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CHAPTER 1

Introduction

Historically, materials science was basically limited to trial-and-error style experiments. Known
substances were mixed, heated, or otherwise transformed, and their macroscopic properties
analysed. Today far more advanced techniques are available to investigate materials, their
physical properties, and their reaction behaviour.

Besides growing physical and chemical knowledge and the increasing accuracy of experiments,
computational methods offer new insights into the behaviour of materials. They can – if used
correctly – provide information where classical experiments fail, for example when it is not
possible to detect certain properties without disturbing the system under observation or where
the temporal or spatial scales become too small. They can also be faster or cheaper than
classical experiments which may require expensive equipment as well as trained scientists. A
wide range of computational methods are available, depending on the properties of interest.
They range from stress simulations for whole buildings to quantum mechanical calculations in
order to determine the properties of single atoms.

This thesis deals with the problem of simulating the dynamics of atomistic systems that are in
thermal contact with a heat bath. If timescales of more than a fewmicroseconds are required, the
standard Molecular Dynamics (MD) approach can no longer be used – thus other algorithms are
needed to predict the movement of atoms over such periods of time. Reaching long timescales
is important in a number of interesting simulation problems – both in academia and in industry.
One such application is the simulation of ageing processes in materials. On an atomistic level,
ageing can happen in multiple ways: defects that are present in a material can move and merge,
forming larger defects or microcracks as shown in figure 1.1. Certain impurities may also
diffuse through the material, causing changes to the original material structure. The latter is
a major problem in nuclear power plants, where the diffusion of hydrogen causes the reactor
vessel to become brittle [1, 2], leading to potentially catastrophic consequences. As the word
ageing implies, it is not sufficient to simulate only a few microseconds of such processes.
Instead, reaching timescales of at least hours is crucial in order to obtain reasonable results.
Another area of interest is the investigation of deposition processes. Different kinds of
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Chapter 1 Introduction

(a) Initial system – many small defects (b) Final system – few large defects

Figure 1.1: Formation of larger defects from smaller ones.

deposition processes are used to create high-purity silicon wafers in the semiconductor industry.
Depending on the intended use, various types of silicon are required, ranging from perfect
silicon crystals through polycrystalline silicon (as in figure 1.2) to amorphous silicon. Varying
the deposition method, deposition rate, or the ambient conditions may result in very different
crystal structures. Therefore understanding the influence of these parameters is crucial for
optimising the manufacturing process. As deposition processes may progress slowly – growth
rates of only slightly more than 1 nmmin−1 are quite common [3] – it is once again necessary
to simulate timescales of at least a couple of seconds.

Finally, such simulations also play an important role in computational biology. To understand
certain biological processes it is important to understand how some molecules – specifically
proteins – evolve over time. Some proteins fold, meaning that their structure changes from a
chain-like structure to a denser (folded) three-dimensional packing. This folding process may
take from a few microseconds up to several hours [4], depending on the protein. The folded and
the unfolded states of a protein may have different biological properties, making the questions
of how, why, and when they fold an important problem in biology.
Various approaches to tackle the timescale problem exist. In this thesis, the focus is on

on-the-fly Kinetic Monte Carlo algorithms that exploit inherent metastability in particle systems
to simulate their dynamics on a coarser scale. As their name suggests, such algorithms search
continuously for new metastable states in a particle system, which can be computationally
prohibitive. One possible amendment to this problem was pioneered in the kinetic activation
relaxation technique (k-ART). There, information about local structural changes that can
occur in a particle system are stored and recycled whenever possible in order to find new
metastable states. Due to the design of k-ART, this recycling step can fail if the particle system
is amorphous.
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Figure 1.2: Polycrystalline silicon - grain boundaries are dark grey.

Therefore, I introduce a modification of k-ART, called the Localised Kinetic Monte Carlo
algorithm (LKMC) that eliminates some of the problems of the classical k-ART algorithm. The
centrepiece is a new approach for the comparison of particle systems that is invariant under both
permutations and orthogonal transformations. It is based on a previously known variant of the
root mean square deviation (RMSD) that possesses the same invariant properties. Calculating
this invariant RMSD is in general NP-hard. However, I show that in the context of k-ART this
invariant RMSD can be exactly calculated in polynomial time with respect to the number of
particles. A corresponding algorithm is presented that can not only compare particle systems
but is also able to calculate the optimal permutation and orthogonal transformation that maps
two particle systems onto each other. This comparison procedure is then used in the LKMC
algorithm and applied to a number of test problems where it shows promising accuracy for
amorphous particle systems.

The basics of particle system dynamics are presented in chapter 2, followed by an overview
of long-timescale algorithms in chapter 3. The k-ART algorithm is introduced in chapter 4, as
well as the LKMC algorithm and all its components. The LKMC algorithm is then applied to
a number of test problems in chapter 5 and its behaviour is analysed. Finally, the results are
summarised in chapter 6 and additional thoughts related to this work are presented.
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CHAPTER 2

Atomistic simulations

Before the problem of long-timescale atomistic simulations is tackled, more fundamental
questions have to be answered. Questions like: How do atoms move? How do they interact
with each other? And why do we need long atomistic simulations in the first place?

Answers to these questions are presented in this chapter. The very basics of atom movements
can be found in section 2.1 while the central questionWhy do we need long atomistic simulations
is answered in section 2.5.

2.1 From quantum mechanics to classical mechanics

Ignoring relativistic effects and assuming that electrons and atomic nuclei are stable, quantum
mechanics (QM) offer currently the most accurate description of their behaviour [5]. Treating
atoms in a QM setting introduces a variety of challenges, the largest one being that it is usually
impossible to solve the necessary equations, either numerically or analytically.

Two central equations in non-relativistic QM are the time-dependent Schrödinger equation

i~
∂

∂t
Ψ(r, t) = HΨ(r, t) (2.1)

and its time-independent version
HΨ(r) = EΨ(r). (2.2)

Equation (2.1) can be used to determine the wave function Ψ : RN×3
× R→ C which contains

all quantum mechanical information about the electrons and atomic nuclei in a system at a given
time. The three-dimensional coordinates of the involved atomic nuclei and electrons are given
by r ∈ RN×3, H is the quantum Hamiltonian operator which includes the – usually electrostatic
– interactions between the electrons and nuclei and ~ is the reduced Planck constant.

Equations (2.1) and (2.2) are 3N-dimensional complex valued partial differential equations
where N is not the number of atoms but the number of electrons and atomic nuclei combined.
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Chapter 2 Atomistic simulations

Due to their high dimensionality these equations are usually not numerically solvable. For
very simple cases analytical solutions can be computed: equation (2.2) for example can be
solved exactly for the hydrogen atom if only the single electron of the atom is treated quantum
mechanically [6]. For larger systems exact solutions are not possible. Instead, other techniques
can be used to calculate approximate solutions. For example, the Hartree-Fock ansatz or the
density functional theory (DFT) can be used to approximate some of the eigenvalues E in
equation (2.2).
In a number of applications of interest, however, it is sufficient to treat atoms as classical

particles. Here, classical means that each atom is modelled as a point mass which moves
according to Newton’s laws. This simplification is usually motivated by the fact that atomic
nuclei have significantly more mass than electrons. Therefore it is possible to separate the
movement of the atomic nuclei – which move much more slowly than the electrons – from the
movement of the electrons. Using this, the classical equations of motions for the atomic nuclei
can be derived. A detailed derivation of the classical equations of motions starting from the
Schrödinger equation can be found in [7].

Given a collection of n atoms that are completely isolated from any external influences, the
evolution of the atomic coordinates q(t) : R→ Rn×3 and velocities v(t) : R→ Rn×3 can be
simulated using the classical equations of motion

Ûq(t) = v(t)

M Ûv(t) = F(q(t), t).

In this equation, M ∈ Rn×n is a diagonal matrix such that Mi,i is the mass of the i-th particle
whereas F : Rn×3

×R→ Rn×3 denotes the forces that act on the particles at time t. By solving
this ordinary differential equation it is possible to simulate the movement of the atoms – and
therefore the molecules and crystals that they form – over time.

If the atoms are completely isolated from any external influences, the forces depend only on
the current positions of all atoms and do not depend explicitly on the time. In this case, the
forces that act on the particles are implicitly given by a potential energy function E : Rn×3

→ R,
also known as the potential energy surface. This function maps from the atomic coordinates to
the corresponding potential energy; in this case, the forces are related to E by

F(q(t), t) = −∇E(q(t)).

Using given initial atom positions q(0) and velocities v(0), the atom positions at time t can be
determined by solving the differential equation:

Ûq(t) = v(t)

M Ûv(t) = −∇E(q(t)).
(2.3)

In the context of atomistic simulations, equation (2.3) is often replaced by the equivalent
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2.1 From quantum mechanics to classical mechanics

Hamiltonian formulation of classical mechanics [8]

Ûq(t) =
∂H(q(t), p(t))

∂p
(2.4)

Ûp(t) =
∂H(q(t), p(t))

∂q
.

Here q(t) denotes as before the atom positions at time t whereas p(t) stands for the momenta of
the particles which are related to the velocities as p(t) = Mv(t). The (classical) Hamiltonian
H(q, p) : Rn×3

× Rn×3
→ R is defined as

H(q, p) = E(q) + Ekin(p)

where Ekin is the kinetic energy of the particles, given by the formula

Ekin(p) =
n∑
i=1

pi,∗
2

2
2Mi,i

.

By using the relation p(t) = Mv(t) and the fact that the Hamiltonian fulfils

Ûq(t) =
∂H(q(t), p(t))

∂p
= M−1p(t) = v(t)

Mv(t) = Ûp(t) =
∂H(q(t), p(t))

∂q
= −∇E(q(t))

one can verify that equations (2.3) and (2.4) are indeed equivalent.
One of the advantages of the Hamiltonian formulation is the connection between the

Hamiltonian and the potential energy E , kinetic energy Ekin, and total energy E + Ekin of
a many-particle system. Given particle coordinates q ∈ Rn×3 and corresponding momenta
p ∈ Rn×3, the Hamiltonian H(q, p) represents the total energy of the system. Furthermore, for
a trajectory (q(t), v(t)) that fulfils equation (2.4), the Hamiltonian fulfils

dH
dt
(q(t), p(t)) = 0

and thus offers a mathematical representation of energy conservation.
The process of solving the Hamiltonian equations of motions will from now on be called

Hamiltonian Dynamics (HD). HD is the foundation for many atomistic materials simulations,
some of which will be explained later on. There are a couple of issues to be kept in mind
when using HD. One big problem is the correct choice of the potential energy function E . A
huge variety of such functions are available in today’s literature, ranging from simple quadratic
functions to highly complex ones that stem from QM. Picking a potential energy function that
is both accurate enough to reproduce the quantities of interest and cheap enough in terms of
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Chapter 2 Atomistic simulations

computational cost remains a hard problem. In this thesis I will always assume that the chosen
potential energy function is sufficiently accurate for the problem under investigation.

To complicate things even further, discretising equation (2.4) usually requires timesteps that
must be as low as a femtosecond in order to avoid instabilities [9]. As a consequence, solving
this equation for values of t larger than a few microseconds is usually not possible.

2.2 The ensemble concept

Using HD to calculate single trajectories is a useful tool for some applications, for example
to simulate the trajectories of celestial bodies, whose motions can also be predicted using
Newtonian dynamics1. Another application is the qualitative investigation of some reaction
mechanisms. From the trajectories of the involved atoms or molecules one can draw conclusions
as to how some chemical reactions take place on an atomistic level or why some reactions occur
or do not occur under given conditions.
Unfortunately, analysing single HD trajectories is not sufficient for a large number of

simulation problems due to a number of reasons. First, in most applications exact initial
conditions for the equations of motion are not available. Even if they are known, solving these
equations numerically with sufficient accuracy may be impossible, as the equations of motion
can exhibit chaotic behaviour, causing an exponential growth of the error over time [7].
Second, HD in its pure form can only be used to model isolated systems. In many cases,

at least some degree of interaction with other systems is desired. As even small amounts of
matter may contain huge numbers of atoms, it is generally not possible to model all interacting
systems on an atomistic level2.

Solutions to these problems can be found in the vast field of statistical mechanics (sometimes
called statistical physics). One of the central questions of statistical mechanics is how certain
atomistic (or microscopic) structures are related to macroscopic properties like temperature or
pressure. A fundamental concept of statistical mechanics are ensembles. Following the work
in [8], the ensemble concept is introduced now. To begin with, a few definitions are needed.

Definition 1. The tuple (q, p) ∈ Rn×3
× Rn×3 is called the microscopic state of an n-particle

system. It describes the n three-dimensional positions and momenta of an n-particle system. The
notation qi ∈ R

3 is used to denote the position of the i-th particle, and pi ∈ R
3 its momentum.

Definition 2. The phase space Ωn of n-particle systems is the space of all possible microscopic
states, i.e. Ωn = R

n×3
× Rn×3.

For a fixed number of particles, the phase space contains all possible microscopic states. It
also includes a number of microscopic states that can never occur even under the most extreme
circumstances – for example systems where all particles have the same position. An ensemble
1 The forces in this case are given by gravitational interactions.
2 Under very optimistic conditions, specialised parallel codes can cope with up to 20 trillion atoms as of 2019 [10].
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2.2 The ensemble concept

is now defined as a special probability density on the phase space. Depending on the ensemble,
this may exclude these “impossible” microscopic states.

Definition 3. An ensemble on the phase space Ωn is a time-dependent probability density
ρ(q, p, t) : Ωn × R→ R that fulfils the Liouville equation

0 =
∂ρ(q, p, t)

∂t
+

n∑
i=1

∂ρ(q, p, t)
∂qi

∂H(q, p, t)
∂pi

−
∂ρ(q, p, t)

∂pi

∂H(q, p, t)
∂qi

(2.5)

for all (p, q, t) ∈ Ωn × R.

The Liouville equation ensures that the probability density evolves according to the HD of
the microscopic states. Especially interesting are so-called equilibrium ensembles.

Definition 4. An ensemble ρ(q, p, t) is called an equilibrium ensemble if

∂ρ(q, p, t)
∂t

= 0

for all t. In this case the explicit time dependency of ρ is dropped and ρ(q, p) is used instead of
ρ(q, p, t).

Certain equilibrium ensembles provide a connection between macroscopic properties like
temperature and energy and the underlying microscopic systems. These ensembles can usually
be derived directly from the basic thermodynamic laws.
The first and most basic equilibrium ensemble is the microcanonical ensemble, also called

NVE ensemble. It is used to provide a link betweenmicroscopic states in an isolatedmacroscopic
system with a fixed number of particles (N), a fixed volume (V) and a fixed total energy (E). If
these three properties are known, the corresponding microscopic systems are distributed in
phase space according to the microcanonical distribution

ρNVE
(q, p) =

1
Z
δ(H(q, p) − E).

Here, δ is the Dirac δ-distribution and Z is a normalisation constant3. As mentioned before,
the distribution can be derived using the laws of thermodynamics (see [8]).

The microcanonical ensemble covers isolated systems that do not interact with their surround-
ings. In contrast, the canonical ensemble (also called the NVT ensemble) describes systems
with a fixed number of particles (N) and a fixed volume (V) that is in thermal equilibrium with
a heat bath of some temperature (T). In this context, a heat bath is an infinitely large system
with a fixed temperature that may exchange heat with the system under investigation without
interacting directly with its atoms.
3 Z is also known as the partition function as it depends implicitly on N , V and E .
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Chapter 2 Atomistic simulations

Similar to the microcanonical ensemble, the canonical ensemble can be derived from the
laws of thermodynamics. Its density is explicitly given by

ρNVT
(q, p) =

1
Z

exp(−H(q, p)/(kBT))

where Z is once again a normalisation constant such that ρNVT is a probability density and kB
is the Boltzmann constant.

Besides the microcanonical and canonical ensemble, other equilibrium ensembles are used
frequently. One of them is the isobaric-isothermal ensemble (NPT) and the grand canonical
ensemble (µVT) where the number of particles is no longer constant.

2.3 Observables

Now that the step from single HD trajectories to whole statistical ensembles has been taken, it
is time to extract information from these equilibrium ensembles. In an ensemble context, one is
usually interested in the properties of the whole ensemble, not of individual microscopic states.
Given an observation function a(q, p) on the phase space Ωn, the corresponding equilibrium
observable 〈a|ρ〉 for an equilibrium ensemble ρ is defined by

〈a|ρ〉 =
∫
Ωn

a(q, p) dρ(q, p). (2.6)

One simple example would be the average total energy of an ensemble, which is given by

〈H |ρ〉 =
∫
Ωn

H(q, p) dρ(q, p).

In the case of the canonical ensemble, the calculation of ensemble averages can be simplified
if the observation function depends only on the particle coordinates and not on the momenta
(and can thus be written as a(q)). This is the case in many applications, for example when
calculating average potential energies, diffusion constants or stress. As the canonical density
can be split into a position and a momenta depending part, such averages can be calculated as

10



2.4 Molecular dynamics

follows

〈a|ρNVT
〉 =

1
Z

[∫
Rn×3

exp(−Ekin(p)/(kBT)) dp
] [∫

Rn×3
exp(−E(q)/(kBT))a(q) dq

]
=

1
Z

[∫
Rn×3

n∏
i=1

exp

(
−

pi
2

2
2mikBT

)
dp

] [∫
Rn×3

exp(−E(q)/(kBT))a(q) dq
]

=
1
Z

[
n∏
i=1

√
(2πmikBT)3

]
︸                        ︷︷                        ︸

CZ̃−1

[∫
Rn×3

exp(−E(q)/(kBT))a(q) dq
]

=

∫
Rn×3

a(q)
1
Z̃

exp(−E(q)/(kBT))︸                     ︷︷                     ︸
CρNVT

pos (q)

dq. (2.7)

Definition 5. Similar to the definition of the phase space, the position space Θn is the space of
all possible particle positions for an n-particle system, i.e. Θn = R

n×3.

Definition 6. The probability density

ρNVT
pos (q) =

1
Z̃

exp(−E(q)/(kBT)) (2.8)

that occurred in equation (2.7) will be called the canonical density in position space.

2.4 Molecular dynamics

In order to calculate ensemble averages it is necessary to integrate a high dimensional function
as shown in equation (2.6). Classical quadrature rules are usually not suited for this task, unless
the number of particles is low.

While various Monte Carlo based approaches can be used to calculate ensemble averages, the
focus here will be on Molecular Dynamics (MD) methods. The idea of Molecular Dynamics
is to replace the ensemble average by a time average of some trajectory. In the case of the
microcanonical ensemble, some equilibrium observable 〈a|ρNVE

〉 is calculated by using a long
HD trajectory (q(t), v(t)) and the relation

〈a|ρNVE
〉 = lim

t→∞

∫ t

0
a(q(τ), p(τ)) dτ. (2.9)

The assumption that the equality in (2.9) holds is called the ergodic hypothesis [7]. In general
this is not true, however, it is often assumed to be the case [11, 12].
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Chapter 2 Atomistic simulations

The MD approach for the microcanonical ensemble can be extended to cover other ensembles
as well. The key idea is to replace the HD trajectories by “some other trajectories” that can
sample the corresponding ensemble. In the case of the canonical ensemble, this is usually done
by modifying the original HD such that they include the effect of the heat bath on the system
under investigation. For this reason, these modifications are called thermostats. Commonly
used thermostats are the Berendsen thermostat [13], the Nosé-Hoover thermostat [14], and
the Langevin thermostat [8]. In this thesis, only the Langevin thermostat will be used for
simulations. The reason for this choice is that for a huge class of potentials, the Langevin
thermostat fulfils the ergodic hypothesis for sampling the canonical density [15–17]. For
the often-used Nosé-Hoover thermostat it is possible to create cases where this is not the
case [18, 19]. The same holds true for the Berendsen thermostat [20]. Furthermore, many
proofs related to long-timescale algorithms assume Langevin type dynamics.

The Langevin thermostat models the effect of the heat bath by adding an additional stochastic
term to the equations of motion. Therefore one no longer obtains deterministic trajectories
as before but the evolution of the particle coordinates and velocities is now described by a
stochastic process {(Qt,Vt )} where Qt and Vt are (n × 3)-dimensional random variables. This
stochastic process must fulfil the Langevin equations [21]

dQt = Vtdt (2.10)

dVt = −M−1
∇E(Qt ) dt − ξVt dt + dηt . (2.11)

The effect of the heat bath is modelled by the stochastic process ηt that has zero mean,
autocorrelation

〈(ηt )i(ηt+τ)j〉 = 2
kBT
Mi,i

ξδ(τ)δi j (2.12)

and no correlation with Qs or Vs for s ≤ t. The parameter ξ ∈ R is called the friction rate.
Given some initial coordinates and velocities, one can solve the Langevin equations, i.e. use
them to sample random trajectories. These trajectories can be used to calculate equilibrium
observables with respect to the canonical density [22].
It is useful to observe that setting ξ to 0 would result in the deterministic Hamiltonian

equations. Conversely, in the limit ξ →∞ one obtains the overdamped Langevin equations [23]

dQt = −∇E(Qt ) dt + dνt . (2.13)

The noise term νt is once again a stochastic process that has zero mean, autocorrelation

〈(νt )i(νt+τ)j〉 = 2kBTδ(τ)δi j, (2.14)

and no correlation with Qs for s ≤ t. If the overdamped Langevin equation is used, only particle
coordinates can be obtained but no velocities. While this is not sufficient to calculate ensemble
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2.5 Metastability and long-timescale simulations

averages of the canonical ensemble, these trajectories may be used to calculate averages with
respect to the canonical density in position space (see equation (2.8)).

2.5 Metastability and long-timescale simulations

As shown in the previous section, Langevin-based MD may be used to calculate ensemble
averages for the canonical ensemble. Depending on the convergence speed of the time averages,
very long trajectories may be necessary to obtain a good approximation.

Thermostatted dynamics have also been used for applications other than sampling the
canonical density. As the thermostats are designed to model the effect of the heat bath, they
have been used to investigate various dynamic properties of atomistic systems, like diffusion
rates, reaction mechanisms or phase transitions. As shown in [24,25], the dynamics that are
obtained by solving the Langevin equations are in many cases similar to the dynamics produced
by a full atomistic representation of the heat bath.

As in the HD case, it is usually not possible to calculate Langevin trajectories that are longer
than a few microseconds, which may not be long enough to simulate the system of interest. The
reasons for that may be manifold: low temperatures will slow the particle movements, due to
the relation between temperature and kinetic energy, thus all chemical processes will take a
much longer time. A high dimensionality of the phase space (i.e. many particles) is another
problem. It raises the computational cost of each timestep in an MD simulation and may slow
the convergence of the MD averages.

One particular problem is metastable behaviour of a particle system. From an observational
point of view, this means that the dynamics of an atomistic system become stuck in some part
of the phase space and will need a very long time to escape from it. A classical example for
such behaviour is the simulation of a single one-dimensional particle in a double well potential
as shown in figure 2.1. The time that the particle needs to escape from one of the potential
wells has been analysed in great detail.

In his famous work, Kramers [26] investigated the rate with which the particle crosses the
barrier both for the Langevin equations as well as the overdamped Langevin equations. At low
temperatures, these rates can be used to accurately approximate the average time tescape that the
particle needs to escape from one of the wells [27]

tescape ≈
2π

−E ′′(r)E ′′(s)
exp

(
E(s) − E(r)

kBT

)
. (2.15)

Here, r ∈ R is the coordinate of the local minimum from which the particle should escape
whereas s ∈ R is the position of the barrier. One important observation is that the average
escape time tescape grows exponentially with respect to the inverse of the temperature. At low
temperatures, it may no longer be possible to calculate Langevin trajectories that are long
enough for the particle to cross the barrier.
Similar behaviour can be observed in a number of other, more complex simulations. In
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Chapter 2 Atomistic simulations
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Figure 2.1: Double well potential.

the evaluation chapter 5, a number of more realistic problems are presented that also show a
similar behaviour due to the presence of energy barriers. A more detailed explanation of the
mathematical concept behind metastability as well as corresponding algorithms are presented
in the next chapter.
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CHAPTER 3

Coarse-grained long-timescale simulations

If a system exhibits metastability it may be difficult to calculate sufficiently long Langevin
trajectories. However, metastability can make it possible to calculate coarse grained particle
dynamics over larger timescales than would otherwise be the case. In this chapter, the necessary
theory for such coarse grained dynamics as well as corresponding algorithms are presented.

The very basic idea that is behind most of these algorithms was developed before the advent
of statistical mechanics. Historically, chemists have investigated chemical reactions in which
some initial compounds (reactants) react to form some other (product) compounds. In the 19th
century, Svante Arrhenius developed the Arrhenius equation [28]. This equation

k(T) = k(Tref ) exp

[
Ea

R

(
1

Tref
−

1
T

)]
models the connection between the reaction rate k(Tref ) at a given reference temperature Tref
and the reaction rate k(T) at some other temperature. Here, R is the universal gas constant and
Ea the experimental activation energy [29]. The Arrhenius equation is an empirical observation
and values like the experimental activation energy have not been derived from the statistical
mechanics ansatz that was presented before.

Still, it is tempting to use the concept of reactions and reaction rates to represent the dynamics
of a particle system as a series of reactions that transfer the system from one metastable region
to another.

3.1 Discretising the position space

If this idea is transferred to a particle system that moves according to the overdamped Langevin
equations, this implies that the evolution of the particle system should be modelled as a sequence
of jumps from one part of the position space to another. The common approach to realise this is
to use a Markov Jump Process (MJP) to model the dynamics on a coarser scale. Such a MJP on
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Chapter 3 Coarse-grained long-timescale simulations

Figure 3.1: Representation of the evolution of an impurity atom as a MJP.

a (yet to be determined) finite state space S = {s1, . . . , sm} yields a graph-like representation
of the position space of a particle system (see figure 3.1). Each state si of the MJP should
correspond to some subset of the position space Θn which in turn should represent a metastable
region. The evolution of the system is then modelled by a series of jumps from one state to
the other. In the context of particle simulations, the rates that determine the jump frequency
from one state si to some other state sj are called the reaction or transition rates ki j . Together
with the values kii = −

∑
j,i ki j the transition rates form an m × m matrix that is called the rate

matrix and which corresponds to the infinitesimal generator of the MJP.
These transition rates are central in governing the coarsened dynamics of the system. If

a system is in some state si, the time that the system needs to escape from this state is an
exponentially distributed random variable with parameter

Ki =
∑
j,i

ki j . (3.1)

which is also called the total escape rate from state si . In section 3.2 a more detailed overview
is given on how dynamical information can be extracted from a MJP.
One important question is whether simulating the dynamics by a MJP actually reproduces

some properties of the underlying overdamped Langevin dynamics. Quite often the following
argument is used: if a system has metastable regions, any system that enters such a metastable
region will rapidly lose its memory about how it entered this region, leading to almost Markovian
behaviour.
A proper mathematical analysis of this question was done in [23]. In this work, the key

idea is to investigate the quasi stationary distribution (QSD) inside some metastable region
S ⊂ Θn with respect to the overdamped Langevin process Qt . QSDs are “distributions that are
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3.1 Discretising the position space

invariant under time evolution when the process is conditioned to survive” [30] in the region S.
A probability measure νS is a QSD on S if its support is S and if it fulfils [23]

νS(A) =

∫
S
Pq(Qt ∈ A, t < τS) νS(dq)∫

S
Pq(t < τS) νS(dq)

, ∀t > 0, ∀A ⊂ S.

Here, τS is the first exit time from S, i.e. τS = inf{t ≥ 0,Qt < S} and Pq is “the probability
measure under which Q0 = q” [23]. If Q0 in the overdamped Langevin equation (2.13) is
distributed according to a QSD νS , the first exit time is exponentially distributed.

If Q0 is distributed according to some other distribution µ0 with support in S, it will converge
to a unique QSD νS in the following sense:

lim
t→∞

Law(Qt |τS > t) = νS .

The crucial question is how fast the left side of the equation converges towards νS . It was
shown in [23] that the convergence speed depends on the first two eigenvalues λ1 and λ2 of the
eigenvalue problem

div(∇E + kBT∇)u = −λu on S

u = 0 on ∂S.

Then the exit time is of order λ−1
1 and the time needed to converge to the QSD is of order

(λ2 −λ1)
−1. Therefore the escape from the set S can be modelled as an exponentially distributed

escape event if
λ−1

1 � (λ2 − λ1)
−1.

This analysis requires that the states of the MJP and the corresponding subsets of the position
space are known in advance. In practice, it is important to know how one can determine the
states and transition rates of such a MJP. Several theories that try to answer this question have
been developed and some of them are presented now.

3.1.1 Transition state theory

Probably the most famous theory to determine the transition rates is the transition state theory
(TST) that is usually traced back to the work of Eyring in 1935 [31]. In Eyring’s theory, the
position space Θn is split into three pairwise disjunct sets: the open reactant set R and the open
product set P, separated by the dividing surface S such that R ∪ P ∪ S = Θn. Then the TST
transition rate from R to P is given by [32]

kTST
R,P =

√
kBT
2π

∫
S

exp(−E(x)/(kBT))dσ(x)∫
R

exp(−E(x)/(kBT))dx
(3.2)
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Chapter 3 Coarse-grained long-timescale simulations

where dσ(x) is the surface element on S.
One important assumption of the TST is that every trajectory that leaves the reactant set R is

reactive, i.e. as soon as it crosses the dividing surface it will stay in P until a local equilibrium
is reached. In general this is not the case and a trajectory may repeatedly cross the dividing
surface before settling in the product set. Therefore, the TST rate kTST

R,P always overestimates
the actual transition rate [32].
TST itself does not define the decomposition of the position space into the sets R, P and S.

The choice of the decomposition is however crucial, as a bad choice of the dividing surface
may result in a transition rate that massively overestimates the actual transition rate [32, 33].

3.1.2 Harmonic transition state theory

The transition state theory is a powerful tool that provides the basic concepts needed for
calculating transition rates. Unfortunately, calculating the transition rates as in equation (3.2)
is usually not possible as it requires calculating high-dimensional integrals. Additionally, the
question of how to define states is not answered by the classical TST.

To overcome this problem, a simplified version of TST, the harmonic transition state theory
(HTST, also called Vineyard formula) [34] can be used. In the HTST, each state si of the MJP
corresponds to a local minimiser xi of the potential energy surface E . Two states si and sj of
the MJP are connected if a path between the corresponding local minimisers xi and xj exists
that passes through one first order saddle point τi j . To calculate the transition rates, HTST
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Figure 3.2: Harmonic approximations in one dimension.

assumes that the potential energy function E can be approximated by a quadratic function close
to xi and τi j , as shown in figure 3.2. For two states si and sj the HTST transition rate is then
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3.2 The Kinetic Monte Carlo algorithm

given by
kHTST
i j = νi j exp(−∆E i j/(kBT)).

Here, ∆E i j = E(τi j) − E(xi) is the energy barrier, i.e. the difference in energy between the
initial energy minimum and the saddle point τi j . The factor νi j is called the harmonic prefactor
and is given by

νi j =

( 3n∏
k=1

µk(xi)

)
/

(3n−1∏
k=1

µk(τi j)

)
. (3.3)

Here, µk(xi) denotes the k-th normal frequency of the potential energy function at xi . Similarly,
µk(τi j) is the k-th non-imaginary normal frequency at τi j .
Using the HTST it becomes much easier to build the correspondingMJP. As states correspond

to local minimisers of the potential energy function, all such local minimisers, as well as
first order saddle points that connect two minimisers must be found. As HTST was directly
derived from TST, it inherits all its inaccuracies. Furthermore, the assumption that the potential
energy function can be approximated by quadratic functions close to its saddle points and local
minimisers introduces additional errors. HTST can be be unreliable at high temperatures and
while it works well for some crystalline materials, this may not be the case for biomolecules
with rugged energy landscapes [35, 36].

3.1.3 Other theories

Besides these TST based theories, a number of other ideas have been proposed to discretise the
position space. As mentioned before, TST assumes that as soon as a particle system crosses the
dividing surface between two states, it will not recross the surface but will stay in the other
state for a long time. The transition path theory (TPT) [37] therefore looks at the distribution
of reactive trajectories and uses it to calculate transition rates.
Another approach is used in conformational dynamics (CD) [38]. CD investigates metasta-

bility and transition rates by analysing the eigenvalues and eigenvectors of the so-called forward
transfer operator. As this approach requires calculating the eigenvalues and eigenvectors of
the forward transfer operator, it is limited to applications of low dimensionality, for example
biomolecules that are essentially described by a low number of bond lengths or angles.

3.2 The Kinetic Monte Carlo algorithm

Given a Markov Jump Process that encodes the coarsened dynamics of a particle system, how
can trajectories be extracted from it? One option is to use the Kinetic Monte Carlo (KMC)
algorithm, that got its name from the work by Voter [39]. This algorithm is related to other
similar algorithms like the Gillespie algorithm [40] or the dynamic Monte Carlo method.
The KMC algorithm (see flowchart in figure 3.3) can be used to sample trajectories from a

given MJP. Here, a trajectory is a sequence (σi, ti)i of states σi ∈ S and corresponding transition
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Figure 3.3: Flowchart of the KMC algorithm.

times ti. The transition times determine the points in time when the system transitions from
state σi−1 to σi. The initial time t0 is set to 0.

In a KMC simulation, such a trajectory is iteratively built, starting with some initial state σ0
and time t0 = 0. To determine the time that the system needs to escape from the state σi = sj
as well as the state to which it escapes, the transition rates k jl are used: for each state sl that is
connected to sj , an exponentially distributed random number tescape

l
with parameter k jl is drawn.

By using the transition that corresponds to the shortest escape time (l∗ = arg minl tescape
l

) the
new state and transition time are determined

σi+1 = sl∗

ti+1 = ti + tescape
l∗

and the procedure is repeated until some final time tmax is reached. In most KMC implement-
ations, the calculation of the new state and escape time is usually done in a computationally
cheaper but mathematically equivalent way, see [39]. Instead of drawing exponentially dis-
tributed values for all connected states, only a single uniformly distributed random number is
needed. The corresponding new state and transition time are determined afterwards by a binary
search on the cumulative transition rates

Cj,k B
k∑

m=1
m, j

k jm.

3.3 On-the-fly Kinetic Monte Carlo algorithms

One of the most restricting properties of the classical KMC algorithm is the fact that the full
MJP and therefore all states and transitions must be known in advance. In most cases this is not
the case and – depending on the size of the system under investigation – it may also not be
possible to find all states and transitions.
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3.4 Accelerated Dynamics Methods

For such problems on-the-fly Kinetic Monte Carlo algorithms have been developed1. Unlike
the classical KMC algorithm, these methods initially know only one single state of the underlying
MJP and will search for new states and transitions on the fly. This means that whenever the
KMC algorithm evolves the system into a state that has not been visited before, all transitions
that are possible from this state are determined. Afterwards the classical KMC procedure is
used to advance the system to some other state, see figure 3.4.

Initial state

Find
transitions

from
this state

Choose a
transition,
update
time and
state

t ≥ tmax? Stop
yes

no

Figure 3.4: Flowchart of the on-the-fly KMC algorithm.

On-the-fly KMC methods must be able to find previously unknown states of the underlying
MJP that are connected to some known state by a transition. In most cases, the harmonic
transition state theory is used to define states and transition rates as it is computationally feasible
even in high dimensions. Therefore, finding new transitions that are possible from some given
state is essentially equal to finding nearby local minima and first order saddle points of the
potential energy function.
Various approaches have been used for this task. In [41], high temperature Langevin

trajectories were used to escape from the initial potential energy minimum followed by
subsequent saddle searches. The ART nouveau method was used in [42] to find all first order
saddle points around a given local minimum, whereas in [43] dimer searches were used for the
same task.

3.4 Accelerated Dynamics Methods

The different KMC variants increase the accessible timescale by resorting to a discrete
representation of the position space. Algorithms that belong to the class of accelerated dynamic
methods (ADM) use a slightly different approach: in order to prevent a system from getting
stuck in a metastable region, ADMs modify the (Langevin) dynamics in different ways such
that it becomes easier for systems to escape from this region.
1 On-the-fly KMC algorithms are known under a variety of different names like adaptive KMC, self-evolving KMC
or off-lattice KMC.
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Chapter 3 Coarse-grained long-timescale simulations

These modifications change the dynamics of a system and would – if not treated properly –
lead to wrong simulation results. Therefore, ADMs check whether the system leaves the initial
metastable region and use some transition theory (usually TST or HTST) to calculate the time
that the system would have needed to escape from the metastable state without the modification
of the dynamics.

One of the first ADMmethods was the hyperdynamicsmethod [44]. It modifies the dynamics
by adding additional bias potentials to the potential energy function E . Bias potentials are
additional potential terms that are used to lower the height of the energy barriers as shown in
figure 3.5. Once a system escapes from an energy minimum, HTST is used to renormalise the
simulation time.
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Figure 3.5: Modified potential energy in a hyperdynamics simulation.

Another simple way to improve the escape time from potential wells is to simply raise the
simulation temperature. This idea, combined once again with a time rescaling based on HTST
yields the temperature-accelerated dynamics (TAD) method [36]. Somewhat of an outlier is
the parallel replica dynamics method [45]. Unlike hyperdynamics or TAD it does not increase
the speed with which a system escapes from a potential minimum. Instead, it provides a way to
parallelise this escape over a large amount of processor cores, thereby providing some kind of
time-parallelisation for rare event simulations.
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CHAPTER 4

Localised on-the-fly Kinetic Monte Carlo
algorithms

On-the-fly KMC type algorithms have been used successfully in a number of different
applications [46–48]. However, their high computational cost can prevent the simulation of
other highly interesting phenomena. Due to the design of these algorithms (see figure 3.4), the
majority of computational time is spent searching for transitions that are possible from a given
state. Especially for larger or more complex systems, the time that is required to find these may
become prohibitively large.

Figure 4.1: A number of ad-atoms (purple) on a crystal surface.

An example that demonstrates some of the problems of on-the-fly KMC algorithms is shown
in figure 4.1: on a crystal surface a number of so-called ad-atoms (coloured purple) are placed –
a situation that may occur in certain growth process simulations. As the time advances, these
ad-atoms may move and form clusters or islands with other ad-atoms. The resulting surface
structure is of interest as it may have a crucial effect on the properties of the final material.
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

Changing the number of ad-atoms has a profound impact on the resulting simulation: if all
ad-atoms move according to some common transition mechanisms, the number of possible
transitions grows linearly with the number of ad-atoms. Therefore, the total escape rate from
the state also grows linearly with the number of ad-atoms, which causes the average time that
the system stays in this state to decrease. Thus, the larger the number of ad-atoms, the more
time is spent on transition searches while covering much less time per KMC step – a problem
for efficient calculations.
While this example illustrates some of the problems of on-the-fly KMC algorithms, it may

also offer a possible solution. It can be observed that – at least in the beginning of such a
simulation – the movement of the ad-atoms are independent from each other. Only when two
ad-atoms get close, will they start to have a non-negligible influence onto each other. This
behaviour suggests that at least for these kinds of problems a localisation approach might be
applicable. Localisation may bring down the cost of one single transition search search (by
restricting it to the area of interest) while also lowering the number of necessary searches.
In section 4.1 the theoretical foundation for localising on-the-fly KMC algorithms is

established. Afterwards, different localisation approaches are presented. In the remaining part
of this chapter a localised on-the-fly KMC algorithm is presented that is capable of recycling
known local transitions. It is is based on the k-ART algorithm and features a new comparison
procedure for atomic neighbourhoods.
Please note that from now on it is no longer assumed that particles have three-dimensional

coordinates. Instead, a more general approach is chosen and particles are simply assumed to be
d-dimensional for some d ∈ N.

4.1 Basic localisation theory

The common idea behind existing localised on-the-fly KMC algorithms [49–52] is that many
particles can be ignored when looking for possible transitions. Only particles that initially lie in
certain parts of an atomistic system, called active regions, are considered. Figure 4.2 shows an
example: only parts of the system where the atoms do not form a perfect crystal structure are
included in the active regions. The active regions and the corresponding particles inside them
are defined as follows.

Definition 7. Let E : Rn×d → R be the potential energy function and x ∈ Rn×d a local
minimiser of E . Given some set S ⊆ Rd, the set of active indices is defined by

I(S, x) =
{
i ∈ {1, . . . , n} : xi ∈ S

}
.

The set S is called the active region. Similarly, the set of fixed indices is defined by

F(S, x) = {i ∈ {1, . . . , n} : i < I(S, x)} .

24



4.1 Basic localisation theory

Figure 4.2: Active regions (marked by white circles) in a particle system.

Given some coordinates y ∈ Rn×d, the notation

yF(S,x) ∈ R
|F(S,x) |×d

is used to denote the coordinates of the particles which indices are in the fixed index set.

Now assume that some particle system is in an energy minimum, i.e. its coordinates x ∈ Rn×d

are a local minimiser of the potential energy function E . Any (HTST-based) non-localised
on-the-fly KMC algorithm would now try to find all possible transitions from this state by
determining all nearby local minimisers of E that are connected to x by a first order saddle point.
In a localised setting, instead of finding local minimisers of the unconstrained minimisation
problem

min
p∈Rn×d

E(p) (4.1)

the idea is to find local minimisers of the constrained problem

min
p∈Rn×d

E(p) s.t. pF(S,x) = xF(S,x). (4.2)

This corresponds to holding all particles fixed that do not initially lie inside the active region
S ⊆ Rd.
The crucial question is of course: if p , x is another local minimiser of the minimisation

problem in (4.1), does the constrained problem (4.2) have a local minimiser p̃ that is in some
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

sense close to p? The answer to this question determines whether a transition search can be
localised. If equation (4.2) has a local minimiser that is close enough to p then this local
minimiser can be used as a good approximation to it. An initial result can be derived from the
following theorem.

Theorem 1. Let f : Rm ×Rn → R be a function with (x, y) ∈ Rm ×Rn a local minimiser such
that ∇ f (x, y) = 0 and the Hessian matrix H f is positive definite at (x, y). It is also assumed
that f is twice continuously differentiable in an open neighbourhood around (x, y).
Then an open neighbourhood N ⊆ Rm around 0 as well as a unique and continuously

differentiable function g : N → Rn exist, such that g(ε) is a strict local minimiser of

min
z∈Rn

f (x + ε, z)︸      ︷︷      ︸
Chε (z)

for all ε ∈ N .

Proof. The proof is a simplified version of the proof for [53, Theorem 2.1].
Due to the assumptions on f and (x, y), the implicit function theorem can be applied

immediately to ∇y f (x + ε, y) = ∇hε (y). It shows that an open neighbourhood Ñ and a unique
and continuously differentiable function g : Ñ → Rn exist, such that g(ε) is a critical point
of hε (z) for all ε ∈ Ñ . Thus it remains to be shown that some open neighbourhood N ⊆ Ñ
around 0 exist, such that the Hessian matrix Hhε (g(ε)) is positive definite for all ε ∈ N . By
construction, Hhε (z) is given by

Hhε (z) = [H f (x + ε, z)]m+1:m+n,m+1:m+n .

As Hhε (z) is a principal submatrix of H f (x + ε, z), its smallest eigenvalue cannot be smaller
than the smallest eigenvalue of H f (x+ε, z) [54]. Due to the assumptionthat H f (x, y) is positive
definite and f twice continuously differentiable close to (x, y), Hhε (g(ε)) is positive definite
for some open neighbourhood N ⊆ Ñ . �

This theorem can be applied to the previous localisation idea. Once again let S ⊆ Rd be
an active region and x ∈ Rn×d and p ∈ Rn×d two strict local minimisers of the potential
energy function E . W.l.o.g. it is assumed here that the fixed index set F(S, x) is given by
F(S, x) = {1, . . . ,m} for some m which can always be achieved by simply reordering the
coordinates. By splitting the coordinates into active and fixed coordinates, the constrained
optimisation problem

min
y∈Rn×d

E(y) s.t. yF(S,x) = pF(S,x) + ε (4.3)

can be rewritten as
min

z∈R|I (S,x)|×d
E(pF(S,x) + ε, z). (4.4)
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In the context of local transition searches, ε is usually set to ε = xF(S,x) − pF(S,x), i.e. the
difference in the fixed coordinates between the initial local minimiser x and p. Due to theorem
1, if ε ∈ R |F(S,x) |×d is sufficiently small (i.e. ε ∈ N), the minimisation problem in (4.4) has
g(ε) as a local minimiser where g is the unique function in theorem 1. As g is continuously
differentiable, it is Lipschitz continuous on N and thus

‖g(ε) − g(0)‖ =
g(ε) − pI (S,x)

 ≤ K ‖ε ‖

with K being the Lipschitz constant with respect to some chosen norm. Hence, under the same
conditions p̃ B (pF(S,x) + ε, g(ε)) is a local minimiser of the minimisation problem in (4.3) and

‖ p̃ − p‖F =
( pF(S,x) + ε − pF(S,x)

g(ε) − g(0)

)
F

≤ K ‖ε ‖F + ‖ε ‖F = (1 + K) ‖ε ‖F .

Thus theorem 1 basically offers a very basic error estimate as well as a first stability result for
the localisation approach.

It is worth pointing out that the assumptions in theorem 1 are usually fulfilled in most practical
simulations. Many classical potential energy functions are twice continuously differentiable
almost everywhere 1 if short-range interactions are truncated using a sufficiently smooth tapering
approach.

While theorem 1 shows that the minima searches can be localised under certain circumstances,
the same does not seem to be true for saddle searches. One simple counter example would be
the function

E(x) = xT


1 0 0
0 1 0
0 0 −1

 x

that has a first order saddle point at x = 0. Fixing x3 to some arbitrary value a ∈ R results in
Ga(x1, x2) = E(x1, x2, a) = x2

1 + x2
2 + a2 which has no first order saddle point anymore. Still,

in most practical cases it still seems to be possible to localise many saddle searches that way as
will be shown in section 5.2.

4.2 Localised on-the-fly Kinetic Monte Carlo algorithms

As mentioned, the idea to localise the transition-search phase in on-the-fly KMC algorithms is
not new and has been used previously. One of the first algorithms to use localisation is the
self-evolving atomistic kinetic Monte Carlo algorithm [49]. In each KMC step, it determines
the active regions (called active volumes here) where transitions are possible, using different
heuristics. Afterwards, the possible transitions inside the active volumes are determined.

1 They are usually not differentiable for coordinates x ∈ Rn×d that correspond to a particle system where two
particles have the same coordinates.
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

Another localisation ansatz was used in the kinetic activation relaxation technique (k-
ART) [50, 55] as well as in the (unnamed) algorithm in [51]. Instead of using active
volumes of various sizes, these algorithms decompose atomistic systems into different atomic
neighbourhoods. The atomic neighbourhood of an atom is the collection of all the atoms that
are located inside a certain radius rcut around the given central atom as shown in figure 4.3. To
describe an atomic neighbourhood, the following definition is used:

Definition 8. The atomic neighbourhood N (or for short: neighbourhood) of some particle in
a particle system is defined by the tuple N = (q, e) = (q1, . . . , qn, e1, . . . , en) where qi ∈ R

d are
the d-dimensional coordinates of the n particles relative to the central atom. The ei define the
elements of those particles.

Figure 4.3: An atomic neighbourhood of an atom in a larger system.

Thus whenever all possible transitions in an n-particle system are needed, k-ART decomposes
it into the n corresponding neighbourhoods N1, . . . , Nn, using some given cutoff radius rcut. For
each neighbourhood, the algorithm checks whether this neighbourhood has been encountered
before and if information about the local transitions is available, using a database of atomic
neighbourhoods (more about this in the next section). For all new neighbourhoods, local
transitions that may occur inside them are calculated and stored in the database. This local
transition information is finally used to calculate the corresponding global transitions. A
summary of k-ART can be found in the form of a flowchart in figure 4.4.

An important feature of k-ART is that the local transition information is stored in a database.
Therefore, local transitions need not be recalculated if the corresponding neighbourhood has
been encountered before, thus saving computational time. This addresses another problem of
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4.2 Localised on-the-fly Kinetic Monte Carlo algorithms

Initial state

Global
transitions
are known?

Local
transitions
are known?

Determine
local transitions

Calculate global
transitions using
local transitionsChoose a global

transition, update
time and statet ≥ tmax?

Stop

yes

no

yes

no

yes

no

Figure 4.4: Flowchart of a k-ART simulation.

classical on-the-fly KMC algorithms: their inability to reuse known transition mechanisms. In a
lot of simulations, similar transitions occur in different regions of the system under investigation,
as in the example in the beginning of this chapter (figure 4.1). If the ad-atoms are separated
from each other, they will evolve independently using the same reaction mechanisms until
they get close enough that they start to interact. Standard on-the-fly KMC algorithms have to
find the possible transitions for each ad-atom individually and are not capable of reusing the
already calculated transition mechanism. On-the-fly KMC algorithms that are able to reuse
known transition information are called self-learning on-the-fly KMC algorithms. Examples
are the already mentioned algorithm in [51] and k-ART. On a simpler level, some on-the-fly
KMC algorithms are able to recycle known transitions. Unlike self-learning KMC algorithms,
these algorithms try to reuse the transition mechanisms from previous transition searches
without checking the current structure of the system. This means that they simply apply known
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

transition mechanisms to the current state and check if the resulting transitions are actually
valid. Examples for this recycling procedure can once again be found in [56].

Even in non-KMC algorithms, localisation has been used. A local variant of the hyperdynam-
ics method was presented in [57] in order to overcome issues when applying hyperdynamics
to larger systems. The motivation for this localisation ansatz was that the speed advantage
of hyperdynamics over a classical MD simulation vanishes with increasing system sizes [57].
In [52] a localised saddle search approach was presented that can be used to find local transitions
in some active region.

4.3 Comparison functions for atomic neighbourhoods

One of the key ideas of k-ART is to reuse local transition information that is already known. This
requires some kind of database which stores atomic neighbourhoods and the corresponding local
transitions that may occur inside them. Before discussing the intricacies of efficient database
structures a much more basic question must be answered: When are two neighbourhoods
similar? This question is of fundamental importance as its answer determines how previously
encountered neighbourhoods can be detected.
A naive approach would be to see two neighbourhoods N = (q, e) and Ñ = (q̃, ẽ) as similar

if their Cartesian coordinates and elements match exactly, i.e.

q = q̃, e = ẽ.

The usefulness of this approach is rather limited for a number of reasons. To begin with, exact
matches are rare in realistic simulations. The neighbourhoods of two atoms in a particle system
may be almost equal but have slightly different coordinates due to numerical inaccuracies as
well as small distortions that are caused by the structure of the remainder of the system.

Another problem is that the atoms in an atomic neighbourhood have no fixed order or
orientation. Rotating a neighbourhood or permuting the particle indices does not change its
structure. If no external forces are present, rotating2 and permuting an atomic neighbourhood
in this way will result in a neighbourhood whose local transitions that are equal to the rotated
and permuted local transitions of the original neighbourhood. A similar behaviour occurs also
in molecules. If once again no external forces are present, the potential energy of a molecule
is invariant under index permutations, orthogonal transformations and translations. Other
properties, such as forces, can be mapped from one molecule to some transformed version of this
molecule using these three different transformation types. This behaviour can be derived from
QM where the potential energy of molecules is also invariant under these transformations [58].

As local transition searches can be computationally expensive, it would be advantageous to
recycle asmany local transitions as possible. Being able to recognise two atomic neighbourhoods
as similar, even if one is a slightly distorted, permuted and rotated instance of the other is

2 In general one can use not only rotations but orthogonal transformations.

30



4.3 Comparison functions for atomic neighbourhoods

therefore beneficial. If these two neighbourhoods are seen as similar, this would also allow k-
ART to reuse the local transitions of one of the neighbourhoods for the other if the corresponding
transformations are known. The question whether these invariances are really necessary is
investigated later in subsection 5.3.5.

Thus, in order to obtain an efficient k-ART implementation, some kind of comparison function
C(N, Ñ) is needed, that determines whether two neighbourhoods N and Ñ are similar or not.
If N and Ñ are similar, C(N, Ñ) should be 1, otherwise 0. To be of use, such a comparison
function should have certain properties. It should be invariant under orthogonal transformations
and permutations, i.e. for two neighbourhoods N = (q, e) and Ñ = (q̃, ẽ) it should fulfil

C(N, Ñ) = C((q, e), (q̃, ẽ)) = C((q, e), (Rq̃π1
, . . . , Rq̃πn, ẽπ1

, . . . , ẽπn ))

for all orthogonal transformations R and permutations π. It should also satisfy some standard
conditions like symmetry

C(N, Ñ) = C(Ñ, N)

and for all neighbourhoods, the following equation should be true

C(N, N) = 1.

While the comparison function is needed for finding similar neighbourhoods it is also necessary
to know how two similar neighbourhoods are related to each other, i.e. how can one neighbour-
hood be mapped onto the other. This is important as soon as a local transition that belongs to
one neighbourhood should be applied to another similar (but transformed) neighbourhood.

In the original k-ART papers [50, 55], a graph based approach was used for the comparison.
First, each neighbourhood is transformed into an undirected graph, where each node represents
a single particle. Two particles/nodes are then connected by an edge, if the distance between
these particles is smaller than some given cutoff radius rgraph (see figure 4.5).
This cutoff radius has to be chosen carefully (usually close to the bond length) as wrong

values might lead to useless graphs. For rgraph = 0 the resulting graph will be the null graph,
while cutoffs that are larger than the diameter of the neighbourhood will produce full graphs.
Two neighbourhoods are then seen as similar if their corresponding graphs are equal up to
permutation of the indices. This comparison is usually done using the nauty [59, 60] software
package. Nauty is capable of calculating a label for each graph such that two graphs are similar
if their labels are equal (canonical label).
While k-ART with the nauty-based comparison function has been shown to work well on a

number of problems, it is possible to create cases where the comparison of two neighbourhoods
fails [61, 62]. As shown in figure 4.6, two neighbourhoods that are structurally very different,
may be seen as equal as their corresponding graphs are similar. This behaviour, known as false
positives, may assign wrong local transitions to a neighbourhood. The k-ART algorithm tries
to avoid this problem by modifying the cutoff radii on the fly if false positives are detected [63].
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

(a) bond length times 0 (b) bond length times 1.1. (c) bond length times 2.5

Figure 4.5: Adjacency graphs for different cutoff radii.

Another problem is that the k-ART comparison function does not offer any information about
the transformations that map two neighbourhoods onto each other [62]. Thus, in k-ART an
additional heuristic mapping scheme is used if two neighbourhoods are similar [64].

Figure 4.6: Two structurally different atomic neighbourhoods with the same adjacency graph.

Alternative comparison functions have been proposed. In [51], neighbourhoods are compared
by looking at the number of particles in so-called shells (spherical regions around the central
particle) in both neighbourhoods. If they are (almost) equal, the two neighbourhoods are
designated as similar. Like the k-ART comparison function, this approach may produce false
positives and is not capable of calculating the optimal transformations.
A different approach was chosen in [65] where different distance functions d(N, Ñ) were

used to build a comparison function of the form

C(N, Ñ) =

{
1, d(N, Ñ) ≤ ε
0, d(N, Ñ) > ε.

(4.5)
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The problem with this approach is to find distance functions d(N, Ñ) that are computable, do
not cause false negatives/positives and that offer information about the optimal transformations.
In [65] two different distance functions where used. One was called the overlap of Gaussian
type orbitals and – while being invariant under permutations and rotations – did not offer any
information about the involved transformations. The other was based on an invariant version
of the root mean square deviation but could not be calculated exactly. In the next section, the
latter function is used once again and an alternative way to calculate it exactly is shown.

4.4 The invariant RMSD comparison function

Equation (4.5) is now used to build a comparison function for k-ART. Thus, a suitable distance
function d(N, Ñ) is needed. Especially in machine learning applications a large variety of
such functions that are invariant under orthogonal transformations and permutations have been
used. Examples are the SOAP kernel [66], the bispectrum [67] or a combination of Coulomb
matrices and Gaussian kernels [68]. Related functions were also introduced in [65] and [69].
Unfortunately, these approaches do not offer any information on the optimal transformations
and therefore cannot be used in k-ART without having to resort to some heuristic to map local
transitions from one neighbourhood to the other.

Therefore, a different kind of distance function is used here. It is based on the well-known root
mean square deviation of atomic positions (RMSD), which for two neighbourhoods N = (q, e)
and Ñ = (q̃, ẽ) is given by

dRMSD
(N, Ñ) =

∞ e , ẽ√∑n
i=1

qi − q̃i
2

2 e = ẽ.
(4.6)

Here, both N and Ñ are supposed to be atomic neighbourhoods with n d-dimensional particles
each. The RMSD in equation (4.6) is not invariant under orthogonal transformations and
permutations. However, it is easy to create invariant versions of it. First, define Od to be the set
of all possible d × d orthogonal matrices. Similarly, Sn is the set of all possible permutations
of size n. For simplicity, the notation eπ is used to to denote a permutation of e by π, i.e.

(eπ)i = eπi i = 1 . . . , n.

Then an RMSD that is invariant under orthogonal transformations can be created by minimising
over all orthogonal transformations:

dorth
(N, Ñ) =

∞ e , ẽ

minR∈Od

√∑n
i=1

qi − Rq̃i
2

2 e = ẽ.
(4.7)
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Similarly, a permutation-invariant version of the RMSD can be build

dperm
(N, Ñ) = min

π∈Sn


∞ e , ẽπ√∑n

i=1

qi − q̃πi

2

2
e = ẽπ,

(4.8)

as well as a version that is invariant under both orthogonal transformations and permutations

dfull
(N, Ñ) = min

π∈Sn


∞ e , ẽπ

minR∈Od

√∑n
i=1

qi − Rq̃πi

2

2
e = ẽπ .

(4.9)

These RMSD variations can not only be used to compare atomic neighbourhoods but also
molecules and – by ignoring the elements – point clouds. When the elements are ignored, all
these RMSD based distance functions are pseudometrics on Rn×d.
None of these invariant RMSDs are new and all of them have seen extensive use before.

Calculating the orthogonally invariant RMSD for point sets in (4.7) is equal to the orthogonal
procrustes problem and can be solved using the Kabsch algorithm [70] in linear time with respect
to the number of points. If the particles are three-dimensional, a quaternion based approach
can also be used to find the optimal orthogonal matrix [71]. Calculating the permutationally
invariant RMSD can be reduced to the assignment problem in combinatorics and is therefore
solvable in cubic time [72] with respect to the number of points.

As mentioned before, the fully (permutation + orthogonal transformation) invariant RMSD
in equation (4.9) has been presented before in [65] but also in [69, 73] as well as in numerous
computer vision articles, where it is used in the point set registration problem [74–76].
For a fixed dimension d, calculating dfull in polynomial time with respect to n is in general

not possible [73]. Nevertheless, a number of algorithms to calculate it as efficiently as possible
have been proposed which can roughly be divided into two classes. The first class contains
algorithms for particle systems [65, 73] as well as for point sets [74, 77] that calculate only
approximations to dfull. As dfull is not calculated exactly, false positives/negatives may occur
when such an algorithm is used to compare atomic neighbourhoods in k-ART. A second
class of methods has emerged in recent years and consists of algorithms that calculate dfull

exactly [69, 75, 76]. Depending on the problem under investigation, these algorithms may have
excessive computational cost.

However, k-ART does not require the calculation of dfull
(N, Ñ) for general neighbourhoods.

Due to equation (4.5) it is sufficient to decide whether

dfull
(N, Ñ) ≤ ε (4.10)

holds true or not. If it does, the optimal transformations should be calculated.
A number of exact algorithms were tested to see if they are sufficiently fast for this task

(see the evaluation in section 5.3). As none of them was, I developed a new algorithm that
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can determine whether (4.10) holds true or not in polynomial time (with respect to n) if ε
is sufficiently small. If the inequality in (4.10) holds, it is also capable of calculating the
orthogonal transformation and permutation that minimises (4.9).

4.5 Calculating the invariant RMSD

In this section it is shown, how to determine whether dfull
(N, Ñ) ≤ ε holds true for two atomic

neighbourhoods N = (q, e) and Ñ = (q̃, ẽ). To begin with, some trivial cases are excluded.
First of, it is assumed that both neighbourhoods contain n particles and that a permutation

π ∈ Sn exists, such that e = ẽπ . If this is not the case3, dfull
(N, Ñ) = ∞ by its definition.

Otherwise, dfull
(N, Ñ) ≤ ε is equivalent to

f (N, Ñ) B min
π∈Sn :e=ẽπ

min
R∈Od

n∑
i=1

qi − Rq̃πi

2

2
≤ ε2

and dfull
(N, Ñ) =

√
f (N, Ñ). For simplicity, g(N, Ñ, R, π) is defined to be

g(N, Ñ, R, π) =
n∑
i=1

qi − Rq̃πi

2

2
.

Thus f (N, Ñ) can also be written as

f (N, Ñ) = min
π∈Sn :e=ẽπ

min
R∈Od

g(N, Ñ, R, π). (4.11)

Furthermore, it is assumed here that at least one of the neighbourhoods has full rank. A
neighbourhood N = (q, e) of n d-dimensional particles is said to have full rank if q contains d
linearly independent coordinates. Otherwise, dfull

(N, Ñ) can be calculated on a lower dimension
which is proven in theorem 2. Before that, an auxiliary lemma is needed:

Lemma 1. Let q = (q1, . . . , qn) (qi ∈ R
d) and q̃ = (q̃1, . . . , q̃n) (q̃i ∈ R

d) be two sets of n
d-dimensional points. Then the orthogonal transformation R∗ that minimises

min
R∈Od

n∑
i=1

qi − Rq̃πi

2

2
(4.12)

for an arbitrary permutation π ∈ Sn is given by

R∗ = UVT

3 Which can easily be verified in O(n log n) by sorting e and ẽ.
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where UΣVT is the singular value decomposition of

A =
n∑
i=1

qi q̃
T
πi
.

Furthermore, R∗ is a global minimiser.

Proof. A proof can be found in the work of Kabsch [70] who is also the namesake of the
Kabsch algorithm that is used to solve the minimisation problem in equation (4.12). �

Theorem 2. Let N = (q, e) and Ñ = (q̃, ẽ) be two atomic neighbourhoods with n particles of
dimension d each. Denote by r and r̃ the rank of the matrices

Q =

| |

q1 . . . qn
| |


and

Q̃ =

| |

q̃1 . . . q̃n
| |

 .
Assume that max(r, r̃) < d and w.l.o.g. r ≥ r̃ (otherwise switch N and Ñ). Let Q = UΣVT

and Q̃ = ŨΣ̃ṼT be the singular value decompositions of Q and Q̃ and define p = (p1, . . . , pn)
(pi ∈ R

r ) and p̃ = (p̃1, . . . , p̃n) (p̃i ∈ R
r ) by

pi = (U
T qi)1:r, p̃i = (Ũ

T q̃i)1:r .

If R̃ and π̃ are a global minimum of

min
π∈Sn :e=ẽπ

min
R∈Or

g((p, e), (p̃, ẽ), R, π)

then π̃ and4

R∗ = U
[

R̃ 0r×d−r
0d−r×r Id−r

]
ŨT

form a global minimum of
min

π∈Sn :e=ẽπ
min
R∈Od

g(N, Ñ, R, π)

and
g(N, Ñ, R∗, π̃) = g((p, e), (p̃, ẽ), R̃, π̃).

4 0r×d−r denotes the r × d − r zero matrix. Id−r is the (d − r) × (d − r) unit matrix.
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Proof. Let π ∈ Sn be a permutation such that e = ẽπ and let Û(π)Σ̂(π)V̂(π)T be the SVD of

Â(π) =
n∑
i=1

qi q̃
T
πi

and similarly ÛA(π) = ÛU(π) ÛΣ(π) ÛV(π)T for

ÛA(π) =
n∑
i=1

pi p̃
T
πi
.

Using lemma 1 it can be established that R̂(π) = Û(π)V̂(π)T is a global minimiser of

min
R∈Od

g(N, Ñ, R, π) (4.13)

and ÛR(π) = ÛU(π) ÛV(π)T of
min
R∈Or

g((p, e), (p̃, ẽ), R, π). (4.14)

It is now shown that R̂(π) fulfils

R̂(π) = U
[
ÛR(π) 0r×d−r

0d−r×r Id−r

]
ŨT . (4.15)

First, one can observe that UT qi and ŨT q̃i fulfil

UT qi =
(

pi
0d−r

)
, ŨT q̃i =

(
p̃i

0d−r

)
.

This is due to
UT qi = UTQ∗,i = (ΣVT

)∗,i .

As Q has rank r < d, the last d − r rows of Σ (and therefore the last d − r entries of UT qi) are
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zero and (UT qi)1:r is equal to pi by definition. Therefore Â can be written as

Â(π) =
n∑
i=1

qi q̃
T
πi

=

n∑
i=1

U
(

pi
0d−r

) (
p̃πi

0d−r

)T
ŨT

= U

[
n∑
i=1

(
pi

0d−r

) (
p̃πi

0d−r

)T ]
ŨT

= U
[ ∑n

i=1 pi p̃
T
πi

0r×d−r
0d−r×r 0d−r×d−r

]
ŨT

= U
[
ÛA(π) 0r×d−r

0d−r×r 0d−r×d−r

]
ŨT .

Then it can easily be verified that

Û(π) = U
[
ÛU(π) 0r×d−r

0d−r×r Id−r

]
, Σ̂(π) =

[
ÛΣ(π) 0r×d−r

0d−r×r 0d−r×d−r

]
,

V̂(π) = Ũ
[
ÛV(π) 0r×d−r

0d−r×r Id−r

]
is a valid SVD of Â(π). Therefore the optimal orthogonal transformation R̂(π) is

R̂(π) = Û(π)V̂(π)T = U
[
ÛU(π) 0r×d−r

0d−r×r Id−r

] [
ÛV(π)T 0r×d−r

0d−r×r Id−r

]
ŨT

= U
[
ÛU(π) ÛV(π)T 0r×d−r

0d−r×r Id−r

]
ŨT
= U

[
ÛR(π) 0r×d−r

0d−r×r Id−r

]
ŨT .

Thus for any π ∈ Sn that fulfils e = ẽπ it has been established that if ÛR(π) minimises equation
(4.14), R̂(π) as in equation (4.15) minimises equation (4.13). It can also be shown that
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g(N, Ñ, R̂(π), π) = g((p, e), (p̃, ẽ), ÛR(π), π):

g(N, Ñ, R̂(π), π) =
n∑
i=1

qi − R̂(π)q̃πi

2

2

=

n∑
i=1

UT qi −UT R̂(π)ŨŨT q̃πi

2

2

=

n∑
i=1

( pi
0d−r

)
−UT R̂(π)Ũ

(
p̃πi
0

)2

2

=

n∑
i=1

( pi
0d−r

)
−

[
ÛR(π) 0r×d−r

0d−r×r Id−r

] (
p̃πi
0

)2

2

=

n∑
i=1

pi − ÛR(π)p̃πi

2

2

= g((p, e), (p̃, ẽ), ÛR, π).

Due to this equality it does not matter whether the optimal permutation is calculated for
g(N, Ñ, R̂(π), π) or g((p, e), (p̃, ẽ), ÛR(π), π) and therefore π̃ minimises both terms. �

4.5.1 The case ε = 0

Now that the prerequisites have been sorted out, it is time to start with the case ε = 0, i.e. two
neighbourhoods N and Ñ are seen as similar if

dfull
(N, Ñ) = 0

or equivalently
f (N, Ñ) = 0.

This case is much simpler than the ε > 0 case but shows the basic ideas that are also needed for
ε > 0.

Due to the construction of f (N, Ñ) in equation (4.11), it can be calculated by an exhaustive
search over all O(n!)-many permutations of length n. For large values of n this is of course not
possible. If at least one of the neighbourhoods has no overlapping atoms (atoms with the same
coordinates), the following theorem shows, however, that it is possible to check for f (N, Ñ) = 0
by testing only O(nd

)-many permutations:

Theorem 3. Let N = (q, e) and Ñ = (q̃, ẽ) be two neighbourhoods of n d-dimensional particles
each such that q̃ has full rank d. Also assume that qk , ql and q̃k , q̃l for all k , l. Then let
j1, . . . , jd be d indices such that q̃j1

, . . . , q̃jd
are linearly independent.

39



Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

If and only if f (N, Ñ) = 0, there exist d indices i1, . . . , id such that g(N, Ñ, R̄, π̄) = 0 for

R̄ = arg min
R∈Od

d∑
k=1

qik − Rq̃jk

2

2
(4.16)

and

π̄ = arg min
π∈Sn :e=ẽπ

n∑
k=1

qk − R̄q̃πk

2

2
. (4.17)

Proof. Both directions of the if and only if part of the theorem are proven now. If f (N, Ñ) = 0,
there exist by definition transformations R∗ and π∗ such that g(N, Ñ, R∗, π∗) = 0. This also
implies that qi = R∗q̃π∗i for all i.

By choosing i1, . . . , id such that π∗ik = jk (k = 1, . . . , d), it can be verified that R∗ minimises
equation (4.16) to zero. R∗ is also the unique solution to this equation as

d∑
k=1

qik − Rq̃jk

2

2
= 0

requires qik = Rq̃jk
for k = 1, . . . , d. As the q̃jk

were assumed to be linearly independent, there
exists only one such orthogonal transformation. Once again, π∗ minimises (4.17) to zero and as
it was assumed that no two particles inside an neighbourhood may have the same position, it is
also a unique solution.

The other direction is trivial. As g(N, Ñ, R̄, π̄) = 0, R̄ and π̄ can be used in the definition of
f to show that f (N, Ñ) = 0. �

Using this theorem, an algorithm can be derived that checks whether f (N, Ñ) = 0 or not.
This is done by choosing d indices j1, . . . , jd such that q̃j1

, . . . , q̃jd
are linearly independent. In

the next step, all
(n
d

)
-many tuples i1, . . . , id are tested and the corresponding transformations R̄

and π̄ are calculated. Due to theorem 3, if f (N, Ñ) = 0, one of these i1, . . . , id will yield the
globally optimal solution. When all things are put together, the algorithm 1 is obtained.

4.5.2 The case ε > 0

In most applications, it is useful to allow small deviations in the particle positions when
comparing atomic neighbourhoods. These deviations may stem from the limited numerical
accuracy in computer simulations or simply from the fact, that some neighbourhoods are
slightly affected by remote defects or impurities in a material. Thus it is beneficial to develop an
algorithm that can run the check f (N, Ñ) ≤ ε2 even for small ε > 0. As mentioned before, it is
not possible to calculate this for arbitrarily large values ε , as this problem is NP-hard in general.

In almost all classical atomistic simulations one can assume that two particles will never get
any closer than some distance µ, due to the strong repulsive forces between nearby particles.
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Algorithm 1 Algorithm that checks whether f (N, Ñ) = 0.
Require: Two neighbourhoods N = (q, e) and Ñ = (q̃, ẽ) that contain n d-dimensional

particles.
Require: q̃ must have full rank.
Require: qk , ql and q̃k , q̃l ∀k , l.
Require: ∃π ∈ Sn such that e = ẽπ .
1: Choose d indices j1, . . . , jd such that q̃j1

, . . . , q̃jd
are linearly independent.

2: for all i1, . . . , id : [(eik = ẽjk∀k = 1, . . . , d) ∧ (minR∈Od

∑d
k=1

qik − Rq̃jk

2

2
= 0)] do

3: R̄ = arg minR∈Od

∑d
k=1

qik − Rq̃jk

2

2

4: π̄ = arg minπ∈Sn :e=ẽπ
∑n

k=1

qk − R̄q̃πk

2

2
5: if g(N, Ñ, R̄, π̄) = 0 then
6: return Equal, R̄, π̄
7: end if
8: end for
9: return Not equal

Using such a lower bound for the pairwise particle distances, algorithm 1 can be modified such
that it can deal with values ε ≤ µ/(2

√
1 + 4d). The big difference to the ε = 0 case is, that it is

no longer possible to exactly calculate the optimal orthogonal matrix R∗ using just d particles.
Thus, a modified version of the algorithm 1 is used and forms algorithm 2.

There are a few major differences to the ε = 0 algorithm. First of, the algorithm no longer
chooses indices j1, . . . , jd such that q̃j1

, . . . , q̃jn
are just linearly independent. Instead, the

q̃j1
, . . . , q̃jn

should be the “maximally linearly independent points” which means that they
should maximise the determinant of the matrix that they form. Second, even if f (N, Ñ) ≤ ε2,
the orthogonal matrix R that is calculated using d points (line 4) is in general not equal to the
globally optimal orthogonal matrix for some indices i1, . . . , id. Still, if f (N, Ñ) ≤ ε2, one of the
permutations π̄ that is calculated in line 8 using these orthogonal matrices will be equal to the
globally optimal permutation. Algorithm 2 can determine whether f (N, Ñ) ≤ ε2, assuming that
the assumptions that were made in the beginning hold true. In order to verify these assumptions,
algorithm 3 can be used. Now it remains to prove that the algorithm 2 does indeed calculate
whether f (N, Ñ) ≤ ε2 and – if this is the case – that the returned transformations R∗ and π∗ are
indeed optimal. The first step is to show the effects of the choice of the j1, . . . , jd.
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Algorithm 2 Algorithm that checks whether f (N, Ñ) ≤ ε2.
Require: Two neighbourhoods N = (q, e) and Ñ = (q̃, ẽ) that contain n d-dimensional

particles.
Require: q̃ must have full rank.
Require:

q̃k − q̃l


2 ≥ µ ∀k , l
Require: qk , ql ∀k , l.
Require: ∃π ∈ Sn such that e = ẽπ .
Require: ε ≤ µ

2
√

1+4d
.

1: g∗ = ∞, R∗ = I, π∗ = id
2: Choose d indices j1, . . . , jd = arg minj1,..., jd

| det
[
q̃j1
, . . . , q̃jd

]
|.

3: for all i1, . . . , id such that (eik = ẽjk∀k = 1, . . . , d) do

4: R = arg minR∈On

∑d
k=1

qik − Rq̃jk

2

2

5: if
∑d

k=1

qik − Rq̃jk

2

2
> ε2 then

6: continue
7: end if
8: Set π̄ ∈ Sn such that π̄ik = jk for all k = 1, . . . , d and π̄k = arg minl: ek=ẽl

qk − Rq̃l
2

2
for all k < {i1, . . . , id}.

9: R̄ = arg minR∈On

∑n
k=1

qk − Rq̃π̄k

2

2
10: if g(N, Ñ, R̄, π̄) < g∗ then
11: g∗ = g(N, Ñ, R̄, π̄)
12: R∗ = R̄
13: π∗ = π̄

14: end if
15: end for
16: if g∗ ≤ ε2 then
17: return Equal, g∗, R∗, π∗

18: else
19: return Not equal
20: end if
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4.5 Calculating the invariant RMSD

Algorithm 3 Algorithm compfull
(N, Ñ, ε) that checks whether d(N, Ñ) ≤ ε .

Require: Two neighbourhoods N = (q, e) and Ñ = (q̃, ẽ) of size n and ñ.
1: esorted

= sort(e), ẽsorted
= sort(ẽ).

2: if esorted , ẽsorted then
3: return dfull

(N, Ñ) = ∞
4: end if
5: r = rank(q), r̃ = rank(q̃)
6: if r > r̃ then
7: return compfull

(Ñ, N, ε)
8: end if
9: if r̃ < d then

10: Reduce dimension of N and Ñ .
11: end if
12: Calculate the largest µ that fulfils

qi − qj


2 ≥ µ∀i , j

13: Calculate the largest µ̃ that fulfils
q̃i − q̃j


2 ≥ µ̃∀i , j

14: if µ > µ̃ and r = r̃ then
15: return compfull

(Ñ, N, ε)
16: end if
17: if ε > µ̃

2
√

1+4d
then

18: Fail
19: end if
20: return Result of algorithm 2

Theorem 4. Let q̃ = (q̃1, . . . , q̃n) (q̃i ∈ R
d) be n d-dimensional points and

Q̃ =

| |

q̃1 . . . q̃n
| |


the corresponding point matrix. Assume that Q̃ has full rank and define d indices j1, . . . , jd as
follows

j1, . . . , jd = arg max
j1,..., jd

������det ©«

| |

q̃j1
. . . q̃jd

| |

ª®¬
������ .

Let S̃ be the corresponding matrix

S̃ =

| |

q̃j1
. . . q̃jd

| |

 .
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Then S̃ is invertible and the following inequality holdsS̃−1q̃i

∞
≤ 1, ∀i = 1, . . . , n. (4.18)

This also implies that each q̃i can be written as

q̃i = S̃ṽi =
d∑

k=1
q̃jk
(ṽi)k

where ṽi = S̃−1q̃i and
vi∞ ≤ 1.

Proof. As Q̃ was assumed to have full rank, the d × d submatrix S̃ also has full rank and is
thereby invertible. Using Cramer’s rule, the k-th component of S̃−1q̃i is given by

(S̃−1q̃i)k =
det S̃(i,k)

det S̃
.

Here, S̃(i,k) is the matrix S̃ where the k-th column of S̃ has been replaced by q̃i. As S̃ is the
submatrix of Q̃ that has the largest determinant in absolute terms, the inequality

| det S̃(i,k) | ≤ | det S̃ |

holds for all i and k, leading to���(S̃−1q̃i)k
��� = | det S̃(i,k) |

| det S̃ |
≤ 1⇒

S̃−1q̃i

∞
≤ 1.

Please note that an equivalent theorem has already been stated in [78], though without a
proof. �

Using this theorem, each point q̃i can be written as q̃i = S̃ṽi where ṽi ∈ R
d fulfils

ṽi∞ ≤ 1.
This property is now used to bound the error that occurs when the algorithm tries to calculate
the optimal orthogonal matrices.

Theorem 5. Let q = (q1, . . . , qn) (qi ∈ R
d) and q̃ = (q̃1, . . . , q̃n) (q̃i ∈ R

d) be two sets of n
d-dimensional points. Assume that the q̃i fulfil the assumptions in theorem 4 and let j1, . . . , jd
be the optimal indices in this theorem. Also let R ∈ O and R̃ ∈ O be two orthogonal matrices,
i1, . . . , id d pairwise different indices and π ∈ Sn a permutation that fulfils πik = jk for all
k = 1, . . . , d. Define δ and δ̃ by

δ :=

√√√
d∑

k=1

qik − Rq̃πik

2

2
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and

δ̃ :=

√√√
d∑

k=1

qik − R̃q̃πik

2

2
.

Then the following inequality holds for all l = 1, . . . , n:(R̃ − R)q̃l


2 ≤
√

d(δ + δ̃).

Proof. Using
∑d

i=1 |ai | ≤
√

d
√∑d

i=1 a2
i one obtains

d∑
k=1

(R̃ − R)q̃jk


2
=

d∑
k=1

(R̃ − R)q̃jk
+ qik − qik


2

≤

d∑
k=1

qik − R̃q̃jk


2
+

qik − Rq̃jk


2

≤

√√√
d

d∑
k=1

qik − R̃q̃jk

2

2
+

√√√
d

d∑
k=1

qik − Rq̃jk

2

2

=
√

d(δ + δ̃).

Due to theorem 4, every q̃l can be written as q̃l = S̃ṽl =
∑d

k=1 ṽlk q̃jk
where

vl∞ ≤ 1. Thus
for every l = 1, . . . n one can write(R̃ − R)q̃l


2 =

(R̃ − R)S̃ṽl


2

=

(R̃ − R)
d∑

k=1
ṽlk q̃jk


2

≤

d∑
k=1

(R̃ − R)ṽlk q̃jk


2

≤

d∑
k=1
|ṽlk |

(R̃ − R)q̃jk


2

≤

d∑
k=1

(R̃ − R)q̃jk


2

≤
√

d(δ + δ̃).

�

Finally, it is necessary to show that if f (N, Ñ) ≤ ε2, algorithm 2 will at some point calculate
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Chapter 4 Localised on-the-fly Kinetic Monte Carlo algorithms

the globally optimal permutation in line 8. This in turn will cause the algorithm to calculate the
globally optimal orthogonal matrix in the subsequent line.

Theorem 6. Let N = (q, e) and Ñ = (q̃, ẽ) be two neighbourhoods (that contain n d-dimensional
particles each) where the q̃1, . . . , q̃n fulfilq̃i − q̃j


2 ≥ µ, ∀i , j .

Furthermore, assume that the q̃i have full rank (as in theorem 4) and that j1, . . . , jd are the
corresponding indices in this theorem that maximise the determinant. Then if f (N, Ñ) ≤ ε2 for

ε <
µ

2
√

1 + 4d
,

there exist indices i1, . . . , id such that the globally optimal permutation π∗ ∈ Sn is equal to
π̄ ∈ Sn that is defined by

π̄ik = jk k = 1, . . . , d

π̄k = arg min
l:ek=ẽl

qk − Rq̃l


2 k < {i1, . . . , id}

where R ∈ Od is given by

R = min
R∈Od

d∑
k=1

qik − Rq̃jk

2

2
.

Proof. Let i1, . . . , id be defined implicitly by π∗ik = jk (k = 1, . . . , d) and let R∗ ∈ Od be
the globally optimal orthogonal matrix that (together with π∗) minimises f (N, Ñ). In that
case π̄ik = jk = π

astik for all k = 1, . . . , d. Thus it must now be proven that π∗k is equal to
π̄k = arg minl:ek=ẽl

qk − Rq̃l


2 for all other indices k < {i1, . . . , id}. Similar to theorem 5, δ
and δ∗ are defined as

δ =

√√√
d∑

k=1

qik − Rq̃πik

2

2

and

δ∗ :=

√√√
d∑

k=1

qik − R∗q̃πik

2

2
.

Then by definition δ ≤ δ∗ ≤ ε and, due to theorem 5, the following inequality holds for all
k = 1, . . . , n: (R − R∗)q̃k

 ≤ √d(δ + δ∗) ≤ 2
√

dδ∗.
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For every k < {i1, . . . , id} one also obtainsqk − R∗q̃π∗k


2
≤

√
ε2
− δ∗

2

due to

ε2
≥ f (N, Ñ) =

n∑
l=1

ql − R∗q̃π∗l

2

2

=

d∑
l=1

qil − R∗q̃jl

2

2
+

n∑
l=1

l<{i1,...,id }

ql − R∗q̃π∗l

2

2

= δ∗
2
+

n∑
l=1

l<{i1, . . ., id }

ql − R∗q̃π∗l

2

2

≥ δ∗
2
+

qk − R∗q̃π∗k

2

2
.

Using R instead of R∗ yields for every k < {i1, . . . , id}qk − Rq̃π∗k


2
=

qk − Rq̃π∗k + R∗q̃π∗k − R∗q̃π∗k


2

≤

qk − R∗q̃π∗k


2
+

(R − R∗)q̃π∗k


2

≤

√
ε2
− δ∗

2
+ 2
√

dδ∗

≤
√

1 + 4dε .

(4.19)

The last inequality can be derived by minimising
√
ε2
− δ∗

2
+ 2
√

dδ∗ with respect to δ∗ ∈ [0, ε].
The inequality in (4.19) shows that Rq̃π∗k lies in a sphere of radius

√
1 + 4dε around qk . As it

was assumed that ε < µ

2
√

1+4d
(and thus µ > 2

√
1 + 4dε), no other Rq̃l lies inside this sphere

around qk . Thus π̄k , defined by

π̄k = arg min
l:ek=ẽl

qk − Rq̃l


2

is equal to π∗k for all k < {i1, . . . , id}. �

4.5.3 Computational complexity

It is of course of interest to investigate the computational complexity of algorithm 2 that checks
whether f (N, Ñ) ≤ ε2. The different components of the algorithms are analysed now. As
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before, it is assumed that both neighbourhoods N and Ñ have n d-dimensional particles.

Calculating optimal orthogonal transformations

An operation that is needed several times in the algorithm is the calculation of the orthogonal
transformation that minimises

min
R

n∑
i=1

qi − Rq̃i
2

2

for some given points qi and q̃i of dimension d. Using a SVD-based approach as in [70] (see
also lemma 1), this requires three steps. First, the d × d matrix

A =
n∑
i=1

qi q̃
T
i

is computed. Afterwards, the SVD of A is calculated, i.e. A = UΣVT . The optimal orthogonal
matrix is then given by R = UVT . Calculating the matrix A requires O(nd2

) operations. The
subsequent calculation of the SVD can be realised in O(d3

) and the calculation of R = UVT

takes once again O(d3
) operations.

Putting all things together, the computational complexity of the full minimisation is of order
O(nd2

+ d3
). Calculating the corresponding value of the objective function takes time O(nd2

)

and thus does not change the overall complexity.

Finding the optimal indices (line 2)

The first part of the algorithm involves the calculation of the indices j1, . . . , jd that maximise the
absolute value of the determinant of S̃ = [q̃j1

, . . . , q̃jd
]. Algorithms that generate approximate

solutions for this problem exist [78] but in order to obtain the exact globally optimal solution, a
brute-force search over all combinations has been used in this work.

This requires an exhaustive search over all
(n
d

)
(O(nd

)) index combinations of length d. For
each index combination, the corresponding determinant of a d × d matrix must be calculated,
which requires O(d3

) operations when using a LU decomposition5. Thus, a brute force search
to determine the optimal indices has computational complexity O(ndd3

).

5 It is possible to calculate the determinant with complexity O(d2.373
) using a fast matrix multiplication

algorithm [79] and a corresponding matrix factorisation [80]. While these algorithms are asymptotically faster
than the classical O(d3

) algorithms, they are usually much slower in practical application.
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Lines 3 – 7

In the for-loop (line 3) the algorithm tests up to
(n
d

)
(O(nd

)) index tuples i1, . . . , id and calculates

min
R

d∑
k=1

qik − Rq̃jk

2

2

for every such index tuple. Here, calculating the optimal orthogonal matrix requires O(d3
)

operations. Thus O(ndd3
) operations are needed for lines 3–7.

Lines 8 – 14

In these lines, two things are calculated. The first is the permutation π̄ in line 8. Calculating
this permutation is essentially equal to finding the nearest neighbour for all Rq̃i (i = 1, . . . , n)
in the set Q = {q1, . . . , qn}. This all nearest neighbours problem can be solved in O(3ddn)
using a cell based algorithm [81].
Besides the permutation π̄, the corresponding orthogonal transformation R̄ is calculated in

line 9. Once again, Kabsch’s algorithm can be used for this task, adding O(nd2
+ d3
) operations.

One important question remains: how often will these lines actually be called? While
the for loop in line 3 may test O(nd

) index tuples, the continue statement in line 6 may
reduce the number of times that the lines 8 - 14 are called. It is now shown that the lines
8 - 14 will be called no more than O(2.415dnd−1

)-many times. Thus these lines contribute
O(nd−12.415d

(3ddn + nd2
+ d3
)) = O(nd7.245dd) operations to the total cost of algorithm 2

if a cell based neighbour search is used to calculate π̄.
Theorem 8 show that these lines are called only O(2.415dnd−1

) times. First, however, a few
auxiliary theorems are needed.

Lemma 2. [82, 83] Let A ∈ Rd×d be a square matrix and denote by A(i) the matrix A with its
i-th column removed. Then some index k ∈ {1, . . . , d} exist such thatA − A(k)A(k)+A


F
≤
√

dσd(A).

Here, σd(A) denotes the d-th largest (i.e. smallest) singular value of A and A(k)+ is the
Moore-Penrose pseudo-inverse of A(k).

Theorem 7. Let A ∈ Rd×d be non-singular and k ∈ {1, . . . , d} be an index such thatA − A(k)A(k)+A

F
≤
√

dσd(A)

(due to lemma 2 at least one such index exists). Then two vectors x ∈ Rd and y ∈ Rd exist such
that all orthogonal matrices U ∈ Od fulfil eitherx −U A∗,k


2 ≤ (1 +

√
2)
√

d ‖U A(k) − A(k)‖F
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or y −U A∗,k


2 ≤ (1 +
√

2)
√

d ‖U A(k) − A(k)‖F .

Proof. To simplify the notation, it is assumed w.l.o.g. that k = d. As A is non-singular, its
d-th column A∗,d can also be written as

A∗,d = A(d) A(d)+A∗,d︸      ︷︷      ︸
Cv

+c

where c , 0 is from the (one-dimensional) nullspace of A(d)T . It fulfils ‖c‖2 ≤
√

dσd(A) due
to

‖c‖2 =
A∗,d − A(d)A(d)+A∗,d


2 =

(A − A(d)A(d)+A)ed


2 ≤
√

dσd(A).

As the smallest singular value of A(d) fulfils σd−1(A(d)) ≥ σd(A) [84], the inequalityA(d)+


2 = 1/σd−1(A(d)) ≤ 1/σd(A) holds and thereforeA(d)+


2 ‖c‖2 ≤
1

σd(A)

√
dσd(A) ≤

√
d.

Furthermore, ‖v‖2 fulfils ‖v‖2 ≤
√

d − 1 due toed − [I 0]T v


2
=

Ied − A−1 A(d)A(d)+Aed


2

=

A−1
(Aed − A(d)A(d)+Aed)


2
≤

A−1


2

A − A(d)A(d)+A

F

ed


2

≤
1

σd(A)

√
dσd(A) =

√
d

⇒

ed − [I 0]T v
2

2
=

( v

1

)2

2
≤ d ⇒ ‖v‖22 ≤ d − 1.

It is now shown that x = A∗,d = A(d)v + c and y = A(d)v − c fulfil the theorem. Therefore it
remains to show that for arbitrary U ∈ Od either

‖A(d)v + c −U(A(d)v + c)‖2 ≤ (1 +
√

2)
√

d ‖U A(d) − A(d)‖F (4.20)

or
‖A(d)v − c −U(A(d)v + c)‖2 ≤ (1 +

√
2)
√

d ‖U A(d) − A(d)‖F (4.21)

holds. For simplicity the definition δ = U A(d) − A(d) is used. Then A(d)v −U A(d)v can be
written as

A(d)v −U A(d)v = A(d)v − (A(d) + δ)v = −δv.

The next step is more complicated as there is no easy expression for Uc that depends directly on
δ. Due to the properties of orthogonal matrices one can easily verify that c̃ B Uc must have the

50



4.5 Calculating the invariant RMSD

same Euclidean norm as c and must be in the nullspace of (U A(d))T . Therefore c̃ must fulfil

(U A(d))T c̃ = (A(d) + δ)T c̃ = 0 (4.22)

c̃T c̃ = cT c. (4.23)

Using once again the fact that A(d) and c span the whole Rd, c̃ can be written as c̃ = A(d)w+ac
for some (yet to be determined) w ∈ Rd−1 and a ∈ R. Due to equation (4.22), c̃ must fulfil

A(d)T c̃ = −δT c̃

and thus
A(d)T (A(d)w + ac) = A(d)T A(d)w = −δT c̃.

As A(d)T A(d) is invertible, w fulfils

w = −(A(d)T A(d))−1δT c̃.

As ‖c̃‖2 = ‖c‖2 due to the second equation, ‖A(d)w‖2 fulfils

‖A(d)w‖2 =
−A(d)(A(d)T A(d))−1δT c̃


2
=

−A(d)T
+
δT c̃


2

≤

A(d)T
+


2

δT 
F
‖c̃‖2 =

A(d)+


2 ‖δ‖F ‖c‖2 .
(4.24)

Once again using ‖c‖2 = ‖c̃‖2 one obtains

cT c = wT A(d)T A(d)w + a2cT c + 2awT A(d)T c︸  ︷︷  ︸
=0

= ‖A(d)w‖22 + a2cT c

which is a quadratic equation with respect to a and thus has two solutions a+ and a−, given by

a± = ±

√
1 −
‖A(d)w‖22

cT c
.

As ‖A(d)w‖2 is limited from above (see equation (4.24)), a+ fulfils

a+ =

√
1 −
‖A(d)w‖22

cT c
≥ 1 −

‖A(d)w‖22
cT c

≥ 1 −
A(d)+

2
2 ‖δ‖

2
F
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and a−

a− = −

√
1 −
‖A(d)w‖22

cT c
≤ −

(
1 −
‖A(d)w‖22

cT c

)
≤ −

(
1 −

A(d)+
2

2 ‖δ‖
2
F

)
.

If c̃ = A(d)w + a+c, one obtains

‖c̃ − c‖22 = 2cT c − cT A(d)w︸    ︷︷    ︸
=0

−2a+cT c = 2cT c(1 − a+) ≤ 2cT c
A(d)+

2
2 ‖δ‖

2
F

≤ 2d ‖δ‖2F

and thus equation (4.20) holds

‖A(d)v + c −U(A(d)v + c)‖2 = ‖−δv + c − c̃‖2 ≤ ‖δv‖2 + ‖c − c̃‖2
≤ ‖δ‖F ‖v‖2 +

√
2d ‖δ‖F ≤ ‖δ‖F

√
d +
√

2d ‖δ‖F
= (1 +

√
2)
√

d ‖δ‖F .

Similarly, if c̃ = Aw + a−c, one obtains

‖c̃ + c‖22 = 2cT c + 2a−cT c = 2cT c(1 + a−) ≤ 2cT c
A(d)+

2
2 ‖δ‖

2
F

≤ 2d ‖δ‖2F

and equation (4.21) is satisfied:

‖A(d)v − c −U(A(d)v + c)‖2 = ‖−δv − c − c̃‖2 ≤ ‖δv‖2 + ‖c + c̃‖2
≤ ‖δ‖F ‖v‖2 +

√
2d ‖δ‖F ≤ ‖δ‖F

√
d +
√

2d ‖δ‖F
= (1 +

√
2)
√

d ‖δ‖F .

�

Theorem 8. Let (q1, . . . , qn) (qi ∈ R
d) be n d-dimensional points such thatqi − qj


2 ≥ µ, i , j

for some µ > 0. Furthermore let q̃1, . . . , q̃d (q̃i ∈ R
d) be d d-dimensional points that are

linearly independent. Then the magnitude of the set

I =

{
i ∈ {1, . . . , n}d :

(
ij , ik ∀ j , k

)
∧

(
∃R ∈ Od :

d∑
l=1

qil − Rq̃l
2

2
≤ ε2

)}
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is of order O(2.415dnd−1
) if ε < µ

2
√

1+4d
.

Proof. To begin with, let Q̃ = [q̃1, . . . , q̃n] be the matrix that has the vectors q̃i as columns.
Then Q̃ fulfils all conditions of lemma 2 and therefore some index k exists such thatQ̃ − Q̃(k)Q̃(k)+Q̃


F
≤
√

dσd(Q̃).

W.l.o.g. it is assumed here that k = d, otherwise one can simply permute the q̃i and qi. Then
every i ∈ I can be written as i = ( j, l) where j ∈ {1, . . . , n}d−1 and l ∈ {1, . . . , n}. If ( j, l) ∈ I,
j must fulfil (

jm , jp ∀m , p
)
∧

(
∃R ∈ Od :

d−1∑
m=1

qjm
− Rq̃m

2

2
≤ ε2

)
.

Due to the condition that all entries of j must be distinct, there are only up to
( n
d−1

)
possible

tuples j. It is now shown that for each such j, no more than 2 · 2.415d possible values l̃ exist
such that ( j, l̃) ∈ I.

To prove this, it can easily be observed that for i = ( j, l) ∈ I the relation{
R ∈ Od :

d−1∑
m=1

qjm
− Rq̃m

2

2
≤ ε2

}
︸                                           ︷︷                                           ︸

=R j

⊇

{
R ∈ Od :

d−1∑
m=1

qjm
− Rq̃m

2

2
+

ql − Rq̃d
2

2 ≤ ε
2

}
holds. Furthermore, all R, R̃ ∈ R j fulfilRQ̃(d) − R̃Q̃(d)


F
≤ 2ε . (4.25)

Therefore, choosing an arbitrary R ∈ R j and setting A = RQ̃ in theorem 7 yields two vectors
x ∈ Rd and y ∈ Rd such that ∀R̃ ∈ R j either x or y fulfilx − R̃Q̃∗,d


2 =

x − R̃RT
(RQ̃∗,d)


2
≤ (1 +

√
2)
√

d
RQ̃(d) − R̃RT

(RQ̃(d))

F

= (1 +
√

2)
√

d
RQ̃(d) − R̃Q̃(d)


F
.

Due to equation (4.25) this leads to eitherx − R̃q̃d


2 ≤ 2(1 +
√

2)
√

dε
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or y − R̃q̃d


2 ≤ 2(1 +
√

2)
√

dε .

Due to these inequalities, each feasible R̃ ∈ R j transforms q̃d into a sphere of radius 2(1+
√

2)
√

dε
around either x or y. Thus, the corresponding qd must also lie in one of these spheres. As the
qi were assumed to fulfil

qi − qj


2 ≥ µ, only a limited number of qi-s can lie in these spheres.

As the diameter of each sphere is no more than

2 · 2(1 +
√

2)
√

dε
µ

<
2 · 2(1 +

√
2)
√

dε

2
√

1 + 4dε
=

2(1 +
√

2)
√

d
√

d
√

1
d + 4

≤
2 + 2

√
2

√
4
≤ 2.415

times larger than µ – and thus independent of n – the maximal number of points qi that fit in
such a sphere cannot be larger than 2.415d.
Thus if ( j, l) ∈ I, for each j there are no more than 2 · 2.415d possible l̃ ∈ {1, . . . , n} such

that ( j, l̃) is also in I. �

Comment 1. The previous theorem shows that the magnitude of the set I is of order
O(2.415dnd−1

). The conducted numerical experiments suggest that the actual bound on
the magnitude may be as low as O(nd−1

) as I was not able to find a case where for a fixed j
there are more than two choices for l such that ( j, l) ∈ I.

Using the complexities of all components of the algorithm, the computational complexity
of the whole algorithm can be determined. As shown in table 4.1, the final complexity is
O(nd7.245dd) if a cell-based neighbour search is used. As atoms are usually described by their
two- or three-dimensional coordinates, the dimensions d = 2 and d = 3 are of special interest
here. In these cases, algorithm 2 scales as O(n2

) (d = 2) or O(n3
) (d = 3) with n being the

number of atoms in a neighbourhood.

Line 2 (optimal indices) O(ndd3
)

Lines 3–7 O(ndd3
)

Lines 8 – 14 O(nd7.245dd)
Total O(nd7.245dd)

Table 4.1: Components of the complexity analysis.

4.6 The local transition database

Now that the problem of comparing neighbourhoods has been tackled, an efficient database
to store atomic neighbourhoods and corresponding local transitions should be designed.
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4.6 The local transition database

Two important questions must be answered: How can one find similar neighbourhoods and
corresponding data in an efficient way? and How can one represent the local transitions?

4.6.1 Database structure

In the original k-ART algorithm, the process of finding similar neighbourhoods was possible in
a very efficient manner. First, the neighbourhood was converted to the corresponding adjacency
graph. Afterwards, nauty was used to calculate the canonical labelling of this graph. By
construction, neighbourhoods with the same canonical labelling were seen as equivalent. Thus
the database could easily be realised as a simple key/value map where the key is the canonical
labelling of the graph (which can be represented as a simple string). Finding a neighbourhood
N in the k-ART database therefore required just two steps: the calculation of the canonical label
of N and a single look-up operation in a map with string-keys.

When the (fully) invariant RMSD is used to compare atomic environments, this simple key-
based structure can no longer be used. In order to avoid looking at every single neighbourhood
in the database, some filtering mechanisms are needed to limit the number of necessary
comparison operations.

Element filtering

The first idea for a filter is straightforward. If two neighbourhoods are similar with respect to
the invariant RMSD, their elements must match. Thus one can ignore all neighbourhoods in
the database that do not have the same elements as the neighbourhood N .

To do this, an element identifier is calculated for each neighbourhood. The element identifiers
of two neighbourhoods should be equal if they have the same elements and different if they
are not. Possible choices are the sorted list of elements in the neighbourhood or a compressed
representation of it, for example "C2H6" for a neighbourhood with two carbon and six hydrogen
atoms. The full local transition database is then realised as a map of several 〈element identifier,
subdatabase〉 pairs where each subdatabase holds neighbourhoods that share a common element
identifier.

Range searching

The element filtering approach limits the database query to neighbourhoods that have matching
elements (and thus the same number of particles). To limit the number of comparison operations
further, another filter can be built, using the particle distances in neighbourhoods. The basis for
this is the following theorem that offers a necessary condition for dfull

(N, Ñ) ≤ ε .

Theorem 9. Let N = (q, e) and Ñ = (q̃, ẽ) be two neighbourhoods. If dfull
(N, Ñ) ≤ ε there
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exists a permutation π such that���� qi


2 −
q̃πi


2

���� ≤ ε i = 1, . . . , n (4.26)

e = ẽπ . (4.27)

Proof. If dfull
(N, Ñ) ≤ ε let R∗ and π∗ be the corresponding optimal orthogonal transformation

and permutation. Obviously they fulfil e = ẽπ∗ and g(N, Ñ, R∗, π∗) ≤ ε2. Thus one can write

ε2
≥ g(N, Ñ, R∗, π∗) =

n∑
k=1

qi − R∗q̃π∗i

2

2

≥

n∑
i=1

���� qi


2 −
R∗q̃π∗i


2

����2
=

n∑
i=1

���� qi


2 −
q̃π∗i


2

����2
≥

���� qk


2 −
q̃π∗k


2

����2 ∀k = 1, . . . , n.

�

Theorem 9 can now be used to filter the neighbourhoods in the database. For a given
neighbourhood N = (q, e) a distance identifier of the form

Φ(N) =
[qπ1


2
, . . . ,

qπn


2

]
can be built. π is the permutation that corresponds to sorting the particles in N such that

eπi ≤ eπi+1
i = 1, . . . , n − 1qπi


2
≤

qπi+1


2

if eπi = eπi+1

(assuming that there is some natural order for the elements). For two neighbourhoods N and Ñ
it can be shown that if Φ(N) − Φ(Ñ)

∞
> ε,

there exists no permutation π̃ that fulfils equations (4.26) and (4.27). Using theorem 9 this
implies that dfull

(N, Ñ) > ε . Thus one only has to consider neighbourhoods Ñ in the database
that fulfil Φ(N) − Φ(Ñ)

∞
≤ ε .

The problem of finding all these neighbourhoods Ñ corresponds to the orthogonal range
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searching problem.

Definition 9. Let X = {x1, . . . , xn} be a set of n d-dimensional points. If intervals [aj, bj]

( j = 1, . . . , d) are given, the problem of finding all points xi ∈ X , such that

(xi)j ∈ [aj, bj], j = 1, . . . , d (4.28)

is called the orthogonal range searching problem.

Special data structures and algorithms for the orthogonal range searching problem exist.
In [85] a range tree was presented that supports adding and removing points. For a set
X = {x1, . . . , xn} of n d-dimensional points, it can find all xi ∈ X that fulfil equation
(4.28) in O(k + logd−1

(n) log(log(n))) where k is the number of points that actually fulfil this
condition. If adding and removing points is not necessary, the query time can be lowered to
O(k + logd−1

(n)) [86].
Using these two filtering stages, the local transition database has the structure that is shown in

figure 4.7. Neighbourhoods with different elements are stored in different subdatabases. Each
subdatabase is essentially realised as a range tree that holds neighbourhoods, their corresponding
distance identifiers and local transition data.

4.6.2 Storing local transitions

Whenever a new local transition has been found, it should be added to the corresponding
neighbourhood in the database. To store a local transition, the initial neighbourhood is written
to the database. In order to describe the structural changes in this neighbourhood during a local
transition the saddle shift and product shift are also stored. The saddle shift (s1− r1, . . . , sn− rn)
is the difference between the particle coordinates ri in the initial neighbourhood and the
coordinates si at the saddle point. The product shift (p1 − r1, . . . , pn − rn) is defined in a similar
way. Here, the pi denote the coordinates at the end of the transition.

Besides these shifts in the coordinates, additional information related to HTST is stored. This
includes the energy barriers in both directions as well as the corresponding HTST prefactors.

4.6.3 Retrieving local transitions

So how can local transitions that may take place inside some neighbourhood N = (q, e)
be retrieved from the database? The first step is to calculate the element identifier of the
neighbourhood as well as the distance identifier Φ(N). Using the element identifier, the right
range tree in the database can be chosen (see figure 4.7). It can then be used to find all
neighbourhoods Ñ1, . . . , Ñk in the database that have similar distance identifiers.
In the next step, the check dfull

(N, Ñi) ≤ ε is run for all these neighbourhoods. If the check
fails for all Ñi, no matching local transitions for N are stored in the database. Otherwise, the
neighbourhood Ñi with the smallest distance dfull

(N, Ñi) is chosen and is denoted by Ñ∗. Using
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Figure 4.7: Structure of the local transition database.

the optimal transformations R∗ and π∗, the local transitions that belong to Ñ∗ can finally be
transformed such that they can be applied to N instead of Ñ∗.

4.7 The Localised Kinetic Monte Carlo algorithm

The new invariant RMSD comparison function and the corresponding local transition database
are now used to build a modified version of k-ART that is called the Localised Kinetic Monte
Carlo (LKMC) algorithm. LKMC has the same basic structure as k-ART (see figure 4.4)
but differs from it in various ways. Some modifications were made in order to improve the
performance or robustness of LKMC, others were made purely for technical reasons. LKMC
has been implemented as an extension module for the QuantumATK software package [87, 88].
As QuantumATK already includes a (non-localised) on-the-fly KMC algorithm called adaptive
KMC (AKMC), some of its functionality – like global saddle searches – is used, instead of
reimplementing the corresponding k-ART analogue. The modifications are now presented in
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more detail.

4.7.1 Local transition searches

In the original k-ART algorithm, local transition searches were carried out by using the the ART
nouveau method (which also gave k-ART its name) on each distinct neighbourhood [42]. For
LKMC a different approach was chosen that combines the neighbourhood-wise local transition
searches in k-ART with the active volume approach in [49]. To explain the basic concept,
it is temporarily assumed that local transition searches are needed only for a single atomic
neighbourhood with radius rcut in the larger global system. In this case, the local transition
search approach from [52] can be used: all particles in the global system that correspond to
the particles in the neighbourhood are allowed to move, while all other particles are kept fixed.
If the chosen potential energy function E is short-ranged with interaction radius rinteract

6 , all
particles whose Euclidean distance to the central particle of the neighbourhood is larger than
rcut + rinteract can be ignored (see figure 4.8).

Figure 4.8: Setup of a local transition search for a single neighbourhood.

Standard global transition searches are then applied to this smaller and constrained system.
As LKMC builds on top of the AKMC implementation in QuantumATK, the QuantumATK
transition search functionality is used, which is a three-step procedure [89]. First, a high-
temperature trajectory that starts in the initial potential energy minimum is calculated and
analysed in order to detect whether the trajectory escapes from the initial energy basin. If it
does, a nudged elastic band approach is used to find the reaction path that connects the two

6 Here, E being short-ranged means that ∂
2E(x)
∂xi∂x j

= 0 whenever
xi − xj


2
> rinteract. If E is a sum of pair

potentials this would be the case if all pair potentials are truncated at rinteract.
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energy basins. Using the reaction path, the saddle point, energy barrier, and harmonic prefactor
of the transition are calculated. This procedure is repeated until all neighbouring states have
been found (see also subsection 4.7.2).

Figure 4.9: Setup of local transition searches in multiple neighbourhoods.

In general, the local transitions for more than one atomic neighbourhood are unknown. As in
the single-neighbourhood case, a smaller constrained system is built and standard transition
searches are applied to it. Figure 4.9 shows how the local transitions in the neighbourhoods
of the bright particles can be calculated. Once again, all particles in the global system that
correspond to a particle in one of the neighbourhoods are allowed to move while all other
particles are kept fixed. Furthermore, all particles are ignored whose Euclidean distance to
all central particles of the neighbourhoods is larger than rcut + rinteract. Using this approach,
LKMC basically builds non-spherical active regions on the fly, using the stored local transition
information.

One obvious consequence of this approach is that the transitions that occur in this smaller
constrained system must be mapped back to the individual neighbourhoods. This is done using
the concept of process atoms in [51]. For each transition that takes place in the constrained
system, all atoms that move more than some given distance dtransition during this transition are
called process atoms. Then, a transition in the constrained system is assigned to one of the
neighbourhoods if the process atoms stay inside this neighbourhood for the whole transition.
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4.7.2 Confidence estimation

In the previous section it was briefly noted that transition searches in the constrained local
system should be run “until all neighbouring states have been found”. Therefore some kind
of stopping criterion is needed in order to terminate the transition searches at some point. In
k-ART no such stopping criterion is used. Instead, a fixed number of transition searches are
conducted for each distinct neighbourhood [64]. This number is set by hand and must be large
enough such that all necessary transitions are found and small enough such that the transition
searches do not become excessively expensive.
In LKMC, the confidence estimator from [41] is used, which estimates the probability that

all necessary transitions have been found. If the confidence becomes larger than some given
tolerance, the transition searches are stopped. This estimator requires that the transition searches
use high temperature MD trajectories to escape from the initial energy minimum, which is the
case in the LKMC algorithm.
A potential issue with this estimator is that it assumes that some (accessible) transitions

exist. In LKMC this is not always the case, for example when LKMC tries to determine local
transitions in a neighbourhood with a perfect crystal structure. Without any modifications, the
transition searches would never terminate. Therefore, an additional stopping criterion is used
in LKMC. If the high-temperature trajectory that is calculated during the transition searches
does not manage to escape from the current state after some time tmax, the transition search is
stopped.

4.7.3 Recycling local transitions

The final component of the LKMC algorithm is the recycling of known local transitions. For
each atom in a given particle system, the corresponding local transitions are retrieved from
the LKMC database. As these local transitions are stored as shifts of the particle positions in
this neighbourhood, they can immediately be applied to the atoms in the neighbourhood, thus
obtaining good estimates for the global saddle and product configuration.
Afterwards, the exact global product configuration is calculated by relaxing the estimated

product configuration towards its actual energy minimum. The exact saddle point is then
calculated in the same way, using the global saddle search mechanism with the estimated saddle
point as its initial value. This procedure is then repeated for all other neighbourhoods in the
atomistic system until all local transitions have been reused.
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Evaluation

The different ideas that were presented in the previous chapters are now tested in a series
of computational experiments. As was briefly noted before, the proposed LKMC algorithm
as well as all necessary components have been implemented as extension modules for the
QuantumATK software package [87, 88].

5.1 Example problems

During the evaluation, a number of test problems are used repeatedly to investigate certain
properties of the different components of LKMC. These test problems are now presented in
more detail.

5.1.1 Ad-atom hopping on a platinum surface

The first example problem is the movement of platinum ad-atoms on a [001] platinum surface.
Up to a few decades ago, it was thought that an ad-atom simply hops from one place on
the surface to another. Kellogg and Feibelman demonstrated in 1990 [90] that the primary
reaction mechanism on such a platinum surface is actually an exchange process where the
ad-atom dips into the surface and pushes another atom out, as shown in figure 5.1. Using a
suitable EAM-potential [91] and the on-the-fly KMC algorithm in QuantumATK (AKMC),
this behaviour can be reproduced. As expected, these simulations show that there are two
possible mechanisms for the movement of the ad-atom. The first one is the aforementioned
exchange process, the other is the naive hopping process where the ad-atom simply moves to a
neighbouring place on the surface. As the exchange-process has a lower energy barrier of about
0.5 eV compared to the hopping process (0.93 eV), it is the predominant process at moderate
temperatures.
Various variants of this ad-atom problem are used. They differ in the size of the surface as

well as the number of ad-atoms that are placed onto it. If more than one ad-atom is used, these
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(a) Initial state. (b) Ad-atom pushes another atom
out of the surface.

(c) Final state - the previous ad-
atom is now a part of the surface.

Figure 5.1: The exchange mechanism on a platinum surface.

ad-atoms may merge to form islands.

5.1.2 Hydrogen diffusion in amorphous silicon

One of the main reasons for the development of the new neighbourhood comparison procedure
was the desire to use a k-ART like procedure on amorphous systems. Therefore, the diffusion
of hydrogen atoms in an amorphous silicon crystal is investigated. Hydrogenated amorphous
silicon is used as a semiconductor in different applications [92]. Depending on the temperature,
the incorporated hydrogen atoms show a varying degree of diffusivity and may evaporate at
high temperatures.
Creating a realistic amorphous system can be difficult, therefore the 4096-particle system

from [93] which showed good agreement with experiments is used. Varying numbers of
hydrogen atoms are inserted into this system and a long Langevin trajectory is calculated in
order to relax the system initially. Afterwards the hydrogen diffusion can be studied using the
potential from [94].

5.1.3 Nickel grain boundary

Many materials are not made up of a single perfect crystal structure but are polycrystalline,
which means that they consist of many smaller perfect crystals. The interface between two such
perfect crystals is called the grain boundary. Understanding its evolution is of interest as the
grain boundary may move or even vanish, causing the growth or disappearance of the crystals
that form a polycrystalline material.

Here, the grain boundary between two nickel crystals is simulated (see figure 5.2). The EAM
potential in [91] was used to model the interactions between the nickel atoms.
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Figure 5.2: Initial state of the grain boundary simulation.

5.2 Localisation of transitions

The first experiments deal with the question of localisability, i.e. when can transitions be
localised, what cutoff radii are needed and how do saddle points and minima converge with
respect to the cutoff radius.

To investigate the localisability of global transitions, a number of such transitions are analysed.
Each global transition is defined by the particle positions in the initial (reactant) state r ∈ Rn×3,
at the saddle point s ∈ Rn×3 and in the final (product) state p ∈ Rn×3. As discussed in 4.1, both
r and p are local minimisers of the potential energy function E while s is a first-order saddle
point. Then the localisability is analysed using the following procedure.

1. The initial position of the particle that moves the most during the global transition is
determined and is used as the centre of the transition.

2. Using the centre of the transition and different cutoff radii rcut, different spherical active
regions S(rcut) are created. Using the ideas in section 4.1 and subsection 4.7.1, they are
used to create the corresponding localised problems by constraining all particles that do
not lie inside the active region.

3. The inbuilt optimisation algorithm (L-BFGS) in QuantumATK is used to find the local
minimiser p̃(rcut) ∈ R

n×3 of the localised problem with cutoff rcut that is closest to p.
Similarly, the first order saddle point s̃(rcut) ∈ R

n×3 that is closest to s is determined.

4. The errors
p − p̃(rcut)


F
and

s − s̃(rcut)

F
are determined.

5. Finally, it is tested whether the inbuilt optimiser in QuantumATK (L-BFGS) recovers the
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product configuration p if p̃(rcut) is used as the initial guess. Similarly, s̃(rcut) is used as
the initial guess for finding the global saddle point.

Platinum ad-atom – exchange process The first global transition that is investigated is the
exchange process of a platinum ad-atom as explained in 5.1.1. In this experiment, a single
platinum ad-atom is placed on a 111Å × 111Å [001] platinum surface.

0 20 40 60 80

10−7

10−5

10−3

10−1

101

Cutoff radius rcut in Å

Å

p − p̃(rcut)

Fs − s̃(rcut)


F(p − r)F(S(rcut),r)


F

Figure 5.3: Platinum ad-atom: difference in local and global solutions.

Figure 5.3 shows three different curves. The first one shows the difference in the coordinates
(‖(p − r)F(S(rcut),r)

‖F ) between the global reactant state r and the global product state p, limited
to the particles that are kept fixed for some given cutoff radius rcut. The other two represent the
difference between the global product/saddle configurations and their localised approximations
(‖p − p̃(rcut)‖F , ‖s − s̃(rcut)‖F ).

In the figure, it is shown that the localised product states converge towards the global product
state in a very similar manner as the difference in the fixed coordinates. This is in agreement
with the Lipschitz bound on the error that was presented in section 4.1. At around rcut = 2.8Å,
a large drop in all three curves is visible. This does not come as a surprise, as the distance
between neighbouring platinum atoms is about 2.8Å. Therefore, using a smaller cutoff radius
in the localisation will keep all particles except the ad-atom fixed, which of course prohibits the
exchange mechanism. The grey area in figure 5.3 denotes all cutoff radii, such that using p̃(rcut)

as the initial guess in the optimiser recovers p. As shown, this is the case for all cutoff radii
larger than 2.8Å.
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Amorphous silicon The next test is conducted on the amorphous silicon example in subsection
5.1.2 where five additional hydrogen atoms have been added at random positions. Due to the
amorphous structure, no predominant transitionmechanism exists, but a high number of different
mechanisms with similar importance. Therefore, the AKMC algorithm in QuantumATK is
used to simulate the amorphous system over 10 KMC steps. All global transitions that are
encountered in this simulation are stored and each of them is analysed as before. Figure 5.4
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(a) Necessary cutoffs to recover the products.
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(b) Necessary cutoffs to recover the saddles.

Figure 5.4: Cutoff study for the amorphous silicon problem.

shows for each transition the cutoff radii that are required to recover the transition products and
saddles. It can be observed, that no obvious relation between the size of the energy barrier and
the necessary cutoff seems to exist. Furthermore, most transitions require a cutoff radius that is
well below 8Å, suggesting that they can be localised.

Grain boundary To analyse the localisability of the grain boundary problem in 5.1.3, the
same approach as for the amorphous silicon problem is used. By analysing all encountered
global transitions, the necessary cutoffs for all these transitions were determined and can be
found in figure 5.5. Many transitions require rather large cutoffs in order to be properly captured.
This is not only visible in figure 5.5 but can also be verified by looking at the actual global
transitions, which can affect a large number of particles that are not necessarily close to each
other.
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Figure 5.5: Cutoff study for the grain boundary problem.

5.3 Comparing atomic neighbourhoods

One of the central contributions of this thesis is the new algorithm 2 that can be used to test
neighbourhoods N and Ñ for similarity. This algorithm is now compared to other similar
algorithms to evaluate its accuracy and performance. To test whether invariance under both
orthogonal transformations and permutations is really necessary, a number of additional tests
are conducted in subsection 5.3.5.
As reference algorithms Go-ICP [76] and Go-Permdist [69] were chosen. The reason for

that choice is that both algorithms are exact and deterministic and could thus be used for
the comparison routine in the LKMC database. Another important reason is that optimised
reference implementations are available. Whereas Go-ICP originates from computer vision,
Go-Permdist was designed to align particle system. Both algorithms are branch-and-bound
based and are able to calculate the invariant RMSD dfull

(N, Ñ) up to some tolerance δ if
the optimal orthogonal transformation is a rotation matrix (i.e. has determinant 1). For both
Go-ICP and Go-Permdist the implementation of the authors [95, 96] is used with the following
modifications:

• Both algorithms calculate an invariant RMSD that is invariant not only under permutations
and rotations but also under translations. As neighbourhoods have a fixed centre, no
translational invariance is needed. Therefore, the calculation of the optimal translation in
both algorithms was disabled.

• The two codes were modified such that the calculation stops as soon as the lower bound
in the branch-and-bound part of the algorithms becomes larger than the comparison
tolerance ε . The rationale behind this was that if dfull

(N, Ñ) > ε , the actual value of
dfull
(N, Ñ) is of no interest, only the fact that the two neighbourhoods are not similar.
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Thus it is sufficient to stop the branch-and-bound parts as soon as it is established that
dfull
(N, Ñ) > ε .

• As a stopping criterion for the branch-and-bound parts of these algorithms δ = 1 × 10−2 Å
was used, i.e. the algorithms were stopped as soon as the difference between lower bound
for dfull

(N, Ñ) and the corresponding upper bound became smaller than δ.

• During the calculations it became apparent that the Go-Permdist algorithm sometimes
calculated wrong results. The cause of this problem turned out to be the lower bound
that is used in Go-Permdist [69, equation 19], which is not correct in all cases. Thus I
replaced the faulty lower bound by a corrected version (see appendix A.1 for a detailed
explanation).

A number of test datasets are also needed to evaluate the algorithms. The following datasets
were used:

Silicon dataset This datasetwas created using the collection of silicon configurations in [97,98].
Each configuration was decomposed into atomic neighbourhoods using the cutoff radius
6Å. Out of these neighbourhoods, one million neighbourhood pairs (Ni, Ñi) were
randomly chosen such that Ni and Ñi have the same number of particles.

Amorphous dataset Using the AKMC algorithm in QuantumATK, the initial amorphous
silicon system in subsection 5.1.2 without any hydrogen atoms was simulated over
ten KMC steps1. The ten different configurations that were encountered during this
simulation were decomposed into neighbourhoods, using 6Å as the cutoff radius. As in
the silicon dataset, one million random neighbourhood pairs (Ni, Ñi) that have the same
number of particles were chosen.

Diamond dataset For different cutoff radii r , the atomic neighbourhood N (r) = (q(r), e(r)) of a
particle in a perfect diamond crystal was calculated2. Using the coordinates and elements
of this neighbourhood, 1000 neighbourhood pairs (N (r)i , Ñ (r)i ) were created using the
formula

N (r)i = (R
(i)q(r)

π(i)
, e(r)
π(i)
) (5.1)

Ñ (r)i = (R̃
(i)q(r)

π̃(i)
+

τ(i)τ(i)
F

ρ(i), ẽ(r)
π̃(i)
). (5.2)

1 As Go-ICP cannot deal with different elements, only systems where all particles have the same element were
tested here.

2 All particles in a perfect diamond crystal have the same neighbourhood, therefore the choice of the particle does
not matter.
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R(i) and R̃(i) are random 3 × 3 rotation matrices whereas π(i) and π̃(i) are random
permutations. Additional noise was added in the form of τ(i) which is distributed
according to the multivariate normal distribution. An additional factor ρ(i), drawn from
the exponential distribution with parameter λ = 3, was added such that the magnitude
of the noise

τ(i)/‖τ(i)‖F ρ(i)
F
is exponentially distributed and thus covers cases where

N (r)i and Ñ (r)i are very similar (ρ(i) small) and where they are not (ρ(i) large).

Sphere dataset The last dataset was specifically designed to be as challenging for algorithm
2 as possible. For different numbers of particles n, the algorithm in [99] was used to
distribute n − 1 points in an almost uniform manner on the surface of the unit sphere.
An additional point with coordinates (0, 0, 0) was also added. The resulting points were
then scaled such that the minimum distance between two particles was 2Å. Using these
scaled coordinates q(n) and n equal elements e(n)1 = e(n)2 = · · · = e(n)n , 100 neighbourhood
pairs (N (n)i , Ñ (n)i ) were built using the same approach as in equation (5.1) but without any
noise.

The challenge of this dataset is the high order of symmetry of the particles and the
additional problem that all particles (except for the central particle) have exactly the same
distance to the origin.

5.3.1 Accuracy

As a first step, the correctness of the algorithm 2 had to be verified. For small neighbourhoods
N and Ñ the exact value dfull

(N, Ñ) can be calculated by an exhaustive search over all possible
permutations. The corresponding optimal orthogonal transformations can then be obtained
by the Kabsch algorithm. This brute-force approach was used to exactly calculate dfull for
all neighbourhood pairs in the datasets with less than nine particles. Using these brute-force
results as references, it could be verified that algorithm 2 calculates the same results on these
neighbourhood pairs.

Whenever the neighbourhoods contain more than a few particles, it is no longer possible to
calculate dfull by a brute-force search. Instead, algorithm 2 was tested against the results of
the Go-ICP and Go-Permdist algorithms. Using the silicon dataset, algorithm 2 was in some
cases able to find lower dfull values than Go-ICP and Go-Permdist. This was expected, as
algorithm 2 minimises over all orthogonal transformations, while Go-ICP and Go-Permdist
minimise only over all rotations (orthogonal matrices with determinant 1). Thus, algorithm 2
can find better dfull values if the optimal orthogonal matrix in the calculation of dfull is not a
rotation matrix. On the other datasets, all three algorithms produced the same results, up to the
specified tolerance (1 × 10−2Å) that was used as the stopping criterion for both Go-ICP and
Go-Permdist.
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5.3.2 Performance evaluation

The next step was to investigate the performance of the algorithms in terms of the computational
time that is needed to compare two atomic neighbourhoods. To do this, the three algorithms
were used to compare all neighbourhood pairs in the datasets. All calculations were run in serial
on an Intel Xeon Gold 5118 processor and the tolerance ε was set to 0.2Å unless specified
otherwise.
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Figure 5.6: Distribution of the wall times in the silicon dataset.

The first dataset under investigation is the silicon dataset. Figure 5.6 shows how the runtimes
are distributed for the three different algorithms. The lines in this box plot show (starting from
below) the 0% (minimum), 25%, 50% (median), 75% and 100% (maximum) percentile of the
wall times. The average runtime is represented by the single dot. On average, algorithm 2 is
about four times faster than Go-Permdist and ten times faster than Go-ICP. Interestingly, Go-ICP
and Go-Permdist show a much larger variation in the runtimes than algorithm 2. Additional
investigations showed that all three algorithms are slowest, when the neighbourhoods under
investigation are very symmetric, for example when they are the neighbourhood of a particle in
a perfect crystal. On the other hand, all algorithms performed best, when the neighbourhoods
had low orders of symmetry, as shown in figure 5.7.
This behaviour can easily be explained. As Go-ICP and Go-Permdist search the space of

all possible rotations using a branch-and-bound approach, large parts of the rotation space
can immediately be excluded if the systems under investigation display almost no rotational
symmetry. Algorithm 2 also benefits from low-symmetry systems as this limits the number of
index combinations of length three that have to be tested.

Applying the three algorithms to the amorphous dataset yields results that are very similar to
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(a) Low-symmetry neighbourhood that was involved
in the fastest Go-Permdist calculation.

(b) High-symmetry neighbourhood that was involved
in the slowest Go-Permdist calculation.

Figure 5.7: Extreme neighbourhoods in the silicon dataset.
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Figure 5.8: Distribution of the wall times in the amorphous dataset.

the results from the silicon dataset (see figure 5.8). Algorithm 2 is once again faster on average
than Go-ICP and Go-Permdist. As before, Go-Permdist shows a huge variation in its runtimes,
spanning several orders of magnitude.

The next dataset to be investigated is the diamond dataset. At this point only the neighbour-
hoods with cutoff radius r = 6Å were used. As all neighbourhoods in it were calculated using
a perfect diamond crystal, and thus highly symmetric, poor performance was expected. From
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the results in figure 5.9, several observations can be made. To begin with, the new algorithm 2
is on average faster than both Go-ICP and Go-Permdist, this time by a larger margin. Compared
to algorithm 2, Go-ICP needs about 50 times as much time on average, for Go-Permdist this
figure rises to 500.
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Figure 5.9: Distribution of the wall times in the diamond dataset (r = 6Å).
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Figure 5.10: Relation between dfull and the runtimes for the diamond data set.

Once again, a large spread in the runtimes is visible. By looking at all neighbourhood
pairs (Ni, Ñi) and studying the relation between dfull

(Ni, Ñi) and the runtimes, some patterns
emerge (see figure 5.10). Algorithm 2 needs approximately the same time for all pairs (Ni, Ñi)

that fulfil dfull
(Ni, Ñi) ≤ ε . If dfull

(Ni, Ñi) > ε , the algorithm may be much faster as a lot of
possible permutations may be excluded. Go-ICP tends to be fastest if dfull

(Ni, Ñi) is low and if
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the optimal orthogonal transformation is close to the identity matrix. Go-Permdist seems to
combine the properties of the two other algorithms.
It is worth pointing out that the results from the diamond dataset are extremely important

for LKMC. Being able to compare neighbourhoods in a crystal in reasonable time is a basic
requirement whenever LKMC is applied to a crystalline system, as in the ad-atom example in
subsection 5.1.1. If a single comparison takes more than 10 seconds, as it does when using
Go-Permdist, LKMC can probably never be used efficiently.
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Figure 5.11: Distribution of the wall times in the sphere dataset (n = 128).

Finally, the neighbourhood pairs in the sphere dataset were compared, using only the
neighbourhoods that contained 128 particles. As figure 5.11 shows, the results are qualitatively
similar to the results from the diamond dataset. It is worth pointing out that although the
neighbourhoods in the used sphere dataset (128 particles per neighbourhood) are smaller that
the neighbourhoods in the diamond dataset (159 particles for r = 6Å), the runtimes are higher
on average for all the algorithms. This observation is explained in more detail in the subsequent
scaling investigation.

5.3.3 Scaling with respect to n

In the previous section, the algorithms were compared only for fixed numbers of particles. How
the algorithms scale with growing numbers of particles is investigated now. The first test was
conducted on the diamond dataset. By choosing different cutoff radii r it is possible to generate
neighbourhoods of different sizes. The worst-case runtimes for this dataset are shown in figure
5.12.
Somewhat unexpectedly, the runtimes of algorithm 2 seem to scale quadratically with the

number of particles in the atomic neighbourhoods. This behaviour can be explained, however.
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Figure 5.12: Worst-case wall times for the diamond example.

Due to the construction of the neighbourhoods, the particles in a neighbourhood lie on different
shells around the central particle3. This shell-structure allows algorithm 2 to exclude a number
of possible permutations as only particles with similar distance to the central particle may
be matched. The Go-ICP algorithm seems to scale better than algorithm 2 but is still much
slower. It should also be noted that the speed of Go-ICP (and Go-Permdist) depends not only
on the number of particles but also on the tolerance δ in the stopping criterion. If this tolerance
is lowered, the computational cost of Go-ICP increases considerably. Due to the high cost
of the Go-Permdist algorithm, no results were calculated for neighbourhood pairs with more
than 2000 particles. In figure 5.12 a relatively moderate increase in the worst-case wall time
of algorithm 2 can be observed for low numbers of particles. This is most likely caused by
the internals of the used QuantumATK software package (like license checks) which make
comparisons of small neighbourhoods more expensive as they should be.

Next were the tests on the sphere dataset. In this dataset, all particles in the neighbourhoods
(except for the central particle) lie on a sphere with some radius, thus only a single shell exists.
Therefore, as expected, algorithm 2 shows the cubic scaling with the number of particles that
was predicted in the complexity analysis (see figure 5.13). Here, Go-ICP shows similar scaling
as algorithm 2 but is consistently slower by a factor of about 100.

3 One could analyse this further by looking at the radial distribution function of an atom in a diamond crystal.
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Figure 5.13: Worst-case wall times for the sphere example.

5.3.4 Scaling with respect to ε

Another important question is how the performance of the three algorithms varies with the
tolerance ε . Algorithm 2 in its basic form supports only relatively small ε values, limited by
the minimal particle distance. To test a wider range of ε-values, algorithm 2 was modified such
that the calculation of π̄ in theorem 6 degenerates to a brute-force permutation search if the
optimal permutation is no longer given by a nearest-neighbour search.
Figure 5.14 shows the corresponding average wall times for the silicon example4. The cost

of Go-ICP grows only slowly with increasing ε , while Go-Permdist becomes much more costly
with larger ε . Algorithm 2 shows a moderate dependency on ε .

The results for the 128-particle sphere example in figure 5.15 are more interesting. The wall
times for Go-ICP and Go-Permdist do not change with ε at all, while algorithm 2 becomes
continuously more expensive – though for ε = 0.5Å it is still cheaper than Go-ICP and
Go-Permdist. It was previously shown in figure 5.10 that Go-ICP and Go-Permdist can be fast
if the actual distance between two neighbourhoods is very small. As the sphere dataset contains
only neighbourhood pairs that are exactly equal (up to rotations and permutations), dfull is
always zero here. To verify that the runtimes depend on the actual value dfull, the diamond
dataset was also used, where noise was added to the neighbourhoods. As suspected, the cost of
Go-ICP and Go-Permdist once again rises with the tolerance ε (see figure 5.16). For small ε ,
algorithm 2 behaves in a similar way as in the initial test on the silicon dataset. However, its
4 As the tests that were performed here are relatively cheap, the obtained worst-case wall times were heavily
affected by “background noise” caused by the operating system or the used hardware. Thus, the average wall
times are used here that were much more robust.
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Figure 5.14: Average wall times for the silicon example.

0 0.1 0.2 0.3 0.4 0.5

10−1

100

101

Tolerance ε

Av
er
ag
e
w
al
lt
im

e
in

s

(Modified) Algorithm 2
Go-ICP

Go-Permdist

Figure 5.15: Average wall times for the 128-particle sphere example.

cost rises rapidly for ε > 0.4Å. The reason for this behaviour is that at this point ε becomes
too large compared to the minimal particle distance µ that is used in algorithm 2. Therefore,
the modified algorithm has to fall back to a (partial) brute-force search at this point which is
much more computationally expensive.
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Figure 5.16: Average wall times for the diamond example (r = 6Å).

5.3.5 Testing different invariances

One of the fundamental properties of the new comparison function is its invariance under both
permutations and orthogonal transformations. It remains to be shown that both invariances are
indeed necessary. To do this, the following test procedure is applied to all example problems in
5.1.

First, the AKMC algorithm in QuantumATK is used to calculate a number of KMC steps for
each problem, thus generating a sequence of states (states that occurred previously are ignored).
Then for each step, all the atomic neighbourhoods in the corresponding state are calculated and
the number of new neighbourhoods is determined.

This procedure is used for different comparison functions. Besides the fully invariant RMSD
dfull, the permutation invariant RMSD dperm in equation (4.8) is used as well as dorth (equation
(4.7)) that is invariant under orthogonal transformations. The tolerance ε was set to 0.3Å and
the radius of the atomic neighbourhoods to 6Å. Additionally, the nauty-based comparison
approach that is used in k-ART is tested, using the same neighbourhood size as the RMSD-based
measures and the radius 3Å when building the adjacency graph.

Platinum ad-atom The first test uses the ad-atom example that was presented in 5.1.1. On a
55.5Å×55.5Å [001] platinum surface, five ad-atoms were randomly placed and their evolution
was simulated using the AKMC algorithm. Figure 5.17 shows the cumulative number of atomic
neighbourhoods that were encountered during the AKMC simulation. Using dfull to compare
atomic neighbourhoods yields similar results as using nauty. In the first KMC step, about 10
different neighbourhoods are found and almost no new neighbourhoods are encountered in
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Figure 5.17: Ad-atom movement: number of new atomic environments in each KMC step.

the next 20 KMC steps. At this point, two ad-atoms have become so close that they start to
interact and eventually form an ad-atom cluster. Therefore a number of new neighbourhoods
are observed. As soon as the cluster formation has finished, the number of encountered
neighbourhoods stays almost constant. Only a few new neighbourhoods are found as some of
the ad-atoms may get close to the two-atom cluster and move away again.
The permutation invariant comparison function dperm behaves qualitatively the same: as

soon as the transition mechanisms of the isolated ad-atoms have been learned, almost no new
neighbourhoods are encountered until the ad-atoms start to form clusters. Compared to dfull,
the number of encountered neighbourhoods is almost ten times higher. Using only invariance
under orthogonal transformations (dorth) does not seem sufficient in this case. The number of
encountered neighbourhoods grows in every KMC step, even if no new transition mechanisms
occur.

Amorphous silicon Next in line is the amorphous silicon case from subsection 5.1.2 with
five added hydrogen atoms. As shown in figure 5.18 there is almost no difference in the
number of encountered neighbourhoods when comparing the three RMSD-based methods.
This is not entirely unexpected, as the atomic neighbourhoods in the amorphous system do not
show any obvious symmetries that can be exploited. Therefore, using dfull instead of a simple
comparison function like dperm or dorth would most likely not be advantageous unless some
parts of the amorphous system start to crystallise over a long KMC simulation. Using nauty, a
somewhat lower number of atomic neighbourhoods is encountered. However, by analysing
the neighbourhoods that nauty determined as equal it became apparent that the reason for
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Figure 5.18: Amorphous silicon problem: number of new atomic environments in each KMC step.

this behaviour is that nauty produces false positives. One example is shown in figure 5.19
where the nauty-based approach does not capture the difference in the position of the hydrogen
atom (marked blue). Some of the neighbourhoods that nauty determined to be similar showed
differences in the coordinates of a single particle that were larger than 1Å. This is far too high,
given that only three proper transitions were encountered were a particle moves by more than
1Å (see figure 5.20).

Figure 5.19: Two neighbourhoods that the nauty-based comparison determines to be almost equal.
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Figure 5.20: Amorphous silicon problem: distribution of maximal particle movement during a transition.

Nickel grain boundary The grain boundary problem in 5.1.3 combines the properties of
crystalline and amorphous systems. While a large part of the initial system is perfectly
crystalline, the interface between the two crystals has amorphous properties. This is reflected
in the number of neighbourhoods that are encountered during a KMC simulation. Using the
fully invariant RMSD offers some benefits compared to dperm or dorth though the difference is
not as large as in the ad-atom case (see figure 5.21). As for the amorphous problem, nauty once
again produces false positives, which also explains the somewhat lower number of encountered
neighbourhoods, compared to dfull.
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Figure 5.21: Grain boundary problem: number of new atomic environments in each KMC step.

5.4 LKMC

Now it is time to test the LKMC algorithm itself. Two important properties are analysed: its
performance as measured by the wall time required to calculate a given number of KMC steps,
as well as its accuracy.
One important observation is that the transition searches in LKMC (and AKMC) are not

deterministic as they are based on high-temperature Langevin trajectories. Additionally, the
used stopping criterion (see subsection 4.7.2) estimates only the likelihood that all transitions
were found. Thus, applying LKMC or AKMC to the same problem several times usually yields
different results. Therefore, unless stated otherwise, median values for the wall times and for
the accuracy are reported.
Measuring the accuracy is a complex task. For some simple toy problems, AKMC/LKMC

may be able to recover the whole underlying Markov Jump Process. If more complex problems
are used, this is often not the case as some transitions may be missed by the transition search
procedure. Then the next question is which parts of the MJP are important? Many transitions
with low transition rates may be unimportant. Others, however may be crucial as they can be the
sole link to other parts of the MJP. The importance of transitions can also differ, depending on
the length of a simulation. Consider the MJP in figure 5.22 where the thickness of the arrows
corresponds to the transition rates. If an on-the-fly KMC simulation starts in state 0 and does
not find the transition from 0 to 2, the short-term behaviour of the MJP is severely altered. In
the long term, however, this does not matter much as the system will eventually switch between

82



5.4 LKMC

the states 5 and 6 most of the time, irrespective of the original path from state 0 to 5.

(a) Complete MJP (b) MJP with one missing transition

Figure 5.22: Example: MJP with missing transitions.

No solution to this accuracy dilemma is given here. Instead, the accuracy definition from [41]
is used. In this work, the total escape rates Ki are used as a proxy for the accuracy. These
rates determine the average time that a system spends in a state of the underlying MJP and are
therefore important for the simulation of the dynamics. To investigate the accuracy, a short
AKMC simulation was run for each test problem in order to calculate a sequence of states
σ1, . . . , σm (duplicates were dropped). An excessive number of global transition searches were
then applied to each such state σi in order to find as many transitions from this state as possible.
These transitions were then used to calculate the reference total escape rate Kreference

i from state
σi.
Afterwards, the transition search functionality in AKMC and LKMC was applied to each

state, yielding the wall times, the approximated total escape rates KAKMC
i and KLKMC

i , and the
corresponding relative error

|KAKMC/LKMC
i − Kreference

i |

Kreference
i

.

The total transition rates KAKMC/LKMC
i were calculated multiple times in order to calculate

statistical averages like the median relative error.

5.4.1 Platinum ad-atom

As in the previous experiments, a 55.5Å × 55.5Å [001] platinum surface with five randomly
placed ad-atoms was simulated at 300K. The full list of used parameters can be found in the
appendix (A.1). Accuracy-wise, neither AKMC nor LKMC had problems with this problem.
No matter which algorithm (or cutoff radius) is chosen, the median error in the escape rate is
always less than 0.1%.
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One interesting observation points to problems with the used HTST rate theory and/or the
used potential. Usually, the energy barrier of a particle hopping on the platinum surface is
about 0.93 eV but there seems to be another (much longer and probably unphysical) reaction
path that has a lower energy barrier of 0.82 eV. This longer path is sometimes found by the
AKMC algorithm and also by the EON software [100, 101] which is a related on-the-fly KMC
implementation.
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Figure 5.23: Ad-atom problem: median wall times.

The wall time plot in figure 5.23 is also interesting. As expected, AKMC needs about the
same time for every KMC step as it has to recalculate the transitions in every step. LKMC
with low cutoff radii (4Å and 6Å) also works as expected. In the first KMC step, a lot of
computational time is needed to determine all possible local transition mechanisms. Afterwards,
these mechanisms are simply recycled, leading to much lower wall times per step. At some point
(around step 15), some ad-atoms begin to approach each other, causing new local structures
which requires LKMC to run new local transition searches. As soon as these new transition
mechanisms have been learned, the required wall time per step returns to its former lower level.

A big outlier is the LKMC algorithm with a neighbourhood cutoff of 8Å. While it produces
the same results in term of accuracy as the other variants, it is much slower and may need up to
12,000 seconds per KMC step (not visible in the plots). This big drop in performance can be
explained by looking at how local transition searches are set up. In section 4.1 it was shown
that under certain circumstances, local transition searches can approximate global transitions
quite accurately. However, local transition searches may also find transitions that do not occur
in the global case. In this example, problems occur when one ad-atom is close to the centre of
an atomic neighbourhood while another is close to its edge. The ad-atom close to the edge
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of the atomic neighbourhood may then behave in an unphysical way as the particles outside
the atomic neighbourhood are constrained. Therefore, LKMC calculates a vast number of
unnecessary local transitions and also unsuccessfully tries to apply them to the global system,
causing a huge waste of computational time. This behaviour could be avoided by checking if a
local transition also works in the global context. This feature has not yet been implemented, as
this would require larger changes to the used transition search mechanism in QuantumATK.

The ad-atom problem is also a prime example to show the advantages of (general) on-the-fly
KMC algorithms. The first 25 KMC steps of the reference calculation alone, cover a time
interval of about 35 µs. Reaching a similar timescale by discretising the Langevin equations
would require 3.5 × 1010 timesteps (using a timestep length of 1 fs).

5.4.2 Hydrogen diffusion in amorphous silicon

The same kind of analysis was also applied to the hydrogen diffusion problem. Here, the
movement of five hydrogen atoms in the 4096-particle amorphous silicon system was simulated
at 300K (other parameters in appendix A.2). In this example, the first 25 KMC timesteps cover
about 0.6 ns, though the time that is covered per KMC step increases as the system settles.
Looking at the wall times in figure 5.24, the results look sobering. There is no clear speed
advantage, neither for LKMC nor for AKMC. On a closer look, however, the three tested LKMC
variants show a downward trend in the wall time that is required for finding the transitions.
This is an effect of the increasing number of stored local transition data in the LKMC database,
which lowers the number of necessary transition searches.
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Figure 5.24: Amorphous silicon problem: median wall times.

The accuracy results look promising: in the first few steps (see figure 5.25), the error in the
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escape rates is approximately the same for all compared methods. This was to be expected as
LKMC essentially degenerates to AKMC if no local transition information is available. After
a few steps, however, the median escape rate error of the LKMC algorithm becomes much
lower than the corresponding value for the AKMC algorithm, which may miss up to 40% of
the total transition rate. As investigated earlier (see figure 5.4), cutoff values of at least 6Å
are required to accurately capture most of the transitions. For rcut = 8Å, two states (20 and
24) show abnormally high relative errors. In both states, one transition with a high transition
rate exists that is not always found by the LKMC algorithm with cutoff 8Å. As median values
for the relative error are reported, the error is large for these two states5. The reason for this
behaviour could not be identified with certainty. Most likely, the used saddle search algorithm in
QuantumATK is very sensitive with respect to its initial guess. As the initial guess is extracted
from a (non-deterministic) high-temperature Langevin trajectory, the corresponding saddle
searches may succeed or fail in a seemingly random fashion.

Compared to the AKMC results, the errors that are obtained with the LKMC algorithm show
a slight downwards trend with respect to the KMC steps. This could be an indication that the
approach to learn local transitions actually shows its benefits. It would definitely be interesting
to investigate the behaviour of these curves for an even larger number of KMC steps. Due to
the extremely high cost of calculating reference values for the total escape rates, this would
however need a prohibitive amount of computational power.
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Figure 5.25: Amorphous silicon problem: relative errors in the total escape rates.

5 The important transition in state 20 is found in about 40% of the runs.
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5.4.3 Nickel grain boundary

For the grain boundary problem, a temperature of 500K was used as well as the parameters in
table A.3. The previous analysis of the localisability in figure 5.5 predicts that relatively large
cutoff radii are needed to capture all transitions.
This prediction seems to be true, as shown in figure 5.26. If small cutoff values (< 8Å)

are used, the LKMC algorithm misses many transitions, leading to relative errors in the total
escape rates that can be close to 100%. If larger cutoffs are used, LKMC behaves similar to
AKMC, yielding almost the same escape rate errors.
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Figure 5.26: Grain boundary problem: relative errors in the total escape rates.

Speed-wise, LKMC is only distinctly faster than AKMC when using a low cutoff of 4Å (see
figure 5.27). As its accuracy is abysmal in this case, this is unfortunately of no use. Using
larger cutoffs, LKMC is not faster than AKMC but much slower. This performance penalty
is caused by a number of factors: as in the ad-atom case, the local transition searches find a
number of local transitions that cannot be applied to the global system. Furthermore, the cost
of neighbourhood comparisons rises with the cutoff radii, as well as the number of distinct
neighbourhoods.
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Figure 5.27: Grain boundary problem: median wall times.
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CHAPTER 6

Conclusions

The main goal of this thesis was to modify the k-ART algorithm such that it can be applied to
amorphous systems. The key component to achieve this is the new algorithm 2 that compares
particle systems using an invariant RMSD. Unlike other algorithms that calculate the invariant
RMSD exactly, it is fast enough to compare a large number of systems in reasonable time.
This makes it possible to build databases that can be used to query for particle systems and
corresponding data, even if they have been affected by orthogonal transformations and index
permutations. Here, this was used to store atomic neighbourhoods and corresponding local
transition mechanisms but several other applications are possible. Instead of building a local
transition database, results from expensive QM calculations could be stored in a database and
reused, when necessary. To my knowledge, no other database has been proposed, that can query
for molecules or atomic neighbourhoods in such an invariant way, calculate the corresponding
globally optimal transformations, and that does not suffer from extremely long query times.
The invariant comparison procedure could also be used for the analysis of local structures

in molecules and crystals in order to identify similar regions in a particle system or simply to
classify different local structures. Another possible application is machine learning. Many
machine learning algorithms that try to learn properties of particle systems have to determine
the degree of similarity between two particle systems (see for example [67]). Using the invariant
RMSD in such a setting would be interesting, though it is not clear whether algorithm 2 is fast
enough for such applications.
While algorithm 2 was faster than the reference algorithms Go-ICP and Go-Permdist

in the evaluation, it has a much more limited scope than these other two algorithms. By
design, it can only test for similarity when the comparison tolerance ε is small and cannot
be applied if this is not the case. Still, this seems to be sufficient to use it in database applications.

Using the invariant RMSD for comparison in the LKMC algorithm offers advantages over
both k-ART and classical on-the-fly KMC algorithms. Replacing the graph based comparison
in k-ART by this new approach does away with two of k-ART’s major problems: it eliminates
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the possibility of false positives when comparing (amorphous) neighbourhoods and makes
it possible to map local transitions from one neighbourhood to another without resorting to
heuristic approaches. Compared to the reference on-the-fly KMC algorithm, it can provide
better accuracy and/or performance by recycling known local transitions. If the simulated
system is amorphous and stays amorphous during the whole simulation, using the fully invariant
RMSD does not seem to be necessary. In this case it may be sufficient to drop one of the
invariances and work with a simpler version of it. However, if some parts of an amorphous
system start to crystallise, dropping the invariance may cause a substantial performance penalty,
as the local transitions in the crystalline parts may not be reused.

As expected, the usefulness of LKMC (as well of k-ART) rises or falls with the localisability
of the underlying problem. This was very much visible in the grain boundary problem where
badly localised transitions caused LKMC to produce inaccurate results. However, this does
not mean that LKMC is in general unsuited for such grain boundary problems. While all used
problems were not simple toy problems, they were also not truly realistic. Setting up a truly
realistic simulation is a difficult problem on its own, as it requires finding (or creating) a suitable
potential energy function as well as an initial condition for the particle positions. Thus, the
used grain boundary problem is not representative for all grain boundary simulations.

Some unsolved problems remain. It was always assumed here, that the used HTST rate theory
is sufficiently accurate. In the ad-atom example problem, however, more than one reaction path
between two states was found which violates the assumptions in HTST and therefore puts its
validity into question. Furthermore, it has not been established that HTST can be applied to
amorphous systems at all.

One major issue that LKMC cannot solve in its current form, is that the time that is covered
by a single KMC step usually declines when the particle system under investigation becomes
more complex. This was an issue when I tried to simulate the deposition of silicon atoms on
a silicon surface as stated in the introduction. As more and more particles were deposited
onto the surface, the number of possible transitions grew and the average time per KMC step
declined. While LKMC was faster than the reference on-the-fly KMC algorithm in this case, it
was not any faster than a plain Langevin simulation, as soon as a certain number of particles
had been deposited onto the surface. Thus, it would be interesting to see whether LKMC
could be extended to solve this problem. One idea would be to use the LKMC database to
find neighbourhoods in a particle system that do not allow local transitions. If these “inert”
neighbourhoods separate the system into subregions, decoupled LKMC simulations could be
run in these subregions.
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APPENDIX A

Appendix

A.1 Fixing Go-Permdist

The Go-Permdist algorithm in [69] applies a branch-and-bound approach to the space of all
rotations. In this algorithm, rotations are represented by a vector r ∈ [−π, π]3 where ‖r ‖2
denotes the rotation angle and r/‖r ‖2 the rotation axis.
The Go-Permdist algorithm [69] tries to determine d f ull by decomposing the space of all

rotations into rotation cubes C(v, θB) = {r ∈ [−π, π]
3 : ‖r − v‖∞ ≤ θB}. Each vector r in a

rotation cube represents a rotation of angle ‖r ‖2 around the rotation axis r/‖r ‖2. For simplicity
r(x) is used to denote a vector x that has been rotated by r . In order to work, the Go-Permdist
algorithm needs a lower bound LB(v, θB) that depends only on v and θB such that

LB(v, θB) ≤ cos(∠(v(x), r(x))), ∀r ∈ C(v, θB), x ∈ R3.

In equation 19 of the cited paper such a lower bound is derived that unfortunately does
not hold true in all cases. As a simple counter example v = (−0.25π, 0.25π, 0.25π), r =
(−0.48π, 0.02π, 0), x = (0.12π,−0.14π, 0) and θB = 0.5π can be chosen. Fortunately, the
problem seems to be just a missing factor

√
3. By adding it to equation 19 in the original paper

the following corrected lower bound was obtained:

LB(v, θB) = cos
(
min

[
π,
√

3
θB
2

] )
.

A.2 Simulation parameters

This section lists the parameters that were used during the evaluation in chapter 5.
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AKMC and LKMC
CPU-Cores 32 (Intel Xeon Gold 6130)
KMC temperature 300K
Saddle search temperature 2 000K
Confidence 0.99
Harmonic prefactor Fixed value of 1 × 1013 Hz
LKMC
Interaction radius rinteract 6Å

Table A.1: AKMC/LKMC parameters for the ad-atom simulation in subsection 5.4.1.

AKMC and LKMC
CPU-Cores 32 (Intel Xeon Gold 6130)
KMC temperature 300K
Saddle search temperature 1 200K
Confidence 0.99
Harmonic prefactor Fixed value of 1 × 1013 Hz
LKMC
Interaction radius rinteract 6Å

Table A.2: AKMC/LKMC parameters for the hydrogen diffusion in amorphous silicon in subsection 5.4.2.

AKMC and LKMC
CPU-Cores 32 (Intel Xeon Gold 6130)
KMC temperature 500K
Saddle search temperature 1 500K
Confidence 0.99
Harmonic prefactor Fixed value of 1 × 1013 Hz
LKMC
Interaction radius rinteract 6Å

Table A.3: AKMC/LKMC parameters for the grain boundary simulation in subsection 5.4.3.
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