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ABSTRACT 

Nutrient depletion is a major limiting factor to agricultural sustainability in cereal 
dominated smallholder farming systems in Africa where over 80% of arable land is 
unsuitable to support primary productivity. This constrains food and nutritional 
security of rural communities. For appropriate design of interventions, there is need for 
empirical evidence on drivers of change.  

A common sampling frame is used to integrate social-ecological data from farm 
surveys of soil, biomass and crop yield, nutrient inputs and outputs, and their 
determinants. The nutrient distributions are predicted using randomForest machine 
learning algorithm in R with remotely sensed reflectance for topography (30 m STRM-
DEM), vegetation and soil (10 m Sentinel2 imagery) as co-variates. We use behavioural 
economics to unravel farm-type specific drivers of human induced nutrient inputs and 
a mixed model for crop yield function for outputs. Further, existing nutrient 
stoichiometry and transfer functions based on NUTMON, FarmDESIGN models with 
parameters from the study region are used to capture dynamic stocks and flows. Lastly, 
we build a multi-agent system for simulating sustainable agricultural intensification 
(MASSAI) in NetLogo and piloted to explore, ex ante, the agentic behaviours of farmers 
when faced with ambiguity in fertilizer subsidy regimes and its implications on nutrient 
budgets, human decision making and land productivity. 

Though soil management in smallholder farming systems aims at addressing the 
most critical nutrient(s), the results from this study show that the soils are deficient in 
all three major nutrients (NPK) and structurally unstable due to low soil organic carbon 
(SOC). Farmers strive to utilise the commonly available soil fertility management: nine 
in every ten households used inorganic fertilizers, a third integrated legumes and almost 
half applied manures of various forms. From the empirical and simulated results, it is 
indicative that the maize mixed smallholder farming system in Malawi has become 
inelastic to changes in input policies.  

Much as improvement in contribution of women in decision-making widens the 
scope for legume cropping, it negatively affects manuring. Therefore, addressing 
challenges that women face in manuring could offer greater opportunities for integrated 
soil fertility management.  

After 15 years of fertilizer subsidy program, farmers have internalized it in their 
expenditure plan: some exclusively relying on subsidy while others source increasing 
amounts from the market and are becoming self-reliant. Those that rely on limited 
fertilizer acquired through subsidy proactively reduce the nutrient gap by increasing 
manuring. These behaviors have implications on nutrient management and 
sustainability of the farming systems. Although subsidy alone might not significantly 
shift the nutrient and productivity trajectories for the next 20 simulated years, increased 
subsidy could relatively accelerate nitrogen and phosphorus losses.  
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ZUSAMMENFASSUNG 

OPTIONEN FÜR EINE NACHHALTIGE LANDWIRTSCHAFTLICHE INTENSIVIERUNG IN 

GEMISCHTEN MAISANBAUSYSTEMEN: EXPLORATIVE EX-ANTE-BEWERTUNG MIT EINER 

MULTI-AGENTEN-SYSTEMSIMULATION 

Nährstoffverarmung ist ein wesentlicher limitierender Faktor für die landwirtschaftliche Nachhaltigkeit 
in Getreide-dominierten kleinbäuerlichen Anbausystemen in Afrika, wo mehr als 80% des Ackerlandes 
für die Primärproduktion ungeeignet ist. Dies schränkt die Nahrungsmittel- und Ernährungssicherheit 
der ländlichen Gemeinden ein. Um dem gezielt durch Interventionen entgegenwirken zu können, sind 
empirische Studien über Einflussfaktoren, die zu Veränderung beitragen können, nötig. 

Eine integrierte Stichprobenstrategie wird verwendet, um sozio-ökologische Daten aus 
Betriebserhebungen zu Boden, Biomasse und Ernteerträgen, Nährstoffein- und -austrägen und deren 
Bestimmungsfaktoren zu integrieren. Nährstoffverteilungen werden unter Verwendung des 
‚randomForest- machine learning algorithm‘ in R, mit aus Fernerkundung stammenden Daten, für die 
Co-Variablen Topographie (30 m STRM-DEM), Vegetation und Boden (10 m Sentinel2-Bilder) simuliert. 
Verhaltensökonomische Ansätze geben Aufschluss über die betriebstypspezifischen Faktoren, die eine 
Rolle spielen, wenn es um gezielte Nährstoffeinträge durch den Menschen geht. Ein gemischtes Modell 
wird für die Ermittlung einer Ernteertragsfunktion verwendet, um die Erträge zu ermitteln. Darüber 
hinaus werden vorhandene Nährstoffstöchiometrie- und Transferfunktionen basierend auf den 
NUTMON und FarmDESIGN Modellen mit Parametern aus der Untersuchungsregion verwendet, um 
dynamische Nährstoffbestände und -Flüsse zu erfassen. Schließlich bauen wir in NetLogo ein Multi-
Agenten-System zur Simulation einer nachhaltigen Intensivierung der Landwirtschaft (MASSAI) auf und 
untersuchen, ex ante, das Verhalten von Landwirten, die aufgrund eines Düngemittelsubventionssystems 
mit Unklarheiten konfrontiert werden und dessen Auswirkungen auf Entscheidungsprozesse, 
Nährstoffbudgets und Landproduktivität.  

Wenngleich Bodenbewirtschaftung in kleinbäuerlichen Anbausystemen darauf abzielt, Defizite 
in den kritischsten Nährstoffen auszugleichen, zeigen die Ergebnisse dieser Studie, dass die Böden in 
allen drei Hauptnährstoffen (NPK) mangelhaft und aufgrund niedriger organischer Kohlenstoffgehalte 
im Boden strukturell instabil sind. Landwirte streben an, allgemein verfügbare Methoden für 
Bodenfruchtbarkeitsmanagement zu nutzen: neun von zehn Haushalten verwendeten anorganische 
Düngemittel, ein Drittel integrierte Leguminosen und fast die Hälfte brachten Mist verschiedenster Art 
aus. Die empirischen und simulierten Ergebnisse deuten darauf hin, dass das gemischte kleinbäuerliche 
Maisanbausystem in Malawi gegenüber Veränderungen in politischen Richtlinien, die den Einsatz von 
Betriebsmitteln betreffen, unelastisch geworden ist.  

Die verbesserte Einbindung von Frauen in Entscheidungsprozesse macht zwar den Anbau von 
Leguminosen wahrscheinlicher, wirkt sich jedoch negativ auf den Einsatz von Mist aus. Daher könnte 
sich die Bewältigung von Herausforderungen, denen Frauen beim Düngen ausgesetzt sind, positiv auf ein 
integriertes Bodenfruchtbarkeitsmanagement auswirken. 

Nach 15 Jahren Düngersubventionen haben die Landwirte diese fest in ihre Budgetplanung 
integriert, wobei sich einige ausschließlich auf Subventionen verlassen, während andere mit eigenen 
Einkäufen mischen und nicht-Subventionsempfänger zunehmend Dünger über den Markt beziehen. 
Diejenigen die auf begrenzten, durch Subventionen erworbenen Dünger angewiesen sind, verringern 
proaktiv die Nährstofflücke durch Mistgaben. Diese Verhaltensweisen haben Auswirkungen auf das 
Nährstoffmanagement und die Nachhaltigkeit der landwirtschaftlichen Systeme. Obwohl Subventionen 
allein die Nährstoff- und Produktivitätsverläufe für die simulierten nächsten 20 Jahre möglicherweise 
nicht wesentlich verändern, könnten erhöhte Subventionen die Stickstoff- und Phosphorverluste 
beschleunigen.  
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THESIS STRUCTURE 

The thesis is written in 5 chapters. Chapter 1 highlights the need for addressing soil 
fertility as primer for sustainable agricultural development in rural landscapes. As the 
reality at the doorstep of smallholder farmers unravel, the complexity of the system 
challenges the research and development practitioners. 

In chapter 2, we review existing literature on farming systems and nutrient modelling.  

Chapter 3 is a methodological one. First, it establishes principles and methodological 
structures for integrated analysis of a farming system, using concepts and methods from 
both livelihood and ecological theories. The study site is described by highlighting the 
human and ecological states and drivers. Based on the empirical parameterisation, the 
analytical approaches for human actions and ecological processes are developed. 
Particularly, the transfer functions for nutrient input and output flows are updated 
using data from the study region. Lastly to integrate human and ecological processes, 
multi-agent simulation (MAS) is proposed and used to build feedback mechanisms for 
the nutrient budgets, human decision and land productivity.  

Chapter 4 presents the results and their discussion. In the first subsection, farming 
households are grouped into distinct farm types using input levels and resource 
endowments. Second, the distribution of major nutrients (NPK) and SOC and their 
stoichiometric thresholds is presented (Manuscript 1, which is under review). Third, the 
household soil fertility management choices within the gender imbalance and high 
dependency are explored (Manuscript 2, also under review). The fourth subsection 
reports the plot level input choices which are essential and used to parametrise spatially 
explicit the probability of input choice and intensification levels. Fifth, the maize 
productivity for smallholder farms under varying subsidy intensities, the input levels, 
plot fertility and household resource endowments are explored. The sixth subsection 
presents the human induced and ecological nutrient flows and balances. Lastly, the 
MAS results are presented that focuses on the implications of alternative subsidy 
regimes on fertilisation, manuring, maize yield, nutrient balance and profitability as 
indicators of sustainability.  

Chapter 5 is a concluding one with a subchapter on extension of current research and 
areas for further research. 
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ES Ecosystem services  PCA Principal components analysis 
FGD Focus group discussion Ri Roughness index  

FISP Farm input subsidy program RI Redness index 

FYR Farmer reported yields RUSLE Revised universal soil loss equation 

GIS Geographic information system  SAI Sustainable agricultural intensification 

GLM Generalised linear model SDR Sediment delivery ratio 

GoM Government of Malawi SFM Soil fertility management  

GPS Global positioning system  SI Saturation index 

GRVI Green-Red vegetation index  SLF Sustainable Livelihood Framework 

GSI Grain Size Index SLM Sustainable land management  

HES Human-Environmental System  SOC Soil organic carbon 

ISFM Integrated soil fertility management  SOM Soil organic matter 

K-CA K-mean cluster analysis SPI Stream power index 

LLSF Liebig’s linear scoring function SSE Sum of the squared error  

LSD Least significant differences  StI Structural stability index 

LU Livestock units STRM Shuttle Radar Topography Mission 

LUDAS Land Use Dynamics Simulator  USGS United States Geological Survey 

MAS Multi-agent system WEAI Women empowerment in agriculture 
index  

MASSAI Multi-Agent System for Sustainable Agricultural 
Intensification 
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1 SUSTAINABLE AGRICULTURAL INTENSIFICATION OF 

SMALLHOLDER FARMING SYSTEMS 

1.1 Sustainable Agricultural Intensification premised on soil fertility 
management  

In Africa, sustaining farming systems has been the major aim for researchers, 
practitioners and land managers for more than five decades (Vanlauwe et al., 2017). 
Although water is still one of the major constraints due to low level of irrigation, soil 
fertility decline is the major biophysical limitation that needs to be addressed if 
sustainability of the farming systems is to be attained (Vanlauwe et al., 2015). Of all the 
systems, the maize mixed farming system that spans across the east and southern Africa 
(covering Ethiopia, Kenya, Uganda, Tanzania, Zambia, Malawi, Mozambique, 
Zimbabwe and South Africa) is greatly affected (Dixon et al., 2001). According to the 
global change diagnosis by Petschel-Held et al. (1999), the region is characterised by 
overuse of marginal areas, overexploitation of natural ecosystems, abandonment of 
unproductive land, degradation due to in-appropriate farming methods. Expanding 
agricultural land followed by continuous cropping with minimal inputs are the most 
critical forces altering the environment. In case of Malawi, estimates show that the 
associated land degradation increases the probability of households to become poor by 
30% (Kirui, 2016). Consequently, the inherently low soil fertile landscapes, such as the 
marginal escarpments of the country where the rural poor live and cultivate, reinforces 
the chronic poverty (Barrett & Bevis, 2015; Jean et al., 2016). Yet, for most rural 
populations in Malawi, agricultural productivity remains the determinant of welfare and 
is one of the key strategies for livelihood improvement in the short to medium-term 
(Sachs et al., 2004).  

 If the current trends continue unabated, in the long-term, arresting land 
degradation in sub-Saharan Africa (SSA) through sustainable land management 
technologies could cost around US$ 3 billion which is far lower than the annual 
cumulative losses in total economic value of ecosystem services estimated at US$ 15 
billion (Nkonya et al., 2016). To avert environmental degradation and support economic 
development, the concept of Sustainable Agricultural Intensification (SAI) has been 
mainstreamed in research and development programs (Pretty, 1997; United Nations, 
1987, 2000, 2015b). Although sustainability goals make political sense at global and 
national levels, they are more relevant to most of the rural farmers who depend on 
environmental resources (United Nations, 2015a). To them, knowing the impact of their 
interventions on land productivity and ecological sustainability underpins their 
livelihoods.  

Reports show both negative and positive historical trends. The 2016 Food and 
Agriculture Organisation (FAO) report on forests and agriculture showed that the rate 
of deforestation was reduced due to sustainable land management (SLM) (FAO, 2016b), 
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but high levels of land degradation have been estimated (Holt-Giménez et al., 2006; Le 
et al., 2016; van Ittersum et al., 2013; Vlek et al., 2008) affecting agricultural productivity 
in many parts of Africa (FAO, 2016c). The 2019 IPCC report shows that SLM practices 
increase soil organic carbon (SOC) and reduce erosion and can potentially help 
communities to cope with climate change (Arneth et al., 2019). 

However, since the inception of SAI in 1997, a decade of no substantial interest 
from the scientific community past but the concept has reported gained momentum 
between 2011 to 2016 (Weltin et al., 2018). The increased interest in SAI has been 
attributed to the need to intensify production while maintaining the resource base. SAI 
is defined as: “increased production, income, nutrition and other returns on the same 
amount of or less, land and water with efficient and prudent use of inputs, minimising 
greenhouse gas emissions while increasing natural capital and flow of environmental 
services, strengthening resilience and reducing environmental impact through innovative 
technologies and processes” (The Montpellier Panel, 2013). From this conceptual and 
operational definition, it is apparent that a broad range of farming operations and 
farming styles fall under the umbrella of SAI. 

 Notably, SAI has many facets and the interactions among targets and indicators 
is overwhelmingly complex to be holistically implemented (Smith et al., 2015). To 
increase production, incomes, nutrition and other returns, there are several factors of 
which soil and climate are overarching (Bouma et al., 2019). In east and southern Africa, 
increasing production is currently the main development and research focus because, 
despite increases in total food production, the net average per-capita agricultural 
production has declined by a quarter in reference to 1960 levels (Pretty et al., 2011). 
Although food sovereignty is not a prerequisite for national food sufficiency, the current 
food demand in Africa can only be met by substantial imports. Without other economic 
opportunities, in the short to medium term, small-scale farmers ought to find ways of 
increasing their own production (FAO, 2015; van Ittersum et al., 2016). At their 
doorsteps, managing the soils - that exist right beneath their feet and for which they 
have higher control- precedes all other options (Vanlauwe et al., 2015). In Malawi, cereal 
production can increase by 14.6 and 9.6% following improvements in nitrogen use 
efficiency and sustainable land management, respectively (FAO, 2016c; Rosegrant et al., 
2014), with the highest potential to reduce poverty (Sachs et al., 2004). 

Moreover, among natural resources, soil is one non-renewable resource that 
significantly house and contribute to ecosystem services and human wellbeing (Bouma 
et al., 2019). However, the IPCC report shows that as of 2018, almost 30% of the world’s 
soils were degraded and around 12 million hectares of land are still lost each year 
(Arneth et al., 2019). The report further shows that in addition to harming the wellbeing 
of at least 3.2 billion people, land degradation costs more than 10% of annual global 
gross domestic product (GDP) in lost ecosystem services like preventing harmful 
nutrient run-off into streams or decreasing the effects of floods. Halting and reversing 
current trends of land degradation could generate up to USD 1.4 trillion per year of 
economic benefits and go a long way in helping to achieving the Sustainable 
Development Goals (SDGs). 
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1.2 Relevant soil and land management interventions 

In Africa, the intricate nexus of meeting the polarised goals of increased food and 
biomass production, generating economic opportunities and sustaining land health in 
the region has resulted in an influx of projects supported by national governments, non-
governmental organisations (NGOs) and some self-started by the communities. Quite 
often, the scalability and sustainability of the externally driven projects by governments 
and NGOs have been variable and non-defined (Snapp et al., 2010). In Malawi, due to 
downstream problems associated with land degradation, incentive mechanisms for 
rewarding individuals who sustainably manage their farmlands through locally 
supported payment for ecosystem services (ES) are being established within the Shire 
River Basin (Fleskens & Chilima, 2013). In this regard, cross-sectoral policies that benefit 
downstream ES, including hydro power generation, urban water supply and irrigation 
and upstream activities on farmlands and (de)forested hill slopes, need to be developed 
(GoM, 2013). Revegetation, avoiding deforestation of steep slopes coupled with soil and 
water conservation practices on farmland are some of the measures being promoted to 
arrest soil erosion and improve land productivity (GoM, 2017).  

This study aims to explore policy options for promoting SLM and results are of 
regional relevance to the maize-mixed farming system of east and southern Africa 
(Figure 3.6). Of the 14 African farming systems, the maize-mixed system has one of the 
highest farming populations with smallholders accounting for more than 90% of the 91 
million hectares under cultivation (Dixon et al., 2001; Garrity et al., 2012). Malawi has of 
late registered success in improvements in crop productivity due to fertilizer and 
improved seed input subsidies that targeted smallholder farmers (Figure 1.1). To 
supplement the reported successes, research and development programs on ecological 
intensification have been heightened to address the challenges of deteriorating 
ecosystem functions as a result of continuous cropping. Hence, Malawi is one of the 
candidates for testing scalability and sustainability of integrated farming systems. 

Recently the study site, Nsipe, has been a pilot and primary out-scaling area for 
two research projects on SLM and SAI. The International Centre for Tropical Agriculture 
(CIAT) through the project called AGORA: Acting together now for pro-poor strategies 
against Soil and land degradation used transdisciplinary and participatory approaches 
to map social, economic and ecological drivers of adoption of SLM practices (Braslow & 
Cordingley, 2016; Mponela et al., 2018). The Michigan State University, through the 
Africa RISING project, uses farmer managed mother-baby trials to validate and enhance 
the role of nitrogen fixing legumes (ground nuts – Arachis hypogaea L., pigeon peas - 
Cajanus cajan (L.) Millsp. and soybean - Glycine max (L.) Merr.) for SAI of maize (Zea 
mays L.) dominated farming system (Snapp et al., 2018).  

Since the nation-wide land resources evaluation between 1988 and 1992, soil 
fertility decline due to overuse started getting attention and has heightened due to 
increasing demand for productive land (Benson et al., 2016; Li et al., 2017). Apparently, 
most of the technologies being promoted under the banner of SLM are not entirely 
novel; they are often repackaged as systems innovations addressing multiple constraints 
(Adolwa et al., 2017). These include SLM, conservation agriculture (CA), agroforestry, 
climate smart agriculture (CSA), integrated soil fertility improvement (ISFM), cereal-

https://www.mcc.gov/blog/entry/blog-042116-planting-trees-in-malawi-for-a-sustainable-future
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legume integration, and inorganic fertilizers including subsidies –which apparently 
have similar technological sets (Pretty et al., 2011; Weltin et al., 2018).  

For the past five decades, farmers’ usage of the technologies promoted under the 
umbrella of these different “programs” has been selective and mixed depending on the 
farm and household resource endowments (Mponela et al., 2016; Ngwira, Aune, et al., 
2014). In the following paragraphs, the usage of individual technologies as reported by 
various studies across the country, is presented in brief:  

(1) Inorganic fertilizers. The use of nitrogen and phosphorus fertilizers and 
improved cereal and legume seeds have been widely promoted and adopted in Malawi 
(Conroy et al., 2006). This has been supported by fertilizer and improved seed subsidies 
and grants since 2005 (Figure 1.1). Although reports show that increased nutrient input 
through inorganic fertilizers have increased the yields and generated the required 
calories for the farming households (Dorward et al., 2011), there are concerns that 
continuous cropping has lowered SOC levels (Mpeketula, 2016) and net primary 
productivity (Messina et al., 2017), thereby affecting land productivity in the long-term. 
Substantial applications of inorganic fertilizers are needed but the application rates are 
lower than the recommended ones (Mutegi et al., 2015) and the response to inorganic 
fertilizer inputs for the main crop – maize – under smallholder farming is sub-optimal 
(Snapp et al., 2014). 

 

Figure 1.1 Trends of national average maize actual yields and fertilizer subsidy between 1999 and 2019 in 
Malawi.  
Data sources: (Chirwa et al., 2011; Dorward & Chirwa, 2011; GoM, 2007; IFDC, 2013; Ricker-Gilbert et al., 
2013) 

(2) Crop rotation/grain legumes. Cereal-legume rotation or intercropping is a 
common practice in Malawi. Cereals are considered the staple crops whilst legumes 
(beans, soybeans, groundnuts, pigeon peas, cow peas) have been extensively grown as 
main protein source for the poor and are being promoted for both the local and export 
market (GOM, 2013). The legumes are an important source of biologically fixed nitrogen 
and the residues provide high quality organic matter (Mhango et al., 2017; Njira et al., 
2017; Snapp et al., 2002). 
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(3) Residue incorporation. Situated in a sub-humid region, crop residues and natural 
biomass are abundant in Malawi. Some farmers incorporate them (Mponela et al., 2016; 
Snapp et al., 2002) and a few early adopters use them as mulch in conservation 
agriculture demonstration plots (Jumbe & Nyambose, 2016; Ngwira, Johnsen, et al., 
2014). Whilst the residues of legumes could constitute soil fertility inputs, considerable 
number of farmers burn the aboveground biomass (Snapp et al., 2002), hence several 
institutions promote the practice of residue incorporation (Sosola et al., 2011). That 
being the case, most farmers still leave them in the fields and burn them during the long 
dry season to clean the fields (Snapp & Pound, 2008), are set ablaze by mice hunters 
(Ngwira, Johnsen, et al., 2014) or destroyed by stray fires from neighbouring grasslands 
(Campbell, 1996). 

(4) Compost and farm yard manure application. After the harvest, demonstration of 
compost manure making is one prominent activity led by extension officers in Malawi. 
Use of farmyard manure is limited because of fewer livestock but composting of plant 
residues is on the rise (Chilimba et al., 2005). 

(5) Trees on farm. With increasing pressure for land resources, woodlands have been 
deforested. However, trees (planted and exotic) are still the dominant feature of the 
farming landscapes in Malawi and continue to be an integral part of soil fertility 
replenishment (Kundhlande et al., 2017). Research and development programs 
introducing fertilizer trees on farms started in late 1980s (Beedy et al., 2013). Lately, the 
focus has shifted to propagate or tend indigenous trees (Beedy et al., 2010; Kundhlande 
et al., 2017). Efforts are made to scale-up systematic planting of trees as a recommended 
practice (Beedy et al., 2013), but adoption patterns are sporadic (Kakhobwe et al., 2016). 
This has resulted into a mosaic landscape of trees, either scattered on plots, lined along 
field boundaries or along the meandering streams, or as small remnant patches of 
woodlots protected by the government, communities or owned by land-rich farmers. 

(6) Contour marker ridges/vetiver grass. Addressing soil erosion is increasingly 
becoming imperative as studies reveal hotspot areas (Vargas & Omuto, 2016). The 
eroded soils, in addition to causing sedimentation problems down the Shire River, drain 
the nutrients from farmlands. Farmers across the country, regardless of the soil type, 
topography and climate, construct ridges across the slope, which have been found to be 
inefficient to control erosion (Mohamoud & Canfield Evan, 1998). Among technologies 
developed to address erosion, marker ridges along contours, ridge realignment across 
slopes, and box ridges are most prominent (Jeffery & Vira, 2001). The marker ridges are 
reinforced with vetiver grass or agroforestry shrubs (Chigwiza & Kanazawa, 2008).  

Research has shown that the aforementioned technologies and approaches have 
the potential to improve productivity. However, their on-farm performance is likely to 
vary as they are being adapted to biophysical limits bounded by socio-economic 
constraints (Mungai et al., 2016). As such, it is generally realised that there is no “single 
bullet” technology suitable for the spatially heterogeneous farms managed by the 
diversified rural society (Tittonell et al., 2010). At landscape and community level, 
assessing the continuum contribution of the technologies to ecological and human 
wellbeing, and not averages, has been challenging (Vanlauwe et al., 2016). The ES 
approach has been widely used as it provides an integrated framework for assessing 
performance of ecological systems (Simpson, 2011; Snapp et al., 2010; Tallis et al., 2008). 
In a smallholder farming system, ES that are directly influenced by SLM activities and 
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are of relevance to the wellbeing of farmers have been considered for the assessment. 
The contribution to food and biomass fuel is considered under provisioning services, 
soil nutrient balance, soil erosion and primary production as supporting services and 
soil organic matter (SOM) as a regulating service (Alcamo et al., 2003). 

1.3 Challenges and opportunities in modelling SAI for smallholder farms 

Typically, the performance of technologies is evaluated and modelled under controlled 
environments and the dissemination pathways are based on the empirical relationships: 
out-scale to areas with similar conditions as the testing area (Komarek et al., 2018). This 
approach failed to replicate the results in smallholder farming systems of Africa. As 
observed by Giller et al. (2011), complexity in land conditions, land use and weak socio-
political structures within smallholder rural landscapes constrain the use of universal 
models for technology dissemination. From these field observations, it is evident that 
the system is characterised by features that makes it challenging to choose the 
appropriate methods, approaches and techniques. 

Weltin et al. (2018) highlights the need to understand the structural and 
functional forms of the farming system when conceptualising SAI assessments. In 
Malawi and the region, there exist sectoral policies and legal tools to frame 
implementation of sustainable land and natural resource management practices. 
Nonetheless, lack of consistent incentives coupled with insecurity of customary land 
tenure, weaknesses in the enforcement and social safeguards, and low public awareness 
has led to unregulated resource uses (Dalupan et al., 2015; Sambo et al., 2015). 
Smallholders have been operating without the need to comply with environmental 
policies and autonomously manage their fields in spontaneous response to the changes 
in soil quality, constrained by the environment and prevailing socioeconomic 
conditions (Sileshi & Akinnifesi, 2017; Smith et al., 2015; Stephens & Middleton, 2002). 
The resulting farming systems are diverse in both structure and functions. However, the 
actions by individual farmers on fragmented land parcels, when aggregated, emerge as 
mosaics of crops, farming practices, and soil conditions that tend to be complex to 
visualise and analyse at landscape level (Giller et al., 2011; Morton, 2007). Considering 
the complexity, SAI is being promoted for balanced production and ecological 
sustainability (Weltin et al., 2018), which have been challenging to land-users, agro-
ecologists and policy makers (van Noordwijk & Brussaard, 2014).  

SAI, as defined above, calls for an understanding of the linkages, compromises 
and synergies between alternative land use and practices at the management level of a 
smallholder farming household. As complex as the system is, there are commonalities 
in the way communities respond to natural processes such as soil erosion control and 
soil fertility enhancement. These social and ecological aggregates can be harnessed to 
test and promote packages of technologies using broader approaches such as SLM 
(Liniger et al., 2011). Due to the volume of data required, knowledge systems, and 
computing capabilities, a few typical farmers and farms from the centroids of the 
aggregates are often used to explore the performance of the social-ecological landscapes 
using bio-economic models (Giller et al., 2011, 2015; Mungai et al., 2016; Tittonell et al., 
2010; Vayssières et al., 2011).  
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Building on bio-econometric models, systems for monitoring human action and 
resulting nutrient balance and land productivity trends have been established (Weltin 
et al., 2018). However, these are not enough for anticipating future changes in SAI as 
they lack feedback mechanisms. An improved understanding of feedback mechanisms 
and controlling factors is essential for pro-active decision-making and projection of 
future scenarios (Le, 2005). In line with declining productivity due to soil fertility loss, 
since 1990s there has been a growing need to understand the balance between nutrient 
input and output levels (Stoorvogel & Smaling, 1990). The latter authors grouped the 
flows into five inputs (IN1: mineral fertilizers, IN2: organic manure, IN3: biological N 
fixation, IN4: atmospheric deposition, and IN5: sedimentation) and five outputs (OUT1: 
harvested product, OUT2: crop residues, OUT3: erosion, OUT4: leaching, OUT5: gaseous 
losses) that are used as a frame (Equations 1.1 – 1.4 below). In addition to the underlying 
natural processes, the human actions are considered a significant force accelerating or 
decreasing the nutrient flows through the first three inputs and three outputs. 
Therefore, instead of being a static and stable processes, the nutrient balances are highly 
dynamic and differ over time and across space (Cobo et al., 2010). 

Net(N) = IN1 + IN2 + IN3 + IN4 + IN5 – OUT1 – OUT2 – OUT3 – OUT4 – OUT5  1-1  

Net(P) = IN1 + IN2 +   IN4 + IN5 – OUT1 – OUT2 – OUT3     1-2  

Net(K) =  IN2 +    IN4 + IN5 – OUT1 – OUT2 – OUT3 – OUT4   1-3  

Net(C) =   IN2 + IN2(fromOUT2) + IN5 – OUT3 – OUT5 (decomposition)   1-4  

Due to the complexity of farms and owners, treating the nutrient balance as a 
static inflow and outflow is an oversimplification. It is crucial to explore how Net 
nitrogen (N), phosphorus (P), potassium (K) and carbon (C) influences farmers response 
to their target productivity output OUT1 which in principle is linked to all others stocks 
and flows and their controlling factors. Hence, farmers through pursuit of their main 
objective of increasing productivity exert a dynamic force on soil nutrients and shift its 
equilibrium over temporal and time scales. Capturing these spatio-temporal changes 
continues to be a challenge.  

In the past, nutrient balance studies have consistently reported negative trends. This 
stems from the notion that the tropical soils of Africa are either inherently less fertile 
(Tully et al., 2015) or degraded (Vlek et al., 2008), understating the variations across 
regions and within single farms (Cobo et al., 2010; Vanlauwe et al., 2006, 2016). A review 
by Cobo et al. (2010) showed that of the 57 studies included, 15% reported positive N, 
24% positive K and 44% positive P balances. In mostly rural areas, the positive balances 
are distinct for wealthier households and for plots closer to houses (Vanlauwe et al., 
2006). However, crop type, farm size and the accompanying soil management practices 
override these distinct social and physical boundaries, thereby creating a random 
distribution across landscapes. Even for those with negative balances, continued usage 
of the farmland (Braslow & Cordingley, 2016) is indicative of farmers’ adaptive strategies 
that sustain these nutrient mining farming systems (Smaling et al., 1997). 

Apparently, there are some positive deviants with positive balances. The study 
therefore has a particular focus on the balance of the major nutrients including 
nitrogen, phosphorus and potassium at household level as the main ecological objective 
for land managers. To-date, although the aims have been to come up with country 
budgets or in some cases for the whole of SSA, nutrient balances are still modelled at 
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two micro spatial scales (Lord et al., 2002). The farm-gate scale accounts for major 
nutrient inputs and outputs for the household or community by aggregating plots. The 
soil-surface scale accounts for every land parcel, whether cultivated or not, and 
considers the internal nutrient cycling such as manure and crop residue management. 
Nutrient balance studies have shown that most farms tend to have negative partial 
budgets (Cobo et al., 2010; Kangalawe, 2014). The combined nutrient inputs, through 
inorganic and organic fertilizers, purchased feed, external grazing, crop residues, 
atmospheric deposition, sedimentation and biological nitrogen fixation tend to be lower 
than the total outputs through crop harvest, residue removal and potential soil erosion. 
At plot or farm level, it has been established that continued cropping without adequate 
inputs leads to nutrient depletion (Potter et al., 2010). 

Considering the limited data on nutrient pools and flows in the region, there is 
growing interest to improve estimates. This is a prerequisite for development of 
appropriate interventions. Even more important is to have data that is spatially and 
temporary explicit. Generally, empirical measurements are made for material flows such 
as fertilizers, manure, and crop yield whilst the natural processes of volatilisation, 
deposition and denitrification are not included or simply estimated using transfer 
functions from the literature (Scoones & Toulmin, 1999).  

Nutrient stocks-and-flows within farming systems is the major indicator of 
productivity and has been efficiently modelled using the NUTMON/MonQ (De Jager et 
al., 1998) and FarmDESIGN (Groot et al., 2012). These are bio-economic models and are 
limited to the use of static entities of agricultural enterprise and land units. Without the 
decision-making component, it is impossible to capture dynamic feedback, evolution of 
processes and system states and adaptive behaviour of smallholder farmers that are 
essential to understand social-ecological adaptation and the transitions (Boulanger & 
Bréchet, 2005). In addition, by averaging the nutrient transfers of a sample to a few 
archetypical farms, selected from centroids of the clusters and assumed to be 
representative, these models fail to allow for and capture autonomous actions by 
heterogeneous farmers that interact within landscapes and communities. 

In an expert-based assessment of six common integrated system modelling 
approaches for supporting sustainable development, Boulanger & Bréchet (2005) found 
that a multi-agent system (MAS) approach is well-suited for understanding sustainable 
development involving social-ecological system (SESs). Many studies in the previous 
decade have demonstrated capabilities of MAS for comprehensive ex ante assessment 
of impacts of policy interventions on land use and cover (Berger, 2001; Le et al., 2008, 
2010a; Miyasaka et al., 2017; J. Schindler et al., 2009; Villamor et al., 2014). Still, there are 
discussions on how to model dynamic reverse causality among human and ecological 
sub-components in smallholder farming systems (Giller et al., 2011, 2015; Mungai et al., 
2016). Elsewhere, MAS has shown that although farmers opt for short-term options to 
improve yield, human induced nutrient losses from erosion and crop removal have long-
term consequences (Quang et al., 2014; Schreinemachers & Berger, 2011).  

Notwithstanding, the NUTMON framework and its survey tools have good value 
to capture nutrient flows for different farms. Therefore, this study builds on the 
NUTMON and FarmDESIGN frameworks and implement them within a MAS platform 
to capture variability and residual effects over time and farm types (Le, Scholz, et al., 
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2012). This facilitates the estimation of cumulative and emergent effects over temporal 
scales, as well as simulating the reverse causality between several components that static 
models such as NUTMON and FarmDESIGN fail to address.  

Apart from the uncertainties in the estimations of nutrient pools and transfers, it 
is also important to reduce an attribution error when up-scaling from the basic 
measurement units of plot-household to the landscape-community levels. Instead of 
using one or a few average farmers selected through farm typologies and arbitrarily 
extrapolate over an entire area, the nutrient balances for the representative sample 
(above 30% of a village population) was collected through in-depth interviews. The 
interviews took place during farm visits, thereby allowing collection of detailed 
information for each plot. Since the aim of the study is to evaluate the determinant 
factors and empirically evaluate their effects, the sampled households and plots are first 
grouped into distinguishable types. The average and distribution of nutrient balances 
within the typologies, not the single observation from centroid farms, are then used to 
upscale to the population/landscape level. 

1.4 Research questions and objectives 

In view of the foregoing, this study aims to address the following questions:  

1. What are the adoption pathways for land management technologies that improve 
crop productivity whilst sustaining the integrity of the natural resource base? 

2. How can SLM policy options be best applied considering the heterogeneity of 
farming households and their farmlands? 

3. Are there trade-offs or synergies in ecosystem services derived from land 
management practices in terms of sustainability of crop productivity and soil quality 
and the household’s income? 

To address these questions, the main objective of the study is to build a SES that 
spatially and temporally explicit capture, analyse, present soil nutrient balances and 
explore ex ante possible livelihood and ecological outcomes from alternative soil 
management practices to better inform smallholder farmers and other stakeholders 
whilst making their sustainability decisions. In achieving this goal, the study aims to 
realise the following specific objectives: 

1. To develop a coupled human-ecological framework for modelling the co-evolution of 
soil fertility within smallholders’ land parcels and food production dynamics framed 
by land management policies and other externalities in maize mixed farming systems 
of east and southern Africa. 

2. To calibrate and verify factors that nudge agents of change (farmers) to decide on 
taking and intensifying soil fertility management (SFM) alternatives thereby creating 
shifts in the human sub-system. The decision models are based on the empirical data 
collected from households and their farms in a typical subsistence maize mixed 
farming system of Malawi. 

3. To calibrate and verify factors that drive changes in land productivity within the 
farming landscape as an ecological sub-system. The nutrient input and output 
models are calibrated based on the nutrient transfer ecological models with data 
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collected from secondary sources and own surveys of existing farmlands in the study 
site. 

4. By integrating parameterised models from 2. and 3., build a Multi-Agent System for 
Sustainable Agricultural Intensification (MASSAI) that simulate, ex ante, the possible 
economic and ecological outcomes of certain soil management and other related 
policies from dynamic interactions among farming households and their farmlands. 
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2 REVIEW OF EXISTING LITERATURE 

2.1 Household social-ecological livelihood diversity 

Adopting the farming styles theory of van der Ploeg (1990) which postulates that, 
despite having structural and functional forces that increases complexity in agriculture, 
there is unity or cohesion in farming styles defined by three elements: 

“… a set of strategic notions, values and insights shared by a particular group of 
farmers concerning the way farming ought to be organised  

… a specific structuring of the practice of farming that corresponds to the strategic 
notions or cultural repertoire used by these farmers  

… a specific set of interlinkages between the farm enterprise on the one hand and 
the surrounding markets, market agencies, government policy and technological 
developments on the other. These interrelations are structured in such a way that 
the specific farming practice can be reproduced over time” (van der Ploeg & Long, 
1990). 

The livelihood strategies undertaken by farming household in the maize mixed farming 
system are construed to be dictated by production factors including human and 
ecological resources as well as institutional processes that influence how resources can 
be used to realize different household objectives. The large number of the pre-
conditions despite providing a wide range of options, pose an analytical challenge in 
identification of the most limiting or enabling ones.  

Several notions have been used to explain diversity in terms of differentiating 
factors among farming households. Some studies have used the factors of production 
that are considered limiting and therefore most important to the farmer decision 
making. Among them, land size has been the main discriminant used either as a sole 
attribute or as a determinant factor in regression equations. Prior to the 1990s, when 
large farms were established on prime agricultural lands, were sole beneficiaries of input 
credit and had unprecedented access to new varieties, the relationship between land 
size and productivity was positive (Dorward, 2002). From 1990s onwards, inverse 
relationships have been observed which has been attributed to the government 
supported farm input programs that enabled smallholders to access fertilizers and 
improved varieties (Matchaya, 2007). Labour which is linked to farm size - productivity 
relationship has also been found to discern the households into either subsistence or 
commercial (Douillet & Toulon, 2014). 

Gender of the household decision maker has also been an important grouping 
variable for income levels (Brown et al., 1996; Peters, 2006). Some researchers used 
regional administrative boundaries for determination of agricultural opportunities 
(Simler, 1994) while others used anthropological panel analysis of household resources 
(Peters, 2006). Recent studies have considered a combination of agro-ecological and 
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socioeconomic characteristics for determination of livelihood in terms of food access 
and coping strategies (Douillet & Toulon, 2014).  

However, these approaches fail to capture the spatial and temporal dimensions 
of real situation of farms and households. In smallholder agricultural systems, 
diversified behavioural portfolios affect the pursuit of different livelihood strategies by 
households and dictates sustainability of the ecosystem (Shefrin & Statman, 2000). This 
study considers the Malawian maize-mixed farming community to be a typical SES and 
uses two frameworks: (1) The Sustainable Livelihood Framework (SLF) by Sconnes 
(1998) to identify structural factors that influence farmers’ decisions and abilities to 
undertake practices for a particular livelihood strategy; and (2) The Human-
Environmental System Framework (HES) by Scholz et al. (2011) to draw relations among 
factors in the social and ecological domains that yield functional farm household types. 

2.2 Household typology 

Development programs being implemented by various agencies have given rise to many 
farming sub-systems in the region. Intensification through use of inorganic fertilizers 
and modern improved varieties has been widely promoted to replicate the benefits 
observed during the Green Revolution in Asia. High poverty levels and the love for local 
varieties led to wide usage of local varieties or recycled improved seeds and locally 
available organic resources. The preference for local varieties is heightened due to their 
good aroma and taste ad well as storability. Researchers have also promoted the mixed 
farming of cereals and legumes to mimic the natural ecosystems and maximise land 
utilisation equivalence and nutritional returns from the small parcel holdings. In mixed 
plots, however, yield and quality of individual crops is usually compromised. It is also 
technically difficult to manage mixed farms. As a result, there is a growing trajectory of 
plots under sole crops.  

SFM has also been widely diversified. Apart from the universal application of 
fertilizers, many farmers do not apply the recommended; hence, their input levels are 
different. Use of manures and other organic resources is also highly skewed. Of late, 
there has been strong debate and conflicting messages of incorporation of crop residues. 
Traditionally people used to burn the residues, which was supported by the concept of 
immobilisation where mostly the residues from maize and weeds in the region have low 
C:N ratios. The farmers benefited from the potash released during burning at the 
expense of organic matter depletion (Mpeketula, 2016) and consequential loss of organic 
nitrogen. Composting the residues before application has been the recommended 
practice but some farmers bury for reasons ranging from labour constraints to lack of 
consolidated circumstantial evidence to validate the biochemical processes. 
Management of residues has become more diversified with the outbreak of the fall army 
worm. One control measure has been to uproot and burn the residues. Although the 
government has put in place robust environmental legal frameworks, the ultimate 
decision is made by the farmer. Lack of incentives coupled with insecurity of customary 
land tenure, weaknesses in the enforcement and social safeguards and low public 
awareness have led to unregulated use (Dalupan et al., 2015). This caused emergence of 
mosaic land use patterns where individual farmers adjust the technologies to their own 
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limitations (Coe et al., 2016; Sileshi & Akinnifesi, 2017). Consequently, often a complex 
mixture of crops, rotations and farming practices exist within adjacent fields.  

Most research and development programs implemented on farmer’s fields within 
the maize mixed smallholder farming systems are overwhelmed by the unmatched 
heterogeneity (Giller et al., 2006, 2011; Vanlauwe et al., 2016). Considering heterogeneity 
whilst making research outputs relevant to a wider society or environment has become 
one of the objectives for farming systems research. As such, characterizing farms into 
types has been proposed and used. Farming types facilitate targeting of technologies, 
dissemination of appropriate technologies to a larger scale, selection of prototype farms 
for detailed research and scaling-up to larger spatial and organisational scales (Garrity 
et al., 2012; Kamau et al., 2018; Le Bellec et al., 2011; Le et al., 2010c; McConnell  J & 
Dillon  L, 1997). In theory, the aspirations and actions of farming households are 
influenced by the underlying and exogenous factors including demographic, 
institutional as we well as availability of economic and biophysical resources.  

Since the 1950s, voluminous research has been done in SSA to explore the levels 
of heterogeneity among the farmers and the farming practices undertaken. As indicated 
by Larson et al. (2012), heterogeneity in demographics, farm endowments and produce 
markets generate heterogeneity in applied technologies. Debate ensued as to whether 
the broad spectrum of heterogeneity should be considered when conducting research 
or a set of variables considered subtle should be chosen for detailed diagnosis. The latter 
has been widely preferred since in controlled experiments, the impact of a factor can be 
noted. However, focusing on the variables considered key tend to increase the 
likelihood of mis-representation with subsequent failure of technologies due to misfit 
with the real farm and farmer conditions. As a bounding natural resource, the inherent 
soils are quite variable across the landscapes (Hengl et al., 2017; Li et al., 2017; Njoloma 
et al., 2016; Snapp, 1998; Towett et al., 2015; Vågen & Winowiecki, 2013). The differences 
in soil fertility have also been recorded between fragmented plots belonging to the same 
farmer as well as within the plots (Vanlauwe et al., 2006). These background fertility 
gradients influence farmers’ crop choices and SFM behaviours.  

Advances in development and deployment of context specific technologies have 
focused more on the major crops, not taking into account the heterogeneity in 
landscapes and communities (Rware et al., 2014; Snapp et al., 2003). To enable better 
matching of crops to biophysical conditions, global and national stratifications of 
agricultural systems into agro-ecological zones (Fischer et al., 2002) and farming 
systems (Dixon et al., 2001) have been established. These are principally used in 
designing global products such as new cultivars of crops and for soil fertility, the 
inorganic fertilizers. Although these technology-based interventions have increased 
adoption and impacts on crop yield, there are still wide performance gaps among 
smallholder farmers (Vanlauwe et al., 2016). The overriding reason for this has been that 
when taking the ‘best-bet’ technologies to smallholders, the actual farm attributes, 
household resources, external pressures and their linkages have often been overlooked.  

That said, the regional or sub-catchment zonation provides a guiding framework. 
Further zonation for exploring how the research outputs can be effectively implanted 
considering the differences among farmer and their farms. For example, farmers of 
different resource endowments and access to information have different decision-
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making abilities, so is their level of technology adoption. Consequently, the mechanisms 
by which they cope with risks and their ability to bounce back from stresses also differ. 
In attaining the livelihood goals, farmers generally react according to production rules, 
mimic neighbours but also optimise utility, giving rise to diversified and complex 
behaviour patterns and feedback loops (Le, Seidl, et al., 2012). Without detailed 
information related to the local context, planners and decision makers use one size fits 
all recommendations even when faced with farm/household heterogeneity. This often 
results in skewed outcomes. To reduce the gaps, there is need for explicit examination 
of the combined role of households’ characteristics, farm and neighbourhood 
biophysical attributes and linked external institutional factors on farmers’ behaviour. 
Lack of differentiation of the real situation of the households and their farms 
complicates development of decision support system for agricultural production 
planning (Riveiro-Valiño et al., 2009). 

Therefore, the aim of this study is to understand the heterogeneity among 
farming households and classify them using household, plot and ecological variables 
into homogenous farm types. Ultimately, these typical household farm types are used 
as a basis to develop typology representative decision and production functions. The 
typology results further support farm type specific analysis of sustainability outcomes 
for targeting agricultural intensification interventions. 

2.3 Soil fertility management usage in the context of household resource 
availability and land constraints. 

Low adoption of SFM practices is the basic concern in smallholder farming systems of 
Africa. This is not expected as for the past six decades, farming systems research and 
development (R&D) has provided farmers with several technologies that potentially 
protect, maintain and build soil fertility (Vanlauwe et al., 2017). The last three decades 
have seen repackaging and disseminating sets of proven SFM technologies and 
promoting them as systems innovations. Among others, integrated SFM (ISFM) is 
touted to address multiple constraints. Farmers are expected to select a suite of 
technologies that fits their land, cropping system and socio-economic capacities.  

In Malawi, farmers typically supplement inorganic fertilizers with locally 
produced organic resources such as animal manure, compost manure and crop residues 
(Palm, Gachengo, et al., 2001). Legume crops have been promoted for their triple 
benefits of nutrition, income from grain sales and soil improvement through biological 
nitrogen fixation (BNF) and used as a measure of functional crop diversification 
(Kankwamba et al., 2018). SFM usage by farmers could be considered a response to 
diminishing nutrient levels, which unfortunately, have to be addressed first before 
farmers can realise the benefits from other farming practices (Sanchez, 2002).  

During the era of shifting cultivation and natural fallows, organic resources 
played a significant role in SFM through their short-term effects on nutrient supply and 
longer-term contribution to SOC (Chilimba et al., 2005; Palm, Gachengo, et al., 2001). 
At the time when farms transitioned into continuous cultivation in the 1960s, studies 
already established that without external inputs, SOC decreased by 41% in 25 years and 
maize grain yields by 57% in 10 years (Chilimba et al., 2005).  
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Clearly, inorganic fertilizer, organic manure and legumes are not novel 
technologies, farmers have used them for decades. Weak regulatory systems and fewer 
incentives make it hard for farmers to conform to minimum SFM standards (Dalupan 
et al., 2015). Beyond the experimental and dissemination phase, unregulated, farmers 
adjust the technologies to fit them to their farm conditions and household resource 
endowments (Coe et al., 2016). As such, the technologies and practices by individual 
farmers on fragmented land parcels lead to emergence of mosaic soil fertility 
management patterns that are complex to visualise, analyse and communicate at 
landscape level (Giller et al., 2011). Usually, a random mixture of crops, rotations and 
farming practices exist within adjacent fields.  

During the last decade, research on SFM adoption and its impact on crop yield 
and household welfare has increased in volume. Organic manures and legumes are 
considered short-term drought adaptation strategies but usage is inconsistent after 
prolonged droughts (Katengeza et al., 2019). (Katengeza et al., 2019; Mungai et al., 2016; 
Sauer & Tchale, 2009; Silberg et al., 2017). However, previous studies use national 
sampling strategies and draw limited samples from individual villages, hence are not 
representative at village or even national level (Katengeza et al., 2019). These studies 
revealed trends relevant for national or regional planning such as for resilience to 
climate shocks (Katengeza et al., 2019) or shifts in labour markets (Sauer & Tchale, 2009) 
but are not representative enough to give insights into why farmers would not imitate 
their immediate neighbours. 

In Malawi, the sloping rift valley escarpments are classified as having a medium 
agricultural potential (Li et al., 2017). They have been under continuous cultivation for 
over three decades and farmers experience various forms of land degradation (Braslow 
& Cordingley, 2016). These are areas with a lot of challenges and in urgent need for SFM 
activities, thus providing a prime opportunity to explore the village level scaling 
constraints. In the region, almost all farming activities are done by hand and haulage of 
heavy items by head (Amede et al., 2014). Hence, household demographics in terms of 
availability of labour and the number of dependants compared to workers in a 
household are important investment factors in rural communities.  

Productivity of smallholder farmers remained low till 2005 when the Malawian 
government introduced farm input subsidies. Fertilizers and improved seeds supplied 
through the program have shifted and stabilized maize yields from 0.7 ton ha-1 in 2005 
to around 2 ton ha-1 for 13 years (FAO, 2016a). Despite the observed stability, the current 
yield levels are not that different from the 1.7 ton ha-1 attained under normal rains in 
1999 - 2002 and much lower than the potential yields for improved maize varieties in 
Malawi of 4-15 ton ha-1 (Tamene, Mponela, Ndengu, et al., 2016). As of 2015, some 
Malawian farmers were not applying inorganic fertilizers and the majority applied below 
the recommended rates (Mutegi et al., 2015). 

Although manure have also been promoted since 2000 (Chilimba et al., 2005), 
the subsidy program has focused more on the inorganic fertilizers which probably has 
led to decline in SOC (Mpeketula, 2016) and land productivity (Messina et al., 2017). 
From as early as 1965, significant crop response could be observed when 5 ton ha-1 of 
farm yard manure were applied to maize (Chilimba et al., 2005). A study in Zimbabwe 
revealed that long-term manure application (>10 years) at the rate of 3-5 ton ha-1 
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increased SOC to medium fertility whilst 10 ton ha-1 could replenish the SOC to pristine 
levels (Musinguzi et al., 2013). Considering the threshold levels set by these studies and 
SOC levels that are lower than the critical levels required for structural stability of 2.0% 
(Tamene et al., 2019), the observed organic inputs are insufficient to contribute to 
nutrient supply and SOC build-up (Chilimba et al., 2005). In these nitrogen limited soils 
and low input farming systems, the nitrogen fixed by legumes is a major source of the 
nutrient (Njira et al., 2017). The crop enumeration by the agricultural office in Ntcheu 
district revealed that the three common legumes: groundnuts, soybean and pigeon peas 
take 14% share of cultivated land (Ortega et al., 2016). 

It is against this background that paper examine reasons behind non-adoption 
and drivers for upscaling of SFM technologies within a rural population in Malawi by 
addressing the following questions: (1) Why farmers do not adopt SFM technologies 
practiced by their neighbours? and (2) for those that adopted, what could be the 
household and plot level factors leading to varying levels of SFM usage? 

2.3.1 Stocks of soil NPK, SOC and their thresholds in smallholder managed 
escarpments of Malawi. 

Much as the declining soil fertility is the major biophysical factor threatening food 
production for rural smallholder farmers in Africa (Sanchez, 2002), the knowledge of 
the status and gaps at the management scale of a single plot is limited (Forkuor et al., 
2017). This is because information needed to understand processes at detailed scale are 
overwhelming (Jenny, 1941). Soil fertility is a complex mix of biological, chemical and 
physical properties that centres around the stocks and cycling of nutrients, influenced 
by ecological and human factors. However, in most tropical extractive farming systems, 
it is increasingly concerning that if the nutrient and SOM stocks continue to decrease, 
the capacity of land to support agriculture would be compromised (Ayuke et al., 2019; 
Rattan Lal, 2015). Therefore, understanding the manageable physical properties and the 
associated soil nutrient cycling mechanisms is critical (Ayuke et al., 2019). In Malawi, 
recent studies have shown declining trends in primary productivity and SOM due to 
continued cultivation (Li et al., 2017; Messina et al., 2017; Mpeketula, 2016). These and 
other studies act as pointers as they were conducted either at national (Li et al., 2017; 
Messina et al., 2017) or point scales (Mpeketula, 2016), hence not representative of the 
soil conditions across and within farming landscapes (Forkuor et al., 2017).  

Efforts have been made to take stock of the soil status in smallholder farms using 
samples collected at national scale (Njoloma et al., 2016; Snapp, 1998). These soil studies 
and the resulting management strategies in use are based on agroecological zones which 
are said to be delineated based on similarities in climate, topography and the major soil 
types. However, high within-site variations in soils with coefficient of variations of 52, 
30, 67 and 69% for N, P, K and SOM, respectively, have been observed (Njoloma et al., 
2016). In particular in Malawi, variations within the sample areas can be huge 
considering that the country is in the Rift Valley floor with varying degrees of terrain 
attributes that drives biogeochemical properties of soils. Consequently, a complex 
mixture of soil classes has been observed within 0.5 km distances across the landscapes 
(Garrity et al., 2012; Snapp et al., 1998). Soil mapping that captures such variability is 
therefore needed to support informed decision making. 
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To-date soil replenishment strategies still use the soil class polygons developed in 
the 1960s (Mutegi et al., 2015). Notably, newly acquired data are used to update the soil 
nutrient and biophysical attributes of the base soil polygons. At the same time, there 
have been improvements in spatial soil mapping associated with high spatial resolution 
proxy co-variates and analytical approaches. At continental scale, studies of soil forming 
factors (Towett et al., 2015) and digital mapping of soils (Hengl et al., 2014, 2015, 2017; 
Towett et al., 2015) utilised 28,500 legacy soil profiles and 160x60 locations from 60 
sentinel sites across Africa to predict soil properties for 18.3 million km2. The proxy co-
variates used are the spectral signatures for the moderate resolution imaging 
spectroradiometer (MODIS) satellite imagery with spatial resolution of 62,500 m2. 
These resolutions are finer for farms and places with homogenous soils over 6.25 ha land 
units and are quite coarse to spatially register and depict the differences between the 
0.5 ha fragmented plots owned by most farmers in Malawi (Ichami et al., 2018). 
Although these new maps are widely used, the sampling intensity at national level is 
still low. In Malawi about 2,983 legacy points and two sentinel sites were included to 
represent 94,080 km2 land surface. Moreover, outdated legacy data collected between 
1964 and 1990 were used (Kempen, 2014), not reflecting the changed soil status 
(Mpeketula, 2016). As for the recent collections included in the continental mapping, 
the two sentinel sites were sampled by the Africa Soil Information Service (AfSIS) 
project from Nkhatabay in the north and Tchuchila in the south, which are not 
representative of soil conditions for the majority of areas in Malawi.  

Notably, local scale variations in soils are more correlated with local factors such 
as topography, soil texture, land use and rainfall (Schillaci et al., 2017), covariates that 
have been overlooked by the said continental mapping attempt, shortcomings that 
render these recent maps still not very useful for planning spatial soil management for 
small-scale farming (Hengl et al., 2017). In principle, plot level soil information are 
pivotal for optimal decision making in terms of soil conservation and nutrient 
replenishment (Forkuor et al., 2017). Moreover, farmers having moderately fertile or 
infertile plots are less likely to adopt ISFM technologies (Mponela et al., 2016). In spite 
of its economic relevance, most nutrient balance studies do not take into account the 
existing nutrient stocks at the farm scale (Cobo et al., 2010). With small land parcels of 
0.45 ha and below often managed differently, plot to plot differences can only be 
distinguished at higher spatial resolutions. Therefore, this study aimed to predict and 
map soil fertility attributes with higher resolution (100 m2) along 10km x 10 km 
vegetation, topographical and geological gradients in maize mixed farming systems of 
Malawi. Methodologically, model specification tests are done to find the best predictor 
set for the soil attributes. After estimating the spatial distribution/dynamics of nutrients 
and SOC within smallholder farms, a conformity test was performed to check if the 6.25 
ha resolution maps could comparably be sufficient for the attributes (see Appendix S1). 
Finally, the nutrient gaps are calculated as deviation of the estimated soil conditions 
from the thresholds for plant growth and ecosystem health. 

There is a growing body of research aiming at establishing linkages and feedbacks 
between government policies, development of rural livelihoods and sustainability of 
land productivity. Analytical frameworks such as that of Le et al (2012), outlines the 
empirical foundations for linkages and trade-offs among dynamic changes in human 
behaviour that alters nutrient input and extraction pathways. In their Multi-agent 
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system model for exploring efficient smallholders’ P use and management strategies 
(MAPU) framework, Le et al (2012) purports that overapplication of P is detrimental to 
the environment, leads to biodiversity loss and low profitability while under application 
leads to low productivity and soil degradation. Tracing the flow of nutrients and carbon 
in farming systems from the plot to the household and vice versa, external drivers such 
as input subsidies that aim at inducing human agentic behaviours, alter the rate and 
magnitude of flows which in turn influences land productivity and reshapes household 
livelihood portfolios and conditions the next code of action. In the absence of long-term 
representative panel data to model rate of change, detailed baseline survey data can 
used to conduct, ex-ante, comparative analyses of long-term impacts of multiple 
human-induced drivers on soil fertility, crop production and profitability of farming 
systems. 

  



19 

 

3 METHODOLOGY  

3.1 Concepts, model framework and design 

The maize mixed smallholder farming system of east and southern Africa is a Multi-
Agent System (MAS) characterised by an environment, objects and agents (the agents 
being the only ones to act), relations between all the entities, a set of operations that 
can be performed by the entities, and the changes of the universe in time due to these 
actions (Ferber, 1999). The farming environment comprises of farming plots, 
uncultivated areas, built areas, socio-cultural and ecological features that provides ES. 
The agents are the farming households within the system that makes autonomous 
decisions regarding the ES they derive from the environment. Well explained by the 
theory of Farming Styles (van der Ploeg & Long, 1990), the farming households are 
biological organisms and social beings with transformational energy whose actions are 
interdependent with the environment they live in. 

Schematically, the linkage between human and ecological components arises 
from the decisions by agents and the ecosystem benefits that shapes individual’s 
reactions to the ecosystem conditions and processes (Figure 3.1). In real life, the current 
soil fertility and productivity informs the subsequent decision on types of activities and 
the perceptions about benefits that an individual has on the environment. To model 
spatially explicit evolutions of the maize-mixed farming system as a coupled human-
environment system at a landscape level, the condition and interactions among farming 
households and the services and condition of the land patches are empirically 
calibrated. The work builds on the previous operationalisation of the HES frameworks 
to simulate social-ecological performance of farming and other managed natural 
systems that have been fully developed (Badmos et al., 2015; Le, 2005; Le et al., 2008, 
2010b; Le, Seidl, et al., 2012; Quang et al., 2014; J. Schindler et al., 2009; Smajgl et al., 2011; 
Tsai et al., 2015; Villamor et al., 2014). This work builds operational MAS that simulate 
the sustainability outcomes from drivers of soil and land management interventions. 
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Figure 3.1 The Human-Environmental Framework showing linkages and feedbacks between human 
actions and soil productivity.  

Given the many notions and dimensions of SAI, the implementation framework 
ought to be based on the practical phenomenon (Weltin et al., 2018). In this paper, we 
develop a coupled human-ecological framework for simulating soil fertility and crop 
production dynamics framed by land management practices and other externalities in 
maize mixed smallholder farming systems of east and southern Africa. Applying the 
overview, design concepts, and details + decision (ODD + D) protocol (Railsback & 
Grimm, 2012), the study intent, characteristics of the study units and processes and the 
procedure (Table 3—1). 

  

Adapted from Scholz et al. (2011). 
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Table 3—1 The ODD+D documentation of the MAS for simulating SAI in rural Malawi 
Guiding contents ODD+D Model Description 

Overview  

Purpose  

Question, problem 
or hypothesis (i.e. 
overall objective) 

The purpose of the MASSAI is to understand how usage of chemical and biological soil 
management interventions impacts on short-term yields and their potential long-term 
nutrient balances and structural changes in farming systems and household food security. 

Entities, state variables and scales 

Kind of entities, 
their attributes 
(include units), 
spatial and 
temporal 
resolutions 

Human agent: farmers with heterogeneous demographic characteristics (age, number of 
members, labour), economic activities (income from farm and non-farm), land ownership 
and the parameters for soil fertility technology choice probabilities and usage intensities.  

Ecological agent: the top soil (0-30cm) actively explored by annual crops for nutrients and 
water. Its characteristics includes soil properties (NPK and SOC), which through transfer 
functions that capture nutrient dynamics responds to natural and human influence. The 
ecological agent set also include crops grown on a farm parcel and is characterised by parcel 
location, area, crop type, farming practices, yield and nutrient contents. It responds to 
dynamics in soil and human actions. 

These human and ecological agents and their attributes (see details in Table 3—2) make up 
the ‘farm’ with linked agronomic, ecological, social and economic performance indicators. 
They are georeferenced as points and raster with grid cells 10m x 10m and linked the 
heterogeneous environmental assets and drivers: natural (soil properties, topography, 
vegetation, and the co-efficient of variables for nutrient transfer dynamics sub-models), 
agricultural (land-use – cultivated or not use, area, agricultural yield, nutrient inputs, labour 
force, parameters for agricultural yield and nutrient transfer dynamics sub-models), and 
institutional (ownership, village) 

 

Process overview and scheduling 

What entities does 
and in what order? 

Soil nutrient input strategy choice and use intensity which is largely influenced by human 
behaviour to start or increase use of SFM practices. A brief introduction is given in Table 
3—3 and Figure 3.2 and detailed in section 3.2.3.  

Nutrient stockpiles and transfer modules capture biophysical processes of nutrient supply, 
transformation, transport and export mediated by ecological factors and human activity. 
The overview is presented in Figure 3.1 and more detailed linkages between drivers and 
outcomes are presented in Figure 3.2, Figure 3.3 and Figure 3.4. 

Design concepts 

Basic principles  

Concepts, theories 
and hypotheses 
underlie the model 
design 

Theoretically, we adopt the farm styles theory which purports that the farm and landscape 
structural changes are spatio-temporal explicit dynamic processes emerging from individual 
farmers decisions and actions about farm inputs and their perceptions and control of farm 
outputs on each of the land parcels (van der Ploeg & Long, 1990). To explicitly capture and 
formalise the linkages and feedbacks between ecological processes and human actions, we 
adapt the Human-Environmental Framework (Scholz et al., 2011) as indicated in Figure 3.1. 
We use the indicators and the matrix of sustainable intensification for smallholder farmers 
(Smith et al., 2015), and the nutrient input and output transfer functions as formulated in 
farmDesign (Groot et al., 2012) and nutrient monitoring farm models (Smaling & Fresco, 
1993).  

The farmer decision model is based on micro-economic theory, with the assumption that 
farmers are private entities and use the soil technologies to maximize utility from land 
units. To do so they either enhance productivity or reduce degradation hence the decisions 
are: (i) rational by maximizing yields; (ii) bounded rationality of input use according to 
average benefits; or (iii) ad-hoc rules such as applying due to availability and/or access to 
fertilizer. In some cases, there are abrupt system changes such as burning crop residues, 
which were previously incorporated, to control fall armyworms. The double hurdle model is 
chosen because the aim is to analyse the factors influencing household’s probability and 
extent of soil fertility management. The SLF was used to take stock of factors that influence 
farmers’ decisions and abilities to undertake practices for a particular livelihood strategy 
(Scoones, 1998). Data was captured through soil, crop yield, household surveys that were 
geo-linked using a common sample frame. 

The landscape dynamics and processes are formulated based on the principle of ecological 
equilibrium. As populated by (Stoorvogel & Smaling (1990), there are five inflows and 
outflows of inputs and outputs. Of the five ins and outs, 3 are archetypal ecological, and in 
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Guiding contents ODD+D Model Description 

pristine ecosystem we envisage that nutrient flows and stocks are in ecological equilibrium. 
However, for managed agricultural systems, two of the inputs and two outputs are 
deliberate efforts by humans while others partially mediated by human action and the 
system’s equilibrium shifts after a series of disturbances. 

Expected variations 
in the model 
results when 
parameters change. 
Vis -a-vis results 
imposed by model 
rules. 

Framed by constraints and opportunities, actions by individual smallholder farmers when 
aggregated over space and accumulated over time become an unformidable force that 
continually shapes the environment-community agricultural productivity. The recurrent 
low crop yield, hunger, poverty, low input use, low yield cycle is a typical phenomenon in 
most parts of Malawi, creating vicious cycles of poverty traps (Tittonell & Giller, 2013). 
Aggregation and shifts are expected in land use expressed as crop(s) planted, nutrient input 
and output, soil nutrient stocks, crop yields, farm incomes and number of farmers adopting 
nutrient input strategies. 

How the individuals 
make decisions/ 
behavior to achieve 
objectives e.g. 
change cells 

The agents change parameters or objective function defining the behaviour after acquisition 
of experience during the model lifespan (in this case 1 year). The parameters for the 
household’s resource allocation for soil fertility improvement may change depending on 
farm performance. The farming household may transform (move to another farm type) 
when their objective function, therefore the resource allocation rules as well as the 
parameters, changes. 

For continuous cropping, the plant production function remains the same but parameters 
changes. In rotation, both parameters and production functions changes overtime. 

Individuals success 
is a result of 
adaptive traits. 
Criteria used for 
ranking 
alternatives. 

Agents exploit, control and consume entities and resources from their own plots and those of 
the surrounding environment to achieve organisational goal. Each farming household 
within the community is assumed to have specific state variables that enable them to make 
autonomous decisions regarding the improvement of soil fertility of their plots at a 
particular time. 

Proactively and opportunistically, take actions to achieve its goals given the dynamic and 
unpredictable environment. The households make decisions depending on the current and 
expected soil fertility of their farm bounded by the resources available with the aim of 
staying focused on achieving own objectives. Given many SLM options, the farmers allocate 
resources to either the one that maximises soil fertility improvement or the one that 
minimises risk of soil degradation. 

Collective 
experience 
changing traits. 

The individual farmer’s actions influence others in the system although not explicitly 
modelled, but through social ties and shared landscapes, farmers tend to learn from and 
imitate those with the same typology.  

Models for future 
conditions or 
consequences that 
individuals use for 
successful decision 
making 

Perceptive: considered to have true scientific knowledge (or if information is limited, belief) 
of the environment. 

The household’s perception (vision) of soil fertility though referenced by others in 
community, efforts to improve it are restricted by tenure to own plots and not the entire 
landscape. However, for landscape processes such as soil erosion on hill slopes, they also 
mainly recognise activities upslope and in rare cases downslope in case of an extending 
gully. 

Sensing  

Internal, 
neighbours, and 
environmental 
state variables that 
individual’s sense 
and consider in 
their behaviour. 
Local, networks or 
global levels. 
Information 
acquisition. 

Accuracy and 
uncertainty. 

Households exploits the farms for ecosystem services that are dependent on soil status, 
radiation, rainfall and temperature. Humans controls the land through among many things, 
managing soil fertility and controlling soil erosion. Their search area is constrained by 
(im)mobility and, for the established settlements, by use rights.  

Therefore, the possibility of accessing and manipulating the existing environmental entities 
and resources is often bounded. Sensing is constrained within the agent class and also local 
neighbourhood (village boundary). 

The actions of the agents on real farms are non-deterministic with some degree of 
uncertainty. The main processes for soil fertility improvement and erosion control represent 
the environment. The choices of SLM technologies are depended on their knowledge about 
availability and performance of the technologies in the study area (Zambonelli et al., 2003). 

Interaction  

Direct or indirect 
(e.g competition 
for mediating 
resource). Do they 
communicate? 

Interactive: achieve goals by interacting with other agents in the environment the agent is 
situated. 

Individuals do not conform to set land management rules, but since some objectives of SLM 
are realised at larger community and landscape level, farmers co-operate with others 
through social ties or shared landscapes. 
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Guiding contents ODD+D Model Description 

Given their socioeconomic capabilities and land potential farmers tend to mimic those with 
similar typology (Le, 2005). 

The interactions are bounded by village boundary and shared landscapes.  

Heterogeneity  

Do the agents and 
landscapes differ  

The study population is comprised of farmers with different demographic (sex, age), 
endowments (land, labour) and location (dwelling and plot ownership). The environmental 
attributes that are variable among pixels (plots) include topography, base soil fertility, and 
crop biomass/yield. 

Stochasticity  

Processes assumed 
to be random. 
Used to reproduce 
variability for 
processes difficult 
to capture actual. 

The remaining population and their plots are randomly allocated to non-sampled cultivated 
grids. Their attributes are drawn from the sampled households and plots to generate a 
population which mimics the distribution of statistics found in real farms. 

Some of the environmental attributes such as terrain are set to be static i.e. remain 
unchanged without the action of the agents. However, most of the entities and resources 
are active and dynamic with changes that are beyond the control/regulation of the 
individual agents. Geo-simulation of dynamic soil fertility is one required end but quite 
variable hence is randomly set in most cases using the estimated confidence limits. 

Collectiveness  

Belonging or 
forming groups: 
defined by modeler 
or result of 
individual 
behaviours. 

Households often apply soil fertility improvement technologies on individual plots as 
discrete entities. However, for technologies that aim at controlling soil erosion such as 
permanent vegetation cover, the environment needs to be viewed as a continuous entity 
with connected discrete entities. 

The households belonging to a typology have similar resource endowments that they use to 
pursue similar livelihood strategies (bounded by policies and institutions). The typologies 
are therefore used to initialise the agent population and households transition depending 
on resource accumulation or depletion by end of the activity calendar.  

Observation  

Data collected from 
ABM 

The simulated outputs, which is the projected development, are compared with the baseline 
and other past states in terms of changes in structure (e.g. distribution of farm types) and 
function (e.g. nutrient balance) of the farms. 

Details  

Implementation  

How has the model 
been implemented 

Using the multi-agent system platform Netlogo (Wilensky, 1999), the first step has been to 
adapt the Land Use Dynamics Simulator (LUDAS) modules (Le, 2005) for initialization, 
decision, agricultural production, and crop allocation. Empirical models and transfer 
functions have been used to frame local processes and estimate parameters for the study 
site.  

Initialization  

Initial state of the 
model world at 
time 0 of a 
simulation run 
(exact or 
stochastically set). 

Baseline soil nutrient levels, plot sizes, distribution and productivity, and farmer attributes, 
nutrient stocks, input and outputs (exact for the sample and randomly allocated for the 
rest). Ecological inputs and outputs estimated using transfer functions. 

For subsequent runs initial conditions are the same among simulations, the stochastic 
attributes are estimated using the random number generator with a certain confidence 
interval and random seed.  

Input data  

External data files or 
models to 
represent processes 

The external data and models are used to set initial state and for parameterization of 
processes. These include satellite imagery and parameters for the transfer functions. More 
details are provided in  Table 3—2 

Sub-models  

Detailed process 
overview and 
scheduling 

Processes and sub-models are introduced in Figure 3.5, summarized in Table 3—3 and 
detailed in the respective methodology sections. The empirical results and estimations are 
systematically implemented in NetLogo using the main directory (subdirectory) structure 
(see Box S1 in the Appendix S3. The initialisation and static processes are one-step whilst 
the dynamic processes are set to run for a one-year cycle corresponding to the unimodal 
production season. 
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Table 3—2: Agent attributes, states and the processes affected during the simulation runs 
Attribute Attribute definition Way the attribute will 

change in a simulation run 
(assumptions) 

Linked sub-model(s) 

Human agents 
PSUBSIDY Subsidized price of fertilizer 

($-purchase/$-market) 
Increase or decrease 
depending on alternative 
subsidy policy regimes 

Fertilizer intensity 
Manure choice & intensity 
Legume choice & yield 
Tree-on-farm decision 
Maize yield 

HAGEH Age of the household (HH) head 
(years) 

Automatically increased for 
each time step 

Household farmtype clustering 

HEDULHM Education attainment of HH 
members (primary=1, 
secondary=2 or tertiary=3) 
computed as an index 

constant Fertilizer intensity 
Manure choice & intensity 
Legume choice & yield 
Tree-on-farm decision 
Maize yield 

HLABOUR Total HH labour (man 
equivalent) 

Constant Fertilizer choice & intensity 
Manure choice & intensity 
Legume choice 
Tree-on-farm decision 
Household farmtype clustering 

PLABOUR Labour invested on a plot 
(manhours ha-1) 

constant Maize yield 
Legume yield 

HDEPR Dependency ratio = Number of 
workers / numbers of 
dependents that are below 16 
and above 65 

Constant Fertilizer choice & intensity 
Manure choice & intensity 
Legume choice & yield 
Tree-on-farm decision 
Maize yield 

HGENH Gender of household head 
(male=1, female=0) 

Constant Fertilizer choice 

HWEAI Women empowerment in 
agriculture index 

Constant Fertilizer choice & intensity 
Manure choice & intensity 
Legume choice & yield 
Tree-on-farm decision 
Maize yield 

HGMEM Group membership for HH 
members 

Constant Fertilizer choice 
Legume choice & yield 
Maize yield 

HTLUN Tropical livestock units Constant Manure choice 
Tree-on-farm decision 

HCOMM Monetary value of phone and 
radio expressed as an index 

Constant Fertilizer, Manure and Legume 
choice 

Household farmtype clustering 

HTRAN Monetary value of bicycles and 
wheelbarrows 

Constant Fertilizer choice & intensity 

HHECT Land cultivated and managed 
(ha) 

Constant Fertilizer choice 

HINCC Income from cash crops ($ ha-1) Constant Manure intensity 

HINCL Income from livestock sales ($ 
ha-1) 

Constant Manure intensity 
Household farmtype clustering 

HINMS Total annual income of the 
household ($ ha-1) 

Constant  Fertilizer intensity 

Ecological agents 
PHECT Size of the plot (ha) Constant Fertilizer choice & intensity 

Manure choice & intensity 
Legume choice and yield 
Tree-on-farm decision 
Maize yield 

PCULTYRS Period the plots has been under 
cultivation (years) 

Automatically increased for 
each time step 

Fertilizer choice & intensity 
Legume choice & yield 
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Attribute Attribute definition Way the attribute will 
change in a simulation run 
(assumptions) 

Linked sub-model(s) 

Tree-on-farm decision 
Maize yield 

PLEGUD Cropping Dummy (legume=1 & 
non-legume=0) 

Probabilistic updated using 
logistic model in response to 
drivers of choice 

Fertilizer choice & intensity 
Manure choice & intensity 
Tree-on-farm decision 
Maize yield 
Erosion & sedimentation 

HLeguarea Plot area under legume 
integration (ha) 

Based on cropping choice Household farm-type clustering 

PORGAD Dummy for manuring (yes=1, 
no=0) 

Probabilistic updated using 
logistic model in response to 
drivers of choice 

Fertilizer choice & intensity 
Legume choice 
Tree-on-farm decision 

PORGA Amount of manure applied 
(kg/ha) 

Deterministic updated using 
GLM 

Maize yield 
Legume yield 
Leaching 

HORGA Total manure applied by the 
household (kg) 

Computed from PORGA Household farm-type clustering 

PFERTD Dummy for fertilization (yes=1, 
no=0) 

Probabilistic updated using 
logistic model in response to 
drivers of choice 

Manure choice 
Legume choice 
Tree-on-farm decision 

PFERT Amount of fertilizer applied Deterministic updated using 
GLM in response to drivers 
of intensification decisions 

Manure intensity 
Maize yield 
Legume yield 
Leaching 

HFERT Total amount of fertilizer applied Computed from PFERT Household farm-type clustering 

PTREE10D Tree cover (>10%=1, <10%=0) Probabilistic updated using 
logistic model in response to 
drivers of choice 

Fertilizer choice 
Manure choice 
Legume choice 
Maize yield 

HSWC Number of soil and water 
conservation technologies 

Constant Household farm-type clustering 

PSLOPE Surface slope of the land pixel Assumed to be static over 
time 

Erosion & sedimentation 
Manure choice 
Legume choice 

PMZkg 
PLEGUkg 

Crop yield of the land pixel as 
nutrient output pathways 

Deterministic updated using 
GLM in response to drivers 
of yield functions 

Maize yield 
Legume yield 
Nutrient balance 

PSAND% Percentage of sand indicating 
land quality 

Constant Fertilizer intensity 
Manure choice & intensity 
Legume choice 
Maize yield 
Residue input 
Erosion & sedimentation  
Gaseous loss 

PCOARSE% Percentage of course fragments 
indicating land quality 

Constant Maize yield 

PTN% Nitrogen content indicating 
indigenous nutrient stocks 

Baseline plus or minus the 
balance for 10 cm top soil 

Fertilizer choice & intensity 

PSOC% Soil organic carbon content 
indicating land quality 

Baseline plus or minus the 
balance for 10 cm top soil 

Manure intensity 
Legume choice 
Tree-on-farm decision 
Maize yield 
Erosion & sedimentation 
Gaseous loss 

PPmgkg Phosphorus content indicating 
indigenous nutrient stocks 

Baseline plus or minus the 
balance for 10 cm top soil 

Legume yield 

PKmgkg Potassium content indicating 
indigenous nutrient stocks 

Baseline plus or minus the 
balance for 10 cm top soil 

Fertilizer intensity 
Maize yield 
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Attribute Attribute definition Way the attribute will 
change in a simulation run 
(assumptions) 

Linked sub-model(s) 

PELEVATION Elevation above sea level (m) for 
topographic position 

Constant Fertilizer choice 
Tree-on-farm decision 
Maize yield 
Legume yield 

PFLOWACC Flow accumulation for 
topographic position 

Constant Fertilizer intensity 
Maize yield 

PSPI Stream power index for 
topographic position 

Constant  Fertilizer choice 

PRi Roughness index Constant Erosion & sedimentation 

PRAIN Average annual rainfall Constant Residue input 
Atmospheric deposition 
Leaching 
Gaseous loss 

PTEMP Average annual temperature Constant Residue input 
Gaseous loss 

PSLOPEM Slope length Constant Erosion & sedimentation 

PUPSLOPE Upslope contributing area Constant Erosion & sedimentation 

PCLAY% Soil clay content Constant Legume yield 
Erosion & sedimentation 
Leaching 

PBD Soil bulk density Constant Erosion & sedimentation 
Gaseous loss 

PCEC Soil cation exchange capacity Constant Leaching 

Other variables 

PBOUND Boundary of the study area Constant Study boundary 

HVILLAGE Village boundary Constant GIS proportional upscaled plot 
population 

PPROD-INDEX Productivity index Not updated despite some of 
its input variables such as 
nutrient stocks changing. 

GIS proportional upscaled plot 
population 

HCLUS Farmtype The farm types remain 
unchanged despite the input 
levels changing. The type 
specific predictions and 
simulations are based on 
initial household profiles. 

Input level specific upscaled plot 
population 

PUNCULT Uncultivated patches Land use remains the same 
but cover is assumed to 
change as reserved areas 
regain woody vegetation 

Mask of uncultivated patches 
Erosion & sedimentation 

PCULT Cultivated   
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Table 3—3: Sub-models for nutrient input and output flows 
Sub-model  Agent 

controlling 
Description of 
main task 

Key functions Input variables 
and linked sub-model(s) 

Output variables 
and linked sub-
model(s)  

GENERATE 
REMAINING 
POPULATION 

Developer 
upscaling based 
on agent 
attributes and 
states 

Monte Carlo 
approximation 
& GIS-based 
proportional 
up-scaling 

sample data. used to generate the 
population and landscape attributes 
and use patterns  

 

Plot population of 
2640 from the 451 
sampled 

DECISION1 
(Choice of soil 
fertility 
management 
(SFM) 
including 
Fertilizer, 
Manure, 
Legume & 
Tree-on-farm) 

Controlled by 
household agent 

Computing 
choice variable 
based on own 
livelihood 
profile, land 
productivity, 
complementary 
technologies 
and policies. 

Bi-logit Policies (input subsidy) 
Natural capital (farm size, soil nutrient 
stocks, topographic position, land 
quality, crop land, livestock) 

Livelihood profile (labour, gender, age, 
education, communication, transport, 
income) 

Social capital (group membership) 
Linkages among complementary SFM 
practices  

Predicted 
probability to (or 
not to) apply 
fertilizer and 
manure, grow 
legumes or retain 
trees on farm  

DECISION2 
(Intensify SFM 
including 
Fertilizer & 
Manure) 

Controlled by 
household agent 

Computing 
intensify 
variable on own 
livelihood 
profile, land 
productivity, 
complementary 
technologies 
and policies. 

Generalized 
linear model 
(GLM) 

Policies (input subsidy) 
Natural capital (farm size, soil nutrient 
stocks, topographic position, land 
quality, crop land, livestock) 

Livelihood profile (labour, gender, age, 
education, communication, transport, 
income) 

Linked to DECISION1 and to 
complementary SFM practices 

Deterministic 
prediction of 
potential to 
increase or 
decrease 
application of 
fertilizer (kg ha-1) 
and manure (kg ha-

1) 

 CROP-YIELD 
(maize & 
legume) 

Controlled by 
household 
agent, land 
parcel and their 
interactions 

Computing yield 
of the plot given 
the household 
livelihood 
profile, land 
productivity, 
SFM 
technologies 
and SFM 
policies 

Generalized 
linear model 
(GLM) 

Policies (input subsidy) 
Natural capital (farm size, soil nutrient 
stocks, topographic position, land 
quality, crop land, livestock) 

Livelihood profile (labour, gender, age, 
education, communication, transport, 
income) 

SFM practices 
Social capital (group membership) 

Deterministic 
prediction of 
potential to 
increase or 
decrease maize 
yield (kg ha-1) 
and/or legume 
yield (kg ha-1). 

EROSION Controlled by 
land pixel 
(patch) 

Computing net 
soil loss in the 
land pixel based 
on main factors 
driving soil 
erosion 

RUSLE adjusted 
by 
sedimentation 
delivering 
ratio. 

NSL = 
R*K*LS*C*P* (1 
- SDR) 

R-factor: estimated from empirical 
relationship of erosivity with annual 
rainfall 

K-factor: empirically estimated from 
erodibility defined by soil texture, 
structure and permeability 

LS-factor: empirically estimated from 
topographic contributing area and 
steepness. 

C-factor: empirically defined by land 
cover type 

P-factor: set as 0.65 which is 
commensurate with the existing soil 
conservation measures 

Gross soil loss  
Net soil loss (NSL)  
Net soil deposited  

(kg ha-1 yr-1) 
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Sub-model  Agent 
controlling 

Description of 
main task 

Key functions Input variables 
and linked sub-model(s) 

Output variables 
and linked sub-
model(s)  

SDR: empirically derived from flow 
direction, flow length and surface 
roughness 

 
  

Nutrient balance 
(NPK and SOC) 

Controlled by 
household 
agent, land 
parcel and their 
interactions 

Computing 
partial and full 
nutrient balance 
for the centroid 
pixel of the plot 
given the input 
and output 
flows 

Transfer 
functions taken 
from 
NUTMON and 
FarmDESIGN 
and re-
implemented 

IN1: NP empirically predicted from 
DECISION1 & DECISION2 for 
fertilizer 

IN2: NPK & SOC empirically predicted 
from DECISION1 & DECISION2 for 
manure and the incorporated crop 
residues and roots 

IN3: N derived from atmosphere in 
incorporated legume residues and 
roots estimated after DECISION1 and 
from CROP-YIELD  

IN4: NPK and SOC estimated using 
sediment delivery ratio from 
EROSION model 

IN5: NPK computed from wet and dry 
atmospheric deposition in Malawi  

OUT1: NPK computed from CROP-
YIELD model 

OUT2: NPK computed for removed 
residues derived from CROP-YIELD 
model 

OUT3: NPK and SOC computed in net 
soil loss 

OUT4: NK estimated from empirical 
relationship of leaching with rainfall, 
texture, CEC, nutrient inputs and 
decomposition of soil organic matter 
(SOM)  

OUT5: N empirically estimated from 
relationship with rainfall, inputs and 
SOC 

             C empirically estimated from 
SOM degradation 

NP from fertilizer 
 
NPK&SOC from 
organic inputs 

 
 
N fixed by legumes 
 
 
 
NPK and SOC in 
deposited 
sediments 

 
NPK from 
atmospheric 
deposition 

NPK in crop yield 
 
NPK in removed 
residues 

NPK and SOC in soil 
eroded 

NK leached 
 
 
 
 
N denitrification 
and volatisation 

SOC from SOM 
degradation  
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Figure 3.2 Drivers of fertilizer choice (upper) and for crop choice, crop yield and residues (lower). 
NB: The flow has the same colour as the driver; and there's a white space between flow and the target variable. The 
definitions of the variables are presented in Table 3—2. 
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Figure 3.3 Human (upper) and ecological (lower) systems depicting drivers and outcomes 

NB: The flow has the same colour as the driver; and there's a white space between flow and the target variable. The 
definitions of the variables are presented in Table 3—2.  
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Figure 3.4:Integrated Human and ecological systems showing interlinkages among drivers and 
outcomes 

NB: The flow has the same colour as the driver; and there's a white space between flow and the target variable. The 
definitions of the variables are presented in Table 3—2 (here without suffixes H_ for human and P_ for plot and 
abbreviated. 

3.1.1 MASSAI structure and workflow 

The study adopts the modules in the Land Use Dynamic Simulator (LUDAS) developed 
by Le (2005) for further customisation to the characterisation of the study site within 
the maize mixed farming system and the overall policy and governance setting of the 
community. Although the customisation inherits the concepts, module organization 
and principal codes of the LUDAS framework, further work was done to: (1) build new 
modules (e.g. nutrient balance) and (2) specify across all module’s relevant variables, 
empirical parameterisation and verifications. The LUDAS falls into the class of MAS 
models (Bell et al., 2015), where both the human population and the landscape 
environment are all defined by interactive agents. 
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To initialise, simulate and validate the model, 8 steps are undertaken (Figure 3.5). 
The first two stages have been covered identifies the gaps and proposes a working 
solution. Stages 3 and 4 involves data and parameter generation for setting initial 
conditions upon which simulations of expected changes are built.  

The components of land that regulates provision of ecosystem goods and services 
for human wellbeing including humans, topography, climate, soil, and the main land 
cover and management practices have been captured (stage 3 of Figure 3.5). These facets 
of the environment embody a wide range of processes that can be hierarchically 
modelled at different spatial and temporal scales (Le et al., 2008).Taking stock of 
existing indicators and metrics for sustainable agricultural intensification, Smith et al. 
(2015) gave an overview of agroecosystem functions at three spatial scales of plot, 
household and community. Although the basic processes such as plant growth and 
decay are largely regulated by environmental factors, the states of factors are altered by 
human actions resulting in trade-offs and synergies between ecological, economic and 
social benefits (Smith et al., 2017). In this study we attempt to integrate the multiple 
ecosystem services at the scale of a managed plot (Table 3—4). 

Table 3—4: Sustainability domains, agro-ecological functions and their indicators  
Sustainability 
domain 

Agro-ecosystem 
function 

Indicators Metrics 

Productivity  Food production Biological inputs (manure and 
legume) 

Farm generated inputs used (kg/ha) 

  Input intensity (fertilizer) Fertilizer (kg ha-1)  
  Yield Product (kg ha-1) 
  Quality and macro nutrients of 

yield 
NPK in product (kg ha-1) 

 Raw material 
production 

Residue quality (macro 
nutrients) 

NKP in residues (kg ha-1) 

 Residue biomass Carbon produced (kg ha-1) 

Environmental  Nutrient cycling Nutrient cycling (full budget) 
                              (partial 
budget) 

Total NPK import – total NPK 
export 

NPK applied – NPK export in grain 
 Erosion control Erosion rate Top soil lost (ton ha-1 year-1) 
  Sediment delivery Sediments deposited (ton ha-1 year-1) 
  Aggregate stability Structural stability index 
 Greenhouse gas 

regulation 
C sequestration Soil organic carbon (ton C ha-1) 

 Chemical input reduction Inorganic fertilizer replaced (kg ha-1) 

Social Technology adoption Adoption rate % households adoptingc 

 Equity Yield gap Locally attainable yield – actual yield 
  Income distribution Lorenz curve and Gini coefficient 
 Empowerment Bargaining power Women empowerment in 

agriculture indexh 

Economic Agricultural income Crop value Product ($ ha-1) 
  Labour intensity Man-hours (time/ha) ~ ($ ha-1) 
  Capital intensity Expenses ($ ha-1) 
  Profitability Product ($ ha-1) – expenses ($ ha-1) 
  Productivity Product ($ ha-1) / expenses ($ ha-1) 

cCommunity scale; hHousehold scale                      source: (Smith 
et al., 2017) 

Achieving SAI is a broad goal aimed at ensuring efficient use of resources for 
improved productivity, with equal attention to equity and environmental services (The 
Montpellier Panel, 2013). Striking the balance is still considered as one of major research 
and development challenges since it requires an understanding of how ecosystems 
function under changing environment and socio-economic constraints (Matson et al., 
1997). As Schreinemachers and Berger (2011) put it, sometimes a higher productivity in 
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terms of yield is not the main goal for small-scale farmers. This is the case because 
smallholders are overly constrained by multiple factors including labour, capital, 
fertilizers, pesticides and herbicides and sometimes by insecurity over land that they 
have to overcome. Researching options for addressing these constraints is 
methodologically challenging with regards to (1) the complex human-environment 
interactions among factors, (2) uncertainties caused by that complexity, (3) the long-
term perspective of sustainability research, and (4) externalities and trade-offs over 
space, time and social groups (Boulanger & Bréchet, 2005). 

The study is built on the hypothesis that the agents (in this case smallholder 
farmers) despite being autonomous, interact as they share the environment and the 
observed phenomena is the aggregate emergent outcome. Therefore, farming can be 
considered to be an organised complex system and its analysis requires a hybrid of 
analytical hypothesis driven experiments used for organised simple systems and 
statistical data driven observational studies used for complex unorganised systems (Le, 
2005). Although an empirical MAS for simulating complexity including the continuous 
flow of multiple environmental services, the platforms are built by integrating modules 
based on the principle of ceteris paribus.  

The individual modules (Stage 4 of Figure 3.5) were parameterised using 
empirical models of technology choice and adoption, productivity, soil erosion control 
and nutrient retention using from household(field) data. Studies of these processes in 
the study area used limited sample sizes and different sampling frames (Chimtengo et 
al., 2014; Haile et al., 2017; Mponela et al., 2018; Mungai et al., 2016; Signorelli et al., 2016; 
Silberg et al., 2017; Timler et al., 2014). However, they provide useful guidelines for 
sampling and variable choices. Data and associated processes for the MAS need spatial 
signatures (Berger, 2001).  
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Adapted from Le (2005)  

Figure 3.5 Overview of the MASSAI implementation process  

3.1.2 Common sampling frame, methods and sources for environmental 
and household data 

For integration of human and ecological sub-systems, the study landscapes and 
communities have been drawn using a common geo-referenced sampling frame (Berger 
& Schreinemachers, 2006). The farming units for ecological evaluations were spatially 
co-located and nested to the households that own or manages them using geographic 
information system (GIS). The framework for human sub-system includes the farming 
households within the five villages. The ecological framework was principally the land 
parcels within the villages but also surrounding landscapes that are managed or 
accessed by farmers from the study villages. Existing spatial data about soil types 
(Lowole, 1965), land cover and use (FAO, 2012) and topography was used for landscape 
stratification and sampling. The list of households for sampling of households and their 
farms was obtained from the extension planning area and village leaders. The study 
households, plots and sub-watersheds were drawn using multi-stage sampling. Since 
there is no record of ownership of plots or maps showing plot locations, first to be 
sampled were the households. Nested within the households, the plots belonging to 
those sampled were then enumerated for ecological studies. 
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Within the study area the households and their farmlands are clustered into 
traditional allotments called villages. Mostly, the households within each village are 
related by descent and are ruled by the village chief who come from the royal family 
lineage. The villages have clustered settlement pattern and generally separated by the 
physical features such as streams, hills and sometimes farmlands. Being a typical rural 
area, most of the land is owned and managed by the households that are resident in the 
study villages. During the time of the study, there were no records of plot ownership 
hence to link households with plots and other resources, households were sampled first 
then followed by enumeration of their plots. The boundaries of the plots for the 
surveyed households were mapped using a GPS. For the unsampled households, there 
could be potential conflicts and misunderstandings to arbitrary assign ownership 
(Deininger & Xia, 2017). Therefore, the plots for the remaining population were assigned 
to the remaining cultivated areas using proportional upscaling with the sample 
distribution and restricted within the respective village boundaries. 

The basic unit for analysing ecological processes is the plot/pixel (considered as 
the landscape agent) that provides agro-ecosystem services and is directly managed by 
the farming household and the neighbouring community. Farm surveys of soil, biomass 
and crop yield, nutrient inputs and outputs were carried out to capture current farm 
performance, soil quality and their determinants. The household learning and 
technology usage surveys was nested within the ecological sampling units by using the 
common sampling frame. The study households were randomly sampled from a village 
list available at the village leader. This gives a hierarchical subject structure with 
households and their landholdings at lower level, constituting the village population 
and landscapes, and the entire study area is at the highest aggregate catchment level. 
The household choice was dynamic as no prior attributes were available and allowed for 
a plausible understanding of household’s strategies (Tittonell et al., 2010).  

Data were collected on households and their plots and the environmental 
attributes. Household surveys were conducted to generate socioeconomic data of the 
households’ resource status and behaviour supporting seed production. Data was 
sourced on farmers wealth attributes, socioeconomic profile, how they carried out 
previous agronomic practices and marketing. Topographic data (slope, upstream 
contribution area etc) were extracted from the Shuttle Radar Topography Mission 
(STRM) 30m resolution digital elevation model (DEM) that was downloaded from 
United States Geological Survey Website (USGS, 2018). 

 

3.2 The people, livelihood resources and soil fertility management 
strategies. 

3.2.1 Case study area and sampling methods 

This study was conducted among the households practicing smallholder farming in the 
villages of Malaswa, Phikani, Amosi and Hiwa in Nsipe Agricultural Extension Planning 
Area, Ntcheu District of Malawi (Figure 3.6). During the focus group discussions 
(Braslow & Cordingley, 2016), it was revealed that the people of these villages have 
related ancestors. The ancestors, about 6 generations, settled along the fertile basin 
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sandwiched by two major streams Nsipe and Riviridzi. As population grew, some of their 
3rd generation parents moved to the hills forming Malaswa village and recently, another 
group have moved further up forming Kaombe village which has fewer households and 
is still under the jurisdiction of village head Malaswa.  

As of 2015, the average population density from village records was 137 persons/ 
km2 (Emerton et al., 2016). The villages on flat areas had higher density such as 397 
persons/km2 in Amosi while those situated in hills such as Malaswa had lower density 
of 83 persons/km2. The average household size was 5.2 members. On average, the 
household cultivated 0.9 ha of land fragmented into 2 or more small plots (Mungai et 
al., 2016). Considering that farming is the main livelihood strategy, and low productivity 
levels the average land holding size per capita of 0.17 ha is insufficient. In order to 
improve land productivity, farmers in the study area use a variety of soil productivity 
enhancing technologies. Combined use of inorganic fertilizer and farmyard manure, 
residue incorporation, grain legumes, trees on farm are common for all whilst those 
with relatively larger land holdings rotate staple cereals with legumes and cash crops 
(Mponela et al., 2016). The main crops grown include maize, tobacco, groundnuts, 
soybean and sweet potatoes. Most households own small ruminants (goats and pigs) 
and chickens as a source of income. They supplement their food, housing and income 
needs by collecting natural resources and engaging in ganyu, a paid daily labour. 
Fuelwood obtained from woodlands, forests and croplands is the main source of energy 
for cooking. The production of charcoal has depleted fuelwood resources leading to 
negative fuelwood budgets for the households (Braslow & Cordingley, 2016).  

 

Figure 3.6 Location of study area within Ntcheu district of Malawi, southern Africa. 
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The sampling frame comprised of smallholder farming households in the five 
adjoining study villages (Malaswa, Amosi, Hiwa, Phikani, and Kwangwani). The main 
defining feature of smallholding is that farmers own and manage small plots of up to 5 
ha and produce mainly for subsistence (Anseeuw et al., 2016). Study households were 
randomly sampled from a list made available by the respective village leaders. This gives 
a hierarchical subject structure with households and their landholdings at lower level, 
constituting the village population and landscapes, and the entire study area is at the 
aggregate catchment level. The random sampling of households was one as no prior 
attributes were available and therefore allowed for a plausible understanding of 
households’ SFM strategies (Tittonell et al., 2010). To ensure that the estimates were 
representative of the study population, at least 30% of the households in each village 
were sampled. 

3.2.2 Human livelihood analytical framework 

As discussed above, earlier studies took either structural or functional approaches 
(Tittonell et al., 2010) but recently these have been integrated (Kamau et al., 2018). 
Understanding livelihood strategies indeed requires attention to the interactions 
among household and landscape state variables and the ways in which they may be 
clustered, sequenced or substituted to enable different livelihood production strategies 
(Scoones, 1998). As individual households pursue their goals, they are bounded by 
available assets and can be classified into distinct categories. One of the approaches 
commonly used to do so is through building typology (Le, Seidl, et al., 2012). Household 
types emerge as household tend to categorise itself into the most similar type, based on 
comparing and ranking dissimilarities in state variables of itself and its environment, 
with those of its neighbours. 

The heterogeneity among farmers is a result of several factors. Therefore, it is 
imperative to identify a small set of variables that explain most of the variability. 
Principal components analysis (PCA) has been widely used to empirically identify the 
main factors differentiating the households (Douillet & Toulon, 2014; Kamau et al., 2018; 
Le, 2005). The PCs are optimal linear combinations of initial variables explaining the 
variance in descending order. As such, PCA enables reduction of a larger number of 
initial household and farm variables into a smaller set without losing important defining 
information (James et al., 2013; Le, 2005). 

The PCA has been found to be influenced by the magnitude and scale of each 
variable hence variable scaling and centring at zero were done prior to conducting PCA 
(James et al., 2013). The observed and measured values for the selected variables were 
normalised by Z-scoring and centred so that they could be drawn to the same axis and 

used to characterise household types. The Z-scores were computed in excel as: 𝑧𝑖 =
𝑥𝑖−𝑥

𝑆𝐷
. 

Secondly, since data is for individual households, there is potential that variables have 
some degree of association. There is generally a problem of factor indeterminacy. To 
address this and achieve a simple structure, where important variables have high 
loading on single PC and lower loadings on all others, the Varimax orthogonal rotation 
and Kaiser Normalisation were used (Kaiser, 1958). The factor loadings/weights signify 
the importance of the variable for a particular component and those with highest 
loadings are most distinctive.  
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Since PCs are independent, variables with highest loading on each PCs are used 
in subsequent cluster analyses thereby addressing the problem of multi-collinearity 
(Naes & Mevik, 2001). With 238 households and 25 variables, the variable to sample size 
ratio was 9.52. The cut-off to select the number of PCs was determined by use the 
eigenvalues greater than 1.0. The meta-analysis of more than 800 substantive factor 
analysis studies found that mean percentage accounted for is around 54% for 21-30 
variables, 55.6 for sample size of 176-300, and 58.2 for 6 or more principal components 
(Peterson, 2000). 

Subsequently, determination of household types was done using the K-mean 
cluster analysis (K-CA) in R (Lesschen et al., 2005; R Core Team, 2018). K-mean is the 
most commonly used clustering algorithm which was developed by Mac Queen in 1967 
and it is the most effective even for small data sets (Ghosh & Kumar, 2013; Le, 2005). 
Basically, K-Means clustering is a partitioning method that treats observations of the 
data as objects based on locations and distance between various input data points. 
Partitioning the objects into mutually exclusive clusters (K) is done in such a way that 
objects within each cluster remain as close as possible to each other but as far as possible 
from objects in other clusters. Each cluster is characterized by its centre point i.e. 
centroid and each of the records is assigned to the nearest cluster centre. A centroid is 
the point whose coordinates are obtained by means of computing the average of each 
of the co-ordinates of the points of samples assigned to the clusters. The K-means 
converges to one of many local minima because it minimises distance measure between 
each data and its nearest cluster centre thereby minimising the intra-cluster variances 
while maximising the intra-cluster distances. K-CA maximises the sum of the squared 
error (SSE) by measuring the total squared Euclidean distance of observations from the 
cluster centroids.  

With highly heterogeneous dataset, number of centroids could be large resulting 
in several clusters. Optimal number of clusters k were determined using the knee 
method, with optimal k value on the inflexion point/bend on the curve of sum of 
distances of clusters from the centroid against the number of clusters (Salvador & Chan, 
2004). To determine whether the clusters are conceptually and statistically 
distinguishable, the differences in state variables were tested using least significant 
differences (LSDs) after analysis of variance using unbalanced structure. The 
unbalanced structure run in Stata ensures complete fit of unbalanced sample sizes 
between clusters (StataCorp, 2017). After distinguishing the clusters, a meaningful name 
or label for each cluster was assigned using variables that adequately reflects the objects 
in the cluster.  

3.2.2.1 Data sources, types and pre-processing 

As pointed out in section 3.2.2 the household and plot attributed that are assumed to 
have an influence on the pursuit of livelihood strategies of the study population within 
its environment were surveyed. When choosing the variables for inclusion in the 
construction of farm types, it was assumed that they do not undergo rapid change/shift 
within the short to medium term. It is then further assumed that the household types 
arising from the interactions among these variables tend to be stable over the growing 
calendar year and whose changes may be inferred in the foreseeable future. This is 
crucial for types to be functionally different from one another and households/land 
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parcels may be assigned to the closest cluster centre based on overall nature of the 
attributes rather than on a few unstable variables. 

The sustainable agricultural practices transcend the plot boundaries and take 
long time to show positive results hence are information intensive. Education and the 
age of the household head as a decision maker has been used as a proxy for differences 
in knowledge of the technical aspects of the technologies and ability to engage in 
community discussions. In addition, the group membership has been used as indicator 
of community cohesion which is essential in pursuit of livelihood strategies that require 
co-ordinated efforts. Moreover, most of the sustainable agricultural practices are not 
only information intensive they are also labour demanding. 

Gender has also been found to be a social capital with regard to decisions in 
farming. A women decision making index (𝐻𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) averaged over 5 main household 
production, resources and income decisions including food production, cash cropping, 
livestock, off-farm engagement, marketing of produce and reinvestment is used (Alkire 
et al., 2012). The respondents were asked about the role of women in idea generation, 
engaging in discussions and/or making ultimate decisions. For households with both 
male and female members the scale was 0 (no female involvement), 0.5 (jointly make 
decision with men in the household) or 1 (female members decide). Research has shown 
that joint decision making ensures higher involvement of both gender groups and has 
overall higher efficiency. However, the WEAI was used because for farming 
communities most short-term decisions regarding re-investments are made by men. In 
so doing, WEAI shows the bargaining power. 

Physical assets include infrastructure, production equipment and technologies. 
Assets are relatively slow changing variables as they are usually accumulated over time 
and last longer. However, assigning values to assets is challenging as they lack 
comparability and mutual substitution. In most rural areas, the value of equipment, 
depreciation rates and their relative contribution to household livelihoods are largely 
unknown making it more complex. We used the monetary weighting approach where 
the number of assets was multiplied by their mean prevailing market prices (Moser & 
Felton, 2007).  

Natural resource stocks and environmental services from which resource flows 
and services useful for livelihoods are derived considered include livestock units, natural 
resources and land holding production orientation. Within a largely agrarian society, 
access to land for agriculture and what people do with that land are the most important 
natural attributes. As is the case in most farming systems, household production 
orientations do not vary in the short to medium term. As a result, income derived from 
crops, livestock and wild collections have been used as proxies for production 
orientation and livelihood strategies. The livestock which comprise mainly of poultry 
and goats but fewer pigs and cattle were converted into standard livestock units (LU) 
using nutritional and feed requirement factors for sub-Sahara Africa (FAO, 2005). 

Financial assets are the capital base in terms of cash, credit/debt, savings, and 
other which are essential for the pursuit of a livelihood strategy. Sell of selling livestock 
and livestock products is one of most coping strategies among households in times of 
risks and shocks. Therefore, households that sell livestock could be assumed to be 
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resilient. Non-farm sources captured included formal employment and small trade, sell 
of ganyu labour and remittances from relatives. 

3.2.3 Human decision analytical methods 

SFM are promoted to address the very basic challenge of soil fertility decline which 
should be reversed if farmers in these fragile landscapes are to benefit from other 
technologies (Vanlauwe et al., 2015). Every year, at the time of planning to use the SFM 
technology or not, a household is assumed to derive utility from expected soil-
productivity gains, which is conditioned by resource endowments. This paper adopts 
the sustainable livelihoods framework and assumes that in order for households to 
pursue their agricultural livelihoods strategies, in vulnerable rural contexts, they strive 
to add value to land as their base natural capital using the prevailing resource 
endowments.  

We hypothesise that households with increasing labour, in which women are 
empowered to make farming decisions, and have more income and farm equipment 
would use SFM in increasing intensities. However, in rural areas with unskilled labour, 
poor soils and variable production, the elasticity of substitution among production 
assets is deemed to be high (Gavish & Kalay, 1983). For instance, much as larger land 
sizes would be associated with increasing input use and productivity (Dorward, 1999), 
inverse farm-size productivity relationships have been observed since early 2000s 
(Matchaya, 2007). 

As is the case with most smallholding systems of Africa, a significant fraction of 
the community does not apply inorganic fertilizer and manure inputs a good number 
do not grow legumes. Therefore, the data contain zeros and is assumed to be 
continuously distributed over the positive values. Considering the low levels of nutrient 
inputs and increasing efforts by the government and non-governmental organisations 
to promote soil fertility enhancing technologies, we assume that the zero observations 
emanate largely from non-participation decisions. Therefore, for a household to be 
considered a participant, it has to cross two hurdles namely to (1) choose then (2) 
intensify.  

Several empirical models are used to analyse the truncated choice - intensify 
phenomena. We adopt the disaggregated model by Cragg, the double-hurdle, which 
considers the fact that the observed zeros might also be linked to ‘non-participation’ 
decisions that could not be referred to as non-adoption (Cragg, 1971). Moreover, in some 
situations, the decision to invest in SFM and the amount of investment may not be so 
intimately related (Cragg, 1971). Considered that the SFM technologies have been 
practiced in the region for a long time, it could be possible that the zero responses could 
also arise from truncated sampling period - we have no information whether some of 
those that did not apply during the survey period dis-adopted.  

The participation in SFM technology and the corresponding extent of usage can 
be expressed as underlying stochastic models where: 

𝑌𝑖1∗ =  𝛼𝑊𝑖 + 𝑣𝑖   Participation decision     3-1  

𝑌𝑖2 =  𝛽𝑋𝑖 + 𝜀𝑖   Intensify decision  

𝑌𝑖 =  𝛽𝑋𝑖 + 𝜀𝑖   if y i 1* = 1 and y i 2  > 0      
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Where i is number of households or plots under observation, yi is the dependent 
variable, Wi & Xi are vectors of independent variables, α & β are vectors of unknown 
coefficients, and vi & εi are error terms.  

3.2.3.1 Participation / adoption model 

Given that some households decide to participate or adopt while others don’t, given a 
set of conditions. The conditional probabilities are expressed as: 

  P(x|1) = probability that the ith household-plot apply/receive SFM practice 

 P(x|0) = 1 – P(X|1) = probability for not adopting SFM practice 

The response probability function (log of the odds) is expressed as: 

 𝑃(𝑌 = 1|𝑥) = 𝑙𝑛(𝑃(𝑥|1) 𝑃(𝑥|0)⁄ ) = 𝑙𝑛((𝑃(𝑥|1)/(1 −  (𝑃(𝑥|1)) = z     3-2  

Where X, denote full set of explanatory variables. The probabilities can be estimated 
from an underlying latent variable model (z), which assumes that the response 
function is linearly related to a set of parameters and is expressed as:  

𝑧 = 𝛽0 + 𝑥𝑖𝛽𝑖 +  𝜀;      𝑌 = 1 𝑖𝑓 𝑧 > 0 and Y = 0, i f otherwise     3-3  

 The binary response function that is transformed algebraically from equation 3.2 and 
3.3 gives the values of estimated probabilities between zero and one and used to 
predict conditional probabilities for SLM practices (Wooldridge, 2012). It is expressed 
as: 

  𝑃(𝑌|𝑥) = 𝑒𝑥𝑝 (𝑧) (1 − 𝑒𝑥𝑝(𝑧))⁄          3-4  

where 

1 > 𝑃(𝑌|𝑥) > 0;    +∞ > 𝑧 > −∞;  

𝑃(𝑌|𝑥) → 1 𝑎𝑠 𝑧 → +∞;   𝑃(𝑌|𝑥) → 0 𝑎𝑠 𝑧 → −∞;   

𝑃(𝑌 = 1|𝑥) 𝑖𝑓 𝑃(𝑌|𝑥) ≥ 0.5;  𝑃(𝑌 = 0|𝑥)𝑖𝑓 𝑃(𝑌|𝑥) < 0.5 

3.2.3.2 Double hurdle model for household SFM intensification 

Using the aggregated plot data and the household attributes, the data tend be 
truncated at zero and have positive values. In this case it is assumed that there is an 
underlying stochastic index equal to Xiβ + εi which is observed only when it is positive. 
The expected value of yi is:  

Ey i  = X iβ * F(X iβ/σ) + σf(z),         3-5  

Where, f(z) is unit normal density, and F(Xiβ/σ) is cumulative normal distribution 
function. Therefore, the expected value of y being above the limit, referred to as y* is 
Xiβ plus the expected value of the truncated normal error term.  

Ey i*  = E(y i|y i>0) = X iβ + σf(z)/F(z).       3-6  

Therefore, the expected level of soil fertility management strategies computed as an 
index for all the sampled households, Eyi can be expressed as a product of the expected 
value conditional upon having at least some practice, Ey* and the probability of 
implementing more or intensifying SFM practices, F(z).  
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The elasticities for continuous variables are estimated by decomposing the effect 
of a change in an explanatory variable on dependent variable (McDonald & Moffitt, 
1980). This implies that the total change expected in y is decomposed into two: (1) the 
change in y of those households above the limit, weighted by the probability of being 
above the limit; and (2) the change in probability of being above the limit, weighted by 
the expected value of y if above the limit which is expressed as: 

δEy/δi = F(z)(δEy*/δX i) + Ey*(δF(z)/δX i)      3-7  

The elasticity of probability, F(z)(δEy*/δXi), indicates how a variable affects the 
probability of implementing the SFM technique. The elasticity of conditional level, 
Ey*(δF(z)/δXi), indicates how a variable affects the intensification level given that 
farmers applied inputs or planted legumes. The unconditional elasticity, δEy/δi, is the 
sum of the two which indicates the overall responsiveness of the household to a 
particular variable in the application of the SFM.  

3.2.3.3 GLM for plot level intensification 

Considering that a greater proportion farms that do not receive inputs while others 
receive in large amounts, data is truncated at zero with positive skewness. The data does 
not meet the assumptions of normal distribution as the variance is often larger, which 
is a biological and socioeconomic reality but a statistical problem called overdispersion. 
Therefore, plot level fertilizer and manure input levels were predicted using generalised 
linear models (GLM) following a similar approach as the one used for estimating crop 
yield output levels (see section 3.6.1.3). 

The models were estimated in STATA 14 (StataCorp, 2017). 

3.2.3.4 Data sources, the dependent variables and computation of indices  

The choice was captured through a variable that asked whether a farmer used a SFM 
practice while the intensity as the amount of inputs (inorganic fertilizer, organic 
manure) used in the 2016/2017 growing season and the amount of land planted with 
legumes over a 5-year period (2012-2017). Farmer estimates were much easier for 
inorganic fertilizers as farmers access fertilizers in 50kg bags and for those that shared 
(as is mostly the case with subsidy), the stated proportions were used as divisor. To find 
the total fertilizer applied, a summation of the basal dressing - mostly a 23% N: 21% P: 
0K+ 4% S (nitrogen, phosphorus and sulphur) fertilizer and top dressing - mainly 46% 
N UREA (nitrogen) was done. Organic manures comprised mostly of farmyard manure 
and household refuse. The quantities applied were estimated from either size of landfill 
or the transport used. Mostly, manures were transported on heads and shoulders using 
50kg bags and 20 litter buckets and in a few cases, using oxcarts. Unlike fertilizer and 
manure, the area under legume was estimated as the size of the plots that had legumes 
averaged over a 5-year period. Until now, although there are attempts to use land 
equivalent ratios and farmers guesstimate, it is still difficult to estimate the land 
equivalence for each of the crops in an intercrop for smallholder farmers. Hence, we use 
the raw plot sizes and control for intercropping using the number of crops grown. 

A desk review of literature on agricultural innovation adoption was done to 
identify factors that explain adoption and extent (Doss, 2006; Pattanayak et al., 2002). 
A questionnaire was then developed, and household surveys were conducted to 
generate socioeconomic data of the households’ resource status, farm characteristics 
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and farming practices for the cropping season 2016/2017. With a largely younger 
population, it is evident that increasing dependency ratio could significantly affect 
household labour allocation. Being in a matrilineal marriage system, role of women is 
assumed to influence technology adoption. The women empowerment in agriculture 
index (WEAI) was constructed using Alkire-foster method. It measures whether a 
woman is involved in four decision domains: production, resources, leadership and 
income (Alkire et al., 2012). Consequently, higher WEAI implies that woman in the 
household is empowered. Data on different livestock species were further converted 
into LUs using nutritional and feed requirement factors for Africa (Chilonda & Otte, 
2006). The communication, transport, and farm items such as radios, bicycles and hoes 
were broadly standardised into monetary indices using the numbers owned and the 
prevailing market prices. Plot sizes were measured using the global positioning system 
(GPS). The model specifications are presented in Figure 3.2 and the resolutions for 
variable choices are presented in section 3.10. 

3.3 The environment  

3.3.1 Topography and climate 

The study area is the middle course of the Riviridzi-Nsipe River, which is a major sub-
watershed for the Shire River Basin. Within the 8 km distance, there are two distinct 
terrain patterns that bound the agro-ecological potential and livelihood strategies of the 
area. The eastern part is a plane along the banks of Riviridzi and Nsipe stream at 
elevation of 800-900 meters while the there is a 256m ascent on sloping hills westwards. 
As indicted on Table 3—12, about 44% of the study area has gentle slopes of <5%, 29% 
moderate slopes of 5-10% and 27% has strongly sloping to steep slopes with maximum 
slope of 55.51%. Other topographic characteristics presented in Table 3—5 shows that the 
study area has varied surface and hydrological characteristics. In terms of rainfall, the 
area is in the transition from semi-arid to sub-humid with annual rainfall ranging from 
as low as 700 mm to around 1100 mm. 

Table 3—5 Topographic characteristics of the study area 

Attribute Min Max Mean SD 

Roughness index (Ri) 1 44 5.44 5.13 
LS-erosion factor 0.03 9.98 1.15 1.30 
Flow length 29 5912 1331 1330 
Flow accumulation 1 2153 22 107 
Upslope area 900 425256000 3429796 24246578 

3.3.2 Soils  

According to the soil mapping by Lowole (1965), there are four main soil classes (Figure 
3.6). The dominant soil for the hilly areas is the Eutric Cambisols that are moderately 
deep (50-100cm depth limit) with gravely subsoil. These soils are shallow and prone to 
erosion hence are widely used for grazing or forestry (Driessen & Deckers, 2001). The 
densely populated flatlands around Gwauya and Phikani have Haplic Luvisols which are 
deep (>1500cm depth limit) and course to medium textured. Deep, reddish-brown and 
fine textured Chromic Luvisols dominate the stream valleys whilst the foot slopes have 
deep, brown and medium textured Eutric Fluvisols. The fluvisols receive sedimentary 
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material at regular intervals from upslope. The eutric cambisols and fluvisols have an 
effective base saturation of more than 50% and ideal for cultivation. The luvisols have 
argic horizon with CEC of equal to or greater than 24 cmol(+) kg-1 clay starting from 
around 100cm to within 200 cm from the soil surface. These are easy to till with no 
impediments and base saturation of more than 50% but are affected by water erosion 
and loss in fertility. Nutrients are concentrated in top soil and have low levels of organic 
matter, typical of haplic luvisols (Driessen & Deckers, 2001). 

The plane has been under continuous cultivation by more than three generations 
(Braslow & Cordingley, 2016). This is indicative of a relatively high agricultural potential. 
On the west, there are pockets of marginal lands stretching on hillslopes that are 
virtually not suitable for crop cultivation (Benson et al., 2016; Li et al., 2017). When 
demand for resources and land was minimal, these hilly areas were set aside as village 
woodlands. Lately, with increased demand for biomass energy and land for food 
production, marginal areas that were under forest cover in 1992 have been cut down for 
charcoal and fuelwood and open areas are being converted to farmland (FAO, 2012). The 
communities have been observing accelerated rate of degradation since 2005 when 
some community members started producing charcoal for the urban markets (Braslow 
& Cordingley, 2016). Subsequently, soil eroded from the bare catchments loads the 
sediments into the rivers which are negative externalities affecting stream flow and 
provision of environmental services downstream (Chimtengo et al., 2014). We 
constructed the period the plot has been by either asking for generational usage and if 
cleared by the current user, the year of opening to date. Hence for simulation, plots have 
different ages and progressively age, on the assumption that fallows and abandonment 
will not happen during the simulation period. 

 Soil classes, despite providing information necessary for regional and national 
planning, fall short of detail to guide plot level management. As effort has been made 
to set a baseline for the sentinel (learning) site of 10 km by 10 km that encompass the 
study community-landscape as detailed below. 

3.4 Stocks of soil NPK, SOC and their thresholds 

Soil is a multi-dimensional and complex entity. Its complexity arises from a range of 
natural and anthropogenic factors that influence the biogeochemical processes. In an 
ideal world, information for every cubic meter of land would be available, but sampling 
and measuring the range of soil attributes for every pedon is obviously an 
unsurmountable task. Promisingly, predictions of attributes at unvisited locations can 
be made from locations with known soil attributes.  

Geo-statistics are used to extrapolate or predict values of land features (including 
soil classes, elemental composition and suitability for farming) from a set of points with 
known values of the target and auxiliary variables. The most popular approach is 
ordinary kriging (OK) where predictions for unvisited locations are made using 
weighted averages of the observations from known locations in proximity, given their 
map coordinates (Hengl et al., 2007). The OK is guided by the principle of spatial auto-
correlation under the assumption that adjacent sites tend to have similar 
characteristics. Such maps are a result of extrapolation from limited samples, sometimes 
using fewer soil controlling factors that are relevant for planning at administrative block 
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or agro-ecological zone level (Lowole, 1965; Mutegi et al., 2015). However, the soil 
information generated from this approach are of limited applicability to social-
ecologically heterogeneous farms (Vågen et al., 2016). 

With regression kriging, a relationship between the target and auxiliary variables 
at sample locations is used to predict for the unknown location, the target variable from 
the known auxiliary variables. Spectral signatures for land surfaces generated through 
satellite imagery have been widely used as proxy for geological and biological soil 
forming factors (Hengl et al., 2017; Schillaci et al., 2017). With the advancements in 
spatial data acquisition and prediction of surface features using spectral signatures, soil 
predictions have become more spatially explicit (Hengl et al., 2017; Vågen et al., 2016).  

Empirical models for estimating soil parameters are chosen based on whether the 
properties being observed are randomly ‘anisotropic’ or systematic ‘isotropic’ 
distributed in relation to the soil forming factors (Jenny, 1941). Soil classification and 
mapping usually assume that the co-variates systematically vary along climo-sequencies 
(climate), chrono-sequences (time), bio-sequences (organisms including human 
activity) or topo-sequencies (terrain) and their combinations. Capturing the variability 
of soils across landscapes and over time is inherently challenging, especially so for 
subsistence small-holder farms where soil data are limited and the covariates are usually 
not readily available. Getting a representative soil sample and predictors are 
compromised by the large number of determinants of soil formation and subsequent 
transitions, including the parent material, climate, relief and living organisms that vary 
over space and time (Jenny, 1941). These may be as many as 75 at global level (Hengl et 
al., 2014). Hence, generating information on soil forming factors is in itself not feasible 
in most cases. As such, proxy variables are used. 

This study uses the randomForest model which has been found to improve the 
predictions for data sparse regions (Forkuor et al., 2017; Grimm et al., 2008; Hengl et al., 
2015, 2017; Polhill et al., 2008). The RF is a data mining method with the ability of 
modelling high-dimensional non-linear relationships and handles both categorical and 
continuous variables with resistance to overfitting and enhanced robustness (Breiman, 
2001). The RF prediction was implemented in R using the Breiman’s code (Liaw & 
Wiener, 2002).  

3.4.1 Data sources and pre-processing 

The 2013 soil data collected by the International Centre for Tropical Agriculture (CIAT 
– https://ciat.cgiar.org). The sampling site was purposively drawn with the mother trial 
areas for the Africa Rising project at the centre and represent the typical conditions of 
the Rift Valley escarpment agro-ecological zone (Mungai et al., 2016). It is also one of 
the sentinel sites for mapping and monitoring soil conditions in Africa (Tamene et al., 
2019). Composite samples were taken from 160 plots of 0.1 ha each to the depth of 0-20 
cm. All the samples were analysed by near infrared (NIR) and mid-infrared (MIR) diffuse 
reflectance spectroscopy. The NIR and MIR reflectance were calibrated using 10% of the 
samples analysed by standard laboratory procedures. P and K were analysed using 
Mehlich III extraction; pH using 1:2.5 soil–water suspensions; SOC and total N using 
thermal oxidation; bulk density using cumulative augering method; and  texture using 
the laser diffraction method (Tamene et al., 2019). 
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The 2018 soils samples collected from the plots were sampled for yield 
estimation. The fields for soil surveying were sampled from the list of fields captured 
during the agronomic survey using the conditioned latin hypercube sampling (CLHS) 
(Minasny & McBratney, 2006). CLHS optimises the representativeness using auxiliary 
site conditions which included elevation, geographic coordinates, soil classes, and FAO 
land cover layers for 2010. The soils were analysed at the chemistry laboratory of the 
Agricultural Research and Extension Trust using Walkley & Black method for SOC, 
Bouyoucous for texture, Bray 1 for P and Mehlich III Extraction for K. The total nitrogen 
was derived from stoichiometric relation with SOC as high correlation of 90 was found 
from the 2013 data. The P estimates from Bray 1 were upscaled to the level of Mehlich III 
using the factor of 6% (Gutiérrez Boem et al., 2011). 

The hybrid of the vegetation and soil spectral signatures from satellite imagery 
are used as proxies for vegetation, parent material and climatic soil forming factors 
Figure 3.7 and Table 3—6. In the study, we use the high-resolution satellite imagery, the 
topographic attributes associated with erosion and deposition from the SRTM-DEM, the 
soil geological classes and the surface reflection representing the parent material, and 
the grid latitudes and longitudes that are proxy for spatial associations.  

 
Figure 3.7: The spatial covariates comprising of soil classes, topography, and vegetation and soil reflectance. 

Since its launch in 2002, the Sentinel2 imagery have been widely used to support 
spatial planning in agriculture and food security (ESA, 2015). After downloading from 
USGS Earth explorer, the tiles were spatially registered to WGS84-UTM-36S projection, 
merged and later clipped to form a complete mosaicking of the study area using QGIS 
version 2.18 (Team, 2016). To be able to detect differences in feature reflectance from 
the original bands, the soil and vegetation indices were calculated (Table 3—6).  

Since reflectance is affected by a combination of land features, the spectral 
signatures from different months were used to correct for annual variations (Forkuor et 
al., 2017). The study region receives unimodal rainfall that falls between 
November/December and ends in March/April. The vegetation indices were derived 
from rain and dry season imagery, whereas the soil reflectance indices were derived 
from the dry season imagery. The dates of image acquisition for vegetation indices were 
synchronised with kernel fill for maize and pod filling for legumes, which ensured 
optimum reflectance from plants. The peak vegetative growth and ground cover for 
annual crops and grasses is between January and February. For the two seasons (2016-17 
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and 2017-18), it was only on 18 February 2017 when the sentinel imagery had no cloud 
cover. In 2018, almost all rainy season imagery had dense cloud cover plus cloud 
shadows covering entire scenes. 

Table 3—6 Soil and vegetation indices derived from the sentinel 2 spectral bands 

Index Formula Index property Reference 

Vegetation    
*Normalised Difference 
vegetation index (NDVI) 

(NNIR-R)/(NNIR+R) Health of vegetation  (Forkuor et al., 2017) 

Green-Red vegetation index 
(GRVI) 

(G-R)/(G+R) Vegetation and soils (Motohka et al., 2010) 

*Modified Secondary Soil- 
Adjusted Vegetation Index 
(MSAVI2) 

0.5* [(2NNIR+1) – 
sqrt[(2NNIR+1)2 – 
8(NNIR-R)]] 

Plant growth, yield, 
SOM, soil erosion 

(Xue & Su, 2017) 

Soil    
Brightness index (BI) ((R2 + G2 + B2)/3)0.5 Average reflectance  (Forkuor et al., 2017; Ray  S. 

et al., 2004) 
Saturation index (SI) (R-B)/(R+B) Spectral slope  
Coloration index (CI) (R-G)/(R+G) Soil colour  
Redness index (RI) R2/(B*G3) Hematite content   
Grain Size Index (GSI) (R-B)/ (R+B+G) Texture (grain size 

composition) 
(Xiao et al., 2006) 

Spectral bands  Blue Green Red NIR NNIR 

Designation B02 B03 B04 B08 B8A 
Median wave length (nm) 492.1 559.8 664.9 832.8 864.7 
Spatial resolution (m) 10 10 10 10 20 

*the NDVI and MSAV-2 were calibrated based on Landsat bands for which the NIR wavelength of 851-879 (nm) 
corresponds to the narrow NIR (NNIR) for the Sentinel2 imagery. 20m NNIR (B8A) was resampled to 10m x 10m 
pixel size. 

During the dry season, crop fields are either bare or covered with dry weeds 
and/or crop residues. Moreover, the deciduous trees scattered on farmlands and in 
adjacent uncultivated fallows, woodlands and grasslands lose most of the leaves which 
are usually burnt leaving the ground bare. The dry season imagery captured on 2nd 
August, 1st September, 1st October and 10th November in 2016 were used for the bare 
ground reflectance and partial vegetation. 

Topographic factors related to soil genesis, hydrological flow patterns and mass 
movements that lead to soil particle and nutrient redistributions were derived from the 
30m SRTM DEM. The sink filled DEM tiles s15_e034_3arc_v2 and s16_e034_3arc_v2 
downloaded from USGS Earth Explorer (USGS, 2018) were merged, then the watersheds 
delineated and eventually, the target watershed was clipped. From the target watershed, 
the topographic attributes computed included slope, aspect, specific catchment area, 
maximum flow path (flow length), flow direction, profile curvature, plan curvature, 
wetness index, and flow accumulation (stream power index (SPI)). The topographic 
layers of 30m x 30m were then down-resampled to 10m x 10m. Although highly debated, 
it has been found that the DEM resampling has little effect on hydrological flow 
estimations (Tan et al., 2015) and on the corresponding nutrient flow estimations (Lin 
et al., 2010). 

Geological factors considered for the study included the soil classes which 
indicate the dominant underlying parent material and soil conditions (Lowole, 1965). 
The polygon soil layers obtained from the National Spatial Data Centre for Malawi were 
converted to raster at grid resolution of 10m x 10m. The hilly areas are dominated by 
Eutric Cambisols (Oxisols) that are moderately deep (50-100cm depth limit) with 
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gravely subsoil. These soils are shallow and prone to erosion, hence are widely used for 
grazing or woodlots (Driessen & Deckers, 2001). The flatlands have Haplic Luvisols 
(Alfisols) which are deep (>1,500cm depth limit) and course to medium textured. The 
stream valleys are dominated by deep, reddish-brown and fine textured Chromic 
Luvisols whilst the foot slopes have deep, brown and medium textured Eutric Fluvisols 
(Entisols). The fluvisols receive sedimentary material at regular intervals from upslope 
and are ideal for cultivation. The luvisols have argic horizon, clayey at deeper depths of 
100 to 200 cm, easy to till but greatly affected by water erosion and loss in fertility. With 
soil and water conservation measures, these soils would be most productive as the 
cation exchange capacity (CEC) is typically equal to or greater than 24 cmol(+) kg-1 and 
base saturation above 50%. 

3.4.2 Model specification and co-variance importance 

Considering that the covariates are proxies of soil forming factors, their associations and 
importance for explaining the soil attributes are likely to vary. We test the significance 
of the covariates using different model specifications and choose the one with the 
highest Out Of the Bag (OOB) R2 for prediction (Table 3—7). 

Table 3—7 Prediction accuracy using RF out of the bag error (AOB) and 3-fold cross validation 

  OOB validation   3-fold cross validation 

 SOC  TN  P  K  SOC  TN  P  K 

 R2 RMSE  R2 RMSE  R2 RMSE  R2 RMSE  R2  RMSE  R2 RMSE  R2 RMSE  R2 RMSE 

Full model 0.90 0.17  0.89 0.08  0.83 20  0.83 20  0.35 0.42  0.14 0.21  0.25 52  -0.25 56 

Dry soil&veg 0.87 0.19  0.88 0.08  0.84 20  0.84 20  0.38 0.41  0.08 0.22  0.08 57  -0.21 55 

Dry soil 0.87 0.20  0.87 0.09  0.74 25  0.74 25  0.36 0.42  0.00 0.23  -0.04 61  -0.28 57 

Dry veg 0.86 0.20  0.85 0.09  0.83 20  0.83 20  0.36 0.42  0.08 0.22  -0.03 60  -0.48 61 

Topography 0.77 0.25  0.80 0.11  0.81 22  0.81 22  0.00 0.52  0.05 0.22  0.21 53  -0.23 55 

Dry&Feb veg 0.86 0.20  0.87 0.09  0.81 22  0.81 22  0.35 0.42  0.28 0.19  0.04 59  -0.37 59 

Feb veg 0.76 0.26  0.79 0.11  0.72 26  0.72 26  0.04 0.51  0.07 0.22  -0.03 61  -0.27 56 

Class&coords 0.53 0.37   0.54 0.16   0.59 32   0.59 32   0.23 0.46   0.03 0.23   0.15 55   -0.03 51 

 It was observed that, Fall, which is a combination of all the covariates was the best 
specification for predicting SOC and TN. The covariate set Fdry, which include soil and 
vegetation reflectance indices from dry season (Aug to Nov) were best at explaining the 
occurrence of Phosphorus and Potassium, and second best for SOC and TN. The three 
fold cross validation however, shows that using a reduced dataset (2/3rd) for training 
and the remaining one third for testing, the best specification for SOC is Fdry, for TN is 
Fvg (the dry season and optimal growth vegetation indices), for P is Fall, and none of the 
specifications fit the distribution of Potassium well. 

3.5 Input flows of NPK and SOC  

Considering the existing farmer management, the common nutrient replenishment 
approaches as introduced under section 1.2 include inorganic fertilizers, legumes and 
organic manures.  
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3.5.1 IN1: Inorganic fertilizers 

The Nitrogen, Phosphorus elemental composition for fertilizers was proportionally 
estimated from the types and quantities for the two common inorganic fertilizers used. 
The 23:21:0+4S which is applied as a basal fertiliser had 23% N, 21% P2O5 and 0% KO2 
whilst the top-dressing Urea had 46% N. The subsequent nutrient inputs estimated as 
probabilities for a plot to receive fertilizer and the respective quantities have 
implications on N and P stocks and transfers.  

3.5.2 IN2: Organic manure 

The elemental (NPK) composition of manure was estimated using the concentrations 
established for compost made by Malawian smallholder farmers (Chilimba et al., 
2005). The NPK contents were found to be in the range of 0.21 to 2.2%, 0.05 to 0.73%, 
0.12 to 2.62%, respectively. The biomass conversion factors used to estimate residues 
from yield and the NPK stoichiometry were obtained from existing literature (see 
Table 3—8). 

Carbon inputs include the retention of crop residues, crop roots and organic 
manure input. Crop residues are traditionary incorporated on the plot (Emerton et al., 
2016) although the practice was halted during the survey period due to outbreaks of 
the exotic fall army worm Spodoptera frugiperda (J.E. Smith) (Lep.: Noctuidae), whose 
management involved burning of residues after harvest. Therefore, residue 
incorporation was conservatively set at 80% following earlier reports (Emerton et al., 
2016). The decomposition is mediated by environmental factors such as soil texture 
(ST), moisture availability in terms of period of rainfall (MP), and annual average 
temperature (T) and whose combined effect (f-env) is empirically expressed following 
Groot and Oomen (2018) as:  

f-env = 1 / (ST * MP / 365 * 2 ( T- 9.5 )/ 10)        3-8  

For the study region the MP and T are not variable but ST factor differs. Most 
studies set ST at value of 1 (corresponding to sand soil). Hence, we adjust ST between 1 
to 0.5 since the soils in the study region have sand in the range of 16 to 71%.  

The carbon input from crop residues (CCR) is estimated from the organic matter 
in the residues incorporated plus roots (42% of the total residue input) adjusted for 
effective organic matter for stover of each target crop (EOMc). The greater part of the 
roots for groundnuts are uprooted. The EOMc is around 20 – 40% of residue organic 
matter (X. Wang et al., 2007). The effective organic matter is the organic matter 
remaining after one year. 

CC R = RESIDUE ( K G / H A )  * 0.5 * EOMc / 1.724 * f-env      3-9  

The amount of organic carbon in manure (CMN) is derived from the amount of 
organic matter in the manure imported and the active organic matter content of 
manure. Organic matter of manure made by mixing livestock dropping, household 
and crop residues is around 34% in Malawi (Naohiro et al., 2016). The active organic 
matter content (AOMMN%) of 48 to 80% is degraded during the first year of application 
(X. Wang et al., 2007). This implies that after the first year, 20 to 52% of the organic 
matter from manure input remains on the plots. Due to the uncertainty in the actual 
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decay rates, simple sensitivity was done by varying the annual decay rates in the 
simulation using either lower or higher rate. 

CM N  =  MANURE ( K G/ H A )  *  0.5  * ((100 - AOMM N% ) / 100) / 1.724 * f-env   3-10 

3.5.3 IN3: Biological nitrogen fixation by leguminous plants 

The biological nitrogen fixation by leguminous crops was estimated from the yield and 
biomass estimates from household-plot surveys, the nitrogen derived from air for 
groundnuts grown in Malawi (Mhango et al., 2017), and the total nitrogen content and 
biomass conversion factors from other secondary sources (Table 3—8). 

Table 3—8 Nutrient stoichiometry and conversion factors for maize and groundnuts for grain, shoot 
and roots 

Nutrient Attribute  Maize  Ground nuts 

Nitrogen Grain  0.0230 a  0.0410 h 

   0.0088 b  0.0278 i 

 Shoot  0.0213 a  0.0408 a 

   0.0122 c  0.0278 
0.0201 

I 

j 

Phosphorus Grain  0.0038 d  0.0022 a 

   0.0020 b  0.0009 k 

 Shoot  0.0019 a  0.0032 a 

   0.0012 c  0.0025 
0.0015 

j 

k 

Potassium Grain  0.0187 a  0.0214 l 

   0.0043 d  0.0097 j 

 Shoot  0.0205 a  0.0280 a 

   0.0206 c  0.0101 m 

Organic matter Shoot  0.4200 c    

Moisture content (1-MC)   0.8750   0.8200 n 

Harvest index Sole  0.3630 e  0.3520 o 

 Intercrop  0.1100 f  0.2090 o 

Shoot-root Unfertilized  0.0800 g  0.2945 p 

 Fertilized   0.4200 g    
Nitrogen (NdFA)      0.7550 q 

a(Van den Bosch et al., 1998),b(Ganunga et al., 2005) c(Partey et al., 2016), d(Hgh-Jensen et al., 2013), e(Hay & Gilbert, 
2001), f(Mas-ud et al., 2016), g(Anderson, 1988), h(Nautiyal, 2002), i(Raverkar & Konde, 1988), j(Sakonnakhon et al., 
2005) k(Madhuri et al., 2018) l(Smartt, 1994), m(Mupangwa & Tagwira, 2007) n(African Institute of Corporate 
Citizenship, 2014), o(Mas-ud et al., 2016), p(Mohamad et al., 2018) q(Mhango et al., 2017). 

3.5.4 IN4: Sedimentation 

Within the catchment, erosion and deposition (IN4) redistributes the nutrients from 
higher to lower elevation. With minimal soil erosion control measures and cultivation 
of slopes, there is potentially high erosion upslope. Not all eroded material from upper 
portions of the watershed are delivered to the valley bottom (Tamene et al., 2017a). 
Intermediate sediment deposition is one of the major nutrient input sources for the 
plots downhill. The deposition depends on the surface cover and terrain characteristics, 
and occurs at points where the momentum of the transporting water is insufficient to 
carry the eroded material downslope or along the channel. The potential for 
intermediate deposition also increases as the area of the watershed increases. To 
estimate the sediment deposited, we use the sediment delivery ratio (SDR). It is the 
proportion of eroded sediment that leaves a given parcel and relates to the sediment 
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transported to a location in the channel system to the gross erosion from the drainage 
area above that point (Tamene et al., 2017a). For details on the estimation see section 
3.6.2.7 as this is calculated during erosion estimation. 

3.5.5 IN5: Atmospheric deposition 

One major nutrient source that is often neglected and roughly estimated is the wet and 
dry atmospheric deposition (IN5). Using the existing transfer functions (Stoorvogel & 
Smaling, 1990), the inputs were largely underestimated. The studies in the region found 
that atmospheric deposition is a significant source of P and a major source of N 
(Bootsma et al., 1999). The dry deposition of potassium was estimated from the total 
global average of 4.1 kg ha−1yr−1 (Sardans & Peñuelas, 2015). Considering that the 
estimated atmospheric content in southern Africa due to Savannah biomass burning is 
around 0.4 μg m−3 (Sinha et al., 2003), the dry potassium deposition could be potentially 
high for Malawi. NPK inputs were estimated using measured wet and dry nutrient 
deposition concentrations (Table 3—9). 

Table 3—9 The nitrogen (N), phosphorus (P), and potassium (K) inputs from rain and dry deposition 
Wet kg ha−1 = μmol l−1 x μmol->μg x μg->kg x ml x ml->l ha−1 

N_rain = 13.13 x 14.007 x 1E-09  x Rainfall x 10000 

P_rain = 0.78 x 30.974 x 1E-09  x Rainfall x 10000 

K_rain = 1.53 x 39.063 x 1E-09  x Rainfall x 10000 

Dry  kg ha−1 = ; μmol m−2day−1 x μmol->μg x μg->kg x m2-> ha x days 

N_dry = 343.00 x 14.007 x 1E-09  x 10000 x 365 

P_dry = 10.50 x 30.974 x 1E-09  x 10000 x 365 

Note: μmol were converted to μg using molar masses.      Source: (Bootsma et al., 1999) 

3.6 Output flows of NPK and SOC 

3.6.1 OUT1 & OUT2: Crop yield and residues 

First, a review of literature was conducted to tabulate the nutrient stoichiometry and 
biomass conversion factors for grain, shoot and roots in maize and groundnuts (Table 
3—8). These are used to compute nutrient contents based on predicted plot yields. The 
NPK parameters have upper and lower values. The upper values are the widely used 
parameter values that were mostly established for Kenyan farms (Van den Bosch et al., 
1998). The lower paramater values are from studies conducted mostly in Malawi and 
other tropical regions (Table 3—8). Sensitivity analysis was done using the sampled data 
before running simulations. It was oberved that the Kenyan parameters shifted the 
mean nitrogen and potassium losses downwards but shifted upwards the phosphorus 
buildup and carbon input (Table 4—14 vs Appendix S2). 

3.6.1.1 Estimating crop yield 

In spite of several efforts to increase productivity in the past six decades (Vanlauwe et 
al., 2017), Malawi still face food deficiency because the yields for the staple cereal crops 
have plateaued at 2 t ha-1 over the past decade (see Figure 1.1). Hence, identification of 
pathways for improving the productivity of smallholder farmers has become a major 
goal for reducing food and nutrition insecurity and eradicating rural poverty. However, 
the opportunities are eroded by the scarcity and unreliability of data including reliable 
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yield estimates (Carletto, Jolliffe, et al., 2015). Reports and studies that use national 
datasets tend to aggregate results which masks the variations and opportunities within 
sub-regions, potential positive shifts in technological frontiers (Thirtle et al., 2003), and 
increased technical efficiency in practice by some farmers (van Ittersum et al., 2016). 
The yield estimates for the past two decades showed an initial positive shift as a result 
of farm input subsidy for the main crops (Chirwa et al., 2011). This success was short 
lived as recent studies have shown that the net primary productivity of farming 
landscapes during the same period has significantly declined thereby threatening the 
sustainability of the system (Messina et al., 2017) mainly because the majority of small-
scale farms are on moderately and marginally suitable lands (Li et al., 2017).  

It is envisaged that with the available technologies and management practices, 
the potential yield gains of 4.3 t ha-1 additional to the national average of 1.7 t ha-1 
simulated for the climatic conditions of the year 2000 could be achieved (Mueller et al., 
2012). The attainable yield analysis showed that yield gains of 4.38 t ha-1 above the 
average of 4.1 t ha-1 would be achieved within a productive site in central Malawi 
(Tamene, Mponela, Ndengu, et al., 2016). Studies have established that the observed 
variation in yield is a result of differences in inherent soil conditions, inefficient farmer 
practices and genetic-environmental misfit of the cultivars (Kihara et al., 2015; Tamene, 
Mponela, Ndengu, et al., 2016). However, limited attention is given to unravel village-
landscape yield heterogeneity (Tamene, Mponela, Ndengu, et al., 2016). 

3.6.1.2 Crop yield and residue data 

Several methods exist for estimating crop yield ranging from farmer interviews, crop 
cuts to whole plots harvests (FAO, 1982). The validity of results depends on the level of 
precision in the estimation of the cultivated area as well as the quantity of produce 
obtained from that area which has been a challenge in most areas dominated by small-
scale farms (M. Burke & Lobell, 2017; Deininger & Xia, 2017; Lobell, 2013; Sud et al., 2015). 
Often, the actual yields are estimated from a few randomly allocated farms and reported 
as an average of administrative units covering hundreds of thousands of fields. The yield 
potential, i.e. the difference between average yield and those obtained at research sites, 
is estimated by use of agronomic trials or crop simulation models. The main setback 
with the two approaches is that the sample sizes are a handful and research plot sizes 
are often quite small.  

The standard approach is to harvest the whole field and measure the produce. 
For larger landscapes and populations, like in this study, the costs associated with whole 
plot harvests are prohibitive (Sud et al., 2015). As a result, small plot cuts are often used 
as pseudo replicates within the whole field. However, most studies still use farmer 
reported yields (FRY) obtained from household surveys. Apart from the self-reporting 
bias, farmers report whole numbers of the items they use for transportation or storage 
such as loads of oxcarts, tonnage of cars or number of 50 kg bags. Despite the 
inconsistencies in reporting the FRY, it has been established that when estimating yields 
over larger areas, the FRY are comparable to the crop harvests done by a team of trained 
personnel (M. Burke & Lobell, 2017; FAO, 1982; Fermont & Benson, 2011). The small plot 
cuts tend to have high level of measurement error due to within-field variations in 
small-scale farms (Tittonell et al., 2005). Considering that this study draws a large 
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sample of randomly allocated households and plots with multiple crops, a combination 
of FRY and small plot cuts approaches were used.   

Apart from estimation of produce, measurement of plot sizes has also been an 
underlying challenge. The farmer reported plot sizes, usually through guess work, have 
been used for convenience and cost-effectiveness. However, there is growing evidence 
that farmers with smaller plot areas of < 0.5 hectares tend to overestimate their fields 
by a factor of 5 (M. Burke & Lobell, 2017; Carletto, Gourlay, et al., 2015). Although the 
average plot size in the study region is 0.9 ha, with fragmentation the multiple plots 
owned by a household are ≤ 0.5 hectare. The differences between reported area and 
measured area are much bigger compared to the discrepancies in crop produce (M. 
Burke & Lobell, 2017). The research purpose of our visit was explained to the farmers; 
they were not expecting any follow up program and were less likely to inflate or 
underestimate the yields realised from the plots.  

Therefore, for 2016/17 growing season the farmer reported yields were captured 
and the corresponding areas measured using a GPS. For 2017/18 growing season, a 
second round of survey was conducted with the same farmers. Addition to the survey, 
yield estimates were done using crop cuts.  

For exploring the pathways for individuals or group of farmers towards 
sustainable agricultural intensification, spatially explicit data that links the estimated 
crop yield to management practices is a precondition. However, there are concerns 
regarding spatial and temporal representation of yields for farms not visited or years not 
surveyed. Lobell (2013) purported that it is challenging for yield gap analysts to 
generalize results from a small number of sites and years to a broader scale relevant for 
regional measures of agricultural performance. Use of productivity indices derived from 
remote sensing imagery has been widely used as covariates to predict the yields for 
unvisited sites. However in the savannah region, the grass and maize reflectance are 
indistinguishable (Forkuor, 2014) and different densities of trees are randomly 
distributed within cultivated fields and adjoining grasslands, leading to more spectral 
confusion.  

Crop yields for the main crops in the area are used to determine agricultural 
production potential and constraining/enabling factors. The total yield per plot 
(including intercropping) was used to evaluate the effects of various yield influencing 
factors on overall benefits. As noted in earlier sections, farming in the region is 
subsistence oriented where several crops are generally mixed on the same plot. In 
addition, the crops grown in the region have different values in terms of weights, 
nutritive value and nature (which includes grains, roots, leafy, and cotton) and they 
could not be converted to equivalent dry matter content. In such a complex farming 
system, disaggregation and determination of yield per unit area of land for individual 
crops is impractical, so is the partitioning of inputs used.  

Smallholder farms are characterised by variability in climate and soils as well as 
agronomic practices. Hence, yield estimation and extrapolation were then done using 
agronomic survey tools developed by Kihara et al. (2015) and Tamene et al. (2016). For 
each surveyed plot of the household, a record of agronomic practices including crop 
varieties, cropping systems, land management, and labour and nutrient inputs was 
made. 
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3.6.1.3 Crop yield model 

Smallholder farming systems of Africa are largely considered nutrient extractive 
industries because even if nutrient uses are low, the input usage is inefficient. Being the 
principal product farmers derive from farmlands, the policy and management aim is not 
to reduce the output but to increase its production efficiency. Empirical estimates of 
aggregate production functions (the Cobb-Douglas and Frontier) are important 
theoretical basis for determining the elasticity of substitution between technical 
change, labour and capital (Knoblach & Stockl, 2019). These basic models have been 
extensively applied in smallholder agricultural systems that are characterised by 
heterogeneous farms and operational forms (Sau, 1971). The individual farms are 
considered as firms with considerably large cross-firm differences in productivity, low 
aggregate productivity and imperfect markets that lead to friction in resource allocation 
(Kaiji & Zheng, 2007).  

The interventions aiming at increasing efficiency such as input subsidies and 
technical approaches can trigger cyclical changes not only in production but also in 
consumption and capital re-allocation. When allocating resources among the plots, 
farmers face little policy and market influence within a growing season. Hence, we 
explore the efficiency arising from application of largely subsidised fertilizer. 
Production on each plot depends on input of fertilizer, land (size and inherent fertility) 
and labour as well as un-expected shocks such as droughts, pest and diseases. At the 
time of choice of land and labour allocation, it is largely assumed that the farmer knows 
land productivity but only partially aware of the distribution of un-expected shocks. 
Since smallholder farming still rely to a greater extent on natural soil fertility, 
accounting productivity variations due to inherent land quality is essential. 
Heterogeneity in soil quality is observable but available datasets are at scales not too 
large to depict differences between smallholder farm sizes.  

Since the subsidy coupons are received by a few households, community 
members usually share the subsidized fertilizers (50kg of NPS and 50kg Urea) and those 
with finances cover the fertilizer deficit with own purchases from the market. Given a 
household of two plots and average land size of 0.9 ha, the subsidised fertilizer is either 
applied to one of the plots or in most cases, mixed with own purchases. To evaluate 
efficiency arising from the subsidy as an input policy, we estimate the effect of 
increasing share of subsidised fertilizer on the yield derived from a plot. Consistent with 
policy, we assume that input subsidy boosts production. We are mindful however, that 
despite the removal of prize cap, the government continues with the deliberate policy 
of setting the prices of maize at minimum that is supposed to be affordable for the poor 
net maize buyers (Chirwa et al., 2008). This could potentially erode the gains from input 
subsidy.  

In the absence of extension officers, there is little government support (Tamene, 
Mponela, Ndengu, et al., 2016). To-date, with no/minimal mechanisation and synthetic 
pesticides and herbicides use, production in smallholder maize mixed farming systems 
of East and southern Africa is a function of family labour, fertilizers, manure and seeds. 
Operating at such a scale, the majority of households tend to produce less than the 
potential yields due to various degrees of inefficiency (Tamene, Mponela, Ndengu, et 
al., 2016). In these systems, the existing resources in terms of soil quality, water 
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availability and agronomic practices strongly influence variability in yield within the 
community-landscape. Adjustments have been made to factor production functions 
which enabled inclusion of nonconventional variables such as social capital and 
inherent land properties that have been found to shift the production function (Kihara 
et al., 2015; Tochombe, 2002). Including the local variables reduces the unexplained 
variation and improves parameter estimates for the inputs used in these highly diverse 
environments. 

The model specification therefore follows the basic structure of the production 
function and includes the variables that take into account spatial variations (Gourlay et 
al., 2017). Since there is usually a proportion of farms that do not receive inputs while 
others receive them in large amounts, data are truncated at zero with positive skewness. 
The data from smallholder farms do not follow the assumptions of normal distribution 
as the variance is often larger, which is a biological and socioeconomic reality but a 
statistical problem called overdispersion. Data transformations, including log 
transformation, are widely used to successfully normalise. The main estimation 
challenge encountered using log transformations is when the dataset contains zero 
values. The practice here is to fudge the whole dataset by adding one, which distorts the 
estimates (O’Hara & Kotze, 2010).  

To avert these problems, the Generalised Linear Model (GLM) was used and 
implemented using the procedure by Glick (2015) to select both the family and link 
functions. The link function directly characterises how linear combination of predictors 
is related to the prediction on original scale. The first run with gaussian family and 
identity link and the slope of residuals and predictions indicate the distribution with 0 
being gaussian, 1 poisson, 2 gamma, and 3 inverse gaussian/wald. The link was chosen 
by comparing the specification tests including model convergence and the BIC and AIC 
of the different link specifications. Incidentally, all nutrient input and crop yield models 
had gamma distribution and the log link function with variance proportion to square-
root of mean. This has been found to be robust at modelling data distributions with 
positive mass often clumped at zero (representing no impact) and a continuous density 
on the positive reals capturing the impact (Maindonald & Braun, 2010; McCullagh, 
2007). In that way, the model estimates the joint impact of frequency and intensity of 
explanatory variables on the target variables. 

3.6.1.4 Crop yield explanatory variables 

Development of varieties that are suited to environmental constraints, coupled with 
increasing use of inorganic fertilizers, were the major break-through during the green 
revolution. However, it is now a common knowledge that resource limited farmers 
continue to produce sub-optimal yields despite using improved varieties. Consistent 
with theory, we assume that a farmer h produces crop yield (𝑞ℎ𝑖) on plot i from land 
(𝑙ℎ𝑖), family labour (ℎℎ𝑖) and nutrient inputs (𝑘ℎ𝑖).  

Most if not all of the farms in the study area use family labour, which is typical 
in rural communities. Unlike the capitalistic farm, labour allocation at household level 
is guided by the utility of additional consumption made possible by its marginal 
productivity but also faces disutility among members after extended engagement in 
farming. This study corrects for this by not using total family size or available labour 
since larger households owning smaller farm sizes would have relatively excess labour 
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which might not be utilised for production. The study captured the actual number of 
hours that the various labour categories worked. To correct for disutility, the 
contributions of different age classes and gender groups were converted into man-
equivalents. The labour data was collected for number of hours worked by individual 
members disaggregated by sex and age class for each plot managed by the household 
and for each agricultural activity: land preparation, sowing, weeding, fertilizer 
application, manuring and herbicide/pesticide application, harvesting, transport and 
threshing for storage. The number of days and hours worked by hired labour was also 
collected for each sex and age class by plot and activity.  

The survey captured mostly the two main fertilizers used: NKP (23% N: 21% P2O5: 
0% KO2) and Urea (46% N) as basal and top-dressing or mixed. For economic 
evaluation, the prevailing market price of fertilizer was obtained and used for estimation 
of potential cost of fertilizer and subtracted the reported purchase prizes to come up 
with the percentage that was subsidized. Although almost 30% of the households in the 
study villages receive coupons, community members contribute and share the fertilizer.  

Weeds compete with crops for resources such as sunlight, moisture or nutrients. 
In this study the weeding frequency was used as a proxy where farmers do not weed 
(worst case), weed one or twice or three times. Although it could be possible that plots 
that were weeded three times are located in areas with more vigorous weed growth, we 
assume that inclusion of other plot variables reduces the effect and weeding twice or 
thrice are the best agronomic practices. 

Since the study region’s catena is characterised by sloping escarpments and flat 
plains, site productivity could vary along the topographic gradients. At landscape level, 
the major determinants of ecosystem’s primary productivity that includes soil and water 
status have profound effect on production. Since spatial data on soil and water status 
covering the study site are non-existent, the drivers including climate and topography 
are used (Le, 2005). A topical study and intensive review of literature by Le (2005) 
provides a detailed overview of drivers of productivity at landscape level as summarised 
below. The soil properties that strongly vary across the catena and drives plant growth 
include: soil depth, soil moisture, soil carbon content, soil pH and total exchangeable 
bases. Several indices are used to depict the water flow and material transport capacity. 

The mean rate of soil material transport capacity (SPI) at a given location is a 
product of water flow factor and the slope shape factor approximated using the upslope 
contributing area per unit of a contour length (𝑃𝑢𝑝𝑠𝑙𝑜𝑝𝑒) and slope gradient (𝑃𝑠𝑙𝑜𝑝𝑒), 

respectively. These are estimated for grid cells of a 30m SRTM-DEM 1 Arc-Second Global 
(USGS, 2018). The water flow factor for a grid cell shows the accumulative potential of 
soil and water with a positive influence on soil productivity while slope gradient 
determines kinetic energy of water flow hence has a positive relationship with erosion 
as a degradation process. In other words, S is the measure of erosive power associated 
with flowing water. It is based on the assumption that discharge is proportional to the 
specific catchment area. It predicts net erosion in areas of profile convexity and 
tangential concavity (flow acceleration and convergence zones) as well as the net 
deposition in areas of profile concavity (zones of decreasing flow velocity). The balance 
between the deposition accumulation potential and erosion degradation risk defines 
the inherent site productivity and could be used to predict sustainability. 
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The inclusion of these long-term productivity drivers gives an indication of the 
long-run determinants of agricultural growth. Much of the variation in agricultural 
performance and in data collected for economic analyses is associated with short-term 
fluctuations that are sometimes considered as nuisance variations or potential biases 
and often averaged over temporal scales. Yet, such averaging distorts the estimates 
across sites and affects empirical results of productivity. 

3.6.2 OUT3: Soil erosion 

Soil erosion is one of the five major nutrient outputs from farming systems and could 
also be considered as an input to farms downstream through sedimentation (Stoorvogel 
& Smaling, 1990). In the sloping rift valley escarpments of Malawi, for decades 
cultivation has been extended to non-arable hill slopes without appropriate soil 
conservation measures (Farmer et al., 1977). The focus has been to estimate and curb 
soil loss (FAO, 2019; Vargas & Omuto, 2016). Downstream and intra catchment gains 
from sedimentation have been entirely neglected despite being one of the major 
nutrient sources (Tamene, 2005).  

A six-year erosion trial conducted from 1984 on the escarpments with 44% slope 
measured as high as 80 t ha-1 yr-1 loss of topsoil a year after vegetation clearance with 
continued losses of 21.6 t ha-1 yr-1 in subsequent years (Banda et al., 1994). The erosion 
trial was managed as per the farmer practice of constructing earth ridges of 30 cm high 
across slopes. Despite soil erosion’s rating of being the most serious form of land 
degradation impeding national development, the efforts to curb it are non-existential. 
Earlier estimates showed high soil loss rates of 10 - 43 t ha-1 yr-1 compared to the rate of 
soil formation of 12 t ha-1 yr-1 (Bishop, 1995; World Bank, 1992).  

The loss of soils from farmlands entail loss of medium for crop growth, essential 
plant nutrients as well as disruption to downstream services. In Malawi, the total annual 
cost of land degradation due to vegetation loss and soil erosion is estimated at 320 
million US$, which is equivalent to 7% of the country's Gross Domestic Product (Nkonya 
et al., 2016; World Bank, 2019). In addition to their direct contribution to the livelihoods 
of farmers upstream, the escarpments are essential sub-catchments for supply of 
irrigation and hydropower water in the Shire Basin and directly or indirectly influence 
the livelihoods of 22% of Malawi’s population. With a population density of 230 persons 
km-2 in Malawi (GoM, 2018), which is quite high compared to other countries in 
southern Africa, there is enormous pressure on land resources. Consequently, land 
degradation is a major environmental problem in the country (Li et al., 2017). 

The Ntcheu district in central Malawi is one of the areas in the country which is 
seriously affected by soil erosion, contributing significant sediment to the Shire and 
ultimately siltation of the major hydro-electric dams (Vargas & Omuto, 2016). Rills and 
gullies are relatively prominent features in the district (Davies et al., 2010). In 1992, 
erosion estimates showed that Ntcheu escarpments experienced soil loss of more than 
30 t ha-1 yr-1 compared to the national average of 20 t ha-1 yr-1 (World Bank, 1992). The 
more refined estimates in 2014 also found that despite the earlier higher estimates that 
convinced the Malawian government to push for programs on land management in 
Ntcheu escarpments, the area continued to experience higher soil loss of around 10 t ha-

1 yr-1, which was double the estimated national average of 5.9 t ha-1 yr-1 (Vargas & Omuto, 
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2016). The soil erosion problem in the study sites are exacerbated by rapid increase in 
population, resulting in land scarcity, and putting even more pressure on the remaining 
land resources (GoM, 2018). Due to shortage of land, farmers resorted to cultivating 
marginal lands/unsuitable areas with no or inadequate conservation measures (Braslow 
& Cordingley, 2016; Nakhumwa, 2004). 

Considering the severity of land degradation and its associated impacts, there is 
an urgent need to devise mechanisms that can minimize both the on- and off-site 
impacts of catchment erosion and sediment delivery. Integrated landscape 
management and restoration practices are essential to both improve existing system 
productivity and reduce land degradation, thereby sustaining gains both on- and off-
site. Soil erosion and delivery processes do not occur uniformly across space, and it is 
currently not feasible to sustainably manage all areas affected. A targeted response is 
therefore employed where resources are directed to areas of high risk rather than 
spreading them equally across the landscape. In addition, limited financial resources as 
well as restrictions on land often exclude the application of conservation measures to 
all areas experiencing erosion (Tamene & Vlek, 2007). For appropriate targeting of 
relevant areas, there is hence a need to identify major sub-catchments that should be 
targeted due to not only their major sediment contribution downstream but also 
considering their potential in the provision of ecosystem services. 

Distributed soil erosion models can be used to identify landscape positions with 
high rates of soil loss for both detailed investigation and applying suitable management 
options geared to tackle sediment yield. A wide range of models are used to estimate 
soil erosion at different scales including the Universal Soil Loss Equation (USLE) 
(Wischmeier & Smith, 1978); the Revised Universal Soil Loss Equation (RUSLE) (Renard 
et al., 1997); and the Soil Loss Estimation Model for Southern Africa (SLEMSA) (Elwel & 
Stocking, 1982). Despite the fact that soil erosion models are considered useful options 
to predict erosion/deposition processes for resource management applications (Nearing 
et al., 1989), there is, however, no clear agreement in the scientific community which 
kind of model is more appropriate for the simulation of natural processes. Selection of 
appropriate model(s) that can suit the areas under study considering the objective at 
hand, resources available and detail and scale of investigation is therefore crucial. In 
data sparse regions, the models/tools that are easily available and are easy to use are 
preferable. Provided that appropriate parameter specification is made before 
application, empirical models such as the USLE and its derivatives are best suited to 
such environments. However, it is also important to note that these models may not 
provide adequate soil loss information at landscape scale due to limitations such as 
inability to represent deposition and sedimentation processes, and account erosion 
from gullies and bank collapse (I. D. Moore et al., 1991). However, recent advances in 
the development of digital elevation models (DEMs), GIS and derivation of the slope-
length component of the USLE has enabled their application in complex terrain 
landscapes and handle modelling hydrological processes of complex topography at 
larger geographical scales (Tamene, 2005). 

Soil mapping for land use classification and land management needs to consider 
other parameters such as available land management options in terms of biophysical 
limits and economic feasibility (Farmer et al., 1977). Successful implementation of land 
management practices is viewed to depend on the aspiration of land users and the 
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strategies by the local political systems by, for example, aggregating soil erosion at 
administrative units such as districts (Vargas & Omuto, 2016). The aggregates do not 
provide useful insights for targeting interventions, especially for most districts in 
Malawi that have high variability in land form and land uses. Micro-catchment-based 
options are thus needed. Without detailed soil erosion measurements, the study uses 
site specific parameters and aim at identifying priority areas that require prior 
management interventions through mapping hotspots areas of erosion and simulate the 
potential impacts of different land management options in reducing soil loss and 
sediment yield. The main task was to identify key sub-catchments to focus investments 
for integrated soil and water conservation in the Riviridzi Sub-watershed of Shire Basin 
employing geospatial techniques and soil erosion models. This was followed by analysis 
of the sediment yield reduction potential of SWC/SLM practices through scenario 
analysis. The escarpments of Ntcheu district of Malawi were selected considering the 
severity of soil erosion and its impact on downstream sedimentation of irrigation canals 
and HEP stations. The framework employed and results of this study contributes to the 
provision of quantitative information for targeting land and water management efforts, 
which in general are missing. It also fits well to the aspiration of the Malawian 
gorvernment to develop a baseline soil loss rate to help with the Agricultural Sector 
Wide Approach Program (ASWAp) indicator monitoring (Vargas & Omuto, 2016). 

3.6.2.1 Model selection and derivation of parameters  

Identification of “hotspot” areas of erosion for appropriate management interventions 
to tackle the major causative factors at their specific locations is imperative from both 
economic and ecological viewpoints. Although data are scarce, there is need for reliable 
information. A good model is one that can satisfy the requirements of reliability, 
universal applicability, ease of use with minimum data, comprehensiveness in terms of 
the factors and erosion processes included and the ability to take account of changes in 
land-use and management practices (Morgan et al., 1998). However, no single model 
can satisfy all these requirements or is the “best” for all applications and the choices of 
models generally depend upon the purpose for which they are needed, the accuracy and 
validity of the model, resources available and the scale and detail of application. In this 
study, the Revised Universal Soil Loss Equation (RUSLE)-based approach adjusted for 
sediment delivery ratio (SDR) was applied to identify areas that are at high risk of soil 
erosion and require priori management intervention. The RUSLE model was selected 
due to relative data availability. The basic RUSLE model (Renard et al., 1997) is 
expressed as : 

𝑅𝑈𝑆𝐿𝐸 (𝑡 ℎ𝑎−1𝑦−1) = 𝑅𝑥𝐾𝑥𝐿𝑆𝑥𝐶𝑥𝑃       3-11  

Where, R = rainfall erosivity (MJ mm ha-1 h-1 y-1); K = soil erodibility (t ha-1 MJ-1 mm-1); LS 
= slope length-steepness (-); C = land use/cover (-); and P = conservation/management 
(-) factors.  

The data required by the model were collected from different sources and pre-processed 
to be used as model inputs. The parameters of the model and the methods of their 
extraction are discussed below.  
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3.6.2.2 The slope-length (LS) factor 

Topography defines the effects of gravity on the movement of water in a watershed and 
therefore influences many aspects of the hydrological system. Terrain geometry and 
characteristics (slope, aspect, and curvatures) have significant impacts on the spatial 
distribution of erosion/deposition processes and are key inputs for hydrological models 
(I. D. Moore et al., 1991; Renard et al., 1997). Terrain attributes can easily be derived 
using GIS and other associated hydrological models provided that sufficiently detailed 
DEMs are available. The most common sources of DEMs are digitized contours from 
existing topographic maps. For the study site, the recently released 30-m DEM-STRM 
was used to estimate terrain attributes. Once the DEM was downloaded, appropriate 
pre-processing steps were undertaken to fill pits/sinks in order to “route” runoff to the 
catchment outlet without facing “unnecessary obstacles (Tamene et al., 2017a). After 
necessary pre-processing, the LS-factor at landscape scale were estimated based on the 
unit contributing area and slope steepness (I. D. Moore et al., 1991): 

𝐿𝑆 = (𝑚 + 1)𝜋 [
𝐴𝑆

22.13
]

𝑚

[
𝑠𝑖𝑛𝛽

0.0896
]

𝑛

              3-12  

Where, m (0.4 – 0.56) and n (1.2 – 1.3) are slope length and angle coefficients; As 
is the specific upslope contributing area per unit length of contour; β is the local slope 
gradient (degrees). For both As and β , it is assumed that within the 30m pixel distance, 
the water flow for land with ridges across the slope may not be significantly altered as 
ridge breakage has been observed (Mohamoud & Canfield Evan, 1998). The unit 
contributing area (As) is calculated by multiplying a flow accumulation grid with the 
cell size (I. D. Moore et al., 1991) as: 

 𝐴𝑠 =
1

𝑏𝑖
∑ (𝑎𝑖𝜇𝑖)

𝑛
𝑖                     3-13  

Where, ai is the area of the ith grid cell; b is the contour width of the ith cell 
(approximated by pixel resolution); μi is the weight depending upon the runoff 
generating mechanism and infiltration rates; N is the number of grid cells draining into 
the ith grid cell. In this study we used μ=1 assuming that rainfall excess is generated 
uniformly over the landscape (I. D. Moore et al., 1991). 

3.6.2.3 Rainfall erosivity (R) factor 

Soil loss is closely related to rainfall through the detaching power of raindrops striking 
the soil surface and the transportation power of runoff (Wischmeier & Smith, 1978). The 
R-factor, defined as the product of kinetic energy and the maximum 30 minute intensity, 
is a very good representation of rainfall intensity and can be related to the erosivity of 
rainfall events (Wischmeier & Smith, 1978). In the study region, measurements of 
kinetic energy and raindrop size are not readily available, especially when large 
geographical areas are involved. Consequently, empirical relationships have been 
established between rainfall intensity and kinetic energy (Renard et al., 1997). In such 
cases, total annual or monthly rainfall can be used to estimate rainfall intensity provided 
that appropriate calibrations are made. Different researchers have tried to derive the R-
factor based on monthly or annual rainfall data of representative stations. Some 
relationships developed for African conditions that are widely used include those for 
Botswana (van der Poel, 1980), eastern Africa (T. R. Moore, 1979) , and West Africa 
(Roose, 1977). To-date, there is no adequate literature available for Malawi that enables 
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to derive the R-factor based on monthly/annual rainfall data. Hence, the equation by 
Moore was adopted and R-factor was estimated from annual rainfall as follows:     

𝑅 = 0.029 ∗ (11.36 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 701) − 26      3-14  

where (11.36 ∗ 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 701) = 𝑅𝐸, based on the estimated correlation between 
rainfall energy RE and total annual rainfall for areas receiving less than 1,250 mm yr-1 
like that of the study area which is as high as 0.962 (T. R. Moore, 1979). Rainfall records 
for nine years (2009 – 2018) were obtained from the weather station at the Nsipe 
Extension Planning Area, which is situated around 10 km north of the study site. 

3.6.2.4 Soil erodibility (K) factor 

The K-factor is defined as the rate of soil loss per unit plot reflecting the susceptibility 
of soil materials to the 'moving/shearing' forces of running water or rain droplet (Renard 
et al., 1997). Soil erodibility is an important factor that determines the relative easiness 
of the soil for detaching and transporting forces and is mainly a function of texture, 
organic matter (OM) content, structure and permeability (Wischmeier & Smith, 1978). 
The equations developed by Auerswald et al. (2014) were used to derive the K-factor 
values for the study area.    

𝐾 = 2.77 ∗ 10−5 (𝑓𝑠𝑖+𝑣𝑓𝑠𝑎 ∗ (1000 − 𝑓𝑐𝑙))
1.14

∗ (12 − 𝑆𝑂𝑀) + 0.043 ∗ (𝑆 − 2) + 0.033 ∗ (𝑃 − 3)        3-15  

fsi+vfsa is % silt + % very fine sand, fcl is % clay, SOM is % soil organic matter, S is structure 
index from 1 - 4 increasing from very fine granular, blocky, platy, or massive, P is 
permeability index from 1-6 from rapid to very slow. The digital soil maps developed in 
section 3.4 were used for the texture and SOM distribution and for derivation of the 
permeability parameters. P was derived using the established relationship with bulk 
density as indicated in Table 3—10. S was determined by packing density (PcD) which 
is a function of bulk density (BD) and percent clay content (FAO, 2006a).  

𝑃𝑐𝐷 = 𝐵𝐷 + %𝑐𝑙𝑎𝑦 ∗ 0.009       3-16  

If if PcD < 1.4, S = 3; if PcD >= 1.4 to 1.7, S = 2; and if PcD > 1.7, S = 1 (Jones et al., 2008). 
Here we take note that the S and P values are inverse indicating for instance that the 
higher the S index value, the lower the PcD resulting in higher K-factor and its larger 
contribution to erosion. 

Table 3—10 Permeability Index estimated from Bulk Density (g cm3) 
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P BD 
range 

Ped shape  
(soil structure) 

Field observation 

6 <0.9 granular Many pores, moist materials drop easily out of the auger. When dropped, sample 
disintegrates into numerous fragments 

5 0.9-1.2 single grain, 
granular 

Sample disintegrates at the instance of sampling, many pores visible on the pit wall 

4 1.2-1.4 subangular 
blocky 

When dropped, sample disintegrates into few fragments, further disintegration of 
sub-fragments after application of mild pressure 

3 1.4-1.6 angular blocky Knife can be pushed into the moist soil with weak pressure. Sample remains mostly 
intact when dropped, further disintegration possible after application of large 
pressure. 

2 1.6-1.8 platy Knife penetrates only 1–2 cm into the moist soil. Sample remains intact when 
dropped, no further disintegration after application of very large pressure. 

1 >1.8 prismatic Very large pressure necessary to force knife into the soil, no further disintegration 
of sample. Sample remains intact when dropped, no further disintegration after 
application of very large pressure. 

Source (FAO, 2006b) 

3.6.2.5 Cover-management (C) factor 

Land-cover types play a significant role in the variability of infiltration capacity, runoff 
potential and erosion risk. When land is covered with vegetation, total roughness can 
be high, which can increase the runoff threshold and reduce erosion. When the land 
has poor surface cover, its roughness decreases, ultimately resulting in a lower runoff 
threshold and a quick response to rainfall. Mature forest parcels do not generate runoff 
and are therefore hydrologically isolated, while arable land areas can be considered as 
being hydrologically continuous (Desmet & Govers, 1996). Human interventions such 
as repeated cultivation and overgrazing can result in surface crusting and increase 
runoff potential. Accounting the spatial variability of surface cover is therefore one of 
the most decisive elements of soil erosion assessment. In the RUSLE model, the C-factor 
is used to handle the impacts of surface cover on soil erosion and redistribution 
processes and transform natural erosion potential due to rainfall, soils and terrain into 
to actual soil erosion risk involving human practices (Wischmeier & Smith, 1978). 
Typically, established C-factors within the regions are assigned to land use and cover 
classes. Since 1992, forested areas in the study area have been cleared creating a sparse 
tree mosaic with grass undergrowth (Braslow & Cordingley, 2016). Within smallholder 
farming systems of the escarpments, land use or cover classes are complex to 
distinguish.  

The greening between cultivated and non-cultivated areas is usually 
indistinguishable over short distances (Forkuor et al. 2015). The natural vegetation is 
dominated by open woodlands with a layer of grass as an understorey interspersed with 
savannah grasslands (Campbell 1996). Moreover, trees are either left to grow or planted 
within the grassy (cereal) dominated farmlands, thereby creating an indistinguishable 
mosaic of trees and grass/crop as an understorey. Other sources of confusion include 
management (e.g. planting dates, plating patterns, weeds and fertilisation), background 
soil and other environmental conditions such as clouds. As a result, even within the 
same crop class, the spectral identities may change over time as the crops grow.  

For the natural vegetation, the deciduous trees and grasses regain leaves during 
the start of the rainy season and reach peak vegetative growth at the same time as 
annual crops. The trees maintain their leaves until the onset of the dry season. 
Herbaceous plants including grasses and forbs have similar physiological growth 
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pattern as annual crops. The differentiation between different fields may vary over years 
due to rotation and mixed cropping. There is temporal overlap of the signatures within 
and between classes. The national land cover or land use maps employ satellite imagery 
with coarser spatial resolution as co-variates (FAO, 2012). Hence, the maps may not be 
of practical use to capture cultivated land at the scale of smallholder farmers (Forkuor 
et al., 2017)..We assume that non-cultivated lands within the landscapes are either 
inherently infertile or fallow lands where farmers have observed no productivity 
response.  

Therefore, to avoid confusion when allocating unvisited farmlands to the 
remaining population, the mapping aimed at demarcating the boundaries for 
uncultivated fields and dwelling areas. Manual digitising was found to be problematic 
with overlapping or discontinuous boundaries even for medium-scale customary estates 
(Deininger & Xia, 2017). The field boundaries are fuzzy due to unregulated sharing, 
fragmentation and selective expansion to uncultivated areas. 

Considering the complex configurations, sequential mapping was used (Braslow 
& Cordingley, 2016). The aim was to map and mask uncultivated areas and built-up 
residential areas. The first step involved visual identification and digitizing of parcel 
boundaries with the aid of the high resolution Google Earth imagery of between June 
2016 to December 2017 (Google Earth, n.d.). At this stage, the typical confusions such as 
fields with moderate tree cover and an under-storey of either grass or cereal crops were 
somehow discerned. The mapped boundaries were printed and used for validation 
within each village with the residents, and where in doubt, verification was done 
through field visits. The land cover and land use therefore had three distinct categories 
and the C-factors established for African bushland (0.02-0.04), cereals (0.1-0.17), cereal 
intercropped with pulses (0.15) and built up residential (0.13) were used (Breetzke et al., 
2013; Henao & Baanante, 1999). 

3.6.2.6 Support practice (P) factor 

The severity of erosion in an area is dictated by the degree of conservation practices in 
place or the magnitude of human influence exerted on it. The P-factor gives the ratio 
between the soil loss expected for a certain soil conservation practice to that with up-
and down-slope ploughing (Wischmeier & Smith, 1978). The P-factor values are 
generally derived from spatially distributed land conservation or management data. 
Although reports indicate that some conservation measures exist within the study 
region and farmers continue to implement soil and water conservation measures (CIAT, 
2016), there is no adequate information available about the spatial distribution of these 
management practices at the required resolution. Others report that no significant 
conservation practices have been implemented across the study watershed (Vargas & 
Omuto, 2016). However, during the study period, there were some efforts to introduce 
soil and water conservation measures (CIAT, 2016) but the scale was still too small to be 
captured during the survey. Since farming is done using a hand hoe and ridges of 30 cm 
height are aligned across the slope, we set the P-factor for cultivated fields at 0.9 
(Tamene et al., 2017b). Since there is little disturbance to soils of uncultivated areas, a 
P-factor value of 0.65 was used, which is between that of forested area and strip 
cultivation (Tamene et al., 2017b). 
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3.6.2.7 Estimate sediment delivery ratio  

The RUSLE is designed to predict annual soil loss without considering intermediate 
potential deposition (Tamene, 2005). However, not all of the soil eroded from the upper 
portions of a watershed are delivered to a point downstream (Stefano et al., 2005). 
Depending on surface cover and terrain characteristics, much of the material can be re-
deposited at locations where the momentum of the transporting water is insufficient to 
carry the eroded material downslope or along the channel. Generally, the potential of 
intermediate deposition increases as the watershed area increases because there are 
more opportunities for eroded sediment to settle. To estimate the proportion of eroded 
sediment that leaves a given parcel, the sediment delivery ratio (SDR) which relates the 
sediment transported to a location in the channel system to the gross erosion from the 
drainage area above that point (Stefano et al., 2005; Tamene et al., 2017b) was calculated 
as:  

 𝑆𝐷𝑅𝑖 = 𝑒𝑥𝑝 (−𝛽 ∗ 
𝐿𝑖

𝑅𝑖𝑆
𝑖
1/2)       3-17  

Where, β is a routing coefficient; Li is the length of ith segment in the flow path and is 
equal to the length of the side or diagonal of a cell depending on the flow direction in 
the cell; Ri is coefficient based on surface roughness characteristics derived from the 
digital elevation model; Si is the slope gradient. 

The β coefficient represents ‘watershed specific’ parameter to characterize effects 
due to roughness and runoff along the hydrologic path and primarily depends on 
watershed morphological parameters (Ferro et al., 2003a). In this study, we used a β 
coefficient of 0.0014 which corresponds to the catchment size and LS-factors for the 
RUSLE estimated by Ferro et al. (2003b).  

3.6.3 OUT4: Leaching 

In addition to overland losses through erosion, nitrogen and potassium which are 
loosely held to soil particles leach to lower soil horizons. Data on nutrient leaching 
African soils are sparse. The amounts of nutrients leached (kg ha-1 yr-1) vary with soil 
attributes (clay content and soil organic carbon), nutrient levels in inorganic and 
organic inputs as well as nutrient uptake by plants. The empirical relationship expressed 
by Lesschen et al. (2007b) as: 

 

N_leached = (0.0463 + 0.0037 * (P / (C * L))) * (FN + D * SN - U)          3-18  

K_leached = (-6.87 + 0.0117 * Rainfall + 0.173 * (K_fert + K_orga) + 0.265) * CEC       3-19  

where  

P = precipitation (mm year-1) , C = clay (%), L = layer thickness (auger depth) 
(m),     FN = mineral and organic fertilizer nitrogen (N_fert + N_orga) (kg ha-1 
year-1),              D = decomposition rate of organic matter, SN = amount of nitrogen 
in soil organic matter (SOM) which is assumed to be the total N (TN) in the soil 
as high correlations between SOM and TN have been observed (Tamene et al., 
2019), U = Uptake by crop (N_Product + N_Residues) (kg N ha-1 year-1) and CEC 
= cation exchange capacity (cmol kg–1). 
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3.6.4 OUT5: Gaseous losses 

Nitrogen gaseous losses through denitrification and volatilisation occur mostly under 
wet flooded conditions and in alkaline soils, respectively (Stoorvogel & Smaling, 1990). 
Therefore, in the Rift Valley escarpments, losses through these processes are minimal 
and yet to be measured. The N_gase (kg ha-1 yr-1) is therefore estimated using the 
transfer function derived by Lesschen et al. (2007b). It is a function of annual rainfall 
(mm yr-1), fertilizer and manure input and available soil organic carbon: 

N_gase = 0.025 + 0.000855 * Rain + 0.13 * (N_fert + N_orga) + 0.117 * P_SOC        3-20  

Soil organic carbon (CSD) is lost due to degradation of SOM by microbes under 
the environmental conditions (f) as computed for IN2. The CSD is adjusted for soil active 
carbon (ActiveC) estimated for the study area of 0.034 ± 0.016% C (H. Wang et al., 2019). 
The soil organic matter degradation rate widely used of 2% is based on the initial studies 
by Van den Bosch et al. (1998) which could be lower. However, the study by Mpeketula 
(2016) found that between 1990 and 2013 soil organic carbon in croplands of Malawi 
declined from 10.3 to 9.5 g kg-1, indicative of a loss rate of 0.0615 per annum. Hence the 
carbon loss due to degradation is estimated both via the annual decay rate established 
by Mpeketula (2016) and empirically using the model by Van den Bosch et al (1998), 
which is parameterised as:  

CS D  =  ACTIVEC(KG/HA)  * BD * Depth * SOMD E G R A T E  *  f-env    3-21   

3.7 Full soil NPK and SOC balance 

The nutrient balance has several implications. Of major concern is that low nutrient 
input leads to low food production and soil degradation. On the other hand, excessive 
application of major nutrients especially nitrogen and phosphorus can lead to nutrient 
drain into the environment causing pollution and low profitability. The nutrient (NPK) 
and SOC balance are computed as the difference between inputs and outputs. The total 
soil nutrient (Xsoil) after a growing calendar year (t+1) is expressed as: 

𝑓(𝑋𝑠𝑜𝑖𝑙
𝑡+1 ) = 𝑓 (𝑋𝑠𝑜𝑖𝑙

𝑡 +
1

𝜌𝐶𝐷
(∑ 𝑋𝑖𝑛

𝑡 − ∑ 𝑋𝑜𝑢𝑡
𝑡 ))     3-22  

Where X includes the nutrients NPK and the SOC, whilst ρ, C and D are soil density, 
coarse fragments factor and profile depth, respectively. The depth is set at 10cm 
considering that the ridge spacing is 60, 75 and 90 cm and corresponding heights are 
20, 25 and 30 cm (Mloza-Banda et al., 2014). Annually, farmers re-make the ridges by 
hand hoeing and minimise drudgery by scraping to the minimum depth possible. 
Moreover, fertilizer and manure are placed at 5 cm depth on the ridge as it has been 
established that such supplements largely contribute to nutrient stocks for the upper 0-
10 soil layer (Ibrahim et al., 2015). 

The plots and landscapes have different initial states at time t, as well as the in and 
out pathways. The NPK and SOC share pathways such as inputs of organic materials, 
crop residues and sedimentation and the output through soil erosion. The inorganic 
fertilizer has been the major source for N and P and only since recently, it has become 
a minor K source. Biological nitrogen fixation is a source of N when the farmer decides 
to grow legumes on a plot. Rainfall deposition adds to the NPK stocks whilst crop 
harvest and residues, if not returned, are major human pathway taking NPK out of the 
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soil and farming system. Leaching is a significant output pathway for N and K and 
gaseous losses contributes to N output. 

3.8 Economic costs, income, losses and benefits 

As farmers invest their labour, land and other financial resources to produce food and 
attain food sufficiency, considerable amounts of resources and energy go to soil fertility 
management. Hence their decisions to undertake various forms and degrees of soil 
fertility management are strongly influenced by economic considerations. Over time, 
several programmes and policies have been made that have had a direct or indirect 
impact on pricing of both inputs and outputs. The notable example is the introduction 
of the Malawian farm input subsidy programme which subsidies inputs such as fertilizer 
and seeds with the aim of making them affordable and accessible to poor farmers. Using 
classical economics, it is assumed that farmers would decide to apply more inputs if 
benefits outweigh the costs. Such cost-benefit analyses have been widely used for 
measuring both short- and long-term economic impacts.  

The paucity in data capturing initiatives and lack of standardised monitoring and 
evaluation frameworks make it difficult to precisely quantify the impacts on soil fertility 
depletion or replenishment (Vågen et al., 2016). Approaches such as potential loss of 
production and replacement costs of depleted nutrients has been used (De Jager et al., 
1998), but still there are hidden and off-site costs such as irreversible eroded top soil 
that is hardly accounted for (Telles et al., 2013). It is even more challenging to project 
these into the distant future. Considering the spatial extent and availability of data, we 
estimate the onsite-costs of nutrient loss, yield loss and attempt to evaluate land values. 
We consider sedimentation as an externality that benefits downstream farms.  

Land values are estimated from the average rental prices for the period 2002 – 2012 
(Chamberlin & Ricker-Gilbert, 2016). These are adjusted using the productivity index 
(Table 3—12). Cost of erosion and benefit from sediment deposition are estimated as 
the value of crop yield drop due to erosion empirically established in Zimbabwe and 
west Africa averaging 8.2% per year (Panagos et al., 2018), linearly adjusted for net 
erosion or net deposition.  

The economic benefit for deposition, leaching, nitrogen loss through gaseous and 
residues are estimated from the potential replacement cost for N and P. Price for N, P & 
K are derived proportional to the nutrient composition in Urea (46%N), 23:21:0+4s 
(N:P:S) and super-D (14N:28P:14K) fertilizers, respectively. 

3.9 Integrated scenarios of structural and functional changes in the agro-
ecosystem  

At the doorstep of smallholder farmers, to maintain or improve soil fertility, they strive 
to either increase the nutrient input or reduce losses. The maize mixed farming system 
of East and Southern Africa is characterised as a nutrient mining system with overtly 
negative nutrient balances (Cobo et al., 2010). The problem is particularly grave for 
sloping escarpments, where despite the rugged landscapes and low productivity (Li et 
al., 2017), minimal measures are put in place to increase input or reduce nutrient output 
flow. In the past, land would be left under fallow to regain productivity. With increased 
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pressure, even uncultivated lands are barely revegetated but rather continuously 
cultivated. Of late, farmers are increasingly becoming aware of the challenges, and there 
has been increased interest and efforts to restore landscape health and reduce the 
nutrient gap (Braslow & Cordingley, 2016).  

 Considering the sheer number of decisions that farmers have to make and 
ecological processes contributing to balance of nutrient at plot-household level, 
projecting farm sustainability requires an integrated approach. Much as integrated 
analysis is desired, it is challenged by complexity. Complexity is a result of several 
factors namely: invisibility in that soil nutrients are invisible and difficult to measure 
directly, heterogeneity in terms of number of casual factors and their outcomes, non-
linear and interdependent processes, nesting of factors, processes and outcomes within 
social and ecological hierarchies, and cumulative effects leading to emergence of 
unforeseeable system states and equilibriums. These features pose both challenges and 
opportunities to modellers, policy makers and land managers as detailed in Le (2005) 
and Villamor (2012)and briefly indicated below. 

 In pursuit of their livelihood strategies, land managers aim at maximising 
products such as crop yield by judicious use of inputs. However, the chemical, biological 
and physical processes that transform inputs to outputs are largely invisible to them. In 
these smallholder farming systems, the paucity of basic data on farm inputs and outputs 
is indicative of little attention given to data generation. 

From the account of drivers of farmers’ decision to invest in soil fertility 
management, it is evident that farming communities significantly differ in 
characteristics and therefore take different actions (see section 2.1). For the three most 
commonly used inputs, the heterogeneity in resource endowments and social capital 
has risen into varying usage levels (section 1.2). The landscape too is also quite variable 
in terms of nutrient contents and topographic features that are directly or indirectly 
linked to both decisions: to re-invest and the anticipated output levels.  

Since the input and output flows and stocks are directional, single reductionist 
models of cause–effect are assumed to be the most appropriate and widely used 
(Akinola et al., 2010; Lesschen et al., 2007b; Smaling & Fresco, 1993). However, there are 
interdependencies not only among the driving factors but also among the outcomes 
with the combinations and combinatorics which tend to be exceedingly large to 
disentangle (Mponela et al., 2018). In some instances, a single factor may even have 
opposing effects on the same or different input or output processes (Howard & 
Matheson, 2005; McDonald & Moffitt, 1980). In a single directional bio-economic 
model, the estimates for nutrient inputs are used as drivers for the nutrient output 
processes. Farmers are conditioned to change their behaviour over time depending on 
their experiences, knowledge and beliefs accumulated over time. Hence the output, 
from previous year, though endogenous, sets precedence for the next action. The 
interlinkages creates a casual web such that one casual variable drives one or several 
others and vice versa (Le, 2005).  

Without considering the chemical reactions that happen at atomic and molecular 
level, even at farm level there are cobwebs of ecological entities and their process that 
aggregate, interact and emerge as dynamic landscape states and processes. Similarly, 
actions by single farmers aggregate at community level forming a plot/farmer – 
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landscape/community. The scale aggregation entails that nutrient flows initiated by 
farmers’ actions and the resulting nutrient stocks are constrained by exogenous factors 
operating at higher level and controlled by endogenous factors operating at lower level. 
These nested hierarchies create a constraint envelope and instability, as a model that 
empirically establishes casual relationships at one level in space and time could be 
endogenous and multi-directional at a higher level or a later stage (Le, 2005). In a real 
farming system, all processes are interwoven and impossible to disentangle. For 
instance, it seems plausible to establish a partial budget and evaluate fertilizer input 
and its impact on yield. But not all fertilizer is used by the plant and not only fertilizer 
supply nutrients to the plant. This makes tractability a challenge especially when the 
aim is to forecast sustainability. 

Forecasting in most cases depends on having prior knowledge of the system and 
based on histories, a possible future pathway is premised. Typically, scientific 
experimentation is needed to develop deterministic models. Through series of 
observations and experimentation, casual relationships have been developed which 
show input and output models but are usually simple and straight forward (Lesschen et 
al., 2007a; Smaling & Fresco, 1993; Van den Bosch et al., 1998). These mono-directional 
models were developed for small-scale single farms, homogenous landscapes (such as 
efficient large-scale farms) and for national aggregates that are useful to guide short-
term planning. For heterogeneous landscapes with in-efficiencies in almost all 
production factors and high rates of factor substitution (Larson et al., 2012), the power 
of prediction is reduced. In addition to prediction and validation challenges, data for 
the associated drivers and even the outcomes are either limited or inconsistently 
captured for most smallholder farming systems, making the predictions even more 
uncertain.  

 Social-ecological transformations in farming systems emerge from complex and 
adaptive feedback loops between interventions by land users and the underlying 
ecological processes, which continuously regulate the resource base. The drivers of 
transformation can either be proximate or underlying (Geist & Lambin, 2002). The 
proximate causes include ecological features such as terrain, rainfall and soil texture 
and agricultural practices that directly influence the nutrient input and output flows 
and stocks. The underlying factors are those that drive the proximate factors and the 
resulting nutrient balances, and that can best be explained by multiple factors and 
drivers acting synergistically. The changes therefore do not just have a single or a partial 
factor-causation but full interplay of economic, institutional, technological, cultural, 
and demographic variables. Much of these factors do not directly influence nutrient 
balance but underlie the proximate causes such as land use patterns, resource utilisation 
and development as thematically indicated in Figure 3.8. 
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Figure 3.8: Underlying drivers (technological, economic, demographic, policies and culture) of human 
actions that induce dynamic changes of nutrient balances at farm level.  
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3.9.1 Heuristic setting of conservation areas based on hotspot mapping 

Ensuring sustainable intensification at landscape level requires some deliberate 
policies to set aside degradation hotspot areas. Not all land is suitable for crop 
production. In Malawi due to biophysical limits and degradation levels, 28% of land is 
marginally suitable and 39% is unsuitable for crop production. 

To map hotspot areas for conservation as well as productive areas for 
cultivation, we construct the land productivity index using the Liebig’s linear scoring 
function (LLSF) (Liebig et al., 2001). LLSF is a multi-criteria evaluation procedure 
where land attributes are scored based on the range required for crop growth and 
environmental health on a scale of 0 – 1 (or a s a percentage). Values close to 1 are 
indicative of optimal conditions whilst close to 0 imply critical thresholds.  

The scoring factors and weights are generated using empirical knowledge and 
fuzzy techniques such as the established critical and sufficiency levels of nutrient 
stocks, or topographic limits for allowable soil loss as set in national environmental 
policies. To be of practical relevance, the identification of hotspots for targeted 
management should be in tandem with community aspirations raised during focus 
group discussions and participatory resource mapping.     

3.9.1.1 Uncultivated vs cultivated areas 

Much as humans influence the entire landscape, for this analysis, the farmer’s actions 
are concentrated on managed and cultivated areas. Hence, the need to crop out 
uncultivated areas and distinguish them from cultivated ones. The uncultivated areas 
include patches that are marginally poor, unsuitable for cultivation or fallows reserved 
for future cultivation. Although cultivated land is considered productive and has a 
higher factor scores there might be pockets that are degraded or too prone to 
degradation that need to be set aside.  

3.9.1.2 Rules for land conservation based on NPK and SOC critical values  

Although fallows have disappeared in the area due to land pressure, there are portions 
of land that are not cultivated either because they are inherently infertile or have 
reached a non-responsive state due to degradation (Kihara et al., 2016). For agricultural 
purposes, soil fertility has been evaluated in terms of critical and optimal plant growth 
requirements and ecological health of SOC, N, P, their stoichiometric rations and the 
functional soil quality indices (Table 3—11). Although the quantitative relationship 
between nutrient levels and land suitability for crop productivity vary among soil orders 
(e.g. texture), climatic regions and plant tolerance, the critical levels of soil conditions 
used in this study are generally regarded as limits below or above which substantial soil 
quality decline occurs (Tamene et al., 2019).  

Apart from the direct mineral inputs, substantial amounts of nutrients in 
agricultural and other terrestrial ecosystems are stored by and released from organic 
matter by micro-organisms (Palm, Gachengo, et al., 2001). Microbial nutrient demand 
is determined by the elemental stoichiometry of microbial biomass in relation to 
environmental nutrient availability, which has been found to be consistently similar in 
terrestrial ecosystems (Cleveland & Liptzin, 2007; Frossard et al., 2016). As such, 
stoichiometric ratios are the basic bio-chemical thresholds at which microbial 
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metabolic control in ecological systems switches from energy flow (C) to limiting 
nutrient flow (N, P), in the process either mineralising or immobilising N and P 
(Sinsabaugh et al., 2009). For instance, plants can be N-limited when foliar C:N > 25 
whereas C:N < 20 implies C limitation (Stevenson & Cole, 1999). Most of the C:N:P 
research has focused on degrading plant material, and hence the thresholds are 
insightful especially for soil N which is mostly in organic form (Frossard et al., 2016; 
Tamene et al., 2019). 

Table 3—11 Critical ranges of soil structural stability index (StI), soil organic carbon (SOC), total nitrogen (N), 
available phosphorus (P), and their stoichiometric ratios 

Variable Range Condition Study Region and intent 

SOC (%) 0.46 No response (Musinguzi et 
al., 2013) 

Fertilizer response in Arenosols (sandy 
soils) of Zimbabwe.  0.46-0.65 Variable 

>0.65 Responsive 
0.7 Low fertility (Zingore et al., 

2011) 
Soil fertility zones based on gradients from 
no manure low fertilizer input, high 
manure input, to natural woodland in 
sandy clay loam soils of Zimbabwe 

1.0 Moderate 

1.6 Most fertile 

2.1 Uncultivated 

1.0 Critical limit (Rattan Lal, 
2015) 

Reducing soil degradation risks and 
reversing degradation trends in SSA. 1.5 Threshold 

2.0 Threshold (D. J. 
Greenland et 
al., 1975) 

Structural stability for English and Welsh 
soils (widely used)  Total N (%) <0.15 Low (Hazelton & 

Murphy, 2007) 
Critical limits mostly from Australian soils. 

 > 0.25 High  

0.08 Very low (Lowole, 1965) Soil classification Malawi, fertilizer 
recommendation 0.08-0.12 Low  

P (mg/kg) <11.0 Low (Hazelton & 
Murphy, 2007) 

 

 >17.0 High  

 7.42 Critical limit (Aune & Lal, 
1997) 

 
 10.6 Threshold  

 15 Threshold (Snapp, 1998)  

 4 Minimum (Bado et al., 
2010) 

The min-max range from original to 
fertilised Ultisols of West Africa. The 
critical limit maize yield dropped from 1  to 
0.5 ton ha-1. The threshold set at level 
below which P input is needed for yield > 
2500 kg ha-1 

 13.5 Critical limit 

 15.6 Threshold 

 25 Maximum  

K (mg/kg) <125 Low (van Biljon et 
al., 2008) 

Threshold values and sufficiency levels for 
maize producing sandy soils of South 
Africa 

 >190 Sufficient 

C:N ratio <20 N excess (Mooshammer 
et al., 2014) 

Terrestrial microbial decomposition of 
organic materials  >25 N limitation 

 <20 Net N gain (Stevenson & 
Cole, 1999) 

Global values of net immobilisation or net 
mineralisation of crop residues  >30 Net N loss 

 <16 N mineralisation (Enwezor, W., 
1976) 

Thresholds C:N and C:P rations for plant 
materials used as green manure as source 
of long term P 

 >23 N 
immobilisation  16.1-23.4 Typical range (Xu et al., 2013) In shrubland soils of eastern Africa 

C:P ratio <200 P excess (Stevenson & 
Cole, 1999) 

 

 >300 C excess  

 338–797 Typical range (Xu et al., 2013) In shrubland soils of eastern Africa 

 286.5 Average  Boreal forests to deserts of the world 

St (%) <5 Degraded (Pieri, 1995) Sandy ferruginous tropical soils of semiarid 
francophone Africa  5-7 High risk  

 >7 Low risk  
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The structural stability index (StI) is indicative of the risk of soil structural 
degradation associated with SOM contents and texture (Pieri, 1992). The StI of ≤5% 
indicates that the soil is structurally degraded due to low levels of SOC and is highly 
susceptible to erosion, while StI >9% indicate sufficient SOC to maintain structural 
stability. The factor of 1.72 was used to convert the SOC to SOM and StI was computed 
as: 

𝑆𝑡𝐼 = 100 ×
1.72∗ 𝑆𝑂𝐶 (%)

𝐶𝑙𝑎𝑦 (%)+𝑆𝑖𝑙𝑡 (%)
        3-23  

3.9.1.3 Reducing the net nutrient loss through erosion 

As one of the major nutrient loss pathways in Malawi, controlling erosion has received 
little attention (Sandram, 2018). The land use maps currently in use classify most of the 
patchy cultivated slopes as woodlands, hence land management planners do not devise 
active strategies for these fragile landscapes. To give an overview of potential nutrients 
savings that could be achieved if erosion was considered in landscape planning and 
management, the adjustments to erosion factors are envisaged. This also applies to 
cultivated plots where the crop types and vegetation cover are adjusted and the 
potential impacts in reducing soil and nutrient loss evaluated. In this study, we used the 
LAndscape Management and Planning Tool (LAMPT) developed using the RUSLE 
model adjusted for SDR to estimate net soil loss (Tamene et al., 2014). For the scenario 
analysis, we first identified the soil erosion factors that are influenced by changes in the 
crop cover and soil organic matter dynamics including C-, P-, and R-.  

Much as farmers aspire to tackle soil loss through improving surface cover by 
planting trees and constructing contour bands (Braslow & Cordingley, 2016; Emerton et 
al., 2016), the progress is minimal. To the contrary, the sloping areas have experienced 
massive deforestation during the last two decades (Braslow & Cordingley, 2016; CIAT, 
2016). Nonetheless, erosion experiments conducted 20 km north of the study area 
between 1986 – 1991 provided evidence that increasing vegetation cover with 
agroforestry shrubs (Leucaena) significantly reduced erosion by 19 folds and increased 
crop yields by 14 folds (Banda et al., 1994). During the 6 years of experimentation on a 
44% slope, soil (and nutrient) loss was 78 - 21.6 t ha-1 yr-1 on sole maize plots whilst 
intercropping of maize with shrubs significantly reduced soil loss to around 3.8 – 1.5 t 
ha-1 yr-1. The maize yield under agroforestry shrubs ranged between 1.5 - 4.1 t ha-1 yr-1 

which was in sharp contrast to the rapid decline recorded under sole maize from 0.8 to 
a meagre 0.15 t ha-1 yr-1.  

On both cultivated and uncultivated lands, woody vegetation cover is sporadic 
due to selective retention and cutting, respectively. Despite being deciduous, trees 
regain leaves before the onset of the rains and provide partial surface cover. For soil 
conservation purposes a landscape with at least 10% woody vegetation cover is 
considered forested. This is in support with the agroforestry programme that supports 
“trees on farm”, which is pioneered by the Government of Malawi and included in the 
4.5 million ha pledge to the Bonn Challenge (GoM, 2017; Ministry of Natural Resouces 
Energy and Mining, 2017). 

From the survey, the probability for a cultivated plot to be under tree cover of 
between >10% is estimated and the associated effects on both choice of input strategies 
and output flows are further examined. The cover’s effect on reducing erosion on 
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farmland was estimated as a binary tree cover of >10% vs <10% with corresponding cover 
factors (C-factors) assigned accordingly. For uncultivated areas, which include mostly 
areas that were either under fallow or low productive marginal lands on the steep slopes, 
the tree biomass and cover are estimated from the density and above ground biomass 
estimated for the study area (Tamene, Mponela, Sileshi, et al., 2016) and updated using 
natural growth rates established for the archetypal miombo vegetation (Chidumayo, 
2019). The tree densities in the area were 201 (58-343) ha-1, with height of 5.6 (5.0-6.1) m, 
diameter at 1.3 m height of 15.2 (12.9-17.5) cm and biomass of 183.5 (96.5-227.9) kg tree-1. 
The above ground tree biomass stocks were 27.4 (11.5-35.5) ton ha-1.  

In the rift valley escarpments of Malawi, slope is a major constraint to 
productivity. Sleep slopes usually have shallow soil depths, fewer nutrients and are 
prone to erosion. According to the classification by FAO (2006a), land with slope of ≥ 
30% is considered steep and unsuitable for cultivation. Land with slope gradient of 10 - 
30% is considered sloping while 0 - 10% is considered level and suitable for cultivation. 
As the slope increases from 2 to 18%, a negative relationship between slope and crop 
yield has been observed (Al-kaisi, 2008). Therefore, areas with larger slopes are 
relatively less suitable for cultivation.  

The focus group discussion (FGD) conducted with the aim of mapping resources, 
constraints and opportunities revealed that gully erosion is one of the key drivers of soil 
erosion in the study area (Braslow & Cordingley, 2016). Therefore, addressing gullies for 
watershed management should be a priority to contain mass nutrient loses. To achieve 
this, it is necessary to have information about the spatial distribution of major and 
ephemeral gullies. The potential location of gullies was delineated based on two 
conditions as (Tamene, 2005) as follows: 

𝐴𝑠𝑡𝑎𝑛𝛽 > 18  and   𝑙𝑛 (
𝐴𝑠

𝑡𝑎𝑛𝛽
) > 6.8     3-24  

Where, As is unit contributing area (m2 m-1); tanβ is tangent of local slope. 

In addition, simulation can be run with terracing steep slope areas (P-factor = 0.6). The 
tool also provides an option to identify gullies and assign management options. For 
instance, one would explore the potential of protecting gullies through terracing and 
dense grass and the respective P- and C-factor values of 0.6 and 0.01 would be used as 
post-intervention defaults in the tool. 

A fourth option targets erosion hotspots. Erosion studies revealed that the 
sloping escarpments experience high volume of soil loss which can be as high as 50 t-1 
ha yr-1. Cultivation of steep slopes in Ntcheu accelerated the rate of erosion to 80 t ha-1 
yr-1. These losses are exceedingly higher than the tolerable soil loss to maintain crop 
productivity which is close to the rate of soil formation of 12 t ha-1 yr-1 (Montgomery, 
2007). This level of soil loss is assumed to be the tolerable soil loss limit considering 
surface lithology and soil thickness of the area 

To construct a compound index, the factors and weights were applied as 
presented in Table 3—12. Among the management options suggested, setting aside areas 
that are less suitable for cultivation is primary. It is expected that if these areas are 
reserved during the simulation, they will regain tree cover and hence be at a reduced 
risk of erosion. However, it is unlikely that enclosures might turn into dense woodlands 
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in the short-term owing to slow growth rates of indigenous miombo trees (Chidumayo, 
2019). 

Table 3—12 Soil productivity indicator rating and corresponding areas 

Domain Indicator Description Criteria Scores Area% 

Land use Cropping Preferred Cultivated 1 58 
  Reserved Uncultivated 0.5 42 

Soil fertility Total Nitrogen (%) Very low 0.00- 0.08  0.5 58.08 
  Low 0.08-0.12 0.6 42.03 
  Moderate 0.12-0.15 0.7 0.19 
  Optimal 0.15-0.25 1 0 
  High >0.25  1 0.19 

 Phosphorus (g/kg) Critical limit  0-7.4 0 0.12 
  Low response 7.4-11.0 0.25 3.58 
  Variable response 11.0-13.5 0.5 5.25 
  Moderate 

response 
13.5-17.0 0.75 9.78 

  Optimal  >17.0 1 81.55 

 Potassium (g/kg) Deficient  0-125  0.5 20.48 
  Moderate 125-190 0.7 69.85 
  Sufficient  >190  1 9.95 

 C:N ratio Critically low  0-16  0.5 99.99 
  Shrubland soil 16-20 0.7 0.01 
  Optimum 20-25 1 0 
  N-limit 25-30 0.5 0 
  N-loss >30 0 0 

 C:P ratio C-critical limit  0-100  0 5.21 
  C-limit 100-200 0.5 20.02 
  Optimum 200-300 1 14.96 
  P-limit 300-500 0.7 26.42 
  P-critically 500-700 0.5 20.43 
  P-exceedingly >700 0 12.97 

Soil health SOC (%) No response 0-0.5 0 0 
  Variable response 0.5-0.7 0.2 2.53 
  Moderate 

response 
0.7-1.0 0.4 45.22 

  Optimal response 1.0-1.5 0.6 45.71 
  Most fertile 1.5-2 0.8 6.71 
  Sufficient >2.0 1 0.49 

 Structural stability  Degraded 0-5  0.5 97.48 
 Index (StI) High-risk 5-7 0.8 2.52 
  Low-risk >7 1 0 

Topography Slope (%) Level 0-1 1 16.14 
  Very gentle slope 1-2 0.9 9.84 
  Gentle slope 2-5 0.8 17.71 
  Sloping 5-10 0.6 29.79 
  Strongly sloping 10-15 0.2 13.52 
  Moderately steep 15--30 0 11.64 
  Steep >30 0 1.69 

Erosion Ephemeral gullies  Yes 0.1 31.34 
   No 1 68.66 

 Soil eroded 
(t/yr/ha) 

Slight  0-2 1 16.69 
 Tolerable 2-10 0.9 19.46 
 Manageable 10-20 0.7 22.45 
 Moderately high  20-30 0.3 13.95 
 High 30-50 0.1 12.66 
  Severe  50-80 0 8.60 
  Extreme  >80 0 6.18 

*test crop for the responsiveness is maize for phosphorus and SOC 
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3.9.2 Simulation of social-ecological transformations of soil nutrient stocks 

Several nutrient transfer models have been developed as decision support systems (DSS) 
that capture and integrate human actions and ecological processes (Bell et al., 2015). 
Methodologically, if data is readily available and there are high efficiencies in input-
output flows, the projections can reliably be made using constructed histories. In which 
case, the projections are optimal solutions on the basis of proven inertial that drove flow 
of matter, energy and information in the past. However, in data sparse regions, such 
projections can seldom be constructed and there are methodological limitations. 
Therefore, ex-ante analysis of cross-sectional and spatially explicit data from real life 
phenomena and simulations of potential regime shifts due to policy are deemed 
optional and best alternative (Le, 2005).  

 Simulation have their origin in computer missile games where players could adjust 
the missiles curved path and speed (“Contributors,” 1944). The same principle has been 
applied in science to design models of real systems, then conduct ex ante experiments 
to understand behaviour in terms of potential effective changes in the system or its 
mode of operation (J. Wang et al., 2008). The major strength is that simulations can be 
done for systems that already exist and those in the preliminary or planning stage of 
development and potentially capable of being brought into existence (Shannon, 1998). 
For smallholder farmers, the common mistake is to assume that non-existence of data 
implies that the technologies do not exist. As earlier pointed out, the soil improvement 
technologies under consideration have been applied for more than six decades, and by 
capturing the current usage and performance, we assume that the farms form a natural 
continuum from those that are yet to adopt the technologies to those that have used 
them for a long time. Among non-users, there could be some farmers that have never 
used them but for the majority, non-participants used them earlier but not during the 
study year. Hence, non-users comprise of non-adopters and dis-adopters. 

This study mimics the natural environment by making use of parameters from 
decision, productivity and hydrological analyses as empirical evidence for initial and 
boundary conditions, as well as interdependences among agents and their environment. 
Framed by the unimodal rainfall pattern, farming has a one-year production cycle, 
hence a one-year time step in simulation is used. Depending on changes in state 
variables of both the environment and households, the social-ecological profiles of 
individual patches and households are expected to change as well. Due to the simulation 
process, for instance, the household types as empirically drawn, would have 
acquired/lost resources overtime and are expected to adopt the decision-making 
mechanism of the new group. In this way, the simulation does not use a virtual 
experimental approach with random datasets, it generates the population and 
landscape attributes and use patterns from sample data. The population attributes were 
generated using Monte Carlo approximation (Berger & Schreinemachers, 2006), whilst 
landscape level statistics were extrapolated using GIS-based proportional up-scaling 
from the measured sample data (Le, 2005). In order to identify pathways for sustainable 
land management, different scenarios are built based on existing evidence from 
research trials, government policies and community aspirations. The parameters from 
the empirical models were used to indicate probability and intensity of change in both 
human decision and environmental models.  
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Each farming calendar year, farmers make two decisions with regard to nutrient 
inputs: First, whether a household receiving input allocates them to a particular plot or 
not. For this first decision, the predicted probabilities are estimated as a sum of 
weighted average reflecting the factor distribution and allowing inference to the total 
population from which the data was drawn. This is unlike using the estimated margins 
at mean values whose inferences are only relevant to the observations closer to the mean 
and with dichotomous factors, the estimation is made for every observation. Using the 

sigmoid (z) function, the predicted probabilities 𝑃𝑥𝑖
̂  lie between 0 (non-adopt) and 1 

(adopt) and are estimated as an odds ratio given the following function:  

𝑃𝑥𝑖
̂ =

𝜀𝛽0+∑ 𝛽𝑖𝑋𝑖

1+ 𝜀𝛽0+∑ 𝛽𝑖𝑋𝑖
  for 0<p<1        3-25  

Where β0 and βi are estimated regression coefficients, Xi’s are the observed or measured 

determinant factors and 𝜀𝛽0+∑ 𝛽𝑖𝑋𝑖 is the estimated logit score for each household-plot.  

Secondly: the subsequent input levels are based on the estimated probabilities 
for the whole population and usage levels for those implementing the technologies to 
increase nutrient input and reduce output, or otherwise. We used the GLM with 
binomial family and log link of the functional form: 

𝑙𝑜𝑔𝑖𝑡 𝐸(𝑌) = 𝛽0 + 𝛽𝑖𝑥𝑖 

As described earlier, the quantity of nutrient input and output from a farming 
unit is a result of cumulative and nested processes at ecological scale of watershed 
(landscape (plot (pedon))) and the social scale of region (community (household 
(individual))). The drivers at any level can either be endogenous or exogenous 
depending on the hierarchies but their effects transcend the boundaries and scales. This 
study analyses nutrient balance at the plot-household level; hence, community and 
landscape level attributes are considered external whilst plot-pedon and household-
individual level attributes are endogenous. In determining the dynamic changes in 
usage of nutrient input technologies and the nutrient output processes, we examine the 
changes in exogenous policy actions but also control for the main internal factors. 
Among the various policies that the government provide and communities appreciate 
as viable policy options to enable them to replenish lost nutrients and increase crop 
yields, the farm input subsidy program (FISP) is noticeably featured. The alternative 
subsidy scenarios constructed were based on trends and political agenda (Table 3—13). 

At household level, differences in gender, family labour and education have a 
strong bearing on farmers’ decision to increase nutrient inputs. Their current usage is 
estimated from real-farm household and agronomic survey data while the potential 
effects are empirically determined. There are other factors, such as the period that the 
plot has been under cultivation and age of the household head, that change 
progressively. Since in the dataset we captured the length of time since conversion from 
natural/ long fallow to cultivation, all plots have different cropping ages which is 
updated individually as the simulations run. For the age of household head, it is updated 
by taking into consideration the life expectancy and inheritance systems. A random 
sample of household heads who are above 63 years (the life expectancy for Malawi) will 
die and their households are inherited by offspring who enter into marriage. 
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Based on the projected potential effects described above, the following scenarios 
are constructed and implemented, as virtual experiments in MASSAI (Table 3—14). For 
the baseline, all policy and static variables are held at the current levels but progressively 
changing variables such as age of household head and the cultivation period for the plot 
are changed. To compare the current policy with alternative regimes, we used the 
Bonferroni multiple comparison test which tests significance based on individual p-
values between pairs (Hochberg, 1988) 

Table 3—13: Trends, aspirations and policy settings  
Scenario Description 

Baseline (BAS) Current trend, with changes resulting from internal factors that progressively change over time. 
These include household attributes such as age of household head, the natural nutrient input 
and output flows, and plot features such as time it has been under cropping. By bringing these 
factors to the baseline levels and project their progressive natural changes, the effect of policy 
interventions is therefore additional and conditioned on existing conditions. 

SUBSIDY In Africa, due to high levels of poverty and over-reliance on agricultural production, the 
governments support farmers with various forms of subsidies as social security policies. In 
Malawi, the government distributes coupons for subsidized fertilizer and seeds to almost a third 
of the population. Once received, in some villages, members share the cost of fertilizer and 
seeds. Although the subsidy program is a pro-poor strategy aimed at reducing the nutrient gap, 
the sharing of coupon price and inputs makes it difficult to discern recipients from non-
recipients.  

From our survey, we captured the total cost farmers paid for the fertilized applied on a plot and 
divided with the market price to find the share of subsidized fertilizer. The share of subsidized 
fertilizer applied to maize for the 2016/2017 growing season averaged 28% (range 0-100). The 
shift in fertilizer prices due to changes in subsidy regimes is expected to induce correspondingly 
shifts in demand for inputs.  

The scenario spectrum for assuming the impacts of subsidy on nutrient inputs and output are 
four. These are drawn empirically and projected based on historical trends (Figure 1.1) and 
include SC (current subsidy), SR (incremental reduce by up to 28%), SZ (incremental reduce by 
100%), and SU (incremental increase by 150%). These correspond to the political aspirations and 
alternative policies that aim at either increasing or reducing subsidy and those that call for 
removal and replacement of the current subsidy regime. Considering that farmers act 
autonomously with differing cognitive capabilities and resource endowments, the changes in 
input demand triggered by input price changes ought to be multi-directional and farm type 
dependent. Hence, diverse soil management behaviours ought to emerge, leading to changes in 
farm productivity and nutrient balances. 

IN1 and OUT1: Farmers receiving subsidy tend to find it cheaper to access fertilizer than non-
recipients do. Hence, fertilizer subsidy is assumed to be associated with increase in the 
probability to apply more inorganic fertilizer. We ought to be aware that those purchasing from 
the market, hence having lower share of subsidized fertilizer, would be the well-off farmers and 
could even buy more than those that rely solely on subsidy. The input subsidy affects the input 
prices with potential effect on output levels and the price bargaining power depending on the 
level of subsidy received by the farmer. Farmers receiving subsidized “free” fertilizer might not 
be as committed to manage the crops as those who purchase the fertilizer, thereby having 
differentiated nutrient output flows and benefit. 

IN2 and OUT1: Moreover, those receiving subsidized fertilizers, by having increased likelihood to 
apply inorganic fertilizer, would be less likely to invest in alternative nutrient sources such as 
manuring. 

IN3 and OUT1: Since subsidy includes legume seeds, we hypothesize that farmers receiving 
subsidy would have higher probability to plant legumes or allocate more land to legumes than 
non-recipients would. 

Women 
empowerment 

Input use choices are sensitive to changes in the role of women in decision-making.  
The scenario spectrum for assessing the impacts of women empowerment are two. The first 
spectrum of scenarios Weai_S0 (current scenario) and Weai_S1 (increased women involvement 
by 212% from the current average of 0.16 to 0.5). 

Labour and 
dependency 

The second most constraining factor at household level is labour availability. It affects the 
households’ decisions to adopt the SFM technologies and the level of care for crops, hence 
affecting both nutrient input and output efficiencies. Households labour allocation decisions are 
affected by their responsibility to care for the members. For households with more dependants, 
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they have lesser opportunities to invest in inputs for SF enhancement, and are also constrained 
to invest in crop management. The labour, therefore, is represented by the number of hours the 
family members allocate their effort to a plot and the dependency ratio. 

The changes in number of hours are derived from the utility function based on the expected 
benefit in crop yield relative to labour input and output and are thus empirically estimated from 
decision and crop yield models. From the survey farmers reported to use on average 96 
manhours / ha. The recommended labour input is 64 manhours per hectare. Hence, we explore 
the effect of increasing labour productivity by reducing the total hours worked by 33% over the 
simulation period. 

The dependency ratio, though empirically linked to decision and yield models, is dependent on 
generational changes in demographic structure. The population of Malawi grows at an average 
rate of 2.9% per annum (GoM, 2018) which increases pressure on land and alters the 
dependency ratio. We should have used population growth model and age dependent death 
rates to estimate probability of loss of household members among workers and non-workers. 
The birth rates could contribute to the younger age class while the adjustments in other age 
groups would be estimated from the crude population growth rates.  

Table 3—14 Policy settings for developing integrated SFM scenarios 

Scenario 

Subsidy Gender Family labour Progressive 
Held 
constant 

Share of 
fertilizer 
subsidised 

Women 
empowerment 

Labour input Dependency 
ratio HH 

Age HH head, 
cultivation 
period 

Elevation, 
sand, slope, 

income, 
education 
etc. (β-PSUBSIDY) (β-HWEAI) (β-PLABOUR) (β-HDEPR)   

units % USD WEAI Man-hours 
Workers/  
dependants 

    

Value x̅  ± x ̅  * r x̅  + x ̅  * r x̅  - x̅  * r x̅  - x̅ * r x̅  + x ̅ * r x̅ 

Share of subsidised fertilizer per plot:   

Sub_S0 (current) 28.6 0.16 96.26 1.78 x̅  + x ̅ * r x̅ 

Sub_S1 (decrease) 20 0.16 96.26 1.78 x̅  + x ̅ * r x̅ 

Sub_S2 (…to zero) 0 0.16 96.26 1.78 x̅  + x ̅ * r x̅ 

Sub_S3 (universal) 70 0.16 96.26 1.78 x̅  + x ̅ * r x̅ 

Gender (role of women in household decision making):, labour and dependency   

S0 (current) 28.6 0.16 96.26 1.78 x̅  + x ̅ * r x̅ 

Weai_S1 (increase) 28.6 0.5 96.26 1.78 x̅  + x ̅ * r x̅ 

Labour_S1 (decrease) 28.6 0.16 64 1.78 x̅  + x ̅ * r x̅ 

Dep_S1 (decrease) 28.6 0.16 96.26 1 x̅  + x ̅ * r x̅ 

 x̅ is the initial state for each attribute (2016/17 baseline), r is the annual rate of change to the alternative scenario. 

3.10 Model validity, sources of variability, stochasticity and sensitivity 
analysis 

The sample dataset used for empirical estimations and predictions was obtained from 
238 households with 451 plots, hence for the whole sample, the number of subjects per 
variable (SPV) is adequate, even if the rule of thumb of 10 PSV is followed. For instance, 
observation (451) to variable (21) ratio for maize yield estimation and prediction was 21:1 
which potentially gives reliable estimates. With yield model’s SPV of 4, 8 and 6 for 
farmtypes 1, 2 and 3 respectively, the type-specific results may not reliably predict 
outside the dataset. For Monte Carlo simulations used in the simulations for this study, 
the recent studies have shown that the minimum SPV of two is adequate for estimation 
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of regression coefficients, standard errors and confidence intervals (Austin & 
Steyerberg, 2015). Hence, for the type-specific analyses, the inclusion of a number of 
variables ensured that most of the causes of variations were considered and the 
simulations with 10 replications thereof on a population of 2640 plots, are assumed to 
give a more nuanced representation of yield responses for the study population and the 
landscape. However, caution should be exercised if they are to be used outside the study 
region. 

In addition to observation to variable ratios, the inclusion of variables in models 
from a whole set of 64 variables was done by differing specifications. The software we 
used for estimations, Stata, has inbuilt feature that drops one of the explanatory 
variables if two factors are highly correlated i.e. there is multicollinearity. Potential 
multi-collinearities among continuous variables were screened and only variables that 
were less correlated were included in the alternative model specifications (see Appendix 
S4). The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
were used to select the model forms and functions that best modelled farmer SFM 
decisions and crop productivity (Vrieze, 2012).  Several other tests were done to ensure 
validity of the models while capturing variability and at the same time addressing 
stochasticity. Validity and fitness of the empirical models were determined using 
measures of goodness of fit. For soil nutrient and SOC spatial distribution, the out of 
bag error was used (Breiman, 2001).  

 Both the human and ecological attributes on which the empirical models are 
developed are inherently variable. The households differ in demographics, resource 
endowments and nutrient input use, and are categorized into low input (farmtype1), 
medium input (farmtype2) and high organic input (farmtype3) farms. The plot and 
landscape features also vary, which coupled with household attributes frame the 
differentiated decisions, soil nutrient distributions, yields, nutrient balances and 
economic benefits among human and ecological agents.  

 The variability leads to yet another analytical challenge, stochasticity in 
estimated parameters. Stochasticity existed in the models for estimating nutrient 
distributions, and for predicting probabilities and intensity of input use, and crop 
production for the agent-based model (ABM). To ensure that the models are a 
representation of the real-world phenomena, several combinations of variables and 
parameters (replications) are used through machine learning algorithms. Uncertainty 
or stochasticity in soil estimation using the machine learning randomForest model was 
essentially managed by running tens to hundreds of replications for random subsets 
based on knee bend method that indicates stability and validity (Liaw & Wiener, 2018). 
The simulation results were also checked for model drift based on differences between 
the predicted and sampled attribute values. The predictions were adjusted to the 
baseline real farm conditions using data winzorisation and the model drift coefficients 
(Donkin et al., 2017). 

The stochasticity in the predicted input and output flows for the ABM were 
expressed using random bounded functions with parameters allowed to vary randomly 
within the estimated confidence intervals than would be the case if the coefficient and 
margins-at-mean were used (Le, 2005; Villamor, 2012). For each scenario and 
replication, the stability was achieved by setting random seeds thereby ensuring same 
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initialization and same set of parameters. We run 10 replications which is the minimum 
number of recommended for complex ABMs with non-linear relationships between the 
input parameters and simulation output (Thiele et al., 2015). The simulated outputs 
were averaged for each scenario and the uncertainty was evaluated using confidence 
interval which is also indicative of the statistical differences between scenarios. 

To explore effects of policy actions on adoption and intensification of SFM usage 
and the resulting impacts on productivity, nutrient balance and profitability, a causal 
relationship ought to be established. However, in cross-sectional studies of real-life 
phenomena tend to have many confounders (S. Greenland, Robins, et al., 1999). These 
are factors that correlate with both the dependent and independent variables making it 
difficult to discern between association and effect (Wooldridge, 2012). Several design 
and analytical approaches are used, that either identify the instrumental variables that 
are associated with the dependent variable but not the output variable or by stratifying 
based on the confounder and having counterfactual subjects who are not exposed to the 
treatment included in the analysis (Wooldridge, 2012). Analytical approaches include 
propensity score matching methods, which address the problem of selection bias that 
is inherent in these itemized or informational distribution by government and local 
agents. 

 However, for MAS models with the aim of establishing causal relationships, 
feedback loops, synergies and trade-offs among several factors, confounders are 
inherent and a major threat to validity of inferences (Villamor, 2012). There tend to be 
a triadic reciprocal causation, where resource endowments, behaviours and 
environmental states and processes all operate as interacting determinants that 
influence each other bidirectionally (Bandura, 1986). To avoid type I errors (false 
positive) of indicating a casual effect, several methodological approaches are used. In 
MAS, casual diagrams, which are theoretical frameworks or impact pathways that 
provide a visual or theoretical model for distinguishing causation from association are 
widely used (S. Greenland, Pearl, et al., 1999). Building on these, process-based models 
are specified with input and potential outcome model structure (Villamor, 2012) as 
schematically represented in Figure 3.2, 3.3 and 3.4.  
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4 RESULTS AND DISCUSSION  

4.1 Household social-ecological livelihood types 

4.1.1 Exploring the differentiating factors among the farming households 

The results in Table 4—1 shows key attributes for the sampled households. Most of the 
households settled in the lower altitude and own productive land within the fluvial 
plains. Those situated on the hills, about 24% of the sample, also have majority of their 
plots on the hill slopes. Topographic position could be assumed as the main physical 
differentiating factor in terms of productivity. With regard to variables related to 
resource endowments there is high variability. Distribution density plots showed that 
data for most continuous variables was censored at zero with positive skewness and a 
few outliers. The common practice is to transform the data and drop or winsorize the 
outliers. With greater number of zeros present in the data, transforming has been found 
to be inefficient and sometimes a source of interpretation and hypothesis testing errors 
(O’Hara & Kotze, 2010). After revising the raw data, it was observed that the data points 
falling outside the rage are genuine and were retained for the analysis on the assumption 
that they are positive deviants and might form archetypical farm types. 

The average farmland holding is slightly less than a hectare fragmented into 2 
plots. Several sustainable agricultural practices are being employed. About 70% of the 
households rotate legume with cereals and households use 1 or more soil and water 
conservation measures. In a year each household plant more than 2 crops. Farmers also 
apply both organic and inorganic fertilizers. On average, the households use around 
100kg of inorganic fertilizer and 180kg of organic manures per year. 

Prior to conducting PCA using SPSS v21, a few minimum requirements tests were 
done. Tests for adequacy of sampling showed that the variables entered had high 
sampling adequacy with anti-image correlation and commonalities of more than 0.5, 
the determinant of 0.002 and the combined test using Kaiser-Meyer-Olkin Measure of 
0.52 (Table 4—2). This validates the use of the variables in cluster analysis and that their 
combination gives a robust result with significant Bartlett's Test of Sphericity (P<0.001). 
Variable independence test using pairwise correlation revealed low levels of correlations 
among most variables r < 0.3, warranting the use of Varimax rotation on the assumption 
that variables are independent.  
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Table 4—1: Description of household survey data 

    Descriptives Anti Image 
Correlation  Communalities   Code Mean SD 

Landscape position (1=upper; 0=lower) HLSPN .24 .43 0.456 .701 

Age of the household head (years) HAGEH 47.55 16.48 0.533 .644 

Education of HH head (years) HEDUH 5.76 3.58 0.625 .608 

… HH members (0=0;1=1-8; 2=9-12; 3>12) HELHM 1.45 .78 0.650 .564 

Gender of head (1=male; 0=female) HGENH .52 .50 0.716 .579 

Total labour (manequivalent) HLAB 2.94 1.49 0.727 .733 

Dependency ratio (18-65)/(<18+>65) HDEPR 1.75 1.57 0.610 .599 

Tropical Livestock units HTLUN .54 1.47 0.676 .529 

Income from crop sales ($/yr) HINCC 64.08 186.92 0.668 .444 

... livestock ($/yr) HINCL 7.04 21.80 0.594 .688 

... other sources ($/yr) HINCO 149.95 244.98 0.593 .602 

... natural resources ($/yr) HINCR 2.23 19.94 0.489 .281 

Communication index HCOMM .47 .53 0.823 .684 

Transport index HTRAN .12 .18 0.827 .620 

Farm implements index HIMPL 2.06 1.08 0.765 .681 

Women Empowerment Index HWEAI .15 .18 0.652 .262 

Group membership (1=yes; 0=no) HGMEM .36 .48 0.465 .581 

Number of plots cultivated PPLOT 2.10 1.02 0.515 .620 

Land cultivated (ha) PHECT .94 .74 0.552 .851 

... allocated to legumes (ha) PLEGU .36 .70 0.482 .882 

Number of crops grown PCROP 2.26 1.12 0.578 .559 

Rotation last 5 yrs (1=yes;0=no) PROTA .70 .46 0.648 .676 

Soil water conservation PSWCM 1.03 .77 0.561 .625 

Organic inputs (kg) PORGA 174.72 329.20 0.724 .667 

Fertilizer applied (kg) PFERT 97.03 89.22 0.647 .703 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.   .627 
 

Bartlett's Test of Sphericity 
 

Approx. Chi-Square 1423.108   
df  300   
Sig.  .000  

Determinant      0.002   

 

From Table 4—2, 9 PCS explain about 62% of the variation of the original 
independent variables which is adequate. After varimax rotation, the 9 variables with 
highest loading on each PC was used to distinguish household types. In Table 4—2 the 
principal component 1 (PC1) is highly correlated to physical assets including 
communication facilities (HCOMM, loading b= 0.746) and transport (HTRAN, b=0.685). 
Worth noting is that this factor has also high loading for household head (b=0.611). This 
component accounts for 16% of the total variance and has been named physical assets 
factor. Since SAPs are information intensive, the variable communication is therefore 
the best representative and most important physical asset for distinguishing household 
types. 
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Table 4—2. Loadings for the first 9 components after Varimax rotation with Kaiser 

Normalisation 

Variable 

Principal Component 

PC1 
Physical 
assets 
factor 

PC2 Legume 
integration 
factor 

PC3 
Fertlizers 
factor 

PC4 
Demo 
graphic 
factor 

PC5  
Labour 
factor 

PC6 
Organics 
factor 

PC7 
Topography 
factor 

PC8 
Livestock 
income 
factor 

PC9  
SWC 
factor 

HLSPN -.022 -.147 .165 .066 .028 .106 .642 .163 .443 

HAGEH -.159 .132 .097 .749 .027 .138 -.058 .022 -.086 

HEDUH .611 .010 -.086 -.400 .033 .060 .062 -.015 .241 

HELHM .169 .097 .045 -.194 .646 -.083 .102 .036 .225 

HGENH .542 .124 -.052 -.171 .031 .069 .222 -.393 -.167 

HLAB .039 .157 .105 -.042 .813 .145 -.013 -.015 -.108 

HDEPR -.083 .131 -.047 .676 -.250 -.192 -.071 -.013 .111 

HTLUN .135 -.026 .022 .236 .119 .467 .006 .460 -.103 

HINCC .303 -.016 .308 -.048 .082 .010 -.447 -.154 .157 

HINCL .175 .042 .102 -.106 -.046 -.049 .131 .782 -.042 

HINCO .047 .055 -.024 -.037 .320 .099 -.406 .256 .502 

HINCR .036 .169 .016 -.093 .073 -.058 .483 -.001 -.006 

HCOMM .746 .126 .192 -.031 .034 .087 -.014 .193 .162 

HTRAN .685 .149 .131 .043 .133 .104 -.100 .265 -.026 

HIMPL .520 .187 .188 .045 .432 .267 -.227 -.023 -.170 

HWEIA -.013 .151 .280 -.139 -.285 .047 -.051 .221 .079 

HGMEM -.121 .259 .137 -.524 -.016 -.104 -.424 .111 .037 

PPLOT .046 .118 .744 .056 .082 .167 -.032 .088 .053 

PHECT .204 .854 .164 .117 .195 .010 .027 -.032 .002 

PLEGU .138 .919 -.016 .052 .079 .000 .079 .037 .047 

PCROP .017 .386 .534 .014 -.128 .266 .006 .185 .050 

PROTA -.038 .023 .379 -.243 -.093 .639 .190 -.111 .073 

PSWCM .089 .052 .046 -.025 -.061 -.020 .079 -.119 .766 

PORGA .282 .019 -.064 .075 .124 .736 -.140 .011 .028 

PFERT .218 -.128 .747 .003 .175 -.213 .039 -.028 -.053 

Initial Eigenvalues 

Eigen value 4.06 2.04 1.73 1.54 1.42 1.25 1.19 1.09 1.06 

%variance 16.23 8.14 6.94 6.14 5.68 5.01 4.77 4.38 4.24 

Cumulative 16.23 24.37 31.31 37.45 43.13 48.14 52.91 57.29 61.53 

Varimax rotation with Kaiser normalisation 

Eigen value 2.39 2.06 1.93 1.71 1.69 1.53 1.42 1.34 1.32 

%variance 9.54 8.24 7.72 6.85 6.75 6.14 5.66 5.35 5.28 

Cumulative 9.54 17.78 25.49 32.35 39.10 45.24 50.90 56.24 61.53 

The PC2 accounts for 8% of the variance and is highly correlated with total land 
cultivated by the household in 2017 (HHACT, b=0.854) and the average land devoted to 
legume cropping for the past 5 years (HLEGU, b=0.919). Since the farming systems are 
dominated by cereals, the high loading of land allocated to legumes is important 
indicator for adoption of legumes as one of the SAPs. The PC3 which accounts for 7% of 
the total variance explained largely by plot variables of total inorganic fertilizer applied 
(PFERT, b=0.747) and total number of fragmented plots (PPLOT, b=0.744). Use of inorganic 
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fertilizers is still below the recommended with wide variations among households. The 
factor is therefore names fertilizer and used to distinguish the household types. 

The PC4 which has high loading of the two demographic variables accounts for 
6% of the total variance. It is highly correlated with age of the household head (HAGEH, 
b=0.749) and the dependency ratio (HDEPR, b=0.676). In a predominantly youthful 
society where youth have been found to either not having access to productive resources 
or shun farming for other activities, it is interesting to see if age has the discriminating 
influence among the farm types. PC5 is also demographic as it is highly related to 
household available labour (HLABO, b=0.813) and highest education level attained by any 
member of the household (HEDHM, b=0.646).  

The remaining PCs (6 to 9) are highly correlated by individual variables. PC 6 is 
correlated with organic manure inputs (PORGA, b=0.736), PC7 by whether the household 
is located on the flatter plains or in the hill slopes (HLSPN, b=0.642) PC8 by income from 
livestock sales (HINCL, b=0.782) whilst the variance for PC9 of 4% is mainly accounted 
for by number of soil and water conservation measures being implemented by the 
household (PSWCM, b=0.766). These PCs have therefore been named after these variables 
which were then used in differentiating the farm types. 

4.1.2 Identification of household types using key variables 

The k-mean was performed in Stata Version 15 (StataCorp, 2017) using Euclidean 
distance dissimilarity measure among the standardized scores for the nine principal 
components from PCA results. To ensure that that the clusters are reproducible, 
random seed of 123 was used and the initial cluster centres were determined from K 
unique random observations among the Kth (where k=1, …, 238 standardized scores for 
the nine principal components) (StataCorp, 2017). The number of clusters were 
determined using the optimisation of within cluster sums of squares, popularly known 
as the elbow method. 
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Table 4—3: Comparison among the 3 farm types using descriptive statistics of the original variables 

  C N mean sd se cv min max 95% CI P Remark 

HAGEH 1 64 50.05 18.92 2.36 0.38 22 84 45.32 54.77 b older 

  2 90 52.63 13.32 1.40 0.25 23 85 49.84 55.42 b older 

  3 84 40.20 15.02 1.64 0.37 20 84 36.94 43.46 a younger 

HLAB 1 64 2.20 1.01 0.13 0.46 0.56 5.28 1.95 2.46 x fewer 

  2 90 3.79 1.62 0.17 0.43 0.56 11.21 3.45 4.13 y more 

  3 84 2.58 1.20 0.13 0.46 0.17 8.19 2.32 2.84 x fewer 

HINCL 1 64 13.20 35.33 4.42 2.68 0 177.24 4.38 22.03 a  

  2 90 5.53 14.71 1.55 2.66 0 74.48 2.45 8.61 a  

  3 84 3.95 11.66 1.27 2.95 0 68.97 1.42 6.48 a  

HCOMM 1 64 0.48 0.53 0.07 1.10 0 2.85 0.35 0.62 x  

2 90 0.39 0.50 0.05 1.29 0 1.98 0.28 0.49 x  

  3 84 0.56 0.56 0.06 1.01 0 2.37 0.43 0.68 x  

PWILE 1 64 0.48 1.16 0.15 2.43 0 6.90 0.19 0.77 a  

  2 90 0.39 0.49 0.05 1.26 0 2.72 0.29 0.49 a  

  3 84 0.24 0.26 0.03 1.08 0 1.20 0.19 0.30 a  

PSWCM 1 64 0.91 0.56 0.07 0.61 0 2 0.77 1.04 x fewer 

  2 90 0.78 0.65 0.07 0.84 0 3 0.64 0.91 x fewer 

  3 84 1.39 0.88 0.10 0.63 0 5 1.20 1.58 y more 

PORGA 1 64 72.42 122.79 15.35 1.70 0 600 41.75 103.09 a less 

  2 90 135.44 219.78 23.17 1.62 0 1500 89.41 181.48 a less 

  3 84 294.73 471.06 51.40 1.60 0 2500 192.51 396.96 b more 

PFERT 1 64 60.86 67.31 8.41 1.11 0 400 44.05 77.67 x less 

  2 90 139.17 98.79 10.41 0.71 0 425 118.48 159.86 y more 

  3 84 79.44 74.70 8.15 0.94 0 420 63.23 95.65 x less 

NB: C=farmtype; N=number of households; sd=standard deviation, se=standard error of the mean; cv=coefficient of 
variation; min,max=minimum and maximum values, P=within variable means with different letters are significantly 
different. 

The emerging farm types significantly differ in terms of the observable household and 
plot variables (Table 4—3 and Figure 4.1). Of the eight livelihood indicator variables, 
only 5 significantly distinguish the farm types. These are age of household head, labour, 
soil and water conservation measures and amounts of organic and inorganic fertilizers. 
Using these five, and absolute but not statistical differences of the other three 3 
variables, the following comparisons of the farm types can be established.  

The farmtype1 is comprised of middle-aged household heads with slim 
workforce, moderate communication facilities, income from livestock sales and land 
allocated to legumes and use fewer soil and water conservation structures and apply 
lesser inorganic fertilizer and lesser organic inputs. It is therefore called a low input farm 
group. 
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Figure 4.1: Farmtype differentiation by age, labour, nutrient inputs and soil and water conservation 
measures 

The households in farmtype2 are headed by relatively older people in their late 
40s, with more available labour and applies relatively more inorganic fertilizers. They 
tend to have fewer communication facilities and use few soil and water conservation 
measures. They receive moderate income from livestock allocate moderate amount of 
land to legumes and apply moderate amounts of organic manures. This is a group of 
households with medium input farms. 

The third farmtype is comprised mainly of younger households (up to early 40s) 
with moderate labour, communication facilities and levels of inorganic fertilizer 
application. This group get lower incomes from sell of livestock and allocate less land 
to legumes. However, on average, they use more soil and water conservation measures 
and larger amounts of organic inputs.  

4.2 Stocks of soil NPK, SOC and their thresholds 

4.2.1 Status of soil organic carbon and major nutrient concentrations 

At farm level, it is generally anticipated that nutrients ought to be managed in a holistic 
way. However, the crop nutrition principle based on Liebig’s law of the minimum 
purports that growth is limited by the most deficient nutrient or the most limiting soil 
condition. Based on this, the tendency has been to focus on the most deficient 
(nitrogen); unwittingly leading to unregulated extraction and degradation of SOC, P, K 
and other nutrients in the long run (Mutegi et al., 2015). The results from the sentinel 
site for the major three nutrients and SOC shows that the soils are deficient total 
nitrogen (TN) but have low to adequate SOC, P and K; with pronounced spatial 
variations (Figure 4.3 and Figure 4.4).  
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The internal validation yielded high prediction accuracy of 0.88 to 0.94 (Table 
3—7). Validation using an independent sample (3-fold), shows that the randomForest 
model predicted SOC, TN, and P with moderate accuracy but had low prediction 
accuracy for K. It is evident that the distribution and concentration of soil nutrients and 
conditions are driven different geographical, biological, geologic and topographic 
sequences (see supplementary Figure S1.2:a-f).  

For the greater part of the mapped area, SOC concentrations are within the 
moderate range for maize productivity. Studies in Zimbabwe and West Africa showed 
that soils with SOC > 6.5 and 8.0 g kg-1, respectively, had steady response to nutrient 
inputs without accompanying SOM amendments (Musinguzi et al., 2013; Pieri, 1995). 
However, in terms of structural stability, the SOC levels (i.e. organic matter) is generally 
insufficient to critically low (range 0.45-2.0), rendering the soils more susceptible to 
degradation risks (Musinguzi et al., 2013). With sub-optimal organic matter input, these 
soils could be on a downward degradation spiral (Rattan Lal, 2015). Optimal levels of 
SOC, as shown in Figure 4.3, are concentrated along streams and valley floors. This 
could be the pull factor for cultivation of stream banks and valley floors, a phenomenon 
that exacerbates river bank erosion, resulting in river bed siltation and drying of the 
streams (Chimtengo et al., 2014; Sandram, 2018).  

Distribution of nitrogen follows that of SOC, more concentrated along streams 
and valley floors. The maximum predicted N stock of 0.14 is lower than the lower limit, 
implying that soils of the area are N deficient. Nitrogen therefore continues to be the 
most limiting of the major nutrients. There is a wide gap to reach sufficiency levels and 
nitrogen demand for crops will rely on significant yearly inputs.  

 

 
Figure 4.2. Spatial distribution of (a) Soil organic carbon (SOC), (b) Total nitrogen (TN), (c) Phosphorus (P) and (d) 
potassium (K) in the Nsipe sentinel site. 
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Figure 4.3 Soil health and plant growth limits for SOC, TN, P, K. 

 

Distribution of phosphorus (P) is highly skewed with moderate to higher 
concentrations clustered on the western hills (Figure 4.2c). The eastern flat plains that 
have been under cultivation for decades have low to medium levels of P (Figure 4.3c). 
These spatial differences entail that indigenous P uptake by crops would be different 
affecting input decisions and yields across the landscape. 

The medium low to moderate levels of potassium (K) observed indicate the need 
for potassium fertilizer. Significant maize response to application of K fertilizer was 
observed when the soil exchangeable K reached below 190 mg kg-1 in sandy soils of South 
Africa (van Biljon et al., 2008). For more than three decades, Malawian soils were 
considered to have sufficient amounts of K. Previously, the government through the 
1970 (edited in 1996) Fertilizers, Farm Feeds and Remedies Act (Cap. 67:04) endorsed a 
few fertilizer mixtures of which 23N:21P:0K +4s and Urea (40N) have been widely used 
for maize production due to being nitrogen rich but have zero K (IFDC, 2013). The 
omission of K had no significant effect on crop yields but with continuous extractive 
cropping, there has been an increased risk of K depletion (IFDC, 2013). Elsewhere, 
studies have shown that with zero or insufficient K input, continued cropping of rice in 
Asia (Dobermann et al., 2003) and of seven major crops in Australia (Brennan & Bell, 
2013) in soils that were initially considered not deficient, led to K depletion. The most 
plausible approach is to actively address the K depletion before critical levels are 
reached (F. V Schindler et al., 2005) and based on such revelations since the 2018/2019 
growing season, the Malawian government has introduced K containing fertilizers.   
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4.2.2 Soil structural stability and stochiometric ratios 

Apart from being an important source of nutrients, organic matter has been found to 
play a significant role in structural stability in most African soils (Ayuke et al., 2019). 
The low levels of SOC prevalent in the sentinel site of this study renders these soils 
structurally unstable (Figure 4.4a and Figure 4.5a). Greater portion of the land under 
study have soils that are structurally degraded and, can easily be washed down. Already, 
substantial erosion and sedimentation has been observed in the catchment, leading to 
nutrient losses through runoff and siltation of streams (Chimtengo et al., 2014; Sandram, 
2018). Therefore, there is an urgent need to improve structural stability by, among many 
options, planting biomass cover crops, recycling the organic matter and substantial 
application of organic nutrient inputs. The gap is wide and studies have found that with 
low input usage, as practiced in the study area, no significantly improvements in soil 
stability can be achieved (Ayuke et al., 2019). For the majority of soils with StI <5, it is 
imperative to improve organic inputs/ recycling so as to increase StI to 7-9 in the 
medium term with the ultimate goal to increase SOC levels for the entire site and 
achieve StI of >9. 

The dependence ratios among C:N:P shows that although N is considered the 
most limiting nutrient, it is in fact C that is more limiting. The normal C:N range is 20-
25, but the results show that C:N is in the lower range of 6-15, implying that relative to 
C, N is in excess (Figure 4.5b). This could be due to continued government efforts to 
promote use of N fertilizers while not giving due attention to management of soil 
organic carbon. Recent studies show that the maize response to fertilization has levelled 
off and is becoming increasingly dependent on management of soil organic carbon 
(Kopper et al., 2020). This calls for N and C co-management, as efforts to improve N 
may in the long run be curtailed by erosion of less structurally stable soils and leaching. 

Microbial solubilizing and immobilisation of P is increasingly getting attention 
and shows that C have significant influence on bioavailability and retention of P (Alori 
et al., 2017; Tamene et al., 2019; Zhang et al., 2018). C to P ratio (Figure 4.4c and 
supplementary Figure 4.5c) is indicative that most of the cultivated soils on the flood 
plains have P limitations, where as those on the western end have C limitations. For 
areas with P-limitation, P mobilising microbes such as biofertilizers could be promoted, 
which work by mobilising available P and in the process making it available for plant 
root uptake (Alori et al., 2017; Njira, 2013). On the other hand, for areas with net P-
mineralisation, management options should include increase in organic matter input 
such as crop residues, organic manure, domestic wastes and cover crops; to accelerate 
microbial P immobilisation and ultimately reduce losses though leaching. The N:P ratio 
has been widely studied in plant biomass with limited focus on establishing the critical 
soil levels. Studies though point to its influence on soil microbial activity (Tamene et 
al., 2019).  
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Figure 4.4 Spatial associations between soil organic carbon and (a) soil texture indicating structural stability (StI); and 
stoichiometric ratios with (b) total nitrogen (C:N), and (c) phosphorus (C:P) indicating nutrient dependence 

 
Figure 4.5  Extent of structural degradation and stoichiometric co-limitations (C:N & C:P). 

The differences in stoichiometric associations among soil nutrients have 
implications on decisions for fertilisation and its effects on bio-availability of plant 
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nutrients. There is emerging evidence on the effects of N-containing fertilizers on C:N:P 
ratio that in turn significantly influences the microbial community composition and 
enzyme activities (Shen et al., 2019). Since the pioneering studies of nutrient balance on 
Kenyan farms in 1990s, it is evident that, with low level of crop outputs, N is somehow 
adequately replenished. However, for these managed and tilled landscapes, large 
amounts of carbon are estimated to be lost through organic matter degradation than it 
is replenished which results in a wider negative balance. We also observe that the 
concentration of nutrients follows topographic gradient. Although both SOC and TN 
are concentrated in depressions, relative to TN, SOC is more concentrated on lower 
elevation and footslopes. Higher CN along streams could be due to combination of high 
vegetation cover along streams and sediment deposition from upslopes. Although it has 
been established that there are areas with normal C:P ratios, studies have shown that 
critical level of individual soil attributes dictate the responsive range. For instance, even 
when the N:P ratio was optimal, the critical N content determined the optimal range 
for the corresponding P for litter decomposition (Güsewell & Verhoeven, 2006). 

Managing soil nutrients solely based on the Liebig’s law of the minimum is 
considered a palpable theory for a steady system and where one or a limited identifiable 
number of limiting nutrients exist. Research trials in controlled environments use the 
tenets of the theory to supply other conditions in optimal ranges and omit or vary only 
the target variable. In real farm environments with variable conditions and multiple 
limiting nutrients, the actual limiting nutrient can abruptly change over spatial and 
temporal scales (Sperfeld et al., 2012). In such cases, a multiple limitation theory has 
been established considering that the nutrients interact, affecting availability and 
uptake of other nutrients (Gleeson & Tilman, 1992). 
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4.3 Household SFM choice 

Inorganic fertilizer usage in the study region is widespread, yet amounts vary greatly. 
Among the surveyed farming households, 90% applied on average (± standard 
deviation) 106 (± 42) kg inorganic fertilizer during the 2016/17 growing season (Table 
4—4). Almost one third of the households applied <50kg, 28% applied 50-100 kg, 20% 
100-200kg, 6% 200-300kg whilst only 3% applied more than 300 kg of fertilizer. More 
than half of the households (55%) applied organic manures, which included mostly 
farmyard and household waste. Out of the 55, 16 applied <100 kg, 32 applied 100-500 kg 
whilst only seven applied > 0.5 tonnes. The proportion of farmers that planted legumes 
was 72 percent. The average amount of land under legumes for only those that planted 
was 0.45 (± 0.64) ha.  

Descriptive statistics results show that adopters have an edge over non-adopters 
in most of the factors considered (Table 4—4). As illustrated by the respective 
confidence intervals, adopters of inorganic fertilizers compared to non-adopters have 
significantly more plots ([2.0-2.2] vs [1.0-1.9]), larger land sizes ([0.9-1.1 ha] vs [0.5-0.8 
ha]) and the majority practice crop rotation ([70-80%] vs [30-70%]). Adopters of organic 
manures and legumes also grow more crops and have more agricultural implements. In 
addition, adopters of legumes have more communication facilities and apply more 
organic manure ([158-266 kg] vs [26-124 kg]).  

Table 4—5 and Figure 4.6 presents the results for the double hurdle model. For 
each SFM practice, the first table column and first figure bars show the estimated 
coefficient and the elasticity of probability that the household used a SFM practice. 
Similarly, the third column and the second bar show the estimated coefficient and 
elasticity for those above zero. The third bar shows the summed up unconditional 
elasticity. 

In general, the results reveal household and plot that significantly differentiate 
the discreet and intensification choices among households in the five study villages 
(Table 4—5). In terms of level of responsiveness, inorganic fertilizer and organic manure 
usage are quite inelastic (elasticity < 1) to respective unit percentage changes in the 
household and plot attributes. The larger response is expected from differences in usage 
of legumes. Varying household land holding size (HHECT) has a significantly and larger 
influence on the area under legumes. Increasing the number of plots significantly 
enhances the probability of cropping legumes.  

It has also been found that households having a relatively larger household 
labour increases household’s capability to apply large quantities of fertilizer. However, 
increased number of dependant individuals compared to working members in a 
household have a decreasing effect on fertilizer intensification. A percentage point 
increases in available labour is associated with increase in in quantity applied by current 
users by 0.2 percentage points but reduces the probability by 0.13 percent points. 
Increasing dependency ratios also decreases the probability to apply organic manure. It 
has also been revealed that for households with higher levels of women involvement in 
decision-making, the level of organic manure application tend to decrease while the 
area under legume cropping increased.   
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Increasing farm sizes by 1.0 percentage point increases the probability to grow 
legumes by 0.5 percentage points and the use of inorganic fertilizers by 0.1 but has a 
negative effect on the extent of inorganic fertilizer usage by current users of 0.5 
percentage points. A percentage point increase in number of plots (fragmentation) is 
associated with 0.4% increase in the probability to grow legumes by 0.4%. On the other 
hand, further plot fragmentation is associated with reduction in area under legume by 
0.56% (Figure 4.6c). 

The amount of fertilizer applied is enhanced by increasing income from sale of 
cash crops, and the income from livestock and livestock products enhances the 
probability to apply inorganic fertilizer, whereas the income from sale of natural 
resources reduces the probability to apply inorganic fertilizer. We found that a 1% 
increase in level of education would lead to a 0.22% increase in quantity of manure 
applied, ceteris paribus.  
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Table 4—4 Means and proportions (95% CI) for the household attributes, resource endowments and farming practices among adopters and non-adopters 
  Inorganic fertilizer (kg)   Organic manures (kg)   Legume cropping (land%) 
 

non-adopt (n=24) 
 

Adopter (n=214) 
 

non-adopt (n=104) 
 

Adopter (n=134) 
 

non-adopt (n=65) 
 

Adopter (n=173) 
 

mean [95% CI] 
 

mean [95% CI] 
 

mean [95% CI] 
 

mean [95% CI] 
 

mean [95% CI] 
 

mean [95% CI] 

Demographic 

HAGEH 
        

46 [43 50] 
 

48 [46 51] 
        

HEDUH 4.8 [3.4 6.2] 
 

5.9 [5.4 6.4] 
 

5.4 [4.7 6.1] 
 

6.1 [5.5 6.7] 
 

4.9 [4.1 5.8] 
 

6.1 [5.5 6.6] 

HGENH 0.4 [0.2 0.6] 
 

0.5 [0.5 0.6] 
 

0.5 [0.4 0.6] 
 

0.6 [0.5 0.7] 
 

0.5 [0.4 0.6] 
 

0.5 [0.5 0.6] 

HDEPR 
        

1.9 [1.6 2.3] 
 

1.6 [1.3 1.9] 
 

2.7 [2.3 3.0] 
 

3.0 [2.8 3.3] 

Resource endowment and income 

HTLU 
        

0.3 [0.1 0.5] 
 

0.7 [0.4 1.0] 
        

HINCC 30 [0.0 62] 
 

68 [42 94] 
 

57 [25 90] 
 

69 [35 104] 
 

61 [12 110] 
 

65 [38 92] 

HINCL 1.4 [0.0 4.3] 
 

7.7 [4.6 10.7] 
 

4.0 [1.3 6.8] 
 

9.4 [4.9 13.8] 
        

HINCR 0.0 [0.0 0.0] 
 

2.5 [0.0 5.3] 
 

5.0 [0.0 10.8] 
 

0.1 [0.0 0.2] 
        

HCOMM 
                

0.3 [0.2 0.4] 
 

0.5 [0.5 0.6] 

HTRAN 0.1 [0.0 0.2] 
 

0.1 [0.1 0.1] 
 

0.1 [0.0 0.1] 
 

0.2 [0.1 0.2] 
 

0.1 [0.1 0.1] 
 

0.1 [0.1 0.2] 

HIMPL 2.0 [1.6 2.4] 
 

2.1 [1.9 2.2] 
 

1.8 [1.6 2.0] 
 

2.3 [2.1 2.4] 
 

1.7 [1.5 1.9] 
 

2.2 [2.0 2.4] 

HWEIA 
        

0.2 [0.1 0.2] 
 

0.1 [0.1 0.2] 
 

0.1 [0.1 0.1] 
 

0.2 [0.1 0.2] 

HGMEM 
                

0.3 [0.2 0.5] 
 

0.4 [0.3 0.4] 

Farm configuration and practices 

HPLOT 1.6 [1.3 1.9] 
 

2.2 [2.0 2.3] 
 

1.9 [1.7 2.1] 
 

2.2 [2.1 2.4] 
 

1.6 [1.4 1.7] 
 

2.3 [2.1 2.5] 

HHECT 0.6 [0.5 0.8] 
 

1.0 [0.9 1.1] 
 

0.8 [0.7 0.9] 
 

1.0 [0.9 1.2] 
 

0.7 [0.6 0.8] 
 

1.0 [0.9 1.2] 

HWILE 0.2 [0.1 0.4] 
 

0.4 [0.3 0.5] 
             

0.5 [0.4 0.6] 

HCROP 1.9 [1.6 2.3] 
 

2.3 [2.1 2.4] 
 

1.9 [1.7 2.1] 
 

2.5 [2.3 2.7] 
 

1.4 [1.2 1.5] 
 

2.6 [2.4 2.8] 

HCROT 0.5 [0.3 0.7] 
 

0.7 [0.7 0.8] 
 

0.6 [0.5 0.7] 
 

0.8 [0.7 0.9] 
 

0.3 [0.2 0.5] 
 

0.8 [0.8 0.9] 

HORGA 196 [0.0 401] 
 

172 [131 213] 
     

310 [244 376] 
 

75 [26 124] 
 

212 [158 266] 

HFERT          107 [96 119]   100 [81 119]   95 [81 109]   82 [60 105]   103 [89 116] 

HAGEH = age of household head (years); HEDUH = formal education of the HH (years); HGENH = Gender of the household head (1=male, 0=female); HDEPR = Dependency ratio (age 18-65/(18<age>65); HTLU = Tropical livestock units; HINCC = income from 

cash crops (US$/year); HINCL = income from livestock (US$/year); HINCR = income from natural resources (US$/year); HCOMM = communication index; HTRAN = transport index; HIMPL = farm implements index; HWEIA = women empowerment in 

agriculture index; HGMEM = group membership (1=yes, 0=no); HPLOT = number of plot fragments; HHACT = farm size (hectares); HWILE = hectares under legume (%); HCROP = number of crops; HCROT = crop rotation (1=yes, 0=no); HORGA = organic 

manure applied (kg); HFERT = inorganic fertilizer applied (kg). 



95 

 

Table 4—5 Double-hurdle estimates of the probability to apply inputs or plant legumes and intensification 
  Inorganic fertilizer (kg)   Organic manure (kg)   Legume land share (%) 

  Apply  Intensity   Apply   Intensity   Plant   Intensity 

  Coef.  s.e.  Coef.  s.e.   Coef.  s.e.   Coef.  s.e.   Coef.  s.e.   Coef.  s.e. 

HAGEH 0.01     0.01  1.03  0.99   0.01  0.01 
 

1.52  1.13              

HEDUH 0.07   * 0.04  7.42 * 4.11   0.02  0.03 
 

12.17 ** 5.40  0.083 ** 0.04   -0.013  0.01 

HGENH 0.53 * 0.29  -31.22  32.93   0.16  0.20 
 

-21.56  33.71  0.067  0.25   -0.006  0.08 

HLABA -0.01  0.09  19.30 ** 8.10      
  

     -0.087  0.11   0.011  0.02 

HDEPR 0.01  0.08  -20.10 ** 9.81   -0.13 ** 0.06 
 

-17.39  11.57     
 

     
 

HTLUN            0.01  0.07 
 

10.90 ** 5.40     
 

     
 

HINCC 5E-4  9E-4  0.12 ** 0.05   -4E-4  5E-4 
 

0.03  0.06  -0.002 ** 7E-4   14E-5  1E-4 

HINCL 0.02 ** 0.01  -0.27  0.41   0.01  0.01 
 

-0.06  0.53     
 

     
 

HINCO 8E-4  6E-4  -0.14 ** 0.06      
  

        
 

     
 

HINCR 1.75  1.08  -0.16  0.29   -0.13 * 0.07 
 

18.46  27.65     
 

     
 

HCOMM                 
 

      -0.096  0.38   0.17 * 0.10 

HTRAN -2.55 *** 0.99  88.12  91.51   0.74  0.69 
 

21.46  78.09  -1.902 ** 0.91   0.048  0.21 

HIMPL              0.13  0.11 
 

35.56 ** 16.75  0.435 *** 0.17   -0.03  0.04 

HWEIA 0.16  0.69  43.88  71.32   -0.64  0.50 
 

-179.57 ** 89.48  2.305 *** 0.90   0.154  0.20 

HGMEM          
 

     
 

     
 

-0.203  0.25   0.042  0.09 

PPLOT 0.50 *** 0.19  62.64 *** 14.37   0.11  0.11 
 

18.72  15.89  0.316 ** 0.16   -0.29 *** 0.07 

PHACT 0.82 *** 0.32  -12.18  16.74   0.05  0.14 
 

-39.45 ** 19.16  0.648 ** 0.32   0.977 *** 0.03 

PCROP              0.28 *** 0.09 
 

-10.93  14.09  1.052 *** 0.18   0.183 *** 0.04 

PROTA              0.42 ** 0.21 
 

100.21 ** 44.28  1.349 *** 0.24   -0.515 *** 0.09 

PFERT          25E-4 ** 12E-4 
 

-0.11  0.20  2E-5  16E-4   17E-5 * 4E-4 

PORGA -5E-4  3E-4  -0.05  0.05          -0.001  7E-4  -24E-5  1E-4 

_cons -1.27 * 0.76  -196.1 *** 75.43   -1.35  0.49 
 

-30.96  92.15  -4.187 *** 0.62   -0.256 * 0.13 

Log pseudolikelihood  -952.8 -1246.7  -16.18494 

Wald chi2  44.7 30.9 109.8 

Prob > chi2 =  0.0002 0.006 0.000 

Significant at: p<0.1*, p<0.05**, p<0.01*** 
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Figure 4.6 Elasticities for the probabilities to adopt and intensify (a) inorganic fertilizers, (b) organic 
manure, and (c) allocate land to legumes. 

4.3.1 Bounding demographic and social conditions for household SFM 
usage 

With the very limited transport facilities and predominance of using heads as primary 
method for transporting heavy products (Amede et al., 2014), manure application is 
bound to continue constraining labour allocation decisions. Increasing number of 
dependants means that the household need to spend more on food and other household 
necessities at the expense of the re-investing in fertilizer purchases. To meet the needs 
of household dependants, workers prioritise allocating labour to immediate needs and 
those with limited labour would hardly allocate to manure management. 

Our finding on effects of gender on manure usage are in agreement with the 
notion that women find the preparation and transportation to be labour demanding 
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(Mustafa-Msukwa et al., 2011). The main legume grown in Nsipe is groundnut (Arachis 
hypogaea L.) for which some studies in the region found that households headed by 
women allocated less land than their male counterparts (Waldman et al., 2016). 
However, the effects of gender as a social factor are contextual and Waldman’s research 
did not account for the influence of women in male-headed households. The marriage 
system in Nsipe is matrilineal and consequently, the role of women in household 
decision making is profound. Women-headed households tend to have more 
information about legumes than male-headed ones (Snapp et al., 2002). These results 
are also consistent with the findings by Pircher (Pircher et al., 2013) who found that even 
in participatory research, women farmers have higher preferences to integrate legumes 
in their maize farms compared to men farmers. 

Since the technologies are generally promoted as an integrated basket, gender 
would have disproportionate effects on usage of organic manures and legumes. It has 
been purported that social aspects such as gender may not be important driver for a 
particular soil fertility technology, but could have indirect effects through its influence 
on complimentary or alternative technologies (Doss & Morris, 2000). A gender 
segregated study in Ghana showed that the propensity to apply fertilizer by women-
headed households was positively associated with farming experiences, whereas for 
male-headed counterparts, income from other sources reduced investment in fertilizer 
(Mensah et al., 2018). Gender is invisible and its effects underpin other underlying 
factors. For instance, women’s adoption of practices that require physical assets such as 
organic manure, is premised on them having access to resources first. 

One major challenge in scaling technologies that require understanding of 
chemical, biological and physical processes happening below one’s feet in rural farming 
systems is the prevailing high illiteracy levels. In Nsipe, the average education level 
attained by household heads is 6th grade which has a strong bearing on their ability to 
processing agricultural information. The education level has consistent positive effects 
on both probability and extent of inorganic fertilizer usage. Considering that average 
education level attained by households is 6th grade (incomplete primary), shifting the 
level of education by one grade to 7th grade represents 17% which would be associated 
with a 3.91% increase in overall fertilizer application. It is further envisaged that 
improvements in formal education from the current average of grade 6 by 33% to grade 
8 (complete primary) or by 100% to grade 12 (complete elementary) would be associated, 
respectively, with increases in manure application from the current 244 kg to 261 kg and 
325 kg. These results highlighting that an emphasis on education could lead to 
intensified inorganic fertilizer and organic manure application.  

4.3.2 Resource endowments shaping SFM uptake and intensification 

Considering that land is major resource, this study has found that increasing land sizes 
has larger positive elasticity on the decision start applying fertilizer than the negative 
elasticity the amounts applied by current fertilizer users. The overall effect on inorganic 
fertilizer is therefore positive. The positive effects of farm size were expected since the 
general tendency is that large farm sizes are associated with increased availability of 
financial capital, which can make investment in ISFM more feasible (Akinola et al., 
2010). In addition, farmers with small plots might not benefit from ‘economies of scale’ 
when using more inputs as the returns tend to be too small especially in rainfed farming 
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system (Harris & Orr, 2014). Unlike the established positive farm size - input use - 
productivity relationship (Dorward, 1999; Muyanga & Jayne, 2019), in Malawian 
smallholder farming systems, inverse farm size – productivity relationship has been 
observed since 1990s (Matchaya, 2007). This has been attributed to governments policy 
that has enabled farmers with small plots to have access to inorganic fertilizers and 
explains the inverse farm size - inorganic fertilizer relationship found in this study. This 
result is further confirmed by our earlier study within the same area. It was found that 
farmers with small landholdings use more inputs in an effort to maintain or improve 
productivity that declines due to continuous cropping (Mponela et al., 2016).  

Plot fragmentation also increases the probability to start growing legumes but 
deter the current legume growers to increase area. The increase in area under legumes 
of be new users with more plots is overshadowed proportionally higher reduction in 
area under legume by current legume growers. The overall fragmentation effect on 
legume cropping is negative. As plot fragmentation increases farmers would more likely 
grow sole crops. Since maize is the staple crop and takes greater share, farmers are more 
likely to allocate smaller portions to sole legumes. 

 Farmers who derive higher incomes from crop sales tend to re-invest in farming 
through purchase of inorganic fertilizers. Since farming is a seasonal enterprise, farmers 
usually have multiple enterprises and they re-invest the revenues from one into the 
other (Chalmers & Agar, 2015). They also invest more in enterprises that provide 
immediate benefits and often fail to forecast into distant future, possibly because of 
their low formal education. In Nsipe, the dependence on income from other sources 
and natural resource extraction reduces the reliance on legumes and time for collecting 
and producing manures, respectively. The benefits of using legumes and farmyard 
manure for soil fertility are less compared to inorganic fertilizer and may take time to 
build.  

As they earn a living from subsistence farming which is seasonal and low yielding, 
farmers like most small entrepreneurs manage uncontrollable downside risks by moving 
resources from enterprises affected by such a risk and invest in activities that sustain 
their livelihoods (Chalmers & Agar, 2015). Conversely, there is a significantly lower 
probability that farmers in in Nsipe would purchase more inorganic fertilizer if they get 
substantial income from other sources. Our results also show that income from cash 
crops like tobacco reduces the chances to allocate land to legumes. Therefore, farmers 
who engage in non-farm activities are less likely to invest their income, labour and land 
in these soils enhancing technologies. This is against the backdrop that farming is 
considered a major livelihood strategy for rural communities in Malawi. 

Natural resource extraction in many instances contributes significantly to the 
livelihood needs in rural farming communities. Since organic manures are not 
purchased, the plausible reason for the observed negative influence could be due to 
labour allocation. Manure collection, storage, processing and application demand more 
labour (Mustafa-Msukwa et al., 2011) and families who rely on natural resources for 
income devote much of their time to natural resource collection and sale.  

Interestingly, income from cash crops exert a negative influence on the probability 
to start legume cropping. In the Malawian rift valley escarpments, legumes are mostly 
grown for home consumption and surplus is sold. It is therefore expected that farmers 



99 

 

generating more cash from legumes would grow more. However, a good number of 
farmers on the lower elevation grow tobacco for sale. Most farmers also sell surplus 
maize which fetches better prices as the region supplies to the food insecure 
neighbouring semi-arid and arid regions (Amede et al., 2014).  

Situated in the maize mixed farming systems of the rift valley escarpments, 
livestock is a secondary farming activity to crop production. In Nsipe, the density of 
livestock is not as high as in adjoining arid areas (Amede et al., 2014), but many people 
own goats, chickens and pigs. Since manure is not usually traded, farmers who own 
livestock tend to have a higher propensity to apply more manure. this is a wakeup call 
for integration of livestock in the dominantly crop-based farming system as this could 
more likely increase usage of farm yard manure. 

Although not usually considered, ownership of farming tools, including hoes has 
a significant impact on some farming operations. Lack of simple farming tools have been 
found to be a major limitation to proper farming in Malawi to the extent of endangering 
people’s lives as they use legs and hands for some farming operations (Murray et al., 
2016). Although mechanisation is being promoted as best alternative for agricultural 
productivity in Africa, the hand-held tools especially the hoe are still used for almost all 
farming operations. Improving efficiency of hand-held tools by diversifying would 
facilitate uptake of SFM technologies as shovels, spades and wheel-barrows could ease 
manure collection, preparation and transportation whilst smaller hoes could be efficient 
in weeding and planting legumes.   

Existing cropping practices also considerably shape the decisions of farmers. We 
found empirical evidence that increasing fertilizer application tend to decrease the 
probability that farmers would start organic manure application. Given the ongoing 
efforts by the Malawian government to promote inorganic fertilizers which can give 
instant yield benefits, there is less likelihood that farmers would take on manures which 
require preparation and even if well prepared, they have lower and slower benefits in 
terms of productivity. Yet Nsipe farmers who apply more organic manures are more 
likely to allocate more land to legumes. Hence promoting organic manures could 
indirectly enhance legume cropping.  
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4.4 Plot SFM allocation: drivers of fertilization, organic manuring and 
legume cropping 

In addition to the household’s decision to acquire and use a particular SFM technique 
(presented and discussed in previous chapter), individuals make further decisions as to 
which plots should receive the SFM in question. These results are further used to 
parametrise the models for simulating, at plot level, the agent behaviours and impacts 
of policy alternatives on nutrient balance, productivity and farm incomes. 

4.4.1 Probability to apply inorganic fertilizer 

Empirical results for drivers of choice for the most common nutrient input, i.e. inorganic 
fertilizer, are presented in Table 4—6.  

Table 4—6 Logistic results for propensity to use inorganic fertilisers on land units owned by households with 
different attributes 

Variables aggregate farmtype1 farmtype2 farmtype3 

     
HLABOUR -0.059 0.163 -0.150 -0.210 
 (0.103) (0.431) (0.142) (0.342) 
HDEPR -0.022 0.247 -0.143 -0.034 
 (0.077) (0.224) (0.134) (0.225) 
HWEAI  -0.041 1.317 -0.142 -0.251 
 (0.353) (0.923) (0.570) (0.771) 
HGENH 0.445* 1.286* 0.846** 0.365 
 (0.235) (0.720) (0.430) (0.498) 
HEDULHM 0.093 0.579 0.039 0.220 
 (0.142) (0.505) (0.206) (0.337) 
HGMEM 0.518** 1.068 0.821* 0.462 
 (0.252) (0.767) (0.427) (0.553) 
HCOMM 0.323 -0.302 0.132 0.774 
 (0.229) (0.580) (0.467) (0.622) 
HTRAN -1.210*** -3.200 -1.384 -1.060* 
 (0.425) (2.142) (1.281) (0.597) 
HHECT -0.322* -0.488* -0.326 -1.031 
 (0.187) (0.265) (0.339) (0.668) 
PHECT 1.460*** 1.769 1.428** 2.847** 
 (0.472) (1.385) (0.636) (1.184) 
PCULTYRS 0.005 0.013 0.012** 0.001 
 (0.003) (0.010) (0.005) (0.007) 
PLEGUD 0.655*** 0.959 0.709* 0.913** 
 (0.240) (0.628) (0.403) (0.416) 
PORGAD 0.298 0.162 0.543 0.242 
 (0.238) (0.679) (0.405) (0.447) 
PTREE10D -0.134 -0.832 0.221 -0.112 
 (0.258) (0.802) (0.434) (0.530) 
PTN% -7.727 -52.636 -16.380 -5.283 
 (17.601) (41.144) (26.669) (30.604) 
PSOC% 0.714 6.397*** -0.193 1.761 
 (0.786) (2.253) (1.038) (1.627) 
PSPI 0.023 -0.255*** 0.152** -0.035 
 (0.033) (0.095) (0.060) (0.053) 
PELEVATION -0.000 0.049*** -0.005 0.001 
 (0.003) (0.017) (0.004) (0.005) 
Constant -0.315 -45.839*** 5.451 -2.244 
 (2.939) (16.123) (4.668) (5.201) 
     
Observations 468 93 217 158 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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The propensity to acquire and apply inorganic fertilizer increases in favour of 
male headed over women headed households. Significant gender impacts are noticeable 
among the low input and the medium input farms of farmtypes1&2, respectively. The 
results also show that households with members that belong to agricultural groups are 
more likely to apply inorganic fertilizers than those that do not join groups. Group 
membership is more discerning among medium input farms. The probability to apply 
fertilizer is higher for larger plot sizes tend and we observe that the effect of plot sizes 
significantly influence differentiation in fertilizer usage among medium and high input 
farms. There results show that for medium input farms, the propensity to apply fertilizer 
significantly increases if the plots have been under cultivated for longer period.  

Among the low input farms, the propensity to apply inorganic fertilizer is higher 
for plots with higher soil organic carbon contents and for the ones at higher elevation. 
It is worth noting that legume incorporation tends to be associated with application of 
inorganic fertilizers. This could be because legume seeds are given together with 
fertilizer and improved maize seed in the subsidy input package. The legume effect is 
significant among medium and high input farms. Much as larger individual plots have 
higher probability to be fertilized, when accumulated at household level, larger total 
land holdings deter fertilization. The land holding’s negative relationship is particularly 
significant for low input farms, implying that among this resource poor group, those 
with smaller plots have higher propensity to apply fertilizer. We also observe that an 
increase in transport facilities is associated with a significant reduction in propensity to 
apply fertilizer especially for high input farms. Interestingly, the stream power index has 
a positive influence among medium input farms (farmtype2) but reduces the propensity 
for the low input farms (farmtype1). 

The second hurdle that farmers have to cross with regard to fertilizer application 
is the amount of inputs used. Table 4—7 shows the results from the generalised linear 
model. Increasing fertilisation is positively associated with amount of manure applied, 
increase in women empowerment (WEAI) especially among medium input households, 
sand content of plots for the low input farms and flow accumulation especially for plots 
of medium input farms. The positive association with manure across farm types is 
indicative of complementary effects that farmers observe if they supplement fertilizer 
and manure in larger quantities. Another interesting finding is that women 
empowerment induces increased usage of inorganic fertilizer signifying the role of 
increased women’s bargaining power in farm investment. It is expected that with the 
plots down the slope that have a higher flow accumulation receive increasing 
sedimentation and would require less supplementation. However, the plains of the 
study area not the valley bottoms, most of the sediments are transported out of the sub 
catchment (Chimtengo et al., 2014; Sandram, 2018). Since these plains are prime 
agricultural lands that have been under cultivation for generations (CIAT, 2016), farmers 
proactively act to boost productivity by increasing fertilizer. 

Increasing the level of fertilizer subsidy, plot sizes, whether a plot was supplied 
with manure or not and indigenous soil nitrogen are associated with decrease in amount 
of fertilizer applied. The increased level of subsidy has significant negative influence 
among low input and medium input farms. This implies that those that increasingly rely 
on subsidised fertilizer apply less fertilizer than that those that supplement or purchase 
from markets. Much as the larger plot sizes are positively associated with higher 
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probability for those that are not using fertilizer to start using, farmers with large plots 
apply less fertilizer per capita than those with small plots. these results are consistent 
with the observed inverse relationship between input use intensity and plot sizes 
(Sheahan & Barrett, 2017). It is also interesting to note that despite increasing manuring 
having a positive association with the quantity of fertilizer applied, among medium 
input farms, those that do not apply manure use comparatively more inorganic fertilizer 
than those that apply manure. The results also show that farmers who own plots with 
relatively higher soil nitrogen content apply significantly less inorganic fertilizer, 
although the effect in not discernible for farm types.  

 

Table 4—7 Generalised linear model results for factors influencing amount of fertilizer used 

Variables aggregate farmtype1 farmtype2 farmtype3 

     
HWEAI 0.2734* 0.3660 0.5138*** 0.0459 
 (0.1422) (0.2628) (0.1722) (0.2543) 
HLABOUR 0.0083 0.0322 -0.0168 -0.0057 
 (0.0354) (0.1557) (0.0444) (0.0909) 
HDEPR -0.0062 -0.0469 -0.0029 -0.0523 
 (0.0335) (0.0578) (0.0418) (0.0552) 
PSUBIDY -0.5635*** -0.7981** -0.8353*** -0.2161 
 (0.1800) (0.3134) (0.2601) (0.3273) 
HEDULHM -0.0596 -0.1360 -0.0008 0.0016 
 (0.0557) (0.1555) (0.0587) (0.0881) 
HINMS -0.0001 0.0002 -0.0001 0.0000 
 (0.0001) (0.0003) (0.0001) (0.0003) 
HTRAN -0.0254 0.8127 -0.0439 -0.6784 
 (0.2164) (0.5850) (0.2300) (0.5419) 
PHECT -0.7796*** -0.5294*** -1.3756*** -2.2310*** 
 (0.0840) (0.0728) (0.1426) (0.3129) 
PCULTYRS 0.0022 -0.0023 -0.0005 0.0022 
 (0.0015) (0.0025) (0.0019) (0.0021) 
PLEGUD -0.1114 -0.0912 0.0418 0.0223 
 (0.0989) (0.2042) (0.1305) (0.1555) 
PORGAD -0.2567** -0.1484 -0.3397** -0.1528 
 (0.1005) (0.2514) (0.1433) (0.1860) 
PORGA 0.0002*** 0.0005** 0.0003** 0.0001** 
 (0.0000) (0.0002) (0.0001) (0.0001) 
PSAND% 0.0029 0.0220* -0.0019 0.0060 
 (0.0054) (0.0114) (0.0061) (0.0098) 
PTN% -7.2138* 12.8142 -8.4527 -10.9217 
 (4.1555) (8.6822) (5.8842) (6.7437) 
PKmgkg -0.0022 -0.0041 -0.0009 -0.0007 
 (0.0015) (0.0028) (0.0018) (0.0026) 
PFLOWACC 0.0005*** -0.0008 0.0007*** -0.0036 
 (0.0002) (0.0006) (0.0002) (0.0049) 
Constant 6.4556*** 3.9304*** 6.9545*** 6.8576*** 
 (0.5283) (1.1546) (0.6943) (0.9140) 
     
Observations 348 70 166 112 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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4.4.2 Probability to apply and intensify organic manures 

As presented in Table 4—8, the drivers with significant positive influence on use of 
organic manures include higher fertiliser subsidy among high input farms (farmtype3), 
having more livestock units – with plot specific effects discernible only among medium 
input farms (farmtype2), larger plot size whose farm type specific effect is discernible 
only among low input farms (farmtype1) and whether a plot receives complementary 
fertilizer or not for medium input farms (farmtype2). The positive effect of subsidy is 
indicative that farmers who increasingly rely on subsidy have high probability to apply 
manure especially if they belong the relatively high fertilizer and high manure input 
farm type. The effect of livestock is as expected since manure is not traded. Therefore, 
those with livestock have an added advantage to use high value manure made from 
animal droppings (Emerton, 2016). 

On the other hand, significant reductions in the propensity for households to 
apply organic manures have been estimated to be associated with increase in number 
of dependants compared to workers for the aggregate and among the low input farms 
and with legume integration for the aggregate and among the medium input farms. The 
results also show that tree cover tend to have farm type specific effects: higher tree cover 
is associated with increase in probability to apply manure for the low input farms but 
there is a negative association among moderate input farms. 

Table 4—8 Logistic results for propensity to use organic manures on land units owned by households with different 
attributes 

Variables aggregate farmtype1 farmtype2 farmtype3 

     
HLABOUR 0.034 -0.227 0.153 0.000 
 (0.081) (0.338) (0.117) (0.234) 
HDEPR -0.145** -0.349* -0.084 -0.187 
 (0.066) (0.195) (0.103) (0.147) 
HWEAI -0.482 -0.042 -0.831 -0.161 
 (0.311) (0.888) (0.524) (0.618) 
PSUBSIDY 0.258 -0.032 -1.067 2.673*** 
 (0.451) (1.195) (0.778) (0.882) 
HTLUN 0.110* 0.342 0.187** 0.211 
 (0.065) (0.316) (0.086) (0.153) 
HEDULHM -0.088 0.498 -0.269 0.196 
 (0.131) (0.417) (0.195) (0.257) 
HCOMM -0.212 -0.057 -0.511 -0.415 
 (0.174) (0.376) (0.338) (0.366) 
PHECT 0.366* 0.444** 0.502 1.083 
 (0.204) (0.210) (0.431) (0.780) 
PLEGUD -0.353* 0.923 -0.698** 0.026 
 (0.208) (0.614) (0.327) (0.405) 
PFERTD 0.264 0.361 0.748* -0.374 
 (0.241) (0.621) (0.390) (0.443) 
PTREE10D 0.018 1.085* -0.845** 0.560 
 (0.224) (0.608) (0.405) (0.398) 
PSAND% -0.010 0.012 -0.006 -0.025 
 (0.012) (0.037) (0.018) (0.025) 
PSLOPE 0.011 -0.032 -0.020 0.034 
 (0.022) (0.059) (0.040) (0.038) 
Constant 0.218 -1.885 -0.021 0.388 
 (0.650) (2.079) (0.928) (1.350) 
     
Observations 468 93 217 158 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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The expectation is that households with increased dependent household members 
will be constrained to allocate labour to manure making, but these results points to 
them being more likely to switch to manure application. Such tendency needs further 
exploratory study to unravel the conditions that lead these labour constrained 
households to be more likely to resort to labour demanding manuring. We also observe 
that for the moderate fertilizer and high manure farms (aka medium input farms), 
legume integration lowers the propensity for farmers to apply manure on plots where 
they are currently not applying. 

For the plots that received manure (46% of those sampled), the application levels 
varied. About 23% received < 0.5 ton ha-1, 16% between 0.5 and 1.0 ton ha-1 whilst 6.4% 
received ≥ 1.5 ton ha-1 during the 2016 / 2017 growing season. Empirical results from 
generalised linear model show that increasing plot sizes has a significant negative 
influence on the amount of manure applied across farm types (Table 4—9). The 
opposing effects of plot size on the decision to start which is positive and the second 
intensification hurdle which is negative mirror that of fertilisation and supports the 
inverse plot size vs input intensity relationship (Sheahan & Barrett, 2017). These results 
are indicative that farmers with smaller plots sizes use comparatively larger quantities 
of manure. 

Table 4—9 Generalised linear model results for factors determining intensity of manure applied to a 
plot. 

Variables  aggregate farmtype1 farmtype2 farmtype3 

      
HWEAI  0.1775 -0.552* -0.3689 0.3218 
  (0.3594) (0.323) (0.3122) (0.5668) 
HLABOUR  0.0417 0.465** 0.2835*** -0.0700 
  (0.0520) (0.193) (0.0503) (0.1552) 
HDEPR  -0.0637 -0.052 0.0223 -0.0442 
  (0.0644) (0.071) (0.0575) (0.0960) 
PSUBSIDY  -0.1235 -0.461 -0.6382* -0.0444 
  (0.3393) (0.773) (0.3323) (0.4395) 
PFERT  0.0011*** 0.003*** 0.0002 0.0012** 
  (0.0004) (0.001) (0.0002) (0.0005) 
HEDULHM  0.0170 -0.767*** -0.2545*** 0.1273 
  (0.0723) (0.201) (0.0921) (0.1389) 
HINCC  -0.0005 -0.005 -0.0005 0.0002 
  (0.0004) (0.004) (0.0007) (0.0009) 
HINCL  -0.0007 0.006** 0.0087** -0.0144** 
  (0.0024) (0.003) (0.0037) (0.0073) 
PHECT  -0.8210*** -0.603*** -1.5192*** -0.9253** 
  (0.0702) (0.057) (0.2267) (0.4378) 
PLEGUD  0.1026 0.846*** 0.0152 0.1205 
  (0.2093) (0.267) (0.1770) (0.3328) 
PSOC%  0.0014 0.995 0.3339 -0.5575 
  (0.3869) (0.615) (0.4631) (0.6692) 
PSAND%  -0.0025 -0.019 -0.0114 0.0192 
  (0.0120) (0.016) (0.0096) (0.0224) 
Constant  6.6970*** 5.272*** 6.2591*** 6.7504*** 
  (0.7513) (1.004) (0.5931) (1.5710) 
      
Observations  185 32 78 75 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Differentiated factor effects are observed among the different farm types. 
Increasing subsidy would induce significant reduction in levels of manuring for the 
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moderate manure and high fertilizer farms (farmtype2). Increases in the total fertilizer 
used per plot is associated with increase in manuring from the aggregated analysis, for 
the low input farms (farmtype1) as well as for the high input farms (farmtype3). As the 
women bargaining power increases, the likelihood to increase manure application tend 
to be significantly lower for moderate input farms. Increase in family labour and 
livestock units tend to be associated with increases in manure input for low and medium 
input farms but reduces the likelihood to intensify manuring for high input farms. 
Conversely, increase in education level among household members reduces the 
probability to increase manuring for farmtypes1&2 but increases the probability for high 
input farms. Moreover, for low input farms, increasing income from crops has a negative 
influence whilst legume cropping and indigenous soil carbon tend to have a positive 
and significant influence on intensity of manuring. 

4.4.3 Probability for switching from sole cereal to legume integration 

Table 4—10 4—11 Logistic results for propensity to plant legumes on a plot given household and plot attributes. 

Variables  aggregate farmtype1 farmtype2 farmtype3 

PLABOUR  -0.08 -0.72** -0.11 -0.27 
  (0.10) (0.36) (0.13) (0.30) 
HDEPR  -0.03 -0.37** -0.04 0.12 
  (0.07) (0.18) (0.12) (0.14) 
HWEAI  0.56* 0.73 0.78 0.76 
  (0.33) (0.95) (0.52) (0.67) 
PSUBIDY  0.27 -2.43* 0.02 2.08** 
  (0.51) (1.38) (0.86) (0.90) 
HEDULHM  0.31** 1.07** 0.33 0.49 
  (0.15) (0.52) (0.21) (0.32) 
HCOMM  0.03 0.53 0.03 -0.26 
  (0.20) (0.41) (0.34) (0.41) 
HGMEM  -0.42* -0.42 -0.40 -0.48 
  (0.22) (0.65) (0.35) (0.41) 
PHECT  1.32*** 0.73*** 1.28*** 3.30*** 
  (0.34) (0.28) (0.50) (0.81) 
PCULTYRS  0.01*** 0.03*** 0.00 0.01*** 
  (0.00) (0.01) (0.00) (0.00) 
PFERTD  -0.66*** -0.16 -0.72* -1.24** 
  (0.25) (0.67) (0.40) (0.49) 
PORGAD  0.33 -1.27** 0.73** -0.23 
  (0.21) (0.64) (0.33) (0.42) 
PTREE10D  -0.25 0.43 -0.82** 0.22 
  (0.23) (0.69) (0.39) (0.42) 
PSAND%  0.01 0.06 0.02 -0.03 
  (0.01) (0.04) (0.02) (0.03) 
PSOC%  -0.22 -0.24 -0.18 0.60 
  (0.47) (1.01) (0.74) (0.92) 
PSLOPE  -0.00 -0.05 0.03 -0.01 
  (0.02) (0.06) (0.04) (0.04) 
Constant  -1.72** -3.16 -2.00 -1.05 
  (0.84) (2.34) (1.36) (1.61) 
Observations  468 93 217 158 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Legume integration in cereal dominated farming systems is considered to be a gateway 
to sustainable agricultural intensification (Gilbert, 2004). Despite their multiple 
benefits that include nutrition and income, their extent of cultivation is still low. From 
our empirical analysis, the results in Table 4—10 shows that the propensity for 
households to switch to legume integration is negatively associated with increase in 
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available household labour for low input farms (farmtype1) and increase in number of 
dependants over workers among low input farms, group membership for the entire 
range of farms (aggregate), whether a plot receives inorganic fertilizer or not (among 
the moderate input farms of farmtype2, high input farms of farmtype3 and the 
aggregate) and if there are trees on farm among moderate input farms.  

On the other hand, the likelihood for legume integration increases with women 
empowerment in decision-making for aggregate, higher educational attainment by 
household members, and having larger plot sizes and if land has been cropped for longer 
periods. Type specific effects were detected for fertilizer subsidy and manuring. 
Increasing subsidy decreases the likelihood to plant legumes among the low input farms 
but increases the likelihood among the high input farms. The odds to plant legumes 
increase with application of organic manure among low input farms but increase for 
medium input farms. 

4.4.4 Probability to retain trees on farm 

Availability of trees on farms is one key feature of smallholder farmlands that influence 
nutrient stocks directly through processes such as erosion control (Banda et al., 1994) 
and indirectly through its association with the decisions by farmers to plant certain 
crops or apply inputs (Kuyah et al., 2019). The trees are either deliberately planted or 
retained on farms (GoM, 2017). Table 4—12 shows that the higher the number of 
dependants in relation to workers (among medium input and high input farms and the 
aggregate), higher education level of household members (among medium input farms 
and the aggregate), more livestock (among medium input farms and the aggregate), and 
larger plot areas (among high input farms) increase the propensity to retain higher cover 
of trees. 

However, higher availability of family labour, women empowerment and legume 
intensification lowers the likelihood to retain higher tree cover on farm. The negative 
effect of women empowerment on retention of trees is not as expected. In the region, 
marriage system is matrilineal and women own land hence, as long-term natural 
resources, trees are often used to claim and safeguard ownership (German et al., 2009). 
Moreover, as woodlands are cut and fuelwood become scarce, trees on farm are a viable 
source of energy for cooking. The empowered women land owners are therefore 
expected to be more likely retain trees on farm. The negative influence may be due to 
other factors such as information on the benefits of trees and other purposes that the 
trees on farm are intended for. Generally, the large crown trees are either the planted 
fruit trees such as Mangifera indica or the indigenous poles and timber species, which 
are polarded. Women get the pollards, but it is men who decide on the density and 
species to retain. 

The effects of elevation and manuring are farmtype specific. Manuring has a 
positive association with the probability to retain trees for high input farms (farmtype3) 
but a negative one for medium input farms (farmtype2). The probability to retain trees 
increases for plots on higher elevation among the medium and high input farms as well 
as for the entire sample. Conversely, the probability to retain trees increases in favour 
of plots situated on lower elevation among the low input farms (farmtype1). Much as 
higher elevation landscapes are prone to erosion and controlling degradation could spur 
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farmers to reserve trees, the rationale for the low input farms on lower elevation to 
retain trees could be their potential contribution to soil fertility improvement and as 
source of fuelwood, poles and timber. The low level of manure and fertilizer application 
indicates that these are resource poor who, in pursuit of options for improving soil 
fertility and livelihoods, would be retaining more natural resources such as trees. 

Table 4—12 Logistic results for propensity to retain trees above 10% threshold on a plot given household 
and plot attributes. 

Variables aggregate farmtype1 farmtype2 farmtype3 

     
HLABOUR -0.270** 0.411 -0.305* -0.712** 
 (0.106) (0.394) (0.156) (0.313) 
HDEPR 0.152** 0.124 0.182 0.313** 
 (0.073) (0.170) (0.130) (0.147) 
HWEAI -0.581* -1.275* -0.780 0.280 
 (0.345) (0.754) (0.628) (0.640) 
PSUBIDY -0.096 -1.859 -0.462 0.120 
 (0.501) (1.429) (0.853) (0.906) 
HEDULHM 0.295** -0.751 0.504** 0.194 
 (0.142) (0.554) (0.198) (0.366) 
HTLUN 0.203*** 0.504 0.274*** 0.098 
 (0.059) (0.734) (0.080) (0.214) 
PHECT 0.317 0.015 0.644 1.621* 
 (0.203) (0.251) (0.509) (0.908) 
PCULTYRS -0.002 0.001 -0.008 -0.003 
 (0.003) (0.007) (0.005) (0.005) 
PLEGUD -0.364 0.553 -1.168** 0.003 
 (0.248) (0.758) (0.457) (0.429) 
PFERTD -0.019 -0.006 0.423 -0.146 
 (0.269) (0.620) (0.451) (0.534) 
PORGAD 0.082 0.903 -0.878** 0.789* 
 (0.224) (0.683) (0.392) (0.412) 
PSOC% 0.692 0.991 0.773 -0.190 
 (0.453) (1.281) (0.799) (0.938) 
PELEVATION 0.008*** -0.037** 0.010** 0.010*** 
 (0.002) (0.019) (0.004) (0.004) 
Constant -8.137*** 29.123* -10.190*** -9.627*** 
 (2.190) (16.027) (3.632) (3.702) 
     
Observations 468 93 217 158 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

4.5 Maize yield productivity under heterogenous household and farm 
conditions 

Closing the yield gaps in African farming systems has been one of the major agricultural 
policy goals for the past decade. Using Malawi as an example, despite the increases in 
yields following introduction of subsidised mineral fertilizers and improved seeds, 
yields have stagnated for the past 15 years and gaps are still wide. The attainable yield 
for maize varieties in Malawi range from 4-15 t ha-1 (Tamene, Mponela, Ndengu, et al., 
2016) but in our study the yields achieved by farmers in the Rift Valley escarpments for 
the 2016-2017 growing season were around 1.4 t ha-1.  

 Table 4—13 shows results from the generalised linear model indicating that yield 
variations are associated with baseline soil fertility factors, nutrient and labour inputs 
and management practices. From the full sample analysis (aggregate), manure input, 
plot size, cropping system, amount of course fragments and elevation significantly affect 
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maize yields. Moreover, labour and fertilizer inputs constrain the productivity for some 
of the moderate input farms (farmtype2). 

According to the yield trends for the past 30 years, it is evident that rainfall 
variability and other events such as pest outbreaks, largely mediates interannual yield 
variations (Figure 1.1). For a region with rugged topography, the position of plots across 
the landscape and inherent soil conditions and nutrient levels have significant impact 
on land productivity. Controlling for fertilizer input and management, yield decreases 
follow the topographic and nutrient gradients. Yield tend to increase with increase in 
elevation indicating that during the study time, plots on higher elevation had 
comparatively higher productivity. This is expected since farmers recently cleared-up 
virgin woodland soils on slopes located at higher elevation (Braslow & Cordingley, 2016). 
Similarly, increase in flow accumulation is also associated with decreasing yield, 
significantly so for farmtype3 (Table 4—13). 

Our study shows that, despite the high variability in fertilizer input, its effects 
are indeterminant signalising that maize in the study region has become non-responsive 
to fertilization. Quite low and insignificant effects of nitrogen fertilization has also been 
found by Burke et al (n.d.) who analysed a 4-year panel data. Although we controlled 
for inherent fertility, agronomic practices and farmer ability, there is need for further 
exploration on input responses as various studies have found inconsistent effects. A 
pioneering study by Tamene et al (2016) in a high productive site within the region 
found that maize yield was responsive to basal dressing with phosphorus and sulphur 
containing fertilizers, which is in sharp contrast to the negative effects observed by 
Burke et al (n.d.) for soils with low SOC of <0.94%. A recent study by Kopper et al (2020) 
in the same region found that maize was responsive to N fertilization, and was more 
profitable for low fertility farms with SOC <1.3% than productive ones. Burke et al (n.d.) 
also found that maize is subtly responsive when fertilization is coupled with weeding, 
and is slightly higher for farms with low SOC  of < 0.94% than for those with higher 
SOC. Whilst Han Wang et al. (2019), in their study within the same study sites, found 
that N fertilization was more effective for high productive sites. Although Kopper et al 
(2020) and Burke et al (n.d.) purport that effects are disaggregated by productivity, they 
could well be site-specific as data was composited from different agro-ecological zones 
that inherently differ in productivity (Li et al., 2017) and SOC and soil nutrient contents 
(Tamene et al., 2019).  

The results (Table 4—13) also show that maize significantly responded to manure 
input, especially for medium input farms of farmtype2. In tandem, the results also show 
that maize was more yielding under soils with higher SOC, especially for low input 
farms. These results highlight the significance of enhanced SOC and organic inputs 
especially for marginal sites and farms (H. Wang et al., 2019). From our results and 
others in the region, we observe that, to be productive, fertilization strategies need to 
take into account site productivity, variations in SOC levels, manure input, weeding and 
other complementary factors. Although labour is generally regarded as a constraint, in 
smallholder farming systems, farmers manage considerably small plots and tend to have 
unlimited labour supplies. Their behaviour are well articulated in the works of Lewis 
(1954), who purports that for subsistence farmers, their labour allocation behaviour 
cannot be fully explained by capitalistic theories that assume competitiveness. This 
observation still holds for Africa where there is some level of unawareness on the 
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margins from different labour investment portfolios and households tend to establish 
higher standards for themselves by focusing more on building technical knowledge than 
enhancing capital. Correspondingly, in our study, the effects of labour on yield 
improvement are noticeably significant only for low input farms, which is negative. The 
study by Kopper et al, (2020) showed that maize yields were not responsive to weeding 
labour although weeding labour had higher profitability for high productive farms with 
1.3 to 4.3% SOC who apparently applied relatively lower fertilizers than the low fertile 
farms. 

Table 4—13 Real farm maize yield productivity under heterogenous households and farm conditions 
Variables aggregate farmtype1 farmtype2 farmtype3 

     
PFERT -0.0005 -0.0009 0.0002 -0.0006 
 (0.0004) (0.0011) (0.0005) (0.0006) 
PFERT

2 3.79e-07 1.73e-06* -3.93e-07 3.21e-07 
 (2.94e-07) (9.43e-07) (4.62e-07) (3.64e-07) 
PORGA 0.0003** 0.0004 0.0014*** -0.0001 
 (0.0001) (0.0006) (0.0003) (0.0001) 
PORGA

2 -2.58e-08 -2.41e-07 -3.73e-07*** 2.35e-08 
 (1.96e-08) (2.00e-07) (1.06e-07) (1.68e-08) 
PLABOUR -0.0007 -0.0032* 0.0001 -0.0002 
 (0.0010) (0.0022) (0.0015) (0.0018) 
PLABOUR

2 2.85e-06 7.81e-06*** 1.66e-06 1.60e-07 
 (2.03e-06) (2.47e-06) (3.19e-06) (1.86e-06) 
PHECT -0.5599*** -0.6852*** -0.5568*** -0.6870** 
 (0.1214) (0.1133) (0.1783) (0.3067) 
PCULTYRS -0.0014* -0.0021 -0.0007 -0.0017* 
 (0.0012) (0.0026) (0.0015) (0.0016) 
PSUBIDY -0.0467 0.2743 -0.3716 0.0073 
 (0.2614) (0.5344) (0.2564) (0.2650) 
PLEGUD -0.2473*** -0.0564 -0.2393* -0.3293** 
 (0.0902) (0.1867) (0.1403) (0.1505) 
PTREE10D 0.0745 -0.7676*** 0.3814** 0.1325 
 (0.1108) (0.1930) (0.1488) (0.1415) 
PKmgkg 0.0005 0.0014 0.0002 0.0028 
 (0.0012) (0.0026) (0.0014) (0.0020) 
PSOC% 0.1833 1.0207** 0.0728 0.0365 
 (0.2158) (0.5053) (0.2153) (0.2887) 
PSAND% 0.0081 0.0199* 0.0027 0.0174 
 (0.0073) (0.0114) (0.0071) (0.0127) 
PCOARSE% -0.0449*** -0.0464* -0.0341* -0.0246 
 (0.0162) (0.0260) (0.0191) (0.0299) 
PELEVATION 0.0017* 0.0052 0.0018 0.0010 
 (0.0010) (0.0031) (0.0013) (0.0015) 
PFLOWACC -0.0003 -0.0003 -0.0002 -0.0016** 
 (0.0003) (0.0009) (0.0003) (0.0008) 
HDEPR 0.0196 0.0199 -0.0272 0.0551 
 (0.0359) (0.0513) (0.0365) (0.0740) 
HEDULHM 0.0379 0.2935* -0.0354 0.0858 
 (0.0676) (0.1603) (0.0746) (0.1138) 
HGMEM 0.0301 0.3585* -0.1780 0.0366 
 (0.0944) (0.1923) (0.1236) (0.1364) 
HWEAI 0.2335 0.0849 0.2326 0.3534 
 (0.1505) (0.2712) (0.1796) (0.2583) 
Constant 5.8926*** 1.2931 5.8727*** 5.7731*** 
 (1.0605) (3.2600) (1.3047) (1.6643) 
     
Observations 390 88 169 133 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
  



110 

 

4.6 Nutrient balance 

As indicated in Table 4—13, from the full balance analysis, the annual C : N : P : K inputs 
(kg ha-1 yr-1) averaged 306 : 92 : 6 : 8 against outputs of 1124 : 70 : 4 : 86, giving average 
balances of -818 : 22 : 3 : -77, respectively. Considering the human inflows and outflows, 
the corresponding partial budgets are -28 : 8 : -59 kg ha-1 yr-1. The N : P : K balances 
correspond with results obtained in Kenyan studies of -76 : -5 : -10 (Van den Bosch et 
al., 1998), -112 : -3 : -70 (Smaling & Fresco, 1993), and -73 : 3 : -16 (De Jager et al., 1998). 
These results indicate that the output pathway, crop products, take considerably higher 
N and K than what is added through fertilization and manuring. The physical outputs, 
over which current human actions have less control, such as erosion, leaching and 
gaseous losses lead to significant losses of N, K and C.  

The major input for nitrogen is inorganic fertilizer followed by biological 
nitrogen fixation, and atmospheric deposition while the outputs include gaseous, 
erosion, crop produce and residues. The N balance, however, is much lower because of 
the higher fertilization, nitrogen derived from air by legumes and lower nutrient 
stoichiometric values used for estimation of N in crop outputs. Notably, even with full 
nutrient budget, 35% of plots have positive nitrogen. Among the farm types, the low 
fertilizer - low manure (farmtype1) and high fertilizer - low manure (farmtype2) have 
negative average balances with relatively fewer farms with positive balances compared 
to moderate fertilizer - high manure farms (farmtype3). Looking at the range of balances 
for the surveyed plots, it is evident that there exist farms with extremely high nitrogen 
losses of up to -401 kg ha-1 yr-1 but also some farms with net positive nitrogen balances 
of up to 589 kg ha-1 yr-1.  

For phosphorus, the main input source is also inorganic fertilizer while outputs 
include crop produce and erosion. Again, some farms are estimated to lose up to -120 
kg ha-1 yr-1 while others could be experiencing phosphorus build-up of up to 81.6 kg ha-1 
yr-1. More than 50% of the farms are estimated to have a net positive phosphorus 
balance. Potassium is obtained from organic manure and atmospheric deposition. With 
almost all surveyed farms estimated to have net potassium losses, these inputs are quite 
low to counter the high output levels through leaching and residues.  
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Table 4—14 Baseline carbon and NPK flows and balances (kg ha-1 yr-1)  
Nitrogen 

 
Phosphorus 

 
Potassium 

 
Carbon 

 
𝑥 sd min max 0>% 

 
𝑥 sd min max 0>% 

 
𝑥 sd min max 0>% 

 
𝑥 sd min max 0>% 

Inputs (population) 

IN1fertilizer* 48 52 0 222 
  

6.4 11.2 0.0 85 
             

IN2organic* 3 6 0 32 
  

1.0 2.1 0.0 11 
  

4 8 0 39 
  

11 24 0 133 
 

IN2residues*                   237 277 0 2496  

IN3legume-bnf* 14 36 0 238 
              

    
 

IN4sediment 3 8 0 84 
  

0.3 1.9 0.0 61 
  

1 3 0 49 
  

58 196 0 2914 
 

IN5atm-depo 14 0 14 15 
  

1.4 0.0 1.4 1 
  

4 0 4 4 
       

Total-in 92 95 14 686   6.4 7.9 0 41   8 8 4 60   306 344 0 3461  

Outputs (population) 

OUT1product* 15 17 0 143 
  

3.3 0 27 27 
  

7 8 0 66 
       

OUT2residues* 15 18 0 138 
  

1.3 1.5 0 13 
  

19 22 0 191 
       

OUT3erosion 26 31 0 257 
  

1.7 4.2 0 40 
  

6 9 0 89 
  

406 612 1 6279 
 

OUT4leaching 4 1 2 7 
        

54 12 34 74 
       

OUT5gaseous 19 0 19 19 
        

    
  

718‡ 139 444 1219 
 

Total-out 70 47 13 303 
  

3.9 4.6 0 40 
  

86 33 35 335 
  

1124 623 508 7260 
 

Full balance 

Population 22 94 -256 595 52 
 

3 12 -36 81 55 
 

-77 32 -302 3 0.0 
 

-818 695 -6853 1779 4 

Farmtype1 5 65 -138 381 45 
 

1 9 -30 52 45 
 

-77 29 -283 -22 0.0 
 

-729 564 -5718 1580 3 

Farmtype2 34 96 -172 569 61 
 

6 13 -31 78 68 
 

-75 30 -302 -19 0.0 
 

-813 594 -4852 1544 4 

Farmtype3 16 105 -256 595 46 
 

2 11 -36 81 46 
 

-81 35 -282 3 0.1 
 

-875 858 -6853 1779 5 

Partial balance* 

Population 35 61 -203.24 334 71  2.4 9 -36 39 50  -22 28 -230 35 5.7  248® 282 0 2587 94 

Farmtype1 20 52 -164.41 298 68  0.3 8 -35 39 37  -24 26 -219 18 2.4  241® 242 5 2184 100 

Farmtype2 44 62 -165.1 217 76  4.2 9 -32 31 59  -20 26 -229 13 4.8  216® 278 0 2587 92 

Farmtype3 32 63 -203.24 334 68  1.4 9 -36 27 45  -24 32 -230 35 8.7  293® 303 0 2477 95 

𝑥  = mean; sd = standard deviation; 0>% = percentage of plots with positive balances; *partial balance estimated from flows influenced by human action; ‡SOM degradation, ®inputs 

only. 
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However, the mechanism by which the large stocks of unavailable potassium in 
rock solids and minerals, and the slowly available reservoirs trapped in clay is 
mineralised is largely unknown. Hence this natural enrichment is not included in these 
estimations leading to under estimation of inputs to the rooting zone. Nonetheless, with 
continuous cropping potassium deficiencies have been identified (see section 4.2.1 ) and 
pot experiments with Alfalfa grass registered crop responses to potassium fertilisation 
(Lakudzala, 2013). These responses have, however, not been significant and consistent 
for field studies of maize. A multilocational study conducted in 9 sites in East, West and 
southern Africa - 3 of which were in Malawi - showed that omission of K does not 
significantly reduce crop yields (Kihara et al., 2016). Considering the deficiency levels, 
unless the natural enrichment is estimated, the current interventions and usage levels 
of organic manures are insufficient to replenish even the losses from crop harvest 
products and residues. 

The main carbon inputs are crop residue retention, sediment deposition and 
organic manure which fall short to counter the large losses through erosion and 
decomposition of SOM. The full balance analysis shows that only 4% of the plots have 
positive net balance, with some plots having a net loss of up to -6,853 kg ha-1 yr-1. 
Previous field studies found no response to carbon enrichment (Kihara et al., 2016) 
mainly because with the SOC is critically low for maize fertilizer response (Figure 4.3). 
Soils with sub-optimal SOC levels (Figure 4.3), and the low structural stability indicating 
that soils are prone to degradation (Figure 4.5). These negative balances, if not 
addressed, could subject the soils to structural instability and accelerate loss of soil and 
the nutrients (Mpeketula, 2016).  

The extreme negative and positive inputs, outputs and balances are astounding. 
For instance, the maximum N input from fertilization is 222 kg N ha-1 which deviates 
too much from the mean of 48 kg N ha-1 and could emanate from several sources. 
Possibly, farmers with small plots apply exceedingly too much fertilizer as some scoop 
with hands, or the reported fertilizers could have been bloated. Since the data for 
fertilization was collected at the end of the growing season, it is possible that some 
farmers may have forgotten the actual amounts applied to a plot or may have given 
incorrect estimates.  

The current efforts aimed at increasing fertilization, manuring and legume 
cropping have the potential to improve the N balance but falls short in offsetting losses 
of K and C through ecological processes. These results highlight the implications of 
focusing only on human induced flows and calls for consideration of ecologically driven 
nutrient flow management. Although sedimentation redistributes nutrients from upper 
to lower landscapes, without land management measures to control erosion, the 
nutrient losses through erosion continue to be enormous. Therefore, we expect that the 
plot-to-plot differences to be high, possibly resulting from inter-related policy, 
household and plot factors which would warrant an integrated agent-based spatial-
temporal analysis. 
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4.7 Impact of fertilizer subsidy on sustainable agricultural intensification. 

4.7.1 Subsidy and productivity: fertilizer & organic manure input and crop 
yield 

The baseline scenario has been constructed to mimic real farm conditions and shows 
predicted fertilizer and manure input and maize yield output (Figure 4.7). These 
predictions are based on the current subsidy regime (averaging 28% of fertilizer 
purchase price) and allowing other dynamic idiosyncratic factors such as period the 
farm has been under cultivation to progressively change. The results for the baseline 
case demonstrate increasing, stabilising and declining trends across the three 
productivity indicators as well as among the three farm types. The projected fertilizer 
usage (kg ha-1) increases for the whole population and high input farms (farmtype3) but 
slightly decreases for low and medium input farms (farmtypes 1& 2). The manure input 
is projected to have a stabilising trend while maize yields are more likely to decrease. 

Factor elimination revealed that the decreasing trends in maize yields are strongly 
associated with cultivation period, among other factors. The baseline dataset comprised 
of farms with varying cultivation periods and the empirical analysis showed a negative 
association with maize yield (Table 4—13). The maize yield gradient is expected as plots 
that were opened up recently in hillslopes are considered more fertile (Braslow & 
Cordingley, 2016). But without soil conservation measures (CIAT, 2016), productivity is 
likely to decline if cultivation on these sensitive slopes is continued (Banda et al., 1994). 
Although we have not included climatic variables (assumed to be constant for our 
training site of 4 km x 8 km), the national input subsidy program coincided with better 
rainfall, such that the reported doubling of yields could not be entirely attributed to 
increased fertilisation induced by subsidy (Denning et al., 2009). Moreover, in recent 
years, although total fertilizer usage remained high, the maize yields fell to the pre-
subsidy levels due to either recurrent droughts or the 2016/2017 fall armyworm outbreak 
(see Figure 1.1). 

Given the autonomy that farmers have to decide on nutrient replenishments on 
their farms (Sambo et al., 2015), they tend to emulate those with similar statuses and 
aspirations and plan future actions based on their shared experiences. Hence, the 
farmtype specific effects observed in this study could be explained by behavioural 
economics focusing on the way farmers learn from one another and from their 
experiences. Generally, one group of farmers in the community ascribe performance by 
members of another group rather to their advantaged or disadvantaged positions than 
to the external forces such as fertilizer subsidies (Grant & Ashford, 2008). Since the 
agentic behaviours to anticipate, plan and act are drawn from experiences, their 
consequences are self-evident. From these results, we observe that although farmers 
attribute the behaviours to idiosyncratic abilities, their proactive behaviours are 
mediated by situational causes such as declining soil fertility where policies such as 
subsidies may have varying effects. 

Juxtaposing the trend graphs in Figure 4.7, and from the empirical analyses in 
Table 4—13, maize is much more responsive to manuring than fertilization. Maize yields 
for the farms that received both higher fertilizer and higher manure (farmmtype3) 
yielded more maize than those that only received higher fertilizer and moderate 
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manuring (farmtype2). This has long-term implications on productivity, nutrient 
balances and profitability. 

Compared to the current regime that subsidizes fertilizer by an average of around 
28%, there are stark deviations associated with increasing subsidy to reach all farmers 
i.e. universal subsidy as well as a regime that would aim at enabling farmers to graduate 
from subsidy i.e. zero subsidy (Figure 4.7). The Bonferroni multiple comparison test 
shows that increasing subsidy to an average of 70% (SU-SC in Table 4—15) is associated 
with a decreasing shift in total amount of fertilizer used by an average of -8, -17 and -18 
kg ha-1 yr-1 for low input farms, medium input farms and for the whole population, 
respectively. This translates to a range of between -165 and -360 kg ha-1 fertilizer under-
application over the 20-year simulated period. 

Table 4—15 Comparative analysis of average fertilizer input under the four fertilizer subsidy scenarios 

   

Subsidy scenarios (SC = current (28%), SR= reduced to 15% as per trend, 
SZ= reduced to zero, SU = universal increase to 70%) 

Indicator Group statistic SR - SC SZ - SR SZ - SC SU - SC SU - SR SU - SZ 

         

Fertilizer  Farmtype1 contrast 1.71 2.30 4.01 -8.25 -9.96 -12.26 

(kg ha-1 yr-1)  sig. 1.000 0.632 0.033 0.000 0.000 0.000 

 Farmtype2 contrast 2.38 5.67 8.05 -16.52 -18.90 -24.57 

  sig. 1.000 0.102 0.005 0.000 0.000 0.000 

 Whole contrast 3.46 5.84 9.30 -18.01 -21.47 -27.32 

  sig. 1.000 1.000 0.672 0.016 0.002 0.000 

Manure Farmtype2 contrast 0.31 -1.89 -1.58 15.69 15.39 17.28 

(kg ha-1 yr-1)  sig. 1.000 1.000 1.000 0.000 0.000 0.000 

 Farmtype3 contrast 12.34 14.07 26.41 -31.09 -43.44 -57.50 

  sig. 1.000 1.000 0.083 0.024 0.001 0.000 

The alternative policies established following the declining subsidy trends in 
previous years to an average of 20% (SR-SC in Table 4—15) does not induce significant 
shifts in fertilizer input levels while further reduction to zero% i.e. full market price 
(SZ-SC in Table 4—15) significantly raises the fertilizer input by 4, 8 and 9 kg ha-1 yr-1 
for low input farms, medium input farms and for the whole population, respectively. 
This translates to a range of between 80 to 180 kg ha-1 additional fertilizer applied. 
Considering the two polar policies of either increasing or decreasing fertilizer subsidy 
(SU-SZ in Table 4—15), the respective fertilizer differences over the 20-year simulation 
period would be around 245, 480, and 546 kg ha-1 for low input farms, medium input 
farms and for the whole population 

Increasing fertilizer subsidy to 70% has a significant positive effect on manuring 
for medium manure and high fertilizer farms (farmtype2) but a negative effect for high 
fertilizer and high manure farms (farmtype3). Farmtype2 is characterised by higher 
fertilizer input and less manuring, and tend to increase manuring with increase in 
subsidy. On the other hand, farmers of farmtype3 apply comparatively moderate 
fertilizer plus more manure, and it has been observed that increasing subsidy reduces 
the likelihood of manuring. Yet, manure input is still lower than the levels needed to 
supply nutrients (Chilimba et al., 2005) and far below the requirements to rejuvenate 
soils (Zingore et al., 2011).   
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Figure 4.7: Yearly effects of subsidy regimes on nutrient flows.  
NB: input 1 (inorganic fertilizer- upper panel), input 2 (organic manure, OM – middle panel) and output 1 (maize yield – lower panel) for the entire population (second 
panel from right), and the farm types 1, 2 & 3. The darker middle lines are mean estimates for subsidy scenarios (_current-sub = current (28%), _reduced-sub= reduced 
to 15% as per trend, _zero-sub= reduced to zero, _universal-sub = universal increase to 70%). The lighter lines are 5% (_l) and 95% (_u) confidence intervals. The 
appended box plots on the right shows the median and range of average predictions over the 20-year period. 
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These results are in sharp contrast to the policy expectations. They also depart 
from existing knowledge established by earlier studies that subsidy induced increases 
in fertilizer input and economic benefits (Arndt et al., 2016; Holden & Lunduka, 2013; 
Komarek et al., 2017). The recent study by Komarek et al. (2017) used the prevailing 
prices and total nitrogen fertilizer in two scenarios: full subsidy, in which case all farmers 
are assumed to pay zero price, and zero subsidy where farmers pay market price. Unlike 
Komarek’s study, the scenarios herein are set based on the assumption that the 
increases or reductions will be gradual and variable into the foreseeable future, and also 
contingent on other progressively changing variables being updated as well. Hence, the 
baseline is set as a trajectory given the prevailing conditions. Worth noting is that 
during the simulated period, there is a possibility for sudden subsidy regime shifts, 
which smoothens out over time as has been the case with the previous inducements 
(Figure 1.1). This corresponds to the findings by Ricker-Gilber and Jayne (2017) who used 
yearly panel data for 2003 to 2010 to estimate temporal effects of subsidy. They found 
that during these eight years, farmers were conditioned to purchase more fertilizer after 
three consecutive subsidies. The subsidy initially aimed at inducing farmers to use 
improved input sources such as inorganic fertilizer. We constructed a subsidy 
continuum from zero to universal (set at 70%), and estimate the empirical relationship 
between level of subsidy and fertilizer use. This study, done 15 years after the onset of 
the current subsidy regime, points to the likelihood that after prolonged exposure to 
subsidy, some farmers are increasingly attached and become reliant on the program for 
their fertilizer demand.  

Unfortunately, the distribution and acquisition of subsidised fertilizer has been 
ambiguous. Instead of benefiting the targeted group of the ultra-poor, subsidy has 
largely benefitted the traders leaving farmers in despair and uncertainty (Holden & 
Lunduka, 2013). The ambiguity induced by subsidy has been an antecedent for proactive 
behaviours within the communities. Farmers, in their pursuit of farming as a major 
livelihood enterprise, develop agentic capabilities and strive to reduce ambiguity (Grant 
& Ashford, 2008). While some farmers exclusively rely on subsidy, some lie in between 
the spectrum with varying levels of subsidy and own purchase, while others proactively 
acquire marketed fertilizer. 

The results are incriminatory that those without financial resources and reliance 
on subsidy, acquire comparatively less fertilizer. Hence, they proactively supplement 
with locally available nutrient sources and increasingly engage in manuring. The 
proactive behaviours enable farmers along the spectrum to predict, understand and 
determine how to influence their farming environment in advance. Both, those 
purchasing fertiliser on the market and those who increasingly use manure, accumulate 
the respective finances and materials for making manure before the growing season. 
Since fertilizer subsidy distribution and supply ambiguity still persists, it is assumed 
that farmers are likely to engage in further proactivity in their continued efforts to 
reduce uncertainty.  

The effects of subsidy regimes on manure input are not as stark. Reducing 
subsidy to zero leads to mean average differences of around 26 kg ha-1 yr-1 of manure for 
the high input farms of farmtype3. Increasing subsidy to 70% has contrasting effects: 
positive for medium input farms of farmtype2 but negative for the relatively higher 
manure input farmtype3. Increasing subsidy would see medium input farms increasing 
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their manure input to an average of 314 kg ha-1 but this would move the average 
downwards by 620 kg ha-1 for high input farms. The difference between the polar subsidy 
regimes are projected to be 328 kg ha-1 in favour of universal subsidy for medium input 
farms while the same would result in average -1,150 kg ha-1 less manure compared to 
reducing subsidy to zero for high input farms. 

 

Figure 4.8: Twenty-year moving average marginal differences between the baseline subsidy (current) 
and alternatives (reduce, universal and zero) for (a) fertilizer, (b) organic manure and (c) maize yield.  
NB: The estimates are made for each farmtype (1,2&3) and for the whole population. The inner line 
represents median, the box is the 25th and 75th quantiles and whiskers show the boundary for outliers. 
The inset table describes in brief the deviation from current subsidy as either more, less or indifferent. 

 

Although the Bonferroni multiple comparison test showed that there are 
statistically insignificant deviations between the current subsidy regime and policy 
alternatives in terms maize yield (Figure 4.8.c), noticeable differences exist. As shown 
in Figure 4.8, despite the median differences being close to zero, some scenarios shift 
heavily on the positive side with the simulated results being higher for the alternatives 
than the current regime. Also, there exist scenarios such as universal vs current for 
maize yield among medium input farms of farmtype2, the median is below zero 
indicating that, though not significant, the increase in subsidy slightly shift the maize 
yield downwards. On the contrary, the maize yields associated with increase in subsidy 
tend to be positive among low input farms of farmytpe1 but quite indifferent among 
high input farms of farmtype3.  

Nominal comparison to current for the polar regimes 

  Pop FT1 FT2 FT3 

Fertilizer zero more more more more 
 universal less less less less 

Manure zero indiff indiff less more 
 universal less less more less 

Maize  zero less More less indiff 
yield universal more less more indiff 

 

(a) (b) 

(c) 
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4.7.2 Subsidy impacts on balance of soil organic carbon and major 
nutrients (NPK). 

The effects of increasing or decreasing subsidy regimes on nutrient input and output 
flows have varying implications on nutrient and SOC balance. Given the current subsidy 
regime and interannual changes in dynamic variables, there is a general increasing trend 
for NPK balances but a decreasing trend for SOC balances (Figure 4.9). The Bonferroni 
multiple comparison test showed that there are significant differences in the resulting 
partial N and P balances. The negative impacts on N and P balances from increasing 
subsidy emanate from the negative effects on fertilization, while the positive shift on K 
balances among medium input farms is associated with the positive effect on manuring. 
This underscores the significance of fertilizer as main source of N and P while organic 
manure is the main source of K (Chilimba et al., 2005). The subsidy policies therefore 
have potential to impact N and P stocks through fertilization and K stocks through 
manuring. 

The average annual N losses that could be associated with increasing subsidy 
would be around 7.5 kg ha-1 yr-1 for medium input farms, which translates to 150 kg ha-1 
over the simulation period. Increasing the subsidy to universal shifts the average N 
balance slightly positive with differences from the baseline of 35 and 79 kg ha-1 over the 
simulation period for low input and medium input farms, respectively. The N balances 
projected for the two polar subsidy regimes favour subsidy removal over universal 
subsidy with differences of 121, 230 and 259 kg ha-1 for low input farms, moderate input 
farms and the entire population, respectively. Similarly, the P balances are significantly 
and positively associated with subsidy reduction. On the other hand, universal subsidy 
leads to a downward shift in P balances for low and medium input farms and for the 
whole population.  

Table 4—16 Bonferroni comparison of N and P balances among alternative fertilizer subsidy policies 

   

Subsidy scenarios (SC = current (28%), SR= reduced to 15% as per trend, 
SZ= reduced to zero, SU = universal increased to 70%) 

Indicator Group statistic SR vs. SC SZ vs. SR SZ vs. SC SU vs. SC SU vs. SR SU vs. SZ 

         

Nitrogen 
Balance  

Farmtype1 contrast 0.58 -4.91 -4.32 1.75 1.16 6.07 

 sig. 1.000 1.000 1.000 0.045 0.429 0.000 

(kg ha-1 yr-1) Farmtype2 contrast 1.27 -8.79 -7.52 3.95 2.69 11.48 

  sig. 1.000 0.000 0.000 0.006 0.13 0.000 

 Population contrast 1.63 10.22 -8.60 4.38 2.75 12.98 

  sig. 1.000 0.030 0.104 1.000 0.000 0.003 

Phosphorus Farmtype1 contrast 0.06 0.15 0.20 -0.42 -0.47 -0.62 

  Balance  sig. 1.000 0.456 0.080 0.000 0.000 0.000 

(kg ha-1 yr-1) Farmtype2 contrast 0.10 0.28 0.39 -0.77 -0.87 -1.16 

  sig. 1.000 0.021 0.001 0.000 0.000 0.000 

 Population contrast 0.18 0.32 0.50 -0.94 -1.12 -1.44 

  sig. 1.000 1.000 1.000 0.078 0.020 0.001 

As for the partial K balance, which is calculated as the difference between organic 
manure input minus the K in crop produce and the removed residues, statistical 
differences could not be detected for the shifts from current subsidy regime but the 
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absolute values are quite variable (Figure 4.10). The whole population analysis shows 
that decreasing subsidy is associated with a negative absolute mean K balance. However, 
the difference between universal subsidy and reduced subsidy regimes tend to be 
negative. For low input farms of farmtype1, the average K balance is indeterminant - 
negative for both alternative subsidy regimes. Whereas an inverse association is 
observed among medium input farms and high input farms, increasing subsidy is 
associated with an absolute increase among medium input farms but a decrease among 
high input farms. Similarly, decreasing subsidy is associated with an absolute decrease 
in K balance for farmtype2 but an increase for farmtype3. These trends follow the type-
specific effects of subsidy on manuring. 
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Figure 4.9 Interannual effects of subsidy regimes on partial nutrient balances. 
NB: Nitrogen- upper panel, phosphorus – second, Potassium – third and carbon – lower panel: for farm types 1, 2 & 3 and the entire population. The darker middle lines are mean 

estimates and the lighter lines are confidence intervals. The appended box plots on the right shows the median and range of average predictions over the 20-year period.
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Although the multiple comparison test could not detect the impacts of subsidy 
regimes on C balance the absolute values show an association with residue biomass 
yield. Increasing subsidy tend to reduce, in absolute terms, the C balance for farmtype2, 
farmtype3 and the whole population but with higher tendency to be positive among low 
input farms of farmtype1 (Figure 4.10a). 

The effects of subsidy on the input and output flows given the current and 
potential subsidy regimes tend to be inelastic and where significant, the associated 
changes are subtly small. This has substantial implications for nutrient build up or 
depletion over medium to long term as the country continue to rely on fertilizer subsidy. 
From our results, it is evident that the current N and P inputs offsets the output flows 
for more than half of the farms. Therefore, harnessing the positive effects of subsidy on 
inducing farmers to take on fertilization or manuring has the potential to ensure N and 
P build up that is essential for the sustainability of the farms.  

 

Figure 4.10 Yearly moving average marginal differences between the baseline subsidy (current) and alternatives 
(reduce, universal and zero) for balances of (a) carbon, (b) nitrogen and (c) phosphorus and (d) potassium.  

NB: The estimates are made for each farmtype (1,2&3) and for the whole population. The inner line represents 
median, the box is the 25th and 75th quantiles and whiskers show the boundary for outliers. The table describes in 
brief the deviation current subsidy. 

Although fertilizer recommendations were established based on national wide 
response trials that were set up in 1975 (Mutegi et al., 2015), farmers continued to apply 
varying levels due to past experience, economic instances, soil productivity and 
nonenforcement of policies. Five decades ago, the soils were naturally productive with 
86% of the farms realising economical yields without fertilizer input because soils had 
sufficient P and K (Mutegi et al., 2015; Snapp, 1998). But as farming was intensified and 

(a) (b) 

(c) (d) 
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transitioned from subsistence to market orientation in 1980s, nutrient mining was 
observed. The government using early results of the trial then, recommended the 
blanket application of 93 kg N and 40 kg P2O5 (87 kg ha-1 DAP and 175 kg ha-1 UREA) 
(Snapp, 1998). In the 1990s it was noted that at full blanketly recommended rate, 40% 
of the farms could not recover the cost of fertilizer (Benson, 1996). Hence, using trial 
data generated over a decade, production orientation (subsistence or market) and 
agroecological zone specific recommendations were established (Benson, 1999). 
Reduced rates of 69 N 21 P2O5 or 35 N and 10 P2O5 were set up for the study region that 
required application of 100 or 50 kg NPS fertilizer (23:21:0+4s) and 100 or 50 kg UREA, 
amounting to 200 or 100 kg ha-1 yr-1 of NP fertilizer. In the 2000s, with increasing 
recognition of leguminous nitrogen source, the lower rate of 35 N and 10 P2O5 was 
adopted and blanketly promoted. However, the recent revelation that soil nitrogen is 
critically low ( < 0.15%), area specific recommendation for the study region has been set 
at 92 Kg N, 10 kg ha-1 P2O5 (4.3 kg P) for soils with moderate extractable P and 10 kg ha-1 
K2O (0.83 K) for soils with moderate extractable K (Mutegi et al., 2015). These 
recommendations are set without considering the supply of NPK from organic manure 
despite being the major source of K and P in Malawi and the greater part of tropical sub-
Sahara Africa (Chilimba et al., 2005; Palm, Giller, et al., 2001).  

Nonetheless, the usage of organic manure that is rich in K and SOC is below the 
levels required to counter large nutrient output through natural ways. Hence, there is 
need for increased manuring which from our empirical evidence could not be achieved 
with the subsidy policy alone. This is worrisome as studies have found a decadal 
decreasing trend in SOC (Mpeketula, 2016) and general decline of land productivity 
(Messina et al., 2017) within Malawian farmlands. With the less than optimal SOC levels 
currently available in the study region (section 4.2 ) and largely negative balances 
recorded under full balance analysis (especially if ecological flows are accounted for as 
indicated in Table 4—14), their sustainability might be abridged. The current manure 
and residue inputs of <1 ton ha-1 and <5 ton ha-1 are below the 8 to 10 ton ha-1 annual 
organic inputs required to bring the soils to levels essential for fertilization response 
and structural stability (Musinguzi et al., 2013, 2016). Manure usage ought to be 
increased by 8-folds to 5 and 12-folds to 8 ton ha-1 yr-1 to supply the sufficient levels of K 
and P (Chilimba et al., 2005) and of SOC (Zingore et al., 2011) required for optimum 
maize productivity, respectively. These estimations are based on average values, but 
there are few farms that supply 5-ton ha-1 of manure and could be self-reliant in terms 
of P and K, and potentially supply the SOC needed for structural stability and long-term 
productivity of the farms. The individual farm states and transitions over the simulation 
period is presented in appendix S5. From these distribution maps, farms that are 
projected to experience significant positive shifts and the hotspots with extremely low 
input, productivity and nutrient balances can be identified. A detailed analysis through 
typical farm analysis (Feuz & Skold, 1992) is needed to understand success accelerators 
for positive deviants and constraining factors for laggards. 
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5 CONCLUSION 

We have found that within the fragile landscapes of Malawi, farmers strive to utilise the 
commonly available soil fertility management options as evidenced by wide but low 
usage. Nine in every ten households used inorganic fertilizers, a third planted legumes 
and almost half applied manures of various forms. From the empirical and simulated 
results, it is indicative that the maize mixed smallholder farming system in Malawi has 
become inelastic to changes in input policies. Despite the changes in subsidy, the total 
amount of fertilizer applied has levelled off (Figure 1.1).  

The evaluation of proximate and underlying drivers of choice and intensification 
of inorganic fertilizers, organic manures and legumes has shed light on the diffusion 
pathways and limitations. There exist some drivers with similar effects on both 
decisions, but no single driver is consistently associated with both the choice and 
intensification decisions of these three input flows. The trade-offs of factor effects on 
the two decisions for each technology and among the three technologies can guide 
formulation of targeted research and development programs for both non-adopters and 
adopters. 

Apparently, formal education continues to be a main factor influencing farmers to 
grow legumes and increase usage of organic manures. Additionally, increases in number 
of basic hand-held farm implements reduce drudgery and increases the probability to 
diversify cropping (e.g. by planting legumes) and making it easier to prepare and apply 
manure. As a major source of manure, increasing efforts to integrate livestock in these 
cereal dominated systems could lead to greater manure application. The study has 
revealed that as much as improvements in contribution of women in decision-making 
widens the scope for legume cropping, it could negatively affect manuring. With the 
notable opposing effects from women empowerment, addressing challenges that 
women face in manuring could offer greater opportunities for ISFM. 

Though soil management in smallholder farming systems aims at addressing the 
most critical nutrient(s), the results from this study show that the soils in some areas 
are deficient in all three major nutrients (N, P, K) and SOC. Bringing these nutrient 
deficient soils to productivity, therefore, requires to first raise their levels to normal 
range. Bearing in mind the inter-dependence as expressed by stoichiometry, continuous 
monitoring and adjustments need to be made to create optimal conditions for plant 
uptake. The estimation was done at 10x10m pixel size, and enabled to predict within 
farm differences. For smallholder farmers with limited nutrient sources and in little 
amounts, a more judicious option would be to have knowledge of soil nutrient gradients 
within farms and target the amendments to hot spots. Considering the limited capacity 
on both demand for knowledge of soils by smallholder farmers and the supply of 
information by agricultural extension services, there is need to raise awareness, 
capitalise on digital tools to disseminate pixel-based soil information and input these 
into site-specific nutrient balance and crop yield models. 
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Subsidy as a major soil nutrient management strategy was viewed by many as a 
panacea for productivity improvement, a replica of Asia’s Green Revolution (Denning 
et al., 2009). The initial impact of subsidy seem to be waning: the fertilizer input levels 
are still below optimal and the mean yields are far below the optimal or locally attainable 
yields (Tamene, Mponela, Ndengu, et al., 2016). Unfortunately, the government is 
complacent at ending hunger and continue to use national maize requirement and not 
the potential and attainable yields to set national policy agenda. Consequently, farmers’ 
actions have been reactive rather than proactive. Previous studies constructed histories 
and found, ex post, positive effects of subsidy on maize yields during the initial period 
(Ricker-Gilbert & Jayne, 2017). This study highlights the current trends that maize yield 
has become inelastic to changes among the prevailing interventions. 

We use behavioural economics and explore, ex ante, the agentic behaviours of 
farmers when faced with ambiguity in fertilizer acquisition and maize yield. The study 
determined that those relying heavily on subsidy are less likely to be caught in a nutrient 
depletion trap, they rather resort to measures to address their deficiency. Moving out of 
the nutrient depletion traps depend on harnessing complementarity and 
substitutability of the various nutrient input sources. Previous studies and anecdotal 
observations did not seem to focus on the very processes that transform subsidy to 
welfare and ecological health. To address this, we used the proportion of fertilizer 
subsidised to explore the complementarity and substitutability between fertilization 
and manuring. Our results suggest that subsidy does not induce farmers to substantially 
increase fertilization. The plausible explanation is that in the 15 years subsidy has been 
implemented, farmers internalised it in their fertilizer expenditure plan, some 
exclusively relying on subsidy while others sourcing increasing amounts from the 
market and are becoming self-reliant. Those that rely on limited fertilizer acquired 
through subsidy also engage in proactive behaviours to reduce the nutrient gap by 
increasingly investing in manuring. 

5.1 Limitations and areas for further research 

The aim of the study is to build a SES that spatially and temporally explicitly capture, 
analyse, and present soil nutrient balances and explore, ex ante, possible livelihood and 
ecological outcomes from alternative soil management practices to better inform 
smallholder farmers and other stakeholders whilst making their sustainability 
decisions. This goal sets out the scope of work and this study has managed to explore, 
analyse and present soil nutrient balances and explore alternative soil management 
regimes, but the feedback mechanisms to inform policy making are yet to be fully 
established as indicated below. 

1. The parameterisation and the empirical models required for establishing the 
nutrient stocks and input and output flows are voluminous. Efforts were made to 
extensively review the literature for parameters, and a detailed survey data from 
representative farms have been used to customize the estimates for the study site 
which could be scaled up for the entire maize mixed farming system and beyond. 
Much as we have tried to improve the estimations by using parameters and 
transfer functions from Malawi as well as from neighbouring countries in east and 
southern Africa, there are still cases where parameters established in other regions 
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and generalised transfer functions have been used. As research in the region 
progresses, there is need to update the parameters and functions.  

2. To evaluate the impact of subsidy, most of the household attributes, including 
labour, women empowerment, household resource endowments as well as plot 
attributes such as sizes, were not altered or updated. The village population is also 
assumed to remain constant which, if updated would affect labour, dependency 
ratios and education attainments. In this model, a sample of senior village citizens 
die, and their household and land are inherited by offspring. Although their 
inclusion ensured that most of the causes of variations were captured and that the 
simulations represented the effects of subsidy, their constancy does not reflect the 
real farm situation over a 20-year simulation period. In the current form, 
stochasticity in these variables is captured by random assignment of their 
coefficient in the SFM choice and production models. Further research should 
therefore build rules for updating these and test their effects by having different 
scenarios. In this thesis, we have provided the rules for updating labour and gender 
which are being incorporated in the model. 

3. The modelling environment used, Netlogo, although widely used by ecological 
and social scientists to model human induced emergent phenomena, its 
computing capabilities for these small-sized heterogenous farms is limited. There 
is need to improve the model speed by implementing it in R or python, acquire 
computers with higher computing capabilities or use cloud computing to extend 
the model for application to larger landscapes and for other integrated 
socioecological processes. 

4. Instead of running simulations spatially explicit with overlay of household and 
policy attributes, the centroids of plots were used to estimate the policy 
implications on human behaviour. This was linked to the respective patch 
landscape processes and upscaled to other patches/pixels regardless of their varied 
ecological features. Hence, the variations within plots were smoothened-out. 

5. Related to model requirements are data. To fully build a functional real-life 
representative model, data requirements are huge. Considering inherent errors 
associated with data capturing in these data scarce regions, triangulation of 
multiple data sources is required in the short term and efforts to improve data 
acquisition through approaches such as Land-Potential Knowledge System 
(LandPKS) (Herrick et al., 2013) need to be intensified and integrated. 

6. At the time of the compilation of this thesis, the effects of policy option such as 
subsidy is limited to productivity and its impacts on nutrient balance and 
profitability as ecological and economic sustainability indicators for a micro 
sentinel landscape in Malawi, and for mainly two crops: maize and ground nuts. 
Several other crops are integrated in farming landscapes and also the different 
non-cultivated patches have varied parameters. Efforts are ongoing to extend the 
model to unravel the effect of changing subsidy regimes on social sustainability 
indicators such as benefit distribution and vulnerability. Impacts of social policies 
such as gender empowerment are also being explored. 

7. In its current form, the model is yet to present the changes in household livelihood 
portfolios due to their choices of technologies and resulting nutrient balances. The 
household profiles (farm types) are differentiated by input levels in the sample 
data. Although the plot level nutrient inputs are updated (using choice and 
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intensify decisions) they have not been used to update farm types. The trajectories 
are based on initial household profiles. Hence there is need to update the farm 
types. The feedback is limited to updates in fertilizer and manure inputs, legume 
cropping (maize plots are not rotated nor fallowed), and soil nutrient and SOC 
stocks. Hence, there is need to relax assumptions on household attributes by 
updating some idiosyncratic factors such as incomes, other crop types, fallowing 
(in some marginal areas as productive areas are continuously cropped), household 
sizes, land sizes and household profiles.  

8. The study also calculated a compound productivity index that has been used to 
locate the remaining unsampled plots to patches with similar productivity. With 
this calculation, it would be interesting to develop ecological profiles and compare 
sustainability among the low, mid and high productive areas. A further combined 
index with household clusters is possible and would enable development of 
comprehensive social-ecological profiles that could be used to unravel the 
differences among low-input low-productive; high-input low-productive; low-
input high-productive, and high-input high-productive integrated farm profiles. 
With a larger dataset, such analyses would be more robust. 

9. Based on the findings and limitations of this research, a further project idea is to 
extend the model by using up-to-date datasets that cover a wider region such as 
that of Africa RISING for four sentinel sites representing different agroecological 
zones or the georeferenced Living Standards Measurement Study – integrated 
Household Survey (LSMS-IHS). With these and other datasets, a robust and 
comprehensive model with multiple approaches can be developed to assess SOC, 
nutrient dynamics and land productivity in Malawi and other smallholder farming 
systems in Africa. 
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 APPENDICES 

S1. Conformity to existing maps and soil mapping covariance 
importance 

 

Figure S1: The conformity among measured and the 250m resolution soil prediction by Hengl (2015).  
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(a) SOC 

 
(c) Phosphorus 

  

 
(b) Total nitrogen 

 
(d) Potassium 

Figure S2 (a-f) co-variate importance for the distribution of NPK and SOC indicated by magnitude of 
mean square error (%IncMSE) 
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Table S 1 baseline nutrient and SOC balances estimated using commonly used stoichiometric and biomass conversion factors 

  Nitrogen   Phosphorus   Potassium   Soil organic carbon 

 𝑥 sd min max 0>%   𝑥 sd min max 0>%   𝑥 sd min max 0>%   𝑥 sd min max 0>% 

Inputs (population) 

IN1fertilizer* 56 82 0 640   6.2 10.5 0.0 85              
IN2organic* 3 6 0 32   1.0 2.1 0.0 11   3 8 0 39   29 63 0 353  
IN2residues                   475 583 0 5304  

IN3legume-bnf* 27 70 0 455                    
IN4sediment 4 13 0 175   0.2 1.3 0.0 36   1 3 0 38   53 176 0 2285  
IN5atm-depo 14 0 14 15   1.4 0.0 1.4 1   4 0 4 4        
Total-in 104 111 14 838   8.8 10.8 1.4 86   8 8 4 62   556 625 0 5559  

Outputs (population) 

OUT1product* 34 40 0 341     5.0 6.3 0.0 52     26 32 0 266               

OUT2residues* 27 34 0 250   2.3 2.8 0.0 22   24 28 0 222        
OUT3erosion 31 44 0 432   2.6 8.9 0.0 134   6 10 0 104   411 610 1 5930  
OUT4leaching 4 1 2 7         54 12 34 74        
OUT5gaseous 32 0 32 32               720‡ 75 465 973  
Total-out 128 84 36 665     9.9 12.5 0.0 150     110 59 36 566     1131 591 554 6595   

Full balance 

Population -25 115 -588 542 31  -1.14 16.20 -132.68 77.29 42  -102 58 -534 -4 0.00  -575 858 -6173 4700 13 

Farmtype1 -40 96 -474 400 17  -2.96 14.25 -107.65 48.19 33  -103 59 -488 -33 0.00  -480 757 -4318 4700 11 

Farmtype2 -11 116 -459 532 38  1.41 16.88 -132.68 76.52 53  -96 55 -534 -20 0.00  -622 840 -6173 4540 9 

Farmtype3 -33 122 -588 542 31  -3.35 15.95 -131.72 77.29 32  -108 61 -490 -4 0.00  -571 931 -5884 3991 18 

Partial Balance* 

Population 24 106 -448 575 58   -0.2 13.7 -66.0 76.1 39   -46 56 -460 36 2.5   503® 599 0 5554 94 

Farmtype1 1 92 -437 422 47  -2.9 12.3 -65.6 46.8 30  -49 58 -419 8 2.0  508® 593 10 4968 100 

Farmtype2 36 104 -391 553 66  2.3 14.0 -65.9 75.1 47  -41 53 -460 4 2.5  437® 593 0 5554 92 

Farmtype3 21 115 -448 575 55   -1.6 13.5 -66.0 76.1 35   -52 59 -420 36 2.8   587® 602 0 4802 94 

𝑥  = mean; sd = standard deviation; 0>% = percentage of plots with positive balances; *partial balance estimated from flows influenced by human action; ‡SOM degradation, ®inputs 

only.
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S3. MASSAI Netlogo interface and codes 

The interface (Figure S3) has two main codes for users. First, with the SET-UP button, the 
user loads both spatial and household-plot data, generates the remaining population for the 
unsampled landscape and estimates the initial nutrient inputs, outputs and balances. Then 
with the go button, the user simulates changes in input and output processes and estimates 
the associated nutrient balances. The simulated changes are based on the assumption that 
some factors that drive inputs and outputs progressively and dynamically change each year 
which is set on using the switch ‘Progressive’. This could be switched off if the user 
assumes the principle of ceteris paribus to set the baseline. The interface also features the 
sliders for adjusting the major nutrient input strategy: fertilizer subsidy. Currently set 20% 
(reduced), 0% (reduced to zero) 70% (universal) and as described in section 3.9.2. 

 The user can also set the simulation period using the chooser stop-when. Currently 
set at 20 years counting from the growing season 2016/17 to 2036/37. The user should be 
mindful that adjusting this downwards will steepen the rate of change for policy variables. 
The user can also view the years of simulation through the reporter elapsed-years. On the 
right the user can view data and statistics after leading data and the summary statistics can 
be used to check estimates for the baseline sample and the most recent scenario. The 
interface also has a graphical results section which are used for trend reporting and exported 
for moving average analysis in a statistical software. The procedures for the main codes are 
presented in Box S1. Detailed sub-procedures are saved separately in __includes files. 

 
Figure S3 MASSAI Netlogo interface  
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Box S1 The MASSAI main procedures 

 
  

; codes for sub-procedures, created by __includes["file.nls"] then 

saved first 

__includes[ 

  "P0.Patch&Turtle-Attributes.nls" "P11.Import-Spatial-Data.nls" 

  "P12.Import-Sample-Data.nls"  "P123.Generate-coefficients.nls" 

  "P22.Nutrient-Stocks&Flows.nls" "P3.Update-Attributes&Processes.nls" 

  "P4&5.Scenarios&Iterations.nls" "P6.Draw-graphs.nls" 

"P61.Maps&Statistics.nls"] 

 

globals [elapsed-years] 

;LANDSCAPE AND HOUSEHOLDS (in file: patch-turtle-attributes.nls ) 

 

To SET-UP 

   __clear-all-and-reset-ticks 

  set elapsed-years 0 

  P11.Import-Spatial-Data  

  P12.Import-Household-Plot-Data 

  P13.Generate-The-Remaining-Population 

  P14.Working-policy-variables 

  P15.erosion-parameters 

  P22.Nutrient-Stocks&Flows 

  P226.Calculate-productivity-Index  ; 

  P6.Draw-graphs 

  show "INITIALIZATION has been done." 

End 

 

To GO 

tick 

set elapsed-years elapsed-years + 1   

P311.Update-policy&dynamic-factors 

P51.subsidy-scenarios 

show (word "Year " ticks " subsidy scenarios done") 

;P52.gender&labour-scenarios 

;show (word "Year " ticks " gender&labour scenarios done") 

P6.Draw-graphs 

show (word "Year " ticks  " has elapsed! Beeindrucked!") 

if ticks >= stop-when [stop] 

End 

To P51.subsidy-scenarios 

P511.subsidy-current P512.subsidy-reduced  

P513.subsidy-universal P514.subsidy-zero 

End 

To P52.gender&labour-scenarios 

P521.baseline  

P522.weai-increase  

P523.labour-decrease  

P524.dependecy-decrease 

End 

To P4.iterations ;run repetitions based on the random number, set at 3 

P41.iteration1 show (word "1st iteration done")   

P42….P49 

P410.iteration10 show (word "10th iteration done")     

P411.sum-iterations 

End 
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S4. Correlations among continuous vaiables 
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S5. Simulated nutrient states and distributions for the centroids of cultivated plots among alternative fertilizer regimes 

 
Figure S4 Simulated fertilizer inputs under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20.  
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Figure S5 Simulated fertilizer input under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20.  
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  Figure S6 Simulated maize yield under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20. 
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Figure S7 Simulated carbon balance under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20.  
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Figure S8 Simulated nitrogen balance under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20.  

SC-Year01 SC-Year10 SC-Year20 

SU-Year20 SU-Year10 SU-Year01 

SZ-Year01 SZ-Year10 SZ-Year20 

Baseline + (350 kg ha-1 yr-1) - (50 kg ha-1 yr-1) 0 

+ 
(3

5
0

 k
g 

h
a-1

 y
r-1

) 
- 

(5
0

 k
g 

h
a-1

 y
r-1

) 

0 



169 

 

 
Figure S9 Simulated phosphorus balance under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20. 
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 Figure S10 Simulated potassium balance under three subsidy scenarios (SC = current (28%), SU = universal increased to 70%, SZ= reduced to zero) at year 01, 10 and 20. 
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