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Abstract

The ability to form dissimilar neural activity patterns from similar sensory driven inputs is a

phenomenon found in all vertebrates, called pattern separation. In mammals, pattern sepa-

ration is closely related to a subregion of the hippocampus, namely the dentate gyrus. The

dentate gyrus is an important relay conveying sensory information from the entorhinal cor-

tex to the hippocampus proper and is characterized by a large number of rarely active gran-

ule cells that generate a very sparse neural code. While the coding features of granule cells

during locomotion have been the subject of several studies, the dentate gyrus also shows

activity patterns during immobility and sleep. However, the cellular composition of these

patterns and their role in behavior remain elusive.

In this thesis we used dual color two photon-Ca2+-imaging in mice to visualize the activity

of perforant path input fibers as well as the activity of individual dentate granule cells. We

developed a novel approach of head fixation and cranial window design in order to gain vi-

sual access to the dentate gyrus. This enabled the recording of neural activity in head fixed

mice running on a linear track. Using this approach we found sparse synchronized activity

patterns that we termed network events. These network events emerged exclusively during

immobility and were associated with distinct activations of the perforant path input. Inter-

estingly, network events incorporate place and speed cells and their features are sensitive to

changes in the environment. To compare the population coding during locomotion ant net-

work activity we utilized principal component analysis in different behavioral states. Using

this approach we could show that locomotion related population patterns are recapitulated

during network events in immobile animals.





Contents

1 Introduction 1

1.1 Neuronal computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Excitation and inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Circuit motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Network oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Neural code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 The hippocampal navigation and memory system . . . . . . . . . . . . . . . . . . 10

1.2.1 Hippocampal inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 The dentate gyrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 The CA3 region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 The CA1 region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 State dependent processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Place code and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 State dependence and oscillations . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Key questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Materials and Methods 19

2.1 Animals and procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Virus injections and head fixation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Window implantation procedure . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Linear treadmill system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Habituation and behavior on the linear track . . . . . . . . . . . . . . . . . 22

2.2.2 Pupil diameter measurement and analysis . . . . . . . . . . . . . . . . . . . 22

2.3 Two-photon calcium imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



CONTENTS

2.4 Data analysis of imaging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Network activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Spatial tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Velocity tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 Hierarchical cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Results 29

3.1 Two photon imaging of DG input-output activity . . . . . . . . . . . . . . . . . . . 29

3.2 Place- and speed-coding granule cells in DG . . . . . . . . . . . . . . . . . . . . . 31

3.3 Sparse, structured DG network events in immobile animals . . . . . . . . . . . . 33

3.3.1 Orthogonality in DG network activity . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 The properties of network events in a changed environment . . . . . . . . 35

3.3.3 Similarity of population code during locomotion and network events . . 37

4 Discussion 41

4.1 State dependent input output computations . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Different MPP input patterns during locomotion and immobility . . . . . 42

4.1.2 State dependent GC activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 GC place and speed coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Synchronized activity during immobility . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Orthogonality of network events . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 DG population code and replay in network events . . . . . . . . . . . . . . 45

4.2.3 Behavioral relevance of network activity . . . . . . . . . . . . . . . . . . . . 46

4.2.4 Are network events dentate spikes? . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Conclusion - Do network events support the formation of memories? . . . . . . 48

Abbreviations 49

Literature 51

Acknowledgments 63

Statement 65

viii



Chapter 1

Introduction

The human brain contains more than 1011 neurons, nerve cells that encode our thinking,

memory and behavior [1]. This large number is necessary to achieve a certain level of com-

plex connectivity needed for brain function. The mouse brain with its 106 neurons cannot

achieve similar functionality as the human brain [2]. Nevertheless, mice achieve complex de-

cision making based on external and internal information and memory based models. They

do this with a brain that shares many anatomical features with the human brain. Thus, the

mouse brain offers a suitable model to study fundamental archetypes of memory and behav-

ior.

Neurons are arranged in networks that receive information, perform computations and gen-

erate functional outputs. Functional outputs are forwarded to efferent layers of neuronal

networks and may in the end trigger a response. Responses can be manifold and whether

that response is, for example, the initiation of motor behavior, the dilation of the pupil or a

decision about which way to go, is depending on the involved cascade of neuronal networks

and what input initially triggered it. Possible inputs can vary from external stimuli, like di-

rect sensory inputs, but also changes in internal states, like hunger, fatigue and, importantly,

memories. Memories are an essential part determining behavior, especially for the process

of decision making. A reliable formation of memories crucially depends on the plasticity of

neuronal networks to adapt to new stimuli and learn appropriate responses.

The brain structure that serves a major role for learning and memory is the hippocampus [3–

5]. The hippocampus consists of several neuronal layers, which are formed by the pyramidal

cell layers of cornu armonis (CA) and the dentate gyrus (DG)[6]. The DG forms the initial

stage of hippocampal information processing. It serves the major role of generating distinct

representations of input patterns even when these patterns are similar or overlapping. This

feature of input orthogonalization is called pattern separation [7–13]. However, how sepa-

rated patterns are represented on a cellular level and how they contribute to the formation

of memories is still unclear.
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CHAPTER 1. INTRODUCTION

1.1 Neuronal computations

Neurons in different parts of the brain serve different purposes. There are two main features

all neurons have in common. Firstly, they form connections to each other, called synapses,

through which activity is passed on to efferent cells. Secondly, neurons integrate received in-

puts over time and elicit a stereotypical electrochemical event, termed action potential (AP),

when an internal threshold is reached,. APs are therefore all-or-none events where infor-

mation is coded by rate and pattern of APs. This will be further discussed in section 1.1.1.

Ensembles of interconnected neurons form neuronal networks. These networks consist of

different types of neurons where the main difference between neurons is whether their im-

pact on an efferent cell is excitatory or inhibitory. Excitatory neurons are termed principal

cells and they form connections between brain regions. Through these long-range connec-

tions they receive and forward activity from/to afferent parts of the brain or peripheral parts

of the nervous system. Inhibitory neurons, so called interneurons, are smaller in number

compared to principal cells, are extremely diverse, and serve many different functions. They

mainly form short range connections that locally inhibit principal cells as well as other in-

terneurons. This leads to an interplay of principal cells and interneurons that forms defined

circuit motifs [14, 15], which will be described in detail in section 1.1.2. On a larger scale, ex-

citation and inhibition are two opposite driving forces that can form oscillating systems and

lead to network oscillations [16]. The different types of network oscillations and in which

states they can be found will be discussed in section 1.1.3. The combined AP rates syn-

chrony of all cells within a neuronal network represents the encoded information and sets

up the neuronal code. The composition of these features makes neuronal networks suitable

for different kinds of computation [7] and will be discussed in section 1.1.4.

1.1.1 Excitation and inhibition

Every neuron in its resting state is at an electrochemical equilibrium. This equilibrium is

maintained through active and passive mechanisms in the cell membrane that conduct or

pump ions. The transmembrane ion current at the cell’s resting state is described by the con-

ductance grest. This conductance builds up an ion gradient between the cytosol inside the

cell and the surrounding cerebrospinal fluid (CSF) that creates a potential difference through

the membrane, the resting membrane potential Vrest usually around −60mV to −80mV. This

leads to a leak current Ileak whenever the membrane voltage is forced off the equilibrium.

This in turn sets up a driving force towards the resting membrane potential that can be de-

scribed using Ohm’s law

Ileak = grest(V (t )−Vrest), (1.1)

where V (t ) is the membrane potential at time t . The membrane potential is forced to move

away from its equilibrium through the synaptic inputs it receives at its dendrites as well as

the soma. Synaptic inputs can be either excitatory or inhibitory depending on the neuro-

2



1.1. NEURONAL COMPUTATIONS
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Figure 1.1 – Input-output computation of a neuron. Left side: A cell is driven by synaptic excitatory inputs (red).

It receives inhibitory signals at its dendrites (yellow) as well as the soma (green). Integrated input triggers

output activity (blue). Right side: Idealized input-output curve (gray line) of a signal neuron with output

frequency plotted against combined input activities of afferent cells. The lower end of the dynamic range is

defined by the AP threshold θ and the slope of the curve defines the gain of the response. The upper end

of the curve is given by the maximum frequency of the cell. Feed forward inhibition at cell dendrites has

an subtractive effect and shifts the input-output curve to higher input frequencies (yellow line). Feed for-

ward inhibition at the soma has an normalizing effect on the input that shifts the saturation point to higher

frequencies and thereby enlarges the dynamic range (green line). Feed-back inhibition has an normalizing

effect on the output activity that decreases the maximal output frequency and also enlarges the dynamic

range (blue line). Modified from [17].

transmitter that is released by the presynaptic cell. Excitatory neurotransmitters, mainly glu-

tamate, trigger ionic conductances, here summarized as an excitatory conductance gex, in

the cell membrane that drive the membrane potential towards the the excitatory reversal po-

tential Vex. The activation of excitatory conductance leads to the excitatory current

Iex = gex(V (t )−Vex) (1.2)

The linked net depolarization of the cell is termed excitatory post synaptic potential (EPSP)

that drives the cell towards its AP threshold. Analogously, synaptic inputs that lower the value

of the membrane potential (that re- or even hyperpolarize the cell) are called inhibitory post

synaptic potentials (IPSPs). The inhibitory reversal potential Vinh usually lies below the rest-

ing membrane potential and the corresponding inhibitory current is given as

Iinh = g inh(V (t )−Vinh), (1.3)

where g inh is the inhibitory conductance that is triggered by inhibitory neurotransmitters,

mainly γ-aminobutric acid (GABA). If inhibition occurs at the dendritic tree the in inhibitory

current is subtracted from the total membrane current Im [18]. Thus, Im is the sum of excita-

tory, inhibitory, leak current and the capacitive current component

3



CHAPTER 1. INTRODUCTION

Im(t ) =Cm
dV

d t
+ grest(V (t )−Vrest)+ gex(t )(V (t )−Vex)+ g inh(t )(V (t )−Vinh), (1.4)

where Cm is capacitance of the cell membrane [19–21].

Both inhibitory and excitatory inputs are integrated from all synapses over time. As a first

approximation, inputs are integrated in a linear manner and the induced currents for N af-

ferent excitatory neurons and M interneurons can be written as

Iex =

N
∑

n

wn An , Iinh =

M
∑

m

wm Am , (1.5)

where Ai are the activity rates of input neurons and wi are efficacy coefficients whose value

specifies the strength of the synaptic connections [22]. When the cell reaches threshold θ the

output activity Aout can be described using the transfer-function

Aout = Γ(Im −θ)Θ(Im −θ), (1.6)

where Θ(x) is the non-linear step function that equals 1 for x > 0 and 0 for x < 0. The AP fre-

quency above threshold is defined by the gain Γ. The gain is a function of the input current

and defines the slope of the input-output curve as schematically shown in fig. 1.1. This slope

denotes the cell response sensitivity within its dynamic range. This simplified view of neu-

ronal integration illustrates the transfer of excitatory and inhibitory inputs into activity. How-

ever, different types of ionotropic channels, voltage gated ion channels, passive dendritic ca-

ble properties and active amplification mechanisms can add non-linear components to the

integration [17]. Also, currents during APs are not covered by this description. Further, re-

cursive connections introduce discrete dependencies of the individual activity rates between

neurons that can shape the input-output curve. Some of these connections between excita-

tory neurons and interneurons set up stereotypical circuit motifs.

1.1.2 Circuit motifs

Besides the integrative properties of neurons, another defining feature for the input-output

relation of cells is the interplay between excitatory cells and inhibitory interneurons. This

interplay not only affects individual neurons but is crucial for the input-output relation of

the whole neuronal network [15, 24]. Although GABAergic interneurons represent only 10 to

20 % of neurons across brain areas, interneuron populations are highly heterogenic and dif-

fer in morphology, connectivity, gene expression, and electrophysiological properties [25, 26].

Interneurons have different driving forces within the network and innervate not only princi-

pal cells but also other interneurons. This forms defined circuit motifs that serve different

purposes (fig. 1.2).

4



1.1. NEURONAL COMPUTATIONS

feedforward inhibition

input normalization

increasing the dynamic range

feedback inhibition

output normalization

controlling max. output/

sparsity 

lateral inhibition

competition

contrast enhancement/

pattern selection 

Figure 1.2 – Circuit motifs of excitatory and inhibitory neurons. Left: Feed forward inhibition is mediated by

interneurons that are driven by the same input as the excitatory neurons they target. Middle: Feedback in-

hibition works through interneurons that are activated by the same principal cells as they project on. Right:

Lateral inhibition are feedback as well as feed forward motifs the project on specifically on neighboring

neurons. Modified from [23].

Feed forward inhibition

Interneurons in a feed forward circuitry share the same input as their target cells. This cir-

cuit motif can have two different functions: When feed forward inhibition happens at the

dendrite it directly balances the driving input by subtraction (see formula 1.4 and fig. 1.1

yellow line) [18]. When inhibitory synapses innervate the soma, it has a more global impact

on the targeted neuron. Mathematically this can be described by a division of the excitatory

by the inhibitory current (fig. 1.1 green line). This process can be understood as a normaliza-

tion of afferent input strength [27–29]. The inhibitory feed forward current Iff is dependent

on the activity of the N efferent excitatory neurons and connected through

Iff =

N
∑

n

αn An , (1.7)

where αi are effective weights, assuming that the interneurons are mostly driven above thresh-

old so that the transition between the efferent activity and the input current can be assumed

linear. Using the formalism as described by [30] the normalized excitatory input current can

be written as

Inorm =ϑ
I k

ex

σ+ I
p

ff

, (1.8)

where ϑ can be interpreted as the gain and σ as the basic attenuation in the feed forward

process. k and p are free parameters that balance the strength of the excitatory and the

inhibitory current, respectively. Combining formula 1.8, 1.7 and 1.5 the normalized input

current can be written as

5



CHAPTER 1. INTRODUCTION

Inorm =ϑ

(

∑N
n wn An

)k

σ+
(

∑N
n αn An

)p (1.9)

This mechanism avoids saturation and increases the dynamic range of the individual cell [31]

as well as that of the whole neural network [32].

Feed-back inhibition

Feed-back inhibition is defined by interneurons which are activated by the same excitatory

pool they target. This inhibitory back projection is correlated to activity of the target ensem-

ble leading to a global adjustment of its activity level and a normalization of the output firing

rate (fig. 1.1 blue line)[30]. Analogously to formula 1.7, the feed-back current Ifb for a pool of

K neurons in the target pool can be defined as

Ifb =

K
∑

k

βk Aout, (1.10)

again with effective weights βi . Feed-back projections mainly target the soma, hence they

have a normalizing effect like formula 1.9. Due to the time course of synaptic transmission,

the feed-back inhibition affects the integration with a delay of ∼ 10ms (∼ 5ms for feed for-

ward inhibition). The effectiveness of somatic inhibition at controlling AP initiation together

with the delayed impact defines time windows that can be crucial for AP generation and den-

dritic plasticity [28, 33, 34]. Since only a certain number k of neurons is able to fire in this

time window before the network is inhibited, this process is called k-winner takes it all [35].

Generally, the function of feed-back inhibition differs dramatically if it happens recursive

onto the driving neuron, laterally targeted on neighboring neurons, or globally on the whole

population.

Lateral inhibition

Lateral inhibition means that the excitatory drive onto a neuron or its own activity recruits in-

terneurons which target the neighboring neurons of the same population. Thus, this process

can happen in a feed forward as well as in a feed-back configuration (See fig. 1.2). Lateral in-

hibition has been termed the fundamental mechanism for the selection of neuronal groups

[36]. Inputs that target specified (learned) sub-ensembles can laterally inhibit the rest of the

population. This sharpens specified subpopulations and increases the contrast of the neu-

ronal response [31]. Lateral feed-back inhibition triggers the competition between neurons,

since the first neurons to fire will inhibit the other members of the population. This process

is another k-winner takes it all mechanism. In this case the winner’s activity continues which

is especially suited to strengthen activity patterns [37, 38].

6



1.1. NEURONAL COMPUTATIONS

Figure 1.3 – θ-oscillations in the rat hippocampus.

Left: Recording site with a 16-site silicon probe

in the CA1-dentate gyrus axis. Numbers indicate

recording sites (100µm spacing). Right: θ-waves

recorded during exploration. γ-waves superim-

posed on θ-oscillation are marked by arrows. Ver-

tical bar: 1mV. From [46].

Circuit motifs exist not only between excitatory cells and interneurons. Feed-back mecha-

nisms can also be excitatory. This can be mediated by certain excitatory interneurons [39,

40] and by direct recurrent excitation [41, 42]. The inhibition of inhibition (so called disin-

hibition) is another common motif and can be an important learning signal for the network

[43, 44]. Disinhibition can also be triggered by external neuromodulatory signals and, thus,

mediate a complete change of the circuit dynamics [33]. Further, the inhibition mediated

between interneurons is important to create synchronicity in the network [45].

1.1.3 Network oscillations

Inhibition controls the input-output function for individual neurons. In addition, the nature

of inhibitory circuits also generates different types of oscillatory behavior. Feed-back circuits

set up non-linear iterative loops. Non-linearity is caused by discrete AP threshold of each

neuron and iterations are due to the delay of synaptic transmission. Synchronized excitatory

input acts as a driving force on the network whereas the feedback triggers a restoring force

that pushes the network back to equilibrium. Thus, the neuronal network starts oscillating.

Inhibition mediated between local interneurons can lead to an oscillation at 40 to 100Hz,

the so called γ-oscillations [47, 48]. Here, interneurons share the same excitatory drive and

the lateral inhibition onto each other is thought to create the rhythmic activity [45, 49]. This

leads to a synchronization of principal cells as well as interneurons [46, 50].

An oscillating interneuron network can also project oscillatory activity onto other brain re-

gions and thereby acting as pacemaker [51, 52]. An important example of that are θ-oscillations

at 4 to 10Hz [53]. Besides the drive from the external pacemaker, θ-oscillations require a

long distance feedback onto the pacemaker as well as local oscillatory loops [50, 54]. Prin-

cipal cells in the targeted network as well as interneurons synchronize to special phases of

the θ-frequency, which also leads to a synchronization between θ- and γ-oscillation [33, 46].

This synchronization leads to a modulation of the output signal and therefore the oscillations

propagate the afferent networks [46].

7
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The presence of θ as well as γ-oscillations is thought to represent the online state of a neu-

ronal network and an example of their cooccurrence is shown in fig. 1.3 [55]. Therefore it is

not surprising that the occurrence of these oscillations has important behavioral correlates

that are linked to the respective brain region [56–58]. The rhythmicity between on and off

states is hypothesized to define the time window for neural integration [59]. This paces the

mechanism for individual cells and cell ensembles to be activated and when plasticity mech-

anisms can happen. Therefore oscillations play an important role in learning and memory

[35, 60]. These implications for neural coding will be further discussed in chapter 1.3.2.

A slower form of oscillation around 1−4Hz are δ-oscillations. They most prominently occur

during slow wave sleep [61], but activity at this frequency range also occurs in awake but

immobile animals and is referred to as large-amplitude irregular activity [56, 62]. These os-

cillations are coupled to respiratory behavior and have been hypothesized to act as a global

synchronization mechanism across the brain [63, 64].

1.1.4 Neural code

There are several ways how neurons and neural networks can encode, store and recall in-

formation. Experimental evidence for mechanisms of neural coding is mainly based on cor-

relation experiments. In its simplest form, the activity A (see formula 1.6) of a neuron is

correlated to an external stimulus that drives the input. This concept has been shown for

the encoding of direct sensory input and is called "rate coding" [65]. The activity rate in a

given time interval is correlated to the stimulus intensity [1] and for a network of rate coding

neurons this would lead to a statistical encoding of information with a more global input-

output-curve. However, rate coding cells are found in may networks, but these networks do

not show an overall probabilistic encoding. Rather individual cells code specific features of

the stimulus. For example, while the neural network generally encodes visual information, in-

dividual cells can be selectively rate coding for the orientation of the visual stimulus [66]. The

same is true for cells that encode specific regions, so called "place cells" [67]. In humans, the

concept of "Grandma-cells" describes cells that code for the concept of individual persons

[68]. The existence of this feature cells illustrates the general concept of "sparse encoding"

[69]. In sparse coding, a neural network is assumed to achieve a general representation of its

input using a minimum number of active neurons. This follows another basic assumption,

namely that the brain generally tries to minimize the amount of energy consumed [70].

Stochastic rate coding and feature cells are two extreme concepts of encoding. Single cell

coding is obviously the most energy efficient case. Still, feature encoding neurons respond

stochastically and are therefore not reliable. This would lead to noisy representations of in-

put stimuli [71]. Further, information is forwarded through cascades of neural networks. Ev-

ery network has a different anatomy in terms of neuron number and composition and only

the first stages receive raw input from external stimuli. All efferent networks receive the pre-

computed input. Thus, it is unlikely that the same stimulus shows a one-to-one representa-

tion in every network where it is computed. Also, in a feature cell coding network the number

or represented features is limited by the number of cells. In terms of network capacity this

would be highly inefficient [72].

8



1.1. NEURONAL COMPUTATIONS

The case that only one single neuron encodes a feature is statistically and anatomically very

unlikely. Anatomically, excitatory synaptic connections between cells forward activity and

create co-active sub-ensembles [73]. Statistically, the number of cells in experiments is al-

ways drastically undersampled. Therefore, the probability of finding a feature cell would be

very low if there was indeed exactly one. The fact that they can still be found as well as theo-

retical assumptions have motivated the hypothesis of a population code [71]. In population

code different concepts are mapped by co-active sub-ensembles in the network. The num-

ber of possible different combinations of sub-ensembles defines the maximum number of

different pieces of information that can be mapped [74]. This number of combinations C in

a network containing N principal neurons is given by the binomial coefficient

C =

(

N

k

)

, (1.11)

where k is the size of the sub ensembles. A bigger k therefore would allow more representa-

tions as long as k < N /2. On the other hand the energy costs increase with higher k [70]. Also,

the overlap between ensembles increases so that representations become more and more re-

dundant [72]. Therefore ensemble size is a balance between energy consumption, possible

representations and uniqueness of representations.

Combining the concepts of population code and individual rate coding raises the question of

what synchronicity of ensembles looks like. In the AP-count hypothesis individual rate coders

define an ensemble when their activity is integrated over a given time window. The temporal-

coding hypothesis states that the precise timing of APs is necessary to add information to the

AP counts [75]. Whether the coding of neural network is better described by AP-counts or

temporal coding is different for individual networks and is also dependent on their proposed

function [76].

In order to form representations synaptic connections between computational layers require

the ability to adapt to new patterns and stimuli. The property of adaption is called synaptic

plasticity.

1.1.5 Plasticity

How is a cell assembly defined and how does it form? In the classical definition, simulta-

neous activity of cells is equivalent to functional excitatory synapses between those cells [1,

73]. In this so called Hebbian cell assemblies, the simultaneous activity of the n’th input

and a given output cell triggers are strengthening of their synaptic connection wn . A stable

description of Hebbian learning is Oja’s learning rule

∆wn = ηAout(An − Aoutwn), (1.12)

where η is the learning rate [77]. Following this concept, synchronous activity leads to a long-

term potentiation (LTP) of the synapse whereas non-synchronicity leads to a long term de-
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pression (LTD). Experimentally, Hebbian learning has been shown to describe the plasticity

found in real neural networks [78, 79] and was the theoretical starting point for other plastic-

ity mechanisms, such as short-term plasticity and depression (STP and STD), as well as spike

time dependent plasticity (STDP).

Plasticity mechanisms depend on synchronous firing. Activity has to be within a certain time

window before cells go back to equilibrium, so that potentiation can happen; This sets the

timing to a few milliseconds which is in the range of one period of γ-oscillations. The similar

time frame for plasticity mechanisms and network oscillations is therefore hypothesized to

define the timing and tuning of the synaptic connectivity matrix. This so called "synapsem-

ble" is thought to underlie the formation of cell assemblies and thus to define the syntax of

neural code [59].

Competitive learning synapsembles between individual layers are the basis for the formation

of memories, which is performed most prominently in the hippocampus [80].

1.2 The hippocampal navigation and memory system

The hippocampus is the brain region responsible for spatial memory and general memory

formation [7, 81]. In humans, the hippocampus is deeply embedded into the temporal lobe

and has been shown to be crucial for the encoding of new memories [3]. In rats, the discovery

of place cells has led to the conclusion that the hippocampus forms a cognitive map and a

representation of space [5]. Further, lesion experiments have shown that orientation is highly

impaired without the hippocampus [5, 82]. These unique features come along with unique

morphological and computational properties.

The hippocampus has two densely packed principal cell layers, the granule cell (GC) layer

and the CA pyramidal cell layers, that wrap each other in double-U like fashion [6](see Fig.

1.4). Functionally, the hippocampal circuitry forms a circular mainly unidirectional activity

flow between entorhinal cortices and the hippocampus proper (See Fig. 1.5), where the main

excitatory input comes the entorhinal area.

1.2.1 Hippocampal inputs

Indirectly, information from all cortical areas reaches the hippocampus. Before reaching it,

this information is relayed by the entorhinal cortices that are the main afferent structures to

the hippocampus. Medial and lateral entorhinal cortex (MEC and LEC, respectively), though

not part of the hippocampus proper, are counted as a part of the hippocampal formation

due to the high interconnectivity between these regions. LEC and MEC receive and compute

information from different cortical regions before transmitting it to the hippocampus. LEC

encodes somatosensory information [83, 84] and projects non-spatial features such as object

identity [85] and time [86]. MEC integrates spatial egocentric information from other regions

of the cortex [87] and encodes self motion information [88, 89]. The hippocampal project-

ing neurons from MEC layer II are functionally diverse, combining grid cells, head-direction

10
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Figure 1.4 – Schematic of the layer structure, locations of principal cells and anoxic connections in the hip-

pocampus proper. DG forms the main input layer of the hippocampus receiving EC projections through the

MPP and LPP (pink and red, respectively). Granule cells (blue) send dendrites in the ML and forward activ-

ity through mossy fibers into SL of CA3. CA3 pyramidal cells (dark green) receive mossy fiber input as well

as direct MPP and LPP input. They form recurrent connections in SR and SO (not shown) and send axons

to CA2 and CA1. CA1 pyramidal cells (light green) receive CA3 input in SR and SO and EC input through TP

(dark red) in SLM. CA1 is main output structure sending axons to subiculum and deep layers of EC.

cells, and border cells, as well as non-spatial cells [90]. Further, a subset of these cells shows

speed-modulated activity that is transmitted to the hippocampus [91, 92]. Both regions show

activity in the θ-band, a rhythm also prominent in the hippocampus [55].

The pathways that project from MEC and LEC onto DG and CA3 are called the medial and

lateral perforant path (MPP and LPP, respectively) [93]. MPP and LPP fibers originate in layer

II of LEC and MEC and terminate in the outer and medial part of the DG molecular layer, re-

spectively, where they innervate GC dendrites (See fig. 1.4)[94]. Further, they form synapses

with pyramidal cells in CA3 in stratum lacunosum moleculare (SLM). CA1 pyramidal cells re-

ceive input from LEC and MEC through a separate pathway, the temporoammonic pathway,

that originates in layer III of the ECs [95].

Additionally to the main pathway of activity, the hippocampus receives modulatory inputs

from the medial septum and the diagonal band of broca. These are the key structures that

modulate hippocampal rhythmogenesis [51, 52, 96].

The ECs are not only the main input to the hippocampus proper but also its main output tar-

gets, thus these regions form a circular connectivity pattern (See Fig. 1.5). This connectivity

loop drives the circuitry of the hippocampus proper, which forms the basis for the current

understanding of memory encoding.

1.2.2 The dentate gyrus

The dentate gyrus (DG) is the main input layer to the hippocampus, with its sparsely active

network of densely packed granule cells (GCs). Its main functional role is to create a sparse

11
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Figure 1.5 – Hippocampal circuit. Layer II EC cells

project through MPP and LPP onto DG and CA3.

DG is the input layer of the hippocampus where

the code is expanded and orthogonalized. GCs

have strong projections onto CA3 through mossi

fiber (mf) synapses. Most CA3 inputs are recur-

rent connections (rc) from other pyramidal cells.

CA3 forms an attractor network that completes

previously leaned patterns from DG inputs. Ac-

tivity is forwarded through Shaffer collaterals (sc)

to CA1 where it is further expanded. CA1 also re-

ceives EC input from layer III so that direct input

can be compared to CA3 output. CA1 output is

send back to EC layer V directly as well as indi-

rectly through subiculum. Modified from [97].

orthogonal representation of inputs from MEC and LEC, the basis of pattern separation.

Granule cells of dentate gyrus

The DG upper and lower blade of GCs wrap the hilus (H) on the inside and are surrounded

by the molecular layer (ML) on the outside (See Fig. 1.4). The principal cell layer contains

∼ 500,000 GCs in young mice, small ovally formed excitatory neurons (∼ 10µm diameter),

that send their dendrites into ML [98]. Only 2% to 5% of the GC population is active dur-

ing an experience [99] and the activity rates of those GCs that are active is very low in the

range of 0.1 to 0.5Hz [100, 101]. Even though GCs generate APs sparsely, approximately

two third of APs happen in short bursts with on average three APs per burst at 100Hz [102,

103]. This sparseness is supported by GC intrinsic properties with a low resting potential of

Vrest ≈ 80mV in vivo and and in vitro [101, 104] as well as a relatively high threshold for AP

generation of θ ≈−49mV [105] (see eq. 1.4 and 1.6, respectively).

GC dendritic properties of integration and synapse formation play an important role for GC

activity and function [106]. GCs do not show boosting effects of inputs, but a strong voltage

attenuation and linearized summation of inputs thus leading to an equal impact of individ-

ual MPP and LPP synapses [107]. Those synapses show a Hebb-like modifiability and act as

a competitive learning network [108]. This network is suitable to remove redundancy from

the inputs [109] even with a single exposure to new input [110].

Inhibitory control of granule cells

The sparseness of GC activity is further enhanced via strong inhibitory feed-back and feed

forward motifs inside DG [111–113]. These motifs are set up by at least five different classes

of interneurons that differ in location, morphology, excitatory drive, targeted cells and cell

compartments, electrophysiological properties, and gene expression [114, 115]. Defining for

their function in DG circuit motifs is whether the excitatory drive comes from the perforant

path (feed forward), the mossy fibers (feed-back), or both. The most studied example of the

last group is the fast spiking, parvalbumin expressing (PV+) basket cell named after its basket

12
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like axonal plexus around the principal cell soma [116–118]. PV+-cells are thought to mainly

inhibit GCs laterally [112]. Another group are hilar commissural-associational path related

cell (HICAP), cholecystokinin positive (CCK+) interneurons that innervate the inner third of

the ML [115]. PV+- as well as CCK+-cells mediate normalizing inhibition according to for-

mulas 1.9 and 1.10. Typical feed back interneurons are the hilar perforant path associated

(HIPP), somatostatin positive (SST+) interneurons [119]. HIPP cells, like molecular layer per-

forant path associated (MOPP) cells, terminate at the middle and outer third of the ML. Thus,

they directly balance the excitatory inputs at the GC dendrites in accordance with equation

1.4 [115]. A special interneuron type in the DG are the so called mossy cells (MCs) that have

an excitatory effect on targeted cells[120]. MCs are located within the hilus and project ex-

clusively inside the DG but all along the sept-temporal axis. Their function inside the DG

network is still under debate [40, 121, 122].

Pattern separation

The low excitability of GCs together with competitive learning at DG synapses and a strong

inhibitory control sets up the very sparse DG network. This sparseness motivated the theory

of DG as a pattern separator [7, 97, 110, 123, 124]. Pattern separation describes the networks

ability to create distinct orthogonal representations from overlapping or similar inputs [9, 12].

In order to create a full set of population representations (the coding subspace) of all possible

inputs the network needs to contain a high number of principal cells [125], which is given by

the high number of GCs in the network. Further, for a de-correlation of the input activity

principal cells in the pattern separator need to outnumber the cells of the input network, a

concept called "expansion recoding" [7, 126]. Since GCs outnumber the cells of the input

network by a ratio of 5:1 [10], the DG network is able to expanse the entorhinal input.

The behavioral correlate of pattern separation lies in the differentiation of two almost similar

but not identical environments [8]. It has been shown that animals with an impaired plas-

ticity at GC synapses lack the ability to distinguish subtle spatial differences in a spatial fear

conditioning paradigm[127]. Further, the DG also plays a crucial role in detecting the relo-

cation of an object in the so called object pattern separation (OPS) task[128]. The compu-

tational mechanism that is supposed to denote that change of environment is a remapping

event of GC place code. Whether remapping happens gradually [10] or drastically [129] and

whether the DG it is more sensitive local [130] or global spatial cues [131] is still a matter of

debate. Generally, the direct correlation of computational orthogonalization and behavioral

pattern separation is still not fully understood.

1.2.3 The CA3 region

GC axons (mossy fibers) innervate CA3 in stratum lucidum (SL) and each CA3 pyramidal cell

receives ∼ 50 mossy fiber inputs [97](See Fig. 1.4). Compared to GCs, pyramidal cells are

larger (∼ 20µm diameter) and there are ∼ 191,000 pyramidal cells in the young mouse CA3

[98]. Their dendritic trees reach out on both sides of the pyramidal cell layer into stratum

radiatum (SR) and stratum oriens (SO) [132]. In these layers CA3 pyramidal cells form and re-
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ceive direct recurrent excitatory connections from other CA3 cells, forming an auto recursive

network [42].

Mossy fiber synapses have a strong impact on CA3 pyramidal cells so that even single GCs

are able to trigger APs [133]. Therefore, GCs they have a significant influence on CA3 activity

even though GC activity is sparse and each pyramidal cell receives only ∼ 50 mossy fiber

inputs. CA3 pyramidal cell number is lower than the number of GCs by a ratio of 1:2.5 [98]

which leads to a convergence of activity in CA3 [126]. The majority of CA3 inputs are formed

by recurrent excitatory connections from other CA3 pyramidal cells in the range of 104 [97].

The probability of these connections follows a scale-free topology, leading to the emergence

of so called hub neurons [134]. Such a recurrent excitatory network is called an attractor

network [74, 135, 136]. CA3 axons forward activity to afferent CA2 and CA1 pyramidal cells

through the so called Shaffer collaterals.

Pattern completion

Attractor networks converge on generalized activity patterns, even when inputs are incom-

plete ore noisy. This feature is called generalization or pattern completion [137, 138]. A

mnemonic representation in the neural network needs to be reliable even if inputs are not

sufficient or noisy. Therefore, the memory encoding network needs to perform both tasks,

pattern separation and completion [7]. Due to the anatomical differences required for pat-

tern separation and pattern completion one single network cannot perform both tasks but

it needs to be separated in layers. Thus, DG and CA3 form the hippocampal layers that to-

gether perform both tasks of pattern separation and completion before activity is forwarded

to CA1.

1.2.4 The CA1 region

Within CA1 there are ∼ 223,000 pyramidal cells [98] and each cell receives input from 15.000

to 30.000 CA3 cells [139]. These synaptic connections are formed in the SR and SO layers

of the CA2/1 regions(See Fig. 1.4). In contrast to the CA3 region, CA1 pyramidal cells have

only few axon collaterals within in CA1 [132], but project to the subiculum and layer V of the

EC [94]. Thus, CA1 is the main output structure of the hippocampus. The discussion of all

different interneuron classes in CA layers is beyond the scope if this work but can be found

elsewhere [115, 140].

The hippocampal code expands further in CA1 due to the higher number of pyramidal cells

compared to CA3 [98] (This contrast is even more pronounced in higher mammals [97]). This

code expansion leads to a distribution of the information content from CA3 and provides

the first part of the expansion for the return projections to neocortical regions [97]. At the

same time a high number of Shaffer collateral terminals converge on each CA1 pyramidal

cell where they form a competitive learning network [139, 141]. Together, expansion and

conversion create a representation of the same information content as in CA3, but more

robust against noise and individual firing levels [97]. Additionally to a full representation,

e.g. of space, CA1 encodes sequences in which spatial cues and certain locations appear
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[142]. Thus, CA1 is hypothesized to add time information to the representations it receives

from CA3 [97]. CA1 does not only receive information from CA3, but also direct EC input

through the temporoammonic pathway. This combination of previously computed and di-

rect input enables CA1 cells to compare previously learned and current patterns. Indeed it

has been shown that the disruption of the direct EC input to the CA1 subregion of the dorsal

hippocampus interferes with spatial working memory and novelty detection [143].

For all of these hippocampal computations most experimental evidence in rodents is found

in place coding and during orientation.

1.3 State dependent processing

1.3.1 Place code and stability

One main task of the hippocampus is to form and memorize a representation of space [5].

This spacial map has its direct correlate in place cells (PCs), that rate code distinct places in

space, their place fields. PCs are found in all hippocampal layers and show different proper-

ties. One defining feature for PCs is how they change their behavior depending on the spatial

context. It has originally been shown in CA3 that place cells change their firing field in a dif-

ferent spatial context, a phenomenon referred to as "remapping" [144]. In remapping, PCs

can change the position of their place field but also stop or start place coding depending on

the context. The degree of remapping for changing contexts in each hippocampal layer re-

flects its sensitivity or stability to changes in environment. These features are hypothesized

to reflect the concept of pattern separation and completion in DG and CA3, respectively. Dif-

ferent theories what this translation looks like are debated, based on different experimental

evidences [10, 129–131].

Another question is how place code evolves and facilitates in different layers. Forming of the

spatial map is thought to be dependent on the activity state. Especially in the hippocampus

different activity states are identified with specific oscillatory patterns [55] and are further

linked to stereotypical behavioral states.

1.3.2 State dependence and oscillations

Orientation is differently relevant depending on the behavioral state, especially the differ-

ence between locomotion and immobility. It has been shown that already several hundred

milliseconds before rodents engage in locomotion, its upcoming onset can be predicted by

the emergence of θ-oscillations in the hippocampus [57, 58]. Activity in the θ-band has been

shown to be present during all exploratory behaviors, including walking, sniffing and rear-

ing, and the paradoxical phase of sleep [56]. The correlation of θ-rhythm and locomotion

is functionally so relevant that an artificial activation of the medial septum, thus triggering

θ-activity, is sufficient to induce locomotion [145]. During locomotion, activity of individual

cells locks to the phase of the oscillation frequency. This is especially true for place cells,

where the synchronization creates an interference pattern known as phase precession [146].
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From that interference pattern the distance traveled from the beginning of the place field can

be instantly inferred from the theta phase of the place cell spikes [147, 148]. Further, changes

in hippocampal θ-synchronization are translated into rapid adjustment of running speed via

the lateral septum [149]. Accordingly, CA1 pyramidal neurons almost linearly increase their

firing rates with the velocity of locomotion [150–152]. The precision of timing within the

theta rhythm is so important that a disruption of it critically impairs the function of the hip-

pocampus [153]. Due to these behavioral correlates, θ-oscillations are believed to be crucial

for temporal coding of active neuronal ensembles and the modification of synaptic weights

[55]. Thus, theta rhythm plays an important role for spatial learning and the creation of the

spatial map [60].

As noted earlier (see section 1.1.3), θ-rhythm often coincides with activity in the γ-band.

This is especially true in the hippocampus where γ is hypothesized to set the timing for syn-

chronous ensembles [59]. Indeed approximately 1 % of hippocampal pyramidal cells fire in

a 20ms time window during theta-related behaviors [150]. Considering that 15,000 to 30,000

CA3 pyramidal cells converge on a CA1 pyramidal neuron [139, 141], on average, 150 to 300

CA3 pyramidal cells firing within a gamma cycle comprise an assembly [154].

However, during awake immobility, drinking, grooming, drowsiness, and slow wave sleep θ-

activity is replaced by irregular patterns. These include δ-waves, sleep spindles, sharp waves

(SPW), and dentate spikes [48, 155]. The behavioral relevance of non-theta related activity

is, with SPW as prominent exception, far less studied in the hippocampus. This is especially

true in the dentate gyrus.

Despite the general sparseness of GC activity, there are network activity patterns in the DG

correlated to different activity states. During locomotion a strong θ-activity is mediated through

the MPP and LPP inputs onto the DG [56]. The θ-modulation of entorhinal input to the DG

is able to suppress the otherwise very strong inhibitory feed forward mechanisms [111]. The

modulated input drive triggers interaction of PV+ interneurons that is hypothesized to set

up the γ-modulation that superimposes θ-rhythm [45]. This γ-modulation of GC output can

recruit lateral inhibitory feed-back mechanisms [113]. Even though individual GC activity re-

mains sparse, activity couples to θ- as well as the γ-rhythm [46, 102, 103, 156]. Therefore it

is not surprising that GCs show differences in activity whether the mouse is immobile or in

locomotion [157].

During immobility synchronized non-rhythmic network events occur in the DG called den-

tate spikes [155]. Type 1 dentate spikes (DS1) are driven by the LPP projections whereas type

2 spikes (DS2) are driven by the MPP. Dentate spikes activate inhibitory networks in the hilus

but suppress activity in efferent regions. However, it is unclear how cellular identity of DS1 or

DS2 looks like, due to a lack of studies on the number of recruited cells during dentate spikes

and whether activated ensembles are repetitive. Furthermore, it remains unsolved how these

network events fit into the picture of DG pattern separation.
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1.4 Key questions

So far, studies observing DG function have mainly focussed on animals during locomotion.

Only during locomotion hippocampal principal cells reveal one of their main read outs, which

is place coding. Thus, activity patterns during immobility are poorly studied especially in DG.

The goal of this thesis is to evaluate DG computations in different behavioral states on a

cellular level and to answer the following key questions:

• How does DG compute perforant path input in different states?

• Is network activity observable on a cellular level in DG output, especially when the

animal is resting?

• If network phenomena are present, what is the nature of activated ensembles? Is or-

thogonality preserved in network activity?

• What is the behavioral relevance of DG activity during rest?

17





Chapter 2

Materials and Methods

2.1 Animals and procedures

All animal experiments were conducted in accordance with European (2010/63/EU) and fed-

eral law (TierSchG, TierSchVersV) on animal care and use and approved by the county of

North-Rhine Westphalia (LANUV AZ 84-02.04.2015.A524). We used 9-12 weeks old Thy1-

gCaMP6 mouse line (GP4.12Dkim/J) mice for imaging experiments, which express gCaMP6s

in most hippocampal neurons [158]. In total n = 10 animals were used for experiments.

2.1.1 Virus injections and head fixation

Thy1-gCaMP6 mice were anesthetized with a combination of fentanyl /midazolam /medeto-

midine (0.05/5.0/0.5mg/kg body weight i.p.) and head-fixed in a stereotactic frame. 30min

prior to induction of anesthesia, the animals were given a subcutaneous injection of keto-

profen (5mg/kg body weight). Eyes were covered with eye-ointment (Bepanthen, Bayer) to

prevent drying and body temperature was maintained at 37◦C using a regulated heating plate

(TCAT-2LV, Physitemp) and a rectal thermal probe. After removal of the head hair and super-

ficial disinfection, the scalp was removed about 1cm2 around the middle of the skull. The

surface was locally anesthetized with a drop of 10% lidocaine and after 3-5min residual soft

tissue was removed from the skull bones with a scraper and 3% H2O2/NaCl solution. After

complete drying, the cranial sutures were clearly visible and served as orientation for the de-

termination of the drilling and injection sites. For virus injection, a hole was carefully drilled

through the skull with a dental drill, avoiding excessive heating and injury to the meninges.

Any minor bleeding was stopped with a sterile pad. The target site was located as the joint of

Parietal, Interparietal and Occipital skull plates. Subsequently, the tip of a precision syringe

(cannula size 34 G) was navigated stereotactically through the burrhole (30◦ towards vertical

sagittal plane, 1.5 mm depth from skull surface) and virus particles (rAAV2/1-CaMKIIa-NES-

jRGECO1a [159]) were slowly injected (total volume 250nl, 50nl/min) in the medial entorhi-

nal cortex. Correct injection site in the medial entorhinal cortex was verified in all cases by

confined expression of jRGECO1a in the middle molecular layer of the dentate gyrus (Fig.
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Figure 2.1 – Preparation of experi-

mental animals. A, histological

preparations of Thy1-gCaMP6s

animals injected with jRGECO in

MEC. 70µm fixed slices of DG

with DAPI stained nuclei (blue),

gCaMP6s (green) and jRGECO

(red) (n = 3). B, custom made

head fixation plate made from

AL. Design is flat on the skull

with notches for the fixation

holder going down on both sides

on the skull. Handle on the back

allows handling, habituation and

mounting in the set up. C, 2D

view of position and size of the

cone shaped silicon inset. The

window is inserted after aspira-

tion of cortical and CA1 tissue

above DG.

2.1A). To prevent reflux of the injected fluid, the cannula was retained for 5 minutes at the

injection site. Optibond (OptibondTM 3FL; two component, 48% filled dental adhesive, bot-

tle kit; Kerr; FL, USA) was then applied thinly to the skull to aid adhesion of dental cement.

Subsequently, a flat custom made head post ring (Fig. 2.1B) was applied with the aid of den-

tal cement (Tetric Evoflow), the borehole was closed and the surrounding skin adapted with

tissue glue, also closing the borehole and adapting the surrounding skin with tissue glue. At

the end of the surgery, anesthesia was terminated by i.p. injection of antagonists (naloxone

/flumazenil /atipamezole, 1.2/0.5/2.5mg/kg body weight). Postoperative analgesia was car-

ried out over three days with once daily ketoprofen (5mg/kg body weight, s.c.).

2.1.2 Window implantation procedure

Cranial window surgery was performed to allow imaging from the hippocampal dentate gyrus

two weeks after virus injection. 30 minutes before induction of anesthesia, the analgesis

buprenorphine was administered for analgesia (0.05mg/kg body weight) and dexamethasone

(0.1mg/20g body weight) was given to inhibit inflammation. Mice were anesthetized with 3-

4% isoflurane in an oxygen/air mixture (25/75%) and then placed in a stereotactic frame.

Eyes were covered with eye-ointment (Bepanthen, Bayer) to prevent drying and body tem-

perature was maintained at 37◦C using a regulated heating plate (TCAT-2LV, Physitemp) and

a rectal thermal probe. The further anesthesia was carried out via a mask with a reduced

isoflurane dose of 1-2% at a gas flow of about 0.5l/min. A circular craniotomy (diameter

3mm) was opened above the right hemisphere hippocampus using a dental drill. Cortical

and CA1 tissue was aspirated using a blunted 27-gauge needle until the blood vessels above

the dentate gyrus became visible. A custom made cone-shaped silicon inset (Upper diam-

eter 3mm, lower diameter 1.5mm, length 2.3mm, RTV 615, Movimentive) attached to by a

cover glass (diameter 5mm, thickness 0.17mm) was inserted and fixed with dental cement.
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Figure 2.2 – Two photon imaging in behaving mice on linear treadmill. A, concept of custom made linear tread-

mill. B, belt design for 1.5m long blank belt (left) as well as cue enriched belt (right). C, Light path for two

photon scanning microscopy. Two excitation light paths are implemented at 920nm and 1070 nm to excite

green and red floruphores. x-scanning is done by a resonant galvanometric scanner, y-slow-axis-scanning

by a galvanometric scanner. Photon section is done for two chromatically separated channels using gated

GaAsP detectors. D, running distance per session was 40m mean in both empty belt and cue-enriched belt.

E, mean running speed was 10cm/s in both conditions. F, pupils size of immobile and locomotion periods

on blank and enriched running belts.

This special window design allowed easy implantation and maintenance and minimized the

amount of aspirated tissue. Further the geometry was optimal for conserving the numerical

aperture of the objective (Fig. 2.1C). Postoperative care included analgesia by administer-

ing buprenorphine twice daily (0.05mg/kg body weight) and ketoprofen once daily (5mg/kg

body weight s.c.) on the three consecutive days after surgery. Animals were carefully moni-

tored twice daily on the following three days, and recovered from surgery within 24-48 hours,

showing normal activity and no signs of pain. The preparation of CA1 imaging windows fol-

lowed mainly the same protocol. Here only the cortex was aspirated until the alveus fibers

above CA1 became visible. The silicon inset was a shorter version (length 1.5mm) of the one

used for DG experiments. We have tested the functionality of our head fixation and window

design in a former study [160].

2.2 Linear treadmill system

The treadmill we implemented was a self-constructed linear horizontal treadmill, similar to

[33] (see Fig. 2.2A). The belt ran over 3D-printed wheels on each end of the treadmill and

kept in position under the objective with a restrainer bill from teflon plates. The designed

holder for the head fixation kept the mouse head in position under the objective. To adjust
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for the size of each animal and the optimal angle for imaging the holder was mounted on

an adjustable stage (L200M, Thorlabs, USA) and a two axis goniometer (GNL20M, THorlabs,

USA), respectively. The complete apparatus was installed on a moveable shifting table (380

FM-U, Luigs und Neumann, Germany) and fitted to a commercial microscope (A1 MP, Nikon,

Japan). The belt surface was either left blank or equipped with tactile cues (Fig. 2.2B). Belt

position and running speed were measured by modified optical mouse sensors installed at

the back-wheel and controlled by an Arduino micro controller (Arduino Uno, Arduino AG,

Italy). Stimulation hardware was controlled using a Tinkerforge Masterbrick micro controller

(Tinkerforge GmbH, Germany). All behavioral recordings were synchronized at a recording

frequency of 100Hz and later sampled down to match the imaging frame rate. All stimula-

tion and acquisition processes were controlled by custom-made software written in LabView

(National Instruments Corporation, USA).

2.2.1 Habituation and behavior on the linear track

Experiments were performed in head-fixed awake mice running on a linear track. Two weeks

before the measurements, mice were habituated to the head fixation. Initially, mice were

placed on the treadmill without fixation for 5 minutes at a time. Subsequently, mice were

head-fixed, but immediately removed if signs of fear or anxiety were observed. These habit-

uation sessions lasted 5 minutes each and were carried out three times per day, flanked by

5 minutes of handling. During the following 3-5 days, sessions were extended to 10 minutes

each. After habituation, mice ran well on the treadmill for average distances between 30-40m

per session (Fig. 2.2D) at a mean speed of ∼ 10cm/s (Fig. 2.2E).

2.2.2 Pupil diameter measurement and analysis

On the linear track, the pupil diameter was measured using a high-speed camera (Basler Pi-

lot, Basler, Germany) at a frame rate of 100 Hz. To estimate pupil diameter, a circular shape

was fitted to the pupil using the LabView NI Vision toolbox (National Instruments), providing

a real-time readout. Post-hoc, the pupil-diameter trace was normalized to its mean. As in a

published study [161], frames in which pupil diameters could not be obtained due to blink-

ing or saccades were removed from the trace. The pupil diameter trace was filtered using

a Butterworth low-pass filter at a cutoff frequency of 4Hz. To match the time resolution of

the imaging data, the pupil-trace was down-sampled to 15Hz. Average pupil diameters were

calculated for entire episodes of locomotion, entire periods of immobility, and for the single

frame coincident with the peak of granule cell activity during network events. Generally, the

size of the pupil was more contracted when animals were immobile compared to locomotion

states (Fig. 2.2F).
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Figure 2.3 – Detection of cells and read out of Ca2+ activity traces. A, field of view in a representative session.

Greyscale of several hundred GCs in the DG cell layer stained with gCaMP6s in their cytosol. Scalebar =

100µm. B, spatial footprint of an identified GC using NNMF. C, ∆F /F -trace red out from the area of the

identified cell using conventional read out methods. D, same ∆F /F -trace as in B identified with NNMF

(Grey line). Deconvoluted de-noised trace of activity (black line) and identified events onsets (green vertical

lines).

2.3 Two-photon calcium imaging

For two photon imaging we adapted a standard configuration [162] of excitation and emis-

sion light path (Fig. 2.2C). We used a commercially available confocal microscope (A1 MP,

Nikon, Japan) equipped with a 25X long-working-distance, water-immersion objective (N.A. =

1, WD = 4mm, XLPLN25XSVMP2, Olympus) controlled by NIS-Elements software (Nikon,

Japan).

gCaMP6s was excited at 940nm using a Ti:Sapphire laser system (∼ 60fs) laser pulse width;

Chameleon Vision-S, Coherent, Ireland). An additional fiber laser system at 1070nm (55fs

laser pulse width, Fidelity-2, Coherent, Ireland) was added to the setup to excite jRGECO1a.

Emitted photons were collected using gated GaAsP photomultipliers (H11706-40, Hamamatsu,

Japan). Movies were recorded using a resonant scanning system at a frame rate of 15Hz and

duration of 20 minutes per movie.

The setup was equipped with two additional diode pumped solid state laser systems at 488nm

and 561nm, respectively. The lasers could be used as excitation light sources for light sensi-

tive opsins [163]. Though this setup configuration was not used for this study, we had used it

for a former study that proved the in-vivo function of the optogenetic silencer PAC-K [160].

2.4 Data analysis of imaging data

All analysis on imaging data and treadmill behavior data were conducted in MATLAB using

standard toolboxes, open access toolboxes and custom written code. To remove motion ar-

tifacts, recorded movies were registered using a Lucas-Kanade model [164]. Individual cell
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fluorescence traces were identified and Ca2+ events were deconvolved using a constrained

non-negative matrix factorization based algorithm [165]. All components were manually in-

spected and only those kept that showed shape and size of a granular cell and at least one

significant Ca2+-event in their extracted fluorescence trace. We binarised individual cell flu-

orescence traces by converting the onsets of detected Ca2+ events to binary activity events.

MPP input bulk signal was analyzed by setting a region of interest in the molecular layer.

For that a threshold of 50% maximum fluorescence was used within the field of view on

the average projection of the movie. The bulk fluorescence signal trace was calculated as the

average signal of the defined region of interest in each frame. The baseline for the bulk signal

was defined as the low pass filtered signal of the raw trace with a cutoff frequency of 0.01Hz

using a Butterworth filter model.

Cross correlation analysis between MPP and GC signals were conducted with standard Mat-

lab routines. For Granger causality testing a special toolbox was used (Chandler 2020. Granger

Causality Test, MATLAB Central File Exchange).

2.4.1 Network activity

To define network events (NEs) of synchronized activity we first searched for Ca2+-event on-

sets occurring simultaneously within a moving time window of 200ms (3 frames). We then

defined the distribution of synchronous events that could arise by chance in each individual

session. To achieve this, all individual onset times were randomly shuffled and the resulting

number of NEs from the shuffled traces were calculated. We repeated that process a thou-

sand times to create a null-distribution for chance level of NEs. We set the minimal thresh-

old for network events in each individual session at a number of cells where less than 0.1%

of events (p < 0.001) could be explained by chance.

Orthogonality between pairs of network events was assessed using cosine-similarity mea-

sures Scos. Population vectors vnet,i of all network events were multiplied using the normal-

ized vector-product in a pair-wise manner:

Scos =
vnet,i vnet, j

|vnet,i ||vnet, j |
(2.1)

To test which fraction of orthogonal pairs could be explained by chance, we generated a null

distribution by randomly reassigning the cell participations to different population vectors a

1000 times. We then tested the real fraction of orthogonal pairs against the fraction derived

from the shuffled data.

2.4.2 Spatial tuning

To address spatial tuning of activity in sparsely coding GCs we used spatial tuning vector

analysis [166]. We restricted analysis to running epochs, where a running epoch was defined
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as an episode of movement with a minimal duration of 2.5s above a threshold of 4cm/s in

a forward direction. Only cells with 4 or more event onsets during running epochs were

included in the analysis. The belt was divided in 150 evenly sized bins of 1cm. To take the

circular design of the treadmill into account we used polar coordinates to describe positions

on the belt. An angle αi was assigned to every running related event and weighted by the

amount of time the animal spend at that position Ti . The spatial tuning vector vspace was

then defined as the sum of all weighted event angles

vspace =

J
∑

i

(

αi

Ti

)

(2.2)

To balance this vector it was normalized by the total number of running related events J and

with the average time per event spend in locomotion and got:

vspace =
1

J

J
∑

i

(

Ti

J

) J
∑

i

(

αi

Ti

)

(2.3)

We addressed statistical significance by creating the null distribution for every spatially tuned

cell. This was achieved by randomly shuffling the onset times and recalculating the spatial

tuning vector 1000 times. The p value was calculated as the percentage of vector lengths

arising from the shuffled distribution that was larger than the actual vector length.

2.4.3 Velocity tuning

To analyze speed modulated activity of GCs, velocity values were divided in 20 evenly sized

bins between 0 and the maximum velocity of the animal. We calculated the mean ∆F /F at all

times the animal was running at velocities within each specific velocity bin. Putative speed

cells were those granule cells that showed a Pearson’s r of at least 0.9. To further exclude

the possibility that correlations arise by chance we shifted the individual ∆F /F traces with

respect to the behavior randomly in the time domain a 1000 times. The cell was considered

a significant speed coder if the shuffle-data r-values were below the original one in at least

95% of the cases.

2.4.4 Hierarchical cluster analysis

To find ensembles of correlated activity within network activity, we focused only on those

granule cell Ca2+ events that occurred within network events. We calculated the correla-

tion matrix using Pearson’s r for all cell combinations (Fig. 2.4A). To identify clusters of

correlated cells we used agglomerative hierarchical cluster trees (Fig. 2.4B,C). Clusters were

combined using a standardized Euclidean distance metric and a weighted average linkage

method. Clusters were combined until the mean of the cluster internal r-value reached a
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Figure 2.4 – Hierarchical clustering of correlations within network events. A, Correlation matrix with color

coded r-values of all cell pairs. Only activity during NEs is used for r-value calculation. B, Agglomerative

hierarchical cluster tree using the standardized Euclidean distance metric. Significance threshold is derived

from shuffle analysis and color coded are the identified clusters. C, Reordered correlation matrix from A

using the identified cluster order from B.

significance threshold. To define the significance threshold we created a null-distribution

of r-values from randomized data sets. Data was shuffled by randomly reassigning individ-

ual cell events to different network events a 1000 times. The 95 percentile of the created

r-value null-distribution was used as the threshold for the clustering procedure. Only clus-

ters in which the mean r-value exceeded the threshold obtained from the null distribution

were considered for further analysis.

2.4.5 Principal Component Analysis

To perform Principal Component Analysis (PCA) and Independent Component Analysis (ICA)

we used standard MATLAB procedures and calculated the maximal number of components.

Gaussian Process Factor Analysis (GPFA) was conducted using a formerly described proce-

dure and toolbox [167], that we adapted for Ca2+-imaging data. Principals were calculated

using singular value decomposition (SVD) of the data X of size N by T , where N is the num-

ber of cells, T the number of recorded frames and the rows of X are the z-scored ∆F /F traces,

decomposing the data-matrix as

X =V W (2.4)

where V is an orthogonal matrix whose columns are the principal components, and W is a

matrix of associated weights. For an analysis of population activity patterns relative to spatial

location, we projected the animal position onto PCA trajectories, allowing us to identify loops

in component space reflecting complete rounds on the belt. Further, we projected all indi-

vidual component amplitudes onto the position of the mouse to detect repetitive patterns.

This analysis had comparable results for PCA, as well as ICA and GPFA.

For further analysis we restricted the number of components so that 50% of variance in each

individual data set was explained. To compare running and network related epochs we cal-

culated principal components Vrun and Vnet independently from each other so that
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Figure 2.5 – A, schematic of the procedure for comparing population activity during NEs and locomotion. Pop-

ulation activity is represented by 3 cells (upper traces), recorded during running and immobility (blue trace

indicates speed). Time point of three network events is indicated schematically by red lines. Activity during

NEs was used to perform PCA, computing the transformation matrix Vnet. Similarly, PCA was performed on

the neuronal population activity only from running periods (speed indicated in blue, bordered by vertical

grey dashed lines), to generate the transformation matrix Vrun representing the covarying activity during lo-

comotion. B, Schematic description of the procedure for projecting co-variances of running activity into the

PCA basis of network events (or shuffled data). Grey dots show covarying activity of two cells during run-

ning. The blue graph denotes the projection into the locomotion PCA-space using Vrun and the width of the

distribution shows the projected variance. The red graph shows the same information for the network space

using Vnet. C, Shuffle analysis. The vertical red line indicates the projected variance explained normalized

to original variance. The variance explained is larger than the shuffled distribution (blue), indicating that

the population activity during locomotion and network events is more similar than expected by chance (i.e.

for network activity without correlations).

Xrun ≈VrunWrun , Xnet ≈VnetWnet , (2.5)

where Xrun contains all the data from epochs of running and Xnet the data from 2s windows

around all network events (Fig. 2.5A). To calculate the similarity between these two bases,

the covariance of Xrun was projected into the principal space of the network activity

Snet×run ≈V T
netCov(Xrun)Vnet (2.6)

where Snet×run is the matrix of projected co-variances and trace(Snet×run) quantifies the amount

of projected co-variance (Fig. 2.5B). This number was normalized to the total amount of co-

variance of locomotion activity in the locomotion principal space trace(Srun×run).

To compare our results against chance level, we used all traces recorded during immobility,

shuffled those with respect to each other in the time domain. We used the original network
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times to create a random principal direction space Vrand and calculated the projected co-

variances of Xrun into the random-network space as trace(Srand×run) and repeated this proce-

dure 1000 times. The p-value was calculated as the percentage of random projections that

exceeded the initial value (Fig. 2.5C).

Additionally, we used two alternative approaches to quantify similarity between the PCA

bases. First a similarity factor SPCA as described by [168]:

SPCA = trace(V T
netVrunV T

runVnet) =
k
∑

i=1

cos2θi , (2.7)

where θi is the angle between the i ’th principal directions of Vrun and Vnet. Further, the Eros

similarity factor as described in [169] was used:

Eros =
k
∑

i=1

wi |cosθi | (2.8)

where wi is a weighting factor that takes into account the amount of variance that was cov-

ered by each individual component. All measures delivered comparable results as compared

to shuffled data.
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Results

3.1 Two photon imaging of DG input-output activity

To investigate the output of the DG in vivo we imaged the activity of > 300 granule cells (GCs)

using a Thy1-gCaMP6s mouse line (GP4.12 Dkim/J [158], n = 9mice). In addition, we moni-

tored the activity of the major input system into the dentate gyrus, the medial perforant path

(MPP). To this end, we expressed the red-shifted Ca2+ indicator jRGECO1a [159] in the me-

dial entorhinal cortex using viral gene transfer (Fig. 3.1A, B, n = 4mice). To allow efficient

excitation of both genetically encoded Ca2+ indicators, we established excitation with two

pulsed laser sources at 940nm and 1070nm. Mice were placed under a two photon micro-

scope and ran on a custom made linear track (Fig. 3.1B, Fig. 2.2, see section 2.3). For Thy1

mice with double staining (n = 3) the field of view (FOV) was chosen to cover the GC layer as

well as the complete molecular layer so that GC and MPP activity could be monitored simul-

taneously (Fig. 3.1A lower panel). Without the MPP staining (n = 6) the FOV was chosen, so

that it covered most of the GC layer (Fig. 2.2A). For the mouse without gCaMP6s expression

(n = 1) the FOV was set centered around the molecular layer.

The ∆F /F traces and precise Ca2+-event onset times for each individual GC was read out us-

ing non-negative matrix factorization [165](NNMF, see section 2.4). As previously described,

the event rate of GCs was generally sparse [131, 157, 166, 170], both when animals were

immobile and running on a textured belt without additional cues (mean event frequency

1.38±0.19events/min and 0.97±0.2events/min, respectively, n = 9mice, Fig. 3.1E-G). In con-

trast to previous studies [166], the event rate was higher during immobility (Fig. 3.1E,G),

while the mean ∆F /F amplitude was higher during locomotion. This is most likely caused

by our binary definition using only the onset of an event independently from its amplitude

and the fact that we considered all cells that showed at least one significant Ca2+-event. Of

all GCs, 95% had activity levels below 4events/min both during locomotion and immobility,

where 57% did not have any significant events during locomotion (See Fig. 3.1G). During

locomotion, even though the fraction of higher active GCs was generally very low, there were

more cells in a range above 7events/min (See Fig. 3.1G inset). This suggests that very sparse

GCs had their events preferably during immobility, while higher active cells were more active
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Figure 3.1 – Dual color two photon Ca2+-imaging in awake behaving animals. A upper panel, fixed coronal

70µm slice of an experimental Thy1 animal injected with jRGECO1a in MEC. Somata are stained with DAPI

(blue), GC cytosols are filled with gCaMP6s (green), MPP fibers express jRGECO (red) (Scalebar = 100µm)

. A lower panel, in vivo FOV of the same animal in horizontal view through window implant using the

same color code. Scalebar = 100µm. B, Representative data of one session. MPP bulk signal (red trace)

is red out as the sum of all pixels in the middle ML. Individual GC traces (black traces) are red out using

NNMF. Speed and position of the animal (blue trace) are red out from the treadmill system. Pupil size (Gray

trace) is red out with a high speed camera. C, Mean amplitude of MMP bulk signal during running and

resting periods (n = 4). D, Mean variance of MMP bulk signal during running and resting periods (n = 4). E,

Mean GC Ca2+-event frequencies during running and resting periods averaged over mice (n = 9). F, Mean

GC Ca2+-event amplitudes during running and resting periods averaged over mice (n = 9). G, Cumulative

probability of GC Ca2+-event frequencies during running and resting periods. The inset shows a close up of

the asymptotic tail of the distribution. H, Subset from data from B showing the MPP bulk signal (red trace),

the summed GC signal (green trace), the speed of the animal (blue trace) and the pupil diameter (gray trace).

I, Averaged data for running onset times showing the MPP bulk activity (red trace), the running speed (blue

trace) and the pupil diameter (n = 3 mice). 0 is the time of the running onset. J, Mean correlation between

the normalized running speed and the normalized MPP fluorescence over experimental animals (n = 4). K,

cross-correlogram denoting the cross correlation between MPP-bulk signal and summed GC signal.

30



3.2. PLACE- AND SPEED-CODING GRANULE CELLS IN DG

during locomotion.

The MPP Ca2+-bulk signal was on average higher during locomotion compared to immobile

periods (Fig. 3.1C paired t-test, p = 0.04, n = 4mice). This increase of fluorescence signal dur-

ing onsets of locomotion was systematic for all times of locomotion-initiation (Fig. 3.1I). Gen-

erally, we found a correlation between MPP-signal amplitude and running speed (Fig. 3.1J),

as previously described for MEC cell types[91, 92]. Notably, even though the MPP activity

was generally lower during immobility, the MPP activity levels during these phases showed

transient, large fluctuations that were only rarely present during locomotion (Fig. 3.1B, H).

This was further reflected in a higher variance of the signal during immobility compared to

locomotion (Fig. 3.1D paired t-test, p = 0.03, n = 4mice).

Cross-correlation revealed that during immobility the increases in MPP activity were associ-

ated with peaks in average GC activity levels (Fig. 3.1K). Both signals were significantly corre-

lated in most sessions for periods of immobility (8/9 sessions, Granger causality test p < 0.05),

but not when the animals were running (8/9 sessions, Granger causality test p > 0.05, see sec-

tion 2.4). This finding suggests that the MPP may contribute to driving synchronized activity

in the GC population during immobility.

3.2 Place- and speed-coding granule cells in DG

We identified the properties of GCs, and asked if they encode specific spatial or locomotion-

related information on a textured belt without cues as in Fig. 3.1. We first identified GCs

that displayed significant position-related firing by calculating significant place preference

vectors as previously described [166](Fig. 3.2A for representative polar plots of three GCs, see

section 2.4.2). Of the total number of granule cells, a small subgroup of GCs exhibited sig-

nificant place coding (2.15%), with place fields distributed over the linear track (Fig. 3.2B).

The fraction of place coding cells was lower as reported values [131, 166], since in baseline

recordings the spatial environment was sparse. If the fraction of place-coding cells was cal-

culated as a fraction of only GCs active during running as in former studies, the fraction of

significantly place-coding GCs was 23% comparable to previously reported values [166].

Secondly, we identified a fraction of GCs (2.17%) displaying a significant correlation of activ-

ity with running speed (Fig. 3.2C-E, see section 2.4.3). This is in contrast to previous studies

[157, 166], but consistent with data obtained in freely moving mice [171]. Notably, we did not

observe both speed coding and place coding in the same cells, but in two distinct sub groups

of GCs.

The low fraction of PCs was consistent for all three baseline recordings, so we asked whether

an enrichment of the spatial environment would induce more pronounced place coding in

the GC population. To this end, we increased the density of sensory cues on the textured belt

(cue-enriched condition, see section 2.2, Fig. 2.2) in consecutive imaging sessions. In the

cue-enriched condition, GC event rate had a trend towards higher frequencies which was

not significant (3.2C) while the mean amplitude of events remained unaltered (3.2D).

Indeed we found that place cells were more commonly detected in the cue-enriched condi-
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Figure 3.2 – Place and speed cells in the DG. A, Three representative examples of two significantly place-coding

granule cells, and one without place coding. Upper three panels show polar plots of the animal position in

every round (blue spiral) where each 360◦ turn of the spiral represents a transition through the 1.5 m linear

track. Black dots denote event onsets during locomotion and the red line represents the place vector. The

corresponding heatmap of normalized fluorescence is shown in the inset. In lower panels, the distributions

for place vector lengths generated from shuffled data are shown (grey histograms), the place vector for the in-

dividual cell is indicated as red line. B, Place field heatmaps of all cells showing significant place preference.

C, Frequencies of GCs during immobility and locomotion in baseline and cue enriched condition. There is a

trend towards higher events frequencies in cue-enriched condition (n = 9). D, Amplitudes of events remain

unaltered in baseline and cue-enriched condition. E, Representative examples of three significantly speed-

coding neurons (black traces, running speed depicted in cyan). F, Speed-modulated mean fluorescence sig-

nal of a representative example cell. Gray area indicates standard error. G, Mean fluorescence signals of all

significantly speed-modulated cells. Normalized fluorescence is color coded and running speed is normal-

ized to every individual mouse maximum running speed. H, Fraction of place and speed cells on baseline

and cue-enriched belts. Number of SCs remains constant whereas the number of PCs has a trend towards

higher numbers. There is no overlap between both groups in baseline condition and exactly one cell having

both features in cue-enriched condition.

tion (4.66% vs. 2.15% of GCs), while there was no significant change in the proportion of

speed cells (2.17% vs. 1.7% of GCs in the baseline and cue-rich conditions, respectively, 2-

test regarding changes in the fraction of place and speed cells p = 6×10−4, post-test: place

cells baseline vs. cue-enriched p = 1.7×10−4, speed cells baseline vs. cue-enriched p = 0.33,

Fig. 3.2H).
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Figure 3.3 – Network events in immobile animals. A, Ensembles of co-active GCs. Every ensemble is color coded

with an individual color. Scalebar = 100µm. B, raster plot of indicted NEs using the same color code from

A. Every dot denotes the event onset of an individual cell at NE times. Running speed is additionally shown

(blue trace, lower panel) to mark time intervals of locomotion (blue shaded areas). C, Activity averaged

around the event times of identified network events (0 is the time of NE) showing MPP bulk signal average

(red trace), mean probability for GC events (green bars) and the pupil diameter (gray trace) (n = 3 mice). D,

Mean rate of NEs per session for running and resting periods (Green bars). Data is shuffled to create a null-

distribution for the quantification of random networks (gray bars). E, Mean pupil diameter during running

(dark gray), resting (gray) and network events (green bar)(n = 6). F, Mean derivatives of the pupil diameter

during running (dark gray), resting (gray) and network events (green bar)(n = 6).

3.3 Sparse, structured DG network events in immobile ani-

mals

Despite the sparse activity of granule cells, we observed synchronized activity patterns. To

rigorously define such events, we used an algorithm that detects synchronized network events

within a 200 ms time window (see section 2.4.1). Such synchronous network events could

readily be observed in the dentate gyrus (Fig. 3.3). Network events were sparse, incorporat-

ing only 5.7±0.09% of the active GC population.

Notably, network events occurred mainly during immobility and were much less prevalent

during running (Fig. 3.3B, D). Shuffling analysis (see section 2.4.1) confirmed that network

events do not arise by chance (Fig 3.3D, grey bars correspond to shuffled data, ANOVA F(3,25) =

30.12, p = 4×10−14, Bonferroni post-test resting vs. shuffled p = 2.2×10−10 indicated with as-

terisk, running vs. shuffled p = 1).

As previously described ([161, 172]) we found pupil constriction during immobility with di-

lation at locomotion onsets (Fig. 3.1H, I). Intriguingly, the average pupil diameters during

network events were significantly more constricted compared to the average pupil diameters
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during entire periods of immobility (Fig. 3.3E, repeated measures ANOVA for all three groups

F(2,28) = 17.17, p = 1×10−5, n = 6, data from 3 sessions each, Bonferroni post tests: pupil diam-

eters during locomotion vs. immobility p = 0.007, locomotion vs. network events p = 0.002,

immobility vs. network events p = 0.002). The rate of pupil constriction has also been shown

to correlate well with cortical population dynamics ([161]). We found that network events

primarily occurred during periods of pupil constriction, while no preferential pupil constric-

tion or dilation was observed over the entire immobility period. Locomotor episodes were

on average associated with pupil dilation (Fig. 3.3F, repeated measures ANOVA F(2,28) = 34.18,

p = 3× 10−8, n = 6 mice, data from 3 sessions each, Bonferroni post tests: pupil diameters

during locomotion vs. immobility p = 0.002, locomotion vs. network events p = 2.53×10−5,

immobility vs. network events p = 0.0005). Together, this suggests that network events are

associated with specific pupillary dynamics reflecting substates of arousal and neuronal syn-

chronization during immobility.

The significant cross-correlation between MPP activity with the average GC activity levels

during immobility (Fig. 3.1K) suggested the NEs could be driven by MPP input. Thus, we

averaged the activity on times of network events and found a significant increase in the level

of the MPP signal (Fig. 3.3C, n = 3 mice). This analysis shows that at least a subset of NEs

coincides with synchronous input from the MPP.

Next, we wondered if self-motion or spatial information is incorporated into NEs and found

that both place- and speed cells were similarly recruited into network events (55.42% of place

cells, 42.86% of speed cells). These results show that MPP-driven network events in immobile

animals incorporate neurons that code place- and speed-related information during mobil-

ity.

3.3.1 Orthogonality in DG network activity

We further characterized the participation of individual dentate granule cells in network events.

We first asked in how far network events involve orthogonal cell populations. Indeed, while

individual GCs can partake in multiple network events (Fig. 3.3A, B, network events depicted

in different colors), we also observed network events that seemed completely distinct to oth-

ers. To quantify how similar network events are to one another, we computed population

vectors for each individual network event (see section 2.4.1). We then computed the co-

sine similarity as a measure of similarity between vectors representing individual network

events, where identical patterns would have a cosine similarity of 1, and completely orthogo-

nal patterns would exhibit a cosine similarity of 0 (Fig. 3.4A, B). This analysis showed a large

fraction of network event pairs that were completely orthogonal to one another, and signifi-

cantly more than expected by chance (Wilcoxon test, p < 0.005 comparison to shuffled data,

Fig. 3.4B, C). This is consistent with the capability to represent separate sets of information

within network events.

Even though orthogonal network events were observed, we also found a repeated activation

of granule cells in multiple network events. To examine if specific sub-ensembles of granule

cells are repeatedly recruited in network events, we performed a pairwise Pearson’s corre-

lation of the activity of all cell pairs during all network events of a recording session (Fig.
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similarity, thus are orthogonal. B, cumulative distribution of cos-similarities (black trace) and from a shuf-

fled distribution (gray traces). Shuffled NEs have a lower fraction of orthogonal pairs as well as highly similar
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to identified clusters. Running speed is plotted in lower panel (blue trace). Note that NEs related to certain

clusters do not appear homogeneously in time.

2.4). Afterwards we reordered the cells using hierarchical clustering (Fig. 3.4D, see section

2.4.4). This analysis shows that subgroups of cells are strongly correlated within network

event-related activity. We quantitatively defined clusters as those exhibiting a mean correla-

tion coefficient within the cluster above chance level. Using this definition, we found distinct

clusters of correlated cells within network activity with an average cluster size of 6.7±0.4cells

per cluster. The repetitive nature of GC cluster activation during an entire session becomes

clearly apparent when viewing cell activity during network events over an entire session,

sorted by their participation in clusters (Fig. 3.4G).

3.3.2 The properties of network events in a changed environment

The incorporation of place cells suggests that information about the environment may be

represented within network events. We therefore examined if the properties of network events

change in the cue-enriched environment.

Dentate gyrus network events were again observed predominantly during immobility (Fig.
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3.5A) and were similarly coupled to MPP activity (Fig. 3.5B). Increasing the cue density did

not significantly alter the network event frequency (2.39±0.73 vs 3.63±0.90events/minute,

respectively, n = 9 mice, F(1,30) = 4.32, p = 0.34). However, the average size of individual

network events, measured as the number of participating GCs, was significantly larger in the

cue-enriched condition compared to the baseline condition (Fig. 3.5C, Kruskal-Wallis test,

p = 2×10−37), with individual GCs contributing more frequently to network events in the cue-

rich condition (Fig. 3.5D, Kruskal-Wallis test, p = 2×10−26). Fewer orthogonal networks were

observed in the cue-rich condition, but this was not significantly different to the baseline

condition (not shown, Kruskal-Wallis test, n.s. p = 0.27).

We then examined if the participation of place and speed cells in network events is altered by

increasing sensory cue density. For place cells, the probability of being incorporated in net-

work events was increased significantly (Fig. 3.5E, 55.42% vs. 88.46% of place cells in base-

line vs. cue-rich conditions), while this was not the case for speed cells (42.86% vs. 52.63%

of speed cells in baseline vs. cue-rich conditions, χ2-test regarding changes in the incorpo-

ration of place and speed cells in network events p = 1×10−4, post-test: place cells baseline

vs. cue-enriched p = 3×10−6, indicated with asterisk in Fig. 3.5F, speed cells baseline vs. cue-

enriched p = 0.32). Thus, network events are responsive to changes in the environment and

incorporate more place-coding neurons into correlated activity patterns.

The number of correlated cells per cluster within network events did not change in the cue-
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Figure 3.6 – Analysis of population activity in DG and the CA1 subfield of the hippocampus using PCA, ICA and

GPFA. A-C, Upper panels depict the first three components from representative sessions (A: PCA, B: ICA, C:

GPFA) plotted in a coordinate system. D-F, As in A-C, but for CA1 neurons. Note the smooth and repetitive

trajectories. G, Color code for position on the linear track used in panels A-F. H, PCA analysis of population

activity associated with network events. Principal components were calculated using data from a 4s time

window (2s are displayed) around network events during rest. Plotting the first three components resulted

in multiple trajectories. The color code refers to the time until occurrence of the network event.

rich condition (cluster size comparison, Kruskal-Wallis test, p = 0.16). A significant increase

was found in the number of clusters that contained place cells while the number of clusters

containing speed cells remained unchanged (Fig. 3.5F, χ2-test p = 0.012, post-test compari-

son baseline vs. cue-enriched for place cells p = 0.02, speed cells p = 0.20). While there was

only a negligible fraction of clusters that contained both place and speed cells in the baseline

condition, this overlap was increased in the cue-enriched condition. Interestingly, the num-

ber place or speed cells per cluster was close to one in baseline condition (Fig. 3.5G). There

was a trend for slightly higher numbers of PCs per cluster in cue-enriched condition, but gen-

erally the number was still close to one. That indicates that there is a one to one mapping of

feature cells to correlated clusters.

3.3.3 Similarity of population code during locomotion and network events

The incorporation of place and speed cells in network events, as well as the fact that chang-

ing features of the environment modifies network event size and place cell participation is
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Figure 3.7 – Similarity measures of principle components derived from locomotion related and NE related activ-

ity. A, Example for the comparison between real and shuffled data using our developed similarity measure

of projected variance. The red line indicates the derived value from data and the blue bars depict the distri-

bution of results from shuffled data. Upper panel: baseline session, lower panel: cue-enriched session. B,

Same as in A using the cosine similarity measure. C, Same as in A using the EROS similarity measure. D,

Fraction of sessions in which comparisons of population activity were significant vs. chance level for the

two cue conditions and all similarity measures (n = 9mice, 1 session per condition).

consistent with the idea that animals, when immobile, represent information about the envi-

ronment in synchronous, sparse network events. Testing this idea is difficult, however, given

that place cells are less prevalent in the dentate gyrus compared to other hippocampal subre-

gions. It has been suggested that the dentate gyrus utilizes a population code [171], meaning

that even though only few cells can be rigorously classified as place cells, many more neurons

may encode relevant but partial information about the environment. We therefore developed

an approach to assess similarity between running and resting activity in the dentate gyrus at

the population level (See section 2.4.5). We analyzed population coding during both locomo-

tion and immobility in DG using Principal Component Analysis (PCA) of the activity during

individual imaging sessions. We visualized the neuronal state during locomotion captured

by the first three components (Fig. 3.6A-C, G, for PCA, Independent Component Analysis,

ICA, and Gaussian Process Factor Analysis, GPFA). We observed smooth, large trajectories

with high variability reflecting movement along the linear track for some revolutions on the

linear treadmill. Because these trajectories did not repeat themselves across multiple rounds,

we validated the PCA approaches by applying them to population activity in CA1, in which

population codes representing space studied with PCA have been found to be repetitive and

stable across different iterations of similar behavior [173]. Indeed, in CA1 trajectories were

consistent and stable across multiple rounds and related smoothly to the position on the

linear track (Fig. 3.6D-G, for PCA, GPFA, ICA).

To address similarity the between population code during locomotion and during NEs we

performed PCA analysis in a split manner (See section 2.4.5). Thus, we performed PCA exclu-

sively of locomotor states and then also performed PCA analysis of the population activity in

the same region during network events (Fig. 3.6H). In order to compare the two sets of PCAs

representing population activity during running states and network events, respectively, we
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first used a vector-based similarity measure. Briefly, we projected the traces recorded during

locomotion into the PCA-space representing activity during network events, and tested how

much of their variance was captured by them. In this analysis, similarity between both popu-

lation measures would result in a large fraction of explained variance (Fig. 2.5). To obtain the

expected null distribution, we performed a shuffling analysis on the resting activity to elim-

inate inter-neural correlations (See section 2.4.5). The distributions from shuffled data were

clearly distinct from the real data (red vertical line in Fig. 3.7A). In addition to this measure

of similarity, we used two further measures based on cosine similarity [168] and EROS [169],

testing them against shuffled datasets in the same manner (Fig. 3.7B, C). The comparisons

to shuffled data were significant in all sessions, both for baseline and cue-enriched condi-

tions (Fig. 3.7D), indicating that the activity during network events is more similar to activity

during locomotion than expected by chance. With these measures, significant comparisons

to shuffled data were obtained with all (cosine similarity) or a majority (EROS) of sessions.

All three measures thus show that the activity during network events is more similar than

expected by chance to sensory-driven activity during locomotion.
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Chapter 4

Discussion

The dentate gyrus with its large number of low activity granule cells forms a highly sparse

coding network. Its role in sensory driven pattern separation during locomotion in environ-

ments has been studied extensively. However, the DG network is also active during immobil-

ity and sleep and the role of this activity has been largely unknown.

Studying the DG is challenging, because of GC number, cell layer density and the depth be-

neath the cortex as well as the CA1 region. In this study, we used large scale dual color two

photon imaging to overcome these challenges. The specially designed window (see fig. 2.1C)

together with a long working-distance and a high numerical aperture objective allowed visual

access to the GC layer to image >300 cells simultaneously. With the chosen mouse model we

guaranteed a reliable GCaMP6s labeling of a subset of the GC population, thereby avoiding

issues of virally injected GCaMP6s like too high density, unspecific labeling and viruses over

expression. The second excitation wavelength enabled us to label the main input structure

to DG, the MPP, with the red shifted calcium indicator jRGECO1a (see fig. 2.1A).

This study was designed to investigate input-output computations of the GC population in

different behavioral states. While other studies that utilized similar approaches mainly fo-

cused on place coding behavior of GCs, we also directed a special focus towards the activity

during immobility. By choosing a behavioral design of voluntary locomotion on a blank belt

without additional spatial or other cues we minimized external activity trigger that allowed

a clean distinction of behavioral state. As expected, the state difference in the MPP-input

as well as the DG activity showed prominent characteristics. Further, in both structures we

found synchronized activity patterns that were present exclusively during immobility.

In the MPP-input signal of resting animals we observed discrete events of activity in the delta

band around 3-4Hz. In the GC population we found synchronized activity patterns termed

network events. We could show several evidences for a correlation between these two activity

patterns. DG network events incorporate cells that encode space or speed and are modified

with the changes in the environment. These features motivated the theory that NEs not only

incorporate spatial information but support the formation of spatial memory. Using popula-

tion code based similarity measures we could prove the similarity of running-related patterns

to NEs.
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4.1 State dependent input output computations

4.1.1 Different MPP input patterns during locomotion and immobility

The medial entorhinal cortex contains cells which encode different features of their environ-

ment, location and speed [91, 92, 174]. This information is forwarded through the perforant

path onto the DG. Even though our imaging technique did not allow differentiation of indi-

vidual axons in the DG molecular layer measures state depend differences and encoded infor-

mation from the integrated bulk Ca2+-signal. In line with this, we observed a higher fluores-

cence amplitude and thus more activity in the MPP axons during locomotion (See Fig. 3.1C).

This resulted in a general correlation of speed and MPP bulk-signal (See Fig. 3.1I,J), which

could be due to the projection of speed-coding cells as well as the integration of individual

grid-cell signals. Indeed, the signal during locomotion followed the speed of the animal con-

sistently and did not show large fluctuations (See fig. 3.1B,3.1H). This was also reflected in a

lower variance when comparing the signal during locomotion to states of immobility (See fig.

3.1D). During immobility though the signal showed distinct peaks of activity that occurred

at a frequency around 3-4Hz. This observation is in line with formerly described activity in

the δ-band [46] during rest and could be due to reflections of transitions between UP and

DOWN states in the MEC [175]. The latter is currently hypothesized to be a part of a gen-

eral synchronization mechanism between cortex and hippocampus [64]. This mechanism is

supposed to be coupled to respiratory behavior of the animal and to support the segregation

and integration of information flow between different neuronal networks. Thus, our finding

of distinct MPP activity in the δ-band could be a part of this global synchronization mecha-

nism between the MEC and the DG.

4.1.2 State dependent GC activity

GCs are known to show very low activity levels [106, 157, 166], which was also the case in our

data. Importantly, for the comparison between studies it is important to take into account

how activity is derived and defined from imaging data. The combination of NNMF and activ-

ity de-convolution allowed us to identify and include cells into the dataset that showed only

one significant event in the whole session. Most cells that showed very sparse activity below

< 1event/min were preferably active during immobility (See Fig. 3.1G). This is important to

keep in mind when comparing state differences of individual GCs (See Fig. 3.1E,F) and can

explain differences to former imaging studies [166]. Indeed, 60% of cells in our dataset did

not show any running-related activity, thus shifting the mean values of the overall cell popu-

lations. On the other hand, for activity levels above 5 events/min we found a higher percent-

age during locomotion compared to immobility (See Fig. 3.1G inset). Thus, while the mean

activity of the whole GC population is lower during locomotion, there is a trend for higher

activity cells to be active in that state. This is not exclusive, since some higher active cells

are preferably active during immobility in line with a former study that found individual cell

activity preferences for both states [157]. Generally it is evident that there is a small fraction

of higher active GCs within the population. Higher activity GCs have been previously linked
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to larger dendritic trees [103] and newly born GCs [166]. This higher active sub-population

may have shaped the idea of GCs as rate coders, since a certain amount of activity is required

for a cell to be identified in single unit recordings and correlated to external triggers, like for

example place coding [106].

4.1.3 GC place and speed coding

We could identify significant place coding in 2.15% of the GC population using the concept

of place preference vectors [166](See Fig. 2.4A, B and Fig. 2.5H). This number was lower

compared to other studies [131, 166], which could be due to the big number of low activ-

ity neurons as well as our definition of Ca2+-events. When we restrict the analysis to those

GCs that showed running related activity, the fraction of significantly place-coding GCs was

23% which matched previously reported values. Additionally, this study was not designed to

stimulate strong or stable place coding within the hippocampus since the environment was

sparse. The enrichment of running-belts with tactile cues triggered the occurrence of more

place cells and could be interpreted as the establishment of a more precise or extensive spa-

tial map (See Fig. 3.2H).

The observed speed correlation in 2.17% of GCs was a surprising result, since it is in con-

trast to former studies in head fixed mice [157, 166]. On the other hand, speed correlated

GCs have been reported in freely moving animals [171, 176] that were also able to decode

speed from the GC population. Interestingly, in our data place and speed coders set up two

distinct groups within the GC population. The enrichment of the environment did not lead

to an increase of SCs (See Fig. 3.2H), in line with the idea the SCs encode a more egocentric

parameter that is less modifiable by environmental parameters.

4.2 Synchronized activity during immobility

For very sparse GCs that show singular events of activity it is evident to assume temporal

coding rather than rate coding [102]. However, it remained unclear whether synchrony is a

necessary feature for the DG network since already single GCs are able to fire efferent CA3

neurons [133]. In this study we found that very sparse events of individual GCs align to syn-

chronized activity patterns that we termed network events (NE, see Fig. 3.3). These events oc-

curred preferably during periods of immobility and the shuffle analysis. Using a shuffle anal-

ysis approach we found that NEs during immobility occur significantly more than it could be

expected by chance.

Further, we found that NEs mainly appeared when the pupil was contracted or during phases

of pupil constriction. Pupil measurements allow the identification of arousal substates within

resting periods [161] and an association between pupil constriction and synchronous events

has been shown in the visual cortex [172]. Thus the pupil constriction could be a global indi-

cator for synchronization in the brain. Further, the pupil measurements allow an exclusion

that the animal was in an aroused state, since arousal would trigger dilution of the pupil.
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We could show a correlation of NE occurrence to MPP activity during rest. This finding sug-

gests that at least a subset of NEs is driven by the MPP input. It is very probable that NEs can

also be driven by other inputs, mainly the LPP or even recurrent connections from mossy

cells or CA3. To answer possible other functional connections further studies are necessary

that monitor these input pathways together with GC activity.

4.2.1 Orthogonality of network events

The concept of pattern separation is based on orthogonality of DG representations. This

orthogonality within DG was rooted in the sparseness of the DG network [7, 8] Therefore

the question was how NEs fit into this concept and whether the activated ensembles were

orthogonal to one another. Cosine-distance proved to be a useful tool to measure the orthog-

onality between the population vectors of NEs and revealed that more than 50% of NEs were

completely orthogonal to each other (See Fig. 3.4A). Further, it showed that NEs were not

repeated which the very same composition of cells, since the similarity between NEs never

exceeded a value of 0.5. Since the number of participating cells was only ∼ 5-7% of the active

GCs, orthogonality could also arise by chance. Though this would still fit the original defini-

tion of orthogonality in the DG, we were able to show that the amount of orthogonality in

our data is higher than expected from random data (See Fig. 3.4B, C).

Though most NEs were completely orthogonal and the similarity was generally low, there was

some overlap between NE population vectors. This overlap was due to higher-active GCs that

took part in multiple NEs. We were interested in whether these neurons just randomly par-

ticipate in NEs, or whether there is a sub-structure within the more active cell population.

Using hierarchical clustering, we identified cells that had higher correlation coefficients ex-

clusively within network activity. This analysis showed that the composition of higher active

cells is not random, but that sub-ensembles of GCs cluster together (See Fig. 3.4D, E). Addi-

tionally, we found that PCs and SCs are distributed into clusters with only one feature cell per

cluster both in baseline and cue-enriched sessions. Due to the low number of feature cells

in our data it was impossible to prove the one-to-one mapping of clusters, which could be

further addressed in future studies with more identified feature cells. Nevertheless, the fact

that feature cells did not have high correlation coefficients is further evidence that features

are represented orthogonally within the cluster structure.

The orthogonality between NEs together with high correlation coefficients between cells seems

to contradict each other. Here it is important to differentiate population code and individual

cells. NE population vectors map the population code and our analysis reveals its orthog-

onality. This finding therefore fits the concept of pattern separation. On the other hand,

the high-activity cells within clusters form correlation on an individual basis within the net-

work activity. This repetitiveness might be important to induce Hebbian plasticity in efferent

synapses and thus be important for the attractor formation in CA3 [177, 178]. It has been

shown in the CA1 region of the hippocampus that comparable types of network activity may

trigger plasticity mechanisms in efferent structures and be important for memory consolida-

tion [179]. Further, studies that lesioned DG have shown that the integrity of DG is important

for behaviorally relevant firing patterns that determine goal-directed behavior [180].
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Thus, the network activity in DG represents features of the environment orthogonally, in line

with the concept of pattern separation. At the same time it shows features that might enable

it to trigger plasticity in downstream of DG.

4.2.2 DG population code and replay in network events

Repetitive network events are capable of inducing plasticity in the mossy fiber synapses and

thus could support the formation of memories. To support memories that are connected

to a spatial environment, neuronal representations of aspects of this environment have to

be re-activated within network activity [148, 181–183]. We could show that place- as well

as speed-cells are activated within network activity (See fig: 3.5E). The relationship between

individual network events and certain positions or sequences on the belt could not be in-

vestigated in our data. This was due to the low number of feature cells in our data, the fact

that feature cells were mostly activated individually in NEs and the circular nature of the belt

which makes it impossible to assign whether something happens before or after a certain po-

sition on the belt. However, it has been shown that spatial information in the DG population

can be decoded even when place cells are actively excluded from that analysis [171]. Thus,

spatial information is distributed over the entire ensemble.

DG population code produces orthogonal representations of its input. This is why we used a

population measure that splits the information in orthogonal representations, which is prin-

cipal component analysis (PCA). PCA showed that locomotion epochs produced closed loops

in PCA space that did not show a periodicity over rounds (Fig. 3.6A). Thus, we hypothesized

that the DG population code maps rounds on the belt as individual epochs. We minimized

the probability that this finding was an artifact of the used algorithm by comparing it to other

population measures, namely ICA and GPFA, which both produced similar results (Fig. 3.6B,

C). The nature of DG population codes becomes more evident in comparison to the hip-

pocampal output population code from the CA1 network. PCA on CA1 imaging data also

resulted in closed loops in PCA space, but with a stable representation over rounds (Fig. 3.6D-

F). This showed that the running belt was completely and firmly mapped within CA1, while

DG produced distinct representations of locomotion epochs.

The concept of replay was first introduced in CA1, where PCs are reactivated in sharp wave

ripple network events during immobility [148, 179, 181–183]. These events also recruit or-

thogonal ensembles but recruit a higher proportion of PCs and active cells [179] compared

to the network activity in DG, which made established methods unsuitable for our data. Us-

ing PCA to extract key features of population code we analyzed running-related and network-

related activity separately to compare the two different PCA spaces and whether they showed

a significant amount of similarity. To this end, we developed a novel similarity measure based

on projected variances to analyze how much of running related co-variance is mapped in the

NE-related PCA space (See section 2.4.5). Using this technique we could show that popula-

tion codes during locomotion and NEs are indeed more similar than expected by chance

(See Fig. 3.7A,D). The comparison to alternative techniques of PCA-basis comparison deliv-

ered comparable results in all cases for the cosine similarity method [168] and most cases

for EROS [169]. These similarity measures showed that aspects of the population activity
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induced by exploration of the relevant environment are recapitulated in DG. Thus, the neu-

ronal activity during resting states is capable to support learning and memory consolidation

concerning a particular environment.

4.2.3 Behavioral relevance of network activity

If DG network activity is important for the formation of memories, an impairment of this

activity should lead to deficits in dentate dependent learning tasks. It has been shown that

even with an impaired DG animals are still able to perform in spatial learning tasks but de-

pend on the DG to distinguish small differences in the environment [10, 12, 127]. A DG

dependent spatial learning task is given by a spatial object pattern separation task (OPS task

[128]) in which two identical objects are placed in an arena. Between sessions one of the ob-

jects is moved to a new position with a defined distance from the original one which triggers

a higher motivation for animals to explore the relocated object. The OPS task requires a pre-

cise storage of original object positions especially when the displacements between old and

new position are small. According to our theory, a disturbance of DG network activity during

immobility should be sufficient to downgrade the performance of mice in this task.

In a complementary study the OPS task was established in the lab and its dependence in

DG activity was investigated by A. Haubrich [184]. Using the Prox1-Cre mice line, the op-

togenetic inhibitor halorhodopsin (eNpHR, [185]) was expressed specifically in dentate GCs

in both hemispheres (Fig. 4.1A). This silencing approach allowed the determination of the

maximal displacement which was indistinguishable for animals when DG was silenced dur-

ing the entire time the animal spent in the recording chamber (Fig. 4.1B, C). This general

conclusion of dentate dependence allowed the investigation to what amount GC silencing

would be sufficient to still alter the task performance (Fig. 4.1D). Indeed, it could be shown

that optogenetically inhibiting GCs during encoding phase and only when the animals were

resting disrupted the capability to distinguish the relocated object (Fig. 4.1E-H, K-N). In com-

parison, inhibition of GCs during the recall phase did not alter performance (Fig. 4.1I, J, O,

P). Thus, these experiments show that activity of GCs during immobility is necessary for the

formation of precise memories required for a later pattern separation.

The approach used in the described behavioral experiments impaired all DG activity during

immobility and could not be triggered to exclusively inhibit only NEs. Therefore, we cannot

exclude the possibility that other kinds of resting activity are required or even sufficient to

support memory formation. It has been shown in a closed loop approach that exclusively

disrupting DG activity during the occurrence of dentate spikes impairs the performance dur-

ing trace eyeblink conditioning [186], after this type of behavior has been shown to be de-

pendent on GC activity in general [187]. Therefore, we asked the question whether the found

network events are equivalent to at least one kind of dentate spikes.

4.2.4 Are network events dentate spikes?

Synchronized activity in DG has not been described in earlier imaging studies. In studies

measuring LFPs in hippocampal regions though, DG network activity has been described,
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Figure 4.1 – Object pattern separation task during inhibition of dentate granule cell activity during immobil-

ity. A, Schematic of the bilateral optogenetic inhibition of the dentate gyrus granule cells expressing eNpHR.

B, Schematic of possible object locations for the displaced object. Displacement was randomized for each

animal, such that either the left or the right object was displaced, in either a forward or back direction (LB

i.e. corresponding to left, backward, and RF to right, forward). The experiment used four possible new loca-

tions along a vertical axis, increasing from minor displacement (3 cm) to maximal displacement, indicated

by numbers 2-5. C, Results of light-based inhibition of granule cells during acquisition and recall trials for

different degrees of object separation indicated on the x-axis (eNpHR group, n=4, green bars) vs. an eYFP

expressing control group (n=3, black bars). The effect of granule cell inhibition is most pronounced for inter-

mediate degrees of object movement. D, Schematic of the experimental procedure. In the acquisition phase,

mice were familiarized with an arena containing two objects. Following an intermediate period of 90 min-

utes, the mice were placed in the same arena in which one object was moved slightly. E, F, Representative

sessions from acquisition trials in control (eYFP) mice and mice expressing eNpHR in granule cells showing

the tracking of the mouse center of mass (dashed white lines), as well as normalized occupancy within the

arena. G, Discrimination index from the acquisition trial quantifying the specific exploration activity of the

objects relative to one another, with 0 values indicating equal exploration. H, Total time spent exploring

the objects in the eYFP and eNpHR groups during the acquisition trial. I, Same as G but with optogenetic

inhibition during the recall trial. J, Same as H but with optogenetic inhibition during the recall trial. K, L,

Representative sessions from recall trials depicted as shown in B, C. M, Discrimination index for recall trials,

showing strong preference for the displaced object in the eYFP group, but not the eNpHR group if granule

cell activity was inhibited during acquisition trials only during immobility. N, Total time spent exploring the

objects in the eYFP and eNpHR groups during the recall trial (n=6 animals for eNpHR group, n=9 animals

for eYFP group). O, Same as M but with optogenetic inhibition during the recall trial. There is a preference

for the displaced object in both groups even when cell activity was inhibited during the recall trial. P, Same

as N but with optogenetic inhibition during the recall trial. Modified from [184].
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namely dentate spikes type 1 and 2 (DS1/2, see section 1.3.2 [101, 155]). In order to prove

a connection between LFP and imaging data, it would be necessary to combine these two

techniques and correlate these two different read outs. Since this was not the case in our

experiments, we can only compare reported features of dentate spikes to the network activity

we found in our data.

Like NEs, dentate spikes occur mainly during immobility and, in case of DS2, are driven by

MPP input [155]. Further, DSs are reported to be coupled to a synchronization rhythm be-

tween cortex and hippocampus in the δ-band [64]. We found that the MPP activity patterns

during immobility also fits into this theory and that this input activity partly drives NEs. This

coupling of MPP input and NEs fits another report that described wide-spread increases in

single-cell activity, gamma oscillations and intraregional gamma coherence during and the

DS activity [188].

During DSs it has been shown that GCs depolarize but rarely discharge [101]. In electrode

based experiments only a limited number of individual cell activities can be monitored in

parallel to LFP measurements and thus the GC population is highly under-sampled. In our

data we found that only 5-7% of active GCs are also active during NEs, where only those cells

that are highly active take part in multiple NEs. Therefore, if NE and DS1/2 are identical, the

chances of finding a GC that takes part in such an event is very low when only few GCs can

be monitored.

Though our experiments can not finally prove that NEs and DSs are identical, we found that

both phenomena share similar properties and did not find evidence that these two findings

are distinct phenomena.

4.3 Conclusion - Do network events support the formation of

memories?

We have described a novel form of sparse, synchronized activity patterns of dentate gyrus

granule cells during immobility. We could show that these events fulfill the requirement of

orthogonal representations within the DG network. In line with the concept of pattern sep-

aration, feature cells are re-activated within this events without temporal overlap. We found

repetitive cell-clusters within this activity that may be capable of triggering plasticity mech-

anisms and instructing the formation of CA3 attractors. The discovered similarity between

population codes active during NEs and during locomotion suggests the re-play character of

the network activation required for memory consolidation. This is supported by the finding

that DG activity during immobility is required for the formation of precise spatial memo-

ries. The temporal coupling to afferent structures could suggest the role of NEs in a more

distributed organized activity in immobile animals.

In summary, DG network activity may drive synchronous, restricted ensembles in CA3, cre-

ating attractor like representations important for the formation of precise memories. Thus it

could be part of global synchronization mechanism in immobile animals, required for mem-

ory consolidation.
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Abbreviations

AP: action potential

BC: basket cell

CA1-3: Cornus Ammonis 1-3

CCK: cholecystokinin

CSF: cerebrospinal fluid

DG: dentate gyrus

DS1/2: dentate spike type 1/2

EC: entorhinal cortex

EPSC: excitatory postsynaptic current

EPSP: excitatory postsynaptic potential

FOV: field of view

GABA: γ-amminobutyric acid

GC: granule cell

GPFA: gaussian process factor analysis

H: hilus

HICAP: hilar commissural-associational path related

ICA: independent component analysis

IPSC: inhibitory postsynaptic current

IPSP: inhibitory postsynaptic potential

LEC: lateral entorhinal cortex

LFP: Local field potential

LPP: lateral perforant path

LTP: long term potentiation

LTD: long term depression

MC: mossy cell
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MEC: medial entorhinal cortex

ML: molecular layer

MPP: medial perforant path

MOPP: molecular layer perforant path associated

NA: numerical aperture

NE: network event

OPS task: Object pattern separation task

PC: place cell

PCA: principal component analysis

PV: parvalbumin

SC: speed cell

SL: stratum lucidum

SLM: stratum lacusosum moleculare

SO: stratum oriens

SST: somatostatin

STP: short term potentiation

STD: short term depression

STDP: spike time dependent plasticity

Sub: subiculum

TP: temporoammonic pathway

WD: working distance
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