
Efficient Algorithms for Routing a Net

Subject to VLSI Design Rules

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Markus Ahrens

aus

Lahnstein

Bonn, August 2020



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Herr Professor Dr. Jens Vygen
2. Gutachter: Herr Professor Dr. Dr. h.c. Bernhard Korte

Tag der Promotion: 20.11.2020
Erscheinungsjahr: 2020



Acknowledgements

First and foremost, I would like to thank my advisor Professor Dr. Jens Vygen for his
excellent guidance and for providing insightful feedback on an earlier version of this thesis.
Special thanks go to Professor Dr. Dr. h.c. Bernhard Korte and Professor Dr. Jens Vygen
for providing perfect working conditions at the Research Institute for Discrete Mathematics
at the University of Bonn.

I am thankful to all my present and former colleagues for the friendly and productive
working environment, especially Dr. Ulrich Brenner, Dr. Michael Gester, Dorothee Henke,
Dr. Anna Hermann, Niko Klewinghaus, Benjamin Klotz, Dr. Dirk Müller, Dr. Philipp
Ochsendorf, Stefan Rabenstein, Dr. Rudolf Scheifele, Dr. Jan Schneider, Rasmus Schroeder,
and Dr. Jannik Silvanus. I also want to thank Professor Dr. Stephan Held and Professor
Dr. Stefan Hougardy for sharing some of their knowledge with me and for many interesting
discussions. I would also like to express my deepest thanks to Dr. Anna Hermann, Niko
Klewinghaus, and Stefan Rabenstein for proofreading parts of this thesis.

I am grateful for the excellent cooperation with IBM and would like to express my thanks to
our business partners Anne Heppner, Niko Klewinghaus, Dr. Christian Roth, and Dr. Gus-
tavo Téllez.

I would like to thank Dorothee Henke and Stefan Rabenstein for their contributions to the
Restricted Dijkstra-Steiner algorithm and its implementation. Moreover, I would like to
thank Dorothee Henke and Professor Dr. Jens Vygen for the productive joint work on the
future costs.

Finally, I would like to thank my family, who supported me throughout my studies.

i





Contents

1 Introduction 1

2 Preliminaries 3
2.1 The Detailed Routing Problem . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Overview of BonnRoute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Global Routing with BonnRouteGlobal . . . . . . . . . . . . . . . . . 12
2.2.2 Detailed Routing with BonnRouteDetailed . . . . . . . . . . . . . . . 13

3 Efficient Path Search 21
3.1 Path Search in Huge Routing Graphs . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Routing Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Goal-Oriented Search Using Future Costs . . . . . . . . . . . . . . . . . . . 29

3.3.1 Considering Each Dimension Separately . . . . . . . . . . . . . . . . 32
3.3.2 Considering All Dimensions at Once . . . . . . . . . . . . . . . . . . 33
3.3.3 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Working on Implicitly Given Routing Graphs . . . . . . . . . . . . . . . . . 42
3.5 Track Oracle and Checking Oracle . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Replacing the Algorithmic Core of BonnRouteDetailed . . . . . . . . . . . . 55

4 Same-Net Rule Aware Path Search 57
4.1 Obeying Same-Net Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Respecting Same-Net Rules is NP-Hard . . . . . . . . . . . . . . . . . . . . 59
4.3 Same-Net Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Multi-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5.1 Label Systems used by BonnRouteDetailed . . . . . . . . . . . . . . 76
4.5.2 Selecting a Label System . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Same-Net Rule Aware Path Search in BonnRouteDetailed . . . . . . . . . . 83

5 Steiner Tree Search 87
5.1 The Steiner Tree Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 The Restricted Dijkstra-Steiner Algorithm . . . . . . . . . . . . . . . . . . . 88
5.3 Global Routing Aware Steiner Tree Search . . . . . . . . . . . . . . . . . . . 94

iii



6 Experimental Results 101
6.1 Testbed and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Efficient Path Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Same-Net Rule Aware Path Search . . . . . . . . . . . . . . . . . . . . . . . 104

6.3.1 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Multi-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.3 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Summary 109

Bibliography 111

iv



Chapter 1

Introduction

Modern integrated circuits, also called chips, can contain billions of transistors and are
among the most complicated structures ever designed and manufactured by man. Their
design, called VLSI1 design, is very challenging and is done in several steps. The task
in routing is to compute the internal wiring of the chip. On large instances this requires
packing millions of node-disjoint Steiner trees into a graph with hundreds of billions of
nodes while respecting hundreds of complicated design rules that need to be satisfied to
ensure the reliability of the manufacturing process. Routing is solved in two or more stages:
Global routing computes an approximate wire layout, solving the global packing problem
while ignoring local constraints. This thesis is about detailed routing which computes the
actual wiring based on the global routing solution.

We present algorithms for state-of-the-art detailed routing. Our new path search algorithm
is more efficient and more flexible than previous algorithms and implementations. It has
been used very successfully in the IBM design flow to design complex processor chips.
We present experimental results demonstrating that our path search is efficient and can
reduce the number of design rule violations drastically. Moreover, we present a new tree
search algorithm that generalizes the Dijkstra-Steiner algorithm [Hougardy et al., 2017].
We propose to use this algorithm for finding optimal Steiner trees that are similar to the
global routing solution, thereby recovering electrical and timing properties optimized in
global routing.

The rest of this thesis is organized as follows:

In Chapter 2 we introduce the detailed routing problem more formally and give an overview
of BonnRoute, a state-of-the-art router developed at the University of Bonn in joint work
with IBM. BonnRoute is the main routing tool used by IBM for the design of processor
chips. The algorithms presented in this thesis were implemented as part of BonnRoute-
Detailed, the detailed router of BonnRoute.

Our path search algorithm is presented in Chapter 3 and Chapter 4. Chapter 3 focuses
on making the algorithm efficient while being able to handle complicated implicitly given

1Very Large Scale Integration

1



2 CHAPTER 1. INTRODUCTION

grid graphs. A key component that helps to achieve both objectives is the grid region
data structure introduced in Section 3.4. In Section 3.3 we speed up the path search by
making it goal-oriented using the well-known concept of future costs. Our future costs
are computed by solving a geometric shortest path problem. We prove that this problem
can be solved in logarithmic time after a polynomial time preprocessing. Furthermore, we
propose an algorithm for solving the geometric shortest path problem in practice that was
developed in joint work with Dorothee Henke and Jens Vygen. Our path search is the new
algorithmic core of BonnRouteDetailed. Section 3.6 summarizes its advantages compared
to the previous implementation based on [Hetzel, 1995, 1998].

In Chapter 4 we consider the problem of respecting design rules. In Section 4.2 we prove
that given a two-dimensional grid graph and nodes s, t it is NP-complete to decide whether
there is an s-t-path in which each maximal straight subpath has length at least two. Hence,
obeying even very simple design rules in the path search is NP-hard. The rest of Chapter 4
describes our framework for making our path search respect many design rules in practice.
Its most important component is the multi-labeling introduced in Section 4.5 that allows
us to find edge progressions that satisfy certain properties specified by label systems. This
allows us to respect design rules in a correct-by-construction manner. Our multi-labeling
is more general and more efficient than that of [Nohn, 2012; Gester, 2015; Ahrens et al.,
2015]. This allows us to respect more design rules while being less restrictive.

Chapter 6 presents experimental results on real-world IBM instances. The results demon-
strate that the speed-up techniques discussed in Chapter 3 are effective and that using the
framework for avoiding design rule violations discussed in Chapter 4 reduces the number
of violations by a factor of approximately 443.

In Chapter 5 we consider the problem of computing optimal Steiner trees respecting re-
strictions on the topology and on the location of Steiner points derived from the global
routing. To achieve this we introduce the Restricted Dijkstra-Steiner algorithm which
generalizes the Dijkstra-Steiner algorithm [Hougardy et al., 2017]. In our application the
Restricted Dijkstra-Steiner algorithm achieves near-linear runtime under mild assumptions.
This is possible because the restrictions actually make the problem easier. The Restricted
Dijkstra-Steiner algorithm was developed and implemented in joint work with Dorothee
Henke and Stefan Rabenstein.



Chapter 2

Preliminaries

This chapter introduces the main problems we consider in this thesis and provides back-
ground information that can make it easier to understand the rest of this thesis. First,
in Section 2.1 we introduce the detailed routing problem and define important terms that
are used throughout this thesis. Then, in Section 2.2 we give a high-level overview of
BonnRoute, a state-of-the-art router developed at the University of Bonn in joint work
with IBM. The overview focuses on its detailed router BonnRouteDetailed.

In the rest of this thesis we use basic notation on graphs and combinatorial optimization
without further comments. For an introduction to combinatorial optimization see [Korte
and Vygen, 2018]. For more information on routing in general we refer to Part VI of [Alpert
et al., 2008] and Chapter 8 of [Lavagno et al., 2016].

2.1 The Detailed Routing Problem

Chips contain circuits that can implement simple logical functions like NAND or NOT,
but also more complicated logical functions or the storage of data. The connection points
of the circuits are called pins. There are additional pins, for example for the inputs and
outputs of the chip. In detailed routing we are given a set of pins and the information
which pins should be connected electrically. A set of pins that should be connected is
called a net. The task in detailed routing is to compute an optimized wiring that realizes
these connections and satisfies a set of complicated design rules. The rest of this section
introduces notation and provides more information on detailed routing.

The connections can be established using multiple layers. Throughout this thesis we use
Z = {0, 1, . . . , zmax}, where zmax ∈ N, to denote the set of wiring layers that are relevant
for detailed routing. The interval (z, z+1) between two adjacent wiring layers z, z+1 ∈ Z
is called a via layer. It is used for connecting objects on layers z and z + 1. In our
application we typically have |Z| ∈ {5, . . . , 18}.

All routing objects are represented by axis-parallel rectangles and cuboids, called shapes.

3



4 CHAPTER 2. PRELIMINARIES

Definition 2.1 (wire, via, shape). A wire is a two-dimensional rectangle [x1, x2]×[y1, y2]×
{z} with x1, x2, y1, y2 ∈ Z and z ∈ Z.

A via is a triple (vb, vm, vt), where vb = rb × {z} and vt = rt × {z + 1} are wires and
vm = rm× (z, z+ 1) is a three-dimensional axis-parallel cuboid with integral minimum and
maximum x- and y-coordinates such that rm ⊆ rb ∩ rt. We call vb and vt the bottom pad
and top pad of the via and vm its cut shape.

A shape is a wire or the bottom pad, top pad, or cut shape of a via.

The wires and vias that make up the wirings are represented by one-dimensional objects
and extensions, called wire models and via models.

Definition 2.2 (wire model, via model). A wire model is a rectangle [x1, x2]×[y1, y2]×{0}
with x1, y1 < 0 < x2, y2 and x1, x2, y1, y2 ∈ Z.

A via model is a triple of wire models.

Definition 2.3 (plain stick, wire stick, via stick, stick). A plain stick is a one-dimensional
rectangle [x1, x2]× [y1, y2]× [z1, z2] with x1, x2, y1, y2 ∈ Z, z1, z2 ∈ Z, and either x1 6= x2,
y1 6= y2, or z2 − z1 = 1.

A wire stick is a pair (s,mw), where s = [x1, x2]× [y1, y2]×{z} is a plain stick and mw is
a wire model. Its wire is the Minkowski sum s+mw.

A via stick is a pair (s,mv), where s = {x} × {y} × [z, z + 1] is a plain stick and mv =
(vb, vm, vt) is a via model. Its via is

({x} × {y} × {z}+ vb, {x} × {y} × (z, z + 1) + vm, {x} × {y} × {z + 1}+ vt).

A stick is either a wire stick or a via stick.

See Figure 2.1 for an illustration of shapes and sticks.

There are three kinds of routing objects:

• Blockages block an area, making it unusable for other objects. They are represented
by shapes.

• Pins are represented by connected sets of shapes. They are inputs or outputs of the
chip, interfaces across hierarchy, or connection points of circuits. The task in routing
is to legally connect certain sets of pins, given by so-called nets.

• Wirings of nets are represented by sticks.

These terms are formalized in the following definition.

Definition 2.4 (blockage, pin, net, wiring of a net). A blockage is a shape.

A pin p = ∪i∈{1,...,k}si is the union of finitely many shapes s1, . . . , sk such that p is con-
nected.



2.1. THE DETAILED ROUTING PROBLEM 5

Figure 2.1: Three plain sticks (left, right) and their shapes (right) for appropriate via
model and wire models. There are two wire sticks on different wiring layers and a via stick
connecting them. Note that the via has different extensions on each layer.

A net is a triple N = (P,Mw,Mv), where P is a set of pins, Mw = (Mw
0 , . . . ,M

w
|Z|−1)

is a set of sets of wire models, specifying allowed wire models Mw
z for each wiring layer

z ∈ Z andMv = (Mv
0,1, . . . ,M

v
|Z|−2,|Z|−1) is a set of sets of via models, specifying allowed

via models Mv
z−1,z for vias on (z − 1, z).

A set of sticks S = Sw ∪ Sv consisting of wire sticks Sw and via sticks Sv connects N if

1.
⋃

(s,m)∈S s is connected,

2. for each p ∈ P we have p ∩
⋃

(s,m)∈S s 6= ∅,

3. for (s,m) ∈ Sw we have m ∈Mw
z , where z is the wiring layer of s, and

4. for (s,m) ∈ Sv we have m ∈Mv
z,z+1, where z is the minimum layer of s.

We call such a set of sticks S a wiring of the net N .

Chips are manufactured layer by layer with a lithographic process, starting from the lowest
layer. To allow manufacturing, the shapes on a chip must obey hundreds of design rules.
Different wiring and via layers can be manufactured with different processes: Lower layers
use expensive manufacturing processes that can manufacture very small structures. Higher
layers contain larger structures and usually use manufacturing processes that were intro-
duced in older technologies. Every type of layer has its own design rules. We distinguish
diff-net rules and same-net rules:

Diff-net rules specify minimum spacing requirements between shapes of different nets and
to blockages. We list simplified versions of the two most important types of rules:

• Minimum Distance Rules: The distance of two shapes on the same wiring or via
layer must not be smaller than a layer-dependent threshold. See Figure 2.2 for an
illustration.



6 CHAPTER 2. PRELIMINARIES

• Inter Layer Via Minimum Distance Rules: Two via cut shapes r1 × (z, z +
1), r2 × (z + 1, z + 2) on adjacent via layers must have distance of at least a layer-
dependent threshold value. This rule applies only for some pairs of via layers.

αz

Figure 2.2: An L2-distance rule of αz implies that no shape of a different net may intersect
the red area.

The rules can specify a minimum L2-distance, but other distance measures such as L1-
distance, horizontal minimum distance that applies only if there is a vertical overlap, or
more complicated distance functions are also possible. Additionally, there are some more
complicated diff-net rules, depending on the width of the involved metal, on colors that
are assigned to shapes on some layers, or on three or more shapes. We note that in special
cases diff-net rules can apply to different parts of the same net.

Same-net rules impose restrictions on the wiring of each individual net. We list simplified
versions of some important rules:

• Minimum Width Rule: Each shape must have at least a certain layer-dependent
minimum width and length.

Most same-net rules do not depend on individual shapes but on maximal sets of connected
shapes S on a layer z and / or their polygonal boundary:

• Minimum Area Rule: S must have an area exceeding a layer-dependent threshold.

• Via Enclosure Rule: Let vm× (z, z+ 1) be the cut shape of a via model such that
S∩vm×{z} 6= ∅. Then vm×{z}+[−αz, αz]×{0}×{0} ⊆ S or vm+{0}×[−αz, αz]×
{0} ⊆ S must hold for some threshold value αz > 0. A similar rule applies for vias
on (z − 1, z). Typically, via models are designed such that the enclosure rules are
satisfied automatically.

• Minimum Adjacent Edge Length Rule: Let e1, e2 be two adjacent edges of the
polygonal boundary of S. Then at least one of the edges must be longer than a
threshold value. See Figure 2.3 for an illustration.

αz

Figure 2.3: The gray shapes violate a minimum adjacent edge length rule of αz because
of the two edges marked in red.



2.1. THE DETAILED ROUTING PROBLEM 7

For more information on design rules we refer to [Schulte, 2012] and Part VII of [Alpert
et al., 2008].

We can now define the Detailed Routing Problem.

Detailed Routing Problem
Input: A chip area C = [x1, x2]× [y1, y2]×Z, a set of blockages B, a set of nets N ,

a set of design rules, and an objective function.
Task: Find a wiring for each net N ∈ N such that the set consisting of all wirings,

all pins, and all blockages satisfies the design rules, each shape is contained
in the chip area, and the objective function is optimized.

The objective function could, for example, specify that the chip should be able to run at the
highest possible clock frequency or consume as little power as possible. As an additional
input a global routing solution may be provided. See Figure 2.4 for an illustration of part
of a solution computed by BonnRoute.

Figure 2.4: A small part of a detailed routing of a 14 nm instance showing only the lowest
layers. Approximately 1

165000 of the chip area is depicted. The lowest wiring layer which
consists of pins and blockages is drawn in blue. The second and third lowest wiring layers
are depicted in green and dark violet. Vias connecting the third and forth lowest wiring
layer are also depicted.



8 CHAPTER 2. PRELIMINARIES

The Detailed Routing Problem is hard to solve in theory and in practice and instances
can have millions of nets. To make the problem more accessible many detailed routers make
the following simplifications:

First, almost all sticks on each wiring layer run in the same dimension, called the pre-
ferred dimension. Before defining the preferred dimension we introduce some notation on
dimensions and directions.

Definition 2.5 (dimensions, directions). By ↔, l, and ↙↗ we refer to the x-, y-, and
z-dimension. We use →, ↑, and ↗ to refer to the positive x-, y-, and z-direction and ←,
↓, and ↙ to we refer to the negative x-, y-, and z-direction. We define D := {→,←, ↑, ↓,
↗,↙} as the set of directions. Let v1 = (x1, y1, z1), v2 = (x2, y2, z2) ∈ R3 be two different
points such that the line segment v1v2 is axis-parallel. We define

Dir(v1, v2) :=



→ x1 < x2

← x1 > x2

↑ y1 < y2

↓ y1 > y2

↗ z1 < z2

↙ z1 > z2

and

Dim(v1, v2) :=


↔ x1 6= x2

l y1 6= y2

↙↗ z1 6= z2.

Definition 2.6 (preferred dimension, horizontal and vertical layers). The preferred di-
mension of a wiring layer z ∈ Z is defined by

PrefDim(z) :=

{
↔ if z is even
l if z is odd.

A wiring layer z ∈ Z with PrefDim(z) = ↔ is called a horizontal layer and a layer with
PrefDim(z) = l is called a vertical layer.

The preferred dimensions alternate. Vertical sticks on a horizontal layer and horizontal
sticks on a vertical layer are undesirable, since they could block many sticks running in
preferred dimension. Such sticks are called jogs.

Second, almost all sticks that run in preferred dimension are placed on so-called tracks.

Definition 2.7 (track). A track is an axis-parallel line segment [x1, x2] × [y1, y2] × {z}
with x1, x2, y1, y2 ∈ Z and z ∈ Z that runs in the preferred dimension of its layer.

Note that tracks do not need to be uniform across a layer. See Figure 2.5 for an illustration
why tracks can help using the routing space efficiently.



2.1. THE DETAILED ROUTING PROBLEM 9

3α− ε

α

3α− ε

α

3α− ε

α

α

α
α

α
α

α
α

α
α

α
α

α
α

α

Figure 2.5: The most inefficient (left) and the most efficient (right) packing of wires with
width α and spacing requirement α. On the left no additional wires can be added. The
right also shows tracks that help packing.

Naturally, wires with different widths or with different spacing requirements need different
tracks and optimizing tracks for multiple different widths and spacing requirements is
a non-trivial problem. See Section 2.2.2 and [Klewinghaus, 2020] for a description of
track optimization in BonnRoute. The tracks define a graph, called the track graph, that
represents the routing resources of a chip.

Definition 2.8 (track graph). Let T = T0 ∪ · · · ∪ T|Z|−1 be a set of tracks such that the
set of tracks on layer z ∈ Z is Tz. The track graph GT for T is defined as follows:

V (GT ) =
⋃
z∈Z

Tz ∩ (P+(Tz−1) ∪ P−(Tz+1)),

E(GT ) = {{v, w}|vw is axis-parallel with vw ∩ V (GT ) = {v, w}},

where P+ and P− are the functions that map a track to the wiring layer above or below.

In the track graph there is a node wherever tracks on adjacent wiring layers would cross.
Edges between nodes exist whenever the line segment connecting the nodes is axis-parallel
and does not contain any other nodes. For an example of a track graph see Figure 2.6.

The track graph for all tracks represents the routing resources. Some edges may be unus-
able, e.g. because of blockages or existing wiring. Moreover, we are often interested in a
subset of the routing resources. This can be modeled by routing graphs.

Definition 2.9 (routing graph). Let GT be a track graph. A routing graph is a subgraph
of GT .

We now define a simplified version of the Detailed Routing Problem and consider its
complexity.



10 CHAPTER 2. PRELIMINARIES

Figure 2.6: Track graph for the set of tracks T0, T1, and T2 as depicted. Nodes exist
wherever two or more line segments intersect. Edges in z-dimension are drawn in purple
and orange and jog-edges are thin and black.



2.1. THE DETAILED ROUTING PROBLEM 11

Vertex-Disjoint Steiner Trees Problem in 3-Dimensional Grid Graphs
Input: A three-dimensional grid graph G and disjoint sets N1, . . . , Nk ⊆ V (G).
Task: Compute node-disjoint Steiner trees T1, . . . , Tk in G such that Ti connects

Ni for each i ∈ {1, . . . , k} or decide that no such Steiner trees exist.

In the special case of two-dimensional grid graphs and |Ni| = 2 for i ∈ {1, . . . , k} the
Vertex-Disjoint Steiner Trees Problem in 3-Dimensional Grid Graphs sim-
plifies to the Vertex-Disjoint Paths Problem in two-dimensional grid graphs, which
is NP-hard.

Theorem 2.10 ([Kramer and van Leeuwen, 1982]). The Vertex-Disjoint Paths Prob-
lem is NP-hard even in two-dimensional grid graphs.

Corollary 2.11. The Vertex-Disjoint Steiner Trees Problem in 3-Dimensional
Grid Graphs is NP-hard.

Practical instances of the Detailed Routing Problem can ask for millions of node-
disjoint Steiner trees in a routing graph with hundreds of billions of nodes. Therefore,
very efficient algorithms are required. For this reason detailed routers usually route nets
one after the other, except for parallelization and conflict resolution. Hence, the main
subroutine of most detailed routers is an algorithm for solving a version of the following
problem:

Net Routing Problem
Input: A routing graph G, an edge cost function cE : E(G) → R≥0, a node cost

function cV : V (G)→ R≥0, a number k ∈ N, and sets p1, . . . , pk ⊆ V (G).
Task: Find a Steiner tree S with pi∩V (S) 6= ∅ for i ∈ {1, . . . , k} such that the cost

cE(E(S)) + cV (V (S)) is minimal or decide that no such Steiner tree exists.

Most detailed routers build Steiner trees out of paths and thus their algorithmic core is
a path search that solves the Path Search Problem, a version of the Net Routing
Problem with k = 2. This is also the case for BonnRouteDetailed. We redesigned the
path search of BonnRouteDetailed and reimplemented it from scratch. Chapter 3 and
Chapter 4 describe the new path search and its implementation. Chapter 3 focuses on
making the algorithm efficient while being able to handle complicated implicitly given grid
graphs. This suffices to respect diff-net rules since they can be modeled by deleting edges.
Chapter 4 focuses on computing paths that also respect the same-net rules. In Section 4.2
we prove that given a two-dimensional grid graph and nodes s, t it is NP-complete to
decide whether there is an s-t-path in which each maximal straight subpath has length at
least two. Since minimum segment length constraints are special cases of several same-net
rules this shows that finding paths that obey even simple rules is NP-hard. The rest of
Chapter 4 describes our framework for making our path search respect many same-net
rules in practice. Section 3.6 summarizes the advantages of our path search compared to
the previous path search based on [Hetzel, 1995, 1998]. Chapter 6 presents experimental



12 CHAPTER 2. PRELIMINARIES

results demonstrating the efficiency of our path search and its ability to respect design
rules.

Composing Steiner trees of paths can lead to non-optimal solutions. In Chapter 5 we
propose to solve a version of the Net Routing Problem with a single call of a generalized
version of the Dijkstra-Steiner algorithm [Hougardy et al., 2017]. The algorithm allows us
to find optimal Steiner trees that are similar to the global routing solution in terms of
topology and approximate location of Steiner points, thereby recovering electrical and
packing properties optimized in global routing. Moreover, the restrictions speed up the
algorithm in theory and in practice.

2.2 Overview of BonnRoute

This section gives an overview of BonnRoute, a state-of-the-art router developed at the
University of Bonn in joint work with IBM. BonnRoute is part of the BonnTools [Korte
et al., 2007] that have been used to design more than one thousand chips over the last three
decades. BonnRoute is the main routing tool used by IBM for the design of its processor
chips. For a survey of BonnRoute see [Gester et al., 2013]. In BonnRoute the routing
problem is solved in two stages: global routing and detailed routing.

This section provides background information on components of BonnRoute that are not
discussed in detail in this thesis. Reading it can make it easier to understand the remaining
chapters of this thesis, especially Chapter 3 and Chapter 6.

2.2.1 Global Routing with BonnRouteGlobal

BonnRouteGlobal computes an approximate layout of each net, optimizing complex objec-
tive functions such as timing, congestion, and wire length. Since optimizing these objectives
is very difficult and instances can have millions of nets, global routing simplifies the prob-
lem by working on a coarse three-dimensional grid graph, called the global routing graph.
Nodes of this graph represent rectangular parts of the chip area, called global routing tiles.
The congestion is optimized to prevent that tiles contain too many wires and that there
are too many wires on the edges between them. See Figure 2.7 for an illustration.

Since this thesis is about detailed routing we do not describe the algorithms used in Bonn-
RouteGlobal. For details on BonnRouteGlobal we refer to [Müller, 2009; Müller et al.,
2011; Held et al., 2018; Scheifele, 2019].



2.2. OVERVIEW OF BONNROUTE 13

Figure 2.7: Maximum layer-wise edge congestion over all layers. The scale on the left
shows which colors correspond to which fraction of used edge capacity. Four global routing
tiles are sketched in cyan and blue in the lower left corner.

2.2.2 Detailed Routing with BonnRouteDetailed

BonnRouteDetailed computes the final wiring of a chip. For this reason, the simplifications
used in global routing are no longer possible. Thus, millions of nets may have to be
routed in a graph with hundreds of billions of nodes and hence very fast algorithms are
required.

Algorithm 1 gives an overview of the most important steps of BonnRouteDetailed. First,
there are some preparatory steps, such as optimizing the tracks of the given design, initial-
izing data structures, and computing an order φ in which the nets should be routed. Then
BonnRouteDetailed uses an algorithm based on dynamic programming to ensure that the
lowest layers are used as efficiently as possible. Finally, in its main loop, BonnRoute-
Detailed traverses all nets roughly in the order specified by φ and routes each of them.
The following sections briefly describe each of these steps.

We note that the overview omits some important steps and that even the more detailed
descriptions in the following sections are simplified. For example, the description omits
reading the design rules and the design data. It also omits parallelization: All runtime-
critical steps of BonnRouteDetailed are parallelized and [Klewinghaus, 2020] reports a
speed-up of 31.1 on large 14 nm instances with 64 threads. See [Klewinghaus, 2013b, 2020]
for more details on the parallelization. We refer to [Gester et al., 2013; Ahrens et al., 2015]
for a more detailed but slightly outdated description of BonnRouteDetailed.



14 CHAPTER 2. PRELIMINARIES

Algorithm 1 Overview of BonnRouteDetailed

1: compute optimized tracks
2: initialize the net data structure, the detailed grid, and the fast grid
3: compute an order φ of the nets
4: compute short connections and preselect pin access paths
5: while ∃ unconnected nets do
6: pick the first unconnected net N with respect to φ
7: while N has at least two connected components C1, C2 do
8: connect C1 and C2 with the same-net rule aware path search, using ripup and

reroute if necessary

Track Optimization

Using optimized tracks makes it easier to use the available routing space efficiently. Most
tracks in BonnRouteDetailed are global tracks that span the entire length or width of
the chip. See Section 3.5 for some information on non-global tracks. BonnRouteDetailed
uses dynamic programming to optimize global tracks. The tracks on different layers are
optimized independently. Each wiring layer is partitioned into thin stripes of equal size by
so-called power rails or power vias that are part of the power distribution. The tracks are
optimized in one of the stripes and then repeated for the entire layer.

The following restrictions are imposed on the tracks for each width and spacing require-
ment:

1. Adjacent tracks can be used without violating the diff-net rules.

2. Placing the tracks as in point 1 gives an upper bound on the number of tracks. The
number of tracks must be close to this bound.

To maximize the available routing resources, the number of tracks should be maximized.
On the other hand, placing a wire on one of its tracks should block as few other tracks as
possible. Both the average number of blocked tracks and the number of available tracks
are scaled with the frequency of the involved widths and spacing requirements. Figure 2.8
illustrates why optimizing tracks is important. It is a condensed version of multiple figures
from [Klewinghaus, 2020].

We note that the dynamic programing approach cannot optimize the tracks for too many
different widths and spacing requirements at the same time. If there are too many, the
algorithm is first called with the most frequent ones. Later calls do not modify the tracks
computed in previous calls but consider them in the objective.

See [Klewinghaus, 2020] for a complete description of the track optimization in BonnRoute-
Detailed.



2.2. OVERVIEW OF BONNROUTE 15

2 3 2 3 2 2 3 2 3 2

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

(a) Equidistantly spaced tracks for 1.5x wide wires with 1.5x spacing.

2 2 2 2 2 2 2 2 2 2

1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1

(b) Optimized tracks for 1.5x wide wires with 1.5x spacing.

Figure 2.8: Different options for tracks for 1.5x wide wires with 1.5x spacing (green).
Power rails are drawn in dark gray. Minimum width wires (1x) are drawn in orange. Their
tracks are arranged such that the maximum number of wires fits between the power rails,
which defines a unique track pattern in this example. Light gray marks the area where a
1.5x wire blocks other wires and the numbers indicate how many 1x tracks are blocked by
each 1.5x track (bottom) and vice versa (top). Using the optimized tracks improves the
number of blocked tracks from 2.4 and 1.5 on average to 2 and 1.25 on average.

Important Data Structures

The net data structure stores the global routing of each net and, if the net is already
partially or fully routed, its detailed routing. Moreover, it stores which parts of the global
routing and detailed routing correspond to each other. This data is initialized at the
beginning of BonnRouteDetailed and kept up-to-date during routing.

The global routing solution that BonnRouteDetailed gets as input optimizes complex ob-
jectives such as global congestion, timing, and wire length. The net data structure is used
to attempt to route each net similarly to its global routing solution to benefit from this
optimization. See Figure 2.9 for an illustration of a net after BonnRouteGlobal and after
BonnRouteDetailed. For more details on the net data structure and how it is used we refer
to Section 3.2 and [Klewinghaus, 2013a].



16 CHAPTER 2. PRELIMINARIES

Figure 2.9: A global routing (left) and detailed routing (right) of the same net with 13
pins. The borders of the global routing tiles are drawn as gray lines.

The detailed grid stores all routing objects. It supports inserting and removing routing
objects and querying all objects intersecting a rectangle. At the beginning of BonnRoute-
Detailed the detailed grid is initialized with all routing objects that are given in the input
and during BonnRouteDetailed it is always kept up-to-date using the insertion and the
removal operation. The detailed grid can be used to check whether new shapes can be
added to the existing routing objects without creating conflicts.

However, using the detailed grid for all these checking queries would be too slow. The fast
grid is a specialized data structure that stores precomputed checking data for a subset of
queries that are likely to occur during path searches.

For more details on the detailed grid and the fast grid and how they are used during the
path search we refer to Section 3.5. See [Schulte, 2012; Klewinghaus, 2020] for further
details on the detailed grid and [Müller, 2009; Klewinghaus, 2020] for more information on
the fast grid.

Net Ordering

The order in which nets are routed has a large impact on the quality of the routing
result. We describe the two most important criteria, but note that BonnRouteDetailed
uses additional criteria.

The most important criterion is wire width and spacing requirement. Some nets require



2.2. OVERVIEW OF BONNROUTE 17

wide wires or wires with larger spacing requirements on some layers to achieve good timing
properties. They are routed at the beginning, since routing them later on can be very
difficult and may require revising many previously placed wires, especially on congested
instances.

The second most important criterion is whether the nets are marked as timing-critical in
the input. Generally speaking, nets that are routed early have fewer detours and their
detailed routing is more similar to their global routing. Hence, timing-critical nets are
routed early.

Computing Short Connections and Pin Access Paths

Typically most pins on a chip are located on the lowest layer, called the pin layer, and the
second lowest layer, called the access layer. We assume that the access layer is partitioned
into rows by power rails, which are parts of the power distribution.

There are two important optimization problems on these layers:

The first problem is to compute a short pin access path for each pin on the pin layer while
respecting the design rules. The space for these access paths is reserved until the pin is
connected to the rest of the net. This makes it unlikely that the pin will become fully
blocked, which makes the routing problem much easier. The access paths should optimize
certain objectives: For example, there may be a preferred direction for access paths derived
from the global routing solution. Another objective is to optimize the spreading of access
paths (and their endpoints), which makes it easier to connect to them later on.

The second problem is to connect nearby pins (on the pin layer and the access layer) using
only vias and a wire on the access layer. Pins that are connected in this fashion do not
need a pin access path. These connections consist of a single wire only and are thus very
efficient.

The so-called circuit row pin access solves both problems simultaneously within an entire
corridor between adjacent power rails, using dynamic programming. Under some mild
assumptions, e.g. that the distance between adjacent power rails is fixed, its runtime is
O(n log(n)), where n is the number of pins.

See Figure 2.10 for an illustration of a simple instance of this problem and its solution and
Figure 2.11 for a solution of a slightly larger instance.

[Ahrens, 2014; Ahrens et al., 2015] show that solving both problems with a single algorithm
can lead to large improvements, e.g. a 5% reduction in the number of vias when compared
to other approaches that do just pin access. For more details see [Ahrens, 2014; Ahrens
et al., 2015]. Both Figures are from [Ahrens, 2014] and this description is a shortened
version of the one in [Ahrens et al., 2015].



18 CHAPTER 2. PRELIMINARIES

Figure 2.10: A small part of an instance of the generalized pin access problem (left) and its
solution (right). The gray shapes are parts of the power rails that separate the instances.
Colored shapes are pins and pins of the same color belong to the same net. Arrows indicate
the preferred direction for the pin access path. The crosses show positions where we can
place a via between pin and access layer to connect to a pin without causing design rule
violations.

Figure 2.11: A solution to an instance of the generalized pin access problem. The solution
highlights the spreading of the access paths. Note that access paths are well-spread in the
sense that they are not on neighboring tracks whenever that is possible.

Routing a Net

BonnRouteDetailed routes each net by iteratively connecting two components of the net
by a path. This process is repeated until the net is fully routed, i.e. just one component
remains. We compute a path connecting two components with an efficient and same-
net rule aware path search. The same-net rule aware path search is the main routine of
BonnRouteDetailed and the most runtime-critical one: Typically 80-90% of the runtime
are spent in the path search. It is described in detail in Chapter 3 and Chapter 4.

Sometimes previously routed connections block all paths between the two components.
Then BonnRouteDetailed uses an approach called ripup and reroute to revise some of the
earlier connections. In this case we start a path search that can use resources that are
already blocked by other wires but at high cost. The conflicting parts of the other nets are
then ripped out and must be reconnected. The path searches for reconnecting them can



2.2. OVERVIEW OF BONNROUTE 19

trigger additional ripups. This process is repeated until there are no parts that need to
be reconnected or until a maximum number of steps is reached. In the latter case none of
the modifications is realized and we connect the components with a path that can violate
the diff-net rules. For more details on ripup and reroute in BonnRouteDetailed we refer to
[Klewinghaus, 2013b].

Composing routings of nets of paths can lead to non-optimal solutions. Chapter 5 discusses
the problem of routing an entire net with a single call of a modified version of the Dijkstra-
Steiner algorithm. The project is still being developed and the algorithm is not yet used
in BonnRouteDetailed in production.



20 CHAPTER 2. PRELIMINARIES



Chapter 3

Efficient Path Search

This chapter and Chapter 4 describe an efficient and flexible path search algorithm that
is the new algorithmic core of BonnRouteDetailed. This chapter focuses on making the
algorithm efficient while retaining flexibility. Section 3.1 introduces the Path Search
Problem and gives an overview of important speed-up techniques introduced in previous
works. Section 3.2 describes how we restrict each path search to a routing area derived from
the global routing which speeds up the search and has additional benefits. In Section 3.3
we make the search goal-oriented by using future costs. Our future costs are computed by
solving a geometric shortest path problem. We prove that this problem can be solved in
O(log|T |+log|Z|) time after a polynomial time preprocessing, where T is the set of targets
and Z is the set of wiring layers. Furthermore, we propose an algorithm for solving this
problem in practice that was developed in joint work with Dorothee Henke and Jens Vygen.
Section 3.4 introduces the grid region data structure which helps to speed up the path
search and allows us to handle complicated implicitly given grid graphs provided by two
oracle functions. Section 3.5 provides more information on the oracle functions. Finally,
Section 3.6 summarizes the advantages of our implementation compared to the previous
implementation based on [Hetzel, 1995, 1998]. Section 6.2 presents experimental results
demonstrating the effectiveness of the speed-up techniques presented in this chapter.

3.1 Path Search in Huge Routing Graphs

Definition 3.1 (path search instance). A path search instance is a tuple (G, cE , cV , S, T ),
where G is a routing graph, cE : E(G)→ R≥0 is an edge cost function, cV : V (G)→ R≥0
is a node cost function, and S, T ⊆ V (G) are sets of source and target nodes.

Given an edge progression P = v1, . . . , vk its

• edge cost is cE(P ) =
∑

i∈{1,...,k−1} cE({vi, vi+1}) and its

• node cost is cV (P ) =
∑

i∈{1,...,k} cV (vi).

21



22 CHAPTER 3. EFFICIENT PATH SEARCH

Note that edges and nodes that are used multiple times in P need to be paid more than
once.

Path Search Problem
Input: A path search instance (G, cE , cV , S, T ).
Task: Find a shortest S-T -path P , i.e. a path minimizing cE(P ) + cV (P ) or decide

that no S-T -path exists.

Note that the Path Search Problem is a special case of the Net Routing Problem
with two sets of nodes that need to be connected. A path search instance and its solution
are illustrated in Figure 3.1.

Figure 3.1: Visualization of a toy instance of the Path Search Problem. The task is to
find a shortest path between the source and the target. In this example jogs are forbidden
and all edges have cost 1. Moreover, some nodes and edges are missing because of existing
wires. A shortest path is also drawn.



3.1. PATH SEARCH IN HUGE ROUTING GRAPHS 23

Because the node and edge costs are non-negative, we can use Algorithm 2, called Dijkstra’s
algorithm, to solve the problem. While there are many other algorithms for finding shortest
paths, Dijkstra’s algorithm is a natural choice for solving this problem in practice (see e.g.
[Cherkassky et al., 1996]).

Algorithm 2 Dijkstra’s Algorithm ([Dijkstra, 1959])

Input: A graph G = (V,E), edge costs cE : E → R≥0, node costs cV : V → R≥0, and sets
of source and target nodes S, T ⊆ V .

Output: A shortest S-T -path or the information that no such path exists.

1: ∀s ∈ S set l(s)← cV (s), ∀v ∈ V \ S set l(v)←∞, ∀v ∈ V set p(v)← ∅, set R← ∅
2: while ∃v ∈ V \R s.t. l(v) 6=∞ do
3: v ← argminw∈V \R l(w)
4: R← R ∪ {v}
5: if v ∈ T then
6: return

(
s = p(. . . p(p(v)) . . . ), . . . , p(p(v)), p(v), v

)
with p(s) = ∅

7: for all w ∈ V \R with {v, w} ∈ E do
8: if l(w) > l(v) + cE({v, w}) + cV (w) then
9: l(w)← l(v) + cE({v, w}) + cV (w)

10: p(w)← v

11: return No S-T path exists.

The algorithm maintains a set of tentative distances l from S to the nodes in the graph,
corresponding to the distance of a shortest path to that node that was found so far. A
tentative distance of ∞ means that so far no path to that node was found. During the
algorithm, the tentative distances decrease and a set of nodes R, for which the tentative
distance was proven to be the real distance, is maintained. In each iteration of the main
loop, a node in V \ R with minimal tentative distance is selected and added to R, i.e. its
tentative distance is no longer tentative. Once a target is selected, a shortest S-T -path
has been determined and is returned.

We say that a node v is labeled by Algorithm 2 if it was assigned a non-infinite distance
l(v) 6=∞ and that a node is labeled permanently if it is added to R.

Theorem 3.2 ([Dijkstra, 1959]). Dijkstra’s algorithms works correctly.

The tentative distances are organized in a priority queue.

Theorem 3.3 ([Fredman and Tarjan, 1987]). When the priority queue is implemented with
a Fibonacci heap, Dijkstra’s algorithm runs in O(|E|+ |V | log|V |) time.

Routing graphs satisfy |E|≤ 3|V | since each node has at most six neighbors, hence the
runtime simplifies to O(|V | log|V |). Instead of using a Fibonacci heap we use a binary



24 CHAPTER 3. EFFICIENT PATH SEARCH

heap (see e.g. [Cormen et al., 2009]), which achieves the same theoretical runtime bound
on routing graphs.

Using Dijkstra’s algorithm in its original form would be too slow: On large chips the path
search is called tens of millions of times and the routing graph can have hundreds of billions
of nodes. Most of the sections of this chapter discuss speed-up techniques that improve
runtime and memory usage in practice:

• The global routing solution specifies an approximate layout of each net. We restrict
the path search to a routing area derived from the global routing solution. This also
has other advantages and is discussed in Section 3.2.

• A goal-oriented search based on future costs reduces the number of labels created by
Dijkstra’s algorithm and is discussed in Section 3.3.

• Working on an implicitly given routing graph reduces the memory usage by storing
data only for nodes that were labeled. Partitioning the routing area into grid regions
and precomputing certain data for these regions allows us to speed up the search
substantially. This is discussed in Section 3.4.

• Section 3.4 introduces two oracle functions: the track oracle and the checking ora-
cle. Section 3.5 sketches how these data structures are implemented in BonnRoute-
Detailed.

We now discuss other speed-up techniques that we do not use and explain why they are not
considered. See [Wagner and Willhalm, 2007] for a collection of speed-up techniques for
Dijkstra’s algorithm. For a survey of approaches and algorithms that rely on preprocessing
see [Sommer, 2014].

The path search that was previously used in BonnRouteDetailed covers the nodes on each
layer z ∈ Z by a set of closed intervals Iz such that:

1. Each interval I ∈ Iz is a point or runs in preferred dimension.

2. Each node on the layer z is contained in one of the intervals of Iz.

3. Different intervals I, I ′ ∈ Iz are disjoint, i.e. I ∩ I ′ = ∅.

4. v, w ∈ I ∈ Iz implies that the straight wire connecting v and w is legal and that the
cost of going from v to w is ‖v − w‖.

The algorithm then labels intervals instead of individual nodes. A label at point p with
cost c in an interval I then implies that any point p′ ∈ I can be reached with cost c+ ‖p−
p′‖. Each interval maintains a set of non-dominated labels and may be partially or fully
permanently labeled. This approach achieves a runtime of O(min{d|I| log|I|, |V | log|V |}),
where d is the detour of the shortest path compared to the future cost (or ∞ if no path
exists), I = ∪z∈ZIz is the set of all intervals, and V is the set of all nodes. Thus the
algorithm achieves better runtime than Dijkstra’s Algorithm if the number of intervals
and the detour are small and the same worst case runtime otherwise. For more details on
this approach we refer to [Hetzel, 1995, 1998; Peyer et al., 2009; Gester et al., 2013].



3.1. PATH SEARCH IN HUGE ROUTING GRAPHS 25

Note that Property 4 is very restrictive since it implies that the cost for going one unit in
preferred dimension is 1 on every interval irrespective of the layer. It is not clear whether it
is possible to relax this assumption without making the interval labeling much less effective.
See Figure 3.2 for an illustration.

layer z

layer z + 1

layer z + 2

p

Figure 3.2: Consider an interval Iz on layer z and an interval Iz+2 = Iz + {0}× {0}× {2}
two layers above. Assume that the cost for going one unit on Iz is strictly smaller than on
Iz+2. Further assume that wires are allowed everywhere on these intervals and that vias
on (z, z+ 1) and (z+ 1, z+ 2) can be placed everywhere. Then the shortest path from the
square label at the bottom to any point (x, y, z + 2) ∈ Iz+2 consists of a segment from p
to (x, y, z) on Iz and two vias. Three such paths are drawn in red. Thus a single label on
Iz could lead to an arbitrarily high number of labels on Iz+2.

Also note that node costs do not combine well with interval labeling, since nodes with non-
zero node cost need their own interval. These restrictions were some of the main reasons
why we decided to label individual nodes instead of intervals in the new implementation.
See Section 3.6 for a summary of the advantages of our implementation compared to the
previous implementation based on [Hetzel, 1995, 1998].

Bidirectional search is a well-known technique for speeding up Dijkstra’s algorithm. The
idea is to run two searches simultaneously: A forward search from source to target and
a backward search from target to source, each maintaining their own distance labels. A
shortest path is found when there are nodes that were labeled permanently by both searches
and a non-trivial stopping criterion is met. See Figure 3.3 for an illustration of why
bidirectional search can reduce the number of labels. See [Nicholson, 1966; Dreyfus, 1969]
for more details and e.g. [Goldberg and Werneck, 2005] for a simple and good stopping
criterion.

It is unclear whether bidirectional search is worth implementing in our application. First,
combining bidirectional search and goal-oriented search requires special care and restricts
the possible choices of future cost functions (see e.g. [Ikeda et al., 1994], Section 3-4),
reducing the effectiveness of the goal-oriented search. Moreover, there is often a natural
direction in which the search is run, since the target component typically consists of a
single pin and the source component can consist of multiple pins and paths connecting
them. Furthermore, combining bidirectional search with the same-net rule aware search
introduced in Chapter 4 would complicate the overall algorithm. For these reasons we do
not consider bidirectional search here. Nevertheless it might help to improve runtime.



26 CHAPTER 3. EFFICIENT PATH SEARCH

Figure 3.3: The permanent labels (squares) created by a unidirectional search (left) and a
version of the bidirectional search (right) from the source (green circle) to the target (blue
circle). Permanent labels are colored green if they derive from the source and blue if they
derive from the target. The purple point was permanently labeled from both source and
target. The unidirectional search requires 205 permanent labels while the bidirectional
search needs 104 labels: 51 from the source and 53 from the target.

Another well-known speed-up technique is based on the concept of vertex reaches which
was introduced in [Gutman, 2004] in the context of road networks. A node can be excluded
from a search if its distance to the source plus its distance to the target is larger than its
reach. In most cases, nodes on highways have large reach and nodes on small local roads
have low reach. The vertex reaches are computed in a preprocessing step. [Goldberg et al.,
2006] refine this approach by introducing shortcut edges (v, w) with cost dist(v, w) between
selected pair of nodes. These shortcuts can decrease the reach values of other nodes and
thus speed up the algorithm. For example, connecting far apart nodes v and w on the
same highway with a shortcut might decrease the reach values of the other nodes on the
highway between v and w.

These techniques rely on time-intensive preprocessing which is feasible in the context of
road networks. In our application the graph can change for every path search thus such
approaches are not feasible. [Bast et al., 2016] surveys algorithms for route planning in
road and transportation networks.

3.2 Routing Area

The global routing that BonnRouteDetailed gets as input optimizes complex objectives
such as global congestion, timing, and wire length. BonnRouteDetailed attempts to realize
each net similar to its global routing to benefit from this optimization. Restricting the path
searches to corridors derived from the global routing also improves runtime.



3.2. ROUTING AREA 27

Before starting a path search to connect two components of a net, BonnRouteDetailed
computes the part of the global routing that corresponds to this search. The intersected
global routing tiles and tiles on neighboring layers form the routing area. This data is
computed using the net data structure that stores the global routing of each net and, if
the net is already partially or fully routed, its detailed routing. Moreover, it stores which
parts of the global routing and detailed routing correspond to each other. For more details
on this data structure and how it is updated and used during detailed routing we refer to
[Klewinghaus, 2013a].

Definition 3.4 (routing area). A routing area is the union of finitely many interior-disjoint
axis-parallel rectangles on wiring layers.

For an illustration see Figure 3.4 and Figure 3.5.

Figure 3.4: The two-dimensional projection of the routing area for connecting the pin
on the right to the rest of the net. There are some existing detailed wires of the net.
The routing area is derived from the part of the global routing that corresponds to the
connection to the right. See Figure 3.5 for a three-dimensional illustration.

The path search is not applied to the routing graph of the entire chip but to its restriction
to the routing area. This speeds up the algorithm.

Definition 3.5 (restricting a graph to the routing area). Let G be a routing graph and let
A be a routing area. We define the restriction GA of G to A by

V (GA) = {v ∈ V (G)|v ∈ A}
E(GA) = {{(x, y, z), (x′, y′, z′)} ∈ E(G)|z = z′ and (x, y, z)(x′, y′, z′) ⊆ A}

∪ {{(x, y, z), (x′, y′, z′)} ∈ E(G)|z 6= z′ and (x, y, z), (x′, y′, z′) ∈ A}

We sometimes use GAT to refer to the track graph GT after it is restricted to the routing
area A. Note that this is covered by the definition, since the track graph is a routing
graph.

In practice the routing area and the way it is computed are slightly more complicated: First,
BonnRouteDetailed uses different routing areas for different wire models, for example a



28 CHAPTER 3. EFFICIENT PATH SEARCH

Figure 3.5: The routing area for connecting the pin on the right to the rest of the net.
There are some existing detailed wires of the net. We call the set of tiles intersected by
the relevant part of the global routing the base routing area. Tiles on neighboring layers
are also included to allow for local track changes without jogs. The routing area consists
of all colored tiles. The example assumes that the pins are on the lowest usable layer. See
Figure 3.4 for a two-dimensional illustration.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 29

small wire model may be allowed only near a sink pin. Second, BonnRouteDetailed cannot
always find a solution within the original routing area and then the area is expanded.

3.3 Goal-Oriented Search Using Future Costs

This section describes a speed-up technique for Dijkstra’s algorithm that guides the search
towards the targets. It is based on the A* search that was proposed in [Hart et al., 1968]
in the context of robot motion planning. It was proposed in the context of routing in
[Rubin, 1974] and has since been used by different authors, see e.g. [Hetzel, 1998; Gester
et al., 2013]. Parts of the work presented in this section were done in joint work with
Dorothee Henke and Jens Vygen and are also presented in [Henke, 2016]. For the lemmas
and theorems that also appear in [Henke, 2016] both the results and the proofs are very
similar, unless indicated otherwise.

In our application it is natural to use so-called future costs, a concept similar to feasible
potentials.

Definition 3.6 (future cost function, reduced costs). Let G = (V,E) be a graph, cE : E →
R≥0 be an edge cost function and T ⊆ V be a set of target nodes. A future cost function
for G, cE, and T is a function f : V → R≥0 with the following properties:

1. For every t ∈ T we have f(t) = 0.

2. For every {v, w} ∈ E we have cE({v, w})−f(v)+f(w) ≥ 0 and cE({v, w})−f(w)+
f(v) ≥ 0.

For a set of edges E we use
←→
E := {(v, w), (w, v) | {v, w} ∈ E} to refer to the set that

contains both directed versions of each edge. The reduced costs cfE :
←→
E → R≥0 for a future

cost function f are defined by cfE((v, w)) := cE({v, w})− f(v) + f(w) for all (v, w) ∈
←→
E .

Note that property 2 ensures that the reduced costs are non-negative. The property that
gives future cost functions their name is that each v-T -path has cost at least f(v), i.e. we
need to pay at least f(v) to get from v to a target. This holds because for any v-T -path
P = (v1 = v, v2, . . . , vk = t) with t ∈ T we have

cE(P ) =
∑

i∈{1,...,k−1}

cE({vi, vi+1}) ≥
∑

i∈{1,...,k−1}

f(vi)− f(vi+1) = f(v1)− f(t) = f(v).

Algorithm 3 is a version of Dijkstra’s algorithm with future costs. Differences to Algo-
rithm 2 are marked in red.

We can use the correctness of Dijkstra’s algorithm to show that Algorithm 3 works correctly.
The following result is well-known.

Corollary 3.7. Algorithm 3 works correctly. If the future cost function can be evaluated
in time O(F ), it has runtime O(|V |(log|V |+ F )+|E|).



30 CHAPTER 3. EFFICIENT PATH SEARCH

Algorithm 3 Dijkstra’s Algorithm with Future Costs
Input: A graph G = (V,E), edge costs cE : E → R≥0, node costs cV : V → R≥0, sets of

source and target nodes S, T ⊆ V , and a future cost function f : V → R≥0.
Output: A shortest S-T -path or the information that no such path exists.

1: ∀s ∈ S set l(s) ← cV (s) + f(s), ∀v ∈ V \ S set l(v) ← ∞, ∀v ∈ V set p(v) ← ∅, set
R← ∅

2: while ∃v ∈ V \R s.t. l(v) 6=∞ do
3: v ← argminw∈V \R l(w)
4: R← R ∪ {v}
5: if v ∈ T then
6: return

(
s = p(. . . p(p(v)) . . . ), . . . , p(p(v)), p(v), v

)
with p(s) = ∅

7: for all w ∈ V \R with {v, w} ∈ E do
8: if l(w) > l(v) + cfE((v, w)) + cV (w) then
9: l(w)← l(v) + cfE((v, w)) + cV (w)

10: p(w)← v

11: return No S-T -path exists.

Proof. The algorithm is equivalent to running Dijkstra’s algorithm in the directed graph←→
G = (V,

←→
E ) in which each edge is replaced by two opposing edges with edge costs cfE and

with node costs c′V given by

c′V (v) =

{
cV (v) v 6∈ S
cV (v) + f(v) v ∈ S.

Thus we get a shortest S-T -path with respect to c′V and cfE . Correctness follows because
the cost of an s-T -path P = (v1 = s, v2, . . . , vk = t) with v2, . . . , vk ∈ V (G) \ S is

cE(P ) + cV (P ) =
∑

i∈{1,...,k−1}

cE({vi, vi+1}) + cV (P )

= f(s)− f(t) +
∑

i∈{1,...,k−1}

(cE({vi, vi+1})− f(vi) + f(vi+1)) + cV (P )

= f(s) +
∑

i∈{1,...,k−1}

cfE((vi, vi+1)) + cV (P )

= cfE(P ) + c′V (P ).

After evaluating the future costs of a node we store it. This ensures that the future cost
function is called at most once for each node which implies the runtime bound.

Note that Algorithm 3 with f ≡ 0, which is a future cost function, is equivalent to Algo-
rithm 2. To reduce the number of labels it is desirable to have future cost functions that
are as large as possible, as indicated by the next lemma.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 31

Lemma 3.8 (similar to [Henke, 2016], Lemma 1.2). Let (G, cE , cV , S, T ) be a path search
instance. Consider a version of Algorithm 3 that chooses nodes v 6∈ T before nodes v ∈ T
in line 3. Then for future cost functions f1 ≥ f2 the algorithm with f1 creates at most as
many permanent labels as with f2.

Proof. If there is no s-t-path, all nodes in the connected component of s are labeled with
both future costs functions.

Otherwise let l∗ be the cost of the target that was selected right before the algorithm
returns. Note that l∗ is the cost of the shortest S-T -path and that l∗ is independent of the
future cost function. For i ∈ {1, 2} consider the set of non-target nodes Li ⊆ V \ T that
are selected in line 3 of Algorithm 3 with future cost function fi.

We have

Li = {v ∈ V \ T |∃s ∈ S, an s-v-path P with

fi(s) + cfiE (P ) + cV (P ) ≤ l∗ and V (P ) ∩ T = ∅}
= {v ∈ V \ T |∃S-v-path P with fi(v) + cE(P ) + cV (P ) ≤ l∗ and V (P ) ∩ T = ∅}

Since f1 ≥ f2 we have L1 ⊆ L2. This concludes the proof since there are |L1| + 1 and
|L2|+ 1 permanent labels with f1 and f2 respectively.

Lemma 3.8 does not hold if we remove the condition that nodes in T are chosen as late as
possible, but in practice larger future costs typically lead to fewer labels.

For all future costs that we introduce we use the following lemma to show that they are
indeed future cost functions.

Lemma 3.9 (similar to [Henke, 2016], Lemma 2.1). Let G be a graph and cE : E(G)→ R≥0
be an edge cost function. Let G′ be a supergraph of G and c′E : E(G′) → R≥0 be an edge
cost function on G′ with c′E(e) ≤ cE(e) for each e ∈ E(G). Then for any T ⊆ V (G) the
function distG

′

c′E
(., T ) is a future cost function for G, cE, and T .

Proof. Clearly, distG
′

c′E
(t, T ) = 0 for all t ∈ T .

For {v, w} ∈ E(G) we have

cE({v, w})− distG
′

c′E
(v, T ) + distG

′

c′E
(w, T )

≥c′E({v, w})− distG
′

c′E
(v, T ) + distG

′

c′E
(w, T )

≥0

because of the triangle inequality. Thus distG
′

c′E
(., T ) is indeed a future cost function.

By the lemma, knowing lower bounds for edge costs suffices to compute future costs. One
component of the edge costs in BonnRouteDetailed is distance based and we use this part
for computing the future costs.



32 CHAPTER 3. EFFICIENT PATH SEARCH

Definition 3.10 (rectilinear edge). A rectilinear edge is a pair (v, w) with v, w ∈ Z×Z×Z
and v 6= w such that the line segment vw is axis-parallel.

Definition 3.11 (distance based cost function, compatible). A distance based cost func-
tion is a pair c = (cwire, cviadown), where cwire : Z×{↔, l} → R≥0 and cviadown : Z \{0} →
R≥0. The cost of a rectilinear edge ((vx, vy, vz), (wx, wy, wz)) is

costc((vx, vy, vz), (wx, wy, wz)) =


|vx − wx| cwire(vz,↔) vx 6= wx

|vy − wy| cwire(vz, l) vy 6= wy∑max{vz ,wz}
z=1+min{vz ,wz} cviadown(z) vz 6= wz.

Let G be a routing graph and let cE : E(G) → R≥0 be an edge cost function. We say that
c is compatible with G and cE if we have costc(e) ≤ cE(e) for each edge e ∈ E(G).

We note that in BonnRouteDetailed different calls of the path search may use different
distance based cost functions. Moreover, additional costs apply if the edge is unfavorable,
e.g. because using it requires using a non-preferred wire or via model, but we do not
account for that in the future costs.

Before introducing different future cost functions, we note that future costs that rely on
expensive preprocessing of the graph like the landmark based approach of [Goldberg and
Harrelson, 2005] do not work well in our application, since the routing graph can change
millions of times during detailed routing.

3.3.1 Considering Each Dimension Separately

The first option is to consider each dimension in isolation and derive lower bounds for each
of them. The sum of these bounds is used as a future cost function, called l1-future cost.
This approach was introduced in [Hetzel, 1995, 1998]. We will consider l1-future costs in
the experiments in Section 6.2.

Lemma 3.12. Let c = (cwire, cviadown) be a distance based cost function with cwire ≥ α for
some α ∈ R≥0 and let G, cE be a graph and an edge cost function that are compatible with
c. Then for T ⊆ V (G) the function f : V (G)→ R≥0 with

f((vx, vy, vz)) = min
(tx,ty ,tz)∈T

α|vx − tx|+ α|vy − ty|+
max{vz ,tz}∑

z=1+min{vz ,tz}

cviadown(z)

for all (vx, vy, vz) ∈ V (G) is a future cost function for G, cE, and T .

Proof. Let G′ be the Hanan grid of V (G) with edge cost function c′ defined by c′(e) =

cost(α,c
viadown)(e) for e ∈ E(G′). Then f(v) = distG

′
c′ (v, T ) for all v ∈ V (G). The result

follows from Lemma 3.9.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 33

See Figure 3.6 for an illustration of the labels the l1-future costs can save.

Figure 3.6: The permanent labels (green squares) created by a path search without future
costs (left) and a path search with l1-future costs (right) from the source (green circle)
to the target (blue circle). The search without future costs requires 205 permanent labels
while the search with l1-future costs needs only 29.

3.3.2 Considering All Dimensions at Once

The l1-future cost gives good bounds if cwire ≈ α. In practice BonnRouteDetailed uses
different edge costs: First, edges in non-preferred dimension should be more expensive
than edges in preferred dimension. Second, each net has assigned layers that should contain
most of its wiring. Non-assigned layers get higher edge costs. The future costs presented
in this section account for that.

Definition 3.13. A rectilinear sequence is a sequence P = v1, . . . , vk, where vi ∈ Z×Z×Z
for i ∈ {1, . . . , k} and (vi, vi+1) is a rectilinear edge for i ∈ {1, . . . , k − 1}.

Let c = (cwire, cviadown) be a distance based cost function. The cost of a rectilinear sequence
P = v1, . . . , vk is costc(P ) :=

∑k−1
i=1 costc(vi, vi+1).

Rectilinear Shortest Path Problem
Input: 1.) A distance based cost function c and a finite set of target locations

T ⊆ Z× Z×Z.
2.) A point v ∈ Z× Z×Z.

Task: Compute the minimum cost of a rectilinear sequence from v to T .

A solution to the Rectilinear Shortest Path Problem is an algorithm that builds
up a data structure for part 1 of the input and can then answer queries for the cost of a



34 CHAPTER 3. EFFICIENT PATH SEARCH

cheapest rectilinear sequence from any given point v ∈ Z×Z×Z to T . Since there can be
many such queries low query runtime is typically the most important factor. The problem
is interesting in its own right and we present algorithms for solving it that achieve good
theoretical and practical running times.

Lemma 3.14. Let c = (cwire, cviadown) be a distance based cost function, let G, cE be a
graph and an edge cost function that are compatible with c, and let T ⊆ V (G). Then the
function f : V (G) → R≥0 with f(v) = min{costc(P )|P is a v-T -path} is a future cost
function for G, cE, and T .

Proof. Let G′ be the Hanan grid of V (G) with edge cost function c′ defined by c′(e) =

cost(c
wire,cviadown)(e) for e ∈ E(G′). Then f(v) = distG

′
c′ (v, T ) for all v ∈ V (G). The result

follows from Lemma 3.9.

For the following structure result we provide a shorter proof than [Henke, 2016].

Lemma 3.15 (similar to [Henke, 2016], Lemma 2.2-2.4). Let c = (cwire, cviadown) be a
distance based cost function. For every s, t ∈ Z × Z × Z there is a rectilinear sequence
P = v1, . . . , vk from s to t of minimum cost that has the following properties:

1. There is at most one i ∈ {1, . . . , k−1} such that Dim(vi, vi+1) = ↔ and at most one
i ∈ {1, . . . , k − 1} with Dim(vi, vi+1) = l.

2. No two consecutive rectilinear edges have the same dimension, i.e. for all i ∈
{1, . . . , k − 2} we have Dim(vi, vi+1) 6= Dim(vi+1, vi+2).

Proof. Let P = v1, . . . , vk be a rectilinear sequence from s to t of minimum cost that
minimizes k.

If property 2 is not satisfied there is an index i ∈ {1, . . . , k − 2} such that Dim(vi, vi+1) =
Dim(vi+1, vi+2). Then v1, . . . , vi, vi+2, . . . , vk has fewer edges and the same or lower cost
than P , a contradiction to the choice of P .

It remains to show that property 1 holds. Assume for the sake of contradiction that there
are i < j ∈ {1, . . . , k} with Dim(vi, vi+1) = Dim(vj , vj+1) 6= ↙↗. Consider the layers zi of
vi and zj of vj .

If cwire(zi,Dim(vi, vi+1)) ≤ cwire(zj ,Dim(vj , vj+1)) we define a new sequence by

P ′ = v1, . . . , vi, vi+1 + (vj+1 − vj), . . . , vj + (vj+1 − vj), vj+2, . . . , vk

where the rectilinear edge (vj , vj+1) is merged into the one on layer zi. Otherwise we define
P ′ by

P ′ = v1, . . . , vi, vi+2 − (vi+1 − vi), . . . , vj − (vi+1 − vi), vj+1, . . . , vk

where the rectilinear edge (vi, vi+1) is merged into the one on layer zj . This ensures that
the cost of the combined edge is at most the cost of the two edges. The cost of the other
segments does not change. Thus P ′ has fewer edges and the same or lower cost than P .
This is a contradiction to the choice of P .



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 35

Note that Lemma 3.15 implies that there is a shortest rectilinear sequence consisting of
at most 5 rectilinear edges. Moreover, the choice of the via segments is obvious once the
layers of the horizontal and vertical segments are determined. This allows us to solve
the Rectilinear Shortest Path Problem with a single target in O(|Z|2) query time
without doing any preprocessing by enumerating all choices of layers of the horizontal
and vertical edges. Dorothee Henke showed that this can be improved to O(|Z|) query
time.

Theorem 3.16 (corollary of [Henke, 2016], Satz 2.1). Even without preprocessing, the
Rectilinear Shortest Path Problem with |T | = 1 can be solved in O(|Z|) query
time.

This is the best runtime bound we can hope for without preprocessing. The algorithm uses
dynamic programming to compute the future costs and is too slow to be used in practice
[Henke, 2016]. Hence, we will not consider it in our experiments in Section 6.2.

Doing a preprocessing step at the beginning allows us to achieve good practical and theo-
retical runtime. We compute the data for query locations on different layers independently.
Let vz be the layer we are currently considering. The idea is that for fixed target layer
tz and minimum and maximum layer zmin, zmax used by the rectilinear sequence, the cost
of a shortest path is given by the following simple function, where ∆x and ∆y are the
horizontal and vertical distances between query location and target:

costtz ,vzzmin,zmax
(∆x,∆y) := ∆x min

z∈{zmin,...,zmax}
cwire(z,↔)

+ ∆y min
z∈{zmin,...,zmax}

cwire(z, l)

+

max{vz ,tz}∑
z=min{vz ,tz}+1

cviadown(z)

+ 2

min{vz ,tz}∑
z=zmin+1

cviadown(z)

+ 2

zmax∑
z=max{vz ,tz}+1

cviadown(z)

= ∆xc
tz ,vz ,↔
zmin,zmax

+ ∆yc
tz ,vz ,l
zmin,zmax

+ ctz ,vz ,↙↗zmin,zmax
,

(3.1)

where ctz ,vz ,↔zmin,zmax , c
tz ,vz ,l
zmin,zmax , and c

tz ,vz ,↙↗
zmin,zmax are appropriate constants. The cost of a shortest

rectilinear path to t is then given by

costtz ,vz(∆x,∆y) = min
zmin∈{0,...,min{tz ,vz}}

min
zmax∈{max{tz ,vz},...,|Z|−1}

costtz ,vzzmin,zmax
(∆x,∆y).



36 CHAPTER 3. EFFICIENT PATH SEARCH

We now show how to achieve a query time of O(log|Z|+ log|T |) with polynomial prepro-
cessing time. This was developed independently and not done in joint work with Dorothee
Henke and Jens Vygen. Before describing the algorithm we note that we believe that it is
not a good choice for computing future costs during BonnRouteDetailed, despite its good
theoretical query time. Hence, we will not consider it for the experiments in Section 6.2.
For more information see page 40.

The first ingredient is an algorithm for solving the planar point location problem, a well-
studied problem in computational geometry. In the following, we regard any connected,
closed part of a line as a line segment and any bounded or non-bounded region whose
boundary consists of a finite number of line segments as a polygon. See Figure 3.7 for an
illustration.

Figure 3.7: Three line segments dividing the plane into four polygons (colored blue, green,
orange, and cyan). An arrow means that the line segment is going to infinity. Similarly, a
polygon intersecting the border of the image means that it goes to infinity.

Point Location Problem
Input: 1. A set of line segments L that intersect only at their endpoints, subdividing

R2 \ L into a set of open polygons P.
2. A point p ∈ R2.

Task: Compute a polygon P ∈ P such that p ∈ P̄ , i.e. p is in the closure of P .

See Figure 3.8 for an illustration. A solution to the Point Location Problem is an
algorithm that builds up a data structure for part 1 of the input and can then answer
queries for the polygon containing any point p ∈ R2. [Dobkin and Lipton, 1976] describe
a simple and efficient algorithm for solving the problem.

Theorem 3.17 ([Dobkin and Lipton, 1976]). Let L be a set of line segments as in part 1
of the input of the Point Location Problem. There is an algorithm that preprocesses
L in time polynomial in |L| and can then answer queries for the polygon containing any
point p ∈ R2 in O(log|L|) time.

Their solution uses a slab decomposition, which introduces vertical lines at each endpoint
of a line. For an illustration see Figure 3.9.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 37

Figure 3.8: An instance of the point location problem. Arrows denote line segments going
to infinity. Part 1 of the instance is drawn in black. A query location and the polygon
containing it are drawn in blue.

Figure 3.9: A slab decomposition of the instance from Figure 3.8 is indicated by dashed
black lines. A single slab is drawn in green.



38 CHAPTER 3. EFFICIENT PATH SEARCH

In each slab the order of the line segments is determined since line segments intersect only
at their endpoints. The polygons and their separating line segments are stored in each
slab. Answering a query requires two binary searches: first in x-dimension and then in
y-dimension.

Note that storing the data for all slabs requires O(|L|2) space. Later, algorithms with the
same asymptotic query time, requiring only O(|L|) space or having better preprocessing
time were proposed in [Lipton and Tarjan, 1980; Kirkpatrick, 1983; Edelsbrunner et al.,
1986; Sarnak and Tarjan, 1986].

Recall from equation (3.1) on page 35 that the minimum cost of a rectilinear sequence is
a minimum of functions of the type (x, y) 7→ a + |x − p↔|s↔ + |y − pl|sl. The second
ingredient for achieving a query time of O(log|Z| + log|T |) is a lemma that allows us to
cover the boundary of the set of points where two functions of this type are equal with a
small number of lines. Figure 3.10 provides four examples of such sets.

−4 −2 2 4

−4

−2

2

4

x

y

−10 −5 5 10

5

10

x

y

−5 5 10

−10

−5

5

10

x

y

−5 5 10

−10

−5

5

10

x

y

Figure 3.10: Illustration of the set of points {(x, y) ∈ R2|f1(x, y) = f2(x, y)} for f1(x, y) =
|x|+|y| and different f2. In the upper row we have f2(x, y) = 1

3 |x−2|+1
2 |y−2| on the left and

f2(x, y) = 1
3 |x−2|+2|y−2| on the right. In the lower row we have f2(x, y) = |x−2|+|y−2|

on the left and f2(x, y) = 4 + |x− 2|+ |y − 2| on the right. This row showcases that there
are non-trivial examples of two-dimensional areas with f1 = f2. Line segments and areas
intersecting the border of the image continue to infinity.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 39

Lemma 3.18. Let f1, f2 : R2 → R be two functions with

fi(x, y) = ai + |x− p↔i |s↔i + |y − pli |s
l
i

for some ai, s↔i , s
l
i , p
↔
i , p

l
i ∈ R and i ∈ {1, 2}. Then there is a set L consisting of at most

13 lines such that the boundary of the roots of f1 − f2 is contained in L, i.e. ∂{(x, y) ∈
R2|f1(x, y) = f2(x, y)} ⊆ L. Moreover such a set L can be computed in time O(1).

Proof. We denote the set of roots of f1 − f2 by N = {(x, y) ∈ R2|f1(x, y) = f2(x, y)} and
define Lb = p↔1 ×R ∪ p↔2 ×R ∪ pl1 ×R ∪ pl2 ×R which consists of four lines. Then R2 \Lb
is partitioned into up to nine non-empty, open and connected polygons O1, . . . , Ok. For
j ∈ {1, . . . , k} we define Nj = {(x, y) ∈ Oj |f1 − f2 = 0}. Note that ∂N ⊆ ∪kj=1∂Nj ∪ Lb.
Since k ≤ 9 it suffices to show that ∂Nj is contained in Lb or in a single line and that these
lines can be computed in O(1) time. Since f1 − f2 is affine in Oj there are three cases:

1. Nj = Oj

2. Nj = ∅

3. Nj is a line segment. Note that Nj cannot be a single point, since Oj is open.

In case 1 and case 2 we have ∂Nj ⊆ Lb. In the third case, we add the line containing Nj

to L.

The lines in Lb and the line segments for the polygons can be computed in O(1) time.

Theorem 3.19. There is a data structure that requires polynomial preprocessing time and
can then solve the Rectilinear Shortest Path Problem for each query location in
O(log|Z|+log|T |) time, where |T | is the number of targets and |Z| is the number of layers.

Proof. We compute independent data structures for each layer of the query location. Let
vz be the layer we are currently considering.

The cost of a shortest path from a query location (vx, vy, vz) to T is then given by

costvz(vx, vy) = min
(tx,ty ,tz)∈T

min
zmin∈{0,...,min{vz ,tz}}

min
zmax∈{max{vz ,tz},...,|Z|−1}(

ctz ,vz ,↙↗zmin,zmax
+ |vx − tx|ctz ,vz ,↔zmin,zmax

+ |vy − ty|ctz ,vz ,lzmin,zmax

)
,

where the ctz ,vz ,dimzmin,zmax depend on distance based cost function and are computed as in equa-
tion (3.1).

Hence, the cost is the minimum of O(|T ||Z|2) functions f1, . . . , fk. Applying Lemma 3.18
to every pair of functions yields a set of lines L′ with |L′| = O(|T |2|Z|4) such that for
every i, j ∈ {1, . . . , k} we have ∂{(x, y)|fi(x, y) = fj(x, y)} ⊆ L′. Splitting the lines at
each intersection yields a set of line segments L with |L| = O(|T |4|Z|8).

Note that R2 \L is partitioned into O(|T |4|Z|8) non-empty, open, and connected polygons
R1, . . . , Rl. We claim that for every m ∈ {1, . . . , l} and for every i, j ∈ {1, . . . , k} we have
either



40 CHAPTER 3. EFFICIENT PATH SEARCH

1. fi − fj < 0 in Rm,

2. fi − fj = 0 in Rm, or

3. fi − fj > 0 in Rm.

Indeed, if x, y ∈ Rm then there is a path P in Rm that connects x and y since Rm is
connected. The statement follows from ∂{(x, y)|fi(x, y) = fj(x, y)} ∩ P = ∅ and the
continuity of fi − fj on P . This allows us to find a function that attains the minimum in
Rm by picking a point p ∈ Rm arbitrarily and determining any minimizer of fi(p). Note
that this minimizer also attains the minimum on the boundary ∂(Rm).

All this can be done in polynomial time.

We then initialize a data structure for the point location problem with L in polynomial
time. This allows us to find the polygon containing a query location in O(log|L|) =
O(log(|T |4|Z|8)) = O(log|Z|+ log|T |) time. We then evaluate the minimizing function to
obtain the length of a shortest path to the query location.

We note that while the algorithm from Theorem 3.19 has very good theoretical query
runtime, we believe that is not a good choice for computing future costs during Bonn-
RouteDetailed. In the proof the plane is partitioned into O(|T |4|Z|8) polygons. Even
determining these polygons is computationally expensive and requires some care, because
vertices of the polygons are not necessarily on integral coordinates even if all input coor-
dinates are integral. After the polygons are determined they are used to initialize a data
structure for the point location problem, which will be computationally expensive if the
number of polygons is large. Moreover, this preprocessing must be done from scratch for
every instance of the Path Search Problem.

We now present a simple preprocessing, introduced in Section 2.4 of [Henke, 2016], that
has a worst-case query time of O(|Z|2) in case of a single target t ∈ T . Recall that we
can achieve a faster query time of O(|Z|) without any preprocessing with an impractical
approach by Theorem 3.16. Nevertheless, the simple preprocessing performs very well in
practice and is used by default in BonnRouteDetailed. It is considered in the experiments
in Section 6.2. The idea is to compute and store the coefficients of equation (3.1) on page 35
using Algorithm 4.

Lemma 3.20. Algorithm 4 returns (Fz1,z2)z1,z2∈Z,z1≤z2 such that for t = (tx, ty, tz), v =
(vx, vy, vz) ∈ R× R×Z the cost of a shortest rectilinear sequence from v to t is

min
f∈Fmin{vz,tz},max{vz,tz}

f(|tx − vx|, |ty − vy|). (3.2)

The algorithm runs in O(|Z|5) time.

Proof. Without the pruning in line 6 and 7 the correctness follows from Lemma 3.15 on
page 34. The pruning in case zmin < z1, c↔ 6= d(zmin,↔), and cl 6= d(zmin, l) is valid
because in this case we could save the two vias to layer zmin which cannot increase the
cost. Note that the pruning works even if it is applied to multiple consecutive layers. The
same argument applies to the pruning in line 7.



3.3. GOAL-ORIENTED SEARCH USING FUTURE COSTS 41

Algorithm 4 Simple Preprocessing

Input: A distance based cost function c = (cwire, cviadown).

1: for z1, z2 ∈ Z with z1 ≤ z2 do
2: Fz1,z2 ← ∅
3: for zmin ∈ {0, . . . , z1}, zmax ∈ {z2, . . . , |Z| − 1} do
4: c↔ ← min{cwire(z,↔)|z ∈ {zmin, . . . , zmax}}
5: cl ← min{cwire(z, l)|z ∈ {zmin, . . . , zmax}}
6: if zmin = z1 or c↔ = cwire(zmin,↔) or cl = cwire(zmin, l) then
7: if zmax = z2 or c↔ = cwire(zmax,↔) or cl = cwire(zmax, l) then
8: Fz1,z2 ← Fz1,z2 ∪ costz1,z2zmin,zmax(., .) . cost is defined as in equation 3.1
9: return (Fz1,z2)z1,z2∈Z,z1≤z2

The runtime bound is obvious.

The runtime of Algorithm 4 can be improved to O(|Z|4) by incrementally updating the via
costs and the minimum costs in horizontal and vertical dimension. Given the output of the
algorithm future costs can be computed by evaluating the minimum as in equation (3.2).
The number of terms can be quadratic in the number of layers, but in our application and
for our choice of cost functions the average number of terms is less than five. This is why
this approach is very fast in practice despite its slow worst-case runtime.

Section 6.2 provides experimental results that show the effects of different future cost
functions.

3.3.3 Possible Improvements

The future costs discussed in the previous sections can be improved by considering detours
that are necessary because of the routing area. An approach that works for certain routing
areas composed of few rectangles is described in Section 2.6 of [Henke, 2016]. The approach
works with a three-dimensional Hanan grid that is derived from some of the corners of the
routing area and requires precomputing the distances between the nodes of the Hanan
grid.

Recall that the distance based cost function used by BonnRouteDetailed has fixed cost per
unit for each pair of layer and dimension. However, it might make sense to let this cost
depend on the location in the routing area for various reasons:

• In timing-critical nets, lower layers should be expensive near the electrical source and
cheaper near the electrical sinks. The reason is that lower layers have thinner wires
with higher electrical resistance that have a large impact on timing near the electri-
cal source. Near the sinks the additional resistance is less important and electrical
capacitance is the most important factor.



42 CHAPTER 3. EFFICIENT PATH SEARCH

• Congested parts of the routing area should be used as efficiently as possible. Making
them more expensive than other parts could help to achieve this.

• Similarly, parts of the routing area that were added only for local track changes, as
shown in Figure 3.5 on page 28, should be more expensive, since global routing did
not account for any usage of the net on these layers. That might lead to detailed
routings that are more similar to the global routing solution.

If such area-dependent base cost functions were used in BonnRouteDetailed it would make
sense to consider them in the future costs. This could probably be incorporated into a
Hanan grid based approach.

An alternative approach is the rectangle-labeling approach of [Peyer et al., 2009]. The
algorithm is a generalization of Dijkstra’s algorithm that propagates cost functions on
rectangles instead of individual nodes (or intervals). Such an approach could handle both
routing areas and area-dependent costs in a very natural way. Moreover, it could probably
be adapted to provide future costs, as they are required for the efficient Steiner tree search
described in Chapter 5. While the approach required too much preprocessing time to be
used in BonnRouteDetailed in the past, we believe that it is probably possible to make a
similar approach practical.

3.4 Working on Implicitly Given Routing Graphs

In BonnRouteDetailed the routing graph used in the path search is described by a routing
area A and two oracle functions: the track oracle and the checking oracle. The track oracle
provides a track graph GT , which is restricted to GAT by the routing area. The checking
oracle provides the information which edges of GAT are usable in the context of the current
path search. The following pages introduce the oracle functions and explain how they are
used in the path search.

Definition 3.21 (track oracle). A track oracle T for a set of tracks T is a function T :
{[x1, x2]× [y1, y2]× {z}|x1, x2, y1, y2 ∈ Z, z ∈ Z} → 2T that returns the tracks intersecting
a rectangle r, i.e. T (r) = {t ∈ T |t ∩ r 6= ∅}.

Section 3.5 sketches how the track oracle is implemented in BonnRouteDetailed. Using
the track oracle efficiently requires preprocessing. At the beginning of the path search
we partition the bounding box of the routing area into regions with uniform track struc-
ture.

Definition 3.22 (grid region partition, region). Let A = ∪i∈{1,...,n}ai be a routing area
with minimum and maximum layer zmin, zmax and let T be a set of tracks. A candidate grid
region partition of (A, T ) is a pair of ordered sets of integers ((x1, . . . , xk), (y1, . . . , yl)) with
x1 < · · · < xk, y1 < · · · < yl. A grid region or region of a candidate grid region partition
is a rectangle [xi, xi+1 − 1] × [yj , yj+1 − 1] × {z} for some i ∈ {1, . . . , k}, j ∈ {1, . . . , l},
and z ∈ {zmin, . . . , zmax}. We call a candidate grid region partition a grid region partition



3.4. WORKING ON IMPLICITLY GIVEN ROUTING GRAPHS 43

if it has the following properties:

1. The regions partition the integer points of the bounding box of the routing area
BoundingBox(A), i.e. BoundingBox(A)∩Z3 = {x1, . . . , xk − 1}× {y1, . . . , yl − 1}×
{zmin, . . . , zmax}.

2. Regions do not cross or strictly contain rectangles of the routing area, i.e. for every
region r and every a ∈ {a1, . . . , an} we have either a ∩ r = ∅ or a ∩ r = r.

3. Tracks do not stop in the middle of regions contained in the routing area, i.e. for
every region r = Ix× Iy ×{z}, and every track t ∈ T we have either t∩ r ∩A = ∅ or

t ∩ r =

{
Ix × {c} × {z}, if z is horizontal
{c} × Iy × {z}, if z is vertical

for some c ∈ Z.

Note that adding coordinates to a grid region partition gives us another grid region partition
if the minimum and maximum coordinates of the sets remain unchanged.

Property 1 ensures that every integral point of the routing area is contained in exactly one
grid region. In practice, the routing area provides more information than in the simplified
version described here. For example, different rectangles for the routing area may allow
different wire and via models. Property 2 ensures that this data is uniform within each
region. Property 3 enables efficient indexing of the nodes within each region.

We compute a grid region partition with Algorithm 5. A grid region partition computed
by the algorithm is illustrated in Figure 3.11.

Algorithm 5 ComputeGridRegionPartition

Input: A routing area A = ∪ni=1ai and a set of tracks T given by a track oracle T .
Output: A grid region partition of (A, T ).

1: X ← ∅
2: Y ← ∅
3: for a = [xa1, x

a
2]× [ya1 , y

a
2 ]× {z} ∈ {a1, . . . , an} do

4: for t ∈ T (a) do . call track oracle
5: [xt1, x

t
2]× [yt1, y

t
2]× {z} ← t ∩ a

6: if PrefDim(z) =↔ then
7: X ← X∪̇{xt1, xt2}
8: else
9: Y ← Y ∪̇{yt1, yt2}

10: X ← X∪̇{xa1, xa2}
11: Y ← Y ∪̇{ya1 , ya2}
12: sort X and Y and remove duplicates to obtain (x1, . . . , xk) and (y1, . . . , yl)
13: return ((x1, . . . , xk−1, xk + 1), (y1, . . . , yl−1, yl + 1))



44 CHAPTER 3. EFFICIENT PATH SEARCH

x1

x2

x3
x4

y1

y2

y3

x1

x2

x3
x4

y1

y2

y3

x1

x2

x3
x4

y1

y2

y3

Figure 3.11: The grid region partition ((x1, x2, x3, x4), (y1, y2, y3)) computed by Algo-
rithm 5 for the routing area from Figure 3.5, consisting of the cyan and orange rectangles,
and the tracks drawn in gray. Note that the coordinate x2 is inserted because of the change
in track structure on the middle layer.



3.4. WORKING ON IMPLICITLY GIVEN ROUTING GRAPHS 45

Lemma 3.23. Algorithm 5 computes a grid region partition of (A, T ) in time O((|A| +
|T |) log(|A|+ |T |) + β), where O(β) is the runtime of the track oracle when it is called for
each rectangle of the routing area.

Proof. The result is a candidate grid region partition because the coordinates are sorted
and duplicates are removed in line 12.

Property 1:
In suffices to show that BoundingBox(A) = [x1, xk − 1]× [y1, yl − 1]× {zmin, . . . , zmax}.
After line 10 we have BoundingBox(A) = [x1, xk] × [y1, yl] × {zmin, . . . , zmax} because of
line 10 and 11 and because line 5 ensures that the tracks have no effect on the minimum
and maximum coordinates.

Property 2:
Let a ∈ {a1, . . . , an} and let r = [x, x′] × [y, y′] × {z} be a rectangle where x, x′ ∈ X are
consecutive coordinates of X, y, y′ ∈ Y are consecutive coordinates of Y , and a ∩ r 6= ∅.
Since minimum and maximum x- / y-coordinates of a are contained in X / Y because of
line 10 and 11 we have r ⊆ a. Note that r is not necessarily a region, but that every region
is contained in an r of this type and that this implies that property 2 holds.

Property 3:
Let r = Ix × Iy × {z} be a region on a layer z ∈ Z. If A ∩ r = ∅ we are done. Otherwise
let a ∈ {a1, . . . , an} s.t. r ⊆ a and let t be a track such that t ∩ r 6= ∅. Then line 7 and 9
imply that t ∩ r runs over the whole length or width of the region, i.e.

t ∩ r =

{
Ix × {c} × {z}, if z is horizontal
{c} × Iy × {z}, if z is vertical,

where c is the coordinate in non-preferred dimension on layer z of t.

The runtime bound holds because X and Y each contain at most |A|+ |T | numbers.

Note that any other grid region partition (X ′, Y ′) must be a refinement of the result (X,Y )
of Algorithm 5, i.e. X ⊆ X ′, Y ⊆ Y ′.

During the path search we store node identifiers which store the region of a node and local
indices.

Definition 3.24 (node identifier). Let GT be a track graph, let (X,Y ) be a grid region
partition, and let r be a region. Further let {x1, . . . , xk} = {x|∃y, z : (x, y, z) ∈ V (GT )∩ r}
and {y1, . . . , yl} = {y|∃x, z : (x, y, z) ∈ V (GT ) ∩ r} with x1 < · · · < xk and y1 < · · · < yl.
For a node (xi, yj , z) ∈ V (GT ) we define its node identifier by

NodeId((xi, yj , z)) :=

{
(r, i, j), if z is horizontal
(r, j, i), if z is vertical.



46 CHAPTER 3. EFFICIENT PATH SEARCH

The location of a node identifier (r, p, o) of a node in region r on layer z is

Location((r, p, o)) :=

{
(xp, yo, z), if z is horizontal
(xo, yp, z), if z is vertical.

We now describe the data structures we use for organizing grid regions. After it is initialized
at the beginning of the path search it enables efficient queries for node identifiers, neighbors,
and locations of nodes.

Lemma 3.25 (grid region data structure). Let A be a routing area, let T be a set of tracks
given by a track oracle, let GAT be the associated track graph when restricted to A, and let
(X,Y ) be a grid region partition of (A, T ). There is a data structure that can be initialized
in O(β+TR log(TR) + |R| log|R|) time, where O(β) is the runtime of the track oracle when
it is called for each rectangle of A, R is the set of grid regions that are contained in the
routing area, and TR =

∑
r∈R|{t ∈ T |t∩ r 6= ∅}|. After the initialization the data structure

allows the following queries:

1. Given a node v ∈ V (GAT ) in the routing area compute its node identifier NodeId(v)
in O(log|R|+ log TR) time.

2. Given a node identifier id compute its location Location(id) in O(1) time.

3. Given a node identifier id and a direction d ∈ D compute the node identifier of the
next neighbor of Location(id) in direction d ∈ D in GAT or decide that no such node
exists. This operation can be performed in O(1) time. We refer to the id of this
neighbor by NeighborId(id, d) and set it to an invalid identifier if no such neighbor
exists.

Proof. We store the grid regions that are contained in the routing area in an array of
balanced search trees, called GridRegion. The regions on layer z ∈ Z are stored in
GridRegion[z] and the key of a region [x1, x2 − 1] × [y1, y2 − 1] × {z} is its pair of in-
dices in (X,Y ), i.e. (|{x ∈ X|x ≤ x1}|, |{y ∈ Y |y ≤ y1}|). To initialize GridRegion
we traverse each rectangle of the routing area, compute the indices of the intersect-
ing regions and add them to the corresponding search tree. This initialization takes
O(|R|(log|X|+ log|Y |)) = O(|R| log|R|) time, since each region is initialized at most once.
Whenever we refer to a specific region r ∈ R in the future we mean the instance stored in
GridRegion.

Each grid region r ∈ R on layer z stores the following data:

• Sorted arrays PrefCoor and OrthoCoor storing the coordinates of nodes in the region
r, i.e. for each node identifier (r, p, o) we have

Location((r, p, o)) =

{
(PrefCoor[p],OrthoCoor[o], z) if z is horizontal
(OrthoCoor[o],PrefCoor[p], z) if z is vertical.

This allows us to process queries for the location of a node identifier, as in 2., in O(1)
time.



3.4. WORKING ON IMPLICITLY GIVEN ROUTING GRAPHS 47

• An array NextRegion of references to grid regions. For d ∈ D the entry NextRegion[d]
is a reference to its neighboring region in direction d, if such a neighbor exists in R.
Otherwise we set NextRegion[d] = ∅. There is one exception: If the neighbor r′ is in
R but V (GAT ) ∩ r′ = ∅ we let NextRegion[d] point to the neighbor of r′ in direction
d. This process is iterated until the next region contains a node or there is no such
neighbor in R.

• Two-dimensional arrays PrefCoorMap and OrthoCoorMap allowing efficient compu-
tation of indices of neighbors in the next region in a direction. More precisely, the
following holds for each node identifier (r, p, o):

– For d ∈ {←,→, ↓, ↑} the neighbor in GAT in direction d has node identifier
(NextRegion[d],PrefCoorMap[d][p],OrthoCoorMap[d][o]).

– Similarly, for d ∈ {↙,↗} the node identifier of the neighbor in GT in direction
d is (NextRegion[d],OrthoCoorMap[d][o],PrefCoorMap[d][p]).

If there is no such neighbor then PrefCoor[d][p] = OrthoCoor[d][o] = −1. This data
allows us to process queries for neighbors, as in 3., in O(1) time.

To initialize this data we first initialize NextRegion with the neighbors in R or ∅ if there is
no initialized neighbor. This requires O(|R| log|R|) time. Then we initialize the PrefCoor
array for all regions by traversing the rectangles in the routing area, querying their tracks
using the track oracle, and adding them to all regions they intersect. This takes O(β +
TR log|R|) time. This allows us to initialize OrthoCoor for each region in R by taking the
union of the PrefCoor arrays of NextRegion[↗] and NextRegion[↙]. Doing this for all
regions requires O(TR + |R|) time. This yields the information whether regions are empty.
We discard empty regions and update NextRegion accordingly in O(|R|) time. Finally,
we sort PrefCoor and OrthoCoor and initialize PrefCoorMap and OrthoCoorMap. It is
straightforward to do this in O(TR log TR) time.

The runtime for initialization of GridRegion and the data for all regions in R is

O(|R| log|R|+ |R| log|R|+ β + TR log|R|+ TR log TR)

= O(β + TR log TR + |R| log|R|),

as required.

To determine the node identifier of a node (x, y, z) ∈ V (GAT ), as in 1., we do binary search
for x in X and for y in Y to determine the indices of the grid region containing it. Querying
GridRegion[z] allows us to find the region r containing v in O(log|X|+log|Y |) = O(log|R|)
time. We use binary search in the sets of coordinates stored in r to determine the remaining
part of the node identifier. This can be done in O(log TR) time.

During the path search additional data is stored with the node identifiers. Before describing
how this data is stored, we introduce the checking oracle. It specifies which edges of GAT
are usable in the context of the current path search.



48 CHAPTER 3. EFFICIENT PATH SEARCH

Definition 3.26 (checking oracle). A checking oracle for a routing graph G is a pair
ψ = (ψleg, ψint), where ψleg : V (G) → 2{→,↑,↗} and ψint : V (G) → {vw|v, w ∈ V (G)} are
functions with the following properties:

• ψleg(v) = {d ∈ {→, ↑,↗}|there is a neighbor w ∈ Γ(v) in direction d of v}

• ψint(v) is a point or a one-dimensional rectangle that runs in preferred dimension of
its layer.

• We have v ∈ ψint(v) and ψleg(v) = ψleg(w) for all w ∈ ψint(v) ∩ V (G).

The oracle ψleg provides the information which edges in positive dimension are legal. The
purpose of ψint is to reduce the number of oracle calls: A node w ∈ ψint(v) can use the
same checking data as v. This is crucial because the checking oracle can be called billions
of times and is very runtime-critical.

The description here is simplified. In BonnRouteDetailed the checking oracle gets a set of
wire and via models as input and returns which of them can be used for the relevant edges.
It also returns whether using the edge with a model requires ripping out parts of wirings
of other nets. Edges that require using an undesirable wire or via model or ripup get a
higher cost. To simplify the presentation we assume that the edge costs already account
for this and that the checking data is binary. Section 3.5 sketches how the checking oracle
is implemented in BonnRouteDetailed.

During the search, additional data, such as checking data and labels, needs to be stored
for some node identifiers. For this purpose we store the following data at each grid re-
gion r:

• A one-dimensional array GridNoder, storing all data on initialized nodes within r.

• A two-dimensional array StorageLocationr such that for a node identifier (r, p, o) we
have either StorageLocationr[o][p] = −1, if the node was not initialized or the data
for the identifier is GridNoder(StorageLocationr[o][p]).

This allows us to access the data Data(r, p, o) := GridNoder[StorageLocationr[o][p]] asso-
ciated with an initialized node identifier (r, p, o) in O(1) time.

Moreover, each grid region r stores the checking data of the checking queries done in that
region in a member CheckingDatar. Note that checking data can be reused for other nodes
of the same region if they are in the interval returned by ψint. In the simplified version
described here, the checking data could also be reused across grid regions. In practice this
is not always possible, because some data, e.g. the set of allowed wire and via models
and the set of usable tracks, is passed to the checking oracle. Within a region this data is
constant, but it can vary across regions.

During the path search we call Algorithm 6 to ensure that all required data for a node is
initialized. If the node is not initialized yet, the algorithm initializes the checking data and
indicates that the node is not a target and that it does not have any label yet. Checking
data is reused if possible. We note that the initialization is simplified. In practice we also



3.4. WORKING ON IMPLICITLY GIVEN ROUTING GRAPHS 49

initialize data such as future costs and node costs and the checking data is much more
complicated.

Algorithm 6 EnsureInitialized(id, ψ)

Input: A node identifier id = (r, p, o) and a checking oracle ψ = (ψleg, ψint).
Output: Ensure that basic data on id is initialized.

1: if StorageLocationr[o][p] = −1 then
2: v ← Location(id)
3: if ∃(leg, I) ∈ CheckingDatar[o] with v ∈ I then
4: data.legality ← leg
5: else
6: data.legality ← ψleg(v)
7: add (ψleg(v), ψint(v)) to CheckingDatar[o]

8: data.label ← ∅
9: data.target ← false

10: StorageLocationr[o][p]← GridNoder.push(data) . returns index of new element

Lemma 3.27. Algorithm 6 initializes the checking data correctly. Calling EnsureInitialized
n times for k different nodes requires O(n+k(C+log TR)) time, where TR is the maximum
number of tracks intersecting a grid region and O(C) is the runtime of the checking oracle.

Proof. The runtime of all steps except for the queries and updates of CheckingDatar[o] in
line 3 and line 7 is O(n+ kC).

It remains to show that the queries in line 3 and the updates in line 7 can be done in
O(k log TR) time if the checking data is readily available in line 7. We store the checking
data for each non-preferred coordinate in a balanced search tree B. The key is the minimum
coordinate of the stored valid interval. We ensure that all stored intervals are disjoint and
that each valid interval contains a grid node. This makes sure that the number of intervals
is at most 2TR. When a new interval is added in line 7 we merge it with all intervals it
intersects and remove the intersected intervals from B. Note that in this case the legality
data of all intersecting intervals must be identical. Inserting an interval that triggers the
removal of l intervals takes O((l + 1) log TR) time. Since the number of intervals that can
be inserted and removed is k the total runtime is O(k log TR).

In practice there is only a small number of checking calls for each track in a grid region.
Thus we use an array instead of a balanced search tree and simply traverse all elements in
line 3.

Algorithm 7 is a version of Dijkstra’s algorithm with future costs that runs on an implicitly
given routing graph GA. At the beginning, the algorithm computes a grid region partition
and initializes the grid region data structure from Lemma 3.25. Then it initializes all
source and target nodes using EnsureInitialized and creates a label for each source node.
These labels are stored in a priority queue Q. Each iteration of the main loop labels a node



50 CHAPTER 3. EFFICIENT PATH SEARCH

v ∈ V (GAT ) permanently and removes its label from Q. The grid region data structure and
the checking oracle are used to compute the node identifiers of all neighbors of v (and we
ensure that they are initialized using EnsureInitialized). If a neighbor v′ has no label or
the path through v is shorter than the best path found so far, its label and Q are updated
accordingly. Once a target becomes permanently labeled a shortest S-T -path has been
determined and can be found by backtracking. If no target is labeled permanently during
the algorithm there is no S-T -path.

Under some mild assumptions the algorithm has the same theoretical runtime as Algo-
rithm 3 plus the runtime required by the track and the checking oracle. One of its benefits
is that it initializes a node only if it is a source or target or if it is adjacent to a perma-
nently labeled node in the track graph GAT . This can reduce runtime and memory usage,
since most path searches with good future costs label only a small fraction of the nodes.
Moreover, the grid region data structure allows us to handle complex, non-uniform track
structures.

Lemma 3.28. Algorithm 7 works correctly and can be implemented to run in time

O(β + n(log n+ C + F )),

where n = |V (GA)| is the number of nodes, O(β) is the runtime of the track oracle when
called for each rectangle of the routing area, O(C) is the runtime of the checking oracle, and
O(F ) is the runtime of the future cost oracle. This runtime holds under the assumption
that the number of rectangles of the routing area, the number of grid regions in the routing
area, and TR =

∑
r∈R|{t ∈ T |t ∩ r 6= ∅}| are all in O(n).

Proof. Line 1 and 2 compute the grid region partition and initialize the grid region data
structure. By Lemma 3.23 and Lemma 3.25 this can be done in O(β+n log n) time. Node
identifiers for locations, locations of node identifiers, and neighbors of nodes are computed
O(n) times which requires O(n log n) time by Lemma 3.25. EnsureInitialized is called
O(n) times for O(n) different nodes. By Lemma 3.27 this requires O(n(C + log n)) time
in total. The algorithm performs O(n) insert and decrease key operations on Q, which
takes O(n log n) time, if Q is implemented with a binary heap. Computing the future costs
requires O(nF ) time. Finally, the backtracking in line 17 can be done in O(n) time, since
we store the predecessor ids and getting the id of the predecessor, its label, and its location
takes O(1) time.

Correctness follows from Corollary 3.7, the correctness of Dijkstra’s algorithm with future
costs.

Note that storing the node identifier of the predecessor in each label is not necessary. The
predecessor of a label can be found by enumerating all neighbors and checking whether the
label could have been derived from their label. This is straightforward, but can become
very complicated and error-prone when the algorithm is extended to avoid design rule
violations as in Chapter 4. We therefore store the node identifier of the predecessor in each
label.



3.4. WORKING ON IMPLICITLY GIVEN ROUTING GRAPHS 51

Algorithm 7 Simplified Path Search Algorithm

Input: A routing graph GA given by a checking oracle ψ, a track oracle T , and a routing
area A. Edge costs cE : E(GA) → R≥0, node costs cV : V (GA) → R≥0, a future cost
function f , and sets of source and target nodes S, T ⊆ V (GA).

Output: A shortest S-T -path or the information that no such path exists.

1: (X,Y )← ComputeGridRegionPartition(A, T )
2: initialize the grid region data structure of Lemma 3.25 with A, T , and (X,Y )
3: Q← empty priority queue
4: for v ∈ S ∪ T do
5: id← NodeId(v)
6: EnsureInitialized(id, ψ)
7: if v ∈ S then
8: Data(id).label ← (id, ∅, cV (v) + f(v))
9: Q.insert(Data(id).label)

10: if v ∈ T then
11: Data(id).target ← true
12: while Q is not empty do
13: (id, pred , c)← Q.top
14: Q.pop
15: v ← Location(id)
16: if Data(id).target then
17: return . backtracking from Data(id).label yields a shortest path
18: for d ∈ D do
19: id′ ← NeighborId(id, d)
20: if id′ is valid then
21: EnsureInitialized(id′, ψ)
22: v′ ← Location(id′)
23: if Data(id).legality and Data(id′).legality indicate that {v, v′} is legal then
24: c′ ← c+ cfE(v, w) + cV (v′)
25: if Data(id′).label = ∅ then
26: Data(id′).label ← (id′, id, c′)
27: Q.insert(Data(id′).label)
28: else if cost of Data(id′).label > c′ then
29: Data(id′).label ← (id′, id, c′)
30: adjust Q for the decreased key of Data(id′).label

31: return No S-T -path exists.



52 CHAPTER 3. EFFICIENT PATH SEARCH

Our implementation in BonnRouteDetailed uses additional data structures and speed-up
techniques to reduce memory usage and to speed up Algorithm 7.

We list some examples:

• We initialize certain data of a region r when the first node in the region is initialized,
for example the array StorageLocationr. Having very large regions makes this opti-
mization less effective. Therefore, if the gap between two adjacent x-coordinates xi
and xi+1 is larger than a cutoff value d∗, we introduce bxi+1−xi−1

d∗ c additional coordi-
nates spread uniformly between xi and xi+1. We do the same for the y-coordinates.
Since this does not change the minimum or maximum coordinates we get another
grid region partition.

• Labels are stored in a data structure called label manager that can perform the
following operations in O(1) amortized time:

– CreateNonPermanentLabel(label) stores the label and returns its index.

– ConvertToPermanentLabel(i) compresses the non-permanent label associated
with index i into a permanent label, which stores only the data needed for
backtracking, i.e the node identifier of the current node and that of the pre-
decessor. The operation returns the index of the new permanent label and
invalidates index i. The index ranges used for permanent and non-permanent
nodes do not overlap.

– GetNonPermanentLabel(i) returns a reference to the label associated with index
i. The index must have been returned by CreateNonPermanentLabel more often
than it was invalidated by ConvertToPermanentLabel.

– GetPermanentLabel(i) returns a reference to the label associated with index i.
The index must have been returned by a call of ConvertToPermanentLabel.

– IsPermanentLabel(i) returns whether an index i is associated with a permanent
label or with a non-permanent label.

– InvalidLabelIndex returns an invalid index that is never associated with any
permanent or non-permanent label.

When the data for a node identifier id is initialized, its index is set to the index
returned by InvalidLabelIndex. Once the first label l on id is created, we call
CreateNonPermanentLabel(l) and store the returned index i. After id is perma-
nently labeled, i.e. it is selected in the main loop and the label has been propagated
to the neighbors, we call ConvertToPermanentLabel(i) and store the returned index.
Implementing the label manager is straightforward.

Compressing permanent labels saves memory, since it suffices to store the predecessor
and id in the permanent label, i.e. storing the cost c is no longer necessary. In
practice we need to store additional data for non-permanent labels that can also
be discarded. This is very useful since on average the maximum number of labels
that are unprocessed at any point in time is approximately 5-25% of the number



3.5. TRACK ORACLE AND CHECKING ORACLE 53

of permanent labels at the end of the search. Storing a label index also has the
advantage that we can check whether a node is already permanently labeled in O(1)
time. Once a node is permanently labeled no new labels for it have to be considered.

• Typically, most tracks are not usable with the wire models that are relevant in the
current path search. We ignore these tracks and adapt checking oracle and track
oracle accordingly. This can reduce the number of nodes and edges in the graph
considerably. We note that this changes the locations where jogs can be placed and
thus alters the instance slightly.

3.5 Track Oracle and Checking Oracle

This section provides more details on the track oracle and the checking oracle and their
implementation in BonnRouteDetailed. The oracles have been introduced in Section 3.4
(see Definition 3.21 on page 42 and Definition 3.26 on page 48).

In BonnRouteDetailed most tracks are global tracks that span the entire length or width
of the chip. These tracks are stored using so-called track patterns.

A track pattern is a triple t = (z, s, (d1, . . . , dk)), where z ∈ Z is a layer, s ∈ Z is an integer,
and d1, . . . , dk ∈ N>0 are positive integers. Its set of track coordinates is

Tt :=

{
s+ n

(
k∑
i=1

di

)
+

j∑
i=1

di|n ∈ Z and j ∈ {0, . . . , k − 1}

}
.

If z is horizontal there is a track spanning the entire width of the chip at each y-coordinate
in Tt that intersects the chip area. Similarly, we have vertical tracks spanning the entire
height of the chips if z is vertical.

Each layer stores the track patterns that are usable for each wire model. Note that the
tracks intersecting a rectangle can be computed efficiently using the regular structure of
the tracks. When a path search is started we collect the track patterns of all wire models
that are usable in the search and use them as part of the track oracle.

There are additional non-global tracks that may be needed in the context of the current
search. These tracks occur in the context of two special routing scenarios in which parts
of the global wiring already satisfy the design rules. First, BonnRouteDetailed may be
called after the locations of the global wires have been optimized by a track assignment
which tries to avoid design rule violations while optimizing other objectives. Second,
BonnRouteDetailed may be called on a fully detailed routed design that was altered slightly,
e.g. by moving a small subset of the pins. This scenario is called engineering change
orders (ECO) routing. In both scenarios BonnRouteDetailed should keep most of this
legal global wiring, even if it is not placed on the global tracks. When routing a net we
add additional tracks for the legal global wires that are relevant for the current path search
and consider them in the track oracle. For more information on these routing scenarios
and how BonnRouteDetailed handles them we refer to [Rabenstein, 2019]. In the future



54 CHAPTER 3. EFFICIENT PATH SEARCH

BonnRouteDetailed could also add local tracks to make it easier to access pins that cannot
be accessed legally using the global tracks.

The checking oracle is implemented by two data structures: the detailed grid and the fast
grid.

The detailed grid stores all routing objects, i.e. blockages, wirings of nets, and pins. It
supports three operations:

1. insert a shape or stick

2. remove a shape or stick

3. query all shapes and sticks intersecting a rectangle

At the beginning of BonnRouteDetailed the detailed grid is initialized with all routing
objects that are given in the input and during BonnRouteDetailed it is always kept up-to-
date using operations 1 and 2.

The detailed grid partitions each layer z into rectangular subgrids. Each subgrid is sub-
divided into stripes that span the entire subgrid in preferred dimension but are narrow in
non-preferred dimension. Shapes and sticks are stored in each stripe they intersect. See
Figure 3.12 for an illustration. For more details on the detailed grid see [Schulte, 2012;
Klewinghaus, 2020].

Figure 3.12: Three subgrids, whose borders are drawn as red lines on a horizontal layer.
Each subgrid is partitioned into stripes. The borders of the stripes are drawn as dashed and
non-dashed red lines. Each shape and each stick is stored in all stripes that it intersects. We
note that the shapes associated with a stick are not stored in the detailed grid. Typically,
subgrids and stripes are much larger compared to the shapes than in this example.

The detailed grid can be used to check whether a non-via edge e can be used with a certain
wire model m by the following operations:

• Compute the shape [x1, x2]× [y1, y2]× {z} = e+m resulting from using e with m.

• Compute an influence area RI = [x1−dz, x2 +dz]× [y1−dz, y2 +dz]×{z} such that
no shape or stick not intersecting RI can have a conflict with e+m.



3.6. REPLACING THE ALGORITHMIC CORE OF BONNROUTEDETAILED 55

• Query all relevant shapes and sticks intersecting RI and check them against the
shape.

The last step ignores shapes that should be ignored for the current path search, e.g. pins
or wires that may be accessed or are tentatively removed in the current ripup and reroute
sequence. Similarly, it may check additional shapes that were tentatively added in ripup
and reroute. Moreover, additional constraints may be checked, e.g. arising from the chip
area or from protections (see Section 4.6 for more information on protections).

Via edges can be checked by checking all three associated shapes with a similar proce-
dure. Checking the via cut shape may require an influence area spanning multiple via
layers.

Processing all checking queries using the detailed grid would be too slow. For this reason
BonnRouteDetailed uses a fast grid that stores precomputed checking data and valid in-
tervals for all edges of the track graph for the most important wire and via models. Just
like the detailed grid the fast grid is organized by subgrids. Within each subgrid and on
each track, adjacent nodes whose edges in all three positive dimensions are identical (for all
relevant wire models and via models) are merged into intervals. The precomputed values
for these intervals are organized in a binary search tree. Just like the detailed grid, the
fast grid is always kept up-to-date.

For each path search an auxiliary data structure based on a quadtree is built. It provides
the information whether the fast grid can answer a query in the context of the current
search. For example, a query near a pin that the current search may need to access cannot
be answered since that pin might block edges that would otherwise be legal. If the fast
grid can be used, the interval tree is queried and the corresponding interval is returned (or
part of the interval). Otherwise, the query is forwarded to the detailed grid.

For more details on the fast grid we refer to [Müller, 2009; Klewinghaus, 2020].

In practice the checking oracle and its output are slightly more complicated: An edge can
be

• unconditionally usable,

• usable only if conflicts to modifiable / ignorable wiring are allowed, or

• unconditionally unusable.

Moreover, this data is provided for each wire and via model that is relevant for the current
path search. This data is used to determine whether the edge can be used and to determine
its cost.

3.6 Replacing the Algorithmic Core of BonnRouteDetailed

This section compares the new path search of BonnRouteDetailed presented in Chapter 3
and Chapter 4 of this thesis to the old path search which is based on [Hetzel, 1995, 1998] and
labels intervals instead of individual nodes. See page 24 for a brief description of interval



56 CHAPTER 3. EFFICIENT PATH SEARCH

labeling and [Hetzel, 1995, 1998; Humpola, 2009; Nohn, 2012; Gester, 2015; Ahrens et al.,
2015] for more details on the old path search. Because the old path search was deleted
several years ago, a consistent comparison is no longer possible, but we can still highlight
differences and discuss key statistics from the time when the old path search was replaced.
We note that while the old path search does not compare favorably to the new path search
it was used very successfully in BonnRouteDetailed and the IBM design flow for more than
two decades. It was tailored to older technologies for which the interval labeling was much
more effective and its disadvantages were much less important.

A key advantage of the new path search is that it supports more general cost functions.
The old path search requires that for every layer the cost for going one unit in preferred
dimension is one, since this must hold in every interval. In the new path search the cost
can depend on the layer. This is useful for example for avoiding long segments on layers
that are undesirable in the context of the current path search. Moreover, the new path
search supports node costs. In the old path search node costs were not supported since
nodes with non-zero node cost need their own interval. Instead, it supported interval costs
that need to be paid when entering an interval. Interval costs are less useful since the
length of intervals can vary and we may want to apply costs at individual locations rather
than for intervals. To partially mitigate this disadvantage, the old path search has to split
intervals into smaller intervals in certain cases, which makes it less efficient.

Replacing the old path search led to drastic improvements in routing quality, possibly due
to improved cost modeling: The number of vias reduced by 5%, the wire length by 1.15%,
and the number of scenic nets with detour of at least 25% compared to a Steiner tree
estimate and length at least 25µm was reduced by roughly one third.

Furthermore, the new path search is much simpler. Labeling intervals instead of nodes
complicates the underlying algorithm of the old path search. The multi-labeling (see
Section 4.5), which can respect many same-net rules in a correct-by-construction manner,
does not combine well with interval-based labeling: intervals had to be split further during
the path search and the overall algorithm and its implementation became very complicated.
Moreover, the implementation of the new path search is much simpler and easier to extend.
Most notably, the new path search was extended to allow both path searches and Steiner
tree searches, as discussed in Chapter 5. This would not have been possible with the old
path search.

As mentioned above, the old path search speeds up the search by labeling intervals instead
of individual nodes. Nevertheless, the new path search had approximately the same run-
time at the time when the old path search was replaced. Standard path searches became
slightly slower but multi-label path searches became faster. Back then the grid region
data structure from Section 3.4, which reduces the runtime of the new path search by
approximately one fourth, was not yet implemented.

The grid region data structure also allows the new path search to handle complex regional
track structures and to modify the routing graph locally, e.g. to simplify and improve pin
access. This would have required major changes with the old path search.



Chapter 4

Same-Net Rule Aware Path Search

This chapter continues the description of an efficient and flexible path search algorithm
that is the new algorithmic core of BonnRouteDetailed. This chapter focuses on the prob-
lem of computing paths that respect same-net rules. Section 4.1 introduces the problem,
mentions related work, and gives an overview of our framework for avoiding same-net vio-
lations. Section 4.2 shows that given a two-dimensional grid graph and nodes s, t it is NP-
complete to decide whether there is an s-t-path in which every maximal straight subpath
has length at least two. Hence, obeying even very simple rules is NP-hard. Nevertheless,
BonnRouteDetailed is very good at respecting same-net rules in practice: Section 4.3, Sec-
tion 4.4, Section 4.5, and Section 4.6 present the components of the same-net rule aware
path search framework and Section 4.7 describes how these components work together in
BonnRouteDetailed. Its most important component is the multi-labeling that allows us to
find edge progressions that satisfy same-net rules in a correct-by-construction manner. Our
multi-labeling is more general and more efficient than that of [Nohn, 2012; Gester, 2015;
Ahrens et al., 2015], which allows us to respect more same-net rules while being less restric-
tive. Section 6.3 presents experimental results demonstrating that using our framework
can reduce the number of design rule violations by a factor of approximately 443.

4.1 Obeying Same-Net Rules

In modern technologies, connecting components of nets by shortest paths in the routing
graph frequently leads to same-net errors, for example the one illustrated in Figure 4.1.
The violations illustrated in the figure occur very frequently especially if jogs are forbidden
on some wiring layers. Moreover, they often cannot or should not be fixed locally, since
moving the vias further apart requires changing the tracks of one of the wires and keeping
the same tracks requires at least two additional vias, which is undesirable. Thus, using a
post-processing to avoid violations is insufficient and we need to consider same-net rules
during the path search. Section 4.2 shows that finding paths respecting same-net rules is
NP-hard, even for very simple rules. Thus, we cannot hope for a polynomial time algorithm
guaranteeing that the same-net rules are satisfied.

57



58 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

Figure 4.1: Vias of the same net need to satisfy a set of minimum distance rules similar
to the diff-net rules for vias. These rules are usually violated if vias are used to switch to
the neighboring track, as in the figure.

Nevertheless, we need to solve the problem in practice. We propose to use our same-net
rule aware path search framework, consisting of four main components:

• The same-net checking can identify same-net errors and return their precise location
and error type. It is sketched in Section 4.3.

• Every path computed by the path search is handed to a post-processing routine, which
attempts to resolve same-net errors and other undesirable configurations. Section 4.4
provides some additional details. The post-processing of BonnRouteDetailed is an
extended version of the one described in [Sterin, 2015].

• The multi-labeling is a powerful framework that allows us to find edge progressions
that satisfy certain properties, specified by label systems. This allows us to satisfy
same-net rules in a correct-by-construction manner. The framework and the label
systems used in BonnRouteDetailed are described in Section 4.5. The multi-labeling
we present is an extended and improved version of the one described in [Nohn, 2012;
Ahrens et al., 2015; Gester, 2015].

• To avoid errors at the start and end of paths BonnRouteDetailed uses protections,
as sketched in Section 4.6.

Finally, Section 4.7 describes how these components work together in the same-net rule
aware path search framework. We present a framework for respecting same-net rules and
do not focus too much on individual rules, giving only very simple examples. There are
two main reasons: First, since BonnRouteDetailed is used in industry it must respect
dozens of different error-types and many of them need to be considered in all or most
of the four components. Presenting all details is not feasible. Second, some of the rules
are confidential. Section 6.3 provides experimental results and demonstrates that our



4.2. RESPECTING SAME-NET RULES IS NP-HARD 59

framework is effective at avoiding dozens of error-types on real-world instances.

In academia there are a few papers that consider same-net rule aware detailed routing but
most are limited to one or two simple rules.

An algorithm for computing shortest rectilinear edge progressions with minimum segment
lengths among rectilinear obstacles is proposed in [Maßberg and Nieberg, 2013]. It is used
in the pin access framework of [Nieberg, 2011] to compute legal pin access paths. [Chang
et al., 2013] propose an algorithm, called MANA, that uses dynamic programming to find
optimal paths that satisfy the minimum area rules and an end-of-line spacing constraint. In
contrast to [Maßberg and Nieberg, 2013] they allow paths consisting of two vias and a short
pref-wire, if the resulting metal component can be extended legally. A similar approach is
used by Dr. CU [Chen et al., 2019] to respect minimum area constraints. Dr. CU 2.0 [Li
et al., 2019] can respect a few additional rules. DRAPS [Gonçalves et al., 2019] proposes a
path search algorithm that can respect minimum area constraints and same-net via spacing
constraints and can handle multiple different via models on each via layer.

A different approach is used by RegularRoute [Zhang and Chu, 2011] and TritonRoute
[Kahng et al., 2018]. The idea of both approaches is to find a simple layout for each net,
decreasing the probability of same-net errors. In their main routing step they route layer
by layer from bottom to top. Each layer is partitioned into so-called panels, thin stripes
that have small width in non-preferred dimension and run across the entire layer. Each
panel is routed by computing candidate wires that form the nodes of a conflict graph.
There is an edge between two candidate wires if they are candidates realizing the same
connection or if they conflict with each other. RegularRoute solves the resulting instance of
the Maximum Weight Independent Set Problem heuristically, while TritionRoute
solves it optimally using an ILP-solver. Moreover, TritonRoute considers some simple
design rules when constructing the candidate wires.

Some papers discuss how to handle constraints imposed by special manufacturing tech-
niques. Triple Patterning is discussed e.g. in [Lin et al., 2012; Ma et al., 2012]. Self-aligned
double patterning is discussed e.g. in [Mirsaeedi et al., 2011; Gao and Pan, 2012; Xu et al.,
2015, 2016]. We note that while we also consider multiple patterning, which generalizes
triple patterning, we do not consider self-aligned double patterning.

4.2 Respecting Same-Net Rules is NP-Hard

This section shows that finding paths that obey same-net rules is NP-hard, even for very
simple rules. We consider the following problem:

Path with Minimum Segment Lengths Problem
Input: A two-dimensional grid graph G, source and target nodes s, t ∈ V (G), and

a number α > 0.
Task: Decide whether an s-t-path v1, P1, v2, . . . , vk, Pk, vk+1 exists, such that for

each i ∈ {1, . . . , k} the path Pi is straight and |E(Pi)| ≥ α.



60 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

This problem arises naturally when considering simple design rules and basic constraints.
A minimum segment length threshold can be derived from multiple same-net rules, e.g.
the Minimum Edge Length rule that specifies that the length of each edge of the polygonal
boundary must be no smaller than a threshold value. Forbidding cycles is also natural,
since the set of sticks connecting a net should form a Steiner tree.

We now prove that the problem is NP-complete.

Theorem 4.1. Path with Minimum Segment Lengths Problem is NP-complete,
even for α = 2.

Proof. Membership in NP is obvious.

We describe a polynomial reduction from a restricted version of the Planar 3Sat Prob-
lem [Lichtenstein, 1982], the Planar Cycle 3Sat Problem (see [Kratochvíl et al.,
1991], Section 4). An instance is a triple (X,Z, C), where X is the set of variables,
Z is a set of clauses over X, C is a directed cycle through the clauses, and the graph
G = (X ∪ Z, {(x, z) ∈ X × Z|x ∈ z ∨ ¬x ∈ z} ∪ E(C)) is planar. We assume that each
variable occurs in at most three clauses and exactly once negated. The problem remains
NP-complete under these assumptions (see Lemma 2.1 of [Fellows et al., 1995]).

Step 1: Embedding the graph into a two-dimensional grid :

We construct a modified graph G′ with node degrees at most three by splitting clause-
nodes which can have degree up to five. In order to make certain that the graph remains
planar, we compute a planar embedding and ensure that the embedding can be modified
locally.

For each clause z ∈ Z, we perform the following local replacement: Let x1, . . . , xk ∈ Γ(z)∩
X and z1, z2 ∈ Γ(z)\X be the neighbors of z. Without loss of generality assume that there
are faces F1 and F2 such that x1 and z1 are on the border of F1 and xk and z2 are on the
border of F2. We remove the node z and all adjacent edges and replace them by new clause-
nodes zx1 , . . . , zxk and edges {zx1 , x1}, . . . , {zxk , xk}, {z1, zx1}, {zx1 , zx2}, . . . , {zxk−1 , zxk},
{zxk , z2}. The choice of x1, z1, xk, and z2 ensures that the graph remains planar and
the blue and orange edges form a cycle through all clause-nodes. See Figure 4.2 for an
illustration.

x2

x1

x3

z1

z2

z

F1

F2

zx2 zx3

zx1

x2

x1

x3

z1

z2

Figure 4.2: The configuration on the left is replaced by the one on the right. Note that
the graph remains planar.



4.2. RESPECTING SAME-NET RULES IS NP-HARD 61

In the modified graph G′ each node has degree at most three, the graph is planar, and it
admits a cycle C′ through the clause-nodes. By [Liu et al., 1998] an embedding of G′ into
an (|V (G′)|+ |E(G′)|+ 1)× (|V (G′)|+ |E(G′)|+ 1) grid can be found in linear time, such
that edges are non-crossing paths. See Figure 4.3 for an illustration.

x1

x2 x3

x4

z11 z21 z12 z22

z33

z23
z13

z24

z14

Figure 4.3: Embedding of an example instance with clauses z1 = {x1,¬x2}, z2 = {x2, x3},
z3 = {¬x1, x2, x4}, and z4 = {¬x3,¬x4} (black edges) and a cycle through the clause-nodes
(blue and orange edges). Only the thick edges are in the graph.

Step 2: Modifying the instance:

We will modify the graph by replacing variable nodes and clause nodes by gadgets. The
path with minimum segment lengths of 2 will need to follow a path through all clause-
gadgets that is derived from C′. The instance will be designed such that for each clause the
path needs to make a detour from one of its clause-gadgets to the corresponding variable-
gadget and back again, before advancing to the first gadget of the next clause.

Therefore, we will double the paths between clause-gadgets and variable-gadgets. The
variable-gadgets will ensure that a variable cannot be used both negated and non-negated
simultaneously. We will also need two alternative paths between the gadgets belonging to
the same clause. Entering or leaving a clause-gadget through one of the paths indicates
that we already traversed a variable-gadget for the current clause, i.e. that it is already
satisfied. The other path has the opposite meaning. We now describe the modifications in
more detail.

The gadgets require additional space. Therefore, we add 17 additional grid lines between
adjacent ones and before the first and after the last one. Moreover, we clear the area with
l∞-distance at most 7 to any clause- or variable-node to fill it with gadgets later on. Note
that all resulting paths have minimum segment lengths of at least 4. See Figure 4.4 for an
illustration.



62 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

x1

x2 x3

x4

z11 z21 z12 z22

z33

z23 z13 z24 z14

Figure 4.4: Instance after adding grid lines and clearing space for gadgets. Only the thick
edges are in the graph.

Then we double the paths between clause-gadgets and variable-gadgets and the paths
between clause-gadgets belonging to the same clause. We do this in such a way that the
two paths run parallel to the original path with an l∞-distance of 1 and start and end at
the border of the areas we cleared for gadgets. We also modify the paths between clause-
gadgets from different clauses such that they start one unit before the original start node
in clockwise order and end one unit after the original end in clockwise order. We make all
these modifications in such a way that all paths keep minimum segments lengths of at least
2, no two paths intersect each other, and no path intersects the area we cleared for the
gadgets, except in their start- and endpoints. For the sake of brevity, we omit a detailed
description. Figure 4.5 provides a rough sketch how these modifications can be done. See
Figure 4.6 for an illustration of the resulting instance.



4.2. RESPECTING SAME-NET RULES IS NP-HARD 63

A1 A2

Figure 4.5: Illustration of the construction of the parallel paths. The original black path
P is replaced by the red and green paths. The l∞-ball B1

l∞
(P ) with radius 1 around P ,

is drawn in gray. The set of interior points of the new paths is ∂(B1
l∞

(P )) \ (A1 ∪ A2),
where A1 and A2 are the areas of the gadgets. This yields exactly two paths because the
segments have length ≥ 3 and non-intersecting segments have distance ≥ 3. Note that
this construction reduces the length of segments by at most two and thus the paths have
minimum segment lengths of at least two.

x1

x2 x3

x4

z11 z21 z12 z22

z33

z23 z13 z24 z14

Figure 4.6: Instance after adding grid lines, clearing space for gadgets, and modifying the
paths between the gadgets. Entering or leaving a clause-gadget with a green node indicates
that we already traversed a variable-gadget for the current clause, i.e. that it is satisfied
already. Red nodes have the opposite meaning. Only the thick edges are in the graph.



64 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

Step 2.1: Clause-gadgets:

A version of one of the gadgets in Figure 4.7 is used for each clause-node:

v1

v2

I¬SIS

O¬S

OS

v1

v2

I¬SIS

O¬SOS

v1

v2

IS

I¬S

O¬SOS

Figure 4.7: Clause-gadgets. The “inputs” of the gadget are IS , indicating that the clause
is satisfied already and I¬S , indicating that the clause is not satisfied yet. The “outputs”
OS and O¬S have analogous meaning. The nodes v1 and v2 will be connected to a variable-
gadget.

Each of the gadgets has the following properties if we require paths with minimum segment
lengths of 2:

1. There is an IS-OS-path and an I¬S-O¬S-path.

2. There is an I¬S-OS-path, if and only if we can pass through the variable-gadget to
get from v1 to v2.

3. There is no IS-O¬S-path.

4. IS comes directly after I¬S in clockwise order and OS comes directly before O¬S .

We position the gadget such that IS and I¬S lead to the previous clause-gadget in C′,
OS and O¬S to the next clause-gadget in C′, and v1 and v2 are connected through the
variable-gadget. A gadget for each situation can be derived from the ones in Figure 4.7 by
rotation and the following relabeling operation:

• swap the labels IS with O¬S and I¬S with OS

• recolor the nodes from red to green and vice versa.

Note that the properties 1-4 are preserved when rotating or relabeling.



4.2. RESPECTING SAME-NET RULES IS NP-HARD 65

Step 2.2: Variable-gadgets:

A version of the gadget in Figure 4.8 is used for each variable:

Figure 4.8: Variable-gadget. The gadget is oriented such that the green path points to
the clause using the variable in its negated form. Recall that we assumed exactly one of
the three appearances of each literal to be negated.

With minimum segment lengths of 2 any path through that gadget must use all edges of
one color but no edges of any other color. The gadget may be traversed more than once.
There are the following options:

1. using arbitrary many of the purple, cyan, and orange paths or

2. using the green path but no other path.

Therefore, we rotate the gadget such that the unique negated use corresponds to the part
containing the green path.

Step 2.3: Source and target :

We arbitrarily select an edge (zt, zs) ∈ E(C) of the cycle C through the clauses. This yields
a first clause zs and a last clause zt. We put the source s at I¬S of the first clause-gadget
corresponding to zs and the target t at OS of the last one corresponding to zt. Moreover,
we delete the direct s-t-path. See Figure 4.9 for an illustration of the final instance.

Step 3: Final analysis:

We claim that the resulting graph admits an s-t-path with minimum segment lengths
of 2 if and only if Z is satisfiable. Note that any such path must traverse all clause-
gadgets. Moreover, for any clause z ∈ Z the first clause-gadget corresponding to z is
entered through a red node and the last clause-gadget corresponding to z is left through
a green node. That means that we need to switch from a red node to a green one within



66 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

x1

x2 x3

x4

z1
1 z2

1 z1
2 z2

2

z3
3

z2
3 z1

3 z2
4 z1

4

s
t

Figure 4.9: Instance of the Path with Minimum Segment Lengths Problem for
the Planar Cycle 3Sat Problem-instance with clauses z1 = {x1,¬x2}, z2 = {x2, x3},
z3 = {¬x1, x2, x4} and z4 = {¬x3,¬x4}. Only the thick edges are in the graph.

one of the corresponding clause-gadgets. This requires visiting the corresponding variable-
gadget. The variable-gadgets ensure that a variable cannot be used in both its negated
and its non-negated form within the same solution.

Let P be such an s-t-path. We define a truth assignment by setting a variable to false if P
contains the green path of the corresponding variable-gadget. Otherwise it is set to true.
By the properties of the gadgets and the construction of the paths between the gadgets,
each clause contains a literal that is true.

Conversely, any satisfying truth assignment defines a set of literals that is set to true. We
pick one true literal for each clause arbitrarily and use the corresponding variable-gadget
to get from I¬S to OS for the corresponding clause-gadget. The path can be completed
by appropriate IS-OS-paths, I¬S-O¬S-paths, and paths connecting the clause-gadgets of
different clauses.

We note that the Path with Minimum Segment Lengths Problem is NP-complete



4.3. SAME-NET CHECKING 67

because we are interested in a path with minimum segment lengths. The problem of finding
an edge-progression with minimum segment lengths can be solved in O(|V (G)| log|V (G)|)
time. This is an easy corollary of the algorithm for finding rectilinear edge progres-
sions with minimum segment length among rectilinear obstacles of [Maßberg and Nieberg,
2013].

Corollary 4.2 ([Maßberg and Nieberg, 2013]). If we are interested in an edge progression
instead of a path in the Path with Minimum Segment Lengths Problem, the problem
can be solved in O(|V (G)| log|V (G)|) time.

We note without proof that Corollary 4.2 also follows from Theorem 4.8 on page 74.

4.3 Same-Net Checking

BonnRouteDetailed has an internal same-net checking that can check connected sets of
shapes and sticks for same-net errors and undesirable configurations, e.g. layer fuses, in-
troduced in Section 4.5 on page 80. It can, for example, check entire nets, paths, or
individual metal components. The same-net checking currently supports 18 different er-
ror classes. In addition to statistics on violations it returns a set of error-annotations,
each consisting of the type of the violation and an error-rectangle, specifying the precise
location.

In its initialization, the same-net checking computes the layer-wise connected metal com-
ponents and the vias connecting them. Moreover, it computes their polygonal boundary.
This takes O(n log n + p) time, where n is the number of sticks and shapes and p is the
number of edges in the boundary [Güting, 1984]. Once this data is computed most con-
straints can be checked by simple algorithms in near-linear time. For an example see
Figure 4.10.

αz

Figure 4.10: The minimum adjacent edge length rule, introduced in Section 2 on page 6
can be checked by considering each pair of adjacent edges of the polygonal boundary.
There is a violation if there is a pair {e, f} such that both edges have length less than the
threshold value αz. Its error-rectangle is the bounding box of e and f . Since the polygonal
boundary is available checking this rule requires O(p) time. In this example, there are two
violations involving the three short edges on the left. Both have the same error-rectangle,
that is hatched in red.

The same-net checking is an important part of BonnRouteDetailed and is used heavily in



68 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

the post-processing presented in Section 4.4, to control the multi-labeling as described in
Section 4.5.2, and to evaluate different solutions in the same-net rule aware path search
framework presented in Section 4.7.

The current same-net checking in BonnRouteDetailed was created in joint work with many
former and present members of the BonnRouteDetailed team, most notably Michael Gester,
Niko Klewinghaus, Stefan Rabenstein, Andrei Sterin, and Mirko Speth.

4.4 Post-Processing

The post-processing modifies paths found by the path search locally to reduce the number
of same-net errors. It uses the error-annotations returned by the same-net checking to
determine error types and precise error-locations and to check whether modified paths
are better. Currently, the post-processing of BonnRouteDetailed consists of twelve fixing
routines.

All of these routines make only very local changes to the path. Let P be a path consisting
of a set of sticks S. All but two routines do not modify the geometry of the sticks and
resolve violations only by modifying their corresponding shapes. This is done by changing
their wire and via models or by using so-called endstyles that allow us to enlarge the shapes
associated with a stick. Many routines use the same-net checking to evaluate the original
solution and various modified solutions, taking the modification that minimizes a weighted
error function. See Figure 4.11 for an illustration.

αz

αz

Figure 4.11: The minimum adjacent edge length violation from Figure 4.10 can be resolved
by extending the wire stick by the gray endstyle, as indicated on the top. Alternatively,
we can expand the pad of the via by using an endstyle, as indicated on the bottom.
Depending on other same-net rules none, one, or both of the new shapes may cause other
errors. Moreover, extending the metal area can lead to diff-net rule violations.

The post-processing of BonnRouteDetailed was developed in joint work with Andrei Sterin
and Niko Klewinghaus. For more details we refer to [Sterin, 2015].



4.5. MULTI-LABELING 69

4.5 Multi-Labeling

Multi-labeling uses label systems to impose additional constraints on edge progressions and
paths. It was introduced in [Nohn, 2012] and also presented in [Ahrens et al., 2015; Gester,
2015]. We present a generalized and more efficient version. Moreover, in Section 4.5.1, we
present the label systems currently used by BonnRouteDetailed, which are much more
efficient at avoiding same-net errors. While the previous works use up to eight different
label systems we have hundreds of label systems that are built on demand out of a few
building blocks. Some definitions and results in this section are similar to definitions and
results in [Ahrens et al., 2015; Gester, 2015].

Definition 4.3 (label system). A label system is a pair (L, ξ), where L is a finite set of
label types and ξ : L × Z × D → 2L×N>0×N≥0 is a label transition function that satisfies
the following property. For all l1, l2 ∈ L, z ∈ Z, and dir ∈ {→,←, ↑, ↓}

1. (l2, d, cξ) ∈ ξ(l1, z, dir) implies (l2, 1, 0) ∈ ξ(l2, z, dir).

The transition function ξ provides all transitions from a label type l1 ∈ L in a given
direction dir ∈ D and for a given layer z ∈ Z. A transition (l2, d, cξ) ∈ ξ(l1, z, dir) means
that when starting with label type l1 on layer z we can switch to label type l2 by going at
least d units in direction dir. On top of the edge and node costs we need to pay a transition
cost of cξ. The following definition formalizes which kinds of paths and edge progressions
are valid.

Definition 4.4 (multi-label progression, multi-label path). Let G be a routing graph,
let cV , cE be node and edge cost functions, and let L = (L, ξ) be a label system. A
multi-label s-t-progression for G and L is a pair (P, φ), where P is an edge progression
v1, P1, v2, . . . , vk, Pk, vk+1 such that

• v1 = s and vk+1 = t,

for each i ∈ {1, . . . , k}

• Pi is a straight vi-vi+1-path

• Dir(vi, vi+1) ∈ {↙,↗} implies |E(Pi)| = 1

and φ : {v1, . . . , vk+1} → L is a function assigning a label type to each node, such that for
every i ∈ {1, . . . , k} there is (φ(vi+1), d, cξ) ∈ ξ(φ(vi), z,Dir(vi, vi+1)) with ‖vi+1− vi‖ ≥ d.

The cost of (P, φ) is given by

cL(P ) := cE(P ) + cV (P )

+
∑

i∈{1,...,k}

min{cξ|(φ(vi+1), d, cξ) ∈ ξ(φ(vi), z,Dir(vi, vi+1)) and ‖vi+1 − vi‖ ≥ d},

where cE(P ) and cV (P ) denote the edge and node cost of the edge progression P and may
pay multiple times for edges or nodes if they are used more than once.



70 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

If P is a path we call (P, φ) a multi-label s-t-path.

An edge progression or path that can be extended to a multi-label path or multi-label pro-
gression is called a valid progression or valid path.

In a label system (L, ξ) the transition function ξ provides the transitions for a given label
type, layer, and direction. That allows us to have multiple transitions with different
required distance and different transition costs between the same label types, on the same
layer, and in the same direction. This can be very useful when designing label systems
that should avoid same-net errors if possible, but still find a path with errors if there is no
legal path. Moreover, it allows us to retrieve all transitions that are relevant for a pair of
node and label type efficiently by querying ξ with the appropriate values.

We note that [Nohn, 2012; Ahrens et al., 2015; Gester, 2015] store the transitions in a
4-dimensional matrix, indexed by the layer, both involved label types, and the direction.
Each entry stores the minimum required distance value and the transition cost. This does
not allow different transitions with different required distances and transition costs. We
also note that their definition of label systems requires a property similar to property 1 of
Definition 4.3 for all directions, including positive and negative z-direction. In that sense
our multi-labeling is more general.

Multi-Label Path Search Problem
Input: A path search instance (G, cE , cV , S, T ) and a label system L.
Task: Find a cost-minimal multi-label S-T -path with respect to L in G or decide

that no such path exists.

See Figure 4.12 and Figure 4.13 for an illustration. We call graphs as in Figure 4.12 tran-
sition graphs. We use them extensively in Section 4.5.1 to define label systems. Sometimes
we omit the last element cξ of an edge-label (Z,D, d, cξ), indicating that the transition cost
is zero.

We note that the label system does not permit any control over the label types used at start
and end. Section 4.5.1 provides a more general framework for controlling what happens
at source and target nodes in the section on the SourceRestriction and TargetRestriction
extension.

[Gester, 2015; Ahrens et al., 2015] showed that a version of the Multi-Label Path
Search Problem is NP-hard. The proof uses label systems with θ(|V (G)|) label types
and 2 layers. Most label systems used by BonnRouteDetailed have few label types and the
number of label types does not depend on the number of nodes in the graph. In practice,
the average number across all path searches is approximately 2. Therefore, we show the
following stronger result:

Theorem 4.5. The Multi-Label Path Search Problem is NP-hard even in two-
dimensional grid graphs and with two label types.



4.5. MULTI-LABELING 71

{→,←} {↑, ↓}(Z, {→,←}, 1, 0) (Z, {↑, ↓}, 1, 0)

(Z, {↑, ↓}, 2, 0)

(Z, {→,←}, 2, 0)

Figure 4.12: Transition graph of the label system L≥2 = (L, ξ) with L = {{→,←}, {↑, ↓}}.
An edge from label type l1 to label type l2 labeled as (Z,D, d, cξ) means (l2, d, cξ) ∈
ξ(l1, z, dir) for all z ∈ Z and dir ∈ D. In this example the transition function ξ is defined
by ξ({→,←}, z,→) = ξ({→,←}, z,←) = {({→,←}, 1, 0)}, ξ({↑, ↓}, z, ↑) = ξ({↑, ↓}, z, ↓
) = {({↑, ↓}, 1, 0)}, ξ({→,←}, z, ↑) = ξ({→,←}, z, ↓) = {({↑, ↓}, 2, 0)}, ξ({↑, ↓}, z,→) =
ξ({↑, ↓}, z,←) = {({→,←}, 2, 0)}, and ξ(l, z,↗) = ξ(l, z,↙) = ∅ for every z ∈ Z and
l ∈ L. The label system does not allow any vias.

s

t
Figure 4.13: Example of multi-label progressions and paths for the label system L≥2 from
Figure 4.12. The red path is a shortest valid s-t-path with respect to L≥2. The blue path is
a shortest valid s-t-path with respect to L≥2 if we may only start with label type {→,←}.
The green edges form a valid s-t-progression but not a path.



72 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

Proof. We show that Path with Minimum Segment Lengths Problem with α = 2
polynomially transforms to Multi-Label Path Search Problem in two-dimensional
grid graphs and with two label types.

Let G, s, and t be an instance of the Path with Minimum Segment Lengths Problem
with α = 2. We define four graphs G→, G←, G↑, and G↓ by

V (Gdir) = V (G)

E(Gdir) = E(G) \ {{s, v} ∈ E(G)|Dir(s, v) 6= dir

\ {{sdir, v} ∈ E(G)|{s, sdir} ∈ E(G),Dir(s, sdir) = dir,

dir 6∈ {Dir(v, sdir),Dir(sdir, v)}}

in which the edges to the neighbors of s that run in a different direction are removed and
edges that run orthogonal to dir are removed from the neighbor of s in direction dir (if
they exist). See Figure 4.14 for an illustration.

s

Figure 4.14: The edges marked with a cross are removed in G→ if they are in the grid
graph G. This forces any path from s in G→ to start with two edges running in direction
→. The graphs Gdir for dir ∈ {←, ↑, ↓} have an analogous property.

First assume that t is not a neighbor of s. We claim that the instance of the Path with
Minimum Segment Lengths Problem is solvable if and only if G→, G←, G↑, or G↓

admit a multi-label s-t-path with respect to L≥2, where L≥2 is the label system from
Figure 4.12.

Let dir ∈ {→,←, ↑, ↓} and let (P, φ) be a multi-label s-t-path in Gdir that minimizes the
number of straight paths k in P = v1, P1, v2, . . . , vk, Pk, vk+1. Then for i ∈ {2, . . . , k} we
have φ(vi) 6= φ(vi+1), implying |E(Pi)| ≥ 2. The construction of Gdir and {s, t} 6∈ E(G)
imply |E(P1)| ≥ 2. Thus P is a solution of the instance of the Path with Minimum
Segment Lengths Problem.

Conversely, given an s-t-path P = v1, P1, v2, . . . , vk, Pk, vk+1, where for i ∈ {1, . . . , k} the



4.5. MULTI-LABELING 73

path Pi is straight and |E(Pi)| ≥ 2 we define:

φ(v1) =

{
{←,→}, Dir(v1, v2) ∈ {↑, ↓}
{↑, ↓}, Dir(v1, v2) ∈ {←,→}

φ(vi+1) =

{
{←,→}, Dir(vi, vi+1) ∈ {←,→}
{↑, ↓}, Dir(vi, vi+1) ∈ {↑, ↓}.

(P, φ) is a multi-label s-t-path with respect to L in GDir(v1,v2), because going to label type
{←,→} and {↑, ↓} is always allowed in L≥2 when going at least 2 units in one of the
contained directions.

In the case that t is a neighbor of s the argument is the same, except that we have to
ignore the graph Gdir for dir = Dir(s, t).

Since the Multi-Label Path Search Problem is NP-hard we consider the Multi-
Label Progression Search Problem in which we search for a multi-label progression
instead of a multi-label path.

Multi-Label Progression Search Problem
Input: A path search instance (G, cE , cV , S, T ) and a label system L.
Task: Find a cost-minimal multi-label S-T -progression with respect to L in G or

decide that no such progression exists.

This problem can be solved in polynomial time by running Dijkstra’s algorithm on a
modified instance. In practice, edges and nodes that are traversed more than once often
lead to problems. Therefore, in BonnRouteDetailed we define label systems that make it
likely that the multi-label progression is a multi-label path. See Section 4.5.1 for details
on the label systems used by BonnRouteDetailed.

Definition 4.6 (next node). Given a routing graph G we define NextNode : V (G)×D ×
N≥0 → V (G) ∪ {∅} by

NextNode(v, dir, d) := argmin
w∈V (G)
‖v−w‖≥d

Dir(v,w)=dir

‖v − w‖,

for all v ∈ V (G), dir ∈ D, and d ∈ N≥0.

Definition 4.7 (multi label instance, multi-label graph). Let (G, cE , cV , S, T ) be a path
search instance and let (L, ξ) be a label system. The corresponding multi-label instance
(G∗, c∗E , c

∗
V , S

∗, T ∗) is defined in the following way:

• V (G∗) := V (G)× L, S∗ = S × L, T ∗ = T × L

• c∗V ((v, l)) := cV (v) for (v, l) ∈ V (G∗)



74 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

• For every (v, lv) ∈ V × L, dir ∈ D, and (lw, d, cξ) ∈ ξ(lv, z(v), dir) with w =
NextNode(v, dir, d) 6= ∅ we introduce an edge ((v, lv), (w, lw)) if there is a dir-path P
between v and w in G. The cost of the edge is

c∗E((v, lv), (w, lw)) := cξ + cE(P ) + cV (P )− cV (v)− cV (w).

The collection of all edges of this type forms E(G∗).

The graph G∗ is a directed multi-graph, called multi-label graph.

Note that the multi-label graph can contain parallel edges. See Figure 4.15 for an illustra-
tion of a multi-label graph.

The Multi-Label Progression Search Problem can be solved by using Dijkstra’s
algorithm to search for a shortest S∗-T ∗-path in the multi-label graph. The following
theorem generalizes and strengthens Satz 3.11 of [Nohn, 2012] and Theorem 5.23 of [Gester,
2015] in the case that no intervals are used.

Theorem 4.8. The Multi-Label Progression Search Problem can be solved in
O(|V (G)||L|(log|V (G)|+ log|L|) + dmax |V (G)|ξmax ) time, where

ξmax = max
z∈Z

∑
lv∈L

∑
dir∈D

|ξ(lv, z, dir)|

is the maximum number of transitions on a layer and dmax is the number of edges in the
longest straight path that needs to be considered in the construction of the multi-label graph.

Proof. Let (P, φ) be a multi-label S-T -progression, where P = v1, P1, v2, . . . , vk, Pk, vk+1

and for i ∈ {1, . . . , k} the path Pi = v1i , . . . , v
ki
i is straight. For i ∈ {1, . . . , k} let

(φ(vi+1), di, c
i
ξ) ∈ ξ(φ(vi), z, dir) be a minimizer of the transition cost for the distance

‖vi+1 − vi‖. Moreover, for i ∈ {1, . . . , k} let j∗i ∈ {1, . . . , ki} be the indices with

v
j∗i
i = NextNode(vi,Dir(vi, vi+1), di).

We define the paths

P ∗i := (v1i , φ(vi)), (v
j∗1
i , φ(vi+1)), (v

j∗1+1
i , φ(vi+1)), . . . , (v

ki
i , φ(vi+1))

and their concatenation P ∗ := P ∗1 , . . . , P
∗
k . Note that ((v1i , φ(vi)), (v

j∗i
i , φ(vi+1))) ∈ E(G∗)

and that its cost is ciξ+
∑i

j=2 cV (vji )+cE({vj−1i , vji }). Note that the other edges are also in
G∗ because of property 1 of Definition 4.3. Thus P ∗ is a path in G∗ and its cost is cL(P ).

Conversely, let P ∗ = ((v1, l1), . . . , (vk, lk)) be a shortest path in G∗. For i ∈ {1, . . . , k} we
define Pi to be the straight vi-vi+1-path and set P = v1, P1, v2, . . . , vk, Pk, vk+1. Moreover,
we define φ by φ(vi) = li for i ∈ {1, . . . , k + 1}. Then (P, φ) is a multi-label progression
which has the same cost as P ∗.



4.5.
M

U
LT

I-LA
B

E
LIN

G
75

s

t

s

t

s

t

s

t
Figure 4.15: The multi-label graph when applying the label system L≥2 from Figure 4.12 to the graph from Figure 4.13. The edges
are drawn in four graphs. The multi-label graph consists of their union. The edges corresponding to the three edge progressions
from Figure 4.13 are drawn in the same colors as in that figure.



76 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

To construct G∗ we traverse every layer z ∈ Z, every node (v, lv) ∈ V × L with v on z,
every direction dir ∈ D, and every transition (lw, d, cξ) ∈ ξ(lv, z, dir). There are∑

z∈Z
nz
∑
lv∈L

∑
dir∈D

ξ(lv, z, dir) ≤ |V (G)|ξmax

such combinations, where nz is the number of nodes on layer z. For every such combination
we check whether the straight path from v to NextNode(v, dir, d) is a path in G and add it
to E(G∗) if it is. Computing the candidate neighbor, checking whether there is a straight
path in G, and computing the edge costs requires O(dmax ) time. Thus, the runtime for
the construction of G∗ is O (dmax |V (G)|ξmax ).

The multi-label graph G∗ has |V (G)||L| nodes and at most |V (G)|ξmax edges. Thus,
computing the shortest path from S∗ to T ∗ in G∗ with Dijkstra’s algorithm takes

O(|V (G)||L|(log|V (G)|+ log|L|) + |V (G)|ξmax )

time, implying the claimed runtime bound.

We note that the runtime of the multi-labeling presented in [Nohn, 2012; Ahrens et al.,
2015; Gester, 2015] depends quadratically on the number of label types, instead of lin-
early on the number of transitions. The reason is the more efficient representation of
the label transition function discussed on page 70. Another difference to the descriptions
in [Nohn, 2012; Gester, 2015] is that their search labels intervals, which complicates the
description.

Recall from Section 3.4 that the path search in BonnRouteDetailed works on an implicitly
given routing graph. In the implementation in BonnRouteDetailed we construct edges of
the multi-label graph as needed, but do not store it explicitly.

We note that property 1 of Definition 4.3 is crucial. Without it, subdividing edges in the
routing graph could make paths in the multi-label graph illegal and even disconnect source
and target.

4.5.1 Label Systems used by BonnRouteDetailed

BonnRouteDetailed uses hundreds of different label systems with up to 32 label types.
Each is constructed out of a base label system and a set of label system extensions that
specify how the base label system is modified. We note that the earlier version presented in
[Nohn, 2012; Ahrens et al., 2015; Gester, 2015] uses eight different label systems and that
their label systems are much simpler and less efficient at avoiding design rule violations.
One reason why we can use more complex label systems is that the runtime of our version
of multi-labeling scales better than the one presented in [Nohn, 2012; Ahrens et al., 2015;
Gester, 2015], as discussed in the previous section.

The trivial base label system StandardRouting and the label system extension Colored-
Routing presented here were previously presented in these works. All other base label



4.5. MULTI-LABELING 77

systems and label system extensions are new, except for the SourceRestriction and Target-
Restriction extensions, which have been completely revised.

We now present the three base label systems and the four label system extensions used by
BonnRouteDetailed.

StandardRouting Base Label System

StandardRouting is the trivial label system whose multi-label graph is the original routing
graph. It is illustrated in Figure 4.16.

label_type

(Z,D, 1)

Figure 4.16: Transition graph of the StandardRouting label system.

AvoidSpecificMistakes and AvoidSpecificMistakes+ Base Label Systems

The AvoidSpecificMistakes label system is designed to forbid only very few non-legal paths,
while ensuring that some design rules are satisfied. Figure 4.17 illustrates the AvoidSpecific-
Mistakes label system if jogs are forbidden. We omit a description in case that jogs are
allowed for the sake of brevity.

For each subpath e1v, P, e2v consisting of two vias e1v and e2v and a straight path P running in
preferred dimension it imposes a minimum length constraint on P . The minimum length
depends on the layer and the other layers of both vias. In practice it can also depend on the
direction of P . In the AvoidAllMistakes label system of [Nohn, 2012; Ahrens et al., 2015;
Gester, 2015] the minimum length depends on the layer only. The increased flexibility in
AvoidSpecificMistakes allows us to create less restrictive label systems that can avoid the
same same-net errors.

Note that the label system is designed to avoid cycles with two edges. Indeed, after going
in a direction we always reach a label type that does not admit a transition in the opposite
direction. This property is key to reduce the number of cycles in practice.

AvoidSpecificMistakes offers parameters that can be used to make it more restrictive,
thereby invalidating paths with same-net errors but also some legal paths. These re-
strictions can be applied in a very fine-grained manner by layer and by individual error
types. We summarize all restrictive versions of AvoidSpecificMistakes under the name
AvoidSpecificMistakes+. In AvoidSpecificMistakes+ the required minimum distance may



78 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

p+v+

p+v-

v+

v-

p-v+

p-v-

(Z, {→z}, 1)

(Z, {→z}, 1)

(Z, {←z}, 1)

(Z, {←z}, 1)

(Z, {↗}, 1)

(Z, {↙}, 1)

(Z, {↗}, 1) (Z, {↗}, 1)

(Z, {↙}, 1) (Z, {↙}, 1)

(Z, {→z}, kz++)

(Z, {→z}, kz+−)

(Z, {←z}, kz++)

(Z, {←z}, kz+−)

(Z, {→z}, kz−−) (Z, {←z}, kz−−)

Figure 4.17: Transition graph of the AvoidSpecificMistakes base label system if jogs are
forbidden on all wiring layers. Here we use superscript z to indicate that the values
depend on the layer. We use →z and ←z to refer to the positive and negative preferred
dimension on layer z. Note that the required minimum distances kz−−, kz+−, kz++ > 0 are
layer-dependent. The loops at v− and v+ may be missing for some layers if stacked vias
are forbidden.

be larger on some layers or transitions may be missing or more expensive, depending on
the specific restrictions.

ColoredRouting Extension

Pitch splitting is a technique for increasing feature density that is used to manufacture some
wiring layers. Metal on these layers is manufactured by k ∈ N exposures and etchings. We
assign a color c ∈ {1, . . . , k} to each shape indicating the step in which it is manufactured.
Typically, shapes that touch or intersect need the same color. Distance requirements
between shapes of the same color are larger than distance requirements for shapes of
different colors.

In BonnRouteDetailed we assign a color to each track and usually color sticks by the color
of their track. However, in some cases we need to deviate from the track coloring, for
example to access pins that are not colored according to the track coloring. Then we
use the ColoredRouting extension. Given a label system (L, ξ) and the number of colors
k1, . . . , k|Z|−1 ∈ N on each wiring layer, the ColoredRouting extension yields a modified
label system (L× {1, . . . ,maxz∈Z kz}, ξ′) with the transition function:



4.5. MULTI-LABELING 79

ξ′((lv, c), z, dir) =

{
{((lw, c), d, cξ)|(lw, d, cξ) ∈ ξ(lv, z, dir)} dir 6∈ {↙,↗}, c ≤ kz
{((lw, c′), d, cξ)|(lw, d, cξ) ∈ ξ(lv, z, dir), c′ ∈ {1, . . . , kzdir}} dir ∈ {↙,↗}, c ≤ kz

for all lv,∈ L, z ∈ Z, c ∈ {1, . . . , kz}, and dir ∈ D and where

zdir :=


z − 1 dir =↙
z + 1 dir =↗
z otherwise

is the layer reached when going from z in direction dir. See Figure 4.18 for an illustra-
tion.

color 1 color 2(Z,D, 1) (Z,D, 1)
(Z, {↗,↙}, 1)

Figure 4.18: Transition graph of the label system resulting from applying the Colored-
Routing extension to the StandardRouting base label system if all wiring layers have two
colors.

With ColoredRouting the checking data of a node depends on the label type, i.e. a node can
be usable with one color but not usable with another. In BonnRouteDetailed we penalize
labels that would lead to wiring that deviates from the track coloring with additional
label-type- and location-dependent node costs. This helps to improve packing.

The ColoredRouting label system was also proposed in [Nohn, 2012; Ahrens et al., 2015;
Gester, 2015].

SourceRestriction and TargetRestriction Extension

In the implementation in BonnRouteDetailed label systems can specify a source transi-
tion function ξS that is used at source nodes instead of ξ. Moreover, each transition in ξ
and ξS has two additional flags: valid_to_reach_target and valid_to_reach_non_target,
indicating whether the transition can be used to go to a target or non-target node. Fur-
thermore, the label types that may be used may depend on the source s ∈ S or the target
t ∈ T . These mechanisms allow us to impose additional constraints on how source and
target nodes can be accessed. In the base label systems we have ξS = ξ and both flags are
set to true for each transition.

SourceRestriction modifies ξS to avoid same-net errors near the source. To the same end,
TargetRestriction may set the valid_to_reach_target flag of existing transitions to false
and introduce additional transitions with valid_to_reach_non_target set to false and
valid_to_reach_target set to true to avoid same-net errors near the target. Moreover,
the SourceRestriction or TargetRestriction may restrict which label system may be used



80 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

at which source or target. We note that BonnRouteDetailed additionally uses protections
that will be introduced in Section 4.6 to avoid violations near source and target.

LayerFuse Extension

Each net N has a minimum assigned layer za ∈ Z and most of its wiring should be on
za or above. Let T be a Steiner tree connecting N . Then each source-sink-path P of T
should have the following property:

• Let Pa be the forest resulting from P by deleting all edges that do not intersect
R× R× [za, |Z| − 1]. Then Pa is a path or empty.

We call each source-sink-path that does not have this property a layer fuse. BonnRoute-
Detailed avoids layer fuses, since they often lead to bad timing behavior. For an illustration
see Figure 4.19.

Figure 4.19: Two wirings of the same net, consisting of a source pin in the upper left and
three sink pins. Shapes on the assigned layers are black and parts below the assigned layers
drawn in red. On the left, each source-sink-path is a layer fuse, caused by the highlighted
shape. On the right, this shape and the connecting vias are moved to an assigned layer
and there is no layer fuse.

BonnRouteDetailed uses three mechanisms to avoid layer fuses. First, for path searches
whose path should be part of the trunk we restrict the set of source locations in the
path search to nodes on or above the assigned layers. This was implemented by Niko
Klewinghaus. Second, the edge costs on layers below za are increased. Third, we use the
LayerFuse extension. Given a label system (L, ξ) and a minimum assigned layer za ∈ Z it



4.5. MULTI-LABELING 81

defines a modified label system (L×{A,A}, ξ′) with the following transition function:

ξ′((lv, A), z, dir) =

{
{((lw, A), d, cξ)|(lw, d, cξ) ∈ ξ(lv, z, dir)} z 6= za or dir 6=↙
{((lw, A), d, cξ)|(lw, d, cξ) ∈ ξ(lv, z, dir)} otherwise

ξ′((lv, A), z, dir) =

{
∅ z ≥ za or zdir ≥ za
{((lw, A), d, cξ)|(lw, d, cξ) ∈ ξ(lv, z, dir)} otherwise

for all lv,∈ L, z ∈ Z, and dir ∈ D and where zdir is the layer reached when going from z
in direction dir (as defined on page 79). See Figure 4.20 for an illustration.

A A(Z, {→,←, ↑, ↓,↗}, 1)

(Z \ {za}, {↙}, 1)

({1, . . . , za − 1}, {→,←, ↑, ↓,↙}, 1)

({1, . . . , za − 2}, {↗}, 1)

({za},{↙}, 1)

Figure 4.20: Transition graph of the label system resulting from applying the LayerFuse
extension to the StandardRouting base label system.

Label types in L× {A} indicate that we were already on an assigned layer z ≥ za and are
now below za. Thus, going up to an assigned layer is forbidden. Conversely, label types
in L × {A} mean that the path is either on an assigned layer z ≥ za or that it is on a
layer z < za and can still go up to assigned layers. Going from layer za to za − 1 requires
switching to a label type in L×{A}. Using the LayerFuse extension can avoid all layer fuses
if the usable label types are initialized appropriately for each source. Mechanisms 1 and 2
improve the quality of the wiring, e.g. by reducing the amount of parallel wiring.

4.5.2 Selecting a Label System

Using the most restrictive base label system combined with all label system extensions
in every path search would lead to high runtime, because of the high complexity of the
resulting label system. Moreover, this might lead to unnecessary detours, since some of
the restrictions can forbid legal paths. Therefore, the same-net rule aware path search
starts with the StandardRouting label system and determines additional label systems
that should be used with Algorithm 8, if necessary.

The algorithm is very straightforward. It gets a set of error-annotations that were computed
by the same-net checking. First, in line 1-4, it computes the least restrictive base label
system that can resolve as many errors in E as possible. This is StandardRouting if there
are no violations that can be resolved by AvoidSpecificMistakes+, AvoidSpecificMistakes
if there are violations that can be resolved by AvoidSpecificMistakes but no violations that
require AvoidSpecificMistakes+, and a version of AvoidSpecificMistakes+ otherwise. The
result is L. Then it considers the four label system extensions: ColoredRouting, LayerFuse,



82 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

Algorithm 8 GetLeastRestrictiveFixingLabelSystem(E)

Input: A set of error-annotations E.
Output: A label system.

1: L ← StandardRouting
2: if there are errors in E that can be avoided by AvoidSpecificMistakes+ then
3: L ← AvoidSpecificMistakes
4: apply restrictions to L to avoid errors in E that can be resolved by AvoidSpecific-

Mistakes+ but not by AvoidSpecificMistakes
5: if E contains coloring errors then
6: apply the ColoredRouting extension to L
7: if E contains layer fuses then
8: apply the LayerFuse extension to L
9: if E contains errors near the source then

10: apply the SourceRestriction extension to L
11: if E contains errors near the target then
12: apply the TargetRestriction extension to L
13: return L

SourceRestriction, and TargetRestriction. If there is a violation that may be resolved by
the extension, i.e. a coloring problem, a layer fuse, an error near the source, or an error
near the target, the corresponding extension is applied to L. None or all of the extensions
may be applied. Finally, the label system L is returned.

4.6 Protections

Many same-net errors occur near the ends of paths and BonnRouteDetailed uses protec-
tions to avoid them. Each protection is a pair (r,m), consisting of a rectangle on a wiring
layer and a wire model or a cuboid on a via layer and a via model. Every edge that
intersects r becomes illegal for wire or via model m. For each path search instance, Bonn-
RouteDetailed computes protections avoiding different kinds of same-net errors near the
source and target.

For example, a bump-out rule could specify: If an edge between two convex vertices of a
rectangular metal polygon has length less than α then at least one of its adjacent edges
must have length at least β. Figure 4.21 shows a protection computed to avoid bump-out
violations.

We note that BonnRouteDetailed has an additional mechanism for avoiding violations near
the ends of paths. If the source or target is a pin that cannot be accessed legally using the
routing graph, we compute a set of access paths that connect to the pin without causing
same-net errors. The endpoints of these paths are used as source and target locations in
the path search. After the search the path in the routing graph is combined with the



4.7. SAME-NET RULE AWARE PATH SEARCH IN BONNROUTEDETAILED 83

Figure 4.21: The length of the green edge is less than α and the length of the orange edge
is β. There is no violation in the top-left, but in the top-right the additional metal leads
to a violation. The bottom shows a protection to avoid bump-out violations for a specific
wire model when accessing the metal component from the left.

access paths. This mechanism works well for resolving same-net errors but it has one
weakness: Both the access paths and the path in the routing graph may respect the design
rules, but there may be violations after they are combined, especially if combining the
paths leads to cycles. For this reason and for the sake of simplicity we plan to get rid of
access paths in BonnRouteDetailed and modify the routing graph locally to allow legal pin
access by subdividing edges or adding additional grid lines. Note that this is supported
by our path search (see Section 3.4). Then the protections and the SourceRestriction and
TargetRestriction extensions can be used to access the pins legally.

4.7 Same-Net Rule Aware Path Search in BonnRouteDetailed

This section presents the same-net rule aware path search framework used in BonnRoute-
Detailed. It uses the components described in Section 4.3, Section 4.4, Section 4.5, and
Section 4.6 and is sketched in Algorithm 9. It is a modified and extended version of the
DRC-aware path search framework presented in [Ahrens et al., 2015] (see Figure 13 on
page 11) and [Gester, 2015] (see Algorithm 7 on page 91).

At the beginning, the algorithm computes protections, thereby removing edges near source
and target from G. Then it sets the label system L to be used in the first path search
to StandardRouting. Eall is the set of error-annotations of all paths computed by the
algorithm. Initially, it is set to ∅. To indicate that no path was found so far, Pbest and
Ebest are initialized with ∅. Then, the algorithm initializes some data D that is common for
all path searches. This includes the grid region partition and the grid region data structure
from Lemma 3.25 on page 46.



84 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH

Algorithm 9 Simplified Same-Net Rule Aware Path Search
Input: A path search instance (G, cE , cV , S, T ).
Output: An S-T -path or the information that no such path exists.

1: compute protections . the protections may remove edges from G
2: Eall ← ∅, Ebest ← ∅, Pbest ← ∅
3: L ← StandardRouting
4: initialize data structure D for path search . e.g. grid region data structure
5: while (true) do
6: prepare D for L . delete labels, keep checking data if it can be reused
7: P ← shortest edge progression in the multi-label instance for L and (G, cE , cV , S, T )
8: if P = ∅ then
9: break

10: remove cycles and loops from P
11: P ← PostProcessPath(P )
12: E ← ComputeErrorAnnotations(P )
13: Eall ← Eall ∪ E
14: if Pbest = ∅ or WeightedErrorSum(E) < WeightedErrorSum(Ebest) then
15: Pbest ← P
16: Ebest ← E

17: Lnext ← GetLeastRestrictiveFixingLabelSystem(Eall )
18: if Lnext = L then
19: break
20: L ← Lnext
21: if Pbest = ∅ then
22: return No S-T -path exists.
23: return P

Each iteration of the main loop performs a multi-label search for a different label sys-
tem L. If there is no valid progression we break out of the while-loop and return the
best path found so far. Otherwise, cycles are removed from the path P and it is post-
processed. Moreover, we use the same-net checking to compute the error-annotations E
of P . If P is the best path found so far we update Pbest and Ebest accordingly. We then
compute the label system Lnext to be used in the next iteration of the main loop using
GetLeastRestrictiveFixingLabelSystem(Eall ), introduced in Section 4.5.2. The function
returns the least-restrictive available label system that can fix all errors in Eall (that the
label systems of BonnRouteDetailed can resolve). If the returned label system Lnext is
identical to L, we break out of the while-loop and return the best path found so far.
Otherwise, we set L to Lnext and continue with the next iteration of the main loop.

Line 4 and line 6 are important optimizations. Instead of recomputing data such as the
grid region data structure, the future costs, the checking data, etc. from scratch for every
search we reuse as much data as possible. The grid region data structure can always be
reused, just like the future cost of nodes for which it was initialized. If the previous path



4.7. SAME-NET RULE AWARE PATH SEARCH IN BONNROUTEDETAILED 85

search did not use the ColoredRouting and the next path search uses it, the checking data
cannot be reused, because using the ColoredRouting extension requires color-dependent
checking. In all other cases the checking data can be reused. We note that we delete all
labels computed by the previous search and reinitialize the source labels in every iteration
of the main loop.

Section 6.3 provides experimental results on the same-net rule aware path search and
its components for avoiding violations: the post-processing, the multi-labeling, and the
protections.



86 CHAPTER 4. SAME-NET RULE AWARE PATH SEARCH



Chapter 5

Steiner Tree Search

This chapter considers the problem of computing optimal Steiner trees respecting restric-
tions on the topology and on the location of Steiner points derived from the global routing.
First, in Section 5.1 we give an overview of known results on the Steiner Tree Prob-
lem. Then, in Section 5.2 we introduce the Restricted Steiner Tree Problem and
present the Restricted Dijkstra-Steiner algorithm, which generalizes the Dijkstra-Steiner
algorithm [Hougardy et al., 2017]. Finally, in Section 5.3 we show how this algorithm can
be used to compute optimal Steiner trees that are similar to the global routing in terms
of topology and approximate location of Steiner points. This allows us to find shorter and
more efficient detailed routings and to recover electrical and timing properties optimized in
global routing. We show that in our application the algorithm achieves near-linear runtime
under mild assumptions. This is possible because the restrictions actually make the prob-
lem easier. The Restricted Dijkstra-Steiner algorithm was developed and implemented in
joint work with Dorothee Henke and Stefan Rabenstein.

5.1 The Steiner Tree Problem

In the Steiner Tree Problem we are given a graph G, a set of terminals T , and an edge
cost function cE : E(G) → R≥0. The task is to compute a Steiner tree S in G such that
T ⊆ V (S) and cE(E(S)) is minimum. The problem is NP-hard, even for cE ≡ 1 [Karp,
1972].

It is NP-hard to approximate the problem within a factor of 96
95 [Chlebikova and Chlebík,

2008]. It remains NP-hard even in two-dimensional grid graphs [Garey and Johnson,
1977]. The best known approximation algorithm is LP-based and uses iterative randomized
rounding to achieve an approximation ratio of 1.39 [Byrka et al., 2013].

An exact algorithm with runtime O(3kn+ 2kn2 + n(log n+m)) was proposed in [Dreyfus
and Wagner, 1971], where k is the number of terminals, n is the number of nodes andm the
number of edges. [Erickson et al., 1987] showed that this algorithm can be implemented
to achieve runtime O(3kn + 2k(n log n + m)). The resulting algorithm is called Dreyfus-

87



88 CHAPTER 5. STEINER TREE SEARCH

Wagner algorithm. While faster algorithms exist for large values of k (see [Vygen, 2011])
this is the fastest known exact algorithm for the Steiner Tree Problem for small values
of k. The Dijkstra-Steiner algorithm [Hougardy et al., 2017] is a goal-oriented version of
the Dreyfus-Wagner algorithm that achieves the same worse-case runtime but can perform
significantly better in practice.

5.2 The Restricted Dijkstra-Steiner Algorithm

This section introduces the Restricted Steiner Tree Problem and presents the Re-
stricted Dijkstra-Steiner algorithm. The Restricted Dijkstra-Steiner algorithm was devel-
oped and implemented in joint work with Dorothee Henke and Stefan Rabenstein. The
algorithm is also presented in [Rabenstein, 2019]. Our description of the algorithm, some
definitions, Lemma 5.5 and its proof, and Theorem 5.6 appear in [Rabenstein, 2019] in a
similar form. The other results are new.

The Dijkstra-Steiner algorithm [Hougardy et al., 2017] uses a dynamic programming ap-
proach similar to the one in Dijkstra’s algorithm. It selects a root terminal t0 ∈ T and
labels from the terminals in T \ {t0} towards the root. The algorithm labels elements
of V (G) × 2T\{t0}, and a label of (v, I) ∈ V (G) × 2T\{t0} corresponds to a Steiner tree
connecting I ∪ {v} with a certain cost. We consider a restricted version of the Steiner
Tree Problem and the restrictions we impose correspond to allowing only a subset of
elements of V (G)× 2T\{t0} to be labeled.

Definition 5.1 (set of allowed labels, allowed label). Let G be a graph, let T ⊆ V (G)
be a set of terminals, and let t0 ∈ T be a root terminal. A set A ⊆ V (G) × 2T\{t0} with
(t0, T \ {t0}) ∈ A and (t, {t}) ∈ A for t ∈ T \ {t0} is called a set of allowed labels for G,
T , and t0. An element of A is called an allowed label.

Each allowed label (v, I) corresponds to a subproblem. We now define (v, I)-trees that
are possible solutions to the subproblem, their cost, and the cost smt(v, I) of an optimal
solution.

Definition 5.2 ((v, I)-tree, smt(v, I)). Let G be a graph, let T ⊆ V (G) be a set of termi-
nals, let t0 ∈ T be a root terminal, and let A ⊆ V (G) × 2T\{t0} be a set of allowed labels.
An arborescence S with V (S) ⊆ A is called a (v, I)-tree for G, T , t0, and A if (v, I) is the
root of S and for every (w, J) ∈ V (S) one of the following holds:

1. Γ+
S (w, J) = ∅, w ∈ T \ {t0}, and J = {w}

2. Γ+
S (w, J) = {(w′, J)} where {w,w′} ∈ E(G)

3. Γ+
S (w, J) = {(w, J1), (w, J2)} where J1 ∪ J2 = J and J1 ∩ J2 = ∅



5.2. THE RESTRICTED DIJKSTRA-STEINER ALGORITHM 89

Given an edge cost function cE : E(G)→ R≥0 the cost of S is defined by

cE(S) :=
∑

((w,J),(w′,J))∈E(S)

cE({w,w′}).

We denote the minimum cost of a (v, I)-tree by smt(v, I). If there is no (v, I)-tree we set
smt(v, I) to ∞.

Note that every (v, I)-tree contains a leaf (t, {t}) for every t ∈ I.

We can now define the Restricted Steiner Tree Problem.

Restricted Steiner Tree Problem
Input: A graph G = (V,E), edge costs cE : E → R≥0, a set of terminals T ⊆ V , a

root terminal t0 ∈ T , and a set of allowed labels A ⊆ V × 2T\{t0}.
Task: Find a (t0, T \ {t0})-tree with minimum cost or decide that no (t0, T \ {t0})-

tree exists.

For A = V × 2T\{t0} the problem is equivalent to the Steiner Tree Problem. Hence it
is NP-hard. See Figure 5.1 for an example with A 6= V × 2T\{t0}.

t1 t2 t3 t4

v1 v2

t0
v1 v2

t0

t1 t2 t3 t4

{t1} {t2} {t3} {t4}

{t1}{t2}
{t1, t2}

{t3}{t4}
{t3, t4}

{t1, t2} {t3, t4}
{t1, t2, t3, t4}

t1 t2 t3 t4

v1 v2

t0

v1

t0

t1 t2 t3 t4

{t1} {t2} {t3} {t4}

{t1}{t2}
{t1, t2}

{t3}{t4}
{t3, t4}

{t1, t2} {t3, t4}
{t1, t2, t3, t4}

t1 t2 t3 t4

v1 v2

t0

v1
v2

t0

t1 t2 t3 t4

{t1} {t2} {t3} {t4}

{t1}{t2}{t3}
{t1, t2}
{t1, t2, t3}

{t4}

{t1, t2, t3} {t4}
{t1, t2, t3, t4}

t1 t2 t3 t4

v1 v2

t0

Figure 5.1: The left shows an instance with terminals {t0, t1, t2, t3, t4}, root terminal t0, the
graph as drawn, and A = {(ti, {ti})|i ∈ {1, 2, 3, 4}} ∪ {(vi, I)|i ∈ {1, 2}, I ⊆ T \ {t0}, |I| ∈
{1, 2}}∪ {(t0, I)|I ⊆ T \ {t0}, |I| ∈ {2, 4}}. The middle shows two (t0, {t1, t2, t3, t4})-trees.
A terminal set I in a box labeled w refers to the allowed label (w, I). Up to renaming
elements of {v1, v2} and {t1, t2, t3, t4} these are the only solutions. The arborescence on the
right is not a solution because it uses (v1, {t1, t2, t3}), (t0, {t1, t2, t3}), (t0, {t4})6∈ A which
are not allowed labels and are struck through.



90 CHAPTER 5. STEINER TREE SEARCH

For A 6= V ×2T\{t0} a solution S can use an edge multiple times with different terminal sets,
i.e. there can be an edge {v, w} ∈ E(G) and terminal sets I, J ⊆ T \ {t0} with I 6= J such
that ((v, I), (w, I)), ((v, J), (w, J)) ∈ E(S). Longer cycles in {{v, w}|∃I : ((v, I), (w, I)) ∈
E(S)} are also possible.

In the problem statement there is a special root terminal that the set of allowed labels
depends on. We now show that in a sense the choice of root terminal does not matter.

Lemma 5.3. Let (G, cE , T, t0,A) be an instance of the Restricted Steiner Tree
Problem. Then for every t′0 ∈ T \ {t0} there is A′ with |A′| = |A| such that any (t0, T \
{t0})-tree S with respect to A can be converted into a (t′0, T \ {t′0})-tree S′ with respect to
A′ and vice versa. Moreover, the trees have the same number of edges and the same cost
and the conversion takes O(|E(S)|) time.

Proof. Let t′0 ∈ T \ {t0}. We define a bijection F : 2T\{t0} → 2T\{t
′
0} by

F (I) =

{
I t′0 6∈ I
T \ I t′0 ∈ I

and set A′ = {(v, F (I))|(v, I) ∈ A}. Let S be a (t0, T \ {t0})-tree with respect to A.

We now describe how to construct a (t′0, T \ {t′0})-tree S′ with respect to A′ with the
desired properties. We set V (S′) = {(v, F (I))|(v, I) ∈ V (S)} ⊆ A′ and traverse S starting
at (t′0, {t′0}). We will add outgoing edges (if any) of a node (v, F (I)) only in the iteration
in which (v, I) is considered.

We maintain a set of nodes N ⊆ V (S) that still need to be traversed and initialize it with
(t′0, {t′0}). In each iteration we select an element (v, I) from N and remove it from N .
When that is no longer possible because N is empty we are done. We distinguish three
cases:

Case 1: (v, I) has a neighbor (w, I) that was not added to N yet.
We add an edge ((v, F (I)), (w,F (I))) to E(S′) and add (w, I) to N . Hence property 2 of
Definition 5.2 is satisfied.

Case 2: (v, I) has a neighbor (v, J) that was not added to N yet.
Because of property 3 of Definition 5.2 either (v, I) or (v, J) has another neighbor (v, J ′)
such that K1 ∪ K2 = K3 and K1 ∩ K2 = ∅ for some choice of K1,K2,K3 ∈ {I, J, J ′}.
We add edges ((v, F (I)), (v, F (J))) and ((v, F (I)), (v, F (J ′))) to E(S′) and add (v, J) and
(v, J ′) to N . See Figure 5.2 for an illustration. Observe that we have F (I) = F (J)∪F (J ′)
and F (J) ∩ F (J ′) = ∅ which implies that property 3 of Definition 5.2 is satisfied.

Case 3: (v, I) has no neighbor in S that was not added to N yet.
We do not add any edges. Because of the way we traverse S we have (v, I) = (t0, T \ {t0})
or (v, I) = (t, {t}) for some t ∈ T \{t0, t′0}. Hence, (v, F (I)) = (t, {t}) for some t ∈ T \{t′0}
and property 1 of Definition 5.2 is satisfied.

Note that S′ is connected and rooted at (t′0, F ({t′0})) = (t′0, T \ {t′0}) and hence a (t′0, T \
{t′0})-tree with respect to A′. Clearly |E(S)| = |E(S′)|, cE(S) = cE(S′), and the construc-
tion can be done in O(|E(S)|) time.



5.2. THE RESTRICTED DIJKSTRA-STEINER ALGORITHM 91

(v,K1 ∪K2)

(v,K1) (v,K2)

(v, T \ (K1 ∪K2))

(v,K1) (v, T \K2)

Figure 5.2: If the configuration on the left is in S we get the same configuration in S′ if
t′0 6∈ K1 ∪K2. Note that in this case the first drawn node that is traversed is (v,K1 ∪K2).
If t′0 ∈ K2 we get the configuration on the right in S′. Note that in this case the first drawn
node that is traversed is (v,K2).

Before presenting the Restricted Dijkstra-Steiner algorithm, we introduce future cost func-
tions, which will make the search goal-oriented, as in the Dijkstra-Steiner algorithm.

Definition 5.4 (future cost function). Let (G, cE , T, t0,A) be an instance of the Re-
stricted Steiner Tree Problem. A future cost function is a function f : A → R≥0
with the following properties:

1. f(t0, T \ {t0}) = 0

2. f(v, I) ≤ f(w, I) + cE({v, w}) for all {v, w} ∈ E(G) and all I ⊆ T \ {t0} with
(v, I), (w, I) ∈ A

3. f(v, I) ≤ f(v, I ∪ J) + smt(v, J) for all v ∈ V (G) and I, J ⊆ T \ {t0} with I ∩ J = ∅
and (v, I), (v, J), (v, I ∪ J) ∈ A

Next we prove that the name future cost function is justified in the sense that extending a
(v, I)-tree to a (t0, T \ {t0})-tree without modifying the sub-arborescence rooted at (v, I)
requires cost at least f(v, I). This follows immediately from the next lemma and f(t0, T \
{t0}) = 0. The lemma and its proof are similar to Lemma 20 of [Rabenstein, 2019] and its
proof.

Lemma 5.5. Let (G, cE , T, t0,A) be an instance of the Restricted Steiner Tree
Problem, let f be a future cost function, let (v, I) ∈ A be an allowed label, let Sv be a
(v, I)-tree, let (w, J) be a child of (v, I) in Sv, and let Sw be the subtree rooted at (w, J).
Then

cE(Sw) + f(w, J) ≤ cE(Sv) + f(v, I).

Proof. We may assume that the claim holds for all sub-arborescences rooted at successors
of (v, I), by induction. We distinguish two cases. If (w, J) is the only child of (v, I) in Sv,
then I = J and property 2 of Definition 5.4 yields

f(w, J) ≤ f(v, I) + cE({v, w}) = f(v, I) + cE(Sv)− cE(Sw).



92 CHAPTER 5. STEINER TREE SEARCH

Otherwise we have v = w and (v, I) has exactly two children (w, J) and (w, I \ J). Let S′

be the sub-arborescence rooted at (w, I \ J). Then by property 3 of Definition 5.4 we get

f(w, J) ≤ f(v, I) + smt(v, I \ J) ≤ f(v, I) + cE(S′) = f(v, I) + cE(Sv)− cE(Sw).

Note that f ≡ 0 is a future cost function. As in Dijkstra’s algorithm, future costs that
are as large as possible are desirable (see Lemma 3.8 on page 31). Note that future cost
functions for a modified instance with A′ = V (G) × 2T\{t0} are also future cost functions
for the original instance. Hence we can use future cost functions for the Dijkstra-Steiner
algorithm, for example half the cost of a 1-tree (v being the node connected to the tree
with two edges) or half the cost of a TSP-tour. For more information we refer to Section 2
of [Hougardy et al., 2017]. See page 98 for a discussion of future cost functions that might
be suited for our application.

Algorithm 10 presents the Restricted Dijkstra-Steiner algorithm. The algorithm is very
similar to the Dijkstra-Steiner algorithm. It maintains a set of tentative costs l for each
allowed label (v, I) ∈ A, corresponding to the cost of a cheapest (v, I)-tree that was
found so far. A tentative cost of ∞ means that so far no such tree was found. During the
algorithm, the tentative costs decrease and a set of allowed labels R for which the tentative
cost was proven to be the real cost is maintained. In each iteration of the main loop, an
allowed label (v, I) ∈ A \ R with minimum tentative cost plus future cost is selected and
added to R, i.e. its tentative cost is no longer tentative. Then the backtracking data
b(v, I), that is always updated along with l(v, I), defines a (v, I)-tree with cost smt(v, I).
Costs for other allowed labels can be derived from l(v, I) by extending the tree by an edge
or by merging it with a tree for another permanent label (v, J) ∈ R with I ∩ J = ∅. Once
(t0, T \ {t0}) is selected, a minimum cost (t0, T \ {t0})-tree has been determined and is
returned. If (t0, T \ {t0}) is never selected, there is no solution.

The following result was achieved in joint work with Stefan Rabenstein.

Theorem 5.6. The Restricted Dijkstra-Steiner algorithm works correctly.

We omit the correctness proof because it is very similar to that of the Dijkstra-Steiner
algorithm. A detailed proof can be found in [Rabenstein, 2019].

Next, we analyze the runtime of the Restricted Dijkstra Steiner algorithm. The runtime
depends on the size of the set of allowed edges and allowed merges that are introduced in
the following definition.

Definition 5.7 (set of allowed edges, set of allowed merges). Let G be a graph, let T be
a set of terminals, let t0 ∈ T be a root terminal, and let A be a set of allowed labels. The
set of allowed edges EA and the set of allowed merges MA are defined by

EA := {{(v, I), (w, I)}|{v, w} ∈ E(G) and (v, I), (w, I) ∈ A} and
MA := {{(v, I), (v, J)}|I ∩ J = ∅ and (v, I), (v, J), (v, I ∪ J) ∈ A}.



5.2. THE RESTRICTED DIJKSTRA-STEINER ALGORITHM 93

Algorithm 10 Restricted Dijkstra-Steiner Algorithm
Input: A graph G = (V,E), edge costs cE : E → R≥0, a set of terminals T ⊆ V , a root

terminal t0 ∈ T , a set of allowed labels A ⊆ V × 2T\{t0}, and a future cost function
f : A → R≥0.

Output: A (t0, T \ {t0})-tree with minimum cost or the information that no such tree
exists.

1: ∀(v, I) ∈ A set l(v, I)←∞ and b(v, I)← ∅, ∀t ∈ T \ {t0} set l(t, {t})← 0, set R← ∅
2: while ∃(v, I) ∈ A \R s.t. l(v, I) 6=∞ do
3: (v, I)← argmin(w,J)∈A\R l(w, J) + f(w, J)
4: R← R ∪ {(v, I)}
5: if v = t0 and I = T \ {t0} then
6: return the arborescence rooted at (t0, T \ {t0}) defined by b
7: for all w ∈ V with {v, w} ∈ E and (w, I) ∈ A \R do
8: if l(w, I) > l(v, I) + cE({v, w}) then
9: l(w, I)← l(v, I) + cE({v, w})

10: b(w, I)← {(v, I)}
11: for all (v, J) ∈ R with I ∩ J = ∅ and (v, I ∪ J) ∈ A \R do
12: if l(v, I ∪ J) > l(v, I) + l(v, J) then
13: l(v, I ∪ J)← l(v, I) + l(v, J)
14: b(v, I ∪ J)← {(v, I), (v, J)}
15: return No (t0, T \ {t0})-tree exists.

Theorem 5.8. The Restricted Dijkstra-Steiner algorithm can be implemented to run in

O(|A|(log|A|+ F + τ) + |EA|+ |MA|)

time, if

• the future cost of each allowed label can be evaluated in O(F ) time and

• τ is a chosen such that for each allowed label (v, I) ∈ A the set of allowed edges
and merges M = {(w, J)|{(v, I), (w, J)} ∈ EA ∪MA} that contain the label can be
computed in O(τ + |M |) time.

Proof. By caching the future cost values we can ensure that the future cost function is
evaluated at most once for every element of A. Hence, the runtime for all evaluations is
bounded by O(|A|F ).

We use a Fibonacci heap [Fredman and Tarjan, 1987] to store the labels in {(v, I) ∈
A \ R|l(v, I) 6= ∞}. Since every allowed label is selected at most once in line 3 we have
at most |A| extract-min operations, which require O(|A| log|A|) time. The number of
insert and decrease-key operations in line 9 and line 13 is at most |EA| and |MA| and each
operation requires amortized constant time. Hence the runtime of all heap operations is
O(|A| log|A|+ |EA|+ |MA|).



94 CHAPTER 5. STEINER TREE SEARCH

Since every allowed label is selected at most once in line 3, determining the sets of labels
that need to be considered in line 7 and line 11 requires O(|A|τ + |EA| + |MA|) time in
total.

The runtime for backtracking and for all other operations is dominated by the runtime for
the heap operations. Hence we get the desired runtime bound.

We note that the Restricted Dijkstra-Steiner algorithm can easily be extended to allow
non-negative node costs and merge costs in addition to edge costs. Moreover, each of
these types of costs can be generalized to depend on the involved terminal set or terminal
sets.

A different strategy for selecting the next allowed label (v, I) in line 3 of Algorithm 10
was developed by Stefan Rabenstein. Instead of future cost functions it uses so-called
certificates of validity and guaranteed errors to reduce the number of iterations of the
main loop. The approach can reduce the number of iterations but the selection of the
next allowed label becomes more difficult. For more information we refer to [Rabenstein,
2019].

5.3 Global Routing Aware Steiner Tree Search

In this section we discuss how the Restricted Dijkstra-Steiner algorithm can be used in our
application. We will restrict the search to solutions that are similar to the global routing
of the net in terms of topology and approximate location of Steiner points. Then using
the Restricted Dijkstra-Steiner algorithm has two main advantages: First, optimizing an
entire net can yield a shorter and more efficient solution. Second, this allows computing
solutions that are similar to the global routing, which is beneficial since global routing
optimizes objectives such as timing (see [Held et al., 2018]) that are not considered by
BonnRouteDetailed directly.

To simplify the presentation we consider the case that each pin of the net has a sin-
gle location where it should be accessed. Extending the approach to the general case is
straightforward. Hence, we identify each pin with a terminal t ∈ Z×Z×Z. We first define
what we mean by a global routing for a set of terminals T with root terminal t0.

Definition 5.9 (global routing). Let T ⊂ Z×Z×Z be a set of terminals with root terminal
t0 ∈ T . A global routing Sglobal for T and t0 is an arborescence with root t0 and set of
leaves T \ {t0} such that V (Sglobal) ⊂ Z× Z×Z and either x 6= x′, y 6= y′, or |z − z′| = 1
for each edge ((x, y, z), (x′, y′, z′)) ∈ E(Sglobal).

Recall from Definition 3.4 on page 27 that a routing area A = ∪i∈{1,...,l}ai is the union of
finitely many axis-parallel rectangles with disjoint interior. The rectangles ai are usually
the global routing tiles that intersect the global routing. We need the routing graph,
the global routing, and the routing area to be compatible in the sense of the following
definition.



5.3. GLOBAL ROUTING AWARE STEINER TREE SEARCH 95

Definition 5.10 (compatible). Let Sglobal be a global routing, let G be a routing graph,
and let A = ∪i∈{1,...,l}ai be a routing area. Sglobal, G, and A = ∪i∈{1,...,l}ai are compatible
if

• V (Sglobal) ⊂ A,

• there is a node v ∈ V (Sglobal) ∩ ai for every i ∈ {1, . . . , l},

• vw ∩ ∂(ai) ∈ {∅, v, w} for all {v, w} ∈ E(Sglobal) and i ∈ {1, . . . , l}, and

• for every v ∈ V (G) there is exactly one i ∈ {1, . . . , l} such that v ∈ ai.

We now define which terminal sets may be used in which parts of the routing area.

Definition 5.11 (allowed terminal sets, induced set of allowed labels). Let T be a set of
terminals with root terminal t0 ∈ T , let Sglobal be a global routing for T and t0, let G be
a routing graph such that T ⊆ V (G), and let A = ∪i∈{1,...,l}ai be a routing area such that
Sglobal, G, and A = ∪i∈{1,...,l}ai are compatible.

For each i ∈ {1, . . . , l} the set of allowed terminal sets Iai is defined by

Iai := { ∪i∈{1,...,m} Ji|m ∈ N and ∀i ∈ {1, . . . ,m} we have Ji ∈ I ′ai},

where

I ′ai := {I ⊆ T \ {t0}|∃w ∈ (T ∩ ai) ∪ (V (Sglobal) ∩ ∂(ai)) s.t.
I is the set of leaves of the sub-arborescence of Sglobal rooted at w}.

We define the set of allowed labels AI for T , t0, Sglobal, G, and A by

AI :=
⋃

i∈{1,...,l}

(V (G) ∩ ai)× Iai .

The idea is to define the set of allowed labels in such a way that we allow trees that are
similar to the global routing but can deviate from it locally to reduce the cost of the tree.
Within each tile we allow changing the topology and the location of Steiner points. See
Figure 5.3 for an illustration.

We note that our definition allows shortcutting for example if a global routing contains
a U-shape that intersects a 2 × 2-subgrid of global routing tiles. Moreover, if the global
routing crosses a tile boundary with two parallel paths and merges them afterwards it
allows merging the corresponding terminal sets in both tiles. If desired, this could be
avoided by subdividing edges that connect nodes of adjacent tiles. Then, on the new nodes
only the terminal sets which are used for crossing the corresponding boundary by the global
routing would be allowed.

It is also possible to use slightly different allowed terminal sets for example to avoid solu-
tions with unfavorable timing properties or to improve runtime. For example, we might
remove {t2, t3} and {t2, t4} from the set of allowed terminals sets in the tile containing t3



96 CHAPTER 5. STEINER TREE SEARCH

t0

t1
t2

t3

t4
{t4}

{t4} {t4}

{t2},{t3},{t4}
{t2, t3},
{t2, t4},
{t3, t4},
{t2, t3, t4}

{t2}

{t2, t3, t4}

{t1},

{t2, t3, t4},

{t1, t2, t3, t4}

{t1, t2, t3, t4}

{t1}

{t1}

Figure 5.3: Illustration of the sets of allowed terminal sets for the drawn global routing
and routing area for a net with five terminals. To make the figure clearer, the directed
edges of the global routing are drawn as if they were undirected. The routing area is
partitioned into 10 rectangles, corresponding to global routing tiles, each of which is labeled
with the elements of its allowed terminal sets. In the tile containing t3 we have I ′ai =
{{t2}, {t3}, {t4}, {t2, t3, t4}}. In reality, the routing area is three-dimensional.

in Figure 5.3. In practice, the routing area is also extended to neighboring layers to allow
local track changes, as discussed in Section 3.2, and appropriate sets of allowed terminal
sets would be defined there.

We can now define the Global Routing Aware Steiner Tree Problem.

Global Routing Aware Steiner Tree Problem
Input: A set of terminals T with root terminal t0 ∈ T , a global routing Sglobal for

T and t0, a routing graph G such that T ⊆ V (G), an edge cost function
cE : E(G)→ R≥0, and a routing area A = ∪i∈{1,...,l}ai, such that Sglobal, G,
and A = ∪i∈{1,...,l}ai are compatible.

Task: Find a (t0, T \ {t0})-tree with respect to AI with minimum cost or decide
that no (t0, T \ {t0})-tree exists. Here AI denotes the set of allowed labels
for T , t0, Sglobal, G, and A.

The Global Routing Aware Steiner Tree Problem is NP-hard since it contains the
Rectilinear Steiner Tree Problem, which is NP-hard [Garey and Johnson, 1977].
However, in our application the cardinality |Iai | of each set of allowed terminal sets is
bounded, which allows us to solve the problem efficiently.

Definition 5.12 (η-bounded). We call an instance (T, t0, Sglobal, A = ∪i∈{1,...,l}ai, G, cE)
of the Global Routing Aware Steiner Tree Problem η-bounded, if |Iai | ≤ η for
every i ∈ {1, . . . , l}.



5.3. GLOBAL ROUTING AWARE STEINER TREE SEARCH 97

Lemma 5.13. Let η ∈ N. Then η-bounded instances (T, t0, Sglobal, A = ∪i∈{1,...,l}ai, G, cE)
of the Global Routing Aware Steiner Tree Problem can be solved in time

O(|V (G)| log|V (G)|+ |E(G)|+ α(|V (G)|+ |V (Sglobal)|)),

where α is chosen such that for any given point v ∈ Z × Z × Z the set of indices {i ∈
{1, . . . , l}|v ∈ ai} can be computed in O(α) time.

Proof. By traversing Sglobal in post-order the sets

I ′ai = {I ⊆ T \ {t0}|∃w ∈ (T ∩ ai) ∪ (V (Sglobal) ∩ ∂(ai)) s.t.
I is the set of leaves of the sub-arborescence of Sglobal rooted at w}

for all i ∈ {1, . . . , l} can be computed in O(α|V (Sglobal)|) time. Since |I ′ai | ≤ η, the sets

Iai = { ∪i∈{1,...,m} Ji|m ∈ N and ∀i ∈ {1, . . . ,m} we have Ji ∈ I ′ai}

for all i ∈ {1, . . . , l} can also be computed in O(α|V (Sglobal)|) time.

In η-bounded instances we have at most η allowed labels for each node v ∈ V (G), i.e. the
set {I|(v, I) ∈ A} has cardinality at most η. This implies the bound |EA| ≤ η|E(G)| on
the size of the set of allowed edges and |MA| ≤ η2|V (G)| on the size of the set of allowed
merges. Hence we can compute EA and MA and organize them in a graph (AI , EA ∪MA)
in O(α|V (G)|) time.

By Theorem 5.8 with f ≡ 0 we can solve the resulting instance of the Restricted
Steiner Tree Problem in time

O(|A|(log|A|+ τ) + |EA|+ |MA|)
=O(|V (G)|(log|V (G)|) + τ) + |E(G)|)
=O(|V (G)|(log|V (G)|) + |E(G)|).

The last bound follows because we can use the graph (AI , EA ∪MA) to compute M =
{(w, J)|{(v, I), (w, J)} ∈ EA ∪MA} in O(|M |) time for every (v, I) ∈ A.

Hence, we get the desired runtime bound.

In BonnRouteGlobal the size of the global routing tiles is constant and does not depend
on the size of the instance and hence each tile contains only a constant number of nodes in
V (Sglobal). Therefore our instances are η-bounded for some large constant η ∈ N. Moreover,
the tiles whose closure contains a point can be computed with two binary searches in arrays
containing the boundary locations of the tiles in x- and y-dimension. If we assume that
these arrays are not too large compared to the routing graph the runtime of the algorithm
is near-linear in theory.

In practice more than 95% of the nets lead to 20-bounded instances, but there is also a
small fraction of instances that is not 10000-bounded. For such instances we can limit the
runtime by removing elements from the sets of allowed terminal sets.



98 CHAPTER 5. STEINER TREE SEARCH

To speed up the implementation we do not compute the sets of allowed edges EA and
allowed mergesMA before the tree search. Instead, we compute the set of allowed terminal
sets in each rectangle of the routing area and use that information to determine which edges
or terminal sets to consider in line 7 and line 11 of the algorithm.

Moreover, we use non-zero future costs to solve the Global Routing Aware Steiner
Tree Problem faster in practice. In the Dijkstra-Steiner algorithm good future costs are
much more important than in Dijkstra’s algorithm. With their best future costs [Hougardy
et al., 2017] report a reduction of the number of iterations of the main loop by a factor of at
least 500 on several instances. Hence, they use future cost functions that are comparatively
expensive to compute and even solve instances of the NP-hard Traveling Salesman
Problem to derive good future costs.

In our application good future cost are not as important as in the case A = V ×2T\{t0} and
the future costs proposed by [Hougardy et al., 2017] would be too expensive to compute.
We need future cost functions that can be evaluated very efficiently because the graphs in
our application are much larger and we need to connect millions of nets.

One option is to use bounding box future costs that extend the future costs for the path
search that consider all dimensions at once. For more information on the future costs for
the path search see Section 3.3.2. This generalizes an approach discussed briefly on page 23
of [Hougardy et al., 2017].

We will need some notation from Section 3.3. Recall that one component of the edge
costs in BonnRouteDetailed is given by a distance based cost function, a term introduced
in Definition 3.11 on page 32. For a distance based cost function c = (cwire, cviadown)
the function cwire specifies a cost per length for a given layer and dimension and cviadown

specifies the cost for vias which depends only on the involved via layer. It is compatible
with a routing graph G and an edge cost function cE if we have costc(e) ≤ cE(e) for each
edge e ∈ E(G), where costc(e) denotes the cost of e with respect to c. For [x1, x2] ×
[y1, y2] × [z1, z2] ⊂ R3 nonempty with z1, z2 ∈ Z we use costc([x1, x2] × [y1, y2] × [z1, z2])
to refer to the cost of a cheapest (x1, y1, z1)-(x2, y2, z2)-path with respect to c.

Lemma 5.14. Let (T, t0, Sglobal, A,G, cE) be an instance of the Global Routing Aware
Steiner Tree Problem with induced set of allowed labels AI and let c be a distance based
cost function that is compatible with G and cE. Then the function fbb : AI → R≥0 defined
by

fbb(v, I) := costc(BoundingBox({v} ∪ (T \ I)))

is a future cost function.

Proof. We need to show that fbb satisfies the three properties from Definition 5.4.

Property 1:
We have fbb(t0, T \ {t0}) = costc(BoundingBox({t0} ∪ (T \ (T \ {t0})))) = costc({t0}) = 0,
as required.



5.3. GLOBAL ROUTING AWARE STEINER TREE SEARCH 99

We will use the following simple observation to prove the other properties: Let B be an
axis-parallel cuboid and let {v, w} ∈ E(G) be an edge with w ∈ B. Then for B′ =
BoundingBox(B ∪ {v}) we have costc(B′) ≤ costc(B) + costc(vw). Since c is compatible
with G and cE we get costc(B′) ≤ costc(B) + cE({v, w}).

Property 2:
Let (v, I), (w, I) ∈ AI with {v, w} ∈ E(G). Then using the observation for {v, w} and
BoundingBox({w} ∪ (T \ I)) yields

fbb(v, I) ≤ costc(BoundingBox({v, w} ∪ (T \ I)))

≤ costc(BoundingBox({w} ∪ (T \ I))) + cE({v, w})
= fbb(w, I) + cE({v, w}),

as desired.

Property 3:
Let (v, I), (v, J) ∈ AI such that (v, I ∪ J) ∈ AI and I ∩ J = ∅. Let S be a cheapest
(v, J)-tree and let

VS = {w|∃K s.t. (w,K) ∈ V (S)} and
ES = {{w,w′}|∃K s.t. ((w,K), (w′,K)) ∈ E(S)}

be set of nodes and edges of G that occur in S. By using the observation iteratively we
get

fbb(v, I) ≤ costc(BoundingBox({v} ∪ (T \ (I ∪ J)) ∪ VS})

≤ costc(BoundingBox({v} ∪ (T \ (I ∪ J))) +
∑
e∈ES

cE(e)

≤ fbb(v, I ∪ J) + smt(v, J),

as desired.

To enable efficient queries of fbb we can compute the bounding box of each terminal set
in {T \ I|∃v s.t. (v, I) ∈ AI} before the tree search. Then evaluating fbb(v, I) requires
accessing the bounding box for T \I, extending it to include v, and querying the future cost
function from the path search. All these operations can be performed very efficiently. In
practice the computation is slightly more complicated because every pin can have multiple
locations where it can be accessed.

A strategy for obtaining better future costs is to generalize the rectangle-labeling approach
of [Peyer et al., 2009]. Their algorithm is a generalization of Dijkstra’s algorithm that
propagates cost functions on rectangles instead of individual nodes. We believe that it is
possible to generalize the Restricted Dijkstra-Steiner algorithm to label rectangles instead
of individual nodes and that this approach can be used to efficiently compute good future
costs. This is an interesting area for future research.

We note that the components of the same-net rule aware path search framework introduced
in Chapter 4 can be extended in a natural way to handle Steiner trees searches. The
only non-trivial modification is extending the multi-labeling to avoid violations at Steiner
points.



100 CHAPTER 5. STEINER TREE SEARCH

Finally, Figure 5.4 shows an example of a net that was routed by BonnRouteDetailed with
path searches and with a single tree search.

Figure 5.4: A global routing and two different detailed routings of the same net. The
detailed routing on the left was computed with path searches and the one on the right
with a single tree search. Note that the tree search leads to a shorter detailed routing that
is more similar to the global routing.



Chapter 6

Experimental Results

In this chapter we analyze how the path search presented in Chapter 3 and Chapter 4
performs on real-world IBM instances. First, in Section 6.1 we describe our testbed and
other parts of the setup that are identical for all runs. Then, in Section 6.2, we provide
experimental results demonstrating the effectiveness of the speed-up techniques presented
in Chapter 3. For example, making the search goal-oriented as discussed in Section 3.3
reduces the runtime of the path search by approximately two-thirds. Finally, Section 6.3
provides experimental results on the same-net rule aware path search framework presented
in Chapter 4 and on its components. Using all components reduces the number of violations
by a factor of approximately 443.

6.1 Testbed and Setup

The algorithms examined in this chapter were implemented as part of BonnRouteDetailed,
a state-of-the-art detailed router developed at the University of Bonn in joint work with
IBM. BonnRouteDetailed is the main detailed routing tool used by IBM for the design of
its processor chips. For more details on BonnRouteDetailed we refer to Section 2.2 and
[Gester et al., 2013; Ahrens et al., 2015].

Table 6.1 gives an overview of our testbed. It consists of 62 real-world instances varying in
size between 149 and 1.78 million nets. Each instance belongs to one of four groups: For
both the 7 nm and the 14 nm technology there is a set of Random Logic Macros (RLMs),
comparatively small instances, and a set of blocks, which are approximately one order of
magnitude larger on average. Moreover, the blocks have roughly twice as many layers on
average.

Some wiring, e.g. for clock nets is already present on the instances. On our testbed, the
input wiring has almost 17 thousand design rule violations in total (input DRVs), among
those roughly 14 thousand on the 14 nm blocks. Since BonnRouteDetailed does not try to
clean up violations in the input, most of them will still be present after BonnRouteDetailed.

101



102 CHAPTER 6. EXPERIMENTAL RESULTS

Average Image Size Input
Chip Set # Instances # Layers # Nets [mm2] DRVs
14 nm RLMs 28 6.0 1954118 2.34 261
14 nm blocks 4 13.5 4236762 4.89 13971
7 nm RLMs 21 8.9 2016798 0.92 1447
7 nm blocks 9 15.0 7612200 4.29 1204
Sum 62 15819878 16883

Table 6.1: Testbed consisting of 62 real-world 14 nm and 7 nm instances. The statistics
are summed up over all instances in the group of instances, except for the average number
of layers.

This is important in Section 6.3, which uses the number of design rule violations after
BonnRouteDetailed as a metric.

All runs were done on the same AMD EPYC 7601 machine with 64 CPUs and 512GB
main memory using 64 threads.

6.2 Efficient Path Search

We begin by analyzing the effect of the future cost functions presented in Section 3.3 which
speed up the search by guiding it towards the targets. In practice, we do an additional
preprocessing step and cluster nearby targets on the same layer, yielding a bounding box
for each cluster. The future costs are initialized with these bounding boxes instead of
the original targets. This can degrade the quality of the future costs but speeds up the
future cost computation and makes it more robust against instances with many targets. In
practice the effects cancel each other out: The clustering saves approximately 1% runtime
without any negative side-effects. It is used in all runs, except for the run with no future
costs.

Table 6.2 compares results with different future cost functions. Compared to using no fu-
ture costs, using the l1-future costs reduces the runtime of BonnRouteDetailed by 28.0%.
The number of labels and the runtime of the path search are reduced by 54.4% and 50.3%.
Using the shortest path future costs leads to a slightly larger improvement of 34.0% Bonn-
RouteDetailed runtime, 65.7% number of labels, and 62.2% path search runtime. Since
the shortest path future costs perform best, they are used in all other experiments.

In ripup searches, using l1- or shortest path future costs leads to a much smaller improve-
ment, e.g. 33.9% in the path search runtime with shortest path future costs, compared to
62.2% gain in all searches. This is expected since ripup searches use large penalty costs for
wires with conflicts and these costs are not accounted for in our future cost functions.

We note that the runtime for the preprocessing of the shortest path future costs (Algo-
rithm 4 on page 41) is less than one hour on the entire testbed, which is less than 1% of
the path search runtime.



6.2. EFFICIENT PATH SEARCH 103

BRD all searches ripup searches
Chip Set time [h:m] Labels ×106 time [h:m] Labels ×106 time [h:m]
14nm RLMs 4:31 243384 137:10 14881 29:22

3:25 97819 61:34 10608 21:42
-24.4% -59.8% -55.1% -28.7% -26.1%

3:07 82766 53:46 10074 21:09
-31.0% -66.0% -60.8% -32.3% -28.0%

14nm blocks 9:43 537151 347:43 37885 63:22
7:16 249557 181:59 28623 49:43

-25.2% -53.5% -47.7% -24.4% -21.5%
6:34 177728 132:09 24735 44:42

-32.3% -66.9% -62.0% -34.7% -29.5%
7nm RLMs 3:22 140056 105:13 9211 17:06

2:19 53122 41:28 6075 11:06
-31.2% -62.1% -60.6% -34.0% -35.1%

2:20 40943 32:14 5577 10:11
-30.8% -70.8% -69.8% -39.5% -40.4%

7nm blocks 19:10 802722 700:00 69017 141:22
13:30 385727 355:58 47866 97:57

-29.6% -51.9% -49.1% -30.6% -30.7%
12:14 289082 269:59 43399 89:56

-36.2% -64.0% -61.4% -37.1% -36.4%
Sum 36:46 1723313 1290:06 130994 251:13

26:29 786225 641:00 93171 180:29
-28.0% -54.4% -50.3% -28.9% -28.2%
24:15 590519 488:07 83784 165:58

-34.0% -65.7% -62.2% -36.0% -33.9%

Table 6.2: Comparison of BonnRouteDetailed with no future costs (black row), l1-future
costs (blue row) introduced on page 32, and shortest path future costs (orange row) using
Algorithm 4 on page 41 as preprocessing. The table shows BRD time, i.e. the wall time of
BonnRouteDetailed, the number of labels, and the runtime for all searches and for ripup
searches. Here ripup searches denotes all searches in which existing routing objects are
not seen as blockages and all searches denotes both ripup and non-ripup searches. The
runtime of the path searches is summed up over all 64 threads.

We now examine the effects of the grid region data structure presented in Section 3.4. The
grid region data structure allows BonnRouteDetailed to handle complex regional track
structures in the path search and to modify the routing graph locally, e.g. to simplify and
improve pin access. While this advantage is not fully used yet, the data structure also
performs some preprocessing steps that speed up queries during the path search. Table 6.3
shows that this reduces the runtime of BonnRouteDetailed by 10.3% and the runtime of
the path search by 24.2%. The bulk of the speed-up is due to the precomputation of the
track graph at the beginning of the path search when using the grid region data structure
which allows us to use handles to represent nodes in the path search and enables very
efficient queries as shown in Lemma 3.25 on page 46 and Lemma 3.28 on page 50. Without



104 CHAPTER 6. EXPERIMENTAL RESULTS

the grid region data structure, we need to store node locations during the path search.
Thus, queries for the location of neighbors and for the data associated with node-locations
are necessary (e.g. for accessing the label), which slows down the search. We note that in
ripup searches a larger percentage of the runtime is spent by the checking oracle, which is
not affected, and thus the runtime improvement is smaller with 10.9% compared to 24.2%
in all searches. Since using the grid region data structure leads to better results it is used
in all other experiments.

BRD all searches ripup searches
Chip Set time [h:m] time [h:m] time [h:m]
14nm RLMs 3:30 69:30 22:47

3:07 53:46 21:09
-10.9% -22.6% -7.2%

14nm blocks 7:42 185:44 51:29
6:34 132:09 44:42

-14.6% -28.9% -13.2%
7nm RLMs 2:24 41:52 11:38

2:20 32:14 10:11
-3.0% -23.0% -12.4%

7nm blocks 13:26 346:40 100:26
12:14 269:59 89:56
-9.0% -22.1% -10.5%

Sum 27:02 643:46 186:20
24:15 488:07 165:58

-10.3% -24.2% -10.9%

Table 6.3: Comparison of BonnRouteDetailed without the grid region data structure and
with the grid region data structure. The metrics are explained in Table 6.2.

Finally, we note (without providing a table) that returning intervals in the checking or-
acle, i.e. not checking each point individually but sharing checking data if possible, is
an important optimization: Disabling it increases the runtime of BonnRouteDetailed by
approximately 20%.

6.3 Same-Net Rule Aware Path Search

A layout can be manufactured only if it respects the design rules, i.e. there are no de-
sign rule violations. In production an industrial router is used to clean up the violations
remaining after BonnRouteDetailed. This step is very disruptive and often degrades tim-
ing properties of the net with the violation, but also of bystander nets that have to be
modified to resolve the violation. Violations remaining after the clean up must be fixed
manually. For this reason it is crucial to minimize the number of violations after Bonn-
RouteDetailed.

Table 6.4 shows that using the same-net rule aware path search (see Algorithm 9 on



6.3. SAME-NET RULE AWARE PATH SEARCH 105

page 84) reduces the number of design rule violations by 99.77%, compared to a version
of BonnRouteDetailed that uses shortest paths. This corresponds to a reduction in the
number of design rule violations by a factor of ≈ 443 from 2180 violations per one thousand
nets to 4.9 violations for every one thousand nets. If we subtract the roughly 17 thousand
input errors mentioned in Table 6.1 the violations even reduce by a factor of ≈ 565. The
version of BonnRouteDetailed used for these experiments is optimized for 7 nm. On the
7 nm RLMs and 7 nm blocks, the total number of design rule violations is even lower with
2.3 and 2.7 errors per thousand nets. The number of layer fuses is reduced by 85.3%.

BRD # Vias Wire Layer
Chip Set time [h:m] ×103 Length (m) Scenics 25 Fuses # DRVs
14nm RLMs 2:53 15815 34.1423 13750 2588 3677984

3:07 15854 34.2431 14743 872 9686
+8.37% +0.24% +0.30% +7.22% -66.31% -99.74%

14nm blocks 5:41 36009 87.7320 19675 18905 9549941
6:34 36036 88.0097 22865 4787 43252

+15.66% +0.08% +0.32% +16.21% -74.68% -99.55%
7nm RLMs 1:51 19766 20.1593 11167 15569 3561478

2:20 19831 20.2504 12025 1161 4729
+25.65% +0.33% +0.45% +7.68% -92.54% -99.87%

7nm blocks 9:27 83766 117.2131 75561 176256 17704337
12:14 84007 117.8299 85137 24570 20210

+29.44% +0.29% +0.53% +12.67% -86.06% -99.89%
Sum 19:52 155356 259.2467 120153 213318 34493740

24:15 155727 260.3331 134770 31390 77877
+22.09% +0.24% +0.42% +12.17% -85.28% -99.77%

Table 6.4: BonnRouteDetailed when using shortest paths (black row) and when using the
same-net rule aware path search (blue row). The table shows BRD time, i.e. the wall time
of BonnRouteDetailed, # vias, i.e. interconnects between different wiring layers, the wire
length, i.e. the length of the wiring in meters, and # DRVs, i.e. the number of design rule
violations. Furthermore it shows the number of scenic nets with detour of at least 25%
compared to a Steiner tree estimate and length at least 25µm and the number of layer
fuses, a configuration that often leads to bad timing behavior that is defined on page 80.

[Gester, 2015] and [Ahrens et al., 2015] report approximately one order of magnitude more
violations with roughly 53.5 and 58.4 violations per thousand nets. This indicates that
BonnRouteDetailed got much better at avoiding design rule violations.

Moreover, the same-net rule aware path search has reasonably little overhead, increasing
the runtime by 22.1%, the number of vias by 0.24%, and the wire length by 0.42%. “Scenics
25”, the number of nets with 25% or more detour compared to a Steiner tree estimate
and length at least 25 µm increase by 12.2%. Since avoiding design rule violations and
unfavorable configurations such as layer fuses may require detours, an increase in the
number of vias, the wire length, and the number of scenic nets is expected.

The enormous improvement in the number of design rule violations with relatively little side
effects demonstrates the effectiveness of the same-net rule aware path search framework.



106 CHAPTER 6. EXPERIMENTAL RESULTS

The remaining part of this section analyzes the contribution of its components: the post-
processing, the multi-labeling, and the protections.

6.3.1 Post-Processing

The post-processing from Section 4.4 is called after each path search and tries to resolve
violations by modifying the path locally. Table 6.5 shows that the post-processing reduces
the number of design rule violations by 89.5% with 16.1% runtime penalty and a small
increase in the number of vias, the wire length, and the number of scenic nets. Most of the
violations remaining after post-processing cannot be fixed locally and require modifying
the structure of the path. In that sense, the post-processing resolves the easiest-to-fix
violations.

BRD # Vias Wire Layer
Chip Set time [h:m] ×103 Length (m) Scenics 25 Fuses # DRVs
14nm RLMs 2:53 15815 34.1423 13750 2588 3677984

2:58 15828 34.1640 13847 2478 701852
+2.87% +0.08% +0.06% +0.71% -4.25% -80.92%

14nm blocks 5:41 36009 87.7320 19675 18905 9549941
6:58 36022 87.7950 20434 18938 1507334

+22.61% +0.04% +0.07% +3.86% +0.17% -84.22%
7nm RLMs 1:51 19766 20.1593 11167 15569 3561478

2:09 19790 20.1909 11450 15666 227366
+16.27% +0.12% +0.16% +2.53% +0.62% -93.62%

7nm blocks 9:27 83766 117.2131 75561 176256 17704337
10:58 83888 117.4539 77532 176717 1188227

+16.13% +0.15% +0.21% +2.61% +0.26% -93.29%
Sum 19:52 155356 259.2467 120153 213318 34493740

23:03 155528 259.6039 123263 213799 3624779
+16.07% +0.11% +0.14% +2.59% +0.23% -89.49%

Table 6.5: BonnRouteDetailed when using shortest paths (black row) and when using
shortest paths with post-processing (blue row). The metrics are the same as in Table 6.4.

6.3.2 Multi-Labeling

The multi-labeling from Section 4.5 modifies Dijkstra’s algorithm [Dijkstra, 1959] to avoid
design rule violations. Table 6.6 shows that using the default multi-labeling reduces the
number of violations by 95.7%. This improvement is on top of the improvement of the
post-processing which already resolved 89.5% of the violations. Moreover, the number
of layer fuses reduces by 85.5%. Runtime increases by only 4.2%, there are roughly the
same number of vias, 0.26% increased wire length, and 8.5% more scenic nets. Except for
the increase in the number of scenic nets, the increases are negligible. This shows that
the default multi-labeling resolves approximately 22 out of 23 violations remaining after
post-processing with very few negative side-effects.



6.3. SAME-NET RULE AWARE PATH SEARCH 107

BRD # Vias Wire Layer
Chip Set time [h:m] ×103 Length (m) Scenics 25 Fuses # DRVs
14nm RLMs 2:58 15828 34.1640 13847 2478 701852

3:03 15833 34.2338 14650 696 30882
+3.16% +0.03% +0.20% +5.80% -71.91% -95.60%

3:33 15840 34.2410 14594 687 22550
+19.71% +0.07% +0.23% +5.39% -72.28% -96.79%

14nm blocks 6:58 36022 87.7950 20434 18938 1507334
6:33 36024 88.0042 22695 4818 61785

-5.90% +0.00% +0.24% +11.06% -74.56% -95.90%
7:20 36022 88.0256 22687 4452 44681

+5.30% +0.00% +0.26% +11.03% -76.49% -97.04%
7nm RLMs 2:09 19790 20.1909 11450 15666 227366

2:14 19792 20.2401 11966 1081 10529
+3.46% +0.01% +0.24% +4.51% -93.10% -95.37%

2:31 19888 20.2819 12168 1193 9962
+16.62% +0.49% +0.45% +6.27% -92.38% -95.62%

7nm blocks 10:58 83888 117.4539 77532 176717 1188227
12:11 83873 117.7888 84465 24508 51473

+11.07% -0.02% +0.29% +8.94% -86.13% -95.67%
13:44 84228 117.9477 86238 23640 46088

+25.17% +0.41% +0.42% +11.23% -86.62% -96.12%
Sum 23:03 155528 259.6039 123263 213799 3624779

24:01 155523 260.2670 133776 31103 154669
+4.22% -0.00% +0.26% +8.53% -85.45% -95.73%

27:07 155978 260.4961 135687 29972 123281
+17.67% +0.29% +0.34% +10.08% -85.98% -96.60%

Table 6.6: The first row shows the results of BonnRouteDetailed when using shortest paths
with post-processing. In the blue row the multi-labeling is enabled as in Algorithm 9 on
page 84, i.e. we first search for a shortest path and repeat the search with increasingly
more restrictive label systems if violations remain. We refer to this version as default
multi-labeling. In the orange row the setup is the same as in the blue row, except that the
StandardRouting base label system is not available and that the framework starts with
the AvoidSpecificMistakes label system, i.e. multi-labeling is enabled in every path search.
The metrics are the same as in Table 6.4.

Recall that the checking data computed for one path search may be reused in a path
search with a different label system, as explained in Algorithm 9 on page 84. Without
this optimization the runtime of BonnRouteDetailed with default multi-labeling would be
approximately 10% higher.

Using multi-labeling in every search decreases the number of design rule violations even
further by 96.6% instead of 95.7% and the layer fuses by 86.0% instead of 85.5%. On the
other hand, it increases the number of vias by 0.29% instead of 0%, the wire length by
0.34% instead of 0.26%, and the number of scenic nets by 10.1% instead of 8.5%. Moreover,
the runtime increases by 17.7% instead of 4.2%.



108 CHAPTER 6. EXPERIMENTAL RESULTS

Comparing the results of both runs with multi-labeling yields some interesting insights:

First, observe that using multi-labeling in every path search reduces the number of de-
sign rule violations by approximately 20%, compared to the default multi-labeling. This
indicates that the same-net checking, which is used to control the multi-labeling, is reason-
ably effective, but that it might be possible to reduce the number of design rule violations
with the default multi-labeling by up to 20 additional percent by improving the same-net
checking.

Second, note that using AvoidSpecificMistakes or a more restrictive label system in ev-
ery path search leads to a very small increase in the number of vias, the wire length,
and the number of scenic nets. This shows that AvoidSpecificMistakes works as designed
in the sense that it has very little pessimism. Using the least restrictive version of the
AvoidAllMistakes label system of [Gester, 2015; Ahrens et al., 2015] in every search, which
we replaced by AvoidSpecificMistakes, lead to an increase in the number of vias by 2-
3%, compared to 0.29% with the AvoidSpecificMistakes label system, demonstrating that
AvoidSpecificMistakes has much less pessimism.

6.3.3 Protections

The protections from Section 4.6 impose restrictions to avoid design rule violations at the
start and end of paths. Table 6.7 shows that using the protections reduces the number
of design rule violations by 49.6% at the cost of some additional layer fuses on the RLMs
and 0.13% additional vias. All other differences are so small that they might be caused by
random fluctuations. The improvement in the number of design rule violations is on top of
the 89.5% gained by the post-processing and the 95.7% gained by the multi-labeling.

BRD # Vias Wire Layer
Chip Set time [h:m] ×103 Length (m) Scenics 25 Fuses # DRVs
14nm RLMs 3:03 15833 34.2338 14650 696 30882

3:07 15854 34.2431 14743 872 9686
+2.13% +0.13% +0.03% +0.63% +25.29% -68.64%

14nm blocks 6:33 36024 88.0042 22695 4818 61785
6:34 36036 88.0097 22865 4787 43252

+0.25% +0.04% +0.01% +0.75% -0.64% -30.00%
7nm RLMs 2:14 19792 20.2401 11966 1081 10529

2:20 19831 20.2504 12025 1161 4729
+4.45% +0.19% +0.05% +0.49% +7.40% -55.09%

7nm blocks 12:11 83873 117.7888 84465 24508 51473
12:14 84007 117.8299 85137 24570 20210

+0.35% +0.16% +0.03% +0.80% +0.25% -60.74%
Sum 24:01 155523 260.2670 133776 31103 154669

24:15 155727 260.3331 134770 31390 77877
+0.93% +0.13% +0.03% +0.74% +0.92% -49.65%

Table 6.7: The first row shows the results of BonnRouteDetailed with protections disabled.
In the blue row the protections are enabled. The metrics are the same as in Table 6.4.



Summary

In this thesis we consider detailed routing, an important step in the design of integrated
circuits. On large instances detailed routing requires packing millions of node-disjoint
Steiner trees into a graph with hundreds of billions of nodes, while respecting hundreds of
complicated design rules. The Steiner trees are usually composed of paths.

One of our main contributions is an efficient and flexible path search algorithm. Our path
search is the algorithmic core of BonnRouteDetailed, a state-of-the-art detailed router de-
veloped at the University of Bonn in joint work with IBM. It is being used very successfully
in the IBM design flow to design complex processor chips.

We show how to make the path search efficient while retaining flexibility. A key compo-
nent is our grid region data structure that speeds up the search and allows us to handle
complicated implicitly given grid graphs. Moreover, we make the search goal-oriented us-
ing the well-known concept of future costs. Our future costs are computed by solving a
geometric shortest path problem. We prove that the problem can be solved in logarithmic
time after a polynomial time preprocessing. Furthermore, we propose an algorithm for
solving this problem efficiently in practice, leading to a reduction of path search runtime
by approximately two-thirds in our experiments.

Moreover, we consider the problem of respecting design rules in the path search. Obeying
even simple rules is NP-hard. This follows from one of our main theoretical results that
given a two-dimensional grid graph and nodes s, t it is NP-complete to decide whether there
is an s-t-path in which each maximal straight subpath has length at least two. Nevertheless,
our path search is very good at respecting design rules in practice. Using our framework,
consisting of same-net checking, post-processing, multi-labeling, and protections, reduces
the number of violations by a factor of approximately 443 in our experiments. Its most
important component is the multi-labeling that allows us to find edge progressions that
satisfy certain properties specified by label systems. This allows us to respect design rules
in a correct-by-construction manner. Our multi-labeling is more general and more efficient
than previous ones, which allows us to respect more rules while being less restrictive.

We compare our path search to the previous implementation in BonnRouteDetailed based
on [Hetzel, 1995, 1998]: Ours supports more general cost functions, leads to vastly superior
detailed routings, and is less complicated and much easier to extend.

Composing Steiner trees of paths can lead to non-optimal solutions. Hence, we extend
our path search to compute optimal Steiner trees respecting restrictions on the topology

109



110 SUMMARY

and on the location of Steiner points derived from the global routing. To achieve this we
introduce the Restricted Dijkstra-Steiner algorithm, which generalizes the Dijkstra-Steiner
algorithm. In our application the Restricted Dijkstra-Steiner algorithm achieves near-linear
runtime under mild assumptions. This is possible because the restrictions actually make
the problem easier.

Due to the better algorithmic core that we describe in this thesis, our new BonnRoute
computes excellent routing solutions fast and is being used by IBM for the design of all its
processor chips. Moreover, we lay the foundation for future enhancements.



Bibliography

Ahrens, M. (2014). Pin access in VLSI-routing. Master’s thesis, University of Bonn. (Cited
on page 17)

Ahrens, M., Gester, M., Klewinghaus, N., Müller, D., Peyer, S., Schulte, C., and Téllez, G.
(2015). Detailed routing algorithms for advanced technology nodes. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 34(4):563–576. (Cited
on pages 2, 13, 17, 56, 57, 58, 69, 70, 76, 77, 79, 83, 101, 105, and 108)

Alpert, C. J., Mehta, D. P., and Sapatnekar, S. S. (2008). Handbook of algorithms for
physical design automation. CRC Press. (Cited on pages 3 and 7)

Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wag-
ner, D., and Werneck, R. F. (2016). Route planning in transportation networks. In
Algorithm Engineering, pages 19–80. Springer. (Cited on page 26)

Byrka, J., Grandoni, F., Rothvoß, T., and Sanità, L. (2013). Steiner tree approximation
via iterative randomized rounding. Journal of the ACM (JACM), 60(1):1–33. (Cited on
page 87)

Chang, F.-Y., Tsay, R.-S., Mak, W.-K., and Chen, S.-H. (2013). MANA: A shortest path
maze algorithm under separation and minimum length nanometer rules. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 32(10):1557–1568.
(Cited on page 59)

Chen, G., Pui, C.-W., Li, H., and Young, E. F. (2019). Dr. CU: Detailed routing by sparse
grid graph and minimum-area-captured path search. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. (Cited on page 59)

Cherkassky, B. V., Goldberg, A. V., and Radzik, T. (1996). Shortest paths algorithms:
Theory and experimental evaluation. Mathematical Programming, 73(2):129–174. (Cited
on page 23)

Chlebikova, J. and Chlebík, M. (2008). The Steiner tree problem on graphs: Inapproxima-
bility results. Theoretical Computer Science, 406(3):207–214. (Cited on page 87)

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms. MIT Press. (Cited on page 24)

111



112 BIBLIOGRAPHY

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271. (Cited on pages 23 and 106)

Dobkin, D. and Lipton, R. J. (1976). Multidimensional searching problems. SIAM Journal
on Computing, 5(2):181–186. (Cited on page 36)

Dreyfus, S. E. (1969). An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412. (Cited on page 25)

Dreyfus, S. E. and Wagner, R. A. (1971). The Steiner problem in graphs. Networks,
1(3):195–207. (Cited on page 87)

Edelsbrunner, H., Guibas, L. J., and Stolfi, J. (1986). Optimal point location in a monotone
subdivision. SIAM Journal on Computing, 15(2):317–340. (Cited on page 38)

Erickson, R. E., Monma, C. L., and Veinott Jr, A. F. (1987). Send-and-split method for
minimum-concave-cost network flows. Mathematics of Operations Research, 12(4):634–
664. (Cited on page 87)

Fellows, M. R., Kratochvíl, J., Middendorf, M., and Pfeiffer, F. (1995). The complexity of
induced minors and related problems. Algorithmica, 13(3):266–282. (Cited on page 60)

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615. (Cited
on pages 23 and 93)

Gao, J.-R. and Pan, D. Z. (2012). Flexible self-aligned double patterning aware detailed
routing with prescribed layout planning. In Proceedings of the ACM International Sym-
posium on Physical Design, pages 25–32. (Cited on page 59)

Garey, M. R. and Johnson, D. S. (1977). The rectilinear Steiner tree problem is NP-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834. (Cited on pages 87
and 96)

Gester, M. (2015). VLSI Routing for Advanced Technology. PhD thesis, University of
Bonn. (Cited on pages 2, 56, 57, 58, 69, 70, 74, 76, 77, 79, 83, 105, and 108)

Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., and Vygen, J. (2013). Bonn-
Route: Algorithms and data structures for fast and good VLSI routing. ACM Trans-
actions on Design Automation of Electronic Systems (TODAES), 18(2):32. (Cited on
pages 12, 13, 24, 29, and 101)

Goldberg, A. V. and Harrelson, C. (2005). Computing the shortest path: A search meets
graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 156–165. Society for Industrial and Applied Mathematics. (Cited on
page 32)

Goldberg, A. V., Kaplan, H., and Werneck, R. F. (2006). Reach for A*: Efficient point-
to-point shortest path algorithms. In Proceedings of the Eighth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 129–143. SIAM. (Cited on page 26)



BIBLIOGRAPHY 113

Goldberg, A. V. and Werneck, R. F. F. (2005). Computing point-to-point shortest paths
from external memory. In Proceedings of the Seventh Workshop on Algorithm Engineering
and Experiments (ALENEX 2005), pages 26–40. (Cited on page 25)

Gonçalves, S. M., Rosa, L. S., and Marques, F. S. (2019). DRAPS: A design rule aware
path search algorithm for detailed routing. IEEE Transactions on Circuits and Systems
II: Express Briefs. (Cited on page 59)

Güting, R. H. (1984). An optimal contour algorithm for iso-oriented rectangles. Journal
of Algorithms, 5(3):303–326. (Cited on page 67)

Gutman, R. J. (2004). Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. Workshop on Algorithm Engineering and Experiments
(ALENEX), 4:100–111. (Cited on page 26)

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107. (Cited on page 29)

Held, S., Müller, D., Rotter, D., Scheifele, R., Traub, V., and Vygen, J. (2018). Global
routing with timing constraints. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 37(2):406–419. (Cited on pages 12 and 94)

Henke, D. (2016). Pfadsuche im Detailed Routing. Bachelor’s thesis, University of Bonn.
(Cited on pages 29, 31, 34, 35, 40, and 41)

Hetzel, A. (1995). Verdrahtung im VLSI-Design: Spezielle Teilprobleme und ein se-
quentielles Lösungsverfahren. PhD thesis, University of Bonn. (Cited on pages
2, 11, 21, 24, 25, 32, 55, 56, and 109)

Hetzel, A. (1998). A sequential detailed router for huge grid graphs. In Design, Automa-
tion and Test in Europe, 1998., Proceedings, pages 332–338. IEEE. (Cited on pages
2, 11, 21, 24, 25, 29, 32, 55, 56, and 109)

Hougardy, S., Silvanus, J., and Vygen, J. (2017). Dijkstra meets Steiner: a fast exact goal-
oriented Steiner tree algorithm. Mathematical Programming Computation, 9(2):135–202.
(Cited on pages 1, 2, 12, 87, 88, 92, and 98)

Humpola, J. (2009). Schneller Algorithmus für kürzeste Wege in irregulären Gittergraphen.
Diplomarbeit, University of Bonn. (Cited on page 56)

Ikeda, T., Hsu, M.-Y., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku,
K., and Mitoh, K. (1994). A fast algorithm for finding better routes by AI search
techniques. In Proceedings of VNIS’94-1994 Vehicle Navigation and Information Systems
Conference, pages 291–296. IEEE. (Cited on page 25)

Kahng, A. B., Wang, L., and Xu, B. (2018). TritonRoute: an initial detailed router for ad-
vanced VLSI technologies. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE. (Cited on page 59)



114 BIBLIOGRAPHY

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Springer. (Cited on page 87)

Kirkpatrick, D. (1983). Optimal search in planar subdivisions. SIAM Journal on Comput-
ing, 12(1):28–35. (Cited on page 38)

Klewinghaus, N. (2013a). Effiziente Detailverdrahtung (efficient detailed routing). Diplo-
marbeit, University of Bonn. (Cited on pages 15 and 27)

Klewinghaus, N. (2013b). Fast parallelisation for detailed routing in VLSI design. Diplo-
marbeit, University of Bonn. (Cited on pages 13 and 19)

Klewinghaus, N. (2020). Efficient Detailed Routing. Draft of PhD thesis, University of
Bonn. (Cited on pages 9, 13, 14, 16, 54, and 55)

Korte, B., Rautenbach, D., and Vygen, J. (2007). Bonntools: Mathematical innovation for
layout and timing closure of systems on a chip. Proceedings of the IEEE, 95(3):555–572.
(Cited on page 12)

Korte, B. and Vygen, J. (2018). Combinatorial Optimization: Theory and Algorithms.
Sixth edition. Springer. (Cited on page 3)

Kramer, M. R. and van Leeuwen, J. (1982). Wire-routing is NP-complete. Department of
Computer Science, University of Utrecht. (Cited on page 11)

Kratochvíl, J., Lubiw, A., and Nešetřil, J. (1991). Noncrossing subgraphs in topological
layouts. SIAM Journal on Discrete Mathematics, 4(2):223–244. (Cited on page 60)

Lavagno, L., Markov, I. L., Martin, G., and Scheffer, L. K. (2016). Electronic design
automation for IC implementation, circuit design, and process technology. CRC Press.
(Cited on page 3)

Li, H., Chen, G., Jiang, B., Chen, J., and Young, E. F. (2019). Dr. CU 2.0: A scalable
detailed routing framework with correct-by-construction design rule satisfaction. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–7.
IEEE. (Cited on page 59)

Lichtenstein, D. (1982). Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343. (Cited on page 60)

Lin, Y.-H., Yu, B., Pan, D. Z., and Li, Y.-L. (2012). TRIAD: A triple patterning lithogra-
phy aware detailed router. In Proceedings of the International Conference on Computer-
Aided Design, pages 123–129. (Cited on page 59)

Lipton, R. J. and Tarjan, R. E. (1980). Applications of a planar separator theorem. SIAM
Journal on Computing, 9(3):615–627. (Cited on page 38)

Liu, Y., Morgana, A., and Simeone, B. (1998). A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Applied Mathematics, 81(1-3):69–91.
(Cited on page 61)



BIBLIOGRAPHY 115

Ma, Q., Zhang, H., and Wong, M. D. (2012). Triple patterning aware routing and its
comparison with double patterning aware routing in 14nm technology. In Proceedings of
the 49th Annual Design Automation Conference, pages 591–596. (Cited on page 59)

Maßberg, J. and Nieberg, T. (2013). Rectilinear paths with minimum segment lengths.
Discrete Applied Mathematics, 161(12):1769–1775. (Cited on pages 59 and 67)

Mirsaeedi, M., Torres, J. A., and Anis, M. (2011). Self-aligned double-patterning (SADP)
friendly detailed routing. In Design for Manufacturability through Design-Process In-
tegration V, volume 7974, pages 79740O–1–79740O–9. International Society for Optics
and Photonics. (Cited on page 59)

Müller, D. (2009). Fast Resource Sharing in VLSI routing. PhD thesis, University of Bonn.
(Cited on pages 12, 16, and 55)

Müller, D., Radke, K., and Vygen, J. (2011). Faster min–max resource sharing in theory
and practice. Mathematical Programming Computation, 3(1):1–35. (Cited on page 12)

Nicholson, T. A. J. (1966). Finding the shortest route between two points in a network.
The Computer Journal, 9(3):275–280. (Cited on page 25)

Nieberg, T. (2011). Gridless pin access in detailed routing. In 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 170–175. IEEE.
(Cited on page 59)

Nohn, F. (2012). Detailed Routing im VLSI-Design unter Berücksichtigung
von Multiple-Patterning. Diplomarbeit, University of Bonn. (Cited on pages
2, 56, 57, 58, 69, 70, 74, 76, 77, and 79)

Peyer, S., Rautenbach, D., and Vygen, J. (2009). A generalization of Dijkstra’s short-
est path algorithm with applications to VLSI routing. Journal of Discrete Algorithms,
7(4):377–390. (Cited on pages 24, 42, and 99)

Rabenstein, S. (2019). Cheapest detailed routes with restrictions and reservations. Master’s
thesis, University of Bonn. (Cited on pages 53, 88, 91, 92, and 94)

Rubin, F. (1974). The Lee path connection algorithm. IEEE Transactions on Computers,
100(9):907–914. (Cited on page 29)

Sarnak, N. and Tarjan, R. E. (1986). Planar point location using persistent search trees.
Communications of the ACM, 29(7):669–679. (Cited on page 38)

Scheifele, R. (2019). Timing-Constrained Global Routing with RC-Aware Steiner Trees and
Routing Based Optimization. PhD thesis, University of Bonn. (Cited on page 12)

Schulte, C. (2012). Design Rules in VLSI Routing. PhD thesis, University of Bonn. (Cited
on pages 7, 16, and 54)

Sommer, C. (2014). Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):1–31. (Cited on page 24)



116 BIBLIOGRAPHY

Sterin, A. (2015). Postprocessing von Pfaden im Detailed Routing. Bachelor’s thesis,
University of Bonn. (Cited on pages 58 and 68)

Vygen, J. (2011). Faster algorithm for optimum Steiner trees. Information Processing
Letters, 111(21-22):1075–1079. (Cited on page 88)

Wagner, D. and Willhalm, T. (2007). Speed-up techniques for shortest-path computa-
tions. In Annual Symposium on Theoretical Aspects of Computer Science, pages 23–36.
Springer. (Cited on page 24)

Xu, X., Cline, B., Yeric, G., Yu, B., and Pan, D. Z. (2015). Self-aligned double pattern-
ing aware pin access and standard cell layout co-optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(5):699–712. (Cited on
page 59)

Xu, X., Yu, B., Gao, J.-R., Hsu, C.-L., and Pan, D. Z. (2016). PARR: Pin-access planning
and regular routing for self-aligned double patterning. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 21(3):42. (Cited on page 59)

Zhang, Y. and Chu, C. (2011). RegularRoute: An efficient detailed router with regu-
lar routing patterns. In Proceedings of the 2011 International Symposium on Physical
Design, pages 45–52. (Cited on page 59)


	Introduction
	Preliminaries
	The Detailed Routing Problem
	Overview of BonnRoute
	Global Routing with BonnRouteGlobal
	Detailed Routing with BonnRouteDetailed


	Efficient Path Search
	Path Search in Huge Routing Graphs
	Routing Area
	Goal-Oriented Search Using Future Costs
	Considering Each Dimension Separately
	Considering All Dimensions at Once
	Possible Improvements

	Working on Implicitly Given Routing Graphs
	Track Oracle and Checking Oracle
	Replacing the Algorithmic Core of BonnRouteDetailed

	Same-Net Rule Aware Path Search
	Obeying Same-Net Rules
	Respecting Same-Net Rules is NP-Hard
	Same-Net Checking
	Post-Processing
	Multi-Labeling
	Label Systems used by BonnRouteDetailed
	Selecting a Label System

	Protections
	Same-Net Rule Aware Path Search in BonnRouteDetailed

	Steiner Tree Search
	The Steiner Tree Problem
	The Restricted Dijkstra-Steiner Algorithm
	Global Routing Aware Steiner Tree Search

	Experimental Results
	Testbed and Setup
	Efficient Path Search
	Same-Net Rule Aware Path Search
	Post-Processing
	Multi-Labeling
	Protections


	Summary
	Bibliography

