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Introduction

Many of the most important decisions in life are made from a place of uncertainty.
Consider the question of how much of one’s savings should be invested in the stock
market. The answer hinges on how stock prices will evolve, which is unknown at
the time the decision has to be taken and subject to many possible future influences,
ranging from technological breakthroughs to pandemics. How do individuals deal
with such uncertainty? How should they? This thesis consists of three self-contained
essays that aim to shed light on these questions.

The benchmark model of economics, expected utility theory, assumes that individu-
als manage uncertainty by forming beliefs about all relevant events and that these
beliefs satisfy the probability axioms. Knight (2012) observed that whilst the risk
of coinflips is readily quantified, the uncertainty of natural events is not. There is
thus ample scope for individuals to come to radically different conclusions on the
likelihood of events. The first chapter of this thesis examines differences between
individuals in how their beliefs evolve in the context of stock returns. In this
chapter, which is joint with Hans-Martin von Gaudecker, we analyse a long panel
of households’ stock market beliefs to gain insights into the nature of the levels,
dynamics, and informativeness of these expectations. In a first step, we classify
respondents into one of five groups based on their beliefs data alone. In a second
step, we estimate models of expectations at the group level so that belief levels,
volatility, and response to information can vary freely across groups. At opposite
extremes in terms of optimism, we identify pessimists who expect substantially
negative returns and financially sophisticated individuals whose expectations are
close to the historical average. Two groups expect average returns around zero
and differ only in how they respond to information: Extrapolators who become
more optimistic following positive information and mean-reverters for whom the
opposite is the case. The final group is characterised by its members being unable
or unwilling to quantify their beliefs about future returns.

Since Ellsberg (1961), we have known that expected utility theory cannot fully
account for how individuals choose under uncertainty. In some settings, observed
decisions of a sizable fraction of individuals cannot be explained with any probabilis-
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tic belief. This suggests that heterogeneity in how individuals manage uncertainty
goes beyond beliefs, extending to what has become known as ambiguity attitudes.
Analysis of these attitudes for natural events is the subject of the second chapter,
which is joint with Hans-Martin von Gaudecker and Christian Zimpelmann. We
analyse the stability and distribution of ambiguity attitudes using a representative
sample. We employ four waves of data from a survey instrument with high-powered
incentives. Structural estimation of random utility models yields three individual-
level parameters: Ambiguity aversion, likelihood insensitivity or perceived level
of ambiguity, and the variance of decision errors. We demonstrate that these
parameters are very heterogeneous but fairly stable over time and across domains.
These contexts span financial markets, our main application, and climate change.
The ambiguity parameters are interdependent in their interpretation and the
precision of their estimates depends on decision errors. To describe heterogeneity
in these three dimensions, we adopt a discrete classification approach. A third of
our sample comes rather close to the behaviour of expected utility maximisers. Half
of the sample is characterized by a high likelihood insensitivity, with thirty per cent
ambiguity-averse and twenty per cent making ambiguity-seeking choices for most
events. For the remaining eighteen per cent, we estimate sizeable error parameters,
which implies that no robust conclusions about their ambiguity attitudes are possi-
ble. Predicting group membership with a large number of observed characteristics
shows reasonable patterns.

The difficulty of finding reliable probabilities for uncertain events raises the question
how individuals aspiring to be rational should approach it. One intriguing proposal
is to turn to prediction markets (Arrow, Forsythe, Gorham, Hahn, Hanson, et al.,
2008) or bookmakers. In the third chapter, I examine betting odds, which are often
seen as a credible source of predictions for future events in sports, politics, and enter-
tainment. Who will win Wimbledon, who will be the next US President and which
movie will win Best Picture at the Oscars? Betting odds, offered by bookmakers or
by traders in prediction markets, typically exist for answers to each of these ques-
tions and can be turned into implied probabilities. Are these well-calibrated in the
sense that they indicate the empirical frequency of outcomes? Do they incorporate
publicly available information that might be relevant for prediction? Using a large
sample of ATP tennis matches, I investigate these questions with machine learning
methods that combine model-based ratings of player strength with a large number
of other player features to estimate probabilities. I find that, in almost all settings,
implied probabilities are very well calibrated and can be regarded as probabilities
of events that condition on an information set containing publicly available statis-
tics on players and matches. They reduce the error of the best prediction model by
around 1.3% in terms of negative log-likelihood.
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Chapter 1

Heterogeneity in households’ stock
market beliefs: Levels, dynamics and
epistemic uncertainty?

Joint with Hans-Martin von Gaudecker

1.1 Introduction

Understanding households’ stock market expectations is critical for models of life-
cycle behaviour, portfolio choice, and asset pricing. A number of key facts have been
established for the cross-section of subjective beliefs about equity returns (Manski,
2004; and Hurd, 2009, provide excellent overviews, we pay detailed credit below).
Beliefs differ widely across individuals. On average, they tend to be pessimistic rela-
tive to historical returns. Stated beliefs exhibit focal point responses; when it comes
to probabilities, 50:50 is a particularly common answer. Stated expectations of a
sizeable fraction of individuals are not consistent with the laws of probability. Opti-
mism and consistency of beliefs are positively related to socio-economic variables in
general and measures of financial sophistication in particular.
More recently, additional attention has been paid to the process of belief formation as
a potential source of this heterogeneity. Taking a long-term perspective, Malmendier
and Nagel (2011) show that individuals who experienced larger stock returns over
the course of their lives tend to expect larger future returns. Greenwood and Shleifer

? We would like to thank Stéphane Bonhomme, Andreas Dzemski, Charles Manski, Simas Kucin-
skas, and JoachimWinter as well as participants of the first CRC-TR 224 conference, the Ifo/LMU/CRC-
TR 190 Workshop on Subjective Expectations and Probabilities in Economics, and the 2018 Economet-
ric Society European Meetings, for their comments. We thank Matthias Vollbracht from Media Tenor
International for giving us access to data and Andreas Dzemski for sharing and explaining the code
calculating the test statistic from Dzemski and Okui (2018). Both authors are grateful for financial
support by the German Research Foundation (DFG) through CRC-TR 224 (Project C01)
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(2014) find that on average, beliefs extrapolate recent stock market performance
into the future. Adam, Marcet, and Beutel (2017) test the rational expectations
hypothesis using subjective expectations data and reject it. Barberis, Greenwood, Jin,
and Shleifer (2015) and Adam, Marcet, and Nicolini (2016) develop asset pricing
models that feature investors with non-standard belief formation processes, showing
that this matters for aggregate outcomes.
Starting from these sets of observations, this paper estimates processes for the for-
mation of households’ stock market beliefs, taking into account heterogeneity in
levels, volatility, response to information, and epistemic uncertainty. We make use
of an unusually long panel of probabilistic belief statements in the RAND American
Life Panel, which was commissioned by and first described in Hurd and Rohwedder
(2011). We start by verifying in our data the key facts in the cross section and on
average belief formation, expanding upon them in several directions. Most impor-
tantly, we add the tone of recent media reports on the economy in U.S. television as
an additional source of information. We do so because respondents overwhelmingly
cite the state of the economy as a driver of their return expectations while at the
same time, many claim to not follow the stock market and report incorrect values
for realised returns, making it unlikely that the behaviour of stock prices is their
prime source of information.
Our analysis of belief heterogeneity focuses on four dimensions: Levels, volatility,
response to recent stock market returns and economic news, and epistemic uncer-
tainty. The average time series dimension of our data is 26, which is too short for
estimation at the individual level. In order to allow for heterogeneity along the
four dimensions, we employ the discretisation approach proposed in Bonhomme,
Lamadon, and Manresa (2017). In a first step, we use the k-means clustering al-
gorithm to assign individuals to groups based on the dependent variable. We use a
number of individual-level moments relating to levels and volatility, its covariances
with recent stock market returns and economic news, and measures of consistency
and self-stated information content. These variables thus capture the four dimen-
sions of interest. The procedure yields groups that are similar in spirit to the types
studied in Dominitz and Manski (2011), whose beliefs also differ in their levels,
volatility and response to recent stock market returns.
We focus on five groups in our main specification. Using less groups mixes individ-
uals with very different economic behaviours; adding more leads to relatively little
additional insights at the expense of making the results harder to summarise. We
show that our groups are stable across specifications; varying important features of
the sample or of the classifying procedure changes little. Results of the diagnostic
tests for group membership by Dzemski and Okui (2018) further corroborate our
choice of groups and modelling strategy. All groups are reasonably large with sizes
ranging between 13% and 26% of the sample.
In a second step, we estimate models relating respondents’ beliefs about future stock
prices to past returns of the Dow Jones and the tonality of economic news, allowing
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parameters to fully vary across groups. We find that one group consists of individuals
whose expectations are close to the historical performance of the stock market and
who respond slightly positively to recent returns and news about the economy. They
have very low rates of inconsistencies. This behaviour is the closest we get to ratio-
nal expectations; we thus label them “sophisticates”. Correlating group membership
with other observables, they stand out for having better knowledge of financial mar-
kets and the stock market in particular. At the other extreme of average expectations,
we estimate one group with substantially negative return expectations and little re-
action to returns or news. We label them “pessimists”; they have average values
for inconsistencies in the belief elicitation procedure. The latter also is true for two
more groups who both have return expectations around zero. Of all groups, these
two react the strongest to both returns and news, but in completely different ways.
One expects recent trends to continue (“extrapolators”); the other expects them to
revert again (“mean reverters”). The last group stands out from the rest in that its
members frequently give 50:50 answers when asked about probability judgements
and state that these are their way of expressing epistemic uncertainty in a follow-
up question; their belief measures often violate the laws of probability calculus. We
label this group “ignorants”; correlations with other characteristics reveal that its
members indeed do not pay much attention to the stock market.
We show that the groups we identify have very different levels of stockholding and
trading behaviour. The level of heterogeneity in trading profiles over our sample
period arises because of our classification into groups based on (time-series) fea-
tures of the dependent variable. Our findings are robust to a number of choices
regarding the treatment of the data and to parameters of the classification proce-
dure. Our approach of first grouping indivduals based on the dependent variable
and estimating group-level models achieves much higher goodness of fit than using
observables alone in a classical regression analysis. This is consistent with recent
evidence from a mixed survey-administrative dataset in Giglio, Maggiori, Stroebel,
and Utkus (2019), who document persistent heterogeneity in the levels of beliefs
that is difficult to explain with observable characteristics.
In a final step, we use the method of Coibion and Gorodnichenko (2015) to test
whether the expectations of any of our groups could be characterised as rational
in the sense that their forecast errors are unpredictable. We find that this is not the
case; all overreact to current information. This is in line with Bordalo, Gennaioli, Ma,
and Shleifer (2018) who find evidence of overreaction for a range of macroeconomic
variables, and unsurprising in light of how difficult it is to predict stock return better
than the historical average does.
The rest of the paper is organised as follows. Section 2 describes our data, connects
it to prior literature, establishes the key stylised facts for our data, and outlines our
empirical strategy. In section 3, we present the results, including the descriptions
of several robustness analyses, the details of which are relegated to the appendix.
Section 4 concludes.
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1.2 Data, stylised facts, and empirical strategy

We analyse data from the RAND American Life Panel (ALP, see https://alpdata.rand.
org) that were collected between 2008 and 2016. The ALP is a panel representative
of the U.S. population whose members are regularly interviewed over the Internet.
Households lacking internet access upon recruitment were provided laptops to limit
selection bias. In addition to providing a large set of background characteristics from
regular surveys, the ALP serves as a laboratory for researchers who are able to collect
data at low costs. Hurd and Rohwedder (2011) describe the first waves of the data
that include the measures of stock market beliefs forming the core of our study;
these are part of a survey module developed to assess the effects of the financial
crisis on household behaviour and well-being. Next to many background variables,
we are able to link several other surveys containing data on financial numeracy and
knowledge, probability numeracy, and portfolio choices. Table 1.A.1 in the appendix
contains the exact references for all variables that we use.
Table 1.1 contains summary statistics of the covariates we use in our main speci-
fication. Throughout the paper, we apply the same sampling restrictions, namely
observing at least 5 waves of stock market beliefs. The age structure of our sample
skews somewhat older than the adult population. Compared with the 2010 Census,
our sample includes more individuals aged between 50 and 65 and less under the
age of 30. Women are slightly overrepresented, and individuals in our sample are
substantially better educated. The fraction of individuals whose highest educational
attainment is high school and below is less than half of what it was in the population
in 2010.
Our data include answers to several questions that probe subjects’ engagement with
the stock market. We use a measure of whether subjects participated in the stock
market beyond retirement accounts (such as an IRA, 401(k) and similar). They were
also asked to self-assess the extent to which they follow and understand the stock
market. Table 1.1 shows that the majority of the respondents in our sample has not
engaged much with the stock market. Three quarters do not own stocks outside
of their retirement accounts. Less than half of respondents claim they follow the
market; only 40% consider themselves to have a good understanding of it. For a
subset of respondents, we also have a measure that explicitly tests their knowledge
of past returns. Individuals were first asked to select the sign of the return or indicate
that they do not know, then the magnitude by choosing one of several bins. As the
actual returns were between 7% and 16%when respondents answered the question,
we count answers of [0%, 10%] and [10%,20%] as correct. 42% of respondents fall
into this category. 7% estimate a larger value, 31% choose the “don’t know” option
and twenty percent give a negative sign.
The ALP data contain a standard battery of questions measuring financial literacy,
which is a key predictor of financial decision making (Lusardi and Mitchell (2014)).
We use data from a wave that was in the field between March and September 2009.

https://alpdata.rand.org
https://alpdata.rand.org
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Table 1.1. Descriptive Statistics - Individual characteristics

Variable Observations Mean Std. dev. q0.1 q0.5 q0.9

Age: ≤ 30 3030 0.14
Age: ∈ (30, 50] 0.33
Age: ∈ (50, 65] 0.37
Age: ≥ 65 0.16

Female 3030 0.59

Education: High school or less 3030 0.18
Education: Some college 0.38
Education: Bachelor degree 0.26
Education: Advanced degree 0.18

Owns stocks 3030 0.27

Follows stock market 3010 0.46
Understands stock market 3010 0.40
Knowledge of returns: False Sign 2067 0.20
Knowledge of returns: Don’t Know 0.31
Knowledge of returns: Magnitude too large 0.07
Knowledge of returns: Correct 0.42

Financial Numeracy 1564 0.82 0.22 0.52 0.86 1
Financial Knowledge 1564 0.78 0.24 0.46 0.87 1

Probability Numeracy 1940 0.67 0.2 0.4 0.7 0.89

Notes: The observations summarised in the table are restricted to individuals in our final sample. For dummy
variables, only means are shown. Age is set to the within-person median across surveys. Education is set
to the within-person mode across surveys. “Owns stocks” is the within-person mean of a dummy equalling
1 if respondents indicated that their liquid portfolio included stocks or mutual funds. This excludes stock
holdings as part of an IRA, 401(k), Keogh or similar retirement accounts.
“Follows stock market” equals 1 if individuals indicate they follow markets “very closely” or “somewhat” and
0 if “not at all”. “Understands stock market” equals 1 if individuals rate their understanding of stock markets
to be “extremely good”, “very good” or “somewhat good” and 0 if they chose “somewhat poor”, “very poor” or
“extremely poor”. The categories of “Knowledge of returns” refer to whether respondents were able to recall
the return of the Dow Jones over the past year. Financial numeracy and knowledge are the first principle
component for correct answers, rescaled to lie between 0 and 1, for the two sets of questions in the financial
literacy battery referred to as basic and sophisticated in (Lusardi and Mitchell, 2007) Probability numeracy
is the fraction of correct answers to questions aimed at measuring probabilistic reasoning (Hudomiet, Hurd,
and Rohwedder, 2018).
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The battery consists of two sets of questions aimed at measuring financial numeracy
(often called “basic financial literacy”) and financial knowledge (“advanced finan-
cial literacy”), respectively (eg Lusardi and Mitchell (2007)). We extract the first
principal component from each block of questions and scale each measure to have
support between zero and 1. Both measures are left-skewed and have means of 0.82
and 0.78, respectively.
Finally, we use the probability numeracy battery developed in Hudomiet, Hurd, and
Rohwedder (2018), who find that few people understand complex laws of probabil-
ity but that most people have a basic understanding. We limit ourselves to a basic
measure by using the fraction of correct answers across questions an individual an-
swered. Table 1.1 shows that the average fraction of correct responses is 0.67 with a
standard deviation of 0.20, implying substantial variation in probability numeracy.

1.2.1 Measures of stock market beliefs

The data on stock market beliefs stem from the survey module “Effects of the Finan-
cial Crisis” (Hurd and Rohwedder, 2011), which was fielded between late 2008 and
early 2016 with a total of 61 waves. The first two waves were collected in Novem-
ber 2008 and March 2009. Starting in May 2009, data were collected monthly until
April 2013. Afterwards, the surveys ran at a quarterly frequency until they ended in
January 2016. As we are interested in belief formation, we restrict ourselves to indi-
viduals who responded at least five times to the belief measures. In total, we have
on average 26 waves of data for 3030 individuals for a total of 77310 observations
available. Figure 1.A.1 in the appendix shows the distribution of survey waves by
individual.
The belief measures we analyse consist of three points on the subjective cumulative
distribution function. Let pt be the value of the Dow Jones Industrial Average at time
t, and Rt→t+12 := pt+12−pt

pt
the return on the Dow Jones in 12 months. We are very

explicit about the notation when it comes to timing because questions about annual
returns are asked at a monthly or quarterly frequency, which may lead to confusion
otherwise. All time indices in this paper indicate months. For Pr(Rt→t+12 > 0) the
question was:

We are interested in how well you think the economy will do in the future. By next year at this
time, what are the chances that mutual fund shares invested in blue chip stocks like those in
the Dow Jones Industrial Average will be worth more than they are today?

For Pr(Rt→t+12 > 0.2) the question was:

By next year at this time, what is the percent chance that mutual fund shares invested in blue-
chip stocks like those in the Dow Jones Industrial Average will have increased in value by more
than 20 percent compared to what they are worth today?

For Pr(Rt→t+12 ≤ −0.2) the question was:
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By next year at this time, what is the percent chance that mutual fund shares invested in blue-
chip stocks like those in the Dow Jones Industrial Average will have fallen in value by more than
20 percent compared to what they are worth today?

From the three points on the cumulative distribution function, we construct an ap-
proximation of an individual’s expected return to serve as our primary dependent
variable. The approximation is as follows:

E[Rt→t+12]=
4
∑

j

E[Rt→t+12|Rt→t+12 ∈ Ij] · Pr(Rt→t+12 ∈ Ij)

where the intervals Ij are [−∞,−0.2], [−0.2, 0], [0,0.2] and [0.2,∞]. The proba-
bilities in these expressions are observed in the data. We set the conditional means
they average to the midpoint of each interval. For the open intervals, we set the
lower and upper bounds to the 1st and 99th percentiles of the historical distribution
of the Dow Jones’ return (−0.32 and 0.43, respectively). Rather than dropping sets
of observations that violate monotonicity of the cumulative distribution function
(i.e., Pr(Rt→t+12 ≤ −0.2)≤ Pr(Rt→t+12 ≤ 0)≤ Pr(Rt→t+12 ≤ 0.2)), we restore weak
monotonicity by setting its values at -0.2 and/or 0.2 to its value at 0. Such mono-
tonicity violations are very common in this question format—for example, around
40% of responses both in the data of Hurd, Rooij, and Winter (2011) and in our
own. We will return to inconsistencies in the next section.
In robustness checks, we avoid assumptions on monotonicity violations altogether
by focusing on the probability of a positive return (e.g. Dominitz and Manski, 2007,
also had even though more more measures available and discarde them presum-
ably for such reasons). Table 1.2 shows summary statistics for within-person means
of the different belief measures, i.e., the mean return and the three points on the
cumulative distribution function. We first calculate means for each individual and
then average across individuals, thereby weighting every sample participant equally
regardless of the number of times she participated. The variation across the differ-
ent points of the distribution function appears reasonable and all measures exhibit
substantial variation across individuals.

Table 1.2. Individual belief measures averaged over time

Mean Std. dev. q0.1 q0.5 q0.9

E[Rt→t+12] 0.5 5.8 -6.9 0.6 8.1
Pr(Rt→t+12) > −0.2 74.6 13.4 55.0 76.5 90.9
Pr(Rt→t+12) > 0 44.0 17.8 19.4 45.3 67.9
Pr(Rt→t+12) > 0.2 26.8 14.2 9.1 25.3 47.1

Notes: N = 3030. Units in percentage points.
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1.2.2 Stylised facts

Our data on stock market beliefs has a number of distinct features that motivate
our modelling choices below. Most of these characteristics are similar to those in
other data; we briefly highlight them here and provide a full set of statistics in ap-
pendix 1.A.2. We do present the co-movements of beliefs with recent information
in the main text because these are of particular interest and, when it comes to eco-
nomic news, novel.
Similar to findings summarised in Hurd (2009), average beliefs are well below his-
torical returns. For example, the mean of individuals’ expected returns in our data is
0.5%, compared to a historical value of 7.3%. Beliefs do not only vary across individ-
uals as shown in Table 1.2, but also within individuals over time. The magnitude of
within-variation is similar to the magnitude of between-variation. Regression analy-
ses controlling for many other factors show that beliefs of financially sophisticated
and knowledgeable individuals are more optimistic. They also reveal that their be-
liefs are more likely to constitute actual probability judgements in two different
senses.
First, Bruin, Fischhoff, Millstein, and Halpern-Felsher (2000) argue that 50% an-
swers might indicate that individuals are epistemically uncertain about an event
rather than expressing subjective beliefs of equal likelihoods. Following up on that
observation, the questionnaires that we use confront respondents who gave an an-
swer equal to 50% for Pr(Rt→t+12 ≤ 0) with a follow up question. It asks them to
clarify whether they mean that the Dow Jones is equally likely to rise as it is to fall,
or whether they want to express that they are unsure what to do (also see Enke
and Graeber, 2019). 53% of all answers when the follow up question was encoun-
tered turn out to be best characterised as expressing uncertainty that way. Second,
if respondents are unsure about the behaviour of the Dow Jones index, they will be
more likely to give sets of answers that violate monotonicity. Regressions reported in
appendix 1.A.2 show that even after controlling for numerous other characteristics,
measures of stock market following, financial numeracy, and financial knowledge
are associated with substantially lower rates of monotonicity violations.
A recent literature has documented that average return expectations covary with re-
cent stock market movements. Kezdi and Willis (2008) and Hurd (2009) noted this
phenomenon early on. Greenwood and Shleifer (2014) find evidence for it across
a variety of data sets; they also coined the term “extrapolative expectations”. We
corroborate this finding. In addition, we find evidence that individuals, on average,
react to other types of information. In a small-scale ALP survey that overlaps with
individuals in our main data, respondents were first asked about the probability of
a stock market gain, much in the same way as the first question reproduced in Sec-



1.2 Data, stylised facts, and empirical strategy | 13

tion 1.2.1.1 After a short interlude of questions not of interest to us, they were asked
to state what they most thought about when answering this question. Figure 1.1
shows the distribution of possible answers; the state of economy is by far the most
common answer.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Share of respondents

Interest on savings and investments

Unemployment

Economic policies

Other

Political developments

Interest on loans and mortgages

Prices

State of the economy

Figure 1.1. What respondents think most about when contemplating future
stock prices

Notes: Only includes individuals who overlap with our main sample, N = 114.

This finding and the fact that only 42 percent of individuals in our sample have
reasonable knowledge of how the Dow Jones changed over the preceding year (see
Table 1.1) lead us to include additional information that subjects may use to form
beliefs about stock returns.We hence obtained data on the tonality of economic news
on major TV networks. We construct our measure using data provided by Media
Tenor International, who had analysts classify evening news segments on CBS, Fox,
and NBC in terms of what they refer to and whether the news is positive, neutral
or negative. We take all news items referring to the state of the economy on day
d and score positive items (pos) with 1, neutral items (neu) with 0 and negative
times (neg) with - 1. We define our measure of the tonality of economic news as the

average monthly score: Nt−1→t :=
∑

d∈[t−1,t] 1·posd+0·neud−1·negd
∑

d∈[t−1,t] posd+neud+negd
.

We investigate the extent to which individuals extrapolate good and bad news,
in form of recent stock returns and media reports on the economy as follows. We
average expected returns across individuals for every survey wave, take first differ-
ences and plot them against the first differences of the Dow Jones Index return over
the past month and the first differences of the averagemonthly news score. As shown
in the first panel of Figure 1.2, an increase in the Dow Jones’ returns over the past

1. The precise question was “By next year at this time, what is the percent chance that mutual
fund shares invested in blue chip stocks like those in the Dow Jones Industrial Average will be worth
more than they are today?”
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month of 4.3 percentage points (one standard deviation of the monthly return over
our analysis period) is associated with a 0.13 percentage point higher expectation
on the return over the next year. In the second panel depicting how first differences
in expected returns vary with first differences in economic news, we see a similar
pattern. A one unit increase in the news measure corresponds to an increase of 0.19
percentage points in expected returns. To put these numbers into context, Green-
wood and Shleifer (2014) find that an increase in the annual return of 20 percentage
points (one standard deviation of the annual return over the period on which their
regression is based) increases the Michigan Survey expectations 0.78 percentage
points 2.
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Figure 1.2. Average expected returns extrapolate stock prices and follow the tone of news

Notes: Both panels depict survey-to-survey changes in means of expected returns on the y-axis. The x-
axis depict survey-to-survey changes in the standardised measures of recent monthly returns and news,
respectively. X-axis units in time series standard deviations.

1.2.3 Empirical strategy

The stylised facts about individuals’ stock market beliefs have shown that beliefs are
very heterogeneous within and across individuals; that part of the between-variation
is explained by financial sophistication; that the beliefs’ evolution over time covaries
with past returns and news about the economy; and that measures of beliefs vary
in their informational content about true beliefs, which again varies systematically
with financial sophistication. Together, these facts point towards putting between-
person heterogeneity at the centre of a model of beliefs and their evolution over time.
In particular, models that treat heterogeneity as an incidental parameters problem—
fixed effects estimation being arguably the most prominent example—are doomed
to fail. We expect individuals to differ in their levels of beliefs, in their belief volatility

2. Greenwood and Shleifer (2014) obtain these results by regressing expected returns on an-
nual returns. Figure 1.2 depicts the first differenced version of that regression, replacing annual with
monthly returns, and separately also for news
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over time, in how they change their beliefs in response to information about recent
returns and economic news, and in the extent to which the measures we have at
our disposal represent actual, accurate beliefs. At the same time, we need to impose
some restrictions across individuals because our panel dimension is too short to
allow for estimating models at the level of the individual.

We thus assume that we can summarise heterogeneity in belief formation pro-
cesses by using a discrete set of groups. As long as the number of groups does not
become too large, it allows us to describe the multidimensional patterns of hetero-
geneity in an accessible way; this would be difficult for many continuous distribu-
tions. Our main specification for belief formation is a linear model of the form:

E[Rt→t+12]i,t = αg +
L
∑

l=0

�

βg,lRt−1−l→ t−l + γg,lNt−1−l→ t−l

�

+ ui,t. (1.1)

We take ui,t to be independently and identically distributed across individuals and
over time. We assume that all heterogeneity beyond that is captured by the coeffi-
cients. Put differently, we assume that there is a discrete number of groups G. All
parameters of the model are allowed to differ at the group level, indexed by g: The
intercept αg measures the persistent degree of optimism or pessimism, the parame-
ters βg,l measure how returns l months ago influence current beliefs, and γg,l do the
same for economic news N.

We estimate the model for L= 0, i.e., using only the most recent returns and
news, and for L= 6. The latter allows us explore potential patterns of momentum
in beliefs. We also experimented with averages across longer periods—e.g., much
of the literature has considered annual returns—but found monthly intervals to
provide the best fit. When constructing R and N, we are exact to the day on which
individuals completed the survey.

In order to estimate the model, we employ the two-step method of Bonhomme,
Lamadon, and Manresa (2017). In the first step, we classify individuals into a dis-
crete set of G groups using moments of the both dependent and explanatory vari-
ables. In the second step, we estimate the coefficients in (1.1) separately for each
group. This method is computationally simple and very transparent, providing easily
interpretable groups.

Following Bonhomme, Lamadon, and Manresa (2017), we use the k-means al-
gorithm in order to classify individuals into groups. The algorithm works by choos-
ing the group assignments that minimise the sum of squared deviations between
included variables and the group-wise means of these variables. The problem is NP-
hard, but a number of heuristic algorithms exist that work well in practice. The
method is widely used in machine learning; we use the implementation in the
Python library scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, et al.,
2011). Since solutions to the k-means objective are sensitive to the scaling of vari-
ables, we follow common practice and standardise each classification variable to
have mean zero and unit variance in the cross-section of individuals.
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In order to classify individuals into groups, we use moments of their stated be-
liefs and their relation with the explanatory variables. In particular, for each individ-
ual series of Pr(Rt→t+12 > −0.2)i,t, Pr(Rt→t+12 > 0)i,t, and Pr(Rt→t+12 > 0.2)i,t, we
use its mean, its standard deviation, and its covariances with the return of the DJ
as well as economic news, each measured over the month before the survey. These
capture the dimensions level, volatility and response to information. In addition, we
use the fraction of beliefs satisfying strict monotonicity, and the fraction of beliefs for
which respondents did not indicate that beliefs expressed that they were unsure (or
were not given the chance to do so). These capture the dimension of epistemic un-
certainty. This makes for a total of fourteen time-constant moments that vary across
individuals. We make this choice for two reasons. First, these moments exclusively
use raw data and make no additional assumptions. This contrasts with, for example,
expected returns, which entail a number of assumptions as detailed in Section 1.2.1.
Second andmore importantly, these are the key moments that should be informative
on group-level heterogeneity along the dimensions we are interested in, as required
for the analysis in Bonhomme, Lamadon, and Manresa (2017).3

Table 1.3. Moments and corresponding dimension

Moments Dimensions

Mean probability that Rt,t→t+12 ∈ (−0.2,∞) Level
Mean probability that Rt,t→t+12 ∈ (0,∞) Level
Mean probability that Rt,t→t+12 ∈ (0.2,∞) Level
St. dev. of prob. that Rt,t→t+12 ∈ (−0.2,∞) Volatility
St. dev. of prob. that Rt,t→t+12 ∈ (0,∞) Volatility
St. dev. of prob. that Rt,t→t+12 ∈ (0.2,∞) Volatility
Cov. of prob. that Rt,t→t+12 ∈ (−0.2,∞) and returns Response to Information
Cov. of prob. that Rt,t→t+12 ∈ (0,∞) and returns Response to Information
Cov. of prob. that Rt,t→t+12 ∈ (0.2,∞) and returns Response to Information
Cov. of prob. that Rt,t→t+12 ∈ (−0.2,∞) and news Response to Information
Cov. of prob. that Rt,t→t+12 ∈ (0,∞) and news Response to Information
Cov. of prob. that Rt,t→t+12 ∈ (0.2,∞) and news Response to Information
Fraction of beliefs satisfying strict monotonicity Epistemic Uncertainty
Fraction of beliefs expressing probability judgements Epistemic Uncertainty

1.3 Results

We first outline describe the classification into groups, including a diagnostic test. We
then describe our main results before reporting on a number of robustness checks.

3. Note, however, the conceptual difference in that we assume that there is a discrete number
of groups whereas the focus of the theoretical analysis in Bonhomme, Lamadon, and Manresa (2017)
is on controlling for continuous unobservables.
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The last part of this section explores the extent to which the groups we identify can
be described by having rational expectations.

1.3.1 Classification into groups

In our main specification, we use five groups because this was the minimum number
of groups where no economically meaningful intergroup differences were blurred.
Larger numbers led to little additional economic insights and eventually to apparent
overfitting. We will be more precise on this below in Sections 1.3.2 and particularly
in 1.3.4, where we also consider alternative choices for the number of groups. As
noted before, we require five belief measures per individual and use the moments
listed in Table 1.3 as an input to the k-means algorithm.

Dzemski and Okui (2018) have developed a diagnostic test for clustering meth-
ods such as our classification step. Their procedure yields a unit-wise confidence
set of group membership for each individual. It is constructed by testing the null
hypothesis that individual i’s true group g0

i is g for all groups 1, . . . , G. The elements
of the confidence sets are then those groups for which the null hypothesis cannot be
rejected for a pre-specified confidence level. The test is based on the insight that if
g0

i = g, then E[(yi,t − xT
i,tθg)2)]≤ E[(yi,t − xT

i,tθh)2)] for all possible groups h (collect-
ing all model parameters in the vector θ).

First of all, it is important to note that all group sizes are substantial. The largest
group’s share is 26% and that of the smallest is 13%. Figure 1.3 shows the distribu-
tion of unit-wise 90% confidence sets by their size and by whether they contain the
estimated group. With 35% of individuals, the estimated group assignment being
the only element in the set is the most common occurrence. For another twenty-
three percent, the estimated group is in the confident set, but in addition to other
groups. So for almost 60%, the estimated group is in the confident set. At the same
time, very few confidence sets have more than three elements. Given that we have
rather noisy data (compared to, say, the classification of states or countries, as the
examples in Dzemski and Okui, 2018), these results demonstrate that our approach
yields reasonable results even for a relatively low number of groups.

Nevertheless, a sizable fraction of confidence sets do not include the estimated
group. Part of this is a reflection of the fact that the test is based on goodness of fit of
our model (1.1), wheras the k-means procedure gives equal weight to all included
features. Most notably, one would not expect the standard deviation over time to
improve the fit of model (1.1). Indeed, the next section will demonstrate that level
differences in expectations are the dominant component for improving model fit.
Insofar as the k-means algorithm compromises splitting individuals along their ex-
pectation level to accommodate splitting them along differences in belief dispersion
and association with returns or news, this will trivially result in a larger share being
assigned to groups that are not in their confidence set than if one was assigning
groups based on similar goodness-of-fit criteria as the test uses (as, for example, in
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Figure 1.3. Unit-wise 10% confidence sets by size and inclusion of estimated group

Notes: The numbers refer to the share of individuals in each cell.

the clustering method of Bonhomme and Manresa, 2015). The reason confidence
sets can be empty is similar; none of the estimated groups provide a good fit for
some individuals whose expectation level is far from that of any of the groups.

1.3.2 Heterogeneity in groups’ behaviour and characteristics

We order the 5 groups by their average expected returns and refer to them as
pessimists, mean reverters, extrapolators, ignorants, and sophisticates, respectively.
Each group’s label captures the characteristic of the moments used for classification
that makes it stand out from the others the most. The key results are summarised
in three figures and two tables. Figure 1.4 plots the data averages (solid lines) ver-
sus the model predictions (dashed lines) of expected returns over time. Table 1.4
summarises the group means and standard deviations of expected returns, aver-
aged within each group and survey wave, over our sample period. Figure 1.5 plots
the reaction of groups to changes in past returns and news, respectively. Table 1.5
shows prevalence of monotonicity violations and the fraction of answers expressing
epistemic uncertainty, respectively. Finally, Figure 1.7 presents the mean values of
various covariates for each group.

Before describing each group in turn, we note that differences across all dimen-
sions are important. The levels of beliefs in Figure 1.4 are strikingly different and—
except for the mean reverters and extrapolators—hardly ever cross. The volatility
over time is largest for mean reverters and extrapolators; it is by far smallest for
ignorants with the other two groups in between. The reactions to both stock prices
and news depicted in Figure 1.5 are substantial and very different.

Pessimists (25% of individuals) consistently expect the return of the Dow Jones
to be negative and substantially so (-5.6%). Their beliefs do not vary too much over
time, although they seem to be a bit more optimistic in the second half of our sample
period (but still far below any other group). This seems to be due to better economic
news in this period, to which they respond positively. Their beliefs do not react to
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Figure 1.4. Data vs. predicted expected return of the Dow Jones index, by group

Notes: The solid and dashed lines are within survey and group means of individual data points
and model predictions. Shaded regions are within survey × group means of individual 95% con-
fidence intervals for the estimated regression function. Line widths are proportional to group
sizes.

past return. Along the dimensions of knowledge and numeracy, pessimists appear to
be in the middle of the distribution along with mean reverters and extrapolators.⁴

Mean Reverters and Extrapolators (19% and 17% of individuals, respectively)
are also rather pessimistic, expecting a return of about zero. Individuals in these two
groups are similar in observable characteristics. Their key difference, and reason for
the labels we chose for them, can be seen in Figure 1.5: Extrapolators expect recent
trends to continue and do so more than any other group. Mean reverters follow the
opposite pattern: They become less optimistic following a good performance of the
Dow Jones or positive economic news, and are the only group which reacts in this
way. Hence, the lines in Figure 1.4 frequently cross and move in opposite directions
survey to survey.

The fact that mean reverters and extrapolators are very similar in terms of ob-
servable characteristics, but react in completely different ways to information, under-

4. The fractions of monotonicity errors and of beliefs expressing epistemic uncertainty (Ta-
ble 1.5) seemingly stand in contrast to this, but they are probably due to somewhat mechanical effects.
For monotonicity violations, giving low answers to Pr(Rt→t+12 > 0), as pessimist frequently do, will c.p.
lead to less monotonicity errors if stated beliefs are subject to survey response error. This is because
when stating the last elicited belief, Pr(Rt→t+12 < −0.2), the margin for avoiding a monotonicity er-
ror is larger when Pr(Rt→t+12 > 0) was small. In line with this explanation, the gap in monotonicity
violations between pessimists and mean reverters / extrapolators is largely driven by violations of
Pr(Rt→t+12 < −0.2)≤ Pr(Rt→t+12 < 0). In order to arrive at the follow-up question on epistemic uncer-
tainty, an individual needs to use 50% when asked about the chance the Dow will increase. Pessimists
feature very few 50% answers.
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Table 1.4. Long run moments by group

Data Model
Mean St. Dev. Mean St. Dev.

Pessimists -5.57 0.80 -5.58 0.40
Mean Reverters 0.29 1.10 0.37 0.75
Extrapolators 0.79 1.81 0.91 1.43
Ignorants 2.78 0.49 2.80 0.15
Sophisticates 4.74 0.86 4.83 0.38

Notes: N = 3030. Units in percentage points. Expected returns are averaged within each group and survey
wave, mean and standard deviation are calculated over the resulting time series points.
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(b) Past tonality of economic news
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Figure 1.5. E�ect on expected returns of increases in past returns and tonality of economic news,
by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.

lines the importance of classifying individuals in terms of features related to their
stated beliefs. Considering only observed heterogeneity, as in classical regression
analysis (see Section 1.C.1 of the appendix), would necessarily hide this important
dimension of behaviour.

Ignorants (13% of individuals) are seemingly the second most optimistic group.
Their average belief that the Dow Jones will increase is almost exactly 50% and they
expect a return of 2.8%. Compared to the other groups, ignorants are notable for
their very low belief variability. Panel B of Figure 1.7 shows that their average is
near the tenth overall percentile and Figure 1.4 visualises how comparatively little
individuals belonging to this group change their beliefs. As Figure 1.5 shows, their
beliefs also covary least with returns and news. In addition to the belief that the Dow
Jones will increase, the other two subjective beliefs are, on average, close to 50% as
well which is incompatible with strong monotonicity of the cdf. Ignorants are most
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Table 1.5. Measures of epistemic uncertainty by group

Fraction of belief sets
satisfying strict

montonicity

Fraction of beliefs
expressing subjective

probabilities

Pessimists 0.67 0.96
Mean Reverters 0.42 0.90
Extrapolators 0.41 0.88
Ignorants 0.14 0.61
Sophisticates 0.75 0.95

Notes: N = 3030. A belief set satisfies strict monotonicity if Pr(R ≤ −0.2) < Pr(R ≤ 0) < Pr(R ≤ 0.2). Beliefs
express subjective probabilities if, for the question asking about the probability of an increase of the DJ,
the belief is not 0.5, or it is and in the follow up question, the respondent indicated this means an equal
likelihood.

likely out of all groups to violate monotonicity, with only 10% of belief sets satisfying
it. One key reason for that is that where other groups express subjective probabilities
with their stated beliefs 90% of the time and more, this is barely more than 60%
for ignorants, which is below the tenth overall percentile. In other words, they use
50% answers to express epistemic uncertainty about stock returns. In line with their
apparent lack of informedness, ignorants also have the lowest scores when it comes
to following and understanding the stock market, knowledge of past returns and
financial knowledge. Though seemingly more optimistic than other groups, all our
indicators suggest that the stated beliefs of these individuals are limited in terms
carrying quantitative information, and need to be interpreted with caution.

Sophisticates (26% of individuals), the most optimistic group, expect the Dow
Jones to yield an average return of 5%. That number is relatively close to the his-
torical performance of 7.3%. In addition to having beliefs that are most accurate
compared to the historical distribution, sophisticates also stands out from the oth-
ers in terms of experience with the stock market and knowledge relating to it. They
are more likely to describe themselves as following and understanding the stock
market, they have a superior knowledge of historical returns and greater financial
knowledge. Sophisticates have the best understanding of probability calculus, are
least likely to express beliefs that violate monotonicity of the cumulative distribu-
tion function (more than 80% of their belief sets satisfy strict monotonicity), and,
together with pessimists, they use beliefs to express subjective probabilities most
often.
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Figure 1.7. Observable characteristics by unobserved heterogeneity group

Notes: N = 3030, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars show
group means, dashed lines are the bottom and top decile with respect to the individuals of all groups taken
together. Variable definitions:: Financial numeracy and knowledge: First principle components loading on
variables indicating whether a respondent correctly answered numerical and knowledge based questions,
scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about probability
theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and magni-
tude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good (3⁄5), very
good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).
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1.3.3 Stock ownership and trading behaviour

The differences in beliefs and their trajectories translate into very different be-
haviour when it comes to portfolio choice. Panel I of Figure 1.7 shows that stock-
holding is lowest for ignorants (15%) and highest for sophisticates (44%), with the
other groups below 20%, too. Trading behaviour follows a similar pattern (Panel J).

In order to further investigate this, we run a Probit regression of buying stocks
in the subsequent period on a set of group fixed effects and the return expectation
at the time of the survey. Because of the low baseline probabilities, it is important
to use a nonlinear model as opposed to a linear probability model. This means that
controlling for fixed effects is infeasible due to the incidental parameters problem.
The average partial effects of increasing expectations by one group-level standard
deviation are 0.14% for sophisticates and 0.03% for ignorants, respectively. For ex-
trapolators, due to the comparatively greater volatility of their expectations (see
Table 1.4) the effects are 0.16%. The other groups are somewhere in between.

Figure 1.8 shows that these patterns translate into very different predicted pur-
chasing patterns over time. Pessimists and, even more so, ignorants hardly change
their behaviour over time. Their predicted purchasing probabilities fluctuate slightly
around low average values. The other three groups showmuchmore differences over
time. Again, this often goes in opposite directions. Not surprising, mean reverters
would have higher than average values during the in the aftermath of the financial
crisis, a time when the tone of news was also dire. Extrapolators show the opposite
pattern. Sophisticates have the highest trading probability and a variability that is
slightly below that of mean reverters or extrapolators.

It is once more important to note that these rich patterns of heterogeneous
decision-making only surface because of our classification into groups based on
(time-series) features of the dependent variable. Controlling for observed charac-
teristics could only induce vertical shifts in trading behaviour, but no reversal of pat-
terns. These are important, however, to generate potential trade between groups.
Again, our findings mirror those reported in Giglio, Maggiori, Stroebel, and Utkus
(2019), who find that beliefs to be reflected in portfolio allocations and a small but
predictable effect of belief changes on trading patterns.

1.3.4 Discussion and robustness of results

Our preferred model explains more than a quarter of the variation in expected re-
turns (see Table 1.B.2). This differs by a factor of one hundred from the same model
without unobserved heterogeneity. Similarly, a standard regression model with lots
of observed heterogeneity can explain only 12%.⁵ This squares well with Giglio,

5. See Table 1.C.1 for the precise results. The first regression is a linear probability model of
the level of beliefs on the past six months’ returns and news. The “kitchen-sink”-approach additional
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Figure 1.8. Predicted probability of buying stocks, group averages
over time

Notes: N · T = 70114, N = 3029. Group and survey average predicted prob-
abilities from a probit regression of a stock buying indicator in the next
period, provided that is within 120 days, on group indicators and expected
returns.
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Maggiori, Stroebel, and Utkus (2019), who find as one of their five facts that “Be-
liefs are mostly characterized by large and persistent individual heterogeneity; de-
mographic characteristics struggle to explain why some individuals are optimistic
and some are pessimistic.” Our analysis underlines their finding and goes beyond it
in documenting different belief formation processes.

In Section 1.C.2 of the appendix, we relax the requirement of observing at least
five sets of belief measures per individual to a minimum of three. The broad pat-
tern of groups remains the same and we can essentially leave the labels in place
(mean-reverters and extrapolators switch their places in terms of average expected
returns and the latter group shrinks by about one third). Similarly, the group as-
signments remain very stable when requiring a minimum of fifteen periods per in-
dividual. Note that this ensures that the version of (1.1) with L= 6 lags would be
identified individual-by-individual. The results are presented in Section 1.C.3 of the
appendix. 86% of the respondents that meet the stricter requirement are assigned
to the same group as before. The number is lowest for sophisticates at 73% (see
Table 1.C.5), most of the remainder is assigned to the group of extrapolators.

As detailed in Section 1.2.1, our measure of expected returns makes a number of
assumptions. In Section 1.C.4, we thus report results on a specification that uses the
raw data on the probability of a stock market gain as the dependent variable. This
alsomakes the analysis comparable to Dominitz andManski (2011). By construction,
the distribution of groups is exactly the same as in our main model (some tables
and graphs shown in the other cases are thus superfluous) and, reassuringly, the
diagnostic tests looks very similar, too. The time series look very similar to before
with four clearly distinguishable levels; mean reverters and extrapolators are again
on a similar level, crossing frequently. The reactions to simulated shocks show a
similar pattern to Figure 1.5, if anything, lags seem to have slightly stronger effects
towards building up momentum.

Sections 1.C.6, 1.C.7, 1.C.8, and 1.C.9 show the results for 3, 4, 7, and 15 groups,
respectively. The results further motivate our choice of G. With three groups, the dis-
tinction between extrapolators and mean reverters is blurred with both mostly being
allocated to the second group, resulting in extrapolation on average. In the case of
four groups, the first four groups remain very stable (each retains more at least
94% of its previous members), but the group of sophisticates is distributed across
the other groups with two thirds being pooled with pessimists (see Table 1.C.10).
Based on those results, one may conclude that the most optimistic group was mostly
made up by respondents with a severe lack of understanding or interest. It also blurs
the features of the other groups; most notably, the average expectations of pessimists
go up by two percentage points.

includes a quadratic in age, sex, education in four categories, ethnicity in five categories, 18 levels
of household income, various measures of stock market experience and knowledge, probability and
financial numeracy.
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Moving from five to six or seven groups has effects almost exclusively for the
groups of mean reverters, extrapolators, and ignorants. Both other groups retain
more than three quarters of their members and all their characteristics remain very
stable. Some of the clusters become fairly small and relative to the other lines in
Figure 1.C.33, their data averages and predictions are very unstable. Consequently,
the patterns become stronger, particularly on the extrapolation side. The positive in-
terpretation of these patterns would be that some groups of individuals are reacting
very strongly to current trends indeed; a sceptic may think that we are fitting noise
in the data. In any case, we do not believe that one gains much additional insights
from this relative to the case with five groups. The main reason for showing the
results for fifteen groups is to demonstrate that while feasible, the algorithm clearly
starts fitting noise. For example, group 12 consists only of 22 individuals. Note that
the diagnostic test described in Section 1.3.1 becomes computationally infeasible.

1.3.5 Rational expectations tests

Greenwood and Shleifer (2014) and Giglio, Maggiori, Stroebel, and Utkus (2019)
are just two examples of a large literature challenging the rational expectations
paradigm for the average investor. In the light of our focus on heterogeneous belief
formation processes, it seems very natural to ask whether some groups’ belief for-
mation processes may be consistent with rational expectations. In order to do so, we
treat expectations as forecasts and analyse the predictability of forecast errors. We
apply the methodology of Coibion and Gorodnichenko (2012, 2015), which yields a
direct test of whether expectations are rational. In particular, forecast errors of full
information rational expectations should be unpredictable with any information It
at time t because they equal the true expected value of the variable to be forecasted
given the information: E

�

Rt→t+12 − E[Rt→t+12 | It] | It
�

= 0. Non-full information ra-
tional expectation forecast errors should be unpredictable with any information in
a forecaster’s information set, though they might be with information the forecaster
is not aware of or does not use. This insight allows for testing the rationality of ex-
pectations without knowing too much about either the true data generating process
or what information forecasters use.

We follow the methodology of Coibion and Gorodnichenko (2015) who spec-
ify the information set It to be the forecast revision. Let FtRt→t+h be the forecast
of the return Rt→t+h at time t of an individual. Forecast errors are then defined as
FEt := Rt→t+h − FtRt→t+h and forecast revisions as FRt := FtRt→t+h − Ft−1Rt→t+h. Re-
gressing forecast errors on forecast revisions then tests the rationality of expecta-
tions, and the sign of the slope coefficient measures whether expectations overreact
or underreact to information. If expectations are rational the slope coefficient is
zero. A negative sign for the slope means an upwards revised forecast is typically
followed by a downwards swing in the forecast error. As the regression includes an
intercept, this means that the forecast overshoots, its upwards adjustments went
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too far. This is overreaction. The logic is reversed for a positive sign, which indicates
underreaction.

To estimate this regression with our data, we have to make an assumption. Fore-
cast revisions are defined as the difference of two forecasts of the return Rt→t+12; this
month’s forecast FtRt→t+12, for which we take individual expected returns, and last
month’s forecast Ft−1Rt→t+12. We do not have a direct measure of the latter because
beliefs were always elicited about one-year-ahead returns. To proceed, we assume
that Ft−1Rt→t+12 = Ft−1Rt−1→t−1+12. Hence we assume that last month’s forecast of
the return a year from then is also how respondents would have answered ques-
tions of the form: “What are the chances that mutual fund shares invested in blue
chip stocks like those in the Dow Jones Industrial Average will be worth in thirteen
months than what they will be worth in one month?”. How strong is this assump-

tion? Writing Rt−1→t−1+12 − 1=
pt

pt−1
pt+12
pt+11

· (Rt→t+12 − 1), we see that it only depends on

the next and last months. If individuals expect the same percentage change in stock
prices over the next month as they do from 11 months ahead to 12 months ahead,
the assumption is satisfied.

With this assumption, we can write the model as follows:

FEi,t = τg + δgFRi,t + εi,t

Rt→t+12 − E[Rt→t+12]i,t = τg + δg

�

E[Rt→t+12]i,t − E[Rt−1→t+11]i,t−1

�

+ εi,t
(1.2)

As before, we allow model coefficients to vary by group. Table 1.6 contains the re-
sults, restricting our sample to consecutive observations during the period where
the survey was fielded monthly. Table 1.E.1 in the appendix repeats the exercise for
our entire sample with very similar results.

As can be seen from the table, all groups overreact with a slope coefficient close
to -0.5. This is exactly what we would find if time variation in expectations is un-
correlated with future returns⁶. Finding evidence of overreaction is unsurprising
for two reasons. First, also using Coibion and Gorodnichenko (2015) regressions,
Bordalo, Gennaioli, Ma, and Shleifer (2018) present evidence that overreaction of
individual forecasters is prevalent across a wide range of macroeconomic variables.
Second, stock returns are very difficult to predict. Campbell and Thompson (2007)

6. Suppose forecasts and returns are uncorrelated and covariance stationary. Then δ equals
exactly -0.5:

δ =
cov(FEt, FRt)

var(FRt)

=
cov(Rt→t+h − FtRt→t+h, FtRt→t+h − Ft−1Rt→t+h)

var(FtRt→t+h − Ft−1Rt→t+h)

= −
var(FtRt→t+h) − cov(FtRt→t+h, Ft−1Rt→t+h)

2 · var(FtRt→t+h) − 2 · cov(FtRt→t+h, Ft−1Rt→t+h)
= −

1
2
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Table 1.6. Predictability of forecast errors with forecast revisions

Pooled OLS Pooled OLS w groups

Forecast Revision -0.52
(0.01)

Forecast Revision, Pessimists -0.52
(0.01)

Forecast Revision, Mean Reverters -0.51
(0.02)

Forecast Revision, Extrapolators -0.53
(0.02)

Forecast Revision, Ignorants -0.50
(0.01)

Forecast Revision, Sophisticates -0.53
(0.02)

R
2 0.12 0.28

N · T 50532 50532

Notes: N = 2834. Observations that are not consecutive during the monthly phase of the survey waves are
dropped. OLS estimates. Standard errors (clustered by individual and survey) in parentheses.

show predictive regressions fail to do better than the historical average unless aug-
mented with theoretical restrictions. This points to a weak form of the efficient mar-
ket hypothesis according to which one cannot use information to which typical U.S.
citizens have access to form a forecast more accurate than forecasting the average
return would be. In the previous section, we document that expectations react to re-
cent returns and economic news on TV with sign and magnitude varying by group,
and that they have sizable unexplained variation survey to survey on top of that. The
results of Table 1.6 indicate that this variation in expectations is a form of overreac-
tion.

1.4 Conclusions

We have analysed an unusually long panel of households’ probabilistic stock mar-
ket expectations collected in the RAND American Life Panel. Our first step was to
document a number of key facts in these data, several of which have been known
from other datasets and thus help establishing comparability. First, average beliefs
are pessimistic relative to historical returns. Second, the dispersion of beliefs is very
large, both across individuals in the cross-section and within individuals over time.
Third, part of the variation over time is related to the fact that on average, beliefs
extrapolate recent trends on the stock market. Fourth, individuals base their expec-
tations for stock returns mostly on the state of the economy and the tone of recent
media reports is positively related to average expectations. Fifth, the beliefs of fi-
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nancially sophisticated and knowledgeable individuals are more optimistic. Sixth,
a non-trivial fraction of reported beliefs suffers from inconsistencies, part of which
may be related to the fact that individuals truly have no quantitatively well-formed
expectations. Finally, inconsistent beliefs are found less often for individuals who
are financially sophisticated and knowledgeable.

Taking these facts as our point of departure, we have specified a simple model
that relates beliefs to past returns and the tone of economic news. We have allowed
for heterogeneity by first classifying individuals into one of five groups using the k-
means clustering algorithm and then estimating themodel separately for each group.
The diagnostic test of Dzemski and Okui (2018) revealed that unit-wise confidence
sets are small and that in 60% of the cases, they include the group we estimate indi-
viduals to be in. Only 12% behave in a way that is not captured by any of our groups,
so that their confidence set is empty. This is despite the fact that our approach makes
it difficult for the specification test in the sense that it is based on a very different
statistic than what is used by the clustering algorithm.

Of our five groups, we have labelled the two polar cases in terms of optimism
“pessimists” (annual return expectations well below zero, little reaction of expec-
tations to either returns or news, average values for literacy indices) and “sophis-
ticates” (annual return expectations close to the historical average, small positive
reactions to recent returns and news, high scores on literacy / knowledge and few
inconsistencies). In between, the “extrapolators” and “mean reverters” expect re-
turns of around zero, have average literacy scores and errors, but they differ sharply
in their reaction to returns and news. The extrapolators expect recent trends of both
to continue, whereas mean reverters think that the opposite will happen. Finally, the
group of “ignorants” stands out from the rest in that they do not seem to be very
interested in financial matters, which results in frequent fifty-fifty answers to proba-
bilistic expectations questions. On an ensuing question about whether these answers
are supposed to express actual probabilistic judgements or general epistemic uncer-
tainty, they often state the latter. Beliefs and their heterogeneous trajectories are
reflected in predicted trading patterns. Our results are robust to different modelling
assumptions in a number of directions. None of the five groups passes a rational
expectations test; they all overreact in one way or another to recent information.

The evidence that households’ expectations about the development of the stock
market are heterogenous is overwhelming; Giglio, Maggiori, Stroebel, and Utkus
(2019) is a recent contribution and contains a good overview of previous studies.
We have shown that part of this can be traced to heterogenous expectations for-
mations processes. In particular, the much longer time series has allowed us to go
beyond the early contribution by Dominitz and Manski (2011) and classify individu-
als based on a statistical algorithm as opposed to inferring it from two observations
only. An important step will be, of course, to replicate our findings in other datasets.
Whereas the groups we could identify were fairly stable in our setting, it would be
important to see whether comparable findings emerge from other question formats
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and in other countries. If so, this would have important implications for explain-
ing stock market participation and for asset pricing models. For example, Barberis,
Greenwood, Jin, and Shleifer (2015) develop an asset pricing model with extrapola-
tive investors in addition to rational market participants. Our results suggest that
even more investor types deserve such attention.

Appendix 1.A Data and stylised facts

1.A.1 Additional details

We use several background variables from the ALP, which are available for everyone.
These include age, sex, education, and income. The other variables were regularly
measured as part of the “Effects of the Financial Crisis” survey waves, or they come
from other surveys in the ALP. A detailed source for each variable is given below
so all details can be retrieved from https://alpdata.rand.org/index.php?page=data.
The main differences are that we combine the two survey identifiers to be found for
waves 16 (ALP survey identifiers 129 and 131) and 44 (288, 293) of the Effects
of the Financial Crisis survey and that we display the number of observations for
each variable that we can effectively use. The number of belief measures per wave
is reduced substantially midway through the sample because a second and hard-to-
compare format for belief measurement was introduced; which format was shown
to individuals was drawn randomly anew in each wave.
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Figure 1.A.1. Distribution of the number of belief measurements per individual

https://alpdata.rand.org/index.php?page=data
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Table 1.A.1. Details on surveys and variables

ID Survey Title Fielded Variable Name N

57 E�ects of the Financial Crisis
[W01]

2008-11 Beliefs 1840

Follows/Understands
stock market

1867

63 E�ects of the Financial Crisis
[W02]

2009-02 Beliefs 1710

Follows/Understands
stock market

1970

64 Financial Literacy March 09 2009-03 Financial Numeracy
Financial Knowledge

1564

74 E�ects of the Financial Crisis
[W03]

2009-05 Beliefs 1796

Owns stocks 1978
83 E�ects of the Financial Crisis

[W04]
2009-06 Beliefs 1876

Owns stocks 2017
85 E�ects of the Financial Crisis

[W05]
2009-07 Beliefs 1904

Owns stocks 2034
88 E�ects of the Financial Crisis

[W06]
2009-08 Beliefs 1867

Owns stocks 2026
90 E�ects of the Financial Crisis

[W07]
2009-09 Beliefs 1901

Owns stocks 2060
92 E�ects of the Financial Crisis

[W08]
2009-10 Beliefs 1816

Owns stocks 1971
97 E�ects of the Financial Crisis

[W09]
2009-11 Beliefs 1891

Owns stocks 2022
103 E�ects of the Financial Crisis

[W10]
2009-12 Beliefs 1904

Owns stocks 2036
107 E�ects of the Financial Crisis

[W11]
2010-01 Beliefs 1879

Owns stocks 2032
Follows/Understands
stock market

2040

111 E�ects of the Financial Crisis
[W12]

2010-02 Beliefs 1890

Continued on next page
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ID Survey Title Fielded Variable Name N

Owns stocks 2023
116 E�ects of the Financial Crisis

[W13]
2010-03 Beliefs 1862

Owns stocks 1996
117 E�ects of the Financial Crisis

[W14]
2010-04 Beliefs 1798

Owns stocks 1927
Follows/Understands
stock market

1934

124 E�ects of the Financial Crisis
[W15]

2010-05 Beliefs 1720

Owns stocks 1852
129 E�ects of the Financial Crisis

[W16]
2010-06 Beliefs 1775

Owns stocks 1911
134 E�ects of the Financial Crisis

[W17]
2010-07 Beliefs 1668

Owns stocks 1793
139 E�ects of the Financial Crisis

[W18]
2010-08 Beliefs 1640

Owns stocks 1741
152 E�ects of the Financial Crisis

[W19]
2010-09 Beliefs 1695

Owns stocks 1817
157 E�ects of the Financial Crisis

[W20]
2010-10 Beliefs 1659

Owns stocks 1770
158 E�ects of the Financial Crisis

[W21]
2010-11 Beliefs 1706

Owns stocks 1830
161 E�ects of the Financial Crisis

[W22]
2010-12 Beliefs 1726

Owns stocks 1848
162 E�ects of the Financial Crisis

[W23]
2011-01 Beliefs 1666

Owns stocks 1801
173 E�ects of the Financial Crisis

[W24]
2011-02 Beliefs 1722

Owns stocks 1812
Follows/Understands
stock market

1815

176 E�ects of the Financial Crisis
[W25]

2011-03 Beliefs 1708

Owns stocks 1828

Continued on next page
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ID Survey Title Fielded Variable Name N

178 E�ects of the Financial Crisis
[W26]

2011-04 Beliefs 860

Owns stocks 1759
188 E�ects of the Financial Crisis

[W27]
2011-05 Beliefs 859

Owns stocks 1748
194 E�ects of the Financial Crisis

[W28]
2011-06 Beliefs 872

Owns stocks 1749
198 E�ects of the Financial Crisis

[W29]
2011-07 Beliefs 889

Owns stocks 1805
208 E�ects of the Financial Crisis

[W30]
2011-08 Beliefs 883

Owns stocks 1820
211 E�ects of the Financial Crisis

[W31]
2011-09 Beliefs 846

Owns stocks 1759
219 E�ects of the Financial Crisis

[W32]
2011-10 Beliefs 826

Owns stocks 1746
225 E�ects of the Financial Crisis

[W33]
2011-11 Beliefs 937

Owns stocks 1792
231 E�ects of the Financial Crisis

[W34]
2011-12 Beliefs 898

Owns stocks 1742
236 E�ects of the Financial Crisis

[W35]
2012-01 Beliefs 960

Owns stocks 1796
239 E�ects of the Financial Crisis

[W36]
2012-02 Beliefs 955

Owns stocks 1795
249 E�ects of the Financial Crisis

[W37]
2012-03 Beliefs 906

Owns stocks 1682
253 E�ects of the Financial Crisis

[W38]
2012-04 Beliefs 946

Owns stocks 1756
Follows/Understands
stock market

1757

262 E�ects of the Financial Crisis
[W39]

2012-05 Beliefs 805

Owns stocks 1507

Continued on next page
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ID Survey Title Fielded Variable Name N

267 E�ects of the Financial Crisis
[W40]

2012-06 Beliefs 892

Owns stocks 1677
271 E�ects of the Financial Crisis

[W41]
2012-07 Beliefs 928

Owns stocks 1743
Follows/Understands
stock market

1754

278 E�ects of the Financial Crisis
[W42]

2012-08 Beliefs 927

Owns stocks 1698
281 E�ects of the Financial Crisis

[W43]
2012-09 Beliefs 907

Owns stocks 1669
288 E�ects of the Financial Crisis

[W44]
2012-10 Beliefs 1023

Owns stocks 1820
299 E�ects of the Financial Crisis

[W45]
2012-11 Beliefs 1312

Owns stocks 2181
305 E�ects of the Financial Crisis

[W46]
2012-12 Beliefs 1347

Owns stocks 2204
Knows stock return from
last year

1039

322 E�ects of the Financial Crisis
[W47]

2013-01 Beliefs 1101

Owns stocks 1720
328 E�ects of the Financial Crisis

[W48]
2013-02 Beliefs 1317

Owns stocks 2086
Knows stock return from
last year

1008

332 E�ects of the Financial Crisis
[W49]

2013-03 Beliefs 1300

Owns stocks 2145
335 E�ects of the Financial Crisis

[W50]
2013-04 Beliefs 1347

Owns stocks 2100
Follows/Understands
stock market

1467

Knows stock return from
last year

1176

Continued on next page
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ID Survey Title Fielded Variable Name N

345 E�ects of the Financial Crisis
[W51]

2013-07 Beliefs 98

Owns stocks 157
358 E�ects of the Financial Crisis

[W52]
2013-10 Beliefs 881

Owns stocks 1428
363 Reasons for expectations [W01] 2013-12 Reasons for expectations 114
368 E�ects of the Financial Crisis

[W53]
2014-01 Beliefs 939

Owns stocks 1478
379 E�ects of the Financial Crisis

[W54]
2014-04 Beliefs 257

Owns stocks 439
Follows/Understands
stock market

279

389 E�ects of the Financial Crisis
[W55]

2014-07 Beliefs 924

Owns stocks 1500
Follows/Understands
stock market

1498

400 E�ects of the Financial Crisis
[W56]

2014-10 Beliefs 311

Owns stocks 540
417 E�ects of the Financial Crisis

[W57]
2015-01 Beliefs 949

Owns stocks 1547
426 E�ects of the Financial Crisis

[W58]
2015-04 Beliefs 794

Owns stocks 1303
Follows/Understands
stock market

1296

Probability Numeracy 1291
434 E�ects of the Financial Crisis

[W59]
2015-07 Beliefs 825

Owns stocks 1323
Follows/Understands
stock market

1320

440 E�ects of the Financial Crisis
[W60]

2015-10 Beliefs 813

Owns stocks 1340
Follows/Understands
stock market

1335

Probability Numeracy 1310

Continued on next page
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ID Survey Title Fielded Variable Name N

448 E�ects of the Financial Crisis
[W61]

2016-01 Beliefs 1057

Owns stocks 1700
Follows/Understands
stock market

1693

Probability Numeracy 1670
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1.A.2 Detailed stylised facts (Section 1.2.2)

1.A.2.1 On average, beliefs are pessimistic compared to historical returns

A comparison of the average subjective beliefs with the distribution of historical
returns reveals that the individuals in our sample are pessimistic about the stock
market. This finding is in line with Hurd’s 2009 summary of various studies and
data as well as Hurd, Rooij, and Winter’s 2011 report for Dutch households.

In Table 1.A.2 we collected expected returns and probabilities for returns ex-
ceeding -20%, 0% and 20% from the historical data and compare them with the
average subjective beliefs. Individuals are too pessimistic by 23 and 28 percentage
points respectively that the Dow Jones will not collapse and that it will increase. The
fact that individuals seem to be too optimistic that the Dow Jones will increase by
20 percent or more relative to empirical frequencies should probably not be taken
at face value. If we drop individuals who exhibit monotonicity violations from the
sample, the difference changes sign in line with the other values. In sum, relative to
the historical distribution, individuals are, on average, too pessimistic.

Table 1.A.2. Historical returns vs. beliefs about returns

Historical Averages Subjective Beliefs Di�erence

E[Rt→t+12] 7.3 0.5 6.9
Pr(Rt→t+12) > −0.2 97.1 74.6 22.5
Pr(Rt→t+12) > 0 72.1 44.0 28.1
Pr(Rt→t+12) > 0.2 23.5 26.8 -3.3

Notes: Units in percentage points. The historical averages Pr(Rt→t+12 > x) are estimated using the empirical
frequency T

−1
∑

T

t
1{Rt→t+12 > x} for yearly returns of the Dow Jones between 1950 and 2016. Beliefs are

within-person means.

1.A.2.2 Beliefs exhibit significant dispersion within and across individuals

Table 1.2 has already shown the substantial variation in average beliefs across in-
dividuals. The same holds true for the variation within persons across time with
comparable magnitudes (see Table 1.A.3).
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Table 1.A.3. Within- and between-person variation of belief variables

Average within-subject std. Between-subject std. Ratio

E[Rt→t+12] 5.5 5.8 0.94
Pr(Rt→t+12) > −0.2 13.3 13.4 1.00
Pr(Rt→t+12) > 0 15.5 17.8 0.87
Pr(Rt→t+12) > 0.2 14.6 14.2 1.03

Notes: Units in percentage points.

One notable feature is that for both within and between-subject differences,
the variation is largest for the first and arguably most intuitive question, i.e.,
Pr(Rt→t+12 > 0). In the next subsection, we confirm that individual characteristics
have most predictive power for variation in this measure of an individual’s beliefs
about the future of the Dow Jones.

Figure 1.A.2 shows that the substantial belief variation over time we find at the
individual level largely cancels out if beliefs are averaged across subjects. Unless the
within-variation is unsystematic, this is an indication that average beliefs averages
mask substantial heterogeneity in belief dynamics.
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Figure 1.A.2. Average beliefs over time

Notes: Depicted series are within-survey means. The left y-axis displays the
scale for the expected returns, the right y-axis displays the scale for the
three probabilities.
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1.A.2.3 Beliefs of financially sophisticated and knowledgeable individuals are more
optimistic

To get a sense of what is driving persistent level differences in beliefs, we once
more average beliefs within individuals and then regress them on individual-level
characteristics. Table 1.A.2.3 reports the results.

Table 1.A.4. Predictors of average beliefs, all regressors

E[R] Pr(R > −0.2) Pr(R > 0) Pr(R > 0.2)

Follows stock market 1.16** 0.29 3.56** 1.61
(0.53) (1.23) (1.61) (1.30)

Understands stock market 0.41 0.02 2.12 0.00
(0.51) (1.13) (1.50) (1.22)

Knowl. of past returns: Don’t know 1.45** 1.31 4.30** 1.41
(0.61) (1.56) (1.88) (1.61)

Knowl. of past returns: Magnitude too large 4.84*** 2.01 13.35*** 8.12***
(1.07) (2.15) (2.70) (2.73)

Knowl. of past returns: Sign and Mag. correct 3.06*** 3.26** 9.23*** 2.71*
(0.62) (1.47) (1.87) (1.54)

Probability Numeracy 1.09*** 0.22 4.07*** 0.99
(0.26) (0.56) (0.78) (0.67)

Financial Knowledge 0.34 0.71 2.09*** -1.12
(0.25) (0.64) (0.81) (0.71)

Financial Numeracy 0.12 0.37 1.19 -0.94
(0.25) (0.57) (0.76) (0.67)

Intercept -10.25*** 95.85*** -6.74 11.85
(3.80) (9.76) (12.72) (10.87)

Age -0.02 -0.94*** 0.20 0.36
(0.09) (0.23) (0.28) (0.25)

Age squared 0.00 0.01*** -0.00 -0.00
(0.00) (0.00) (0.00) (0.00)

Male 0.01 -1.26 2.21* -1.45
(0.43) (0.95) (1.25) (1.08)

Education: Some college 0.69 -2.72* 2.15 2.88*
(0.60) (1.56) (1.87) (1.56)

Education: Bachelor degree 1.69*** -0.96 5.75*** 3.10*
(0.65) (1.67) (1.97) (1.66)

Education: Advanced degree 2.71*** 0.71 8.68*** 3.47*
(0.73) (1.63) (2.16) (1.81)

Ethnicity: Black 1.32 1.43 4.21 1.50
(1.80) (3.62) (4.92) (5.32)

Ethnicity: Native -0.36 -28.22*** 10.16** 4.08
(1.76) (3.68) (4.86) (5.14)

Continued on next page
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Table 1.A.4. Predictors of average beliefs, all regressors

E[R] Pr(R > −0.2) Pr(R > 0) Pr(R > 0.2)

Ethnicity: Other -1.30 -4.70 0.02 -2.94
(1.87) (6.59) (5.71) (5.43)

Ethnicity: White 0.47 0.02 4.68 -2.28
(1.52) (3.03) (3.98) (4.68)

Household income (thousands), ∈ (5, 7.5] 3.04 -6.33 9.79 9.55
(4.55) (9.24) (16.47) (10.74)

Household income (thousands), ∈ (7.5, 10] -0.28 0.50 0.99 -2.69
(3.08) (7.96) (10.74) (7.98)

Household income (thousands), ∈ (10, 12.5] -1.86 -12.31 -1.27 2.30
(3.36) (8.31) (10.93) (8.04)

Household income (thousands), ∈ (12.5, 15] 0.25 -0.88 1.65 0.39
(3.03) (7.38) (11.15) (7.82)

Household income (thousands), ∈ (15, 20] 1.24 -5.98 4.04 6.73
(3.00) (7.77) (10.86) (7.86)

Household income (thousands), ∈ (20, 25] 0.85 -6.14 3.15 5.15
(2.89) (7.15) (10.54) (7.67)

Household income (thousands), ∈ (25, 30] 0.23 -0.23 1.28 0.61
(2.89) (7.26) (10.76) (7.58)

Household income (thousands), ∈ (30, 35] 0.32 -4.00 1.07 3.99
(2.86) (7.04) (10.51) (7.47)

Household income (thousands), ∈ (35, 40] 2.50 -0.97 7.33 5.29
(2.84) (7.03) (10.50) (7.48)

Household income (thousands), ∈ (40, 50] 0.64 -3.00 3.41 2.12
(2.79) (6.88) (10.31) (7.32)

Household income (thousands), ∈ (50, 60] 1.13 -2.39 4.74 2.90
(2.82) (6.93) (10.37) (7.42)

Household income (thousands), ∈ (60, 75] 0.93 -3.16 3.00 4.15
(2.81) (6.85) (10.33) (7.34)

Household income (thousands), ∈ (75, 100] 1.73 -0.83 5.49 3.40
(2.78) (6.80) (10.29) (7.25)

Household income (thousands), ∈ (100, 125] 0.64 -2.41 3.98 0.97
(2.79) (6.81) (10.34) (7.28)

Household income (thousands), ∈ (125, 200] 0.76 -0.57 2.21 2.24
(2.84) (6.82) (10.39) (7.40)

Household income (thousands), > 200k -0.92 -2.17 -1.78 -0.45
(3.01) (7.15) (10.75) (7.68)

Ever owned stocks -0.29 -1.16 -1.03 0.86
(0.57) (1.21) (1.57) (1.37)

N 805 805 805 805
R

2 0.22 0.11 0.32 0.05

OLS estimates. Standard errors (robust) in parentheses. ***, ** and * denote significance at 1%, 5%

and 10% respectively. Omitted categories are ’Does not follow stock market’, ’Does not understand



Appendix 1.A Data and stylised facts | 41

stock market’, and ’Knowledge of past return: Wrong sign given’. Dependent variables are within-

personmeans in percentage points. Measures of Financial and probability numeracy are standardised.

We focus on variables that capture the extent to which people are involved with,
and have knowledge of, the stock market and financial matters more generally. All
regressions included controls. The signs of the significant predictors confirm what
we would expect: A better knowledge of past returns and financial matters, as well
as following the stock market, are associated with more optimistic beliefs. Mean-
while, self-assessed understanding does help much to predict beliefs conditional on
knowledge of past returns and financial knowledge.

Knowledge of past returns, our most direct measure of an individuals’ informa-
tion set, is the strongest predictor for expected returns and for all three probabilistic
beliefs. Relative to respondents who state the wrong sign for a Dow Jones return
over the past year, individuals who give the correct sign and magnitude (or over-
estimate the latter) are 9-13 percentage points more optimistic that the Dow will
increase over the coming year; they expect returns that are 3-5 percentage points
higher on average.

Higher probability numeracy and financial knowledge also predict optimism in
the belief that the Dow will increase. A one standard deviation increase in these
scores predicts increases in the beliefs that the Dow will rise of 4 and 2 percentage
points. That probability numeracy is associated with belief levels conditional on
various indicators measuring what people know about the stock market points at
measurement error in stated beliefs.

As noted before, the predictive power of the covariates is much higher for the
probability of a positive return than for the other two points on the distribution
function; the R2 differs by factors of three to five. We take this as additional evidence
pointing towards higher noise levels for the events of the Dow Jones rising or falling
by at least 20%. Put differently, we should not take all stated beliefs at face value.

1.A.2.4 Stated beliefs vary in their information value

Measurement error and / or imprecision in stated beliefs have concerned researchers
for a long time. Two particularly prevalent phenomena are rounding of stated prob-
abilities and the previously-mentioned monotonicity violations. We regard both as
indications that statedmeasures are less informative about what an individual thinks
about the stock market, similar in spirit to Drerup, Enke, and von Gaudecker (2017).

Figure 1.A.3 shows histograms of the beliefs with 1-percent bins. Most beliefs
are rounded to the nearest multiple of 5% or 10%, and that answers equalling 50%
are particularly frequent. The middle Panel of Figure 1.A.3 looks very similar to Fig-
ure 3 in Hurd, Rooij, and Winter (2011). These basic facts on rounding have been
documented for a long time, Manski and Molinari (2010) and Kleinjans and Soest
(2014) are recent contributions and modelling suggestions. Rounding suggests indi-
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Figure 1.A.3. Distributions of belief variables

Notes: The figures depict histograms of belief variables with 1-percent bins. Data is
pooled across surveys, including only individuals with at least five sets of belief mea-
surements.

viduals are either not willing to exert the effort to express a precise belief, or that
their beliefs themselves are imprecise.

Bruin, Fischhoff, Millstein, and Halpern-Felsher (2000) argue that 50% answers
might indicate that individuals are epistemically uncertain about an event rather
than expressing subjective beliefs of equal likelihoods. Following up on that observa-
tion, the questionnaires that we use confront respondents who gave an answer equal
to 50% for Pr(Rt→t+12 ≤ 0) with a follow up question. It asks them to clarify whether
they mean that the Dow Jones is equally likely to rise as it is to fall, or whether they
are simply unsure. 47% of responses to this question indicated that they are unsure,
not that they judge the probabilities to be equal. As one would expect if people
do not have a well formed belief, the stated probability for Pr(Rt→t+12 ≥ 0.2) and
Pr(Rt→t+12 ≤ −0.2) also equalled 50% about half of the time in in that case. By con-
trast, for the 53% of responses indicating that a probability of 50% means they find
an increase and a decrease equally likely, the other two probabilities equalled 50%
only one third of the time.
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A striking irregularity in measured beliefs are monotonicity violations. Similarly
to rounding, this is in line with what previous studies of probabilistic expectations
have found (e.g. Hudomiet, Kezdi, and Willis, 2010; Hurd, Rooij, and Winter, 2011).
Our raw beliefs data consists of 3 points on the cumulative distribution function:
−0.2, 0 and 0.2. There was no reminder that stated beliefs have to (weakly) in-
crease along these points, and hence answers can violate the monotonicity property
of the cumulative distribution function. Stated beliefs that are not monotone are
incoherent, and thus cannot be regarded as very informative about what people be-
lieve will happen with the Dow Jones. To a somewhat lesser extent, this is true for
weakly but not strongly monotone beliefs as well. While compatible with probability
calculus, such answers suggest respondents think there is no chance the return of
the Dow could be between -20% and 0% or 0% and 20%, even as they do think
there is a chance returns could be smaller or larger than that. Table 1.A.5 shows the
incidence of monotonicity violations in our data. Around 70% of stated beliefs sets
are strictly monotone between the points −0.2 and 0 as well as 0 and 0.2, making
for 57% that satisfy both checks.

Table 1.A.5. Prevalence of monotonicity violations

From -0.2 to 0 From 0 to 0.2 Either

Not monotone 0.08 0.07 0.15
Weakly but not strictly monotone 0.18 0.23 0.28
Strictly monotone 0.74 0.70 0.57

Notes: Table shows fraction of beliefs satisfying each listed monotonicity status.

Table 1.A.5 shows that a substantial number of people give answers that do not
obey the rules of probability calculus or seem implausible. The propensity to give
monotonicity violating answers may be thought of as being determined by the effort
give when answering the survey and by how much effort is required to avoid errors
and give reasonable answers. While we cannot observe effort, people familiar with
financial markets, in particular stock markets, should find it easier to avoid mistakes.
In addition, such people are more likely to hold precise beliefs in the first place, as
their information set is richer. Knowledge of probability calculus and familiarity
with using probabilities to indicate uncertainty can also be expected to reduce the
incidence of nonsensical answers. Both of these are likely positively related to effort,
as people are more willing to do tasks they are good at and interested in.

1.A.2.5 Beliefs of financially sophisticated and knowledgeable individuals are more
consistent

To investigate what drives monotonicity violations, epistemic uncertainty, and
rounding we use measures of probability numeracy, financial numeracy and engage-
ment with the stock market along with typical characteristics such as gender, age,
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education, income and ethnicity. As before, we collapse the time dimension of our
data. We compute an individual’s average propensity to express non-monotone or
weakly monotone beliefs, their average propensity to say that their 50% beliefs mean
they are unsure as opposed to a subjective probability (if individuals did not see this
follow up question because they did not give a 50% answer, we assume their answer
is a subjective probability) and their average propensity to give answers that are
multiples of 5% as dependent variables. We regress these on personal characteris-
tics. Kezdi and Willis (2008) and Gouret and Hollard (2011) find no relationship
between the propensity to give problematic answers and general personal character-
istics, but we find strong relationships between financial and probability numeracy
and non-monotone or epistemically uncertain beliefs.

Table 1.A.6. Predictors of non-monotonicity, epistimic uncertainty, and rounding

Non-monotone Epistemically unsure Rounded to 10%

Follows stock market -0.05** -0.02 0.02
(0.02) (0.01) (0.02)

Understands stock market -0.03 -0.02** -0.02
(0.02) (0.01) (0.02)

Knowl. of past returns: Don’t know -0.07** 0.01 -0.01
(0.03) (0.02) (0.03)

Knowl. of past returns: Magnitude too large -0.05 0.01 -0.02
(0.04) (0.03) (0.04)

Knowl. of past returns: Sign and Mag. correct -0.08*** -0.01 -0.04
(0.03) (0.02) (0.03)

Probability Numeracy -0.06*** -0.01 0.01
(0.01) (0.01) (0.01)

Financial Knowledge -0.06*** -0.03*** -0.01
(0.01) (0.01) (0.01)

Financial Numeracy -0.04*** 0.00 0.00
(0.01) (0.01) (0.01)

Intercept 0.59*** 0.18 0.66***
(0.17) (0.11) (0.22)

Age 0.01*** -0.00 -0.00
(0.00) (0.00) (0.00)

Age squared -0.00*** 0.00 0.00
(0.00) (0.00) (0.00)

Male -0.02 0.00 -0.01
(0.02) (0.01) (0.02)

Education: Some college 0.01 0.01 0.02
(0.03) (0.02) (0.03)

Education: Bachelor degree -0.05* 0.01 0.04
(0.03) (0.02) (0.03)

Continued on next page



Appendix 1.A Data and stylised facts | 45

Table 1.A.6. Predictors of non-monotonicity, epistimic uncertainty, and rounding

Non-monotone Epistemically unsure Rounded to 10%

Education: Advanced degree -0.06* -0.01 -0.02
(0.03) (0.02) (0.03)

Ethnicity: Black 0.04 -0.02 0.10
(0.08) (0.04) (0.07)

Ethnicity: Native 0.31*** -0.11*** -0.01
(0.08) (0.04) (0.07)

Ethnicity: Other 0.00 0.00 0.17
(0.11) (0.07) (0.11)

Ethnicity: White -0.10 -0.01 0.08
(0.07) (0.03) (0.05)

Household income (thousands), ∈ (5, 7.5] -0.09 -0.01 0.18
(0.15) (0.08) (0.20)

Household income (thousands), ∈ (7.5, 10] -0.07 0.01 0.07
(0.11) (0.10) (0.17)

Household income (thousands), ∈ (10, 12.5] 0.09 0.05 0.11
(0.11) (0.09) (0.18)

Household income (thousands), ∈ (12.5, 15] -0.05 -0.02 -0.02
(0.11) (0.08) (0.17)

Household income (thousands), ∈ (15, 20] 0.00 -0.03 0.08
(0.11) (0.08) (0.17)

Household income (thousands), ∈ (20, 25] -0.01 0.04 0.13
(0.10) (0.08) (0.16)

Household income (thousands), ∈ (25, 30] -0.05 -0.05 -0.00
(0.10) (0.07) (0.16)

Household income (thousands), ∈ (30, 35] 0.01 0.02 0.09
(0.10) (0.08) (0.16)

Household income (thousands), ∈ (35, 40] -0.09 -0.04 0.03
(0.10) (0.07) (0.16)

Household income (thousands), ∈ (40, 50] -0.03 -0.00 0.08
(0.09) (0.07) (0.16)

Household income (thousands), ∈ (50, 60] -0.07 0.02 0.09
(0.09) (0.08) (0.16)

Household income (thousands), ∈ (60, 75] -0.02 -0.01 0.06
(0.09) (0.07) (0.16)

Household income (thousands), ∈ (75, 100] -0.09 -0.01 0.06
(0.09) (0.07) (0.16)

Household income (thousands), ∈ (100, 125] -0.08 -0.03 0.02
(0.09) (0.07) (0.16)

Household income (thousands), ∈ (125, 200] -0.10 -0.03 0.10
(0.09) (0.07) (0.16)

Household income (thousands), > 200 -0.08 -0.02 0.13

Continued on next page
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Table 1.A.6. Predictors of non-monotonicity, epistimic uncertainty, and rounding

Non-monotone Epistemically unsure Rounded to 10%

(0.10) (0.08) (0.16)
Ever owned stocks 0.07*** 0.04*** 0.04*

(0.02) (0.01) (0.02)
Pr(Rt→t+12 > 0) 0.49*** 0.11*** -0.34***

(0.05) (0.03) (0.06)
N 805 805 805
R

2 0.31 0.13 0.13

OLS estimates. Standard errors (robust) in parentheses. ***, ** and * denote significance at 1%,

5% and 10% respectively. Omitted categories are ’Does not follow stock market’, ’Does not understand

stock market’, and ’Knowledge of past return: Wrong sign given’. Measures of financial and probability

numeracy are standardised.

In line with the earlier discussion, the regression results in Table 1.A.2.5 demon-
strate that following the stock market, having accurate knowledge of historical re-
turns, probability numeracy, and financial numeracy all predict that an individual
is less likely to express beliefs afflicted by monotonicity errors. The most important
predictors for individuals to state that their expressed beliefs indicate likelihoods
are self-assessed understanding of the stock market, probability numeracy and fi-
nancial numeracy. One interpretation of these associations is that richer information
sets and greater understanding lead to more precise beliefs, and lower the costs of
stating beliefs in the survey, which reduces the incidence of errors. Greater familiar-
ity with probabilities also lowers errors and makes it more likely that individuals use
50% answers to indicate equal likelihoods. Rounding, measured as the fraction of
answers that are multiples of 5, is not systematically predictable with our indicators
of sophistication.
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Appendix 1.B Additional details for the main model

Table 1.B.1. Group sizes

N Share of sample

Pessimists 749 0.25
Mean Reverters 584 0.19
Extrapolators 527 0.17
Ignorants 393 0.13
Sophisticates 777 0.26
Total 3030
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Figure 1.B.1. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-means
algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups taken
together.
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Table 1.B.2. Coe�cients for main specification when L = 0

Pessim. Mean R. Extrap. Ignor. Sophis.

Intercept -4.74*** -0.45 3.06*** 2.93*** 5.32***
(0.15) (0.32) (0.32) (0.21) (0.18)

Lag 0, Returns -0.02 -0.53*** 0.72*** 0.12** 0.24***
(0.03) (0.06) (0.07) (0.05) (0.04)

Lag 0, News 0.42*** -0.47*** 1.15*** 0.07 0.27***
(0.05) (0.10) (0.10) (0.06) (0.05)

N · T 77310
R

2 0.256

Notes: N = 3030. Individuals for whom not all covariates are available are excluded. OLS estimates. Standard
errors (clustered at individual level) in parentheses. ***, ** and * denote significance at 1%, 5% and 10%
respectively. Dependent variable in percentage points, regressors standardised.
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Table 1.B.3. Coe�cients for main specification when L = 6

Pessim. Mean R. Extrap. Ignor. Sophis.

Intercept -3.35*** -0.42 3.73*** 3.26*** 6.22***
(0.28) (0.61) (0.60) (0.35) (0.33)

Lag 0, Returns 0.04 -0.55*** 0.62*** 0.09* 0.22***
(0.04) (0.07) (0.07) (0.05) (0.04)

Lag 1, Returns -0.02 0.04 0.41*** 0.17*** 0.15***
(0.04) (0.07) (0.07) (0.05) (0.04)

Lag 2, Returns 0.01 -0.09 -0.00 0.16*** 0.10***
(0.03) (0.06) (0.07) (0.05) (0.04)

Lag 3, Returns -0.01 -0.05 0.11* 0.05 0.12***
(0.03) (0.06) (0.07) (0.04) (0.03)

Lag 4, Returns -0.08*** 0.01 0.10* 0.06* 0.08**
(0.03) (0.05) (0.06) (0.04) (0.03)

Lag 5, Returns -0.08*** -0.10* -0.01 0.08** 0.01
(0.03) (0.06) (0.06) (0.03) (0.03)

Lag 6, Returns -0.08*** 0.05 0.00 -0.01 0.02
(0.03) (0.06) (0.07) (0.04) (0.03)

Lag 0, News 0.32*** -0.45*** 1.04*** 0.12* 0.17***
(0.05) (0.10) (0.09) (0.06) (0.05)

Lag 1, News 0.13*** -0.03 0.13 -0.26*** -0.02
(0.05) (0.11) (0.10) (0.07) (0.05)

Lag 2, News 0.23*** 0.33*** 0.14 0.07 0.31***
(0.05) (0.12) (0.12) (0.06) (0.06)

Lag 3, News 0.16*** -0.04 0.41*** 0.07 0.06
(0.05) (0.12) (0.13) (0.08) (0.06)

Lag 4, News -0.03 -0.26** -0.10 0.08 0.05
(0.06) (0.12) (0.13) (0.08) (0.07)

Lag 5, News 0.07 0.10 -0.24* 0.06 0.04
(0.06) (0.13) (0.13) (0.08) (0.07)

Lag 6, News 0.19*** -0.09 0.14 0.14* 0.13**
(0.06) (0.13) (0.13) (0.08) (0.06)

N · T 77310
R

2 0.256

Notes: N = 3030. OLS estimates. Standard errors (clustered at individual level) in parentheses. ***, ** and *
denote significance at 1%, 5% and 10% respectively. Dependent variable in percentage points, regressors
standardised.
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Table 1.B.4. Within-group heterogeneity

Main specifciation Fin. Know.: > med Fin. Num.: > med Underst. stock m. Follows stock m. Know. past ret. Age: > med

Pessim. Returns -0.04 0.31*** 0.28*** 0.30*** 0.24** 0.25*** 0.02
(0.05) (0.10) (0.10) (0.10) (0.09) (0.10) (0.11)

News 0.47*** -0.02 -0.25* -0.16 -0.16 -0.16 0.10
(0.07) (0.15) (0.15) (0.14) (0.14) (0.14) (0.16)

Mean R. Returns -0.52*** 0.06 -0.05 0.05 -0.18 0.16 -0.05
(0.09) (0.20) (0.19) (0.19) (0.18) (0.19) (0.20)

News -0.14 0.00 -0.21 -0.11 0.20 -0.31 0.26
(0.15) (0.33) (0.30) (0.32) (0.27) (0.30) (0.37)

Extrap. Returns 0.55*** 0.45** 0.30 0.37* 0.63*** 0.11 -0.01
(0.11) (0.20) (0.22) (0.22) (0.20) (0.21) (0.24)

News 1.14*** -0.30 0.20 -0.27 -0.18 -0.11 0.36
(0.15) (0.31) (0.31) (0.31) (0.30) (0.30) (0.41)

Ignor. Returns 0.11 -0.28 -0.01 -0.19 -0.34** -0.04 -0.20
(0.08) (0.18) (0.23) (0.17) (0.16) (0.17) (0.14)

News 0.03 -0.03 -0.21 -0.08 0.01 -0.11 0.10
(0.09) (0.21) (0.25) (0.20) (0.18) (0.18) (0.26)

Sophis. Returns 0.22*** -0.03 -0.16 -0.02 0.05 0.08 -0.07
(0.05) (0.11) (0.10) (0.11) (0.12) (0.11) (0.11)

News 0.33*** -0.37*** -0.12 -0.29** -0.28* 0.01 0.21
(0.06) (0.13) (0.12) (0.13) (0.16) (0.13) (0.15)

N · T 37828 37828 37828 37828 37828 37828 37828
R

2 0.26 0.26 0.27 0.26 0.27 0.26 0.26

Notes: Individuals for whom not all covariates are available are excluded. The first column reproduces the
coe�cients from our main specification for the subsample of individuals for which all covariates in the ad-
jacent columns are available. The adjacent columns show the di�erence for each row’s coe�cient between
individuals with and without the status given in the column header.
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Table 1.B.5. Robustness to rounding

Main specifciation With indicators for rounding

Pessim. Intercept -4.74*** -3.94***
(0.15) (0.21)

Returns -0.02 -0.02
(0.03) (0.04)

News 0.42*** 0.42***
(0.05) (0.05)

Mean R. Intercept -0.45 0.27
(0.32) (0.37)

Returns -0.53*** -0.52***
(0.06) (0.06)

News -0.47*** -0.46***
(0.10) (0.09)

Extrap. Intercept 3.06*** 3.72***
(0.32) (0.37)

Returns 0.72*** 0.67***
(0.07) (0.07)

News 1.15*** 1.14***
(0.10) (0.10)

Ignor. Intercept 2.93*** 3.90***
(0.21) (0.31)

Returns 0.12** 0.10**
(0.05) (0.05)

News 0.07 0.09
(0.06) (0.06)

Sophis. Intercept 5.32*** 5.63***
(0.18) (0.21)

Returns 0.24*** 0.20***
(0.04) (0.04)

News 0.27*** 0.24***
(0.05) (0.05)

Pr(R ≤ −20%) divisible by 10% 0.54***
(0.11)

Pr(R ≤ 0%) divisible by 10% -3.33***
(0.16)

Pr(R ≤ 20%) divisible by 10% 1.62***
(0.11)

N · T 77310 77310
R

2 0.25 0.29

Notes: The divisibility variables are dummies equal to 1 if the subjective probability it refers to is divisible
by 10%. The outcome of the regressions, the expected return, is based on all three subjective probabilities.
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Appendix 1.C Alternative specifications

1.C.1 Only observed heterogeneity

Table 1.C.1. Model with no heterogeneity and observed heterogeneity

E[R], no heterogeneity E[R], obs. heterogeneity

Intercept 1.83*** -6.80*
(0.21) (3.70)

Lag 0, Returns 0.06** 0.03
(0.03) (0.04)

Lag 1, Returns 0.12*** 0.08**
(0.03) (0.04)

Lag 2, Returns 0.02 0.05*
(0.02) (0.03)

Lag 3, Returns 0.04* 0.08**
(0.02) (0.03)

Lag 4, Returns 0.02 0.04
(0.02) (0.03)

Lag 5, Returns -0.02 -0.01
(0.02) (0.03)

Lag 6, Returns 0.00 0.02
(0.02) (0.03)

Lag 0, News 0.25*** 0.31***
(0.03) (0.05)

Lag 1, News -0.03 -0.03
(0.03) (0.05)

Lag 2, News 0.22*** 0.33***
(0.04) (0.05)

Lag 3, News 0.13*** 0.08
(0.04) (0.06)

Lag 4, News -0.05 -0.01
(0.04) (0.06)

Lag 5, News 0.00 -0.00
(0.04) (0.06)

Lag 6, News 0.12*** 0.14**
(0.04) (0.06)

Age -0.01
(0.09)

Age squared 0.00
(0.00)

Male 0.13
(0.46)

Continued on next page
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Table 1.C.1. Model with no heterogeneity and observed heterogeneity

E[R], no heterogeneity E[R], obs. heterogeneity

Education: Some college 0.70
(0.68)

Education: Bachelor degree 1.91***
(0.71)

Education: Advanced degree 2.71***
(0.77)

Ethnicity: Black 1.82
(2.06)

Ethnicity: Native 0.17
(1.97)

Ethnicity: Other -1.08
(2.13)

Ethnicity: White 0.22
(1.79)

Household income (thousands), ∈ (5, 7.5] 0.50
(4.26)

Household income (thousands), ∈ (7.5, 10] -0.54
(2.45)

Household income (thousands), ∈ (10, 12.5] -3.08
(3.15)

Household income (thousands), ∈ (12.5, 15] -0.41
(2.44)

Household income (thousands), ∈ (15, 20] 0.27
(2.46)

Household income (thousands), ∈ (20, 25] -0.21
(2.44)

Household income (thousands), ∈ (25, 30] -1.26
(2.37)

Household income (thousands), ∈ (30, 35] -0.62
(2.29)

Household income (thousands), ∈ (35, 40] 1.69
(2.30)

Household income (thousands), ∈ (40, 50] -0.50
(2.21)

Household income (thousands), ∈ (50, 60] -0.38
(2.24)

Household income (thousands), ∈ (60, 75] -0.30
(2.23)

Household income (thousands), > 75 (higher cat n/a) -1.67
(2.24)

Household income (thousands), ∈ (75, 100] 0.22

Continued on next page
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Table 1.C.1. Model with no heterogeneity and observed heterogeneity

E[R], no heterogeneity E[R], obs. heterogeneity

(2.18)
Household income (thousands), ∈ (100, 125] -0.77

(2.21)
Household income (thousands), ∈ (125, 200] -0.21

(2.25)
Household income (thousands), > 200k -1.93

(2.39)
Ever owned stocks -0.09

(0.61)
Follows stock market 1.18**

(0.56)
Understands stock market 0.07

(0.52)
Knowledge of past returns: Don’t know 1.24*

(0.64)
Knowledge of past returns: Magnitude too large 5.07***

(1.06)
Knowledge of past returns: Sign and Magnitude correct 3.22***

(0.66)
Probability Numeracy 0.98***

(0.28)
Financial Knowledge 0.29

(0.26)
Financial Numeracy 0.19

(0.26)
N · T 77310 32170
R

2 0.00 0.12

N = 3030 individuals for the model of the first column. Requiring all covariates
drops the number of individuals to N = 806 in the second column. OLS estimates.
Standard errors (clustered by individual) in parentheses. ***, ** and * denote sig-
nificance at 1%, 5% and 10% respectively.
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1.C.2 Sample with at least three observations per individuals

This section shows the results when we include individuals with at least 2 observa-
tions into the analysis, which is the minimum needed to calculate all the variables
by which we classify individuals into groups.

Table 1.C.2. Group sizes

N Share of sample
group

0 822 0.25
1 417 0.13
2 778 0.23
3 424 0.13
4 887 0.27
Total 3328

0 1 2 3 4 5
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.33 0.10 0.10 0.07 0.01

0.12 0.17 0.07 0.03 0.00 0.00
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0.4

0.5

Figure 1.C.1. unit-wise 90% confidence sets by size and inclusion of estimated group

Table 1.C.3. Comparison of estimated groups

Group from alternative specification 0 1 2 3 4
Group from main specification

Pessimists 0.97 0.00 0.01 0.00 0.02
Mean Reverters 0.05 0.00 0.90 0.00 0.05
Extrapolators 0.04 0.65 0.21 0.03 0.08
Ignorants 0.00 0.00 0.08 0.91 0.00
Sophisticates 0.00 0.00 0.02 0.00 0.98

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated
across groups for a di�erent specification.
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Figure 1.C.2. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes. Where within survey and
group means consist of less than 15 observations, we do not plot the series, resulting in a gap. Some ALP
surveys had a smaller number of individuals taking part.
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(b) E�ect of past tonality of economic news
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Figure 1.C.3. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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Figure 1.C.5. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-
means algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together.
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Figure 1.C.6. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 3328, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).
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1.C.3 Sample with at least fifteen observations per individuals

This section shows the results when we include only individuals with at least 15
observations into the analysis, which is the number of parameters in our model
when we include 6 lags of returns and news.

Table 1.C.4. Group sizes

N Share of sample
group

0 475 0.23
1 367 0.18
2 410 0.20
3 264 0.13
4 526 0.26
Total 2042

0 1 2 3 4
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.32 0.10 0.05 0.01

0.21 0.24 0.07 0.01 0.00

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1.C.7. unit-wise 90% confidence sets by size and inclusion of estimated group

Table 1.C.5. Comparison of estimated groups

Group from alternative specification 0 1 2 3 4
Group from main specification

Pessimists 0.83 0.04 0.07 0.00 0.06
Mean Reverters 0.01 0.88 0.08 0.04 0.00
Extrapolators 0.00 0.00 1.00 0.00 0.00
Ignorants 0.00 0.00 0.00 1.00 0.00
Sophisticates 0.00 0.07 0.12 0.02 0.80

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated
across groups for a di�erent specification.
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Figure 1.C.8. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes. Where within survey and
group means consist of less than 15 observations, we do not plot the series, resulting in a gap. Some ALP
surveys had a smaller number of individuals taking part.
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(b) E�ect of past tonality of economic news
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Figure 1.C.9. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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Figure 1.C.11. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-means
algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups taken
together.
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Figure 1.C.12. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 2042, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).
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1.C.4 Pr(Rt→t+12 > 0) as the dependent variable

This section shows the results when we replace our dependent variable from the
main analysis, E[Rt→t+12]i,t with Pr(Rt→t+12 > 0)i,t. This substantially reduces the
amount of information we use on individual beliefs, but is robust to monotonicity
violations that arise when we approximate expectations using all three subjective
probabilities.

Table 1.C.6. Group sizes

N Share of sample
group

0 749 0.25
1 584 0.19
2 527 0.17
3 393 0.13
4 777 0.26
Total 3030

0 1 2 3 4 5
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.36 0.09 0.10 0.03 0.00

0.12 0.21 0.06 0.03 0.00 0.00

0.0
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Figure 1.C.13. unit-wise 90% confidence sets by size and inclusion of estimated group

Notes: Number in cells refer to its share of the individuals.
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Figure 1.C.14. Data vs. predicted probability that the Dow Jones Index increases, by unobserved
group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes.
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(b) E�ect of past tonality of economic news
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Figure 1.C.15. E�ect on the probability that the Dow Jones will go up of increases in past returns
and tonality of economic news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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1.C.5 Comparison with Dominitz-Manski types

The following plots show how our groups relate to the types of Dominitz andManski,
extended to a much longer panel, by considering the cross-sectional distribution of
individual-level fractions of observations close to their specified belief types Random
Walk (RW), Persistence (P) and Mean Reversion (MR).
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Figure 1.C.17. Cross-sectional distribution of individual compatibility with RW type, by group

Notes: Type def. in terms of response to returns
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Figure 1.C.18. Cross-sectional distribution of individual compatibility with P type, by group

Notes: Type def. in terms of response to returns
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Figure 1.C.19. Cross-sectional distribution of individual compatibility with MR type, by group

Notes: Type def. in terms of response to returns
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1.C.6 Three unobserved groups

This section shows the results when we assign individuals to 3 groups.

Table 1.C.7. Group sizes

N Share of sample
group

0 1357 0.45
1 1298 0.43
2 375 0.12
Total 3030

0 1 2 3
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.30 0.28 0.06

0.03 0.19 0.14 0.00

0.0
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0.3

0.4

0.5

Figure 1.C.20. unit-wise 90% confidence sets by size and inclusion of estimated group

Notes: Number in cells refer to its share of the individuals.

Table 1.C.8. Comparison of estimated groups

Group from alternative specification 0 1 2
Group from main specification

Pessimists 0.93 0.07 0.00
Mean Reverters 0.15 0.82 0.03
Extrapolators 0.03 0.96 0.01
Ignorants 0.00 0.12 0.88
Sophisticates 0.71 0.28 0.01

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated
across groups for a di�erent specification.
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Figure 1.C.21. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes.
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(b) E�ect of past tonality of economic news
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Figure 1.C.22. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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Figure 1.C.24. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-
means algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together.
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Figure 1.C.25. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 3030, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).
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1.C.7 Four unobserved groups

This section shows the results when we assign individuals to 4 groups.

Table 1.C.9. Group sizes

N Share of sample
group

0 1229 0.41
1 599 0.20
2 810 0.27
3 392 0.13
Total 3030

0 1 2 3 4
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.29 0.15 0.12 0.04

0.03 0.24 0.09 0.03 0.00
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Figure 1.C.26. unit-wise 90% confidence sets by size and inclusion of estimated group

Notes: Number in cells refer to its share of the individuals.
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Figure 1.C.27. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes.
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(b) E�ect of past tonality of economic news
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Figure 1.C.28. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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Figure 1.C.30. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-
means algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together.
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Figure 1.C.31. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 3030, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).

Table 1.C.10. Comparison of estimated groups

Group from alternative specification 0 1 2 3
Group from main specification

Pessimists 0.94 0.01 0.05 0.00
Mean Reverters 0.01 0.00 0.99 0.00
Extrapolators 0.00 0.97 0.02 0.01
Ignorants 0.00 0.00 0.04 0.96
Sophisticates 0.67 0.10 0.22 0.01

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated
across groups for a di�erent specification.
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1.C.8 Seven unobserved groups

This section shows the results when we assign individuals to 7 groups.

Table 1.C.11. Group sizes

N Share of sample
group

0 599 0.20
1 424 0.14
2 249 0.08
3 296 0.10
4 216 0.07
5 520 0.17
6 726 0.24
Total 3030

0 1 2 3 4 5 6 7
Size of Confidence Set

Estimated Group in Conf. Set

Not in Confidence Set

0.21 0.09 0.09 0.07 0.04 0.02 0.00

0.11 0.20 0.08 0.04 0.02 0.01 0.00 0.00

0.0

0.1

0.2

0.3

0.4

0.5

Figure 1.C.32. unit-wise 90% confidence sets by size and inclusion of estimated group

Notes: Number in cells refer to its share of the individuals.
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Figure 1.C.33. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes. Where within survey and
group means consist of less than 15 observations, we do not plot the series, resulting in a gap. Some ALP
surveys had a small number of individuals taking part.
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(b) E�ect of past tonality of economic news
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Figure 1.C.34. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.



Appendix 1.C Alternative specifications | 77

0 1 2 3 4 5 6
50%

60%

70%

80%

90%

A: Mean probability that Rt t + 12 ( 0.2, )

q0.1

q0.9

0 1 2 3 4 5 6

5%

10%

15%

20%

B: St. dev. of prob. that Rt t + 12 ( 0.2, )

q0.1

q0.9

0 1 2 3 4 5 6

20%
30%
40%
50%
60%
70%

C: Mean probability that Rt, t t + 12 (0, ) 

q0.1

q0.9

0 1 2 3 4 5 6
5%

10%

15%

20%

25%
D: St. dev. of prob. that Rt, t t + 12 (0, )

q0.1

q0.9

0 1 2 3 4 5 6

10%

20%

30%

40%

50%

E: Mean probability that Rt, t t + 12 (0.2, )

q0.1

q0.9

0 1 2 3 4 5 6
5%

10%

15%

20%

25%
F: St. dev. of prob. that Rt, t t + 12 (0.2, )

q0.1

q0.9

0 1 2 3 4 5 6

-5%

0%

5%

G: Cov. of prob. that Rt t + 12 ( 0.2, ) and returns

q0.1

q0.9

0 1 2 3 4 5 6

-4%

0%

4%

H: Cov. of prob. that Rt t + 12 ( 0.2, ) and news

q0.1

q0.9

0 1 2 3 4 5 6

-5%

0%

5%

9%
I: Cov. of prob. that Rt, t t + 12 (0, ) and returns

q0.1

q0.9

0 1 2 3 4 5 6
-4%

0%

4%

8%
J: Cov. of prob. that Rt, t t + 12 (0, ) and news

q0.1

q0.9

0 1 2 3 4 5 6

-5%

0%

5%

9%

K: Cov. of prob. that Rt, t t + 12 (0.2, ) and returns

q0.1

q0.9

0 1 2 3 4 5 6

-4%

0%

4%

8%
L: Cov. of prob. that Rt, t t + 12 (0.2, ) and news

q0.1

q0.9

0 1 2 3 4 5 6

0.0

0.2

0.5

0.8

1.0
M: Fraction of belief sets satisfying strict montonicity

q0.1

q0.9

0 1 2 3 4 5 6
0.4

0.6

0.8

1.0

N: Fraction of beliefs expressing subjective probabilities

q0.1

q0.9

Figure 1.C.36. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-
means algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together.
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Figure 1.C.37. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 3030, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).

Table 1.C.12. Comparison of estimated groups

Group from alternative specification 0 1 2 3 4 5 6
Group from main specification

Pessimists 0.79 0.02 0.02 0.02 0.00 0.01 0.15
Mean Reverters 0.00 0.69 0.02 0.02 0.00 0.26 0.01
Extrapolators 0.01 0.01 0.43 0.43 0.00 0.12 0.01
Ignorants 0.00 0.01 0.01 0.01 0.54 0.44 0.00
Sophisticates 0.00 0.00 0.00 0.06 0.00 0.17 0.78

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated
across groups for a di�erent specification.
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1.C.9 Fifteen unobserved groups

This section shows the results when we assign individuals to 15 groups.

Table 1.C.13. Group sizes

N Share of sample
group

0 287 0.09
1 263 0.09
2 124 0.04
3 80 0.03
4 364 0.12
5 207 0.07
6 165 0.05
7 124 0.04
8 322 0.11
9 154 0.05
10 219 0.07
11 113 0.04
12 22 0.01
13 379 0.13
14 207 0.07
Total 3030
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Figure 1.C.38. Data vs. predicted expected return of the Dow Jones index, by unobserved group

Notes: The solid and dashed lines are within survey and group means of individual data points and model
predictions. Shaded regions are within survey and group means of individual 95% confidence intervals for
the estimated regression function. Line widths are proportional to group sizes. Where within survey and
group means consist of less than 15 observations, we do not plot the series, resulting in a gap. Some ALP
surveys had a small number of individuals taking part.
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(a) E�ect of past returns
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(b) E�ect of past tonality of economic news
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Figure 1.C.39. E�ect on expected returns of increases in past returns and tonality of economic
news, by group

Notes: Dots depict the e�ect on expected returns of a one standard deviation increase in the most recent
monthly return of the Dow Jones (Panel a) and in the most recent tonality of economic news over one month
(Panel b). Diamonds depict the summed e�ect in the most recent, plus six preceding monthly returns of the
Dow Jones and the preceding tonalities of economic news, respectively. Shaded lines show the width of
95% confidence intervals. Marker and line widths are proportional to group sizes.
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Figure 1.C.41. Moments used for classification by unobserved heterogeneity group

Notes: Bars show the group means of the 14 individual moments used to classify individuals via the k-
means algorithm. Dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together.
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Figure 1.C.42. Characteristics not used for classification by unobserved heterogeneity group

Notes: N = 3030, smaller for some panels depending on the availability of covariates, see Table 1.1. Bars
show group means, dashed lines are the bottom and top decile with respect to the individuals of all groups
taken together. Variable definitions:: Financial numeracy and knowledge: First principle components load-
ing on variables indicating whether a respondent correctly answered numerical and knowledge based ques-
tions, scaled to the unit interval; Probability numeracy: Fraction of correct answers to questions about prob-
ability theory; Knowledge of past returns: False sign (0), don’t know (1⁄3), magnitude too large (2⁄3), sign and
magnitude correct (1); Understanding of the stock market: Extremely bad (0), very bad (1⁄5), bad (2⁄5), good
(3⁄5), very good (4⁄5), extremely good (1); Follows stock market: Not at all (0), somewhat (1⁄2), closely (1).
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Table 1.C.14. Comparison of estimated groups

Group from alternative specification 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Group from main specification

Pessimists 0.38 0.22 0.01 0.00 0.30 0.02 0.00 0.01 0.05 0.00 0.01 0.00 0.00 0.01 0.00
Mean Reverters 0.00 0.14 0.03 0.00 0.00 0.11 0.28 0.16 0.07 0.05 0.06 0.00 0.00 0.00 0.09
Extrapolators 0.00 0.02 0.19 0.15 0.00 0.24 0.00 0.00 0.25 0.03 0.02 0.00 0.04 0.00 0.05
Ignorants 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.26 0.41 0.28 0.00 0.00 0.04
Sophisticates 0.00 0.01 0.00 0.00 0.18 0.00 0.00 0.03 0.14 0.01 0.01 0.00 0.00 0.48 0.15

Notes: Each row shows how individuals assigned to a given group in our main specification are allocated across groups for a di�erent specification.
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Appendix 1.D Additional details on stock ownership and trading

Table 1.D.1. Regression coe�cients underlying Figure 1.8

Bought stocks in following period

Pessimists -1.655***
(0.066)

Mean Reverters -1.560***
(0.073)

Extrapolators -1.768***
(0.069)

Ignorants -1.920***
(0.083)

Sophisticates -1.410***
(0.047)

E[R] 0.010***
(0.002)

N · T 70114
Pseudo R

2 0.02

Notes: N = 3029. Probit regression of the dummy indicating whether stocks were bought in the next period (if
within 120 days) on expected returns and group indicators. Expected returns in percentage points. Standard
errors clustered at individual level.

Table 1.D.2. Stock buying v expected returns

Average marginal e�ect Std. err.

Pessimists 0.09 0.03
Mean Reverters 0.12 0.03
Extrapolators 0.09 0.02
Ignorants 0.07 0.02
Sophisticates 0.16 0.04

Notes: N = 3029. From a probit regression of the dummy indicating whether stocks were bought in the
next period (if within 120 days) on expected returns and group indicators. Both units in percentage points.
Standard errors clustered at individual level. Average marginal e�ects calculated within group.
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Appendix 1.E Additional details for forecast error analysis

Table 1.E.1 shows the same analysis as Table 1.6 in the main text, but uses our entire
sample as the basis.

Table 1.E.1. Predictability of forecast errors with forecast revisions, full sample

Pooled OLS Pooled OLS w groups

Forecast Revision -0.51
(0.02)

Forecast Revision, Pessimists -0.52
(0.02)

Forecast Revision, Mean Reverters -0.50
(0.01)

Forecast Revision, Extrapolators -0.50
(0.03)

Forecast Revision, Ignorants -0.46
(0.03)

Forecast Revision, Sophisticates -0.53
(0.04)

R
2 0.10 0.21

N · T 74165 74165

Notes: N = 3030. OLS estimates. Standard errors (clustered by individual and survey) in parentheses.
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Chapter 2

The distribution of ambiguity
attitudes?

Joint with Hans-Martin von Gaudecker and Christian Zimpelmann

2.1 Introduction

Economists typically assume that households have precise knowledge of the relevant
probability distribution when taking decisions in non-deterministic contexts. There
is mounting evidence that this may not be the case. Elicitations of subjective be-
liefs regularly reveal violations of the basic axioms of probability theory (e.g. Hurd,
2009) and, when asked, people often express their uncertainty about probability
distributions (Bruine de Bruin, Fischhoff, Millstein, and Halpern-Felsher, 2000). Im-
precise belief measures translate into low explanatory power of economic models for
decisions (Drerup, Enke, and von Gaudecker, 2017). Belief dispersion is high even
in contexts where private information should not play a major role (e.g. Manski,
2004).
Consequently, there has been a proliferation of theoretical (Ghirardato and Mari-
nacci, 2001; Klibanoff, Marinacci, and Mukerji, 2005; Chateauneuf, Eichberger, and
Grant, 2007) and empirical work ((see, e.g., Butler, Guiso, and Jappelli, 2014; Traut-
mann and van de Kuilen, 2015; Li, Müller, Wakker, and Wang, 2018)) regarding
decisions in situations of ambiguity, i.e., those where subjects are uncertain about
the correct probability distribution to employ. Overall, we still knowmuch less about
ambiguity preferences than about attitudes towards risk or discounting behaviour.
Empirical studies have been largely confined to eliciting ambiguity based on Ellsberg
(1961), which involves choices about artificial events of unknown distributions (Dim-
mock, Kouwenberg, Mitchell, and Peijnenburg, 2015; Dimmock, Kouwenberg, and

? We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through CRC-TR 224 (Project C01) and under Germany’s Excellence Strategy
– EXC 2126/1– 390838866.
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Wakker, 2015; Dimmock, Kouwenberg, Mitchell, and Peijnenburg, 2016; Bianchi
and Tallon, 2018; Delavande, Ganguli, and Mengel, 2019).
We add to a recent literature that aims to measure ambiguity attitudes for nat-
ural events (Abdellaoui, Baillon, Placido, and Wakker, 2011; Baillon and Ble-
ichrodt, 2015; Baillon, Bleichrodt, Keskin, Haridon, and Li, 2018; Anantanasuwong,
Kouwenberg, Mitchell, and Peijnenberg, 2019). Ours is the first study to examine
incentivised measures of ambiguity attitudes towards natural events in a represen-
tative sample over time and across domains.
To measure ambiguity, we adapt the design of Baillon, Huang, Selim, and Wakker
(2018) for use in a representative survey. Using high-powered financial incentives,
we elicit four waves of ambiguity attitudes in the context of the stock market over
a span of two years; in the fourth wave, we additionally elicit measures from the
domain of climate change. Beyond a base payment for survey participation, each
individual could earn €20 per wave. Depending on individuals’ choices, payment was
based on the evolution of a stock market index over the subsequent six month-period
or the outcome of a lottery. Expected incentive payments for a rational decision-
maker using empirical frequencies for stock returns were €13.5, or an hourly wage
of €51.4. On average, we have 92 (minimum: 21, maximum 116) binary decisions
at the individual level.
Subjects make several binary decisions between an option whose payoff depends
on the development of the stock market and a risky option whose payoff occurs
with a known probability. Varying the probabilities of the risky option reveals an
individual’s matching probability; the probability of the lottery at which the subject
is indifferent between the two options. We elicit matching probabilities for seven
events that depend on the development of the stock market. The distribution of
matching probabilities has three salient features. First, the sum of the matching
probabilities for an event and its complement is clearly less than one. This indi-
cates that on average, subjects are averse to ambiguity. Second, average matching
probabilities are sub-additive, the sum of matching probabilities of two mutually
exclusive events exceeds the matching probability of their union. This implies in-
dividuals are ambiguity-averse for high-probability events and ambiguity-seeking
for low-probability events on average (see also Wakker, 2010; Enke and Graeber,
2019). Third, a non-negligible fraction of choice patterns cannot be rationalised by
any deterministic theory of choice under uncertainty that we know of. In particular,
57% of subjects at some point assign a higher matching probability to an event that
is a strict subset of another.
Based on these observations, we build a model that extracts individual ambiguity at-
titudes from observed choices whilst accounting for decision errors. Choices depend
on three parameters: Ambiguity aversion, which is the average difference between
subjective probabilities and matching probabilities. Likelihood insensitivity, which
measures how strongly matching probabilities react to underlying changes in subjec-
tive probabilities, which can also be interpreted as the perceived level of ambiguity.
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Finally, the variance of a random component that affects choices for each event. We
structurally estimate these three parameters for each respondent using individual-
level choices.
Our first conclusion from this exercise is that ambiguity attitudes are very hetero-
geneous between respondents, each parameter takes on values within its entire do-
main. Within respondents, parameters are quite stable; wave to wave correlations
average 0.25 for ambiguity aversion and 0.31 for likelihood insensitivity. This is
comparable to the stability of risk preferences over similar time spans (Chuang and
Schechter, 2015). Within-respondent variation in ambiguity attitudes exhibits no
systematic trend over time and bears no meaningful relation to observed charac-
teristics. We interpret this variation as being driven by random fluctuations around
a stable mean and by measurement error, which is very prevalent in similar tasks
(Gillen, Snowberg, and Yariv, 2018).
Across domains, ambiguity attitudes are more stable than previously thought. The
panel dimension of our data allows us to adjust for attenuation due to measurement
error by instrumenting parameter estimates with those of previous waves. We find
that ambiguity aversion is completely transferable between the domains of finance
and climate change but that likelihood insensitivity is not. Our results thus suggest
that ambiguity aversion is a domain-invariant preference parameter but that likeli-
hood insensitivity consists of both a transferable and a domain-specific component,
which aligns well with the interpretation according to which likelihood insensitivity
is the perceived level of ambiguity.
To describe between-respondent heterogeneity in the three dimensions of ambiguity
aversion, likelihood insensitivity and the variance of decision errors, we re-estimate
the model, pooling data across all waves and assign individuals into groups based
on the k-means algorithm. Four groups suffice to highlight the most important dif-
ferences in ambiguity attitudes and their correlates. Almost thirty per cent of the
subjects are characterised by a high level of perceived ambiguity and ambiguity aver-
sion. Females, individuals with lower numeracy, higher levels of risk aversion, lower
wealth and individuals who perceive positive stock market returns to have occurred
less frequently are more likely to belong to this group. Nearly a fifth of participants
perceive a similar level of ambiguity but are ambiguity-seeking, not averse. They dif-
fer from individuals of the first group in that they are less risk-averse and hold more
financial assets. The next group, a third of the population, perceives little ambiguity
and is neutral towards it, coming close to expected utility maximising behaviour.
High probability and financial numeracy, substantial financial assets and thinking
historical returns have often been positive are predictive of belonging to this group.
The final group, less than a fifth of subjects, makes more erratic decisions, which pre-
vents reliable measurement of their ambiguity attitudes. Individuals in this group
tend to be older, male, have lower rates of numeracy and less knowledge of historical
stock returns.
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In the next section, we describe the data, the design of our survey instrument and
we develop stylised facts that motivate our model. We discuss the identification and
estimation of our model in Section 2.3. Section 2.4 presents our estimation results;
we conclude in Section 2.5.

2.2 Data, design, and stylised Facts

Our data originate from the LISS panel (Longitudinal Internet Studies for the Social
Sciences), an online household panel representative of the Dutch population. Partic-
ipants answer questionnaires exclusively reserved for research every week and are
financially compensated for all questions they answer. Our sample consists of the
financial deciders within each household.
In this section, we first present the available background information in the LISS
panel, some of which was tailored to our application. Then, we describe our design
and highlight some regularities in the choice data it produces.

2.2.1 Background characteristics

In the LISS panel, a variety of information about the households including detailed
background characteristics and wealth data is elicited yearly or bi-yearly. Table 2.1
shows the demographics of our sample. The gender split is even. In terms of age,
the fraction of 45 to 65-year-olds in our sample is 36 % which is similar to the
population-based on aggregate data from Statistics Netherlands (CBS), excluding
individuals aged below 20. We have fewer individuals aged 20 to 45 than in the
population (25 % compared to 40 %) and more aged 65 to 85 (33 % compared to
18 %). Our sample is also somewhat better educated, with the top two categories
of education equalling 13 % and 28 % compared to 11 % and 19 % in the popula-
tion. These age and education discrepancies with the population are to be expected
given that our sample consists of the financial deciders in each household. Income
and financial assets are pooled within households. Mean yearly income is close to
€28700, mean financial assets are €54800. These are close to the population-wide
household numbers in 2018 which were €29500 and €57800 respectively.
During our data collection, as well as in an extra wave in January 2019, we elicited
several additional measures to better understand potential drivers of heterogeneity
in ambiguity attitudes:

Risk Aversion. One important characteristic that might be related to ambiguity at-
titudes is risk aversion. We measure households’ risk aversion with a preference sur-
vey module designed by Falk, Becker, Dohmen, Huffman, and Sunde (2016) which
includes a qualitative component, a general risk question, and a quantitative com-
ponent that is based on elicited certainty equivalents for risky lotteries. We combine
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Table 2.1. Summary statistics

Observations Mean Std. dev. q0.25 q0.5 q0.75

Female 2235 0.5
Education: High school or less 0.35
Education: Junior college 0.24
Education: College 0.28
Education: University 0.13
Age: ∈ (20, 45] 2230 0.25
Age: ∈ (45, 65] 0.37
Age: ∈ (65, 80] 0.33
Age: > 80 0.05
Income (thousands) 1806 2.39 1.49 1.5 2.17 3
Financial assets (thousands) 1838 54.77 157.38 2.42 15 46.69

Notes: Sample restrictions: Individuals with at least two waves of regular choices in the ambiguity tasks.
Choices are irregular if they exhibit recurring patterns whilst also being entered quicker than 85 % of sub-
jects. Income and assets are pooled within households, data from 2018.

the quantitative and qualitative components as suggested in Falk, Becker, Dohmen,
Huffman, and Sunde (2016).

Numeracy. The ability to reason quantitatively is particularly important whenmak-
ing decisions under uncertainty. We measure three components of numeracy. First,
a basic numeracy component based on the English Longitudinal Study of Ageing
(Steptoe, Breeze, Banks, and Nazroo, 2013). Second, a financial numeracy compo-
nent that involves interest rates and inflation for which we used a subset of the
questions by van Rooij, Lusardi, and Alessie (2011). Third, a probability numeracy
component that tests both basic understanding of probabilities and more advanced
concepts such as independence and additivity. We use the questions proposed by
Hudomiet, Hurd, and Rohwedder (2018) and additionally add two questions that
could be particularly informative about the types of errors that can occur when in-
dividuals make decisions in our design. We aggregate the three components into a
numeracy index, giving equal weight to each component.
Our measures of numeracy and risk aversion are related to socio-demographics
characteristics as in the previous literature (e.g., Dohmen, Falk, Huffman, Sunde,
Schupp, et al., 2011; van Rooij, Lusardi, and Alessie, 2011; Hudomiet, Hurd, and
Rohwedder, 2018): Older, less educated, and female subjects tend to have lower
numeracy skills and are more risk-averse (Table 2.B.2).

Judged historical frequencies of past AEX returns. We also asked individuals
to judge how frequently the AEX events used in our designs occurred over the last
20 years. Although there is substantial individual heterogeneity, the last column
of Table 2.2 shows that the average judged frequencies are not too far from the
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empirical frequencies. Subjects underestimate the frequency of positive returns on
average but think returns greater than 10 % occurred more often than they did.

Optimism. Optimism is a potential determinant of ambiguity attitudes. We elicited
optimism and pessimismmeasures based on the revised life orientation test (Scheier,
Carver, and Bridges, 1994), combining them into an overall measure of optimism.

Knowledge of and concern about climate change. To help analyse ambiguity
attitudes towards climate change, we asked subjects to report (i) their understand-
ing of the causes and implications of climate change on a five-point scale and (ii)
whether climate change is a threat to them and their family on a six-point scale.

2.2.2 Measuring Ambiguity Attitudes

Our goal is to investigate the distribution and stability of ambiguity attitudes in
a representative population. In our main application, we choose the stock market
as the source of uncertainty, since decisions under ambiguity are very prevalent in
this domain. Furthermore, the subjects are unable to influence the outcome in this
context which allows for the incentivisation of their choices. As a benchmark for the
stock market, we employ the Amsterdam Exchange Index (AEX), the most important
stock index in the Netherlands. Individuals make several binary decisions between
an option whose payoff depends on the development of the AEX over the next six
months and an option whose payoff occurs with a known probability.
When measuring ambiguity attitudes about natural events, the challenge is to con-
trol for any subjective beliefs individuals may hold about them. Suppose we observe
individuals refrain from tying their payoff to an increase of the AEX index. This could
be either because they perceive AEX returns as ambiguous and are averse to such
ambiguity, or because they consider positive AEX returns to be unlikely. To disen-
tangle the two explanations based only on observed choices, we use the design of
Baillon, Huang, Selim, and Wakker (2018) in which the role of subjective beliefs is
neutralised by having individuals make decisions about events and also the comple-
ment of events.
One example of a binary choice situation that forms the core of our design is visual-
ized in Figure 2.1. Option 1 pays twenty Euros if the performance of a hypothetical
€1000 investment in the AEX over the next six months is within a certain range. In
this example, twenty Euros will be paid if the investment is worth more than €1100
in six months, i.e. an increase of more than 10 %. Option 2 is a lottery and pays
twenty Euros with probability 50 %, visualised by a pie chart.
Multiple choices between such options provide information about thematching prob-
ability an individual assigns to the AEX event, which is defined as follows:

Definition 2.1 (Matching probability). The matching probability m(E) of an event
E is the probability p that makes a decision-maker indifferent between a pay-out of
X if event E occurs and a bet on a lottery that pays X with probability p.
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Outcome of a
€1000 AEX investment

on 31 October 2019

20€ 0€ 

more than
€1100

at most
€1100

Figure 2.1. Exemplary binary choice situation: ambiguous option and risky option

Notes: Labels are translated from Dutch to English.

A chained design of 3–4 binary choices is used to identify the matching probability
of an event. Compared to a choice list format, we expect this procedure to reduce
complexity for the subjects as they can focus on one question at a time. After ev-
ery choice, the probability of Option 2 changes depending on the previous choice,
pinning down the matching probability to within 0.1. The complete decision tree is
shown in Figure 2.A.1.
Following the logic of the design by Baillon, Huang, Selim, and Wakker (2018),
we partition the space of possible values the AEX investment can take into three
events: E1 : Yt+6 ∈ (1100,∞], E2 : Yt+6 ∈ (0,950), and E3 : Yt+6 ∈ [950,1100]. We
chose this partition to balance historical 6-month returns of the AEX, for which the
respective frequencies were 0.24, 0.28 and 0.48. We elicit matching probabilities
for each of these events as well as their complements but initiate respondents by
having them first consider the more intuitive event E0 : Yt+6 ∈ (1000,∞], i.e. that
the value of the investment will increase. The resulting seven events for which we
elicit matching probabilities are depicted in Figure 2.2.
Because eliciting attitudes about ambiguous events comes with a substantial cog-
nitive burden for participants, we try to make the design as easy to comprehend
as possible. We included a tutorial in the design that introduces participants to the
choices and their potential consequences.
To analyse stability over time, we repeat the elicitation procedure just described four
times. The design was semi-annually rolled out alongside the regular core question-
naires of the LISS panel. We have collected data from waves in May 2018, Novem-
ber 2018, May 2019, and November 2019. Originally, 2773 financial deciders were
invited to participate, of which 2146, 2170, 2000, and 1957 completed the ques-
tionnaire in the respective waves. One of the binary choices in every wave is played
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700 800 900 1000 1100 1200 1300
Value of 1000 EUR investment into AEX in 6 months
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3 : Yt + 6 ( , 950) (1100, )

Figure 2.2. Events of AEX performance used in the experiment

out half a year later, at the start of the next questionnaire, with a possible pay-out
of twenty Euros depending on the development of the AEX and chance.1

2.2.3 Matching Probabilities and Errors

Next, we analyse the distribution of matching probabilities and develop several in-
sides that we use later to build up the empirical model.

Some individuals pick the same option throughout an entire wave, i.e. 28 times
in a row. This behaviour could be interpreted as an extreme form of ambiguity aver-
sion or ambiguity seeking but an alternative explanation is that some individuals do

1. Because the choice at each node determines the options at the subsequent node, the design
would not be incentive compatible if we selected one of the answered questions for pay-out ex-post. To
circumvent this problem, the question that is paid out is selected out of all 91 possible choice situations
before the specific subject made any decisions. If the subject did not encounter the selected question
during the questionnaire because it was in a different branch of the decision tree, the question is
additionally asked at the end of the questionnaire. This mechanism is inspired by Johnson, Baillon,
Bleichrodt, Li, Dolder, et al. (2015) and has been implemented in a similar fashion by Bardsley (2000).
The fact that the choice that is paid out is pre-selected also prevents the subjects from hedging against
the encountered ambiguity (Baillon, Halevy, and Li, 2014)
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not seriously contemplate the choices. As Figure 2.A.2 shows, many of these subjects
go through the questionnaire much faster than the rest which points to the latter ex-
planation. We drop subjects if two conditions are met. First, their answers exhibit
such patterns and second, their average response time on the first decision for each
event is below the 15th percentile of all subjects. We exclude such individuals from
the analysis on a wave by wave basis which decreases the sample size by 2.5 %.

As the mean of matching probabilities within events is fairly stable across waves
(see Table 2.B.1), Table 2.2 depicts summary statistics of the elicited matching proba-
bilities pooled across all waves. The last two columns show the empirical frequencies
with which the events occurred and the mean judged historical frequencies reported
by the subjects.

Table 2.2. Matching probabilities, empirical frequencies and judged historical frequencies

Mean Std. dev. q0.1 q0.5 q0.9 Empirical
Fre-
quency

Judged Hist.
Frequency

E0 : r > 0% 0.51 0.28 0.08 0.45 0.92 0.63 0.52
E1 : r > 10% 0.35 0.25 0.03 0.35 0.75 0.24 0.31
E

C

1 : r ≤ 10% 0.53 0.29 0.15 0.45 0.97 0.76
E2 : r < −5% 0.37 0.27 0.03 0.35 0.75 0.28 0.22
E

C

2 : r ≥ −5% 0.54 0.30 0.08 0.55 0.97 0.72
E3 : −5% ≤ r ≤ 10% 0.57 0.29 0.15 0.55 0.97 0.48 0.47
E

C

3 : (r < −5%) ∪ (r > 10%) 0.41 0.28 0.03 0.35 0.85 0.52

Notes: Events were asked about in this order: E0 − E1 − E2 − E3 − E
C

1 − E
C

2 − E
C

3 . Summary statistics for the
matching probabilities of the seven events are shown. Matching probabilities are set to the midpoint of the
interval identified by the design. Data is pooled across all waves. The last two columns show the empirical
frequencies (starting from 1992, own calculation) and the mean judged historical frequencies (reported
by the subjects). Sample restrictions: Individuals with at least two waves of regular choices. Choices are
irregular if they exhibit recurring patterns whilst also being entered quicker than 85% of subjects.

Three observations can be made. First, the sum of the average matching prob-
abilities of an event and its complement event, e.g. E1 and EC

1 is less than 1 for all
three events E1, E2 and E3. This is an indication that matching probabilities do not
equal subjective probabilities, and that individuals experience ambiguity aversion
on average. Second, mean matching probabilities are on average sub-additive, in
the sense that the sum of the matching probabilities of E1 and E2 is well above the
average matching probability of their union, EC

3 . The same relation is found for the
other combinations of two single events. Third, the average matching probability
for E3 is slightly larger than EC

1 or EC
2 . This is surprising because E3 is a subset of

the other two events, and subsets cannot be considered more attractive bets than
supersets under any reasonable theory.

If this set-monotonicity requirement is violated, it is an indication of a decision
error. There are eight pairs of events at which such an error can occur. In total, 57 %
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of individuals violate set-monotonicity at least once in a given wave. The rate of set-
monotonicity violations for a given superset-subset pair depends on the difference of
judged historical frequencies of the two events – both in the aggregate (Table 2.B.3)
and on the individual level (Table 2.B.4). This is an indication that erroneous an-
swers are not driven by random behaviour alone, but also depend on the events
involved. This informs how we specify the error component in our model.

To analyse stability across domains, in the 4th wave we additionally elicit am-
biguity attitudes in another domain: climate change. We use the same setup as be-
fore, replacing events relating to the AEX with events relating to mean temperature
changes during the winter 2019/2020 compared to the previous five winters. The
possible temperature changes are partitioned into three events, using cut-offs at
+1°C and -0.5°C. We elicit matching probabilities for the three single events, the
three complementary events, and the additional event that the temperature change
is at least +0°C. Table 2.B.5 shows summary statistics of the matching probabilities.

2.3 Empirical strategy

Based on the observations in the last section, we now introduce the empirical model
we use to estimate ambiguity attitudes.

2.3.1 Defining and interpreting ambiguity attitudes

We build upon the bi-separable utility framework of Ghirardato and Marinacci
(2001). In that framework, a prospect that pays out X if event E occurs and other-
wise nothing is evaluated as W(E) · V(x) where V(·) can be any utility function and
W(·) a decision weight. W satisfies the following conditions W(∅)= 0, W(Ω)= 1,
and B ⊆ A =⇒ W(B)≤W(A). We assume the decision weight depends on the sub-
jective probability agents assign to the event, where the relation between the two is
governed by a source function wS such that W(E)= wS(Pr(E)) (Abdellaoui, Baillon,
Placido, and Wakker, 2011).2 The subscript indicates that the function depends on
the source of uncertainty, which is the mechanism that generates it. In this paper,
we examine uncertainty about the future development of the AEX and uncertainty
about temperature changes.

A subject is ambiguity-averse for an event E if W(E)< Pr(E), ambiguity-neutral
if W(E)= Pr(E), and otherwise ambiguity-seeking. There is empirical evidence that
the degree of ambiguity aversion about an event varies with the subjective probabil-
ity the decision-maker assigns to it. When individuals stand to gain if an uncertain
event occurs, the most common pattern is ambiguity seeking for events individuals

2. Individuals can be thought of as having subjective probabilities in mind or as making choices
that can be rationalized with them.
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regard as long shots and ambiguity aversion for medium or high probability events
(Trautmann and van de Kuilen, 2015).

To capture both average ambiguity aversion and its dependence on the sub-
jective probability, we specify wS(Pr(E)) as the neoadditive function introduced by
Chateauneuf, Eichberger, and Grant (2007) which has been shown to fit choices very
well in settings where both decisions and Pr(E) are observed (Li, Müller, Wakker,
and Wang, 2018).

W(E) = τ0 + τ1 · Pr(E), for Pr(E) ∈ (0, 1)

W(∅) = 0, W(Ω) = 1

0 ≤ τ1 ≤ 1, 0 ≤ τ0 ≤ 1 − τ1

The conditions on the parameters ensure that W(E) equals 0 and 1 only for events
agents regard as impossible or certain, unless τ1 = 0 and subjective probabilities
play no role at all. They also rule out that individuals assign a greater weight to
events they regard as less probable3.

In terms of τ0 and τ1 we can define two ambiguity parameters:

Ambiguity aversion α =
1 − 2τ0 − τ1

2
= E[Pr(E) − W(E)] (2.1)

Likelihood insensitivity ` = 1 − τ2 = 1 −
Cov(W(E), Pr(E))

Var(Pr(E))
(2.2)

Ambiguity aversion is the average amount by which subjective probabilities ex-
ceed decision weights, where we average across all subjective probabilities in the
unit interval with equal weight. For the neoadditive function, this is equivalent to
Pr(E)−W(E) at Pr(E)= 0.5. Likelihood insensitivity captures the extent to which in-
dividuals’ decision weights change if the underlying subjective probabilities change.
This is 1 minus the slope of the source function, 1−τ1. Figure 2.3 illustrates the
concepts for α= 0.1 and `= 0.6. Lower τ1 and therefore higher ` corresponds to
a flatter function, i.e. event weights are less responsive to subjective probabilities.
An increase of α, on the other hand, corresponds to a downwards shift of W(E)
for all subjective probabilities. The range of possible values for α is determined by
the level of `. Only for `= 1, the maximum level of ambiguity aversion (W(E)= 0
for all Pr(E) ∈ (0,1)) or the maximum level of ambiguity seeking (W(E)= 1 for all
Pr(E) ∈ (0,1)) can be detected. On the other hand, `= 0 ensures W(E)= Pr(E),
which is the case of expected utility maximisation.

3. In the previous section, we documented that there are set-monotonicity errors for a sizable
fraction of individuals, which is an example of giving greater weight to an event that must be less
probable. This is one of the reasons we augment the deterministic neoadditive model with a random
error component when we estimate it.
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Figure 2.3. Ambiguity aversion and likelihood insensitivity with a neoadditive source function

Notes: The figure plots the neoadditive source function W(E) = �
2 − α + (1 − �) · Pr(E) for α = 0.1 and � =

0.6. Ambiguity aversion α is the red area between Pr(E) − W(E) where the di�erence is positive less the green
area where the di�erence is negative. It also equals the distance Pr(E) − W(E) at Pr(E) = 0.5. Likelihood
insensitivity is 1 minus the slope of the source function (black line) which is indicated by a grey triangle.

In addition to its interpretation as part of a plain decision weight, ` can also
be regarded as the perceived level of ambiguity due to the role it plays in multiple
prior models (Chateauneuf, Eichberger, and Grant, 2007; Baillon, Bleichrodt, Ke-
skin, Haridon, and Li, 2018). In such a model, individuals evaluate a bet on E with a
weighted average of expected utilities calculated with the least and most optimistic
belief in an interval of priors. ` is the width of the interval and 0.5+ α

` the weight
of the pessimistic expected utility term⁴. This interpretation requires that `≥ 0 be-
cause otherwise the width of the interval would exceed 1, and that − `2 ≤ α≤

`
2 for

the utility term weights to be in [0, 1].
These conditions are enforced in our main specification and correspond to the

conditions on τ0 and τ1 stated earlier. While the violation of set-monotonicity
(` > 1) is incompatible with any reasonable model of decision making, the plain
decision weight interpretation allows for behaviour such as `≤ 0 which we might
interpret as being hypersensitive to subjective probabilities. In appendix 2.C, we
estimate our model keeping only the restriction `≤ 1, which means that ` cannot
necessarily be interpreted as the perceived level of ambiguity although the decision
weight interpretation remains intact. We find that the estimated ambiguity attitudes
of only 12% of individuals fall outside the restrictions of our main specification and
that our key results are unaffected.

4. Except for `= 0, the expected utility case, when the weights are 0.5
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2.3.2 Estimating ambiguity attitudes

Since matching probabilities find the indifference point W(E) · V(€20)= p · V(€20),
they identify the decision weight individuals assign to AEX events when making
decisions relating to them: W(E)=m(E)= p.⁵ The decision weights are identified
independently of the functional form of the utility function and, in particular, inde-
pendently of risk aversion.

It is easy to see that the neoadditive model, and hence α and `, are identified
in terms of the matching probabilities for the events in our design: The difference
between W(E1)+W(E2)+W(E3)= 3τ0 +τ1 and W(Ej)+W(EC

j )= 2τ0 +τ1 iden-
tifies τ0, and then τ1 is also identified. The subjective probabilities drop whatever
they are because the events in the design contain their complements as well.

To capture erratic behaviour as well as systematic behaviour that is not captured
well by the deterministic neoadditive model, we augment it with an additive error εE

which we assume is normally distributed with mean zero and a standard deviation
of σε independently across events. An additive error for events is motivated by the
finding documented in Section 2.2.3 that set-monotonicity violations are related to
differences in judged historical frequencies of the respective events: Errors are more
likely if individuals believe that a pair of events forming a superset and subset have
occurred similarly often in the past. Errors that are not specific to events, such as
trembling hand errors, cannot generate this pattern.

5. We implicitly assume that there is no probability weighting for known probabilities and,
hence, wrisk(p)= p. If this not the case, our results are still informative about ambiguity attitudes
in that they measure the difference in weights under uncertainty and risk.



102 | 2 The distribution of ambiguity attitudes

We estimate the following model

W(E) = τ0 + τ1 · Pr(E)

εE ∼ N
�

0,σ2
ε

�

Pr(Observed choices for E) = Pr(W(E) + εE ∈ IntervalE)

by choosing the parameters θ := [τ0,τ1, Pr(E0), Pr(E1), Pr(E2),σε] to maximise the
likelihood

L (θ) =
∏

E∈E
Pr(W(E) + εE ∈ IntervalE;θ)

s.t. 0 ≤ τ1 ≤ 1, 0 ≤ τ0 ≤ 1 − τ1,

Pr(E1) ≤ Pr(E0), Pr(E1) + Pr(E2) ≤ 1, Pr(E) ∈ [0, 1]

for the events E in E = {E0, E1, E2, E3, EC
1 , EC

2 , EC
3}. Pr(Observed choices for E) is the

probability of the sequence of observed choices regarding event E, all of which lead
to one of the terminal intervals depicted in Figure 2.A.1.

Baillon, Bleichrodt, Li, and Wakker (2019) propose indices that estimate α and
` directly with moments of matching probabilities. Our approach is more difficult to
implement because it requires solving constrained optimisation problems for each
individual, but it gives us several advantages. First, it ensures that estimated ambi-
guity parameters obey the theoretical parameter restrictions that rule out irrational
behaviour and allow ` to be interpreted as the perceived level of ambiguity. Fig-
ure 2.D.3 shows the distribution of estimated parameters when the estimation is
based on the indices of Baillon, Bleichrodt, Li, and Wakker (2019). For 25% of sub-
jects, the estimates of ` are above 1 which implies they give lower weights to events
with higher subjective probabilities. Rather than excluding these individuals or dis-
regarding that such parameter values are not meaningful, we find the best fitting
parameters subject to their values being interpretable.

Second, we obtain an extra parameterσε. This error parameter informs us about
the fit of the model for each subject’s choices and therefore the reliability with which
α and ` are estimated. Individuals that frequently violate set-monotonicity, for in-
stance, will have a high value of σε. Third, our approach allows us to use choices
for the seventh event E0 when estimating ambiguity parameters which improves
efficiency. These choices could only be included in the indices if choices for the com-
plement event were available as well.

Finally, note that estimating the neoadditive model entails little loss of general-
ity compared to the indices from a theoretical perspective. The indices are invariant
to the choice of events in the design only if the neoadditive model is true and ` is
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estimated well if the neoadditive model is a good approximation of the source func-
tion (Baillon, Bleichrodt, Li, and Wakker, 2019, Theorem 14 and Proposition 21).
Using σε, we can quantify the quality of the approximation for each individual. Ap-
pendix 2.D repeats our empirical analysis with the indices and comes to broadly
similar conclusions, but estimates of ` are substantially less stable over time and
across domains compared to estimates from our model.

2.4 Results

We now present our results about the estimated ambiguity parameters. First, we
examine stability over time, as well as stability across domains. In the last part of
this section, we assess the heterogeneity of our three parameters using a discrete
classification approach.

2.4.1 Parameter stability over time

To examine the stability of estimated ambiguity attitudes over time, we make use
of the panel structure of our data and estimate our model separately for each indi-
vidual and survey wave. Figure 2.4 shows boxplots of the distribution of parameter
estimates for each wave. The shapes of the distributions are quite stable wave to
wave, particularly those of the ambiguity parameters α and `. The distribution of
σε, however, noticeably shifts to the left following the first wave and seems to sta-
bilise thereafter. The reduction of the error parameter likely reflects both a small
change in the experimental instructions that made the description more intuitive
and a greater familiarity of the respondents with our design.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

Wave 1
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Figure 2.4. Distributions of estimated parameters, wave by wave

Notes: Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if
they exhibit recurring patterns whilst also being entered quicker than 85% of subjects.

To check whether there might be systematic heterogeneity in changes over time
that cancels out in the aggregate analysis, we regress changes in estimated parame-
ters across consecutive survey waves on many observables. The results in Table 2.B.6
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show that parameter changes are only very weakly related to observable character-
istics, with R2 below 1% for the ambiguity parameters. There is little evidence in
our data that ambiguity parameters are systematically changing over the two years.

Figure 2.4 also shows that there is substantial variation in all estimated param-
eters. The ambiguity parameters are spread over the full range of their support. To
investigate individual-level parameter stability, we compute correlations between
parameter estimates for all pairs of survey waves. Table 2.3 shows the results. On
average, correlations are 0.25 for ambiguity aversion and 0.31 for likelihood insen-
sitivity though they tend to be higher for consecutive survey waves, which are six
months apart, and between survey waves not involving the first wave which was
the first exposure of individuals to our design. To interpret the magnitude of these
correlations, a comparison with results on risk aversion is instructive. Chuang and
Schechter (2015) review the literature on the stability of risk aversion parameters
over longer horizons comparable to ours, finding correlations between 0.13 and
0.55 for studies with at least 100 observations. Our results indicate that ambiguity
attitudes are of comparable stability to risk attitudes.

Table 2.3. Across wave correlations of estimated parameters

ρ̂1,2 ρ̂1,3 ρ̂1,4 ρ̂2,3 ρ̂2,4 ρ̂3,4 Average ρ̂

α 0.25 0.22 0.20 0.26 0.21 0.33 0.25
� 0.24 0.22 0.28 0.35 0.36 0.42 0.31
σε 0.16 0.20 0.21 0.32 0.32 0.36 0.26

Notes: Table shows Pearson correlations of parameter estimates between the survey waves indicated by the
subscripts. Parameter estimates are obtained from the model described in Section 2.3.2 separately for each
survey wave and individual. Sample restrictions: Observations with regular choices. Choices are irregular if
they exhibit recurring patterns whilst also being entered quicker than 85% of subjects.

The moderate magnitude of the correlations means that there is substantial
variation in estimated parameters within individuals. As Schildberg-Hörisch (2018)
points out regarding risk preferences, this variation likely reflects both measurement
error and temporary fluctuations of the underlying parameter around each individ-
ual’s mean level of the parameter. To address measurement error, we adopt two
approaches: When examining stability across domains, we instrument estimated
parameters with estimated parameters of other waves. For Section 2.4.3, in which
we analyse between-subject heterogeneity, we re-estimate our model, pooling indi-
vidual choices across survey waves.

2.4.2 Parameter stability across domains

A key question arising for any parameter characterising individual attitudes is how
domain-specific it is. Do attitudes towards uncertainty about how the AEX will
evolve extend to other, non-financial domains? To address this question, we elicited
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α and ` not only for events relating to the AEX but also to events relating to how
the average temperature in the winter of 2019 compares to the previous five years.
Figure 2.5 compares the respective distributions of parameters in wave 4. For α and
σε, the distributions are very similar, but there is notably greater likelihood insensi-
tivity regarding temperature changes. In the following, we examine stability at the
individual level.
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Figure 2.5. Distributions of estimated parameters, financial v climate domains

Notes: Estimates from for both domains use data from wave 4. The dashed line shows the median, the
dotted lines bottom and top quartiles. Sample restrictions: Observations with regular choices. Choices are
irregular if they exhibit recurring patterns whilst also being entered quicker than 85% of subjects.

Table 2.4 shows regressions for each parameter in the climate domain on pa-
rameters from the financial domain elicited in the same wave. The first column of
each parameter shows OLS regression with slope coefficients of 0.70, 0.36, and 0.50
for α, `, and σε respectively. This suggests a sizable amount of stability across do-
mains, but a much higher stability for ambiguity aversion compared to likelihood
insensitivity. The second columns add several controls. For brevity, the coefficients
of control variables are shown in the appendix in Table 2.B.8. Our results are un-
changed when we control for demographic variables, numeracy, risk aversion, and
the extent to which individuals think they understand climate change and deem it
a threat. Stability across domains is not driven by these common correlates.

However, the OLS regressions are distorted by estimation error in potentially
two ways. First, if estimates of ambiguity attitudes are subject to classical mea-
surement error, the slope coefficients are attenuated to zero and understate the
degree to which the parameters are stable across domains. Second, there could be
a positive correlation between the estimation errors for estimates across domains,
because the parameters were elicited one after another in the 4th wave. This would
cause the coefficients to overstate the dependence across domains. To address this,
we run two-stage least squares regressions in the third columns for each parameter,
instrumenting the AEX related parameters of the 4th wave with those of the
previous waves. If estimation errors are uncorrelated across waves, this eliminates
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both biases.

Table 2.4. Dependence of parameters relating to temperature uncertainty on parameters relating
to uncertainty about the AEX

Parameter α � σε

Model OLS OLS 2SLS OLS OLS 2SLS OLS OLS 2SLS

Intercept -0.01** 0.05* 0.00 0.42*** 0.44*** 0.20*** 0.06*** 0.01 -0.03
(0.00) (0.03) (0.03) (0.02) (0.06) (0.07) (0.00) (0.02) (0.02)

AEX param 0.70*** 0.70*** 1.00*** 0.36*** 0.34*** 0.61*** 0.50*** 0.48*** 1.06***
(0.03) (0.03) (0.09) (0.03) (0.03) (0.06) (0.03) (0.03) (0.11)

Underst. c.c. -0.01** -0.01** -0.02** -0.02** 0.01** 0.01***
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Threat. by c.c. 0.00 0.00 -0.00 0.01 0.00 -0.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Controls No Yes Yes No Yes Yes No Yes Yes
N 1297 1297 1186 1297 1297 1186 1297 1297 1186
R

2 0.402 0.416 - 0.146 0.170 - 0.216 0.236 -
1st st. F - - 79.8 - - 308.4 - - 134.9

Notes: Outcomes are estimated parameters in the temperature domain in the 4th wave, regressors are es-
timated parameters in the AEX domain in the 4th wave. Two-stage least squares models use estimated
parameters from the previous three waves as instruments. Controls are age, gender, education, income and
assets dummies, risk aversion, basic, financial and probability numeracy and indicators of self-assessed un-
derstanding and perceived threat of climate change with a 5 and 6 point scale respectively (see Table 2.B.8).
Robust standard errors in parentheses. Sample restrictions: Observations with regular choices. Choices are
irregular if they exhibit recurring patterns whilst also being entered quicker than 85% of subjects.

The regressions that adjust for estimation error strikingly show that ambigu-
ity aversion and the magnitude of errors is completely stable across the two do-
mains with point estimates close to 1. This supports the interpretation of ambiguity
aversion as stable preference that fully extends across domains. Anantanasuwong,
Kouwenberg, Mitchell, and Peijnenberg (2019) elicit ambiguity attitudes for events
from different financial domains: Individual stocks, local and foreign stock indices
and crypto funds. They find that ambiguity aversion parameters are very related
across these domains with R2 between 0.4 and 0.54. This is in line with what we
find in the OLS regression. A coefficient close to 1 in the 2SLS regression that ad-
justs for estimation error is likewise in line with the conclusion of Anantanasuwong,
Kouwenberg, Mitchell, and Peijnenberg (2019) who conjecture based on a factor
analysis that there is only one underlying ambiguity aversion. Our results indicate
that the stability of ambiguity aversion holds not just within financial contexts, but
more generally.

We further find that ` also has a substantial transferable component, but the
slope coefficient of 0.60 is well below 1. Based on the multiple prior interpretation
of ` as the perceived level of ambiguity, this is expected as perceptions are more
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likely to differ across domains than preferences. This interpretation is strengthened
by the fact that self-reported knowledge of climate change has substantial predic-
tive power for the perceived level of ambiguity in the climate domain, conditional on
the perceived level of ambiguity in the financial domain. Anantanasuwong, Kouwen-
berg, Mitchell, and Peijnenberg (2019) find a very weak dependence across domains
with R2 ranging from 0.005 to 0.032 which would imply that ` is almost completely
context-specific. Our analysis shows that a substantial component of likelihood in-
sensitivity is stable across domains. One potential reason our results on the perceived
level of ambiguity are at variance with Anantanasuwong, Kouwenberg, Mitchell, and
Peijnenberg (2019) is measurement error. Table 2.4 demonstrates that our model-
based estimates are subject to sizable measurement error and there is evidence it
affects ambiguity attitudes estimated with indices, instead of our model, even more.
In Table 2.D.2 we replicate Table 2.4 with the index-based estimates that Anantana-
suwong, Kouwenberg, Mitchell, and Peijnenberg (2019) use, and get a comparably
small R2 of 0.028 for `. The 2SLS-measurement-error-adjusted regression slope is,
however, in the range of what we find with our model. In line with this explanation,
index-based estimates of ` are substantially less stable over time (Table 2.D.1).

Our findings suggest that there can be room for external stimuli, such as pro-
viding individuals with more information about a source of uncertainty, to change
` while this might not be possible for α. This aligns well with the findings by Bail-
lon, Bleichrodt, Keskin, Haridon, and Li (2018) who conduct such an information
experiment.

As with stability over time, the comparison with risk aversion is instructive.
Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner (2011) examine self-reported
assessments of risk aversion in several domains like financial matters, sports, or
health and report correlations that correspond to R2 between 0.16 to 0.36 which is
comparable to what we find in the OLS columns of Table 2.4. Dohmen, Falk, Huff-
man, Sunde, Schupp, and Wagner (2011) reason that differences in risk attitudes
across domains might be more likely to reflects different risk perceptions, rather
than differences in actual preferences. This is in line with what we find for am-
biguity: A very stable ambiguity aversion component, but that the perception of
ambiguity varies across contexts to a certain degree.

2.4.3 Describing heterogeneity in attitudes and error propensities

In this section, we examine heterogeneity in ambiguity attitudes and error propen-
sities and their relation to other individual characteristics. To improve precision, we
re-estimate our model, holding `, α, and σε fixed but allowing the subjective prob-
abilities to change between waves.

It is crucial to consider the joint distribution of parameters rather than each
parameter in isolation for two reasons: First, the error parameter is informative
about how reliably the other parameters are estimated, both in terms of statistical
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precision and fit of the neoadditive model. Second, the magnitude of ambiguity
aversion or seeking that can be detected by our design depends on the perceived
level of ambiguity. When `= 0 it must be the case that W(E)= Pr(E), so there is no
scope for ambiguity aversion or seeking.

With this in mind, we classify individuals into one of a discrete set of groups
using all three estimated parameters and consider the most striking features of each
resulting group. We use the k-means algorithm to do this. For a given number of
groups, it assigns individual observations xi := [αi,`i,σε,i] to groups g such that
∑

i ||xi − cg(i)||2 is minimised for the groupmeans cg =
1
Ng

∑

i∈g xi. We scale xi to mean
0 and standard deviation 1 in the cross section to ensure every component is given
equal weight in the optimisation.

We summarise the results of this exercise for K = 4 groups, which is the mini-
mum necessary for there to be meaningful group-level differences along the three
parameters. In Section 2.E, we double the number of groups and show that the
qualitative insights from the K = 4 analysis remain intact. We describe the groups
in two figures and two tables, with groups sorted by their average ` from high to
low: Figure 2.6 shows the distribution of ambiguity profiles in (α, `) with the large
diamonds indicating group means and the small dots indicating individual profiles.
Figure 2.7 shows the source function (how decision weights depend on subjective
probabilities) for the average ambiguity profile of each group, as well as the average
magnitude of the error component. Table 2.5 lists means and medians of observable
characteristics per group and Table 2.6 displays marginal effects of a multinomial
logit regression predicting group membership based on the same characteristics.

Group 1: Substantial likelihood insensitivity, on average ambiguity-averse. Al-
most thirty per cent of individuals in our sample show substantial likelihood insen-
sitivity with ` ranging from 0.4 to 1, and are averse to it, with α ranging from 0
to 0.5. Their choices are quite consistent with the neoadditive model, leading to a
comparably small error magnitude of 0.14. The blue line in Figure 2.7 crosses the
45-degree line just before the subjective probability reaches 0.3 and rises only up
to a matching probability of about 0.5. This means on average, individuals in this
group are quite ambiguity-averse; they prefer bets on lotteries over bets on AEX
events even if they regard them as substantially more likely. In Table 2.5 we see that
individuals of Group 1 are likely to be somewhat younger than those of other groups,
and more likely to be female. They tend to be more risk-averse and hold substan-
tially less financial assets. Besides, group 1 individuals are on average less optimistic
than those of groups 2 and 4, both in terms of a personality measure and in terms
of how often they think the AEX had a positive return over the last 20 years. Except
age and optimism, the characteristics mentioned are also predictive of membership
in group 1 in a multinomial logistic regression (Table 2.6).

Group 2: Substantial likelihood insensitivity, on average ambiguity-seeking. A
smaller group, a fifth of individuals, is associated with a similar ` as group 1 and
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Figure 2.6. Summarising heterogeneity in ambiguity profiles with K=4 discrete groups

Notes: The small dots depict individual ambiguity profiles consisting of the aversion parameter α and the
likelihood insensitivity parameter �. The large diamonds are group centres resulting from clustering indi-
viduals with the k-means algorithm on the parameters α, � and σε. Sample restrictions: Individuals with at
least two waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being
entered quicker than 85% of subjects.

behaves inconsistently at comparably small rate (σ = 0.17). Unlike group 1 indi-
viduals, however, subjects in this group are not averse to the ambiguity that they
perceive with α ranging from −0.5 to 0. The orange line in Figure 2.7 has a similar
slope as the blue line of group 1 due to the comparable `, but is shifted up, cross-
ing the 45-degree line only past the subjective probability of 0.6. This means that
individuals in this group exhibit ambiguity seeking behaviour on average, and only
become averse to bets on the AEX compared to bets on equally likely lotteries for a
high subjective probability of the former. In line with this tendency, the value group



110 | 2 The distribution of ambiguity attitudes

0.0 0.2 0.4 0.6 0.8 1.0
Pr(E)

0.0

0.2

0.4

0.6

0.8

1.0

W
(E

)

Group 1

0.0 0.2 0.4 0.6 0.8 1.0
Pr(E)

0.0

0.2

0.4

0.6

0.8

1.0

W
(E

)

Group 2

0.0 0.2 0.4 0.6 0.8 1.0
Pr(E)

0.0

0.2

0.4

0.6

0.8

1.0

W
(E

)

Group 3

0.0 0.2 0.4 0.6 0.8 1.0
Pr(E)

0.0

0.2

0.4

0.6

0.8

1.0

W
(E

)

Group 4

Figure 2.7. Decision weights as a function of subjective probabilities, by group (K=4)

Notes: The figure plots the estimated source functions, i.e. the lines W(E) = �
2 − α + (1 − �) · Pr(E) for the

group-average values of α and �. The vertical di�erence to the 45-degree line measures the extent of am-
biguity seeking w.r.t. gains from events whose source of uncertainty is the future development of the AEX.
The shaded area around the lines has bandwidth σε, which visualises the imprecision with which observed
matching probabilities measure decision events. Sample restrictions: Individuals with at least two waves of
regular choices. Choices are irregular if they exhibit recurring patterns whilst also being completed quicker
than 85% of subjects.

2’s financial assets (median) is 73% higher than for individuals of group 1, they tend
to be less risk-averse, and there is a more even gender split. Table 2.6 shows that
almost no characteristics predict an individual is more likely to belong to group 1 in
the multinomial logistic regression. This is because their characteristics are close to
the average of the sample pool.

Group 3: Decisions less consistent with the model, ambiguity parameters not
meaningful. 18 % of individuals are characterised by less consistent choices, with
σε almost doubling compared to the other groups. The green dots in Figure 2.6 are
much more spread out, indicating that this group does not form a compact cluster in
(α, `) space. A highσε can come about through erratic behaviour or because a choice
model other than the neoadditive specification we estimated would be appropriate.
In line with the former interpretation, individuals in group 3 are characterised by
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Table 2.5. Individual characteristics of groups (K=4)

Group = 1 Group = 2 Group = 3 Group = 4

share 0.29 0.19 0.18 0.33
α 0.15 -0.09 0.04 0.00
� 0.70 0.63 0.48 0.28
σê 0.14 0.17 0.31 0.16
Education: University 0.11 0.11 0.06 0.21
Age 55.74 59.55 64.64 53.92
Female 0.58 0.53 0.47 0.42
Income (thousands) 1.63 1.56 1.47 1.75
Financial assets (thousands) 6.47 10.88 8.82 14.71
Risk aversion index 0.13 -0.04 -0.01 -0.08
Numeracy index -0.14 0.01 -0.69 0.51
Judged hist. freq: positive return 0.48 0.51 0.48 0.59
Judged hist. freq: response error 0.62 0.60 0.76 0.41
Judged hist. freqs: mean absolute deviation 0.19 0.18 0.21 0.19
Optimism -0.11 0.07 -0.18 0.15

Notes: The first row shows the share of individuals classified to a given group. For each group, the mean
of several variables are shown. For income and total assets, the median is reported instead. The variables
for risk aversion, numeracy and optimism are standard normalized. Sample restrictions: Individuals with at
least two waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being
completed quicker than 85% of subjects.

a much lower numeracy than those of other groups. They are less educated, made
more response errors when judging historical stock returns and their judgements dif-
fered the most from actual empirical frequencies. They are on average substantially
older than individuals in other groups, and more likely to be men.

Group 4: Low likelihood insensitivity, ambiguity neutral. The remaining third
of individuals in our sample shows behaviour close to expected utility maximisation.
This group is much less insensitive to changes in subjective probabilities, or equiva-
lently, perceives much less ambiguity, with ` only 0.26 on average. There is neither
a preponderance of ambiguity aversion nor ambiguity seeking, with the mean value
of α equal to 0. Individuals of group 4 do not differ from those of group 1 and 2 in
terms of how consistent their decisions are with the model. Figure 2.7 shows that
the estimated source function is close to the 45-degree line that characterises ex-
pected utility maximisation - decision weights are within one standard deviation σε
of it over the full range. Individuals of group 4 are more likely to be men and are
the youngest on average amongst all four groups, although not much younger than
those of group 1. In terms of education, numeracy, as well as the value of financial
assets they hold, they score by far the highest. They are also the least risk-averse.
Table 2.6 shows that numeracy strongly predicts membership of group 4 conditional
on everything else. This is in line with expected utility maximisation being a bench-
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mark of rationality, from which individuals in group 4 fall short the least. Similarly,
group 4 individuals stand out for accurately believing that AEX returns were posi-
tive around 60% of the time in the past. This optimism is also present in terms of a
personality measure.

Our analysis shows that taking into account interdependencies of the three pa-
rameters is important; the variance of errors renders the other two parameters less
reliable and the magnitude of α is constrained by `. To compare our findings to
the existing literature, which does not take interdependencies into account, we
also regress parameter estimates on characteristics in table 2.B.7. The patterns are
broadly in line with the ones just discussed: α is negatively related to age, financial
assets, and numeracy while a higher ` is associated with being female, as well as
lower education, financial assets, and numeracy. Risk aversion is positively related to
both indices once we exclude the high error individuals (group 3), which attenuate
relationships in regressions.

Earlier studies on the determinants of ambiguity attitudes report relatively weak
connections to demographic variables (Haridon, Vieider, Aycinena, Bandur, Belianin,
et al., 2018) and differ in what connections they find. This is likely because they
study ambiguity parameters in different settings, and subject pools of varying de-
mographics are used. As our group-based analysis indicates, the second factor can
make a sizable difference. One of our key findings, that ` is negatively related to
both education and numeracy, is in line with Dimmock, Kouwenberg, and Wakker
(2015) and Anantanasuwong, Kouwenberg, Mitchell, and Peijnenberg (2019) while
Dimmock, Kouwenberg, Mitchell, and Peijnenburg (2015) find a positive relation.
There are also opposing findings for the relations of risk aversion and ambiguity
attitudes (compare Dimmock, Kouwenberg, Mitchell, and Peijnenburg, 2015; Dim-
mock, Kouwenberg, and Wakker, 2015; Delavande, Ganguli, and Mengel, 2019).
Our results suggest a positive relation to both indices. Contrary to our findings, But-
ler, Guiso, and Jappelli (2014) find a positive association between wealth and am-
biguity aversion.
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Table 2.6. Predictors of groups, marginal e�ects (K=4)

Group = 1 Group = 2 Group = 3 Group = 4

Age: ∈ (35, 50] -0.02 0.00 0.02 -0.01
(0.05) (0.05) (0.05) (0.05)

Age: ∈ (50, 65] -0.05 0.06 0.04 -0.04
(0.05) (0.05) (0.05) (0.05)

Age: ≥ 65 -0.08 0.07 0.13** -0.12**
(0.05) (0.05) (0.05) (0.05)

Education: Junior college 0.03 -0.01 -0.01 -0.00
(0.03) (0.03) (0.02) (0.03)

Education: College 0.04 -0.05* -0.01 0.02
(0.03) (0.03) (0.03) (0.03)

Education: University 0.01 -0.07 0.01 0.05
(0.04) (0.04) (0.04) (0.04)

Income: ∈ (1.1, 1.6] 0.05 -0.02 -0.03 -0.01
(0.03) (0.03) (0.03) (0.03)

Income: ∈ (1.6, 2.2] 0.09*** -0.04 -0.04 -0.01
(0.03) (0.03) (0.03) (0.03)

Income: ≥ 2.2 0.05 -0.03 -0.01 -0.02
(0.04) (0.03) (0.03) (0.04)

Financial assets: ∈ (1.8, 11.2] -0.04 0.01 -0.03 0.05
(0.03) (0.03) (0.03) (0.04)

Financial assets: ∈ (11.2, 32] -0.09** -0.04 0.04 0.09**
(0.04) (0.03) (0.03) (0.04)

Financial assets: ≥ 32 -0.10*** 0.00 0.03 0.08**
(0.04) (0.03) (0.03) (0.04)

Female 0.07*** 0.02 -0.07*** -0.02
(0.02) (0.02) (0.02) (0.02)

Risk aversion index 0.04*** -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01)

Numeracy index -0.04** -0.00 -0.11*** 0.15***
(0.01) (0.01) (0.01) (0.02)

Judged hist. freq: positive return -0.14*** -0.03 -0.00 0.18***
(0.04) (0.04) (0.04) (0.04)

Judged hist. freq: response error -0.03 0.01 0.05** -0.04
(0.03) (0.02) (0.02) (0.02)

Judged hist. freqs: mean absolute deviation -0.22* -0.23* 0.40*** 0.05
(0.12) (0.12) (0.10) (0.12)

Optimism -0.02 0.02 -0.01 0.01
(0.01) (0.01) (0.01) (0.01)

N 1460 1460 1460 1460
Pseudo R

2 0.12 0.12 0.12 0.12

Notes: Multinomial logit regression, robust standard errors in parentheses. For the thresholds of the income
and asset quartiles see Table 2.1. Income and financial assets are in thousands, pooled within household
and adjusted for household size. The variables for risk aversion, numeracy and optimism are standardised.
Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if they
exhibit recurring patterns whilst also being completed quicker than 85% of subjects.
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2.5 Conclusion

This study presented a careful analysis of preferences for decision-making under
ambiguity. Motivated by a set of stylised facts, we have set up an empirical model
for behaviour in our experiment that features three parameters: ambiguity attitudes,
the likelihood insensitivity (or perceived level of ambiguity), and the variance of
errors. We have structurally estimated these parameters at the individual level.

Our first main contribution is that we have been able to demonstrate substantial
within-person stability of ambiguity attitudes. This holds both over a period of two
years and across the domains of financial markets and climate change. In particular,
preferences for ambiguity show similar properties as preferences for risk when it
comes to stability over time. Across our two contexts, ambiguity aversion is com-
pletely stable if we adjust for within-person variability that is due to measurement
error, and exhibits stability comparable to risk aversion in measurement error un-
adjusted comparisons. Likelihood insensitivity, on the other hand, is more variable,
strengthening its interpretation as the perceived level of ambiguity, which varies
across domains if people are differentially informed. We find some evidence in sup-
port of this mechanism; controlling for how much ambiguity individuals perceive
in the financial domain, whether they characterise themselves as understanding cli-
mate change predicts how much ambiguity they perceive in the climate domain.
Nevertheless, there is also a substantial component of this parameter that is stable
across contexts.

Our second main contribution has been to describe the patterns of heterogene-
ity. This has long been done for decisions under risk, but it has proven particularly
challenging for decisions under ambiguity. One reason is that all popular models
depend on at least two parameters, which are hard to interpret in isolation using
parameter-by-parameter regressions. We have instead employed the k-means algo-
rithm to classify individuals into a discrete set of groups. Using four groups, we find
that a third of the population comes close to the behaviour subjective expected utility
maximisers, almost thirty per cent are very averse to ambiguity while almost twenty
per cent seek it. The remaining individuals exhibit erratic behaviour. Individuals of
these groups systematically differ in background characteristics with reasonable cor-
relations to ambiguity attitudes.

Our key results depend neither on the specifics of the model we use to estimate
ambiguity attitudes, nor on the number of groups we use to analyse their hetero-
geneity. We also estimate ambiguity attitudes in two alternative ways: A version of
our model that relaxes parameter restrictions and keeps only the requirement that
rules out set-monotonicity errors, and the indices proposed by Baillon, Bleichrodt,
Li, andWakker (2019). Both yield broadly similar results, though the perceived level
of ambiguity displays much less stability over time when estimated with the indices.
When we double the number of groups in the k-means algorithm, the key results of
what is predictive of ambiguity attitudes remain as before.
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It remains to be learned how ambiguity attitudes evolve over periods longer than
the two years we investigate. A further important follow-up question is how ambi-
guity attitudes affect behaviour, in particular investment decisions in the financial
domain and political, as well as personal decisions regarding climate change. Our
design elicits ambiguity attitudes over gains but to understand how ambiguity af-
fects real-world behaviour, ambiguity attitudes over losses might play an important
role as well. We leave these questions for future research.
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Appendix 2.A Additional figures

Figure 2.A.1 shows the decision tree we use to elicit the matching probability of one
aex event. Suppose for example, a subject answered in the following sequence: LOT,
AEX, AEX, AEX. Then we would know that the matching probability lies between
40 % and 50 %. Suppose conversely, a subject answered LOT, LOT, LOT, LOT. Then
we would know that the matching probability lies between 0 % and 1 %.

0.50/0.50

0.10/0.90

0.05/0.95

0.01/0.99

LOTAEX

LOTAEX

LOT

0.30/0.70

0.20/0.80

LOTAEX

LOT

0.40/0.60

LOTAEX

AEX

AEX

LOT

0.90/0.10

0.70/0.30

0.60/0.40

LOTAEX

LOT

0.80/0.20

LOTAEX

AEX

LOT

0.95/0.05

LOT

0.99/0.01

LOTAEX

AEX

AEX

AEX

Figure 2.A.1. Iterative sequence of lottery probabilities for one AEX event

Figure 2.A.2 shows the distributions of time taken for the first choice relating to
each event, for individuals who used repeating choice patterns for events (always
choosing the lottery or always choosing the AEX) and for those who did not.

0 50 100 150 200 250
Time taken for first choice per event (seconds)

Always chooses AEX or LOT
False
True

Figure 2.A.2. Time taken for first choice, by choice pattern
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Appendix 2.B Additional tables

Table 2.B.1. Matching probabilities by wave

wave Wave 1 Wave 2 Wave 3 Wave 4 Pooled

E0 : r > 0% 0.54 0.51 0.52 0.49 0.51
E1 : r > 10% 0.32 0.35 0.37 0.36 0.35
E

C

1 : r ≤ 10% 0.58 0.50 0.52 0.52 0.53
E2 : r < −5% 0.44 0.35 0.34 0.36 0.37
E

C

2 : r ≥ −5% 0.50 0.54 0.56 0.56 0.54
E3 : −5% ≤ r ≤ 10% 0.58 0.55 0.58 0.58 0.57
E

C

3 : (r < −5%) ∪ (r > 10%) 0.41 0.41 0.41 0.41 0.41

Notes: Events were asked about in this order: E0 − E1 − E2 − E3 − E
C

1 − E
C

2 − E
C

3 . Mean of the matching prob-
abilities of the seven events. Sample restrictions: Individuals with at least two waves of regular choices.
Choices are irregular if they exhibit recurring patterns whilst also being completed quicker than 85% of
subjects.
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Table 2.B.2. Relation of risk aversion and numeracy with characteristics

Risk aversion index Numeracy index

Intercept -0.37*** -0.28***
(0.11) (0.11)

Age: ∈ (35, 50] 0.24** -0.23**
(0.10) (0.09)

Age: ∈ (50, 65] 0.32*** -0.24***
(0.09) (0.09)

Age: ≥ 65 0.45*** -0.52***
(0.10) (0.09)

Female 0.28*** -0.36***
(0.05) (0.04)

Education: Junior college -0.01 0.19***
(0.07) (0.06)

Education: College 0.01 0.42***
(0.06) (0.06)

Education: University -0.15** 0.66***
(0.07) (0.06)

Income: ∈ (1.1, 1.6] -0.07 0.07
(0.07) (0.07)

Income: ∈ (1.6, 2.2] -0.04 0.12*
(0.08) (0.06)

Income: ≥ 2.2 -0.20*** 0.14**
(0.08) (0.06)

Financial assets: ∈ (1.8, 11.2] -0.08 0.53***
(0.07) (0.07)

Financial assets: ∈ (11.2, 32] 0.03 0.72***
(0.08) (0.07)

Financial assets: ≥ 32 -0.03 0.78***
(0.08) (0.07)

N 1614 1614
R

2 0.049 0.291

Notes: Income and financial assets are in thousands, pooled within household and adjusted for household
size. OLS regression, robust standard errors in parentheses.
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Table 2.B.3. Subset violations by superset-subset pair

Subset violations ∆ Judged hist.
frequencies

E0 ⊇ E1 0.09 0.21
E

C

1 ⊇ E2 0.10 0.47
E

C

1 ⊇ E3 0.22 0.22
E

C

2 ⊇ E0 0.19 0.26
E

C

2 ⊇ E1 0.10 0.47
E

C

2 ⊇ E3 0.20 0.31
E

C

3 ⊇ E1 0.16 0.22
E

C

3 ⊇ E2 0.18 0.31
Any Violation 0.57 -

Notes: The share of subjects that violate the set-monotonicity conditions for each pair of events is reported
in column 1. Set-monotonicity is violated if the interval of the elicited matching probability of the subset is
strictly larger than the interval of the superset. The last row shows the share of subjects with at least one
error in a given wave. Column 2 shows the di�erence in the historical frequencies of the respective events.

Table 2.B.4. Relation between subset violations and judged historical frequencies of events

Superset-Subset Error Rate

Intercept 0.293*** 0.159*** 0.075***
(0.004) (0.005) (0.006)

|Jud. freq. superset - Jud. freq. subset| (10 pp) -0.013*** -0.006*** -0.006***
(0.001) (0.001) (0.001)

Superset - Subset fixed e�ect No Yes Yes
Individual fixed e�ect No No Yes
N 15632 15632 15632
R

2 0.02 0.09 0.33

Notes: OLS regressions, robust standard errors in parentheses. The outcomes are individual error rates
across waves for all superset-subset event pairs. Standard errors are clustered at the individual level. The
regressor is the distance in judged historical frequencies for the events of a superset-subset pair, with unit
ten percentage points.
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Table 2.B.5. Matching probabilities for temperature questions

Mean Std. dev. q0.1 q0.5 q0.9 Empirical
Frequency

E0 : ∆T > 0◦C 0.53 0.27 0.15 0.55 0.92 0.55
E1 : ∆T > 1◦C 0.45 0.27 0.08 0.45 0.92 0.26
E

C

1 : ∆T ≤ 1◦C 0.53 0.28 0.15 0.55 0.92 0.74
E2 : ∆T < −0.5◦C 0.40 0.27 0.03 0.35 0.85 0.26
E

C

2 : ∆T ≥ −0.5◦C 0.50 0.29 0.08 0.45 0.92 0.74
E3 : −0.5◦C ≤ ∆T ≤ 1◦C 0.51 0.28 0.15 0.45 0.92 0.48
E

C

3 : (∆T < −0.5◦C) ∪ (∆T > 1◦C) 0.47 0.27 0.08 0.45 0.92 0.52

Notes: Events were elicited in the order E0 − E1 − E2 − E3 − E
C

1 − E
C

2 − E
C

3 . Summary statistics for the matching
probabilities of the seven events are shown. The last column shows the empirical frequencies (starting from
1990, own calculation)
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Table 2.B.6. Relation between estimated parameter changes and characteristics

∆ Ambiguity aversion (α) ∆ Perc. level of ambiguity (�) ∆ Model error (σε)

Wave 2 0.02* 0.02 -0.02***
(0.01) (0.02) (0.01)

Wave 3 -0.01 0.03 -0.01*
(0.01) (0.02) (0.01)

Wave 4 -0.01 0.02 0.00
(0.01) (0.02) (0.01)

Age: ∈ (35, 50] -0.01 -0.02 -0.00
(0.01) (0.02) (0.00)

Age: ∈ (50, 65] 0.00 -0.02 0.00
(0.01) (0.02) (0.00)

Age: ≥ 65 0.01 -0.02 0.01**
(0.01) (0.02) (0.00)

Female -0.01*** 0.01 -0.00
(0.00) (0.01) (0.00)

Education: Junior college 0.01 -0.01 -0.00
(0.01) (0.01) (0.00)

Education: College 0.01* -0.01 -0.00
(0.01) (0.01) (0.00)

Education: University 0.01 -0.01 -0.01*
(0.01) (0.01) (0.00)

Income: ∈ (1.1, 1.6] -0.00 0.00 0.00
(0.01) (0.01) (0.00)

Income: ∈ (1.6, 2.2] -0.01 -0.00 0.00
(0.01) (0.01) (0.00)

Income: ≥ 2.2 0.00 0.00 0.00
(0.01) (0.01) (0.00)

Financial assets: ∈ (1.8, 11.2] 0.01 0.00 -0.00
(0.01) (0.01) (0.00)

Financial assets: ∈ (11.2, 32] -0.00 -0.00 -0.00
(0.01) (0.01) (0.00)

Financial assets: ≥ 32 0.01 -0.00 -0.01
(0.01) (0.01) (0.00)

Risk aversion index 0.00* 0.00 -0.00
(0.00) (0.00) (0.00)

Numeracy index -0.01** -0.00 -0.01***
(0.00) (0.00) (0.00)

N 4181 4181 4181
R

2 0.009 0.001 0.015

Notes: Income and financial assets are in thousands, pooled within household and adjusted for household
size. OLS regression, robust standard errors in parentheses. Outcomes are within-subject changes in esti-
mated parameters across consecutive waves.
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Table 2.B.7. Relation between estimated parameters and characteristics

α α � � σε

Intercept 0.06*** 0.05*** 0.50*** 0.52*** 0.17***
(0.01) (0.02) (0.03) (0.03) (0.01)

Age: ∈ (35, 50] -0.01 -0.01 -0.00 0.00 0.02**
(0.01) (0.01) (0.02) (0.02) (0.01)

Age: ∈ (50, 65] -0.02* -0.03** 0.01 0.01 0.03***
(0.01) (0.01) (0.02) (0.02) (0.01)

Age: ≥ 65 -0.03** -0.03** 0.02 0.03 0.05***
(0.01) (0.01) (0.02) (0.02) (0.01)

Female 0.00 0.01 0.03*** 0.03*** -0.02***
(0.01) (0.01) (0.01) (0.01) (0.00)

Education: Junior college -0.00 0.00 0.02 0.01 -0.00
(0.01) (0.01) (0.01) (0.02) (0.00)

Education: College -0.01 -0.00 -0.03* -0.02 -0.01
(0.01) (0.01) (0.01) (0.02) (0.00)

Education: University -0.01 -0.01 -0.05** -0.04* -0.00
(0.01) (0.01) (0.02) (0.02) (0.01)

Income: ∈ (1.1, 1.6] 0.01 0.01 0.01 0.01 -0.01*
(0.01) (0.01) (0.02) (0.02) (0.01)

Income: ∈ (1.6, 2.2] 0.01 0.02* 0.02 0.02 -0.01*
(0.01) (0.01) (0.02) (0.02) (0.01)

Income: ≥ 2.2 -0.00 0.00 0.02 0.01 -0.01*
(0.01) (0.01) (0.02) (0.02) (0.01)

Financial assets: ∈ (1.8, 11.2] -0.00 -0.01 -0.01 -0.02 -0.00
(0.01) (0.01) (0.02) (0.02) (0.01)

Financial assets: ∈ (11.2, 32] -0.01 -0.02* -0.04** -0.04** 0.00
(0.01) (0.01) (0.02) (0.02) (0.01)

Financial assets: ≥ 32 -0.02* -0.02** -0.05*** -0.05*** 0.00
(0.01) (0.01) (0.02) (0.02) (0.01)

Risk aversion index 0.00 0.01* 0.01 0.01** -0.01***
(0.00) (0.00) (0.01) (0.01) (0.00)

Numeracy index -0.01** -0.01* -0.04*** -0.07*** -0.03***
(0.00) (0.01) (0.01) (0.01) (0.00)

High σε excluded No Yes No Yes No
N 1614 1318 1614 1318 1614
R

2 0.024 0.028 0.084 0.139 0.204

Notes: Income and financial assets are in thousands, pooled within household and adjusted for household
size. OLS regressions of the parameters of the pooled model on several individual characteristics. Sample
restrictions: Individuals with at least two waves of regular choices. Choices are irregular if they exhibit
recurring patterns whilst also being entered quicker than 85% of subjects. In column 2 and column 4, the
individuals of the high error group (based on k-means) are excluded. Robust standard errors in parentheses.
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Table 2.B.8. Dependence of parameters relating to temperature uncertainty on parameters relat-
ing to uncertainty about the AEX

Parameter α � σε

Model OLS 2SLS OLS 2SLS OLS 2SLS

Intercept 0.05* 0.00 0.44*** 0.20*** 0.01 -0.03
(0.03) (0.03) (0.06) (0.07) (0.02) (0.02)

AEX param 0.70*** 1.00*** 0.34*** 0.61*** 0.48*** 1.06***
(0.03) (0.09) (0.03) (0.06) (0.03) (0.11)

Age: ∈ (35, 50] -0.00 0.00 0.07** 0.10*** 0.01 0.01
(0.01) (0.01) (0.03) (0.04) (0.01) (0.01)

Age: ∈ (50, 65] -0.01 -0.01 0.07** 0.10*** 0.01 0.00
(0.01) (0.02) (0.03) (0.04) (0.01) (0.01)

Age: ≥ 65 -0.01 -0.01 0.08** 0.09** 0.01 -0.02
(0.01) (0.01) (0.03) (0.04) (0.01) (0.01)

Education: Junior college 0.00 0.01 0.02 0.03 0.00 -0.01
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Education: College -0.01 -0.00 0.01 0.02 -0.00 -0.00
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Education: University -0.01 0.00 -0.05** -0.03 0.01 0.01
(0.01) (0.01) (0.03) (0.03) (0.01) (0.01)

Income: ∈ (1.1, 1.6] -0.01 -0.01 -0.01 -0.00 0.00 0.01
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Income: ∈ (1.6, 2.2] -0.01 -0.01 -0.02 -0.02 -0.00 0.00
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Income: ≥ 2.2 0.00 0.00 -0.01 -0.00 0.00 0.00
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Financial assets: ∈ (1.8, 11.2] -0.01 0.00 -0.02 -0.01 0.01 0.02*
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Financial assets: ∈ (11.2, 32] -0.00 0.01 -0.03 -0.00 0.01 -0.00
(0.01) (0.01) (0.02) (0.03) (0.01) (0.01)

Financial assets: ≥ 32 0.01 0.02 -0.04 -0.02 0.01 0.01
(0.01) (0.01) (0.02) (0.03) (0.01) (0.01)

Female -0.02** -0.01 0.00 0.00 0.00 0.01**
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Risk aversion index -0.01* -0.01** -0.00 -0.01 -0.00 0.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Numeracy index 0.00 0.01 0.01 0.03** -0.01*** 0.00
(0.01) (0.01) (0.01) (0.01) (0.00) (0.00)

Judged hist. freq: positive return -0.03** -0.02 0.01 0.05* 0.00 0.01
(0.01) (0.02) (0.03) (0.03) (0.01) (0.01)

Judged hist. freq: response error 0.01* 0.02* 0.02 0.02 0.00 -0.00
(0.01) (0.01) (0.02) (0.02) (0.01) (0.01)

Judged hist. freqs: mean absolute deviation -0.02 -0.00 -0.06 -0.01 0.02 -0.02
(0.04) (0.05) (0.07) (0.08) (0.03) (0.03)

Optimism -0.00 0.00 0.01 -0.00 -0.00 -0.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Underst. c.c. -0.01** -0.01** -0.02** -0.02** 0.01** 0.01***
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Threat. by c.c. 0.00 0.00 -0.00 0.01 0.00 -0.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

N 1297 1186 1297 1186 1297 1186
R

2 0.416 - 0.170 - 0.236 -
1st st. F - 79.8 - 308.4 - 134.9

Notes: Outcomes are estimated parameters in the temperature domain in the 4th wave, regressors are
estimated parameters in the AEX domain in the 4th wave. Two stage least squares models use estimated
parameters from the previous three waves as instruments. Robust standard errors in parentheses. Sample
restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring patterns whilst
also being entered quicker than 85% of subjects.
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Appendix 2.C Relaxing parameter restrictions

We restimate our model but keep only the constraint that τ2 > 0 and the probability
constraints, which means that the only behaviour ruled out in the deterministic part
of the model are set-monotonicity violations. We calculate the area between the 45
degree line and min(max(τ0 +τ1 Pr(E), 0), 1) to obtain α, and 1 minus the average
slope of min(max(τ0 +τ1 Pr(E), 0), 1) over the range Pr(E) ∈ [0.05, 0.95] to obtain
`.
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Figure 2.C.1. Distributions of estimated parameters, wave by wave

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring
patterns whilst also being entered quicker than 85% of subjects

Table 2.C.1. Across wave correlations of estimated parameters

ρ̂1,2 ρ̂1,3 ρ̂1,4 ρ̂2,3 ρ̂2,4 ρ̂3,4 Average ρ̂

α 0.25 0.22 0.20 0.27 0.22 0.33 0.25
� 0.22 0.20 0.24 0.32 0.33 0.39 0.29
σε 0.13 0.17 0.20 0.27 0.28 0.32 0.23

Notes: Table shows Pearson correlations between parameter estimates across waves, with subscripts indi-
cating the waves. Parameter estimates are obtained by the model described in Section 2.3.2 but removing
parameter restrictions except τ2 > 0. The model is estimated separately for each survey wave and individ-
ual. Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring
patterns whilst also being entered quicker than 85% of subjects.
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Table 2.C.2. Dependence of parameters relating to temperature uncertainty on parameters relat-
ing to uncertainty about the AEX

Parameter α � σε

Model OLS OLS 2SLS OLS OLS 2SLS OLS OLS 2SLS

Intercept -0.01** 0.05* 0.01 0.41*** 0.42*** 0.16** 0.06*** 0.01 -0.04
(0.00) (0.03) (0.03) (0.02) (0.06) (0.08) (0.00) (0.02) (0.02)

AEX param 0.70*** 0.70*** 1.00*** 0.36*** 0.35*** 0.65*** 0.49*** 0.46*** 1.12***
(0.03) (0.03) (0.09) (0.03) (0.03) (0.07) (0.03) (0.03) (0.12)

Underst. c.c. -0.01** -0.01** -0.02** -0.02** 0.01** 0.01***
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Threat. by c.c. 0.00 0.00 -0.00 0.01 0.00 0.00
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00)

Controls No Yes Yes No Yes Yes No Yes Yes
N 1297 1297 1186 1297 1297 1186 1297 1297 1186
R

2 0.400 0.414 - 0.139 0.159 - 0.202 0.223 -
1st st. F - - 79.9 - - 256.6 - - 81.6

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring
patterns whilst also being entered quicker than 85% of subjects. Robust standard errors in parentheses.
Outcomes are estimated parameters in the temperature domain in the 4th wave, regressors are estimated
parameters in the AEX domain in the 4th wave. Two stage least squares models use estimated parameters
from the previous three waves as instruments. Controls are age, gender, education, income and assets dum-
mies, risk aversion, basic, financial and probability numeracy and indicators of self-assessed understanding
and perceived threat of climate change with a 5 and 6 point scale respectively.
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Figure 2.C.2. Distributions of estimated parameters, AEX v Temperature domains

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring
patterns whilst also being entered quicker than 85% of subjects

Table 2.C.3. Individual characteristics of groups (K=4)

Group = 1 Group = 2 Group = 3 Group = 4

share 0.29 0.21 0.18 0.32
α 0.15 -0.07 0.03 0.00
� 0.70 0.62 0.49 0.26
σê 0.14 0.16 0.31 0.16
Education: University 0.11 0.13 0.05 0.20
Age 55.51 58.05 65.07 54.79
Female 0.58 0.53 0.47 0.41
Income (thousands) 1.62 1.58 1.47 1.75
Financial assets (thousands) 6.32 10.89 10.00 14.71
Risk aversion index 0.12 -0.05 -0.02 -0.07
Numeracy index -0.12 0.05 -0.72 0.48
Judged hist. freq: positive return 0.48 0.53 0.47 0.58
Judged hist. freq: response error 0.62 0.57 0.77 0.43
Judged hist. freqs: mean absolute deviation 0.18 0.18 0.22 0.19
Optimism -0.11 0.06 -0.18 0.16

Notes: The first row shows the share of individuals classified to a given group. For each group, the mean
of several variables are shown. For income and total assets, the median is reported instead. The variables
for risk aversion, numeracy and optimism are standard normalized. Sample restrictions: Individuals with at
least two waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being
completed quicker than 85% of subjects.
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Figure 2.C.3. Summarising heterogeneity in ambiguity profiles with K=4 discrete groups

Notes: The small dots depict individual ambiguity profiles consisting of the aversion parameter α and the
likelihood insensitivity parameter �. The large diamonds are group centres resulting from clustering individ-
uals with the k-means algorithm on the parameters α, � and σε. We dashed black triangle shows the region
into which we constrain estimates in our main model. Sample restrictions: Individuals with at least two
waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being entered
quicker than 85% of subjects.
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Figure 2.C.4. Event weights as a function of subjective probabilities, by group (K=4)

Notes: Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if
they exhibit recurring patterns whilst also being completed quicker than 85% of subjects. The figure plots
the lines W(E) = �

2 − α + (1 − �) · Pr(E) for the group-average values of α and �. The vertical di�erence to the
45 degree line measures the extent of ambiguity seeking w.r.t. gains from events whose source of uncertainty
is the future development of the AEX.
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Table 2.C.4. Predictors of groups, marginal e�ects (K=4)

Group = 1 Group = 2 Group = 3 Group = 4

Age: ∈ (35, 50] -0.02 -0.03 0.05 -0.00
(0.05) (0.05) (0.06) (0.05)

Age: ∈ (50, 65] -0.08 0.02 0.08 -0.02
(0.05) (0.05) (0.06) (0.05)

Age: ≥ 65 -0.10** 0.01 0.18*** -0.08*
(0.05) (0.05) (0.06) (0.05)

Education: Junior college 0.02 -0.01 0.00 -0.01
(0.03) (0.03) (0.02) (0.03)

Education: College 0.04 -0.05 -0.00 0.01
(0.03) (0.03) (0.03) (0.03)

Education: University -0.00 -0.03 0.01 0.02
(0.04) (0.04) (0.04) (0.04)

Income: ∈ (1.1, 1.6] 0.05* -0.02 -0.02 -0.01
(0.03) (0.03) (0.03) (0.03)

Income: ∈ (1.6, 2.2] 0.09*** -0.04 -0.03 -0.02
(0.03) (0.03) (0.03) (0.03)

Income: ≥ 2.2 0.06* -0.04 -0.01 -0.01
(0.04) (0.03) (0.03) (0.04)

Financial assets: ∈ (1.8, 11.2] -0.05 0.04 -0.03 0.03
(0.03) (0.03) (0.03) (0.04)

Financial assets: ∈ (11.2, 32] -0.08** -0.01 0.03 0.06*
(0.03) (0.04) (0.03) (0.04)

Financial assets: ≥ 32 -0.11*** 0.02 0.03 0.07*
(0.04) (0.04) (0.03) (0.04)

Female 0.07*** 0.02 -0.07*** -0.01
(0.02) (0.02) (0.02) (0.02)

Risk aversion index 0.03*** -0.01 -0.01 -0.01
(0.01) (0.01) (0.01) (0.01)

Numeracy index -0.03* -0.01 -0.11*** 0.15***
(0.01) (0.01) (0.01) (0.02)

Judged hist. freq: positive return -0.14*** -0.01 -0.01 0.16***
(0.04) (0.04) (0.03) (0.04)

Judged hist. freq: response error -0.01 -0.00 0.05** -0.03
(0.03) (0.02) (0.02) (0.02)

Judged hist. freqs: mean absolute deviation -0.30** -0.23* 0.42*** 0.11
(0.12) (0.12) (0.10) (0.12)

Optimism -0.02* 0.02 -0.01 0.01
(0.01) (0.01) (0.01) (0.01)

N 1460 1460 1460 1460
Pseudo R

2 0.12 0.12 0.12 0.12

Notes: Income and financial assets are in thousands, pooled within household and adjusted for household
size. Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if they
exhibit recurring patterns whilst also being completed quicker than 85% of subjects.



130 | 2 The distribution of ambiguity attitudes

Appendix 2.D Analysis with indices

We estimate ambiguity attitudes using the indices proposed by Baillon, Bleichrodt,
Li, and Wakker (2019) except that to maintain comparability with our main results,
we do not divide the estimate of the ambiguity aversion parameter α by 2.
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Figure 2.D.1. Distributions of estimated parameters, wave by wave

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recur-
ring patterns whilst also being entered quicker than 85% of subjects. Parameter estimates are the indices
proposed by Baillon, Bleichrodt, Li, and Wakker (2019), calculated for each survey wave and individual.

Table 2.D.1. Across wave correlations of estimated parameters

ρ̂1,2 ρ̂1,3 ρ̂1,4 ρ̂2,3 ρ̂2,4 ρ̂3,4 Average ρ̂

α 0.21 0.18 0.24 0.32 0.25 0.20 0.24
� -0.02 0.02 0.03 0.19 0.15 0.15 0.09

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recur-
ring patterns whilst also being entered quicker than 85% of subjects. Table shows Pearson correlations
between parameter estimates across waves, with subscripts indicating the waves. Parameter estimates are
the indices proposed by Baillon, Bleichrodt, Li, and Wakker (2019), calculated for each survey wave and
individual.
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Table 2.D.2. Dependence of parameters relating to temperature uncertainty on parameters relat-
ing to uncertainty about the AEX

Parameter α �
Model OLS OLS 2SLS OLS OLS 2SLS

Intercept -0.00 0.05* 0.01 0.73*** 0.63*** 0.06
(0.00) (0.03) (0.03) (0.03) (0.10) (0.23)

AEX param 0.69*** 0.68*** 1.05*** 0.16*** 0.14*** 0.79***
(0.03) (0.03) (0.10) (0.04) (0.04) (0.23)

Underst. c.c. -0.01** -0.01** -0.01 -0.01
(0.00) (0.01) (0.01) (0.02)

Threat. by c.c. 0.01 0.01 0.01 0.02
(0.00) (0.00) (0.01) (0.02)

Controls No Yes Yes No Yes Yes
N 1297 1297 1186 1297 1297 1186
R

2 0.386 0.400 - 0.028 0.053 -
1st st. F - - 67.1 - - 24.4

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recurring
patterns whilst also being entered quicker than 85% of subjects. Robust standard errors in parentheses.
Outcomes are estimated parameters in the temperature domain in the 4th wave, regressors are estimated
parameters in the AEX domain in the 4th wave. Two stage least squares models use estimated parameters
from the previous three waves as instruments. Controls are age, gender, education, income and assets dum-
mies, risk aversion, basic, financial and probability numeracy and indicators of self-assessed understanding
and perceived threat of climate change with a 5 and 6 point scale respectively. Parameter estimates are the
indices proposed by Baillon, Bleichrodt, Li, and Wakker (2019), calculated for each survey wave and individ-
ual.
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Figure 2.D.2. Distributions of estimated parameters, AEX v Temperature domains

Notes: Sample restrictions: Observations with regular choices. Choices are irregular if they exhibit recur-
ring patterns whilst also being entered quicker than 85% of subjects. Parameter estimates are the indices
proposed by Baillon, Bleichrodt, Li, and Wakker (2019), calculated for each survey wave and individual.
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Figure 2.D.3. Summarising heterogeneity in ambiguity profiles, indices

Notes: Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if
they exhibit recurring patterns whilst also being entered quicker than 85% of subjects. Parameter estimates
are across-wave averages of the indices proposed by Baillon, Bleichrodt, Li, and Wakker (2019). The blue
dots are parameter values that satisfy the restrictions we impose in our main model. Values above can only
came about through set-monotonicity errors. Values below indicate hypersensitivity.
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Table 2.D.3. Relation between estimated indices and characteristics

α �

Intercept 0.06*** 0.78***
(0.01) (0.03)

Age: ∈ (35, 50] -0.01 0.03
(0.01) (0.03)

Age: ∈ (50, 65] -0.02* 0.04
(0.01) (0.03)

Age: ≥ 65 -0.02** 0.08**
(0.01) (0.03)

Female 0.01 -0.00
(0.01) (0.01)

Education: Junior college -0.00 0.03
(0.01) (0.02)

Education: College -0.01 -0.06***
(0.01) (0.02)

Education: University -0.01 -0.07***
(0.01) (0.03)

Income: ∈ (1.1, 1.6] 0.01 -0.01
(0.01) (0.02)

Income: ∈ (1.6, 2.2] 0.01 0.02
(0.01) (0.02)

Income: ≥ 2.2 -0.00 0.01
(0.01) (0.02)

Financial assets: ∈ (1.8, 11.2] -0.00 -0.01
(0.01) (0.02)

Financial assets: ∈ (11.2, 32] -0.01 -0.01
(0.01) (0.02)

Financial assets: ≥ 32 -0.02* -0.02
(0.01) (0.02)

Risk aversion index 0.00 -0.00
(0.00) (0.01)

Numeracy index -0.01* -0.07***
(0.00) (0.01)

N 1614 1614
R

2 0.021 0.093

Notes: OLS regressions of the ambiguity indices pooled over all waves on several individual characteristics.
Income and financial assets are in thousands, pooled within household and adjusted for household size.
Sample restrictions: Individuals with at least two waves of regular choices. Choices are irregular if they
exhibit recurring patterns whilst also being entered quicker than 85% of subjects. Robust standard errors
in parentheses.
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Appendix 2.E Setting the number of groups to K = 8

We double the number of groups from K = 4 to K = 8 when allocating individuals
into groups with the k-means algorithm and reproduce the analyses of Section 2.4.3.
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Figure 2.E.1. Summarising heterogeneity in ambiguity profiles with K=8 discrete groups

Notes: The small dots depict individual ambiguity profiles consisting of the aversion parameter α and the
likelihood insensitivity parameter �. The large diamonds are group centres resulting from clustering indi-
viduals with the k-means algorithm on the parameters α, � and σε. Sample restrictions: Individuals with at
least two waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being
entered quicker than 85% of subjects.
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Table 2.E.1. Individual characteristics of groups (K=8)

G = 1 G = 2 G = 3 G = 4 G = 5 G = 6 G = 7 G = 8

share 0.13 0.18 0.09 0.07 0.09 0.15 0.12 0.16
α 0.18 0.01 0.19 -0.18 0.02 0.09 -0.03 -0.04
� 0.77 0.67 0.66 0.63 0.52 0.40 0.27 0.26
σê 0.10 0.15 0.24 0.21 0.34 0.17 0.24 0.13
Education: University 0.10 0.12 0.07 0.10 0.05 0.12 0.15 0.26
Age 54.73 56.37 61.60 63.46 66.57 54.16 60.88 51.61
Female 0.67 0.56 0.47 0.51 0.49 0.48 0.39 0.40
Income (thousands) 1.58 1.61 1.47 1.54 1.40 1.70 1.74 1.76
Financial assets (thousands) 5.07 9.56 6.40 11.76 9.85 11.47 14.68 14.71
Risk aversion index 0.17 -0.02 0.13 0.08 -0.09 0.00 -0.11 -0.10
Numeracy index -0.16 0.02 -0.52 -0.20 -0.85 0.35 -0.01 0.66
Judged hist. freq: positive return 0.46 0.50 0.45 0.50 0.50 0.55 0.53 0.62
Judged hist. freq: response error 0.64 0.56 0.73 0.67 0.77 0.51 0.59 0.35
Judged hist. freqs: mean absolute deviation 0.19 0.18 0.21 0.19 0.21 0.19 0.21 0.18
Optimism -0.10 -0.00 -0.22 0.04 -0.23 0.07 0.08 0.18

Notes: The first row shows the share of individuals classified to a given group. For each group, the mean
of several variables are shown. For income and total assets, the median is reported instead. The variables
for risk aversion, numeracy and optimism are standard normalized. Sample restrictions: Individuals with at
least two waves of regular choices. Choices are irregular if they exhibit recurring patterns whilst also being
completed quicker than 85% of subjects.
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Figure 2.E.2. Event weights as a function of subjective probabilities, by group (K=8)

Notes: The figure plots the estimated source functions, i.e. the lines W(E) = �
2 − α + (1 − �) · Pr(E) for the

group-average values of α and �. The vertical di�erence to the 45 degree line measures the extent of am-
biguity seeking w.r.t. gains from events whose source of uncertainty is the future development of the AEX.
The shaded area around the lines has bandwith σε, which visualises the imprecision with which observed
matching probabilities measure event events. Sample restrictions: Individuals with at least two waves of
regular choices. Choices are irregular if they exhibit recurring patterns whilst also being completed quicker
than 85% of subjects.
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Table 2.E.2. Predictors of groups, marginal e�ects (K=8)

G = 1 G = 2 G = 3 G = 4 G = 5 G = 6 G = 7 G = 8

Age: ∈ (35, 50] -0.00 -0.02 -0.05 0.09 0.02 -0.04 0.04 -0.04
(0.03) (0.05) (0.04) (0.07) (0.06) (0.04) (0.05) (0.04)

Age: ∈ (50, 65] -0.02 -0.03 -0.03 0.10 0.04 -0.11*** 0.08 -0.03
(0.03) (0.05) (0.04) (0.07) (0.05) (0.04) (0.05) (0.04)

Age: ≥ 65 -0.05 -0.03 -0.01 0.12* 0.10* -0.09** 0.07 -0.11***
(0.03) (0.05) (0.04) (0.07) (0.05) (0.04) (0.05) (0.04)

Education: Junior college 0.01 0.02 -0.01 -0.03* -0.01 -0.01 0.06** -0.02
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

Education: College 0.01 -0.01 -0.00 -0.03* -0.02 -0.02 0.06** 0.02
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

Education: University 0.02 -0.02 -0.02 -0.03 0.01 -0.10*** 0.10*** 0.04
(0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Income: ∈ (1.1, 1.6] 0.03 0.02 0.02 -0.03 -0.02 -0.04 -0.01 0.04
(0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Income: ∈ (1.6, 2.2] 0.05** -0.00 0.01 0.00 -0.02 0.01 -0.02 -0.02
(0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Income: ≥ 2.2 0.03 -0.01 -0.00 -0.00 -0.03 -0.01 0.01 0.01
(0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Financial assets: ∈ (1.8, 11.2] -0.04 0.01 -0.03 0.00 -0.03 0.04 -0.03 0.06*
(0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Financial assets: ∈ (11.2, 32] -0.05** -0.01 -0.03 -0.01 0.01 0.01 0.03 0.05
(0.02) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Financial assets: ≥ 32 -0.08*** -0.02 -0.03 0.01 0.01 0.01 0.03 0.06*
(0.03) (0.03) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Female 0.07*** 0.03 -0.03* -0.00 -0.04** 0.02 -0.04* -0.00
(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

Risk aversion index 0.02*** -0.00 0.00 0.00 -0.01 -0.00 -0.01 0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Numeracy index -0.02* -0.01 -0.03*** -0.02** -0.06*** 0.05*** -0.04*** 0.12***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02)

Judged hist. freq: positive return -0.08** -0.10** -0.04 -0.01 0.02 0.03 0.00 0.18***
(0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04)

Judged hist. freq: response error -0.01 -0.02 0.01 0.00 0.01 0.01 0.01 -0.02
(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

Judged hist. freqs: mean abs. dev. -0.06 -0.41*** 0.14* 0.01 0.14* -0.03 0.29*** -0.08
(0.09) (0.12) (0.09) (0.07) (0.08) (0.10) (0.10) (0.10)

Optimism -0.01 0.02 -0.01* 0.01 -0.01 -0.00 0.01 -0.00
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

N 1460 1460 1460 1460 1460 1460 1460 1460
Pseudo R

2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Notes: Multinomial logit regression. Robust standard errors. For the thresholds of the income and asset
quartiles see Table 2.1. Income and financial assets are in thousands, pooled within household and adjusted
for household size. The variables for risk aversion, numeracy and optimism are standard normalized. Sample
restrictions: Individuals with at least two waves of regular choices. Choices are irregular if they exhibit
recurring patterns whilst also being completed quicker than 85% of subjects.
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Chapter 3

Can betting odds be turned into
informative probabilities of events?
Evidence from tennis matches?

3.1 Introduction

The best-known framework for rational decision making, expected utility theory,
requires that probabilities and utilities are assigned to all relevant uncertain out-
comes. Whilst a decision-maker aspiring to choose rationally might discover utilities
by introspection, away from coin flips, dice rolls and spins of the roulette wheel, it
is far from obvious which probabilities she should assign to uncertain outcomes. As
Knight (2012) observed, the uncertainty attached to most interesting and important
events is not readily quantifiable. Betting odds, turned into implied probabilities, and
quoted by either bookmakers or by traders in prediction markets, offer the promise
to turn many situations of Knightian uncertainty into situations of Knightian risk.
This raises the question about the extent to which probabilities implied by betting
odds possess the properties that make probabilities of risky events, such as those of
coin flips, so reliable for decision making.
Betting odds are available for many events from a variety of domains and have been
shown to predict outcomes well. Berg, Forsythe, Nelson, and Rietz (2008) inves-
tigate the accuracy of prediction markets for political outcomes, finding that they
outperform polls, especially over longer horizons to elections. Cowgill and Zitzewitz
(2015) study corporate prediction markets run by companies for their internal ben-
efit and find they often outperform the predictions of executives. Dreber, Pfeiffer,
Almenberg, Isaksson, Wilson, et al. (2015) use prediction markets to generate pre-

? I thank Thomas Dohmen, Hans-Martin von Gaudecker, Dominik Liebl, Thomas Neuber and Chris-
tian Zimpelmann for helpful comments and suggestions.
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dictions that research in psychology will be reproducible, and similarly find that the
resulting predictions perform well.
Whether prediction markets yield probabilities has also been investigated theoreti-
cally. Manski (2006) and Wolfers and Zitzewitz (2006) examined how the prices of
predictions markets are related to the beliefs of traders in equilibrium. When traders
have heterogeneous beliefs regarding the probabilities with which an event occurs,
the equilibrium price of a prediction market equals the average of beliefs, provided
traders are risk-averse with log utility. However, for risk-neutral traders and traders
with different risk aversion parameters, this is no longer true, although Wolfers and
Zitzewitz (2006) show prices will be close to mean beliefs under a range of plau-
sible specifications. It is an open question whether mean beliefs have the desirable
properties of probabilities of risky events, that is, whether they bear any relation to
empirical events.
What makes the probability assessment 1

2 reliable regarding the event “heads” when
flipping a coin? This paper examines the following properties. First, over a large
number of flips, we can be confident the fraction of heads will be approximately 1

2 ;
it is a well-calibrated prediction. Second, the probability assessment 1

2 conditions
on all relevant information, no additional information would alter our prediction.
The remaining uncertainty is irreducible in non-experimental settings. We can sum-
marise these properties as Pr(Heads|X)= 1

2 where X represents any information
set. Using a sample of more than forty thousand tennis matches between 2002 and
2019, I systematically investigate the reliability of implied probabilities in the sense
just described. I test whether Pr(Y|Q, X)= Q holds when Q represents the implied
probability for a match outcome Y and X is some information set. When X is empty,
this amounts to a calibration test. Calibration of betting odds has been studied be-
fore, Page and Clemen (2013) find that prediction market prices are overall quite
well-calibrated in both sports and politics, but for events whose resolution is far in
the future, they find evidence of substantial miscalibration. In particular, they find
a favourite-longshot bias in which events unlikely according to implied probabilities
occur less often empirically than they should, and likely events too often.
Betting odds calibration has also been examined for tennis matches, with Forrest
and McHale (2007) finding evidence of a favourite-longshot bias. More recently,
Lahvička (2014) studies bookmaker odds and Abinzano, Muga, and Santamaria
(2016) odds from the Betfair exchange. Both corroborate and extend the earlier
finding of a favourite-longshot bias. This paper extends the calibration analysis of
Lahvička (2014) by using a more flexible regression model to detect miscalibration,
and a calculation of implied probabilities from odds that is less susceptible to the
favourite longshot bias.
In terms of analysing what information implied probabilities for tennis matches are
conditional on, this paper extends the analysis of Kovalchik (2016) which is a system-
atic comparison of the predictive power of a variety of published prediction models
as well as bookmaker odds for tennis matches in the year 2014. Kovalchik (2016)



3.2 Data | 143

finds that bookmaker odds predict best, with model-based player ratings predicting
next best. My analysis builds on Kovalchik (2016) in three ways. First, I consider
match outcomes over a longer period, ranging from 2002 to 2019. Second, I use
a much richer selection of player characteristics to serve as potential regressors in
a prediction model. Third, I integrate bookmaker odds, player characteristics and
model-based player ratings into an overall prediction using modern machine learn-
ing methods. In this sense, my analysis is similar to Groll, Ley, Schauberger, and
Van Eetvelde (2019) who use the random forest model to combine characteristics
of teams and models of team strength into an overall prediction in the context of
predicting football matches, and to Gross and Rebeggiani (2018) who examine the
efficiency of betting markets for football by contrasting odds with a statistical model.
Overall, I find that implied probabilities for tennis matches are close to the ideal of
Knightian risk, as exemplified by coin flip probabilities. First, they are almost per-
fectly calibrated in the sense that the empirical frequency of outcomes matches the
implied probability. One notable exception is a favourite-longshot bias of a small
magnitude for grand slam matches. Second, they achieve a lower prediction error
than machine learning approaches based on a rich selection of publicly observable
information. Third, models that use this information as well as implied probabili-
ties as predictors do not predict better than implied probabilities alone. In terms of
which machine learning methods perform best, I find that the more flexible regres-
sion models random forest and gradient boosting are outperformed by regularised
logistic regression. This likely reflects that the strongest predictors of tennis matches,
player ratings, are based on models of player strength that are by construction linear
at the log odds scale.
In the next section, I describe the data sources. The empirical strategy is described
in Section 3.3. Section 3.4 presents results and Section 3.5 concludes.

3.2 Data

To analyse the extent to which implied probabilities in tennis come close to proba-
bilities of Knightian risk, I use two types of data: A database of tennis matches and
players characteristics and betting odds offered by bookmakers.

3.2.1 Data sources

Public information with which to predict matches comes from an archive of results
maintained by the ATP website1 which has data going back to 1969. Since 1991, the
information provided for each match has become substantially richer, going beyond
match scores. For each match, the data additionally includes various indicators that
capture players’ performance: aces, double faults, first serve percentage, first serve

1. Available from: https://www.atptour.com/en/scores/results-archive

https://www.atptour.com/en/scores/results-archive
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points won, second serve points won, breakpoints saved. From these, detailed mea-
sures of each player’s serving and returning performance can be calculated. I use a
public data set collecting all information listed on the ATP website made available
by Jeff Sackmann.2

For betting odds, I use data from the website Tennis-data.co.uk3, which has been
collecting a selection of the odds from different bookmakers shown on the website
oddsportal.com since 2001. The number of matches for which data is available, and
the years for which there are any data is available, differs across bookmakers. The
longest series of odds is available for the bookmaker Bet 365, with thousands of
matches between 2002 and 2019. These odds are the primary focus of the analysis.

3.2.2 Merging data sources

Match-identifying information differs for the two data sets. The match database
contains the full names of the players, their ranks, the score of the match and the
date of the start of the tournament, but not the dates of individual matches. The
bookmaker data has exact dates for the matches, player ranks, match score, and last
names, but only the first letter of first names. Across the data sets, there are some
inconsistencies: Player names are sometimes differently written, match scores and
ranks sometimes differ despite referring to the same match. Some of the identifying
variables are missing in both data sets for some matches. To merge the data sets,
I proceed in stages. First, I convert the full names from the match database to the
same format as the names in the bookmaker data. Then matches are linked based on
year, month, player names and score. Then I repeat this procedure with month lags,
since the match database only contains the start of the tournament buts matched
played in it could take in the following month. Finally, remaining matches are linked
based on year, month and player ranks, also with month lags. After each stage of
linking matches, I manually resolve duplicate connections. This procedure results
in links for all but 236 bookmaker matches and 209 for the bookmaker Bet365, for
which I carry out my analysis. For these matches, I identify as potential links those
with the most similar⁴ player names amongst the remaining unused matches in the
database. I manually verify that links above a high name similarity threshold join
data points corresponding to the same match. Following this final step, the number
of bookmaker matches for which I do not have a link is 104, which is less than 0.2%
of all bookmaker matches.

2. Available here: https://github.com/JeffSackmann/tennis_atp
3. The data was retrieved from: http://www.tennis-data.co.uk/alldata.php
4. The similarity measure used is the product of similarity scores for each player returned by the

SequenceMatcher algorithm implemented in Python’s difflib module. To give an example, one match
with names separated by ’v.’ is ’wawrinka s. v navarro pastor i.’ in the bookmaker data and ’wawrinka
s. v navarro i.’ in the match data, with a similarity of 0.74. The algorithm helps link matches when
parts of the names are missing or spelt differently

https://github.com/JeffSackmann/tennis_atp
http://www.tennis-data.co.uk/alldata.php


3.2 Data | 145

Figure 3.1 shows the number of ATP Tour level tennis matches over time as well
as those for which I have odds using this merging procedure. There are odds from
bookmakers for a vast majority of ATP tour matches.
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Figure 3.1. Number of ATP Tour tennis matches with and without betting odds over time

3.2.3 Calculation of implied probabilities

To define one outcome per match, I randomly and independently across matches
assign one player to be player A and the other to be player B. I specify the outcome
Y = 1 as the event that player A wins the match. Bookmakers offer customers bets
on the outcomes of a match by quoting odds for each player. These odds specify the
multiple of one’s stake that is paid out if the player wins. If the player does not win,
the stake is forfeit. To turn betting odds into a prediction for Y, that player A wins, I
determine the subjective probability interval for which a risk-neutral gambler would
not bet on either player and take the midpoint of this interval. The resulting implied
probability qA is always in the unit interval, and if the process were to be repeated
for player B, qA + qB = 1. Thus implied probabilities calculated with this procedure
satisfy the axioms of probability theory.

The details of the calculation are as follows. A bookmaker offers odds dA for
the event that player A wins and dB for the event that player B wins. A risk-neutral
agent with belief pA that player A wins will bet on player A if the expected profit
dA · pA − 1≥ 0 and on player B if dB · (1− pA)− 1≥ 0. For beliefs pA in the interval
�

dB−1
dB

, 1
dA

�

, a risk-neutral agent would thus not bet on either player. I define the
implied probability qA that player A wins as the midpoint of this interval.



146 | 3 Can betting odds be turned into informative probabilities of events? Evidence from tennis matches

Figure 3.2 gives an example of how betting odds for tennis matches were pre-
sented to prospective gamblers by the bookmaker Bet365 for the match Thiem v
Zverev at the Australian Open in 2020.

Figure 3.2. Example of betting odds from bookmaker Bet365

Notes: The odds refer to the semi final match Dominic Thiem (Austria) v Alexander Zverev (Germany) at the
Australian Open 2020 on 31 January 2020. The numbers below ’To Win Match’ are the decimal odds o�ered
by bookmaker Bet 365 on Dominic Thiem (1.5) and Zverev (2.62). Since Thiem won, a bet of one unit on
Thiem would have yielded a profit of 0.5 units. The implied probability of Thiem winning was 0.64.

Assigning Dominic Thiem to be player A, the odds offered for a bet on him were
dA = 1.5, the odds offered for a bet on Zverev were dB = 2.62. A risk-neutral gambler
would have refrained from placing a bet on either player if her subjective belief that
Thiem wins had been located in

�2.62−1
2.62 , 1

1.5

�

= [0.62,0.66]. The midpoint of this
interval, qA = 0.64, is the implied probability.

In addition to yielding numbers that satisfy the probability axioms, this pro-
cedure has intuitive appeal through its connection to the subjective belief of a hy-
pothetical trader who is indifferent at prevailing odds. It is however not the only
procedure by which betting odds can be turned into values between [0, 1] that sum
to 1. Štrumbelj (2014) investigates the predictive performance of three different

procedures: What they call the basic normalisation qA =
1

dA
1

dA
+ 1

dB

, the predicted proba-

bility of a logistic regression of match outcomes on odds fit with historical data, and
what they call Shin probabilities. Shin probabilities are based on a model due to
Shin (1993) in which bookmakers set odds based on their subjective beliefs and the
proportion of informed insider traders amongst gamblers. Using that model, odds
offered by bookmakers can be inverted for the subjective probabilities they assign
to the outcomes. Štrumbelj (2014) present evidence that Shin probabilities predict
better than the two alternative procedures for outcomes across many sports. Despite
the different motivations under which they are derived, for the case of two outcomes,
the formula Štrumbelj (2014) gives for calculating Shin probabilities from odds pro-
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duces values that are identical to the procedure I have described in this section.⁵ I
use them as implied probabilities throughout the rest of the paper. Lahvička (2014),
who also examines calibration of implied probabilities based on the odds of Bet365,
uses the basic normalisation.

3.3 Empirical strategy

In the first part of this section, I describe implications of the hypothesis that implied
probabilities are probabilities of match outcomes that condition on a rich set of in-
formation and how these implications can be empirically tested. Key to the tests is a
predictive model of tennis matches. In the second and third parts, I discuss the infor-
mation sets and statistical models with which implied probabilities are compared.

3.3.1 Testing whether implied probabilities are probabilities of events and
identifying the information they condition on

Define the outcome Y = 1 as the event that player Awins a tennis match. LetQ be the
implied probability, calculated from bookmaker odds with the procedure described
in the previous section. The assumption I want to test is that the implied probability
is the probability that the event occurs, conditional on some information set Z. It can
be stated as Q= Pr(Y = 1 | Z). If this assumption is true, it has several implications.
Let X be any information set satisfying Y⊥⊥X | Z, that is X is independent from
Y if we already know Z. Then Pr(Y = 1 | Q, X)= Q.⁶ This holds for all values of
Q= q and X = x⁷, and means that we can test whether implied probabilities are
conditional probabilities with a regression of Y on the implied probability Q and
observable information X. If implied probabilities are conditional probabilities, and
the information they condition on is richer than X, then we expect to find that X does
not change the probability of Y away from the implied probability, except due to
estimation error. We can thereby indirectly draw the boundaries of the information
set Z despite not observing it.

5. Štrumbelj (2014) defines Shin probabilities for two outcomes in terms of the odds dA and

dB as qA, Shin =

r

z2+4·(1−z)· πA
β −z

2·(1−z) where z= (π+−1)(π2
−−π+)

π+(π2
−−1)

and β = π+ = πA +πB and π− = πA −πB and

πA =
1

dA
and πB =

1
dB
. It is not readily apparent from inspection of these formulas, but numerically

evaluating them for dA ≥ 1 and dB ≥ 1 shows they reduce to the midpoint of
�

dB−1
dB

, 1
dA

�

6. This follows from the law of iterated expectations:

Pr(Y = 1 | Q, X) = E[Y | Q, X] = E [E[Y | Z, Q, X] | Q, X]] = E [E[Y | Z] | Q, X]]

= E[Q | Q, X] = Q

7. Representing the information set X with a vector of predictors
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In theory, the sharpest test is obtained by making the information set X as rich as
possible and searching for values X = x at which E[Y | Q= q, X = x] 6= q. However,
since E[Y | Q, X] is unknown it has to be estimated, and its estimate can differ
from q by chance or because the model underlying the estimate is misspecified.
Nonparametric models that flexibly adapt to the data ward against misspecification,
but when X is high dimensional, the number of observations in the neighbourhood
of q, x will on average be small even in large samples and nonparametric estimation
breaks down. As Athey and Imbens (2019) explain, a key lesson from the machine
learning literature is that predictive power can often be increased by regularisation,
which decreases estimation variance by introducing additional model inflexibility.
This increases bias, but produces estimates of E[Y | Q, X] that are on average
closer to the true expectation due to the decrease in variance. Estimates can
however be very biased for some values of x, q. Accordingly, it need not be true
that ÛE[Y|Q= q, X = x] 6= q happens only by chance if the implied probability q fails
to aggregate all the information contained in x. This might simply be one of the
configurations of values x, q for which the estimator is very biased. When X is high
dimensional, a sounder approach is thus to compare the overall predictive power
ÛE[Y|Q, X] with that of Q using a measure of prediction error that is minimised by
the true conditional probability.

Based on this insight, I implement the following steps to test whether implied
probabilities are probabilities. First, I formÛE[Y | Q] and use it to test E[Y | Q= q]= q
across the full range of values of q. Due to the large sample and low dimensional-
ity, ÛE[Y | Q] can be modelled nonparametrically. The results of this analysis are in
Section 3.4.1. Second, for a high-dimensional information set X, I form ÛE[Y | X]
with machine learning model and compare its overall predictive power to that of
Q. If ÙE[Y|X] predicts better than Q, then if Q= E[Y | Z], we can conclude that X
is richer than Z. The results of this analysis are in Section 3.4.2. Third, if ÙE[Y|X]
predicts worse than Q, X might still contain elements not in Z, even though overall,
it is not as rich and thus has inferior predictive power. To investigate this, I form
ÛE[Y | Q, X] and compare its predictive power to Q. The results of this analysis are in

Section 3.4.3.
These steps can be related to the concepts of calibration and sharpness Gneit-

ing, Balabdaoui, and Raftery (2007) identify as key for evaluating probabilistic pre-
dictions. The first step is a calibration test, where calibration means the empirical
frequency with which an event with probability assessment q occurs is q. Whilst a
desirable property for a probability assessment to have, calibration on its own does
not make for good predictions. The prediction 0.5, for instance, is always perfectly
calibrated for the event that a randomly selected player will win a tennis match.
Sharpness is the degree to which predictions differ from the uninformative value
of 0.5. The second and third steps of the analysis use a large number of player fea-
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tures to compare the prediction error of implied probabilities and models. Prediction
errors measured with proper scoring rules capture both calibration and sharpness
(Gneiting, Balabdaoui, and Raftery (2007)).

3.3.2 Information set selection

The models of the second and third step of the analysis require a rich information
set X. Constructing and selecting predictors that capture relevant information
involves exploratory data analysis and particularly sophisticated predictors involve
their own models. To ensure that statistical inference in the main analyses is
unaffected, I used matches from the period 1991 to 2000 which precedes the data
set of the main analysis. I group predictors into two broad categories, Player &
Matchup Stats which are simple functions of player and match information in the
database, and Ratings, which are model-based estimates of player strength.

Player & Matchup Stats
The data on players and historical matches published by the ATP offers a wide
range of player attributes. For each player, the history of matches in which he
was involved, with statistics on wins and losses, sets, points, and various serve
and return related metrics are available. I refer to predictors capturing these
variables, as well as statistics of the player matchup (previous results when player A
encountered player B) as Player & Matchup Stats. When turning the raw data into
predictors, I compute many variants of percentages such as the match win rate. The
variants differ in the number of past matches over which they are calculated and
the surface within which they pool matches (overall, hard, clay, grass or carpet). I
also interact some of the variables with a dummy indicating whether the current
match is a grand slam match. Grand slam matches are best-of-5 in the number of
sets needed to win instead of best-of-3, which might make their outcomes more
predictable conditional on the same information available about the players. A
detailed explanation variables used and the variants calculated for the information
set Player & Matchup Stats is given in Table 3.B.1.

Ratings
The analysis of Kovalchik (2016) shows that player ratings are the single best pre-
dictors of tennis matches. The statistics falling under Player & Matchup Stats, such
as match win rates, do not account for the strength of players against which this
was achieved. Since the strength of the opposition is also unknown, it has to be mea-
sured as well, which in turn depends on the strength of their opposition. Ratings are
measures of a player’s strength that systematically use information about the entire
pool of players. Two simple measures of ratings I use are the sum of rank points
awarded by the ATP for performing well in tournaments in a given season and the
ATP rank, which is a 52-week moving sum of rank points. More sophisticated ratings
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can be constructed based on latent variable models of match outcomes. The most
widely used variant of such models is due to Elo (1978), bearing his name, which
is used for the official rankings in chess and was the best performing forecast for
tennis matches in the analysis of Kovalchik (2016). The ratings are based on the
model Y = 1{rA + uA > rB + uB} where rA and rB are latent ratings measuring player
strength and uA and uB represent unmodeled components affecting whether player
A wins. I calculate and use Elo and TrueSkill ratings.

Elo Rating
The Elo model assumes player ratings rA, rB are related to the probability of player
A winning as E[Y | rA, rB]=

1

1+10
rA−rB

400
. This likelihood function amounts to assum-

ing uB − uA is logistically distributed. The ratings of each player are updated after
match in which they are involved according to rA,t+1 = rA,t +λ · (y− E[Y|rA,trB,t]).
New players start with a rating of 1500⁸. The sign of the update depends on whether
player A won and the magnitude on how surprising it was in light of the old rating
as well as the parameter λ. This parameter determines rating volatility and thus
how much weight the most recent match receives relative to previous matches. I im-
plement the Elo model in Python and set λ to minimise the negative log-likelihood⁹
when predictingmatch outcomes with the last available Elo rating prior to thematch,
using data between 1991 and 2000. I compute ratings for all matches, but optimise
over matches from the last three years of this period in tournaments of the same level
as in the match data for which I have betting odds. Ratings are not updated when a
player retired with an injury because such results are not informative about player
strength. In addition to ratings at the optimal λ, I compute ratings at different λ val-
ues around that value in case quickly changing (high λ) and slowly changing (low
λ) ratings are in combination more predictive than any single value. I also calculate
separate ratings for each playing surface (hard, clay, grass, carpet). Table 3.C.1 in
the appendix contains the optimal λ values.

TrueSkill Rating
A more flexible alternative to the Elo model is TrueSkill, which has been developed
by Herbrich, Minka, and Graepel (2007) for match-making in Microsoft’s online
games. TrueSkill ratings are a full Bayesian ratings, in the sense that a player’s
strength is modelled as a normally distributed random variable rA ∼N (µA,σ2

A)
which is updated by conditioning on match outcomes. TrueSkill ratings can be
augmented with time dynamics that go beyond the Elo model, where these are
implicitly controlled by λ. In TrueSkill rA and rB can be allowed to randomly drift
over time. I model this as rA,s = rA,t + (s− t) · ε with ε∼N (0,σ2

ε) where I set s− t

8. The initial rating, as well as the 1
400 constant are a convention. Though the optimal λ param-

eter is relative to the constant, the outcome probabilities would be identical for any choice as only
score differences matter

9. Defined as −
∑

i yi · log ŷi + (1− yi) · log(1− ŷi) where ŷi is the predicted probability that
player A wins according to the model
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to be the number of days between the beginning of the tournaments in which
the two matches take place. From the perspective of the modeller, the rating drift
leaves a player’s expected rating unchanged but widens the dispersion around it. As
a result, if two players face each other following a longer period of inactivity, it is
reflected in the ratings that uncertainty over who will win increases. Player ratings
are related to the probability of player A winning as E[Y | rA, rB]= Φ( µA−µB

σA+σB+σu
)

which corresponds to assuming that the unmodeled determinant of match outcomes
satisfies u∼N (0,σ2

u). Ideally, one would update µA and σA according to Bayes’
Rule following a math. Since no analytical solution is available for the update, I use
the approximating equations for the two-player format from Dangauthier, Herbrich,
Minka, and Graepel (2008). New players start with a prior rating µ= 0 and
σ = 1.1⁰ The parameters σu and σε capture unpredictability of match outcomes
conditional on ratings and how variable ratings are in periods of inactivity between
time points respectively. I implement the TrueSkill model in Python and optimise
both parameters for predictive power in the same fashion as for the Elo model.
Section 3.C in the appendix gives the full details including the update equations.
Table 3.C.1 contains the optimal parameter values.

I estimate regression models for three information sets: Player & Matchup Stats,
Ratings and Full Info, which combines them and adds additional player variables
such as age, height, playing hand and home advantage. For most variables, there is
a measure both for player A, XA and for player B, xB. Because the identity of player
A has been randomly assigned across all matches, they should affect the probability
that player A wins with opposite signs but the same magnitude. By using only differ-
ences xA − xB, instead of separate measures, the dimensionality can be cut in half,
at the cost of a functional form restriction. For the ATP world rank, for instance,
logit−1(β(log xA − log xB)) predicts much better than logit−1(β(xA − xB)). For ATP
ratings and ATP points, I log transform variables before computing the difference.
For all other variables except dummies, I compute simple differences. Using match
outcomes between 1991 and 2000, I also experimented with using xA and xB sepa-
rately and found that it does not yield superior predictive power out of sample for
any of the regression models. The number of predictors used in the Full Information
specification is 474. Table 3.B.1 in the appendix summarises which predictors are
included in each information set.

3.3.3 Model tuning

Since the objective is forming estimates of conditional probabilities, ÛE[Y | Q, X], I
only consider models that minimise loss functions that are proper scoring rules

10. As for the Elo model these are arbitrary, although the optimal parameters σu and σε will
change with the rating variance, as their magnitude is relative to it
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because true probabilities uniquely minimise them. With binary outcomes, if the
loss function L is a proper scoring rule, the prediction h(x) based on predictors
x that uniquely minimises expected loss E[L(y, h(x))] is h(x)= Pr(Y | X = x)
(Gneiting, Balabdaoui, and Raftery (2007)). I randomly partition my data set of
tennis matches between 2002 and 2019, for which betting odds are available, into
a training set and a test set. The training data set consists of 80% (36468) and
the test data set of 20% (9112) of matches. When randomising, I stratify by year,
tournament level and tournament round so that the test set has a balanced number
of observations for these categories. This allows me to examine the heterogeneity
of the main results.

Estimating E[Y | Q]
The first step of the analysis requires an estimate of E[Y|Q]. I estimate
ÛE[Y | Q= q]= logit−1(s(logit(q)) where s is a penalised cubic spline, fit using

the mgcv library in R (Wood (2011)). The smoothness of the spline, captured by
the effective degrees of freedom, is automatically chosen based on the data using the
restricted maximum likelihood criterion. Since Y is the outcome that player A wins,
whose identity was randomly assigned across matches, E[Y | Q]−Q must be sym-
metric around Q= 0.5. If it were the case that E[Y | Q= 0.2]− 0.2= −0.01, that is,
events with small implied probabilities occur somewhat less often than indicated by
the implied probability, then it must also be the case that E[Y | Q= 0.8]− 0.8= 0.01.
If small implied probabilities are on average too large, then the complementary
large implied probabilities must on average be too small. To obtain estimates that
obey this symmetry, I take the midpoint of model predictions at the logit scale for
q and the negative value of 1− q, prior to converting to the probability scale. This
yields logit−1

�

s(logit(q))−s(logit(1−q))
2

�

as the predicted probability of the outcome
when the implied probability is q.

Estimating E[Y | X] and E[Y | Q, X]
The second and third steps require estimates of the high dimensional conditional
probabilities E[Y | X] and E[Y | Q, X], for which I estimate several machine learning
models. Table 3.1 gives an overview of the models in terms of their functional forms
and the hyperparameters that are optimised when fitting them.

The objective function optimised for all these models is the negative log-
likelihood11 which is a proper scoring rule, augmented with various penalties for
model complexity. The first two models impose a linear and additive relation
between log odds of outcomes and predictors, the third model an additive but
component-wise possibly nonlinear relation modelled with splines, and the last two

11. Mean negative log-likelihood = − 1
n

∑

i yi · log ŷi + (1− yi) · log(1− ŷi). This loss function is
referred to with different names in the standard description of different models. For Random forests,
it is referred to as entropy criterion, for gradient boosting models it is the binomial deviance
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Table 3.1. Estimated models

Models Functional form Optimised hyperparameters

Ridge logistic regression log p

1−p
=
∑

K

k
xk · βj L2 penalty

Lasso logistic regression log p

1−p
=
∑

K

k
xk · βj L1 penalty

Generalised additive model log p

1−p
=
∑

K

k
sk(xk) Combined L1 and L2 penalty

Gradient boosted classification trees p =
∑

J

j
T(x; θj) · βj

Learning rate
max tree depth, subsample ratio

Random forest classifier p = 1
B

∑

B

b
T(x; θb)

Min samples in tree leaf
max tree depth, max features

Notes: p is the probability of the outcome, s(·) are splines, T(·) are decision trees. L2 and L1 penalise the
magnitude of estimated coe�cients with β2 and |β| respectively. In GAM, they penalise the coe�cients of
the basis expansion of predictors. Larger penalties decrease variance but increase bias. The tree ensembles
gradient boosting and random forest have various hyperparameters, the listed parameters were selected
following experimentation of what a�ects their predictive power. Learning rate scales the coe�cient β

j
with

which a new tree T a�ects the overall prediction, with smaller values decreasing variance but increasing bias.
Max tree depth controls how many times regressors x are split in a single tree before terminal nodes are
reached. Subsample ratio controls the fraction of randomly selected observations used to fit an additional
tree in each iteration. A smaller value decreases variance. Min samples in tree leaf determines the minimum
observations necessary in both halves for tree splits. Larger values decrease variance but increase bias. Max

features in Random Forest controls the number of randomly chosen predictors to be used for fitting each
tree. A larger value makes the averaged trees more correlated but increases their predictive power. Full
details of hyperparameter tuning are given in Section 3.D.

are ensembles of decision trees, which are sufficiently flexible to express compli-
cated interactions and nonlinearities between the predictors and outcomes. Tree
ensemble techniques tend do predict very well in a variety of settings12, the random
forest model, in particular, achieves a high degree of predictive power for football
matches in the analysis of Groll, Ley, Schauberger, and Van Eetvelde (2019). These
ensemble techniques use the base model of the decision tree T(x,θ) to form predic-
tions. Decision trees partition the predictor space x by selecting the predictor and
threshold such that splitting the sample in terms of that predictor and threshold,
and making separate predictions in each half of the split, minimises a loss function.
This is repeated with the resulting leaf nodes of the tree until a stopping criterion,
defined by hyperparameters, is met. The parameters governing predictors and splits
are collected in θ . Gradient boosting iteratively fits J trees such that the next tree is
optimised to improve the overall prediction when combined with the predictions of
the previously fit trees. In a random forest, each of B trees is fit using a new boot-
strap sample and a randomly selected subset of predictors, and the final prediction
averages across trees (Hastie, Tibshirani, and Friedman, 2009).

12. https://www.import.io/post/how-to-win-a-kaggle-competition/



154 | 3 Can betting odds be turned into informative probabilities of events? Evidence from tennis matches

I use the training data set to select the best hyperparameters of the models with
a grid search. All variables are standardised to mean zero and unit variance13. For
the logit and GAM models, I use 10-fold cross-validation and choose the hyperpa-
rameters that minimise the cross-validation negative log-likelihood. For the gradient
boosting model, I use 5-fold cross-validation and for random forests, I use error es-
timates based on out-of-bag predictions to economise on the computational burden.
Since each tree model of a random forest is estimated with its own bootstrap sample
of the data, some data points will not be included in it. Out-of-bag predictions for
a data point average only trees not trained with this data point and are thus free
from the downwards bias of in-sample error estimates (Hastie, Tibshirani, and Fried-
man, 2009). For the tree ensembles, I choose the hyperparameters listed in Table 3.1
and the range of values for the grid search following experimentation of what most
affects most the predictive power of the models. After finding the best hyperparame-
ters, I refit the models on the entire training set data. The GAM model is fit with the
gamsel package in R (Chouldechova, Hastie, and Spinu, 2018)1⁴, gradient boosting
trees are fit with the xgboost library (Chen and Guestrin, 2016) in Python and all
other models are fit with the Scikit-learn library in Python (Pedregosa, Varoquaux,
Gramfort, Michel, Thirion, et al., 2011). More details and cross-validation results
for the hyperparameter optimisation is given in Section 3.D. The prediction error
estimates of Section 3.4.2 and Section 3.4.3 use the test data set only, which has
not been used in any way to tune the models or specify the information sets. This
ensures that they are unbiased.

3.4 Results

I this section, I present results for the three steps discussed in section Section 3.3.
First, I test calibration, that is E[Y | Q= q]= q, second I compare the predictive
power of Q= E[Y | Z] and E[Y | X], third, I compare the predictive power of Q=
E[Y | Z] and E[Y | Q, X].

3.4.1 Testing E[Y | Q = q] = q for all values q

I estimate E[Y | Q] with the procedure described in the previous section for the
implied probabilities of the bookmaker Bet365. Figure 3.3 shows the estimates
ÛE[Y | Q= q]− q in aggregate, and separately for matches depending on the level

of the tournament in which they took place, ranging from basic ATP 250 and ATP

13. This ensures every predictor is on an even scale when its coefficient is penalised in the ridge,
lasso and GAM models. It does not affect the tree ensemble models

14. I also experimentedwith the GAMmodel of themgcv packagewhich I use to estimate E[Y | Q],
but found that it has worse predictive power.
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500 tournaments to elite masters 1000 tournaments and grand slam tournaments
(Australian Open, French Open, Wimbledon and US Open).
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Figure 3.3. Testing E[Y | Q] = Q, implied probability from Bet365, aggregate and by tournament
level

Notes: The lines are ÛE[Y | Q = q] − q, the predicted probability that player A wins given implied probability
Q for the values q of all matches. The left panel shows results pooled over all matches. In the right panel,
separate lines are fit for levels of the tournament subject to the splines having the same e�ective degrees
of freedom. Deviation of the predicted probability lines from the black dashed line measures the extent
to which implied probabilities are miscalibrated for empirical frequencies. Estimates based on the model
logit−1(s(logit(q)) where s is a penalised cubic spline. To impose symmetry, the lines average the predic-
tions for s(logit(q)) and −s(logit(1 − q)) from this model before converting to the probability scale. Shaded
regions are pointwise 95% confidence intervals obtained from 1000 bootstrap replications which include
this averaging.

Noting the scaling of the y-axis which ranges from -5% to +5%, estimated de-
viations from perfect calibration are on average very small, and in line with what
one would expect from chance. If the implied probability that player A wins is q per
cent, player A goes on to win q per cent of the time across the full range of q.

When disaggregatingmatches by the level of tournament, there is some evidence
of miscalibration of a small magnitude. For grand slam tournaments, the miscalibra-
tion is around 1.8 percentage points for longshots with implied probability at 0.2
and, by symmetry, for favourites at 0.8. The former win less often than the implied
probability suggests, the latter more often. Interestingly, the opposite pattern occurs
for matches from tournaments below those of grand slams in importance, but not
for the lowest level tournaments. To check the robustness of these results, I fit the
same regression for other bookmakers in my data set as well. Figure 3.A.2 in the
appendix shows the results, reproducing the plot for Bet365 for comparison and
ordering bookmakers by the number of observations available. The miscalibration
for grand slam tournament occurs almost uniformly across bookmakers, despite the
number of observations available, and years for which data is available, differing
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Figure 3.4. Testing E[Y | Q] = Q, implied probability from Bet365, by round of tournament

Notes: Separate lines are fit for each round of tournament subject to the constraint that the e�ective degrees
of freedom are the same for each line. R128 refers to the first round of 128 players.

widely across them. The pattern for elite tournaments, by contrast, is less robust. The
pattern for grand slam tournaments is an example of a well-known phenomenon in
betting: The favourite-longshot bias. Ottaviani and Sørensen (2008) review possible
explanations for this phenomenon. The explanations range from bettors misperceiv-
ing chances or having a preference for skewed returns (longshots), to bookmakers
setting odds to protect themselves against informed gamblers as in the model of Shin
(1993).1⁵ Figure 3.4 and Figure 3.5 disaggregates matches by the round of tourna-
ment and year respectively. There is no evidence that miscalibration has changed
throughout the years, nor that it is more pronounced for different rounds of tourna-
ments.

Using linear regression, Lahvička (2014) also examines implied probabilities of
tennis matches from the bookmaker Bet365 for miscalibration, finding a favourite
longshot bias overall, and a more pronounced version for grand slam tournaments
and later rounds of tournaments. The different result compared to Figure 3.4 can
be explained in terms of the difference in transformations to obtain implied proba-
bilities from odds. Lahvička (2014) uses the basic normalisation (discussed in Sec-
tion 3.2, see Štrumbelj (2014)) to transform odds into implied probabilities. Fig-
ure 3.A.1 in the appendix plots implied probabilities as computed in this paper
against implied probabilities calculated with the basic normalisation, which shows
that it produces consistently larger implied probabilities for longshots. Thus, if there

15. Since the implied probabilities in my analysis coincide with what bookmakers believe if they
set odds according to this model, it cannot, however, account for the present finding of a favourite-
longshot bias.



3.4 Results | 157

0 0.5 1

0.05

0.00

0.05 2002

0 0.5 1

2003

0 0.5 1

2004

0 0.5 1

2005

0 0.5 1

2006

0 0.5 1

2007

0.05

0.00

0.05 2008 2009 2010 2011 2012 2013

0.05

0.00

0.05 2014 2015 2016 2017 2018 2019

Figure 3.5. Testing E[Y | Q] = Q, implied probability from Bet365, by year

Notes: Separate lines are fit for each year subject to the constraint that the e�ective degrees of freedom
are the same for each line.

was no miscalibration using the normalisation suggested by Štrumbelj (2014) and
used in this paper, one could still find evidence of small miscalibration when using
the basic normalisation.
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3.4.2 Comparing prediction error of Q = E[Y | Z] and E[Y | X]

I estimate E[Y | X] for the models described in Section 3.3.3 for three information
sets: Player & Matchup Stats contains variables that capture each player’s perfor-
mance or the history of the matchup, but do not adjust for strength of competi-
tion faced. Ratings are all variables involving the model-based Elo and TrueSkill
measures as well as ATP points and the ATP rank. Finally, I use all predictors in-
cluded characteristics such as age and player height, in the Full Info set. I use the
implied probabilities from bookmaker Bet365 for calculating the predictor error of
Q= E[Y | Z]. Table 3.2 shows the prediction errors, in terms of mean negative log-
likelihood, of the optimised models for each information set. In Table 3.B.2 in the
appendix, I show results for mean squared error, which are very similar. Error reduc-
tions of the best model over a 50% guess and of the implied probability prediction
over the best model are also included.

Table 3.2. Prediction error by model and information set, compared to implied probability

Info set Player & Matchup Stats Ratings Full Info
Model

Ridge logistic regression 0.600 0.582 0.575
Lasso logistic regression 0.600 0.582 0.575
Generalised additive model 0.600 0.583 0.575
Gradient boosted cl. trees 0.601 0.584 0.578
Random forest classifier 0.604 0.586 0.581
Best model v guess - 13.5% - 16.0% - 17.0%

Implied probability 0.568 0.568 0.568
Implied probability v best model - 5.3% - 2.5% - 1.3% [0.000]

Notes: N = 9112 matches. Prediction error is measured with the mean negative log-likelihood, − 1
n

∑

i
yi ·

log ŷi + (1 − yi) · log(1 − ŷi) where ŷi is the predicted probability that player A wins from a model, or the im-
plied probability calculated from betting odds. The means are computed over all matches in the test data
set for which an implied probability from bookmaker Bet365 is available. Model were tuned with the train-
ing data by first using cross validation to find the best hyperparameters, then refitting the model with them.
Player & Matchup Stats contains all variables capturing player statistics that do not adjust for strength of
competition. Ratings contain ATP rank, ATP rank points, Elo and TrueSkill measures. Full Info uses all predic-
tors. The last table cell has the p-value of a Diebold-Mariano test of equal predictive power in brackets.

The most important observation from Table 3.2 is that the best performing ma-
chine learning model that combines model-based player ratings and many other
characteristics comes close, but ultimately still falls short of the implied probability.
A Diebold-Mariano test of equal predictive power (Diebold and Mariano, 2002) in-
dicates the difference is highly significant, even though it is small in magnitude. Im-
plied probabilities from the bookmaker Bet365 lower the prediction error by 1.3% on
the test data. What this suggests is that the unobservable information set Z that im-
plied probabilities condition on is richer than the Full Info set of 474 predictors. The
finding of Kovalchik (2016), that implied probabilities beat models, thus remains
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intact in my analysis. However, whereas the error reduction achieved by the best
model (an Elo variant) over the implied probability in Kovalchik (2016) was 6.7%1⁶,
the greater number of predictors combined with regularised regression models has
considerably narrowed the gap.

Another observation is that the various models perform similarly but that tree
ensembles do not outperform regularised logistic regression and the generalised ad-
ditive model. The regularised logit models do best, with the type of penalty being
irrelevant. The GAM model, which introduces additional flexibility for each predic-
tor, allowing it to be nonlinear at the logit scale, achieves the same performance.
The tree ensembles, which use decision trees as base models, do slightly worse. One
potential explanation of this finding is that the most predictive features, ratings
based on Elo and TrueSkill, are constructed to affect probabilities linearly in their
difference at the log odds scale,1⁷ which is exactly how they enter the logit models.
However, differences between the models are very small, with logit outperforming
the random forest model by only about 1%.

Figure 3.6 subtracts from the prediction error of the best model (lasso logistic
regression, but ridge logistic regression and GAM achieve effectively the same per-
formance) for the full information set the prediction error of the implied probability.
Separate results are given for each year, level of the tournament (regular, masters,
grand slam) and round of the tournament (first round of 128 players (R128) to
final).

The prediction error of the implied probability is lower than that of the best
model throughout most years, and across all tournament levels and tournament
rounds. There is a period between 2012 and 2014 in which the model does slightly
better but this most likely due to chance, rather than due a genuine temporary de-
crease in predictive power of the implied probabilities. One particularly large gap in
predictive error occurs at the first round of large tournaments. One potential expla-
nation of this gap is that the most recent information used by the model to predict
such matches will be based on how the players fared in the last tournament. The
information aggregated by betting odds, Z, might additionally incorporate how the
players have performed in training between tournaments.

16. See Table 4 of Kovalchik (2016)
17. For TrueSkill, it is the closely related probit scale



160 | 3 Can betting odds be turned into informative probabilities of events? Evidence from tennis matches

Regular Masters Grand Slam
0.05

0.00

0.05
By level of tournament

R128 R64 R32 R16 QF SF F

By round
2002 2004 2006 2008 2010 2012 2014 2016 2018

0.05

0.00

0.05
Error difference over time

M
od

el
 e

rro
r l

es
s i

m
pl

ie
d 

pr
ob

. e
rro

r

Figure 3.6. Heterogeneity in prediction error best model vs. implied probability

Notes: Plots show error di�erences between predictions from the best model (Lasso logistic regression) and
implied probability (Bet365) over the test set matches. The categories of the top panel are years, those of
the bottom left panel are levels of the tournament and those of the bottom right panel rounds. Prediction
error di�erences are measured with the di�erence in mean negative log-likelihood − 1

n

∑

i
yi · log ŷi + (1 −

yi) · log(1 − ŷi) within each category. Vertical lines are pointwise 95% confidence intervals.
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3.4.3 Comparing prediction error of Q = E[Y | Z] and E[Y | Q, X]

The results of the previous section suggest that Z is richer than X, even when X is
the Full Info set. This does, however, not mean that Z is necessarily a superset of X.
Despite predicting better than X on average, there could be information in X that is
not contained in Z. In this section, I re-estimate all models with Full Info plus the
implied probability itself, that is, E[Y | Q, X], to investigate this. Table 3.3 contains
the results, Table 3.B.3 in the appendix shows the results for mean squared error.
There is effectively no difference in the predictive power of Q and of E[Y | Q, X]
estimated with the best model. The null hypothesis of equal predictive power in
the Diebold-Mariano test cannot be rejected (p=0.25). Ridge logistic regression,
lasso logistic regression and the generalised additive model lower the prediction
error compared to Q ever so slightly with the generalised additive model doing best.
The tree ensembles, despite containing the implied probability Q as a predictor, do
slightly worse than Q alone.

Table 3.3. Prediction error for model using implied probability as input

Info set Full Info + Q
Model

Ridge logistic regression 0.5679
Lasso logistic regression 0.5676
Generalised additive model 0.5672
Gradient boosted cl. trees 0.5691
Random forest classifier 0.5692

Implied probability 0.5680
Best model v Implied Probability - 0.1% [0.25]

Notes: N = 9112 matches. Prediction error is measured with the mean negative log-likelihood − 1
n

∑

i
yi ·

log ŷi + (1 − yi) · log(1 − ŷi) where ŷi is the predicted probability that player A wins from a model, or the
implied probability calculated from betting odds. Means are computed over all matches in the test data set
for which an implied probability from bookmaker Bet365 is available. Model were tuned with the training
data by first using cross validation to find the best hyperparameters, then refitting the model with them.
Full Info + Q uses all predictors plus the implied probability. The last table cell has the p-value of a Diebold-
Mariano test of equal predictive power in brackets.

Figure 3.7 shows heterogeneity in the prediction error of the best model less
the prediction error of the implied probability across years, tournament levels and
rounds. Their predictive performance is almost exactly the same across the cate-
gories; there is barely any evidence that X is not part of the information set Z that
implied probabilities condition on. Though we cannot conclude that the uncertainty
that remains conditional on Q is irreducible, because this analysis involved a number
of modelling decisions that could potentially be improved, and does not use all infor-
mation potentially available, we can conclude that it is very difficult to reduce it any
further. The Full Info set containing 474 predictors does not reduce any uncertainty
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Figure 3.7. Heterogeneity in prediction error best model including implied probability as predic-
tor v implied probability

Notes: Plots show error di�erences between predictions from the best model (generalised additive model)
and implied probability (Bet365) over the test set matches. The categories of the top panel are years, those
of the bottom left panel are levels of the tournament and those of the bottom right panel rounds. Prediction
error di�erences are measured with the di�erence in mean negative log-likelihood − 1

n

∑

i
yi · log ŷi + (1 −

yi) · log(1 − ŷi) within each category. Vertical lines are pointwise 95% confidence intervals.

that remains when the implied probability is already in the model. In conjunction
with the excellent calibration documented in Section 3.4.1, this suggests implied
probabilities for tennis matches come close to the ideal of turning Knightian uncer-
tainty into Knightian risk.

In terms of how the machine learning models differ when estimating E[Y | Q, X],
models that use the Lasso penalty (Lasso logistic regression, GAM) do best. If Q=
E[Y | Z] and Y⊥⊥X | Z, which is the hypothesis this section tests, then the conditional
probability E[Y | Q, X] is characterised by extreme sparsity, only a single predictor,
Q, is not irrelevant. As Hastie, Tibshirani, and Friedman (2009) show, the Lasso
penalty is particularly well suited for estimating such models because it can drive
the contribution of irrelevant predictors down to exactly zero. Remarkably, the tree
ensembles predict slightly worse than Q alone, despite containing Q as an input. This
shows that model tuning with cross-validation does not fully prevent overfitting.
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3.5 Conclusion

Using a combination of machine learning models and a rich selection of player fea-
tures, I have examined whether implied probabilities have some of the desirable
properties that probabilities in the domain of Knightian risk have: Whether they are
calibrated, and whether they condition on an information set so rich the remaining
uncertainty is irreducible.

I analyse calibration with nonparametric regression and find that on average,
implied probabilities are very well calibrated across the full support of implied prob-
abilities. Events with implied probability q per cent happen close to q per cent of
the time, with deviations small enough to be consistent with being generated by
chance. However, specifically examining grand slam matches, I corroborate earlier
results and find that there is evidence of a favourite-longshot bias of a small mag-
nitude. For those matches, players with implied probabilities in the region of 20%
win only about 18% of the time. This pattern is robust across different bookmakers.

I analyse the information implied probabilities aggregate with hundreds of pre-
dictors that include player attributes, their track record in past matches and against
the same opponent, and model-based player ratings. Fitting a variety of machine
learning models, I estimate the probability of match outcomes with these predic-
tors. I find that models come close to implied probabilities in predictive power, but
still fall short. Implied probabilities lower the prediction error of the best model by
1.3% in terms of the negative log-likelihood. When adding implied probabilities as
an additional predictor to the models, their predictive power is no greater than what
is achieved by the implied probability alone. Together, these results suggest that im-
plied probabilities are conditional on richer information than what is contained in
the information set I have analysed. The uncertainty about outcomes that remains
when knowing the implied probability cannot be reduced with it.

Comparing different machine learning models, I find that regularised logistic
models perform slightly better than tree ensembles. This is likely the case because
player ratings are the most predictive features in my analysis and they are con-
structed within a framework that makes them linear at the log odds scale. For regres-
sions that use the full information set plus implied probabilities as predictors, I find
that models using the Lasso (L1 penalty) fare best. This is likely because outcomes
are independent from the entirety of the information once implied probabilities are
conditioned on, which is a setting of extreme sparsity in which only a single pre-
dictor is relevant. Lasso regularisation excels in this setting because it can set the
contribution of irrelevant predictors to exactly zero.

Overall, I find that in the case of tennis matches, implied probabilities come close
to the ideal of turning Knightian uncertainty into Knightian risk.
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Appendix 3.A Additional figures

Figure 3.A.1 compares the normalisation of betting odds used in the main analysis
with an alternative.
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Figure 3.A.1. Implied probabilities: Midpoint normalisation vs. basic normalisation less midpoint
normalisation

Notes: Midpoint normalisation is the procedure by which betting odds dA, dB are transformed into im-
plied probabilities that is used in this paper, qA =

�

dB−1
dB

, 1
dA

�

. Basic normalisation describes the alterna-

tive qA =
1

dA

1
dA
+ 1

dB

. The scatter plot uses the midpoint normalisation on the x-axis, and subtracts it from the

basic normalisation on the y-axis. For small implied probabilities on the midpoint normalisation, implied
probabilities using the basic normalisation are between 2 and 3 percentage points larger. If midpoint based
implied probabilities were perfectly calibrated, one would thus detect a favourite-longshot bias using the
basic normalisation.
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Figure 3.A.2 shows calibration analyses by level of the tournament for various
bookmakers. Bookmakers differ in terms of the years for which observations are
available and the total number of observations. The most robust form of miscalibra-
tion visible is a favourite longshot bias for grand slam tournaments.
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Figure 3.A.2. Testing E[Y | Q] = Q by tournament level for di�erent bookmakers
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Appendix 3.B Additional tables

Table 3.B.1. Variables used in information sets

Included in... Player & Matchup Stats Ratings Full Info
Base variable

Age No No Yes
Years played No No Yes
Right handed No No Yes
Home advantage No No Yes
Height No No Yes
Player Rank No Yes Yes
Player Ranking Points No Yes Yes
Elo Rating No Yes Yes
TrueSkill Rating No Yes Yes
Match win percentage Yes No Yes
Set win percentage Yes No Yes
Point win percentage Yes No Yes
Service points win percentage Yes No Yes
First serve win percentage Yes No Yes
Second serve win percentage Yes No Yes
Break points saved percentage Yes No Yes
Service game win percentage Yes No Yes
Aces per match Yes No Yes
Serve Rating Yes No Yes
Double faults per match Yes No Yes
Return points win percentage Yes No Yes
First serve return win percentage Yes No Yes
Second serve return win percentage Yes No Yes
Return games win percentage Yes No Yes
Break point win percentage Yes No Yes
Return Rating Yes No Yes
Matches played in current season Yes No Yes
Hours played in current season Yes No Yes
Sets played in current season Yes No Yes
Points played in current season Yes No Yes
Hours played in current tournament Yes No Yes
Sets played in current tournament Yes No Yes
Points played in current tournament Yes No Yes
Days since last match Yes No Yes

Notes: Information sets contain features constructed from the player specific base variables listed in the
table. Player & Matchup Stats calculates expanding rates and rolling rates with windows of match length
80, 40, 20, 10, 3, 2, and 1. Rates are calculated pooling across matches and by surface. Match, set and point
win percentages are also calculated with expanding match windows within tournaments. Match and set win
percentages are also calculated within player matchups for expanding and 5 match windows. The number
of predictors is 351. Ratings includes Elo ratings variants with update parameter λ values: optimal, 5, 10,
15, 30, 35, 40, 50, 60, 70, 80, 90, pooling across matches and within surface. Both ratings and outcome
probabilities calculated from the Elo model likelihood are included. TrueSkill ratings include the mean and
standard deviation of players strength and the outcome probability calculated from the model likelihood.
The number of features is 116. Full info combines the other info sets and adds basic player attributes such
as age. The number of features is 474. Ratings variables, as well as win, point and set percentages, are
interacted with a dummy indicating whether the current match is in a grand slam tournament.
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Table 3.B.2 and Table 3.B.3 replace the mean negative log-likelihood with the
mean squared error when comparing the predictive power of models and implied
probabilities.

Table 3.B.2. Prediction error by model and information set, mean squared error

Info set Player & Matchup Stats Ratings Full Info
Model

Ridge logistic regression 0.207 0.200 0.197
Lasso logistic regression 0.207 0.200 0.197
Generalised additive model 0.207 0.200 0.197
Gradient boosted cl. trees 0.208 0.201 0.198
Random forest classifier 0.209 0.201 0.199
Best model v guess - 17.3% - 20.1% - 21.4%

Implied probability 0.194 0.194 0.194
Implied probability v best model - 6.3% - 3.1% - 1.5% [0.000]

Notes: N = 9112 matches. Prediction error is measured with the mean squared error 1
n

∑

i
(yi − ŷi)2 where ŷi

where ŷi is the predicted probability that player A wins from a model, or the implied probability calculated
from betting odds. The means are computed over all matches in the test data set for which an implied
probability from bookmaker Bet365 is available. Model were tuned with the training data by first using
cross validation to find the best hyperparameters, then refitting the model with them. Player & Matchup
Stats contains all variables capturing player statistics that do not adjust for strength of competition. Ratings
contain ATP rank, ATP rank points, Elo and TrueSkill measures. Full Info uses all predictors. The last table
cell has the p-value of a Diebold-Mariano test of equal predictive power in brackets.

Table 3.B.3. Prediction error for models using implied probability as input, mean squared error

Info set Full Info + Q
Model

Ridge logistic regression 0.1936
Lasso logistic regression 0.1934
Generalised additive model 0.1932
Gradient boosted cl. trees 0.1939
Random forest classifier 0.1940

Implied probability 0.1935
Best model v Implied Probability - 0.2% [0.27]

Notes: N = 9112 matches. Prediction error is measured with the mean squared error 1
n

∑

i
(yi − ŷi)2 where

ŷi is the predicted probability that player A wins from a model, or the implied probability calculated from
betting odds. Means are computed over all matches in the test data set for which an implied probability
from bookmaker Bet365 is available. Model were tuned with the training data by first using cross validation
to find the best hyperparameters, then refitting the model with them. Full Info + Q uses all predictors plus
the implied probability. The last table cell has the p-value of a Diebold-Mariano test of equal predictive
power in brackets.
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Appendix 3.C Additional details for rating systems

Table 3.C.1 shows the optimal parameter values for the rating systems Elo and
TrueSkill.

Table 3.C.1. Optimised parameters of ratings

Rating Elo TrueSkill
Parameter λ σu σε

Surface

Pooled 48.4 3.137 0.089
Hard 54.4 3.153 0.073
Clay 55.4 3.141 0.091
Grass 41.9 3.168 0.032
Carpet 41.9 3.168 0.050

Notes: Table shows the optimised parameter values for the Elo and TrueSkill ratings pooling all matches
and by surface. λ determines the magnitude of the rating update for Elo. σu is the standard deviation of the
random component determining matches in TrueSkill. σε is the standard deviation of the mean-zero error
term that is added to player ratings for every day between the starts of tournaments.

The TrueSkill model initialises player A and B with ratings rA ∼N (µA,t,σ
2
A,t)

and rB ∼N (µB,t,σ
2
B,t). The outcomes of their match is modelled as Y = 1{rA + uA >

rB + uB} where uB − uA ∼N (0,σ2
u). Upon observing the realised value of Y, the

distribution of the player ratings needs to be updated. Herbrich, Minka, and Graepel
(2007) develop approximate solutions for the update. The case for two players with
the possibility of a draw is given in Dangauthier, Herbrich, Minka, and Graepel
(2008) and reproduced here, setting the probability of draws to zero. Suppose Y = 1,
that is, player A won, then updates are:

µA,t+1 = µA,t +
σ2

A,t

c
· v
�

µA,t −µB,t

c

�

σA,t+1 = σA,t ·

√

√

√

1−
σ2

A,t

c2
·w
�

µA,t −µB,t

c

�

Where c2 = σ2
u +σ

2
A,t +σ

2
B,t, v(x) := Φ(x)

φ(x) and w(x) := v(x)(̇v(x)+ x), with Φ the
cdf andφ the pdf of the standard normal distribution. The update for player B re-
verses the sign of the change for the mean parameter.

Between matches, I increase the standard deviation of player ratings by

σA,s =
Ç

σ2
A,t + (s− t)σ2

ε

where s− t is the number of days between the starts of tournaments in which the
matches take place. For matches within tournaments, the only change to the stan-
dard deviation of player ratings is due to updating based on match results. µ and
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σ of the player ratings are initialised at 0 and 1, the parameters σ2
u and σ2

ε are
chosen to minimise the negative log likelihood when using ratings to predict match
outcomes.



170 | 3 Can betting odds be turned into informative probabilities of events? Evidence from tennis matches

Appendix 3.D Hyperparameter tuning

For all models, hyperparameters are chosen by finding the values of the parameters
that minimise an estimate prediction error (mean negative log likelihood) that does
not automatically decrease with the flexibility of the model. For ridge and lasso re-
gression there is a single hyperparameter c, which governs the importance of the
log likelihood relative to the penalty of the coefficients, with larger values of c corre-
sponding to less regularisation. For the GAM model, I optimise the hyperparameter
λ which governs the importance of the penalty component of the objective func-
tion with larger values corresponding to more regularisation. The estimate of the
prediction error is based on the hold-out folds in 10-fold cross-validation.

For gradient boosting, the optimised hyperparameters are the learning rate (10
values, evenly spaced between 0.02 and 0.2), the maximum depth of trees (2 or
3) and the subsample fraction (0.8 or 1). All other hyperparameters are left at the
default values of the xgboost library. The parameters selected for optimisation and
their range was set following experimentation of what affects the predictive power
of the model. The estimate of the prediction error is based on the hold-out folds
in 5-fold cross-validation. Trees are added until an early stopping condition is met:
Cross-validation error fails to decrease at least every 10th new tree.

For random forests, the optimised hyperparameters are the maximum depth
of trees (5, 10, None), the maximum number of randomly selected predictors for
each tree (

p
K, 0.2K̇, 0.5K̇, None. K is the number of predictors, None means all K

predictors are used.) and the minimum samples in tree leaves (1, 50, 100). All other
hyperparameters were left at the default values of the scikit-library. The parameters
selected for optimisation and their range was set following experimentation of what
affects the predictive power of the model. The estimate of the prediction error is
based on out-of-bag predictions. Each tree T(x,θ) in a random forest is fit using a
bootstrap sample of the data. The probability that a data point is used by a tree
is thus 1− (1− 1

n)n, which in a large sample is approximately 1− exp(−1)≈ 0.63
. For each data point, the out-of-bag prediction of a random forest averages the
predictions of those trees that were not fit with it. This estimator of prediction error
is comparable to cross-validation in that it does not automatically decrease with
model flexibility, but requires less computational resources to implement (Hastie,
Tibshirani, and Friedman, 2009).

Figure 3.D.1 and Figure 3.D.2 show the error estimates of hyperparameter values
for the ridge and lasso logistic regression models and the generalised additive model
respectively. Table 3.D.1 and Table 3.D.2 list the best hyperparameter combinations
and error estimates for gradient boosting and random forests respectively.
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Figure 3.D.1. Cross-validation errors for hyperparameters of ridge and lasso logistic regression

Notes: Each curve shows the cross-validation mean negative log likelihood for an information set for di�er-
ent values of the hyperparameter. Log scaling of the x-axis showing values of the hyperparameter c. Higher
values of c decrease regularisation. The Full Information + Q curve stops before large values of c are reached
for the Lasso logit model because I set a grid of values over a smaller range. This was done because the
inclusion of the implied probability Q makes it likely that more L1 regularisation would be optimal, which
turns out to be the case. The marker of each line identifies the best value of the hyperparameter.
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Figure 3.D.2. Cross-validation errors for hyperparameters of generalised additive model

Notes: Each curve shows the cross-validated mean negative log likelihood for an information set for di�erent
values of the hyperparameter. Log scaling of the x-axis which shows values of the hyperparameter λ. Higher
values increase regularisation. The marker of each line identifies the best value of the hyperparameter.
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Table 3.D.1. Cross-validation error of best hyperparameters of gradient boosted classification
trees

Info set Player & Matchup Stats Ratings Full Info Full Info + Q
Hyperparameter

Learning rate 0.04 0.06 0.04 0.08
Max depth 2 3 2 2
Subsample ratio 0.8 0.8 0.8 0.8

Error 0.607 0.590 0.585 0.571

Notes: Table shows the best hyperparameter combinations for each information set according to cross-
validated mean negative log likelihood for each information set.

Table 3.D.2. Out-of-bag error for best hyperparameters of random forest

Info set Player & Matchup Stats Ratings Full Info Full Info + Q
Hyperparameter

Max depth 10 10 None 5
Max features 0.5 None None None
Min samples leaf 50 100 100 1

Error 0.611 0.591 0.588 0.573

Notes: Table shows the best hyperparameter combinations for each information set according to out-of-bag
mean negative log likelihood for each information set.
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