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“Only two things are infinite, the universe and human stupidity, and I’m not sure about

the former.”

Albert Einstein



Summary

Machine learning approaches, a branch of computer science based on the study of com-

plex statistical algorithms, help researchers predict and discover facts about the outside

world that may otherwise be too latent and sophisticated for more commonplace ap-

proaches.

Machine learning techniques are able to explore large amounts of data in a multivariate

fashion, so that multiple factors comprising a phenomenon are analyzed simultaneously;

a technique that human intelligence is not fully optimized for. Accordingly, machine

learning is becoming a widely used assistive tool in many fields of science and technology.

In the same vein, the current thesis aims to methodize two main scientific questions

within the realm of the neurosciences using machine learning frameworks.

Here, machine learning is used to give a viable solution for decoding ongoing brain ac-

tivities in cognitive studies using data obtained via intracranial electroencephalography

(iEEG). IEEG data, represented as a 3D model is proposed, allowing the data to be

broken down into distinct bins of information, and in addition, to be able to identify and

discard non-informative components. Combining this data modeling approach with suit-

able machine learning algorithms, facilitates the procedure of interpreting brain activity

and enables a traceable and plausible pattern classification solution.

Regarding the second scientific question, machine learning is implemented to aid epilepsy

patients in tracking and recording their seizures. In order for patients with epilepsy to

receive adequate counseling and treatment, accurate documentation of seizure activity

is required, however research has shown that self-reporting of seizure activity is often

fundamentally unreliable. In this thesis, extensive studies aiming to investigate this

question were carried out and subsequently machine learning approaches are proposed to

track and register the seizure activity of individuals with epilepsy based on bio-feedback

signals.

Additionally, an introduction to the state-of-the-art deep artificial neural networks is

given; in addition to discussing the applicability of deep learning on natural neural data.



Acknowledgements

I would like to express my deep gratitude to the advisor of my thesis Prof. Christian

Bauckhage for his inspiration and support, before and during my Ph.D study, for his

sustained advocacy and encouragements. His guidance has been always a life-saver for

me and I have kept them in mind word by word.

Next, I would like to thank the rest of my thesis committee: Prof. Armin Cremers, Prof.

Emmanuel Müller, and PD. Dr. Juergen Fell, for accepting to review my work and for

their supportive comments and suggestions.

My candid appreciation also goes to Prof. Nikolai Axmacher, PD. Dr. Joergen Fell, and

Prof. Rainer Surges, and Prof. Christian Elger who provided me a unique opportunity

to join their teams in the university clinic Bonn at the epilepsy center in Bonn, and who

gave me access to their laboratory and clinical research facilities. Without their precious

support and supervision, it would not have be possible to conduct this research.

I would like to thank Boll foundation for its generous financial support in pushing forward

my research studies.

vi



Contents

Acknowledgements vi

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Machine learning philosophy in neuroscience . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Scope 1: iEEG and functional MRI in working memory . . . . . . 5

1.2.2 Scope 2: non-Invasive seizure detection . . . . . . . . . . . . . . . 5

1.3 Human nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Terms used to describe the brain . . . . . . . . . . . . . . . . . . . 9

1.4.2 Building blocks of the Brain . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Next chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Artificial neural networks 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 A basic neural network . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Perceptron algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Weight updating and logistic regression . . . . . . . . . . . . . . . 22

2.1.5 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.6 Feed-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.7 Back-propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Modern deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1.1 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.4 Avoiding local minima . . . . . . . . . . . . . . . . . . . . 32

2.2.1.5 Vanishing gradient problem . . . . . . . . . . . . . . . . . 32

2.2.1.6 Alternative activation functions . . . . . . . . . . . . . . 32

vii



Contents viii

2.2.1.7 More tricks for large neural networks . . . . . . . . . . . 33

2.3 Modern types of deep learning algorithms . . . . . . . . . . . . . . . . . . 34

2.3.1 Convolution neural network (CNN) . . . . . . . . . . . . . . . . . . 34

2.3.1.1 Convolutional layers . . . . . . . . . . . . . . . . . . . . . 35

2.3.1.2 Pooling layers . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1.3 Stacking the hidden layers . . . . . . . . . . . . . . . . . 36

2.3.2 Recurrent neural networks (RNN) . . . . . . . . . . . . . . . . . . 37

2.3.2.1 Long short-term memory (LSTM) networks . . . . . . . . 38

2.3.3 Other types of deep neural networks . . . . . . . . . . . . . . . . . 41

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Working memory, machine learning, and intracranial EEG 43

3.1 Sternberg paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1.1 Subject and data . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 49

Artifact Rejection . . . . . . . . . . . . . . . . . . . . . . . . 49

Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Signal Segmentation . . . . . . . . . . . . . . . . . . . . . . 52

Baseline Correction . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . 53

Power and Phase . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1.4 Classification and prediction . . . . . . . . . . . . . . . . 63

ANOVA and feature dimensionality reduction . . . . . . . . 64

Pattern classification schema . . . . . . . . . . . . . . . . . 66

Surrogate test . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Face direction paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Patients and data . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.2 Data analysis and classification . . . . . . . . . . . . . . . . . . . . 74

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.3.1 Relevant electrodes and frequencies for classification us-
ing SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.3.2 Checking feature importance using random-forest . . . . 79

3.2.3.3 Checking the importance of frequency bands . . . . . . . 79

3.2.3.4 Checking the interplay of alpha vs. gamma frequency
bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.3.5 Electrode combinations . . . . . . . . . . . . . . . . . . . 86

3.2.3.6 Potential confound variables . . . . . . . . . . . . . . . . 87

Block halves classification . . . . . . . . . . . . . . . . . . . 88

Between blocks vs. within blocks classification . . . . . . . . 89

Distant vs. adjacent classification . . . . . . . . . . . . . . . 89

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Applying deep learning to iEEG data . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Deep learning on Sternberg paradigm . . . . . . . . . . . . . . . . 91

3.3.2 Deep learning on Derner et al. data . . . . . . . . . . . . . . . . . 92



Contents ix

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 A multimodal, non-EEG based approach to detect epileptic seizures 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 What is epilepsy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Seizure detection systems . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Multivariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.3 Sensors and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.3.1 Synchronizing sensor data . . . . . . . . . . . . . . . . . . 103

4.3.3.2 Artifacts and ECG signal replacement . . . . . . . . . . . 103

4.3.3.3 Visual inspection of ECG signal . . . . . . . . . . . . . . 104

4.3.3.4 Annotating seizure time . . . . . . . . . . . . . . . . . . . 104

4.3.4 Feature extraction and multivariate analysis . . . . . . . . . . . . . 104

4.3.4.1 Electrocardiogram (ECG) . . . . . . . . . . . . . . . . . . 105

4.3.4.2 Accelerometry . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.4.3 Electrodermal (EDA) . . . . . . . . . . . . . . . . . . . . 114

4.3.4.4 Characterizing the differences of features pre-ictal vs.
post-ictal . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.4.5 Windowing over the data . . . . . . . . . . . . . . . . . . 118

4.3.4.6 Problem of unbalanced number of positive vs. negative
examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.5 Pattern classification . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.5.1 Probability thresholding . . . . . . . . . . . . . . . . . . . 123

4.3.5.2 Early fusion vs. late fusion . . . . . . . . . . . . . . . . . 124

4.3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.1 Event filtering approach . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4.1.1 Day and night classification . . . . . . . . . . . . . . . . . 140

4.4.1.2 Important features for classification . . . . . . . . . . . . 141

4.4.1.3 Summarizing the results of event filtering approach . . . 141

4.4.2 Direct classification approach . . . . . . . . . . . . . . . . . . . . . 142

4.5 Prospective evaluation part 1, mobile EEG/ECG . . . . . . . . . . . . . . 143

4.5.1 Patients, sensors, data . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6 Prospective evaluation part 2, Epitect ECG . . . . . . . . . . . . . . . . . 146

4.6.1 Patients and data . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Developing deep learning algorithms on ECG data . . . . . . . . . . . . . 147

4.7.1 Method 1, Convolutional Neural Networks (CNN) . . . . . . . . . 147

4.7.2 Method 2, Deep Multi-Layer Perceptron (dMLP) . . . . . . . . . . 149

4.7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



Contents x

5 Photoplethysmography towards portable seizure tracking 153

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.2 Wrist-worn PPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.1 Patients, Data, Recording Media . . . . . . . . . . . . . . . . . . . 156

5.2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2.4 In-ear sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.4.1 App development . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Apple watch extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A Working memory and fMRI 167

B Poster presented at OHBM conference. 171

C Poster presented at DGfE conference. 173

Bibliography 175



List of Figures

1.1 Central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Brain level classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 A schematic view of central nervous system and lobes . . . . . . . . . . . 12

1.4 A schematic view of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Simple separating line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 A two dimensional perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 perceptron with sigmoid function . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Perceptron network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Perceptron network layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Feed-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Model complexity graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Convolutional neural network -1 . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Simple RNN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.14 Basic LSTM cell concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.15 LSTM cell detailed architecture . . . . . . . . . . . . . . . . . . . . . . . . 40

2.16 LSTM network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 iEEG recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Sternberg paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Electrode distribution of Sternberg paradigm . . . . . . . . . . . . . . . . 48

3.4 Spike activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Frequency splitting and windowing . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Time-frequency-electrode map . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Power of Hilbert transformation . . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Phase of Hilbert transformation . . . . . . . . . . . . . . . . . . . . . . . . 57

3.9 Wavelets coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Sine signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.11 Sine vs. cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 ANOVA sample data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Sternberg paradigm results . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 Decisive feature cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.15 Visual data streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.16 Face direction paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



List of Figures xii

3.17 Electrode implantation in face direction paradigm . . . . . . . . . . . . . 74

3.18 Face direction paradigm - three classes classification using SMO . . . . . . 77

3.19 Face direction paradigm - face direction vs. face identity . . . . . . . . . . 77

3.20 Face direction paradigm - face identity vs. control . . . . . . . . . . . . . 78

3.21 Face direction paradigm - face direction vs. control . . . . . . . . . . . . . 78

3.22 Feature relevance plot face direction paradigm . . . . . . . . . . . . . . . . 80

3.22 Feature relevance plot face direction paradigm . . . . . . . . . . . . . . . . 81

3.23 Face direction paradigm - three classes classification using random-forest . 82

3.24 Feature importance plot face direction paradigm . . . . . . . . . . . . . . 83

3.24 Feature importance plot of face direction paradigm (ANOVA) . . . . . . . 84

3.25 Electrode combinations for classification . . . . . . . . . . . . . . . . . . . 87

3.26 Classifying block halves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.27 Comparing consecutive block halves . . . . . . . . . . . . . . . . . . . . . 90

4.1 Wearable sensor units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Classification diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Video EEG monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Moviens sensor units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 QRS complex of EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 R-Peak detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Lorenz plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.8 Windowing over time series . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.9 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10 Proportion of seizures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.11 Event inclusion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.12 Distribution of seizures in Mobile-EEG recording . . . . . . . . . . . . . . 144

4.13 Mobile Micromed EEG/ECG recording device . . . . . . . . . . . . . . . . 144

4.14 Contineous Wavelets Transformation of ECG . . . . . . . . . . . . . . . . 148

4.15 Convolutional neural network design on ECG . . . . . . . . . . . . . . . . 149

5.1 Mio pulse sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.2 Mio seizure recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 Mio seizure recording zoom-in . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4 Cosinuss in-ear sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Mio watch monitoring Andoird app . . . . . . . . . . . . . . . . . . . . . . 161

5.6 Apple watch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.7 Apple watch app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.8 All seizure detection studies performance . . . . . . . . . . . . . . . . . . 164

A.1 fMRI classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2 fMRI classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.3 fMRI classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.4 fMRI classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.1 OHBM Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.1 DGfE Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



List of Tables

3.1 Functional frequency bands . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Hilbert Frequency bands for Hilbert transformation . . . . . . . . . . . . . 56

3.3 Frequency band importance . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Detection table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2 Epoch distribution over 24h . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 Event inclusion ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 Raw ECG features effect in classification . . . . . . . . . . . . . . . . . . . 132

4.4 Classification performance 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.5 Classification performance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Classification performance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.8 Classification performance 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.9 Accelerometry features effect in classification . . . . . . . . . . . . . . . . 137

4.11 Electrodermal features effect in classification . . . . . . . . . . . . . . . . 137

4.10 Classification performance 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.12 Classification performance 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.13 Accelerometry and electrodermal features effect in classification . . . . . . 140

4.14 Day vs. night results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.15 Direct classification performance . . . . . . . . . . . . . . . . . . . . . . . 143

4.16 Mobile EEG classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1 MIO watch PPG results and their comparison to the ECG . . . . . . . . . 159

5.2 Apple watch PPG results . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xiii





Abbreviations

ANOVA ANalysis Of VAriance

AI Artificial Intelligence

CNS Central Nervous System

CPS Complex Partial Seizure

CPU Central Processing Unit

CSI Cardiac Sympathetic Index

CVI Cardiac Vagal Index

DFT Discrete Fourier Transform

EDA Electrodermal Activity

ECG Electrocardiography

ECoG Electrocorticography

EEG Electroencephalography

EMG Electromyography

ERP Event Related Potential

FFT Fast Fourier Transform

fMRI functional Magnetic Resonance Imaging

GPU Graphics Processing Unit

GTCS Generalized Tonic-Clonic Seizure

HRV Heart Rate Variability

ICA Independent Component Analysis

iEEG intracranial Electroencephalography

MEG Magnetoencephalography

PLV Phase Locking Value

PNS Peripheral Nervous System

PNS Parasympathetic Nervous System

xv



Abbreviations xvi

PPG Photoplethysmography

PRV Pulse Rate Variability

PSD Power Spectral Density

ReLU Rectified Linear Unit

RRI R-Peak to R-Peak Intervals

RSA Representational Similarity Analysis

RT Reaction Time

STFFT Short Time Fast Fourier Transform

SNS Parasympathetic Nervous System

SPS Simple Partial Seizure

SVM Support Vector Machine



Dedicated to my thirsty land. . .

xvii





Chapter 1

Introduction

The brain is probably the most sophisticated natural system in the world. Some people

consider it as the greatest mystery of our time. The building blocks of the brain are

neural cells (neurons) and the brain consists of around 86 billion neurons interconnected

to each other [53], eventually making trillions of neural connections. Yet adding to its

complexity is not only the multitude of different permutations but also the plasticity of its

neural networks. Ultimately, the brain as hardware and mind, the electrical interactions

between neural ensembles, shapes what we are as humans and is responsible for an

enormous array of voluntary and involuntary actions and reactions to the environment,

as well as the brain itself. Huge numbers of scientists are trying diligently to discover

the designation of bits and pieces of central nervous system to partially answer the big

question: “how does the brain work?”.

Consciousness, memory, emotion, language processing, perception, and cognition are

various subfields in the realm of brain study. For a scientist to pose a scientific question

and to explore various aspects of brain functioning, a scientific experiment should be

designed and conducted. Answering to the questions and hypotheses such as how a

particular section of the brain functions, how different parts of the brain interact and

exchange information, how the brain processes the sensory information, how information

transmits in the brain, how we imagine things, how the brain deals with emotion, how

memory shapes, stores, transmits and consolidates in the brain, how the brain abilities

can be manipulated by external actuators like drugs or sensory stimuli, and how to

cure brain diseases and injuries, all require designing subtle experimental conditions

and testing.

Scientific experiments for brain studies can be accomplished either in vitro or in-vivo.

In an in-vitro experiment, a part of nervous system of the living animal is extracted

and then studied precisely in a laboratory environment against electrical, chemical, or

1
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biological simulations. A great portion of in-vitro studies aim to discover the functions

of neurons or neural ensembles on the molecular and cellular level. Apart from its

scientific significance, in-vitro studies are crucial, especially for medical purposes, in

order to develop medications for neurological and psychological diseases.

In an in-vivo experiment, the brain activity of a living animal or human is tested by

means of utilizing different measuring systems such as EEG, MRI, MEG, or even calcium-

imaging. Typically in in-vivo experiments, an experimental paradigm is designed so that

to perform the experiment in a controlled manner, e.g. to test the effect of a particular

stimulation on some sections of the nervous system. For instance, which set of neurons in

mice amygdala 1 will be activated when a mouse tastes something sweet, something sour,

or something tasteless. While a living animal or human is carrying out the experiment,

the brain signal is being recorded simultaneously in either of the mentioned methods

of measuring brain activity. In the current thesis, I report some of the experiments

conducted in order to study brain function, which are all in-vivo.

The data volume of recordings are typically huge, and are very complicated to interpret.

Data science and analysis is an invaluable aspect of brain research in which, the signals

recorded from brain activities will be transformed, statistically checked, categorized, and

evaluated in order to be able to methodologically interpret the mechanisms underlying

brain activities and functions.

In the past decades, the growth in computational capabilities of computers has had a

huge impact on natural sciences. The physical, chemical, and biological information col-

lected from vast numbers of studies could be processed quickly and efficiently by using the

computational power of computers. An astronomer can use the computer aided image

processing to discern asteroids, a chemist can use computer assisted mass-spectrometry

tools to measure features of small particles and a biologist can use computer-based tools

to feature different types of cells.

More recently, in the neurosciences, the role of neural computation has been greatly

highlighted so that a new subfield of neuroscience has emerged. This has been termed

Computational Neuroscience in which, the processing of information obtained from var-

ious neural organisms is of primary interest [13]. While computational neuroscience as

an interdisciplinary field of research, apart from neural sciences itself, has vast implica-

tion in physics, psychology, electrical engineering, it has also a profound connection to

computer science.

To tackle the difficulties of neural data analysis, computer scientists joined the neuro-

science labs across the globe to accommodate the state-of-the-art machine learning and

1Amygdala is a structural component of medial temporal lobe responsible mostly for emotion pro-
cessing, memory, and decision-making.



Chapter 1. Introduction 3

data analysis techniques to be able to explore and interpret neural information. Machine

learning is being increasingly used in cognitive neuroscience to assist in yielding models

of neural behaviors. In the same spirit, the current thesis deals with developing machine

learning ideas in neural data domains. Hence, this thesis is intended to be presented

in the field of computer science and machine learning since it poses machine learning

questions regarding neural data, and it deals with the computational aspect of neural

data.

1.1 Machine learning philosophy in neuroscience

Complex phenomena such as the French revolution or global warming could not possibly

be solely influenced by a single solitary factor, but rather by variety of causes. In

philosophy, this is known as the “fallacy of single cause”, i.e. it is crucial to account for

each individual factor, as it plays its smaller or larger role in giving rise to an event. In

order to study such phenomena, what should be emphasized is that all factors should

be considered simultaneously.

Cognitive neuroscience is a scientific field of study which focuses on investigating the

biological and neural connections that are the basis for the brain cognitive states and

memory perception in humans and animals [40]. Brain activities are the product of

complex neural activities, and cognitive brain states by definition are high level brain

activities. When dealing with higher levels of human cognitive states such as remember-

ing or forgetting, being happy or sad, being stressed or confident, ... the cognitive states

are the momentary states which are the end product of activities of neural ensembles at

a particular time [90]. Similar to the examples given before, higher level neural activities

are also not the result of a single actuator or cause.

In cognitive neuroscience, there are two approaches to interpret brains cognitive states.

One is univariate analysis and the other is multivariate analysis. In univariate ap-

proaches of analyzing brain activity, the rule of a single variable is studied individually

at a time and then the combinations of limited variables may be considered. Univari-

ate analysis is a widely used approach to unveil brain states. In contrast, multivariate

analysis deals with all variables of the study at the same time, and is able to embed

numerous variables of the study simultaneously.

The main advantage of using multivariate analysis in neuroscience is that it can detect

activities which are otherwise not detectable by univariate analysis. Some examples of

multivariate analysis approaches are pattern classification [49], Representational simi-

larity Analysis (RSA) [50] and clustering [80].
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Machine learning (pattern classification) is the common ground between multivariate

pattern analysis in neurosciences and computer science. In the current thesis, I aim

at suggesting novel ways of applying multivariate analysis, and in particular, machine

learning techniques on neural data recordings. My goal is to provide with ways to

enhance the resolution of brain exploration on the one hand, and to assist neuroscientists

and neurologists in detecting and recognizing neural activity which is more difficult to

perceive while using univariate analysis, on the other hand.

1.2 Motivation

Pattern classification and machine learning approaches are widely practiced in different

computer science disciplines such as data mining, computer vision and speech recogni-

tion. In more recent years, pattern classification and in other words, multivariate pat-

tern analysis, is widely employed in neuroscience, enabling neuroscientists to enhance

the quality of neural decoding [51].

Being wholeheartedly interested in applying skills which I leaned from the realm of

computer science to the filed of neuroscience, to not only find the answers to my philo-

sophical questions in theory of mind, but also to further extend the edge of machine

learning applications in new territories, made me to search for such scientific laboratory.

In department of Epileptology in Bonn, I have found the chance to access unique neural

data recordings such as intracranial Electroencephalography (iEEG), that is the record-

ings from patients with implanted electrodes in their head, in addition to functional

Magnetic Resonance Imaging (fMRI) recordings, of healthy participants.

Moreover, there was an open access to seizure monitoring recordings of epileptic patients.

Thanks to the department being one of the world’s leading epilepsy clinics, the well-

known problem of non-invasive seizure detection has been always a subject of research.

I received the opportunity to access invaluable data recorded from epilepsy patients.

Accessing to such invaluable data opened two doors of research for me, in which machine

learning could be broadly utilized. First, on iEEG and fMRI data, a scientific question

or hypothesis in cognitive neuroscience could be posed and machine learning techniques

could discover answers to those question.

Secondly, I found an opportunity to help neurologists in developing seizure detection

systems for epilepsy patients, again with the help of machine learning techniques to

improve their quality of life.

These two scopes are discussed below in more details:
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1.2.1 Scope 1: iEEG and functional MRI in working memory

Working memory refers to the temporary retention, processing and manipulation of

information in the brain [22], in contrast to the short-term memory which is generally

referred only to the act of information retention [29]. To conduct a working memory

study, it requires designing an experimental paradigm in which, patients who participate

in the study are asked to perform certain memory tasks while their brain signals are

being recorded simultaneously. To acquire accurate brain signals in spatial and temporal

terms, the most promising method of recording brain activity is intracranial EEG, which

has had the advantage of recording from the subdurally implanted depth electrodes in

the brains of epilepsy patients.

Multivariate pattern classification analyses should be designed to promote identifying

distributed activity patterns along the electrodes [101]. The goal is to aim for the highest

classification accuracy which can satisfactorily and significantly distinguish between the

different conditions of maintaining an item in memory. The result of the analysis can be

used as a template for further possible inferences in the field of cognitive neuroscience.

Additionally, functional magnetic resonance imaging (fMRI), a brain imaging technique,

could also be used to measures brain activity by sensing the variation in blood flow in

different brain structures. MRI images can be seen as four dimensional images, depicting

the neural activities.

The study required acquiring data from healthy volunteers who participated in the study.

The goal of this study was to look through and propose an alternative machine learning

approach for multivariate pattern analysis [49] for fMRI data to classify the intended

brain states significantly above random level.

Subsequently, investigating some theories such as

• Pattern changes of brain activities during learning

• Restoring memory of learning activity during recall

were the follow up steps of this study.

1.2.2 Scope 2: non-Invasive seizure detection

Millions of people suffer from epilepsy all over the world [4]. Due to the risk of seizures

and subsequent loss of consciousness, a large proportion of them are prohibited to engage

in activities like biking or driving, and they are not allowed to take occupations that may
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pose a possible danger to them or to their co-workers, let alone jobs such as airplane pilot

or taxi driver. Automatic seizure detection systems assist both patients and physicians

in tracking the kind and quantity of patients’ seizures, and help physicians to diagnose

and prescribe their patients with the most suitable course of treatment [94], to ultimately

increase the quality of life for the patients.

Seizures are the result of sudden and abnormal neural activity which prevents the brain

from having full control over the body and mind. The effect of having seizure can be

also sensed and measured by other kinds of sensory systems such as electroencephalog-

raphy (EEG), electrocardiogram (ECG) [5], electrodermal Activity (EDA) sensors, or

electromyography (EMG) [8]. Since seizures can cause involuntary muscle movements,

this movement of body parts can also be registered by accelerometry sensors [92]. It has

been shown also that most of seizures affect the blood pressure too [48].

A significant need for epilepsy patients is to have their seizures tracked. Epilepsy soci-

eties around the globe are interested to have an automated seizure tracking system since

self-reporting seizure information from patients is not a reliable option to track epilepsy

patients in the clinical trial [58]. Building a non-invasive and user-friendly seizure de-

tection system requires a multimodal sensory system to make a complex model for com-

parison. In addition, machine learning techniques can be widely employed to develop a

generalized model to yield such an assistive system.

Developing such systems are rather expensive and resource intensive. It requires recruit-

ing epilepsy patients in one hand and recording and analyzing their epileptic activities

in the other, to be able to gather sufficient and proper data. Having epilepsy experts

and epilepsy patients together in the Bonn epilepsy clinic, has been a great chance for

me for data collection and data annotation processes.

In the following sections, an introduction to the basics of human nervous system is given.

In order to have a better insight into the nature of the problems discussed in this thesis,

general knowledge regarding the brain and neuroscience is presented. Additionally, some

terms which are used in the proceeding chapters are explained.

1.3 Human nervous system

In recent centuries, we witnessed a paradigm shift in the way people link the mind,

the soul, and the brain. In ancient ages, it was a common belief among people that the

heart is a medium for perception (how we perceive the surrounding world), a medium for

cognition (how we think), a container for the soul, and also an organ for the mind [90].

It has been a common practice among civilizations to purify the heart as it believed to



Chapter 1. Introduction 7

be where ideas and perception occurred. Aristotle (384-322 B.C.), one of the influential

philosophers in the history of humankind was among those who strongly promoted the

role of the heart in shaping the mind [45].

In the renaissance era and those succeeding it, the soul (often described as a fluid

encompassing a person’s body) and the location of mind, has been repositioned from

the heart to the head. Leonardo da Vinci (1453-1519) was among those who believed

that the mind and the soul are stored in the cavities of the brain, but not in the brain

substances [24].

In 17th century, the idea of dualism, that the mind and the body are fundamentally

separate entities, was propounded mostly by René Descartes (1596-1650). He believed

that the mind and the soul originate from the same substance and that they aid in

subjective understanding of external world. The body on the other hand, in Descartes’

view, had the same functionality as animals’ brain. Descartes’ most famous statement,

“I think, therefore, I am”, was also rooted in his belief that the subjective understanding

of the world is something that has been brought together with the spirit. He then puzzled

with the idea that “how can the mind and the body possibly interact?” and consequently

he suggested that the brain structure, pineal gland, is possibly where the mind and the

body could communicate with another. What Descartes overlooked at was the fact that

other animals have also the pineal glands in their brain and they too, are able to have

some extent of rational thinking [86].

In the modern view of neuroscience, the brain is unilaterally responsible for percep-

tion and cognition the mind is nothing but a biological interactions between different

brain structures. Thomas Willis (1621-1675), a pioneer physician and neuroscientist and

John Locke (1632-1704), a philosopher, were among some of the people who changed

the antique views of how and where perception and cognition take place. Over time,

neuroscientists discovered that distinct regions of the brain are specialized for particular

tasks covering a range of cognitive processes including perception. [44, 86].

Analogous to other animals, the brain also has an evolutionary history. That is, the size

of the brain compared to body mass in early primates, used to be considerably smaller.

Hence, some parts of the brain (e.g. cortex) are historically younger than the other parts

and therefore, our superiority in our cognitive abilities, in contrast to other animals is

rooted in relatively newer, more developed segments of the brain [64].

Neuroscience is primarily the science of studying neurodegenerative and brain related

diseases. In present era, neuroscience is primarily being referred also to answering philo-

sophical and psychological questions focused on the mind and consciousness, especially
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concerning the way these entities interact with the external world. Neuroscience in-

vestigates the functionalities of bits and pieces of the brain, and putting together the

gathered knowledge thus far, gives us a consistent view of how mind and and body

interact. Given the comprehensive advancements in different fields of neuroscience, the

general answer to the mind-brain interaction dilemma is: the brain is responsible and it

is the origin of our physical and mental activities [64, 90]. And interestingly, this view

is wholly compatible with the evolution theory, which heretofore, could not be proven

otherwise.

1.4 Terms and Definitions

In humans and especially in vertebrates, in general, the nervous system is generaly clas-

sified into Central Nervous System (CNS) and Peripheral Nervous System (PNS). The

CNS constitutes the brain and the spinal cord, and the PNS consists of the widespread

projection of nerve cells throughout the body. Neurons are the building blocks of the

CNS and peripheral nerves, are the components of the PNS. Since the complexity of the

PNS is significantly less than that of the CNS, the main focus of this section is on the

CNS and the brain in particular.

Figure 1.1: A schematic view of the central nervous system. The central nervous
system is composed of brain and spinal cord. CNS is responsible for all voluntary
and involuntary processes in term of actions and reactions to internal and external
stimulations. Understanding the mechanisms of CNS is a great subject of research in

the current century.
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1.4.1 Terms used to describe the brain

Similar to our body which has two symmetric sides; our brain also has two symmetric

halves. Each hemisphere of the brain contains structures similar to the other side. To

address the brain regions, there are common terms which have been defined (which apply

to both sides of the brain) to describe the brain and its structure.

Here are relative terms for describing the position of the brain regions:

• Rostral: towards the forehead (=anterior) vs.

• Caudal: towards the back of the head (=posterior)

• Dorsal: outside top to back of the brain vs.

• Ventral: inside underside of the head towards the base of the brain

• Medial: towards the middle of the brain vs.

• Lateral: towards the outside of the middle brain

The brain can be largely divided into five subcategories from rostral to caudal:

• Telencephalon: is a large hemisphere that can be seen from the outside of the

brain (most recently developed part of the brain). The outer part of the Te-

lencephalon is called the cortex which is believed to host most of our voluntary

actions.

• Diencephalon: is a segment of inner brain composed of the thalamus and hy-

pothalamus. The thalamus literally means ”waiting room”, and functionally almost

all of the information that goes to the cortex must pass first through the thala-

mus. The hypothalamus is responsible for some basic tasks such as keeping the

temperature of the body (homeostasis etc).

• Mesencephalon: is the midbrain. One main function of midbrain is to generate

reflexes such as closing eyes in sudden bright light.

• Metencephalon: is composed of the cerebellum and pons. The cerebellum is

responsible for coordination of learned motor movements. The pones acts as a

bridge to connect the cerebellum to the rest of the brain.
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• Myelencephalon: is the connecting part of the spinal cord to the central nervous

system. It is evolutionary, a very old part of the brain which is responsible for the

communication between the brain and spinal cord.

Figure 1.2 depicts different levels of brain based on some of the described definitions.

(a) Telencephalon (b) Diencephalon (c) Metencephalon

Figure 1.2: Brain level classification from rostral to caudal. This classification is not
the only way to classify the brain segments based on its functionalities, but it provides
a rather historic classification of brain development. For each panel, there is a face

direction indicator.

Here are some additional terms to describe parts of the brain:

• Forebrain: refers to the telencephalon together with the diencephalon and is the

most recent part of the brain in its evolution.

• Hindbrain: caudal part of the brain containing the metencephalon and myelen-

cephalon, and is involved in automatic actions such as heart rate and breathing.

• Midbrain: is basically referring to the mesencephalon segments.

• Brainstem: is the combination of mesencephalon, metencephalon, and myelen-

cephalon. Structurally the forebrain encloses the brainstem.

The exterior surface of the brain is called cerebral cortex. Compared to other beings

with central nervous system, cortex in humans is uniquely more developed, and it is

responsible for all higher order processes such as language, memory and consciousness.

The ridges that run over the cortex are called gyri and each valley on the surface of

cortex is called a sulcus. Studies show that each gyrus on the cortex is specialized to

process and execute certain type of tasks [64].

The cerebral cortex can be divided into four different segments (lobes) based on their

functionalities.
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• Frontal lobe: is the anterior/rostral part of the brain and is related to higher level

cognitive processes such as, rational thinking, short-term memory and voluntary

motor movement. The frontal lobe is highly responsive to rewards.

• Occipital lobe: refers to the area at the back of the brain. Occipital lobe is

dedicated to the processing of visual information. The visual input information

collected from our eyes is projected to the gyri of visual cortex for object detection,

from very basic to complicated shapes, and then higher level interpretations of

visual information and stimuli.

• Temporal lobe: is positioned on the lateral and lower part of the brain and is

primarily responsible for auditory and language processing. The hippocampus is a

part of temporal lobe (medial temporal lobe). The hippocampus plays a crucial

role in the formation and consolidation of short-term to long-term memories. One

well-characterized structure of temporal lobe is the fusiform gyrus (FG), which

is located on the edge of occipital cortex. A section of fusiform gyrus is called

fusiform face area (FFA) and is responsible for human face detection.

• Parietal lobe: is located in the middle of the brain’s surface. The parietal lobe

is mainly responsible for tactile information processing such as pain, pressure, and

touch. A section of parietal lobe is called the somatosensory cortex and is primarily

in charge of processing the sense information received from the body.

A schematic view of the four lobes of the brain is shown in figure 1.3.

1.4.2 Building blocks of the Brain

If we cut the brain into thin slices, we will observe that some parts of the brain are

darker than the others. The brighter parts are the parts that early neuroanatomists

called white matter as opposed to the darker parts which were called gray matter. As

other organs of human body, the brain is also comprised of cells. These speciallized cells

are called the neurons (see image below 1.4).

A neurons is comprised of two primary parts: the soma or the cells body and the

processes (dendrites and axons). Dendrites are the extensions of the cell body of a

neuron. They receive electrochemical stimulation through numerous inputs from other

neurons and conduct them to the soma. Dendrites play a critical role in integrating

these inputs and in determining the extent to which action potentials are produced by

the neuron. Given that the amount of collected input impulses reaches to a certain level,

the electrical impulse can be traveled and projected through axons to other neurons and

in general other parts of the brain.
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(a) Frontal (b) Latheral

(c) Superioir (d) Posterior

Figure 1.3: A schematic view of central nervous system and lobes of the brain from
four different perspectives. Different lobes are color coded: frontal:yellow, tempo-
ral:pink, parietal:red, occipital:brown, cerebellum:blue. Lobes are specialized to process

higher order functions.

Networks of neurons will make neural nuclei and neural ensemble, to be able to compute

and react to different stimuli. Brain is composed of numerous neural ensembles. A

collection of cell bodies with their connected dendrites mostly yield what we see as the

gray matter since it contain nuclei, and groups of axons shape the white mater regions.

1.5 Next chapters

Now after introducing the nature of our work and data, and also the terms which were

used in the thesis, I will try to proceed with the main scientific questions we aimed to

address with machine learning in this thesis.

In the next chapter, an introduction to machine learning and in particular, artificial

neural networks is presented. The reason was two points: First, in recent years, artificial

neural networks are the apple of the eyes of machine learning solutions. Second, since we
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Dendrites

 Axon

Cell Body

Figure 1.4: A schematic view of a neuron. Neurons are the building blocks of central
nervous system.

The neuron has two main parts, the cell body and the processes (axons and dendrites).
Dendrites detect electrical impulses in its neighboring surroundings. In case the amount
of collected input impulses reached to a certain threshold, the electrical impulse can be

projected through axons to other parts of brain.

deal with natural neural data, it makes sense to introduce artificial neural networks and

briefly compare the way both function. Additionally, a comparison of the performance

of classical machine learning methods versus artificial neural network is given in some

later sections, to provide us with an idea, whether or not should one apply artificial

neural networks on real neural data.

In chapter 3, through some machine learning studies which I have conducted on neural

data (iEEG), I present a way in which machine learning can be used to gain an under-

standing of CNS functions. Two studies were presented in detail and the results are

discusses accordingly.

In chapters 4 and 5, through performing multiple clinical studies, I demonstrate some

machine learning methods to help epilepsy patients improve their quality of life. The

data presented in these chapters were obtained from a lengthy and expensive clinical

processes of patient recruitment and their brain recordings. By the end of this chapters,

I discuss our achievements and also the limitations of the study.

The final part of each chapter holds a summary. They provide a concise and quick

review of the main idea in case the reader intends to skip over technical details.





Chapter 2

Artificial neural networks

2.1 Introduction

Although we have used established machine learning steps throughout the thesis, by

reemerging of neural networks in current years, additionally, I have developed and ex-

amined some versions of (artificial) neural network, to address our problems with novel

state of the art solutions. The current chapter presents the core concept of neural net-

works and in particular deep neural networks. In the next two chapters, even though

complete classical machine learning solutions were presented, a short reference to deep

neural networks is also presented at the end to give an idea of how feasible the use of

deep neural network is with respect to our neural data.

Artificial neural networks are among pioneering machine learning techniques. These

techniques were inspired from the way our nervous system works and received very

much recognition in 90s. Although we consider the neural networks as today’s cutting

edge technique, in the realm of machine learning, they had become obsolete to a great

extent for almost two decades by other techniques such as SVM [19]. There were two

main technical reasons involved. The first problem was the computational capacity of

the computers at the time. In the training phase of neural networks compared to other

established machine learning algorithms, more parameters needed to be learned. While

the learning process of neural networks is very resource intensive, people could not afford

having large and complex neural networks and have them trained. The second reason

was the over-fitting problem. Later in this chapter, I present some fundamental concepts

of neural network to address this issue but for now to explain this point, neural networks

are/were very prone to fit exceedingly to the training examples and not being able to

generalize well to unseen samples if no counteracting measure is used.

15
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In the last few years, neural network is back to the market by addressing and solving

those very two problems [25, 43, 54], caused it to surpass the accuracy of other machine

learning techniques and even in some cases the human intelligence [33, 72]. Having

clusters of powerful and parallel processing units such as CPUs and GPUs, solved the

processing limitations of neural network training. Especially GPUs which were designed

primarily for processing of graphical objects, are shown to be a perfect processing plat-

form for matrix-wise computations which is highly needed for neural network training

process. Having such platforms, complex networks can be trained in a reasonable time.

The over-fitting problem is also solved by the introduction of some training tricks which

prevented them from being overfit, by technically adding noise to the network while

training! In the following, I explain how a basic neural network functions.

2.1.1 A basic neural network

A primary question in machine learning is to find out a line which can separate two

kinds of data. Imagine we want to differentiate two class of variables, and we know two

features of each type, x1 and x2. Then in a two dimensional Cartesian space, we should

look for a line to split the two types best (see image 2.1).

x1

x2

Figure 2.1: A simple line to separate two entities. X1 and X2 are two different
features of an entity.



Chapter 2. Artificial neural network 17

To find such line, we can formulate the problem as below:

w1x1 + w2x2 + b = 0 (2.1)

where w1 and w2 are the weight of x1 and x2 respectively, and b is the intercept. To

solve the problem, our goal is to discover good candidates for w1, w2, and b.

Given having those values obtained, by putting the dimensions of a test point in the

equation, we get either a positive or a negative value. For y′ as a test case, we have:

y′ =

0 (Red circle) if w1x1 + w2x2 + b > 0

1 (Blue square) if w1x1 + w2x2 + b < 0
(2.2)

The mentioned equation is called class boundary and can be represented in neural net-

works by a perceptron, the building block of neural networks.

 w1 x1+w2 x2+b ≥ 0

?

x1

x2

1

w
1

w2

b

Yes

No

Figure 2.2: A two dimensional perceptron. Percepteron is the building block of neural
networks. In this example, the perceptron represents a splitting line of two classes in a

two dimensional space.

The structure of perceptron resembles the building block of our nervous system, the

neurons. In principal, they both sense the input signal and map it to the output signal

in a form of fire|not-fire (see figure 2.3).

The core of the perceptron as shown in figure 2.2, can be split into two processing

segments: the summation of weighted inputs and the step function which is basically 0

if the summation result is less than 0, and is 1, if the summation result is greater than

0 (see figure 2.4). The step function is also called: activation function.

We can abbreviate the decision boundary equation by replacing W = (w1, w2, ...) and

x = (x1, x2, ...). Therefore, we have:

Wx+ b = 0 (2.3)
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Dendrites

 Axon

Cell Body

Figure 2.3: A schematic view of neuron. Dendrites are the input terminals of a
neuron. Their summed output is projected along the axon if the input signal is strong

enough to be relayed ahead.

x1

x2

1

w
1

w2

b

Yes

No
 w1 x1+w2 x2+b 

0

1

Activation Function

Figure 2.4: A two dimensional perceptron. The step function determines whether the
output is mapped mapped to one or to zero.

and

y′ =

0 (Red circle) if Wx+ b > 0

1 (Blue square) if Wx+ b < 0
(2.4)

where the term Wx is the dot product of vector W and vector x.

2.1.2 Perceptron algorithm

The perceptron algorithm is devised to direct a percetron to discover proper weights and

a proper bias for its line equation. According to the perceptron algorithm, it starts with
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initiating random weights and a random bias and then, drawing the line and classifying

the points.

Next, it checks the misclassified points based on the drawn line. To correct the line for

obtaining a better classification accuracy and to decrease the number of misclassified

points, it checks the classified values. Given that the prediction for a misclassified point

was 0, for each weight element in W , it updates each weight wi by adding a fraction of

its corresponding variable xi to it. Otherwise for a misclassified point with 1 value, it

subtracts the same amount from wi.

The multiplied fraction to update the weights is know as learning rate and is represented

by α. Having the learning rate value, causes the weights to be updated gradually. In

this way, through iterations, the line comes gradually closer to the misclassified points

and passes over them. Perceptron algorithm does not however update the wights and

the bias for correctly classified points. The algorithm is summarized below in algorithm

1.

Algorithm 1: Perceptron algorithm.

Data: Multi dimensional data points
Result: Weights and bias for perceptron

1 n ← dimension of input data;
2 W ← Randomly generated vector real values of length n;
3 b ← Randomly generated real number of length n;
4 α ← some fractional value e.g. 0.01
5 With W and b, make a perceptron and predict the class for input data.
6 for every misclassified points x = (x1, x2, ..., xn) do
7 if prediction = 0 then
8 for i = 1 : n do
9 wi = wi + α.xi ;

10 b = b+ α ;

11 end

12 end
13 else
14 for i = 1 : n do
15 wi = wi − α.xi ;
16 b = b− α ;

17 end

18 end

19 end

The process in which the parameters of perceptron is tuned up is called learning or

training. Learning happens by comparing the true values of the data samples used

for wights updating to the predicted values of the perceptron algorithm. Although

the way the perceptron algorithm is designed, seems to find the optimum weights, in

practice, we need a better solution. Since the output of the perceptron is discrete, (0, 1),
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it can easily happen that the weight correction process bounces back and forth but

without any beneficial update. Therefore, we need a continuous function to be able to

calculate a direction for weight updating. Thus, we should replace the step function with

some continuous alternative. In a classical neural network, typically a sigmoid function,

σ(x) =
ex

ex + 1
, is used as continuous activation function (see figure 2.5). The sigmoid

function maps the input data to a range from 0 to 1 and therefore, it simulates also

a probability function. Nonetheless, others such as hyperbolic tangent, Rectified Linear

Unit (ReLU), . . . can be employed as well. The activation function plays an important

role in the generalization of neural network. More about it comes later.

x1

x2

1

w
1

w2

b

[0 1] w1 x1+w2 x2+b 
0

1

Activation Function

Figure 2.5: A two dimensional perceptron with sigmoid activation function. The
output of the perceptron in contrast to figure 2.4 is a probability values in the range of

[0 1].

To assess how good a perceptron with a continuous activation function predicts the actual

values, it is essential to define a function so that it tells us how close the perceptron

predicts the input data to the output data. This function is known as error function.

2.1.3 Error function

An error function during a leaning process indicates how far we are from an ideal solution.

It then helps the leaner algorithm to find its path towards the solution, in a way in which

the error decreases continuously. To find the way the learning algorithm should move

(= the way to change the learning parameters), we can use the derivation of our error

function of choice. Thus, the error function should be differentiable. The direction that

”negative of the derivative of the error function” pinpoints, is the way to update the

weights.

Let’s start from the fact that from a learning algorithm, we expect the best predictions.

This can be translated to obtaining the best aggregated probability for all learning

samples. That is, the more all predictions are close to their actual classes, the better.

One way to obtain the aggregated probability of all events is to measure the product of

all probabilities resulted from feeding samples to the perceptron:
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aggregated prob = prob(sample1)× prob(sample2)× prob(sample3)× ... (2.5)

and the goal is to find a setting in which the aggregated probability value is maximized.

This concept is known as maximum likelihood estimation in literature [30]. The higher

the aggregated probability can be, the better the model (perceptron) is for pattern

classification.

max probablity = max(all aggregated probs ) (2.6)

Having multiplication in the formula, makes the aggregated probability very much prone

to noise, as an extreme probability value can change the total product drastically. A

method to escape the multiplication problem is to convert it to a summation. For this

sake, we can calculate the log of products:

log(prob(sample1)×prob(sample2)×...) = log(prob(sample1))+log(prob(sample2))+...

(2.7)

The results will be a summation of small negatives values since the probabilities are in

the ranges of [0 1]. Adding a minus sign to the formula turns it to a positive value. From

it, we can introduce the following formula known as cross-entropy which is used widely

in machine learning algorithms to evaluate the learning process:

cross-entropy = − 1

m

m∑
i=1

yi log(pi) + (1− yi) log(1− pi) (2.8)

where m is the number of samples, yi is the true label of the sample, and pi is the

estimated probability of sample i. Please note that the above formula is meant to be

for binary classifications cases. Please also pay attention to the fact that for event

probabilities, we have to consider the probability of all possible events. Therefore, we

consider the yi (y = 1 and y = 0 for binary example) to cover all sample points from

all classes. By measuring the cross-entropy, events with high probability have lower

cross-entropy and events with lower probability have higher cross-entropy.

Corss-entropy provides the framework we look for an error function. It is firstly

differentiable, and also a lower cross-entropy implies a better solution and being closer

to the goal. The cross-entropy can be generalized to the following formula for multi-class

learning cases:
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cross-entropy = − 1

m

m∑
i=1

n∑
j=1

yij log(pij) (2.9)

wherem is the number of samples, and n is the number of classes. By using cross-entropy,

our goal for maximizing the probability, had changed to minimizing the cross-entropy.

It should be noted that other error functions such as mean squared error can be equally

used instead of cross-entropy. The main message here is to have a good candidate for

error function to be able to assess the learning progress.

2.1.4 Weight updating and logistic regression

We have learned in the last section that the negative of the first derivative of the error

function, shows the direction, the weights should be updated. That is, measuring the

partial derivative of the error with respect to a particular weight, will be used to update

that very same weight (increasing or decreasing the weight value). This technique is

known as Gradient Decent in literature since in a hypothetical hyperplane of error with

respect to weights, we move towards the valleys of the hyperplane. In this section,

we introduce the logistic regression algorithm which is designed for the sake of weight

updating. The code snippet 2 shows the logistic regression algorithm.

Algorithm 2: Logistic regression algorithm.

Data: Multi dimensional data points
Result: Weights and bias for perceptron

1 n ← dimension of input data;
2 W ← Randomly generated vector real values of length n;
3 b ← Randomly generated real number of length n;
4 α ← some fractional value e.g. 0.01 ;
5 Error ← cross-entropy of σ(Wx+ b) ;
6 while Error is high do
7 for every points x = (x1, x2, ..., xn) do
8 for i = 1 : n do

9 wi = wi + α. ∂E∂wi ;

10 b = b+ α.∂E∂b ;

11 end

12 end
13 Error ← cross-entropy of σ(Wx+ b)

14 end

The primary difficulty in the algorithm 2 is to measure the partial derivative of error.

Since for perceptron, our activation function is sigmoid function, σ =
ex

ex + 1
, we have:
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σ(x)′ =
∂

∂x

ex

ex + 1

=
ex(ex + 1)− exex

(ex + 1)2

=
e2x + ex − e2x

(ex + 1)2

=
ex

(ex + 1)2

=
ex

ex + 1

1

ex + 1

= σ(x)
1

ex + 1

= σ(x)(1− σ(x))

(2.10)

which is the derivative of the sigmoid function. Now, please remember again that our

goals is to calculate the ∂E
∂wi

and also that the estimated value of perceptron’s output is

measured as ŷ = σ(Wx+ b). Thus, for measuring the ∂
∂wi

ŷ, we have:

∂

∂wi
ŷ =

∂

∂wi
σ(Wx+ b)

= σ(Wx+ b).(1− σ(Wx+ b)).
∂

∂wi
(Wx+ b)

= ŷ.(1− ŷ).
∂

∂wi
(Wx+ b)

= ŷ.(1− ŷ).
∂

∂wi
(w1x1 + ...+ wixi + ...+ wnxn

= ŷ.(1− ŷ).xi

(2.11)

Now, we can go ahead and measure the ∂E
∂wi

by plugging in the cross-entropy formula:

∂E

∂wi
=

∂

∂wi
(−ylog(ŷ)− (1− y)log(1− ŷ))

= −y ∂

∂wi
log(ŷ)− (1− y)

∂

∂wi
log(1− ŷ)

= −y 1

ŷ

∂

∂wi
ŷ − (1− y)

1

1− ŷ
∂

∂wi
(1− ŷ)

= −y 1

ŷ
ŷ(1− ŷ)xi − (1− y)

1

1− ŷ
(−1)ŷ(1− ŷ)xi

= −y(1− ŷ)xi + (1− y)ŷxi

= −yxi + yŷxi + ŷxi − yŷxi

(2.12)
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and this is something very interesting. It tells us that the gradient of error for every

coordinate xi can be measured by a simple difference of the actual label and the predict

label (y− ŷ). Equivalently for the bias, we can prove that ∂E
∂b = −(y− ŷ). Then, for the

gradient of error function, we will have:

∆E = (−(y − ŷ)x1, ...,−(y − ŷ)xi, ...,−(y − ŷ)xn,−(y − ŷ))

= −(y − ŷ)(x1, ..., xi, ..., xn, 1)
(2.13)

Thus, we can now update the logistic regression algorithm as follows:

Algorithm 3: Logistic regression algorithm, updated.

Data: Multi dimensional data points
Result: Weights and bias for perceptron

1 n ← dimension of input data;
2 W ← Randomly generated vector real values of length n;
3 b ← Randomly generated real number of length n;
4 α ← some fractional value e.g. 0.01 ;
5 Error ← cross-entropy of σ(Wx+ b) ;
6 while Error is high do
7 for every points x = (x1, x2, ..., xn) do
8 for i = 1 : n do
9 wi = wi + α.(y − ŷ).xi ;

10 b = b+ α.(y − ŷ) ;

11 end

12 end
13 Error ← cross-entropy of σ(Wx+ b)

14 end

The logistic regression algorithm repeats the wight update process until the error would

be tiny. Each repetition is called epoch in the jargon of machine learning.

Logistic regression algorithm similar to perceptron algorithm, is designed to update the

weights and tune the decision boundary. However, it differs in a couple of point from

perceptron. The output of logistic regression prediction is a value in the range of 0

and 1, whereas the perceptron’s prediction which is a discrete value of either 0 or 1.

Secondly, the weight updating in logistic regression is applied to all points in contrast

to that in perceptron which applied only to the misclassified points.

2.1.5 Multi-layer perceptron

Although perceptron provides a solution for some classification problems, it is limited

with its linearity, as it can not split the samples which are nonlinearly distributed. A
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remedy to the perceptron linearity problem is to combine multiple perceptrons. This

mimics the way our biological neural network functions. Neurons which can be thought

of having a binary output, go/no-go, can be combined to shape a neural network in order

to decide firing on highly non-linear decision processes. We can use a third perceptron

to combine two individual perceptrons (see figure 2.6).

 w11 x1+w12 x2+b1

x1

x2

1

w
11

w12

b 1

 w21 x1+w22 x2+b2 
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x2
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w
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w22
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 w21 I1+w22 I2+b3 

w
31

w 32

1

b 3

I1

I2

Figure 2.6: A simple network of perceptrons. A third perceptron can be used to
combine two perceptrons by accepting their outputs as its input. The perceptrons on
the left side are called input layer perceptrons and the one on the right is called first

hidden layer perceptron.

The above representation of perceptron can be abbreviated in the following notion. To

be able to achieve highly non-linear decision boundaries, we can add more columns of

perceptrons to the network. Every column we add to the network is called a layer. The

first column is known as input layer, those to its right are called hidden layers and the

one to the far right is named output layer. These will shape a classical artificial neural

network (see figure 2.7).

A question which may arise at this point is: what about the multi-class classification?”.

The answer is simple with applying a trick. For multi-class classification cases, the

number of nodes in the output layer must be the same as the number of classes. That

is, if we have four classes, we have also four nodes in the output layer. Then, for the

training process, we transform the class labels from 0, 1, 2, 3, ... notion to a binary notion,

in which for every class, we have a unique sequence of zeros and only a single one:
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Figure 2.7: The input to the perceptron can be illustrated also as above. We can add
more layers of perceptron to build up a network of peceptrons. Adding more layers,
results in more non-linear decision boundary of the network. The first layer to the left
is called input layer. The layers to the right of input layer are called hidden layer as it
seems that they are hidden to the outside of the network. The rightmost layer is named

output layer.

0 → 0 0 0 1

1 → 0 0 1 0

2 → 0 1 0 0

3 → 1 0 0 0

This technique is called one-hot encoding.

2.1.6 Feed-forward

Compared to perceptron, in a more complicated network of perceptrons, the input data

must be fed to the input layer and its results must be gone through the entire network

until reaching the output layer. The process of feeding data from input layer all the way

up to the output layer is called feed-forward. As soon as the data reaches to the output

nodes, the class probability can be measured and therefore, the data can be classified

(see figure 2.8).

We can formulate the feed-forward procedure of the network as a sequence of linear model

combinations and hence, we are able to depict it as a sequence of matrix multiplications:
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Figure 2.8: Feed-forward process. The data is fed to the input node and is propagated
through the network until it reaches to the output nodes.

ŷ = σ

([
σ
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x1 x2 1

]
×


w1
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w1
31 w1

32


)
, 1

]
×


w2

11

w2
21

w2
31


)

(2.14)

It is also possible to show the above equation as a sequence of dependent functions:

ŷ = σ o W 2 o σ o W 1(x) (2.15)

For larger networks, we will have longer matrix multiplications. By performing feed-

forward on a neural network, we can classify our test data but still we lack the ability to

train and improve the weight for our network to achieve very low prediction error. Here

again, similar to the single perceptron case, we require an error function to estimate how

good we are doing with feed-forward process.

2.1.7 Back-propagation

To complete the training procedure, we need a complementary mechanism to measure

the error for the entire network and update the weights. The error in the output layer

can be easily measured as described for a single perceptron, and the weights can be

updated by measuring the negative of the gradient of error with respect to the output

weights.

For a multiple-layer perceptron network, we have the same error function, E, as before

but here the ŷ is a complex function:
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E(W ) = − 1
m

∑m
i=1 yi log(ŷi) + (1− yi) log(1− ŷi)

ŷ = . . . σ o W 2 o σ o W 1(x)
(2.16)

Thus, to discover the way the weight needed to be updated, the gradient should be

calculated by measuring all partial derivatives of the error function E with respect to

the weights:

∆E = (...,
∂E

∂wij
, ...) (2.17)

As mentioned above, we can simply measure the gradient of the error for the weights

of output layer. Nonetheless, the gradient with respect to the other weights can also be

calculated by employing the chain rule from mathematics. According to the chain rule,

if A = f(x) and B = g(A) = gof(x), then for ∂B
∂x we have:

∂B

∂x
=
∂B

∂A
× ∂A

∂x
(2.18)

We can use the same principle to measure the partial derivative of the error with respect

to the weights in the other layers than the output layer. Since the output nodes can be

written as a function of input and hidden nodes (as seen in feed-forward), we can also

calculate the derivative of the error with respect to every wights in the hidden and input

layer.

Back-Propagation is in principle the inverse of feed-forward, in which we spread the

measured error from the output layer towards the input layer. As described above

regarding the chain rule, we are able to measure the gradient of the error from the

gradient measured in the previous layers to the right of it. Therefore, we would have:

...

∂E
∂w2

11
=
∂E

∂ŷ
× ∂ŷ

h3
× ∂h3

∂w2
11

...

∂E
∂w1

11
=
∂E

∂ŷ
× ∂ŷ

h3
× ∂h3

∂h1
× ∂h1

∂w1
11

...

(2.19)
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The above calculations will provide all gradients of the error function with respect to

the weights. Having them, we can perform the wights updating process similar to the

logistic regression algorithm 3. And similarly, we iterate over the feed-forward and

back-propagation sequence until the error is low.

With the so far described neural network (classic artificial neural network), it is possible

to build a deep neural network and try to train it and classify the data. However, it has

been shown theoretically and empirically in the last decades that the classification results

of such neural networks has not been competitive with others (common knowledge).

The reason is, there are a number tricks needed to be considered to train a deep neural

network, and those tricks are the ones that gave rise to deep neural network.

2.2 Modern deep neural networks

Classical artificial deep neural networks suffered from two main points. Initially, there

was no capable computer in the past decades to bear the burden of calculating too many

variables (weights) and carrying out many repetitions. A modern deep neural network

may took years to be trained on older computers. The second reason was the problem

of over-fitting which I describe in the following.

2.2.1 Overfitting

Appending more layers to a neural network is equal to shaping more complex decision

boundaries. Complex and highly nonlinear decision boundaries work appropriately only

for the data which the network is trained for. The goal of training a neural network

is to be used for predicting unseen data. Given that the network has a very complex

separating hyperplane, the test data could be easily misclassified. This problem is called

overfitting problem and is a well-discussed problem in the realm of machine learning (see

figure 2.9 for more details). The overfitting concept can remind us of the famous saying

of British philosopher Bertrand Russell: ”The whole problem with the world is that fools

and fanatics are always so certain of themselves, but wiser people so full of doubts.”

In the same spirit, a good classification model is not the one that is shortsightedly stock

to the information it has ever seen, but the one that has left some room for alternatives.

There are some tricks to avoid over-fitting of neural networks and we study some of

them below.
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Figure 2.9: The Model to the left, split the feature space as simple as possible with
multiple mistakes (underfitting). The model in the middle separates the point fairly
good with minor mistakes. The model to the right does a perfect job to split the data
points (overfitting). While it may look counter-intuitive, the model in the middle is
much preferred compared to the other models. In the case of facing new data points, the
overfit model fails to classify it better than the middle model since it is only optimized
for the data which it has seen before. The underfit model also does a poor job in testing

due to the lack of adequate complexity.

2.2.1.1 Early stopping

Learning is obtained through repetition in the neural networks. That is, in most of the

cases, more repetition leads to more weight updates. While repetition is a crucial part of

neural networks learning procedure, performing it for too many times causes overfitting.

Therefore, we have to find an optimum number of repetition for any network we train.

One way to tackle this problem is to use a testing set called validation set. The network

should be trained on a handful of data points, training set, and must be tested with the

validation set by keeping track of the number of repetitions. From such procedure, we

can plot two error curves, one for the training set and the other for the validation set.

This plot is called model complexity graph (see figure 2.10 ). From the model complexity

graph, we can discover the optimum number of repetition in which the validation test

error is on its minimum.

2.2.1.2 Regularization

A particular line or a hyperplane which is represented by a learning model can potentially

have multiple similar formula (weights). For instance, the equation x1 + x2 = 2 and

10x1 + 10x2 = 20 both depict the same line. However, if we measure the σ(x1 + x2 = 2)

and σ(10x1 + 10x2 = 20) for a given input point, the first equation gives us a less

confident prediction while the latter predicts the point with probabilities near to zero

or near to one. Therefore, the latter equation is more prone to overfitting.
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Figure 2.10: Model Complexity Graph. Two curves are plotted in the graph, the
training error curve and the validation test error curve. They are plotted with respect to
the number of training repletions. In this settings, we increase the number of repetitions
and measure the classification error for both sets. We choose the optimum number of
repetition as the point in which the validation test error is at its minimum. It is called

early stopping since we stop right before we are encounter overfitting.

To avoid such scenarios, a technique known as regularization is devised to penalize and

reduce the weights by adding a constant value λ to the error function. Two well-known

types of regularization are L1 and L2 regularization and are defined as follows:

L1 → E(W ) = − 1

m

m∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) + λ(|w1|+ |w2|+ ...+ |wn|)

(2.20)

L2 → E(W ) = − 1

m

m∑
i=1

yi log(ŷi)+(1−yi) log(1− ŷi) + λ(w2
1 + w2

2 + ...+ w2
n) (2.21)

L1 regularization tends to eliminate the features (weights) which are not important

in the classification process and therefore, results in a sparse vector for weights. L1

is used also as a tool for feature selection. In contrast, L2 regularization reduces the

weight uniformly and is more favorable for learning processes. Applying either of the

regularization techniques will help to prevent overfitting caused by large weights.

2.2.1.3 Dropout

An effective technique to alleviate the overfitting dilemma is to use dropout technique.

In dropout, during the learning process, some nodes of the network will be turned off.

That is, with a particular probability (e.g. 0.15), a node in an epoch of learning will be

deactivated. This will give a chance to the weaker paths to be traversed and therefore,
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results in a more homogeneous network weights. The dropout technique will ultimately

lead to better generalization and less overfitting.

The dropout can be also seen as a process for tricking the training process by adding

noise to the network and avoiding early convergence, to find out a consistent generalized

weights for the network. Dropout is used vastly in modern artificial neural networks.

2.2.1.4 Avoiding local minima

Since the error function is a progressive function and it acts based on its own previous

steps, it can be the case that the error function has some local minima and the function

traps in one of them while better minima are still available. To avert such scenarios,

a trick is to start the error function from different points. Technically, this is equal to

randomize the weights and train the network again and again. This, in turn, will help

to bypass the local minima and trace other paths to the global minimum.

Another algorithm for avoiding local minima is called momentum. Momentum algorithm

memorizes the gradient of the error in previous steps and then, penalizes the current

gradient based on them. According to the momentum algorithm, the previous gradient

values will affect the current gradient if it is getting close to zero, by forcing it to fly

over local minima. Nonetheless, for the case of global minimum, the error function will

eventually approach to it, even if it ever jumped over it.

2.2.1.5 Vanishing gradient problem

The error function of neural networks is measures based on the gradient of activation

function. Provided that the gradient is small, then in case of having multi-layer networks,

the product of small gradient functions will be exceedingly small. This is known as

vanishing gradient problem in literature. Vanishing gradient causes the nodes of the

first layers of the network to receive small value for the gradient of error function and

consequently, having minute updates. To avoid this problem, other activation functions

are introduced to substitute the sigmoid function.

2.2.1.6 Alternative activation functions

To address the vanishing gradient problem, other activation functions are introduced in

recent years. Since sigmoid function has a gradient near zeros on its outer sides, kinds

of activation functions are required that their gradient are larger compared to sigmoid.

An alternative activation function is hyperbolic tangent and is defined as follows:
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tanh(x) =
ex − e−x

ex + e−x
(2.22)

The other modern activation function is called Rectified Linear Unit (ReLU) and has a

simple definition as below:

relu(x) =

x if x ≥ 0

0 if x < 0
(2.23)

Unlike its simplicity, the ReLU function can easily construct very complex decision

boundaries for neural networks. The pictorial representation of tanh and ReLU is shown

in figure 2.11. Having gradient transformed more easily back to initial layers, it will be

possible to develop more efficient deep networks, as the weights in all layers can be then

significantly updated. As a consequence of ease of transferring information among layers,

complex neural network with the ability of data abstraction can be yielded. Apart from

the standards ReLU function, there are also other variants of it such as Noisy ReLU

and Leaky ReLU in literature.

-1

1

1 x

(a) Tanh

-1

1

1
x

(b) ReLU

Figure 2.11: Modern activation functions are emerged to address the problem of van-
ishing gradient. The error function of neural networks is measures based on the gradient
of activation function. With sigmoid activation function, the measured gradient for the
beginning layers (from back-propagation process) is very small. Therefore, the weights
near the input layer do not get much updates from measuring the error function. By
introducing newer activation functions, we are able to design more deep networks as
the gradient can be transformed to the input layers much better than sigmoid function.
The left panel represents the tanh activation function and the right panel show the

ReLU activation function.

2.2.1.7 More tricks for large neural networks

In the process of neural network training, we feed the training data several times to

the network. It is mentioned earlier that each one is called an epoch. For us to train

a large neural network, it will be extremely exhausting to train it with all available



34 Chapter 2. Artificial neural network

data. Instead, a technique called stochastic gradient descend is suggested in which for

each epoch only a fraction of the whole dataset is fed to the network. Although with

stochastic gradient descend, we end up with an estimation of the gradient that we are

looking for, but in practice, it provides an effective way to deal with large amount of

data using deep neural network.

Another trick is to control the speed of learning by having adaptive learning rates. That

is, in the beginning of learning process, we have larger learning rate as compared to the

end.

additionally, unsupervised learning could also be used to help the supervised neural net-

work training. Unlabeled data which are easer to find than labeled data, can be used to

pre-train the neural networks. This method which is known as semi-supervised learning,

can improve the network weights much better than random weight initialization, and

therefore, improving the classification results [33].

2.3 Modern types of deep learning algorithms

The fundamental concept of deep learning is discussed in the last sections of this chapter.

This concept however, have been expanding so fast in the last few years such that,

it branched and flourished much beyond its base concept. Currently, deep learning

algorithms can be also classified into different families, each of which requires in-depth

insight to comprehend their respective innovations and techniques.

In neuroscinece, artificial deep neural network helped modeling real biological neural

networks in recent years [46, 104]. In the following, some of the well-known categorical

branches of deep neural networks are introduced. Please be noted that only some of the

core tricks and techniques are discussed in the following sections.

2.3.1 Convolution neural network (CNN)

CNN attained outstanding results in most of the state of the art problems of machine

learning. From text classification to image classification [68], from natural language

processing to human voice synthesiser [95], from artificial intelligence on gaming [2, 47]

to computer vision [68], and even in language translation [41].

CNNs and MLPs are similar structurally. They are both composed of different layers,

and use similar error functions. CNNs however, vary largely in the shape of input layer

data and also in the types of hidden layers.
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There are two subtle issues with MLPs. First, MLPs accept one dimensional data.

Provided that the input data is multi-dimensional (like 2D or 3D images), MLPs require

it to be transformed into a one-dimensional vector. Although this transformation makes

it possible to feed multi-dimensional data to an MLP, it ruins the spacial interdependency

of the elements of the input data. For instance, the pixels of an image are specially

correlated, and by flattening it to a 1D vector, we would disentangle the local similarities,

and in turn, leads to information loss. CNNs are especially designed to extract patterns

from multi-dimensional data by preserving the internal coherence of data elements.

The second problem with MLPs is that it performs on fully connected layers. Fully

connected layers can also be interpreted as having huge number of parameters to learn.

With a normal pattern classification task, the complexity of the neural network can

easily get out of control (see figure 2.12).

Input Layer Hidden Layer Output Layer

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

h11 h12

h21 h22

Figure 2.12: Convolutional neural network. The figure shows two main ideas behind
the CNNs in contrast to MLPs. First, the structure of the input data is preserved. The
adjacent elements of input data could be correlated. Therefore, the network is designed
so that the nodes in hidden layers get input from certain regions of the input matrix.
Second, the connections are sparse, and compared to MLPs, are not fully connected.

This will mitigate the complexity problem of MLPs.

In the next sections, I explain the advancements introduced by CNNs as to address those

mentioned issues.

2.3.1.1 Convolutional layers

The map from the data in the input layer to the hidden layer is not direct in CNNs. That

is, as the name ”convolutional” indicates, we convolve a filter to the input matrix to
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obtain the elements for the next hidden layer. This resembles the concept of convolution

in signal processing and also the concept of filtering in image processing. Thus, for a

convolutional layer to be built, we slide a filtering window on the input data and measure

the similarity of the overlapping part. By performing the convolution over the whole

input matrix, we obtain a convolution matrix as a result, which represent the similarity

of patches in the input matrix to the applied filter. Having tens or hundreds of filters,

we can characterize the content of the input matrix. In case of the input being an image,

this will grasp the image features and therefore, there is no need for a separate feature

extraction phase in the image processing tasks while using CNNs.

The number of nodes in the hidden layers of CNNs is dependent on the number of filters

used in it. The more filters applied, the more nodes in the second layer. Moreover, the

size of a filter, the stride of a filter (the sliding step), and the padding for filtering all

play a role in altering the size of the next hidden layer.

Convolutional layers normally take ReLU as their choice for an activation function.

2.3.1.2 Pooling layers

Having many filters will easily increase the dimensionality of the network, and having

higher dimensional networks, in turn, increases the chance of overfitting. Hence in CNNs,

a hidden layer called pooling layer is succeeding some or all of the convolutional layers

in order to reduce the complexity of the network.

There are two established types of pooling layer. In the first type, max pooling layer, a

window slides over the elements of convolutional layer output and takes the maximum

value of the window to be used in the next layer. In this manner, the number of elements

will be reduced significantly. The second method is average pooling layer, in which a

window will slide over the output of the convolutional layer and takes the average value

instead.

Pooling layers in fact convert multiple possibly infinitesimal nodes of the network to a

single efficient one.

2.3.1.3 Stacking the hidden layers

Having a sequence of convolutional and pooling layers, one can make genuine deep neural

networks. Having such structure, it is possible to represent the input data throughout

the network, from general near the input layer to specific towards the output layer.

That is, we can make hierarchy of patterns in which, a pattern like an image of the
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human body can be represented by hierarchically combining its constitutive segments

[74]. Amazingly, this resembles the way our brain sees and represents the visual objects

[64]! A well-known example of pattern classification using CNN is shown in [68].

2.3.2 Recurrent neural networks (RNN)

MLPs are not suitable to capture the pattern in temporal data, the data in which one

piece is temporally dependent on another. In simpler words, MLPs does not have mem-

ory. Recurrent neural networks (RNNs) are a class of artificial neural networks which

are able to process and learn the time-based dependencies of the input data. As the

word ”recurrent” indicates, the network replicates the same task over and over again.

Machine learning tasks such as machine translation, speech recognition, sentiment anal-

ysis, content analysis in video, street traffic analysis, stock market prediction, chatbots,

gesture recognition in videos, and weather forecasting, can be extensively addressed by

RNNs.

RNNs are designed to store the memory of the previous set of inputs. The memory

segment in RNNs is called state. States are in fact the hidden layer outputs. The

corresponding output for the current input in the RNNs is dependent on the input itself

and also on the state variable(s) of the previous hidden layer.

Structurally, there are two intrinsic differences between MLPs and RNNs. First, for

training RNNs, we do not feed a single element to the network but a sequence of elements.

That is, the temporal dependency of the elements in the network must be captured and

preserved. The second difference is the existence of the state variables, which are the

output of the current input and used to be fed as input to the next layer. Therefore, the

activation function will accept both the input variable and the state variable to measure

the output:

yt = stws

st = σ(xtwx + st−1ws)
(2.24)

A pioneer and simple instance of RNNs is known as Elman network [31]. Figure below

illustrates how a simple RNN look like.

RNNs can accept one or multiple inputs variables and also can have one or many outputs.

It is also possible to stack RNNs on top of each other by connecting the outputs of one

to the inputs of the other.
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Figure 2.13: A simple representation of RNNs. Figure (a) shows a compact repre-
sentation of RNNs known as folded. That is, for a time variable t, and input variable
xt, the output variable yt is dependent on xt and also the network outcome of previous
times st. Figure (b) illustrates the stretched out version of figure (a) known as unfolded.
The chart shows that how newer outputs of the network are dependent on the outcome

of the previous steps.

To train RNN, we can apply the basic concept of feed-forward and back-propagation as

described in the last sections with a slight change. Instead of normal back-propagation,

we have an algorithm called back-propagation through time, which in that, we update the

weights of the network based on the contribution of previous steps. That is, in measuring

the partial derivative of the error with respect to a weight, we expand the calculation

by adding the contribution of relevant previous steps (adding the partial derivative of

the error with respect to previous steps).

RNNs perform adequately good if the number of time steps is not high (say 10 time

point). Otherwise, due to problem of vanishing gradient, they are not able to act ef-

fectively. Here, is where a version of RNNs called long short-term memory networks

(LSTM) [55], comes into play.

2.3.2.1 Long short-term memory (LSTM) networks

The primary motive behind developing LSTM was to acquire a unit to substitute the

state in ordinary RNNs, which can decide what to memorize and what not to, on its

own. Then, having recurrent networks of such would solve most of the problems such

as vanishing gradient occurred by former RNN flavors. The new unit is itself a small

neural network and is called LSTM cell.

As ordinary RNNs such as Elman network suffer from lack of a proper long-term memory,

the LSTM cell is designed to posses a reliable long-term and short-term memory. In

LSTM design, four functionalities is considered: learning, forgetting, remembering, and
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using. Figure 2.14 shows a basic scheme of an LSTM cell [21]. As it can be observed, in

contrast to the states in RNNs, LSTM cells has units known as gates to perform basic

memory operations.

Long-Term
Memory

Short-Term
Memory

New
Long-Term
Memory

New
Short-Term
Memory

Event

Forget
Gate

Learn
Gate

Remember
Gate

Use
Gate

Predicted
Output

Figure 2.14: Basic LSTM cell concept. Four gates are considered to bring about the
basic memory functions: learning, forgetting, remembering, and using. As an input
event is fed to an LSTM cell, the short-term and long-term memory will be updated
accordingly based on the internal gates of the unit. The output of the cell is the updated

short-term memory.

The memory gates introduced above can be expressed mathematically as follows:

• Learn gate: The learn gate at time t, combines the short-term memory, STM ,

and the input event, Et, and acquires new information, Nt. To update its state,

it discards also a part of the new acquired information by multiplying it by a

discarding factor dt:

Nt = tanh(wn[STMt−1, Et] + bn)

dt = σ(wd[STMt−1, Et] + bn)

Learn = Nt × dt

(2.25)

• Forget gate: The forget gate at time t, combines the short-term memory, STM ,

and the input event, Et, through a small neural network and then multiplies the

result, ft, by the long-term memory, LTM :

ft = σ(wf [STMt−1, Et] + bf )

Forget = LTMt−1 × ft
(2.26)

• Remember gate: The remember gate updates the long-term memory by adding

the collected information from the learn and forget gates:
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LTMt = Learn+ Forget

LTMt = (Nt × dt) + (LTMt−1 × ft)
(2.27)

• Use gate: The use gate (output) is designed to update the short-term memory,

STM , by combining two small neural networks. In the first neural network, it

combines the forget gate and the long-term memory LTM . In the second neural

network, it combines the short-term memory, STM , and the input event, Et.

Finally, it multiplies both networks output:

Net1 = tanh(wnet1LTMt−1 × ft + bnet1)

Net2 = σ(wnet2 [STMt−1, Et] + bnet2)

STMt = Net1 ×Net2

(2.28)

At this point, we can put together different fragments of the LSTM cell to shape an

LSTM cell. Figure 2.15 shows an LSTM cell wiring which contains the above mentioned

gates.
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Figure 2.15: LSTM cell detailed architecture. In this LSTM cell example, the infor-
mation gates (learn, forget, remember, and use) are combined to build an intelligent
cell. This cell can replace the state variables designed in ordinary RNNs. The internal

operations of LSTM, are color-coded with respect to figure 2.14.

The LSTM cells can replace the state variables in ordinary RNNs. Having such settings,

each LSTM, individually, has an idea of the network thanks to its internal neural net-

works. By connecting several LSTM cells, we can make networks resembled to RNNs.

However, unlike RNNs which were suffering from vanishing gradient problem and shal-

low architecture, we can build up rather deep networks with LSTMs (say 1000 layers).

Figure 2.16 represents an LSTM network.
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Figure 2.16: LSTM network. The LSTM network can overcome the limitations of
RRNs. By means of every activation functions inside each cell, a cell could decide on
letting the input to come to the cell, on retaining the information, and on letting the
information being departed from the cell. Therefore, the network is more capable of

storing memory and consequently, can be much more deep.

The presented LSTM cell is not the only LSTM cell in the market. The reason for its

popularity is due to its practicality. However, one can think of different arrangements

for LSTM cells. As far as LSTM cells can answer the need to deal with long-term and

short-term memories in neural network effectively, other versions can be employed as

well.

2.3.3 Other types of deep neural networks

In accordance with the type of data given in this thesis, which are mostly time series,

the above presented deep neural network methods could be used to model the data.

Nonetheless, deep learning is not limited to the mentioned categories. As long as classic

machine learning and artificial intelligence (AI) methods are concerned, deep learning is

widely employed and explored in those fields. Fields such as deep generative adversarial

networks and deep reinforcement networks [83] drew much attention in the recent years.

Since these fields are not directly relevant to our work and our data, I am not going

to present them in this work. However, in some cases, they can be used to address

certain types of neural data, especially if a paradigm is designed to be modeled with AI

methods.

To develop deep learning algorithms, one should not start from scratch. There are a set

of good toolboxes available at the time in the market. They are basically designed to
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handle much of the background difficulties such as sharing the computation processes

with GPUs and resource managements. They offer also easy to learn user-interaction

interfaces. TensorFlow [1], Theano [98], Keras [17], Caffe [62], ... are some examples of

deep learning packages used in todays machine learning tasks.

2.4 Summary

In this chapter, I presented the core idea of artificial neural network, its basic build-

ing blocks and its development towards a complex machine learning approach. I went

through its classical limitations and followed it to modern artificial neural networks,

known publicly as deep neural networks. Modern branches of deep learning algorithms

were also discussed, to the extent applicable to the natural neural data presented in this

thesis.

I had three reasons to bring up deep learning in this thesis.

• First, it is a great chance to check the feasibility of applying deep learning on three

classes of neural data (presented in this thesis), and conclude whether or not, it is

useful to apply deep learning algorithms on ”limited samples bulky time series”.

• Second, classical machine learning approaches is addressed more broadly than deep

learning on neural data. I found a room to evaluate deep leaning algorithms on

the data I had at hand, to possibly extend the realm of deep learning in new

environments.

• Third, since we deal with machine learning in general, the core concept of artificial

neural networks, to a great extent, overlaps the main stream machine learning

algorithms, and therefore, through describing basic of artificial neural networks,

basics of machine learning is presented as well.

This chapter can be used also as a tutorial for people who are interested to start learning

and working with artificial neural networks, and would like to know its strengths and

limitations.
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Working memory, machine

learning, and intracranial EEG

In cognitive neuroscience, discovering the mechanisms of working memory is one of the

primary areas of research. Working memory in contrast to short-term and long-term

memories, refers to briefly maintaining, processing, and manipulating of information

in the brain, whereas short-term and long-term memories refer generally to preserving

information for shorter or longer time intervals [22, 29].

With respect to what we discussed in chapter 1, one approach to decode brain activities

is by classifying and modeling them with machine learning techniques [38]. In this

chapter, the main focus is to present two working memory studies which are iEEG

based recordings, and are addressed by machine learning techniques. Additionally, in

the appendix A, an fMRI based working memory task is briefly presented, where again

a machine learning solution is introduced to solve a cognitive neuroscience problem.

Given that we are aiming at studies with human subjects, and the fact that we are

keen to understand how their brains function in macro levels, we can not control the

study conditions without their consent and cooperation. On that account, for them to

measure their brain activity, they should be put into certain condition and be asked to

follow some procedures. This experimental design is called paradigm.

Paradigms are typically a computer program which interacts with people visually and/or

audibly. From performing a paradigm, we get two sets of results. First, the behavioral

data like the participant reaction time or the performance of participants in answering

the questions. Second, we get the synchronous brain activity recording. Paradigms

must be designed wisely to pose a scientific question and get the answers in a controlled

43
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manner to be able to reveal the underlying brain activity and avoid confounding non-

controllable variables.

Brain recordings can be sourced from a various recording methods such as EEG, fMRI,

MEG, . . . , each of which has its own pros and cons. The EEG types of recording benefits

from its high frequency resolution of recording as it measures the electrical pulses while

it suffers from its poor spatial resolution. fMRI on the other hand, has a proper spatial

resolution but has an ineffective time resolution.

In the proceeding paradigms, our data is a very special and hard to record type of

EEG called iteracranial EEG (iEEG) which has superior spacial resolution compared to

normal surface EEG recordings.

In epilepsy clinics across the world, epilepsy patients with unrecognized origin of their

epilepsy in the brain, in expectational cases, through a sophisticated surgery, are being

implanted with under surface electrode to discover the affected section of their brain.

These electrodes can be subdural (on the outer surface of brain under the dura) or

depth electrodes (penetrated in the brain tissue). The implanted electrodes are called

intracranial since they are positioned inside the skull. The primary advantage of having

intracranial electrode apart from better spatial resolution is to record the brain activities

which are otherwise not accessible or easily recordable outside of the skull.

The recording signal of interacranial EEG (iEEG) is a set of time series, each of which is

a recording of changes in electrical charges around the position where the iEEG electrode

is implanted (see figure 3.1).

In the following, I introduce two iEEG studies by going through the corresponding

paradigms (Sternbeg paradigm and Face Direction paradigm). Since the technical solu-

tions of both paradigms share to a great extent with one another, I skipped the techni-

calities of the second and referred to the first.

3.1 Sternberg paradigm

The Sternberg paradigm is a classical working memory task and is named after the

famous American psychologist Paul Sternberg. The design is meant to study how many

individual items can a person sequentially keep in mind form a series of items. The

Sternberg paradigm task was to ask participants to maintain a sequence of digits, one

to nine as they presented sequentially on the screen and after a probe, rehearse the

sequence of already seen digits. The length of the digit sequence could be either of one,

three, five, or seven. This paradigm was designed and programed in the epilepsy clinic
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Figure 3.1: An example iEEG recording across multiple channels is show here. Differ-
ent electrodes may record different regions on the brain surface or in depth tissue. The
signal of different channels may look similar in the first glance and it is due to the very
low frequency components of the recording. Splitting the signal into its constructive
frequencies can reveal the differences among all electrodes for an ongoing brain activity.

as a part of cognitive study before I started my work at the clinic and was being recorded

thereafter.

The idea behind this paradigm was to certify the well-established Sternberg paradigm

with in-depth brain signal and realize the encoding and memorizing mechanism of brain

while processing a sequence of items [76]. Figure 3.2 illustrates the steps of Sternberg

paradigm visually.

The subject’s tasks could be divided into three main phases. In the first phase, the

encoding phase, the participants were presented with a sequence of digits, one, three,

five, or seven. Each digit appears for 500 ms and after it, a fixation cross appears on

the screen and the individual has to look at the sign for 1500 to 2000 ms. The duration

is jittered to reject any time-based rhythmic memory consolidation theory.

In the second phase of the paradigm, the maintenance phase, the participant has 3000

ms time to maintain the already seen digits in mind and in the third step, the retrieval

phase, they type the sequence of digits which they have already seen one by one on the

presentation laptop.



46 Chapter 3. Machine Learning and Intracranial EEG

While performing the task, the brain activity of the participants were recorded through

the clinic iEEG recording machine. The recordings were synced to one millisecond

resolution.

{500 ms

{1500-2000 ms

{3000 ms

Figure 3.2: Sternberg paradigm. The details and task duration is presented. In this
paradigm, the participants were asked to memorize a sequence of digits (one, three,
five, or seven). This phase is called encoding phase. Right after it, the participant is
given a time to maintain the already seen digits (maintenance). Then, a probe appears
on the screen and the participant must remember the digit sequence by typing them
in the paradigm software. This phase is called retrieval phase. During the task accom-
plishment, the brain activities were being recorded through clinical iEEG monitoring

equipments across different channels.

Having this valuable dataset available, I posed a new question on it: ”Can we decode

the way digits are represented in our brain?” Since this paradigm was not designed

initially for this task, I had to change the way the data was segmented (see segmentation

later in this chapter).
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For us to track the pattern of digits representation in the brain, instead of the sequence

of digits, it was necessary to consider every digit at the presentation time or at the

retrieval time, as separate instances of data. This is not however a trivial task since

according to the paradigm design, the participant had to not only maintain the already

seen digit in mind but at the same time rehearsing the sequence of previously seen digits.

This fact would disturb a clear digits representation in the brain.

3.1.1 Methods

As mentioned before, to model the brain activity, it is planned to accomplish it by the

means of machine learning and pattern classification techniques. In the following, the

step-by-step technical solution for machine learning modeling is presented.

Similar to typical machine learning tasks, we should follow the following steps as sug-

gested in [30]:

• Preprocessing

• Feature extraction

• Learning and classification

Before proceeding to the technicalities, let’s talk first about the subjects and the data.

3.1.1.1 Subject and data

The subjects of this study were patients admitted in Epileptology Clinic Bonn for seizure

monitoring. The subjects were implanted with electrodes to discover their brain lesions

which in turn, cause the epileptic seizures. This opens a window of opportunity for

groups like ours to use the chance and record from depth brain tissue which otherwise

is not available for recording.

Recordings were acquired using stainless steel subdural strip or grid electrodes (contact

diameter: 4 mm, center-to-center spacing: 10 mm) and intracranial depth electrodes

(diameter of 1.3 mm, comprising 10 cylindrical platinum contact sites with a length

of 2.5 mm and an inter-contact spacing of 4 mm). All data was sampled at 1000 Hz,

referenced to linked mastoids and bandpass filtered [0.01 Hz (6 dB/octave) to 300 Hz

(12 dB/octave)] using the digital EPAS system (Schwarzer, Munich, Germany) and Har-

monie EEG software (Stellate, Montreal, Canada). To identify electrode positions, all
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contacts were transferred into normalized MNI 1space using the FSL (FMRIB Software

Library).

Different patients have different number of electrodes and different distribution of elec-

trodes. Figure 3.3 shows how different patients have different implantation pattern. The

position of electrodes is plotted based on MNI coordinates.

1

Patient 01
Patient 02
Patient 03
Patient 04
Patient 05
Patient 06
Patient 07
Patient 08
Patient 09
Patient 10
Patient 11
Patient 12
Patient 13

Figure 3.3: Electrode distribution of Sternberg paradigm of all patients from different
views. The position of electrodes in an MNI coordinate is plotted in color on a normal-
ized brain image. Each color represents a patient. These images show that electrodes
were merely implanted based on their diagnosis. It can be however seen that there are
regions (e.g. medial temporal lobe) in which, most of patients have some implanted
electrodes. The position of implanted electrodes for all patients are calculated based
on their pre and post surgery MRI images with the help of Pylocator program [67], and

then pooled together and plotted by the same program.

The data from intracranial and surface electrodes is recorded using Stellate R© EEG mea-

surement system and is saved under Stellate file format (.sig, .sts). For our convenience,

we have converted the data to Brain-Vision R© format using Brain-Vision Analyzer soft-

ware. By doing this, we have obtained three files .dat, .vmrk and .vhdr file formats to

represent raw signal, stimuli time event (trials) and electrode arrangement respectively.

The data is then imported into Matlab R© and further analyses is primarily done in

Matlab. In some section, Python R© code is also used to corroborate the analyses.

1MNI stands for Montreal Neurological Institute and Hospital, is a standards 3D coordinate system
to address the coordinates of brain volume in millimeter precision.
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3.1.1.2 Preprocessing

The preprocessing phase is required to prepare a noise-free and artifact-free data for the

next phases of machine learning. Preprocessing is composed of the following steps:

• Artifact Rejection

• Filtering

• Signal Segmentation

• Baseline Correction

Artifact Rejection There are different types of artifacts in EEG data. Muscle

artifacts, eye blinks, spike waves, and pathological high frequency artifacts. Here, I

address the removing of spiky waves since they are more prominent source of artifacts

in Intracranial EEG.

Intracranial EEG, is contaminated with not only the recording noise but also with arti-

facts resulting from pathological neural activities. These inherent neural activities are

known as spikes. Spikes are rapid and high power activities of neurons. Figures 3.4

shows an spiky brain activity.

Figure 3.4: Three prominent spikes could be seen in the signal. Spikes are typically
abrupt high magnitude rise of in the brain signal. They are normally broadband and

can not be easily filtered.

Spikes are abrupt rise of the brain signal which are the result of overcharged cell ensemble

activities. The activity of individual neural cells are typically spiky shape but since

the cells are not sync necessarily, the recorded data on (i)EEG electrodes should not

typically look like spikes. Spikes are in most of the cases the results of epileptic-like

activities. Since spike are not the result of ordinary brain activity, they are considered

to be artifacts in the brain studies and therefore, must be removed.

The process of removing spikes is a tedious task and has been done manually as a data

preprocessing step in several epilepsy clinics. People show the spike activities of different
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electrodes and decide whether or not to discard a part of data. A problem in the manual

spike removal tasks is that different people have different views of spike definition. Some

people remove the part of data which contains a spike if it happens in only one electrode

and some people remove it if it happens synchronously across multiple electrodes.

Here I have developed an algorithm for automatic spike detection. The algorithm is

developed by watching over the shoulder of three persons who were manually removing

artifacts from three iEEG databases and recording their criteria. Based on the gained

knowledge, new criteria for automatic spike detection was defined and the algorithm was

developed.

In this algorithm, the average slope of signal is measured for an epoch of an electrode

recording (e.g 500ms). The epoch will be marked as spiky if the average slope is more

than 75◦ (= persistent sharp signal rise) and/or the difference between maximum and

minimum value is more than 6 times of the standard deviation of the signal in the 30

seconds window in signal’s vicinity.

Ultimately, we consider an epoch to be spiky and noisy if at least 20% of the electrodes

at that particular time are marked as artifact. The noisy marked part of the data will

be remove from further study. In the code snippet 4 the algorithm for artifact detection

is presented.

As mentioned, artifacts are usually occupying in a broad bands of frequencies. Hence,

filtering those contaminated frequency bands would diminish a valuable instances of

data. Alternatively, some people suggested using independent component analysis (ICA)

to remove the spiky constitute of the signal instead of discarding it. It is however

recommended by experts in the field to exclude those spiky artifacts from the whole

study to make sure that no artificial contamination is made.

Filtering Brain as an extremely complex system with highly sophisticated intercon-

nected subsystem, has an electrical medium for communication. Similar to the concept

of radio waves and their frequency modulation, brain regions communicate to each other

through different frequency channels. These are known as functional frequency bands

of the brain. Table 3.1 shows a conventional classification of brain functional frequency

bands.

Table 3.1: Functional frequency bands.

Frequency Name Delta Theta Alpha Beta Gamma

Frequency Range 1-4 Hz 4-8 Hz 8-12 Hz 12-30 Hz 30-100 Hz
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Algorithm 4: Detecting iEEG artifacts

Data: iEEG Raw Signal
Result: Detecting iEEG Artifacts

1 while not all channels selected do
2 select an iEEG channel;
3 resample to 1000 Hz sampling frequency;
4 while not at the end of this signal do
5 epoch ← take 30 seconds of iEEG signal;
6 epocStd ← standard-deviation of epoch;
7 while not at the end of epoch do
8 window ← 500 ms of epoch;
9 windowMax ← max(window);

10 windowMin ← min(window);
11 a ← measure window[1:end-1] - window[2:end];
12 b ← arctan(a);
13 c ← degree(b);
14 d ← abs(c);
15 windowDegree ← mean(d);
16 if windowDegree > 75 or (windowMax-windowMin > epochStd × 6)

then
17 Mark the current time and channels as being artifact contaminated;
18 end

19 end
20 move epoch/4 seconds forward;

21 end

22 end
23 Search across channels along the time-line:
24 if a time-point is marked as an artifact in 20% of channels then
25 Mark the current time as noisy;
26 end

For instance, delta waves are known to be spread during sleep, alpha bands when you

close your eyes, and gamma when performing cognitive and memory related activities.

These bands are not however limited to the mentioned activities. Depending on the

task, some particular frequency bands could be the medium of interest.

There are different ways that frequency filtering applied in the preprocessing step of

(i)EEG recordings. Since EEG is an electrical recording in a microvolt or millivolt levels,

any external source of electrical power in the recording environment, if not shielded, can

affect the signal by inducing a magnetic field. This artifacts must be removed from the

signal if they affect any frequency of interest in the study.

Since our iEEG recording is performed in Germany and the power line has a frequency

of 50 Hz, it affects the Gamma power band. To get rid of this noise, we band-reject the

signal for the [49.8 50.2] Hz interval by applying notch-filter.
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Frequencies under 1 Hz and over 150 Hz also could be eliminated since they do not

reflect any meaningful functional mechanism of the brain.

Technically, filtering can be done by different filtering tools such as FFT, wavelets,

multitaper, Butterworth, Chebyshev, Notch, . . . , each of which has its own use-case and

also its own pro, and cons, and there exists no perfect filter. Filtering should be chosen

based on the task itself, as some filters leave different edging effects and passband ripples

than the others [96].

There are some tricks to improve the filtering quality such as improving the edging

effect. For instance, if the signal is meant to be segmented and then filtered, people

make the filtering first and then perform the segmentation last, to have more seamless

filtered signal on the segmented edges. Another trick to avoid edging effect for already

segmented signals is to reverse the signal at both ends of it and concatenate the reversed

version to the original signal, perform the filtering on a rather continuous signal and the

discard the concatenated parts.

It must be mentioned also that filtering from another perspective can be a part of feature

extraction phase too. Thus, no wonder if I again come back to the filtering in the next

section.

Signal Segmentation In a paradigm design, it is an important consideration to be

able to track the onset and the offset of a specific brain activity. It can be determined

from the paradigm design, when a mental task is started. Knowing the onset and the

offset of the mental task, it is possible to segment a continuous data into task related

sections. Each of these segments is called a trial. Figure 3.5 shows the frequency split

phase as well as segmentation.

Baseline Correction Baseline correction is a technique to exclude ongoing brain

activities before from a trial but with preserving the task related activities. Ongoing

brain activities referred to the normal non-task related activities of the brain.

Since brain activities happen in different frequencies, to exclude the ongoing brain activ-

ities, for every frequency, the average signal of 700 ms to 200 ms before the beginning of

the trial ([−700 − 200]), is subtracted from the amplitude of the signal within the trial.

With respect to the segmented trials baseline correction can be applied (e.g. encoding

phase or retrieval, etc).

Doing this, the amplitude of the signal within the trial would reflect the brain activity

which is mainly task-related. This technique is called baseline correction since we remove

the baseline brain activity from the signal.
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Figure 3.5: Frequency splitting and windowing. Splitting every channel to various
frequency bands, to be able to measure features for a window of interest. Having
obtained the onset and the offset of a brain activity, we are able to segment the data

as windows, across different electrodes, and across different frequencies.

3.1.1.3 Feature extraction

Our raw data is changes in electrical charges resulted from the brain activity which is

referenced to a reference electrode(typically the mastoid electrode near the ears of the

patient). Since for each channel (electrode), there is a time variable, and we have multiple

channels across the head, and also each channel can be split into several frequency bands,

we will end up having a 3D matrix of raw data which each element of it is a value in a

time-frequency-electrode map. Figure 3.6 depicts such a map. This way of representing

brain data is called time-frequency analysis in the field.

In this concept, it is a common practice to bin the time axis data into 20 to 50 ms bins

[38, 56]. The length of bins must be chosen so that the number of time points from raw

features reduced significantly (by 20 to 50 times with 1000 Hz sampling frequency) and

still being able to accommodate complete cycles of the high frequency gamma activity

without loosing the time resolution. We call each of time-frequency-electrode bins a cell

see figure 3.6(b)).

We talked so far about using raw signal directly for filtering and feature calculation, and

it is justifiable to use it in some applications. However, in most of the cases, in order to

obtain more prominent neural activities, we must perform some sort of transformations

on the raw signal. Performing transformation alters the way a data can be seen and

represented. The result is called analytic signal. Analytic signals are in the form complex
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Figure 3.6: Time-Frequency-Electrode Map. Having this mapping (a) helps to disen-
tangle constructive components of the raw signal and convert it into discrete buckets
of information (b). Each bucket (cell) represents an electrode, a frequency, and a time

period, in which features can be extracted from.

numbers and from an analytic signal, two secondary feature values can be extracted: the

power and the phase. Power and phase are explained later in this chapter.

In the following, we describe three transformation methods which are extensively used

in the realm of (i)EEG analysis to obtain analytic signal. They are aimed to convert

the signal from time-domain to frequency domain.

• Fast-Fourier-Transformation

Fourier transformation is proposed by french mathematician Joseph Fourier (1768-

1830), suggesting that a continues signal can be represented by a combinations of

sinusoids (sins and cosines). Sinusoid functions can be depicted by their amplitude,

frequency and phase. That is, for every frequency, it is possible to show the phase

and the amplitude of a particular signal and call it frequency representation of the

signal. Fourier transformation can be formulated as:

f(ν) =

∫ +∞

−∞
f(t)e−2πiνtdt (3.1)

where t is the time, f(t) is the amplitude of the signal in time t, ν represents

a frequency, and eit is the Euler’s formula for representation of complex values.

Euler’s formula can be defined as:

eit = cos(t) + isin(t) (3.2)
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where i indicates the imaginary part of a complex number. In this notion, a func-

tion of time is converted to a function of frequency. That is, we can decompose

a signal from time domain to a collection of sinusoids in frequency domain. Each

sinusoid is the representation of the original signal for a certain frequency in fre-

quency domain. It should be noted that Fourier transformation assumes that the

time signal is a periodic signal.

The inverse Fourier transform is also introduced to convert the signal from fre-

quency domain to time domain:

f(t) =

∫ +∞

−∞
f(ν)e2πiνtdν (3.3)

where the f(ν) contains the amplitude and the phase information for all frequen-

cies. The inverse Fourier transform is in fact a collection of multiplications and

summations to put together all frequency representations of a signal in frequency

domain and convert them to a single signal in time domain.

The above notion of Fourier transform is dedicated to the transformation of con-

tinuous signals. In digital signal processing, normally, we deal with discrete and

quantized signals. Therefore, our input signal will be a discrete sequence of data

points (n = 1...N) and instead of all possible frequencies, limited number of fre-

quency bands will be resulted. Therefore, the integral in the equation 3.1 will be

replaced by a summation:

f(ν) =
N−1∑
n=0

xn e
−2πikn
N (3.4)

where X is the discrete signal in time domain and k represents the frequency

(the number of cycles per N samples). This equation is called discrete Fourier

transform (DFT).

Fast Fourier Transformation (FFT) is a well-known and efficient algorithm to

measure DFT. FFT decomposes the DFT matrix into sparse factors and therefore

reduces the calculation complexity. To fit the FFT into our cell concept, we require

a flavor of FFT called short-time FFT (STFFT) in which the FFT is measured

for a moving window on the signal and the window moves forward by some steps

less than its length. With the help STFFT, it will be possible to characterize the

neural activities both in terms of time and frequency. A good advantage of FFT

is its simplicity of use. However, FFT is not the best transformation to pick up

acute and abrupt signal changes [96].

• Hilbert
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Hilbert transform is named after German mathematician David Hilbert (1862-

1943) and provides us with an analytic signal. Hilbert transformation, technically,

takes the frequency elements of Fourier transformation as input and rotates the

complex value so that the real part maps onto the imaginary part (π4 phase shift).

Then, it performs the inverse Fourier transformation. Mathematically speaking,

the Hilbert transform measures the convolution of 1
π with the input signal u(t):

h(u)(t) =
1

π

∫ +∞

−∞

u(t)

t− τ
dτ (3.5)

where t represents the time. The real part of Hilbert transformation is identical

to the input data. The power and phase of Hilbert signal can be measured as

explained later in this section.

A great advantage of Hilbert transformation can be revealed if it is applied on a

bandpass filtered signal, as it can then signify the instantaneous power and phase

in the signal much more prominently than STFFT.

Thus, we consider filtering the raw data into different frequency bands and then

apply Hilbert transformation on the filtered signal. For the frequency band split

definition, I stick to the functional classification of brain frequency signals as de-

scribed above in the preprocessing step, but with slightly more frequency resolution

for the beta and gamma frequency bands. Therefore, we end up having the signal

bandpass filtered to the following 8 frequency bands:

Table 3.2: Frequency bands used for Hilbert transformation. Eight frequency bands
were used to pass-band the input signal of each electrode, and to obtain analytic signal

by means of Hilbert transformation.

Frequency 
Name

Delta Theta Alpha Lower
Beta

Higher
Beta

Lower
Gamma

Mid
Gamma

Higher
Gamma

Frequency
Range (Hz)

1-4 4-8 8-12 12-20 20-30 30-50 50-75 75-100

For the choice of bandpass filtering, we opt second level Butterworth filter 2 as it

has a monotonically falling of frequency response on the edging frequencies [96].

Figure 3.7 shows how Hilbert transformation on the filtered signal can represent the

envelop of the signal and therefore, providing new information (analytical power).

Please consult with ”power and phase” section first if necessary.

2Butterworth filter is a classical type of analogue filters used widely in signal processing. It is named
after British Engender Stephen Butterworth and is designed to have a very narrow frequency response to
be used for the convolution procedure in filtering. A narrower frequency response causes more distinct
frequency split with minimal distortion with neighboring frequencies.
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Figure 3.7: Hilbert transformation power. The red curve illustrates the amplitude
(power) of Hilbert transformation. It makes an envelope around the signals which are

in the same frequency vicinity and represents instantaneous power.

The phase of Hilbert transform is demonstrated in the figure 3.8 (analytical phase).

The periodicity of the phase can be easily observed as it fluctuates between 0 and

π. No clear pattern of periodicity can be observed in the phase value if the signal

is not filtered to certain frequency bands.

Figure 3.8: Hilbert transformation phase. The phase changes between 0 and π. The
periodicity can only be observed if the signal is filtered.

• Wavelets

Wavelets provide a way to analyze the frequency components of a signal. The

plural word of wavelets is to indicate that multiple waveform signals are used

for the transformation. The wavelet transformation is basically performed by

convolving the scaled and shifted version of another signal called mother wavelet

with the original signal to obtain. The results of wavelet transform is a collection of

similarity coefficient across time and frequency. Unlike Fourier transform, wavelet

transform is designed to pick up the abrupt and non-regular changes in the signal.

There are different types of wavelets. Mother wavelet is the most important char-

acteristic of a wavelet transformation. The mother wavelet is a curve with zeros

mean and finite length which has zero values in the beginning and at the end of

the curve. Based on the shape and the design of mother-wavelet, different types

of wavelets can be defined such as: Morlet, Mexican Hat, Symlets, Biorthogonal,

Haar, . . . .
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Similar to Fourier transform, Continuous wavelet transform and discrete wavelet

transform are also two types of wavelet transformation, each of which can be used

similarly for different data types, data resolution, and applications.

As mentioned, technically, scaling and shifting are two fundamental operations in

wavelet transform.

– Scaling: is the act of stretching a wavelet in time domain with some scaling

factor. Based on the scaling factor, the mother-wavelet can then represent

various frequencies and can be used to reveal the frequency similarities com-

pared to an input signal.

– Shifting: is to move the (scaled) wavelet forward on the on the signal to be

able to measure the similarities all over the signal.

If we perform m times scaling and n times shifting in a wavelets analysis, we

will end up obtaining m × n similarity coefficients, each of which represents the

strength of similarity of the input signal to the scales-shifted wavelet (see Figure

3.9).
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Figure 3.9: By performing the wavelets transformation on input signal, a set of
wavelet coefficients are resulted (right panel). It is important to note that for lower
frequencies, we have less wavelet coefficients but narrower frequency bands, and for
higher frequencies, we have more wavelet coefficients but with wider frequency bands.

Since we deal with a complex value system, the analytical power and the phase for

every time-frequency cell can be calculated the same way as with Hilbert transform

(see below section for more details).

In neuroscience, people tend to use Morlet wavelets more than others as it best

features the underlying neural activities. Morlet wavelets is stemmed from multi-

plying a sign wave and a Gaussian wave. Therefore, by applying it, there will be

less concern about the edging effect in frequency domain.
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Hilbert transform and wavelets transform are shown to produce accurate analytical

power and phase, and both are extensively used in time-frequency analyses in

neuroscience.

As explained before we can obtain phase and power values from signal transformation

to frequency domain. in the following, the phase and the power are explained in detail.

Power and Phase Physical phenomena are measured in two fashions, as scaler units

or else as wave forms. The weight of an apple renders a scaler unit whereas the color

of the apple can be represented as oscillatory wave forms of light. In the waveform

representation, a physical phenomenon is supposed to have variable values in different

times while these values raise up and down with a certain speed and magnitude. Given

that the speed and the harmony is constant in a physical signal, the signal is called a

periodic signal since the content of the signal will be repeated after certain time interval.

Such periodic property of a signal is called Frequency. One of the simplest form of a

periodic signal is the well-known function sin(x) (see Figure 3.10). It is observable that

after every 2π, the signal replicates its past. Hence, it is called periodic.

Figure 3.10: Sine signal. Sine signal is one of the simplest periodic signal. It repeats
its past after a particular period, on and on.

Now consider the cosine function (see Figure 3.11). The cos(x) looks the same as sin(x)

except that there is an offset between them. If x axis in the figure is the angle, then this

shifting is the angular difference between two signals. In other words, the signals have

different phase.

Apart from the phase attributes of a periodic signal, there is also another property,

called power. The power of the signal represents the magnitude of the signal amplitude

at a certain time/angle (y axis). Signal power can be the absolute value of the signal

amplitude or square of it.

In the following, let’s first review the phase property of the signal more closely.
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Figure 3.11: Sine wave vs. cosine wave. The cosine wave is the same replica of
sine signal but with a time shift. Given that x axis in the figure represent angle, the

difference between the sin wave and the cosine wave is called phase difference.

As mentioned above, the phase of a periodic signal represents the moment in which

the signal is shifted from its oscillation origin. The position of a pendulum in an old

fashioned clock can also be mapped to a phase value. In complex values representation

of periodic signals, a complex number is illustrated on a 2D plot, in which the x axis is

dedicated to the real part of the complex number and the y axis belongs to the imaginary

part. Typically, a complex value has a notation like a+ib where i indicates the imaginary

part. Having complex values along two axes, one can address the angle between two

values (phase).

In signal processing applications, generally, the periodic signals along the time-line, are

being transformed to different frequencies to study their composite sub-signals more

accurately. In other words, the signal in the time-domain is composed of several sub

frequencies (sins & cosines waves). These sinusoids are represented as a form of complex

numbers so that one value (i.e. cos(x)) represents the real coefficient of the complex

number and the other (i.e. sin(x)) represents the coefficient of the imaginary part (to

pack both phase and power in a single complex value).

Having both imaginary numbers obtained from typical signal transformation function

(Hilbert, Fourier, Wavelets, Laplace, ... ), one can compute the phase of the signal. The

phase φ of a complex value C = a + bi can be computed as

φ = arctan(
b

a
) (3.6)

and the power p can be measures as

=
√
a2 + b2 (3.7)

It has been shown that the phase of neural signals contains predominantly more informa-

tion compared to the amplitude [56, 88]. Several phase-based-features can be measured
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to further characterize a particular brain activity. Features such as phase-difference,

phase-shift, phase-locking, phase-synchronization, phase-amplitude-co- upling, etc, can

be measured.

• Phase-difference

A simple way to compare two phases is to measure the difference between them.

Nonetheless, since the phase is a circular value, a difference of 10◦ and 350◦,

both can be considered valid. In a method suggested in [85], to solve the above-

mentioned problem, the phase difference can be obtained as followings:

Phase diff = min(|φ1 − φ2| , 2π − |φ1 − φ2|) (3.8)

where φ1 and φ2 are the phase of two signals.

Partially, the term phase-lag is also used to address phase difference. They can

be however used interchangeably.

• Phase-shift

Phase shift expresses the changes in phase difference of (typically) two signals

along time-line. Two signals may have ∆φ1 phase difference at the beginning of

the measurement but ∆φ2 at the end. Phase shift shows this difference. Then,

Phase shift = ∆φ2 − ∆φ1 (3.9)

• Phase-reset

Phase reset is a phenomenon happening in neural system for neurons or neu-

ral ensembles to sync themselves with a broad ongoing brain rhythm. In the

recorded (i)EEG signal, the phase reset can be observed when the phase value

drops abruptly to zero. Measuring the times and the number of phase resets in a

certain frequency can be considered as an informative feature since phase reset is

a sign of inter-frequency communications.

• Phase-locking

For measuring the phase similarities of two trials, phase locking value (PLV) is

defined. Different definitions of PLV are given. In a work reported in[70], the PLV

is defined as following:

PLV =
|
∑n

t=1 e
iθ |

n
(3.10)
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where n is the number of phase values at time t, i stands for imaginary part of

complex value, φ is the phase, | denotes the absolute value and θ = φ1 − φ2. The

resulting value will be in the range of [0 1]. If this value is close to 1, it indicated

lesser phase variations across trials and conversely, near to 0 if two trials are diverse

in term of phase. This method of calculating PLV is also know as phase-coherence

in the field.

PLV is measured however differently in works published by field experts in our

clinic [35, 36]. Accordingly, the PLV can be defined as following:

PLVt = 1 +

∑8
I=1Xi,t × log Xi,t

log 8
(3.11)

where for each time point t, the 360◦ phase values are split into 8 bins in the

range of [−180◦ + 180◦], and Xi represents the ith distribution among 8 and

the core calculation is the normalized entropy of phase distributions. To obtain

more uniform results, in a repetitive procedure, the splitting point of eight bands

can be shifted by 1◦ and the PLV can be measured again; finally, average over all

calculated PLV values. This PLV is useful to measure the phase similarities across

two electrodes.

• Phase-synchronization

Phase synchronization refers to the synchronous oscillatory behavior of two brain

regions in certain frequencies. The level of synchronization between neural ensem-

bles plays a decisive role in the behavior of the neurons [34, 63]. Regions which are

distant from one another, may still communicate through phase synchronization

[34]. Phase synchronization is arguably an important mechanism for memory for-

mation. The concept of phase synchronization is similar to phase-locking but it is

measured across electrodes (vs. across trials). Having instantaneous phase values

extracted from a signal (by means of Hilbert or Wavelets, ... transformation), we

can measure the phase synchronization:

PLV =
|
∑n

t=1 e
i(θx(t)−θy(t)) |
n

(3.12)

where x and y refer to two different regions (signals).

• Phase-amplitude coupling

In several EEG and MEG studies, it has been shown that the changes of phase

in lower frequencies has correlates to the changes in amplitude in higher fre-

quency of same or other electrodes [14, 34, 87, 105]. Similar to the concept of

phase-synchronization, phase-amplitude couping (PAC) relates itself to memory
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formation processes and therefore, can be employed as a feature. Phase-amplitude

coupling can be calculated as:

PAC =
||A(n)ei(θ(n)||
max(A(n))

(3.13)

where n is a time point and A shows the amplitude of one frequency and (θ

represents the phase of another frequency.

The power of the signal on the other hand shows how strong is a signal in a certain

frequency range and certain time. The power and the amplitude of a signal are related

as both pinpoint the magnitude of the signal but amplitude is a signed measure and can

be negative and positive. Power is always a positive entity and represents the absolute

value of the amplitude or the square of it. The power can be measured either from raw

signal or from the the complex value of transformed signal (analytical power).

By now, our toolbox for feature extraction has the required tools at hand, and features

which could be extracted from the power and the phase of the signal can make time-

frequency-electrode cell feature schema available for further analysis. In the current

work, I report the results of power-based features. However, various combination of

power and phase features has been extensively tested.

3.1.1.4 Classification and prediction

Machine learning and classification is discussed more extensively in the chapters 2 and

4. If not sure about the terms used here feel free to consult with the machine learning

material which are presented there. For the current paradigm (digit recognition), I

restrictedly reported the results of using features extracted from analytical power. The

features were then used for the pattern classification step.

In the pattern classification and learning phase, we have several problems to tackle.

First, we deal with a type of data which is recorded from a handful of participants but

they do not have the same electrode number and positional distribution over the skull.

Furthermore, every participant has run the paradigm for tens of trials. Therefore, to

make a machine learning solution functional, we have to train our classifier of choice for

every person individually.

Second, from feature extraction phase, we obtained huge number of features. Just

imagine if the participant has 20 electrodes, a frequency split of 8 bands, time bins of

20 ms, then for a 2 second trial, we end up having 20 × 8 × 100 = 16000 features

which is way to high for this problem with a very low signal to noise ratio. Additionally,
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theoretically, the number of features should not be significantly more than then number

of trials and the following should not hold num.features� num.trials but the reverse.

If we put that number of features in any machine leaning algorithm, it would have

difficulties dealing with numerous non-informative features and generalizing in higher

dimensions. Thus, a solution for feature reduction should be thought.

Third, the classification results must be arranged so that we can relate it clearly to the

theories of cognitive neuroscience or at least, we must be able to localize the features

which make the classification feasible.

Fourth, since in this field, due to its complexity, perfect results like 99% accuracy can

not be achieved, and above-random statistically significant effects are considered to be

fair an acceptable, an statistical test should be devised to ensure the reliability of our

classification results.

In the following classification and learning phase, I address the above concern.

ANOVA and feature dimensionality reduction Earlier in this chapter, it is

presented that we pick our features from a 3D tensor of time-frequency-electrode where

each element of the tensor is a cell covering a time-interval, a frequency-band and an

electrode. Therefore, the total number of features would be either equal to or multiple

of the number of cells.

Let’s now for the sake of simplicity, assume that we extract only one feature from a

cell. This can be for instance the average power of the cell. Then, the total number

of features will be equal to the total number of cells. We discussed previously that the

number of features must be reduced to mitigate the classification process. This can be

achieved by means of ANOVA (or analysis of variance).

ANOVA is a test in statistics which measures how distant the ”means” of samples of

different classes are from each other. ANOVA checks the null hypothesis, whether two

or more groups are randomly distributed, and reject the hypothesis if the groups are

significantly differently distributed.

The test gives out two primary resulting values, F -value and p-values. The F -value tells

how inter-class variance is larger than within-class variance and hence, the larger the

F -value, more likable to reject the hypothesis. The p-value is a probability value and

is in the range of [0 1] and tells about the likelihood of getting the F -value in a null

hypothesis condition. If the p-value is less than α = 0.05 then the test is considered to

reject the hypothesis and we say ”groups are significantly differently distributed”.
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With the help of ANOVA, we can rank the features based on their F-values and then

keep the features with top F-values and discard the rest. To be able to achieve this goal,

for each feature, we must first split the instances to their respective classes and feed

them into ANOVA. That is, if we have 3 classes to classify, for each extracted feature,

split the instances of that feature into 3 groups and then, test them with ANOVA. See

Figure 3.12 for a hypothetical example.

10 10.5 11 11.5 12 12.5 13

Sample 1

Sample 2

Sample 3

(a) Sample data of 3 classes.

Sample 1 Sample 2 Sample 3

10

10.5

11

11.5

12

12.5

13

(b) ANOVA, analysing variance of classes.

Source  SS  df MS F Prob>F h

Columns 16.513 2 8.25652 24.37 7.23346e-10 1

Error 49.8032 147 0.3388

Total 66.3162 149

(c) ANOVA Table of statistics

Figure 3.12: ANOVA is a useful tool to test whether different groups (classes) of data
are in fact different from each other. Plot (a) shows three groups of sampled data. For
this sake, ANOVA examines the inter-class variability and compares it to the within-
class variability. Figure (b) illustrated the mean and the standard deviation of each
class. The result of ANOVA analysis is a table containing the test statistics (Figure
(c)). The most straight forward result of the test is the h, having 0 for supporting the
null hypothesis and 1 for rejecting it. That is, if the h is 1, it indicates that different
groups in the testing population are distributed distinctively with different means. For
h to be 1, the probability value p must be less than thresholding value α = 0.05.
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It should be clearly stressed here that the ANOVA analysis applies only to the

learning data, to avoid leaking any information to the testing data set. After per-

forming ANOVA test on all n features of the training set, n times F -value and p-value

are obtained. In the next step, the features will be filtered based on their p-value and

α = 0.05 significance level threshold. Therefore, we end up having only significant

features. Among them, we choose those with top 400 to 500 F -values.

It is noticeable that I put the p-value feature selection before F -value to make sure

that only informative features are taken. That is, it is probable that a total number of

features less than 400 were selected.

The number 400 is obtained empirically and proven to us to work best for different

datasets. It also works for the mentioned dilemma of pf balancing between the number

of trials and the number of instances.

There is however an alternative way for applying ANOVA in our work. Previously, at

the time of shaping time-frequency-electrode cells, the idea of binning the data of 30 ms

long was discussed. Instead, we can postpone the binning procedure to the phase after

measuring the F -values. The latter trick showed to have slightly better performance

than the former method and I mostly used the latter one.

Pattern classification schema As noted before, the classification should be ac-

complished for each participant individually since each of them have their own diverse

electrode distribution and it will be hard to find a common number of features among

them (as shown in figure 3.3). This does not mean that we wont be able at all to

generalize over all patients later but it is more feasible and logical given our data.

In a typical pattern classification task, for a categorical data, the goal is to search within

the data and discover a model to formalize the differences of different categories. This

phase is called learning and is discussed more broadly in chapters 2 and 4. Since the

classification performance must be always measured after the learning phase, there is a

common procedure to split the data into two sets called training set and test set. Training

set is used for the learning process and the test set is to evaluate the performance of the

learned model.

Here, I applied a 5− fold cross-validation schema for splitting training and test sets, in

which the data is shuffled and split into five subsets. Then for five time, one subset is con-

sidered as test and the rest four sets for training. Performing this procedure, five models

could be obtained and therefore, five classification performance results. Ultimately, the

final classification result would be the average of all obtained results.
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To prepare the features selected from the last section for the classification phase, we

stack all extracted features (power values in this report) of Time-Frequency-Electrode

points of each trial into a single vector. In the training phase, these feature vectors are

labeled with their original trial label, digits, and fed to the classifier.

We have employed a flavor of SVM [19] classifier called Sequential Minimal Optimization

(SMO) [91] 3 to train a model from of the training samples. Next, to evaluate the

accuracy of the classification phase, the already learned model was tested against test

data. Comparing predictions and actual labels of the test data gives the classification

accuracy.

Surrogate test One of our main concerns was to find a way to validate the significance

of th classification results. Ergo, we need to prove methodologically that the classification

results are not drawn from any random effect. For this sake, the surrogate test is devised.

The surrogate test algorithm takes the training data and shuffles the their corresponding

labels. Then, by training the classifier with mislabeled data and testing it, a classifier

accuracy performance can be obtained. Repeating this procedure for 100 times and

acquiring 100 accuracy results, give us a distribution of random results. In the next

step, we take the 95 percentile of the accuracy distribution and name it as significance

level. Any accuracy above this level will be a reliable result. In the upcoming accuracy

reports, the surrogate test results are presented too.

3.1.2 Results

In the followings, the results of Sternberg paradigm classification is presented. referring

to the paradigm shown in figure 3.2, I conducted the machine learning approach for

brain decoding on different segments of the data from encoding to retrieval.

As we discussed earlier about this paradigm, the task is classify the digit representation

in the brain. The classification task is genuinely hard considering the design of the

paradigm in which the participant had to rehearse the previously seen digits in mind. For

memory encoding time interval, only one patient (patientNo.4) showed an above random

classification result. Checking any traceable effect in the memory retrieval interval, I

found out 3 patients to have number-effect in their memory retrieval process.

Figure 3.13 depicts the classification results on the patients. Patient No.4, 12, 13 showed

to have implanted electrodes which can trace the representation of numbers in their

brain. The random level here is around 12.5% since due to a technical problem in the

3See chapter 4 for more details.
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recording device, digit 1 could no be correctly recorded and hence, we have eight digits

to classify.

In the figure, the surrogate test is also reflected. That is, the average surrogate test

for each patient as well as 95 percentile is plotted. The results which are above the 95

percentile (yellow line) are considered to be significant results.
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Figure 3.13: The classification results of Sternberg paradigm on the retrieval sections
of the paradigm. The blue bar shows the classification results and the red bar shows
the average surrogate accuracy level (= random level). The yellow line represents the
95 percentile accuracy of surrogate test. Any results above this level is considered as
a significant result. Three patients show acceptable results in term of accuracy and it
means, we are able to classify the number they thought of, well above random level.

Pattern classification is a tool to discover the patterns and thereupon, model them. The

next step after modeling the brain activity in the field of cognitive neuroscience is to

explain the causal effect of classification. Unfortunately, in most of the classification

algorithms, it is really difficult to break down the classification effect into their pieces

and determine their effects due to non-linearities of classification models (some tree-

classifiers are able to do it though).

Fortunately, I designed our classification algorithm from the beginning to able able tell

where the effects are coming from. I has been discuss earlier in this chapter about

time-frequency-electrode cells and also about using ANOVA. Having these combina-

tions, it will be possible to explore and back-trace the classification effects more. The

time-frequency-electrode schema helps to localize the features on one hand and ANOVA

allows only significant cells to take part in the classification process. That is, if some

classification result is showing a significant effect, it is an indication that the underlying

features were carrying some informative information and vice versa. Then, the selected
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400 time-frequency-electrode cells could be used to address the causal effect. We empiri-

cally proved to ourselves that removing feature selection process will leave the classifica-

tion result in the random level and therefore, proves the legitimacy of applying ANOVA

on the features. Figure 3.14 shows two electrodes for each of the 3 patients which had

the most prominent number-effect. The plots represent time-frequency-electrode cells in

which features were selected.

It can be also understood from the plots that the selected features are mostly localized

in few electrodes rather distributed across multiple electrodes considering the fact that

we selected only 400 features. This would indicate the fact that most of the processing

power of the brain used to solve the cognitive task in this paradigm is originated from

local parts of the brain and is not distributed. Furthermore, The activities can be also

cast across multiple frequencies as it can be observed in the plots.

Additionally, regarding the feature-times, where 0 indicates the time when the response

is submitted by the patient, it can be noticed that the mental processes started before

the answering action was physically performed. This effect can be observed since in

some cases, we have features which are from negative time zones in the plots.

3.1.2.1 Discussion

The above result is by itself unique and valuable. However, by now we haven’t published

it since it does not show any generalized effect on all patients. We thought extensively

about the possible causes and performed some further analyses. In some similar work

published in [101], the task was to detect letters in an iEEG recording. They published

their work with acceptable results. Therefore, we were interested to find out why this

effect does not hold for all patients of our dataset. Finally, we visited the publishing

group and acquire the data of two of their patients with good results. We then performed

the following tasks.

First, I applied our algorithm on their data and we got the same accuracy range as they

published. The interesting point here was that most of discriminative features in their

patients where rooted from regions near visual cortex. This will speak of classification

based on brain visual features (Our patients did not have electrodes near those regions).

Second, I developed the algorithm of their work and applied it to our data as well as

their data (elastic net logistic regression). The algorithm could detect the letters in their

data but no digits from our data.

Accordingly, we came to the knowledge that two conditions should hold for us to be

able to detect the digits. First, we have to have electrodes really close to the regions
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(a) Patient 04
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(b) Patient 12
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(c) Patient 13

Figure 3.14: Decisive feature cells. In this figure informative classification features
of 3 patients are shown in panels (a), (b), and (c). The x axis shows the time. The
time 0 indicates the time the patient’s response registered in the computer. Negative
time means the time before the response is submitted. For each patient, two electrodes
with the most often selected features are shown. The time-frequency-electrode schema
can be observed in the images. The dark blue color-code indicates that a cell is not
selected for the classification and the other colors represent the F-value of ANOVA.
Considering the fact that the total number of selected features are 400, it speaks of
locality of selected features across the brain. These images indicate that the particular
mental process are locally distributed. It can be also observed from the plots that the
mental process of thinking about the digits stared before physically expressing them.
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in the brain in which the person mentally processes the digit (like patient No.4) or we

have electrodes near visual cortex. Since our epilepsy patients were implanted mostly in

temporal lobe and frontal lobe, there was no chance for us to use the second possibility.

3.2 Face direction paradigm

In this section, the second iEEG study is presented. Visual data which are captured

from either of our eyes are transmitted to the thalamus and then to the contra-lateral

hemisphere. Referring to the chapter 1, the visual cortex is primarily dedicated to

process the visual data from a basic edge detection to complex object detection and

recognition. The processed visual data however is not meant to circulate merely within

the visual cortex but to be transmitted to the other cortices to update the centers for

memory, perception and attention. It is widely hypothesized that the visual information,

after the elementary preprocessing steps falls into two primary data pathways to be

processed in the form of working memory [42, 63, 75, 77]. In literature, these pathways

are known as ventral and dorsal data streams (See figure 3.15). The ventral visual

pathway is believed to transfer the data when the person wants to check the identity

of a seen object. The ventral pathways is also known as ”what pathway”. In contrast,

the dorsal visual pathway is assumed to convey the information when the features of a

seen object is intended to be processed. The dorsal pathway is known as how/where

pathway.

(a) Ventral visual stream (b) Dorsal Visual Stream

Figure 3.15: Visual data streams. Figure (a) shows the ventral pathway of visual
data stream. This pathway is hypothesized to convey information about the entity of
a seen object. Figure (b) represents the dorsal visual stream pathway. Dorsal visual

stream is meant to transmit the features of an observed object.
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In the current study, a paradigm is designed to test the differences of brain visual data

processing pathways. For this sake, we probe the epilepsy patients with the face of

people in different conditions. Three testing cases were thought, a. identify the face of

a person b. check the features of a persons’ face c. see the face and do not process the

face (control). Consequently, to make it possible for the patients to conduct the above

conditions, for each trial of the paradigm, we present them with two consecutive images.

The first is to show them a face and the second is to show them a comparison image to

guide the participants to process the face information differently (delayed-matching-to-

sample paradigm). The conditions are summerized below. The paradigm and the data

is shared between this project and the work reported by Leszczynski et. al [77].

1. Face identity task: is to maintain the identity of a novel face presented and

compare its identity to the second upcoming image. Here, we aim at checking for

the ventral visual pathway or what pathway.

2. Face direction/orientation task: to process the orientation of the gaze of the

presented face, match it with the position of a white square presented in sec-

ond image (upward left, straight left, downward left, upward right, straight right,

downward right). Here, we intend to direct the processing of visual information

through the dorsal pathway or how/where pathway.

3. Control/Gaze task: not to maintain any item in the first image and tell the

orientation of the gaze in the second image regardless of what has been shown in

the first image.

In the Identity block, they had to press a left-hand button if the probe face matched

the sample face and the right-hand button otherwise. In the Gaze direction block, they

had to press the left-hand button if the position of the dot matched the gaze direction

of the sample face and the right-hand button otherwise; and in the Control block, they

had to press the left-hand button if the gaze of the probe face was to the left and the

right-hand button otherwise. Thus, in the Identity block, participants had to maintain

information about the identity of the face (but not on its gaze direction), while in the

Gaze direction block, participants needed to remember the gaze of the sample face

(but not its identity). In the Control block, participants did not have to maintain any

information on the sample face. In each block, 50% of all trials were match trials and

50% were mismatch trials. There was no limitation in response time of the participant

as the next trial started only when they had made a button press. After responding,

participants received visual feedback on the accuracy of their response (by a green or a

red). The feedback was presented for 500 ms followed by an inter-trial interval of 3000

ms duration. Blocks were interrupted by breaks of few minutes duration.
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Figure 3.16: Face direction paradigm. The paradigm is composed of three blocks,
”identity”, ”direction” and ”control”. In the ”identity” phase, the participant is pre-
sented with a portrait image and asked to maintain the identity of the face. In face-
”direction” task, the participant is asked to retain the orientation of the face. In
”control” task, the participant is asked to tell the orientation of the gaze regardless
regardless of the first image. For every trial, six events happens. 1. A face is shown for
500 ms. 2. An inter-stimulus time of 2700 ms time for maintaining/not-maintaining
the seen face is given. 3. The second probe comes up for 500 ms and the participant
has to check whether the first prob matches the second. 4. The participant has unlim-
ited time to give his/her judgment. Meanwhile a fixation cross appears in the center
of screen and the participant is asked to fix his/her gaze to the cross sign to avoid
data contamination. 5. The correct answer appears on the screen for 500 ms. 6. An
inter-trials interval of 3000 ms is given to dampen the memory process of the last trial.
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3.2.1 Patients and data

Nineteen patients has been participated in the task. Due to data lost, iEEG artifacts and

other technical recording issues, we excluded 5 patients. Therefore, we remained with 14

patients (8 female; age±SD: 35±11) and they were all recorded from 2009 to 2010. The

patients were with pharmacoresistant epilepsy who had been implanted with intracranial

electrodes for diagnostic purposes. Depending on the suspected ictal onset zone, patients

had been implanted with subdural strip and/or grid electrodes. Different patients had

different locations and number of electrodes (No. ContactsSD: 60± 17). In this report,

the number of electrodes and the number of contacts are used interchangeably (see figure

3.17).

Figure 3.17: Electrode implantation of face-direction paradigm. Each color-coded
ball represents an implantation position of a particular patient. The electrodes are
localized by using pre- and post-implantation MRI images through Pylocator software.

The recording condition and the recording electrode and devices are the same as digit

classification paradigm. Artifacts were automatically rejected using our Matlab script.

Referring to our artifact rejection algorithm 4, trials containing more than one third of

electrodes with epileptiform artifacts were removed from further analysis counting for

propagating nature of epileptic activities.

3.2.2 Data analysis and classification

In order to obtain a model for brain’s visual data streams in our paradigm, we labeled the

trials of each block with the same category they belong to. Therefore, we end up with

three classes of memory tasks: Identity-Class, Direction-Class, Control-Class. Multi-

variate pattern classification analyses were used to identify distributed activity patterns

which differentiated between the three task conditions. The detail of classification phase
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is identical to the previous paradigm and therefore, I skip it here. Nonetheless, the

general settings is described below.

We excluded electrodes which are reported as pathological electrodes by clinical physi-

cians. We applied artifact rejection algorithm to the data to exclude trials or electrodes

covered with unusual spikes. To minimize the edging effects which occurs after the fre-

quency filtering procedure, we segmented the data into relatively large time intervals of

2s before to 3s after the onset of the sample stimulus. Yet, we added a 1s flipped copy

of the beginning of the signal to the beginning and a 1s flipped copy of the end of the

signal to the end. The resulting data (7 second) were filtered using second order But-

terworth filter in 8 common EEG frequency bands (delta [1-4Hz], theta [4-8Hz], alpha

[8-12Hz], lower beta [12-20Hz], higher beta [20-30Hz], lower gamma [30-50Hz], middle

gamma [50-75Hz], and higher gamma [75-110Hz]).

We tested a great range of feature choices to find the best feature which suits out

model training and found out that power of Hilbert transform works best for our data.

Next,we applied Hilbert transformation to the filtered signal and calculated the power.

Afterward, we considered a five fold cross-validation schema in which we shuffled the data

and split it to five folds, by considering each fold at a time as the test set and the rest as

training set. We extracted frequency-specific power values by Hilbert transformation of

stimulus and then disregarding both 3500 ms from the beginning and 1000 ms from the

end. Empirically, we skipped over the baseline correction phase for this dataset since it

showed no positive influence on the classification results which is also suggested in [59]

to be occasionally legitimate.

We conducted a feature selection procedure by computing a one-way ANOVA of activity

in the different blocks with block (Identity vs. Gaze direction vs. Control) and extracted

F-values. Then, we averaged F-values in non-overlapping time bins of 30 ms for each of

the 8 frequency bands, resulting in 83 × 8 = 664 values per trial per electrode. Time-

bin intervals whose average p-value was above 0.05 were excluded. The total number of

potential features was the number of electrodes times the remaining time-bin values per

trial. Bins with higher averaged F-value selected as features. This resulted in 400 (SVM

classifier) to 500 (Random-Forest classifier) values per participant chosen experimentally

to pose less overfitting on the classifier of choice. In case of having less 400 bins, then

we made use of all available non-zero bins. The selected bins were our informative clues

and our features.

Selected electrodes are scattered across electrodes in middle and high gamma frequencies

and concentrated in limited number of electrodes in lower frequencies. It is important

to notice again that this was done in a 5-fold cross-validation schema in which 80%

of the data served as a training set in the subsequent pattern classification analysis
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and feature selected is first applied on the training set; then, the same selected feature

indexes obtained from training set are selected from test set, to avoid any information

sharing between training and test set.

In the next step for learning and classification: to make the features selected from the

last phase prepared, we stacked all extracted power values of Time-Frequency-Electrode

points of each trial in a single vector. In the training phase these feature vectors were

labeled with their original trial label ( Identity-Class, Direction-Class, Control-Class)

and fed them to the classifier. We have employed Sequential Minimal Optimization

(SMO) classifier for this paradigm too, to train a model out of the training samples.

We made use of Weka [81] implementation of the classifiers with a wrapper for Matlab.

In the next step, to evaluate the accuracy of our classification, we tested the already

learned model against test data. Comparing predictions and actual labels of the test

data brings out the accuracy.

3.2.3 Results

In the following, I present the classification accuracy results. A time period of 2500

ms after the offset of the first stimulus (encoding) is chosen as the main time period

of interest which represents the memory maintenance time. Figure 3.18 illustrates the

classification accuracy across three main conditions. Blue bars are the mean average

accuracy of five folds of classification. To be able to estimate the significance of the

classification, we have measured the accuracy of the surrogate data (as described in

3.1.1.4). According to the plot, all 14 subjects have significant classification result.

In addition to three conditions case, we can investigate the binary classification of two

cases of above mentioned classes like (Identity Class/Direction Class), (Direction Class/-

Control Class) and (Identity Class/Control Class) individually. The procedure of per-

forming classification remains the same as mentioned above. In the following we report

the classification accuracy of these cases (Figures 3.19, 3.20, 3.21).

3.2.3.1 Relevant electrodes and frequencies for classification using SVM

We extracted relevance (measured as a number of features selected) of each frequency

and electrodes. In the following figures, the relevance of electrodes and frequency bands

is highlighted by its size and color. The more the features were selected from a particular

electrode in a certain frequency band, the bigger the ball becomes and more red-color

is assigned. In this analysis , we considered the eight different frequency bands in our

features selection process which are as explained above. (See figure 3.22). Based on the
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Figure 3.18: Classification results of 14 individuals for three conditions: face direction,
face identity and control conditions. SMO classifier is used. The classification is applied
to 2500 ms window after the first stimulus offset (maintenance phase). On the horizontal
axis, the reference label of each participant is shown as well as the average classification
accuracy. On the vertical axis, the classification accuracy (%) is illustrated. The blue
bar in the plot shows the mean accuracy of empirical data classification across five
folds for each participant. The yellow line represents the 95 percentile of surrogate

classification results, indicating the significance level.
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Figure 3.19: Classification results of 14 individuals for two conditions: face direction
vs. face identity condition. The classification is applied to 2500 ms window after the
first stimulus offset (maintenance phase). On the horizontal axis, the reference label of
each participant is shown as well as the average. On the vertical axis, the classification
accuracy (%) is illustrated. The blue bar in the plot shows the average accuracy of
empirical data classification of 5 folds for each participant. The yellow line represents

the 95 percentile of surrogate classification results, indicating the significance level.



78 Chapter 3. Machine Learning and Intracranial EEG

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 Average
0

10

20

30

40

50

60

70

80

90

100
Mean Accuracy Mean Surrogate 95 Percentile Surrogate

Patients

Cl
as

si
fc

at
io

n 
Ac

cu
ra

cy
 (%

)

Figure 3.20: Classification results of 14 individuals for two conditions: face identity”
vs. control condition. The classification is applied to 2500 ms window after the first
stimulus offset (maintenance phase). On the horizontal axis, the reference label of each
participant is shown as well as the average. On the vertical axis, the classification
accuracy (%) is illustrated. The blue bar in the plot shows the average accuracy of
empirical data classification of 5 folds for each participant. The yellow line represents

the 95 percentile of surrogate classification results, indicating the significance level.
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Figure 3.21: Classification results of 14 individuals for two conditions: face direction
vs. control condition. The classification is applied to 2500 ms window after the first
stimulus offset (maintenance phase). On the horizontal axis, the reference label of each
participant is shown as well as the average. On the vertical axis, the classification
accuracy (%) is illustrated. The blue bar in the plot shows the average accuracy of
empirical data classification of 5 folds for each participant. The yellow line represents

the 95 percentile of surrogate classification results, indicating the significance level.
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images, delta and higher gamma frequencies play greater roles in modeling differences

between ventral and dorsal visual pathways.

3.2.3.2 Checking feature importance using random-forest

By using a tree classifier, apart from the classification results, one can also obtain the

importance of the features used in the classification. This is due to the way a tree

classifier makes use of the features. In that, some features are randomly picked out of a

set of all available features to take part in the classification process. Tree classifiers, step

by step, split the samples based on each individual feature. Thus, during the training,

the discriminability of each feature can be also obtained as a byproduct. This can help

us to back-trace the classification effect to tell which parts were mostly associating in

building the model.

Here, as a tree classifier of choice, I used random-forest classifier as it is believed to be a

classifier with high classification accuracy in the field of machine learning and is known

to have superb generalization abilities. After the training procedure in Random-Forest,

every feature retains a ranking in the range of [0 1] for its importance in the classification

process and consequently, can be used in our study to reveal the underlying brain activity.

In the following, we report the results of pattern classification using Random-Forest. (see

Figure 3.23).

The important features can be seen as those which survived the ANOVA feature reduc-

tion procedure. Based on the position of the electrodes and the frequencies in which

the important features exist, we can plot them on the brain surface for each frequency

band separately (see figure 3.24). The figure is spread into two pages. Corresponding to

eight frequency bands. The figure in aligned in eight rows, each represents a frequency.

At each row, two images are shown, each of them shows a brain hemisphere. On each

image, red and black dots are shown. If a cell (frequency-electrode cell) was inactive,

then the corresponding dot is black. If it is red, it means that the cell was active and

the bigger the size of the cells are, the more important the cells are in the classification

process.

3.2.3.3 Checking the importance of frequency bands

To test the importance of a single bands to the classification accuracy, I excluded, one

frequency band at a time from the signal in each step, and then ran the 3-way clas-

sification as explained before. Bands were defined as: Delta (1-4 Hz), Theta(4-8 Hz),
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Figure 3.22: Continued in the next page ...
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Figure 3.22: Pooled feature relevance plot. The features of all patients are pooled
into the brain plots. The relevance of each selected feature is highlighted by the its color
and size on the brain hemisphere across different frequencies. The bigger and more red
a ball is, the more relevant that particular features was. It can be observed from the
images that delta and higher gamma frequencies played greater roles in distinguishing

visual pathways from another.
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Figure 3.23: Classification results using random-forest for 14 individuals for three
conditions: face direction, face identity and control conditions. The classification is
applied to 2500 ms window of data after the first stimulus offset (maintenance phase).
On the horizontal axis, the reference label of each participant is shown as well as the
average. On vertical axis the classification accuracy (%) is illustrated. The blue bar
in the plot shows the average accuracy of empirical data classification of 5 folds for
each participant. The yellow line represents the 95 percentile of surrogate classification

results, indicating the significance level.

Alpha(8-12 Hz), Beta(12-30 Hz), Gamma(30-110 Hz). Next, I compared the classifica-

tion accuracies assuming that if a given band caries relevant information, its exclusion

would result in accuracy drop. Table 3.3 summarized the results of t-test between all-

inclusive frequencies case and one-band-out case. Excluding only the Gamma band

(30-110 Hz) resulted in a significant (p < 0.017) drop (62.7 to 60) in accuracy while

excluding other bands did not affect the accuracy significantly. This can indicate that

other frequencies rather than gamma may share some information overlap but gamma

contains some unique information which is not available in the other bands.

3.2.3.4 Checking the interplay of alpha vs. gamma frequency bands

Based on the work published by my colleague Dr. Marcin Leszczynski [77], we came up

to the idea of testing the hypothesis of ”interplay of alpha vs. gamma frequency bands”

with machine learning techniques.

The maintenance of face identity has been proposed to be associated with increased

gamma power over the medial temporal lobe (MTL) [63] and increased alpha power

over dorsal stream. Alpha waves reflect inhibition of uninvolved brain area for the

current task [66].

The opposite was also suggested for the maintenance of gaze direction. In the MTL, an

increase in alpha power is observed and in the dorsal stream, an increase in gamma [63].
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Figure 3.24: Continued in the next page ...
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Figure 3.24: Feature importance plot. An importance metric for each feature in the
classification process can be extracted from random-forest classifier. In the figure, the
feature importance is pooled and plotted for all patients. Since the time-frequency-
electrode schema is used, it is also possible to trace back the location of each important
feature across different frequency bands and electrode positions. Having the MNI co-
ordinations of electrode tips, we can localize the brain activity. Black dots indicate
no-activity while red dots indicate that features from the an electrode is pariticipated
in the classification performance. The bigger the size of the ball is, the more important

that electrode is (higher F-value).
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All bands included Delta band excluded Theta band excluded Alpha band excluded Beta band excluded Gamma band excluded

Patient

P01 50 43 49 43 49 42 52 42 53 44 53 44
P02 73 42 78 43 70 44 73 42 73 42 73 42
P03 59 43 64 42 57 43 56 43 59 43 54 42
P04 59 43 53 42 59 46 60 42 58 43 59 44
P05 66 40 63 42 66 42 65 41 69 43 64 41
P06 59 46 55 45 64 45 58 45 60 45 56 45
P07 58 41 49 43 57 42 53 44 52 42 52 43
P08 62 48 55 43 62 42 64 48 62 51 62 48
P09 52 43 55 43 48 42 50 43 54 47 52 42
P10 45 44 42 42 47 42 44 41 41 43 41 43
P11 74 46 76 44 73 45 77 47 76 47 70 45
P12 71 44 70 42 75 44 73 44 67 43 67 44
P13 82 43 77 42 83 44 81 42 82 42 81 42
P14 68 43 65 41 71 42 72 42 70 40 68 41

Average 62.7142857 43.5 60.7857143 42.6428571 62.9285714 43.2142857 62.7142857 43.2857143 62.5714286 43.9285714 60.8571429 43.2857143
STD Error Mean 2.74047516 0.5522183 3.05657025 0.26945494 2.90218615 0.38055153 3.00078483 0.56867468 2.93278978 0.74468288 2.7968922 0.50740204

Classification   Accuracy of Empirical Data

h 0 h 0 h 0
p 0.1217 p 0.7607 p 1
ci -0.5878 4.445 ci -1.7024 1.2738 ci -1.4323 1.4323

stats:
tstat: 1.6557

stats:
tstat: -0.3111

stats:
tstat: 0

df: 13 df: 13 df: 13
sd: 4.3583 sd: 2.5774 sd: 2.4807

h 0 h 1
p 0.8499 p 0.0169
ci -1.4562 1.7419 ci 0.392 3.3223

stats:
tstat: 0.193

stats:
tstat: 2.7383

df: 13 df: 13
sd: 2.7695 sd: 2.5376

Mean 
Accuracy

95 
Percentile 
Surrogate

Mean 
Accuracy

95 
Percentile 
Surrogate

Mean 
Accuracy

95 
Percentile 
Surrogate

Mean 
Accuracy

95 
Percentile 
Surrogate

Mean 
Accuracy

95 
Percentile 
Surrogate

Mean 
Accuracy

95 
Percentile 
Surrogate

T-Test  
All-Bands vs. Delta-Exclude

T-Test  
All-Bands vs. Theta-Exclude

T-Test  
All-Bands vs. Alpha-Exclude

T-Test  
All-Bands vs. Beta-Exclude

T-Test  
All-Bands vs. Gamma-Exclude

Table 3.3: Checking the importance of frequency bands. The upper table shows
the details of classification accuracy for the cases of excluding one frequency band as
well as surrogate test results. In the lower part, the results of t-tests for the case of
band-reject vs. all inclusive frequency bands is presented. It can be understood that
only by removing gamma activity, the classification accuracy will drop significantly and
therefore, gamma should play an important role in distinguishing between three tasks.

Since most of the electrodes in our patients are localized in the MTL and also the fact

that the MTL has been suggested to support the maintenance of face identity, we could

test the whether the maintenance of face identity.

To this end, we performed some binary classifications: (Identity vs. Control) and (Di-

rection vs.Control) and excluded alpha and gamma frequencies one by one [66]. We

expected that excluding gamma frequency would deteriorate the classification perfor-

mance between ”Identity and Control” but keep intact the classification accuracy be-

tween Direction and Control. The opposite should be observed when we exclude alpha

frequency band. Having only MTL Electrodes for two mentioned cases, we observed

a significant drop in accuracy when classifying Identity vs. Control when excluding

Gamma-band compared to all-inclusive case [tstats = 2.5098, p = 0.0261]. However, no

significant change observed when excluding Alpha-band. On the other hand, we saw a
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marginally significant drop in accuracy in classifying Direction vs. Control by removing

Gamma-band [tstats = 2.0334, p = 0.0629] but not when rejecting Alpha-band.

Combining it with the results of previous section we can conclude:

1. Classifying by excluding one / including one frequency band: Only Gamma-

exclude showed a significant drop

2. Classifying MTL Electrodes, by excluding one frequency band: Only Gamma-

exclude showed a significant drop

Our results indicate also the inter-play between gamma and alpha while maintaining the

identity of a face.

3.2.3.5 Electrode combinations

To check how the decoded information can be discovered all over the brain, we tried

to find the optimum number of electrodes suits for the classification and extract ideal

distances between their locations. To this end, in a very exhaustive analysis, for every

participant, we classified the maintenance interval data of the three classes, by combining

different number of electrode. All possible combinations of electrodes would lead to years

or even decades of calculation. For instance, for 50 electrodes, there are r = 1..50 possible

electrode numbers to choose, and for each number there would be 50!
r!(50−r)! combination,

which leaves us with billions of combinations. To keep the number of combinations grow

linearly, I designed an algorithm to alleviate the complexity, yet only partially sampling

the space of all possible combinations. To summarize:

1. Calculate the classification accuracy for all single electrodes individually.

2. Among them, select 10% of the electrodes with the best classification accuracy

and 10% of random electrodes from the remaining channels. Then, calculate the

accuracy from all possible binary combinations.

3. Among them, select 10% of the combinations with the best classification accuracy

and 10% randomly from the rest of electrodes which were not included in the

chosen combinations. Then, calculate the accuracy of adding those newly selected

electrodes one by one to survived combinations.

4. Continue the previous step until no other electrode remained to be added.
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In this way we have excluded the non-optimum combinations from the total calculation

procedure and the processing time for each participant has been scaled down to 1 month

in average. For this calculation I made use of DZNE 4 institute data cluster with 192

cores. Figure 3.25, represents the maximum accuracy obtained from having different

number of electrodes in the classification. It can be seen that the classification can

be done even by having a single electrode. However, the best combination obtained

when we have at least 3 or 4 electrodes used in the classification procedure. I then,

ran some t-tests to check the effect of having more electrodes for iEEG classification.

The difference of having one electrode compared to two is significant (p < 0.00034) and

also the difference of having two electrodes vs. three is significant (p < 0.003) but the

difference between having three electrodes to having four electrodes is not significant

(p > 0.63).
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Figure 3.25: Combinations of electrodes used for classification. For each patient there
is a maximum accuracy of having n electrodes. It can be seen that with one electrode,
it is still possible to perform the classification above the chance level. However, having
two and then three electrodes, the classification accuracy significantly increases. From
having four electrodes and more on, adding extra electrodes does increase the maximum

accuracy significantly.

3.2.3.6 Potential confound variables

The current design-block in which the conditions are arranged block-wise and away

from each other in time, and with few minutes of inter-block intervals, one might argue

4Deutsches Zentrum fr Neurodegenerative Erkrankungen, DZNE, www.dzne.de
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that the classification results could be affected by some time dependent (other than

condition specific) external or physiological signal. To investigate the effect of potential

confound variable in our data, we have checked the order of tasks in which the blocks

were performed for every patient.

Block halves classification We divided each block into two halves. Then, a binary

classification was performed on the halves of classes. To explore the effect of time on the

classification accuracy (SVM/SMO), we performed classification between outer halves

of the first and the second block, those halves which were temporally more distant. In

another run, we ran classification between inner halves of the first and the second block,

those halves which are closer/adjacent in time (see figure 3.26).

Time

First Block Second Block

Figure 3.26: Classifying block halves. Each color (blue and green) represents a block.
Trials of each block in the figure are divided into two halves, the earlier and later in
time. The classification will be then proceed with two settings: inner halves, those are
temporally close to each other and outer halves, those are temporally far from each
other. Then, the classification accuracies of both settings are compared. In particular,
we used machine learning and statistical tests to validate another machine learning

task.

Having accuracy results of two classification cases, we can run a pairwise t-test to de-

termine if the classification results of inner halves differ from the classification of outer

halves. Assuming that some hidden time-dependent variables might contribute to clas-

sification accuracy, we expect a significant t-test result. Since there was a time gap

between consecutive blocks, to have equal gaps between block halves and inter-block

interval, I excluded some trials from the middle of each block equal to the length of

inter-block gap. For this analysis, I excluded two patients who had done the task with

inter-block time intervals more than half of the surrounding blocks. Testing 3 possible

binary classification combinations, Identity vs. Direction, Direction vs. Control and

Identity vs. Control once for inner halves and once for outer halves, there was no signifi-

cant difference between inner and outer halves of all possible binary classifications. This

suggests that the time dependent noise if at all does not contribute to the classification

results significantly.
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Between blocks vs. within blocks classification To further investigate the pos-

sible contribution of time dependent noises to our results, I aligned all blocks in their

true temporal order and divided each block into two parts. Subsequently, I measured

the classification accuracy of adjacent block halves, no matter if they were from the

same block or from consecutive blocks (first part of the first block vs second part of

first block; second part of first block vs. first part of second block, etc). As a result, 5

different classification results were obtained, 3 for block halves of the same blocks and 2

for between blocks. The reason here was to test blocks of same temporal distance that

either come from different classes (between blocks classification) or come from the same

class and only time dependent factor contributes.

We expected to observe significantly higher classification accuracy for between block as

compared to within block classification (task related brain activity). This would indicate

that despite any potential time correlated noise, the difference between conditions can

be reliably classified. We considered two settings. For the first setting, we averaged the

accuracy of within block classification of first and second blocks and compared it with

the classification accuracy of the second part of the first block vs. first part of the second

block by doing t-test. We got [t = +2.7354, P < 0.01]. In addition, we compared the

average accuracy of within block classification of the second and third blocks to the

classification accuracy of the second part of the second block vs. the first part of the

third block and we got [t = −2.0995, P < 0.05] (see Figure 3.27(a)).

For the second setting, we separately averaged classification accuracy across three within-

block halves (i.e. accuracy of the classification between halves of the first block, second

and third block) and two across block halves (i.e. accuracy of classification between the

second half of the first block and the first part of the second block, the second half of the

second block and the first half of the third block). Next, we compared this aggregated

accuracies with t-test and we got [t = −2.2089, P < 0.05] (see Figure 3.27(b)). These

results would support the idea that the main effect in classification is not driven from

time based factors.

Distant vs. adjacent classification To further investigate the possible contribu-

tion of time-based causes in the classification results, I re-ordered the results of binary

classification blocks temporally. As a result, we got class labels as: (First Block vs.

Second Block), (Second Block vs.Third Block) and (First Block vs. Third Block). Next,

I ran t-test among the combinations of mentioned classification results. It turned out

that the classification accuracy of first vs. second and first vs. third is significantly

better than the classification of second vs. third block [t = +3.642, P = 0.003] and

[t = −.4.577, P = 0.0005]. However, the classification accuracy of first vs. second
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Figure 3.27: Comparing consecutive block halves of adjacent blocks. 5 classifica-
tion sets obtained, 2 sets for between blocks and 3 sets for within block classification.
Performing a t-test between these two conditions would indicate the existence of any

prominent time-based noise.

compared to first vs. third is not significantly different. The interpretation of this result

is complicated. On one hand, it speaks of the effect of the first block in the classification

process and on the other hand, it indicates that there is no time-based noise in the late

stages of the experiment. Consequently, it is difficult to take a side.

3.2.4 Discussion

In this study through an experimental paradigm, and with the help of pattern classi-

fication techniques, we examined a theory in the realm of cognitive neuroscience. The

question I posed was to check for patterns in which the ventral and dorsal visual streams

can be distinguished from another. According to our results, these patterns can be found

mostly in delta and gamma frequency bands and gamma contributes significantly in the

classification process. I proved that the classification results are significantly above the
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random level and hence, reliable. I also found out that the power (or amplitude) of

the signal, as a feature, can pinpoint the types of visual data streams activities. Ad-

ditionally, these pattern can be extracted from a single electrode if it is positioned in

the right place (e.g near medial temporal lobe) and with having three good electrodes,

we can reach close to the best classification performance even if we do not have any

electrode in the dorsal stream regions. This makes sense since the absence of power in

some particular frequencies may indicate that the brain is processing in other regions.

The above results, corroborates some of the previous findings and adds to them. Ac-

cording to our tests to search for temporal confound variables, our analysis passed two

of them but we could not draw a clear conclusion from the third one. Thus, we decided

not to publish the work since it is not possible at this moment to prove/disprove the

existence of temporal confound variables.

3.3 Applying deep learning to iEEG data

I have developed deep learning algorithms for two iEEG studies. In the first case,

two algorithms were developed for Sternberg paradigm to classify digits. Secondly, an

algorithm was developed on the data of an already published work from our group [26].

3.3.1 Deep learning on Sternberg paradigm

I have exhausted numerous deep learning algorithms on iEEG data of Sternberg paradigm,

all under two branches of deep learning algorithms: modern multi-layer perceptron and

convolution neural networks (CNN). The technical details of developing mentioned deep

learning algorithms are covered in chapter 2 and also in chapter 4 in the deep learning

section. Below are the short descriptions of the settings and results.

For the case with deep multilayer perceptron, the only main modification to the presented

settings of this chapter was to replace the SMO classifier with the deep neural network.

Various adjustment are tried, and it turned out that they do not perform better than

our conventional classifiers. As with using SMO classifier, I could decode the brain

activity of three patients above random level, with deep multilayer perceptron, it failed

to perform that well (only patient no.4 was above random level, 20% accuracy). I have

also tried to reproduce more samples (by data imputation, data augmentation), but they

were of no further help to the classifier.

In a separate run, I have also developed a CNN network and fed the time-frequency-

electrode plots as images to the network. This procedure was meant to resemble the
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mainstream image classification tasks using CNNs in which, the feature extraction is

performed automatically by the network. Performing this procedure with various layers,

filters, and drop-out settings did not bring any results better than random.

These results can indicate the importance of applying feature extraction and feature

selection in cases in which the number of features are significantly higher than the

number of samples. Technical facts also support this reasoning. In our data, the number

of features are really higher than the number of instances. Yielding a neural network

from such data will build a wide network (as opposed to deep). In theory, wide neural

networks are harder to train and, require more data than narrower ones. The amount

of diversity reflected in the data is not sufficient enough to train such network; and this

is the reason why our proposed framework work better.

3.3.2 Deep learning on Derner et al. data

A machine learning work from our group [26] has used the phase of iEEG signal to

decode brain activities using SVM.

In the study, 27 epilepsy patients participated who were implanted with intracranial

electrodes in the entorhinal cortex and hippocampus. The patients’ task was to perform

a word recognition paradigm, in which German nouns were presented. There, in two

rounds, 450 words were presented, 150 words only once and 150 words with one repeti-

tion. The presented words were shown for 300 seconds and the inter-stimulus interval

varied from 1600ms, 2000ms or 2700ms ± 200ms adjusted based on the initial perfor-

mance of the patients. Individuals had to decide whether or not, the observed word

is presented before. Two classes of data were defined: ”remembered” and ”forgotten”

based on the performance of the patients in the second round of word presentation.

The phase of iEEG data were extracted from different electrodes and were used in the

pattern classification procedure.

I examined the corresponding dataset with a deep learning algorithm to see if any

improvement can be achieved. In the published work, two different phase based time-

frequency arrays were presented. In addition to them, I have added two power based

time-frequency arrays and made a 4D data out of it. That is, every single trial was

represented by a 4D image. This data can be put in a CNN (similar to image processing

tasks) to classify the patterns into their corresponding classes (binary classification).

Trials of all two classes were upsampled (augmentation techniques) by making different

combinations of images of the 4D data to 5000 samples for each class.
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At the input level, the data were fed as an array of 100× 100× 4 to the network. Three

convolution layers were considered (2D convolutional), each with a proceeding pooling

layer:

• Convolutional layer 1 (num. filters=8, kernel size=2, activation function=ReLU)

• Max pooling layer (pool size=2)

• Convolutional layer 2 (num. filters=4, kernel size=2, activation function=ReLU)

• Max pooling layer (pool size=4)

• Convolutional layer 2 (num. filters=4, kernel size=2, activation function=ReLU)

• Max pooling layer (pool size=4)

• Dropout (20%)

• dense layer (activation=softmax)

By applying training the network and testing on it, no accuracy better than 55% is

achieved which is not superior to the results reported in the publication. We can argue

the same as with our previous deep learning analysis that the amount of diversity in the

data is not sufficient to train the neural network better than other algorithms.

3.4 Summary

In this chapter, a machine learning based framework for analyzing (i)EEG data is intro-

duced in which the following points are addressed and discussed in detail:

• How the data should be seen (time-frequency-electrode cell concept)

• How to remove artifacts from the signal

• How to transform the data to gain more information (from power and phase)

• How to measure features from power and phase

• How to reduce the dimensionality and complexity (ANOVA feature selection)

• How to train and evaluate the data

• What is the optimum number of electrodes and how to find it
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• How to infer additional facts in post-classification phases by applying machine

learning on different segments of data

The above mentioned point were presented through two dataset, ”Sternbeg” and ”Face

direction” paradigms to show how far we can go with machine learning algorithms in

analyzing and decoding (i)EEG brain data.

Finally, a short reference to deep learning algorithm is given, to check whether or not

using deep learning is advantageous on these types of data.



Chapter 4

A multimodal, non-EEG based

approach to detect epileptic

seizures

4.1 Introduction

4.1.1 What is epilepsy?

Epilepsy is a common brain disorder among all nationalities. Typically, one percent of

the population in every society experience epilepsy in their lives. People with epilepsy

have epileptic seizures in which brain activity temporarily blocks the brain from carrying

out its normal functions. If some part of the brain malfunctions during an epileptic

seizure, it might be trapped in a synchronistic pattern with other neurons instead of

carrying out its normal task. As a result, abnormal commands are then sent to segments

of the brain and organs which are connected to that part of brain [4]. For instance, in

case that an epileptic seizure attacks the movement area of the brain, the behavioral

response would be involuntary muscle contraction or random limb movement. Different

people may encounter with different types of epileptic seizures.

Various types of seizures have been classified based on their characteristics. One marker

used to identify the seizures, is the focality. Focal (or partial) seizures are those which

affect only a region of the brain, whereas generalized seizures which spread vastly in the

regions of two hemispheres. Generalized tonic-clonic seizures (GTCS) are well-known

types of generalized seizures which are involved with severe body movement. Focal

95
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seizures can be Simple Partial Seizures (SPS) which occur with short loss of conscious-

ness but with no significant irregular movement or behavior. In contrast, Complex Par-

tial Seizures (CPS) affect only one region of the brain but are accompanied by seemingly

meaningless types of behavioral activities such as smacking, licking leaps, or senseless

laughing [4].

In addition, the origin of an epileptic seizure can also be viewed as a criterion for

classification. As mentioned earlier, each hemisphere of the brain is segmented into four

regions called lobes, namely (temporal, frontal, occipital, and parietal). In practice, it is

possible to distinguish between seizures which are originated from frontal lobe and the

seizures originated from temporal lobe.

The methods and medications used for treating epilepsy patients vary and are based

on the type of epilepsy which has been diagnosed. One standard method for detecting

the epilepsy origin is electroencephalography (EEG). In an EEG study, electrodes are

either attached to the surface of the skull, implanted subdurally, or implanted deep in

the brain tissue to record and track the electrical charges of the brain. If only certain

electrodes sense neural abnormalities during a seizure, then the seizure is classified as

focal and the origin of the seizure can be determined. Likewise, if signal abnormalities

are detected throughout the brain, then the existence of a generalized seizure can be

ascertained. Additionally, an electrode displaying early signs of signal irregularity would

determine the origin of the seizure.

4.1.2 Seizure detection systems

In order to implement optimal drug treatment for controlling epileptic seizures, special-

ists must know the exact number and frequency of the seizures for each patient. To this

end, epilepsy patients are advised to keep a diary and document their seizures as soon

as they occur. However, many patients are unaware that a seizure has taken place or

they simply forget to document them afterwards, thus rendering the seizure diary a very

inaccurate and unreliable tool [37, 58, 65].

With assistive technology, patients can increase awareness of their bodies and their

environment. To increase the performance of seizure counting, assistive systems have

been developed [23, 78, 92, 100]. These assistive technologies try to trace and detect

the seizure signs and symptoms and to differentiate between seizures and non-seizure

events. The trend in recent years has been towards developing seizure detection systems

for daily use which can be easily worn by the patient and are non-invasive.
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EEG is probably the most reliable tool for detecting seizures. However, using EEG for

recording and tracking seizures on a daily base is not optimal, even with the available

mobile EEG systems [27, 28]. Attaching electrodes and wires to the head and then cre-

ating a recording which is susceptible to noise makes using a daily-based EEG recording

system impractical. In addition, a portion of focal seizures can not be tracked with

surface EEG. In recent years, there has been endeavors to develop non-invasive seizure

detection systems which could be used daily and easily by patients. Moreover, other im-

plantable intracranial EEG recording systems, despite their high signal-to-noise-ratio,

are invasive and require surgery [52].

To develop non-EEG seizure detection systems, the effects of a seizure should be investi-

gated using other biomarkers. Studies reveal that both the sympathetic nervous system

(SNS) and parasympathetic nervous system (PNS) reflect some variation in their normal

behavior during and after seizure events [79, 93, 99].

The physiological effects of epileptic seizures can be sensed in several regions of the

patient’s body. During a seizure, the heartbeat pattern deviates from its normal condi-

tions. These changes are referred to as heart rate variability (HRV). Apart from HRV,

the conductivity of the skin alters during a seizure. Tonic-clonic seizures can be easily

observed as they involve involuntary movements. Muscle contraction can be also tracked

during an epileptic seizure using electromyography (MEG).

Although automatic seizure detection devices have previously been proposed and tested

especially within the context of predominant ictal motor signs [23, 78], our goal is to

develop a wearable and portable multisensory-system for automatically detecting and

registering all types of seizures. To this end, we used an ECG sensor alongside with

three acceleration sensors all embedded in 3 comfortable-to-wear sensor units. In the

final version of the application, to have the system prepared for the home usage, an

application is developed for mobile phones to keep track of the sensor data online and

to annotate and register the seizure-like events (see figure 4.1).

4.2 Related work

The theme of automatic seizure detection system has been the subject of many studies.

Dalton et al. [23] proposed a portable seizure monitoring system, a digital watch capable

of connecting to Wi-Fi and an accelerometer sensor to track and register the motor

seizures. They conducted their study in an epilepsy clinic to obtain the seizures’ ground-

truth by video-EEG monitoring. They asked patients to perform daily life activities

during their residence in the clinic.
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Figure 4.1: Wearable sensor units. The ultimate goal of the project was to develop a
system in which, different sensors all along the body record the biometric information

and send them to a mobile device for further analyses and seizure detection.

To differentiate seizures from non-seizures, they developed a dynamic time warping

algorithm, a template matching algorithm, to check the similarities of the templates to

seizure like patterns. They recorded from 5 subjects who had non-partial seizures. in

total, they obtained 21 seizures with 91% sensitivity and 84% specificity and having 50

false-alarms. From their work, we can measure the precision of 27% and F1 score of

42%, with having only GTCS (the evaluation metric are discussed in detail later in this

chapter, section 4.3.6).

Lockman et al.[78] conducted a study for detecting and recording tonic-clonic seizures

using a wrist-worn watch equipped with an accelerometer sensor. The device was devel-

oped to detect seizures with rhythmic and rapid movements. They admitted epilepsy

patients in an epilepsy clinic and obtained the gold standard seizure onset/offset from

the clinic technicians. If the watch detects a seizure like activity, it sends a signal to a

remote computer through Bluetooth. Among the 40 patients they recorded, 6 of them

happened to have tonic-clonic seizures. From those 6 patients, they acquired 8 seizure,

from which 7 were detected as seizures. They have had however 204 false-alarm cases
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which only one of them was during the sleep. From their work, we can calculate the

sensitivity as 87% and the precision as 2%. Accordingly, the F1 score would be 0.04%.

Cogan et al. [18] developed a wearable seizure detection system to detect both motor

and non-motor seizures. The system is designed to alarm the occurrence of the seizure

and build an electronic diary. To this end, they collected 330 hours of data from 10

patients in an epilepsy center. In total, they attained 26 seizures (31 initially, discarding

5 due to data missing in seizure times).

They realized that the idea of wearable sensors is useful for a handful of people but

not all. Thus, they split the patients into two sets based on their bio response. If the

patient seizure can be tracked with typical seizure pattern (heart rate and electrodermal

activity increase and decrease in pulse oximetry (SpO2)), the patient would wear a

wearable sensor and can be sent back home for remote monitoring. If it is otherwise,

the patient will get access to a maximum 3 channels device EEG for being tracked with

EEG.

They conducted their study into 3 stages. In their first stage, they looked at the heart

rate, arterial oxygenation, and electrodermal activities, which could be tracked by a

wearable device and be detected the seizures. In the second stage , they used a pattern

recognition technique to classify the collected 3 bio-signals. In the next step, they employ

a 3 channel EEG to detect the seizures in order to compensate for the missed seizures.

They collected the heart rate and pulse oximetry data from a finger cuff device, Nonin,

and the electrodermal and accelerometry data from a wrist-worn device, Affectiva Q.

Their first stage could find all 11 seizures of 7 patients. Stage 2, could recognize the

entirety of 10 seizures of 6 patients. In the stage 3, it detected two third of all seizures.

Velez et al. [103] studied the problem of seizure counting in a clinical environment using a

wrist-worn watch (SmartMonitor c©) with accelerometry sensor. The study investigates

the accuracy of Generalized Tonic-Clonic Seizures (GTCS) vs. non-GTCS. The watch

is connected through Bluetooth to a tablet and via tablet through Wi-Fi to an online

analyzing system. They recorded accelerometry and audio signals as well as video-EEG

data available from the epilepsy clinic of the study. They recorded from 27 patients with

62 seizures from which 13 (21%) were GTCS and 49 (79%) were non-GTCS. They split

the accelerometry signal into different frequency bands and measured the accumulated

power within each band and performed the detection process based on the extracted

features.

Based on their claims, 12 out of 13 GTCS seizures were detected by their system (92.3%).

In total, the sensitivity of their seizures detection system for all types of seizures would
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be 19.3%. They have reported of having 81 false-alarm from which 42 (51.8%) were

canceled from watch interface by the patients. There was no clear info of how long the

whole study took in their report but patients were recorded from 1 to 9 days.

Vandecasteele et al. [102] investigated the problem of ECG based seizure detection

across three different recordings methods, namely clinical ECG, portable ECG, and

also photoplethysmography (PPG). PPG is discussed in chapter 5. They have recorded

from 11 patients a total of 701 hours recording and having 47 seizures. They aimed at

fronto-temporal lobe epilepsy and they evaluated their clinical and mobile ECG seizure

detection algorithms with 57% and 70% sensitivity and 1.92 and 2.11 false-alarms per

hour respectively. The mentioned false-alarm ratio is equal to 46.8 and 50.64 false-alarms

per day.

4.3 Methods

4.3.1 Multivariate analysis

Complex phenomena are resulted from multiple causes and their effects can also be

investigated across multiple variables. Multivariate analysis is composed of methodolo-

gies to study the effect of multiple variables in a phenomenon simultaneously. While

in univariate analyses we measure one variable in different conditions and infer the role

of that variable, in multivariate analyses the effects of multiple variable are considered

and measured at the same time. While the beneficial points of univariate analyses is the

simplicity of the analyses, a great advantage of multivariate analyses is the ability to de-

scribe complicated events across multiple variables, which is hardly possible to examine

in univariate analyses. For example, the problem of global warming can not be traced

along a single cause such as fossil fuel usage in cars. On the other hand, the effect of

global warming is not only the acceleration in melting icebergs around the globe.

In seizure detection systems, in most of the studies [61, 93, 99], the role of a single

variable or few variables measured of a single sensor unit is taken into account. In our

study, to be able to perceive maximum amount of biological effects of seizures, we study

changes across multiple variables and multiple sensors.

As noted in chapter 1, an effective technical pathway towards understanding complex

phenomena is to employ machine learning techniques. Machine leaning methods can

learn from data and give us a mathematical benchmark for distinguishing different phe-

nomena from one another. Thus, in this phase too, we have adopted some machine

learning methods to solve the problem of seizure detection.
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Before moving to the details of this project, it is worthwhile to sketch its technical

outline. Figure 4.2 describes the sequence of steps required for developing a machine

learning solution for seizure detection.

Data  Collection 
& Pre-Processing

Feature Extraction

Learning / Classification

Training Testing

Figure 4.2: The general approach of using classification techniques to classify
seizures from non-seizures. A model learned from train phase (pre-processing, feature-
extraction, classification) will be used to classify unseen seizures from the testing phase.

In the following, the details of the outline shown in the diagram will be explained.

4.3.2 Subjects

Participants of our study are the patients who were admitted in the epilepsy clinic of

Bonn for the sake of seizure monitoring. The patient monitoring includes video and

EEG surveillance which can be recorded for later use (see Figure 4.3). The study was

approved by the local medical ethics committee (Ethikkommission der Medizinischen

Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn, No. 140/13).

4.3.3 Sensors and data

Our seizure tracking study relied primarily on Movisens sensors [84]. Two types of

Movisens sensors are available: one which integrates an ECG sensor and an acceleration

sensor, and another which integrates an electrodermal sensor and an acceleration sensor

(see Figure 4.4). The first type is attached to the chest of the patient/participant and
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EEG Monitoring

Video Monitoring

Figure 4.3: Video-EEG Monitoring. Patients are being recorded and monitored con-
tinuously during their residence in the clinic by video and EEG/ECG.

the second type is fastened to the wrists (one for each hand). Using these sensors, we

were able to trace the seizure effects more effectively across three sensor units, with each

unit measuring two modalities.

Figure 4.4: Movisens sensor units. Patients were equipped with three wearable devices
provides by MoviSens GmbH (Karlsruhe, Germany) [84]. A device attached to the
chest allowed recordings of ECG and acceleration of the body. Two more devices were
attached to both wrists, allowing measurement of acceleration of arm movements and

electrodermal skin response.

Each sensor unit could record for up to 24 hours without using a power supply. The

sensor units could be charged prior to being worn and then programed and synchronized
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with a PC in order to start recording at a certain time. After a day (or less) of recording,

the sensors must be recharged and the data then transferred to the PC. The data of

each sensor is presented as binary data. In addition, an XML file (meta-data) comes

along with binary files of each sensor unit to augment the recording information with

the recording time and the frequency of each sensor.

4.3.3.1 Synchronizing sensor data

The data recordings for the three different sensor units had to be synchronized due to

the time drift happened in each sensor unit. Each sensor has its own clock oscillator and

ticks not precisely in synchrony with the other units. Two methods for synchronizing

could be considered. In the first method, at the beginning of the recording session, we

placed all of the sensor units on top of each other and shook them so that the pattern of

movement could be clearly reflected in the acceleration sensors. The start of a shaking

pattern could be seen on each sensor, and the right offset for the synchronization was

noted.

The second method which was to parse the XML file and check the timestamps of

each sensor unit. To synchronize them, one can easily convert the absolute time of the

recording of each sensor unit to the millisecond and then easily take the greater value

among different sensors (the sensor which is lastly started) as the starting point of the

recording. The second method is useful for synchronizing the beginning of the recording

but not help resolving the clock drift problem.

Counting for time drift of sensors is crucial. Each sensor has an individual internal clock

and therefore, at the end of the recording day, we can end up having 3 clocks pulsing

differently, all different to the PC which they had been synchronized to. Fortunately, we

noticed that in the worst case, the sensor clocks would be 10 seconds off of each other.

This error is negligible due to the length of the seizures which are usually more than few

minutes. Nevertheless, the signals could be also synchronized from the end of recording

by resampling the signals. The end of recording however, needed to be determined again

by putting all sensors on top of each other and shaking them.

4.3.3.2 Artifacts and ECG signal replacement

The ECG signal required several corrections. The ECG signals were recorded via two

sensor contacts which were attached to the lower chest and the upper abdomen. ECG

signals are vulnerable to movement artifacts. During strenuous activities or a seizure,

the contacts can loosen or the signal can be contaminated by different muscle artifacts.
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In order to address the artifact problems which occur during a seizure, I tried first to

band-reject and filter out the noise. In case the signal cannot be reconstructed, the

concurrent ECG recording from the monitoring room were used to replace the corrupt

ECG signal of the seizure segments. When replacing the ECG of the Movisens sensors

with the clinical one, two points should be kept in mind. First, the time of the seizure

reported by the clinicians should be matched to the PC synchronization time for all of

the sensors. Secondly, since the frequency of the two ECG systems does not match, a

proper downsampling or upsampling process should be undertaken before replacement.

Finally, the replaced signal should be compared against the original signal and inspected

visually for its consistency for the neighboring segments of the replacement.

4.3.3.3 Visual inspection of ECG signal

For those noisy parts of the ECG signal which lacked clinical recording replacements,

I visually inspected the entire signal. Sections of the signal in which no ECG relevant

activity could be observed were excluded.

4.3.3.4 Annotating seizure time

Patients who were hospitalized in the Epileptology department of the university of Bonn

medical center for seizure monitoring were under video and EEG/ECG surveillance. As

soon as a seizure occurred, the seizure experts at the monitoring board examined the

video and EEG/ECG recordings, identified the event, and responded accordingly. Since

the event was recorded in its entirety, epilepsy experts could later comment on the exact

onset/offset of the seizures. In order to synchronize the onset/offset of seizures in the

clinical system with the sensor system, the rhythmic movement which we mentioned

previously for signal synchronization, was recorded in detail on camera. There, it was

possible to measure the time differences of the clinical system with the sensor system

by checking the starting time of rhythmic movement in the accelerometer sensor versus

the rhythmic movement action appearing in the video recording.

4.3.4 Feature extraction and multivariate analysis

In order to quantify alterations across different sensors, aside from the raw signal which

is read out from sensors, we normally calculate more variables directly or indirectly

from raw signals to unfold more aspects of an event which is difficult to observe solely

by bare eyes. These variables are typically called features each of which can unveil a

certain aspect of a phenomenon. For instance, while having the length and width of a
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rectangle at hand, one can also calculate the area, diameter, and the circumference of

that rectangle.

In statistical analyses and in pattern recognition terminology, features together shape

a Cartesian multidimensional space called feature space. Each feature represents one

dimension in the feature space and plays its smaller or larger role to identify an event

or a phenomenon.

The data are measured from different sensor units: Electrocardiogram (ECG), Acceler-

ation, and Electrodermal (EDA) sensors. In order to quantify the alterations for the

different sensors, aside from the raw signal which is read out from sensors, we calculated

more variables, directly and indirectly, from raw signals to explore more aspects of an

event which is difficult to observe solely by raw signals. As mentioned earlier, these

variables are called features, each of which can unveil a certain aspect of a phenomenon.

Features together form a Cartesian multidimensional space called feature space. Each

feature represents one dimension in the feature space and plays either a small or large

role in identifying an event or a phenomenon.

Since our data is measured from different sensor units, the features should be calculated

from those units separately.

4.3.4.1 Electrocardiogram (ECG)

ECG (or EKG) signals record heart activity via electrodes which are attached to the pa-

tient’s chest. Electrical charges which are cast from the depolarization of heart muscles

are transmitted to the skin and can be sensed and registered by ECG sensors, respec-

tively. ECG signals are expressed as changes in voltage for a period of time. ECG

signals can reveal information about the function and the structure of heart, as well as

the pattern of the heart rate and rhythm.

ECG signals have a repetitive wave pattern (see figure 4.5). However, each wave form

is comprised of smaller components, each of which is a part of a cardiac cycle. Primary

components of cardiac events include the P-wave which reflects atrial depolarization,

the QRS complex which renders the right and left ventricular depolarization, and T

components which represent the ventricular repolarization (see figure 4.5).

The distance between consecutive R-peaks of QRS components is known as the RR-

interval (or NN-interval). Studying the pattern of changes in RR-intervals is known as

heart rate variability (HRV) and is a widely used tool for characterizing the physiological

behavior of the heart.
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Figure 4.5: QRS complex of EEG. Each letter in the above signal, represents a piece
of cardiac cycle. For seizure detection, the most important part of ECG signal is
the distance between consecutive R-peaks. Most of relevant ECG features for seizure

detection are extracted from the changes in the rhythm of R-to-R peaks intervals.

In order to detect seizures, the RR-intervals as an intermediate feature were used to fur-

ther derive HRV-dependent features for qualifying the heart rate changes with respect

to seizures. Detecting R-Peaks is an established method in the field [71, 89]. However,

we realized that our ECG signal quality was dropping significantly throughout the day

by having ECG contacts being loosely connected to the skin. Therefore, we needed

a method to recover R-peaks from those with lower signal-to-noise-ratio recording seg-

ments. Consequently, I developed an algorithm to smartly detect R-peaks of ECG signal

and measure RR-intervals:

• Adaptive R-Peaks detection algorithm

To measure RR-Intervals, the first step is to detect R-peaks from ECG signal.

Typically, ECG signal is contaminated with muscle and movement artifacts espe-

cially when an event like seizure is happening. Therefore, thresholding the peaks

is not a proper way to reckon R-Peaks.

Experimentally, I realized that by bandpass filtering the ECG signal from 10 Hz

to 25 Hz, we will exclude most of the low and high frequency artifacts. Provided

that the ECG electrodes were not completely detached from the subject during

an event, by filtering the signal, we would normally end up with a cleaner signal

which can systematically represent R-Peaks. Here, the algorithm, with an over-

lapping moving window over the signal, detects the R-peaks. The advantage of

this algorithm is that it is not only resistant to noise but also detects R-peaks of

different heights in cases in which, the ECG electrodes are loosely connected and

therefore, their signal amplitude is significantly dropped (see algorithm 5).

After bandpass filtering, by taking the absolute value of the filtered signal, R-

Peaks will have always the greatest values along the signal. With an ordinary peak

detector algorithm, it will be possible to detect R-Peaks accurately. The following

criteria should also be taken into account for the peak-detector algorithm:
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The minimum height threshold should be around 1 ∼ 1.7 times of the standard-

deviation of the filtered signal and the minimum peak-to-peak distance should be

one third of the ECG sampling frequency (e.g. ∼ 333 ms for 1000 Hz sampling-

rate).

Algorithm 5: Detecting ECG R-peaks

Data: ECG Raw Signal
Result: Detecting ECG R-Peaks

1 while not at end of this signal do
2 epoch ← take 5 seconds of ECG signal;
3 a ← band-pass filter epoch [10-15 Hz, butterworth-2];
4 b ← band-pass filter epoch [15-25 Hz, butterworth-4];
5 c ← a .* b;
6 d ← Carbox-filter(c);
7 std ← standard-deviation(abs(d));
8 find-peaks in d given:
9 min peak height as std

10 min inter-peaks distances as 1/3 of sampling-rate;
11 if peaks with time overlapping then
12 remove overlapping peaks;
13 end
14 move 2.5 seconds forward;

15 end

Figure 4.6 shows a part of ECG signal in blue and the absolute value of the filtered

signal in green. The asterisks are the time points which were detected by the peak

detector algorithm.

Figure 4.6: R-Peak detection algorithm. The algorithm is shown in 5. The asterisks
represents the time points which were detected by the peak detector algorithm.

Having peaks detected, one can measure the distance between consecutive R-Peaks

to get the RR-Intervals (RRI). To obtain the value in milliseconds, we multiply

the distances by 1000 and divide the result by the sampling frequency.
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RRI = abs(diff (peakLocations)× (1000/Sampling-Frequency)

One should note that in cases which there are discontinuity in the detected peaks,

we encounter having peak-to-peak intervals of longer than 1500 ms. Removing

these values from RR-Intervals will fix the discontinuity problem by concatenating

the isolated parts. On the other hand, values under 300 ms are not acceptable

too, since heartbeat ratio more than 180 per minute is physiologically not much

probable.

RRI = {RRI>300ms & RRI<1500ms}

• Feature: Heart-Beat:

Having R-Peaks detected, the heartbeat can be measured as the number of R-Peaks

detected over the length of signal in seconds:

HeartBeat∀sec =
NumOf(PeakLocations)× SamplingRate(Hz)

length(ECG))

The number of heartbeats per minute is also as following:

HeartBeat∀min = HeartBeat∀sec × 60

• Feature: Mean of RR-Intervals:

The average RR-Intervals indicates the first statistical moment of RR-intervals:

meanRRI = mean(RRI)

• Feature: STD of RR-Intervals (SDNN):

The standard deviation of RR-Intervals provides the second statistical moment of

RR-intervals:

stdRRI = std(RRI)

• Feature: Max of RR-Intervals: The maximum value of RR-Intervals shows

the longest RR-Interval:

maxRRI = max(RRI)
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• Feature: Min of RR-Intervals: The minimum value of RR-Intervals represent

the shortest RR-Interval:

minRRI = min(RRI)

• Feature: Root Mean Square of Successive Differences of RRIs (RMSSD):

RMSSD is a well-known measure in HRV analysis and functions principally as a

high-pass filter in the time domain which can feature changes in autonomic vagal

cardiac control and reveal respiratory sinus arrhythmia. It can also capture sym-

pathetic activities in lower frequency variations [10]. RMSSD can be calculated as

following:

RMSSD = sqrt(mean(diff(RRI)2))

• Feature: Shannon Entropy of RR-intervals: Shannon entropy of RR-

intervals reveals the uniformity of the data. Entropy will have a higher value

if the fluctuation of the RR-interval values is high, and will have a lower value if

the RR-interval values are almost uniform.

probablityRRI =
hist(RRI)

length(RRI)

entropyRRI = −sum(probablityRRI × log2(probablityRRI))

• Power Spectral Density (PSD):

RR-interval features can be also featured in the frequency domain by measur-

ing power spectral density (PSD). Measuring PSD of RR-intervals represents the

frequency dependent analysis of RR-intervals. Certain ranges in RR-interval fre-

quency spectrum convey particular physiological activities of the heart. It has been

shown [5] that epilepsy patients have a different pattern of RR-Interval frequency

especially during and after seizures compared to healthy individuals.

• Feature: Very Low Frequency (VLF):

Very low frequency of RR-intervals, area under curve of PSD in frequencies from

0.003 Hz to 0.04 Hz. It can be measured as followings:

Samping-Freq =
1000

meanRRI
, NumFFTs = 2 ceil( log2(Fs×1000))

DeltaFreq =
2

NumFFTs
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PSD = P-Welch(
Peak-Locations

1000
, 32, 24, NumFFTs, Samping-Freq)

f = FS/2× linspace(0, 1,
NumFFTs

2
+ 1)

PSDV LF =

0.04Hz∑
f=0.003Hz

PSD ×DeltaFreq

One should note that to obtain accurate VLF features, the length of the recorded

ECG signal must be more than 11 minutes, to be able to capture frequencies near

0.003 Hz (Nyquist-Shannon sampling theorem). The above mentioned PSD is

estimated differently in [39] for measuring the sampling frequency. However, the

results of both are almost identical.

• Feature: Low Frequency (LF): Sympathetic activity of the heart can be

monitored by checking the RR-Intervals from 0.04 Hz to 0.15 Hz [93] . Similar to

VLF, the area under the curve of frequency spectrum can be measured as:

PSDLF =

0.15Hz∑
f=0.04Hz

PSD ×DeltaFreq

• Feature: High Frequency (HF): Similar to LF, parasympathetic activity [93]

can be also represented by frequency of RRI PSD from 0.15 Hz to 0.4 Hz.

PSDV LF =

0.4Hz∑
f=0.15Hz

PSD ×DeltaFreq

• Feature: Total Power: Total frequency power is the total area under the curve

of PSD of RRI frequency.

PSDV LF =

0.4Hz∑
f=0.003Hz

PSD ×DeltaFreq

• Feature: Cardiac Vagal Index (CVI):

CVI is a sensitive measure to cardiac vagal activities [99]. RRI data point can be

plotted as a form of Lorenz plot to be able to extract the values which are needed

for measuring CVI. In Lorenz plot, every RR-Interval value must be plotted against

its proceeding RR-interval value (see figure 4.7).

Data points of Lorenz plot are normally distributed like an oval shape. By omitting

outliers in the plot, two values can be extracted from Lorenz plot: L and T , the

length and the width of the oval. CVI is defined a below:
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Figure 4.7: Lorenz-Plot. Every RRI value is plotted against its proceeding RRI value
in time. The result will be an oval shape could of data. By discarding the extreme

values, the diameters of the oval can be used to measure other HRV features.

CV I = Log 10 L× T

• Feature: Cardiac Sympathetic Index (CSI): This feature also inherits some

parts of Lorenz plot (L and T ) to show increase in pre-ictal and early ictal phases

of a seizure[61, 99]. CSI is calculated as:

CSI =
L

T

;

• Feature: NN50: NN50 is the number of successive RR-Intervals which differ

more than 50ms:

diffRRI = abs(diff(RRI))

NN50 = Num.Of(diffRRI > 50)

• Feature: pNN50: pNN50 is the number of NN50 over the total number of

RR-Interval changes:

diffRRI = abs(diff(RRI))

pNN50 =
Num.Of(diffRRI > 50)

Num.Of(diffRRI)
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• Feature: ECG-Arousal: ECG-Arousal measures the ratio of heartbeat increase

in two consecutive minutes. Our current and former recordings showed that during

most seizures (over 85%), a heartbeat increase of near 1.2 fold can be observed.

ECG-Arousal can be easily measured as following:

ECG-Arousal =
heart rate of first last minute

heart rate of second last minute

• Statistical measures of raw ECG signal

Although it may look clinically pointless to check the statistical changes of raw

ECG signal, these features could potentially express some of the seizure depen-

dent changes of ECG signal. In the following, more features from ECG signal

are extracted and included to our analysis. In ECG based seizure detection, the

statistical features have not been normally used. However, I tested them and they

improve the accuracy of seizure detection since they can feature the contaminated

muscle contractions and movements noises during a seizure. Nonetheless, they are

not employed in final classification model to be compatible with HRV-dependent

measures.

• Feature: Mean of signal: The average signal amplitude of the ECG signal is

also considered as a feature:

Mean-ECG = mean(ECG-Signal)

• Feature: STD of signal: The standard deviation of the ECG signal charac-

terizes the deviations from the average amplitude of the signal (second statistical

moment):

STD-ECG = std(ECG-Signal)

• Feature: Skewness: Skewness is also added to the set of features which captures

the third statistical moment of the raw ECG signal.

Skewness-ECG = skewness(ECG-Signal)

• Feature: Shannon Entropy: Shannon entropy displays the randomness level

of the signal. The more random the signal, the higher the Shannon entropy value.

probablityECG =
hist(ECG)

length(ECG)

Entropy-ECG = −sum(probablityECG × log2(probablityECG))
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• Feature: Frequency components of FFT: Transforming the raw ECG sig-

nal to the frequency domain using fast Fourier transformation (FFT) results in

several numeric components, each of which represents the magnitude of a certain

frequency band in the original ECG signal. The power of the frequency compo-

nents themselves can also be used as a feature for picturing the frequency specific

features of the ECG signal. It should be noted that those frequency components of

a certain length of signal should satisfy the Nyquist principle as mentioned before.

In this study, the frequency components of 0.5 Hz and below have been tested.

NumFFTs = ECG-Sampling-Freq× 20

ECG-Freq-Components = fft(ECG,NumFFTs)

ECG-Freq-Power = 2× abs(ECG-Freq-Components(1 :
NumFFTs

2
+ 1))

ECG-Freq-Power-Cut = ECG-Freq-Power([0 : 0.5]Hz)

4.3.4.2 Accelerometry

Some types of seizure events (and tonic-clonic seizures, in particular) are associated with

strong body movements and vibrations. Detecting and registering the movement pattern

during a seizure helps improve the accuracy of seizure detection systems. In our study,

three acceleration sensor units were embedded in three comfortable-to-wear sensor units.

One was attached to the patient’s chest with a belt to record body movements and the

other two units were affixed to the patient’s wrists in order to record hand movements.

Same types of features for all accelerometry sensors were extracted. Therefore, what

is described in the following for feature extraction of accelerometer, applies to all three

sensors:

• Feature: Average Displacement: Since an acceleration sensor measures the

acceleration along 3 axes, the displacement as the average norms of second level

integral of all 3 acceleration axes along the timeline can be measured:

disp = mean(

√
(
∑
t

∑
t

AccX)2 + (
∑
t

∑
t

AccY )2 + (
∑
t

∑
t

AccZ)2 )
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• Feature: Standard Deviation of Displacement: This feature indicates the

displacement and can be calculated as the standard deviation of norms of second

level integral of all 3 acceleration axes along the timeline:

σdisp = std(

√
(
∑
t

∑
t

AccX)2 + (
∑
t

∑
t

AccY )2 + (
∑
t

∑
t

AccZ)2 )

• Feature: Average Velocity: The velocity of the movement can be measured

as the average norms of first level integral of all three acceleration axes along the

timeline:

V elocity = mean(

√
(
∑
t

AccX)2 + (
∑
t

AccY )2 + (
∑
t

AccZ)2 )

• Feature: Standard Deviation of Velocity: The standard deviation of move-

ment velocity can be measured as the standard deviation of the norms of first level

integral of all 3 acceleration axes along the timeline:

σV elocity = std(

√
(
∑
t

AccX)2 + (
∑
t

AccY )2 + (
∑
t

AccZ)2 )

• Feature: Average Acceleration: The acceleration of the movement can be

measured as the average norms for all three acceleration axes along the time axis:

Acc = mean(
√
Acc2

X +Acc2
Y +Acc2

Z )

• Feature: Standard Deviation of Acceleration: The standard deviation of

the acceleration of the movement can be measured as the standard deviation of

the norms for all three acceleration axes along the time axis:

σAcc = std(
√
Acc2

X +Acc2
Y +Acc2

Z )

4.3.4.3 Electrodermal (EDA)

Electrodermal activity or skin conductance is the property of the human body that

causes continuous variation in the electrical characteristics of the skin and is the result

of changes in sweat glands of the skin. Sweat glands are more active when the activity of

the sympathetic nervous system (SNS) is aroused. Consequently, the activity of sweat

glands increases and this in turn causes increased skin conductivity. Changes in skin

conductance reflect a degree of subliminal physiological or psychological activities.
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To measure the skin conductance response, typically two electrodes will be attached to

the palm of a person within 1 ∼ 3 centimeters distance from each other. As soon as

a physiological or psychological event causes an arousal in sympathetic neural systems,

the activity of sweat glands will alter the skin conductance. Changes in conductivity can

be sensed by measuring the conductance level between two electrodes. Most of seizures

change the electrodermal activities significantly [18, 92]. We included skin conductance

sensors in our study to improve the versatility of seizure sensing.

Our analysis included the following EDA features that support the seizure detection sys-

tems with features which can potentially characterize arousal events of the sympathetic

nervous system:

• Feature: Mean of Electrodermal Signal: This feature reflects the average

of skin conductance signal amplitude, directly recorded from sensors.

EDA = mean(EDA)

• Feature: STD of Electrodermal Signal: The standard deviation of the EDA

conveys the changes of skin conductance signal amplitude.

σEDA = std(EDA)

• Feature: Mean of First Derivative of Electrodermal Signal: This feature

reflects the average changes of skin conductance signal amplitude by measuring

the first derivative of the signal.

EDA = mean(EDA′)

• Feature: Standard Deviation of First Derivative of Electrodermal Sig-

nal: This feature reflects the standard deviation of changes of skin conductance

signal amplitude.

σEDA = std(EDA′)

4.3.4.4 Characterizing the differences of features pre-ictal vs. post-ictal

In order to derive the physiological changes during a seizure, the features of pre-ictal

phase vs. the features of post-ictal phase were compared. While each feature can

individually convey seizure related information, the differences can prominently expose
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the changes. In the following, the third level features, features to characterize differences

between pre and post ictal are presented:

• Feature: Change of heartbeat:

Diff-HRPre-Post = HRPost −HRPre

• Feature: Change of average RR-Interval:

Diff-Mean-RRIPre-Post = RRIPost −RRIPre

• Feature: Change of standard deviation of RR-Intervals:

Diff-Std-RRIPre-Post = σRRIPost − σRRIPre

• Feature: Change of minimum of RR-Intervals:

Diff-Min-RRIPre-Post = Min(RRIPost)−Min(RRIPre)

• Feature: Change of maximum of RR-Intervals:

Diff-Max-RRIPre-Post = Max(RRIPost)−Max(RRIPre)

• Feature: Change of Root Mean Square of Successive Differences of RR-

Intervals (RMSSD):

Diff-RMSSD-RRIPre-Post = RMSSD(RRIPost)−RMSSD(RRIPre)

• Feature: Change of entropy of RR-Intervals:

Diff-Entropy-RRIPre-Post = Entropy(RRIPost)− Entropy(RRIPre)

• Feature: Change of Cardiac Vagal Index (CVI):

Diff-CVIPre-Post = CV IPost − CV IPre

• Feature: Change of Cardiac Sympathetic Index (CSI):

Diff-CSIPre-Post = CSIPost − CSIPre
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• Feature: Change of Power Spectrum Density (PSD) in very low fre-

quency bands of RR-Intervals:

Diff-PSD-VLF-RRIPre-Post = PSD-VLF-RRIPost − PSD-VLF-RRIPre

• Feature: Change of Power Spectrum Density (PSD) in low frequency

bands of RR-Intervals:

Diff-PSD-LF-RRIPre-Post = PSD-LF-RRIPost − PSD-LF-RRIPre

• Feature: Change of Power Spectrum Density (PSD) in high frequency

bands of RR-Intervals:

Diff-PSD-HF-RRIPre-Post = PSD-HF-RRIPost − PSD-HF-RRIPre

• Feature: Change of Power Spectrum Density (PSD) in all frequency

bands of RR-Intervals:

Diff-PSD-AF-RRIPre-Post = PSD-AF-RRIPost − PSD-AF-RRIPre

• Feature: Change in average displacement:

Diff-Mean-DispPre-Post = DispPost −DispPre

• Feature: Change in standard deviation of displacement:

Diff-Std-DispPre-Post = σDispPost − σDispPre

• Feature: Change in average velocity:

Diff-Mean-VelocityPre-Post = V elocityPost − V elocityPre

• Feature: Change in standard deviation of velocity:

Diff-Std-VelocityPre-Post = σV elocityPost − σV elocityPre

• Feature: Change in average acceleration:

Diff-Mean-AccPre-Post = AccPost −AccPre
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• Feature: Change in standard deviation of acceleration:

Diff-Std-AccPre-Post = σAccPost − σAccPre

• Feature: Change in average EDA:

Diff-Mean-EDAPre-Post = EDAPost − EDAPre

• Feature: Change in standard deviation of EDA:

Diff-Std-EDAPre-Post = σEDAPost − σEDAPre

• Feature: Change in average first derivative of EDA:

Diff-Mean-EDA′Pre-Post = EDA′Post − EDA′Pre

• Feature: Change in standard deviation of first derivative of EDA:

Diff-Std-EDA′Pre-Post = σEDA′Post − σEDA′Pre

• Third level “difference” features extracted from raw ECG data As men-

tioned earlier in this sub-section, the features of raw ECG signal contains informa-

tion about seizure events. Again, even though the raw features were not used in

the final evaluation, these features were measured. Similar to HRV features, the

difference between pre-ictal and post-ictal features could be measured also for raw

ECG data.

• Feature: Change in PSD of raw ECG signal: We considered three frequency

bands as well as the total power changes using FFT:

Diff-Power-Cut-Freq-ECG′Pre-Post = Power-Cut-FreqPost − Power-Cut-FreqPre

4.3.4.5 Windowing over the data

A commonly accepted method for analyzing a time series is moving a sliding window

along the timeline while computing the features for each window separately. This window

slides stepwise. The number of steps should be so that each new window would overlap a

section of the previous window. Having overlapping windows helps avoid massive changes

from one window to the next, especially if the windows are long. Due to problems

surrounding seizure detection, I separately characterize the signs and symptoms of a
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seizure, both before and after the seizure occurred. Hence, as a time-point of interest

(see figure 4.8), we considered three windows for feature computation:

1. Pre-ictal window: 5 minutes (300 sec) window assessing long term changes before

the time-point of interest.

2. Post-ictal window: 5 minutes (300 sec) window assessing long term changes after

the time-point of interest.

3. Ictal window: 10 sec window assessing momentary changes right at the exact

time-point of interest.

The length of the windows has been determined according to the physiological effect of

the seizures reported [57, 97] and our experimental conclusions. I chose the forwarding

step to be 10 seconds equal to the size of ictal window and also similar to [92]. That is,

the resolution of the seizure detection would be 10 seconds accordingly.

5 min 5 min
10 sec

time-point of interest

Figure 4.8: The Windowing concept and concurrent recording from different modal-
ities. The upper time series is the ECG data. The middle signal is the electrodermal
data. The bottom one is the accelerometry data from three axes. For any time-point of
interest, a 10 second window, a 5 minutes window before the time-point and 5 minutes

window after the time point is considered for feature extraction.

• Concatenating windows and features As mentioned above, for each time point

of interest, three windows were examined and for each window, verities of features

were computed. Features of each window together, shape a feature vector, and
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feature vector of all three windows can be concatenated to form a longer feature

vector. Linking the pre-ictal vs. post-ictal features, makes the feature vector

even longer. This long feature vector represents the physiological phenomenon of

the signal for any given time-point of interest as a quantified multidimensional

measurement.

• Multidimensional representation of feature vectors Feature vectors that

are composed of feature elements can be viewed as multidimensional points in

Cartesian space. Each element of a feature vector can represent one value along

an axis in their respective space. Having features aligned and represented in a

multidimensional feature space, mitigates dealing with physical phenomena by

utilizing algebraic operations and algorithmic methods.

4.3.4.6 Problem of unbalanced number of positive vs. negative examples

In activity detection scenarios, due to having too many negative examples (non-seizure

feature windows) compared to positive cases (seizure windows), instead of classifica-

tion accuracy, the performance of the system has to be measured based on sensitivity,

specificity, and precision metrics. Nonetheless, since the number of negative examples

outnumbers the positives drastically, a classification algorithm of choice would still have

hard time to distinguishing negatives from positives. To ease this difficulty, Three ap-

proaches can be proposed.

1. Event-based window selection

In this method, the goal is to find a feature/threshold which can filter out the

majority of the non-seizure windows but still keeping absolute majority of seizure

windows. A feature window is considered to be an event if the window can pass

the threshold. To acquire event-based seizure detection, I searched over a separate

seizure recording dataset and found a threshold for the event filtering. In accor-

dance with the search, in absolute majority of the seizure cases, the heart rate

(HR) increases by 1.2 folds in two consecutive minutes. Therefore, for event filter-

ing, epochs in which the HR during a period of two minutes increased by at least

a factor of 1.2, were exclusively considered. The feature ”ECG-Arousal” from our

feature vector can be used to reflect such event. By filtering the feature windows

based on the event thresholding, the size of negative example was reduced signifi-

cantly. The exact amount of reduction is dependent on the subjects’ physical and

physiological activities (more about it later in 4.4 section).

2. Negative examples down-sampling
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The second way to reduce the negative examples for the classification task is to

draw a meaningful amount of negative examples randomly from the negative pool

and carry out the classification task and then, repeat the procedure for several

time until a large proportion of the dataset is chosen for training and test.

3. Positive examples up-sampling The other way to alleviate the problem of

unbalanced number of positive and negative examples is to increase the number of

positive examples by duplicating the positive examples up and until the number

of positive and negative examples will be the same. Data imputation and data

augmentation are examples of up-sampling algorithms in literature.

4.3.5 Pattern classification

Feature extraction is normally a prerequisite for machine learning tasks. Feature ex-

traction, either explicitly as a discrete step, or implicitly as with some modern machine

learning techniques [68, 74], helps magnify more aspects of the data and reveals the

latent pattern of different classes in complex scenarios. In order to properly categorize

the patterns to their respective classes, a classifier is used. A classifier is the name as-

signed to different types of algorithmic, statistical, relational, or clustering algorithms

or approaches in order to perform human independent prediction and classification of

physical phenomena. In other words, it enables machines to learn from events and data

and aids in the prediction or categorization of newly observed events and data.

In the realm of machine learning, there are two common ways of learning the procedure

of pattern classification tasks: supervised learning and unsupervised learning. In su-

pervised learning, the classifier knows the data as well as the data class. Based on the

labeled data in supervised learning, the classifier derives a reference criterion for catego-

rizing the data to their respective classes. The resulting criteria is called the model and

the process of learning is known as training. To evaluate how a classifier would perform

using unknown data, the classifier is provided with data which was not available during

training. This procedure is called testing. One way of evaluating the performance of the

classifier is to measure how many times the test data were correctly classified to their

true labels and divide it by the total number of test cases.

In unsupervised learning however, the classifier has no access to labeled data and the goal

is to categorize the unlabeled data based solely on their innate similarity. For instance,

categorizing people in social media can be done by measuring their behavioral similarities

and contrasts without knowing about their identity. Therefore, in unsupervised learning,

training and testing phases are unified to one step. Unsupervised learning in literature

is reffed to clustering too.
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Supervised learning and unsupervised learning can also be combined in certain cases in

which there are some unlabeled data used in the training phase alongside with labeled

data. The semi-supervised classifier can outperform the supervised and unsupervised

classifiers given that the data is distributed as clusters in their feature space [16]. In

that case, the unsupervised learner can initially help the supervised learner to determine

the class boundaries more accurately.

Apart from supervised and unsupervised learning, there is also another classification

style in the machine learning called reinforcement learning in which the learner/classifier

gradually learns how to react to different inputs by receiving feedback. This type of

learning resembles the way people train a dog by giving it positive or negative rewards.

Reinforcement learning is a used mostly in robotics.

Seizure detection problems can be investigated using supervised learning since our goal is

to obtain an accurate function mapping of our input features to a binary output, and to

determine whether those features represent a seizure or non-seizure case. Mathematically

speaking, we are searching for a function h that maps our feature vector X to output

Y :

h : X → Y

Vector X is composed of n features x1... xn and the output variable y ∈ Y can be a

binary case of seizure or non-seizure. Alternatively y can also be a probability value

expressing the likelihood of an event being a seizure or non-seizure. The function h can

be defined so that it initializes itself with some [random] parameters for mapping from

X to Y , and measures the amount of misclassification (loss error), and then searches

repeatedly for the best combination of mapping parameters which minimizes the loss

error at most. The parameters of h is shown as θ in our modeling.

The solution to our problem can be formulated in the following manner:

P (y|x, θ)

There are however two ways to measure it. One is discriminative approaches that

p(y|x) is measured directly while in the other, the generative approach, p(x|y) (inverse

probability) and p(y|θ) (prior probability) are combined by applying Bayes’ rule [7, 12,

30].

Since in our problem, there is no reliable estimation of the real-world ratio of seizure

cases to none-seizure cases, it is not possible to measure p(x|y) accurately. Consequently,
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I prefer to model the learning problem primarily using discriminative approach. Though,

the generative approach is used partially in parallel with the discriminative classifiers.

Classifiers such as SVM [19], Random-Forest [15], or KD-Tree (KDT) [9] are suitable

tools to measure p(y|x). There are varieties of classifiers in the real world which can be

employed, each of which has its own pros and cons.

In our study, I found the random-forest (RF) classifier to outperform the others tested

such as SVM, Logistic-Regression, etc. The RF classifier is a collection of decision tree

classifiers, each of which has a limited number of features that are randomly selected and

the decision boundary is decided by each tree individually. The final decision boundary

of RF is a product of all decision boundaries of decision trees. Compared to decision

trees, RFs insure more generalization and less overfitting. One of the reasons RFs can

satisfactory classify the classes is due to our data distribution. Our data is unequally

balanced and does not include the same number of instances for the different categories.

RFs perform well with such data. Features of the class with smaller number are ac-

cumulated in some cells in their feature space and tree classifiers are suitable tools for

finding class boundaries in such cases.

Besides, RF is a convenient choice when the collected features are not distributed seam-

lessly in the feature space. In such cases, features of instances of a particular class are

sparsely distributed and hence, tree classifiers have significant edge over the conventional

uniform distribution classifiers to model the data. In a work we published before, this

fact has been investigated on a different dataset [60].

With RF, we can also rank the features based on their level of importance for classifi-

cation. This will help untangle the associated roles of parameters used for classification

which is of significant importance to medical societies. Moreover, RF classifiers can

internally account for missing data. If some portions of the signal are missing or cor-

rupted, their respective feature in the feature vector has zero/nan values. However, RFs

can learn from the available data to compensate it.

4.3.5.1 Probability thresholding

In detection systems, it is often important to detect positive examples, even if this

means increasing the prospect of a false positive alarm. A classifier typically estimates

the probability of data belonging to different classes. A class with higher probability is

selected as a classification result. For this study, a lower threshold (20%) was utilized

instead of the common 50% probability threshold. With this adjustment, the classifier

now identifies cases with a classification probability of 20% or more as seizures. This, in



124 Chapter 4. Epileptic Seizure Detection

turn, causes cases with few seizure similarities to be included by increasing the chances

of incorrectly identifying seizures.

4.3.5.2 Early fusion vs. late fusion

In cases that the source of data is from different modalities, there will be two perspectives

to conduct a machine learning task: early fusion and late fusion. In early fusion, features

from different modalities (ECG, ACC, EDA in our case) will be extracted and pooled

together and a single classifier will be trained on them. In late fusion approach however,

for each modality , a separate classifier will be trained and the classification results of

all classifier will be pooled together to decide on a testing example. I can not address

a definitive rule to say which one performs better but in my view people tend to prefer

the late fusion. Our classification results could be also reported based on early or late

fusion. However, I did not observe any significant difference in using either of them in

our data.

4.3.6 Evaluation

The collected database of seizures was then fed into a classifier. In a common classifica-

tion task, a segment of data which is typically a collection of labeled feature vectors is

used initially by the classifier to learn and train a model. The resulted model can then

be used as a benchmark for predicting/classifying the data which were not previously

presented to the classifier. Accordingly, a portion of the data which included feature

vectors of both seizure and non-seizure cases was fed to the classifier. Next, the perfor-

mance of the classification task by testing the rest of data which were not presented to

the classifier against the already learned model was evaluated.

The subsequent question at this phase would be which metric should be used to evaluate

the classification performance. Knowing that we have nonequivalent amount of seizure

and non-seizure cases, we can not evaluate the performance of the system based on

classification accuracy because it can potentially bring very high accuracy which is in-

fluenced by the class with absolute majority. In such cases, a conventional way to assess

the performance is to consider some measurements such as sensitivity and specificity

and precision in parallel.

Before defining sensitivity, specificity, and precision, the following terms should be de-

fined:

• Positive (P): Number of seizure events
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Ground Truth

P N

Pr
ed

ic
te

d P TP FP

N FN TN

Table 4.1: Detection table. This table shows different conditions of binary classifica-
tion results.

• Negative (N): Number of non-seizure events

• True-Positive (TP): Number of positive examples detected truly as positive

• False-Positive (FP): Number of positive examples detected falsely as positive

(type one error)

• True-Negative (TN): Number of negative examples detected truly as negative

• False-Negative (FN): Number of negative examples detected falsely as negative

(type two error)

The table below helps to better comprehend the above mentioned terms:

sensitivity (or recall) measures how accurate a system is tuned to detect positive cases

(seizures). In other words, it measures how many of seizure cases were detected truly as

seizure. Sensitivity can be measured as following:

Sensitivity =
TP

P
=

TP

TP + FN

Specificity shows how accurate a system is to detect negative cases (non-seizure). Speci-

ficity measures how many of non-seizure cases were truly detected as non-seizure. In

other words, a highly specific system, does not detect too many of negative examples

falsely as positive (false-alarm). Specificity can be measured as following:

Specificity =
TN

N
=

TN

TN + FP

Precision (or positive predictive value) calculates the probability of the cases which were

detected as seizures, being really seizures. Precision is measured as below:
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Precision =
TP

TP + FP

A perfect detection system aims at maximizing all of the above mentioned metrics. There

are measurements to combine two metrics among sensitivity, specificity, and precision in

order to provide a single quantity, and F1 score [11] is one of them. F1 score is measured

as followed:

F1 score = 2× Precision× Sensitivity
Precision+ Sensitivity

F1 score is in fact a harmonic mean of sensitivity and precision. In the context of

seizure detection, sensitivity and precision are more important than the specificity since

the great number of negative examples helps naturally in getting higher amounts of

specificity.

Additionally, the Area Under the Curve (AUC) of Receiver Operating Characteristic

curves (ROC) is another method to summarize the performance of a binary classifier in

the from of a single measurement. To plot an ROC curve, two elements are needed to be

measured: true positive rate (TPR) and false positive rate (FPR). True positive rate is

the number of all detected positive cases over the total number of positive cases. Hence,

TPR is the same as sensitivity. False positive rate is the number of negative cases falsely

detected as positive over the total number of negative cases. Therefore, FPR is equal

to 1-specificity. In an ROC curve, by changing the classification threshold to a ranges

of possible values, we will be able to obtain a curve resulted from plotting TPR against

FPR. Figure 4.9 illustrates an ROC curve.

The area under ROC curve is an indication of the system performance and it ranges

from 0.5 (random guess) to 1 (perfect classification). The larger AUC of ROC indicates

a reliable balance between sensitivity and specificity.

A common practice for evaluating a classifier is to use an n-fold cross-validation scheme,

in which the training and testing procedures are repeated for n times and then, the final

result is the averaged result of all folds. Using n-fold cross validation helps average out

possible biases in the classification results. For the upcoming results, I used a 5-fold

cross validation schema. That is, 80% of the feature vectors were randomly drawn for

train a model and then the remaining 20% feature vectors used for testing. Repeating

this for 5 times and then averaging the results gave the final classification evaluation.

Alternatively, I used a leave-one-out cross-validation schema. This is a special case

of n-fold cross-validation wherein one sample is for testing and the remaining are for

training. This is repeated until all samples in the dataset have been used once in testing.
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Figure 4.9: The area under the curve of ROC is used to measure the performance
of a detection system. TPR and FPR are the axes of the plot. In an ideal case the
area AUC of ROC is close to 1. AUC of ROC being near 0.5 indicates random level

detection results.

Afterwards, the results are averaged. Because we have a limited number of seizure cases

(compared to non-seizure cases), I performed the splitting portion of cross-validation

based solely on the number of positive examples.

4.4 Results

In this thesis, the data of 42 first patients who were participated in our study were

examined. The data from the first 6 patients was excluded because they did not have

accelerometry sensors attached to one hand and the ECG signal frequency was incon-

sistent with the other patients. Patient No.15 was also excluded because the data was

lost. Therefore, we continued the analysis with the remaining 35 patients.

For the remaining 35 patients, the total recording amounted to 52 days(days could be

less than 24 hours) with each patient having been admitted to the clinic from 1 ∼ 6 days.

While some patients did not have any seizures during their stay, others had one or more

seizures. In total, we compiled 33 seizure cases (4 simple partial, 24 complex partial

and 5 generalized tonic-clonic seizures, see image below) from 24 patients (mostly with

temporal lobe epilepsy; age 39 ± 14 years, and having an epilepsy duration of 18 ± 13.5

years).

Since the number of seizures per patient was not sufficiently high to aim at seizure

prediction per patient, I sought for a model by which it is possible to generalize over

various types of seizures of different patients. Hence, I made a dataset which pools

over all seizure and non-seizure cases of all patients. At this stage, each feature vector
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Complex Partial Seizure 

Simple Partial seizure

Figure 4.10: Proportion of 33 recorded seizures.

was labeled as seizure or as a non-seizure case based on the ground truth provided by

epilepsy experts in the epilepsy clinic Bonn.

The primary goal of our system was to detect and register seizures and then count

them. For technical consistency, I performed a windowing approach to extract the fea-

tures. However, the final evaluation had to be based on physiological events and not the

windows. To tackle this problem, a maximum of 6 consecutive windows (6x10Seconds =

1minute) was considered as an event if they could survive the early filtering. In this

setting, for an event, a class with a majority of votes from the classified windows will be

declared as seizure or non-seizure.

For later analyses, it is important to report the distribution of feature windows round

the clock to be able to evaluate the results based on daily time precisely. The table 4.2

shows the distribution of feature windows along time.

In the following, I evaluated and reported the performance of the system based on various

settings, including changes in the classifier of choice and its parameters, the combination

sensor data, and event thresholding, etc. Different metrics like sensitivity, specificity and

precision, area under the curve of ROC as well as F1 score has been used.

Earlier in this chapter, I referred to two machine learning arrangements towards solving

the current seizure detection problem, with event-filtering and without event-filtering.

As a quick recap, in event-filtering, we train the classifier merely on limited number

of windows. Those windows must possess certain characteristic to be included in the

training process. If a window has that distinguishing characteristic, it will be considered

to represent an event. In contrast, in a regular training process, (theoretically) all

windows will be taking part in the training process.
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Table 4.2: Epoch Distribution over 24h. The total number of analyses windows is
shown in this example. The windows are almost uniquely distributed except the times

around 9AM in which the sensors where usually replaced or being recharged.

4.4.1 Event filtering approach

As shortly mentioned before, I chose the event filtering criterion to be the ratio of

increase in average heart rate during two consecutive minutes by some fold (e.g. 1.2 fold

increase). This criterion was considered as one of the features too. This thresholding

criterion has to be able to include vast majority of positive examples and only a handful

of negative examples.

A question that might rise is that event-filtering could compromise the fairness of the

classification since obtaining the criterion needs to search all over the dataset. To escape

this dilemma, I searched for such filtering criterion in a separate dataset collected some

years before the start of our study in Bonn epilepsy center.

In the following, I present the inclusion rate of the event filtering based on positive

and negative examples (seizures and non-seizures). Figure 4.11 and table 4.3 show how

many of positive and negative events have the heart rate increase of 1.1, 1.15...1.6. As

mentioned, we have learned this effect from one of our previous studies in the clinic and

here too, most of the positive events (seizures) have significant heart rate increase while

only limited number the negative events (non-seizure cases) show a significant heart rate
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increase. A huge difference between positive and negative examples is observable in the

plot. For instance, 90% of seizures have a window with atleast 1.2 increase in heart rate

whereas only 4% on non-seizure events contain a window with 1.2 heart rate increase.
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Figure 4.11: Event inclusion rate. Positive and negative examples are threshold based
on the heart rate increase during two windows of one minute long. The results show
that positive examples have decidedly different behavior in term of hear rate increase.

Table 4.3: Event inclusion ratio

threshold seizure events (%) non-seizure events (%)

1.10 97.0 13.1
1.15 93.9 7.2
1.20 90.9 4.1
1.25 87.9 2.5
1.30 87.9 1.5
1.35 78.8 1.0
1.40 75.6 0.6
1.45 72.7 0.4
1.50 63.6 0.2
1.55 51.5 0.1
1.60 51.5 0.1

Event filtering is used in our classification settings as a preliminary step to the machine

learning phase. Having event filtering schema by itself has a big advantage in real world.

As mentioned before, to acquire higher sensitivity, I tweak the classifier threshold and

set it to lower values. This will increase the number of false alarms. With the event

filtering setting compared to direct classification, the number of assessed events will
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reduce significantly, and accordingly, the number of false alarms. Then in real world

scenarios, a patient feedback design can assist to lower the number of false alarms (see

chapter 5). Hence, choosing a threshold for the event-filtering phase will be a decisive

step to the whole seizure detection task.

In the following, the result of two-step classification is presented by changing the fil-

tering threshold. First, the classification performance of two-step classification with all

features and also by applying 50% classification threshold is presented. In table 4.4, the

classification performance is extensively investigated. Please note that the performance

is presented in 3 levels: event-filtering level, classification level and combined level. Ad-

ditionally, a 5-fold cross-validation is used in the proceeding results. Therefore, the

results could change minutely if the random sampling is changed.

My classifier choice for the following results was a random-forest and I used the Java

implementation of it provided by the Weka machine learning tool [81] using its default

settings. The toolbox was then imported in Matlab to be combined with the rest of

code.

According to table 4.4, the best final sensitivity,(52.5%) resulted from the thresholding

value of 1.35. The best final precision was 98.4% and came from the thresholding value

of 1.2. The best final F1 score arose from thresholding with 1.45 and was 67.7%.

Two points should be mentioned. First, the precision is computed according to the total

number of false alarms for all patients. Thus, we do not have a good estimation of

the number of false alarms per day. However, in this setting, we have used a total of

1030 hours = 43 days of recording and the amount of precision should be considered

accordingly. Thus, for example, 50% of precision and 30 seizures, would mean roughly 0.7

false alarms per day (30/43) which is a good record (compared to related work). Later,

I will change the setting to measure the false alarms per day for different recording

sessions separately. Second, although the precision is drastically high, the sensitivity in

this setting is rather low. In detection systems such as these, typically the main priority

is to detect whatever positive examples exist, even at the cost of lowering the specificity

and precision.

On that account, to increase the sensitivity, I dropped the classification probability

threshold from 50% to 10%. That means, if the classifier indicates that an event has a

probability of 10% or more for being a seizure, that event will be marked as a seizure.

The other possible thresholds could be used too. Nevertheless, according to our extensive

trials of alternative thresholds, 10% seems to meet our expectations.

Table 4.5 illustrates the classification performance of the upper mentioned settings but

with tuning the classification probability thresholding to 10%.
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From the table, we can infer that the best sensitivity, 79.1%, is with an outcome of 1.25

event thresholding and the highest precision and F1 score resulted from a thresholding

value of 1.6, which are 58.2% and 54.6% respectively.

To take this one step further, we can lower the classification probability thresholding

value to achieve a higher sensitivity.

One way to check the effect of different modalities on the classification performance is

to exclude one modality and compare the resulting performance with other cases. Since

we have three main modalities in our work, ECG, ACC, and EDA, we can exclude them

one by one and repeat the classification procedure.

Table 4.6 represents the classification results of the case using only HRV features. In

contrast to the case of having ECG raw features included, having only HRV features

makes it more feasible to systematically match up the seizure related effects on heart rate

rhythms with other clinical studies. Although raw ECG features could potentially help

distinguishing seizures from non-seizures, they are mostly contaminated with movement

and muscle artifacts and accordingly difficult to discern a conclusive seizure pattern.

The best sensitivity resulted from the event thresholding of 1.2 and 1.3 (76.2%). The

topmost precision derived from the case with 1.6 thresholding value (55.2%) and the

highest F1 score obtained from 1.45 thresholding case (55.6%).

comparing this HRV features with the features of raw ECG and HRV combined using

paired T-test, we observe a significant improvement in sensitivity (p < 0.0005) but

insignificant increase in precision and F1 score:

Table 4.7: Checking the effect of the raw ECG features classification using paired
T-test. Two cases are compared: the case using raw ECG and HRV features and the

case using only HRV features.

Sensitivity Precision F1 score

h 1 0 0

p 4.3583e-04 0.26 0.12

tstst 5.14 1.19 1.67

This shows us that for a given threshold, having raw ECG features could help improving

sensitivity of the system but also increasing the number of false alarms.

In the next analysis, the classification of having HRV features and accelerometry is

targeted (see Table 4.8).

The best sensitivity value (79.1%) is resulted from applying 1.25 threshold value. The

top precision (53.5%) derived from using 1.6 threshold value for event filtering and
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Table 4.4: The classification performance using event filtering and all modalities. The
probability threshold is set to 50%. The results show the event filtering on left side of ta-
ble, machine learning in the middle, and combined performance on the right.considering
different event filtering thresholds. This table and the next tables give us parameters

of a seizure detection system to achieve a particular detecting performance.
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Table 4.5: The classification performance using event filtering and all modalities. The
probability of the classifier is threshold to 0.1 to force for higher sensitivities
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Table 4.6: The classification performance using event filtering and only HRV features.
The probability of the classifier is threshold to 0.1 to force for higher sensitivities.
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Table 4.8: The classification performance using event filtering and only HRV and
accelerometry features. The probability of the classifier is threshold to 0.1 to force

for higher sensitivities.
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the peaking value for F1 score (51.7%) resulted from 1.25 thresholding value. We are

interested to check the cumulative effect of accelerometry features on HRV features.

T-tests reveal that there is no classification effect of adding accelerometry features to

HRVs whatsoever. In term of sensitivity, precision, and F1 score, the changes are highly

insignificant. Please see table 4.9 for the detailed information.

Table 4.9: Checking the effect of using accelerometry features in classification using
paired T-test. Two cases are compared: the case using only HRV features and the case
using HRV together with accelerometry features. The test rejects the hypothesis.

Sensitivity Precision F1 score

h 0 0 0

p 0.9521 0.8574 0.6865

tstst -0.0609 0.1820 0.4096

Additionally, we were interested in discovering the effect of seizures in electrodermal

activities. In table 4.10, the classification results of using HRV and electrodermal activity

features are shown. The results reveal that the topmost overall sensitivity is derived from

the 1.25 thresholding value case (79.1%), the best precision is from the 1.55 thresholding

value (52.2%), and the highest amount of F1 score reported from the 1.4 thresholding

case amounted to 55.7%.

To check the effect of adding electrodermal features, I ran another set of T-tests. Similar

to the previous case (adding accelerometry features), there was no incremental effect on

the evaluation metrics. All of the tests reported highly insignificant effects. Please see

table 4.11 for more details.

Table 4.11: Checking the effect of using electrodermal features in classification using
paired T-test. Two cases are compared: the case using only HRV features and the
case using HRV together with EDA features. It can be observed that EDA did not
have any significant added effect on the classification performance (the test rejects the

hypothesis).

Sensitivity Precision F1 score

h 0 0 0

p 0.9145 0.8620 0.8277

tstst -0.1088 -0.1761 -0.2205

Next, we checked the classification performance of using all modalities: HRV, accelerom-

etry and electrodermal features. Table 4.12 shows the detail classification performance

of combining all mentioned modalities.
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Table 4.10: The classification performance using event filtering and only HRV and
electrodermal features. The classification probability is threshold to 0.1 to allow for

higher sensitivities.
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Table 4.12: The classification performance by applying event filtering and using
HRV, accelerometry, and electrodermal features. The classification probability

is threshold to 0.1 to allow for higher sensitivities.
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The best sensitivity (79.1%) is obtained with 1.1 as a threshold; the best record for

precision came from setting the threshold to 1.6 with 48.6%, and the highest F1 score is

resulted from 1.3 thresholding case amounted to 54.0%.

Similar to previous cases, I ran several T-tests to check for possible improvement of

combining modalities. In this case, it can be realized once again that adding excessive

features from other modalities to HRV does not provide us with any advantage. All

T-tests reported highly insignificant changes in either direction.

Table 4.13: Checking the effect of using both accelerometry and electrodermal fea-
tures in classification by applying paired T-test. Two cases were compared: the case
using only HRV features and the case using HRV together with accelerometry and

electrodermal features.

Sensitivity Precision F1 score

h 0 0 0

p 0.7603 0.6717 0.9217

tstst -0.3093 0.4301 0.0995

4.4.1.1 Day and night classification

I have also investigated the difference of day vs. night classification. The data between

10pm to 6am is considered to be the night time as the patients normally sleep during

this time. Otherwise, the recording times between 6am to 10pm were considered to be

the day-time recording.

Next, I have performed a leave-one-patient-out cross validation and performed an ECG

based classification. I chose however different classification probability thresholds for

the day and the night time data.

In this setting, apart from random-forest, I made use of another classifier, Naive-Bayes-

Updateable, concurrently. The reason was that the Naive-Bayes-Updateable classifier

uses a generative approach to find a model, as we discussed in section 4.3.5, and we can

give it a chance to help the random-forest classifier to achieve higher sensitivity.

Table 4.14 shows the overall performance of our seizure detection system as well as days

and nights split performance.

It can be observed that the day classification is significantly more reliable than night’s

even though we have used lower classification probability threshold for the night data to

force for higher sensitivity. One known reason to this is the sleep arousal effect, in which

the heart rate increases abruptly around 6 to 10 times in an hour during the sleep. This
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Time Overall (%) Day (%) Night (%)

Sensitivity 61.8 71.7 28.6
Precision 51.2 51.5 28.6
F1 score 56.0 59.9 28.6

Table 4.14: Day vs. night results. It can be seen that the classifier performs better
during the days compared to the nights.

can be easily mistaken with seizures. The difference between the performance of seizure

detection classification in days and nights is discussed widely in [11].

4.4.1.2 Important features for classification

I have conducted a feature search approach based on t-test to check for the information

every feature carries. That is, for every feature, an individual t-test is conducted to

check the amount distribution difference between seizure cases and non-seizure cases

(performed on training-data). Based on the results of t-tests, the 15 top most informative

features are listed below:

Feature Name Description

diffHeartBeatPrePost Difference of heart-rate, pre-ictal vs. post-ictal

diffMeanRRIntervalPrePost Difference of average RRI, pre-ictal vs. post-ictal

diffEntropyRRIntervalPrePost Difference of entropy of RRI, pre-ictal vs. post-ictal

diffCVIPrePost Difference of CVI, pre-ictal vs. post-ictal

diffCSIPrePost Difference of CSI, pre-ictal vs. post-ictal

diffRRIPSDVLFPrePost Difference of PSD of RRI in VLF, pre-ictal vs. post-ictal

diffRRIPSDLFPrePost Difference of PSD of RRI in LF, pre-ictal vs. post-ictal

diffRRIPSDHFPrePost Difference of PSD of RRI in HF, pre-ictal vs. post-ictal

diffRRIPSDTotalPowerPrePost Difference of PSD of RRI in all freq., pre-ictal vs. post-ictal

diffRRIPSDPowerRatioPrePost Difference of PSD of RRI in power ratio, pre-ictal vs. post-ictal

diffNN50PrePost Difference of NN50, pre-ictal vs. post-ictal

diffPNN50PrePost Difference of PNN50, pre-ictal vs. post-ictal

ecgArousal Relative heart-rate fold change

meanNormDisplMidPost Average displacement

stdNormDisplMidPost Standard deviation of displacement

It is worth to notice that the most important features are those which characterize the

difference between pre-ictal and post-ictal and extracted from ECG.

4.4.1.3 Summarizing the results of event filtering approach

The event filtering approach is an ideal method for seizure detection systems specially

if they are built based on limited number of seizures. The reason is that most of the

potential processing load is excluded by an early and easy event filtering system and
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therefore, it could be efficiently running on a small processor. The other advantage of

using the event filtering approach is to reduce the number of false alarms and it is due

to filtering out the cases which are not similar seizures physiologically in the first place.

Here, I conducted a two-step arrangement. In the first step, windows with seizure-like

patterns were selected for the second step, and in the second step, machine learning

was performed (the criteria for the event filtering phase was extracted from a previous

study). The criterion in particular was the following: the heart rate increases e.g. 1.2

times in average within two consecutive minutes.

Random-forest was our main classifier of choice since it showed best performance in

most of the settings. Additionally, it was convenient with random-forest to perform for

the classification probability thresholding. Moreover, random-forest could also be used

to trace the relevance and importance of the features used in the classifier. From the

results, we can infer the following points:

• We can extract features from the raw ECG signal and those features may help

increase the sensitivity of the system significantly. However, raw ECG features

also raise the number of false alarms and as a result, the precision and F1 score

does not improve significantly.

• Heart Rate Variability (HRV) features are sufficiently informative for seizure detec-

tion. Although other modalities such as accelerometry and electrodermal activity

features reveal some seizure-related activities, based on our data, they do not

provide any added information, which in turn does not improve the performance.

4.4.2 Direct classification approach

In the next step, I developed a direct machine learning approach by skipping the event

filtering phase and sticking to the conventional machine learning procedure. Since we do

not have any event filtering, the number of negative examples (non-seizure) outnumbers

the positive examples drastically. Thus, to reduce the complexity of the classification, a

random portion of negative examples for the training phase can be used. Nonetheless,

in the testing phase, the whole negative and positive samples can be chosen to get an

accurate evaluation of classification metrics.

An important point here is that splitting the windows to training and test sets will

end up having samples in training and test sets which are timely correlated. This will

ease the classification procedure and will produce biases leading to outstandingly good

results. To avoid it, I split the testing based on the sessions of recording. In this way,

there wont be any sample in the test sets which is timely correlated to the training set.
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Training and testing classification models on non-event-based data, we have obtained

acceptable sensitivity but with extremely poor precision.

Table below shows the best result of non-event-based classification. It can be understood

from the results that this approach is not as efficient as event-filtering approach for

seizure detection.

Performance metric Direct classification

Sensitivity 86.2 %
Precision 2.5 %
F1 score 4.8 %

False-alarm per day 24.0

Table 4.15: Direct classification performance. In this approach we skipped over the
event filtering approach. The results reveal the importance of event filtering approach
as the number of false-alarms rose significantly, and consequently, reducing the precision

and F1 score.

With direct classification approach, a higher sensitivity can be achieved but it is not

giving us a reasonable precision and F1 score. Therefore, it could be used in systems in

which the sensitivity is more important than the other factor.

4.5 Prospective evaluation part 1, mobile EEG/ECG

One important result of our previous project was proving that the most significant

modality for detecting seizures was the heart rhythm. It was also demonstrated that

ECG is sufficient for seizure tracking purposes. In this phase of study, I aimed at

validating the algorithm developed from the last sections by new collected data and

to see how our trained model would function in a more realistic scenario. For this

purpose, we collected another set of patients with (mobile) ECG recordings obtained in

the Epileptology Department at the University of Bonn Medical Center.

4.5.1 Patients, sensors, data

Epilepsy patients who were hospitalized in epilepsy clinic were asked to carry a portable

recording device with themselves during their stay. We have recorded a total of 30

patients, 8 females, 22 males (ages: 38.6± 15.7).

All data of patients in this group were collected during standard clinical care, so that

additional informed patient consensus was not required, as approved by the local medical

ethics committee (No. 352/12). All patients signed a consent letter for their participa-

tion in the study prior to recordings.
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Epilepsy patients who were hospitalized in the Epileptology department were asked to

carry the (portable) recording device with them during their stay. We recorded a total

of 30 patients: 8 females and 22 males (ages: 38.6 ± 15.7). There were a total of 33

recording sessions, each lasting 1 to 2 days. In total, we recorded for 758.44 hours,

registering 49 seizures from patients.

The distribution of seizures is rather different to what we had in the previous phase

and it adds to the difficulty of correctly detecting seizures based on the model learned

previously (see figure 4.12 for more details).

13

21

2

13

SPS CPS GTCS Others

Figure 4.12: Distribution of seizures in Mobile-EEG recording. This image indicates
that the distribution of seizure types is different to the first study (apart from the
recording condition). This difference can be used to determine how our developed

seizure detection algorithm would generalize on a new set of data.

This time however, instead of Movisens sensor or in-bed ECG recording, we collected

our data with another mobile device provided from Micromed company (see image 4.13)

Figure 4.13: Mobile Micromed EEG/ECG recording device. The patients could freely
move within the clinic and perform their daily routine (walking, sitting, watching TV,
etc. while being recorded by the device. The idea was to record patient in a different

environmental and physiological condition.)

The device was called micromed mobile EEG which was able to record and register ECG

signals alongside EEG recordings. The patient could freely move inside the clinic while

carrying the device with them.
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4.5.2 Methods

In this phase of study, the technicalities is not outlined. The same methodology applied

in the last project, applies here too, but with a minor changes. Here, we limited ourselves

to HRV features since we previously discovered that they are the most informative.

Therefore, neither accelerometry nor electrodermal measurement is involved.

Altogether, 65 HRV features were measured from the ECG signals. As previously stated,

our main goal was to confirm that the previous results are not biased or have confounded

variables. To do this, the data obtained in this phase was blindly tested against the

model from the last project. That is, our model was trained using only the Movisens

ECG dataset and then checked for the classification performance of the trained model

against the new (mobile EEG/ECG) dataset. This setting has some advantages in that

it helps us recognize whether or not our trained model is susceptible to noise or other

changes in patient activity. This way of evaluating the model is know as prospective

evaluation in the realm of medicine as opposed to retrospective evaluation.

4.5.3 Results

For each threshold from 1.1 to 1.45, I trained a model based on Movisens data and tested

it against Mobile-EEG dataset with the same threshold. While training, I chose 10 best

discriminative features among all 65 features and train the model accordingly. In the

test phase, the same sets of features is selected for testing. In the following table the

results of testing on Mobile-EEG is presented (table 4.16).

From the results, it can be realized that the detection rates are not as good as previous

dataset even though they are lying in an acceptable range. The reason could be the

followings. First, the seizures presented in the new dataset do not have the same distri-

bution as previous dataset and accordingly is not optimized fully for it. Second, the new

data set contains lots of aura seizures and short time focal seizures (SPS) compared to

the last dataset. These types of seizures do not carry the typical physiological signs and

symptoms of the seizures. The third reason is that 10 out of 49 seizures have heart-rate

increase of less than 1.15 during seizures (20%).

All in all, the results of this phase reveals the difficulties and short-comings of detecting

all types of features in different conditions.
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Threshold Sensitivity Precision

1.1 53.06 5.53 10.01 444 14.4

1.15 59.18 6.69 12.03 404 12.78

1.2 50.00 7.57 13.15 293 9.27

1.25 45.83 8.66 14.57 232 7.34

1.3 44.44 13.42 20.61 129 4.08

1.35 35.71 16.30 22.38 77 2.43

1.4 44.73 14.28 21.65 102 3.22

1.45 31.42 22.91 26.50 37 1.17

F1 Score Total num of 
False-Alarms

False Alarm
Per Day

Table 4.16: Results of classification on Mobile-EEG and with different thresholds.
This table also gives us a map to opt for a desired seizure detection settings. To aim for
higher sensitivities, a lower thresholding value is needed. To go for a smaller false-alarm
and higher precision, a higher thresholding value is needed. In term of F1 score, the

higher threshold produces the best result.

4.6 Prospective evaluation part 2, Epitect ECG

In addition to the last prospective evaluation, we have validated the ECG based de-

tection algorithm on a third dataset called Epitect. The Epitect dataset collected over

the course of two years in epileptology center in Bonn. The project was composed of

three concurrent recordings, the clinical ECG and two wearable devices to record pho-

toplethysmography (see chapter 5). The following results are obtained by applying my

algorithm to the first 97 patients of the Epitect study. The work has conducted in

collaboration with my colleague Dr. Jan Baumann [6].

4.6.1 Patients and data

A total of 97 patients participated in the study. These epilepsy patients were admitted in

Bonn epilepsy center and underwent Video-EEG monitoring. Among them, 255 seizures

were recorded.

All patients gave informed consent for their participation prior to recordings and the

study has been approved by the local medical ethics committee (No. 355/16).

As opposed to patients in the mobile EEG/ECG study, patients of this study had similar

conditions with the main study as they were all recorded in bed in non-walking conditions

but with standard clinical ECG recording developed by Micromed company.



Chapter 4. Epileptic Seizure Detection 147

4.6.2 Results

We split the patients of this study to 50 first patients to be used for the training phase

and the rest 47 patients for testing.

This algorithm largely replicated the same performance of the main algorithm:

Performance metric Epitect ECG

Sensitivity 39 %

Precision 73 %

F1 score 51 %

False-alarm per day 0.4

Together with the other validation groups, we can conclude that the algorithm works

satisfactorily well for patients with less physical activity and works moderately good

for the moving patients. This is however a good news for epilepsy patients as one of

the most dangerous threats to them is Sudden Unexpected Death in EPilepsy (SUDEP)

[3, 97]. SUDEP happens as a consequence of an epileptic seizure. The danger of SUDEP

is much larger during the sleep, as in most of the cases, patients have a small chance of

having people around them to take care of the situation.

The algorithm developed in this section would be of great benefit to the epilepsy patients

especially during sleep. An on the fly alarming system can be developed upon it to inform

the care givers, and therefore, rescue the patients.

4.7 Developing deep learning algorithms on ECG data

Aside from applying conventional machine learning techniques, I have also investigated

two deep learning methods to detect seizures in our data. For this sake I used the

Epitect dataset which contains fairly high amount of recording and seizures considering

the fact that the classification performance on this dataset were significantly good using

conventional machine learning methods.

4.7.1 Method 1, Convolutional Neural Networks (CNN)

Referring to chapter 2, since CNNs are predominantly designed to learn from 2D, 3D

or 4D data such as images and videos, to be able to use their full strength, an idea was

to feed the ECG data in the form of images to the network. For this sake, I measured a

2D map of power spectral density (PSD) of continuous wavelets transformation (CWT)
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from ECG data (see image 4.14). This map represents the power spectrum of ECG.

The representation of R-Peaks of ECG should be also theoretically embedded in some

time-frequency regions of the maps. Other heart-rate related activities should be also

reflected in the map. Image 4.14 show an instance of PSD resulted from CWT on ECG.
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Figure 4.14: Contineous Wavelets Transformation of ECG. The map show a time-
frequency representation of the power of ECG signal. Changes in the ECG signal should

be reflected in the map across different frequencies.

A five minutes windows is considered (300s × 256Hz). The resulted transformation

image is a 134× 76800 in size due to the frequency resolution and time resolution. This

image should be resized to a moderate image size before putting it in a CNN. The long

image is then resized to 128× 512. Multiple variations and settings were tested to build

a CNN. Below I present a network of 4 layers for this time-frequency image. Image 4.15

represents the network structure pictorially. The network is composed of 3 convolutional

layers and one dense layer. Every convolutional layer is accompanied with a max-pooling

layer. The dense layer is preceded with a dropout section to prevent possible overfitting.

Although I have tested the ECG time-frequency images against multiple number of

CCNs, the networks were never good enough to distinguish seizures from non-seizures.

I have also applied techniques for data imputation and data augmentation to increase

the number of positive examples, that was of no help to the networks.
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(128 × 512 × 1)
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Figure 4.15: Convolutional neural network design on ECG time-frequency image.
The network is supposed to extract the features out of the image and decide whether
the heat-map represents a seizure or not. The network is composed of 4 layers, 3
convolutional layers and one dense layer. Each convolutional layer is proceeded by a
max-pooling layer to reduce the degree of freedom. The size of each layer is labeled in
the figure. The dense layer (fully connected) is preceded by a drop-out section in which

20% of the paths are dropped randomly to account for overfitting.

Next, I have also used our old trick of event filtering, to use only images with significant

associated heart-rate increase. That did not have any impact on the networks neither,

and the classification results did not improve from random chance.

4.7.2 Method 2, Deep Multi-Layer Perceptron (dMLP)

Since using CNN did not show to have any effect on the ECG classification, I developed

a modern deep multi-layer perceptron (dMLP) network which benefited from ReLU

activation function and drop-out, to check weather this can improve our results. Here,

instead of the images used for developing CCN , I used our extracted ECG feature (65

features, 1.35 thresholding value) explained broadly in this chapter. Training on the

first half of patients in Epitect dataset and testing on the second half, reveals superior

results than CNN:

Performance metric dMLP

Sensitivity 55.7 %

Precision 42.6 %

F1 score 48.2 %

The classification performance is in all of its terms inferior to of the random-forest and

it shows that tree-classifiers tend to perform better on our datasets.
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4.7.3 Conclusion

The above results indicate that perhaps the amount of information carried by such

datasets are not uniform enough to converge a neural network. The reason tree classifiers

work best in such scenarios is that the data is irregularly scattered in the feature space

and therefore, tree classifiers like random-forest can model the exceptions much easier

naturally since they search for discrete combinations of features which can distinguish

the classes.

The other reason can be the size of the dataset. While the number of negative exam-

ples are huge, the number of positive examples are significantly low. And artificially

increasing the number of positive examples does not improve the amount of explorable

patterns for neural networks.

The third reason why algorithms like CNNs are not optimal in such situations is referring

to the data itself. Wider neural networks in theory are harder to converge than narrower

ones. A big image would cause too many degrees of freedom in each layer and therefore,

cumbersome to train. A way to tackle such problems is to feed more patterns with

diversity, which is not easily possible to obtain in our case.

These facts may imply that applying deep learning techniques does not always lead to

the best results. Deep learning techniques are a powerful tool in the machine learning

toolbox but should be used only if profitable.

4.8 Summary

To give people with epilepsy a proper counseling, seizure diaries were assigned to patients

to record and report their seizures as they take place. Although seizure diaries are

considered to be the gold standard for monitoring seizures in the clinical trials, multiple

studies have shown that these reports are markedly inaccurate [37, 58, 65].

A solution to this problem was to develop machine learning algorithms to be used

on portable and wearable devices to track and record and register seizures based on bio-

feedback signals such as EEG, ECG, AAC, EMG, EDA. EEG is the gold-standard for

seizure detection but it is not a practical every-day use solution. Devices for detecting

primary motor seizures evolved significantly in the last years [8, 23, 78] and are mostly

dependent on movement sensors. However, there is a gap for seizure detection devices to

detect all types of seizures. In this chapter, I aimed at bridging this gap and developing

a system for detecting all types of seizures (seizures with/without movement involved).
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For this sake, I presented three datasets in this chapter. I have exhausted the first

dataset to develop machine learning algorithms for seizure detection (Movisens dataset).

The second two datasets (Mobile EEG/ECG and Epitect datasets) were merely used to

evaluate the algorithm from the first group prospectively (as suggested also in [8]).

Three windows, pre-ictal, ictal, and post-ictal windows were considered. For each win-

dow, I calculated features across all modalities. Altogether 225 features were calculated.

This shaped a feature vector representing an event. Among all feature vectors, feature

vectors with abrupt heart-rate changes were pre-selected, and a machine learning set-

ting which suits this data was developed to search among the feature vectors and yield a

model for seizure detection. Other machine learning approaches such as classes of deep

learning, have also been tested.

The work in this chapter compared to the work reviewed in [11, 69] provides a practical

approach for seizure detection to help patients with epilepsy in detecting all types of

seizures. This should help them in better monitoring their epilepsy in their clinical trial

and ultimately improving their quality of life. The performance is superior to other

reported ECG related work. Compared to human level report, the system performs

better in sensitivity, a bit inferior in precision but showing slight performance increase

in term of F1 score. With higher sensitivity than humans, it is a good candidate to

prevent sudden unexpected death caused by epilepsy (SUDEP) during sleep.

The results also suggest that among tested modalities, only algorithms based on ECG

data can be used for the clinically meaningful automated detection of all seizure types

and that the use of further biosignals does not seem to bring any relevant improvement.

The study also highlights the importance of the conditions under which such algorithms

are developed and highlights the limitations of automated detection technologies for all

types of seizures.





Chapter 5

Photoplethysmography towards

portable seizure tracking

After testing and proving the abilities of HRV-based seizure detection, we searched for

an easy-to-use and affordable solution for putting our developed seizure detection system

into effect. Our goal was to search for devices that patients could easily wear and perform

day-to-day activities without difficulty.

A recent technological advance called photoplethysmography (PPG) has emerged in hand-

held devices and sport/smart watches which measures heart rate. Unlike ECG which

tracks and reflects the electrical pulses resulting from heart activities, PPG can detect

the minute momentary changes in color by using either photosensors or a camera. As

blood is pumped from the heart, it circulates throughout the entire body. The effect of

the blood flow can be observed via skin color. Therefore, PPG helps determine the time

at which the skin becomes darker and measures the time between color peaks. In this

manner, the heart rate can be estimated.

However, detecting peaks in PPG is not a trivial task as multiple peaks might be close

together and consequently, it can be harder to ascertain the true heart rhythm. Or-

dinarily, the heart rate is extracted via the fast Fourier transform (FFT). FFT helps

PPG estimate the correct heart rate while also diminishing the time resolution of the

detection. Accordingly, using FFT in PPG is always a compromise between a frequency

domain resolution and a time domain resolution. This will be addressed in the next

section.

Next, we tried to find the most reliable and optimum PPG device currently available on

the market. The potential PPG product had to fulfill certain criteria:
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1. It must be able to measure the signal continuously for nearly 24 hours.

2. If the data analysis is not functioning within the device, then it should be able to

transmit the data actively and continuously to a mobile device.

3. The measured heart rate must be available in real-time.

4. The device should be affordable.

5.1 Related work

Laázaro et. al. [73] proposed using PPG for heart rate tracking in a study for tracking

sleep-apnea in children. They used PPG to classify normal heart rate activities vs.

apnea cases. It turned out in their work that the amplitude of PPG signal is used as an

informative feature for detecting apnea cases.

Van Andel et. al. [100] compared how effective a PPG recorder (Mio Global alpha [82])

is compared to ECG for seizure recording. They recorded 7 epilepsy patients during

sleep and wakefulness and realized that there is no significant difference between Mio

PPG recording and clinical ECG during seizure and non-seizure times. For matching

evaluation, they measured the root-mean-square of differences between those signals.

According to their work, the best match of PPG and ECG pulse however happens

during sleep due to lack of movement artifacts.

In a work similar to our settings, Vandecasteele et. al. [102] studied the pattern of heart

rate changes across three different recording means: clinical ECG, a wearable ECG

and also wearable PPG devices. In previous chapter, more broadly, we have discussed

their ECG results and their algorithm. Regarding their PPG work, they have collected

47 seizures in total over the course of 701 hours, recording from 11 participants using

Empatica E4 PPG recorder [32]. In their algorithm to detect seizures, they followed the

method suggested in [73] in which the pulse rate variability (PRV) instead of HRV is

used. PRV in fact is the differences of the locations in medium amplitude points of PPG

signal. They initially used an adaptive thresholding to discover the rapid changes in

pulse and then selecting sections with such features. Next step is to obtaining PRV and

measuring 3 features: heart rate peak, 60s average heart rate before heart rate increase,

and 60s standard-deviation of heart rate before heart rate increase. Thereafter, they

used SVM to classify the cases. They achieved 32% sensitivity with 1.8 false-alarm per

hour (43.2 per day).

Jan Baumann [6] in our group conducted a study to track the heart rate of epilepsy

patients based on video data. That is, the video of the patients in the monitoring room



Chapter 5. Photoplethysmography, a follow up study 155

could be used to extract the heart rate activities. He realized that the green channel in

RGB images of the skin is affected most by heart activities and can be used to extract

the heart rate rhythms, and consequently monitoring the epilepsy patients. There were

however two points to be considered to have a good recording. First, the skin should

not be covered with make up. Second, the skin patch of interest should not be moving

much in the video. This method requires color image and hence, the images recorded in

infrared spectrum can not be applied.

5.2 Wrist-worn PPG

Based on our mentioned required points, we performed a search to find the most suitable

candidates. For smart watches, we chose the following candidates.

We chose the R© Samsung Gear S3 watch as it has a longer battery life for 24-hour

recording and streaming, and it also provides direct access to PPG sensor values (Tizen
R© operating system). The other Android-based watches provided features almost within

the same range. The Apple watch was also a good candidate, but not optimal for

instantaneous heart rate availability. We also studied sport watches that were available

at the time of study on the market.

We found two good candidates: Empatica R© E4 and Mio R© Alpha 2. Both watches

could measure and stream the data for a long period of time and their recordings were

instantaneously available at the receiving end. Mio is advantageous in that it can record

for more than 24 hours (vs. 20 hours) and is significantly more cost-effective.

To select the more reliable watch, we conducted an experiment (pilot study) at the

clinic. We wanted to determine which watch measured the PPG signal more accurately

and near the ECG level. We invited five people to participate in the study and asked

them to wear both devices on both wrists as well as a portable ECG recording device

to acquire the ground-truth ECG. The participants were asked participate in a ∼ 20-

minute experiment in which their heart rate was measured under different conditions:

sitting, standing still, walking, running, and climbing the stairs with full power. We

also recorded the patients with a PPG in-ear recorder which was employed in another

concurrent study at the clinic (see it later in this chapter).

The results of our pilot study were as follows: under normal conditions (i.e. sitting and

slowly walking), all of the sensors performed as accurately as the ECG. However, in the

stress cases, the Mio watch was able to keep the heart rate trends in most cases (4 out of

5). The Samsung watch and in-ear sensor displayed the same result in stress situations

(2 out of 5). Hence, according to our study results, we chose the Mio watch for our
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study. Also, another seizure recording study was published at the time using the Mio

watch as a recording medium [100].

Figure 5.1: Mio pulse sensor [82]. The watch, compared to available watches in the
market provides more accurate heart rate and in better time resolution ( 1Hz). The
watch could record for the minimum of 24h and and was easy to wear. The recorded
PPG based heart rate were transmitted on the fly to a phone through low energy

Bluetooth.

5.2.1 Patients, Data, Recording Media

In this study, we recorded 100 patients, typically for one day or more. In total, we

obtained 5650 hours of recording.

The Mio watch was equipped with a low energy Bluetooth module which transmits the

PPG measured heart-rate recordings using a scale of 1 second to a receiving device. For

this study, we paired a phone with the Mio watch and used Wahoo app [100] to record

the PPG data. We could then transfer the PPG data as a CSV file format along with

their respective times.

Image 5.2 shows a sample Mio HR recording of 24 hours. The upper panel shows the HR

values and the red points indicate the seizure times while the lower panel displays the

corresponding heart rate changes for two consecutive minutes for each of the recording

points. One can see that the seizure detection pattern in this case is not a trivial task

due to the large number of non-seizure values which have heart rate increased cases even

much higher than seizure cases.

Image 5.3 illustrates what a magnified version of a seizure recorded by Mio watch might

look like. The figure is a cutoff of figure 5.2 during seizure time. The red area in its

upper panel indicates seizure times. In the lower panel, the measured minute-to-minute

changes in heart rate are shown.
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Figure 5.2: Mio recording and seizures. In the upper panel, the heart rate recording
signals of Mio sport watch is shown. The red signs indicate seizure times. In the lower

panel, the momentary heart-rate fold change during consecutive minutes is shown.

5.2.2 Method

Our goal was to record a seizure from an epilepsy patient using the Mio watch. In order

to draw a solid conclusion regarding PPG technology, we recorded as many patients

as possible with Mio in order to express statistically whether PPG technology is a

dependable means for seizure detection.

Therefore, we simultaneously recorded our patients using PPG technology through Mio

sport watch but also profiting from another concurrent study using a PPG based in-ear

sensor (next section). This set-up was advantageous because we could finally perform a

head-to-head comparison between our recordings and similar recording techniques and

then weigh the pros and cons.
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Figure 5.3: Mio recording and seizures zoom-in. The upper panel represents an
instance of heart-rate during seizure time. The lower panel corresponds to consecutive

fold change of heart-rate of the upper panel’s data.

As in the previous phases, we obtained our data from patients who were registered

at the Epileptology Department at the University of Bonn Medical Center and were

recorded using clinical EEG and ECG. There are two main reasons for this. First, the

ground-truth ECG had to be determined for checking the accuracy of the PPG recording.

Second, the exact onset/offset of the seizures could be obtained from the EEG recordings

and with the assistance of epilepsy experts at the clinic. Having a fairly large number

of seizure recordings, I was then able to construct a machine learning model for PPG

data in the same manner as the ECG in the previous chapter.

The collected data can then be used as raw material for feature extraction. Unlike ECG,

in order to measure HRV features, the RRIs should be reconstructed from the heart-rate

(HR). That is, for any particular time point for which there is a heart rate, the data

must be interpolated so that we have a HR value for every single second. Then, the
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time required to go from an R peak to the other can be measured as:

RRI = (
HR

60 sec
)× 1000ms

It should be stressed that the measured RRIs are not as accurate as ECG since PPG

is the result of applying FFT in a time window. Hence, abrupt changes in actual RRI

may not have been reflected accurately in PPG-based RRI.

As with other phases, I aimed at building a reference model for seizure/non-seizure

events. To do so, I once again utilized machine learning techniques. For a machine

learning task, typically, measuring features from raw data is required. From this point

on, I measured the HRV features the same way that I measured them for HRV on ECG

in chapter 4. Similar to ECG, 65 HRV features in total were calculated from PPG data.

Next, I modeled the data with an RF classifier using the first half of data (from patient

1 to 50). I then tested the remaining 50 patients against the trained model.

5.2.3 Results

Table 5.1 shows the performance of using Mio sport watch to monitor seizures. It can

be observed easily that the performance of the PPG sensor shows a significant drop

compared to the ECG study. It should be mentioned here that the ECG recording

of the same group of patients with same classification settings (reported in chapter 4)

shows a significant difference.

Performance metric Mio PPG ECG

Sensitivity 12.66 % 39 %
Precision 9.30 % 73 %
F1 score 10.72 % 51 %

False-alarm per day 6.2 0.4

Table 5.1: MIO watch PPG seizure detection performance. Compared to the results
of ECG in chapter 4, a significant drop in performance can be observed. It is main due
to the nature of PPG pulse, which averages out abrupt heart rate changes from the

signal.

This fact led us to check for an alternative PPG based seizure detection system with

patients’ feedback. Ergo, we extended the study in two directions (see them later in

sections: App development; Apple watch extension).
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5.2.4 In-ear sensor

As mentioned earlier in this chapter, we have run our PPG sport watch study in parallel

with another PPG based study called Epitect. The difference was that in Epitect, an

in-ear PPG sensor was used to get the heart rate activity (see image 5.4). The sensor

is developed in a company called Cosinus [20] in Munich Germany. The sensor was able

to record and transmit the raw PPG signal (not only the pulse) as well as temperature

and accelerometery data to a mobile device through Bluetooth. The main advantage of

this sensor was to obtain raw PPG signal compared to Mio watch which only pulse data

was available. Raw PPG signal contains also information about blood pressure. It has

been shown in a work from our group that blood pressure changes significantly during

seizure time [48]. The disadvantage of the sensor is its small battery life (6 hours) and

wearing comfort problems (in patients view).

Figure 5.4: Cosinuss one in-ear sensor [20]. The sensor can measure PPG, accelerome-
try and temperature and transmit it in real-time to an external receiver. The advantage
of this device was to provide raw PPG, which contained SPO2 information (oxygen sat-
uration). The sensor had but limitations in battery life as it had to be changed every

6 hours.

The details of this project has not yet been published but according to preliminary

results, it appears to have better seizure detection performance compared to the Mio

watch study but still inferior to its corresponding ECG recording. I have developed and

shared some codes for feature extraction for the developers of this project in the early

stage of the project and is partially being used in their current work.

5.2.4.1 App development

As shown above, the results of Mio watch PPG study are not as promising as what we

observed in the ECG analysis. We could still increase the sensitivity, but at the cost

of lowering precision. One way to tackle this problem is to involve the patients in the

process. Therefore, I developed an app for Android smart phones to alert the patient as

soon as a suspicious change in heart rate activity occurs. The patient receives a notice



Chapter 5. Photoplethysmography, a follow up study 161

after the incident and then indicates whether or not a seizure actually occurred. The

real seizures can then be collected and electronically transmitted to a medical repository.

Below are screenshots of the developed Android app:

Figure 5.5: Mio watch [82] monitoring Andoird app. The app runs in background of
the cell phone and pops up with an visual and auditory alarm as early as a suspicious
heart rate changes is observed. The patients has a chance to answer whether he/she
has had a seizure or not. In case the patient is not conscious or forgets to answer
the question, the warning will pop up more until it is answered. The app also has an

adjustable threshold to adopt the events based patient’s physiology and activities.

We performed a pilot study in the clinic to check the feasibility of this solution. We

realize that some patients prefer not to be disturbed by the alarm especially during the

sleep.

The setting is a ready to use as an at-home solution for patient with epilepsy.

5.3 Apple watch extension

With the emergence of Apple Watch 3 and reports showing cutting edge performance

in the field of communication, battery life and PPG, we broadened our project to test

whether the new Apple device has an edge over former PPG recordings such as Mio.

The concept, however, is a bit different than the Mio project. Since the Apple watch

is a smart watch, it can be programmed internally and react to changes in heart rate

[almost] autonomously (see figure 5.6).

In order for it to function, we have let developed an app to track the patients heart rate

changes. As with the other concepts, this app must not only monitor, but also inform
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Figure 5.6: Apple watch. Since Apple watch could be used as a portable mean to
interact with a patient, we have employed it check for patients’ feedback, to express
whether or not a seizure happened. The watch could record continuously for 21 hours.

the patient of irregular activity and instantly request seizure confirmation. Since the

app benefits from the Apple Health Kit, we developed five different modes of heart rate

activity for evaluation:

• Stationary mode

• Walking mode

• Running mode

• Cycling mode

• Driving mode

Figure 5.7 represents screenshots of the Apple watch app :

The system works based on individual predefined thresholds for heart rate changes in

the above mentioned modes. That is, for every activity (stationary, walking, running,

cycling, driving), a threshold for heart rate fold change can be set. As soon as the heart

rate change exceeds the threshold, an alarm will pop on the screen of the smart watch,

asking the patient to answer whether or not, he or she experienced a seizure. There is

also a third option, ”I do not remember”, which if answered, the alert message will pop

again to ask for confirmation. The report of seizure activity is then transmitted through

a paired iPhone to an email address of a caregiver.

We could not unfortunately employ any machine learning technique to help the system.

The reason was because of Apple’s health kit which does not give any internal access to

the PPG sensor. The heart rate will be delivered to the app based on the preference of

health kit and could be delayed for a long time (10 to 15 seconds). On that account,
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Figure 5.7: Apple watch epilepsy app. This app was developed to popup and ask
patients about the occurrence of a seizure as soon as a suspicious heart rate change is
detected. Due to very low time resolution of the signal ( 0.1Hz), machine learning could
not be applied for detecting suspicious activities. Instead, five different threshold values
were used to set an alarm for different user activities. (stationary, walking, running,
cycling, driving). The patient then responds to the alarm by telling whether or not a
seizure took place. The patient’s report could be sent to a caregivers’ email by though

the accompanied app from the linked iphone.

we could not calculate any HRV feature and therefore, we had to rely solely on the

thresholds and the patient’s feedback.

Table 5.2 represents the performance of the seizure detection system using Apple watch

3. It can be observed that even though the system is based on human feedback, it

still lags behind ECG based seizure detection systems. Please note that in the results,

instead of the number false alarm per day, the total number of alarms is reported.

Performance metric Value

Sensitivity 14.05 %
Precision 24.28 %
F1 score 17.80 %

���XXXFalse-alarm per day 11.4

Table 5.2: Apple watch PPG seizure detection performance. Even though the patient
were involved in the process, the results are not promising. Inadequate attention of
patients to the alarm caused a significant drop to precision. In addition, setting higher

threshold values, decreased the sensitivity.

5.3.1 Conclusion

The idea behind using Apple watch was to rely on human feedback instead of machine

learning. Theoretically, to decrease the number of false alarms human feed back could

be plugged in. Our results shows however the reverse. We have investigated the reasons

and came to the following points:
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• The patients did not like it to be disturbed every other minute, and consequently,

the thresholds had to be set higher for their convenience (1.3 or 1.4). Higher

threshold means missing most of the seizures and therefore, lower sensitivity.

• Although the the threshold was set to a higher value, the watch will frequently pops

alarms (1 or 2 time per hour). This still annoyed the patients and in return, they

did not payed adequate attention to the shown messages, only presses randomly

on the screen to shut down the watch.

The results of Apple watch study corroborates the work of [37, 58, 65], in which the

inaccuracy of the patients self seizures reporting is widely discussed.

Table be low present a performance comparison of all five seizure detection studies

presented in chapter 4 and 5. It can be observed that ECG based seizure detection have

a clear edge over PPG based seizure detection systems.

MoviSens ECG Epitect ECG Mobile EEG/ECG Mio Watch Apple Watch

Study
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Figure 5.8: All seizure detection studies performance comparison. The performance
of each seizure detection dataset is presented based on F1 score. It can be observed
that ECG based seizure detection systems showed better performance compared to

PPG based seizure detectors.

This brought us to the conclusion that using PPG should be accompanied with machine

learning to reduce the number of false alarms. For using machine learning, we require

the raw PPG data on hand-held wearable devices. On this account, we started off a new
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project to investigate how a PPG recording with raw PPG signal can help detecting the

seizures. The recording was going on at the time of this writing.

5.4 Summary

In chapter 4, a framework for detecting seizure based on biomarkers and in particular

based on ECG was developed. We have learned from the work that ECG could be used

for clinically meaningful seizure detection.

Although portable ECG devices are available in today’s market, we were interested to

look for more affordable and easy to wear solutions for the problem of seizure detection.

In this chapter I addressed the feasibility of using photoplethysmography (PPG) avail-

able on sport/smart watch for detecting seizures. PPG is used to track an individual’s

pulse.

For this sake, we have collected multiple recording dataset with different PPG recording

devices. First we have collected data from 100 patients with Mio sport watch recording. I

have split the dataset into two halves of 50 patients and applied the principals concluded

in the last chapter for ECG seizure detection on PPG. The analyses and the results

showed that PPG carry less information compared to ECG and therefore, is less accurate

than ECG to detect all types of seizures.

We have continued the work by employing Apple watches. Apple watch is a smart

watch and gives us a portable and wearable platform for seizure tracking. However,

Apple watch could not provide any PPG recording with reasonable time resolution. For

this reason machine learning is not applicable on it. We have chosen the Apple watch to

give people with epilepsy an interface to decide on seizures themselves. PPG was used

to set an alarm for the patients, and they responded accordingly to it. We designed this

phase to compare the performance of patients self-verification with the performance of

automatic PPG based seizure detection in Mio watch recording.

All in all, we have learned that that machine learning techniques should be used to

improve the performance of seizure detection systems, either on ECG or on raw PPG

to be able to track and record and report all types of seizure, and ultimately, increase

the quality of life for patients with epilepsy.





Appendix A

Working memory and fMRI

As described in chapter 1 and chapter 3, machine learning could also be applied on fMRI

data in order to decode complex brain activities.

In the course of this thesis, I have also applied machine learning techniques on func-

tional Magnetic Resonance Imaging (fMRI) data. Similar to the paradigms presented

in chapter 3, performing a memory task in the MRI machine requires also a paradigm

design. The paradigm is presented to the participant while lying in the MRI scanner

through an optical fiber monitor and air buttons (no metal object is allowed inside the

scanner as it otherwise poses a life danger).

The participants were presented with eight classes of images (see image A.1) and they

had to give their judgment in two upcoming sessions, whether or not, an image were

previously presented. The first session is called the learning/encoding session and the

next two sessions are called retrieval sessions.

1. Beers 2. Roadsigns 3. Leaves 4. Cheeses 5. Dogs 6. Faces 7. Door Knobs 8. Houses

Figure A.1: fMRI classes. Images from eight categories were presented to the par-
ticipant and later on two occasions, they were probed again with images asking to tell

whether they have seen an image before or not.
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In fMRI recordings, the activity of the brain is measured spatially. The blood oxygen

in a magnetized environment can be oriented and be senses in magnetic field receiver

sensors. More blood oxygen level indicates more brain activity.

Similar to the concept of pixels in 2D images, in fMRI recording, we have the concept

of voxels. Voxels are the minimum separable buckets of data in the 3D images resulted

from fMRI recording. In fMRI data recording, the recording machine is programed to

scan the whole brain sequentially, and therefore, it gives a sequence of 3D images, each

of which reflects the brain active voxels at a particular time (4D in total).

Different people have different brain volume. To be able to compare the brain activities

of different people, the 3D brain recordings of the participants must be mapped and

registered to a standard size brain. This standard size is a conventional brain size

obtained from the average MRI images of the brain of numerous people.

The time resolution of fMRI images is much lower than of EEGs (∼ 1Hz). This is due

to the time it takes for the scanner to scan multiple surfaces of a 3D image.

Having the 4D data preprocessed, I applied machine machine learning techniques to

check for the pattern differences between all of the observed stimuli images. Initially,

I trained and tested on the encoding session, when the learning take place. Image A.2

shows the classification results of the object classification of brain data. There were

near a million voxels in an image of the brain. Voxels could be used directly as feature.

Similar to the techniques presented in chapter 3, I used ANOVA to preselect the voxels

which show best separability (8 way ANOVA). One thousand voxels were selected and

then fed to an SMO classifier.

Alternatively, the classifier could be trained on the encoding phase and then tested on

the retrieval session. Image A.3 shows the classification accuracy of such settings tested

on the first retrieval sessions. This test can show whether or not, same network of voxels

used for the encoding and the retrieval phases.

Given that a network of voxels pass the pattern classification significance test, voxels

can be mapped into their belonging structure in the brain to investigate the structural

relations between brain activities and brain organs.

The learned model could ultimately be used to classify random patterns during resting

state, a phase in which no particular task is given to the participant and their mind is let

free. Their mind can subconsciously rehearse the recently seen objects. Any activation

similar to the modeled brain activity can indicate a task relevant memory activity.
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Figure A.2: fMRI classification results on encoding. fMRI classification results on
encoding. The data after preprocessing is gone through the feature selection procedure,
in which 1000 voxels chosen among one million. The selected voxels were then fed
to the SMO (SVM) classifier. The blue bars show the classification accuracies of 28
participants. The red line represents the average accuracy and the yellow bar shows

the 95 percentile of the surrogate and in another word the confidence level.

Figure A.3: fMRI classification results 2. fMRI classification results 2.

Figure A.4: fMRI active voxel . Those voxels in the fMRI which shows task related
activity, can be mapped to their corresponding brain structure to investigate the relation

between brain segments and types of mental processing.
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Multivariate analyses on intracranial EEG task characteristics 
during human working memory

Amirhossein Jahanbekam1,2, Marcin Leszczynski1, Jürgen Fell1, Nikolai Axmacher1,2

1 Dept. of Epileptology, University of Bonn, Germany
                                                              2 German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany

➢ Different types of visual information are processed in different pathways. 
While object identity is represented in the ventral visual stream, spatial 
information is represented in the dorsal visual stream [1]. 

➢ However, representations may not only rely on such local processing but also 
on distributed networks that can be investigated using multivariate pattern 
classification algorithms [2]. 

➢ Here, we used intracranial EEG recordings to investigate the time-frequency 
characteristics underlying representations of object identity and spatial 
direction in a delayed matching to sample paradigm.   

   Introduction   Introduction

   Material & Methods   Material & Methods

 

(1)  Goodale MA, Milner AD (1992). Separate visual pathways for perception and action. 
Trends Neurosci. 15 (1): 20–5.

(2)  van Gerven M, Chao Z, Heskes T (2012). On the decoding of intracranial data using 
sparse orthonormalized partial least squares. J Neural Eng. 9(2):026017.  

(3)  Jokisch D, Jensen O (2007). Modulation of gamma and alpha activity during a working 
memory task engaging the dorsal or ventral stream. J Neurosci 27(12):3244-51.

(4)  Lee SH, Kravitz DJ, Baker CI (2013). Goal-dependent dissociation of visual and 
prefrontal cortices during working memory, Nature Neuroscience 16(8): 997–999.

(5)  Breiman L, Schapire E (2001). Random forest. Machine Learning 45(1): 5-32.
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Implantation schema. Each color 
represents an individual patient.

➢ The paradigm consisted of three 
consecutive blocks (“Identity” block, 
“Gaze direction” block, and 
“Control” block), which were 
presented in a random order [3].

➢ Either the identity or the gaze 
direction or no information of a face 
stimulus had to be maintained. 

➢ 12 patients (6 female; mean age±SD: 
34±12.5 years) had been implanted with 
intracranial electrodes for diagnostic 
purposes. Depending on the suspected 
ictal onset zone, patients had been 
implanted with subdural strip, grid 
electrodes  and/or depth electrodes.

➢ All data was sampled at 1000Hz, 
referenced to linked mastoids.

➢ Electrodes from the seizure onset zones 
and noisy electrodes were removed from 
further analysis.

Delayed matching to sample paradigm composed of 3 blocks:  
Maintaining face identity, face direction, and control condition.

 
➢ Multivariate pattern classification analyses were 

used to identify distributed activity patterns which 
differentiated between the three task conditions.

➢ The trial data were segmented and filtered in 8 
common EEG frequency bands (delta [1-4Hz], 
theta [4-8Hz], alpha [8-12Hz], beta1 [12-20Hz], 
beta2 [20-30Hz], gamma1 [30-50Hz], gamma2 
[50-75Hz], gamma3 [75-110Hz]).

➢ We extracted frequency-specific power values by 
Hilbert transformation. Informative features at 
time-frequency-electrode points (30ms bins) were 
extracted using ANOVA and fed into either SVM or 
random forest classifier [5]. Classification was 
evaluated using 5-fold cross-validation.

Feature selection in time-
frequency-electrode space.

Confusion matrix illustrating time resolved classification across different conditions. 

 
➢ To investigate classification across time, a temporal classification schema is 

considered.

➢ Every 100ms time bin is considered as a single  condition, resulting in 
3x50=150 classes.

   Summary   Summary

 

   Results: Pattern Classification Performance   Results: Pattern Classification Performance
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➢ Classification performance  
compared between empirical 
data and label-shuffled 
surrogate data.

➢ Classification result of 12 
patients:
for 10 subjects classification 
performance was significantly 
above chance level and for 2 it 
was marginally significant.

Classification results during the 
maintenance period using random forest 
classifier across the 3 conditions.

 

Frequency specific feature importance.

➢ Using random forest classifier, we are able to rank the importance of features 
in the classification process.

➢ The frequency specific feature importance is shown for all 8 frequency bands.  

 
➢ We found that different task demands in a visual working memory task are 

associated with significantly altered distributed representations of (mainly) delta 
and high gamma-band activity across the brain. 

➢ Time-resolved classification revealed highest accuracy during stimulus 
presentation. Incorrect classifications had different causes during stimulus 
presentation as compared to during the maintenance period.

   Material & Methods: Paradigm   Material & Methods: Paradigm

   Material & Methods: Subjects & Data   Material & Methods: Subjects & Data

   Material & Methods: Multivariate Analyses   Material & Methods: Multivariate Analyses

   Results: Important Features Distribution   Results: Important Features Distribution

   Results: Time Resolved Classification   Results: Time Resolved Classification

Figure B.1: Poster presented at Organization of Human Brain Mapping (HBM) con-
ference.
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A multimodal, non-EEG based approach to detect
 epileptic seizures

Amirhossein Jahanbekam1, Jan Baumann1, Christian Bauckhage2, Christian E. Elger1, Rainer Surges1

1 Dept. of Epileptology, University of Bonn, Germany
                                                              2 Fraunhofer Institute for Intelligent Analysis and Information Systems, Sankt Augustin, Germany

   Introduction   Introduction
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Sensor units. One attached 
to the chest and the other 
two on both wrists.

➢ We have investigated people with 
refractory focal epilepsy undergoing 
presurgical video-EEG monitoring at the 
Department of Epileptology in Bonn. 
Patients were asked to wear 3 sensor 
units [2], one attached to the chest and 
the others fixed on both wrists. 

➢ Each sensor could record the 
acceleration along 3D axes, while the 
chest sensor was also able to measure 
ECG signals.

➢ After synchronizing the signals across 
different sensor units, we extracted 180 
features for epochs of 10 minutes long 
across all sensors. Each window was 
labeled as seizure/non-seizure based on 
expert-review of electroclinical data. 
Recordings being compromised by 
movement or EMG artifacts were 
excluded after visual inspection.

 
➢ We have monitored 35 patients (mostly with temporal lobe epilepsy; age 38±14 years) during a period of 68 days. A total of 43 seizures (5 simple partial, 33 

complex partial and 5 generalized tonic-clonic seizures) were included in this study. 

➢ To acquire event-based seizure detection, we exclusively considered epochs in which the heart rate (HR) during a period of 2 minutes increased rapidly and 
significantly (at least a 1.2-fold increase in HR), which finally provided a total number of about 6000 event windows. Furthermore, to train a classifier on the data, 
we considered a 5-fold cross-validation scheme in which windows of the same seizure were used either only in training-phase or only in test-phase. 

➢ Two examples of online seizure-detection events are illustrated here:

 
➢ We evaluate the performance of the system by measuring the sensitivity 

and specificity:

➢ The performance can also be depicted as “area under the curve”  in ROC. 
The closer the value to 1 is, the better the system performance in both 
terms of sensitivity and specificity. 

➢ The ROC of our approach amounts to 0.905.

   Summary   Summary
 

➢ Our preliminary data suggest that the combination of various ECG and 
accelerometry features allows automatic detection even of complex-partial 
seizures with a promising sensitivity and specificity. This may lead to the 
development of a wearable tool that improves accuracy of seizure 
counting.

➢ In a second step, the sensors’ recordings will be transferred to a smart 
phone to allow interaction with the patient to further improve the 
performance of the seizure detection. The result will be kept and used for 
medical purposes.

   Material & Methods: Subjects, Sensors, and Data   Material & Methods: Subjects, Sensors, and Data

   Material & Methods: Multivariate Analyses and Pattern Classification   Material & Methods: Multivariate Analyses and Pattern Classification

   Results: Sesitivity & Specificity   Results: Sesitivity & Specificity

➢ Epilepsy patients are advised to 
keep a diary documenting all 
seizures as soon as they take place. 
A considerable proportion of 
patients, however, is not aware of 
their seizures or forgets them, so 
that the seizure diaries are very 
unreliable tools [1]. Automatic 
seizure detection devices have 
previously been tested especially in 
the context of predominant ictal 
motor signs [2,3].

➢ Here, we aim at developing a 
wearable multisensory-system to 
automatically detect and register 
all types of seizures. To this end, 
we used an ECG sensor alongside 
with 3 acceleration sensors all 
embedded in 3 comfortable-to-wear 
sensor units [4]. 

Sensitivity 86  %
Specificity 97.5 %

Truly detected as a seizure case Truly detected as a non-seizure case

Figure C.1: Poster presented at DGfE conference.
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