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Kurzfassung

Die Aggregation räumlicher Daten ist ein verbreitetes Problem in der Geoinformatik. Dahin-
ter verbirgt sich das Zusammenfassen von Objekten oder Funktionen zur Gewinnung einer
weniger komplexen Repräsentation. Dazu gibt es verschiedene Anlässe: Weniger komplexe
Daten ermöglichen oft eine einfachere Verarbeitung durch Algorithmen. Zudem erlauben
sie eine vereinfachte Darstellung, wie sie im Bereich der Kartengeneralisierung Ziel ist.
In dieser Arbeit werden Probleme der Aggregation räumlicher Daten untersucht. Diese
werden zunächst als Optimierungsprobleme formalisiert. Dazu wird jeweils eine Funktion
definiert, die die Qualität gültiger Lösungen bewertet. Anschließend wird ein Algorithmus
präsentiert, der stets eine Lösung mit bestmöglicher Bewertung findet. Diese Gütegarantie
geht im Allgemeinen auf Kosten der Berechnungsdauer, was ein Grund für die weit ver-
breitete Anwendung von Heuristiken ist. Jedoch liegen die Vorteile einer optimalen Lösung
auf der Hand: Manchmal ist eine „gute“ Lösung nicht ausreichend. Darüber hinaus kön-
nen exakte Lösungen zum Vergleich herangezogen werden, um nicht-exakte Verfahren hin-
sichtlich ihrer Qualität zu bewerten. Dies ist besonders für Heuristiken interessant, deren
Lösungsqualität nur empirisch ermittelbar ist. Eine weitere Stärke exakter Verfahren ist,
dass sie zur Überprüfung zugrunde liegender Modelle herangezogen werden können.
In dieser Arbeit werden aus dieser Motivation heraus entstandene Aggregationsverfahren
vorgestellt. Durch den räumlichen Charakter der untersuchten Daten spielen dabei neben se-
mantischen auch geometrische Aspekte eine Rolle, wenn auch in unterschiedlichen Maßen.
Das erste vorgestellte Problem betrifft die Visualisierung von Straßennetzen in Naviga-
tionskarten. Bei gegebenem Standort wird eine übersichtliche Darstellung der Umgebung
gesucht. Zu diesem Zweck wird eine Äquivalenzrelation auf möglichen Navigationszielen
eingeführt, die die Grundlage der Aggregation bildet. Der vorgestellte Algorithmus ag-
gregiert effizient die größtmögliche Anzahl äquivalenter Ziele.
Des Weiteren wird eine Klasse aus der Literatur bekannter Problemen behandelt, welche die
Aggregation von Flächen in größere, zusammenhängende Regionen betreffen. Diese Prob-
leme sindNP-vollständig, d. h. effiziente Algorithmen existieren vermutlich nicht. Es gelingt
jedoch, bestehende exakte Verfahren um circa eine Größenordnung zu beschleunigen.
Ein weiteres betrachtetes Problem betrifft die Analyse der Verfügbarkeit von Grünflächen im
urbanen Raum. Dazu werden, hypothetisch, mittels Flussnetzwerk Bewohner Grünflächen
zugewiesen. Dadurch werden lokale Defizite sowie Muster in der Zugänglichkeit sichtbar.
Abschließend wird ein Mittel zum Erlernen von Präferenzen bei der Routenplanung
vorgestellt. Basierend auf einer Auswahl an Trajektorien werden zwei mögliche Kriterien un-
tersucht. Diese werden anschließend durch Linearkombination effizient zum bestmöglichen,
ableitbaren Kriterium aggregiert.
Zusammenfassend werden in dieser Arbeit exakte Algorithmen als Antwort auf verschiedene
Aggregationsprobleme in der Geoinformatik präsentiert. Insbesondere das betrachtete NP-
vollständige Problem untermauert, wie erwartet, die Notwendigkeit heuristischer Verfahren.
Diese sind gerade bei zeitkritischen Anwendungen von großer Bedeutung und insbesondere
dank universell anwendbarer Metaheuristiken sehr beliebt. Die Ergebnisse dieser Arbeit sind
jedoch ein weiterer Grund, bei der Suche nach Lösungsverfahren für Aggregationsprobleme
mit exakten Verfahren zu beginnen. Die Gütegarantie spricht für sich. In einigen Fällen
wurden sogar neue Algorithmen, die effizient und exakt sind, gefunden.
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Abstract

The aggregation of spatial data is a recurring problem in geoinformation science. Aggregat-
ing data means subsuming multiple pieces of information into a less complex representation.
It is pursued for various reasons, like having a less complex data structure to apply further
processing algorithms or a simpler visual representation as targeted in map generalization.
In this thesis, we identify aggregation problems dealing with spatial data and formalize them
as optimization problems. That means we set up a function that is capable of evaluating
valid solutions to the considered problem, like a cost function for minimization problems.
To each problem introduced, we present an algorithm that finds a valid solution that opti-
mizes this objective function. In general, this superiority with respect to the quality of the
solution comes at the cost of computation efficiency, a reason why non-exact approaches
like heuristics are widely used for optimization. Nevertheless, the higher quality of solutions
yielded by exact approaches is undoubtedly important. On the one hand, “good” solutions
are sometimes not sufficient. On the other hand, exact approaches yield solutions that may
be used as benchmarks for the evaluation of non-exact approaches. This kind of application
is of particular interest since heuristic approaches, for example, give no guarantee on the
quality of solutions found. Furthermore, algorithms that provide exact solutions to opti-
mization problems reveal weak spots of underlying models. A result that does not satisfy
the user cannot be excused with a mediocre performance of an applied heuristic.
With this motivation, we developed several exact approaches for aggregation problems,
which we present in this thesis. Since we deal with spatial data, for all problems considered,
the aggregation is based on both geometric and semantic aspects although the focus varies.
The first problem we discuss is about visualizing a road network in the context of navigation.
Given a fixed location in the network, we aim for a clear representation of the surroundings.
For this purpose, we introduce an equivalence relation for destinations in the network based
on which we perform the aggregation. We succeed in designing an efficient algorithm that
aggregates as many equivalent destinations as possible.
Furthermore, we tackle a class of similar and frequently discussed problems concerning
the aggregation of areal units into larger, connected regions. Since these problems are NP-
complete, i.e. extraordinarily complex, we do not aim for an efficient exact algorithm (which
is suspected not to exist) but present a strong improvement to existing exact approaches.
In another setup, we present an efficient algorithm for the analysis of urban green-space
supply. Performing a hypothetical assignment of citizens to available green spaces, it detects
local shortages and patterns in the accessibility of green space within a city.
Finally, we introduce and demonstrate a tool for detecting route preferences of cyclists based
on a selection of given trajectories. Examining a set of criteria forming suitable candidates,
we aggregate them efficiently to the best-fitting derivable criterion.
Overall, we present exact approaches to various aggregation problems. In particular, the
NP-complete problem we deal with firmly underscores, as expected, the need for heuristic
approaches. For applications asking for an immediate solution, it may be reasonable to apply
a heuristic approach. This holds in particular due to easy and generally applicable meta-
heuristics being available. However, with this thesis, we argue for applying exact approaches
if possible. The guaranteed superior quality of solutions speaks for itself. Besides, we give
additional examples which show that exact approaches can be applied efficiently as well.
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1 Introduction

The aggregation of spatial information is a fundamental process of map generalization and,
thus, of map creation itself. Hence, there is a long history of aggregating spatial data.
However, conditions have changed in the past century. In the early 20th century at the
latest, the formalization of this process started [RM07]. With the upcoming computer age,
research interest in an automation of the map creation and, thus, generalization process
increased. For generalization, according to Sarjakoski [Sar07], automation is the goal since
the 1960s.

The technological progress in the last decades increased the availability and, hence, the
usage of spatial data. An example of this trend is the phenomenon of volunteered geographic
information (VGI), the contribution of large numbers of individuals, often amateurs, to the
creation of geographic information. Goodchild [Goo07] attributes this effect to the increased
availability of tools for acquiring geographic data. The availability of more and, partly, more
complex data requires new means for processing. A possible reply is the development of
faster, more sophisticated algorithms. A different approach is to decrease the complexity of
the data, that is, to find a less complex, aggregated representation of the data.

With respect to cartography, another aspect is important concerning the aggregation of
data. Besides the organization of the data, less complexity is also desired when it comes to
visualizing the data. The role of aggregating spatial data, in particular with respect to map
generalization, is examined in Section 1.1.

Due to its importance, there exist numerous publications on the topic of aggregation. In
Section 1.2, we give an overview on existing approaches focusing on those that are of partic-
ular importance for aggregating spatial data. This includes algorithms that were designed
for other applications originally, like image segmentation or statistical analysis.

In this thesis, we develop and describe various aggregation algorithms. Afterwards, we
analyze each algorithm with respect to its running time and its correctness. Here, the
correctness plays a particular important role since we decided to design our algorithms
as exact optimization approaches. In Section 1.3, we give reasons for this decision. As a
consequence of the aim to develop optimization algorithms, we contribute a formalization
of some of the tackled problems as optimization problems if this has not happened before
in the literature.

We conclude this chapter with an overview of the goals and the outline of this thesis in
Section 1.4.
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1 Introduction

1.1 Aggregation of spatial data

Aggregating spatial data means subsuming multiple pieces of information into another one.
This other piece of information can be a newly created object or a representative of the orig-
inal, aggregated data. In any case, information is omitted in order to obtain a less complex
representation. One reason why less complexity in the representation may be desired can be
found in Chapter 2, Section 2.1, where we deal with the running time of algorithms. This
running time depends on the complexity of the input data and, thus, a less complex repre-
sentation can lead to a significantly improved running time. Another reason for reducing the
complexity of data is to create a legible visualization. With respect to map generalization,
this topic will be discussed in the following.

Aggregation in map generalization A map is an abstraction of the geographic reality and,
thus, depicts only a subset of that reality [BW88, Sar07]. The term generalization describes
the process of extracting this subset of important and general aspects of reality [BW88].
Depending on the exact process of designing a map, a varying number of generalization
steps is involved. The International Cartographic Association (ICA) defines generalization
(according to Sarjakoski [Sar07]) as follows:

“The selection and simplified representation of detail appropriate to the scale
and/or purpose of a map.”

Hence, generalization is applied to both geometric and semantic information of geographic
objects. According to Hake et al. [HGM02], cartographers differentiate between two major
kinds of generalization: object generalization and cartographic generalization. The former
is subdivided into acquisition generalization and model generalization. Acquisition general-
ization describes the process from the real world towards a model. Due to the real world’s
complexity and the resulting problem of describing it holistically, generalization takes place
already in this first step of modeling. Model generalization, like acquisition generalization,
is object oriented and differs mainly in the original data. In contrast to acquisition gen-
eralization, the original object, i.e., the input of the generalization process, is not the real
world but already a model. Cartographic generalization, on the other hand, is more focused
on the graphic representation of the geographic data. It deals, for example, with graphical
restrictions on the representation of objects or with deriving new maps from existing ones.

Automated generalization is acknowledged to be a complex problem. Mackaness [Mac07]
wonders “why a task so effortlessly performed by a human, has proved so hard to automate”.
He assumes different causes: The first explanation he gives underlines the subjectivity of
the generalization process. Often, there are multiple different solutions which are “compro-
mise[s] among a sometimes competing set of constraints”. Furthermore, depending on the
scale, a generalized map does not necessarily contain less information than the database but
different yet related information. Here, Mackaness identifies another problem in developing
generalization methods: Such tools need to abstract the same content of the original map in
different ways, depending on the scale or purpose of the resulting map. In particular, he sees
a problem in the evaluation of the result. Besides, according to Mackaness, generalization
is not an operation that can be applied as the last step of map making since generalization
based on geometries only is, often, doomed to fail. For the sake of a legible visualization,

2



1.2 Overview of existing aggregation approaches

generalizing geometries plays an important role. In general, however, the semantic context
must not be forgotten. This is true also for aggregation processes. Hence, automated aggre-
gation is based on databases providing sufficient information on the context rather than,
for example, on a single map or visual representation.
While making progress in formalizing and automating generalization, various authors con-
sidered a splitting of the generalization process into several fundamental operators as rea-
sonable. Regnauld and McMaster [RM07] give an overview of this development starting in
1942 with Wright [Wri42] identifying two major components, simplification and amplifica-
tion. Over time, the number of fundamental operators increased in order to bring out the
variety of operators more clearly. Hake et al. [HGM02], for example, list a total of seven
fundamental operators, see Figure 1.1.
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Figure 1.1: Fundamental generalization operators (according to Hake et al. [HGM02])

Hence, aggregation is one of the fundamental operators of map generalization [HGM02,
RM07, MS92]. According to Hake et al. [HGM02], the operators listed in Figure 1.1 are
applied for the sake of semantic, geometric and temporal generalization. In this thesis, we
focus on semantic and geometric generalization. In Chapter 4, for example, we present an
algorithm for aggregating areal units with respect to a semantic value. The algorithm aims
for a user-specified compromise between similarity in attributes (semantic generalization)
and compact shapes (geometric generalization) in the resulting aggregated objects. Here, the
focus lies more on semantic generalization. In Chapter 3, on the other hand, we present an
algorithm that is particularly useful for visualization and, thus, focuses more on geometric
generalization. In that chapter, we aggregate destinations in a road network in order to
select (see Figure 1.1) roads to be depicted in a map with a focus region. This can be a map
describing how to get to a location or, as in our case, a map describing close features (and,
in particular, roads) in more detail than distant features. As the semantic information on
the roads, e.g. the road type, can be considered in this algorithm, again, a strict assignment
to one kind of generalization, i.e. geometric or semantic, is not possible.

1.2 Overview of existing aggregation approaches

Since aggregation is a common problem in geoinformation science, there exists a multitude
of algorithms dealing with it. In the following, we want to provide an overview of exist-
ing approaches. Due to the volume of scientific work on this matter, we limit ourselves to

3



1 Introduction

approaches we consider important or particularly interesting with respect to processing geo-
graphic information. We start with rather generic algorithms for clustering problems for data
with geometric information. The generic clustering algorithms presented here classically
aim at point features. A reason why they are applicable to many problems is that higher-
dimensional objects can also be considered as points in a feature space and, thus, be clustered
with such algorithms. For example, there are algorithms [BDGK19, HLO12, ZHT06] that
use distances between line features to define a metric space in which these line features are
points.
The aggregation of point features is known to a wider public as clustering. This is mainly
due to its application in the statistical analysis of data. Xu and Wunsch [XW05] as well
as Jain [Jai10] provide an exhaustive overview on clustering algorithms. They present a
variety of techniques and subsume clustering algorithms under the techniques used for their
design. Fortunato [For10] terms the problem of clustering as community detection in graphs
and reviews it extensively. In the following, we give an overview over a selection of these
clustering algorithms. Each of the following algorithms aims at clustering some given set S.
Initially, we follow Jain and distinguish mainly between two major groups of clustering
algorithms, hierarchical and partitional ones.

Generic clustering problems and solutions Hierarchical algorithms aim for a dendrogram,
a representation of a cluster hierarchy as a tree. The root of this tree represents the set S.
Each node of the tree represents a subset T ⊆ S and has two children representing non-
empty sets forming a partition of T . This continues such that the leaves form the set S
organized in singletons. The sought clustering is then a cross-section of this tree, see Fig-
ure 1.2. There exist multiple approaches for setting up the dendrogram which either build
the tree in an agglomerative manner (i.e., starting at the singletons and continuing bottom-
up) or divisive manner (i.e., top-down beginning at the root). In every construction step,
the decision which sets to agglomerate or how to divide a given set into partitions is made
based on a difference defined for the clusters. Single linkage, for example, considers the clos-
est pair of points of two clusters for defining the distance between the clusters. It is applied
(among others) by Mackaness and Mackechnie [MM99] in order to detect junctions in road
networks. They want to focus on local accumulations of points rather than outliers. That is
why they decided in favor of single linkage instead of, for example, complete linkage, which
considers the maximum distance of points as decisive for the distance of the clusters.
In contrast to hierarchical clustering algorithms, partitional clustering algorithms find all
clusters simultaneously [Jai10]. Among these, k-means is a very popular and simple ap-
proach [Jai10, XW05]. The term is used both for the most common algorithm, which has
been designed in various fields independently, and the problem itself: Given a finite set S and
a number k, find a partition of S into subsets Si with i = 1, . . . , k with centers mi such that∑k

i=1

∑
x∈Si
||x−mi||2 is minimized, where || · || denotes the Euclidean distance. Efficient

solutions to this problem exist only for the one-dimensional case [GLM+17], which plays
an important role in cartography when it comes to specifying class intervals with natural
breaks for choropleth maps [HGM02]. Due to the general problem’s high complexity (more
precisely, its NP-hardness [MNV09]), it is common to deal with it heuristically. Starting
from an initial choice of k centers, Lloyd [Llo82] presented an algorithm that repeatedly
assigns every element of S to the subset Si with the closest center mi and updates each
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Figure 1.2: Dendrogram of
a hierarchical cluster algo-
rithm. Depending on the
cross-section, three or four
clusters are found.

Figure 1.3: Possible out-
come of k-means. Three
clusters with data points
(•) and centers (×).

subset’s center mi afterwards. As this procedure converges to a (locally) optimal solution,
Lloyd’s algorithm terminates as soon as the assignment remains unchanged from one step
to another, see Figure 1.3. Being a heuristic, Lloyd’s algorithm comes with disadvantages
like the possibility for the search to get stuck in a local optimum and, thus, to miss ap-
proaching a global one. This issue as well as shortcomings of the clustering approach itself,
like the need to define k manually, inspired several extensions and variants of the original k-
means approach [Jai10]. Arthur and Vassilvitskii [AV07], for example, provide the extension
k-means++. They improve the initialization of the original k-means algorithm and, thus,
get a bound for the expected quality of the solution found which depends on ln k only.

Ester et al. [EKSX96] sought for fast algorithms in order to cluster large data sets. Existing
approaches were either not satisfying with respect to their results, as many partitional
algorithms yield convex clusters only, or were not fast enough. As a consequence, they came
up with an algorithm for the density-based spatial clustering of applications with noise (in
short: DBSCAN). Based on a distance function d and a corresponding threshold θ, both
selected by choice, a neighborhood graph is set up. Its vertex set is formed by S. For every
pair of objects that are θ or less apart (with respect to d), they introduce an edge. Every
object that is connected with at least an also predefined minimum number m of other
objects is considered to be a core object. Further, Ester et al. define border objects as
those connected to at least one core object but, in total, only to a number of objects not
exceeding m. Every other point is considered to be an outlier. Each connected component
of core objects together with adjacent border objects forms a cluster. This way, Ester et al.
presented a fast clustering algorithm that yields clusters of any suitable shape based on the
density of the objects in the considered data set, see Figure 1.4. In a comparative study, for
example, Cetinkaya et al. recognized DBSCAN as most effective for aggregating buildings
in urban blocks. On the other hand, DBSCAN serves as a basis for various extensions
such as SCAN, which improves the handling of vertices bridging different clusters, or many
others [AAS10, KRA+14].
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ε

Figure 1.4: Possible result
of DBSCAN for m = 3.
Clusters can be identified
by color (•: core points,
◦: border points), outliers
are gray.

Figure 1.5: Recursive appli-
cation of graph cuts (light
to dark gray).

In contrast, Anders [And03] used multiple graphs for designing his graph-based approach
for a hierarchical parameter-free graph clustering algorithm (HPGCL). The set S forms the
vertex set of each considered graph. In the beginning, each vertex forms its own cluster.
The edge sets of the graphs describe different levels of proximity. In such a graph, any two
clusters connected via an edge between a pair of their vertices are candidates for merg-
ing. Anders considers the compatibility of these clusters with respect to density, distance,
and their neighborhoods. The size of the considered neighborhoods is increased steadily
by considering graphs with more and more edges. Since Anders uses five well-described
and established graphs (Nearest Neighbor Graph ⊆ Minimum Spanning Tree ⊆ Relative
Neighborhood Graph ⊆ Gabriel Graph ⊆ Delaunay Triangulation), his approach does not
depend on any decision by the user besides defining the input set. Steiniger et al. [SBW06],
for example, integrate a graph-based approach into their algorithm for detecting groups of
islands automatically.

Shi and Malik [SM00] extend the concept of graph cuts, i.e., partitioning a graph into
two sub graphs, to normalized cuts. Searching recursively for a minimum normalized cut
splitting a subset of vertices, they find a partition of the graph’s vertex set into multiple
regions, see Figure 1.5. Shi and Malik designed their approach for image segmentation. It is
an example of a spectral clustering algorithm based on the eigenvectors of a matrix derived
from S. From a statistical point of view, Meilă and Shi [MS01] consider this approach as
a Markov chain; Zhang et al. [ZHT06] use this approach to cluster trajectories in outdoor
surveillance scenes.

Specific clustering problems and solutions Thomson and Brooks [TB02] consider road
and river networks and present an algorithm for identifying chains of segments which follow
a perceptual principle the authors call “good continuation”, see Figure 1.6. For this purpose,
they consider in particular every crossing and combine segments that participate in the
respective crossing based on both geometric and non-geomtric criteria like the angle of
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Figure 1.6: Road network
with exemplary aggre-
gation of road segments
(black, between pairs of
vertices) into strokes (in
different colors).

Figure 1.7: Exemplary clus-
tering (blue) of trajecto-
ries (orange) based on a
Voronoi tessellation of the
plane (gray).

Figure 1.8: A single trajec-
tory on a winding road. Or-
ange segments may be erro-
neously identified as a clus-
ter of trajectories.

deflection, type of road (for road networks), direction of flow (for river networks), or simply
the feature’s name. Yang et al. [YLL11] extend this concept by introducing hierarchies,
which allows them to create strokes that are not connected. Thus, they are able to deal, for
example, with dual carriageways and complex crossing.

Recently, Buchin et al. [BDGK19] contributed an algorithm for clustering trajectories. Their
approach is based on the k-center problem, which is closely related to k-means. In contrast
to k-means, a clustering is sought that minimizes the maximum occurring distance rather
than the average distance. For this (NP-)hard problem [GJ90], exact and approximating
algorithms exist [AP02]. Taking trajectories with an appropriate distance function, the
Fréchet distance, as an input, Buchin et al. apply an existing approximation algorithm for
point features [Gon85] after careful adaptations.

Andrienko and Andrienko [AA10] developed another algorithm that is capable of aggregat-
ing line features in order to present massive movement data. First, they extract interesting
points along the considered trajectories including the start and end point as well as sig-
nificant turns and stops. Subsequently, these points get clustered with a point clustering
algorithm presented in the same work. It works similarly to k-means, but does not need a
predefined number of clusters. Instead, a maximum (spatial) size is defined and considered.
Based on the centers of the computed clusters, a Voronoi tessellation (see [dBCvKO08]) is
computed, which segments the trajectories. Finally, for every adjacent pair of Voronoi cells,
segments in between are aggregated respecting their direction, see Figure 1.7. They use
the distance between original and aggregated trajectories as a measure of quality. Global
minimization, however, does not take place.

Lee et al. [LHW07] likewise suggest a partition-and-group framework for aggregating tra-
jectories. Inspired by DBSCAN, Lee et al. developed a density-based trajectory clustering
algorithm (TRACLUS ). After a line simplification, Lee et al. focus on the line segments
forming the trajectories. Consequently, they need to beware of detecting multiple segments
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Figure 1.9: Orange polygon
is the clustering result
of applying adopt merge
to two polygons (thick,
black).

Figure 1.10: Region grow-
ing. The smallest region
is merged with its largest
neighbor. In general, size
can be replaced by some
measure of importance.

⊕

	

Figure 1.11: Morphologi-
cal operators applied to a
group of buildings. After
two steps of dilation (top)
with the small rectangle
(blue), two steps of erosion
(bottom) are applied.

of a single trajectory (or little more) as a cluster rather than noise, see Figure 1.8. For this
purpose, they introduce a threshold defining the minimum number of different trajectories
taking part in a detected cluster. Finally, Lee et al. compute a representative trajectory
for each cluster found before. For both simplifying the given trajectories and setting the
parameters for the DBSCAN-like cluster algorithm, Lee et al. suggest heuristic approaches.
The quality of their approaches is assessed empirically; a precise problem formulation as an
optimization problem, for example, is not given.
There are various problems concerning the aggregation of areal features. Ware et
al. [WJB95], for example, presented four operators for aggregating possibly disjoint poly-
gons with the help of a triangulation-based data structure. Three of these operators describe
the process of stitching two polygons with different preprocessing steps, i.e., optional shift-
ing or rotating of one of the given polygons. The operator adopt merge aggregates two
polygons including free space in between. This results in a larger polygon containing both
original ones; see Figure 1.9. Ware et al. focus on presenting the operators rather than
assessing the quality of their results.
In contrast to Ware et al., van Oosterom [vO95] does not consider separate polygons but a
partition of the plane into polygons. Van Oosterom tackles a selection problem in the context
of map generalization and deals with gaps coming into being when not selecting individual
polygons of the considered partition. He suggests filling each such gap with the most im-
portant adjacent region. Another way to articulate this procedure is to aggregate those two
regions. Haunert and Wolff [HW10a] formalize this approach, terming it region growing, see
Figure 1.10. They use this greedy approach as a first processing step of a heuristic approach
for aggregating spatial units of the plane. This problem is at the core of a group of prob-
lems considered in a variety of fields like school or political districting [CSGW04, GN70],
land-use allocation [LZCJ08], or forest management [CCG+13]. These problems vary with
respect to their focus on, for example, compactness of resulting regions, their contiguity,
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or similarity with respect to a certain non-geometric, context-dependent attribute. Often,
these problems are considered as optimization problems [GN70, Shi09] and tackled with
both heuristic and exact algorithms [HW10a]. In Chapter 4, we present an improved exact
solution to this problem.

Damen et al. [DvKS08] identify some of the aforementioned approaches as important for
the aggregation of buildings based on building footprints. They contribute an approach
that applies morphological operators, a concept closely related to Minkowski sums, to both
simplify and aggregate groups of buildings, see Figure 1.11. Damen et al. asses the results
of their approach visually.

Finally, aggregation algorithms have been designed to aggregate objects of higher dimen-
sions than areas. Like Damen et al., Kada [Kad10] uses morphological operators to design
an aggregation algorithm for 3D buildings. He adapts the concept to 3D and applies the
operators iteratively in order to effectively transfer an earlier developed simplification al-
gorithm for buildings to groups of buildings. Guercke et al. [GGBS11] design aggregation
algorithms for buildings based on another 2D aggregation algorithm. They adapt and extend
approaches developed for the aggregation of areal units in a partition of the plane [HW10a].

Aggregation of non-geometric data Aggregation problems do not necessarily involve ge-
ometric information. In particular, in the process of decision-making, aggregation is useful
whenever multiple criteria influence a decision. Yager [Yag88] introduces ordered weighted
averaging (OWA) operators that provide a multitude of aggregation operators beyond de-
manding that all criteria or that at least one criterion must be fulfilled. Aggregation of
criteria is one option to deal with multiple criteria; an example for its application using
spatial data is multi-criteria route planning [ND11].

Conclusion Several of the approaches above have in common that they provide rather
universally applicable tools for the aggregation of spatial data. Hence, it is clear that the
solutions they provide cannot be of optimal quality for every case of application. Most of
these approaches, however, are designed to overcome shortcomings of existing approaches.
As a consequence, for certain applications, some algorithms yield better results than others.

We sketched various approaches tailored to specific problems. Some of these approaches
have been evaluated by experts sifting through produced results. This evaluation is surely
convincing for the considered examples, but gives only little insight into the quality of the
presented algorithm in general. In this thesis, we present spatial aggregation problems as
optimization problems. That means, for every considered problem, we introduce a mathe-
matical function evaluating a solution’s quality. Subsequently, by designing problem specific
solutions rather than applying good and established generic tools, we develop algorithms
that solve these optimization problems optimally.
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1.3 Optimization

As indicated in Section 1.1, the evaluation of the results of the generalization process de-
pends, inter alia, on subjective criteria. Li and Openshaw [LO93] consider this a major
obstacle on the way to an automated generalization process. The generalization operator of
aggregation is no exception. Subjectivity in aggregation is a phenomenon which gets par-
ticular attention when analyses are run on a partition of the plane, i.e., when the area of
investigation is subdivided into smaller areas. For this case, Openshaw [Ope84] coined the
term modifiable areal unit problem (MAUP) and summarized this problem as follows:

“(. . .) the areal units (zonal objects) used in many geographical studies are
arbitrary, modifiable, and subject to the whims and fancies of whoever is doing,
or did, the aggregating.”

A basic example for this problem is depicted in Figure 1.12. Here, 25 units with a binary
attribute (in this example: gray or white) are given. Now, areas are sought that generalize
this data. These areas are limited to the same attribute values. Even demanding a fair
distribution of five units per resulting area leads to extremely varying outcomes. Figures (a)
and (b) depict aggregations yielding the same distribution of the attributes for the resulting
regions as the input data. Figure (c) put an overwhelming majority of the attribute gray
into the reader’s mind. In Figure (d), the majority ratio gets inverted.

(a) (b) (c) (d)

Figure 1.12: Example for MAUP. 25 input units with a binary attribute (gray/white) are
aggregated into 5 areas of 5 units each. Assigning the attribute of the majority of units to
the containing area results in different distributions. (a)/(b) Like in the input, 2/5 of areas
are white, 3/5 are gray . (c) Designing the areas such that each contains one more gray unit
than white units results in 100% areas with the attribute gray . (d) Designing the areas such
that as many as possible contain one more white unit than gray units results in an overall
majority of areas with the attribute white not representing the original data.

This problem captures the attention of the general public when elections are on the agenda.
This is the case in particular if each district receives one representative depending on the
relative majority within. In this context, the problem is known as Gerrymandering and
as such a popular research topic in geoinformation science; Ricca et al. [RSS13] reviewed
existing approaches. Although not all research work done focuses on non-partisan political
districting [Nag65, She98], this application example underlines the necessity of means for
objective aggregation [MJN98, RS08].
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One way to achieve objective aggregation is via optimization. Papadimitriou and Stei-
glitz [PS82] suggest the following definition.

Definition 1.1. An instance of an optimization problem is a pair (F, c), where F is any
set, the domain of feasible points; c is the cost function, a mapping

c : F → R.

The problem is to find an f ∈ F for which

c(f) ≤ c(f ′) for all f ′ ∈ F .

Such a point f is called a (globally) optimal solution to the given instance.

Accordingly, F describes a set of valid solutions. Defining a cost function c, a set O ⊆ F
stands out that is optimal with respect to c. According to Definition 1.1, the elements of O
cause minimal costs. Hence, in this case, the optimization problem is called a minimization
problem. Likewise, we can define a maximization problem. Then, it is reasonable to call c a
score function rather than the cost function. In general, we call c the objective function of
the optimization problem.

Optimization is not immune to subjective criteria since a biased objective function will
nevertheless create optimal solutions. However, subjectivity is harder to hide as the goal of
an optimization approach needs to be defined concretely in the objective function.

Regardless of the motivation behind a model, optimization approaches allow assessing the
model’s quality. An evaluation of optimal solutions found reveals weak spots of the model
applied. If an optimal solution does not correspond to the expected solution, refining the
model, in particular the objective function, may be necessary. Thus, the evaluation of an
optimal solution can lead to an improved model which, then again, leads to improved results
(not with respect to the cost or score of the optimal solution).

For this evaluation, however, it is mandatory to find an optimal or at least a “good” solution.
An algorithm that yields an optimal solution with certainty is called exact. Exact algorithms,
however, may not always be applicable. In Section 2.1, we give a short introduction into the
(time) complexity of problems and the running time of algorithms. In particular, we present
a class of problems, NP-hard problems, for which the existence of efficient algorithms is
unlikely. Hence, for some scenarios, finding an exact solution may take too much time. If this
is not due to a hard-to-solve problem, this may be caused by a time-sensitive application.
In any case, high solution quality needs to be traded off against low computation time since
sufficiently efficient and exact algorithms may not be available.

Non-exact approaches can be summarized with the following two categories [PS82].

• An algorithm is called heuristic if it cannot give any guarantee with respect to the
quality of the solution found.

• An algorithm is called an approximation algorithm if it guarantees solutions of a
certain quality. Considering a minimization problem with an optimal solution m, for
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example, an ε-approximate algorithm yields a solution f ∈ F with a cost c(f) such
that ∣∣∣∣c(f)−m

m

∣∣∣∣ ≤ ε
holds for any instance of the problem. That means, the relative error is bound by
some ε ∈ R≥0.

Despite yielding results that are not necessarily optimal, both approximation algo-
rithms [Chr76b, DMM+97] and heuristics [DAR12, Hau07, Ope77] are popular alternatives
to slow exact algorithms. Zanakis and Evans [ZE81] give an extensive general overview for
reasons why and how to use heuristic approaches.
The lower bound on the quality of the computed solution makes approximation algorithms
attractive. However, even for small ε, the existence of an ε-approximation algorithm does
not exclude the possibility that there is a heuristic approach that performs better on a
certain problem. Also, in many cases, heuristic approaches are easier to design: For certain
problems, the existence of efficient approximation algorithms is unlikely regardless of the
targeted approximation, i.e. ε [PS82]. Furthermore, there are general heuristic approaches
that are applicable to a multitude of problems. These so-called metaheuristics include the
idea of a local search. This concept comprises different iterative strategies for searching a
problem-specific defined neighborhood of a current solution for improvements. Depending on
the searching strategy and the definition of the neighborhood, this results in a more or less
sophisticated trial-and-error approach that is surprisingly successful in practice [PS82].
Nevertheless, in particular for heuristic approaches, it is difficult to predict or even evaluate
the quality of the approach in practice. If no optimal solution is known, it is hard to assess
a solution yielded by a heuristic algorithm. Consequently, it is reasonable to work on the
development of exact optimization algorithms or the improvement of their running time.
This is also the case if exact approaches are too slow for proper application. No matter how
time sensitive the use-case is, during the development of fast, non-exact algorithm there is,
in general, enough time to run slow algorithms that produce solutions of higher quality as
benchmarks. This is a common strategy to evaluate heuristic approaches [RU01]. Rardin and
Uzsoy [RU01] note, however, that this evaluation scheme becomes less sound with increasing
complexity of the problem. In particular for NP-hard problems, only rather small instances
are solvable exactly. Rardin and Uzsoy doubt the scalability of heuristics and, thus, suggest
to evaluate heuristics by running comparisons on examples that are comparable in size to
real-world applications even if this means relinquishing optimal solutions as benchmarks.

1.4 Goal and outline of this thesis

In this thesis, we aim for the development and the analysis of exact approaches to aggrega-
tion problems as they occur in the field of geoinformation science.
Talking about exact approaches makes sense only if the problems considered are handled as
optimization problems. Thus, every problem that is dealt with in this dissertation needs to
be formalized as an optimization problem first. This formalization is done either as a math-
ematical programming formulation or, in short, summarized as an unambiguous question.
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Subsequently, we develop algorithms that solve the presented problems. We aim for a de-
scription and analysis of these algorithms that measure up to a high standard with respect
to mathematical precision. Furthermore, our analysis comprises the verification of the cor-
rectness of our approach as well as an examination of its running time. If possible, we
undertake a theoretical analysis of the asymptotic behavior of the running time. This is the
case only if insight into all sub procedures is provided. In some cases, we apply proprietary
software for solving linear programs and, thus, limit ourselves to an empirical running time
analysis.

As the publication of the algorithms forming the backbone of this thesis has been addressed
to an audience of experts, partly in conference proceedings with limited space, we assumed
a rather high level of prior knowledge. In Chapter 2, we give a short recapitulation of back-
ground information on computational complexity, graph theory and mathematical program-
ming. Besides, this chapter serves the purpose of clarifying our perception of fundamental
concepts applied in the following chapters.

In Chapters 3 to 6, we present some of the algorithms developed during the past years.
They have been published in journals or presented at conferences and then published in the
corresponding proceedings:

Chapter 3

T. C. van Dijk, J.-H. Haunert, and J. Oehrlein. Location-
dependent generalization of road networks based on equivalent
destinations. Computer Graphics Forum, 35(3):451–460, 2016.
doi:10.1111/cgf.12921

Chapter 4
J. Oehrlein and J.-H. Haunert. A cutting-plane method for
contiguity-constrained spatial aggregation. Journal of Spatial Infor-
mation Science, 15(1):89–120, 2017. doi:10.5311/JOSIS.2017.15.379

Chapter 5

J. Oehrlein, B. Niedermann, and J.-H. Haunert. Analyzing the Sup-
ply and Detecting Spatial Patterns of Urban Green Spaces via Opti-
mization. PFG – Journal of Photogrammetry, Remote Sensing and
Geoinformation Science, 87(4):137–158, 2019. doi:10.1007/s41064-
019-00081-0

Chapter 6

J. Oehrlein, A. Förster, D. Schunck, Y. Dehbi, R. Roscher, and J.-H.
Haunert. Inferring routing preferences of bicyclists from sparse sets
of trajectories. In Proc. 3rd International Conference on Smart
Data and Smart Cities, volume IV-4/W7 of ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
pages 107–114, 2018. doi:10.5194/isprs-annals-IV-4-W7-107-2018

Finally, in Chapter 7, we conclude this thesis by reflecting its goals and giving an outlook
with an overview of problems that remained open.

13

https://doi.org/10.1111/cgf.12921
https://doi.org/10.5311/JOSIS.2017.15.379
https://doi.org/10.1007/s41064-019-00081-0
https://doi.org/10.1007/s41064-019-00081-0
https://doi.org/10.5194/isprs-annals-IV-4-W7-107-2018




2 Methodological background

In this chapter, methodological backgrounds are presented. In particular, we study fun-
damentals that are required but not explained in the publications which are in the focus
of this thesis. In Section 2.1, the basics of computational complexity theory are imparted.
The high complexity of some examined problems is the reason for questioning exact ap-
proaches, i.e., approaches that yield a guaranteed optimal solution in the first place. In
Section 2.2, fundamental concepts of graph theory are introduced as the problems we deal
with in this work are modeled with the help of graphs. Finally, in Section 2.3, an introduc-
tion to mathematical programming and integer linear programming in particular is given.
Existing sophisticated tools for solving integer linear programs often make integer linear
programming the first choice to handle problems of high computational complexity.

2.1 Computational complexity theory

The focus of this thesis is on exact optimization algorithms. This automatically raises the
question of why one should forego exact solutions when dealing with optimization prob-
lems. A reason for contenting oneself with a non-exact solution for a certain problem may
lie in the problem’s computational (time) complexity. This section provides insight into
the field of complexity theory as it can be found in more detail in classic textbooks on
algorithms [CLR90].

Time complexity of problems The (time) complexity of a problem is defined by the algo-
rithms that are capable of solving the problem. In particular, the algorithm that solves a
problem the quickest is of great importance for the problem’s complexity. Hence, analyzing
the running time of an algorithm is of major interest.

The running time of an algorithm is the number of primitive operations that need to be
undertaken to process an instance. It is expressed independently from its implementation; it
merely depends on the size of the input which itself is expressed in a problem-specific way.
In general, in particular for the problems discussed in this dissertation, the size of the input
is the number of items in the input data. The running time of an algorithm for sorting a set
of n ∈ N items, for example, is expressed as a function in n. Problems that are defined with
the help of a graph G, a data structure described in more detail in Section 2.2.1, often have
running times that depend on two values, the number n of vertices and m of edges in G
expressing the size of G. In that case, the running time is given as a function in n and m.

Analyzing algorithms, one notices that there is no such thing as a single running time for an
algorithm. Depending on the nature of the given instance, the running time of an algorithm
varies. For some sorting algorithms, for example, sorted instances are handled faster than
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chaotic or reverse sorted instances. Hence, it makes sense to differentiate between best-case
and worst-case running times. The worst-case is of particular interest as it gives an upper
bound for the running-time that is valid for any instance of a fixed input size.

Distinguishing these cases does not allow computer scientists to give exact running times for
algorithms. The following example indicates why this is often neither possible nor desired.
In general, sorting algorithms are based on comparing objects. Comparing integer values
is easier and can be done with less primitive operations than comparing two-dimensional
point objects. This means, although the algorithm describes a general procedure for sorting
objects, its exact running time depends on the very objects that are meant to be sorted.
Hence, it is common in computer science to express running times with bounds rather than
exactly. This is often achieved by means of big O notation.

Definition 2.1 (Big O notation). The set

O
(
g(n)

)
=
{
f(n)

∣∣ ∃c, n0 ∈ N0 : 0 ≤ f(n) ≤ c · g(n) for all n ≥ n0

}
describes the set of functions with a growth rate not significantly higher than the one of g(n).

Algorithms with a running time in O(log n), for example, are said to run in logarithmic time.
The function in n expressing the running time grows with a rate that is not significantly
higher than the growth of log n. Likewise, algorithms with a worst-case running time in O(n)
or O(n2) are called linear-time or, respectively, quadratic-time algorithms. Furthermore, the
term polynomial-time algorithm describes algorithms with a running time in O

(
p(n)

)
where

p(n) =
∑k

i=0 ain
i is a polynomial in n. Only polynomial-time algorithms are considered to

be efficient.

Within the context of big O notation, there are further tools to analyze algorithms with
respect to their running times. However, for determining the complexity of a problem, an
algorithm solving this problem with the lowest upper bound for the worst case running time
is decisive.

Complexity classes of decision problems In complexity theory, two complexity classes of
problems play an important role. Formally, however, these classes are defined for decision
problems only, i.e., problems that have one of two possible solutions: either “yes” or “no”.

On the one hand, there is the class P containing decision problems that are regarded
as tractable. These are problems to which a solution can be found efficiently, i.e., within
polynomial time.

On the other hand, there is the class NP. For NP, we refer to an informal definition by
Garey and Johnson [GJ90]1:

The class NP is defined informally to be the class of all decision problems Π
that, under reasonable encoding schemes, can be solved by polynomial time
nondeterministic algorithms.

1A detailed introduction into the sophisticated and well-founded theory behind these complexity classes
can be found in a variety of sources [CLR90, GJ90, NW88].
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Here, a nondeterministic algorithm describes an algorithm that first guesses a solution and
then verifies or falsifies the guess in a deterministic way. A nondeterministic algorithm
solves a problem in polynomial time if checking the guess takes polynomial time in size of
the input.
Although P and NP are defined for decision problems only, they play an important role for
the analysis of optimization problems. Consider an optimization problem Π, i.e. a problem
that demands minimizing (or maximizing) a value. In that case, Π can be cast to a decision
problem by introducing a bound k: Is there a solution to Π with an objective value less
(or greater) than k? Papadimitriou and Steiglitz call this the recognition version of an
optimization problem [PS82]. If an algorithm exists that solves the optimization problem in
polynomial time, then its recognition version is in P. The optimal solution opt is computed
in polynomial time. Since the comparison of opt and k is done in constant time, i.e. O(1),
a decision is made in polynomial time.
Since an algorithm that computes a solution to a decision problem in polynomial time
can be used to verify the same, P ⊆ NP holds. However, it is unknown, whether P 6=
NP or P = NP holds. This question is one of the currently best-known mathematical
problems [CJW06].
In this context, a certain subclass of NP becomes particularly interesting. The class NP-
complete contains all problems in NP that are NP-hard, i.e., problems that are at least
as hard as the hardest problems in NP. As a consequence, an algorithm that solves an
NP-complete problem efficiently can be used to solve any NP-complete problem efficiently
since they are of the same complexity. In 1971, the Cook-Levin theorem [Coo71] produced
the first member of NP-complete. Ever since, numerous NP-complete problems have been
introduced [Kar72, GJ90]. Thus, there are a lot of problems that caught the interest of
renowned scientists and none of them was able to decide whether an efficient algorithm
exists let alone to produce one.
In Chapters 3 and 4, we deal with NP-complete problems. In order to provide an exact
algorithm to the problem described in Section 4, we apply means established in the field
of combinatorial optimization, i.e. mathematical optimization on discrete sets [PS82]. In
Section 3, we identify the problem under consideration as a special case of an NP-complete
which happens to be solvable efficiently.

2.2 Graph theory

In this section, basic concepts and algorithms from graph theory that are fundamental for
the following chapters are presented. A more detailed introduction to graph theory can be
found in textbooks on algorithms [CLR90]. A graph is a data structure that is suitable to
record, manage and analyze relations between objects. In particular, it is suitable for spatial
relations and, hence, used throughout this dissertation.
In Section 2.2.1, fundamental definitions and basic concepts of graphs are presented. In par-
ticular, we introduce a notation that is used in the following chapters. Then, in Section 2.2.2,
fundamental algorithms dealing with graphs are introduced. Finally, in Section 2.2.3, flow
networks are introduced, a concept for modeling commodity flow based on graphs.
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2 Methodological background

2.2.1 Basic concepts

Graphs and subgraphs A graph G is an ordered pair (V,E) of a vertex set V and an edge
set E. In general, each element of E consists of two elements of V . In an undirected graph
(see Fig. 2.1(a)), an edge between two vertices u and v is formed by a two-set {u, v}. In a
directed graph (see Fig. 2.1(b)) the edge set is formed such that E ⊆ V × V holds. Thus,
the directed edge from u to v is denoted as (u, v). In this dissertation, loops, i.e. edges
from vertices to themselves, are not considered. Thus, two vertices u and v participate
in an edge {u, v} (or (u, v)); we call u and v adjacent. In undirected graphs, adjacency is
symmetric and u and v are called neighbors; the set of all vertices adjacent to a vertex u, i.e.{
v ∈ V

∣∣ {u, v} ∈ E}, is called the neighborhood N(u) of u. Conversely, we say an edge {u, v}
(or (u, v)) is incident to the vertices u and v. For a vertex u, the degree is defined as the
number of incident edges. In a directed graph, the degree of a vertex u is the sum of the
in-degree, the number of incoming edges (·, u), and the out-degree, the number of outgoing
edges (u, ·).

A

BC

(a)

A

BC

(b)

Figure 2.1: Visualization of exemplary graphs with vertex set V = {A,B,C}. (a) Undi-
rected graph with edge set E =

{
{A,B} , {B,C}

}
(b) Directed graph with edge set

E =
{

(A,B) , (B,A) , (B,C)
}

Let V ′, V ∗ ⊆ V be subsets of V . In the following, E|V ′ denotes the set of edges in E between
vertices of V ′, i.e.

{
{u, v} ∈ E

∣∣u, v ∈ V ′} (or
{

(u, v) ∈ E
∣∣u, v ∈ V ′} in the directed case).

Furthermore, for directed graphs, we write E|V ′→V ∗ for the set of edges in E from vertices
in V ′ to vertices in V ∗, i.e.

{
(u, v) ∈ E

∣∣u ∈ V ′, v ∈ V ∗}.
A graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E|V ′ is called a subgraph of G = (V,E).
If further E′ = E|V ′ holds, G′ is the subgraph of G induced by V ′. If G′ has a particular
property and there is no V ∗ with V ′ ( V ∗ ⊆ V inducing a subgraph with this property, we
call G′ a maximal subgraph (with respect to said property).

Paths and reachability A path P from a source s to a target t is a sequence of vertices
〈v0, . . . , vk〉 with v0 = s and vk = t such that {vi, vi+1} ∈ E for 0 ≤ i < k. If s = t holds,
the path P is called cycle. In particular for s 6= t, we refer to P also as an s-t path and
denote Pst if its source s and target t are of importance. We call a path simple if its vertices
are pairwise different. The path P is composed of the edges {v0, v1}, . . . , {vk−1, vk} and
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2.2 Graph theory

contains the corresponding vertices. The length of a path is its number of edges, here k.
A subpath of P is a path formed by vertices 〈vi, vi+1, . . . , vj〉 with 0 ≤ i ≤ j ≤ k. The
concept of paths works similarly in undirected and directed graphs.

A vertex v is reachable from a vertex u if a u-v path exits. In undirected graphs, reachability
is reflexive, symmetric, and transitive, i.e., an equivalence relation. An undirected graph is
connected if for every pair of vertices u, v ∈ V the vertex v is reachable from u. In this con-
text, we are also interested in the maximal connected subgraphs, the connected components
of a graph. The connected components of an undirected graph are its equivalence classes
with respect to reachability.

Further concepts in graph theory Often, graphs are enriched with a weight function
yielding additional information on the data organized by the graph. A mapping w : V → R
is called a vertex-weight function. An edge-weight function w′ : E → R yields additional
information on the relation between two vertices u and v in V that is described with an
edge {u, v} ∈ E. It is common to refer to a graph combined with a corresponding edge-
weight function as a weighted graph. We extend this definition to paths by defining the
weight of a path as the sum of the weights of its edges. An s-t path of minimum weight
often is called a shortest path. A path of minimum length is a shortest path assuming
uniform weights of the edges of G.

A connected graph without cycles is called tree. A rooted tree is a tree in which one vertex r
is designated as the root. As there are no cycles in trees, there is a unique path from any
vertex v to the root. This path’s length, i.e. the number of edges between v and the root,
defines the depth of v in the tree. Each vertex u on the r-v path is an ancestor of v and v
is a descendant of u. The ancestor sharing an edge with v is called the parent of v. Every
descendant of v sharing an edge with it is a child of v. Other children of v’s parent are v’s
siblings. The root r is the sole vertex without parent. A vertex without children is called
leaf. Any other vertex is an internal vertex. Given a graph G = (V,E), any tree with the
same vertex set V is called a spanning tree of G.

An undirected graph G = (V,E) is called complete if {u, v} ∈ E holds for every two vertices
u, v ∈ V . It is called bipartite if V can be partitioned into V1 and V2 such that any edge
{u, v} ∈ E is incident to a vertex u ∈ V1 and a vertex v ∈ V2. A complete bipartite graph is
a bipartite graph with {u, v} ∈ E for every u ∈ V1 and v ∈ V2.

Example 2.1. A typical example for graphs in geoinformatics is the digitization of road
networks. For navigation tasks, such a graph is the foundation for computing shortest paths
(see Section 2.2.2). Computing shortest paths in a road network is applied for solving various
problems in this thesis (see Chapters 3, 5, and 6). The level of abstraction varies according
to the application, see Fig. 2.2.

Depending on the tackled problem, road networks are digitized as undirected or directed
graphs. Considering one-way streets, for example, promotes modeling the network as a di-
rected graph. It is common to digitize road networks as weighted graphs with an edge weight
reflecting the distance between the corresponding vertices. Depending on the tackled problem,
it is reasonable to consider as edge weights, for example, the geodesic distance between the
vertices, their difference in height, or the travel time.
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2 Methodological background

(a) (b)

Figure 2.2: Visualization of an exemplary road graph. (a) Road graph with geometric in-
formation as it is used, for example, for mapping. (b) Road graph with mainly topological
information as it is used for shortest-path algorithms.

2.2.2 Graph algorithms

In this section, some fundamental algorithms dealing with graphs are presented. These
algorithms explore the graph. That means, starting from a vertex s, such an algorithm
visits its neighborhood N(s). Then, the algorithm continues visiting neighboring and so far
unexplored vertices. This way, the structure of the graph becomes visible and it is possible
to express the relation between arbitrary vertices within the graph.

Breadth-first search Breadth-first search (BFS) describes such a fundamental algorithm.
Given a graph G = (V,E) and a vertex s ∈ V , the algorithm systematically explores
the graph, beginning from s. During this exploration, the algorithm visits the vertices of a
graph. Visiting a vertex, its adjacent vertices are discovered if they have not been discovered
before. The order in which the vertices of a graph are visited is the order of discovery. Hence,
after s, all vertices in N(s) are visited; vertices for which the minimum length of a path
from s, or the distance, is d = 1. Afterwards, their neighborhoods are explored, which results
in discovering vertices with distance d = 2 from s. This continues until all vertices that are
reachable from s have been visited, see Figure 2.3.
Cormen et al. [CLR90] describe BFS as it is presented in Algorithm 1. They use a queue Q
to organize the order in which the vertices are visited. In a queue, elements can be added
(enqueue) and extracted (dequeue). The order in which the elements are added is the same
as the order in which the elements are extracted. Hence, a queue follows the first-in-first-out
principle (FIFO). For every vertex u, they store and update the following values:
• The distance d from s, i.e. the minimum length of a path from s to u. The variable d[u]

is initially set to ∞.
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2.2 Graph theory

• The predecessor π, i.e. the vertex π[u] from which u is discovered during BFS.

• The color, i.e. a key giving information about the state of the vertex u. In its original
state, white, a vertex has been neither visited nor discovered. After its discovery, a
vertex’ color is set to gray . Finally, after having been visited, the color of the vertex
is set to black .

Algorithm 1: BFS(G, s)
Data: Graph G = (V,E), vertex s ∈ V
Result: Every vertex G that is reachable from s is visited, distances d from s are

computed and information on the minimum-length path from s is gained
1 // initialize, see Algorithm 2
2 color, d, π ←BFS_init(G);
3 // start exploration, see Algorithm 3
4 BFS_explore(s, G, d, π, color)

Algorithm 2: BFS_init(G, s)
Data: Graph G = (V,E)
Result: Distances, predecessors, and colors set to initial values, i.e., ∞, nil, and

white.
1 foreach u ∈ V do
2 color[u]←white;
3 d[u]←∞;
4 π[u]←nil;

5 return color, d, π;

In order to determine the complexity of BFS, we first notice that the initialization step,
see Algorithm 2, considers every vertex once and, thus, takes O(n) time, where n = |V |.
Considering the exploration of the graph, i.e. Algorithm 3, we first note that every vertex is
enqueued exactly once since it is enqueued only if it is white but it is colored gray directly
afterwards, see Line 11. Hence, the while-loop (Line 6) considers every vertex reachable
from s exactly once. Thus, there are n dequeue- and n enqueue-operations, each of which
can be done in constant time. Consequently, every vertex’s neighborhood is explored exactly
once (for-loop in Line 8). Hence, each edge (u, v) is considered twice; on the one hand due
to (u, v) ∈ N(u), on the other hand due to (u, v) ∈ N(v). Since all iterations of the while-
loop consider each vertex at most once and all iterations of the for-loop consider each edge
at most twice, the exploration takes O(n + m) time with m = |E|. The resulting overall
running time is in O(n+m).

With the help of the predecessors π, it is possible to set up the breadth-first tree corre-
sponding to G and s. This tree rooted at s contains all vertices of G and displays the
paths of minimum length d, see gray tree in Figure 2.3. This tree is gained by adding every
vertex v ∈ V \ {s} to π[v] as a child.
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Figure 2.3: Breadth-first search on a graph starting from vertex s. The resulting breadth-
first tree (gray lines) depends on the order in which the vertices are visited and, thus, how
they are ordered in a neighborhood. Here, they are ordered alphabetically.
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Algorithm 3: BFS_explore(s, G, d, π, color)
1 Q← new Queue();
2 color[s]←gray ;
3 d[s]←0;
4 π[s]←nil;
5 Q.enqueue(s);
6 while Q 6= ∅ do
7 u← Q.dequeue();
8 foreach v ∈ N(u) do
9 if color[v]=white then

10 Q.enqueue(v);
11 color[v]←gray ;
12 d[v]← d[u] + 1;
13 π[v]← u;

14 color[u]←black ;

Depth-First Search Another fundamental concept for graph exploration is depth-first
search (DFS). In contrast to BFS, DFS hardly gives information on the minimum length of
a path between the start vertex s of the search and another vertex in the graph. The reason
for this is that DFS drives an exploration path deep into the graph rather than exploring
the surroundings of s first. DFS visits a so far unexplored neighbor of the most recently
visited vertex. This procedure begins at the start vertex s and continues until it runs into a
dead end, i.e. the DFS reaches a vertex the neighborhood of which consists only of vertices
that have already been visited. In this case, the search continues from the most recently
visited vertex with unexplored neighbors, see Figure 2.4.

Algorithm 4: DFS(G, s)
Data: Graph G = (V,E), vertex s ∈ V
Result: Every vertex G that is reachable from s is visited

1 // initialize, see Algorithm 5
2 color, π ←DFS_init(G);
3 // start exploration, see Algorithm 6
4 DFS_explore(s, G, π, color)

Concerning the complexity of DFS, we follow the reasoning for the complexity of BFS. The
initialization of DFS has the same complexity as the one of BFS. Since each vertex is colored
gray as soon as it gets visited and only white vertices get visited, every reachable vertex is
visited only once. Then, its complete neighborhood is considered. Hence, every edge (u, v)
is considered at most twice; once from u and once from v. Consequently, the overall running
time is in O(m+ n) as well.
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Figure 2.4: Exemplary run of a depth-first search. Starting from s, the exploration happens
on a path that forces its way deep into the graph (dark gray). The next vertex to be visited is
a vertex in the neighborhood of the foremost vertex on the path that has neighbors that have
not been visited yet. It is selected depending on the order of vertices in the neighborhood.
Here, vertices are ordered alphabetically. In Figure (e), the foremost vertex on the path b
has no adjacent vertices that have not been visited so far. Hence, the search backtracks
along the path until a vertex is found that fulfills this requirement. The vertex a has the
neighbor g, which has not been visited yet. Afterwards, further backtracking is necessary
and the search continues from d, see Figure (g).
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Algorithm 5: DFS_init(G, s)
Data: Graph G = (V,E)
Result: Predecessors and colors set to initial values, i.e., nil and white.

1 foreach u ∈ V do
2 color[u]←white;
3 π[u]←nil;

4 return color, π;

Algorithm 6: DFS_explore(u, G, π, color)
1 color[u]←gray ;
2 foreach v ∈ N(u) do
3 if color[v]=white then
4 π[v]← u;
5 DFS_explore(v, G, π, color);

6 color[u]←black ;

Finding connected components These search algorithms serve as a basis for further al-
gorithms. A simple extension of the presented algorithms is suitable for discovering and
counting connected components of a graph since both BFS and DFS visit only vertices
that are reachable from the start vertex s. Algorithm 7 uses DFS for this task. After the
exploration of the connected component of s, the search is started from the next vertex
that has not been visited yet. Continuing this procedure yields a series of DFS calls that all
started in different connected components. Thus, storing the start vertex of each DFS in a
list grants access to every connected component of a graph. This list’s length, on the other
hand, gives information on the number of connected components in a graph. In particular,
if the list contains only one element, i.e. every vertex is visited during the first DFS, the
graph is connected.

Algorithm 7: connected_components(G)
Data: Graph G = (V,E)
Result: a list of representatives of the connected components of G

1 // initialize, see Algorithm 5
2 color, π ←DFS_init(G);
3 cc←list();
4 // start exploration
5 foreach s ∈ V do
6 if color[s]=white then
7 cc.add(s);
8 DFS_explore(s, G, π, color) // see Algorithm 6

9 return cc;
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Dijkstra’s Algorithm Applying the concept of BFS to weighted graphs leads to shortest-
path algorithms, i.e., algorithms producing paths of minimum weight. In particular, Dijk-
stra’s Algorithm, the most common algorithm for computing shortest paths in graphs with
non-negative weights, works analogously to BFS, see Algorithm 8. Like BFS, Dijkstra’s Al-
gorithm computes each vertex’ distance d from s, which in a weighted graph is commonly
interpreted as the minimum weight of a path from s. An important difference in the pro-
cedure is the order in which the vertices of the graph are visited. BFS visits the graph’s
vertices in non-descending order with respect to the minimum length of a path to the cor-
responding vertex. Analogously, Dijkstra’s Algorithm takes the weight of the shortest path
into account. The main issue is that the minimum-weight path does not necessarily coincide
with the path of minimum length. Consequently, an early-discovered vertex may be visited
late if it is connected to the rest of the graph via heavy-weight edges only.

For maintaining the order in which vertices are visited, a priority queue is used. In this
abstract data structure, each object is associated with a key, for example the distance d. A
priority queue provides the user in particular with a method decreaseKey, which updates
the key of an object with a lower value, and a method extractMin, which returns the object
with the currently minimal key.

Algorithm 8: Dijkstra(G, s)
Data: Graph G = (V,E), vertex s ∈ V
Result: Every vertex G that is reachable from s is visited, distances d from s are

computed and information on the minimum-length path from s is gained
1 // initialize, see Algorithm 2
2 color, d, π ←BFS_init(G);
3 // start exploration, compare Algorithm 3
4 Q←new PriorityQueue(V );
5 color[s]←gray ;
6 d[s]←0;
7 π[s]←nil;
8 Q.decreaseKey(s,0);
9 while Q 6= ∅ do

10 u← Q.extractMin();
11 foreach v ∈ N(u) do
12 if d[v] > d[u] + w(u, v) then
13 color[v]←gray ;
14 d[v]← d[u] + w(u, v);
15 π[v]← u;
16 Q.decreaseKey(v, d[v]);

17 color[u]←black ;

The colors play a similar role as in BFS. The initial state is white: the vertex has been
neither discovered nor visited. When a vertex v is discovered from a vertex u, it is colored
gray and its current distance is set to the distance of u plus the weight of the edge {u, v}.
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Figure 2.5: Applying Dijkstra’s Algorithm on a weighted graph starting from vertex s. The
resulting shortest-path tree is marked with thick gray lines.
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Every time v is in the neighborhood of a visited vertex w, its current distance from s gets
tested and updated if the path via w is shorter. Also, the key value of the vertex in the
priority queue gets updated accordingly. This continues until v itself is visited and colored
black . Then, the shortest path from s to v has been found, see Figure 2.5.

The running time of Dijkstra’s Algorithm depends on the implementation of the priority
queue. However, every vertex is extracted from the queue exactly once (line 10 in Algo-
rithm 8). Furthermore, like in BFS, every edge is considered twice; decreaseKey in line 16
is called at most once per edge. Hence, in general, the algorithm takes O(n ·TdK +m ·TeM )
time with TdK expressing the running time of decreaseKey and TeM the running time of
extractMin. Using an unordered list as a priority queue, for example, the running time is
in O(m · 1 + n · n) = O(n2). With a proper data structure, namely a Fibonacci-Heap, the
minimum can be extracted in amortized logarithmic time while decreasing keys is done in
O(1) amortized time. Thus, a running time in O(n log n+m) is possible.

With the information stored in π, i.e. information about the predecessor of a vertex, it is
possible to build the shortest path. The equivalent of the breadth-first tree is the shortest-
path tree which is the basis for our location-dependent generalization of road networks in
Chapter 3.

2.2.3 Flow networks

Besides modeling the relation between objects, graphs are suitable for modeling net-
work flows. The following introduction is based on the textbook by Ottmann and Wid-
mayer [OW02]. Here, the flow of commodity through a network is simulated. This can be,
for example, fluids running through pipes with sources and sinks, current flowing through
electrical grids, or goods being transported from warehouses to stores. In these models,
there are one or multiple sources feeding commodity into the network and sinks where the
commodity leaves the network. On its way from source to sink, the commodity flow is lim-
ited by the capacity of the elements of the network. This can be, for example, the diameter
of the pipe in a fluid network or the cargo capacity of trucks. Furthermore, commodity
can only appear in the network through sources and can only disappear from the network
through sinks.

Formal definition A flow network is modeled as a directed graph G = (V,E) with a
designated source s ∈ V , a designated sink t ∈ V \ {s} and an edge capacity c : E → R≥0.
Since edges with no capacities do not contribute to the network, we consider c (u, v) = 0
equivalent to (u, v) /∈ E. According to the model description above, we assume that for
every v ∈ V \ {s, t} there is a path Psvt. Otherwise, v does not play a role in the solution
to the problem. We define a flow as function f : E → R≥0 with the following properties:

• Capacity constraint : For every pair u, v ∈ V , we require f (u, v) ≤ c (u, v).

• Flow conservation: For every vertex v ∈ V \ {s, t}, we require∑
(u,v)∈E

f (u, v) =
∑

(v,u)∈E

f (v, u)
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While the capacity constraint guarantees that each edge’s capacity is respected, the flow
conservation makes sure that the inflow equals the outflow in every vertex that is neither
source nor sink. Hence, no commodity can appear or disappear inside the network.

Figure 2.6 depicts a flow network with an exemplary flow f transporting commodity from s
to t. The value |f | of the flow gives the number of units that are transported, i.e. the number
of units of commodity leaving s:

|f | :=
∑

(s,v)∈E

f (s, v)−
∑

(v,s)∈E

f (v, s) (2.1)

In the given example, there are |f | = 2 units of commodity transported.
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Figure 2.6: Example of a network flow. For each edge e, flow and capacity is given as
f(e) | c(e). There are 2 units of commodity transported that pass through the network
along the path 〈s, b, a, c, t〉.

Maximum flow and cuts A common objective for network flows is to maximize the flow
of the network. In order to estimate an upper bound for the maximum flow, we introduce
the concept of cuts separating s and t. In a flow network, a cut (S, T ) is a partition of the
vertex set V into two sets S and T with s ∈ S and t ∈ T . The edges from vertices of S to
vertices of T , i.e. elements of E|S→T , are of particular interest. The capacity c(S, T ) of a
cut is defined as the sum of the capacities of edges in E|S→T , i.e.:

c(S, T ) :=
∑

(u,v)∈E|S→T

c (u, v) (2.2)
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2 Methodological background

MaximumFlow

Instance: A directed graph G = (V,E) with designated
vertices s, t ∈ V .

Capacities on the edges c : E → R≥0.

x ∈ R≥0 .

Question: Does there exist a flow f from s to t such that
|f | ≥ x holds?

MinimumCut

Instance: A directed graph G = (V,E) with designated
vertices s, t ∈ V .

Capacities on the edges c : E → R≥0.

x ∈ R≥0 .

Question: Does there exist a cut (S, T ) with s ∈ S and
t ∈ T such that c(S, T ) ≤ x holds?

Likewise, we define the net flow f(S, T ) across a cut as

f(S, T ) :=
∑

(u,v)∈E|S→T

f (u, v)−
∑

(u,v)∈E|T→S

f (u, v) . (2.3)

In the example in Figure 2.6, for S := {s, a, b, d} and T := {t, c}, the capacity of the cut is
c(S, T ) = 23 while the flow across it is f(S, T ) = 2. For S′ = {s, a} and T ′ = {t, b, c, d}, they
are c(S′, T ′) = 10 and f(S′, T ′) = 2, respectively and we notice f(S, T ) = f(S′, T ′) = |f |.
This holds in general.

Lemma 2.1. Let f be a flow in a network G = (V,E) with source s ∈ V and sink t ∈ V .
Let (S, T ) be an arbitrary cut. Then, f(S, T ) = |f | holds.

Proof. Let 1 ≤ n < |V |. Assume the claim is true for every cut (S, V \ S) with |S| = n.
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2.2 Graph theory

Now, consider S′ = S ∪ {w} and T ′ = T \ {w} with w ∈ V \ S. Then:

f(S′, T ′) =
∑

(u,v)∈E|S′→T ′

f (u, v)−
∑

(u,v)∈E|T ′→S′

f (u, v)

=
∑

(u,v)∈E|S→T ′

f (u, v) +
∑

(u,v)∈E|{w}→T ′

f (u, v)

−

 ∑
(u,v)∈E|T ′→S

f (u, v) +
∑

(u,v)∈E|T ′→{w}

f (u, v)


=

 ∑
(u,v)∈E|S→T

f (u, v)−
∑

(u,v)∈E|S→{w}

f (u, v)


+

 ∑
(u,v)∈E|{w}→T

f (u, v)−
∑

(u,v)∈E|{w}→{w}

f (u, v)


−

 ∑
(u,v)∈E|T→S

f (u, v)−
∑

(u,v)∈E|{w}→S

f (u, v)


−

 ∑
(u,v)∈E|T→{w}

f (u, v)−
∑

(u,v)∈E|{w}→{w}

f (u, v)


=

∑
(u,v)∈E|S→T

f (u, v)−
∑

(u,v)∈E|T→S

f (u, v)

+
∑

(u,v)∈E|{w}→S∪T

f (u, v)−
∑

(u,v)∈E|S∪T→{w}

f (u, v)

= f(S, T ) due to flow conservation and V = S ∪ T .

By definition, f({s} , V \ {s}) = |f | holds, see Equation 2.1. Since (S, T ) = ({s} , V \ {s})
is the only cut with |S| = 1, the claim holds for any cut.

Lemma 2.2. Let f be a flow in a network G = (V,E) with source s ∈ V and sink t ∈ V .
Let (S, T ) be an arbitrary cut. Then, f(S, T ) ≤ c(S, T ) holds.

Proof. According to the definitions, the following holds:

f(S, T ) =
∑

(u,v)∈E|S→T

f (u, v) ≤
∑

(u,v)∈E|S→T

c (u, v) = c(S, T )

Corollary 2.1. Let (S, T ) be an arbitrary cut. Then, |f | ≤ c(S, T ) holds.

Corollary 2.1 follows directly from Lemmata 2.1 and 2.2. Thus, the maximum flow is
bounded by a cut of minimal capacity, a minimum cut.
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2 Methodological background

Next, we introduce residual networks in order to show that the value of a maximum flow
is actually the same as the capacity of a minimum cut. These networks also form the basis
for standard maximum flow algorithms. For any flow f we can define a directed graph Gf .
The vertex set matches the vertex set of the original flow network. The edge set is defined
depending on the residual capacity. The residual capacity cf describes the capacity that
remains while considering the flow f . For any edge (u, v) in the network, it is defined as
follows:

cf (u, v) = c (u, v) + f (v, u)− f (u, v) (2.4)

If cf (u, v) = 0, we assume that the corresponding edge (u, v) is not contained in the residual
network. Figure 2.7 displays the residual network corresponding to the flow network in
Figure 2.6 with the flow defined there.
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Figure 2.7: Exemplary residual network of the flow presented in Figure 2.6.

Since Gf is a graph, we can look for paths in it. In particular, we can look for s-t paths. For
any s-t path Pst = 〈s, v1, . . . , vn−1, t〉, we can increase f by k = min(u,v)∈Pst

cf (u, v), the
minimal residual capacity along the path. Updating Gf with respect to the increased flow,
we can repeat this procedure with a different path since at least the edge defining k has no
more capacity left. The following theorem is fundamental for the proof that this procedure,
the Ford-Fulkerson method, see Algorithm 9, yields a maximum flow.

Theorem 2.1 (Max-flow min-cut theorem). Let f be a maximum flow in a network G =
(V,E) with source s ∈ V and sink t ∈ V . Let C be the set of all cuts in G. Then

|f | = min
(S,T )∈C

c(S, T ).

Proof. Since f is maximal, there is no augmenting path in the corresponding residual net-
work Gf . Now, let S be the set of all vertices in Gf that are reachable from s and T := V \S.
Since there is no augmenting s-t path, s ∈ S and t ∈ T holds and (S, T ) is a cut. Besides, for
any e ∈ E|S→T the equation cf (e) = 0 holds. Due to the definition of cf , see Equation 2.4,
and the capacity constraint, c (u, v) = f (u, v) holds. Consequently, c(S, T ) = f(S, T ) = |f |.
Due to Corollary 2.1 the capacity of any cut is greater or equal to |f |. Hence, (S, T ) is a
minimum cut.
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Figure 2.8: Flow network (left), residual network (right). Iterations from the initial flow (see
Figure 2.6) to a maximum flow. Augmenting paths considered next are chosen arbitrarily
and indicated as gray fat lines, see Figures (b), (d), and (f). Figures (c), (e), and (g)
depict the current flow increased by a flow along the corresponding augmenting path. In
Figure (h), no augmenting paths can be found as no edge from S := {s, a} to T := {t, b, c, d}
is left. Hence, the cut (S, T ) has a capacity corresponding to the current flow. According to
Theorem 2.1, the cut (S, T ) is minimal and the flow in Figure (g) is maximal.
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2 Methodological background

Algorithm 9: Ford-Fulkerson-Method(G, c, s, t)
Data: Graph G = (V,E) with capacity c, source s ∈ V , sink t ∈ V
Result: Maximum flow f from s to t

1 initialize flow f with |f | = 0;
2 while there is an augmenting path P do
3 augment f along P ;

4 return f ;

There exist multiple algorithms following the procedure described in Algorithm 9. In Fig-
ure 2.8, a minimum cut and a maximum flow are computed for the network presented in
Figure 2.6 with Algorithm 9; augmenting paths are selected arbitrarily. For flow networks
with irrational capacities, the procedure does not even terminate if there is no adequate
strategy for finding augmenting paths in line 2. Edmonds and Karp [EK72] use a BFS in
order to find an augmenting path consisting of a minimum number of edges and guaran-
tee that the algorithm terminates in O(n · m2) time. Modern strategies for determining
augmenting paths improve the running time to O(n ·m) [Orl13].
In Algorithm 9, line 3, the flow is augmented along the path found in line 2 and the residual
network is updated. When a maximum flow is found, no more augmenting paths exist.
Then, the set X of vertices in V that are reachable from s in the residual network is part
of a minimum cut (X,V \ X). Since X can be found with a BFS in the residual network
starting at s, the Ford-Fulkerson method thus also yields a minimum cut of a flow network.
So far, only flow networks with a single source and a single sink have been examined. How-
ever, Algorithm 9 is also applicable to networks with multiple sources and/or multiple sinks.
For this purpose, the flow network is replenished with a supersource s′ and a supersink t′.
The supersource is linked to every actual source with edges of unlimited capacity. Likewise,
the sinks are linked to the supersink, see Figure 2.9. Thus, the supersource feeds the ac-
tual source and the supersink drains the actual sinks. This way, a network with multiple
sources and/or multiple sinks is emulated and the Ford-Fulkerson method can be applied
to compute a maximum flow or a minimum cut.
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Figure 2.9: Simulating a maximum-flow problem with multiple sources and multiple sinks
(Figure (a)) by means of a flow network with only one source and one sink (Figure (b)).
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2.2 Graph theory

Application: Minimum-Weight Vertex Separators In the following, we describe the prob-
lem MinimumWeightVertexSeparator and an algorithm solving it. This is a sub-
problem of the problem that is further described in Chapter 4 and the following is excerpted
from the work presented there [OH17].
Let G = (V,E) be an undirected graph and w : V → R≥0 a vertex-weight function. For s, t ∈
V , a minimum-weight (s, t)-separator S ⊆ V \ {s, t} is a set of vertices with the following
property: Every path in G from s to t contains at least one vertex in S. Furthermore, any
set with this property has at least the same weight as S with respect to w.

MinimumWeightVertexSeparator

Instance: A graph G = (V,E) with designated vertices
s, t ∈ V .

Weights on the vertices w : V → R≥0.

a number w0 ∈ R≥0

Question: Is there a vertex set S ⊆ V \{s, t} with a weight
less than w0 such that for any s-t path Pst the
property Pst ∩ S 6= ∅ holds?

If s = t or {s, t} ∈ E then there exists no such vertex and S = ∅. In any other case we make
use of minimum (s, t)-cut algorithms and apply them to a modified graph G̃.
In order to use edge-cut algorithms we use G to build a directed graph G̃ = (Ṽ , Ẽ). Since
only vertex weights are given and established edge-cut algorithms depend on edge weights,
we need to define a mapping between vertices in G and edges in G̃. Thus, we introduce
two vertices ṽ0, ṽ1 ∈ Ṽ and derive from this definition the sets Ṽ0, containing ṽ0 for every
v ∈ V , and Ṽ1 likewise. Thus, Ṽ0 and Ṽ1 form a partition of Ṽ . Furthermore, we introduce
a directed edge ẽv = (ṽ0, ṽ1) ∈ Ẽ for every v ∈ V with c(ẽv) = w(v), where c : Ẽ → R≥0

defines the capacity, see Figure 2.10. Besides, we replace every edge f ∈ E with two directed
edges ẽf0 , ẽ

f
1 ∈ Ẽ going in opposite directions to maintain the structure of the graph. With

defining c(ẽf0) = c(ẽf1) = m ∈ R with m >
∑

v∈V w(v) we complete the transformation.
We notice that Ẽ|Ṽ0→Ṽ1 is the set of edges induced by V (black edges in Figure 2.10) and
Ẽ|Ṽ1→Ṽ0 is the set of edges induced by E (red).

With this set-up, a vertex separator S ⊆ V \ {s, t} corresponds to an edge set ẼS :={
ẽv ∈ Ẽ

∣∣∣ v ∈ S} ⊆ Ẽ|Ṽ0→Ṽ1 \ {ẽs, ẽt}. Using this edge set, we can define a set

X := Ṽ \
({
ṽ1 ∈ Ṽ1

∣∣∣ v ∈ S} ∪ {t̃0, t̃1})
such that (X, Ṽ \X) defines an s̃1-t̃0 cut in G̃ with c(X, Ṽ \X) =

∑
ẽv∈ẼS

c(ẽv) =
∑

v∈S w(v).
Hence, a minimum-weight vertex separator in G can be found by identifying an s̃1-t̃0 cut
(X,Y ) of minimal capacity in G̃ such that

Ẽ|X→Y ⊆ Ẽ|Ṽ0→Ṽ1 \ {ẽs, ẽt} . (2.5)
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G = (V,E) G̃ = (Ṽ , Ẽ)

V
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v

ṽ0
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ũ0
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ṽ0

ṽ1

ẽv
u v

⇒

⇒f

ẽf1

ẽf0

Figure 2.10: Transformation from G to G̃. On the right hand side, elements induced by V
are black, those induced by E are red.

For any s̃1-t̃0 cut (X,Y ) that does not hold Equation 2.5, an edge ẽ ∈ Ẽ|Ṽ1→Ṽ0 with
c(ẽ) = m contributes to c(X,Y ). The pair (Ṽ0, Ṽ1) defines an s̃1-t̃0 cut with c(Ṽ0, Ṽ1) =∑

ẽ∈Ẽ|Ṽ0→Ṽ1

c(ẽ) =
∑

v∈V w(v) < m. Thus, a minimum cut in G̃ fulfills Equation 2.5 and,
consequently, yields a minimum-weight vertex separator in G, see Figure 2.11.

2.3 Linear programming and (mixed-)integer linear
programming

Some of the optimization problems that are tackled in the following chapters can be for-
mulated as linear-programming problems or (mixed-)integer linear-programming problems.
Thus, it is possible to apply the well-founded theory of mathematical optimization to these
problems. Moreover, we can use sophisticated tools that are based on this theory. In Sec-
tion 2.3.1, we give an introduction to linear programming as it is applied to the problem
in Chapter 5. Also, established procedures for solving (mixed-)integer linear programs rely
on linear programming. We present them in Section 2.3.2 since we formulate the problem
of Chapter 4 as a mixed-integer linear programming problem. For a detailed presentation
and analysis, we refer to Nemhauser and Wolsey [NW88]. This introduction is also based
on their textbook.

2.3.1 Linear programming

Problem definition Linear programming deals with linear optimization problems, i.e. lin-
ear minimization and maximization problems, that are bounded by linear constraints. A
linear program (LP) is composed of
• variables, commonly denoted as a vector x ∈ Rn≥0 of n non-negative unknowns,
• objective or cost function, a linear expression in x, commonly denoted as the product

of a vector c ∈ Zn and x,
• constraints, a set of m restrictions that are expressed linearly in x, commonly denoted

with a matrix A ∈ Zm×n and a vector b ∈ Zm such that Ax ≤ b holds.
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(a) A quadrilateral as an explanatory graph G =
(V,E). Here, we are looking for a minimum-weight
(s, t)-separator.
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(b) The transformation G̃ = (Ṽ , Ẽ) of G; elements
in Ṽ and Ẽ induced by V are black, those in Ẽ
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(c) Blue edges are usable for a flow from s̃1 (�) to
t̃0 (�) and have their capacities annotated. Since m
is a sufficiently large constant, the maximum flow is
w(u) + w(v), limited by directed edges induced by
V (here: the dotted edges ãu, ãv with weights w(u),
w(v) respectively).
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(d) Figure (c) finally provides a minimum-weight
edge cut {ãu, ãv}. Transferring this result back toG,
we get the sought minimum-weight (s, t)-separator
{u, v}.

Figure 2.11: Finding a minimum-weight vertex separator.
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The objective of linear programming is to find values for x that maximize (or minimize) the
objective function and satisfy each constraint. As a decision problem, we can define linear
programming as follows.

LinearProgramming

Instance: A matrix A ∈ Zm×n, bounds b ∈ Zm

cost vector c ∈ Zn

an integer v ∈ Z

Question: Is there a vector x ∈ Rn such that Ax ≤ b and
cx ≥ v?

In canonical form, an LP then describes a problem

max cx such that
Ax ≤ b
x ≥ 0.

(2.6)

This problem formulation also includes minimization problems as minimizing cx is equiv-
alent to maximizing −cx. Also, constraints are not limited to terms with an upper bound.
Constraints with lower bounds can easily be expressed as upper-bound constraints by mul-
tiplication with −1. Equality constraints A′x = b′ can be expressed with two inequalities
A′x ≤ b′ and −A′x ≤ −b′. However, when applying linear programming to problems, it is
common to go without the canonical form. In this case, constraints are often written line
for line with “≤”, “≥”, or “=” to increase readability.

Interpreting the problem geometrically, see Figure 2.12 in Example 2.2, each of the con-
straints describes a half-space in Rn. Consequently, all constraints as a whole describe the
intersection of these half-spaces, a (possibly empty or unbounded) polytope S. Any x ∈ S
holds every inequality of the constraint set and, thus, presents a feasible solution to the LP.
The polytope S is called feasible region. The LP itself is feasible if S 6= ∅. The objective
function cx defines a family of parallel hyperplanes hv = {x ∈ Rn| cx = v} where v is the
objective value of x. In a maximization problem, the maximum v ∈ R such that hv ∩ S 6= ∅
defines the maximal value of the solution. Analogously, the minimal or, in general, optimum
value is defined. For the optimal value v, a feasible solution x in hv, i.e. an x ∈ hv ∩ S, is
called an optimal solution. If there is no optimal value, the polytope and, thus, the LP is
unbounded.
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Example 2.2. Consider the following two-dimensional linear program:
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h0
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h1
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h−1

h−2

Figure 2.12: Geometrical representation of the
LP in Equation 2.7.

max −x+ 2y such that
−9x+ 15y ≤ 20

2x+ 7y ≥ 7

9x+ 3y ≤ 22

x, y ≥ 0

x, y ∈ R

(2.7)

Interpreting the constraints geometrically, we get a two-dimensional polytope, i.e. a poly-
gon S. This polygon is depicted in Figure 2.12. It is bounded by the lines g1, g2, and g3,
corresponding to the constraints in the same order, as well as the axes due to x, y ≥ 0. The
objective function is defined with a vector c. A selection of the parallel, two-dimensional
hyperplanes of equal value, i.e. the lines hv, is depicted as gray, dashed lines.
Maximizing the LP in Equation 2.7 can be solved graphically by pushing hv along c as long
as hv ∩ S 6= ∅. Apparently, this condition is fulfilled until p = (5/3, 7/3) with g1 ∩ g3 = {p} is
reached. The point p lies on h3 since −5/3 + 2 · 7/3 = 3.

Solution strategies and complexity The fact that in Example 2.2 an optimal solution is
found in an extreme point is no coincidence. Actually, if there is an optimal solution to an
LP, then there is always one in an extreme point of the corresponding polytope [NW88].
This fact is the foundation for the most common algorithm for solving LPs, the simplex
algorithm. The simplex algorithm explores the polytope of an LP from extreme point to
extreme point. As soon as no further improvement of the objective value is possible, the
algorithm halts. For a detailed presentation of this algorithm and, in particular, reasons
why it is easy to detect that no further improvement is possible, we refer to Nemhauser
and Wolsey [NW88]. It has been shown that the simplex algorithm has an exponential
worst-case running time. Nevertheless, according to Nemhauser and Wolsey, it is used in all
commercial linear programming tools since it deals successfully with real-world problems. In
fact, probabilistic studies have shown that under general assumptions, a polynomial running
time can be expected [ST04]. However, LinearProgramming ∈ P since polynomial time
algorithms like the ellipsoid algorithm or Karmarkar’s algorithm exist. The latter is the first
interior-point method (in contrast to the simplex algorithm, which explores the boundary)
and “often competitive with the simplex method” [CLR90].

2.3.2 (Mixed-)Integer linear programming

In Chapter 4, we use linear optimization tools on a combinatorial, i.e., discrete problem.
A way of modeling such a problem is by demanding some or even all variables to be inte-
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gral. Thus, MixedIntegerLinearProgramming and IntegerLinearProgramming
are defined as follows:

MixedIntegerLinearProgramming

Instance: Matrices A,A′ ∈ Zm×n, bounds b ∈ Zm

cost vector c, c′ ∈ Zn

an integer v ∈ Z

Question: Are there vectors x ∈ Zn, x′ ∈ Rn such that
Ax+A′x′ ≤ b and cx+ c′x′ ≥ v?

IntegerLinearProgramming

Instance: A matrix A ∈ Zm×n, bounds b ∈ Zm

cost vector c ∈ Zn

an integer v ∈ Z

Question: Is there a vector x ∈ Zn such that Ax ≤ b and
cx ≥ v?

Apparently, the three problems in Sections 2.3.1 and 2.3.2 are closely related.
IntegerLinearProgramming and LinearProgramming are both special cases of
MixedIntegerLinearProgramming with A′ = 0 and A = 0, respectively.

Example 2.3. Consider the following MILP:
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Figure 2.13: Geometrical representation of the
MILP in Equation 2.8.

max −x+ 2y such that
−9x+ 15y ≤ 20

2x+ 7y ≥ 7

9x+ 3y ≤ 22

x, y ≥ 0

x, y ∈ Z

(2.8)

The linear constraints define the same polytope as in Example 2.2. However, this time,
the feasible region S is constrained to Z and, consequently, S = {s0, s1} = {(1, 1), (1, 2)}.
Apparently, s0 solves the problem optimally with an optimal value of 1. It can be seen that
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the solution s0 to the MILP is not directly related to the solution p = (5/3, 7/3) to the LP in
Example 2.2; neither rounding p nor choosing the closest feasible solution to p does yield s0.

Since the solution to an MILP does not necessarily represent an extreme point of the
polytope (see Figure 2.13 in Example 2.3), simply applying the simplex algorithm does
not yield an optimal solution. In fact, MixedIntegerLinearProgramming ∈ NP-
complete [GJ90] and, thus, no efficient algorithm is known nor expected to be designed.

Problem relaxation and cutting planes A general approach to solving MILPs begins with
a relaxed problem, i.e. a problem with a bigger feasible region containing the feasible region S
of the MILP. This relaxed problem is iteratively solved and constrained until its optimal
solution is an element of S and, thus, an optimal solution to the MILP. This procedure is
summarized in Algorithm 10.

Algorithm 10: General-Relaxation-Algorithm(MILP M)
Data: MILP M with feasible region S
Result: optimal solution x for M

1 i← 0;
2 relax M with S to MILP M0 with S0 ⊇ S;
3 while true do
4 x← solve(M ′);
5 if x ∈ S then
6 return x;

7 constrain Mi to Mi+1 such that S ⊆ Si+1 ⊆ Si \ {x};
8 i← i+ 1;

A common approach for a relaxed MILP in Line 2 in Algorithm 10 is to relax the integrality
constraint of the MILP and start with the LP relaxation. For any mixed integer linear
program (MILP)

max cx+ c′x′ such that
Ax+A′x′ ≤ b

x ≥ 0

x′ ≥ 0

x ∈ Zn

x′ ∈ Rn

(2.9)

the LP relaxation is defined as

max cx+ c′x′ such that
Ax+A′x′ ≤ b

x ≥ 0

x′ ≥ 0

x ∈ Rn

x′ ∈ Rn.

(2.10)
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2 Methodological background

In the following, for an MILP with a feasible set S, the feasible set of the corresponding
LP relaxation is denoted as SLP.

An implementation of Algorithm 10 for MILPs starts with the LP relaxation. The restric-
tions in Line 7 are realized with additional linear constraints. These constraints are called
cutting planes since they cut off parts of the polytope of the LP relaxation. In order to pre-
serve the restriction in Line 7, in the LP relaxation, it is important that only non-integral
solutions are cut off from the polytope.

Example 2.3 (continued). Carefully chosen, just two cutting planes suffice such that the
LP relaxation yields s0 as an optimal solution.
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Figure 2.14: Geometrical representation of the
MILP in Equation 2.8 and the corresponding
LP relaxation. . .

max −x+ 2y such that
−9x+ 15y ≤ 20

2x+ 7y ≥ 7

9x+ 3y ≤ 22

− x+ y ≤ 0

y ≤ 1

x, y ≥ 0

x, y ∈ Z

(2.11)
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Figure 2.15: . . . with −x+ y ≤ 0 (g4). . .
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Figure 2.16: . . . and y ≤ 1 (g5).

Adding −x + y ≤ 0, the optimal solution p to the LP relaxation and s0 do not coincide
yet, see Figure 2.15. Only with the additional cut y ≤ 1, they are identical, i.e. p = s0, see
Figure 2.16.

However, choosing cutting planes carefully is seldom as easy as in this example. A general
approach to finding cutting planes are for example Gomory cuts. Sometimes problem specific
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2.3 Linear programming and (mixed-)integer linear programming

cutting planes speed up the solving process. This is the case in Chapter 4, which is why we
refer to Nemhauser and Wolsey [NW88] for a detailed presentation of general cutting-plane
algorithms.

Branch-and-bound Another established procedure for solving MILPs is a divide-and-
conquer approach. This is an algorithm-design paradigm that is based on the idea of split-
ting hard problems into smaller instances that are easier to solve. Then, the solutions of
these instances are combined to retrieve a solution to the original problem. This concept
is applicable to MixedIntegerLinearProgramming. The branch-and-bound procedure
follows this paradigm. Here, the feasible region S is divided into a set {Si}ki=0 such that⋃k
i=0 Si = S. Due to

max {cx|x ∈ S} =
k

max
i=0

(max {cx|x ∈ Si})

for any division of S, combining found solutions to the subproblems in order to retrieve an
optimal solution to the original problem is not an issue.

The starting point of any branch-and-bound algorithm is an MILP which is hard to solve.
Also, easy-to-find relaxations of this MILP do not yield solutions that are feasible with
respect to the original problem. The problem is then split into two or more subproblems
and the procedure is applied recursively. This part of the procedure is known as branching.
During the running time, the feasible solution with the currently best objective value is kept
in the memory; modern solvers refer to it as the incumbent solution [CPL17, Gur18]. This
incumbent solution gives a bound for the objective value of an optimal solution. A new
incumbent solution initiates the bounding step. Subproblems that do not yield solutions
better than the incumbent one do no longer play a role in the search for an optimal solution
to the original problem. These subproblems get pruned from the branch-and-bound tree.

In the following, we will focus on branch-and-bound algorithms that work with LP re-
laxations as they are most common in modern-day solvers, compare Algorithm 11. Here,
branching is done with respect to violations concerning the integrality of a variable x of
the MILP. Let x′ be the value of x in the solution to the LP relaxation and bx′c the
largest integer value smaller than x′, i.e. bx′c := max {i ∈ Z| i < x′}. Adding x ≤ bx′c and
x ≥ bx′c+ 1, respectively, produces two subproblems excluding solutions with x = x′. Each
of these subproblems is the root of a subtree of the branch-and-bound tree. The tree of a
subproblem M ′ of an MILP M can be pruned if one of the following conditions is met:

(P1) M ′ is infeasible.

(P2) The solution xLP to M ′LP is feasible for M , i.e. xLP ∈ Zn.
(P3) With respect to the objective, the solution xLP to M ′LP is not better than the current

incumbent solution x, i.e., in the case of a maximization problem, c ·xLP ≤ c ·x holds.

Algorithm 11 offers possibilities for variations. Line 5 does not specify the order in which
the MILPs are explored in the branch-and-bound tree. However, commonly, a depth-first
search is preferred over a breadth-first search. Also, Line 13 requires good strategies for
choosing the variable that is used for the branching step.
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2 Methodological background

Algorithm 11: LP-Relaxation-Branch-and-Bound-Algorithm(MILP M)
Data: MILP M with feasible region S
Result: optimal solution xopt for M

1 P ← {M};
2 // setting lower and upper bound
3 l← −∞, xopt ← nil;
4 while P 6= ∅ do
5 extract MILP M ′ from P and let S′ be its feasible set;
6 solve M ′LP and define optimal value zLP and optimal solution xLP if existing;
7 if zLP > l then
8 if xLP ∈ S′ then
9 l← zLP;

10 xopt ← xLP;
11 else
12 // enforce integrality on integer variable with non-integral

value
13 extract i from

{
j ∈ {1, . . . , n}

∣∣x′j /∈ Z
}
;

14 complete M ′ to M ′1 with xi ≤ bx′ic and to M ′2 with xi ≥ bx′ic+ 1,
respectively;

15 P.add({M ′1,M ′2});

16 return xopt;
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2.3 Linear programming and (mixed-)integer linear programming

Example 2.3 (continued). In the following, we use branch-and-bound to solve the following
MILP M (0) with feasible set S0 (described first in Equation 2.8):

max −x+ 2y such that
−9x+ 15y ≤ 20

2x+ 7y ≥ 7

9x+ 3y ≤ 22

x, y ≥ 0

x, y ∈ Z

Figure 2.17(e) depicts the corresponding branch-and-bound tree.

The LP relaxation M
(0)
LP to this problem yields p0 = (5/3, 7/3) as an optimal solution, see

Figure 2.17(a). Since p0 /∈ Z2, further steps are necessary to find an integral solution.
Branching on x yields the constraints x ≤ 1 and x ≥ 2 which, added to the original problem
respectively, produce the two subproblemsM (1) andM (2) with S1 = S0∩

{
(x, y) ∈ R2

∣∣x ≤ 1
}

and S2 = S0 ∩
{

(x, y) ∈ R2
∣∣x ≥ 2

}
, respectively. Their LP relaxations M (1)

LP and M (2)
LP with

their optimal solutions are depicted in Figure 2.17(b). The optimal solution p1 to M
(1)
LP

is not integral, either. Consequently, another branching step is necessary, this time on y.
The constraints y ≤ 1 and y ≥ 2 again produce two new subproblems M (3) and M (4) with
S3 = S1 ∩

{
(x, y) ∈ R2

∣∣ y ≤ 1
}
and S4 = S1 ∩

{
(x, y) ∈ R2

∣∣ y ≥ 2
}
, respectively, see Fig-

ure 2.17(c). Apparently, S4 = ∅. Thus, the problemM (4) is infeasible and no further branch-
ing is necessary according to pruning criterion (P1). The optimal solution p3 to M (3) is not
integral. BranchingM (3) on x yieldsM (7) andM (8) with S7 = S3∩

{
(x, y) ∈ R2

∣∣x ≤ 0
}
and

S8 = S3∩
{

(x, y) ∈ R2
∣∣x ≥ 1

}
, respectively, see Figure 2.17(d). For M (7) the feasible region

is empty and the branching stops according to (P1). Solving M (8)
LP yields p8 as an optimal

solution. Since p8 ∈ Z2, it also solves M (8) optimally. The solution p8 is now the incumbent
solution to M (0) with an objective value of 1. The branching procedure terminates according
to pruning criterion (P2). Now we turn to the subproblems of M (2). Figure 2.17(b) indicates
that p2 is an optimal solution to M (2)

LP . Since c · p2 = 2/3 < 1 = c · p8, there is no need to ex-
plore this branch any further according to (P3). A feasible solution toM (0) in this branch has
an objective value of less than 1. Nevertheless, in this example, we continue with the branch-
ing procedure and face the problems M (5) and M (6) with S5 = S2∩

{
(x, y) ∈ R2

∣∣ y ≤ 1
}
and

S6 = S2 ∩
{

(x, y) ∈ R2
∣∣ y ≥ 2

}
, respectively, see Figure 2.17(c). The solution p5 to M (5)

LP is
integral and, thus, an optimal solution to M (5). The feasible region of M (6) is empty. In
both cases, branching terminates due to (P1) and (P2), respectively.

Branch-and-cut Both approaches described above, cutting-plane and branch-and-bound
algorithms, can be applied in combination. Adding cutting planes to a subproblemM ′, i.e. a
node in the branch-and-bound tree, may decrease the number of necessary branching steps
in the following. The cutting planes applied can be valid locally, i.e. only in the subtree with
the root M ′, or globally if they define valid cuts for the original problem. This combined
approach is commonly referred to as branch-and-cut [PR91, Mit02].
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(a) LP relaxation with optimal solution p0 /∈ Z2.
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(d) The solution p3 in Fig. (c) suggests branching
on x another time. The feasibility set S8 is only
a line with extreme point p8.

x ≤ 0 x ≥ 1

S7 = ∅ p8 = (1, 1)
c · p8 = 1

x ≤ 1 x ≥ 2
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(
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c · p5 = 0 S6 = ∅

(e) Branch-and-bound tree describing the procedure depicted in Figures (a) – (d). Here, in the leaves,
either an integral solution is found or the feasible set is empty.

Figure 2.17: Exemplary application of branch and bound.
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2.3 Linear programming and (mixed-)integer linear programming

Example 2.4. Now, we want to solve MaximumFlow as presented in Section 2.2.3 with a
linear programming approach. Given a directed graph G = (V,E) with distinguished vertices
s, t ∈ V and a capacity c : E → R≥0, we are looking for the maximum flow from s to t. The
flow from s to t is composed of the flows on the edges of G. Hence, we introduce a variable
f(u,v) for every edge (u, v) ∈ E that represents the flow on this edge in the solution.

We model the maximization of the flow by maximizing the outflow of s, see the objective in
Equation 2.12, and prohibiting the inflow into s, see Equation 2.13. Expressing the capacity
constraint and the flow conservation with linear constraints completes the LP. The capacity
constraint, i.e. that for every edge (u, v) ∈ E the flow is bounded by the edge’s capacity, is
implemented in Inequation 2.14. In order to conserve the flow in every vertex v ∈ V \{s, t},
we introduce the constraints in Equation 2.15.

max
∑

(s,v)∈E

f(s,v) such that (2.12)

∑
(u,s)∈E

f(u,s) = 0 (2.13)

f(u,v) ≤ c (u, v) for each (u, v) ∈ E (2.14)∑
(u,v)∈E

f(u,v) −
∑

(v,w)∈E

f(v,w) = 0 for each v ∈ V \ {s, t} (2.15)

f(u,v) ≥ 0 for each (u, v) ∈ E (2.16)

Since no inflow into s is allowed and the flow is conserved in any vertex but s and t, each unit
of commodity entering the network via s has to leave the network via t. Hence, maximizing
the outflow from s, we maximize the s-t flow and, thus, solve MaximumFlow.
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3 Location-dependent generalization of
road networks based on equivalent
destinations

The following chapter is mainly taken from a joint work with Thomas C. van Dijk and
Jan-Henrik Haunert [vDHO16]. Here, we present an efficient algorithm for the computation
of a primarily geometric generalization of a road network. For this purpose, a distinguished
location within the road network, the source, is considered. Starting from the source, short-
est paths to any location within the network are considered. Parts of the road network (both
locations and road segments) which are reachable via similar shortest paths get simplified
to a point feature. This procedure can be called both a selection and an aggregation pro-
cess, compare Figure 1.1. For the visualization, we use only geometric objects that already
existed in the input. Hence, based on the input, we select point features and road segments
connecting them with the source. However, these selected point features represent parts of
the input road network. That means, said parts of the road network get aggregated to point
features.

Abstract
Suppose a user located at a certain vertex in a road network wants to plan a route using
a wayfinding map. The user’s exact destination may be irrelevant for planning most of the
route, because many destinations will be equivalent in the sense that they allow the user
to choose almost the same paths. We propose a method to find such groups of destinations
automatically and to contract the resulting clusters in a detailed map to achieve a simplified
visualization. We model the problem as a clustering problem in rooted, edge-weighted trees.
Two vertices are allowed to be in the same cluster if and only if they share at least a given
fraction of their path to the root. We analyze some properties of these clusterings and give a
linear-time algorithm to compute the minimum-cardinality clustering. This algorithm may
have various other applications in network visualization and graph drawing, but in this
paper we apply it specifically to the generalization of focus-and-context maps, i.e., maps
that bring out certain parts of their content in detail and also display the surroundings
for increased readability. When contracting shortest-path trees in a geographic network,
the computed clustering additionally provides a constant-factor bound on the detour that
results from routing using the generalized network instead of the full network. This is a
desirable property for wayfinding maps.
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3.1 Introduction

Suppose a user wants to get by car from Berlin, Germany to a certain address in Groningen,
The Netherlands. She would like to plan her route using a wayfinding map. However, she
does not want to be bothered with a detailed map of all of Europe. At the start of her
journey, the exact address in Groningen is irrelevant to her, since it would not influence
the direction she should start driving in – or, in fact, even where to drive within, say, the
next hour. Therefore, the map in a dynamic visualization system may well collapse the
city (or even the province) Groningen to a single vertex: any particular destination within
Groningen leads to the exact same wayfinding decisions at this point. Only later does the
exact address in Groningen become relevant: the map representation of Groningen should
change while the user approaches her destination.

In this paper we formally define whether it makes sense to distinguish between a set of
destinations. Let the graph G = (V,E) represent the road network and s ∈ V be the user’s
current location. Our idea is to compare, for any two vertices u, v ∈ V , the shortest path
Psu from the user’s position s to u, and the shortest path Psv from s to v. If Psu shares a
user-specified fraction α ∈ [0, 1] of its length with Psv and vice versa, we consider u and v
to be equivalent destinations, whose distinction from the user’s current perspective is not
meaningful. This definition makes sense if α is set to a relatively high number, for example
if α = 0.95. With this setting, the user can safely navigate for a relatively long distance
without having to bother about the distinction between u and v. We consider a set S ⊆ V
of destinations equivalent (with respect to a start vertex s and a threshold α) if all vertices
in S are mutually equivalent. We will reduce the level of detail of a network by using this
equivalence condition to decide which locations can be aggregated.

The reduction of the level of detail of a map is a classical problem in cartography, where
it is commonly termed map generalization and often approached by optimization [WJT03,
Ses05]. Because map generalization has turned out to be a highly complex problem, however,
it is typically subdivided into multiple tasks such as the selection of objects for the output
map [TP66], the aggregation of objects [HW10a], and the simplification of lines [DDS09].
When generalizing geographic networks, the first step is usually to select edges of a graph
representation of the network. This step aims to reduce the visual clutter in the output
map while preserving characteristic properties and high-level structures of the network, for
example, connectivity [MB93, Zha05] and sequences of line segments that are perceived as
groups [TB02]. Often an aim is to preserve vertices or edges of high importance, which can
be defined based on graph theoretical centrality measures [JC04]. Brunel et al. [BGK+14]
modeled the generalization of networks as optimization problems, showed NP-hardness
for several of their models, and developed approximation algorithms as well as efficient
heuristics. Chimani et al. [CvDH14] considered a problem in which the edges of a graph
have to be removed iteratively to produce a sequence of subsequently more generalized
maps of a network. They also showed NP-hardness for their model and developed efficient
approximation algorithms and heuristics.

In this paper, we develop a new model and generalization algorithms based on optimization
for focus-and-context network maps, in which some parts of a network are represented
with more details than other parts. Such maps have often been suggested for navigation
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3.1 Introduction

and wayfinding tasks [ZR02], for example, to allow a user to follow a given route [AS01].
Kopf et al. [KAB+10] have presented a method for the automatic generation of destination
maps, which allow different users to find routes to a given destination. For this purpose,
the road network is presented with more details in the destination’s vicinity. Focus-and-
context maps are often distorted to present highly detailed parts of a network map at a
larger scale than other parts. However, we consider the generalization of the network as
an interesting problem of its own. After the map has been generalized with our method,
different distortion techniques could be applied to use the available space in an optimal way
and to reduce the remaining visual clutter, for example, a fish-eye projection [YOT09] or an
optimization approach [vDH14]. An overview of distortion techniques for focus-and-context
visualization is provided by Cockburn et al. [CKB09].

To summarize, in existing generalization systems, the level of detail is often dictated by a
selected map scale. In this paper, however, we develop a method that selects details based
on whether they are informative with respect to wayfinding tasks. Unnecessary details are
removed and, thus, the visual complexity of the map is greatly reduced. We do not explicitly
model graphical conflicts, however, since those may be resolved by selecting an appropriate
map scale or using existing distortion techniques.

Our method detects clusters that exist in a road network and in this sense is related to speed-
up techniques for shortest-path computations based on contraction hierarchies [GSSV12]
or highway hierarchies [SS12]. Such concepts, however, are not readily applicable for the
generation of focus-and-context maps of networks.

While this paper primarily considers the generalization of road networks, many other ap-
plications also require the visualization of hierarchical information and as such this topic
has attracted much attention. Examples include the drawing of business data [VvWvdL06],
phylogenetic trees [HRR+07] and file systems [BYB+13]. Particularly the latter two appli-
cations typically involve large tree structures where the use of focus-and-context techniques
is appropriate if not outright necessary. The concept of focus and context in tree visual-
ization can be traced back at least to Furnas, who proposed fish-eye views where nodes
have an importance based on their distance to a focus node [Fur86]. This can be achieved,
for example, using hyperbolic trees [LRP95]. These approaches do not explicitly generalize
the hierarchical structure, but instead rely on scaling all available node-link information.
An alternative drawing style consists of variations of so-called treemaps, for which focused
visualizations have also been investigated [BL07].

We now come to the results presented in this paper. We are given a graph G = (V,E)
representing the road network, a source vertex s ∈ V , a number α ∈ [0, 1], and weights
w : E → R≥0 reflecting edge lengths. In a geographic network, these weights can for example
be Euclidean distances, possibly weighted by road class or travel time. Our task is then to
partition the vertex set V automatically such that each cell corresponds to a set of equivalent
destinations. (Singleton cells are allowed.) Subject to this constraint, we will minimize the
number of cells in the partition: this generalizes the road network as much as possible. Since
the equivalence condition is based on sharing a fraction of a shortest path, clusters near the
source s must likely be small and many. Farther away, an optimal solution to the problem
will probably have clusters that reflect larger geographic structures.
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Figure 3.1: Illustrations for Definitions 3.1 and 3.2, 3.3, and 3.4. All edges have weight 1.

First we formally define this clustering problem in its general setting on arbitrary trees
(Section 3.2) and give an efficient linear-time algorithm that solves this problem (Sec-
tion 3.3). We also observe that a structural theorem plus known algorithms would give
another polynomial-time algorithm, but that this is more complicated and less efficient.
Then we apply this clustering algorithm specifically to modified shortest-path trees in ge-
ographic road networks (Section 3.4). We give several options for visualizing the resulting
generalized tree and show how to incorporate cross-tree connectivity information in the
drawing. We close with concluding remarks and an outlook on directions for future work
(Section 3.5).

3.2 Equivalent destinations in trees

Throughout the paper, we let G = (V,E) be an edge-weighted graph and T = (V,ET )
a spanning tree of G, rooted at a vertex s ∈ V . Given T , we denote by Puv the unique
path in T that connects u and v; this is well-defined since T is a tree. Similarly, we write
Puvw for the concatenation of Puv and Pvw; this notation extends to longer chains of paths.
Given a path P , we denote the sum of weights of edges on the path by w(P ). Our results
hold for arbitrary trees and arbitrary nonnegative edge weights, but in our application we
specifically use shortest-path trees and Euclidean distances as weights.
Now we define a measure of similarity between two vertices by how much of their path to s
they share: on the basis of this we will decide whether the vertices could reasonably be
contracted in a nice visualization. Note that the following definition is not symmetric (see
Figure 3.1 for illustrations of the following definitions).

Definition 3.1 (Directed Similarity). Let u, v ∈ V be two vertices, u 6= s, and let x be their
lowest common ancestor in T . The directed similarity of u to v is defined as

σ(u, v) = w(Psx)/w(Psu). (3.1)
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3.2 Equivalent destinations in trees

The directed similarity is always between 0 and 1, inclusive, since paths have nonnegative
weight and w(Psx) ≤ w(Psu) since x is on Psu.

Definition 3.2 (α-Compatible, ⊕). Two vertices u, v ∈ V are called α-compatible if and
only if both

σ(u, v) ≥ α and σ(v, u) ≥ α. (3.2)

When α is clear from context, we write u⊕ v to assert that u and v are compatible.

Note that compatibility is reflexive and symmetric, but not transitive. For the rest of the
paper we assume that a constant α ∈ [0, 1] is used throughout.

Definition 3.3 (Compatibility graph). The compatibility graph G⊕ = (V,E⊕) has an edge
between any two vertices u, v ∈ V if and only if u⊕ v.

Definition 3.4 (Allowed contraction). Contracting a set of vertices S ⊆ V is called allowed
if and only if S is connected in T and all vertices in S are pairwise α-compatible. Note that
the latter is equivalent to S being a clique in G⊕.

These definitions lead naturally to the following problem statement.

TreeSummary

Instance: A tree T = (V,ET ) rooted at s ∈ V .

Weights on the edges w : ET → R≥0.

A compatibility threshold α ∈ [0, 1].

An integer k.

Question: Does there exist a partition of V into at most k
cells, such that each cell is an allowed contrac-
tion?

Since allowed contractions correspond to cliques, this problem asks for a minimum-
cardinality clique cover of G⊕. (The proof of Theorem 3.1 will show that there exists an
optimal clique cover where each cell is connected in T .) The CliqueCover problem on
general graphs is one of Karp’s original 21 NP-complete problems [Kar72], but polynomial-
time solvable for several restricted graph classes. (Sometimes the term CliquePartition
is used instead – interchangeably, it seems. In our situation we cover the vertices, not the
edges.) In particular, we solve the optimization version of TreeSummary in linear time.
First we give some structural lemmata. Consult Figure 3.2 for illustrations of the involved
vertices and sets.

Lemma 3.1 (Compatible descendants). Let u, v ∈ V be vertices and let x be their lowest
common ancestor. Then u and v are compatible if and only if they are each compatible to
x, that is, u⊕ v ⇐⇒ u⊕ x ∧ v ⊕ x.
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(a) The vertices u and v are com-
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(c) In Lemma 3.3, S must be an
appropriate subset of the square
vertices, e.g. S = {a, b, c, x}; then
{b, x} will form S⊕, all others, i.e.
a and c, are incompatible.

Figure 3.2: Illustrations for Lemmata 3.1–3.3

Proof. Implication both ways.

( =⇒ ) Note that σ(u, x) = σ(u, v) since x is the lowest common ancestor of u and v. By u⊕v
we have σ(u, v) ≥ α and therefore σ(u, x) ≥ α. The lowest common ancestor of u and
x is in fact x, since u is a descendant of x: then σ(x, u) = w(Psx)/w(Psx) = 1 ≥ α.
This gives u⊕ x. The same argument for v gives v ⊕ x.

(⇐= ) Since u⊕x, we have by definition that σ(u, x) ≥ α. Symmetrically v⊕x gives σ(v, x) ≥
α. Because x is the lowest common ancestor of u and v, this is precisely the definition
of u⊕ v.

This concludes the proof.

Lemma 3.2 (Compatible subtrees). Let x ∈ V and let a, b ∈ V be descendants of x. If
w(Psa) ≤ w(Psb) and b⊕ x, then a⊕ x. That is, if a and b are both descendants of x, and
b is farther away from the root, then b⊕ x =⇒ a⊕ x.

Proof. The lowest common ancestor of b and x is x itself, and we have b ⊕ x, hence
w(Psx)/w(Psb) ≥ α. Since the lowest common ancestor of a and x is x as well, we have
σ(a, x) = w(Psx)/w(Psa) ≥ w(Psx)/w(Psb) ≥ α. With σ(x, a) = 1 ≥ α we get a⊕ x.

Lemma 3.3 (Equivalent descendants). Let x ∈ V be a vertex and let S ⊆ V be a set of
vertices such that for any pair of vertices in S their lowest common ancestor is x. Then (⊕)
is an equivalence relation on S. In particular, let S⊕ =

{
v ∈ S

∣∣ v ⊕ x}. All pairs of vertices
in S⊕ are compatible, and any vertex in S \ S⊕ is not compatible to any other vertex in S.

Proof. Directly from Lemma 3.1. Let u, v ∈ S. If u⊕x and v⊕x, then u⊕ v. If either u��⊕x
or v��⊕x, then u��⊕ v.
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3.3 A linear-time algorithm for TreeSummary

We solve the optimization version TreeSummary: partitioning V into as few cells as pos-
sible, where every cell is an allowed contraction. The algorithm starts with every leaf vertex
in a cell of its own and greedily merges cells in a post-order traversal (that is, bottom-up).
During the algorithm, every cell C is an allowed contraction, that is, the following invariants
hold:
(1) the vertices in C are connected in T and
(2) C is a clique in G⊕.

When the algorithm is done, the cells partition V and we will prove that the number of
cells is minimized.
For a cell C, its vertex with the shortest path to s is called Root(C). A vertex in C with
the longest path to s (or tied for the longest) is called deep. Throughout the algorithm, we
maintain the following references. Every vertex v, for as long as it is the root of a cell C,
stores a reference Cell(v) = C. This is uniquely defined since cells are disjoint. Every cell C
stores a reference Deep(C) to any one of its deep vertices. These references can easily be
kept up to date during the algorithm.
The algorithm traverses T in post-order. After processing a vertex, that vertex is the root
of a cell. Therefore, when considering any vertex x, each child c ∈ Children(x) is the root
of a cell. We call a child c contractible if and only if x⊕Deep(Cell(c)). We merge the cells
of all contractible children – that is, we take their union – and add x to this cell: this results
in a cell with x as its root. We do not do anything with incontractible children; their cells
will not change anymore. See Algorithm 12.
This algorithm satisfies the two stated invariants. Upon initialization, both clearly hold.
When processing a vertex, Lemma 3.3 holds for the deep vertices of its children’s cells and
then Lemma 3.2 holds for the entire cell. This shows that the (single) newly constructed
cell is an allowed contraction.

Theorem 3.1. Algorithm 12 computes an optimal solution and runs in O(n) time, where
n is the number of vertices in T .

Proof. Let C be the set of cells determined by the algorithm. Note that C is a clique partition
of G⊕ due to the satisfied invariants stated at the beginning of this section. Now, we prove
that C is a minimal clique partition. Let I = {Deep(C) : C ∈ C}: we claim I is an
independent set in G⊕. The tree T induces a tree structure on C. Consider two arbitrary
cells C1 and C2 in C with a lowest common ancestor x ∈ V . If Deep(C1)⊕Deep(C2) then,
due to Lemma 3.1, both Deep(C1) ⊕ x and Deep(C2) ⊕ x would hold. With Lemma 3.2
Deep(C1) would be compatible with every vertex on the path from Deep(C1) to x; the same
would hold for Deep(C2). Hence, arriving at x, the algorithm would identify two children
of x as Root(C1) and Root(C2) and finally merge these cells. Thus, the deep vertices of the
cells in C are incompatible, i.e., independent in G⊕. As an independent set provides a lower
bound for clique partitions and |C| = |I| holds, C is an optimal clique partition of G⊕.
During the tree traversal, each vertex considers all its children once. This involves testing
x⊕Deep(Cell(v)). If we precompute the weight w(Psv) for each vertex v, this test runs in
constant time. This bounds the runtime by O(n).
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3 Location-dependent generalization of road networks based on equivalent destinations

Algorithm 12: ContractTree
Data: Rooted tree T with edge weights.
Result: Minimum-cardinality allowed contraction C.

1 C ← the set with a singleton cell for each vertex of T ;
2 forall vertices x ∈ T , in post-order do
3 S ←

{
Deep(Cell(v))

∣∣ v ∈ Children(x)
}
;

4 S⊕ ←
{
v ∈ S

∣∣ v ⊕ x};
5 Merge Cell(x) and all Cell(v) for v ∈ S⊕;
6 end
7 return C;

Recall that a graph is called chordal if and only if all cycles of length at least 4 have a chord,
i.e., an edge that is not part of the cycle but which connects two of its vertices. Now we
prove that the compatibility graph G⊕ is chordal. This immediately gives a polynomial-time
algorithm for TreeSummary, since CliqueCover can be solved in polynomial time on
chordal graphs via its relation to coloring [Maf03]. We already have an easily-implementable
linear-time algorithm based on the extra structure available to us (Algorithm 12). Still, the
chordality of G⊕ is interesting from a structural point of view.

Theorem 3.2. The compatibility graph G⊕ is chordal.

Proof. Consider an arbitrary cycle in G⊕ with vertex set VC ⊆ V and |VC | ≥ 4. Let
u, v, w ∈ VC be a sequence of vertices on this cycle where {u, v} , {v, w} ∈ E⊕ are edges
of the cycle and v is the deepest vertex, that is, w(Psv) ≥ w(Psu) and w(Psv) ≥ w(Psw).
Furthermore let xu ∈ V be the lowest common ancestor of u and v (considering T ), and let
xw ∈ V be the lowest common ancestor of w and v. Without loss of generality we assume
w(Psxw) ≥ w(Psxu).

In this situation, with both xu and xw being ancestors of v, either xu = xw or xw is a
descendant of xu. First assume xu = xw. With Lemma 3.1 we derive from v ⊕ u and v ⊕w
that both v and w are compatible with xu. Then, another application of Lemma 3.1 tells us
that u⊕ w and thus {u,w} ∈ E⊕. Now assume that xw is a descendant of xu. Since u⊕ v
and Lemma 3.1 hold, u and v are compatible to their lowest common ancestor xu. With w
being a descendant of xu and w(Psv) ≥ w(Psw), the compatibility v ⊕ xu results in w ⊕ xu
because of Lemma 3.2. Again, we have v and w being compatible with xu. With Lemma 3.1
this results in u⊕ w and thus {u,w} ∈ E⊕.
We see in either case that VC has a chord. Consequently, G⊕ is chordal.

3.4 Map generalization

Now we return to map generalization and our example problem of finding a way to Gronin-
gen. Here, the TreeSummary problem does not directly apply: the road network we are
interested in is unlikely to be a tree. Instead, we have a geometric graph G = (V,E) with
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Figure 3.3: Using direct line segments between cell roots is not topologically safe. Even if
there are no intersections in the output, it may still be the case that the embedding changes
as illustrated in this example: the children of the fat vertex are numbered in clockwise order.

the user’s position s ∈ V and a nonnegative weight function w : E → R≥0. (In order to
generate destination maps [KAB+10] instead, we can pick s to be the destination.) In this
section, we will first consider a tree in G, so that we may apply our tree contraction algo-
rithm. Afterward we reintroduce the connectivity information from G in order to generate
the generalized map.

Since the generalized map is intended for planning routes, a shortest-path tree of G (rooted
at s) seems appropriate. However, if we simply calculate a normal shortest-path tree, we lose
a lot of information. Consider an edge e = {u, v} ∈ E, where neither the shortest path to u
passes through v nor the other way around. This edge would not be included in a normal
shortest-path tree. This is correct if we only consider the vertices of the graph. However, if
the graph represents a continuous road network, then there is in fact a point on the interior
of the edge at which s is equidistant through u and through v; anywhere else on the edge,
one path or the other is shorter.

In order to incorporate this connectivity information in our visualization of the road net-
work, we start by calculating a modified shortest-path tree T ′ = (V ′, E′) where V ⊆ V ′.
This tree T ′ contains all edges from the normal shortest-path tree, but as noted, there are
edges in E that do not show up. For every such “missing” edge e = {u, v} we do the follow-
ing: we find the position on e where the paths to s via u and via v have the same length,
where we assume the weight of e is distributed uniformly along its length. (This holds, of
course, if the weights are Euclidean distances. If, for another example, the weights represent
travel time, the assumption is still reasonable.) At this position on e, we introduce two vir-
tual vertices p1 and p2 to V ′ and add the edges {u, p1} and {p2, v} to E′, assigning weights
appropriately. (To contrast these virtual vertices, the original vertices of V are called real.)
By annotating p1 and p2 with references to the other, the resulting tree T ′ represents all
edges and connectivity of G.

After constructing T ′, we apply Algorithm 12 to solve TreeSummary on it. The result is
a partition of V ′ into contractible cells. These cells are highly detailed close to s and less
detailed the farther away they are. The question remains how to draw a generalized map
based on these cells.
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3 Location-dependent generalization of road networks based on equivalent destinations

(a) Peeling a tree. (b) Some simplifications. Fat gray lines indicate the
input; black lines indicate the output.

Figure 3.4: Simplifying a tree as a set of polylines. Dots indicate cell roots.

We represent each cell by its root vertex, which we draw in its original position given by
G. Note that the cells themselves are also related in a tree structure induced by T ′: call a
cell C the child of another cell P if and only if Root(P ) is the first cell root encountered on
the path from Root(C) up to the tree root s. We propose the following three visualizations
of T ′.
• For every cell C and its parent cell P , let c = Root(C), p = Root(P ) and draw a

straight line segment between c and p. We call this the direct drawing. The advantage
of this drawing is that it is simple, highly generalized, and has a one-to-one corre-
spondence between cells and output vertices. We do note that in general these line
segments may intersect and that, even if they do not, the embedding of the output
map may be inconsistent with the input. (See Figures 3.3 and 3.4b for an illustration.)
This poses problems for a road map: intersecting line segment may visually imply con-
nectivity, and even if the appropriate details will show up once the user comes closer,
an incorrect embedding may negatively impact the user’s mental model.

• For every cell C and its parent cell P , let c = Root(C), p = Root(P ) and draw Pcp.
That is, draw the path in T ′ that connects c and p. We call this the detailed drawing.
Note that Pcp is an actual shortest path in G. This is a positive aspect of the detailed
drawing: it is in fact an edge selection of G and it contains those parts of the shortest
path tree that connect the cell roots. This does mean that, even though a selection
has been made, the selected polylines still have the same level of detail as the input,
which may or may not be desirable.

It should also be noted that this drawing can have vertices of degree larger than
two that are not at a cell root: we call these internal branches. (See Figures 3.3
and 3.4 for an illustration.) The existence of such vertices can be considered somewhat
unfortunate after we have carefully optimized the selection of cell roots, but this
drawing is true to G and it does not necessarily look displeasing.

• Construct the detailed drawing and apply a topologically-safe simplification algorithm.
We call this the simplified drawing. We use the algorithm of Dyken et al. [DDS09],
which greedily deletes vertices but never moves them, and never deletes cell roots. We
run the algorithm without stopping criterion, that is, as far as it will go. In order to
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3.4 Map generalization

(a) Input. (b) Detailed. (c) Simplified.

Figure 3.5: Würzburg with α = 0.8, with the vertex s indicated in figure (a). The simplified
drawing contains only two internal branches: Figure 3.3 is a crop of this map showing the
extra vertices (located near the bottom right of this figure).

(hopefully) get rid of any internal branches that the detailed drawing might have, we
slightly offset each path so that they do not actually touch except in cell roots and
therefore do not actually form internal branches. (Topologically, this can always be
done and it can be implemented simply in practice if one accepts some inefficiencies.
It has not been our goal to optimize this step.) We call this the peeled tree: see
Figure 3.4(a). After simplification we merge any remaining vertices that logically
belong to the same vertex in V ′. This may introduce internal branches, but ensures
that the final drawing does not contain infinitesimally-shifted paths

Figure 3.5 shows a map of the German city of Würzburg, and detailed and simplified draw-
ings for the same root s. It can be seen that the detailed drawing already provides a
focus-and-context effect, giving more detail near the bottom of the map, slightly left of
the middle, which is where s is located. When compared to the simplified drawing, it can
be seen that internal branches are present. Simplifying those gives a much cleaner output
graph, but naturally this comes at some cost to the recognizability of the road network. In
this particular example, only two internal branches remain in the simplified drawing.
When drawing maps, restricting ourselves to outputting trees limits the information we can
present. Indeed, as we argued at the start of the section, we should care about the cross
links between the cells: between cells that share a virtual vertex, to be precise, since these
are cells that touch in the network G. This occurs on the interior of edges in E (or in vertices
of V ) and it is actually possible to navigate from a cell to a touching cell. We now draw
these adjacencies, either directly, with a straight-line segment, or with a detailed path: from
one cell root, to the virtual vertex, and then to the other cell root. If a pair of cells touch in
more than one virtual vertex, we draw this connection only for a single virtual vertex that
has the shortest distance to s.
Figure 3.6 shows the resulting drawing of Würzburg, for varying values of α. More so than
the tree drawing of Figure 3.5, this resembles a traditionally useful map and it also exhibits
a focus-and-context effect, the strength of which depends on α.
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(a) Detailed, α = 0.3. (b) Detailed, α = 0.5. (c) Detailed, α = 0.7.

(d) Detailed, α = 0.9. (e) Direct, α = 0.5. (f) Direct, α = 0.7.

Figure 3.6: Würzburg with cross connections, for various values of α, and with either
detailed of direct drawing style. All drawings use the same vertex s, which is indicated in
figure (a). Note that figures (b) and (e) are the detailed and the direct drawing of the same
underlying partition; this also holds for (c) and (f).

Figure 3.7(a) shows a map of a much larger road network (Dallas, Texas). Figure 3.7(b)
shows a detailed drawing, with cross connections and α = 0.5. This already gives a focus-
and-context effect by having full detail in an area of interest and a gradually more general-
ized road selection as the (network) distance increases. Figure 3.7(c) shows an example of
how this effect can be enhanced and makes the map more useful by computing a variable-
scale map transformation in the style of Haunert [HS11, vDvGH+13].

We finish with an observation about the abovementioned cross connections. In order to
provide meaningful information to the user, we want to give an estimation of how long a
detour might get if the user chooses to use the shortest path to a neighboring cell and such
a cross link instead of following the route on T ′.

Theorem 3.3. A detour through a neighboring cell is at most
(

2
α − 1

)
times as long as the

shortest path.

60



3.4 Map generalization

(a) Input network.

(b) Detailed drawing, α = 0.5. (c) Focus map.

Figure 3.7: The city of Dallas, Texas. In Figure (b), the black lines indicate a detailed
drawing of the tree summary and the gray lines indicate cross connections. The focus map
(c) was computed with the method of van Dijk et al. [vDvGH+13], using a scale factor of
3 for a region around the selected center.
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Proof. Consider an arbitrary vertex u ∈ V ′, either real or virtual. Let v ∈ V ′ \ V be any
virtual vertex in the same cell as u (possibly u = v) and let r ∈ V be the root of the cell
containing u. Then the detour of going through v is a factor δ := w(Puvs)/w(Pus). We wish
to bound δ.
We first observe by the triangle inequality for shortest paths that the distance from u to v
is at most the distance from u to v via r. This detour is possible since u and v are both in
the cell with root r. This gives

1 ≤ δ ≤ w(Purvs)

w(Pus)
=
w(Pur) + w(Prv) + w(Pvs)

w(Pur) + w(Prs)
.

Since all the weights are nonnegative and u influences the right-hand side only through
w(Pur), we can maximize the given ratio by setting w(Pur) = 0, since w(Pur) appears in
both the numerator and the denominator as a summand. (That is, the detour is worst when
u is a cell root, which makes sense.)
We observe that w(Prv) = w(Pvs)− w(Prs) because r lies on Pvs. Since v and its ancestor
r lie in the same cell, they are compatible and we have w(Pvs) ≤ 1

αw(Prs). Putting these
things together,

δ ≤ w(Prv) + w(Pvs)

w(Prs)
=

(
w(Pvs)− w(Prs)

)
+ w(Pvs)

w(Prs)

≤
((

1
α − 1

)
+ 1

α

)
· w(Prs)

w(Prs)
=

2

α
− 1.

This is the bound in the theorem.

For α = 0.95, as proposed in the introduction, the above theorem gives an upperbound of
11% on any detour, which seems very reasonable. The value α = 0.9 results in 22% and
even for α = 0.5 we still get a factor 3.

Experimental setup

We have implemented Algorithm 12 in C++. To generate the simplified drawings, we
have used CGAL’s implementation [Fab15] of a topologically-safe simplification algorithm
by Dyken et al. [DDS09]. The computations for this paper were run on a desktop PC
with an Intel R© CoreTM i5-2400 CPU at 3.10 GHz; memory usage was not an issue. The
map of Würzburg is a crop of the OpenStreetMap road network of Würzburg, Germany
(http://download.geofabrik.de). It uses Euclidean weights and contains approximately
2500 vertices. The runtime of both Algorithm 12 and the simplification is instant. The
map of Dallas is the largest connected component in the City of Dallas GIS Services’ road
network of Dallas, Texas (http://gis.dallascityhall.com/EnterpriseGIS). It has ap-
proximately 3×105 vertices and the weights are a travel-time estimate based on road class.
Algorithm 12 still runs almost instantly, given T ′. The entire computation, which includes
building T ′ using an unoptimized implementation and the simplification, has a runtime of
about 2 seconds. We conclude that this approach is suitable for interactive applications on
realistically-sized maps.

62

http://download.geofabrik.de
http://gis.dallascityhall.com/EnterpriseGIS


3.5 Conclusion and Outlook

3.5 Conclusion and Outlook

We have proposed partitioning the vertices of a tree based on whether or not they share a
significant part of their path to the root. We gave a linear-time algorithm for minimizing
the number of cells in this partition and proved several properties of such clusterings. This
approach could be used to model various clustering problems on trees, such as summarizing
large hierarchies (organizational charts, file systems, et cetera). We looked specifically at
a map generalization problem where we summarize a shortest-path tree and were able to
derive a constant-factor bound on the “generalization error” as measured by the detours
resulting from using the output map.

We would argue that our visualization of the computed clustering looks promising, but is
certainly open for improvement. A more elegant solution to the topological issue of internal
branches would be welcome. After all, we have taken care to compute an optimal solution
to the TreeSummary problem: we have already decided what we want to draw. Given a
desire for topological safety and without moving any vertices, we may be forced to include
additional detail. Letting go of exact geographic positions may lead to better results by
allowing map deformations. What deformations are appropriate, and how to compute them,
would clearly depend on the application. Another direction would be a visualization where
the clusters are represented by areal features.

Other map generalization scenarios present themselves depending on which information is
available to us. Say we are not only given the weighted graph G = (V,E), but additionally
get a partition P = {V1, . . . , Vk} of the vertex set, where each cell of P reflects a geographic
region (such as “Groningen”). The task is then to decide for each cell Vi ∈ P whether or
not the vertices in Vi are equivalent, for which we might use our contractibility condition.
Depending on the result, Vi will be collapsed and displayed as a single vertex or each vertex
in Vi will be displayed individually. One can also consider the case where a hierarchical
partition is given (neighborhoods, cities, states, federations). An advantage of this setting is
that the cells are likely to have meaningful names, which will help when labeling the map.
This raises the open question of how labels for geographic regions can be carried over to a
clustering computed using our algorithm. As a disadvantage of the pre-clustered approach,
it is more constrained in its options than our approach, so it will use at least as many
clusters and probably more.

Another direction for future work is to consider a dynamic version of the problem, where
the vertex s changes. This is relevant, for example, when using this visualization in an
in-car navigation system. Our algorithms are fast enough to be run in realtime on realistic
maps, but this does not close the case: for interactive or animated visualizations, it is
important to consider the stability of the computed solutions. This should be considered as
an optimization problem, but is currently open.
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4 A Cutting-Plane Method for
Contiguity-Constrained Spatial
Aggregation

The following chapter is mainly taken from a joint work with Jan-Henrik Haunert [OH17]. In
this article, we deal with an NP-complete problem of aggregating areas. For the aggregation
process, we consider both semantic and geometric, in particular topological, aspects.
Due to its complexity, solving this problem exactly is time-consuming. Consequently, var-
ious heuristic approaches exist [HWS+65, MCVL02, BEL03, DAR12, LCG14]. Attempts
to solve this problem (or similar ones) exactly can be found in the existing literature and
are commonly based on integer linear programming [CCG+13, DH99, DCM11, Shi05a]. We
present a new exact approach which is also based on integer linear programming. For this
purpose, we apply cutting-plane techniques which are established in the field of combinato-
rial optimization to the considered spatial aggregation problem.

Abstract
Aggregating areas into larger regions is a common problem in spatial planning, geographic
information science, and cartography. The aim can be to group administrative areal units
into electoral districts or sales territories, in which case the problem is known as districting,
but often area aggregation is seen as a generalization or visualization task, which aims to
reveal spatial patterns in geographic data. Despite these different motivations, the heart of
the problem is the same: Given a planar partition, one wants to aggregate several elements of
this partition to regions. These often must have or exceed a particular size, be homogeneous
with respect to some attribute, contiguous, and geometrically compact. Even simple problem
variants are known to be NP-hard, meaning that there is no reasonable hope for an efficient
exact algorithm. Nevertheless, the problem has been attacked with heuristic and exact
methods.
In this article we present a new exact method for area aggregation and compare it with a
state-of-the-art method for the same problem. Our method results in a substantial decrease
of the running time and, in particular, allowed us to solve certain instances that the existing
method could not solve within five days. Both our new method and the existing method
use integer linear programming, which allows existing problem solvers to be applied. Other
than the existing method, however, our method employs a cutting-plane method, which is
an advanced constraint-handling approach. We discuss this approach in detail and present
its application to the aggregation of areas in choropleth maps.
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4.1 Introduction

Planar subdivisions are frequently used to structure geographic space. In geographic infor-
mation systems, they can be used as a basis for data acquisition, storage, analysis, and
visualization. Since different applications require information on different scales, planar
subdivisions are often hierarchical—unemployment rates, for example, can be analyzed on
a county or country level. Often, one aims to compute a higher-level subdivision from a
given one, by grouping areas of similar attribute values. With such an approach, one can
reveal large-scale patterns in the data. In this article, we present a new method for area
aggregation, which we discuss in the context of districting and spatial unit allocation. We
distinguish these problems as follows:

• Districting [HS71, CSGW04, Hoj96, Shi09] is the problem of partitioning a set of min-
imum mapping units (e.g., postal code zones) to form larger regions or districts (e.g.,
school zones or electoral districts). The minimum mapping units (i.e., input areas)
are assumed to form a planar subdivision. The applications of districting range from
administrative to commercial purposes; an overview is provided by Shirabe [Shi05a].

• Spatial unit allocation [Shi05b, Shi05a] subsumes districting, but it does not necessar-
ily ask to assign every area to a district. A typical example of spatial unit allocation
is to select a set of areas constituting a single region that is geometrically compact
and requires minimal development costs [AEHS03].

• The term area aggregation has been used to refer to the aggregation of areas as a
data abstraction or map generalization problem [HW10a]. Just as districting, area
aggregation requires a planar subdivision as input and asks to group the areas into
larger regions. Districting problems in spatial planning, however, do not necessar-
ily ask to group areas of similar attribute values, which is an essential criterion for
generalization.

It is common to approach districting, spatial unit allocation, and area aggregation by
optimization [MJN98, BEL03, GN70, Hau08, Shi09, DCM11, LZCJ08]. The existing ap-
proaches are quite similar, since the different problem variants often share some optimiza-
tion objectives and constraints. For example, it is common to require that every out-
put region must have a size or population within certain bounds and to favor geometri-
cally compact shapes. Compactness is usually assessed quantitatively, which can be done
with different measures [Mac85, LGC13], and considered as an optimization objective. Ad-
ditionally, in many problem variants, the output regions are required to be contiguous
[Shi09, Shi05a, Wil02, DCM11, CC10]:

Definition 4.1. An area A ⊆ R2 is called contiguous if every two points in A are connected
via a (not necessarily straight) line that is contained in A.

Though the output regions tend to become contiguous when compactness is considered as
an objective, there is generally no guarantee for contiguity without enforcing it. In fact, if
compactness is not the primary objective, contiguity often has to be enforced to produce
somehow reasonable output regions [Shi09]. Therefore, we think that optimizing similarity
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(a) Explanatory maps: input map (left) and output
map (right).

(b) The adjacency graph G = (V,E) for the input
map in (a) and the partition of V corresponding to
the output map.

Figure 4.1: An example of area aggregation (see Haunert and Wolff [HW10a]).

(and compactness as a secondary criterion) subject to size constraints and contiguity is a
particularly interesting challenge.
Attribute similarity is an important criterion for aggregation in map generalization, which
means to generate a more abstract and less detailed representation of geographic space from
a given one [BW88, Wei97, Ses05]. The problem occurs if the scale of a cartographic visual-
ization has to be reduced, but map generalization does not necessarily assume that the input
and output representations are visual graphics. Haunert and Wolff [HW10a] have defined
the area aggregation problem in map generalization formally and developed an optimization
method for it, which is based on models for districting by Zoltners and Sinha [ZS83] and
Shirabe [Shi09]. The problem not only requires to group the input areas into larger regions,
but also to assign a value from the attribute domain to each output region; see Fig. 4.1(a).
The aim is to minimize a cost function that penalizes changes of attribute values to dis-
similar values as well as geometrically non-compact output regions, subject to constraints
concerning the size and contiguity of the output regions. The method relies on the definition
of the adjacency graph G = (V,E) whose vertex set V contains a vertex for each input area
and whose edge set E contains an edge {u, v} for each two adjacent areas u, v ∈ V ; see
Fig. 4.1(b). We will use this definition of G throughout this article.
In this article, we revisit the problem defined by Haunert and Wolff [HW10a], but we also
consider the special case that similarity is neglected and compactness is the sole objective.
In this case, the problem is more similar to a classical districting problem that simply
demands geometrically compact and contiguous regions of sizes within certain bounds.
Moreover, while Haunert and Wolff developed and tested their method for the generalization
of categorical maps, we will use our method to generalize choropleth maps with a ratio-
scaled variable, such as unemployment rates. This has the advantage that we can directly
compute differences between attribute values and do not depend on the definition of a
semantic distance between categories.
We focus on exact optimization methods based on integer linear programming, which is
a common optimization approach for districting [CSGW04, HS71, Hau08]. In particular,
it is reasonable for NP-hard problems, for which the existence of an efficient and exact
algorithm is extremely unlikely [GJ90]. In fact, area aggregation falls into the class of NP-
hard problems [HW10a], and so do many problem variants of districting [Alt97, PT08,
Hoj96].
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x2

x11
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(a) The red line marks (x1, x2)-
values with equal objective value.

x2

x11

1

(b) A solution to the linear pro-
gram.

x2

x11

1

(c) A solution to the integer lin-
ear program. The LP in (b) is
completed with x1, x2 ∈ Z.

Figure 4.2: A linear program with variables x1 and x2; objective is to maximize 6x1 + x2

with respect to x1 ≥ 0, x2 ≥ 0, 2x2 ≤ 7, 2x1 + 4x2 ≤ 18 and x1 ≤ 4. The solution space,
i.e., all pairs (x1, x2) for which every given inequality is true, is marked as a blue polytope.
The gray arrows in the background indicate the objective. They are orthogonal to the line
of equal objective values in (a).

Defining an integer linear program (ILP) means setting up a linear program (LP) completed
with an integrality constraint. While the LP defines a linear objective function and a set of
linear inequality constraints over a set of variables, the integrality constraint requires that
the variables receive integer values. An ILP is solved optimally if a variable assignment is
found which optimizes the objective function without violating any constraint. Commonly,
the LP corresponding to an ILP without integrality constraints is referred to as the LP
relaxation of the ILP [NW88]. An illustrative example for both an LP and an ILP can be
found in Fig. 4.2.

Whereas efficient algorithms for linear programming exist, integer linear programming is
NP-hard [CLR90, GJ90]. Nevertheless, an approach based on integer linear programming
is promising as it allows sophisticated optimization software (e.g., CPLEX [CPL17] and
Gurobi [Gur18]) to be applied. Even though the exact methods for solving ILPs have an
exponential worst-case running time, they can be relatively fast when applied to real-world
instances. Moreover, solutions of an exact method can be used as quality benchmarks to
evaluate the results of (faster) heuristic algorithms. Heuristic methods for districting have
been developed by several researchers [HWS+65, MCVL02, BEL03, DAR12, LCG14]. In
contrast to exact methods, these do not guarantee to deliver an optimal solution.

Just as some criteria are shared by many problem variants of districting and spatial unit
allocation, the ILP formulations for these problems often share some elementary compo-
nents. Shirabe [ST02] has used this fact to integrate mathematical programming techniques
and geographic information systems (GIS), such that a GIS user can assemble a model for
a particular spatial unit allocation problem from a set of elementary model components
and compute a solution to the problem with an ILP solver. Since contiguity is an impor-
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tant requirement in many spatial unit allocation problems, several works have focused on
formalizing contiguity as one such elementary model component [Shi09, Shi05a, Wil02].

Usually, there exist multiple possibilities of encoding a particular problem as an ILP; choos-
ing among these ILP formulations can highly influence the computation time. In geographic
information (GI) science, it is common to choose a compact ILP formulation, which means
that the size of the ILP is polynomial in the size of the input [FM12]. For example, in
Section 4.2.2 we show that, when applying Shirabe’s model [Shi05a] to area aggregation
without prescribing the number of output regions, it has O(n2) variables and constraints
(where n is the number of input areas) and thus a polynomial size. A compact ILP formu-
lation can be favorable because it permits a full instantiation of the model, that is, a file
or data structure explicitly storing all variables and constraints. After the instantiation of
the model, it can be handed over to a solver, which computes an optimal solution without
requiring any further interaction. It is therefore common to think of the solver as a black
box [LR05].

Working with compact ILP formulations is relatively convenient. It is also known, however,
that they are sometimes outperformed by non-compact ILP formulations, whose number of
constraints can be exponential in the size of the input [Pat03]. Such a large set of constraints
forbids a full instantiation of the model. Therefore, one starts the computation by working
with a reduced ILP, which is lacking a set of constraints of the original ILP. A simple
approach is to solve this reduced ILP to optimality and to examine whether the solution
violates constraints of the original ILP. If a violation of a constraint is found, that constraint
is added to the ILP and the solution process is started anew. Drexl and Haase [DH99] and
Duque et al. [DCM11] use this approach to solve districting problems. In particular, Duque
et al. deal with the p-regions problem, in which, other than in our problem, the number p
of output regions is prescribed.

In this article, we present a more sophisticated approach for area aggregation. We demon-
strate the effectiveness of a cutting-plane method, which generally refers to a method that
adds constraints during optimization without relying on an optimal solution to the reduced
ILP. Violated constraints are found already in a preliminary stage of a solution, namely in
an optimal solution to the LP relaxation of the reduced ILP. Such constraints are termed
cutting planes (or simply cuts) because they cut away parts of the feasible region of the
solution space defined by the current instantiation of the model. The number of constraints
of our ILP formulation for area aggregation is exponential in the number n of input areas,
but initially we instantiate the model with only O(n2) constraints. We generate constraints
ensuring contiguity during optimization, using what is generally termed a separation algo-
rithm [NW88]. Though implementing a cutting-plane approach requires some understanding
of how an ILP solver works and certainly more effort than using a compact ILP formulation
and a black-box solver, we consider it practicable, also for researchers in GI science. This
is because modern ILP solvers such as CPLEX or Gurobi offer programming libraries that
include interfaces (usually termed callbacks) for intervening in the optimization process.
Carvajal et al. [CCG+13] have developed a cutting-plane method based on an efficient sep-
aration algorithm for a problem of spatial unit allocation in forest management. We are not
aware of such a method for area aggregation or districting, though.
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We used the cutting plane method for contiguity-constrained spatial unit allocation by Car-
vajal et al. as a starting point, which, compared to the method of Drexl and Haase [DH99],
is more recent and can be considered more sophisticated. However, we had to extend the
method substantially for the case of an unknown number of output regions and a flexible
set of centers. More precisely, Carvajal et al. consider two constraint formulations for the
contiguity of a region, namely one that does not rely on the concept of a center of a region
and one that requires a prescribed center to belong to the output region. While in the first
model, contiguity is ensured by considering a set of constraints for each pair of nodes that
are selected for the output region, in the second model, a set of constraints for each selected
node ensures its connectivity to the prescribed center. Conceptionally, our approach is more
similar to the second model, as it also relies on the idea of centers. However, we do not know
in advance which of the nodes become centers. Therefore, we use a constraint formulation
that, in fact, is more similar to the first model of Carvajal et al. in the sense that it uses
one set of constraints for each pair of nodes.

Álvarez-Miranda et al. [ÁMLM13] and, recently, Wang et al. [WBB17] have presented
theoretical findings on integer programming formulations for the problem of selecting a
maximum-weight connected subgraph of a given graph. Though their results cannot easily
be transferred to other problems, they can be understood as hints on why a non-compact
ILP formulation, such as the one of Carvajal et al. or ours, can outperform a compact ILP
formulation.

To summarize our contribution, we discuss cutting-plane methods as a general constraint-
handling technique that is rather unknown in geographic information science but well estab-
lished in the field of combinatorial optimization [vRW87, JRT95]. We show that our cutting-
plane method outperforms the districting method of Shirabe [Shi09] that was adapted by
Haunert and Wolff [HW10a] for the aggregation of areas in map generalization. For exam-
ple, with our method we were able to solve various instances with 94 departments of France
(excluding overseas department and the island of Corsica) in reasonable time, whereas us-
ing Shirabe’s method produces a result in much longer time or not at all (see Section 4.5).
We specifically apply this to generate a map that shows a structuring of France into a few
(e.g. 10) regions of similar unemployment rates and thereby highlight the usefulness of the
method for the generalization of choropleth maps. We do note that the applicability of our
method is limited, since we were not able to process instances larger than our instances of
France. The number of areas in these instances of France, however, can be considered typi-
cal for choropleth maps. Similar maps can be found, for example, in Bertin’s fundamental
textbook on visualization [Ber83].

In the following, we review an existing ILP formulation for area aggregation (Section 4.2).
Then, we give an overview of strategies for handling ILPs with large sets of constraints (Sec-
tion 4.3). Subsequently (Section 4.4), we contribute an ILP applying cutting planes which
extends the ILP formulation from Section 4.2. Afterwards, we let both models compete in a
series of experiments (Section 4.5). We apply both ILP formulations on a real-world exam-
ple with 94 input areas, discuss the solutions, and compare the running times for different
settings. We finish this article with concluding remarks and ideas for further improvements
(Section 4.6).
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4.2 A state-of-the-art model

The huge amount of work on spatial unit allocation and districting disallows a compre-
hensive review in this article. Therefore, we refer to the survey by Ricca et al. [RSS13] for
an overview and discuss only the most relevant related work that has inspired our models.
This in particular concerns a general districting model with assignments of areas to centers
(Section 4.2.1) and a flow-based model to ensure contiguous output regions (Section 4.2.2).
In Section 4.2.3, we briefly review the approach of Haunert and Wolff [HW10a] for the ag-
gregation of areas in map generalization, which is based on the models from Sections 4.2.1
and 4.2.2.

4.2.1 A compact ILP without contiguity

The ILPs that we use in this article differ only with respect to the constraints ensuring
contiguity. If we drop those constraints, we obtain an ILP that has the same structure as
the basic ILP defined by Haunert [Hau08]. This basic ILP follows the approach of Zoltners
[ZS83] for districting, in the sense that in every output region one of the input areas is
selected as the region’s center. To encode this idea, the basic ILP uses a variable xc,v for
each pair of areas c, v ∈ V , which has the following meaning.

xc,v =

{
1, if area v is assigned to the output region with center c,

0, otherwise.

For c = v, the variable xc,c expresses whether area c is assigned to itself, meaning whether
or not it is selected as a center. Note that with this model we do not prescribe the centers
before computing an optimal assignment. Instead, every area can become a center.

Each variable xc,v is associated with an assignment cost ac,v. The objective function is a
weighted sum of the variables.

min
∑
c∈V

∑
v∈V \{c}

ac,v · xc,v (4.1)

The aim for compact output regions, for example, can be expressed by minimizing this
objective function with ac,v = w(v) · d(c, v), where w(v) is a weight for area v (reflecting
size or population) and d(c, v) is the Euclidean distance between the centroids of c and v
[HW10a].

To obtain a partition of the set V of areas into regions, we require with the following
constraint that every area is assigned to exactly one center.∑

c∈V
xc,v = 1 for each v ∈ V (4.2)

Next, we make sure that an area v is assigned to a center c ∈ V only if c is actually selected
as a center.

xc,v ≤ xc,c for each c ∈ V, v ∈ V \ {c} (4.3)
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To impose constraints on the size or population of each output region, we use the weight
w(v) that we defined for Objective (4.1). The following constraint ensures that every output
region has a weight of at least wmin ∈ R+.∑

v∈V
w(v) · xc,v ≥ wmin · xc,c for each c ∈ V (4.4)

Similarly, we could define an upper bound on the weights of the regions.
Interpreting both the previous constraints and the results makes sense only if the integrality
constraint (Constr. (4.5)) is taken into account.

xc,v ∈ {0, 1} for each c ∈ V, v ∈ V (4.5)

A solution satisfying this constraint is termed an integral solution.

4.2.2 Shirabe’s model for contiguity-constrained spatial unit allocation

The model presented in this section is a straightforward adaption of a model for spatial unit
allocation by Shirabe [Shi05a, Shi09]. It extends the basic ILP from Section 4.2.1 with a set
of continuous variables and an additional set of constraints to ensure contiguous regions.
Since the additional variables are continuous, Shirabe’s model leads to a mixed integer
linear program (MILP), which basically can be solved with the same solution techniques
as an ILP. In contrast to Shirabe, we neither demand a single output region [Shi05a] nor a
partition of the input graph into a prescribed number of regions [Shi09] and, thus, have to
make small modifications. We denote the resulting MILP as the flow MILP and will use it
as a benchmark to evaluate our new cutting-plane method.
The flow MILP relies on the definition of the directed graph Ḡ = (V, Ē), whose set Ē of
directed edges (or arcs) contains arc (u, v) as well as arc (v, u) for every edge {u, v} ∈ E. It
uses the idea that multiple commodities are transported (or flow) on the arcs of this graph.
By controlling the flow of the commodities with suitable constraints, the contiguity of the
output regions is ensured.
In our adaption of Shirabe’s model, there is one commodity for each potential region center—
and thus for each vertex c ∈ V . We define a variable

yc(u,v) ∈
[
0, |V | − 1

]
for each (u, v) ∈ Ē, c ∈ V \ {u},

which represents the amount of the commodity for center c that flows on arc (u, v). Every
area v that is assigned to a region center c 6= v is a source, that is, it injects one unit of the
commodity for c into the flow network. This unit flow is forced to find a way to the region
center c—the sole sink for the commodity for c—by only passing through areas allocated
to the same center. Guaranteeing these properties of the flow is equivalent to guaranteeing
the contiguity of the resulting regions. This is done with the following constraints:∑

(u,v)∈Ē

yc(u,v) ≤
(
|V | − 1

)
· xc,u for each c ∈ V, u ∈ V \ {c} (4.6)

∑
(u,v)∈Ē

yc(u,v) −
∑

(v,u)∈Ē

yc(v,u) = xc,u for each c ∈ V, u ∈ V \ {c} (4.7)

72



4.2 A state-of-the-art model

If xc,u = 0, i.e., u is not assigned to center c, Constraint (4.6) prohibits any outflow of the
commodity for c from u; Constraint (4.7) forces the inflow and the outflow of this commodity
at u to be equal (and thus prohibits any inflow as well). If xc,u = 1, i.e., u is assigned to
center c, Constraint (4.7) ensures that u is a source contributing one unit of the commodity
for c to the flow network; Constraint (4.6) is relaxed by setting its right-hand side to a
sufficiently large number. Only the center c of a region can be a sink of the commodity for
c, since Constraints (4.6) and (4.7) are not set up for the case c = u.
The flow MILP consists of Objective (4.1) as well as Constraints (4.2)–(4.7). Since G is
planar, the flow MILP has O(n2) variables and O(n2) constraints, where n = |V | is the
number of input areas.

4.2.3 Area aggregation in map generalization

Area aggregation is an important sub-problem of map generalization, which (among
others) also involves line simplification [dBvKS98], selection [MB93], and displacement
[Ses05, BBW05]. While some approaches exist to treat all or multiple sub-problems of map
generalization in a comprehensive way [Gal03, WJT03, HW07], research is also ongoing to
improve the algorithmic solutions for each sub-problem.
Area aggregation can be driven by minimal graphic dimensions for a target scale, but in this
article we consider it in the context of statistical generalization [BW88], which aims at a less
detailed and non-graphical model to permit spatial analysis on a higher level of abstraction.
In particular, we consider the grouping of administrative regions with unemployment rates
as an example, in which the aim is to reveal large spatial patterns of unemployment. Our
aim is a high homogeneity with respect to the unemployment rate in each output region,
thus we consider similarity of attributes as an important criterion for grouping. Additionally,
we consider size and compactness in our model.
We do note that grouping areas based on unemployment rates is related to the delineation
of labor market areas, which, however, are usually defined based on travel-to-work patterns
rather than on attribute similarity [Sma74, CD00, FRCDMB08, PN02]. Our work is also
related to the modifiable areal unit problem (MAUP) [Ope84], which states that the de-
lineation of districts is a source of statistical bias. With our aim for homogeneous output
regions we try to keep this bias low. Obviously, aggregation not only reveals large spatial
patterns but also suppresses fine-grained and possibly sensitive information. Therefore, we
also see a relevance of area aggregation for privacy protection [KCS04].
According to the definition of area aggregation by Haunert and Wolff [HW10a], the areas
(both in the input and in the output) have one attribute. For each input area v ∈ V , the
attribute value is denoted by γv. The problem definition requires that in each output region
one of the contained input areas c is selected as a center, which dictates the attribute value of
that output region as γc. This means that no “new” attribute values arise. Furthermore, the
basic ILP (with additional constraints ensuring contiguity) suffices for area aggregation—if
the assignment costs ac,v are appropriately set. Haunert and Wolff [HW10a] define ac,v to
express two criteria.
First, since xc,v = 1 implies that area v changes its attribute value (or color) from γv to γc
and an objective is to keep such changes small, a cost frecolor is charged that depends on
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the distance from γv to γc. This distance is generally defined with a function δ : Γ2 → R≥0,
where Γ is the set of all attribute values. It is chosen to reflect the dissimilarity of the
attribute values, which implies that by minimizing frecolor the objective for grouping similar
areas is addressed. The cost for color change is defined as

frecolor =
∑
c∈V

∑
v∈V

w(v) · δ(γc, γv) · xc,v . (4.8)

Second, the objective for geometrically compact output regions is generally modeled with
a cost fnon-compact. In this article, we define

fnon-compact =
∑
c∈V

∑
v∈V

w(v) · d(c, v) · xc,v , (4.9)

where d : V 2 → R≥0 is the Euclidean distance between the centroids of the areas in V .

The overall objective is to minimize

f = α · fnon-compact + (1− α) · frecolor, (4.10)

where α ∈ [0, 1] is a parameter that weights the two criteria. Accordingly, we use Objec-
tive (4.1) with assignment costs

ac,v = w(v) ·
(
α · d(c, v) + (1− α) · δ(γc, γv)

)
. (4.11)

Haunert and Wolff [HW10a] assumed that Γ is a discrete set of land cover classes and that
the distance δ measures the semantic dissimilarity of classes. In our example, however, we are
given areas with unemployment rates and thus a quantitative attribute. More specifically,
Γ = [0, 1] is the set of real numbers between 0 and 1. We simply define the distance

δ(γ1, γ2) = |γ2 − γ1| for γ1, γ2 ∈ Γ . (4.12)

With this definition, the requirement that each region contains an area that does not change
its attribute value has no influence on the optimal objective value. In particular, if all areas
have the same weight, the cost frecolor would be minimized by selecting the median of all
attribute values in a region.

A problem that is similar to our problem variant of area aggregation with a quantita-
tive attribute is the aggregation of 3D building models based on their heights. Guercke et
al. [GGBS11] have approached this problem by integer linear programming, using a model
that is similar to the model of Haunert and Wolff [HW10a].

4.3 Handling ILPs with large sets of constraints

The cutting-plane method that we will present in this article is based on an ILP consisting
of Objective (4.1), Constraints (4.2)–(4.5), and an exponential number of constraints that
ensure contiguity, which we term contiguity constraints. Such a large set of constraints is

74



4.3 Handling ILPs with large sets of constraints

only reasonable with special constraint-handling techniques, which we sketch in this section.
Generally, the strategy is to first disregard some constraints of the original model and
to consider a reduced model that contains only few constraints ensuring some very basic
properties of a solution. In our example, we disregard the contiguity constraints.

The most simple approach following this strategy is to first compute an optimal solution to
the reduced model. Then, it is often easy to check whether the solution is also a solution
to the original model. For example, non-contiguous regions can be easily and efficiently de-
tected using a breadth-first search [CLR90]. Generally, if the solution satisfies all constraints
of the original model, one is done. Else, one can augment the model with exactly those con-
straints that were found to be violated—and solve it again. This process is repeated until
an optimal solution to the current model is found and asserted to satisfy all constraints
of the original model. Drexl and Haase [DH99] and Duque [DCM11], for example, use this
approach in order to solve the problem of sales force deployment and the p-regions problem,
respectively. An advantage of this approach is that the ILP solver can still be thought of
and used as a black box. That is, after each augmentation of the model with constraints,
the ILP solver can be applied with default settings and without any intervention. Also,
the approach can be more efficient than an approach with a complete instantiation of the
model. On the other hand, solving the model to optimality after each augmentation step
can be quite inefficient.

A better approach is to repeatedly augment the model but to avoid computing an optimal
solution after each augmentation step. Instead, one can halt some ILP solvers as soon as
they find a new incumbent solution, that is, an integral solution that satisfies all constraints
of the current model and that is better than any such solution found so far. As in the
most simple approach, this incumbent solution needs to be inspected using an algorithm
that is specifically designed and implemented for that purpose, e.g., in the case of area
aggregation, an algorithm that checks whether the regions corresponding to the solution
are contiguous. If a constraint violation (e.g., a non-contiguous region) is found, a new
constraint is added and the optimization process is resumed—rather than repeated from
scratch. This kind of intervention (i.e., halting the solver, inspecting the incumbent solution,
augmenting the model, and resuming the optimization process) can be done via interfaces
specified in the programming libraries of solvers like CPLEX and Gurobi. As the most simple
iterative approach, this approach finally yields a globally optimal solution. Examples for
the application of this method in computational cartography are presented by Haunert and
Wolff [HW10b] and Nöllenburg and Wolff [NW10].

Finally, the approach that we apply in this article generates relevant constraints without
relying on incumbent (i.e., integral) solutions to the ILP. This is advantageous because
finding an integral solution can be just as hard as finding an optimal solution to a model
and, therefore, may take very long. Instead of inspecting incumbent solutions for constraint
violation, we inspect optimal solutions of LP relaxations—in the LP relaxation correspond-
ing to a model the variables are allowed to take fractional values, which makes the problem
less complex, even efficiently solvable [Kar84]. Most ILP solvers begin with solving the LP
relaxation of the given model to find a lower bound (or upper bound in case of a maxi-
mization problem) of the objective function, usually by applying a variant of the simplex
algorithm [Dan63], which is fast in practice. Furthermore, during the optimization process,
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(a) The LP with all constraints.
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(b) The LP with a selected subset of constraints.
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(c) The LP with an enhanced subset of constraints.

x2

x1

(d) The LP after all the necessary separation steps
(here: two).

Figure 4.3: A geometric interpretation of an LP with two variables x1, x2 ∈ R (constraints
presented as blue lines, objective function presented as gray arrows) and its solution (red).
While (a) depicts the complete LP and an optimal solution, (b) to (d) show the advantages
of using a separation algorithm: Starting with only a subset of constraints (b) we extend the
LP with constraints which are violated by the solution to the current LP (c) as long as we
can find any (see Fig. 4.4). When the separation algorithm cannot find any violations (d) the
current solution is valid and optimal with respect to the complete LP of the original model.
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return s

Select a subset C ′ ⊆ C
of all of the problem’s
constraints

Compute an optimal
solution to the LP
with constraint set C ′

Does the solution s to
the LP satisfy all of the
constraints of C as well?

Enhance C ′ by a vio-
lated constraint in C

yesno

Figure 4.4: The way from Fig. 4.3(b) to (d) as a diagram; the separation algorithm leads to
a point of diversion depending on whether a violated constraint exists.

most solvers also solve LP relaxations for sub-instances (i.e., branch-and-bound nodes) in
which the values of some variables are fixed. In any case, we test whether a solution of
an LP relaxation of the current model satisfies all constraints of the original model. More
precisely, we use a separation algorithm, that is, an algorithm that either asserts that all
constraints are satisfied or yields a violated constraint, with which we then augment the
model (see Figs. 4.3 and 4.4). For the Traveling Salesman Problem1, for example, this ap-
proach outperforms other ILP approaches [Pat03]. In comparison to the previous approach
based on incumbent solutions, one avoids an extensive exploration of the branch-and-bound
tree. On the other hand, designing a separation algorithm can be a non-trivial task. If the
constraints are of a certain type, the separation step can be done efficiently (in particular,
without explicitly testing all inequalities), for example by computing a maximum flow in
an appropriately defined graph. Carvajal et al. [CCG+13] deal with forest planning models
using this method. In Section 4.4 we exemplify this approach in detail for area aggregation.

4.4 A new method for area aggregation using cutting planes

In Section 4.2 we have modeled all aspects of the problem that we aim to solve. That is, we
consider Objective (4.1) with the assignment costs in Equation (4.11) and the definition of
the distance δ in Equation (4.12). We minimize this objective subject to Constraints (4.2)–
(4.5) and constraints ensuring contiguity. Obviously, we could ensure contiguity with Con-
straints (4.6) and (4.7), but in this section we introduce an alternative formulation that we
use with our cutting-plane method. An advantage of this formulation is that we get along
with the binary variables xc,v and without the additional variables yc(u,v).

1Dealing with the Traveling Salesman Problem means determining a shortest path visiting every city of a
given set of cities. It serves as a basis for various common GI science problems like one of its extensions,
the vehicle routing problem [Lap92, Chr76a, BN68].
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Instead of setting up the model completely, we let the solver begin with the basic ILP from
Section 4.2.1. When the solution to the LP relaxation in a branch-and-bound node is found,
we intervene and check whether some of the not yet added contiguity constraints presented
in the following are violated and add at least one of them in that eventuality.

With the following constraints we ensure contiguity. They are inspired by the work of
Carvajal et al. [CCG+13] and Drexl and Haase [DH99], where they were set up in order
to solve different problems: forest planning and sales territory alignment. The algorithm
of Carvajal et al. solves a problem asking for the selection of a single output region and
is therefore not directly applicable to the area aggregation problem. Drexl and Haase deal
with districting but add violated constraints based not on the solution to the LP relaxation
in a branch-and-bound node but to an optimal solution to the current model. Afterwards,
they run experiments to calculate only upper and lower bounds for larger instances, but
no optimal solutions. We do not only present these constraints in combination but also
emphasize the advantages of cutting-plane methods. Furthermore, we contribute an ILP
formulation for area aggregation.

4.4.1 Constraints completing the ILP formulation

In the following, we present two different kinds of constraints. While combining the basic
ILP from Section 4.2.1 with the constraints presented first in this section is necessary and
sufficient for area aggregation, the constraints presented afterwards work in a supporting
way. These supportive constraints mainly enforce the minimum-weight constraints (Con-
str. (4.4)) in a more determined manner.

Contiguity constraints based on vertex separators

Let c, v ∈ V be two arbitrary areas. In the following we consider c the center of a region and
the possibility of assigning v to this region, which is represented with the binary variable
xc,v.

Furthermore, let Sc,v ⊆ 2V be the set of all (c, v)-separators in G, where a set S ⊆ V \{c, v}
is called a (c, v)-separator if every path from c to v in G contains at least one vertex in S (see
Fig. 4.5). If v is allocated to the region with center c, then—for the sake of contiguity—for
each (c, v)-separator S ∈ Sc,v at least one area of S has to be allocated to this region as
well. In linear terms this condition is expressed as follows:∑

u∈S
xc,u ≥ xc,v for each S ∈ Sc,v, c, v ∈ V. (4.13)

If c = v or {c, v} ∈ E, that is, areas c and v are identical or adjacent, the set of (c, v)-
separators Sc,v is empty. Consequently, there is no constraint described in Formula (4.13)
for these cases. In general, the number of separators is in O(2|V |).

The basic model (see Section 4.2.1) with the constraints presented here is already fully
operative: All output regions are contiguous if and only if none of the constraints based
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Figure 4.5: An example of an adjacency graph G with various (c, v)-separators (red): Every
path from v to c contains at least one vertex of the respective separator.

on vertex separators is violated. To see why, we only consider the case where the right-
hand side equals 1, since otherwise the inequalities from Constraint (4.13) are always true.
Suppose an arbitrary region containing a center c and another area v is contiguous. This
means a path P between c and v exists in G that consists only of vertices belonging to
the same region. Since each separator S ∈ Sc,v contains at least one vertex of any path
from c to v, it also contains a vertex of path P and thus an area of the region in question.
Consequently, the inequalities from Constraint (4.13) are fulfilled. Now, let us assume that
a region R ⊆ V is not contiguous, i.e., R consists of at least two connected components.
Thus, it is possible to take a look at the region’s center c and an area v contained in another
connected component than c. Then the set V \ R is a (c, v)-separator and the inequality
from Constraint (4.13) is violated for S = V \R ∈ Sc,v.

Supportive constraints inspired by the minimum-weight requirement

If a separator S ∈ Sc,v has certain properties, we define another constraint: Since S is a
(c, v)-separator, the set V \ S consists of at least two connected components—one of which
contains c and one of which contains v. Let C(S, c) be the connected component in V \ S
containing c. If the total weight of C(S, c), that is

∑
u∈C(S,c)w(u), does not exceed the

minimum weight wmin demanded for a resulting region, then every region with center c has
to contain at least one area of the separator S. Or stated as a linear inequality:∑

u∈S
xc,u ≥ xc,c for each S ∈ Sc,v with

∑
u∈C(S,c)

w(u) < wmin, c, v ∈ V (4.14)

Again, the inequality is always fulfilled for xc,c = 0. Only if xc,c = 1 (i.e., c is declared a
center) the allocation of at least one area in the respective separator is required.

Constraint (4.14) alone does not suffice to achieve contiguity. When combining it with
Constraint (4.13), however, it acts in a supportive manner. To see why, we contrast the
contiguity constraint (Constr. (4.13)) with the supportive constraint (Constr. (4.14)). We
observe that they only differ with respect to their right-hand sides, which are xc,v and xc,c,
respectively. Constraint (4.3) ensures xc,c ≥ xc,v and, thus, Constraint (4.14) is at least as
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restrictive as Constraint (4.13) for any v ∈ V . That is, every solution to an LP relaxation
considering Constraints (4.3) and (4.14) fulfills Constraint (4.13). However, the solution
to an LP relaxation considering Constraints (4.3) and (4.13) cannot give this guarantee
with respect to Constraint (4.14). Transferring this observation to Fig. 4.3, we note that a
more restrictive constraint cuts away more parts of the solution polytope (marked as a blue
region in the figures). This results in a better performance of solvers based on branch and
bound [NW88].

4.4.2 Adding the constraints

As described in Section 4.3, the ILP is built up step by step. In this section, we describe
a separation algorithm, that is, an algorithm that allows us to find at least one violated
contiguity constraint if there exists any. Then, we show how such a contiguity constraint
may also provide a supportive constraint. Afterwards, we discuss how to speed up the
computation by restricting the search for violated constraints, and we argue why this does
not harm the correctness. Finally, we present another method that may find additional
violated constraints without much computational overhead.

A pseudocode formulation of these algorithms can be found in Section 4.A.

Finding violated contiguity constraints using minimum-weight vertex separators

If we assume that the integrality constraints xc,v ∈ {0, 1} are satisfied for all variables (see
Fig. 4.6(a)), finding a violation of Constraint (4.13) is straightforward. For example, for a
fixed center c, we could consider the subgraph of G induced by all nodes v with xc,v = 1. If c
and a node v lie in different connected components of this graph, a violation of a contiguity
constraint exists. However, since we want to find constraints in a preliminary stage of the
solution (i.e., in the solution of the LP relaxation of the ILP), we need to deal with variables
of fractional values (see Fig. 4.6(b)).

To find contiguity constraints that are violated by the solution to the current LP relax-
ation, we proceed as follows (see also Algorithm 13 in 4.A): Taking a closer look at Con-
straint (4.13), we observe that separators providing a smaller sum on the constraint’s left-
hand side are more likely to implicate a violation of the corresponding constraint, since the
right-hand side does not depend on the choice of the separator. For every potential center c,
we therefore take for every v ∈ V the value xc,v of the current solution as the weight of v in
G and focus on minimum-weight (c, v)-separators afterward—in Section 2.2.3, Application:
Minimum-Weight Vertex Separators, we describe how to compute minimum-weight vertex
separators by using minimum edge cut algorithms [CLR90, EK72, FJF56a]. The reason
why this is effective is the following: If the inequality from Constraint (4.13) is violated for
an arbitrary (c, v)-separator S, it is also violated for a minimum-weight (c, v)-separator S∗

since xc,c >
∑

u∈S xc,u ≥
∑

u∈S∗ xc,u holds in that case. Thus, for specific c, v ∈ V , looking
at a minimum-weight (c, v)-separator guarantees to notice a violation if there is one (see
Fig. 4.6(c)). In particular, computing and examining minimum-weight (c, v)-separators for
every potential center c ∈ V and every v ∈ V \ {c} solves the separation problem.
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(a) With integral xc,u-values, it
is easy to find a vertex separa-
tor, for which the contiguity con-
straint is violated.
0 + 0 =

∑
u∈S

xc,u < xc,v = 1
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(b) For fractional xc,u-values, a
violation of a contiguity con-
straint is harder to find. A vio-
lation exists, for example, for the
depicted separator.
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(c) The contiguity constraint is
satisfied for the minimum-weight
(c, v)-separator. Thus, no conti-
guity constraint is violated for
any (c, v)-separator.
0.5 + 0.2 =
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u∈S

xc,u ≥ xc,v = 0.5

Figure 4.6: In this example with fixed c, v ∈ V , we examine the search for a (c, v)-separator,
for which the contiguity constraint (Constr. (4.13)) is violated. For a vertex u ∈ V , we
consider the value xc,u from the solution of an LP relaxation as its vertex weight (blue).
It depends on these values whether a violation of a contiguity constraint exists. Separators
which are interesting in this context are indicated in red.

Finding supportive constraints

For each vertex computed separator, we proceed as follows to find a supportive constraint.
The vertex separator splits V into at least two connected components in G. If one of these
components forms a region with less than the minimum weight, the corresponding separator
offers Constraint (4.14) for any potential center in that component. Therefore, we check for
every area in the connected component of c whether the respective Constraint (4.14) is
violated for this area as a center. If that is the case, we add the violated constraint to the
model. This means we compute a separator principally for a certain center c but also use it
to set up constraints independent from c.
The algorithm yields a minimum-weight (c, v)-separator. Such a separator is not unique.
Among the minimum-weight (c, v)-separators we prefer those which are closer to c (see
Fig. 4.7). The reason why we prefer separators closer to c is Constraint (4.14): That way, it
is more likely to detect violations of Constraint (4.14) and consequently more likely to add
a supportive constraint. In order to find the minimum-weight (c, v)-separator closest to c
we use the fact that our algorithm is based on the search for a minimum edge cut. Here,
common algorithms follow the same scheme and return the minimum edge cut closest to a
certain vertex [CLR90].

Restricting the search for violated constraints

A straightforward implementation of the algorithm implicates the computation of a
quadratic number of vertex separators every time an LP relaxation is solved optimally.
In order to reduce this number, we make restrictions described in the following.
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c

v

(a)

c

v

(b)

Figure 4.7: The (c, v)-separator (red) divides the graph into at least two connected compo-
nents. The component of c (dashed, blue) in (b) is more likely to offer a Constraint (4.14)
than the one in (a).

We read the value of a variable xc,v for arbitrary c, v ∈ V as the tendency of v to be
allocated to c. With regard to Constraint (4.2), we see that, for a fixed v ∈ V , the average
value of the variables xc,v is 1

|V | . Therefore, we interpret xc,v ≥ 1
|V | as an indicator that

allocating v to c (or, in the case v = c, declaring v a center) is—for the moment—considered
reasonable. Conversely, a value less than 1

|V | implicates that an allocation to a different
center is preferable. Hence, we impose the following restrictions on the method presented
in this section:
• We compute minimum-weight (c, v)-separators only for areas v with xc,v ≥ 1

|V | .

• We take centers c with xc,c < 1
|V | only into consideration if no violation is detected

for more probable centers.
• We add a supportive constraint (Constr. (4.14)) only for areas v in the connected

component (not fulfilling the minimum-size requirement) of the examined center for
which xv,v ≥ 1

|V | holds.

Although we fail to notice violations of the inequality from Constraint (4.13) for areas with
xc,v <

1
|V | and, thus, to solve the separation problem properly, this fact does not pose a

risk to finding a contiguous solution. As we handle these violations in a branch-and-bound
node, the solver goes on branching and bounding in the node’s sub-instances. It continues
until either an integral solution is found or the problem becomes infeasible. If a sub-instance
is infeasible, there is no need to worry about whether the number of added constraints is
too small. In case of an integral solution, there are two possible scenarios for each potential
region with center c: Either xc,c = 0 and with it xc,v ≤ xc,c = 0 for every v ∈ V (see
Constraint (4.3)), i.e., the region is not considered in the solution and therefore in no need
of a validation of contiguity. Or xc,c = 1 ≥ 1

|V | , which results in a verification of the region’s
contiguity and implies that we find violations if existing.

Finding violated contiguity constraints using connected components

For the following method of finding a useful vertex separator (see also Algorithm 14 in 4.A),
we interpret for every probable center c (i.e., xc,c ≥ 1

|V |) the values of the variables xc,v for
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v ∈ V as described above, only stricter: If xc,v ≥ 1
|V | , we consider v allocated to the region

with center c, otherwise we do not. Therefore, we take a look at

V ′ =
{
v ∈ V

∣∣∣xc,v ≥ 1
|V |

}
and to the subgraph of G induced by V ′. In this subgraph we are able to detect connected
components of the areas tending to be allocated to c. For every connected component
U ⊆ V ′ ⊆ V with c /∈ U , we examine the set of adjacent areas in V , that is

BU :=
{
w ∈ V \ U

∣∣ ∃u∈U : {u,w} ∈ E
}
, (4.15)

and take it as a vertex separator. Subsequently, we add a Constraint (4.13) for every u ∈ U
(and c). This way we have a good chance of finding additional violated contiguity constraints
without much computational overhead.

4.5 Results and discussion

For a series of experiments we used a computer with a 3.2 GHz Intel Core i5-4570 Processor
and 16 GB RAM. Our program is written in Java and besides the Gurobi [Gur18] interface
for Java, we use in particular the library JGraphT [Nav16] for building the adjacency graph
and performing operations on it (see also 4.A). The data for the experiments is provided
by the European statistical service (Eurostat, [Eur15]) and the European Observation Net-
work for Territorial Development and Cohesion (ESPON, [Eur11]). This data is gathered
with regard to the NUTS2 subdivision of the European Union. As an example, we exam-
ine the unemployment rate [Eur11] for the NUTS-3 subdivision of continental France (see
Fig. 4.8(b)) which means processing a subdivision of 94 departments. In contrast to Haunert
and Wolff’s original work [Hau08, HW10a] we take the population of a department [Eur15]
(see Fig. 4.8(a)) instead of its area as the department’s weight. This means we compare the
methods described in Sections 4.2.2 and 4.4 on the third level administrative subdivision of
a major European country. We do not only compare the effects of α, the factor weighting
the cost functions frecolor and fnon-compact in the objective function, on the result and the
computation time, but also examine the influence of the choice of wmin, the minimum weight
required of a region in the output.
As attribute domain, Γ = [0, 1] is given and we write γv ∈ Γ for the attribute value, i.e.,
unemployment rate, of an area v ∈ V . According to Section 4.2.3, we define δ(γ1, γ2) =
|γ1 − γ2| for arbitrary γ1, γ2 ∈ Γ as the cost for recoloring. The cost for non-compactness
is defined through the Euclidean distance d between centroids. Observing Equations (4.1)
and (4.8)–(4.10) we get the following overall cost function as the objective function:∑

c∈V

∑
v∈V \{c}

w(v) ·
(
α · d(c, v) + (1− α) · δ(γc, γv)

)
· xc,v (4.16)

As for the weighting factor α, we make the following choice: With α ∈ {0, 1} we want to
present the extreme solutions. For α = 1 we receive compact regions of a certain weight
2Nomenclature des unités territoriales statistiques
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77156 2579208
(a) Population (department weight).

5.5% 15.0%
(b) Unemployment rate (attribute value; origin of
data: EUROSTAT, ESPON estimations, 2011).

Figure 4.8: input data for statistical aggregation of France’s departments

ignoring any statistical similarities between the areas. For α = 0 we see a solution with
least recoloring costs but consisting of regions of mostly unconventional shape. According
to the experiments that we present in this section, a weighting factor of α = 2 · 10−5 still
yields almost optimally compact shapes and α = 1.25 · 10−6 almost optimally homogenous
regions. Therefore, we particularly tested our method for α = 0 and α = 1 as well as for
1.25 · 10−6 ≤ α ≤ 2 · 10−5.

In our experiments, we set wmin to 5 % and 10 % respectively of the total population of
continental France. With this setting, we end up with a partitioning into a number of
larger regions which is approximately at the same scale as the actual NUTS-2 subdivision
of continental France, which consists of 12 regions.

Considering the results in Tables (1) and (2), it comes to attention that our cutting-plane
approach outperforms the flow model in every instance. In our experiments, the flow MILP
is competitive only in the situation where wmin is 10 % of the total population and α = 1. In
every other case, our ILP is many times faster, as the fifth column of each table indicates.
With α declining, i.e., focusing on reducing frecolor, the advantages of the cutting-plane
formulation become clearer since the problem becomes harder to solve. This is caused by
3Since the calculations are incomplete for both the flow model and the cutting-plane approach, the result
presented here is the best one found with no guarantee of optimality. It is the result of five days of
calculation with the cutting-plane approach. The optimality gap is 6.89%, i.e., the resulting cost of an
optimal solution is at least 1− 0.0689 = 0.9311 times the cost of the solution presented here. (Using the
flow MILP, the remaining gap is 51.4%.)
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Fig. 4.9 α tcut tflow
tflow/tcut #out

(a) 1 30 s 497 s 16.6 18

(b) 2.0 · 10−5 21 s 502 s 23.9 18

(c) 5.0 · 10−6 50 s 14 229 s ≈ 4.0 h 284.6 17

(d) 2.5 · 10−6 100 s > 5 d > 4 320.0 16

(e) 1.25 · 10−6 451 s > 5 d > 957.9 16

(f) 0 18 413 s ≈ 5.1 h > 5 d > 23.4 14

(1) Running times for the experiments with minimum weight wmin = 1
20

∑
v∈V w(v).

Fig. 4.10 α tcut tflow
tflow/tcut #out

(a) 1 20 s 35 s 1.8 9

(b) 2.0 · 10−5 59 s 267 s 4.5 9

(c) 5.0 · 10−6 194 s 14 464 s ≈ 4.0 h 74.6 9

(d) 2.5 · 10−6 495 s > 5 d > 872.7 9

(e) 1.25 · 10−6 86 981 s ≈ 1 d > 5 d > 4.9 9

(f) 0 > 5 d > 5 d — 9 3

(2) Running times for the experiments with minimum weight wmin = 1
10

∑
v∈V w(v).

Tables (1) and (2): These tables provide information about the running times in seconds (s),
hours (h) or days (d) for the corresponding experiments with different minimum weights
(see Eq. (4.4)). Experiments were aborted after five days if no optimal solution was found;
this is indicated with “> 5 d.” The first column refers to the visual presentation of the
result. The second column denotes the α-value used in this experiment (see Eq. (4.16)). In
the column marked with tcut one can find the running times of our approach described in
Section 4.4, in the column marked with tflow the times of the state-of-the-art approach of
Section 4.2. The fifth column compares those values by giving the ratio tflow/tcut. Finally,
the column marked with #out gives additional information about the structure of the result
by providing the number of resulting regions.
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Aveyron
(a) α = 1 (b) α = 2.0 · 10−5

(c) α = 5.0 · 10−6 (d) α = 2.5 · 10−6

(e) α = 1.25 · 10−6 (f) α = 0

Figure 4.9: Output with wmin equaling 5 % of France’s total population; thick lines mark
aggregated regions colored according to the unemployment rate of their center (◦). The
arrows in Fig. (e) and (f) point to extremely narrow parts of contiguous regions.
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(a) α = 1 (b) α = 2.0 · 10−5

(c) α = 5.0 · 10−6 (d) α = 2.5 · 10−6 (same result as (e))

(e) α = 1.25 · 10−6 (same result as (d)) (f) α = 0 (interim result3)

Figure 4.10: Output with wmin equaling 10 % of France’s total population; thick lines mark
aggregated regions colored according to the unemployment rate of their center (◦).
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the fact that focusing on compactness supports contiguity: A compact region is more likely
to be contiguous than a region of areas with similar attributes.

In particular, the three last rows of each table deserve our special attention. For both settings
of wmin, the solver is not able to return a result using the flow model for α ≤ 2.5 · 10−6.
Leaving the instance with α = 0, wmin = 1

10

∑
v∈V w(v) out of account, each of these

instances is solvable with the cutting-plane algorithm. For three of these instances, the
solver returns an optimal solution within a few minutes.

Considering the output in detail, we find that the noticeable higher unemployment rates in
northern and southern France (former Nord-Pas-de-Calais and on the Mediterranean coast)
are identified and aggregated in every example where similarity is considered (i.e., α 6= 1). In
general, for most of the departments, the resulting color (unemployment rate) is close to the
input. Nevertheless, one also notices larger differences between input and output coloring
for various departments. This phenomenon occurs especially for α = 1, but also in other
cases. For α 6= 1, however, this only causes minor changes since these departments have
a comparatively small population (see Fig. 4.8(a)) and consequently contribute only little
cost. Take, for example, Aveyron, a department in south-central France (see Fig. 4.9(a))
with one of the lowest unemployment rates of all departments. For both α = 1 and α = 0 it
has undergone seemingly expensive recoloring. Considering the objective, this makes sense
as less than 0.5 % of France’s total population lives in Aveyron.

Another negative aspect is the fact that parts of some of the resulting regions are very
narrow. Understandably, this occurs especially for α = 0, where resulting regions reach
diagonally from one border to another, e.g., in both Figs. 4.9(f) and 4.10(f) the region
containing the department in the very south-west (Pyrénées-Atlantiques). For α 6= 0 this
phenomenon occurs less distinctly. A problem that arises independent of α is bottlenecks.
A bottleneck is a very narrow part of a region connecting two larger parts. In order to
resolve this, one has to manipulate the input data or rather its interpretation. Building the
adjacency graph G, we consider departments adjacent as soon as they share a boundary.
When dealing with a map of France’s departments, we have to handle several pairs of
departments sharing a borderline of less than 10 km. Without adjusting the adjacency rule,
we see results with constellations such as in Figs. 4.9(e) and 4.9(f), where a region bordering
the Mediterranean Sea (marked with an arrow in the south-east) even seems to consist of
two components. Here, the departments Var and Vaucluse share less than 1 km of borderline.

Figure 4.11 gives us additional arguments to disqualify α = 0 or α = 1 as reasonable weight
factors. Let us take a look at the situation for wmin equaling 5 % of the total population
(i.e., Fig. 4.11(a)). As α = 0 (here: (f)) results in an optimal solution with respect to the
cost for recoloring, these costs are higher for every other value of α. But for α = 1.25 · 10−6

(here: (e)), recoloring is only approximately 1.2 % more expensive (47.06 % versus 47.65 %
of the maximum value) whereas the cost for non-compactness decreases by 32.4 %. The
situation is the same for the other value of wmin and similar with regard to the cost for
non-compactness. Also, this argument supports our choice for α ≈ 10−5. In this range, we
get near-optimal results for either cost without unreasonable expenses for the other.
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(a) Comparison for wmin equaling 5% of France’s to-
tal population, see Table (1) and Fig. 4.9; absolute
maximum values are 8.0 · 1012 (non-compactness)
and 6.4 · 107 (recoloring).
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(b) Comparison for wmin equaling 10% of France’s
total population, see Table (2) and Fig. 4.10;
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Figure 4.11: Costs for non-compactness and recoloring as a percentage of the maximum
occurring cost; as 100 % of costs for non-compactness we take those arising while minimizing
the cost for recoloring (i.e., α = 0) and vice versa.

4.6 Conclusion

Our method allows us to solve instances as large as France’s third level NUTS division
in a reasonable amount of time, which the existing method based on a flow model does
not. With our cutting-plane approach, we are able to partition about a hundred areas
into nine to eighteen regions multiple times faster than with the compact flow model. In
our experiments, the problem becomes harder the fewer output regions are asked for, as
Tables (1) and (2) show. With increasing the number of areas of the input, our algorithm
reaches its limits as well. Applying our model to Germany’s third level division—with 402
districts the largest in the European Union—the solver returns no optimal solution within
five days. This problem occurs even for α = 1, i.e., focusing on compactness only.

Nevertheless, our approach offers unprecedented opportunities. Five of the instances from
our experiments are set up too hard to be solved with the flow MILP within five days
but are solvable with the cutting-plane algorithm within one day. In particular, the solver
is capable to find an optimal solution for each of these settings which consider not only
recoloring but also compactness, i.e., α 6= 0. Moreover, three of these four cases are solved
within only a few minutes. Due to these positive results, we argue that we have increased
the range of problem instances that can be solved with proof of optimality such that it
includes use cases that are of relevance. In particular, we consider it promising to use our
method to produce benchmark solutions and to compare such solutions with solutions of
efficient heuristic methods. Such a comparison may help to decide whether or not a heuristic
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is a justifiable choice. Therefore, we think that both exact and heuristic methods for area
aggregation can complement each other and will play their roles in the future.

In future work, we plan to support the ILP solver by calling heuristics during branching or
in order to generate an initial solution. Furthermore, we consider it promising to apply our
cutting-plane approach to the p-region problem [DCM11], in which the number of output
regions is prescribed.



Appendix

4.A Appendix: Algorithms

In the following section we present the algorithms corresponding to the methods of adding
constraints to the model which are described in Sect. 4.4.2. For both algorithms 13 and
14, we use—in addition to the adjacency graph G = (V,E)—a matrix of ILP variables
indexed in the same manner as throughout the article (x[c][v] corresponds to xc,v). As
already mentioned, we only consider x-values exceeding a certain bound; in Sect. 4.4.2 we
choose 1

|V | which we use in these algorithms.

Algorithm 13: addVertexSeparatorCuts
Data: Adjacency graph G = (V,E), V sorted such that v ≥ w ⇔ xv,v ≥ xw,w for

v, w ∈ V , Variable[ ][ ] x
Result: Cuts added by means of vertex separators (see Section 4.4.2)

1 Gen← V ertexSeparatorGenerator(G);
2 c← V.first();
3 hasAdditionalCuts← false;
4 while x[c][c].getV alue() ≥ 1

V.size() ∨ ¬hasAdditionalCuts do
5 Gen.setWeights(V, x[c].getV alues());

6 U ←
{
v ∈ V

∣∣∣ v 6= c ∧ (v, c) /∈ E ∧ xc,v ≥ 1
V.size()

}
;

7 foreach u ∈ U do
8 S ← Gen.getV ertexSeparator(c, u);
9 if

∑
v∈S x[c][v].getV alue() < x[c][u].getV alue() then

10 addCut(“
∑

v∈S x[c][v] ≥ x[c][u]”);
11 hasAdditionalCuts← true;

12 C ← connectivityInspector
(
(V \ S,E

∣∣
V \S)

)
.getConnectedComponent

(
c
)
;

13 if
∑

v∈C w(v) < wmin then
14 foreach v ∈ C with x[v][v].getV alue() ≥ 1

V.size() do
15 if

∑
u∈S x[v][u].getV alue() < x[v][v].getV alue() then

16 addCut(“
∑

i∈S x[v][u] ≥ x[v][v]”);
17 hasAdditionalCuts← true;

18 c = V.next();

19 return hasAdditionalCuts;
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4 A Cutting-Plane Method for Contiguity-Constrained Spatial Aggregation

With Algorithm 13 we are able to find cuts using minimum vertex separators as described
in Section 4.4.2. Some parts of the algorithm need explanatory remarks:
• To find a vertex separator in G, we use a VertexSeparatorGenerator. That is an object

of the class MinSourceSinkCut of the library JGraphT[Nav16] applied to an auxiliary
graph as described in Section 2.2.3, Application: Minimum-Weight Vertex Separators.
• The boolean variable hasAdditionalCuts guarantees a sufficiently neat solution of the

separation problem. The search for vertex separators (and consequently additional
constraints) continues until a cut is added to the current LP relaxation, but at least
as long as the value of the x-variable of the center is greater or equal 1

|V | . hasAddition-
alCuts is the output of Algorithm 13 and this output is an argument of Algorithm 14.
In Algorithm 14, this boolean variable is used for the same purpose.
• The methods getValue() and getValues() return values of the solution of the LP re-

laxation to the currently examined branch-and-bound node; getValue() is applied
to one variable and returns its value whereas getValues() is applied to an array of
variables concerning a center c (i.e., x[c]) and, thus, actually returns a set of values{
xc,v ∈ [0; 1]

∣∣ v ∈ V }.
• Given G = (V,E) and a subset U ⊆ V , we define E

∣∣
U

as the set of edges restricted
to the set of vertices U , that is

E
∣∣
U

:=
{
{u, v} ∈ E

∣∣∣u, v ∈ U} = E ∩ 2U .

Consequently, (U,E
∣∣
U

) describes the subgraph of G induced by the vertex set U . In
order to find the connected component containing c in this subgraph, we use an object
of the class ConnectivityInspector which also is part of the library JGraphT.

Algorithm 14: addConnectedComponentsCuts
Data: Adjacency graph G = (V,E), V sorted such that v ≥ w ⇔ xv,v ≥ xw,w for

v, w ∈ V , Variable[ ][ ] x, hasAdditionalCuts
Result: Cuts added based on connected components (see Section 4.4.2)

1 c← V.first();
2 while x[c][c].getV alue() ≥ 1

V.size() ∨ ¬hasAdditionalCuts do
3 V ′ ←

{
v ∈ V

∣∣∣x[c][v] ≥ 1
V.size()

}
;

4 G′ ← (V ′, E
∣∣
V ′

);
5 foreach ConnectedComponent U in G′ with c /∈ U do
6 BU ←

{
w ∈ V \ U

∣∣ ∃u∈U : {u,w} ∈ E
}
;

7 foreach i ∈ C do
8 if

∑
j∈BU

x[c][j].getV alue() < x[c][i].getV alue() then
9 addCut(“

∑
j∈BU

x[c][j] ≥ x[c][i]”);
10 hasAdditionalCuts← true;

Algorithm 14 allows us to add cuts using connected components of the adjacency graph
as explained in Sect. 4.4.2. All the methods and sets (except BU ⊆ V ) described here are
known from Algorithm 13. A further description of BU , the set of vertices in V adjacent to
U ⊆ V , can be found in Sect. 4.4.2.

92



5 Analyzing the supply and detecting
spatial patterns of urban green spaces
via optimization

The following chapter is mainly taken from a joint work with Benjamin Niedermann and
Jan-Henrik Haunert [ONH19]. The presented article is an extension of a preliminary version
(together with Sven Lautenbach) [NOLH18] which finished runner-up in the competition
for the best-paper award at the GI Science 2018 conference. We present a new methodology
for evaluating the green-space of a city from idea to visualization. Furthermore, we test
our algorithm for exemplary data of more than fifty German cities and demonstrate how
to read and analyze the results including the resulting visualization. For that purpose, we
emulate a flow of residents to urban green spaces (see Section 2.2.3). Based on this flow
network, we model a linear program (Section 2.3.1) for assigning residents to green spaces.
This assignment is evaluated with the help of a predefined cost function that considers,
among other criteria, the distances between green spaces and residential areas. Afterwards,
we aggregate residential areas using the same pool of green spaces and, vice versa, we
aggregate green spaces that are visited from the same residential areas. This way, we detect
patterns in the accessibility of green space in an urban area.

Abstract
Green spaces in urban areas offer great possibilities of recreation, provided that they are
easily accessible. Therefore, an ideal city should offer large green spaces close to where
its residents live. Although there are several measures for the assessment of urban green
spaces, the existing measures usually focus either on the total size of all green spaces or
on their accessibility. Hence, in this paper, we present a new methodology for assessing
green-space provision and accessibility in an integrated way. The core of our methodology is
an algorithm based on linear programming that computes an optimal assignment between
residential areas and green spaces. In a basic setting, it assigns green spaces of a prescribed
size exclusively to each resident such that an objective function that, in particular, con-
siders the average distance between residents and assigned green spaces is optimized. We
contribute a detailed presentation on how to engineer an assignment-based method such
that it yields plausible results (e.g., by considering distances in the road network) and be-
comes efficient enough for the analysis of large metropolitan areas (e.g., we were able to
process an instance of Berlin with about 130 000 polygons representing green spaces, 18 000
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polygons representing residential areas, and 6 million road segments). Furthermore, we show
that the optimal assignments resulting from our method enable a subsequent analysis that
reveals both interesting global properties of a city as well as spatial patterns. For example,
our method allows us to identify neighborhoods with a shortage of green spaces, which will
help spatial planners in their decision making.

5.1 Introduction

Urban green spaces affect the quality of life in a variety of manners. In different
fields, researchers stressed the significance of green spaces to cities considering socio-
cultural [TWKS98, TMS07], health [BRMC05, CMS+07, LM10, WBN14], ecologi-
cal [PCC+11, SAM06], or economic aspects [KYN07, PV13]. Tyrväinen et al. [TPSdV05]
give a detailed overview of the benefits of urban forests and trees, which contribute to
urban green-space supply. Many of these benefits also apply for green spaces in general,
e.g., the impact on physical and mental health or biotopes for flora and fauna in urban
environments. Depending on the focus of research, green spaces comprise, for example,
urban parks, playgrounds, forests, or natural areas. Some authors include private urban
green spaces as they matter, for example, for environmental subjects [WBN14]. In this
work, we consider the recreational value of visiting public urban green spaces [Har04].
Due to their important role there is an increasing interest in measuring and assessing the
green-space supply of an urban area [FG09, GRL+16, WBN14].
In order to assess the supply of a city with green spaces quantitatively, spatial planners
have developed and suggested various indicators. In particular, indicators for green-space
accessibility and green-space provision have been described [GRM+17]. In this paper, we
use these terms as follows:

Definition 5.1. Green-space provision describes a measure quantifying the total potential
of a green space or a set of multiple green spaces with respect to its recreational value.

Definition 5.2. Green-space accessibility describes a measure quantifying the effort needed
to visit a green space depending on the location of residence of a person. Little effort, i.e. a
low value, corresponds to a good accessibility.

Concerning green-space provision, the area of all available green spaces, for example, is
considered and compared with the population size or the total area of the study re-
gion [GRM+17, HSS+12]. Various authors agree that the accessibility of a green space
is crucial [GCD02, GRM+17, HK15, LM10]. In order to quantify accessibility, one approach
is to demand a green space of a certain size within a certain distance from a residential
area [CBG08, VHW03]. This criterion does not take the population density of the neigh-
boring residential area into account. Obviously, the green-space supply worsens the more
people live in the area [GRM+17, HSS+12]. In this article, we introduce a new method-
ology to analyze green-space accessibility and green-space provision in an integrated way
ensuring that neither small and overcrowded inner-city parks nor vast but hardly accessible
green spaces contribute to the assessment disproportionately. In our analyses, we particu-
larly focus on measuring accessibility based on distances in a road network. Furthermore,
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5.1 Introduction

we present how our approach can be used to detect patterns in the distribution of green
spaces in a city.

To consider green-space provision and accessibility in an integrated way, we assume that
every green space can supply only a limited number of residents. This number is referred
to as the green space’s capacity.

Definition 5.3. The capacity of a green space is the total number of residents it can supply.

We do not make any restricting assumption concerning the capacities of green spaces, mean-
ing that our method can deal with arbitrary capacities provided as input. For example, one
may set the capacity of a green space based on its type (e.g., park or urban forest) and
the number of facilities within (e.g, park benches and playgrounds). However, as a simple
model we suggest setting the capacity of a green space proportional to its size, following
existing recommendations [Sch17]. The factor of proportionality is referred to as per-capita
demand.

Definition 5.4. The per-capita demand is the area of green spaces demanded by a single
resident.

We assume that if for a resident the accessibility of a green space is too low then visiting
that green space has no recreational value and, thus, is out of choice. This is expressed with
the resident’s scope.

Definition 5.5. The scope is the maximum effort a resident is willing to spend for accessing
a green space.

Basically, we aim at finding an assignment of a city’s residents to the green spaces that
respects the residents’ scopes as well as the capacities of the green spaces and that is
optimal according to a mathematical score function. The assignment is modeled as a flow
transporting quantities of residents between residential areas and green spaces, where each
residential area is a polygon (of approximately the size of a city block) with a population
size. While in Section 5.3 we will present a more detailed discussion of the score function
that we optimize, we generally assume that the score increases if more residents are supplied
or if the same number of residents is supplied with green spaces that are better accessible.
This general property allows us to conduct interesting analyses. For example, for a fixed
scope and per-capita demand, the average distance between the residents and the assigned
green spaces is a global measure characterizing an entire city. Furthermore, to conduct a
more local analysis, we can increase the per-capita demand (and, thus, the competition
among the residents) and study the effect on an optimal assignment. In particular, if we
increase the per-capita beyond a certain value, some residents will not get a share of the
green spaces anymore. Consequently, if the supply of the residents of some residential area
collapses already for a relatively low per-capita demand, we consider it as an indication
that this particular residential area is lacking a sufficiently large provision with accessible
green spaces. Visualizing the largest satisfied per-capita demand for all residential areas thus
indicates where green spaces are missing, see Figure 5.1. In a similar manner, we can study
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(a) For a scope of 1 500m many residential areas are sup-
plied only for small per-capita demands (light gray).
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(b) Smaller green spaces (red oval) improve
the situation for nearby residential areas only
slightly.

Figure 5.1: Excerpt of our results (see Section 5.4) for a scope defined with a distance of
1 500 m in the road network. Residential areas are depicted with gray polygons, green spaces
with green ones. The darker the gray, the higher is the largest satisfied per-capita demand
for the corresponding residential area.

how the roles of the green spaces change if the per-capita demand increases. Generally,
important green spaces are those to which residents are assigned already for small per-
capita demands. We will discuss more possibilities of analyzing the outcomes of our method
in Section 5.4.

Although our approach offers a variety of settings for specifying the role of certain green
spaces or residential areas, we focus on the most basic set up in which all green spaces and
residential areas, respectively, are considered equal apart from their size, i.e. their capacity
and their population, respectively. With these settings, we apply our model to 53 German
cities. For every data set, i.e. for each city, we run a series of experiments with different
settings with respect to the per-capita demand and the scope of the residents. In this work,
we extend each of these experiments with a cluster analysis in order to detect patterns
in the distribution of urban green spaces. These clusters are defined based on connected
components within those parts of the road network that are used by the residents in an
optimal assignment. The patterns we detect during the evaluation of our experiments range
from global pools of green spaces supplying every resident of a city to sets of local green
spaces supplying their neighborhood only.

With respect to the global measure of quality, we consider the average distance to assigned
green spaces particularly interesting. Nevertheless, we will introduce a more general objec-
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5.2 Related Work on Qualitative and Quantitative Analyses of Green Spaces

tive function that allows us to distinguish different types of green spaces and residential
areas of different demands.

To put our general idea to practice, several design decisions have to be made and technical
obstacles have to be overcome. For example, the data set has to be selected to include all
relevant green spaces. Furthermore, green spaces and residential areas are usually given as
sets of isolated polygons with no direct connection to the segments of a road data set and,
thus, additional links have to be established. Concerning green-space provision, one should
consider not only the size of a green space but also various other aspects that influence its
recreational value like the type of green space, its vegetation or its management [HdVA+17,
MRTH10, BØTS06]. Moreover, since the polygons representing residential areas and green
spaces may be too large and complex to argue about the distances between them accurately,
it may be necessary to partition the polygons into smaller units. All of these aspects are
considered in our method in the sense that it offers parameters that should be set by
domain experts (e.g., spatial planners). We discuss in detail how these parameters are
considered in our method. However, we use rather basic methods and parameter settings
in our experiments as our focus lies on presenting the methodology of our approach. Our
setup exemplifies how our tools can be used – but, finally, the parameter setting depends
on the application and is, consequently, up to domain experts.

In algorithmic terms, we adapt the transportation problem [Mun57], which has been studied
frequently to decide how to ship a commodity from a set of suppliers to a set of con-
sumers [Gas90]. For assessing green spaces, however, it has not been applied yet. The
transportation problem can be solved with specialized algorithms [FJF55] or via linear
programming (LP) [FJF56b]. We choose the latter since it can be implemented easily with
a mathematical solver and since an LP formulation can be extended easily, for example, to
incorporate additional constraints [NW88].

The rest of the paper is structured as follows. After discussing related work (Section 5.2),
we introduce a generic network flow model that constitutes the core of our methodology
(Section 5.3). We further present how to deploy this model overcoming several technical
obstacles. Then, we describe how to use this model for the analysis of green spaces (Sec-
tion 5.4). We finally conclude the paper with a short outlook on future work (Section 5.5).

5.2 Related Work on Qualitative and Quantitative Analyses of
Green Spaces

In this section, we present and discuss a selection of existing approaches for the assessment
of urban green spaces.

Baycan-Levent et al. [BLVN09] make clear that assessing the green-space supply of a city is
a complex problem. They perform an analysis on several criteria considering among others
ecological, economic, and social aspects. With their approach, only the green spaces of an
urban area themselves are assessed without taking the residential areas into account: The
sheer existence of a high-quality green space improves the result of an assessment of a city
regardless of whether its residents are able to access it.
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Especially for benefits arising from visiting a green space, like recreation, its accessibility
is crucial. Literature is growing on this topic, yet, no outstanding approach for measuring
accessibility exists on which researchers can agree [WBN14]. Coombes et al. [CJH10] and
Potestio et al. [PPP+09], for example, examine the accessibility of green spaces in the
study area with the help of a survey. They consider the distances between the dwellings
of participants and the respective closest green space. Other approaches focus on the size
or the number of green spaces that are found within a certain radius, e.g. 1 mile, from
the residents or, conversely, how many residents live within a certain distance of a green
space [MGK+17, NNR+06, OJ07, RER+06, Tal13]. While some of these approaches deal
with Euclidean distances, others consider the distance in the road network as it improves
the accuracy of a model [Nic01].

Comber et al. [CBG08] examine the green-space supply of a city with respect to its resi-
dential areas. They perform a road-network analysis in order to determine the accessibility
of urban green spaces. With respect to the road network, they consider the percentage of
citizens living within a certain radius of green spaces exceeding a minimum size. Whether
the available green spaces are sufficient for the number of residents is examined on a global
scale only. Furthermore, Comber et al. detect for residential areas whether a green space of
adequate size is within a certain distance d or not. If not, no further differentiation takes
place: For their assessment methodology, it does not matter whether residents have to walk
slightly more than d to the next green space or several times the distance. In order to
handle this problem, Comber et al. repeat their analysis for various settings concerning the
distance to and the minimum size of the considered green spaces.

Sister et al. [SWW10] use a road-network analysis in order to examine park pressure, the
ratio of the number of people assigned to a park to its area. This assignment is based on a
Voronoi tessellation and, thus, for every resident, only the closest park is considered. Hence,
there can be enormous pressure on a park although there are many parks with low pressure
nearby but a little bit more distant to the residents. This is a reason why we argue that
park pressure is not an ideal tool for assessing the green-space supply. Consequently, we
present an approach that takes both distances and capacities into account.

In a recent work, Grunewald et al. [GRM+17] suggested indicators considering both green-
space accessibility and provision. For accessibility, they compute the share of inhabitants
living within a certain distance from green spaces. Concerning provision, they examine the
green-space area per capita both globally and in walking distance from residential areas. A
city with green spaces that are accessible for many residents but are of insufficient capacity,
e.g. in high-density residential areas, is assessed positively with respect to accessibility;
a city with large green spaces accessible only for few, e.g. on the outskirts, gets a good
assessment concerning provision. A combination of both leads to a good overall assessment
although most of the city’s inhabitants have either access to overcrowded green spaces only
or limited green-space access. The problem is that Grunewald et al. rather accumulate than
combine accessibility and provision criteria. In this paper, we consider green-space provision
and accessibility in an integrated manner.
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5.3 Methodology

In this section, we present the methodology of our approach. We begin in Section 5.3.1
describing our tool for the analysis of the green-space supply – from the original idea to the
implementation capable of processing instances of metropolitan dimensions. In Section 5.3.2,
we enhance our approach in order to search patterns within the structure of a computed
solution. Subsequently, we describe in Section 5.3.3 in detail how to apply our approach in
practice. In Section 5.3.4, finally, we present a small example to which we apply our method.

In the following, we describe a tool set that works on various scales. To begin with, we
present the requirements for setting up our model. Generally, the tools can be applied to
arbitrarily sized residential areas and green spaces. However, results are more meaningful if
the following aspects are considered:

• Green spaces and residential areas should be digitized with such a granularity that a
single number suffices for representing the distance between a residential area and a
green space.

• If information on the recreational value of green spaces is available, the green spaces
should be digitized such that within each green space the recreational value does not
vary too much.

• If information on the mobility of residents is available, the residential areas should be
digitized such that within each residential area the mobility of the residents does not
vary too much. Residential areas with mixed categories of residents (e.g., families and
elderly people) could be split into multiple entities, one for each group.

Figure 5.2 depicts two scenes that differ only with respect to the granularity of the green
spaces. In Figure 5.2(a), the shortest distance between the residential area r and the green
space g is very small although most residents of r would have to walk a rather long way to
access the capacious main body of g. Therefore, we argue that the granularity of the green
space is not well chosen according to the first requirement. Instead, we suggest partitioning
the green space into smaller and more compact polygons as presented in Figure 5.2(b). With
this we can distinguish between assignments to near parts of g and assignments to distant
parts of g and rate their accessibility differently for the residents in r.

5.3.1 Basic Model

At first, we present a basic model for analyzing the provision and the accessibility of green
spaces in combination – the foundation of our further analysis.

Basic Ideas Our model originates from realizing that established tools for assessing urban
green spaces focus either on the provision or the accessibility of green spaces. Among the
simplest approaches, for example, is analyzing the green-space area that is available per per-
son. Without considering the accessibility simultaneously, vast green spaces on the outskirts
of a city have a higher influence on the assessment of a city than green spaces in the inner
city to which residents have access to in their daily life. Conversely, considering accessibility
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Figure 5.2: Green spaces (green) and residential areas (red) with different granularities of
digitization.

criteria like, for example, mean distance only leads to positive assessments caused by small
inner city parks of insufficient size.
Our model interweaves both measures and overcomes their shortcomings. It rests on data of
residential areas with population information, green spaces with capacities, and a network
connecting in between. With our approach, we seek an assignment of shares of green spaces
to residents maximizing a score function. The score respects the green spaces’ capacities
and the residents’ scope, i.e. the maximum distance residents are willing to cover, while
considering green-space preferences of the residents. Our model is adaptable to a variety of
requirements. Altering the capacity of certain green spaces allows the user to differentiate
between different kinds of green spaces. Altering the scope of the residents of certain resi-
dential areas allows the user to consider, for example, the residents’ mobility. Finally, the
user can adapt the underlying network to different means of transportation.

Formalization Let (R,G) be an urban area composed of a set R of residential areas and a
set G of green spaces. For each residential area r ∈ R a number I(r) of residents is defined.
For every green space g ∈ G the capacity C(g) yields information about the number of
residents that can be served by g. Then, we interpret a triplet (r, g, i) ∈ R×G×R+ as the
number i of residents of r who are assigned to green space g. An assignment A ⊆ R×G×R+,
i.e., a set of such triplets respecting both the capacity of g and the population size of r,
is sought. That is,

∑
(r,·,i)∈A i ≤ I(r) holds for every r ∈ R and

∑
(·,g,i)∈A i ≤ C(g) holds

for every g ∈ G. In order to avoid ambiguity, any assignment A is assumed to contain
no triplet (r, g, i) with i = 0. Various assignments exist but they differ in quality. Hence,
a score function s : R × G → [0, 1] assessing the combination of a residential area and a
green space is introduced that can be defined by the user of our tool set. High scores for
r ∈ R and g ∈ G correspond to a high preference of g by the residents of r. As long as this
score function is precomputable it can be chosen arbitrarily. Getting back to maximizing
the score, this objective is modeled as maximizing

∑
(r,g,i)∈A s(r, g) · i, the total score. We

refer to this problem as GreenSpaceAssignment.
From a computational point of view, GreenSpaceAssignment is a maximum flow prob-
lem in a complete bipartite graph formed by R and G; compare Figure 5.3(a). This flow
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Figure 5.3: Assignment Model with residential areas (red boxes) and green spaces (green
circles). (a) Illustration of a generic assignment model. (b) Service network N = (V ∪ R ∪
G,E ∪ F ) based on the road network H = (V,E) (black vertices, fat edges), residential
areas R and green spaces G. (c) Flow zr,g is transmitted from the residential area r to the
green space g through the road network on the shortest path P . The flow creates the value
given in Equation (5.10). As only the flow from r to g is considered, for every edge uv ∈ P
the inequality zr,g ≤ xuv holds.

problem can be subsumed into the following linear program in which the variable xr,g, de-
fined for every pair (r, g) ∈ R×G, expresses the number of residents of r who are assigned
to g.

max
∑
r∈R

∑
g∈G

s(r, g) · xr,g (5.1)

such that
∑
g∈G

xr,g ≤ I(r) for every r ∈ R (5.2)

∑
r∈R

xr,g ≤ C(g) for every g ∈ G (5.3)

Distance-based Score Function Assuming that residents prefer nearby and – apart from
size or proximity – attractive green spaces [HdVA+17, SWW10], we introduce the following
specialization of the presented model. As for matters of accessibility, we suggest to define
the score dependent on a distance function d for residential areas and green spaces. The
choice of the distance function is up to the user of our tool set. In the next paragraph,
our advanced model is presented and here, the distance is defined as the walking distance
between residential areas and green spaces. Depending on the application, one may consider
walking distances only, include public transportation, or design the distance, for example,
based on car-travel distance. However, according to the distance d, a scope dmax is intro-
duced, the maximum distance any resident is willing to cover to reach an arbitrary green
space. Considering this scope, we define a basic score function

s(r, g) = 1− d (r, g)

dmax
. (5.4)

For a pair (r, g), maximum score close to 1 is achieved if r and g are as close as possible. If
r and g are dmax apart, no score is gained by assigning residents from r to g. For distances
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5 Analyzing the supply and detecting spatial patterns of urban green spaces

d (r, g) larger than dmax setting xr,g = 1 contributes a negative score to the objective function
and, thus, will not occur in an optimal solution. Figure 5.4 (blue line) visualizes how this
score function depends on the distance between the residential area r and the green space g
as well as the scope dmax.

However, we suggest to include information about the green spaces beyond size, capacity
and location. Thus, this model can be extended to

s(r, g) = αr + βg −
d (r, g)

dmax
(5.5)

where the values αr and βg represent additional influence of a specific residential area r or a
specific green space g on the score under consideration, see the orange line in Fig. 5.4. Higher
values for αr and βg counteract the negative effect of d(r,g)

dmax
on the score. For a residential

area r, this can be interpreted for example as a higher mobility of the residents of r. For
a green space g, it can be used for expressing an increased attractiveness of g compared
to other green spaces. This influences the distance residents are willing to cover [GCD02].
We call the result effective scope. Depending on the combination of green space g and
residential area r, the effective scope is dmax · (αr +βg). For s to map to [0, 1] it is necessary
that αr + βg ≤ 1 for any combination of a residential area r and a green space g. This way,
the highest effective scope, i.e. for αr + βg = 1, expresses the distance residents with the
highest mobility are willing to cover to reach the most attractive green space. Thus, in this
case, effective scope and scope are the same.

Network-based Assignment Model The LP formulation consisting of equations (5.1)–
(5.3) solves GreenSpaceAssignment but is applicable only for cities of moderate size. The
quadratic number of variables in combination with the desired level of detail of the analysis
asks too much even of modern server systems when it comes to larger cities. Therefore, we
introduce a road-network based formulation using a number of variables that is linear in
the size of the number of green spaces, residential areas and the size of the road network.
This way, the analysis of metropolitan cities is possible.

Based on a road network given as a directed geometric graph H = (V,E), a service network
N = (V ∪R ∪G,E ∪ F ) is built. Its vertex sets consists of V , the vertex set of H, as well

s(r, g)

d(r, g)

1

0
0 dmax

Figure 5.4: Score functions for αr +βg = 1 (blue, see in particular Eq. 5.4) and αr +βg < 1
(orange, see Eq. 5.5) plotted versus the length of the shortest path.
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5.3 Methodology

as one vertex for every residential area r ∈ R and every green space g ∈ G. These vertices
are linked to the edges E of the road network with additional edges F completing the edge
set of N to E ∪F , see Figure 5.3(b). In detail, every residential area is connected to access
points within the road network via outgoing edges. Likewise, every green space is connected
to access points via incoming edges. These access points connect residential areas and green
spaces with the road network. We use a generic approach to define access points: A vertex
in the road network serves as an access point to a green space if it is contained in a buffer
of, for example, 100 m around the green space. We use the same method to define access
points for residential areas. However, the precision of the model can be increased by using
real-world access point like park or building entrances. Although, using the latter as access
points makes only sense if population data is available for every building.
The weight d of a service-network edge is defined as follows. For edges (r, v) ∈ F connecting
a residential area r with an access point v, the length d (r, v) = αr is defined. Likewise, for
edges (u, g) ∈ F connecting an access point u with a green space g, the length is defined
as d (u, g) = βg. For every edge e that stems from the road network, i.e. e ∈ E, the edge
weight is inherited from the road network. Depending on the underlying road network this
may be, for example, the geodesic length of the edge or the time it takes to travel along it.
With the service network being set up, an LP formulation can be introduced that is less
complex than the previous one in the sense that a smaller number of variables is used. Here,
for every edge e ∈ E ∪ F , a variable xe is used to model the flow on e. This flow represents
the number of residents using edge e. We use these variables to formulate the LP as follows.

max
∑
r∈R

∑
(r,v)∈F

αr · x(r,v) +
∑
g∈G

∑
(u,g)∈F

βg · x(u,g) −
∑

(u,v)∈E

d (u, v)

dmax
x(u,v) (5.6)

such that∑
(r,v)∈F

x(r,v) ≤ I(r) for every r ∈ R (5.7)

∑
(u,g)∈F

x(u,g) ≤ C(g) for every g ∈ G (5.8)

∑
(u,v)∈E∪F

x(u,v) =
∑

(v,w)∈E∪F

x(v,w) for every v ∈ V (5.9)

Constraint (5.7) bounds the outflow of a residential area r with its population size I(r).
Likewise, Constraint (5.8) respects a green space g’s capacity C(g). Constraint (5.9) de-
mands for every road-network vertex that its inflow equals its outflow and, thus, preserves
the flow within the road network. Altogether, these constraints allow flow to emerge at
residential areas only and to drain away at green spaces only. The flow produced at a resi-
dential area does not exceed the respective population size and a sink at a green space has
to respect the corresponding capacity.
The objective function is set up to correspond to the objective of GreenSpaceAssign-
ment. This becomes clearer when the contribution of a flow zr,g from a specific residential
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5 Analyzing the supply and detecting spatial patterns of urban green spaces

area r to a specific green space g is considered. The flow zr,g contributes αr · zr,g to the
objective by leaving the source r. Along its path P through the network, it contributes
−d(u,v)

dmax
· zr,g for every network edge uv used, i.e. −

∑
uv∈P

d(u,v)
dmax

· zr,g in total. Furthermore,
by draining away at green space g, the flow contributes βg · zr,g. Since there is no limitation
to the usage of a network edge and since the LP is a maximization problem, the flow uses a
shortest path from r to g, i.e. P has length d (r, g), see Figure 5.3(c). This means, that zr,g
contributes αr + βg −

∑
(u,v)∈P

d (u, v)

dmax

 · zr,g = s(r, g) · zr,g (5.10)

to the objective. Considering the network flow in total, the objective corresponds to∑
r∈R

∑
g∈G s(r, g) · zr,g, the objective of GreenSpaceAssignment.

Although, with this objective function, residents prefer nearby green spaces, results differ
from solutions obtained with simple models. Consider, for example, a greedy approach
assigning residents to the closest green space with remaining capacities. Figure 5.5(a) depicts
an example with residential areas with population I(r) = 1, green spaces with capacity
C(g) = 1, and road edge length a, b, and c with b < min{a, c} with different feasible
assignments. In this case, a greedy algorithm finds a solution assigning the residents of r1

to green space g2 if b ≤ dmax (orange in Figure 5.5(b)) and, additionally, the residents of
r2 to g1 if a + b + c ≤ dmax (blue in Figure 5.5(b)). With our approach, a solution with
assignments to both g1 and g2 (red in Figure 5.5(c)) are possible even for scopes smaller
than a+ b+ c. This means that residents from residential area r1 are willing to make room
for residents from r2 within certain bounds. The red assignment achieves the maximum
score for dmax ≥ a+c−b

(αr2+βg1 ) among all assignments presented in Figure 5.5(b) and (c).

5.3.2 Analyzing the Resulting Clusters

For a deeper analysis of urban green spaces, we continue with an analysis of supply clusters
based on connected components defined by the resulting flow in the service network.

The result of our tool presented in Section 5.3.1 is an assignment of the variables x(u,v) for
every (u, v) ∈ E ∪ F . A variable x(u,v) indicates how many residents use the corresponding
edge (u, v) in an optimal solution to network-based GreenSpaceAssignment. Based on
this information, the edges E ∪ F of the service network can be divided into two groups:
edges that play a role in an optimal solution and those which do not. This categorization
allows us to detect clusters of used edges within the network by applying, for example,
a depth-first search on the service network [CLRS09]. This way, further structures of the
green-space supply become visible.

The clusters are defined based on the service network weighted with the solution to Green-
SpaceAssignment. More precisely, we consider the graph

N ′ = (V ∪R ∪G, {e ∈ E ∪ F | w(e) > 0}),

i.e. only edges e ∈ E ∪ F which are part of the computed solution. In N ′ we look for
connected components. Searching these connected components, we ignore edge directions,
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g1 g2

a b c

αr1 αr2

βg2βg1(a)

g1 g2

(b)

b < min{a, c}

(c)

g1 g2

4 2 3

4 2 3

dmax ≥ 9

dmax > 5

dmax ≥ 2

2 ≤ dmax ≤ 5

αr = 0.5
βg = 0.5

αr = 0.5
βg = 0.5

r1 r2

r2r1

r2r1

Figure 5.5: Small example for visualizing differences to greedy approaches for assigning
residents to green spaces. To keep things simple, every residential area r is inhabited by
one resident and every green space g’s supply suffices for one resident only. (a) Set up
with b < min{a, c}. (b) Example with (a, b, c) = (4, 2, 3). Optimal solutions for different
scopes for the greedy approach. For dmax ≥ 2, the orange assignment takes place. For
dmax ≥ 9, the blue assignment is active in addition. (c) Example with (a, b, c) = (4, 2, 3).
Optimal solutions for different scopes for our approach. The orange assignment takes place
for 2 ≤ dmax ≤ 5. For dmax = 5, the red assignment has the same objective value, for larger
scopes it is superior.

i.e. all outgoing edges of a single residential area are part of the same cluster and, likewise,
all incoming edges of a single green space. In the following, we refer to these connected
components as clusters.

5.3.3 Deployment

In this section, we state in detail how we deploy our network-based model. As we want to
present our methodology, we use the model in its most general way, i.e., without emphasizing
any particular residential area or green space, for example, by specifying certain αr or βg
values. Furthermore, we explain how to use the results obtained to get more information
about the quality of a city’s green-space supply as described in Section 5.3.2. For this
purpose, the residential areas R and the green spaces G need to be given as simple polygons.
For each residential area also the number of residents needs to be provided. Furthermore,
our algorithm takes the road network as a graph H = (V,E) with geometric embedding as
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an input. In the first phase of deployment, the given data is preprocessed in order to obtain
an instance of GreenSpaceAssignment which gets solved in the second phase. In a third
phase, a detailed analysis is applied.

First Phase – Preprocessing
1. Partitioning the green-space polygons

As green-space polygons may be too large to express the distance between them and
some residential area accurately with a single value, we suggest partitioning these
polygons into smaller units. The user should aim for a granularity comparable to the
granularity of the residential areas. Of course, it is possible to partition residential
areas as well to achieve a finer overall granularity but this makes sense only if infor-
mation about the distribution of the residents is available. For the partitioning of the
green spaces, we apply the algorithm of Haunert and Meulemans [HM16]. It decom-
poses a simple polygon into a minimum number of simple polygons such that each
of the resulting polygons is sufficiently compact with respect to a measure of dilation
from graph theory. The resulting set of green spaces represented by compact polygons
constitute the set G in the following.

2. Determining/Enriching the road network with access points to the polygons
Within the road network, access points for the residential areas R and the green
spaces G need to be selected or, in case of available more precise data, created. For
this purpose, we buffer the polygons; we use an offset of 100 m. Road vertices that are
contained in the buffered polygons serve as access points. Thus, green spaces can be
accessed by roads passing nearby. Likewise, residents can enter the road network via
close roads.
This step can be skipped if access points for residential areas and green spaces are
given in the input data.

3. Building the service network
In order to set up the service network, it is necessary to connect the green spaces G and
the residential areas R to the road network. For a residential area r ∈ R, we suggest
to simply create an edge rv for every access point v of the corresponding polygon.
Similarly, we introduce an edge ug for the access points u to a green space g ∈ G.
Denoting the set of these additional edges by F , the service network N = (V ∪ R ∪
G,E ∪ F ) results.

4. Reducing the complexity of the service network
Since degree-2 vertices of the service network do not have an influence on the result
we eliminate them in order to improve the algorithm’s running time. This is done by
recursively replacing the incident edges of a degree-2 vertex with an edge connecting
its neighbors. The new edge’s length is derived from the lengths of both original ones.

5. Further reduction of the complexity of the service network
Due to the problem formulation of GreenSpaceAssignment, in the service network,
only shortest paths between green spaces and residential areas are of interest. Any
vertex that is not part of such a shortest path gets removed. For any other vertex,
its accessibility is annotated. We define the reachability of a vertex as its minimum
distance to a residential area. It is used for a speed-up of our algorithm in the second
phase.
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Second Phase – Linear Programming The first phase provides an almost complete in-
stance of GreenSpaceAssignment. Information about the capacities of green spaces and
the scope is still lacking. Hence, we systematically explore a variety of capacities and scopes
and apply them to the defined problem. We use an areal green-space size γ that is nec-
essary to satisfy a resident, the per-capita demand. A general definition for the capacity,
area of the green space/γ, follows. In the experiments, we consider a variety of parameters as
choosing a single one is difficult. Hence, we consider a set Γ of different per-capita demands.
Likewise, a set D of various scopes is considered. In order to solve GreenSpaceAssign-
ment for a pair (γ, d) ∈ Γ × D, the corresponding linear program is completed with the
following definitions. The capacity of a green space g ∈ G is set to area(g)/γ and, finally, the
scope dmax is set to d. By considering the reachability of a vertex in the service network
(see First Phase, Step 5) it is possible to decide beforehand whether the vertex may play a
role in the solution to the linear program. Network edges to vertices with a distance larger
than the scope do not need to be considered at all which allows us to set up smaller linear
programs.

For every pair (γ, d) ∈ Γ × D, the solution obtained provides for every edge in E ∪ F
information about the number of residents using that edge.

Third Phase – Detailed Analysis The solution of an instance of GreenSpaceAssign-
ment yields much more than simply the overall score of a city. Applying the solution of one
GreenSpaceAssignment instance to the graph of service network one obtains a weighted
graph with an edge weight w : E ∪ F → R indicating the number of residents using the
considered edge.

1. Analyzing edges connecting green spaces and residential areas to the network

Analyzing the edges of F , i.e. edges connecting green spaces and residential areas
to the road network, yields information about the situation for the respective green
space or residential area. For every green space g ∈ G, the term

∑
(u,g)∈F w(u, g)

yields the number of residents that are supplied by g. Conversely, for every residential
area r ∈ R, the term

∑
(r,v)∈F w(r, v) tells how many residents of r have access to the

green spaces such that their per-capita demand is fulfilled.

For a fixed scope, we consider the following measures:

• For each r ∈ R its largest satisfied per-capita demand : the largest per-capita
demand γ ∈ Γ for which all residents of r are assigned to green spaces.

• For each g ∈ G its smallest relevant per-capita demand : the smallest per-capita
demand γ ∈ Γ such that g is used in the assignment.

Furthermore, for a fixed per-capita demand, we define two measures as follows:

• For each γ ∈ Γ the smallest scope satisfying all residents: the smallest scope such
that the per-capita demand is satisfied for every resident.

• For each γ ∈ Γ the average distance to assigned green space: the average dis-
tance between residents and assigned green spaces, assuming an infinite scope.
If residents remain unassigned (i.e., there is not enough supply for the respective
per-capita demand) the measure is undefined.
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2. General analysis of service network edges

The edges of E, i.e. edges of the road network, yield further information, too. In
combination with the links F to green spaces and residential areas, for example, it
is possible to detect clusters of residential areas that share green spaces. Thus, it is
possible to detect whether, in a city, the green-space supply is provided by a global
pool of green spaces supplying every resident or by a set of local green spaces supplying
their neighborhood only. We suggest to compare the resulting clusters with respect
to the total number of residents of the residential areas within. If the polygons were
subdivided in the preprocessing phase (step 1 of first phase) we define that every two
polygons stemming from the same original polygon belong to the same cluster.

5.3.4 A running example

In Figure 5.6, a scenario is given with three green spaces gi with i ∈ {1, 2, 3} and four
residential areas ri with i ∈ {1, 2, 3, 4}. Furthermore, a road network is given such that
the shortest path from the access points of residential areas to those of green spaces can
be expressed with five generalized edges (t, u), (u, t), (v, u), (u,w), and (w, u). The service
network is completed by edges connecting the residential areas and the green spaces with
the corresponding access points. Accordingly, the linear program uses the variables x(r1,t),
x(r2,t), x(r2,u), x(r3,v), and x(r4,w) for edges connecting residential areas to the road network,
x(t,g1), x(u,g2), and x(w,g3) for edges to green spaces, and x(t,u), x(u,t), x(u,v), x(u,w), and
x(w,u) for edges of the road network.

Corresponding to Formula 5.6, the objective function is given as

max x(r1,t) + x(r2,t) + x(r2,u) + x(r3,v) + x(r4,w)

− 4

dmax
(x(u,t) + x(t,u))−

3

dmax
x(v,u) −

5

dmax
(x(u,w) + x(w,u)).

Constraints 5.7 considering the population sizes of the residential areas are given as follows:

x(r1,t) ≤ 10,

x(r2,t) + x(r2,u) ≤ 20,

x(r3,v) ≤ 10,

x(r4,w) ≤ 20.

Likewise, the capacities of the green spaces are respected, see Formula 5.8. The per-capita
demand γ is used to express the capacity of a green space:

x(t,g1) ≤
500 m2

γ
,

x(u,g2) ≤
500 m2

γ
,

x(w,g3) ≤
2 000 m2

γ
.
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Figure 5.6: Scheme of an exemplary setup. Green spaces g are given with their size. Res-
idential areas r are given with their population. Only edges that are part of a shortest
path from a residential area to a green space are given; edges of the road network are pre-
sented with their cost, edges related to the access from residential areas and to green spaces,
respectively, are provided with αr = 1 and βg = 0, presented with thin lines.

Finally, the constraints preserving the flow are defined for the vertices of the road network,
see Formula 5.9:

x(r1,t) + x(r2,t) + x(u,t) = x(t,g1) + x(t,u),

x(r2,u) + x(t,u) + x(v,u) + x(w,u) = x(u,g2) + x(u,t) + x(u,w),

x(r3,v) = x(v,u),

x(r4,w) + x(u,w) = x(w,g3) + x(w,u).

In Table 5.1, exemplary solutions can be found that are optimal with respect to different
parameter settings. In the first example (see Figure 5.7(a)), i.e. the first column, although
the per-capita demand is set to only 1 m2 not all residents are satisfied. As the scope is set to
2.5, no green space is accessible for residents of r3. In the second example (Fig. 5.7(b)), the
scope is extended to 10. Here, all residents have access to the green spaces and their demand
is fulfilled. The third example (Fig. 5.7(c)) with γ = 50 m2 and dmax = 7 is an example where
sufficient green spaces are available and actually accessible. Nevertheless, the residents of
r3 remain unsatisfied since making room in green space g2, i.e. assigning all residents of r2

to g3, is, with respect to the objective function, not worth the extra expenditure. The forth
example (Fig. 5.7(d)) is set up with the same per-capita demand γ = 50 m2 and a larger
scope dmax = 10. Here, 20 out of 30 residents of r2 and r3 are assigned to g3. Due to the
used network-flow approach, it is not possible to give more precise information such as the
residents of which residential area are assigned to which green space. In the final example,
the per-capita demand is too high to supply every resident with their share of the green
spaces. Two optimal solutions are presented. In the first solution (Fig. 5.7(e)), g1 supplies r1

and r1 uses g1 only; the same holds for r2 and g2 as well as r4 and g3. Thus, we detect three
clusters (gray in Fig. 5.7). In the second solution (Fig. 5.7(f)), g1 supplies both r1 and r2.
Consequently, there exist only two clusters (the other one being formed by r4 and g3). Such
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Figure 5.7: Visualization of results for the example presented in Figure 5.6. Each edge’s flow
is annotated in blue, see variable assignment in the corresponding columns of Table 5.1.
The figures depict optimal results for specific per-capita demands γ and scopes dmax. Gray
regions visualize connected components detected in the cluster analysis.
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Table 5.1: Variable assignment maximizing the objective function, see Formula 5.6, for
different per-capita demands γ and scopes dmax.

γ 1 m2 1 m2 50 m2 50 m2 100 m2

dmax 2.5 10 7 10 10
Fig. 5.7 (a) (b) (c) (d) (e) (f)

x(r1,t) 10 10 10 10 5 2
x(r2,t) 20 20 0 0 0 3
x(r2,u) 0 0 20 20 5 5
x(r3,v) 0 10 0 10 0 0
x(r4,w) 20 20 20 20 20 20
x(t,g1) 30 30 10 10 5 5
x(u,g2) 0 10 10 10 5 5
x(w,g3) 20 20 30 40 20 20
x(t,u) 0 0 0 0 0 0
x(u,t) 0 0 0 0 0 0
x(v,u) 0 10 0 0 0 0
x(u,w) 0 0 10 20 0 0
x(w,u) 0 0 0 0 0 0

ambiguities occur in particular when residential areas and green spaces share access points.
Apart from these cases, in real world data, exactly identical shortest path lengths are rather
improbable. Nevertheless, this issue stresses the importance of an appropriate selection of
access points.

5.4 Experiments and the methodology for the evaluation

In this section, we describe our experimental evaluation. As stated earlier, our focus lies
on presenting the usefulness of our methodology for the analysis of urban green spaces
rather than the analysis itself. In the following, we demonstrate how to gain and present
information from the obtained results.

5.4.1 Data

For the moment, accessible data is hard to find for our experiments. Our experiments are
based on population estimation data stemming from the Urban Atlas 20121. The data
publisher does not provide the data for download anymore but has announced to publish
improved population estimates soon. For presenting our model, however, the data is ap-
propriate. Since the main motivation is not the analysis of a specific city’s supply of urban

1 c©European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA).
https://land.copernicus.eu/
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green spaces but the presentation of a set of tools for running such an analysis, we continue
with this model data set based on 53 urban areas in Germany. For every city in this data
set, we obtain information about the residential areas in the city and about green spaces in
the city and its surroundings. The residential areas are extracted as simple polygons and
typically represent one housing block. Furthermore, each residential area is annotated with
its population size. Likewise, green spaces are extracted for the city and its surroundings.
We filter this set by considering only those polygons that are tagged as forest, green urban
area, or sports and leisure facility. In our experiments, we examine cities with a population
size ranging from 33 thousand to 2.4 million; on average, the cities under consideration have
285 thousand residents. These cities provide between 8.6 km2 and 6 560 km2 of green space
and 659 km2 on average. A more detailed overview is given in the first three columns of
Figure 5.8.

For each city, the road network is extracted from OpenStreetMap2. The extract is of suffi-
cient size to contain every shortest path between an urban area and a green space.

5.4.2 Setup

For the second phase, additional parameters need to be defined. In order to keep things
simple, the residential areas and the green spaces, respectively, are considered to be matched
evenly. That is, αr has the same value for every residential area r ∈ R. Likewise, βg has
the same value for every green space g ∈ G. Setting αr + βg = 1 for every pair (r, g) ∈
R × G, for example with αr = 1 and βg = 0, guarantees that the distance each resident
is willing to cover is the globally defined scope dmax. We set up a series of experiments for
a combination of different per-capita demands and scopes. For both parameters, example
values and recommendations can be found in the literature [BTA+07, CBG08, FG09, Nat19,
Sch17]. We consider a set Γ = {1, 10} ∪ {50 · i|1 ≤ i ≤ 20} of various per-capita demands
in m2 and a set D = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60,∞} of
scopes in km. Then, we solve GreenSpaceAssignment for each pair (γ, d) ∈ Γ × D.
Additionally, for each γ ∈ Γ the smallest scope Dγ for which every resident is satisfied is
computed.

In the linear program, the variables formalizing the flow of residents are chosen to be
continuous. Compared to integer variables, this improves the running time significantly. In
consequence, single residents are not considered as such and may be distributed to more
than one green space. This is in accordance with this model being used for analyzing the
distribution of green spaces rather than setting up rules for assigning residents.

The experiments were performed on an Intel R© Xeon R© CPU E5-1620 processor. The machine
is clocked at 3.6 GHz and has 32 GB RAM. For the implementation, we used Python and
Java. In the first and the third phase we utilized QGIS 2.18.143. For the linear programming
in the second phase, we used Gurobi 7.0.24.

2 c©OpenStreetMap contributors, https://www.openstreetmap.org/
3https://www.qgis.org/
4https://www.gurobi.com/
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Köln

Konsta
nz

M
agdeb

urg

M
ainz

M
arb

urg

M
önch

en
gladbach

Neu
münste

r

Nürn
berg

Reg
en

sb
urg

Rosto
ck

Saarb
rü
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Figure 5.8: Results for 53 urban areas in Germany. The first three columns give some basic
information about the urban areas while the two last columns summarize our results.



5 Analyzing the supply and detecting spatial patterns of urban green spaces

5.4.3 Evaluation

In this section, we apply our algorithm to an example and use the analysis techniques
sketched in Section 5.3.3 to assess the green-space supply of urban areas.

Green-space supply of a single urban area In the following, we discuss the analysis of
a single urban area. To that end, we exemplarily examine the urban area of the city of
Bonn, see Figure 5.9. As a medium-sized city in Germany its extent can be printed using a
resolution that allows the reader to detect and compare details of the result. Using a tool
with the possibility of zooming into the map the analysis may also be done on larger cities.
An interactive illustration for every scope and every considered city is available online.5

Figure 5.9 shows the urban area of Bonn with respect to the scopes 1 500 m, 8 000 m, and
20 000 m. For each scope we have drawn all residential areas as well as all the green spaces
to which residents are assigned; all other green spaces are omitted. Consequently, with
increasing scope, more green spaces are shown.
Furthermore, we color each green space with respect to its smallest relevant per-capita
demand. The higher the saturation of the color of a green space, the lower is the smallest
relevant per-capita demand. Hence, the saturation of the color shows the importance of
a specific green space. Similarly, we paint each residential area with respect to its largest
satisfied per-capita demand. The lighter the gray of the residential area, the lower is the
highest per-capita demand for which all residents can be satisfied. Hence, light grays indicate
residential areas with poor access to green spaces while dark grays indicate residential areas
with easy access to green spaces.
In our model, we observe that for the scope of 1 500 m there are two regions in Bonn that
have full access to green spaces only for small per-capita demands; see light gray regions in
Figure 5.9. With increasing scope the green-space supply is apparently improved because
the residents begin to reach green spaces further away from the city. However, for the
comparatively large scope of 8 000 m, there are still residential areas that are only completely
satisfied for small per-capita demands. We particularly note that our methodology is robust
against small green spaces in the city center. They only impact some nearby residential areas,
but do not influence the overall impression that the city center lacks green-space supply.
Further, the maps indicate that the green spaces on the city’s south side are particularly
important: they are relevant even for small per-capita demands.

Comparing the green-space supply of multiple urban areas In our evaluation, we consider
53 cities of different size. Column 4 in Figure 5.8 shows the smallest scope that is sufficient
to satisfy all residents of the considered urban area. The result of a specific urban area can
be interpreted as the robustness of its green-space supply, which we motivate as follows.
For 39 urban areas even a per-capita demand of 1 000 m2 can be realized without leaving
a resident unsatisfied. Hence, the cities’ green-space supply is not exhausted even for high
per-capita demands. In contrast, there are 14 urban areas whose green-space supply already
collapses for smaller per-capita demands.
Considering the 39 urban areas in more detail, further differences of large extent are ob-
servable. There are 8 urban areas (e.g., Aschaffenburg, Bamberg, and Bayreuth) for which
5http://www.geoinfo.uni-bonn.de/urbanarea.
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Figure 5.9: Analysis of the supply and accessibility of urban green space in Bonn, Germany,
for various fixed scopes. An interactive illustration for every scope and every considered city
is found on http://www.geoinfo.uni-bonn.de/urbanarea.
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5 Analyzing the supply and detecting spatial patterns of urban green spaces

the scope does not need to exceed 10 km even if each resident requires 1 000 m2. In contrast,
for 16 of the 39 urban areas a scope of at least 20 km is necessary to satisfy all residents
considering a per-capita of 1 000 m2; with 48 km Berlin requires the largest scope among
these cities.
Considering the 14 urban areas for which the green-space supply collapses for per-capita
demands smaller than 1 000 m2, we observe that there are urban areas whose green-space
supply already collapses for rather small per-capita demands up to 250 m2. For example, for
Neumünster and Mönchengladbach a per-capita demand of 150 m2 is not realizable without
leaving residents unsatisfied. In these cases, the small scopes indicate that the diameter
of the considered surrounding area is not sufficient. In contrast, there are urban areas for
which the green-space supply collapses only for higher values. For Hamburg, for example,
all residents can be satisfied up to a per-capita demand of 950 m2. However, this requires a
scope of 74 km. Hence, the robustness of its green-space supply comes at a price as a very
large scope is necessary.
Column 5 in Figure 5.8 depicts the average distance to assigned green spaces with respect to
the per-capita demands; in case that not all residents can be satisfied the average distance
is not presented. The result of a specific urban area can be interpreted as the accessibility of
its green-space supply, which we motivate as follows. With increasing per-capita demand,
the average distance increases depending on the green-space supply of the urban area. For
cities with larger easily accessible green spaces, the average distance increases more slowly
than the average distance for cities with smaller ones. Hence, for the latter, the local green-
space supply becomes easily insufficient for satisfying all residents. For the urban area of
Marburg, for example, the average distance to assigned green spaces increases slower than
the average distance for the urban area of Wiesbaden. We emphasize that both regions
have a similar population size and a similar total area of green space. Still, on average, the
residents of Marburg need to cover smaller distances than the residents of Wiesbaden, which
implies that the green spaces of Marburg are more easily accessible than the green spaces
of Wiesbaden.

Additional cluster analysis Both types of analyses can be enhanced with the cluster anal-
ysis presented in Section 5.3.3. For the analysis of a single urban area, we analyze the results
for an exemplary setting with a per-capita demand of γ = 50 m2 which is an appropriate
value according to the literature [FG09, Nat19] and a scope of 2.5 km, slightly higher than
the suggestion of 1 to 2 km found in the literature [BTA+07, TES+11] such that residents
with such a distance to their closest green space still contribute to the total score. Fig-
ure 5.10 depicts such a result for the city of Bonn in our model data. Here, residential
areas and green spaces form 65 independent clusters. Figure 5.11 gives an overview of rel-
ative population sizes of formed clusters for all cities and, in particular, the city of Bonn
(highlighted blue). In this example, less than 5% of residents have no access to green space.
More than two thirds of the population are supplied within the two largest clusters (brown
in Fig. 5.10, about 48% of the total population, and blue in Fig. 5.10, about 20%). These
clusters correspond to parts of Bonn with the highest population density, separated by the
river Rhine. Furthermore, there are 13 clusters supplying more than roughly 0.5% (1000
residents) and less than 10% of the city’s population each. Seven of these minor clusters
are adjacent to the large green space in the southern parts of the city, a forest. In our
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Figure 5.10: Result of the cluster analysis for the city of Bonn with d = 2.5 km and γ =
50 m2. Every green space, residential area and service network edge used in an optimal
solution is on display. Every color represents a cluster. Polygons in bright colors represent
the green spaces of the respective color; light-colored polygons represent residential areas.
Segments of the service network are depicted as lines (also with bright colors).
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5.4 Experiments and the methodology for the evaluation

model, these clusters satisfy more than 11% of the total population; only the vastness of
the green space, with roads causing a multipart digitization, gives rise to multiple clusters.
The remaining 50 clusters range from 1 to 950 residents. 53 out of 65 clusters supply less
than 1% of the population each, 6.7% in total. 34 clusters supply less than 0.1% each, 1.0%
in total. Most of these clusters are of no interest for a further analysis. It is up to the user
to set the minimum cluster size for a closer look at the result.

The results presented in Figure 5.11 are more comprehensible when comparing entries for
different cities. In our model, the data sets of Bonn and Fulda (highlighted blue in Fig. 5.11)
have a similar population size. The distribution, however, differs: While the region of con-
sidered residential areas in Bonn almost coincides with the administrative boundaries of
the city, for Fulda, also suburbs in the regional district are part of the data. Considering
this more rural region, for Fulda, a far more local access to green spaces is detectable in
Figure 5.11. Besides the larger cluster supplying roughly 35% of Fulda’s population (see
large blue cluster in the center of Fig. 5.12), only clusters supplying less than 5% of the
population exist. The fact that there are 508 of these small clusters stresses the more local
supply.

Running time A typical interactive scenario using our methodology could be as follows.
The first phase is applied only once in order to create the service network at the very be-
ginning of the scenario. Once the service network is created, its structure is not changed
anymore, but the user gains the possibility of assigning attributes to each residential area
and green space such as number of residents, preferences, mobility, etc. Instead of doing this
only once, the user may repeatedly change the attributes to interactively explore the influ-
ence of single residential areas and green spaces. Each time, the second phase is executed.
Hence, the performance of the repetitively executed second phase is clearly more crucial
than the performance of the first phase. With this in mind, we have therefore focused on
the second phase.

For the first phase, we put together standard algorithms without engineering their perfor-
mance. For the urban area of Berlin, with 130 000 polygons representing green spaces, 18 000
polygons representing residential areas, and 6 million road segments our largest instance,
the first phase takes about 3 minutes.

Solving the LP formulations used by far the greatest portion of the running time of the
second phase. In our experiments, we measured the running time for solving |Γ| · |D| = 484
LP formulations per region. Solving a single LP formulation, which we call a run, takes
46 seconds as a maximum and 5 seconds on average. Over 95% of all runs took at most
14 seconds. About 89% of the runs took at most 10 seconds. These running times indicate
that our approach does not allow real-time animations, but is suitable for interactive systems
where the user can update the assignment on demand. Apart from interactive systems, our
approach can also be used for the systematic and automatic evaluation of green spaces with
different parameter settings. Accumulating the running times of all runs of a single urban
area in our experiments yields 3.3 hours in maximum and 40 minutes on average. In total,
35 hours were necessary to process all 53 cities.

For the third phase, concerning the running-time analysis, we limit ourselves to the pro-
cesses extracting information since the time cost for visualization depends on the kind of
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scope
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Figure 5.12: Result of the cluster analysis for the city and the rural district of Fulda with
d = 2.5 km and γ = 50 m2. Every green space, residential area and service network edge
used in an optimal solution is on display. Every color represents a cluster. Polygons in bright
colors represent the green spaces of the respective color; light-colored polygons represent
residential areas. Segments of the service network are depicted as lines (also with bright
colors).
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5.5 Conclusion

presentation of the data. The three of the four measures we propose depend on either the
residential areas or the green spaces only. Thus, for a single city, their computation can be
done in O(|R| · |Γ| · |D|) or O(|G| · |Γ| · |D|) time, respectively. Merely for the computation
of the average distance to assigned green spaces, it is necessary to take a look at the service
network. Like for computing the connected components, a running time in O(|E∪F |·|Γ|·|D|)
results. In our experiments, this post-processing step took us far less than 1 second for a
single run. The third phase for the 484 runs of Berlin combined took us 2 minutes in total,
i.e., less than 6 seconds per run (roughly 1% of its running time).

5.5 Conclusion

We presented a highly general model for the evaluation of green spaces in urban areas. Our
approach is based on the idea of finding an assignment of the residents to green spaces that
maximizes a predefined score while capacity constraints for the green spaces are respected.
In a specialization we described, this score depends on the distances the residents have to
overcome in a solution as well as predefined parameters such as the attractiveness of green
spaces. This way, the accessibility of urban green spaces is examined. Limiting the flow of
residents to a green space with its capacity allows us to simultaneously take the green-space
provision in an urban area into account. This specialization of the model allowed us to
transfer the model to a road network which improved its performance due to a reduced
complexity of the model (linear in the size of the network versus quadratic in the number
of green spaces and residential areas as it occurs in the basic model). This advantage makes
the analysis of metropolitan areas like Berlin possible. Besides a small running example, we
also contributed a detailed description of the workflow and the application of the model.
As demonstrated, our methodology can be used for analyzing particular urban areas as
well as a set of urban areas in general. Apart from yielding abstract parameters describing
the green-space supply, our approach allows the user to run spatial analyses on the level of
single residential areas and green spaces. A discussion panel with domain experts from urban
planing approved that our approach will be of great use for urban planning for both easily
assessing existing green spaces and planning future land usage. Especially, the methodology
is useful in interactive scenarios for urban planning. By means of our approach, an urban
planner may interactively explore the influence of potential residential areas, green spaces,
and roads using maps such as in Figure 5.9. They may change the importance of green
spaces or even introduce new regions. Each time, our model is updated and the result is
visualized. Thus, the user can easily assess the impact of the changes made.
Furthermore, with the clustering, we present a tool for detecting patterns in the distribution
of green spaces. Results of analyses on city scale yield additional information which parts
of cities share green spaces. The comparative analyses give also information about the
distribution of the green-space supply: Diagrams such as the one in Figure 5.11 make it
easy to see which city has a large pool of green spaces for the general public and which
cities provide their residents with green spaces on a more local basis.
The tools we introduce are presented with a very generic setup. This generality, however,
provides users with many possibilities to adapt the tools to their use case. Among others,
the following specializations and research questions arise.
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• We kept our experiments simple to evaluate the core of our methodology. In practice, it
lends itself to use a more complex parameterization reflecting reality more accurately.
If users have more information about the road network at their disposal, it is desirable
to change the edge weight in the road network from geodesic distance to travel times.
Furthermore, with additional information about the population structure of residential
areas or the attractiveness of green spaces, the model can be enhanced by adapting
the weights αr and βg, respectively. Above all, the results depend on a appropriate
choice of input data. In our model data, the recreational value of lakes, river banks,
open spaces, and so on did not get their fair share.

• An interesting followup question is to analyze the utilization of the road network
in detail. Which roads are used more than others? May these insights help in traf-
fic planning, especially for weekends? A closer look at the computed flow may give
insights.

• The network-based model anonymizes the assignment in the sense that we cannot
keep track of single residents. As presented in this work, the network-based model in
general allows the user only to assign residents of specific residential areas to a set of
green spaces. In order to obtain information about the exact assignment of residents
of specific residential areas to green spaces falling back to the more time-consuming
basic model, presented early in Section 5.3.1, is necessary. Nevertheless, the network-
based model with the clustering may be applied in a preprocessing step: To reduce
computation time, it is helpful to know in advance which combination of green spaces
and residential areas is plausible.

• Conversely, for certain applications, our model might provide too detailed information
with respect to privacy. Although we have no problematical application on our minds,
we want to refer to research on anonymization at this point [ILGZ14].

• Based on our approach, an evaluation of the accessibility of public services may be
possible. In order to examine the coverage of, for example, hospitals, medical practices,
schools, playgrounds, etc., further research is necessary to determine which require-
ments the suppliers, residential areas, or the road network have to meet.

In particular with regard to the possibilities of adapting our approach, there is, on the
downside, the limitation that our score function which expresses the total benefit of green
spaces decreases linearly with an increasing distance between residential areas and green
spaces which may not be appropriate. However, we present a conceptually simple tool set
for evaluating the green-space supply of a city considering both green-space provision and
accessibility in a combined manner. Besides, our approach yields a globally optimal solution
that can be found efficiently.
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6 Inferring routing preferences of
bicyclists from sparse sets of trajectories

The following chapter is mainly taken from a joint work with Alina Förster, David Schunck,
Youness Dehbi, Ribana Roscher and Jan-Henrik Haunert [OFS+18]. The presented work
won the best-paper award at the International Conference on Smart Data and Smart Cities
(SDSC) in 2018.
In this chapter, we present an algorithm for adjusting routing models to specific groups of
bicyclists based on sparse sets of trajectories. First, applying an established algorithm,
we cluster these trajectories to obtain user groups (in our example: mountainbiking,
racingbiking, and biking). Based on this clustering, we determine group profiles con-
cerning road-type preferences, which form the foundation for the following step: We apply
an algorithm for aggregating routing criteria in order to merge road-type preferences and
the demand for short paths to a single criterion. This criterion is the result of our algorithm,
our recommendation for a routing criterion for the respective group of bicyclists. Further-
more, we use the results of this criteria-aggregating algorithm to validate the previously
performed grouping of bicyclist.
So far, the algorithm applied in the final step has been published only as an outline in an
early stage [ONH17]. Consequently, a detailed description of this algorithm can be found
in the appendix of this chapter, see Section 6.A.

Abstract
Understanding the criteria that bicyclists apply when they choose their routes is crucial for
planning new bicycle paths or recommending routes to bicyclists. This is becoming more
and more important as city councils are becoming increasingly aware of limitations of the
transport infrastructure and problems related to automobile traffic. Since different groups
of cyclists have different preferences, however, searching for a single set of criteria is prone to
failure. Therefore, in this paper, we present a new approach to classify trajectories recorded
and shared by bicyclists into different groups and, for each group, to identify favored and
unfavored road types. Based on these results we show how to assign weights to the edges
of a graph representing the road network such that minimum-weight paths in the graph,
which can be computed with standard shortest-path algorithms, correspond to adequate
routes. Our method combines known algorithms for machine learning and the analysis of
trajectories in an innovative way and, thereby, constitutes a new comprehensive solution
for the problem of deriving routing preferences from initially unclassified trajectories. An
important property of our method is that it yields reasonable results even if the given set of
trajectories is sparse in the sense that it does not cover all segments of the cycle network.
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6 Inferring routing preferences of bicyclists from sparse sets of trajectories

6.1 Introduction

Faced with the problem of organizing the traffic in rapidly growing cities, many city plan-
ners try to support cycling as an environmentally friendly and healthy means of transport.
In order to increase the attractiveness of cycling, methods for analyzing the routes that
bicyclists prefer are needed. Spatial information that is collected by volunteers (i.e., volun-
teered geographic information) can be used to establish a rich data basis for such methods.
In particular, trajectories that cyclists record and share via on-line platforms (e.g., GPS
tracks from Strava or GPSies) provide information that is not available from other sources.
Extracting the information about routing preferences in a meaningful form is far from triv-
ial, however, since the data sets have to be subdivided (e.g., to analyze routing prefcerences
separately for different groups of cyclists) or integrated (e.g., to enrich GPS tracks with
information on road types). Therefore, a methodology that combines multiple data sources
and algorithms is needed. A problem that has not been sufficiently addressed yet is how
routing preferences can be inferred if the given set of trajectories is sparse in the sense that
the trajectories do not cover all segments of the cycle network – see the extract from the
input data that we used in our experiments in Fig. 6.1. Still, it is a desirable goal to learn
the routing preferences of an individual or a group of cyclists in a form that allows the
computation of an optimal path between any two locations in the network. In this paper,
we present a new methodology to achieve this goal.

Figure 6.1: The road segments for a small part of our test area, classified into segments that
were used by at least one trajectory (black) and those that were not used (gray). The latter
includes 75.81% of all edges and 68.70% of their total length.

Our methodology for inferring routing preferences of cyclists from multiple sources requires
trajectories (e.g., GPS tracks), land-use information, and a road network model in the form
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Figure 6.2: An overview of our method for the identification of cyclist groups and their
routing preferences. After a data acquisition from different sources, a multi-source data
analysis consisting of three steps is performed.

of a graph G = (V,E) as input – the latter should include relevant bicycle paths as well as
information on road types, such that roads that are forbidden for cyclists (e.g., motorways)
can be removed and influences of road types on route choices can be analyzed. The ultimate
goal is to determine an edge weighting w : E → R≥0 for each individual cyclist, to reflect his
or her personal routing preferences, or at least one edge weighting for each group of cyclists
(e.g., mountain bikers, racing cyclists, and others) that we can identify with the available
data. Generally, in the context of this paper, the weight w(e) of an edge e ∈ E is interpreted
as the cost for traversing e – the edge weights are equal to the lengths of the edges if the
cyclists simply prefer short routes, but other weight settings are needed to express that
cyclists accept detours in order to avoid unfavorable road segments (e.g., unpaved trails in
the case of racing cyclists). We also write w(P ) to refer to the total weight of a path P . Since
a weighted graph model is required as input by most routing algorithms, the outcome of
our method can be used to infer user-dependent or group-dependent optimal paths between
any two locations in the cycle network. This could be useful for cyclists who use bicycle
navigation systems for route planning, but also for spatial planners who conduct shortest-
path analyses with geo-information systems, e.g., to predict traffic loads for planned bicycle
paths.

Three steps are conducted in order to get from the source data to the weighted graph
models. These steps are illustrated in Fig. 6.2 and specified below.

1. In the first step, the different information sources are combined using a map-matching
algorithm. Geometric buffering operations as well as shortest-path computations (with
a default weight setting) are applied to extract meaningful features for an unsupervised
classification method. This is used to classify the trajectories with respect to different
cyclist groups.
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6 Inferring routing preferences of bicyclists from sparse sets of trajectories

2. In the second step, favored and unfavored road types are identified for each group.
In this context, a high proportion of a certain road type within the trajectories of a
group is an indicator of preference of this road type.

3. In the third step, we learn a function that maps edge types and edge lengths to edge
weights. Note that this function yields a weight for every edge, no matter whether or
not it is used by any of the trajectories. The edge weights can be used to consider
the routing preferences when computing new routes. We will show how to conduct
this step for each single trajectory as well as for the set of trajectories of each cyclist
group.

The main contribution of this paper is the automatic identification of a method for identi-
fying favorable and unfavorable road types and the computation of a weighted graph model
for a group of users that reflects the preferences of the road types.

The remainder of this paper is structured as follows. We review related work in Sect. 6.2 and
present our methodology in detail in Sect. 6.3. Then, we discuss our experimental results
in Sect. 6.4 and conclude the paper in Sect. 6.5.

6.2 Related work

Analyzing trajectories has become a major research discipline within computer science and
geographic information science – we do not aim to give a comprehensive overview but refer
to the survey article by Mazimpaka and Timpf [MT16]. An important task of trajectory
analysis is to improve navigation systems and routing algorithms based on trajectories
recorded by users. Based on taxi trajectories, Yuan et al. [YZZ+10] were able to infer travel
times for road segments and, thus, to enable the computation of fastest routes for cars. More
generally, trajectories can be used to augment a network model with additional attributes
acquired by users, for example, with information on road surface quality inferred from
accelerometer data of bicyclists [RSD+10]. Kessler [Kes13] and Sultan et al. [SBHD17] have
discussed in detail how volunteered geographic information (VGI) can be used to analyze
bicycle routes. An open problem is still, however, to learn previously unknown routing
criteria and to adopt them for the application in routing algorithms.

In the context of understanding cyclists’ behavior and their routing preferences, Broach et
al. [BDG12] observed 164 cyclists over a couple of days. They analyzed their practices based
on recorded GPS trajectories. The distance, turn frequency, slope, intersection control and
traffic volumes turn out to be the major parameters influencing the choice of the cyclist trip
paths. Infrastructures such as off-street bike paths as well as the trip category, e.g. commute
or utilitarian, have also an impact on the route preferences of the investigated tracks. In
contrast to Broach et al. [BDG12], we are particularly interested in analyzing how route
choices are influenced by road types. Furthermore, we aim at the automatic identification
of cyclist groups from crowd-sourced data and the learning of a routing model for each
detected group based on its specific preferences.

In order to derive a weighted graph model reflecting the routing preferences of cyclists,
Bergmann and Oksanen [BO16] have chosen a rather pragmatic approach by counting for
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each road segment the number of users and the number of trajectories using it. Based on
these numbers, they have defined three different measures to derive edge weights, all of which
are based on the assumption that highly used road segments should receive low weights.
We argue, however, that the frequency of usage should not directly be translated into an
edge weight. Consider for example a triangular graph whose edges represent connections
between three cities A, B, and C. If we observe a large amount of traffic on the edge
{A,B} connecting A and B, we must not conclude that this edge is by any means ‘cheaper’
than {B,C} or {C,A} and that it should receive a low weight. Instead, the high usage of
edge {A,B} might also be due to the fact that many people commute between A and B.
Furthermore, inferring the weights of edges from the frequency of their usage fails if the set
of trajectories is sparse.

Probably the first method that infers routing preferences from a sparse set of trajectories has
been presented by Balteanu et al. [BJS13]. As all methods that we review in the following,
it even works if only a single trajectory is provided as input. More precisely, given a graph
G with two edge weightings w0, w1 (e.g., travel time and geometric distance) and a user’s
path P (the trajectory) between two vertices s and t in G, the aim is to infer a parameter
β such that an s-t-path P ′ minimizing

max{β · w0(P ′), (1− β) · w1(P ′)} (6.1)

is most similar to P . Without reviewing in detail how similarity is defined in this context,
we note that the parameter β inferred by the method can indeed explain how the user trades
off between w0 and w1. A clear disadvantage of the method of Balteanu et al. [BJS13] with
respect to its practical relevance is, however, that the trained routing model is of little use
if the aim is to compute new routes with standard routing algorithms (e.g., the algorithm of
Dijkstra [Dij59]) which, usually, require a single edge weighting as input. More precisely, a
standard routing algorithm does not yield a path P ′ minimizing (6.1) for a trained parameter
β. Therefore, in the following, we focus on methods that try to define a new edge weighting
w based on a linear combination of the given edge weightings. After the coefficients of the
linear combination have been learned and, thus, the new edge weighting is fixed, one can
use standard routing algorithms to compute routes that are optimal with respect to w.

Funke et al. [FLS16] have studied the problem in which a graph G with multiple edge
weightings w1, . . . , wd as well as a path P between two vertices s and t in G are given as
input and the aim is to compute a linear combination w = α1 · w1 + . . . + αd · wd of the
weightings such that P is a weight-minimal s-t-path with respect to the new weighting w.
This weighting is assumed to represent the routing preferences of a user who chose P as
his or her route. Unfortunately, the problem can be infeasible for a path corresponding to
the trajectory of a user, since the path may not be optimal with respect to any weighting.
Funke et al. address this issue by suggesting that if the problem is infeasible for a given
path then the path should be divided into two subpaths of equal length and the problem
should be solved independently for each of the two subpaths (which many require further
recursive splitting to end up with feasible problem instances). With this approach, however,
artificial split points are introduced and different linear combinations are obtained for the
different subpaths.

127



6 Inferring routing preferences of bicyclists from sparse sets of trajectories

The algorithm of Oehrlein et al. [ONH17] is similar to the one of Funke et al. [FLS16]
in the sense that it computes a partition of a given path into multiple subpaths and a
linear combination of different weightings. However, the partition and the new weighting
are computed such that all of the resulting subpaths are optimal with respect to the same
weighting w, meaning that the different subpaths are not considered as independent problem
instances. Furthermore, instead of partitioning a path into two subpaths of equal lengths,
the algorithm of Oehrlein et al. uses an optimization criterion to decide where to introduce
split points. More precisely, given a graph G with two edge weightings w0 and w1 and a path
P in G, the algorithm yields a new weighting wα = (1−α) ·w0 +α ·w1 and a partition of P
into a minimum number of subpaths such that each of the subpaths is optimal according to
the weighting wα. Compared to the algorithm of Funke et al., the algorithm of Oehrlein et
al. is certainly more advanced with respect to how it computes the split points1, but it has
the disadvantage that it can deal with only two given weightings w0 and w1 and not with
an arbitrary number d of weightings. Nevertheless, we choose this method since inferring
a trade off between two criteria from a sparse set of trajectories is already challenging. In
the following, we refer to the split points computed by the method as milestones and the
partition of the given path induced by the split points as a milestone segmentation.

An important property of the method of Oehrlein et al. is that it not only computes the
parameter α corresponding to an optimal milestone segmentation but that it systematically
explores different values for α and tests the effect on the size of the milestone segmentation.
This offers new possibilities of studying the quality of a bi-criteria routing model as a
function of its trade-off parameter α, which we will show in Sect. 6.4 for the experiments
that we conducted.

6.3 Methodology

In this section we present the mathematical foundations of our method, including the routing
model whose parameter we aim to learn (Sect. 6.3.1) and the concepts behind each of the
three steps of our method (Sections 6.3.2–6.3.4).

6.3.1 Routing Model

A meaningful representation of a user’s routing preferences in a given graph G = (V,E)
is a weighting w : E → R≥0 that assigns to each edge e ∈ E a weight w(e). This can be
assumed to represent a cost for traversing edge e. Our aim is to learn such a weighting from
trajectories, which will allow us to compute optimal paths for a user or group of users with
known algorithms, for example, with the classical algorithm of Dijkstra [Dij59] or with the
help of modern speed-up techniques, such as contraction hierarchies [GSSD08].

Since the given graph G may not be completely covered by the trajectories, the trajectories
alone do not suffice to infer weights for all edges of G. Therefore, a good strategy is to define
1In fact, the approach of Funke et al. eventually provided inspiration to improve our algorithm. In
Section 6.A, we describe an advanced version of our algorithm based on the work of Funke and
Storandt [FS13] and Funke et al. [FLS16].

128



6.3 Methodology

the weighting based on attributes that are given for each edge (for example, its length and
road type) and to use the trajectories only to infer a small number of parameters that
condense the attributes into a weight. In this paper, we suggest a model that requires
for each user group a classification of road types into unfavorable and favorable types
(for example, arterial streets and bicycle paths, respectively) and, additionally, a single
parameter α ∈ [0, 1]. According to this model, the weight of edge e ∈ E is

w(e) =

{
α · length(e) if e ∈ E+

(1− α) · length(e) if e ∈ E−
(6.2)

where length(e) is the length of e and {E−, E+} is a binary classification of E into a set E−

of edges with an unfavorable road type and a set E+ of edges with a favorable road type.
This model implies that traversing an edge with an unfavorable type is by factor 1−α

α more
expensive than traversing an edge of the same length with a favorable type. Obviously, one
would expect α ≤ 0.5, since otherwise edges with unfavorable types would be preferred,
which would be a contradiction. However, we leave it to the inference algorithm that we
apply (see Sect. 6.3.4) to select α ∈ [0, 1] and, afterward, test for α ≤ 0.5 to check the
consistency of the result. To summarize, we need to detect different groups of users and for
each group the binary classification {E−, E+} as well as the parameter α.
Obviously, this approach could be generalized by classifying the road types into more than
two classes. The more classes are considered, however, the more parameters would have to
be learned in order to derive the edge weights from the types and the geometric lengths
of the edges. Since many road segments are not covered by any trajectory and since for
some road types only few road segments exist, inferring a binary classification and learning
the parameter α for each user group is already challenging. Nevertheless, learning a more
sophisticated model is an interesting task for future research. Since the algorithm of Oehrlein
et al. [ONH17] that we apply in our workflow is currently limited to two edge weightings,
however, such an improvement would require a more substantial innovation.

6.3.2 Classification of Trajectories

In the first step of our method, a multi-source data analysis is performed in order to au-
tomatically classify the set of trajectories with respect to different cyclist groups. To this
aim, openly accessible GPS-tracks are collected from a user-driven platform. The trajecto-
ries are then augmented by additional information such as road types. The extraction of
additional features is performed after a map-matching process, which establishes correspon-
dences between a given trajectory and an underlying road network of the region of interest.
In order to achieve an accurate analysis, the trajectories are also enriched by information
about the surrounding areas stemming from a digital landscape model. This, in particular,
gives insight into the land-use categories of the areas through which the trajectories pass.
Furthermore, for each trajectory, a path of minimum length is computed connecting the
trajectory’s source and destination. This yields additional interesting features, such as the
length ratio between the trajectory and the optimal path (also known as the detour factor
or dilation). All this information is serving as a rich feature set for the extraction of cyclist
groups in an unsupervised learning process.
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The classification of the trajectories into meaningful cyclist groups is done in an unsuper-
vised way using the k-means algorithm [Llo82]. Although the users normally specify the
types of their trajectories when they share them and, thus, a user-specified grouping of the
trajectories is available, the assignment is subjective and partly erroneous, which is under-
lined by our experiments (see Sec. 6.4.2). Therefore, in the subsequent steps of our method,
we use the result of the unsupervised classification algorithm instead of the user-specified
types.

6.3.3 Recognizing Unfavorable and Favorable Road Types

Road networks are usually represented as sets of line segments with associated road types.
Therefore, as a result of the map-matching process, we obtain for each user group the dis-
tribution of road types over the total length of the trajectories. Although such statistics
give interesting insights, we have to be careful of what we conclude. Suppose that the type
“residential street” constitutes 95% of the total length of a group’s trajectories. This high
percentage may either be due to the fact that the group considers residential streets as
favorable or because there is a lack of bicycle-friendly paths and, thus, the users had to
choose an unfavorable road type. Therefore, we compute for each trajectory the geometri-
cally shortest path in the road network connecting the trajectory’s start and end point and
use that path as a reference. For each road type c, we compare the relative share ruser(c) of
c among the total length of the trajectories with the relative share rshortest(c) of c among
the total length of the shortest paths. If ruser(c) > rshortest(c), one may argue that the users
had the possibility of using shorter paths but decided to use longer paths with a larger share
of type c. This can be seen as an indication of c being a favorable type. Consequently, we
define

E+ =
{
e ∈ E

∣∣ ruser(c(e)) ≥ rshortest(c(e))
}
, (6.3)

E− =
{
e ∈ E

∣∣ ruser(c(e)) < rshortest(c(e))
}
, (6.4)

where c(e) is the road type of edge e.

6.3.4 Inferring Edge Weights

Generally, an edge weighting w alone can not explain the trajectories of a user group since,
for example, even within one group different criteria are applied or the trajectories include
round trips that were clearly not chosen as minimum-cost paths between two vertices.
Moreover, the model that we introduced with Equation (6.2) may be too restrictive to
subsume the weighting actually applied by a user. Nevertheless, we aim to determine the
parameter α such that the model explains the trajectories of a user group as much as
possible. For this purpose, we apply the algorithm by Oehrlein et al. [ONH17]. Recall that,
given a user’s trajectory T as a path in a graph G = (V,E) with two edge weightings
w0 and w1, this algorithm partitions T into a minimum number of sub-trajectories and,
simultaneously, selects a parameter α ∈ [0, 1], such that each of the resulting sub-trajectories
is an optimal path in G, in the sense that no path connecting the same two vertices is better

130



6.4 Experiments

according to the weighting w = α · w0 + (1− α) · w1. Since minimizing the number of sub-
trajectories is the same as maximizing their average length, the weighting w that is learned
with the method explains the routes chosen by the users relatively well.

Oehrlein et al. [ONH17] used their algorithm to understand how slope affects the route choice
of bicyclists. With our model, however, where the weighting w should reflect unfavorable
and favorable road types, the algorithm needs to be applied with the following setting:

w0(e) =

{
length(e) if e ∈ E+

0 if e ∈ E−
(6.5)

w1(e) =

{
0 if e ∈ E+

length(e) if e ∈ E−
(6.6)

With this setting, α · w0 + (1− α) · w1 is indeed equal to w as defined in Equation (6.2).

The algorithm of Oehrlein et al. [ONH17] requires integer weights as input, which we ensure
by rounding the edge lengths to m. It works by systematically testing different values
α ∈ [0, 1], including the interval boundaries 0 and 1. We encountered very long running
times for those extremal values and, therefore, decided to restrict the search to α ∈ [0.1, 0.9].
With this we still take into consideration that, in order to avoid an unfavorable edge e ∈ E−,
a user may accept a detour of nine times the length of e. However, longer detours are not
considered.

6.4 Experiments

This section presents our conducted experiments and experimental results and gives insight
into the data used in the different steps of our approach.

6.4.1 Data

Since Bonn is representing an example of a bicycle-friendly city, we decided to demonstrate
our approach for this region. 82% of the households in Bonn are owning at least one bicycle.
Furthermore, not only the city but also the surrounding areas, for instance “Siebengebirge”
and the bank of the Rhine river, are attractive for bicycle tours. The Bonn’s city council
is striving till 2020 to declare Bonn as the capital of bicyclists in the federal land of North
Rhine Westphalia.

Our experiments are performed on crowd-sourced data stemming from the user-driven plat-
form GPSies2. From this platform, GPS trajectories, which have been recorded by users
with different preferred activities, can be downloaded. In our context, we are especially
interested in the following three types of cyclist activities: biking, mountainbiking, and
racingbiking. For the evaluation of our algorithm, we downloaded about 250 trajectories
for each user group from the region of Bonn and surroundings in Germany. Beside the GPS-
coordinates, each track contains additional information about the whole length, climb and
2https://www.gpsies.com/
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6 Inferring routing preferences of bicyclists from sparse sets of trajectories

descent of the trajectory. Furthermore, two types of tracks are discriminated: circular and
simple tracks. We denote these features as feature set a.
In order to analyze these trajectories, we extracted additional features from road segments
corresponding to the underlying trajectories. The correspondences were computed with the
map-matching algorithm of Haunert and Budig [HB12]. To this aim, we used a road network
of the same area from OpenStreetMap3 (OSM). We denote these features as feature set b.
In this way, each trajectory path is augmented by the information acquired from the asso-
ciated road segment from OSM. For our purpose, the street type category including among
others roads, paths and cycle tracks is of great relevance. The inferred information enables
for example a trajectory analysis depending on the used street types for each cyclist group.
In order to learn different weightings for different user groups of cyclists, additional informa-
tion about a given trajectory and its surrounding is needed. Thus, we exploited data related
to our region of interest stemming from the German Digital Landscape Model ATKIS-
DLM4. The latter is an object-based vector model which defines an object set with several
object types accordingly. The object types comprise for instance woodland, arable land and
settled land.

6.4.2 Results of the Trajectory Classification

In this experiment, we classify the trajectories into specific activity groups and compare
them to the user-provided groups. For this, we use the provided information from both
feature set a as well as feature set b. The features are z-normalized to zero mean
and unit standard deviation to ensure an equal weighting of each single feature.
We cluster the data utilizing k-means and manually assign activity groups to the resulting
clusters. We run k-means with different initializations and choose the result with the highest
compactness. We choose different numbers of clusters, and manually decide on the best
number by means of the quality of the assignment.
Furthermore, we determined the importance of specific features using the reliefF algo-
rithm [Kon94] and analyzed the influence of restricting the set of features to the most
important ones on the k-means clustering result. We manually tested several values for the
amount of neighbors necessary to calculate the importance for each feature, and report the
results for kreliefF = 100. We observed that for larger values the set of the most important
features converges to a fixed set. We used the calculated weights and determined all features
that lie within the 90%-quantile.
The evaluation of different numbers of clusters confirm the user-provided groups such that
k-means provide the best interpretable result using three clusters with features which can
be assigned to the user-provided groups. Table 6.1 shows the contingency table, which
is a detailed analysis of the number of trajectories assigned to the three different groups
racingbiking, mountainbiking, and biking by the user and by k-means. The table also
includes information about the number of trajectories assigned to the same group and
assigned to different groups by the user and by k-means.
3https://www.openstreetmap.org/
4https://www.opengeodata.nrw.de/
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clustered
original

mountainbiking racingbiking biking sum

mountainbiking 125 20 39 184 (68%)
racingbiking 10 135 47 192 (70%)
biking 17 63 141 221 (64%)
sum 152 (82%) 218 (62%) 227 (62%) 597 (67%)

Table 6.1: Contingency table, showing the number of trajectories assigned by the user and
by k-means clustering to biking, mountainbiking and racingbiking.

Overall, there is a consensus in 67% of all trajectories. There is an increase for
mountainbiking and a decrease for racingbiking after k-means is applied. Although nearly
the same numbers of trajectories are assigned to biking, this group shows the largest differ-
ence in our comparison. Around 40% of users which assign themselves to the group biking
are classified as a different group by k-means. Especially users who classify themselves as
part of the group racingbiking are assigned to biking by k-means. For a more detailed
examination, we choose different trajectories which have a different assignment by the user
and by k-means, and analyzed them by means of various features. It turned out that in most
cases users assign themselves to an activity group which does not fit their biking behavior,
or the trajectory’s features lie close to the cluster boundary.

Finally, we analyzed the features’ importance obtained by reliefF. The sorted list of the
most important features in decreasing order is (1) the route type (circular or simple track),
(2) the altitude range, (3) the difference between the length of the actual trajectory and
the shortest path-trajectory, (4) percentage of agricultural area close the trajectory, (5)
percentage of forest close the trajectory, followed by multiple features defining the road
type, and the living environment. We repeated k-means clustering with the most important
features and compared it to the clustering results using all features. Both clustering results
agree in 96% of all trajectories. Moreover, we compared the contingency table obtained
by k-means with all features (compare Table 6.1) and the contingency table obtained by
k-means with the most important features, and receive a mean absolute difference of 3.35%.
Both result indicate that the identified most important features describe the activity groups
well.

6.4.3 Results of the Road-Type Classification

In this experiment we compute for each trajectory T a shortest path P in the road network
that connects the start vertex and end vertex of T . For each group of bicyclists, we analyze
the share of the different road types among the total length of all trajectories as well as
among the total length of all shortest paths. A comparison allows us to infer which of the
road types are favored and unfavored.

Figure 6.3 summarizes the share of each road type among the total length of the trajectories
(i.e., the actual routes of the users) and among the total length of the shortest routes. The
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Figure 6.3: Share of different road types among the total length of the trajectories (orange)
and the shortest paths connecting the same end vertices (blue), for each of the three types
of bicyclists.
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road type track grade 5, which represents unpaved trails, has the largest share among the
paths used by mountain bikers. In contrast, secondary is the road type with the largest
share among the paths of racing bikers. For other cyclists, cycleway is the road type with
the highest usage. These observations can be inferred from the large sizes of the correspond-
ing orange bars in Fig. 6.3.

To understand the importance of the blue bars in Fig. 6.3, which represent the share of a
road type among the shortest paths, let us discuss the usage of road type residential by
mountain bikers. The corresponding orange bar is relatively large (actually it comes second
after the bar for track grade 5) which indicates that mountain bikers quite often use
residential streets. However, the corresponding blue bar is much larger than the orange one,
which means that if mountain bikers would plan their routes simply based on the routes’
geometric lengths, they would end up with an extremely high usage of residential streets.
Therefore, we argue that it is legitimate to say that mountain bikers disfavor residential
streets. Similarly, based on Fig. 6.3, the following conclusions are most obvious:

• All groups of bicyclists disfavor footways and service streets.

• All groups of bicyclists favor cycleways and streets of type track grade 1.

• Mountain bikers additionally prefer paths as well as the types track grade 2 to 5,
but they disfavor residential streets and tertiary streets.

• Racing bikers favor secondary as well as tertiary streets but disfavor residential streets.

• Other cyclists favor tertiary streets but disfavor primary streets.

We note that statistical tests of significance would be necessary to make more profound
statements concerning preferred road types. However, to obtain a binary classification of
the road types for the subsequent steps of our analysis, it is most reasonable to apply
Equations (6.3) and (6.4). This means, for example, that we say that users of the group
biking favor residential streets even though the share of residential streets among their
routes is only slightly larger than among the corresponding shortest paths (i.e., the blue
bar and the orange bar have almost the same size).

6.4.4 Results of the Weight Inference

As a final step, we applied the algorithm of Oehrlein et al. [ONH17] to infer a weight-
ing for each user group5. As a result we receive for every given trajectory the size of the
segmentation for every α ∈ [0, 1], in particular the size of a minimal segmentation.

Before analyzing the overall outcome of this step, we would like to take a closer look at the
result for a single trajectory (see Fig. 6.4). This trajectory has a total length of 51 km of
which 71% are found on roads of favored types. It is a nice example for a mountain bike tra-
jectory in a rather densely populated area: In general, the bicyclist avoided villages and rode
through the countryside. Accordingly, the results in Fig. 6.5 approve our classification. The
number of milestones that are needed for the segmentation is minimal for α ∈ [0.38, 0.43].
Such a value for α means that this bicyclist accepted detours which are up to 63% longer

5see Section 6.A
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Figure 6.4: A mountain bike trajectory (bold) close to Bonn. Road segments of favored
types are depicted as blue lines, those of unfavored types as red lines.

than the shortest path in order to use favored road types instead of unfavored ones. An
example explaining this result in more detail can be found in Fig. 6.6.
Thus, any trajectory that has an optimal segmentation for α < 0.5 approves our classifica-
tion. Fig. 6.7 gives an insight how applicable our classification is. In particular, for the user
group racingbiking four out of five trajectories have optimal segmentations for α < 0.5
but not for α > 0.5. The weakest classification is the one for the group mountainbiking.
But even here almost 60% of the trajectories have a minimal segmentation certifying our
findings. This group also has the highest proportion of trajectories that have a minimum
segmentation for α > 0.5 but not for α < 0.5 (roughly 10%).
For further analysis, we take the size of a minimal segmentation of a trajectory as 100%
and consider for every alpha the necessary number of milestones relative to the size of a
minimal segmentation in percent, see the gray lines in Fig. 6.5. Finally, we compute the
average percentage of necessary milestones per α for every user group. Figure 6.8 gives an
overview of these numbers. At first glance, the results are in accord with the results of
Fig. 6.7 and approve our classification. On average, focusing on favored road types is more
convenient for every user group than focusing on unfavored road types. Even for the lowest
curve, referring to the user group of mountain bikers, it takes more than 50% of milestones
extra for α = 0.9 in comparison to α = 0.1. Taking a closer look, one notices that, for the
group racingbiking, the best results are obtained for α ≈ 0.485. That means, that racing
bikers are willing to make detours of more than 6% in order to use road types that we have
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Figure 6.5: Analysis of the milestone segmentation of the trajectory given in Fig. 6.4.

!

Figure 6.6: Excerpt of the trajectory of Fig. 6.4. Road segments of favored type are colored
blue, those of unfavored type are colored red. For this subpath, a segmentation with α = 0.5
requires three milestones (×) while already two milestones are sufficient with α = 0.38 (◦).
The road segment marked with “!” causes an extra milestone for every segmentation with
α ≥ 0.48. Note that this implies that the subpath between the two circles is an optimal
path for α = 0.38 but not for α = 0.5.

recognized as favored ones. But, for biking and mountainbiking the number of necessary
milestones is, on average, minimal for α = 0.5. That means, despite an (in parts clear)
classification into favored and unfavored road types, the routing results that are best for all
users within one of the two groups are achieved when ignoring the classification and simply
considering distance. In other words, there is no value for α other than 0.5 that would be
better for the whole group – this suggests that one should probably focus on training the
parameter α for smaller groups or even for individual users.

6.5 Conclusion

We have presented a novel approach for the classification of bicycle trajectories from crowd-
sourced data into different groups. For each group (e.g., mountain bikers) we have identified
favored and unfavored road types. Based on this information, we have defined a bicriteria
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Figure 6.7: Overview of the distribution of minimal segmentations for cycling (top),
mountainbiking (center), and racingbiking (bottom). The green bar indicates the share
of trajectories that have minimal segmentations only for α values less than or equal to 0.5;
the red bar represents the trajectories with minimal segmentations only for α values greater
than or equal to 0.5. Trajectories with an optimal segmentation only for α = 0.5 as well as
all remaining trajectories are represented by the white bar.
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Figure 6.8: Number of milestones as a function of α, summed over all trajectories of the
same type and measured in percent relative to the minimum number of milestones. The
minimum is attained close to α = 0.485 for racing bike and at α = 0.5 for biking and
mountain biking.
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routing model, which assumes that bicyclists favor short routes but on the other hand try
to avoid unfavorable road types. We have shown how the trade-off parameter of the model
can be learned from the trajectories such that a single edge weighting is obtained that can
be used to compute new routes for any two vertices in the cycle network. To this aim, a
multi-source data analysis consisting of three steps has been performed.

In the first step, a map-matching approach has been applied in order to combine data
from different sources and to extract a significant feature set for the classification of dif-
ferent cyclist groups in an unsupervised manner. We are discriminating between three
user groups: mountainbiking, racingbiking and biking. Our results confirmed the user-
specified groups with a consensus in 67% of all trajectories. A feature importance analysis
revealed that parameters such as the route type (such as circular or simple track), the alti-
tude range, and the difference in length between the trajectory and the respective shortest
path turn out to be of great interest for a group categorization.

In the second step, we have identified favored and unfavored road types with regard to
each of the three groups. While some types such as cycleway are preferred by all groups of
cyclists, the analysis also revealed large differences among the different groups. For example,
streets of type tertiary are clearly favored by the groups racingbiking and biking but
clearly disfavored by the group mountainbiking.

In the third step, despite the sparseness of the underlying trajectory sets, we were able to
learn a mapping of edge types and edge lengths to edge weights. The results we obtained
prove that our approach goes in the right direction. Basically, our classification is proper
but needs additional fine-tuning in order to outweigh bicyclists’ demand for shortest paths.
Particularly for the group racingbiking we succeeded and identified a mapping to edge
weights that results in paths that are optimal although being 6% longer than shortest paths.
For the groups mountainbiking and biking it turned out that, if the aim is to satisfy all
users equally well, the best solution to the routing problem would be simply to minimize
the geometric length of the path. Therefore, as a direction for future research, we suggest
considering a classification of users into more than three groups or learning the trade-off
parameter of the routing model individually for each user. Clustering algorithms such as
spectral clustering [NJW02] or mean shift algorithm [CM02] state promising alternatives
to k-means, and could facilitate an appropriate choice of the number of clusters. Since we
have observed that the users sometimes change their routing criteria even within single
trajectories (e.g., since a mountain biker behaves like a normal biker when riding to or back
from a hilly region of interest) it may also be reasonable to ask for a partition of a given
trajectory into parts that are homogeneous with respect to the routing criteria applied.
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6 Inferring routing preferences of bicyclists from sparse sets of trajectories

Appendix

6.A Appendix: Aggregation of routing criteria

In this section, we elaborate an algorithm for aggregating routing criteria that, so far, has
been published as a sketch only [ONH17]. After publishing this outline, we discovered a way
of speeding up a subroutine of our algorithm, which also led to an improved overall running
time. This speed-up is based on an observation by Funke and Storandt [FS13]. This section
for the first time presents the improved version of our algorithm, which we have developed
with support from Axel Forsch.

Modern route-planning tools focus on finding optimal paths with respect to, for exam-
ple, distance, time-, or fuel-consumption. However, various other criteria are of interest,
too, like the number of traffic lights along the path or, particularly with respect to bi-
cyclists, the ascent. For multi-criteria routing problems, Pareto optimal paths are often
considered [KRS10, War87]. A path is considered to be Pareto optimal if an improve-
ment with respect to one criterion can only be achieved by worsening the path’s quality
with respect to another criterion. Unfortunately, computing Pareto optimal paths is NP-
hard [War87, GJ90]. A simpler way of dealing with multiple criteria is to linearly combine the
given criteria to a new one and apply established single-criterion shortest path algorithms
like Dijkstra’s Algorithm. For this purpose, however, it is necessary to identify reasonable
weighting factors.

Computing such weighting factors is where our algorithm comes in. Gotsman and
Kanza [GK13] as well as Lerin et al. [LYT13] have shown independently how to com-
pute a compact representation of a user’s path by partitioning it into a minimum number
of paths that are optimal with respect to a prescribed criterion. The authors have noted
that the better that optimization criterion matches the user’s routing preferences, the more
compact representations are obtained. Reversing this argument forms the core of our idea:
If a routing model induces a partition of a path into a small number of optimal subpaths,
it reflects the user’s preferences well. In the long run, we plan to design an algorithm that
computes weighting factors such that the linear combination of given criteria yields a min-
imum partition of the path considered. For the moment, it is capable of dealing with two
criteria.

In the following, we present an algorithm that, given a path and two criteria, produces an
interval of weighting factors yielding linear combinations of criteria such that the partition
of the path into optimal subpaths is minimal. The algorithm is composed of two subroutines
which are presented in the following subsections. First, an algorithm is designed and pre-
sented that determines the possibly empty interval of weighting factors that correspond to
a linear combination of criteria for which the given path is optimal. Then, in the following
algorithm, this subroutine is called for subpaths of a given path in order to set up a data
structure which allows us to determine a minimum segmentation easily.
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6.A.1 Determining weighting factors corresponding to path optimality

We consider a (directed) graph G = (V,E) with two distinguished vertices s, t ∈ V and
integral, non-negative edge weights w0, w1 : E → N0. Combining these weights linearly, we
obtain an edge weight wα = (1 − α) · w0 + α · w1 depending on a weighting factor α. In
this section, we describe an algorithm which allows us to identify the optimality range of a
given simple s-t path P , i.e., the subset Iopt ⊆ [0, 1] such that P is an optimal path with
respect to wα for every α ∈ Iopt, see OptimalityRange.

OptimalityRange

Instance: A graph G = (V,E),

two vertices s, t ∈ V ,

edge weights w0, w1 : E → N0,

an s-t path P .

Question: Is there a non-empty interval Iopt ⊆ [0, 1] such
that P represents an optimal s-t path with re-
spect to wα for every α ∈ Iopt?

According to Section 2.2.1, the weight of a path P is defined as the sum of the weights of
its edges, which means

wα(P ) =
∑
e∈P

wα(e)

= (1− α) ·
∑
e∈P

w0(e) + α ·
∑
e∈P

w1(e)

= (1− α) · w0(P ) + α · w1(P )

= w0(P ) + α ·
(
w1(P )− w0(P )

)
. (6.7)

Thus, for a path P , its combined weight wα(P ) describes a line with vertical intercept w0(P )
and slope w1(P )− w0(P ). In the following, we identify a path with its corresponding line.
Consequently, we can consider the set of all s-t paths as a family of lines, see Figure 6.A.1.
For a fixed α, we say an s-t path P is α-optimal if it is an optimal s-t path with respect to wα,
i.e., its combined weight wα(P ) is minimal among all s-t paths. The set of all paths that are
α-optimal for some α ∈ [0, 1] forms the lower envelope E : [0, 1]→ R≥0 of the corresponding
line arrangement, see the orange highlighting in Figure 6.A.1(b). The mapping E can be
evaluated for every α ∈ [0, 1]; in our case by computing the weight of a path that is optimal
with respect to wα. The optimality range of an s-t path P can be identified with the subset
of [0, 1] in which the line wα(P ) is part of the lower envelope. Thus, the optimality range
is either empty, a single value, or an interval. In Figure 6.A.1, the optimality range of the
red path is ∅, the optimality ranges of the green, blue, and black paths are [0, 1/3], [1/3, 2/3],
and [2/3, 1], respectively.

141



6 Inferring routing preferences of bicyclists from sparse sets of trajectories

s

t(w0, w1) = (4, 0)
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Figure 6.A.1: (a) The set of s-t paths with weights (w0, w1) and (b) the corresponding line
arrangement; colors are chosen accordingly. In Figure (b), the lower envelope is highlighted
in orange.

An existing algorithm for finding elements on the lower envelope Funke and
Storandt [FS13] present an algorithm that finds a point on the lower envelope that is
also part of the line corresponding to a given path P . In the original scenario, this point
corresponds to an α such that P is α-optimal.

The algorithm of Funke and Storandt searches for such a point iteratively. In every step, an
interval I is considered that is guaranteed to contain the optimality range Iopt completely.
From step to step, this interval I is reduced until a point within the optimality range is
found or its size falls below the minimum size of an optimality range, which implies that
the optimality range is empty. This minimal size of Iopt depends solely on the edge weights
of the considered graph and can be computed in advance. For this purpose, we introduce
M := maxe∈E max{w0(e), w1(e)}, the maximum occurring weight (w0 or w1) of an edge.M
exists since we consider a graph with a finite edge set.

Lemma 6.1. The optimality range Iopt of an s-t path P has a minimum size depending
on M . In particular, 1

|Iopt| ∈ O(M2n2) holds where n = |V |.

Proof. Let Iopt = [α′, α∗] with 0 < α′ < α∗ < 1 be the optimality range of P . Then, this
interval is defined by two other s-t paths P ′ and P ∗. The lines P and P ′ intersect at α′, the
lines P and P ∗ at α∗. With respect to w0, the paths P ′ and P ∗ differ k′ and k∗, respectively,
from P and l′ and l∗ with respect to w1, see Figure 6.A.2.

α′ α∗α0 1

wα

P

P ′
P ∗k′

k∗
l′

l∗

︷︸︸︷
︷︸︸

︷ ︷︸︸︷︷︸︸︷

Figure 6.A.2: Example of a path P with an optimality range [α′, α∗] and the Paths P ′

and P ∗ bounding it.
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According to Equation 6.7, the intersection of P and P ′, i.e. α′, can be obtained as follows.

wα′(P
′) = wα′(P )

⇔ w0(P ′) + α′ ·
(
w1(P ′)− w0(P ′)

)
= w0(P ) + α′ ·

(
w1(P )− w0(P )

)
⇔ w0(P )− k′ + α′ ·

(
w1(P ) + l′ − w0(P ) + k′

)
= w0(P ) + α′ ·

(
w1(P )− w0(P )

)
⇔ −k′ + α′ · (l′ + k′) = 0

⇔ α′ =
k′

k′ + l′

Likewise, α∗ = k∗

k∗+l∗ can be obtained. Consequently, the size of Iopt is given as

|Iopt| = α∗ − α′

=
k∗

k∗ + l∗
− k′

k′ + l′

=
k∗ · (k′ + l′)− k′ · (k∗ + l∗)

(k∗ + l∗) · (k′ + l′)

=
k∗k′ + k∗l′ − k′k∗ − k′l∗

(k∗ + l∗) · (k′ + l′)

=
k∗l′ − k′l∗

(k∗ + l∗) · (k′ + l′)
.

With the maximum edge weight M , we can bound this interval size from below. Since we
consider simple paths only, this gives us a bound of n ·M for the maximum weight of a
simple path in G = (V,E) where n = |V |. Thus, max{k∗, l∗, k′, l′} ≤ M · n. Then, the
following holds for the size of the interval Iopt.

|Iopt| ≥
1

(k∗ + l∗) · (k′ + l′)
≥ 1

(2 ·max{k∗, l∗, k′, l′})2
≥ 1

4M2n2
. (6.8)

In particular, we notice 1
|Iopt| ≤ 4M2n2 ∈ O(M2n2). The cases α′ = 0 or α∗ = 1 lead

similarly to a lower bound of 1
2Mn which exceeds the bound of the cases considered above.

Algorithm 15 is an adaptation the algorithm Witness Search by Funke and Storandt [FS13].
Due to the algorithm’s importance for this chapter, we elaborate their findings in more detail
in the following.

Lemma 6.2. In every iteration of the algorithm, Iopt ⊆ I holds.

Proof. Assume that in the beginning of each iteration step, two values low and upp defining
an interval I = [low, upp] are given such that Iopt ⊆ I. This is the case for the first
iteration where I = [0, 1] and, thus, ∅ ⊆ Iopt ⊆ I holds. The minimal value E(α) of the line
arrangement is computed at the central value α = (low+upp)/2 of I.
If E(α) coincides with wα(P ), the optimality range of P contains α and the algorithm
terminates. This positive outcome is reached in Line 8.
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6 Inferring routing preferences of bicyclists from sparse sets of trajectories

Algorithm 15: FindOptimalRangeElement
Data: Graph G = (V,E), weights w0, w1 : E → N0, distinguished vertices s, t ∈ V ,

s-t path P
Result: α such that P is optimal with respect to wα, possibly nil if Iopt = ∅

1 low ← 0;
2 upp← 1;
3 while true do
4 ᾱ← (upp+ low)/2;
5 P̄ ← argminP ′ wᾱ(P ′);
6 if wᾱ(P ) = wᾱ(P̄ ) then
7 // P is optimal for ᾱ, i.e., ᾱ ∈ Iopt
8 return ᾱ;

9 if w0(P ) > w0(P̄ ) ∧ w1(P ) > w1(P̄ ) then
10 // P̄ dominates P in [0, 1]; thus, Iopt = ∅
11 return nil;

12 ᾱ← w0(P̄ )− w0(P )

w1(P )− w0(P )− w1(P̄ ) + w0(P̄ )
;

13 if ᾱ /∈ [low, upp] then
14 // P̄ dominates P in I = [low, upp]; thus, Iopt = ∅
15 return nil;

16 if w0(P̄ ) < w0(P ) then
17 low ← ᾱ;
18 else
19 upp← ᾱ;
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6.A Appendix: Aggregation of routing criteria

Otherwise, a line Q on the lower envelope is found.

If Q dominates P in all of I, the path P is not optimal for any α ∈ [0, 1] and Iopt = ∅ ⊆ I
holds. In this case, Algorithm 15 returns nil in Line 11. Otherwise, there is an intersection
of P and Q within [0, 1]. If this intersection is found outside I (see Line 13), the algorithm
terminates returning nil as well.

In any other case, the lines Q and P intersect at some ᾱ ∈ I and wα(Q) ≤ wα(P ) holds for
either α ∈ [0, ᾱ] or α ∈ [ᾱ, 1]. This implies Iopt ∩ [0, ᾱ[= ∅ or Iopt∩]ᾱ, 1] = ∅, respectively.
Since the respective interval can be excluded from the search interval, I is reduced to
I ∩ [ᾱ, 1] = [ᾱ, upp] or I ∩ [0, ᾱ] = [low, ᾱ], respectively, and the procedure is repeated for
this new search interval I ⊇ Iopt in the following iteration.

Theorem 6.1. Algorithm 15 terminates and it takes O(log(Mn)) iterations.

Proof. In every step, the interval is limited to a subset of either the left or the right half
of I: In Lines 12–19, the search interval I = [low, upp] gets restricted to [ᾱ, upp] if ᾱ ∈
[ low+upp

2 , upp] or to [low, ᾱ] if ᾱ ∈ [low, low+upp
2 ]. Hence, the size of I is reduced by a factor

of at least 2 in each iteration. Thus, if the algorithm does not terminate early, the size of I
falls below the minimum interval size at some point. Since the algorithm has not terminated
early, P is dominated for both low and upp. Then one of the following two cases holds:

(i) P is dominated at low and upp by a single path P ′, see Figure 6.A.3(e) or (f).

In this case, P is either dominated by P ′ in all of [0, 1] and the algorithm terminates
in Line 11 or an intersection ᾱ ∈ [0, 1] \ I exists. In the latter case, the algorithm
terminates in Line 15. In any case, Iopt = ∅ holds.

(ii) P is dominated at low by P ′ and at upp by P ∗, see Figure 6.A.3(a) or (d).

In this case, P is either dominated in I or optimal for the intersection of P ′ and P ∗.
Let us assume without loss of generality that P ′ is optimal at low+upp

2 . Then, in
Line 12, ᾱ at the intersection of P and P ′ gets computed and the search interval
is bounded by [ᾱ, upp]. If P is optimal at ᾱ, see Figure 6.A.3(b) and (c), the upper
bound upp gets ᾱ as well in the next iteration and the algorithm terminates positively
in Line 8. In any other case, P ∗ dominates P in the search interval and case (i) holds,
see Figure 6.A.3(e).

According to Lemma 6.1, the minimum interval size is reached after O(log(M2n2)) =
O(log(Mn)) steps.

Theorem 6.2. The running time of Algorithm 15 is in O(SPQ · log(Mn)) where SPQ is
the running time of a shortest-path query in G.

Proof. Algorithm 15 consists mainly of a fixed number of basic operations totaling O(1)
time. Solely the operation in Line 5, where an optimal path with respect to wα is sought, is
more expensive and thus dominates the running time of a single iteration of the while loop
with O(SPQ). With regard to Theorem 6.1, the overall run time is in O(SPQ·log(Mn)).
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Figure 6.A.3: Final steps of Algorithm 15 for finding an element on both the lower envelope
and the line (blue) corresponding to the given path P . Here, the situation is depicted for the
case that the algorithm has not terminated early and the size of the search interval I (green)
has fallen below the minimum size derived from the given graph G. The central value α
(see Line 4) is marked red, ᾱ (see Line 12), corresponding to the next reduction of I, is
marked green. Regarding the proof of Theorem 6.1, (a)–(c) correspond to the positive result
described in case (ii); (d)–(f) correspond to negative results. Figure (f) depicts the special
case that a path P ′ with the same slope dominates P . This is a sufficient yet not necessary
condition for a termination of Algorithm 15 in Line 11.
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P
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P
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αlow upp αlow upp
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ᾱ

P̄

α′

Figure 6.A.4: The search for the lower bound of the optimality range. The search interval is
marked green; its current state darker than the next state. (a) If P is optimal with respect to
w0, the search for the lower bound continues in [low, α]. (b) At α, the path P is dominated
by P̄ . The search continues in [ᾱ, upp] where ᾱ marks the intersection of P and P̄ .

An extension yielding the optimality range So far, only one Element α within the opti-
mality range Iopt = [α′, α∗] of P is known. Starting with the result of Algorithm 15, the
search for the boundary of Iopt continues. Due to the loop invariant, see Lemma 6.2, we
know α′, α∗ ∈ I = [low, upp]. In particular, α′ ∈ [low, α] and α∗ ∈ [α, upp] hold. In the
following, we describe how to determine α′. The search for α∗ is organized symmetrically.
Due to the loop invariant of Algorithm 15, the optimality range lies within the final search
interval, i.e. Iopt ⊆ I = [low, upp] holds at the beginning of the search for α′. Consequently,
if P is an optimal path with respect to wlow, the left bounds coincide, α′ = low holds.
Otherwise, we continue our search similar to Algorithm 15 with a binary search within I.
We start our search from α = low+upp

2 , of which we know that P is optimal with respect
to wα. Then, α′ is sought within [low, α] with a binary search that, like Algorithm 15,
additionally uses the structure of the line arrangement. Thus, α′ is found at the latest when
the size of the search interval I falls below the minimum size of the optimality range.
In every iteration, the search interval I is reduced by at least half, see Figure 6.A.4. We
consider the central value α of I. If P is optimal with respect to wα, the search continues
in [low, α], see Figure 6.A.4(a). Otherwise, there exists another path P̄ that is optimal
with respect to wα. This path P̄ has the same weight as P for some value ᾱ. Since P̄
dominates P in [0, ᾱ], the lower bound of the optimality range is found if P is an optimal
path with respect to wᾱ. Otherwise, the search continues in [ᾱ, upp], see Figure 6.A.4(b).
This procedure is summarized in Algorithm 16.
The search for α∗, the upper bound of the optimality range Iopt = [α′, α∗], can be done
symmetrically. Hence, in the worst case, the search interval needs to be reduced from [0, 1]
to below the minimal size twice; once for the lower bound α′, once for the upper bound α∗.
Consequently, the optimality range can also be found within O(SPQ · log(Mn)) time.

6.A.2 Segmenting a path into a minimum number of optimal subpaths

Being able to solve OptimalityRange, we now deal with the problem of segment-
ing a path into a minimum number of α-optimal subpaths with α ∈ [0, 1], see
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Algorithm 16: FindOptimalRangeLowerBound
Data: path P , return value α of Algorithm 15, low as given after Algorithm 15
Result: lower bound α′

1 upp← α;
2 while true do
3 ᾱ← (low + upp)/2;
4 P̄ ← argminP ′ wᾱ(P ′);
5 if wᾱ(P ) = wᾱ(P̄ ) then
6 if w1(P ) < w1(P̄ ) then
7 return ᾱ;

8 upp← ᾱ;
9 else

10 ᾱ← w0(P̄ )− w0(P )

w1(P )− w0(P )− w1(P̄ ) + w0(P̄ )
;

11 P̄ ← argminP ′ wᾱ(P ′);
12 if wᾱ(P ) = wᾱ(P̄ ) then
13 return ᾱ;

14 low ← ᾱ;

MilestoneSegmentation below. That means we search for an α ∈ [0, 1] and a seg-
mentation of a Path P into a minimal number h of subpaths {P1, . . . , Ph} such that every
subpath Pi with i ∈ {1, . . . , h} is α-optimal.

MilestoneSegmentation

Instance: A graph G = (V,E),

edge weights w0, w1 : E → N0,

a path P = 〈v0, . . . , v`〉 in G,

an integer k ∈ {1, . . . , `}.

Question: Is there an α ∈ [0, 1] such that a segmentation
of P into k or less α-optimal subpaths exists?

For this purpose, we apply a concept known in the relevant literature as start-stop ma-
trix [ABB+14, ADvK+15]. Hence, for a path P consisting of k vertices, we consider a
(k × k)-matrixM of sub-intervals of [0, 1]. The entryM[i, j] in row i and column j corre-
sponds to the optimality range of the subpath of P starting at its i-th vertex and ending
at its j-th vertex. Hence, for an α-optimal path P , the entry ofM describing the complete
path contains α, i.e., α ∈ M[1, k]. Since we are interested only in subpaths with the same
orientation as P , we focus on the upper triangle matrix with i ≤ j and considerM[i, j] = ∅
for i > j. Then, given α ∈ [0, 1], finding a segmentation of P into a minimal number of
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1

h

1 h

Information in M
for a fixed α

α /∈ M[i, j]

α ∈ M[i, j]

Figure 6.A.5: Depiction of a start-stop matrix corresponding to a path consisting of h = 6
edges for a fixed α ∈ [0, 1]. In the upper triangle, white squares indicate that α /∈ M[i, j]
whereas gray squares indicate the opposite. The black line represents a resulting minimum
segmentation of the path into 3 subpaths with the indices i0 = 1, i1 = 3, i2 = 5, i3 = 6.
The decisive intervals in M are marked with black squares; namely M[1, 3], M[3, 5], and
M[5, 6].

α-optimal subpaths corresponds to finding a minimal number of indices i0 < i1 < . . . < ih
with i0 = 1 and ih = k such that α ∈M[ij , ij+1] for 0 ≤ j < h; i.e. traversing the matrixM
in a staircase-like manner, see Figure 6.A.5.

Due to substructure optimality, subpaths of optimal paths are optimal as well [CLRS09].
Hence, for i < k < j, both M[i, j] ⊆ M[i, k] and M[i, j] ⊆ M[k, j] hold. This results in
the structure visible in Figure 6.A.5 where no white cell is on the left side of or below a
gray cell for every α ∈ [0, 1]. As a consequence, for a fixed α, it is easy to find a solution
to the segmentation problem once the start-stop matrix is set up. According to Buchin et
al. [BDvKS11], for example, an exact solution to this problem can be found with a greedy
approach in O(h) time.

Since we consider a finite set of intervals, we know that if a minimal solution exists for
an α ∈ [0, 1], it also exists for one of the values bounding the intervals inM. Consequently,
each of the O(h2) optimality ranges that need to be computed yields at most two candidates
for the solution. For each of these candidates a minimum segmentation needs to be computed
in O(h) time each. Thus, we end up with a total running time of O(h2 · (h+ SPQ log(Mn))
where n denotes the number of vertices in the graph and h denotes the number of vertices
in the considered path. Thus, the algorithm is efficient and yields an exact solution to
MilestoneSegmentation. The solution consists of an interval producing the best fitting
aggregated criterion with respect to the input criteria.
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7 Conclusion and outlook

In the following, we summarize the results of this thesis. After closing remarks on the results
achieved in the previous chapters in Section 7.1, we give an overview of open problems which
seem worthwhile to pursue further in Section 7.2.

7.1 Conclusion

In this thesis, we have presented different kinds of aggregation problems and, for their so-
lution, different kinds of exact optimization algorithms. As stated in Chapter 1, there is
semantic, geometric and temporal generalization and a clear categorization is often impos-
sible. While the problem dealt with in Chapter 3 focuses on geometric aspects rather than
semantic ones, the focus was shifted towards semantic aspects in Chapters 4 and 5. Even-
tually, in Chapter 6, the aggregation is done in order to simplify the semantic data and the
geometric representation plays only a minor role.
The considered problems also differ in complexity and so do the algorithms we developed
in order to deal with them. In Chapter 4, we applied sophisticated techniques for solving
integer linear programs to a spatial problem. In the field of combinatorial optimization, these
methods are established and a common approach for tackling NP-complete problems. For
the problems described in the remaining Chapters 3, 5, and 6, we were able to develop
efficient algorithms.
The efficient algorithms we presented demonstrate that solving aggregation problems exactly
is reasonable. This impression is intensified by the fact that two of the ideas presented
here stood out at the conferences at which they were presented, either as award-winning
contribution or runner-up. Hence, we encourage researchers to search for problem-specific
exact algorithmic solutions.
However, in some cases, like the problem presented in Chapter 4, there is no way of avoid-
ing heuristic approaches in order to find a good solution to a problem in an acceptable
amount of time. In this case, existing and continuously improved metaheuristic algorithms
provide helpful tools for this purpose. Heuristic approaches are of particular interest if the
problem proves to be NP-hard. Altogether, we consider an interplay between heuristic and
exact algorithms as desirable. On the one hand, exact algorithms yield optimal solutions
to examined problems, which can be used as benchmarks for faster heuristic approaches.
On the other hand, like Puchinger and Raidl suggest [PR05], a combination of exact and
heuristic algorithms may increase the quality of both approaches: exact algorithms can be
sped-up by intermediate explorations of the solution space and the quality of solutions found
with heuristics can be increased, for example, by solving sub problems optimally. These are
interesting aspects for future research.
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7.2 Outlook

To the problem introduced in Chapter 3, we have presented an algorithm that is both
efficient and exact. Based on a computation of a shortest-path tree in advance, which can
be done in O(n log n + m) time, our algorithm solves TreeSummary in linear time. The
original work already contained our proposal to consider a dynamic version of the problem.
We already shed some light on the dynamics [OvDH17], but, in the hope of finding an easy
adaption of the shortest-path tree, we focused mainly on how a moving source alters the
shortest-path tree. For future work, it would be interesting to examine the consequences of
replacing the preprocessing step of computing one shortest-path tree with running an all-
pair shortest-path algorithm. Subsequently retrieving the shortest-path tree for locations
“between” vertices of the road graph is of particular interest, especially with regard to virtual
vertices. Furthermore, we planned to apply our algorithm to road graphs with a pre-defined
partitioning of the road vertices (e.g., into administrative regions). This problem has proven
to be more complex than expected. Since these partitions, i.e. administrative regions, are
accessible via more than one route, in general, the lowest common ancestor of all vertices
within such a region lies outside the region. Consequently, the lowest common ancestor does
not seem to be a reasonable choice for representing the region. Moreover, finding a single
representation of the region seems impossible with a straight-forward adaptation of our
approach. Hence, tackling this problem more open-mindedly than in the past is of interest
to us.

The cutting-plane algorithm for aggregating areas presented in Chapter 4 deals with guaran-
teeing contiguity of aggregated regions. This problem is of major interest [ZS83, CSGW04,
DCM11, DVGE18] and, according to our experiments, our model is a huge improvement
compared to the current state-of-the-art approach to this problem. Yet, it is of limited prac-
tical use as it is only applicable to rather small instances. However, with the application of
a cutting-plane algorithm, algorithmic resources are not yet drained. For example, heuristic
algorithms can be combined with our exact approach in order to find optimal results faster.
Puchinger and Raidl [PR05] suggest, for example, using metaheuristics for obtaining incum-
bent solutions and bounds in order to support the ILP solver. Puchinger and Raidl also dis-
cuss the other way round: using exact algorithm to develop or improve heuristic approaches.
With regard to existing heuristics [BEL03, DAR12, HW10a, HWS+65, LCG14, MCVL02]
and, in particular, to the problem’s complexity, we consider this an interesting approach.
Furthermore, we work on an algorithm that solves the problem of area aggregation while
considering line features as obstacles. These can be roads, for example. Aggregating areas
located on different sides of a motorway might not be desired. On this matter, in coopera-
tion with Sven Gedicke, we decided to work on an heuristic approach instead of an MILP as
our ideas for formalizing the cost for aggregating such separated areas cannot be expressed
as linear constraints.

In Chapter 5, we present a recent approach to assessing urban green space. Consequently,
the outlook section of this chapter gives a good overview of our current ideas for future
research. This work originates from a discussion panel with domain experts. Hence, we
planned to publish a version of our implementation that is easy to use. The positive feedback
we received at the conference where the basic version of this approach was first presented
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(GIScience 2018 [NOLH18]) confirmed us in our intention. Hence, this is an important point
that completes the ideas we presented in the chapter’s outlook section.

As indicated in the introduction to Chapter 6, there is a lot of work to do in the context of
inferring routing preferences from trajectories. In particular, publishing the formalization
of the general concept, our idea and our framework, with a solid foundation on existing lit-
erature is necessary. This is of special interest since, in the meantime, research on this topic
has continued. We aim for extending our approach to more than two criteria; first steps
have been undertaken in the context of a Master’s thesis. Furthermore, we see potential in
analyzing a multitude of trajectories and aggregating them into clusters with similar routing
preferences. Further research is pursued within a project for Inferring Personalized Multi-
criteria Routing Models from Sparse Sets of Voluntarily Contributed Trajectories which is
part of a priority project of the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG) on volunteered geographic information (VGI) [HF19].
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