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Abstract

In recent years, there have been many advances towards an understanding of the extreme value
theory of log-correlated random fields. Log-correlated random fields are conjectured to compose
a universality class for the extremal values of strongly correlated fields. In the general context of
extreme value statistics there are two natural basic questions to answer. Akin to the central limit
theorem one may ask: Is there a deterministic recentring and rescaling such that the maximum value
of the sequence converges to a non-trivial limit?

And second, if such a recentring and rescaling exists, how does the process look like when recentring
and rescaling each random variable as done for the maximum value?

Both questions were answered in the context of independent identically distributed random variables
during the first half of the past century. The theory developed in this context is commonly referred
to as classical extreme value theory. We state the main results in the general case of independent
identically distributed random variables and then turn to the case of Gaussian distributions.

To analyze the extreme value statistics of correlated models, it is natural to start with simple models
that capture the essential details, which in our case are the hierarchical ones. We start with a rather
classical model, the generalized random energy model (GREM), which can be realized as a branching
random walk with Gaussian increments, and then discuss (variable-speed) branching Brownian motion
(BBM), a model that has attracted a lot of interest in the last decade.

An important example of a log-correlated Gaussian random field is the two-dimensional discrete
Gaussian free field (2d DGFF). It is a natural object of major interest both in mathematics and physics.
Its extremal values have been investigated in the last 20 years.

We then introduce the model we studied, which is a generalization of the 2d DGFF, the so-called
scale-inhomogeneous two-dimensional discrete Gaussian free field. Similarly to variable-speed BBM
in the context of BBM, it allows for a richer class of correlation structures. It turns out that it is
possible to classify its extremal values into three possible cases, one being the two-dimensional
discrete Gaussian free field. In this thesis, we present our contributions in the study of the extremal
values of the scale-inhomogeneous 2d DGFF. In any of the three possible cases and when there are
only finitely many scales we determine the sub-leading order correction to the maximum value and
prove tightness of the centred maximum. Moreover, in the case of weak correlations we provide a
complete characterization of the extreme value theory of the scale-inhomogeneous 2d DGFF.
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CHAPTER 1

Introduction

1.1 Organization

First, let us explain the structure of the introduction. In Section 1.2, we make a few preliminary
remarks on extreme value theory and log-correlated random fields. In Section 1.3, we start with
historical remarks on extreme value theory and then give an overview of the relevant contents from
classical extreme value theory. At the end of this section, we highlight the particular case of iid
Gaussian random variables. In Section 1.4, we discuss the extreme value theory of Gaussian processes
that can be indexed by trees such as the random energy model (REM), GREM as well as variable-speed
BBM. In Section 1.5, we introduce the 2d DGFF, a non-hierarchical log-correlated Gaussian random
field. In Section 1.6, we introduce the main model of this thesis, the scale-inhomogeneous 2d DGFF,
put it into the context of Gaussian processes on trees and present the original contributions of this
thesis. In particular, we give heuristic explanations for most of the results. Finally, we shortly discuss
open problems for the models discussed in the introduction, which can be found in Section 1.7, and
furthermore, in Section 1.8 we provide a glimpse of what is being done in related models.

1.2 Preliminaries

Extreme events are rare events, but as they can have major effects it is important and of natural
interest to understand their behaviour. One fundamental example are floods. Due to the necessity
of sufficient water resources, human settlements need to be in reasonable vicinity. As rivers also
provide a convenient way of transportation and communication, proximity to these have always been
preferential. The unwanted side effects of extraordinarily high floods that can potentially devastate
entire cities has to be taken into consideration. It has been only at the end of the 19th century when
mathematicians started to systematically develop the so-called classical theory of extremal values.
The classical theory of extremal values deals with sequences of events that are independent and
identically distributed. Extreme value statistics allows to quantify the behaviour of unusually large
values whose occurrence is, of course, scarce. In particular, it allows to better estimate the tail area of
the distribution of extremal values. One major limitation to the classical theory is the assumption of
independence. Nevertheless, it turns out that the theory for independent and identically distributed
events also applies to correlated models, provided correlations decay sufficiently fast. It is the case
of log-correlated fields in which correlations start to affect the behaviour of the extremal values. A
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Chapter 1 Introduction

random field, {Xv}v∈V , that belongs to this class can be indexed by the elements of a metric space,
(V, | · |). The key properties of log-correlated fields is that their variances have a logarithmic singularity
and that covariances decay approximately with the negative logarithm of the distance between index
points, i.e. E

[
XvXw

] ∼ − log |v − w|, for v, w ∈ V . Important examples that fall into this class are e.g.
branching Brownian motion (BBM), the branching random walk (BRW), the Gaussian free field in
dimension two (2d DGFF), the field of hitting times of Brownian motion on the two-dimensional
torus, the logarithm of the characteristic polynomial of random matrices or the randomized Riemann
zeta function. Note that many models belong to the universality class of log-correlated fields and
do not satisfy the previous properties for all their index points, e.g. the 2d DGFF. Log-correlated
random fields, and in particular their extremal values, have a rich structure. Due to their common
multi-scale nature their analysis is often interrelated. In the last three decades, and in particular in the
last 20 years, there has been a huge push towards the understanding of the extreme value theory for
(Gaussian) log-correlated fields. This is partly due to insightful conjectures in the physics literature
concerning the extremal values of such fields, which sparked lots of interest and which are based on a
statistical mechanics approach, see [32, 57, 58, 56].
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1.3 Classical extreme value theory

1.3 Classical extreme value theory

Extreme events are part of nature and ever since of major importance to humankind. Prominent
examples arise from observing sequences of events such as floods, earthquakes, volcanic eruptions or
weather extremes. More recent applications can be found in astronomy, meteorology, oceanography,
quality control, building code, mutations in DNA, polymerization or in the financial industry. We start
with a short historical background of the mathematical theory, which is based on the one given in
Emil Gumbel’s classical standard reference [63]. Considering its relevance in real world applications,
it is fairly recent that the statistical nature of extremal events was realized. The question of what
the distribution of the maximum value of a growing number of observables is was already posed in
Nicolas Bernoulli’s Specimina artis conjectandi, ad quaestiones juris applicatae (1709) [15], in which
he considered the lifetime of the last survivor among n men if they are to die within k time. He reduced
this problem to finding the expected value of the maximum of n independent and uniformly distributed
variates. Extreme events are by nature rare events. The number of rare events can be described by
the Poisson distribution. L. von Bortkiewicz [84] was the first to realize its statistical relevance for
extreme value theory in his study of the number of soldiers in the Prussian army killed by horse-kicks
over certain time periods. In 1922, L. von Bortkiewicz was also the first to study extremal values
of normal random variables [85, 86], with subsequent contributions from R. von Mises [87], who
discovered the Gumbel distribution as limiting distribution for independent standard Gaussians, and
Tippett [83]. In light of the central limit theorem, with the basic statistical motivation stemming from
repeated, independent measurements of the same quantity, and in which the Gaussian distribution
emerges as universal limiting distribution of the properly normalized sum of those measurements
for a large class of underlying distributions, studying the case of Gaussian distribution seemed to
be natural. E.L. Dodd [48] was the first to study extremal values for independent random variables,
different from Gaussian. In 1927, Fréchet [55] started a systematic study of the maximum value of
a collection of random variables, not necessarily normally distributed, and laid the foundation for
a classification of extremal distributions. In analogy to the notion of sum-stability in the context of
the central limit theorem, he introduced the notion of max-stability of a distribution. The key idea is
the following: If one samples independent random variables according to a max-stable distribution,
then the maximum of all samples should have the same distribution as any of the samples up to an
affine transformation, which itself should depend only on the number of samples. Fréchet conjectured
max-stability to be a crucial property of a distribution function to be a candidate distribution describing
the maximum value of a sequence of iid random variables. Shortly after and based on the concept
of Fréchet’s max-stability, Fisher and Tippett [54] identified the only two other possible non-trivial
limit distributions. R. von Mises [88] identified conditions on the initial distributions to belong to the
domain of attraction of one of the possible limit distributions. In 1943, Gnedenko [61] added to this by
providing necessary and sufficient conditions. Emil Gumbel’s monograph [63] is the first systematic
overview of and reference for the theory of extremal values for collections of independent identically
distributed random variables. Gumbel’s book does not only provide an overview of the mathematical
theory but also explains how to apply it in applications and discusses real world examples, making this
monograph one of the most cited references in this field. However, there are several severe limitations
of the classical theory, as Gumbel remarked:

Another limitation of the theory is the condition that the observations from which the extremes are
taken should be independent. This assumption, made in most statistical work, is hardly ever realized.

In the 1970s, 1980s and 1990s the study of extremal values of (weakly) correlated sequences started.
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Chapter 1 Introduction

Most of the theory can be found in the two monographs by Leadbetter, Lindgren and Rootzén [68] and
by Resnick [78]. In the book of Leadbetter, Lindgren and Rootzén [68] from 1983 the authors treat
the extreme value theory for Gaussian stationary sequences and stationary stochastic processes under
a mixing condition. In particular, it is shown that under these assumptions the theory is identitical to
the one in the independent case. In [78], Resnick studies the distributional convergence of extremes
and upper order statistics using the elegant theory of weak convergence of point processes. [78] also
provides a rigorous theory of extremal values for multivariate iid sequences.

The remainder of this section briefly covers the most important results in the general setting of
iid random variables. We then shift our focus to the particular, and to us most relevant case when
distributions are Gaussian. Most of what we discuss in this context and more can be found in [22, 65].
The basic motivation for studying the theory of extremal values naturally stems from statistics, when
recording data corresponding to partial observations or a sequence of events. Let us call such a
sequence of events {Xn}n∈N, where Xn are random variables taking values in the real numbers. Thus,
{Xn}n∈N is a stochastic process in discrete time defined on some underlying probability space, (Ω,F ,P).
In the context of extremal values, the most natural question to ask concerns the distribution of the
maximum value up to time N, which we denote by

MN B max
1≤i≤N

Xi. (1.1)

The question then reads, what is P
(
MN ≤ x

)
, for N large and x ∈ R? In the spirit of the central

limit theorem for random variables, one can ask for a deterministic centring, {bN}N∈N, and rescaling,
{aN}N∈N, such that

P

(
MN − bN

aN
≤ x

)
(1.2)

has a non-trivial limit as N → ∞, for fixed x ∈ R. In other words, does MN−bN
aN

converge to a random
variable with a non-trivial distribution function? Note that studying the minimum value is an equally
well choice which, up to a possible deterministic shift of the mean, can be reduced to the study of the
maximum value of {−Xi}1≤i≤N .

A second natural question in the context of extreme value theory is to understand the joint distribu-
tion of the reordered sequence

X1 ≥ X2 ≥ . . . . (1.3)

Beyond these two basic questions, for fixed common distributions of the random variables, goes
the more fundamental question in extreme value theory: Are there universal laws that describe the
limiting processes? And if such universal laws exist, can we describe their domain of attraction
depending only on their common initial distribution? All these questions have been answered in the
affirmative in the case of independent and identically distributed random variables.
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1.3 Classical extreme value theory

1.3.1 Independent identically distributed random variables

Let (Ω,F ,P) be a probability space and {Xi}i∈N be a collection of independent identically distributed
random variables defined on (Ω,F ,P) and with common distribution function

F(x) = P
(
X1 ≤ x

)
. (1.4)

Recall that we denote the maximum value up to N by

MN B max
1≤i≤N

Xi. (1.5)

Note that {MN}N∈N is a stochastic process defined on the same probability space, (Ω,F ,P). To get
started, let us first examine P

(
MN ≤ x

)
, for N large and arbitrary but fixed x ∈ R. Using the fact that

the random variables Xi are iid allows for the following simple computation:

P
(
MN ≤ x

)
= P

(∀i ∈ {1, . . . ,N} : Xi ≤ x
)

= P
(
X1 ≤ x

)N
= (F(x))N . (1.6)

Using F(x) ∈ [0, 1] in (1.6), we observe that

P
(
MN ≤ x

)
= (F(x))N →


0, if F(x) < 1
1, if F(x) = 1,

(1.7)

as N → ∞. Regardless of the common distribution of the random variables, {Xn}n∈N, (1.7) implies
that, for any fixed x ∈ R, we observe a trivial behaviour of the ordinary maximum value. Similarly
as for the central limit theorem, one should ask the following question: Do deterministic centrings,
{bN}N∈N, scalings, {aN}N∈N, and a non-trivial distribution function, G, exist such that

P

(
MN − bN

aN
≤ x

)
→ G(x), as N → ∞ ? (1.8)

Rewriting the left-hand side of (1.8) as in (1.6), we see that the tails of the underlying distribution F
play a crucial role, i.e.

P

(
MN − bN

aN
≤ x

)
= P

(
MN ≤ bN + aN x

)
=

(
F(bN + aN x)

)N . (1.9)

The question becomes: Do deterministic sequences {aN}N∈N, {bN}N∈N and a non-trivial distribution
function, G, exist, such that

(
F(bN + aN x)

)N → G(x) ? (1.10)

And if the answer is positive, one may further ask:

What are possible limiting distributions? What is their domain of attraction?

In 1943, Gnedenko [61] established a complete classification of possible limiting distributions.

Theorem 1.3.1. Let {Xi}i∈N be independent identically distributed random variables. If there exist
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e−e−x

Figure 1.1: Gumbel.

α = 1
α = 2
α = 5

Figure 1.2: Fréchet.

deterministic sequences {aN}N∈N, {bN}N∈N and a non-degenerate distribution function, G, such that

lim
N→∞

P

(
MN − bN

aN
≤ x

)
= G(x), (1.11)

then, up to an affine transformation in x, G must be one of the following three types:

1. Gumbel-distribution: G(x) = e−e−x
, ∀x ∈ R.

2. Fréchet-distribution: For some α > 0, G(x) =


0, if x ≤ 0,

e−x−α , if x > 0.

3. Weibull-distribution: For some α > 0, G(x) =


e−(−x)α , if x ≤ 0,
1, if x > 0.

Note that it is of course not true that for any sequence of iid random variables, {Xi}i∈N, one obtains
a non-degenerate distribution as in Theorem 1.3.1. Think for example of random variables supported
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1.3 Classical extreme value theory

α = 1
α = 2
α = 5

Figure 1.3: Weibull.

only on two values, 0 and 1. As (1.9) suggests, the tails of the probability distribution function F
should play an important role. The following theorem provides necessary and sufficient conditions for
the existence of a non-degenarate limit and determines the limiting distribution, depending only on
the tail of the common distribution function F.

Theorem 1.3.2. Set xF B sup{x : F(x) < 1}. The following conditions are necessary and sufficient
for a distribution function, F, to belong to the domain of attraction of one of the three extremal types:

1. Fréchet: xF = ∞,

lim
t→∞

1 − F(tx)
1 − F(t)

= x−α, ∀x ∈ R, α > 0. (1.12)

2. Weibull: xF ≤ ∞,

lim
t↓0

1 − F(xF − tx)
1 − F(xF − t)

= xα, ∀x ∈ R, α > 0. (1.13)

3. Gumbel: ∃ g(t) > 0,

lim
t↑xF

1 − F(t + xg(t))
1 − F(t)

= e−x, ∀x ∈ R. (1.14)

Theorem 1.3.1 and Theorem 1.3.2 settle the questions concerning the maximum value in the case
of independent identically distributed random variables. However, we are more generally interested in
extremal values, i.e. all values that are in some sense close to the maximum value. To study these,
it makes sense to centre and scale each random variable as being done for the maximum value. A
convenient way to study the joint distribution of extremal particles turns out to be by means of the
point process,

EX,N B
N∑

i=1

δ

(
Xi − bN

aN

)
, (1.15)
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Chapter 1 Introduction

which is also called extremal process. A point process is a random variable taking values in the set of
point measures. The set of all point measures on an interval, A ⊂ R, we denote by Mp(A). Due to the
identical centring and scaling as applied to the maximum value, one should expect that most points
in (1.15) vanish to −∞, as N → ∞, and that we retain only points close to maximal one. The basic
question is:

Does the sequence of point processes,
{
EX,N

}
N∈N, converge (to a point process)?

And if the answer is to the affirmative, one should further ask:

Can we characterize the possible limit distributions?

At this stage, it makes sense to discuss the notion of convergence of point processes. As point
processes are probability distributions on the space of point measures, it is natural to think of weak
convergence of probability distributions. The choice of the vague-topology turns the space of points
measures equipped with the Borel-sigma algebra into a complete, separable metric space, which
allows us to discuss questions of weak convergence. For further details on this we refer to [22,
Chapter 2]. The following theorem settles both questions of convergence of the extremal process and
of the characterization of its possible limit distributions in the case of iid random variables.

Theorem 1.3.3. (cp. [65, Theorem 2.2]) Let {Xi}i∈N be a family of independent identically distributed
random variables and let {aN}N∈N, {bN}N∈N satisfy (1.11) in Theorem 1.3.1 for some non-degenerate
distribution function G. Then, EX,N converges weakly, as N → ∞, with respect to the vague topology
on the space of σ−finite measures to a Poisson point process (PPP) whose intensity measure is
determined by its extremal type distribution, G. In particular, if (1.11) holds with G

1. the Gumbel-distribution, then EX,N converges weakly to a PPP
(
e−xdx

)
in Mp ((−∞,∞]).

2. the Fréchet-distribution, then EX,N converges weakly to a PPP
(
x−α1x>0dx

)
in Mp ((0,∞]).

3. the Weibull-distribution, then EX,N converges weakly to a PPP
(
(−x)−α1x≤0dx

)
in Mp ((−∞, 0]) .

To conclude this subsection, in all three cases the extremal process is a Poisson point process with
a certain intensity which is determinded by the tails of the common distribution function, F.

1.3.2 Independent identically distributed Gaussian random variables

As all models we consider in the following sections are Gaussian, we state as a reference the
results in the case of independent and identically distributed Gaussian random variables, directly
in the framework that is also relevant in the context of our study of the scale-inhomogeneous two-
dimensional discrete Gaussian free field. Take X(N)

i ∼ N(0, log N), for i = 1, . . . ,N2. In the context
of the (scale-inhomogeneous) two-dimensional discrete Gaussian free field one should think of index
set being the lattice box of side length N, VN = [0,N)2 ∩ Z2. We want to find the correct centring
and scaling, the limiting distribution of the maximum value and the corresponding limiting extremal
process. As in (1.6),

P

(
max

1≤i≤N2
X(N)

i ≤ aN x + bN

)
=

(
P
(
X(N)

1 ≤ aN x + bN

))N2

=

1 −
N2P

(
X(N)

1 > aN x + bN

)

N2



N2

. (1.16)
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1.4 Gaussian processes indexed by trees

For the right hand side to converge to a determinstic non-trivial function in x, N2P
(
X(N)

1 > aN x + bN

)

has to converge to a non-degenerate function, x 7→ g(x), as N → ∞. Thus, we need good bounds for
the last probability in (1.16). Let

Φ(x) =

∫ x

−∞
1√
2π

exp
−y

2

2

 dy (1.17)

be the cumulative distribution function of a standard Gaussian random variable. Then, by Mills’ ratio
bound [62, Eq. (10)]

x

(x2
+ 1)
√

2π
e−

x2
2 ≤ 1 − Φ(x) ≤ 1

x
√

2π
e−

x2
2 . (1.18)

Using this crucial estimate in (1.16) and applying Theorem 1.3.3, one can show the following theorem
(cp. e.g. [22, Section 4.2.2.]).

Theorem 1.3.4. Let {Xi}i∈N be independent centred Gaussians with variance log N. Let

bN = 2 log N − 1
4

log log N − 1
4

log(2π) and aN = 1. (1.19)

Then,

1. The rescaled maximum converges to a Gumbel distribution,

lim
N→∞

P

(
max

1≤i≤N2
Xi − bN ≤ x

)
= e−e−2x

, x ∈ R. (1.20)

2. The limiting extremal process is a Poisson point process (PPP) with intensity e−2xdx,

lim
N→∞

N2∑

i=1

δXi−bN
= PPP

(
e−2xdx

)
. (1.21)

1.4 Gaussian processes indexed by trees

The extremal values of log-correlated (Gaussian) fields that exhibit a hierarchical structure, such as
the branching random walk or branching Brownian motion, can be considered as well understood.
One major reason for this is that their correlations are encoded in a hierarchical structure which
simplifies their analysis. In particular, these processes can be realized on a Galton-Watson tree. Two
important properties to name here are the splitting and self-similarity. If we pick two leaves of the
tree and trace back their branches to the root, their paths will meet at some point. By splitting, we
mean that remaining increments after two particles’ branches have split on the tree, are independent.
Self-similarity simply means that all increments have identical distributions. Log-correlated fields
satisfy these properties in an approximate manner. Thus, it is reasonable to first study the extreme
values for log-correlated models with an explicit hierarchical order. In fact, one common idea in the
analysis of the extremes of log-correlated Gaussian fields is to use Gaussian comparison in order to
compare the actual model to a model that exhibits an explicit hierarchical structure and prove that in
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Chapter 1 Introduction

the limit, their extremes have identical distributions. As we will see in Section 1.6, this is also the
basic underlying idea for our analysis of the scale-inhomogeneous two-dimensional discrete Gaussian
free field. Suitable hierarchical models for comparison are models that can be indexed by the leaves
of a tree and in which the correlations are given as functions of the tree distance between leaves.
In the following, we shortly present three examples that are the most relevant to us in the sense of
comparison. We start with the probably simplest Gaussian process that can be indexed by the leaves
of a tree, the random energy model (REM). This also allows us to hint at the motivation for our results
coming from spin glass theory.

1.4.1 The Random Energy Model

The random energy model (REM) was introduced in [40] by Derrida in 1980 as a toy model to study
more complicated spin glass models such as the Sherrington-Kirckpatrick model. Spin glasses are spin
systems with competing random interactions. The key objects of mathematical interest are random
functions of the spin configurations, called Hamiltonians. In REM, different spin configurations
are distributed according to the Gibbs distribution, namely, their probabilities are proportional to
an exponential function of their negative energies. Of great interest in studying such models is to
understand the ground states which, in the interesting case when the Gibbs measure feels the geometry
of the random Hamiltonians, corresponds to understanding the extremes of the Hamiltonians, i.e. its
minima/maxima. For easier comparison in the following, we consider REM on a 4-ary tree of depth
n, denoted by Tn, with leaves v ∈ Tn. It is a stochastic process, {Xn

v }v∈Tn
, indexed by the leaves of

the 4-ary tree, Tn, of depth n ∈ N. To each leave, v ∈ Tn, we attach an independent random variable,
Xn
v ∼ N(0, log N). Setting N = 2n, this allows to apply Theorem 1.3.4 with centring and scaling for

the maximum value,

bREM
n = 2 log N − 1

4
log log N − 1

4
log(2π) and aREM

n ≡ 1, (1.22)

to obtain the following:

Corollary 1. In the random energy model on the 4-ary tree and rescaling as in (1.22), we have, as
n→ ∞,

1. the rescaled maximum converges to a Gumbel distribution,

P

max
v∈Tn

Xn
v − bREM

n

aREM
n

≤ x
→ e−e−2x

, x ∈ R. (1.23)

2. the limiting extremal process is a Poisson point process (PPP) with intensity e−2xdx, i.e.

n∑

i=1

δ


Xn

i − bREM
n

aREM
n

→ PPP(e−2xdx). (1.24)

Even though REM seems trivial as a statistical mechanics model, its structure is sufficiently rich
such that its associated Gibbs measure exhibits a phase transition [41]. Being possibly the simplest
Gaussian process on a tree, its main advantage lies in the fact that it poses a workable example that
can be studied in full details while its features are not entirely trivial.

10



1.4 Gaussian processes indexed by trees

1.4.2 The Generalized Random Energy Model

We turn to Gaussian models indexed by trees in which the random variables are hierarchically ordered,
instead of being independent. The generalized random energy model (GREM) was introduced in [42]
by Derrida in 1985 as a generalization of the REM. We restrict our considerations to GREM on a tree.
In GREM, correlations between spin configurations are given as functions of the tree distance of pairs
of leaves on the tree. In this sense, and when recalling that the spin configurations in REM are indexed
by the leaves of the tree, GREM extends REM. As we consider GREM on a tree, correlations can be
easily incorporated into the model by extending the process from the leaves of the tree to the entire
tree. This requires the notion of a distance of leaves on the tree. As in REM, we consider GREM on
the 4-ary tree Tn of depth n ∈ N. Let Tn be the set of leaves of Tn and note that there are 4n leaves at
generation n. We denote by

dn(v, w) = the generation/time of the most recent common ancestor of leaves v and w, (1.25)

for any two leaves v, w ∈ Tn at generation n. A natural distance between two leaves, v and w, on
the tree is then be given by n − dn(v, w), i.e. the number of independent generations. As GREM is
a Gaussian process it suffices to describe its mean and covariances. Let A : [0, 1] → [0, 1] be an
increasing step-wise function with finitely many steps and satisfying A(0) = 0, A(1) = 1. GREM on
the tree Tn is a Gaussian process, {Xn

v }v∈Tn
, with mean 0 and correlations given by

E
[
Xn
v Xn

w

]
= log

(|Tn|
)

A(dn(v, w)/n) = log(4n)A(dn(v, w)/n). (1.26)

Note that GREM on the tree can be realized as a time-inhomogeneous branching random walk

(a) An example of a step-wise function,
A : [0, 1] 7→ [0, 1], satisfying A(x) < x, for (0, 1).

(BRW) with Gaussian increments defined on the same tree. As a Gaussian process is determined
by its mean and covariance, it suffices to construct a Gaussian branching random walk on the tree
Tn with mean zero and covariances that match those in (1.3.3). This can be realized by attaching to
each edge of the tree an independent centred Gaussian random variable with variance A(t/n), with the
edge starting at generation t − 1 ∈ {1, . . . , n}. The case when A, instead of a step-wise function, can
be an arbitrary probability distribution function and the process being defined on a continuous-time

11



Chapter 1 Introduction

Galton-Watson tree, is referred to as continuum random energy model (CREM). The extremes of
GREM and CREM were analysed by Bovier and Kurkova in [26, 27]. There are three possible regimes
which are determined by the function A. To avoid overburdening notation we provide an informal
formulation of the following two theorems which are taken from [65].

Theorem 1.4.1. In GREM with A(x) < x, for x ∈ (0, 1), the following is true:

1. The level of the maximum coincides with the one in the REM.

2. The maximum rescaled as in (1.22) converges in law to a Gumbel distribution.

3. The extremal process converges in law to the same Poisson point process as in (1.24).

Theorem 1.4.2. In GREM, where A(x) > x, for some x ∈ (0, 1), the following is true:

1. The first order of the maximum depends on the concave hull of A, which we denote by Â. In
particular,

Mn

2 log(4n)

∫ 1

0

(
Â
)′

(x)dx→ 1, (1.27)

as n→ ∞ in probability.

2. The maximum can be rescaled such that it converges in law to a randomly shifted Gumbel
random variable.

3. The properly rescaled extremal process converges in law to a cascade of Poisson point processes.

A cascade of Poisson point processes is a concatenation of different Poisson point processes. First,
one generates the first Poisson point process. At each Poisson point in the first Poisson point process
one generates and attaches independent second generation Poisson point processes and so forth. A
mathematically precise construction of such a process was carried out by Ruelle in [80]. Comparing
Theorem 1.4.1 with Theorem 1.4.2, one should note the drastic changing behaviour of the leading
order term of the maximum in GREM once A crosses the straight line. In particular, the integral in
(1.27) is strictly smaller than 1 and thus, the leading order term is strictly smaller compared to the
case when A(x) < x, for x ∈ (0, 1), in which it coincides with the one in REM.

Of major importance in the analysis and understanding of the extremal process is the genealogical
structure of extremal particles. Pick two extremal particles at generation n and follow their paths
backwards to the root. The key question to ask here is:

At which generation do their paths meet?

It turns out that the answer heavily depends on the function A:

1. In the setting of Theorem 1.4.1 the particles’ paths will meet close to generation 0 or n with
high probability.

2. In the setting of Theorem 1.4.2 the particles’ paths can meet at any discontinuity point h of
the concave hull of A with A(h) > h. This leads to a concatenation of independent extremal
processes that are initiated at each such point. In particular, an extremal particle at generation n
must already be extremal at those intermediate generations nh, for which A(h) > h.

12



1.4 Gaussian processes indexed by trees

Regarding this dramatically different behaviour depending on A, it is of natural interest to study
the case of more general functions A, in particular the critical case in continuous time, in which
A(x) = x for x ∈ [0, 1]. This leads us to (variable-speed) branching Brownian motion (BBM) on the
continuous-time Galton-Watson tree.

1.4.3 (Variable-speed) Branching Brownian motion

Branching Brownian motion (BBM) was introduced in in the late 1950’s and early 1960’s. It is
a classical object in probability theory, which itself combines two fundamental objects, Brownian
motion and the Galton-Watson tree. Notable contributions in the study of its maximum value and its
connection to the Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation were made by McKean
[72], Bramson [28], Lalley and Selke [67] and Chauvin and Rouault [33, 34] from the 1970’s and
until the 1990’s. The F-KPP equation is a classical equation in population dynamics and was studied
earlier in 1937 by Kolmogorov, Petrovksy and Piscounov [66] and Fisher [53]. In the last decade there
has been a renewed interest in branching Brownian motion, mainly initiated by the understanding
of its extremal process by Arguin, Bovier and Kistler [5, 6, 7], as well as by Aidekon, Berestycki,
Brunet and Shi [1]. More detailed questions concerning its extreme level sets, of all particles within
O(1) to the global maximum, are investigated in [36].

Variable-speed branching Brownian motion was introduced by Derrida and Spohn [43]. It allows
for a richer class of covariances than BBM and coincides with CREM on the continuous time Galton-
Waton tree. The extremes of variable-speed BBM were analysed by Fang Zeitouni [49], Maillard
Zeitouni [71] and Bovier and Hartung in [23, 24]. In [23, 24], convergence of the maximum and the
extremal process in the weakly correlated regime is proved.

We start with a definition of the model. Fix a time horizon t > 0 and let n(t) be the number of
particles in the Galton-Watson tree up to time t. To be consistent with the literature, we assume here
that the number of offspring for each particle on the tree has mean 2 and is of finite variance. We
collect these particles in the set {ik(t) : k ≤ t}. Analogously to (1.25), for two particles ik(t), il(t), we
set

d(ik(t, il(t))) = time of the most recent common ancestor of ik(t) and il(t). (1.28)

Let A : [0, 1] 7→ [0, 1] be a non-decreasing function that satisfies, A(0) = 0, A(1) = 1. Variable-speed
branching Brownian motion on the Galton-Watson tree is a centred Gaussian process, {xA

k (t) : k ≤
n(t)}t≥0, with covariance

E
[
xA

k (t)xA
l (t)

]
= tA(d(ik(t), il(t))/t). (1.29)

Usual BBM is the special and critical case when A(x) = x, for x ∈ [0, 1], which we call {xk(t) : k ≤
n(t)}t≥0. In case of BBM, the following is known:

Theorem 1.4.3. Let {xk(t) : k ≤ n(t)}t≥0 be BBM and set mBBM
t B

√
2t − 3

2
√

2
log t. Then,

1. The level of the maximum coincides in the leading order with the one in REM whereas its
sub-leading logarithmic correction is smaller.

2. The maximum of BBM at time t centred by mBBM
t converges in law, as t → ∞, to a randomly

shifted Gumbel. The random shift depends on the number of particles at the very beginning that
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Chapter 1 Introduction

can become extremal at time t, and additionally weights their positions.

3. The extremal process converges in law to a cluster Cox process.

In the case of weak correlations, i.e. when A stays strictly below the straight line, we have the
following result. For additional necessary technical assumptions see [24].

Theorem 1.4.4. Assume that A(x) < x, for x ∈ (0, 1) and A′(0) < 0 as well as A′(0) > 1. Then the
following is true:

1. The level of the maximum is identical to the independent setting, i.e. m̃t B
√

2t − 1
2
√

2
log t.

2. The properly centred maximum converges in law to a randomly shifted Gumbel. The random
shift accounts for the random number of particles at the very beginning that can become
extremal at time t.

3. The extremal process converges in law to cluster Cox process. The limit is universal in the
sense that the law of the clusters depends on A only by A′(1), whereas the random shift depends
on the function A only by A′(0).

As in the case of GREM, one should ask for the time when two extremal particles split with high
probability. The answer in the cases of the two theorems is identical, at the very beginning or the
very end. This phenomenon is also a crucial reason why the extremal process in both cases takes the
form of a cluster Cox process. A Cox process is a Poisson process whose intensity measure itself
is random. Thus, to generate PPP(µ), for a non-negative random measure µ, one first samples µ
and then generates the Poisson process conditional on µ. In a cluster Cox process, one attaches to
each Poisson point in the Cox process an independent copy of the cluster process. In the context of
(variable-speed) BBM, the random Poisson points correspond to the relative heights of extreme local
maxima and whose mutual genealogical distances are large, whereas the clusters are formed by those
particles on the tree whose genealogical distance to a chosen extreme local maximum is small, i.e.
that recently branched off the spine of the extreme local maximum.

In case when A(x) > x, for some x ∈ (0, 1), we have to distinguish two cases. If the concave
hull of A is a piecewise linear function, then the maximum and the extremal process are simply
concatenations of the maxima, respectively extremal processes, on the intervals on which the concave
hull is linear. The maxima and extremal processes on these sub-intervals are given by Theorem 1.4.3
and Theorem 1.4.4. Which case is present depends only on whether A stays below its concave hull
or coincides with it on the respective interval, see also [23]. If the concave hull is instead strictly
concave much less is known. As in GREM (1.27), the first order of the maximum is determined
by its concave hull, which in this case is strictly smaller than 1, and thereby, strictly smaller than
in the other two cases. This is commonly referred to as slowdown of the maximum. Concerning
its second-order correction to the maximum value, instead of being logarithmic, it is known to be a
power of 1/3 [49, 71]. Furthermore, convergence of the properly centred maximum to a solution of a
time-inhomogeneous F-KPP equation is proved in [71]. The correct centring, however, is implicit and
its existence part of the statement. Convergence of the extremal process remains an open question.

Note that there is an apparent discontinuity of the sub-leading order correction that occurs when
the covariance function, A, crosses the straight line. In the case in which the concave hull of A
is piecewise linear, Bovier and Hartung [25] proved that it is possible to continuously interpolate
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1.5 The two-dimensional discrete Gaussian Free Field

between the different second order corrections of the maximum value. This works by allowing the
variance function, A, to additionally depend on the time-horizon, t. The principle reason leading to
different sub-leading order corrections is a localization of extremal particles’ paths.

1.5 The two-dimensional discrete Gaussian Free Field

The study of the (two-dimensional discrete) Gaussian free field was initiated in the 1970s [74, 77, 31].
The two-dimensional discrete Gaussian free field is a special instance of a larger family of random
surface models known as Gibbs-gradient (random) fields and probably the simplest non-trivial random
height function on a two-dimensional lattice. Moreover, it is a very prominent example of a log-
correlated Gaussian random field. Its relevance stems from its connection to many interesting objects
in mathematics as well as in physics. One important reason for this is that its scaling limit is the
two-dimensional continuum Gaussian free field, which itself is scale-invariant and a natural two-
dimensional-time analog of the Brownian bridge. It connects to multiple objects of mathematical
interest, e.g. Kahane’s theory of Gaussian multiplicative chaos, Liouville quantum gravity, Schramm-
Loewner evolutions, conformal loop ensembles or Liouville first passage percolation. For further
information on these and their connection to the Gaussian free field, we refer to introductory lecture
notes by Werner [89], Berestycki [13], Berestycki and Norris [14], Sheffield [82] and by Rhodes and
Vargas [79]. In the physics literature, the (discrete) Gaussian free field is often referred to as the
harmonic crystal or the Euclidean bosonic massless free field. As a statistical mechanics model of
random interfaces, understanding its extremal values is of natural interest as the associated Gibbs
measure at low temperature concentrates on the states with the lowest energy levels. The study of the
extremal values of the two-dimensional discrete Gaussian free field with zero boundary conditions
was initiated in 2001 when Bolthausen, Deuschel and Giacomin [20] determined the first order of
the maximum value and moreover, proved that if the entire field is conditioned to be non-negative,
it is pushed up by the leading order of the maximum of the unconditioned field. This phenomenon
is usually referred to as entropic repulsion of the 2d DGFF. The extremes of the two-dimensional
discrete Gaussian free field were investigated in various constellations mainly by Biskup, Bolthausen,
Bramson, Deuschel, Ding, Giacomin, Louidor and Zeitouni [20, 37, 21, 30, 45, 47, 10, 29, 17, 18]
and are by now well understood, i.e. one knows that both the properly centred maximum as well as its
extremal process converge. There are lecture notes on the extremal values of the two-dimensional
discrete Gaussian free field, very extensive ones by Biskup [16], those by Louidor [70] and by
Zeitouni [90]. The latter also discusses in large parts the analysis of the maximum value of the
branching random walk, which turns out to be very instructive in the study of the maximum of the
two-dimensional discrete Gaussian free field.

Before entering a more detailed discussion of the model and the theory on its extremal values, we
shortly present one of the key tools in the analysis of the (scale-inhomogeneous) 2d discrete Gaussian
free field, Gaussian comparison. To keep things simple, we restrict ourselves to two inequalities that
are of the greatest relevance in this context. For a more general and detailed treatment of Gaussian
comparison we refer to [22, 16].
Gaussian comparison: For two given centred Gaussian fields, X and Y , indexed by the same index
set, T , such that the first has more intrinsic independence, i.e. for any s, t ∈ T ,

E
[
(Xt − Xs)

2
]
≤ E

[
(Yt − Ys)

2
]
, (1.30)
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we know that

E
[
max
t∈T

Xt

]
≤ E

[
max
t∈T

Yt

]
. (1.31)

In words, if we know that one of the centred fields has a pairwise smaller dependence, measured as
a larger variance of the pairwise difference, we know that the expectation of its maximum value is
larger. The statement in (1.31) is known as the inequality of Sudakov-Fernique. If, in addition, at
every point we have equal variances, i.e. E

[
X2

t

]
= E

[
Y2

t

]
, for all t ∈ T , we know that the maximum

of the field with larger intrinsic independence stochastically dominates the maximum of the one with
smaller pairwise independence, i.e.

P
(
max
t∈T

Xt ≥ x
)
≤ P

(
max
t∈T

Yt ≥ x
)
, ∀x ∈ R. (1.32)

This statement is also known as Slepian’s lemma. The idea how to use these inequalities in or-
der to understand the extremes of the (scale-inhomogeneous) DGFF is straightforward: Construct
centred Gaussian processes that have pairwise larger or smaller correlations compared to the (scale-
inhomogeneous) DGFF and whose extremes we are able to analyse. Natural candidates for such
processes are Gaussian processes on trees such as (variable-speed) branching Brownian motion or the
(time-inhomogeneous) branching random walk.

In the following, we define the two-dimensional discrete Gaussian free field with zero boundary
conditions on a box, explain how Gaussian comparison comes into play and discuss results on its
extremal values.

Definition 1. Let N ∈ N, set VN = [0,N)2 ∩ Z2 and let {S k}k∈N be the simple random walk on the
lattice Z2. Under the measure Pv, {S k}k∈N is a simple random walk on Z2, started at v ∈ VN and
τ∂VN

= inf{k ≥ 0 : S k < VN} denotes the first time it exits VN . Let

GVN
(v, w) =

π

2
Ev



τ∂VN
−1∑

k=0

1S k=w

 , v, w ∈ VN (1.33)

be the Green kernel associated with simple random walk.
The discrete Gaussian free field on VN is a centred Gaussian field, {φVN

v }v∈VN
, with correlations

given by the Green kernel, i.e. E
[
φ

VN
v φ

VN
w

]
= GVN

(v, w). We set φVN
v = 0, for v ∈ Z2 \ VN and write

φN
v = φ

VN
v , for v ∈ Z2.

Let δ ∈ (0, 1/2) and denote by Vδ
N = (δN, (1 − δ)N)2 ∩ Z2 the set of vertices that are at least δN

away from the boundary. It is a well-known fact, see e.g. [30, Lemma 2.2], that the covariance, for
vertices v, w ∈ Vδ

N , is of the form

E
[
φN
v φ

N
w

]
= log N − log+

(‖v − w‖2
)

+ O(1), (1.34)

where the constant order term O(1) can be bounded by a constant, C(δ) > 0, which is uniform in
N and v, w ∈ Vδ

N , and with log+(x) = log(max(x, 1)), for x ∈ R+. Based on various contributions by
Bolthausen, Bramson, Deuschel, Ding and Zeitouni [21, 30, 45, 47], Bramson, Ding and Zeitouni
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[29] proved convergence of the properly centred maximum with centring

bN = 2 log N − 3
4

log log N − 1
4

log(2π) (1.35)

and scaling aN ≡ 1. A common choice as suitable centring is mDGFF
N B 2 log N − 3

4 log log N. Of
notable interest is the factor 3/4 in front of the logarithmic correction which is completely analogue
to the factor in front of the sub-leading order correction in BBM or the braching random walk (BRW),
see e.g. Theorem 1.4.3. In particular, it differs from the 1/4 present in the setting of independent
random variables, see (1.22). The analogy to the sub-leading order correction in the case of the BRW
is of no great surprise, since in the 2d DGFF there is an approximate tree structure present which
allows to use Gaussian comparison to relate the maximum of the 2d DGFF with the maximum of a
suitable branching random walk. In the following subsection on the scale-inhomogeneous DGFF, we
provide a more detailed explanation for its occurrence.

....
....

....
....

..

..

.

...

2nd generation

1st generation

root

n − th generation
2n

Figure 1.5: Tree decomposition of a box with side length 2n. The red boxes contain a chosen vertex.

A convenient way to apply Gaussian comparison to gain information on the maximum value of the
2d DGFF is to construct and compare it to a suitable Gaussian branching random walk on a 4-ary tree.
A possible construction of such a branching random walk is illustrated in Figure 1.5 and which is what
we describe next. One chooses the side length of the box VN to be a natural power of 2, e.g. N = 2n.
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This is a purely technical assumption, which at every step ensures that each box can be subdivided
into four equal sized ones, and such that for each vertex at the n−th step there is exactly one box of
side length 1 including it. We connect at every step each new box to its parent box by an edge. To
each edge one attaches an independent standard Gaussian random variable. The branching random
walk, {Xv}v∈VN

, indexed by the vertices v ∈ VN is then defined by summing all random variables along
the shortest path from each “leaf”, a box of side length 1 containing the vertex v, to the root, with
“root” being the box of side length N, see also Figure 1.5. Its covariance is given by

E
[
XvXw

]
= log N − log+ dT (v, w), v, w ∈ VN , (1.36)

where dT (v, w) denotes the distance on the corresponding tree between two vertices v, w ∈ VN and
which is given by the total number of generations, log N, minus the generation of their most recent
common ancestor. Regarding the decomposition depicted in Figure 1.5, the generation of their most
recent common ancestor corresponds to the largest integer k ≤ log N such that v, w ∈ VN are contained
in the same box of side length 2k. In order to use Gaussian comparison, one needs that the two centred
Gaussian processes share their index set and have a similar correlation structure. The branching
random walk comparison suffices to obtain the correct leading order of the maximum, see [20].
However, this simple approximation does not suffice to obtain the correct sub-leading order of the

v w

...
...

v

...
...
...
...
...

...
...

w

...

Figure 1.6: Two vertices, v and w, with small Euclidean distance, but large distance on the associated tree.

maximum. This is due to major defects in the correlation approximation by the BRW construction
which does not allow for a suitable lower bound on the maximum value by the use of Gaussian
comparison. The covariance of two leaves v, w ∈ VN in the BRW is given by the generation of their
most recent common ancestor. This leads to the effect that there are lots of vertices that are much less
correlated in the BRW than in the DGFF. Indeed, if one picks two vertices that lie after the first step
of the decomposition, depicted in Figure 1.6, in opposing boxes but close to their common boundary,
then their distance on the tree is very large, whereas their Euclidean distance is extremely small. For
a more precise approximation one can take the uniform average of all possible branching random
walk decompositions when considering each box in the decomposition as a torus. See Figure 1.7
for two possible decompositions of one box. The process that is obtained by taking the uniform
average of all these branching random walks is called modified branching random walk (MBRW). In
particular, one can show that this allows for a O(1) precise approximation of the covariances of vertices
that are δN away from the boundary ∂VN , for any fixed δ ∈ (0, 1/2). Using Gaussian comparison
one then deduces that the maximum of the 2d DGFF can be approximated by the maximum of the
corresponding modified branching random walk up to constant order, see [30]. A simple argument,
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1.5 The two-dimensional discrete Gaussian Free Field

Figure 1.7: Two possible decompositions of the same box, considered as a torus, into four equal-sized sub-boxes.

which goes back to Dekking and Host [38], applied in this context then immediately yields tightness of
the centred maximum [30]. Obtaining more precise results such as the convergence of the maximum,
however, is much more involved. Convergence of the centred maximum value was proved by Bramson,
Ding and Zeitouni [29]. In particular, the limit takes the form of a randomly shifted Gumbel random
variable [17, 29], which we state as:

Theorem 1.5.1. Let {φN
v }v∈VN

be a 2d DGFF on VN . Then, for any x ∈ R,

lim
N→∞

P

(
max
v∈VN

φN
v − mDGFF

N ≤ x
)

= E
[
e−CZe−2x

]
, (1.37)

where Z is an a.s. positive random variable, and C > 0 a constant.

Apart from just considering the maximum value, one is more generally interested in the joint
distribution of vertices above a certain level below the global maximum, in particular, in their properly
centred height and their spatial distribution on the two-dimensional grid. A first step towards an
understanding of these is the observation, due to Ding and Zeitouni [47], that there exists a finite
constant c > 0 such that

lim
r→∞ lim

N→∞
P
(
∃v, w ∈ VN : ‖v − w‖2 ∈ (r,N/r) and φN

v , φ
N
w ≥ mDGFF

N − c log log r
)

= 0. (1.38)

From (1.38) we see that with high probability vertices that exceed an extremal height, here mDGFF
N −

c log log r, are either within Euclidean distance O(1) or at least N/O(1) apart. In particular, extremal
vertices congregate in clusters of diameter O(1) and these clusters are N/O(1) apart. The fact that
vertices within distance O(1) to an extreme local maximum are extremal themselves is very likely since
the difference in height of one such vertex to the extreme local maximum is given by an independent
centred Gaussian with variance O(1). More interesting is the fact that the diameter of such clusters is
essentially finite and furthermore, that any two such clusters are N/O(1) apart, which suggests that the
clusters, conditioned on the extreme local maxima, are asymptotically independent. This motivates to
study the joint distribution of height and spatial location of extreme local maxima and the clusters
around them. The suitable object to capture this behaviour is the following point measure, also known
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as full/structured extremal process,

ηN,r =
∑

v∈VN

1v r-loc. max.δv/N ⊗ δφN
v −mDGFF

N
⊗ δ{φN

v −φN
w :w∈Z2}. (1.39)

For each fixed N and r, ηN,r is a random point measure on [0, 1]2×R×RZ2
. In light of (1.6) one should

think in (1.39) of N ∈ N being much larger than r ∈ R. The indicator function in (1.39), 1v r-loc. max.,
picks out the local maximum in an r−environment, which is the local maximum of vertices within
Euclidean distance r on the grid. The first coordinate in (1.39) gives their normalized position on the
grid, the second their relative height and the last is the field seen from the chosen local maximum.
Note that the indicator does not ensure that the vertex is within finite distance to the global maximum,
and thus an extreme local maximum. However, subtracting the order of the maximum, mDGFF

N , from
its height, most point measures in the sum tend to the Dirac measure at −∞ in their height coordinate,
as N → ∞. Endowing the space of Radon measures with the vague topology turns it into a Polish
space and ensures that the limit, if it exists, is a proper point process.

In fact, Biskup and Louidor [17, 18] proved convergence of the structured extremal process,
{ηN,rN

}N∈N, to a cluster Cox process.

Theorem 1.5.2. There exists a non-trivial random Borel measure, Z, on V = [0, 1]2, with Z(V) < ∞
a.s. and such that, for any sequence {rN}N∈N satisfying both rN → ∞ and rN/N → 0, as N → ∞,

lim
N→∞

ηN,rN
= PPP

(
Z(dx) ⊗ e−2hdh ⊗ θ(dν)

)
, (1.40)

with cluster law, θ, being a probability measure on [0,∞)Z
2
. Convergence in (1.40) is in law with

respect to the vague topology of Radon measures on [0, 1]2 × R × RZ2
.

We remark that the cluster law, θ, admits an explicit representation: Let φ be the discrete Gaussian
free field on Z2 \ {0}. Equivalently, φ is the discrete Gaussian free field on Z2 conditioned to be zero
at 0, which is also called the pinned discrete Gaussian free field. The cluster law, θ, is given as the
weak limit

θ(·) = lim
r→∞P

(
φ + a ∈ ·

∣∣∣∣∣φ(x) + a ≥ 0 : |x| ≤ r
)
, (1.41)

with a being the potential kernel of the simple random walk on Z2. Note that the conditioning (1.41)
ensures that the field is centred at a r−local maximum at 0. Moreover, the statement of Theorem 1.5.2
is true for much more general domains VN , restricted only by the regularity of the boundaries of the
sequence of domains, see [18]. The relevance of this fact becomes manifest when characterizing the
random intensity measure Z under conformal transformations of the underlying domains. In particular,
its law can be identified with the critical Liouville Quantum Gravity measure associated with the
continuum Gaussian free field [19], which is a key object in the study of random conformally-invariant
geometry. One should note that in both cases, in BBM and in the 2d DGFF, correlations affect the
sub-leading order correction to the maximum value, the properly centred maximum converges in law
to a randomly shifted Gumbel random variable and their extremal processes to cluster Cox processes.
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1.6 The scale-inhomogeneous two-dimensional discrete Gaussian Free Field

1.6 The scale-inhomogeneous two-dimensional discrete Gaussian
Free Field

The scale-inhomogeneous discrete Gaussian free field in dimension two was first introduced in 2015
by Arguin and Zindy [10] as a tool in order to prove Poisson-Dirichlet statistics of the extremes of the
two-dimensional discrete Gaussian free field at the level of the Gibbs measure at low temperature, in
which case the Gibbs measure should be supported essentially on the minima of the field. Nevertheless,
it is an object of its own interest. It is the analogue model, in the context of the 2d DGFF, to variable-
speed branching Brownian motion on the Galton-Watson tree in the context of usual branching
Brownian motion. In fact, with regards to the 2d DGFF, it allows for more general correlation
functions and thus, a study of its extremal values is of natural interest. A key difference to the case
of (variable-speed) BBM is that correlations of the (scale-inhomogeneous) 2d DGFF are ordered
only approximately in a hierarchical fashion. The study of its maximum value was initiated in 2016
by Arguin and Ouimet [9] who determined the leading order of the maximum in the case of finitely
many scales. In particular, they showed that in this case, just as in variable-speed BBM and GREM,
the first order of the maximum value is determined by the concave hull of the variance function, see
Theorem 1.4.1 and Theorem 1.4.2. Moreover, they determined the log-number of high points, i.e. the
logarithm of the number of vertices being above a positive fraction, α ∈ (0, 1), of the leading order
of the global maximum. Ouimet [75] used these results to analyse the geometry of the associated
limiting Gibbs measure at low temperature in the case of finitely many scales.

We start with a definition of the model and then discuss our contributions in the study of its extremal
values. Let N ∈ N, and {φN

v }v∈VN
be a discrete Gaussian free field on VN . For v ∈ VN and λ ∈ [0, 1], let

[v]N
λ be the box centred at v of side length N1−λ and set

φN
v (λ) = E

[
φN
v |σ

(
φN
w : w < [v]N

λ

)]
. (1.42)

φN
v (λ) is the expected field value at vertex v conditioned on the values of the field outside the box

[v]N
λ . We denote by ∇φN

v (λ) the partial derivative, ∂λφ
N
v (λ), with respect to λ. The 2d DGFF satisfies

the so-called Gibbs-Markov property, i.e. for two sets A ⊂ B, we can decompose the DGFF on B as
follows:

φB law
= φA

+ E
[
φB|φB

v : v ∈ B \ A
]
, (1.43)

where the fields on the right-hand side are independent. In particular, for any v ∈ VN ,

φN
v

law
= φN

v (λ) + φ
[v]N

λ
v , (1.44)

where the fields on the right-hand side are independent. This allows to decompose the DGFF at each
vertex v concentrically along scales, s ∈ [0, 1], as follows

φN
v =

∫ 1

0
∇φN

v (s)ds. (1.45)

Now, let s 7→ σ(s), for s ∈ [0, 1] be a non-negative function such that
∫ 1

0 σ2(s)ds = 1. We write
I
σ2(x) =

∫ x
0 σ2(s)ds. The function s 7→ σ(s) is the so-called “variance function”.
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Definition 2. The scale-inhomogeneous discrete Gaussian free field on VN , {ψN
v }v∈VN

, with variance
σ is defined as

ψN
v B

∫ 1

0
σ(s)∇φN

v (s)ds, v ∈ VN . (1.46)

In particular, it is a centred Gaussian field with covariances given by

E
[
ψN
v ψ

N
w

]
= log NI

σ2

(
log N − log+ ‖v − w‖2

log N

)
+ O

( √
log N

)
, ∀v, w ∈ Vδ

N , (1.47)

where δ ∈ (0, 1) is arbitrary but fixed. When neglecting the big-O error term, (1.47) should be read
in the sense that up to normalization, correlations are given as functions of the spatial Euclidean
distance. Comparing this to the correlations of variable-speed BBM as given in (1.29), here the map
s 7→ I

σ2(s) takes the role of s 7→ A(s). In both cases, correlations are, up to normalization, given as
functions of the underlying metric distance. In particular, one should think of the scale parameter,
s, in the scale-inhomogeneous 2d DGFF being the analogue to the time parameter, normalized to
[0, 1], in variable-speed BBM. These observations motivate the notion of the scale-inhomogeneous 2d
DGFF being the analog model in the context of the 2d DGFF of variable-speed BBM in the context of
BBM. In the previous subsections, we observed that the extremal values of BBM and the 2d DGFF are
structurally very similar and belong to the same class of models, i.e. their properly centred maxima
converge in law to randomly shifted Gumbel variables, with their centrings being completely analogue,
and their extremal processes to cluster Cox processes. With regards to the extreme value theory for
variable-speed BBM and considering their similar correlation structures, it is natural to ask whether
such an analogy can also be observed between the extremal values of the scale-inhomogeneous 2d
DGFF and those of variable-speed BBM.

In the remainder, we give a brief outline of the results obtained in chapters 2-4, which are a
confirmative partial answer to this question. In particular, we discuss on a heuristic level the results
and provide basic ideas of the proofs. For full details and rigorous arguments we refer to chapters 2-4,
which are all available as preprints [50, 51, 52]. The contents of chapter 3 (see [51]) and chapter 4
(see [52]) is joint work with Lisa Hartung.

1.6.1 Subleading order and tightness of the maximum.

In Chapter 2, we pick up the study of the maximum in the case of finitely many scales initiated in
[9], in which the leading order term of the maximum was established. First, we introduce additional
notation that allows us to state and discuss our findings. We denote by s 7→ Î

σ2(s) the concave hull
of the function s 7→ I

σ2(s). In the case when s 7→ Î
σ2(s) is piecewise linear, we can number its

different slopes. The first slope we call σ̄2
1, the second σ̄2

2 and so forth. The length of the first interval
with slope σ̄2

1 we denote by λ1, the end scale of the second interval where the slope is σ̄2
2 we call

λ2 and so on. Thus, the length of the i−th interval is given by λi − λi−1. The parameters {σ̄i}i≥1 are
called effective variance parameters and the corresponding scales, {λi}i≥1, are called effective scale
parameters, see also Figure 1.8 for an example. Note that the effective variances are decreasing, i.e.
0 ≤ σ̄i+1 ≤ σ̄i, for i ≥ 1.

In [9] the leading order of the maximum value in the case of m effective parameters is established,
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λ1 λ2 λ3
= 1

λ1σ̄2
1

λ1σ̄2
1 +

(
λ2 − λ1

)
σ̄2

2

σ̄2
1

σ̄2
2

σ̄2
3

Î
σ2(x)
I
σ2(x)
x

Figure 1.8: An example of effective variances.

i.e. it is shown that, in probability,

lim
N→∞

maxv∈VN
ψN
v

2 log N
=

m∑

i=1

σ̄i

(
λi − λi−1

)
. (1.48)

Note that this value is also obtained when taking the sum of the leading orders of maxima of m
independent 2d DGFFs on boxes of side length

(
λi − λi−1

)
log N and whose covariances are scaled

by σ̄i. However, the exact same leading order is also attained when assuming that these m scaled 2d
DGFFs were completely uncorrelated centred Gaussian fields with idential variances as those of the
scaled DGFFs. With regards to Gaussian comparison, these two very different kind of models, if set
up correctly, should pose possible extreme candidates for comparison. While this yields the correct
leading order of the maximum value, on the level of the sub-leading order correction it only gives
trivial upper and lower bounds. Thus, the correct sub-leading order to the maximum value remains, at
this stage, a completely open question.

To explain what happens on the level of the sub-leading order correction of the maximum value,
we first consider the case when there is exactly one effective scale, i.e. we assume σ̄1 = 1 and λ1

= 1.
Using Gaussian comparison, we can bound the maximum value from below by that of the usual 2d
DGFF and from above by an uncorrelated 2d DGFF. By an uncorrelated DGFF, we denote a centred
Gaussian field having at each vertex identical variances as the usual DGFF, and else being uncorrelated.
Using Gaussian comparison we deduce that the sub-leading order to the maximum lies in the interval[
− 3

4 log log N,− 1
4 log log N

]
. One of the main consequences of what we prove in Chapter 2 is that, in

the case of one effective scale and under the additional assumption of I
σ2(x) < Î

σ2(x), for x ∈ (0, 1),
the sub-leading order correction to the maximum value is as if the field was independent, namely
− 1

2
log log N

2 .
The fact that we do not see any difference on the sub-leading order correction to the case of

independent random variables is quite remarkable as the field which we consider has slowly decaying
correlations. The other case we consider is when I

σ2(x) = Î
σ2(x) = x, for x ∈ [0, 1]. This is simply

the usual 2d DGFF with known correction, − 3
2

log log N
2 . Note that in variable-speed BBM and the

23



Chapter 1 Introduction

time-inhomogeneous branching random walk the same correction factors, 1/2 and 3/2, in the analogue
regimes can be observed, see e.g. Theorem 1.4.3 and Theorem 1.4.4. One might wonder:

Is this analogy to the time-inhomogeneous BRW simply superficial or can it be made precise?

In fact, our proof draws heavily on this intuition and this is what we explain next. We adapt the idea
from Bramson and Zeitouni in the case of the 2d DGFF, which consists in using Gaussian comparison
to argue that it suffices to study the maximum of the modified branching random walk (MBRW)
which itself can be studied similarly to the maximum of the BRW. Recall from the discussion of the
discrete Gaussian free field that the MBRW is obtained by taking uniform averages of independent
BRWs. We replace the BRWs in this construction by independent time-inhomogeneous BRWs with
variances corresponding to those of the scale-inhomogeneous DGFF. Taking the uniform average over
these independent time-inhomogeneous BRWs we obtain what we call the modified inhomogeneous
branching random walk (MIBRW). It turns out that its covariance structure away from the boundary
matches that of the scale-inhomogeneous DGFF, up to constant order. This allows, in a first step,
to use Gaussian comparison to reduce the necessary analysis to the MIBRW. For the study of the
maximum value of the MIBRW, we use a truncated second moment method. We explain the heuristics
in the special case when there are exactly two scales with variance parameters 0 < σ1 < 1 < σ2.
This allows us to keep things simple, while capturing the essential ideas. For the truncation in the
second moment analysis we draw on a path analysis for extremal vertices of the MIBRW and which is
identical to the one for extremal particles of the time-inhomogeneous BRW. See also Figure 1.9 for an
illustration. It turns out that for a vertex reaching the maximum at “time” log N, it has to be at height

λ1 log N log N

2σ2
1λ1 log N

2σ1λ1 log N

2 log N

“Time”

“H
ei

gh
t”

Figure 1.9: Path of an extremal particle vs path of a typical particle that is always close to the running maximum
in the case when σ1 < σ2.

2σ2
1λ1 log N ± O

( √
log N

)
at the “time” of change in variance, which is λ1 log N. Note that this is

significantly lower than vertices maximal at this moment which locate at 2σ1λ1 log N ± O
( √

log N
)
,

a linear order above the vertices that are extremal at the end. The simple reason for this is that at the
intermediate “time” λ1 log N, there are effectively N2λ1 particles, each with variance σ2

1λ1 log N, for
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1.6 The scale-inhomogeneous two-dimensional discrete Gaussian Free Field

which we know what their maximum is. However, at this intermediate time point there are essentially
only finitely many particles at the running maximum, and out of which at least one has to have some
descendent that reaches the overall maximum level, 2 log N, at the end. The probability of this event is
much smaller than demanding one of the exponentially many particles being a linear order below the
running maximum at “time” λ1 log N and having a descendent that reaches the overall maximum at the
end. Thus, the usual truncation applied in this context, demanding vertices staying below the running
maximum at all times does not affect the extremal vertices at all in the case when 0 < σ1 < 1 < σ2.
Therefore, up to a linear drift, what we see is akin to a time-inhomogeneous random walk bridge
whose probability in this case is of order 1/(log N)1/2. This exponent leads to the 1/2 correction
factor for the sub-leading order term of order O(log log N).

At this stage, we are also able to understand what changes in the homogeneous case, when
I
σ2(x) = x, for x ∈ [0, 1]. Recall that we have the constraint that no particle should be larger than the

running maximum at any time. A similar path analysis shows that for a vertex to become maximal at
the end, its path has to stay (log N)1/2 below the running maximum for most of the time. This effect is
known as entropic repulsion of the BRW. What we basically see is a random walk bridge conditioned
to stay below the straight line. The probability of such an event is of order 1/(log N)3/2, which gives
the 3/2 factor in front of the sub-leading order correction. We now move to the case of finitely many
effective scales.

As in GREM or in variable-speed BBM, this leads us to distinguish three cases:

a)I
σ2(x) < x, for x ∈ (0, 1). (1.49)

b)I
σ2(x) = x, for x ∈ [0, 1]. (1.50)

c)I
σ2(x) > x, for some x ∈ (0, 1). (1.51)

The case in (1.49) is called weak correlation regime, in which correlations are such that the
correct centring of the maximum value is as in the case of independent identically distributed random
variables, see Theorem 1.3.4. The case in (1.50) is usually called critical case, which is the usual 2d
DGFF. It is critical in the sense that correlations are such that they affect the centering on the level
of the sub-leading order correction. As we have already seen in (1.48), once the concave hull of the
variance function, A, crosses the straight line as in (1.51), even the first order of the maximum is
affected by variance profile. This is usually referred to as supercritical case.

One of the main consequences of what we prove is: Up to a uniformly bounded constant, the
maximum is a concatenation of the maxima over the effective scales in their corresponding regimes.
Moreover, the centred maximum is a tight sequence of random variables. We summarize the above
observations in the following, more formal statement.

Theorem 1.6.1. Let {ψN
v }v∈VN

be a 2d scale-inhomogeneous DGFF on VN with finitely many effective
scales.
i) In the case when I

σ2(s) < s, for s ∈ (0, 1),

E

[
max
v∈VN

ψN
v

]
= 2 log N − 1

4
log log N + O(1), (1.52)

where the term O(1) is bounded by a constant, uniformly in N.
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ii) In case when I
σ2(s) = s, for s ∈ [0, 1], we have

E

[
max
v∈VN

ψN
v

]
= E

[
max
v∈VN

φN
v

]
= 2 log N − 3

4
log log N + O(1), (1.53)

where the term O(1) is bounded by a constant, uniformly in N.
iii) Finally, in the case if, for some s ∈ (0, 1), I

σ2(s) > s and if there are m effective parameters,
{σ̄i}1≤i≤m and 0 = λ0 < · · · < λm

= 1, it holds that

E

[
max
v∈VN

ψN
v

]
=

m∑

i=1

2σ̄i(λ
i − λi−1) log N − 1 + 2δi

4
σ̄i log log N + O(1), (1.54)

where the δi equals 1 if, for any s ∈ [λi−1, λi], Î
σ2(s) = I

σ2(s), and where the term O(1) is bounded
by a constant, uniformly in N.
In all three cases, the centred maximum, maxv∈VN

ψN
v − E

[
maxv∈VN

ψN
v

]
, is tight as a sequence of real

random variables.

This is a consequence of our main result in Chapter 2, in which we directly control the tails of the
properly centred maximum, maxv∈VN

ψN
v − mN , with centring

mN B
m∑

i=1

2σ̄i(λ
i − λi−1) log N − 1 + 2δi

4
σ̄i log log N. (1.55)

Here, we assume that there are M ∈ N scales with m ≤ M effective scales and set δi, for i = 1, . . . ,m,
as in (1.54). The main result in Chapter 2 deals with the tails of the centred maximum. In fact,
the truncated second moment computation for the MIBRW that we depicted in combination with
Gaussian comparison allows to prove that the right tail, i.e. the probability to exceed mN by a positive
value x, has exponential tails. For the left tail, i.e. the probability of the maximum to be smaller than
mN − x, we obtain an upper bound of exponential decay. The idea we use to prove this is to bootstrap
the estimate for the right-tail and which is what we outline in the following. One first decomposes
the entire box into exp(O(x)) many identical sub-boxes and then rewrites the MIBRW on the entire
box, called S N , as a sum of iid MIBRWs,

{
Y (i)

}
i
, one for each sub-box, and an independent centred

Gaussian field, X, that encodes their correlations. A possible strategy to have a small maximum value
is to require either all MIBRWs on the sub-boxes being sufficiently small or to demand that the field,
X, which encodes their common increment, has to be small. Using independence, one deduces that

P

(
max
v∈VN

S N
v ≤ mN − x

)
≤

∏

i

P
(
max
v

Y (i)
v ≤ mN − x

)
+ P (X ≤ −x) . (1.56)

The latter probability can be bounded from above using a Gaussian tail bound. To bound the first, we
write P

(
maxv Y i

v < mN − x
)

= 1 − P
(
maxv Y (i)

v ≥ mN − x
)
, and use the lower bound on the right-tail

of the maximum to bound this quantity from below by a constant, δ > 0. This together with the fact
that there are exp(O(x)) many independent of such factors, implies that the probability of the event
that each maximum of the MIBRWs on the sub-boxes stays below mN − x decays exponentially fast
in −x. More formally, we prove the following.
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Theorem 1.6.2. Let {ψN
v }v∈VN

be a 2d scale-inhomogeneous DGFF on VN . Assume that on each
interval [λi−1, λi] and i = 1, . . . ,m, we have either I

σ2 ≡ Iσ̄2 or I
σ2 < Iσ̄2 . There exist constants

C, c > 0 such that, for any x ∈ [0,
√

log N],

C−1
(
1 + x1σ1=σ̄1

)
e−x 2

σ̄1 ≤ P
(
max
v∈VN

ψN
v ≥ mN + x

)
≤ C(1 + x1σ1=σ̄1

)e−x 2
σ̄1 . (1.57)

Moreover, for any 0 ≤ λ ≤ (log log N)2/3,

P

(
max
v∈VN

ψN
v ≤ mN − λ

)
≤ Ce−cλ. (1.58)

Note that the result for the right-tail in (1.57) is precise up to a multiplicative constant. Moreover,
it differs in a multiplicative factor, x, depending on the parameters up to the first effective scale.
To control the tails for larger deviations, e.g. for x >

√
log N, one can use Borell’s concentration

inequality, which implies that there is a constant cσ ∈ (0,∞), depending only on the variance parameter
σ, such that

P
(|ψ∗N − mN | ≥ x

) ≤ 2e−cσx2/ log(N) ∀x ≥ 0. (1.59)

1.6.2 The case of weak correlations.

In Chapter 3 and Chapter 4, we consider the scale-inhomogeneous discrete Gaussian free field in the
case of weak correlations. More precisely, we make the following assumptions:

σ′(0) and σ′(1) exist, I′
σ2(0) < 1, I′

σ2(1) > 1, I
σ2(x) < x for x ∈ (0, 1) and I

σ2(1) = 1. (1.60)

In words, we want the variance function to stay beneath the straight line and require some additional
regularity at the very beginning and the very end. In this setting, by the first statement of Theorem 1.6.1
the order of the maximum is as if the random variables were independent and moreover, it implies
tightness of the centred maximum which implies the existence of a convergent sub-sequence. Thus,
the first question one should answer concerns the convergence of the properly centred maximum and
secondly, the convergence of the extremal process.

Convergence of the maximum and genealogy of extremal vertices.

In Chapter 3, we show that the centred maximum value converges in law to a randomly shifted Gumbel
random variable and obtain information on the genealogy of extremal particles. In order to prove
convergence of the maximum value a simple refinement of our previous strategy, which principally
consisted in comparing the maximum value of the field to the maximum of a suitably constructed
MIBRW and analysing the latter, seems unfeasible. Indeed, with regards to Gaussian comparison and
in order to obtain convergence of the centred maximum by comparison to a MIBRW, one would have
to be able to approximate the covariance structure asymptotically correct which simply is beyond the
scope of this method. Given the answer, an instructive question one should ask instead is:

Why should we expect a randomly shifted Gumbel as limit distribution?
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1

slope at 0, I′
σ2(0) < 1

slope at 1, I′
σ2(1) > 1
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Figure 1.10: An example of x 7→ Iσ2 (x) in the weak correlation regime.

This raises the question of what properties lead to this kind of limit shape? Based on the extreme
value theory for independent random variables, see e.g. Theorem 1.3.2, the emergence of the Gumbel
distribution should be due to taking the maximum of a growing number of independent identically
distributed random variables with exponential right tails. The random shift accounts for the random
number of such iid random variables with exponential tails. The additional randomness in the number
of particles is usually due to a restriction that has to be verified for the random variables to be
considered. One should ask:

How to obtain suitable approximating fields that capture these two effects?

The key observation one makes is that extreme local maxima are at mutual distance of at least N/O(1),
i.e. more precisely

lim
r→∞ lim

N→∞
P
(
∃v, w ∈ VN : ‖v − w‖2 ∈ (r,N/r) ∧ ψN

v , ψ
N
w ≥ mN − c log log r

)
= 0. (1.61)

This motivates to decompose the box VN into K2 equal sized sub-boxes, {VN/K,i}1≤i≤K2 , each of side
length N/K. We choose K � N and take limits in the order N → ∞ and then K → ∞. As “fine
fields” we choose the scale-inhomogeneous DGFF restricted to the interior of the boxes of side length
N/K minus the scale-inhomogeneous DGFF conditioned on the boundary of these boxes of side
length N/K. By the Gibbs-Markov property (1.42), on the sub-boxes of side length N/K, these are
K2 independent copies of each other. In particular, they are multivariate Gaussian as conditioned
Gaussians. Regarding the discussion incidental to the previous question, taking the maximum of
the maxima of these K2 independent fine fields accounts for the Gumbel limit shape, provided we
can prove asymptotically exponential right-tails for their maxima. In light of Theorem 1.6.2 this
seems within reach. The “global field” is then simply the harmonic extension of the values of the
scale-inhomogeneous DGFF on the boundary of the K2 boxes of side length N/K into the entire box
VN . Without getting precise here, the random shift is due to a localization of the global field, i.e. only
those fine fields for which the associated global field has a height within a certain interval will be
counted.
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VN/K,i
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Figure 1.11: 3-field decomposition.

However, to work directly with these fields is delicate, mainly because of two issues: First, neither
the global nor the fine field as defined above is constant in the VN/K,i boxes, and so the correct extreme
local maxima depend in their positions and heights on both the global and the fine field. The second
issue is that the variance parameter, σ, causes both global and fine field to be inhomogeneous, which
technically complicates their analysis further.

The idea to circumvent both problems simultaneously is to use Gaussian comparison to show
that one can approximate the fine and global field by auxiliary Gaussian fields that are structurally
simpler and hence, easier to analyse, while both having identical limiting laws for their maximum
values. Regarding (1.61) the approximating fields must have asymptotically identical correlations
at both macroscopic and microscopic scale. We achieve this by approximating the global field by a
scaled instance of the usual DGFF, {σ(0)φK

v }v∈VK
, which we refer to as “coarse field” and approximate

the fine field further by independent copies of “local fields”, which are realized as scaled DGFFs,
{σ(1)φK′

v }v∈VK′
, and a collection of modified inhomogeneous branching random walks (MIBRW)

{S N,K,K′,i
v }v∈VN/K,i

, capturing intermediate scales. Figure 1.11 shows a corresponding decomposition
of the box VN . Here we make use of the additional regularity assumptions in (1.60). An apparent
advantage in this construction is that it addresses the first issue in the sense that the coarse field is
constant in each sub-box VN/K,i and the MIBRW is constant in each small sub-box VK′,i. Moreover, it
addresses the second issue in the sense that coarse and local fields are homogeneous. At this point we
remark that a similar decomposition was previously employed in [46] in the context of log-correlated
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Gaussian fields. As a first step in the proof, we use Gaussian comparison to show that the maximum of
the auxiliary process has the same limit as the maximum of the scale-inhomogeneous DGFF, provided
the limit exists.

Assuming that this is a valid approximation, we provide the heuristic picture behind the details of
the limit shape of the maximum value. Having in mind the universality in the weak correlation regime
in variable-speed BBM, see Theorem 1.4.4, one should should ask:

How does the limit distribution depend on the parameters?

Under the assumptions of weak correlations in (1.60) we show that the limiting law is universal in
the sense that it only depends on the parameter σ(0) through a random variable Y and on a constant
C, which solely depends on σ(1). In the following, we explain why this is reasonable and along
the way, we see more explicitely how the randomly shifted Gumbel distribution emerges from the
approximation. The first key ingredient is the genealogical structure of the extremes in (1.61), which
implies that if we pick two vertices whose height is extremely large then they have to be at distance
of order N/O(1) or O(1). This implies that extreme local maxima are correlated only on scales of
order N/O(1) and thus, these correlations asymptotically depend solely on the coarse field with initial
variance parameter σ(0).

As a second key ingredient, we prove that the right-tail of the maximum satisfies asymptotics which
depend only on the last variance parameter, σ(1), through a constant CK = CK(σ(1)). In particular,
we show that

lim
x→∞ lim

K′,N→∞

∣∣∣∣∣∣P
(

max
v∈VN/K

S N,K,K′
v + σ(1)φK′

v ≥ mN − 2σ2(0) log K + x
)
−CK(σ(1))e−2x

∣∣∣∣∣∣ = 0. (1.62)

The proof of this is based on a modified second moment computation in which one uses a localization
of the local field at extremal vertices. This localization is the reason why CK depends only on σ(1).
To explain how the parameters enter into the limit shape we depict a heuristic computation, which is
inspired by the simple calculation in the case of independent random variables, see (1.16). Mimicking
(1.16), we condition on the large scales, i.e. on φK , and obtain

P

(
max
v∈VN

σ(0)φK
v + S N,K,K′

v + σ(1)φK′
v ≤ mN + x

)

= E


K2∏

i=1

(
1 − P

(
max
v∈VN/K

S N,K,K′
v + σ(1)φK′

v ≥ mN + x − σ(0)φK
v

∣∣∣∣∣φ
K
)) . (1.63)

The third key ingredient is the simple but crucial observation that, for extremal vertices, the coarse
field, σ(0)φK , localizes in a window of size O(

√
log K) around 2σ2(0) log K. We collect the indices,

for which this localization is satisfied, in the set A and note that there are exponentially many such
indices. Inserting this localization into (1.63) allows to drop the conditioning on φK , which adds
a multiplicative error of size 1 + o(1). Furthermore, we observe that the field S N,K,K′

+ σ(1)φK′ is
independent of the conditioning by construction. Using these observations, (1.63) can be rewritten,
up to a multiplicative error of size (1 + o(1)), as

E


∏

i∈A

(
1 −CK(σ(1))e−2x+2σ(0)

(
φK

i −2 log K
)) = (1 + o(1))E

[
e−CK (σ(1))YK (σ(0))e−2x

]
. (1.64)
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What remains to show is that the expression and the quantities in (1.64) converge as K → ∞. We
summarize with a precise statement on the convergence in law of the centred maximum in the weakly
correlated regime.

Theorem 1.6.3. Under the assumptions of weak correlations, i.e. (1.60), there exists a constant
C = C(σ(1)) > 0, depending on the parameters only through σ(1) and a random variable Y = Y(σ(0)),
which is almost surely positive, finite and depends on the parameters only through σ(0), such that

lim
N→∞

P

(
max
v∈VN

ψN
v − mN ≤ x

)
= E

[
exp

(
−C(σ(1))Y(σ(0))e−2x

)]
. (1.65)

Convergence of the extremal process.

Having established convergence in law of the maximum value, it is a natural next step to study the
joint law of height and spatial distribution of all vertices that come close to the global maximum. This
is the contents of Chapter 4, in which we prove convergence in law of the full or structured extremal
process,

ηN,r =
∑

v∈VN

1v r-loc maxδv/N ⊗ δψN
v −mN

⊗ δ{ψN
v −ψN

w :w∈Z2}, (1.66)

where 0 < r < N. Let us first take a closer look at the point process defined in (1.66). It captures the
following different aspects: the distribution of the location of r−local maxima normalized to [0, 1]2 in
its first coordinate, the relative height of local maxima in the second and in the last, the field centred
at the corresponding extreme local maximum, i.e. the cluster around the chosen local maximum. The
first question to answer here is:

Why is ηN,r the correct process to consider?

Our goal is to describe the limiting joint law of all points that are in a sense close to the maximum
value. With regards to the separation of extreme local maxima as in (1.61), it makes sense to rescale
the box VN onto the unit square [0, 1]2. In fact, as extreme local maxima are at distance N/O(1),
rescaling their positions to the unit square their points get mapped to distinct points in [0, 1]2, which
persits when taking the limit N → ∞. As by (1.61) all other points whose height is in a sense close to
the global maximum are spatially within distance O(1) of an extreme local maximum. By rescaling all
their spatial positions onto the unit square [0, 1]2, their spatial positions get mapped onto the location
of their closest extreme local maximum. By substracting mN from each local maximum, vertices that
are not extreme local maxima, have relative heights tending to −∞, and thus we retain only extreme
local maxima. A visualization of such a process is given in Figure 1.12. As already mentioned,
clusters points are spatially within distance O(1) of an extreme local maximum and thus, in order to
capture both their spatial distribution and relative height with respect to their corresponding extreme
local maximum, one should look at the scale-inhomogeneous DGFF at its original spatial scaling and
centred at an extreme local maximum, as done in the third coordinate in (1.66). Thus, we see that it is
natural to consider the point process, {ηN,r}N≥r≥1, as it captures both spatial distribution and height of
all extremal values.

The second question concerns its limit shape, as N → ∞ followed by r → ∞. We identify the
limit process as a cluster Cox process, with a random intensity measure on [0, 1]2, denoted by Y ,
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Figure 1.12: Visualization of the structured extremal process when collapsing the clusters to one spatial location:
Poisson points of extreme local maxima, with corresponding cluster points beneath.

that depends on the variance parameters only through the initial value, σ(0), and with cluster law
depending on the variance parameters only through its final value, σ(1).

In the following, we explain the heuristic picture behind this. We first ignore the last coordinate in
(1.66) and explain why we obtain a Cox process as limit of the point process of extreme local maxima,

η̃N,r =
∑

v∈VN

1v r-loc maxδv/N ⊗ δψN
v −mN

. (1.67)

In a first step, we argue, based on a heuristic computation, that extreme local maxima satisfy a
superposition principle. In the second step, this allows to deduce the correct limit shape, using a
general result which is due to Ligget [69]. The principle argument is due to Biskup and Louidor [17]
who used it in the case of the 2d DGFF.

Take ψ, ψ′ two independent copies of ψN and let t ∈ R+. By Gaussian interpolation and in law,

ψN
=

√
1 − t

2 log N
ψ +

√
t

2 log N
ψ′. (1.68)

By Taylor expansion, of the first root and using that maxψ = O(log N) with high probability,

ψN
= ψ − 1

2
t

2 log N
ψ +

√
t

2 log N
ψ′ + o(1). (1.69)

Pick v ∈ VN such that ψN
v ≥ mN −λ or ψv ≥ mN −λ. We consider the r−neighbourhood of v, which we

denote by Λr(v), and note that, for w ∈ Λr(v), we have ψ′w − ψ′v = O(1). Thus, with high probability,

ψN
w = ψw −

1
2

t
2 log N

ψw +

√
t

2 log N
ψ′v + o(1), ∀w ∈ Λr(v). (1.70)

Similarly, and using once again maxψ = O(log N), we have with high probability both ψN
w−mN = O(1)

and ψw − mN = O(1), for w ∈ Λr(v). Replacing the second occurrence of ψ in (1.70) by mN + O(1),

32



1.6 The scale-inhomogeneous two-dimensional discrete Gaussian Free Field

we deduce that in law,

ψN
w = ψw −

1
2

t +

√
t

2 log N
ψ′v + o(1), ∀w ∈ Λr(v). (1.71)

Next, we note that the term,
√

t
2 log Nψ

′
w is asymptotically distributed as a centred Gaussian random

variable with variance t/2. Using this in (1.71) and the fact that local maxima are achieved at unique
points, the maxima of ψN and ψ are attained at the same point with high probability. Further, as
extreme local maxima are at distance of order N/O(1), for two such extreme local maxima v and w,
E

[
ψ′vψ

′
w

]
= O(1). Considering their normalization by

√
t

2 log N in (1.71), we deduce that the extreme

local maxima of ψN and ψ are related by mutually independent random shifts of the form Bt/2 − t/2,
with Bt being a centred Gaussian random variable with variance t. In particular,

∑

v∈VN

1v r-loc maxδv/N ⊗ δψN
v −mN

=
∑

v∈VN

1v r-loc maxδv/N ⊗ δψN
v −t/2+B(v)

t/2−mN
, (1.72)

with
(
B(v)

t/2

)
v

being iid centred Gaussians with variance t/2 and equality being in law. Having established
a superposition principle for extreme local maxima, we may use a general result by Ligget [69] that
characterizes any possible limit of the point process η̃N,r, when N → ∞ followed by r → ∞, as a Cox
process. Note that this heuristic argument only uses that we are dealing with a Gaussian process whose
extreme local maxima are well separated and that correlations decay sufficiently fast. Uniqueness
of the law of the Cox process follows from uniqueness of the random intensity measure. The latter
follows from proving joint convergence of extreme local maxima on a generating class of the Borel
σ−algebra of [0, 1]2. In the proof of the latter, we generalize arguments from the proof of convergence
of the global maximum. In summary, we obtain in law,

lim
r→∞ lim

N→∞
η̃N,r = PPP(Y(σ(0)) ⊗C(σ(1))e−2xdx), (1.73)

with Y being a random Borel measure on [0, 1]2, depending only on the initial variance, σ(0), and
whose total mass, Y([0, 1]2), coincides in law with the random variable Y from Theorem 1.6.3. The
constant, C(σ(1)), coincides with the one in Theorem 1.6.3.

Knowing that the point process of extreme local maxima converges in law to a Cox process puts
us into the position to include the law of the cluster points. Here again, the separation of extreme
local maxima comes into play, i.e. (1.61). The idea is that due to correlations, around each extreme
local maximum there are many points in a O(1) neighbourhood that reach heights which are within
distance O(1) below the local maximum. Conditioning on the extreme local maxima and outside
these O(1) neighbourhoods, the fields in these O(1) neighbourhoods around each local maximum are
mutually independent. In particular, it turns out that they asymptotically share the same law. As we
centre the field around an extreme local maximum, all points in its closest vicinity have to be smaller
in height. Using the assumption that σ is differentiable at 1 (see (1.60)), we are able to approximate
the scale-inhomogeneous Gaussian free field in those O(1) neighbourhoods by Gaussian fields that
only depend on σ(1). In fact, we show that the cluster law is given by the weak limit
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ν(·) = lim
r→∞P

(
φZ

2\{0}
+ 2σ(1)a ∈ ·

∣∣∣∣∣φ
Z2\{0}
v + 2σ(1)a(v) ≥ 0 : ‖v‖1 ≤ r

)
, (1.74)

where φZ
2\{0} is the discrete Gaussian free field on Z2 \ {0}, which is equal to the 2d DGFF conditioned

to be 0 at the origin, and where a is the potential kernel of a simple random walk on Z2. One should
compare it to the cluster law in case of the usual 2d DGFF in (1.41). In particular, the assumption,
σ(1) > 1, ensures that the conditioning in (1.74) is not singular as it is in the case of the 2d DGFF, see
(1.41). We summarize with our main result of Chapter 4:

Theorem 1.6.4. There exists a random Borel measure, Y, on [0, 1]2, that depends only on σ(0) and
satisfies almost surely Y([0, 1]2) < ∞, as well as Y(A) > 0, for any open and non-empty A ⊂ [0, 1]2.
Moreover, the weak limit in (1.74) exists and for each sequence rN with rN → ∞ and rN/N → 0, as
N → ∞,

ηN,rN
→ PPP

(
Y(dx) ⊗C(σ(1))e−2hdh ⊗ ν(dθ)

)
, (1.75)

where the constant C(σ(1)) > 0 is the one from Theorem 1.6.3. The convergence is in law with respect
to the vague convergence of Radon measures on [0, 1]2 × R × R̄Z2

.

As a simple consequence, we obtain a description of what is usually called extremal process, i.e.
we can drop the indicator of being a local maximum in (1.67) and describe the limit law by means of a
cluster process. Let

{
(xi, hi : i ∈ N)

}
enumerate the points of a sample of PPP(Y(dx)⊗C(σ(1))e−2hdh).

Let {Θ(i)
w : w ∈ Z2}, for i ∈ N, be independent samples of the measure ν. Then, as N → ∞,

∑

v∈VN

δv/N ⊗ δψN
v −mN

→
∑

i∈N

∑

w∈Z2

δ(xi,hi−Θ
(i)
w ). (1.76)

1.7 Open problems

In this subsection, we shortly discuss possible further research directions in the context of (variable-
speed) BBM and the (scale-inhomogeneous) DGFF that directly connects to the work previously
presented in the introduction. The study of the extreme values in the case of a strictly concave speed
function, A, in variable-speed BBM as well as in the scale-inhomogeneous DGFF is still an open
problem. In the case of variable-speed BBM, it is known that the second order correction to the
maximum value is no longer logarithmic but a power of 1/3 [49, 71]. Furthermore, it is proved in
[71] that the properly centred maximum converges to a solution of a time-inhomogeneous F-KPP
equation. However, the centring in the statement is implicit. Understanding the maximum value with
an more explicit centring up to o(1) precision and moreover, the extremal process in this case is of
major interest, in particular, since already the genealogical structure of extremal particles is more
complicated. In the cases we have discussed so far, extremal particles are allowed to split only at the
very beginning, the very end or when the concave hull changes its slope. In the case when A is strictly
concave, its concave hull is changing its slope at all times, which suggests that extremal particles
can basically split at any time. It should be possible to approach this problem by a precise study of
trajectories of particles killed at certain space-time curves, similar to works on BBM with absorption
[12].
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In case of the 2d DGFF the random measure, Z, which governs the extremal process, was char-
acterized in multiple ways in [17, 18, 19]. In particular, it is known to coincide with the critical
Liouville Quantum Gravity measure. In this respect, it would be of interest to further study the random
measure, Y , that appears in the scale-inhomogeneous DGFF. We believe that it can be related to the
sub-critical Liouville Quantum Gravity measure. Moreover, a thorough study of extreme level sets of
the (scale-inhomogeneous) 2d DGFF, i.e. all points above a finite level λ below the global maximum,
as in the case of BBM [36] appears to be desirable. A typical question in this regard is, whether there
exist certain clusters that contribute a substantial amount to the extreme level set, and if so, is this
quantifiable in parameters of the model?

1.8 Beyond the 2d DGFF or other log-correlated (Gaussian) fields

At the end of the introduction, we want to hint at related models, for which one expects a similar
behaviour concerning their extreme values. On the one hand, there is the class of logarithmic
correlated Gaussian fields, which includes BBM and the 2d DGFF. In this case, under fairly general
regularity assumptions on their correlation structure, convergence of their maximum value to a
randomly shifted Gumbel was proved by Ding, Roy and Zeitouni [46]. They were also able to show
that the genealogical structure of extremes in these models are all of the type we have seen in the
cases of BBM and the 2d DGFF. Having these two key ingredients at hand and with regards to the
heuristic computation we provided in Section 1.6.2, it seems very plausible that the extremal process
for each model in this general class of models should converge to a cluster Cox process. However, this
remains an open problem. The main reason for this is that there are non-trivial technical difficulties
to overcome, as a simple adaptation of the fairly general proofs in case of the 2d DGFF [17, 18] is
impossible since the models in this general class lack a Gibbs-Markov property which cannot be easily
replaced. One should instead try to use a certain self-similarity present in these models. However,
for certain important models that belong to this class and that possess a Gibbs-Markov property, e.g.
the 4d−membrane model [81], it should be feasible to adopt the proofs from [17, 18] and obtain
convergence of their full extremal processes to cluster Cox processes.

On the other hand, there are log-correlated models such as the field of hitting times of Brownian
motion on the torus [39, 44, 11] whose maximum is related to the cover time of Brownian motion
on the torus, the randomized Riemann zeta function on the critical line [3, 76, 73, 64, 8, 4] or
characteristic polynomials of random unitary matrices [2, 35]. In the last decade, the study of the
extremes of these models has attracted a lot of attention. One of the major reasons for this is that
their behaviour is conjectured to strongly resemble the one observed in the Gaussian case [58, 59].
Important technical tools that play major roles in the analysis of Gaussian log-correlated fields, such
as Gaussian interpolation or Gaussian integration by parts, are not available in these models. Much
of the analysis in the above models is based on a refined second moment method suggested by Kistler
[60], for which one needs to establish a hidden branching structure, and which is usually combined
with an analysis of extremal particles’ trajectories. In general, a detailed understanding of the paths of
extremal particles is a major key for a precise understanding of the individual models [25, 36, 4].
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EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE
FIELD: SUB-LEADING ORDER AND EXPONENTIAL TAILS

MAXIMILIAN FELS

Abstract. This is the first of a three paper series in which we present a comprehensive study of the ex-
treme value theory of the scale-inhomogeneous discrete Gaussian free field. This model was introduced
by Arguin and Ouimet in [7] in which they computed the first order of the maximum. In this first paper
we establish tail estimates for the maximum value, which allow to deduce the log-correction to the order
of the maximum and tightness of the centred maximum. Our proofs are based on the second moment
method and Gaussian comparison techniques.

1. Introduction

In recent years, so-called log-correlated (Gaussian) processes have received considerable attention,
see e.g. [4, 5, 10, 15, 25, 34, 47]. One of the reasons for this is that their correlation structure becomes
relevant for the properties of the extremes of the processes. Some prominent examples that fall into
this class are branching Brownian motion (BBM), the two-dimensional discrete Gaussian free field (
2d DGFF), local maxima of the randomised Riemann zeta function on the critical line and cover times
of Brownian motion on the torus. The 2d DGFF is one of the well understood non-hierarchical log-
correlated fields (see [9, 10, 11, 19]). For simplicity, consider the 2d DGFF on a square lattice box of
side length N. It turns out that the maximum can be written as a first order term which is proportional
to the logarithm of the volume of the box, a second order correction which is proportional to the
logarithm of the first order and stochastically bounded fluctuations. If one considers an uncorrelated
Gaussian field on the same box with identical variances, a simple computation shows that the first
order of the maximum coincides with the one of the DGFF, whereas the constant in front of the second
order correction differs. In [7], Arguin and Ouimet introduced the scale-inhomogeneous 2d DGFF,
the analogue model of variable speed BBM [47], which allows to consider different variance profiles.
They determined the first order of the maximum. In this paper we continue the study of the maximum,
find tail estimates on the maximum value which allow us to deduce the second order correction and
tightness of the centred maximum. In the other two papers in this series, we prove, in the regime of
weak correlations, convergence of the centred maximum [29] and convergence of the extremal process
[30]. Both are joint work with Hartung.

1.1. The 2d discrete Gaussian free field. Let VN B ([0,N) ∩ Z)2. The interior of VN is defined as
Vo

N B ([1,N − 1] ∩ Z)2 and the boundary of VN is denoted by ∂VN B VN \ Vo
N . Moreover, for points

u, v ∈ VN we write u ∼ v, if and only if ‖u − v‖2 = 1, where ‖.‖2 is the Euclidean norm. Let Pu be the
law of a SRW {Wk}k∈N starting at u ∈ Z2. The normalised Green kernel is given by

GVN (u, v) B
π

2
Eu


τ∂VN−1∑

i=0

1{Wi=v}

 , for u, v ∈ VN . (1.1)

M.F. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project-id 211504053 -
SFB 1060 and Germany’s Excellence Strategy – GZ 2047/1, project-id 390685813 – “Hausdorff Center for Mathematics” at
Bonn University.
Keywords: extreme value theory, Gaussian free field, inhomogeneous environment, branching Brownian motion, branching
random walk.
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Here, τ∂VN is the first hitting time of the boundary ∂VN by {Wk}k∈N. For δ > 0, we set Vδ
N B (δN, (1 −

δ)N)2 ∩ Z2. By [22, Lemma 2.1], we have for δ ∈ (0, 1) and u, v ∈ Vδ
N ,

GVN (u, v) = log N − log (‖u − v‖2 ∨ 1) + O(1). (1.2)

Definition 1.1. The 2d discrete Gaussian free field (DGFF) on VN , φN B {φN
v }v∈VN , is a centred

Gaussian field with covariance matrix GVN and entries GVN (x, y) = E[φN
x φ

N
y ], for x, y ∈ VN .

From Definition 1.1 it follows that φN
v = 0 for v ∈ ∂VN , i.e. we have Dirichlet boundary conditions.

1.2. The 2d scale-inhomogeneous discrete Gaussian free field.

Definition 1.2. (2d scale-inhomogeneous discrete Gaussian free field).
Let φN = {φN

v }v∈VN be a 2d DGFF on VN . For v = (v1, v2) ∈ VN , let [v]N
λ be the box of side length N1−λ

centred at v, namely

[v]λ ≡ [v]N
λ B

([
v1 − 1

2
N1−λ, v1 +

1
2

N1−λ
]
×

[
v2 − 1

2
N1−λ, v2 +

1
2

N1−λ
])
∩ VN (1.3)

and set [v]N
0 B VN and [v]N

1 B {v}. We denote by [v]o
λ the interior of [v]λ. Let F∂[v]λ∪[v]c

λ
B

σ
(
{φN

v , v < [v]o
λ}
)

be the σ−algebra generated by the random variables outside [v]o
λ. We define φN

v (λ)
by conditioning on the DGFF outside the box [v]N

λ , i.e.

φN
v (λ) = E

[
φN

v |F∂[v]λ∪[v]c
λ

]
, λ ∈ [0, 1]. (1.4)

We denote by ∇φN
v (λ) the derivative ∂λφN

v (λ) of the DGFF at vertex v and scale λ. Further, let s 7→ σ(s)
be a non-negative function such that Iσ2(λ) B

∫ λ

0 σ2(x)dx is a non-decreasing function on [0, 1] with
Iσ2(0) = 1 and Iσ2(1) = 1. Then the 2d scale-inhomogeneous DGFF on VN is a centred Gaussian
field ψN B {ψN

v }v∈VN defined as

ψN
v B

∫ 1

0
σ(s)∇φN

v (s)ds. (1.5)

In this paper, we consider the case when σ is a right-continuous step function taking M ∈ N values.
Thus, there are variance parameters (σ1, . . . , σM) ∈ [0,∞)M and scale parameters (λ1, . . . , λM) ∈
(0, 1]M with 0 C λ0 < λ1 . . . < λM B 1, such that

σ(s) =

M∑

i=1

σi1[λi−1,λi)(s), s ∈ [0, 1]. (1.6)

In this case, the scale-inhomogeneous 2d DGFF or 2d (σ, λ)−DGFF in (1.5) takes the form

ψN
v =

M∑

i=1

σi(φN
v (λi) − φN

v (λi−1)). (1.7)

Similarly to (1.4), we set for v ∈ VN and λ ∈ [0, 1],

ψN
v (λ) B E

[
ψN

v

∣∣∣∣∣F∂[v]λ∪[v]c
λ

]
. (1.8)

Next, we compute the covariances of {ψN
v }v∈VN . We fix δ ∈ (0, 1/2) and λ ∈ (4δ/ log N, 1/

√
log N).

For N ∈ N and v,w ∈ VN , set qN(v,w) B log N−log ‖v−w‖2
log N . For v,w ∈ Vδ

N , we write E
[
ψN

v ψ
N
w

]
=

E
[(
ψN

v − ψN
v (λ)

)
ψN

w + ψN
v (λ)ψN

w

]
. By choice of δ and λ, it holds that [v]N

λ ∩∂VN = ∅ and [w]N
λ ∩∂VN = ∅.

Therefore, we may deduce as in [50, (A.41), (A.42)],

E
[(
ψN

v − ψN
v (λ)

)
ψN

w

]
=

[Iσ2 (qN(v,w)) − Iσ2 (min {λ, qN(v,w)})] log N + O(
√

log N), (1.9)
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Figure 1. An example of variance and effective variance.

and ∣∣∣∣E
[
ψN

v (λ)ψN
w

]∣∣∣∣ ≤ O(
√

log N). (1.10)

Using (1.9) and (1.10), we obtain for v,w ∈ Vδ
N ,

E
[
ψN

v ψ
N
w

]
= log NIσ2

(
log N − log (‖v − w‖2 ∨ 1)

log N

)
+ O(

√
log(N)). (1.11)

2. Main result

The main result of this paper are tail estimates for the maximum of the scale-inhomogeneous 2d
DGFF when there are finitely many scales. As simple consequences, we deduce the correct second
order correction and tightness of the centred maximum. We start with some notation. Let Îσ2(s) be the
concave hull of Iσ2(s). There exists a unique non-increasing, right-continuous step function s→ σ̄(s),
which we call ’effective variance’, such that

Îσ2(s) =

∫ s

0
σ̄2(r)dr C Iσ̄2(s) for all s ∈ [0, 1]. (2.1)

The points where σ̄ jumps on [0, 1] we call

0 C λ0 < λ1 < . . . < λm B 1, (2.2)

where m ≤ M. To be consistent with previous notation (cf.(1.6)), we write σ̄l B σ̄(λl−1). We denote
the maximum by ψ∗N B maxv∈VN ψ

N
v . For any, possibly finite, sequence {xi}i≥0 of real numbers we

denote by ∆xi = xi − xi−1 the discrete increment. It turns out that the concave hull of Iσ2 , denoted
Îσ2 , gives the desired control for the first order of the maximum. Arguin and Ouimet [7, Theorem 1.2]
determined the correct first order behaviour, i.e. they showed that in probability,

lim
N→∞

ψ∗N
2 log(N)

= Iσ̄(1) =

m∑

i=1

σ̄i∆λ
i. (2.3)

In the following, the goal is to prove a second order correction and tightness of the maximum around
its mean. Let π j be the unique index such that for 1 ≤ j ≤ m we have λ j = λπ j . Moreover, we write
t j = λ j log N

log 2 as well as t j = λ j
log N
log 2 . We set

mN B
m∑

j=1

2log 2σ̄ j∆t j − (w jσ̄ j log(∆t j))
4

, (2.4)
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where

w j =


3, Iσ̄2 |(λ j−1,λ j] ≡ Iσ2 |(λ j−1,λ j]

1, else
(2.5)

The following theorem establishes tail estimates of the maximum centred by mN .

Theorem 2.1. Let N ∈ N and {ψN
v }v∈VN be a 2d (σ, λ)-DGFF on VN with M ∈ N scales. Assume

that on each interval [λi−1, λi] and i = 1, . . . ,m, we have either Iσ2 ≡ Iσ̄2 or Iσ2 < Iσ̄2 There exist
constants C, c > 0 such that for any x ∈ [0,

√
log N],

C−1 (
1 + x1σ1=σ̄1

)
e−x 2

σ̄1 ≤ P
(
max
v∈VN

ψN
v ≥ mN + x

)
≤ C(1 + x1σ1=σ̄1)e−x 2

σ̄1 . (2.6)

and for any 0 ≤ λ ≤ (log log N)2/3,

P

(
max
v∈VN

ψN
v ≤ mN − λ

)
≤ Ce−cλ. (2.7)

Note that the result for the right-tail in (2.6) is precise up to a multiplicative constant. For values
x >

√
log N, by Borell’s inequality (see Theorem A.1) and [7, Lemma A.3], there is a constant cσ ∈

(0,∞), depending only on the variance parameter σ, such that

P

(
|ψ∗N − mN | ≥ x

)
≤ 2e−cσx2/ log(N). (2.8)

As a simple consequence of Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Under the same assumptions of Theorem 2.1, the sequence of the centred maximum
{ψ∗N − mN}N≥0 is tight. In particular,

E
[
ψ∗N

]
= mN + O(1), (2.9)

where the term O(1) is bounded by a constant which is uniform in N.

An interesting fact is that the profile of the variance matters both for the leading term and the
logarithmic correction. This phenomenon was first observed in the context of the GREM by Bovier
and Kurkova [36, 17, 18], and in the context of the time-inhomogeneous branching Brownian mo-
tion/branching random walk by Bovier and Hartung [13, 14], Fang and Zeitouni [27], Maillard and
Zeitouni [46] and Mallein [48].

Remark 2.3. Regarding the additional assumption on the variance profile in Theorem 2.1, we expect
that in general there are essentially two properties which determine the logarithmic correction. For
each interval [λ j−1, λ j] one has to see whether the effective variance and the real variance coincide in
a neighbourhood at the beginning or the end of the interval. If neither is the case we have the 1/2
correction. If it coincides in a neighbourhood at exactly one end point, we expect the factor to be 2/2
and if it coincides in neighbourhoods at the beginning and the end, the correction factor should be
3/2. If one considers the case of strictly decreasing variance σ in (1.5), we expect the second order
correction to be proportional to log1/3(N) as observed in the analogue setting for variable-speed BBM
[27].

2.1. Overview of related results. In the case whenσ ≡ 1, the 2d scale-inhomogeneous DGFF simply
is the 2d DGFF. The maximum and more generally the extremal process of the DGFF has been the
subject of intense investigations. Let φ∗N B maxv∈VN φ

N
v be the maximum of the DGFF. Through the

works of Bolthausen, Deuschel and Giacomin [11] as well as Bramson and Zeitouni [20] one obtains,

φ∗N = 2 log N − 3
4

log log N + Y, (2.10)

where Y is random variable of order o(log log N) in probability. Bramson and Zeitouni further deduced
that the centred maximum φ∗N − E

[
φ∗N

]
is tight as a sequence of real random variables. Convergence
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of the centred maximum was then shown by Bramson, Ding and Zeitouni in [19]. In [9, 10], Biskup
and Louidor proved that the extremal process converges to a cluster Cox process.
Another closely related model is (variable-speed) branching Brownian motion (BBM). It can be con-
sidered as the analogue model to the scale-inhomogeneous DGFF in the context of BBM. It first
appeared in a paper by Derrida and Spohn [23]. To define variable-speed BBM, fix a Galton Watson
tree, a time horizon t > 0 and let A : [0, 1] → [0, 1], strictly increasing with A(0) = 0, A(1) = 1
and bounded second derivatives. The overlap d(v,w) for leaves v,w in the tree is the time of their
most recent common ancestor. Variable-speed BBM in time t and with time change tA(·/t) can then be
defined as a centred Gaussian process x indexed by the leaves of the tree and covariance tA(d(v,w)/t),
where v and w are leaves. BBM is the special case when A(x) = x for x ∈ [0, 1], and coincides with the
generalized random energy model (GREM) on the Galton-Watson tree. Compared to the 2d DGFF, its
hierarchical structure makes it easier to analyse and the extremes of BBM are particularly well under-
stood (see [3, 6, 15, 21]). The extreme values and more general the extremal process for variable-speed
BBM were investigated in [13, 14, 27, 28, 46]. In particular, the first order and second order correction
of the maximum in the regime of weak correlations, i.e. when A(s) < s for s ∈ (0, 1), is identical to the
uncorrelated regime. In this regime, convergence of the extremal process was proved by Bovier and
Hartung in [13, 14]. In the case of decreasing speed with finitely many changes in speed, the global
maximum is a simple concatenation of the maximum at speed change. When the speed is strictly
decreasing, i.e. when A′′ < 0, Bovier and Kurkova [17, 18] showed that the first order is as in all other
cases determined by the concave hull of A. The second order correction is no longer logarithmic but
proportional to t1/3, which was shown by Maillard and Zeitouni in [46], building upon the work by
Fang and Zeitouni in [28].
In the discrete analogue model of (variable-speed) BBM, the (time-inhomogeneous) branching ran-
dom walk (BRW) on the Galton Watson tree, there are results on the first and second order correction
by Fang and Zeitouni [27], Mallein [47] and Ouimet [51]. A notable difference in the context of (time-
inhomogeneous) BRW is that one does not need to assume that increments are Gaussian (see [47]).
For the usual BRW, Aïdékon proved convergence of the centred maximum [2] and Madaule of the
extremal process [45].

2.2. Idea of proof. The main idea to prove Theorem 2.1 is to use Gaussian comparison to compare
the distribution of the centred maximum of the scale-inhomogeneous DGFF with the distribution of
two auxiliary Gaussian fields, a time-inhomogeneous BRW (IBRW) and an modified inhomogeneous
branching random walk (MIBRW). The time-inhomogeneous BRW is constructed in such a way that it
is slightly less correlated than the scale-inhomogeneous DGFF which allows to use an available upper
bound on the right tail of the maximum of the time-inhomogeneous BRW. The MIBRW has correla-
tions that differ from those of the scale-inhomogeneous DGFF inside the field only up to a uniformly
bounded constant. This allows, in a first step, to use Gaussian comparison to reduce the remaining
lower bound on the right tail of the maximum to a corresponding lower bound on the right tail of the
maximum of the MIBRW. In a second step, we prove the lower bound on the right tail of the centred
maximum of the MIBRW that, together with the so-called “sprinkling method”, also allows to deduce
the upper bound on the left tail. The remaining lower bound on the right tail is achieved by a modified
second moment analysis.

Outline of the paper: In the next section we define two auxiliary Gaussian processes, the time-
inhomogeneous branching random walk (IBRW) and the modified time-inhomogeneous branching
random walk (MIBRW), and estimate their covariance structure. In Section 4 we provide the necessary
tail estimates that allow us to deduce Theorem 2.1. We start with the upper bound on the right tail,
then prove the lower bound on the right tail and finally, show the upper bound on the left tail. In
Appendix A we provide the Gaussian comparison theorems we use in the proof and Borell’s Gaussian
concentration inequality. In Appendix B we prove the covariance estimates stated in Section 3.
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3. Auxiliary processes and covariance estimates

Consider N = 2n for some n ∈ N. For k = 0, 1, . . . , n let Bk denote the collection of subsets of
Z

2 consisting of squares of side length 2k − 1 with corners in Z2 and let BDk denote the subset of Bk
consisting of squares of the form ([0, 2k − 1] ∩ Z)2 + (i2k, j2k). We remark that the collection BDk
partitions Z2 into disjoint squares. For v ∈ VN , let Bk(v) denote those elements B ∈ Bk(v) with v ∈ B.
Likewise define BDk(v), i.e. for v ∈ VN , B ∈ BDk(v) if and only if v ∈ B. One should note that
BDk(x) contains exactly one element, whereas Bk(x) contains 22k elements.

Definition 3.1 (Time-inhomogeneous branching random walk (IBRW)). Let {ak,B}k≥0,B∈BDk be an i.i.d.
family of standard Gaussian random variables. We define the time-inhomogeneous branching random
walk {RN

z }z∈VN by

RN
z (t) B

n∑

k=n−t

∑

B∈BDk(z)

√
log(2)σ̃

(
n − k

n

)
ak,B, (3.1)

where 0 ≤ t ≤ n, t ∈ N and s 7→ σ̃(s) is a non-negative function, for s ∈ [0, 1]. We specify the function
s 7→ σ̃(s) later in the proof (see p. 8).

It turns out that, due to its hierarchical structure, the IBRW is less correlated than the scale-
inhomogeneous DGFF, which is beneficial to obtain upper bounds using Gaussian comparison. But
this also makes it unsuitable to obtain sufficient lower bounds on the maximum value. We there-
fore introduce another auxiliary process whose covariance structure is much closer to the scale-
inhomogeneous DGFF, and is defined by taking uniform averages of IBRWs. For v ∈ VN , let BN

k (v)
be the collection of subsets of Z2 consisting of squares of size 2k with lower left corner in VN . For
two sets B, B′ ⊂ Z2 we write B ∼N B′, if there exist integers i, j such that B′ = B + (iN, jN). Let
{bk,B}k≥0,B∈BN

k
denote an i.i.d. family of centred Gaussian random variables with unit variance and set

bN
k,B B


bk,B, B ∈ BN

k ,

bk,B′ , B ∼N B
′ ∈ BN

k .
(3.2)

Definition 3.2 (Modified inhomogeneous branching random walk (MIBRW)). The modified inhomo-
geneous branching random walk (MIBRW) {S N

v }v∈VN is defined by

S N
z (t) B

n∑

k=n−t

∑

B∈BN
k (z)

2−kσ

(
n − k

n

)
bN

k,B, (3.3)

where 0 ≤ t ≤ n, t ∈ N and σ is defined as in (1.6).

3.1. Covariance estimates. In order to be able to apply Gaussian comparison, we need to compare
the correlations of the processes introduced previously. We write log+(x) = max(0, log2(x)). Further,
let ‖ · ‖2 be the usual Euclidean distance and ‖ · ‖∞ the maximum distance. As we are working in two
dimensions, they satisfy the relation ‖x − y‖∞ ≤ ‖x − y‖2 ≤

√
2‖x − y‖∞. In addition, we introduce for

v,w ∈ VN two distances on the torus induced by VN ,

dN(v,w) B min
z: z−w∈(NZ)2

‖v − z‖2, dN
∞(v,w) B min

z: z−w∈(NZ)2
‖v − z‖∞. (3.4)

Note that the Euclidean distance on the torus is smaller than the standard Euclidean distance, i.e. for
all v,w ∈ VN , it holds dN(v,w) ≤ ‖v − w‖2. However, equality trivially holds if one restricts oneself on
a smaller box, e.g. if v,w ∈ (N/4, N/4) + VN/2 ⊂ VN . In the following we call {S̃ N

v }v∈VN the homogeneous

49



EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE FIELD 7

version of the process {S N
v }v∈VN which was introduced in [20], i.e. we assume that there is only one

scale λ1 = 1 with variance parameter σ1 = 1.

Lemma 3.3. There exists a constant C independent of N = 2n such that for any v,w ∈ VN ,

i.
∣∣∣∣E

[
S̃ N

v S̃ N
w

]
− (n − log+(dN(x, y)))

∣∣∣∣ ≤ C,

ii.
∣∣∣∣∣E

[
S N

v S N
w

]
− nIσ2

(
n−log+ dN (v,w)

n

)∣∣∣∣∣ ≤ C.

Further, for any x, y ∈ VN + (2N, 2N) ⊂ V4N ,

iii.
∣∣∣∣E

[
φ4N

v φ4N
w

]
− log(2)(n − log+(‖v − w‖2))

∣∣∣∣ ≤ C,

iv.
∣∣∣∣E

[
ψ4N

v ψ4N
w

]
− log(2)E

[
S N

v S N
w

]∣∣∣∣ ≤ C.

Proof. See Appendix B. �

Remark 3.4. The assumption N = 2n for n ∈ Nmainly simplifies notation and also the proof, however
without removing essential difficulties.

An important tool in the analysis of the scale-inhomogeneous DGFF is the Gibbs-Markov property
of the DGFF. For two sets U ⊂ V ⊂ Z2 the DGFF on V can be decomposed into a sum of a DGFF on
U and an independent Gaussian field, i.e.

φV
u

d
= φU

u + E
[
φV

u |σ
(
φV

v : v ∈ V \ Uo
)]
, u ∈ V. (3.5)

Further, if A, B ⊂ V such that Ao ∩ Bo = ∅, then {φV
u −E[φV

u |F∂A]}u∈A is a DGFF on A, independent of
the DGFF on B {φV

u −E[φV
u |F∂B]}u∈B.

4. Tail estimates and tightness

The following analysis provides the necessary estimates to conclude Theorem 2.1.

Lemma 4.1. There is a constant α0 > 0 such that for sufficiently large N ∈ N and any v,w ∈ VN , we
have

Var
[
ψN

v

]
≤ log NIσ2(1) + α0 = log N

M∑

i=1

σ2
i ∆λi + α0, (4.1)

and

E

[
(ψN

v − ψN
w )2

]
≤2 log N

[
Iσ2(1) − Iσ2

(
n − ⌈

log+ ‖v − w‖2⌉
n

)]
−

∣∣∣∣Var
[
ψN

v

]
− Var

[
ψN

w

]∣∣∣∣ + 4α0. (4.2)

Proof. Recall Definition 1.2 and note that we have an underlying discrete Gaussian free field {φN
v }v∈VN

such that ψN
v =

∑M
i=1 σi

(
φN

v (λi) − φN
v (λi−1)

)
, where φN

v (λi)− φN
v (λi−1) for i = 1, . . . ,M are independent

Gaussian free fields increments. A short computation shows that the variance of ∆φN
v (λi) is up to

constants given by the difference of Green kernels on the boxes, that is G[v]λi
(v, v) − G[v]λi−1

(v, v), for
which we have a sufficient bound (see [57, Lemma 3.10]), and (4.1) follows.
For (4.2), let bN(v,w) B max (λ ∈ [0, 1] : [v]λ ∩ [w]λ , ∅) be the branching scale for particles v,w ∈
VN . For scales µi > µ′i ≥ bN(v,w) and i = 1, 2, increments φN

v (µ1) − φN
v (µ′1) are independent of

φN
w (µ2)−φN

w (µ′2). We define a set of representatives at scale λ ∈ [0, 1], denoted Rλ, such that it contains
the centre of boxes that form a decomposition of VN into disjoint boxes with side length N1−λ. Now,
fix v,w ∈ VN . There exists a set of representatives Rλ at scale λ = bN(v,w) − 4

log N , such that there
is a common representative for v and w, which we call uλ. By [7, Lemma A.6], there is a universal
constant C > 0 such that for N large enough,

max
u∈{v,w}

E

[(
ψN

u (λ) − ψN
uλ(λ)

)2
]
≤ C, (4.3)
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We further note that increments of v and w beyond bN(v,w) are independent and that, by Cauchy-
Schwarz,

E
[(
ψN

v (bN(v,w)) − ψN
v (λ)

) (
ψN

v (bN(v,w) − ψN
v (λ))

)]
≤ C̃ (4.4)

as well as

max
u∈{v,w}

E
[(
ψN

u (bN(v,w)) − ψN
u (λ)

)2
]
≤ C̃, (4.5)

for some C̃ > 0. Thus, writing

ψN
v − ψN

w =ψN
v (λ) − ψN

uλ(λ) + ψN
uλ(λ) − ψN

w (λ) + ψN
v (bN) − ψN

v (λ) + ψN
w (bN) − ψN

w (λ) + ψN
v − ψN

v (bN)

+ ψN
w + ψN

w (bN), (4.6)

we can bound E
[(
ψN

v − ψN
w

)2
]

from above using (4.3), (4.4), (4.5), Green kernel estimates as for the
first statement (4.1), as well as independence of increments beyond bN(v,w), which then implies the
upper bound in (4.2). �

We begin with an upper bound on the right tail.

Proposition 4.2. There is a constant C = C(α0), independent of N such that for all N ∈ N and x > 0,

P

(
max
v∈VN

ψN
v ≥ mN + x

)
≤ C(1 + x1σ1=σ̄1)e−x 2

σ̄1 . (4.7)

The principal idea to prove Proposition 4.2 is to use Gaussian comparison and compare the max-
imum of the scale-inhomogeneous DGFF to the maximum of suitable inhomogeneous branchig ran-
dom walk. To obtain the correct upper bound we need to choose the variance of the IBRW appro-
priately. Here, we need to distinguish two cases. If there exists exactly one effective variance para-
meter, then we choose s 7→ σ̃(s), such that s 7→ Iσ̃2(s) is the lower convex envelope of the function
s 7→ Iσ2(s). Else, if there are at least two effective scale parameter,s we introduce a parameter
0 < κ � n. We set σmin = min1≤i≤M σi and σmax = max1≤i≤M σi. We pick λ̃1 ≡ λ̃1(κ) = λ1 n

n+k as first

effective scale and as first effective variance, σ̄1. Next, we set λ̃1 = λ̃1(κ) = λ̃1 σ2
max−σ̄1

σ2
max−σ2

min
, λ̃2 = λ̃1 and

λ̃3 =
λ̃1(σ̄1−σ2

min)+(σ2
max−1)

σ2
max−σ2

min
. For s ∈ [0, 1], we define the variance function as follows:

σ̃(s) =
(
σmin1s∈[0,λ̃1) + σmax1s∈[λ̃1,λ̃2)

)
1σ1,σ̄1 + σ̄11σ1=σ̄1 + σmin1s∈[λ̃2,λ̃3) + σ2

max1s∈[λ̃3,1]. (4.8)

In both cases our choice ensures that the first effective variances coincide, that (n + κ)Iσ̃2

(
n−x
n+κ

)
≤

nIσ2

(
n−x

n

)
, for x ∈ [0, n] and such that Iσ̃2(1) = 1. Before proving Proposition 4.2, we need one more

lemma.

Lemma 4.3. There is an integer κ = κ(α0) > 0 such that for all N ∈ N, λ ∈ R and A ⊂ VN ,

P

(
max
v∈A

ψN
v ≥ λ

)
≤ 2P

(
max
v∈2κA

R2κN
v ≥ λ

)
. (4.9)

Proof. By Lemma 4.1, we can choose a sufficiently large constant κ that depends only on α0, such that
Var

[
ψN

v

]
≤ log(2)Var

[
R2κN

2κv

]
for all v ∈ VN . Thus,

a2
v B log(2)Var

[
R2κN

2κv

]
− Var

[
ψN

v

]
(4.10)
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are non-negative. Let X be a standard Gaussian. Since Var
[
RN

v

]
= Var

[
RN

w

]
, for all v,w ∈ VN , we get

E

[
(ψN

v + avX − ψN
w − awX)2

]
= E

[
(ψN

v − ψN
w )2

]
+ (av − aw)2

= E
[
(ψN

v − ψN
w )2

]
+

∣∣∣∣Var
[
ψN

v

]
− Var

[
ψN

w

]∣∣∣∣

≤ 2 log(N)
[
1 − Iσ2

(
n − ⌈

log+ ‖v − w‖2⌉
n

)]
+ 4α0, (4.11)

by Lemma 3.3. On the other hand by our choice of σ̃ in (4.8), Var
[
R2κN

2κv

]
= log(N) + log(2)κ grows

linearly in κ, whereasE[R2κN
2κu R2κN

2κv ] =
(
log(N) + log(2)κ

)Iσ̃2

(
n−log+ dN (u,v)

n+κ

)
. By our choice in (4.8) and

taking into account that for two vertices u and v, log+ dN(u, v) ≥ log+ ‖u − v‖2,

E

[
(R2κN

2κv − R2κN
2κw )2

]
≥ 2

(
log(N) + log(2)κ

) [
1 − Iσ̃2

(
n − ⌈

log+ ‖v − w‖2⌉
n + κ

)]
. (4.12)

Combining (4.12) with the upper bound in (4.11), it follows that we may choose κ(α0) such that for all
v,w ∈ VN ,

E

[
(ψN

v − ψN
w )2

]
≤ E

[
(ψN

v + avX − ψN
w − awX)2

]
≤ E

[
(R2κN

2κv − R2κN
2κw )2

]
. (4.13)

Applying Slepian’s Lemma, we obtain for any λ ∈ R+ and A ⊂ VN ,

P

(
max
v∈A

ψN
v + avX ≥ λ

)
≤ P

(
max
v∈2κA

R2κN
v ≥ λ

)
. (4.14)

By independence and symmetry of X,

P

(
max
v∈A

ψN
v ≥ λ

)
≤ 2P

(
max
v∈2κA

R2κN
v ≥ λ

)
. (4.15)

�

Proof of Proposition 4.2. [47, Theorem 4.1] gives us

P

(
max
v∈VN

RN
v ≥ mN + x

)
≤ C(1 + x1σ1=σ̄1)e−x 2

σ̄1 , ∀x ≥ 0. (4.16)

The claim follows from a combination of Lemma 4.3 and (4.16). �

Next, we prove a corresponding lower bound on the right tail.

Lemma 4.4. There is an integer κ > 0 such that for all N ∈ N and λ ∈ R,

1
2
P

(
max

v∈V2−κN

√
log(2)S 2−κN

v ≥ λ
)
≤ P

(
max
v∈VN

ψN
v ≥ λ

)
. (4.17)

Proof. Note that ( N
4 ,

N
4 )+2κ−3V2−κN ⊂ ( N

4 ,
N
4 )+V N

8
⊂ VN . By Lemma 3.3 ii. and iv., there is a constant

C > 0, independent of N, such that
∣∣∣∣∣Var

[
ψN

( N
4 ,

N
4 )+2κ−3u

]
− Var

[
ψN

( N
4 ,

N
4 )+2κ−3v

]∣∣∣∣∣ ≤ C, ∀u, v ∈ V2−κN . (4.18)

Moreover, by iv. in Lemma 3.3

Var
[
ψN

( N
4 ,

N
4 )+2κ−3v

]
≥ log(2)Var

[
S 2−κN

v

]
, ∀v ∈ V2−κN , (4.19)

for κ > 0 large enough, independent of N. Thus, we can find a family of positive real numbers
{av : v ∈ V2−κN} that satisfy |au − av| ≤

√
C for a constant C > 0, such that for u, v ∈ VN and an

independent standard Gaussian random variable X,

Var
[
ψN

( N
4 ,

N
4 )+2κ−3v

]
= log(2)Var

[
S 2−κN

v + avX
]
, ∀v ∈ V2−κN . (4.20)

52



EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE FIELD 10

Using Lemma 3.3 iv., and choosing κ large enough, we have for u, v ∈ V2−κN ,

E

[
(ψN

( N
4 ,

N
4 )+2κ−3u

− ψN
( N

4 ,
N
4 )+2κ−3v

)2
]
≥ log(2)E

[
(S 2−κN

u − S 2−κN
v + (au − av)X)2

]
. (4.21)

Hence, by Slepian’s Lemma we have for any λ ∈ R,

P

(
max

v∈V2−κN

ψN
( N

4 ,
N
4 )+2κ−3v

≥ λ
)
≥ P

(√
log(2) max

v∈V2−κN

(S 2−κN
v + avX) ≥ λ

)

≥ 1
2
P

(√
log(2) max

v∈V2−κN

S 2−κN
v ≥ λ

)
, (4.22)

as X is an independent standard Gaussian. �

Lemma 4.5. Set M∗N B mN/
√

log(2). There is a constant C > 0 such that for any N ∈ N and
y ∈ [0,

√
log N],

P

(
max
v∈VN

S N
v > M∗N + y

)
≥ C

(
1 + y1σ1=σ̄1

)
e−

2
√

log(2)
σ̄1

y
. (4.23)

Recall the notation, i.e. π j is the unique index such that, for 1 ≤ j ≤ m, we have λ j = λπ j and that
we write t j = λ j log N

log 2 as well as t j = λ j
log N
log 2 . Moreover, we set

M∗N(t) B
m∑

j=1

t ∧ t j − t j−1

∆t j

2
√

log 2σ̄ j∆t j − (w jσ̄ j log(∆t j))

4
√

log(2)

 , t ∈ R+. (4.24)

The proof of Lemma 4.5 is based on a second moment computation. We introduce suitable events that
control the paths that reach the maximum. For v ∈ V

′
N = VN/2 + (N/4, N/4) ⊂ VN , x ∈ R, 0 ≤ k ≤ n and

0 < i ≤ m, let

sk,n(x) B



Iσ2 (k/n)
Iσ2 (λ1) (x), if 0 ≤ k ≤ λ1,

Iσ2 (k/n,λi)
Iσ2 (λi−1,λi) (x), if λi−1 < k ≤ λi

(4.25)

be the ’optimal path’ followed by extremal particles and

fk,n B



C f (Iσ2(k/n)n)2/3, if 0 ≤ k ≤ t1,
C f (Iσ2(k/n, λ1)n)2/3, if t1 < k ≤ t1,

C f (Iσ2(λi, k/n)n)2/3, if ti < k ≤ tπi+1 : i ∈ {1, . . . ,m − 1}
C f (Iσ2(k/n, λi+1)n)2/3, if tπi+1 < k ≤ ti+1 : i ∈ {1, . . . ,m − 1}

(4.26)

be the concave barrier. The constant C f depends on the parameters and will be fixed later in the proof.
For v ∈ VN , x ∈ R, ∞ > y > 0 and 0 ≤ k ≤ n, let

Iy
n(1) B [∆M∗N(t1) + y − 1,∆M∗N(t1) + y], (4.27)

Iy
n(i) B [∆M∗N(ti) − 1,∆M∗N(ti)], for 1 < i ≤ m (4.28)

Ik,n(x) B [sk,n(x) − fk,n, sk,n(x) + fk,n], (4.29)

CN,y
v (r) B {∆S N

v (ti) ∈ Iy
n(i), S N

v (k + ti−1) − S N
v (ti−1) ∈ Ik,n(∆S N

v (ti))

∀0 < k < ti+1 − ti, 0 < i ≤ m : k + ti−1 ≤ r}, (4.30)

hN(y) B
∑

v∈V′N
1CN,y

v (tm). (4.31)

fk,n and sk,n(x) are defined as before (see (4.25) and (4.26)). We can restrict the proof to the case of
m = 1 and to the assumption that Iσ2(s) < Iσ̄2(s) holds for all 0 < s < 1. The statement in case
of equality is given by [24, Theorem 1.1]. The lower bound then follows using the independence of
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increments and the fact that on the intervals, when i > 1, we choose y = 0, compare (4.27) with (4.28).
This implies that there is a constant C > 0, such that we obtain as lower bound

C
(
1 + y1σ1=σ̄1

)
e−

2
√

log(2)
σ̄1

y
m∏

i=2

e−
2
√

log(2)
σ̄i

0 ≥ C
(
1 + y1σ1=σ̄1

)
e−

2
√

log(2)
σ̄1

y
. (4.32)

Thus, until the end of the proof of Lemma 4.5, we restrict ourselves to the case when m = 1 and
Iσ2(s) < Iσ̄2(s) holds for all 0 < s < 1.

Lemma 4.6. There are constants C, c > 0 such that it holds for all N ∈ N sufficiently large and
y ∈ [0,

√
log N],

c ≥ E [
hN(y)

] ≥ Ce−
2
√

log(2)
σ̄1

y
. (4.33)

Lemma 4.7. There is a constant C̃ > 0 independent of N, such that, for y ∈ [0,
√

log N],

E

[
h2

N(y)
]
≤ E [

hN(y)
]2

+ (1 + C̃)E
[
hN(y)

]
. (4.34)

Proof of Lemma 4.6. In the following, we write M∗N instead of M∗N(t1). By linearity of expectations,

E [hN] =
1
4

22t1
P(S N

v (t1) ∈ In(1), S N
v (k) ∈ Ik,n(S N

v (t1)) for 0 < k < t1). (4.35)

Note that E
[
sk,n(S N

v (t1))
(
S N

v (k) − sk,n(S N
v (t1))

)]
= 0, and so

Var
[
S N

v (k) − sk,n(S N
v (t1))

]
= Var

[
S N

v (k) − sk,n(S N
v (t1))

]
= nIσ2

(
k
n

) (
1 − Iσ2(k/n)
Iσ2(λ1)

)
. (4.36)

In particular,E
[
S N

v (k) − sk,n(S N
v (t1))

]
= 0. Under our assumptions, we have . By conditioning the last

event in (4.35) on S N
v (t1), using that this is independent of {S N

v (k) − sk,n(S N
v (t1))}t1k=0, we have

E
[
hN(y)

]
=

1
4

22n
P

(
S N

v (t1) ∈ [M∗N + y − 1,M∗N + y]
)
P

(
S N

v (k) ∈ Ik,n(S N
v (t1), 0 < k < t1

)
. (4.37)

To estimate the first probability in (4.37), note that S N
v (t1) ∼ N

(
0, σ̄2

1t1
)

and that the assumptions
imply the identity M∗N = 2

√
log(2)σ̄1n − 1

4
√

log(2)
log(n)σ̄1. Thus, by a standard Gaussian estimate,

P

(
S N

v (t1) ∈ Iy
n(1)

)
=

∫ M∗N+y

M∗N+y−1

exp
[
−x2/(2σ̄2

1t1)
]

√
2πσ̄2

1t1
dx ≥

exp
[
−(M∗N + y)2/(2σ̄2

1t1)
]

√
2πσ̄2

1t1
. (4.38)

By expanding the square in (4.38) and bounding all terms in the exponential that tend to 0 as n → ∞
by a constant, we can find a constant C > 0 such that

P

(
S N

v (t1) ∈ Iy
n(1)

)
≥ CN−2e−y

2
√

log(2)
σ̄1 . (4.39)

We turn to the second probability in (4.37). By subadditivity of measures and using (4.36),

P(S N
v (k) ∈ Ik,n(S N

v (t1)), 0 < k < t1) ≥ 1 − 2
t1−1∑

k=1

P(S N
v (k) − sk,n(S N

v (t1)) > fk,n)

≥ 1 − 2
t1−1∑

k=1

C exp

−
1
2

f 2
k,n

Iσ2(k/n)n(1 − Iσ2 (k/n)
Iσ2 (λ1) )

 . (4.40)
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By definition of the concave barrier in (4.26), we may split and bound the sum in (4.40) from above
by

t1∑

k=1

C exp
[
−1

2
C2

fσ
2/3
1 k

1/3

]
1σ1,0 +

t1−1∑

k=t1+1

C exp
[
−1

2
C2

f min
i∈{2,...,π1}:σi>0

(σi)
2/3(t1 − k)

1/3

]
<

c
2
, (4.41)

where 0 < c < 1 is a constant independent of n, if C f is large enough. Inserting (4.41) into (4.40)
gives

P(S N
v (k) ∈ Ik,n(S N

v (t1)), ∀0 < k < t1) > 1 − c = c2 > 0. (4.42)

Inserting (4.42) and (4.39) into (4.37) finishes the proof of the lower bound in (4.33). To get an upper
bound in (4.37) we bound the second probability by 1. For the first probability, as for the lower bound,
we get

P

(
S N

v (t1) ∈ Iy
n(1)

)
≤ CN−2 exp

−(y − 1)
2
√

log(2)
σ̄1

 . (4.43)

Inserting this into (4.37), we obtain the upper bound in (4.33). �

Proof of Lemma 4.7. As in the proof of Lemma 4.6, we write M∗N instead of M∗N(t1). Recall that, for
v,w ∈ VN , r(v,w) = n − dlog2(d∞N (v,w) + 1)e denotes the number of scales of independent incre-
ments of the processes S N

v (k) and S N
w (k′). By decomposing the second moment along r(·, ·) and using

independence of the increments,

E

[
h2

N(y)
]

=
∑

v,w∈V′N
P

(
CN,y

v (t1) ∩CN,y
w (t1)

)
=

n∑

k=0

∑

v,w∈V′N
r(v,w)=k

P

(
CN,y

v (t1) ∩CN,y
w (t1)

)

≤ E [
hN(y)

]2
+E

[
hN(y)

]
+

n−1∑

k=1

∑

v,w∈V′N
r(v,w)=k

P

(
CN,y

v (t1) ∩CN,y
w (t1)

)
. (4.44)

To bound the double sum from above, we bound each summand from above. Fix v,w ∈ V
′
N with

r(v,w) = r = k ∈ {1, . . . , n − 1}. We set Bk,n(x) B [x − sk,n(x) − fr,n, x − sk,n(x) + fr,n]. Dropping the
constraint for w up to time r, we have

P

(
CN,y

v (t1) ∩CN,y
w (t1)

)
≤P

(
CN,y

v (t1) ∩CN,y
w (r)

)
max

x∈In(1)
P

(
S N

w (t1) − S N
w (r) ∈ Br,n(x)

)

≤P
(
CN,y

v (tm)
)

max
x∈In(1)

P

(
S N

w (t1) − S N
w (r) ∈ Br,n(x)

)
. (4.45)

For fixed v ∈ V
′
N , the number of points w ∈ V

′
N that satisfy d∞N (v,w) ∈ [2k, 2k+1], is bounded by

c122k = 22(t1−r) for some c1 > 0. Therefore, we can bound the last summand in (4.44) from above by

c1E
[
hN(y)

] n−1∑

r=1

22(t1−r) max
x∈Iy

n(1)
v∈VN

P

(
S N

v (t1) − S N
v (r) ∈ x + Ir,n(x)

)
. (4.46)

To bound the probability in (4.46), we use that for any x ∈ Iy
n(1),

Ay
r,n,x B P

(
S N

v (t1) − S N
v (r) ∈ x + Ir,n(x)

)
=

∫ x−sr,n(x)+ fr,n

x−sr,n(x)− fr,n

exp
[
− 1

2
z2

Iσ2 (r/n,λ1)n

]

√
2πIσ2(r/n, λ1)n

dz

≤ 2 fr,n√
Iσ2(r/n, λ1)n

exp
−1

2
(M∗N + y − sr,n(M∗N + y) − fr,n)2

Iσ2(r/n, λ1)n

 . (4.47)
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Noting that n = t1 and using (4.25), we bound from below the square in the exponential in (4.47) by

(M∗N + y)2
(
1 − Iσ2(r/n)
Iσ2(λ1)

)2

− 2 fr,n
Iσ2(r/n, λ1)
Iσ2(λ1)

(M∗N + y) = (M∗N)2
(
1 − Iσ2(r/n)
Iσ2(λ1)

)2

− 2 fr,nM∗N
Iσ2(r/n, λ1)
Iσ2(λ1)

+(2M∗Ny + y2)
(
1 − Iσ2(r/n)
Iσ2(λ1)

)2

− 2y fr,n
Iσ2(r/n, λ1)
Iσ2(λ1)

.

(4.48)

Inserting (4.48) into (4.47), dropping the term involving y2, and noting that we can bound the term

exp


2y fr,n

I
σ2 (r/n,λ1)

I
σ2 (λ1)

Iσ2 (r/n,λ1)n

 by a constant, we obtain that (4.47) is bounded from above by

C fr,n√
Iσ2(r/n, λ1)n

exp


−1

2

(M∗N)2
(
1 − Iσ2 (r/n)

Iσ2 (λ1)

)2
− 2 fr,nM∗N

Iσ2 (r/n,λ1)
Iσ2 (λ1) + 2yM∗N

(
1 − Iσ2 (r/n)

Iσ2 (λ1)

)2

Iσ2(r/n, λ1)n



≤ C fr,n√
Iσ2(r/n, λ1)n

exp


−2 log(2)t1Iσ2(r/n, λ1)

Iσ2(λ1)
+

(
1 +

y

4
√

log(2)t1

)

2
log(t1)

Iσ2(r/n, λ1)
Iσ2(λ1)

−2y
√

log(2)
Iσ2(r/n, λ1)
Iσ2(λ1)

− log(t1)2

32 log(2)t1

Iσ2(r/n, λ1)
Iσ2(λ1)

+
C fσ

4/3
1 r2/3

(4 log(2))−1/2σ̄1

 . (4.49)

Let i be minimal such that σi > 0. We distinguish the cases 0 < r ≤ ti and ti < k < t1. We may assume
that σ1 > 0.
Case 1: In this case, we have Var[S N

v (t1) − S N
v (r)] = Iσ2(r/n, λ1)n and fr,n = C f (σ2

1r)2/3. Since r ≤ t1,
1
λ1
Iσ2 (λ1)

1
λ1 Iσ2 (λ1)

=
σ2

1
σ̄2

1
∈ (0, 1), and so there is an η1 < 1, independent of r and n, such that

Iσ2(r/n, λ1)
Iσ2(λ1)

t1 = t1 − t1 Iσ2(r/n)
Iσ2(λ1)

= t1 − r
1

r/nIσ2(r/n)
1
λ1Iσ2(λ1)

= t1 − r
1
λ1
Iσ2(λ1)

1
λ1Iσ2(λ1)

= t1 − η1r. (4.50)

Similarly, we have
Iσ2 (r/n,λ1)
Iσ2 (λ1) ≥ 1 − σ2

1
σ̄2

1

λ1
λ1 . Using these facts in (4.49), we get

Ay
r,n,x ≤ Cr

2/3 exp
(
C̃r

2/3
)

2−2(t1−η1r)
exp

[
log(t1)

Iσ2 (r/n,λ1)
2Iσ2 (λ1) − 2y

√
log(2)

(
1 − σ2

1
σ̄2

1

λ1
λ1

)]

√
Iσ2(r/n, λ1)t1

× exp

− log(t1)
Iσ2(r/n, λ1)
2t1Iσ2(λ1)


log(t1) − 4

√
log(2)y

16 log(2)


 . (4.51)

Note that we have
Iσ2 (r/n,λ1)
Iσ2 (λ1) < 1 and

(
log(t1)−4

√
log(2)y

16 log(2)

)
≥ 0. Thus, in the case 0 < r ≤ t1, we have

Ay
r,n,x ≤Cr

2/32−2(t1−η1r) exp

C̃r
2/3 − 2

√
log(2)
σ̄1

1 −
σ2

1

σ̄2
1

λ1

λ1

 y



≤C2−2(t1−η1r)+o(r) exp

−
2
√

log(2)
σ̄1

1 −
σ2

1

σ̄2
1

λ1

λ1

 y

 . (4.52)
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Note that for the last factor in the exponent we know 0 < 1− σ2
1

σ̄2
1

λ1
λ1 < 1, which guarantees that we have

the correct sign to have sufficient decay in y.
Case 2: The same computation as in (4.47), now in the case of t1 < r < t1, fr,n = C f (Iσ2(r/n, λ1))2/3 and
x ∈ Iy

n(1), yields

Ay
r,n,x ≤

2 fr,n√
Iσ2(r/n, λ1)n

exp
−1

2
(M∗N(t1) + y − sr,n(M∗N(t1) + y) − fr,n)2

Iσ2(r/n, λ1)t1



≤ C2
−2t1

I
σ2 (r/n,λ1)

I
σ2 (λ1) (Iσ2(r/n, λ1)n)

1/6 exp
log(t1)

Iσ2(r/n, λ1)
2Iσ2(λ1)

+
C f (Iσ2(r/n, λ1)n)2/3

(4 log(2))−1/2σ̄1



× exp

−y
2
√

log(2)
σ̄1

Iσ2(r/n, λ1)
Iσ2(λ1)

− log(t1)
Iσ2(r/n, λ1)
2t1Iσ2(λ1)


log(t1) − 4

√
log(2)y

16 log(2)


 . (4.53)

As y ∈ [0,
√

log N],
(

log(t1)−4
√

log(2)y
16 log(2)

)
≥ 0. Moreover, for t1 < r < t1,

t1Iσ2(r/n, λ1)
Iσ2(λ1)

=

1
λ1−r/n
Iσ2(r/n, λ1)

1
λ1Iσ2(λ1)

(t1 − r) ≥ η2(t1 − r), (4.54)

for a constant η2 > 1 that is independent of r and n. Using these facts in (4.53), we obtain

Ay
r,n,x ≤C2−η2(t1−r)(Iσ2(r/n, λ1)n)

2/3 exp

C f (Iσ2(r/n, λ1)n)
2/32

√
log(2) − y


2
√

log(2)
σ̄1

Iσ2(r/n, λ1)
Iσ2(λ1)




≤C2−2η2(t1−r)+o(t1−r) exp

−y


2
√

log(2)
σ̄1

Iσ2(r/n, λ1)
Iσ2(λ1)


 . (4.55)

Combining the bounds in (4.52) and (4.55) and observing that both (1 − η1) > 0 and (1 − η2) < 0 hold
and using y ≥ 0, allows us to bound the sum in (4.46) by an absolute constant C2 > 0, i.e.

n−1∑

r=1

22(t1−r) max
x∈Iy

n(1)
Ay

r,n,x ≤ C


t1∑

r=1

2−2r(1−η1)+o(r) +

t1−1∑

r=t1+1

22(1−η2)(t1−r)+o(t1−r)

 ≤ C2. (4.56)

Inserting (4.56) into (4.44) concludes the proof. �

Proof of Lemma 4.5. Combining Lemma 4.6 with Lemma 4.7 shows that there are constants, C̃,C, c >
0, such that

P

(
max
v∈VN

S N
v > M∗N + y

)
≥ P(hN(y) ≥ 1) ≥

(
E

[
hN(y)

])2

E

[
h2

N(y)
] ≥ E

[
hN(y)

]2

E
[
hN(y)

]2
+ (1 + C̃)E

[
hN(y)

]
)

≥ E
[
hN(y)

]

1 + c
≥ Ce−y

2
√

log(2)
σ̄1 . (4.57)

�

The goal in the following is to provide an upper bound on the left tail of the centred maximum of
the (σ, λ)−DGFF. We start with a bound on the left tail of S ∗N − M∗N .

Lemma 4.8. There exist constants C, c > 0, such that, for all N ∈ N, and 0 ≤ λ ≤ (log log N)2/3,

P

(
max
v∈VN

S N
v ≤ M∗N − λ

)
≤ Ce−cλ. (4.58)
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Proof. By Lemma 4.5, there are β > 0 and δ0 ∈ (0, 1) such that, for all N ∈ N,

P

(
max
v∈VN

S N
v ≥ mN/

√
log(2) − β

)
≥ δ0. (4.59)

In particular, there is a κ > 0 such that, for all N ≥ N
′ ≥ 4,

2
√

log(2)Iσ̄(1) log
( N

N ′

)
− 3

4
√

log(2)

m∑

j=1

σ̄ j log
(
log

( N
N ′

))
− κ ≤ M∗N − M∗

N′ (4.60)

≤ 2
√

log(2)Iσ̄(1) log
( N

N ′

)
+ κ.

We now pick λ
′

= λ
2 , N

′
= N exp

[
− 1

2
√

log(2)Iσ̄(1)
(λ
′ − β − κ − 4)

]
and set n′ = log2 N′. With this

choice, we deduce from (4.60) that MN − MN′ ≤ λ
′ − β. We divide VN into disjoint boxes by placing

at each position (3iN
′
, 3 jN

′
) a box of size N

′
, for 1 ≤ i, j ≤ N

N′ . We call this collection of boxes B and
note that the pairwise distances between two boxes are at least 2N

′
. This implies independence of the

processes {S N
′

v }v∈B on pairwise disjoint boxes. This allows us to bound the number of boxes B ∈ B
from below by

N
3N′

≥ 1
3

exp


1

2
√

log(2)Iσ̄(1)
(λ
′ − β − κ − 4)

 . (4.61)

Let S̃ N
v = S N

′
v + X, for v ∈ B and B ∈ B, where X ∼ N(0, s2) is an independent random variable and

with s2 such that Var(S N
v ) = Var(S̃ N

v ). For u, v ∈ ⋃
B∈B B, we then have

E

[
(S̃ N

u − S̃ N
v )2

]
= E

[
(S N

′
u − S N

′
v )2

]
≤ E

[
(S N

u − S N
v )2

]
. (4.62)

An application of Slepian’s Lemma gives that, for any t ∈ R,

P

(
max
v∈VN

S N
v ≤ t

)
≤ P

(
max

v∈∪B∈BB
S N

v ≤ t
)
≤ P

(
max

v∈∪B∈BB
S̃ N

v ≤ t
)
. (4.63)

Using M∗N − λ
′ ≤ M∗

N′
− β and (4.59), one obtains, for each B ∈ B,

P

(
max
v∈B

S N
′

v ≥ M∗N − λ
′
)
≥ P

(
max
v∈B

S N
′

v ≥ M∗
N′ − β

)
≥ δ0. (4.64)

By (4.64) and the independence of {S N′
v }v∈B and {S N′

v }v∈B′ , for different B, B′ ∈ B,

P

(
max

v∈∪B∈BB
S N

′
v < M∗N − λ

′
)
≤ (1 − δ0)|B|. (4.65)

As δ0 ∈ (0, 1), by (4.61), there are constants, C, c > 0, such that

(1 − δ0)|B| ≤ exp


log(1 − δ0)

3
exp


1

2
√

log(2)Iσ̄(1)
(λ
′ − β − κ − 4)


 ≤ Ce−cλ

′
. (4.66)

Using (4.63), we can bound P
(
maxv∈VN S N

v ≤ M∗N − λ
)

from above by

P

(
max

v∈∪B∈BB
S N

′
v < M∗N − λ

′
)

+P(θ ≤ −λ′) ≤ Ce−cλ
′
, (4.67)

where the last bound follows from (4.66) and a Gaussian tail bound. �

Lemma 4.8 allows us to deduce the upper bound on the left tail of the centred maximum.
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Lemma 4.9. There exist constants, C, c > 0, so that, for all N ∈ N, and 0 ≤ λ ≤ (log log N)2/3,

P

(
max
v∈VN

ψN
v ≤ mN − λ

)
≤ Ce−cλ. (4.68)

Proof. Following the proof of Lemma 4.3, we see that, instead ofP
(
maxv∈VN ψ

N
v ≤ mN − λ

)
, it suffices

to bound P
(
maxv∈2κVN ψ

2κ+2N
v+(2κ+1N,2κ+1N)

≤ mN − λ
)
. By Lemma 3.3 iv., there is a constant κ0 > 0, such

that, for all κ ≥ κ0,

Var
[
ψ2κ+2N

2κv+(2κ+1N,2κ+1N)

]
≤ log(2)Var

[
S 22κN

v

]
, ∀v ∈ VN . (4.69)

Therefore, we can choose a collection of positive numbers, {av : v ∈ VN}, and an independent standard
Gaussian random variable, X, so that, for any N and u, v ∈ VN ,

Var
[
ψ2κ+2N

2κv+(2κ+1N,2κ+1N) + avX
]

= log(2)Var
[
S 22κN

v

]
, ∀v ∈ VN . (4.70)

As Var
[
S 22κN

v

]
= Var

[
S 22κN

v

]
, for all v,w ∈ V22κN , and by the uniform bound in Lemma 3.3 ii., there is

a constant C1 > 0, such that

|au − av| ≤ C1. (4.71)

Writing ũ = 2κu + (2κ+1N, 2κ+1N) and using Lemma 3.3 ii and iv., we get

E

[
ψ2κ+2N

ũ ψ2κ+2N
ṽ

]
≥ log(2)(n + κ)Iσ2

(
n + κ − log+ ‖2κu − 2κv‖2

n + κ

)
− c

= log(2)(n + κ)Iσ2

(
n − log+ ‖u − v‖2

n + κ

)
− c, (4.72)

where c > 0 is a constant. Further, taking into account that the Euclidean distance on the torus is
bounded by the usual Euclidean distance, we have by Lemma 3.3 ii.,

E

[
S 2κN

u S 2κN
v

]
≤(n + 2κ)Iσ2

(
n + 2κ − log+ ‖u − v‖2

n + 2κ

)
+ C, (4.73)

where C > 0 is another constant. Comparing (4.72) and (4.73), one deduces, using (4.70) that there is
a κ0, such that, for κ ≥ κ0,

E

[(
ψ2κ+2N

2κu+(2κ+1N,2κ+1N) + auX
) (
ψ2κ+2N

2κv+(2κ+1N,2κ+1N) + avX
)]
≤ log(2)E

[
S 2κN

u S 2κN
v

]
. (4.74)

Using (4.74) and (4.70), we can apply Slepian’s lemma to obtain

P

(
max
v∈VN

ψ2κ+2N
2κv+(2κ+1N,2κ+1N) ≤ mN − λ

)

≤P
(
max
v∈VN

ψ2κ+2N
2κv+(2κ+1N,2κ+1N) + avX ≤ mN − λ2

)
+P

(
X ≤ − λ

Cκ

)

≤P
max

v∈VN
S 22κN

v ≤ M∗N −
λ

2
√

log(2)

 +P

(
X ≤ − λ

Cκ

)
, (4.75)

where Cκ > 0 is a constant that solely depends on κ. Note that there is a collection of boxes V,
consisting of at most 28κ translated copies of VN , such that V22κN ⊂ ∪V∈VV . Since

{
max

v∈V22κN

S 2κN
v ≤ M∗N − x

}
= ∩V∈V

{
max
v∈VN

S 2κN
v ≤ M∗N − x

}
, (4.76)

we have, by the FKG inequality [33, Proposition 1], that

P

 max
v∈V22κN

S 22κN
v ≤ M∗N −

λ

2
√

log(2)

 ≥
P

max
v∈VN

S 22κN
v ≤ M∗N −

λ

2
√

log(2)




8κ

. (4.77)
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Using (4.77) and then Lemma 4.8, we bound (4.75) from above by

P

(
max

v∈V2κN
ψ2κ+2N

2κv+(2κ+1N,2κ+1N) ≤ mN − λ
)
≤ P

(
max
v∈VN

ψ2κ+2N
2κv+(2κ+1N,2κ+1N) ≤ mN − λ

)

≤ P
max

v∈VN
S 22κN

v ≤ M∗N −
λ

2
√

log(2)

 +P

(
X ≤ − λ

Cκ

)

≤
P

 max
v∈V22κN

S 22κN
v ≤ M∗N −

λ

2
√

log(2)




1/(8κ)

+P

(
X ≤ − λ

Cκ

)
≤ C̃e−c̃λ, (4.78)

where C̃, c̃ > 0 are constants that are independent of N. This concludes the proof of Lemma 4.9. �

We now have all the ingredients to finish the proof of Theorem 2.1.

Proof of Theorem 2.1. The upper bound on the right-tail in (2.6) follows using Proposition 4.2. A
combination of Lemma 4.4 with Lemma 4.5 implies the lower bound on the right-tail in (2.6). The
second statement, the upper bound for the left tail (2.7), is given by Lemma 4.9, which finishes the
proof. �

Appendix A. Gaussian comparison

Theorem A.1 (Borell’s inequality, [44, Lemma 3.1]). Let T be compact and {Xt}t∈T a centred Gaus-
sian process on T with continuous covariance. Further assume that almost surely, X∗ B supt∈T Xt <
∞. Then,

E[X∗] < ∞, (A.1)

and

P

(∣∣∣X∗ −E[X∗]
∣∣∣ > x

)
≤ 2e−x2/2σ2

T , (A.2)

where σ2
T B maxt∈T E[X2

t ].

Theorem A.2 (Slepian’s Lemma, [44, Theorem 3.11]). Let T = {1, . . . , n} and X,Y be two centred
Gaussian vectors. Assume that we have two subsets A, B ⊂ T × T satisfying

E[XiX j] ≤ E[YiY j], (i, j) ∈ A (A.3)
E[XiX j] ≥ E[YiY j], (i, j) ∈ B (A.4)
E[XiX j] = E[YiY j], (i, j) < A ∪ B. (A.5)

Further, suppose that f : Rn → R is a smooth function with at most exponential growth at infinity of
f itself, as well as its first and second derivatives, and that

∂i j f ≥ 0, (i, j) ∈ A (A.6)
∂i j f ≤ 0, (i, j) ∈ B. (A.7)

Then,

E[ f (X)] ≤ E[ f (Y)]. (A.8)

We use Slepian’s Lemma in a particular setting, i.e. we assume thatE
[
X2

i

]
= E

[
Y2

i

]
andE

[
XiX j

]
≥

E

[
YiY j

]
for all i, j ∈ T. We then have for any x ∈ R,

P

(
max
i∈T

Xi > x
)
≤ P

(
max
i∈T

Yi > x
)
. (A.9)
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In particular, E [maxi∈T Xi] ≤ E [maxi∈T Yi] . If we only want to compare the expectation of maxima
we do not need the equality of variances. This is a result due to Sudakov and Fernique.

Theorem A.3 (Sudakov-Fernique, [31]). Let I be an arbitrary set of finite size n, {Xi}i∈I , {Yi}i∈I be two
centred Gaussian vectors. Define γX

i j B E[(Xi − X j)2], γY
i j B E[(Yi − Y j)2]. Let γ B maxi, j |γX

i j − γY
i j|.

Then,
∣∣∣E[X∗] −E[Y∗]

∣∣∣ ≤
√
γ log(n). (A.10)

If γX
i j ≤ γY

i j for any i, j ∈ I, then

E[X∗] ≤ E[Y∗]. (A.11)

In particular, if {Xi}i∈I and {Yi}i∈I are independent centred Gaussian fields without any additional
assumptions on their correlations, one deduces

E

[
max

i∈I
(Xi + Yi)

]
≥ E

[
max

i∈I
Xi

]
. (A.12)

Appendix B. Covariance estimates

For particles v,w ∈ VN , let

bN(v,w) B max{λ ∈ [0, 1] : [v]N
λ ∩ [w]N

λ , ∅} (B.1)

denote the branching scale. The key point is that beyond bN(v,w), increments are independent, that
is for 1 ≥ λ′ > λ > bN(v,w), φN

v (λ′) − φN
w (λ) is independent of φN

w (λ′) − φN
w (λ), whereas increments

before the branching scale are correlated. Further, for some B ⊂ VN , we set

φN
v (B) B E

[
φN

v |σ
(
φN

w : w ∈ Bc
)]
. (B.2)

Recall that for λ ∈ [0, 1], we also write φN
v (λ) = φN

v ([v]N
λ ).

Lemma B.1. Let δ ∈ (0, 1/2) and N ∈ N such that min1≤i≤M 2
2

∆λi ≤ N, as well as Nλ1 > δ−1.
Let v,w ∈ Vδ

N and assume that the branching scale bN(v,w) coincides with a scale parameter, i.e.
bN(v,w) = λi for some i ∈ N. Then for any 0 ≤ i, j ≤ M with λi, λ j ≤ bN(v,w), we have

E
[
∆φN

v (λi)∆φN
w (λ j)

]
= ∆λi log(N)1i= j + O (1) . (B.3)

Proof. For v = w the statement is contained in [7, Lemma A.2]. Let us assume v , w throughout the
proof . We start with the case i = j. More, we assume [v]λi ∩ [w]λi , ∅, i.e. the boxes should intersect
at least at the boundary. If this is not the case, we can subdivide the scales further and use that beyond
bN(v,w) the respective increments are independent. This implies that ‖v − w‖2 ≤

√
2N1−λi . We now

pick a box B of side length 2N1−λi , centred at the middle of the line connecting the vertices v and w.
This ensures the inclusion

σ
(
φN

u : u ∈ Bc
)
⊂ σ

(
φN

u : u ∈ [v]c
λi

)
, σ

(
φN

u : u ∈ [w]c
λi

)
. (B.4)

Next we pick a box B̃ of side length 1
2 N1−λi−1 with the same centre as B. For N as in the assumption,

this implies in particular that σ
(
φN

u : u ∈ B̃c
)
⊂ σ

(
φN

u : u ∈ Bc
)
, as well as

σ
(
φN

u : u ∈ [v]c
λi−1

)
, σ

(
φN

u : u ∈ [w]c
λi−1

)
⊂ σ

(
φN

u : u ∈ B̃c
)
. (B.5)
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We write ∆φN
v (B) = φN

v (B) − φN
v (B̃) and compute,

E
[
∆φN

v (λi)∆φN
w (λi)

]
= E

[(
φN

v (λi) − φN
v (B) + ∇φN

v (B) + φN
v (B̃) − φN

v (λi−1)
)

×
(
φN

w (λi) − φN
w (B) + ∇φN

w (B) + φN
w (B̃) − φN

w (λi−1)
)]

= E
[
∆φN

v (B)∆φN
w (B)

]
(B.6)

+ E
[
∆φN

v (B)
(
φN

w (λi) − φN
w (B) + φN

w (B̃) − φN
w (λi−1)

)]
(B.7)

+ E
[(
φN

v (λi) − φN
v (B)

) (
φN

w (λi) − φN
w (B) + φN

w (B̃) − φN
w (λi−1)

)]
(B.8)

− E
[(
φN

v (λi−1) − φN
v (B̃)

) (
φN

w (λi) − φN
w (B) + φN

w (B̃) − φN
w (λi−1)

)]
. (B.9)

Using the conditional covariance identity

E [E [X|A]E [Y |A]] = E [XY] − E [(X − E [X|A]) (Y − E [Y |A])] , (B.10)

with X = φN
v (1) − φN

v (B̃), Y = φN
w (1) − φN

w (B̃) and A = σ
(
φN

u : u < Bo
)
, along with noting that by the

Gibbs-Markov property of the DGFF φN
v (1) − φN

v (B̃) d
= φB̃

v , we can write the first term (B.6) as

E
[
φB

v φ
B
w

]
− E

[
φB̃

v φ
B̃
w

]
= log

(
N1−λi+log(2)/ log(N)

)
− log(‖v − w‖ ∨ 1) − log

(
N1−λi−log(2)/ log(N)

)

+ log(‖v − w‖ ∨ 1) + O(1) = ∆λi log(N) + O(1). (B.11)

For the remaining terms we need to show that they are at most of constant order. As the last two terms
(B.8) and (B.9) can be estimated the same way, we only deal with (B.8). Using Cauchy-Schwarz,

E
[(
φN

v (λi) − φN
v (B)

) (
φN

w (λi) − φN
w (B) − φN

w (λi−1) + φN
w (B̃)

)]

≤E
[(
φN

v (λi) − φN
v (B)

)2
]1/2

(
E

[(
φN

w (λi) − φN
w (B)

)2
]1/2

+ E
[(
φN

w (B̃) − φN
w (λi−1)

)2
]1/2

)

=(log(2) + c1)(log(2) + c2 + log(2) + c3) = O(1). (B.12)

To estimate (B.7) we make exhaustive use of our choice of boxes and use the relations (B.4) and (B.5)
along with the tower property for conditional expectations and the law of total expectation, i.e. we
first observe that both E

[
φN

v (B)φN
w (λi)

]
= E

[
φN

v (B)φN
w (B)

]
and E

[
φN

v (B̃)φN
w (λi)

]
= E

[
φN

v (B̃)φN
w (B̃)

]

hold. Using this, we reformulate (B.7), i.e.

E
[
∆φN

v (B)
(
φN

w (λi) − φN
w (B) + φN

w (B̃) − φN
w (λi−1)

)]

=E
[
φN

v (B)
(
φN

w (B̃) − φN
w (λi−1)

)]
− E

[
φN

v (B̃)
(
φN

w (B̃) − φN
w (λi−1)

)]

=E
[
φN

v

(
φN

w (B̃) − φN
w (λi−1)

)]
− E

[
φN

v

(
φN

w (B̃) − φN
w (λi−1)

)]
= 0. (B.13)

For the remaining case i , j, we note that for |i − j| ≥ 2 increments are independent as the difference
of the boxes do not intersect for any v,w ∈ VN , as we assume N to be sufficiently large. The only
remaining case is j = i − 1. Note that in this case, the increment ∆φN

v (λi) is independent of the
increment φN

w (λi−1 − log(4)
log(N) )− φN

w (λi−2), as the annuli of the corresponding boxes do not intersect. This
gives,

E
[
∆φN

v (λi)∆φN
w (λi−1)

]
=E

[
∆φN

v (λi)
(
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

)
+ φN

w

(
λi−1 − log(4)

log(N)

)
− φN

w (λi−2)
)]

=E

[
∆φN

v (λi)
(
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

))]

=E
[(
φN

v (λi) − φN
v ([w]λi) + φN

v ([w]λi) − φN
v ([w]λi−1) + φN

v ([w]λi−1) − φN
v (λi−1)

)

×
(
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

))]
. (B.14)
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Provided N is large, we have [v]c
λi
∪ [w]c

λi
⊃ [w]c

λi−1
⊃ [w]c

λi−1− log(4)
log(N)

and so by the tower property and

the law of total expectation, we deduce

E

[(
φN

v (λi) − φN
v ([w]λi)

) (
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

))]

= E

[
E

[
φN

v

(
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

)) ∣∣∣∣∣σ
(
φN

u : u ∈ [v]c
λi

)]]

− E
[
E

[
φN

v

(
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

)) ∣∣∣∣∣σ
(
φN

u : u ∈ [w]c
λi

)]]
= 0. (B.15)

As the annuli [w]λi−1\[w]λi and [w]
λi−1− log(4)

log(N)
\[w]λi−1 do not intersect, we have independence of the

corresponding increments, i.e.

E

[(
φN

v ([w]λi) − φN
v ([w]λi−1)

) (
φN

w (λi−1) − φN
w

(
λi−1 − log(4)

log(N)

))]
= 0. (B.16)

The remaining term in (B.14) can be bounded in a first step by the Cauchy-Schwarz inequality,

E
[(
φN

v ([w]λi−1) − φN
v (λi−1)

) (
φN

w (λi−1) − φN
w
(
λi−1 − log(4)/ log(N)

))]

≤ c
√

log(4)E
[(
φN

v ([w]λi−1) − φN
v (λi−1)

)2
]1/2

. (B.17)

In order to bound the expectation on the right hand side, we consider a box B centred at the middle of
the line connecting v and w of side length N1−λi−1 − √2N1−λi . The assumption ‖v − w‖∞ ≤

√
2N1−λi

ensures the inclusion B ⊂ [v]λi−1 ∩ [w]λi−1 . This allows us to compute in a similar fashion as in the first
case (B.6), i.e.

E
[(
φN

v ([w]λi−1) − φN
v (λi−1)

)2
]

= E
[(
φN

v ([w]λi−1) − φN
v (B) + φN

v (B) − φN
v (λi−1)

)2
]

≤ 4 max
(
E

[(
φN

v ([w]λi−1) − φN
v (B)

)2
]
,E

[(
φN

v (B) − φN
v (λi−1)

)2
])

≤ 4(c + log(N1−λi−1) − log(N1−λi−1(1 −
√

2N−∆λi))) ≤ C. (B.18)

The constants c,C > 0 can be chosen uniformly in N, however depending on the scale parameters.
Altogether, we obtain

E
[
∆φN

v (λi)∆φN
w (λ j)

]
≤ C, (B.19)

for some constant C > 0 that is uniform in N, which finishes the proof. �

Proof of Lemma 3.3. For a proof of the statements i. and iii., we refer to [20, Lemma 2.2]. We have
that log+(dN∞(v,w)) ≤ log+(dN(v,w)) ≤ log+(dN∞(v,w)) + 1. We begin with the proof of the second
statement. Note that if 1 ≤ k < log+(dN∞(v,w) + 1), there are no boxes of size 2k that cover both v and
w. Thus, if B, B̃ are boxes such that one covers v but not w and the other w but not v, the associated
random variables bk,B, bk,B̃ are independent. And so, only random variables bk,B associated to boxes of
size 2k with k >

⌈
log2(dN∞(v,w) + 1)

⌉
contribute to the covariance. For v = (v1, v2), w = (w1,w2) and

i = 1, 2, we write ri(v,w) = min(|vi −wi|, |vi −wi − N |, |vi −wi + N |). Using the fact that the number of
common boxes for v,w ∈ VN is given by [2k − r1(v,w)][2k − r2(v,w)],

E
[
S N

v S N
w

]
=

n∑

k=dlog+(dN∞(v,w))e
2−2kσ2

(
n − k

n

)
[2k − r1(v,w)][2k − r2(v,w)] (B.20)

=

n∑

k=dlog+(dN∞(v,w))e


(
1 − r1(v,w)

2k − r2(v,w)
2k +

r1(v,w)r2(v,w)
22k

) 
M∑

i=1

1n−k∈(λi−1n,λin]σ
2
i



 .

63



EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE FIELD 21

We note that since a + b − ab ≥ 0 for 0 ≤ a, b ≤ 1, we get

E
[
S N

v S N
w

]
≤ n

M∑

i=1

σ2
i ∆λi −

M∑

i=1

σ2
i [n∆λi1n−dlog+(dN∞(v,w))e≤λin

+
[
λin −

(
n −

⌈
log+(dN

∞(v,w))
⌉)]
1λi−1n<n−dlog+(dN∞(v,w))e<λin]

= 2
M∑

i=1

σ2
i +

M∑

i=1

σ2
i [n∆λi1n−dlog+(dN (v,w))e≥λin

+
(
(1 − λi−1)n

⌈
log+(dN(v,w))

⌉)
1λi−1n<n−dlog+(dN (v,w))e<λin]

= 2Iσ2(1) + nIσ2


n −

⌈
log+

(
dN(v,w)

)⌉

n

 . (B.21)

On the other hand, since a + b − ab ≤ a + b for a, b ≥ 0, we get

E
[
S N

v S N
w

]
≥

n∑

k=dlog+(dN∞(v,w))e
σ2

(
n − k

n

)
− max

1≤i≤M
σ2

( i
n

)
2−k+1dN

∞(v,w)

≥
M∑

i=1

σ2
i

[
n∆λi1n−dlog+(dN (v,w))e≥λin + ((1 − λi−1)n

−
⌈
log+(dN(v,w))

⌉)
1λi−1n<n−dlog+(dN (v,w))e<λin

]
−C

= nIσ2


n −

⌈
log+

(
dN(v,w)

)⌉

n

 −C, (B.22)

where in the second step we did a rescaling from [0, n] onto the unit interval [0, 1] and where C > 0 is
a constant independent of N with C > 2 max1≤i≤M σ2(i/M) that deals with the second part of the sum.
To prove the last statement iv., we note that beyond the branching scale, N being sufficiently large
(see assumptions of Lemma B.1) and by the Gibbs-Markov property, increments are independent as
the annuli of the corresponding boxes do not intersect (see for instance [7, Section 2]). Moreover,
by a refinement of the scale parameters and possibly allowing for an additional uniformly bounded
constant, we can assume that the branching scale coincides with a scale parameter. With this we can
apply Lemma B.1 and obtain the result, i.e.

E
[
ψ4N

x ψ4N
y

]
= E


M∑

i=1

M∑

j=1

σiσ j∆φ
4N
x (λi)∆φ4N

y (λ j)

 =

M∑

i=1

σ2
iE

[
(∆φ4N

x (λi))2
1n−dlog+(‖v−w‖2)e≥λi

+

(
φ4N

x

(
n − ⌈

log+(‖x − y‖2)
⌉

n

)
− φ4N

x (λi−1)
)
1λi−1n<n−dlog+(‖x−y‖2)e<λin

]
+ O(1)

= log(2)
M∑

i=1

σ2
i

[
n∆λi1n−dlog+ ‖x−y‖2e≥λin + ((1 − λi−1)n

−⌈log+ ‖x − y‖2⌉1λi−1n<n−dlog+ ‖x−y‖2e<λin)
]

+ O(1)

= log(2)nIσ2

(
n − ⌈

log+ ‖x − y‖2⌉
n

)
+ O(1), (B.23)

where O(1) is uniform in N. �
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Convergence of the maximum of the
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EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE
FIELD: CONVERGENCE OF THE MAXIMUM IN THE REGIME OF WEAK

CORRELATIONS

MAXIMILIAN FELS, LISA HARTUNG

Abstract. We continue the study of the maximum of the scale-inhomogeneous discrete Gaussian free
field in dimension two that was initiated in [36] and continued in [37]. In this paper, we consider the
regime of weak correlations and prove the convergence in law of the centred maximum to a randomly
shifted Gumbel distribution. In particular, we obtain limiting expressions for the random shift. As in the
case of variable speed branching Brownian motion, the shift is of the form CY , where C is a constant
that depends only on the variance at the shortest scales, and Y is a random variable that depends only on
the variance at the largest scales. Moreover, we investigate the geometry of highest local maxima. We
show that they occur in clusters of finite size that are separated by macroscopic distances. The poofs are
based on Gaussian comparison with branching random walks and second moment estimates.

1. Introduction

In recent years, log-correlated (Gaussian) processes have received considerable attention, see e.g.
[3, 4, 15, 19, 32, 41, 55]. Some prominent examples that fall into this class are branching Brownian
motion (BBM), the branching random walk (BRW), the 2d discrete Gaussian free field (DGFF), local
maxima of the randomised Riemann zeta function on the critical line and cover times of Brownian
motion on the torus. One of the reasons why these processes are interesting is that their correlation
structure is such that it becomes relevant for the properties of the extremes of the processes. The 2d
scale-inhomogeneous discrete Gaussian free field first appeared in [10], where it served as a tool in
order to prove Poisson-Dirichlet statistics of the extreme values of the 2d DGFF. Moreover, it is the
natural analogue model of variable-speed BBM or the time-inhomogeneous BRW in the context of the
two-dimensional DGFF. To be more precise, we start with a formal definition of the model studied in
this paper and then, present our new results on the maximum value.

1.1. The discrete Gaussian free field. Let VN B ([0,N) ∩ Z)2. The interior of VN is defined as
Vo

N B ([1,N − 1] ∩ Z)2 and the boundary of VN is denoted by ∂VN B VN \ Vo
N . Moreover, for points

u, v ∈ VN we write u ∼ v, if and only if ‖u − v‖2 = 1, where ‖.‖2 is the Euclidean norm. Let Pu be the
law of a SRW {Wk}k∈N starting at u ∈ Z2. The normalised Green kernel is given by

GVN (u, v) B
π

2
Eu


τ∂VN−1∑

i=0

1{Wi=v}

 , for u, v ∈ VN . (1.1)

Here, τ∂VN is the first hitting time of the boundary ∂VN by {Wk}k∈N. For δ > 0, we set Vδ
N B (δN, (1 −

δ)N)2 ∩ Z2. By [29, Lemma 2.1], we have, for δ ∈ (0, 1) and u, v ∈ Vδ
N ,

GVN (u, v) = log N − log+ ‖u − v‖2 + O(1), (1.2)

where log+(x) = max
{
0, log(x)

}
.

M.F. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project-id 211504053 -
SFB 1060 and Germany’s Excellence Strategy – GZ 2047/1, project-id 390685813 – “Hausdorff Center for Mathematics” at
Bonn University.
Keywords: extreme value theory, Gaussian free field, inhomogeneous environment, branching Brownian motion, branching
random walk.
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Definition 1.1. The 2d discrete Gaussian free field (DGFF) on VN , φN B {φN
v }v∈VN , is a centred

Gaussian field with covariance matrix GVN and entries GVN (x, y) = E[φN
x φ

N
y ], for x, y ∈ VN .

From Definition 1.1 it follows that φN
v = 0 for v ∈ ∂VN , i.e. we have Dirichlet boundary conditions.

1.2. The two-dimensional scale-inhomogeneous discrete Gaussian free field.

Definition 1.2. (The 2d scale-inhomogeneous discrete Gaussian free field).
Let φN = {φN

v }v∈VN be a 2d DGFF on VN . For v = (v1, v2) ∈ VN and λ ∈ (0, 1), let

[v]λ ≡ [v]N
λ B

([
v1 − 1

2
N1−λ, v1 +

1
2

N1−λ
]
×

[
v2 − 1

2
N1−λ, v2 +

1
2

N1−λ
])
∩ VN , (1.3)

and set [v]N
0 B VN and [v]N

1 B {v}. We denote by [v]o
λ the interior of [v]λ. Let F∂[v]λ∪[v]c

λ
B

σ
(
{φN

v , v < [v]o
λ}
)

be the σ−algebra generated by the random variables outside [v]o
λ. For v ∈ VN ,

let

φN
v (λ) = E

[
φN

v |F∂[v]λ∪[v]c
λ

]
, λ ∈ [0, 1]. (1.4)

We denote by ∇φN
v (λ) the derivative ∂λφN

v (λ) of the DGFF at vertex v and scale λ. Moreover, let
s 7→ σ(s) be a non-negative function such that Iσ2(λ) B

∫ λ

0 σ2(x)dx is a function on [0, 1] with
Iσ2(0) = 1 and Iσ2(1) = 1. Then the 2d scale-inhomogeneous DGFF on VN is a centred Gaussian
field ψN B {ψN

v }v∈VN defined as

ψN
v B

∫ 1

0
σ(s)∇φN

v (s)ds. (1.5)

In the case when σ is a right-continuous step function taking finitely many values, [36, (1.11)] shows
that it is a centred Gaussian field with covariance given by

E
[
ψN

v ψ
N
w

]
= log NIσ2

(
log N − log+ ‖v − w‖2

log N

)
+ O(

√
log(N)), for v,w ∈ Vδ

N . (1.6)

2. Main results

In the case of finitely many scales, Arguin and Ouimet [9] showed the first order of the maximum
and the size of the level sets.

Assumption 1. In the rest of the paper, {ψN
v }v∈VN is always a 2d scale-inhomogeneous DGFF on VN .

Moreover, we assume that Iσ2(x) < x, for x ∈ (0, 1), and that Iσ2(1) = 1, with s 7→ σ(s) being
differentiable at 0 and 1, such that σ(0) < 1 and σ(1) > 1.

In [36], we proved, in the case when s 7→ Iσ2 is piecewise linear, that the maximum centred by
mN has exponential tails. In particular, in the case of the right-tail, our results are precise up to a mul-
tiplicative constant. As a simple consequence we obtained the sub-leading logarithmic correction to
the maximum value . Provided Assumption 1, there are right-continuous, non-negative step functions,
s 7→ σ1(s), s 7→ σ2(s), taking finitely many values, such that, for x ∈ (0, 1),

Iσ2
1
(x) ≤ Iσ2(x) ≤ Iσ2

2
(x) < x, (2.1)

and such that Iσ2
1
(1) = Iσ2

2
(1) = 1. [36] shows that for scale-inhomogeneous DGFFs with parameters

σ1 or σ2, the maximum value is given by 2 log N − 1
4 log log N + OP(1), where OP(1) means that

remainder is stochastically bounded and that the centred maxima are tight. (2.1), Sudakov-Fernique
and [36] imply that the maximum value under Assumption 1 is given by

ψ∗N B max
v∈VN

ψN
v = 2 log N − 1

4
log log N + OP(1). (2.2)
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In particular, the maximum, ψ∗N , centred by mN B 2 log N − log log N
4 is tight. Our main result in this

paper is convergence in distribution of the centred maximum.

Theorem 2.1. Let {ψN
v }v∈VN satisfy Assumption 1. Then, the sequence

{
ψ∗N − mN

}
N≥0

converges in
distribution. In particular, there is a constant β(σ(1)) > 0 depending only on the final variance, and
a random variable Y(σ(0)) which is almost surely non-negative, finite and depends only on the initial
variance, such that, for any z ∈ R,

P
(
ψ∗N − mN ≤ +z

) N→∞→ E
[
exp

[
−β(σ(1))Y(σ(0))e−2z

]]
, as N → ∞. (2.3)

Note that the limiting law is universal in the sense that only σ(0) and σ(1) affect the limiting law.
In particular, the choice of σ(s), for s ∈ (0, 1), does not affect the law, as long as Iσ2(x) < x, for
x ∈ (0, 1). In the proof of Theorem 2.1 one needs to understand the genealogy of particles close to the
maximum. Since this is of independent interest, we state it as a separate theorem.

Theorem 2.2. Let {ψN
v }v∈VN satisfy Assumption 1. Then, there exists a constant c > 0, such that

lim
r→∞ lim

N→∞
P

(
∃u, v ∈ VN with r ≤ ‖u − v‖2 ≤ N

r
and ψN

u , ψ
N
v ≥ mN − c log log r

)
= 0. (2.4)

As the field is strongly correlated, Theorem 2.2 implies that local maxima of the scale-inhomogeneous
DGFF are surrounded by very heigh points in O(1) neighbourhoods. Moreover, the local maxima are
at distance O(N) to each other and therefore, almost independent.

2.1. Related work. The special case σ(x) ≡ 1, for x ∈ [0, 1], is the usual 2d DGFF. In this case,
building upon work by Bolthausen, Bramson, Deuschel, Ding, Giacomin and Zeitouni [18, 26, 31, 33],
Bramson, Ding and Zeitouni [25] proved convergence in law of the centred maximum. Generalizing
this approach, Ding, Roy and Zeitouni [32] proved convergence of the centred maximum for more
general log-correlated Gaussian fields. In the 2d DGFF, Biskup and Louidor [14, 15] proved conver-
gence of the full extremal process to a cluster Cox process. Moreover, they derived several properties
of the random intensity measure appearing in the Cox process, which they identified as the so-called
critical Liouville quantum gravity measure.

Another closely related model is (variable-speed) branching Brownian motion (BBM). Variable-
speed BBM, introduced by Derrida and Spohn [30], is the natural analogue model of the 2d scale-
inhomogeneous DGFF in the context of BBM. In order to define the model, fix a time horizon t > 0,
a super-critical (continuous time) Galton-Watson tree and a strictly increasing function A : [0, 1] →
[0, 1], with A(0) = 0, A(1) = 1. For two leaves v and w, we denote by d(v,w) their overlap, which is
the time of their most recent common ancestor. Variable-speed BBM in time t, is a centred Gaussian
process, indexed by the leaves of a super-critical (continuous time) Galton-Watson tree, and covariance
tA(d(v,w)/t). BBM is the special case when A(x) = x, for x ∈ [0, 1]. It coincides with the continuous
random energy model (CREM) on the Galton-Watson tree [42, 43, 24]. The extremal process of BBM
was investigated in [27, 48, 2, 5, 6, 8, 7, 21], and those of variable-speed BBM in [19, 20, 35, 54]. In
the weakly correlated regime, i.e. when A(x) < x, for x ∈ (0, 1), A′(0) < 1 and A′(1) > 1, Bovier and
Hartung [19, 20] proved convergence of the extremal process to a cluster Cox process. They identified
the random intensity measure as the so-called “McKean-martingale” which differs from the random
intensity measure, the “derivate-martingale”, which appears in BBM. Works by Bovier and Kurkova
[24] for general variance profiles show that in the context of GREM the first order of the maximum
is determined by the concave hull of A. Building upon results obtained by Fang and Zeitouni [35],
Maillard and Zeitouni [54] proved in the case variable-speed BBM with strictly decreasing speed, that
the 2nd order correction is proportional to t1/3. As also in the case of the 2d scale-inhomogeneous
DGFF all variances profiles can be achieved, studying its extremes in the analogue setting of strictly
decreasing speed would be of great interest.
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2.2. Outline of proof. We start to explain the proof of Theorem 2.2 as these ideas are also used in
the proof of Theorem 2.1. In order to prove Theorem 2.2, we have to show with high probability, that
there cannot be two vertices in VN at “intermediate distance” to each other, i.e. in between O(1) and
O(N), and both reaching an extremal height. We therefore study the sum of two vertices, under the
additional restriction that their distance is “intermediate”, i.e. such that r ≤ ‖u− v‖ ≤ N/r with r � N.
The idea here is, if both vertices reach extreme heights, their sum must exceed twice an extremal
threshold. This reasoning works, since tightness of the centred maximum implies that there cannot be
a vertex being considerably larger than the expected maximum. To analyse the maximum of the sum
of particles of the scale-inhomogeneous DGFF, we prove a variant of Slepian’s lemma which allows
to compare this quantity with the maximum of the sum of particles of corresponding inhomogeneous
branching random walks. We show that using a truncated second moment method.

VN

BN/K,i

BN/K, j

BK′,i

“coarse field”

“local field”

“intermediate field”

N

K′

N/(K)

Figure 1: 3-field decomposition

Theorem 2.2 suggests that to understand the law of the centred maximum, it suffices to consider
local maxima in “small” O(1) neighbourhoods, while the “small” neighbourhoods are far, i.e. O(N),
apart. The fact that these neighbourhoods are very far apart, makes them correlated only on the level of
the first increments, φN

v (λ1)−φN
v (0), for some λ1 > 1, as boxes of side length N1−λ1 and centred at local

maxima do not overlap. In particular, the remaining increments, φN
v (λ) − φN

v (µ), for λ > µ ≥ λ1, for
distinct such neighbourhoods are independent. We split these two different contributions by studying
the sum of two independent Gaussian fields. To do so, decompose the box VN into K2 boxes BN/K,i
and (N/K′)2 boxes BK′, j with side lengths N/K and K′, where K,K′ � N. One of the Gaussian fields
is the “coarse field”, which is defined such that it is constant in each box BN/K,i. It encodes initial
increments and correlations of the field between different boxes BN/K,i. The other Gaussian field is the
“fine field”. It is independent between different boxes BN/K,i, and encodes the remaining increments,
including the local neighbourhoods. The “fine field” is then decomposed further into a field captur-
ing the “intermediate” increments and an independent “local field”, which captures the increments in
the small neighbourhoods, BK′, j, that carry the local maxima. Instead of working directly with the
scale-inhomogeneous 2d DGFF, we define a Gaussian field, {S N

v }v∈VN , as a sum of four independent
Gaussian fields, with covariance structure of the “coarse field”, “local field”, “intermediate field” and
an additional independent Gaussian field. The additional field is defined such that variances of the
scale-inhomogeneous DGFF and the approximating field match asymptotically, which is crucial in or-
der to use Gaussian comparison to reduce the proof of Theorem 2.1 to show convergence of the centred
maximum of the approximating process, {S N

v }v∈VN . The “coarse and local field” are instances of ap-
propriately scaled 2d DGFFs, the “intermediate field” is a collection of modified branching random
walks (MIBRW). The advantage of working with the approximating process is that the “coarse field”
is constant in large boxes, which substantially simplifies the analysis. To justify this approximation, it
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is essential to control its covariance structure, and how it differs from that of the scale-inhomogeneous
DGFF. In particular, one needs to understand the influence of this difference on the law of the centred
maximum. This is done similarly as in [32], adapting an idea from [14], to show a certain invariance
principle: Partition VN into sub-boxes VL, where L can be either of order K or N/K, with K � N. If
one adds i.i.d. Gaussians of bounded variance to each sub-box VL, i.e. the same random variable to
each vertex in a sub-box, then the law of the centred maximum is given by a deterministic shift of the
original law. Moreover, the shift can be stated explicitly. This is the contents of Lemma 5.5 and its
proof uses Theorem 2.2 and Gaussian comparison.
Another key step in the proof of convergence in law of the centred maximum of the approximating
process, {S N

v }v∈VN , is to understand the correct right-tail asymptotics of the (auxiliary) process. This is
provided in Proposition 5.8, which is proved using a truncated second moment method. The truncation
uses a localizing property of vertices reaching extreme heights, similar to the one observed in variable
speed BBM. The idea is that intermediate increments of extremal vertices have to stay far below the
maximum possible increment. For vertices to become very heigh at the end, this is then compensated
by extraordinarily huge final increments. Based on a localization of increments of the auxiliary pro-
cess for vertices that are local extremes (cp. Proposition 4.2), one is able to define random variables
with the correct tails and distributions, whose parameters are determined through those of the “coarse
and local field”, and therefore independent of N. This is done in (5.44), (5.45) and (5.46). These are
then coupled to the auxiliary process and allow to obtain convergence in law of the centred maximum,
and further, for an explicit description of the limit distribution.

Outline of the paper: In Section 3 we recall the definition of the corresponding inhomogeneous
branching random walk (IBRW) and the modified inhomogeneous branching random walk (MIBRW),
introduced in [36], and state covariance estimates. The proof of Theorem 2.2 is provided in Section 4
and the proof of Theorem 2.1 in Section 5. In Appendix A we state Gaussian comparison tools such
as Slepian’s lemma, the inequality of Sudakov-Fernique and provide proofs of the additional covari-
ance estimates. Lemma 5.5 and Lemma 5.6 are proved in Appendix B, and the proof of the right-tail
asymptotics, i.e. Proposition 5.8, is provided in Appendix C.

Acknowledgements

The authors want to thank Anton Bovier for his careful reading and for his valuable comments that
led to improvements in the presentation of this paper. We would also like to thank both authors’ home
institutions for their hospitality.

3. Frequently occurring auxiliary processes

3.1. Inhomogeneous branching random walk. Let n ∈ N and set N = 2n. For k = 0, 1, . . . , n, let
Bk denote the collection of subsets of Z2 consisting of squares of side length 2k with corners in Z2,
and let BDk denote the subset of Bk consisting of squares of the form ([0, 2k − 1] ∩ Z)2 + (i2k, j2k).
Note that the collection BDk partitions Z2 into disjoint squares. For v ∈ VN , let Bk(v) denote the set
of elements B ∈ Bk with v ∈ B. Let Bk(v) be the unique box Bk(v) ∈ BDk that contains v.

Definition 3.1 (Inhomogeneous branching random walk (IBRW)). Let {ak,B}k≥0,B∈BDk be an i.i.d.
family of standard Gaussian random variables. Define the inhomogeneous branching random walk
{RN

v }v∈VN , by

RN
v (t) B

n∑

k=n−t

√
log(2)ak,Bk(v)

∫ n−k

n−k−1
σ

( s
n

)
ds, (3.1)

where 0 ≤ t ≤ n, t ∈ N.
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3.2. Modified inhomogeneous branching random walk. For N = 2n, v ∈ VN , let BN
k (v) be the

collection of subsets of Z2 consisting of squares of size 2k with lower left corner in VN and containing
v. Note that the cardinality of BN

k (v) is 2k. For two sets B, B′, write B ∼N B′ if there are integers, i, j,
such that B′ = B + (iN, jN). Let {bk,B}k≥0,B∈BN

k
denote an i.i.d. family of centred Gaussian random

variables with unit variance, and define

bN
k,B B


bk,B, B ∈ BN

k ,

bk,B′ , B ∼N B
′ ∈ BN

k .
(3.2)

Definition 3.2 (Modified inhomogeneous branching random walk (MIBRW)). The modified inhomo-
geneous branching random walk (MIBRW) {S̃ N

v }v∈VN is defined by

S̃ N
v (t) B

n∑

k=n−t

∑

B∈BN
k (v)

2−k
√

log(2)bN
k,B

∫ n−k

n−k−1
σ

( s
n

)
ds, (3.3)

where 0 ≤ t ≤ n, t ∈ N.

3.3. Covariance estimates. In order to compare the auxiliary processes with the scale-inhomogeneous
DGFF, one needs estimates on their covariances, which are provided in this section. Let ‖ · ‖2 be the
usual Euclidean distance and ‖ · ‖∞ the maximum distance. In addition, introduce the following two
distances on the torus induced by VN , i.e. for v,w ∈ VN ,

dN(v,w) B min
z: z−w∈(NZ)2

‖v − z‖2, dN
∞(v,w) B min

z: z−w∈(NZ)2
‖v − z‖∞. (3.4)

Note that the Euclidean distance on the torus is smaller than the standard Euclidean distance, i.e. for
all v,w ∈ VN , it holds dN(v,w) ≤ ‖v − w‖2. Equality holds if v,w ∈ (N/4, N/4) + VN/2 ⊂ VN .

Lemma 3.3. [36, Lemma 3.3] For any δ > 0, there exists a constant α > 0 independent of N = 2n,
such that the following estimates hold: For any v,w ∈ VN ,

i.
∣∣∣∣∣E

[
S̃ N

v S̃ N
w

]
− log NIσ2

(
1 − log+ dN (v,w)

log N

)∣∣∣∣∣ ≤ α.
Further, for any u, v ∈ Vδ

N , and any x, y ∈ VN + (2N, 2N) ⊂ V4N :

ii.
∣∣∣∣E

[
ψN

u ψ
N
v

]
− log NIσ2

(
1 − log+ ‖u−v‖2

log N

)∣∣∣∣ ≤ α
iii.

∣∣∣∣E
[
ψ4N

x ψ4N
y

]
− E

[
S̃ 4N

x S̃ 4N
y

]∣∣∣∣ ≤ α.
Proof. The proof is given in Subsection A.1. �

In the following lemma, we identify the asymptotic behaviour of covariances of the scale-inhomogeneous
2d DGFF close to the diagonal and for two vertices at macroscopic distance, i.e. at distance of order
of the side length of the underlying box.

Lemma 3.4. There are continuous functions, f : (0, 1)2 7→ R and h : [0, 1]2\{(x, x) : x ∈ [0, 1]} 7→ R,
and a function, g : Z2 × Z2 7→ R, such that the following two statements hold:

i. For all L, ε, δ > 0, there exists an integer N0 = N0(ε, δ, L) > 0 such that, for all x ∈ [0, 1]2 with
xN ∈ Vδ

N , u, v ∈ [0, L]2 and N ≥ N0, we have
∣∣∣∣E

[
ψN

xN+uψ
N
xN+v

]
− log(N) − σ2(0) f (x) − σ2(1)g(u, v)

∣∣∣∣ < ε. (3.5)

ii. For all L, ε, δ > 0, there exists an integer N1 = N1(ε, δ, L) > 0 such that, for all x, y ∈ [0, 1]2

with xN, yN ∈ Vδ
N as well as |x − y| ≥ 1/L and N ≥ N1, we have

∣∣∣∣E
[
ψN

xNψ
N
yN

]
− σ2(0)h(x, y)

∣∣∣∣ < ε. (3.6)

Proof. The proof is given in Subsection A.1. �
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4. Proof of Theorem 2.2

In order to prove Theorem 2.2, we have to show with high probability that there cannot be two
vertices at “intermediate distance” to each other and both reaching an extremal height. We therefore
study the sum of two vertices, under the additional restriction that their distance is “intermediate”.
For such sums, we first prove a version of Slepian’s lemma, which relates these functionals of the
scale-inhomogeneous DGFF to the same functionals of a suitable IBRW.

Lemma 4.1. Let {χN
v }v∈VN and {ηN

v }v∈VN be two centred Gaussian processes, such that

E
[
ηN

u η
N
v

]
≤ E

[
χN

u χ
N
v

]
∀u, v ∈ VN , (4.1)

Var
[
ηN

u

]
= Var

[
χN

u

]
∀u ∈ VN . (4.2)

Let Ωm,r B {A ⊂ VN : |A| = m, u, v ∈ A⇒ r ≤ ‖u− v‖2 ≤ N/r}. For any r ≥ 0, N > r and any λ ∈ R, it
holds that

P

 max
A∈Ωm,r

∑

v∈A

ηN
v ≤ λ

 ≤ P
 max

A∈Ωm,r

∑

v∈A

χN
v ≤ λ

 . (4.3)

Proof. The idea is to use Gaussian interpolation. We first introduce the necessary set-up. For h ∈ [0, 1]
and u ∈ VN , let

Xh
u =
√

hηN
u +
√

1 − hχN
u (4.4)

be a Gaussian random variable, interpolating between the scale-inhomogeneous DGFF and the time-
inhomogeneous BRW. Moreover, let s > 0, set Φs(x) = 1√

2πs2

∫ x
−∞ exp

[
− z2

2s2

]
dz and write xA =∑

v∈A xv, for A ⊂ VN . We define

Fs(x1, . . . , x4n) =
∏

A∈Ωm,r

Φs(λ − xA). (4.5)

Clearly, Fs is bounded uniformly in s, smooth for all s > 0, and converges pointwise to F(x1, . . . , x4n) =

1xA≤u,∈A∈Ωm,r at all continuity points of F. We have that, for i , j,

∂2Fs

∂xi∂x j
(x1, . . . , x4n) =

∑

A∈Ωm,r
xi,x j∈A

Φ′′s (λ − xA)
∏

B∈Ωm,r ,B,A

Φs(λ − xB)

+
∑

A∈Ωm,r
xi∈A

∑

B∈Ωm,r
x j∈B,B,A

Φ′s(λ − xA)Φ′s(λ − xB)
∏

C∈Ωm,r ,C,A,B

Φs(λ − xC). (4.6)

Observe that, by dominated convergence, for A ∈ Ωm,r,

E
[
Φ′′s (λ − Xh

A)
]

=

∫
φh,A(x)

λ − x√
2πs2s2

exp
[
− (λ − x)2

2s2

]
dx→ 0, (4.7)

as s→ 0, and where φh,A is the density of the centred Gaussian
∑

v∈A Xh
v . By (4.7) and as

∏
B∈Ωm,r ,B,A Φs(λ−

xB) ≤ 1,

∑

A∈Ωm,r
xi,x j∈A

E

Φ
′′
s (λ − Xh

A)
∏

B∈Ωm,r ,B,A

Φs(λ − Xh
B)

→ 0, (4.8)
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as s→ 0. Next, we turn to the second sum in (4.6). For A, B ∈ Ωm,r, we have

E

Φ
′
s(λ − Xh

A)Φ′s(λ − Xh
B)

∏

C∈Ωm,r ,C,A,B

Φs(λ − Xh
C)

 ≤ E
[
Φ′s(λ − Xh

A)Φ′s(λ − Xh
B)

]

=

∫
φh,A,B(x, y)

1
2πs2 exp

[
− (λ − x)2 + (λ − y)2

2s2

]
dxdy→ φh,A,B(λ, λ), (4.9)

as s→ 0 and where

φh,A,B(x, y) =
1

2πσh
Aσ

h
B

√
1 − %2

h,A,B

exp

−
1

2(1 − %2
h,A,B)


x2

(σh
A)2

+
y2

(σh
B)2
− 2%h,A,B

xy
σh

Aσ
h
B


 (4.10)

with (σh
A)2 = Var

[∑
v∈A Xh

v

]
, (σh

B)2 = Var
[∑

v∈B Xh
v

]
and %h,A,B =

E[(∑v∈A Xh
A)(∑v∈B Xh

B)]√
Var[∑v∈A Xh

A]Var[∑v∈B Xh
v ]

. φh,A,B(x, y)

is the density of the bivariate distributed random vector
(∑

v∈A Xh
v ,

∑
v∈B Xh

v

)
. Observe that,

φh,A,B(x, y) ≤ 1

2π
√

1 − %2
A,B

exp
[
− x2 + y2

2(1 + %A,B)

]
, (4.11)

where %A,B = max
(
E

[(∑
v∈A ηv

) (∑
v∈B ηv

)]
,E

[(∑
v∈A χ

N
v

) (∑
v∈B χ

N
v

)])
. Inserting (4.11) into (4.9) and

using this with (4.8) in (4.6) and letting s→ 0, allows to use Kahane’s theorem [47], to obtain

P

∀A ∈ Ωm,r :
∑

v∈A

ηv ≤ λ
 − P

∀A ∈ Ωm,r :
∑

v∈A

χN
v ≤ λ



≤ 1
2π

∑

1≤i< j≤4n

∑

A∈Ωm,r
xi∈A

∑

B∈Ωm,r
x j∈B,B,A

(Λ1
A,B − Λ0

A,B)+
√

1 − %2
A,B

exp
[
− 2λ2

2(1 + %A,B)

]
, (4.12)

with Λ0
A,B = E

[(∑
v∈A χ

N
v

) (∑
v∈B χ

N
v

)]
and Λ1

A,B = E
[(∑

v∈A ηv
) (∑

v∈B ηv
)]

. By (4.1), (Λ1
A,B−Λ0

A,B)+ = 0,
and thus, (4.12) implies (4.3). �

In the following proposition, we determine the position of extremal particles of an inhomogeneous
BRW at the times when its variance changes. This is a direct consequence of [19, Proposition 2.1] in
the weakly-correlated regime of variable speed BBM. Set i(t, n) B t ∧ (n − t).

Proposition 4.2. Let {RN
v }v∈VN be a inhomogeneous BRW with Iσ2(x) < x, for x ∈ (0, 1) and σ(0) <

1 < σ(1). Let s ∈ R. Then, there is a constant r0 > 0 such that for any r > r0, N = 2n, N sufficiently
large, and any γ ∈ (1/2, 1),

P

(
∃v ∈ VN , t ∈ [log r, n − log r] : RN

v ≥ mN − s,RN
v (t) − 2 log 2Iσ2

( t
n

)
n < [−iγ(t, n), iγ(t, n)]

)

≤ Ce2s
∞∑

k=blog rc
k

1
2−γ exp

[
−k

2γ−1
2

]
,

(4.13)

where C ≤ 8√
log 2− log n+4s

4n

.

By Gaussian comparison and since we have Iσ2(x) < x, for x ∈ (0, 1), it turns out that for our
purposes, it suffices to consider a two-speed branching random walk, (XN

v ( j))v∈VN ,0≤ j≤n. We choose
the first speed to be 0 and the second to be σ2

max, where σmax = ess sup{σ(s) : 0 ≤ s ≤ 1}. Note that
σmax < ∞, as Iσ2(x) < x, for x ∈ (0, 1). To match variances, the change of speed occurs at scale
1 − 1/σ2

max. Write u ∼
j

v, for u, v ∈ VN , if j is the largest integer such that BDn− j(u) ∩ BDn− j(v) , ∅,
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i.e. in the language of BRW the “splitting-time” of u and v is j. The following Proposition is the
analogue statement to Theorem 2.2 for the two-speed BRW and key in the proof of Theorem 2.2.

Proposition 4.3. There is a constant C > 0, such that for any constant c > 0 and any z ≥ 0,

P

(
∃ j ∈ (log r, n − log r), ∃u ∼

j
v : XN

u , X
N
v ≥ mN − c log log r + z

)
(4.14)

≤ C
(
4− log r exp

[−4z + 4c log log r
]
+ log(r)−1/2 exp

[
2 log 2(1 − σ2

max) log r + 2c log log r − 2z
])
.

In particular, there are c, r0 > 0, such that for all r > r0 and n sufficiently large,

E

 max
u∼

s
v,s∈{log r,...,n−log r}

XN
u + XN

v

 ≤ 2mN − c log log r. (4.15)

Proof. We first consider the case when u ∼
j

v and j < n/σ2
max. In this case, the particles split before

the change in speed occurs. The speed change occurs at scale 1 − λ = 1 − 1/σ2
max. Note that there are

42n− j such pairs, and as the initial speed is zero, XN
u , X

N
v are independent. Hence,

P

(
∃ j ∈ (log r, bn(1 − 1/σ2

max)c), ∃u ∼
j

v : XN
u , X

N
v ≥ mN − c log log r + z

)

≤
bn(1−1/σ2

max)c∑

j=log r

42n− jP
(
XN

u ≥ mN − c log log r + z
)2 ≤ C̃

bn(1−1/σ2
max)c∑

j=log r

42n− j log(2)n
(mN − c log r + z)2

× exp
[−4 log(2)n + log n + 4(z − c log log r)

] ≤ C4− log r exp
[−4z + 4c log log r

]
. (4.16)

where C̃,C > 0 are finite constants and the last inequality follows from a Gaussian tail bound. Next,
we treat the case when particles split after the change of speed. Let γ ∈ (1/2, 1) and set i( j, n) B
(n − σ2

max(n − j)) ∧ (σ2
max(n − j)) and A1( j) B {x ∈ R : |x − n−σ2

max(n− j)
n mN | ≤ iγ( j, n)}. As the

extremal particles of the BRW stay with high probability in A1( j), for j ∈ {log r, . . . , n − log r} (see
Proposition 4.2 for a precise statement), we can compute as follows:

P
(
∃s ∈ (bn(1 − 1/σ2

max)c + 1, n − log r), ∃u ∼
s

v : XN
u , X

N
v ≥ mN − c log log r + z

)

≤ C
n−log r∑

j=bn(1−1/σ2
max)c+1

∫

A1( j)
42n− jP

(
XN

v (n) − XN
v ( j) ≥ mN − c log log r + z − x

)2

× 1√
2π log 2(n − σ2

max(n − j))
exp

[
− x2

2 log 2(n − σ2
max(n − j))

]
dx + ε. (4.17)

By a Gaussian tail bound and using that by the integral restriction, (mN−x)2 ≥ (σ
2
max(n− j)

n mN−i( j, n)γ)2,
the summand in (4.17) is bounded from above by

C
σ2

max(n − j) exp
[
− (mN−c log log r+z)2

log 2(2n−σ2
max(n− j))

]

√
2π log 2(n − σ2

max(n − j))(σ
2
max(n− j)

n mN − c log log r + z − iγ( j, n))2

×42n− j
∫

A1( j)
exp


−

(
x − (mN − c log log r + z) 2(n−σ2

max(n− j))
2n−σ2

max(n− j)

)2

2 log 2 (n−σ2
max(n− j))σ2

max(n− j)
2n−σ2

max(n− j)


dx. (4.18)
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Changing variables, i.e. x =

√
log 2σ2

max(n − j) n−σ2
max(n− j)

2n−σ2
max(n− j)

y +
2(mN−c log log r+z)(n−σ2

max(n− j))
2n−σ2

max(n− j)
, and neg-

lecting the upper restriction in A1( j), (4.18) is bounded from above by

C
(σ2

max(n − j))3/2

(
σ2

max(n− j)
n mN − c log log r + z − iγ( j, n)

)2 √
2π log 2(2n − σ2

max(n − j))

× exp
[
− (mN − c log log r + z)2

log 2(2n − σ2
max(n − j))

]
42n− j

∫

A′1( j)
exp

[
−y2/2

]
dy, (4.19)

with A′1( j) =

[
−mN

n σ̃(n, j) − (z − c log log r)
√

n−σ2
max(n− j)

log 2σ2
max(n− j)(2n−σ2

max(n− j))
) − iγ( j,n)

σ̃(n, j) ,+∞
]
, and where σ̃(n, j) =

√
σ2

max(n− j)(n−σ2
max(n− j))

log 2(2n−σ2
max(n− j))

. By a Gaussian tail bound applied to the integral, (4.19) is bounded from above

by

O


1

(n − j)
√

n − σ2
max(n − j)

 42n− j exp
[
− (mN − c log log r + z)2

log 2(2n − σ2
max(n − j))

− i2γ( j, n) log 2(2n − σ2
max(n − j))

2σ2
max(n − j)(n − σ2

max(n − j))

]

× exp
−mN iγ( j, n)

n
− m2

Nσ
2
max(n − j)(n − σ2

max(n − j))

2n2 log 2(2n − σ2
max(n − j))

− mN(z − c log log r)
n

n − σ2
max(n − j)

2n − σ2
max(n − j)

 .
(4.20)

Keeping only the dominant terms, one sees that the exponential is bounded from above by

exp

2 log 2(n − j)(1 − σ2
max) + 2c log log r − 2z +

σ2
max

n− j
n + 1

2
log n − c1iγ( j, n) − c2i2γ−1( j, n)

 ,

(4.21)

where c1, c2 > 0 are some finite constants. Inserting (4.21) into (4.20), allows to bound (4.17) from
above by

n−log r∑

j=bn(1−1/σ2
max)c+1

O


1

(n − j)
√

n − σ2
max(n − j)

 exp

2(n − j)(1 − σ2
max) log 2 − 2z +

σ2
max

n− j
n + 1

2
log n

+2c log log r − c1iγ( j, n) − c2i2γ−1( j, n)
]
≤ O


1√
log r

 exp
[
2 log 2(1 − σ2

max) log r + 2c log log r − 2z
]
.

(4.22)

Since σmax > 1, (4.22) tends to zero, as n → ∞. (4.15) is an immediate consequence of (4.16) and
(4.22). This concludes the proof of Proposition 4.3. �

Similarly, as for the IBRW, we have a localization for extremal particles of the MIBRW, which is
the statement of the following lemma.

Lemma 4.4. Let {S̃ N
v }v∈VN be the MIBRW, defined in (3.3). Let s ∈ R. Then, for any ε > 0, there is a

constant r0 > 0 such that for any r > r0, N = 2n, N sufficiently large, and any γ ∈ (1/2, 1),

P
(
∃v ∈ VN , t ∈ [log r, n − log r] : S̃ N

v ≥ mN − s, S̃ N
v (t) < [−iγ(t, n), iγ(t, n)]

)

≤ Ce2s
∞∑

k=blog rc
k

1
2−γ exp

[
−k

2γ−1
2

]
, (4.23)

where C ≤ 8√
log 2− log n+4s

4n

.

We do not give a proof here, as it is basically identical to the one of Proposition 4.2.
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Proof of Theorem 2.2. Note that the tree distance of two vertices u, v ∈ VN on the underlying tree of
the IBRW, {XN

v }v∈VN , is up to an additional constant smaller than the Euclidean distance. Hence, by
Lemma 3.3 ii. there is a κ ∈ N and non-negative constants {av}v∈VN such that, for all N ∈ N and all
u, v ∈ VN ,

E
[
X2kN

2ku X2kN
2kv

]
≤ E

[
ψN

u ψ
N
v

]
+ auav, (4.24)

and

Var
[
X2kN

2ku

]
= Var

[
ψN

u

]
+ a2

u. (4.25)

Thus, we may apply Lemma 4.1 with m = 2 and obtain, for any λ ∈ R,

P
(
(∃u, v ∈ VN , r ≤ ‖u − v‖2 ≤ N/r : ψN

u + ψN
v ≥ λ

)

≤ P
(
(∃u, v ∈ VN , r ≤ ‖u − v‖2 ≤ N/r : ψN

u auG + ψN
v + avG ≥ λ

)

≤ P
(
(∃u, v ∈ VN , r ≤ ‖u − v‖2 ≤ N/r : X2κN

2κu + X2κN
2kv ≥ λ

)

≤ P
(
(∃u, v ∈ V2κN , r ≤ ‖u − v‖2 ≤ 2κN/r : X2κN

u + X2κN
v ≥ λ

)
, (4.26)

where G is an independent standard Gaussian. Choosing λ = mN − c log log r and applying Proposi-
tion 4.3 to last probability in (4.26) yields (2.4), which concludes the proof of Theorem 2.2. �

5. Proof of Theorem 2.1

The following proposition allows to control the right tail of the maximum over subsets.

Proposition 5.1. Let ε > 0 and {ψ̄N
v }v∈VN be a centred Gaussian field such that, for all v,w ∈ VN ,

|E
[
ψ̄N

v ψ̄
N
w

]
−E

[
ψN

v ψ
N
w

]
| ≤ ε. If N is sufficiently large, then, for any A ⊂ VN and for all z ≥ 1, y ≥ 0, we

have

P

(
max
v∈A

ψ̄N
v ≥ mN + z − y

)
≤ C

|A|
|VN |e

−2(z−y). (5.1)

Proof of Proposition 5.1. By the covariance assumptions and Lemma 3.3 i., iii. one can apply Slepian’s
lemma, to deduce that there exists k ∈ N, such that for all sufficiently large N ∈ N and any λ ∈ R,

P

(
max
v∈A

ψ̄N
v ≥ λ

)
≤ P

(
max
v∈2kA

R2k

v ≥ λ
)
. (5.2)

Thus, it suffices to show (5.1) with RN instead of ψ̄N . Note that for any v ∈ VN , RN
v ∼ N

(
0, n log 2

)
.

Thus, by a first moment bound and a standard Gaussian tail estimate,

P
(
max
v∈A

RN
v ≥ mN + y − z

)
≤ C|A| n log 2

(mN + z − y)
√

2πn log 2
exp

[
− (mN + z − y)2

2n log 2

]

≤ C|A| n log 2

(mN + z − y)
√

2πn log 2
exp

[−2n log 2 + 1/2 log n − 2(z − y)
]

≤ C
|A|
|VN | exp

[−2(z − y)
]
, (5.3)

where the constant C > 0 may change from line to line and where we used that |VN | = 22n. �
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5.1. Approximation via an auxiliary field. Let N = 2n be an integer, much larger as any other
integers forthcoming. For two integers L = 2l and K = 2k, partition VN into a disjoint union of
(KL)2 boxes, with each of side length N/KL, and denote the partition by BN/KL = {BN/KL,i : i =

1, . . . , (KL)2}. Let vN/KL,i ∈ VN be the left bottom corner of box BN/KL,i and write wi =
vN/KL,i
N/KL . This

allows to consider the grid points {wi}i=1,...,(KL)2 as elements of VKL. Analogously, let K′ = 2k′ and
L′ = 2l′ be another two integers and let BK′L′ = {BK′L′,i : i = 1, . . . , [N/(K′L′)]2} be a partitioning
of VN with boxes BK′L′,i, each of side length K′L′. The left bottom corner of a box BK′L′,i is denoted
by vK′L′,i. One should think of N/KL being much larger than K′L′. Considering Lemma 3.4, it turns
out that this allows to define the corresponding approximating fields in such a way that they have only
a fixed variance parameter, which makes them easier to analyse. The macroscopic or “coarse field”,
{S N,c

v : v ∈ VN}, is defined as a centred Gaussian field on VN with covariance matrix Σc and entries
given by

Σc
u,v B σ2(0)E

[
φKL

wi
φKL

w j

]
, for u ∈ BN/KL,i, v ∈ BN/KL, j, (5.4)

where {φKL
v }v∈VKL is a standard 2d DGFF on VKL. This field captures the macroscopic dependence.

The microscopic or “bottom field”, {S N,b
v : v ∈ VN}, is a centred Gaussian field with covariance matrix

Σb defined entry-wise as

Σb
u,v B


σ2(1)E

[
φK′L′

u−vK′L′,iφ
K′L′
v−vK′L′ ,i

]
, if u, v ∈ BK′L′,i

0, else,
(5.5)

where {φK′L′
v }v∈VK′L′ is a 2d DGFF on VK′L′ . This field is supposed to capture the “local” correlations.

The third Gaussian field, {S N,m
v : v ∈ VN}, is a collection of MIBRWs on BN/KL,i, i = 1, . . . , (KL)2, i.e.

S N,m
v B

n−l−k∑

j=l′+k′

∑

B∈B j(vK′L′ ,i′ )
2− j

√
log(2)bN

i, j,B

∫ n− j

n− j−1
σ

( s
n

)
ds, for v ∈ BN/KL,i ∩ BK′L′,i′ , (5.6)

with {bN
i, j,B : i = 1, . . . , (KL)2, j ≥ 0, B ∈ BN

j } being a family of independent standard Gaussian
random variables. Recall that B j(vK′L′,i′) is the collection of boxes B ⊂ VN , of side length 2 j, that
contain the element vK′L′,i′ . This field is supposed to capture the “intermediate” correlations. To obtain
sufficiently precise covariance estimates, one needs to avoid boundary effects, which can achieved
working on a suitable subset of VN . Consider therefore the partitioning into N/L- and L−boxes, i.e.
BN/L = {BN/L,i : 1 ≤ i ≤ L2} and BL = {BL,i : 1 ≤ i ≤ (N/L)2}. Analogously, let vN/L,i and
vL,i be the left bottom corners of boxes BN/L,i, BL,i containing v. For a box B, let Bδ ⊂ B the set
Bδ = {v ∈ B : minz∈∂B ‖v − z‖ ≥ δlB}, where lB denotes the side length of the box B. Finally, set

V∗N,δ B { ∪
1≤i≤L2

BδN/L,i} ∩ { ∪
1≤i≤(KL)2

BδN/KL,i} ∩ { ∪
1≤i≤(N/L)2

BδL,i} ∩ { ∪
1≤i≤(N/KL)2

BδKL,i}. (5.7)

As |V∗N,δ| ≥ (1 − 16δ)|VN |, and using Proposition 5.1 with A = (V∗N,δ)
c, we have

P

 max
v∈

(
V∗N,δ

)c
S N

v ≥ mN + z

 ≤ 16δP
(
max
v∈VN

S N
v ≥ mN + z

)
, (5.8)

which tends to 0, as δ→ 0. Thus, it suffices to consider the maximum of the field on the set V∗N,δ.
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VN

BN/KL,i

BN/KL, j

BK′L′,i

S N,c·

S N,b·
S N,m·

N

K′L′

vN/KL,i

vK′L′, j

N/(KL)

Figure 2: 3-field decomposition

Using Gaussian comparison, we reduce the proof of Theorem 2.1 to showing convergence in law of the
centred maximum of an auxiliary field. Therefore, we need to have precise estimates on the variances
and covariances, which is what we provide in the following. In order to use Slepian’s lemma, we
actually need, for each v ∈ VN , equality of variances. This is usually achieved by adding suitable
independent Gaussian random variables, which is done in the following lemma. In particular, the
lemma states that one can choose the constants in such a way, that, asymptotically, they only depend
on the “fine scales”, i.e. they live on boxes BK′L′,i,. In the rest of the paper, limits are taken in the order
N,K′, L′,K and then L, for which we write (L,K, L′,K′,N)⇒ ∞.

Lemma 5.2. Let {Φ j}1≤ j≤(N/K′L′)2 be a family of i.i.d. standard Gaussian random variables. For
v ∈ BK′L′, j, j = 1, . . . , (N/K′L′)2 and v ≡ v̄ mod K′L′, i.e. v̄ = v − vK′L′, j, there exists a collection of
non-negative constants {aK′L′,v̄}K′L′,v̄, such that if we set

S N
v B S N,c

v + S N,b
v + S N,m

v + aK′L′,v̄Φ j, (5.9)

then

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

∣∣∣∣Var
(
S N

v

)
− Var

(
ψN

v

)
− 4α

∣∣∣∣ = 0. (5.10)

Proof. Considering Lemma 3.3 ii., (5.4), (5.5) and (5.6), a simple computation shows that, for any
v ∈ V∗N,δ,

Var
(
S N,c

v

)
+ Var

(
S N,b

v

)
+ Var

(
S N,m

v

)
= log N + ON(1), (5.11)

where the term ON (1) means that the constants are uniformly bounded in N. In particular, by Lemma 3.3
iii. one has

∣∣∣∣Var
(
S N,c

v

)
+ Var

(
S N,b

v

)
+ Var

(
S N,m

v

)
− Var

(
ψN

v

)∣∣∣∣ ≤ 4α. (5.12)

By (5.12), there exist non-negative constants {aN,v}v∈BN/KL,i , 1 ≤ i ≤ (KL)2, such that

Var
(
S N,c

v + S N,b
v + S N,m

v

)
+ a2

N,v = Var
(
ψN

v

)
+ 4α. (5.13)

Note that {aN,v}v∈BN/KL,i implicitly depend on KL and by (5.12), one gets

max
v∈V∗N,δ

aN,v ≤
√

8α. (5.14)
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For v ∈ BδN/KL,i ∩ Vδ
N , writing v ≡ v̄ mod K′L′, where v̄ = v − vN/KL,i, for v ∈ BN/KL,i, and using

Lemma 3.4 i. and [13, (1.29)],

a2
N,v = 4α + Var

(
ψN

v

)
− σ2(0)Var

(
φKL

wi

)
− σ2(1)Var

(
φK′L′

v̄

)
− Iσ2

(
l + k

n
,

n − l′ − k′

n

)
log(N)

= 4α + σ2(0) f (v/N) − σ2(0) f (wi/(KL)) − σ2(1) f (v̄/(K′L′)) + εN,KL,K′L′(v), (5.15)

which is non-negative. By Lemma 3.4 i., f is continuous and using ‖ v
N − wi

KL‖ = ‖ v−vKL,i
N ‖ → 0, as

(L,K,N) ⇒ ∞, we have in the same limit, | f (v/N) − f (wi/(KL))| → 0. Moreover, by using [13,
(1.29)], Lemma 3.4 i. and (5.13) in the first line of (5.15), it follows that

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

sup
v∈V∗N,δ

εN,KL,K′L′(v) = 0. (5.16)

Regarding (5.15), (5.16), and that Var
[
φK′L′

v

]
≤ log(K′L′) + α, for all v ∈ VN , there exist non-negative

aK′L′,v̄, such that

a2
N,v = a2

K′L′,v̄ + εN,KL,K′L′(v). (5.17)

Using [15, Lemma B.3,Lemma B.4,Lemma B.5], one obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

sup
u,v∈V∗N,δ:‖u−v‖∞≤L′

∣∣∣∣Var
(
φK′L′

u

)
− Var

(
φK′L′

v

)∣∣∣∣ = 0, (5.18)

which, together with (5.15) and (5.16), implies
∣∣∣a2

K′L′,ū − a2
K′L′,v̄

∣∣∣ ≤ sup
v∈V∗N,δ

εN,KL,K′L′(v), ∀u, v ∈ V∗N,δ : ‖u − v‖∞ ≤ L′. (5.19)

For v ∈ BK′L′, j, j = 1, . . . , (N/K′L′)2 and v ≡ v̄ mod K′L′, set

S N
v B S N,c

v + S N,b
v + S N,m

v + aK′L′,v̄Φ j. (5.20)

By (5.13) and (5.17), it holds that, for v ∈ V∗N,δ,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

∣∣∣∣Var
(
S N

v

)
− Var

(
ψN

v

)
− 4α

∣∣∣∣ = 0, (5.21)

which concludes the proof of Lemma 5.2. �

The next goal is to show that it suffices to prove convergence of the centred maximum of the ap-
proximating process, {S N

v }v∈VN , defined in (5.9). This can be done by using Gaussian comparison.
The previous lemma, Lemma 5.2, provides asymptotically equal variances, and the following lemma
provides covariance estimates for {S N

v }v∈VN . Crucially, for vertices close-by or at macroscopic distance,
the covariances coincide asymptotically.

Lemma 5.3. There exists a non-negative sequence {ε ′N,KL,K′L′}N,K,L,K′,L′≥0, and bounded constants
Cδ,C > 0, such that lim sup

(L,K,L′,K′)⇒∞
lim sup

N→∞
ε
′
N,KL,K′L′ = 0, and for all u, v ∈ V∗N,δ :

i. If u, v ∈ BL′,i, then
∣∣∣∣∣E

[(
S N

u − S N
v

)2
]
−E

[(
ψN

u − ψN
v

)2
]∣∣∣∣∣ ≤ ε

′
N,KL,K′L′ .

ii. If u ∈ BN/L,i, v ∈ BN/L, j and i , j, then
∣∣∣∣E

[
S N

u S N
v

]
−E

[
ψN

u ψ
N
v

]∣∣∣∣ ≤ ε ′N,KL,K′L′ .

iii. In all other cases, i.e. if u, v ∈ BN/L,i but u ∈ BL′,i′ and v ∈ BL′, j′ , for some i′ , j′, it holds that∣∣∣∣E
[
S N

u S N
v

]
−E

[
ψN

u ψ
N
v

]∣∣∣∣ ≤ Cδ + 40α.

Proof. See Subsection A.1. �
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We use the Lévy-Prokhorov metric, d(·, ·), which is, for two probability measures on R, µ and ν,
given by

d(µ, ν) B inf{δ > 0 : µ(B) ≤ ν(Bδ) + δ, for all open sets B}, (5.22)

where Bδ = {y ∈ R : |x − y| < δ, for some x ∈ B}. Moreover, let

d̃(µ, ν) = inf{δ > 0 : µ((x,∞)) ≤ ν((x − δ,∞)) + δ, for all x ∈ R}. (5.23)

and observe that if d̃(µ, ν) = 0, then ν stochastically dominates µ. For random variables X,Y with laws
µX , µY , write d(X,Y) instead of d(µX , µY ), and likewise for d̃(·, ·). The following lemma reduces the
proof of Theorem 2.1 to show convergence in law of S ∗N B maxv∈VN S N

v .

Lemma 5.4. Let {S N
v }v∈VN be the field defined in (5.9). Then,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d(ψ∗N − mN , S ∗N − mN − 4α) = 0. (5.24)

The proof of Lemma 5.4 is based on the two following lemmas, whose proofs are postponed and
given in Appendix B. The overall idea is the following: Having asymptotically precise covariance
estimates for vertices close-by or at macroscopic distance, and in order to use Slepian’s lemma, we
would like to add independent Gaussian fields living on those scales and control how the laws of
the corresponding centred maxima change under such perturbations. It turns out, that this leads to
a deterministic shift (see Lemma 5.5). Having this control, we can then prove Lemma 5.4. First,
introduce additional notation.

Fix a positive integer r ∈ N and let Br a partition of VbN/rcr into sub-boxes of side length r. Let
B = ∪r∈N,r≤NBr and {gB}B∈B be a collection of i.i.d. standard Gaussian random variables. For v ∈ VN ,
denote by Br(v) ∈ Br the box containing v. For s = (s1, s2) ∈ R2

+, and two positive integers, r1, r2,
define

ψ̃N
v,s,r1,r2

= ψN
v + s1gBr1 (v) + s2gBN/r2 (v). (5.25)

Set ψ̃∗N,s,r1,r2
= max

v∈VN
ψ̃N

v,s,r1,r2
and similarly, S̃ N

v,s,r1,r2
= S N

v + s1gBr1 (v) + s2gBN/r2 (v), and S̃ ∗N,s,r1,r2
=

max
v∈VN

S̃ N
v,s,r1,r2

.

Lemma 5.5. Let {S N
v }v∈VN be the field defined in (5.9). Then,

lim sup
r1,r2→∞

lim sup
N→∞

d
(
ψ∗N − mN , ψ̃

∗
N,s,r1,r2

− mN − ‖s‖22
)

= 0, (5.26)

and

lim sup
r1,r2→∞

lim sup
N→∞

d
(
S ∗N − mN , S̃ ∗N,s,r1,r2

− mN − ‖s‖22
)

= 0. (5.27)

Lemma 5.6. Let {ψ̄N
v }v∈VN be a centred Gaussian field such that, for all u, v ∈ VN , N ∈ N and some

arbitrary ε > 0, |Var
(
ψN

v

)
− Var

(
ψ̄N

v

)
| ≤ ε. Set ψ̄∗N B maxv∈VN ψ̄

N
v . Then there is a function, l = l(ε),

with l(ε)→ 0, as ε → 0, such that, if E
[
ψ̄N

u ψ̄
N
v

]
≤ E

[
ψN

u ψ
N
v

]
+ ε,

lim sup
N→∞

d̃
(
ψ∗N − mN , ψ̄

∗
N − mN

)
≤ l(ε). (5.28)

Else if E
[
ψ̄N

u ψ̄
N
v

]
+ ε ≥ E

[
ψN

u ψ
N
v

]
, then

lim sup
N→∞

d̃
(
ψ̄∗N − mN , ψ

∗
N − mN

)
≤ l(ε). (5.29)

Lemma 5.5 and Lemma 5.6 allow to prove Lemma 5.4.
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Proof of Lemma 5.4: As in (5.25), we write

ψ̃N
v,s,r1,r2

= ψN
v + s1gBr1 (v) + s2gBN/r2 (v), (5.30)

and analogously,

S̃ N
v,s,r1,r2

= S N
v + s1gBr1 (v) + s2gBN/r2 (v), (5.31)

where s = (s1, s2) ∈ (0,∞)2, r1, r2 ∈ N+ and {gB}B being a collection of i.i.d. Gaussian random
variables. Recall that Br is a collection of sub-boxes of side length r and that this forms a partition of
VbN/rcr. By (5.8), we only need to show that, for any δ > 0,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d
max

v∈V∗N,δ
ψN

v − mN , max
v∈V∗N,δ

S N
v − mN − 4α

 = 0. (5.32)

Thus, fix δ > 0 and let σ2∗ = Cδ + 40α with the constant Cδ as in Lemma 5.3, σlw = (0,
√
σ2∗ + 4α) and

σup = (σ∗, 0). We consider the two Gaussian fields
{
ψ̃N

v,L′,0,L,
√
σ2∗+4α

}

v∈V∗N,δ
and

{
S̃ N

v,L′,σ∗,L,0

}
v∈V∗N,δ

. By

Lemma 5.3 i., ii., iii. and (5.10), one gets for u, v ∈ V∗N,δ,
∣∣∣∣∣∣Var

(
ψ̃N

v,L′,0,L,
√
σ2∗+4α

)
− Var

(
S̃ N

v,L′,σ∗,L,0

)∣∣∣∣∣∣ ≤ ε̄N,KL,K′L′ , (5.33)

and

E

[
S̃ N

u,L′,σ2∗ ,L,0
S̃ N

v,L′,σ∗,L,0

]
≤ E

[
ψ̃N

u,L′,0,L,
√
σ2∗+4α

ψ̃N
v,L′,0,L,

√
σ2∗+4α

]
+ ε̄N,KL,K′L′ , (5.34)

where lim sup
(L,K,L′,K′,N)⇒∞

ε̄N,KL,K′L′ = 0. Lemma 5.5 implies both

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d
max

v∈V∗N,δ
ψ̃N

v,L′,0,L,
√
σ2∗+4α

− mN − (σ2
∗ + 4α), max

v∈V∗N,δ
ψN

v − mN

 = 0, (5.35)

and

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d
max

v∈V∗N,δ
S̃ N

v,L′,σ∗,L,0 − mN − σ2
∗, max

v∈V∗N,δ
S N

v − mN

 = 0. (5.36)

Having (5.33) and (5.34), Lemma 5.6 implies that

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d̃
max

v∈V∗N,δ
ψ̃N

v,L′,0,L,
√
σ2∗+4α

− mN , max
v∈V∗N,δ

S̃ N
v,L′,σ∗,L,0 − mN

 = 0. (5.37)

A combination of (5.35), (5.36) and (5.37), and using the triangle-inequality, gives stochastic domin-
ation in one direction, i.e.

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d̃
max

v∈V∗N,δ
ψN

v − mN , max
v∈V∗N,δ

S N
v − mN − 4α

 = 0. (5.38)

For the proof of the other direction of stochastic domination, consider instead the Gaussian fields{
ψ̃N

v,L′,
√
σ2∗+4α,L,0

}

v∈VN

and
{
S̃ N

v,L′,0,L,σ∗

}
. This switches the roles in (5.34) and the rest of the proof

carries out analogously, which concludes the proof of Lemma 5.4. �
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5.2. Convergence in law of the auxiliary field. A key step in the proof of Theorem 2.1 is to estab-
lish a precise right-tail estimate for the maximum of the auxiliary process, which is provided in the
following proposition. Before we state it, we introduce additional notation and make a preliminary
observation. For a, b ∈ [0, 1], we write Iσ2(a, b) =

∫ b
a σ2(x)dx. Let {S N

v }v∈VN be the field defined in
(5.9), and set S N, f

v B S N
v −S N,c

v . Recall the tail-bounds from [36, (2.6) in Theorem 2.1]. By Lemma 5.3
and applying Slepian’s lemma, these carry over to {S N

v }v∈VN . In particular, [36, (2.6) in Theorem 2.1]
implies that there are constants cα,Cα > 0 such that for z ≥ 0,

cαe−2z ≤ P
(
max
v∈VN

S N
v ≥ mN + z

)
≤ Cαe−2z. (5.39)

Lemma 5.7. Let γ ∈ (1/2, 1) and fix A > 0. Then, for z ∈ R,

P
(
∃v ∈ VN : S N

v ≥ mN + z, S N,c
v − 2 log(2)σ2(0)(k + l) < [−A(k + l)γ, A(k + l)γ]

)
≤ Ce

− A2(k+l)2γ−1

2 log(2)σ2(0) .

(5.40)

Proof. Denote by νc
v,N(·) the density such that for any interval I ⊂ R,

∫

I
νc

v,N(y)dy = P
(
S N,c

v − 2 log(2)σ2(0)(k + l) ∈ I
)
. (5.41)

For any v ∈ Vδ
N , using a union bound the probability in (5.40) is bounded from above by

22n
∫

[−A(k+l)γ,A(k+l)γ]c
νc

v,N(x)P
(
S N, f

v ≥ 2 log(2)Iσ2

(
k + l

n
, 1

)
n − log(n)/4 + z − x

)
dx

= 22n
∫

[−A(k+l)γ,A(k+l)γ]c

exp
[
−2 log(2)σ2

1(k + l) − 2x − x2

2 log(2)σ2(0)(k+l)

]

√
2π log(2)σ2(0)(k + l)

× exp

−2 log(2)Iσ2

(
k + l

n
, 1

)
n − 2

(
z − x − log(n)

4

)
−

(
z − x − log(n)

4

)2

2 log(2)Iσ2

(
k+l
n , 1

)
n



×

√
2 log(2)Iσ2

(
k+l
n , 1

)
n

2 log(2)Iσ2

(
k+l
n , 1

)
n − log(n)

4 + z − x
dx. (5.42)

The latter integral decays with e−A2(k+l)2γ−1/(2 log(2)σ2(0), which allows to conclude the proof. �

Write k̄ = k + l and Mn(k, t) = 2 log(2)Iσ2

(
k
n ,

t
n

)
n − ((t)∧(n−l̄)) log(n)

4(n−l̄) , for t ∈ [k, n]. Note that mN =

Mn(0, n), for n = log2 N.

Proposition 5.8. Let {S N
v }v∈VN be the field defined in (5.9), and set S N, f

v B S N
v − S N,c

v . Then, there are
constants Cα, cα > 0, depending only on α, and constants cα ≤ β∗K′,L′ ≤ Cα, such that

lim
z→∞ lim sup

(L′,K′,N)⇒∞
|e2 log(2)(k̄)(1−σ2(0))e−2k̄γe2z

P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) − k̄γ + z
)
− β∗K′,L′ | = 0. (5.43)

In particular, {β∗K′,L′}K′,L′≥0 depends on the variance parameters only through σ(1).

Note that, unlike previous tail estimates obtained in [36, Theorem 2.1], the estimates in Proposi-
tion 5.8 are precise estimates for the maximum far in front of the expected maximum. Nevertheless,
the proofs are technically similar, i.e. both rely on a truncated second moment computation. The
proof of Proposition 5.8 is postponed to Appendix C, as we first want to use it to finish the proof
of Theorem 2.1. Proposition 5.8 allows to construct the limiting law of (max

v∈VN
S N

v − mN)N≥0, which

is the contents of the following: Partition [0, 1]2 into R = (KL)2 disjoint, equal-sized boxes. Let
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{β∗K′,L′}K′,L′≥0 be given by Proposition 5.8. Then, there is a function, ρ : R→ R, that grows to infinity
arbitrarily slowly, and such that

lim
z′→∞

lim sup
(L′,K′,N)⇒∞

sup
z′≤z≤ρ(K′L′)

∣∣∣∣∣∣e
2ze−2k̄γe2 log(2)k̄(1−σ2(0))

P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) + z − k̄γ
)
− β∗K′,L′

∣∣∣∣∣∣ = 0.

(5.44)

Let {%R,i}1≤i≤R be independent Bernoulli random variables with

P
(
%R,i = 1

)
= β∗K′,L′e

2k̄γ22 log(2)k̄(σ2(0)−1). (5.45)

In addition, consider independent random variables {YR,i}1≤i≤R satisfying

P
(
YR,i ≥ x

)
= e−2xe−2k̄γ , x ≥ −k̄γ, (5.46)

and let {ZR,i}1≤i≤R be an independent Gaussian field with the same distribution as {S N,c
v }v∈VN . Set

GR,i B %R,i(YR,i + 2 log(KL)(1 − σ2(0))) + (ZR,i − 2 log(KL)), (5.47)

and

G∗K,L,K′,L′ B max
1≤i≤R
%R,i=1

GR,i. (5.48)

Let µ̄K,L,K′,L′ be the distribution of G∗K,L,K′,L′ . Note that it is independent of N, which is essential for
the proof of convergence in law. The following theorem reduces the proof of convergence in law of
maxv∈VN S N

v − mN , to proving convergence of the sequence {µ̄K,L,K′,L′}K,L,K′,L′ .

Theorem 5.9. Let µN = law of
(
max
v∈VN

S N
v − mN

)
. Then,

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

d
(
µN , µ̄K,L,K′,L′

)
= 0. (5.49)

In particular, there exists µ∞ such that lim
N→∞

d(µN , µ∞) = 0.

Proof. Denote by τ = arg max
v∈VN

S N
v the (unique) particle achieving the maximal value. The correlation

estimates in Lemma 5.3, together with Slepian’s lemma and (2.2), imply that maxv∈VN S N
v − mN , as a

sequence in n, is tight. Using this fact and the localization of {S N,c
v }v∈VN in Lemma 5.7, one obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P

(
S N, f
τ ≥ Mn(k̄, n) − k̄γ

)
= 1. (5.50)

Thus, assume that S N, f
τ ≥ Mn(k̄, n) − k̄γ holds. To exclude that maxv∈VN S N, f

v is too large, consider the
event E = ∪R

i=1{maxv∈BN/KL,i S N, f
v ≥ Mn(k̄, n) + KL + k̄γ}. By a union and a Gaussian tail bound,

P (E) ≤ 22k̄P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) + KL + k̄γ
)
≤ 22nP

(
S N, f

v ≥ Mn(k̄, n) + KL + k̄γ
)

≤ C exp
[
2 log(2)σ2(0)(k + l) − 2KL − 2k̄γ

]
. (5.51)

Thus, one obtains

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P (E) = 0. (5.52)

Analogously, a union bound on the event E′ = ∪R
i=1{YR,i ≥ KL + k̄γ} yields

lim sup
(L,K,L′,K′)⇒∞

lim sup
N→∞

P
(E′) = 0. (5.53)
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As a next step, we couple the centred fine field, M f
n,i B maxv∈BN/kl,i S N, f

v − Mn(k̄, n), to the ap-
proximating process GR,i defined in (5.47). By Proposition 5.8, there are ε∗N,KL,K′L′ > 0, satisfying

lim sup
(L,K,L′,K′,N)⇒∞

ε∗N,KL,K′L′ = 0, and such that, for some |ε�| ≤ ε∗N,KL,K′L′/4,

P

(
−Ak̄γ + ε� ≤ M f

n,i ≤ KL + k̄γ
)

= P
(
%R,i = 1, YR,i ≤ KL + k̄γ

)
(5.54)

and such that, for all t with −k̄γ − 1 ≤ t ≤ KL + k̄γ,

P

(
%R,i = 1,YR,i ≤ t − ε∗N,KL,K′L′/2

)
≤ P

(
−k̄γ + ε� ≤ M f

n,i ≤ t
)

≤ P
(
%R,i = 1,YR,i ≤ t + ε∗N,KL,K′L′/2

)
. (5.55)

Thus, there is a coupling of {M f
n,i : 1 ≤ i ≤ R} and {(%R,i,YR,i) : 1 ≤ i ≤ R}, such that, on the event

(E ∪ E′)c ,

%R,i = 1, |YR,i − M f
n,i| ≤ ε∗N,KL,K′L′ , if M f

n,i ≥ ε∗N,KL,K′L′ (5.56)

|YR,i − M f
n,i| ≤ ε∗N,KL,K′L′ , if %R,i = 1. (5.57)

Note that, for each N, one possibly needs a different coupling, since M f
n,i depends on N, whereas

(%R,i,YR,i) does not. A short argument for the existence of such couplings is as follows: In the event
Ec ∩ E′,c, (5.54) becomes

P
(
−k̄γ + ε� ≤ M f

n,i

)
= P

(
%R,i = 1

)
. (5.58)

By (5.55) and since the random variables have distributions that are absolutely continuous with respect
to the Lebesgue measure, there is an increasing function, g : R → R, with g(t) ∈ [t − ε∗/2, t + ε∗/2],
for −k̄γ − 1 ≤ t ≤ KL + k̄γ, and such that

P
(
%R,i = 1,YR,i ≤ g(t)

)
= P

(
−k̄γ + ε� ≤ M f

n,i ≤ t
)
. (5.59)

Let −k̄γ − 1 = t0 < . . . < tD = KL + k̄γ be an arbitrary partition. Define sets

A j B {ω : %R,i(ω) = 1,YR,i(ω) ∈ [g(t j), g(t j+1))}, (5.60)

B j B {ω : ε� ≤ M f
n,i(ω) ∈ [t j, t j+1)}. (5.61)

In particular, for any 0 ≤ j < D, P
(
A j

)
= P

(
B j

)
. Define random variables (%′R,i,Y

′
R,i), i.e for ω ∈

B j ∩ (E ∪ E′)c, set Y ′R,i(ω) = g(M f
n,i(ω)) and such that, for all ω ∈ (E ∪ E′)c ∩

(
∪ jB j

)
, %′R,i(ω) = 1. For

ω ∈ E ∪ E′, set %′R,i(ω) = %R,i(ω) and Y ′R,i(ω) = YR,i(ω). Then (%′R,i,Y
′
R,i)

d
= (%R,i,YR,i), and (%′R,i,Y

′
R,i)

additionally satisfies both (5.56) and (5.57). Concerning the coarse field, one can couple such that
S N,c

v = ZR,i, for v ∈ BN/KL,i, 1 ≤ i ≤ R, simply as they have the same law. Thus, there are couplings,
such that, outside an event of vanishing probability as (L,K, L′,K′,N)⇒ ∞,

max
v∈VN

(
S N

v − mN
)
−G∗K,L,K′,L′ ≤ 2ε∗N,KL,K′L′ . (5.62)

Let τ′ = arg max1≤i≤R GR,i. In the following, we exclude the case that the maximum of GR,i is achieved
at i = τ′ and when at the same time, %R,τ′ = 0. The first order of the maximum of {S N,c

v }v∈VN is
given by 2 log(KL)σ(0) (see [17]), which is of order O(log(KL)) less than subtracted in (5.47), and
so, ZR,i − 2 log(KL) → −∞, as (L,K) ⇒ ∞. Having this in mind, considering (5.62) and since
(max

v∈VN
S N

v − N)N≥0 is tight, it follows that

lim sup
(L,K,L′,K′,N)⇒∞

P
(
%R,τ′ = 1

)
= 1. (5.63)
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By (5.56), (5.57) and (5.63), there are couplings, such that outside a set with probability tending to 0,
as (L,K, L′,K′,N)⇒ ∞, it holds that

∣∣∣∣∣max
v∈VN

S N
v − mN −G∗K,L,K′,L′

∣∣∣∣∣ ≤ 2ε∗N,KL,K′L′ , (5.64)

which proves (5.49). Moreover, (5.64) implies that µN is a Cauchy sequence and that there is µ∞, such
that lim

N→∞
d(µN , µ∞) = 0, which concludes the proof of Theorem 5.9. �

Proof of Theorem 2.1: Recall that G∗K,L,K′,L′ is a random variable with law µ̄K,L,K′,L′ . The goal is to
construct a sequence of random variables, {DK,L}K,L≥0, which are measurable with respect to F c B
σ

({ZR,i})R
i=1, with R B (KL)2, and so that, for any x ∈ R,

lim sup
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E

[
exp(−β∗K′,L′DK,Le−2x)

] = lim inf
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])

E

[
exp(−β∗K′,L′DK,Le−2x)

] = 1. (5.65)

Regarding (5.63), assume %R,τ′ = 1. Moreover, let

S R,i B 2 log(KL)(1 + σ2(0)) − ZR,i, for i = 1, . . . ,R. (5.66)

For x ∈ R, it holds

µ̄K,L,K′,L′((−∞, x]) = P
(
G∗K,L,K′,L′ ≤ x

)
(5.67)

= E


R∏

i=1

(
1 −P

(
%R,i

(
YR,i + 2 log(KL)(1 − σ2(0))

)
> 2 log(KL) − ZR,i + x

))
|F c

 .

A union bound onDc = {min1≤i≤R 2 log(KL) − ZR,i ≥ 0}c, shows that lim sup
KL→∞

P (D) = 1. Thus, on the

eventD and using (5.45), (5.46), (5.66), one deduces

P

(
%R,iYR,i > 2 log(KL)σ2(0) − ZR,i + x|F c

)
= β∗K′,L′e

−2(S R,i+x). (5.68)

Note that (5.68) tends to 0, as KL → ∞. Using the fact that e−
x

1−x ≤ 1 − x ≤ e−x, for x < 1, and
inserting for x the probability in (5.68), it follows that there is a non-negative sequence {εK,L}K,L≥0,
satisfying lim sup

KL→∞
εK,L = 0, and such that

exp
(
−(1 + εK,L)β∗K′,L′e

−2(S R,i+x)
)
≤ P

(
%R,iYR,i ≤ 2 log(KL)σ2(0) − ZR,i + x|F c

)

≤ exp
(
−(1 − εK,L)β∗K′,L′e

−2(S R,i+x)
)
. (5.69)

Plugging (5.69) into (5.67) yields (5.65). Combining (5.65) with Theorem 5.9 implies that there is a
constant β∗, such that

lim sup
(K′,L′)⇒∞

|β∗K′,L′ − β∗| = 0. (5.70)

Set

DK,L =

R∑

i=1

e−2S R,i . (5.71)

Combining (5.70) with (5.65), it follows that

lim sup
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])
E

[
exp(−β∗DK,Le−2x)

] = lim inf
(L,K,L′,K′)⇒∞

µ̄K,L,K′,L′((−∞, x])
E

[
exp(−β∗DK,Le−2x)

] = 1. (5.72)

Theorem 5.9 and (5.72) imply that DK,L converges weakly to a random variable D, as (L,K) ⇒ ∞.
(5.71) shows that DK,L depends solely on (KL)2 = R. Moreover, as µ̄K,L,K′,L′ is a tight sequence of
laws, it follows that almost surely, D > 0. This concludes the proof of Theorem 2.1. �
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Note that the random variables {DK,L}K,L≥0, defined in (5.71), are the analogue of the “McKean
martingale” in variable-speed BBM (see [20, (1.14)]).

Appendix A. Gaussian comparison and covariance estimates

Theorem A.1 (Slepian’s Lemma, [52, Theorem 3.11]). Let T = {1, . . . , n} and X,Y be two centred
Gaussian vectors. Assume further that it exist two subsets A, B ⊂ T × T, so that

E[XiX j] ≤ E[YiY j], (i, j) ∈ A (A.1)
E[XiX j] ≥ E[YiY j], (i, j) ∈ B (A.2)
E[XiX j] = E[YiY j], (i, j) < A ∪ B. (A.3)

Suppose f : Rn → R is smooth, with at most exponential growth at infinity of f and its first and second
derivatives , and

∂i j f ≥ 0, (i, j) ∈ A (A.4)
∂i j f ≤ 0, (i, j) ∈ B. (A.5)

Then,

E[ f (X)] ≤ E[ f (Y)]. (A.6)

Remark A.2. We use Slepian’s Lemma in a very particular setting: Assume that E
[
X2

i

]
= E

[
Y2

i

]
and

E

[
XiX j

]
≥ E

[
YiY j

]
, for all i, j ∈ T. Then, for any x ∈ R,

P

(
max
i∈T

Xi > x
)
≤ P

(
max
i∈T

Yi > x
)
, (A.7)

and

E

[
max
i∈T

Xi

]
≤ E

[
max
i∈T

Yi

]
. (A.8)

Theorem A.3 (Sudakov-Fernique, [38, Sudakov-Fernique]). Let I be an arbitrary set with cardinality
|I| = n, {Xi}i∈I , {Yi}i∈I be two centred Gaussian vectors. Define γX

i j B E[(Xi−X j)2], γY
i j B E[(Yi−Y j)2].

Let γ B maxi, j |γX
i j − γY

i j|. Then,
∣∣∣E[X∗] −E[Y∗]

∣∣∣ ≤
√
γ log(n). (A.9)

If γX
i j ≤ γY

i j for all i, j then E[X∗] ≤ E[Y∗]. (A.10)

In particular, if {Xi}i∈I , {Yi}i∈I are independent centred Gaussian fields, then

E

[
max

i∈I
(Xi + Yi)

]
≥ E

[
max

i∈I
Xi

]
. (A.11)

A.1. Covariance estimates.

Proof of Lemma 3.3. The proof of statement i. is a simple adaptation of the proof of the analogue state-
ment for finitely many scales [36, Lemma 3.3]. The third statement follows by a combination of i.with
ii.. In the following, we prove statement ii.. Let u, v ∈ Vδ

N and denote by bN(u, v) = 1 − log+ ‖u−v‖2
log N the

“branching scale”. By the Gibbs-Markov property of the DGFF, increments ∇φN
u (s), ∇φN

v (s) beyond
bN(u, v) are independent. By (1.5), one has

E
[
ψN

u ψ
N
v

]
=

∫ 1

0

∫ 1

0
σ(s)σ(t)E

[
∇φN

u (s)∇φN
v (t)

]
dsdt. (A.12)

To compute the discrete gradients, it suffices to consider E
[
φN

u (s)φN
v (t)

]
, for s, t ∈ [0, 1]. Let S be a

simple random walk with hitting times τ∂A = inf{r ≥ 0 : S r ∈ ∂A}, for A ⊂ Z2. Let c : ∂[− 1
2 ,

1
2 ]2 → R2

be the continuous function, encoding the relative position on the boundary, such that, for x ∈ (0, 1),
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u ∈ Z2 and z ∈ ∂[xN + u]λi , z = xN + u + c(z)N1−λi . In particular, the function c is in both components
absolutely bounded away from zero by 1/2 and from above by

√
1/2. For 0 ≤ s < t ≤ 1, we have

E
[
φN

u (s)φN
v (t)

]
=

∑

x∈∂[u]s
y∈∂[v]t

Pu
(
S τ∂[u]s

= x
)
Pv

(
S τ∂[v]t

= y
)
E

[
φN

u+c(x)N1−sφ
N
v+c(y)N1−t

]

=
∑

x∈∂[u]s
y∈∂[v]t

Pu
(
S τ∂[u]s

= x
)
Pv

(
S τ∂[v]t

= y
) [
−a

(
u − v + N1−s(c(x) − c(y)N s−t)

)

+
∑

z∈∂VN

Pu+c(x)N1−s

(
S τ∂VN

= z
)
a(z − v − c(y)N1−t)

 , (A.13)

where a denotes the Potential kernel, which satisfies the asymptotics

a(x) = log ‖x‖2 + c0 + O(‖x‖−2
2 ), (A.14)

as ‖x‖2 → ∞. Using this asymptotics and the approximate uniformity of the harmonic measure away
from the boundary [15, Lemma B.5], the second sum in is about log(N) + O(1), and the first is about
log(N1−s)+O(1) if s < t and if ‖u−v‖2 � N1−s, i.e. bN(u, v) ≤ s−εN with εN = 4/ log N. In particular,

∫ 1

s+εN

E
[
φN

u (s)∇φN
v (t)

]
dt = 0, (A.15)

and, if ‖u − v‖2 < N1−t,
∫ t−εN

0
E

[
∇φN

u (s)φN
v (t)

]
ds = (t − εN) log(N) + O(1), (A.16)

where the constant order term is uniform in N. (A.15) and (A.16) imply that the integral in (A.12)
concentrates on the diagonal. Then, by independence of increments beyond the branching scale,

E
[
ψN

u ψ
N
v

]
=

∫ 1

0
σ2(s)E

[
∇φN

u (s)∇φN
v (s)

]
ds =

∫ bN (u,v)−εN

0
σ2(s)E

[
∇φN

u (s)∇φN
v (s)

]
ds

+

∫ bN (u,v)

bN (u,v)−εN

σ2(s)E
[
∇φN

u (s)∇φN
v (s)

]
ds. (A.17)

By Cauchy-Schwarz, the second integral in (A.17) is absolutely bounded by a constant C which de-
pends on σ but is independent of N. To bound the first integral in (A.17) with s = t, note that in
(A.13) there are 2π‖u− v‖2 many pairs, x ∈ ∂[u]s, y ∈ [v]s that have distance less than ‖u− v‖2 at scale
bN(u, v)−εN . By [15, Lemma B.5] the harmonic measures evaluate to approximately 1/4‖u−v‖2. Thus,
the sum over these particles is at most of order O

( log+ ‖u−v‖
‖u−v‖2

)
= O(1). For summands x ∈ ∂[u]s, y ∈ [v]s

and ‖x− y‖2 ≥ ‖u− v‖2, we use (A.14) and [15, Lemma B.5], to deduce that the first integral in (A.17)
equals

log N
∫ bN (u,v)−εN

0
σ2(s)ds + O(1) = log NIσ2

(
1 − log+ (‖u − v‖2)

log N

)
+ O(1). (A.18)

This concludes the proof of the extension. �

Proof of Lemma 3.4. We start with the proof of the first statement. First note that by Lemma 3.3 ii.,
for xN + u, xN + v ∈ Vδ

N , it holds that

E
[
ψN

xN+uψ
N
xN+v

]
= log(N) + O(1). (A.19)
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Thus, one has to show that, as N → ∞, the constant order contribution may depend on u, v, but not on
x and apart from this, has fluctuations which vanish as N → ∞. By (1.5), one has

E
[
ψN

xN+uψ
N
xN+v

]
=

∫ 1

0
σ2(s)E

[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds =

∫ λ0

0
σ2(s)E

[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds

+

∫ 1−λ1

λ0

σ2(s)E
[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds +

∫ 1

1−λ1

σ2(s)E
[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds.

(A.20)

We choose λ0, λ1 = O
( log log N

log N

)
, such that

σ2(0)λ0 + σ2(1)λ1 +

∫ 1−λ1

λ0

σ2(s)ds = 1. (A.21)

Note that we have by assumptions ‖u − v‖2 ≤ L, for L � N and thus, we can assume bN(xN +

u, xN + v) > 1 − λ1. For the first integral in (A.20), we use a Taylor expansion of σ at 0, i.e. σ(s) =

σ(0) + σ′(0)s + o(σ′(0)s), for s ≥ 0 small. Thus, the first integral becomes

∫ λ0

0
σ2(0)E

[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds + O(λ2

0 log Nσ(0)σ′(0))

= σ2(0)E
[
φN

xN+u(λ0)φN
xN+v(λ0)

]
+ O(λ2

0 log Nσ(0)σ′(0)), (A.22)

where the error term vanishes as N → ∞, since λ2
0 log N = O

( log log N
log N

)
. Similarly, by a Taylor expan-

sion of σ at 1, i.e. σ(s) = σ(1)−σ′(1)(1− s) + o(σ′(1)(1− s)), for s < 1 close to one, the last integral
in (A.20) can be computed as

∫ 1

1−λ1

σ2(1)E
[
∇φN

xN+u(s)∇φN
xN+v(s)

]
ds + O(λ2

1 log Nσ(1)σ′(1))

= σ2(1)E
[(
φN

xN+u(1) − φN
xN+u(1 − λ1)

) (
φN

xN+v(1) − φN
xN+v(1 − λ1)

)]
+ O(λ2

1 log Nσ(1)σ′(1)).
(A.23)

Similarly as in (A.22), the error term vanishes as N → ∞. In all three cases in (A.20), using (A.22)
and (A.23), it suffices to compute quantities of the form E

[
φN

xN+u(s)φN
xN+v(s)

]
. The case when s = 0 is

trivial since, for any v ∈ VN , φN
v (0) = 0, as the harmonic average of the value zero is zero. Note that

by [15, (B.5),(B.6),(B.7)] one has, for v,w ∈ VN ,

E
[
φN

v φ
N
w

]
= −a(v − w) +

∑

z∈∂VN

Pv
(
S τ∂VN

= w
)
a(z − w), (A.24)

where a denotes the potential kernel, with representation as in (A.14). First, consider the case when
0 < s < 1. Note that the discrete harmonic measure converges weakly to the harmonic measure
associated to Brownian motion [13, Lemma 1.23], i.e. to the measure Π(x, A) B Px

(
Bτ∂[0,1]2

∈ A
)
,

where (Bt)t≥0 is Brownian motion in R2 killed upon exiting [0, 1]2. Moreover, since the logarithm is
continuous and bounded in a neighbourhood of ∂[0, 1]2, using (A.24) and the weak convergence of the
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discrete harmonic measure, one obtains

E
[
φN

xN+u(s)φN
xN+v(s)

]
=

∑

z∈∂[xN+u]s
y∈∂[xN+v]s

PxN+u
(
S τ∂[xN+u]s

= z
)
PxN+v

(
S τ∂[xN+v]λi

= y
)
E

[
φN

z φ
N
y

]

=
∑

z∈∂[xN+u]s
y∈∂[xN+v]s

PxN+u
(
S τ∂[xN+u]s

= z
)
PxN+v

(
S τ∂[xN+v]s

= y
) (
−a(u − v + N1−s(c(z) − (y)))

+
∑

w∈∂VN

PxN+u+N1−s

(
S τ∂VN

= w
)
a(w − xN − v − N1−sc(y))



= − log N1−s + log N + f (x) + o(1) = s log N + f (x) + o(1), (A.25)

where f (x) =
∫

z∈∂[0,1]2 Π(x, dz) log ‖z − x‖2. In particular, f is continuous. Using (A.25) and (A.22),
the first integral in (A.20) can be rewritten as

σ2(0)
(
λ0 log N + f (x)

)
+ o(1). (A.26)

For the remaining case, s = 1, call ei the i−th unit vector. By (A.24) and using weak convergence of
the discrete harmonic measure [13, Lemma 1.23],

E
[
φN

xN+u(1)φN
xN+v(1)

]
= E

[
φN

xN+uφ
N
xN+v

]
= log N + f (x) − a(u, v) + o(1). (A.27)

Using (A.23) and (A.27) allows to rewrite the third integral in (A.20) as

σ2(1)
(
λ1 log N − a(u, v)

)
+ o(1). (A.28)

Inserting (A.26), (A.28) into (A.20), using (A.25), (A.21) and Iσ2(1) = 1, one obtains,

E
[
ψN

xN+uψ
N
xN+v

]
= log N + σ(0)2 f (x) + σ(1)2g(u, v) + o(1), (A.29)

with g(u, v) = −a(u, v) and where o(1) → 0, as N → ∞. This concludes the proof of statement i. in
Lemma 3.4.

The covariances in the off-diagonal case, i.e. when x , y ∈ (0, 1)2, ‖x−y‖2 ≥ 1/L, can be computed
similarly, now by Taylor expansion of the variance σ(s) at 0. First note that, for λ =

log log N
log N and N

large enough, λ > bN(xN, yN). Thus,

E
[
ψN

xNψ
N
yN

]
=

∫ λ

0
σ2(s)E

[
∇φN

xN(s)∇φN
yN(s)

]
ds = σ2(0)E

[
φN

xN(λ)φN
yN(λ)

]
+ O(σ(0)σ′(0)λ2 log N).

(A.30)

By choice of λ, O
(
σ(0)σ′(0)λ log N

)
= O

(
σ(0)σ′(0) log log N

log N

)
= o(1).

σ2(0)E
[
φN

xN(λ)φN
yN(λ)

]
= σ2(0)

∑

u∈∂[xN]λ
v∈∂[xN]λ

PxN
(
S τ∂[xN]λ

= u
)
PyN

(
S τ∂[yN]λ1

= v
)
E

[
φN

u φ
N
v

]
. (A.31)

Using (A.24) and previous notation allows to reformulate (A.31) as

σ2(0)
∑

u∈∂[xN]λ
v∈∂[xN]λ

PxN
(
S τ∂[xN]λ

= u
)
PyN

(
S τ∂[yN]λ

= v
) (
−a(N(x − y + N−λ(c(u) − c(v))))

+
∑

w∈∂VN

PxN
(
S τ∂VN

= w
)
a(w − yN)

 . (A.32)
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Using (A.14), we rewrite (A.32)

σ2(0)
∑

u∈∂[xN]λ
v∈∂[xN]λ

PxN
(
S τ∂[xN]λ

= u
)
PyN

(
S τ∂[yN]λ

= v
) (− log N − log ‖x − y‖2 − c0 + o(1)

+
∑

w∈∂VN

PxN
(
S τ∂VN

= w
)

(log N + log ‖c(w) − y‖2 + c0 + o(1))



= σ2(0)h(x, y) + o(1), (A.33)

where h(x, y) = − log ‖x − y‖2 +
∫
∂[0,1]2 Π(x, dz) log ‖z − y‖2, by the weak convergence of the harmonic

measure to Π. In particular, h is continuous on [0, 1]2 \ {(x, x) : x ∈ [0, 1]}. This concludes the proof
of the second statement and thus, of Lemma 3.4. �

Proof of Lemma 5.3. : We start with the proof of (i). Let i′ be such that u, v ∈ BL′,i ⊂ BK′L′,i′ . By (5.9),
one has

S N
u − S N

v =
(
S N,c

u − S N,c
v

)
+

(
S N,m

u − S N,m
v

)
+

(
S N,b

u − S N,b
v

)
+ Φi′

(
aK′L′,ū − aK′L′,v̄

)

= S N,b
u − S N,b

v + Φi′
(
aK′L′,ū − aK′L′,v̄

)
. (A.34)

In particular, by (5.19), |aK′L′,ū − aK′L′,v̄| ≤ εN,KL,K′L′ , and so
∣∣∣∣∣E

[(
S N

u − S N
v

)2
]
−E

[(
ψN

u − ψN
v

)2
]∣∣∣∣∣

≤ 4εN,KL,K′L′ +

∣∣∣∣∣σ
2(1)E

[(
φK′L′

u−vK′L′ ,i′ − φK′L′
v−vK′L′ ,i′

)2
]
−E

[(
ψN

u − ψN
v

)2
]∣∣∣∣∣ . (A.35)

Using the tower property of conditional expectation, conditioning {ψN
v }v∈VN onσ

(
φN

w : w ∈ [vK′L′,i′]c
K′L′

)

and using (A.27) and Lemma 3.4 ii., it follows that

lim sup
(L,K,L′,K′,N)⇒∞

sup
u,v∈BL′ ,i∩V∗N,δ
1≤i≤(N/L′)2

∣∣∣∣∣σ
2(1)E

[(
φK′L′

u−vK′L′ ,i′ − φK′L′
v−vK′L′ ,i′

)2
]
−E

[(
ψN

u − ψN
v

)2
]∣∣∣∣∣ = 0. (A.36)

Statement i. follows from (A.36) together with (A.35). Next, we prove ii.. Let i′ , j′ be such that
u ∈ BN/KL,i′ , v ∈ BN/KL, j′ and assume without loss of generality that N � K′ � L′ � K � L �
1/δ. Since vertices u and v belong to distinct boxes of side length N/KL and thus, also to distinct
K′L′−boxes, both E

[
S N,m

u S N,m
v

]
= 0 and E

[
S N,b

u S N,b
v

]
= 0. Using these observations, scaling the

DGFF from VKL to VN and by (A.24),

E

[
S N

u S N
v

]
= E

[
S N,c

u S N,c
v

]
= σ2(0)E

[
φKL

wi′ φ
KL
w j′

]
= σ2(0)E

[
φN

vN/KL,i′φ
N
vN/KL, j′

]
+ o(1). (A.37)

Since ‖ vN/KL,i′−u
N ‖2, ‖ vN/KL, j′−v

N ‖2 = O
(

1
KL

)
, [15, Lemma B.14] implies

lim sup
(L,K,L′,K′,N)⇒∞

sup
u∈BN/KL,i′∩V∗N,δ

v∈BN/KL, j′∩V∗N,δ, i
′, j′

∣∣∣∣E
[
S N

u S N
v

]
− σ2(0)E

[
φN

u φ
N
v

]∣∣∣∣ = 0. (A.38)

On the other hand, the vertices u, v are at distance of order N/KL away from each other. Since con-
sidering limits of the form (L,K, L′,K′,N) ⇒ ∞, one can assume that N/KL � N1−λ1 , and thus
E

[
φN

u φ
N
v

]
= E

[
φN

u (λ1)φN
v (λ1)

]
. Therefore, by a Taylor expansion of σ at 0 as in (A.30),

∣∣∣∣E
[
ψN

u ψ
N
v

]
− σ2(0)E

[
φN

u φ
N
v

]∣∣∣∣ =
∣∣∣∣σ2(0)E

[
φN

u (λ1)φN
v (λ1)

]
− σ2(0)E

[
φN

u φ
N
v

]∣∣∣∣ + o(1)→ 0, (A.39)

as N → ∞. (A.38) together with (A.39) implies statement ii.. Note that for statement iii., one has
‖u − v‖2 = O(N/L). This allows to approximate as in (A.39). Note that in this case, there is a constant
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L ≥ c(u, v) > 0, such that the leading order of the first covariance is given by log(‖u − v‖2 + N1−λ1) −
log(‖u − v‖2) = log

(
1 + cL

Nλ1

)
. In the following, we distinguish three cases:

(1) u, v ∈ BK′L′,i but u ∈ BL′,i′ and v ∈ BL′, j′

(2) u, v ∈ BN/KL,i, but u ∈ BK′L′,ĩ and v ∈ BK′L′, j̃
(3) u ∈ BN/KL,i ∩ BL′,i′ and v ∈ BN/KL, j ∩ BL′, j′ .

In case (1), S N,c
u = S N,c

v and S N,m
u = S N,m

v and so, using notation from the proof of Lemma 3.4, by
(A.24), (5.13), (5.17) and as in (A.27),

E

[
S N

u S N
v

]
= Var

[
S N,c

u S N,c
v

]
+ Var

[
S N,m

u

]
+E

[
S N,b

u S N,b
v

]
+ aK′L′,ūaK′L′,v̄ + o(1)

= log N + σ2(0) f
( u

N

)
+ σ2(1)

(
−a(u − v) +

∫

∂[0,1]2
Π

( u
N
, dz

)
a

(
z − v

K′L′
))

+ aK′L′,ūaK′L′,v̄ + o(1). (A.40)

Since u, v ∈ V∗N,δ are away from the boundary, the integral in (A.40) is bounded by a constant Cδ,
depending on δ. Thus, (A.40) can be written as log N −σ2(1) log+ ‖u− v‖2 + O(1), where the constant
order term is bounded by 8α + Cδ. By Lemma 3.3 ii., E

[
ψN

u ψ
N
v

]
= log N −σ2(1) log+ ‖u − v‖2 + O(1),

where the constant order term is bounded by α. Thus, statement ii. follows in case (1). In case (2),
E

[
S N,b

u S N,b
v

]
= 0. Thus, there is a constant c1 > 0, such that

E
[
S N

u S N
v

]
= E

[
S N,c

u S N,c
v

]
+ E

[
S N,m

u S N,m
v

]
+ c1. (A.41)

To estimate the first covariance in (A.41), apply (A.24) and for the second, note that {S N,m
v }v∈VN is

a MIBRW, and thus, using Lemma 3.3 i. and ii., statement ii. follows, in case (2). In case (3),
E

[
S N,m

u S N,m
v

]
= 0 and E

[
S N,b

u S N,b
v

]
= 0. By scaling the DGFF as in (A.37) and using (A.24),

E

[
S N

u S N
v

]
= E

[
S N,c

u S N,c
v

]
= σ2(0)

(
log(N) − log+(‖u − v‖2)

)
+ c + o(1), (A.42)

where c is a bounded constant depending on δ and where the error o(1) vanishes as N → ∞. The
same reasoning applied to E

[
ψN

u ψ
N
v

]
as in (A.39), implies the claim in this remaining case and thereby

concludes the proof Lemma 5.3. �

Appendix B. Proof of Lemma 5.5 and Lemma 5.6

We prove Lemma 5.5 in the case of the scale-inhomogeneous DGFF. The proof for the approxim-
ating field, {S N

v }V∈VN , is essentially identical. This is due to Lemma 5.3, which allows to use Gaussian
comparison to reduce the proof to the one we provide.

Lemma B.1. Let {gN
v : u ∈ VN} be a collection of random variables, independent of the centred

Gaussian field, {ψ̄N
u : u ∈ VN}, and the 2d scale-inhomogeneous DGFF, {ψN

u : u ∈ VN}, such that

P

(
gN

u ≥ 1 + y
)
≤ e−y2 ∀u ∈ VN . (B.1)

Assume further that there is some δ > 0, such that, for all v,w ∈ VN , E
[
ψ̄N

v ψ̄
N
w

]
−E

[
ψN

v ψ
N
w

]
| ≤ δ. Then,

there is a constant C = C(α), such that, for any ε > 0, N ∈ N and x ≥ −√ε,

P

(
max
v∈VN

(
ψ̄N

v + εgN
v

)
≥ mN + x

)
≤ P

(
max
v∈VN

ψ̄N
v ≥ mN + x − √ε

) (
Ce−C−1ε−1)

. (B.2)

Proof. Let Γy B {v ∈ VN : y/2 ≤ εgN
v ≤ y}. Then,

P

(
max
v∈VN

(
ψ̄N

v + εgN
v

)
≥ mN + x

)
≤P

(
max
v∈VN

ψ̄N
v ≥ mN + x − √ε

)

+

∞∑

i=0

E

[
E

[
1maxv∈Γ2i √ε ψ̄

N
v ≥mN+x−2i √ε

∣∣∣∣∣Γ2i √ε

]]
. (B.3)
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By Proposition 5.1, the last sum in (B.3) can be bounded from above by

c̃e−2x
∞∑

i=0

E

[
|Γ2i √ε |/|VN |

]
e2i+1 √ε , (B.4)

with c̃ > 0 being a finite constant. By assumption (B.1), one has

E

[
|Γ2i √ε |/|VN |

]
≤ e−4i(Cε)−1

. (B.5)

Thus, (B.4) is bounded from above by c̃e−2xe−(Cε)−1
. This concludes the proof of Lemma B.1. �

Proposition B.2. Let {ϕN
v }v∈VN , {ϕ̃N

v }v∈VN be two independent centred Gaussian fields satisfying the
covariance estimates in Lemma 5.3, and let {gB : B ⊂ VN} be a family of independent standard
Gaussians. Moreover, let σ̃ = (σ̃1, σ̃2) ∈ R2

+ and {ϕN,r,σ̃
v : v ∈ VN} and {ϕN,σ̃,∗

v : v ∈ VN} be two
centred Gaussian fields, given by

ϕN,r1,r2,σ̃
v = ϕN

v + σ̃1gBv,r1
+ σ̃2gBv,N/r2

, (B.6)

and

ϕN,σ̃,∗
v = ϕN

v +

√
‖σ̃‖22
log N

ϕ̃N
v , (B.7)

for v ∈ VN . Set MN,r1,r2,σ̃ = max
v∈VN

ϕN,r1,r2,σ̃
v , and likewise, MN,σ̃,∗ = max

v∈VN
ϕN,σ̃,∗

v . Then, for any fixed

σ̃ ∈ (0,∞)2,

lim
r1,r2→∞

lim sup
N→∞

d
(
MN,r1,r2,σ̃ − mN ,MN,σ̃,∗ − mN

)
= 0. (B.8)

Proof. Partition VN into boxes of side length N/r2 and denote by B the collection of these boxes. Fix
arbitrary δ > 0, for B ∈ B denote by Bδ the box with the same centre as B, but with side length
(1 − δ)N/r2. The union of such restricted boxes, we call VN,δ =

⋃
B∈B

Bδ. The maxima over these sets,

we denote by MN,r1,r2,σ̃,δ = max
v∈VN,δ

ϕN,r1,r2,σ̃
v and MN,σ̃,∗,δ = max

v∈VN,δ
ϕN,σ̃,∗

v . By Proposition 5.1,

lim
δ→0

lim
N→∞

P
(
MN,r1,r2,σ̃,δ , MN,r1,r2,σ̃

)
= lim

δ→0
lim

N→∞
P

(
MN,σ̃,∗,δ , MN,σ̃,∗

)
= 0. (B.9)

Thus, it suffices to show equation (B.8) with MN,r1,r2,σ̃,δ − mN and MN,σ̃,∗,δ − mN . Next, we show that
the main contribution to the maximum is given by {ϕN

v }v∈VN , while the perturbation fields only have a
negligible influence. For B ∈ B, let zb ∈ B the maximizing element, i.e. maxv∈Bδ ϕ

N
v = ϕN

zB
. The claim

is that

lim
r1,r2→∞

lim sup
N→∞

P

(
|MN,r1,r2,σ̃,δ −max

B∈B
ϕN,r1,r2,σ̃

zB
| ≥ 1

log n

)

= lim sup
N→∞

P

(
|MN,σ̃,∗,δ −max

B∈B
ϕN,σ̃,∗

zB
| ≥ 1

log n

)
= 0. (B.10)

We first show how Proposition B.2 follows from (B.10). Assuming (B.10), conditioning on the pos-

itions of the maximum, {zB}B∈B, one deduces that the centred Gaussian field
{√
‖σ̃‖22/ log Nϕ̃N

zB

}

B∈B
has pairwise correlations of order at most O(1/ log N). Thus, the conditional covariance matrices of

√
‖σ̃‖22

log(N) ϕ̃
N
zB


B∈B

and {σ̃1gBzB,r1
+ σ̃2gBzB,N/r2

}B∈B are within O(1/ log N) of each other entry-wise. In

combination with (B.10) this proves Proposition B.2. It remains to prove (B.10). Suppose that on
the contrary, either of the events considered in the probabilities in (B.10) occurs. By (2.2) and Gaus-
sian comparison, we know that E1 = E1(C) = {ω : MN,r1,r2,σ̃,δ < (mN − C,mN + C)} ∪ {MN,σ̃,∗,δ <
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(mN − C,mN + C)} has a probability tending to 0, i.e. lim
C→∞

lim sup
N→∞

P (E1) = 0. Moreover, The-

orem 2.2 implies that also the event E2 = {ω : ∃u, v ∈ VN : ‖u − v‖2 ∈ (r,N/r) and min(ϕN
u , ϕ

N
v ) >

mN −c log log r} cannot occur, i.e. lim
r→∞ lim sup

N→∞
P (E2) = 0. Note that Theorem 2.2 is stated only for the

scale-inhomogeneous DGFF. However, using the covariance assumptions and Gaussian comparison,
it is possible to replace {ψN

v }v∈VN with {ϕN
v }v∈VN throughout the proof of Theorem 2.2. This allows to

assume the event Ec
1 ∩ Ec

2. To show (B.10), we consider the following events:

– E3 = Ẽ3∪E∗3, where Ẽ3 = {ω : ∃v ∈ VN : ϕN,r1,r2,σ̃
= MN,r1,r2,σ̃,δ, ϕ

N
v ≤ mN−c log log r} and E∗3 =

{ω : ∃v ∈ VN : ϕN,σ̃,∗
v = MN,σ̃,∗,δ, ϕN

v ≤ mN − c log log r}.
– E4 = {ω : ∃v ∈ B, B ∈ B : ϕN

v ≥ mN − c log log r and

√
‖σ̃‖22
log N

(
ϕ̃N

v − ϕ̃N
zB

)
≥ 1/ log n}.

E3: Let Γx = {v ∈ VN : ϕN,r1,r2,σ̃
v − ϕN

v ∈ (x, x + 1)}. The idea is that, by localizing and conditioning
on the difference of the two Gaussian fields through the set Γx, one can use Proposition 5.1 to bound
max
v∈Γx

ϕN
v from above, i.e.

P
(
Ec

1 ∩ Ẽ3
)
≤ P

(
max

x≥c log(n)−C
max
v∈Γx

ϕN,r1,r2,σ̃
v ≥ mN −C

)
≤

∑

x≥c log(n)−C

P

(
max
v∈Γx

ϕN,r1,r2,σ̃
v ≥ mN −C

)

≤
∑

x≥c log(n)−C

E

[
P

(
max
v∈Γx

ϕN
v ≥ mN − x −C|Γx

)]
≤ c̃

∑

x≥c log(n)−C

E [|Γx|/|VN |] e2x. (B.11)

By a first moment bound for Gaussian random variables, one has

E

[
|Γx|1/2/|VN |1/2

]
≤E

[
|{v ∈ VN : σ̃1gBv,r1

+ σ̃2gBv,N/r2
∈ (x, x + 1)}|1/2

]
/|VN |1/2

≤P
(
σ̃1gBv,r1

+ σ̃2gBv,N/r2
∈ (x, x + 1)

)1/2 ≤ e−c
′
x2
/c
′
, (B.12)

for some constant c′ = c
′
(σ, σ̃) > 0. Thus,

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P

(
Ec

1(C) ∩ Ẽ3
)

= 0. (B.13)

In the same way, one can prove an analogue estimate for E∗3 in place of Ẽ3, which gives

lim sup
C→∞

lim sup
r→∞

lim sup
N→∞

P

(
Ec

1(C) ∩ E3
)

= 0. (B.14)

E4: Let Γ
′
r = {v ∈ VN : ϕN

v ≥ mN − c log log r}. In VN , there can be at most r2 particles at minimum
distance N/r, and around each of these, one can find approximately r2 particles in VN which are within
distance r. Thus, on Ec

2, one has |Γ′r | ≤ 2r4. Further, for each v ∈ B∩Γ
′
r and in the event of Ec

2, one has
‖v − zB‖2 ≤ r. Thus, by independence between the Gaussian fields {ϕN

v }v∈VN and {ϕN,′
v }v∈VN , and using

2nd order Chebychev’s inequality,

P



√
‖σ̃‖22
log N

(
ϕN,′

v − ϕN,′
zB

)
≥ 1

log log N

 ≤
(c̃(σ, σ̃) log r + c1)

(
log log N

)2

log N
, (B.15)

where c̃, c1 > 0 are finite constants. Therefore, and by a union bound,

lim sup
r→∞

lim sup
N→∞

P

(
E4 ∩ Ec

2

)
≤ lim sup

r→∞
lim sup

N→∞
2r4[c̃(σ, σ̃) log r + c1]

(
log log N

)2

log N
= 0. (B.16)

This concludes the proof of equation (B.10) and thereby, the proof of Proposition B.2. �
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Proof of Lemma 5.5: We prove Lemma 5.5 in the case of the scale-inhomogeneous DGFF. Lemma 5.5

for the approximating field follows from Gaussian Define ψ̄N,σ̃ =

(
1 +

‖σ̃‖22
2 log N

)
ψN

v , for v ∈ VN , and set

MN = maxv∈VN ψ
N
v and M̄N,σ̃ = max

v∈VN
ψ̄N,σ̃. One has M̄N,σ̃ =

(
1 +

‖σ̃‖22
log N

)
MN . Using (2.2), this gives us

both

E

[
M̄N,σ̃

]
= E [MN] + 2‖σ̃‖22 + o(1), (B.17)

and

lim
N→∞

d
(
MN −E [MN] , M̄N,σ̃ −E

[
M̄N,σ̃

])
= 0. (B.18)

Further, let {ψN,σ̃,∗
v : v ∈ VN} be defined as in (B.7) and set MN,σ̃,∗ = maxv∈VN ψ

N,σ̃,∗
v . In the dis-

tributional sense,
{
ψ̄N,σ̃

v

}
v∈VN

can be considered as a sum of
{
ψN,σ̃,∗

v

}
v∈VN

and an independent centred

Gaussian field with variances of order O((1/ log N)3). Thus, by Gaussian comparison, it follows that

E

[
M̄N,σ̃

]
= E

[
MN,σ̃,∗

]
+ o(1), (B.19)

as well as

lim
N→∞

d
(
M̄N,σ̃ −E

[
M̄N,σ̃

]
,MN,σ̃,∗ −E [

MN,σ̃,∗
])

= 0. (B.20)

By (B.20), Proposition B.2, and using the triangle inequality, one concludes the proof of Lemma 5.5.
�

Proof of Lemma 5.6. Recall that we want to prove asymptotic stochastic domination. The basic idea
is to use Slepian’s Lemma. Let Φ, {ΦN

v }v∈VN be independent standard Gaussian random variables and
for some ε∗ > 0, set

ψN,lw,ε∗
v =

(
1 − ε∗

log N

)
ψN

v + εN,′
v Φ (B.21)

ψ̄
N,up,ε∗
v =

(
1 − ε∗

log N

)
ψ̄N

v + εN,′′
v ΦN

v , (B.22)

where εN,′
v = εN,′

v (ε, ε∗) and εN,′′
v = εN,′′

v (ε, ε∗) are chosen such that

Var
[
ψN,lw,ε∗

v

]
=

(
1 − ε∗

log N

)2

Var
[
ψN

v

]
+ (εN,′

v )2 = Var
[
ψN

v

]
+ ε (B.23)

and

Var
[
ψ̄

N,up,ε∗
v

]
=

(
1 − ε∗

log N

)2

Var
[
ψ̄N

v

]
+ (εN,′′

v )2 = Var
[
ψN

v

]
+ ε. (B.24)

Solving for εN,′
v in (B.23), gives

(εN,′
v )2 =

ε∗

log N
Var

[
ψN

v

]
+ ε. (B.25)

Moreover, for u , v ∈ VN ,

E

[
ψN,lw,ε∗

u ψN,lw,ε∗
v

]
=

(
1 − ε∗

log N

)2

E

[
ψN

u ψ
N
v

]
+ εN,′

u εN,′
v (B.26)

and by (B.24),

E

[
ψ̄

N,up,ε∗
u ψ̄

N,up,ε∗
v

]
=

(
1 − ε∗

log N

)2

E

[
ψ̄N

u ψ̄
N
v

]
≤

(
1 − ε∗

log N

)2

E

[
ψN

u ψ
N
v

]
+ ε

(
1 − ε∗

log N

)2

. (B.27)
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We want that, for all u, v ∈ VN , E
[
ψN,lw,ε∗

u ψN,lw,ε∗
v

]
≥ E

[
ψ̄

N,up,ε∗
u ψ̄

N,up,ε∗
v

]
. Considering (B.26) and

(B.27), this holds, provided

εN,′
u εN,′

v ≥ ε
(
1 − ε∗

log N

)2

. (B.28)

Combining (B.28) with (B.25) and as ε → 0, one sees that it is possible to choose first ε∗(ε) and then
both {εN,′

v (ε, ε∗)}v∈VN and {εN,′′
v (ε, ε∗)}v∈VN , such that ε∗ → 0, and that at the same time, all requirements

(B.23), (B.24) and (B.28) hold. Observe further, that in this case, by (B.23) and (B.24), maxv∈VN ε
N,′
v →

0, as well as maxv∈VN ε
N,′′
v → 0. With this choice, one can apply Slepian’s lemma to obtain

d̃
(
max
v∈VN

ψN,lw,ε∗
v − mN ,max

v∈VN
ψ̄

N,up,ε∗
v − mN

)
= 0. (B.29)

As ε → 0, the distribution of the Gaussian field {ψN,lw,ε∗
v }v∈VN tends to that of {ψN

v }v∈VN . Applying
Lemma B.1 to {ψ̄N,up,ε∗

v }v∈VN , one deduces

P

(
max
v∈VN

ψ̄
N,up,ε∗
v − mN ≥ x

)
≤ P

(
max
v∈VN

ψ̄N
v − mN ≥ x −

√
max
w∈VN

εN,′′
w

) (
Ce−(C maxw∈VN εN,′′

w )−1
)
. (B.30)

Since max
w∈VN

εN,′′
w → 0, as ε → 0, this allows to conclude the proof of (5.28). (5.29) can be proved in

the same way, by switching the roles of {ψN
v }v∈VN and {ψ̄N

v }v∈VN in the proof above. Further details are
omitted. �

Appendix C. Proof of Proposition 5.8

We outline the strategy of the proof: First, we localize the position of S N,m
v , for particles v ∈ VN that

satisfy S N
v ≥ mN + z. This reduces the computation of the asymptotic right-tail distribution to the com-

putation of an expectation of a sum of indicators, which is significantly simpler, as it essentially boils
down to computing a single probability. In the second step, we prove that the asymptotic behaviour
of the right-tail of the maximum of the auxiliary field does not depend on the parameter N, so that
any possible constant also depends only on the remaining parameters, K′, L′ and z. In the third step,
we investigate how the limit scales in z, which allows us to factorize the dependence on the variable
z in the above obtained constants, reducing the dependence of the constants to the parameters, K′, L′.
We further show that the constants can be bounded uniformly from below and from above, which then
concludes the proof. Recall that S N, f

v = S N
v −S N,c

v , for v ∈ VN . For the entire proof, fix the index i along
with a box BN/KL,i. The field {S N, f

v }v∈BN/KL,i is constructed in such a way (see (5.9)), that it is independ-
ent of the integers K, L and i. In particular, the sequence {β∗K′,L′}K′L′ does not depend on these. For a
fixed v ∈ BN/KL,i, and for S N,m

v , consider XN
v as the associated variable speed Brownian motion. To be

more precise, recall the definition of S N,m
v in (5.6). To each Gaussian random variable bN

i, j,B in (5.6),

associate an independent Brownian motion bN
i, j,B(t) that runs for 2−2 j time with rate σ

(
n− j

n

)
and ends

at the value of σ
(

n− j
n

)
bN

i, j,B. Each variable speed Brownian motion, {XN
v (t)}0≤t≤n−k−l−k′−l′ , is defined

by concatenating the Brownian motions associated to earlier times, which correspond to larger scales.
Until the end of the proof, in order to shorten notation, simply write N̄ = N/KL, n∗ = n− k− l− k′ − l′
and analogously, n̄ = n − k − l as well as l̄ = l′ + k′, k̄ = k + l. As in (5.5), we consider the partitioning
of BN/KL,i into a collection of K′L′-boxes BK′L′ and refer to BK′L′(v) ∈ BK′L′ as the unique K′L′−box
that contains v. The set of all left bottom corners of these K′L′−boxes is called ΞN̄ . We further write
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Mn(k, t) = 2 log(2)Iσ2

(
k
n ,

t
n

)
n − ((t)∧(n−l̄)) log(n)

4(n−l̄) , for t ∈ [k, n]. Let

Ev,N(z) =
{
XN

v (t) − Mn(k̄, t) ∈ [−iγ(t, n∗),max(iγ(t, n∗), z)], ∀0 ≤ t ≤ n∗,

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)Iσ2

(
k̄
n
, 1

)
n − log(n)/4 − k̄γ + z − XN

v (n∗)
}
, (C.1)

where YN
u

law∼ S N
u − S N,c

u − S N,m
u = S N, f

u − S N,m
u is an independent Gaussian field. The first restriction

is that all particles have to stay within a tube around 2 log(2)Iσ2

(
k̄
n ,

k̄+t
n

)
n, which is due to Proposi-

tion 4.2. Moreover, it ensures that at the beginning, particles cannot be too large. The second event
ensures that there are particles reaching the relevant level. We consider the number of particles satis-
fying the event Ev,N(z), namely

ΛN(z) B
∑

v∈ΞN̄

1Ev,N (z) (C.2)

and claim that

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

∣∣∣∣∣∣∣∣∣∣∣∣

P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) + z − kγ
)

E [ΛN(z)]

∣∣∣∣∣∣∣∣∣∣∣∣
= 1. (C.3)

This reduces the analysis to compute the asymptotics of the expectation, which is much simpler, as
this only needs precise right-tail asymptotic of a single vertex. We start proving the claim (C.3). By a
first moment bound and using Lemma 4.4, one obtains

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) + z − k̄γ
)
≤ E [ΛN(z)] , (C.4)

which implies that the quotient is bounded from above by 1. In order to obtain equality, one shows

lim sup
z→∞

lim sup
(L,K,L′,K′,N)⇒∞

E

[
ΛN(z)2

]
/E [ΛN(z)] = 1. (C.5)

Assuming (C.5) and using the Cauchy-Schwarz inequality, one has

P

(
max

v∈BN/KL,i
S N, f

v ≥ Mn(k̄, n) + z
)
≥ E [ΛN(z)] , (C.6)

which, together with (C.4), then implies (C.3). Thus, we turn to the proof of equation (C.5). First,
decompose the second moment along the branching scale, bN(v,w) = max{λ ≥ 0 : [v]λ ∩ [w]λ , ∅},
beyond which increments are independent, i.e.

E

[
ΛN(z)2

]
= E [ΛN(z)] +

∑

v,w∈ΞN̄

P
(
Ev,N(z) ∩ Ew,N(z)

)

= E [ΛN(z)] +

n∗−1∑

ts=0

∑

v,w:d(v,w)=ts

P
(
Ev,N(z) ∩ Ew,N(z)

)
(C.7)
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Note that, for v ∈ ΞN̄ fixed, there are 22(n∗−(k̄+ts)) many w ∈ ΞN̄ with d(v,w) = ts. The probabilities in
(C.7) can be bounded from above by

P
(
Ev,N(z) ∩ Ew,N(z)

) ≤
∑

xs∈[−iγ(k̄+ts,n∗),max(iγ(k̄+ts,n∗),z)]
x1,x2∈[−l̄γ,l̄γ]

P

(
XN

v (ts) − Mn(k̄, ts) ∈ [xs − 1, xs]
)

×P
(
XN

v (n∗) − XN
v (ts) − Mn(ts, n − l̄) + k̄γ + xs ∈ [x1 − 1, x1]

)

×P
(

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)σ2(1)l̄ + z − x1

)

×P
(
XN

w (n∗) − XN
w (ts) − Mn(ts, n − l̄) + k̄γ + xs ∈ [x2 − 1, x2]

)

×P
(

max
u∈BK′L′ (w)

YN
u ≥ 2 log(2)σ2(1)l̄ + z − x2

)
(C.8)

Similarly, one can expand E [ΛN(z)], i.e.

E [ΛN(z)] = 22n∗
∑

xs∈[−iγ(k̄+ts,n∗),max(iγ(k̄+ts,n∗),z)]
x1,x2∈[−l̄γ,l̄γ]

P

(
XN

v (ts) − Mn(k̄, ts) ∈ [xs − 1, xs]
)

×P
(
XN

v (n∗) − XN
v (ts) − Mn(k̄ + ts, n − l̄) + k̄γ + xs ∈ [x1 − 1, x1]

)

×P
(

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)σ2(1)l̄ + z − x1

)
. (C.9)

For each summand, there is an additional factor appearing in (C.8) compared to (C.9). If one can show
that all these vanish uniformly over xs, when summing over ts and then taking the limits, (z, L̄,N) ⇒
∞, one obtains (C.5), and thereby (C.3). Thus, one needs to estimate the additional factors,

∑

x2∈[−l̄γ,l̄γ]

P
(
XN

w (n∗) − XN
w (ts) − Mn(k̄ + ts, n − l̄) + k̄γ + xs ∈ [x2 − 1, x2]

)

× P
(

max
u∈BK′L′ (w)

YN
u ≥ 2 log(2)σ2(1)l̄ + z − x2

)

≤ 2−2(n∗−(k̄+ts))
∑

x2∈[−l̄γ,l̄γ]

2 log(2)l̄σ(1) +
z−x2
σ(1)√

2π log(2)Iσ2

(
k̄+ts

n , n−l̄
n

)
n
√

l̄ log 2
exp

[
−2 log(2)(k̄ + ts − Iσ2

(
k̄ + ts

n

)
n)

]

× exp

−2 log(2)l̄ − 2
(
z − xs − n − k̄ − l̄ − ts

4(n − k̄ − l̄)
log(n) − k̄γ

)
−

(
z−x2
σ(1)

)2

2 log(2)l̄



× exp


−

(
x2 − xs − n−k̄−l̄−ts

4(n−k̄−l̄) log(n) − k̄γ
)2

2 log(2)Iσ2

(
k̄+ts

n , n−l̄
n

)
n


. (C.10)

Note that there are 22(n∗−(k̄+ts)) vertices w ∈ ΞN̄ with d(v,w) = ts, for fixed v ∈ ΞN̄ , which cancels with
the prefactor in (C.10) when taking the sum in (C.7). To show that the sum in ts is finite, first note that
the relevant term in (C.10) is given by exp

[
−2 log(2)(k̄ + ts − Iσ2

(
k̄+ts

n

)
n)

]
. Recall the assumption

Iσ2(x) < x, for x ∈ (0, 1). In particular, for any δ > 0, there exists ε > 0 such that Iσ2(x) < x − ε,
for x ∈ (δ, 1 − δ). Since one is interested in the limit, as (z,K′, L′,N) ⇒ ∞, it is possible to assume
k̄(1−σ2(0))

n < ε/2 and l̄(σ2(1)−1)
n < ε/2. In this case it holds, for ts ∈ (0, n − k̄ − l̄),

Iσ2

(
k̄ + ts

n

)
<

k̄ + ts

n
− ε/2. (C.11)
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Using (C.11) in (C.10), implies that (C.10) is summable in ts ∈ (0, n − k̄ − l̄), when considering limits
(z,K′, L′,N) ⇒ ∞. The sum in x2 in (C.10) is bounded by its number of summands, i.e. one gets a
prefactor of leading order 4 log(2)l̄γ+1/2σ(1), where one can choose γ ∈ ( 1

2 , 1). Note that there is still
the term exp

[
−2 log(2)l̄

]
which ensures that (C.10) tends to zero, as (z,K′, L′,N) ⇒ ∞. Altogether,

this proves (C.5). In the second step, we show that it is possible to choose the sequence of constants
independently of N. More explicitly, in the following, we show that there are constants βK′,L′,z > 0,
such that

lim
z→∞ lim sup

(L′,K′,N)⇒∞
E [ΛN(z)]
βK′,L′,z

= lim
z→∞ lim inf

(L′,K′,N)⇒∞
E [ΛN(z)]
βK′,L′,z

= e2 log(2)k̄(σ2(0)−1)e2k̄γ . (C.12)

Since XN
v (n∗) ∼ N

(
0, log(2)Iσ2

(
k̄
n ,

n∗
n

)
n
)
, and using Lemma 4.4, which allows to ignore the restriction

to stay below the maximum at all times, E [ΛN(z)] reads

22(n−k̄−l̄)
P

(
XN

v (n̄) − Mn(k̄, n − l̄) ∈ [−l̄γ, l̄γ], max
u∈BK′L′ (v)

YN
u ≥ Mn(k̄, n) − XN

v (n∗) − k̄γ + z
)

=

l̄γ∫

−l̄γ

22(n−k̄−l̄)
√

2π log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

exp

−
(
Mn(k̄, n − l̄) + x

)2

2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n



×P
(

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)l̄σ2(1) + z − k̄γ − x

)
dx

=

l̄γ∫

−l̄γ

22k̄(σ2(0)−1)22l̄(σ2(1)−1) √n√
2π log(2)Iσ2

(
k̄
n

n−l̄
n

)
n

exp

−2x −
(
x − log(n)

4

)2

2 log(2)(n − σ2(0)k̄ − σ2(1)l̄)



×P
(

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)l̄σ2(1) + z − k̄γ − x

)
dx. (C.13)

By definition of S N
u (see (5.9)), maxu∈BK′L′ (v) YN

u has the same law as maxu∈VK′L′ S N,b
u + aK′L′,ūΦ j and is

therefore independent of N (cp. (5.5) and (5.9)). Note further that
√

n√
Iσ2

(
k̄
n ,

n−l̄
n

)
n

n→∞→ 1, and by Borell’s

inequality for Gaussian processes (see [52, Lemma 3.1]),

P

(∣∣∣∣∣∣ max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)l̄σ2(1) + z − x − k̄γ

∣∣∣∣∣∣

)
≤ C2−2l̄(σ(1)−1)2

l̄−
3
2 (σ(1)−1) exp

[
−2

σ(1) − 1
σ(1)

(z − k̄γ)
]
.

(C.14)

As σ(1) > 1, (C.14), together with (C.13), implies (C.12) and thus, the third claim. In particular, one
can read off (C.13) that the sequence {βK′,L′,z} depends only on the very last variance parameter and
on k̄γ. In the last step, we analyse how the right tail probability scales in z, namely we want to show

lim
z1,z2→∞

lim sup
(L̄,N)⇒∞

e−2z2E [ΛN(z1)]
e−2z1E [ΛN(z2)]

= lim
z1,z2→∞

lim inf
(L̄,N)⇒∞

e−2z2E [ΛN(z1)]
e−2z1E [ΛN(z2)]

= 1. (C.15)

For v ∈ VN , set νv,N(·) be the density, such that for any interval I ⊂ R,
∫

I
νv,N(y)dy = P

(
XN

v (n∗) ∈ I + Mn(k̄, n − l̄)
)
. (C.16)

Using this notation, we can rewrite

P
(
Ev,N(z)

)
=

l̄γ∫

−l̄γ

νv,N(z + x)P
(

max
u∈BK′L′ (v)

YN
u ≥ 2 log(2)l̄σ2(1) − k̄γ − x

)
dx. (C.17)
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Note that in (C.17) only νv,N(z + x) depends on z. For z1, z2 > 0, one has to compute the quotient
E [ΛN(z1)] /E [ΛN(z2)], for which we use the reformulation in (C.17). The strategy is to compute the
asymptotic limit of the integral involving z1 in terms of the integral involving z2 and an additional
correction factor. As l̄ → ∞, prior to z1, z2 → ∞, there is no need to shift the limits of the integrals.
For the remaining factors in both integrals, one obtains the relative density with respect to z1, z2, i.e.

νv,N(z1 + x)
νv,N(z2 + x)

= exp

−2(z1 − z2) − z2
1 − z2

2 − (z1 − z2) log(n)
2

2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n
− x

(z1 − z2)

log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

 . (C.18)

Thus, we can rewrite P
(
Ev,N(z1)

)
as

∫ l̄γ

−l̄γ
νv,N(z2 + x)e2(z1−z2)

P

(
max

u∈BK′L′ (v)
YN

u ≥ 2 log(2)l̄σ2(1) − k̄γ − x
)

× exp


z2

1 − z2
2 − (z1 + z2) log(n)

2

2 log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

+ x
(z1 − z2)

log(2)Iσ2

(
k̄
n ,

n−l̄
n

)
n

 dx, (C.19)

where the last factor tends to 1, as (L̄,N) ⇒ ∞. Computing the quotient E [ΛN(z1)] /E [ΛN(z2)]
using (C.19) and summing over all vertices, one obtains, when turning to limits, that (C.15) holds.
Combining the above steps, in particular (C.15) with (C.12), completes the proof of (5.43), with some
non-negative sequence {βK′,L′}K′,L′≥0. In the final step, we show that this sequence is bounded. Using
Lemma 5.7, one has for some ε > 0, being at most of order O

(
e−2k̄2γ−1/(2σ2(0) log 2)

)
,

cαe−2z ≤
∫ k̄γ

−k̄γ
νc

v,N(x)22k̄P

(
max

v∈BN/KL,i
S N, f

v ≥ 2 log 2Iσ2

(
k̄
n
, 1

)
n − log n

4
+ z − x

)
+ ε. (C.20)

Using the asymptotics (C.13) for the probability in the integral in (C.20), one can instead compute the
integral

∫ k̄γ

−k̄γ

exp
[
−

(
2 log 2Iσ2

(
k̄
n

)
n+x

)2

2 log 2Iσ2
(

k̄
n

)
n

]

√
2π log 2Iσ2

(
k̄
n

)
n

22k̄βK′,L′e−2z+2x+2 log 2k̄(σ2(0)−1)dx = βK′,L′e−2z
∫ k̄γ

−k̄γ

exp
[
− x2

2 log 2Iσ2
(

k̄
n

)
n

]

√
2π log 2Iσ2

(
k̄
n

)
n

dx.

(C.21)

The integral in (C.21) is bounded by 1 and thus, when considering the lower bound in (C.20), one can
deduce that cα ≤ βK′,L′ , for K′, L′ ≥ 0. The upper bound, i.e. βK′,L′ ≤ Cα, for K′, L′ ≥ 0 and for some
constant Cα > 0, follows from a union and a Gaussian tail bound, i.e.

P

(
max

v∈BN/KL,i
S N, f

v ≥ 2 log 2Iσ2

(
k̄
n
, 1

)
n − log n

4
+ z − k̄γ

)

≤ Cα
22(n−k̄)
√

n
exp

−2 log 2Iσ2

(
k̄
n
, 1

)
n − 2

(
z − k̄γ +

log n
4

)
−

(
z − k̄γ − log

4

)2

2 log 2Iσ2

(
k̄
n , 1

)
n



≤ Cα exp
[
2 log(2)k̄(σ2(0) − 1) + 2k̄γ − 2z

]
, (C.22)

This concludes the proof of Proposition 5.8. �
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EXTREMES OF THE 2D SCALE-INHOMOGENEOUS DISCRETE GAUSSIAN FREE
FIELD: EXTREMAL PROCESS IN THE WEAKLY CORRELATED REGIME

MAXIMILIAN FELS, LISA HARTUNG

Abstract. We prove convergence of the full extremal process of the two-dimensional scale-inhomogeneous
discrete Gaussian free field in the weak correlation regime. The scale-inhomogeneous discrete Gaussian
free field is obtained from the 2d discrete Gaussian free field by modifying the variance through a func-
tion I : [0, 1] → [0, 1]. The limiting process is a cluster Cox process. The random intensity of the Cox
process depends on the I′(0) through a random measure Y and on the I′(1) through a constant β. We
describe the cluster process, which only depends on I′(1), as points of a standard 2d discrete Gaussian
free field conditioned to be unusually high.

1. Introduction

Log-correlated processes have received a lot of attention in recent years, see e.g. [1, 6, 27, 10, 15,
36, 32, 35, 2, 3]. Prominent examples are branching Brownian motion (BBM), the two-dimensional
discrete Gaussian free field (DGFF), cover times of Brownian motion on the torus, characteristic poly-
nomials of random unitary matrices or local maxima of the randomized Riemann zeta function on the
critical line. One of the key features in these models is that their correlations are such that they start to
become relevant for the extreme values of the processes. In particular, one is interested in the structure
of the extremal processes that arises when the size of the index set tends to infinity. In the case of the
2d DGFF, one considers the field indexed by the vertices of a lattice box of side length N, where N is
taken to infinity. In this paper, we study the extremal process of the scale-inhomogeneous 2d DGFF in
the weakly correlated regime. The model first appeared as a tool to prove Poisson-Dirichlet statistics
of the extreme values of the 2d DGFF [8]. In the context of the 2d DGFF, it is the natural analogue
model of the variable-speed BBM or time-inhomogeneous branching random walk (BRW). We start
with a precise definition of the model we consider in the following.

Definition 1.1 (2d discrete Gaussian free field (DGFF)). Let N ∈ N and VN = [0,N)2 ∩ Z2. Then, the
centred Gaussian field {φN

v }v∈VN with correlations given by the Green kernel

E
[
φN

v φ
N
w

]
= GVN (v,w) B

π

2
Ev



τ∂VN−1∑

k=0

1S k=w

 , for v,w ∈ VN (1.1)

is called DGFF on VN . Here, Ev is the expectation with respect to the SRW {S k}k≥0 on Z2 started in v
and τ∂VN denotes the stopping time of the SRW hitting the boundary ∂VN .

Definition 1.2 (2d scale-inhomogeneous DGFF). Let {φN
v }v∈VN be a DGFF on VN . For v = (v1, v2) ∈

VN and λ ∈ (0, 1), set

[v]λ ≡ [v]N
λ B

([
v1 − 1

2
N1−λ, v1 +

1
2

N1−λ
]
×

[
v2 − 1

2
N1−λ, v2 +

1
2

N1−λ
])
∩ VN . (1.2)

M.F. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project-id 211504053 -
SFB 1060 and Germany’s Excellence Strategy – GZ 2047/1, project-id 390685813 – “Hausdorff Center for Mathematics” at
Bonn University.
Keywords: Gaussian free field, inhomogeneous environment, extreme values, extremal processes, branching Brownian
motion, branching random walk.
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We set [v]N
0 B VN and [v]N

1 B {v}. We denote by [v]o
λ the interior of [v]λ. Let F∂[v]λ∪[v]c

λ
B

σ
(
{φN

v , v < [v]o
λ}
)

be the σ−algebra generated by the random variables outside [v]o
λ. For v ∈ VN ,

let

φN
v (λ) = E

[
φN

v |F∂[v]λ∪[v]c
λ

]
, λ ∈ [0, 1]. (1.3)

We denote by ∇φN
v (λ) the derivative ∂λφN

v (λ) of the DGFF at vertex v and scale λ. Moreover, let
s 7→ σ(s) be a non-negative function such that Iσ2(λ) B

∫ λ

0 σ2(x)dx is a function on [0, 1] with
Iσ2(0) = 1 and Iσ2(1) = 1. The 2d scale-inhomogeneous DGFF on VN is a centred Gaussian field,
ψN B {ψN

v }v∈VN , defined as

ψN
v B

∫ 1

0
σ(s)∇φN

v (s)ds. (1.4)

For δ > 0, let Vδ
N = [δN, (1− δ)N)2 ∩ Z2. [31, Lemma 3.3 (ii)] shows that it is a centred Gaussian field

with covariance given by

E
[
ψN

v ψ
N
w

]
= log NIσ2

(
log N − log+ ‖v − w‖2

log N

)
+ O(1), for v,w ∈ Vδ

N , (1.5)

with log+ = max
{
0, log(x)

}
.

Assumption 1. In the rest of the paper, {ψN
v }v∈VN is always a 2d scale-inhomogeneous DGFF on VN .

Moreover, we assume that Iσ2(x) < x, for x ∈ (0, 1), and that Iσ2(1) = 1, with s 7→ σ(s) being
differentiable at 0 and 1, such that σ(0) < 1 and σ(1) > 1.

Under Assumption 1 we proved in [30, 31], building on work by Arguin and Ouimet [7], the sub-
leading order correction, tightness and convergence of the appropriately centred maximum. More
explicitely, there exists a constant, β = β(σ(1)), which depends only on the final variance σ(1), and a
random variable, Y = Y(σ(0)), depending only on the initial variance σ(0), such that, for any z ∈ R,

lim
N→∞

P

(
max
v∈VN

ψN
v ≤ mN − z

)
= E

[
exp

[
−βYe−2z

]]
, (1.6)

where mN B 2 log N − log log N
4 . In particular, the limiting law solely depends on σ(0) and σ(1)

and is therefore universal in the considered regime. Note that mN is also the maximum of N2 i.i.d.
N(0, log N). Moreover, we proved in [31, Theorem 2.2] that under Assumption 1, points whose height
is close to the maximum are either O(N) apart or within distance O(1). In particular, there is a constant
c > 0, such that

lim
r→∞ lim

N→∞
P
(
∃u, v ∈ VN with r ≤ ‖u − v‖2 ≤ N

r
and ψN

u , ψ
N
v ≥ mN − c log log r

)
= 0. (1.7)

To state our results, we introduce some additional notation. Let A ⊂ [0, 1]2 and B ⊂ R be two Borel
sets. For v ∈ Z2 and r > 0, let its r−neighbourhood be Λr(v) = {w ∈ Z2 : ‖v − w‖1 ≤ r}. Then, define

ηN,r(A × B) B
∑

v∈VN

1ψN
v =maxu∈Λr (v) ψ

N
u
1x/N∈A1ψN

v −mN∈B. (1.8)

ηN,r is a point measure encoding both position and relative height of extreme local maxima in r−neighbourhoods.
To study distributional limits of these point measures, we equip the space of point measures on
[0, 1]2 × R with the vague topology.

Theorem 1.3. Let {ψN
v }v∈VN be a scale-inhomogeneous DGFF satisfying Assumption 1. Then, there

is a random measure Y(dx) on [0, 1]2 which depends only on the initial variance σ(0) and satisfies
almost surely Y([0, 1]2) < ∞ and Y(A) > 0, for any open and non-empty A ⊂ [0, 1]2. Moreover, there
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is a constant β = β(σ(1)) > 0, depending only on the final variance σ(1), such that, for any sequence
rN with rN → ∞ and rN/N → 0, as N → ∞,

ηN,rN

N→∞→ PPP
(
Y(dx) ⊗ βe−2hdh

)
, (1.9)

where convergence is in law with respect to the vague convergence of Radon measures on [0, 1]2 × R.

As the field at nearby vertices is strongly correlated, around each local maximum there will naturally
be plenty of particles being close to it. Together with location and height of r−local maxima, we
encode them in the point process

µN,r B
∑

v∈VN

1ψN
v =maxu∈Λr (v) ψ

N
u
δx/N ⊗ δψN

v −mN
⊗ δ{ψN

v −ψN
v+w: w∈Z2}. (1.10)

These are Radon measures on [0, 1]2 ×R×RZ2
. We consider this space equipped with the topology of

vague convergence. The following theorem shows convergence of µN,r, the full extremal process.

Theorem 1.4. There is a probability measure ν on [0,∞)Z
2

such that for each rN with rN → ∞ and
rN/N → 0, as N → ∞,

µN,rN → PPP
(
Y(dx) ⊗ βe−2hdh ⊗ ν(dθ)

)
. (1.11)

The convergence is in law with respect to the vague convergence of Radon measures on [0, 1]2×R×R̄Z2
.

Moreover, ν is given by the weak limit,

ν(·) = lim
r→∞P

(
φZ

2\{0} + 2σ(1)a ∈ ·|φZ2\{0}
w + 2σ(1)a(w) ≥ 0, ∀‖w‖1 ≤ r

)
, (1.12)

with a(w) = lim
N→∞

GV2N [(N,N) , (N,N)] − GV2N [(N,N) , (N,N) + w] being the potential kernel. In ad-

dition, θ0 = 0 and |{w ∈ Z2 : θw ≤ c}| < ∞, ν−a.s. for each c > 0.

As a consequence of Theorem 1.4, we obtain convergence of the extremal process

ηN B
∑

v∈VN

δv/N ⊗ δψN
v −mN

. (1.13)

Corollary 1.5. Let {(xi, hi) : i ∈ N} enumerate the points in a sample of PPP
(
Y(dx) ⊗ βe−2hdh

)
. Let

{θ(i)
w : w ∈ Z2}, i ∈ N, be independent samples from the measure ν, independent of {(xi, hi) : i ∈ N}.

Then, as N → ∞,

ηN →
∑

i∈N

∑

w∈Z2

δ(xi,hi−θ(i)
w ). (1.14)

The convergence is in law with respect to the vague convergence of Radon measures on [0, 1]2 × R.
Moreover, the measure on the right-hand side of (1.14) is locally finite on [0, 1]2 × R a.s.

1.1. Related work. Choosing σ(x) ≡ 1, for x ∈ [0, 1], in (1.4) gives the 2d DGFF. Its maximum
value was investigated by Bolthausen, Bramson, Daviaud, Deuschel, Ding, Giacomin and Zeitouni
[12, 24, 13, 21, 26, 28, 20], which culminated in the proof of convergence of the maximum [20].
Biskup and Louidor proved convergence of the extremal point process encoding local maxima and the
field centred at those, to a cluster Cox process [9, 10]. The random intensity measure is identified
with the so-called Liouville quantum gravity measure [11]. The cluster law of the 2d DGFF admits a
closely related formulation to the one we obtain in Theorem 1.4, namely

νDGFF = lim
r→∞P

(
φZ

2\{0} + 2a ∈ ·|φZ2\{0}
w + 2a(w) ≥ 0, ∀‖w‖1 ≤ r

)
. (1.15)

The slight, however important difference, is that the factor σ(1) in (1.12) is equal to one. This causes
the conditioning in (1.15) to be asymptotically singular. There is another possible regime in the scale-
inhomogeneous DGFF, i.e. when Iσ2(x) > x, for some x ∈ (0, 1). When x 7→ Iσ2(x) is piecewise
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linear, the leading and sub-leading order of the maximum, as well as exponential tails of the centred
maximum, in particular tightness, are known [7, 30].

Variable-speed branching Brownian motion (BBM), which first appeared in a paper by Derrida
and Spohn [25], is the natural analogue in the context of BBM of the scale-inhomogeneous DGFF.
It is a centred Gaussian process indexed by the leaves of the super-critical Galton-Watson tree, and
covariance given by tA(d(v,w)/t), where d(v,w) is the time of the most recent common ancestor of
two leaves v and w. A(x) ≡ 1 corresponds to standard BBM. Its extremal process was investigated in
[1, 6, 17, 22, 34, 4, 5, 23]. In [1, 6], the cluster process was shown to be BBM conditioned on the
maximum being larger than

√
2t, or alternatively given as the limiting distribution of the neighbours

of a local maximum. The extremal process of variable-speed BBM was investigated in [15, 16, 35, 29,
18]. In the regime of weak correlations, i.e. when A(x) < x, for x ∈ (0, 1), A′(0) < 1 and A′(1) > 1,
Bovier and Hartung [15, 16] proved convergence of the extremal process to a cluster Cox process.
The cluster law can be described by the law of BBM in time t, conditioned on the maximum being
larger than

√
2A′(1)t, which is a perfect match to the one in the weakly correlated regime of the scale-

inhomogeneous DGFF in (1.12). In the regime when A is strictly concave, Bovier and Kurkova [19]
showed that the first order of the maximum depends only on the concave hull of A. Moreover, Maillard
and Zeitouni [35] proved that the 2nd order correction is proportional to t1/3.

Note that there are other models such as the BRW [37] or first passage percolation [33] where it
was proven that the extremal process converges to a (cluster) Cox process.

1.2. Outline of Proof. We start to explain the proof of Theorem 1.3. First, we deduce tightness of
ηN,r from (1.6), (1.7) and a uniform exponential upper bound on extreme level sets, which is proven
in Proposition 2.1. Then, we characterize possible limit laws as a Cox processes using a superposition
principle as in [9]. Finally, we need to show uniqueness of the random intensity measure. This follows
from the convergence in distribution of multiple local maxima over disjoint subsets (see Theorem 2.5).

Next, we explain the proof of Theorem 1.4. By (1.7), we know that extreme local maxima have
to be separated at distance O(N) and, due to correlations, are surrounded by O(1) neighbourhoods
of high points. We need to show that the O(1) neighbourhoods of extreme local maxima converge to
independent samples of a cluster law. Using (1.7) we know that also the O(1) neigbourhoods must be at
macroscopic distance, i.e. at distance of O(N). To obtain independence of the clusters, we decompose
the field into a sum of independent “local fields” that are zero outside the O(1) neighbourhoods and a
“binding field”, which captures the contributions from outside the neighbourhoods. The requirement
of being a cluster around a local maximum then translates into the local field being smaller than the
value at its centre. We then show convergence of the laws of the local fields conditioned on a local
maximum at their centre. In particular, we deduce that the clusters are i.i.d. samples of a common
cluster law. Together with convergence of the extremal process of local maxima, Theorem 1.3, this
yields Theorem 1.4.

Structure of the paper: In Section 2, we prove Theorem 1.3. The necessary ingredient, convergence
of multiple local maxima over disjoint subsets, i.e. Theorem 2.5, is proved in Section 4. The proof of
Theorem 1.4 is provided in Section 3. The appendix recalls Gaussian comparison tools.

2. Proof of Theorem 1.3

It turns out that we are able to follow and use large parts of the proof for the DGFF by Biskup and
Louidor [9]. As depicted in [9, 14], the fact that the limiting point process takes the particular form
of a generalized Poisson point process, is a consequence of a superposition property, which is due to
its Gaussian nature along with certain properties of the field such as the separation of local maxima
[31] and tightness of extreme level sets. The main ingredient we need, in order to apply the machinery
from [9] to obtain the distributional invariance and thus Poisson limit laws, is tightness of the point
processes, which is a consequence of the following proposition and previous results in [31]. For y ∈ R,
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we denote by

ΓN(y) =
{
v ∈ VN : ψN

v ≥ mN − y
}
, (2.1)

the level set above mN − y.

Proposition 2.1. There exists a constant C > 0, such that, for all z > 1 and all κ,

sup
N≥1
P
(|ΓN(y)| > eκz

) ≤ Ce2y−κz. (2.2)

Proof. By a first order Chebychev inequality and a standard Gaussian tail bound,

P
(|ΓN(y)| > eκz

) ≤ C̃

√
log N

mN − λ N2 exp
[
− (mN − y)2

2 log N

]
≤ C exp

[
2y − κz] , (2.3)

which shows (2.2). �

Proposition 2.1 together with [31, Theorem 2.1] implies tightness of {ηN,rN }N∈N, as the right-hand
side of (2.2) tends to zero as N → ∞

2.1. Distributional Invariance. Let (Wt)t≥0 be an independent standard Brownian motion started in
0. Given a measurable function f : [0, 1] × R→ [0,∞), let

ft(x, h) = − logE0
[
e− f (x,h+Wt− 1

2 t)
]
, t ≥ 0, (2.4)

where E0 is the expectation with respect to the Brownian motion (Wt)t≥0.

Theorem 2.2. (cp. [9, Theorem 3.1]) Let η be any sub-sequential distributional limit of the processes
{ηN,rN }N≥1, for some rN → ∞ with rN/N → 0. Then, for any continuous function f : [0, 1]2 × R →
[0,∞) with compact support and all t ≥ 0,

E
[
e−<η, f>

]
= E

[
e−<η, ft>

]
. (2.5)

Proof. The proof of Theorem 2.2 is a rerun of the one in the case of the 2d DGFF [9, Theorem 3.1]. We
therefore omit details here. It essentially uses convergence of the maximum obtained in [31] together
with expontential bounds on level sets, see Proposition 2.1. �

Remark 2.3. As we think that the interpretation of the statement by Biskup and Louidor in [9] is
enlightening, we reproduce it here. Picking a sample, η, of the limit process, we know by tightness
that η(C) < ∞ almost surely for any compact C. This allows us to write

η =
∑

i∈N
δ(xi,hi), (2.6)

where {(xi, hi) ∈ [0, 1] × R ∪ {−∞} : i ∈ N} enumerate the points. Let {W(i)
t : i ∈ N} be a collection of

independent standard Brownian motions, independent of η, and set

ηt B
∑

i∈N
δ(xi,hi+W(i)

t − 1
2 t), t ≥ 0. (2.7)

Using Fubini and dominated convergence, we have for all non-negative functions f ,

E
[
e−<η, ft>

]
= E

[
e−<ηt , f>

]
. (2.8)

Theorem 2.2 then implies,

ηt
d
= η, t ≥ 0. (2.9)
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We borrow from [9] a short heuristic argument why Theorem 2.2 should hold. Let ψ be a scale-
inhomogeneous DGFF on VN satisfying Assumption 1 and let ψ′, ψ′′ be two independent copies of it.
Fix some t > 0. Then,

ψ
d
=

√
1 − t

log N
ψ′ +

√
t

log N
ψ′′ = ψ′ − t

2 log N
ψ′ +

√
t

log N
ψ′′ + o(1), (2.10)

where we have used a Taylor expansion of the first square root, which has an error term O(t2/ log2 N).
Using the fact, that the first order of the maximum of the scale-inhomogeneous DGFF is log N, we
obtain an error o(1). If we take v ∈ VN away from the boundary, where ψv ≥ mN − y or ψ′v ≥ mN − y
and consider the r−neighbourhood Λr(v), we first note that, for w ∈ Λr(v), ψ′′w − ψ′′v = O(1), and so by
the prefactor, we may write,

ψw
d
= ψ′w −

t
2 log N

ψ′w +

√
t

log N
ψ′′v + o(1), w ∈ Λr(v). (2.11)

Similarly, we know that ψw−mN = O(1) and ψ′w−mN = O(1), for w ∈ Λr(v), and thus, we may replace
t

2 log Nψ
′
w by t

2 log N (mN + O(1)) = t + o(1), to obtain

ψw
d
= ψ′w − t +

√
t

log N
ψ′′v + o(1), w ∈ Λr(v). (2.12)

Finally, we see that
√

t
log Nψ

′′ is asymptotically distributed as Wt, where (Wt)t≥0 is a Brownian motion.
Further, we know from [31, Theorem 2.2], that local extremes are at distance of order N and so the
field ψ′′ in two such neighbourhoods has correlation of order O(1). The normalizing factor

√
t

log N

then implies that two such neighbourhoods are asymptotically independent. Thus, for N large, we
have a one-to-one correspondence between local maxima of ψ and local maxima of ψ′ by a shift in
their height through independent Brownian motions with drift −1.

2.2. Poisson limit law. Just as in [9], distributional invariance, Theorem 2.2, allows to extract a
Poisson limit law for every such subsequence, i.e. for any sub-sequential limit of the extremal process.
In our setting, we can directly apply [9, Theorem 3.2].

Theorem 2.4. [9, Theorem 3.2] Suppose that η is a sub-sequential limit of the process ηN,rN , that is a
point process on [0, 1]2 × R such that, for some t > 0, and all continuous functions f : [0, 1]2 × R →
[0,∞) with compact support, it holds, as in Theorem 2.2,

E
[
e−<η, f>

]
= E

[
e−<η, ft>

]
. (2.13)

Moreover, assume that almost surely η([0, 1]2 × [0,∞)) < ∞ and η([0, 1]2 × R) > 0. Then, there is a
random Borel measure Y on [0, 1]2, satisfying Y([0, 1]2) ∈ (0,∞) almost surely, such that

η
d
= PPP

(
Y(dx) ⊗ βe−2hdh

)
. (2.14)

2.3. Uniqueness. In this section, we show uniqueness of the extremal process of local extremes, i.e.
of the limit lim

N→∞
ηN,rN . In light of Theorem 2.4, we do this by showing uniqueness of the random

measure Y(dx). The proof is a generalization of the proof of uniqueness of the random variable Y in
[31, Theorem 2.1]. We show that the joint law of local maxima converges in law and that this law
can be written as a Laplace transform of the random measure Y(dx), which then implies uniqueness of
Y(dx). For a set A ⊂ [0, 1], we write ψ∗N,A = max

{
ψN

v : v ∈ VN , v/N ∈ A
}
.

Theorem 2.5. Let (A1, . . . , Ap) be a collection of disjoint non-empty open subsets of [0, 1]2. Then the
law of

(
max{ψN

v : v ∈ VN , v/N ∈ Al} − mN
)p

l=1
converges weakly as N → ∞. More precisely, there are

random variables YA1 , . . . ,YAp depending only on the initial variance σ(0), satisfying YAi > 0 almost
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surely, for 1 ≤ i ≤ p, and there is a constant β > 0, depending only on the final variance σ(1), such
that

lim
N→∞

P
(
ψ∗N,Al

− mN ≤ xl : l = 1, . . . , p
)

= E

exp

−β
p∑

l=1

e−2xlYAl



 . (2.15)

The constant β in Theorem 2.5 is identical to the one appearing in (1.6). Next, we prove The-
orem 1.3. The proof of Theorem 2.5 is given in Section 4.

Proof of Theorem 1.3 using Theorem 2.5. Let rN → ∞ with rN/N → 0 be now a fixed sequence.
Denote by η a corresponding sub-sequential limit of the extremal process {ηN,rN }N≥1. By Theorem 2.4,

there is a corresponding random measure Ỹ(dx) such that η d
= PPP

(
Ỹ(dx) ⊗ βe−2hdh

)
. Note that, as

a trivial consequence of Theorem 2.5, for any open and non-empty A ⊂ [0, 1]2, ψ∗N,A − mN is a tight
sequence. Fix an arbitrary collection, (A1, . . . , Ap), of disjoint, open and non-empty subsets of [0, 1]2,
with Ỹ(∂Al) = 0, for any l ∈ {1, . . . , p}. By Theorem 2.5, there is a dense subset R ⊂ R such that, for
any x1, . . . , xp ∈ R,

E

exp

−β
p∑

l=1

e−2xl Ỹ(Al)



 = lim
N→∞

P
(
ψ∗N,Al

− mN ≤ xl : l = 1, . . . , p
)
. (2.16)

Again by Theorem 2.5, the right-hand side of (2.16) is the same for all subsequences. Using continuity
in x of the left hand side, we can deduce from convergence on the dense subset R, convergence on
R. Along with a standard approximation argument of continuous functions on [0, 1]2 via non-negative
simple functions, this implies uniqueness of the Laplace transform of the random measure Ỹ(dx) on the
disjoint collection (A1, . . . , Ap), regardless of the subsequence considered. As p ∈ N and A1, . . . , Ap
are arbitrary, it follows that Ỹ(dx) is the same for all sub-sequences. Therefore, we obtain a random
Borel measure Y(dx) whose masses of any countable collection of open sets A1, . . . , Ap are given by
YA1 , . . . ,YAp from Theorem 2.5, depending only on σ(0). We conclude, that the law of the measure
Y(dx) also depends only on initial variance, σ(0). Further, note that by Proposition 2.1,

P
(
η([0, 1]2 × [−y,∞]) > eky

)
≤ Ce−y(κ−2). (2.17)

In combination with Theorem 2.4, (2.17) implies that the total mass of Y is almost surely finite.
Moreover, Theorem 2.5 implies that, for any non-empty and open A ⊂ [0, 1]2, we have almost surely
Y(A) > 0. �

3. Proof of Theorem 1.4

In the following, we assume that VN is centred at the origin. Let µ be a Radon measure on [0, 1]2 ×
R × RZ2

and f : [0, 1]2 × R × RZ2 → [0,∞) be a measurable function with compact support. We write

〈µ, f 〉 B
∫

µ(dxdhdθ) f (x, h, θ). (3.1)

Further, let

ΘN,r B {v ∈ VN : ψN
v = max

u∈Λr(v)
ψN

u } (3.2)

be the set of r−local maxima.

Lemma 3.1. For any rN → ∞ with rN/N → 0 and any continuous function f : [0, 1]2 × R × RZ2
with

compact support,

lim
r→∞ lim sup

N→∞
max

M:r≤M≤N/r

∣∣∣∣E
[
e−〈µN,rN 〉

]
− E

[
e−〈µN,M , f 〉]

∣∣∣∣ = 0. (3.3)
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Proof. Let λ > 0 be such that f (x, h, θ) = 0, for h ≥ λ. If 〈µN,rN , f 〉 , 〈µN,M, f 〉, for some M with
r ≤ M ≤ N/r, then ΘN,rN4ΘN,M ∩ ΓN(λ) , ∅. Thus, there are u, v ∈ ΓN(λ) such that min(M, rN) ≤
‖u − v‖2 ≤ max(M, rN). For N being so large that rN > r and rN ≤ N/r, this implies

max
M:r≤M≤N/r

∣∣∣∣E
[
e−〈µN,rN , f 〉

]
− E

[
e−〈µN,M , f 〉]

∣∣∣∣ ≤ P (∃u, v ∈ ΓN(λ) : r ≤ ‖u − v‖2 ≤ N/r) , (3.4)

which by [31, Theorem 2.2] tends to zero. This shows (3.3). �

We set M B min{k : 2k > r}. In light of Lemma 3.1, we work with µN,M instead of µN,rN . Suppose
that the local maximum is taken at v ∈ VN . We decompose into two fields. The idea is, for fixed
v ∈ VN , to use the Gibbs-Markov property of the underlying DGFF to write the field into independent
components. One that captures the field inside ΛM(v) and another that captures the field outside, i.e.
in Λc

M(v). v ∈ VN later plays the role of a local maximum. Thus, we write

ψN
w = ΦM,v

w + ψ̃ΛM(v)
w , for w ∈ ΛM(v), (3.5)

where

ΦM,v
w B

∫ 1− log M+log+‖v−w‖2
log N

0
σ(s)∇φN

w (s)ds +

∫ 1

1− log M+log+‖v−w‖2
log N

σ(s)∇E
[
φN

w |σ
(
φN

y : y ∈ ∂[w]s ∩ Λc
M(v)

)]
.

(3.6)

and where

ψ̃ΛM(v)
w =

∫ 1

1− log M+log+ ‖v−w‖2
log N

σ(s)φΛM(v)
w (s)ds. (3.7)

The field in (3.6) encodes the increments when conditioning outside the local maximum v ∈ VN and
its M−neighbourhood, ΛM(v). The field in (3.7) encodes the remaining increments within ΛM(v). The
following lemma points out the key idea behind the definitions in (3.6) and (3.7).

Lemma 3.2. Suppose v ∈ VN such that ΛM(v) ⊂ VN and let M = 2k. Consider the sigma-algebra

FM,v B σ
(
φN

w : w ∈ {v} ∪ ΛM(v)c
)
. (3.8)

Then, for Lebesgue almost every t ∈ R,

P
(
ψN

v+· − Φ
M,v
v+· ∈ ·|FM,v

)
= P

(
ψ̃ΛM(v)

v+· ∈ ·|ψ̃ΛM(v)
v = t − ΦM,v

v

)
, on {ψN

v = t}. (3.9)

Proof. It is an immediate consequence using (3.5). �

The following proposition is used to localize the initial increments, Φ
M,v
v , of a local maximum at

v ∈ VN .

Proposition 3.3. Let t ∈ R. There is r0 ∈ N such that, for any δ ∈ (0, 1), r ≥ r0, N ∈ N, sufficiently
large, M ∈ (r,N/r) and γ ∈ (0, 1/2), there is a constant Cδ > 0, depending only on δ,

P

(
∃v ∈ VN : ψN

v ≥ mN − t,ΦM,v
v − 2 log NIσ2

(
1 − log M

log N

)
< [− logγ(M), logγ(M)]

)

≤ Cδe2s
∞∑

k=blog Mc
k

1
2−γ exp

[
−k

2γ−1
2

]
. (3.10)

Proof. As in (3.5),

ψN
v = ΦM,v

v + ψ̃ΛM(v)
v , (3.11)
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where the fields on the right hand side are independent. Using [31, Lemma 3.1 (i)] for the first and the
last field in (3.11), as well as by Green function asymptotics, see e.g. [10, (3.47), (B.5)], we deduce
that, for any δ > 0, there is a constant cδ > 0, such that

sup
v∈Vδ

N

Var
[
ΦM,v

v

]
≤ 2 log NIσ2

(
1 − log M

log N

)
+ cδ. (3.12)

Moreover, {ΦM,v
v }v∈VN is a centred Gaussian field. Thus, we can rerun the proof of [31, Proposition 4.2],

where the constant on the right of [31, (4.13)] may now depend on δ. This concludes the proof of
Proposition 3.3. �

The following lemma allows us to reduce the local field defined in (3.7) to a usual DGFF with a
constant parameter.

Lemma 3.4. Let v ∈ Vδ
N and let {ψ̃ΛM(v)

w : w ∈ ΛM(v)} be the centred Gaussian field defined in (3.7).
Then,

lim
M→∞

ψ̃ΛM(v) − σ(1)φΛM(v) = 0 a.s. (3.13)

Proof. Note that for some ε > 0, by an Taylor expansion at s = 1, we have σ(s) = σ(1) − σ′(1)(1 −
s) + o(σ′(1)(1 − s)), for s ∈ (1 − ε, 1]. In particular, for any v ∈ VN and w ∈ ΛM(v),

ψ̃ΛM(v)
w − σ(1)φΛM(v)

w =

∫ 1

1− log M+log+ ‖v−w‖2
log N

σ′(1)(1 − s)∇φΛM(v)
w (s)ds + o(1), (3.14)

which is a centred Gaussian and where the error term vanishes, as N → ∞. By Cauchy-Schwarz and
asymptotics of the potential kernel, e.g. [10, (2.7), (B.6)], the covariances of the field on the right-hand
side of (3.14) is bounded by a uniform constant times log2 M/ log3/2 N, which tends to zero uniformly,
as N → ∞. This shows (3.13) �

Remark 3.5. With regard to Proposition 3.3, the cluster law around around a local maximum v ∈
Vδ

N can be written in the form P
(
ψ̃ΛM(v) ∈ ·|ψ̃ΛM(v)

v = 2 log NIσ2

(
1 − log M

log N , 1
)

+ t, ψ̃ΛM(v)
w ≤ ψ̃ΛM(v)

v

)
.

Lemma 3.4 shows that this has the same weak limit, as M → ∞ after N → ∞, as

ν(M,t)(·) B P
(
σ(1)

(
φΛM(0)

0 − φΛM(0)
)
∈ ·|σ(1)φΛM(0)

0 = 2σ2(1) log M + t, σ(1)φΛM(0) ≤ σ(1)φΛM(0)
0

)
.

(3.15)

In the following lemma we show that the the cluster limit of the law ν(M,t) exists in a suitable sense.

Lemma 3.6. Fix r, j ≥ 1 and let c1 ∈ (0,∞). For M = min{k : 2k > r}, uniformly in f ∈ Cb
(
RΛ j

)
and

t = o(log M),

lim
M→∞

Eν(M,t)
[
f
]

= Eν
[
f
]
, (3.16)

where ν(·) B lim
r→∞ νr(·),

νr(·) B P
(
φZ

2\{0} + 2σ(1)a ∈ ·|φZ2\{0}
v + 2σ(1)a(v) ≥ 0 : ‖v‖1 ≤ r

)
(3.17)

and a being the potential kernel.

Proof. Convergence of the finite dimensional distributions of the measures νr(·) is a simple con-
sequence of the DGFF satisfying the strong FKG-inequality, which implies that r 7→ νr is stochastic-
ally increasing. Thus, lim

r→∞ νr(A) exists for any event A, depending on only a finite number of coordin-

ates. Next, we prove that {νr}r is tight, which then implies that ν is a distribution on RZ
2
. By a union
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and a Gaussian tail bound, for any r ≥ k0 > 0, there are constants C, C̃ > 0 such that

P
(
∃v, k0 ≤ ‖v‖1 ≤ r : φZ

2\{0}
v > 2σ(1) log ‖v‖

)
≤

r∑

k=k0

4kP
 sup
‖v‖1=k

φZ
2\{0}

v > 2σ(1) log k +
1
2

log(2)


≤ C
r∑

k=k0

4k√
log k

exp
[
−σ2(1) log k + c0

]
≤ C̃

∞∑

k=k0

1√
log k

exp
[
−[σ2(1) − 1] log k

]
.

(3.18)

As the sum converges and vanishes, as k0 → ∞, we deduce tightness of (νr)r∈N and so ν(RZ
2
) = 1. In

the last step, we show that it takes the particular form as in (3.17). We have that φΛM(0) conditioned on
φΛM(0)

0 = 2σ(1) log M shifts the mean of φΛM(0)
0 − φΛM(0) by a quantity with asymptotic

(2σ(1) log M + t)(1 − gM(v))→ 2σ(1)a(v), (3.19)

as M → ∞, and where gM(x) is discrete harmonic with gM(0) = 1 and gM(x) = 0, for x < ΛM(0). In
particular, the law of v 7→ φΛM(0)

0 − φΛM(0)
v conditioned on φΛM(0)

0 = 2σ(1) log M converges in the sense
of finite dimensional distributions to

φZ
2\{0}

v + 2σ(1)a(v), (3.20)

where {φZ2\{0}
v }v∈Z2\{0} is the pinned DGFF, which is a centred Gaussian field with covariances as in

[10, (2.7)]. This concludes the proof of Lemma 3.6. �

Having weak convergence of the auxiliary cluster law, νr, we are now in a position to prove conver-
gence of the full extremal process.

Proof of Theorem 1.4. First note that by Lemma 3.1 we can work with M instead of rN . Let f :
[0, 1]2 × R × RZ2 7→ [0,∞) be a continuous function with compact support. In addition, assume that,
for any x ∈ [0, 1]2 and t ∈ R, f (x, t, φ) depends only on {φy : y ∈ ΛM(x)}. Let VN = ∪(N/M)2

i=1 VM,i be a
decomposition of VN into disjoint shifts of VM. Moreover, let δ ∈ (0, 1) and set

µN,M,δ B
∑

v∈∪(N/M)2
i=1 Vδ

M,i

1v∈ΘN,Mδv/N ⊗ δψN
v −mN

⊗ δ{ψN
v −ψN

v+w: w∈Z2}. (3.21)

By Proposition 3.3, [31, Proposition 5.1] and [31, Theorem 2.2], it suffices to compute

lim
δ→0

lim
M→∞

lim
N→∞

E
[
e−〈µN,M,δ, f 〉1N‖v−w‖2>4M:v,w∈ΘN,M1{ΦN,v

v −2 log NIσ2
(
1− log M

log N

)
∈[− logγ(M),logγ(M)]: v∈ΘN,M}

]
.

(3.22)

Set

fN,M(v/N, t) B

− logE
[
exp

[
− f

(
x, t,

(
ψN

v − ΦM,v
v − ψN

v+w + Φ
M,v
v+w : w ∈ Z2

))]
|ψN

v = mN + t, v ∈ ΘN,M
]
. (3.23)

Conditioning on position, xiN, and height, mN + ti, of local maxima in ∪(N/M)2

i=1 Vδ
M,i and on the sigma-

algebra σ
(
φN

w : w ∈ ∪∂ΛM(xiN)
)
, using Lemma 3.2 and the Taylor approximation for the cluster pro-

cess as in Remark 3.5, we can rewrite (3.22) as

E


(N/M)2∏

i=1

e− fN,M(xi,ti)1N‖x j−xk‖2>4M:x jN,xkN∈ΘN,M1{ΦN,v
v −2 log NIσ2

(
1− log M

log N ∈[− logγ(M),logγ(M)]
)
: v∈ΘN,M}

 . (3.24)
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On {ΦN,v
v − 2 log NIσ2

(
1 − log M

log N

)
∈ [− logγ(M), logγ(M)] : v ∈ ΘN,M}, Lemma 3.2, Lemma 3.4,

Remark 3.5 and Lemma 3.6 imply

lim
M→∞

lim
N→∞

fN,M(x, t) = fν(x, t) B − logEν
[
e− f (x,t,φ)

]
. (3.25)

In particular, the convergence in (3.25) is uniform in x ∈ ∪(N/M)2

i=1 Vδ
M,i and t ∈ R. Using (3.24) and

Proposition 3.3, we can rewrite (3.22) as

E
[
e−〈ηN,M , fv〉] + o(1). (3.26)

Applying Theorem 1.3 to (3.26), we obtain

lim
M→∞

lim
N→∞

E
[
e−〈µN,M , fν〉] = E

[
exp

[
−

∫

[0,1]2×R
Y(dx) ⊗ βe−2hdh

(
1 − e− fν(x,h)

)]]

= E

[
exp

[
−

∫

[0,1]2×R×RZ2
Y(dx) ⊗ βe−2hdh ⊗ ν(dφ)

(
1 − e− f (x,h,φ)

)]]
. (3.27)

Noting that the last line in (3.27) is the Laplace transform of a Poisson point process with intensity
βY(dx) ⊗ e−2hdh ⊗ ν(dφ), concludes the proof. �

4. Proof of Theorem 2.5

First, we recall the 3−field approximation used in [31] to prove convergence in law of the centred
maximum.

4.1. 3−field approximation. We first decompose the underlying grid VN . Assume N = 2n to be much
larger than any other forthcoming integers. Next, pick two large integers L = 2l and K = 2k. Partition
VN in a disjoint union of (KL)2 boxes, BN/KL = {BN/KL,i : i = 1, . . . , (KL)2}, each of side length
N/KL. Let vN/KL,i ∈ VN be the left bottom corner of box BN/KL,i and write wi =

vN/KL,i
N/KL . We consider

{wi}i=1,...,(KL)2 as the vertices of a box VKL. Analogously, let K′ = 2k′ and L′ = 2l′ be two integers,
such that K′L′ divides N. Let BK′L′ = {BK′L′,i : i = 1, . . . , [N/(K′L′)]2} be a disjoint partitioning of
VN with boxes BK′L′, j, each of side length K′L′. The left bottom corner of a box BK′L′,i we call vK′L′,i.
We take limits in the order N, L,K, L′ and then K′, for which we write (N, L,K, L′,K′) ⇒ ∞. The
macroscopic field, {S N,c

v }v∈VN , is a centred Gaussian field with covariance matrix Σc, with entries given
by

Σc
u,v B σ2(0)E

[
φKL

wi
φKL

w j

]
, for u ∈ BN/KL,i, v ∈ BN/KL, j, (4.1)

where {φKL
v }v∈VKL is a DGFF on VKL. It captures the macroscopic dependence. The microscopic or

“bottom field“, {S N,b
v }v∈VN , is a centred Gaussian field with covariance matrix Σb defined entry-wise as

Σb
u,v B


σ2(1)E

[
φK′L′

u−vK′L′ ,iφ
K′L′
v−vK′L′ ,i

]
, if u, v ∈ BK′L′,i

0, else,
(4.2)

where {φK′L′
v }v∈VK′L′ is a DGFF on VK′L′ . It captures “local” correlations. The third centred Gaussian

field, {S N,m
v }v∈VN , approximates the “intermediate” scales. It is a modified inhomogeneous branching

random walk, defined pointwise as

S N,m
v B

n−l−k∑

j=k′+l′

∑

B∈B j(vK′L′ ,i′ )
2− j

√
log 2bN

i, j,B

∫ n− j

n− j−1
σ

( s
n

)
ds, for v ∈ BN/KL,i ∩ BK′L′,i′ , (4.3)

with {bN
i, j,B : B ∈ ∪i′B j(vK′L′,i′), i = 1, . . . , (KL)2, j = 1, . . . , (N/K′L′)2, } being a family of inde-

pendent standard Gaussian random variables and where B j(vK′L′,i′) is the collection of boxes, B ⊂ VN ,
of side length 2 j and lower left corner in VN , that contain the element vK′L′,i′ . In order to avoid
boundary effects, we restrict our considerations onto a slightly smaller set, which is defined next.
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Consider the disjoint union of N/L− and L−boxes, that is BN/L = {BN/L,i : i = 1 . . . , L2} and
BL = {BL,i : i = 1, . . . , (N/L)2}. Analogously, let vN/L,i and vL,i be the bottom left corners of the
boxes BN/L,i, BL,i containing v. For a box B, let Bδ ⊂ B be the set Bδ = {v ∈ B : minz∈∂B ‖v− z‖ ≥ δlB},
where lB denotes the side length of the box B. Finally, let

V∗N,δ B { ∪
1≤i≤L2

BδN/L,i} ∩ { ∪
1≤i≤(KL)2

BδN/KL,i} ∩ { ∪
1≤i≤(N/L)2

BδL,i} ∩ { ∪
1≤i≤(N/KL)2

BδKL,i}. (4.4)

The next lemma ensures that the sum of the three fields, {S N,c
v }v∈VN , {S N,m

v }v∈VN , {S N,b
v }v∈VN , approxim-

ates well the scale-inhomogeneous DGFF, {ψN
v }v∈VN .

Lemma 4.1. [31, Lemma 5.2, Lemma 5.3] There are non-negative uniformly bounded sequences of
constants aK′L′,v̄ and a family of i.i.d. Gaussians {Θ j} j=1,...,(N/K′L′)2 , such that, for v ∈ BK′L′, j, v ≡ v̄
mod K′L′, i.e. v̄ = v − vK′L′, j, and when setting

S N
v B S N,c

v + S N,m
v + S N,b

v + aK′,L′, jΘ j, (4.5)

we have

lim sup
(N,L,K,L′,K′)⇒∞

∣∣∣∣Var
(
S N

v

)
− Var

(
ψN

v

)
− 4α

∣∣∣∣ = 0, (4.6)

for some α > 0. Further, there exists a sequence {ε ′N,KL,K′L′ ≥ 0} with lim sup
(N,L,K,L′,K′)⇒∞

ε
′
N,KL,K′L′ = 0 and

bounded constants Cδ,C > 0, such that for all u, v ∈ V∗N,δ :

(1) If u, v ∈ BL′,i, then
∣∣∣∣∣E

[(
S N

u − S N
v

)2
]
−E

[(
ψN

u − ψN
v

)2
]∣∣∣∣∣ ≤ ε

′
N,KL,K′L′ .

(2) If u ∈ BN/L,i, v ∈ BN/L, j with i , j, then
∣∣∣∣E

[
S N

u S N
v

]
−E

[
ψN

u ψ
N
v

]∣∣∣∣ ≤ ε ′N,KL,K′L′ .

(3) In all other cases, that is if u, v ∈ BN/L,i but u ∈ BL′,i′ and v ∈ BL′, j′ for some i′ , j′, it holds
that

∣∣∣∣E
[
S N

u S N
v

]
−E

[
ψN

u ψ
N
v

]∣∣∣∣ ≤ Cδ + 40α.

The field, {S N
v }v∈VN , defined in (4.5) is the approximating 3−field we work with.

4.2. Reduction to approximating field. In the following, we generalize the approximation results
from [31] to the case of countably many local maxima. We show that the local maxima of {ψN

v }v∈VN

are well approximated by those of {S N
v }v∈VN . As we need to compare probability measures on Rp, we

use the Lévy-Prokhorov metric d(·, ·), to measure distances between probability measures on Rp. For
two probability measures, µ and ν, it is given by

d(µ, ν) = inf{δ > 0 : µ(B) ≤ ν(Bδ) + δ for all open sets B}, (4.7)

where Bδ = {y ∈ Rp : |x − y| < δ, for some x ∈ B}. Further, let

d̃(µ, ν) = inf{δ > 0 : µ((x1,∞), . . . , (xp,∞)) ≤ ν((x1 − δ,∞), . . . , (xp − δ,∞)) + δ,∀(x1, . . . , xp) ∈ Rp},
(4.8)

which is a measure for stochastic domination. In particular, if d̃(µ, ν) = 0, then ν stochastically
dominates µ. Note, unlike d(·, ·), d̃(·, ·) is not symmetric. Abusing notation, we write for random
vector X,Y with laws µX , µY , d(X,Y) instead of d(µX , µY ) and likewise for d̃. Fix r ∈ N and let Br
of VbN/rcr into sub-boxes of side length r. Let B = ∪r∈N,r≤NBr and {gb}B∈B be a collection of i.i.d.
standard Gaussian random variables. For v ∈ VN , denote by Br(v) ∈ Br the box containing v. For
r1, r2 ∈ N, r1, r2 ≤ N, A ⊂ [0, 1]2, s1.s2 ∈ R+, we write

ψ̄∗N,A B max
v∈VN :v/N∈A

ψN
v + s1gBv,r1

+ s2gBv,N/r2
, (4.9)

and for a general field {gN
v }v∈VN ,

g∗N,A B max
v∈VN :v/N∈A

gN
v . (4.10)
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Fix p ∈ N and disjoint, open, non-empty, simply connected sets A1, . . . , Ap ⊂ [0, 1]2.

Lemma 4.2. For s = (s1, s2) ∈ R2
+, it holds

lim sup
r1,r2→∞

lim sup
N→∞

d((ψ∗N,Ai
− mN)1≤i≤p, (ψ̄∗N,Ai

− mN − ‖s‖22)1≤i≤p) = 0. (4.11)

For the proof of Lemma 4.2 we need some additional estimates.

Lemma 4.3. Let {ψ̄N
v }v∈VN be a centred Gaussian field and c > 0 a constant, such that, for any

v,w ∈ VN ,
∣∣∣∣E

[
ψ̄N

v ψ̄
N
w

]
− E

[
ψN

v ψ
N
w

]∣∣∣∣ ≤ c. Moreover, let A ⊂ [0, 1]2 be an open, non-empty subset and

{gN
v }v∈VN be a collection of independent random variables, such that

P
(
gN

v ≥ 1 + y
)
≤ e−y2

for v ∈ VN . (4.12)

Then, there is a constant C = C(α) > 0 such that, for any ε > 0, N ∈ N and x ≥ −ε1/2,

P

(
max

v∈VN :v/N∈A
(ψ̄N

v + εgN
v ) ≥ mN + x

)
≤ P

(
max

v∈VN :v/N∈A
ψ̄N

v ≥ mN + x − √ε
)

(Ce−C−1ε−1
). (4.13)

Proof. Set Γy B {v ∈ VN : v/N ∈ A, y/2 ≤ εgN
v ≤ y}. Then,

P

(
max

v∈VN :v/N∈A
(ψ̄N

v + εgN
v ) ≥ mN + x

)
≤ P

(
max

v∈VN :v/N∈A
ψ̄N

v ≥ mN + x − √ε
)

+

∞∑

i=0

E

P
 max

v∈Γ2i √ε
ψ̄N

v ≥ mN + x − 2i √ε|Γ2i √ε


 . (4.14)

By [31, Proposition 5.1], the second term on the right hand side in (4.14) is bounded from above by
∞∑

i=0

E

[
P

(
max

v∈VN :v/N∈A
ψ̄N

v ≥ mN + x − 2i √ε|Γ2i √ε

)]
≤ c̃e−cx

∞∑

i=0

E
[
|Γ2i √ε |/|{v ∈ VN : v/N ∈ A}|

]
ec2i √ε ,

(4.15)

where c̃ > 0 is a finite constant. By assumption (4.12), one has

E
[
|Γ2i √ε |/|{v ∈ VN : v/N ∈ A}|

]
≤ e−4i(Cε)−1

. (4.16)

Thus, using (4.16), (4.15) is bounded from above by

c̃e−cxe−(Cε)−1
. (4.17)

This concludes the proof of Lemma 4.3. �

Lemma 4.4. Let {ψ̄N
v }v∈VN be a centred Gaussian field satisfying

|VarψN
v − Var ψ̃N

v | ≤ ε. (4.18)

Further, fix some p ∈ N, and disjoint open, non-empty sets A1, . . . , Ap ⊂ [0, 1]2. If

E
[
ψ̃N

v ψ̃
N
w

]
≤ E

[
ψN

v ψ
N
w

]
+ ε, (4.19)

then

lim sup
N→∞

d̃
(
(ψ∗N,A1

− mN , . . . , ψ
∗
N,Ap
− mN), (ψ̃∗N,A1

− mN , . . . , ψ̃
∗
N,Ap
− mN)

)
≤ l(ε), (4.20)

and else if,

E
[
ψ̃N

v ψ̃
N
w

]
+ ε ≥ E

[
ψN

v ψ
N
w

]
, (4.21)

then

lim sup
N→∞

d̃
(
(ψ̃∗N,A1

− mN , . . . , ψ̃
∗
N,Ap
− mN), (ψ∗N,A1

− mN , . . . , ψ
∗
N,Ap
− mN)

)
≤ l(ε), (4.22)

where l(ε)→ 0 as ε → 0.
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Proof. Let {ψN
v }v∈VN , {ψ̃N

v }v∈VN satisfy relations (4.18) and (4.19). Let Φ, {ΦN
v }v∈VN two independent

standard Gaussian random variables, and ε∗(ε) > 0. For v ∈ VN , set

ψN,lw,ε∗
v =

(
1 − ε∗

log N

)
ψN

v + εN,′Φ, (4.23)

ψ̃
N,up,ε∗
v =

(
1 − ε∗

log N

)
ψ̃N

v + εN,′′
v ΦN

v , (4.24)

where we can choose, as in the proof of [31, Lemma 5.6], ε∗, εN,′
v = εN,′

v (ε, ε∗) and εN,′′
v = εN,′′

v (ε, ε∗)
all non-negative and tending to 0 as ε → 0, such that

Var
[
ψN,lw,ε∗

v

]
= Var

[
ψ̃

N,up,ε∗
v

]
= Var

[
ψN

v

]
+ ε, ∀v ∈ VN (4.25)

and

E
[
ψN,lw,ε∗

v ψN,lw,ε∗
w

]
≥ E

[
ψ̃

N,up,ε∗
v ψ̃

N,up,ε∗
w

]
, ∀v,w ∈ VN . (4.26)

An application of Slepian’s lemma for vectors (Theorem 5.2), gives

d̃
(
(ψ∗N,lw,ε∗,A1

− mN , . . . , ψ
∗
N,lw,ε∗,Ap

− mN), (ψ̃∗N,up,ε∗,A1
− mN , . . . , ψ̃

∗
N,up,ε∗,A1

− mN)
)

= 0. (4.27)

By Lemma 4.3, we obtain, for x1, . . . , xp ∈ R,

P
(
ψ̃∗N,up,ε∗,Ai

− mN ≥ xi, 1 ≤ i ≤ p
)
≤ P

(
ψ∗N,Ai

− mN ≥ xi −
√

max
w∈VN

εN,′′
w , 1 ≤ i ≤ p

)

×Ce−(C maxw∈VN εN,′′
w )−1

. (4.28)

Since lim
ε→0

maxw∈VN ε
N,′′
w = 0 this implies (4.20). (4.22) can be proved the same way by switching the

roles of {ψN
v }v∈VN and {ψ̃N

v }v∈VN . We omit further details. �

Proposition 4.5. Let σ̃ ∈ (0,∞)2, r = (r1, r2) ∈ (0,∞)2, and {ψN,r,σ̃
v : v ∈ VN} as well as {ψN,σ̃,∗

v : v ∈
VN} be two Gaussian fields given by

ψN,r,σ̃
v = ψN

v + σ̃1gBv,r1
+ σ̃2gBv,N/r2

, for v ∈ Vn (4.29)

and

ψN,σ̃,∗
v = ψN

v +

√
‖σ̃‖22

log(N)
ψ̃N

v , for v ∈ VN (4.30)

where {ψN
v }v∈VN , {ψ̃N

v }v∈VN are two independent scale-inhomogeneous DGFFs, satisfying Assumption 1,
and where {gB}B∈B is a collection of independent standard Gaussians. For a set A ⊂ [0, 1]2, we write
MN,A,r1,r2,σ̃ = max

v∈VN :v/N∈A
ψN,r,σ̃

v and likewise, MN,A,σ̃,∗ = max
v∈VN :v/N∈A

ψN,σ̃,∗
v . Then, for any p ∈ N, and any

collection of disjoint, open and non-empty A1, . . . , Ap ⊂ [0, 1]2,

lim sup
N→∞

d
(
(MN,A1,r1,r2,σ̃ − mN , . . . ,MN,Ap,r1,r2,σ̃ − mN), (MN,A1,σ̃,∗ − mN , . . . ,MN,Ap,σ̃∗ − mN)

)
= 0,

(4.31)

as r1, r2 → ∞.

Proof. The proof is a straightforward adaptation of the proof of [31, Proposition B.2]. Decompose
VN into boxes B of side length N/r2 and call their collection B. Further, for δ ∈ (0, 1) and B ∈ B,
let Bδ be the box with the identical centre as B, and reduced side length (1 − δ)N/r2. Then, we
set VN,δ = ∪B∈BBδ. The corresponding maxima over are called MN,A,r1,r2,σ̃,δ = max

v∈VN,δ:v/N∈A
ψN,r,σ̃

v and
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MN,A,σ̃,∗ = max
v∈VN,δ:v/N∈A

ψN,σ̃,∗
v . [31, Proposition 5.1] shows that it suffices to consider the maxima on the

slightly smaller sets, i.e. one has

lim
δ→0

lim
N→∞

P
(
MN,A1,r1,r2,σ̃,δ , MN,A1,r1,r2,σ̃, . . . ,MN,Ap,r1,r2,σ̃,δ , MN,Ap,r1,r2,σ̃

)

= lim
δ→0

lim
N→∞

P
(
MN,A1,σ̃,∗,δ , MN,A1,σ̃,∗, . . . ,MN,Ap,σ̃,∗,δ , MN,Ap,σ̃,∗

)
= 0. (4.32)

Next, we claim that the maximum is essentially determined by the maximum of the unperturbed scale-
inhomogeneous DGFF, {ψN

v }v∈VN . For B ∈ B, let zB be the unique element, such that

ψN
zB

= max
v∈Bδ

ψN
v . (4.33)

The claim is that

lim
r1,r2→∞

lim
N→∞
P

(
|MN,Ai,r1,r2,σ̃,δ − max

B∈B,B⊂NAi
ψN,r,σ̃

zB
| ≥ 1

log n
: 1 ≤ i ≤ p

)

= lim sup
N→∞

P

(
|MN,Ai,σ̃,∗,δ − max

B∈B,B⊂NAi
ψN,σ̃,∗

zB
| ≥ 1

log n
: 1 ≤ i ≤ p

)
= 0. (4.34)

In the following, we show that none of the events in the probabilities in (4.34) can occur. It suffices to
show that none of the following events can happen. For i ∈ {1, . . . , p}, let

E(i)
1 ={MN,Ai,r1,r2,σ̃,δ < (mN −C,mN + C)} ∪ {MN,Ai,σ̃,∗,δ < (mN −C,mN + C)} (4.35)

E(i)
2 ={∃u, v ∈ VN : u, v/N ∈ Ai, ‖u − v‖ ∈ (r,N/r) and min(ψN

u , ψ
N
v ) > mN − c log n} (4.36)

E(i)
3 =Ẽ(i)

3 ∪ Ē(i)
3 , where Ẽ(i)

3 = {ω : ∃v ∈ VN , v/N ∈ Ai : ψN,r,σ̃
v = MN,Ai,r1,r2,σ̃,δ, ψ

N
v ≤ mN − c log n},

Ē(i)
3 = {ω : ∃v ∈ VN , v/N ∈ Ai : ψN,σ̃,∗

v = MN,Ai,σ̃,∗,δ, ψ
N
v ≤ mN − c log n} (4.37)

E(i)
4 =


∃v ∈ B ∈ B ⊂ NAi : ψN

v ≥ mN − c log n and

√
‖σ̃‖22
log N

ψ̃N
v −

√
‖σ̃‖22
log N

ψ̃N
zB
≥ 1/ log n


. (4.38)

The events E2, E3 and E4 in the proof of [31, Proposition B.2] include the corresponding events,
E(i)

2 , E
(i)
3 , E

(i)
4 , we are considering here, and so we know that the probability of their occurrence tends

to zero. So, we are left with bounding the events E(i)
1 . First note that it suffices to consider the scale-

inhomogeneous DGFF, as the other terms are centred Gaussians with uniformly bounded variance.
Since maximizing over a subset, we have, for any i ∈ {1, . . . , p},

P

(
max

v∈VN : v/N∈Ai
ψN

v > mN + C
)
≤ P

(
max
v∈VN

ψN
v > mN + C

)
. (4.39)

By tightness of the centred maximum [31, (2.2)], (4.39) tends to 0 as C → ∞, uniformly in N. Hence
to show (4.34), it suffices to prove, for any i ∈ {1, . . . , p},

lim
C→∞

lim
N→∞

P

(
max

v∈VN :v/N∈Ai
ψN

v ≤ mN −C
)

= 0. (4.40)

Assume otherwise, then there is a subsequence {Nk}k∈N, a sequence CN → ∞ as N → ∞ and a constant
ε > 0, such that, for any k ∈ N,

P

(
max

v∈VNk : v/Nk∈Ai
ψNk

v ≤ mNk −CNk

)
≥ ε. (4.41)

We can further assume that Ai ⊂ [0, 1]2 is a box, otherwise pick the largest box that fits into Ai. We
can decompose [0, 1]2 into disjoint translations of A( j)

i , that we possible need to cut with [0, 1]2. For
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each A( j)
i N we consider an independent copy of {ψN

v }v∈VN , called {ψN, j
v }v∈VN . By translation invariance,

for each of these (4.41) holds. By Gaussian comparison, independence and (4.41), we have

P

(
max
v∈VNk

ψNk
v ≤ mNk −CNk

)
≥ P

max
j

max
v∈A( j)

i Nk

ψ
Nk , j
v ≤ mNk −CNk

 > 0. (4.42)

By tightness of {maxv∈VN ψ
N
v − mN}N∈N, the left-hand side of (4.42) tends to zero, which is a contra-

diction. Thus, this yields (4.40), which concludes the proof of Proposition 4.5. �

Lemma 4.4 and Proposition 4.5 allow us to prove Lemma 4.2.

Proof of Lemma 4.2: Define for v ∈ VN , ψ̄N,σ̃
v =

(
1 +

‖σ̃‖2
log(N)

)
ψN

v , and for A ⊂ [0, 1]2 open and non-

empty, M̄N,A,σ̃ = maxv∈VN :v/N∈A ψ̄
N,σ̃
v and set MN,A = maxv∈VN :v/N∈A ψ

N
v . (4.39) together with tightness

of the centred maximum [31, (2.2)] and (4.40) implies,

E
[
M̄N,Ai,σ̃

]
= E

[
MN,Ai

]
+ 2‖σ̃‖22 + o(1), (4.43)

and

lim
N→∞

d(MN,Ai − E
[
MN,Ai

]
, M̄N,Ai,σ̃ − E

[
M̄N,Ai,σ̃

]
) = 0. (4.44)

Next, we consider the field, {ψN,σ̃,∗
v }v∈VN , defined in (4.30). For i ∈ {1, . . . , p}, set MN,Ai,σ̃,∗ =

maxv∈VN : v/N∈Ai ψ
N,σ̃,∗
v . In distribution, {ψN,σ̃,∗

v }v∈VN can be written as a sum of {ψ̄N,σ̃
v }v∈VN and an inde-

pendent centred Gaussian field with variances of order O((1/ log N)3). Thus, by Gaussian comparison,

E
[
M̄N,Ai,σ̃

]
= E

[
MN,Ai,σ̃,∗

]
+ o(1) (4.45)

and

lim
N→∞

d
((

M̄N,Ai,σ̃ − E
[
M̄N,Ai,σ̃

])
1≤i≤p

,
(
M̄N,Ai,σ̃,∗ − E

[
M̄N,Ai,σ̃,∗

])
1≤i≤p

)
= 0. (4.46)

Combining (4.46) with Proposition 4.5 and applying the triangle inequality, one concludes the proof
of Lemma 4.2. �

Finally, we are able to deduce the key result in this subsection.

Lemma 4.6. Let p ∈ N, and A1, . . . , Ap ⊂ [0, 1]2 be disjoint, open and non-empty. Then,

lim sup
(N,L,K,L′,K′)⇒∞

d
(
(ψ∗N,Ai

− mN)1≤i≤p, (S ∗N,Ai
− mN − 4α)1≤i≤p

)
= 0. (4.47)

Proof. We refrain from giving the proof, as it follows in complete analogy to [31, Lemma 5.4]. Instead
of using [31, Lemma 5.6] in the proof, one replaces it by its multi-dimensional analogue, Lemma 4.4.

�

This reduces the proof of convergence in law of multiple local maxima of the scale-inhomogeneous
DGFF to the structurally simpler field, {S N

v }v∈VN , as it decouples microscopic and macroscopic de-
pendence.

4.3. Coupling to independent random variables. Recall A = (A1, . . . , Ap) is a collection of disjoint
open, non-empty, simply-connected subsets of [0, 1]2, for some fixed p ∈ N. Further, we have tiled
VN with boxes BN/KL,i of side length N/KL. Instead of considering the maximum over the sets {v ∈
VN : v/N ∈ Ai}, we want to work with the BN/KL-boxes. Thus, for any i ∈ {1, . . . , p}, let T (KL)

i ⊂
{1, . . . , (KL)2} denote the maximal index set, such that j ∈ T (KL)

i implies BN/KL, j/N ⊂ Ai, i.e.

∪ j∈T (KL)
i

BN/KL, j/N ⊂ Ai. (4.48)
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Further, it is immediate to see that for all 1 ≤ i ≤ p

|NAi \ ∪ j∈T (KL)
i

BN/KL, j|
|NAi| → 0, (4.49)

as we let N,K, L tend to infinity in this order. In particular,

P


max

v∈∪ii=1p
(
Ai\∪ j∈T (KL)

i
BN/KL, j

)ψ
N
v ≥ mN + z


≤

p∑

i=1

|NAi \ ∪ j∈T (KL)
i

BN/KL, j| sup
v∈VN

P
(
ψN

v ≥ mN + z
)

≤ C
p∑

i=1

|NAi \ ∪ j∈T (KL)
i

BN/KL, j|
N2 e−2z, (4.50)

which, by (4.49), converges to zero as N → ∞. Next, we construct random variables that do not depend
on N and that we couple to the local maxima of {S N

v }v∈VN on ∪ j∈T (KL)
1

BN/KL, j, . . . ,∪ j∈T (KL)
p

BN/KL, j. We

set A′i B ∪ j∈T (KL)
i

BN/KL, j, and S N, f
v B S N

v − S N,cv, for v ∈ VN . Let {%R,i : 1 ≤ i ≤ R} be a collection of
independent Bernoulli random variables with

P
(
%R,i = 1

)
= β∗K′,L′e

2k̄γe2k̄(σ2(0)−1), (4.51)

where, by using [31, Proposition 5.8], the constants β∗K′,L′ are such that they satisfy,

lim
z→∞ lim sup

(L′,K′,N)⇒∞

∣∣∣∣∣∣e
2 log(2)k̄(1−σ2(0))e−2k̄γe2zP

(
max

v∈BN/KL,i
S N, f

v ≥ mN(k̄, n) − k̄γ + z
)
− β∗K′,L′

∣∣∣∣∣∣ = 0. (4.52)

Moreover, there are constans cα,Cα > 0 such that cα ≤ β∗K′,L′ ≤ Cα, where α is as in Lemma 4.1, and
the collection {β∗K′,L′}K′,L′≥0 depends on the variance only through σ(1). In addition, we specify an
independent family of exponential random variables, {YR,i : 1 ≤ i ≤ R},

P
(
YR,i ≥ x

)
= e−2xe2k̄γ , for x ≥ −k̄γ. (4.53)

Also, let {ZR,i}1≤i≤R be a centered Gaussian field with correlation kernel Σc. For each i ∈ {1, . . . , p},
set

G(i)
L,K,L′,K′ B max

j∈T (KL)
i

%R, j=1

(YR, j + 2 log(KL)(1 − σ2(0))) + (ZR, j − 2 log(KL)). (4.54)

We collect these in the vector

G∗A,L,K,L′,K′ B
(
G(1)

L,K,L′,K′ , . . . ,G
(p)
L,K,L′,K′

)
. (4.55)

We denote the law of the random vector defined in (4.55) by µ̄L,K,L′,K′,A, which does not depend on N.
Next, we show that µ̄L,K,L′,K′,A converges to the same limit as µN,A, the law of

(
max
v∈A′1

S N
v − mN , . . . ,max

v∈A′p
S N

v − mN

)
. (4.56)

Set mN(k, t) B 2 log NIσ2

(
k
n ,

t
n

)
− (t∧(n−l̄)) log n

4(n−l̄) , for k ≤ n and t ∈ [k, n].

Theorem 4.7. It holds that

lim sup
(N,L,K,L′,K′)⇒∞

d(µN,A, µ̄L,K,L′,K′,A) = 0. (4.57)

In particular, there exists µ∞,A such that lim
N→∞

d(µN,A, µ∞,A) = 0.
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Proof. We follow the proof of [31, Theorem 5.9] that deals with the global maximum. Denote by
τ′i = arg maxv∈BN/KL,i S N

v , the a.s. unique point where the local maximum is achieved. By [31, (5.50)],
we have, for 1 ≤ i ≤ p,

lim sup
(N,L,K,L′,K′)⇒∞

P
(
S N, f
τ′i
≥ mN(k̄, n) − k̄γ

)
= 1. (4.58)

Moreover, we know that the fine field values cannot be too large, i.e. let

E = ∪1≤i≤R{ max
v∈BN/KL,i

S N, f
v ≥ mN(k̄, n) + KL + k̄γ}, and E′ = ∪1≤i≤R{YR,i ≥ KL + k̄γ}. (4.59)

By [31, (5.51)] respectively [31, (5.53)], we deduce

lim sup
(N,L,K,L′,K′)⇒∞

P (E) = 0 and lim sup
(N,L,K,L′,K′)⇒∞

P
(E′) = 0. (4.60)

This allows to couple the centred fine field, M̃ f
N,i = maxv∈BN/KL,i S N, f

i − mN(k̄, n), to the approximating

process G(i)
L,K,L′,K′ , defined in (4.54). By [31, Proposition 5.8], there are ε∗N,KL,K′L′ > 0 with

lim sup
(N,L,K,L′,K′)⇒∞

ε∗N,KL,K′L′ = 0, (4.61)

such that, for some |�ε| ≤ ε∗N,KL,K′L′/4,

P
(
−k̄γ +

�
ε ≤ M̃ f

N,i ≤ KL + k̄γ
)

= P
(
%R,i = 1, YR,i ≤ KL + k̄γ

)
, (4.62)

and such that for all t with −k̄γ − 1 ≤ t ≤ KL + k̄γ,

P
(
%R,i = 1, YR,i ≤ t − ε∗N,KL,K′L′

)
≤ P

(
−k̄γ +

�
ε ≤ M̃ f

N,i ≤ t
)
≤ P

(
%R,i = 1, YR,i ≤ t + ε∗N,KL,K′L′/2

)
.

(4.63)

Thus, by the same argument given in the proof of [31, Theorem 5.9], there is a coupling between
{M̃ f

N,i : 1 ≤ i ≤ R} and {(%R,i,YR,i) : 1 ≤ i ≤ R} such that on the event (E ∪ E′)c:

%R,i = 1, |YR,i − M̃ f
N,i| ≤ ε∗N,KL,K′L′ , if M̃ f

N,i ≥ ε∗N,KL,K′L′ (4.64)

|YR,i − M̃ f
N,i| ≤ ε∗N,KL,K′L′ , if %R,i = 1. (4.65)

As {ZR,i}1≤i≤R and {S N,c
v }v∈VN have the same law, one can couple such that S N,c

v = ZR,i, for v ∈ BN/KL,i
and 1 ≤ i ≤ R. Using [31, (5.63)], we deduce

lim sup
(N,L,K,L′,K′)⇒∞

P
(
%R,τ̃i = 1

)
= 1, (4.66)

and thereby exclude that the local maximum is achieved in a box T (KL)
j when at the same time %R, j = 0.

Thus, there are couplings, such that outside an event of vanishing probability as (N, L,K, L′,K′)⇒ ∞,
we have

(
(max

v∈A′1
S N

v − mN) −G(1)
L,K,L′,K′ , . . . , (max

v∈A′p
S N

v − mN) −G(p)
L,K,L′,K′

)

∞
≤ 2ε∗N,KL,K′L′ , (4.67)

which proves Theorem 4.7. �

Next, we prove Theorem 2.5.

Proof of Theorem 2.5: By Lemma 4.6, (4.50) and Theorem 4.7, we can reduce the proof to proving
convergence of the laws µ̄L,K,L′,K′,A. Recall that we write R = KL. In the following, we construct
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random variables {DKL(Ai) : 1 ≤ i ≤ p}K,L≥0 that are measurable with respect to F C B σ
(
ZR,i

)R
i=1, so

that for any x1, . . . , xp ∈ R, the following limit exists

lim
(L,K,L′,K′)⇒∞

µ̄L,K,L′,K′,A((−∞, x1], . . . , (−∞, xp])

E
[
exp(−β∗K′,L′

∑p
i=1 DKL(Ai)e−2xi)

] , (4.68)

and is equal to one. Regarding (4.66), assume %R,τ̃i , for 1 ≤ i ≤ p. Conditioning on F c, we have, for
any x1, . . . , xp ∈ R ,

µ̄L,K,L′,K′((−∞, x1], . . . , (−∞, xp]) = P
(
G(i)

L,K,L′,K′ ≤ xi : i = 1, . . . , p
)

= E


p∏

i=1

(
1 − P

(
%R, j(YR, j + 2 log(KL)(σ2

1 − 1)) > xi + 2 log(KL) − ZR, j|F c
))|T (KL)i |

 . (4.69)

A union bound onDc = {min1≤i≤R 2 log(KL) − ZR,i ≥ 0}c, shows that

lim sup
(L,K) =⇒ ∞

P(D) = 1. (4.70)

Thus, on the eventD, and by (4.51), (4.53) and (4.73), one deduces

P
(
%R, jYR, j ≥ 2 log(KL)σ2(0) − ZR, j + xi|F c

)
= β∗K′,L′e

−2(2(1+σ2(0)) log(KL)−ZR, j+xi) (4.71)

In particular, note that (4.71) tends to zero as KL → ∞. Using e−
x

1−x ≤ 1 − x ≤ e−x, for x < 1, and
inserting for x the probability in (4.71) with K, L large, implies that there is non-negative sequence
{εK,L}K,L≥0, with lim sup

(K,L)⇒∞
εK,L = 0, such that

exp
(
−(1 + εK,L)β∗K′,L′e

−2((1+σ2(0)) log(KL)−ZR, j+xi)
)
≤ P

(
%R, jYR, j ≤ 2 log(KL)σ2(0) − ZR, j + xi|F c

)

≤ exp
(
−(1 − εK,L)β∗K′,L′e

−2((1+σ2(0)) log(KL)−ZR, j+xi)
)
.

(4.72)

Plugging (4.72) into (4.69) gives (4.68), with

DK,L(Ai) =
∑

j∈T (KL)
i

e−2(2(1+σ2(0)) log(KL)−ZR, j). (4.73)

(4.68) combined with Theorem 4.7, implies that there is a constant β∗ > 0, such that

lim sup
(K′,L′)⇒∞

|β∗K′,L′ − β∗| = 0. (4.74)

Inserting (4.74) into (4.68), we obtain

lim
(L,K,L′,K′)⇒∞

µ̄L,K,L′,K′,A((−∞, x1], . . . , (−∞, xp])

E
[
exp(−β∗∑p

i=1 DKL(Ai)e−2xi)
] = 1. (4.75)

Theorem 4.7 in combination with (4.75), implies that {DKL(Ai) : 1 ≤ i ≤ p} converge weakly
to random variables {D(Ai) : 1 ≤ i ≤ p}, as K, L → ∞. Moreover, as the sequence of laws,
{µ̄L,K,L′,K′,A}L,K,L′,K′≥0, is tight, it follows that almost surely, D(Ai) > 0, for i ∈ {1, . . . , p}. This con-
cludes the proof. �

5. Appendix

5.1. Gaussian comparison. We need a vector version of Kahane’s theorem.
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Theorem 5.1. Let f ∈ C2(Rn;Rk) with sub-Gaussian growth in every component of the second deriv-
atives. Further let {Xi}1≤i≤n, {Yi}1≤i≤n be two centred Gaussian fields satisfying

E
[
YiY j

]
> E

[
XiX j

]
=⇒ ∂ f

∂xi∂x j
(x) ≥ 0, x ∈ R, (5.1)

where the inequality is to be understood component-wise. Then,

E
[
f (Y)

] ≤ E [
f (X)

]
, (5.2)

again to be understood as an inequality valid in each component.

Proof. The proof is an immediate adaptation of the original proof, as each component of f is a function
fi ∈ C2(Rn) with sub-Gaussian growth in its second derivatives, for which Kahane’s theorem holds. In
particular, each component of the map f can be treated separately. �

This allows us to deduce a vector version of Slepian’s inequality.

Theorem 5.2. Let T be a countable index set, {Xi}i∈T , {Yi}i∈T be two centred Gaussian fields satisfying

Var [Xi] = Var [Yi] ∀i ∈ T and E
[
XiX j

]
≤ E

[
YiY j

]
, ∀i, j ∈ T. (5.3)

Then, for any disjoint collection of subsets T1, . . . ,Tk ⊂ T and real numbers x1, . . . , xk ∈ R,

P

(
max
i∈T1

Yi ≤ x1, . . . ,max
i∈Tk

Yi ≤ xk

)
≤ P

(
max
i∈T1

Xi ≤ x1, . . . ,max
i∈Tm

Xi ≤ xk

)
. (5.4)

Proof. The proof is basically only a vector version of the original, which is why we just give a sketch.
Assume for simplicity |T | = n. One takes a sequence of maps fl : Rn → Rk of the form

fl =



∏
i∈A1 gl

i(xi)∏
i∈A2 gl

i(xi)
...∏

i∈Ak gl
i(xi)


(5.5)

where gl
i(x j) are smooth, non-increasing and converge from above to 1(−∞,x j]. One notices that the

requirements of Theorem 5.1 are met, and an application of it finishes the proof. �
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