors of the terrestrial laser scanner, the 
atmosphere or the monitored object that all can be functional or 
stochastic correlating (see Section 3.2).

A special scenario described in the following deals with revealing 
fundamental errors of the monitored object which are assumed to 
be stochastic correlating. In this test, a wooden plate of 1.5 m width 
and height is scanned from 7 m distance /Jurek 2015/. This scan is 
afterwards parameterized as a plane and the relevant parameters 
(normal vector and distance) are estimated in a least-squares sur-
face estimation similar to /Holst et al. 2014/. This procedure is 
partially analogous to /Koch 2008/ and /Koch et al. 2010/ who in-
vestigated temporal correlations in laser scans.

Correlations can be estimated afterwards based on the estimated 
residuals. These correlations are displayed in Fig. 4  depending on 
the distance between the scan points corresponding to Fig. 1. It can 
be seen that these correlations of up to 0.40 are decreasing with 
increasing point distance. This decrease is expectable since the 
stochastic relationships investigated here depend on the spatial 
distance between the points (see Section 2). 

However, the correlations do not decrease to zero; instead, some 
systematic characteristic can be seen. Further investigations show 
that the scanned wooden plate is not absolutely planar but slightly 
curved /Jurek 2015/. Hence, the correlations shown in Fig. 4  are 
due to laser scanner (co-)variances as well as to an insufficient 
functional model in the adjustment, since this functional model as-
sumes the plate to be planar. Consequently, the quantification 
shown in Fig. 4  should be handled critically because it contains laser 
scanner correlations as well as unknown areal deformations of the 
scanned surface. 

4.2  Influence of Correlations on the Estimation 

As already mentioned, spatio-temporal correlations in terrestrial 
laser scanning data are mostly unknown. Thus, they cannot be in-
cluded in the stochastic model when approximating the scan by 
some areal model based on a least-squares estimation. Hence, 
when building the covariance matrix of the observations 

ll

S  for 
real applications, only the main diagonal axis is filled, the other ele-
ments are empty due to lack of knowledge. Since this does not 

reflect the real situation, the effect of the simplified stochastic 
model on the estimated parameters x̂  and the corresponding co-
variance matrix ˆ ˆSxx  should be investigated. This can be done by the 
parameter test e. g. /Niemeier 2007/ if the true parameters of the 
adjustment x are known: 

( ) ( )T 1
, ,1ˆ ˆ

1 ˆ ˆ u fxxT
u a

-
-= - - Sx x x x F .� (9)

Here, the F-distribution is based on the number of parameters u, 
the degrees of freedom f  and the significance level a. This test in-
dicates whether the estimated parameters differ significantly from 
the true ones with respect to the corresponding covariance matrix. 
Hence, it detects a bias in the estimation assuming that the stochas-
tic model is correct.

The following investigations are based on simulations /Jurek 
2015/ (see Fig. 5 ): The laser scanner is stationed in 10 m distance 
of a wall of 1 m width and height. The polar observations of the laser 
scanner are generated based on analytical geometry and simulated 
errors are added afterwards. Based on these observations, the 
parameters of the planar wall (normal vector and distance) are esti-
mated in a least-squares surface estimation similar to /Holst et al. 
2014/.

In the present case, only non-correlating errors are incorporated 
for the angle measurements. They shall represent the measurement 
noise. For the distance measurements, stochastic correlating errors 
are additionally incorporated. They model the elementary errors of 
the monitored object due to reflectivity, roughness, colour and 
penetration (compare Section 3.2). Functional correlating errors as 
the ones due to the imperfection of the instrument are not consid-
ered in this analysis. This step is left for future research. 

The incorporated stochastic correlating errors are assumed to 
lead to correlations R i j between the scan points i  and j  that de-
crease with increasing point distance D i j . This can be described by 
the exponential function 

Fig. 4  |  Estimated correlations between the residuals of the scan points 
(after fitting a plane) depending on their distance /Jurek 2015/

Fig. 5  |  Configuration of simulated plane and laser scanner station
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with D0 defining the correlation length. The combination of all cor-
relations R i j builds up the correlation matrix R

ll

 that has already 
been introduced in Section 3.3. Fig. 6  shows the effect of incorpo-
rating only non-correlating errors (right) and of additionally incorpo-
rating stochastic correlating errors (left) corresponding to the corre-
lation matrix R

ll

.
The influence of the correlations on the parameter estimation can 

now be investigated by a two-step analysis: In the first step, al-
though stochastic correlations are incorporated in the simulation of 
the observations, they are assumed to be unknown in the stochastic 

model. Hence, still only the main diagonal of 
ll

S  is filled since ,kddS  
is filled but xxS  and ,hggS  are not (see Eq. (3 )). This part reflects 
the present procedure of approximating laser scans because the 
existing correlations are indeed unknown in most applications. 
Hence, this first step is called “present case”. In the second step, 
stochastic correlations are incorporated in 

ll

S  by additionally filling 

,hggS  based on R
ll

 which is possible since these correlations are 
simulated. This part indicates the benefit of the efforts of building 
up a synthetic covariance matrix for laser scanning. This step is 
called “desired case”.

Consequently, it can be analysed (i) whether the parameter test 
(Eq. (9 )) is declined if the true stochastic model including correlations 

Fig. 6  |  Residuals of distance measurements of a plane approximation in case of only non-correlating errors (right) and in case of non-correlating as well as 
stochastic correlating errors (left) /Jurek 2015/

Fig. 7  |  “Present case”: Results of the 
parameter test in several simulation runs 
dependent on the correlation length D 0 

/Jurek 2015/

Fig. 8  |  “Desired case”: Results of the 
parameter test in several simulation runs 
dependent on the correlation length D 0 
/Jurek 2015/
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is unknown (“present case”) and (ii ) whether the parameter test is 
accepted if the true stochastic model would be known (“desired 
case”). Hence, these analyses investigate whether a more realistic 
stochastic model for terrestrial laser scanning affects a potential 
parameter bias at approximating scanned surfaces. 

Fig. 7 shows the results for the “present case” for several simu-
lation runs dependent on the correlation length D0 (see Eq. (10 )). It 
can be seen that the parameter test indicates the wrong stochastic 
model with increasing correlation length. Thus, neglecting correla-
tions at laser scanning leads to a biased parameter estimation. This 
bias depends on the true correlation length that is not yet known; or 
more generally: it depends on the correct size of the correlations and 
their spatio-temporal behaviour.

Fig. 8  shows the results for the “desired case”: Here, the corre-
lations are known and, thus, the test statistics are accepted inde-
pendent from the correlation length. The test is declined only twice 
which corresponds to the significance level.

These investigations imply that gaining a more realistic stochastic 
model – especially regarding spatio-temporal correlations – elimi-
nates the bias in surface approximations based on laser scans. 
Without incorporating existing correlations in the covariance matrix 
of the observations 

ll

S , the parameter test is rejected because the 
items of the estimated covariance matrix of the parameters ˆ ˆSxx are 
too small (see Eq. (9 )), since ˆ ˆSxx is a result of the covariance propa
gation of 

ll

S . Consequently, the main reason for the decline of the 
parameter test in the “present case” – indicating that the estimation 
is biased – can be found in the too optimistically estimated covari-
ance matrix ˆ ˆSxx not reflecting the true stochastic behavior of the 
parameters x̂ . Hence, a more realistic stochastic model for laser 
scanning including correlations is needed to improve the parameter 
estimation.

4.3  Recent Challenges

The previous Sections 4.1 and 4.2 demonstrate that the empirical 
determination of laser scanner correlations is very complex (see 
also /Holst & Kuhlmann 2016/): while some studies have already 
proven the existence of correlations, general strategies for revealing 
and assessing correlations are not at hand. This task is challenging 
since these correlations presumably differ by a large amount be-
tween different measurement configurations and scanned objects.

The challenge of empirically revealing correlations in laser scans 
is bound to the fact that a very accurately known surface has to be 
scanned. Even small unknown deformations of this surface lead to 
falsely assumed correlations (see Section 4.2). However, even if this 
surface can be parameterized accurately, the empirically estimated 
correlations might then only be representative for this specific sur-
face and measurement configuration. 

Consequently, several test scenarios need to be build up. Then, 
the estimated correlations might still only be valid for each specific 
combination of scanned object and measurement configuration but 
the aggregation of several scenarios could improve the general 
comprehension about spatio-temporal correlations at laser scanning. 
This could lead – in whole – to a more realistic empirical determi-
nation of the synthetic covariance matrix presented in Section 3.

5  SPATIO-TEMPORAL STOCHASTIC FIELDS

In addition to the previous approaches, concepts from spatio-tem-
poral data analyses can be used to describe the stochastics of laser 
scanner data in four dimensions. Here, the basic idea is that the 
data set is a realisation of a stochastic process, this process is 
characterised by its spectrum or covariance function. Useful refer-
ences for spatio-temporal processes are /Cressie 1993/, /Cressie & 
Wikle 2011/ or /Schabenberger & Gotway 2005/. In geodesy, these 
concepts have been introduced and used in different contexts: 
/Grafarend 1976/ gave a general overview, /Illner & Müller 1984/ 
applied concepts in geodetic network optimisation when using cri-
terion matrices of Taylor-Karman type, /Schön & Brunner 2008/ and 
subsequent publications like /Schön & Kermarrec 2015/ or 
/Kermarrec & Schön 2014/ proposed stochastic models for GNSS. 
Finally, these concepts are applied in modern image processing as 
conditional random fields, e. g. /Förstner 2013/ for an overview. 

5.1  Methodical Basics

One powerful family of covariance functions that is widely used is 
the Matern family. The spatial covariance function C S of the field Z 
between two distinct points r and r + d in space reads

( ) ( ) ( )S ( ), ( ) ,C Z Z A Kn
na a+ =r r d d d � (11)

where A is a constant, a the inverse correlation length, and n a 
positive constant that describes the smoothness of the field, i. e. the 
rate of decay of the spectral density at high frequencies or equiva-
lent the steepness of the departure of the covariance function from 
0. Finally, K n denotes the modified Bessel function of the second 
kind (MacDonald function). Fig. 9  illustrates the covariance function 
for different parameter sets. The exponential model is obtained by 
n = 1/2 and the Gaussian case considered in Section 4 when 
n ® ∞.

The covariance function from Eq. (11 ) describes homogeneous 
and isotropic fields, i. e. the covariance is independent of the direc-
tion of d and the location r; it depends only on the length ½½d ½½ of d. 
Subsequently, the associated variance-covariance matrix 

ll

S has a 
Toeplitz structure. This could be a simple model for TLS data where 
½½d ½½ is the distance between scan points. Its elements s can be 
computed by Eq. (11 ). 

If needed, anisotropy and inhomogeneity can be introduced to 
first order by an affine transformation of the coordinate system, i. e. 
a rotation by b  and a scaling of the rotated axes by a  and b , respec-
tively:

1 0 cos sin
.

0 1 sin cos

a
b

b b
b b

é ù é ù-¢ ê ú ê ú= =
ê ú ê úë û ë û

r B r r � (12)

Up to now, just spatial correlations are treated. The link between 
temporal and spatial correlations can be introduced in different 
ways: In a first approach, separable processes can be assumed. 
Then, the spatio-temporal variation of the field Z  can be described 
by the product of two covariance functions, C S considering exclu-
sively the spatial covariance and C T only the temporal covariance, 
respectively:
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( ) ( )( ) ( ) ( )( ) ( )ST S T, , + , + , Z + C , .C Z t Z t C Z t tt t= +r r d r r d � (13)

Alternatively, the sum or a combination of sum and product is also feasible. 
Special attention should be paid to the anisotropy of space and time in these 
formulations. In addition, actually not all processes show this behaviour, cf. 
/Cressie & Wikle 2011, p. 308 ff./.

A second approach is based on Taylor’s frozen turbulence hypothesis, often 
applied in turbulence theory. Here, the spatial random structure is assumed 
to be frozen and temporal variations are included by transporting this frozen 
field in space with a constant velocity vector u, i. e. a “wind” vector. Thus, 

( ) ( )( ) ( ) ( )( )ST ST, , , + , , Z + ,C Z t Z t C Z t tt t=r r r r u , i. e. the covariance be-
tween values at the same position at different epochs separated by t is identical 
with the covariance at the same epoch but at positions separated by u t. 

( ) ( )( ) ( ) ( )( )ST S, , + , + , Z + .C Z t Z t C Zt t= +r r d r r d u � (14)

A random field can be generated by eigenvalue decomposition of the covariance 
matrix: T=S M L M , where M is the orthonormal modal matrix containing 
the eigenvectors and L the diagonal matrix of decreasingly ordered eigenval-
ues. Then, with a normal distributed random vector n, the random field Z  can 
be generated by 

( )
1
2

2

1
, .

n p t

i i i
i

Z t nl
=

= = år n mM L � (15)

The right hand side of Eq. (15 ) shows that the field is a superposition of the 
structures given in the eigenvectors m i . The weights are the corresponding 
eigenvalue il  and the random number m i . In the case of Toeplitz like matri-
ces the eigenvectors contain the principal modes of an oscillation, cf. Fig. 10 
(right).

A second benefit of eigenvalue decomposition is the assessment of data 
weak forms similar to weak forms known from geodetic network analyses, cf. 
/Jäger 1988/. Weak forms are obtained if few eigenvalues are dominating the 
eigenvalue spectrum. In these cases the structure of the field obtained by the 
associated eigenvectors determines deformations that are difficult to be de-
tected due to the correlations. 

Fig. 10  (above left) shows the resulting random field at 25 × 25 positions for 
the case of anisotropy, cf. Eq. (11 ). The rotated coordinate system is associated 
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length is fixed (here a = 1)
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with the structures generated in the field. Since a  is smaller than b 
in this specific example the correlation in y' -direction is larger than 
in x' -direction. In subfigure 10 (further down) the eigenvalue de-
composition of the 625 × 625 fully populated covariance matrix is 
depicted. The spectrum of eigenvalues is relatively flat, so that no 
dominant eigenvalues can be stated. The structure of the first three 
eigenvectors shows a typical oscillation pattern which is due to the 
Toeplitz-like variance-covariance matrix. The structures associated 
with the smaller eigenvalues shows rather random patterns. Here 
we plotted exemplarily the fields associated with eigenvalues 100, 
500, and the smallest eigenvalue 625 were plotted.

Fig. 11 illustrates the principle of taking spatial and temporal 
correlations into account, the latter by Taylor’s frozen hypothesis. 
Here a field of 20 × 20 data points is generated using the Matern 
covariance function with n = 5/6 and a = 0.001, a  = 1, b  = 0.1, 
and b = 15°. This field is transported by the wind vector u  = 10 m/s. 
Subsequently, at epoch t 2 the segment B1 of the initial field is now 
located at the segment B2. A new data structure was transported 
into the segment C2. Consequently, Taylor’s hypothesis could be 
interesting when observing transport or similar structured process-
es with laser scanning. 

5.2  Applications for terrestrial laser scanning

Sections 3 and 4 have dealt with the challenges of modelling, gen-
erating and determining correlations within one laser point cloud, 
partly based on successive laser scans of the same object. These 
modelling and analysis approaches deal with the spatial part of the 
correlations. Nevertheless any scan process automatically deals 
with time concurrently, since the points cannot be acquired at the 
same time. So each point shows another position as well as anoth-
er point of time when acquired by TLS. Time and space is related by 
the measurement principle of the instrument. Here the simple inte-
gration of temporal and spatial correlations as indicated in Eq. (13 ) 
can probably not be followed. The theory of stochastic fields has to 
be studied more in detail and adequate solutions have to be deve
loped for application to TLS.

Monitoring and deformation analysis in particular is an important 
application in engineering geodesy. Therefore, time is always an 
important issue. /Schwieger 1999/ analysed temporal correlations 
for GPS monitoring surveys. For the modelling he needed the spatial 
correlation component, too. He referred to stochastic fields in the 
simple form separating between the spatial and time domain as 

Fig. 10  |  Simulated random field. Above left: Field at 25 x 25 data points assuming anisotropy (a  = 0.1, b  = 1, b = 15°, n = 5/6 , a= 0.1).  
Bottom: Spectrum and contributions to the field given by the eigenvectors
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Fig. 11  |  Temporal variations of a random field by Taylor’s frozen hypothesis.  
Left: Field with 20 × 20 data points at epoch t1. A wind vector u  is transporting the field. Right: Resulting field at epoch t 2.

described in Eq. (13 ). For deformation analysis of laser scanner 
point clouds the complexity with respect to spatial correlations and 
to the interaction of space and time is much higher. Approaches 
described in Section 5.1 deliver the theoretical background for 
adapted (approximated) four-dimensional correlation models.

6  CONCLUSION AND OUTLOOK

This contribution summarizes the difficulties and importance of 
modelling correlations in terrestrial laser scanning on the scientific 
level. It focuses on recent approaches to model correlations, to 
develop measurement scenarios for the determination of correla-
tions as well as to identify the influence of the correlations on esti-
mation procedures. It can be concluded that challenges are remain-
ing, concerning the complete synthetic modelling as well as con-
cerning the development of appropriate measurement scenarios to 
determine correlations in an empirical way. Additionally, the research 
has to be extended to the time domain, since deformation analysis 
implicitly needs to consider temporal correlations if they are availa-
ble. Therefore, the general ideas of modelling spatio-temporal cor-
relations on the base of stochastic fields are presented. This will 
open the field for numerous possibilities to integrate modelled cor-
relations into the deformation analysis process.
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