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Abstract
The strong interaction, one of the indispensable pillars of the Standard Model of particle
physics, poses challenges at low energies because of the phase transition and the confinement
nature of its underlying theory, quantum chromodynamics. Therefore, unveiling the emergent
dynamics of its degrees of freedom at low energies, hadrons, and their interactions are of
the essence at the low-energy precision frontier of the Standard Model.
In this thesis, we pursue a model-independent and high-precision description of the

low-energy hadronic effects in the anomalous magnetic moment of the muon (g − 2)µ and
the rare leptonic decay of the neutral pion π0

→ e+e−. The approach is based on a synergy
between general principles of the S-matrix, dispersion relations, low-energy theorems, and
perturbative quantum chromodynamics.

In the first part, we investigate hadronic vacuumpolarization in themuon (g−2)µ, including
the contributions from the 3π and π0γ channels. The 3π channel, which constitutes the
second-largest exclusive contribution to hadronic vacuum polarization and its uncertainty,
is addressed using a dispersive representation of the γ∗ → 3π amplitude. A global fit
function using analyticity and unitarity of this amplitude and its normalization from a chiral
low-energy theorem facilitates obtaining our best estimate a3π

µ |≤1.8 GeV = 46.16(82) × 10−10,
and providing a cross check for the compatibility of the different e+e− → 3π data sets. In a
similar manner, we study the reaction e+e− → π0γ based on a dispersive representation
of the underlying π0

→ γγ∗ transition form factor. As a first application, we evaluate
the contribution of the π0γ channel to the hadronic-vacuum-polarization correction to the
anomalous magnetic moment of the muon. We find aπ

0γ
µ |≤1.35 GeV = 4.38(6) × 10−10, in

line with evaluations from the direct integration of the data. Second, our fit determines the
resonance parameters of ω and φ, which, in combination with the e+e− → 3π channel, are
compared to the PDG average.

The more involved hadronic light-by-light scattering topology is discoursed in the second
part. The pion pole, as the leading contribution in a dispersive approach to hadronic light-
by-light scattering in the muon (g − 2)µ, is unambiguously defined by the doubly-virtual
pion transition form factor. In the absence of a complete measurement of this form factor
covering all kinematic regions relevant for (g − 2)µ, we report on a reconstruction from
the available data for π0

→ γγ, e+e− → 3π, and e+e− → e+e−π0, using a dispersive
representation that accounts for all the low-lying singularities, reproduces the correct high-
and low-energy limits, and proves suitable for the evaluation of the (g − 2)µ loop integral.

Our final result, aπ
0-pole
µ = 63.0+2.7

−2.1 × 10−11, provides a complete data-driven determination
of the pion-pole contribution with fully controlled uncertainty estimates.



In the final part, we first consider the dominant decay modes of the neutral pion, which
are all of electromagnetic nature. These decays are instrumental in disclosing the properties
of the neutral pion, such as its quantum numbers. Second, we consider the dilepton decay
π0
→ e+e− in detail. This loop- and helicity-suppressed decay not only maneuvers the

dynamics of the Standard Model at low energies, but also raises potential sensitivity to
physics beyond the Standard Model. Based upon a double-spectral representation of the
pion transition form factor, we present a feasible formalism to reexamine this rare decay:
the loop integral of the reduced amplitude is expressed in terms of the standard one-loop
functions, yielding a two-dimensional integral representation suitable for the numerical
treatment with the dispersively reconstructed pion transition form factor.
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Chapter 1

Introduction

Our modern knowledge of elementary particles is encoded in the Standard Model (SM)
of particle physics. It depicts the electromagnetic, weak, and strong interactions between
subatomic particles as a relativistic quantum field theory, a framework born as a marriage
between special relativity and quantum mechanics. The astute idea of incorporating the
interactions by imposing local gauge invariance traces back to Weyl’s early work in 1919 [1],
extended by Yang andMills in 1954 [2] to the non-Abelian gauge theory of the SU (2) isospin
doublet proton and neutron. Although this theory can be easily obstructed by its unobserved
would-be massless gauge bosons, it inspired Weinberg [3] to apply it together with another
formidable idea of spontaneous symmetry breaking [4–8] via the Higgs mechanism [9–12]
to the global SU (2) × U (1) electroweak theory proposed by Glashow [13]. Developed
independently by Salam, it forms the SU (2)L ×U (1)Y electroweak unified theory [14, 15].
About one decade later, the modern form of the strong interaction was formulated based on
SU (3)c color gauge invariance [16, 17].
Elementary particles in the SM are classified into fermions and bosons, as listed in

Table 1.1. The matter content of the SM consists of three generations of spin-1/2 quarks
and leptons, with heavier higher generations exact replicas of the lowest. The spin-
1 gauge bosons are the force mediators of the gauge interactions, whereas the spin-0
Higgs boson is responsible for the Yukawa interaction. The complete SM gauge group,
SU (3)c×SU (2)L×U (1)Y , is broken to SU (3)c×U (1)em by electroweak symmetry breaking,
after which the masses of the fermions and gauge bosons are generated.
Quantum chromodynamics (QCD) built upon SU (3)c color gauge invariance is the

underlying theory of the strong interaction between quarks and gluons forming hadrons.
It possesses its own peculiarities and also challenges. In contrast to the one-loop beta
function governing the energy-scale dependence of the fine structure constant α in quantum
electrodynamics (QED) being positive [18],

β
(
α(µ)

)
= µ

∂α

∂µ
=

2α2

3π
, (1.1)

the running of the strong coupling constant αs at one loop is predicted to be negative for
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Chapter 1 Introduction

fermions generations

quarks
(
u
d

) (
c
s

) (
t
b

)
leptons

(
e
νe

) (
µ
νµ

) (
τ
ντ

)
bosons interactions

g (gluon) strong
W±, Z , γ electroweak
H (Higgs) Yukawa

Table 1.1: Elementary particles in the SM.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

α
s (Q

2)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO

pp –> tt (NNLO)

)
(–)

Figure 1.1: The summary of the measurements of the running coupling constant αs versus the energy
scale Q. The figure is taken from [19].

quark flavors n f ≤ 16,

β
(
αs (µ)

)
= µ

∂αs

∂µ
= −

(
11 −

2
3

n f

)
α2

s

2π
. (1.2)

Therefore, αs tends to zero at high momentum transfer as shown in Figure 1.1, leading
to the discovery of asymptotic freedom [20, 21]. This makes perturbative calculations
in expansions of αs feasible at high energies. Successful predictions by QCD in various
processes, e.g., deep inelastic scattering, hard exclusive processes, and jet structures at
hadron colliders, earn it confidence to become the true theory of the strong interaction. In
particular, the world-average result of αs determined at the scale of Z-boson mass from
different measurements and lattice QCD calculations reads [22]

αs
(
MZ

)
= 0.1179 ± 0.0010 . (1.3)
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On the other hand, perturbative calculations fail in the infrared domain due to the rise of
αs at low momentum transfer. This is the confining nature of the strong interaction in
the non-perturbative domain of QCD: the fundamental degrees of freedom, quarks and
gluons, have never been seen as asymptotic states in experiments; what were observed
are color-singlet hadrons consisting of quarks and gluons. Although Wilson showed color
confinement on the lattice in the strong coupling limit in his seminal work [23] as the birth
of lattice gauge theory, the analytic proof of confinement is still one of the most intriguing
challenges to date.

The symmetries of QCD are crucial to better understand the emergent mechanism of the
structure and dynamics of hadrons at low energies. In this regard, the QCD Lagrangian
exhibits additional chiral symmetry in the absence of the mass term of the light quarks (u, d,
and s). Thus, the global symmetry group becomes

U (3)L ×U (3)R = SU (3)L × SU (3)R ×U (1)V ×U (1)A . (1.4)

The chiral part is spontaneously broken to its diagonal subgroup SU (3)V , which is protected
by the Vafa–Witten theorem [24],

SU (3)L × SU (3)R → SU (3)V , (1.5)

because of the non-zero quark condensate

〈0|q̄LqR + q̄RqL |0〉 , 0 (1.6)

in the non-trivial QCD vacuum. This gives rise to eight massless pseudoscalar Nambu–
Goldstone bosons: π±, π0, K±, K0, K̄0, and η. In the real world, the light-quark masses
are small compared to the non-perturbative scale ΛQCD ∼ 200 MeV. Therefore, the
pseudoscalar-meson octet appears as the lightest particles in the QCD spectrum. The U (1)A
symmetry is anomalous and is already broken by quantum corrections. This is why the η′

mass is much higher than the other pseudoscalar mesons’. The theory developed further
to describe the interactions of the octet mesons using systematic expansions in powers of
momenta and quark masses is called chiral perturbation theory (ChPT ) [25–27]. ChPT is a
prototype of an effective-field-theory approach to tackle QCD at low energies. Besides, the
toolkit concerns first-principle lattice QCD, dispersion relations, QCD sum rules, large-Nc
expansion, hadronic models, and so on.
The SM has been a great triumph ever since its first inception owing to the excellent

agreement between numerous theoretical predictions and experimental results. At the
energy frontier, theoretically postulated elementary particles were subsequently discovered
at particle colliders, e.g., W± and Z bosons [28, 29], t quark [30, 31], and the latest discovery
of the Higgs boson in 2012 [32, 33]. Moreover, high-precision tests at the precision frontier
revealed unprecedented consistencies with the SM. The discovery of the Lamb shift [34],
the energy gap between the 2S1/2 and 2P1/2 energy levels of the hydrogen spectrum, and the
first calculation performed by Bethe beyond the tree level [35] is one of the early examples,
which laid the foundation of renormalization in QED.

3



Chapter 1 Introduction

Nonetheless, it is still distant for the SM to be the complete theory of the fundamental
interactions, leaving gravity excluded and certain phenomena unexplained in its framework.
There are experimental observations such as dark matter, dark energy, matter–antimatter
asymmetry, and neutrino masses, which cannot be described by the SM and inevitably
require beyond the Standard Model (BSM) physics for explanations. In the search for BSM
signals, hadronic physics often plays an essential and connecting role. There are often both
BSM physics and hadronic contributions to some low-energy observables for which one
needs to consider the latter and control their uncertainties in a better way to filter the minute
signals coming from the former. Therefore, commensurate precise description of hadronic
effects is key to not only overcoming the crux of strong QCD dynamics, but also discovering
the trail of BSM physics.

The anomalous magnetic moment of the muon witnesses the advancement of the SM all
the way in a nutshell. It is one of the prime physical observables to monitor signals arising
from BSM physics, which yet receives hadronic contributions at the same time. Its current
tantalizing tension with the SM prediction is overshadowed by hadronic uncertainties.

The thesis was initiated under this background to study the hadronic effects at the precision
frontier of the SM. The contents are formatted as follows: Sections 1.1, 1.2, and 1.3 cover a
brief introduction to the anomalous magnetic moment of the muon, the theoretical tools
used extensively throughout the contents, and anomalies playing an important role in the
thesis. We begin by analyzing hadronic vacuum polarization (HVP) in the anomalous
magnetic moment of the muon (g − 2)µ in Part I. In particular, the contributions from the
3π and π0γ channels are addressed in detail. Part II is devoted to the hadronic light-by-light
(HLbL) scattering contribution to the muon (g − 2)µ. In that, the pion-pole contribution to
HLbL scattering is determined in a dispersive approach. In Part III, we review the neutral
pion’s main decay modes and investigate its rare leptonic decay π0

→ e+e−; thereafter, a
conclusion is drawn in Chapter 6.

1.1 The muon (g − 2)µ
1.1.1 Introduction

The magnetic and electric dipole moments (MDM and EDM) of a particle are related to its
intrinsic spin by

µ = g

(
Qe
2m

)
S and d = η

(
Qe
2m

)
S , (1.7)

where m is the mass of the particle and Q is the charge in units of e. The gyromagnetic
ratio (g-factor) is label by g, and η is the electric pendant. The MDM and EDM induce an
interaction Hamiltonian with magnetic and electric fields

H = −µ · B − d · E , (1.8)

4



1.1 The muon (g − 2)µ

from which it is evident that the MDM interaction is allowed by the separate discrete
symmetries, while the EDM term violates parity and time reversal, hence equivalently
charge conjugation and parity CP. In the SM, non-vanishing contributions to the EDMs
of leptons only appear at four-loop level [36] via the CP-violating phase of the Cabbibo–
Kobayashi–Maskawa mechanism [37]. Permanent EDMs not only serve as a probe of new
physics, but also play an important role in the extraction of MDMs from experiments.

The Dirac equation universally predicts g = 2 as a tree-level upshot for charged leptons [38,
39], in contrast to g = 1 for the ordinary orbital angular momentum. Furthermore, quantum
loop corrections lead to a gyromagnetic ratio that deviates from the classical Dirac value 2.
So we define the anomalous magnetic moment of a lepton or lepton anomaly as

a` =
(g − 2)`

2
, (1.9)

where ` = e, µ, or τ.
Our interest is the interaction of a lepton with a classical external electromagnetic field

Acl
µ (x). To lowest order in the external field, the matrix element reads

iM = −ie
〈
p′, s′ �� j µ(0)�� p, s

〉
Ãcl
µ (q) = −ie ū

(
p′, s′

)
Γ
µ (p′, p

)
u
(
p, s

)
Ãcl
µ (q) , (1.10)

where q = p′ − p and the incoming and outgoing spinors of the lepton are labeled by u
(
p, s

)
and ū

(
p′, s′

)
respectively. Owing to current and parity conservation in QED, the general

structure of Γµ can be decomposed as [40]

Γ
µ (p′, p

)
= γµF1

(
q2)
+

iσµνqν
2m

F2
(
q2) , (1.11)

where σµν
= i

2
[
γµ, γν

]
. F1 and F2 are called the Dirac and Pauli form factors; to lowest

order, F1 = 1 and F2 = 0. These form factors contain the complete information about the
electromagnetic couplings of the lepton. Especially, we find for static electric and magnetic
fields in the non-relativistic limit (q → 0)

F1(0) = 1 , and g = 2
[
F1(0) + F2(0)

]
= 2 + 2F2(0) , (1.12)

where the first relation is exact to all orders as a consequence of the charge-renormalization
condition, and loop corrections to F2(0) give rise to the lepton anomaly

a` = F2(0) . (1.13)

The anomalous magnetic moment of a lepton is a finite dimensionless number that can be
unambiguously calculated in a renormalizable local relativistic quantum field theory. This
is due to the fact that there is no corresponding tree-level operator present in QED, of which
we can adjust its coupling in an ambiguous way. In fact, it can be generated by an effective
dimension-5 operator

ψ̄LFµνσ
µνψR + ψ̄RFµνσ

µνψL , (1.14)

5



Chapter 1 Introduction

where Fµν = ∂µAν − ∂νAµ. This operator is forbidden in a renormalizable theory.
In general, anomalous magnetic moments receive contributions from different particles

with hierarchical masses. Therefore, we first discuss the general properties of the loop
contribution of a particle with the mass M to the anomalous magnetic moment. For the
case M � m, the contribution reads

δa` ∼
(
α

π

)n
lnk m

M
, (1.15)

where n is the corresponding order in the fine structure constant α and the power of the
logarithm k < n. In the inverse case M ≥ m,

δa` ∼
(
α

π

)n m2

M2 lnk M
m
. (1.16)

This is the important property of the lepton anomaly pointed out in [41, 42] that it is induced
by chirality-flip interactions (see also (1.14)): the contribution from a heavier particle
decouples quadratically with the mass M .1 The consequence of this observation is two-fold:
firstly, the reduced sensitivity of the electron anomaly to any contributions beyond QED and
its extremely precise determination [48, 49],

aexp
e = 1159652180.73(28) × 10−12 (0.24 ppb) , (1.17)

rendered us the most precise determination of the fine structure constant,2 which in turn is
an important input for determinations of other physical quantities. Secondly, the τ lepton
anomaly should be the most sensitive quantity to probe new physics. But τ is so shortly
lived with a lifetime of 2.906 × 10−13 s that it is impossible to measure its anomalous
magnetic moment under current experimental conditions. For the lighter generation, the
muon anomaly is more sensitive to the ultraviolet scale than the electron’s by a factor of
m2
µ/m

2
e ∼ 4 × 104, thus becoming the next prime candidate for exploring new physics,

see [53–61] for recent reviews.
The SM contributions to the muon (g − 2)µ are typically divided into three parts:

aSM
µ = aQED

µ + aEW
µ + aHad

µ , (1.18)

where aQED
µ , aEW

µ , and aHad
µ refer to the QED, electroweak, and hadronic contributions,

respectively. We sketch the experimental measurements of the muon (g − 2)µ before
introducing the different SM contributions.

1 This feature is possible to change for BSM scenarios as non-trivial enhancement mechanism (such as chiral
enhancement for leptoquarks) could show up in specific models [43–47].

2 The situation has changed after the Cs interferometry measurement of the fine structure constant (0.20
ppb) [50], which hints at a deviation from the SM emerging in the anomalous magnetic moment of the
electron, (g − 2)e, albeit presently only at the level of 2.5σ [45, 46, 51, 52].
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1.1 The muon (g − 2)µ

1.1.2 Measurements
The measurements of the muon anomalous magnetic moment depend primarily on two
weak processes that happen successively. First of all, the parity-violating decay π± →
µ± + νµ

(
ν̄µ

)
produces polarized muons. Later, its spin direction at the time of decay can be

inferred from the final-state electron emitted from its predominant three-body decay mode
µ± → e± + νe

(
ν̄e

)
+ ν̄µ

(
νµ

)
.

In detail, the polarized muon beam is injected into a cyclotron with a constant magnetic
field B. Provided that v ·B = 0, where v is the velocity of the muon, the cyclotron frequency
of the circular motion of the muon is given as

ωc = −
e

mµγ
B , (1.19)

where γ = 1/
√

1 − v2 is the relativistic Lorentz factor. Inside the magnetic field, the muon
spin precesses around the direction of the magnetic field. The Larmor precession frequency
of the spin equals to

ωs = −
e

mµγ
B − aµ

e
mµ

B . (1.20)

Thus, it was observed already in [62, 63] that the spin-precession frequency of the muon
would coincide with the cyclotron frequency if the anomalous magnetic moment vanished.
To this end, the angular frequency of the muon spin precession around its momentum, the
difference between the two frequencies provides a direct measurement of aµ:

ωa = ωs − ωc = −aµ
e

mµ

B . (1.21)

In order to sustain the muons’ motion inside the cyclotron, a focusing quadrupole electric
field E is applied. This electric field modifies the angular frequency according to

ωa = −
e

mµ


aµB + *

,

1
γ2
− 1
− aµ+

-
v × E


, (1.22)

which requires an additional impossibly precisemeasurement of the electric field. Fortunately,
we can dodge the problem observing that a special choice of a “magic” γ,

(
γ2
− 1

)−1
= aµ,

can eliminate the effect of the electric field [64]. Accordingly, the muon beam energy should
be tuned to

Eµ = mµγ = mµ

√
1 +

1
aµ
≈ 3.1 GeV . (1.23)

A possible correction to the muon spin precession could arise from a non-zero EDM of
the muon. It would induce an extra spin-precession frequency

ωη = −η
e

2mµ

(E + β × B) , (1.24)
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Chapter 1 Introduction

which would cause an additional vertical precession of the spin and tilt the spin-precession
plane of the muon. As a consequence, it is possible to set a new limit on the muon EDM
from the muon (g − 2)µ experiment, ���dµ

��� < 1.9 × 10−19e · cm [65].
It is clear from (1.21) that the angular frequency and the magnetic field need to be

measured in experiments to determine aµ. The charge-to-mass ratio of the muon is usually
convoluted with the measurement of the magnetic field to reduce further uncertainties.
The magnitude ωa of the angular frequency is extracted from the pattern of the detected
electrons, which prefer to decay opposite to the spin directions of the muons owing to the
V − A structure of the weak interaction. In that, the number of the detected electrons follows

N (t) = N0e−t/(τµγ) [
1 + A cos

(
ωat + φ

)]
, (1.25)

where τµ is the muon lifetime and the oscillation pattern gives access to the determination
of ωa. The magnetic field is measured by the nuclear magnetic resonance of the free
proton calibrated to its Larmor precession frequency ωp and the ratio of the muon-to-proton
magnetic moments µµ/µp from the hyperfine splitting of muonium [66]. In the end, the
anomalous magnetic moment is extracted from

aµ =
R

λ − R
, (1.26)

where R = ωa/ωp and λ = µµ/µp.
The recent E821 experiment conducted at Brookhaven National Laboratory (BNL)

measured aµ to be [67, 68]

aexp
µ = 116592089(54)(33)(63) × 10−11 (0.54 ppm) , (1.27)

achieving a 14-fold improvement in precision over the old classical experiments at Conseil
Européen pour la Recherche Nucléaire (CERN) [69]. The first and second errors in the
brackets are statistical and systematic; the total error in the last brackets is obtained by
adding the statistical and systematic errors in quadrature. There is a (3–4) σ discrepancy
between the theoretical calculations and experiments after the release of the BNL results.
For this reason, two new ambitious muon (g − 2)µ experiments have been planned at Fermi
National Accelerator Laboratory (Fermilab) [70] aiming for a precision of δaµ ≈ 16× 10−11

and at Japan Proton Accelerator Research Complex (J-PARC) [71] using a very different
technique. As the current theoretical uncertainties are comparable to current experimental
errors, progresses on the SM calculation concurrent with advents of the new measurements
are expected to provide more precise control of theoretical uncertainties for the comparison
to the new results of planned experiments.

1.1.3 QED contributions
Quantum loops involving photons and all charged leptons (e, µ, and τ) are conventionally
collected in the QED contributions. The corrections from quarks and electroweak gauge

8



1.1 The muon (g − 2)µ

µ µ

γ

Figure 1.2: One-loop QED contribution to the muon (g − 2)µ.

bosons are mandated to the hadronic and electroweak contributions. In QED, the anomalous
magnetic moment is calculated in an expansion in the fine structure constant α,

aQED
µ =

∞∑
n=1

aQED (n)
µ =

∞∑
n=1

cn

(
α

π

)n
. (1.28)

They have been calculated to five loops, starting with the famous Schwinger contribution [72],

aQED
µ =

α

2π
+ 0.765857420(13)

(
α

π

)2
+ 24.05050984(26)

(
α

π

)3

+ 130.8783(58)
(
α

π

)4
+ 751.00(87)

(
α

π

)5
. (1.29)

Using the most up-to-date ae-independent determination of the fine structure constant α [50]
in (1.29) leads to [61, 73, 74]

aQED
µ = 116584718.931(104) × 10−11 . (1.30)

One-loop result

The one-loop contribution illustrated in Figure 1.2 was first calculated by Schwinger in
1948 [72],

aQED (1)
µ =

α

2π
. (1.31)

This calculation was done for the electron almost at the same time when the first precise
measurement of its anomalous magnetic moment [75, 76] was performed, but it is universal
for all charged leptons. Since it has become a standard quantum field theory textbook
calculation nowadays [77–79], we will not repeat its derivation here. This celebrated
result made another electrifying success in higher-order QED predictions besides the
aforementioned Lamb shift [35].

Two-loop result

The full two-loop diagrams are collected in Figure 1.3, which were firstly calculated
in [80–85]. The first seven diagrams contribute to the universal term, while the results of
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Figure 1.3: Two-loop QED diagrams contributing to the muon (g − 2)µ.

the last two diagrams turn out to be mass dependent. A new feature appears at this order of
expansion: the universality of lepton anomalies is violated by the mass dependence of the
vacuum polarization (VP) diagrams. To this end, we write the two-loop contributions as

aQED (2)
µ =

[
cuni2 + cvap (e)

2 + cvap (τ)
2

] (
α

π

)2
, (1.32)

where cuni2 , cvap (e)
2 , and cvap (τ)

2 represent the universal, electron VP, and τ VP contributions.
Adding the counterterms and performing renormalization, the universal part leads to [82–85]

cuni2 =
197
144
+

3
4
ζ (3) −

π2

2
ln 2 +

π2

12
, (1.33)

where ζ (s) =
∑∞

n=1 1/ns is the Riemann zeta function.
The calculation of the mass-dependent VP diagrams requires insertions of photon

self-energies from electron and τ loops. In a gauge-invariant form, it reads

Π
µν (k) = (

k2gµν − k µkν
)
Π

(
k2) , (1.34)

in which the renormalized self-energy function

Π
ren (s) = Π (

s
)
− Π

(
0
)

(1.35)

satisfies a subtracted dispersion relation

Π
ren (s) = s

π

∫ ∞

4m2
`

ds′
ImΠ

(
s′
)

s′
(
s′ − s

) . (1.36)

10



1.1 The muon (g − 2)µ

The optical theorem links the imaginary part of Π(s) to the e+e− annihilation cross section
into a lepton pair via

ImΠ(s) =
α

3
Rlep(s) , (1.37)

and

Rlep(s) =
σlep(s)

σpoint (s)
=

√
1 −

4m2
`

s
*
,
1 +

2m2
`

s
+
-
, (1.38)

where σpoint(s) = 4πα2/(3s) is the point cross section in the limit s � 4m2
` . With the

input self-energy function Πren, the remaining one-loop integral can be evaluated with a
modified photon propagator, leading to nothing but the contribution from a massive photon
with effective mass

√
s. Accordingly, the entire VP contribution is a convolution of the

renormalized self-energy spectral function with the one-loop massive-photon contribution,

cvap (`)
2 =

π

3α

∫ ∞

4m2
`

ds
s

Rlep(s) aQED (1) (massive γ)
µ (s) , (1.39)

where

aQED (1) (massive γ)
µ (s) ≡

α

π
K (s) =

α

π

∫ 1

0
dx

x2(1 − x)

x2
+

(
s/m2

µ

)
(1 − x)

(1.40)

is the one-loop contribution from a massive photon. As a cross-check, we reproduce the
Schwinger value (1.31) for s = 0. Its Feynman-parameter integral can be performed and the
result reads [86, 87]

K (s) =
x2

2
(2 − x2) +

(1 + x2)(1 + x)2

x2


ln(1 + x) − x +

x2

2


+

1 + x
1 − x

x2 ln x , (1.41)

where

x =
1 − σµ

1 + σµ

, and σµ =

√
1 −

4m2
µ

s
. (1.42)

The integral of (1.39) can be further evaluated analytically resorting to the explicit
expression of K (s). Its approximate value was firstly obtained in [80, 81], while the full
analytic result was derived in [88] and later given in a compact form as [89]

cvap (`)
2 = −

25
36
−

ln r
3
+ r2(4 + 3 ln r) + r4



π2

3
− 2 ln r ln

(
1
r
− r

)
− Li2

(
r2)

+
r
2

(
1 − 5r2) 

π2

2
− ln r ln

(
1 − r
1 + r

)
− Li2(r) + Li2(−r)


, (1.43)

where r = m`/mµ and Li2(r) = −
∫ r

0 dt ln(1 − t)/t is the dilogarithmic function.
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The VP contributions of electron and τ loops differ drastically due to the mass hierarchy.
In order to find their features in a simpler manner, we employ approximations for the
massive-photon contribution (1.40). For the electron loop, a logarithmically enhanced term
arises for m2

e � s � m2
µ. In this limit, aQED (1) (massive γ)

µ (s) ≈ α/(2π) and Rlep(s) ≈ 1.
Equation (1.39) reduces to

cvap (e)
2 ≈

1
6

∫ 4m2
µ

4m2
e

ds
s
=

1
3

ln
mµ

me
. (1.44)

This upshot can be understood on more general grounds from the renormalization group
evolution of the fine structure constant α under leading-log approximation (1.1). That is,
α(µ) should be evolved to the relevant momentum scale of the physical process, the muon
mass mµ [90],

α(mµ)

α
= 1 +

2α
3π

ln
mµ

me
, (1.45)

where α = α(me) is the fine structure constant in the Thomson limit µ→ 0. If we replace
α by α(mµ) in (1.31), the leading logarithmic term of VP is reproduced exactly.

On the contrary, for mτ � mµ, the dominant contribution arises from the region s � m2
µ.

Using the approximation

aQED (1) (massive γ)
µ (s) ≈

(
α

π

) m2
µ

3s
, (1.46)

the contribution becomes

cvap (τ)
2 ≈

m2
µ

9

∫ ∞

4m2
τ

ds

s2

√
1 −

4m2
τ

s
*
,
1 +

2m2
τ

s
+
-
=

m2
µ

45m2
τ

. (1.47)

We find the expected quadratic power suppression of heavy-scale contributions.

Three- to five-loop results

At three-loop order another new topology shows up apart from higher-order VP insertions,
light-by-light (LbL) scattering illustrated in the left diagram of Figure 1.4. We divide the
three-loop contributions into the following parts:

aQED (3)
µ =

[
cuni3 + cvap (e)

3 + cvap (τ)
3 + cvap (e τ)

3 + clbl (e)
3 + clbl (τ)

3

] (
α

π

)3
. (1.48)

where clbl (e)
3 and clbl (τ)

3 label the LbL scattering contributions of electron and τ loops. cvap (`)
3

contains at least one insertion of VP from lepton `, while cvap (e τ)
3 collects contributions

12



1.1 The muon (g − 2)µ

µ µ

e, µ, τ

γ

µ µ
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e e

γ

Figure 1.4: The LbL scattering diagrams at three loops and with enhanced electron loops at four and
five loops.

from both electron and τ VP loops. The mass-independent contributions have been worked
out in a compact form [91],

cuni3 =
28259
5184

+
17101
810

π2
−

298
9
π2 ln 2 +

139
18

ζ (3) +
100
3

[
Li4

(
1
2

)
+

1
24

ln4 2 −
1
24
π2 ln2 2

]

−
239

2160
π4
+

83
72
π2ζ (3) −

215
24

ζ (5) , (1.49)

where Li4
(

1
2

)
=

∑∞
n=1 1/

(
2nn4) is the polylogarithm.

The electron LbL scattering is enhanced by ln
(
mµ/me

)
and also a large prefactor π2. In

comparison, LbL scattering from the τ loop appears to be small. The complete analytic
result of mass-dependent contributions at three loops has been made available by thrilling
efforts [92–94] and therefore can be expanded in terms of mass ratios to the desired precision.
Calculations of four and five loops could be done along the same path, but the level of

difficulties increases enormously. Two of the electron-loop-enhanced diagrams are shown
in Figure 1.4. The four-loop universal term cuni4 was almost analytically evaluated [95].
There are some analytic cross-checks in the framework of asymptotic expansions for
mass-dependent contributions at four and five loops [96–98], complementary to numerical
approaches. The latest four- and five-loop numerical calculations were carried out in [73,
74, 99, 100]. Adding these contributions up to and including five loops, we get the complete
QED contributions given in (1.29).

1.1.4 Electroweak contributions
The electroweak contributions include massive gauge and Higgs bosons’ loop corrections.
They are suppressed at least by a factor of (α/π)(m2

µ/M2
W ) ' 4 × 10−9 and the updated

numerical result computed to the two-loop order reads [61, 101, 102]

aEW
µ = 153.6(1.0) × 10−11 . (1.50)

Its first one-loop calculations were carried out by five independent groups [103–107]
shortly after ’t Hooft had proven the renormalizability of the electroweak sector in his PhD
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Figure 1.5: Electroweak contributions to aµ at one loop in the unitary gauge.
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Figure 1.6: Two-loop electroweak contributions to aµ with fermion loops in the unitary gauge. f and
f ′ represent the SU (2)L-doublet partners. The neutrinos are excluded in f in the triangle subgraphs
as they do not couple to the photon.

work [108–110]. The pertinent one-loop diagrams in the physical unitary gauge are depicted
in Figure 1.5 and their contributions are collected to

aEW (1)
µ =

GFm2
µ

8
√

2π2

[
10
3︸︷︷︸
W

+
1
3

(
1 − 4 sin2 θW

)2
−

5
3︸                       ︷︷                       ︸

Z

+O

( m2
µ

M2
W

)
+ O

( m2
µ

M2
H

)]
, (1.51)

where GF is the Fermi coupling constant and the weak mixing angle sin2 θW = 1−M2
W/M2

Z .
The W and Z boson contribute with different signs. The Higgs contribution is further
suppressed by a factor m2

µ/M2
H due to the smallness of its Yukawa coupling to the muon.

The two-loop corrections are usually divided into the fermionic- and bosonic-loop
contributions, with the fermionic-loop effects illustrated in Figure 1.6. These two-loop
contributions are typically enhanced by large logarithms of ln

(
MZ/m f

)
, where f is the

fermion inside the fermionic loop. Moreover, they coherently add up to a sizable negative
value −41.2(1.0)10−11 even comparable to the one-loop corrections 194.8(0.0)×10−11 [101,
102]. The top-left and top-right diagrams of Figure 1.6 are logarithmically dominant
compared to the rest. However, the top-left γZ-mixing diagram is suppressed by the vector
coupling 1 − 4 sin2 θW ∼ 0.1 compared to the top-right γγZ-vertex diagram. The most
prominent features at this order are the occurrences of the non-perturbative hadronic effects

14



1.1 The muon (g − 2)µ

symbolically represented inside the light-quark (u, d, and s) loops and the vector–vector–
axialvector (VVA) anomaly [111–113] (see Section 1.3 for more details) in the triangle
fermionic loops.

The first calculation of these logarithmic corrections was performed in 1992 [114], which
however only included the leptons in the triangle loops. Obviously, the anomaly cancellation
in the SM [115–117] demands each full fermion generation to be involved. These refined
analyses were provided by [118–121], which indeed showed that the coefficient of the
leading ln

(
MZ/m f

)
term vanishes for the first and second generations because of the

anomaly-cancellation condition ∑
f

N f I f
3 Q2

f = 0 , (1.52)

where N f = 1(3) for leptons (quarks), I f
3 is the third component of the weak isospin, and

Q f is the electric charge. For the third generation, there is an imbalance because of the mass
hierarchy. The account of hadronic effects inside the fermion loops was pioneered in [118]
and later improved in [101, 122]. Closely following [101], the γγZ anomalous amplitude
exhibits the longitudinal and transversal structure functions wL,T (q2). Because of the
topological nature of anomalies, the longitudinal structure function wL is not renormalized
in higher-order perturbative QCD (pQCD). Furthermore, non-perturbative corrections to
wL are absent thanks to the ’t Hooft anomaly matching condition [123]. This behavior was
carried forward to the transversal function by Vainshtein [124], who showed that

wL
(
q2) ��m f =0 = 2wT

(
q2) ��m f =0 =

−2N f Q2
f

q2 (1.53)

is valid in pQCD to all orders in the chiral limit. Therefore, corrections to wT must be of
non-perturbative origin. These features should be and have been consistently accounted for
when considering perturbative and non-perturbative effects in the triangle amplitude.

The bosonic contributions were calculated resorting to asymptotic expansions in
masses [120], and were refined later by [125, 126]. The theoretical prediction for the QED
and electroweak contributions is determined with small well-controlled uncertainties.

1.1.5 Hadronic contributions
The hadronic contributions in particular refer to those corrections with hadronic effects
among the electromagnetic (QED) interaction. The electroweak corrections with insertions
of hadronic loops are already included in the electroweak contributions aEW

µ as explained
in Section 1.1.4, with a result found to be of the order of the experimental error. The
hadronic contributions are hard to tackle in first-principles calculations and thus dominate
the uncertainties of the theoretical prediction for the muon (g − 2)µ. They fall into two
different categories: HVP and HLbL scattering, as shown in Figure 1.7. Although these
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Figure 1.7: Diagrammatic representation of (a) HVP and (b) HLbL.

two contributions are of non-perturbative nature, it is possible to make estimates of them
utilizing a data-driven approach or a lattice QCD simulation. We only review some general
aspects of these two contributions here, more details are relegated to the main parts of the
thesis.

Hadronic vacuum polarization

HVP turns out to be the leading hadronic contribution entering at O
(
α2) in the expansion

of the fine structure constant. A coarse estimate of the total contribution can be made based
on the previous observations that

aHVP
µ ∼

(
α

π

)2 m2
µ

M2
had
∼ 6000 × 10−11 , (1.54)

when the hadronic scale Mhad is chosen to be 1 GeV. Given the scale of the muon mass,
non-perturbative effects of the strong interaction cannot be eluded at all. We take dispersion
relations to rescue: HVP can be related to the total cross section of e+e− → hadrons using
the optical theorem. In analogy to the lepton VP contributions, the leading-order (LO) HVP
contribution in diagram (a) of Figure 1.7 can be represented as [86, 87]

aHVP
µ =

(αmµ

3π

)2 ∫ ∞

sth
ds

K̂ (s)

s2 Rhad(s) , (1.55)

with the kernel function

K̂ (s) =
3s

m2
µ

K (s) , (1.56)

where K (s) is given in (1.41), and the hadronic bare cross section

Rhad (s) =

√
1 − 4m2

e/s

1 + 2m2
e/s

σ0 (
e+e− → hadrons

)
4πα2/(3s)

. (1.57)
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Figure 1.8: Next-to-leading order HVP contributions.

Note that Rhad(s) is not exactly the usual R ratio defined as σ0(e+e− → hadrons)/σpoint,
but coincides for a tree-level muonic cross section and in the limit s � m2

µ.
The kernel function K̂ (s) in (1.55) monotonically increases from 0.63... to 1 from the 2π

threshold to infinity. Therefore, the integrand of (1.55) is weighted by a factor of 1/s2 such
that the low-energy region is enhanced and a rapid convergence of the integral is expected.
The hadronic cross sections are measured by either energy-scan or radiative-return methods.
At low energies, data of exclusive channels are available. The main subtlety turns out to be
the combination of different data sets in a statistically consistent manner. Inclusive data can
be used in the intermediate energy range. Beyond the resonance region, pQCD is exploited
to estimate Rhad (s) (see Section 1.2.4). Although the use of hadronic τ-decay data was
advocated in [127], unexpected caveats in the theoretical treatment prevent it from making a
prediction at a commensurate level as the e+e− data.
The next-to-leading-order (NLO) HVP contributions are shown in Figure 1.8. The

diagrams (a)–(c) are convoluted with new kernel functions [128, 129],

aHVP (2), (i)
µ =

(
α

π

)3 2
3

∫ ∞

sth

ds
s

Rhad(s)K (i) (s) , i = a, b ;

aHVP (2), (c)
µ =

(
α

π

)3 1
9

∫ ∞

sth

∫ ∞

sth

ds
s
ds′

s′
Rhad

(
s
)
Rhad

(
s′
)
K (c) (s, s′) , (1.58)

whilst the (d)-type contributions are allowed for by including the final-state radiation (FSR)
into the hadronic cross section σ0(e+e− → hadrons).

HVP has been evaluated to the next-to-next-to-leading order (NNLO) [130] (12.4(0.1) ×
10−11) and the most recent representative total estimate based on e+e− data is given as [61,
130–136]

aHVP
µ = 6845(40) × 10−11 . (1.59)

Hadronic light-by-light scattering

At O
(
α3) , a new topology, the lowest-order HLbL scattering shows up. Unlike the HVP

effects, the four-point HLbL tensor involves complex insertions of hadronic subgraphs in
contrast to the two-point HVP function, such that its total contribution cannot be related to
one simple observable in dispersion relations. Instead, different long- and short-distance
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Figure 1.9: Decomposition of HLbL contributions in model calculations.

contributions large-Nc expansion chiral expansion

pseudoscalar poles π0, η, η′ Nc p8

meson loops π±, K± 1 p6

resonances f0, a1, f2 Nc p10

quark loops Nc p10

Table 1.2: Orders of leading contributions in large-Nc and chiral expansions.

contributions have to be taken into account separately in early model calculations following
QCD and respecting its symmetries, as depicted in Figure 1.9.
The low- and high-energy constraints of the HLbL scattering amplitude can be derived

from certain limits of QCD: large-Nc expansion, chiral expansion, or perturbative expansion
in terms of αs. A classification of the different contributions coming from the dominant
intermediate hadronic states appealing to the large-Nc and chiral power countings [137]
is shown in Table 1.2. In the framework of the operator product expansion (OPE), the
HLbL scattering amplitude in a specific kinematic configuration can be related to the VVA
triangle amplitude [138], of which we know the asymptotic behavior better. These expansion
methods not only play an important role in identifying the properties of the HLbL scattering
amplitude itself, but also in each individual contribution where relevant form factors and
scattering amplitudes enter. Therefore, some of these theoretical tools will be explained in
Section 1.2.

The complication of HLbL scattering is also reflected in the fact that it is difficult to make
a prior estimate for it. Only after realizing that the Nc-enhanced contributions prevail over
the chirally enhanced ones, we may arrive at an estimate:

aHLbL
µ ∼

(
α

π

)3 (
Nc

mµ

Mhad

)2
∼ 100 × 10−11 . (1.60)

In particular, for the numerically dominant pseudoscalar-pole contributions, we can make
use of the Wess–Zumino–Witten effective Lagrangian [139, 140],

LWZW = −
αNc

24πFπ
Fµν F̃ µν *

,
π0
+

1
√

3
η8 +

2
√

2
√

3
η0

+
-
, (1.61)
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1.1 The muon (g − 2)µ

where Fπ is the pion decay constant and F̃ µν
= εµνα βFαβ. η8 and η0 are mixtures of the

physical states η and η′. Furthermore, the charged-pion loop at low energies can be derived
from scalar QED

LsQED = |Dµπ |
2
− M2

π |π |
2
−

1
4

FµνF µν . (1.62)

However, low-energy theories are not adequate to describe the entire contributions as, for
instance, we would find a divergent result for the pion pole unless we impose a physical
ultraviolet cut-off at the scale of vector mesons. This is related to the involvement of very
different soft and hard scales in the integrand of HLbL scattering. Consequently, as stressed
in [141], previous calculations of the HLbL contributions are mainly based on hadronic
models with guessed uncertainties, which were built at most in line with the QCD chiral
and short-distance constraints.
In this regard, a dispersive framework for a model-independent evaluation of HLbL

scattering based on the general principles of analyticity, unitarity, and crossing symmetry
has been recently developed [142–146]. Such a framework, based on the analytic structure
of the HLbL four-point amplitude and reconstruction of it from dispersion relations, directly
attributes aHLbL

µ to experimentally accessible observables like form factors and scattering
amplitudes. Following this spirit in a fully data-driven determination of HLbL scattering,
dedicated efforts have completed the evaluations of the ππ contribution [147, 148], pion-pole
contribution [149, 150], and short-distance constraints [151, 152]3.
Since a complete dispersive evaluation of HLbL scattering is not yet available, we

will adopt one representative phenomenology + lattice QCD combined estimate [61, 138,
147–153, 159–161], including the NLO HLbL contribution [162]:

aHLbL
µ = 92(18) × 10−11. (1.63)

1.1.6 Standard Model and beyond the Standard Model predictions
Adding up the QED, electroweak, and hadronic contributions discussed in the previous
Sections, the total prediction for the muon (g − 2)µ in the SM amounts to [61]

aSM
µ = 116591810(43) × 10−11 . (1.64)

In comparison to the experiment,

∆aµ = aexp
µ − aSM

µ = 279(76) × 10−11 , (1.65)

this shows a discrepancy of 3.7σ standard deviation. Notwithstanding the fact that it
may be induced by imprecise SM calculations or statistical fluctuations in experiment,
the discrepancy could also stem from potential BSM contributions. Accordingly, we will
discuss general parameterizations of new-physics contributions closely following [55] and
introduce some of the specific models thereafter.
3 See also [153–158].
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Figure 1.10: Lowest-order SUSY contributions to the muon (g − 2)µ.

We assume a Dirac fermion with mass M and an exotic boson with mass M0 for the
general new interaction. The coupling strength of this interaction is f . For a general
one-loop contribution from an neutral exotic boson exchange,

aNP
µ =

f 2

4π2

m2
µ

M2
0

L , L =
1
2

∫ 1

0
dx

Q(x)

(1 − x)
(
1 − λ2x

)
+ (ελ)2x

, (1.66)

where ε = M/mµ and λ = mµ/M0. The explicit form of Q(x) depends on different types of
interactions. For a charged boson, the contribution reads

aNP
µ =

f 2

4π2

m2
µ

M2
0

L , L =
1
2

∫ 1

0
dx

Q(x)

λ2(1 − x)
(
ε2
− x

)
+ x

, (1.67)

where Q(x) is again dependent on interaction types.

Supersymmetry

Supersymmetry (SUSY) extends the space-time symmetry to include the symmetry mapping
between bosons and fermions [163]. Each particle is conjectured to present a superpartner,
which has the same mass but the spin differing by one-half unit. As these addenda to the
particle spectrum have not been observed yet, the symmetry should be broken in a way to
generate heavier superpartners. As pointed out in [164], the anomalous magnetic moment
of the matter fermion vanishes in the originally proposed exact supersymmetric model [163].
Nevertheless, in the broken minimal supersymmetric extension of the SM, the contributing
one-loop chargino–sneutrino and neutralino–smuon diagrams are shown in Figure 1.10.
The contributions in a simplified form read [165]

aSUSY ( χ±)
µ =

tan β
32π2

m2
µ

M2
SUSY

g2
2 , aSUSY ( χ0)

µ =
tan β
192π2

m2
µ

M2
SUSY

(
g2

1 − g
2
2
)
, (1.68)

where tan β is the ratio of the vacuum expectation values of the two Higgs doublets, and
MSUSY is the mass of the superpartners. The g1 and g2 are the U (1)Y and SU (2)L gauge
couplings. The dominant contribution is from the chargino–sneutrino diagram.
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Technicolor and compositeness

In contrast to the standard Higgs mechanism, technicolor models are speculated to dynam-
ically generate masses for the gauge bosons via broken new strong interactions. Inspired
by technicolor, in the composite Higgs model [166], the Higgs particle is envisaged as a
pseudo-Goldstone boson of a spontaneously broken new strongly interacting sector. In these
models, the gauge bosons could have an anomalous coupling departing from the SM, and
in view of the γW+W− effective Lagrangian with two parameters κ and λ, the one-loop
correction is given as

aTEC (W±)
µ =

GFm2
µ

4
√

2π2

[
(κ − 1) ln

Λ
2

M2
W

−
λ

3
]
, (1.69)

where the cut-off Λ is the compositeness scale.

Extra dimensions

In extra dimensions, our four-dimensional space-time is embedded into a higher-dimensional
space-time. The extra spatial dimensions are called compactified, with a characteristic
length scale R. Extra dimensions are required in string theory, and extra-dimensional
theories can explain the observed hierarchy between the electroweak scale and the Plank
scale. Usually in this type of theories, the corrections to aµ enter with a minus sign, hence
it is difficult to explain the persistent discrepancy.

1.2 Theoretical tools

1.2.1 Theory of scattering processes
S-matrix theory

S-matrix theory is the general theory of scattering and decay of particles in quantum
mechanics and quantum field theory, focusing on the direct study of the properties of the
scattering amplitudes. It can be defined without the underlying quantum fields, and was
once proposed to replace the local quantum field theory when perturbative calculations
of the strong interaction were plagued with proliferated numbers of observed hadrons and
convergence issues because of the strong coupling. It flourished in the 1960s, culminated in
the so called “S-matrix school.” In a textbook from that time [167], the authors state: “For
both electromagnetic and weak interactions one normally works inside the framework
of quantum filed theory†[...]. The interaction is described in terms of an interaction
Hamiltonian (or Lagrangian) constructed from field operators. On the other hand, the
approach which so far has been most successful for describing strong interactions is based
on the unitarity, analyticity and crossing properties of the so-called S-matrix elements.”
After the advent of QCD and its triumph in the description of the strong interaction, the
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S-matrix approach faded out from the mainstream theories. Interestingly, it was revived
from the 1990s on in phenomenological applications in combination with effective field
theories and in multi-loop calculations. This comeback is clearly reflected in a more recent
textbook [79]: “Again, in closing words I mumble something (from steepest descent to
integral to what?) about modifying the form of the path integral. The recursion program
and the resuscitated S-matrix approach might be a step in this direction, formulating field
theory while avoiding mention of a local Lagrangian. But we need analyticity, and of course
analyticity follows from locality and causality, as far as we understand.”
In scattering processes of short-range interacting particles, incoming particles in the

remote past t → −∞ are well separated in spatial configuration such that they can be
approximately treated as free particles. These particles undergo interactions in a finite
time interval when they approach each other and evolve into the asymptotic final states
of outgoing free particles in the remote future t → +∞. These asymptotic incoming and
outgoing states are called |in〉 and |out〉 states. Since the incoming and outgoing particles are
well separated from each other, |in〉 and |out〉 states are eigenstates of the full 4-momentum
operator of the system, containing the interaction term as well.
For simplicity, we consider scattering of spinless particles of identical mass. Let

��p1, . . . , pn; in
〉
denote the initial state consisting of n incoming particles and ��q1, . . . , qm; out

〉
denote the final state consisting of m outgoing particles. The evolution from the asymptotic
|in〉 state to asymptotic |out〉 state is given by the S-matrix,

��q1, . . . , qm; out
〉
= S† ��q1, . . . , qm; in

〉
. (1.70)

It contains all the dynamical information of the evolution of the physical states in time. The
|in〉 and |out〉 states are constructed to fulfill the orthonormality condition separately and
are postulated to form two complete bases of the Fock space of the interacting theory. The
completeness relations for these two bases read

1 = |0〉 〈0| +
∞∑

n=1

1
n!

∫
d3p1

(2π)32Ep1

· · ·
d3pn

(2π)32Epn

��p1, . . . , pn; in
〉 〈

p1, . . . , pn; in��

= |0〉 〈0| +
∞∑

m=1

1
m!

∫
d3q1

(2π)32Eq1

· · ·
d3qm

(2π)32Eqm

��q1, . . . , qm; out
〉 〈

q1, . . . , qm; out�� ,

(1.71)

where |0〉 is the vacuum state of the theory and Ep is the energy of the particle. Since the
S-matrix transforms these two complete bases into each other, it fulfills the unitarity relation

SS† = S†S = 1 , (1.72)

which is also the requirement of probability conservation. Using the unitarity relation (1.72),
one can derive another three similar relations from (1.70),〈

q1, . . . , qm; in�� =
〈
q1, . . . , qm; out�� S†, ��q1, . . . , qm; in

〉
= S ��q1, . . . , qm; out

〉
,〈

q1, . . . , qm; out�� =
〈
q1, . . . , qm; in�� S , (1.73)
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and express the S-matrix as

S =
∑

m

��q1, . . . , qm; in
〉 〈

q1, . . . , qm; out�� ,

S† =
∑

m

��q1, . . . , qm; out
〉 〈

q1, . . . , qm; in�� , (1.74)

using orthonormality condition and completeness relation.
The probability amplitude for the transition from initial state to final state is given by the

S-matrix element,〈
q1, . . . , qm; out��p1, . . . , pn; in

〉
=

〈
q1, . . . , qm; in��S��p1, . . . , pn; in

〉
=

〈
q1, . . . , qm; out��S��p1, . . . , pn; out

〉
, (1.75)

such that the |in〉 or the |out〉 state labels can be safely omitted. Any scattering experiments
can be predicted once the S-matrix elements are known since the square of the matrix
elements produces the probability for the processes to happen.
Another general property of the S-matrix comes from the consequences of translation

and Lorentz invariance of the theory. For an arbitrary translation and proper orthochronous
Lorentz transformation

x 7→ Λx + a , (1.76)

the group representation of the transformation on the Hilbert space of quantum states
can be implemented as a unitary operator U (Λ, a) given that the states are relativistically
normalized. The requirement of relativistic invariance leads to the constraint for the
S-matrix,

U (Λ, a)SU†(Λ, a) = S . (1.77)

Unitarity and analyticity

In scattering experiments, particles may collide with each other to produce some other
particles. But it is also possible that final-state particles remain exactly the same as
initial-state particles with the same outgoing momenta as incoming momenta. In order
to separate the interesting interaction part from the trivial non-interaction part, one often
divides the S-matrix into unity and the T-matrix,

S = 1 + iT , (1.78)

where the T-matrix contains the non-trivial interaction part. T-matrix elements can be
obtained from the T-matrix,〈

q1, . . . , qm
��T ��p1, . . . , pn

〉
= (2π)4δ4(p f − pi)M f i , (1.79)

which also defines the transition amplitude M f i and i and f are shorthand notations for the
initial and final states. pi = p1 + · · · + pn and p f = q1 + · · · + qm are the total 4-momenta of
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incoming and outgoing particles, respectively. The momentum conserving delta function is
the direct consequence of translation invariance of the system and is explicitly separated
out from the transition amplitude. Since the left-hand side of (1.79) and the delta function
δ4(p f −pi) are Lorentz invariant, the transition amplitude M f i must also be Lorentz invariant.
The relation (1.72) implies a unitarity condition for the T-matrix,

− i
(
T − T†

)
= T†T = TT† . (1.80)

Taking the matrix element gives

− i
〈
q1, . . . , qm

��
(
T − T†

) ��p1, . . . , pn
〉
=

〈
q1, . . . , qm

��T†T ��p1, . . . , pn
〉
. (1.81)

According to (1.79), the left-hand side of (1.81) becomes

− i
〈
q1, . . . , qm

��
(
T − T†

) ��p1, . . . , pn
〉
= −i(2π)4δ4(p f − pi)

(
M f i − M∗i f

)
. (1.82)

As the next step, one needs to insert complete sets of intermediate states in the right-hand
side of (1.81),

〈
q1, . . . , qm

��T†T ��p1, . . . , pn
〉
=

∑
j

1
j!

∫
d3k1

(2π)32Ek1

· · ·
d3k j

(2π)32Ek j

×
〈
q1, . . . , qm

���T
†���k1, . . . , k j

〉 〈
k1, . . . , k j

���T
���p1, . . . , pn

〉
.

(1.83)

Using (1.79), one finds in the end for the transition amplitude,

−i
(
M f i − M∗i f

)
=

∑
j

1
j!

∫
d3k1

(2π)32Ek1

· · ·
d3k j

(2π)32Ek j

(2π)4δ4 (pi −
j∑

l=1
kl

)
× M∗(q1, . . . , qm → {k j })M (p1, . . . , pn → {k j }) , (1.84)

times an overall delta function (2π)4δ4(p f − pi). The set {k j } represents the intermediate
states labels k1, . . . , k j . For parity and time-reversal symmetric processes, as it is the case
for the strong interaction, we have〈

q1, . . . , qm
��T ��p1, . . . , pn

〉
=

〈
q̃1, . . . , q̃m

��(P̂T̂ )−1(P̂T̂ )T (P̂T̂ )−1(P̂T̂ )��p̃1, . . . , p̃n
〉∗

=
〈
p1, . . . , pn

��T ��q1, . . . , qm
〉
, (1.85)

which leads to the relation M f i = Mi f for the transition amplitude. Consequently, the
left-hand side of (1.84) becomes exactly 2Im M f i. Noting that the first line on the right-hand
side of (1.84) is nothing but the j-body phase space, we find

2Im M f i =
∑

j

∫
dΠ j M∗f j Mi j , (1.86)
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2 Im =
∑
j

∫
dΠj

p1

p2 q2

q1

j j

p1

p2 q2

q1

Figure 1.11: Graphical representation of (1.86) in the case of 2→ 2 scattering. The imaginary part
of the scattering amplitude gets contributions from all possible intermediate states.

where dΠ j is the abbreviation for the Lorentz-invariant j-body phase space. Equation (1.86)
relates the imaginary part of the transition amplitude to the sum of the products of transition
amplitudes of scattering processes from initial and final states to intermediate states. The
Graphical form of (1.86) for a 2→ 2 scattering process is shown in Figure 1.11, from which
one can see the physical image clearly.
The master formula (1.86) yields stringent constraints on the imaginary parts of the

transition amplitudes, hence on the transition amplitudes themselves, and especially on their
analytic properties. For a two-particle scattering process, the two-particle intermediate state
is called elastic and other heavier intermediate channels are referred to as inelastic. When
the total energy is above the elastic intermediate-state threshold and below the first inelastic
threshold, the imaginary part of the transition amplitude is solely determined by the elastic
scattering amplitude. Above the inelastic scattering threshold, one new term must be added
to the right-hand side of the master formula (1.86) once a new physical scattering process
is allowed to happen. It means that the imaginary part of the transition amplitude has a
singularity structure at each energy threshold of a new physical scattering process. As the
consequence, the thresholds become branch points of transition amplitudes regarded as
functions of complex energy-squared and physical scattering amplitudes are given by the
real-boundary values of analytic functions of complex variables [168].

More explicitly, the elastic scattering amplitude M is a function of total energy-squared s
and transfer momentum-squared t defined in (1.96) for a general 2→ 2 scattering process.
For the moment we will keep t fixed and consider the scattering amplitude M (s) as a function
of s only. We assume that no selection rule forbids the creation of any specific number
of particles from the two-particle state. As discussed in the previous paragraph, M (s)
exhibits branch points at s = 4m2, 9m2, 16m2, . . ., which are the production thresholds
of multi-particle intermediate states. These thresholds are called normal thresholds and s
must be at least 4m2 to ensure the physical scattering to happen. The elastic scattering can
also be mediated by a single-particle state as shown in Figure 1.12. Perturbation theory
shows that this single-particle state contributes as a simple pole but not a branch point for
the scattering amplitude at the unphysical energy-squared value

s = m2 . (1.87)

The singularity structure of the scattering amplitude due to the pole and branch points in
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p1

p2 q2

q1
s = (p1 + p2)

2

Figure 1.12: Elastic 2→ 2 scattering by a single-particle intermediate state.

the complex s-plane is plotted in Figure 1.13. For each branch point, the branch cut runs
along the real axis from the branch point to infinity. The branch-cut structure suggests that
there exist several Riemann sheets for the analytic scattering amplitude. On each Riemann
sheet, the scattering amplitude takes the value of one single analytic branch. The sheet on
which the physical scattering amplitude is obtained along the real-boundary cut is called the
physical sheet and other sheets are known as unphysical sheets.

Going one step backwards, the analyticity of the S-matrix is often claimed as the outcome
of micro-causality. On the field-theoretical level, causality demands that scalar fields
commute with each other

[φ(x1), φ(x2)] = 0 , (1.88)

and fermionic fields anticommute with each other

{ψ(x1), ψ(x2)} = 0 , (1.89)

outside the light-cone where the space-time arguments x1 and x2 fulfill (x1 − x2)2 < 0.
Nevertheless, very few analytic properties of the S-matrix can be rigorously proven in the
framework of quantum field theory without relying on perturbative expansions, even though
analytic properties of the transition amplitudes were shown to emerge in perturbation series
order by order. Thus in the following we will relate causality to analyticity by taking a
simple example in classical physics into account: a single-variable transition amplitude
A(ω) as a function of energy ω can be expressed by the Fourier transform as

A(ω) =
1

2π

∫ +∞

−∞

A(t)eiωt dt , (1.90)

where A(t) is the Fourier transformed pair function in the time domain t. Because of
causality, A(t) should be a retarded function that fulfills A(t) = 0 for t < 0. A(ω) then reads

A(ω) =
1

2π

∫ +∞

0
A(t)eiωt dt . (1.91)

This integral is absolutely convergent for Imω > 0 as long as A(t) increases slower than
κtN for some fixed N when t → +∞. Since eiωt is an entire function of ω, A(ω) is analytic
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Figure 1.13: A simple pole and branch cuts for the scattering amplitude M (s) in the complex s-plane.

in the upper half plane of complex variable ω. Furthermore, we assume that A(ω) takes
real values along the real axis and use the Schwarz reflection principle

A
(
ω∗

)
= A∗

(
ω
)
, (1.92)

to analytically continue A(ω) into the lower half complex plane, thus obtaining an analytic
function A(ω) in the whole complex plane.
Physical scattering amplitudes were shown to fulfill a very important property called

hermitian analyticity4 [169]
M

(
s∗

)
= M∗

(
s
)
. (1.93)

Since the Schwarz reflection principle can be extended to meromorphic functions, we can
analytically continue M (s) to the whole complex plane by virtue of hermitian analyti-
city (1.93). M (s) takes real values when s is real and smaller than the lightest intermediate
state threshold 4m2 since no intermediate states can go on shell. Near the real axis for
s > 4m2, the Schwarz reflection principle implies

Re M (s + iε ) = Re M (s − iε ) ,
Im M (s + iε ) = −Im M (s − iε ) . (1.94)

The +iε prescription in the Feynman calculation of perturbation theory implies that the
physical scattering amplitude is obtained by approaching the cuts along the real axis
from above, as M (s + iε ). The cut structure caused by multi-particle intermediate-state
contributions together with other analytic properties of the transition amplitude are essential
ingredients for constructing dispersion relations for form factors and scattering amplitudes
in Section 1.2.2.

4 This relation does not hold for decay amplitudes any longer.
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A(p1)

B(p2) D(p4)

C(p3)

Figure 1.14: Scattering process of A(p1) + B(p2) → C(p3) + D(p4).

Kinematics and crossing symmetry

It was mentioned before that 2 → 2 scattering amplitudes are generally functions of two
kinematic variables. This can be found by counting the degrees of freedom of the system. In
total ten Lorentz invariant quantities can be built from four different momenta of the particles,
of which four are fixed by the on-mass-shell condition and another four are determined by
energy-momentum conservation, leaving only two invariant variables. We will continue the
investigation thoroughly by considering the generic process A(p1)+B(p2) → C(p3)+D(p4)
shown in Figure 1.14 as 2→ 2 scattering is the most relevant process in this thesis. Moreover,
it is related to the decay of a particle to three final-state particles by analytic continuation,
despite the complication of the analytic structures of the decay. We consider scalar particles
with different masses. The momenta of the particles are labeled by pi =

(
p0

i , pi
)
, where

p0
i = Ei =

√
m2

i +
��pi

��2 . (1.95)

It is customary to define Lorentz-invariant Mandelstam variables

s = (p1 + p2)2
= (p3 + p4)2 ,

t = (p1 − p3)2
= (p2 − p4)2 ,

u = (p1 − p4)2
= (p2 − p3)2 , (1.96)

where the variables s, t, and u satisfy

s + t + u =
4∑

i=1
m2

i . (1.97)

Hence only two kinematic variables are independent as stated. It is convenient to choose
the center-of-mass frame to evaluate the Mandelstam variables where p1 + p2 = 0 and
thus p3 + p4 = 0. Apparently, s becomes the square of the total energies of the scattering
particles

s = (E1 + E2)2
= (E3 + E4)2 . (1.98)
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The invariants t and u can be represented as

t = m2
1 + m2

3 − 2E1E3 + 2|p1 | |p3 | cos θ

= m2
2 + m2

4 − 2E2E4 + 2|p1 | |p3 | cos θ ,

u = m2
1 + m2

4 − 2E1E4 − 2|p1 | |p3 | cos θ

= m2
2 + m2

3 − 2E2E3 − 2|p1 | |p3 | cos θ , (1.99)

where the scattering angle θ between particles A and C is given by

cos θ =
p1 · p3
|p1 | |p3 |

. (1.100)

Applying the mass-shell relation (1.95) to Equation (1.98), one finds the solution for the
three-momenta of the particles:

��p1
�� = ��p2

�� =
λ1/2(s,m2

1,m
2
2)

2
√

s
, ��p3

�� = ��p4
�� =

λ1/2(s,m2
3,m

2
4)

2
√

s
, (1.101)

where λ is the Källén triangle function defined as

λ(x, y, z) = x2
+ y2

+ z2
− 2xy − 2xz − 2yz . (1.102)

Using the expressions of the three-momenta (1.101) and the mass-shell relation (1.95), the
energies of the particles are obtained:

E1 =
s + ∆12

2
√

s
, E2 =

s + ∆21

2
√

s
, E3 =

s + ∆34

2
√

s
, E4 =

s + ∆43

2
√

s
, (1.103)

where ∆i j = m2
i − m2

j . It is obvious that s is required to be at least the square of the largest
sum of the masses of the colliding particles. So the physically allowed range for s is given
by

s ≥ max
(
(m1 + m2)2, (m3 + m4)2) . (1.104)

The physical ranges of t and u can be found from the condition −1 ≤ cos θ ≤ 1 together
with the range of the variable s. For particles with equal mass m, we find simple expressions
for the Mandelstam variables

s = 4
(
m2
+ |p1 |

2) , t = −2|p1 |
2(1 − cos θ) , u = −2|p1 |

2(1 + cos θ) , (1.105)

from which the physical region of the Mandelstam variables is worked out as

s ≥ 4m2 , t ≤ 0 , u ≤ 0 . (1.106)

In quantum field theory, antiparticles moving forward in time are equivalent to negative
energy particles moving backward in time based on the Feynman–Stueckelberg interpretation.
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This property translates to a crucial corollary called the crossing transformation of scattering
amplitudes in scattering theory.

In general, the scattering amplitude of a process that contains an incoming scalar particle
with momentum p labeled by φ(p) is equal to the scattering amplitude of the otherwise
same process where the incoming particle is replaced by the outgoing antiparticle with
momentum −p, that is

M (φ(p) + · · · → · · · ) = M (· · · → φ̄(−p) + · · · ) , (1.107)

where φ̄(−p) is the antiparticle of φ(p) withmomentum−p. This relation can be easily proven
in perturbation theory for scalar particles where there are no external leg factors, while special
care needs to be taken for fermions because of the relative phases between them [78]. It means
that the same scattering amplitude M (s, t, u) of the process A(p1)+B(p2) → C(p3)+D(p4)
can also describe the so-called crossed-channel processes

A(p1) + C̄(−p3) → B̄(−p2) + D(p4) ,
A(p1) + D̄(−p4) → B̄(−p2) + C(p3) , (1.108)

where B̄, C̄ and D̄ denote the antiparticles of the corresponding particles. These two
channels are conventionally referred to as t- and u-channels in contrast to the original
s-channel process, since they induce equivalent replacements s ↔ t and s ↔ u for the
kinematic variables. So for equal-mass particles, the physical region for the t-channel
process is given by

t ≥ 4m2 , s ≤ 0 , u ≤ 0 , (1.109)

so that the scattering amplitude M (s, t, u) can be analytically continued to the t-channel
physical region (1.109) to describe the t-channel process. Similarly M (s, t, u) evaluated in
the u-channel kinematic region

u ≥ 4m2 , s ≤ 0 , t ≤ 0 , (1.110)

gives exactly the corresponding u-channel scattering amplitude. All in all, one single
analytic function M (s, t, u) can be used to describe all three channels by choosing the
appropriate physical regions for the Mandelstam variables. Since different physical regions
are separated from each other, this only makes sense if scattering amplitudes are analytically
continued from the physical region of one channel through the unphysical region to the
physical regions of the other channels.

The kinematic regions of the different channels for equal-mass particles are plotted in the
Mandelstam plane in Figure 1.15. In the Mandelstam plane, each side of the equilateral
triangle is chosen as the coordinate axis for the variables s, t, and u since the sum of the
perpendicular distances from one point in the plane to the triangle’s sides is fixed to the
triangle height, conveniently representing the relation (1.97) provided that the height of the
triangle is equal to

∑
i m2

i . Shaded regions in the figure indicate the kinematic regions of the
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t-channel

u-channel

t = 0
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0

Figure 1.15: The Mandelstam plane for 2→ 2 scattering of particles with equal mass m. The shaded
regions represent the s-, t-, and u- channel physical regions, respectively. The boundaries of the
regions are given in the plot.

different channels. Furthermore if one of the particles is heavy enough to decay into three
other particles, there appears a decay region in the center of the Mandelstam plane.

If one of the crossed channels is identical to the original channel after crossing transform-
ation, the scattering amplitude exhibits a crossing symmetry. For instance, we consider
Bhabha scattering e−(p1)e+(p2) → e−(p3)e+(p4). This process is obviously crossing
symmetric in s- and t-channels. Therefore the spin averaged scattering amplitude squared
possesses the property

|M |2(s, t, u) = |M |2(t, s, u) . (1.111)
Crossing generates additional singularities for scattering amplitudes that arise from

crossed-channel processes. Just as in the case of the s-channel, the normal thresholds of t-
and u- channels for identical mass particles appear at

t = 4m2 , 9m2 , 16m2 , . . . ,

u = 4m2 , 9m2 , 16m2 , . . . . (1.112)

Because of the relation (1.97), if we fix one of the kinematic variables like u, scattering
amplitudes can be treated as functions of only one variable s or t. For fixed u = u0, the pole
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Im s

Re s

4m2 9m2 16m2
m2−u0 + 3m2

−u0−u0 − 5m2−u0 − 12m2
M(s, u0)

M(t, u0)

Figure 1.16: Simple poles and branch cuts of the scattering amplitude M (s, u0) in the complex s-plane
arising from singularities in the s-channel and in the t-channel and physical limits of scattering
amplitudes for s- and t-channels.

t = m2 in the t-channel will appear in the s-plane at

s = −u0 + 3m2 , (1.113)

and branch points in the t-channel emerge at

s = −u0 , −u0 − 5m2 , −u0 − 12m2 , . . . , (1.114)

causing additional branch cuts for the s variable starting from branch points given in
Equation (1.113) and extending to minus infinity. These cuts due to crossed-channel
processes are called left-hand cuts, while the aforementioned normal threshold cuts are
called right-hand cuts.
Since for the t-channel process, the physical scattering amplitude M (t, u0) should be

evaluated at t + iε for the variable t, it should be evaluated in the s-plane as M (s − iε, u0),
approaching the left-hand cuts from the lower rim owing to the relation (1.97). In the end,
the whole singularity structure of the scattering amplitude M (s, u0) for fixed u = u0 is
shown in Figure 1.16, where the physical scattering amplitudes are also defined.

1.2.2 Dispersion relations
We have extensively discussed general properties of scattering amplitudes, unitarity, analyti-
city, and crossing symmetry in Section 1.2.1. These properties of scattering amplitudes
can be accumulated into the dispersion relation, an integral representation of scattering
amplitudes with their imaginary parts as input. Credited with the power of complex analysis,
the dispersion relation was very popular before the advent of gauge theory, while it is still a
useful contemporary toolkit for theorists.
Before developing dispersion relations, we first summarize singularities of scattering

amplitudes, including those which have not been covered in the previous discussions. We
list these singularities without providing further detailed proof. Dynamical singularities of
scattering amplitudes come from particle production thresholds, which are:
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• bound states and one-particle simple poles on the physical sheet;
• branch cuts associated with multi-particle intermediate states;
• resonances and virtual-state poles on unphysical sheets;
• singularities at infinity.

One needs to take these singularities into account when constructing dispersion relations
using the Cauchy integral formula.

Dispersion relations for single-variable functions

We first consider dispersion relations for a general single-variable function f (s), which
fulfills analytic properties of scattering amplitudes. Typical physical examples are the
photon self-energy in QED and the pion vector form factor in hadron physics.
Suppose f (s) has a branch cut starting from the threshold sth to infinity and is real on

the real axis below the threshold. It is analytic in the whole complex plane except for the
branch cut and fulfills the Schwarz reflection principle,

f
(
s∗

)
= f ∗

(
s
)
. (1.115)

The analytic continuation of f (s) is provided by dispersion relations. Using Cauchy’s
integral formula, we can express the analytic function f (s) as

f (s) =
1

2πi

∮
Ω

f
(
s′
)

s′ − s
ds′ , (1.116)

where s is a point in the interior of the closed counter-clockwise contour Ω, provided that
f (s) is analytic inside Ω and no singularities are included in the contour. Thus we inflate
the integration contour for f (s) skirting the cut as shown in Figure 1.17 so that Cauchy’s
integral formula (1.116) applies to any s in the complex plane except for the cut. We separate
the integration path into three pieces as

f (s±iε ) =
1

2πi

∫ Λ
2

sth

disc f
(
s′
)

s′ − s ∓ iε
ds′+

1
2πi

∫
γ

f
(
s′
)

s′ − s
ds′+

1
2πi

∫
|s′ |=Λ2

f
(
s′
)

s′ − s
ds′ , (1.117)

where the discontinuity of f (s) is defined as

disc f (s) = f (s + iε ) − f (s − iε ) , (1.118)

and γ is a small semicircle path surrounding the threshold sth. The integral along γ vanishes
with the length of the integration path as long as sth is not a pole of f (s). Since f (s) satisfies
the Schwarz reflection principle, the discontinuity can be replaced by its imaginary part,

disc f (s) = f (s + iε ) − f ∗(s + iε ) = 2i Im f (s + iε ) = 2i Im f (s) . (1.119)
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Im s′

Re s′γ

s

sth

Λ2

Ω

Figure 1.17: The integration contour Ω of Cauchy integral (1.116) for f (s).

Assuming f (s) tends to zero when |s | → ∞, we find that the third integral in (1.117) along
the circle vanishes in the limit Λ2

→ ∞ and we are left with a convergent integral along the
cut,

f (s ± iε ) =
1
π

∫ ∞

sth

Im f
(
s′
)

s′ − s ∓ iε
ds′ . (1.120)

This is an example of the so-called unsubtracted dispersion relations. Referred to as the
Hilbert transform in mathematics, it restores an analytic function using its imaginary part as
input, which is due to the propagation of on-shell intermediate states. The ±iε prescription
is included in order to avoid the cut singularity at s′ = s if s sits on the cut. We will drop
the ±iε prescription in the following as physical functions always take the limit f (s + iε ).

Owing to a theorem derived by Sugawara and Kanazawa [170], unsubtracted dispersion
relations can be applied to any function f (s) that is bounded by some finite power of |s |
when |s | → ∞ and vanishes along the cut as s → ∞. But if f (s) does not go to zero along
the cut when s → ∞, we cannot represent f (s) using unsubtracted dispersion relations. In
this situation, dispersion relations can be remedied by performing subtractions. Assuming
f (s) to go to a constant for large |s |, we can write an unsubtracted dispersion relation for
( f (s) − f (0))/s,

f (s) − f (0)
s

=
1
π

∫ ∞

sth

ds′

s′ − s
Im

[
f
(
s′
)
− f

(
0
)

s′

]
, (1.121)

as this function does not introduce singularities in the contour Ω and vanishes for |s | → ∞.
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Given that Im f (0) = 0, we end up with a once-subtracted dispersion relation for f (s),

f (s) = f (0) +
s
π

∫ ∞

sth

Im f
(
s′
)

s′(s′ − s)
ds′ , (1.122)

where f (0) is called the subtraction constant, which cannot be determined by dispersion
relations and needs to be fixed by some other means. These subtraction constants are closely
related to singularities at infinity and are equivalent to low-energy parameters in effective
field theories, which reveal our lack of knowledge in the high-energy regime.
Now consider a more general case where f (s) shows a behavior | f (s) | ∼ |s |N−1 for
|s | → ∞, with N a positive integer. Then we can still obtain a dispersion relation for f (s) if
it is analytic in the cut s-plane by considering the function

f (s)
(s − s1) · · · (s − sN )

, (1.123)

which has N poles at fixed subtraction points s1, . . . , sN chosen below sth. The unsubtracted
dispersion relation now applies to the function (1.123) since it vanishes at the circle boundary.
Applying Cauchy’s integral formula, we collect residues of poles and find a dispersion
relation of the form

f (s) = PN−1(s) +
(s − s1) · · · (s − sN )

π

∫ ∞

sth

Im f
(
s′
)(

s′ − s1
)
· · ·

(
s′ − sN

) (
s′ − s

) ds′ , (1.124)

where PN−1(s) is a polynomial of degree N − 1 in s. This is an example of dispersion
relations with N subtractions. The N subtraction constants can only be fixed once we know
the values of f (s) at N points si. The predictive power of dispersion relations is obvious:
we can reconstruct f (s) itself in the whole complex plane up to a polynomial once we know
the imaginary part of f (s) up to infinity.

The pion vector form factor and the Omnès function

Form factors are basic observables of composite particles that contain information about
their internal structures and interaction properties, for which complete calculations based on
the underlying physics are mostly impossible. We study the pion vector form factor using
dispersion relations, which appears in the photon–pion–pion vertex γ∗π+π− in the pion
production process e+(k1)e−(k2) → π+(p1)π−(p2) as shown in Figure 1.18. This process
is related to the scattering process e−(k2)π−(−p1) → e−(−k1)π−(p2) by crossing. QED
does not determine the γ∗π+π− vertex as pions are strongly interacting particles. The most
general form of the matrix element of this vertex fulfilling Lorentz and gauge invariance is
given as 〈

π+(p1)π−(p2)��� j
µ(0)���0

〉
= e(p1 − p2) µFV

π (s) , (1.125)

where j µ(x) is the electromagnetic current operator and e is the electric charge in units of
the proton charge. Separating out the Lorentz four-vector structure, the remaining Lorentz

35



Chapter 1 Introduction
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Figure 1.18: Feynman diagram of the production process e+e− → π+π− and the scattering e−π− →
e−π−. The gray blob represents the vertex described by the pion vector form factor.

scalar degree of freedom is described by the pion vector form factor FV
π (s), which is a

function of the only non-constant scalar variable, the total energy-squared s = (p1 + p2)2.
FV
π (s) exhibits the electromagnetic structure of the pion and simply reduces to the Fourier

transform of the charge distribution of the pion in the Breit frame.
The kinematic region of the production process is given by s ≥ 4M2

π , where Mπ is the
mass of the pion. The γ∗π−π− vertex in the scattering process is also described by FV

π (s)
because of crossing, even though the form factor is evaluated in a different kinematic domain
s ≤ 0. FV

π (s) only shows right-hand cuts since there are no possible on-shell intermediate
states in the region s ≤ 0. The analytic continuation relating FV

π (s) in two non-overlapping
regions is done by dispersion relations, which need the discontinuity of the form factor as
input. To this end, the intermediate states coupling to 2π through strong interaction allowed
by conservation laws in the isospin limit are 2π, 4π, . . ., as presented in Figure 1.19. Only
considering elastic scattering, the discontinuity from the 2π intermediate state reads [171]

(p1 − p2) µdisc FV
π (s)

=
i
2

∫
d4l

(2π)4 (2π)δ(l2
− M2

π )(2π)δ((ps − l)2
− M2

π )T∗I (s, zl )(ps − 2l) µFV
π (s) ,

(1.126)

where l is the loop momentum, zl = cos θl gives the cosine of the center-of-mass scattering
angle θl , TI (s, zl ) represents the ππ scattering amplitude with isospin I and ps = p1 + p2
denotes the center-of-mass momentum. Integrating out the delta functions yields

(p1 − p2) µdisc FV
π (s) =

i

64π2σπ (s)FV
π (s)

∫
dΩlT

∗
I (s, zl )(ps − 2l) µ , (1.127)

where σπ (s) =
√

1 − 4M2
π/s and Ωl are the phase space and the solid angle of the ππ

subsystem respectively. Recall that the partial-wave expansion of the ππ-scattering amplitude
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γ∗ π

π

π(l)

π(ps − l)

4π
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π

π

π

π

disc
[ ]

= + · · ·

Figure 1.19: Intermediate states contributing to the discontinuity of the pion vector form factor. For
the two-pion intermediate state, the gray blob represents the pion vector form factor and the blue
blob represents the ππ-scattering amplitude.

reads

TI (s, z) = 32π
∞∑
`=0

(2` + 1)P` (z)t I
` (s) , (1.128)

where P` (z) are the Legendre polynomials and t I
` (s) is the partial-wave amplitude with

angular momentum ` and isospin I. By virtue of the orthogonality condition of the Legendre
polynomials, only the ` = 1 partial wave in the partial-wave expansion is projected out
in (1.127), which is also the consequence of angular momentum conservation. Furthermore,
only the isospin I = 1 partial wave t1

1(s) contributes due to Bose symmetry. Parameterizing
the partial-wave amplitude by the phase shift as

t1
1(s) =

sin δ1
1(s) eiδ1

1 (s)

σπ (s)
, (1.129)

we find after some simple calculations,

disc FV
π (s) = 2iFV

π (s) sin δ1
1(s) e−iδ1

1 (s)θ(s − 4M2
π ) . (1.130)

Equation (1.130) is the manifestation of Watson’s final-state theorem [172], which states that
the phase of the form factor below inelastic thresholds is given by the two-particle scattering
phase shift. A solution of FV

π (s) can be constructed analytically by parameterizing it as

FV
π (s) = P(s)Ω(s) , (1.131)

where P(s) is a real function free of cuts below inelastic thresholds and Ω(s) is a special
solution free of zeros. Then the discontinuity equation (1.130) for the form factor translates
to

disc logΩ(s) = 2iδ1
1(s) , (1.132)

from which we can write a dispersion relation for logΩ(s),

logΩ(s) =
1

2πi

∫ ∞

4M2
π

ds′
disc logΩ

(
s′
)

s′ − s
. (1.133)
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Figure 1.20: The integration contour Ω for deriving dispersion relations for M (s, u0).

Taking into account the necessary subtraction and the normalization Ω(0) = 1, we end up
with a once-subtracted dispersion integral for Ω(s),

Ω(s) = exp
{

s
π

∫ ∞

4M2
π

ds′
δ1

1
(
s′
)

s′
(
s′ − s

) } . (1.134)

The above solution to the discontinuity equation of the form factor is known as the Omnès
function [173]. It takes into account the final-state interaction of the 2π system, representing
the iteration of bubble diagrams of the elastic scattering. The Omnès function is entirely
determined by the ππ P-wave scattering phase shift up to inelastic contributions.

Dispersion relations for scattering amplitudes

The basic strategies to the dispersive formalism of scattering amplitudes are similar to those
of form factors, albeit with complications of analytic structures arising from left-hand cuts
due to crossed-channel processes.
Let us consider dispersion relations for a 2→ 2 scattering amplitude M (s, t, u), where

s, t, and u are the Mandelstam variables of respective channels. In the equal-mass case,
the singularity structure of the scattering amplitude M (s, u0) for fixed u = u0 is shown in
Figure 1.20, which is of direct relevance to the choice of the integration contour of the
Cauchy integral for dispersion relations. These are two simple poles related to one-particle
exchanges and right- and left-hand cuts due to elastic s-channel and crossed-channel
scatterings. Ignoring branch cuts from inelastic contributions for simplicity, the integration
contour should be chosen as in Figure 1.20 to avoid the elastic scattering cuts. Assuming
the integral along the arc to vanish in the Λ2

→ ∞ limit, we find an unsubtracted fixed-u
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dispersion relation for M (s, u0) in the Mandelstam variable s,

M (s, u0) = P +
1
π

∫ −u0

−∞

ds′
Im Mt

(
s′, u0

)
s′ − s

+
1
π

∫ ∞

4m2
ds′

Im Ms
(
s′, u0

)
s′ − s

, (1.135)

where Im Ms and Im Mt are respectively imaginary parts of M both evaluated at the upper
rim of the right-hand and the left-hand cuts, while P represents contributions from the two
simple poles located in the contour,

P =
Rs

s − m2 +
Rt

s + u0 − 3m2 , (1.136)

where Rs and Rt are the residues of the two poles. One can also write down a fixed-u
dispersion relation in the Mandelstam variable t in a similar way.

We recall that the pole at s = −u0 + 3m2 and the left-hand cut in the s-channel originate
from the t-channel pole at position t = m2 and the right-hand cut in t. So making use of the
relation s′ + t′ + u0 = 4m2, we can write (1.135) in a more elegant form

M (s, t, u0) =
Rs

s − m2 +
Rt

t − m2 +
1
π

∫ ∞

4m2
ds′

Im Ms
(
s′, u0

)
s′ − s

+
1
π

∫ ∞

4m2
dt′

Im Mt (t
′, u0)

t′ − t
.

(1.137)
In addition, fixed-t and fixed-s dispersion relations can be written down in a similar manner.
Discontinuities or imaginary parts entering (1.137) are easily accessible in physical

regions, e.g., Im Ms when u0 takes some negative values. But if this is not the case, analytic
continuations are demanded even for the discontinuities themselves from the physical
regions. Mandelstam [174] proposed a representation with possible analytic continuations
of the discontinuities based on his famous Mandelstam hypothesis, which reads

M (s, t, u) = P +
1
π2

∞∫
sth

∞∫
tth

ρst
(
s′, t′

)(
s′ − s

) (
t′ − t

) ds′dt′ +
1
π2

∞∫
tth

∞∫
uth

ρtu
(
t′, u′

)(
t′ − t

) (
u′ − u

) dt′du′

+
1
π2

∞∫
uth

∞∫
sth

ρus
(
u′, s′

)(
u′ − u

) (
s′ − s

) du′ds′, (1.138)

where the integrations are over real regions starting from the respective threshold in each
channel and the constraint s′ + t′ + u′ = 4m2 is implied. This is called the Mandelstam
representation or the double dispersion relation. The spectral function ρst gives the double
discontinuity across cuts in the s-channel and the t-channel simultaneously, and the same
holds for ρtu and ρus in the respective channels.

So far we have not discussed subtractions in dispersion relations for scattering amplitudes.
The approach is similar to the one which is applied for single-variable functions. The
necessary number of subtractions can be determined referring to Regge theory [175] or
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the Froissart–Martin bound [176, 177], which states that the absolute value of the forward
scattering amplitude behaves like

|M (s, cos θ = 1) | < const. s(ln s)2 , (1.139)

when s → ∞.
In practice, the inputs of dispersion relations such as phase shifts or discontinuities

extracted from experiments are not available to arbitrarily high energies. In this sense,
subtractions are preferred in order to lessen the influences coming from the high-energy
region provided that we are able to precisely determine the subtraction constants.

1.2.3 Operator product expansion
Proposed byWilson in 1969 [178], the essential idea of the OPE is to expand the time-ordered
product of two (or more) local operators A(x) and B(y) as a sum of other renormalized
composite local operators evaluated at x or y, with coefficients depending on the space-time
difference x − y,

T {A(x)B(y)} =
∑

n

Cn(x − y)On(y) , (1.140)

where Cn are called the Wilson coefficients. The OPE is very useful under the circumstances
when x → y, for which only a few singular or non-suppressed terms of the expansion are
relevant. Consider a free massless scalar field as an instance, whose expansion looks like

T {φ(x)φ(0)} = −
1

4π2
1

x2
− iε
+

(
1 +

1
2

xµ∂µ
)
φ(0)2

+ O
(
x2) . (1.141)

The importance of present operators in the OPE is categorized by their twists, which are
defined as the difference between the dimension and spin of the pertinent term. The identity
operator has twist 0 and φ2 has dimension 2 spin 0 and thus twist 2. It is clear from the
above expansion that lower-twist operators dominate in the OPE and higher-twist operators
are suppressed.
What concerns us here are hadronic correlation functions. In this aspect, a general

hadronic current is written in terms of quark bilinear as jΓ(x) = q̄i (x)Γqj (x), where i and j
are flavor labels and the tensor structure resides in Γ. A practical form of the OPE in this
application reads

i
∫

d4x eiq·x T
{
jΓ(x) jΓ(0)

}
=

∑
n

CΓn (q)On(0) (1.142)

at short distances Q2
= −q2

� Λ
2
QCD. The Wilson coefficients are given in momentum

space and the operators in position space. Constructed in this way, the OPE factorizes the
short-distance and long-distance contributions to treat them separately. The short-distance
part can be calculated in pQCD expansion in terms of αs,

CΓn (q) = AΓn (q) + BΓn (q)αs + O
(
α2

s
)
. (1.143)
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The long-distance dynamics are usually absorbed into universal hadronic matrix elements
like vacuum condensates, light-cone distribution amplitudes, or parton distribution functions.
The unambiguous separation of two contributions defines a normalization (factorization)
scale µ. Required by the µ-independence of physical processes, the µ-dependence of Wilson
coefficients is canceled by the µ-dependence of hadronic matrix elements. OPEs are widely
used in combination with QCD and light-cone sum rules in hadron phenomenology.

1.2.4 QCD and light-cone sum rules
QCD sum rules [179] interrelate the perturbative and non-perturbative regimes of QCD via
OPEs and dispersion relations. Hadrons are represented by their interpolating quark currents
with correct quantum numbers, the vacuum-to-vacuum correlation functionΠΓ

(
q2) of which

is calculated in the framework of the OPE at large virtualities firstly. The non-perturbative
effects stemming from the non-trivial QCD vacuum are later absorbed in the non-vanishing
vacuum expectation values like quark and gluon condensates〈

0��q̄q��0
〉
,

〈
0��Ga

µνG
a µν��0

〉
. (1.144)

In the meantime, the same correlation function ΠΓ
(
q2) can be evaluated as a sum over

hadronic states using dispersion relations up to subtraction constants, assuming quark-hadron
duality [180]. The key equation of QCD sum rules is then obtained by equating the two
approaches:

∑
n

CΓn (q)〈0��On
��0
〉
=

(
q2)n

π

∫ ∞

sth
ds

ImΠΓ(s)

sn (s − q2) + n−1∑
k=0

ak
(
q2) k . (1.145)

The bond of the two equips us to either extract information of hadrons like decay constants
from QCD calculations or determine QCD parameters such as quark masses with the aid of
experimental inputs into dispersion relations [181, 182]. We discuss one example in more
detail.

The Adler function is defined via the VP function Π
(
q2) of quark currents,

D
(
q2)
= q2dΠ

(
q2)

dq2 . (1.146)

Its calculation in pQCD simplifies to

D
(
q2)
= −

1
4π2

n f∑
q

Q2
q

[
1 +

αs

π
+ O

(
α2

s
)]
, (1.147)

for Q2
= −q2

� m2
q, where mq is the quark mass. n f is the number of involved active quark

flavors and Qq their charges. With guaranteed convergence, we write down a dispersion
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relation for the Adler function:

D
(
q2)
=

q2

π

∫ ∞

sth
ds

ImΠ(s)(
s − q2)2 =

q2

12π2

∫ ∞

sth
ds

Rhad(s)(
s − q2)2 , (1.148)

where Rhad(s) is the hadronic ratio defined in Section 1.1. Equating the two results gives

−
1

4π2

n f∑
q

Q2
q

[
1 +

αs

π
+ O

(
α2

s
)]
=

q2

12π2

∫ ∞

sth
ds

Rhad(s)(
s − q2)2 . (1.149)

Driven by the validity of (1.149) in the deep Euclidean domain Q2
= −q2

→ ∞, we find

Rhad(s) → 3
n f∑
q

Q2
q , (1.150)

which shows that the hadronic R ratio is determined by pQCD. This result is used as the
HVP contribution to aµ from the perturbative region.
We studied the Adler function (1.146) instead of the VP function itself to guarantee the

convergence of the dispersion integral. In practical applications, in order to validate the
dominance of low-lying resonances, moments or Borel transforms are often applied to
suppress the higher-resonance contributions.
An important variant of QCD sum rules, the light-cone sum rule (LCSR) method [183–

185], is favorably applied to hard exclusive processes in QCD. Contrasted with QCD
sum rules dealing with vacuum-to-vacuum correlation functions, the LCSRs start with
time-ordered product of two hadronic currents sandwiched between the vacuum and one
external hadronic state. We consider one application to the B → π form factor in B → πl ν̄l
weak decays closely following [182, 186]. The relevant matrix element reads〈

π+(p)��ūγµb��B(p + q)
〉
= 2 f B→π

+

(
q2)pµ +

[
f B→π
+

(
q2)
+ f B→π
−

(
q2)]

qµ , (1.151)

where p2
= M2

π and (p + q)2
= m2

B. Among the two form factors only f B→π
+ is relevant, for

f B→π
− is kinematically suppressed. In the LCSR approach, we use the interpolating current

for the B meson to study a particular hadronic matrix element

Fµ(q, p) = i
∫

d4x eiqx〈π+(p)�� T
{
ū(x)γµb(x) mbb̄(0)iγ5d(0)

}��0
〉

= F
(
q2, (p + q)2)pµ + F̃

(
q2, (p + q)2)qµ , (1.152)

where it is sufficient to study only F.
For Q2

= −q2, |p + q |2 � Λ2
QCD, the main contribution to the integral (1.152) arises

from the light-cone region x2
= 0. A quark and an antiquark are created at space-time

points x and 0 to form one pion final state. In this context, the leading-twist OPE expansion
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b

u

d̄

π+

Figure 1.21: The leading diagram contributing to (1.152), with the pion distribution amplitude
represented by the blob.

of the currents near the light-cone defines the short-distance b-quark propagator and the
long-distance light-cone distribution amplitude of the pion φπ (u, µ), as diagrammatically
represented in Figure 1.21:

〈
π+(p)��ū(x)γµγ5d(0)��0

〉
= −ipµFπ

∫ 1

0
du eiup·xφπ (u, µ) , (1.153)

where Fπ is the pion decay constant and µ is the normalization scale. The pion distribution
amplitude embodies the longitudinal-momentum sharing of valance quark and antiquark
inside the pion and serves the role of non-perturbative vacuum condensates in QCD sum
rules. With the universal long-distance part defined, the LO result for the invariant amplitude
F reads

F
(
q2, (p + q)2)

= mbFπ

∫ 1

0

du φπ (u, µ)

m2
b − (q + up)2 . (1.154)

The form factor f B→π
+ is then determined by writing down a dispersion relation for the

invariant amplitude F.

1.2.5 Large-Nc expansion

There exists a systematic expansion for QCD when we take the number of quark colors
Nc → ∞ while keeping the αs Nc limit fixed [187, 188]. This is called the large-Nc or 1/Nc
expansion, which makes the physics of the strong interaction simpler while keeping its
essential features in the real world Nc = 3. Contrasted with the perturbative expansion in αs,
which is limited in the asymptotic-free domain, the 1/Nc expansion is the only expansion in
QCD that is valid at arbitrary energy scales.

In a general SU (Nc) color gauge theory, quarks reside in the fundamental representation
carrying one color index, while antiquarks in the conjugate representation carry another
color index. Gluons are in the adjoint representation, labeled by traceless Nc × Nc matrices(

Aµ

)α
β. Based on this group-theory analysis, it is convenient to introduce the ’t Hooft

double-line notation: quarks and antiquarks are drawn by arrowed lines with opposite
color flows; gluons are represented by double lines with two opposite arrows. The QCD
interaction vertices are shown in Figure 1.22 for a clarification.
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Figure 1.22: QCD interaction vertices and their double-line notations.

With the double-line notation, we are ready to formulate the large-Nc powering counting.
The main upshots are: the planar diagrams, which can be drawn in a plane with the double-
line notation without crossing the lines, prevail over the non-planar ones, for non-planar
diagrams are suppressed by an additional factor 1/N2

c ; in addition, internal quark-loops are
suppressed by a factor of 1/Nc. In formal studies, the large-Nc counting is determined by
the topological invariants of the given diagrams.
The evidence of Nc = 3 is reflected in the hadronic R ratio defined in Section 1.1. For

general Nc, the anomaly cancellation in the SM is achieved by changing the quark charges
to be multiples of 1/Nc, with more details given in Appendix B.1 of Part II. In reality, one
may doubt the expansion parameter 1/Nc = 1/3 being not too small. This argument can be
revoked by the Witten’s “wisecrack” [189] that in the QED expansion α = e2/4π ≈ 1/137
gives e ≈ 0.3, which does not deviate that much from 1/3, so that the expansion should
not be rejected a priori. More practically, the large-Nc analysis on one hand gives simple
rationales for phenomenology of mesons: mesons become narrow, free, and non-interacting
and the QCD spectrum boils down to infinite towers of one-meson states. On the other hand,
it provides quantitative descriptions for baryons, see the reviews [189–191] for more details.

1.3 Anomalies

1.3.1 Chiral anomaly
Noether’s theorem states that for every classical (internal or space-time) symmetry of the
action, there exists a conserved current j µ such that ∂µ j µ = 0. But a classical symmetry
is not guaranteed to hold at the quantum level. If such a classical symmetry is broken
by quantum effects, it is called anomalous. The most crucial of this type includes chiral
symmetries of theories with massless fermions.

We review the chiral anomaly [111–113] by studying a massless QED theory with chiral
fermions ψ. The Lagrangian is invariant under separate left- and right-chiral transformations.
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1.3 Anomalies

The associated vector and axial-vector currents are conserved classically,

∂µ j µ = 0 , ∂µ j µ5 = 0 ; j µ = ψ̄γµψ , j µ5 = ψ̄γ
µγ5ψ . (1.155)

However, the axial-vector current turns out to be anomalous,

∂µ j µ5 = −
e2

16π2 ε
µνρσFµνFρσ . (1.156)

We investigate this anomalous symmetry using the path-integral treatment first derived
in [192], with the upshot that anomalies dwell in the non-trivial transformation laws of
integration measures. The fermionic functional integral of the theory is given by [78]

Z =

∫
DψDψ̄ exp

[
i
∫

d4x ψ̄(i /D)ψ
]
, (1.157)

where /D = /∂ + ie /A. Under a local chiral gauge transformation,

ψ(x) → ψ′(x) = eiα(x)γ5
ψ(x) , ψ̄(x) → ψ̄′(x) = ψ̄eiα(x)γ5

, (1.158)

the resulting transformation of the action reads∫
d4x ψ̄(i /D)ψ →

∫
d4x

[
ψ̄(i /D)ψ + α(x)∂µ j µ5

]
. (1.159)

Formally, the integration measure changes to

DψDψ̄ → J −1
DψDψ̄ , (1.160)

with the Jacobian
J = det

(
e2iα(x)γ5)

= exp
[
2i tr α(x)γ5]

. (1.161)

Naive implementation of the trace would result in a trivial transformation and vanishing
of the anomaly. The caveat is that the determinant is divergent, for which we need a
regularization prescription. It is this regularization prescription that generates the correct
anomaly. To this end, we take the trace over the complete eigenstates of the operator i /D and
introduce the regulator for the high-energy modes,

J = lim
M→∞

exp
[
2i

∫
d4x α(x)

〈
x�� tr

[
γ5e(i /D)2/M2 ] ��x

〉]
. (1.162)

With the identity

/D2
= D2

+
ie
4

[γµ, γν]Fµν , (1.163)
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we find

lim
M→∞

〈
x�� tr

[
γ5e−

(
D2
+ ie

4 [γµ,γν]Fµν
)
/M2 ] ��x

〉
= lim

M→∞

1
2!

tr

γ5

(
ie

4M2 [γµ, γν]Fµν

)2

〈
x��e−∂

2/M2 ��x
〉

= −
e2

32π2 ε
µνρσFµνFρσ , (1.164)

where the following equality is used:

〈
x��e−∂

2/M2 ��x
〉
= lim

x→y

∫
d4k

(2π)4 e−ik ·(x−y)ek2/M2

= i
∫

d4kE

(2π)4 e−k2
E/M2

= i
M4

16π2 . (1.165)

Combining the variation of the action and the measure,

Z =

∫
DψDψ̄ exp




i
∫

d4x
[
ψ̄(i /D)ψ + α(x)

(
∂µ j µ5 +

e2

16π2 ε
µνρσFµνFρσ

)] 

.

(1.166)
The invariance of the functional gives the chiral anomaly (1.156). One may doubt that the
above derivation would be subject to a special choice of the regulator, but the chiral anomaly
is general for all different choices of regulators provided that they preserve the vector gauge
invariance.

1.3.2 ’t Hooft anomaly matching
The chiral anomaly is a type of anomaly that pertains to global symmetries. Its generalization
to non-Abelian theories is straightforward: we should take the trace over the additional
group indices. For massless two-flavor QCD (mu = md = 0) of interest to us, the chiral
anomaly for the iso-triplet current from the QED interaction reads

∂µ j µ a
5 = −

e2

16π2 ε
µνρσFµνFρσ tr

(
σa

2
Q2

)
· tr 13

= −
Nce2

16π2 ε
µνρσFµνFρσ tr

(σa

2
Q2) , (1.167)

where the quark charge matrix is

Q =
(

2/3 0
0 −1/3

)
. (1.168)
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This gives a non-zero result only for a = 3 and drives π0 predominantly decaying into two
photons.
Apart from anomalies in global symmetries, the second type of anomalies appears in

gauge theories. These gauge anomalies are fatal as they violate Ward identities, which
are indispensable for renormalizability and unitarity of the theory. Therefore, gauge
anomalies must be canceled in chiral gauge theories. This leads to the anomaly cancellation
condition (1.52) in the SM.

Like QCD, an asymptotically free gauge theory can be strongly coupled at short distances.
This scenario indicates new relevant degrees of freedom at low energies and a new effective
field theory for its description. What is the fate of possible global anomalies arising
from the fundamental degrees of freedom at high energies? ’t Hooft [193] discovered
that the anomaly should be present and exact in both theories with relevant degrees of
freedom regardless of the coupling strength. In the infrared domain, the anomaly should be
restored by massless fermion bound states or Nambu–Goldstone bosons if the symmetry is
spontaneously broken. In the case of QCD, the Wess–Zumino–Witten effective action [139,
140] of the pseudoscalar octet generates the anomaly after chiral symmetry breaking.

1.3.3 Wess–Zumino–Witten action

The ChPT Lagrangian is constructed from the Goldstone-boson fields collected in a unitary
matrix representation U (φ(x)) respecting chiral symmetry,

U (φ(x)) = exp
(
i
φ(x)
F0

)
, (1.169)

where

φ(x) =
8∑

a=1
λaφa (x) =

√
2

*....
,

π0
√

2
+

η8√
6

π+ K+

π− − π0
√

2
+

η8√
6

K0

K− K̄0
−

2η8√
6

+////
-

. (1.170)

The dimensionful constant F0 is identified with the meson decay constant in the chiral
limit. This construction contains a larger symmetry than QCD itself: the Lagrangian is
invariant under φ(x) → −φ(x). Consequently, this usual construction is only capable
of describing interactions involving even numbers of Goldstone bosons. The reactions
driven by the anomaly in the odd-intrinsic-parity sector, like π0

→ γγ and γ → 3π, are
relentlessly ruled out. Since the chiral symmetry is violated at a fundamental level by the
fermionic determinant, the anomalous term should be added into the effective Lagrangian
consistently. Wess and Zumino [139] worked out the result as a Taylor expansion of the
explicit Goldstone-boson fields, as it cannot be expressed using U (φ(x)) as a single local
effective Lagrangian in a gauge-invariant form. Witten [140] later reformulated the effective
action into an elegant representation as a five-dimensional Chern–Simons term, whose
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boundary is the four-dimensional Minkowski space. To be more specific, it reads

S[U, `, r]WZW = −
iNc

240π2

∫
B5

d5x ε i j klm tr
(
Σ

L
i Σ

L
j Σ

L
k Σ

L
l Σ

L
m

)
−

iNc

48π2

∫
M4

d4x εµνρσ
(
W (U, `, r)µνρσ −W (1, `, r)µνρσ

)
, (1.171)

where the indices i, . . . ,m run from 0 to 4, with the antisymmetric tensor ε01234 = −ε
01234

=

1, and

W (U, `, r)µνρσ = tr
(
U`µ`ν`ρU

†rσ +
1
4

U`µU
†rνU`ρU

†rσ + iU∂µ`ν`ρU
†rσ

+ i∂µrνU`ρU
†rσ − iΣL

µ`νU
†rρU`σ + Σ

L
µU†∂νrρU`σ

− Σ
L
µΣ

L
νU†rρU`σ + Σ

L
µ`ν∂ρ`σ + Σ

L
µ∂ν`ρ`σ − iΣL

µ`ν`ρ`σ

+
1
2
Σ

L
µ`νΣ

L
ρ`σ − iΣL

µΣ
L
ν Σ

L
ρ`σ

)
− (L ↔ R) , (1.172)

where
Σ

L
µ = U†∂µU, Σ

R
µ = U∂µU

† . (1.173)

L ↔ R stands for the interchanges U ↔ U†, `µ ↔ rµ, and Σ
L
µ ↔ Σ

R
µ . The first integral

in (1.171) is over the boundary of a five-dimensional sphere B5 and the second over the
four-dimensional Minkowski space. Despite the complexity, the effective action (1.171) has
no free parameters apart from the number of colors due to the anomaly matching. Inserting
`µ = rµ = eQAµ for the external currents and evaluating the traces render us the tree-level
Lagrangian (1.61) for the pseudoscalar–photon–photon interactions.
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Hadronic vacuum polarization
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Chapter 2

Hadronic vacuum polarization: 3π1

2.1 Introduction
Three-particle decays subject to strong final-state interactions are notoriously difficult
to describe in a fully model-independent way, i.e., without assumptions on intermediate
states of the decay or other approximations of the hadron dynamics. One of the simplest
examples is the three-pion decay of vector mesons, V = ω, φ, which phenomenologically
is dominated by the ρ(770) resonance formed in the final-state rescattering of the pions.
However, a description beyond a simple isobar model is challenging, especially given that
the decay is out of reach for low-energy effective field theories. A strategy to control the
pion final-state interactions based on analyticity and unitarity was first developed in the
context of K → 3π [195] and applied to ω → 3π as early as [196]. These Khuri–Treiman
(KT) equations have since become a standard tool in three-particle decays, with recent
applications specifically to ω, φ→ 3π decays in [197–200], in part triggered by significant
progress in the determination of the ππ phase shifts that are required as crucial input in the
solution [201, 202].

A detailed, model-independent understanding of hadronic amplitudes can have significant
impact beyond low-energy QCD itself, most notably in low-energy searches for physics
beyond the SM such as the muon (g − 2)µ, whose SM prediction (1.64) currently disagrees
with experiment (1.27) at the level of 3.7σ. To confront the SM with upcoming experiments
at Fermilab [70] and J-PARC [71], one needs to be able to control the theoretical uncertainties
at a commensurate level. In this context, the issue of hadronic modeling is most severe in
the HLbL contribution, for which a data-driven dispersive approach has only been recently
developed [142–152].2 In contrast, the leading hadronic contribution, HVP, is, in principle,
fully determined by the cross section for e+e− → hadrons [86, 87], and indeed a combination
of the analysis of exclusive channels, inclusive data, and pQCD constraints are used for
current estimates of the HVP contribution [131, 132, 135, 136, 206, 207].3 However, only
the compilations from [131, 132, 135, 136] are exclusively based on the direct integration
1 This Chapter’s contents including Appendix A have been published in [134, 194].
2 See [160, 161, 203–205] for recent progress in lattice-QCD calculations of HLbL scattering.
3 This does not apply to space-like approaches, as in lattice QCD [208–216] or the MUonE proposal [217],
which are complementary to but not yet competitive with the time-like approach.
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of the data, while [206, 207] do involve some model assumptions, in particular for the ω
and φ contributions. In general, tensions among data sets are typically taken into account
by a local error inflation.

For the lowest-multiplicity channels that dominate HVP at low energies the available
constraints from analyticity and unitarity (as well as low-energy theorems) are powerful
enough to define a global fit function that the data need to follow if consistent with all QCD
constraints. Such an approach to the 2π channel below 1 GeV has recently been completed
in [133], relying on a close relation between ππ scattering, the pion vector form factor,
and the HVP integral [218–222]. As a result, it was found that despite the known tension
between BaBar [223, 224] and KLOE [225–228], each data set by itself is consistent with
QCD constraints, and a global fit then defines an average that only uses as additional input
information on the covariance matrices as provided by experiment.

Here, we extend this strategy to the 3π channel, which produces both the second-largest
contribution to the total HVP value and its uncertainty. Instead of the pion vector form
factor, the underlying hadronic amplitude becomes γ∗ → 3π, which will be discussed
in Section 2.2.4 It further emerges in the two-pion contributions via the left-hand cut in
γ∗γ∗ → ππ [233–238]. For an isoscalar-photon virtuality q2

= M2
ω, M2

φ , this amplitude
is directly related to the three-particle decays of ω and φ, and indeed the KT approach
can be generalized to obtain a dispersive representation of the e+e− → 3π cross section,
see Section 2.2 for a short review. The ω and φ resonance peaks thus constitute the most
conspicuous features of the cross section, but for the HVP integral also the off-peak regions
need to be controlled, with QCD determining, via the Wess–Zumino–Witten anomaly [139,
140], the normalization in terms of the pion decay constant Fπ [239–241], and, in terms of
the KT equations, the ππ rescattering among the final-state pions.

In the 2π channel the average is dominated by experiments using the initial-state-radiation
(ISR) technique, while data from energy-scan experiments [242–247] are consistent but
currently less precise. For the 3π channel this situation is reversed, with only a single ISR
data set, which, in addition, only covers the energy region above the φ [248]. Instead, the
low-energy region including theω and φ resonances has been most precisely measured by the
Novosibirsk experiments SND [249–252] and CMD-2 [243, 253–255]. For completeness,
we will also consider earlier data from DM1 [256], DM2 [257], and ND [258]. The main
part of this Chapter is then devoted to the fit systematics to the various data sets, as detailed in
Section 2.3, before working out the consequences for HVP in Section 2.4 and summarizing
our findings in Section 2.5.

4 This representation for the γ∗ → 3π amplitude was first developed in the context of the pion-pole contribution
to HLbL scattering [149, 150, 229–232] that will be discussed in Chapter 4, and later applied to the HVP
contributions from the 3π and π0γ channels (Chapters 2 and 3). In this thesis, we discuss the results in
reversed order to enhance the coherence of the presentation.
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2.2 Dispersive representation of the γ∗ → 3π amplitude

Neglecting the mass of the electron, the HVP contribution to (g − 2)µ can be expressed
as (1.55), with the kernel function

K̂ (s) =
3s

m2
µ

∫ 1

0
dx

x2(1 − x)

x2
+ s/m2

µ(1 − x)
, (2.1)

which can be further expressed in terms of K (s) in (1.41). Since higher-order iterations of
HVP do become relevant [130, 259] (at NLO, this issue arises, at least in principle, even for
HLbL [162]), conventions for the radiative corrections need to be specified. The hadronic
cross section is to be understood including FSR, but with ISR and VP removed (bare cross
section). This issue of radiative corrections is most severe for the 2π channel, and therein for
the ISR data sets, but as demonstrated in [260] the corrections are now known sufficiently
accurately that they cannot account for the (g − 2)µ anomaly.

For the 3π channel, we have sth = 9M2
π in (1.55) and the radiative corrections to the

cross section are mainly of conceptual nature. Strictly speaking, a dispersive representation
of the γ∗ → 3π amplitude is only valid in pure QCD, so that, in principle, all photon
contributions including FSR should be removed before the fit and only afterwards added
again in a perturbative way. In the case of the 2π channel [133], this strategy was indeed
carried through in the context of a scalar-QED approximation. For the 3π channel, the full
HVP contribution is more than an order of magnitude smaller, so that the total size of the
3πγ final state would be naively estimated at the level . 0.3 × 10−10, which by itself is
borderline relevant at the current level of accuracy. However, since FSR is automatically
included in the cross sections provided by experiment, the actual effect only concerns a
possible distortion of the fit due to subtracting and adding the FSR contribution, which will
be even smaller and therefore neglected here. In contrast, the VP removal does become
relevant at the current level of accuracy, mainly because of the resonance enhancement in
the vicinity of ρ, ω, and φ, which shifts the pole position, see Section 2.3.5, and modifies
the spectral function. When provided by experiment, we use the bare cross section directly,
otherwise we apply the VP routine from [132]. To check the sensitivity to this correction,
we also constructed an independent VP function based on the 2π fit from [133] as well as
the 3π cross section from the present Chapter, so that major deviations to the full VP only
start in the vicinity of the φ, where the KK̄ channels become relevant. We can therefore
check the 3π contribution self-consistently up-to-and-including the ω peak, producing a
difference of less than 0.1 × 10−10 in the HVP integral. Accordingly, we conclude that the
details of the VP routine lead to a negligible effect as well.
The dispersive representation that we fit to the bare cross section is constructed along

the following lines. First, the cross section is given in terms of the γ∗ → 3π amplitude
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F
(
s, t, u; q2) according to

σe+e−→3π
(
q2)
= α2

∫ smax

smin

ds
∫ tmax

tmin

dt
(
s − 4M2

π

)
λ
(
q2, M2

π, s
)

sin2 θs

768 π q6
��F

(
s, t, u; q2) ��2 ,

(2.2)
with integration boundaries

smin = 4M2
π , smax =

(√
q2
− Mπ

)2
,

tmin/max =
(
E∗− + E∗0

)2
−

(√
E∗2− − M2

π ±

√
E∗20 − M2

π

)2
, (2.3)

and

E∗− =
√

s
2
, E∗0 =

q2
− s − M2

π

2
√

s
. (2.4)

The amplitude itself is defined by the matrix element of the electromagnetic current jµ〈
0�� jµ(0)��π+(p+)π−(p−)π0(p0)

〉
= −εµνρσ p ν

+p ρ
− pσ

0 F
(
s, t, u; q2) , (2.5)

with q = p+ + p− + p0 and kinematics

s = (q − p0)2, t = (q − p+)2 , u = (q − p−)2 , s + t + u = 3M2
π + q2 ,

zs = cos θs =
t − u

σπ (s)λ1/2 (q2, M2
π, s

) ,
σπ (s) =

√
1 −

4M2
π

s
, λ(a, b, c) = a2

+ b2
+ c2

− 2(ab + ac + bc) . (2.6)

At low energy, the Wess–Zumino–Witten anomaly [139, 140] provides a normalization
for F in the chiral limit [239–241], which reads

F (0, 0, 0; 0) =
1

4π2F3
π

≡ F3π , (2.7)

where Fπ = 92.28(10) MeV [22] is the pion decay constant. So far, this normalization has
been tested only at the 10% level both in the extraction from Primakoff measurements [261]
and from the reaction π−e− → π−e−π0 [262]. Therefore, a dispersive framework was
proposed in [230, 232] to extract the chiral anomaly from the γπ → ππ cross section
up to 1 GeV, using forthcoming data on γπ− → π−π0 taken in the COMPASS Primakoff
program [263].

The constraints from analyticity and unitarity are most conveniently formulated in terms
of the partial-wave amplitudes [264]

F
(
s, t, u; q2)

=
∑
l odd

f l
(
s, q2)P′l (zs) , (2.8)
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with derivatives of the Legendre polynomials P′l (zs), and the dominant P-wave is projected
out by

f1
(
s, q2)

=
3
4

∫ 1

−1
dzs

(
1 − z2

s
)
F

(
s, t, u; q2) . (2.9)

Since higher partial waves are completely irrelevant below the ρ3(1690) resonance [197,
232] (see Appendix A.1 for an estimate of the F-wave contribution), F can be decomposed
into single-variable functions based on the reconstruction theorem [265, 266],

F
(
s, t, u; q2)

= F
(
s, q2)

+ F
(
t, q2)

+ F
(
u, q2) . (2.10)

F
(
s, q2) is related to the l = 1 partial wave according to

f1
(
s, q2)

= F
(
s, q2)

+ F̂
(
s, q2) ,

F̂
(
s, q2)

=
3
2

∫ 1

−1
dzs

(
1 − z2

s
)
F

(
t
(
s, q2, zs

)
, q2) , (2.11)

where
t
(
s, q2, zs

)
=

1
2

(
3M2

π + q2
− s

)
+

1
2
σπ (s) λ1/2 (q2, M2

π, s
)

zs . (2.12)

F̂
(
s, q2) contains the left-hand-cut contribution to the partial wave f1

(
s, q2) arising from

the crossed-channel singularities. Furthermore, the angular integration in F̂
(
s, q2) imposes

a complex analytic structure in the decay region q2 > 9M2
π , which is explained in detail

in [197]. The discontinuity equation for F
(
s, q2) reads

discF
(
s, q2)

= 2i
(
F

(
s, q2)

+ F̂
(
s, q2)) θ (s − 4M2

π

)
sin δ(s) e−iδ(s) , (2.13)

where δ(s) refers to the ππ P-wave phase shift. This is where, in a model-independent
way, the information about the ρ(770) enters. The solution is given by a once-subtracted
dispersive representation [197]:

F
(
s, q2)

= Ω(s)
{
a
(
q2)
+

s
π

∫ ∞

4M2
π

ds′
F̂

(
s′, q2) sin δ

(
s′
)

s′
(
s′ − s

)
|Ω

(
s′
)
|

}
, (2.14)

with the Omnès function [173]

Ω(s) = exp
{ s
π

∫ ∞

4M2
π

ds′
δ
(
s′
)

s′
(
s′ − s

) } , (2.15)

The numerical calculation of the integral equation (2.14) relies on the iterative solution of
the KT equations based on the observation that F̂ is linear in F . In practice, we solve (2.14)
with the ππ phase shift recently extracted from the e+e− → π+π− channel [133] and a cutoff
parameter Λ3π = 2.5 GeV for a

(
q2)
→ 1 and restore the full dependence as an overall

normalization of the iterative solution. Variations of these input quantities prove irrelevant
compared to other sources of systematic uncertainties.
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For a given q2, the KT equations determine the s-dependence of the partial-wave amplitude
f1

(
s, q2) , but the overall normalization a

(
q2) is not predicted. At q2

= 0 it is determined
by the low-energy theorem, at q2

= M2
ω, M2

φ it is related to the ω, φ→ 3π decay widths, and
in general it can be extracted from a fit to the e+e− → 3π cross section. We take essentially
the same parameterization as in [149, 150]

a
(
q2)
= αA +

q2

π

∫ ∞

sth
ds′

ImA
(
s′
)

s′
(
s′ − q2) + Cp

(
q2) , (2.16)

constructed in such a way as to fulfill the low-energy constraint from the chiral anomaly,
preserve analyticity of F

(
s, t, u; q2) , and be flexible enough to describe the data up to

1.8 GeV. The significance of the individual terms is as follows: the subtraction constant αA
is determined by the chiral anomaly (corrected by quark-mass renormalization) [230, 267],

αA =
F3π
3
× 1.066(10) . (2.17)

The function A is given by the sum of Breit–Wigner parameterizations

A
(
q2)
=

∑
V

cV

M2
V − q2

− i
√

q2 ΓV
(
q2) , (2.18)

where V represents ω and φ and as well as ω′(1420) and ω′′(1650) as the description of the
e+e− → 3π cross section extends to 1.8 GeV. The energy-dependent widths Γω/φ

(
q2) of

the ω/φ mesons derive from their main decay channels according to

Γω
(
q2)
=

γω→3π
(
q2)

γω→3π
(
M2
ω

) Γω→3π +
γ
ω→π0γ

(
q2)

γ
ω→π0γ

(
M2
ω

) Γω→π0γ
,

Γφ
(
q2)
=

γφ→3π
(
q2)

γφ→3π
(
M2
φ

) Γφ→3π +
∑

K=K+,K0

γφ→KK̄
(
q2)

γφ→KK̄
(
M2
φ

) Γφ→KK̄ , (2.19)

with Γi the measured partial decay width for the decay i and the energy-dependent coefficients

γ
ω→π0γ

(
q2)
=

(
q2
− M2

π

)3(
q2)3/2 , γφ→KK̄

(
q2)
=

(
q2
− 4M2

K
)3/2

q2 . (2.20)

The phase space γω/φ→3π
(
q2) is calculated as described in [197]. These main channels

amount to about 98% of the ω and φ total widths, while the missing 2% are remedied by
rescaling all partial widths accordingly. We also considered adding the leading missing
channels ω → π+π− and φ → ηγ explicitly to the parameterization, but this yields an
almost identical effect compared to the simple rescaling of the partial widths. Due to
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2.3 Fits to e+e− data

the π0γ channel, the integration starts at sth = M2
π0 . The parameters for ω′ and ω′′ are

taken from [22], assuming a 100% branching ratio to 3π, but for ω and φ we now allow
mass and width to vary: with VP removed, noticeable differences to the PDG emerge, see
Section 2.3.5, which is expected since the PDG parameters subsume radiative effects.

Finally, the conformal polynomial in (2.16)

Cp
(
q2)
=

p∑
i=1

ci
(
z
(
q2) i
− z

(
0
) i) , z

(
q2)
=

√
sinel − s1 −

√
sinel − q2

√
sinel − s1 +

√
sinel − q2

, (2.21)

accounts for non-resonant effects. The inelastic threshold sinel is set to 1 GeV2. motivated
by the nearby KK̄ threshold, the second parameter to s1 = −1 GeV2. Further constraints are
implemented to remove the S-wave cusp in the polynomial and to ensure that the sum rule

αA =
1
π

∫ ∞

sth
ds′

Im a
(
s′
)

s′
=

1
π

∫ ∞

sth
ds′

ImA
(
s′
)

s′
+

1
π

∫ ∞

sinel
ds′

ImCp
(
s′
)

s′
(2.22)

is fulfilled exactly. In [149, 150] we also introduced further parameters to be able to
impose a faster asymptotic behavior of the imaginary part as required for the dispersive
description of the pion transition form factor (TFF), but since this impaired to some extent
the description of the cross section, here, we only consider these additional constraints to
estimate systematic uncertainties.

2.3 Fits to e+e− data

2.3.1 Data sets and unbiased fitting
We start with a brief summary of the data sets that we will include in our analysis, see
Table 2.1. For all data sets the statistical errors are given in diagonal form, with the
implication that correlations are negligible at least at the quoted level of uncertainty. In
contrast, the treatment of the systematic uncertainties is more ambiguous, since assumptions
need to be made on the correlations between data points. Some sources of systematic
uncertainty are, by definition, 100% correlated, these are normalization uncertainties for
instance due to the luminosity measurement and the detection efficiency, but other systematic
effects may well be localized in certain energy regions and therefore should not be considered
fully correlated. To follow the experimental documentation as closely as possible, we
consider a systematic error of normalization-type origin whenever given as a percentage,
otherwise, we treat that uncertainty as a diagonal error. Note that this distinction mainly
affects the SND data sets, while for the other energy-scan experiments all systematic errors
are given as a percentage. The exception is the ISR data set from BaBar, but [248] states
explicitly that the systematic errors for different mass bins are fully correlated.
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Experiment Region of
√

s [GeV] # data points Normalization uncertainty

SND 2002 [249, 250] [0.98, 1.38] 67 5.0% (data from [249])
5.4% (otherwise)

SND 2003 [251] [0.66, 0.97] 49 3.4% for
√

s < 0.9 GeV
4.5% for

√
s > 0.9 GeV

SND 2015 [252] [1.05, 1.80] 31 3.7%

CMD-2 1995 [253] [0.99, 1.03] 16 4.6%
CMD-2 1998 [254] [0.99, 1.03] 13 2.3%
CMD-2 2004 [243] [0.76, 0.81] 13 1.3%
CMD-2 2006 [255] [0.98, 1.06] 54 2.5%

DM1 1980 [256] [0.75, 1.10] 26 3.2%
ND 1991 [258] [0.81, 1.39] 28 10% for

√
s < 1.0 GeV

20% for
√

s > 1.0 GeV
DM2 1992 [257] [1.34, 1.80] 10 8.7%
BaBar 2004 [248] [1.06, 1.80] 30 all systematics

Table 2.1: Summary of data sets for e+e− → 3π. For [248, 252, 257] only data points for
√

s ≤ 1.8 GeV are included. In the last column we indicate the size of the systematic errors that we
interpret as a normalization-type uncertainty and therefore assume to be 100% correlated.

These details are important to monitor a potential bias in the fit. Most importantly, a
χ2-minimization with an empirical full covariance matrix V(i, j) including a normalization
uncertainty,

χ2
=

∑
i, j

( f (xi) − yi)V(i, j)−1( f (x j ) − y j ) , (2.23)

will converge to a solution that is biased towards a lower value than expected due to the fact
that smaller data values are assigned smaller normalization uncertainties. This D’Agostini
bias was first observed in [268]. It becomes increasingly severe for large normalization
uncertainties and/or a large number of data points, so precisely when there is a normalization
uncertainty in an experiment that is 100% correlated among all data points. In addition,
in a global fit of several experiments a bias that may occur in the combination needs to be
avoided.
We follow the iterative fit strategy proposed by the NNPDF collaboration [269] to

eliminate the bias, which is based on the observation that the normalization uncertainties
should be proportional to the true value rather than the measurement. In this manner, the
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2.3 Fits to e+e− data

modified iterative covariance matrix is given as

Vn+1(i, j) = Vstat(i, j) +
Vsyst(i, j)

yiy j
fn(xi) fn(x j ) , (2.24)

where Vstat(i, j) is the statistical covariance matrix and the systematic covariance matrix
Vsyst(i, j) is determined by multiplying the normalization factors with the fit function fn(xi)
in each iteration step rather than the data. The empirical covariance matrix can be chosen as
the initial guess, with expected rapid convergence to the final solution.

In the fit to the data sets in Table 2.1 we only encounter either fully correlated or diagonal
errors. We follow [269] and treat the uncorrelated systematic errors on the same footing
as the statistical ones. For a single experiment one would therefore expect that the central
values obtained in a fit with diagonal errors only should be close to the central values of the
full fit,otherwise, one would need to understand better the role of the correlations. In the
following, we will thus consider both diagonal and full fits to monitor whether significant
differences arise.

2.3.2 Fits to SND
As the first set of fits we consider the SND data sets [249–252]. The results are summarized
in Table 2.2, both for diagonal errors only and including correlations as described in the
previous section. In each case we consider variants of the fits with pconf = 2 . . . 4 free
parameters in the conformal polynomial and at this stage display only the fit uncertainties,
with systematic uncertainties of the dispersive representation to be added later.

The results in Table 2.2 show that the main effect of the correlations is an increase in the
uncertainty, within the fit statistics the central values agree with the diagonal fit. However,
we also note that the description of the data becomes worse, which can be remedied to
some extent by increasing pconf. While the diagonal fit proves very stable to variations of
pconf, we observe that when including the correlations the central value increases with pconf,
balancing the reduction in the central value compared to the diagonal fit in the variant with
pconf = 2, the smallest for which a reasonable fit can be obtained.
We note that the treatment of the systematic uncertainties, closely following experiment as

specified in Section 2.3.1, is critical to obtain consistent fits. If all systematic uncertainties
were assumed to be fully correlated, the fit iteration would not even converge or, when
restricted to a subset of the data, lead to a significant downward bias.

2.3.3 Fits to CMD-2 and BaBar
The CMD-2 data sets mainly cover the resonance regions, with [243] scattered around the ω
peak and [253–255] around the φ. To be able to perform fits to the whole energy region up
to 1.8 GeV and thus facilitate the comparison to the SND fits we combine the CMD-2 data
with the BaBar data set [248], which starts directly above the φ and covers the remainder.
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 97.6/137 93.5/136 93.2/135 164.9/137 155.4/136 152.6/135

= 0.71 = 0.69 = 0.69 = 1.20 = 1.14 = 1.13
p-value 0.996 0.998 0.998 0.052 0.12 0.14
Mω [MeV] 782.62(4) 782.62(4) 782.62(4) 782.63(2) 782.63(2) 782.63(2)

Γω [MeV] 8.68(6) 8.72(7) 8.73(7) 8.66(3) 8.68(3) 8.68(3)

Mφ [MeV] 1019.19(4) 1019.18(4) 1019.18(4) 1019.19(2) 1019.19(2) 1019.19(2)

Γφ [MeV] 4.16(8) 4.13(8) 4.13(8) 4.17(4) 4.16(4) 4.16(4)

cω [GeV−1] 2.88(1) 2.89(1) 2.89(1) 2.87(3) 2.88(3) 2.90(3)

cφ [GeV−1] −0.393(4) −0.392(4) −0.392(4) −0.388(6) −0.386(6) −0.385(6)

cω′ [GeV−1] −0.16(4) −0.08(5) −0.08(5) −0.16(3) −0.06(4) −0.07(5)

cω′′ [GeV−1] −1.59(9) −1.46(11) −1.42(14) −1.62(9) −1.50(10) −1.42(12)

c1 [GeV−3] −0.43(11) −0.33(13) −0.32(13) −0.37(11) −0.18(12) −0.06(15)

c2 [GeV−3] −1.35(5) −1.44(7) −1.49(12) −1.30(5) −1.42(6) −1.58(12)

c3 [GeV−3] — −0.45(9) −0.41(12) — −0.48(8) −0.41(10)

c4 [GeV−3] — — 1.40(10) — — 1.52(10)

1010
× a3π

µ |≤1.8 GeV 47.28(25) 47.31(25) 47.34(25) 46.74(92) 46.97(93) 47.53(1.00)

Table 2.2: Fits to the combination of SND data sets [249–252], for diagonal errors and full covariance
matrices. pconf denotes the number of free parameters in the conformal polynomial. All errors refer
to fit uncertainties only.

We do not find acceptable fits for the naive combination of all these data sets. To isolate
the reason we perform two separate fits, first, to [243, 253, 254] and BaBar [248], as given in
Table 2.3, as well as [243, 255] and BaBar [248], see Table 2.4. This strategy is motivated
by the suspicion that inconsistencies among the CMD-2 data sets arise in the vicinity of the
φ, which the separate consideration of the data sets covering this region should be able to
corroborate.

In all cases we see that the diagonal and full fits are well compatible, so that the treatment
of correlations becomes less of a concern than for the SND fits. However, we find that the fit
quality is quite poor: while for the [253, 254] φ data sets the fits with pconf = 4 might still be
considered acceptable, this is certainly not the case for [255], even though also in this case
higher orders in the conformal expansion do yield some improvement of the χ2. The most
relevant discrepancies in the fit results concern the ω coupling cω, which is significantly
smaller in Table 2.4 despite being based on the same data set in the ω region, leading to the
overall much lower HVP integral, as well as the φ mass. The fits in Table 2.3 prefer a value
around Mφ = 1019.25(4) MeV, while the fits in Table 2.4 point to Mφ = 1019.09(3) MeV,
suggesting that inconsistencies in the φ region are compensated elsewhere in the fit, thus the
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 83.9/62 83.5/61 77.4/60 91.9/62 91.6/61 84.3/60

= 1.35 = 1.37 = 1.29 = 1.48 = 1.50 = 1.41
p-value 0.03 0.03 0.06 0.008 0.007 0.02
Mω [MeV] 782.49(10) 782.49(10) 782.50(10) 782.49(9) 782.49(9) 782.50(9)

Γω [MeV] 9.11(17) 9.13(16) 8.99(16) 9.11(15) 9.13(15) 9.00(15)

Mφ [MeV] 1019.25(4) 1019.25(4) 1019.22(4) 1019.28(4) 1019.27(4) 1019.25(4)

Γφ [MeV] 4.46(11) 4.45(11) 4.45(11) 4.46(10) 4.46(10) 4.46(10)

cω [GeV−1] 2.91(4) 2.92(4) 2.88(4) 2.91(4) 2.92(4) 2.88(4)

cφ [GeV−1] −0.406(8) −0.406(8) −0.407(8) −0.405(8) −0.404(8) −0.405(8)

cω′ [GeV−1] −0.25(11) −0.21(13) −0.19(14) −0.24(11) −0.21(12) −0.18(13)

cω′′ [GeV−1] −2.03(32) −1.97(31) −2.69(37) −2.01(31) −1.98(30) −2.73(35)

c1 [GeV−3] 0.12(43) 0.22(42) 0.20(30) 0.07(43) 0.17(43) 0.10(29)

c2 [GeV−3] −1.14(12) −1.19(14) −0.31(40) −1.16(11) −1.19(13) −0.24(39)

c3 [GeV−3] — −0.84(28) −1.51(34) — −0.84(28) −1.52(32)

c4 [GeV−3] — — 1.20(22) — — 1.19(21)

1010
× a3π

µ |≤1.8 GeV 46.17(56) 46.19(55) 45.80(57) 46.23(74) 46.27(74) 45.83(75)

Table 2.3: Fits to the combination of the CMD-2 data sets [243, 253, 254] and BaBar [248].

change in cω.
From the mass shifts discussed in Appendix A.2, together with the PDG φ mass, we

would expect a fit value Mφ = 1019.20MeV, in perfect agreement with Table 2.2, largely
consistent with Table 2.3, but clearly at odds with Table 2.4. Since within uncertainties
the ω masses are consistent among the three fits, this suggests as a remedy to include
energy-calibration uncertainties in the context of [255], in analogy to the energy rescalings
found necessary in the case of the 2π channel [133]. In fact, [255] includes three different
scans, and separate fits to each of them reveal that the first two yield φmasses in the expected
range, while the third one differs, leading to the lower mass in Table 2.4. Accordingly, we
apply a rescaling

√
s →

√
s + ξ (

√
s − 3Mπ) (2.25)

to the data of the third scan only. The fit prefers a rescaling around ξ ∼ 10−4, well in line
with potential uncertainties of the energy calibration. Including ξ as an additional parameter
in the fit indeed leads to a mild improvement in the χ2.

However, removing this tension in Mφ by no means renders the resulting fits statistically
acceptable. Inspection of the contribution to the χ2 from each data point shows that a by
far disproportionate amount originates from the last few points of each scan of [255] for
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 199.4/87 164.8/86 142.0/85 213.3/87 185.0/86 156.4/85

= 2.29 = 1.91 = 1.67 = 2.45 = 2.15 = 1.84
p-value 8 × 10−11 7 × 10−7 1 × 10−4 1 × 10−12 3 × 10−9 4 × 10−6

Mω [MeV] 782.53(10) 782.54(10) 782.56(10) 782.53(10) 782.54(9) 782.56(10)

Γω [MeV] 8.74(12) 8.74(12) 8.48(13) 8.76(13) 8.80(12) 8.56(13)

Mφ [MeV] 1019.11(2) 1019.09(2) 1019.07(2) 1019.10(2) 1019.08(2) 1019.07(2)

Γφ [MeV] 4.40(6) 4.34(6) 4.34(6) 4.35(5) 4.30(5) 4.29(5)

cω [GeV−1] 2.81(3) 2.81(3) 2.74(3) 2.80(3) 2.81(3) 2.74(3)

cφ [GeV−1] −0.399(4) −0.396(4) −0.396(4) −0.408(6) −0.401(6) −0.401(6)

cω′ [GeV−1] −0.79(8) −0.19(12) −0.09(13) −0.63(9) −0.18(11) −0.08(12)

cω′′ [GeV−1] −3.08(19) −1.92(26) −2.67(29) −2.76(23) −1.90(25) −2.73(28)

c1 [GeV−3] 1.77(29) 1.43(27) 0.54(30) 1.38(32) 1.30(27) 0.37(29)

c2 [GeV−3] −0.27(11) −0.97(14) 0.25(32) −0.47(11) −0.99(13) 0.35(32)

c3 [GeV−3] — −0.60(23) −1.35(27) — −0.60(22) −1.40(25)

c4 [GeV−3] — — 1.34(21) — — 1.28(20)

1010
× a3π

µ |≤1.8 GeV 44.36(48) 44.40(48) 43.87(49) 44.10(66) 44.32(66) 43.74(66)

Table 2.4: Fits to the combination of the CMD-2 data sets [243, 255] and BaBar [248].

which the cross section drops below 5 nb. In the end, we have to conclude that these points
cannot be described in a statistically acceptable way with our dispersive representation.
To demonstrate the huge impact on the fit, Table 2.5 gives the results when these critical
points are removed. The fit is clearly still not perfect, but at least comparable in quality to
Table 2.3. Accordingly, we believe that there is reason to suspect some additional systematic
uncertainty in the off-peak cross sections from [255] and therefore will only consider the
reduced data set as in Table 2.5 in the following (denoted by CMD-2′).

2.3.4 Combined fits

Our final preferred fit is shown in Table 2.6, including all data sets listed in Table 2.1 except
for the DM2 data [257], which disagree with both the BaBar [248] and the SND [252] data
especially in the vicinity of the ω′′(1650). We also considered fits dropping the CMD-2
data set [255] altogether, see Table 2.7, but the overall effect is relatively minor, depending
on the fit variant at most 0.2 × 10−10 in the final (g − 2)µ integral.

In all cases the χ2 is significantly worse than in the separate fits discussed in the previous
sections. Since there are now several experiments covering the same energy region, this is
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 117.9/76 111.8/75 97.7/74 133.9/76 129.1/75 112.2/74

= 1.55 = 1.49 = 1.32 = 1.76 = 1.72 = 1.52
p-value 0.001 0.004 0.03 5 × 10−5 1 × 10−4 0.003
Mω [MeV] 782.50(10) 782.50(10) 782.52(10) 782.51(10) 782.51(9) 782.53(10)

Γω [MeV] 8.95(16) 9.01(14) 8.79(15) 8.96(15) 9.01(14) 8.82(14)

Mφ [MeV] 1019.19(3) 1019.18(3) 1019.15(3) 1019.17(2) 1019.16(2) 1019.14(3)

Γφ [MeV] 4.34(6) 4.31(6) 4.30(6) 4.31(5) 4.29(5) 4.28(5)

cω [GeV−1] 2.87(4) 2.88(3) 2.83(3) 2.86(4) 2.88(3) 2.82(4)

cφ [GeV−1] −0.393(4) −0.392(4) −0.392(4) −0.397(6) −0.395(6) −0.394(6)

cω′ [GeV−1] −0.37(12) −0.19(13) −0.13(14) −0.34(11) −0.18(12) −0.12(12)

cω′′ [GeV−1] −2.20(35) −1.94(29) −2.73(32) −2.17(34) −1.94(27) −2.80(31)

c1 [GeV−3] 0.41(48) 0.66(36) 0.28(29) 0.39(47) 0.60(35) 0.15(28)

c2 [GeV−3] −0.95(13) −1.14(14) −0.03(35) −0.98(12) −1.14(14) 0.09(35)

c3 [GeV−3] — −0.75(25) −1.51(30) — −0.76(25) −1.54(28)

c4 [GeV−3] — — 1.26(22) — — 1.23(21)

104
× ξ 1.4(7) 1.4(7) 1.4(7) 1.1(6) 1.0(6) 1.0(6)

1010
× a3π

µ |≤1.8 GeV 45.35(54) 45.42(51) 44.89(52) 45.26(72) 45.38(70) 44.87(70)

Table 2.5: Fits to the combination of the CMD-2 data sets [243, 255] and BaBar [248], with
modifications to [255] as described in the main text.

an indication of the degree of consistency among the various data sets. To account for these
inconsistencies we follow the PDG prescription [22] and inflate the fit errors by the scale
factor

S =
√
χ2/dof , (2.26)

which increases uncertainties by about 20% compared to the fit errors given in Table 2.6.
The systematic uncertainties are dominated by the degree of the conformal polynomial, while
the uncertainties from ππ phase shifts and cutoff parameters are negligible in comparison.
We adopt the full results for pconf = 3 as our central value (as this gives the best fit), but
keep the maximum differences to pconf = 2, 4 as a source of systematic uncertainty. In
addition, we perform fits in which the imaginary part of the conformal polynomial in (2.21)
is constrained to behave as q−3 asymptotically, and include the observed variation as another
source of systematics, see Table 2.8 for this last set of fits. As alluded to earlier, the fit
quality deteriorates when imposing this additional constraint on the conformal polynomial,
and therefore the full variation over all fit variants would likely be an overestimate of the
systematic uncertainty. To gauge the impact, we take the average change for pconf = 2, 3, 4
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 361.3/306 354.6/305 354.0/304 443.7/306 430.8/305 430.7/304

= 1.18 = 1.16 = 1.16 = 1.45 = 1.41 = 1.42
p-value 0.02 0.03 0.03 4 × 10−7 3 × 10−6 2 × 10−6

Mω [MeV] 782.60(4) 782.60(4) 782.60(4) 782.63(2) 782.63(2) 782.63(2)

Γω [MeV] 8.75(6) 8.79(6) 8.77(6) 8.69(3) 8.71(3) 8.71(3)

Mφ [MeV] 1019.23(2) 1019.22(2) 1019.22(2) 1019.20(1) 1019.20(1) 1019.20(1)

Γφ [MeV] 4.34(4) 4.32(4) 4.32(4) 4.24(3) 4.23(3) 4.23(3)

cω [GeV−1] 2.87(1) 2.89(1) 2.88(1) 2.85(2) 2.86(2) 2.86(2)

cφ [GeV−1] −0.395(3) −0.394(3) −0.394(3) −0.388(3) −0.386(3) −0.386(3)

cω′ [GeV−1] −0.18(3) −0.09(5) −0.08(5) −0.17(3) −0.07(4) −0.06(4)

cω′′ [GeV−1] −1.65(8) −1.52(10) −1.55(10) −1.65(8) −1.52(8) −1.53(10)

c1 [GeV−3] −0.35(10) −0.22(11) −0.24(11) −0.31(10) −0.12(11) −0.14(12)

c2 [GeV−3] −1.28(4) −1.39(6) −1.33(9) −1.24(4) −1.36(5) −1.34(9)

c3 [GeV−3] — −0.48(8) −0.51(9) — −0.47(7) −0.48(8)

c4 [GeV−3] — — 1.39(9) — — 1.41(9)

104
× ξ 1.9(7) 1.8(7) 1.8(7) 1.3(5) 1.3(5) 1.3(5)

1010
× a3π

µ |≤1.8 GeV 46.65(21) 46.70(21) 46.67(22) 45.87(47) 46.16(47) 46.10(50)

Table 2.6: Fits to the combination of SND [249–252], CMD-2′ [243, 253–255], BaBar [248],
DM1 [256], and ND [258].

separately, and add the result in quadrature to the systematic error from the variation in
pconf.5 The final fit is illustrated in Figure 2.1.

2.3.5 Extracting ω and φ masses
Our final result for the ω and φ parameters is

Mω = 782.63(3)(1) MeV = 782.63(3) MeV ,

Γω = 8.71(4)(4) MeV = 8.71(6) MeV ,

Mφ = 1019.20(2)(1) MeV = 1019.20(2) MeV ,

Γφ = 4.23(4)(2) MeV = 4.23(4) MeV , (2.27)

5 Note that the fits with pconf = 4 from Table 2.8 already display signs of numerical instabilities, with large
shifts in the fit parameters compared to pconf = 3 and sizable cancellations among the terms in the conformal
polynomial. We still include this fit in the estimate of the systematic uncertainties, otherwise, the systematic
errors of the final results given in Sections 2.3.5 and 2.4 would decrease slightly.
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 286.5/263 283.3/262 283.3/261 368.0/263 358.9/262 358.6/261

= 1.09 = 1.08 = 1.09 = 1.40 = 1.37 = 1.37
p-value 0.15 0.19 0.16 2 × 10−5 6 × 10−5 6 × 10−5

Mω [MeV] 782.60(4) 782.60(4) 782.60(4) 782.63(2) 782.63(2) 782.63(2)

Γω [MeV] 8.77(6) 8.80(6) 8.80(6) 8.70(3) 8.71(3) 8.71(3)

Mφ [MeV] 1019.24(3) 1019.23(3) 1019.23(3) 1019.22(2) 1019.21(2) 1019.21(2)

Γφ [MeV] 4.28(6) 4.26(6) 4.26(6) 4.21(4) 4.20(4) 4.20(4)

cω [GeV−1] 2.88(1) 2.89(1) 2.89(1) 2.85(2) 2.87(2) 2.87(2)

cφ [GeV−1] −0.395(4) −0.394(4) −0.394(4) −0.385(4) −0.384(4) −0.383(4)

cω′ [GeV−1] −0.17(3) −0.10(5) −0.10(5) −0.17(3) −0.08(4) −0.08(4)

cω′′ [GeV−1] −1.65(8) −1.55(9) −1.56(11) −1.67(8) −1.55(8) −1.53(10)

c1 [GeV−3] −0.36(10) −0.27(11) −0.27(12) −0.30(10) −0.14(11) −0.11(12)

c2 [GeV−3] −1.30(4) −1.38(6) −1.37(10) −1.25(4) −1.36(5) −1.39(10)

c3 [GeV−3] — −0.51(8) −0.51(9) — −0.51(7) −0.49(8)

c4 [GeV−3] — — 1.34(9) — — 1.40(9)

1010
× a3π

µ |≤1.8 GeV 46.81(22) 46.84(22) 46.84(22) 46.02(50) 46.21(50) 46.29(53)

Table 2.7: Fits to the combination of SND [249–252], CMD-2 [243, 253, 254], BaBar [248],
DM1 [256], and ND [258].

with systematic errors derived as described in Section 2.3.4. In the comparison to the PDG
parameters [22]

Mω = 782.65(12) MeV , Γω = 8.49(8) MeV ,

Mφ = 1019.461(16) MeV , Γφ = 4.249(13) MeV , (2.28)

one needs to keep inmind that these parameters subsume radiative effects, where the expected
corrections are worked out in Appendix A.2. For the φ, the expectation is that the fit of the
bare parameters should produce a mass lower by 0.26MeVwith only small corrections in the
width, in perfect agreement with (2.27) and (2.28). In contrast, the situation for theω is more
ambiguous: the number in (2.28) is dominated by the weighted average of extractions from
e+e− → 3π (Mω = 782.68(9)(4) MeV [243], Mω = 782.79(8)(9) MeV [251]), e+e− → π0γ

(Mω = 783.20(13)(16) MeV [270]), and p̄p→ ωπ0π0 (Mω = 781.96(13)(17) MeV [271]).
In view of the expected downward shift of 0.13MeV, our analysis thus supports the 3π
number from [251], while the agreement with the PDG average is entirely coincidental. As
argued in [133], the π0γ value is likely affected by an unphysical phase in the extraction,
but our analysis shows that a similar effect does not occur in 3π. Therefore, our analysis
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diagonal full
pconf 2 3 4 2 3 4
χ2/dof 382.8/306 382.7/305 353.2/304 469.5/306 469.5/305 432.3/304

= 1.25 = 1.25 = 1.16 = 1.53 = 1.54 = 1.42
p-value 0.002 0.002 0.03 5 × 10−9 4 × 10−9 2 × 10−6

Mω [MeV] 782.59(4) 782.59(4) 782.60(4) 782.63(2) 782.63(2) 782.63(2)

Γω [MeV] 8.70(6) 8.70(6) 8.68(6) 8.67(3) 8.67(3) 8.68(3)

Mφ [MeV] 1019.23(2) 1019.23(2) 1019.24(2) 1019.21(1) 1019.20(1) 1019.21(1)

Γφ [MeV] 4.35(4) 4.35(4) 4.36(4) 4.25(3) 4.25(3) 4.25(3)

cω [GeV−1] 2.86(1) 2.86(1) 2.86(1) 2.82(2) 2.83(2) 2.82(2)

cφ [GeV−1] −0.395(3) −0.395(3) −0.395(3) −0.388(3) −0.388(3) −0.389(3)

cω′ [GeV−1] −0.08(3) −0.09(5) 0.10(5) −0.07(3) −0.07(4) 0.09(4)

cω′′ [GeV−1] −0.86(6) −0.87(7) 3.48(8) −0.85(6) −0.85(6) 3.42(8)

c1 [GeV−3] −1.45(6) −1.45(7) −2.07(5) −1.42(6) −1.42(6) −2.02(6)

c2 [GeV−3] −0.60(9) −0.60(9) −1.83(5) −0.63(11) −0.62(11) −1.80(5)

c3 [GeV−3] — −0.08(6) −0.60(5) — −0.03(6) −0.55(5)

c4 [GeV−3] — — 2.90(11) — — 2.84(11)

104
× ξ 1.9(7) 1.9(7) 1.9(7) 1.3(5) 1.3(5) 1.4(5)

1010
× a3π

µ |≤1.8 GeV 46.59(22) 46.60(22) 46.55(21) 45.54(52) 45.54(52) 45.40(48)

Table 2.8: Same as Table 2.6, but with ImCp (q2) ∼ q−3 asymptotically.

compounds the tension with the VP-subtracted ω mass as extracted from the 2π channel,
Mω = 781.68(9)(3) MeV [133]. Including the expected upward shift of 0.06MeV, the result
for the width agrees with (2.28) at the level of 1.6σ, again consistent with earlier extractions
from the 3π channel (Γω = 8.68(23)(10) MeV [243], Γω = 8.68(4)(15) MeV [251]). The
enlarged ω and φ resonance regions are depicted in Figure 2.2.

2.4 Consequences for the anomalous magnetic moment
of the muon

Our central result for the 3π contribution to HVP is

a3π
µ |≤1.8 GeV = 46.2(6)(6) × 10−10

= 46.2(8) × 10−10 , (2.29)

where the systematic errors are estimated as in Section 2.3.4. As a cross check we have
also performed a fit to the data combination of [132] instead of the data directly, leading to
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Figure 2.1: Fit to the e+e− → 3π data sets as listed in Table 2.1 (with VP removed everywhere). The
black band includes the fit uncertainties only, while the gray band represents the total uncertainty,
including the systematics of the dispersive representation. For most energies the two uncertainties
are of similar size, so that the difference is hardly visible on the logarithmic scale.

almost the same central value

a3π
µ |≤1.8 GeV = 46.1(6)(8) × 10−10

= 46.1(1.0) × 10−10 , (2.30)

with slightly larger uncertainties. The latter is likely related to the fact that although, as
expected, we had to remove two bins (# 49 and # 52) corresponding to (nearly) vanishing cross
sections to have the fit iteration converge, no further changes were applied to the combination,
so that some of the potentially problematic points we identified in [255] could still impact
the fit. The final result (2.29) agrees well with a3π

µ |≤1.8 GeV = 46.2(1.5) × 10−10 [131],
besides a corroboration of the central value the QCD constraints also allow for a reduction
of the uncertainty. The difference to a3π

µ |≤1.8 GeV = 47.7(9) × 10−10 [132] is mainly
due to the interpolation applied to the data. We reproduce the central value with a
linear interpolation of the bins of [132], while higher-order interpolations, as well as the
dispersive fit (2.30), move the central value towards (2.29).6 Our analysis does not support
6 We thank B. Malaescu and D. Nomura for confirming that the choice of interpolation indeed explains the
bulk of the difference between [131, 132].
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Figure 2.2: Fit to the e+e− → 3π data sets as listed in Table 2.1 (with VP removed everywhere)
around the ω and φ resonance regions. The black band represents the fit uncertainties, and the gray
band indicates the total uncertainty.

values as low as a3π
µ |≤2.0 GeV = 44.3(1.5) × 10−10 [60], which is based on a Breit–Wigner

description of ω and φ. Finally, we remark that for the threshold region we find a value
a3π
µ |≤0.66 GeV = 0.019 × 10−10 nearly twice as large as the estimate from [272] based upon a

combination of the Wess–Zumino–Witten action and vector meson dominance (VMD) [273,
274]. Indeed, it was observed in [272] that this model underestimates the lowest-energy
data points.

In combination with the 2π channel from [133] we obtain for the HVP contribution that
has been evaluated imposing analyticity and unitarity constraints

a2π
µ |≤1.0 GeV+a3π

µ |≤1.8 GeV =
[
495.0(2.6)+46.2(8)

]
×10−10

= 541.2(2.7)×10−10 , (2.31)

which covers nearly 80% of the total HVP integral. Therefore, it comprises an important
contribution to the data-driven approaches to HVPwith constraints from analyticity, unitarity,
and crossing symmetry entering the white paper [61].

2.5 Summary
We have presented a detailed analysis of the 3π contribution to HVP, including constraints
from analyticity and unitarity as well as the low-energy theorem for the γ∗ → 3π amplitude.
Similarly to the 2π analysis of the pion vector form factor [133], the main motivations
are, first, to see if a global fit subject to these constraints reveals inconsistencies in the
data, and, second, derive the corresponding error estimate for the contribution to (g − 2)µ.
Given that this method is complementary to a direct integration of the data, where potential
inconsistencies are addressed by a local error inflation, such global fits that incorporate
general QCD constraints should increase the robustness of the SM prediction.

We find that most data sets can be fit satisfactorily with our dispersive representation, the
exception being several points above the φ resonance from [255]. Fortunately, the impact
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on the final HVP integral is minimal, due to the suppression of the cross section in this
region, which could also enhance the relative importance of systematic effects in the data.
Otherwise, in the 3π channel there is no tension between two high-statistics data sets, such
as BaBar and KLOE in the 2π case, but the scale factor of the global fit, indicating overall
consistency of the data base, is actually larger than in 2π. In addition, the main contribution,
from the 3π cross section in the vicinity of the ω, is dominated by a single experiment [251].
For these reasons, a new high-statistics low-energy measurement in the 3π channel would
be a highly welcome addition to the data base.

The central outcome of our study is (2.29)

a3π
µ |≤1.8 GeV = 46.2(6)(6) × 10−10

= 46.2(8) × 10−10 . (2.32)

Together with the 2π channel from [133], the two most important low-energy channels have
now been scrutinized including analyticity and unitarity constraints, covering nearly 80% of
the HVP integral. Thus, they comprise another crucial aspect of the data-driven evaluations
of HVP in the white paper [61], in addition to the methods based on the direct integration of
the data.
Finally, our analysis exacerbates a tension emerging between the 2π and 3π channels,

that is, the extraction of the ω mass. In the 2π channel the ω only contributes via an
isospin-violating effect, ρ–ω mixing, but due to the increased statistics the sensitivity is
not much below that of the 3π channel. Yet, the ω mass extracted from the 2π channel is
substantially lower than the one extracted from 3π. Currently, we are aware of neither a
systematic effect in experiment nor an issue with the theoretical extraction that could resolve
the tension. Besides improving the HVP contribution to (g − 2)µ, new data could shed light
on this puzzle as well.
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Chapter 3

Hadronic vacuum polarization: π0
γ1

3.1 Introduction

Following the spirit of Chapter 2, we commence to investigate the contribution of the π0γ
channel to HVP in the muon (g − 2)µ.

The vector mesons ω and φ are narrow states compared to other hadronic resonances in
the low-energy QCD spectrum. In the case of the ω, this is because two-body decays are
either forbidden by G-parity (2π) or require electromagnetic interactions (π0γ, ηγ), so that
the dominant decay proceeds into 3π. In contrast, for the φ a G-parity conserving two-body
decay into K̄K is possible, but suppressed by very small phase space, while the decay into
3π is small due to the Okubo–Zweig–Iizuka rule [276–278]. Accordingly, the most precise
information on the mass of the φ comes from e+e− → K̄K [243, 249, 279–281], which
indeed dominates the PDG average [22]. For the determination of the ω mass, the reaction
e+e− → 3π is the primary source of information [243, 251], but here the three-particle nature
of the decay complicates a reliable extraction of the resonance parameters. In particular,
there is a significant tension with the mass determination from e+e− → π0γ [270], which
together with p̄p → ωπ0π0 [271] leads to a scale factor S = 1.9 in the PDG average. In
this work, we consider the reaction e+e− → π0γ using a dispersive representation of the
π0
→ γγ∗ TFF, which together with our previous work on the 3π channel in Chapter 2,

allows us to present a combined determination of the ω and φ resonance parameters within
the same framework consistent with the constraints from analyticity, unitarity, and crossing
symmetry as well as low-energy theorems.

These constraints, as incorporated in the dispersive representation of the TFF [149, 150,
231], are not only valuable for a reliable extraction of resonance parameters, but also define
a global fit function for the cross section that allows one to check the consistency of the
data sets with these general principles. Applications to the e+e− → 2π [133, 135, 222,
282] and e+e− → 3π [134] channels have provided such analyses for the two dominant
channels in the HVP contribution to the anomalous magnetic moment of the muon aµ. Here,
we will study the e+e− → π0γ channel in the same spirit. Since the total contribution is
about an order of magnitude smaller than the one of the 3π channel, very large relative

1 This Chapter’s contents have been published in [275].
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changes would be required to notably influence the Standard Model prediction (1.64) and
thus the tension with the BNL measurement (1.27). However, in view of recent results
from lattice QCD [283] that suggest large modifications of the hadronic cross section at low
energies [284–286], any further corroboration of the phenomenological HVP evaluation,
especially for the channels relevant below 1 GeV such as π0γ, is certainly worthwhile—in
anticipation of improved measurements at Fermilab [70] and J-PARC [71].

The Chapter is organized as follows: in Section 3.2 we review the dispersive formalism for
the pion TFF and the e+e− → π0γ cross section, which is then applied in Section 3.3 to fit
the available data sets. In Section 3.4 we discuss the consequences for the HVP contribution
to aµ, in Section 3.5 the combined analysis of the ω and φ resonance parameters from
e+e− → 3π and e+e− → π0γ. We close with a summary in Section 3.6.

3.2 Time-like pion transition form factor and e+e− → π0γ
cross section

Based on the unitarity relation and its crucial building blocks, a once-subtracted dispersive
representation for the time-like singly-virtual TFF F

π0γ∗γ∗
(
q2, 0

)
was constructed in [231],2

F
π0γ∗γ∗

(
q2, 0)

= Fπγγ +
1

12π2

∫ ∞

4M2
π

ds′
q3
π

(
s′
)
(FV

π

(
s′
)
)∗

s′3/2

{
f1

(
s′, q2)

− f1
(
s′, 0

)
+

q2

s′ − q2 f1
(
s′, 0

)}
,

(3.1)

where qπ (s) =
√

s/4 − M2
π , FV

π (s) is the pion vector form factor, and f1
(
s, q2) is the

partial-wave amplitude for γ∗ → 3π [197, 230–232], as a generalization of previous studies
of the ω/φ→ π0γ∗ TFFs [198, 229]. In particular, F

π0γ∗γ∗
(
q2, 0

)
was studied in [231] as

a first step towards the doubly-virtual space-like TFF [149, 150], which determines the
strength of the pion-pole contribution in a dispersive approach to hadronic light-by-light
scattering [142–146], to demonstrate the consistency between 3π and π0γ data. Similarly,
the ω and φ TFFs become relevant for the description of the left-hand cuts in the two-pion
contributions [233–238].

Fπγγ denotes the normalization at q2
= 0, as determined at leading order by the Wess–

Zumino–Witten anomaly [139, 140]

Fπγγ =
1

4π2Fπ
= 0.2745(3) GeV−1 . (3.2)

This value, obtained from the pion decay constant Fπ = 92.28(10) MeV [22], agrees
with the recent PrimEx-II measurement of the neutral-pion life time [287], which implies
2 See Section 4.3.1 for the detailed definition of the pion TFF.
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Fπγγ = 0.2754(21) GeV−1. The relation between the e+e− → π0γ cross section and the
pion TFF, calculated from the dispersion relation (3.1), reads

σ0
e+e−→π0γ

(
q2)
=

2π2α3

3

(
q2
− M2

π0
)3

q6
��Fπ0γ∗γ∗

(
q2, 0

) ��2 , (3.3)

where α = e2/(4π) and we neglected the mass of the electron. Strictly speaking, the
dispersion relation (3.1) applies to the pure QCD process without further radiative correction,
so that (3.3) describes the bare cross section σ0

e+e−→π0γ

(
q2) excluding VP corrections.

Accordingly, the mass parameters for ω and φ extracted from the fit do not include these
VP corrections, in contrast to the PDG convention, see Section 3.5. We use the VP routine
from [132] to remove VP from the experimental cross sections.

The isoscalar contribution, corresponding to f1
(
s′, q2)

− f1
(
s′, 0

)
in the integrand of (3.1),

was calculated in [231] using the previously determined partial wave f1(s, q2), where the
normalization function a

(
q2) was fixed from a fit to e+e− → 3π data; the isovector part,

the last term in (3.1), was determined using a finite matching point of 1.2 GeV and a
normalization at q2

= 0 fixed to the chiral anomaly F3π for the γ → 3π amplitude [239–241].
We will implement the same constraint here, i.e., including quark-mass corrections [230,
267]

a(0) =
F3π
3
× 1.066(10) , F3π =

1
4π2F3

π

. (3.4)

We stress again that in contrast to Fπγγ , whose anomaly-constraint (3.2) has been confirmed
by PrimEx-II at the level of 0.8%, the chiral prediction for F3π, as already discussed in
Section 2.2, has only been tested experimentally with 10% precision, from Primakoff
measurements [261] and π−e− → π−e−π0 [262]. In the remainder of this Chapter, we
assume that F3π follows the Fπγγ precedent, so that the remaining uncertainty in (3.4),
from the quark-mass renormalization, becomes subleading compared to other sources of
systematic uncertainty in the dispersive representation of the TFF. In view of open questions
regarding the role of subleading terms in the chiral expansion of the π0

→ γγ amplitude [160,
288–291], a more stringent test of F3π would be highly desirable, which could be achieved
with data on γπ− → π−π0 taken in the COMPASS Primakoff program [263], using the
dispersive framework proposed in [230, 232].

As already remarked in [231], the normalization function a
(
q2) could also be determined

by a fit to e+e− → π0γ instead of the 3π channel. We follow this approach in the present
work and consider an update of this once-subtracted analysis based on the improved
parameterization for a

(
q2) developed in [149, 150], including a conformal polynomial

to be able to describe the inelastic effects that were found to be relevant in e+e− → 3π
above the φ resonance [134]. For the details of the calculation of f1

(
s, q2) we refer

to [134, 149, 150] and Section 2.2, but reiterate the free parameters that enter the dispersive
representation for the normalization function a

(
q2): apart from the ω and φ resonance

parameters, these are their residues cω and cφ, as well as, potentially, further free parameters
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Experiment Region of
√

s [GeV] # data points Normalization uncertainty

SND 2000 [295] [0.99, 1.03] 12 3.3%
SND 2003 [296] [0.60, 0.97] 30 all systematics
SND 2016 [297] [0.63, 1.35] 60 all systematics
SND 2018 [298] [1.08, 1.35] 5 all systematics

CMD-2 2005 [270] [0.60, 1.31] 46 6.0%

Table 3.1: Summary of the e+e− → π0γ data sets. For [298] only data points for
√

s < 1.4 GeV are
included, as the cross section in the region (1.4–2.0) GeV was found to be consistent with zero. In
the last column we indicate the size of the systematic errors that we interpret as a normalization-type
uncertainty and therefore assume to be 100% correlated.

in the conformal polynomial. For the evaluation of the final dispersion relation (3.1), we
choose an integration cutoff siv above which an asymptotic behavior ∼ 1/s is assumed for
both FV

π (s) and f1
(
s, q2) [176, 177, 292–294]. The isovector part is updated as well in line

with the isoscalar contribution.
The systematic uncertainties of the dispersive representation are taken into account as

follows: the pion vector form factor FV
π (s) is calculated with different variations of the

Omnès function [173] using different phase shifts [201, 202] as in [150]; in the meantime,
the integration cutoffsΛ3π in the solution of the γ

∗
→ 3π KT equations [195] and√siv in the

solution of the pion TFF (3.1) are varied in the range (1.8–2.5) GeV; lastly, the asymptotic
behavior of the imaginary part of the conformal polynomial is varied as in Chapter 2. The
central values of the cross sections are obtained by the best fits to the data sets scanning over
the variations of these quantities. The systematic uncertainties are defined as the maximum
deviations of all the variations from the central cross sections.

3.3 Fits to e+e− → π0γ data

3.3.1 Data sets and normalization uncertainties

In addition to the e+e− → π0γ cross section measurements [270, 295, 296] already included
in [231], there are two new data sets, the most accurate new data determined from the
whole data sample of the SND experiment [297] and another one that explored a new region
between 1.4 and 2.0 GeV [298]. The full data sets that we consider in our analysis are
listed in Table 3.1. These measurements were performed at the VEPP-2M collider with the
SND [295–298] and CMD-2 [270] detectors.

As first observed in [268], a naive treatment of normalization-type systematic uncertainties
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diagonal full

χ2/dof 116.9/100 151.3/100
= 1.17 = 1.51

p-value 0.12 7 × 10−4

Mω [MeV] 782.55(3) 782.58(3)

Γω [MeV] 8.73(7) 8.68(6)

Mφ [MeV] 1019.18(5) 1019.18(6)

Γφ [MeV] 4.24(16) 4.27(17)

cω [GeV−1] 2.95(2) 2.95(3)

cφ [GeV−1] −0.378(11) −0.382(13)

104
× ξ 3.5(1.3) 4.0(1.0)

1011
× aπ

0γ
µ |≤1.35 GeV 44.05(24) 44.14(57)

Table 3.2: Fits to the combined SND data sets [295–298], for diagonal uncertainties and full
covariance matrices. All errors refer to fit uncertainties only.

would lead to a bias in the fit. For the data sets in Table 3.1, the systematic uncertainties
of [270, 295] are explicitly given in percentages and therefore interpreted as normalization
uncertainties. Likewise, we assume that the systematic uncertainties of [296–298] can
be attributed primarily to effects in the same category and thus treat all the systematics
uncertainties as 100% correlated. Accordingly, we employ the iterative solution strategy
introduced in [269] to treat the normalization uncertainties in a consistent manner and
consider both fits with diagonal and full covariance matrices to better monitor the role of
the correlations, in analogy to the strategy in Section 2.3.

3.3.2 Fits to SND
First, we perform fits to the SND data sets [295–298], with the results shown in Table 3.2.
We display the best χ2 results for both the diagonal fit and also the fully correlated one.
Only the fit uncertainties are displayed in Table 3.2 at this step, as we will add the systematic
uncertainties of our approach later. Fit errors are already inflated by the scale factor

S =
√
χ2/dof , (3.5)

to account for potential inconsistencies between the data sets following the PDG prescrip-
tion [22].
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In contrast to Chapter 2, we do not include the ω′(1420) or other excited vector mesons in
the fits since their residues come out consistent with zero, in such a way that their inclusion
does not improve the quality of the fit. This strategy is consistent with the observation of
a negligible cross section above 1.4 GeV in [298]. Similarly, the data points above the φ
region are scarce, so that additional free parameters in the conformal polynomial in the
parameterization of a

(
q2) also do not improve the fits. Therefore, we will use the conformal

polynomial to implement the chiral low-energy theorem F3π (with S-wave singularities
removed), but do not add additional free parameters.
The accuracy of the center-of-mass energy determination of the data set [296] is worse

than the accuracy of the ω mass value. Therefore, an energy-scale bias ∆E was introduced
in [296]. A separate fit to [296] indeed produces a smaller ω mass that is not compatible
with the most precise measurement [297]. Therefore, we allow for an energy rescaling
for [296],

√
s →

√
s + ξ (

√
s − M

π0 ) . (3.6)

The introduced scaling indeed leads to a considerable improvement of the fits, and its
value around ξ ∼ 10−4 comes out in agreement with the energy-bias uncertainties. Similar
rescalings within the quoted energy uncertainties were also found to improve the fit quality
for the 2π [133] and 3π [134] channels. In the case of π0γ, the data set from [296] is the
only one for which we see a need for such a rescaling.
We observe that the correlated fit produces larger uncertainties for the parameters and

the HVP contribution compared to the diagonal one. Otherwise, the central values of
the parameters of both fits are in good agreement within uncertainties. Besides, we find
that the correlated fit has a worse description than the diagonal fit, which is a general
observation of the iterative fit strategy [269] concerning normalization uncertainties. In
fact, this effect may be overestimated here because all systematic uncertainties of [296–298]
were assumed to contribute in that category, so that the description could likely be improved
if more details on the systematic uncertainties were available. At present, the relatively
large χ2 of the correlated fit is mainly driven by [298]: a fit to this data set alone gives a
χ2/dof = 88.7/54 = 1.64 and a p-value of 0.2%. The fact that the p-value drops by another
factor of 3 in the combined SND fit thus points to some minor tensions among [295–298].

3.3.3 Fits to CMD-2

Next, we turn to the fits to the CMD-2 data [270]. Although there is only a single data set, it
covers almost the entire relevant energy region. The results are given in Table 3.3, in the
same form as the SND fits, the only exception being the exclusion of the rescaling parameter.
For comparison, the fit uncertainties are also inflated by the scale factor (3.5).

As for the SND fits, we again find internal consistency for the parameters of the diagonal
and the correlated fits. A minor difference concerns the mass and width of the ω, which
display relativity large upward shifts once the correlations are included.
Even once accounting for VP corrections, see Section 3.5, our result for the ω mass
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3.3 Fits to e+e− → π0γ data

diagonal full

χ2/dof 42.50/40 57.39/40
= 1.06 = 1.43

p-value 0.36 0.04
Mω [MeV] 782.53(14) 782.68(9)

Γω [MeV] 8.25(28) 8.41(19)

Mφ [MeV] 1019.18(7) 1019.18(6)

Γφ [MeV] 3.90(21) 3.90(17)

cω [GeV−1] 2.91(7) 2.92(13)

cφ [GeV−1] −0.342(13) −0.341(17)

1011
× aπ

0γ
µ |≤1.35 GeV 44.88(99) 44.48(3.05)

Table 3.3: Fits to the CMD-2 data set [270].

is substantially smaller than in [270], which quotes M̄ω = 783.20(13)(16) MeV. A key
difference to our formalism is that the vector-meson-dominance ansatz from [270] (see
also [299]) permits a complex phase between the ω and ρ contributions, which cannot
be physical because it violates analyticity and unitarity, e.g., by introducing an imaginary
part below the respective thresholds. In our fits, we do not see a conflict with the ω mass
extracted from 3π cross sections, and thus conclude that the result from [270] is likely
affected by the unphysical phase.
Compared to the SND fits, we observe that the width of the φ comes out appreciably

smaller, albeit with rather large fit uncertainties. This observation will also be reflected in
the determination of the width of the φ in the combined fit presented in the next section.

3.3.4 Combined fits

Finally, our combined SND and CMD-2 fit results are presented in Table 3.4, including
all the data sets listed in Table 3.1. We take the correlated full fit as our central value,
and define our systematic uncertainties as the maximum deviations from the different fit
variations discussed in Section 3.2. In all cases, the uncertainties are statistics dominated,
in part because a main source of systematic uncertainty from the 3π channel [134], the
degree of the conformal polynomial, does not become relevant here given that the observed
cross section becomes negligibly small around 1.4 GeV, with few data points above the φ
resonance.
The combined fit, although dominated by the SND data, reflects some inconsistencies
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diagonal full

χ2/dof 173.3/146 238.6/146
= 1.19 = 1.63

p-value 0.06 2 × 10−6

Mω [MeV] 782.55(3) 782.58(3)

Γω [MeV] 8.71(7) 8.65(6)

Mφ [MeV] 1019.20(4) 1019.21(4)

Γφ [MeV] 4.08(13) 4.07(13)

cω [GeV−1] 2.95(2) 2.93(3)

cφ [GeV−1] −0.363(9) −0.358(10)

104
× ξ 3.5(1.3) 4.1(1.0)

1011
× aπ

0γ
µ |≤1.35 GeV 44.04(23) 43.82(58)

Table 3.4: Fits to the combined data sets as shown in Table 3.1.

between SND and CMD-2. Most prominently, the downward shift of the width of the φ in
comparison to Table 3.2 is due to the CMD-2 data [270]. The coupling cφ is also affected
and shifted to a smaller value compared to the SND fits. Comparing the residues cω and cφ
to the 3π fit in Chapter 2, cω = 2.86(2)(4) and cφ = −0.386(4)(2), we observe reasonable
agreement, which indeed is better for cω than for cφ. Taken together with the fact that also
the φ width from the CMD-2 π0γ data drives the combined fit away from the 3π value, we
conclude that indeed the interchannel consistency is better for the SND data sets. Figure 3.1
illustrates our final preferred fit.

The final result for the ω and φ parameters reads

Mω = 782.58(3)(1) MeV = 782.58(3) MeV ,

Γω = 8.65(6)(1) MeV = 8.65(6) MeV ,

Mφ = 1019.21(4)(3) MeV = 1019.21(5) MeV ,

Γφ = 4.07(13)(1) MeV = 4.07(13) MeV , (3.7)

with systematic errors in the second brackets derived as described above. The close-up
views of the ω and φ regions are shown in Figure 3.2. We stress that these resonance
parameters do not include VP corrections, see Section 3.5 for a more detailed discussion.

78



3.4 Consequences for the anomalous magnetic moment of the muon

10−3

10−2

10−1

100

101

102

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

σ
0 e+

e−
→

π0
γ
[n

b]

√
q2 [GeV]

SND 2000
SND 2003
SND 2016
SND 2018
CMD-2 2005

Figure 3.1: The final fit to the e+e− → π0γ data sets as listed in Table 3.1 (with VP removed
everywhere), where the gray band indicates the full uncertainty and the black band indicates the fit
uncertainty.

3.4 Consequences for the anomalous magnetic moment
of the muon

The key formula for the leading HVP contribution to (g−2)µ is given in (1.55). Conventions
need to be specified for the radiative corrections to the cross section in (1.55) so that
higher-order insertions of HVP and HLbL scattering can be performed consistently [130,
162, 259]. In this regard, the “bare” cross section σ0(e+e− → hadrons) should be inclusive
of FSR, but exempt from ISR and VP. As a consequence, sth is no longer equal to the
two-pion threshold, but sth = M2

π0 due to the π0γ channel. Therefore, its HVP contribution
to (g − 2)µ can be calculated using (1.55) in the same vain, but the kernel function should
be analytically continued to the region s < 4m2

µ. In this region, it becomes [300]

K̂
(
s < 4m2

µ

)
=

3
a3


16(a − 2) ln

a
4
− 2a(8 − a) − 8

(
a2
− 8a + 8

) arctan
(√

a − 1
)

√
a − 1


,

(3.8)
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Figure 3.2: Fit around the ω and φ resonance regions. The black band represents the fit uncertainties,
and the gray band indicates the total uncertainty.

where a = 4m2
µ/s. As illustrated in Figure 3.3, it monotonically increases from 0 at s = 0 to

1 for s → ∞.
Based on the fits presented in the previous section our central result for the HVP

contribution from the π0γ channel becomes

aπ
0γ
µ |≤1.35 GeV = 43.8(6)(1) × 10−11

= 43.8(6) × 10−11 , (3.9)

where the second uncertainty is systematic.3 In comparison to the most recent direct-
data-integration analyses, our result is in good agreement with aπ

0γ
µ |≤1.8 GeV = 44.1(1.0) ×

10−11 [135], with a slight improvement in the uncertainty thanks to the incorporation of the
general QCD constraints. The small difference to aπ

0γ
µ |≤1.937 GeV = 45.8(1.0) × 10−11 [136]

partly originates from the application of the trapezoidal rule to scarce data in the tails
of the ω resonance, similarly to the case of 3π. Higher-order interpolations to the data
combination of [136] indeed move the HVP contribution towards (3.9). Our analysis does
not support values as low as aπ

0γ
µ |≤2.0 GeV = 40.0(1.6) × 10−11 [60], which is based on a

Breit–Wigner description of ω and φ. The analysis [135] has updated [131] to account for
the threshold contribution aπ

0γ
µ |≤0.6 GeV = 1.2 × 10−11, which was already included in [132,

136]. It was determined in [272] based upon a combination of the chiral-anomaly term and
ω-meson dominance [300]. This result is in line with our finding for the threshold region,
aπ

0γ
µ |≤0.6 GeV = 1.3 × 10−11. Indeed, the agreement between the prediction and the cross

section of the first few data points was already observed in [272]. Although these small
differences are negligible at the current level of accuracy required for HVP, it is reassuring
3 We quote the HVP integral up to the last data point in [298] that shows a nonvanishing cross section, and in
the comparison to other work indicate the energy up to which the sum of exclusive channels is considered.
However, in practice the energy region above 1.35 GeV can simply be ignored in the π0γ channel, see [298].
An extrapolation of our results beyond 1.35 GeV suggests that this region contributes less than 0.1 × 10−11

to the HVP integral.
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Figure 3.3: Kernel function K̂ (s). The dashed line indicates s = 4m2
µ.

that the dispersive analysis also corroborates current estimates for the π0γ channel, making
significant changes in HVP in the energy region up to 1 GeV increasingly unlikely. Other
radiative effects beyond π0γ, ηγ, and the infrared-enhanced contributions in π+π−γ are
negligibly small compared to the current uncertainty of the full aHVP

µ , see, e.g., [235].

3.5 ω and φ resonance parameters

Our final results for the ω and φ resonance parameters as determined from e+e− → π0γ
are contrasted to the results from e+e− → 3π of Chapter 2 in Table 3.5. There is good
agreement throughout, leading to the combination in the last column. Since the π0γ channel
is statistics-dominated for all quantities, see (3.7), the combination is straightforward despite
the fact that the systematic errors related to the dispersive representation are correlated.
Likewise, the statistical correlations among the resonance parameters (and with the residues)
from the respective fits have a negligible impact on the combination. Mω and Γφ require
a small scale factor S = 1.2 (defined in accordance with the PDG conventions [22]). The
slight tension for Γφ can be traced back to the CMD-2 data set [270], see Section 3.3.3.
However, we conclude that within uncertainties the 3π and π0γ channels yield a consistent
picture for the ω and φ resonance parameters.
To be able to compare our results to the PDG conventions, we need to restore the VP
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e+e− → 3π e+e− → π0γ combination

Mω [MeV] 782.631(28) 782.584(28) 782.607(23)

Γω [MeV] 8.71(6) 8.65(6) 8.69(4)

Mφ [MeV] 1019.196(21) 1019.205(55) 1019.197(20)

Γφ [MeV] 4.23(4) 4.07(13) 4.22(5)

Table 3.5: ω and φ resonance parameters from e+e− → 3π (Chapter 2), e+e− → π0γ (this work),
and their combination. The final uncertainties for Mω and Γφ include a scale factor S = 1.2. All
parameters do not include VP corrections, see Table 3.6 for the comparison to the PDG parameters.

corrections that have been removed in the definition of the bare cross sections, which we
will denote by a bar over the corresponding quantities. As argued in Appendix A, this leads
to the shifts

M̄ω =

(
1 +

e2

2g2
ωγ

)
Mω = Mω + 0.128(3) MeV ,

M̄φ =

(
1 +

e2

2g2
φγ

)
Mφ = Mφ + 0.260(3) MeV , (3.10)

where the couplings are related to the respective e+e−widths, e.g., Γω→e+e− = e4Mω/(12πg2
ωγ),

and the uncertainties have been propagated from the PDG values [22] (with potential dif-
ferences to our determinations being higher-order effects). While otherwise shifts in the
widths are negligible, there is an effect enhanced by ρ–ω mixing

Γ̄ω = Γω +
e2

2g2
ωγ

Γω +
M2
ω

Γρ − Γω

e2

g2
ργ

( e2

g2
ωγ

− 2εω
)

= Γω − 0.06(2) MeV , (3.11)

where we have assigned a generous uncertainty because the estimate relies on a narrow-
resonance assumption for the ρ.
The resulting parameters, in comparison to the PDG values, are shown in Table 3.6.

First, one sees that the φ mass agrees perfectly, with competitive uncertainties. This is an
important observation because it demonstrates consistency between e+e− → 3π, π0γ and
e+e− → K̄K . The latter includes the BaBar measurements [279, 280], which, in contrast
to all data sets for e+e− → π0γ considered in this work as well as all the e+e− → 3π data
sets relevant for the ω and φ parameters, have not been taken in energy-scan mode (at
the VEPP-2M collider), but using initial-state radiation. The φ width also agrees within
uncertainties, but not at the level of accuracy that can be achieved in the K̄K channel.
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3.5 ω and φ resonance parameters

e+e− → 3π, π0γ PDG

M̄ω [MeV] 782.736(24) 782.65(12)

Γ̄ω [MeV] 8.63(5) 8.49(8)

M̄φ [MeV] 1019.457(20) 1019.461(16)

Γ̄φ [MeV] 4.22(5) 4.249(13)

Table 3.6: Comparison of ω and φ resonance parameters from e+e− → 3π, π0γ to the PDG values,
including VP corrections.

For theωmass, its PDGvalue is dominated by theweighted average of determinations from
e+e− → 3π (M̄ω = 782.68(9)(4) MeV [243], M̄ω = 782.79(8)(9) MeV [251]), e+e− → π0γ

(M̄ω = 783.20(13)(16) MeV [270]), and p̄p→ ωπ0π0 (M̄ω = 781.96(13)(17) MeV [271]),
where the spread among these determinations drives the scale factor S = 1.9 and thus an
uncertainty much larger than we obtain from e+e− → 3π, π0γ.

As described in Section 3.3.3, we believe that the large value for the ω mass determined
from e+e− → π0γ in [270] originates from an unphysical phase in the vector-meson-
dominance model used for the extraction. For the p̄p reaction, the uncertainties are more
difficult to assess than in the e+e− processes because the shape of the background processes
is unknown and because the width of the ω signal, Γ = 38.1(3) MeV, is dominated by
the experimental resolution and much larger than the intrinsic ω width. Energy scans in
e+e− → 3π, π0γ, for which the entire amplitude can be reconstructed from general principles
and whose energy resolution lies well below the ω width, should thus yield a much more
reliable probe of the ω resonance parameters.
The ω mass can also be extracted via ρ–ω mixing in e+e− → 2π, and it has been

known for a while [224] that without further constraints such fits prefer significantly smaller
values for Mω than both the PDG average and our determination from e+e− → 3π, π0γ.
This conclusion was recently confirmed in [133] within a dispersive approach, leading to
Mω = 781.68(10) MeV, in significant tension with Table 3.5. However, given the high
accuracy required in the e+e− → 2π channel, additional imaginary parts from the radiative
channels π0γ, ππγ, etc. may actually become relevant [301]. Before their impact is better
understood, we would thus consider the mass determination from e+e− → 3π, π0γ to be
more reliable.
As for the ω width, our value is consistent with earlier determinations from the 3π

channel (Γ̄ω = 8.68(23)(10) MeV [243], Γ̄ω = 8.68(4)(15) MeV [251]), but lies above the
PDG average by 1.5σ. This tension is partly driven by an extraction from the reaction
pd → 3Heω (Γ̄ω = 8.2(3) MeV [302]), but mostly due to an earlier measurement of
e+e− → 3π by the ND collaboration (Γ̄ω = 8.4(1) MeV [303]). However, it should be noted
that the error quoted in [303] is only statistical, while the modern data sets [243, 251] provide
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a complete error estimate. Moreover, without access to the original data for e+e− → 3π
from [303] it is impossible to assess its weight in global fits to the data base [134]. In such a
situation we do not believe it is adequate to keep the ND measurement in the average for Γω
and would therefore consider our determination from modern e+e− → 3π, π0γ data sets to
be more reliable than the current PDG average.

3.6 Summary

We have studied the cross section for e+e− → π0γ in a dispersive framework, which
implements constraints from analyticity, unitarity, and crossing symmetry as well as low-
energy theorems for the γ → 3π amplitude and the TFF for π0

→ γγ∗. The relation between
this form factor and the e+e− → π0γ cross section forms the basis for the subsequent data
analysis.

As the next step, we considered the full data sets for e+e− → π0γ from SND and CMD-2.
An iterative fit algorithm was applied to eliminate the D’Agostini bias. Some tensions
among different data sets exist and the resulting scale factor of the global fit turns out to be
larger compared to those of similar analyses of the e+e− → 2π and e+e− → 3π reactions,
which in part can be traced back to assumptions necessary for the details of the systematic
uncertainties. However, we did not find any data set that needed to be excluded because of
severe tensions nor did we identify problematic outliers in the data sets.
As a first application, we evaluated the π0γ contribution to HVP, with our central result

given in (3.9). In general, the outcome is in good agreement with analyses using a direct
integration of the data, with a slightly reduced uncertainty thanks to the global fit function
defined by the dispersive representation. In combination with previous work on e+e− → 2π
and e+e− → 3π, the three largest channels below 1 GeV have now been subject to scrutiny
using constraints from analyticity, unitarity, and low-energy theorems.
Finally, we studied the resulting ω and φ resonance parameters first from e+e− → π0γ

and then in combination with e+e− → 3π. Contrary to previous analyses, we find
good agreement between the two channels, suggesting that a previous tension could be
due to unphysical complex phases in a vector-meson-dominance model employed for the
e+e− → π0γ channel. Comparing the combined determinations to the current PDG averages,
see Table 3.6, we observe that for the φmass, the value obtained from e+e− → 3π, π0γ agrees
perfectly at a similar level of precision, demonstrating consistency between extractions from
e+e− → 3π, π0γ and e+e− → K̄K , the latter dominating the PDG average. The width also
comes out consistent, but with larger uncertainty than from the K̄K channel. For the ω, we
find that the combination of e+e− → 3π and e+e− → π0γ determines its mass at a level not
far from the φ mass, and argue that the resulting values both for the ω mass and the width
are more reliable than the current PDG averages. However, the tension with the ω mass
determination from the 2π channel persists, suggesting that an improved understanding of
isospin-breaking effects therein will become necessary.
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Chapter 4

Hadronic light-by-light scattering: π0

pole1

4.1 Introduction
For decades the anomalous magnetic moment of the muon, aµ = (g − 2)µ/2, has been one
of the prime physical quantities both to test the SM at quantum loop level and to monitor the
signals coming from BSM physics. Its up-to-date value (1.27) reveals a tantalizing deviation
of 3.7σ from the SM prediction (1.64). Potential BSM contributions to aµ notwithstanding,
the current theoretical uncertainties of the SM contributions are required to be controlled
more precisely in order to synchronize with the upcoming experimental precision.

The dominant SM uncertainty arises from hadronic contributions [61]. The first leading
category, HVP illustrated in diagram (a) of Figure 1.7, enters at O

(
α2) in the expansion

of the fine-structure constant, followed by the second HLbL scattering category shown
in diagram (b) of Figure 1.7 at O

(
α3) . Despite the non-perturbative nature of these two

contributions, it is possible to derive data-driven estimates based on dispersion relations.
The HVP corrections can be related to the total cross section of e+e− → hadrons [86, 87].
Therefore, its evaluation benefits from improved experimental measurements, with most
recent compilations [131, 132, 135, 136, 206, 207, 305] already providing uncertainties
comparable to or less than HLbL. In contrast, current estimates of HLbL rely heavily
on hadronic models [137, 138, 306–320], which despite being based on chiral symmetry
or large-Nc arguments2 and (partially) fulfilling constraints from pQCD involve model
uncertainties that are difficult to control. In this regard, a dispersive framework for the
evaluation of HLbL scattering based on the general principles of analyticity, unitarity, and
crossing symmetry has been recently developed [142–146]. Such a framework thus provides
an alternative model-independent determination of HLbL scattering complementary to
lattice QCD calculations [160, 161, 203–205, 321–323], attributing the contributions to
1 This Chapter’s contents including Appendix B have been published in [149, 150, 304].
2 To ensure anomaly cancellation in the SM subtleties arise in the large-Nc counting related to a rescaling of
the quark charges. In consequence, the π0- and η8-pole contributions become suppressed by two orders in
Nc compared to their naive scaling, which strongly challenges the viability of the large-Nc expansion as an
organizing principle for HLbL scattering. This issue will be addressed below in Appendix B.1.
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Chapter 4 Hadronic light-by-light scattering: π0 pole

on-shell form factors and scattering amplitudes that are, at least in principle, accessible
experimentally.
The single-meson poles constitute the simplest singularities of the HLbL tensor, whose

residues are determined by the doubly-virtual TFFs. Therefore, the numerically dominant
pion-pole contribution would be fully determined if the doubly-virtual pion TFF could
be measured for all (relevant) space-like momenta. In the absence of such double-tag
experiments for e+e− → e+e−π0, we dispersively reconstruct the pion TFF in light of
the measurements of the π0

→ γγ decay width, the e+e− → 3π cross section, and the
space-like singly-virtual form factor from e+e− → e+e−π0 again owing to the constraints
from analyticity and unitarity. The resulting form factor representation

F
π0γ∗γ∗

= Fdisp
π0γ∗γ∗

+ Feff
π0γ∗γ∗

+ Fasym
π0γ∗γ∗

(4.1)

takes into account all low-energy intermediate states by the first dispersive part, incorporates
the normalization and space-like high-energy data by the second (small) contribution
from higher intermediate states, and implements the asymptotic constraints for arbitrary
virtualities at O

(
1/Q2) via the last term. The pion-pole contribution is then evaluated

based on this comprehensive dispersive determination of the pion TFF, completing previous
efforts devoted to the data-driven determination of aπ

0-pole
µ [229–232] (see also [324–330]).

This Chapter is formatted as follows. The (unambiguous) definition of the pion-pole
contribution to aµ in the dispersive approach to HLbL scattering is recalled in Section 4.2, in
terms of the on-shell pion TFF. Section 4.3 is devoted to the dispersive reconstruction of the
TFF based on its isospin decomposition and unitarity relation, the fits to the e+e− → 3π cross
section, and the double-spectral representation of the form factor. The decomposition (4.1)
gives rise to various energy scales that are discussed in Section 4.4. The asymptotic
constraints dictated by pQCD are discussed in Section 4.5. The numerical results for the
form factor in both time-like and space-like regions as well as the pion-pole contribution to
aµ including a detailed discussion of its uncertainty estimates are presented in Section 4.6.
Conclusions are drawn in Section 4.7 and additional supplementary material is collected in
Appendix B .

4.2 Pion-pole contribution to aµ

In order to evaluate the HLbL scattering contribution to the muon (g − 2)µ, we define the
full fourth-rank HLbL tensor Πµνλσ following [146],

Πµνλσ (q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1·x+q2·y+q3·z)〈0�� T { jµ(x) jν (y) jλ (z) jσ (0)}��0
〉
,

(4.2)
where

jµ(x) =
2
3

(ūγµu)(x) −
1
3

(d̄γµd)(x) −
1
3

(s̄γµs)(x) (4.3)
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γ

µ µ

γ

µ µ

γ

µ µ
q3 q1q2

Figure 4.1: The pion-pole contribution to HLbL scattering of the muon (g − 2)µ.

denotes the electromagnetic currents carried by the light quarks and qi are the four-momenta
of the photons. The LOHLbL contribution is then obtained by the projection technique [331]:

aHLbL
µ = −

e6

48mµ

∫
d4q1

(2π)4

∫
d4q2

(2π)4
1

q2
1q2

2 (q1 + q2)2

[
∂

∂k ρ
Πµνλσ (q1, q2, k − q1 − q2)

]

k=0

× tr



(/p + mµ)[γρ, γσ](/p + mµ)γµ
1

/p + /q1 − mµ

γλ
1

/p − /q2 − mµ

γν


, (4.4)

where p is the four-momentum of the muon and q1 + q2 + q3 = 0.
Diagrammatically, the pion-pole contribution can be attributed to the one-particle

reducible piece of the HLbL tensor arising from a single pion propagator. There are three
Feynman diagrams shown in Figure 4.1, where the momenta are indicated in the hadronic
subgraph.

After projection onto the muon anomaly, we obtain the result [312]

aπ
0-pole
µ = −e6

∫
d4q1

(2π)4

∫
d4q2

(2π)4
1

q2
1q2

2 (q1 + q2)2[(p + q1)2
− m2

µ][(p − q2)2
− m2

µ]

×

[ F
π0γ∗γ∗

(
q2

1, (q1 + q2)2) F
π0γ∗γ∗

(
q2

2, 0
)

q2
2 − M2

π0

T̂1(q1, q2; p)

+
F
π0γ∗γ∗

(
q2

1, q
2
2
)

F
π0γ∗γ∗

(
(q1 + q2)2, 0

)
(q1 + q2)2

− M2
π0

T̂2(q1, q2; p)
]
, (4.5)

where p2
= m2

µ, F
π0γ∗γ∗

is the on-shell pion TFF, and the integral kernels T̂1 and T̂2 are
shown in Appendix B.2. The first and second diagram give identical contributions collected
in T̂1, while the third diagram leads to the term containing T̂2. Critically, this diagrammatic
derivation happens to coincide with its dispersive definition, obtained by carefully isolating
the respective residues in the HLbL tensor [143, 146].
After performing Wick rotations for the two-loop integrals, five out of six angular

integrations can be carried out for arbitrary form factors resorting to Gegenbauer-polynomial
techniques, which leads to a three-dimensional integral representation for the pion-pole
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contribution [56],

aπ
0-pole
µ =

(
α

π

)3 ∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

×
[
w1(Q1,Q2, τ) F

π0γ∗γ∗
(
−Q2

1,−Q2
3
)

F
π0γ∗γ∗

(
−Q2

2, 0
)

+ w2(Q1,Q2, τ) F
π0γ∗γ∗

(
−Q2

1,−Q2
2
)

F
π0γ∗γ∗

(
−Q2

3, 0
)]
, (4.6)

where Q2
1/2 = −q2

1/2, Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2, and τ = cos θ, with θ the remaining angle

between the Euclidean four-momenta Q1 and Q2. The weight functions appearing in (4.6)
are given by

w1(Q1,Q2, τ) = −
2π
3

√
1 − τ2 Q3

1Q3
2

Q2
2 + M2

π0

T1(Q1,Q2, τ) ,

w2(Q1,Q2, τ) = −
2π
3

√
1 − τ2 Q3

1Q3
2

Q2
3 + M2

π0

T2(Q1,Q2, τ) , (4.7)

where the kernel functions T1 and T2 are reproduced in Appendix B.2.
The relation (4.6) constitutes a special case of the master formula for the complete HLbL

contribution to aµ [146, 148], obtained by decomposing the HLbL tensor into scalar basis
functions according to the general recipe established in [332, 333] that ensure the absence of
kinematic singularities and zeros, critical for the applicability of a dispersive representation.
In the end, twelve combinations of these scalar functions Π̄i enter the master formula

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

√
1 − τ2Q3

1Q3
2

12∑
i=1

T̄i (Q1,Q2, τ)Π̄i (Q1,Q2, τ) ,

(4.8)
in which the pion pole only contributes to Π̄1 and Π̄2

Π̄
π0-pole
1 (Q1,Q2, τ) = −

F
π0γ∗γ∗

(
−Q2

1,−Q2
2
)
F
π0γ∗γ∗

(
−Q2

3, 0
)

Q2
3 + M2

π0

,

Π̄
π0-pole
2 (Q1,Q2, τ) = −

F
π0γ∗γ∗

(
−Q2

1,−Q2
3
)
F
π0γ∗γ∗

(
−Q2

2, 0
)

Q2
2 + M2

π0

, (4.9)

reproducing the equivalent representation (4.6) with T̄1 = T2 and T̄2 = T1.
If dispersion relations are not derived for the HLbL tensor but for the Pauli form factor

directly [334], this equivalence has so far only been confirmed for a VMD form factor, and in
general it is not guaranteed that dispersion relations for different quantities lead to the same
notion of the pion pole. Moreover, in model calculations different definitions have been
employed in the past, including off-shell pions [319, 335–344] and a variant introducing a
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4.2 Pion-pole contribution to aµ

constant form factor at one vertex [138]. However, these ambiguities are specific to each
particular model and do not occur in the dispersive approach to the HLbL tensor. Once an
organizing principle in terms of its singularities is accepted, the pion-pole contribution as
given by the master formula (4.6) and (4.8) follows unambiguously. In consequence, the
recent phenomenological evaluations [141, 159, 345] and lattice QCD calculation [160,
346] of the pion-pole contribution have adopted this dispersive definition.

The properties of the weight functions w1 and w2 have been studied extensively in [141].
We briefly summarize their main features to gain some intuition for the evaluation of the
multi-dimensional integral in the master formula (4.6). w1(Q1,Q2, τ) and w2(Q1,Q2, τ)
are dimensionless, w2(Q1,Q2, τ) is symmetric under Q1 ↔ Q2, and both tend to zero for
Qi → 0 and τ → ±1. Asymptotically, they behave according to

lim
Q1→∞

w1(Q1,Q2, τ) →
1

Q1
, lim

Q2→∞
w1(Q1,Q2, τ) →

1
Q2

2
,

lim
Qi→∞

w2(Q1,Q2, τ) →
1

Q3
i

, (4.10)

hence assuring the convergence of the three-dimensional integral (4.6) for a form factor
approaching zero at large momenta. In fact, the contribution from w2 even converges
for a pointlike form factor. To better understand the divergence structure of the integral,
it is instructive to consider the LO in ChPT. Since this corresponds to a pointlike form
factor, the loop integral diverges, demanding a counter term that cannot be determined
independently by other means but aπ

0-pole
µ itself. However, as pointed out in [311, 315], the

chiral analysis does predict the logarithmically enhanced pieces, in a parameter-free way
for the double logarithm and in terms of a low-energy constant (LEC) related to P → `+`−

decays (P = π0, η, ` = e, µ) for the single logarithm [347–350]. In the dispersive approach,
this relation to pseudoscalar dilepton decays is accounted for automatically in terms of the
TFFs, see Appendix B.3, as a matter of fact more accurately without any need to rely on the
chiral expansion. This relation between the TFF and pseudoscalar decays is well-established
in the literature [351–358], and indeed the representation for the TFF derived here for
(g − 2)µ should prove valuable for an improved prediction for the π0

→ e+e− decay as well.
Finally, w1(Q1,Q2, τ) and w2(Q1,Q2, τ) are plotted as functions of Q1 and Q2 for τ = 0

(θ = 90◦) in Figure 4.2. It can been seen that the maximum peaks appear in the momenta
range below 0.2 GeV for both w1(Q1,Q2, τ) and w2(Q1,Q2, τ). In line with the asymptotic
behavior (4.10) we find that w2(Q1,Q2, τ) is roughly an order of magnitude smaller than
w1(Q1,Q2, τ) for the same values of τ and falls off faster compared to w1(Q1,Q2, τ) after
reaching the maximum peak. In summary, the peaks of the weight functions w1(Q1,Q2, τ)
and w2(Q1,Q2, τ) are concentrated in the momentum range Qi ≤ 0.5 GeV so that the
most prevailing contribution in the master formula (4.6) arises from the low-energy region.
Moreover, this is exactly the region where the pion TFF can be precisely determined in our
dispersive framework, hence providing a possibility to model-independently evaluate the
dominant pion-pole contribution with well-controlled uncertainties. Accordingly, we now
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Figure 4.2: The weight functions w1(Q1,Q2, τ) (left diagram) and w2(Q1,Q2, τ) (right diagram) as
functions of Q1 and Q2 for τ = 0, θ = 90◦.

turn to the dispersive determination of the pion TFF itself.

4.3 Dispersion relations for the pion transition form factor

4.3.1 Definition and low-energy properties
The pion TFF is defined by the QCD vertex function

i
∫

d4x eiq1·x〈0|T { jµ(x) jν (0)}|π0(q1 + q2)〉 = ε µνα β qα1 q β2 F
π0γ∗γ∗

(
q2

1, q
2
2
)
, (4.11)

where jµ are the light quark currents defined in (4.3) and ε0123
= +1.3 It describes the

interaction between an on-shell neutral pion ((q1 + q2)2
= M2

π0) and two off-shell photons
with four-momenta q1 and q2. The normalization of the form factor for real photons is
dictated by the Adler–Bell–Jackiw anomaly [111–113],

F
π0γ∗γ∗

(0, 0) =
1

4π2Fπ
≡ Fπγγ , (4.12)

where Fπ = 92.28(10) MeV [22] is the pion decay constant. It is related to the neutral pion
decay width into two photons by F2

π0γ∗γ∗
(0, 0) = 4 Γ(π0

→ γγ)/(πα2M3
π0 ), which has been

tested up to 1.4% in a Primakoff measurement of the π0
→ γγ decay width [359] (chiral

and radiative corrections have been worked out in [288–291]). We used the chiral tree-level
prediction (4.12) including the quark-mass renormalization of Fπ, together with its 1.4%
uncertainty, as the central value and uncertainty estimate for the normalization of the TFF
3 Note that the definition of jµ in [229–232] differs from (4.3) by a factor e. For (g − 2)µ, however, the
standard convention separates all factors of e upfront, which leads to the normalization given in (4.12).
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γ∗
v

γ∗
s

π0

Figure 4.3: Two-body unitarity relation for γ∗v → γ∗sπ
0. The gray blobs represent the pion vector

form factor and the γ∗s → 3π amplitude, respectively, and the solid lines pion intermediate states.

in [149, 150]. Here, we update them to the final result of the PrimEx experiment in the final
prediction of the pion-pole contribution (4.51), which achieved a precision of 0.75% [287,
360], so that, the dominant source of uncertainty is of systematic nature in understanding
the emerging tension with the chiral two-loop prediction [291].

In a dispersive approach, the pion TFF is reconstructed from the most important lowest-
lying singularities in the unitarity relation.4 Assuming exact isospin symmetry, one of the
photons in the π0γ∗γ∗ vertex must be an isovector (I = 1) state and the other an isoscalar
(I = 0). Therefore, the form factor can be decomposed into definite-isospin virtualities as

F
π0γ∗γ∗

(
q2

1, q
2
2
)
= Fvs

(
q2

1, q
2
2
)
+ Fvs

(
q2

2, q
2
1
)
, (4.13)

where the isovector and isoscalar virtualities are labeled by the indices v and s. At low
energies, the unitarity relation for γ∗v → γ∗sπ

0 is dominated by the γ∗v → π+π− → γ∗sπ
0

process as shown in Figure 4.3. Consequently, the building blocks in the sub-diagrams are
the pion vector form factor and the γ∗s → 3π amplitude.
The pion vector form factor is described by two differently subtracted variants of the

Omnès representation [173]. First, it is parameterized by

FV
π (s) =

(
1 + αV s

)
Ω(s) , Ω(s) = exp

{ s
π

∫ ∞

4M2
π

ds′
δ
(
s′
)

s′
(
s′ − s

) } , (4.14)

where Ω(s) is the Omnès function [173], and three different ππ P-wave phase-shift inputs
are used for δ(s): Bern and Madrid phases [201, 202], respectively, are based on analyses
of Roy- and Roy-like equations of ππ scattering. In addition, we consider an extension
of [202] including the ρ′(1450) and ρ′′(1700) resonances in an elastic approximation [229],
fit to the pion vector form factor as measured in τ decays [361], in order to estimate the
impact of inelasticities on the ππ input. The coefficient αV ∼ (1–10) × 10−2 GeV−2 is again
obtained from a fit to [361] up to 1.0 GeV for Bern and Madrid phases and the full range
for the third variant. The polynomial is set to a constant above 1.0 GeV (1.9 GeV for the

4 In general, we restrict our attention to purely hadronic states, i.e. neglect radiative processes/corrections,
which is justified by the smallness of the electromagnetic coupling constant. An exception is the energy
range of the ω meson due to its eight-percent branching to π0γ [22]. This coupling of the three-pion states
to π0γ is taken into account, see (2.19).
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Figure 4.4: Two-body unitarity relation for the γ∗s → 3π amplitude (left) and the approximation for
three-body unitarity in γ∗s → γ∗vπ

0 that follows from the two-body rescattering (right). The part of
the diagram in the dashed box can be viewed as a special case of the full π+π−π0

→ γ∗vπ
0 amplitude.

The gray blob labeled P refers to the P-wave ππ scattering amplitude.

third phase) to attain a better high-energy behavior. Second, a twice-subtracted version as
in [231, 362] is used below 1.3 GeV (below 1.9 GeV for the third phase),

FV
π (s) = exp

{
〈r2
〉
V
π

6
s +

s2

π

∫ ∞

4M2
π

ds′
δ
(
s′
)

s′2
(
s′ − s

) } , (4.15)

with a fit radius 〈r2
〉
V
π ∼ 0.436 fm2 covering the data up to 1.0 GeV. It is smoothly guided

to the once-subtracted representation at 1.9 GeV by adjusting the radius to the value that
follows from the once-subtracted version by means of a sum rule, 〈r2

sum〉
V
π ∼ 0.420 fm2. The

difference between both variants of FV
π enters the dispersive uncertainty for subsequently

calculated quantities.
Turning to the γ∗s → 3π amplitude, its two-body unitarity relation is shown in the left

diagram of Figure 4.4. It involves the final-state interactions between pion pairs, which can
be resummed in terms of the P-wave phase shift in the dispersive framework. However, it
possesses a more complex analytic structure as a three-body decay process, which will be
discussed in detail in Section 4.3.2. While the full three-body unitarity γ∗s → π+π−π0

→

γ∗vπ
0 governing the unitarity relation for γ∗s → γ∗vπ

0 cannot be implemented exactly in
our approach, the ππ rescattering in the two-body unitarity relation for γ∗s → 3π already
generates the leading topologies containing three-pion cuts for γ∗s → γ∗vπ

0 as presented in
the right diagram of Figure 4.4, approximating the left-hand cut structure in 3π → γ∗vπ

0 by
pion-pole terms [231].

4.3.2 Parameterization of e+e− → 3π
The γ∗s → 3π formalism

The formalism of γ∗s → 3π amplitude is essentially described in Section 2.2. Here, we
solve (2.14) for a

(
q2)
→ 1 (and a finite cutoff Λ3π above which we assume the asymptotic

behavior F̂
(
s, q2)

∼ 1/s) and restore the full overall-normalization dependence later. In
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the present case, a
(
q2) , as a function of q2, contains the information about the coupling of

the isoscalar photon to 3π states. Therefore, a
(
q2) was determined from e+e− → 3π cross

section data in [231], assuming that three-body unitarity for γ∗s → 3π is dominated by the
narrow resonances ω and φ.
In this work, we take the improved parameterization of a

(
q2) (2.16), which introduces

a conformal polynomial to account for the effects from inelastic channels. The degree
p of the conformal polynomial is larger than the actual number of free parameters for
the following reasons. First, the S-wave cusp must be eliminated because of the P-wave
nature of the photon. Second, a

(
q2) is constructed in such a way that the sum rule for

the subtraction constant αA is exactly fulfilled, which induces another constraint on the
coefficients ci in (2.21). Third, the integration in (2.22) extends to infinity to fulfill the sum
rule exactly, but in practice an isoscalar integration cutoff sis needs to be introduced, both
for the double-spectral representation of the TFF that we will derive below to satisfy the
asymptotic constraints from pQCD and because the description of the e+e− → 3π data
based on KT equations cannot be justified to arbitrarily high energies. In practice, we
take sis = (1.8 GeV)2, so that, to ensure the validity of (2.22), the imaginary part of the
conformal polynomial has to decrease sufficiently fast. For that reason, we constrain the
ci further to cancel the leading asymptotic behavior for q2

→ ∞. For a degree p and n
constraints on the asymptotic behavior the imaginary part behaves as q−(2n+1) and p − n − 2
free parameters remain. We find that the low-energy e+e− → 3π data can be well described
with two free parameters for n = 3–5 and three free parameters for n = 6, with small
deviations starting around 1.6 GeV. The representation for a

(
q2) constructed in this manner

not only results in an improved description of the data, in particular above the φ resonance,
but also guarantees the internal consistency of the different representations for the TFF when
generalizing the single dispersion relation (4.19) to the double-spectral representation (4.22),
see Section 4.3.3.

Fit results for e+e− → 3π

We determine the normalization a
(
q2) by fitting the residues cV and the coefficients of

the conformal polynomial ci to the e+e− → 3π data. The relation between the e+e− → 3π
cross section (neglecting the electron mass) and the γ∗s → π+π−π0 amplitude is given in
Section 2.2.
As detailed in [231], the most comprehensive single data sets of the e+e− → 3π cross

section at low and high energies are provided by SND [250, 251] and BaBar [248],
respectively, so that the combined SND+BaBar data set yields the dominant constraint for
the entire energy region below 1.8 GeV, with negligible differences when fitting to the full
data base instead (see the fits in [231] to the data compilation from [363]). The uncertainty
estimates for the fits are generated based on the following variations: F

(
s, q2) is calculated

using the three different ππ phase shifts introduced in Section 4.3.1 in the context of the
pion vector form factor. Additionally, the cutoff Λ3π in the integral equation (2.14) above
which the asymptotic behavior is assumed is varied from 1.8 to 2.5 GeV.
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Figure 4.5: Fits to the e+e− → 3π cross section from SND [250, 251] and BaBar [248] with
the different variants of the conformal polynomial labeled by n, the phase shift from [202], and
Λ3π = 2.5 GeV, in comparison to [231] (HKLNS14).

The e+e− → 3π cross sections for different values of n fit to the SND+BaBar data sets
below 1.8 GeV using the phase shift from [202] and a cutoff Λ3π = 2.5 GeV are shown
in Figure 4.5. It can be clearly seen that the fit results are substantially improved above
the φ peak by introducing the conformal polynomial in comparison to the results obtained
in [231]. The uncertainty bands for individual n are not included in the plot as the curves
would be hard to distinguish otherwise especially below 1.6 GeV. The differences in the
reduced χ2, see Table 4.1 for the explicit fit results for the different phase shifts and cutoffs
Λ3π, are almost exclusively generated by the high-energy end of the fit range, thus indicating
that indeed our KT description starts to break down around 1.8 GeV. The low-energy data,
however, are described with a reduced χ2/dof ∼ 1.

4.3.3 Double-spectral representation
The previous discussion of the isospin decomposition (4.13) and the crucial building blocks
in the unitarity relation for the pion TFF, the pion vector form factor FV

π (s) and the γ∗s → 3π
P-wave amplitude f1

(
s, q2) , defines the quantities that enter a once-subtracted dispersion

relation in the isovector virtuality (for fixed isoscalar virtuality) [230],

Fvs
(
q2

1, q
2
2
)
= Fvs

(
0, q2

2
)
+

q2
1

12π2

∫ ∞

4M2
π

dx
q3
π (x)

(
FV
π (x)

)∗ f1
(
x, q2

2
)

x3/2 (x − q2
1
) , (4.16)
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n = 3 n = 4 n = 5 n = 6

cω [GeV−1] 2.87 . . . 2.90 2.85 . . . 2.88 2.84 . . . 2.87 2.83 . . . 2.86
cφ [GeV−1] −(0.400 . . . 0.412) −(0.400 . . . 0.414) −(0.400 . . . 0.414) −(0.400 . . . 0.413)

cω′ [GeV−1] −(0.24 . . . 0.52) −(0.14 . . . 0.39) −(0.040 . . . 0.33) −0.15 . . . 0.14
cω′′ [GeV−1] −(0.80 . . . 1.16) −(0.60 . . . 0.94) −(0.49 . . . 0.90) −(0.45 . . . 0.78)

c1 [GeV−3] −(1.56 . . . 1.79) −(1.75 . . . 1.96) −(1.81 . . . 2.08) −(2.00 . . . 2.24)

c2 [GeV−3] −(1.05 . . . 1.16) −(1.28 . . . 1.40) −(1.44 . . . 1.50) −(1.67 . . . 1.73)

c3 [GeV−3] — — — −0.05 . . . 0.12
χ2/dof 1.37 . . . 1.70 1.58 . . . 2.03 1.68 . . . 2.15 1.71 . . . 2.16

Table 4.1: Fit parameters and reduced χ2 for the e+e− → 3π fits to SND+BaBar [248, 250, 251]
using different versions of the conformal polynomial with asymptotic behavior q−(2n+1) . The ranges
indicate the variation found for the different ππ phase shifts and values of Λ3π .

with qπ (s) =
√

s/4 − M2
π . For q2

2 = M2
ω/φ, the representation (4.16) has been used to

describe the ω/φ→ π0γ∗ TFFs, where the sum rule for the subtraction function

Fvs
(
0, q2

2
)
=

1
12π2

∫ ∞

4M2
π

dx
q3
π (x)

x3/2
(
FV
π (x)

)∗ f1
(
x, q2

2
)

(4.17)

is related to the real-photon decays [229]. For q2
2 = 0, (4.16) yields the isovector part of the

singly-virtual pion TFF,

Fvs
(
q2

1, 0
)
= Fvs (0, 0) +

q2
1

12π2

∫ ∞

4M2
π

dx
q3
π (x)

(
FV
π (x)

)∗ f1(x, 0)

x3/2 (x − q2
1
) , (4.18)

where the sum rule Fvs (0, 0) = Fπγγ/2 is typically saturated at the 90% level [230, 231].
For the (g − 2)µ application (4.6) we need a representation of the space-like doubly-

virtual form factor that can be evaluated at arbitrarily high energies, matching smoothly
onto the asymptotic behavior expected from pQCD, see Section 4.5. In this regard, the
once-subtracted representation is disfavored because it approaches a constant for large
virtualities, contradicting the pQCD scaling, unless the sum rule for the subtraction constant
is fulfilled exactly. In practice, however, the uncertainties in the input always generate
variants of the form factor that behave as a constant at high energies, and such a constant
form factor does not lead to a convergent (g − 2)µ integral. Therefore, we start from an
unsubtracted dispersion relation [231]

Fvs
(
q2

1, q
2
2
)
=

1
12π2

∫ ∞

4M2
π

dx
q3
π (x)

(
FV
π (x)

)∗ f1
(
x, q2

2
)

x1/2 (x − q2
1
) , (4.19)
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despite the expected 10% violation of the sum rule for the normalization Fπγγ/2. To remedy
this shortcoming, we introduce an isovector integration cutoff siv and add an effective pole
collecting the contributions from higher intermediate states and high-energy contributions in
the 2π and 3π channels, see Section 4.5 for details. In this manner, the representation (4.19),
in principle, already determines the general doubly-virtual form factor. However, to find
a representation that facilitates the evaluation in the entire space-like region we derive a
more compact double-spectral representation that makes the analyticity of the form factor
F
π0γ∗γ∗

(
q2

1, q
2
2
)
in both of its arguments q2

1 and q2
2 explicit,

F
π0γ∗γ∗

(
q2

1, q
2
2
)
=

1
π2

∫ ∞

0
dx

∫ ∞

0
dy

ρ(x, y)(
x − q2

1
) (
y − q2

2
) , (4.20)

where ρ(x, y) is the double-spectral density that we aim to reconstruct from the low-lying
hadronic intermediate states. Accordingly, the single dispersion relation (4.19) is elevated
to the double-spectral form by performing yet another dispersion relation in the isoscalar
variable,

Fvs
(
−Q2

1, q
2
2
)
=

1
π

∫ sis

sth
dy

Im Fvs
(
−Q2

1, y
)

y − q2
2

=
1

12π2

∫ siv

4M2
π

dx
q3
π (x)

(
FV
π (x)

)∗ f1
(
x, q2

2
)

x1/2 (x +Q2
1
) ,

(4.21)
where sis is the isoscalar integration cutoff and the threshold sth = M2

π0 is the same as
in (2.22). This leads to a double-spectral representation of the form factor,

Fdisp
π0γ∗γ∗

(
−Q2

1,−Q2
2
)
=

1
π2

∫ siv

4M2
π

dx
∫ sis

sth
dy

ρdisp(x, y)(
x +Q2

1
) (
y +Q2

2
) + (

Q1 ↔ Q2
)
,

ρdisp(x, y) =
q3
π (x)

12π
√

x
Im

[(
FV
π (x)

)∗ f1(x, y)
]
, (4.22)

to describe the low-energy properties, which can be applied to space-like doubly-virtual
kinematics. The nonzero imaginary part of Fvs

(
− Q2

1, q
2) is attributed to three-body

unitarity in the isoscalar virtuality, both the three-pion cuts which result in the deviation
of the phase of f1

(
s, q2) from the phase of FV

π (s) in the decay region q2 > 9M2
π [229]

and the complex nature of a
(
q2) as well. In fact, the complicated analytic structure of the

partial wave f1
(
s, q2) itself might make it seem surprising that the TFF fulfills a dispersive

representation as simple as (4.20), see Appendix B.4 for a more detailed discussion.
Formally, the equivalence of the single dispersion relation (4.19) and the double-spectral

representation (4.22) for Fvs (q2
1, q

2
2 ) implies a sum rule

(
FV
π (s)

)∗ f1
(
s, q2

2
)
=

1
π

∫ sis

sth
dy

Im
[(

FV
π (s)

)∗ f1(s, y)
]

y − q2
2

, (4.23)

which, once finite cutoffs are applied, requires that the singularities be concentrated in the
low-energy region to ensure overall consistency, precisely the motivation for constraining
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the high-energy behavior of the imaginary part of a
(
q2) accordingly. In this context, due

to the pseudothreshold singularities located at s =
(√

q2
2 − Mπ

)2
[229], it becomes more

convenient to consider the integrated quantities instead, which is why we do not pursue the
sum rule (4.23) itself any further.

4.4 Relevant scales for the transition between low and
high energies

Having presented the construction of the dispersive representation of the low-energy
properties of the pion TFF, we first wish to offer a qualitative understanding of the relevant
scales that show up in its subsequent quantitative completion at higher energies. To this
end, we will use phenomenologically successful models. The following reasoning is meant
to be of qualitative use to help understanding the characteristic mass or energy scales that
we find later in the model-independent final calculations.

For the calculation of the hadronic quantum fluctuations in the magnetic moment of the
muon, the latter’s mass provides a scale somewhat smaller than the masses of pions; hence it
is clear that the low-energy sector of QCD plays the most important role for these quantum
fluctuations. Yet, concerning the pion-pole contribution, it turns out that only a proper
high-energy behavior of the pion TFF guarantees the convergence of the corresponding
integrals. Thus, pure low-energy information is not enough for a quantitatively reliable
determination of the pion-pole contribution. Fortunately, pQCD provides some input
for the asymptotic behavior of the pion TFF [364–366]. Also from a practical point of
view, an interpolation between the low-energy region and the asymptotic behavior is more
constraining and therefore more accurate than a pure extrapolation. The question related to
relevant scales is then: where is the effective onset sm of the asymptotic region?

The central piece of our framework is the dispersive representation of the pion TFF: at low
energies, the virtual photons couple dominantly to two- and three-pion states. Below about
1 GeV, these two- and three-pion states essentially behave elastically. Their rescattering is
quantitatively under control by the dispersive framework developed in [197, 229–232]. We
use the phrase “low-energy region” to characterize the regime dominated by elastic reactions.
Above 1 GeV, new channels, i.e. inelasticities become important. For instance, in the
isovector channel, the two-pion states (and the virtual photon) couple to four-pion states [197,
201, 202, 367–369]. Although the threshold for four pions lies significantly below 1 GeV,
both the smallness of four-pion phase space near threshold and the derivative couplings of
the pions demanded by chiral symmetry effectively delay the onset of the importance of the
four-pion states to the πω threshold. In the isoscalar channel, the three-pion states (and the
virtual photon) couple to kaon pairs; this is particularly significant in the energy region of
the φ meson, which has sizable branching fractions to kaon pairs and to three pions [22]. Of
course, these are only examples: at higher energies, more and more channels come into play.
From a technical point of view, it is much more challenging to deal with the coupled-
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Chapter 4 Hadronic light-by-light scattering: π0 pole

channel dynamics above 1 GeV. On the other hand, it should be clear that for our purposes a
less detailed knowledge of the regime beyond the low-energy region is acceptable. We have
to expect an effective scale Meff of the higher-lying inelasticities, i.e. the effective scale of
the physics not covered by two- and three-pion states and their respective elastic rescattering,
to reside at an energy larger than 1 GeV; but we shall argue now that it cannot be far away
from it either.

The pion TFF is a part of the PVV three-point correlator, where P/V denotes a quark
current with pseudoscalar/vector quantum numbers. With the standard Lehmann–Symanzik–
Zimmermann procedure, one can map out the pion-pole contribution to the PVV correlator;
see, e.g., [356]. The crucial point is that the whole PVV correlator would vanish if chiral
symmetry were not broken [370]. On the other hand, chiral symmetry breaking is a
long-distance, low-energy phenomenon. Quantitatively, it is characterized by the scale
4πFπ ≈ 1 GeV [371]. Thus, the pion TFF as part of the PVV correlator cannot be influenced
too much from high-lying inelasticities, and we expect Meff more or less close to 1 GeV.

This reasoning is not entirely independent of the question concerning the onset sm of
the asymptotic region; yet, it is not the same question. The asymptotic region concerns
large space-like momenta where one can apply pQCD and the OPE, while the higher-
lying inelasticities concern the time-like input for a dispersive representation. To relate
the frameworks of OPE and dispersion theory, we use the QCD sum rule method [179,
372–375], to be more specific: the LCSRs [376–381]. The details of this analysis with the
aim of an estimate for sm are provided in Appendix B.5. In the QCD sum rule language, sm
coincides with the duality threshold. It enters as a free parameter that must be determined
by comparison to data. For the case at hand, we compare to the singly-virtual pion
TFF. By construction, the duality threshold must lie above the low-energy regime that is
parameterized explicitly by hadronic resonances in the sum rule method, yet the analysis
of Appendix B.5 reveals that the duality threshold cannot lie significantly higher either.
Figure B.3 in Appendix B.5 shows that the best agreement with the data on the singly-virtual
pion TFF is achieved by low values of sm, again not much larger than 1 GeV2.

4.5 Matching to the asymptotic behavior

The dispersive double-spectral density of (4.22) incorporates all the low-lying singularities
in the 2π and 3π channels, but does not account for higher intermediate states nor the
correct matching to pQCD. Therefore, we now develop the explicit form of the effective and
asymptotic contributions in (4.1), considering both LO and NLO pQCD dynamics as well
as an effective pole in order to impose the correct normalization Fπγγ and incorporate the
constraints from space-like singly-virtual data.
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4.5.1 Leading-order perturbative QCD
If both momenta q2

1 and q2
2 are large (and have the same sign), the T-product of the

electromagnetic currents jµ in (4.3) can be expanded along the light cone x2
= 0. The

lowest-order and leading-twist expansion of the TFF reads [364–366]

F
π0γ∗γ∗

(
q2

1, q
2
2
)
= −

2Fπ
3

∫ 1

0
du

φπ (u)

uq2
1 + (1 − u)q2

2
+ O

(
q−4

i
)
, (4.24)

where powers of asymptotic momenta are denoted by qi. The twist-two pion distribution
amplitude can be expanded in terms of Gegenbauer polynomials C3/2

2n as

φπ (u, µ) = 6u(1 − u)
[
1 +

∞∑
n=1

a2n(µ)C3/2
2n (2u − 1)

]
, (4.25)

which provides a universal asymptotic distribution amplitude φπ (u) = 6u(1 − u) at large
factorization scale µ→ ∞ as the logarithmically µ-dependent coefficients a2n tend to zero.
Since at low scales the non-perturbative coefficients a2n are largely unknown, we will use the
asymptotic distribution amplitude φπ (u) in the following analysis, ignoring the higher-order
terms n ≥ 1 as well as higher-twist corrections.
Introducing an asymmetry parameter ω =

(
q2

1 − q2
2
)
/
(
q2

1 + q2
2
)
, the leading expres-

sion (4.24) can be changed into the form

F
π0γ∗γ∗

(
q2

1, q
2
2
)
= −

4Fπ
3

f (ω)

q2
1 + q2

2
+ O

(
q−4

i
)
, (4.26)

where

f (ω) =
∫ 1

0
du

φπ (u)
u(1 − ω) + (1 − u)(1 + ω)

. (4.27)

Specifically, this implies the OPE limit [372, 382] for the diagonal form factor (ω = 0),

F
π0γ∗γ∗

(
−Q2,−Q2)

=
2Fπ
3Q2 + O

(
Q−4) . (4.28)

In addition, formal evaluation at ω = ±1 produces

F
π0γ∗γ∗

(
−Q2, 0

)
= F

π0γ∗γ∗
(
0,−Q2)

=
2Fπ
Q2 + O

(
Q−4) , (4.29)

usually referred to as the Brodsky–Lepage (BL) limit of the singly-virtual form factor.
However, the OPE expansion justifies (4.24) only for |ω | < 1/2 [383, 384], otherwise
its derivation cannot be considered rigorous. Apart from these two frequently studied
conventional limits, (4.26) also predicts the asymptotic behavior for arbitrary virtualities
q2

1 and q2
2 by (4.27). Hence, our representation will be matched to f (ω) to fully take
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into account the entire domain of space-like virtualities, instead of just two particular
limits (4.28) and (4.29). Beyond the leading expansion (4.24), calculations including αs
corrections [385, 386], higher terms in the Gegenbauer-polynomial expansion of φπ (u) [376,
387] within QCD sum rules [377–379, 388], Dyson–Schwinger equations [389–392], and
Regge theory [393–395] could be considered, but a consistent treatment of all subleading
corrections becomes very complicated with little numerical impact on (g − 2)µ. As an
explicit example we will consider αs corrections in Section 4.5.2.
At LO, we implement the pQCD constraints as follows. First, it has been observed

that (4.24) can be transformed into a dispersion relation by a simple change of variables
u → x/

(
x − q2

2
)
for space-like virtuality q2

2 [377],

F
π0γ∗γ∗

(
q2

1, q
2
2
)
=

1
π

∫ ∞

0
dx

Im F
π0γ∗γ∗

(
x, q2

2
)

x − q2
1

, (4.30)

with
Im F

π0γ∗γ∗
(
x, q2

2
)
=

2πFπ
3
(
x − q2

2
) φπ ( x

x − q2
2

)
. (4.31)

Furthermore, we find that identifying the discontinuities in the second variable q2
2 leads to a

new double-spectral representation for the asymptotic expression:

F
π0γ∗γ∗

(
q2

1, q
2
2
)
=

1
π2

∫ ∞

0
dx

∫ ∞

0
dy

ρasym(x, y)(
x − q2

1
) (
y − q2

2
) , (4.32)

where
ρasym(x, y) = −2π2Fπxyδ′′(x − y) (4.33)

is a double-spectral density proportional to xy and concentrated along the diagonal direction
x = y because of the second derivative of the delta function. Note that the singular nature
of ρasym(x, y) along the diagonal direction is a rather general feature not restricted to
the asymptotic distribution amplitude φπ (u). For instance, a constant pion distribution
amplitude φπ (u) = 1 produces a double spectral density (2π2Fπ/3)δ(x − y) proposed in
the context of QCD sum rules [372].

The double-spectral form of the pQCD expression (4.32) then suggests to decompose the
TFF in terms of the different integration regions

F
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x − q2

1
) (
y − q2

2
) + 1

π2

∫ ∞

sm
dx

∫ sm

0
dy

ρ(x, y)(
x − q2

1
) (
y − q2

2
) ,
(4.34)
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where sm is a continuum threshold introduced to separate the different regions, see the
discussion in Section 4.4. On the one hand, the low-energy input to the double-spectral
density has been derived in (4.22). On the other, the spectral density in the doubly-asymptotic
region can be identified with ρasym(x, y) in (4.33). The spectral densities in the third and
fourth mixed low- and high-energy regions are not well constrained, e.g. the asymptotic
spectral density ρasym(x, y) applied in these regions simply vanishes. Given that the
contribution from the doubly-asymptotic region alone can provide the correct asymptotic
behavior and that both the BL limit as well as the available data can be described with
a combination of the low-energy dispersive contribution and an effective pole, we will
discard the contributions from the mixed regions altogether assuming that the effective pole
sufficiently takes care of them. In the end, this defines the asymptotic contribution

Fasym
π0γ∗γ∗

(
q2

1, q
2
2
)
= 2Fπ

∫ ∞

sm
dx

q2
1q2

2(
x − q2

1
)2 (x − q2

2
)2
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2Fπq2

1q2
2(

q2
1 − q2

2
)2

(
1

sm − q2
1
+

1
sm − q2

2
+

2
q2

1 − q2
2

ln
sm − q2

1

sm − q2
2

)
, (4.35)

which reproduces the limit defined by (4.24) for non-vanishing virtualities.

We remark that an asymptotic contribution of the form (4.35) could also be used to impose
the correct asymptotic behavior on a hadronic model. For instance, for a VMD-inspired
model one could write

FVMD
π0γ∗γ∗

(
q2

1, q
2
2
)
= Fπγγ

[
(1 − ε ) M4

1(
M2

1 − q2
1
) (

M2
1 − q2

2
) + ε M4

2(
M2

2 − q2
1
) (

M2
2 − q2

2
) ]

+ Fasym
π0γ∗γ∗

(
q2

1, q
2
2
)
, (4.36)

which amounts to a simplified model for our full representation (4.1). By construction, all
asymptotic limits for non-vanishing virtualities are correct, while the strict BL limit (4.29)
emerges for (1 − ε )M2

1 + εM2
2 = 8π2F2

π . We tried to describe our full result using (4.36) as
an approximation, treating either M1, M2, and ε , or, in addition, sm as free fit parameters.
Such an ansatz seems to work reasonably well, with systematic errors introduced at the level
of aµ around 0.5 × 10−11, but of course cannot replace the full calculation.
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4.5.2 Next-to-leading-order perturbative QCD

Higher orders in pQCD beyond the leading result [364–366] have been derived in [386].
Adapted to our notation, the corresponding correction can be expressed as
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. (4.37)

In the singly-virtual limit we obtain

F
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2
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)
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in agreement with the result stated in [386]. Similarly, evaluation in the doubly-virtual limit
produces

F
π0γ∗γ∗
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=
2Fπ
3Q2
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2

CFαs
(
− 2Q2)
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)
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. (4.39)

In each case, we have set µ2
s = q2

1 + q2
2 [386]. As a powerful check on (4.37) the dependence

on µ cancels also for general virtualities if the asymptotic form of the distribution amplitude
is employed. Subleading terms in the Gegenbauer-polynomial expansion of the pion
distribution amplitude again depend on µ, which compensates the µ dependence within the
non-asymptotic αs corrections.

For the asymptotic contribution to the pion TFF we seek corrections to

Fasym
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2
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)
= 2Fπ

∫ ∞

sm
dx
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1q2

2(
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1
)2 (x − q2

2
)2 . (4.40)

Since the corresponding double-spectral function is peaked at x = y, the canonical choice
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of scale should be

Fasym
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2
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,

δ
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2
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2)
=

∫ 1
0 du φπ (u)

uq2
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2
f
(
u,−q2

1,−q2
2,−µ

2)∫ 1
0 du φπ (u)

uq2
1+(1−u)q2

2

, (4.41)

and we have checked that for Q2 values of practical importance this estimate yields
corrections close to the naive expectation −αs

(
− 2Q2)/π ∼ −10% from the doubly-virtual

limit. In the end, the uncertainty in the choice of matching scale sm in the LO contribution
safely encompasses such corrections.

4.5.3 Constraints from singly-virtual data

As the next step, we present the conceptual ideas how to incorporate high-energy TFF data
in our representation (4.1). The final results of the corresponding fits will be provided in
Section 4.6 together with all other results for the pion TFF in various kinematic regimes.
Despite the absence of doubly-virtual measurements of the TFF thus far, there is ample

experimental information for space-like singly-virtual kinematics [396–399]. These data
sets cover primarily large virtualities and thus provide the opportunity to probe the high-
energy behavior of the singly-virtual form factor beyond the low-energy region . 1 GeV,
the latter being most relevant for aµ. Most high-energy data in fact corroborate the BL
limit limQ2

→∞
Q2F

π0γ∗γ∗
(
−Q2, 0

)
= 2Fπ with f ( |ω | = 1) = 3/2 despite the questionable

convergence at |ω | = 1, in contrast to a naive continuation of the OPE f (|ω | = 1) = 1
or f (|ω | = 1) = 5/2 obtained form the Chernyak–Zhitnitsky distribution amplitude [376,
387]. Potential deviations from the BL limit were suggested by the BaBar experiment [398],
where the measured form factor exceeded the BL limit by as much as 50% at Q2 > 10 GeV2,
but the latest Belle measurement [399] did not find any evidence for such a rapid growth at
high Q2. We will assign sufficiently broad uncertainty bands that cover both scenarios, so
that our final result for aπ

0-pole
µ will not depend on any prejudice either way.

Our representation evaluated for singly-virtual asymptotics receives contributions from
the low-energy dispersive part (4.22), while the pQCD term (4.35) vanishes. In practice,
the low-energy representation (4.22) already fulfills the BL limit at a level around 55%,
so that only the remainder needs to be generated by higher intermediate states as well as
high-energy contributions to the 2π and 3π channels. This can be conveniently achieved by
an effective pole in the double-spectral density, which amounts to an extra term

Feff
π0γ∗γ∗

(
q2

1, q
2
2
)
=

geff

4π2Fπ

M4
eff(

M2
eff − q2

1
) (

M2
eff − q2

2
) , (4.42)
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where the coupling geff is determined by imposing the sum rule for Fπγγ and the mass
parameter Meff is fit to the space-like singly-virtual data [396–399]. The resulting parameters
geff and Meff are found to be around 10% and (1.5–2) GeV respectively, in agreement with
the assumption that an effective pole subsumes the contributions from higher intermediate
states. As pointed out in the discussions of the pion phase shift (2π states) and of the fit to
the cross section for e+e− → 3π (3π states), our dispersive representation includes some
part of the spectral strength of the energy region (1–2) GeV. Naively, one might then expect
that the complementary part covered by the effective pole of (4.42) should lead to a value
of Meff significantly higher up in energy. However, as pointed out in Section 4.4, there
cannot be much spectral strength at very high energies contributing to the pion TFF. Phrased
differently, the range found for Meff is completely reasonable and a better description of the
region above 1 GeV would merely lead to a smaller value of geff instead of a higher value of
Meff.
In view of the tension of the BaBar data [398] both with the BL limit and the other

data sets we need to specify how we treat the corresponding systematic uncertainty in our
fits. First, we observe that, while otherwise the results are very stable with respect to the
lower threshold Q2

min above which data are fit, including the BaBar data induces a strong
sensitivity on Q2

min, and the χ
2 deteriorates appreciably if Q2

min is increased. For this reason,
we define the central value of our analysis by the fit to all data sets excluding BaBar, with
Q2

min = 5 GeV2, which leads to an asymptotic value almost exactly at the BL limit. To
estimate the systematic uncertainties, we perform fits with Q2

min = (5–10) GeV2, with and
without the BaBar data, and for each fit consider a 3σ error band. The envelope of all these
fits corresponds to an uncertainty band +20

−10% around the central value, where the asymmetric
error reflects the fact that the BaBar data imply a systematic shift in the upward direction.
In this way, we assign a very generous error band to the space-like fits, in such a way that
the systematic uncertainties are safely covered by the corresponding error estimate in our
final result. Moreover, since only data above 5 GeV2 are included in the fit, the low-energy
region remains a prediction, effectively improving the asymptotic behavior of the result
from [231] by the matching to the pQCD constraints.

4.6 Numerical results
In this Section we present the numerical outcome of our analysis. First of all, in contrast to
the fit strategy applied in Chapter 3, the singly-virtual pion TFF in the time-like region is
predicted and the resulting e+e− → π0γ cross section is compared to the corresponding
experimental results. Second, the space-like doubly-virtual form factor is discussed, in
particular along the singly-virtual and the diagonal direction, and the asymptotic behavior
in the entire domain of space-like kinematics is further confronted with the predictions
from pQCD. Last, the pion-pole contribution to aµ is calculated along with comprehensive
uncertainty estimates, each of which will be related to the various experimental input
quantities.
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4.6.1 Time-like form factor and e+e− → π0γ

According to (4.17) and (4.18), the time-like singly-virtual TFF obeys a once-subtracted
dispersion relation:

F
π0γ∗γ∗

(
q2, 0

)
= Fπγγ +

1
12π2

∫ ∞

4M2
π

dx
q3
π (x)

(
FV
π (x)

)∗
x3/2

{
f1

(
x, q2)

− f1(x, 0) +
q2

x − q2 f1(x, 0)
}
,

(4.43)

where the normalization at the real photon point q2
= 0 is fixed to the chiral anomaly

using again the sum rule (4.17).5 For the studies in [231], the isoscalar contribution
corresponding to the first two terms in the integrand of (4.43) was calculated using the
previously determined partial wave f1

(
s, q2) , where an asymptotic continuation ∼ 1/x

was assumed above the isovector integration cutoff siv. The last term, the isovector piece,
was determined using a finite matching point of 1.2 GeV [230]. Here, we will consider
an update of this once-subtracted analysis based on the new parameterization for a

(
q2) ,

including the conformal polynomial and the new isovector part, where siv is chosen as
a strict integration cutoff for both isoscalar and isovector contributions in line with the
dispersive representation (4.22). At the same time, the double-spectral representation (4.20)
provides an unsubtracted form of the time-like TFF

F
π0γ∗γ∗

(
q2, 0

)
= Fdisp

π0γ∗γ∗

(
q2, 0

)
+ Feff

π0γ∗γ∗
(
q2, 0

)
, (4.44)

where the determination of the parameters geff and Meff in the effective pole is described in
Section 4.5.3.
The relation between the e+e− → π0γ cross section and the pion TFF reads (neglecting

the mass of the electron for simplicity)

σe+e−→π0γ

(
q2)
=

2π2α3

3

(
q2
− M2

π0
)3

q6
��Fπ0γ∗γ∗

(
q2, 0

) ��2 . (4.45)

We emphasize that our predictions of the time-like form factor and thus the cross section
are entirely based on the dispersive framework with the input quantities described in the
previous Sections: the anomalies Fπγγ and F3π, the ππ P-wave phase shift, the pion vector
form factor, and the e+e− → 3π cross section data.
The resulting e+e− → π0γ cross section predicted from the once-subtracted and the

unsubtracted TFFs based on the new parameterization of a
(
q2) are compared to the previous

analysis [231] in Figure 4.6. In addition to the e+e− → π0γ cross section measurements [270,
5 This representation was first applied here to predict the e+e− → π0γ cross section, and later promoted to
the fit strategies presented in Chapter 3.
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Figure 4.6: The e+e− → π0γ cross section calculated from the once-subtracted TFF (blue solid line),
the unsubtracted TFF (red dashed line), and [231] (black dot-dashed line), compared to the data of
SND [295, 296], CMD2 [270], and SND (2016) [297]. The inserts show the same plot around the ω
and φ peaks, respectively. The gray band indicates our uncertainty estimate for the unsubtracted TFF.

295, 296] already included in [231], we also take into account the most accurate new data
determined from the full data sample of the SND experiment [297]. The mean values of our
cross section are obtained averaging over the variations of the input quantities, n from 3–6 in
the conformal polynomial of a

(
q2) , and also the change of the integration cutoffs Λ3π and√siv in the range (1.8–2.5) GeV. The band corresponding to the theoretical uncertainties

σth, defined as the maximum deviations of all the variations from the average cross section,
are only shown for the unsubtracted TFF in Figure 4.6, since otherwise the individual bands
could hardly be differentiated. These results are fully consistent with [231], which is not
immediately guaranteed for the unsubtracted version (4.44) given that the effective pole
introduced to enforce the correct normalization implies a finite range of validity, the effects
of which could potentially affect the low-energy region in particular for low masses Meff.

We further calculate the reduced χ2 corresponding to these results in the case of the
different experimental data sets [270, 295–297] for a more quantitative assessment of our
description. The reduced χ2/dof calculated below 1 GeV and 1.1 GeV is shown in Table 4.2,
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SND CMD2 SND (2016)

once-subtracted TFF
χ2/dof 1.16 [2.76] 2.64 [12.7] 1.91 [4.73]
χ̃2/dof 0.43 [0.73] 1.10 [1.85] 0.42 [0.68]

unsubtracted TFF
χ2/dof 1.07 [2.51] 2.34 [11.5] 1.51 [4.04]
χ̃2/dof 0.36 [0.62] 0.95 [1.45] 0.29 [0.50]

HKLNS14
χ2/dof 0.90 [1.08] 1.82 [3.35] 2.15 [2.01]
χ̃2/dof 0.54 [0.62] 1.18 [1.39] 0.68 [0.65]

Table 4.2: Reduced χ2 and χ̃2 for the e+e− → π0γ cross section determined from the once-subtracted
and the unsubtracted TFFs and from [231] (HKLNS14), compared to SND [295, 296], CMD2 [270],
and SND (2016) [297] below 1 GeV [below 1.1 GeV].

together with a modified variant

χ̃2
=

N∑
i=1

(
yi − yth(qi)

)2

σ2
i + σ

2
th(qi)

, (4.46)

where qi =

√
q2

i and the difference between experiment and theory yi − yth(qi) is weighted

by the combined uncertainty
√
σ2

i + σ
2
th(qi). We observe very good agreement between the

once- and unsubtracted TFFs, while, as expected, differences to [231] arise from the new
parameterization of a

(
q2) . Below 1 GeV, the χ2 deteriorates for the previously studied data

sets from SND [295, 296] and CMD2 [270], but for the new SND data [297] the situation
is reversed, here the new a

(
q2) leads to a better description. The difference can be traced

back largely to the ω peak, see insert in Figure 4.6, where now the strength of the resonance
is predicted almost perfectly, both for the subtracted and unsubtracted variants. In fact, the
slight difference in the χ2 originates almost exclusively from data outside the ω region.
Including the φ region, i.e. all data below 1.1 GeV, we find that the slight mismatch

at the resonance peak already observed in [231] is compounded, and accordingly the χ2

deteriorates appreciably when extending the energy region beyond 1 GeV. This indicates
that, most likely, the inelastic effects in a

(
q2) fit to the 3π channel, including imaginary

parts that open around the KK̄ threshold, cannot describe the same energy region in the
e+e− → π0γ spectrum, reflecting the fact that these inelastic effects do not have to affect
the 3π and π0γ channels in the same way. Accordingly, the marked improvement in the 3π
channel just above the φ resonance comes at the expense of a mismatch in π0γ. Phrased
differently, the coefficients in the conformal polynomial if fit to e+e− → π0γ instead of 3π
would change as observed in Chapters 2 and 3, likely restoring agreement in the φ region.
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In addition, a quantitative description above 1 GeV would at some point be distorted by the
influence of the effective poles in the unsubtracted TFF (4.44), so that the once-subtracted
variant would becomemore appropriate for that purpose. While it is therefore not unexpected
that the χ2 of the central values increases in the φ region, we remark that when including the
uncertainty estimates, see χ̃2 in Table 4.2, the description hardly deteriorates and in the case
of the new SND data and the unsubtracted TFF even slightly improves. This demonstrates
that the gradual breakdown of the predictive power of our formalism in the time-like region
around the φ resonance is largely captured by our uncertainty estimates.

In this work, we are most interested in the space-like TFF as it enters in (g − 2)µ, and the
improved description of 3π was constructed in such a way as to better control the analytic
continuation to the space-like region. In principle, one could imagine fitting a similar
representation of a

(
q2) to e+e− → π0γ data alone (as in Chapter 3) and calculating the

analytic continuation of the TFF based on the conformal parameters obtained in this fit.
However, we conclude that the uncertainties in both the theoretical description and the
data base are not competitive with a direct fit to e+e− → 3π, which therefore provides the
most reliable prediction of the space-like TFF. On the experimental side this conclusion
is illustrated by the fact that the different data sets favor different theoretical predictions,
see Table 4.2, while on the theory side the complications become most apparent in the
analytic continuation. For the application in (g − 2)µ the asymptotic behavior requires an
unsubtracted dispersion relation, but the effective pole would render precisely that variant
unsuitable for a fit to the whole e+e− → π0γ spectrum, as would be required for a reliable
analytic continuation to the space-like region.

4.6.2 Space-like form factor
After the discussion of the time-like TFF, we start the analysis of the space-like doubly-virtual
TFF

F
π0γ∗γ∗

(
−Q2

1,−Q2
2
)
= Fdisp

π0γ∗γ∗

(
−Q2

1,−Q2
2
)
+ Feff

π0γ∗γ∗
(
−Q2

1,−Q2
2
)
+ Fasym

π0γ∗γ∗

(
−Q2

1,−Q2
2
)

(4.47)
by first comparing our result for the singly-virtual TFF with the once-subtracted dispersive
representation employed in [231],

F
π0γ∗γ∗

(
−Q2, 0

)
= Fπγγ −

Q2

π

∫ ∞

sth
ds′

Im F
π0γ∗γ∗

(
s′, 0

)
s′
(
s′ +Q2) . (4.48)

For this purpose, the singly-virtual form factor at low energies up to 3 GeV2 is displayed in
the formQ2F

π0γ∗γ∗
(
−Q2, 0

)
as a function ofQ2 in Figure 4.7, together with the experimental

data from CELLO [396] and CLEO [397], where the total uncertainties are obtained by
adding the statistical and systematic errors in quadrature.6 Our theoretical uncertainty of the
6 For the CELLO data, we directly take the uncertainties as given in [396] since systematic effects are not
listed separately.
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Figure 4.7: The singly-virtual form factors obtained in the current analysis (solid lines with gray
uncertainty band) and from the once-subtracted representation [231] (HKLNS14, dashed lines) in
the low-energy region, in comparison to CELLO [396] and CLEO [397] data.

singly-virtual form factor is estimated as the quadratic sum of the±0.75% Fπγγ normalization
uncertainty varying geff, the dispersive uncertainty, and the

+20
−10% BL uncertainty varying

Meff. Here, the dispersive error is defined as the maximum deviation from the central
result found for different phase shifts and different pion vector form factors described in
Section 4.3.1, n ranging from 3–6 in the fit of a

(
q2) to the e+e− → 3π cross section, and

varying the integration cutoffs Λ3π and
√siv between (1.8–2.5) GeV. The resulting form

factor depicted in solid lines is consistent with the available data and is close to the result
obtained from the once-subtracted representation (4.48) in dashed lines at low energies
below 1 GeV2. At larger momenta the curves start to deviate, which is exactly expected from
the matching of our representation to the correct high-energy behavior: the once-subtracted
representation tends to show a linear behavior in the plot, whereas the unsubtracted form
factor slowly converges to the BL limit.
Next, we update the low-energy parameters characterizing the singly-virtual TFF, most

notably its radius

aπ =
M2
π0

Fπγγ

∂

∂q2 F
π0γ∗γ∗

(
q2, 0

) ����q2
=0

= 31.5(2)Fπγγ
(8)disp(3)BL × 10−3

= 31.5(9) × 10−3 . (4.49)
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Figure 4.8: The singly-virtual form factor Q2F
π0γ∗γ∗

(
−Q2, 0

)
as a function of Q2, in comparison to

the experimental data [396–399]. The dashed horizontal line indicates the BL limit.

The increased value compared to aπ = 30.7(6) × 10−3 [231] traces back to the matching
to the asymptotic behavior and corresponds to the fact that our form factor is slightly
smaller than the once-subtracted TFF (4.48) as show in Figure 4.7. While fully consistent
within uncertainties, the central value thus moves closer to the one derived from Padé
approximants [317], aπ = 32.4(2.2) × 10−3, and also to the current experimental average
aexp
π = 33.5(3.1) × 10−3 [22], which is dominated by extractions from the Dalitz decay
π0
→ e+e−γ [400] (compare also [401]) and the space-like CELLO data [396]. The

dispersive approach continues to provide the most precise determination, due to the fact that
other extractions are limited either by poor space-like data or the small kinematic region
accessible in the Dalitz decay.

The next coefficient in the expansion around q2
= 0 is evaluated as

bπ =
M4
π0

Fπγγ

1
2

∂2

∂
(
q2)2 F

π0γ∗γ∗
(
q2, 0

) ����q2
=0

= 1.14(1)Fπγγ
(4)disp(1)BL × 10−3

= 1.14(4) × 10−3 , (4.50)

where the overall uncertainty is entirely dominated by the dispersive one as expected
for a low-energy parameter. The larger dispersive uncertainty compared to the result
1.10(2) × 10−3 obtained in [231] partially originates from the fact that the uncertainty
from the fits to the e+e− → 3π cross section using different variants of the conformal
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Figure 4.9: The diagonal form factor Q2F
π0γ∗γ∗

(
−Q2,−Q2) versus Q2 at low energies (blue solid

line with uncertainty band), compared to the LMD+V model fit to the lattice data [346] (red dashed
line with uncertainty band). The black dashed line shows the OPE limit.

polynomials in the parameterization (2.16) is included in the dispersive one. However, the
total uncertainty is still appreciably smaller e.g. compared to 1.06(26) × 10−3 from [317].

The asymptotic behavior of the singly-virtual TFF Q2F
π0γ∗γ∗

(
−Q2, 0

)
at higher energies

is shown in Figure 4.8, along with the BaBar and Belle measurements [398, 399] and
the CELLO and CLEO data [396, 397] already included in Figure 4.7.7 We find that the
central value of our result almost matches the BL prediction, slowly approaching this limit
from below. Although even fits including the BaBar data and using an energy threshold
of 10 GeV2 do not fully capture the rapid rise suggested by the BaBar data, our error band
does cover all reasonably conceivable fit variants, see Section 4.5.3, which implies that the
statistical significance of the last few BaBar data points does not suffice to drastically alter
the fit results.

As the next step, we calculate the diagonal TFF F
π0γ∗γ∗

(
−Q2,−Q2) as another represent-

ative result for the doubly-virtual form factor. In the dispersive approach, the doubly-virtual
diagonal form factor is completely determined by the singly-virtual inputs by virtue of its
isospin structure. In particular, analyticity guarantees that the space-like form factor has

7 We include the Q2-independent error components of the systematic errors into the total uncertainties of
BaBar and Belle [398, 399].
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Figure 4.10: The diagonal form factor Q2F
π0γ∗γ∗

(
−Q2,−Q2) (blue solid line with uncertainty band),

in comparison to the LMD+V model fit to the lattice data [346] (red dashed line with uncertainty
band). The OPE limit of the form factor is indicated by the black dashed line.

to be a smooth function when matching to pQCD, even though it receives contributions
from three different terms in (4.47), including the asymptotic contribution (4.35). The
uncertainty in this asymptotic piece is estimated by varying the threshold parameter sm
in the range (1.7 ± 0.3) GeV2, which ensures a smooth matching and coincides with the
typical range found with LCSRs [376–379], see Section 4.4. It is then added quadratically
to the other three sources of uncertainty already discussed in the context of the singly-virtual
form factor.

The asymptotic behavior of the diagonal form factor is known rigorously from the OPE,
see (4.28). In the absence of experimental measurements, our result given in the form
Q2F

π0γ∗γ∗
(
−Q2,−Q2) in Figure 4.9 is compared to an LMD+V (lowest meson dominance +

vector [370]) resonance model fit to lattice data extrapolated to the physical pion mass [346].
We find a slightly smaller diagonal form factor compared to the LMD+V model fit to
lattice, otherwise observe consistency within the uncertainty bands. Similarly, the results
for Q2F

π0γ∗γ∗
(
−Q2,−Q2) from our dispersive calculation and the lattice calculation of the

TFF [346] at high energies up to 40 GeV2 are shown in Figure 4.10, again in agreement
within uncertainties. Our central value approaches the OPE limit from below, which
indicates a negative subleading O

(
1/Q4) contribution as obtained in [372]. The total
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the photon virtualities.

uncertainty at low energy is largely dominated by the one from the normalization Fπγγ,
but the uncertainties from the BL limit and the asymptotic contribution start to compete at
higher energies. Accordingly, the uncertainty bands of both analyses shrink to the central
results at higher energies since they are suppressed as subleading terms in O

(
1/Q2) and

both analyses are matched correctly to the leading OPE limit (4.28).
So far, we have shown the TFF for two special space-like kinematics to demonstrate

consistency with experiment and lattice, respectively. However, the analysis is not complete
since for (g − 2)µ we need the TFF as a function of two general photon virtualities. The full
result, presented in the form

(
Q2

1 +Q2
2
)
F
π0γ∗γ∗

(
−Q2

1,−Q2
2
)
as a function of Q2

1 and Q2
2, is

depicted in Figure 4.11. The virtualities Q2
1 and Q2

2 cover broad ranges from low-energy to
asymptotic regions of interest. The smooth transition and the correct high-energy behavior
of the form factor in the entire kinematic domain are dictated by the analyticity of the form
factor and the proper pQCD matching.
Finally, we compare the high-energy behavior of our dispersive representation (4.47) to

the predictions of the asymptotic behavior from pQCD by analyzing the function f (ω)
defined in (4.26) and (4.27). Its value encodes the asymptotic behavior of the TFF for
arbitrary virtualities Q2

1 and Q2
2. f (ω) at the energy scale chosen as the highest accessible

energy of the BaBar and Belle experiments [398, 399] is illustrated in the left diagram
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Figure 4.12: f (ω) obtained from the dispersive representation (4.47) (blue solid line with uncertainty
band) calculated at Q2

1+Q2
2 = 35 GeV2 (left) and at Q2

1+Q2
2 = 1.6×103 GeV2 (right), in comparison

to f (ω) from the LO and NLO asymptotic pion distribution amplitudes φπ (u) = 6u(1 − u) (red
dashed line) and (4.37) (black dot-dashed line).

of Figure 4.12. At these virtualities, our uncertainty band should safely cover most of
the modifications to f (ω) from higher terms in the Gegenbauer-polynomial expansion as
well as other proposed modifications of the pion distribution amplitude, as an example we
show the αs corrections (4.37). At very high energies, by construction, f (ω) obtained
from the dispersive representation is nearly identical to the one obtained from the LO
asymptotic pion distribution amplitude φπ (u) = 6u(1 − u), therefore ensuring the correct
high-energy behavior of the form factor (see right diagram). In this case, since αs vanishes
only logarithmically, the NLO curve is not covered anymore by our uncertainty band, but
such large virtualities are irrelevant for the (g − 2)µ integral. Moreover, a complete NLO
matching would actually be disadvantageous, given that, by chance, for the relevant energy
range our central curve, although matched to the LO amplitude asymptotically, comes
out closer to the NLO prediction (see left diagram). We stress that Figure 4.12 merely
demonstrates to which extent the TFF has approached the pQCD limit for a particular
choice of photon virtualities, it does not provide additional insights into the pion distribution
amplitude beyond its asymptotic form.

4.6.3 Consequences for aµ
We now turn to the main application of the detailed analysis of the space-like doubly-virtual
TFF presented in the preceding Section, the pion-pole contribution to aµ. Evaluating the
loop integrals in its definition (4.6) by means of the TFF representation (4.47), the final
result reads

aπ
0-pole
µ = 63.0(0.9)Fπγγ

(1.1)disp(2.2
1.4)BL(0.6)asym × 10−11

= 63.0+2.7
−2.1 × 10−11 . (4.51)
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4.6 Numerical results

Here, the uncertainties from the numerical integration are negligible, in fact, we used both
the standard variant (4.6) and a more symmetric parameterization of the integration region
first suggested in [402] and subsequently implemented in [147, 148]. All uncertainties
therefore derive from the TFF, with individual contributions estimated in close analogy to
the previous Sections. First, the central value is defined by the average over all variants
of the dispersive formalism, i.e. ππ phase shifts, cutoff parameters, parameterizations of
the pion vector form factor, and the conformal polynomial, with the uncertainty defined as
the maximum deviation from this average. The normalization uncertainty then reflects the
final PrimEx result [287] for the π0 decay width corresponding to an uncertainty of 0.75%
in Fπγγ, the BL error the uncertainty band from Figure 4.8, and the asymptotic error the
impact of the variation of sm in (4.35) according to sm = (1.7 ± 0.3) GeV2. The quadratic
sum of the four different sources of uncertainty defines our final estimate. Note that while
this strategy is completely analogous to the corresponding error estimates discussed before
for the time- and space-like TFF, due to the fact that the TFF enters squared in the integral
it is critical to perform this error estimate for each source individually at the level of aµ,
using the total error band of the TFF instead would assume fully-correlated uncertainties
and thereby overestimate the final error.
The decomposition (4.51) further suggests opportunities for future cross-checks

and improvements. First, in comparison to the original published result, aπ
0-pole
µ =

62.6(1.7)Fπγγ
(1.1)disp(2.2

1.4)BL(0.5)asym × 10−11
= 62.6+3.0

−2.5 × 10−11 [149, 150], the PrimEx-II
measurement has already reduced the uncertainty in Fπγγ to 0.75% [287, 360], which
translates to normalization and total uncertainties of 0.9 and +2.7

−2.1 × 10−11 in aµ, respectively.
Next, the dispersive uncertainties in particular in the low-energy space-like TFF could
be cross-checked and potentially improved by upcoming data from BESIII [403], while
the F3π low-energy theorem, used to normalize a

(
q2) in (2.17), is currently under study

at COMPASS [404]. A conclusive measurement of the asymptotic singly-virtual TFF at
Belle II [405, 406] would eliminate the systematic uncertainties from tensions between
BaBar and Belle as well as the BL limit. In fact, simply taking the central fit to the full
data base with 1σ uncertainties would formally reduce the BL error to 0.2 × 10−11 (with
a central value of 63.1 × 10−11), which emphasizes the fact that our result, at the level
of accuracy quoted in (4.51), is insensitive to the tensions in the asymptotic behavior.
Strictly speaking, all singly-virtual data on the space-like pion TFF [396–399] result from
doubly-virtual measurements extrapolated to the point where one photon is on-shell. With
our doubly-virtual TFF (4.47) at hand, agreement with data could be checked directly or our
TFF could be used for the extrapolation. Also for this purpose, the values for radius (4.49)
and curvature (4.50) might prove useful. Finally, absent doubly-virtual data it is not possible
to reduce the pQCD uncertainties directly, but input from lattice QCD would allow one to
further scrutinize this contribution.

Our central result (4.51) is compared to previous calculations in Table 4.3. For complete-
ness, we have also provided references that consider an off-shell pion-exchange contribution,
but emphasize that these results are model-dependent, corresponding to a particular choice
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Chapter 4 Hadronic light-by-light scattering: π0 pole

method aπ
0-pole
µ aπ

0-“exchange”
µ aπ

0-“const”
µ reference

NJL model 81.8(16.5) [335]
LMD+V 72(12) [337]
holographic model 65.4(2.5) [339]
Dyson–Schwinger equations 57.5(6.9) [340]
nonlocal chiral quark model 50.1(3.7) [341]
resonance chiral theory 65.8(1.2) [342]
constituent chiral quark model 68(3) [343]
resonance chiral theory 66.6(2.1) [319]

LMD+V 78(10) [138]

ENJL, VMD 59(9) [307, 314]
VMD 57(6) [310]
LMD+V 58(10) [312]
lattice QCD, LMD+V fit 65.0(8.3) [346]
rational approximants 63.6(2.7) [159]
resonance chiral theory 58.1(9) [345]
dispersion relations 63.0+2.7

−2.1 this work

Table 4.3: Comparison to previous results for aπ
0-pole

µ . The uncertainties are reproduced as given in
the respective publication, see main text for further discussion. For completeness, we also list works
that calculate contributions involving an off-shell pion instead (π0-“exchange”) or put one of the form
factors to a constant (π0-“const”), but stress that these results either depend on the interpolator of
the pion field or do not correspond to the dispersively defined pion pole, respectively, and therefore
cannot be compared with the on-shell pion-pole contribution.

of the interpolating field. The wide spread among these results is therefore not surprising
given that, in general, each model will represent a different such choice. Similarly, a model
involving a constant TFF at the singly-virtual vertex in HLbL scattering [138] disagrees
with the dispersive definition of the pion-pole contribution, so that the resulting number
cannot be compared to ours either.
In the end, our central value is remarkably close to early estimates using hadronic

models [307, 310, 312], either VMD, LMD+V, or the extended Nambu–Jona-Lasinio model,
and falls within the quoted model errors that had been typically estimated at the level of 15%.
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Recent updates in resonance chiral theory [345] find similar values, however, without an
attempt to quantify the model uncertainty. Our central value is even closer to a calculation
of the pion pole using a TFF constructed from rational approximants, with parameters
determined from π0

→ γγ and space-like singly-virtual data [159]. The quoted error
contains the propagated uncertainties from the data input and estimates of the systematics of
the approach by comparing different approximants and varying a parameter that describes
doubly-virtual kinematics within a certain range. In this respect, the main advantages of
the dispersive approach concern the fact that also data from the time-like region can be
used, as illustrated by the key role of the e+e− → 3π data in our analysis; that the sensitivity
to the space-like input is significantly reduced in comparison, removing the systematic
uncertainty from the asymptotic behavior of the TFF; and that the doubly-virtual dependence
is actually predicted within the formalism, eliminating the need for an extrapolation of the
singly-virtual input to doubly-virtual kinematics. Further, we have provided an economical
way to implement all short-distance constraints, which is not straightforward to achieve
in hadronic models, e.g. the LMD+V model fails to produce the correct asymptotics for
small but finite q2

1 and q2
2 → ∞. Finally, our result also agrees with a calculation in lattice

QCD [346]. Currently, an LMD+V ansatz is required to extend the lattice data to the full
range of virtualities to perform the (g − 2)µ integral, but future updates at higher statistics
are set to provide a sufficiently fine grid to enable a direct comparison to (4.51) in a fully
model-independent way.

4.7 Conclusions and outlook
In this Chapter we presented a comprehensive dispersive reconstruction of the doubly-virtual
pion TFF, which determines the residue of the pion-pole contribution to aµ. As a first step,
dispersion relations for the pion TFF were derived based on its isospin structure and unitarity
relation, wherein the 2π and 3π intermediate states define the low-lying singularities in the
isovector and isoscalar virtualities, respectively. As a consequence, the doubly-virtual pion
TFF was reconstructed in light of the low-energy theorems for Fπγγ and F3π, the ππ P-wave
phase shifts from Roy- and Roy-like equations, and experimental input from e+e− → 2π, 3π.
Extending previous work, we achieved an improved description of the e+e− → 3π cross
section data after introducing a conformal polynomial to take into account the inelastic
effects in the 3π channel. Starting from the unsubtracted dispersion relation (4.19), the
double-spectral representation (4.22) was derived afterwards as a convenient representation
for the evaluation of the pion-pole (g − 2)µ loop integrals.

Another key advance in this Chapter concerns the consistent matching to constraints from
pQCD. To this end, the LO leading-twist light-cone expansion (4.24) was reformulated
in terms of an asymptotic double-spectral density, which leads to an asymptotic contri-
bution (4.35) governing the correct high-energy behavior of the TFF for non-vanishing
virtualities. We evaluated the known αs corrections but found them to be negligible within
uncertainties. As the final step, we introduced an effective pole term to remedy the normal-
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ization of the form factor and account for constraints from space-like singly-virtual data
measured in e+e− → e+e−π0. The validity of the dispersive approach was cross-checked by
comparing the dispersive prediction for e+e− → π0γ based on the time-like singly-virtual
TFF to cross section data. We found good agreement up to 1 GeV, with deviations starting
to appear in the vicinity of the φ resonance, right where the phase space for inelastic
contributions in the e+e− → 3π fit was assumed to open. We studied the resulting space-like
TFF (4.47) extensively both for singly- and doubly-virtual kinematics, in comparison to
experimental data, lattice-QCD calculations, and theoretical predictions from pQCD.

This detailed study of the pion TFF, incorporating all the low-lying singularities and the
correct high-energy behavior at O(1/Q2), culminates in the first dispersive determination
of the pion-pole contribution to the muon (g − 2)µ (4.51), the lowest intermediate state in
a dispersive approach to HLbL scattering. Most prominently, (4.51) determines the final
number of the data-driven and dispersive evaluations of the pion-pole contribution to HLbL
scattering in the white paper [61]. Our data-driven evaluation produces a central value in
line with previous model-dependent estimates, but provides for the first time a determination
that fully exploits the constraints from the fundamental principles of analyticity, unitarity,
and crossing symmetry as well as the predictions from pQCD in deriving well-controlled
uncertainty estimates. In fact, despite being already sufficient for a SM prediction of aµ at
the level of the upcoming experiments, these uncertainties can be reduced further by virtue
of future more precise singly-virtual measurements both in low- and high-energy regimes.
As the largest individual piece, our determination of the pion-pole contribution to aµ

is a critical step towards a complete data-driven evaluation of HLbL scattering [142–
146]. Moreover, the strategies developed here regarding the incorporation of high-energy
constraints will facilitate similar studies of the η and η′ TFFs [407–411], thus paving the way
towards a fully data-driven determination of all light pseudoscalar-meson-pole contributions
to HLbL scattering in (g − 2)µ.
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Part III

Decays of the neutral pion
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Chapter 5

Neutral pion and its decay π0
→ e

+
e
−

5.1 Introduction
The neutral pion is the lightest hadron, with a mass of 134.9768(5) MeV [22]. This is in
close relation to chiral symmetry breaking of QCD, where pions emerge as the (approximate)
Goldstone bosons of the broken sector. Its mean life is 8.52(18) × 10−17 s [22], which is a
typical lifetime of particles that undergo electromagnetic decays. Most of the experiments
measure the decay width of the neutral pion, which is then converted to the lifetime. But
there are also direct measurements of its lifetime [412]. The quantum numbers of the π0 are
given as

IG (
JPC)

= 1−
(
0−+

)
. (5.1)

As a consequence of the aforementioned properties, its main decay modes are all of
electromagnetic nature [413–415]. Furthermore, these decays are closely related to the pion
TFF that we have extensively discussed in Chapter 4. We list them in Table 5.1, which will
be discussed in the following Sections.

5.1.1 π0
→ γγ

The largest decay channel π0
→ γγ covers nearly 99% of the total width. It is induced by

the famous chiral anomaly [111–113], which would otherwise be suppressed due to the
Sutherland theorem [416]. The pertinent matrix element can be written as

M = e2εµνρσq1µε
∗
1νq2ρε

∗
2σF

π0γ∗γ∗
(0, 0) , (5.2)

where F
π0γ∗γ∗

is the neutral pion TFF. The decay width reads

Γ
(
π0
→ γγ

)
=

1
2

���q f
���

8πM2
π0

∑
spins
|M|

2
=

1
32πM

π0
·

e4M4
π0

2
���Fπ0γ∗γ∗

(0, 0)���
2

=
πα2M3

π0

4
���Fπ0γ∗γ∗

(0, 0)���
2
, (5.3)
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Decay modes π0
→ γγ π0

→ e+e−γ π0
→ e+e−e+e− π0

→ e+e−

Branching ratios 98.82% 1.17% 3.34 × 10−5 6.46 × 10−8

Table 5.1: Main decay channels and their fractions of the neutral pion.

where q f is the final state momentum of the two photons. Using the lowest-order result of the
pion TFF inChPT (O

(
q4) ) given in (3.2) and (4.12) obtained from theWess–Zumino–Witten

effective Lagrangian (1.61), we find

Γ
(
π0
→ γγ

)
=

α2M3
π0

64π3F2
π

= 7.75(2) eV , (5.4)

where the uncertainty stems solely from the pion decay constant Fπ = 92.28(10) MeV [22].
Equation (5.4) is exact in the chiral limit without any free parameters, where the pion

decay constant at this order can be set to its physical value Fπ. Nevertheless, chiral
symmetry is explicitly broken by the masses of u and d quarks. In the framework of
ChPT, one-loop corrections to (5.4) were performed later and found that there is no chiral
logarithm [288, 417]; electromagnetic and higher-order chiral corrections were obtained
more recently [289–291]. This leads to a common observation of about 4.5% enhancement
with respect to the leading chiral decay width (5.4). A QCD sum rule approach [418] found
a similar result. The achievement of the theoretical predictions at a level of 1% uncertainty
makes it a hallmark process to test the firm QCD prediction in the anomaly sector.

On the experimental side, there are several different techniques to determine the lifetime.
First of them is the already mentioned direct measurement, which utilizes highly boosted
pion beams [412]. Indirect measurements can be performed firstly by measuring the cross
section e+e− → e+e−π0 at colliders [419]. We can also connect the weak vector form factor
of the charged pion to the lifetime of the neutral pion based on the conserved vector-current
hypothesis and isospin symmetry [420]. At last, most precise measurements rely on the
Primakoff effect, where high-energy photons interact with an atomic nucleus to produce
neutral pions. The PrimEx measurement [359] has tested the π0

→ γγ decay width up
to 2.8%. In combination with the newest PrimEx-II experiment [287], the final result has
reached an uncertainty of 1.5%.
The comparison of theory calculations and experimental measurements is shown in

Figure 5.1. We find a systematic discrepancy between them, for which the potential reasons
need to be identified. In particular, the cutting-edge measurement [287] reaffirms the tension
with the higher-order corrections to the decay width.

5.1.2 π0
→ e+e−γ

The π0
→ e+e−γ channel comprises again more than 99% of the remaining decay width

after π0
→ γγ. This is the Dalitz decay mode named after Richard Dalitz [421], who first
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Figure 5.1: The comparison of theory and experiments.

established the connection of this decay to the two-photon decay. Its differential decay width
normalized to the two-photon decay is given by

dΓ
(
π0
→ e+e−γ

)
dq2
Γ
(
π0
→ γγ

) = 2α
3π

1
q2

√
1 −

4m2
e

q2
*
,
1 +

2m2
e

q2
+
-

*.
,
1 −

q2

M2
π0

+/
-

3 �������

F
π0γ∗γ∗

(
q2, 0

)
F
π0γ∗γ∗

(0, 0)

�������

2

. (5.5)

The kinematical accessible range of the electron–positron invariant mass squared q2 varies
between 4m2

e < q2 < M2
π0 so that the following approximation is valid for the pion TFF in

this region,
F
π0γ∗γ∗

(
q2, 0

)
F
π0γ∗γ∗

(0, 0)
≈ 1 + aπ

q2

M2
π0

+ bπ
q4

M4
π0

. (5.6)

Using (4.49) and (4.50) from [150], we find the prediction1

Γ
(
π0
→ e+e−γ

)
Γ
(
π0
→ γγ

) = 1.18760(8) × 10−2 , (5.7)

1 This result is derived only from the form factor calculation without addressing the issue of radiative
corrections [422].

125



Chapter 5 Neutral pion and its decay π0
→ e+e−

which is in excellent agreement with the experimental value [22]

Γ
(
π0
→ e+e−γ

)
Γ
(
π0
→ γγ

) ������exp

= 1.188(34) × 10−2 . (5.8)

5.1.3 π0
→ e+e−e+e−

The four-electron decay π0
→ e+e−e+e− is called the double Dalitz decay, which involves

the doubly-virtual pion TFF. However, the dependence of the decay rate on the pion TFF
is very weak. Its matrix element is usually divided into a direct and an exchange term.
Consequently, the interference between these two terms also needs to be considered when
calculating the decay rate [414, 423–426].
The final-state photons should carry away the negative parity of the neutral pion in the

decay π0
→ γγ. However, it is impossible to directly measure the polarization vectors of

real photons to determine the neutral pion’s parity. Therefore, its parity was only indirectly
confirmed by slow negative pions captured in deuterium. But the double Dalitz decay
π0
→ e+e−e+e− provides a direct measurement to confirm the parity of the π0 [427].
The simplest wavefunctions that describe the two-photon system with even exchange

symmetry can be constructed as [428]

ψ1(2γ) = A(ε1 · ε2) ∝ cos φ ,
ψ2(2γ) = B(ε1 × ε2) · k ∝ sin φ , (5.9)

where ε1 and ε2 are the polarization vectors of two photons (E-vectors) and k is the
momentum of either photon in the pion rest frame. φ is the angle between the polarization
planes. ψ1 is a scalar quantity and therefore even under spatial inversion. On the other
hand, ψ2 is odd under spatial inversion, where the E-vectors of the two photons are
orthogonal. Since the plane of each electron pair is predominantly in that of the E-vector,
the measurement of the relative angle between the planes of pairs can infer the parity of
π0 [429, 430]. Apart from the confirmation of parity, this decay also sets constraints on
CPT violation.

5.1.4 Rare π0 decays

π0
→ e+e− is a loop- and helicity-suppressed decay, which we will discuss in Section 5.2.

In addition to the main decay channels discussed above, there is also a fifth electromagnetic
decay mode, π0

→ 4γ, which is dominated by the electromagnetic “photon-photon splitting”
mechanism. Its calculations in ChPT and other models were performed in [431–434].
Besides, there are also weak decays π0

→ νν̄ in the SM with extended massive neutrinos.
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π0(q) Fπ0γ∗γ∗
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Figure 5.2: Decay π0
→ e+e−.

5.2 Rare leptonic decay π0
→ e+e−

The electromagnetic decay π0
→ e+e− plays an important role in the test of the long-distance

dynamics of the strong interaction. The rareness of this decay because of the loop and the
helicity suppression also raises the potential sensitivity to BSM physics. The very first
calculation of it was performed already in 1959 [435]. Since then, plenty of developments
have been made in the context of modeling of the vertex [436–439], models for the TFF [348,
440, 441], and ChPT and large-Nc QCD [347, 351].

Recently, this decay has drawn revived theoretical interests because of a precise determin-
ation of its branching ratio by the KTeV E799-II experiment at Fermilab [442],

B
(
π0
→ e+e−(γ), xD > 0.95

)
= 6.44(25)(22) × 10−8 , (5.10)

where

xD =
m2

e+e−

M2
π0

= 1 − 2
Eγ
M
π0

(5.11)

is the Dalitz variable. Recent theoretical predictions [352–356, 358] deviate from this
measurement by around 3σ.2 On the other hand, the renewed analyses of radiative
corrections [349, 350] suggest values closer to the experiment. With this background, we
present here another formalism to revisit this rare decay by means of the double-spectral
representation of the pion TFF applied in Chapter 4. To this end, the reduced amplitude of
the decay is firstly derived in Section 5.2.1. Thereafter, the unitarity bound of this decay
is shown in Section 5.2.2. The further expression of the reduced amplitude in terms of
the double-spectral representation of the pion TFF is derived in 5.2.3, after which a short
summary is drawn.

5.2.1 Derivation of the reduced amplitude
The lowest-order QED contribution to π0

→ e+e− as illustrated in Figure 5.2 involves
the transition of the neutral pion to two virtual photons and, thus, it is determined by the
2 See [443] for a recent lattice QCD calculation.
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doubly-virtual TFF F
π0γ∗γ∗

of the neutral pion. The relevant matrix element respecting
Lorentz covariance, charge conjugation, and parity is given as [349, 444, 445]

iM = P
(
m2

e,m
2
e, q

2)ū(p, s−)γ5v(q − p, s+) , (5.12)

where me is the electron mass, q2
= M2

π0 , and the projection

P
(
m2

e,m
2
e, q

2)
= − lim

p2
→m2

e

(q−p)2
→m2

e

1
2q2 tr

[
(/p + me)Γ

π0e+e− (/q − /p − me)γ5]
. (5.13)

Γ
π0e+e− is the one-particle irreducible π

0e+e− vertex. The decay width reads then

Γ
(
π0
→ e+e−

)
=

���p f
���

8πM2
π0

∑
spins
|M|

2

=

���p f
���

8πM2
π0

tr
[
− (/p + me)γ5(/q − /p − me)γ5] ���P

(
m2

e,m
2
e, q

2) ���
2

=

���p f
���

8πM2
π0

· 2M2
π0

���P
(
m2

e,m
2
e, q

2) ���
2
=

M
π0 β

8π
���P

(
m2

e,m
2
e, q

2) ���
2
, (5.14)

where β =
√

1 − 4m2
e/M2

π0 is the velocity of the outgoing electron–positron pair in the
center-of-mass frame.

The vertex Γ
π0e+e− reads at lowest order

iΓ
π0e+e− = −ie4εµνρσ

∫
d4k

(2π)4 F
π0γ∗γ∗

(
k2, (q − k)2) kρ(q − k)σγµ(/p − /k + me)γv

k2(q − k)2 [(p − k)2
− m2

e
] .

(5.15)
By virtue of the projection (5.13), we find

P
(
m2

e,m
2
e, q

2)
=

4imee4

q2

∫
d4k

(2π)4
q2k2

− (q · k)2

k2(q − k)2 [(p − k)2
− m2

e
] F

π0γ∗γ∗
(
k2, (q − k)2)

= 2meα
2 2i

π2q2

∫
d4k

q2k2
− (q · k)2

k2(q − k)2 [(p − k)2
− m2

e
] F

π0γ∗γ∗
(
k2, (q − k)2) .

(5.16)

Using (5.3), the normalized branching ratio to the two-photon decay becomes

R =
Γ
(
π0
→ e+e−

)
Γ
(
π0
→ γγ

) = 2
(
αme

πM
π0

)2
β

���A
(
q2) ���

2
, (5.17)
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where the reduced amplitude is given by

A
(
q2)
=

2i

π2q2

∫
d4k

q2k2
− (q · k)2

k2(q − k)2 [(p − k)2
− m2

e
] F̃

π0γ∗γ∗
(
k2, (q − k)2) . (5.18)

F̃
π0γ∗γ∗

(
q2

1, q
2
2
)
= F

π0γ∗γ∗
(
q2

1, q
2
2
)
/Fπγγ in the expression of the reduced amplitude (5.18) is

the normalized pion TFF.

5.2.2 Unitarity bound
Due to the smallness of the π0 mass, no on-shell hadronic intermediate states contribute to the
imaginary part of the reduced amplitude A

(
q2) (this is not true any more for the dileptonic

decays of η and η′, where hadronic intermediate states contribute [357]). Therefore, the
γγ intermediate-state cuts generate the only relevant imaginary part. The corresponding
discontinuity of the reduced amplitude reads

discA
(
q2)
=

2i

π2q2

∫
d4k

q2k2
− (q · k)2

(p − k)2
− m2

e

F̃πγ∗γ∗
(
k2, (q − k)2)

× (−2πi)θ(k0)δ(k2)(−2πi)θ(q0 − k0)δ
[
(q − k)2]

=
πi
β

ln
(

1 − β
1 + β

)
. (5.19)

Therefore,

ImA
(
q2)
=

π

2β
ln

(
1 − β
1 + β

)
, (5.20)

which is a model-independent prediction. Using the property ���A
(
q2) ��� ≥

���ImA
(
q2) ���, we

find the unitarity bound [436]

R ≥
1

2β

(
αme

M
π0

)2
ln2

(
1 − β
1 + β

)
= 4.7 × 10−8 . (5.21)

Although the imaginary part dominates the decay width by comparison to the experiment,
the real part also plays an indispensable role for an accurate theoretical prediction.

The reduced amplitude (5.18) is logarithmically divergent for a constant form factor F̃
π0γ∗γ∗

.
In reality, the asymptotic behavior of the physical form factor renders the integral convergent.
Some works [352, 437, 441] suggested to obtain the real part of the amplitude (5.18)
dispersively from its imaginary one (5.20),

ReA
(
q2)
= A

(
q2
= 0

)
+

q2

π
P

∫ ∞

0
ds

ImA(s)

s
(
s − q2)

= A
(
q2
= 0

)
+

1
β



1
4

ln2
(

1 − β
1 + β

)
+
π2

12
+ Li2

(
−1 + β
1 + β

)
, (5.22)
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where the non-trivial dynamics is now absorbed in the subtraction constant A
(
q2
= 0

)
.

This kind of approach is easily connected to the ChPT calculations [347, 351]. Nonetheless,
a dispersion relation in terms of the pion mass squared q2 would raise the potential issues
of a not well-defined form factor in (5.18) for q2 , M2

π0 and also additional disregarded
contributions to the imaginary part (5.20) for large q2.

5.2.3 Reduced amplitude with double-spectral representation
We have constructed a double-spectral representation for the pion TFF in Chapter 4, which is
conveniently applied to the pion-pole contribution to HLbL scattering in the muon (g − 2)µ.
For the normalized pion TFF, it reads

F̃
π0γ∗γ∗

(
q2

1, q
2
2
)
=

1
π2

∫ ∞

0
dx

∫ ∞

0
dy

ρ̃(x, y)(
x − q2

1
) (
y − q2

2
) , (5.23)

where ρ̃(x, y) is the normalized double-spectral density. In the scenario for dileptonic
decays, the evaluation of the loop integral (5.18) employing a Cauchy integral representation
for the factorized TFF was initiated in [357]. In the same vein, we use the double dispersion
relation for the TFF to express the reduced amplitude A

(
q2) as [445]

A
(
q2)
=

1
π2

∫ ∞

0
dx

∫ ∞

0
dy ρ̃(x, y)K (x, y) , (5.24)

where

K (x, y) =
2i

π2q2

∫
d4k

q2k2
− (q · k)2

k2(q − k)2 [(p − k)2
− m2

e
] (

k2
− x

) [
(q − k)2

− y
] (5.25)

represents the reduced amplitude A
(
q2) for a VMD form factor with masses x and y,

of which the contribution is then weighted by the double-spectral density ρ̃(x, y) for two
virtualities.

The calculation of the function K (x, y) can be performed using the reduction tech-
nique [446] to express it in terms of the standard one-loop functions [447],

K (x,y) =
1

2q2x

[
B0

(
m2

e,m
2
e, x

)
− B0

(
m2

e, 0,m
2
e
)]
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+
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2
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m2
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2
e, q
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+
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2xy

−
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2xy
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, (5.26)
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where

B0
(
m2

e,m
2
e, x

)
=

∫
d4k

iπ2
1[

(p − k)2
− m2

e
] (

k2
− x

) (5.27)

with p2
= m2

e and

C0
(
m2

e,m
2
e, q

2, x,m2
e, y

)
=

∫
d4k

iπ2
1[

(p − k)2
− m2

e
] (

k2
− x

) [
(q − k)2

− y
] (5.28)

with p2
= (q− p)2

= m2
e are the standard Passarino–Veltman [446] scalar one-loop integrals.

The reduction to these standard integrals should prove convenient for the numerical evaluation
of the dispersive TFF with the double-spectral representation [445].

5.2.4 Summary and outlook
In this Section, we have presented a formalism to reexamine the rare leptonic decay
π0
→ e+e− based on a double-spectral representation of the pion TFF.
First of all, the derivation of the reduced amplitude A

(
q2) was reviewed. The unitarity

bound for the decay stemming from the two-photon cut was then calculated and the
corresponding limit was determined. At last, the loop integral of the reduced amplitude
corresponding to the TFF that fulfills a double-spectral representation was expressed in
terms of the standard one-loop functions.
One may ask why not directly evaluate the integral of the reduced amplitude (5.18)

using the available space-like TFF that was already applied to the pion-pole contribution in
Chapter 4? Unfortunately, the TFF entering the reduced amplitude not only concerns the
space-like, but also the time-like region. Therefore, the form factor has to be analytically
continued to complex variables if we would first perform a Wick rotation. Apart from
the strategies for the double-spectral representation already developed in Chapter 4, the
numerical treatment of (5.24) suggested in Section 5.2.3 poses additional challenges as the
pseudothreshold singularities in the dispersive double-spectral density of (4.22) must be
properly treated to obtain a stable numerical result. Besides, we should also correctly deal
with the singular double-spectral density (4.33) of the pion TFF arising from the asymptotic
region.

To conclude, our approach facilitates a suitable numerical treatment for the dispersively
constructed TFF, for which future work is still in progress.
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Chapter 6

Conclusion

In this thesis, we have investigated the hadronic effects at the precision frontier of the
Standard Model in two different fields—the hadronic contributions to the anomalous
magnetic moment of the muon (g − 2)µ and the rare dilepton decay π0

→ e+e−. We
aimed to describe the contributing hadronic interactions and effects model-independently
and precisely by combining fundamental principles of the S-matrix, dispersion relations,
low-energy theorems of quantum chromodynamics (QCD), and perturbative QCD.
Our studies of both hadronic-vacuum-polarization (HVP) and hadronic-light-by-light-

scattering (HLbL) corrections to the muon (g − 2)µ have been largely acknowledged by the
“Muon g − 2 Theory Initiative” white paper [61]. For the 3π channel, our analysis enabled
us to provide another independent check for the 3π HVP contribution with a global fit
function fulfilling QCD constraints, complementary to strategies based on direct integration
of the data. Meanwhile, the comparison between different approaches helped to resolve the
persistent tension among [131] and [132]. Together with [131–133, 135, 136], our result
was adopted by the merging of model-independent HVP results in the white paper [61],
culminated in the final HVP number (1.59).
Following the same spirit, we studied the contribution of the π0γ channel to HVP

in the muon (g − 2)µ based on a dispersive representation of the underlying π0
→

γγ∗ transition form factor (TFF), which proves convenient to describe the cross section
of the reaction e+e− → π0γ. Thus, in combination with the 2π [133] and 3π [134]
channels, the HVP contributions of three largest exclusive channels below 1 GeV have been
scrutinized in a dispersive framework. These determinations of the low-multiplicity-channel
contributions have become more critical in view of the recent lattice HVP result by BMW
collaboration [283] differing from phenomenology, where the tension is likely to originate
from the low-energy region. A potential shift of the total HVP contributions as in [283]
would also impact the global electroweak fits [284–286], such as the running of the fine
structure constant α. Besides, we found the good agreement when combining the ω and
φ resonance parameters obtained from e+e− → 3π and e+e− → π0γ, which was then
compared to the PDG average [22]. The tension of the ω mass with the 2π channel persists,
calling for a more detailed analysis of isospin-breaking effects in the latter.
In the second part of the thesis, we reported on the first dispersive calculation of the

pion-pole contribution to HLbL scattering in the muon (g − 2)µ. We performed a dispersive
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treatment of the doubly-virtual pion TFF that determines the pion-pole contribution: the low-
lying 2π and 3π singularities in the isovector and isoscalar virtualities were considered first;
we have found the leading-order, leading-twist light-cone expansion can be reformulated in
terms of an asymptotic double-spectral density; finally, an effective pole term was introduced
to remedy the normalization of the form factor and account for constraints from space-like
singly-virtual data. Our data-driven evaluation provides for the first time a determination
that fulfills the constraints from analyticity, unitarity, low-energy theorems, and perturbative
QCD. Therefore, it entered the compilation of the total HLbL contributions (1.63) in the
white paper [61] as the determination of the largest individual piece in the HLbL corrections
to the muon (g − 2)µ.
In the last part of the thesis, our discussion started with the main decay patterns of the

neutral pion and focused on the rare decay π0
→ e+e−. As the leading-order contribution to

this decay is determined by the pion TFF, we developed a framework suitable to evaluate it
using the dispersively constructed pion TFF.
What headway and outlook can we make on the presented topics? First of all, more

precise determinations of hadronic cross sections from larger data samples obtained by
either scan (SND and CMD-3) or initial-state-radiation (BESIII and BelleII) experiments
will always improve the prediction of the HVP contributions. Therefore, both for 3π and
π0γ, further improvements in the precision of HVP contributions are expected in light of
new data inputs. Besides, in comparison to the 2π final-state radiation carried out with
a scalar QED approximation, there are no similar calculations of it for 3π. Therefore, a
detailed analysis of final-state radiation in the 3π channel will not only fill out the vacancy
of theoretical studies, but also provide a more rigorous evaluation of its HVP contribution.

Secondly, the completion of the HLbL contributions from η and η′ poles in a dispersive
approach is highly appreciated towards a 10% uncertainty goal for the HLbL contributions to
the muon (g − 2)µ. In this regard, the conceptual development of the pion-pole contribution,
the largest individual piece in a dispersive approach to HLbL scattering, will shed light
on the similar studies for the η and η′ poles [407–410] to determine the complete light
pseudoscalar-meson-pole contributions. In the context of the two-pion contributions to
HLbL scattering, the mesonic TFFs ω, φ → π0γ∗ become relevant for the description of
the left-hand cuts beyond the Born terms in γ∗γ∗ → ππ [233–238]. As the evaluation
of the g − 2 integral concerns the entire space-like region, correct implementations of
mesonic form factors respecting their asymptotic behaviors dictated by perturbative QCD
will be essential for a data-driven evaluation of the two-pion contributions including higher
resonances, such as f2(1270).
Finally, the ongoing numerical treatment of the decay π0

→ e+e− with the dispersive
pion TFF will make our estimate available to compare with the experiment [442] and other
theoretical calculations. Besides an extension to the decays η, η′ → `+`−, the generalization
of our approach to the rare kaon decays KL, KS → `+`− is also very promising. These
rare kaon decays play a key role in flavor physics, where the corrections from new physics
motivated by the B anomalies or the ε′/ε tension could be probed too. A dispersive analysis
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of the long-distance effects plus an effective-field-theory treatment of the short-distance
contributions in these decays will pave the way towards disentangling the imprints of physics
beyond the Standard Model, e.g., the scenario of minimal flavor violation.

The work of this thesis, together with other theoretical advances in the evaluation of the
anomalous magnetic moment of the muon since the older “Glasgow consensus” [448], is
contained in a nutshell in the final muon (g − 2)µ Standard Model prediction (1.64). We
conclude assertively that precision calculations of hadronic contributions at the low-energy
frontier is not only indispensable for comprehending QCD thoroughly at non-perturbative
regime, but also invaluable for making firmer Standard Model predictions to pin down the
signals from physics beyond the Standard Model.
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Appendix A

Hadronic vacuum polarization

A.1 Estimate of the F-wave contribution
For q2

= 0 [232] and q2
= M2

ω [197] the impact of F-waves on the γ∗ → 3π amplitude was
shown to be completely negligible below the ρ3(1690) resonance, but since we consider

virtualities up to
√

q2
= 1.8 GeV for our HVP study, one may ask the question whether the

impact of these resonant F-waves can still be ignored. There is little phenomenological
information on the ρ3πγ

∗ coupling besides the ρ3 → πω branching ratio. However, the fact
that the corresponding ω-dominance estimate from [232] is in line with preliminary results
from COMPASS [263] suggests that at least within [0, M2

ω] the q2-dependence should be
approximately described by a(q2). Here, we estimate a potential F-wave contribution by

assuming that this approximation remains meaningful up to
√

q2
= 1.8 GeV.

The decomposition of the amplitude including F-waves becomes [197]

F
(
s, t, u; q2)

= F
(
s; q2)

+ F
(
t; q2)

+ F
(
u; q2)

+ P′3(zs)G
(
s; q2)

+ P′3(zt )G
(
t; q2)

+ P′3(zu)G
(
u; q2) , (A.1)

where the scattering angles follow by permuting the Mandelstam variables in (2.6) accord-
ingly. To estimate the ρ3 contribution, we first establish the connection to a narrow-resonance
approximation of the P-wave

Fρ
(
s; q2)

= a
(
q2) M2

ρ

M2
ρ − s

, (A.2)

with M2
ρ → M2

ρ − iMρΓρ in the decay region. We can then estimate the ρ3 contribution as

Gρ3

(
s; q2)

= a
(
q2) M2

ρ3

M2
ρ3
− s

Cρ3

σ2
π (s)λ

(
q2, M2

π, s
)

M4
ω

,

Cρ3
=
π2gρ3ππ

gρ3πω
M4
ω

5gωγM2
ρ3

, |Cρ3
| ∼ 1 × 10−3 , (A.3)
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where the coupling constants are set to the values from [232]. Numerically, we find that

the interference between P- and F-waves gives a correction around 1% at
√

q2
= 1.8 GeV,

while the pure F-wave contribution is suppressed by another two orders of magnitude.
These results confirm the expectation that the ρ3(1690) should not become relevant until
well above the threshold Mρ3

+ Mπ ∼ 1.83 GeV where the decay becomes possible.

A.2 Electromagnetic mass shifts
The separation of VP from the full cross section affects the ω and φ pole parameters
because the VP function itself involves the corresponding poles, only suppressed by e2. The
size of the expected shifts can be analyzed analytically in a Bethe–Salpeter multi-channel
approach [449, 450]. For instance, the ω contribution to the VP function Π(s) becomes

Πω (s) =
e2s

g2
ωγ

1
s − M2

ω + iMωΓω

, (A.4)

where the coupling is related to the two-electron width Γω→e+e− = e4Mω/
(
12πg2

ωγ

)
, i.e.

gωγ = 16.7(2) [22]. Expanding around the shifted pole parameters, one finds the relation

M̄ω =

(
1 +

e2

2g2
ωγ

)
Mω + O

(
e4) , Γ̄ω =

(
1 +

e2

2g2
ωγ

)
Γω + O

(
e4) , (A.5)

where M̄ω and Γ̄ω include the effects of VP, while Mω and Γω should be identified with the
fit parameters in (2.27). Numerically, (A.5) implies

∆Mω = M̄ω − Mω = 0.13MeV , ∆Γω = Γ̄ω − Γω = 1.4 keV . (A.6)

Mω is thus expected to be about 0.13MeV lower than in PDG conventions, while the effect
on the width due to Πω is negligible. The same argument for the φ produces a mass shift

∆Mφ = M̄φ − Mφ =
e2

2g2
φγ

Mφ = 0.26MeV . (A.7)

Finally, for theω width there is an additional effect due to ρ–ω mixing, i.e., a higher-order
effect enhanced by the small mass difference betweenω and ρ. In a vector-meson-dominance
approximation for the ρ we find the relation

∆Γω =
e2

2g2
ωγ

Γω +
M2
ω

Γρ − Γω

e2

g2
ργ

( e2

g2
ωγ

− 2εω
)
= −0.06MeV , (A.8)

with mixing parameter εω ∼ 2 × 10−3 [133], and by comparing fits with and without VP we
verified that this indeed describes well the observed shift in the ω width.
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Appendix B

Hadronic light-by-light scattering

B.1 Large-Nc scaling
If the chiral anomaly Fπγγ were to scale with Nc, the ChPT expression for the pion pole
would acquire on overall factor N2

c [311, 315], and together with the scaling F2
π ∼ Nc this

would reproduce the overall Nc scaling of the quark-loop contribution to HLbL scattering,
see e.g. [137, 138].
However, as pointed out in [451–453] this argument is not consistent because to ensure

anomaly cancellation in the SM the quark charges need to be rescaled as well. We consider
directly the SU (3) case, where

Qu =
1
2

(
1 +

1
Nc

)
, Qd = Qs = −

1
2

(
1 −

1
Nc

)
. (B.1)

For the decay of π0
→ γγ as well as the octet and singlet decays of the η, η′ system,

η8, η0 → γγ, one finds that the charge factors(
Q2

u −Q2
d
)
Nc = 1 ,

1
√

3
(
Q2

u +Q2
d − 2Q2

s
)
Nc =

1
√

3
,√

2
3
(
Q2

u +Q2
d +Q2

s
)
Nc =

√
3
8

Nc −
1
√

6
+

√
3
8

1
Nc

, (B.2)

actually cancel the Nc scaling except for in the singlet component. Accordingly, a test of
Nc = 3 either has to rely on η, η′ decays, where the mixing adds further complications [454],
or more complicated decays such as η → ππγ [453, 455]. Note that for such a test
the implicit dependence of Fπ on Nc is irrelevant since Fπ would simply be taken from
experiment.

For the HLbL tensor we consider the corresponding flavor decomposition of the current

j µ = (Qu −Qd) j µ3 +
1
√

3
(Qu +Qd − 2Qs) j µ8 +

√
2
3

(Qu +Qd +Qs) j µ0 , (B.3)
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where

j µ3 =
1
2
(
ūγµu − d̄γµd

)
, j µ8 =

1
2
√

3
(
ūγµu + d̄γµd − 2s̄γµs

)
,

j µ0 =
1
√

6
(
ūγµu + d̄γµd + s̄γµs

)
. (B.4)

Collecting terms at different orders in Nc this produces

j µ = j µ3 +
1
√

3
j µ8 −

1
√

6
j µ0 +

√
3
2

1
Nc

j µ0 ≡ j µLO + j µNLO , (B.5)

where we have named the two currents according to their Nc scaling,

j µLO =
1
2

(ūγµu − d̄γµd − s̄γµs) , j µNLO =
1

2Nc
(ūγµu + d̄γµd + s̄γµs) . (B.6)

Restricted onto SU (2), these currents correspond to the isovector and isoscalar component,
respectively.
The leading Nc behavior of the quark loop can therefore only occur when each current

receives a contribution from j µLO. However, since the currents (B.6) correspond to charges
QLO = diag(1,−1,−1) and QNLO = 1, both of which fulfill Q2

= 1, this implies that π0 and
η8 have to couple to exactly one of them each—otherwise the charge factor Tr

(
Q2λa

)
, with

Gell-Mann matrices λa, a = 3, 8, vanishes—and therefore cannot contribute at LO in Nc,
completely in line with the cancellation observed in (B.2). For the π0, this result simply
follows from isospin conservation, see (4.13), which forces exactly one of the currents to be
isoscalar.

We are thus led to the prediction that the π0 and η8 poles should be suppressed by 1/N2
c

compared to the singlet component η0, in clear contradiction to phenomenology. To obtain
a more realistic estimate one needs to include both the chiral scaling and, potentially, η–η′

mixing. Since the mixing disappears in the chiral limit, the effect should scale with ms, in
such a way that the overlap of the η with the singlet η0 should be suppressed by M2

K/Λ
2
χ. For

a typical choice of Λχ this Nc-leading but quark-mass-suppressed contribution to the η from
the η0 is therefore not that different from the Nc-suppressed η8 itself. Taking everything
together, the η and η′ poles should be suppressed by

M2
η

M2
π0

{
1,

1
Nc

Λ
2
χ

M2
K

,
1

N2
c

Λ
4
χ

M4
K

}
& 10,

M2
η ′

M2
π0

1
N2

c

∼ 6 , (B.7)

relative to the π0 pole, respectively. While the η′ contribution comes out correctly, the one
from the η pole is predicted to be too small by about a factor 3 (depending on the exact
choice of Λχ), and accordingly the hierarchy between η and η′ is reversed. Worse, the
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1/Nc suppression of the π
0 pole compounds the mismatch with the pion loop, which has

often been considered as leading in a chiral counting but subleading in Nc, see e.g. [56],
but with the corrected Nc assignments in the charges its contribution would be expected to
be enhanced by one power in Nc and two in the chiral scaling compared to the π0 pole, in
spectacular disagreement with phenomenology. From our perspective, this casts doubt on
the viability of the large-Nc expansion as an organizing principle for HLbL scattering.

A potential way around these conclusions would require considering QCD on its own,
not as part of the SM gauge theories. This is essentially done in the original literature [187,
188, 456], where it was shown that planar diagrams dominate in the limit Nc → ∞, αs Nc
fixed. One could then argue that the factors of Nc that originate in the quark charges due to
anomaly cancellation do not correspond to this topological expansion and should therefore
not be counted in this notion of the large-Nc limit [457]. On the other hand, the large-Nc
scaling of (B.6) does provide an explanation for the suppression of the isoscalar current in
electromagnetic reactions, which raises the question why the implied hierarchy fails in the
context of HLbL scattering.

B.2 Integral kernels

The integral kernels T̂1(q1, q2; p) and T̂2(q1, q2; p) for (4.5) read:

T̂1(q1, q2; p) = −
16
3

(
(q1 · q2)2

− q2
1q2

2
)

m2
µ −

16
3

q2
1 (p · q2)2

+ p · q1

(
16
3

p · q2q1 · q2 −
8
3

q2
2q1 · q2

)
+ p · q2

(
8q2

1q2
2 −

16
3

(q1 · q2)2
)
,

T̂2(q1, q2; p) = −
8
3

(
(q1 · q2)2

− q2
1q2

2
)

m2
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8
3

q2
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−
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3
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−
4
3
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)
+ p · q1

(
4
3
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q2

1 + q1 · q2
)

q2
2 +

16
3

p · q2q1 · q2

)
.

(B.8)
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The kernel functions T1(Q1,Q2, τ) and T2(Q1,Q2, τ) in (4.7) are given as

T1(Q1,Q2, τ) =
Q1
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σE
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) (
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µ
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2m2

µ −Q2
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)
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1

2Q1Q2Q2
3m2

µ

[
Q2

1τ
(
σE

1 − 1
) (
σE
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)
+Q2

2τ
(
σE

2 − 1
) (
σE
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)

+ 4Q1Q2
(
σE
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E
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)
− 8τm2

µ

]
+ X *.

,

8
(
τ2
− 1

)
Q2

3
−

4
m2
µ

+/
-
, (B.9)

where

X =
1

Q1Q2x
arctan

( zx
1 − zτ

)
, x =

√
1 − τ2 ,

z =
Q1Q2

4m2
µ

(
1 − σE

1
) (

1 − σE
2
)
, σE

i =

√√
1 +

4m2
µ

Q2
i

,

Q2
3 = Q2

1 + 2Q1Q2τ +Q2
2 . (B.10)

B.3 The pion pole in chiral perturbation theory
An analysis of HLbL scattering at LO in ChPT coupled to lepton fields produces the
following representation [311, 315]1

aπ
0-pole, ChPT
µ = 3

(
α

π

)3 (mµ

Fπ

)2 ( 1
4π

)2{
ln2 Λ

µ
+

[ 1
6
χ(Λ)− f (r)+

1
2

]
ln
Λ

µ
+C(Λ)

}
, (B.11)

where

f (r) = ln
m2
µ

µ2 +
1
6

r2 ln r −
1
6

(2r + 13) +
1
3

(2 + r)
√

r (4 − r) arccos
√

r
2
. (B.12)

Here, r = M2
π0/m2

µ, Λ is a UV cutoff, in ChPT to be identified with the scale of chiral
symmetry breaking Λχ ∼ 4πFπ, the IR scale µ should be identified with M

π0 [448], χ(Λ)
is a LEC that renormalizes the 1-loop ChPT expression for π0

→ e+e−, and C(Λ) subsumes
all terms not enhanced by a logarithm.

1 For the reasons explained in Appendix B.1, aπ
0-pole

µ does not actually scale with N2
c . In the following, we

therefore set Nc = 3 from the start.
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The precise definition of χ(Λ) depends on the scheme, which in (B.11) is chosen in
accordance with [347]. Explicitly, conventions can be specified using the reduced amplitude
for P → `+`− discussed in Section 5.2.1,

A`
(
q2)
=

2i

π2q2

∫
d4k

k2q2
− (q · k)2

k2(q − k)2 ((p − k)2
− m2

`

) F̃
(
k2, (q − k)2) , (B.13)

where q2
= M2

P denotes the mass of the pseudoscalar, p2
= m2

` the lepton mass, and
F̃
(
q2

1, q
2
2
)
the TFF for P → γ∗γ∗ normalized by the chiral anomaly

F̃
(
q2

1, q
2
2
)
=

F
(
q2

1, q
2
2
)

Fπγγ
. (B.14)

For the decay kinematics one has, in addition, (p − q)2
= m2

` , and thus 2p · q = M2
P.

At LO in ChPT F̃
(
q2

1, q
2
2
)
= 1 and the integral in (B.13) diverges. This divergence is

cured by introducing counterterms based on the Lagrangian [347]

L =
3iα2

32π2
( ¯̀γµγ5`

) {
χ1 tr

(
Q2
{U†, ∂µU }

)
+ χ2 tr

(
QU†Q∂µU −Q∂µU

†QU
)}
, (B.15)

where Q is the charge matrix andU contains the meson fields. Altogether, this leads to [347]

Re AChPT
`

(
q2)
= 3 ln

m`

Λ
−
χ(Λ)

4
−

7
2
+

1
β`

[
π2

12
+

1
4

ln2 1 − β`
1 + β`

+ Li2
( β` − 1
β` + 1

)]
, (B.16)

where

Li2(x) = −
∫ x

0
dt

ln(1 − t)
t

, β` =

√
1 −

4m2
`

q2 , (B.17)

and χ(Λ) = χr1(Λ) + χr2(Λ). Note, however, that the choice of scheme is not unique in the
literature: another popular choice [348] is related by χ(Λ) = χ[347](Λ) = χ[348](Λ) − 4.
Since the pion pole as defined in dispersion theory [143, 146] coincides with the

diagrammatic expression (4.5), we can start from this expression to analyze how the ChPT
constraints emerge within dispersion relations. First, we expand the kernel functions in
terms of muon propagators as far as possible, using relations of the form

∫
d4q2

(2π)4
F
(
q2

1, q
2
2
)
F
(
(q1 + q2)2, 0

)(
q2

2 − M2
π0

)
q2

2 (q1 + q2)2 qµ2 =
∫

d4q2

(2π)4
F
(
q2

1, q
2
2
)
F
(
(q1 + q2)2, 0

)(
q2

2 − M2
π0

)
q2

2 (q1 + q2)2
q1 · q2

q2
1

qµ1 ,

(B.18)
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which follow from a standard tensor decomposition. This produces

aπ
0-pole, disp
µ,T1

= −
32π2

3F2
π

(
α

π

)3 ∫
d4q2

(2π)4
F̃ (q2

2, 0)

q2
2
(
q2

2 − M2
π0

) ( 2m2
µ + q2

2

(p − q2)2
− m2

µ

− 1
)

×

∫
d4q1

(2π)4
q2

1q2
2 − (q1 · q2)2

q2
1 (q1 + q2)2 ((p + q1)2

− m2
µ

) F̃
(
q2

1, (q1 + q2)2) ,
aπ

0-pole, disp
µ,T2

= −
16π2

3F2
π

(
α

π

)3 ∫
d4q1

(2π)4

∫
d4q2

(2π)4
F̃
(
q2

1, q
2
2
)
F̃
(
(q1 + q2)2, 0

)
q2

1q2
2 (q1 + q2)2 ((q1 + q2)2

− M2
π0

)
×

[ (
q2

1 + q1 · q2
)
q2

2

(p − q2)2
− m2

µ

+

(
q2

2 + q1 · q2
)
q2

1

(p + q1)2
− m2

µ

+
2m2

µ

(
q2

1q2
2 − (q1 · q2)2)

− q2
1q2

2 (q1 + q2)2(
(p + q1)2

− m2
µ

) (
(p − q2)2

− m2
µ

) ]
. (B.19)

Accordingly, the representation for the T1 term can be expressed as

aπ
0-pole, disp
µ,T1

= −

(
α

π

)3 1
3F2

π

1
i

∫
d4q2

(2π)4
F̃
(
q2

2, 0
)

q2
2 − M2

π0

( 2m2
µ + q2

2

(p − q2)2
− m2

µ

− 1
)
Iµ(q2

2 ) , (B.20)

where

I`
(
q2)
=

2i

π2q2

∫
d4k

k2q2
− (q · k)2

k2(q − k)2 ((p − k)2
− m2

`

) F̃
(
k2, (q − k)2) (B.21)

has been defined in close analogy to A`
(
q2) , the difference being that q2 is not restricted

to M2
π0 . We checked numerically for a VMD form factor that the representation (B.19)

reproduces the known result.
In [312] it was established that the T2 term remains finite even for a pointlike form factor,

so that the corresponding integral cannot contribute to any singularities. The logarithmically
enhanced terms in (B.11) all originate from the approximation where the form factors
are put equal to unity, at this order in the chiral expansion their structure is not resolved.
Matching the dispersive representation (B.20) onto (B.11) therefore requires taking the
pointlike limit in the appropriate fashion. First, we note that for Iµ(q2

2 ) we cannot use the
form (B.16), since this relies on the specific kinematics for the pseudoscalar decay. Explicit
calculation with Feynman parameters shows that in addition to the logarithmically divergent
piece there is a contribution involving ln

(
−q2

2
)
, whose coefficient is related to the lnΛ term.

The corresponding structure is therefore

Iµ
(
q2

2
)
= −3 ln

Λ

µ
−
χ(Λ)

4
+

3
2

ln
(
−

q2
2

µ2

)
+ Cµ , (B.22)

144



B.3 The pion pole in chiral perturbation theory

with some constant piece Cµ. The chiral LEC still regulates the divergence since its specific
form does not depend on the kinematics. Once the form factor is replaced by its pointlike
limit, the same LEC therefore describes the renormalization of the π0

→ `+`− vertex
(assuming lepton flavor universality). This argument already shows that for the dispersive
formalism to be consistent with the chiral constraints derived in [311, 315] it suffices that
the form factor used be consistent with the LEC χ(Λ), as extracted from π0

→ e+e− or
η → `+`−.
The individual terms in (B.11) can then be understood as follows: for the second loop

integral we have

1
i

∫
d4q2

(2π)4
1

q2
2 − M2

π0

( 2m2
µ + q2

2

(p − q2)2
− m2

µ

− 1
)

=
1

16π2

(
3m2

µ ln
Λ

2

µ2 − 2m2
µ

∫ 1

0
dx (1 + x) ln

x2m2
µ + (1 − x)M2

π0

µ2

)
=

3m2
µ

16π2

(
ln
Λ

2

µ2 − f (r) −
1
2

)
, (B.23)

with f (r) as given in (B.12). Next, the ln
(
− q2

2
)
piece leads to a term

1
16π4

[
2m2

µ

∫ 1

0
dx (1 + x)

1
i

∫
d4q2

q4
2

3
2

ln
(
−

q2
2

µ2

)]
=

3m2
µ

16π4
3
2

2π2
∫ Λ

µ dx x3

x4 ln x2

=
3m2

µ

16π2 3 ln2 Λ

µ
. (B.24)

Adding the individual contributions we find

aπ
0-pole, disp
µ,T1, div

= −

(
α

π

)3 1
3F2

π

3m2
µ

16π2 (B.25)

×

[(
− 3 ln

Λ

µ
−
χ(Λ)

4
+ Cµ

) (
2 ln
Λ

µ
− f (r) −

1
2

)
+ 3 ln2 Λ

µ

]

=3
(
α

π

)3 (mµ

Fπ

)2 ( 1
4π

)2{
ln2 Λ

µ
+

[ 1
6
χ(Λ) − f (r) + C̃µ

]
ln
Λ

µ
+ . . .

}
.

Taking the pointlike limit of (B.20) in this way therefore reproduces the basic features of
the direct ChPT result (B.11), in particular the coefficient of the double logarithm, the
contribution from χ(Λ), and the part of the coefficient of the single logarithm that is
non-analytic in the quark mass. The analytic contribution, C̃µ = 1/2, requires a more careful
treatment of the renormalization schemes [311, 315] and certainly cannot be expected to
emerge from a naive cutoff regularization of the loop integrals.
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In conclusion, the above discussion demonstrates that dispersion relations for HLbL
scattering in the form of [143, 146] fulfill the low-energy constraints from ChPT. Most
aspects of (B.11) can already be derived from a pointlike form factor alone, so that the
corresponding constraints are automatically maintained due to the structure of the loop
integrals, which become identical to ChPT once the form factor is set to unity. The only
information about the pion TFF beyond its pointlike limit is contained in the LEC χ(Λ),
which is needed to renormalize the π0

→ µ+µ− vertex due to the missing form-factor
suppression for high momenta. Such a contribution therefore does not arise in a dispersive
approach where the full form factor enters, but consistency with the chiral constraint is
automatic as long as the employed form factor agrees with experimental constraints from
π0
→ e+e− and/or η → `+`− (the latter if SU (3) symmetry is assumed). This comparison

can indeed proceed in terms of χ(Λ): a given representation for the pion TFF can be
turned into a prediction for this LEC, which can then be compared to the experimental
value as extracted from the decay width. Equivalently, the decay width calculated from the
form factor could be directly compared to the experimental result, with the chiral LEC one
particular choice how to present the relation between HLbL scattering and the rare meson
decays. We stress, however, that the comparison in terms of the TFF directly is actually
preferable since it dispenses with the need for the chiral expansion.

B.4 Anomalous thresholds and analyticity

The presence of two electromagnetic currents in the π0
→ γ∗γ∗ transition together with

light pion intermediate states makes it appear likely that anomalous thresholds [458] require
a modification of the integration contours in (4.20), and indeed for similar quantities in the
context of HLbL scattering, e.g. the partial waves for γ∗γ∗ → ππ, such complications do
arise for time-like virtualities [142, 146]. For the pion TFF the crucial analytic properties
can be derived from the triangle diagram C0 shown in Figure B.1, depending on the mass
m1 [459].
The key assumption in the derivation of the dispersion relation for Fvs

(
q2

1, q
2
2
)
is that the

dependence on the isovector virtuality permits a standard dispersive reconstruction. The
corresponding imaginary part reads (s = q2

1)

ImC0(s) =
θ(s − 4M2

π )√
λ
(
s, M2

π, q
2
2
) ln

s − 3M2
π − q2

2 + 2m2
1 − σπ (s)

√
λ
(
s, M2

π, q
2
2
)

s − 3M2
π − q2

2 + 2m2
1 + σπ (s)

√
λ
(
s, M2

π, q
2
2
) , (B.26)

which defines the critical points

s±
(
q2

2
)
=

1
2

{
3M2

π + q2
2 − m2

1 ± σπ
(
m2

1
)√

λ
(
m2

1, M2
π, q

2
2
)}
. (B.27)

Anomalous thresholds arise if either point, as a function of q2
2 , crosses the unitarity cut and

moves onto the first sheet. The trajectory of s−
(
q2

2
)
indeed comes close at q2

2 = M2
π + 2m2

1,
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π0

γ∗(q1)

γ∗(q2)

m1

Mπ

Mπ

Figure B.1: Triangle topology in the π0
→ γ∗γ∗ transition. For the physical case m1 ≥ 2Mπ no

anomalous thresholds occur.

but since the KT equations are solved for q2
2 → q2

2 + iε , the intersection with the real axis
occurs at

sc = 4M2
π

(
1 −

ε2

4m2
1
(
m2

1 − 4M2
π

) ) . (B.28)

In the KT solution the mass m2
1 is replaced by a spectral function whose support starts at

s′ = 4M2
π , so that the intersection with the unitarity cut is narrowly avoided. However, this

derivation shows that if there were a lighter state with mass below 2Mπ, the trajectory would
indeed move onto the first sheet and require a modification of the integration contour.

In general, the occurrence of anomalous thresholds in a dispersion relation in the photon
virtuality q2

1 depends crucially on the form of the γ∗ → 3π amplitude. The preceding
discussion applies if that amplitude may be described by a dispersion relation in the crossed
channel with threshold above 2Mπ, in particular the first diagram in Figure B.2. Even at
two-loop order (in γ∗ → 3π, see second diagram in Figure B.2, corresponding to three
loops for the TFF) such a representation exists, and even more so a representation free of
anomalous thresholds [460]. Indeed, an anomalous threshold in the γ∗ → 3π amplitude
would likely trigger an anomalous threshold in the pion TFF itself. In this way, the first
problematic diagram occurs at three-loop order for the γ∗ → 3π amplitude (third diagram
in Figure B.2, corresponding to four loops in the TFF): the 3π triangle should give rise
to anomalous thresholds. However, this diagram involves an additional cut, implying that
the corresponding γ∗ → 3π amplitude cannot be decomposed in terms of single-variable
functions anymore. Such contributions involving 4π cuts cannot be fully accounted for in
our dispersive analysis of the γ∗ → 3π amplitude, and thus appear within the estimates for
higher intermediate states, but not in the dispersive part of the decomposition.
Apart from anomalous thresholds, it is surprising that a simple dispersion relation for

the TFF arises despite the complicated analytic structure of the partial wave f1
(
s, q2

2
)
. To

test this assumption numerically, we separated the normalization according to f1
(
s, q2)

=
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Figure B.2: Topologies for π0
→ γ∗γ∗. The solid lines all refer to pion states, but the analytic

properties of these Feynman diagrams are again indicative of the general analytic structure.

a
(
q2) f̄1

(
s, q2) and expressed the form factor in terms of

Fvs
(
q2

1, q
2
2
)
= a

(
q2

2
)
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, g
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1
12π2

∫ ∞

4M2
π

dx
q3
π (x)

(
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x1/2 (x − q2
1
) .

(B.29)
The requirement that the single and double dispersion relations be equivalent then implies
that

a
(
q2

2
)
g
(
q2

1, q
2
2
)
=

1
π

∫ ∞

sth
dy

Im
[
a(y)g
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q2

1, y
)]

y − q2
2

, (B.30)

and since, by construction, a
(
q2

2
)
is analytic the same is true for Fvs

(
q2

1, q
2
2
)
as soon as

g
(
q2

1, q
2
2
)
is analytic. Taking q2

1 space-like, this statement follows from

1
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=
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∫
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2
2
)
= Fvs

(
q2

1, q
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, (B.31)

and the general case follows by analytic continuation in q2
1 . From the KT solution we do not

have access to g
(
q2

1, q
2
2
)
above q2

2 = (1.8 GeV)2, but we can still check if, with a reasonable
high-energy completion of the imaginary part, the resulting function g

(
q2

1, q
2
2
)
fulfills a

dispersion relation. Empirically, we observe that with a continuation according to 1/y2 a
once-subtracted dispersion relation does reproduce the KT result, providing another check
on the consistency of our dispersive formalism for the pion TFF.
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B.5 Scale estimate from light-cone QCD sum rules
We start with a dispersive representation of the doubly-virtual pion TFF for space-like
momenta

F
π0γ∗γ∗

(
q2

1, q
2
2
)
=

1
π

∫ ∞

0
ds

Im F
π0γ∗γ∗

(
s, q2

2
)

s − q2
1

(B.32)

and split the spectral information into high and low energies [377, 378]:

F
π0γ∗γ∗

(
q2

1, q
2
2
)
=

GV
(
q2

2
)

M2
V − q2

1
+

1
π

∫ ∞

sm
ds

Im F
π0γ∗γ∗

(
s, q2

2
)

s − q2
1

. (B.33)

For the low-energy part we use a VMD model [461]:

Im F
π0γ∗γ∗

(
s, q2

2
)
≈ GV

(
q2

2
)
π δ

(
s − M2

V
)

for s < sm , (B.34)

with a vector-meson mass MV and a quantity GV proportional to the electromagnetic form
factor for the transition of the vector meson to the pion.

Duality between hadronic and quark–gluon (“OPE”) degrees of freedom suggests that at
high energies, properly energy-averaged quantities should agree for both representations [377,
378]. Therefore one demands

1
π

∫ ∞

sm
ds

Im F
π0γ∗γ∗

(
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2
)
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1

≈
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∫ ∞
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2
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1

(B.35)

for any value of q2
1 (and sufficiently large sm) and

1
π

∫ ∞

0
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Im F
π0γ∗γ∗

(
s, q2
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)

s − q2
1

≈
1
π
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1

(B.36)

for asymptotically large q2
1 . Taken together, these relations allow one to determine [377,

378] both parts on the right-hand side of (B.33), leading to

GV
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≈

1
π
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0
ds Im FOPE
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and
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(B.38)
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The pion TFF is symmetric in its two virtualities whereas the right-hand side of (B.38) is
not. We symmetrize the expression by hand and obtain
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In [377, 378], a Borel transformation has been applied to (B.36) and a Borelized version
of (B.38) is used for the singly-virtual pion TFF. In the following, we use the symmetrized
finite-energy sum rule (B.39) as it is. It has the advantage that it contains only two non-
perturbative parameters, the vector-meson mass MV and the “continuum threshold” sm, i.e.
the onset of the asymptotic regime.
Finally, we need the OPE expression for the spectral information. To this end, we use

the asymptotic LO leading-twist expression (4.24) that relates the pion TFF to the pion
distribution amplitude [364–366]. The final expression for this LCSR VMD approach (LV)
is

FLV
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, (B.40)

where
xi :=

sm
sm − q2

i

. (B.41)

Expression (B.40) shows very satisfying high- and low-energy limits provided one chooses
M2

V = 8π2F2
π [462–464]. In line with the chiral anomaly one obtains
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0

φπ (x)
1 − x

=
2Fπ
M2

V

=
1

4π2Fπ
. (B.42)

The BL limit [364–366] is recovered:

FLV
π0γ∗γ∗

(
−Q2, 0

)
=

Fπ
3

∫ xQ

0
dx

φπ (x)

(1 − x)M2
V

+
Fπ
3

∫ 1

xQ
dx

φπ (x)

xQ2

+
Fπ
3

∫ 1

0
dx

φπ (x)

(1 − x)
(
M2

V +Q2)
=

1
Q2

2Fπ
3

∫ 1

0
dx

φπ (x)
x
+ O

(
1/Q4)

=
2Fπ
Q2 + O

(
1/Q4) . (B.43)
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B.5 Scale estimate from light-cone QCD sum rules
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Figure B.3: Comparison of (B.40) to singly-virtual pion TFF data [396–399]. Color coding for the
experimental points as in Figure 4.8.

Finally, for large Q2
1, Q2

2 one finds the relation

FLV
π0γ∗γ∗

(
−Q2

1,−Q2
2
)
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2Fπ
3

∫ 1

0
dx

φπ (x)

xQ2
1 + (1 − x)Q2

2
+ O

(
1/Q4

i
)
, (B.44)

which is in line with the OPE prediction [364–366, 384]. More generally, if both virtualities
are space-like, (B.40) vanishes as soon as one of the two virtualities becomes infinitely
large, irrespective of the value of the other virtuality. This property is not so easy to achieve
for hadronic resonance saturation models.
Before we show the results, we stress again that the QCD sum rule formula (B.40)

containing in particular the VMD model for the low-energy part is not meant for a full-
fledged quantitative calculation of the pion TFF, but for understanding the size of sm.
Figure B.3 shows a comparison of formula (B.40) to the data on the singly-virtual pion TFF
for different values of sm. Obviously, large values of sm do not agree with the data while a
value of sm = 1 GeV2 provides a consistent picture.
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