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METADATA

Title: Nuclear Physics in a finite volume: Investigation of two-particle and α-cluster systems
Abstract: In this dissertation we investigate both analytically and numerically some artifacts
introduced by the lattice environment in two-body charged fermion and antifermion systems
and in α-conjugate nuclei. The finite (hyper)cubic lattice as a surrogate of the continuum and
infinite-volume configuration space represents the context in which the properties of com-
pounds of quarks or nucleons are computationally investigated in nuclear and subnuclear
physics. The modified topology of the space in which many-body wave functions and fields
find their support produces sizable changes in the average values of physical observables and
namely energy eigenvalues, that can be controlled by reducing the lattice spacing and increas-
ing the number of mesh points.
The first problem that we address in this thesis concerns the finite-volume energy corrections
for two-fermion bound and scattering states in a cubic finite volume in presence of strong
and electromagnetic interactions. After reviewing the formalism of pionless Effective Field
Theory and non-relativistic Quantum Electrodynamics, we derive the amplitude and the lead-
ing order scattering parameters for the two-body elastic scattering process in the presence
of a strong interaction that couples the fermion fields to zero angular momentum. Then, the
latter is replaced by a P-wave strong interaction, and new scattering amplitudes are obtained,
accounting again for the Coulomb photon exchanges to all orders in the fine-structure con-
stant. Motivated by the research on particle-antiparticle bound states, we extend the results
to fermions of identical mass and opposite charge. Second, we transpose the system onto a
cubic box with periodic boundary conditions and we calculate the finite volume corrections
to the energy of the lowest bound and unbound T1 eigenstates, which are the finite-volume
counterpart of the states transforming as the ℓ = 1 irreducible representation (irrep) of the
rotation group. The procedure for the derivation of the mass shifts for the lowest A1 states, i.e.
transforming as the ℓ = 0 irrep of SO(3), is also reviewed. In particular, power law corrections
proportional to the fine structure constant and resembling the recent results for S-wave states
are found. Higher order contributions in α are neglected, since the gapped nature of the
momentum operator in the finite-volume environnement allows for a perturbative treatment
of the QED interactions.
The second main thread of this thesis covers the breaking of rotational symmetry in the
low-energy spectrum of the three lightest A = 4N self-conjugate nuclei on the lattice. In this
part, that may be regarded as the numerical continuation of the previous one, a macroscopic
α-cluster model is used for investigating the general problems associated with the representa-
tion of the nuclear many-body problem on a cubic lattice. In the context of a descent from the
three-dimensional rotation group to the cubic group symmetry, the role of the squared total
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angular momentum operator in the classification of the lattice eigenstates in terms of SO(3)
irreps is discussed. In particular, the behaviour of the average values of the latter operator, the
Hamiltonian and the inter-particle distance as a function of lattice spacing and size is studied
by considering the 0+

1 , 2+
1 , 4+

1 and 6+
1 states of 8Be, the 0+

1 , 2+
1 and 3−

1 states of 12C and the
0+

1 , 2±
1 , 3±

1 and 4−
1 states of 16O. Among these, special attention is reserved to the ground

states, from which the binding energies, BE(N,Z), of the three nuclei depend. It is found that
BE(6, 6) is faithfully reproduced in the infinite volume limit by construction, whereas BE(4, 4)
and B(8, 8) display shifts of 1.2 and 10.9 MeV, respectively.
As a consequence, the concluding part of the work is dedicated to the fitting of the strength
parameter, V3, of the three-body potential of the adopted α-cluster model to the 4α and the
α+12C thresholds of 16O. For the purpose, the variational calculation developed on three body
relative harmonic oscillator states is adopted and the relevant matrix elements are expressed
in terms of standard Moshinsky brackets. The extracted values of V3 at increasing dimensions
of the truncated basis are exploited for the extraction of the estimation of the expectation value
of the parameter.

Keywords: Electromagnetic Processes and Properties, Two-Nucleon System, Lattice Gauge
Theory, Few-Body Systems, Rotational Symmetry, Nuclear Structure Models and Methods,
Cluster Models, Point Groups, Variational Calculation, Moshinsky Brackets
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PREFACE

The present dissertation focuses on two main issues, two-particle bound and scattering states
in a finite volume including Quantum Electrodynamics and breaking and restoration of ro-
tational symmetry in the low energy spectrum of light α-conjugate nuclei on the lattice.
Hence we have considered it appropriate to organize the material into two distinct threads,
Part I and Part II. Each of the two begins with an explanatory chapter, with a preamble that
contextualizes the investigation and recapitulates the major advances on the topic achieved
in the past. The introduction is followed by an extended summary of the formalism which
provides the theoretical framework to the results presented in the subsequent chapters. The
concepts, formulas, algorithms and notation contained in this introductory chapter are often
borrowed from existing literature, therefore the already experienced reader is encouraged to
skip (at least) part of this material. Conversely, the chapters that follow hold predominantly
the fruits of the new investigation and are opened by a short summary of their content. The
only exception is represented by chap. 2, which can be considered as a summary of the work
in ref. [1], albeit enriched with the details of the calculations end endowed by a partly new
notation.
Concerning Part I, its main goal is the analytical understanding of the distorsions induced
by a finite cubic configuration space on the energy eigenvalues and eigenfunctions of two
fermions subject to both strong and electromagnetic interactions. After a review of the main
results in ref. [2] and [1] for S-wave strong interaction in chap. 2, low energy fermion-fermion
and fermion-antifermion scattering under the action of a P-wave short-range potential and
non relativistic QED is analsed in both the finite and the infinite volume environment. The
treatment, then, culminates with the presentation of the finite volume energy corrections for
the lowest bound and scattering states transforming as a T1 irreducible representation (irrep)
of the cubic group, the counterpart of the ℓ = 1 irrep of SO(3) in the cubic finite volume. The
material in app. 8.5.2 and 8.5.2 provides support for analitical derivation of the latter formu-
las and reserves special attention to the numerical evaluation of three-dimensional Riemann
sums, appearing in the power series expansions of the Lüscher functions in chap. 3. Since
the cubic lattice is a common playground for numerical simulations in nuclear and subnuc-
lear physics, the obtained closed expressions may find an immediate application in systems of
hadrons in the low-energy regime.
The second part, instead, is devoted to the numerical analysis of the artifacts introduced by
the lattice environment - namely finite volume and discretization effects - to eigenvalues and
average values of physical observables for the three lightest α-conjugate nuclei, 8Be, 12C and
16O. The framework for the investigation is provided by the macroscopic α-cluster model
in ref. [3], according to which strong interactions are modeled by a superposition of an Ali-
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Bodmer potential [4] and a 3α Gaussian potential [5]. Attached to the introductory chapter,
in which the latter model is reviewed, is app. B.2.2, where the discretization scheme for the
differential operators is presented in detail and the cubic group is recalled, paying attention
to the connection between the latter and the rotation group in the three-dimensional space.
In chap. 5-7, the behaviour of the energy eigenvalue and the average values of the squared
angular momentum and the α-α separation as a function of lattice spacing and size are the
studied in the 0+

1 , 2+
1 , 4+

2 and 6+
1 (artificial) bound states of 8Be, in the 0+

1 , 2+
1 and 3−

1 multiplets
of 12C and in the 0+

1 , 2±
1 , 3±

1 and 4−
1 of 16O. Subsequently, the results of a variational calcu-

lation for the fitting of the strength parameter of the three-body potential to the α+12C and
4α decay thresholds of 16O are presented. As hinted in chap. 7, in fact, the parameters of
the 3α Gaussian interaction in the model in ref. [3] underbind the 16O nucleus by ≈ 11 MeV.
Although the results of chap. 8 have not been employed for the analysis in chap. 7, they may
find immediate application in the reconstruction of the low-energy spectrum and the basic
properties of the nucleus, to be benchmarked with other α-cluster models such as the ones
in refs. [6] and [7, 8]. The ordering of the chapters in Part II finds, thus, its justification.
After chap. 8, the summary of the work in the body of the dissertation is presented together
with the conclusions and some hints for an extension of the analysis in chaps. 5-7, whereas
the perspectives of the investigations in chaps. 3 and 7 are outlined in the last sections of the
respective chapters.



Part I
Two-particle bound and scattering
states in a finite volume including

Quantum Electrodynamics





CHAPTER 1
EFFECTIVE FIELD THEORY FOR NON-RELATIVISTIC FERMIONS

1.1 Preamble
Effective Field Theories [9–16] nowadays play a fundamental role in the description of many-
body systems in nuclear and subnuclear physics, employing the quantum fields which can
be excited in a given regime of energy. Once the breakdown scale Λ of the EFT is set,
the scattering amplitudes are usually expressed in power series of p/Λ, where p represents
the characteristic momentum of the processes under consideration. The Lagrangian density
is typically written in terms of local operators of increasing dimensions obeying pertinent
symmetry constraints.

Moreover, power counting rules establish a hierarchy among the interaction terms to
include in the Lagrangian, thus permitting to filter out the contributions that become relevant
only at higher energy scales [15].

In the case of systems of stable baryons at energies lower than the pion mass, the Lag-
rangian density contains only the nucleon fields and their Hermitian conjugates, often com-
bined toghether with differential operators. The corresponding theory, the so-called pionless
EFT [10, 17–20] counts a number of successes in the description of nucleon-nucleon scatter-
ing and structure properties of few-nucleon systems. Despite the original difficulties in the
reproduction of S-wave scattering lengths, that were solved via the introduction of the Power
Divergence Subtraction (PDS) as a regularization scheme [18,21,22], the theory has permitted
so far to reproduce the 1S0 np phase shift [23, 24], structure properties of the triton as a dn
S-wave compound [20, 25, 26] and the scattering length [27, 28] and the phase shift [29–31] of
the elastic dn scattering process.

In the first applications of QED in pionless EFT, the electromagnetic interactions were
treated perturbatively, as in the case of the electromagnetic form factor [32] and electromag-
netic polarizability [33] for the deuteron or the inelastic process of radiative neutron capture
on protons [34]. Afterwards, a non-perturbative treatment of electromagnetic (Coulomb) in-
teractions on top of the same EFT was set up, in the context of proton-proton S-wave elastic [2]
and inelastic [35, 36] scattering. The formalism of ref. [2] and part of its results are reviewed
in the first part of next chapter.

Inspired by the P-wave interactions presented in refs. [37–39], we generalize in secs. 3.1 and
3.1.1-3.1.3 of chap. 3 the analysis in ref. [2] to fermion-fermion low-energy elastic scattering
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ruled by the interplay between the Coulomb and the strong forces transforming as the ℓ = 1
representation of the rotation group (cf. ref. [40] for the empirical S- and P-wave phase shifts in
the pp case). As in ref. [2], we treat the Coulomb photon exchanges both in a perturbative and
in a non-perturbative fashion. During the derivation of the T-matrix elements, we observe that
at sufficiently low energy, the repulsion effects from the Coulomb ladders become comparable
to the ones of the strong forces, leading to the breakdown of the perturbative regime of non-
relativistic QED. In the determination of the closed expressions for the scattering parameters
in terms of the coupling constants, we take advantage of the separation of the Coulomb
interaction from the strong forces, proposed first in refs. [41, 42] and eventually generalized
to strong couplings of arbitrary angular momentum ℓ in ref. [43]. The importance of particle-
antiparticle systems led us to the applicaton of the formalism to fermion-antifermion scattering,
where the attractive Coulomb force gives rise to bound states. This case provides a laboratory
for the study of pp̄ bound [44] and unbound states [45], also referenced as protonium.

Of fundamental importance for the study of few- and many-particle systems with QED are
Lattice Effective Field Theories and Lattice Quantum Chromodynamics (LQCD). The latter
has matured to the point where basic properties of light mesons and baryons are being
calculated at or close to the physical pion mass [46, 47]. In particular, in the case of the
lowest-lying mesons, their properties are attaining a level of accuracy where it is necessary
to embed the strong interactions within the full standard model [48–53]. Despite the open
computational challenges represented by the inclusion of the full QED in LQCD simulations,
in the last decade quenched QED [54] together with flavour-symmetry violating terms have
been included in the Lagrangian, with the aim of reproducing some features of the observed
hadron spectrum [55–63].

Conversely, the perspective to add QED interactions in LQCD simulations for systems with
more than three nucleons appears still futuristic, due to the limitations in the computational
resources. Nevertheless, the interplay between QCD and QED has been very recently ex-
plored also in the ground state energy of bound systems up to three nucleons like deuteron,
3H and 3He in ref. [64]. Additionally, in two-body processes like π±π± [64–66], K0K0 [64] and
nucleon-meson scattering [64], time is ripe for the introduction of electromagnetic interactions
in the present LQCD calculations.

It is exactly in this context that, in the second part of chap. 2 and 3, we immerse our
fermion-fermion EFT into a cubic box with periodic boundary conditions (PBC). The finite-
volume environment has a number of consequences, the most glaring of them are the break-
ing of rotational symmetry [3, 67–69] and the discretization of the spectrum of the operators
representing physical observables [70–72]. Concerning the Hamiltonian, its spectrum consists
of levels that in the infinite-volume limit become part of the continuum (scattering states) and
in others that are continuously transformed into the bound states. For two- and three-body
systems governed by strong interactions, the shifts of the bound energy levels with respect
to the counterparts at infinite volume depend on the spatial extent of the cubic volume L
through negative exponentials, often multiplied by nontrivial polynomials in L. Apart from
the pioneering work on two-bosons subject to hard-sphere potentials in ref. [73], these effects
for two-body systems have been extensively analyzed by Lüscher in refs. [74,75] ( [76]), where
the energy of the lowest unbound (bound) states has been expressed in terms of the scattering
parameters and the box size.

In the last three decades, Lüscher formulas for the energy shifts have been extended in
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several directions including non-zero angular momenta [71, 77–79] moving frames [79–85],
generalized boundary conditions [86–91] and particles with intrinsic spin [92, 93]. Moreover,
considerable efforts have been made in the derivation of analogous formulas for the energy
corrections of bound states of three-body [72,94,95] and N-body systems [96,97]. See also the
review [98].

However, the presence of the long-range interactions induced by QED leads to significant
modifications in the form of the corrections associated to the finite volume energy levels.
Irrespective on whether a state is bound or unbound, in fact, the energy shifts take the form
of polynomials in the reciprocal of the box size [46] and the exponential damping factors
disappear. Moreover, the gapped nature of the momentum of the particles in the box allows
for a perturbative treatment of the QED contributions, even at low energies [1,46,47,54,99]. In
this regime, composite particles receive corrections of the same kind both in their mass [46]
and in the energies of the two-body states that they can form [1].

As shown in ref. [1] and in sec. 2.2.3 b) of chap. 2, the leading-order energy shift for the
lowest S-wave bound state is proportional to the fine-structure constant and has the same
sign of the counterpart in absence of QED, presented in refs. [71, 77]. In sec. 3.2.3 b) of
chap. 3, we demonstrate that the same relation holds for the lowest bound P-wave state, whose
finite volume correction is negative as the one for the counterpart without electromagnetic
interactions. Additionally, we prove that the QED energy-shifts for S- and P-wave eigenstates
have the same magnitude if order 1/L3 terms are neglected, a fact that remains valid in the
absence of interactions of electromagnetic nature. At least for the ℓ = 0 and 1 two-body
bound eigenstates, in fact, the sign of the correction depends directly on the parity of the
wavefunction associated to the energy state, whose tails are truncated at the boundaries of the
cubic box, as observed in ref. [71].

Although bound states between two hadrons of the same charge have not been observed
in nature, at unphysical values of the quark masses in Lattice QCD these states do ap-
pear [100–103]. It is possible that such two-body bound states manifest themselves also when
QED is included in the Lagrangian. Moreover, two-boson bound states originated by strong
forces are expected to explain certain features of heavy quark compounds. In particular, the
interpretation of observed lines Y(4626), Y(4630) and Y(4660) of the hadron sprectrum in terms
of P-wave [cs][c̄s̄] tetraquark states with 1−− seems promising [104].
Pairwise interesting are recent studies on proton-ptoton collisions, which revealed the pres-
ence of intermediate P-wave ∆N states with spin 0 and 2 at 2.197(8) and 2.201(5) GeV respect-
ively, see ref [105]. Although these states are not classified as dibaryons [106] because of their
large decay width (Γ ≳ 100 MeV) [105, 107], an attractive force appears to lower the expected
energy of the ∆ −N system by ≈ 30 MeV.
Additionally, loosely bound binary compounds of hadrons appearing in the vicinity of a P-wave
strong decay threshold are not forbidden by the theory of hadronic molecules [108]. Pos-
sible candidates of such two-body systems are represented by the hidden charm pentaquark
states P+

c (4380) and P+
c (4450), located slightly below the D̄Σ∗

c and D̄∗Σc energy thresholds
at 4385.3 MeV and 4462.2 MeV, respectively. Although a wide variety of different studies on
the two states have been conducted [109–111], a very recent one advances the molecular hy-
potesis [112] with orbital angular momentum equal to one in the framework of heavy quark
spin symmetry (HQSS).

Concerning scattering states, the energy shift formula for the lowest P-wave state that we
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derive in sec. 3.2.3 a) of chap. 3 has close similarities with the one in ref. [1] and reviewed in
sec. 3.2.3 a) of chap. 2, despite an overall ξ/M ≡ 4π2/ML2 factor, owing to the fact that the
energy of the lowest unbound state with analogous transformation properties under discrete
rotations (T1 irrep1 of the cubic group) is different from zero. Additionally, further scattering
parameters appear in the expression for the ℓ = 1 finite volume energy correction, even as
coefficients of the smallest powers of 1/L.

1.2 Infinite-volume formalism
Our analysis of two-particle scattering and bound states in the infinite- and finite-volume con-
text is based on pionless Effective Field Theory [17, 18, 21, 22, 113–116]. The theory, developed
more than two decades ago [17], describes the strong interactions between nucleons at en-
ergy scales smaller than the pion mass, Mπ [2, 15, 113]. In this regime the matter fields are
non-relativistic and the nature of the problem allows for the introduction of a small expansion
parameter |p|/M , where p is a typical three-momentum in the system (soft scale) and M is
a mass of a non-relativistic particle (hard scale) [117]. The non-relativistic action is construc-
ted by including all the possible potential terms made of nucleon fields and their derivatives,
fulfilling the symmetry requirements of the strong interactions at low energies, that is par-
ity, time reversal and Galilean invariance [117]. The importance of the various interaction
terms decreases with their canonical dimension while approaching the zero-energy limit. Be-
sides, even the dominant contribution at low energies for local contact interactions between
four-nucleon fields is of dimension six, thus making the theory non-renormalizable [2] in the
classical sense.

Analogously to ref. [1], we begin by extending pionless EFT to spinless fermions of mass
M and charge e, and we assume that the theory is valid below an upper energy ΛE in the
center-of-mass frame (CoM). More specifically, if the fermions represent hadrons, the latter
energy cutoff can be chosen to coincide with the pion mass. In this reference frame, each
fermion propagates according to the Feynman rule in app. A.1 (cf. the solid line in fig. A.3)
and the two-body retarded (+) and advanced (+) unperturbed Green’s function operator reads,

Ĝ(±)
0 (E) = 1

E − Ĥ0 ± iε
, (1.1)

where Ĥ0 is the two-body free Hamiltonian in relative coordinates, Ĥ0 = p̂2/M , and M/2 is
the reduced mass of a system of identical fermions. Inserting a complete set of plane wave
eigenstates |q⟩ in the numerator, the latter expression becomes

Ĝ(±)
0 (E) = M

∫︂

R3

d3q
(2π)3

|q,−q⟩⟨q,−q|
p2 − q2 ± iε , (1.2)

where ±p (±q) are the three-momenta of two incoming (outcoming) particles in the CoM
frame, such that |p| = |q| and E = p2/M is the energy eigenvalue at which the retarded (+)
and advanced (−) Green’s functions are evaluated. In configuration space the latter take the
form

⟨q,−q|Ĝ(±)
0 (E)|p,−p⟩ = (2π)3δ(p − q)

E − p2/M + iε , (1.3)

1Throughout, we use the abbreviation “irrep” for an irreducible representation.
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that is diagrammatically depicted by two propagation lines.

Second, we construct the interactions in terms of four-fermion operators, selecting the
ones that transform explicilty as the 2ℓ + 1-dimensional irreducible representation of SO(3),

V (ℓ)(p,q) ≡ ⟨q,−q|V̂(ℓ)|p,−p⟩ =
(︂
c(ℓ)

0 + c(ℓ)
2 p2 + c(ℓ)

4 p4 + . . .
)︂

Pℓ (p · q) (1.4)

where Pℓ is a Legendre polynomial, V̂(ℓ) is the potential in terms of second quantized oper-
ators and the c(ℓ)

2j are low-energy (LECs) constants, whose importance at low-energy scales
diminishes for increasing values of j . In particular, for the three lowest angular momentum
couplings (ℓ ≤ 2), the interaction potentials take the form

V (0)(p,q) = C0 +C2p2 +C4p4 + . . . , (1.5)

V (1)(p,q) =
(︂
D0 +D2p2 +D4p4 + . . .

)︂
p · q , (1.6)

and
V (2)(p,q) =

(︂
F0 + F2p2 + F4p4 + . . .

)︂ [︂
3(p · q)2 − 1

]︂
. (1.7)

As shown in sec. II of ref. [1], the terms within the round brackets in eq. (1.5) (eqs. (1.6) and (1.7)),
that represent polynomials with even powers of the momentum (a gradient expansion in
configuration space), can be encoded by a single interaction with energy-dependent coefficient
C(E∗) (D(E∗) and F (E∗)) for S-waves (P- and D-waves), where E∗ represents the CoM energy of
the colliding particles, equal to 2M+ p2/M . In particular, the case of fermions coupled to zero
angular momentum via a single contact interaction proportional to C(E∗) is the starting-point
of the analysis in ref. [1], that is subject of a detailed review in chap. 2.

On the other hand, the P-wave interaction in eq. (1.6) with energy-dependent coefficient
D(E∗) becomes the key tool of our recent study in ref. [118] and presented in chap. 3. Al-
though interactions of the same form had been already adopted in pionless EFT for nucleons
(cf. eq. (4) in ref. [37]) and in EFT with dimeron fields (cf. eq. (2) in ref. [119]), the P-wave
counterpart of Kong and Ravndal’s analysis on fermion-fermion scattering in ref. [2] was not
available in literature prior to our investigation [118]. For completeness, the potentials newly
introduced permit to define the two-body retarded (+) and advanced (+) strong Green’s func-
tion operator with V̂S ≡ V̂(ℓ),

Ĝ(±)
S (E) = 1

E − Ĥ0 − V̂S ± iε
. (1.8)

Combining the last equation with the definition of the free Green’s function operators in
eq. (1.1) a self-consistent identity between Ĝ(±)

S (E) and Ĝ(±)
0 (E) can be obtained,

Ĝ(±)
S = Ĝ(±)

0 + Ĝ(±)
0 V̂SĜ

(±)
S , (1.9)

an operator that is intimately related to the two-body scattering T-matrix.

A quantity that is natural to calculate in a field theory, in fact, is the sum of Feynman graphs
pertinent to a few-body process, which originates the T-matrix element [18]. In the case of
two-body scattering ruled by central short range forces the latter quantity, that we denote as
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TS, is independent on the azimuthal angle φ 2 and can be expanded in partial waves,

TS(p′,p) = −4π
M

+∞∑︂

ℓ=0
(2ℓ + 1)

[︃
e2iδℓ − 1

2i|p|

]︃
Pℓ(cos θ) , (1.10)

where θ is the elevation angle and δℓ is the phase shift, which is real under the constraint
of unitarity for the S-matrix. While the T-matrix is singular in the zero momentum limit and
displays a branch cut in the p2 axis, the quantity p2ℓ cot δℓ admits an expansion in power series
of p2, the effective range expansion (cf. eq. (5.20) in ref. [120]),

|p|2ℓ cot δℓ = − 1
a(ℓ) + 1

2r
(ℓ)
0 p2 + r(ℓ)

1 p4 + r(ℓ)
2 p6 + . . . , (1.11)

where a(ℓ), r(ℓ)
0 and r(ℓ)

1 are the scattering length, the effective range and the shape parameter
respectively. Eq. (1.11) is consistent with the one presented in eq. (2.6) of ref. [18], provided
suitable negative powers of the breakdown scale, Λ ≡ ΛE , for the EFT are reabsorbed in the
definition of the scattering parameters. Since the importance of each of the r(ℓ)

n parameters
with n = 0, 1, 2, ... decreases as Λ2n−1

E , the convergence of the expansion is ensured by a
non-zero value of the scattering length.

Irrespectively on the angular momentum content of the strong interactions, the Feyn-
man diagrams contributing to TS, for the two-body fermion-fermion or fermion-antifermion
scattering processes assume the form of chains of bubbles, whose ultraviolet divergence is en-
hanced by the positive powers of the momentum operator appearing in V̂(ℓ). These diagrams
will be shown and discussed explicitly in secs. 2.1 and 2.1.2 (secs. 3.1 and 3.1.2) for S-wave
(P-wave) interactions.

1.2.1 The inclusion of QED

Our implementation of the electromagnetic interactions is based on the non Lorentz-covariant
approach in refs. [121] and [122]. The formalism of non-relativistic quantum electrodynamics
(NRQED), introduced in ref. [122], is designed to reproduce the low-momentum behaviour of
QED to any desired accuracy. In particular, contributions from relativistic and non-relativistic
scales are isolated and undergo a separate treatment. Besides, only non-relativistic momenta
are allowed in the loops and in the external legs of the diagrams. The terms arising from
relativistic momenta in the QED loops, in fact, are absorbed as renormalizations of the coup-
ling constants of the local interactions in the non-relativistic counterpart of QED [122]. The
Lagrangian is determined by the particle content and by the symmetries of the theory, such
as gauge invariance, locality, hermiticity, parity conservation, time reversal symmetry and Ga-
lilean invariance. The particles are fermionic, characterized by mass M and unit charge e,
and are represented by two-component non-relativistic Pauli spinor fields Ψ. In compliance
to these prescriptions, the NRQED Lagrangian density in ref. [122] assumes the form,

2i.e. displays cylindrical symmetry
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LNRQED = −1
2

(︂
E2 − B2

)︂
+ Ψ†

(︃
i∂t − eφ + D2

2M

)︃
Ψ + Ψ†

[︃
c1

D4

8M3 + c2
e

2M σ · B
+c3

e
8M2 ∇ · E + c4

e
8M2 iD × σ

]︂
Ψ + Ψ†

[︂
d1

e
8M3 {D2, σ · B}] Ψ + . . . ,

(1.12)

where D = ∇+ieA is the covariant derivative, while E = −∇φ−∂tA and B = ∇×A denote the
electric and magnetic fields, respectively. The terms in the first row encode the leading ones
of LNRQED, containing the minimal coupling of the fermionic fields with the vector potential
A and the scalar potential, φ. The interactions proportional to the constants c1-c4 and d1 in
eq. (1.36) are next-to-leading-order terms, corresponding to corrections of order v4/c4 and
v6/c6, respectively [121], whereas the ellipses represent contributions containing higher order
covariant derivatives, O(v8/c8).

Since the Coulomb force dominates at very low energies and transverse photons couple
proportionally to the fermion momenta, in the present treatment we choose to retain in the
Lagrangian only the scalar field and its lowest order coupling to the fermionic fields as in
ref. [2]. Moreover, we reduce the latter to spinless fields ψ, consistently with sec. 2.1 and with
ref. [1]. In this guise, the full Lagrangian density of the system becomes the superposition
of the one presented in the opening of sec. 2.1 (sec. 3.1) for S-waves (P-waves) with the one
involving the electrostatic potential and its leading-order coupling to the spinless fermions,
namely

LNRQED corr = −1
2∇φ · ∇φ − eφ ψ†ψ . (1.13)

Alternatively, on top of the S-wave (P-wave) interaction in eq. (1.5) (eq. (1.6)) the Coulomb
force, that in momentum space is regulated by an IR cutoff λ, reads

VC(p,q) ≡ ⟨q,−q|V̂C|p,−p⟩ = e2

(p − q)2 + λ2 , (1.14)

has been added. The introduction of the electrostatic potential generates the additional Feyn-
man rules listed in app. A.1. Consequently, the T-matrix is enriched by new classes of diagrams
(cf. secs. 2.1.1 and 3.1.1), in which the Colulomb photon insertions either between the external
legs and within the loops begin to emerge. Unlike transverse photons, the scalar ones in fact
do not propagate between different bubbles and lead only to the appearance of photon ladders
within the bubbles or between the external legs in the diagrams for two-body processes.

In the next two chapters, most of our attention will be devoted to the low-momentum, p,
sector of two-particle elastic scattering. This regime is characterized by large values of the
parameter η ≡ αM/2|p|, that regulates the viability of a perturbative treatment for the Coulomb
interaction. As it will be shown in sec. 2.2.1 (sec. 3.2.1) for S-wave (P-wave) interactions, values
of η near or exceeding unity prevent the application of the latter treatment, thus Coulomb
photon exchanges in the T-matrix of the two-body scattering process have to be incorporated
to all orders in the fine structure constant, α ≡ αQED = e2

4π .
For scalar photons, this amounts to replacing the free-fermion propagators in the bubble

diagrams presented in sec. 2.1 (sec. 3.1) for S-waves (P-waves) with the Coulomb propagators
in fig. 1.1. To this aim, we follow the procedure outlined in ref. [2] and introduce the Coulomb
Green’s functions. The inclusion of the Coulomb potential (cf. eq. (1.14)) in the Hamiltonian
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FIGURE 1.1 – The Coulomb propagator GC as an infinite superposition of ladder diagrams (upper row),
which can be compactly incorporated in a self-consistent identity (lower row).

yields the Coulomb Green’s function operator,

Ĝ(±)
C (E) = 1

E − Ĥ0 − V̂C ± iε
, (1.15)

an expression that, together with eq. (1.1), admits a self-consistent rewriting à la Dyson [123],

Ĝ(±)
C = Ĝ(±)

0 + Ĝ(±)
0 V̂CĜ

(±)
C , (1.16)

that can be diagrammatically represented as in fig. 1.1. Moreover, the solutions of Schrödinger
equation with a repulsive Coulomb potential, (Ĥ0 + VC − E)|Ψ(±)p ⟩, can be formally expressed
in terms of the free ones as

|ψ(±)p ⟩ = Ĝ(±)
C Ĝ−1

0 |p⟩ =
[︂
1 + Ĝ(±)

C V̂C
]︂

|p⟩ , (1.17)

see eq. (18) in ref. [2]. The above eigenstates share with the plane waves the generalized
normalization property, i.e. ⟨ψ(±)p |ψ(±)q ⟩ = (2π)3δ(q −p). If the potential is repulsive, the solution
with outgoing spherical waves in the distant future is given by

ψ(+)p (r) = e− 1
2πηΓ(1 + iη)M(−iη, 1; ipr − ip · r)eip·r , (1.18)

while the state with incoming spherical waves in the distant past coincides with

ψ(−)p (r) = e− 1
2πηΓ(1 − iη)M(iη, 1; −ipr − ip · r)eip·r , (1.19)

where M(a, b; c) is a Kummer function. In particular, the squared modulus of the two given
spherical waves evaluated in the origin, i.e. the probability of finding the two fermions at zero
separation, is equal to

C2
η ≡ |ψ(±)p (0)|2 = e−πηΓ(1 + iη)Γ(1 − iη) = 2πη

e2πη − 1 , (1.20)

known as the Sommerfeld factor [124,125]. Since the scattering eigenfunctions of the repulsive
Coulomb Hamiltonian form a complete set of wavefunctions, they can be employed in an
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operatorial definition of the Coulomb Green’s functions analogous to eq. (1.15),

Ĝ(±)
C = M

∫︂

R3

d3q
(2π)3

|ψ(±)q ⟩⟨ψ(±)q |
p2 − q2 ± iε . (1.21)

In a guise analogous to the one with which we have defined the Coulomb Green’s function
operators in eq. (1.17), we introduce the full Green’s function operator, including both the
strong and the electrostatic interactions. Therefore, we add the operator V̂S = V̂(ℓ) to the
kinetic and Coulomb potential in eq. (1.15), so that

Ĝ(±)
SC(E) = 1

E − Ĥ0 − V̂C − V̂S ± iε
. (1.22)

Then, we define the incoming and outcoming wavefunctions as in ref. [2],

|χ(±)
p ⟩ =

[︂
1 + Ĝ(±)

SC

(︂
V̂S + V̂C

)︂]︂
|p⟩ , (1.23)

similar to the eq. (1.17). Exploiting the operator relation A−1 − B−1 = B−1(B − A)A−1 with
A = Ĝ(±)

SC(E) and B = Ĝ(±)
C (E) we find the self-consistent Dyson-like identity

Ĝ(±)
SC − Ĝ(±)

C = Ĝ(±)
C V̂SĜ

(±)
SC , (1.24)

that permits to rewrite the eigenstates of the full Hamiltonian in terms of the Coulomb states,

|χ(±)p ⟩ =
[︄

1 +
+∞∑︂

n=1
(Ĝ(±)

C V̂S)n
]︄

|ψ(±)p ⟩ . (1.25)

Subsequently, the scattering amplitude can be computed via the S-matrix element, given by
the overlap between an incoming state with momentum p and an outcoming state p′,

S(p′,p) = ⟨χ(−)
p′ |χ(+)p ⟩ = (2π)3δ(p′ − p) − 2πi δ(E′ − E)T(p′,p) (1.26)

where T(p′,p) = TC(p′,p) + TSC(p′,p) as in eq. (4) in ref. [126] (for the complete derivation
of eq. (1.26) we refer to chap. 5 of ref. [127]). In particular TC(p′,p) = ⟨p′|V̂C|ψ(+)p ⟩ is the
purely electrostatic scattering amplitude and TSC(p′,p) = ⟨ψ(−)

p′ |V̂S|χ(+)p ⟩ coincides with the
strong scattering amplitude modified by Coulomb corrections. Since the eigenstates ψp of
the former are known, the scattering amplitude due to the Coulomb interaction alone can be
computed in closed form and admits the following partial wave expansion [2],

TC(p′,p) = −4π
M

+∞∑︂

ℓ=0
(2ℓ + 1)

[︃
e2iσℓ − 1

2i|p|

]︃
Pℓ(cos θ) , (1.27)

where θ is the angle between p and p′ and σℓ = arg Γ(1 + ℓ + iη) is the Coulomb phase
shift. In particular, the strong scattering amplitude TSC(p,p′) possesses a phase shift σℓ + δℓ .
Furthermore, the Coulomb corrected version of TS can be expanded in terms of the Legendre
polynomials Pℓ as

TSC(p′,p) = −4π
M

+∞∑︂

ℓ=0
(2ℓ + 1)e2iσℓ

[︃
e2iδℓ − 1

2i|p|

]︃
Pℓ(cos θ) (1.28)
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where δℓ is the strong contribution to the total phase shift. If the strong interaction couples the
fermions to ℓ units of angular momentum and Coulomb forces are central, the only nonzero
component of TSC of the expansion in eq. (1.28) is the one proportional to the Legendre
polynomial Pℓ(cos θ),

|p|2ℓ+1(cot δℓ − i) = −(2ℓ + 1)p2ℓ 4π
M

e2iσℓPℓ(cos θ)
TSC(p′,p) . (1.29)

The r.h.s. of the last equation can be replaced with the ℓ-version (cf. ref. [43]) of the generalized
effective-range expansion formulated in ref. [42] for the T-matrix (cf. fig. 1.2) in presence of
the repulsive Coulomb interaction,

p2ℓQℓ(η)
[︂
C2
η |p|(cot δℓ − i) + αMH(η)

]︂
= − 1

a(ℓ)
C

+ 1
2r

(ℓ)
0 p2 + r(ℓ)

1 p4 + . . . , (1.30)

where a(ℓ)
C , r(ℓ)

0 and r(ℓ)
1 are the generalized scattering length, the effective range and the shape

parameter respectively. Besides, Qℓ(η) on the l.h.s. of the eq. (1.30), is a polynomial containing
all even powers of η from zero to 2ℓ ,

Qℓ(η) =
[︃
ηℓ
ℓ!

]︃2 ℓ∑︂

l=0
cl(ℓ)η−2l , (1.31)

where the coefficients cl(ℓ) are rational numbers, presented in eq. (7.18) of ref. [125] and in
the appendix of ref. [43],

c0(ℓ) = 1 , c1(ℓ) = 1
6ℓ(ℓ + 1)(2ℓ + 1) , cℓ(ℓ) = (ℓ!)2 ,

c2(ℓ) = 1
360(2ℓ − 1)(ℓ − 1)ℓ(ℓ + 1)(2ℓ + 1)(5ℓ + 6) , (1.32)

c3(ℓ) = 1
45360(2ℓ − 3)(2ℓ − 1)(ℓ − 2)(ℓ − 1)ℓ(ℓ + 1)(2ℓ + 1)(35ℓ2 + 91ℓ + 60) .

Finally, the function H(η), that represents the effects of Coulomb force on the strong interac-
tions at short distances, is given by

H(η) = ψ(iη) + 1
2iη − log(iη) , (1.33)

where ψ(z) = Γ′(z)/Γ(z) is the Digamma function. Despite the appearance, the generalized
ERE is real, since the imaginary parts arising from H(η) cancel exactly with the imaginary
part in the l.h.s. of eq. (1.30). Due to the following identity on the logarithmic derivative of the
Gamma function,

Imψ(iη) = 1
2η + π

2 cothπη , (1.34)

in fact, the imaginary part of H(η) proves to coincide with C2
η/2η. For the sake of completeness,

in the case of fermion-antifermion scattering the Coulomb potential is attractive and H(η) in
the effective range expansion (cf. eq. (1.30)) has to be replaced by

H(η) = ψ(iη) + 1
2iη − log(−iη) , (1.35)
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where η = −αM/2p is defined as a negative real parameter.

FIGURE 1.2 – Analytic structure of the hadron-hadron elastic scattering amplitude TS (a) and TSC (b) in
the complex |p| plane, in absence and in presence of Coulomb interactions respectively (see ref. [1]).
If we let the fermion field ψ represent a hadron, the scattering amplitude TS displays a QCD t-channel
cut with threshold mπ/2 along Im|p|. The real momentum axis is marked by a branch cut at threshold√
mπM corresponding to the onset of inelatisc pion production. In presence of QED both the branch

cuts start at the origin. However, if the ERE in eq. (1.10) is replaced by its generalized version in
eq. (1.30), the threshold of the branch cut along Im|p| is restored to its original value (black segment).
Although the position of the cut along Re|p| remains fixed at the origin, the inelastic π-production is
suppressed by a power of α as compared to the t-channel reactions.

1.3 Finite volume formalism
Aware of the role of numerical simulations for quantum field theories in finite regions of the
configuration space, we consider the transposition of the physical system outlined in secs. 1.2
and 1.2.1 onto a cubic finite volume with side L. In this environment, it is customary to continue
analytically the fields and the wavefunctions outside the cubic box by means of periodic bound-
ary conditions (PBCs). It follows that a free particle subject to PBCs carries a momentum
p = 2πn/L, where L ≡ Na and n is a dimensionless three-dimensional vector of integers.
Unlike QCD fields, the photon field in QED is truncated and modified by the boundary of
the volume. In particular, when PBCs are implemented, the validity of Ampère’s and Gauss’s
law is compromised. The problem is circumvented by introducing a uniform background
charge density, a procedure that proves to be equivalent to the removal of the zero modes of
the photon [1, 64]. Once the latter are canceled, the Coulomb potential between two identical
charges e becomes (cf. fig. 1.3)

VLC(r) = α
πL

∑︂

n̸=0

1
|n|2e

i 2π
L n·r , (1.36)

where the n ∈ Z3 encodes the dimensionless finite-volume momenta. Discarding the zero
modes, the latter are restricted to |p| ≥ 2π/L, whereas the validity of a perturbation treatment
of QED is again controlled by the parameter η = αM/2|p|, which scales as the inverse of the
momentum of the interacting particles. Combining the above constraint with the definition
of η, it follows that η ∼ αML and the photon field insertions can be treated perturbatively if
ML ≪ 1/α. As η grows linearly with the spatial volume, for any value of M exists a critical



14 CHAPTER 1. EFFECTIVE FIELD THEORY FOR NON-RELATIVISTIC FERMIONS

value of L that regulates the applicability of perturbation theory. On top of the condition η ≪ 1,
we assume henceforth the limit M ≫ 1/L, since for the current Lattice QCD calculations large
volumes are employed [1].

FIGURE 1.3 – Behaviour of the finite-volume Coulomb potential energy between unit charges along an
axis prarallel to an edge of the cube (solid curve) obtained from VLC(r) in eq. (1.36) and the infinite-
volume Coulomb potential VC(r) (dashed curve) [1, 46], whose Fourier transform with IR regulator is
presented in eq. (1.14).

Furthermore, the finite volume QED effects are such that the energy eigenvalues of two
charged fermions (e.g. hadrons) are modified in the same way by their self-interactions and
by their interactions with each other, and the shifts take the form of power laws in L [46]. As a
consequence, in presence of Coulomb photons the kinematics of two-body processes receives
power law modifications in the finite volume context [46,54]. In particular, if the infinite-volume
effective range expansion in eq. (1.30) is rewritten in terms of the center of mass energy,

p2ℓQℓ(η)[C2
η |p|(cot δℓ − i) + αMH(η)] = − 1

aC(ℓ)

+1
2r0

(ℓ)M(E∗ − 2M) + r(ℓ)
1 M2(E∗ − 2M)2 + . . . ,

(1.37)

then E∗ = 2M + T in the above expression is replaced by its finite volume counterpart3.
Eq. (1.37) thus becomes

p2ℓQℓ(η)[C2
η |p|(cot δℓ − i) + αMH(η)] = − 1

aC(ℓ)

+1
2r0

(ℓ)M(E∗L − 2M) + r(ℓ)
1 M2(E∗L − 2M)2 + . . . .

(1.38)

The original dependence of the r.h.s. of the last equation on the powers of the finite volume
kinetic energy TL = E∗L − 2ML can be restored by exploiting the expression of the finite-
volume shift for the masses of spinless particles with unit charge in eqs. (6) and (19) of ref. [46],

∆M ≡ ML −M = α
2πL

⎡

⎣
Λn∑︂

n̸=0

1
|n|2 − 4πΛn

⎤

⎦+ O
(︂
α2; α

L2

)︂
, (1.39)

3Finite volume physical quantities will be denoted henceforth with an L in the superscript.
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where the sum of the three-dimensional Riemann series regulated by the spherical cutoff Λn is
denoted with I(0) ≈ −8.913632 (cf. app. B.1.1). To this purpose, primed scattering parameters
are introduced

1
a′

C
(ℓ) = 1

a(ℓ)
C

− αr(ℓ)
0 M

2πL I(0) + O
(︂
α2; α

L2

)︂
, (1.40)

r′
0

(ℓ) = r(ℓ)
0 + 4αr(ℓ)

1 M
πL I(0) + O

(︂
α2; α

L2

)︂
, (1.41)

r′
1

(ℓ) = r(ℓ)
1 + 3αr(ℓ)

2 M
πL I(0) + O

(︂
α2; α

L2

)︂
, (1.42)

r′
2

(ℓ) = r(ℓ)
2 + 4αr(ℓ)

3 M
πL I(0) + O

(︂
α2; α

L2

)︂
, (1.43)

and

r′
3

(ℓ) = r(ℓ)
3 + 5αr(ℓ)

4 M
πL I(0) + O

(︂
α2; α

L2

)︂
, . . . , (1.44)

differing from the original ones by corrections of order α and scaling as the inverse of the box
size. Explicitly, the infinite volume effective-range expansion in eq. (1.38) rewritten in terms
of the translated parameters in eqs. (1.40)-(1.44) for unbound states with TL = p2/ML assumes
the form

p2ℓQℓ(η)[C2
η |p|(cot δℓ − i) + αMH(η)] = − 1

a′
C

(ℓ) + 1
2r

′
0

(ℓ)p2 + r′
1

(ℓ)p4 + . . . , (1.45)

where the changes in the total energy have been incorporated in the primed scattering para-
meters. Finally, also the validity region of the last expansion is modified by the finite-volume
environment, due to the changes in the analytic structure of the scattering amplitude in the
complex |p| plane. The absence of the zero mode in the Coulomb potential in eq. (1.36), in fact,
yields a shift in the branch cut of the imaginary |p| axis from the origin to

√
2πM/L+ O(1/M),

which fixes the inelastic threshold for the two-hadron state (cf. fig. (1.3) [1] in the next chapter).
The last version of the ERE, combined with the quantization conditions in sec. 2.2.1 (sec. 3.2.1),

will turn out to be the key ingredient for the derivation of the finite volume energy corrections
for scattering and bound states with zero (one) unit of angular momentum.
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CHAPTER 2

S-WAVE SHORT-RANGE INTERACTIONS

This chapter is structured into two parts and its content can be summarized as follows. After
this preamble, the theoretical framework that provides the basis for both the infinite and the
finite volume treatment is introduced, by starting from the Lagrangian with the strong S-wave
interactions alone. Next, in the end of sec. 2.1, the T-matrix for two-body fermion-fermion
scattering to all orders in the strength parameter of the potential is computed. Subsequently,
in sec. 2.1.1, Coulomb photon exchanges from non-relativistic QED in refs. [121, 122] are
allowed to appear in the two-particle scattering diagrams. After displaying the amplitudes
corresponding to tree-level and one-loop diagrams with one Coulomb photon exchange, the
ℓ = 0 effective range expansion is presented. In the subsequent section, the non-perturbative
treatment of the Coulomb interaction recapitulated in sec. 1.3 is implemented in the case of
fermion-fermion scattering. Thanks to the Dyson-like identities that hold among the free,
the Coulomb and the full two-body Green’s functions, in fact, the T-matrix matrix element
accounting for both Coulomb and strong interactions is derived to all orders in α. As in
ref. [2], section 2.1.2 closes with the expressions of the scattering length and the effective
range in terms of the physical constants of our EFT Lagrangian, that are obtained from the
effective-range expansion. The first part of the analysis is concluded in sec. 2.1.3 with the
calculation of the same amplitude for the fermion-antifermion scattering case.

Afterwards, the two fermion-system is transposed onto a cubic box of side L and the
distortions induced by the new environment in the laws of electrodynamics [46, 128] and in
the masses of possibly composite particles [46] are briefly summarized in sec. 2.2. Next, the
quantization conditions, that give access to the energy spectrum in finite volume though the
expression of the T-matrix elements [1], are reviewed (cf. sec. 2.2.1) in the perturbative regime
of QED. Then, the finite volume counterpart of the ℓ = 0 effective range expansion is displayed,
together with the expressions of the Lüscher functions obtained in ref. [1]. Subsequently, the
energy eigenvalues of the lowest bound and scattering states in ref. [1] are shown along with
the details of the whole derivation, which can be skipped by an experienced reader. The
appendices provide supplemental material to the reader interested in the three-dimensional
Riemann sums arising from the approximations of the Lüscher functions in secs. 2.2.1, 2.2.2
and 2.2.3.
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2.1 Two-body scattering in infinite volume
We begin our analysis by considering spinless fermions interacting locally via two-body forces
that carry zero units of angular momentum. The Lagrangian density of the system is con-
structed from the leading order S-wave interaction presented in eq. 1.5,

L(0) = ψ†
(︃

iℏ∂t + ℏ2∇2

2M

)︃
ψ − C(E∗)

2 (ψψ)†(ψψ) , (2.1)

where the constant coefficient C0 is replaced by CoM-energy dependent one, C(E∗), in order
to account for the higher-order ℓ = 0 interactions [1]. Equivalently, L(0) can be obtained from
L0 in eq. (1) of [2], by replacing the nucleon field operators N (N†) with ψ (ψ†) and the Π
vector by the one for spin-singlet interactions, σ2τ2τ⃗/

√
8. The Lagrangian is also consistent

with the one appearing in eq. (3.1) in ref. [17], provided C(E∗) is identified with C = (CS −3CT ).
Upon replacing in the latter equation the vector of Pauli matrices σ⃗ with the ones acting on
the individual spinor fields, σ⃗1 and σ⃗2, the scalar product between the latter can be evaluated,

21
2(N†σ⃗1N) · 1

2(N†σ⃗2N) = (N†N)2[S(S + 1) − s1(s1 + 1) − s2(s2 + 1)] , (2.2)

where S is the eigenvalue of the coupled system while s1 and s2 are the eigenvalues of the
individual particles. In case of a spin-singlet coupled state made of spin 1/2 fermions, the
r.h.s. of eq. 2.2 yields −3/2 and the Lagrangian in eq. (3.1) in ref. [17] reduces to the one
in eq. (2.1). The scalar product of the two pairs of creation and annihilation operators in
the aforementioned eq. (3.1) can be, in fact, interpreted as the product of the field operators
referring to the evolution of particle 1 (resp. 2) with spin σ⃗1/2 (resp. σ⃗2/2).

Considering the Feynman rules listed in app. A.1, that assign a factor of −iC(E∗) to each
four-fermion vertex, the diagrams contributing to the T-matrix of a fermion-fermion scattering
process are represented by chains of bubbles (cf. fig. 2.1). Recalling the tree-level diagrams,
the two-body strong potential in momentum space assumes the form

V (0)(p,q) ≡ ⟨q,−q|V̂(0)|p,−p⟩ = C(E∗), (2.3)

where the average value in the middle coincides with the relevant amplitude multiplied by the
imaginary unit.

FIGURE 2.1 – Tree-level (upper line, left), 1-loop (upper line, right) and n-loops diagrams (lower line)
representing fermion-fermion elastic scattering with the strong S-wave potential in eq. (2.3).

With reference to the bubble diagrams in momentum space with amputated legs and the
conventions for the plane-wave eigenstates in sec. 1.2, the full scattering amplitude in absence
of QED becomes

iTS(p,q) = i⟨q,−q|V̂(0)(1 + ĜE
0 V̂(0) + ĜE

0 V̂(0)ĜE
0 V̂(0) + ...)|p,−p⟩ , (2.4)
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where ĜE
0 ≡ Ĝ(+)

0 represents the unperturbed two-body retarded Green’s function operator
in eq. (1.2). The explicit computation of the three lowest order contributions to the sum in
eq. (2.4) leads to

i⟨q,−q|V̂(0)|p,−p⟩ = iC(E∗), (2.5)

i⟨q,−q|V̂(0)ĜE
0 V̂(0)|p,−p⟩ = i[C(E∗)]2

∫︂

R3

d3p′

(2π)3

∫︂

R3

d3p′′

(2π)3 ⟨p′,−p′|ĜE
0 |p′′,−p′′⟩ = i[C(E∗)]2J0,

(2.6)
and

i⟨q,−q|V̂(0)ĜE
0 V̂(0)ĜE

0 V̂(0)|p,−p⟩ = i[C(E∗)]3
∫︂

R3

d3p′

(2π)3

∫︂

R3

d3p′′

(2π)3 ⟨p′,−p′|ĜE
0 |p′′,−p′′⟩

·
∫︂

R3

d3p′′′

(2π)3

∫︂

R3

d3p′′′′

(2π)3 ⟨p′′′,−p′′′|ĜE
0 |p′′′′,−p′′′′⟩ = i[C(E∗)]3J2

0 ,
(2.7)

where J0 ≡ GE
0 (0,0) is the Fourier transform of the two-body unperturbed Green’s function

in eq. (1.3) to configuration space, evaluated at the origin of the coordinate axes. Exploiting
eqs. (2.5)-(2.7), the infinite sum of the amplitutes of chains of bubbles in eq. (2.4) can be recast
into a geometric series with ratio equal to C(E∗)GE

0 (0,0). Consequently, the sought scattering
amplitude can be determined analytically to all the orders in perturbation theory, giving

TS(p,q) = C(E∗)
1 −C(E∗)J0

. (2.8)

The calcuation can be likewise performed in configuration space, by Fourier transforming the
two-body potential in eq. (2.2),

V (0)(r, r′) ≡ ⟨r′,−r′|V̂(0)|r,−r⟩ = C(E∗)δ(r)δ(r′) , (2.9)

and observing again that

⟨r′,−r′|V̂(0) ĜE
0 V̂(0) . . . ĜE

0 V̂(0)

⏞ ⏟⏟ ⏞
n times

|r,−r⟩ = δ(r)δ(r′)[C(E∗)]n+1GE
0 (0,0)n . (2.10)

Therefore, the scattering amplitude to all orders in the bubble insertions in the space of
coordinates becomes

TS(r, r′) = C(E∗)δ(r)δ(r′)
1 −C(E∗)J0

, (2.11)

a formula that still depends on the free two-body Green’s function evaluated at r = r′ = 0, an
object that diverges in d-dimensional space, but turns out to converge for d = 3. As shown in
ref. [17], the computation can be carried out in dimensional regularization, giving

J0(d) =
∫︂

R3

ddq
(2π)d

1
(E − q2/M + iε) = −

Γ
(︁
1 − d

2
)︁

(4π)d/2
M(−ME − iε)(d−2)/2 , (2.12)

that is, in three dimensions,

lim
dÏ3

J0(d) = GE
0 (0,0) = M

√
−ME − iε

4π = − iM|p|
4π . (2.13)

where |p| = |q| is an on-shell three-momentum corresponding to the total energy of E = p2/M
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in the CoM frame. In the Power Divergence Subtraction (PDS) renormalization scheme [22],
the last expression of the Green’s function becomes (cf. eq. (4) in [2])

J0(µ)
⃓⃓
⃓
PDS

= −M
4π (i|p|+µ) (2.14)

where µ is a renormalization parameter with the same dimensions of a momentum. Now,
recalling the expression of the ℓ = 0 partial wave amplitude (cf. eq. (1.10) and eq. (5) in
ref. [2]),

TS(p,q) = −4π
M

1
|p| cot δ0 − i|p| , (2.15)

and the effective-range expansion (ERE) for elastic two-body scattering coupled to zero angular
momentum in eq. 1.11,

|p| cot δ0 = − 1
a(0) + 1

2r
(0)
0 p2 + r(0)

1 p4 + r(0)
2 p6 + . . . , (2.16)

one finds by comparison between eq. (2.8) and eqs. (2.15)-(2.17) that the coupling constant of
the contact interaction is proportional to the scattering length a,

C(E∗) = 4πa(0)

M , (2.17)

an expression that in the power divergence subtraction (PDS) scheme [22] for renormalization
becomes (cf. eq. (7) in ref. [2]) depends on the dimensionful parameter µ

C(E∗, µ) = 4π
M

1
1/a(0) − µ

. (2.18)

Conversely, the effective range parameter r0 turns out to be equal to zero [17], since the two-
body potential in configuration space is a contact interaction (cf. eq. (2.9)).

2.1.1 Coulomb corrections
At this stage, we add the Lagrangian density in eq. (1.13) on top of the one in eq. (2.1). Con-
sequently, Coulomb photon exchanges begin to appear within the bubbles and the external
legs of the scattering diagrams. These interactions prevail at very low energy scales in proton-
proton scattering [129]. As energy increases, the Coulomb potential will still dominate in the
forward and backward directions, but is overwhelmed by strong interactions in the interme-
diate directions.

Like in the previous section, we consider the T-matrix for two-body elastic scattering pro-
cesses. The lowest order correction to the elastic scattering amplitude TS in eq. (2.8) due to
Coulomb interaction is given by the tree-level diagram with a four-fermion vertex and a one-
photon exchange between two external legs. The application of Feynman rules in momentum
space (cf. A.1) yields

− iT tree
SC (p,p′) = −iC(E∗)

∫︂

R4

d4l
(2π)4

−ie2

l2 + λ2
i

E
2 + l0 − (−p+l)2

2M + iε
i

E
2 − l0 − (p−l)2

2M + iε
. (2.19)
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FIGURE 2.2 – The tree-level (left) and one-loop (right) fermion-fermion scattering diagram for strong
ℓ = 0 interactions with one Coulomb photon insertion (dashed lines).

Carrying out the integration over the free energy l0, the latter equation becomes

− iT tree
SC (p,p′) = C(E∗)

∫︂

R3

d3l
(2π)3

−ie2

l2 + λ2
M

p2 − (p − l)2 + iε , (2.20)

an expression that can be evaluated in dimensional regularization as in the appendix of ref. [2],

T tree
SC (p,p′) = −C(E∗)αM2|p|

(︃
π
2 + i log 2|p|

λ

)︃
+ O(λ) , (2.21)

where the second term on the r.h.s. is divergent for zero photon mass. Nevertheless, since
the latter is imaginary and the cross section to order α is proportional to |TS + T tree

SC |2 =
C(E∗)[C(E∗) + 2 ReT tree

SC ], the logarithmic term will not contribute. The cross section to that
order turns out to be infrared finite and proportional to 1 − πη where η, for fermions with
arbitrary charge, is equal to Z1Z2

Mα
2p with Z1, Z2 ∈ Z. As observed in ref. [2], the inclusion

of n-Coulomb photon exchanges, results into contributions in the amplitude and in the cross
section that are proportional to ηn. Therefore, the feasibility of a perturbative treatment for
the Coulomb force is regulated by the smallness of the parameter η, i.e. by a constraint on
the momenta of the incoming particles, p ≫ αM/2. As a consequence, if the momentum scale
of the incoming particles is too soft, Coulomb force is expected to have a strong influence on
the cross-section of the elastic process and a non-perturbative approach becomes necessary.
Analogously to the tree-level diagrams, the Coulomb interaction affects also the n-loop bubble
diagrams in fig. 2.1. In particular, considering the 1-loop diagram with 1-Coulomb photon
exchange within the bubble, the corresponding amplitude computed via the aforementioned
Feynman rules in momentum space gives

−iT1−loop
SC (p,p′) = [−iC(E∗)]2

∫︂

R4

d4l
(2π)4

∫︂

R4

d4k
(2π)4

i
E
2 + l0 − l2

2M + iε
i

E
2 − l0 − l2

2M + iε
−ie2

(l − k)2 + λ2
i

E
2 + k0 − k2

2M + iε
i

E
2 − k0 − k2

2M + iε
.

(2.22)

The subsequent integration on the energies l0 and k0 yields

T1−loop
SC (p,p′) = [C(E∗)]2

∫︂

R3

d3l
(2π)3

∫︂

R3

d3k
(2π)3

M
p2 − l2 + iε

e2

(l − k)2 + λ2
M

p2 − k2 + iε . (2.23)
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Even if the amplitude proves to be infrared finite, the explicit computation of T1−loop
SC carried

out in the apprendix of ref. [2] in dimensional reguralrization requires the introduction of an
ultraviolet cutoff for the momenta, represented by the renormalization mass µ in the PDS
scheme. In particular, the calculation leads to

T1−loop
SC (p,p′) = α [C(E∗)]2M2

8π

(︃
1
ε + 2 log µ

√
π

2p + 1 − γE + iπ
)︃

(2.24)

where ε ≡ d − 3 is zero in the present three dimensional case and γE ≈ 0.5772 is the Euler-
Mascheroni constant. The ultraviolet divergent terms can be reabsorbed into a redefinition
of the strength parameter C(E∗), via the renormalization process. Besides, the logarithmic
divergence for vanishing momenta highlights the infeasibility of a perturbative approach when
the momenta of the colliding fermions is small. In such cases, the Coulomb corrections have
to be resummed to all the orders in α.

Since we are mainly interested also in the low-momentum sector of fermion-fermion
elastic scattering, we incorporate the Coulomb insertions in the amplitude of the process
non-perturbatively as shown in sec. 1.2.1. Exploiting the Coulomb Green’s functions, the T-
matrix element TSC for S-wave strong interactions (cf. fig. 1.3) can be analitically computed
and the phase shift δ0 can be extracted from the relevant T-matrix as in eq. (1.29),

|p|(cot δ0 − i) = −4π
M

e2iσ0

TSC(p′,p) . (2.25)

Finally, due to the non-perturbative nature of the Coulomb interactions for small momenta p,
the ERE cf. eq. (2.17) does not apply [42] and has to be replaced by the generalized expansion
in eq. (1.30),

C2
η |p|(cot δ0 − i) + αMH(η) = − 1

a(0)
C

+ 1
2r

(0)
0 p2 + r(0)

1 p4 + . . . , (2.26)

where a(0)
C is the S-wave strong scattering length, r(0)

0 the effective range and r(0)
1 is the shape

parameter, both of the latter modified by the Coulomb interaction.

2.1.2 Repulsive channel
Recalling the expression of the full eigenstates in terms of the Coulomb ones in eq. (1.25), the
strong scattering amplitude with electrostatic corrections can be rewritten as

TSC(p′,p) =
+∞∑︂

n=0
⟨ψ(−)

p′ |V̂S
(︂
Ĝ(+)

C V̂S
)︂n

|ψ(+)p ⟩ , (2.27)

where V̂S ≡ V̂(0) is the lowest order strong ℓ = 0 potential. The first order contribution to the
Coulomb-corrected strong scattering amplitude, n = 1, can be represented by a single strong
vertex with infinitely many Coulomb-photon insertions in the incoming or outcoming legs. As
in the QED-free case, the corresponding amplitude can be evaluated analytically, giving

T tree
SC (p′,p) =

∫︂

R3

d3q
(2π)3

∫︂

R3

d3q ′

(2π)3 ⟨ψ(−)
p′ |q′⟩⟨q′|V̂S|q⟩⟨q|ψ(+)p ⟩

= C(E∗)ψ(−)∗
p′ (0)ψ(+)p (0) = C(E∗)C2

ηe2iσ0 .
(2.28)
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To the one-loop order, the scattering amplitude can be depicted as single bubble diagram with
infinitely many Coulomb-photon insertions inside the loop and yields

T1−loop
SC (p′,p) = [C(E∗)]2C2

ηe2iσ0G(+)
C (E,0,0) , (2.29)

where

G(+)
C (E,0,0) =

∫︂

R3

d3q
(2π)3

∫︂

R3

d3q ′

(2π)3 ⟨q′|Ĝ(+)
C (E)|q⟩ = M

∫︂

R3

d3k
(2π)3

ψ(+)
k (0)ψ(+)∗

k (0)
p2 − k2 + iε (2.30)

represents the propagation of the two fermions from zero to zero relative separation. Pro-
ceeding order by order, it turns out that the summation of all the contributions, i.e. the ladder
corrections (cf. fig. 1.1) to the zero angular momentum bubbles, can be interpreted again as
a geometric series, whose sum is given by

TSC(p′,p) =
C2
ηC(E∗)e2iσ0

1 −C(E∗)G(+)
C (E,0,0)

, (2.31)

a formula that bears some resemblance with eq. (2.8). Now, we switch to the evaluation of the
Green’s function G(+)

C (E,0,0) ≡ JC(p) . Firstly, the integrand appearing in the propagator in
eq. (2.30) can be split into two parts by means of the trick (p2 −q2)−1 = −q−2 +p2q−2(p2 −q2)−1

and secondly the Feynman convention can be restored in the term depending on p and q,

JC(p) = M
∫︂

R3

d3q
(2π)3

2πη(q)
e2πη(q) − 1

1
p2 − q2 + iε

= M
∫︂

R3

d3q
(2π)3

2πη(q)
e2πη(q) − 1

1
q2

p2

p2 − q2 + iε −M
∫︂

R3

d3q
(2π)3

2πη(q)
e2πη(q) − 1

1
q2 ,

(2.32)

where the latter integral proves to be ultraviolet divergent, hence we denote it by Jdiv
C . Con-

cerning the convergent part, Jdiv
C , its integration can be carried out via the change of variables

q ↦Ï x ≡ 2πη(q) = παM/q where q = |q| and exploiting the following integral identity
∫︂ +∞

0
dx x

(ex − 1)(x2 + a2) = 1
2

[︂
log
(︂ a

2π

)︂
− π
a − ψ

(︂ a
2π

)︂]︂
(2.33)

with a = 2πiη(p). Recalling the definition of H(η) in eq. (1.33), the finite part of the propagator
of interest turns out to be proportional to the former,

Jfin
C (p) = −αM

2

4π H(η) . (2.34)

It follows by substitution of the latter equation into the one of the generalized ERE (cf.
eq. (2.25)), that all the parts depending on H(η) cancel out and that the scattering length is
contained in the divergent part of the Green’s function,

1
a(0)

C

= 4π
M

[︃
1

C(E∗) − Jdiv
C (p)

]︃
. (2.35)

On the other hand, the absorption of quadratic and higher order terms in the momentum (cf.
eq. (1.5)) within the energy-dependent coefficient C(E∗), keeps the effective range r(0)

0 equal to



24 CHAPTER 2. S-WAVE SHORT-RANGE INTERACTIONS

zero, as observed in the case with strong contact interaction alone (cf. sec. 3.1 of ref. [17]).
Now, setting ε ≡ d − 3 we evaluate the divergent part of the Green’s function in dimensional
regularization [2]

Jdiv
C (d; p) = −M

(︂µ
2

)︂ε Ωd
(2π)d

∫︂ +∞

0
dq q−ε 2πη(q)

e2πη(q) − 1
, (2.36)

where Ωd = 2πd/2/Γ
(︁d

2
)︁

is the surface area of the d-dimensional unit sphere. Performing
again the variable change x = 2πη(q), the integration can be carried out,

Jdiv
C (d; p) = −M

(︂µ
2

)︂ε 2πd/2

Γ
(︁d

2
)︁

(2π)d
(απM)d−2

∫︂ +∞

0
dx xε−1

ex − 1 = −αM
2

4
√
π

(︂µ
2

)︂ε Γ(ε)ζ(ε)
Γ
(︁3−ε

2
)︁ (2.37)

where µ is a renormalization scale introduced by the minimal subtraction (MS) scheme (cf.
sec. 3.6 of [130]). In the d Ï 3 limit, the divergent part is given by the Euler’s Gamma function
Γ(ε) where ε ≡ 3 −d, that has to be expanded in Laurent series for small arguments. Besides,
even if the Riemann Zeta function is finite for zero arguments, its series expansion around
zero,

ζ(ε) = ζ(0) + ζ′(0)ε + O(ε2) ≈ −1
2[1 + ε log(2π)] + O(ε2) , (2.38)

yields a nonzero contribution to the expression of the Coulomb Green’s function Jdiv
C when

the second term on the r.h.s. of eq. (2.38) multiplies the pole 1/ε from the expanded Gamma
function. A similar argument holds for the Gamma function at the denominator of eq. (2.37),
where Γ

(︁3−ε
2
)︁

should be expanded around 3
2 ,

Γ
(︁3−ε

2
)︁

= Γ
(︁3

2
)︁

− ε
2Γ′(︁3

2
)︁

+ O
(︂
ε2

4

)︂
≈

√
π

2

[︂
1 − ε

(︂
1 − log 2 − γE

2

)︂]︂
, (2.39)

where the particular value ψ(3
2 ) = Γ′(3

2 )/Γ(3
2 ) = 2−2 log 2−γE for the derivative of the Gamma

function has been exploited. Additionally, the poles in the 2-dimensional limit of Jdiv
C (d; p),

should be subtracted to Jdiv
C (d; p), in accordance with the PDS regularization scheme. Since

the Zeta function is divergent ζ(ε) ≡ ζ(1 + 2 − d) = 1/(2 − d) + γE , in the latter limit we have

lim
dÏ2

Jdiv
C (d,p) = µM

4π
1

d − 2 . (2.40)

All these premises considered, the divergent part of the Green’s function JC(p) in the PDS
scheme becomes

Jdiv
C (p) = αM2

4π

[︃
1
ε + log µ

√
π

αM + 1 − 3
2γE

]︃
− µM

4π . (2.41)

Replacing the last result in eq. (2.35), the desired expression for the Coulomb scattering length
can be obtained,

1
a(0)

C

= 4π
MC(E∗) + µ − αM

[︃
1
ε + log µ

√
π

αM + 1 − 3
2γE

]︃
. (2.42)
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After renormalization, the divergent pole is reabsorbed from the definition of the strong
coupling constant C(E∗) and the scattering length,

1
a(0)

C (µ)
= 4π
MC(E∗, µ) + µ . (2.43)

Furthermore, excluding the divergent pole, that is expected to be canceled by counterterms de-
scribing short-distance electromagnetic and other isospin-breaking interactions due to quark
mass differences in case the fermions are hadrons [2], the renormalized scattering length
takes the form

1
a(0)

C (µ)
= 1
a(0)

C

+ αM
[︃
log µ

√
π

αM + 1 − 3
2γE

]︃
. (2.44)

From the latter expression, we observe that the Coulomb-modified scattering length is non-
perturbative in the fine structure constant, since α appears in the combination α logα. The
Coulomb interaction, indeed, can overcome in magnitude the strong force for small values of
the renormalization mass µ and determine the magnitude of the scattering length [2].

2.1.3 Attractive channel
We shall consider the scattering between two non-relativistic fermions with opposite charges,
such as fermion-antifermion scattering. Even if the strong-Coulomb T-matrix is again given
by eq. (2.27), the Coulomb propagator Ḡ(+)

C (E; 0,0) involves now both bound and scattering
states. Nevertheless, the scattering amplitude preserves its form [2],

TSC(p′,p) =
C2
ηC̄(E∗)e2iσ0

1 − C̄0Ḡ
(+)
C (E,0,0)

, (2.45)

where C(E∗) is the coupling constant of the strong contact pseudopotential in this channel and
η = −αM/2|p| is the Coulomb parameter. Differently from the previous case, GC(E; 0,0) ≡
JC(p) can be decomposed as a sum of a bound states JbC(p) and a scattering states Green’s
function JsC(p). In particular, the former part of the Coulomb propagator can be written as

JbC(p) =
∑︂

nℓ

|ψnℓ(0)|2
E − Enℓ

, (2.46)

where ψnℓ are bound eigenstates with angular momentum ℓ and energy given by Bohr’s
formula, Enℓ = −α2M/4n2. Recalling that the proability to find particles at the origin of a
bound state is non-zero only for zero angular momentum states, |ψnℓ(0)|2 = (αM)3/(8πn3)δℓ0,
the last equation can be rewritten in closed form as

JbC(p) = αM2

4π

+∞∑︂

n=1

2η2

n(n2 + η2) = αM2

4π [ψ(iη) + ψ(−iη) + 2ζ(1)] , (2.47)

where the Euler’s Digamma function has been rewritten in terms of a telescoping series. In
particular, ζ(1) is the sum of the harmonic series, whose Cauchy principal value is finite and
given by γE . Then, we consider the scattering part of the Green’s function, where the states
in the expansion have eigenvalue E = p2/M , as before. Since the η is negative, we can recast
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the denominator with the Sommerfeld factor in the integrand as

1
e2πη(q) − 1

= 1
1 − e−2πη(q) − 1 , (2.48)

thus allowing for a separation of the original Green’s function into three parts, JsC = Jdiv
C +

Jfin
C + Jnew

C , where the finite part gives

Jfin
C (p) = M

∫︂

R3

d3q
(2π)3

−2πη(q)
e−2πη(q) − 1

1
q2

p2

p2 − q2 + iε = αM2

4π

[︃
1
iη −H(η) − ψ(−iη) + ψ(iη)

]︃
. (2.49)

The computation of the divergent part of the Green’s function in dimensional regularization
is now straightforward, since the integrand coincides with the one of eqs. (2.34) and (2.36),

Jdiv
C (p) = −M

∫︂

R3

d3q
(2π)3

−2πη(q)
e−2πη(q) − 1

1
q2 = αM2

4π

[︃
1
ε + log µ

√
π

αM + 1 − 3
2γE

]︃
− µM

4π , (2.50)

taking into account that η has now an opposite sign. The new contribution, J̄new
C (p), assumes

the form
Jnew

C (p) = M
∫︂

R3

d3q
(2π)3

−2πη(q)
p2 − q2 + iε , (2.51)

and can be evaluated in dimensional regularization in a similar way to the one of the unper-
turbed Green’s function in eq. (2.37),

Jnew
C (p) = −αM

2

2π

[︃
1
ε + log µ

√
π

αM + log(−iη) + 1 − 1
2γE

]︃
. (2.52)

Putting the three contributions together, we obtain the expression of the scattering part of the
Green’s function

JsC(p) = −µM4π − αM2

4π

[︃
1
ε + log µ

√
π

αM + log(−iη) − 1
2iη + ψ(−iη) + 1 + 1

2γE
]︃
. (2.53)

Reabsorbing the 1/ε divergence via an unknown counter-term and replacing ζ(1) with its
Cauchy principal value, the total Coulomb Green’s function G(+)

C (E; 0,0) = JbC(p) + JsC(p) takes
the form

JC(p) = −µM4π − αM2

4π

[︃
log µ

√
π

αM + 1 − 3
2γE −H(η)

]︃
, (2.54)

that, combined with eq. (2.45) and the effective range expansion in eq. (2.26) with H(η) replaced
by H(η), permits to obtain the scattering length. The renormalized scattering length a(0)

C (µ)
can be obtained from the measured one ā(0)

C via the relation

1
a(0)

C (µ)
= 1
a(0)

C

− αM
[︃
log µ

√
π

αM + 1 − 3
2γE

]︃
. (2.55)

By comparison with eq. (2.44), it can be observed that the result of the repulsive channel coin-
cides with the one in eq. (2.55), except for a sign inversion of α in front of the square bracket.
Eventually, we relate the renormalized scattering length with the renormalized coupling con-
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stant of the strong interaction through the formula

1
a(0)

C

= 4π
MC(E∗, µ)

+ µ , (2.56)

in all analogous to eq. (2.43).

2.2 The finite-volume environment
Still concentrating on two-body processes, we embed the physical system of non-relativistic
spinless fermions interacting via Coulomb photons in a cubic spatial volume with edges of
length L. Due to the imposition of periodic boundary conditions on the matter fields and
the wavefunctions, a free particle subject to PBCs carries a momentum p = 2πn/L where
n is a dimensionless three-vector of integers and L ≡ Na. In numerical simulations, the
finite-volume configuration space is even discretized, so that for each direction only N points
separated by a spacing a are considered and the cubic box reduces to a cubic lattice.
As shown in sec. 1.3, it is exactly this gapped nature of the momentum that allows for a
perturbative treatment of QED, provided L is large enough to satisfy the constraint L ≫ 1/M .
Assuming this limit throughout the rest of the chapter and taking the LO modification on the
particle’s masses into account (cf. eq. (1.39)), the infinite-volume ERE in the repulsive case (cf.
eq. (1.45)) is recast in terms of the primed scattering parameters in eqs. (1.40)-(1.44) with ℓ = 0,

C2
η |p|(cot δ0 − i) + αMH(η) = − 1

a′
C

(0) + 1
2r

′
0

(0)p2 + r′
1

(0)p4 + . . . , (2.57)

and, finally, rewritten in terms of finite-volume quantities, denoted by the L superscript. The
last version of the ERE in sec. 2.2.2, combined with the quantization conditions discussed in
the next section, will pave the way for the derivation of the finite volume energy corrections
for scattering and bound states with zero angular momentum.

2.2.1 Quantization Condition
After introducing the finite and discretized configuration space, we derive the conditions that
determine the counterpart of the ℓ = 0 energy eigenvalues in the cubic finite volume. These
states transform as the trivial irreducible representation A1 (in Schönflies’s notation [131]) of
the cubic group [3, 68, 69], the finite group of the 24 rotations of the cube that replaces the
original SO(3) symmetry in the continuum and infinite volume context [67].

As it can be inferred from eq. (1.22), the eigenvalues of the full Hamiltonian of the system
Ĥ0 + V̂C + V̂S can be identified with the singularities of the two-point correlation function
GSC(r, r′) and are known in literature [1,74–76] as quantization conditions. Rewriting eq. (1.22)
in terms of a geometric series of ratio ĜCV̂S,

Ĝ(±)
SC = 1

1 − Ĝ(±)
C V̂S

ĜC (2.58)

the two-point Green’s function operator can be rewritten in powers of ĜC, which, in turn, can
be expanded in terms of the fine structure constant α. Thus, the full two-body correlation
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function can be rewritten perturbatively as

⟨r|Ĝ(±)
SC |r′⟩ = ⟨r|Ĝ(±)

C |r′⟩ + ⟨r|Ĝ(±)
C V̂SĜ

(±)
C |r′⟩ + ⟨r|Ĝ(±)

C V̂SĜ
(±)
C V̂SĜ

(±)
C |r′⟩ + .... (2.59)

In particular, the computation of the three lowest order contributions in C(E∗) yields respect-
ively (cf. eq. (2.9))

⟨r′|Ĝ(±)
C |r⟩ = G(±)

C (r′, r) , (2.60)

⟨r′|Ĝ(±)
C V̂SĜ

(±)
C |r⟩ = C(E∗)GC(r′,0)(±)G(±)

C (0, r) , (2.61)

and
⟨r′|Ĝ(±)

C V̂SĜ
(±)
C V̂SĜ

(±)
C |r⟩ = [C(E∗)]2G(±)

C (r,0)G(±)
C (0,0)G(±)

C (0, r) . (2.62)

From the latter equations, the expression of (N + 1)th order contribution to the full two-point
correlation function can be inferred,

⟨r′|Ĝ(±)
C V̂SĜ

(±)
C ...⏞ ⏟⏟ ⏞

N times

V̂SĜ
(±)
C |r⟩ = G(±)

C (r′,0)C(E∗)G(±)
C (0,0)...

⏞ ⏟⏟ ⏞
N times

C(E∗)G(±)
C (0, r) , (2.63)

thus allowing for the rewriting of the original Green’s function in terms of a geometric series
of ratio C(E∗)G(±)

C (0,0), in the same fashion of the original operator identity (cf. eq. (2.58)),

G(±)
SC (r′, r) = ⟨r′|Ĝ(±)

SC |r⟩ = G(±)
C (r′, r) +G(±)

C (r′,0) C0(E∗)
1 −C(E∗)G(±)

C (0,0)
G(±)

C (0, r) , (2.64)

where
√︁
C(E∗)G(±)

C (r′,0) and
√︁
C(E∗)G(±)

C (0, r) can be interpreted as a source and a sink coup-
ling the fermions to an S-wave state respectively. Furthermore, the inhomogeneous term,
G(±)

C (r′, r), is absent when r′ and r coincide with the origin. From the last equation, the infinite
volume quantization conditions can be inferred and identified with the pole of the correlation
function G(±)

SC (r′, r) and can be written as

1
C(E∗) = G(±)

C (0,0) , (2.65)

where the CoM energy dependent coupling constant is equal to the inverse of the Coulomb’s
two-point Green Function evaluated at the origin. Moreover, we observe that the embedding
of the system in a finite volume does not affect the form of the complete two-point Green’s
function G(±)

SC given in eq. (2.64). Considering only the retarded correlation function and
adopting the simplified notation in sec. 3.1.2 for the Coulomb two-point function evaluated at
the origin, G(±)

C (0,0), eq. (2.64) in finite volume becomes

G(+),L
SC (r′, r) = G(+),L

C (r′, r) +G(+),L
C (r′,0) CL(E∗)

1 −CL(E∗)JLC(p)
G(+),L

C (0, r) . (2.66)

yielding the sought finite volume quantization condition,

1
CL(E∗) = JLC(p) , (2.67)

which determines the A1 eigenvalues. In order to exploit the latter relation perturbatively,
it is necessary to approximate JLC(p) in eq. (2.63) to order α. Since the two-point Coulomb
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Green’s function is evaluated at the origin, the external legs in the ladders appearing in the
expansion of G(±)

C (r, r′) in fig. 1.1 converge pairwise, generating bubbles with Coulomb photon
insertions. Therefore, the contributions to JC(p) correspond to loop integrals closed at the
two extrema on S-wave vertexes, ad can be derived analytically via repeated application of the
Dyson identity between Ĝ(±)

C and Ĝ(±)
0 in eq. (1.16). In particular, the first two ladder diagrams

in the expansion of fig. 1.1 become bubble diagrams, respectively with and without a Coulomb
photon insertion inside. In infinite volume, their contribution reads

JC(p) = G(+)
C (0,0) = ⟨r′|Ĝ(±)

0 |r⟩
⃓⃓
⃓r=0r′=0

+ ⟨r′|Ĝ(±)
0 V̂CĜ

(±)
0 |r⟩

⃓⃓
⃓r=0r′=0

+ . . .

= −M
∫︂

R3

d3q
(2π)3

1
q2 − p2 + 4παM2

∫︂

R3

d3q
(2π)3

∫︂

R3

d3k
(2π)3

1
q2 − p2

1
k2 − p2

1
|q − k|2 + . . . ,

(2.68)

Replacing the integrals over continuous momenta by sums over three-vectors of integers
n,m ∈ Z3, ∫︂

R3

d3q
(2π)3 ↔ 1

L3

∞∑︂

n
, (2.69)

and removing the zero-modes from the Coulomb photon propagator, the finite volume coun-
terpart of eq. (2.37) is obtained

JLC(p) = − ML

4π2L

Λn∑︂

n
1

|n|2 − p̃2 + α(ML)2
16π5

Λn∑︂

n

∞∑︂

m̸=n
1

|n|2 − p̃2
1

|m|2 − p̃2
1

|n − m|2 + . . . , (2.70)

where adimensional finite-volume momentum p̃ ≡ L|p|/2π and a spherical cutoff Λn ≡ LΛ/2π
have been introduced, in order to regulate the divergent sums. Additionally, the infinite volume
mass has been replaced by its finite volume counterpart, even if in sec. 2.2.2 we will notice
that these corrections [1, 46] carry only O(α2) contributions, which can be neglected in our
perturbative treatment of QED.
Since discretization does not alter the ultraviolet behaviour of the infinite volume integrals,
the renormalization of divergences in finite and in infinite volume produce the same results.
With the aim of regulating the sums in eq. (2.70) for numerical evaluation while maintaining
the mass-indepdendent renormalization scheme (cf. sec. II B of ref. [1]), we rewrite the finite
volume quantization conditions as

1
CL(E∗) − ReJ{DR}

C (p) = JLC(p) − ReJ{Λ}
C (p) , (2.71)

where J{Λ}
C (p) and J{DR}

C (p) represent the O(α) approximations of JC evaluated in the cutoff-
and dimensional regularization methods, without implementing the PDS scheme [22]. We
begin with the computation of JC(p) in the former regularization technique and consider its
expression given in eq. (2.68),

J{Λ}
C (p) = −M

∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2 + 4παM2

∫︂

S2
Λ

d3q
(2π)3

∫︂

R3

d3k
(2π)3

1
q2 − p2

1
k2 − p2

1
|q − k|2 + . . . ,

(2.72)
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where S2
Λ denotes the three-dimensional sphere with arbitrarily large radius Λ. Considering

the O(α0) contribution, we obtain

−M
∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2 = − M

2π2

∫︂ Λ

0
dq − Mp2

2π2

∫︂ Λ

0
dq 1

q2 − p2

= −MΛ
2π2 + M

4π2 log
(︄

1 + |p|
Λ

−1 + |p|
Λ

)︄
= −MΛ

2π2 + O(Λ0) ≈ −MΛ
2π2 ,

(2.73)

where the constant terms, indepedent on the spherical cutoff, have been discarded. Second,
the O(α) dependent contribution to J{Λ}

C (p) can be recast as follows

I ≡ 4παM2
∫︂

S2
Λ

d3q
(2π)3

∫︂

R3

d3k
(2π)3

1
q2 − p2

1
k2 − p2

1
|q − k|2

= 4παM2
∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2

∫︂

R3

d3k
(2π)3

1
[k2 − 2(1 − ω)k · q + Ξ1]2 ,

(2.74)

where Ξ1 ≡ (1 − ω)q2 − ωp2 and Feynman parametrization for the denominators has been
applied. Making use of the integration formula in eq. (B16) of ref. [132], the integral over k
can be carried out, yielding

I = 4παM2 Γ
(︁1

2
)︁

(4π) 3
2

∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2

1
[ω(1 − ω)q2 − p2ω] 1

2

= 4παM2 Γ
(︁1

2
)︁

(4π) 3
2

∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2

1
[ω(1 − ω)q2 − p2ω] 1

2
.

(2.75)

At this stage, integration over the angular variables in eq. (2.75) can be performed immediately
and the outcoming integrand can be conveniently split into two terms, I ≡ I1 + I2, where

I1 = M24πα
Γ(1

2 )
(4π) 3

2

∫︂ 1

0

dω
2π2

1√︁
ω(1 − ω)

∫︂ Λ

0
dq 1

[q2 − p2

1−ω ] 1
2
, (2.76)

and

I2 = M24πα
Γ(1

2 )
(4π) 3

2

∫︂ 1

0

dω
2π2

1√︁
ω(1 − ω)

∫︂ Λ

0
dq p2

q2 − p2
1

[q2 − p2

1−ω ] 1
2
, (2.77)

that is expected to generate the subleading contributions in Λ. Starting from I1, the integration
over the momentum q gives

I1 = M24πα
Γ(1

2 )
(4π) 3

2

∫︂ 1

0

dω
2π2

1√︁
ω(1 − ω)

⎡

⎣arccoth

⎛

⎝ 1√︂
1 − p2

Λ2(1−ω)

⎞

⎠− iπ
2

⎤

⎦ . (2.78)

Since the spherical cutoff is arbitrarily large, |p|/Λ ≪ 1, the integrand in eq. (2.78) can be
further simplified and the integration over the Feynman variable ω can be performed by
means of the relations

∫︂ 1

0
dω 1√︁

ω(1 − ω)
= π ,

∫︂ 1

0
dω log

√
1 − ω√︁

ω(1 − ω)
= −π log 2 . (2.79)
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Neglecting the cutoff-independent term, after these operations the desired expression for I1
is obtained,

I1 = αM2

4π log
(︃

Λ
|p|

)︃
+ O(Λ0) . (2.80)

Concerning I1, integration over the angular variables together with few manipulations in the
constants leads to

I2 = αM2

4π2

∫︂ 1

0
dω 1√︁

ω(1 − ω)

∫︂ Λ

0
dq p2

q2 + Ξ2

1
[︂
q2 − p2

1−ω

]︂ 1
2
, (2.81)

where Ξ2 ≡ −p2 and Ξ3 ≡ −p2/(1−ω). Subsequently, the integration over the radial component
of the momentum |q| yields

I2 = αM2

4π2

∫︂ 1

0
dω p2
√︁
ω(1 − ω)

⎡

⎢⎣
log
(︂

1 + Λ
√︂

Ξ2−Ξ3
Ξ2(Ξ3+Λ2)

)︂

2
√︁

Ξ2(Ξ2 − Ξ3)
−

log
(︂

1 + Λ
Ξ2

√︂
Ξ2(Ξ2−Ξ3)

Ξ2+Λ2

)︂

2
√︁

Ξ2(Ξ2 − Ξ3)

⎤

⎥⎦ . (2.82)

Considering again the large spherical cutoff limit, |p|/Λ ≪ 1, the last expression turns out to
be independent on Λ and can be recast as

I2 = αM2

4π2

∫︂ 1

0
dω arccot

(︃√︃
ω

1 − ω

)︃
. (2.83)

Even if the remaining integral over ω is not finite, it is independent on Λ, therefore it can be left
aside together with the other O(Λ0) terms. Moreover, the latter divergence can be removed
by means of a translation in the momenta such as k ↦Ï k − q in the original expression of the
O(α) part of J{Λ}

C (p) in eq. (2.74). Juxtaposing the contributions from eq. (2.73) and (2.83), and
taking the real part of the whole expression we find

ReJ{Λ}
C (p) = −MΛ

2π2 − αM2

4π log
(︃

|p|
Λ

)︃
, (2.84)

where the term depending linearly on the cutoff regulates the O(α0) part of eq. (2.72), whereas
the logarithmic term is paired with the second sum in JLC(p). Furthermore, starting from the
exact expression of JC(p) in arbitrary d dimension given in eq. (2.32),

J{DR}
C (p) = M

∫︂

Rd

ddq
(2π)d

2πη(q)
e2πη(q) − 1

1
p2 − q2 + iε

≈ M
∫︂

Rd

ddq
(2π)d

1
p2 − q2 + iε − αM2

∫︂

Rd

ddq
(2π)d

π
2|q|

1
p2 − q2 + iε ,

(2.85)

we derive ReJ{DR}
C (p) to the first order in the fine structure constant. First, we observe that

the α independent part coincides with the free two-point correlation function,

−M
∫︂

R3

d3q
(2π)3

1
q2 − p2 − iε = G(+)

0 (0,0) . (2.86)

From eq. (2.13) follows that its contribution in dimensional regularization is finite, therefore
we switch to the d-dimensional version of the second integral in the second row of eq. (2.74).
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Applying Feynman parametrization for denominators and introducing the ancillary variables
γ = −i|p| and Ϙ2 ≡ γ2(1 − ω), the O(α) contribution to JC(p) in dimension d becomes

αM2
∫︂

Rd

ddq
(2π)d

π
2|q|

1
q2 − p2 =

αM2πΓ
(︁3

2
)︁

2Γ
(︁1

2
)︁

∫︂ 1

0

dω√
ω

∫︂

Rd

ddq
(2π)d

1
[ωq2 + (q2 − p2)(1 − ω)]3/2

=
αM2πΓ

(︁3
2
)︁

2Γ
(︁1

2
)︁

∫︂ 1

0

dω√
ω

∫︂

Rd

ddq
(2π)d

1
[q2 + Ϙ2]3/2

.
(2.87)

Then, integrating over the loop momenta via the dimensional regularization identity (B.12) in
ref. [132], we obtain

αM2π
2Γ
(︁1

2
)︁
∫︂ 1

0

dω√
ω

Γ
(︁3

2 − d
2
)︁

(Ϙ2)d/2−3/2

(4π)d/2
= αM2π

2(4π)3/2
Γ
(︁3−d

2
)︁

Γ
(︁1

2
)︁
(︃
πµ2

γ2

)︃ 3−d
2 ∫︂ 1

0
dω ω−1/2(1 − ω)−(3−d)/2

(2.88)
where the divergence is limited to Euler’s Gamma, displaying a simple pole in ε = 3 − d. In
fact, the integral over ω is finite and admits an expansion in powers of ε ,

∫︂ 1

0
dω ω−1/2(1 − ω)−(3−d)/2 ≈

∫︂ 1

0
dω 1 − ε log

√
1 − ω√

ω
= 2(1 + ε − ε log 2) . (2.89)

Expanding also the term proportional to the renormalization mass µ, eq. (2.78) becomes

αM2π√
π

Γ
(︁ε

2
)︁

(4π)3/2

[︃
1 + ε

2 log
(︃
µ2π
γ2

)︃]︃
[1 − ε − ε log 2] . (2.90)

As the last expression is finite in the d Ï 2 limit, no PDS pole is present and the three-
dimensional limit can be taken, obtaining the sought expression for J{DR}

C (p),

J{DR}
C (p) = −αM

2

4π

[︃
−1
ε + log

(︃
2|p|
µ

)︃
− 1 + γE

2 − log
√
π − iπ

2

]︃
. (2.91)

Retaining the real part of the last expression and collecting the result from cutoff regularization
in eq. (2.84) with the fermion mass replaced by its finite-volume counterpart, the original finite-
volume quantization condition can be finally rewritten as

1
CL(E∗) = −α(ML)2

4π

[︃
−1
ε + log

(︃
4π
µ

)︃
− 1 + γE

2 − log
√
π
]︃

− ML

4π2L

[︄ Λn∑︂

n
1

|n|2 − p̃2 − 4πΛn

]︄

+α(ML)2
16π5

⎡

⎣
Λn∑︂

n

∞∑︂

m̸=n
1

|n|2 − p̃2
1

|m|2 − p̃2
1

|n − m|2 − 4π4 log Λn

⎤

⎦+ . . . ,

(2.92)

an expression that will be exploited for the rewriting of the effective range expansion.

2.2.2 Finite Volume Effective Range Expansion
Let us start by writing the infinite volume expression of the effective range expansion. By
plugging the expression of TSC given in eq. (2.31) into eq. (2.25) and exploiting the closed form
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of JC(p) in dimensional regularization to all orders in α given in eqs. (2.34) and (2.41), we find

C2
η |p| cot δ0 + αMH(η) = − 4π

MC(E∗) + αM
[︃

1
ε + log

(︃
µ

√
π

αM

)︃
+ 1 − 3

2γE
]︃
. (2.93)

Since the asymptotic behaviour of the momentum integrals in the ultraviolet region remains
unaffected by discretization, the latter expression can be immediately applied to the cubic finite
volume case, provided the infinte volume parameters are replaced by finite volume ones,

C2
η |p| cot δ0 + αMLH(η) = − 4π

MLCL(E∗) + αML
[︃

1
ε + log

(︃
µ

√
π

αML

)︃
+ 1 − 3

2γE
]︃
, (2.94)

where M has been replaced by the finite volume one, ML, thus obtaining an expression valid
also in the non-perturbative treatment of the Coulomb photons. At this point, we substitute
the inverse of the strong coupling constant with its expression in eq. (2.92),

C2
η |p| cot δ0 + αMLH(η) = αML

[︃
log
(︃

4π
αMLL

)︃
− γE

]︃
+ 1
πL

[︄ Λn∑︂

n
1

n2 − p̃2 − 4πΛn

]︄

−αM
L

4π4

⎡

⎣
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
1

|n − m|2 − 4π4 log Λn

⎤

⎦+ . . . .

(2.95)

As it can be observed, in the last equation the mass of the fermions is multiplied by a power
of α in all the occurrences. As the leading order finite volume corrections to ML scale as
α/L, these shifts should be consistently ignored in the O(α) approximation of the Coulomb
Green’s function. Therefore, in eq. (2.95) we are allowed to replace ML by its infinite volume
counterpart, M , and exploit the expansion with shifted scattering parameters presented in
eq. (2.95), obtaining

− 1
a′
C

(0) + 1
2r

′
0

(0)p2 +r′
1

(0)p4 + . . . = 1
πLS1(p̃)− αM

4π4 S2(p̃)+ . . .+αM
[︃
log
(︃

4π
αML

)︃
− γE

]︃
, (2.96)

that corresponds to the desired finite volume effective range expansion, in which the cutoff-
regulated series have been denoted as

S1(p̃) =
Λn∑︂

n
1

n2 − p̃2 − 4πΛn (2.97)

and

S2(p̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
1

|n − m|2 − 4π4 log Λn , (2.98)

that are collectively known in literature as Lüscher’s functions.

2.2.3 Approximate Energy Eigenvalues
Since the Sommerfeld factor is not a rational function of the momentum of the colliding
particles in the CoM frame, a non-perturbative counterpart in α of the eq. (2.96) in the low
momentum limit would admit only numerical solutions for p2. Nevertheless, assuming that
the expansions are perturbative in 1/L times the length scale which characterizes the strength
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of the interaction, embodied by the scattering parameters, and assuming that ML ≪ 1/α, the
Coulomb photon insertions in the bubble diagrams can be treated perturbatively. Under these
conditions, the approximated expression of the ERE presented in eq. (2.96) can be exploited
for an analytical derivation of the finite volume corrections to the energy eigenvalues.

a) The Unbound Ground State
The perturbative expansion of the finite volume ERE around the zero momentum ground
state, corresponding to a total energy E∗ = 2M yields zero O(α) contributions when strong
interactions are absent. This is a consequence of the removal of the photon zero mode, when
the uniform background charge density in the free state cancels exactly the particle charge
density [1].
However, in presence of strong interactions, the assertion ceases to be true and O(α) cor-
rections begin to appear. Since E∗ = 2M implies zero finite-volume momentum, the discrete
sums appearing in the ERE in eq. (2.95) have to be expanded in Taylor series about p̃2 ≡ p̃2 = 0
and only small or negative powers of the latter have to be retained. Concerning the Lüscher
function S1(p̃), the approximation yields

S1(p̃) = − 1
p̃2 +

Λn∑︂

n̸=0
1

|n|2 −4πΛn+p̃2
∞∑︂

n̸=0
1

|n|4 +p̃4
∞∑︂

n̸=0
1

|n|6 +p̃6
∞∑︂

n̸=0
1

|n|8 +p̃8
∞∑︂

n̸=0
1

|n|10 +. . . , (2.99)

where the dots denote terms of order |n|−12 and the limit Λn Ï ∞ for the convergent power
series has been taken. Adopting the notation in the appendix of ref. [1], where the sums of
the leading three dimensional Riemann sums are presented, eq. (2.99) becomes

S1(p̃) = − 1
p̃2 + I(0) + p̃2J(0) + p̃4K (0) + p̃6L(0) + p̃8O(0) + . . . . (2.100)

Second, the expansion of the double sum S2(p̃) in powers of p̃2 gives

S2(p̃) = − 2
p̃2

∞∑︂

m̸=0
1

m4
1

1 − p̃2

m2

+
Λn∑︂

n̸=0

∞∑︂

m̸=0,n
1

n2 − p̃2
1

m2 − p̃2
1

|n − m|2 −4π4 log Λn ≡ S(1)
2 (p̃)+S(2)

2 (p̃) ,

(2.101)
where the spherical cutoff for the convergent series has been suppressed convergent and a
grouping among the three-dimensional series is introduced. As for S1(p̃), only one of the
implied summations turns out to require the intervention of a cutoff, due to a logarithmic UV
divergence. Still pursuing with the notation of ref. [1], the term S(1)

2 (p̃) containing only single
sums can be succintly rewritten as

S(1)
2 (p̃) = − 2

p̃2 J(0) − 2K (0) − 2p̃2L(0) − 2p̃4O(0) + . . . , (2.102)

where the dots indicate series proportional to |n|−12. Then, we define the fundamental double
sum, regulated by the logarithm of the spherical cutoff (cf. app. B.1.2),

R(0) =
Λn∑︂

n̸=0

∞∑︂

m̸=0,n
1

|n|2
1

|m|2
1

|n − m|2 − 4π4 log Λn , (2.103)
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and the higher-order sums,

Rij =
Λn∑︂

n̸=0

∞∑︂

m̸=0,n
1

|n|i
1

|m|j
1

|n − m|2 . (2.104)

which converge without cutoff dependent subtraction provided (s, t) ≥ (2, 4) or (4, 2) and are
symmetric under index exchange, R(0)

ij = R(0)
ji . In terms of R and R(0)

st , the addend S(1)
2 (p̃) in

eq. (2.101) becomes

S(2)
2 (p̃) = R(0) + 2p̃2R(0)

24 + p̃4R(0)
44 + 2p̃4R(0)

26 + . . . , (2.105)

where the ellypsis refers to O(p̃6), proportional to double sums with s+ t ≥ 10. After defining

R̃(0) = R(0) − 4π4
[︃
log
(︃

4π
αML

)︃
− γE

]︃
, (2.106)

we insert the approximated S1(p̃) and S2(p̃) sums into the original ERE in eq. (2.95)) and find

− 1
a′

C
(0) + 1

2
4π2r′

0
(0)

L2 p̃2 + 16π4r′
1

(0)

L4 p̃4 + . . . = 1
πL

[︃
− 1
p̃2 + I(0) + p̃2J(0) + p̃4K (0) + . . .

]︃

−αM4π4

[︃
− 2
p̃2 J(0) − 2K (0) − 2L(0)p̃2 − 2O(0)p̃4 + · · · + R̃(0) + 2p̃2R(0)

24 + p̃4R(0)
44 + 2p̃4R(0)

26 + . . .
]︃

+ . . . .

(2.107)

Once the finite volume ERE is rewritten in the small momentum limit and the series are
expanded around p̃2 = 0, the finite volume energy corrections can be derived by following an
iteration procedure. To this aim, we introduce the following small auxiliary constants

c0 = a′
C

(0)

πL , c1 = αM
4π4a

′
C

(0) , c2 = 4π2

L2 a
′
C

(0)r′
0

(0) , c3 = 16π4

L4 a′
C

(0)r′
1

(0) , (2.108)

and collect the terms appearing in eq. (2.107) into groups bearing the same power of the
squared finite-volume momentum,

1
p̃2

(︂
−c0 + 2c1J(0)

)︂
+ 1 + c0I(0) − c1R̃(0) + 2K (0)c1

+p̃2
[︂
c0J(0) + c1(2L(0) − 2R(0)

24 ) − c2
2

]︂
+ p̃4

[︂
c0K (0) +c1(2O(0) − R(0)

44 + 2R(0)
26 ) − c3

]︂
+ . . . = 0 .

(2.109)

Due to the smallness of p̃, contributions multiplied by higher positive powers of the finite-
volume momentum are increasingly suppressed. It follows that the dominant finite volume
corrections are expected to be found by solving the truncated version of eq. (2.109) to order
O(p̃0),

1
p̃2

(︂
−c0 + 2c1J(0)

)︂
+ 1 + c0I(0) − c1R̃(0) + 2K (0)c1 = 0 . (2.110)
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Solving the latter for p̃2 and performing an expansion of the denominator in powers of the
small constants c0, c1 and c2, we obtain

p̃2 = c0 − c2
0I(0) + c3

0I(0)2 − 2c1J(0) + c0c1R̃(0) + 2c0c1J(0)

−2c2
0c1R̃(0)I(0) − 2c2

0c1J(0)I(0)2 − 2c0c1K (0) + 4c2
0c1I(0)K (0) + . . . ,

(2.111)

where the dots indicate O(c3
0), O(c1c3

0), O(c2
0c2), O(c2

1) and O(c1c2) terms, which have been
discarded for simplicity. Even if the multiplication of p̃2 by the dimensionful factor 4π2/ML2

would have delivered the leading finite volume energy corrections to the lowest unbound state,
we mark the solution of eq. (2.110) in eq. (2.111) as p̃2

0 and proceed with the next to leading
order approximation. Considering the O(p̃2) approximation of eq. (2.109) and plugging p̃2

0 into
the quadratic term in the finite-volume momentum, we find

1
p̃2

(︂
−c0 + 2c1J(0)

)︂
+ 1 + c0I(0) − c1R̃(0) + 2K (0)c1 + p̃2

0

[︂
c0J(0) + c1(2L(0) − 2R(0)

24 ) − c2
2

]︂
= 0 .

(2.112)
The substitution is justified by the smallness of p̃2 with respect to the p̃−2, which is dominant in
eq. (2.111) and plays a pivotal role. Solving the latter equation for p̃2, an improved expression
for the squared finite-volume momentum follows,

p̃2
2 = c0 − c2

0I(0) − c3
0J(0) + c3

0I(0)2 − 2c1J(0) + c0c1R(0) + 2c0c1J(0)I(0) − 2c0c1K (0)

+4c2
0c1J(0)2 − 2c2

0c1R(0)I(0) − 2c2
0c1J(0)I(0)2 + 4c2

0c1I(0)K (0) − 2c2
0c1L(0) + 2c2

0c1R(0)
24 + c2

0c2
2 .

(2.113)

Equipped with the last result, the energy of the lowest A1 bound state is obtained by restoring
the dimensionful quanitites and by exploiting the energy-momentum relation for free states,

E(0,A1)
S = 0 + ∆E(0,A1)

S = 4π2p̃2
2

ML2 = 4πa′
C

(0)

ML3

{︂
1 −

(︄
a′

C
(0)

πL

)︄
I(0) +

(︄
a′

C
(0)

πL

)︄2

[I(0)2 − J(0)]

+ . . .
}︂

− 2α a′
C

(0)

L2π2

{︂
J(0) +

(︄
a′

C
(0)

πL

)︄[︂
K (0) − I(0)J(0) − R̃(0)/2

]︂
+ 2a′

C
(0)r′

0
(0)π2

L2 I(0)

+
(︄
a′

C
(0)

πL

)︄2 [︂
R̃(0)I(0) + I(0)J(0) − 2J(0)2 − 2I(0)K (0) + L(0) − R(0)

24

]︂
+ . . .

}︂
,

(2.114)

where the ellypses denote again O(c3
0), O(c1c3

0), O(c2
0c2), O(c2

1) and O(c1c2) terms. Moreover,
since the energy of the corresponding free state is zero, the terms on the r.h.s. of the last
equation can be interpreted as the modifications that a free state on a finite cubic configuration
space with PBC receives from the strong and electromagnetic interactions. In particular, the
first term within the curly braces can be interpreted as the energy shift due to strong inter-
actions (descending from QCD), whereas all the terms enclosed within the second bracket
correspond to the interplay between QCD and QED interactions. Interestingly, the expres-
sion of the FVECs in eq. (2.114) remains almost unaffected if the original physical scattering
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parameters are restored (cf. eqs. (1.40)-(1.44)),

∆E(0,A1)
S = 4π2p̃2

2
ML2 = 4πa(0)

C
ML3

{︄
1 −

(︄
a(0)

C
πL

)︄
I(0) +

(︄
a(0)

C
πL

)︄2

[I(0)2 − J(0)] + . . .
}︄

−2α a(0)
C

L2π2

{︄
J(0) +

(︄
a(0)

C
πL

)︄[︂
K (0) − I(0)J(0) − R̃(0)/2

]︂
+ a′

C
(0)r′

0
(0)π2

L2 I(0)

+
(︄
a(0)

C
πL

)︄2 [︂
R̃(0)I(0) + I(0)J(0) − 2J(0)2 − 2I(0)K (0) + L(0) − R(0)

24

]︂
+ . . .

}︄
.

(2.115)

b) The Bound Ground State
Although doubly charged bound states made of two hadrons have not been observed in nature
so far, such systems do appear at unphysical values of the quark masses in Lattice QCD
calculations [100] [101] [102] [103]. Therefore, it is instructive to evaluate the finite volume
ERE in eq. (2.96) in the purely imaginary momentum sector, p = iκ. If the limit of large
finite-volume binding momentum, κ̃ = |κ̃| ≫ 1, is considered, an approximation procedure for
the Lüscher functions should be repeated. In this regime, the Lüscher function S1(iκ̃),

S1(iκ̃) =
Λn∑︂

n
1

|n|2 + κ̃2 − 4πΛn (2.116)

can be immediately computed by replacing the sum with the integral sign,

∫︂

S2
Λn

d3n 1
|n|2 + κ̃2 = 4π

∫︂ Λn

0
dn − 4π

∫︂ Λn

0

k̃2dn
n2 + κ̃2 = 4πΛn − 4πk̃ arctan

(︃
Λn
κ̃

)︃
. (2.117)

since the series is a smooth enough function of the binding momentum. Therefore, taking
the limit Λn Ï +∞, the original expression of S1(iκ̃) becomes

S1(iκ̃) ≈ 4πΛn − 2π2κ̃ − 4πΛn = −2π2κ̃ , (2.118)

see eq. (43) in ref. [1]. Concerning the approximation of the Lüscher function S2(iκ̃), the
procedure is more involved (cf. B.2.1 and eq. (44) in ref. [1]) and yields

S2(iκ̃) =
Λn∑︂

n

∑︂

m̸=n
1

|n|2 + κ̃2
1

|m|2 + κ̃2
1

|n − m|2 − 4π4 log Λn

≈ 4π4[log Λn − log(2κ̃)] + π2

κ̃ I(0) − 4π4 log Λn = −4π4 log(2κ̃) + π2

κ̃ I(0) .

(2.119)

Inserting the expressions of the approximated Lüscher sums (cf. eqs. (2.118) and (2.119)) into
the ERE in eq. (2.119) with imaginary momentum, we obtain

− 1
a′
C

(0) − 1
2r

′
0

(0)κ2 + r′
1

(0)κ4 + . . . = −|κ| − αM
2πL

I(0)

|κ| + αM
[︃
log
(︃

4|κ|
αM

)︃
− γE

]︃
+ . . . (2.120)

where the dimensionful binding momentum κ = |κ| = 2πκ̃/L has been restored. By reintro-
ducing the infinite volume scattering parameters and discarding any dependence from the the
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shape parameter r(0)
1 , the last equation can be recast as

− 1
a(0)

C

− 1
2r

(0)
0 κ2 + . . . = −κ − αM

2πL
I(0)

κ (1 + r(0)
0 κ) − αM

[︃
log
(︃
αM
4κ

)︃
+ γE

]︃
. (2.121)

At this point, we highlight the dependence on the fine structure constant by rewriting the
binding momentum in power series,

κ = κ0 + κ1 + κ2 + κ3 + . . . , (2.122)

where κ0 results from strong interactions alone and the subscript corresponds to the power
of α on which each term in the expansion depends. Plugging the latter into eq. (2.121), we
first observe that the identity

− 1
a(0)

C

− 1
2r

(0)
0 κ2

0 = −κ0 (2.123)

holds, since the three quantities do not depend on nonzero powers of α. Neglecting consistently
the O(α2) terms in the approximated ERE in eq. (2.121) and exploiting the relation in eq. (2.123),
an expression for κ1 in terms of the lowest order scattering parameter and the unperturbed
binding momentum is found,

κ1 = − αM
1 − r(0)

0 κ0

[︃
log
(︃
αM
4κ0

)︃
+ γE

]︃
− αM

2πL
I(0)

κ0

1 + r(0)
0 κ0

1 − r(0)
0 κ0

+ . . . , (2.124)

where the ellypsis represents O(α) non-relativistic corrections coming from higher order scat-
tering parameters and contributions from transverse photons. Now, considering the binding
energy of the fundamental bound state in the linear approximation in α,

E(0,A1)
B = κ2

M = κ2
0
M + 2κ0κ1

M + . . . , (2.125)

and exploiting eq. (2.124), we find the desired expression in terms of the infinite volume
scattering parameters,

E(0,A1)
B = κ2

0
M − 2κ0α

1 − r(0)
0 κ0

[︃
log
(︃
αM
4κ0

)︃
+ γE

]︃
− αI(0)

πL
1 + r(0)

0 κ0

1 − r(0)
0 κ0

. . . , (2.126)

where the second term represents the QED modification to the binding energy due to strong
interactions and the third term represents the sought leading order finite volume correction.
Since r(0)

0 scales as Λ−1
E [22], if the binding momentum is much smaller than the breakdown

scale of the EFT, κ0/ΛE ≪ 1, the inequality r(0)
0 κ0 ≪ 1 is verified and the mass shift with respect

to the finite-volume energy eigenvalue assumes the simplified form presented in eq. (46) of
ref. [1],

∆E(0,A1)
B ≡ E(0,A1)

B (∞) − E(0,A1)
B (L) = αI

πL
1 + r(0)

0 κ0

1 − r(0)
0 κ0

≈ αI(0)

πL , (2.127)

which corresponds to the leading term in the expansion in powers of r(0)
0 2πκ̃0/L of the third

term on the r.h.s. of eq. (2.126). Additionally, recalling the expression of mass shifts for ℓ = 0
states of two-Body systems with strong interactions alone in ref. [71], we can conclude that the
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QED corrections presented in eq. (2.127) are pairwise negative, since I(0) < 0.
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CHAPTER 3
P-WAVE SHORT-RANGE INTERACTIONS

The present chapter naturally inherits its structure from the preceeding one. In the opening,
the Lagrangian with the strong P-wave interactions alone is presented. Focusing on two-body
fermion-fermion scattering, the T-matrix element is computed to all orders in the strength
parameter of the strong potential. In sec. 3.1.1, the Lagrangian is enriched by the scalar
photon kinetic term and by the Coulomb interaction term with matter fields in the framework
of non-relativistic QED in refs. [121, 122]. Then, the amplitudes corresponding to tree-level
and one-loop diagrams with one Coulomb photon exchange are computed in dimensional
regularization, implementing again the PDS renormalization scheme. By virtue of the Dyson-
like identities that hold among the free, the Coulomb and the full two-body Green’s functions
presented in sec. 1.2.1 of chap. 1, the T-matrix element of the fermion-fermion scattering
process with Coulomb interaction is obtained non-perturbatively in closed form.

From the latter amplitude and the P-wave generalized ERE, the expressions of the scatter-
ing length and the effective range are derived in terms of the physical constants of our EFT
Lagrangian. The first part of the analysis is concluded in sec. 3.1.3 with the calculation of the
same amplitude for the case of fermion-antifermion scattering.

Then, the two fermion-system is transposed into a cubic box of side L and periodic bound-
ary conditions are imposed on the matter fields and on the wavefunctions of particles. The
discrete nature of the finite-volume momentum operator allows for a perturbative treatment
of QED, provided L is sufficiently large. As a consequence, the quantization conditions are
derived (sec. 3.2.1) in the perturbative regime of QED. Next, the finite volume counterpart of
the ℓ = 1 effective range expansion is presented, together with the expressions of the new
Lüscher functions, shown in the end of sec. 3.2.2. Subsequently, the energy eigenvalues of
the lowest bound and scattering states are displayed alongwith the details of the whole deriv-
ation. The pivotal results of the calculation are indeed given by the concluding formulas of
secs. 3.2.3 a) and b). In the concluding section some hints are given concerning possible future
extensions of our work. In particular, the inclusion of transverse photon interactions within
the EFT Langrangian and the introduction of strong forces coupled to two units of angular
momentum are discussed.

The appendices A and B provide supplemental material regarding the derivation of the
scattering amplitudes in sec. 3.1.1 and 3.1.2 and the three-dimensional Riemann sums arising
from the approximations of the Lüscher functions in secs. 3.2.2, 3.2.3 a) and b).
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3.1 Two-body scattering in infinite volume
We extend the analysis in the previous chapter to the case of spinless fermions coupled to one
unit of angular momentum. Adopting the conventions in ref. [37] for the coupling constants,
the Lagrangian density (cf. eq. (1.6)) now assumes the form

L = ψ†
[︃
iℏ∂t + ℏ2∇2

2M

]︃
ψ + D(E∗)

8 (ψÎÏ∇ iψ)†(ψÎÏ∇ iψ) , (3.1)

where ÎÏ∇ = Î−∇ − −Ï∇ denotes the Galilean invariant derivative for fermions. Recalling the
Feynman rules in app. A.1, two-body elastic scattering processes without QED are represented
by chains of bubbles, analogous to the ones in fig. 2.1. In particular, the tree-level diagram,
consisting of a single four-fermion vertex, leads to an amplitude equal to −iD(E∗)p · p′ (cf.
ref. [39]) where ±p and ±p′ are, respectively, the momenta of the incoming and outcoming
particles in the CoM frame. As a consequence, the two-body ℓ = 1 (pseudo)potential in
momentum space takes the form

V (1)(p,q) ≡ ⟨q,−q|V̂(1)|p,−p⟩ = D(E∗) p · q , (3.2)

which coincides with the tree-level diagram multiplied by the imaginary unit.

FIGURE 3.1 – Tree-level (upper line, left), 1-loop (upper line, right) and n-loops diagrams (lower line)
representing fermion-fermion elastic scattering with the strong P-wave potential in eq. (3.1).

Considering also the other possible diagrams in momentum space with amputated legs
in fig. 3.1, the expression for the full scattering amplitude due to strong interactions can be
written as,

iTS(p,q) = i⟨q,−q|
[︂
V̂(1) + V̂(1)ĜE

0 V̂(1) + V̂(1)ĜE
0 V̂(1)ĜE

0 V̂(1) + . . .
]︂

|p,−p⟩ . (3.3)

where ĜE
0 ≡ Ĝ(+)

0 (E) is the two-body unperturbed retarded (+) Green’s function operator in
eq. (1.1). The explicit computation of the three lowest order contributions to the sum in eq. (3.3)
yields

i⟨q,−q|V̂(1)|p,−p⟩ = iD(E∗)p · q, (3.4)

i⟨q,−q|V̂(1)ĜE
0 V̂(1)|p,−p⟩ = iD(E∗)2 piqj ∂i∂′

jGE
0 (r, r′)

⃓⃓
⃓r=0r′=0

≡ iD(E∗)2 q · J0p, (3.5)

and

i⟨q,−q|V̂(1)ĜE
0 V̂(1)ĜE

0 V̂(1)|p,−p⟩ = iD(E∗)3 qipk ∂i∂′
jGE

0 (r, r′)
⃓⃓
⃓r=0r′=0

·∂′
j∂′′
kGE

0 (r′, r′′)
⃓⃓
⃓r′=0r′′=0

=iD(E∗)3q · J2
0p ,

(3.6)
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where ∂i ≡ ∂/∂ri, ∂′
i ≡ ∂/∂r′

i and ∂′′
i ≡ ∂/∂r′′

i , while J0 is a symmetric matrix whose elements
are given by

(J0)ij = ∂i∂′
jGE

0 (r, r′)
⃓⃓
⃓r=0r′=0

, (3.7)

and Einstein’s index convention is henceforth understood. Extending the computation to
higher orders, it is evident that the infinite superposition of chains of bubbles translates into a
geometric series in the total scattering amplitude, as in the ℓ = 0 case, and a formula analogous
to eq. (2) in ref. [2] is obtained,

iTS(p,q) = iD(E∗) q ·
(︂
1 +D(E∗)J0 +D(E∗)2J2

0 +D(E∗)3J3
0 + . . .

)︂
p = q · D(E∗)

1 −D(E∗)J0
p . (3.8)

Furthermore, performing the Fourier transform of the potential in eq. (3.2) into configuration
space,

V (1)(r, r′) ≡ ⟨r′|V̂(1)|r⟩ = D(E∗) ∇δ(r) · ∇′δ(r′) , (3.9)

the full scattering amplitude can be recovered independently in position space by means of
partial integrations and cancellations of surface integrals at infinity,

TS(r, r′) = ∇δ(r) · D(E∗)
1 −D(E∗)J0

∇′δ(r′) . (3.10)

The matrix elements of J0 can be evaluated by dimensional regularization. Applying the for-
mula in eq. (B18) of ref. [132] for d-dimensional integration, eq. (3.7) in arbitrary d-dimensions
becomes

(J0)ij (d) = ∂i∂′
jGE

0 (d; r, r′)
⃓⃓
⃓r=0r′=0

=
(︂µ

2

)︂3−d ∫︂

Rd

ddk
(2π)d

kikj
E − k2/M + iε

= −δij
M2(E + iε)
d(4π)d/2

(︂µ
2

)︂3−d
[−M(E + iε)]d/2−1Γ

(︁2−d
2
)︁

(3.11)

where µ is the renormalization scale introduced by the minimal subtraction (MS) scheme.
Like the S-wave counterpart, the integral proves to be finite in three dimensions and, within
this limit, is given by

lim
dÏ3

∂i∂′
jGE

0 (r, r′;d)
⃓⃓
⃓r,r′=0

= ∂i∂′
jGE

0 (r, r′)
⃓⃓
⃓r,r′=0

= −δij
M
4π

i|p|3
3 , (3.12)

where the energy E in the CoM frame has been eventually expressed as p2/M . For the sake
of completeness, we derive the contribution to (J0)ij from the power divergence subtraction
(PDS) regularization scheme, in which the power counting of the EFT is manifest [18,22]. With
this aim, the eventual poles of the regularized integral for d Ï 2 should be taken into account.
In this limit, it turns out from eq. (3.11) that the Euler’s Gamma has a pole singularity of the
kind 2/(2 − d). As a consequence, the original dimensional regularization result in eq. (3.11)
acquires a finite PDS contribution, transforming into

(J0)PDS
ij = ∂i∂′

jGE
0 (3; r, r′)

⃓⃓
⃓
PDS

r=0r′=0
= −δij

M
4π

(︃
i|p|3

3 + µp2

2

)︃
. (3.13)
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This can be compared with the one in eq. (4) in ref. [2] for the S-wave interactions. Since the
J0 matrix is diagonal (eq. (3.13)), few efforts are needed for the computation of the fermion-
fermion scattering amplitude,

TS(p,q) = 12π
M

D(E∗)p · q
12π
M + iD(E∗)|p|3

. (3.14)

With reference to scattering theory [120], the TS matrix for P-wave elastic scattering with
phase shift δ1 can be written as

TS(p,q) = −4π
M

ei2δ1 − 1
2i|p| 3 cos θ = −12π

M
p · q

|p|3 cot δ1 − i|p|3 , (3.15)

where θ is the angle between the incoming and outcoming direction of particles in the CoM
frame. Recalling the effective-range expansion (ERE) [120] for ℓ = 1 scattering in eq. (1.11),

|p|3 cot δ1 = − 1
a + 1

2r0p2 + r1p4 + r2p6 + . . . , (3.16)

an expression for the scattering parameters in terms of the momenta of the particles, the
coupling constant and the mass M can be drawn. In particular, a formula for the scattering
length analogous to eq. (2.16) of ref. [22] can be recovered,

a = M
4π

D(E∗)
3 . (3.17)

Furthermore, the effective range parameter r0 vanishes, as in the zero angular momentum
case. Plugging the PDS-regularized expression of J0 in eq. (3.13) into eq. (3.8) and exploiting
the ERE again, finally, the renormalized form of the coupling constant D(E∗) is obtained,

D(E∗, µ) = 3a
(︃

4π
M + µp2

2

)︃
. (3.18)

Unlike in the ℓ = 0 case, we note that the µ-dependent version of D(E∗) = 12πa/M is quadratic
in the momentum of the incoming fermions.

3.1.1 Coulomb corrections
As in sec. 2.1.1, we now examine in detail the amplitudes associated to two-body scattering
diagrams with one scalar photon insertion. For the puprose, we add the Lagrangian density
in eq. (1.13) on top of the one in eq. (3.1). Analogously to the S-wave case, Coulomb photon
exchanges occur within the bubbles and the external legs of the scattering diagrams.

In the same fashion as in sec. 2.1.1, we treat the order α diagrams as corrections to the
two-body elastic scattering amplitude TS in eq. (3.8) and we begin with the tree-level diagram
with a four-fermion vertex and a one-photon exchange between two external legs. From the
Feynman rules in app. A.1, the amplitude of such diagram (cf. the left part of fig. 3.2) proves
to be

− iT tree
SC (p,p′) = −D(E∗)

∫︂

R4

d4l
(2π)4

i e
E
2 + l0 − (p−l)2

2M + iε
(p − l) · p′

l2 + λ2
i e

E
2 − l0 − (l−p)2

2M + iε
. (3.19)
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FIGURE 3.2 – The tree-level (left) and one-loop (right) fermion-fermion scattering diagram for strong
ℓ = 1 interactions with one Coulomb photon insertion (dashed lines).

After integrating over the free energy l0, the tree-level amplitude in eq. (3.19) can be decom-
posed as follows

− iT tree
SC (p,p′) =

∫︂

R3

d3l
(2π)3

−ie2

l2 + λ2
MD(E∗) p · p′

p2 − (p − l)2 + iε − i
∫︂

R3

d3l
(2π)3

e2

l2 + λ2
D(E∗)M l · p′

l2 − 2p · l − iε . (3.20)

In particular, in the last rewriting the first integral on the r.h.s. turns out to be identical to the
one in eq. (2.20) except for the factor p·p′ = p2 cos θ, therefore it can be immediately integrated.
Conversely, the last integral in eq. (3.20) represents a new contribution, whose evaluation in
dimensional regularization is carried out in app. A.2. Adding the two contributions together,
the tree level amplitude with Coulomb photon insertion in eq. (3.20) becomes

T tree
SC (p,p′) = cos θD(E∗)αM2 ·

[︃
|p|
(︂

i − π
2

)︂
− i|p| log 2|p|

λ

]︃
+ O(λ) , (3.21)

where the limit λ Ï 0 for the O(λ) terms is understood. From the last equation we infer that,
due to the linear dependence in the momenta of the incoming particles p in the CoM frame,
P-wave fermion-fermion scattering is suppressed with respect to the S-wave one in the low-p
limit. However, both the ℓ = 0 and ℓ = 1 tree level amplitudes with one Coulomb photon
insertion are divergent in the λ Ï 0 limit.

Nevertheless, due to the fact that the latter logarithmic contribution is imaginary, the in-
finite term does not contribute to the O(α) corrections of the strong cross section, which is
proportional to D(E∗)[D(E∗) + 2ReT tree

SC ], as observed in sec. 2.1.1. The corrected cross section
to that order turns out to be again IR finite and proportional to 1 − πη. Analogously, the
inclusion of n Coulomb photon exchanges leads to corrections proportional to ηn in the cross
section. As a result, the feasibility of a perturbative treatment for the Coulomb force is again
regulated by the smallness of the parameter η, inversely proportional to the CoM momentum
of the incoming particles. In the very small momentum regime, the Coulomb force exerts a
strong influence on the cross-section of the elastic process and a non-perturbative treatment
of QED becomes necessary.

Furthermore, the Feynman rules for the one-loop diagram with one photon insertion on
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the right part of fig. 3.2 yield

−iT1−loop
SC (p,p′) =

∫︂

R4

d4l
(2π)4

∫︂

R4

d4k
(2π)4

−ie2

(l − k)2 + λ2 · D(E∗)
E
2 + l0 − l2

2M + iε
ip · l

E
2 − l0 − l2

2M + iε
ik · p′

E
2 + k0 − k2

2M + iε
D(E∗)

E
2 − k0 − k2

2M + iε
.

(3.22)

Besides, the contour integration with respect to the free energies k0 and l0, followed by the
momentum translation l ↦Ï q ≡ l − k, leads to

− iT1−loop
SC (p,p′) = −M2

∫︂

R3

d3k
(2π)3

∫︂

R3

d3q
(2π)3

−ie2[D(E∗)]2
q2 + λ2

ik · p′

p2 − (q + k)2 + iε
ip · (q + k)

p2 − k2 + iε . (3.23)

The remaining momentum integrations are performed in dimensional regularization (cf. app. A.2)
and give

T1−loop
SC (p,p′) = cos θ[D(E∗)]2αM

2

4π
p4

6

[︃
1
ε − γE + 7

3 + iπ − log
(︃

2p2

πµ

)︃]︃
, (3.24)

where ε ≡ 3 −d. The amplitude in eq. (3.24) displays a pole at d = 3 as the one in eq. (2.24), an
ultraviolet divergence that can be reabsorbed through a redefinition of the strength parameter
D(E∗) via the renormalization process. However, T1−loop

SC is devoid of the logarithmic diver-
gence in the zero-momentum limit, due to the multiplication by a factor p2. Consequently,
in comparison with the zero angular momentum counterpart, the ℓ = 1 one-loop scattering
amplitude with one-photon insertion is suppressed in the limit of zero momentum p of the
incoming particles in the CoM frame. Since T1−loop

SC possesses also a pole in the d Ï 2 limit,
the implementation of the PDS scheme results into an additional term proportional to the
renormalization scale (or mass),

T1−loop
SC (p,p′)

⃓⃓
⃓
PDS

= cos θ[D(E∗)]2αM
2

4π
p2

2

[︃p2

3

(︃
1
ε − γE + 7

3 − log 2p2

πµ + iπ
)︃

+ µ
2

]︃
. (3.25)

Differently from the ℓ = 0 counterpart in eq. (2.24), the logaritmic term in the CoM momentum
of the colliding fermions does not give rise to a divergence in the zero momentum limit, due
to the p4 prefactor. Nevertheless, the dressing of the one-bubble diagram with two or more
Coulomb photon insertions results in the multiplication of T1−loop

SC by one or more powers
of η = αM/2|p|2, so that, at order higher than four in α, the amplitude becomes singular
in the limit |p| Ï 0. As previously noticed, at sufficiently low momenta the perturbative
approach breaks down and the effects of Coulomb repulsion need to be treated to all orders
in α. With reference to sec. 1.2.1, the scattering T-matrix can be written in closed form
even when the Coulomb ladders are incorporated to all orders in the fine structure constant.
From comparison between the self-consistent formulas in eqs. (1.9) and (1.24), this amounts to
replacing the free-fermion propagators in the bubble diagrams of fig. 3.1 with the Coulomb
propagators in fig. 1.1.

Once the eigenstates of the full Hamiltonian are expressed in terms of the Coulomb ei-
genstates (cf. eq. (1.25)), the relevant T-matrix element to be calculated, TSC, assumes the form
given in eq. (1.28). Since the strong interaction couples the fermions to one unit of angular
momentum and Coulomb forces are central, the only nonzero component of TSC of the ex-
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pansion in eq. (1.28) is the one with ℓ = 1. Analogously to eq. (31) in ref. [2], we can, thus,
write

|p|3(cot δ1 − i) = − cos θ 12πp2

M
e2iσ1

TSC(p′,p) , (3.26)

and we replace the ERE of the l.h.s. of the last equation with the ℓ = 1 version in eq. (1.30),

p2
(︂

1 + η2
)︂ [︂
C2
η |p|(cot δ1 − i) + αMH(η)

]︂
= − 1

a(1)
C

+ 1
2r

(1)
0 p2 + r(1)

1 p4 + . . . , (3.27)

where a(1)
C , r(1)

0 and r(1)
1 are the scattering length, the effective range and the shape parameter,

respectively. By comparison with the S-wave counterpart in eq. (2.26), we can observe that,
apart from the different power of the momentum of the incoming particles in front of the
cot δ1 − i term, the most significant difference is provided by the polynomial on the l.h.s. of
the eq. (3.27), containing all even powers of η from zero to 2ℓ , as shown in eq. (1.31).

3.1.2 Repulsive channel
Considering the results of the previous section, all the elements for the derivation of the
Coulomb-corrected strong scattering amplitude, TSC(p,p′), are available. Recalling the defin-
ition and eq. (1.25), the amplitude can be computed by evaluating each of the terms in the
expansion, whose insertions are given by retarded Coulomb propagators Ĝ(+)

C followed by
ℓ = 1 four-point vertices, V̂S = V̂(1). In particular, the lowest order contribution to the T-
matrix reads

⟨ψ(−)
p′ |V̂(1)|ψ(+)p ⟩ =

∫︂

R3
d3r′

∫︂

R3
d3r ⟨ψ(−)

p′ |r′⟩⟨r′|V̂(1)|r⟩

·⟨r|ψ(+)p ⟩ = D(E∗) ∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0 · ∇ψ(+)p (r)

⃓⃓
⃓r=0 ,

(3.28)

where eqs. (1.18)-(1.19) and (3.9) have been exploited, partial integration for the two variables
has been performed and the vanishing surface terms dropped. The explicit computation of
the two integrals over the Coulomb wavefunctions (cf. eqs. (1.18)-(1.19)) in the last row is
carried out in app. A.3, and yields

D(E∗) ∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0 · ∇ψ(+)p (r)

⃓⃓
⃓r=0 = D(E∗) (1 + η2)C2

ηei2σ1p′ · p , (3.29)

where C2
η is the Sommerfeld factor, a function of η = αM/2|p|. As it can be observed, the

polynomial 1 + η2 in the l.h.s. of the generalized effective range expansion appears, see
eq. (3.27). As shown in app. A.3, the P-wave strong vertex projects out of the integral all
the components of the Coulomb wavefunctions ψ(±)

p with ℓ ̸= 1 appearing in the angular
momentum expansion

ψ(+)p (r) = 4π
|p|r

+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
iℓeiσℓYm∗

ℓ (p̂)Ymℓ (r̂)Fℓ(η, |p|r) , (3.30)

where p̂ and r̂ are unit vectors parallel to p and r ≡ r r̂ respectively and Fℓ(η, |p|r) is the
regular Coulomb wavefunction for unbound states. The latter functions, derived by Yost,
Wheeler and Breit in ref. [133], display a regular behaviour in the vicinity of the origin, in
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contrast with the Gℓ(η, |p|r), linearly independent solutions of the Whittaker equation for a
repulsive Coulomb potential which are irregular for r Ï 0. Explicitly, Fℓ(η, |p|r) has the form
given in ref. [125],

Fℓ(η, |p|r) = 2ℓe−πη/2|Γ(1 + ℓ + iη)|
(2ℓ + 1)! (|p|r)ℓ+1ei|p|rM(1 + ℓ + iη, 2ℓ + 2,−2i|p|r) . (3.31)

The expansion for the incoming waves is obtained via the complex-conjugation property
ψ(−)p (r) = ψ(+)∗

−p (r). Next, we proceed with derivation of the next-to-leading order contribution
to the scattering amplitude,

⟨ψ(−)
p′ |V̂1Ĝ

(+)
C V̂1|ψ(+)p ⟩ = M[D(E∗)]2

∫︂

R3
d3r′ δ(r′)

∫︂

R3
d3r′′ δ(r′′)

∫︂

R3
d3r′′′ δ(r′′′)

·
∫︂

R3
d3r′′′′ δ(r′′′′)∂′

iψ
(−)∗p (r′)∂′′

i ∂′′′
j G

(+)
C (r′′, r′′′)∂′′′′

j ψ
(+)p (r′′′′) ,

(3.32)

where partial integration has been exploited and Einstein summation convention over repeated
indices is understood. More succintly, the last equation can be recast as

⟨ψ(−)
p′ |V̂1Ĝ

(+)
C V̂1|ψ(+)p ⟩ = M[D(E∗)]2 ∂′

iψ
(−)∗
p′ (r′)

⃓⃓
⃓r′=0

∂′′
i ∂′′′

j G
(+)
C (r′′, r′′′)

⃓⃓
⃓r′′,r′′′=0

·∂′′′
i ψ

(+)
p′ (r′′′′)

⃓⃓
⃓r′′′′=0

≡ [D(E∗)]2∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0

· JC∇ψ(+)
p′ (r)

⃓⃓
⃓r=0

.

(3.33)

where in the second row, the Coulomb-corrected counterpart of the J0 matrix defined in
eq. (3.7) has been introduced,

(JC)ij = ∂i∂′
jG

(+)
C (r, r′)|r,r′=0 . (3.34)

Analogously to the ℓ = 0 case, the higher order contributions to the T-matrix possess the
same structure of eqs. (3.29) and (3.33) differ from the latter only in the powers of JC and the
coupling constant D(E∗). Therefore we can again write

iTSC(p′,p) = iD(E∗) ∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0

[︂
1 +D(E∗)JC +D(E∗)2J2

C +D(E∗)3J3
C + . . .

]︂
∇ψ(+)p (r)

⃓⃓
⃓r=0

,
(3.35)

and we can treat the terms enclosed by the round barckets as a geometric series,

TSC(p′,p) = ∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0

· D(E∗)
1 −D(E∗)JC

∇ψ(+)p (r)
⃓⃓
⃓r=0

. (3.36)

Denoting the outer product between vectors with ⊗ and recalling the definition of the Coulomb
Green’s function operators in eq. (1.21), it is convenient to rewrite the JC matrix as

JC = M
∫︂

R3
d3r δ(r)

∫︂

R3
d3r′ δ(r′)

∫︂

R3

d3s
(2π)3

∇ψ(+)s (r) ⊗ ∇′ψ(+)∗s (r′)
p2 − s2 + iε , (3.37)
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and we observe that the numerator can be considerably simplified by means of the results of
app. A.3. In particular, eq. (A.100) can be applied twice, yielding

∫︂

R3
d3r δ(r)

∫︂

R3
d3r′ δ(r′)∇ψ(+)s (r) ⊗ ∇′ψ(+)∗s (r′) = C2

η(1 + η2) s ⊗ s . (3.38)

Equipped with the last result together with eq. (1.20), we recast the components of the JC
matrix as

(JC)ij = M
∫︂

R3

d3s
(2π)3

2πη(s) sisj
e2πη(s) − 1

1 + η(s)2
p2 − s2 + iε , (3.39)

where the dependence of η on the integrated momentum s has been made explicit. As the
ℓ = 0 counterpart in eq. (43) of ref. [2], the integral is ultraviolet divergent. Additionally,
all the off-diagonal matrix elements of JC vanish, as the integrand is manifestly rotationally
symmetric in three dimensions except for the components sisj , that are integrated over a
symmetric interval around zero, see eq. (4.3.4) in ref. [130]. In dimensional regularization,
eq. (3.39) can be rewritten as

(JC)ij (d) = Mδij
d

∫︂

Rd

dds
(2π)d

2πη(s) s2

e2πη(s) − 1
1 + η(s)2

p2 − s2 + iε ≡ jC(d)δij , (3.40)

an expression that in three dimensions, combined with the results in app. A.3, allows to simplify
the Coulomb-corrected strong scattering amplitude as

TSC(p′,p) = (1 + η2)C2
η
D(E∗) e2iσ1p · p′

1 −D(E∗) jC
, (3.41)

in momentum space. Returning to eq. (3.36) and ignoring the Feynman prescription in the
denominator, we first exploit the trick for eq. (2.32) and split the integral into three parts,

jC(d) = M
d

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1

p2

s2
p2

p2 − s2 (1 + η2)

−Md

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1

p2

s2 (1 + η2)

−Md

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1(1 + η2)

≡ jfin
C (d; p) + j

div,1
C (d; p) + j

div,2
C (d; p) .

(3.42)

While the first one proves to be finite, the other two display a pole for d Ï 3 and the PDS
regularization scheme has to be implemented. We begin with the integral in the first row of
eq. (3.42), jfin

C . The numerator of the latter can be split into two parts, according to the terms
of the polynomial in η inside the round brackets. Taking the limit d Ï 3, we observe that
one of the two parts coincides with Jfin

C in eq. (2.34), up to a proportionality constant equal to
p2/3. In comparison with the latter, the other part of jfin

C in eq. (3.42) is suppressed by two
further powers of η, therefore it is pairwise UV-finite and the three-dimensional limit finds a
justification. After these manipulations, jfin

C becomes

jfin
C (p) ≡ lim

dÏ3
jfin
C (d; p) = −H(η)αM

2

4π
p2

3 + M
d

∫︂

Rd

dds
(2π)d−1

η3

e2πη − 1
p2

s2
p2

p2 − s2 . (3.43)
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Due to spherical symmetry, the integration over the angular variables in the last term can be
immediately performed. By means of the substitution s ↦Ï 2πη = παM/s, the integral in the
second row of eq. (3.43) can be simplified as

M
3

∫︂

R3

d3s
(2π)2

η3

e2πη − 1
p4

s2
1

p2 − s2 = −p2

3
αM2

(2π)3

[︃∫︂ +∞

0

dx
x

x2

ex − 1 −
∫︂ +∞

0
dx xa2

(ex − 1)(x2 + a2)

]︃
.

(3.44)
where a ≡ iπαM/|p|. The first of the two integrals in the last row can be evaluated by means
of the following identity

ζ(ω)Γ(ω) =
∫︂ +∞

0

dt
t

tω
et − 1 , (3.45)

connecting Euler’s Gamma function with Riemann’s Zeta function, while the second one in
eq. (3.43) is analogous to the integral in eq. (46) of ref. [2], modulo a constant factor. Consid-
ering the last two identities, eq. (3.44) can be recast into

p2

3
αM2

(2π)3
{︂
ζ(2)Γ(2) − a2

2

[︂
log
(︂ a

2π

)︂
− π
a − ψ

(︂ a
2π

)︂]︂}︂
= p2

3
αM2

(2π)3

[︃
π2

6 − π2α2M2

2p2 H(η)
]︃
, (3.46)

where the definition of H(η) in eq. (1.33) and the fact that ζ(2) = π2/6 have been exploited.
The subsequent addition of the last result to the already calculated contribution to eq. (3.43)
yields the sought closed expression for jfin

C (p),

jfin
C (p) = M

3

∫︂

R3

d3s
(2π)3

2πη
e2πη − 1

p2

s2
p2

p2 − s2 (1 + η2) = αM2

48π
p2

3 − αM2

4π
p2

3 (1 + η2)H(η) . (3.47)

Now we focus on the term in the second row of eq. (3.42). By comparison with the integrand
of eq. (2.36), we expect the integral of interest to display an UV singularity. Splitting the
polynomial within the round brackets on the numerator of the integrand, we recognize, in
fact, the already available Jdiv

C in eq. (2.42) (cf. eq. (53) in ref. [2]),

j
div,1
C (d; p) ≡ −Md

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1

p2

s2 (1 + η2) = p2

d J
div
0 (d; p) − M

d

∫︂

Rd

dds
(2π)d−1

η3

e2πη − 1
p2

s2 .

(3.48)
Again, spherical symmetry permits to integrate over the angular variables of the last integral
on the r.h.s. of eq. (3.48) and the substitution s ↦Ï 2πη = παM/s allows for the exploitation
of the integral relation between the Gamma- and the Riemann Zeta function in eq. (3.45),
obtaining

−Md

∫︂

Rd

dds
(2π)d

2πη3

e2πη − 1
p2

s2 = −
(︂µ

2

)︂3−d αd−2Md−1πd/2−4

2d+1Γ
(︁d

2
)︁ p2

d

∫︂ +∞

0

dx
x

x5−d

ex − 1

= −
(︂µ

2

)︂3−d αd−2Md−1πd/2−4

2d+1Γ
(︁d

2
)︁ p2

d ζ(5 − d)Γ(5 − d) .

(3.49)

Unlike the first term on the r.h.s. of eq. (3.48), the present integral proves to be convergent in
three dimensions, since ζ(2) = π2/6 is finite and the arguments of the Gamma functions are
positive integers or half-integers. Additionally, no PDS poles are found in the same expression.
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Therefore, the limit d Ï 3 can be safely taken, yielding

lim
dÏ3

−Md

∫︂

Rd

dds
(2π)d

2πη3

e2πη − 1
p2

s2 = −αM
2

16π
p2

9 . (3.50)

Plugging the available result in eq. (2.42), we can finally write a closed expression for j
div,1
SC (p)

in the PDS regularization scheme,

j
div,1
C (p) = αM2

4π
p2

3

[︃
1

3 − d + log µ
√
π

αM + 4
3 − 3

2γE
]︃

− µM
8π p2 − αM2

16π
p2

9 . (3.51)

Finally, we concentrate our attention on the term in the third row of eq. (3.42). From that
equation, we infer that the only difference with respect to integrand of j

div,1
C consists in the

absence of the factor 1/s2, which enhances the divergent behaviour of the integral in the
s Ï +∞ limit. Therefore, we expect also this third contribution to jC to be UV divergent.
After splitting the integral as in eq. (3.48), we obtain

j
div,2
SC (d; p) = −Md

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1(1 + η2) = −Md

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1 − M

d

∫︂

Rd

dds
(2π)d

2πη3

e2πη − 1 .

(3.52)
Now we focus on the first term on the r.h.s. of the last equation. Rotational invariance allows
again for the integration over the angular variables in d dimensions. Then, change of variables
s ↦Ï x ≡ 2πη permits to exploit again the multiplication identity between the Riemann Zeta
and the Euler’s Gamma functions (cf. eq. (3.44)). Additionally, thanks to the fundamental
properties of the Gamma function and the definiton of ε ≡ 3 − d we obtain

−
(︂µ

2

)︂3−d M
d

2πd/2

Γ
(︁d

2
)︁
∫︂ +∞

0

ds sd−1

(2π)d
2πη

e2πη − 1 = −
(︂µ

2

)︂3−d M
d

2πd/2

Γ
(︁d

2
)︁ (αMπ)d

(2π)d

∫︂ +∞

0

dx
x

x1−d

ex − 1

= −
(︂µ

2

)︂3−d αdM1+dπd/2

2d−1Γ
(︁d

2
)︁
d
ζ(1 − d)Γ(1 − d) = −

α3M4π3/2(1 − ε
3 )−1

24(1 − ε
2 )(1 − ε)

(︃
µ

αM
√
π

)︃ε ζ(ε − 2)Γ(ε)
Γ
(︁3−ε

2
)︁ ,

(3.53)
where, in the last step, the Gamma functions and the physical constants have been rewritten
in order to highlight the dependence on the small quantity ε. From the last row of eq. (3.53),
we can infer that, while the Gamma function has a simple pole for d Ï 3, the Riemann Zeta
function analytically continued to the whole complex plane is zero in that limit, since it is
evaluated at a negative even integer, i.e. ζ(−2n) = 0 n ∈ N+. Therefore, the fourth expression
in eq. (3.53) cannot be immediately evaluated in the three-dimensional limit. Performing a
Taylor expansion of the Zeta function about −2, we obtain

ζ(1 − d) ≡ ζ(ε − 2) = ζ(−2) + ζ′(−2)ε + O(ε2) ≈ 0 − ζ(3)
4π2 ε , (3.54)

where ζ(3) ≈ 1.20205 is an irrational number, known as the Apéry constant. Furthermore,
also the expansion of Γ

(︁3−ε
2
)︁

about 3/2 up to first order in ε has to be taken into account.
Combining eq. (3.54) with the Taylor expansion of the physical constants with exponent ε in
the round bracket and the Laurent expansion of the Gamma function, eq. (3.53) transforms
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into

− lim
dÏ3

M
d

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1 = α3M4

16π
ζ(3)

3 lim
εÏ0

ε
(︁ 1
ε − γE

)︁ [︁
1 + ε

2 (2 − 2 log 2 − γE)
]︁

(1 − ε)
(︁
1 − ε

2
)︁ (︁

1 − ε
3
)︁ = α3M4

16π
ζ(3)

3 ,

(3.55)
where negligible terms in ε have been omitted in the intermediate step. As it can be inferred
from eq. (3.55), the result of the integration becomes finite in the framework of dimensional
regularization, even if the corresponding integral in the first row of eq. (3.53) is divergent for
d = 3 due to the singularity at x = 0. Since the original expression in third row of eq. (3.53)
contains a pole at d = 2 while Γ(1) = 1 and ζ(−1) = − 1

12 in the two-dimensional limit, the
PDS correction should be taken into account. Therefore, the complete application of the PDS
scheme into eq. (3.55) gives

− lim
dÏ3

M
d

∫︂

Rd

dds
(2π)d

2πη
e2πη − 1

⃓⃓
⃓
PDS

= α3M4

16π
ζ(3)

3 − α2M3π
32

µ
3 . (3.56)

Next, we switch to the evaluation of the last term on the r.h.s. of eq. (3.52). Proceeding exactly
as in eq. (3.53), we find

−
(︂µ

2

)︂3−d M
d

2πd/2

Γ
(︁d

2
)︁
∫︂ +∞

0

ds sd−1

(2π)d
2πη3

e2πη − 1 = −
(︂µ

2

)︂3−d M
d

2πd/2

Γ
(︁d

2
)︁ (αMπ)d

(2π)d+2

∫︂ +∞

0

dx
x

x3−d

ex − 1

= −
(︂µ

2

)︂3−d M
d

2πd/2

Γ
(︁d

2
)︁ (αMπ)d

(2π)d+2 ζ(3 − d)Γ(3 − d) = − α3M4

3 24√
π
ζ(ε)

1 − ε
3

(︃
µ

αM
√
π

)︃ε Γ(ε)
Γ
(︁3−ε

2
)︁ .

(3.57)
Differently from the previous case, the Riemann Zeta function is nonzero in the three-
dimensional limit and the only singularity for ε = 0 belongs to the Gamma function in the
numerator of the second row of eq. (3.57). Considering the expansions of all the ε-dependent
functions about zero, the asymptotic expression for eq. (3.57) is recovered

lim
dÏ3

−Md

∫︂

Rd

dds
(2π)d

2πη3

e2πη − 1 = α3M4

16π
1
3

[︃
1

3 − d − 3
2γE + 4

3 + log µ
√
π

αM

]︃
. (3.58)

As it can be inferred from eq. (3.57), also a PDS singularity at d Ï 2 is present, since the
Riemann Zeta function displays a simple pole at unit arguments. In particular, the Laurent
expansion of the Zeta function around 1 yields

ζ(3 − d) = ζ(1 + 2 − d) = 1
2 − d + γE + O(2−d) . (3.59)

Applying the PDS regularization scheme and subtracting the correction corresponding to the
d = 2 pole, the expression in eq. (3.58) becomes

− lim
dÏ3

M
d

∫︂

Rd

dds
(2π)d

2πη3

e2πη − 1

⃓⃓
⃓
PDS

= α3M4

16π
1
3

[︃
1

3 − d − 3
2γE + 4

3 + log µ
√
π

αM

]︃
− α2M3

16π
µ
2 . (3.60)

Thanks to the last expression and eq. (3.60), a closed form for the third contribution to the
diagonal elements of the JC matrix is found,

j
div,2
C (p) = α3M4

16π
ζ(3)

3 − α2M3π
32

µ
3 + α3M4

16π
1
3

[︃
1

3 − d − 3
2γE + 4

3 + log µ
√
π

αM

]︃
− α2M3

16π
µ
2 . (3.61)
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Finally, collecting the three results in eqs. (3.47), (3.51) and (3.61), the latter matrix elements
are obtained

jC(p) = jfin
C (p) + j

div,1
C (p) + j

div,2
C (p) = α3M4

48π

[︃
1

3 − d + ζ(3) − 3
2γE + 4

3 + log µ
√
π

αM

]︃

+αM
2

4π
p2

3

[︃
1

3 − d + 4
3 − 3

2γE + log µ
√
π

αM

]︃
− α2M3

32π
µ
3

(︂
π2 − 3

)︂
− µM

4π
p2

2 − αM2

4π
p2

3 H(η)(1 + η2) .

(3.62)
A direct comparison with the ℓ = 0 counterpart of the last expression, eqs. (2.34) and (2.41),
shows that the QED contributions to jC include terms of higher order in the fine-structure
constant α. Moreover, owing to the elements jfin

C and j
div,1
C , an explicit dependence on the

momenta of the incoming fermions ±p outside H(η) appears. Since jC contains quadratic
terms in p, eq. (3.62) gives rise to a non-zero value for the effective range parameter r(1)

0 in
the ERE formula in eq. (3.27). Combining the ℓ = 1 component of the T-matrix expansion in
terms of Legendre polynomials in eq. (1.28) with eq. (3.42), an expression for |p|3(cot δ1 − i)
can be found,

|p|3(cot δ1 − i) = −12π
M

1 −D(E∗)jC(p)
D(E∗) C2

η(1 + η2) . (3.63)

Plugging the last expression into the ℓ = 1 generalized ERE formula, the term of eq. (3.62)
proportional to H(η) cancels out with its counterpart in eq. (1.33), and all the momentum-
independent contributions can be collected, yielding the expression for the Coulomb-corrected
ℓ = 1 scattering length,

1
a(1)

C

= 12π
MD(E∗) + α2M2µ

8

(︂
π2 − 3

)︂
− α3M3

4

[︃
1

3 − d + ζ(3) − 3
2γE + 4

3 + log µ
√
π

αM

]︃
. (3.64)

which represents the measured P-wave fermion-fermion scattering length. As in the ℓ = 0
case, the ultraviolet pole is expected to be removed by counterterms which describe short-
distance electromagnetic and other isospin-breaking interactions due to the differences between
the quark masses [134]. The subsidiary terms transform the coupling constant D(E∗) into a
renormalization mass dependent coefficient, D(E∗, µ), which allows for a redefinition of the
scattering length as in eq. (2.43),

1
a(1)

C (µ)
= 12π
MD(E∗, µ) + α2M2µ

8

(︂
π2 − 3

)︂
. (3.65)

The latter quantity is non-measurable and depends on the renormalization point µ, related to
the physical scattering length through the relation

1
a(1)

C (µ)
= 1
a(1)

C

+ α3M3

4

[︃
ζ(3) − 3

2γE + 4
3 + log µ

√
π

αM

]︃
, (3.66)

which is the ℓ = 1 counterpart of eq. (2.44). Besides, grouping the quadratic terms in the
momentum of the fermions arising in the l.h.s. of eq. (3.27), an expression for the effective
range is recovered,

r(1)
0 = αM

[︃
2

3 − d + 8
3 − 3γE + 2 log µ

√
π

αM

]︃
− 3µ , (3.67)
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As in the case of the inverse of the scattering length in eq. (3.66), r(1)
0 possesses a simple pole

at d = 3. If the energy-dependent coefficient of our P-wave interaction D(E∗) is replaced by
D0, the singularity can be removed by means of counterterms coming from the p2-dependent
ℓ = 0 interactions, proportional to (ψÎÏ∇ 2ψ)†ψÎÏ∇ 2ψ in momentum space. These interactions
correspond to the term with coefficient C2 of the potential in eq. (1.5) in momentum space
and yield the leading contribution to the effective range in the low-momentum regime when
only zero-angular-momentum interactions are present.
Despite the difference in the SO(3) transformation properties induced by the interaction, both
the Lagrangian density with ℓ = 0 (cf. eq. (1.5)) interactions and the one with ℓ = 1 (cf.
eq. (1.6)) potentials give rise to a scattering amplitude TS(p,p′) whose |p|2ℓ+1 · (cot δℓ − i) factor
leads to a vanishing effective range. As soon as the Coulomb interaction is included in the
Lagrangian, when the potential couples the fermions to one unit of angular momentum, a
purely electrostatic non-zero effective range emerges, in contrast with the ℓ = 0 case, see
sec. 2.1.2. Therefore, we shall expect that, for higher angular momentum interactions further
coefficients in the generalized expansion of |p|2ℓ+1 cot δℓ in even powers of the momentum of
the fermions in the CoM frame become non-zero when the colliding particles are allowed to
exchange Coulomb photons.

3.1.3 Attractive channel
We consider the scattering of two non-relativistic fermions with opposite charges, such as
fermion-antifermion pairs. Concerning elastic scattering, the continuum eigenstates are again
represented by the spherical wave solutions in eqs. (1.18)-(1.19), with η now given by −αM/2|p|.
Besides, the phenomenology of the scattering process is now enriched by the presence of
bound states. In addition, annihilation is possible, but this will not be considered here. The
Coulomb Green’s function, in fact, is enriched by discrete states, φn,ℓ,m(r), corresponding to
bound states with principal quantum number n ≥ 1 and rotation group labels given by (ℓ,m),

⟨r′|Ĝ(±)
C |r⟩ =

+∞∑︂

n=1

+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ

φn,ℓ,m(r′)φ∗
n,ℓ,m(r′)

E − En
+
∫︂

R3

d3s
(2π)3

ψ(±)s (r′)ψ(±)∗s (r)
E − Es ± iε , (3.68)

where Es is equal to α2M/4η2 and the bound state eigenvalues, En, are given by Bohr’s formula
for a system with reduced mass equal to M/2,

En = −α
2M

4n2 , (3.69)

in natural units. As in the previous case, the Coulomb-corrected strong scattering amplitude
of the elastic scattering process in configuration space takes the form

TSC(p′,p) = ∇′ψ(−)∗
p′ (r′)

⃓⃓
⃓r′=0

· D(E∗)
1 −D(E∗)JC

∇ψ(+)p (r)
⃓⃓
⃓r=0

, (3.70)

where D(E∗) is the strong P-wave coupling constant in presence of attractive electrostatic
interaction and the matrix JC is, now, given by

JC = Jd
C + Jc

C , (3.71)
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which corresponds to the addition of the contributions from discrete and continuum states,

Jd
C =

+∞∑︂

n=1

+∞∑︂

ℓ=0

+ℓ∑︂

m=−ℓ

∫︂

R3
d3r′ δ(r′)

∫︂

R3
d3r δ(r)

∇′φn,ℓ,m(r′) ⊗ ∇φ∗
n,ℓ,m(r)

E − En + iε , (3.72)

and

Jc
C =

∫︂

R3
d3r′ δ(r′)

∫︂

R3
d3r δ(r)

∫︂

R3

d3s
(2π)3

∇′ψ(+)s (r′) ⊗ ∇ψ(+)∗s (r)
E − Es + iε , (3.73)

respectively. Let us start by evaluating the term Jd
C. With reference to the expression of the

eigenfunctions belonging to the discrete spectrum,

φn,ℓ,m(r) =

√︄(︃
αM
n

)︃3 n − ℓ − 1!
n + ℓ! 2n e

− αM
2n r
(︁αMr

n
)︁ℓL2ℓ+1

n−ℓ−1
(︁αM
n r
)︁
Ymℓ (θ, φ) , (3.74)

where Lnk (x) are the associated Laguerre polynomials, we first evaluate the integrals containing
the gradient of the latter in the expression for Jd

C in eq. (3.72), that can be performed separately
for each of the wavefunctions, since the denominator does not depend on the coordinates. The
application of the gradient on the bound state wavefunctions, ∇φn,ℓ,m(r)

⃓⃓
⃓r=0

, yields

−
(︃
αM
n

)︃ 3
2
√︃
n − ℓ − 1!
n + ℓ! 2n

∫︂ +∞

0
dr δ(r)

4π

{︂
∇
[︂
e− αM

2n r
(︁αM
n r
)︁ℓL2ℓ+1

n−ℓ−1
(︁αM
n r
)︁]︂ ∫︂

∂S2
dΩ Ymℓ (Ω)

+e
− αM

2n r

r
(︁αM
n r
)︁ℓL2ℓ+1

n−ℓ−1
(︁αM
n r
)︁ ∫︁

∂S2 dΩ ∇Ymℓ (Ω)
}︂
,

(3.75)

where the spherical symmetry of the Dirac delta has been exploited. Of the latter equation,
we consider now the first term on the right hand side. Firstly, expressing the radius vector
componentwise as a spherical tensor of rank 1 (cf. eq. (5.24) and sec. 5.1 in ref. [135]), the
aforementioned part of eq. (3.75) becomes

− 1√
4π

(︃
αM
n

)︃ 3
2
√︃
n − ℓ − 1!
n + ℓ! 2n

1∑︂

µ=−1

∫︂ +∞

0
dr δ(r) e

− αM
2 r

r
(︁αM
n r
)︁ℓ{︂ [︁ℓ − αM

2n r
]︁
L2ℓ+1
n−ℓ−1

(︁αM
n r
)︁

−αMn rL2ℓ+2
n−ℓ−2

(︁αM
n r
)︁}︂ ∫︁ 2π

0 dφ
∫︁ π

0 dθ sin θ (110|µ − µ0)Yµ1 (θ, φ)Ymℓ (θ, φ) e−µ .

(3.76)

Now, recalling the expression of the constant term of the associated Laguerre polynomials,

Lkm(0) = m + k!
m! k! , (3.77)

eq. (3.76) can be concisely recast into

− 1√
4π

αM
n

(︃
αM
n

)︃ 3
2
√︃
n − ℓ − 1!
n + ℓ! 2n

n + 1!
n − 2! 3! (110| −mm0)(−1)mδℓ1 em , (3.78)

where the integration over the angular variables Ω has been performed. After replacing the
Clebsch-Gordan coefficient (110|−mm0) with (−1)m+1/

√
3, and performing few manipulations,
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the sought expression is recovered,

1
12

(︃
α5M5

6πn5

)︃ 1
2 √︁

(n + 1)(n − 1) δℓ1 em . (3.79)

Concerning the second term on the r.h.s. of eq. (3.75), the rewriting of the gradient of a
spherical harmonic into linear combination of spherical tensors (cf. eqs. (5.24) and (5.27) in
ref. [135]) gives

1√
4π

(︃
αM
n

)︃3/2√︃n − ℓ − 1!
n + ℓ! 2n

∫︂ +∞

0
dr δ(r)e

− αM
2n r

r
(︁αM
n r
)︁ℓL2ℓ+1

n−ℓ−1
(︁αM
n r
)︁

·
∑︂

µ,µ′

∫︂ 2π

0
dφ
∫︂ π

0
dθ sin θ

[︄√︃
ℓ(ℓ + 1)2
2ℓ + 1 (ℓ − 1 1 ℓ|µ µ′ m)Yµℓ−1(θ, φ)Y0∗

0 (θ, φ) eµ′

+
√︃
ℓ2(ℓ + 1)
2ℓ + 1 (ℓ + 1 1 ℓ|µ µ′ m)Yµℓ+1(θ, φ)Y0∗

0 (θ, φ) eµ′

]︄
,

(3.80)

thus, allowing again for an immediate integration over the angular variables,

1√
4π

(︃
αM
n

)︃3/2√︃n − ℓ − 1!
n + ℓ! 2n

n + 1!
n − 2! · αM6n

2√
3

∑︂

µ
(011|0µm)δℓ1 eµ , (3.81)

where the eq. (3.77) for the evaluation of the Laguerre polynomials at the origin has been
exploited. Subsequently, the replacement (011|0mm) = 1 gives the desired expression for the
second term of eq. (3.75),

1
6

(︃
α5M5

6πn5

)︃ 1
2 √︁

(n + 1)(n − 1)δℓ1 em . (3.82)

Equipped with the results in eqs. (3.79) and (3.82), the original integral can be immediately
evaluated,

∫︂

R3
d3r δ(r)∇φn,ℓ,m(r) = 1

4

(︃
α5M5

6πn5

)︃ 1
2 √︁

(n + 1)(n − 1)δℓ1 em . (3.83)

Now, taking the tensor product of the latter expression with its complex-conjugate version, as
required by eq. (3.72), Jd

C reduces to

Jd
C =

+∞∑︂

n=1

1∑︂

m=−1

α5M5

16
(n + 1)(n − 1)

6πn5
em ⊗ e∗

m
E − En

= α3M4

24π

+∞∑︂

n=1

η2(n + 1)(n − 1)
n3(n2 + η2)

1∑︂

m=−1
em⊗e∗

m . (3.84)

Since the diagonal form of the matrix in the spherical complex basis (cf. eq. (2.141) in ref. [135])
is preserved in the Cartesian basis and the sum over the principal quantum number can be
decomposed and evaluated in terms of the Digamma function ψ(z),

+∞∑︂

n=1

η2

n(n2 + η2) = ζ(1) + 1
2ψ(iη) + 1

2ψ(−iη) , (3.85)
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and
+∞∑︂

n=1

η2

n3(n2 + η2) = −ζ(1)
η2 + ζ(3) − 1

2η2ψ(−iη) − 1
2η2ψ(iη) , (3.86)

the contribution to the scattering matrix due to the discrete states,

Jd
C ≡ jd

C(p) 1 , (3.87)

can be ultimately rewritten as

jd
C(p) = (1 + η2)αM

2

3π
p2

2

[︃
ζ(1) + 1

2ψ(−iη) + 1
2ψ(iη)

]︃
− α3M4

24π ζ(3) . (3.88)

As observed in sec. 2.1.3, the divergent sum of the harmonic series, ζ(1), appears in the last
formula. Its presence is only due to the numerable infinity of states in the discrete spectrum,
whose energy depends on the inverse square of n, while the modulus square of the gradient
of the eigenfunctions evaluated at the origin yields a factor ∝ n2. The replacement of ζ(1) in
eq. (3.88) by its Cauchy principal value, equal to γE , allows to assign a finite value to jd

C and,
thus, circumvent the divergence.
At this stage, we switch to the continuous contribution to the auxiliary scattering matrix, Jc

C. As
for the repulsive counterpart in sec. 3.1.2, the possible divergences in the three-dimensional
limit require the rewriting of the relevant intergrals in arbitrary complex dimension d. There-
fore, the dimensionally regularized version of the second term on the r.h.s. of eq. (3.71) gives

Jc
C(d) = 1

M
d

∫︂

Rd

dds
(2π)d

−2πη
e−2πη − 1

1 + η2

p2 − s2 + iεs2 + 1
M
d

∫︂

Rd

dds
(2π)d

−2πη
s−2

1 + η2

p2 − s2 + iε , (3.89)

where the initial integral has been split into two parts, making use of the trick in eq. (3.42).
Due to the sign change in η, the first term on the r.h.s. of eq. (3.89),

jold
C (d; p) = M

d

∫︂

Rd

dds
(2π)d

−2πη
e−2πη − 1

1 + η2

p2 − s2 + iεs2 , (3.90)

can be immediately evaluated, since it coincides with eq. (3.39). Therefore the result in eq. (3.62)
can be directly exported, rewriting eq. (3.90) as

jold
C (p) = α3M4

48π
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2γE + log µ
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− α2M3

32π
µ
3 (π2 − 3) − µM

4π
p2

2 ,
(3.91)

where the H(−η) function has been replaced by its definition in terms of the Digamma function
in eq. (1.33), in sight of the next developments. Subsequently, we evaluate the second term on
the r.h.s. of eq. (3.89), the new part of the continuum states contribution. In order to bring s2

to the denominator, we apply again the trick introduced in eq. (3.42) and split the integral into
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three parts,

jnew
C (d; p) = M

d

∫︂

Rd

dds
(2π)d

−2πη
s−2

1 + η2

p2 − s2 + iε = −Md
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dds
(2π)d (−2πη)

+Md

∫︂

Rd

dds
(2π)d

−2πηp2

p2 − s2 + α2M3

4d

∫︂

Rd

dds
(2π)d

−2πη
p2 − s2 .

(3.92)

Concerning the first term on the r.h.s. of the latter equation, it vanishes in dimensional
regularization, see eq. (4.3.1a) in ref. [130]. Therefore, we can switch to the subsequent term
of eq. (3.92) and apply Feynman’s trick for denominators, finding

M
d

∫︂

Rd

dds
(2π)d

−2πηp2

p2 − s2 = −αM
2

d
Γ
(︁3

2
)︁

Γ(1)Γ
(︁1

2
)︁
∫︂ 1

0
dω ω−1/2

∫︂

Rd

dds
(2π)d

πp2
[︁s2 − (1 − ω)p2

]︁3/2 , (3.93)

Defining again the auxiliary variable γ = −i|p|, we perform the momentum integration in
eq. (3.93),

− αM2

d
p2π

γ3−d(4π)d/2
Γ
(︁3

2 − d
2
)︁

Γ
(︁1

2
)︁

∫︂ 1

0
dω (1 − ω) d2 − 3

2
√
ω

. (3.94)

Then, since the remaining integration over ω turns out to be finite in two dimensions and
the rest of the expression does not display any PDS singularity, we can directly reintroduce
ε ≡ 3 − d and consider the three-dimensional limit. In particular, the integral over ω in
eq. (3.94) can be evaluated in first-order approximation in ε , obtaining

∫︂ 1

0
dω (1 − ω)− ε

2
√
ω

≈ 2 + 2ε − 2ε log 2 . (3.95)

Second, the terms depending on ε in the exponent can be grouped and expanded to first order
in ε as in eq. (3.55), whereas the Gamma function can be expressed in Laurent series up to
order ε0. Performing few manipulations and taking the ε Ï 0 limit, the original expression
in eq. (3.93) becomes

lim
dÏ3

M
d
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dds
(2π)d

−2πηp2
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2
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2 log πµ2
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2 + log µ
√
π

αM + log(−iη)] .

(3.96)

Subsequently, we compute the last term on the r.h.s. of eq. (3.92). As it can be inferred, the
integral coincides with the one in of eq. (3.96), except for an overall factor of α2M2/4p2 = η2.
Therefore, its evaluation is straightforward and gives

lim
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α2M3

4d

∫︂

Rd

dds
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3 − γE
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]︃
. (3.97)

Collecting both the results in eqs. (3.96) and (3.97), we obtain the sought expression for
jnew
C (d; p) in the three-dimensional limit,

jnew
C (p) = −(1 + η2)αM

2p2

6π
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3 − d + 4
3 − γE

2 + log(−iη) + log µ
√
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]︃
. (3.98)
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We now collect all the contributions in eqs. (3.88), (3.92) and (3.98) and write a closed form
for the diagonal matrix elements of JC,

jd
C(p) + jold

C (p) + jnew
C (p) = −αM
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3
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+ αM2p2

12π H(η)(1 + η2) − α2M3

32π
µ
3 (π2 − 3) ,

(3.99)
where the definition of H(η) in eq. (1.35) has been exploited and the Cauchy principal value of
ζ(1) has been taken. A direct comparison with the repulsive counterpart of the last formula
in eq. (3.62) shows that the map between the two expression is provided by the sign reversal
in front of all the terms containing odd powers of the fine-structure constant and the replace-
ment of H(η) by H(η). This fact is consistent with the conclusions drawn from eq. (2.54), where
all the PDS-corrective terms remained unaffected by the sign change in the charge of one of
the interacting fermions. We conclude this section with the derivation of an expression for
the scattering length and the effective range, by making use of the attractive counterpart of
the generalized effective-range expansion in eq. (3.27), obtained by replacing again H(η) by
H(η) with η < 0. As a consequence of the attraction of the electrostatic interaction, the Cou-
lomb corrections in the strong scattering parameters change sign, consistent with eq. (3.99).
Concerning the scattering length, we have

1
a(1)

C

= 12π
MD(E∗)

+ α3M3

4

[︃
1

3 − d + ζ(3) − 3
2γE + 4

3 + log µ
√
π
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]︃
+ α2M2µ

8

(︂
π2 − 3

)︂
, (3.100)

where the divergence can be reabsorbed by the P-wave strong coupling constant. Analogously
to eq. (2.55), the renormalized version of the scattering length, a(1)

C (µ), can be defined in terms
of the physical one, a(1)

C ,

1
a(1)

C (µ)
= 1
a(1)

C

− α3M3

4

[︃
ζ(3) − 3

2γE + 4
3 + log µ

√
π

αM

]︃
. (3.101)

Finally, the terms proportional to the square of the momentum of the fermions p give rise to
a nonzero value for the effective range, as in eq. (3.67),

r(1)
0 = −αM

[︃
2

3 − d + 8
3 − 3γE + 2 log µ

√
π

αM

]︃
− 3µ , (3.102)

whose divergent part, in case the energy-dependent coefficient of the ℓ = 1 interaction D(E∗)
is replaced by D0, can be again reabsorbed by counterterms coming from p2-dependent ℓ = 0
interactions.

3.2 The finite-volume environment
As in the S-wave case, we transpose the physical system of non-relativistic spinless fermions
interacting via scalar photons onto a cubic finite volume with edges of length L. Discarding
the zero modes, the finite-volume momenta obey the constraint |p| ≥ 2π/L that, together
with the assumption L ≫ 1/M , ensure the viability of a perturbative treatment for the QED
interactions [1].
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Considering the leading modification on the masses of the spinless fermions (cf. eq. (1.39)), the
infinite volume ERE in eq. (1.39) rewritten in terms of the translated parameters in eqs. (1.40)-
(1.44) for unbound states with TL = p2/M and ℓ = 1 assumes the form

p2(1 + η2)[C2
η |p|(cot δ1 − i) + αMH(η)] = − 1

a′
C

(1) + 1
2r

′
0

(1)p2 + r′
1

(1)p4 + . . . , (3.103)

where the changes in the total energy have been absorbed in the primed scattering paramet-
ers.
The rewriting of eq. (3.103) in terms of finite-volume quantities, combined with the quant-
ization conditions discussed below, will provide the key ingredient for the derivation of the
finite volume energy corrections for scattering and bound states with one unit of angular
momentum.

3.2.1 Quantization Condition
After introducing the finite and discretized configuration space, we derive the conditions that
determine the counterpart of the ℓ = 1 energy eigenvalues in the cubic finite-volume. Their
associated eigenstates transform as the three-dimensional irreducible representation T1 (in
Schönflies notation [131]) of the cubic group.

As it can be inferred from eq. (1.22), the eigenvalues of the full Hamiltonian of the system
Ĥ0 + V̂C + V̂S can be identified with the singularities of the two-point correlation function
GSC(r, r′). The Green’s functions GSC(r′, r), in turn, can be computed from the terms in the
expansion over the P-wave interaction insertions stemming from eq. (1.24), with V̂S in mo-
mentum space given in eq. (1.2). In particular, the three lowest order contributions in D(E∗)
yield, respectively,

⟨r′|Ĝ(±)
C |r⟩ = G(±)

C (r′, r) , (3.104)

⟨r′|Ĝ(±)
C V̂SĜ

(±)
C |r⟩ = D(E∗)∇r1GC(r′, r1)(±)

⃓⃓
⃓r1=0 · ∇r2G

(±)
C (r2, r)

⃓⃓
⃓r2=0 , (3.105)

and

⟨r′|Ĝ(±)
C V̂SĜ

(±)
C V̂SĜ

(±)
C |r⟩ = [D(E∗)]2∇r1G

(±)
C (r, r1)

⃓⃓
⃓r1=0

·∇r2 ⊗ ∇r3G
(±)
C (r2, r3)

⃓⃓
⃓r2=0r3=0∇r4G

(±)
C (r4, r)

⃓⃓
⃓r4=0 .

(3.106)

Extending the calculation to higher orders, the expression of (N + 1)th order contribution to
the full two-point correlation function can be derived,

⟨r′|Ĝ(±)
C V̂SĜ

(±)
C ...⏞ ⏟⏟ ⏞

N times

V̂SĜ
(±)
C |r⟩ = D(E∗)∇r1G

(±)
C (r′, r1)

⃓⃓
⃓r1=0

·
N∏︂

i=2

[︄
D(E∗)∇ri ⊗ ∇ri+1G

(±)
C (ri, ri+1)

⃓⃓
⃓ ri=0ri+1=0

]︄
∇rN+2G

(±)
C (rN+2, r)

⃓⃓
⃓rN+2=0 ,

(3.107)

thus allowing to rewrite the original Green’s function in terms of a geometric series of ratio

D(E∗)∇ri ⊗ ∇ri+1G
(±)
C (ri, ri+1)| ri=0ri+1=0

,
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that we identify as JC (cf. eq. (3.37)),

G(±)
SC (r′, r) = ⟨r′|Ĝ(±)

SC |r⟩ = G(±)
C (r′, r) + ∇r1G

(±)
C (r′, r1)

⃓⃓
⃓r1=0 · D(E∗)

1 −D(E∗)JC
∇r2G

(±)
C (r2, r)

⃓⃓
⃓r2=0 ,

(3.108)
where √︁

D(E∗)∇r1G
(±)
C (r′,0)|r1=0 and

√︁
D(E∗)∇r2G

(±)
C (r2, r)|r2=0 ,

can be interpreted as a source and a sink coupling the fermions to a P-wave state, respectively.
As in the ℓ = 0 case, the pole in the second term of eq. (3.108) permits to express the infinite-
volume quantization conditions,

1

D(E∗) = ∇ri ⊗ ∇ri+1G
(±)
C (ri, ri+1)

⃓⃓
⃓ ri=0ri+1=0

, (3.109)

where the identity matrix multiplied by the CoM energy dependent coupling constant is equal
to the inverse of the matrix of the double derivatives of the Coulomb two-point Green’s function
evaluated at the origin, JC. Concentrating again on the retarded two-point correlation function
and adopting the notation of ref. [1], the finite-volume counterpart of eq. (3.108) becomes

G(+),L
SC (r′, r) = G(+),L

C (r′, r) + ∇r1G
(+),L
C (r′, r1)

⃓⃓
⃓r1=0 · DL(E∗)

1 −D(E∗)JLC
∇r2G

(+),L
C (r2, r)

⃓⃓
⃓r2=0 . (3.110)

Similarly, the pole in the second term on the r.h.s. of eq. (3.110) yields the finite-volume
quantization condition,

1

DL(E∗) = ∇ri ⊗ ∇ri+1G
(+),L
C (ri, ri+1)

⃓⃓
⃓ ri=0ri+1=0

, (3.111)

that determines the T1 eigenvalues. As in the ℓ = 0 case, we proceed by expandingG(+),L
C (ri, ri+1)

in powers of the fine-structure constant and truncate the series to order α. Moreover, we no-
tice that the directional derivatives of the two-point Coulomb Green’s function evaluated at the
origin correspond to the pairwise closure of the external legs of the Coulomb ladders in the
expansion of G(+)

C in fig. 1.1 to two-fermion vertices, evaluated at the origin in configuration
space. As a consequence, the matrix elements of JLC can be interpreted as bubble diagrams
with multiple Coulomb-photon insertions inside. Analytically, the two lowest order contribu-
tions to JC, that correspond to loop diagrams, respectively with and without a Coulomb-photon
insertions, read

JC(p) = ∇r′ ⊗ ∇rG(±)
C (r′, r)

⃓⃓
⃓r=0r′=0

= ∇r′ ⊗ ∇r⟨r′|Ĝ(±)
0 |r⟩

⃓⃓
⃓r=0r′=0

+ ∇r′ ⊗ ∇r⟨r′|Ĝ(±)
0 V̂CĜ

(±)
0 |r⟩

⃓⃓
⃓r=0r′=0

+ . . . = −M
∫︂

R3

d3q
(2π)3

q ⊗ q
q2 − p2 + 4παM2

∫︂

R3

d3q
(2π)3

∫︂

R3

d3k
(2π)3

1
q2 − p2

1
k2 − p2

q ⊗ k
|q − k|2 + . . . ,

(3.112)

where the Dyson identity between Ĝ(±)
C and Ĝ(±)

0 (cf. eq. (1.16)) has been exploited and ε
has been set to zero. Replacing again the integrals over the momenta by sums over the
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dimensionless momenta n,m ∈ Z3, the finite-volume counterpart of eq. (3.112) is obtained,

JLC(p) = −M
L

L3

Λn∑︂

n
n ⊗ n

|n|2 − p̃2 + α(ML)2
4π3L2

Λn∑︂

n

∞∑︂

m̸=n
1

|n|2 − p̃2
1

|m|2 − p̃2
n ⊗ m

|n − m|2 + . . . , (3.113)

where the finite-volume mass ML, the speherical cutoff Λn and the dimensionless CoM mo-
mentum of the incoming particles p̃ have been reintroduced. With the aim of regulating
the sums in eq. (3.113) for numerical evaluation as in sec. 2.2.1, we recast the finite volume
quantization conditions as

1

DL(E∗) − ReJ{DR}
C (p) = JLC(p) − ReJ{Λ}

C (p) , (3.114)

where J{Λ}
C (p) and J{DR}

C (p) denote the O(α) approximations of JC computed in the cutoff- and
dimensional regularization schemes. Starting again from eq. (3.112), we insert the spherical
cutoffs as in its discrete counterpart (cf. eq. (3.113)), in sight of the evaluation of J{Λ}

C ,

J{Λ}
C (p) = −M

∫︂

S2
Λ

d3q
(2π)3

q ⊗ q
q2 − p2 + 4παM2

∫︂

S2
Λ

d3q
(2π)3

∫︂

R3

d3k
(2π)3

1
q2 − p2

1
k2 − p2

q ⊗ k
|q − k|2 + . . . ,

(3.115)
where S2

Λ denotes the three-dimensional sphere with radius Λ. Isolating the O(α) contribution,
we obtain

M
∫︂

S2
Λ

d3q
(2π)3

q ⊗ q
p2 − q2 = −1

3
M

2π2

∫︂ Λ

0
dq q2

−1

3
M

2π2

∫︂ Λ

0
dq p2 + 1

3
M

2π2

∫︂ Λ

0
dq p4

p2 − q2 = −MΛ
6π2

(︃
Λ2

3 + p2
)︃
⊮ + O(Λ0) ,

(3.116)

where the isotropy of the cutoff has been exploited in the second step and O(Λ0) denotes
constant or vanishing terms in the Λ Ï +∞ limit. Concerning the O(α) term, the integral can
be simplified as follows

4παM2
∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

1
q2 − p2

∫︂

R3

d3k
(2π)3

q ⊗ k
[k2 − 2(1 − ω)k · q + Ξ1]2 , (3.117)

where Ξ1 ≡ (1 − ω)q2 − ωp2 and Feynman parametrization for the denominators has been
applied. The subsequent integration over the momentum k through eq. (B17) in ref. [132] and
the exploitation of rotational symmetry in the outcoming integrand (cf. eq. (4.3.1a) in ref. [130])
gives

Γ
(︁1

2
)︁

(4π) 3
2

1

3

∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

4παM2

q2 − p2
(1 − ω)q2

[ω(1 − ω)q2 − p2ω] 1
2
. (3.118)

Then, it is convenient to split the integrand of eq. (3.118) into two parts and to simplify the
numerator,

Γ
(︁1

2
)︁

(4π) 3
2

1

3

∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

4παM2(1 − ω)
[ω(1 − ω)q2 − p2ω] 1

2

+
Γ
(︁1

2
)︁

(4π) 3
2

1

3

∫︂ 1

0
dω
∫︂

S2
Λ

d3q
(2π)3

p2

q2 − p2
4παM2(1 − ω)

[ω(1 − ω)q2 − p2ω] 1
2

≡ J1 + J2 ,
(3.119)
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where J1 (J2) corrresponds to the first (second) integral on the l.h.s. of the last equation and it
will generate the leading contributions in Λ. Beginning with the latter term, integration over
the momentum l yields

J1 = αM2

16π2
1

3

∫︂ 1

0
dω
[︃

2p2

1 − ωarccoth
(︃

1
Ξ2

)︃
+ 2Λ2Ξ2 − iπp2

1 − ω

]︃
. (3.120)

where Ξ2 is an ancillary variable,

Ξ2 ≡

√︄

1 − p2

Λ2(1 − ω) .

Exploiting the fact that p/Λ ≪ 1, the integrand in the latter expression can be considerably
simplified. Equipped with the results

∫︂ 1

0
dω 1√︁

ω(1 − ω)
= 2

∫︂ 1

0
dω
√︃

1 − ω
ω = π (3.121)

and ∫︂ 1

0
dω log

√
1 − ω√︁

ω(1 − ω)
= −π log 2 , (3.122)

the remaining integration can be performed, obtaining the desired expression for I1

J1 = αM2

16π
1

3

[︃
Λ2 − 2i

π |p|Λ + 2p2 log
(︃

Λ
|p|

)︃]︃
+ O(Λ0) . (3.123)

Concerning the I2 term, its rotational symmetry and integration over the angular variables
permits to split it in turn into two terms,

J2 = M24πα
Γ
(︁1

2
)︁

(4π) 3
2

1

3
p2

2π2

∫︂ 1

0
dω
∫︂ Λ

0
dq 1

[︂
q2 − p2

1−ω

]︂ 1
2

+M24πα
Γ
(︁1

2
)︁

(4π) 3
2

1

3
p2

2π2

∫︂ 1

0
dω
∫︂ Λ

0
dq p2

q2 − p2
1

[︂
q2 − p2

1−ω

]︂ 1
2
.

(3.124)

Considering the first term on the r.h.s. of eq. (3.124), integration over the radial momentum
yields again an arccoth(x) function, which is eventually responsible of a further logarithmic
divergence in the UV region,

αM2p2

4π2
1

3

∫︂ 1

0
dω
∫︂ Λ

0
dq 1

[︂
q2 − p2

1−ω

]︂ 1
2

= αM2p2

4π2
1

3

∫︂ 1

0
dω
[︃
− iπ

2 + arccoth
(︃

1
Ξ2

)︃]︃
. (3.125)

Approximating the expression again under the assumption p/Λ ≪ 1 and performing the
integration over ω (cf. eq. (3.121)), the expression on the r.h.s. of eq. (3.125) becomes

αM2p2

4π2
1

3

∫︂ 1

0
dω
√︃

1 − ω
ω

[︃
− iπ

2 + log
(︃

2Λ
|p|

)︃
+ log

√
1 − ω

]︃
= αM2

8π
1

3 p2 log
(︃

Λ
|p|

)︃
+ O(Λ0) ,

(3.126)
i.e. it carries the second logarithmic contribution to J{Λ}

C to order α in the perturbative ex-
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pansion. Finally, we consider the second term on the r.h.s. of eq. (3.124) and introduce the
auxiliary variables γ2 ≡ −p2 and Ξ3 ≡ γ2/(1 − ω). The integration over the radial momentum
|q| yields

αM2p2

4π2
1

3

∫︂ 1

0
dω
√︃

1 − ω
ω

⎡

⎢⎣
log
(︂

1 + Λ
√︂

γ2−Ξ3
γ2(Ξ3+Λ2)

)︂

2
√︁
γ2(γ2 − Ξ3)

−
log
(︂

1 + Λ
γ2

√︂
γ2(γ2−Ξ3)
γ2+Λ2

)︂

2
√︁
γ2(γ2 − Ξ3)

⎤

⎥⎦ , (3.127)

an expression that can be simplified in the large coutoff limit, p/Λ ≪ 1, obtaining

αM2

4π2
1

3 p2
∫︂ 1

0
dω1 − ω

ω arccot
(︃√︃

ω
1 − ω

)︃
+ O(Λ0) . (3.128)

Although the remaining integral is unbound, the overall expression is independent of the
cutoff Λ, therefore it can be neglected as the whole O(Λ0) contributions. This divergence is
analogous to the one found in the ℓ = 0 case, and turns out to disappear if a translation in the
momenta such as k ↦Ï k−q in the original expression of the O(α) term of J{Λ}

C in eq. (3.115) is
performed. Now, collecting the results in eqs. (3.116) and (3.123), the cutoff-regularized version
of JC is obtained to the desired order in the fine-structure constant,

J{Λ}
C (p) = −MΛ

2π2
1

3

(︃
Λ2

3 + p2
)︃

+ αM2

16π
1

3

[︃
Λ2 − 2i

π |p|Λ + 4p2 log Λ
|p|

]︃
+ O(α2) , (3.129)

where the O(Λ0) contributions have been discarded. Now we proceed with the calculation
in dimensional regularization of JC. To this purpose, it is convenient to start from the exact
expression of JC to all orders in α in arbitrary d dimensions (cf. eq. (3.40)),

J{DR}
C (p) =

∫︂

Rd

ddq
(2π)d

2πMη(q)
e2πη(q) − 1

1 + η2(q)
p2 − q2 + iεq ⊗ q

= M
∫︂

Rd

ddq
(2π)d

q ⊗ q
p2 − q2 + iε − αM2

∫︂

Rd

ddq
(2π)d

π
2|q|

q ⊗ q
p2 − q2 + iε + O(α2) ,

(3.130)

where the integrand has been expanded up to the first order in α. In particular, the α-
independent contribution in eq. (3.130) gives

M
∫︂

Rd

ddq
(2π)d

q ⊗ q
p2 − q2 = −M 1

d

∫︂

Rd

ddq
(2π)d −M 1

d

∫︂

Rd

ddq
(2π)d

p2

p2 − q2 , (3.131)

where the rotational invariance of the integrand has been exploited and ε has been set to zero.
Since the integrand is a polynomial in the momentum, the first contribution in the second row
of the last equation vanishes in dimensional regularization, whereas the remaining term turns
out to coincide with the purely strong counterpart of JC(d; p) in eq. (3.11),

J0(d; p) = −M 1

d

∫︂

Rd

ddq
(2π)d

p2

p2 − q2 = Mp21

3
(−p2) d2 −1

(4π) d2
Γ
(︁
1 − d

2
)︁
, (3.132)

thus is finite and the limit d Ï 3 can be safely taken, obtaining

T{DR}
S (p) = 1

3
iM|p|3

4π . (3.133)
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Due to the presence of the imaginary unit in the r.h.s. of the last equation, it turns out that the
α-independent component of J{DR}

C does not contribute in eq. (3.114), since only real parts are
retained. Regarding the O(α) term of JC in arbitrary dimension, the integral can be recast as

M
∫︂

Rd

ddq
(2π)d

πη(q) q ⊗ q
q2 − p2 = M 1

d

∫︂

Rd

ddq
(2π)d

πη(q) q2

q2 − p2

= αM2π
2

1

d

∫︂

Rd

ddq
(2π)d

1
|q| + αM2π

2
1

d
Γ(3

2 )
Γ(1

2 )

∫︂ 1

0

dω√
ω

∫︂

Rd

ddq
(2π)d

p2

[︁q2 + γ2(1 − ω)
]︁ 3

2
,

(3.134)

where γ ≡ −i|p| and the Feynman parametrization for the denominators has been adopted.
The subsequent momentum integration in the latter yields

1

d
αM2π

2(4π)d/2
p2Γ(3

2 − d
2 )

Γ(1
2 )

(︂µ
2

)︂3−d ∫︂ 1

0

dω√
ω

[γ2(1 − ω)]
d
2 − 3

2 , (3.135)

where the renormalization scale µ has been introduced. Conversely, the first term in the
second row of eq. (3.134) vanishes like the first integral on the r.h.s. of eq. (3.131). Introducing
the small quantity ε = 3 −d, the integral over ω can be computed to first order in ε , obtaining

∫︂ 1

0

dω√
ω

(1 − ω)−
ε
2 = 2 + 2ε − ε log 2 + O(ε2) . (3.136)

Exploiting the result in the last formula, eq. (3.134) partially expanded to order ε becomes

1

3
αM2p2

8π

(︃
µ

√
π

γ

)︃ε
Γ
(︁ε

2
)︁1+ε−ε log 2+O(ε2)

1− ε
3 +O(ε2) . (3.137)

Expanding in turn the Gamma function and the power term µ
√
π/γ in Laurent and Taylor

series, respectively, and truncating the expansion to order ε0, the desired expression for TSC(p)
in dimensional regularization is recovered

J{DR}
C (p) = 1

αM2

4π
p2

3

[︃
1
ε − γE

2 + 4
3 + iπ + log

(︃
µ

√
π

2|p|

)︃]︃
. (3.138)

Then, we bring further simplification to the finite volume quantization condition by taking the
trace of eq. (3.114),

3
DL(E∗) − tr

[︂
ReJ{DR}

C (p)
]︂

= tr
[︂
JLC(p)

]︂
− tr

[︂
ReJ{Λ}

C (p)
]︂
, (3.139)

thus transforming a matrix identity into a scalar one as the one for S-waves. Finally, we take
the real part of the expressions in eqs. (3.129) and (3.137) and replace the fermion mass by
its finite-volume couterpart, obtaining the regulated version of the finite volume quantization
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condition (cf. eq. (3.111)) in explicit form,

1
DL(E∗) = −ML

3L3

[︄ Λn∑︂

n
1 − 4π

3 Λ3
n

]︄
− ML

4π2L
p2

3

[︄ Λn∑︂

n
1

n2 − p̃2 − 4πΛn

]︄
+ α(ML)2

4π
p2

3

[︃
1
ε − γE

2 +

4
3 + log

(︃
µL

4
√
π

)︃]︃
+ α(ML)2

4π3L2
1
3

⎡

⎣
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
m · n

|n − m|2 − 4π4p̃2 log Λn − π4Λ2
n

⎤

⎦ .

(3.140)

Thanks to the last identity, the finite-volume version of the effective range expansion in
eq. (3.103) can be rewritten in an explicit form. Besides, we drop in the next developments of
the derivation the pole 1/ε arising from dimensional regularization, since it does not deliver
information on the energy eigenvalues of our two-body system.

3.2.2 Finite Volume Effective Range Expansion
First of all, we concentrate on the infinite volume version of the effective range expansion.
By inserting the expression of TSC given in eq. (3.27) into eq. (3.36) and exploiting the closed
form of jC in dimensional regularization given in eq. (3.62) we obtain a relation between the
P-wave phase shift and the strong coupling constant D(E∗) in the presence of Coulomb photon
exchanges,

p2(1 +η2)[C2
η |p|(cot δ1 − i) +αMH(η)] = − 12π

MD(E∗) +αMp2
[︃

4
3 − 3

2γE + log
(︃
µ

√
π

αM

)︃]︃
, (3.141)

where on the r.h.s of the last equation the PDS terms have been discarded, toghether with ones
multiplied by three powers of α. Since the asymptotic behaviour of the momentum integrals
in the ultraviolet region is left invariant by discretization, eq. (3.141) can be straightforwardly
adapted to the cubic finite-volume case, provided the infinte volume parameters are replaced
by finite volume ones,

p2(1 + η2)[C2
η |p|(cot δL1 − i) + αMLH(η)] = − 12π

MLDL(E∗) + αMLp2
[︃

4
3 − 3

2γE + log
(︃
µ

√
π

αML

)︃]︃
,

(3.142)
which is valid to all orders in the fine-structure constant. Now, the quantization conditions
derived in the previous section can be exploited by replacing the inverse of the finite-volume
strong-coupling constant with the expression in eq. (3.140). Thus, the following equation is
obtained,

p2(1 + η2)[C2
η |p|(cot δL1 − i) + αMLH(η)] = 4π

L3

[︄ Λn∑︂

n
1 − 4π

3 Λ3
n

]︄
+ p2

πL

[︄ Λn∑︂

n
1

n2 − p̃2 − 4πΛn

]︄

−αM
L

π2L2

⎡

⎣
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
m · n

|n − m|2 − π4Λ2
n − 4π4p̃2 log Λn

⎤

⎦

+αMLp2
[︃
log
(︃

4π
αMLL

)︃
− γE

]︃
.

(3.143)
Similarly to the ℓ = 0 case, we notice that the finite-volume mass of the fermions is multiplied
by the fine-structure constant in all the occurrences. It follows that, in the O(α) approximation
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of the Coulomb Green’s functions and their derivatives, we can consistently ignore the leading-
order corrections to ML and replace the latter with M , at least in eq. (3.143). Nevertheless, we
account for the QED power law modifications of the masses [46] in the finite-volume version
of the effective-range expansion in eq. (3.27) by means of the shifted scattering parameters
(cf. eqs. (1.40)-(1.44)),

p2(1 + η2)[C2
η |p|(cot δL1 − i) + αMH(η)] = − 1

a′
C

(1) + 1
2r

′
0

(1)p2 + r′
1

(1)p4 + . . . , (3.144)

where the ellipsis stands for higher-order scattering parameters. Combining the latter expres-
sion with eq. (3.103) and isolating the regulated sums, we obtain the desired explicit version of
the effective-range expansion to order α,

− 1
a′
C

(1) + 1
2r

′
0

(1)p2 + r′
1

(1)p4 + r′
2

(1)p6 + r′
3

(1)p8 + . . .

= 4π
L3 S0(p̃) + p2

πLS1(p̃) − αMp2

4π4 S2(p̃) − αM
π2L2 S3(p̃) + . . .+ αMp2

[︃
log
(︃

4π
αML

)︃
− γE

]︃
,

(3.145)

in terms of the Lüscher functions,

S0(p̃) =
Λn∑︂

n
1 − 4π

3 Λ3
n , S1(p̃) =

Λn∑︂

n
1

n2 − p̃2 − 4πΛn , (3.146)

S2(p̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
1

|n − m|2 − 4π4 log Λn , (3.147)

and

S3(p̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

n2 − p̃2
1

m2 − p̃2
m · n − p̃2

|n − m|2 − π4Λ2
n . (3.148)

As shown in app. B.1.1, the p̃-independent Lüscher sum in eq. (3.146) vanishes, whereas S3(p̃)
generates the new series of double sums to be computed in the low-p limit.

3.2.3 Approximate Energy Eigenvalues
Since the Sommerfeld factor is not a rational function of the momentum of the colliding
particles in the CoM frame, a non-perturbative counterpart in α of the eq. (3.145) in the low-
momentum limit would allow only numerical solutions for p2, which lie beyond our purpose.
Nevertheless, under the hypothesis that the expansions are perturbative in 1/L times the length
scale characterizing the strength of the interaction, governed by the scattering parameters,
and assuming that ML ≪ 1/α, the Coulomb photon insertions in the diagrams can be treated
perturbatively. Under these conditions, the approximate expression of the ERE presented in
eq. (3.103) can be exploited for an analytical derivation of the finite volume corrections to the
energy eigenvalues.

a) The Lowest Unbound State
Differently from the S-wave case in sec. 2.2.3 a), the perturbative expansion of the arguments
of the summations in the Lüscher functions around zero finite-volume momentum p̃, cor-
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responding to a total energy equal to 2M now looses significance, due to symmetry reasons.
Given that ℓ = 1 states in the continuum and infinite volume are mapped to T1 states in a finite
cubic finite-volume, the latter are expected to be three-fold degenerate. While the multiplicity
of the zero energy scattering state is one, its nearest neighbour with |p̃| = 1 is six-fold degen-
erate with total energy equal to 2M + 4π2/ML2, thus making it a suitable candidate for both
T1 and T2 eigenstates. Moreover, if the box size is large enough, the momentum |p| = 2π/L
is small, thus the effective-range expansion in the l.h.s. of eq. (3.145) remains valid and can
be truncated at any power of p2. Otherwise, the non-perturbative approach in sec. 2.5 of
ref. [74] needs to be considered, and the energy eigenvalues would be expressed in terms of
the phase shift δ1. Following the small-momentum approach, we expand the Lüscher functions
in eqs. (3.146)-(3.148) in Taylor series about p̃2 = 1 and retain only small or negative powers
of the quantity δp̃2 ≡ p̃2 −1. Concerning the Lüscher function S1(p̃), the approximation yields

S1(p̃) = − 6
δp̃2 +

Λn∑︂

|n|̸=1

1
|n|2 − 1 − 4πΛn + δp̃2

∞∑︂

|n|̸=1

1
(|n|2 − 1)2

+(δp̃2)2
∞∑︂

|n|̸=1

1
(|n|2 − 1)3 + (δp̃2)3

∞∑︂

|n|̸=1

1
(|n|2 − 1)4 + (δp̃2)4

∞∑︂

|n|̸=1

1
(|n|2 − 1)5 + . . . ,

(3.149)

where the dots denote terms of order (δp̃2)6 and the large Λn limit is understood. In the
notation of app. B.1.1 and ref. [1], eq. (3.149) is concisely recast into

S1(p̃) = − 6
δp̃2 + I(1) + δp̃2J(1) + (δp̃2)2K (1) + (δp̃2)3L(1) + (δp̃2)4O(1) + . . . , (3.150)

where the sums of the implied three-dimensional Riemann series are reported in app. B.1.1.
Regarding the function S2(p̃), we proceed by isolating and expanding the double sums with
|n| or |m| equal to one,

∑︂

|n|=1

∞∑︂

|m|̸=1

1
1 − p̃2

1
m2 − p̃2

1
|n − m|2 +

∑︂

|m|=1

Λn∑︂

|n|̸=1

1
1 − p̃2

1
n2 − p̃2

1
|n − m|2 . (3.151)

The subsequent expansion of the argument of the two series in the same fashion of eq. (3.149)
shows that all the resulting sums converge in the infinite-Λn limit. Therefore, we are allowed
to remove the spherical cutoff and the two double sums in eq. (3.151) merge, yielding

2
∑︂

|n|=1

∞∑︂

|m|̸=1

1
1 − p̃2

1
m2 − p̃2

1
|n − m|2 = − 2

δp̃2χ1 − 2χ2 − 2δp̃2χ3 − 2(δp̃2)2χ4 + . . . . (3.152)

where, differently from the ones in the appendix of ref. [1], the series χi with i ≥ 1 include
n = 0 and are defined as

χi =
∑︂

|n|=1

∞∑︂

|m|̸=1

1
(|m|2 − 1)i

1
|n − m|2 . (3.153)
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Furthermore, the expansion of the remaining term of the Lüscher function S2 leads to results
in analogous to the ones of the S-wave case,

Λn∑︂

|n|̸=1

∞∑︂

|m|̸=1m̸=n

1
|n|2 − p̃2

1
|m|2 − p̃2

1
|n − m|2 − 4π log Λn

= R(1) + δp̃2
(︂

R(1)
24 + R(1)

42

)︂
+ (δp̃2)2

(︂
R(1)

44 + R(1)
26 + R(1)

62

)︂
+ . . . ,

(3.154)

where the ellipsis stands for terms of order (δp̃2)3. The R(1) and R(1)
ij sums in the last equation

coincide with the P-wave counterparts of the sums in eqs. (A6) and (A9) in ref. [1], namely

R(1) ≡
Λn∑︂

|n|̸=1

∞∑︂

|m|̸=1m̸=n

1
|n|2 − 1

1
|m|2 − 1

1
|n − m|2 − 2π4 log Λn , (3.155)

and

R(1)
2i 2j ≡

∞∑︂

|n|̸=1

∞∑︂

|m|̸=1m̸=n

1
(|n|2 − 1)i

1
(|m|2 − 1)j

1
|n − m|2 , (3.156)

with i, j ≥ 2 and i + j ≥ 6, which are invariant under permutation of the lower indices,
R(1)
ij = R(1)

ji , and convergent for i, j ≥ 1 and i+ j > 2. Exploiting the symmetry property under
index exchange and combining the results in eqs. (3.155) and (3.156), we find the desired result

S2(p̃) = − 2
δp̃2χ1 + R(1) − 2χ2 + 2δp̃2

(︂
R(1)

24 − χ3
)︂

+ (δp̃2)2
(︂

R(1)
44 + 2R(1)

26 − 2χ4
)︂

+ . . . . (3.157)

Subsequently, we treat the genuinely new Lüscher function, S3(p̃). With this purpose, we
decompose the initial double series into three pieces,

S3(p̃) = lim
ΛmÏ+∞

{︂1
2

Λn∑︂

n

Λm∑︂

m̸=n
1

|m|2 − p̃2
1

|n − m|2 + 1
2

Λn∑︂

n

Λm∑︂

m̸=n
1

|n|2 − p̃2
1

|n − m|2

−1
2

Λn∑︂

n

Λm∑︂

m̸=n
1

|m|2 − p̃2
1

|n|2 − p̃2

}︂
− π4Λ2

n ,

(3.158)

where a subsidiary spherical cutoff Λm has been introduced in order to highlight the divergent
nature of the three terms. In particular, the first and the second contribution to S3(p̃) on the
r.h.s. of the last equation, can be recast as

− 1
δp̃2 P(1) + χ1 + 1

2

(︂
P(1)

022 + P(1)
202

)︂
+ δp̃2

2

(︂
P(1)

042 + P(1)
402 + 2χ2

)︂

+(δp̃2)2
2

(︂
P(1)

062 +P(1)
602 + 2χ3

)︂
+ . . . ,

(3.159)



70 CHAPTER 3. P-WAVE SHORT-RANGE INTERACTIONS

where the dots denote terms of order (δp̃2)3, while the non-symmetric and divergent gener-
alizations of χ0 in eq. (B.131) and of R(1)

ij in eq. (3.156) have been introduced,

P(1) =
∑︂

|m|=1

Λn∑︂

|n|̸=1

1
|m − n|2 , (3.160)

and

P(1)
2i 2j 2k =

Λn∑︂

|n|̸=1

Λm∑︂

|m|̸=1m̸=n

1
(|n|2 − 1)i

1
(|m|2 − 1)j

1
|n − m|2k , (3.161)

respectively. Quite similarly, the third contribution to S3(p̃) in eq. (3.158) can be subdivided
and expanded as follows

− 1
2

Λn∑︂

|n|̸=1

Λm∑︂

|m|̸=1n̸=m

1
|m|2 − p̃2

1
|n|2 − p̃2 + 3

δp̃2

Λn∑︂

|n|̸=1

1
|n|2 − p̃2 + 3

δp̃2

Λm∑︂

|m|̸=1

1
|m|2 − p̃2 , (3.162)

where the two terms involving single sums can be, in turn, expanded in pairs, obtaining

3
δp̃2

(︂
I(1)

Λn
+ I(1)

Λm

)︂
+ 6J(1) + 6δp̃2K (1) + 6(δp̃2)2L(1) + . . . , (3.163)

where the neglected terms are again of order (δp̃2)3 and for the resulting convergent series
the limit Λn,Λm Ï +∞ is understood. On the other hand, this limit can not be taken for the
non-regularized counterpart of I(1),

I(1)
Λs

=
Λs∑︂

s ̸=0
1

|s|2 , (3.164)

whose divergence will cancel with the one from P(1) in eq. (3.160). Secondly, the expansion
of the double sum in eq. (3.162) yields the appearance of further P(1)

2i 2j 2k terms,

− 1
2P(1)

220 − 1
2δp̃

2
(︂

P(1)
240 + P(1)

420

)︂
− 1

2(δp̃2)2
(︂

P(1)
440 + P(1)

260 + P(1)
620

)︂
. (3.165)

Collecting the expansions of the three contributions in eqs. (3.163) and (3.165) we can finally
write

−1
2

Λn∑︂

n

∞∑︂

m̸=n
1

|m|2 − p̃2
1

|n|2 − p̃2 = 3
δp̃2

(︂
I(1)

Λn
+ I(1)

Λm

)︂
+ 6J(1) − 1

2P(1)
220

+δp̃2
[︃
6K (1) − 1

2

(︂
P(1)

240 + P(1)
420

)︂]︃
+ (δp̃2)2

[︃
6L(1) − 1

2

(︂
P(1)

440 + P(1)
260 + P(1)

620

)︂]︂
+ . . . .

(3.166)

Now, the two partial results in eqs. (3.159) and (3.166) can be summed together, obtaining the
sought expression of S3(p̃) as a power series in δp̃2. In particular, we notice that the sum of all
the series appearing at each order in δp̃2 has to be finite in the limit Λn,Λm Ï +∞, irrespective
of the convergent or divergent behaviour of each individual sum. In particular, we observe
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that the latter limit can be directly taken to all orders in the small quantity, with the only
exception of the sums in the δp̃2-independent contribution, that are regularized quadratically
in the cutoff Λn. As a consequence, we can simplify our δp̃2-expansion for S3(p̃) by grouping
the divergent sums order by order and defining the finite coefficients

Ϙ0 ≡ lim
ΛnÏ+∞
ΛmÏ+∞

−1
2

(︂
3I(1)

Λn
+ 3I(1)

Λm
− P(1)

)︂
=
∑︂

|n|=1

∞∑︂

|m|̸=1

m · n − 1
(|m|2 − 1)|m − n|2 , (3.167)

Ϙ1 ≡ lim
ΛmÏ+∞

1
2

(︂
P(1)

022 + P(1)
202 − P(1)

220

)︂
− π4Λ2

n =
Λn∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

1
|n|2 − 1

1
|m|2 − 1

n · m − 1
|n − m|2 − π4Λ2

n ,

(3.168)

Ϙ2 ≡ lim
ΛnÏ+∞
ΛmÏ+∞

1
2

(︂
P(1)

042 + P(1)
402 − P(1)

240 − P(1)
420

)︂
=

∞∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

1 − 2m · n − |m|2|n|2 + n · m(|m|2 + |n|2)
(|m|2 − 1)2(|n|2 − 1)2|m − n|2 ,

(3.169)

and

Ϙ3 ≡ lim
ΛnÏ+∞
ΛmÏ+∞

1
2

(︂
P(1)

062 + P(1)
602 − P(1)

440 − P(1)
620 − P(1)

620

)︂
=

∞∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

qS(n,m) + m · n qX(n,m)
(|m|2 − 1)3(|n|2 − 1)3|m − n|2 ,

(3.170)
where the polynomials qS(n,m) and qX(n,m) are defined as

qS(n,m) = −1 + 3|n|2|m|2 − |m|2|n|2(|n|2 + |m|2) (3.171)

and
qX(n,m) = 3 − 3(|n|2 + |m|2) + |m|2|n|2 + |m|4 + |n|4 . (3.172)

Equipped with the definitions in eqs. (3.167)-(3.170), we can write compactly the final expression
for the expansion of S3(p̃) in terms of convergent sums up to the quadratic order in δp̃2,

S3(p̃) = − 2
δp̃2 Ϙ0 +χ1 +6J(1) +Ϙ1 +δp̃2

[︂
χ2 + 6K (1) + Ϙ2

]︂
+(δp̃2)2

[︂
χ3 + 6L(1) + Ϙ3

]︂
+. . . . (3.173)

After redefining the regularized sum in eq. (3.157) through the addition of the last term on
the r.h.s. of eq. (3.145),

R̃(1) ≡ R(1) − 4π4
[︃
log
(︃

4π
αML

)︃
− γE

]︃
, (3.174)
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we plug the expressions in eqs. (3.150), (3.159), (3.160) and (3.173) in the finite volume effective
range expansion and obtain

− 1
a′

C
(1) + 1

2
4π2r′

0
(1)

L2 p̃2 + 16π4r′
1

(1)

L4 p̃4 + 64π6r′
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(1)

L6 p̃6 + 256π6r′
3

(1)

L8 p̃8 + . . .

= − αM
π2L2

{︂
− 2
δp̃2 Ϙ0 + χ1 + 6J(1) + Ϙ1 + δp̃2
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χ2 + 6K (1) + Ϙ2

]︂
+ (δp̃2)2

[︂
χ3 + 6L(1) + Ϙ3

]︂
+ . . .

}︂

−αMp2

4π4

[︃
− 2
δp̃2χ1 + R(1) − 2χ2 + 2δp̃2

(︂
R(1)

24 − χ3
)︂

+ (δp̃2)2
(︂

R(1)
44 + 2R(1)

26 − 2χ4
)︂

+ . . .
]︃

+ p2

πL

[︃
− 6
δp̃2 + I(1) + δp̃2J(1) + (δp̃2)2K (1) + . . .

]︃
+ . . . .

(3.175)
where the shifted higher-order scattering parameters r′

2
(1) and r′

3
(1) on the l.h.s. of the last

equation have been included, see eqs. (1.40) and (1.44). The subsequent multiplication of the
last equation by the scattering length permits to introduce coefficients identical to the ones in
eqs. (2.114) and (2.115),

d0 = ξ a
′
C

(1)

πL , d1 = ξ αM4π4a
′
C

(1) , d2 = ξ2a′
C

(1)r′
0

(1) ,

d3 = ξ3a′
C

(1)r′
1

(1) , d4 = ξ4a′
C

(1)r′
2

(1) , d5 = ξ5a′
C

(1)r′
3

(1) , (3.176)

modulo an overall damping factor ξ ≡ 4π2/L2. If the scattering parameters are small and of
the same magnitude of 1/L as in the S-wave case, the importance of the auxiliary parameters
just introduced can be quantitatively assessed. In particular, by assigning one unit of ’weight’
for each scattering parameter in the effective-range expansion and one unit for 1/L, we find
that, neglecting the fine-structure constant, the largest parameter is d1 (order three), followed
by d0 and d2 (order four), whereas the constants d3, d4 and d5 are of order six, eight and ten
respectively. With the aim of finding a perturbative formula exact to third order in d0, we
observe that in the final expression for the squared momentum shift δp̃2, only terms of order
smaller or equal to twelve in 1/L and in the scattering parameters should be retained. This
fact justifies the inclusion of the above higher order scattering parameters in the effective
range expansion in eq. (3.175). Furthermore, rewriting p̃2 in the latter equation as δp̃2 + 1,
the approximated effective range expansion can be rewritten as a power series of the squared
momentum shift,

0 = 2
δp̃2 (χ1d1 + Ϙ0d1 − 3d0) + 1 + d0(I(1) − 6) + d1(χ1 + 2χ2 − 6J(1) − Ϙ1 − R̃(1))

−d2
2 − d3 − d4 − d5 + δp̃2

[︂
d0(I(1) + J(1)) + d1

(︂
χ2 + 2χ3 − 6K (1) − Ϙ2 − 2R(1)

24 − R̃(1))︂

−d2
2 − 2d3 − 3d4 − 4d5

]︃
+ (δp̃2)2

[︂
d0(K (1) + J(1)) − d3 − 3d4 − 6d5

+d1
(︂
χ3 + 2χ4 − 6L(1) − Ϙ3 − R(1)

44 − 2R(1)
26 − 2R(1)

24

)︂]︂
.

(3.177)

Due to the smallness of δp̃2, contributions multiplied by higher positive powers of the finite-
volume momentum are increasingly suppressed. It follows that the dominant finite volume
corrections are expected to be found by solving the truncated version of eq. (3.177) to order
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zero in δp̃2,

2
δp̃2 (χ1d1 + Ϙ0d1 − 3d0) + 1 + d0(I(1) − 6) − d2

2 − d3

+d1
(︂
χ1 + 2χ2 − 6J(1) − Ϙ1 − R̃(1))︂− d4 − d5 = 0 .

(3.178)

Solving the last equation for δp̃2 and expanding the denominator up to order twelve in the
small constants, we find

δp̃2 = d1
{︂

− 2(χ1 + Ϙ0)
[︃
1 + d2

2 + d2
2

4 + d3 + d4

]︃
+ d0(1 + d2)

[︂
2(I(1) − 6)(Ϙ0 + χ1)

+6(Ϙ1 − χ1 − 2χ2 + R̃(1) + 6J(1))
]︂

+ d2
0(I(1) − 6)

[︂
12(Ϙ1 − χ1 − 2χ2

+R̃ + 6J(1)) + (I(1) − 6)(Ϙ0 + 2χ1)
]︂}︂

+ 6d0

[︃
1 + d2

2 − d0(1 + d2)(I(1) − 6)

+d2
0(I(1) − 6)2 + d2

2
4 + d3 + d4

]︃
.

(3.179)

Denoting the outcome of the first iteration as δp̃2
0, we proceed with an improvement of the last

result by plugging the latter into the term proportional to δp̃2 of the expansion in eq. (3.177)
truncated to the terms quadratic in the squared momentum shift,

1
δp̃2 (2χ1d1 + 2Ϙ0d1 − 6d0) + 1 + d0(I(1) − 6) − d3 − d4 + d1(χ1 + 2χ2 − 6J(1) − Ϙ1 − R̃(1))

−d2
2 − d5 + δp̃2

0

[︃
d0(I(1) + J(1)) − d2

2 − 2d3 − 3d4 − 4d5

+d1
(︂
χ2 + 2χ3 − 6K (1) − Ϙ2 − 2R(1)

24 − R̃(1))︂]︂ = 0 .
(3.180)

Solving the last equation and retaining only terms up to order twelve in 1/L and the scattering
parameters, we obtain a refined version of the momentum shift,

δp̃2
2 ≡ δp̃2 = d1

{︂
− 2(χ1 + Ϙ0)

[︂
1 + d2 + d2

2 + d3 + d4
]︂
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]︂

+ 12d0d2(Ϙ0 + χ1) − d2
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+ 12d2
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−d0(1 + 2d2)(I(1) − 6) + 3d0d2 + d2
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0(I(1) + J(1))
]︂
,

(3.181)
in which the new contributions appearing at each order in the auxiliary constants (cf. eq. (3.179))
have been isolated. Restoring the dimensional constants in the momenta, the energy of the
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lowest T1 scattering state can be now obtained in few steps,
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S = 4π2

ML2 + 4π2δp̃2
2

ML2 = 4π2

ML2 + 6ξ 4πa′
C

(1)

ML3

[︂
1 + ξ2a′

C
(1)r′

0
(1) + ξ3a′

C
(1)r′

1
(1)

+ξ4a′
C

(1)
(︂
a′

C
(1)(r′

0
(1))2 + r′

2
(1)
)︂

− ξ
(︄
a′

C
(1)

πL

)︄(︂
1 + 2ξ2a′

C
(1)r′

0
(1)
)︂

(I(1) − 6)

+3ξ3

(︄
a′

C
(1)

πL

)︄
a′

C
(1)r′

0
(1) + ξ2

(︄
a′

C
(1)

πL

)︄2

(I(1) − 6)2 − 6ξ2

(︄
a′

C
(1)

πL

)︄2

(I(1) + J(1)) + . . .

⎤

⎦

+ξ α a′
C

(1)

L2π2

{︂
− (2χ1 + 2Ϙ0)

[︂
1 + ξ2a′

C
(1)r′

0
(1) + ξ3a′

C
(1)r′

1
(1) + ξ4a′

C
(1)
(︂
a′

C
(1)(r′

0
(1))2 + r′

2
(1)
)︂]︂

+ξ
(︄
a′

C
(1)

πL

)︄(︂
1 + 2ξ2a′

C
(1)r′

0
(1)
)︂ [︂

(I(1) − 6)(2Ϙ0 + 2χ1) + 6(Ϙ1 − χ1 − 2χ2 + R̃(1) + 6J(1))
]︂

−ξ2

(︄
a′

C
(1)

πL

)︄2

(I(1) − 6)
[︂
12(Ϙ1 − χ1 − 2χ2 + R̃ + 6J(1)) + (I(1) − 6)(2Ϙ0 + 2χ1)

]︂

+12ξ2

(︄
a′

C
(1)

πL

)︄2 [︂
3(Ϙ2 + R̃(1) + 6K (1) + 2R24) − 3(χ2 + 2χ3) + (I(1) + J(1))(2Ϙ0 + 2χ1)

]︂

+6ξ3

(︄
a′

C
(1)

πL

)︄
a′

C
(1)r′

0
(1)(2Ϙ0 + 2χ1) + . . .

}︂
+ . . . ,

(3.182)
where the ellipsis stands for terms of higher order in the scattering and 1/L parameters and in
the fine-structure constant. Besides, all the terms on the r.h.s of the last equation with the only
exception of the first represent the modifications of a free T1 finite-volume state with energy
ξ/M induced by the strong and the electromagnetic interactions. Analogously to the ℓ = 0 case,
only the interplay between strong and electromagnetic forces generates the linear corrections
in α, and the leading QED corrections are of the same order of the modifications due to the
QCD forces alone. By comparison with the S-wave counterpart of eq. (3.182) (cf. eq. (2.114)),
we observe that contributions from higher order scattering parameters such as r′

2
(1) and r′

2
(1)

begin to appear, whereas all the terms arising from r′
3

(1), included in the original version of
the ERE, vanish in the order twelve expansion in the scattering parameters. Furthermore, by
explicit computation it can be proven that the subsequent iteration step for the improvement
of the squared momentum shift, δp̃2

4, does not lead to the appearance of further addend on the
r.h.s. of eq. (3.182) in the chosen approximation scheme. Finally, we conclude the treatment
by isolating the corrections in the last equation and restoring the infinite volume scattering
parameters,
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(3.183)

where the differences with respect to eq. (3.182) involve only the linear term in the fine-
structure constant and are proportional to I(0).

b) The Lowest Bound State

As hinted in the opening of chap. 1, some observed lines in the hadron spectrum such as the
Y (4626), Y (4630) and Y (4660) [104] or the P+

c (4380) and P+
c (4450) [109, 112] are susceptible to

the interpretation as two-body bound states between lighter colorless quark compounds with
one unit of orbital angular momentum.
Therefore, it remains instructive to study the lowest two-fermion T1 bound state, by switching
to imaginary momenta p = iκ, where κ = |κ| represents the imaginary part of the momentum.
To this purpose, we rewrite the FV effective range expansion in eq. (3.145), truncated on the
l.h.s. to the sextic term in the binding momentum,

− 1
a′
C

(1) − 1
2r

′
0

(1)κ2 + r′
1

(1)κ4 − r′
2

(1)κ6 = 4π
L3 S0(iκ̃) + κ̃2

πLS1(iκ̃)

−αMκ̃2

4π4 S2(iκ̃) − αM
π2L2 S3(iκ̃) + αMκ̃2

[︃
log
(︃

4π
αML

)︃
− γE

]︃
.

(3.184)

First, we consider the limit of large lattice binding momentum, κ̃ = |κ̃| ≫ 1, which corresponds
to a tightly-bound state. Thus, an approximation for the Lüscher functions in this regime
becomes necessary. In particular, we observe that the asymptotic behaviour of S1(iκ̃) and
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S2(iκ̃) is already available in literature and gives,

S1(iκ̃) =
Λn∑︂

n
1

|n|2 + κ̃2 − 4πΛn Ï −2π2κ̃ (3.185)

(cf. eq. (43) in ref. [1]) and

S2(iκ̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

|n|2 + κ̃2
1

|m|2 + κ̃2
1

|n − m|2 − 4π4 log Λn Ï −4π4 log(2κ̃) + π2

κ̃ I(0) , (3.186)

see app. (B.2.1) and eq. (44) in ref. [1]. On the other hand, the large binding energy limit of
S3(iκ̃) requires a new derivation, presented in detail in app. (B.2.2),

S3(iκ̃) =
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2κ̃ − 2π2κ̃I(0) − 2π4κ̃2 . (3.187)

Recalling the fact that S0(κ̃)) = Υ = 0 (cf. eq. (B.107)) and collecting the results in eqs. (3.185)-
(3.187), the above finite volume effective range expansion becomes,
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(3.188)
Second, we highlight the dependence on the fine-structure constant in the last equation by
rewriting the binding momentum in a power series,

κ = κ0 + κ1 + κ2 + κ3 + . . . , (3.189)

where κ0 results from strong interactions alone and the subscript corresponds to the power of
α on which each term in the expansion depends. Replacing in eq. (3.188) the shifted scattering
parameters with the infinite volume ones in eqs. (1.40)-(1.44) and discarding all the terms of
order α2 or higher in the expansions, eq. (3.188) transforms into
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(3.190)

Grouping all the terms independent on α, we observe that the following equality
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1 κ4
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2 κ6

0 = κ3
0 , (3.191)
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holds, since the remaining terms in eq. (3.190) depend linearly on α. Therefore, an expression
for κ1 can be drawn from the original eq. (3.190) by dropping the terms listed in eq. (3.191),
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(3.192)

In particular, retaining only the terms depending on the two lowest order scattering paramet-
ers as in the zero angular momentum case (cf. eqs. (45)-(46) in ref. [1]), a more approximated
expression for κ1 in terms of κ0, a(1)

C and r(1)
0 can be obtained,
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. (3.193)

From the latter equation the first two terms generate finite-volume corrections, whereas the
third one introduces QED modifications to the unperturbed binding momentum κ0 which do
not vanish in the infinite volume limit. Now, considering the binding energy of the lowest T1
state in the linear approximation in α,

E(1,T1)
B = κ2

M = κ2
0
M + 2κ0κ1

M + . . . , (3.194)

and substituting the simplified expression of κ1 in eq. (3.193), we find an approximate expres-
sion for the energy of the lowest T1 bound state,

E(1,T1)
B (L) = κ2

0
M + 2ακ3

0

3κ2
0 − r(1)

0 κ0

[︃
log
(︃

4κ0
αM

)︃
− γE + 1

2

]︃
+ αI(0)

πL − α
π3L3

2π4

κ2
0

1
3k0 − r(1)

0

. (3.195)

where the first two terms represent the infinite volume binding energy up to O(α), while the
third contribution vanishes for L Ï +∞ together with the fourth one. Furthermore, if r(0)

0 is
small enough, the denominator in the second and in the fourth term of the last equation can
be expanded in powers of r(0)

0 /κ0 ≪ 1 and the leading order mass shift for tightly-bound T1
two-body states eventually becomes,

∆E(1,T1)
B ≡ E(1,T1)

B (∞) − E(1,T1)
B (L) = −αI(0)

πL + α
π3L3

2π4

3k3
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0 k2
0

≈ −αI(0)

πL + α
π3L3

2π4

3κ3
0
. (3.196)

From the r.h.s. of the last expression we can infer that the leading QED corrections to
E(1,T1)
B (L) presented in eq. (3.196) are positive (I(0) < 0, see eq. (B.119)), analogously to the LO

mass shifts for ℓ = 1 states of two-body systems with strong interactions alone in eq. (53) of
refs. [71,77]. Also noteworthy is the fact that, when compared to the S-wave case in eq. (2.127)
(cf. eq. (46) in ref. [1]), the sign of the P-wave shift is reversed while the magnitude remains
unchanged. As discussed in refs. [71, 77], the significance of this behaviour can be traced
back to the spatial profile of the ℓ = 0 and ℓ = 1 two-body wavefunctions associated to the
considered bound eigenstates. Qualitatively, the relationship found between the two finite
volume energy corrections means that zero angular momentum states are more deeply bound
when embedded in a finite volume, while the counterpart with one unit of angular momentum
are less bound. In conclusion, together with the derivation of ∆E(1,T1)

B , we have simultaneously
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proven that the addition of a long-range force on top of strong forces in two-fermion systems
within a cubic finite-volume produces changes of the same magnitude on S- and P-wave bound
energy eigenvalues.

3.3 Outlook
Now, we qualitatively outline the possible improvements to the analysis presented in the last
two chapters. There are two main directions for the generalization of the present study. These
consist in the inclusion of transverse photons in the Lagrangian density of the system and in
the treatment of strong interactions with higher angular momentum couplings.

Let us start from the former. Thanks to their vector nature, transverse photons can couple
to the fermionic fields in several different ways, see eq. (1.12). Among these, here we retain
only the Dipole vertex (cf. app. A.1), which is expected to yield the leading-order contributions
to the T-matrix and the full Green’s function. As we previously hinted, these photons, denoted
by wavy lines, can propagate also between different bubbles. Consequently, at each order in
D(E∗) a numerable infinity of new diagrams with different topologies and transverse-photon
exchanges inside and outside the bubbles appears. Unfortunately, part of the amplitudes
associated to these diagrams can not be written as powers of the loop (bubble) integrals,
since the transverse photons propagating outside the fermion loops introduce a correlation
between the bubbles (cf. fig. (4) in ref. [1] and fig. 3.3). It follows that an expression for the
T-matrix element of the two-body scattering process, TSCT, written in terms of a geometric
series of ratio proportional to the interaction strength, D(E∗), can not be found. More formally,
a self-consistent rewriting of the full Green’s function operator ĜSCT in the form of a self-
consistent equation à la Dyson separating the QED Green’s function operator, ĜCT, from the
strong interaction operator V(1) (cf. eq. (3.2)) does not exist. These facts prevent the exact
determination of TSCT to all orders in the fine-structure constant.

Nevertheless, the gapped nature of the momentum in the finite-volume environment al-
lows for a perturbative treatment of the whole non-relativistic QED. Therefore, approximate
expressions for TSCT that incorporate the effects of the transverse photons up to the desired
order in α can be derived.

One of these approaches consists in writing the infinite-volume T-matrix element TSCT ex-
actly as TSC in eq. (3.36) with D(E∗) at the denominator replaced by a dressed strong P-wave
coupling constant DT(E∗), that includes the effects of transverse photons up to first order in
the fine-structure constant. Analytically, this energy-dependent constant can be derived by
evaluating the contributions of all the possible bubble diagrams with one tranverse-photon
exchange in fig. 3.3. Moreover, considering the fact that diagrams with one transverse photon
across n-bubbles are suppressed by a factor (

√︁
|p|)n, the numerable inifnity of contributions

on the r.h.s. of fig. 3.3 can be reduced to a finite set. The amplitudes corresponding to these
diagrams can be evaluated via dimensional regularization as the ones containing radiation pi-
ons in refs. [22,32,136] or via the cutoff approach and, in finite volume, they can be constructed
by replacing the relevant integrals with three-dimensional sums, eventually regularized by a
spherical cutoff.

Furthermore, the finite-volume quantization conditions can be derived as in sec. 3.2.1,
keeping track of the transverse-photon contributions via the aforementioned redefinition of
the strong coupling constant. In the end of the process, an expression for 1/D(E∗) analogous
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to eq. (3.109) is found, provided the powers of the original strong coupling constant in the
QED contributions to DT(E∗) in fig. 3.3 are replaced by scattering parameters (cf. sec. III B of
ref. [1]) using the expression of D(E∗) in eq. (3.18).

In the present first-order approximation in the fine-structure constant, the latter operation
is, in fact, justified. Dressing the S-wave strong interaction through the diagrams with one
transverse-photon exchange between the legs of the strong vertex and the interaction-to-
bubble exchange in fig. 4 (c) of ref. [1], the low-energy constant C(E∗) picks up the O(α)
corrections shown in eq. (25), which lead to the appearance of a term proportional to the
square of the Lüscher function S1(p̃) ≡ S(p̃) (cf. eq. (28) of ref. [1]) in the expression of
the finite-volume ERE in eq. (26) of ref. [1]. By means of a procedure analogous to the one
outlined in sec. 2.2.3 b), it can be demonstrated that transverse-photon contributions materialise
in the last term within the second curly brackets on the r.h.s. of eqs. (36), (37) and (39) of
ref. [1]. Albeit pertinent, this contribution constitutes a subleading order correction to the term
proportional to J(0) ≡ J within the same parentheses of the latter equations and is comparable
in magnitude with the terms proportional to (a(0)

C /πL)2 in eq. (2.115) (cf. eq. (39) of ref. [1]).

FIGURE 3.3 – The dressed strong vertex coupling to one unit of angular momentum as a superposition
of the original fermion-fermion interaction vertex plus a numerable infinity of tree-level and bubble
diagrams containing one transverse-photon exchange. The ellipses represent other diagrams featuring
one or more strong vertices and single transverse-photon insertions.

As we previously noted, the second main generalization of our work consists of the adoption
of strong interactions coupled to more units of angular momentum. The most significant
of these extensions is represented by the D-wave case, where the strong part of the EFT
Lagrangian density becomes

L = ψ†
[︃
iℏ∂t − ℏ2∇2

2M

]︃
ψ + F (E∗)

6 (ψψ)†(ψψ) − F (E∗)
32 (ψ

ÎÏ
∂ i

ÎÏ
∂ jψ)†(ψ

ÎÏ
∂ i

ÎÏ
∂ jψ) , (3.197)

where F (E∗) is a new suitable energy-dependent coupling constant (cf. sec. 1.2 and fig. A.3).
Due to the presence of higher-order differential operators acting on the fermionic fields, the
computation of the strong scattering amplitude, TS, via a geometric series on the loop integrals,
as in eq. (3.15), involves a rank-four tensor as a ratio. The elements of the D-wave counter-
part of J0 correspond to double mixed derivatives of the free Green’s function, except for the
diagonal terms, in which an additional contribution proportional to G0(0,0) is expected to be
present. Also the full Green’s function GSC(0,0) is likely to undergo similar changes, which
lead to the onset of more rapidly UV-divergent integrals in the D-wave counterpart of JSC. Be-
sides, some novelties are expected to arise from the quantization condition stemming from the
full two-point correlation function GSC. The D-wave counterpart of JC in finite volume gener-



80 CHAPTER 3. P-WAVE SHORT-RANGE INTERACTIONS

ates the constraints on 1/FL(E∗) for energy states transforming as two distinct representations
of the cubic group, O. The ℓ = 2 irreducible representation of SO(3), in fact, decomposes into
the E ⊕ T2 irreps [67, 137] of O. As a consequence, the one-to-one correspondence between
the transformation properties of the selected multiplet of states under the operations of SO(3)
and O is no longer valid. It is, thus, possible that a derivation of the finite-volume corrections
that makes use of the effective range expansion for D-waves in ref. [43],

(︂
η4 + 5η2 + 4

)︂ p4
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0 p2 + r(2)
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has to follow two separate paths for the E and the T2 states. New challenges arise also in
the evaluation of the cutoff-regularized double sums stemming from the δp̃2 expansions (cf.
sec. 3.2.3 a)) of the Lüscher functions. Nevertheless, the reference finite-volume state for the
lowest unbound energy level is expected to correspond again to the one with |p̃| = 1 and
energy 4π2/L2M . Therefore, the final formulae for the finite-volume energy corrections to
the lowest E and T2 scattering states are likely to conserve some resemblance with the one
presented in eq. (3.183). Concerning the lowest bound state, it would be certainly of interest
to compare the magnitude of the outcoming corrections with the existing ones for the energy
of the most bound S- and P-wave states.



Part II
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CHAPTER 4
FORMALISM AND NUMERICAL TECHNIQUES

4.1 Preamble
The wealth of available literature on lattice calculations is, perhaps, self-explanatory on the
role that the latter play in the investigation of relativistic field theories and quantum few-body
and many-body systems. After the first study of nuclear matter on the lattice in ref. [138] in the
framework of quantum hadrodynamics [139], lattice simulations have begun to be employed
for several other systems involving nuclear matter, fostered by the development of effective
field theories [12, 140] such as Chiral Effective Field Theories (ChEFT) [12, 13, 15, 141].
In the lattice framework, the continuous space-time is discretized and compactified on a hy-
percubic box so that differential operators become matrices and the relevant path-integrals
are evaluated numerically. When periodic boundary conditions are imposed in all the space
directions, the whole configuration space is reduced to a three-dimensional torus and trans-
lational invariance is preserved. Nevertheless, the average values of physical observables on
the lattice eigenstates will, in general, depend on the features of the box employed for the
description of the physical system rather than obey to their continuum and infinite-volume
counterparts.
Starting from Lüscher’s early works [74–76], in the last three decades much effort has been
devoted to investigate the finite-volume dependence of physical observables on the lattice, with
a special attention for the energy of bound states.
The original formula connecting the leading-order finite-volume correction for the energy ei-
genvalues to the asymptotic properties of the two-particle bound wavefunctions in the infinite
volume in ref. [74] has been extended in several directions including non-zero angular mo-
menta [71, 77–79], moving frames [79–85], generalized boundary conditions [86–91], particles
with intrinsic spin [92,93] and perturbative Coulomb shifts [1,118] (cf. Part I). In addition, con-
siderable advances have been made in the derivation of analogous formulas for the energy
corrections of bound states of three-body [94, 95] and N-body systems [96,97].
While closed expressions for leading-order finite-volume corrections to certain physical ob-
servables already exist, artifacts due to the finite lattice spacing remain more difficult to keep
under control.
Nevertheless, systematic schemes for the improvement of discretized expressions of quantities
of physical interest have been developed. In these approaches, correction terms are identified
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using continuum language and are added with suitable coefficients, so that corrections up to
the desired order in the lattice spacing vanish.
In the context of field theories, namely Yang-Mills theories, discretization effetcs can be re-
duced via the Symanzik improvement program [142–146]. The latter is based on the system-
atic inclusion of higher-dimensional operators into the lattice action, whose coefficients are
determined through a perturbative or nonperturbative matching procedure [146]. A similar
approach, reviewed in apps. C.1 and C.2, can be implemented for differential operators applied
to wavefunctions, in which the derivation of the coefficients in front of the corrective terms
stems only from algebraic considerations [146], differently from the previous case.
Another consequence of transposing a physical system into a cubic lattice is given by the re-
duction of the rotational symmetry group to the finite group of the rotations of a cube. If the
former is ruled by central forces, the rotation group on three dimensions, SO(3), shrinks into
the rotation subgroup, O, of the octahedral group Oh. Therefore, lattice eigenstates of a few-
body Hamiltonian cannot be unambiguously classified in terms of irreducible representations
of SO(3) or SU(2) [67]. In the transition between infinitesimal and finite spacing, the 2ℓ+1-fold
degeneracy in the energies of the members of a multiplet of states transforming according to
the same irreducible representation ℓ of SO(3) reduces to 1-,2- or 3-fold degeneracy, depend-
ing on the cubic-group irreps that appear in the decomposition of the original representation
of the rotation group (cf. sec. 4.4). In particular, the energy separation between the ensuing
O multiplets grows smoothly with increasing lattice spacings.
This descent in symmetry has been recapitulated in ref. [67], where the the problem of the
identification of the cubic lattice eigenstates in terms of SO(3) irreps has been first outlined.
The increasing importance of the discretization of the Euclidean spacetime in the context of
gauge theories [147–149] led soon to an extension of the work in ref. [67] to the case of an
hypercubic lattice [150].
In the meantime, investigations explicitly devoted to rotational symmetry breaking appeared
in the context of scalar λφ4 [151] and gauge field theories [152, 153] on the lattice. More re-
cently, quantitative estimations of rotational symmetry breaking have been performed in both
the frameworks in ref [154] and in Lattice QCD for exotic mesons in ref. [155], via the con-
struction of operators with sharply defined angular momentum.
Nevertheless, the restoration of the full rotational invariance on the lattice can be achieved by
projecting the lattice wavefunctions onto angular momentum quantum numbers via the con-
struction of projectors on SO(3) irreps. The use of such a technique has been firstly reported
in ref. [156], in the context of cranked Hartree-Fock self-consistent calculations for 24Mg.
However, in chaps. 5, 6 and 7 we aim at investigating rotational symmetry breaking in bound
states of 8Be, 12C and 16O nuclei on the lattice rather than at removing these effects. At the
same time, the analysis of the low-energy spectra of the three light α-conjugate nuclei provides
us an occasion to highlight the general issues associated to finite volume and discretization in
energies, angular momenta and average interparticle distances.
Since the framework allows for a robust analysis over a wide range of lattice spacings and cu-
bic box sizes, for the purpose we adopt a simplified description in terms of α particles instead
of individual nucleons, following on the recent literature on the same subject, cf. refs. [3, 68].
The propensity of nucleons to congregate in clusters is known from the inception of nuc-
lear physics [157] and its influence in literature continues to the present day [158–160]. Even
if they can explain only a part of the spectra of 4N self-conjugate nuclei, α-cluster models
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succeeded in describing certain ground-state properties of this class of nuclei [161–163] or
lifetimes [164, 165] and energies [8, 166–171] of excited states as well as the occurrence of
α-decay thresholds (cf. the Ikeda diagram [172, 173]). Reaction properties have been also in-
vestigated in these models, such as p-12C and π-12C scattering [174–178]. For a recent review
on α clustering in light nuclei, see ref. [179].
The interaction between α particles can be realistically described by microscopically based po-
tentials within the method of generator coordinates [180], the resonating group model [181,182],
the orthogonality condition model [163], the WKB model of ref. [183], the energy-density or
the folding model [184]. Alternatively, phenomenological potentials constructed from α − α
scattering data, like the Woods-Saxon ones of ref. [185] and ref. [186], or the Gaussian ones
of ref. [4], can be considered. Our two-body interaction, presented in sec. 4.2.1, builds on the
work of ref. [3] and consists of an isotropic Ali-Bodmer type potential, i.e. a superposition of
a positive and a negative-amplitude Gaussian.
The sought extension of the finite-volume and discretization analysis in secs. III. A and B of
ref. [3] to higher angular momentum multiplets has been here achieved through the intro-
duction of an additional tool, the discretized version of the squared total angular momentum
operator. If the lattice spacing is sufficiently small (e.g. a ≲ 1.5 fm and a ≲ 0.65 fm in the
two 8Be configurations considered in chap. 5) and the lattice volume is large enough (e.g.
L ≡ Na ≳ 18 fm and Na ≳ 12 fm respectively), the average values of the squared total
angular momentum operator on the states turn out to provide precise information on the
SO(3) multiplets to which the eigenstates belong in the continuum and infinite-volume limit.
The capability of the latter operator of drawing this information also from the lowest energy
bound states of 12C and 16O is tested and discussed in chaps. 6 and 7, respectively.

4.2 Theoretical framework
We recapitulate the α-cluster model introduced in ref. [3] and adopted also in the more recent
analysis in ref. [68] . To the realization of the kinetic part of the Hamiltonian operator in the
lattice environment we dedicate in sec. 4.3.1.

4.2.1 The Hamiltonian
In the phenomenological picture considered here, individual nucleons are grouped into 4He
clusters, that are treated as spinless spherically-charged particles of mass m ≡ m4He subject
to both two-body V II and three-body potentials V III. Therefore, the Hamiltonian of the system
reads

H = − ℏ2

2m

M∑︂

i=1
∇2

i +
∑︂

i<j
V II(ri, rj ) +

∑︂

i<j<k
V III(ri, rj , rk) . (4.1)

The global effects of the strong force between two α particles at a distance r are described by
an isotropic version [187] of the phenomenological Ali-Bodmer potential (cf. fig. 4.1),

VAB(r) = V0e−η2
0r2 + V1e−η2

1r2 , (4.2)
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consisting of a superposition of a long range attractive Gaussian and a short range repulsive
one with the parameters

η−1
0 = 2.29 fm , V0 = −216.3 MeV ,
η−1

1 = 1.89 fm , V1 = −353.5 MeV .

Moreover, the range parameter of the attractive part of this isotropic Ali-Bodmer potential
agrees with the ones fitting the α−α scattering lengths with ℓ = 0, 2 and 4 to their experimental
values [4], whereas the compatibility of V0 with the best fits of the latter (cf. d′

0, d2 and d4 in
ref. [4]) is poorer (≈ 30 %). As the repulsive part of this potential is strongly angular momentum
dependent, its parameters reproduce within 10% likelihood only the ones for D-wave scattering
lengths, d2 [4]. Assuming that the charge distribution of the α-particles is spherical and obeys
a Gaussian law with an rms radius Rα = 1.44 fm [4], the Coulomb interaction between the 4He
nuclei takes the form

VC(r) = 4e2

4πε0

1
r erf

(︄√
3r

2Rα

)︄
. (4.3)

in terms of the error function, erf(x) = (1/
√
π)
∫︁ x
x e

−t2dt. The three-body term of the Hamilto-
nian, V III, consists of a Gaussian attractive potential,

VT (rij , rjk, rik) = V3e−λ(r2
ij+r2

jk+r2
ik) , (4.4)

whose range λ = 0.005 fm−2 and amplitude parameters V3 = −4.41 MeV were originarily
fitted to reproduce, respectively, the binding energy of the 12C and the spacing between the
Hoyle state, i.e. the 0+

2 at 7.65 MeV and 2+
1 one at 4.44 MeV [5] of the same nuclide in the case

the original angular momentum dependent Ali-Bodmer potential, i.e. a superposition of three
pairs of Gaussians of the form (4.2) with parameters d′

0, d2 and d4 [4], was adopted. However,
in the present case, the three pairs of quadratic exponentials, corresponding to the best fitting
potentials for the S, D and G-wave α− α scattering amplitudes [4], have been resummed into
a single pair of Gaussians that adjusts the zero of the energy on the Hoyle state rather than
on the 3α decay threshold. Since the spacing between the latter two is experimentally well-
established, the possibility of reproducing the binding energy of the nucleus still remains.

4.3 Operators on the lattice

We construct the operators of physical interest acting on a discretized and finite configuration
space, i.e. a lattice with N points per dimension and spacing a. For the details on the adopted
discretization scheme for the differential operators, we address the reader to apps. C.1 and C.2.
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FIGURE 4.1 – Behaviour of the two-body potentials for a system of two particles in presence of Coulomb
(cf. eq. 4.3) and Ali-Bodmer (cf. eq. 4.2) interactions with V0 equal to 100% (solid line), 130% (dashed
line) and 250% (dotted line) of its value presented in eq. 4.3. The latter two potentials with artificially
enhanced strength parameter have been introduced in order to generate a set of low-lying bound states
with different angular momenta, at the root of the analysis presented in chap 5. The increase of V0
leads to the disappearance of the absolute maximum at zero interaction distance simulating the short-
range Pauli repulsion between the α-particles. In particular, the shape of the dotted curve resembles
the one of a Woods-Saxon potential except for the remaining shallow maximum at 7.0 fm, highlighted
in the magnification.

4.3.1 Kinetic energy

We choose to concentrate first on the many-body kinetic energy operator in the absolute
reference frame, presented together with the two and three-body potentials in eq. (4.1),

K = − ℏ2

2m

M∑︂

i=1
∇2

i . (4.5)

Applying the operator in eq. (4.5) on a general M-body wavefunction in configuration space

Ψ(r1, r2, . . . rM ) = ⟨Ψ|r1, r2, . . . rM⟩ (4.6)

and replacing the exact derivatives with their discretized version in eq. (C.219), the explicit
form of lattice counterpart of K can be derived. For the purpose, it is customary to introduce
ladder operators, a†

i (ri) and ai(ri), acting on the discretized version of the kets of eq. (4.6),
whose meaning is respectively the creation and the destruction of the particle i at the position
ri. Therefore, applying the discretization scheme outlined in app. C.1 [146] with improvement
index K, the kinetic energy operator on the cubic lattice N becomes

K̂ = − ℏ2

2m
∑︂

α∈
x,y,z

M∑︂

i=1

∑︂

ri∈N

K∑︂

k=1
C(2P,K)
k

[︂
−2a†

i (ri)ai(ri) + a†
i (ri)ai(ri + kaeα) + a†

i (ri)ai(ri − kaeα)
]︂
,

(4.7)
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where eα are unit-vectors parallel to the axes of the lattice. The latter equation can be more
succinctly rewritten as

K̂ = − ℏ2

2m
∑︂

α∈
x,y,z

M∑︂

i=1

∑︂

ri∈N

K∑︂

l=−K
C(2P,K)

|l| a†
i (ri)ai(ri + laeα) . (4.8)

After defining dimensionless lattice momenta as

pi = 2πni
N ni ∈ N ⊂ Z3 , (4.9)

by imposing periodic boundary conditions (cf. sec. 4.6), we can switch to the momentum space
via the discrete Fourier transform of the lattice ladder operators,

K̂ =
M∑︂

i=1

∑︂

pi∈N

a†
i (pi)Kpiai(pi) . (4.10)

Therefore, we can extract the analytical expression of the eigenvalues of a system of free
particles from the original expression of K̂ in configuration space in eq. (4.8),

Kpi = ℏ2

2m
∑︂

α∈
x,y,z

K∑︂

k=1
C(2P,K)
k

[︁
2 − cosh

(︁
k pi,α

)︁]︁
(4.11)

(cf. fig. 4.2). From the final form of lattice dispersion relation in eq. (4.11), we can conclude
that Galilean invariance is broken on the lattice, since the dependence of the former on the
pi ’s is not quadratic [70].

FIGURE 4.2 – Behaviour of the ein-
genvaules of a free particle in one
dimension, x, as function of the lat-
tice momentum px for four differ-
ent values of the second derivative
improvement index and unit spa-
cing. For increasing values of K
the eigenvalues of K (px) approach
the continuum ones with increasing
likelihood.

In the absolute reference frame, the elements of the kinetic energy matrix are given by

K (a)
r,r′ ≡ ⟨r1, r2, . . . rM |K̂ |r′

1, r′
2, . . . r′

M⟩ (4.12)
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where ni denote dimensionless position vectors, such that ri = ani, and

|n1,n2, . . .nM⟩ =
M∏︂

i=1

⎡

⎣
∑︂

pi∈N

e−ini·pi
⎤

⎦ |p1,p2, . . .pM⟩ , (4.13)

are the relevant Fock states in the absolute basis. The extent of the configuration space and
the dimension of K (a)

r,r′ can be reduced from N3M to N3M−3 by singling out the center of mass
motion of the M alpha particles. Accordingly, we introduce the following non-orthogonal
transformation into relative coordinates

rjM ≡ rj − rM rCM =
M∑︂

i=1

ri
M j = 1, 2, . . .M − 1 (4.14)

together with the associated basis of Fock states,

|n1M ,n2M , . . .nM−1M ,nCM⟩ =
M−1∏︂

i=1

⎡

⎣
∑︂

piM∈N

e−iniM ·piM
⎤

⎦ e−inCM ·pCM |p1M ,p2M , . . . ,pM−1M ,pCM⟩ .

(4.15)
Consequently, the matrix elements of the kinetic energy operator in the relative basis just
introduced become

⟨n1M ,n2M , . . .nCM |K̂ |n′
1M ,n′

2M , . . . ,n′
CM⟩ ≡ K (r)

n,n′ = − ℏ2

2ma2

∑︂

α

K∑︂

l=−K
l ̸=0

C(2P,K)
|l|

· [−⟨n1M ,n2M , . . .nCM |n′
1M ,n′

2M , . . .n′
CM⟩+ ⟨n1M , . . .nCM |n′

1M + leα,n′
2M , . . .n′

CM + leα/M⟩

+⟨n1M , . . .nCM |n′
1M ,n′

2M + leα, . . .n′
CM + leα/M⟩ + . . . +⟨n1M , . . .nCM |n′

1M , . . .n′
M−1M + leα,n′

CM + leα/M⟩

+⟨n1M , . . .nCM |n′
1M + leα,n′

2M + leα, . . .n′
CM − leα(M − 1)/M⟩] .

(4.16)
Replacing the brakets with the pertinent Kronecker deltas, we finally obtain

K (r)
n,n′ = − ℏ2

2ma2

∑︂

α

K∑︂

l=−K
l ̸=0

C(2P,K)
|l|

[︄
δnCM ,n′CM−leα M−1

M

M−1∏︂

i=1
δniM ,n′iM+leα

−δnCM ,n′CM

M−1∏︂

i=1
δniM ,n′iM + δnCM ,n′CM+leα 1

M

M−1∑︂

i=1
δniM ,n′iM+leα

M−2∏︂

j=1
j ̸=i

δnjM ,n′ jM

⎤

⎥⎥⎦ .

(4.17)

Choosing a reference frame in which the center of mass is at rest (i.e. pCM = 0), the matrix
elements of K̂ become independent on the position of the center of the nucleus and the
relevant deltas can be dropped from the last formula, thus

K (r,0)
n,n′ ≡ ⟨n1M ,n2M , . . .nCM |T̂|n′

1M ,n′
2M , . . . ,n′

CM⟩pCM=0 = − ℏ2

2ma2

∑︂

α

K∑︂

l=−K
l ̸=0

C(2P,K)
|l| ∆(l,α)

(4.18)
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where

∆(l,α) ≡
M−1∏︂

i=1
δniM ,n′iM+leα −

M−1∏︂

i=1
δniM ,n′iM +

M−1∑︂

i=1
δniM ,n′iM+leα

M−2∏︂

j=1
j ̸=i

δnjM ,n′ jM (4.19)

reproduces the Laplace operator. After the reduction of the system to N3M−3 degrees of free-
dom, one may wonder whether the matrix elements of K (r) are invariant when the coordinate
change in eq. (4.14) is performed before the discretization of K (cf. eq. (4.7)). The answer
to this point is negative and the reason can be traced back to the non-orthogonality of the
transformation into relative coordinates (cf. eq. (4.14)). Denoting the latter as r′

i ≡ riM for
i < M and r′

M ≡ rCM and computing the Jacobian matrix of the transformation, J,

J ≡

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 −1
0 1 0 . . . 0 −1
... . . . . . . . . . ...

...
0 . . . 0 1 0 −1
0 . . . . . . 0 1 −1

1/M 1/M . . . . . . . . . 1/M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.20)

the resulting kinetic energy operator, in fact, is non-diagonal in the particle space,

K = − ℏ2

2m

M∑︂

i,j,k=1
J−1
ji J−1

ki ∇′
j · ∇′

k . (4.21)

It is exactly the presence of different kinds of differential operators, namely pure and mixed
second derivatives, that prevents the final rewriting of the matrix elements of eq. (4.20), after
the cancellation of the center of mass momentum, to be consistent with eq. (4.18). Neverthe-
less, the equivalence between the latter two can be approached in the large volume and small
lattice spacing limit (L ≡ Na ≳ 18 fm).
Eventually, if Jacobi coordinates instead of the relative ones in eq. (4.14) were adopted, the co-
ordinate transformation should have been effected before the discretization of K in eq. (4.7).
The application of K in absolute coordinates on the transformed basis of states, in fact, would
have generated fractional displacements on both the CM coordinates and in all the other
relative ones, thus implying the existence of nonzero matrix elements between non-existing
lattice sites.

4.3.2 Potentials
Unlike the kinetic term, the definition of the lattice counterpart of the potentials (4.3) and (4.3)
is straightforward, due to their locality and independence on spatial derivatives.

4.3.3 Angular momentum
A crucial role in the analysis in the next three chapters is played by the square of the col-
lective angular momentum operator, L2

tot, whose importance resides in the identification of
the multiplets of eigenstates of the lattice Hamiltonian that share the same orbital quantum
number and the same energy in the continuum limit. Differently from the previous case, the
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functional form of this operator is left invariant by linear transformations of the coordinates
J,

Ltot,α =
M∑︂

i=1
Li,α = −iℏεαβγ

M∑︂

i=1
βi

∂
∂γi

= −iℏεαβγ
M∑︂

i,j,k=1
J−1
ij Jkiβ′

j
∂
∂γ′

i

= −iℏεαβγ
M∑︂

j,k=1
δkjβ′

j
∂
∂γ′

i
=

M∑︂

i=1
L′
i,α ,

(4.22)

where α, β, γ ∈ x, y, z, εαβγ is the Levi-Civita tensor with εxyz = 1 and summations over
repeated greek indices are understood. Accordingly, the square of the collective angular
momentum operator can be written irrespectively of the coordinate system as

L2
tot = 2

∑︂

i<j
Li · Lj +

∑︂

i
L2
i = −ℏ2

∑︂

β,γ

∑︂

i<j

(︃
2βiβj

∂2

∂γi∂γj
− 2βiγj

∂2

∂βj∂γi

)︃

−ℏ2
∑︂

β,γ

∑︂

i

(︃
β2
i
∂2

∂γ2
i

− γi
2
3
∂
∂γi

−γiβi
∂2

∂βi∂γi

)︃
.

(4.23)

Since all the contributions from the second-derivative terms with β = γ on the right hand
side of eq. (4.23) vanish, each of the first three terms on the same side of the formula is
Hermitian. The latter property is not fulfilled by the remaining two terms unless they are
summed together.
Applying the improvement scheme outlined in C.1 with index K, the subsequent discretization
of the γi∂/∂γi term of one-body part of eq. (4.23) gives

L2
i

⃓⃓
⃓
1

≡ 2aℏ2
∑︂

ni∈N

∑︂

γ

K∑︂

k=1
C(1,K)
k (ni)γ

[︂
a†
i (ni + keγ)ai(ni) − a†

i (ni − keγ)ai(ni)
]︂
, (4.24)

whereas the one of the remaining one-body part of the same operator, β2
i ∂2/∂γ2

i , yields

L2
i

⃓⃓
⃓
2

≡ −ℏ2
∑︂

ni∈N

∑︂

β ̸=γ

K∑︂

k=1
C(2,K)
k

{︂
4(ni)2

β

[︁
−2a†

i (ni)ai(ni)+a†
i (ni + keγ )ai(ni) + a†

i (ni − keγ )ai(ni)
]︁

−(ni)β(ni)γ

·
[︁
a†
i (ni + keβ + keγ )ai(ni) + a†

i (ni − keβ − keγ )ai(ni)−a†
i (ni + keβ − keγ )ai(ni) − a†

i (ni − keβ + keγ )ai(ni)
]︁ }︂

.
(4.25)

where C(2,K)
k ≡ a2C(2P,K)

k . Before introducing the ladder operators, all the diagonal terms
in the greek indices of this part of L2

tot have been ruled out. The presence of two different
kinds of differential operators prevents, in fact, the cancellation of one half of the hopping
terms coming from the second pure and mixed derivatives. Concerning the two-body part of
eq. (4.23), the discretization process gives

Li · Lj

⃓⃓
⃓
1

= −a2ℏ2
∑︂

ni,nj∈N

∑︂

β,γ

K∑︂

k=1
C(2M,K)
k (ni)β(nj )β

·
[︂
a†
i (ni + keγ)a†

j (nj + keγ)aj (nj )ai(ni) + a†
i (ni − keγ)a†

j (nj − keγ)aj (nj )ai(ni)
−a†

i (ni + keγ)a†
j (nj − keγ)aj (nj )ai(ni) − a†

i (ni − keγ)a†
j (nj + keγ)aj (nj )ai(ni)

]︂

(4.26)
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and

Li · Lj

⃓⃓
⃓
2

= a2ℏ2
∑︂

ni,nj∈N

∑︂

β,γ

K∑︂

k=1
C(2M,K)
k (ni)β(nj )γ

·
[︂
a†
i (ni + keγ)a†

j (nj + keβ)aj (nj )ai(ni) + a†
i (ni − keγ)a†

j (nj − keβ)aj (nj )ai(ni)
−a†

i (ni + keγ)a†
j (nj − keβ)aj (nj )ai(ni) − a†

i (ni − keγ)a†
j (nj + keβ)aj (nj )ai(ni)

]︂
.

(4.27)

Due to the invariance of L2
tot, we are allowed to apply the square of the collective angular

momentum operator in relative coordinates to the relative basis of states (cf. eq. (4.14)), ex-
ploiting the results presented in eqs. (4.24)-(4.26). The subsequent cancellation of center of
mass momentum, pCM = 0, yields finally the expression of the matrix element of the operator
in the N3M−3 ×N3M−3 lattice,

L
′2 (r,0)
n,n′ =

∑︂

i
⟨n1M . . .nCM |L′2

i |n′
1M . . .n′

CM⟩pCM=0

+2
∑︂

i<j
⟨n1M . . .nCM |L′

i · L′
j |n′

1M . . .n′
CM⟩pCM=0 ,

(4.28)

where the one-body contribution is given by

⟨n1Mn2M . . .nCM |L′2
i |n′

1Mn′
2M . . .n′

CM⟩pCM=0 = −a2ℏ2
∑︂

β ̸=γ

K∑︂

k=1
C(2P,K)
k

⎡

⎢⎣
M−1∏︂

l=1
l ̸=i

δn′ lM ,nlM

⎤

⎥⎦
[︂
(niM )2β

·4
(︁
δniM ,n′iM+keγ − 2δniM ,n′iM + δniM ,n′iM−keγ

)︁
− (4/3)(niM )γ

(︁
δniM ,n′iM+keγ − δniM ,n′iM−keγ

)︁

−(niM )β(niM )γ
(︁
δniM ,n′iM+keβ+keγ + δniM ,n′iM−keβ−keγ − δniM ,n′iM−keβ+keγ − δniM ,n′iM+keβ−keγ

)︁]︁
.

(4.29)
and the two-body one coincides with

⟨n1Mn2M . . .nCM |L′
i · L′

j |n′
1Mn′

2M . . .n′
CM⟩pCM=0 = −a2ℏ2

∑︂

β,γ

K∑︂

k=1
C(2M,K)
k

⎡

⎢⎣
M−1∏︂

l=1
l ̸=i ̸=j

δn′ lM ,nlM

⎤

⎥⎦

·
[︁
(niM )β(njM )β

(︁
δniM ,n′iM+keγδnjM ,n′ jM+keγ + δniM ,n′iM−keγδnjM ,n′ jM−keγ

−δniM ,n′iM−keγδnjM ,n′ jM+keγ − δniM ,n′iM+keγδnjM ,n′ jM−keγ
)︁

−(niM )β(njM )γ
(︁
δniM ,n′iM+keγδnjM ,n′ jM+keβ + δniM ,n′iM−keγδnjM ,n′ jM−keβ

−δniM ,n′iM−keγδnjM ,n′ jM+keβ − δniM ,n′iM+keγδnjM ,n′ jM−keβ
)︁]︁

.

(4.30)

Like in the previous case, the application of the discretized version of this operator in absoulte
and relative (i.e. primed) coordinates to the relative basis, even if followed by the cancellation
of the center of mass momentum, gives rise to two unequal results, namely

L2 (r,0)
n′,n ̸= L

′2 (r,0)
n′,n . (4.31)

respectively. This is a consequence of the discretization of the one-body terms containing
second mixed and pure derivatives (cf. eq. (4.23)), which transform together under linear
coordinate changes. As observed, also the cancellation of diagonal terms in the Greek indices
in the summations for the one-body terms of L2

tot (i.e. the ones with β = γ in the second row
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of eq. (4.23)), that are straightforward in the continuum, does not occur in the lattice. Never-
theless, in the large volume and small lattice spacing limit, the average values of the squared
collective angular momentum operator calculated in the two approaches (cf. eq. (4.31)) coin-
cide, as expected in the case of the kinetic energy operator.
Finally, another feature of the discretized version of L2

tot is represented by the loss of hermiti-
city, due again to the last two terms of the one-body part in eq. (4.23), whose sum is self-adjoint
only in the continuum.

4.4 Symmetries
Let us begin the analysis of the transformation properties of the Hamiltonian under spacetime
symmetries. Since the potentials depend only on interparticle distances, eq. (4.1) is invariant
under parity, P ,

[H,P] = 0 , (4.32)

a feature that is preserved by its realization on the cubic lattice. This invariance allows for the
construction of projectors to the two irreducible representations, + and −, of the parity group
(≈ C2),

P± = 1 ± P (4.33)

acting on continuum (and lattice) eigenfunctions of H (resp. H), that can thus bear the two
irrep labels. Moreover, the implementation of the reducible 3M−3 dimensional representation
of the inversion operator on the lattice, P , omitted in the last section, depends on the choice
of the map between lattice points niM and the physical points on R3.
Furthermore, the Hamiltonian of a system of M particles interacting with central forces is
rotationally invariant,

[H,Ltot] = 0 and [H,L2
i ] = 0 (4.34)

with i = 1, 2, . . .M . Switching to the relative reference frame, cf. eq. (4.13), and setting the
center of mass momentum to zero, H|pCM=0≡ Hr , this invariance is naturally preserved, but
the relative squared angular momentum operator L2

iM ≡ (L′
i)2 of each of the particles no

longer commutes with the relative Hamiltonian, due to the non-orthogonality of the linear
transformation, J, to the relative reference frame, cf. eq. (4.20),

[Hr, (L
′
i)2] ̸= 0 (4.35)

where i = 1, 2, . . .M − 1. Therefore, continuum eigenstates of Hr can be labeled with the
eigenvalues of the squared collective angular momentum, quadratic Casimir operator of SO(3),
and by the ones of its third component, Ltot,z , Casimir of the group of rotations on the plane,

SO(3) ⊃ SO(2)
↓ ↓
ℓ m ,

(4.36)

i.e. as basis of the 2ℓ + 1 dimensional irreducible representation of SO(3) and eigenstates of
rotations about the z axis. However, the discretized Hamiltonian on the cubic lattice does not
inherit this symmetry, being left invariant only by a subset of SO(3), forming the cubic group,
O, of order 24 and isomorphic to the permutation group of four elements, S4. Equivalently,
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the dependence of the collective angular momentum on spatial derivatives and, therefore, the
necessisity of resorting to an approximation scheme, prevents its commutation with the lattice
Hamiltonian.
Nevertheless, like in the previous case, the basis vectors of each irrep of O can be chosen
to be simultaneously diagonal with respect to a subset of its operations. Considering again
the z axis, the set generated by a counterclockwise rotation of π/2, Rπ/2

z , forms an abelian
group, isomorphic to the cyclic group of order four, C4. Like SO(2) with SO(3), also C4 is not
a normal subgroup of O, as the conjugacy classes 3C2

4 (π) and 6C4(π/2) of the latter are only
partially included in the cyclic group. Since the complex 1-dimensional inequivalent irreps of
C4 are four and the distinct eigenvalues of Rπ/2

z are ±1 and ±i, we can label the irreducible
representations of the cyclic group with the integers Iz ranging from 0 to three,

Rπ/2z = exp
(︂

−iπ2 Iz
)︂
. (4.37)

Diagonalizing the lattice Hamiltonian together with Rπ/2
z ,

(H + Rπ/2
z )Ψ = (E + Rπ/2z )Ψ , (4.38)

the simultaneous eigenstates Ψ can be denoted, thus, with the irreducible representations of
O and C4 (i.e. quantum numbers)

O ⊃ C4
↓ ↓
Γ Iz ,

(4.39)

where Γ ∈ A1, A2, E, T1 and T2. Due to this descent in symmetry, each of the original 2ℓ + 1
degenerate eigenstates of H is split into smaller multiplets, their dimension ranging from one
to three (cf. tab. 4.2).
As in the case of parity, by expressing the cubic group elements g as terns of Euler angles,
(α, β, γ), it is possible to construct projectors on the irreps of O for spherical tensors of rank
2ℓ + 1 [137],

P2ℓ+1
Γ =

∑︂

g∈O
χΓ(g)Dℓ(g) , (4.40)

where the Dℓ(g) are Wigner D-matrices, Dℓ
mk(α, β, γ), and χΓ(g) are characters of the irrep

Γ of the cubic group. It is exactly from the columns (rows) of the projector matrix that
cubic basis vectors (tensors) from spherical basis vectors (tensors) can be constructed [188].
Nevertheless, when the same irrep of O appears more then once in the decomposition of
Dℓ (cf. tab. 4.2) further rearrangement on the outcoming linear combinations is needed (cf.
app. C.3). Moreover, only tensors or basis vectors having the same projection of the angular
momentum along the z axis, m, modulo 4 mix among themselves when projected to any cubic
group irrep.
Eventually, we conclude the subsection with particle space symmetries. Since both the relative
and the full Hamiltonian commute with the permutation operators of M particles,

[H,Sg ] = [Hr,Sg ] = 0 , (4.41)

where g ∈ SM , the permutation group of M elements represents a symmetry for the system.
Since the representatives of the sequences of transpositions, Sg does not affect the configura-
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tion space on which O and P act, they naturally commute with the elements of the space-time
symmetry groups. In the 8Be case, where two particle transposition (12) coincides with parity,
the latter assertion is ensured by means of commutation between rotations and space inversion.

Γ D0 D1 D2 D3 D4 D5 D6 D7 D8

A1 1 0 0 0 1 0 1 0 1
A2 0 0 0 1 0 0 1 1 0
E 0 0 1 0 1 1 1 1 2
T1 0 1 0 1 1 2 1 2 2
T2 0 0 1 1 1 1 2 2 2

TABLE 4.1 – Coefficients of the decomposition of the representations of the spherical tensors of rank
2ℓ + 1, Dℓ into irreps of the cubic group. These can be obtained by repeated application of the Great
Orthogonality Theorem for characters to the 2ℓ+1-dimensional representations of SO(3) and the irreps
of O.

In the general case, whenever the states do not transform according to the bosonic rep-
resentations,

. . . ∼ [M] , (4.42)

or the fermionic ones,

... ∼ [1M] , (4.43)

they appear in the energy spectrum as repeated degenerate cubic group multiplets, their
multiplicity being equal to the dimension of the irrep of SM to which they belong. It follows
that Young diagrams or partitions can be included among the labels of the simultaneous
eigenstates Ψ (cf. eq. (4.38)). Due to the bosonic nature of the α-particles, the construction of
the projector on the completely symmetric irrep of the permutation group,

P
...

=
∑︂

g∈SM

χ
...

(g)Sg =
∑︂

g∈SM

Sg , (4.44)

turns out to be useful in the computation of the numerical eigenstates of the lattice Hamiltonian
Hr , see sec. 4.5.1, since unphysical eigenstates of parastatistic or fermionic nature are filtered
out. In analogous way the projectors to all the other irreducible representations of SM can be
constructed.

4.5 Physical Observables
In the analysis of the low-lying eigenstates of the 8Be, 12C and 16O nuclei in chaps. 5, 6 and
7, we focus mainly on the average values of the kinetic and potential energy and the total
squared angular momentum, presented in operator form in sec. 4.3. However, the discretiza-
tion scheme for the differential operators adopted in the latter section (cf. apps. C.1 and C.2),
may apply also for a precise implementation of the electric (magnetic) multipole transition
operators [135], whose matrix elements with the lattice eigenstates yield the reduced transition
probabilities, B(Eℓ) [B(Mℓ)], and the electric (magnetic) multipole moments [135], not covered
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by the present dissertation. In the 12C case, the resulting selection rules can be compared
with the ones from the triangular α-cluster model in refs. [158,159].
Eventually, the average value of the interparticle distance is also object of our study of finite-
volume and discretization effects and the realization of the associated operator is based on the
map between lattice and physical coordinates given in the next subsection.

4.5.1 Space coordinates

The computation of matrix elements of lattice operators in the configuration-space represent-
ation requires the replacement of the lattice coordinates nnM,α introduced in sec. 4.3.1 by their
physical counterpart (rnM,α)phys. This is the case of the collective squared angular momentum
operator (cf. eqs. (4.27)-(4.29)) and V II and V III terms of the Hamiltonian which are diagonal
in the 3M − 3 dimensional configuration space, due to the absence of velocity-dependent po-
tentials.
Therefore, it is necessary to define a map between lattice points and the physical coordinates.
If we encode the former by an unique positive integer index r, ranging from 0 to N3M−3 − 1,
the lattice coordinates nnM,α are can be extracted from r via the modulus function,

nnM,x = mod
(︂⌊︂ r
Nn

⌋︂
, N
)︂
, nnM,y = mod

(︂⌊︂ r
Nn+1

⌋︂
, N
)︂
, nnM,z = mod

(︂⌊︂ r
Nn+2

⌋︂
, N
)︂
, (4.45)

with n ∈ 1, 2, . . .M − 1. An invertible map from the latter to physical coordinates is provided
by

(rnM,α)phys =
{︄
annM,α if nnM,α < N/2
a (nnM,α −N) if nnM,α ≥ N/2

(4.46)

where the lattice spacing a is treated here as a dimensional parameter, expressed in femto-
metres. The three-dimensional configuration space is, thus, reduced to a cubic finite set of
points encompassing the origin, which coincides with the centroid of the lattice only when the
number of points per dimension N is odd. However, the cubic region can be centered in the
origin of the axes by considering the following definition of the physical coordinates [156]

(rnM,α)phys = a
(︃
nnM,α − N − 1

2

)︃
. (4.47)

As a consequence, when N is even the physical points (rnM,α)phys do not include the origin
any more and assume only half-integer values. This second map between lattice and physical
coordinates, that had been already adopted in a study on rotational invariance restoration of
lattice eigenfunctions in ref. [156], is preferable for plotting the discretized wavefunctions.
Finally, it is worth remarking that, if the lattice configuration space is restricted to the first
octant of the three-dimensional space (cf. eq. (4.46) with a sign reversal in the argument of
the second row) the average values of L2 on states with good angular momentum converge
to incorrect values in the continuum and infinite volume limit, due to the exclusion of physical
points bearing negative entries.
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4.5.2 Binding energy
Another physical quantity of interest for our analysis is the binding energy BE(Z,N) that can
be obtained from the energy of the lattice Hamiltonian H ground state, E0+ , via the relation

BE(2M, 2M) = 2Mm1H
c2 + 2Mmnc2 −Mm4He

c2 − E0+ . (4.48)

Since the parameters of the Ali-Bodmer potential are fitted to the α−α scattering lengths, the
experimental value of the binding energy of 8Be from eq. (4.48) differs from the observational
one, even in the large boxes limit. On the other hand, for 12C the addition of a 3-body
potential permitted to fix the ground state energy to the 3α decay threshold, thus yielding
binding energies consistent with their experimental counterparts, provided the experimental
energy gap between the Hoyle state and the former breakup threshold is added to E0+ .

4.5.3 Multiplet averaging
The multiplet averaged value of energy the is defined in ref. [3] as

E(ℓPA ) =
∑︂

Γ∈O

χΓ(E)
2ℓ + 1E(ℓPΓ ) , (4.49)

where Γ is an irreducible representation of the cubic group (cf. tab. C.8), χΓ(E) is its character
with respect to the conjugacy class of the identity and P is the eigenvalue of the inversion oper-
ator, P . The same operation can be performed for average values of operators representing
physical observables Q on lattice eigenstates,

⟨Q⟩(ℓPA ) =
∑︂

Γ∈O

χΓ(E)
2ℓ + 1⟨Q⟩(ℓPΓ ) . (4.50)

In particular, the latter formula that has been extensively applied for the squared angular
momentum operator, L2, in the analysis of finite-volume and discretization effects.

4.6 Boundary conditions
So far, no reference to the way in which the Cauchy problem associated to the relative Hamilto-
nian Hr (plus, eventually, the cubic group operation) has been made. A customary choice in
lattice realizations of Schrödinger equation is the imposition of periodic boundary conditions
(PBC) on the eigenfunctions,

Ψ(q)(n + mN) = Ψ(q)(n), (4.51)

where m and m are two vectors of integers. A practical realization of this constraint is
provided by the application of the modulo N functions on the array indices corresponding to
hopping terms of the lattice operators involved. This yields the appearance of more entries
in the matrix realizations of quantum mechanical operators, whose explicit storage has been
wisely avoided.
Another choice of boundary conditions, subject of a recent investigation on three-body systems
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[89], is given by the twisted boundary conditions (TBC) [189],

Ψ(q)(n + mN) = eiθ·mΨ(q)(n) . (4.52)

Since for twisting angles equal to zero, θα = 0, the two constraints coincide, eq. (4.52) can be
considered as a generalization to complex phases of the usual PBC. In particular, it has been
proven that in two-body systems i-periodic boundaries, i.e. with θα = π/2, reduce significantly
the leading order exponential dependence of the finite-volume energy corrections and that
analogous suppressions of finite-volume effects for three-body systems can be achieved [89].
Nevertheless, since our aim is the analysis of the breaking of rotational invariance in four α
particle systems, we chose the computationally cheaper PBC.

4.7 Deterministic approaches
As it can be inferred from sec. 4.5.1, the extent of configuration space of 12C and 16O on
the cubic lattice requires the storage of vectors and matrices with a huge amount of entries.
For instance, any eigenvector of the lattice Hamiltonian with N = 31 for the former nucleus
implies the storage of almost nine hundred millions of entries, a number that rises to circa
32 · 109 double precision items if all the meaningful operators involved in the diagonalization
and eigenspace analysis stored as sparse matrices are considered. Although in the previous
literature on the subject (cf. refs. [3] and [68]) pre-built numerical diagonalization functions
for the Hamiltonian matrix were considered, the increased dimension of the lattice operators
acting on the eigenvectors led us to the choice of the memory-saving Lanczos algorithm,
already adopted in ref. [190]. This iterative method (cf. sec. 4.7.1) reduces the overall storage
cost to the one of the subset of eigenvectors of interest and makes extensive use of indexing.

4.7.1 The Lanczos algorithm
The algorithm chosen for the simultaneous diagonalization of Hr and Rπ/2

z is an implement-
ation of the Lanczos algorithm and is based on the repeated multiplication of the matrix of
interest on a vector followed by its subsequent normalization, like the power or Von Mises
iteration. Once a suitable initial state is constructed, our method produces a c-number and a
vector, that reproduce the lowest signed eigenvalue of the matrix and the relevant eigenvector
respectively with increasing precision after an increasing number of iterations.
Now, let us denote the trial state, to be initialized before the beginning of the iteration loop,
with Ψ0. Although also random states could be used for the purpose, the construction of trial
states that reflect the symmetries of the Hamiltonian often reduces the number of necessary
iterations. Besides, an initial value for the eigenenergy, E0, is entered together with Ψ0 and
the pivot energy, Ep , a c-number that ensures the convergence of the desired eigenvector to
the one corresponding to the lowest signed eigenvalue. Once Ψ0 is passed into the loop, the
updated vector in the beginning of the k+ 1-th iteration, Ψnew

k+1 , is related to the resulting state
from the previous iteration, Ψk, via the recursive expression

Ψnew
k+1 = (Hr + Rπ/2

z − Ep)Ψk , (4.53)
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i.e. a multiplication of Ψk by the matrices to be simultaneously diagonalized followed by
the subtraction of the same vector multiplied by Ep. Next, the updated value of the energy
eigenvalue is drawn from the updated state by taking the scalar product of Ψnew

k+1 with Ψk,

Ek+1 = (Ψk,Ψnew
k+1 ) + Ep . (4.54)

Then, also the pivot energy undergoes an update. If the quantity Ek+1 − Ek turns out to
be positive (negative), in fact, Ep is incremented (decremented) by a positive integer, whose
magnitude is usually different in the two cases,

Enewp = Ep + ∆[sign(Ek+1 − Ek)] (4.55)

where ∆[+1] > ∆[−1], in order to make the series {Ek} converge to Er . More precisely, in
all the computations that follow, ∆[+1] is tuned to be approximately ten times larger than
∆[−1], even if further adjustment of these two parameters depending on the O irreps of the
eigenstates of interest leads to faster convergence. At this point, it is worth observing that, if
the pivot energy is set equal to zero and its update loop, cf. eq. (4.55), is suppressed, the body
of this version of the Lanczos algorithm would exactly coincide with the one of the power
iteration. Finally, as in the Von Mises iteration, the normalization of the k+1-times improved
eigenfunction,

Ψk+1 =
Ψnew
k+1⃦⃦

Ψnew
k+1
⃦⃦ , (4.56)

ends the body of the iteration loop, that runs until the absolute value of the difference between
the updated energy eigenvalue and Ek falls below a given value of precision, δC , customarily
set equal to 10−9 or 10−10 MeV. The convergence of the outcoming state vector to the actual
eigenfunction of Hr and Rπ/2

z is ensured by both the non-degeneracy of the common eigen-
values of the two matrices and by the construction of a trial state with a nonzero component
in the direction of the eigenvector associated to the ground state: in case one of these two
conditions is not satisfied, convergence of the {Ψk} series is no longer guaranteed.
Moreover, the number of iterations required to attain the given precision, δC , in the extrac-
tion of the eigenvalues grows not only with the box size, N , (i.e. with the dimension of the
Hamiltonian matrix), but also with the inverse of lattice spacing. This is due to the fact that
eigenenergies get closer in magnitude for small values of a and the eigenvector under pro-
cessing, Ψk, may oscillate many times about the neighbouring eigenstates during the iterations
before converging. Besides, a wise choice of the trial wavefunction turns out to reduce signi-
ficantly the number of required iterations and can stabilize the process.
The bare Lanczos iteration just described, however, does not allow for the extraction of any
other eigenvector than the ground state unless an orthogonalization scheme involving the
already extracted states is introduced. In order to access a wider region of the spectrum (e.g.
n+ 1 eigenstates), Gram-Schmidt orthogonalization has been introduced into the body of the
iteration loop. If Ψ(0), Ψ(1), . . . Ψ(n−1) is a set of n converged states, the remaining eigenstate,
Ψ(n)
k+1, is finally orthogonalized in the end of each iteration with respect to the former eigen-

subspace. It is exactly this piece of the puzzle that prevents Ψ(n)
k+1 to collapse into the ground

state of the system, even when the initial trial function maximizes the overlap with the target
eigenstate.
Furthermore, projectors upon cubic and permutation group irreps (cf. eq. (4.44)) have been
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applied to the Ψ(n)
k+1 state just before orthonormalization, thus allowing for the investigation

of specific regions of the spectrum of the two compatible operators. A projector on a cubic
group irrep, for instance, is constructed from eq. (4.40), with the Wigner D matrix, DJ (α, β, γ),
replaced by a representative of the element (α, β, γ) ∈ O in the reducible N3M−3-dimensional
representation of the eigenstates of Hr .
Before concluding the paragraph, special attention has to be devoted to the T1 and T2 eigen-
states of Hr + Rπ/2

z . Even if the spectrum of the matrix is complex, the power method im-
plemented in the space of real vectors of dimension N3M−3, does not allow for the extraction
of complex eigenvalues with nonzero imaginary part and the relevant eigenvectors, trans-
forming as the 1 and 3 irreps of C4. The outcoming vectors are real and orthogonal among
themselves and remain associated to (almost) degenerate real energy eigenvalues. Since the
remaing partner of the T1 (T2) multiplet, with Iz = 0 (2), transforms in a separate block under
the operations of C4 and the exact eigenvectors are related by complex conjugation,

ΨΓ,Iz=3 =
[︁
ΨΓ,Iz=1

]︁∗ (4.57)

the true common eigenvectors of Hr and Rπ/2
z can be drawn from the real degenerate ones,

Ψ(p)
Γ and Ψ(q)

Γ , by means of a SU(2) transformation on the corresponding eigensubspace,
(︄

ΨΓ,Iz=1
ΨΓ,Iz=3

)︄
= 1√

2

(︄
Ψ(p)

Γ + iΨ(q)
Γ

Ψ(p)
Γ − iΨ(q)

Γ

)︄
. (4.58)

Since C4 is Abelian, made of four rotations about the same axis, any 2-dimensional repres-
entation of it can be reduced to a direct sum of 1-dimensional irreps, provided the similarity
matrix is allowed to be complex.
As done with the cubic and the permutation group, projectors on the real (Iz = 0, 2) irredu-
cibles representation of C4 can be constructed and introduced in the iteration loop, thus halving
(reducing to one third) the memory consumption for the storage of E (T1 and T2) states and
extending the accessible region of the low-energy spectrum of the two nuclei considered here.

a) Parallel implementation
The iteration code pointed out in the previous section has been written first in MATLAB and in
Fortran 90 and, finally, in CUDA C++. Although devoid of the vector indexing conventions of
MATLAB, Fortran 90 permitted us to perform parallel computations on the available clusters
of CPU processors (cf. Acknowledgements). The original MATLAB codes drafted for the
first tests, in fact, have been rewritten in the latter language using the pre-built Message
Passing Interface (MPI) routines. In particular, each of the converged eigenvectors has been
assigned to a different processor (referred also as rank) on the same node whereas, in the
succeeding versions of the MPI codes, the eigenvectors themseleves have been split into
different ranks, in order to achieve further speedup. Nevertheless, for the large-lattice (25 ≤
N ≤ 31) diagonalizations concerning 12C, the exploitation of the graphic cards (GPUs) of the
same cluster has been considered, thus leading to a significant reduction in the computational
times (up to a factor of 5 · 10−2) for the given box size interval. Accordingly, the Fortran MPI
code has been rewritten in CUDA C++ in such a way that each of the vectors, assigned to a
single CPU (host), is copied, processed and analyzed entirely on a single GPU core (device)
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and only finally copied back to the host, for the backup of the vector in the hard disk memory.
This final rewriting of the codes for the diagonalization and the analysis of the state vectors
allowed us to process vectors with N = 31 of 12C and N = 10 of 16O and a precision δC = 10−10

(cf. sec. 4.7.1) within six hours of running time per each lattice eigenstate. Finally, the use
of both the GPU units contained in a single node for the storage of each state vector allows
for an extension of the 12C diagonalizations to the region 32 ≤ N ≤ 35, whereas for 16O with
N ≥ 11 more nodes are required.

4.7.2 The Adiabatic Projection Method
We conclude the treatment of deterministic approaches to the eigenvalue problem by illus-
trating a method that underlies our implementation of the Worldline Monte Carlo approach
in sec. 4.8.1. The technique sinks its roots in the definition of transition amplitudes, calculated
between a general M-particle trial state |Ψ(0)⟩ and its evolution at time t under the action of
the Hamiltonian H (e.g. eq. (4.1)),

⟨0|t⟩ ≡ ⟨Ψ(0)|e−itH/ℏ|Ψ(0)⟩ . (4.59)

In the lattice framework, |Ψ(0)⟩ represents a vector of N3M entries, which can be resized to
N3M−3 elements in the relative reference frame. In the latter case, H is replaced by the lattice
Hamiltonian Hr , which represents a N3M−3 ×N3N−3 band-diagonal matrix (cf. sec. 4.2).
In a fashion that recalls the construction of Feynman path integrals (cf. sec. 2.1 in ref. [191]),
let us perform a Wick rotation to Euclidean time [192], τ ≡ it , a quantity that in the Monte
Carlo simulations is regarded as a real parameter [12], in analogy with the factor β = 1/kBT
in statistical mechanics [191]. Next, we split the imaginary time variable into Nt intervals of
step at , treating τ as a real variable. Since H is time-independent, the time evolution operator
or transfer matrix [12, 193,194] for the lattice Hamiltonian can be rewritten as

e−τH/ℏ = lim
NtÏ∞

(︂
e−atH/ℏ

)︂Nt
, (4.60)

where τ = atNt . If Nt is large enough, the expression on the r.h.s. of eq. (4.61) can be reduced
to the one of a product between elementary transfer matrices,

e−τH/ℏ ≈
Nt∏︂

i=1
e−atH/ℏ =

(︂
e−atH/ℏ

)︂Nt
. (4.61)

a rewriting referenced in literature as Trotter-Suzuki approximation [195, 196]. When the
latter condition is verified and at is sufficiently small, the elementary transfer matrix can be
simplified in turn by an expansion in powers of at ,

T ≡ e−atH/ℏ ≈ 1 − at
ℏ
∑︂

i
HI

i − at
ℏ
∑︂

i<j
HII

ij − at
ℏ
∑︂

i<j<k
HIII

ijk , (4.62)

where the ellypsis stands for terms of second or higher order in at , whereas i, j , k = 1, . . .,
M and HI

i , HII
ij and HIII

ijk denote the one-, two- and three-body parts of the original lattice
Hamiltonian for the particle(s) i, (i, j) and (i, j, k) respectively. However, it is customary to
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improve the approximation of the elementary transfer matrix in eq. (4.62) as follows,

T ≡ e−atH/ℏ ≈
∏︂

s
e−atHI

s/ℏ − at
∑︂

i<j
HII

ij
∏︂

s ̸=i,j
e−atHI

s/ℏ − at
∑︂

i<j<k
HIII

ijk
∏︂

s ̸=i,j,k
e−atHI

s/ℏ , (4.63)

where certain higher order terms in at have been added and s = 1, . . ., M . The new terms
include chains of free single-particle transfer matrices, or two- and three-body parts of the
original Hamiltonian multiplied by one-body transfer matrices referring to particles not in-
volved in the interactions.
Equipped with the approximated expression of the transfer matrix in eq. (4.61), we consider the
ratio between the average values of the Nt-fold and the Nt − 1-fold product of the elementary
transfer matrix respectively in the lattice trial state |Ψ(0)⟩,

λT(Nt) ≡ ⟨Ψ(0)|TNt |Ψ(0)⟩
⟨Ψ(0)|TNt−1|Ψ(0)⟩ . (4.64)

When Nt is odd and large, the quantity shown in the last equation represents an estimator for
the average value of the operator e−atHr/ℏ computed in the dressed lattice state

|Ψ
(︂
Nt−1

2

)︂
⟩ = T

Nt−1
2 |Ψ(0)⟩ , (4.65)

that can be interpreted as the time evolution of the original trial lattice state towards the
ground state of the Hamiltonian of the system. This fact is ensured by the condition Nt ≫ 1,
that permits to cancel virtually all the overlaps between the original trial state Ψ(0) and the
exact eigenstates of the lattice Hamiltonian, with exception of the ground state. Evidence for
this assertion is provided by quantum mechanics. With reference to the continuum and infinite
volume counterpart of our M-body problem in the opening of this subsection, the application
of the exact Euclidean-time evolution operator e−itH/ℏ on the trial state |Ψ(0)⟩, expanded in the
basis of exact eigenstates of H , yields

e−itH/ℏ|Ψ(0)⟩ =
+∞∑︂

n=0
⟨n|Ψ(0)⟩e−τEn/ℏ|n⟩ , (4.66)

where |n⟩ denotes the exact eigenstate of H associated to the energy En and n encodes succintly
a set of quantum numbers. Then, a nonzero overlap between the trial state and the exact
ground state, labeled with n = 0, is sufficient to guarantee the convergence of |Ψ(0)⟩ to |0⟩,

e−τH/ℏ|Ψ(0)⟩ ≈ e−τE0/ℏ|0⟩ . (4.67)

In this guise, increasing the Euclidean time τ adiabatically from 0 towards +∞, all the overlaps
implied in the expansion of the trial state over the eigenstates of H in eq. (4.66) become
increasingly more suppressed by the exponential factors as compared to the one with the
ground state [117], that eventually dominates for large Euclidean times. Hence, we are allowed
to consider the r.h.s. of eq. (4.64) as an approximate eigenvalue of e−atHr/ℏ, thus justifying the
notation,

λTg.s. ≡ λT(+∞) = lim
NtÏ+∞

λT(Nt) , (4.68)

where λTg.s. is the exact ground state eigenvalue of the elementary transfer matrix. Eventually,
from eq. (4.64), the approximate ground state eigenvalue of the Hamiltonian matrix Hr can
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be extracted via the exponential map,

Eg.s.(Nt) = − ℏ
at

log[λT(Nt)] . (4.69)

The eigenvalues in eqs. (4.64) and (4.69) provide the natural benchmark for rE/S and Eg.s. (cf.
eq. (4.88)) extracted through the Worldline Monte Carlo approach on chains of Nt transfer
matrix elements, see sec. 4.8.1.

4.8 Stochastic approaches
In the last section, the memory-saving approach based on the Lanczos iteration for the diag-
onalization of the lattice Hamiltonians of the three α-conjugate nuclei has been outlined, but
few hints have been given regarding the N ≥ 11 regime of the Hr matrix for 16O.
A direct inspection on the extent of the configuration space for N = 30 indicates that each 16O
wavefunction occupies 1, 9683·1013 double precision entries, corresponding to about 1.5·105 GB
of memory. Considered the present limitations in the capacity of each GPU node (around 32
GB), the carrying-out itself of the eigenvalue extraction process via eigenvector-based ap-
proaches becomes prohibitive. It follows that, for N ∼ 30, the storage of the 16O state vectors
in configuration space has to be avoided in the diagonalization process of the lattice Hamilto-
nian. At the same time, all the information concerning eigenvalues and average values of
physical quantities has to be conserved.
The natural candidates for the task are provided by the stochastic approaches, namely quantum
Monte Carlo methods [12,197–200]. Such techniques are based on the idea of extracting ran-
dom numbers for the purpose of generating M-body configurations, that can be represented
by the set of the positions and/or the velocities of the M particles. Other random numbers
become part of the dynamics of the method, acting as a discrimen for the updated configur-
ations of the system.
Among the many available Monte Carlo algorithms, the one we adopt is based on the Metropolis-
Hastings question [201, 202], that can be summarized as follows. Let us introduce the time
variable t , that grows monotonically at the same rate of the number of sampled configurations,
S, and a positive-definite function P(c, t) associated to the configuration c of the system, to be
interpreted as a time-dependent probability. Suppose the system at time t lies in the config-
uration cs and cnews represents a new configuration, produced randomly. Then a number u
is extracted from an uniform distribution, U(0, 1), with support in the interval (0, 1). If the
condition

u < P(cnews , t)
P(cs, t)

(4.70)

is fulfilled, the configuration cnews is accepted and replaces the original one, otherwise cs is
conserved [203]. Subsequently, based on the accepted configuration, the expectation values of
the physical observables to be estimated in the Monte Carlo simulation are updated. As in
sec. 4.5.3, let us denote one of these by Q and the total number of sampled states at time t by
S. An estimator of Q is, then, given by the average value among the results of each accepted
configuration [198],

⟨Q⟩S = 1
S

S∑︂

s=1
Q(cs) , (4.71)
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and its associated statistical error σQS is given by the unbiased variance of the sample of S
elements,

σQS =

√︄∑︁S
s=1[Q(cs) − ⟨Q⟩S]2

S − 1 . (4.72)

The process continues with the generation of a new configuration and is repeated until stat-
istical errors decrease below a given input threshold.
Before dwelling in the details of the implementations of the Metropolis-Hastings algorithm
for our physical system (cf. sec. 4.8.1), we focus on the basic properties and the implications
of the probabilistic criterion adopted for the selection of the configurations. First of all, the
technique that permits to generate the random states according to the distribution P(c, t) pos-
sesses the properties of a Markov Process in case the probability distribution in eq. (4.70) is
time-independent. This condition ensures that the probability of accessing a state cnews does
not depend on the preceeding configurations of the system. Hence Markov processes are
ergodic, since all the states of the system can be reached from any initial state. Even if this
condition is reached only in the infinite time limit,

lim
tÏ+∞

P(cs, t) = P(cs) , (4.73)

in practice, after a sufficiently large number of warmup configurations, the Monte-Carlo
simulation is supposed to thermalize and reach ergodicity in a good approximation.
Furthermore, eq. (4.70) is the result of the detailed balance condition [198,203], namely

P(cnews , t)Ω(cnews Ï cs) = P(cs, t)Ω(cs Ï cnews ) , (4.74)

where Ω(cs Ï cnews ) represents the transition probability from the state cs to cnews and satisfies
the properties required for a probability mass function,

Ω(cs Ï cnews ) ≥ 0 and
∑︂

s
Ω(ck Ï cs) = 1 , (4.75)

where the sum extends to all the possible configurations of the system. As hinted, in a Markov
chain the transition probabilities Ω(ck Ï cs) are time independent and their values do not
depend on any other state prior to ck, so that ergodicity is preserved.
In conclusion, the essential advantage in the approach for the selection of new configurations
for the system outlined here resides in its efficiency [203]. If the r.h.s. of eq. (4.70) is replaced
by P(cnews , t) alone, in the large S limit almost all the proposed new configurations will be
discarded, since the latter acceptance condition itself is prone to retain states associated to
small values of the probability P(cnews , t) [198].

4.8.1 The Worldline Monte Carlo algorithm
While the starting-point of the Lanczos method outlined in sec. 4.7.1 was the lattice Hamilto-
nian, the cornerstone of our implementation of the worldline Monte Carlo algorithm is the
transfer matrix [12] defined in sec. 4.7.2, a choice that is motivated by the positive-definiteness
of the latter.
The same operator provides the basis for other stochastic algorithms, among these Auxiliary
Field Monte Carlo (AFMC) [12, 199, 204]. Despite the success of the latter in the framework
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of EFT for nucleons [205–207], the approach has been discarded, due to the appearance of
the phase problem [208]. This drawback is caused by the implementation of the Hubbard-
Stratonovich transform [209–212] for general local interactions [213] to the repulsive part of
the Ali-Bodmer potential (cf. eq. (4.2)), which produces a nonzero imaginary part in the total
action with auxiliary fields, hence the phase problem. Althugh the issue can be mitigated by
remedies [214] such as the symmetry-sign extrapolation (SSE) [215,216], the required compu-
tational efforts plead for the adoption of the Worldline algorithm.
Although the latter can be tailored pairwise on the elementary transfer matrix of the M-body
problem in eq. (4.63), we opt for a single-particle picture. In this implementation, the lattice
action operator in Euclidean time τ = atNt is defined as follows,

Ŝ = at
∑︂

nt
K̂s + at

∑︂

nt
V̂II + at

∑︂

nt
V̂III , (4.76)

where K̂s represents the kinetic energy operator for the particle s,

K̂s = − ℏ2

2m
∑︂

ns

K∑︂

k=−K

∑︂

l̂s

C(2P,K)
k a†(ns)a(ns + kl̂s) , (4.77)

that in configuration space generates a N3 ×N3 matrix, while the index nt = 1, . . . Nt has been
dropped from the aruments of the second quantization operators, since the lattice Hamiltonian
is time-independent. Similarly, in the notation of sec. 4.3,

V̂II =
∑︂

ns

∑︂

i ̸=s

⎡

⎣V II (rs, ri) + 1
2
∑︂

j ̸=s,i
V II (ri, rj )

⎤

⎦a†(ns)a(ns) (4.78)

and

V̂III = 1
2
∑︂

ns

∑︂

i ̸=s

∑︂

j ̸=s,i

⎡

⎣V III (rs, ri, rj ) + 1
3
∑︂

k ̸=s,i,j
V III (ri, rj , rk)

⎤

⎦a†(ns)a(ns) (4.79)

denote the lattice counterpart of the two and the three-body potentials in eqs. 4.2, 4.3 and 4.4 in
operator form and i, j , k = 1, . . ., M . In this picture, many-body potentials reduce to one-body
ones, whose effect on the single particle depends on the distribution in space of the M − 1
particles excluded from the action. Concerning the temporal direction, we again consider Nt
time steps separated by the interval at , small enough to neglect its associated discretization
effects in the simulations. If Nt is a large positive integer, the normal-ordered transfer matrix
operator becomes susceptible of the Trotter-Suzuki approximation [195,196],

e−Ŝ/ℏ ≈
Nt∏︂

nt=1
e−atK̂s/ℏe−atV̂

II/ℏe−atV̂
III/ℏ , (4.80)

which permits to rewrite the transfer matrix operator for the full temporal interval on the l.h.s
of eq. (4.80) as a chain of transfer matrices referring to the elementary lattice time interval
[nt , nt + 1]. The latter, that we denote as

T̂ ≡ e−atK̂s/ℏe−atV̂
II/ℏe−atV̂

III/ℏ , (4.81)



106 CHAPTER 4. FORMALISM AND NUMERICAL TECHNIQUES

can be considered as the building block of our implementation of the Worldline algorithm [12],
often employed in condensed matter physics for systems of bosons [217] or in the nuclear
context when the sign problem (cf. refs. [203, 208]) is not severe, as in the triton nucleus
in the framework of pionless EFT [205]. Due to the numerical challenges imposed by the
exponentiation of the operators T̂ in matrix form,

T(a)
n,n′ ≡ ⟨ns|T̂|n′

s⟩ , (4.82)

where the superscript (a) denotes the absolute reference frame, it is convenient to expand the
exponentials in eq. (4.81) in powers of at ,

T̂ ≈ 1 − at
ℏ

K̂s − at
ℏ

V̂II − at
ℏ

V̂III , (4.83)

where 1 denotes the identity lattice operator and the ellypsis refers to terms of higher order
in at . The smallness of the dimensionless quantity αt ≡ at/a [12] in natural units ℏ = c = 1 in
the typical Monte Carlo simulations, in fact, justifies the linear approximation of the transfer-
matrix operator. In that units, it is indeed customary to divide the dimensional constants of
the Hamiltonian by suitable units of the lattice spacing [12], whose dimensions coincide with
the ones of time and the inverse of energy. On the other hand, a drawback in the linear
approximation of the transfer matrix operator is given by the loss of positive-definiteness.
While a small value of at is sufficient to guarantee positive diagonal matrix elements without
restrictions on the potentials, the non-diagonal terms of the kinetic matrix can assume negative
values when the derivative improvement index K in eq. (4.77) is greater or equal to two. In
order to preserve this property, for the Monte Carlo simulations in chap. 7 we set K = 1,
corresponding to the basic approximation of the Laplacian operator.
Thanks to the positive definiteness of the transfer matrix T(a)

n,n′ , it is possible to exploit the
Nt-fold matrix product implied by the r.h.s. of eq. 4.80 for the formulation of the Metropolis-
Hastings question [198]. Differently from AFMC [12, 199, 203, 204], in the Worldline approach
the product of matrices reduces to a product of matrix elements [202]. As a consequence,
the chain of Nt elementary transfer matrices turns into a chain of Nt matrix entries, whose
internal indices are repeated pairwise. Denoting the latter as n(1) . . .n(Nt+1), the sequence of
transfer matrix elements is defined as

T[Nt ] ≡ T(a)
n(1),n(2)T

(a)
n(2),n(3) . . .T

(a)
n(Nt ),n(Nt+1) , (4.84)

where T[Nt ] is now a positive scalar. Besides the latter, we introduce the Nt −1 transfer matrix
chain,

T[Nt−1] ≡ T(a)
n(1),n(2)T

(a)
n(2),n(3) . . .T

(a)
n(Nt−1),n(Nt ) , (4.85)

whose purpose, that will be clarified later, is limited to the evaluation of the main physical
observables of interest, the energy eigenvalues.
Equipped with the basis of our formalism, we can now outline our implementation of the
Worldline algorithm (cf. ref. [202]). As hinted in the opening of sec. 4.8, the code begins with
the definition of the initial configuration of the system. This consists in a worldline (cf. fig. 4.3)
composed by Nt + 1 matrix indices for each of the M particles of the system. At each step in
the chain in eq. 4.84, the position vector of all the particles is, thus, specified. For the latter,
it is convenient to chose the initial guess in such a way that the matrix elements in the chain
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belong to the diagonal of the transfer matrix. At the same time, the ratio variable, rE , that
stores the information for the energy eigenvalue, is initialized to zero [202].
The subsequent step in the algorithm is given by the update of an element belonging to one of
the M worldlines. For the purpose, four random numbers are extracted. First, a particle label
is selected. Then, a random single-particle index of the chain in eq. (4.84) is chosen. Finally,
the other two random numbers are generated for the definition of the updated position for
the selected particle.

FIGURE 4.3 – Illustration of the
worldline of an α particle. Accord-
ing to the algorithm, each 4He nuc-
leus moves under the action of an
effective one-particle potential gen-
erated by the other M − 1 particles,
see eqs. (4.78) and (4.79). The path
of each worldline appears rather
straight, since only one-step hop-
ping terms are allowed in the kin-
etic energy matrix. Edited, from
ref. [218].

Once the worldline update is completed, the transfer matrix chains T[Nt ] and T[Nt ]
new are

computed by making use of eq. (4.84) with the transfer matrix in the linear approximation,
see eq. (4.83). In the procedure, the whole spatial arrangement of the α particles at each step
of the chain of transfer matrices is exploited, since the position of the other M − 1 4He nuclei
not involved in the update enter in the potential part of the action (cf. eqs. (4.78) and (4.79)).
Starting from T[Nt ], T[Nt ]

new , a random number u is sampled from the uniform distribution
U(0, 1) and the Metropolis-Hastings question is formulated [202],

u < T[Nt ]
new

T[Nt ]
. (4.86)

If the criterion in eq. (4.86) is met, the update in the worldline of the selected particle is con-
firmed, otherwise the change is rejected. In the positive case, a control variable that accounts
for the number of accepted worldline updates is incremented by one unit, thus monitoring
the efficiency of the algorithm. As it can be inferred from eq. (4.86), in this implementation of
the Worldline approach, the role of the probabilities P(t, cnews ) and P(t, cs) in eq. (4.70) is now
covered by the sequences of transfer matrix elements T[Nt ]

new and T[Nt ], whereas the config-
urations cnews and cs are identified with the updated and the original worldlines. Besides, it is
evident from eq. (4.86) that a single negative entry in the matrix chains causes the breakdown
of our stochastic interpretation of the transfer matrix.
The closing part of the body of the iteration loop is occupied by the measurement of the phys-
ical observables from the worldlines of the M particles. If the latter consists in the energy
eigenvalue of the ground state, Eg.s.„ it is sufficient to construct an if loop checking whether
the nM+1 index of the worldline of the preselected particle coincides with the nM index. When
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the condition is satisfied, the ratio variable is updated [202],

rnewE = rE + T[Nt−1]

T[Nt ]
= rE + 1

Tn(Nt ),n(Nt+1)
, (4.87)

where T[Nt−1] is obtained via eq. (4.85) by copying the first Nt − 1 elements of T[Nt ]. Exploit-
ing the inversion of the exponential map between the transfer matrix and the Hamiltonian
eigenvalues, the value of rnewE , in turn, updates the estimate of the ground state energy,

Eg.s. = ℏ
at

log
(︂rE
S

)︂
, (4.88)

where S represents the number of successful updates of the variable rE fom its initial value
equal to zero. After the update of the physical observable in eq. (4.88), the above process
restarts by modifying another element of a particle worldline. The main loop on Monte Carlo
configurations terminates as soon as the input number of worldline updates is reached.
However, our realizations of the worldline algorithm are designed for multiple processors in
the same CPU node, in order to monitor the convergence process to the exact eigenvalue
through the standard deviation among the ground state energies extracted from the different
processors in which the simulation is running. Therefore, the application of the exponential
map is preceeded by the averaging of the argument of the logarithm of eq. (4.88) among the
results from the processors, where the random number generators have been initialized with
a different seed.
Furthermore, the extracted energy eigenvalues Eg.s. are expected to agree with the exact
ground state estimations obtained via the adiabatic projection method (cf. sec. 4.7.2) at a
given value of Nt and of the temporal lattice spacing, at . Additionally, in the zero temporal
lattice spacing and infinite Nt limit, the ground state energy from the Worldline Monte Carlo
algorithm coincides, within the statistical uncertainty, with the exact counterpart from the
diagonalization of the lattice Hamiltonian matrix. In practice, in order to reproduce the exact
eigenvalues from simulations with finite Nt and at , an Eucliean time extrapolation [216] is
performed, by selecting a small value of the temporal lattice spacing and fitting the data with
large and finite values of time steps, Nt . An illustrative example is shown in fig. 4.4, where the
ground state eigenvalue of the lattice Hamiltonian with L = 10 and a ≈ 0.49 fm is extracted
from a sample of energies with 141 ≤ Nt ≤ 271 and at = 1/3500 and the interpolating curve
coincides with the law

E(Nt) = b
Nξ
t

+ c , (4.89)

where b and c are parameters of the fit and ξ is chosen to maximize the coefficient of de-
termination R2 associated to the family of fitting functions in eq. (4.90).
Another aspect of the extraction of the eigenvalues via eq. (4.88) that is worthy to underline
is represented by the correlation between the accepted worldlines. From the update process
of the latter, it is indeed evident that the modification of a single unit of the original world-
line produces a system configuration tightly correlated with the preceeding one. At the same
time, acceptable configurations which differ sensibly from the original worldline cannot be
accessed after one iteration only, thus the main requirement for a Markov process seems
compromised. However, if a large number of worldline updates is allowed to occur between
each increment of rE (cf. eq. (4.87)), the property is approximately restored.
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So far, in the description of the algorithm we have left aside the symmetry properties of the
state whose energy is extracted. Due to the presence of negative entries in the projectors
on irreducible representations of the pertinent point groups (cf. sec. 4.4), it is not possible
to apply such operators to the transfer matrix elements in the Nt chain. However, the ap-
proach guarantees the belonging of the eigenstate associated to the lowest signed eigenvalue
of the Hamiltonian matrix, Eg.s., to the completely symmetric representation of the permuta-
tion group of four particles S4.

FIGURE 4.4 – Euclidean Time Extrapolation of the ground state energy of the lattice Hamiltonian with
L = 10 and a ≈ 0.49 fm from a sample of Eg.s. at finite Nt and at = 1/3500 extracted through
the Worldline Monte Carlo approach. The dashed red line represents the asymptotic value of Eg.s.
obtained from the fit (cf. param. c in eq. (4.90)), equal to −8.54(18) MeV. The adjacent shaded area
denotes the associated confidence interval, delimited by one unit of standard deviation. The turqoise
dotted line corresponds to the exact energy eigenvalue, −8.710 MeV, obtained from the diagonalization
of Hr via the Lanczos algorithm (cf. sec. 4.7.1). The two values are compatible within one standard
deviation, indicating that temporal discretization errors caused by the Trotter-Suzuki approximation at
the chosen value of at can be neglected.

The statement extends to the excited states, whose energies are extracted through the
algorithm described in the next subsection. Although other physical observables have not
been included in the Monte Carlo simulations, it is possible that a construction similar to the
one adopted for the energy eigenvalue is suitable for the purpose, provided the operators are
exponentiated. As an example, we pick the squared total angular momentum operator, L̂2 and
initialize the associated variable rL2 to zero. Then after each modification of the worldline (cf.
eq. (4.86)) and the ground state energy (cf. eq. (4.87)), the variable just defined can be updated,

rnewL2 = rL2 + 1
(e−bL2/ℏ2)n(Nt ),n(Nt+1)

, (4.90)

where b represents an arbitrary real non-zero constant. Any improvement in the value of rL2

should be respectful of the constraint n(Nt ) = n(Nt+1) if L̂2 is the single-particle squared angular
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momentum operator. In case L̂ coincides with the M-particles operator, the constraint has to
be extended to the M worldlines.
Concerning the energy eigenvalues of the excited states, the algorithm turns out to inherit
the same structure of the code described above. The major modification is represented by
the addtion of two subsidiary matrices and by the diagonalization of a suitable combination of
the two, as illustrated in the next subsection.

a) The extension to excited states
In the previous section, a Monte Carlo algorithm for the extraction of the lowest eigenvalue
of the transfer matrix has been outlined. As hinted, the same approach serves as a basis
for the computation of other lattice energy eigenvalues, E, which belong to higher angular
momentum, ℓ , multiplets in the continuum and infinite-volume limit. A pivotal role in the
code, that we now describe, is played by the definition of a suitable radius vector (cf. sec. I of
ref. [193]), whose modulus grows with the radius of the nucleus. In our implementation, this
vector has been chosen to coincide with the M − 1th Jacobi coordinate [8],

rJ
M−1 = 1

M − 1

M−1∑︂

i=1
ri − rM , (4.91)

where ri denotes the coordinate of the α particle i in the absolute reference frame. Since
states with increasing energy are associated with a broader spatial distribution, rJ

M−1 provides
an indicator of the value of E associated to different eigenstates of the Hamiltonian of our M
particle system.
First of all, it is convenient to structure the code into two parts. For any input value of Nt , in
fact, we sample separately and independently the worldlines assocated to the Nt and Nt − 1
squences of transfer matrix elements,

T[Nt ] = T(a)
n(1),n(2)T

(a)
n(2),n(3) . . .T

(a)
n(Nt ),n(Nt+1) , and T[Nt−1] = T(a)

n(1),n(2)T
(a)
n(2),n(3) . . .T

(a)
n(Nt−1),n(Nt ) , (4.92)

respectively and we collect in parallel the energy eigenvalues associated to the two chains,
ENtg.s. and ENt−1

g.s. together with the statistical errors, obtained from the outcomes of different
processors in the same CPU node, as in sec. 4.8.1.
In the same fashion as in sec. III of ref. [193], we indroduce in the respective codes the transfer
matrix T and the norm matrix N, whose size is equal to N3 × N3. Their indices are defined
by integers which encode the three components of the M − 1th Jacobi coordinate in eq. (4.91),
calculated on lattice points. Moreover, the row index of the two matrices is associated to rJ

M−1,
evaluated at the initial point of the worldline of each particle, rJ

M−1(i) ≡ arJ
M−1(n(1)

1 , . . . ,n(1)
M ).

Similarly, the column index of the T and N matrices is obtained from the final pont of the
worldline of each particle, rJ

M−1(f ) ≡ arJ
M−1(n(Nt )

1 , . . . ,n(Nt )
M ) or arJ

M−1(n(Nt+1)
1 , . . . ,n(Nt+1)

M ) re-
spectively. The elements of these matrices, initially set to zero, are modified by adding one
unity to the relevant element,

Tnewif = Tif + 1 , and Nnewif = Nif + 1 , (4.93)

where i ≡ rJ
M−1(i) and f ≡ rJ

M−1(f ), after each update of the ratio variable, rE . It follows that,
differently from T(a)

n,n′ , the matrices T and N are not function of a lattice physical observable,
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but merely count the number of sampled M-particle worldlines whose endpoints correspond
to a given couple of M − 1th Jacobi coordinates.
Once the fixed number of Monte Carlo configurations is sampled, the independent outcomes
of the codes for the T and N matrices are analysed. With regards to the discussion on
correlation in sec. 4.8.1, let S denote the total number of updates of the variable rE produced
from the worldlines of the chain of Nt transfer matrices, T[Nt ]. Then, we define the adiabatic
transfer matrix (cf. ref. [193, 194]) as

Tad ≡ S
rE

N−1/2 T N−1/2 , (4.94)

where for N the notion of square root applied to matrices is understood. By exploiting again
the exponential map in eq. (4.88), the eigenvalues of the latter matrix, λTadn are real, since both
N and T consist of integers, and yield the lowest N3 symmetric eigenvalues En of the lattice
Hamiltonian of the M-particle system,

En = − ℏ
at

log
(︁
λTadn

)︁
, (4.95)

where n = 0, . . ., N3. As it can be inferred from the last two equations, the energy eigenvalue of
the ground state covers a pivotal role in the determination of the excited states, since it appears
as a constant factor in eq. (4.94). Besides, the two matrices of dimensionless integers, T and
N turn out to provide the proper weights capable of reproducing the expected sequence of
energy eigenvalues. However, slight imbalance in the total number of updates, S, in the entries
of the of the two matrices can produce sensible inconsistences with respect to the expected
eigenvalues. In such cases, it is recommendable to normalize the two matrices through the
division by the total number of updates.
Concerning statistical and systematic errors, the convergence of the excited states can be
monitored by keeping track of the random errors associated to the ground state energy
eigenvalue extracted by the transfer and norm matrix worldlines. More precisely, for the
derivation of the statistical errors reported in tab. 4.2, we have proceeded as follows. First, from
the results of the single processors involved in the Monte Carlo simulation, an average transfer
matrix, ⟨T⟩, and norm matrix, ⟨N⟩, are constructed, together with the associated matrices of
standard deviations, σT and σN respectively. Then, sampling from a Normal distribution N(0, σ )
with mean equal to zero and σ equal to σS/rE , the standard deviation of the transfer matrix
ground state eigenvalue associated to the Nt chain, N3 random transfer and norm matrices
are built,

Ti = ⟨T⟩ + nσT , and Ni = ⟨N⟩ + nσN , (4.96)

where i = 1, . . ., N3 and n ∈ N(0, σ ) is a random real number. Subsequently, the eigenvalues
of

Tadi ≡
(︃
S
rE

+ nσS/rE

)︃
N−1/2
i Ti N−1/2

i , (4.97)

are extracted and the energy eigenvalues are obtained from the latter via the exponential
map (cf. eq. (4.95)). Finally, on the N3 copies of each energy eigenvalue, the average and the
standard deviation are computed, and the N3 sorted energy eigenvalues with the related stat-
istical uncertainties are produced. From tab. 4.2, it is evident that even when the ground state
energy eigenvalue associated to the Nt chain overlaps the exact eigenvalue from the adiabatic
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projection method (cf. sec. 4.7.2) within the second decimal digit, the energy eigenvalues from
the diagonalization of the adiabatic transfer matrix are affected by statitical errors more than
one order of magnitude larger. Moreover, it is evident that the systematic errors affecting
the eigenvalues in tab. 4.2 are about 101 times larger than their associated statistical errors,
indicating that further sampling in the transfer and norm matrix worldlines is recommendable.
Furthermore, consistent results are also obtained from the diagonalization of the non-Hermitian
version of Tad , (S/rE)T N−1, provided the imaginary part of the energy eigenvalues in eq. (4.95)
is discarded. Exactly this approach has been followed for the reproduction of the low-energy
spectrum of the 16O presented in tab. 4.2.
As it can be inferred from the latter table, the outlined technique permits to attack success-
fully the eigenvalue problem associated to the 16O lattice Hamiltonian Hr with size N9 × N9,
by reducing the overall computational load to the numerical diagonalization of a N3 ×N3 mat-
rix alone. However, a drawback in the method is represented by the slowness of the update
process of the transfer and norm matrix elements. Even in the N = 3 case (cf. tab. 4.2) ,
precise data can be obtained only after some days of simulations in transfer and norm matrix
worldlines. Nevertheless, it is possible that a reduction in the extent of the configuration space
associated to the Jacobi coordinate in eq. (4.91) yields T and N matrices of smaller or fixed
size, so that the low-energy spectrum problem for Hr with N ∼ 30 can be tackled within more
reasonable computational times.
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❍
❍❍❍❍n

S 0.100 · 106 0.500 · 106 144.00 · 106 300.00 · 106 600.00 · 106

Eg.s. [MeV] -10.875 ± 0.405 -10.402 ± 0.197 -10.329 ± 0.023 -10.315 ± 0.025 -10.339 ± 0.0157

0 -56.585 ± 12.237 -26.165 ± 1.029 -11.202 ± 0.102 -10.835 ± 0.073 -10.777 ± 0.057
1 -42.319 ± 11.457 -20.419 ± 0.938 -0.931 ± 0.083 -0.708 ± 0.051 -0.906 ± 0.079
2 -37.196 ± 10.561 -18.593 ± 0.934 -0.685 ± 0.123 0.080 ± 0.077 0.598 ± 0.043
3 -34.416 ± 8.618 -14.038 ± 0.917 -0.374 ± 0.104 0.908 ± 0.074 0.856 ± 0.045
4 -21.260 ± 11.083 -11.834 ± 0.835 1.959 ± 0.094 1.482 ± 0.060 1.842 ± 0.052
5 -20.887 ± 11.159 -9.053 ± 0.816 2.085 ± 0.085 1.840 ± 0.045 2.162 ± 0.039
6 -18.113 ± 10.865 -4.944 ± 0.834 3.093 ± 0.071 2.758 ± 0.099 2.387 ± 0.051
7 -12.271 ± 11.126 2.686 ± 0.686 9.546 ± 0.088 10.198 ± 0.047 10.147 ± 0.075
8 -6.564 ± 11.214 4.673 ± 0.962 10.033 ± 0.142 11.244 ± 0.086 11.355 ± 0.042
9 -4.146 ± 11.823 6.217 ± 0.946 10.358 ± 0.114 11.724 ± 0.054 12.037 ± 0.045
10 -2.538 ± 11.952 7.049 ± 0.550 12.383 ± 0.107 12.242 ± 0.078 12.633 ± 0.073
11 -0.392 ± 12.543 8.436 ± 1.101 12.822 ± 0.088 12.567 ± 0.072 13.149 ± 0.056
12 2.384 ± 11.439 11.570 ± 0.804 13.072 ± 0.069 12.921 ± 0.074 13.285 ± 0.053
13 3.897 ± 12.669 14.086 ± 0.722 13.487 ± 0.081 13.269 ± 0.083 13.429 ± 0.057
14 17.975 ± 11.386 16.031 ± 0.838 13.611 ± 0.076 13.527 ± 0.067 13.773 ± 0.039
15 21.535 ± 11.643 20.220 ± 0.607 14.786 ± 0.095 14.084 ± 0.038 14.024 ± 0.024
16 25.784 ± 11.113 21.388 ± 0.577 15.321 ± 0.087 14.383 ± 0.043 14.360 ± 0.043
17 30.600 ± 9.887 22.139 ± 0.728 15.730 ± 0.077 15.189 ± 0.056 14.508 ± 0.029
18 34.303 ± 10.861 25.283 ± 0.533 16.195 ± 0.046 15.537 ± 0.070 15.016 ± 0.052
19 37.634 ± 11.692 26.779 ± 0.707 20.974 ± 0.115 22.419 ± 0.060 22.514 ± 0.055
20 45.200 ± 10.160 30.432 ± 0.659 23.727 ± 0.098 23.830 ± 0.057 24.152 ± 0.051
21 46.574 ± 11.978 34.167 ± 0.399 24.572 ± 0.0919 24.389 ± 0.091 24.832 ± 0.045
22 51.276 ± 11.222 36.524 ± 0.055 25.069 ± 0.070 25.026 ± 0.063 24.962 ± 0.043
23 61.534 ± 11.182 39.836 ± 1.075 25.863 ± 0.080 25.585 ± 0.062 25.719 ± 0.049
24 74.480 ± 11.701 41.730 ± 0.571 26.938 ± 0.079 26.060 ± 0.022 25.888 ± 0.033
25 77.718 ± 10.479 46.392 ± 0.966 27.327 ± 0.047 26.833 ± 0.061 26.477 ± 0.056
26 87.266 ± 11.111 48.376 ± 0.779 28.703 ± 0.084 27.369 ± 0.066 26.682 ± 0.041

TABLE 4.2 – Sample of the spectrum of the 16O lattice Hamiltonian with N = 3, a ≈ 1.98 fm, Nt = 5
and at = 0.001 s, from the Worldline Monte Carlo approach for excited states. The 27 lowest energy
permutation-symmetric state multiplets are extracted from Tad = (S/rE)T N−1, where the number of
updates in the transfer and norm matrices has been varied from 0.100 · 106 (ca. 50 mins) to 599.98 · 106

(ca. 120 hrs). In the second row of the table, the energy eiegnvalue of the ground extracted from the
update of the transfer matrix worldlines is reported together with the associated statitical error, for
the five values of S. From comparison of Eg.s. in the rightmost column with the predicted value at
−10.374 MeV in the adiabatic projection approach, it is evident that the number of updates S suffices for a
good agreement between the two energies within the statistical uncertainty. Concerning the eigenvalues
extracted from Tad , an overall discrepancy of about 0.40 MeV between the n = 0 eigenvalue and Eg.s. in
the rightmost column is still detectable, signalling that a systematic error of the same magnitute may
affect also the other eigenvalues in the same column. Since the latter exceeds the reported statistical
uncertainties by an order of magnitude, further Monte Carlo sampling is required in order to reach
compatibility with the benchmark values from the adiabatic projection approach. Nevertheless, an
overview of the data in the five columns permits to conclude that the Monte Carlo spectrum is gradually
assuming the pattern of a lattice spectrum, with energy eigenvalues nearly arranged in cubic-group
multiplets, of size equal to 1, 2 or 3. Quasi-degenerate doublets and triplets of states are highlighted.
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CHAPTER 5

THE 8BE NUCLEUS

We begin our treatment of rotational symmetry breaking effects in α-conjugate nuclei with
the case of 8Be. After presenting a sample of the spectrum of the lattice Hamiltonian Hr

in sec. 5.1, we concentrate on the analysis of finite volume and discretization effects in the
energy eigenvalues of the cubic group multiplets that correspond to the 0+

1 and 2+
1 states in

infinite volume. Even if the latter states were first identified in ref. [3], in our analysis we add a
new tool, the total angular momentum squared operator, L̂2 (cf. sec. 4.3.3), and we investigate
more in depth the correlation between discretization effects and the spatial distribution of the
squared modulus of the lattice wavefunctions.
Although the Hamiltonian in sec. 4.2 would allow for the existence of a shallow bound state
alone we increase the magnitude of the strength parameter of the attractive Ali-Bodmer poen-
tial, V1, so that a significant number of bound states belonging to different irreducible repres-
entations of the rotational group is produced.
This expedient permits us to extend the analysis in secs. III A and B of ref. [3], to higher
angular momentum multiplets, such as the 4+

2 and 6+
1 presented in sec. 5.3. The associated

wavefunctions display a number of extrema, whose correlation with discretization effects in
the energy eigenvalues are explored in the concluding section.

5.1 The spectrum
It is firmly enstablished that the actual ground state of this nucleus lies 91.84 keV above the
α − α decay threshold, thus making it the only unbound α-conjugate nucleus with A ≤ 40.
However, it remains of interest to dwell shortly on the behaviour of the binding energy (cf.
eq. (4.48)) of this nucleus for different values of N and lattice spacing kept fixed to 0.75 fm.
As it can be inferred from fig. 5.1, the infinite volume value (L ≡ Na = 40 fm) of the
binding energy (≈ 57.67 MeV) is inconsistent of about 1.2 MeV with the observational value
(≈ 56.50 MeV [219]), due to the choice of tuning the parameters of the Ali-Bodmer poten-
tial [219] on the 0+

1 - 0+
2 gap of 12C.

Nevertheless, the binding energy grows with the volume of the lattice, in accordance with the
sign of the leading order finite volume correction for a 0+ A1 state [71]. Besides, due to the
choice of the O(a8) approximation for the dispersion term, the smallest lattice of interest is
the one with N = K = 4, in which the binding energy turns out to be largely underestimated
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(≈ 12 MeV).

FIGURE 5.1 – Lattice binding energy of the 8Be as a function of the box size N. The spacing has been
kept fixed to 0.75 fm, thus reducing discretization effects to about 10−3 MeV.

As discussed in sec. 4.4, the spectrum of the 8Be Hamiltonian (cf. eq. (4.1) with M = 2) on
the lattice is made of simultaneous eigenstates of the cubic group, the cyclic group of order
four generated by Rπ/2

z , spatial (and time) inversion and S2, the permutation group of two
elements. In particular, being particle exchange equivalent to the reversal of the sign of the
relative coordinate r12, bosonic (fermionic) eigenstates possess even (odd) parity.
In order to assess the capability of the model of describing the observed α-cluster lines of this
nucleus and receive some guidance for the subsequent choice of the multiplets of interest,
we present a short excerpt of the low-energy spectrum of Hr for a box with a = 0.5 fm and
N = 36 in tab. 5.1.

E [MeV] Γ Iz P S2 ⟨L2
tot⟩ [ℏ2]

−1.106778 A1 0 + −0.056

0.353021 T1

0
- 2.0861

3
0.948046 A1 0 + 2.507

1.721746 E 0 + 6.8992

2.261133 T1

0
- 10.0291

3

2.532701 T2

1
+ 7.0902

3
2.651441 A1 0 + 18.908

E [MeV] Γ Iz P S2 ⟨L2
tot⟩ [ℏ2]

2.834477 E 0 + 15.3322

3.133750 T2

1
- 12.6762

3

3.868673 T2

1
+ 17.4512

3

3.960128 T1

0
- 23.6291

3
4.289695 A1 0 + 30.743

4.302368 A2 2 - 14.698

4.308802 E 0 + 10.6202

TABLE 5.1 – Sample of the spectrum of the 8Be lattice Hamiltonian with N = 35 and a = 0.5 fm,
consisting of the 14 lowest energy state multiplets. Considered the size of the lattice and its spacing, it
is evident that the Hr is able to generate only one bound state. Its energy displays a slight disagreement
(≈ 1.2 MeV) with its experimental counterpart.
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Noticeable are the discrepancies between the eigenvalues of the squared angular mo-
mentum operator and the average values of the latter reported in the table. Since the volume
of the box (Na = 17.5 fm) is large enough to reduce finite-volume effects to the third decimal
digit of the energy, these disagreements are due to discretization effects, whose magnitude
increases with excitation energy and make the reconstruction of the infinite-volume angular
momentum multiplet from the ⟨L2

tot⟩ ≡ L2 hardly reliable. For instance, in the case of the
first 2+ multiplet, consisting of an E plus a T2 state, ∆L2 is already 15 % of the expected an-
gular momentum eigenvalue. The behaviour of the squared angular momentum, therefore,
suggests that wavefunctions corresponding to states of increasing energy are also incrasingly
position-dependent.
In addition the presence of an A+

1 state at 0.948 MeV, that further diagonalizations of the lattice
Hamiltonian indicate as 0+, appears to be in contrast with the present observational data, that
position the first excited 0+ at 27.494 MeV [220].

5.2 The 0+
1 and 2+

1 energy levels
In order to study a larger number of bound states as well as to test the results reported in
ref. [3], we increment the strength parameter of the attactive part of the Ali-Bodmer potential,
V0, by a 30 % with respect to its original value, see the dashed curve in fig. 4.1. Accordingly,
the artificial ground state lies approximately 10.70 MeV below its observational counterpart.
Besides the fundamental state, the infinite-volume spectrum of the Hamiltonian includes also
a 2+ multiplet, made of an E and a T2 state and another 0+ state, the closest to the α-α decay
threshold. Since the latter appears only at relatively large volumes (Na ≥ 25 fm), in this
section we focus the attention only on the 2+

1 multiplet, as in ref. [3]. Fixing the lattice spacing
to a = 0.25 fm in order to reduce discretization effects and enlarge the samples of data, we
investigate the finite-volume effects on the energy and the squared angular momentum of the
three multiplets of states.

FIGURE 5.2 – Behaviour of the en-
ergies of the lowest 0+ (vertical
bars) and 2+ (horizontal bars) ei-
genstates as a function of the box
size N for a = 0.25 fm. As ex-
pected, the eigenenergies asso-
ciated to states belonging to the
same irrep of SO(3) but to dif-
ferent irreps of O become al-
most degenerate at the infinite-
size limit. Residual discretiz-
ation effects amount to about
10−5 MeV for the ground state
and 10−4 MeV for the 2+ mul-
tiplet. The multiplet-averaged
energy of the latter in the mag-
nification has been denoted by a
solid line.
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With this choice of the lattice spacing, the ground state energy reaches its infinite-volume
value within the third decimal digit for Na = 13.25 fm, while the two multiplets, E and T2 be-
come degenerate within the same precision only for Na = 17 fm. Nevertheless, convergence
for the latter can be boosted by considering the multiplet averaged energy [3], E(2+

A ), of the
five states composing the 2+

1 line in the continuum, third-digit accuracy is already achieved
by E(2+

A ) at Na = 14.25 fm. The theoretical justification underlying this procedure resides
in the cancellation of the polynomial dependence on N of the lowest order finite-volume en-
ergy correction for the multiplet-averaged state. The main contribution to this energy shift
is proportional to exp(−κN), where κ =

√
−2mE is the binding momentum of the state, and

turns out to be negative for all the values of N (cf. eq. (19) of [3]) and even angular momentum.

FIGURE 5.3 – Average value of the squared angular
momentum for the three bound state multiplets
as a function of the lattice size. As predicted, the
average values of L2 for the 0+

A1
, 2+

E and 2+
T2

states
smoothly converge to the eigenvalues equal to 0, 6
and 6 units of ℏ2 respectively of the same operator.
Residual discretization effects amount to 10−5 and
10−4ℏ2 for the 0+ and 2+ states respectively.

FIGURE 5.4 – Difference between the average value
and the expected eigenvalue of the squared angu-
lar momentum for the three bound state multiplets
as a function of the lattice size. Logscale is set on
the y axis, thus unveiling a regular linear beha-
viour in the finite volume L2 corrections for boxes
large enough, analogous to the well-known one of
the energies of bound states [71]. Unlike the latter,
the three spikes due to sign reversal of the ∆L2

suggest that the finite volume corrections to this
observable are not constant in sign.

Even though we do not have an analytical formula for the finite-volume corrections to
the average values of L2 at our disposal, we extend the use of the average on the dimen-
sions of cubic group representations to the latter. As for the energies, an overall smoothing
effect on the discrepancies between the average values and the eigenvalues of the squared
angular momentum can be observed: a two digit accuracy in the estimates of the latter is
reached at N = 37 by the multiplet-averaged L2 for the 2+

1 multiplet, see the red dashed line
in fig. 5.3, while the individual members of the multiplet reach the same precision only at
N = 51. Moreover, in the large volume limit (N = 72) the 0+

1 state approaches the angular
momentum eigenvalue within 2 × 10−5 units of ℏ2, whereas for the E and T2 states of the 2+

1
multiplet the accuracy is poorer, i.e. 2 × 10−3ℏ2 and 8 × 10−4ℏ2, in order.
Plotting finally the discrepancies between the average values and the expected eigenvalues
of the squared angular momentum of the three sets of degenerate energy eigenstates as
function of the number of box sites per dimension, an exponential behavior of the former,
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∆L2 = A exp(mN) with A and m real parameters, can be recognized, cf. fig. 5.4.

FIGURE 5.5 – Behaviour of the en-
ergies of the bound eigenstates
as a function of the lattice spa-
cing a for Na ≥ 18 fm (ℓ = 0)
and Na ≥ 19 fm (ℓ = 2). As ex-
pected, the eigenenergies asso-
ciated to states belonging to the
same irrep of SO(3) but to differ-
ent irreps of O become almost
degenerate in the zero-spacing
limit. In the opposite direction,
another level crossing is expec-
ted to occur at a ≈ 4.5 fm. Resid-
ual finite volume effects amount
to 10−5 MeV for the 0+ state and
to 10−4 MeV for the 2+

1 states.
Multiplet-averaged energy of the
2+

1 states has been denoted by a
dashed line.

A linear regression with slope m and intercept logA on the points with N ≳ 35 can be
performed, highlighting a distinct descending behaviour for each of the multiplets: the ∆L2 of
the 2+

1 states decreases, in fact, with the same angular coefficient within three-digit precision.
It follows that the precision with which the squared angular momentum average values agree
with their expectation values is an increasing function of the the binding momentum: the
more the state is bound, the greater is the reliability of the L2 estimation. Nevertheless, the
derivation of an analytical formula for the finite volume corrections to the eigenvaues of the
squared angular momentum operator remains a subject of interest for further investigations.
Besides, once finite volume effects are reduced to the fourth decimal digit in the energies
via the constraint Na ≥ 18 fm, the effects of discretization for different values of a can be
inspected. As observed in ref. [3], the energies as function of the lattice spacing display an
oscillatory behaviour, whose amplitutes for the A1 state are limited to the first decimal digit
for 0.9 ≲ a ≲ 1.2 fm, then second digit precision is achieved for 0.7 ≲ a ≲ 0.9 fm.

FIGURE 5.6 – The 3-d probability density distributions of the α-α separation for the 2+
1 states. As in

figs. 5.8 and 5.10, the distances along the axes are measured in units of lattice spacing (a = 0.2 and
0.5 fm for the E and T2 states respectively). In each subfigure the isohypses with 25% of the maximal
probability density are shown. Due to time-reversal symmetry the PDF corresponding to the T2 Iz = 1
and 3 states exactly coincide.



120 CHAPTER 5. THE 8BE NUCLEUS

FIGURE 5.7 – Behaviour of the average values of the kinetic energy, K , and the potential operator, V,
on the 2+

1 E eigenstates as a function of the lattice spacing a for Na ≥ 19 fm. The sum of the two
average values produce the already displayed Er curve (cf. fig. 5.5), that almost intercepts the dotted
one of K as soon as the potential energy vanishes (a ≈ 4.5 fm) and the two states of the multiplet
become unbound.

For the members of the 2+
1 multiplet the fluctuations about the continuum value of the en-

ergies become more pronounced, being the achievement of a three digit precision confined
to a ≲ 0.5 fm. Since only lattices with odd number of sites per dimension contain the origin
of the axes, cf. the definition of the map between lattice sites and physical coordinates in
eq. (4.47), that is supposed to give important contribution to the lattice eigenenergies when the
wavefunction is concentrated about the former point, only lattices with odd values of N have
been considered for the large (a ≳ 1.25 fm) lattice spacing analysis.

FIGURE 5.8 – Cross-sectional plot (xz plane) of the PDF of the 2+
1 E Iz = 0 state (left) and behaviour of the

average value of the interparticle distance as a function of the lattice spacing for the same eigenstate
(right). In particular, the outer isohypsic surfaces of the former plot correspond to a probability density
equal to the 25% (dark blue) of the maximum value of the PDF (dark red). Distances along the axes
are measured in lattice spacing units (a = 0.2 fm). In the other graph, two minima of R at a ≈ 1.4
and 2.5 fm are visible, implying that the condition on the decay of the wavefunction with increasing
α-α distance is only approximately fulfilled. In the same panel, residual finite volume effects amount
to approximately 10−3 fm.



5.2. THE 0+
1 AND 2+

1 ENERGY LEVELS 121

Although a closed form for the leading order dirscretization corrections to the energy
eigenvalues does not exist, it is still possible to associate some extrema of the latter, see fig. 5.5
and fig. 3 in ref. [3], to the maxima of the squared modulus of the associated eigenstates. This
interpretation rests on the assumption that Er(a) reaches a local minimum for all the values
of the spacing a such that all the maxima of the squared modulus of the corresponding eigen-
function, |Ψr(r)|2, are included in the lattice. This condition is satisfied when all the maxima lie
along the symmetry axes of the cubic lattice. In case |Ψr(r)|2 possesses only primary maxima,
i.e. points lying at distance d∗ from the origin such that the most probable α-α separation, R∗,
coincides with d∗, the description of the behaviour of Er(a) in terms of the spatial distribution
of the associated wavefunction becomes more predictive.
In particular, when all the maxima lie along the lattice axes and the decay of the prob-
ability density function (PDF) associated to Ψr(r) with radial distance is fast enough, i.e.
|Ψr(r)|2Max ≫ |Ψr(r)|2 for |r| = nd∗ and n ≥ 2, the average value of the interparticle distance
coincides approximately with the most probable α-α separation, R ≈ d∗, and the average value
of the potential, V, is minimized at the same time.

FIGURE 5.9 – Behaviour of the average values of the kinetic energy, K , and the potential operator, V,
on the 2+

1 T2 eigenstates as a function of the lattice spacing a for Na ≥ 19 fm. The sum of the two
average values produce the already displayed Er curve (cf. fig. 5.5), that almost overlaps the dotted
one of K when the potential energy is negligible (a ≳ 2.8 fm) and the three states of the multiplet are
unbound.

Since the maxima of the eigenfunctions of both the 2+
1 E states (Iz = 0, 2) lie on the lattice

axes at distance d∗ ≈ 2.83 fm and no secondary maximum is found, cf. fig. 5.6, the energy
eigenvalues of the two states are expected to display minima for a = d∗/n with n ∈ N, i.e. for
a ≈ 2.83, 1.42, 0.94, . . . fm. Effectively, two energy minima at a ≈ 2.85 and 1.36 fm are detected
(cf. fig. 5.7). In addition, for a ≈ d∗ it is found that R ≈ 2.88 fm and V ≈ −21.21 MeV, both
the values being in appreciable agreement with the minimum values of the two respective
quantities, 2.70 fm and −21.40 MeV, see figs. 5.7 -5.8: it follows that also the requirement on
the decrease of the PDF with distance is approximately fulfilled.
On the other hand, the PDF of the 2+

1 T2 Iz = 2 state possesses four absolute maxima in
the intersections between the xy plane and the y = ±x planes lying at the same distance
d∗ ≈ 2.83 fm from the origin of the axes, whereas for the Iz = 1, 3 states there are two
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circles of absolute maxima about the z axis, located at the same distance from the origin, cf.
figs. 5.6 and 5.10. The two different patterns lead to the same inclusion conditions for the
principal maxima, a = d∗/

√
2n with n ∈ N, i.e. a ≈ 2.02, 1.01, 0.67, . . . fm. In practice, two

well-developed minima for a ≈ 2.02 and 1.05 fm are observed, still in agreement with the
predictions. Moreover, two minima are detected in the potential at a ≈ 1.96 and 1.05 fm,
whereas no extremum is found for around a = d∗, due to the absence of maxima along the
lattice axes (cf. fig. 5.9).
Therefore, the interpretation of the behaviour of the eigenenergies of bound states based
on the spatial configuration of the corresponding eigenfunctions and the average value of po-
tential V on the latter reviewed also in sect. III A of ref. [3] is further supported by our findings.

FIGURE 5.10 – Cross-sectional plot (xy plane) of the PDF of the 2+
1 T2 Iz = 2 state (left) and behaviour

of the average value of the interparticle distance as a function of the lattice spacing for the same
eigenstate (right). In particular, the outer isohypses of the former plot correspond to a probability
density equal to the 25% (dark blue) of the maximum value of the PDF (dark red). Distances along the
axes are measured in lattice spacing units (a = 0.5 fm). In the other graph, two minima of R at a ≈ 1.0
and 1.8 fm are visible, implying that the condition on the decay of the wavefunction with increasing
α-α distance is satisfied only to a first approximation. In the same panel, residual finite volume effects
amount approximately to 5 · 10−4 fm.

However, also the behaviour of the energy eigenvalue as a function of the lattice spacing
for the ground state (cf. fig. 5.5) can find an interpretation if the extrema of the two-body po-
tentials V II are considered. Since the spatial distribution of the PDF of the 0+

1 state is spherical
with a maximum when the two α particles completely overlap (d∗ = 0), minima of Er may
occur when the only minimum of V II at 2.64 fm is mapped in the cubic lattice, i.e. for spacings
equal to 2.64, 1.32, 0.85 . . . fm. Effectively, two minima at about 1.25 and 2.70 fm are found
together with a quasi-stationary point at 2.35 fm, perhaps due to the inclusion of the shallow
maximum of the two-body potentials at 6.71 fm, see fig. 2.1.
Concerning the angular momentum, similar considerations on fluctuations can be drawn: first
decimal digit oscillations are associated to the region 0.96 ≲ a ≲ 1.55 fm of the ground state,
the 1.05 ≲ a ≲ 1.58 fm one of the 2+

E state and the 0.96 ≲ a ≲ 1.7 fm one of the 2+
T2

, while
third decimal digit accuracy is achieved for a ≲ 0.6 fm by the 0+

1 and only at a ≲ 0.2 fm and
a ≲ 0.55 fm for the two members of the 2+

1 multiplet, respectively. The overall behaviour of
the angular momentum average values of the three states seems unaffected by level crossings
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and turns out to be smooth, with the noticeable exception of the evolution curve for the 2+
T2

state. In correspondence with the local maximum of the energy eigenvalue at a = 2.9 fm
a rapid step increase of the average value of the squared angular momentum of the latter
eigenstate takes place, see fig. 5.11. This phase transition-like behaviour is perhaps related
to the exclusion of a sharp extremum characterizing the wavefunction from the lattice, thus
preventing an unambiguous determination of the angular momentum content of the 2+

T2
state

for a ≳ 2.9 fm.

FIGURE 5.11 – Average value of the squared angular
momentum for the six bound states as a function
of the lattice spacing when Na ≥ 18 fm (ℓ = 0) and
Na ≥ 19 fm (ℓ = 2). As previously, convergence of
the average values of J2 to its expected eigenval-
ues is attained in the zero-spacing limit. Residual
finite-volume errors amount to about 10−5ℏ2 for
the 0+

1 state and 5 · 10−4ℏ2 for the 2+
1 states.

FIGURE 5.12 – Difference between the average
value and the expected eigenvalue of the squared
angular momentum for the six bound states as a
function of the lattice spacing for Na ≥ 18 fm
(ℓ = 0) and Na ≥ 19 fm (ℓ = 2). Even if a log-
scale is set on the y axis, no regular behaviour
in the finite volume L2 corrections can be detec-
ted, apart from an overall negative concavity and
piecewise linearity of the 0+

A1
and 2+

T2
curves.

Contrary to the finite-volume analysis, few conclusions can be drawn from the plot of the
∆L2 average values (cf. fig. 5.12). Even if one keeps the logscale in the ordinate axis, the
behaviour remains far from linear, due both to sign oscillations of the corrections and to a
certain overall negative concavity. In addition, multiplet averaging seems to have little effect
in smoothing these fluctuations.

5.3 The 4+
2 and 6+

1 energy levels
With the aim of extending the previous analysis to higher angular momentum states and as-
sessing the effectivity of multiplet averaging, we increase artificially the stength parameter of
the attractive part of the Ali-Bodmer potential up to the 150 % of its original value, see the
dotted curve in fig. 2.1. By means of this artifact, the wavefunctions of the 4He nuclei in this
section become more localized about the origin, a consequence of the enhanced attraction
of the α − α potential. Moreover, finite volume effects in lattices with size Na = 12 fm are
already limited to the third decimal digit for the energies of the bound states, a precision that,
in the previous case, was attained by the 2+

1 multiplet only at 17 fm.
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Besides the latter states and the fundamental one, the bound region of the spectrum now
contains four 0+ and two further 2+ multiplets, together with two 4+ and the expected 6+, in
whose decomposition into irreps of the cubic group all the representations appear at least once.

FIGURE 5.13 – Behaviour of the energies of the bound eigenstates as a function of the box size N for
a = 0.25 fm. In the background graph, lines marked by horizontal bars are associated to 0+ states,
lines marked by vertical bars with 2+ states, lines marked by greek crosses with 4+ and lines marked
by asterisks with 6+. As expected, rotational symmetry is almost restored in the lage box size limit
(N = 52). The magnification resolves the 4+

2 and 6+
1 states in terms of the underlying cubic group

multiplets. Residual discretization errors amount to about 10−3 and 5 · 10−4 MeV for the 4+
2 and the

6+
1 states respectively. Multiplet-averaged eigenenergies of the two are denoted by dashed and dotted

lines, in order.

As in the previous case, multiplet averaging of the energies of the 4+ and 6+ multiplets
finds further justification with the cancellation of the polynomial dependence on the lattice size
N in the lowest order finite-volume energy corrections (FVECs). More precisely, the leading
order correction for the multiplet averaged energies with angular momentum ℓ and parity P
assumes the universal form [3]

E∞(ℓPA ) − EN (ℓPA )|LO= (−1)ℓ+13|γ|2e
−κN

mN , (5.1)

as its magnitude is independent on the particular SO(3) irrep according to which the energy
eigenstate transforms. Keeping the lattice spacing invariant with respect to the previous case,
we repeat the finite-volume analysis for all the bound states, but dedicating a special attention
to the two uppermost SO(3) multiplets, 4+

2 and 6+
1 . Even if the extraction of a greater number

of bound states increases the runtime of the numerical computations, the faster decay of the
wavefunctions with distance allows to keep the same lattice spacings. Due to the changes in
the spatial distribution, the cubic group multiplets composing the SO(3) ones become degener-
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ate with a minimum precision of 10−3 MeV already at N = 52, while the average values of the
squared angular momentum reach the expectation values with a four decimal digit minimum
accuracy. As it can be inferred from the magnification in fig. 5.13, at least two level cross-
ings between states with the same transofmation properties under the operations of the cubic
group take place: the involved states are the A1 and the E ones of the two SO(3) multiplets.

FIGURE 5.14 – Average value of the squared angu-
lar momentum for the 4+

2 states as a function of
the lattice size. As predicted, the average values of
L2 for the cubic group partners of the SO(3) mul-
tiplet converge to the eigenvalue of 20 units of ℏ2 of
the same operator, even if with a well-pronounced
oscillatory behaviour for relatively small lattices
(N ≲ 32). Residual discretization effects amount
to about 10−4ℏ2.

FIGURE 5.15 – Average value of the squared angu-
lar momentum for the 6+

1 states as a function of
the lattice size. As predicted, the average values
of L2 for the cubic group partners of the SO(3)
multiplet converge to the eigenvalue of 42 units of
ℏ2 of the same operator, even if with a very pro-
nounced oscillatory behaviour for relatively small
lattices (N ≲ 32). Residual discretization effects
amount to about 10−4ℏ2.

These intersections are at the origin of sudden spikes in the evolution curves of the average
values of the squared angular momentum with N for the latter states. As this is presumably
due to the insufficient sampling in these regions limited by the lattice spacing constraint, these
points have been accurately removed from the plots in figs. 5.14 and 5.15. Therefore, bet-
ter estimations of the intrinsic behaviour of these angular momentum evolution lines can be
drawn from O multiplets that never experience level crossings with states having the same
transformation properties under the cubic group. Optimal candidates for such curves are
the smooth ones associated to the 6+

A2
, 4+

T1
, 4+

T2
and 6+

T2
I levels. The latter represents the T2

multiplet lying always below in energy with respect to the J = 6 partner bearing the same
cubic irrep.
The plot of the differences between the average values and the expected values of L2 with
the number of lattice sites per dimension enables us to confirm the qualitative observations on
the finite volume corrections for the squared angular momentum. For lattices large enough
(N ≳ 26), the latter decreases exponentially with N , the decay constant being approximately
shared by all the members of the same SO(3) multiplet. Besides, convergence to the expected
angular momentum is faster for more tightly bound states, suggesting again a dependence of
the decay constants on the energies of the spectral lines. Moreover, the chosen value of the
lattice spacing is responsible of the saturation behaviour of the lines for the 6+

T1
and 6+

T2
II for

N ≥ 37: as observed in fig. 5.12, discretization affects states belonging to different SO(3) and
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O irreps in different extent.

FIGURE 5.16 – Difference between
the average value and the expec-
ted eigenvalue of the squared an-
gular momentum for the 4+

2 (left)
and 6+

1 (right) states as a function
of the lattice size. A regular linear
behaviour in the finite-volume L2

corrections for boxes large enough
neatly emerges by setting the log-
scale on the y axis. The same con-
vention on the markers for the cu-
bic group irreps of figs. 5.10-5.8 is
used.

Setting a box size equal to 12 fm, we can now concentrate on discretization effects. As
expected, here the consequences of a more localized distribution of the wavefunctions about
the origin become even more evident. Discretization errors for the energies remain large in
a wide range of lattice spacing, dropping to the first decimal digit for most of the bound states
only at a ≈ 0.60 fm and then reaching third digit precision only at 0.25 fm. Nevertheless, the
behaviour of the 4+

2 and 6+
1 eigenenergies as function of the lattice spacing appears smooth

in the interval of interest, 0.24 ≤ a ≤ 1.8 fm.

FIGURE 5.17 – Behaviour of the energies of the 4+
2

eigenstates as a function of the lattice spacing for
Na ≥ 12 fm. Residual finite-volume effects amount
to about 10−3 MeV.

FIGURE 5.18 – Behaviour of the energies of the 6+
1

eigenstates as a function of the lattice spacing for
Na ≥ 12 fm. Residual finite-volume effects amount
to about 10−4 MeV.

In particular, the curves for the 4+
2 E, A1 and T2 multiplets display a deep minimum located

around 0.95 fm, cf. fig. 5.17, whereas the one of the T1 levels possesses a shallower pocket,
closer to the origin (a ≈ 0.75 fm). Similarily, the energy curves of the 6+

A1
, 6+

A2
and 6+

E states
possess a well developed first minimum about 1.38, 1.02 and 0.91 fm, respectively, while T1 and
T2 states are characterized by a first shallow minimum at about 0.9 fm followed by a second
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even less-developed one around 1.5 fm.
As illustrated for 2+

1 states and in ref. [3], the position of these minima can find an interpret-
ation via the analysis of the spatial distribution of the PDFs associated to the relevant states.
However, the presence of secondary maxima and of absolute maxima off the lattice symmetry
axes in the 4+

2 and 6+
1 PDFs make these predictions less effective than in the previous case.

Nevertheless, the inclusion conditions for the maxima of the 6+
A2

Iz = 2 state are satisfied
in good approximation for a relatively large value of the spacing, a, leading to a successful
description of the behaviour of the turquoise curve in fig. 5.18.

FIGURE 5.19 – Cross-sectional plot (xy plane) of the PDF of the 6+
1 A2 state (left) and behaviour of the

average value of the interparticle distance as a function of the lattice spacing for the same eigenstate
(right). In particular, the outer isohypses of the former plot correspond to a probability density equal
to the 25% (dark blue) of the maximum value of the PDF (dark red). Distances along the axes are
measured in lattice spacing units (a = 0.24 fm). Despite the strong resemblance, the arrangement of the
maxima in the xy, xz and yz planes is not octagonal. In the other graph, a minimum in R at a ≈ 0.88 fm
is visible, implying that the condition on the decay of the wavefunction with increasing α-α distance is
appreciably satisfied. In the same panel, residual finite-volume effects amount to approximately 10−3 fm.

The probability density function for this 6+ state is characterized by four equidistant couples
of principal maxima separated by an angle γ ≈ 34.2◦ and located at a distance d∗ ≈ 2.31 fm
from the origin in the x, y and z = 0 planes. Even if the 24 maxima cannot be simultaneously
included in the cubic lattice, the inclusion conditions on the lattice spacing approximately
match for 1.02 ≲ a ≲ 1.08 fm. From the inclusion conditions of a pair of maxima in the first
quadrant of the xy plane, see figs. 5.19 and 5.21, in fact, it follows that

ax = d∗

n cos
(︂π

4 − γ
2

)︂
, (5.2)

i.e. ax ≈ 2.04, 1.02, 0.68... for the x-axis and

ay = d∗

n sin
(︂π

4 − γ
2

)︂
, (5.3)

i.e. ay ≈ 1.08, 0.54, 0.36... for the y-axis. Effectively, a sharp minimum of the total energy
(cf. fig. 5.19) is detected, confirming the predictions. On the other hand, the minimum of
the average value of the potential, cf. fig. 5.19, and the α-α distance see fig. 5.20, is shifted
towards smaller spacings (≈ 0.85 fm), due to a slow decrease of the associated probability
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density function in the vicinity the maxima.

FIGURE 5.20 – Behaviour of the average values of the kinetic
energy, K , and the potential operator, V, on the 6+

1 A2 eigen-
state as a function of the lattice spacing a for Na ≥ 12 fm.
The sum of the two average values produce the already dis-
played Er curve, see fig. 5.18.

FIGURE 5.21 – Three-dimensional probab-
ility density distribution of the α-α separ-
ation referring to the isohypses with 25%
of the maximal value of the 6+

1 A2 state
PDF. As in figs. 5.10, 5.7 and 5.9, the dis-
tances along the axes are measured in
units of lattice spacing (a = 0.24 fm).

Concerning the angular momentum, the fluctuations of the average values of L2 about
the corresponding expectation values for a ≳ 0.6 fm are even larger than the ones of the
energies. The effect is even amplified for the 0+

3 and the A1 member of the lowest 4+
1 state

due to their quasi-degeneracy and the many level crossings they undergo before reaching
their continuum eigenvalues (cf. fig. 5.22).

FIGURE 5.22 – Behaviour of the squared angular
momentum of the 4+

2 eigenstates as a function of
the lattice spacing for Na ≥ 12 fm. As before,
convergence of the average values of L2 to its ex-
pected eigenvalues is achieved in the zero-spacing
limit. Residual finite volume effects amount to
about 10−3ℏ2.

FIGURE 5.23 – Behaviour of the squared angular
momentum of the 6+

1 eigenstates as a function of
the lattice spacing for Na ≥ 12 fm. Convergence
of the average values of L2 to its expected eigen-
values is attained in the zero-spacing limit. Resid-
ual finite volume effects amount to about 10−4ℏ2.
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Due both to the absence of nearby levels with the same transformation properties under O
and the smaller number of these crossings, the 4+

2 and the 6+
1 multiplets converge sensibly

faster to their expected squared angular momentum eigenvalues in the zero spacing limit.
Nevertheless, the appreciable continuity of the evolution curves of L2 with a remains seldom
interrupted by sharp spikes and wells, withnessing level crossings of the aforementioned kind,
see figs. 5.22 and 5.23. Due to the presence of many low-lying 0+ and 2+ states, A1 and, to a
smaller extent, T2 and E lines are more heavily affected by cusps than T1 and A2 states, whose
behaviour exhibits the transition-like features already observed in fig. 5.12. The onset point
of these step-growing and falling parts marks the upper bound of the lattice spacing interval
in which the observed levels can be classified as partners of a SO(3) multiplet.
Beyond a ≈ 0.9 fm, the characterizing part of all the wavefunctions composing the 4+

2 and 6+
1

multiplets is not sampled any more by the lattice, thus making angular momentum classifica-
tion of the states almost unreliable.

FIGURE 5.24 – Difference
between the average value and
the expected eigenvalue of the
squared angular momentum
for the 4+

2 (left) and the 6+
1

states (right) as a function of
the lattice spacing. The same
convention on the markers
for the cubic group irreps of
figs. 5.13-5.20 is used.

Since the |∆L2|(a) curve for the 2+
E state in the above is heavily affected by the sign

inversions of the angular momentum correction, no particular conclusion was drawn from
the graph in fig. 5.12. In this case, apart from a spike in the 4+

T1
curve around 0.3 fm and

some disturbance in the 4+
T2

one around 0.75 fm, an appreciable quasi-linear behaviour of
the log |∆L2|’s can be inferred from 0.7 fm towards the continuum limit, see fig. 5.24. Con-
sequently, the corrections to the squared angular momentum average values for lattice cubic
group eigenstates can be reproduced by a positive exponential of a,

|∆L2(ℓ)| ≈
aÏ0

Aℓ exp(a · κℓ) . (5.4)

in the small-spacing region. In particular, the constant in the argument of the exponential,
κℓ , is approximately independent on the cubic group irrep Γ according to which each state
of a given angular momentum multiplet ℓ transforms. Moreover, the proportionality constant
Aℓ in eq. (5.4) vanishes exactly for infinite-volume lattices and is expected to decrease with
increasing box size Na.
However, the extent of the region where this approximation can be successfully applied de-
pends on the onset point of the step growing or falling parts of the squared angular momentum
curves. Since the α-α average distance is larger for the 6+

1 than for the 4+
2 , this interval is

wider for the former and the positive exponential behaviour more evident.
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CHAPTER 6

THE 12C NUCLEUS

We continue the investigation of rotational symmetry breaking effects in α-conjugate nuclei
with the case of 12C. Due to the addition of a three-body potential to the 8Be Hamiltonian,
the ground state of Hr is now anchored on the observed energy gap between the Hoyle
state [221, 222], 0+

2 , and the fundamental state, 0+
1 , a fact that guarantees the presence of a

certain number of bound states in the spectrum of the physical Hamiltonian. Therefore, we
choose to fix the parameters of the Ali-Bodmer potential [4] to their physical values.
After showing an excerpt of the spectrum of the lattice Hamiltonian Hr in sec. 6.1, we concen-
trate on the analysis of finite volume and discretization effects in the energy eigenvalues of the
cubic group multiplets that correspond to the 0+

1 and 2+
1 states in infinite volume. Although

the latter states were first inspected in ref. [3], in our analysis we reduce the lattice spacing
and we increase the number of mesh points per dimension, N . In particular, we enrich the
treatment with the average values of the total angular momentum squared, L2, (cf. sec. 4.3.3)
and the α-α separation, R.
Furthermore, in sec. 6.2 we extend the above analysis to the 3−

1 multiplet, and display the
probability density functions associated to the 0+

A1
, 2+

E and 3−
T1

lattice eigenfunctions. As for
8Be nucleus, the correlation between the position of their extrema and discretization effects
in the energy eigenvalues is explored in the concluding part of the section.

6.1 The spectrum
After the study of finite-volume and discretization effects in the spectrum of 8Be, we focus
on the bound states of a system three interacting α particles, the 12C nucleus. Due to the
particular choice of the parameters of VAB, the addition of the attractive phenomenological
three-body potential in eq. (4.4) permits us to reproduce the binding energy of this nucleus.
Although the ground state is tuned on the energy of the Hoyle state rather than on the 3α de-
cay threshold, in fact, the binding energy can be still recovered, provided the well-established
positive gap between the latter two is added to the ground state energy, E0+ in eq. (4.48).
Even if the behaviour of lattice binding energy (cf. eq. (4.48)) with the box size N is all in
all analogous to the one of Beryllium, two digit accuracy with the observational counterpart
(≈ 92.16 MeV) of the former is finally reached at N = 24 and spacing equal to 0.75 fm. There-
fore, finite-volume effects can be reasonably neglected for our purpose in lattices with size
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Na ≥ 18 fm.

FIGURE 6.1 – Lattice binding energy of the 12C as a function of the box size N . The spacing has been
kept fixed to 0.75 fm, with the aim of reducing the residual discretization effects to about 5 · 10−3 MeV.

Differently from the preceeding case, there is no more isomorphism between parity and
particle permutation group, S3, a six element non-abelian group bearing also a 2-dimensional
irreducible representation (diagrammatically ).

E [MeV] Γ Iz P S3 ⟨L2
tot⟩ [ℏ2]

−7.698420 A1 0 + 0.373
−6.306062 T1

0
− 2.4291

3

−5.457046 T1

0
+ 2.4661

3

−4.550694 T2

1
+ 6.6122

3

−4.470975 E 0 + 6.1752

−3.420394 E 0 + 6.7292
−3.177991 T2

1
+ 6.8242

3
−2.873875 T2

1
− 7.0862

3

−2.862931 A1 0 + 2.074

E [MeV] Γ Iz P S3 ⟨L2
tot⟩ [ℏ2]

−2.686463 A1 0 + 1.690

−2.637041 T1

0
− 8.3201

3

−2.483865 T2

1
− 12.6032

3

−2.297536 A2 2 − 12.493

−2.281911 T1

0
− 7.9431

3

−1.981923 T2
1

− 12.5362
3

−1.797457 T1
0

− 12.3601
3

−1.779066 A2 2 − 12.384
−1.706789 T1

0
− 4.4411

3

TABLE 6.1 – Sample of the spectrum of the 12C Hamiltonian with N = 15 and a = 1 fm, consisting of the
17 lowest degenerate energy multiplets. The SO(3) multiplets of interest, 0+

1 , 2+
1 and 3−

1 are highlighted
in bold. Cubic group multiplets labeled by the Young Tableau with three unaligned boxes appear
twice in the spectrum, since the irrep of the permutation group according to which they transform is
2-dimensional.
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As a consequence, besides bosonic and fermionic symmetry, the eigenstates of the lattice
Hamiltonian Hr can be now symmetric with respect to the exchange of a pair of particles
and antisymmetric with respect to the transposition of another couple of them, resulting in
the appearance of unphysical parastatistic eigenstates.
Given the duration and memory consumption of the eigenvector extraction process and being
parity itself uncorrelated with particle exchange symmetry, also projectors on parity and C4
irreps have been incorporated in the iteration loop, thus minimizing the number of eigen-
vectors involved in the Gram-Schmidt othogonalization. On the other hand, the matrix Rπ/2

z ,
(cf. eq. (4.37)) to be simultaneously diagonalized together with the Hamiltonian, has been ex-
cluded from the iteration loop.

6.2 The 0+
1 , 2+

1 and 3−
1 energy levels

Since the actual nucleus is naturally bound, no artificial increase of the Ali-Bodmer potential
attractive parameter is needed for the investigation of finite-volume and discretization effects
in the lowest bound eigenstates presented in this section. By sampling the sprectrum of the
relative Hamiltonian with N = 15 and a = 1.0 fm, see tab. 6.1, and the one with N = 20 and
a = 0.9 fm to a smaller extent, it turns out that this nucleus possesses seven SO(3) multiplets of
completely-symmetric bound states, namely three 0+, a 1−, two 2+ and a 3−, in the continuum
and infinite-volume limit. Experimentally, only a 2+ line at 4.44 MeV is found to lie below the
3α decay threshold [223], while the lowest 3− and 1− observed excitations result to be unbound
by circa 1.9 and 2.2 MeV respectively.

FIGURE 6.2 – Behaviour of
the energies of the lowest
0+ (horizontal bars), 2+ (ver-
tical bars) and 3− (diagonal
crosses) bound eigenstates
as a function of the box
size N for a = 0.50 fm.
As expected, the eigenener-
gies associated to states be-
longing to the same irrep
of SO(3) but to different ir-
reps of O become almost de-
generate at the infinite-size
limit. The same convention
on the markers for the cu-
bic group irreps adopted in
the figures of chap. 5 is un-
derstood. Residual discretiz-
ation effects amount to about
10−2 MeV for the 0+ and 2+

states and to 5 · 10−3 MeV for
the 3− states.

Starting from this set of bound eigenstates, we choose to restrict our analysis to the ground
state at −7.65 MeV, the 2+

1 state at −3.31 MeV and the 3−
1 multiplet at −1.80 MeV, decomposing

into an A2, a T1 and a T2 multiplet with respect to the cubic group.
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Analogously to the Beryllium case, we fix the lattice spacing in such a way to reduce the dis-
cretization errors to less than two decimal digits in the infinite-volume limit (Na ≳ 19 fm) for
all the multiplets of interest and plot the behaviour of the energy as a function of the lattice
size N (cf. fig. 6.2). The evolution curve for the energy of the ground state follows a similar
path to the ones of the 0+ states of 8Be: after a minimum at Na ≈ 6 fm, the continuum and
infinite-volume eigenvalue is reached asymptotically from below, as prescribed by the FVEC
formulas from ref. [77] for a two-body system.

FIGURE 6.3 – Behaviour of the average interparticle
distance for the 0+

1 and 2+
1 multiplets as a function

of the lattice size. Due to the broader spatial distri-
bution of the 2+

E and T+
2 wavefunctions, the finite-

volume effects on the average values of the α− α
separation distance remain sensitive (≈ 0.24 fm at
N = 31). Residual discretization effects amount to
about 10−3 fm for the ground state and 5 · 10−3 fm
for the 2+ states.

FIGURE 6.4 – Behaviour of the average interparticle
distance for the 3−

1 multiplet of states as a func-
tion of the lattice size. As expected, both the
three members of this SO(3) multiplet converge
to same average values of the α-α separation dis-
tance, that at N = 31 coincide within 0.05 fm ac-
curacy. Residual discretization effects amount to
about 5 · 10−3 fm.

In particular, an agreement within one decimal digit with the fitted value of −7.65 MeV is
already reached at Na ≈ 13 fm, whereas the overlap with all the meaningful digits is expected
to be achieved at Na ≈ 16.5 fm.
However, the 2+ doublet is expected to become degenerate within one-digit precision only at
Na ≈ 16 fm, due to a broader spatial distribution of the E and T2 eigenfunctions. The average
separation between the α particles in the equilateral triangular equilibrium configuration, in
fact, amounts approximately to 4.65 fm for the doublet of states and to 4.05 fm for the 0+

1 state,
see fig. 6.3. From the ground state value of the α-α separation, an estimate of the nuclear
radius can be obtained by computing the distance between the barycentre and the vertices
of the triangle, R/

√
3. The outcoming value gives 2.34 fm, which slightly underestimates the

observational charge radius of the nucleus in ref. [224], equal to 2.47 fm.
Furthermore, in the 3− energy multiplet the T1 and the A2 states approach the continuum and
infinite-volume energy from above, whereas the T2 multiplet requires corrections of opposite
sign, see fig. 6.2. Although analytical formulas for the leading order FVEC for three body
systems are still unknown, the sign of these corrections for the ℓ = 3 multiplet seem coincide
with the one of the FVECs for a multiplet of bound eigenstates with the same angular mo-
mentum of a two-body system.
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FIGURE 6.5 – Average value of the squared
angular momentum for the six bound
states as a function of the lattice size.
After displaying a peak in the interaction
region, the average values of the squared
angular momentum for the 0+

1 , 2+
1 and 3−

1
states converge to the eigenvalues of L2

equal to 0, 6 and 12ℏ2 respectively in the
infinite-volume limit. The multiplet aver-
ages of the 2+

1 and 3−
1 states are denoted

by solid and dotted lines. Residual dis-
cretization effects amount to 5 ·10−2ℏ2 for
the 0+ and 3− states and to 10−1ℏ2 for the
2+ states.

Besides, rotational symmetry for this multiplet is already restored within one decimal digit
accuracy for Na ≈ 14 fm, due to the more localized spatial distribution of the wavefunctions,
see fig. 6.4. The infinite-volume value of the average α − α distance for the states of these
multiplets is 4.40 fm, in between the one of the 0+

1 and the 3−
1 multiplets.

The average values of the angular momentum as function of the lattice size N for both the
three SO(3) multiplets considered display a well-developed maximum at aboutN = 7, eventually
followed by a shallow minimum lying between N = 15 and N = 20.

FIGURE 6.6 – Behaviour of the energies of the 0+
1

and 2+
1 eigenstates as a function of the lattice spa-

cing for Na ≥ 19 fm. Although the multiplet-
averaged 2+

1 energy (solid line) improves the
convergence rate to the continuum and infinite-
volume counterpart, for a ≳ 2.0 fm discretiz-
ation corrections amount to more than 33% of
the asymptotic energy eigenvalue. Residual finite
volume effects are expected to amount to 10−3 MeV
for the ground state and to 5 · 10−3 MeV for the 2+

states.

FIGURE 6.7 – Behaviour of the average α − α dis-
tance of the 0+

1 and 2+
1 eigenstates as a function

of the lattice spacing for Na ≥ 19 fm. It is worth
observing that the values of R to which the 2+

E and
the 2+

T2
states seem to converge do not coincide by

an amount of 0.06 fm. It is possible that this small
bias is due to residual finite-volume effects, since,
as noticed in fig. 6.3, for a = 0.5 fm and N = 31
the two average interparticle distances differ still
by 0.24 fm. Nevertheless, the other observables
concerning this angular momentum multiplet, cf.
figs. 6.6 and 6.13, perhaps less sensitive to finite-
volume effects, do not display this behaviour in the
small-spacing limit. Residual finite-volume effects
for the ground state are expected to be smaller by
an order of magnitude.
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In particular, the angular momentum of the 0+
1 state reaches the expected asymptotic value

from below, as observed in the beryllium case (cf. fig. 5.3), while the 2+
E and 2T2 multiplets

approach the continuum and infinite volume limit from below and above, respectively. This
suggests the sign of the leading order finite volume corrections for the eigenvalues of the L2

operator. Although the L2 evolution curves for the three SO(3) multiplets resemble the ones
of the 0+

1 and 2+
1 states of the 8Be nucleus, cf. fig. 5.3, the E and the A2 levels for N ≲ 14

seem to be heavily affected by level crossings with adiacent energy states (note that a spike
marking the 2+

E evolution curve at N = 11 has been omitted).
Next, we concentrate the attention to the systematic errors due to finite lattice spacing. By
fixing the size of the lattice at Na ≥ 19 fm in order to reduce finite-volume errors to the third
decimal digit, we inspect the behaviour of the energy eigenvalues of the aforementioned 0+

1 ,
2+

1 and 3−
1 multiplets for lattice spacings a ranging from 0.65 to 3.50 fm. From the plot in

fig. 6.6, the 0+
A1

state already equates the fitted energy eigenvalue of −7.65 MeV within one
and two decimal digit precision at a ≈ 1.15 and 1.00 fm, whereas the two members of the 2+

1
multiplet become degenerate within the same accuracy for a = 1.30 and 0.75 fm respectively.
As outlined in sec. 5.2, some of the minima of the energy curves can be associated to the
values of the lattice spacing that permit the inclusion of relative maxima of the probability
distribution functions of the states into the lattice.

FIGURE 6.8 – Spatial distribution of the PDF of the 0+
1 A1 state with Iz = 0 in the configuration space

slices with r23 = (0, 0, 0) (left) and r23 = (4, 3, 0) (right). The outer isohypsic surfaces of the former
plot correspond to a probability density equal to 50 times the local minimum value of the PDF (≈
2.6 · 10−16 fm−6), whereas the one of the latter is equal to 10% the probability density of the absolute
maximum (≈ 1.7 · 10−9 fm−6). Distances along the axes are measured in lattice spacing units (a =
0.65 fm). In particular, the toroidal region in the right panel encompasses an entire circle of maxima,
which correspond to principal extrema of the wavefunction. In the other plot, the probability density
increases with the distance from the origin, until a saddle point consisting of a spherical shell is
reached. Then the probability density decreases more slowly to zero. Finally, it is worth remarking
that symmetry under particle exchange ensures that the two plots would remain unaffected if the two
slices were kept from the r13 subspace.

Differently to the two-body case, the 12C eigenfunctions may possess a huge amount of local
extrema and display rather complex spatial distributions, thus making the analysis of the PDF
maxima by far more involved than in the beryllium case, see figs. 6.8-6.12.
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Since the interactions are isotropic, the most probable separation distance between any of the
pairs of α particles is expected to coincide exactly for all the eigenfunctions belonging to the
same SO(3) multiplet in the zero-spacing limit.
Contrary to the beryllium case, the PDF of the ground state of this nucleus has a local non-zero
minimum when r13 = r23 = (0, 0, 0), meaning that configuration in which all the α particles
completely overlap has become unstable. In addition, the squared modulus of the 0+

1 wave-
function possesses also maxima, the absolute ones corresponding to equilateral triangular
equilibrium configurations in which α-particles are separated by d∗ ≈ 3.3 fm, see. fig. 6.8.
Even if none of these maxima can be exactly included in the lattice, both the three minima of
the energy eigenvalue at a ≈ 1.40, 2.35 and 3.10 fm are in good correspondence with the ones
of the potential energy V. In particular, for the latter two values of the spacing the average
interparticle distance R differs from d∗ by only 0.3 fm, cf. fig. 6.8.

FIGURE 6.9 – Spatial distribution of the PDF of the 2+
1 E state with Iz = 0 in the configuration space

slices with r23 = (0, 0, 0) (left) and r23 = (5, 1, 0) (right). The outer isohypsic surfaces of the two plots
correspond to probability densities equal to the 15% and the 10% of the largest extremal values of the
squared modulus of the wavefunction enclosed by the surfaces. Distances along the axes are measured
in lattice spacing units (a = 0.65 fm). In particular, the bulges in the toroidal regions in the right plot
encompass one single PDF extremum each, which correspond to principal maxima of the wavefunction
(≈ 3.2 · 109 fm−6). On the other hand, all the extrema in the r23 = (0, 0, 0) slice of the PDF are indeed
saddle points. It follows that the configurations with two overlapping α-particles and the third one lying
in the centre of one of the spheres or in the inner circle of the regular torus are unstable.

For what concerns the 2+
E multiplet, its energy eigenvalue reaches a shallow minimum for

a ≈ 2.30 fm and two well-developed minima for a ≈ 1.45 and 3.10 fm (cf. fig. 6.6 and fig. 7
in ref. [3]). As before, these minima are found to be in correspondence with the ones of the
average values of the potential energy.
Although noone of the absolute maxima of the associated PDFs lies on the lattice axes (cf.
fig. 6.8), the average value of the interparticle distance at a ≈ 3.1 fm is in reasonable agreement
with the most probable α−α separation distance d∗, equal to ≈ 3.3 fm, see fig. 6.7. Conversely,
for a ≈ 1.45 and 2.30 fm R appears far from d∗, due to the contributions of the tails of the
wavefunction, certainly more significant than the ones of the ground state.
Analogous is the situation of the 2+

T2
multiplet, for which the energy minima are in optimal

agreement with the minima of the average values of the potential energy, and lie at spacings
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FIGURE 6.10 – Behaviour of the energies of the 3−
1

eigenstates as a function of the lattice spacing for
Na ≥ 19 fm. Even if the multiplet-averaged 3−

1
energy (densely dotted line) improves the conver-
gence rate to the continuum and infinite-volume
counterpart, for a ≳ 2.0 fm discretization correc-
tions amount to more than 100% of the asymptotic
energy eigenvalue. Residual finite volume effects
are expected to amount to 5 · 10−3 MeV.

FIGURE 6.11 – Behaviour of the average α− α dis-
tance of the 3−

1 eigenstates as a function of the
lattice spacing for Na ≥ 19 fm. Although slower
than in the 8Be case, convergence of the average
values of L2 to its expected eigenvalues is attained
in the zero-spacing limit. Residual finite volume
effects are expected to amount to 5 · 10−3 fm.

almost equal to the ones of the 2+
E multiplet (a ≈ 1.40, 2.35 and 3.20 fm). Even if they do not

lie on the lattice axes, the absolute maxima of the PDF can be exactly mapped in the cubic
lattice and correspond to equilateral triangular configurations with side d∗ equal to 3.3 fm, as
in the previous case.

FIGURE 6.12 – Spatial distribution of the PDF of the 3−
1 T1 state with Iz = 0 in the configuration space

slices with r23 = (0, 0, 0) (left) and r23 = (1, 2, 5) (right). The outer isohypsic surfaces of the two plots
correspond to a probability density equal to the 10% of the maximum value of the PDF (≈ 4.4·10−9 fm−6).
Distances along the axes are measured in lattice spacing units (a = 0.65 fm). In particular, the crescent-
shaped regions in the right plot encompass one single local PDF extremum each, which correspond
to principal maxima of the wavefunction. As for the 2+

E Iz = 0 state, all the extrema in the r23 = (0, 0, 0)
slice of the PDF are indeed saddle points. Consequently, the configurations with two overlapping α-
particles and the third one lying in the centre of one of the spheres or in the inner circle of one of the
two tori are unstable.
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Besides, the average values of R at a ≈ 2.35 and 3.20 fm roughly agree with the most prob-
able α−α separation distance d∗, although for the latter value of the interparticle distance the
discrepancy is larger, see fig. 6.7.
Concerning the 3−

1 multiplet, the three bound multiplets reach the asymptotic region after
some oscillations at a ≲ 1.30 fm, where they become degenerate within 0.12 MeV, and even-
tually overlap with two digit accuracy at a ≈ 0.80 fm, see fig. 6.7. All the PDF associated to
the wavefunctions of the present multiplet are found to have well-developed principal maxima
(≈ 104 times deeper than any any other PDF extremum), corresponding to α− α separations
d∗ of about 3.4 fm. Moreover, both the energy eigenvalue and the average value of the po-
tential energy of the 3−

A2
state is minimized for lattice spacings equal to ≈ 1.35 and 2.35 fm. In

particular, for the latter value of the spacing R ≈ 3.45 fm (cf. figs. 6.10 and 6.11), a reasonable
agreement with d∗.

FIGURE 6.13 – Behaviour of the average vaules of
the squared total angular momentum of the 0+

1 and
2+

1 eigenstates as a function of the lattice spacing
for Na ≥ 19 fm. Residual finite-volume effects are
expected to amount to about 5 · 10−3ℏ2 for the 0+

state and to 10−2ℏ2 for the 2+ state.

FIGURE 6.14 – Behaviour of the squared total angu-
lar momentum of the 3−

1 eigenstates as a function
of the lattice spacing for Na ≥ 19 fm. Even if
slowly, convergence of the average values of L2

to its expected eigenvalues is attained in the zero-
spacing limit. Residual finite volume effects are
expected to amount to about 5 · 10−3ℏ2.

On the other hand, for the former spacing the average value of the α-α distance is strongly
influenced by the tails of the wavefunction. Both the minima can be related to the exact in-
clusion of the principal maxima of the PDF associated to the aforementioned state into the
lattice. In the case of the 3−

T1
states, the energy minima at a ≈ 1.45, 2.40 and 3.15 fm are still

found to be in good correspondence with the ones of V.
Moreover, not all the principal maxima detected in the PDFs can be exactly (or in good approx-
imation) included in the cubic lattice, due to the non-trivial spatial orientation of the probability
density surfaces encompassing the absolute maxima, cf. fig. 6.12. Nevertheless, the two min-
ima of Er at 2.40 and 3.15 fm correspond to values of the average interparticle distance R of
about 3.45 fm, again in good agreement with d∗.
Similarily to the previous case, not all the principal maxima of the probability density functions
associated to the 3−

T2
states can be exactly mapped in the cubic lattice. Although the shallow

minimum of the energy eigenvalue of the multiplet between a = 2.25 and 2.3 fm is shifted by
about 0.2 fm from the nearest minimum of V, the remaining two energy minima at a ≈ 1.45
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and 3.15 fm are in good correspondence with the ones of the average values of the potential
energy. Concerning the average values of the interparticle distance, the agreement between
R at a ≈ 2.3 and 3.15 fm and d∗ is worse than in the previous case (cf. fig. 6.11), due to the
spatial distribution of the 3−

T2
wavefunctions.

Switching now to the average values of the squared total angular momentum, the convergence
rate of the 0+

1 and 2+
1 states to the expected L2 eigenvalues (cf. figs. 6.11 and 6.14) is sensibly

slower than the one of the homologous states of beryllium, see fig. 5.11.
In particular, one decimal digit agreement between the L2 average value on the ground state
and the expected eigenvalue is reached for a ≈ 1.0 fm, whereas two decimal digit precision is
attained only at a ≈ 0.65 fm. Besides, for the 2+

1 multiplet one decimal digit precision in the
angular momentum estimation is reached only at a ≈ 0.70 fm, even if, for the T2 multiplet
convergence is slightly faster, as observed in the −3.3 MeV multiplet of 8Be (cf. fig. 5.11).

FIGURE 6.15 – Difference between the aver-
age value and the expected eigenvalue of
the squared angular momentum for the 2+

1
(left) and the 3−

1 states (right) as a function
of the lattice spacing. The same convention
on the markers for the cubic group irreps
of figs. 6.7-6.10 is understood. It is worth re-
marking that the deviations from linearity for
small values of the spacing in the 2+

E curve (cf.
the left panel of the figure) are sensibly lar-
ger than the ones of the other multiplets, an
effect perhaps due to residual finite-volume
effects.

For the 3−
1 state the situation is similar, since one-digit precision in the estimation of the

eigenvalue of the squared total angular momentum is reached only at a = 0.85, 0.80 and
0.75 fm for the 3−

A2
, 3−

T1
and 3−

T2
multiplets respectively. Contrary to the case of the 0+

1 and 2+
1

states of 8Be, it turns out that the computation of the average values of L2 does not provide
more precise information on the transformation properties of the group of states under SO(3)
rotations, since the energies themselves become degenerate with greater accuracy at larger
lattice spacings.
Nevertheless, by subtracting the expected squared angular momentum eigenvalues from the
L2 average values and then taking the absolute value the observations on the asymptotic cor-
rections to the latter in chap. 5 find another confirmation. If the spacing is small enough, i.e.
a ≲ 1.4 fm for the 0+

1 and 2+
1 states or a ≲ 1.3 fm for the 3− multiplet, the log |∆L2| behave

almost linearly with the lattice spacing, with a positive slope, see fig. 6.15.



CHAPTER 7

THE 16O NUCLEUS

We conclude our study of rotational symmetry breaking in α-conjugate nuclei with the low-
energy sector of the spectrum of 16O. Conserving the three-body Gaussian interaction adop-
ted for the 12C nucleus, we predict that the binding energy of 16O is underestimated by about
11 MeV. However, the lattce spectrum with N ≈ 10 and a ∼ 1.0 fm unveils a number of bound
states, converging to different SO(3) multiplets in the inifinite volume.
Therefore, we leave the parameters of the Ali-Bodmer potential [4] fixed to their physical
values and we analyse finite-volume and discretization effects in the energy eigenvalues of the
0+

1 , 2±
1 , 3±

1 and 4−
1 states.

With the growth of the M-body configuration space, it is apparent that the extraction of lattice
eigen-energies at large values of the box size, N , becomes even more computationally de-
manding and, eventually, prohibitive. Consequently, in the finite-volume (discretization) plots,
residsual discretization (finite-volume) effects will be not suppressed to the same extent as
in the 8Be and 12C spectra. Nevertheless, for sufficiently large (small) values of the lattice
size (spacing), an approximate restoration of rotational symmetry becomes visible, both in the
eigen-energies and in the average values of the squared angular momentum, L2, and α-α
separation, R.

7.1 The spectrum
The α-cluster structure in 16O is a subject of investigation from the earliest models [161,162].
Motivated by the renewed interest in the topic [8, 225], we apply the M-body Hamiltonian, H ,
in eq. (4.1) to the nucleus 16O as a cluster of four α-particles.
Due to the increased size of the lattice counterpart of the H , we compute of the ground-state
eigenvalue via the Lanczos method for the GPU units (cf. secs. 4.7.1 and 4.7.1 a)) for N ≤ 10,
then we explore the large lattice size region until N = 40 by resorting to the Worldline Monte
Carlo algorithm (cf. sec. 4.8.1) with at fixed to 1/3500 s (cf. fig. 4.4). Differently from the
8Be and 12C case, we set the lattice spacing to ≈ 0.497 fm instead of 0.75 fm, in order to
keep discretization effects suppressed. Due to the expansion of the transfer-matrix in the
WMC approach (cf. eq. (4.83)), in fact, the derivative improvement index for the discretized
Laplacian, K, has to be fixed to unity in order to preserve its positive-definiteness.
Collecting Monte Carlo samples with 141 ≤ Nt ≤ 281, the ground state eigenvalue for N ≥ 10



142 CHAPTER 7. THE 16O NUCLEUS

is extracted through Euclidean time extrapolations. As shown in fig. 4.4, the fitting function has
been chosen to coincide with E(Nt) in eq. (4.90). The data outcoming from these extrapolations
are displayed in fig. 7.1, where the error bars represent three times the statistical uncertainty
associated to the parameter c of each fit. Although the data at N = 40 already correspond to
lattices with size L = 20 fm, we extract the continuum and infinite-volume energy eigenvalue
by modeling the asymptotic region with the function

h(N) = m
Nυ + q m, q, υ ∈ R , (7.1)

where q represents the estimate for the ground state eigenvalue, Eg.s.(∞) and and υ minimizes
the coefficient of determination of the regression, R2. Even if some data at intermediate lattice
sizes in the region with N ≥ 30 are missing, it is evident from fig. 7.1 that the convergence
towards the asymptotic value of Eg.s.(N) is slower than in the 8Be and 12C case, see figs. 5.1 and
6.1. In particular, at L = 20 fm the lattice eigenvalue seems still separated from the continuum
and infinite-volume counterpart by about 4 MeV. Whether this behaviour is a consequence of
a genuinely broader spatial distribution of the wavefunction or is a mere effect of the lack
of statistics in the infinite-volume extrapolation in eq. (7.1), only further data in the region
30 ≤ N ≤ 40 can shed some light on this.

FIGURE 7.1 – Ground state eigenvalue of the 16O
lattice Hamiltonian with a ≈ 0.49 fm, as a function
of the box size N . The fitting function for the
infinite volume extrapolation is denoted by a solid
line, whereas the asymptotic energy eigenvalue is
represented by a dashed line, with a shaded area
generated by the statistical error. The WMC data
that are (not) involved in the 1/Nξ regression are
marked in light blue (orange). Their error bars
are enhanced by a factor of three with respect
to the statistical uncertainties resulting from the
Euclidean time extrapolations (cf. sec. 4.8.1).

As shown in fig. 4.4, the regression returns a value of Eg.s.(∞) equal to −3.55(16) MeV,
a result that appears to be concordant with literature [226]. It is established, in fact, that the
addition of the 3α potential presented in sec. 4.2.1 to the Coulomb and angular momentum
dependent Ali-Bodmer potentials [4] leads to an underestimation of the g.s. energy of the 16O
nucleus by about 10 MeV [226]. Moreover, a re-fitting of the parameters of the Ali-Bodmer
potentials to the α-decay threshold and width of the 8Be, followed by the superposition of the
three-body Gaussian potential in eq. (4.4) overbinds the same nucleus by more than 10 MeV [6].
Nevertheless, the results of the variational calculation for the fitting of the parameter V3 on
the 4α decay threshold (cf. tab. 8.6) are expected to yield a substantial agreement with the
experimental counterpart of Eg.s.(∞).
As a consequence, applying eq. (4.48), we notice that the infinite-volume binding energy
of the nucleus, BE(8, 8), is underestimated by 10.93 MeV with respect to the observational
value of 127.61 MeV [227]. However, our estimation of BE(8, 8) from Eg.s.(∞) in fig. 7.1,
equal to 116.73(16) MeV, is compatible with the result of the multi-centre α-particle model by
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Brink [162], when the clusters are arranged at the vertices of a tetrahedron (cf. tab. III in
ref. [162]).

FIGURE 7.2 – Lattice binding energy of the 16O as a function of the box size N . The spacing has been
kept fixed to ≈ 0.49 fm, with the aim of reducing the residual discretization effects to about ∼ 10−3 MeV.

Exactly the tetrahedral group, Td [131], is now isomorphic to both the cubic group, O and
the permutation group of four particle, S4, albeit the 24 operations of two act on different
spaces. As a consequence, each multiplet of states of the cubic group can now occur once,
twice or thrice in the spectrum of the lattice Hamiltonian, depending on the dimension of the
irreducible representation of S4 according to which the given set of degenerate eigenstates
transforms. In particular, if the bosonic (fermionic) irrep A1 (A2) of S4 [131] is represented by
the Young diagram with four boxes aligned in a row (column), wheras the 2-dim E irrep cor-
responds to the diagram with two rows of two boxes, . Concerning the three dimensional
representations, the T1 (T2) irreps are denoted by a row (column) of three boxes followed
below (resp. on the right) by a 1-box row (column),

and ,

respectively. Restricting ourselves to the completely symmetric eigenstates of the lattice
Hamiltonian with N = 10 and a = 1.20 fm, the 18 cubic group multiplets with energy lower
than ≈ −11 MeV, reported in tab. 7.1, are found. With reference to the multiplet-averaged
energy eigenvalues (cf. eq. (4.49)) in the latter table, in the continuum and infinite-volume limit
the cubic group multiplets give rise to a 0+

1 line at -23.60 MeV, a 0+
2 at -18.47 MeV, a 2+

1 at
-18.35 MeV, a 3−

1 at -17.32 MeV, a 3+
1 at -15.01 MeV, a 3−

2 at -13.03 MeV, a 2−
1 at -12.66 MeV and a

4−
1 at -11.57 MeV. Although the asymptotic eigenvalues in the large N and small lattice spacing

limit may differ from the latter also by 10 MeV, the classification of the eigenvalues in terms
of SO(3) irreps leaves little space for ambiguity, as shown in the next sections of the chapter.
Except for the absence of a 0+

2 , a 1−
1 and a 2+

2 in the lattice sample of low-energy states, the ex-
tracted multiplet-averaged eigenvalues can be directly put in relation with the observed levels
of 16O credited in literature [7,8,160] as candidates for α-clustering. Besides the ground state,
3+

1 , 2+
1 and 2−

1 lines are found at 6.13, 6.92 and 8.87 MeV above the 0+
1 state, in the vicinity
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of the α+12C decay threshold at 7.16 MeV (cf. sec. 8.5.1). Moreover, 3+
1 and 3−

2 levels are
detected 11.08 and 11.60 MeV above the ground state, just below the 4α decay threshold at
14.43 MeV (cf. sec. 8.5.1), whereas a 4−

1 line is predicted to appear circa 12.0 MeV above the
0+

1 state [8] by the Algebraic Cluster Model [228–230], but is yet unobserved experimentally.
In the next three sections, we will focus on the properties of the 0+

1 , 2±
1 , 3±

1 and 4−
1 lines, in

our attempt to restore, at least approximately, the rotational symmetry of the Euclidean three-
dimensional space.

E [MeV] Γ Iz P S3 ⟨L2
tot⟩ [ℏ2]

−23.598121 A1 0 + 3.572

−19.622346 E 0 + 12.1882
−18.479851 A1 0 + 8.621

−17.500590 T2

1
+ 11.2202

3

−17.359338 T2

1
− 15.9232

3

−17.297202 T1

0
− 15.9221

3
−17.289884 A2 2 − 15.654

−15.350538 T2

1
+ 23.0542

3

−15.328890 T1

0
+ 23.1401

3

E [MeV] Γ Iz P S3 ⟨L2
tot⟩ [ℏ2]

−13.296256 T1

0
− 18.3191

3

−13.269656 T2

1
− 20.6512

3
−13.026827 A2 2 + 22.732

−12.773621 E 0 − 13.9852

−12.587589 T2

1
− 15.4192

3

−12.269123 T1

0
− 15.0081

3
−11.522579 A2 2 − 20.428

−11.489194 T2

1
− 27.7572

3
−11.246100 A1 0 − 26.552

−10.824181 E 0 − 24.8292

TABLE 7.1 – Sample of the spectrum of the 16O Hamiltonian with N = 10 and a ≈ 1.20 fm, consisting
of the 18 lowest degenerate energy multiplets completely symmetric under particle permutation.

Due to the still long duration of the eigenvalue computation process via the Wordline Monte
Carlo code for excited states (cf. sec. 4.8.1 a)), for the diagonalization of the lattice Hamiltonian
in secs. 7.2-7.4 the GPU implementation of the Lanczos algorithm (cf. sec. 4.7.1 a)) has been
adopted. As in the 12C case, the code makes use of the projectors on the irreducible repres-
entations of the parity group P , the cubic-group O, the cyclic group C4, and the permutation
group S4. Moreover, the extraction of the excited eigenstates with the same transformation
properties according to the relevant point groups via Gram-Schmidt orthogonalization has
been made possible by storing only two eigenvectors simultaneously in the GPU node.

7.2 The 0+
1 and 2+

1 energy levels
Let us initiate our analysis with the two deepest energy levels of the 16O spectrum, the 0+

1
and 2+

1 states, whose energy at N = 10 and a = 1.20 fm is equal to -23.60 and -18.35 MeV
respectively. In order to suppress the discretization effects to at least ≲ 10−1 MeV, we first fix
the lattice spacing to a ≈ 0.59 fm. With the aim of allowing for an extension of the analysis
to larger volumes by means of the Worldline algorithm for excited states (cf. sec. 4.8.1 a)),
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we set the derivative improvement index for the Laplacian to one, thus constrasting slightly
the reduction of finite lattice spacing effects. The subsequent diagonalization of the lattice
Hamiltonian Hr for N ≤ 10, returns the solid lines in fig. 7.3, whose behaviour closely re-
sembles the one of the 0+

1 and 2+
1 curves in figs. 5.2 and 6.2 in the small N regime. In this

region, the lattice eigenstates are sharply unbound, and their energy, independently on the
discretization scheme adopted for the kinetic term of the Hamiltonian, reaches hundreds of
MeV. The effect is merely a consequence of the repulsive part of the isotropic Ali-Bodmer
potential, that moulds the behaviour of the wavefunctions at low values of the α-α separation.

FIGURE 7.3 – Behaviour of
the energies of the lowest 0+

(horizontal bars) and 2+ (ver-
tical bars) eigenstates as a
function of the box size N for
a ≈ 0.59 fm. The multiplet-
averaged eigenvalue of the
2+

1 state is denoted in red.
The same convention on the
markers for the cubic group
irreps adopted in the figures
of chaps. 5 and 6 is under-
stood. The dashed lines de-
note the expected behaviour
of the solid curves in the
large N regime, but their
predictive power is limited
by discretization errors in-
creasing with N .

With the aim of pursuing the analysis beyond the present-day limitations of the GPU cards,
we allow the lattice spacing to vary in order to predict the eigenenergy at any value of N , in
the large lattice size region. More precisely, for each point with N ≥ 11 in fig. 7.3, we perform
a Lanczos diagonalization with lattice size Neff equal to 10 and lattice spacing aeff = a ·N/Neff ,
where a is the original value, equal to 0.59 fm. In this guise, we enable the exploration of the
region of lattice volumes where the restoration of SO(3) symmetry takes place, at the price of
loosing information on the exact eigenvalues in the continuum and infinite-volume limit.
As a consequence, the dashed part of the curves in fig. 7.3 is a result of an interweaving of
both finite volume and discretization effects. Despite the increase of the latter towards the
infinite N limit, the E and T2 multiplets become degenerate within ≈ 0.42 MeV at N = 25 and
the overall behaviour of the curves in the asymptotic region recalls rather accurately the one
of the 2+

E and 2+
T2

states in figs. 5.2 and 6.2. Besides, it is likely to expect that both the 0+
1 and

the 2+
E (2+

T2
) multiplets approach the asymptotic eigenvalue from below (above), as observed

in the 8Be and 12C case.
Such a faithful reproduction of the infinite-volume behaviour of the curves was also ensured
by the increase of the derivative improvement index to 4, thus quenching the growth of dis-
cretization artifacts in the reconstructed energy eigenvalues with N . However, considered the
result of the infinite-volume extrapolation in fig. 7.1, it is evident that the asymptotic energy
eigenvalues in fig. 7.3 may differ from the exact ones of about 100 to ∼ 101 MeV.
Next, we concentrate on the behaviour of the average values of the total squared angular
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momentum operator with the lattice size N . Implementing the same strategy adopted for the
energy eigenvalues, we obtain for the 0+

1 and 2+
1 states the solid and dashed curves in fig. 7.4.

As it can be observed, both the theree curves display an evident peak in the region with N ∼ 7,
as in the 12C case in fig. 6.5, followed by a rather smooth settling of L2 towards the asymptotic
average value. Although the squared angular momenta of the 2+

E and 2+
T2

multiplets overlap
within 0.17 units of ℏ2 of precision at N = 25, the interplay between residual finite volume
and discretization effects results into a discrepancy of about 6 ℏ2 with respect to the exact
eigenvalue of L2. A similar conclusion holds for the ground state, where the closest approach
of the squared angular momentum to zero, equal to ≈ 3.6 ℏ2, is recorded at N = 20.

FIGURE 7.4 – Average value of the squared angular
momentum for the 0+

1 and 2+
1 states as a function

of the lattice size for a ≈ 0.59 fm. The multiplet
average of L2 for the 2+

1 state is denoted by a red
line. Dashed lines denote the expected behaviour
of L2 in the large N regime, but their predictive
power is limited by discretization errors increasing
with N .

FIGURE 7.5 – Behaviour of the average α-α distance
for the 0+

1 and 2+
1 multiplets as a function of the

lattice size for a ≈ 0.59 fm. The multiplet average
of R for the 2+

1 state is denoted with a red line.
The dashed lines denote the expected behaviour
of R in the large N regime, but their reliability is
affected by discretization errors increasing with N .

As in sec. 7.2, we now consider the average values of the α-α separation, R, as a function
of the lattice size. Although at N = 25, the edge of the cubic box measures only 12.50 fm, the
dashed curves of the interparticle distance for the 0+

1 and 2+
1 states almost reach a plateau as

the ones in fig. 6.3, with R equal to ≈ 3.94 and 4.30 fm respectively. Since the equilibrium
arrangement of the 4He clusters within the nucleus is tetrahedral, an estimate of the residual
finite-volume and discretization errors introduced by aeff > a at N = 25 can be obtained from
comparison of the ground state value of the centroid to vertex distance,

√
3R/

√
8, with the

experimental charge radius of 16O in ref. [224, 231], corresponding to ≈ 2.69 fm. Despite the
quite large effective lattice spacing, our lattice estimate at N = 25 of the latter is equal to
≈ 2.41 fm, in reasonably close to the observational radius and in good agrrement with the
numerical result of the unitary-model-operator approach (UMOA) in ref. [232] (2.44 fm).
It follows that R, in the asymptotic region of fig. 7.5, is rather insensitive to finite-volume and
discretization artifacts. Concerning the 2+

E and 2+
T2

states, the average values of α-α separation
at N = 25 already overlap within an astonishing precision, equal to 0.004 fm.
We now proceed by analogy with secs. 6.2 and 7.2, displaying the behaviour of physical ob-
servables with the lattice spacing a. Although the extent of residual finite-volume effects for
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the enegy eigenvalues of the 0+
1 and 2+

1 states at Na ∼ 20 fm is not known with precision,
we assume from comparison with the data in figs. 7.2 and 8.1 that for lattices with Na ≳ 20
these artifacts lie between 100 and 10−1 MeV. Therefore, we fix the constraint Na ≥ 20 fm and
explore the behaviour of the energy eigenvalues in the interval 2.0 ≤ a ≤ 5.0 fm for the two
angular momentum multiplets (cf. fig. 7.6), denoting the curves with solid lines. In sight of
the extension of the curves towards the a < 2.0 fm region, we set the derivative improvement
index to unity, as done in the N ≤ 10 region of figs. 7.3-7.5.

FIGURE 7.6 – Behaviour of the energies of the 0+
1

and 2+
1 eigenstates as a function of the lattice spa-

cing for Na ≥ 20 fm. The multiplet-averaged 2+
1

energy is denoted with a red line. The dashed part
of the curves denote the expected behaviour of Er
in the small a regime, but its predictive power is
limited by finite-volume effects, inversely propor-
tional to a.

FIGURE 7.7 – Behaviour of the average α-α distance
of the 0+

1 and 2+
1 eigenstates as a function of the

lattice spacing for Na ≥ 20 fm. The multiplet-
averaged values of R for the 2+

E and 2+
T2

states are
connected with a red line. The dashed part of the
curves denote the expected behaviour of average
α-α separation in the small a regime, but its pre-
dictive power is limited by finite-volume effects, in-
versely proportional to a.

As noticed in figs. 5.5 and 6.6 and in ref. [3], the evolution curves of the energy eigenvalue
display an oscillatory behaviour and their extremal points are susceptible of a geometric inter-
pretation, based on the spatial distribution of the probability density functions (PDF) associated
to the lattice wavefunctions. Differently from the 8Be and 12C nuclei, the 16O PDFs in the small-
spacing limit can not be faithfully represented, due to the present limitations in the number
of mesh points per dimension, N . Nevertheless, at least the region a < 2.0 fm of the dis-
cretization plot in fig. 7.6 (dashed lines) can be approximately reconstructed, albeit tolerating
the presence of larger finite-volume errors. The points with a < 2.0, in fact, refer to lattices
with only N = 10 points per dimension. Additionally, in the dashed part of the curves the
derivative improvement index, K, has been restored to 4, in order to reproduce asymptotic
energy eigenvalues consistent with the ones in fig. 7.3.
In the solid part of the curves for the 0+

1 and 2+
1 states in fig. 7.6 two well-developed minima

can be observed at a ≈ 2.3 and 3.1 fm. In addition, the minima of the average α-α distance
in fig. 7.7, detected at a ≈ 2.1 and 2.9 fm and the ones of the potential energy V, at a ≈ 2.25
and 3.05 fm, lend weight to the hypothesis that a maximum of the related PDFs is included
exactly or in good approximation in the lattice configuration space. An analogous behaviour
was observed for the 2+

E and 2+
T2

multiplets of 8Be, whose PDF in figs. 5.8 and 5.10 exhibit deep
minima located on the lattice axes.
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Finally, it is notewothy the accidental quasi-degeneracy of the energy eigenvalues of the 0+
A1

and 2+
E multiplets for a ≲ 2.9 fm that is accompanied by a neat overlap in the average values

of R (cf. fig. 7.7) and L2, a fact that may disorient in the classification of states in terms of
irreps of SO(3).

7.3 The 2−
1 and 3+

1 energy levels
We now switch to the analysis of the 2−

1 and 3+
1 states, whose energy at N = 10 and a = 1.20 fm

is equal to -15.01 and -12.66 MeV respectively. Adopting the same convention for the solid and
dashed lines outlined in sec. 7.2, we plot in fig. 7.8 the energy eigenvalues of the contituents
of the two states as a function of the lattice size. The behaviour of the curves in the low N
region highlights the action of the repulsive component of the Ali-Bodmer potential, encoding
the effect of the Pauli exclusion principle, see eq. (4.2). As soon as the lattice volume increases
the energy eigenvalues reach again a minimum, determined by the interplay of the attractive
part of the Ali-Bodmer potential and the three-body force in eq. (4.3), then the infinite-volume
eigenenergies are reached asymptotically. Despite the gradual incrase of the lattice spacing
from the initial value of a = 0.59 fm, the 2−

E multiplet reaches again the N Ï +∞ eigenvalue
from below, whereas the 2−

T2
approaches the limit from above, and the two curves eventually

overlap at N = 25 within 0.37 MeV.

FIGURE 7.8 – Behaviour of
the energies of the lowest 2−

(vertical bars) and 3+ (diag-
onal crosses) eigenstates as a
function of the box size N for
a = 0.59 fm. The multiplet-
averaged eigenvalue of the
2+

1 (3+
1 ) state is denoted in

red (green). The same con-
vention on the markers for
the cubic group irreps adop-
ted in the figures of chap. 5
is understood. The dashed
lines denote the expected be-
haviour of the solid curves in
the large N regime, but are
affected by discretization er-
rors increasing with N .

On the other hand, the behaviour of the members of the 3−
1 state appears less clear. While

the 3+
T1

and 3+
T2

levels become degenerate within 0.25 MeV at N = 25, the 3+
A2

multiplet remains
separated from the two by about 3.5 MeV. With reference to fig. 6.2, these effects seem solely
due to discretization and do not prevent us from observing that the 3+

A2
state approaches the

infinite-volume limit from above.
We now continue our investigation of finite-volume effects by considering the average values
of the total squared angular momentum operator (cf. sec. 4.3.3). Besides the spikes in the
N ≲ 12 region, the behaviour of the 2−

E and 2−
T2

multiplets is quite smooth and resembles the
one in fig. 7.4. However, in the asymptotic region a breakup between the curves prompted by
the increased lattice spacing appears and the asymptotic average value is shifted on average
by 9 units of ℏ2 (cf. the red dotted line in fig. 7.9).
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FIGURE 7.9 – Average value of the squared angular
momentum for the multiplets of the 2−

1 state as a
function of the lattice size for a ≈ 0.59 fm. As in
fig. F-7-04, the multiplet average of L2 is denoted
by a red line. The dashed curves shows the ex-
pected behaviour of L2 in the large N regime, but
their predictive power is limited by discretization
errors increasing with N .

FIGURE 7.10 – Average value of the squared angu-
lar momentum for the multiplets of the 3+

1 state
as a function of the lattice size for a ≈ 0.59 fm.
The multiplet average of L2 is denoted by a green
line, while the dashed curves displays the expec-
ted behaviour of the squared angular momentum
in the large N region, but increasing discretization
effects with N are present.

Concerning the 3+
1 level, the scenario is not different from the one observed in fig. 7.8.

While the curves of the 3+
T1

and 3+
T2

multiplet intersect each other and overlap in the asymp-
totic region within 0.18 units of ℏ2, the 3+

A2
displays a higher peak around N = 7 and is shifted

downwards by 3.4 ℏ2 at N = 25. Besides, the oscillatory behaviour in the 3+
T2

curve at N ∼ 15 is
dictated its quasi-degeneracy with a T+

2 multiplet lying slightly above in energy, omitted from
our investigation. This effect has already emerged in the discussion of finite volume effects
for the 4+

2 and 6+
1 states of 8Be (cf. sec. 5.3).

FIGURE 7.11 – Behaviour of the average inter-
particle distance for the 2−

1 multiplets as a function
of the lattice size. The multiplet average of R for
the 2−

1 state is traced with a red line. The dashed
lines denote the behaviour of R in the N > 10 re-
gion and are subject to larger discretization errors.

FIGURE 7.12 – Behaviour of the average inter-
particle distance for the 3+

1 multiplets as a function
of the lattice size. The multiplet average of R for
the 3+

1 state is denoted with a green line, while the
dashed lines constitute the expected behaviour of
R in the large N regime, as hinted in the text.
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The average values of the α-α separation, shown in figs. 7.11 and 7.12 recall closely certain fea-
tures observed in the behaviour of the squared angular momentum, see figs. 7.9 and 7.10. In
particular, the multiplet average of R for the 2−

E and 2−
T2

states reaches an asymptotic value of
4.42 fm, but the two individual values for the interparticle distance are separated by ≈ 0.45 fm
at N = 25. Reagrding the 3+

1 level, the T2 component shows the same disturbance around
N = 13, then follows smoothly the T1 multiplet until N = 25, where it reaches 4.06 fm. The
curve of the 3+

A2
state, on the other hand, displays a more pronounced oscillatory behaviour

and settles ≈ 0.39 fm above the other two members of the 3+
1 line.

FIGURE 7.13 – Behaviour of the energy of the
2−

1 multiplet eigenstates as a function of the lat-
tice spacing for Na ≥ 20 fm (solid lines). Al-
though the multiplet-averaged 2−

1 energy (red line)
reduces the fluctuations towards the continuum
and infinite-volume counterpart, the two cubic
group multiplets almost follow the same path. The
dashed lines denote the behaviour of R in the
N > 10 regime.

FIGURE 7.14 – Behaviour of the average α− α dis-
tance of the 2−

1 eigenstates as a function of the
lattice spacing for Na ≥ 20 fm. The multiplet av-
erage of R for the 2−

1 state is denoted with a red
line, while the dashed lines represent the expected
behaviour of R in the large N regime, affected by
larger finite-volume errors.

Let us now examine the behaviour of the energy eigenvalues of the states of interest with
the lattice spacing. Fixing, again, the constraint Na ≥ 20 fm for the solid lines, we first
concentrate on the 2−

E and 2−
T2

states. Differently from the 2+
1 case, we observe that curves

of the two multiplets overlap with surprising precision along all the path from 5.0 fm to the
dashed part of the cuve, except for the endpoint at a ≈ 1.0 fm, where a shift of ≈ 1.15 MeV is
detected (cf. fig. 7.13). Noticeable are also the two overlapping minima at ≈ 2.30 and 3.07 fm,
which are correlated to the minima at ≈ 2.21 and 3.0 fm of the potential energy, V. Although
the latter are found in weaker agreement with the two minima of the α-α separation at ≈ 2.0
and 2.65 fm in fig. 7.14, it is still possible to draw a parallel between the maxima of the PDFs
for the 2−

E and 2−
T2

multiplets and the minima of Er and R.
Concerning the the 3+

1 multiplet, the three curves for the energy eigenvalue in fig. 7.15 follow
three separate paths, except for the a ≳ 4.25 fm region. Nevertheless, the minimum points at
a ≈ 2.3 and 3.0 fm of the three lines coincide in good approximation and can be associated
with higher precision to the minima of the interparticle distance at a ≈ 2.1 and 2.8 fm in
fig. 7.16. Moreover, as noticed in fig. 7.8, the 3+

A2
multiplet is subject to large finite-volume

and discretization errors and seems to converge only accidentally with the 3+
T1

and 3+
T2

states,
which reach the asymptotic region with a tiny energy shift, ≈ 0.10 fm (cf. fig. 7.15).
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FIGURE 7.15 – Behaviour of the energy of the 3+
1

multiplet eigenstates as a function of the lattice spa-
cing for Na ≥ 20 fm (solid lines). The multiplet-
averaged 3+

1 energy (green line) quenches the de-
viations in the path towards the continuum and
infinite-volume counterpart, while the dashed lines
denote the behaviour of R in the N > 10 regime.

FIGURE 7.16 – Behaviour of the average α− α dis-
tance of the 3+

1 eigenstates as a function of the
lattice spacing for Na ≥ 20 fm. The multiplet av-
erage of R for the 3+

1 state is denoted with a green
line, while the dashed lines simulate the behaviour
of R in the large N regime, but are affected by
finite-volume errors increasing with 1/a.

7.4 The 3−
1 and 4−

1 energy levels
We conclude our exploration of the low-energy spectrum of the 16O with the 3−

1 and 4−
1 lines,

whose energy at N = 10 and a = 1.20 fm corresponds to -17.32 and -11.57 MeV, respectively.
First of all, let us consider the behaviour of the energy eigenvalues as a function of the num-
ber of points per dimension, N . As pointed out earlier in the chapter, the continuous part of
the curves (a ≈ 0.59 fm) is characterized in both the cases by a descending behaviour with N ,
from energies of almost 900 MeV to a minimum, situated at N = 11 to 15, with sensitive differ-
ences between the different multiplets. These features derive essentially from the Ali-Bodmer
potential, with minor contributions (∼ 101 MeV) from the Coulomb and thre-body interactions.

FIGURE 7.17 – Behaviour of
the energies of the lowest
3− (diagonal crosses) and 4−

(greek crosses) eigenstates
as a function of the box
size N for a ≈ 0.59 fm
(solid lines). The multiplet-
averaged eigenvalues of the
3−

1 and the 4−
1 ) states are de-

noted in green and blue re-
spectively. The same con-
vention on the markers for
the cubic group irreps adop-
ted in the figures of chap. 5
is understood. The dashed
lines represents the simu-
lated behaviour of the solid
curves in the large N regime
and are affected by discretiz-
ation errors increasing with
the box size.
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Differently from the 3+
1 state, the path traced by the three components of the 3−

1 line is
smooth and possesses almost the expected shape in the case of exact restoration of rotational
symmetry. In particular, at N = 25, the energies of 3−

A2
, 3−

T1
and 3−

T2
overlap within 0.96 MeV.

Concerning the 4−
1 level, its T2 component displays some deviations at N ∼ 23, already detected

in the same region in the 2−
T2

multiplet (cf. figs. 7.9 and 7.11). However, it is possible to infer
from fig. 7.17, that the 4−

T1
and 4−

T2
at N = 25 reach the multiplet-averaged eigenvalue from

above, whereas the 4−
A1

and 4−
E approach the latter from below, as observed for the 4+

2 state
of 8Be in fig. 5.13.

FIGURE 7.18 – Average value of the squared angu-
lar momentum for the multiplets of the 3−

1 state as
a function of the lattice size for a ≈ 0.59 fm. As in
fig. F-7-04, the multiplet average of L2 is denoted
by a red line. The dashed curves denote the ex-
pected behaviour of L2 in the large N regime, but
their predictive power is limited by discretization
errors increasing with N .

FIGURE 7.19 – Average value of the squared angu-
lar momentum for the multiplets of the 4−

1 state
as a function of the lattice size for a ≈ 0.59 fm.
The blue line represents the multiplet average of
L2, while the dashed curves denote the expected
behaviour of the squared angular momentum in
the large N region, but increasing discretization
effects with N are present.

We pursue our analysis of finite-volume effects by computing the average values of the
total squared angular momentum operator (cf. sec. 4.3.3). Differently from the 3+

1 line of the
previous section, the values of L2 for the 3−

1 multiplets follow a smoother path, even in the
region of the maximum. Besides a shift of ≈ 5.5 ℏ2 with respect to the exact eigenvalue, the
curves overlap at at N = 25 region within ≈ 1.5 units of ℏ2 and seem to tolerate better the
augmented discretization errors in dashed part of the curves, see fig. 7.18.
On the other hand, the average values of L2 for the 4−

1 multiplets follow a separate paths in
almost all the considered box size interval, except for the neighbourhood of N ≈ 13, where the
four curves intersect and the N ≲ 5 region. It is evident that the discrepancies for N ≲ 13 are
essentially genuine finite-volume effects, whereas the visible separation between the curves in
the asymptotic region is prompted by discretization artifacts.
The average values of the inter-α distance, dispalyed in figs. 7.20 and 7.21 confirm some of
the trends observed in the L2 plots in figs. 7.18 and 7.19). The multiplet average of R for the
3−
A2

, 3−
T1

and 3−
T2

states, in fact, reaches smoothly a value of 3.95 fm at N = 25 and the three
individual values for the interparticle distance overlap within ≈ 0.15 fm in that limit. The
components of the 4−

1 level, on the other hand, reveal a more oscillatory behaviour, albeit not
comparable with the one in fig. 7.19.



7.4. THE 3−
1 AND 4−

1 ENERGY LEVELS 153

FIGURE 7.20 – Behaviour of the average inter-
particle distance for the 3−

1 multiplets as a function
of the lattice size. The multiplet average of R for
the 3−

1 state is denoted with a green line, while the
dashed curves represent the behaviour of R in the
N > 10 region and are subject to larger discretiz-
ation errors, increasing as 1/a.

FIGURE 7.21 – Behaviour of the average inter-
particle distance for the 4−

1 multiplets as a function
of the lattice size. The multiplet average of R for
the 4−

1 state is denoted with a blue line, while the
dashed lines represent the expected behaviour of
R in the large N regime and are affected by dis-
cretization errors increasing with the inverse of
the lattice spacing.

In particular, the 4−
T2

multiplet displays some disturbance around N = 15, then follows smoothly
the A1 and E multiplets until N = 25, where it reaches 4.51 fm. The curve of the 4−

T1
state,

instead, gives rise to a shallow minimum at N ∼ 21, then increases until 4.64 fm at N = 25.
Finally, we conclude the chapter with the behaviour of the energy eigenvalues of the 3−

1 and
4−

1 states as a function of the lattice spacing.

FIGURE 7.22 – Behaviour of the energy of the 3−
1

multiplet eigenstates as a function of the lattice spa-
cing for Na ≥ 20 fm (solid lines). The multiplet-
averaged 3−

1 energy (green line) quenches the de-
viations in the path towards the continuum and
infinite-volume counterpart, while the dashed lines
denote the behaviour of R in the N > 10 region.

FIGURE 7.23 – Behaviour of the average α− α dis-
tance of the 3−

1 eigenstates as a function of the
lattice spacing for Na ≥ 20 fm. As before, the
multiplet average of R for the 3−

1 state is denoted
with a green line, while the dashed lines consti-
tute the expected behaviour of R in the large N
regime.



154 CHAPTER 7. THE 16O NUCLEUS

We first concentrate on the 3−
1 multiplets and adopt for solid and dashed lines the same

conventions as in secs. 7.2 and 7.3. The curves of the three multiplets overlap with appreciable
precision along all the path from 5.0 fm to the dashed part of the cuve, except in the regions
of the two minima at a ≈ 2.2 and 3.0 fm. At the endpoint (a ≈ 1.0 fm), the superposition
between the three curves is reached withnin ≈ 1.42 MeV precision, see fig. 7.22. Analogously
as in the 2−

1 case, the two minima seem correlated with the ones at ≈ 2.2 and 2.9 fm of the
potential energy, V, which, in turn, are in quite good agreement with the two minima of the
α-α separation at ≈ 2.15 and 2.80 fm in fig. 7.23. Therefore, the connection between the max-
ima of the PDFs for the 3−

A2
, 3−

T1
and 3−

T2
multiplets and the minima of Er and R can be still

established. Noteworthy is also the overlap between the three 3−
1 curves at a ≈ 1.0 fm, equal

to ≈ 0.16 fm.

FIGURE 7.24 – Behaviour of the energy of the
4−

1 multiplet eigenstates as a function of the lat-
tice spacing for Na ≥ 20 fm (solid lines). Al-
though the multiplet-averaged 4−

1 energy (blue
line) quenches the fluctuations towards the con-
tinuum and infinite-volume counterpart, the two
cubic group multiplets almost follow the same
path. The dashed lines denote the behaviour of
R in the N > 10 regime and are affected by larger
finite-volume errors.

FIGURE 7.25 – Behaviour of the average α− α dis-
tance of the 4−

1 eigenstates as a function of the
lattice spacing for Na ≥ 20 fm. The multiplet av-
erage of R for the 4−

1 state is denoted with a blue
line, while the dashed lines reproduce the beha-
viour of R in the large N regime, but are affected
by finite-volume errors increasing with 1/a.

Regarding the the 4−
1 line, the four curves for the energy eigenvalue in fig. 7.24 follow separate

paths, except for the A−
1 and T−

1 multiplets. Additionally, not all the minimum points are found
in the same position. While the latter two multiplets display common minima at a ≈ 2.2 and
3.0 fm, the T−

2 extrema appear weakly pronounced and uncertain, whereas of the minima of
the 4−

E is found at a slightly shifted position (a ≈ 2.75 fm). The average values of the α-α
separation, instead, highlight more agreement among the four multiplets in the region of the
two minimum point, loacted at a ≈ 2.1 and 2.75 fm.
Despite the sizable shifts between the paths until a ≈ 2.25 fm, in the asymptotic region the
energy eigenvalues of the four cubic-group multiplets overlap in good approximation, over-
lapping within 1.3 MeV at a ≈ 1. Similarly, the dotted part of the R curves in fig. 7.25 display
negligible discrepancies and reach a value of ≈ 4.28 fm with discrepancy of ≈ 0.10 fm, despite
the finite-volume errors.



CHAPTER 8

VARIATIONAL CALCULATION OF THE STRENGTH PARAMETER
OF THE 3α GAUSSIAN POTENTIAL FOR 16O

As shown in fig. 8.1, the M-α Hamiltonian with a superposition of the isotropic Ali-Bodmer
potential (cf. eq. (4.2)) with the Coulomb (cf. eq. (4.3)) and 3α Gaussian potentials (cf. eq. (4.3))
with the parameters displayed in sec. 4.2.1 underbinds the 16O nucleus by circa 11 MeV.
Without resorting to the addition of further interacting terms in the Hamiltonian, in this section
we aim at re-adjusting the parameter V3 of the 3α potential so that the energy eigenvalue of
the ground state concides with the opposite of the 4α dissociation energy gap (≈ 14.42 MeV).
Knowing both the three potentials, we perform a linear variational calculation based on ref. [5]
in a model space made of four-body harmonic-oscillator functions. The latter are completely
symmetric under particle exchange, translationally invariant and possess a well-defined orbital
angular momentum. We extend the calculation by anchoring the V3 parameter to the α+12C
threshold at ≈ 7.16 MeV. Additionally, we perform the variational calculation in the case of
Dirac-delta distribution of the electric charge, in which the Coulomb potential assumes its
original form for pointlike α particles. The results are presented in secs. 8.5.1 and 8.5.2 in the
optimized and non-optimized approach with respect to the frequency 2πω of the harmonic
oscillator respectively.

8.1 Preamble
The reproduction of the 16O spectrum and its binding energy in terms of α-cluster models is
a long-standing problem [161, 164, 233] in nuclear physics. In particular, in ref. [161], the lin-
earity of the behaviour of the binding energy BE(Z,N) as a function of the number of bonds
between the α particles arranged in ordered structures within the nuclides with 4n ≤ 32 where
N = Z ≡ 2n was revealed. In correspondence of such nuclei, the binding energy per nucleon
reaches local maxima. At higher values of n, the macroscopic α-cluster viewpoint introduced
in sec. A of ref. [157] looses effectiveness, since each α particle are more prone to nucleon
exchanges with the nearest neighbours, thus breaking the symmetry of the configuration.
Furthermore, in ref. [157], a method alternative to the Hartree-Fock approach for the con-
struction of the A-nucleon wavefunctions was formulated, by adopting a molecular viewpoint.
The technique, referenced as the Resonating Group Structure Method (RGM), is intended
for variational calculations of the low-energy excitations in light nuclei, including estimations
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of their binding energy. According to the latter description, nuclear matter is distributed in
groups of protons and netutrons whose composition is allowed to vary with time [234]. This
distribution reflects into the structure of the wavefunctions of the A-body system, that are
now given by the superposition of several partial wavefunctions, representing stable cluster
configurations, properly antisymmetrized with respect to neutron and proton exchange [234].
Due to the saturation property of nuclear forces, most of the binding energy of the nucleus
is stored by the partitions, while a residual fraction is responsible of the bonds between the
groupings. When the latter concide with α-particles, two- and three-body interactions between
the 4He clusters can be derived [235].
In recent times, the RGM approach, combined with the ab initio no-core shell model (NCSM)
[236], has been employed for the estimation of the binding energy in a number of light nuclei,
including 16O [237]. Adopting a similarity renormalization group (SRG) [238] evolved chiral
N3LO NN potential [239], in ref. [237] a binding energy of 139.0(8) MeV has been obtained, a
value that exceeds the experimental counterpart of BE(8, 8) by only ≈ 11.4 MeV.
An equivalent [240] viewpoint for the description of the properties of light α-conjugate nuclei is
offered by the Generator Coordinate Method (GCM) [162]. In this approach, the construction
of the A-body wavefunction exploits the Slater determinant of single-particle wavefunctions,
depending on auxiliary parameters, the coordinate generators, that are functions of the spatial
coordinates of the clusters in which the original nucleus is subdivided. Since the latter are
not eigenfunctions of parity or the angular momentum, the many-nucleon wavefunctions are
assumed to coincide with integrals of Slater determinants multiplied by weight functions and
performed in the space of the coordinate generators [162, 165]. The proper weight functions
are obtained by applying the variational principle, i.e. coincide with the solutions of the Hill-
Wheeler equations [165,168,241].
Among the applications to 16O, noteworthy is the calculation in the framework of the GCM
and Antisymmetrized Molecular Dynamics (AMD) of the binding energy of the nucleus in
ref. [242], by means of a NN Volkov No. 2 potential with the Mayorana parameter M fitted to
the 12C binding energy. The result is a value of BE(8, 8) of ≈ 152 MeV [242], more recently
improved via the addition of a three-body Toshaki interaction, which permits to reduce the
discrepancy with the experimental binding energy of 16O to ≈ 3 MeV [243].
Rather than reconstructing the the binding energy of 16O from first principles as in refs. [225,
237] or searching for a common satisfactory description of the low energy spectrum of both
12C and 16O as in ref. [243], here we aim at finding a new value for the parameter V3 of the 3α
Gaussian potential that fits the opposite of the 4α breakup threshold for 16O at ≈ 14.42 MeV.
Since the latter permits to reconstruct the binding energy of the nucleus via eq. (4.48), we may
refer to this dissociation energy as the binding energy in the framework of our macroscopic α-
cluster model (cf. sec. 4.2). Based on refs. [5,244], we perform a variational calculation, expand-
ing the trial wave function in the space of four-body harmonic oscillator (HO) wavefunctions
(cf. sec. 8.2) à la Moshinsky [245–251]. By construction, the latter are translationally invariant,
completely symmetric and possess a well-defined orbital angular momentum [252–254], see
sec. 8.3.
The calculation, outlined in sec. 8.4, is justified by the results of the infinite-volume extrapola-
tion of the energy of the 16O ground state in sec. 7.2. As shown in fig. 8.2, our model, whose 3α
force is fitted to the Hoyle state gap of 12C, underestimates the binding energy of 16O by about
11 MeV. Moreover, in ref. [255] it is established that the superposition of our three-body poten-
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tial with the parameters set in ref. [5], the Coulomb interaction and the angular-momentum
dependent Ali-Bodmer potential in ref. [4] with the parameters (d′

0, d2, d4) fitted to the S, D and
G wave α-α phase shifts overbinds the 16O nucleus already when the HO basis is truncated at
6 quanta.
Hence our intention to redetermine the strength parameter, V3, of the 3α Gaussian potential
follows, leaving the range parameter λ = 0.005 fm−2 unchanged (cf. eq. (4.3)). Hopefully, our
fit of the V3 parameter will yield an overall improvement in the capability of our model to
reproduce the low-lying spectrum of 16O [256–258]. Encouraging, in this direction, seems the
α-cluster model in ref. [169], where the α particles are arranged in the α + 12C configura-
tion [259] and interactions are ruled by an S-wave Ali-Bodmer potential [4] plus two distinct
3α potentials, one within the 12C grouping and the other outside the latter. Taking also the
Coulomb effects into account and fitting the parameters of the three-body potentials to the ex-
perimental 16O binding energy and the root-mean-square radius, the Faddeev and Yakubovsky
equations are solved numerically via the cluster-reduction method. The result is an accurate
reconstruction of the 0+

2 energy level, with a discprepancy with respect to the experimental
datum equal to ≈ 0.46 MeV [169]. Additionally, the minima of the charge form factor of the
16O nucleus are faithfully reproduced [169].
Finally, another promising example comes from the Algebraic Cluster Model (ACM) [230].
Considering a tetrahedral arrangement of the 4He groupings [7,171,260] and setting the para-
meters of the ACM Hamiltonian on the experimental energies of the 0+

1 , 3−
1 and 0+

2 lines, an
overall satisfactory agreement with the observational α-cluster levels is reached, with discrep-
ancies ranging from 0.1 to 1.1 MeV [8]. The subsequent comparison of the reduced electric
multipole transition probabilities, B(Eℓ), in tab. 5 of ref. [8] with the experimental counter-
parts [227] provide further support to the model.

8.2 The Hamiltonian
The interactions between the four α particles within the 16O nucleus are here described by
the isotropic Ali-Bodmer (cf. eq. (4.2)) potential and by a three-body Gaussian potential (cf.
eq. (4.3)), as anticipated in the opening of the chapter. Besides, we account for the effects of
the electrostatic repulsion between α paticles the Coulomb potential, either in the version in
eq. (4.3) (henceforth referenced as Erf-Coulomb) or in its standard form for pointlike particles
with charge +2e. Therefore, the Hamiltonian of the resulting system becomes

H = K + V = − ℏ2

2mα

4∑︂

i=1
∇2

i +
4∑︂

i<j=2
[VC(rij ) + VAB(rij )] +

4∑︂

i<j<k=3
VT (rij , rik, rjk) (8.1)

where rij = |r⃗i−r⃗j | are the inter-particle distances. Switching to the Jacobi coordinates through
the orthogonal transformation,

ṙi =
4∑︂

i=1
Jijrj J =

⎛

⎜⎜⎜⎝

√
1/2 −

√
1/2 0 0√

1/6
√

1/6 −
√

2/3 0√
1/12

√
1/12

√
1/12 −

√
3/2

1/2 1/2 1/2 1/2

⎞

⎟⎟⎟⎠ , (8.2)
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the center of mass (CoM) motion can be separated from the relative motion of the α particles,
encoded in the Hamiltonian HI ,

H ≡ − ℏ2

2mα
∇2

4̇ +HI , (8.3)

where ∇2
4̇ refers to the position vector ṙ4. Neglecting the CoM motion as in ref. [248], we

rewrite the intrinsic Hamiltonian as a superposition of a three-body harmonic oscillator, H0
and a potential term, U ,

HI = H0 + U U ≡ V − mω2

2

3∑︂

i=1
ṙ2
i , (8.4)

by adding and subtracting a quadratic potential with a strength mαω2, whose variational de-
termination is shown below. Accordingly, the evaluation of matrix elements between Hr and
the basis states can be performed by means of Talmi Integrals (cf. pag. 6 and ref. [251]),
except for the straightforward diagonal contribution from H0 and the Erf-Coulomb term, that
requires a numerical evaluation.

8.3 The model space

Since the angular momentum and parity content of the ground state of the 16O is known, the
single-particle three-dimensional harmonic oscillator eigenfunctions can be more conveniently
chosen in the spherical basis, where the labels, ṅi, ℓ̇i and ṁi denote the order of the radial
eigenfunction, the magnetic quantum number and the angular momentum projection along
the z axis in unit of ℏ. The wavefunction, in turn, is given by a Gaussian exponential times a
generalized Laguerre polynomial on the squared radius of order ni and shift ℓi. Exploiting
spherical symmetry, the most general eigenfunction with

Ṅ i = 2ṅi + ℓ̇i , (8.5)

can be written in factorized form,

⟨ṙi|ṅi ℓ̇iṁi⟩ = Rṅi ℓ̇i (ṙi)Yℓ̇iṁi
(φ̇i, θ̇i) , (8.6)

where the radial part is expressed as a product of the Gaussian exponential and a power series,
in sight of the evaluation of the matrix elements through Talmi integrals,

Rṅi ℓ̇i (ṙi) = ṙ ℓ̇ii
ṅi∑︂

k=0
aṅi ℓ̇ik ṙ

2k
i e

− r2
i

2ξ2 with ξ ≡
√︃

ℏ
mαω

(8.7)

where the normalized coefficients aṅi ℓ̇ik are given by

aṅi ℓ̇ik = (−1)k
k!

(︃
1
ξ

)︃ℓ̇i+ 3
2
[︃

(2ṅi)!
Γ(ṅi + ℓ̇i + 3/2)

]︃ 1
2 Γ(ṅi + ℓ̇i + 3/2)

(ṅi − k)! Γ(k + ℓ̇i + 3/2)
. (8.8)
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The same eigenfunctions can be derived in the second quantization formalism by repeated
application on the normalized ground state

⟨ṙi|0⟩ =
(︃
ξ−2

π

)︃ 3
4

e− r2
i

2ξ2 (8.9)

of the creation operators associated to the relative coordinate i [261],

a†
i = 1√

2ξ

(︂
ṙi + iξ2∇̇i

)︂
, (8.10)

arranged in a homogeneous polynomial of degree Ṅ i, eigenstate of the squared angular mo-
metum operator and its projection along the z axis (cf. eq. (8.10) in ref. [251]). Recalling the
definition of the solid spherical harmonic,

Yℓ,m(r) = rℓYℓ,m(φ, θ). (8.11)

the single-particle eigenfunction can be, in fact, expressed as

⟨ṙi|ṅi, ℓ̇i, ṁi⟩ = ⟨ṙi|Aṅi ℓ̇i (a†
i · a†

i )
ṅiYℓ̇iṁi

(a†
i )|0⟩ (8.12)

where Aṅi ℓ̇i is the normalization constant,

Aṅi ℓ̇i = (−1)ṅi

ξ ℓ̇i

√︄
4π

(2ṅi + 2ℓ̇i + 1)!!(2ṅi)!!
, (8.13)

see sec. 8 of ref. [251]. Once defined the single-particle harmonic oscillator eigenfunction (cf.
eq. (8.9)), the three one-body eigenstates can be coupled to zero angular momentum,

⟨ṙ1, ṙ2, ṙ3|ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3⟩ =
[︂
⟨ṙ1|ṅ1ℓ̇1⟩ ⊗ ⟨ṙ2|ṅ2ℓ̇2⟩ ⊗ ⟨ṙ3|ṅ3ℓ̇3⟩

]︂

0
(8.14)

obtaining the building blocks of the completely symmetric three-body eigenstate. Due to the
bosonic nature of the α particles, the states of the basis for the (truncated) expansion of the
ground state of HI have to be symmetric under the exchange of any couple of particle labels
in the laboratory reference frame. Their explicit construction, shown in refs. [251] and [248],
is conveniently carried out through the definition of another set of coordinates, the symmetric
relative or Kramer-Moshinsky [255] coordinates (cf. eq. (21.6) in ref. [251]), r̈i with i = 1, 2, 3,

r̈i =
3∑︂

i=1
Kij ṙj , K ≡

⎛

⎜⎝

√
1/2

√
1/6 −

√
1/3

−
√

1/2
√

1/6
√

1/3
0 −

√
2/3 −

√
1/3

⎞

⎟⎠ , (8.15)

where K is an orthogonal transformation. Denoting the three-body HO states in the latter
coordinates with round brackets, the fully-symmetrized states coupled to zero angular mo-
mentum take the form

|n1, ℓ1, n2, ℓ2, n3ℓ3)S = A
[︂ ∑︂

σ even
|nσ (1), ℓσ (1), nσ (2), ℓσ (2), nσ (3), ℓσ (3))

+(−1)ℓ1+ℓ2+ℓ3
∑︂

σ odd
|nσ (1), ℓσ (1), nσ (2), ℓσ (2),nσ (3), ℓσ (3))

]︂
,

(8.16)
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where σ (·) denote the 3! operations of the permutation group of three elements, S3. The con-
nection between permutation symmetry and the many-body harmonic oscillator eigenstates,
highlighted by eq. (8.16), has been first explored in ref. [248].
Following the same convention adopted in refs. [251] and [255], we use the dot for the labels
of the eigenstates in the Jacobi coordinates and undotted symbols for the ones in the Kramer-
Moshinsky coordinates, defined in a fashion fully analogous to eq. (8.14). Since the parity of
the 16O ground state is positive, the sum of the individual angular momenta, ℓ1 + ℓ2 + ℓ3 has
to be even, impliying that either all the three orbital quantum numbers are even or two of
them are odd. However, as the latter choice cause the resulting state to vanish, the ℓi need
to be all even (cf. secs. 21-22. of ref. [251] and eq. (2.3) in ref. [5]). Having regards to these
prescriptions, the completely symmetric states with N three-body relative HO quanta equal or
lower than 10 are the ones reported in tab. 8.1.

N |n1ℓ1, n2ℓ2, n3ℓ3)S
0 |00, 00, 00)
2 |10, 00, 00)
4 |20, 00, 00), |10, 01, 01), |02, 02, 00)
6 |30, 00, 00), |20, 10, 00), |12, 02, 00), |10, 02, 02), |02, 02, 02), |10, 10, 10)

8 |40, 00, 00), |30, 10, 00), |22, 02, 00), |10, 10, 20), |02, 02, 04), |02, 02, 20),
|02, 10, 12), |02, 02, 12), |12, 12, 00), |20, 20, 00), |04, 04, 00)

10
|50, 00, 00), |40, 10, 00), |32, 02, 00), |30, 10, 10), |30, 02, 02), |30, 20, 00),
|10, 20, 20), |04, 04, 02), |14, 04, 00), |22, 12, 00), |14, 02, 02), |22, 02, 10),
|22, 02, 02), |12, 04, 02), |20, 12, 02), |12, 12, 02), |12, 12, 10), |10, 04, 04)

TABLE 8.1 – The fourty lowest energy three-body relative harmonic oscillator eigenstates, with zero total
angular momentum and completely symmetric with respect to particle exchange. The S subscript (cf.
eq. (8.16)) for symmetrized states has been omitted in the lists for the sake of brevity.

8.4 The matrix elements
While the Kramer-Moshinsky coordinates allow for a cleaner determination of the fully-
symmetrized zero angular momentum states, the Jacobi coordinates remain the preferred
reference for the evaluation of the matrix elements between any two three-body harmonic
oscillator states (cf. eq. (8.15)) and the intrinsic Hamiltonian operator, HI . Accordingly, we
express the round kets in terms of the angle kets,

|n1ℓ1, n2ℓ2, n3ℓ3) =
∑︂

ṅ1 ℓ̇1
ṅ2 ℓ̇2
ṅ3 ℓ̇3

⟨ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3|n1, ℓ1, n2, ℓ2, n3ℓ3)|ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3⟩ , (8.17)

an expansion whose coefficients can be interpreted as rotation matrix elements in the space
of particles,

⟨ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3 l̇3|n1ℓ1, n2ℓ2, n3ℓ3) ≡ ⟨ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3|R(K)|n1ℓ1, n2ℓ2, n3ℓ3⟩ , (8.18)
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where K represents the orthogonal transformation and R(K) the relevant operator. Decom-
posing the latter transformation into a succession of three rotations, R(M1)R(M2)R(M3) with
(cf. sec. 22 of ref. [251] for the full procedure)

M1 =

⎛

⎜⎝

√
1/2

√
1/2 0

−
√

1/2
√

1/2 0
0 0 1

⎞

⎟⎠ , M2 =

⎛

⎜⎝
1 0 0
0

√
1/3

√
2/3

0 −
√

2/3
√

1/3

⎞

⎟⎠ , and M3 =

⎛

⎜⎝
1 0 0
0 1 0
0 0 −1

⎞

⎟⎠

(8.19)
the matrix elements in eq. (8.19) can be rewritten as sums of standard Moshinsky brack-
ets (SMB) [254] and generalized Moshinsky brackets (GMB), denoted by the ’π/2’ and ’γ =
arccos(

√
1/3)’ subscripts respectively,

⟨ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3|n1, ℓ1, n2, ℓ2, n3ℓ3) = (−1)ℓ3
∑︂

ṅ′
2 ℓ̇

′
2

⟨ṅ′
2ℓ̇

′, ṅ3ℓ̇3, ℓ1|n2ℓ2, n3ℓ3, ℓ1⟩γ

·⟨ṅ1ℓ̇1, ṅ2ℓ̇2,ℓ̇3|n1ℓ1, ṅ′
2ℓ̇

′
2, ℓ̇3⟩π/2 .

(8.20)

In particular, M1 gives rise to the standard Moshinsky brackets, M2 generates the the gener-
alized ones, while the M3 rotation is responsible of the phase factor (−1)ℓ3 . In the derivation
of eq. (8.20) the following equalities

|n1ℓ1, n2ℓ2, n3ℓ3) = [|n1ℓ1, n2ℓ2, ℓ3) ⊗ |n3ℓ3)]0 = [|n2ℓ2, n3ℓ3, ℓ1) ⊗ |n1ℓ1)]0 = [|n1ℓ1, n3ℓ3, ℓ2) ⊗ |n2ℓ2)]0 ,
(8.21)

together with the definition of the standard Moshinsky bracket have been taken into account.
These transformation brackets coincide with the matrix elements between any two two-body
harmonic oscillator states in the spherical basis coupled to the same total angular momentum
and a rotation in the particle space,

m1 =
(︄ √

1/2
√

1/2
−

√
1/2

√
1/2

)︄
, (8.22)

a linear transformation coinciding with the one carrying from the absolute to the Jacobi two-
body coordinates. The evaluation of these coefficients can be carried out iteratively from the
matrix elements of the kind

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|0ℓ1, 0ℓ2,Λ⟩π/2 , (8.23)

by exploiting the following recurrence relations between the SMB’s

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|n1+1ℓ1, n2ℓ2,Λ⟩π/2 =

√︄

(n1 + 1)
(︃
n1 + l1 + 3

2

)︃
C(ṅ1ℓ̇1, ṅ2ℓ̇2; ℓ̇ ′

1ℓ̇
′
1, ṅ′

2ℓ̇
′
2,Λ) , (8.24)

and

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|n1ℓ1, n2 + 1ℓ2,Λ⟩π/2 =

√︄

(n2 + 1)
(︃
n2 + ℓ2 + 3

2

)︃
C(ṅ1ℓ̇1, ṅ2ℓ̇2; ℓ̇ ′

1ℓ̇
′
1, ṅ′

2ℓ̇
′
2,Λ) ,

(8.25)
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with

C(ṅ1ℓ̇1, ṅ2ℓ̇2; ℓ̇ ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2,Λ) =

∑︂

ṅ′
1 ℓ̇

′
1

ṅ′
2 ℓ̇

′
2

c(ṅ1l̇1, ṅ2ℓ̇2; ℓ̇ ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2,Λ)⟨ṅ′

1ℓ̇
′
1, ṅ′

2ℓ̇
′
2,Λ|n1ℓ1, n2ℓ2,Λ⟩π/2 (8.26)

where the coefficients c(ṅ1ℓ̇1, ṅ2ℓ̇2; ℓ̇ ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2,Λ), derived in sec. 10 of ref. [251], are reported in

the tab. 8.2. On the other hand, for the matrix elements with both the Laguerre polynomials
of order zero on the ket (cf. eq. (8.23)) the formula derived in sec. 4 of ref. [245] and appearing
in refs. [262], [263], [264] and [265] can be adopted,

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|0ℓ1, 0ℓ2,Λ⟩π/2 =
[︄

ℓ1!l2!
(2ℓ1)!(2ℓ2)!

(2ℓ̇1 + 1)(2ℓ̇2 + 1)
2ℓ̇1+ℓ̇2

(ṅ1 + ℓ̇1)!
ṅ1!(2ṅ1 + 2ℓ̇1 + 1)!

(ṅ2 + ℓ̇2)!
ṅ2!(2ṅ2 + 2ℓ̇2 + 1)!

]︄ 1
2

·
[︄

ℓ1!ℓ2!
(2ℓ1)!(2ℓ2)!

(2ℓ̇1 + 1)(2ℓ̇2 + 1)
2ℓ̇1+ℓ̇2

]︄ 1
2

(−1)ṅ1+ℓ̇1+ℓ̇2−Λ
∑︂

x

{︂
(2x + 1)A(ℓ1ℓ̇1, ℓ2ℓ̇2, x)W (ℓ̇1ℓ̇2ℓ1ℓ2; Λx)

}︂
,

(8.27)

where the dummy index x assumes all the integer values allowed by the Racah W coefficient
[135,266] and

A(ℓ1ℓ̇1, ℓ2ℓ̇2, x) ≡
[︄

(ℓ1 + ℓ̇1 + x + 1)!(ℓ1 + ℓ̇1 − x)!(ℓ1 + x − ℓ̇1)!
(ℓ̇1 + x − ℓ1)!

]︄ 1
2

·
[︄

(ℓ2 + ℓ̇2 + x + 1)!(ℓ2 + ℓ̇2 − x)!(ℓ2 + x − ℓ̇2)!
(ℓ̇2 + x − ℓ2)!

]︄ 1
2 ∑︂

q

(ℓ̇1 + q − ℓ1)![︂
1
2 (ℓ̇1 + q − ℓ1)

]︂
!
[︂

1
2 (ℓ̇1 + ℓ1 − q)

]︂
!

(−1) 1
2 (ℓ̇1+q−ℓ1)

(q − x)!(q + x + 1)!
(ℓ̇2 + q − ℓ2)![︂

1
2 (ℓ̇2 + q − ℓ2)

]︂
!
[︂

1
2 (ℓ̇2 + ℓ2 − q)

]︂
!
,

(8.28)

with q restricted to the integer values for which the arguments of the factorials implied are
non-zero. The implementation of eq. (8.27) turned out to be faster than the one in eq. (10.30)
in ref. [251], beacuse of the smaller number of summations involved. For the sake of com-
pleteness, in the latter expression a phase factor (−1)ℓ ′′

2 +ℓ2 coming from eqs. (10.21) and (10.22)
of ref. [251] reduces to unity.
While the SMBs are matrix elements between harmonic oscillator states connected by a ro-
tation of π/4 (cf. m1 in eq. (8.22)) in the two body coordinate space, their generalized version
appearing in eq. (8.20) refers to a rotation of angle γ/2 performed in the same space. The
expression of these γ-dependent brackets in terms of the SMBs is derived in [251] exploiting
again the factorization of the rotation m1, and coincides with

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|n1ℓ1, n2ℓ2,Λ⟩γ = i2ṅ2+ℓ̇2−2n2−ℓ2
∑︂

n′
1ℓ ′

1
n′

2ℓ ′
2

exp
[︃

1
2iγ(2n′

2 + ℓ ′
2 − 2n′

1 − ℓ ′
1)
]︃

·(−1)ℓ2+ℓ̇2⟨n′
1ℓ ′

1, n′
2ℓ ′

2,Λ|ṅ1ℓ̇1, ṅ2ℓ̇2,Λ⟩π/2⟨n′
1ℓ ′

1, n′
2ℓ ′

2,Λ|n1ℓ1, n2ℓ2,Λ⟩π/2 .

(8.29)

Even if a complex exponential and and an overall complex phase factor are present, the reality
of these generalized Moshinsky brackets is ensured by the conservation of the total number
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of quanta in the brackets,

2n1 + ℓ1 + 2n2 + ℓ2 = 2ṅ1 + ℓ̇1 + 2ṅ2 + ℓ̇2 = 2n′
1 + ℓ ′

1 + 2n′
2 + ℓ ′

2, (8.30)

and by the exchange property of the 1-body HO quantum numbers in the bra of the SMB [252],

⟨ṅ1ℓ̇1, ṅ2ℓ̇2,Λ|n1ℓ1, n2ℓ2,Λ⟩π/2 = (−1)ℓ1−Λ⟨ṅ2ℓ̇2, ṅ1ℓ̇1,Λ|n1ℓ1, n2ℓ2,Λ⟩π/2. (8.31)

n′
1 ℓ ′

1 n′
2 ℓ ′

2 c(ṅ1ℓ̇1, ṅ2ℓ̇2; ℓ̇ ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2,Λ)

n1 − 1 ℓ1 n2 ℓ2 1
2

√︂
n1(n1 + ℓ1 + 1

2 )

n1 ℓ1 n2 − 1 ℓ2 1
2

√︂
n2(n2 + ℓ2 + 1

2 )
n1 − 1 ℓ1 + 1 n2 − 1 ℓ2 + 1 1

2
√︁
n1n2(ℓ1 + 1)(ℓ2 + 1)(−1)ℓ1+ℓ2+ΛW (ℓ1ℓ1 + 1ℓ2ℓ2 + 1; 1Λ)

n1 − 1 ℓ1 + 1 n2 ℓ2 − 1 1
2

√︂
n1(n2 + ℓ2 + 1

2 )(ℓ1 + 1)ℓ2(−1)ℓ1+ℓ2+ΛW (ℓ1ℓ1 + 1ℓ2ℓ2 − 1; 1Λ)

n1 ℓ1 − 1 n2 − 1 ℓ2 + 1 1
2

√︂
(n1 + ℓ1 + 1

2 )n2ℓ1(ℓ2 + 1)(−1)ℓ1+ℓ2+ΛW (ℓ1ℓ1 − 1ℓ2ℓ2 + 1; 1Λ)

n1 ℓ1 − 1 n2 ℓ2 − 1 1
2

√︂
(n1 + ℓ1 + 1

2 )(n2 + ℓ2 + 1
2 )ℓ1ℓ2(−1)ℓ1+ℓ2+ΛW (ℓ1ℓ1 − 1ℓ2ℓ2 − 1; 1Λ)

TABLE 8.2 – The lowercase C coefficients implied in the recurrence relationships between standard
Moshinsky brackets. TheW ’s denote the Racah coefficients for the coupling of three angular momenta.

After having introduced the standard Moshinsky brackets and their generalization, we can
switch to the evaluation of the matrix elements of H0 and U where both the HO states (cf.
eq. (8.17)) and the operators are written in Jacobi coordinates (cf. eq. (8.3)). If

N ≡
3∑︂

i=1
(2ni + ℓi) =

3∑︂

i=1
(2ṅi + ℓ̇i) (8.32)

denotes the total number of quanta, the computation of the matrix elements with the three-
body relative harmonic oscillator hamiltonian, H0 reduces to

⟨ṅ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2, ṅ′

3ℓ̇
′
3|H0|ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3⟩ = δṅ1ṅ′

1
δℓ̇1 ℓ̇

′
1
δṅ2ṅ′

2
δℓ̇2 ℓ̇

′
2
δṅ3ṅ′

3
δℓ̇3 ℓ̇

′
3
ℏω
(︃
N + 9

2

)︃
. (8.33)

Conversely, in the matrix elements involving U , the symmetry of the three-body relative HO
states under the exchange of the particle coordinates ri leads us to the following simplified
expression,

⟨ṅ′
1ℓ̇

′
1, ṅ′

2ℓ̇
′
2, ṅ′

3ℓ̇
′
3|U|ṅ1ℓ̇1, ṅ2ℓ̇2, ṅ3ℓ̇3⟩ = 4 δℓ̇ ′

1 ℓ̇1
δℓ̇ ′

2 ℓ̇2
δṅ′

3ṅ3δℓ̇ ′
3 ℓ̇3

⟨ṅ′
1ℓ̇1ṅ′

2ℓ̇2||VT (r1, r2, r3)||ṅ1ℓ̇1ṅ2ℓ̇2⟩

+6 δℓ̇ ′
1 ℓ̇1
δṅ′

2ṅ2δℓ̇ ′
2 ℓ̇2
δṅ′

3ṅ3δℓ̇ ′
3 ℓ̇3

⟨ṅ′
1ℓ̇1||

[︃
VC(ṙ1) + VAB(ṙ1) − mαω2

4 ṙ2
1

]︃
||ṅ1ℓ̇1⟩ ,

(8.34)

since each of the six (four) terms in the second (third) summation in eq. (8.1) involving two
(resp. three) body potentials gives the same contribution to the matrix elements. By the same
token, all the three addends coming from the subtracted harmonic potential (cf. eq. (8.4)) give
the same contribution to the matrix elements. The double vertical lines in eq. (8.34) denote the
reduced matrix elements, independent on the third component of the angular momentum of
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the states. Making use of the Talmi integrals in sec. 2 of ref. [251], the two body Erf-Coulomb,
Ali-Bodmer and Harmonic contributions can be written explicitly as

⟨ṅ′
1ℓ̇1||VC(ṙ1)||ṅ1ℓ̇1⟩ =

√
2ξ2

πε0

ℓ̇1+ṅ1+ṅ′
1∑︂

p=ℓ̇1

B(p; ṅ′
1, ℓ̇1, ṅ1, ℓ̇1)

Γ
(︁
p + 3

2
)︁

∫︂ +∞

0
dρ ρ2p+1e−ρ2erf

(︄√
6ξ

2Rα
ρ
)︄
, (8.35)

⟨ṅ′
1ℓ̇1||VAB(ṙ1)||ṅ1ℓ̇1⟩ = ξ3

ℓ̇1+ṅ′
1+ṅ1∑︂

p=ℓ̇1

B(p; ṅ′
1, ℓ̇1, ṅ1, ℓ̇1)

⎡

⎣ V0
(︁
2η0ξ2 + 1

)︁ 3
2 +p

+ V1
(︁
2η1ξ2 + 1

)︁ 3
2 +p

⎤

⎦ ,

(8.36)
and

⟨ṅ′
1ℓ̇1|| − mαω2

4 ṙ2
1||ṅ1ℓ̇1⟩ = −ξ5mαω2

4

ℓ̇1+ṅ′
1+ṅ1∑︂

p=ℓ̇1

B(ṅ′
1, ℓ̇1, ṅ1, ℓ̇1;p)

Γ
(︁
p + 1 + 3

2
)︁

Γ
(︁
p + 3

2
)︁ (8.37)

where

B(ṅ′
1, ℓ̇1, ṅ1, ℓ̇1;p) = 1

2

ṅ1∑︂

k=0
Γ
(︃
p + 3

2

)︃
a∗
ṅ′

1 ℓ̇1 p−ℓ̇1−kaṅ1 ℓ̇1k (8.38)

and the anℓk are the normalized coefficients of the polynomial part of the HO wavefunctions,
defined in eq. (8.13) and the dummy k’s are constrained to the values for which all the ar-
guments of the factorials in the anℓk are non-negative. Alternatively, the latter, henceforth
collectively called B-coefficients, can be expressed via the following formula [262],

B(n, ℓ, n′, ℓ ′;p) = (−1)p− ℓ+ℓ′
2

(2p + 1)!
2n+n′p!

√︄
n!n′!(2n + 2ℓ + 1)!(2n′ + 2ℓ ′ + 1)!

(n + ℓ)!(n′ + ℓ ′)!

·
β∑︂

k=α

(ℓ + k)!(p − (ℓ − ℓ ′)/2 − k)!
k!(2ℓ + 2k + 1)!(2p − ℓ + ℓ ′ − 2k + 1)!(n′ − p + (ℓ + ℓ ′)/2 + k)!(p − (ℓ + ℓ ′)/2 − k)!

(8.39)

where α = max[0, p − (ℓ + ℓ ′)/2 − n′] and β = min[n, p − (ℓ + ℓ ′)/2], a rewriting that skips the
definition of the intermediate coefficients anℓk. In the case of Dirac-delta distribution of the
electric charge, the Coulomb potential VC in eq. (4.3) assumes its standard form for pointlike
particles and eq. (8.35) becomes

⟨ṅ′
1ℓ̇1||VC(ṙ1)||ṅ1ℓ̇1⟩ =

√
2ξ2

πε0

ℓ̇1+ṅ1+ṅ′
1∑︂

p=ℓ̇1

p!
Γ
(︁
p + 3

2
)︁B(p; ṅ′

1, ℓ̇1, ṅ1, ℓ̇1), (8.40)

leading to a significant reduction in the implementation time of the matrix elements. Con-
cerning the three-body potential, since VT (r1, r2, r3) turns out to depend only on two Jacobi
coordinates,

VT (r1, r2, r3) = V3e−3λ(ṙ2
1+ṙ2

2) (8.41)
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the integration on the r1 and r2 in the relevant matrix element gives

⟨ṅ′
1ℓ̇1ṅ′

2ℓ̇2||VT (r1, r2, r3)||ṅ1ℓ̇1ṅ2ℓ̇2⟩ = V3

ℓ̇1+ṅ′
1+ṅ1∑︂

p=ℓ̇1

ℓ̇2+ṅ′
2+ṅ2∑︂

q=ℓ̇2

ξ3
(︂

1 + 3λξ2
)︂−p−q−3

·B(ṅ′
1, ℓ̇1, ṅ1, ℓ̇1;p)B(ṅ′

2, ℓ̇2,ṅ2, ℓ̇2;q) .

(8.42)

Nevertheless, for the implementation of this part of the matrix elements is preferable to return
to the Kramer-Moshinsky basis (i.e. the round kets in eq. (8.17)) and perform a π/4 clockwise
rotation about the r̈1 axis,

...r i =
3∑︂

i=1
Aij r̈j A =

⎛

⎜⎝
1 0 0

−0
√

1/2 −
√

1/2
0

√
1/2

√
1/2

⎞

⎟⎠ . (8.43)

Next, we recast the matrix element in eq. (8.43) by expanding one of the exponentials in series
of spherical Bessel functions and by exploiting eq. (38) in ref. [266], in a form analogous to
eq. (3.28) in ref. [255],

(n′
1ℓ ′

1, n′
2ℓ ′

2, n′
3ℓ ′

3|VT |n1ℓ1, n2ℓ2, n3ℓ3)

=
∑︂

ṅ2 ℓ̇2
ṅ3 ℓ̇3

∑︂

ṅ′
2 ℓ̇

′
2

ṅ′
3 ℓ̇

′
3

⟨ṅ2ℓ̇2, ṅ3ℓ̇3, ℓ1|n2ℓ2, n3ℓ3, ℓ1⟩π/2⟨ṅ′
2 l̇

′
2, ṅ′

3ℓ̇3, ℓ ′
1|n′

2ℓ ′
2, n′

3ℓ ′
3, ℓ ′

1⟩π/2δℓ̇ ′
2 ℓ̇2

⟨ṅ′
2ℓ̇2||V3e−3λ...r 2

2 ||ṅ2ℓ̇2⟩

·
+∞∑︂

ℓ=0
(−1)ℓ ′

1+ℓ̇3−ℓ̇2(2ℓ + 1)
√︂

(2ℓ1 + 1)(ℓ̇3 + 1)(ℓℓ1ℓ ′
1|000)(ℓℓ̇3ℓ̇

′
3|000) W (ℓ ′

1ℓ̇
′
3ℓ1ℓ̇3, ℓ̇2ℓ)

·
ṅ′

1+ṅ1+ ℓ̇1+ℓ̇′1
2∑︂

r= ℓ̇1+ℓ̇′1
2

ṅ′
3+ṅ3+ ℓ̇3+ℓ̇′3

2∑︂

s= ℓ̇3+ℓ̇′3
2

ξ2ℓ+6(2λ2)
ℓ
2
(︂

2λξ2 + 1
)︂−r− ℓ

2 − 3
2
(︂
λξ2 + 1

)︂−s− ℓ
2 − 3

2

·
Γ(r + ℓ

2 + 3
2 )Γ(s + ℓ

2 + 3
2 )

Γ(r + 3
2 )Γ(s + 3

2 )
Γ(3

2 )
Γ(ℓ + 3

2 )
B(n′

1ℓ ′
1, n1ℓ1; r)B(ṅ′

3ℓ̇
′
3, ṅ3ℓ̇3; s)

·2F1

[︄
r + ℓ

2 + 3
2 , s + ℓ

2 + 3
2 , ℓ + 3

2; 2λ2ξ4
(︁
2λξ2 + 1

)︁ (︁
λξ2 + 1

)︁
]︄
,

(8.44)
where

2F1(a, b, c; z) =
∞∑︂

m=0

zm
m!

Γ(a +m)
Γ(a)

Γ(b +m)
Γ(b)

Γ(c)
Γ(c +m) , (8.45)

is the ordinary hypergeometric function, represented as a power series expansion. The choice
of this appearently more involved rewriting of the three-body part of the matrix elements is
well motivated by the smaller time required for its implementation on a computing machine.
In fact, by comparing eq. (8.42) with eqs. (8.17), (8.20), (8.34) and (8.41), it follows that four sum-
mations have been suppressed. Leaving the sums over the first argument of the B coefficients
apart, the evaluation of this part of the matrix elements truncating the basis at N quanta in
the appearently simpler first method requires 17N/2 + 12 terms, whereas the one involving
eq. (8.42) only 15N/2 + 8 terms.
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8.5 Estimation of the parameters
After introducing the states of the truncated basis together with a method for the evaluation
of the matrix elements, we focus on the procedure for the estimation of the strength of the
3α potential, V3, and the variational parameter ω with an increasing number of basis states.
The task has been accoplished by following two slightly different routes, of which only the
second (cf. sec. 8.5.1) permitted to expand the HO model space up to the desired number
quanta, N. Starting from the data in the latter section, the parameter V3 has been estimated
from the results of the extrapolation towards infinite HO quanta, by exploiting the energy gap
of both the α+12C and the 4α decay channels of 16O at 7.1571 and 14.4265 MeV [267, 268]
respectively. As hinted in sec. 8.1, the expectation values of the ground state eigenenergy,
denoted as E(α+12C)

0+
1

and E(4α)
0+

1
, correspond to the opposite of the latter energy gaps and can be

expressed as
E(α+12C)

0+
1

= m16O
c2 −m4He

c2 −m12C
c2 (8.46)

and
E(4α)

0+
1

= m16O
c2 − 4m4He

c2 , (8.47)

respectively. We choose to denote collectively the latter henceforth as E(t)
0+

1
where t = 4α and

α+12 C labels the reference threshold. The two outcoming estimations have been repeated in
the pointlike approximation of the charge distribution of α particles (cf. eq. (8.40)).

8.5.1 Optimized approach
Let us begin with the description of the first approach and consider the pair formed by the
frequency of the HO and strength parameter of the 3α potential, (ω, V3), as unknown. The first
estimate of the latter parameters, (ω(0), V (0)

3 ), corresponds to a basis of HO states truncated to
N = 0 quanta, i.e. a single state, |00, 00, 00). The two parameters are obtained by constraining
the average value of HI with respect to the state |00, 00, 00) to the energy in eqs. (8.46) or (8.47),

(00, 00, 00|HI |00, 00, 00)S = E(t)
0+

1
, (8.48)

and by extracting the minimum of the average value with respect to ω,

∂
∂ω (00, 00, 00|HI |00, 00, 00)S

⃓⃓
⃓
V3=V3(ω)

= 0, (8.49)

where V3(ω) is the expression of the depth parameter in terms of ω coming from the linear
constraint given by eq. (8.48). In this case, the average value turns out to have only real
minimum of the average value with respect to ω, by using both the Erf-Coulomb interaction
and the one for pointlike particles.
Since the ω dependence of the Erf-Coulomb part of the two-body matrix elements is not
analytical, an input value for ω is needed in order to carry out the integration in eq. (8.35)
numerically. To this aim, the first estimate of (ω, V3) is extracted from the Hamiltonian with
the Coulomb interaction for pointlike α particles, see eq. (8.40).
The outcoming value of ω enables the numerical evaluation the integral in eq. (8.35), implied in
the matrix element in eqs. (8.48) and (8.49). Performing again the derivative in ω analytically,
the system defined by eqs. (8.48) and (8.49) can be solved and an estimate for (ω(0), V (0)

3 ) in
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presence of α particles with a spherical Gaussian distribution of charge is obtained. In a self-
consistent way, the latter set of parameters can be improved by plugging the new value of ω
in the numerical intergral over VC and by solving the system defined by the variables (ω, V3)
once more. However, after the second iteration in the process, no sizable improvements are
detected, therefore we can proceed with the next step of the variational calculation.
The constrained minimization procedure just introduced for the N = 0 state can be generalized
to higher-dimensional bases of states as follows. When the the basis of harmonic oscillator
states is truncated at N > 0 quanta, the effective eigenspace is spanned by the all the states
with an even number of oscillator quanta ranging from 0 to N (cf. tab. 8.1). As a consequence,
the |00, 00, 00) ket in eq. (8.48) has to be replaced with the lowest energy eigenstate,

|ω(N−2),N, 0+)S =
∑︂

n1ℓ1,n2ℓ2,n3ℓ3
2n1+ℓ1+2n2+ℓ2+2n3+ℓ3≤N

a(n1ℓ1, n2ℓ2, n3ℓ3)|n1ℓ1, n2ℓ2, n3ℓ3)S , (8.50)

of the Hamiltonian matrix HI (ω(N−2), V (N−2)
3 ) whose entries are defined as the matrix elements

between HI and any pair of states with a number of quanta ≤ N (cf. tab. 8.1),

(n′
1ℓ ′

1, n′
2ℓ ′

2, n′
3ℓ ′

3|HI |n1ℓ1, n2ℓ2, n3ℓ3)S

⃓⃓
⃓⃓
⃓ ω=ω(N−2)

V0=V (N−2)
0

. (8.51)

In order to solve the eigenvalue problem, the entries of HI (ω, V3), thought as functions of
the frequency and the strength parameter, are evaluated with the outcomes of the antecedent
estimation, where the basis is truncated to N − 2 quanta. However, unlike the N = 0 case,
for N ≥ 2 it is unnecessary to resort to the results of the Hamiltonian with the Coulomb
potential for pointlike α particles in order to the evaluate the integral in eq. (8.35) numeric-
ally. When the HO basis is truncated to N > 0 quanta, in fact, an initial ansatz for the value of
the frequency is naturally provided by the previous estimation (including the zero quanta one).

NUMBER OF
QUANTA

NUMBER OF
STATES

ω [1020 s−1] λ [fm−2] V3 [MeV]
12C+α 4α 12C+α 4α

0 1 9.493 11.628

0.00506

-10.076 -13.441
2 2 6.567 11.628 -9.524 -13.441
4 5 6.836 13.272 -9.961 -12.898
6 11 7.699 14.266 -9.720 -12.455
8 22 8.764 15.702 -9.304 -12.133

TABLE 8.3 – Optimized estimation of V3 for the α − cluster Hamiltonian with the Coulomb potential
for α particles with Dirac-delta distribution of charge.

Nevertheless, the estimation of the strength parameter of the latter Hamiltonian remains
of interest, since it allows to weigh the effects of the modification of the Coulomb potential
into the Erf-Coulomb one in eq. (4.3), proposed by ref. [4] in the same context.
The scheme just outlined has been, therefore, applied for both the Coulomb and the Erf-
Coulomb Hamiltonians and both the energy thresholds up to N = 8 and 6 harmonic oscillator
quanta respectively, as reported in tabs. 8.3 and 8.4. The results of these computations highlight
a decreasing behaviour of the frequency of the harmonic oscillators, ranging from an initial
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value of 9.5 ·1020s−1 to 7.2 ·1020s−1 for both the Hamiltonians, with a noticeable jump between
the zero and the two quanta approximations. In parallel, the magnitude of the strength para-
meter V3 experiences a step-decrease, see the N = 2 and N = 4 rows in tabs. 8.3 and 8.4.
Moreover, as it can be inferred from the latter, the variational estimates of V3 are expected to
reach the N Ï +∞ counterpart monotonically from above.

NUMBER OF
QUANTA

NUMBER OF
STATES

ω [1020 s−1] λ [fm−2] V3 [MeV]
12C+α 4α 12C+α 4α

0 1 9.477 11.625

0.00506

-9.947 -13.313
2 2 9.238 11.391 -9.953 -13.283
4 5 10.327 12.848 -9.586 -12.827
6 11 11.157 14.830 -9.188 -12.329

TABLE 8.4 – Optimized estimation of V3 for the α − cluster Hamiltonian with the Coulomb potential
for α particles with a Gaussian distribution of charge (cf. eq. (4.3)).

As proof of correctness for the procedure adopted, it is worth stressing that the overlap
of the variational lowest energy eigenstate obtained by matrix diagonalization with the zero
quanta eigenstate remains the largest. The relevant coefficient of the expansion, a(00, 00, 00)
(cf. eq. (8.50)), in fact, turns out to range from 1 to circa 0.74 (0.72) throughout the HI calcu-
lations with the 12C+α (4α) energy threshold.

8.5.2 Non-optimized approach
The main drawback of the optimized version of the variational calculation of the strength
parameter of the three-body potential presented in the previous paragraph resides certainly in
the computational difficulty of evaluating symbolic matrix elements and performing derivatives
of rather cumbersome functions of the frequency of the harmonic oscillator, ω.
Accordingly, with the aim of both expanding the basis of the trial states and then performing a
reliable estimation of the basis trunctation error, we choose to adopt a numerical non-optimized
approach, in which the value of ω is kept fixed throughout the calculation to its initial value,
obtained analytically in the zero quanta approximation (cf. eqs. (8.48) and (8.49)). Since the
Hamiltonian is independent on the frequency of the harmonic oscillator (cf. eq. (8.1)) unlike
the basis states, the results of this calculation are expected to match the ones of the optimized
estimation in the completeness of the basis limit [251].
The resulting method, thus, consists merely on the evaluation of the matrix elements with
respect to the N-quanta basis of states and in the subsequent diagonalization of the matrix, in
which the input values of ω and the V3 are inherited from the preceeding iteration (i.e. with
N−2 quanta), with the exception of the case N−2 = 0, in which the parameters are borrowed
from the optimized approach (cf. tabs. 8.3 and 8.4). After each diagonalization, the extraction
of the new value of the strength parameter is performed from the constraint in eq. (8.48),
although in a non-symbolic fashion,

V (N)
3 = V (N−2)

3
E(t)

0+
1

− (ω(0),N, 0+|HI
I |ω(0),N, 0+

1 )S − (ω(0),N, 0+|HII
I |ω(0),N, 0+

1 )S
(ω(0),N, 0+|HIII

I |ω(0),N, 0+
1 )S

, (8.52)

where the superscripts I, II and III on HI denote respectively the one-, the two- and the three-
body contributions to the Hamiltonian matrix.
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The absence of the optimization step (cf. eq. (8.49)) at each iteration allowed for a general
rewriting of the code, in which all the symbolic functions are replaced by numeric ones and
by sparse arrays, an operation that has been realized in Matlab language by means of the
Matlab Tensor Toolbox 2.6 library [269]. Moreover, important speedup of the code has been
achieved by rewriting the routines for the implementation of the SMB and RMB in such a
way to exploit the symmetry properties of the Moshinsky brackets discussed in refs. [252,254].

NUMBER OF
QUANTA

NUMBER OF
STATES

ω [1020 s−1] λ [fm−2] V3 [MeV]
12C+α 4α 12C+α 4α

0 1

9.493 11.628 0.00506

-10.076 -13.441
2 2 -10.076 -13.441
4 5 -9.707 -12.986
6 11 -9.375 -12.604
8 22 -9.154 -12.361
10 40 -8.978 -12.168
12 72 -8.813 -11.994
∞ ∞ -7.219(27) -10.499(25)

TABLE 8.5 – Non-optimized estimation of V3 for the α-cluster Hamiltonian in sec. 4.2.1 with the Coulomb
potential for α particles with Dirac-delta distribution of charge.

The results of this calculation, reported in tabs. 8.5 and 8.6, highlight a monotonic descreasing
behaviour in the value of V3 with increasing dimension of the basis of harmonic oscillator
states. As it can be seen from comparison, in both the approaches the transition from zero
to two HO quanta brings no overall improvement in the extracted value of the strength para-
meter. Differently from the test-cases treated in refs. [251] and [253] with two-body potentials
only, this effect is due to the almost exact cancellation between the 2α and the 3α contributions
in the off-diagonal elements of the Hamiltonian matrix, causing the resulting HI to be already
nearly diagonal. Conversely, in the subsequent step in the iteration process a large drop-off
in the value of V3 takes place, due to the large overlap between the exact ground state and
the three N = 4 states, see tabs. 8.5 and 8.6.

NUMBER OF
QUANTA

NUMBER OF
STATES

ω [1020 s−1] λ [fm−2] V3 [MeV]
12C+α 4α 12C+α 4α

0 1

9.477 11.625 0.00506

-9.947 -13.313
2 2 -9.946 -13.285
4 5 -9.611 -12.871
6 11 -9.290 -12.497
8 22 -9.075 -12.262
10 40 -8.908 -12.078
12 72 -8.741 -11.903
∞ ∞ -7.048(35) -10.334(33)

TABLE 8.6 – Non-optimized estimation of V3 for the α-cluster Hamiltonian in sec. 4.2.1 with the Coulomb
potential for α particles with a Gaussian distribution of charge (cf. eq. (4.3)).
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FIGURE 8.1 – Infinite-N extrapolation of the
strength parameter V3 adjusted to the 4α (α+12C)
decay threshold of 16O, in the pointlike approxima-
tion for the charge distribution of α particles. The
dashed line represent the asymptotic value of the
parameter (cf. c in eq. (8.53)), reported in the last
row of tab. 8.6 together with the associated statist-
ical uncertainty. For (t) = 4α (α+12C), the para-
meter a is equal to −30.43(36) (−36.05(45)) and
β = 8.3258(10) (10.5964(13)), while the coefficient
of determination coincides with 0.9995 (0.9994),
thus withnessing a good adhesion of the input data
with the homographic function in both the cases.

FIGURE 8.2 – Infinite-N extrapolation of the
strength parameter V3 adjusted to the 4α (α+12C)
decay threshold of 16O, in the spherical Gaussian
approximation for the charge distribution of α
particles. The dashed line represent the asymp-
totic value of the parameter (cf. c in eq. (8.53)),
reported in the last row of tab. 8.6 together with
the associated statistical uncertainty. For (t) = 4α
(α+12C), the parameter a is equal to −33.30(36)
(−40.72(63)) and β = 9.2823(11) (12.0181(13)). The
coefficient of determination coincides with 0.9991
(0.9990) and substantiates again the choice of the
function g(N) for the fit.

Noteworthy is also the fact that the overall differences between the V3 estimates of the
two methods are moderate, ranging from ≈ 0.05 to 0.25 MeV. However, it is possible to detect
a slightly slower convergence rate of V3 towards its asymptotic value in the non-optimized
approach, as expected.
We now conclude our variational calculation with the extrapolation of the infinite N limit of
the strength parameter V3 from the results obtained at N ≤ 12 in tabs. 8.5 and 8.6. Discarding
the N = 0 data, we adopt as a fitting model the homographic function,

g(N) = c + a
β + N

a, β, c ∈ R , (8.53)

where c concides with the asymptotic value of V3 and β is chosen to maximize the coefficient
of determination R2 of the fit, as done for the parameter ξ in the Euclidean time extrapolations
in sec. 4.8.1. The results of the extrapolations, reported in the last row of tabs. 8.5 and 8.6 put
in evidence rather small statitstical errors in c, thus permitting a precise assessment of the
HO basis truncation errors at finite values of N. Such expansion errors, discussed in detail
in refs. [270] and [271] in the context of variational calculations applied to elliptic differential
equations as the Schrödinger time-independent one, can be inferred directly from tabs. 8.5
and 8.6. Irrespective on whether the charge distribution of the α particles is a Dirac delta or
a Gaussian, at N = 0 these errors can be quantified in a ≈ 3 MeV shift of V3 with respect to
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its expectation value. At N = 8 the discrepancy reduces to ≈ 2 MeV, whereas at 14 harmonic
oscillator quanta the systematic deviation approaches 1.6 MeV, meaning that 120 HO basis
states are required in order to reach that precision. The latter is expected to fall below 1 MeV
at N = 30 oscillator quanta, as it can be estimated from the fitting functions (cf. eq. (8.53)) of
the four treated cases in figs. 8.1 and 8.2.
Although our outcomes in the last row of tabs. 8.5 and 8.6 have not been benchmarked with the
infinite-volume extrapolation of the energy eigenvalue of the ground state in the limit of small
lattice spacing (i.e. a ≲ 0.5 fm) yet, a direct comparison with the result at V3 = −4.41 MeV
reported in sec. 7.2 (cf. fig. 7.1) seems to corroborate the result of our fit for the Hamiltonian
with the Coulomb potential for α-particles with Gaussian charge distribution and (t) = 4α.
Indeed, it is to be expected that a slightly more attractive 3α potential is needed in order to lift
Eg.s.(∞) from −3.55(16) MeV to the expected value of −14.42 MeV, thus reproducing faithfully
the experimental binding energy, BE(8, 8), of 16O (cf. fig. 7.2). Furthermore, it remains to be
proven whether such 3α force yields, at the same time, a satisfactory reproduction of the 0+

2
and 2+

1 lines at 6.05 and 6.92 MeV [227], like the model in ref. [6]. In the latter reference, a four
body isotropic Gaussian interaction is introduced on top of a 3α Gaussian and an Ali-Bodmer
potential, whose parameters are fitted to the decay width of the 8Be ground state and to the
energy gap of the Hoyle state of 12C [187].
Concering the α+12C threshold, the estimated value of V3 in tab. 8.6 may find an application
in an analysis of finite-volume and discretization effects a different subset of bound eigenstates
of 16O, or in a comparison with the predictions of a model in which the α+12C configuration
plays a role, as the one in ref. [169]. Finally, the V3 results in the pointlike approximation of
the α particles in tab. 8.5, may be employed for the benchmarking of α-cluster models where
the finite-size of 4He nuclei as clusters is neglected.
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SUMMARY

In this dissertation we have reported our original analytical and numerical results concern-
ing the effects induced by the lattice environment on two-fermion systems and the three
lightest α conjugate nuclei. Almost all the presented data have been obtained using state-of-
the-art supercomputers with an estimated computational cost of ≈ 3.5 millions hours of CPU
time, predominantly devoted to the numerical diagonalization of the lattice Hamiltonian in the
second part of the dissertation. However, a fraction of the allocated computational hours has
been devoted to the evaluation of the sums of the 3D Riemann series implied in the expan-
sions of the Lüscher functions in chap. 3. The code used for that purpose is designed for GPU
architectures, and allowed for the evaluation of billions of terms of the sums simultaneously.
The treatment begins with the analytical investigation of finite volume effects in the lowest en-
ergy eigenvalues. The theoretical framework of our research is provided by pionless Effective
Field Theory and non-relativistic QED for spinless particles, recapitulated in chap. 1, where
the strong potentials coupling the fermions to arbitrary ℓ units of angular momentum have
been presented. This fundamental tool allowed for the plain and comprehensive description
of elastic scattering processes in the low-energy regime shown in ref. [2] for spinless protons
and antiprotons coupled to zero units of angular momentum, both in presence and in absence
of QED. Among the forces of electromagnetic nature, the electrostatic interaction represents
the dominant contribution to T-matrix elements in the low-energy sector and the Coulomb
ladders have to be resummed to all orders in the fine-structure constant.
Differently from the transverse photons, the Coulomb ones do not propagate between the
fermionic bubbles in the diagrams, a crucial feature that permitted to rewrite the full two-
body Green function operator in terms of the Coulomb one and operator representing the
S-wave strong interaction. Exactly the same property allowed for the derivation of a closed
expression for the T-matrix element of the scattering processes and the full Green’s function,
thus paving the way to the derivation of the quantization conditions.
After summarizing the main results of the latter work (cf. secs. 2.1.1-2.1.3), now applied to
fermions and antifermions, we have extended the investigation to strong interactions carrying
one unit of angular momentum (cf. secs. 3.1.1-3.1.3). In the processs, the novel P-wave expres-
sions for the T matrix element, the scattering length and the effective range, with and without
the QED contributions have been derived. Moreover, the analysis of the attractive Coulomb
case offered an occasion for confirming the observations on the scattering parameters pointed
out in sec. 3.4 of ref. [2] and recalled in sec. 2.1.3.
Second, the infinite-volume analysis of fermion-fermion scattering in secs. 3.1.1-3.1.3 allowed
us to attain our main goal, the derivation of finite-volume energy corrections for two-body
P-wave bound and scattering states, by providing an extension of the analysis on S-wave states
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in ref. [1], reviewed in secs. 2.2.1-2.2.3. Motivated by the growing interest for lattice EFTs and,
above all, LQCD, in fact, we have transposed our system of charged particles in a cubic box
with periodic boudary conditions.
With regards to the prescriptions from the literature [99, 128], we have removed the zero
momentum modes from the relevant three-dimensional sums and considered the QED cor-
rections to the mass of the spinless particles [46, 54], in sight of the application of our results
to realistic baryon-baryon systems on the lattice [64]. Furthermore, the characteristic size of
our cubic box has been chosen to fulfill the constraint ML ≪ 1/α, which is required for the
viability of the perturbative approach of QED in the cubic finite volume. Under this hypothesis,
the non-relativistic relation between the finite-volume energy of two composite fermions in
the T1 representation of the cubic group and its P-wave scattering parameters receives QED
corrections obtainable in closed form.
Although more cumbersome than the S-wave counterpart, the expression we have presented
in sec. 3.2.3 a) for the energy shift of the lowest unbound state resembles the features of the
one in sec. 2.2.3 a) (cf. sec. III D 1 of ref. [1]), except for the appearance of higher-order scat-
tering parameters. Besides, the finite-volume corrections for the P-wave bound state prove to
have the opposite sign and the same magnitude of the ones for the S-wave state in sec. 2.2.3 b)
(cf. sec. III D 3 of ref. [1]), up to contributions of order 1/L3. This fact confirms the long-
standing observations on the A1 and T1 finite-volume energy eigenvalues in the analysis of
refs. [71,77], drawn in the context of a two-body system governed by finite-range interactions in
the non-relativistic regime. In the latter work, the interplay of parity and angular momentum
quantum numbers in the wavefunctions was found to be responsible of the relation between
the leading-order S- and P-wave energy shifts. Only the generalization of our analysis will tell
if the existing relationships between the finite-volume shifts in tab. I of ref. [71] for two-body
states with higher angular momentum remain, at least approximately valid in presence of
QED.
In the second part of this thesis work we have dealt numerically with the most striking con-
sequence of finite-volume (and discretization) effects, the breaking of rotational symmetry.
The laboratory for such a study has been now provided by the three lightest α-conjugate nuc-
lei, and the main theoretical tools have been inherited from refs. [3, 68].
The reduction of rotational symmetry to cubic group summetry affects the average values of
all the operators transforming as spherical tensors under the elements of SO(3) [68]. Nev-
ertheless, the construction of the lattice counterpart of the squared total angular momentum
operator allows for an unambiguous identification of the lattice Hamiltonian eigenstates in
terms of SO(3) irreps, provided the spatial distribution of the eigenfunctions is localized and
smooth enough to fit the size and the spacing of the lattice. This is exactly the case of the 2+

E
and 2+

T2
multiplets of 8Be, where the average value of the squared angular momentum oper-

ator reaches its expectation value with deviations of 0.01% already at a ≈ 1.8 fm, see fig. 5.11,
a spacing for which the energy eigenvalues of the two multiplets are still separated by more
than 2 MeV, fig. 5.5.
Furthermore, the asymptotic finite volume corrections to the average values of the squared
angular momentum operator approximately fit a negative exponential of the lattice size (cf.
figs. 5.4 and 5.16), like the leading-order ones for the energy [71]. This inference has not
been tested in the 16O, where the the large-volume region of the curves in figs. 7.4, 7.9, 7.10,
7.18 and 7.19 is affected by increasing discretization errors. Discretization corrections for the
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average values of the same operator turned out also to depend exponentially on a in the zero
lattice-spacing limit, although with a positive decay constant (cf. figs. 5.16 and 6.15).
Besides exploring the role of L2 in the classification of the lattice Hamiltonian eigenstates in
terms of the angular momentum quantum number, the model offered us also the possibility
to test the interpretation of the local minima of energy eigenvalues in terms of the spatial
distribution of the relevant eigenfunctions (cf. the 4+

2 and the 6+
1 multiplets of 8Be and the

0+
1 , 2+

1 and 3−
1 multiplets of 12C) as well as the results presented in ref. [3] (cf. the 0+

1 and 2+
1

states of 8Be). In case a local maximum of the squared modulus of a lattice eigenfunction is
included within the mesh points, in fact, the corresponding energy eigenvalue as a function of
the lattice spacing displays a minimum. An approximate correspondence between the minima
of the energy eigenvalues and the ones of the α-α separation has been oberved also in the
0+

1 , 2±
1 , 3±

1 and 4−
1 states of 16O, even if the lattice wavefunctions have not been inspected.

Moreover, we have shown that the use of multiplet-averaging (cf. sec. 5.3) for the energies
and the average values of the squared angular momentum for states with ℓ = 0, 2, 3, 4 and 6
(cf. chaps. 5-7) reduces both discretization and finite-volume effects by evening the fluctuations
about the continuum and infinite-volume counterparts, as predicted in ref. [3].
Likewise interesting are the computational implications of this work. In the attempt of sup-
pressing both discretization and finite-volume effects for the three-body system, considerable
efforts have been devoted in developing memory-saving and fast codes for the diagonalization
of the lattice Hamiltonian. The final choice of the Lanczos algorithm and of the GPU as a
support for the state vectors processing permitted us to monitor the evolution of the eigen-
ergies and the average values of other physical observables concerning the six cubic-group
multiplets of 12C for a significant range of box-sizes and spacings. The same algorithm has
been exploited in the 16O case, although the N ≥ 11 and a > 2.0 regimes of the physical
observables have been explored by introducing discretization and finite-volume effects of in-
creasing extent, due to the present-day limitations in the capacity of the single GPU units.
However, by renouncing the storage of the lattice eigenfunction, an exact reconstruction of
the large-volume behaviour of the 0+

1 state of 16O at a ≈ 0.50 fm has been made possible
(cf. fig. 7.1). At present only stochastic approaches as the Worldline Monte Carlo method
in sec. 4.8.1 seem to capable to access the energy eigenvalues and, perhaps, the average val-
ues of other physical observables in the N ≥ 11 region for 16O. Hopefully, the Monte Carlo
algorithm in sec. 4.8.1 a) may contribute in sheding light on the energy eigenvalues of the
excited states of the latter nucleus in the near future.
In addition, the extensive usage of projectors in the iterative diagonalization process allowed
us to extend the analysis of ref. [3] to higher angular momentum multiplets, both for the 8Be
and the 12C, discarding all the possible intermediate states devoid of the desired transforma-
tion properties under the elements of the permutation group and the cubic group.
Finally, the treatment reached its conclusion with the variational calculation for the fitting of
the strength parameter of the three-body interaction to the α+12C and 4α decay thresholds
of 16O. In chap. 7, in fact, we have shown that the parameters of the 3α Gaussian potential in
the model in ref. [3] underbind the 16O nucleus by ≈ 11 MeV. Although the extrapolated values
for V3 in tabs. 8.5 and 8.6 have not been exploited for the analysis in chap. 7, their capability
in reproducing the features of the low-energy spectrum of 16O may be soon assessed and
compared with other α-cluster models such as the ones in refs. [6] and [7, 8].
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APPENDIX A

This appendix serves as a supplemental material mainly for the first part of chap. 3, in which
the system is embedded in the continuum and infinite volume configuration space. While
app. A.1 is referenced in the whole part I of the present dissertation, app. A.2 and A.3 are
devoted to the calculation of integrals apperaring in secs. 3.1.1 and 3.1.2 respectively. Finallly,
sec. A.4 represents a deepening on a functional identity implied in the development of the
calculations in app. A.3.

A.1 Feynman rules
For the computation of the amplitude associated to each Feynman diagram in the framework
of the non-relativistic effective field theory for spinless fermions with NRQED outlined in
secs. 1.2-1.2.1, the rules in fig. A.3 are understood. The imaginary part in the denominator of
the retarded fermion propagators ε and the photon mass λ are arbitrarily small quantities.

A.2 Integrals in Dimensional Regularization
We begin this appendix with the derivation of the second term on the r.h.s. of eq. (3.20)
for T tree

SC (p,p′), that is the new contribution to eq. (2.6). In d dimensions, the last integral in
eq. (3.20) becomes

I ≡ D(E∗)M
∫︂

R3

ddl
(2π)d

e2

l2 + λ2
p′ · l

l2 − 2p · l + iε . (A.54)

Since the loop integral is not going to be performed in the complex plane, the parameter ε
can be set to zero. Applying the Feynman parametrization for the denominators, we obtain

I = D(E∗)Me2 Γ(2)
Γ(1)Γ(1)

∫︂ 1

0
dω
∫︂

Rd

ddl
(2π)d

p′ · l
[ω(l2 + λ2) + (l2 − 2p · l)(1 − ω)]2 . (A.55)

We rewrite the polynomial in the denominator as l2 − 2p · l(1 − ω) + ωλ2 and consider the
application of the dimensional regularization formula in eq. (B.17) in ref. [132] for the carrying-
out of the momentum integral,

I = Me2 Γ
(︁
2 − d

2
)︁

(4π)d/2Γ(2)

∫︂ 1

0
dω (1 − ω) p · p′ D(E∗)

[ωλ2 − p2(1 − ω)2]2−d/2 . (A.56)
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FIGURE A.3 – Feynman rules for spinless fermions and scalar and vector photons in our non-relativistic
EFT with non-relativistic QED.

As the r.h.s. of the last equation is non-singular in three dimensions, the limit d Ï 3 can be
safely taken. Furthermore, we define the auxiliary quantities

β = 1 + λ2

2p2 and γ = λ√
2|p|

√︄

2 + λ2

2p2 . (A.57)

Performing the change of variables ω ↦Ï ω′ ≡ (ω − β)/γ in the integrand of eq. (A.56), we
obtain

K ≡
∫︂ 1

0
dω (1 − ω)

[ωλ2 − p2(1 − ω)2]1/2
=
∫︂ 1−β

γ

− β
γ

dω′ 1 − γω′ − β
|p|
√︁

1 − (ω′)2
. (A.58)
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The last expression can be rapidly integrated,

−
∫︂ 1−β

γ

− β
γ

dω′ω′γ
|p|
√︁

1 − (ω′)2
+
∫︂ 1−β

γ

− β
γ

(1 − β)dω′

|p|
√︁

1 − (ω′)2
= γ

|p|

√︂
1 − (ω′)2

⃓⃓
⃓

1−β
γ

− β
γ

+ 1 − β
|p| arcsin(ω′)

⃓⃓
⃓

1−β
γ

− β
γ
. (A.59)

After evaluating the results of the integration over ω′ in terms of the original variables, p and
λ, a closed form for K is found,

K = i
|p| + λ

p2 − πλ2

4|p|3 + iλ2

2|p|3 log 2|p|
λ + iλ2

2|p|3 log
(︃

1 + λi
2|p|

)︃
. (A.60)

where the conventions log(−i) = −iπ/2 and
√

−1 = −i are understood. Plugging eq. (A.60)
into eq. (A.56), the desired result is obtained,

I = p · p′D(E∗) e
2

4π
M
2

{︄
i

|p| + λ
p2 + i λ2

2|p|3

[︃
−iπ2 + log 2|p|

λ + log
(︃

1 + λi
2|p|

)︃]︃}︄
. (A.61)

In the second part of this appendix, we evaluate the momentum integrals appearing in
the 1-loop diagram with one Coulomb photon exchange inside the loop, i.e. the right part of
fig. 3.2 and eq. (3.23). To this aim, we first introduce the notation γ2 ≡ −p2 for the physical
momenta, we set ε to zero and rewrite eq. (3.23) in arbitrary dimensions d as

L ≡ T1−loop
SC (p,p′;d) = −[D(E∗)]2M2 ·

∫︂

Rd

ddk
(2π)d

∫︂

Rd

ddq
(2π)d

ip′ · k
(q + k)2 + γ2

e2

q2
i(q + k) · p

k2 + γ2 . (A.62)

where the fictitious photon mass has been set to zero, since no infrared divergences occur in
the integration (cf. Appendix A of ref. [2]). Second, we decide to carry out the integration over
k first and merge the relevant denominators again by means of Feynman’s trick, obtaining

L = pip′
jM2[D(E∗)]2 Γ(2)

Γ(1)Γ(1)

∫︂ 1

0
dω
∫︂

Rd

ddq
(2π)d

e2

q2

∫︂

Rd

ddk
(2π)d

qikj + kikj
[k2 + 2(1 − ω)q · k + ∆2]2 , (A.63)

where ∆2 ≡ γ2 + q2(1 −ω) and Einstein’s convention for repeated indices is understood. Now,
we can proceed by evaluating the two integrals over k generated by qikj and kikj separately.
The former integral turns out to be an application of eq. (B.18) in ref. [132] and gives

∫︂

Rd

ddk
(2π)d

qikj
[k2 + 2(1 − ω)q · k + ∆2]2 = − qiqj (1 − ω)

[∆2 − (1 − ω)2q2]2−d/2
Γ
(︁
2 − d

2
)︁

(4π)d/2Γ(2)
. (A.64)

The second term of eq. (A.63), instead, yields two contributions, one of the two being pro-
portional to the r.h.s. of eq. (A.64). The application of eq. (B.18) in ref. [132] indeed leads
to

∫︂

Rd

ddk
(2π)d

kikj
[k2 + 2(1 − ω)q · k + ∆2]2 = 1

(4π)d/2
1

Γ(2)

·
[︄
qiqj (1 − ω)2Γ

(︁
2 − d

2
)︁

[∆2 − (1 − ω)2q2]2−d/2 +1
2

δijΓ
(︁
1 − d

2
)︁

[∆2 − (1 − ω)2q2]1−d/2

]︄
.

(A.65)

By comparison of the last equation with eq. (A.63), we observe that the q integrals involving qiqj
can be performed together. Therefore, we merge the two terms and, after few manipulations,
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we define

L1 ≡ −pip′
j [D(E∗)]2M2 Γ

(︁
2 − d

2
)︁

(4π)d/2

∫︂ 1

0
dω
∫︂

Rd

ddq
(2π)d

qiqj (1 − ω)ω
[γ2 + q2(1 − ω)ω]2−d/2

e2

q2 . (A.66)

With the help of the auxiliary parameter Ξ2
4 ≡ γ2/[ω(1 − ω)] we apply again the Feynman

parametrization for the two denominators and rewrite the last equation as

L1 = −pip′
je2D2

0M2 Γ
(︁
3 − d

2
)︁

(4π)d/2

∫︂ 1

0
dω[(1 − ω)ω]d/2−1

∫︂ 1

0
dφφ1−d/2

∫︂

Rd

ddq
(2π)d

qiqj
[q2 + φΞ2

4]3−d/2 .

(A.67)
In this form, the application of eq. (B.18) in ref. [132] with q = 0 suffices for the carrying out
of the momentum integral in L1,

∫︂

Rd

ddq
(2π)d

qiqj
[q2 + φϘ2]3−d/2

= δij
2

Γ(2 − d)
Γ
(︁
3 − d

2
)︁ φ

d−2γ2d−4

(4π)d/2
[ω(1 − ω)]2−d , (A.68)

and eq. (A.67) becomes

L1 = −p · p′e2[D(E∗)]2M
2

2
γ2d−4

(4π)d
Γ(3 − d)
(2 − d)

∫︂ 1

0
dω [ω(1 − ω)]1−d/2

∫︂ 1

0
dφφd/2−1 , (A.69)

where the Gamma functions have been simplified. While the integration over φ is straightfor-
ward and gives 2/d, the remaining one can be performed in an analogous fashion as eq. (A.6)
of ref. [2]. By considering ε ≡ 3 −d, in fact, the integrand can be expanded in power series in
ε , giving

∫︂ 1

0
dω [ω(1 − ω)]1−d/2 =

∫︂ 1

0
dωeε log

√
ω−ω2 · [ω(1 − ω)]−1/2 = π − 2πε log 2 + O(ε2) . (A.70)

Introducing also the renormalization scale µ, the part of the scattering amplitude of interest
can be recast as

L1 = − cos θ[D(E∗)]2M2e2 p2

d

(︂µ
2

)︂3−d
· γ2d−4Γ(ε)

(4π)d(2 − d)

[︂
π − 2πε log 2 + O(ε2)

]︂
. (A.71)

It displays a pole singularity in the limit d → 3 and a simple PDS pole at d = 2. By exploiting
the Laurent series expansion of the Gamma function for small arguments and truncating it at
NLO, L1 finally becomes

L1 = − cos θ[D(E∗)]2αM
2

16π
p4

3

[︃
1

3 − d − γE + 4
3 + iπ + log

(︃
πµ
2p2

)︃]︃
, (A.72)

where the regular parts of the amplitude have been evaluated in the three-dimensional limit.
Now, due to the presence of a d = 2 singularity, the PDS correction to L1 is non-zero. Intro-
ducing again the renormalization scale µ of the MS scheme and noticing that the integrand
in eq. (A.71) in the d Ï 2 limit coincides with 1, the correction turns out to be

δL1 = cos θ[D(E∗)]2αM
2

4π
µp2

4 . (A.73)

Subtracting the latter equation to eq. (A.72), the PDS corrected part of the amplitude can be
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obtained,

LPDS
1 = L1−δL1 = − cos θ[D(E∗)]2αM

2

4π
p2

4

[︃p2

3

(︃
1

3 − d − γE + 4
3 − log 2p2

πµ + iπ
)︃

+ µ
]︃
. (A.74)

Next, we concentrate on the evaluation of the second term on the second row of eq. (A.63).
Considering the original constant factors and the integral over the q, we define

L2 ≡ p · p′[D(E∗)]2M
2

2
Γ
(︁
1 − d

2
)︁

(4π)d/2

∫︂ 1

0
dω
∫︂

Rd

ddq
(2π)d

e2

q2
1

[γ2 + ω(1 − ω)q2]1−d/2 (A.75)

and the constant Ξ2
5 ≡ γ2/[ω(1−ω)], so that we can exploit again the Feynman parametrization

for the denominators, obtaining

L2 = p ·p′e2[D(E∗)]2M
2

2
Γ
(︁
2 − d

2
)︁

(4π)d/2

∫︂ 1

0
dω[ω(1−ω)]d/2−1

∫︂ 1

0
dφ
∫︂

Rd

ddq
(2π)d

φ−d/2

[φΞ2
5 + q2]2−d/2 . (A.76)

The integral over the q can be now carried out as a straightforward application of eq. (B.16)
in ref. [132], yielding

L2 = p · p′e2[D(E∗)]2M
2

2
Γ
(︁
2 − d

2
)︁

(4π)d/2

∫︂ 1

0
dω[ω(1 − ω)]d/2−1

∫︂ 1

0
dφφ

−d/2(φϘ2)d−2

(4π)d/2
Γ(2 − d)
Γ
(︁
2 − d

2
)︁ . (A.77)

In the last rewriting, the integral over the φ can be immediately performed, while the Gammas
can again be simplified and reduced, so that eq. (A.77) transforms into

L2 = −p · p′e2[D(E∗)]2γ2d−4M2

4

(︂µ
2

)︂3−d Γ(3 − d)
(4π)d

(︁
1 − d

2
)︁2

∫︂ 1

0
dω [ω(1 − ω)]1−d/2 , (A.78)

where the conventional renormalization scale factor (µ/2)3−d has been introduced as in eq (A.71).
The remaining integral has been already met in eq. (A.73) and it can be evaluated exactly in
d = 2 or expanded in powers of 3 − d in the three-dimensional case. Plugging eq. (A.70) into
eq. (A.77), it turns out that the integral is again divergent in the limit d Ï 3 and includes also a
threefold PDS pole in d Ï 2. Taking the former limit, the Gamma function can be expanded
in Laurent series as before and the amplitude can be re-expressed as

L2 = cos θ[D(E∗)]2αM
2

4π
p4

4

[︃
1

3 − d − γE + 2 + iπ − log p2

8πµ

]︃
, (A.79)

where the ultraviolet divergence of the original integral is made explicit. Then, the application
of the PDS scheme to the d Ï 2 pole yields the following correction,

δLPDS
2 = −α cos θD2

0M2µp2

8π . (A.80)

Finally, we subtract the PDS contribution just determined to eq. (A.79), obtaining

LPDS
2 = cos θ[D(E∗)]2αM

2

4π
p2

2

{︂p2

2

[︃
1

3 − d − γE + 2 + iπ − log
(︃

2p2

πµ

)︃]︃
+ µ

}︂
. (A.81)

Now we collect the two results in eqs. (A.74) and (A.81) and write the one-loop scattering
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amplitude with one photon exchange in the power divergence subtraction scheme,

T1−loop
SC (p,p′)

⃓⃓
⃓
PDS

= cos θ[D(E∗)]2αM
2

4π

{︂µp2

4 + p4

6

[︃
1

3 − d − γE + 7
3 − log

(︃
2p2

πµ

)︃
+ iπ

]︃}︂
.

(A.82)

A.3 Three dimensional integrations
Here, we focus our attention on the computation of the leading order matrix element of the
Coulomb-corrected strong fermion-fermion scattering amplitude in eq. (3.28). The process
can be reduced to the evaluation of only one of the two integrals presented in the first row
of the latter equation, by virtue of the complex-conjugation property satisfied by the repulsive
Coulomb wavefunctions, ψ(−)∗

p′ = ψ(+)
−p′ . In particular, we choose to concentrate on the first term

on the l.h.s. of eq. (3.29),

F ≡ i∇ψ(−)∗p (r)
⃓⃓
⃓r=0 = i

∫︂

R3
d3r′ δ(r′) ∇′ψ(−)∗

p′ (r′) . (A.83)

Recalling the parity rule of the spherical harmonics (cf. sec. AVI in ref. [272]), the repulsive
Coulomb eigenstate turns out to be given by

ψ(−)∗
p′ (r′) = 4π

|p′|r′

+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
(−i)ℓeiσℓYm∗

ℓ (p′̂)Ymℓ (r′̂)Fℓ(η, |p′|r′) . (A.84)

Now, we start by observing that the three-dimensional Dirac delta function peaked at the origin
can be rewritten in spherical coordinates as

δ(r) ≡ δ(x)δ(y)δ(z) = δ(r)
4πr2 , (A.85)

due to rotational invariance (cf. app. A.4). The rewriting in eq. (A.85) paves the way for
the integration of the angular variables and on the radial distance on which the Dirac delta
effectively acts separately. Equipped with the last equation, we can split the expression in
eq. (A.83) into two parts,

F = F1 + F2 , (A.86)

where

F1 ≡ i
∫︂ 2π

0
dφ′

∫︂ π

0
dθ′
∫︂ +∞

0
dr′δ(r′)

+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
(−i)ℓeiσℓYm∗

ℓ (p′̂)Ymℓ (r′̂)∇′Fℓ(η, |p′|r′)
|p′|r′ . (A.87)

and

F2 ≡ i
∫︂ 2π

0
dφ′

∫︂ π

0
dθ′
∫︂ +∞

0
dr′δ(r′)

+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
(−i)ℓeiσℓYm∗

ℓ (p′̂)Fℓ(η, |p′|r′)
|p′|r′ ∇′Ymℓ (r′̂) . (A.88)

Considering the explicit expression for the regular repulsive Coulomb eigenfunctions in
eq. (1.18), we first concentrate on the application of the gradient to Fℓ(η, |p′|r′)/|p′|r′. Recall-
ing the transformation property of the Kummer functions, i.e. the confluent Hypergeometric
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functions 1F1, under differentiation with respect to their third argument

∂
∂zM(a, b, z) = a

bM(a + 1, b + 1, z) a, b, z ∈ C , (A.89)

we can rewrite the term of interest as

∇′
(︃
Fℓ(η, |p′|r′)

|p′|r′

)︃
= |p′|r̂′ 2ℓe−πη/2|ei|p′|r|Γ(ℓ + 1 + iη)|

(2ℓ + 1)! (|p′|r′)ℓ−1

·
[︃

(ir′|p′| + ℓ) M(ℓ + 1 + iη, 2ℓ + 2,−2i|p′|r′) − i|p′|r′ ℓ + 1 + iη
ℓ + 1 M(ℓ + 2 + iη, 2ℓ + 3,−2i|p′|r′)

]︃
.

(A.90)
In the last equation, we note that the application of the gradient effectively reduces to the
application of the derivative with respect to the radial variable r′, therefore the resulting
vector is parallel to r′. It is then convenient to exploit the expression of the latter vector
in terms of the spherical harmonics given in eq. (5.24) and sec. 5.1 of ref. [135], in order to
perform the integration on the radial and the angular variables φ′ and θ′ associated to r′ in
eq. (A.87) separately. Making use of the complex conjugation (cf. eq. (4.31) in ref. [273]) and
the orthonormality (cf. chap. VI of ref. [274]) properties of spherical harmonics, the integral
over Ω′ ≡ (φ′, θ′) can be carried out rapidly, obtaining

F1 =
+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
(−i)ℓ2i

√︃
π
3

∫︂ +∞

0
dr′δ(r′)eiσℓYm∗

ℓ (p̂′) ∂∂r′

[︃
Fℓ(η, |p′|r′)

|p′|r′

]︃

· (δm1δℓ1e1 + δm0δℓ1e0 +δm−1δℓ1e−1) .

(A.91)

Recalling eq. (5.24) and sec. 5.1 in ref. [135], the remaining spherical harmonic on the last row
of eq. (A.91) together with the round bracket with the Kronecker deltas can be identified as
the unit-vector parallel to p′, up to a multiplication factor that cancels out with 2

√
π/3 on the

left of the last integration sign. Then, exploiting eq. (A.90) for ℓ = 1, eq. (A.91) can be rewritten
as

F1 =
∫︂ +∞

0
dr′δ(r′)eiσ1 ∂

∂r′

[︃
F1(η, |p′|r′)

r′

]︃
p′

= |Γ(2 + iη)|
3 e−iσ1eπη/2

lim
r′Ï0

[︃
(1 + i|p′|r)M(2 + iη, 4,−2i|p′|r′) − i|p′|r′ 2 + iη

2 M(3 + iη, 5,−2i|p′|r′)
]︃

p′ .

(A.92)
The explicit evaluation of the limit leads immediately to the disappearance of the terms de-
pending linearly on the radial coordinate r′, since the Kummer functions are equal to unity
for zero values of the third argument,

lim
zÏ0

M(a, b, z) = lim
zÏ0

1F1(a, b, z) = 1 a, b, z ∈ C . (A.93)

Besides, by exploiting the fundamental property Γ(z+ 1) = zΓ(z) of the Gamma functions, the
constants outside the limit in eq. (A.92) can be rewritten in terms of the Sommerfeld factor
(cf. eq. (1.20)),

|Γ(2 + iη)|
eπη/2

=
√︁

1 + η2

eπη/2
|Γ(1 + iη)| =

√︁
1 + η2Cη , (A.94)

thus recovering the polynomial on the r.h.s of the generalized effective range expansion (cf.
eq. (1.29) with ℓ = 1). Equipped with the two last results we can, finally, obtain the desired
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expression for the r.h.s. of eq. (A.91),

F1 = eiσ1Cη
√︁

1 + η2 p′

3 . (A.95)

Now, we can proceed with the application of the gradient to the spherical harmonics (cf.
eq. (A.88)). From ref. [135], the result of the latter derivative can be rewritten as a linear
combination of shperical harmonics as in eqs. (5.24) and (5.27) in ref. [135]. In particular, by
the introduction of 1 =

√
4πY0∗

0 (θ, φ) in the relevant integral of eq. (A.88), we can observe that
the surface integrals over the Yµℓ+1(θ, φ) yield no contribution, since ℓ cannot assume negative
values. It follows that our term of interest becomes

F2 = −
∑︂

ℓ,m
(−i)ℓ+1

√︃
4πℓ

2ℓ + 1
(ℓ + 1)

|p′| eiσℓYm∗
ℓ (p′̂)

∫︂ +∞

0
dr′ δ(r′)Fℓ(η, |p′|r′)

r ′2

∑︂

µ,µ′

δℓ1δµ0(ℓ−11ℓ|µµ′m)eµ′ ,

(A.96)
where the Clebsch-Gordan coefficients (j1j2J|m1m2M) ≡ ⟨JM, j1j2|j1m1, j2m2⟩ vanish whenever
m ̸= µ + µ′. The evaluation of the latter in the last row of eq. (A.96) leads to

F2 =
√︃

4π
3 eiσ1

∫︂ +∞

0
dr′ δ(r′) 2

r′
F1(η, |p′|r′)

|p′|r′

(︂
Y−1∗

1 (p′̂)e1 + Y0∗
1 (p′̂)e0 + Y1∗

1 (p′̂)e−1
)︂

= 2p′ |Γ(2 + iη)|
3 eπη/2e−iσ1

lim
rÏ0

[︂
ei|p′|r′M(2 + iη, 4,−2i|p′|r′)

]︂
.

(A.97)

Then, exploiting again the results in eqs. (A.93) and (A.94), the limit in the equation can be
evaluated and the expression simplified as eq. (A.95), giving

F2 = eiσ1Cη
√︁

1 + η2 2p′

3 . (A.98)

Combining the last result together with the one in eq. (A.95), we obtain the expression of the
complete integral in eq. (A.83),

i
∫︂

R3
d3r′ δ(r′) ∇′ψ(−)∗

p′ (r′) = eiσ1Cη
√︁

1 + η2p′ . (A.99)

By exploiting the complex-conjugation property of the regular Coulomb repulsive wavefunc-
tion ψ(−)p (r) = ψ(+)∗

−p (r), also the remaining part of eq. (3.29) can be evaluated, by noticing that
the latter property implies only the disappearance of a (−1)ℓ factor in eq. (A.84), that for ℓ = 1
is compensated by the overall minus sign in front of the integral,

− i
∫︂

R3
d3r δ(r) ∇ψ(+)p (r) = eiσ1Cη

√︁
1 + η2p . (A.100)

Therefore, the full leading order TSC matrix element in eq. (3.28) reads

⟨ψ(−)
p′ |V̂(1)|ψ(+)p ⟩ = e2iσ1C2

ηD(E∗)(1 + η2)p′ · p = cos θD(E∗)C2
ηe2iσ1(1 + η2)p2 , (A.101)

where θ is the scattering angle.
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A.4 Dirac Delta function
In this section we aim at rewriting the three-dimensional Dirac delta function peaked at the
origin,

δ(r) ≡ δ(x)δ(y)δ(z) , (A.102)

in spherical coordinates, in order to facilitate the integrations in which such a Dirac delta
appears within the integrand. With this aim, it is convenient to rewrite the delta in momentum
space [274],

δ(r) =
∫︂

R3

d3q
(2π)3e

iq·r , (A.103)

and replace the exponential with its expansion into spherical Bessel functions and spherical
harmonics, obtaining

δ(r) = 4π
+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
iℓYm∗

ℓ (r̂)
∫︂ +∞

0

dq
(2π)3q

2jℓ(qr)
∫︂ 2π

0
dφ
∫︂ π

0
dθ sin θYmℓ (θ, φ)

= (4π)3/2
+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
iℓYm∗

ℓ (r̂)
∫︂ +∞

0

dq
(2π)3q

2jℓ(qr)
∫︂ 2π

0
dφ
∫︂ π

0
dθ sin θYmℓ (θ, φ)Y0∗

0 (θ, φ)

= (4π)3/2
+∞∑︂

ℓ=0

ℓ∑︂

m=−ℓ
iℓYm∗

ℓ (r̂)
∫︂ +∞

0

dq
(2π)3q

2jℓ(qr)δℓ0δm0 = 2
∫︂ +∞

0

dq
(2π)2q

2j0(qr) ,

(A.104)

where the integration property in eq. (A.104) of spherical harmonics filters out all the con-
tributions coming from the spherical tensors transforming according to the ℓ ≥ 1 irreps of
SO(3). The remaining integration can be carried out by referencing to the identity in sec. 11.2
of ref. [275] ∫︂ +∞

0
dq q2jα(uq)jα(vq) = π

2u2δ(u − v) (A.105)

in the particular case in which α = 0 and v = 0. The desired expression for the three-
dimensional Dirac delta is, then, recovered

δ(r) = δ(r)
4πr2 , (A.106)

from which we observe that the sequence of three deltas in eq. (A.102) has been reduced into
a single delta over the radial coordinate. It is, finally, interesting to note that the denominator
4πr2 in the last equation coincides with the absolute value of the Jacobian of the transformation
from Cartesian to spherical coordinates, in which the integration over the domain of the
angular variables has been performed. This integration is only allowed when the delta is
spherically simmetric, which is not the case for the translated Dirac delta, δ(r − r0), by a
non-null vector r0.
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APPENDIX B

This appendix provides complementary material to the second part of chap. 2 and 3, in which
the system is immersed in a cubic finite volume. In particular, app. B.1 with its subunits
B.1.1 and B.1.2 discusses the Riemann sums appearing in the derivation of the finite-volume
corrections to the lowest S- and P-wave scattering states in secs. 2.2.3 a) and 3.2.3 a). Indeed
apps. B.2, B.2.1 and B.2.2 the large binding momentum limit of the Riemann sums S2(iκ)̃ and
S3(iκ̃) implied in the derivation of the finite-volume shifts to the deepest unbound ℓ = 0 and 1
states in secs. 2.2.3 b) and 3.2.3 b) are illustrated.

B.1 Three-dimensional Riemann sums
The derivation of the energy corrections from the finite volume ERE for the lowest-energy
A1 and T1 scattering states implies the computation of the sum of the single and double three-
dimensional Riemann series treated in this appendix.

B.1.1 Single sums
Let us begin with the derivation of the sum of S0(p̃) ≡ Υ,

Υ =
Λn∑︂

n
1 − 4π

3 Λ3
n = 0 (B.107)

which can be carried out analytically. After rewriting the series over three-vectors of integers
in integral form,

Λn∑︂

n
1 =

∫︂

R3
d3k

Λn∑︂

n
δ(k − n) =

∫︂

Λn

d3k
∞∑︂

n
δ(k − n) , (B.108)

the Poisson summation formula for a three-dimensional Dirac delta function,

∞∑︂

n
δ(k − n) =

∞∑︂

n
e−2πin·k , (B.109)
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can be directly applied, obtaining

Υ =
Λn∑︂

n
1 − 4π

3 Λ3
n =

∫︂

Λn

d3k
∞∑︂

n
e−2πik·n − 4π

3 Λ3
n . (B.110)

Then, the remaining integral can be computed by singling out the zero mode,

∫︂

Λn

d3k
∞∑︂

n
e−2πik·n =

∫︂

Λn

d3k +
∞∑︂

n̸=0

∫︂

Λn

d3k e−2πik·n = 4π
3 Λ2

n +
∞∑︂

n̸=0
δ(2πn) = 4π

3 Λ2
n , (B.111)

where the second integral vanishes, since the sum excludes the null vector. Equipped with
the last result, it immediately follows that

Υ =
Λn∑︂

n
1 − 4π

3 Λ3
n = 4π

3 Λ2
n − 4π

3 Λ3
n = 0 . (B.112)

Second, we report the sum of the series whose general term is given by the inverse of the
norm of the three vector of integers n [46],

G(0) =
Λn∑︂

n̸=0
1

|n| − 2πΛ2
n = −2.8372 . (B.113)

Although it does not play any role in the expression of the finite volume energy corrections, the
sum of the series shares its asymptotic behaviour with the one of Ϙ1. A precise determination
of the sum of G(0), thus, provides a benchmark test, which has to be passed successfully before
addressing the Ϙ1 calculation. Due to the rapid oscillation of the sum of the series for similar
values of the cutoff constant Λn, the original series in eq. (B.114) has been recast as

G(0) = lim
εÏ0+

[︄ Λn∑︂

n
e−ε|n|

|n| − 4π
∫︂ Λn

0
dn ne−εn

]︄
, (B.114)

where ε is a small real constant and the exponential factor proves to quench the oscillations of
G(0) for neighbouring values of Λn. Considering the interval 0.1 ≤ ε ≤ 1, the sum of the series
proves to decrease monotonically towards ε = 0 n the Λn Ï +∞ limit and the behaviour is
linear with ε , with small quadratic corrections. The subsequent quadratic interpolation, in fact,
returns a value of G(0) compatible with the exact one in literature (cf. eq. (B.114) and ref. [46]),

G(0) ≈ −2.83739(11) . (B.115)

It follows that the chosen approach (cf. eq. (B.114)) is successful in the evaluation of the sum
of the series and can be promoted to more involved cases. Moreover, exploring a larger
interval of ε towards larger values, further deviations form linearity are likely to appear in
the fit. In particular, the following class of fitting functions,

f (ε) = a
ε + b + c a, b, c ∈ R , (B.116)

is expected to provide a satisfactory description of the behaviour of of G(0) with ε both in the
vicinity of zero and in the infinite ε limit. The approach adopted for G(0) can be immediately
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exploited for the computation of another three-dimensional sum regulated by a spherical
cutoff,

H(0) =
Λn∑︂

n̸=0
1

|n|3 − 4π log Λn = lim
εÏ0+

[︄ Λn∑︂

n
e−ε|n|

|n|3 − 4π
∫︂ Λn

1
dn 1

ne
−εn

]︄
. (B.117)

Even if the latter does not occur in any of the calculations presented in part I of the thesis, its
numerical evaluation, that gives

H(0) = 3.8219 , (B.118)

serves as a bootstrap to the computation of the double sum R(0) in the tail-singularity separation
approach (cf. ref. [276]) performed in ref. [1], subject of the next subunit of the appendix.
Correlated to G(0) is the I(0) series, whose importance is witnessed by the numerous occasions
in which it appears throughout part I of the present dissertation. Its implications include the
finite-volume corrections to the mass of the fermions, the primed scattering parameters (cf.
eqs. (1.40)-(1.44)), the finite-volume eigenvalues of the lowest A1 unbound state and the large
binding momentum limit of the Lüscher functions S2(iκ̃) and S3(iκ̃), see eqs. (B.182) and (B.208).
The sum of this series is already known in literature [1, 46, 75] and is given by

2πG(0) = I(0) =
Λn∑︂

n̸=0
1

|n|2 − 4πΛn = −8.9136 , (B.119)

where the first equality is shown in tab. 1 and eq. (2.61) of ref. [75]. A precise evaluation of I(0)

can be attained by isolating the cutoff-dependent part of the series via the Poisson summation
formula. In particular, the addition and subtraction of a 1/(|n|2 + 1) term in the original series
yields

I(0) =
Λn∑︂

n̸=0
1

|n|2(|n|2 + 1) +
Λn∑︂

n̸=0
1

|n|2 + 1 − 4πΛn , (B.120)

where the first term on the r.h.s proves to converge in the Λ Ï +∞ limit as fast as the J ≡ J(0)

series in ref. [1] and the linear divergence is confined into the second summation. Exploiting
the Poisson formula in eq. (B.109), the non-regularized series can be evaluated as follows,

Λn∑︂

n̸=0
1

|n|2 + 1 = −1 +
∞∑︂

n

∫︂

S2(Λn)

d3k
k2 + 1δ(n − k) = −1 +

∞∑︂

n

∫︂

S2(Λn)

d3k
k2 + 1e

−2πik·n , (B.121)

where the zero n term has been added to the sum and, then, the spherical cutoff has been
moved from the sum to the integral over the finite-volume momenta. Separating the zero
modes from the others in the result of eq. (B.120), we obtain

−1+
∫︂

S2(Λn)

d3k
k2 + 1+

∞∑︂

n̸=0

∫︂

S2(Λn)

d3k
k2 + 1e

−2πik·n = −1+4πΛn+4π
∞∑︂

n̸=0

∫︂ Λn

0
dk k

i|n|
e2πik|n| − e−2πik|n|

|k|2 + 1 ,

(B.122)
where the third and the fourth term on the r.h.s. turn out to be finite in the infinite cutoff limit
and the last integral can be performed in the complex plane, by collecting the residues ac-
cording to Jordan’s Lemma. Performing the remaining integration, in fact, the last expression
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becomes

− 1 + 4πΛn − 2π2 + π
∞∑︂

n̸=0
e−2π|n|

|n| , (B.123)

that can be directly plugged into eq. (B.120), obtaining the desired result,

I(0) = −1 − 2π2 +
∞∑︂

n̸=0
1

|n|2(|n|2 + 1) + π
∞∑︂

n̸=0
e−2π|n|

|n| ≡ −1 − 2π2 + γ1 + πϠ0 , (B.124)

As it can be observed, the cutoff dependent term in the original series has been removed and,
at the same time, two rapidly convergent sums, Ϡ0 = 0.0125 and γ1 (cf. eq. (B.126)) replaced
the divergent one, thus reducing significantly the computational efforts. The procedure is
completely analogous to the one adopted in Appendix B 1 of ref. [72] and can be applied to
other cutoff-regulated single sums.
Concerning the other single sums that arise in the expansion in powers of δp̃2 of the Lüscher
functions S1(p̃) and S2(p̃) around p̃2 = 0, their numerical evaluation does not require manipu-
lations in the argument. Adopting a notation similar to the one used for eq. (B.114) and (B.117),
the sums of relevant three-dimensional Riemann series yield

J(0) =
∑︂

n̸=0
1

|n|4 = 16.5323 , K (0) =
∑︂

n̸=0
1

|n|6 = 8.4019 ,

L(0) =
∑︂

n̸=0
1

|n|8 = 6.9458 , O(0) =
∑︂

n̸=0
1

|n|10 = 6.4261 . (B.125)

In particular, the results for J(0), K (0) and L(0) in eq. (B.125) coincide with the one of J, K
and L reported in the apprendix of ref. [1]. Indeed, the sums appearing as coefficients in the
δp̃2 expansion of the Lüscher functions S1(p̃), S2(p̃) and S3(p̃) around p̃2 = 1 give

I(1) =
Λn∑︂

n̸=0
1

|n|2 − 1 − 4πΛn = −1.2113 , J(1) =
∑︂

n̸=0
1

(|n|2 − 1)2 = 23.2432 ,

K (1) =
∑︂

n̸=0
1

(|n|2 − 1)3 = 13.0594 , L(1) =
∑︂

n̸=0
1

(|n|2 − 1)4 = 13.7312 ,

O(1) =
∑︂

n̸=0
1

(|n|2 − 1)5 = 11.3085 , (B.126)

where the first three coincide respectively with I1, J1 and K1 in Appendix C of ref. [72].
Similarly, all the series not regulated by a cutoff can be computed directly, without the need to
resort to the techniques outlined above. Conversely, the sum of I(1) can be obtained rapidly
from the existing result for I(0). In fact, the addition and subtraction of a 1/|n|2 term gives

I(1) =
+∞∑︂

|n|̸=0,1

1
|n|2(|n|2 − 1) + I(0) + 5 ≡ ϝ1 + I(0) + 5 , (B.127)

where in the first term on the r.h.s. the limit Λn Ï +∞ has been taken. Moreover, replacing
I(0) with its expression given in eq. (B.117), the last formula can be rewritten in a compact
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fashion as

I(1) = 9 − 2π2 + 2
+∞∑︂

|n|̸=1

1
|n|2 + 1

1
|n|2 − 1 + π

∞∑︂

n̸=0
e−2π|n|

|n| ≡ 9 − 2π2 + 2γ2 + πϠ0 , (B.128)

so that I(1) can be evaluated independently from I(0). Finally, we conclude the paragraph by
enumerating the single series which do not appear directly in the δp̃2 ∼ 0 expansions of the
Lüscher functions but that play an ancillary role in the evaluation of the single sums listed in
eqs. (B.124) and (B.128) (cf. γ1, γ2 and ϝ1) or in the double sums in eqs. (B.134) and (B.135) (cf.
ϝ1 − ϝ4),

γ1 =
∞∑︂

n̸=0
1

|n|2(|n|2 + 1) = 11.7861 , γ2 =
+∞∑︂

|n|̸=1

1
|n|2 + 1

1
|n|2 − 1 = 10.7442 , (B.129)

and

ϝ1 =
∞∑︂

|n|>1

1
|n|2

1
|n|2 − 1 = 14.7022 , ϝ2 =

∞∑︂

|n>1

1
|n|2

1
(n2 − 1)2 = 7.5410 ,

ϝ3 =
∞∑︂

|n|>1

1
|n|2

1
(|n|2 − 1)3 = 6.5185 , ϝ4 =

∞∑︂

|n>1

1
|n|2

1
(n2 − 1)4 = 6.2128 . (B.130)

Both the classes of series in eqs. (B.129) and (B.130) do not display convergence issues and
can be directly evaluated. Note that ϝ1 coincides with the sum listed as χ3 in eq. (A1) of ref. [1].

B.1.2 Double Sums
Differently from their single counterparts, double sums appear only in the purely Coulombic
contributions in the ℓ = 0 and 1 ERE and arise from the p̃2 Ï 0 and 1 limits of the Lüscher
functions S2(p̃) and S3(p̃). Furthermore, the p̃2 ≈ 1 expansion of the functions S2(p̃) and
S3(p̃) in secs. 3.2.3 a) generates two categories of double sums. The simplest of them consists
in one three-dimensional Riemann sum performed on Z3, followed by a sum over the six
possible unit-vectors parallel to the axes normal to the faces of a cube. Adopting the notation
introduced for the derivation of the of the p̃2 ≈ 1 limit of S2(p̃) in sec. III D 2 of ref. [1] , we
write

χ0 =
∑︂

|n|=1

∑︂

|m|=1n̸=m

1
|m − n|2 = 27

2 , χ1 =
∑︂

|n|=1

∞∑︂

m̸=n
|m|̸=1

1
|m|2 − 1

1
|n − m|2 = 86.1806 ,

χ2 =
∑︂

|n|=1

∞∑︂

|m|̸=1m̸=n

1
(|m|2 − 1)2

1
|n − m|2 = 52.5687 , χ3 =

∑︂

|n|=1

∞∑︂

|m|̸=1m̸=n

1
(|m|2 − 1)3

1
|n − m|2 = 34.0562 ,

χ4 =
∑︂

|n|=1

∞∑︂

|m|̸=1m̸=n

1
(|m|2 − 1)4

1
|n − m|2 = 44.1196 . (B.131)

The presence of the factor 1/|m − n|2 in the sums χ1 − χ4 of eq. (B.131) ensures convergence
without the need for the introduction of spherical cutoffs and regulators. Besides, the sum χ0
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is analytical and denoted as χ1 in ref. [1], whereas the series χ2 and χ3 coincide with the χ2
and χ5, respectively, in the latter work, except for the inclusion of the zero mode in the sum
over m.
Another group of series belonging to the same category is provided by the sums which are not
present in the expansions of the S2(p̃) and S3(p̃) Lüscher functions, but occur in the rewriting
of certain double sums in terms of the existing S-wave results in literature [1]. Due to the fast
convergence, the evaluation such sums does not display difficulties and gives

ϡ1 =
∑︂

|n|=1

∞∑︂

|m|>1

1
|m|2

1
|m − n|2 = 65.3498 , ϡ2 =

∑︂

|n|=1

∞∑︂

|n|>1

1
|m|4

1
|m − n|2 = 14.9350 ,

ϡ3 =
∑︂

|n|=1

∞∑︂

|m|>1

1
|m|6

1
|m − n|2 = 5.8426 , ϡ4 =

∑︂

|n|=1

∞∑︂

|n|>1

1
|m|8

1
|m − n|2 = 2.6217 , (B.132)

thus permitting to express R(1) and R(1)
2i 2j in terms of R(0) and R(0)

2i 2j . Finally, of the same
kind of the sums in eqs. (B.131) and (B.132) is the series Ϙ0 in eq. (3.167), which appears as a
proportionality constant in the O(1/δp̃2) contributions to S3 (cf. eq. (3.173)) and allows for a
pairwise elementary numerical evaluation,

Ϙ0 =
∑︂

|n|=1

∞∑︂

|m|̸=1

m · n − 1
(|m|2 − 1)|m − n|2 = −29.85670(03) . (B.133)

Now we switch to the second category of double sums, the one consisting of two three-
dimensional sums performed on Z3. First, we consider the series stemming from the p̃ ∼ 0
approximations of S2(p̃), see eq. (2.106). These sums, in fact, are the counterpart of diver-
gent double integrals contributing to the amplitudes of the relevant two-particle scattering
processes. Due to the large increase of the configuration space, for the numerical calculation
of the sum of such series it is advisable to parallelize the operations via the development of
GPU codes (e.g. in Cuda C++). The computational efforts can be significantly reduced by
subdividing the original double sum into an arbitrarily large finite number of single sums,
characterized by a three dimensional vector of integers. Then, assigning each of the outcom-
ing single sums to a different subunit of a graphic card, the sum of the original double series
is derived by gathering the results obtained simultaneously by each operating unit.
First, we start by reporting the calculation procedure for R(0) via the tail-singularity separation
(TSS) [276] approach carried out in the appendix of ref. [1]. In this method, a three-dimensional
Riemann sum is subdivided into an infrared part, dominated by the the singularities of the
summand and an UV part, expressed in the form of a three-dimensional integral and describ-
ing the behaviour of the argument of the original sum towards the infinity. As shown in app. A
of ref. [276] for the sums θAs and θBs , the TSS approach holds also for double sums regulated
asymmetrically, like

R(0) =
Λn∑︂

n̸=0

∞∑︂

m̸=0,n
1

|n|2|m|2
1

|n − m|2 − 4π4 log Λn ≡
Λn∑︂

n̸=0
Rsub(n) − 4π4 log Λn (B.134)

where Rsub represents the inner sum indexed by m. The latter exhibits singularities for
m = 0 and n that can be isolated from the rest of the sum via the introduction of negative
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exponential factors depending on a small auxiliary parameter ε. Promoting the sum deprived
of the singularities to a three dimensional integral, as prescribed by ref. [276], we find

R(0)
sub(n) =

∞∑︂

m̸=0,n
1

|n|2|m|2
1

|n − m|2 = −2ε(1 − e−ε|n|2) 1
|n|2

+
∞∑︂

m̸=0,n
1

|m|2Dnm
[︂
e−εDnm + e−ε|m|2 − e−ε(Dnm+|m|2)

]︂
+
∫︂

R3
d3m 1 − e−εDnm

Dnm
1 − e−ε|m|2

|m|2 ,

(B.135)
where Dnm denotes |m − n|. The latter formula can be further simplified by evaluating the
ε-independent part of the integral over m,

R(0)
sub(n) = π3

|n| − 2ε(1 − e−ε|n|2) 1
|n|2 +

∞∑︂

m̸=0,n
1

|m|2Dnm
[︂
e−εDnm + e−ε|m|2 − e−ε(Dnm+|m|2)

]︂

−2π
∫︂ +∞

0
dm

∫︂ 1

−1
d cos θ (e−εDnm cos θ + e−ε|m|2 − e−ε(|m|2+Dnm cos θ )) 1

|m|2Dnm
,

(B.136)

where Dnm cos θ = |n|2 − 2|n||m| cos θ + |m|2. Recalling the outer sum in eq. (B.134), the sum
of the series R(0) can be finally computed by exploiting the known value of H(0) in eq. (B.118)
and by choosing a range of values of ε that stabilizes the integral and the double sums. The
subsequent extrapolation to the limit ε Ï 0 of the sum of the original cutoff-regulated double
series yields

R(0) = π3H(0) − 2εJ(0) + 2εJ(0)
ε + T(0)

1 − 2πT(0)
2 = −178.42(01), (B.137)

where the ε-dependent sums are given by

J(0)
ε ≡

∞∑︂

n̸=0
e−ε|n|2

|n|4 , (B.138)

T(0)
1 =

∞∑︂

n̸=0

∞∑︂

m̸=0,n
1

|m|2Dnm
[︂
e−εDnm + e−ε|m|2 − e−ε(Dnm+|m|2)

]︂
, (B.139)

and

T(0)
2 =

∑︂

n̸=0
1

|n|2

∫︂ +∞

0
dm

∫︂ 1

−1
d cos θ

[︂
e−εDnm cos θ + e−ε|m|2 − e−ε(|m|2+Dnm cos θ )

]︂ 1
|m|2Dnm cos θ

.

(B.140)
Differently from R(0), the evaluation of the double sums

R(0)
2i 2j =

∞∑︂

n̸=0

∞∑︂

m̸=0,n
1

|n|i|m|j
1

|n − m|2 , (B.141)

with i, j ≥ 1 and i + j > 2 appearing in the higher order perturbative expansion of S2(p̃)
around p̃ = 0 does not require the adoption of stabilization techniques, due to their faster
convergence. In particular, the only R(0)

2i 2j sum referenced in eqs. (2.114) and (2.115) for the
lowest unbound S-wave energy eigenvalue is R(0)

24 , that gives 170.97(01) [1].
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Second, we consider the series stemming from the p̃ ∼ 1 approximations of S2(p̃), see
eq. (3.157). The series R(1) in eq. (3.155) indeed can be expressed in terms of the already
known R(0) in eq. (2.103). By adding and subtracting R(0) from R(1) and performing few
manipulations, the latter series can be conveniently recast as

R(1) =
∞∑︂

|n|>1

∞∑︂

|m|>1m̸=n

|n|2 + |m|2 − 1
|n|2(|n|2 − 1)|m|2(|m|2 − 1)|m − n|2 + R(0) − 2χ0 − 2ϡ1 − 2ϝ1 = −101.016(11) .

(B.142)
Once in this form, the sum of R(1) can be obtained by exploiting the existing result for the
cutoff-regularized sum R(0) in eq. (B.137), together with the single sums in eqs. (B.130), (B.131)
and (B.132). The only additional computational effort is given by the double sum explicitly
shown on the r.h.s of eq. (B.142), which proves to converge rapidly, unlike R(0).
Subsequently, we switch to the series of the kind R(1)

2i 2j in eq. (3.156). Even if the evaluation of
such sums does not require stabilization techniques, we present for completeness the expres-
sion of R(1)

2i 2j in terms of R(0)
2i 2j and ancillary single and double sums:

R(1)
2i 2j =

∞∑︂

|n|>1

∞∑︂

|m|>1m̸=n

[︃
1

(|n|2 − 1)i
1

(|m|2 − 1)j − 1
|n|2i|m|2j

]︃

· 1
|m − n|2 + R(0)

2i 2j − 2χ0 − ϡi − ϡj + (−1)jϝi + (−1)iϝj .

(B.143)

Analogously to the S-wave case, the only contribution of such sums in the expression of the
finite volume energy corrections for the lowest energy T1 eigenstate (cf. eq. (3.182) and (3.183))
is provided by R(1)

24 = R(1)
42 , whose explicit evaluation gives −93.692(10).

FIGURE B.4 – Sum of the stabilized Ϙ1 series as a function of the parameter ε. The fitting model, marked
by the continuous orange line, corresponds to f (ε) in eq. (B.116) with a = −149.59(47), b = 0.0185484(64)
and c = 36.5(1.4). The value of the parameter b plays a crucial role in determining the sum of the
series and maximizes the value of the coefficient of determination (R2) of the fit for the considered
fitting function. In particular, the R squared is equal to 0.999815, thus ensuring the reliability of the
interpolation.

Finally, we present the double sums arising from the p̃ ∼ 1 approximation of S3(p̃) in
eq. (3.173), starting with the cutoff-regularized double sum Ϙ1 in eq. (3.168). Since the argument
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of the sum is quadratically divergent with the spherical cutoff, it is convenient to adopt a
stabilization technique for the evaluation of the sum. To this purpose, we chose to apply the
approach in eq. (B.114) to the cutoff-regularized sum over n,

Ϙ1 = lim
εÏ0+

⎡

⎢⎢⎣
Λn∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

e−ε|n|

|n|2 − 1
1

|m|2 − 1
n · m − 1
|n − m|2 − 2π4

∫︂ Λn

0
dn ne−εn

⎤

⎥⎥⎦ . (B.144)

Since the ε-dependent Ϙ1 sums display a non-linear behaviour in the interval 0 ≤ ε ≤ 1.1, we
choose to interpolate the data with the fitting function in eq. (B.116). As shown in fig. B.4, f (ε)
describes the behaviour of the sum of the stabilized series as a function of ε satisfactorily,
therefore the sum of the series becomes

Ϙ1 =
Λn∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

1
|n|2 − 1

1
|m|2 − 1

n · m − 1
|n − m|2 − π4Λ2

n = −8028.1(24.2) . (B.145)

Conversely, the double sum Ϙ2 (cf. eq. (3.169)) appearing at order δp̃2 in the power series
expansion of S3(p̃) can be calculated efficiently even without stabilization approaches, despite
its sign-changing numerator. Its numerical evaluation yields

Ϙ2 =
∞∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

1 − |m|2|n|2 + n · m(|n|2 + |m|2 − 2)
(|m|2 − 1)2(|n|2 − 1)2|m − n|2 = −315.981(74) . (B.146)

Analogous considerations hold for the Ϙ3 series (cf. eq. (3.170)) emerging from the δp̃4 con-
tributions to S3(p̃). For large values of |n| the series proves to converge even more rapidly
than Ϙ2, therefore the statistical errors associated to the sum are smaller,

Ϙ3 =
∞∑︂

|n|̸=1

∞∑︂

m̸=n
|m|̸=1

qS(n,m) + m · n qX(n,m)
(|m|2 − 1)3(|n|2 − 1)3|m − n|2 = −384.169(03) . (B.147)

where the polynomials qS(n,m) and qX(n,m) (cf. eqs. (3.171) and (3.172)) in the numerator
are given by

qS(n,m) = −1 + 3|n|2|m|2 − |m|2|n|2(|n|2 + |m|2) (B.148)

and
qX(n,m) = 3 − 3(|n|2 + |m|2) + |m|2|n|2 + |m|4 + |n|4 . (B.149)

B.2 Lüscher functions
We concentrate on the derivation of the large imaginary momentum p̃ = iκ̃ limit of the double
sums S2(p̃) in eq. (2.98) and S3(p̃) in eq. (3.148), encountered in the derivation of the finite
volume energy corrections for the lowest bound A1 and T1 states in secs. 2.2.3 b) and 3.2.3 b)
respectively.
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B.2.1 The S2 sum
The large imaginary momentum limit of the double sum S2(iκ̃), is recalled in the derivation
of both the ℓ = 0 and in the ℓ = 1 finite volume energy corrections for the deepest bound
states, κ̃ ≫ 1. Considering its expression in eq. (2.98),

S2(iκ̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

|m|2 + κ̃2
1

|n|2 + κ̃2
1

|m − n|2 − 4π4 log Λn , (B.150)

we observe that the singularity m = n can be moved to m = 0 by operating a translation
m ↦Ï n + p in the index of the unbound sum,

S2(iκ̃) =
Λn∑︂

n

∞∑︂

p̸=0
1

|n + p|2 + κ̃2
1

|n|2 + κ̃2
1

|p|2 − 4π4 log Λn . (B.151)

Now, we concentrate on the cutoff-regulated sum over n and rewrite the argument of the
latter in integral form,

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2
Λn∑︂

n

∫︂

R3
d3q δ(q − n)

|q + p|2 + κ̃2
θ(q2 − Λ2

n)
|q|2 + κ̃2 − 4π4 log Λn . (B.152)

where the integration variable represents dimensionless momentum in the continuum. Ex-
ploiting the Poisson summation formula for the infinite sum over δ(q−n), eq. (B.152) becomes

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2
∞∑︂

n

∫︂

R3
d3q e−2πiq·n

|q + p|2 + κ̃2
θ(q2 − Λ2

n)
|q|2 + κ̃2 − 4π4 log Λn . (B.153)

The argument of the integral can be simplified through the application of Feynman paramet-
rization for the denominators, obtaining

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2
∞∑︂

n

∫︂ 1

0
dω
∫︂

S2
Λn

d3q e−2πiq·n
{[q + (1 − ω)p]2 + ω(1 − ω)p2 + κ̃2}2

−4π4 log Λn . (B.154)

We operate in the integrand of the last equation the translation q ↦Ï q − (1−ω)p, which results
into a spherical integration region of radius Λn displaced by −(1 − ω)p from the origin, that
we denote with S ′2

Λn
. Therefore, eq. (B.154) becomes

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2
∞∑︂

n

∫︂ 1

0
dω
∫︂

S′2
Λn

d3q e−2πiq·ne+2πi(1−ω)p·n
[q2 + ω(1 − ω)p2 + κ̃2]2

− 4π4 log Λn . (B.155)

The effect of the last operation consists in the shift of the anisotropy of the denominator into
the integration region. In order to proceed further and unlock the evaluation of the integral,
approximations in the original denominator or, equivalently, in the integration region have to
be considered. With this purpose, we observe that the argument of the inner sum can be
rewritten in a spherically symmetric fashion,

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2
∞∑︂

n

∫︂ 1

0
dω
∫︂

S2
Λn

d3q e−2πiq·ne+2πi(1−ω)p·n
[q2 + ω(1 − ω)p2 + κ̃2]2

+ O(κ̃0) − 4π4 log Λn . (B.156)
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at the expense of terms involving negative powers in κ̃ smaller or equal than −2. Since we are
only interested in tightly bound states, i.e. κ̃ ≫ 1, the approximation is justified, thus O

(︂
1
κ̃2

)︂

terms can be safely discarded henceforth. The crucial result in eq. (B.156) can be proven from
the Taylor expansion of the denominator in the expression on the second row of eq. (B.154).
After recalling that the sum over n is real and smaller than the one with the modulus in the
integrand,

∞∑︂

n

∫︂

S2
Λn

d3q e−2πiq·n
{q2 + κ̃2 + ω(1 − ω)p2 + [(1 − ω)2p2 + 2q · p(1 − ω)]}2

≤
∞∑︂

n

∫︂

S2
Λn

d3q 1
{q2 + κ̃2 + ω(1 − ω)p2 + [(1 − ω)2p2 + 2q · p(1 − ω)]}2

,
(B.157)

the anisotropic part of the denominator can be singled out and rewritten in power series of
s ≡ (1 − ω)p with Ϙ2 ≡ κ̃2 + ω(1 − ω)p2,

∫︂

S2
Λn

d3q 1
[︁q2 + Ϙ2 + (s2 + 2q · s)

]︁2 =
∫︂

S2
Λn

d3q 1
[q2 + Ϙ2]2

{︂
1 − 2s2 + 2q · s

q2 + Ϙ2

+3
[︃s2 + 2q · s

q2 + Ϙ2

]︃2
− 4

[︃s2 + 2q · s
q2 + Ϙ2

]︃3
+ 5

[︃s2 + 2q · s
q2 + Ϙ2

]︃4
+ . . .

}︂
.

(B.158)

Once in this form, the integral can be performed piecewise by grouping the terms containing
the same powers of s. Apart from the zero order term of the expansion, which gives ries to
the approximation in eq. (B.156), the linear term in p vanishes,

− 4
∫︂

S2
Λn

d3q q · s
[q2 + Ϙ2]3

= 0 , (B.159)

due to the spherical symmetry of the cutoff. Concerning the quadratic term, the integration
over momenta gives

−2
∫︂

S2
Λn

d3q 1
[q2 + Ϙ2]3

[︃
s2 − 6 (s · q)2

q2 + Ϙ2

]︃
= −8πs2

[︄
− Λn

8Ϙ2
Λ2
n − Ϙ2

(Λ2
n + Ϙ2)2

− Λn

24Ϙ2
(Ϙ2 − 3Λ2

n)(3Ϙ2 + Λ2
n)

(Ϙ2 + Λ2
n)3

]︄
= −Λ3

n
3

8πs2

(Ϙ2 + Λ2
n)3

= O
(︂ p2

Λ3
n

)︂
+ O

(︂p2κ̃2

Λ5
n

)︂
+ O

(︂ p4

Λ5
n

)︂
+ ...

(B.160)

where the ellypsis denotes further powers of p2, κ̃2 and Λ−1, that can be concisely summarized
as O(p2nκ̃2(m−n)Λ−2m−1

n ) where m and n are positive nonzero integers. With reference to the
external sum over p and to the factor p−2 in eq. (B.156), we infer that only the κ̃2-dependent
terms vanish in the Λn Ï +∞ limit. The other terms, in fact, yeld zero contribution only if
the latter limit is taken before evaluating the outer sum. In the opposite case, the sum over p
produces an additive constant independent on κ̃, therefore it is possible to ignore it in the next
developments of the calculation. On the other hand, the cubic terms in s yield again zero, as
all the other terms containing odd powers of (1 − ω)p,

− 4
∫︂

S2
Λn

d3q 1
[q2 + Ϙ2]4

[︃
3s2q · s + 8(s · q)3

q2 + Ϙ2

]︃
= 0 . (B.161)
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The next non-vanishing contributions are, then, given by the fourth order terms in s, which
turn out to be of the same order of the ones found in eq. (B.160),

∫︂

S2
Λn

d3q 1
[q2 + Ϙ2]4

[︃
3q4 − 48s2 (q · s)2

q2 + Ϙ2
+ 80 (q · s)4

(q2 + Ϙ2)2

]︃
= 4πs4

[︄
− Λn

16Ϙ4
(Ϙ2 − 3Λ2

n)(3Ϙ2 + Λ2
n)

(Ϙ2 + Λ2
n)3

+ Λn

8Ϙ4
(Ϙ2 − Λ2

n)(3Ϙ4 + 14Ϙ2Λ2
n + 3Λ4

n)
(Ϙ2 + Λ2

n)4
− Λn

80Ϙ4
15Ϙ8 + 70Ϙ6Λ2

n + 128Ϙ4Λ4
n − 70Ϙ2Λ6

n − 15Λ8
n

(Ϙ2 + Λ2
n)5

]︄

= 2πs4 35Λ7
n − 6Ϙ2Λ5 + 10Λ3

nϘ
4

5Ϙ2(Ϙ2 + Λ2
n)5

= O
(︂ p2

Λ3
n

)︂
+ O

(︂p2κ̃2

Λ5
n

)︂
+ O

(︂ p4

Λ5
n

)︂
+ O

(︂p4κ̃2

Λ7
n

)︂
+ O

(︂ p6

Λ7
n

)︂
+ ... .

(B.162)

The only menaingful contributions are provided by the p2m/Λ2m+1 terms, which sum up to
another constant when the limit Λn Ï +∞ is taken after the evaluation of the sum over
p or, otherwise, to zero. Analogous contributions are produced by the other powers of s,
whose results are omitted for brevity. Thus, we can conlcude that the anisotropic effects in
the integration region δS2

Λn
= S ′2

Λn
− S2

Λn
produced by the above translation in momentum

space q ↦Ï q − (1 − ω)p do not depend on the finite-volume binding momentum κ̃.
At this stage, we resume the spherically symmetric version of S(iκ̃) in eq. (B.156) and we isolate
the zero modes from the others in the sum over n,

S2(iκ̃) =
∞∑︂

p̸=0
1

|p|2

∫︂ 1

0
dω
∫︂

S2
Λn

d3q 1
[q2 + ω(1 − ω)p2 + κ̃2]2

− 4π4 log Λn

+
∞∑︂

p̸=0
1

|p|2
∞∑︂

n̸=0

∫︂ 1

0
dω
∫︂

S2
Λn

d3q e−2πiq·ne+2πi(1−ω)p·n
[q2 + ω(1 − ω)p2 + κ̃2]2

+ O(κ̃0) ,
(B.163)

and we analyze separately the contributions stemming from the two terms. Let us start with
the discussion of the contribution in the first row of eq. (B.163),

∞∑︂

p̸=0
1

|p|2

∫︂ 1

0
dω
∫︂

S2
Λn

d3q 1
[q2 + ω(1 − ω)p2 + κ̃2]2

− 4π4 log Λn

= −
∞∑︂

p̸=0
4π
|p|2

∫︂ 1

0
dωΛn

2
1

Λ2
n + Ϙ2

+
∞∑︂

p̸=0
4π
|p|2

∫︂ 1

0
dω 1

2Ϙ arctan
(︂

Λn
Ϙ

)︂
− 4π4 log Λn ,

(B.164)

where, in the intermediate step, the quantity Ϙ2 ≡ ω(1 − ω)p2 + κ̃2 has been defined and the
integration over the angular variables associated to q has been performed. In particular, the
first term in the third row of the last equation proves to converge to a constant in the large
cutoff Λn limit, as it can be shown by splitting the summation over p into two parts,

−
∞∑︂

p̸=0
4π
|p|2

∫︂ 1

0
dωΛn

2
1

Λ2
n + Ϙ2

= −
2κ̃∑︂

p̸=0
2π
|p|2

∫︂ 1

0
dω Λn

Λ2
n + Ϙ2

−
∞∑︂

|p|>2κ̃

2π
|p|2

∫︂ 1

0
dω Λn

Λ2
n + Ϙ2

, (B.165)

where the absolute value of the first term on the r.h.s. gives

2κ̃∑︂

p̸=0
2π
|p|2

∫︂ 1

0
dω Λn

Λ2
n + Ϙ2

<
2κ̃∑︂

p̸=0
2π
|p|2

Λn
Λ2
n + κ2 <

2π
Λn

2κ̃∑︂

p̸=0
1

|p|2 = 2π
Λn

I(0) + 16π2

Λn
κ̃ , (B.166)
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which vanishes in the Λn Ï +∞ limit. On the other hand, the second term is finite,

∞∑︂

|p|>2κ̃

2π
|p|2

∫︂ 1

0
dω Λn

Λ2
n + Ϙ2

=
∞∑︂

|p|>2κ̃

2π
|p|3

Λn√︂
4κ̃2 + 4Λ2

n + p2

·
(︃

log(|p| +
√︂

4κ̃2 + 4Λ2
n + p2)2 − log(|p| −

√︂
4κ̃2 + 4Λ2

n + p2)2
)︃
< +∞ ,

(B.167)

as it can be proven numerically by promoting the remaining sum into an integral. The
subsequent evaluation of the integral for a wide range of κ̃ ≥ 1 and Λn ≫ κ̃, in fact, yields
2πϠ1 where Ϡ1 = 4.9348(1). From the numerical result, it follows that the original sum is
bound and independent on the binding momentum. Since real constants do not deliver any
contribution to the finite volume energy corrections, also the κ̃-independent nonzero term
from eq. (B.167) can be neglected, as done in eq. (B.156).
Now we resume the evaluation of the second term in the second row of eq. (B.164), which
contains the logarithmic divergence. As in eq. (B.165), we split the summation over p into two
pieces and perform the integration on ω separately,

∞∑︂

p̸=0
4π
|p|2

∫︂ 1

0
dω 1

2Ϙ arctan
(︂

Λn
Ϙ

)︂
− 2π4 log Λn =

2κ̃∑︂

p̸=0
2π
|p|2

∫︂ 1

0
dω1
Ϙ

arctan
(︂

Λn
Ϙ

)︂

+
∞∑︂

|p|>2κ̃

2π
|p|2

∫︂ 1

0
dω1
Ϙ

arctan
(︂

Λn
Ϙ

)︂
− 4π4 log Λn .

(B.168)

Focusing on the first term on the r.h.s. of the last equation, we replace the arctangent function
by its maximum value assumed for real arguments,

2κ̃∑︂

p̸=0
2π
|p|2

∫︂ 1

0
dω1
Ϙ

arctan
(︂

Λn
Ϙ

)︂
<

2κ̃∑︂

p̸=0
2π
|p|2

∫︂ 1

0
dω1
Ϙ

π
2

= π2
2κ̃∑︂

p̸=0
1
p2

∫︂ 1

0
dω 1√︂

ω(1 − ω)p2 + κ̃2
= 2π2

2κ̃∑︂

p̸=0
1

|p|3 arctan
(︂

|p|
2κ̃

)︂
,

(B.169)

thus binding the series from above and allowing for a straightforward evaluation of the integral
over the ω. Then, we observe that the arctangent is always evaluated for arguments smaller
or equal to one in the considered interval of p, so that the series can be constrained again
from above, replacing arctan

(︂
|p|
2κ̃

)︂
by |p|/2κ̃,

2π2
2κ̃∑︂

p̸=0
1

|p|3 arctan
(︂

|p|
2κ̃

)︂
<

2κ̃∑︂

p̸=0
1

|p|2
π2

κ̃ = π2

κ̃

2κ̃∑︂

p̸=0
1
p2 = π2

κ̃ I(0) + 8π3 . (B.170)

Differently from the previous cases, the result is a function of κ̃ which provides a contribution
to the finite volume energy corrections, therefore has to be conserved. Finally, we concentrate
on the second term on the r.h.s. of eq. (B.168), which is responsible of the ultraviolet logar-
ithmic divergence. As in eq. (B.169), we proceed by binding the series from above, exploiting
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the properties of the arctangent function,

2π
∞∑︂

|p|>κ̃

∫︂ 1

0
dω

arctan
(︃

Λn√
κ̃2+ω(1−ω)p2

)︃

|p|2
√︂
κ̃2 + ω(1 − ω)p2

− 4π4 log Λn <
∞∑︂

|p|>κ̃

π2

p2

∫︂ 1

0

dω√︂
κ̃2 + ω(1 − ω)p2

− 4π4 log Λn .

(B.171)

Performing the integral over ω and capturing the asymptotic behaviour of the remaining
summation over p, eq. (B.171) can be rewritten as

∞∑︂

|p|>κ̃

2π2

p3 arctan
(︂

|p|
2κ̃

)︂
− 4π4 log Λn =

∞∑︂

|p|>κ̃

π3

|p|3 ≈ lim
ΛpÏ+∞

4π4 log Λp

−4π4 log 2κ̃ − 4π4 log Λn = − 4π4 log 2κ̃ ,

(B.172)

where the find another meaningful contribution to the original double sum S2(iκ̃), which is
expected to dominate in the large binding momentum regime. Now, we switch to the evaluation
of the second term on the r.h.s. of eq. (B.163), involving the non-zero modes of the original
Poisson formula. Performing the integration over the angular variables, we obtain

∞∑︂

p̸=0
1

|p|2
∞∑︂

n̸=0

∫︂ 1

0
dω e−i2π(1−ω)p·n

∫︂

S2
Λn

d3q ei2πq·n
[q2 + ω(1 − ω)p2 + κ̃2]2

=
∞∑︂

p̸=0
1

|p|2
∞∑︂

n̸=0

∫︂ 1

0
dω e−i2π(1−ω)p·n

∫︂ Λn

0
dq |q|

i|n|
ei2π|q||n| − e−i2π|q||n|

[q2 + ω(1 − ω)p2 + κ̃2]2
.

(B.173)

In this form, it becomes evident that the argument of the radial integral over the momenta
q is even and tends uniformly to zero in the limit |q| Ï +∞ and is analytical all over the
complex plane q ∈ C, except for two double poles at q± = ±i

√︂
κ̃2 + ω(1 − ω)p2, located along

the imaginary axis. Since the spherical cutoff is large, the integration region can be extended
to an arbitrary large circular region about the origin of the complex plane encompassing the
two singularities. Moreover, the integrand can be split into two functions of complex variable
q = |q|,

f±(q) = q
i|n|

e±i2πq|n|

(q − q+)2(q − q−)2 , (B.174)

so that f+(q) (resp. f−(q)) can be integrated in a semicircumference with radius Λn about
the origin in the upper (resp. lower) part of the complex plane picking up the q+ (resp. q−)
singularity, according to Jordan’s Lemma. The residues about the two double poles turn out
to coincide and eq. (B.173) becomes

∞∑︂

p̸=0
1

|p|2

∫︂ 1

0
dω

∞∑︂

n̸=0
π
|n|

1 + 2π|n|
√︂
ω(1 − ω)p2 + κ̃2

ω(1 − ω)p2 + κ̃2 e−2π|n|
√
ω(1−ω)p2+κ̃2

e−i2π(1−ω)p·n . (B.175)

Even if the two series in eq. (B.175) can not be evaluated analytically, their sum is expected to
converge, since the logarithmic divergence with the three-dimensional cutoff has been already
absorbed by the summation in eq. (B.172). Nevertheless, the convergence of eq. (B.175) can be



LÜSCHER FUNCTIONS 203

demonstrated independently, by finding suitable upper bounds to eq. (B.175) and performing
the final sums numerically. With this aim, we split the last equation into two parts according to
the numerator of the inner sum and constrain eq. (B.175) from above by taking the modulus
of the argument of the inner sum,

∞∑︂

p̸=0
1

|p|2

∫︂ 1

0
dω

∞∑︂

n̸=0
π
|n|

e−2π|n|
√
ω(1−ω)p2+κ̃2

ω(1 − ω)p2 + κ̃2 +
∞∑︂

p̸=0
2π2

|p|2

∫︂ 1

0
dω

∞∑︂

n̸=0
e−2π|n|

√
ω(1−ω)p2+κ̃2

√︂
ω(1 − ω)p2 + κ̃2

. (B.176)

In this guise, the oscillating complex exponential has been ruled out. Next, we factorize the
exponential term as follows,

e−2π|n|
√
κ̃2+ω(1−ω)p2 = e− 2π

3 |n|
√
κ̃2+ω(1−ω)p2e− 2π

3 |n|
√
κ̃2+ω(1−ω)p2

·e− 2π
3 |n|

√
κ̃2+ω(1−ω)p2 ≤ e− 2π

3 κ̃e− 2π
3 κ̃|n|e− π

3
√
ω(1−ω)|p| ,

(B.177)

where the constraint |n|, |p| ≥ 1 have been exploited, in order to isolate the dependence on
p, n and κ̃ and to enable a separate evaluation of the sums over the finite-volume momenta.
Plugging the result of eq. (B.177) into the first term of eq. (B.176), we find

∞∑︂

p̸=0
1

|p|2

∫︂ 1

0
dω

∞∑︂

n̸=0
π
|n|

e−2π|n|
√
ω(1−ω)p2+κ̃2

ω(1 − ω)p2 + κ̃2 <
∞∑︂

p̸=0

∫︂ 1

0
dωe− π

3
√
ω(1−ω)|p|

|p|2
∞∑︂

n̸=0
π
|n|

e− 2π
3 κ̃e− 2π

3 κ̃|n|

ω(1 − ω)p2 + κ̃2 .

(B.178)

Considering the limit κ̃ ≫ 1, a complete factorization between the summations over p and n
can be achieved,

∞∑︂

p̸=0

∫︂ 1

0
dωe− π

3
√
ω(1−ω)|p|

|p|2
∞∑︂

n̸=0
π
|n|

e− 2π
3 κ̃e− 2π

3 κ̃|n|

ω(1 − ω)p2 + κ̃2

< e− 2π
3 κ̃

⎡

⎣
∞∑︂

p̸=0
π
p2

∫︂ 1

0
dω e− π

3
√
ω(1−ω)|p|

ω(1 − ω)p2 + 1

]︄ ∞∑︂

n̸=0
e− 2π

3 |n|

|n| = Ϡ2Ϡ3 e− 2π
3 κ̃ ,

(B.179)

where in the argument of the sums over p and n, κ̃ has been replaced by its lowest allowed
value and Ϡ2, Ϡ3 are numerical constants, equal to 1.65744(1) and 641.79(20) respectively.
Moreover, the factor in front of the two summations ensures that the first term in eq. (B.176)
gives rise to finite volume corrections which are exponentially suppressed with respect to the
ones in eqs. (B.170) and (B.172), thus can be neglected. Similarly, thanks to eq. (B.177), the
second term in eq. (B.176) can be recast as

∞∑︂

p̸=0
2π2

|p|2

∫︂ 1

0
dω

∞∑︂

n̸=0
e−2π|n|

√
ω(1−ω)p2+κ̃2

√︂
ω(1 − ω)p2 + κ̃2

<
∞∑︂

p̸=0
2π2

|p|2

∫︂ 1

0
dω e− π

3
√
ω(1−ω)|p|

∞∑︂

n̸=0
e− 2π

3 κ̃e− 2π
3 κ̃|n|

√︂
ω(1 − ω)p2 + κ̃2

,

(B.180)
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which factorizes into
∞∑︂

p̸=0
2π2

|p|2

∫︂ 1

0
dω e− π

3
√
ω(1−ω)|p|

∞∑︂

n̸=0
e− 2π

3 κ̃e− 2π
3 κ̃|n|

√︂
ω(1 − ω)p2 + κ̃2

< e− 2π
3 κ̃

⎡

⎣
∞∑︂

p̸=0
2π2

|p|2

∫︂ 1

0
dω e− π

3
√
ω(1−ω)|p|

√︁
ω(1 − ω)p2 + 1

]︄ ∞∑︂

n̸=0
e− 2π

3 |n| = Ϡ4Ϡ5 e− 2π
3 κ̃ .

(B.181)

The numerical evaluation of the two sums in the backets of eq. (B.181) yields finite results
Ϡ4 = 2.23861(1) and Ϡ5 = 1080.48(57). At this point, the proof can be concluded by collecting
the results from eqs. (B.166), (B.167), (B.170) and (B.172), which reconstruct the behaviour of
the double sum S2(iκ̃) in the tight binding limit,

S2(iκ̃) =
Λn∑︂

n

∞∑︂

m̸=n
1

|m|2 + κ̃2
1

|n|2 + κ̃2
1

|m − n|2 − 2π4 log Λn = π2

κ̃ I(0) − 4π4 log 2κ̃+ . . . , (B.182)

where the ellypsis stands for real constants or exponentially suppressed contributions with κ̃
analogous to the ones in eqs. (B.179) and (B.181).

B.2.2 The S3 sum
We now embark on the derivation of the large imaginary momentum limit of the double sum
S3(iκ̃) in eq. (3.148), implied in the calculation of the finite volume shifts for the lowest bound
T1 state. With this aim, we start by splitting the original Lüscher function S3(iκ̃) into three
parts,

S3(iκ̃) =
Λn∑︂

n

+∞∑︂

m̸=n
1

|n|2 + κ̃2
1

|m|2 + κ̃2
n · m + κ̃2

|n − m|2 − π4Λ2
n = lim

ΛmÏ∞

{︂
SΛm

1 + SΛm
2 + SΛm

3

}︂
− π4Λ2

n ,

(B.183)
where Λm is a spherical cutoff accounting for the divergence of the following sums over m,

SΛm
1 = 1

2

Λn∑︂

n

Λm∑︂

m̸=n
1

|m|2 + κ̃2
1

|m − n|2 , (B.184)

SΛm
2 = 1

2

Λn∑︂

n

Λm∑︂

m̸=n
1

|n|2 + κ̃2
1

|m − n|2 , (B.185)

SΛm
3 = −1

2

Λn∑︂

n

Λm∑︂

m̸=n
1

|n|2 + κ̃2
1

|m|2 + κ̃2 . (B.186)

Due to the presence of a cutoff in the inner sum, the translation in momentum space operated
in the S2(iκ̃) case (cf. Appendix A3 in ref. [1] and app. B.2.1) is no longer allowed in the indi-
vidual sums (cf. eqs. (B.184)-(B.186)). Nevertheless, since the purpose is the extraction of the
finite and κ̃-dependent contributions from each of the three double sums in eq. (B.183), terms
depending on nonzero powers of Λm and Λn can be neglected without loss of information
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for the FVECs. Therefore, we assume henceforth the limits Λn, Λm Ï +∞ and extract the
finite parts from the sums depending on the binding momentum. Now, we consider the first
of the three double sums in the last row of eq. (B.183). After the translation in the momenta
m ↦Ï m − n ≡ p, we rewrite the argument of the inner sum in integral form,

S∞
1 = 1

2

∞∑︂

p̸=0
1

|p|2

∫︂

R3
d3q

∞∑︂

n
δ3(q − n)

|q + p|2 + κ̃2 . (B.187)

We apply the Poisson summation formula to the unconstrained sum over n and isolate the
zero modes from the nonzero ones,

S∞
1 = 1

2

∞∑︂

p̸=0
1

|p|2

∫︂

R3
d3q 1

|q + p|2 + κ̃2 + 1
2

+∞∑︂

p̸=0
1

|p|2
+∞∑︂

n̸=0

∫︂

R3
d3q e−i2πq·n

|q + p|2 + κ̃2 . (B.188)

Concentrating on the first term of eq. (B.188), we perform the translation in momentum space
q ↦Ï q − p ≡ l and integrate over the angular variables associated to l,

1
2

∞∑︂

p̸=0
1

|p|2

∫︂

R3
d3q 1

|q + p|2 + κ̃2 = 2π
+∞∑︂

p̸=0
1

|p|2

∫︂ +∞

0
dl − 2π

+∞∑︂

p̸=0
1

|p|2

∫︂ +∞

0
dl κ̃2

l2 + κ̃2 . (B.189)

As it can be inferred, the first term on the r.h.s. of the last equation is independent on κ̃ and
unbound, thus it can be neglected. On the other hand, the integral in the second term is finite
and generates linear contributions in the binding momentum,

− 2π
∞∑︂

p̸=0
1

|p|2

∫︂ +∞

0
dl κ̃2

l2 + κ̃2 = −2πκ̃
∞∑︂

p̸=0
1

|p|2 arctan(x)
⃓⃓
⃓
+∞

0
= −π2κ̃

+∞∑︂

p̸=0
1

|p|2 . (B.190)

Moreover, the remaining sum in eq. (B.189) can be evaluated by splitting it into two parts,

− π2κ̃
+∞∑︂

p̸=0
1

|p|2 = −π2κ̃
2κ̃∑︂

p̸=0
1
p2 − π2κ̃

+∞∑︂

|p|>2κ̃

1
p2 ≈ −π2κ̃(I(0) + 8πκ̃) − 4π3κ̃

∫︂ +∞

2κ̃
dp Ï −π2I(0)κ̃ ,

(B.191)
where, in the last step, the sum has been approximated by an integral, since the binding
momentum is expected to be large, κ̃ ≫ 1. Additionally, the linearly divergent part of the
radial integral has been consistently discarded. At this stage, we focus on the nonzero modes,
i.e. the second term in eq. (B.188). After performing the translation q ↦Ï q−p ≡ l, we integrate
over the angular variables associated to l and simplify the expression as

1
2

+∞∑︂

p̸=0
1

|p|2
∞∑︂

n̸=0

∫︂

R3
d3q e−i2πq·n

|q + p|2 + κ̃2 = 1
2

∞∑︂

p̸=0
1
p2

∞∑︂

n̸=0

∫︂ +∞

0
dl l

i|n|
e2πil|n| − e−2πil|n|

l2 + κ̃2 , (B.192)

where l ≡ |l| and the additional exponential factor e2πip·n has been dropped, since for in-
teger momenta it is equal to one. Furthermore, the argument of the radial integral over the
momenta |l| is even, thus the integration region can be extended to the whole real axis. Addi-
tionally, the integrand tends uniformly to zero in the limit l Ï ±∞ and it is analytical all over
the complex plane l ∈ C, except for two simple poles at l± = ±iκ̃, located along the imaginary
axis. It follows that the integration region can be extended to an arbitrary large circular re-
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gion about the origin of the complex plane encompassing the two singularities. Besides, the
integrand can be split into two functions of complex variable l

g±(l) = l
i|n|

e±i2πl|n|

(l − l+)(l − l−) , (B.193)

so that g+(l) (g−(l)) can be integrated in a semicircumference with arbitrarily large radius about
the origin in the upper (lower) part of the complex plane picking up the l+ (l−) singularity,
according to Jordan’s Lemma. The residues associated to the two poles turn out to coincide and
to depend on |n| through negative exponentials. Observing again that e−2π|n|κ̃ ≤ e−πκ̃e−π|n|,
eq. (B.192) becomes

1
2

∞∑︂

p̸=0
1

|p|2
∞∑︂

n̸=0
π
|n|e

−2π|n|κ̃ ≤ 1
2

∞∑︂

p̸=0
1

|p|2e
−πκ̃

∞∑︂

n̸=0
π
|n|e

−π|n| = Ϡ6
π
2 e

−πκ̃
∞∑︂

p̸=0
1

|p|2 , (B.194)

where Ϡ6 is a small constant equal to 0.400982(1). Finally, we evaluate the sum over p in the
same fashion as eq. (B.191) and we single out the non-divergent part, finding

1
2

+∞∑︂

p̸=0
1

|p|2
+∞∑︂

n̸=0

∫︂

R3
d3q e−i2πq·n

|q + p|2 + κ̃2 ≤ Ϡ6
π
2

∞∑︂

p̸=0
e−πκ̃

|p|2

= Ϡ6
π
2 e

−πκ̃
2κ̃∑︂

p̸=0
1

|p|2 +Ϡ6
π
2 e

−πκ̃
∞∑︂

|p|>κ̃

1
|p|2

≈ Ϡ6
π
2 e

−πκ̃(I(0) + 8πκ̃) +Ϡ62π2e−πκ̃
∫︂ +∞

2κ̃
dp Ï π

2Ϡ6I(0)e−πκ̃ .

(B.195)

The finite contribution arising from the non-zero modes in eq. (B.195) decays exponentially
with κ̃, thus it is negligible in the large binding momentum regime in comparison with the
one in eq. (B.191). Therefore, we retain only the latter and write

S∞
1 Ï −π2I(0)κ̃ . (B.196)

At this stage, we switch to the second term on the r.h.s. of eq. (B.183) and we observe that, in
the Λn,Λm Ï +∞ limits, translational symmetry is restored and S∞

2 coincides with S∞
1 . As a

consequence, we are allowed to write

S∞
2 = 1

2

∞∑︂

n

∞∑︂

m̸=n
1

|n|2 + κ̃2
1

|m − n|2 Ï −π2I(0)κ̃ . (B.197)

It follows that we can concentrate directly on the last term in the second row of eq. (B.183),
which can be conveniently split as follows,

S∞
3 = 1

2

∞∑︂

n
1

(|n|2 + κ̃2)2
− 1

2

∞∑︂

n

∞∑︂

m
1

|n|2 + κ̃2
1

|m|2 + κ̃2 , (B.198)

so that the second term on the r.h.s. of the last equation is factorized. Since the two disen-
tangled sums in the product are identical, it is sufficient to evaluate only one of them and,
then, to take the square of the retained finite parts. We first rewrite the argument of the sum



LÜSCHER FUNCTIONS 207

in integral form and then exploit the Poisson summation formula,

∞∑︂

n
1

n2 + κ̃2 =
∞∑︂

n

∫︂

R3
d3qδ3(q − n)

q2 + κ̃2 =
∫︂

R3
d3q 1

q2 + κ̃2 +
∞∑︂

n̸=0

∫︂

R3
d3q e−2πin·q

q2 + κ̃2 , (B.199)

where the zero modes have been isolated. The expression on the r.h.s. of eq. (B.199) is
identical to the one in eq. (B.188) after the translation q ↦Ï q − p ≡ l in momentum space,
except for the outer sum over p and the factor 1/2. Therefore, we are allowed to exploit the
results in eq. (B.190) and (B.194) for zero and non-zero modes respectively, obtaining

∫︂

R3
d3q 1

q2 + κ̃2 +
∞∑︂

n̸=0

∫︂

R3
d3q e−2πin·q

q2 + κ̃2 Ï −2π2κ̃ +Ϡ6πe−πκ̃ . (B.200)

As a consequence, the second term on the r.h.s. of eq. (B.198) can be finally rewritten as

− 1
2

∞∑︂

n

∞∑︂

m
1

|n|2 + κ̃2
1

|m|2 + κ̃2 Ï −2π4κ̃2 −Ϡ2
6
π2

2 e−2πκ̃ + 2π3
Ϡ6κ̃e−πκ̃ , (B.201)

where the last two terms on the r.h.s. are exponentially suppressed and they have to be
neglected for consistency. Second, we switch to the single sum on the r.h.s. of eq. (B.198).
Introducing the integral sign and exploiting again the Poisson summation formula, the last
contribution to S3(iκ̃) becomes

1
2

∞∑︂

n
1

(|n|2 + κ̃2)2
= 1

2

∫︂

R3

1
(q2 + κ̃2)2

+ 1
2

∞∑︂

n̸=0

∫︂

R3
d3q e−2πin·q

(q2 + κ̃2)2
, (B.202)

where the zero modes have been again isolated from the non-zero ones. The first integral in
eq. (B.202) can be carried out after few manipulations,

1
2

∫︂

R3
d3q 1

(q2 + κ̃2)2
= 2π

κ̃ arctan(x)
⃓⃓
⃓
+∞

0
− πx
x2 + κ̃2

⃓⃓
⃓
+∞

0
− π
κ̃ arctan

(︂x
κ̃

)︂ ⃓⃓
⃓
+∞

0
= π2

2κ̃ . (B.203)

Then, the integration over the angular variables associated to q in eq. (B.203) gives

1
2

∞∑︂

n̸=0

∫︂

R3
d3q e−2πin·q

(q2 + κ̃2)2
=

∞∑︂

n̸=0

∫︂ +∞

0
dq q

i|n|
e2πiq|n| − e−2πiq|n|

(q2 + κ̃2)2
. (B.204)

where q ≡ |q|. The r.h.s. of eq. (B.204) is an even function of q , thus the integration region
can be extended to the whole real axis. Besides, the integrand tends uniformly to zero in
the limit l Ï ±∞ and is analytical all over the complex plane l ∈ C, except for two double
poles at q± = ±iκ̃, located along the imaginary axis. It follows that the integration region
can be extended to an arbitrary large circular region about the origin of the complex plane
encompassing the two singularities. Moreover, the argument of the integral can be split into
two functions of complex variable q

h±(q) = q
i|n|

e±i2πq|n|

(q − q+)2(q − q−)2 , (B.205)
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so that h+(q) (h−(q)) can be integrated in a semicircumference with arbitrarily large radius
about the origin in the upper (lower) part of the complex plane picking up the q+ (q−) singu-
larity, according to Jordan’s Lemma. Again, the residues about the two double poles turn out
to coincide and to depend on |n| through negative exponentials,

∞∑︂

n̸=0

∫︂ +∞

0
dq q

i|n|
e2πiq|n| − e−2πiq|n|

q2 + κ̃2 = π2

2κ̃

∞∑︂

n̸=0
e−2πκ̃|n| . (B.206)

Now, observing again that e−2π|n|κ̃ ≤ e−πκ̃e−π|n|, the sum in eq. (B.206) can be bound from
above

π2

2κ̃

∞∑︂

n̸=0
e−2πκ̃|n| ≤ π2

2κ̃ e
−πκ̃

∞∑︂

n̸=0
e−π|n| = Ϡ7

π2

2κ̃ e
−πκ̃ , (B.207)

where Ϡ7 is a small constant equal to 0.485647(1). It follows that the contribution of the
nonzero modes associated to the single sum in the second row of eq. (B.198) is exponentially
suppressed and can be neglected in the large binding momentum limit. Collecting all the
results in eqs. (B.196), (B.197), (B.201) and (B.203), the large binding momentum limit of the
double sum S3(iκ̃) is found,

S3(iκ̃) =
Λn∑︂

n

+∞∑︂

m̸=n
1

|n|2 + κ̃2
1

|m|2 + κ̃2
n · m + κ̃2

|n − m|2 − π4Λ2
n Ï π2

2κ̃ − 2π2I(0)κ̃ − 2π4κ̃2 , (B.208)

where the ellipses include the cutoff-dependent divergent terms and functions of κ̃ which are
suppressed by negative exponentials.



APPENDIX C

This appendix is primarily devoted on technicalities related to the representation of the phys-
ical system outlined in chap. 4 on a cubic lattice. In particular, app. C.1 and C.2 offer a detailed
description on the implementation of differential operators. Conversely, app. C.3 focuses on
the cubic group, O, its irreducible representations and their link to the ones of the rotation
group in the continuum, SO(3). The transformation tables reported in the closing of the ap-
pendix may provide a useful tool for the extension of the analysis in ref. [68] to spherical
tensors transforming as higher-dimensional irreps of SO(3) as well as for the derivation of
the finite-volume mass shifts for bound states with ℓ ≥ 4 of a two-body system ruled by short
range interactions alone (cf. eq. (66) and tab. I in ref. [77]).

C.1 Discretization of derivatives
In the lattice environment, spatial derivatives have to be expressed in terms of finite differences.
As a consequence, all the differential operators are represented by non-commuting matrices,
whose non diagonal elements are collectively referred as hopping terms. For the discretization
of all the differential operators of interest in chap. 4 the improvement scheme presented in
sec. 9.1.1 of ref. [146] is implemented.
First, let us consider a C2K function f (x ± ka) on the lattice with k ∈ K. About any point x of
its domain, the function admits a Taylor expansion,

f (x±ka) = f (x)±kaf (1)(x)+k2a2

2! f (2)(x)±k3x3

3! f (3)(x)+. . .± (ka)2K−1

2K − 1! f
(2K−1)(x)+O(a2K) . (C.209)

From the subtraction of f (x − ka) from f (x + ka), it is possbile to construct an approximation
scheme for the first derivative,

f−
ka ≡ f (x + ka) − f (x − ka) = 2kaf (1)(x) + 2k

3a3

3! f (3)(x) + 2k
5a5

5! f (5)(x)

+ . . .+ 2(ka)2K−1

2K − 1! f
(2K−1)(x) + O(a2K+1) ,

(C.210)

whose truncation error is given by O(a2K+1). Summing up a linear combination of f−
ka with k

ranging from 1 to K, in fact, all the contributions from the odd derivatives up to order 2K− 1
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in the discretized expression of the first derivative can be ruled out,

K∑︂

k=1
C(1,K)
k f−

ka = 2af (1)(x)
K∑︂

k=1
C(1,K)
k k + 2a

3

3! f
(3)(x)

K∑︂

k=1
C(1,K)
k k3

+ . . .+ 2 a2K−1

2K − 1!f
(2K−1)(x)

K∑︂

k=1
C(1,K)
k k2K−1 + O(a2K+1) .

(C.211)

At this stage, it is sufficient to impose to the unknown coefficients C(1P,K)
k the following con-

straints,
K∑︂

k=1
C(1,K)
k k2l−1 =

{︄
1/2a if l = 1
0 if 2 ≤ l ≤ K

, (C.212)

in order to recover the desired approximated expression for f (1)(x),

f (1)(x) ≈
K∑︂

k=1
C(1,K)
k f−

ka . (C.213)

Analytically, the coefficients take the form

C(1,K)
k = (−1)k+1 1

2a
2
k

(K!)2
K + k!K − k! , (C.214)

as it can be proven by solving the associated linear system in eq. (C.212),

M(1,K)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

C(1,K)
1

C(1,K)
2

C(1,K)
3
...

C(1,K)
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1
2a
0
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.215)

where M (1,K)
ij = j2i−1, with the Cramer’s rule and recalling the determinant formulas for

Vandermonde matrices (cf. app. C.2). Second, the sum between f (x − ka) and f (x + ka),
permits to derive the approximation scheme for the second pure derivative,

f+
ka ≡ f (x + ka) + f (x − ka) = 2f (x) + k2a2f (2)(x) + 2k

4a4

3! f (4)(x)

+2k
6a6

6! f (6)(x) + . . .+2(ka)2K
2K! f (2K)(x) + O(a2K+2) ,

(C.216)

whose truncation error is given by O(a2K+2). Again, summing a linear combination of f+
ka with

k ranging from 1 to K, in fact, all the contributions from the even derivatives up to order 2K
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to the discretized expression of the second derivative can be cancelled in the same fashion,

K∑︂

k=1
C(2P,K)
k f+

ka = 2f (x)
K∑︂

k=1
C(2P,K)
k + a2f (2)(x)

K∑︂

k=1
C(2P,K)
k k2 + 2a

4

4! f
(4)(x)

K∑︂

k=1
C(2P,K)
k k4

+ . . .+ 2a
2K

2K!f
(2K)(x)

K∑︂

k=1
C(2P,K)
k k2K + O(a2K+2) .

(C.217)

The constraints on the C(2P,K)
k are, now, given by

K∑︂

k=1
C(2P,K)
k k2l =

{︄
1/a2 if l = 1
0 if 2 ≤ l ≤ K,

(C.218)

and enable us rewriting the second pure derivative on the lattice as

f (2)(x) ≈ C(2P,K)
0 f (x) +

K∑︂

k=1
C(2P,K)
k f+

ka , (C.219)

where a coefficient for the diagonal term of the discretized operator has been introduced as
in [3],

C(2P,K)
0 = −2

K∑︂

k=1
C(2P,K)
k . (C.220)

Solving the linear system associated to the coefficients with nonzero subscript in eq. (C.218),

M(2P,K)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

C(2P,K)
1

C(2P,K)
2

C(2P,K)
3

...
C(2P,K)
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1
a2

0
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.221)

where M (2P,K)
ij = j2i, an analytic expression for the coefficients C(2P,K)

k is obtained,

C(2P,K)
k = (−1)k+1 1

a2
2
k2

(K!)2
K + k!K − k! . (C.222)

Equipped with the approximation schemes for both the first and the second derivatives of a
function of one variable, we conclude the section with the treatment of second mixed derivat-
ives. Denoting henceforth the mixed derivatives of an analytic function in two variables (x, y)
as

∂m+n

∂mx∂ny f (x, y) = f (m,n)(x, y) , (C.223)
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the Taylor expansion of the two-variables functions f (x ± ka, y ± ka) and f (x ± ka, y ∓ ka)
about (x, y) can be written as

f (x ± ka, y ± ka) = f (x, y) ± ak[f (1,0)(x, y) + f (0,1)(x, y)]

+a
2k2

2 [f (2,0)(x, y) + 2f (1,1)(x, y) + f (0,2)(x, y)] ± a3k3

2 [f (3,0)(x, y) + 3f (2,1)(x, y)

+3f (1,2)(x, y) + f (0,3)(x, y)] · · · + a2Kk2K

2K!

2K∑︂

i=0

(︃
2K
i

)︃
f (2K−i,i)(x, y) + O(a2K+1) ,

(C.224)

and

f (x ± ka, y ∓ ka) = f (x, y) ± ak[f (1,0)(x, y) − f (0,1)(x, y)]

+a
2k2

2 [f (2,0)(x, y) − 2f (1,1)(x, y) + f (0,2)(x, y)] ± a3k3

2 [f (3,0)(x, y) − 3f (2,1)(x, y)

+3f (1,2)(x, y) − f (0,3)(x, y)] + · · · + a2Kk2K

2K!

2K∑︂

i=0

(︃
2K
i

)︃
(−1)if (2K−i,i)(x, y) + O(a2K+1) ,

(C.225)

respectively. Now, by defining the following fourfold combination of displaced functions,

fMka ≡ f (x + ka, y + ka) − f (x − ka, y + ka) − f (x + ka, y − ka) + f (x − ka, y − ka) , (C.226)

an expression for the second mixed derivative f (1,1)(x, y) in terms of mixed derivatives of
higher order can be recovered,

K∑︂

k=1
C(2M,K)
k fMka = 4a2f (1,1)(x)

K∑︂

k=1
C(2M,K)
k k2 + 4a

4

3! [f (1,3)(x) + f (3,1)(x)]
K∑︂

k=1
C(2M,K)
k k4

+ . . .+ 4a
2K

2K!

K∑︂

i=1

(︃
2K

2i − 1

)︃
f

(2K−2i+1,
2i−1) (x)

K∑︂

k=1
C(2M,K)
k k2K + O(a2K+2) .

(C.227)

Thus, aiming at rewriting the latter as a superposition of fMka ’s truncated to order 2K,

f (1,1)(x) ≈
K∑︂

k=1
C(2M,K)
k fMka , (C.228)

we get the following contraints on the coefficients of the expansion

K∑︂

k=1
C(2M,K)
k k2l =

{︄
1/4a2 if l = 1
0 if 2 ≤ l ≤ K.

(C.229)

The solution of the linear system associated to the latter equation,

M(2M,K)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

C(2M,K)
1

C(2M,K)
2

C(2M,K)
3

...
C(2M,K)
K

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

1
4a2

0
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.230)
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where M (2M,K)
ij = M (2P,K)

ij = j2i, coincides with the one of the preceeding case except for a
factor 1/4,

C(2M,K)
k = (−1)k+1 1

4a2
2
k2

(K!)2
K + k!K − k! . (C.231)

From a direct comparison between the expansion coefficients of the three differential operat-
ors, the following relationship,

C(1,K)
k = ak

2 C(2P,K)
k = 2ak C(2M,K)

k , (C.232)

can be inferred, thus allowing for a quicker evaluation of the former (cf. tab. C.7).
Moreover, the discretization scheme for the first derivatives can be likewise exploited for
the definition of second mixed derivatives on the lattice, thus expressing f (1,1)(x, y) in terms
of K(K − 1) hopping terms of the kind f (x + ma, y + na). Although straightforward, this
alternative implementation is slower than the one presented here, due to repeated loops over
non-diagonal terms.

K 1 2 3 4 5

C(1,K)
1

1
2

2
3

3
4

4
5

5
6

C(1,K)
2 - 1

12 - 3
20 -1

5 - 5
21

C(1,K)
3

1
60

4
105

5
84

C(1,K)
4 - 1

280 - 5
504

C(1,K)
5

1
1260

TABLE C.7 – Coefficients for the discretization of first derivatives with K ≤ 5 and unitary lattice spacing.

Even if in most of the calculations the derivative improvement index K has been kept equal
to 4, a source of concern can be the convergence of the Taylor expansions of the functions
(cf. eqs. (C.209), (C.224) and (C.225)). However the second derivative improvement scheme
in the limit K Ï ∞ converges uniformly to the exactly quadratic operator in the momentum
space over the Briullouin zone [3]. Furthermore, both the exact kinetic energy in momentum
space and the respective discretized operator in the configuration space in the latter limit gave
no evidence of convergence or stability issues.

C.2 Vandermonde Matrices
In this appendix, the calculation of the determinant of the Vandermonde matrices [277] implied
in the discretization of first and second derivatives of a function in ref. [146] (cf. app. C.2) is
reviewed. Since the determinant of a matrix and the one of its transpose coincide, both M(1P,K)

and M(2,K) ≡ M(2P,K) = M(2M,K) can be traced back to the form
⎛

⎜⎜⎜⎜⎜⎜⎝

xm1 xm+2
1 xm+4

1 . . . x2K+m−2
1

xm2 xm+2
2 xm+4

2 . . . x2K+m−2
2

xm3 xm+2
3 xm+4

3 . . . x2K+m−2
3

...
...

... . . . ...
xmN xm+2

N xm+4
N . . . x2K+m−2

N

⎞

⎟⎟⎟⎟⎟⎟⎠
(C.233)
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with m = 1, 2 respectively and xj = j . Denoting its determinant with V (m)
K , and then relabeling

xK with x, we can rewrite |M(m,K)| as a polynomial of order 2K+m− 2, P(m)(x). The roots of
the polynomial are the values of x according to which the last row can be expressed as a linear
combination of the remaining K− 1. But these coincide exactly with 0 with multiplicity m and
±x1, ±x2, . . . ± xK−1 due to the fact that the function defining the entries, M (m,K)

ij = j2i+m−2

preserves parity. P(1)(x) can be, thus, factorized as

P(m)(x) = C(m) xm
K−1∏︂

i=1
(x − xi)(x + xi) , (C.234)

where the leading coefficient, C(m) coincides with the determinant of a matrix of the same
kind and rank K − 1, V (m)

K−1, as follows from the row expansion of |M(m,K)| by the last row,

P(m)(x) = xm

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

xm+2
1 xm+4

1 xm+6
1 . . . x2K+m−2

1
xm+2

2 xm+4
2 xm+6

2 . . . x2K+m−2
2

xm+2
3 xm+4

3 xm+6
3 . . . x2K+m−2

3
...

...
... . . . ...

xm+2
K−1 xm+4

K−1 xm+6
K−1 . . . x2K+m−2

K−1

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

+ xm+2

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

xm1 xm+4
1 xm+6

1 . . . x2K+m−2
1

xm2 xm+4
2 xm+6

2 . . . x2K+m−2
2

xm3 xm+4
3 xm+6

3 . . . x2K+m−2
3

...
...

... . . . ...
xmK−1 xm+4

K−1 xm+6
K−1 . . . x2K+m−2

K−1

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

+ . . .+ x2K+m−2

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

xm1 xm+2
1 xm+4

1 . . . x2K+m−2
1

xm2 xm+2
2 xm+4

2 . . . x2K+m−2
2

xm3 xm+2
3 xm+4

3 . . . x2K+m−2
3

...
...

... . . . ...
xmK−1 xm+2

K−1 xm+4
K−1 . . . x2K+m−2

K−1

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

.

(C.235)
Replacing x back with xK , the analytic expression of V (m)

K is obtained by recursion,

V (m)
K = V (m)

K−1x
m
K

K−1∏︂

i=1
(xK − xi)(xK + xi) = V (m)

K−2x
m
K xmK−1

2∏︂

i=1

K−i∏︂

j=1
(xK−i − xj )(xK−i + xj )

= ... =
K−2∏︂

k=1
xmk ·

K∏︂

j=3

K−1∏︂

i=1
i<j

(xj − xi)(xj + xi) ·

⃓⃓
⃓⃓
⃓
xm1 xm+2

1
xm2 xm+2

2

⃓⃓
⃓⃓
⃓ =

K∏︂

k=1
xmk ·

∏︂

1≤i<j≤K
(xj − xi)(xj + xi) .

(C.236)
Still of interest for the evaluation of the C(µ,K)

k ’s 1 via Cramer’s Rule is the determinant of
the matrix obtained by replacing the row l with the covector of the right hand sides of the

1the greek indices µ standing for 1, 2P and 2M have been introduced
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equations (C.215), (C.221) and (C.230), i.e.
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

xm1 xm+2
1 xm+4

1 . . . x2K+m−2
1

xm2 xm+2
2 xm+4

2 . . . x2K+m−2
2

...
...

... . . . ...
xml−1 xm+2

l−1 xm+4
l−1 . . . x2K+m−2

l−1
b(µ) 0 0 . . . 0
xml+1 xm+2

l+1 xm+4
l+1 . . . x2K+m−2

l+1
...

...
... . . . ...

xK xm+2
K xm+4

K . . . x2K+m−2
K

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

. (C.237)

Ruling out the first column and the lth row first and then iterating the procedure, the latter
turns out to be

(−1)l+1b(µ) ·

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

xm1 xm+2
1 xm+4

1 . . . x2K+m−2
1

xm2 xm+2
2 xm+4

2 . . . x2K+m−2
2

...
...

... . . . ...
xml−1 xm+2

l−1 xm+4
l−1 . . . x2K+m−2

l−1
xml+1 xm+2

l+1 xm+4
l+1 . . . x2K+m−2

l+1
...

...
... . . . ...

xmK xm+2
K xm+4

K . . . x2K+m−2
K

⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓

= (−1)l+1b(µ)
K∏︂

k=1
k ̸=l

x3
k

∏︂

1≤i<j≤K
i,j ̸=l

(xj − xi)(xj + xi) ,

(C.238)
thus yielding the sought expression of the C(µ,K)

l coefficients,

C(µ,K)
l = b(µ)(−1)l+1

∏︁K
j=1
j ̸=l

x2
j

xml
∏︁K
j=1
j ̸=l

(−1)⌈l/j⌉(xj − xl)(xj + xl)
, (C.239)

with b(µ) equal to 1/2a (a−2 and a−2/4) for µ equal to 1 (2P and 2M) and ⌈·⌉ denoting the
ceiling function.

C.3 The cubic group
We here provide a concise review on the cubic group, together with the transformation tables
for basis states of SO(3) irreps with ℓ ≤ 8 into the O ones (cf. tabs. C.10-C.19).
The group in object consists of 24 rotations about the symmetry axes of the cube (or the
octahedron), subdivided into five equivalence classes. Adopting Schönflies notation [131], E
represents the identity, 3C2

4 (π) the rotations of 180◦ about the three fourfold axes orthogonal
to the faces of the cube (i.e. the lattice axes), 6C4(π/4) the 45◦ and 135◦ rotations about the
latter axes (6 elements), 6C′′

4 the 180◦ rotations about the six diagonal axes parallel to two faces
of the cube and 8C′

3(2π/3) are rotations of 120◦ and 240◦ about the four diagonal axes passing
to opposite vertexes of the lattice (8 elements).
Moreover, the characters of the five irreducible representations of O are presented in tab. C.8.
In the same table are also presented the characters of 2ℓ+ 1-dimensional irreps of SO(3), that,
as known, induce reducible representations of the cubic group.
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E 6C′′
2 3C2

4 (π) 8C′
3 6C4(π2 )

(0, 0, 0) (0, π, π2 ) (π, π, 0) (π2 ,
π
2 , π) (π2 ,

π
2 ,

3π
2 )

(0, π, π2 ) (0, π, 0) (π, 3π
2 ,

3π
2 ) (3π

2 ,
π
2 ,

π
2 )

(0, π, 3π
2 ) (π, 0, 0) (π, 3π

2 ,
π
2 ) (π, π2 , π)

(3π
2 ,

π
2 ,

3π
2 ) (3π

2 ,
π
2 , π) (π, 3π

2 , π)
(0, π2 , π) (π, π2 ,

3π
2 ) (π2 , 0, 0)

(π, π2 , 0) (π2 ,
3π
2 , π) (3π

2 , 0, 0)
(π, π2 ,

π
2 )

(3π
2 ,

3π
2 , π)

TABLE C.8 – Representation of the group. The elements belonging to each conjugacy class are listed
as terms of Euler angles. The symmetry operation (α, β, γ) consists of a rotation of angle γ about the
z lattice axis, followed by one of angle β about the y axis and by another of angle α about the z axis.

The full decomposition of the 2ℓ+1-dimensional irreps of the rotation group, whose result
for ℓ ≤ 8 are presented in tab. C.9, can be carried out by means of the Great orthogonality
theorem for characters. If

Dℓ =
∑︂

⊕
qνDν (C.240)

is the decomposition of the irrep ℓ of SO(3) into the #Cl cubic group irreps, the multiplicity
of the latter is given by

qν = 1
|O|

#Cl∑︂

i=1
|Cli|[χνi ]∗χℓi (C.241)

where the order of O is at the denominator, while χνi and χℓi are respectively the characters
of the irreps of the cubic and the rotation group related to the conjugacy class Cli with |Cli|
elements. In particular, the map between the basis states of the latter and the SO(3) ones can
be reconstructed via the projectors in eq. (4.40) (cf. tabs. C.10-C.19). Denoting with T (k)

q the
q component of a spherical tensor of rank 2k + 1, the general component of the irreducible
cubic tensor obtained from it is

T (Γ,k)
q =

k∑︂

q ′=−k

∑︂

g∈O
χΓ(g)Dk

qq ′(g)T (k)
q ′ (C.242)

where the index q ranges from −k to k.

Γ E 6C′′
2 3C2

4 (π) 8C′
3 6C4(π2 )

A1 1 1 1 1 1
A2 1 -1 1 1 -1
E 2 0 2 -1 0
T1 3 -1 -1 0 1
T2 3 1 -1 0 -1
Dℓ 2ℓ + 1 (−1)ℓ (−1)ℓ 1 − mod(ℓ, 3) (−1)[ ℓ2 ]

TABLE C.9 – Character table of the cubic group. The characters of the 2ℓ + 1-dimensional irrep of
SO(3) with respect to cubic group operations are listed. With the exception of the ℓ = 0, 1 cases, this
representation is fully reducible with respect to the O operations.
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Conversely, the transpose transformation rule holds for the basis states of the two groups,

|ℓ,Γ,m⟩ =
ℓ∑︂

m′=−ℓ

∑︂

g∈O
χΓ(g)Dℓ

m′m(g)|ℓ,m′⟩. (C.243)

Due to rank deficiency of the projector, the label k in the cubic tensor does not represent any
more its effective rank, but only the original irrep of SO(3) from which it has been obtained.
The descent in symmetry, in fact, constrains the maximum rank of any irreducible tensor
operator to run from one to three. As noticed in sec. 4.4 for the energy eigenstates, the non-
null components q of T (Γ,k) and |Γℓ⟩, admixture of the q mod 4 components of their SO(3)
counterparts, can be univocally labeled with the Iz quantum number. The ensuing distribution
of m components of a spin-l irrep into the (ℓ,Γ) irreps of the cubic group is known under the
name of subduction [155]. Furthermore, when the occurrence coefficient qΓ the irrep Γ of
O is greater than one, further linear combinations on the outcoming states (cf. eq. (C.242)) or
cubic tensor components (cf. eq. (C.243)) have to be considered, in order to block-diagonalize
the relevant projector and disentangle the repeated multiplets of states.

ℓ 0

Γ
❍❍

❍❍❍❍Iz
m 0

A1 0 1

ℓ 1

Γ
❍❍❍❍

❍❍Iz
m −1 0 1

T1

0 1
1 1
3 1

ℓ 2

Γ
❍❍

❍❍❍❍Iz
m −2 −1 0 1 2

E 0 1
2

√
1/2

√
1/2

T2

1 1
2

√
1/2 −

√
1/2

3 1

TABLE C.10 – Decomposition tables for basis states of SO(3) with ℓ ≤ 2 into irreps of O.

ℓ 3

Γ
❍❍❍

❍❍❍Iz
m −3 −2 −1 0 1 2 3

A2 2
√︂

1
2 −

√︂
1
2

T1

0 1
1

√︂
5
8

√︂
3
8

3
√︂

3
8

√︂
3
8

T2

1
√︂

3
8 −

√︂
3
8

2
√︂

1
2

√︂
1
2

3 −
√︂

5
8

√︂
3
8

TABLE C.11 – Decomposition table for basis states of SO(3) with ℓ = 3 into irreps of O.
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ℓ 4

Γ
❍❍❍

❍❍❍Iz
m −4 −3 −2 −1 0 1 2 3 4

A1 0 1
2

√︂
5
6

1
2

√︂
7
3

1
2

√︂
5
6

E 0 1
2

√︂
7
6 -1

2

√︂
5
6

1
2

√︂
7
6

2
√︂

1
2

√︂
1
2

T1

0
√︂

1
2 -

√︂
1
2

1 1
2

√︂
1
2

1
2

√︂
7
2

3 1
2

√︂
7
2

1
2

√︂
1
2

T2

1 -1
2

√︂
7
2

1
2

√︂
1
2

2
√︂

1
2 -

√︂
1
2

3 1
2

√︂
1
2 -1

2

√︂
7
2

TABLE C.12 – Decomposition table for basis states of SO(3) with ℓ = 4 into irreps of O.

ℓ 5

Γ
❍
❍❍❍

❍❍Iz
m −5 −4 −3 −2 −1 0 1 2 3 4 5

E 0
√︂

1
2 -

√︂
1
2

2
√︂

1
2 -

√︂
1
2

T1

0 1
4

√︂
7
3

1
2

√︂
5
6

1
4

√︂
7
3

1 -1
4

√︂
7
6

3
4

1
4

√︂
35
6

3 1
4

√︂
35
6

3
4 -1

4

√︂
7
6

0 1
4

√︂
7
3 -1

2

√︂
5
6

1
4

√︂
7
3

1 7
8

√︂
7
6 - 1

8
1
8

√︂
35
6

3 1
8

√︂
35
6 -1

8
7
8

√︂
7
6

T2

1 1
4

√︂
3
2

√
7

4 -1
4

√︂
15
2

2
√︂

1
2

√︂
1
2

3 1
4

√︂
15
2 -

√
7

4 -1
4

√︂
3
2

TABLE C.13 – Decomposition table for basis states of SO(3) with ℓ = 5 into irreps of O.
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ℓ 6

Γ
❍
❍❍❍

❍❍Iz
m −6 −5 −4 −3 −2 −1 0

A1 0
√︂

7
16 −

√︂
1
8

A2 2 1
4

√︂
5
2 −11

4

√︂
5
2

E 0 1
4

1
2

√︂
7
2

2 1
4

√︂
11
2

1
4

√︂
5
2

T1

0
√︂

1
2

1 1
4

√︂
15
2

3 1
4

√︂
11
2 −

√
3

4

T2

1 −1
4

√︂
55
14

2 1
4
√

14
1
4

√︂
55
14

3
√︂

21
32

1
4

√︂
11
7

1 − 5
16

√︂
55
14

2 − 1
4
√

14
1
4

√︂
55
14

3 27
16

√︂
3
14

1
16

√︂
11
7

TABLE C.14 – Decomposition table for basis states of SO(3) with ℓ = 6 and m ≤ 0 into irreps of O.

ℓ 6

Γ
❍❍❍

❍❍❍Iz
m 1 2 3 4 5 6

A1 0
√︂

7
16

A2 2 −11
4

√︂
5
2

1
4

√︂
5
2

E 0 1
4

2 1
4

√︂
5
2

1
4

√︂
11
2

T1

0 −
√︂

1
2

1 −
√

3
4

1
4

√︂
11
2

3 1
4

√︂
15
2

T2

1 1
4

√︂
11
7

1
4

√︂
21
2

2 −1
4

√︂
55
14 − 1

4
√

14

3 −1
4

√︂
55
14

1 1
16

√︂
11
7

27
16

√︂
3
14

2 −1
4

√︂
55
14

1
4
√

14

3 − 5
16

√︂
55
14

TABLE C.15 – Decomposition table for basis states of SO(3) with ℓ = 6 and m > 0 into irreps of O.



220

ℓ 7

Γ
❍❍❍

❍❍❍Iz
m −7 −6 −5 −4 −3 −2 −1 0

A2 2 1
4

√︂
11
3

1
4

√︂
13
3

E 0
√︂

1
2

2 1
4

√︂
13
3 −1

4

√︂
11
3

T1

0 1
4

√︂
7
10

1
4

√︂
33
5

1 1
8

√︂
65
2

1
8

√︂
77
10

3 1
8

√︂
7
10

1
8

√︂
231
10

0 1
4

√︂
7
10 −1

4

√︂
33
5

1 13
32

√︂
13
10

1
32

√︂
385
2

3 29
32

√︂
7
10

1
32

√︂
231
10

T2

1 −3
8

√︂
7
2

1
24

√︂
143
2

2 1
24

√
143
24

3 1
24

√︂
13
2

1
8

√︂
143
6

1 − 71
192

√︂
7
2

11
192

√︂
143
2

2 − 1
24

√
143
24

3 1
64

√︂
13
2

7
64

√︂
143
6

TABLE C.16 – Decomposition table for basis states of SO(3) with ℓ = 7 and m ≤ 0 into irreps of O.

ℓ 7

Γ
❍❍

❍❍❍❍Iz
m 1 2 3 4 5 6 7

A2 2 −1
4

√︂
13
3 −1

4

√︂
11
3

E 0 −
√︂

1
2

2 1
4

√︂
11
3 −1

4

√︂
13
3

T1

0 1
4

√︂
33
5

1
4

√︂
7
10

1 1
8

√︂
231
10

1
8

√︂
7
10

3 1
8

√︂
77
10

1
8

√︂
65
2

0 −1
4

√︂
33
5

1
4

√︂
7
10

1 1
32

√︂
231
10

29
32

√︂
7
10

3 1
32

√︂
385
2

13
32

√︂
13
10

T2

1 1
8

√︂
143
6

1
24

√︂
13
2

2
√

143
24

1
24

3 1
24

√︂
143
2 −3

8

√︂
7
2

1 7
64

√︂
143
6

1
64

√︂
13
2

2
√

143
24 − 1

24

3 11
192

√︂
143
2 − 71

192

√︂
7
2

TABLE C.17 – Decomposition table for basis states of SO(3) with ℓ = 7 and m > 0 into irreps of O.
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ℓ 8

Γ
❍
❍❍❍

❍❍Iz
m −8 −7 −6 −5 −4 −3 −2 −1 0

A1 0
√

390
48

√
42

24

√
33
8

E

0 - 1
8

√︂
455
246

1
4

√︂
41
6 - 1

8

√︂
231
41

2 1
4

√︂
273
41 -1

4

√︂
55
41

0 7
32

√︂
455
246

109
16

√︂
1

246 - 9
32

√︂
231
41

2 1
4

√︂
273
41

1
4

√︂
55
41

T1

0 1
4
√

57
1
4

√︂
445
57

1 1
8

√︂
57
2 -3

8

√︂
91
38

3 5
8

√︂
35
114

1
8

√︂
715
114

0 - 1
4
√

57
1
4

√︂
455
57

1 227
32

√
114 -13

32

√︂
91
38

3 1
32

√︂
665
6

1
32

√︂
2145
38

T2

1 1
8

√︂
71
2

3
8

√︂
273
142

2 3
4

√︂
15
142

1
4

√︂
1001
142

1 -5
8

√︂
35
142 - 1

8

√︂
715
142

1 433
64

√
142

9
64

√︂
273
142

2 3
4

√︂
15
142 −1

4

√︂
1001
142

3 3
4

√︂
15
142 -1

4

√︂
1001
142

TABLE C.18 – Decomposition table for basis states of SO(3) with ℓ = 8 and m ≤ 0 into irreps of O.
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ℓ 8

Γ
❍
❍❍❍

❍❍Iz
m 1 2 3 4 5 6 7 8

A1 0
√

42
24

√
390
48

E

0 1
4

√︂
41
6 - 1

8

√︂
455
246

2 -1
4

√︂
55
41

1
4

√︂
273
41

0 109
16

√︂
1

246
7
32

√︂
455
246

2 1
4

√︂
55
41

1
4

√︂
273
41

T1

0 - 1
4
√

57

1 1
8

√︂
715
114

5
8

√︂
35
114

3 -3
8

√︂
91
38

1
8

√︂
57
2

0 -1
4

√︂
455
57

1
4
√

57

1 1
32

√︂
2145
38

1
32

√︂
665
6

3 -13
32

√︂
91
38

227
32

√
114

T2

1 - 1
8

√︂
715
142 -5

8

√︂
35
142

2 -1
4

√︂
1001
142 -3

4

√︂
15
142

3 3
8

√︂
273
142

1
8

√︂
71
2

1 1
64

√︂
715
142 -103

64

√︂
35
142

2 1
4

√︂
1001
142 -3

4

√︂
15
142

3 1
4

√︂
1001
142 −3

4

√︂
15
142

TABLE C.19 – Decomposition table for basis states of SO(3) with ℓ = 8 and m > 0 into irreps of O.
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HELLER, R. HORSLEY, A. JÜTTNER, T. KANEKO, L. LELLOUCH, H. LEUTWYLER, C.-J. D. LIN,
V. LUBICZ, E. LUNGHI, R. MAWHINNEY, T. ONOGI, C. PENA, C. T. SACHRAJDA, S. R. SHARPE,
S. SIMULA, R. SOMMER, A. VLADIKAS, U. WENGER & H. WITTIG; “Review of lattice results
concerning low-energy particle physics - Flavour Lattice Averaging Group (FLAG)”; Eur.
Phys. J. C 77, p. 112 (2017).

[52] B. C. TOTH; “QED corrections to hadronic observables”; XXXVII International Sympo-
sioum on Lattice Field Theory, Wuhan, China (2019). https://pos.sissa.it/363/066.

[53] S. AOKI, Y. AOKI, D. BECIREVIC, T. BLUM, G. COLANGELO, S. COLLINS, M. D. MORTE, P. DIMO-
POULOS, S. DÜRR, H. FUKAYA, M. GOLTERMAN, S. GOTTLIEB, R. GUPTA, S. HASHIMOTO,
U. M. HELLER, G. HERDOIZA, R. HORSLEY, A. JÜTTNER, T. KANEKO, C.-J. D. LIN, E. LUNGHI,
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[96] S. KÖNIG & D. LEE; “Volume dependence of N-body bound states”; Phys. Lett. B 779, pp.
9 – 15 (2018). ISSN 0370-2693.
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[120] R. OMNÈS; Introduction to Particle Physics (Wiley Interscience, John Wiley & Sons, New
York) (1970).

[121] T. KINOSHITA & M. NIO; “Radiative corrections to the muonium hyperfine structure: The
α2(Zα) correction”; Phys. Rev. D 53, pp. 4909–4929 (1996).

[122] W. E. CASWELL & G. P. LEPAGE; “Effective lagrangians for bound state problems in QED,
QCD, and other field theories”; Phys. Lett. B 167, pp. 437 – 442 (1986). ISSN 0370-2693.

[123] A. L. FETTER & J. D. WALECKA; Quantum Theory of Many-Particle Systems (1970).
http://store.doverpublications.com/0486428273.html; pag. 21-31.

[124] H. A. BETHE & E. E. SALPETER; “Quantum Mechanics of One- and Two-Electron Systems”;
in “Encyclopedia of Physics,” , Atome I, volume XXXV, edited by S. FLÜGGE; pp. 88–436
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