
Approximate Inference Applications to
Representation Learning and Stochastic Processes

Problems

Dissertation
zur Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
César Ali Ojeda Marin

aus
Lechería, Venezuela

Bonn, 2021

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

Promotionskommission:

• Erstgutachter: Prof. Dr. Christian Bauckhage

• Zweitgutachter: Prof. Dr. Stefan Wrobel

• Fachnahes Mitglied: Prof. Dr. Manfred Opper

• Fachfremdes Mitglied: Prof. Dr. Cyrill Stachniss

Tag der Promotion: 19. Januar 2021
Erscheinungsjahr: 2021

iii

Summary

The present dissertation dwells in the development of inference algorithms and methodologies for
the study of dynamical datasets. We developed techniques to analyze time-series datasets for point
processes, switching dynamical systems, and queues systems dynamics. Furthermore, we developed
analysis in the interplay of dynamic population behavior and how semantic structures inform this
behavior. Conversely, we studied how dynamics in semantic spaces can be exploited to explain
black-box classifiers’ decisions. Concretely, we extended the Hawkes process incorporating richer
correlations in the excitations via introducing a sigmoid link function over a Gaussian process
prior. We incorporate a Polya Gamma data augmentation approach and a sparse Gaussian process
approximation into a mean field treatment of the variational lower bound to perform inference
with analytic updates, obtaining a fast and scalable algorithm. Second, we introduce a flexible
methodology for handling temporal Poisson process intensities based on spline interpolation for
fast and scalable unsupervised analysis of point processes. We then propose a similarity measure
for time series that is invariant to translations of local patterns. With this similarity measure,
we develop a spectral clustering algorithm with a flexible, piecewise kernel evaluation for efficient
computation, scaling to a large amount of data. The clustering procedure incorporates an entropy
measure to determine how well a certain (intensity) time series is represented by a cluster prototype,
allowing for the detection of outliers within a temporal pattern sample. Thirdly, we provide a
deep learning solution for service times of queue systems; we exploit the representation learning
capabilities of deep neural networks for point processes to infer service time distributions modeled
as both, multilayered parametrizations of known distributions or nonparametric models through
adversarial neural networks. The adversarial models capture multi-modal and long tail distribution
of service times. This approach allows us to characterize the service times’ independent dynamics,
allowing for exogenous events to be characterized implicitly. As a focus application area we provide
the first deep and nonparametric solution for predicting unconfirmed transactions in the Bitcoin
Mempool network. As a fourth contribution, different from point processes, we studied switching
dynamical systems by exploiting recurrent neural networks (RNNs). This approach allows for
an explicit description of non-linear and non-Markovian transition functions for both modes and
switching dynamics. Indeed, within our model the modes are learned through independent RNNs
whereas, similar to (mixture of) expert systems, the selection of modes is handled via a categorical
distribution. As a fifth contribution, we incorporate the knowledge of semantic structures and their
influence in dynamical processes. In the context of question answering sites, where knowledge is
organized as a series of tags identifying questions experts domains, we propose an algorithm to
learn hierarchical taxonomies. This algorithm considers co-occurrences of the tags assigned to the
questions. Our algorithm infers hidden hierarchies only from sets of co-occurring tags, i.e. from all
the n-tuples a given tag appears. We finally link the taxonomies with the dynamical behavior of
the users posting questions. Our extensive empirical evaluation indicates that the tagging process
of parent nodes is highly dependent on the tagging process of their descendants and not only of
its co-occurring tags. As a final contribution, dynamical processes are studied not on population
behavior, but on semantic spaces themselves, for the purpose of explaining classifier decisions. We
aim at generating a set of examples that highlight differences in the decision of a black-box model.
We use interpolations in latent space to generate a set of examples in feature space connecting the
misclassified and the correctly classified points. We then condition the resulting feature-space paths
on the black-box classifier’s decisions via a user-defined functional. Optimizing the latter over the
space of paths allows us to find paths that highlight classification differences. We introduce and

v

formalize the notion of stochastic semantic paths: stochastic processes on feature space created by
latent code interpolations. Expected changes of a data point are characterized in terms of stochastic
functionals along the path, which leads to the notion of a semantic Lagrangian. To train, say, a
Variational Auto-Encoder, one must thus define a new training cost by solving the variational
problem, which minimizes the functional along the paths.

vi

Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Entwicklung von Inferenzalgorithmen und Me-
thoden zur Untersuchung dynamischer Datensätze. Wir haben Techniken entwickelt, um Zeitrei-
hendatensätze für Punktprozesse, das Umschalten dynamischer Systeme und die Dynamik von
Warteschlangen zu analysieren. Darüber hinaus entwickelten wir eine Analyse des dynamischen
Populationsverhaltens und wie semantische Strukturen dieses Verhalten beeinflussen. Umgekehrt
haben wir untersucht, wie die Dynamik in semantischen Räumen genutzt werden kann, um die
Entscheidungen von Black-Box-Klassifikatoren zu erklären.
Als erstes Projekt haben wir den Hawkes-Prozess erweitert, indem wir reichere Korrelationen in die
Anregungen einbezogen haben. Dies geschieht durch die Einführung einer Sigmoid-Link-Funktion
und eines Gaußschen Prozess Priors. Wir haben einen Polya Gamma-Datenerweiterungsansatz und
eine Näherungsmethode zur Verdünnung Gaußscher Prozesse benutzt, um durch eine variationelle
Mean Field Methode eine untere Schranke der Likelihood zu berechnen. Dies ermöglicht eine
Inferenz mit analytisch berechenbaren Iterationen, welche zu einem schnellen und skalierbaren
Algorithmus führen.
Zweitens haben wir eine flexible Methode zur Behandlung der Intensitäten zeitlicher Poisson-
Prozesse entwickelt, die auf der Spline-Interpolation basiert und eine schnelle und skalierbare
unüberwachte Analyse von Punktprozessen ermöglicht. Wir schlagen dann ein Ähnlichkeitsmaß
für Zeitreihen vor, welches invariant gegen eine Verschiebung lokaler Muster ist. Mit diesem
Ähnlichkeitsmaß entwickeln wir einen spektralen Clustering-Algorithmus der durch eine flexible,
stückweise Kern-Auswertung eine effiziente Berechnung erlaubt, welche auf große Datenmengen
skaliert. Das Clustering-Verfahren beinhaltet ein Entropiemaß, welches es ermöglicht zu bestimmen,
wie gut eine bestimmte (Intensitäts-) Zeitreihe durch einen Cluster-Prototyp dargestellt wird.
Hierdurch können Ausreißer innerhalb einer zeitlichen Stichprobe der Muster erkannt werden.
Drittens bieten wir eine Deep-Learning-Lösung für Servicezeiten von Warteschlangensystemen an.
Wir wenden die Fähigkeit tiefer neuronaler Netze, Repräsentationen zu lernen auf Punktprozesse
an, um auf die Verteilungen von Servicezeiten zu schließen. Diese werden sowohl als mehrschichtige
Parametrisierung bekannter Verteilungen als auch als durch nichtparametrische Modelle mit Gene-
rative Adversarial Networks (GAN) modelliert. Die GAN Modelle erfassen die multimodale und
Langzeitverteilung der Servicezeiten. Dieser Ansatz ermöglicht es uns, die unabhängige Dynamik
der Servicezeiten zu charakterisieren. Hierzurch können exogene Ereignisse implizit charakterisiert
werden. Als Schwerpunktanwendung entwickeln wir die erste umfassende und nichtparametrische
Lösung der Vorhersage unbestätigter Transaktionen im Bitcoin Mempool-Netzwerk.
Im vierten Beitrag untersuchten wir, im Gegensatz zu Punktprozessen, das Umschalten dynamischer
Systeme zwischen verschieden Moden durch die Nutzung rekurrenter neuronaler Netze (RNNs).
Dieser Ansatz ermöglicht eine explizite Beschreibung nichtlinearer und nicht-markovscher Über-
gangsfunktionen sowohl für die Moden als auch für die Schaltdynamik. In unserem Modell werden
die Moden durch unabhängige RNNs gelernt, während die Auswahl der Moden ähnlich wie bei
einem Mixture of Experts Modell durch eine kategoriale Verteilung erfolgt.
Im fünften Beitrag beziehen wir Wissen über semantische Strukturen und deren Einfluss in
dynamische Prozesse ein. Im Kontext von Fragen-und-Antworten-Websites, auf denen Wissen
durch eine Reihe von Markierungen organisiert ist, welche die Domänen von Anfrageexperten
identifizieren, schlagen wir einen Algorithmus zum Erlernen hierarchischer Taxonomien vor. Dieser
Algorithmus berücksichtigt das gleichzeitige Auftreten der den Fragen zugewiesenen Markierungen.
Unser Algorithmus leitet verborgene Hierarchien nur aus Sätzen von gleichzeitig auftretenden

vii

Markierungen ab, d.h. aus allen n -Tupeln, in denen ein bestimmte Markierung auftritt. Wir
verknüpfen schließlich die Taxonomien mit dem dynamischen Verhalten der Benutzer, die die
Fragen stellen. Unsere umfassende empirische Auswertung zeigt, dass der Markierungsprozess der
übergeordneten Knoten in hohem Maße vom Markierungsprozess ihrer Nachkommen und nicht nur
von den gleichzeitig auftretenden Markierungen abhängt.
Im letzten Beitrag werden dynamische Prozesse nicht auf das Verhalten von Populationen, sondern
auf semantische Räume selbst angewandt. Hierdurch wollen wir Klassifikatorentscheidungen erklären.
Unser Ziel ist es, eine Reihe von Beispielen zu generieren, die Unterschiede in der Entscheidung eines
Black-Box-Modells aufzeigen. Wir verwenden Interpolationen im latenten Raum, um eine Reihe von
Beispielen im Merkmalsraum zu generieren, die die falsch klassifizierten und die korrekt klassifizierten
Punkte verbinden. Anschließend konditionieren wir die resultierenden Merkmalsraum-Pfade mittels
einer benutzerdefinierten Funktion auf die Entscheidungen des Black-Box-Klassifikators. Durch
die Optimierung des Funktionals über den Raum der Pfade können Pfade gefunden werden, die
Klassifizierungsunterschiede hervorheben. Wir führen den Begriff textit stochastische semantische
Pfade ein und formalisieren diesen als stochastische Prozesse im Merkmalsraum, die durch latente
Code-Interpolationen erzeugt werden. Erwartete Änderungen eines Datenpunkts werden durch
stochastische Funktionale entlang des Pfades charakterisiert, was zum Begriff einer semantischen
Lagrange-Funktion führt.
Um beispielsweise einen Variationellen-Auto-Encoder zu trainieren, müssen daher neue Trainingsko-
sten durch Lösen des Variationsproblems definiert werden, wobei die Funktion entlang der Pfade
minimiert wird.

viii

Acknowledgements

First and foremost, I would like to dedicate this work to my family, Mom, Dad, Mami, Mildred
and Abuela, which always remain positive among the hardships. To my brother Augusto for his
true support, queer eye, and maturity. This work would never have been possible without the
advice and words of my supervisor Prof. Christian Bauckhage, thanks for believing in science and
creativity. To Prof. Manfred for his wisdom and good stories. All the people in Fraunhofer, but
especially to Kostadin, Bogdan, and Jannis. And of course, to Ramses, because one can do research
while having a beer.

Finally, to Marie, thank you for the love.

Berlin, 26rd of June 2020

ix

Contents

Abstract (English/Deutsch) v

Acknowledgements i

Contents iii

1 General Introduction 1
1.1 Learning Methodologies . 2

1.1.1 Non Parametrics . 2
1.1.2 Deep Parametric Models . 2
1.1.3 Generative Adversarial Models . 2

1.2 Datasets . 2
1.2.1 Point processes . 2
1.2.2 Service Times . 3
1.2.3 Switching Dynamical Systems . 3
1.2.4 Semantics Related Process . 3

1.3 Thesis outline . 3

I Bayesian Inference for Stochastic Processes 5

2 Self Exciting Point Processes 11
2.1 Background . 12

2.1.1 Point Processes . 12
2.1.2 Cox and Cluster Process . 13
2.1.3 Hawkes Processes . 13

2.2 Sigmoid Gaussian Excitations . 14
2.3 Likelihood . 14

2.3.1 Poisson augmentation . 16
2.3.2 Pólya-gamma augmentation . 16
2.3.3 The augmented likelihood . 17

2.4 Variational Inference . 17
2.4.1 Optimal Poisson Variables . 18
2.4.2 Optimal Branching Structure . 18
2.4.3 Optimal Gaussian Processes . 19
2.4.4 Optimal Base Intensity λ0 . 20
2.4.5 Evaluating the Bound . 20

2.5 Hyperparameter Estimation . 20
2.6 MCMC . 21
2.7 Prediction . 22

2.7.1 Number of Arrivals . 22
2.7.2 Arrival Time . 23

2.8 Empirical Results . 23
2.8.1 Synthetic Data . 23

xi

Contents

2.8.2 Real World Data . 23
2.8.3 Results . 24

2.9 Discussion and Outlook . 25

3 Switching Dynamical System 27
3.1 Related Work . 28
3.2 Background . 28

3.2.1 Switching Linear Dynamical System models 28
3.2.2 Modeling Time Series with Recurrent Neural Networks 29

3.3 Neural Variational Switching Dynamical Systems (NVSDS) 29
3.4 Experiments . 32

3.4.1 Baseline Models . 32
3.4.2 Training Details . 32
3.4.3 Lorentz Attracttor . 33
3.4.4 Switching Oscillatory Dynamics . 34
3.4.5 Handwriting . 35
3.4.6 Basketball Dataset . 36

3.5 Discussion and Outlook . 38

II Adversarial Training and
Unsupervised Learning for Populations 41

4 Recurrent Adversarial Service Times 45
4.1 Related work . 47
4.2 Background . 47

4.2.1 Queues . 47
4.2.2 Recurrent Point Process . 49

4.3 Models: Deep Service Times . 50
4.3.1 Neural Service Times . 51
4.3.2 Adversarial Service Times . 51
4.3.3 Recurrent Adversarial Service Time . 52
4.3.4 Bitcoin Mempool . 53

4.4 Experiments . 56
4.4.1 Empirical datasets . 56
4.4.2 Training details and evaluation metrics . 59
4.4.3 Results . 60

4.5 Relations to formal analysis of queuing systems . 61
4.6 Discussion and Outlook . 61

5 Temporal Patterns for Point Processes 63
5.0.1 Problem Definition . 65
5.0.2 Fast Intensity Inference Using Splines . 65
5.0.3 A Dynamic Piecewise Time Series Similarity Measure 66
5.0.4 A K-Piece Wise Spectral Centroid Algorithm 68
5.0.5 Outlier Detection . 69
5.0.6 Scalability . 70
5.0.7 Results on StackOverflow Data . 70
5.0.8 Results on BitCoin Data . 71
5.0.9 Results on Github Data . 71
5.0.10 Datasets . 72
5.0.11 Experimental Setup . 72
5.0.12 K-PSC versus K-SC or K-Means . 73
5.0.13 Discussion and Outlook . 76

xii

Contents

III Taxonomies, Representations and Stochastic Processes 79

6 Dynamical Inheritance 83
6.1 Summary of Contributions . 83
6.2 Related Work . 85
6.3 Stack Exchange Data . 85
6.4 Definitions and Concepts . 87
6.5 Tagging Process Model . 88

6.5.1 Anomalous Tagging Behavior . 89
6.5.2 Taxonomy Learning Algorithm . 89
6.5.3 Validation on Synthetic Taxonomies . 90

6.6 Stack Exchange Results . 91
6.6.1 Taxonomy Statistics . 91
6.6.2 Inverse Dynamical Inheritance . 95

6.7 Implications for Complex Systems Analysis . 97
6.8 Discussion and Outlook . 97

7 Auto Encoding Explanatory Examples 99
7.0.1 Summary of the Chapter . 100

7.1 Related Work . 101
7.2 Explanations . 101
7.3 Explaining Through Examples . 102
7.4 Semantics and Example Generation: Auto-Encoders 102
7.5 Stochastic Semantic Processes and Corresponding Paths 103

7.5.1 Semantic Interpolations . 103
7.5.2 An Approach via Explicit Family of Measures 103

7.6 Principle of Least Semantic Action . 104
7.6.1 The Choice of Lagrangians . 106

7.7 Comparison to other models . 108
7.7.1 Evaluation . 108

7.8 Experimental results . 109
7.9 Discussion and Outlook . 110

IV Appendix 113

8 Proof Concerning Regularity of Paths 115
8.1 Stochastic Semantic Processes: Proof of Proposition 1 115

8.1.1 Collections of Consistent Measures . 115
8.1.2 Concerning the Regularity of Sample Paths 117
8.1.3 Stochastic Semantic Processes: Further Constructions 118

9 Deep Neural Networks Architectures 121
9.1 Models Training Details . 121

9.1.1 A simple VAE model: MNIST . 121
9.1.2 A Gaussian CNN Encoder and CNN Decoder: MNIST and CelebA 122

10 Relations to formal analysis of queuing systems 125

Bibliography 127

xiii

Chapter 1

General Introduction

The present dissertation’s underlying common theme is the development of inference algorithms and
methodologies for the study of dynamical datasets. The study of dynamical phenomena has a rich
history that underlies the development of modern science. If one is to identify Newton’s publication
of Philosophiae Naturalis Principia Mathematica as the cornerstone of the scientific revolution,
it is at is core an acknowledgment of the impact of the study of dynamical systems in science in
general. The success of Newton’s Principia is a success of our ability to forecast natural phenomena.
The introduction of the Laws of Motion and the formalism of classical mechanics provide a recipe
for how to construct mathematical models that can describe the evolution of physical systems.
The modern formulations of such laws, through Hamiltonian and Lagrangian mechanics, dictate
that one must introduce prior knowledge in the form of Hamiltonians or Lagrangians to model
the evolution of such systems. If one is to provide a genuinely agnostic take on the dynamics of
complex systems, one must make away with such prior knowledge.

After humble origins in Statistics, as Information Theory and Machine Learning entered stage
halfway through the past century, a change in science’s philosophy slowly started to take ground.
Instead of imposing human preconceptions such as geometry, conservation laws, and symmetries, the
effort shifted to learning. Now, one is possed essentially with the two main tasks. First, developing
models that can learn from data and uncover the behavior of the physical systems. Moreover,
another of training, where one develops methods to find the right parameters and hyperparameters,
which tune the defined model to the data at hand. Once our attention is focused on learning, one is
concerned now on providing flexible models that can gain the most of the data at hand. In a way,
the evolution of machine learning is the evolution of our capacity to provide models and learning
algorithms that are flexible enough to handle data.

There are two main organizing principles behind the current work: data and learning meth-
ods—different methodologies applied to different datasets. The original force behind these distinc-
tions is the nature of the datasets. The success of the different models and learning algorithms can
be traced back to data as one must pay the price of flexibility with data. The sparser the data
sets, the more a priori knowledge one is forced to include in the models. This sparsity can have
obscure forms as large data sets can be sparse along different coordinates. In the present work,
three different methodologies to endow agnosticism and flexibility in dynamical models are utilized.
Bayesian nonparametrics, Deep parametric models and adversarial neural networks.

1

Chapter 1. General Introduction

1.1 Learning Methodologies

1.1.1 Non Parametrics

A more classical approach uses Bayesian nonparametric to allow for flexible, functional families
by sampling from gaussian processes. These distributions are trained via approximate inference
in a scalable fashion with variational methods and sampling from the exact posterior via Markov
chain monte carlo. The approximate variational inference developed in the current work permits
fast inference due to analytical forms of the learning procedure’s update steps. One could obtain
analytical forms by extending the model likelihood with synthetic variables, which renders the model
tractable. These auxiliary variables are devoid of physical meaning but create conjugate forms for
the likelihood which are amenable to analytical computation. This methodology is introduced for a
particular point process model in Chapter 2.

1.1.2 Deep Parametric Models

Latter, we introduce flexibility in the distribution families with the use of general approximation
methods for functions, namely deep neural methods which parametrize classical statistical dis-
tributions. These approaches are also trained via approximate surrogate distributions with the
aid of the variational methodologies. The method introduced here is line with that of variational
autoencoders, in which one hidden random variable is trained via approximate inference. However,
the deep neural network models’ parameters are obtained by maximizing the lower bound, obtaining
maximum likelihood estimates of such parameters. Unlike the autoencoder formalism, our goal here
was not to create encodings or semantic representations of the data. Our contribution consists of
exploiting these existing neural variational methods to create new interpretable dynamical models.
This formalism was introduced in Chapter 3.

1.1.3 Generative Adversarial Models

Adversarial generative networks can dispense with any distributional form via an implicit method-
ology. Samples are provided instead of approximating distributions. They provide a novel form of
training in which a two-player game is defined where two neural networks compete. One neural
network is poised with the task of generating data which resembles the observed data. The other
one is endowed with the task of differentiating the real and generated datasets. By training in a
two-step matter the two players of the game, an equilibrium point is achieved in which the generator
can reproduce the data. We make use of current results in Optimal Transport Theory and provide a
solution through Wasserstein’s Gans. The dynamic aspect is included with conditional gans, which
levers dynamical representations obtained via nonparametric form of transitions functions. Namely,
recurrent neural networks. We provided a novel GAN model for the studies of service times in the
framework of queueing theory in Chapter 4

1.2 Datasets

1.2.1 Point processes

Point processes account for discrete data points in continuous time. Historically introduced as
models for the location of stars, the Poisson process was later introduced in statistics with Erlang’s
studies of the incoming call in phone call centers. We studied these processes from two angles,

2

1.3. Thesis outline

mainly. One in Chapter 2 where we impose a rich nonparametric model in order to exploit prior
knowledge as to extract meaningful information from sparse data. Furthermore, a different approach
of an unsupervised algorithm, where data is in the aggregate, is rich but sparse on the individual
(per time series) level. The first methodology is intended to provide a richer model and leverages
the prior forms’ Bayesian advantages. In a sense, one can incorporate expert knowledge in the
prior that allows for a meaningful treatment of sparse data. In this particular case, we endow the
Hawkes process intensities with a correlation structure. In chapter 5, we provide an unsupervised
algorithm for the clustering of point processes.

1.2.2 Service Times

Within the family of point process models, in queues systems, one is interested in the interplay
between two phenomena: customer arrivals and service times to these costumers. In the application
set up, data is abundant, and we, therefore, resourced to a deep and adversarial solution, flexible
enough to capture rich forms in the data distribution. The primary heuristic behind this contribution
is to leverage the representations provided within the recurrent formalism to encode the customer’s
process’s dynamical information, allowing us to construct a conditional structure to exploit that
representation for the sake of the service time distribution. These methodologies are presented in
Chapter 4.

1.2.3 Switching Dynamical Systems

Time series provide a challenging ground for machine learning algorithms, as long term dependencies
and nonlinearities are usually present in empirical datasets. Methods are required, which highlight
the dynamical character of the problem. One classical approach to characterize the time series is
to introduce the notion of dynamical regimes. If one is studying hearth beat data, for example,
one would like to differentiate arrhythmia patterns from normal behavior in a particular patient
hearth. To highlight this natural compositionality, similar to clustering algorithms, one can index
the different regions of the time series through a categorical variable. In this dissertation, we
provide a deep network solution for such a problem. The use of deep learning parametrization of
the transition functions will characterize complex patterns of non-markovianity and nonlinearity, as
present on empirical data sets. We present our contribution in Chapter 3.

1.2.4 Semantics Related Process

Instead of analyzing time series directly, we focus on semantic representations. Either those
inferred from population behavior, or obtained as latent codes provided by dimensionality reduction
technique such as Variational autoencoders. Although a learning algorithm is provided, the focus
is on the relationship among knowledge structures provided by a population of its consequent
dynamical behavior. Conversely, we obtained semantic structures or representation imposing
properties on the dynamical process defined on top of these representations. This themes are
developed n chapter 6 and Chapter 7.

1.3 Thesis outline

The present work is intended to be self-contained in that every inference method and the basic
theory of point process and switching dynamical process are presented. It divide in three parts,
the first for Chapter 2, 3 (concerning Bayesian inference). The adversarial algorithms, as well as
the unsupervised algorithms, are explained in chapter 4, 5. Finally, modeling of process related

3

Chapter 1. General Introduction

to semantic structures is presented in part 3, chapter 6. For each part, we provide the theoretical
background as required for the inference methodologies, the specific contributions are presented
in each chapter, providing the specific theoretical backgrounds of the models in the individual
Chapters.

4

Part I

Bayesian Inference for Stochastic
Processes

5

The main goal of machine learning is to learn from data. In order to do so, one must introduce
models which are able to generalize and generate from the data. If one adhere to the statistical
framework, variations of the data are though of to arise from the statistical nature of the underlying
data distribution. Let D be the data at hand, one defines a model to train as composed of other
hidden variables Z which are part of some generative process which gives rise to the data, and
parameters θ of the model. One can then apply Bayes rule to obtain probabilities over the hidden
variables, that is:

Pθ(Z|D) =
Lθ(D|Z)Pθ(Z)

Pθ(D)
, (1)

where Lθ(Z|D) is known as the likelihood, the probability that the current model generated the data.
P (Z) is our prior belief for the hidden variables, and P (D) is the evidence 1. In this formulation,
we included separated variables for the model parameters θ which are not part of the generative
model. It is important to notice however, that a fully Bayesian model, includes this variables as
hidden variables, and posteriors whould be calculated for each one. The obtained result Pθ(Z|D) is
known as the posterior distribution of the hidden variables. Its importance resides in the fact that
it allows us to perform predictions. For an unobserved data point X∗ one would like to obtain the
probability of this data point under the trained model. This is obtained by:

P (X∗|D) =

∫
Lθ(X

∗|Z)Pθ(Z|D)dZ, (2)

for the practicioner, the initial step consist in defining both the likelihood and the prior. In such a
way that one is able to include known characteristics of the data. In order to fully especify the
posterior then, one must perform

Pθ(Z) =

∫
Lθ(D|Z)P (Z)dZ =

∫
P (X,Z)dZ. (3)

Except for very specific cases, one is not able to perform such integral. In this case, the practiticioner
must resource to approximation methods, which are able to get testimates of the posterior. Sampling
methods, shuch as markov chain monte carlo, allow us to obtain samples {Zi}Mi=0 from the posterior
distribution and approximate the predictive distribution as:

P (X∗|D) ∼ 1

M

M∑
i=0

L(X∗|Zi), (4)

another class of approximating method, the variational kind, resource to a rather different strat-
egy. One must define an approximate distribution Q(Z) which is tractable. This distribution
must approximate the posterior. This is enforced by minimizing the Kullback Leibler divergence
KL(Q(Z)||P (Z|D)). Since this quantity is not explicitly available as the posterior is unknown.
Variational approximate inference requiere us to maximize the following bound, in order to obtain
the approximating distribution.

L = EQ(Z) [Lθ(D|Z)]−KL(Q(Z)||P (Z)) (5)

for the first term, one must perform averages of the likelihood over the approximate distribution.
The second term, enforces the posterior distribution over the likelihood and plays the role of a
rgularizer alowwing us to avoid overfitting and hence permiting generalization. We now present a
general overview as to how to obtain flexible models.

1in physics this is known as the partition function

7

Non Parametrics

For several application areas, in particular in the study of dynamical systems and temporal dynamics,
one must obtain generative models that are able to capture the behavior of functions with support
on the real line. Gaussian Processes arise as one of the main tools within the Machine learning
community, which allows the practitioner to define priors over a family of functions. Due to the
functional nature, one can think of these models as estimating the value of an infinite set of variables,
the unknown function’s values. The infinite nature of these priors and posteriors are the reason as
to why these methodologies are known as nonparametric. Under the Gaussian process formalism,
one assumes that for every finite set of points {(ti, fi)} where ti is defined over the function support
and fi is the value of the function attained at this point. The values are sampled from a multivariate
gaussian distribution.

(f1, ..., fN) ∼ N (µ,K), (6)

whereK is defined with the aid of a kernel k(·, ·) andKij = k(ti, tj), the mean is given by a continuos
function evaluated at the support poitns µ(t1), µ(t2), ..., µ(tN). The appeal of the gaussian process

4 3 2 1 0 1 2 3 4

x

1.0

0.5

0.0

0.5

1.0

1.5

f(
x
)

mean
training points
confidence interval

Figure 1 – Sample from a Gaussian Process and the value of its mean and variance

formalism, lies the close form of expression which one is able to obtain for the model posteriors and
marginal likelihoods.

p (y | X,θ) =

∫
p (y | f) p (f | X,θ)df = N

(
y | 0,KN + σ2IN

)
Predictive distribution of a new point x

p (y | x,D,θ) = N (y | µ (x) , σ (x))

Mean µ (x) = kx
T
(
KN + σ2I

)−1
y and Covariance σ (x) = Kxx − kx

T
(
KN + σ2I

)−1
kx + σ2

Deep Parametric Models

In recent years, deep neural networks have arisen as successful models that are able to provide
great flexibility and leverage the information content of modern massive data sets. Aided by power
GPUs computer architectures, deep neural networks have shown enormous success in areas as Image
Classification, Speech Recognition, Natural Language Processing such as translation and sentence

8

classification, etc. One of the modern attempts to exploit the flexible deep models within the
Bayesian framework was obtained by (Kingma and Welling 2013a). In its seminal work, a generative
data model is defined in which the likelihood is given by a Multivariate Gaussian distribution
parametrized via deep neural networks. For this generative model, one hidden variable Z is defined
as the latent code representing a semantic representation of the data. Inference is performed by
maximizing the variational lower bound, and deep parametrizations of the multivariate gaussian
also define the posterior. This is a Bayesian version of the traditional autoencoder, but where the
code is handled through distributions. The inference is bayesian respect to the hidden code, but
the neural network parameters are obtained via maximum likelihood.

From the application perspective, the main caveat to optimize the bound 5 in the variational
autoencoder formalism, lies in the average required for the hidden variables Z posterior. The
representation of variational posteriors as individual variational parameters becomes a big burden to
optimization, to overcome this, they are now defined as a transformation over the data. This allows
us to reduce the number of parameters for optimization (which no longer grows linearly with the
size of data) and to perform fast inference at test time. We introduce a differentiable transformation
z̃ = gφ(ε, x). And sample an auxiliary noise ε ∼ p(ε). The standard approach uses a deep neural
networks in order to parametrize multivariate gaussian distributions, i.e. Q(Z) = N (µ, σ). In this
case, one is lead to:

z = µ+ σ · ε, (7)

where ε = N (0, 1). A multivariate gaussian distribution.

9

Chapter 2

Self Exciting Point Processes

Sequences of self-exciting temporal events are frequent footmarks of natural phenomena: Earthquakes
are known to be temporally clustered as aftershocks are commonly triggered after the occurrence
of the main event (Ogata 1988); in social networks, the propagation of news can be modeled in
terms of information cascades over the edges of a graph (Zhao et al. 2015a); and neural activity
is frequently studied as a set of spike trains modeled via a network of synaptic connectivity
(Linderman and Adams 2015). The Hawkes process (Hawkes and Oakes 1974), a type of clustered
Cox process, provides a tractable model that can incorporate both exogenous events, as well as a
causal relationship through self-excitation (endogenous) events. It is defined as a double stochastic
Poisson process, in which each new event (or arrival) contributes to the intensity function via a
memory kernel which encodes how the excitation contribution changes over time.

This simple model is usually extended by incorporating excitations variables that describe how
each arrival distinctively affects future events and imposing a notion of causality in multivariate
versions of the process. Popular models for earthquake occurrence incorporate spatial correlations
through the excitations. Recently temporal correlations were introduced via a stochastic process in
the excitations functions (Lee et al. 2016).

In this chapter, we incorporate richer correlations in the excitations via the introduction of a
sigmoid link function over a Gaussian process prior. Gaussian processes have been shown to provide
flexible and successful models to model intensity function in point process, also known as the
sigmoid Gaussian process (Samo and Roberts 2015a; Lloyd et al. 2015). As well as providing a
flexible framework for inference methods in stochastic processes (Archambeau et al. 2007). The
Gaussian process formalism has the added advantage of allowing the practitioner to incorporate
expert knowledge through selecting kernels, which models specific functional form (Rasmussen and
Williams 2006).

The introduction of the nonlinear sigmoid function, required to ensure a positive form of the
intensity function, renders the inference problem cumbersome as this leads to non tractable lower
bounds for approximate inference. Recent work on data augmentation for logistic regression resolve
this difficulty expressing the sigmoid function as a marginal over Pólya-Gamma random variables
(Polson et al. 2013; Linderman et al. 2015). We incorporate this data augmentation approach and a
sparse Gaussian process approximation into a mean field treatment of the variational lower bound
to perform inference with analytic updates, obtaining a fast and scalable algorithm that is amenable
for big data sets.

In the following section, we describe our model and introduce the algorithm for its simulation.
Next, we introduce the augmented variable formalism that extends the likelihood and present the
variational approach required for inference. Finally, we describe our synthetic and empirical data
results in neural activity from calcium fluorescence recordings.

11

Chapter 2. Self Exciting Point Processes

2.1 Background

We start by providing the basic theory of point processes. Later we introduce our model as a
modification of the known Hawkes process. This section will be of interest in chapter 4 concerning
the analysis of queues systems and chapter 5 where we develop an unsupervised methodology for
poisson process clustering.

2.1.1 Point Processes

We start by introducing the concept of a point process. The exposition here is intended to be rather
explanatory or phenomenological in character. One needs to remember that a stochastic process is
defined as a collection of random variables endowed with an index (Gallager 2012). The aim is to
characterize a sequence of event in continuos time. Let T = {t1, t2, ..., tN | tj < tj+1 where tj ∈ R+}
be the time events also known as arrivals. These represent a particular realization of the process.
To characterize such set of events one is confronted with different possibilities. We can study the
inter event times defined as τi = ti+1 − ti. Where τi is another random variable. Given τi the
arrival process is defined by:

ti =

i∑
i=1

τi, (8)

another possibility is to study the counting process defined by the number of events at time t,
namely: N(t). If we let N(t, t + δ) be the number of arrivals in a period δ, then we can further
characterize the process in terms of a positive measurable function λ(t) also known as the rate or
intensity of the process. Given λ(t), the probabilities for N(t, t+ δ) are given by

Pr{N(t, t+ δ) = 1} = λ(t) δ + o(δ2) (9)

Pr{N(t, t+ δ) = 0} = 1 − λ(t) δ + o(δ2) (10)

Pr{N(t, t+ δ) ≥ 2} = o(δ2) (11)

where o(δ2) accounts for negligible contributions. Intuitively, λ(t) provides us with the probability
that a given arrival occurs within an infinitesimal time window δ. The different members of
the family of the point process formalism are defined by specifying these different process or
random variables (τ,N(t), λ(t)). For example, the poisson process is given when the inter arrival
distribution follow an exponential law:

P (τ = τ) = αe−ατ , (12)

which is equivalent to a constant rate λ. Furthermore, one can also show, that the counting process
for the poisson process is given by the poisson distribution:

P (N(t) = N) =
(αt)N

N !
e−αt, (13)

the poisson process owes its name to this distribution, known as the poisson law, first observed
in the studies of populations (Daley and Vere-Jones 2007a). We can further extend the notion of
poisson process by allowing λ(t) to be a funtion in time. This allows us to define an inhomogeneous
poisson processes. If one introduces m(t) =

∫ t
0
λ(x)dx, the counting random variable follows the

law:

P (N(t) = N) =
(m(t))N

N !
e−m(t). (14)

For the inhomogeneous poisson process, the concept of interarrival time is better understood in
terms of the survival function. To facilityte further generalization of the process as requiered below,

12

Background

we now condition the intentisity on some object x. Now, Eq. 14 allows us to specify the probability
of no event ocurring in a given time interval i.e. N(t) = 0

S(t|x) = exp

(
−
∫ t

0

λ(t′|x)dt′
)

= 1− F (t|x), (15)

where S(t|x) denotes the conditional survival function of the process, and F (t|x) the cumulative
conditional density distribution. Under the framework of survival functions, the intensity function
is also knwon as the hazard function and its related to the other variables via the expresion:

λ(t|x)dt =
f(t|x)dt

S(t|x)
=

f(t|x)dt

1− F (t|x)
. (16)

where f(t|x) is the conditional density function. Finally, this will allow us to write the conditional
density function for the next arrival to happen at time t reads:

f∗(t|x) = λ∗(t) exp

{∫ t

ti

λ∗ (t′) dt′
}
. (17)

2.1.2 Cox and Cluster Process

As stated above, one can further generalize the point process by introducing different structures on
the intensity. For a doubly stochastic process, also known as the Cox process. The intensity λ(t) is
given by an stochastic process. Once the notion of a stochastic intensity is introduced. One is in
the position to introduce a self exciting property. Interestenly enough, if one is to use the processes
themselves as objects upon with to condition. One can speack of cluster process. Here the aim is
to specify a process given another point process. So one can consider a series of steps. First, an
initial process is laid down and then a secondary pro- cess is defined, with distributions conditional
on the realization of the initial process.

2.1.3 Hawkes Processes

In this section, we outline the main characteristics of our model. A Hawkes process or self
exciting point process, is a type of Cox process (Kingman 1993) which defines self excitations
through a cluster representation (Daley and Vere-Jones 2007b) around exogenous events. Let
TT = [0, t] ∈ R. We define the counting measure N(Tt) as the number of arrivals in the sequence
Ht = {T1, ..., TN(Tt) : Ti ∈ Tt ∧ Ti−1 < Ti} where Ht defines the history of the process until time t.
The counting measure N(·) has an associated intensity defined as

λ(t) = lim
∆t→0

E[N(Tt+∆t)−N(Tt)|Ht]
∆t

. (18)

Following (Lee et al. 2016; Rasmussen 2013), the intensity is given by

λ(t) = λ0 +
∑

Ti:t>Ti

Y (Ti)µ(t− Ti), (19)

where λ0 is the homogeneous base intensity, Y (Ti) is called the excitation and µ(·) is the memory
kernel defining the change in the excitation value for each arrival. The notion of clustering and
branching structure 1 is easily understood in terms of the superposition theorem for Poisson processes
(Kingman 1993) as one can interpret each term in Eq. 19 as an independent Poisson process. The
term λ0 will generate a set of arrivals of exogenous nature (also known as immigrants) which occur
independently of others arrivals and define the cluster centers. The other terms in Eq. 19 are of

1Clusters refers to a type of Cox Processes which

13

Chapter 2. Self Exciting Point Processes

endogenous nature, as they depend on arrivals Ti in the history Ht. Consequently, we define the
offspring process Φi as the Poisson process defined from arrival Ti with intensity function given by
λi(t) = Y (Ti)µ(t− Ti). This gives a sequential relationship similar to a branching process, because
each arrival can be seen as the parent node of the arrivals generated under its intensity λi. We say
that Tj has an ancestor Ti of order n, if there is a sequence s1, s2, ..., sn where sk ∈ Φk−1 and s1 = Ti
and sn = Tj . Equivalently we say that Tj belongs to the nth generation of Ti. The total offspring
of event Ti will be the process given by Ci = {Tj : Tj belongs to the n generation of Ti , n ∈ N0}.
In order to guarantee numerical stability, one must establish conditions by which the number
of events in a cluster S = |Ci| remain finite. Similar to the Galton-Watson branching process
(Watson and Galton 1875), one is required to study the offspring distribution (probability for the
number of possible offspring’s). In the context of the Poisson process Φi this will be obtained via
ν = E[

∫∞
Ti
λi(t)dt] . This quantity is of interest as it allows us to define the average size and length of

the clusters. Letting S be the average size of the cluster, it is given by E[S] = 1 + ν + ν2 + ... = 1
1−ν

where we impose ν < 1 in order for the summation to be finite; this, in turn, requires Yi < 12.

2.2 Sigmoid Gaussian Excitations

Traditionally, the excitations Yi = Y (Ti) are assumed to be constant or to be drawn i.i.d. from
a fixed distribution (Møller and Rasmussen 2005) which associates a mark with each offspring.
Here, however, we incorporate serial correlations of the excitations by requiring the Y (t) to be
parametrized as Y (t) = σ(f(t)), where σ(x) = (1 + e−1)−1 and placing a Gaussian process prior
over f ∼ GP. Gaussian processes (Rasmussen and Williams 2006) provide a non parametric
approach, allowing us to have a distribution over possible functions and thus to obtain more flexible
models. Similar to previous work with Gaussian Cox processes (Adams et al. 2009), the function
σ guarantees that we meet conditions for the cluster size (E[S]) to converge, as well as a positive
intensity function. On the other hand, Gaussian process priors provide a great degree of flexibility
in the temporal dependencies of the excitations.

2.3 Likelihood

Formally, the likelihood is written down as an inhomogeneous Poisson process between arrivals,
conditioned on the history of arrivals Hti (Daley and Vere-Jones 2007b). We will now use expression
Eq. 14, but since we are interested in the self excitations properties, we subsititute the dependance
on x with the history. For one-dimensional processes the conditional likelihood that the next arrival
happens at time, t reads:

f∗(t|Hi) = λ∗(t) exp

{∫ t

ti

λ∗ (t′) dt′
}
, (20)

where the intensity function λ∗ is a (locally) integrable function. The joint distribution will be given
by P (T) =

∏
i f
∗(ti|Hti−1

). If one expands directly using Eq. 19, products appears between the
arrivals. In order to obtain a tractable form of the likelihood, we exploit the branching structure by
introducing random variables Zij = 1[Ti ∈ Φj] which indicates whether event Ti is an offspring of
event Tj and Zi0 = 1 if event Ti is and immigrant i.e., if it was generated from the base intensity λ0

in Eq.19. Let T,f ,Z represent the set of arrivals {Ti} (data), the excitation functions σ(fi) = Y (Ti)

and the branching structure Zij . Following (Lee et al. 2016), we express the likelihood function at
time T as

P (T|Z, f) = e−ΛT

NT∏
i=1

λZi00

∏
j<i

× [σ(fj)µ(Ti − Tj)]Zij , (21)

2We define µ such that
∫
µ(t)dt = 1

14

Likelihood

(a) Uniform Excitations

(b) Sigmoid Gaussian Process Excitations

Figure 2 – Sample Hawkes process simulation based in both Constant and Gaussian excitations with a
exponential memory kernel. First row corresponds to excitations (Y), second row to intensities λ and third
row to arrivals T

where the compensator was defined as ΛT =
∫ T

0
λvdv. By definition, for each i, there is only one

j < i for which Zij = 1. The form of the Eq. 21 is not amenable for approximate inference due to
the exponential term in the compensator, as well as the functional form of the sigmoid σ(·). In
order to obtain efficient inference schemes, one would like that the likelihood Eq. 21 to be conjugate
to the GP prior. In order to accomplish this we proceed via data augmentation for the expressions
of the compensator and the sigmoid function. We begin our derivation by calculating a explicit
form of the compensator ΛT and note that:

ΛT =

∫ T

0

λvdv

=

∫ T

0

λ0dv +

∫ T

0

∑
ti<T

Yiµ(v − ti)dv

= Λ0
T +

∫ T

0

∫ T

s

Ysµ(v − s)dvdNs

= Λ0
T +

∫ T

0

Ysφ[s, T]dNs

= Λ0
T +

NT∑
i=1

σ(fi)φ[ti, T]. (22)

15

Chapter 2. Self Exciting Point Processes

(a) Inferred Excitations

(b) (λ0) law (c) L(q)

Figure 3 – Blue line corresponds to the simulated process, red line corresponds to inferred excitation
intensity with the variational approximation, green corresponds to mcmc sampler σ(f) and the 95%
confidence bounds. Orange lines corresponds to observed arrivals. Sigmoid Gaussian Excitations as
obtained for a synthetic data set. We also present the form of the variational approximation for the base
intensity, and the variational bound during training.

Here, we define φ[ti, T] =
∫ T
ti
µ(τ − ti)dτ and Λ0

T = λ0T , since the base intensity is a constant. In
the following we make use of the exponential kernel µ(t− τ) = αe−α(t−τ). This memory kernel is
widely use in the literature (Ogata 1988; Linderman and Adams 2015; Lee et al. 2016).

2.3.1 Poisson augmentation

We introduce the first set of augmented variables in the the compensator. Using the relationship
σ(x) = 1− σ(−x) on can rewrite Eq. 22 as

e−ΛT = e−Λ0
T

NT∏
i=1

Eρi [{σ(−fi)}ρi] , (23)

where the expectation is over independent Poisson variables ρi with distribution Po(ρi|ζi) = e−ζi
ζ
ρi
i

ρi!
,.

where we have set ζi = φ[ti, T], and we have used

eζ(x−1) = Eρ[x
ρ] =

∞∑
ρ=0

xρPo(ρ|ζ).

This allows us to get rid of the exponential term of σ(f) due to the compensator. Notice that this
expression is equivalent to the generating functional for a homogeneous Poisson process (Daley and
Vere-Jones 2007b), another form of the Cambell’s functional representation (Kingman 1993) for a
counting measure N(·).

2.3.2 Pólya-gamma augmentation

To obtain the conjugate form of the likelihood, we must resolve the non-linear form of the sigmoid
appearing in the new form of the compensator and the rest of the terms involving the branching
structure. The Polya-Gamma augmentation scheme (Polson et al. 2013) achieves this by exploiting
the following integral identity

c
eax

(1 + ex)b
= c2−be

κx

∫ ∞
0

e−w
x2

2 PPG(w|b, 0)dw, (24)

16

Variational Inference

where κ = a− b/2. And PPG(w|b, 0) corresponds to the Pólya-gamma distribution. We know use
the Polya gamma representation in Equation 23, yielding

e−ΛT = e−Λ0
T

NT∏
i=1

Eρi,ωi

[
2−ρie−

ρifi
2 −

f2
i
2 ωi

]
. (25)

2.3.3 The augmented likelihood

We can now express the full form of the likelihood incorporating the augmented variables. In order
to do this, we insert the Polya gamma representations for the sigmoid function and Eq. 2521.

P (T, ρ, ω,Ω|Z, f , θ) = e−λ0T
NT∏
i=1

λZi00

[
2−ρie−

ρifi
2 −

f2
i
2 ωi

]
× PG(ωi|ρi, 0)Po(ρi|ζi)×

∏
j<i

[
2−Zij [µ(Ti − Tj)]Zij × e

Zijfj
2 −

Zijf
2
j

2 ΩijPG(Ωij |1, 0)

]
(26)

This augmented likelihood incorporates the distribution over the auxiliary variables Ωij , ρi and ωi.
Here we defined θ = {λ0, α, θK}, as the base intensity, the decay rate of the exponential kernel and
the hyper parameters of the Gaussian process. The definition of the augmented model is completed
by noting that the prior P(f) is a Gaussian process with hyperparameters θK (due to our models
assumptions) and P(Z) is a uniform distribution (since all prior points are valid parents of the
subsequent arrivals).

2.4 Variational Inference

To solve the inference problem completely, one would like to obtain an analytical expression for the
posterior P (Z, f , ρ, ω,Ω, θ|T). This is not possible since we are not able to calculate all required
marginals over the joint distribution Eq. 26 in order to obtain the model evidence P (f). Instead,
we resort to approximate variational inference (Jordan et al. 1999). We will define a tractable
distribution family to approximate the posterior. This is achieved by maximizing the lower bound
L(Q) defined below. This procedure will minimize the kullback leibler divergence between the
unknown posterior and the proposed approximating distribution. We further exploit the structure
of the joint distribution Eq. 26 by assuming independence among some of the variables, in what is
known as the mean field approximation (Bishop 2006). The posterior density will be approximated
by

P (Z, f , ρ, ω,Ω|T) ≈ Q(Z, ρ, ω,Ω)Q(f , λ0) (27)

One can show that the structure of the model implies the further factorization Q(Z, ρ, ω,Ω) =

Q(Z,Ω)Q(ω, ρ) and Q(f , λ0) = Q(f)Q(λ0) this leads to the following lower bound on the evidence

L(Q) = EQ

[
log

{
P (T,Z, f , ρ, ω,Ω, λ0)

Q(Z,Ω)Q(ω, ρ)Q(f)Q(λ0)

}]
. (28)

Here Q refers to the probability measure of the variational posterior. We can maximize the bound
by alternating the maximization over each of the factors (Bishop 2006). The variational calculation
will yield the optimal solutions for each factors analytically as

logQ∗(Z,Ω) = EQ(ω,ρ)Q(f)Q(λ0)[logP (T,Z, f , ρ, ω,Ω, λ0)] (29)

This results imply that to obtain the optimal distribution of one of the factors, one must calculate
averages of the logarithm of the joint distribution over the remaining factors in the approximation.

17

Chapter 2. Self Exciting Point Processes

In the following subsections, we explicitly express the functional form of the optimal distribu-
tions, and obtain the corresponding averages required in all the optimal equations. The rest of
hyperparameters (α.θK) are trained via gradients update of the lower bound. For ease of notation,
averages over functions of one variable correspond to averages over the corresponding factors e.g.
E[h(x)] = EQ∗(x)[h(x)] where Q∗(x) is the optimal distribution over x and other variables have
been marginalized if required.

2.4.1 Optimal Poisson Variables

We now use the optimal equation for the variables ρ and ω, factorizing over the variables per arrival,
Q(ρ, ω) =

∏NT
i=1 q(ρi, ωi)

q(ρi, ωi) ∝ 2−ρie−
ρiE[fi]

2 − E[f2
i]

2 ωiPG(ωi|ρi, 0)Po(ρi|ζi) (30)

We can obtain the exact form using the conjugate structure.

q(ρi, ωi) = Po

(
ρi|ζi

e−E[fi]/2

2 cosh(
√
E[f2

i]/2)

)
×PG(ωi|ρi,

√
E[f2

i]).

(31)

From this we need to compute averages like E[ωi] and E[ρi] in order to obtain the optimal distribution
over the functions Q∗(f). We get

E[ωi] = E[ρi]×
1

2
√
E[f2

i]
tanh

(√
E[f2

i]

2

)
, (32)

where we have used the close form expression of the averages over Pólya Gamma distributed random
variables, and we have notice that the remaining structure is conjugate to a Poisson distribution.
The average over the ρ variable is easily obtained as the corresponding intensity of the Poisson
distribution

E[ρi] = ζi
e−E[fi]/2

2 cosh(
√
E[f2

i]/2)
. (33)

2.4.2 Optimal Branching Structure

We now write the optimal equation for Z and Ω. Another factorization is possible as Q(Z,Ω) =∏
i q(Ωi.Zi.). We define the unnormalized form of each of the individual factors as

q̃(Ωi.Zi.) = eZi0E[log λ0]
∏
j<i

2−Zij [µ(Ti − Tj)]Zij e
ZijE[fj]

2 e−
ZijE[f2

j]

2 ΩijPG(Ωij |1, 0)P (Zi.) (34)

The prior distribution P (Zi·) is a constant as any other arrival prior to i can be the parent of i.
To obtain the actual distribution, one needs to normalize to obtain q(Ωi.Zi.) = Z−1

i q̃(Ωi.Zi.) , the
normalization is given by:

Zi =
∑
Zi·

∫
dΩije

Zi0E[log λ0]
∏
j<i

2−Zij
{
µ(Ti − Tj)Zije

ZijE[fj]

2 e−
E[f2
j]

2 ZijΩijPPG(Ωij |1, 0)

}
(35)

This expression is easily computed noting that Zij ∈ {1, 0} so just one term in the products remains.
We then insert the exact averages of the Pólya Gamma distribution. The final result yields

Zi = eE[log λ0] 1

2

∑
j<i

µ(Ti − Tj)× e
E[fj]

2 cosh−1

√
E[f2

j]

2

 . (36)

18

Variational Inference

Now we calculate the averages over the branching structure

E[Zij] = Z−1
i

1

2
[µ(Ti − Tj)] e

E[fj]

2 cosh−1

√
E[f2

j]

2

 , (37)

and the average over the product of the Pólya gamma variables and the branching structure

E[ZijΩij] = Z−1
i

1

2
[µ(Ti − Tj)]× e

E[fj]

2 cosh−1

√
E[f2

j]

2

 1

2
√
E[f2

j]
tanh

√
E[f2

j]

2

 , (38)

as well as the sum over the branch Z indicator corresponding to the homogeneous base function

E[Z0] = E[
∑

Zi0] = eE[log λ0]
∑
i

1

Zi
. (39)

2.4.3 Optimal Gaussian Processes

We assume the function f(·) is generated from a GP(0,K) with zero mean and covariance structure
given by the kernel K(Ti, Tj) over arrival times. For ease of calculation we represent the optimal
distribution as

Q∗(f) ∝ eU(f)p(f) (40)

And we have defined the effective log likelihood

U(f) =

NT∑
i=1

−E[ρi]

2
fi −

E[wi]

2
f2
i +

∑
j<i

E[Zij]

2
fj −

E[ZijΩij]

2
f2
j

 . (41)

We introduce some matrices to re write Eq. 41 such that the conjugate structure of the likelihood
is clear

fT Ω̂f =

NT∑
i=1

∑
j<i

−E[ZijΩij]

2
f2
j =

∑
jk

fj

{∑
i

−1[j<i]
E[ZijΩij]

2
δjk

}
fk, (42)

where we defined the diagonal matrix

[Ω̂]jj =
∑
i

−1[j<i]
E[ZijΩij]

2
. (43)

We further define Zij = 1[j<i]
E[Zij]

2 , Wii = −E[wi]
2 , Ri = −E[ρi]

2 , so we can write the potential U(f)

in its matrix form

U(f) = RT f + fTWf + 1
TZf + fT Ω̂f =

1

2
fTΛf + aT f . (44)

Here we defined Λ = W + Ω̂ and a = R + ZT1. To obtain the Gaussian process posterior, one must
perform matrix inversion, which takes O(N3) time. In order to obtain an efficient algorithm, we
follow the standard procedure (Csató 2002; Titsias 2009) and approximate the Gaussian process
posterior Q(f) with a sparse approximation Qs(f).

Qs(f) ∝ p(f |fs)eE[U(f)|fs]p(fs), (45)

This approximation depends on a finite set of function values fs and a set of inducing points ts.

E[U(f)|fs] =
1

2
E0{f |fs}TΛE0{f |fs}+ aTE0{f |fs}

=
1

2
fTs K−1

s kTNsΛkNsK
−1
s fs + aTkNsK

−1
s fs =

1

2
fTs Λsfs + aTs fs (46)

Where Ks = K(ts, ts) and kN,s = K(T, ts). This allows us to express the sparse approximation
Eq. 45 as

Qs(f) ∝ p(f |fs)eE[U(f)|fs]p(fs) = p(f |fs)q(µs2,Σs2) (47)

19

Chapter 2. Self Exciting Point Processes

Where Σs2 = (K−1
s − Λs)

−1, µs2 = Σs2K
−1
s ksNa and Λs = K−1

s kTNsΛkNsK
−1
s . Finally, we calculate

the averages required for the self consistent mean field equations

EQ∗(f)[fi] = µi = kisK
−1
ss µ

s
2 (48)

And the square average as

EQ∗(f)[f
2
i] = µ2

i + σ2
i = µ2

i +Ki,i − kisK
−1
ss (I− Σs2K

−1
ss)kTis (49)

2.4.4 Optimal Base Intensity λ0

We now evaluate the optimal distributions for the base intensity function λ0. The functional form
of this parameters permits to place a gamma distribution as a conjugate prior. We obtain for the
optimal distribution

Q∗(λ0) = Gamma(λ0|αλ, βλ) =
βαλλ

Γ(αλ)
λαλ−1

0 e−βλλ0 (50)

And αλ = E[
∑
i Zi0] + α0 and βλ = T + β0. For the averages we have E[λ0] = αλ/βλ and

E[log λ0] = ψ(αλ) − log(βλ). Where α0 and β0 corresponds to the hyperparameters of the base
intensity prior.

2.4.5 Evaluating the Bound

In order to check the convergence of the training algorithm and to train the hyperparameters,
we obtain the close form expression of the lower bound. We expand the joint distribution as the
product of a likelihood conditioning on the function values f .

L(q) = EQ

[
log

{
P (T, ρ, ω,Ω,Z|f , λ0)P (f)P (λ0))

Q(Z,Ω)Q(ω, ρ)Q(λ0)Q(f)

}]
(51)

Once we perform the averages over Q(f)

L(q) =

NT∑
i=1

[logZi + E[ρi]− ζi]− E[λ0]T −KL(qs2(fs)||p(fs))−KL(Q(θ)||P (θ)) (52)

Expanding the Kullback Leibler divergences

L(q) = −E[λ0]T +

NT∑
i=1

[logZi + E[ρi]− ζi]−
1

2
Tr
{
K−1
s (Σs2 + µs2(µs2)T)

}
−1

2
log det(2πKs) +

1

2
log det(2πeΣs2) + Ψ(α0, β0, αλ, βλ)

(53)

Where ψ(·) is the polyagamma function. And we have defined

Ψ(α0, β0, αλ, βλ) = α0 log β0 − log(Γ(α0)) + (α0 − 1)E[log λ0]− β0E[λ0] + αλ

− log βλ + log Γ(αλ) + (1− αλ)ψ(αλ)
(54)

To avoid numerical instabilities, the expressions of the form log Γ(α) can be calculated using
Stirling’s approximation log Γ(α) ∼ α logα− α for big α.

2.5 Hyperparameter Estimation

The model hyperparameters are the kernel K hyperparameters, the location of the inducing points
ts, the parameters of the base intensity prior α0, β0 and the memory kernel µ decay rate α. The
kernel hyperparameters as well as α are trained by gradient ascent, we follow the gradient of
the bound Equation 53 (See Appendix), performing one iteration after the evaluation of the self
consistent loop Equations. The inducing points are selected on a grid in the domain TT . Finally,

20

MCMC

we set the base intensity prior parameters using the intensity obtained assuming a homogeneous
Poisson process generated the data. We need to differentiate the bound Equation 53 with respect
to the kernel hyperparameters θ

∂L(q)

∂θ
= Tr

[
K−1
ss

∂Kss

∂θ
K−1
ss (Σs2 + µs2(µs2)T)

]
− Tr

[
Ks

∂Kss

∂θ

]
(55)

And with respect to the memory rate α.

∂L
∂α

=
1

2

∑
i

Z−1
i

∑
j<i

∂µ

∂α
(Ti−Tj)e

E[fj]

2 cosh−1

√
E[f2

j]

2

+
∑
i

∂ζi
∂α

(
e−E[fi]/2

2 cosh(
√
E[f2

i]/2)
− 1.

)
(56)

2.6 MCMC

For comparison, we derive a Gibbs sampler which on the limit of large samples solves the problem
exactly (Geman and Geman 1984). This Gibbs sampler generates samples from the posterior
creating a Markov chain. At each step, the algorithm samples a block of variables from the
conditional posterior, given all other variables. In consequence to perform the Gibbs sampler we
derive these conditional distribution from Eq. 21. If a particular conditional is not analytically
tractable, we perform Metropolis Hasting sample for this particular step (Bishop 2006). We provide
the steps for each variable:

The omega variables conditionals

p(ωi|T, ρ, ωj 6=i,Ω,Z, f , θ) = PPG(ωi|ρi, fi) (57)

p(Ωij |T, ρ, ωj 6=i,Ω,Z, f , θ) = PPG(Ωij |1,
√
Zijfj) (58)

(59)

We sample the ρ variables via Hasting-Monte Carlo:

2−(ρ′i−ρi)e−
(ρ′i−ρi)fi

2
Po(ρ′i|ζi)PPG(wi|ρ′i, 0)

Po(ρi|ζi)PPG(wi|ρi, 0)
(60)

For the Gaussian processes

P (f |ω,T, ρ,Ω,Z, θ) =

N∏
i=1

e−
−ρifi

2 − f
2
i ωi
2 ×

∏
j<i

e−
Zijfj

2 −
Zijf

2
j Ωij

2 P (f) (61)

For the branching structure:

µij =

{
P (Zi0) = λ0

Wi
if j = 0

P (Zij) =
σ(fj)µ(Ti−Tj)

Wi
otherwise

(62)

Where Wi =
∑
λ0 +

∑
j<i σ(fj)µ(Ti − Tj). For the parameters θ = {α, λ0}, we use a Metropolis-

Hasting step with the following acceptance rates:

A(λ′0) =

N(T)∏
i=1

(
λ′0
λ′0

)Zi0
(
λ′0
λ0

)αλ0
−1

× exp{−(λ′0 − λ0)(T + βλ0
)} (63)

A(α) =

(
α′

α

)αα−1(
α′

α

)∑NT
i=1

∑
j<i Zij

× exp

−(α′ − α)

NT∑
i=1

∑
j<i

Zij(Ti − Tj)

− (α′ − α)βα

−
NT∑
i=1

σ(fi)[(1 − e−α
′(T−Ti)) −(1− e−α(T−Ti))]

}
(64)

21

Chapter 2. Self Exciting Point Processes

Where we placed Gamma priors with hyper parameters αλ0 and βλ0 for the base intensity function,
and αα and βα for the decay rate of the exponential memory kernel.

2.7 Prediction

The results obtained up until are applicable to any memory kernel function, for prediction, we will
now assume an exponentail excitations kernel.

2.7.1 Number of Arrivals

We will compute the number of arrivals as

E[N(tj , t)] =

∫ t

ti

λ̂tdt (65)

where

λ̂(t) ≡ E[λ(t)|f ,Htj] (66)

is obtained by averaging the intensity (19) over all random events after time tj . Using the definition
of the intensity and its specific form for an exponential memory kernel and sigmoid excitations, we
obtain

λ(t) = λ0 +

∫ t

0

σ(fs)e
−α(t−s)dN(s)

= λ0 + e−α(t−ti)(λ(tj) − λ0) +

∫ t

ti

e−α(t−s)σ(fs)dN(s) (67)

where dN(s) =
∑
k δ(s− tk)ds denotes the process of arrival times (δ(s) being the Dirac–measure)

and we have used the scaling property of the exponential kernel. Since the number of point events
between times t and t′ is

∫ t′
t
dN(s), we get E[dN(s)|f ,Htj] = λ̂(s)ds for s > tj . Hence, by averaging

both sides of the previous equation, we obtain

λ̂(t) = λ0 + e−α(t−ti)(λ̂(tj)− λ0) +

∫ t

tj

e−α(t−s)σ(fs)λ̂(s)ds (68)

Differentiating this equation w.r.t. t we find the linear differential equation

dλ̂

dt
= −α(λ̂(t)− λ0) + σ(ft)λ̂(t) (69)

with the solution

λ̂(t) = e−α(t−tj) +

∫ t

tj

σ(fs)

{
αλ0

∫ t

tj

exp{α(s− tj)−
∫ s

tj

σ(fτ)dτ}+ λ(tj)

}
ds (70)

Notice that the stationary solution is obtained from dλ̂
dt = 0 yielding

λ̂∞ =
λ0

1− σ(ft)
(71)

i.e. the base intensities times the branching factor. On the stationary solution the number of
arrivals is roughly the number of exogenous arrivals times the size of the branching cluster. Our
model, will prefer lowering the base rate intensity as compared to the normal Hawkes process, as
the number of arrivals can be regulated through the branching process with the self excitations.

22

Empirical Results

2.7.2 Arrival Time

For prediction and the creation of samples, we require P (T) ≡ P (T |H|) the probability density
that the next point event arrives at time T given the previous history until time tj . First, notice
that the probability of no point arriving between tj and tj + τ can be obtained as an integral over
P(T). Second, we equate this to having no arrival in an interval, the same quantity can also be
obtained from the intensity λ(t). Hence, we get the equality∫ ∞

τ

P (T)dT = exp

{
−
∫ tj+τ

tj

λ(t)dt

}
= exp

{
−λ0τ − (1− e−ατ)(λ(tj)− λ0)

}
≡ G(τ) (72)

In the last line, we have used (19) together with a simple rescaling of the intensity with an
exponential kernel when there are no new arrivals. This result can be used to compute the arrival
time density as P (T) = −dG(T)

dT . The expected arrival time is obtained as

E[T] =

∫ ∞
0

exp

{
−λ0τ −

1

α
(1− e−ατ)(λ(tj)− λ0)

}
dτ , (73)

2.8 Empirical Results

2.8.1 Synthetic Data

First, we test our algorithm on a synthetic data set. For the Gaussian process prior, we use the
Matern kernel (Rasmussen and Williams 2006). We simulate the data with the same approach as
(Lee et al. 2016), a sample from the Gaussian process prior instead of the excitations functions Yi.
For the memory kernel µ, we used the exponential µ(·) = αe−α(·). We used a 10 inducing points ts
grid, since there was no change in the obtained bound by introducing more points. Results are
shown for a realization of the process with 2384 arrivals in Fig. 3c.

2.8.2 Real World Data

Meempool The decentralized currency protocol known as Bitcoin (Nakamoto 2008) utilizes a
peer-to-peer (P2P) architecture that enables users to send and receive transactions denominated
in units of Bitcoin (BTC). To participate in the Bitcoin network the user runs a client software,
such as the Satoshi client, which communicates with a set of peers. Transactions are broadcast
by the Bitcoin client and received by the peer-to-peer network. They are confirmed after having
been added to the “blockchain” - similar to a linked list with the subtle difference that it references
the previous block using its hash rather than a pointer. This data structure contains blocks of all
accepted transactions since the genesis of the system. The creation of each block defines a point
process which we use for training our model.

Chalearn connectomics (Stetter et al. 2012): The data consist of a realistic simulation of neurons
which generates calcium fluorescence recordings. The data also provides both the connectivity
structure and spatial locations of the neurons. Excitatory behavior arises as a consequence of the
network connectivity. For our algorithm, we used a squared exponential kernel for the GP prior.
We show the results obtained in Figure 4. Different from previous work where the connectivity
matrix is inferred from the dynamical behavior of the whole system (Linderman and Adams 2015),
our approach is able to characterize the overall network excitations on individuals neurons.

Order Book Data: We include raw limited order book data, all events are recorded to seconds
after midnight, with decimal precision of at least milliseconds. All data is based on NASDAQ
historical total view ITCH-sample. We evaluate on 5 different companies, Apple (AAPL), Amazon
(AMZ) Google (GOOG), Microsoft (MCFT) and Intel (INTC) for the first minutes after midnight

23

Chapter 2. Self Exciting Point Processes

0.2

0.4

0.6

(f)

hawkes variational mcmc

0 1 2 3 4 5 6 7 8 9
Time (t)

0
1

(a) Mempool Block Creation

70

80

90

100

110

120

130

140

(t)

(t) 0

9.0 9.2 9.4 9.6 9.8 10.0
Time (t)

0

1

(b) Mempool Intensities

0.00

0.25

0.50

0.75

1.00

(f)

hawkes variational mcmc

0 1 2 3 4 5 6 7 8 9
Time (t)

0
1

(c) Neurons

12

14

16

18

20

22

(t)

(t) 0

9.0 9.2 9.4 9.6 9.8 10.0
Time (t)

0

1

(d) Neurons Intensities

0.6

0.8

1.0

(f)

hawkes variational mcmc

0 1 2 3 4 5 6 7 8 9
Time (t)

0
1

(e) Apple Order Book Arrivals

0

500

1000

1500

2000

2500

3000

3500

(t)

(t) 0

9.0 9.2 9.4 9.6 9.8 10.0
Time (t)

0

1

(f) Apple Order Book In-
tensities

Figure 4 – Detail the Sigmoid Gaussian Hawkes Excitations model to empirical data set with variational
(orange line) and mcmc inference (green line). We include the process intensities calculated sampling from
the approximate posterior, as well as the numerical solution for its average (red line), and the stationary
solution (yellow line)

2012-06-21. We used a total of 2500 arrivals per experiment.

Table 2.1 – Root Mean Square Error / Average Interarrival Time

results amazon mempool neuron apple microsoft intel google
hawkes 0.668182 1.275561 1.305636 2.631194 0.791727 0.986070 0.969109
variational 0.668200 1.275561 1.305432 2.619131 0.791727 0.986070 0.968703
rnn(small) 7.881372 5.230715 1.727635 6.531822 3.859713 3.739753 8.085304
rnn (full) 2.602022 2.356998 0.749884 2.423415 4.175929 3.565702 2.275634
stochastic 0.883721 1.403117 1.566518 1.833392 1.396938 1.461080 1.195476

2.8.3 Results

We compare our variational procedure against our Monte Carlo Sampler (denoted MCMC), a simple
Hawkes process trained with maximum likelihood (denoted HP), a Hawkes process model with
Stochastic Excitations (Lee et al. 2016) (denoted Stochastic), trained from a Monte Carlo Sample
and a Recurrent Marked Point Process model (Du et al. 2016a) (denoted RMTPP) defined with a
recurrent neural network, trained via likelihood with back propagation through time. The specifics
of this model will be left to section 4.2.2. Monte Carlo Samplers where sampled for at least 5000
cycles or until convergences, we show in Table 2.2 the training time of our algorithm as compared
with MCMC inference. Due to the analytical updates for the self consistent equations, as well as
the sparse Gaussian inference, our model outperform other Bayesian methods. We defined train and
test data set, where the test dataset corresponds to all arrivals located in 10% of the support. For
this region the avergae number of arrivals is also estimated (results on the appendix). All Bayesian
models priors hyperparameters for α and λ0 where defined from the simple Hawkes process solution.
We present the results on Table 2.1, where we show the Root mean square error for the prediction

24

Discussion and Outlook

of the next event time given the prior history for all arrivals in the test dataset. As observed, our
model outperforms most of the models in our datasets.

Table 2.2 – Inference Time (s)

Inference/# Arrivals 50 100 200 1000 2000
MCMC 6.010625 17.916019 77.118878 1809.011273 7900.422984
Variational 1.638125 1.075321 3.341016 91.939423 182.462920
HP 0.007731 0.002662 0.020379 0.048665 0.107135
Stochastic 4.669690 10.286880 23.965680 274.949215 1024.231485

2.9 Discussion and Outlook

In the present chapter, we extended the Hawkes process formalism by introducing correlations
in the self-excitations as a function that we obtain from a Gaussian Process prior. This allows
us to obtain great flexibility as different models can be leveraged through different kernels. We
efficiently solve the inference problem presenting an augmented data likelihood through the use
of Pólya-gamma random variables and a sparse Gaussian process approximation. The proposed
form of the posterior yields a fast algorithm with for the close form solutions analytic updates. Our
methodology consistently outperforms current methods in out of sample next point prediction in a
variety of datasets.

One of the main limitations of the proposed methodology lies in the necessity for exponentials as
memory kernels for the prediction procedures. The close form relies on the markovian structure
obtained as a result of this expression. For other models, sampling might be suiting. The limitations
of our proposed model offer possibilities for future work. It is known that neural dynamics exhibit
inhibition phenomena; such characteristics can be incorporated by taking the sigmoidal function as
a function of the sum of the memory terms. This approach will, however, remove the branching
structure, possibly leading to scalability issues.

In the next chapter, we will develop another inference algorithm based on variational methods. Now,
instead of resourcing to nonparametric methods for model flexibility, we will exploit deep neural
networks and perform what is knowns as neural variational inference through reparametrization
tricks.

25

Chapter 3

Switching Dynamical System

Many complex dynamical signals naturally feature an inherent compositional form, in the sense
that their data generating process can be decomposed into different dynamical modes. For example,
an NBA basketball player rapidly changes between moves as the game evolves, thereby composing
complex two-dimensional trajectories; a handwriting signal is made up of successive strokes which
differ in length, velocity, curvature and hence in their dynamics; multi-stable dynamical systems
exhibit trajectories that can naturally be labeled according to their behavior around different
attractors. Such inherent compositionality suggests that these systems’ holistic dynamics decompose
into a switching process determining the sequence of modes, the structure of the modes themselves,
and the interplay between those two.

Switching dynamical systems (SDS) provides a natural way to perform unsupervised learning in
time series. Akin to clustering methods which index data of similar structure in feature space, the
switching mechanism in SDS indexes time series according to similar evolution patterns. NBA
player trajectory tracking data and chaotic dynamical systems are two examples of phenomena that
exhibit different dynamical modes. Intuitively, one should be able to uncover both offensive and
defensive dynamic patterns of a player from his entire set of trajectories or uncover the different
attractors characteristic of a chaotic system. Beyond indexing different dynamical regimes, however,
the switching dynamics itself is of significant interest if one wants to provide a complete dynamical
picture of complex time series. In recent years recurrent switching dynamical systems have provided
tools to incorporate dynamical information into the switching process (see Section 3.1). However,
these methodologies are hindered by the inherent limitations of linear dynamical systems– linear
Gaussian transition functions ignore the pervasive non-linear and non-Markovian behavior common
to real dynamical phenomena.

In this chapter, we overcome these limitations by exploiting recurrent neural networks (RNNs)
within a framework for switching dynamical systems. This approach allows for an explicit description
of non-linear and non-Markovian transition functions for the dynamics of both modes and switching.
Indeed, within our model, the modes are learned through independent RNNs, whereas, similar
to (mixture of) expert systems, the selection of modes is handled via a categorical distribution.
Furthermore, the class probabilities of the categorical variables change dynamically: on the one
hand, the class probabilities are conditioned on the hidden states of the (also independent) switching
history, which we modeled via yet another RNN. On the other hand, the class probabilities are
also informed by both hidden states and the dynamic modes’ predictions through an attention
mechanism. Finally, we enforce a finite entropy among the modes to balance them throughout the
entire signal. We learn the model by introducing an approximate posterior distribution to perform
inference over the dynamic categorical variables. The parameter optimization is then performed
through maximum likelihood estimation of the corresponding bound.

27

Chapter 3. Switching Dynamical System

3.1 Related Work

The study of different time regimes in time series has a venerable history in the Bayesian network
community (Xuan and Murphy 2007; Oh et al. 2008). The modeling can be understood as an
extension of the hidden Markov chain formalism where each latent state has an associated dynamical
mode. Two main methodologies are applied. On one hand, change point models infer change point
locations which differentiate the dynamical regimes (Saatçi et al. 2010). Within each new regime,
parameters are learned for new dynamical models. On the other hand, one can incorporate the
knowledge of past regimes and then switch among the dynamical modes (Linderman et al. 2017).
Furthermore, non-parametric approaches allow these models to sample from an unknown number
of dynamical modes (Fox et al. 2009). Such methods have also been exploited in the context
of stochastic processes (Stimberg et al. 2012) wherein dynamical modes correspond to different
parameter values for drift and diffusion operators in stochastic differential equations. In contrast to
these works, the use of RNNs allows our model to describe non-linear dynamics with non-Markovian
characteristics while still being able to capture the stochastic nature of the change point dynamics.

Motivated by the Bayesian dynamical network formalism we allow for stochastic dynamics along
the switching. Variational auto-encoders (VAE) (Kingma and Welling 2013b) were first used in
(Chung et al. 2015; Serban et al. 2017) to introduce variability into the transition functions of RNNs.
These models are trained by maximizing a variational lower bound defined with respect to a set of
approximating distributions. Estimating these lower bounds requires the calculation of averages
over the approximating distributions, and the high variance of the derivatives of the such bounds
is resolved via the reparametrization trick. Different from these approaches, our work introduces
the stochastic nature of the transition through the dynamics of the categorical variables which
characterize the switch. We do not provide a latent code for the transition operator but instead,
a categorical variable to index the dynamic modes. More recently, variational auto-encoders and
switching linear dynamical systems were used for Bayesian filtering in (Becker-Ehmck et al. 2019).
In contrast to this work, our switching mechanism takes place in data space directly and allows for
non-Markovian transitions within each dynamic mode.

3.2 Background

In this work we combine ideas from Switching Linear Dynamical Systems models (SLDS) with
those from sequence modeling with RNNs in order to incorporate richer dynamical representations.
Inference is accomplished within the Bayesian formalism via variational approximate inference. We
now briefly review the different models components, as well as the inference framework, thereby
laying the foundations of our model.

3.2.1 Switching Linear Dynamical System models

Switching linear dynamical system models aim to capture complex (non-linear) time series behaviour
via a collection of so-called dynamical modes, each of which is approximated by a linear model —
i.e. the complex signal is broken into a collection of simpler (linear) mappings. These models inherit
the methodology of hidden Markov models and linear dynamical systems. We refer to (Linderman
et al. 2017; Ackerson and Fu 1970) for further background.

In short, one assumes that at each time step t there is a corresponding categorical latent state zt
taking one of K different values and following the Markovian transitions

zt+1 | zt ∼ πzt , (74)

where πzt ∈ [0, 1]K gives the usual Markov transition probabilities. The classical approach
(Linderman et al. 2017; Ackerson and Fu 1970) also introduces the continuous latent states ht ∈ Rp

28

Neural Variational Switching Dynamical Systems (NVSDS)

— these follow affine dynamics, with the different modes being indexed by zt,

ht+1 = Azt+1
ht + bzt+1

+ vt, vt ∼ N (0,Qzt+1
), (75)

where Ak,Qk are matrices of the form R
p×p whereas bk ∈ R

p and k ∈ (1, ..., K). At last, the
observed data points xt ∈ Rd are obtained via

xt = Cztht + dzt + wt, wt ∼ N (0,Szt+1), (76)

with Ck ∈ Rd×p, Sk ∈ Rd×d and the drift terms dk ∈ Rd.

An important remark is that each categorical state zt+1 depends only on the previous one zt.
This seems to limit the influence of the continuous latent variable ht on the discrete switch — for
instance, suppose that a certain critical subset U ⊂ R

p is such that, if ht ∈ U , then a discrete
switch of the system (i.e. a particular change of zt) is to take place. One may imagine that in such
a scenario the switching would be difficult to capture unless the zt are informed about the ht. To
overcome this disadvantage Linderman et al. proposed an augmented model (recurrent SLDS or
rSLDS) (Linderman et al. 2017) which makes use of the following generation scheme for zt

zt+1 | zt,ht, {Rk, rk} ∼ πSB(νt+1), νt+1 = Rztht + rzt . (77)

Here πSB is a certain stick-breaking distribution, Rk ∈ RK−1×p captures the recurrent dependencies
between zt and ht, and rk ∈ RK−1 models the Markovian transitions between consecutive states
zt+1 and zt.

3.2.2 Modeling Time Series with Recurrent Neural Networks

Given a sequence x = (x1,x2, . . . , xT), RNNs process each xt through the update of a hidden state
ht at each time step t ∈ (1, . . . , T). The update is implemented via a deterministic non-linear
transition function fθ thus

ht = fθ (ht−1,xt) , (78)

where ht ∈ Rp, xt ∈ Rd and θ is the parameter set of f . In the present work we made use of Long
Short Term Memory Network, explained in detail in Sec. 9. Given the set of hidden states ht one
can model the observed sequence by approximating its joint probability distribution function as

p(x1,x2, ..., xT) =

T∏
t=1

p(xt|x<t), p(xt|x<t) = gϕ(ht−1), (79)

where g with parameter set ϕ maps ht to a probability distribution over outputs, and where x<t
denotes the dependence on the history.

3.3 Neural Variational Switching Dynamical Systems (NVSDS)

In this section we introduce the Neural Variational Switching Dynamical System model. Our
main goal is to include the notions of non-Markovianity and non-linearity in the dynamical modes.
In general terms, we proceed by substituting the transitions function of rSLDS with RNNs as
well as MLP-parametrizations of categorical distributions for the switch distributions. We tackle
inference via a variational approach, defining an approximate posterior over the categorical index
variables. However, the RNN and MLP parameters are obtained as maximum likelihood with a
direct optimization of the bound. An overview of our model is given in Fig. 5.

Suppose we have a complex signal x = (x1,x2, . . . , xT) composed of K dynamical modes. Following
the traditional mixture model approach we implement the dynamic switching between modes in
terms of discrete latent variables z = (z1, z2, ..., zT). Specifically, at each time step t we have a
K-dimensional latent variable zt having a 1−of−K (one-hot encoding) representation — i.e. zkt is
equal to 1 if xt was generated from the kth dynamical mode and it is 0 otherwise.

29

Chapter 3. Switching Dynamical System

MLP

Attention

MLP

Figure 5 – Architecture of the NVSDS model. For a given sequence xt the data is fed into the recurrent
network modeling the modes dynamics (lower part) as well as the switching dynamics (upper part). The
representations h obtained by the experts’ dynamics are fed into an MLPs parametrizing a Gaussian
distribution for the outputs x̂t. The experts’ representations, their prediction as well as the hidden state of
the switching are fed into the attention mechanism which finally parametrizes the categorical distribution.

Generative model — The prior distribution over zt is specified in terms of a set of class
probabilities πkt = p(zkt = 1), which are required (by the switching dynamics) to have an intrinsic
dynamic behaviour. Akin to Eq. (74) we introduce a RNN whose sole role is to govern the switching
dynamics

hst = fθs
(
xt,h

s
t−1

)
, (80)

with hst ∈ Rs encoding the independent switching dynamics and θs the parameter set of the transition
function, which we implement using a long-short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997). We then define the set of dynamic class probabilities as

πkt = softmax
[
gθk
(
hst−1

)]
, (81)

where the softmax function is computed over the K modes and gθk denotes a multilayer perceptron
(MLP) with parameter θk. We can now write the prior distribution over zt as

p(zt) =

K∏
k=1

(
πkt
)zkt . (82)

On the other hand, we model each dynamic mode xkt as a normal distribution parametrized by
MLPs. The latter are conditioned on the hidden state of a RNN which approximates the mode’s
transition function, as discussed in Section 3.2.2. Specifically, we write

p(xkt |xk<t) = N (µkt ,diag
[
(σkt)2

]
),

[
µkt ,σ

k
t

]
= gϕk

(
hkt−1

)
, (83)

where both µkt ,σkt ∈ Rd and gϕk is again an MLP. Let us note here that Eq. (83) corresponds to
our neural network generalization of Eq. (76). The mode’s hidden state hkt ∈ Rp follows from the
state transition function

hkt = fϕk
(
xt,h

k
t−1

)
, (84)

with f implemented by a LSTM and ϕk the parameter set for the kth mode. Eq. (84) should be
compared to Eq. (75). Different from rSLDS the RNN provides a deterministic transition function.
The stochastic aspect of the dynamical modes is included through the output distributions.

30

Neural Variational Switching Dynamical Systems (NVSDS)

The full generative model has the following joint probability distribution

p(z≤T ,x≤T) =

K∏
k=1

T∏
t=1

(
πkt p

(
xkt
∣∣xk<t))zkt . (85)

Inference — The posterior distribution over the categorical variables zt of our model Eq. (85) is
clearly intractable. We introduce the approximate posterior distribution

q(zt|x≤t) =

M∏
k=1

(
ρkt
)zkt , (86)

where the dynamic posterior class probabilities ρkt are defined through an attention mechanism.

Attention mechanism — We take advantage of the freedom we have in defining ρkt to enrich
the switching process by incorporating contextual comparison of the modes’ encoding. We do this
through an attention mechanism — that is, we dynamically adapt the modes’ selection given their
current representation. Consider a per-mode hidden state representation

uk = σ (Wk Ht + Vk hst + bk) , (87)

where Ht =
(
[x̂1
t ,h

1
t], [x̂

2
t ,h

2
t], . . . , [x̂Kt ,h

K
t]
)
∈ RK∗(d+p) contains both the prediction x̂kt and hidden

state hkt of each mode; hst is the hidden state encoding the switching dynamics, Eq. (80); and
Wk ∈ Ra×K∗(d+p), Vk ∈ Ra×s and bk ∈ Ra are trainable variables. The function σ(·) denotes the
hyperbolic tangent.

Now consider a per-mode context vector ck ∈ R
a, which is also to be trained. We define the

dynamic posterior class probabilities as

ρtk = softmax [uk · ck] , (88)

where the softmax function is taken over the modes. Different from common forms of attentions
(Yang et al. 2016) (Bahdanau et al. 2014), within our approach each mode performs its own
translation of the context, similar to what was proposed in (Schwab et al. 2018). As an illustrative
example, one can think of a crowd of experts of different nationalities trying to understand a text
in a foreign language. The common text (here uk) is the context known to all experts, each expert
must in turn translate the context to its own native language prior (here ck) to decide whether the
text in question corresponds to her area of expertise.

Learning — Inserting Eq. (85) and Eq. (86) into Eq. (5) we write the variational lower bound

L[q] = EpD(x)

[
K∑
k=1

T∑
t=1

{
ρkt log p(xkt |xk<t) + ρkt log

[
πkt
ρkt

]}]
, (89)

where we have performed the averages over the categorical distributions, using the fact that
Eq(z)z

k
t = ρkt , and where pD(x) denotes the empirical data distribution.

Mode regularization — One common drawback of expert-like systems occurs during training.
Due to inhomogenities in the initial conditions of the parameter space, one mode (expert) may
happen to have a subtle advantage over the others in predicting the dynamics. Such initial conditions
will compound over time as the categorical switch prioritizes this mode thus increasing its advantage
over the others. In other words, the mode will be preferred not as a consequence of its knowledge
of the dynamical regime, but as a consequence of training imbalances. One must therefore enforce
dynamical diversity by imposing cost functions to be trained along side the maximization of the
lower bound Eq. (89). This issue has been encountered and addressed in various (static) settings
(Schwab et al. 2018; Shazeer et al. 2017; Bengio et al. 2015). We introduce the mode entropy

H[ρ] = −EpD(x)

K∑
k=1

ρ̃k log ρ̃k, (90)

where ρ̃k is the time-average posterior class probabilities. Below we demonstrate empirically our

31

Chapter 3. Switching Dynamical System

intuition that maximizing this entropy helps avoiding the “elimination" of the expert modes during
training. The regularized model then seeks to maximize L′[q] = L[q] + λeH[ρ], where λe is a
hyperparameter.

An expectation-maximization solution to NVSDS (NVSDS-EM)— Instead of introducing
the approximate posterior Eq. (86) one can directly optimize the bound by noticing L[q] is
nothing but the negative Kullback-Leibler divergence between q(z) and p(x, z). An optimal
lower bound is then found by minimizing this divergence. Such a minimum happens only for
log q(z) = log p(x, z) + const. We can then simply write the approximate posterior as

q(z) =

T∏
t=1

K∏
k=1

(
ρkt∑K
k ρ

k
t

)zkt
, ρkt = πkt p(x

k
t |xk<t), (91)

where πkt and p(xkt |xk<t) are defined in Eq. (81) and Eq. (83), respectively. Note that in contrast to
the NVSDS model, the computation of ρkt does not exploit the hkt encoding of the modes through
an attention mechanism.

3.4 Experiments

In this section we provide the experimental framework upon which we tested our model. We
begin by briefly defining three baseline models against which we compared our results. We then
specify both the architecture of the different neural networks composing the models, as well as the
corresponding hyperparameters.

We evaluate our models in four datasets: (i) as a show-case or proof of concept we consider a
dynamical system with a chaotic attractor — the Lorenz system (Lorenz); (ii) we execute a detailed
model comparison on sinusoidal data with switching frequencies (Sine) and (iii) Handwriting data
(HW); (iv) finally, we perform an exploratory analysis with the NVSDS model on a basketball
dataset (Basket). Below we describe in detail each of these datasets and analyse our results.

3.4.1 Baseline Models

A simple approach to dissect a time-series into different regimes is to perform clustering on the
hidden states of a RNN model trained on the time-series. Although the resulting dissection is
static, it provides a useful baseline to compare the dynamic dissection of our model. We thus use
k-means clustering together with an LSTM cell — We shall refer to this model as R-k-Means. We
also consider the rSLDS model (Linderman et al. 2017), which we briefly introduced in Section
3.2.1. For background, framework and code utilities we refer to (Linderman). Finally we consider a
standard mixture of experts model (see e.g. (Bishop 2006)) wherein each expert is modeled via an
LSTM (Eq. (83)), and where the gating mechanism (πtk in our notation) is defined as

πtk = softmax
[
gθk(hkt ,x

k
t)
]
. (92)

Here hkt ∈ Rp is the expert’s hidden state, x̂kt ∈ Rd is the expert’s prediction and gθk is given by an
MLP with parameters θk. We refer to this model as MoE.

3.4.2 Training Details

We choose the latent dimension and the discrete hidden state dimension of the rSLDS model to
be two (four) for the Sine (Handwritting) dataset. For the R-k-Means model we train an LSTM
with hidden size 16 (64) for the Sine (Handwriting) data. We set the number of clusters equal to
the number of modes of the NVSDS model in the respective dataset. The hyperparameters of our

32

Experiments

Table 3.1 – Hyperparameter specification for all experiments: Number of modes (K), hidden size per
mode (p), hidden size of switching LSTM (s), attention dimension (a), number of layers in the switching
MLP (Ns

l), and learning rate (λ).

Dataset Model M p s, a Ns
l λ

Lorenz NVSDS 2 16 16 2 0.005
MoE

Sine NVSDS-EM 2 16 32 1 0.005
NVSDS
MoE

HW NVSDS-EM 4 64 32 2 0.005
NVSDS

Basket-all players NVSDS-EM 16 32 32 2 0.005
Basket-single player NVSDS-EM 8 64 32 2 0.005

0 10 20 30
time

−2

2

Dissection Generated trajectory

Figure 6 – Switching behavior in the Lorenz attractor. The upper panel corresponds to one dimension of
the system over time. The solid line shows the one-step ahead prediction of the NVSDS model, the color
corresponds to the dominating mode. Likewise the lower left panel shows one-step ahead prediction for the
two-dimensional time series. The lower right panel corresponds to a generated trajectory.

models are given in Table 3.1. We also set λe, the hyperparameter controling the entropy regularizer
in NVSDS and NSVDD-EM models, to one in all our experiments. Regarding the optimization of
the neural networks parameters we use ADAM (Kingma and Ba 2014).

3.4.3 Lorentz Attracttor

Being an epitome of a chaotic dynamical systems, the Lorentz system was introduced as a model
of atmospheric convection (Lorenz 1963). The system is characterized by two chaotic attractors
— that is, separated regions of phase space with different dynamic behaviors. We simulated the
Lorenz system with different initial conditions and generated 100 trajectories which correspond to
our training set. We set K, the number of modes (experts) to two.

Intuitively, one would expect each attractor to be identified as one of the modes (experts) of the
model. In Fig. 6 we show the behavior of the NVSDS model on a test trajectory. As expected, each

33

Chapter 3. Switching Dynamical System

0 200
time

KMEANS

RSLDS

MoE

NVSDS-EM

NVSDS

0 200
time

Figure 7 – Switching behavior in an oscillatory signal. The solid line shows the one-step ahead prediction
of the different models. The color corresponds to the dominating expert (or chosen cluster in k-Means). The
left and the right column show two signals with different frequencies. Only the NVSDS model successfully
dissects the signal.

mode picks one attractor. We also generated trajectories in an open loop manner and observed an
explicit separation between the two different attractors, forming the well known “butterfly" shape.
These results, however, are meant to be a proof of concept. We do not show a comparison to the
other models since all of them are able to correctly dissect the signal. Nevertheless our models
(NVSDS, NVSDS-EM) are the first neural dynamical switching models successfully applied to this
dataset.

3.4.4 Switching Oscillatory Dynamics

We now consider a synthetic dataset with two dynamical modes (K = 2): two sine functions with
different frequencies, concatenated at regular time intervals. The switching behavior of the signal is
therefore stationary. The goal is to dissect the signal into these modes, that is, uncover the two
different frequencies. While this task is trivial for a human, and can easily be solved using signal
processing methods, we have found it to be highly non-trivial for a switching dynamical system —
which only sees one data point at a time. The guiding intuition is that, in a 2-expert model, each
expert learns a different sine function. Fig. 7 shows our results. The R-k-Means, rSLDS and MoE
models are not able to dissect the sine functions; they find instead a more local dissection into
“up-down" states. The NVSDS and the NVSDS-EM models perfectly dissect the signal, showing
the abstraction capabilities of these models. We asses these observations quantitatively by defining
a binary target vector ρ̂ indicating the dynamical mode which is present at a particular time-step.
Evaluating the mean squared error between the predicted ρ and ρ̂ yields a dissection error, which we
average over multiple trials (different initial conditions). The NVSDS (0.09) and the NVSDS-EM
(0.1) clearly outperform R-k-Means (0.26), rSLDS (0.4) and MoE (0.47).

The right column in Fig. 7 shows a second signal where both modes have full periods. The
NVSDS model exclusively finds the correct dissection and learns to switch between frequencies.
The comparison between the models suggests that both the non-linear transition function and the
attention mechanism within the switching of the NVSDS play a key role in our results.

The main difficulty in this task is the existence of different signal dissections (minima) with very
similar energies (in terms of the bound). The “up-down" solution found by the baseline models is
but one of these. Indeed we find quite complex learning curves, with the models jumping back and

34

Experiments

KMEANS

RSLDS

MoE

NVSDS-EM

NVSDS

Figure 8 – Dissection of a handwriting signal. We show the original data colored according to the
dominating expert.

fourth between different minima as the training progresses.

Figure 9 – Dissection of a handwriting signal for the NVSDS model for different sequences. The lower
row shows particular letters from the complete sequences for easier comparison.

3.4.5 Handwriting

To show the performance of our methodology in datasets exhibiting the full range of complex
behavior — non-linear, non-Markovian stochastic transitions — we concentrate on a handwriting
signal from the IAM-OnDB dataset. This consists of 13,040 handwritten lines written by 500
writers (Liwicki and Bunke 2005). We train on 900 sequences of 1100 data points and test the
behavior on held-out test sequences. We train the model by feeding in the velocity of the signal.
After training we select a test sequence and perform one-step ahead prediction. We color the signal
according to the predicted expert activity. The intuition is that each mode (expert) should pick a
specific stroke style like fast or curved strokes.

35

Chapter 3. Switching Dynamical System

Fig. 8 shows a comparison of the results we obtain for the different models. With R-k-Means
we basically find upwards, downwards and side-way movements, which serves as a good starting
point. The rSLDS model is unable to dissect the signal into different strokes. Presumably this
drawback is due to the limiting assumptions of linearity and Markovinity inherent in the rSLDS
model. The MoE model fails to dissect the dynamics, a single expert dominates the signal. Now,
while the NVSDS-EM and NVSDS share the same modular architecture as the MoE model, they
also profit from both the attention mechanism and the internal history of the switch dynamics. This
advantage leads to an interpretable dissection of the signal: for example, a downward movement
for the NVSDS model is consistently captured by the same sequence of experts (grey-red colored)
and a upwards movement to the right is captured by the expert indicated by the orange color. A
detailed comparison between the NVSDS-EM and the NVSDS model reveals that the NVSDS-EM
model features a more stochastic switching behavior and therefore can be seen slightly inferior to
the NVSDS model.

We further investigate the behavior of the NVSDS model in different writing styles in Fig. 9.
Considering the same letter written by different writers (the three f’s in the lower row) we observe
that our model consistently dissect the letter into the same sequence of experts. Furthermore, we
compare the disection of the capital letter ’N’ (lower row). Here, the sequence of experts is different
in the first stroke of the letter, which presumably reflects that these strokes where written in the
opposite direction. In conclusion, our model is able to capture different strokes and thus identifying
the building blocks of the individual letters.

Let us note that in this dataset we do not show the actual signal prediction of the models. The
reason behind this is that we did not optimize our architecture to perfectly learn this non-continuous
signal. Our actual predictions would result in non-readable writings. We are nonetheless only
interested in a dissection of the given signal into meaningful dynamical modes.

3.4.6 Basketball Dataset

Finally, we perform an exploratory analysis by applying the NVSDS model to basketball data.
Concretely, we consider player trajectories from games of the National Basket association (NBA).
First, we study the 2015/2016 season for the Detroit Pistons team. This dataset consists of the
court positions (x, y) at time t, for all players in 22 games. We selected a total of 199 trajectories.
Among those, 100 trajectories are selected as the train set. We test our model on the 99 remaining
trajectories. We train our model on the velocity of the players, which we compute from the data.

We present averaged expert specific vector fields (see caption for details) in Fig. 10. We train
a model with K = 16 and present the most interpretable 8 patterns on the test set. We obtain
a dissection of player movements based on speed and direction. For example, we uncover fast
movements which cut to the upper right corner (expert 2) or horizontal movements below the
basket (expert 1). We also observe movements away from the basket with different directions
(expert 3 and expert 4), possibly showing defense behavior. Further, some experts pick up slow
movements (expert 5 and 6) or even a standing still state (expert 7). In general, the experts obtain
similar movement patterns as found in (Linderman et al. 2017). In contrast to the experiments in
(Linderman et al. 2017), however, we train on a larger datasets showing the scaling abilities of the
neural model developed in this work.

We now aim to investigate the movements of individual players, whereby we focus on two players
from the California Golden State Warriors, Andrew Bogut and Stephen Curry. The former one is
playing as a center whereas the latter plays as a point guard. Traditionally, center players tend
to position themselves near the basket, whereas point guards tend to cover the whole court, as to
organize the general strategies. For each of the two players we create a different dataset picking
16 games for Bogut and 17 games for Curry and train on these dataset separately. We show the
two clearest patterns in Fig. 11 and uncover vertical (1b) and horizontal movements (2b) near the

36

Experiments

1 2

3 4

5 6

7 8

Figure 10 – Different movement patterns in the basketball dataset. We parcellate the court in 0.75m×0.75m
quadrants. For each quadrant we pick the trajectories which ’belong’ to a particular expert, i.e. for which
the predicted ρ is largest. Then, we average the velocities and obtain for each expert an averaged flow field
shown in the different panels.

basket for the center player Bogut. In contrast, the patterns for Stephen Curry extend over the
whole court. This player is known for preferring 3-point shots slightly more than other players which
is indicated by the pattern in expert 1c: Some velocity vectors seem to be tangential to the 3-point
line, indicating that the player moves along the line to position himself for a shot. Furthermore,
expert 2c seems to indicate counter-attack movements. Although qualitative in nature, these results
highlight the ability of our model to provide insights into the dynamical modes of rather complex
datasets.

37

Chapter 3. Switching Dynamical System

1b 2b

1c 2c

Figure 11 – Different movement patterns in the basketball dataset for individual Players. Visualisation is
the same as Fig. 10 with 0.6m× 0.6m quadrants. Upper row corresponds to Andrew Bogut, lower row to
Stephen Curry.

3.5 Discussion and Outlook

In the present chapter, we have provided a neural network solution for switching dynamical systems.
Our methodology builds upon variational approximate inference for the categorical variables indexing
of the dynamical modes. An attention mechanism and an entropy regularizer are introduced to
improve the detection of the modes. We applied our methodology successfully in diverse empirical
datasets.

Beyond the results shown in this chapter we have also made a couple of observations that we believe
to be important for switching dynamical systems. We have noticed that dynamical modes with
long-time scales are challenging to capture, e.g. to capture a complete letter in the handwriting
dataset. There are several reasons for this behavior. One is technical: it was argued recently that
the memory time-scale of the RNN is limited (Bai et al. 2018). We suspect that this small timescale
hinders our architecture from uncovering switches on a larger time-scale. Another issue we have
observed is the complicated energy-landscape: the time-scale of the switching is not explicitly
incorporated in our loss function, therefore slow and fast switching solutions can have similar energy.
Moreover, the modes’ statistics is crucial: e.g. in the handwriting dataset, one could consider a
particular user letter style as an individual mode. If only a few examples per user are provided,
then this particular mode appears only rarely. The same holds true for a dynamical mode with
a very long time-scale compared to the sample signal size. In this work, we have focused on the
dissection of complex signals. Our model learns the dynamics of the switches, which provides a
definite competitive advantage against simple detection algorithms, say MoE, i.e. we can predict
the sequence of modes not just detecting them.

In terms of future work, a major goal is to exploit the NVSDS model to perform both outlier
prediction and detection. We also plan to dispense with the RNN methodology and use Diluted
Temporal Convolutions to overcome the time-scale problem.

In the next chapter, we will move away from variational inference and work with a different procedure.

38

Discussion and Outlook

We will resource to adversarial training, where, instead of providing a posterior approximation, one
obtains samples from the data distributions. If used effectively, these methods provide more general
distributions, since they are not limited by the approximation required in variational inference.
More importantly, other divergences between distributions are used. It is known that the extensions
through optimal transports point of view allows us to incorporate data distributions that are
supported in low dimensional manifolds. The adversarial approach, when used successfully, provide
better data samples.

39

Part II

Adversarial Training and
Unsupervised Learning for

Populations

41

The expressibility of an inference model is severely constrained by the functional form, which
specifies both the likelihood, the prior, and in variational approximate inference, the approximate
posterior. The main driving force behind this form is tractability and computational complexity at
inference time. Although Bayesian non parametrics promise to extract more knowledge from data,
these algorithms are still limited by the forms imposed on the process priors, as well as limited
in practice, as sophisticated methods such as the introduction of auxiliary variables and inducing
points are required in order as to render the computations of the averages and conditionals possible.
After the enormous theoretical effort, one is confined to the domain applicability of the model
at hand. Hence, one would like to shed away from the theoretical complications and still retain
the model flexibility promised by nonparametrics methodology. In recent years, a new family of
implicit methods, have arisen which deliver these desired characteristics. They are implicit as they
do not require explicit forms for any of the components (likelihood or posteriors). Like MCMC
methodology, they recover the data distribution by allowing the practitioner to sample from the
data distribution.

Generative Adversarial Networks, or GANs for short, remove the requirement of explicit posterior
or conditional forms and deliver high flexibility. Similar to the Variational Autoencoder family,
GANs exploit the approximation capacity of multilayer perceptrons. Now, the approximate form of
the data distribution.

s = Φθ(·, ε), ε ∼ pε(ε), (93)

where pε(ε) is a simple distribution, such an isotropic Gaussian or uniform distribution. The
generator Φθ(·, ε) is specified as a deep neural network with model parameters θ. This allows
us to implicitly learn the true distribution of the data by defining the true data distribution
approximation through a nonparametric generator. Although the generator has parameters θ the
solution is nonparametric. One does not have direct access to the distributions, and the MLP
parameters serve as an intermediary of the generator. Instead of learning the distribution, we
approximate it by generating samples that are similar to the true distribution.

Since we are not able to evaluate the likelihood, a new training strategy is required. A discriminator
network D(·) is introduced, which is trained to discern between real data and the one sampled by
our generator. Training is accomplished via the game defined in the following min-max objective:

min
G

max
D

Ex∼Pr(x)[logD(x)] + Ex∼Pε(ε)[log(1−D(G(ε)))] (94)

The end solution of this game will minimmize the Jensen divergence between the data distribution
and that attained by the generator. Computationally this approach will profit from the samek
advantages of Deep Neural Networks as one is able to leverage the computational capacity of GPUs
with the matrix multuiplication requiered in the applications of the back propagation algorithm. In
the following chapter, we will make use of this methodology for the study of stochastic processes.
Specifically, we will return our attention to point processes in the domain of queues systems. We
are now interested in predicting the time a system can provide a service to a set of costumers. To
study the dynamics, one is interested in the arrival time of the customers and the system’s service
time for each customer. We will exploit the adversarial methodology in a conditional sense. Given
a representation of the arrival process (obtained in terms of neural networks), we will sample the
service time using an adversarial generator. Now, this generator not only depends on the noise ε
but on the obtained representation.

43

Chapter 4

Recurrent Adversarial Service Times

In this chapter, we return our attention to the point process formalism. Now, we provide as a
contribution a new methodology for the queueing problem, namely an implicit methods to sample
from the service time of a system. In the application area intended, data is rich, and one can
provide flexible descriptions with almost no prior knowledge. Queueing systems study the interplay
between two processes, that of costumers arrivals, and that of systems services. To accommodate
the information contained in the costumer’s process, we work with a neural network description of
the point process, the Recurrent Market Point Process. This framework delivers a representation
of the data in a hidden state vector, customary in the recurrent network formalism. This hidden
vector encodes information, which is then conditioned in an adversarial solution to the service
distribution i.e. we leverage the representation for further modeling purposes, establishing the
dependence among the costumer’s services with this conditionals.

We proceed to motivate the application area. The ultimate success of any service provider rests on
its ability to quickly and efficiently satisfy its customers: a mobility system is only successful as
long as its users arrive on time; a block-chain is reliable provided low latency of its transaction
times is ensured; Internet services can only retain users if they provide a quick and fast response.
To operate systems like these, one needs to understand not only when customers will require a
service but also how the system can react and respond to demands. Moreover, one should be able
to adapt the system to external events dynamically. Examples include sudden disruptions of a
mobility system due to a car crash or weather conditions; or financial crises and breaking news
affecting block-chain transactions.

Recent research has focused primarily on the client-side of a service system. For instance, research
on dynamical recommender systems aims at understanding the change in user preference over
time. These changes, together with trends as to the popularity of items, determine suitable
recommendations (Wu et al. 2017; Jing and Smola 2017; Zhou et al. 2018). Another variant of this
line of research analyzes Customer Dynamics using point process theory, in which user behavior is
modeled using parametric forms such as Poisson or Hawkes processes. However, these parametric
forms constrain the model’s expressibility to capture the users’ dynamic behavior. This drawback
has lately been tackled employing flexible non-parametric models such as recurrent neural networks
and adversarial neural networks (Mei and Eisner 2017a; Du et al. 2016b; Xiao et al. 2017).

Another line of research focuses on the service side of the system, in particular on service times.
Corresponding approaches typically resort to queuing theory: a customer expresses a demand,
and the system responds according to the available servers and server load. Within the queuing
theory, the customer arrival dynamics are modeled with a point process and, yet again, parametric
forms are assumed. Results are usually limited to moments of the system size distribution (Daw
and Pender 2018; Asmussen 2008) or are, in some cases, based on Bayesian inference (Sutton and
Jordan 2011). The latter is often neither flexible nor scalable enough to handle the millions of
customers in modern service systems. The work presented here overcomes both of these limitations

45

Chapter 4. Recurrent Adversarial Service Times

by combining recurrent neural networks (RNN) for modeling the customer arrival process with
flexible service time distribution models.

In recent years, adversarial methods have shown to capture complex data distributions, achieving
impressive results in image and text generation (Goodfellow et al. 2014a). Here we use these
methodologies to model conditional service time distributions, exploiting the information encoded
in the customer arrival dynamic representations learned via RNNs.

We summarize the contributions of the present chapter as follows:

• First deep solution to service times for queue systems: to the best of our knowledge,
this is the first approach exploiting the representation learning capabilities of deep neural
networks for point processes to infer service time distributions modelled as both, multilayered
parametrizations of known distributions or non parametric models through adversarial neural
networks. The adversarial models capture multi modal and long tail distribution of service
times.

• General solutions: our methodologies deliver a holistic solution for general families of
arrival and service processes, superior to classical theoretical models that are constrained to
some specific nature of the arrival or service process.

• Dynamic Services: we introduce solutions that characterize the independent dynamics of
the service times, allowing for exogenous events to be characterized implicitly.

• Bitcoin Mempool: To the best of our knowledge, we provide the first deep and nonpara-
metric solution for the prediction of the unconfirmed transactions in the network.

• Predicting and sampling from point process: additionally, we provide a new general
framework for prediction of- and sampling from recurrent point process models.

Our work is divided as follows: In Section 2 we present the theoretical basis of our models which
are then introduced in Section 3. Section 4 contains the empirical evaluation of our approach and
we conclude in Section 5.

46

Related work

4.1 Related work

The theory of queues has a long history of both exact and approximated results, and these apply
to single queues as well as to networks of them (Williams 2016). Often these studies focus on
Markovian queues, i.e. queues for which both inter-arrival and service times are exponentially
distributed. In such cases the queue-length process (that is, the number of clients in service process)
is given by a continuous-time Markov chain, which makes it an object suitable for theoretical
analysis (Bertsimas 1990). For example, recent efforts investigate infinite-server queues whose
arrivals follow a (Markovian) Hawkes process, and whose service time distributions are either
phase-type or deterministic (Daw and Pender 2018). Their results include exact moments and the
moment generating function of the queue-length process. Similarly, infinite-server queues whose
arrival process is driven by a Cox process have also been considered (Boxma et al. 2019). Different
from this works, our approach is able to generate holistic solutions for general families of arrival
and service distributions.

In contrast to queue-length processes, the departure process is not in general a discrete-time Markov
chain, even for Markovian queues. This makes sense, simply because keeping a client longer in
service, or finishing serving her sooner, can cause slow reallocation of resources which, in turn,
may affect the departure times of clients who have arrived much later. Despite this fact, Sutton
and Jordan (2011) were able to infer service time distributions using Markov Chain Monte Carlo
methods, to model queuing networks with missing data. In fact, they argued that such long-range
non-Markovian effects within the departure process take place only for “large" departure times,
which were unlikely to occur. Their approach, however, is not scalable enough to handle the large
datasets of modern service systems which, in turn, may encompass different time scales and worsen
the non-Markovian effects inherent in the departure process. We avoid these issues altogether by
directly learning a generative model of the service time distributions.

More recently, and most related to our work, Chapfuwa et al. (2018) modeled event-time distributions
using covariate information via Generative Adversarial Networks (GANs). We build on top of this
work to capture the dynamic character of the client arrival process, and the independent dynamics
of the server system. Finally, early approaches use neural networks as meta-models for queuing
networks (Chambers and Mount-Campbell 2002). Different from this research, we use deep neural
networks to infer service time distributions.

4.2 Background

In this section we introduce the basic concept of queues and the underlying theory of point processes.
We also introduce the Recurrent Point process model (RPP) (Du et al. 2016b), which serves as a
starting point to our service time models. The RPP model provides a rich representation of the
dynamics of costumers arrivals, modeling conditional intensity functions with non parametric state
transitions via recurrent neural networks.

4.2.1 Queues

In order to define a queuing system one must specify the nature of the client arrival process, as
well as the specifics of the service system. The arrival of clients may follow a Poisson process, but
its rate may jump due to external events. Likewise, one system might allow for a fixed number of
clients to be served at a time, or the service times might dynamically change with every incoming
client.

The standard notation used to specify the characteristics of the different queuing systems consists
of characters separated by slashes thus ·/ · /· (Kendall 1953). The first character describes the

47

Chapter 4. Recurrent Adversarial Service Times

customer arrival process, namely the inter-arrival distribution. Typical examples are “M" for
memoryless (Poisson), “D" for deterministic times and “G" for general distributions. The second
character specifies the service time distribution, and the third one the number of servers available
to the system. For example, the M/M/1 queue denotes a queuing system with Poisson arrivals,
exponentially distributed service times and a single server.

Let us denote the arrival time of the ith client as ai ∈ R+. After arriving to the system, the client
waits to be served up until the service dynamics chooses to start the corresponding service. We
denote this waiting as wi ∈ R+.

Once the service is completed. If for a given arrival ai no departure is observed we set the departure
time di = ∞. We define D as the set of uncensored events, i.e. the set of arrivals which have
departure within our observation time. Accordingly, we define C as the set of censored events which
have no departure within this window.

the client leaves the system at departure time di ∈ R+. The sequence of departure times also defines
a point process, to which we refer in the following as departure process. The service time si ∈ R+ is
defined as the amount of time the ith client spends being served after the waiting period, that is
si = di − ai − wi. Finally, the response time ri ∈ R+ corresponds to the total time the customer
requires to be processed, including the waiting time i.e. ri = di − ai.

In this work we provide a general solution to the service time distribution of the G/G/∞ queuing
problem1.

Service Time Distributions

We now explain two of the most common general service models. The practitioner uses these models
in order to obtain theoretical results on the matter. We are going to use them in the next sections
as ways to validate our methodology. We will use these models to create synthetic data upon which
we will train our model.

Phase Distribution: Here we decompose the service as a series of exponential service steps. It
is defined with the time taken between the initial state and the absorbing state 2 in a continuous
time Markov chain. It can be shown that such phase type distributions can approximate any non
negative continuos distribution. For n phases, given a continuous time Markov chain (CTMC)

Γ =

[
0,0

s,S

]
, (95)

where S and s corresponds to a Markov chain’s transitions probabilities, the 0 elements specify
the absorbing state nature, since there is no probability for leaving those states. These states are
synthetic and are only intended to define an approximation to how time evolves within the system.

Processor Sharing: A processor sharing queue is a queue model where the system handles infinite
clients simultaneously but must reallocate resources with each new client arrivals or departure.
It was introduced by Kleinberg (cite) to model computer systems that handle multiple clients
simultaneously. One can think that each client in the system at any time instantaneously receives
1/U(t) service power, where U(t) is the number of unfinished clients (clients in the queue),

si =

∫ di

ai

U−1(t)dt (96)

1Due to the non-parametric nature of our solutions, the rich distributional forms we obtain allow for a solution of
the G/G/k problem, where the number of available servers “k" is unknown. Under this interpretation of the data,
one should reinterpret our results as delivering the response time of the system.

2a type of first passage time

48

Background

if one samples a priori the service times si, the departure times are specified as a solution to the
system of equations defined with Equation 96 and

U(t) =

N(t)∑
i=1

1{ai<t}1{t<di} (97)

For the arrival process we will make use of the following models: (1) Arrival processes: we
consider two different arrival processes, namely (i) the Hawkes Process (H) as presented in section
2.1.3, (ii) the Non-linear Hawkes Process (NH) (Zhu 2013), which is an extension of the Hawkes
process that allows for inhibitory behavior through a non-linear function over the history of arrivals.
λNH(t) = φ (λH(t)).

See (Sutton and Jordan 2011). The combinations of the two arrivals and the two service models
provide four different synthetic queues (H-PT, H-PS, NH-PT, NH-PS). We will use the models
in order to test our methodology after our model is presented.

4.2.2 Recurrent Point Process

Here we write the likelihood of the Poisson Process from an intensity defined through a recurrent
neural network following the procedure stated in (Mei and Eisner 2017b), (Du et al. 2016c). We
also follow our discussion in Section 2.1.1, and restate some formulae for ease of presentation. We
define a point process on a compact support S ⊂ R. Formally, the likelihood is written down as an
inhomogeneous Poisson Process between arrivals conditioned on the filtration Hj ≡ {a1, ..., aj}3
(Daley and Vere-Jones 2007a). For one dimensional processes the conditional intensity function
reads

f∗(t) = λ∗(t) exp

(∫ t

aj

λ∗(t′)dt′

)
. (98)

The functional dependence of the intensity function is given by a recurrent neural network (RNN)
with hidden state hj , where an exponential function guarantees that the intensity is non-negative

λ∗(t) = exp
{
vt · hj + wt(t− aj) + bt

}
. (99)

Here the vector vt and the scalars wt and bt are trainable variables. Bare in mind that although
recurrent networks (Graves 2013) are defined over sequences, the Point Process likelihood Eq. (98)
requires evaluation of the function over the whole support S. Both approaches (Mei and Eisner
2017b) (Du et al. 2016c) bypass this problem by defining decaying continuous values between two
arrivals aj and aj+1, either for memory cells in LSTMs or hidden layers. The update equation
for the hidden variables of the recurrent network can be written as a general non linear function
hj = fθ(hj−1,aj) where θ denotes the networks parameters. Once we perform the integration in
Eq. (98) one obtains

f∗(t) = exp

{
vthj + wt(t− aj) + bt +

1

wt
exp(vt · hj + bt)

− 1

wt
exp(vt · hj + wt(t− aj) + bt)

}
.

We can learn the model parameters by maximizing the joint model likelihood LRPP =
∑
i log f∗(δi+1|hi)

where δi+1 = ai+1 − ai denotes the interarrival time.

Prediction and sampling.

For both prediction and sampling we require P (T |Hj), the distribution that the next point arrives
at T given the previous history until aj . First, notice that the probability of no point arriving

3history of arrivals

49

Chapter 4. Recurrent Adversarial Service Times

between aj and aj + τ can be obtained as an integral over P (T), say

exp

{
−
∫ aj+τ

aj

λ(t)dt

}
=

∫ ∞
τ

P (T)dT ≡ G(τ), (100)

P (T) = −dG(T)

dT
, (101)

where we used the Poisson distribution for zero arrivals in the first expression. Solving for G(τ) we
find

G(τ) = exp

{
−eαj 1

wt
[ew

tτ − 1]

}
, (102)

with αj = vthj + bt. The average time of the next arrival is then given by

E[T] =

∫ ∞
0

P (T)T dT =

∫ ∞
0

G(T) dT, (103)

where we used both Eq. (101) and Eq. (102). Finally, in order to sample the next arrival time one
can use inverse transform sampling on P (T). To this end one requires the inverse of the cumulative
function of P (T). We calculate the cumulative function thus

F [P (T)] =

∫ τ

0

P (T)dT = −
∫ τ

0

dG(T)

dT
dT = G(0)−G(τ) (104)

whose inverse function then follows

F−1[P (T)](y) =
1

wt

{
−αj + log

(
wt
(

log

(
−1

y − 1

)
+
eαj

wt

))}
. (105)

4.3 Models: Deep Service Times

In this section we introduce our models. Classical queueing studies follow a traditional form in
which results are stated in terms of moments of distributions (service or waiting times). Due to the
general flexibility of adversarial approaches, one is able to provide a more rich take on the matter.
This makes comparision and validation difficult specially in our application areas where one does
not know the direct model to compare against, given that there are a wide range of unknowns in
the data. To overcome this, and to provide a more fair comparison. We start by introduing what
we call the Neural Service times. This first models, make use of the advantages of neural networks
by providing a flexible parametrization of classical distributions which are known as stationary
solutions in the classical models. This guarantees that the classical knowledege is leverages upon
the more modern approach. Our final solution, in the realm of adversarial training also posses deep
learning characterictics, do to this general use of the functional approximations, we named our
family of models under the umbrella of Deep Service Times.

Fig. 12 shows an overview of our service time distribution models, which take the hidden state of a
trained RPP model as input thus providing a rich representation of the customer arrival dynamics.
We provide two methodologies: (i) we propose parametric forms for the service time distribution
where the parameters of known survival distributions are defined by multilayered perceptrons.
We shall refer to these model as neural service (NS-X) models, where the X labels an specific
survival distributions (see Section 4.3.1). This set of models are a natural generalization of classical
stationary solutions to the queue problem (Kingman 1993) and will serve as our baseline models in
what follows; (ii) we propose two adversarial solution: first, a static one in which the dynamics
of the system is encoded only through the arrivals RPP process (called AS model). Second, a
dynamical model, wherein the adversarial generator encodes the dynamics of the systems service
via a non parametric state transition function parametrized by a recurrent neural networks (called
RAS model).

50

Models: Deep Service Times

Figure 12 – Deep service time models. Left panel: the costumer arrivals aj are modelled using the
recurrent neural point process (RPP) with hidden state hj . This model is trained by maximizing the joint
log-likelihood LRPP defined in Section 4.2.2. Right panel: the service time models take the hidden state of
the arrival model hj and covariates xj as input and infer the service time distribution. These models are
trained either by maximizing the Log-Likelihood Ls or by solving a minimax game between critic fϕ and
generator Φθ.

4.3.1 Neural Service Times

We start with the costumer arrival point process ai. We consider the RPP model as defined in
Eq. (99) and denote its hidden state representation as haj = gη(aj ,h

a
j−1), where η labels the set of

parameters of the RPP network.

To model the distribution of times each costumer will be in service we introduce the generative
model

si ∼ Φθ(s|hai ,xi),

with parameter set θ. This model capture the complicated dependencies in the arrivals dynamics ai
— encoded through the hidden states hai , and any other covariates xi in the system. This conditional
form allows our model to leverage the dynamical information of the arrival process. We define Φθ
as one of the following five distributions: Gamma (G), Exponential (E), Pareto (P), Chi-square
(C) or Log-normal (L), whose parameter set P are defined via multilayer perceptrons. Thus for
the NS-G model we have si ∼ Gamma(αai , β

a
i) with P = [αai , β

a
i] = MLPθ([hai ,xi]). The neural

service models can then be interpreted as a marked RPP where the marks are continuous and
have a dynamical character whose distribution corresponds to that of the service times. We train
these models by maximizing the log-likelihood of our generated service times with respect to the
uncensored data set D.

Censored events. To capture censored events we introduce the probability of obtaining an
expected remaining service time bigger than the observation window Ti = T − ai

Φ̄(si) =

∫ ∞
Ti

Φ(τ |,hai ,xi)dτ .

The complete log-likelihood of the NS-X model then reads

Ls =
∑
D

log {Φ(si|hai ,xi)}+
∑
C

log
{

Φ̄(si)
}
.

4.3.2 Adversarial Service Times

As stated in the introduction of the current section, the expressibility of our model is severely
constrained by any functional form imposed on Φ(s). In order to allow for more general service time

51

Chapter 4. Recurrent Adversarial Service Times

distributions we consider Generative Adversarial Networks (GAN) (Goodfellow et al. 2014a), we
now adapt the general formulation as presented in Eq. 93, the approximate (service time) samples
si are drawn as

si = Φθ(s|ε,hai ,xi), ε ∼ Pε. (106)

Here Pε is a simple distribution, e.g. isotropic Gaussian or uniform distribution, and the generator
Φθ is modeled by a deep neural network with parameter set θ, conditioned on both the arrival
dynamics and the system’s covariates. In our experiments we define Φθ as a 3-layer perceptron and
add a noise term drawn from a Gaussian N (0, 1) at each of this layers, as to increase the variance
in the samples from Φθ (Chapfuwa et al. 2018).

This class of models are trained by minimizing specific distances (or divergences) between the
empirical distribution — here the distribution of uncensored events PD, and the distribution Pθ

of the generated samples {Φθ(s)}. Each such distances differ on the impact they have on the
convergence of Pθ towards the empirical distribution, and thus on the training stability. Here we
choose to minimize the Wasserstein-1 distance (WGAN) (Arjovsky et al. 2017), which has been
shown to be continuous everywhere and differentiable almost everywhere, as opposed to e.g. the
Jensen-Shannon divergence minimized in the original GAN formulation.

Using the Kantorovich-Rubinstein duality (Villani 2009) to compute the Wasserstein-1 distance
one can express the WGAN objective function L as:

L = min
θ

max
fϕ∈L1

Es∼PD [fϕ(s)]− Es∼Pθ [fϕ(s)] , (107)

where the maximum is over all 1-Lipschitz functions L1, defined as functions whose gradients have
norms at most 1 everywhere. Within the WGAN formulation the critic function fϕ is modeled by a
deep neural network with parameter set ϕ and needs to fulfill the Lipschitz constrain. In order to
enforce it we follow (Petzka et al. 2018) and add a regularization term of the form

L1 = Es∼Pi

[
(max {0, |∇sfϕ(s)| − 1})2

]
, (108)

where Pi is implicitly defined as sampling uniformly along straight lines between pairs of points
sampled from the empirical PD and the generator Pθ distributions (Gulrajani et al. 2017). Minimizing
Eq. (107) under an optimal critic function with respect to θ minimizes the Wasserstein distance
between PD and Pθ — this defines the adversarial game.

In our experiments the critic is defined as a 3-layer perceptron and is also conditioned on the
covariates fϕ = fϕ(s,x).

Censored events. To train Φθ to learn the distribution of censored events PC we follow (Chapfuwa
et al. 2018) and consider a second regularizer which penalizes sampled service times smaller than
the censoring time T , that is

L2 = Ex∼PC,ε∼Pε [max {0, T − Φθ(s|ε,ha,x)}] . (109)

We also correct for situations in which the proportions of uncensored events is low through

L3 = Eε∼Pε,(s̃,x)∼PD [abs {s̃− Φθ(s|ε,ha,x)}] . (110)

Our full objective function reads L̃ = L +
3∑
i=1

λiLi, where λ1 = 10 and λ3 = 1 throughout all

experiments whereas λ2 changes depending on the data sets.

4.3.3 Recurrent Adversarial Service Time

The response of a service systems to newly arrived customers intuitively has a dynamic component
(e.g. the dynamic reallocation of resources depending on the number of arrivals still on service,
the response to past events disrupting the service, etc). In order to both capture such a dynamic

52

Models: Deep Service Times

Table 4.1 – Main results on synthetic data sets.

NH-PT NH-PS H-PT H-PS
mean 0.052 0.0004 0.0061 2.125e-5

error KS error KS error KS error KS
NS-G 0.207 0.218 0.020 0.520 0.254 0.879 2.18e-5 0.401
NS-E 0.209 0.154 0.0006 0.082 0.432 0.979 3.06e-5 0.501
NS-P 0.210 0.330 0.0007 0.610 0.443 0.981 2.09e-5 0.501
NS-C 0.372 0.242 0.061 0.527 0.037 0.988 0.029 0.511
NS-L 5.293 0.525 6.158 0.479 4.282 0.971 8.500 0.555
ATE 0.219 0.193 0.0371 0.870 0.348 0.376 3.96e-3 0.199
RATE 0.218 0.124 0.0031 0.062 0.302 0.315 1.37e-4 0.136
AS 0.215 0.113 0.0016 0.448 0.250 0.235 1.24e-4 0.121
RAS 0.207 0.094 0.0005 0.042 0.242 0.212 1.09e-4 0.110

Table 4.2 – Main results on empirical data-sets.

Github NY Stackoverflow
mean 0.0113 0.0068 0.0193

error KS error KS error KS
NS-G 0.073 0.396 0.025 0.154 0.378 0.480
NS-E 0.074 0.458 0.007 0.251 0.379 0.509
NS-P 0.071 0.604 0.008 0.367 0.378 0.466
NS-C 0.096 0.341 0.182 0.632 0.403 0.533
NS-L 6.37 0.496 0.155 0.627 15.93 0.595
ATE 0.217 0.517 0.078 0.126 0.382 0.233
RATE 0.112 0.240 0.098 0.165 0.388 0.492
AS 0.071 0.039 0.006 0.094 0.383 0.226
RAS 0.072 0.034 0.005 0.030 0.369 0.281

response and implicitly characterize exogenous events we approximate the system’s transition
function with a stochastic recurrent neural network

hΦ
i = gθ(εi,h

a
i ,xi,h

Φ
i−1), εi ∼ Pε, (111)

where gθ is a RNN with parameter set θ and hΦ
i is the hidden state encoding the independent

dynamic character of the service system. The model is informed about the incoming arrival through
the hidden state hai of the arrival RPP model and the arrival covariates xi. Its noisy component,
on the other hand, comes from Pε, an isotropic Gaussian sampled at each arrival time.

We then define the generator si = Φθ(s|hΦ
i , ε) as a 3-layer perceptron with the RNN’s hidden

representation Eq. (111) as input and an additional noise terms ε added in each layer. We train the
model by minimizing Eq. (107) together with the regularizers Li as above. Let us note here that
recurrent generative models with adversarial training has been considered before (Mogren 2016),
(Hyland et al. 2018). In our experiments the critic function fϕ = fϕ(s,xi) remains static and is
defined once more as a 3-layer perceptron.

Alg 1 summarizes the RAS model algorithm. Note that the parameters of the RPP model (ρ in
line 9 of Alg 1) are fixed and optimal.

4.3.4 Bitcoin Mempool

Bitcoin is a complex protocol. We provide here a brief sketch of the components necessary to
understand the analysis presented in this work, however due to the many moving parts of the

53

Chapter 4. Recurrent Adversarial Service Times

Algorithm 1: Recurrent Adversarial Service Time
1: Data: Dataset D = {(ai, si,xi)}Ni=1; Critics Iterations per Generator Iterations nc
2: while θ not converged do
3: for i = 1, ..., N do
4: Draw {(ai, si,xi)} ∼ PD
5: for k = 1, ..., nc do
6: Draw εi, ε̃i ∼ Pε
7: Draw δ ∼ Uniform(0, 1)
8: Update hai ← gρ(ai,h

a
i−1)

9: Update hΦ
i ← gθ(εi,h

a
i ,xi,h

Φ
i−1)

10: s̃i ← Φθ(ε̃i,h
Φ
i)

11: ŝi ← δsi + (1− δ)s̃i
12: Li ← fϕ(s̃i)− fϕ(si)

13: +λ (max {0, |∇ŝifϕ(ŝi)| − 1})2

14: ϕ← Adam(∇ϕLi)
15: Draw εi ∼ Pε
16: θ ← Adam(∇θ(−fφ(Φθ(εi,h

Φ
i))))

17: return Φθ

system this is necessarily a superficial overview. Interested parties are referred to (Nakamoto
2008) for a more complete picture of the system. The decentralized currency protocol known as
Bitcoin was proposed by Satoshi Nakamoto (Nakamoto 2008). The system utilizes a peer-to-peer
(P2P) architecture that enables users to send and receive transactions denominated in units of
BTC. Users are represented in the network by a public/private key pair. Units of BTC can be
transmitted to a user by specifying a hash of that user’s public key as the receiving party, providing
a degree of pseudo-anonymity. Users can generate many public keys, i.e. receiving addresses. The
corresponding private keys are used to sign (authorize) transactions. Private keys are stored in a
“wallet” either locally or provided as a hosted service. To participate in the Bitcoin network the
user runs a client software, such as the Satoshi client, which communicates with a set of peers.
Transactions are broadcast by the Bitcoin client and received by the peer-to-peer network. They
are confirmed after having been added to the “blockchain” - similar to a linked list with the subtle
difference that it references the previous block using its hash rather than a pointer. This data
structure contains blocks of all accepted transactions since the genesis of the system.

Every full node running a Bitcoin client maintains a complete copy of this public blockchain.
The block generation process confirms new transactions. It necessitates the satisfaction of a
computationally expensive “proof of work” puzzle. A valid solution to this puzzle entitles the party
that deliverers it to the wider network the privilege to issue themselves a reward in the form of newly
minted coins. The information available through the graph structure of the Bitcoin P2P network is
limited due to the dynamic block formation process. Each node only has direct knowledge of the
peers to which its client is connected. The graph of all transactions can be constructed entirely from
the publicly available blockchain, wherein the nodes of the graph correspond to Bitcoin addresses
and the edges to transactions performed between those addresses. In this work we empirically study
significant global properties of the Bitcoin transaction graph.

With a total market capitalization in excess of $100,000,000,000 (ElBahrawy et al. 2017) Bitcoin is
the world’s largest blockchain-based cryptocurrency. The plethora of alternative public blockchain-
based cryptocurrencies, many of which are based largely on the open source Bitcoin specification,
are amenable to the analyses herein presented.

In the following we modify our approach to analyze data from a specific type of queue: the
transaction queue of the Bitcoin network. Bitcoin transactions are confirmed after having been
added to the Blockchain. The creation of each block defines a point process which can be understood
as a departure process for the transactions, thus encouraging the modelling of the system dynamics
as a queue system. Specifically, we analyze the Bitcoin mempool, the set of unconfirmed transactions

54

Models: Deep Service Times

Figure 13 – Explanation of the mempool dataset creation (a), Raw Mempool Data View

u in the Bitcoin network. Here, the creation of a block at time di generates a sudden drop bi in the
number of unconfirmed transactions ui (Fig. 13). The set of unconfirmed transactions plays the
role of waiting clients, and the creation of a block specifies the simultaneous departure of many
clients (transactions).

Uncon merd transactions Accepted transactions

Figure 14 – Deep service time models overview. Panel (a) (Left): the customer arrivals ai are described
with the RPP model with hidden state hai . It is trained by maximizing LRPP. (Right): The service time
models take hai and covariates xi as input. They infer the service time distribution either by maximum
likelihood (NS) or adversarial training (AS and RAS model)

We first model the independent dynamics of the number of unconfirmed transaction with the
generative model

ui+1 = ΦUθ (u|hUi), hUi = gθ(ε, τi, ui,h
U
i−1). (112)

Here gθ is a RNN with parameters θ, hUi encodes the history of ui and τi is shown in Fig. 17a. We
present two approximations to the mempool problem: (i) a parametric one, which we called Neural
Meempool Service (NMS) for which ΦUθ = Gamma(αui , β

u
i) with [αai , β

a
i] = MLPθ(hUi) and ε = 0;

(ii) and a nonparametric one, which we called Adversarial Mempool Service (AMS), in which ΦUθ
is given by a 3-layer perceptron and for which hUi is a now random variable with ε ∼ Pε = N (0, 1)

in Eq. (112).

Now, the creation of the blocks which form part of the Blockchain defines a departure process which
we describe using a RPP model with intensity function

λ∗d (t) = exp {vtM · hMj + vtU · hUj + wt (t− dj) + bt}, (113)

where hUi contains the dynamic information of the unconfirmed transaction process whereas
hMi = g̃φ(bi, di, τ̃i,h

M
i−1), with g̃φ a RNN describing the departure dynamics. Finally we introduce

a generative model for the accepted transaction thus

bi+1 = ΦMφ (b|ε,hMi ,hUi−1), (114)

with ε = 0 and ΦMφ a Gamma function in our NMS formulation, or ε ∼ N (0, 1) and ΦMφ a 3-layer

55

Chapter 4. Recurrent Adversarial Service Times

perceptron in our nonparametric AMS version. We train the NMS model via maximum likelihood
and AMS using Eqs. 107 and 108; the RPP block-creation model is trained as described in Section
4.2.2. The complete overview of the Bitcoin Mempool models is given in Fig. 14 and the algorithm
for the AMS model is given in what follows

We now present the algorithms for the two components of the Adversarial Mempool Service (AMS)
model. Alg. 2 shows the algorithm for the Unconfirmed Transactions (UT) model. After training
the latter we used its hidden states hUi , which encode the history of unconfirmed transactions as
input to the second component of the AMS model: the Block Marked-RPP (BMRPP) model. The
algorithm for the BMRPP model is presented in Alg. 3.

Algorithm 2: Adversarial Mempool – Unconfirmed Transaction
Data: Dataset D = {(ui, τi)}Ni=1. Critics Iteration per Generator Iterations nc
while θ not converged do

for i = 1, ..., N do
for k = 1, ..., nc do

Draw {(ui+1, τi)} ∼ PD
Draw εi, ε

′
i ∼ Pε

Draw δ ∼ Uniform[0, 1]
Update hUi ← gθ(εi, τi, ui,h

U
i−1)

ũi+1 ← ΦUθ (ε′i,h
U
i)

ûi+1 ← δui+1 + (1− δ)ûi+1

Li ← fϕ(ũi+1)− fϕ(ui+1) + λ1 (max {0, |∇ufϕ(ûi+1)| − 1})2

ϕ← Adam(∇ϕLi)
end
θ ← Adam(∇θ − fϕ(ΦUθ (εi,h

U
i)))

end

end
return ΦUθ

4.4 Experiments

In this section we provide the experimental framework upon which we tested our model. First we
introduce the datasets which were use in the experiments. We provide synthetic datasets with
established models for both the arrivals and the service processes, as well as empirical datasets
which demonstrates the ability of our approach to handle diverse application areas in an flexible and
scalable manner. Finally we specify the details of the neural networks architectures implemented
for the experiments, as well as learning parameters and any other hyperparameters as required in
the model specification above.

4.4.1 Empirical datasets

We now introduce the empirical datasets upon which we tested the proposed methodology. As such
temporal point process are able to model a wide range of phenomena. In the realm of computer
science, much interest is devoted to how internet services such as Google and Amazon, handle
thousands of request per day. Queues network provide a model for this services. In our work
however we concetrate on the area of the social web as well as mobility services. Here the service is
an abstract representation to the users of webpages that provide as whole the service in the given
web pages. To our knowledge this is the first work of its kind which provide an understanding of
the social web as a queueing abstraction. Through this abstraction one is able to gain the richness
of a decoupled description of the systems dynamics. Costumers and Service is differeciated and
such an abstraction allows to highlight the interplay which gives rise to a notion of response, as

56

Experiments

Algorithm 3: Adversarial Mempool – Block Marked-RPP
Data: Dataset D = {(ui, bi, bi+1, di, τi, τ̃i−1,h

U
i)}Ni=1. RPP parameters Θ = {φ,vtB ,vtU , wt, bt}.

Critics Iteration per Generator Iterations nc
while Θ, ρ not converged do

for i = 1, ..., N do
Draw {(ui, bi, bi+1, di, τi, τ̃i−1,h

U
i)} ∼ PD

Draw εi ∼ Pε

Update hBi ← g′φ(bi, di, τ̃i−1,h
B
i−1)

λ∗d (t)← exp {vtB · hBj + vtU · hUj + wt (t− di) + bt}
LiRPP ← log f∗(δi+1|hUi ,hBi)

Θ← Adam(∇ΘLiRPP)

for k = 1, ..., nc do
Draw εi ∼ Pε

Draw δ ∼ Uniform[0, 1]
b̃i+1 ← ΦBρ (εi,h

B
i ,h

U
i)

b̂i+1 ← δbi+1 + (1− δ)b̃i+1

Li ← fϕ(bi+1)− fϕ(b̃i+1) + λ1

(
max

{
0, |∇bfϕ(b̂i+1)| − 1

})2

ϕ← Adam(∇ϕLi)
end
ρ← Adam(∇ρ − fϕ(ΦBρ (εi,h

B
i ,h

U
i)))

end

end
return ΦBρ

(a) NH-PT (b) NH-PS (c) H-PS

Figure 15 – Comparison among the probability distributions obtained form our best models (indicated
in the panel caption) and the theoretical models (pareto - green, lognormal-blue and gamma - orange).
The distributions are inferred on the sequence from the test set that yields the best KS value respectively
for each dataset. The lines represent the distributions obtained by fitting the theoretical models using
maximum likelihood.

well as an intrinsic concept of system memory.

Stackoverflow: a questions answering platform for programmers. We define the costumers arrivals
as the point in time when questions are posted by the users of the web page. We define the service
time as the elapsed time between a question an its subsequent accepted answer time. This view,
establish the ensemble of users which provide answers as the service system. We analyze a total of
2× 107 questions.

57

Chapter 4. Recurrent Adversarial Service Times

(a) Github (b) Stackoverflow (c) NY

Figure 16 – Comparison among the probability distributions obtained form our best models (indicated
in the panel caption) and the theoretical models (pareto - green, lognormal-blue and gamma - orange).
The distributions are inferred on the sequence from the test set that yields the best KS value respectively
for each dataset. The lines represent the distributions obtained by fitting the theoretical models using
maximum likelihood.

(a) Transactions Adversarial (b) Service Adversarial

Figure 17 – Comparison among the probability distributions obtained form our best models and the
theoretical models (pareto - green, lognormal-blue and gamma - orange). The distributions are inferred
on the sequence from the test set that yields the best KS value respectively for each dataset. The lines
represent the distributions obtained by fitting the theoretical models using maximum likelihood. Inferred
probability distributions for transactions (a) and services (b) datasets.

Github: The version control repository and internet hosting service. As costumers arrivals, we
defined the creation of an issue in a given repository. Its departure time is the moment the given
issue was closed. under this view, the set of costumers associated with a given repository, are
though of the service system. We analysed the top 500 repositories in the platform in 2015 4. For a
total of 1.5× 106 different issues.

New York City Taxi Dataset (NY): The dataset contains data of individual taxi trips in New
York city. Costumers arrivals are defined as starting time of the trip and the departure time

4ranked by the number of issues

58

Experiments

(a) Mempool Service (b) Github

Figure 18 – Comparison of the probability distributions obtained from different models

is defined as the final time of the trip. Here, the service system is provided by both the taxi
providing the service and the transportation network of roads, streets and highways pertaining
to the Manhattan, Brooklyn, Queens, Bronx and Staten Island zones in the New York city. We
analysed about 1.1× 107 trips. 5

Meempool: The dataset consist of all unconfirmed transaction in the mempool dataset as observed
by one miner for the time period between January 2017 until June 2018. Here, the service system
consists of the whole bitcoin miner network. This is the only data set which was used for the Bitcoin
mempool model. And the details of the arrivals and service is provided in the model specification
above. 6

4.4.2 Training details and evaluation metrics

For the purpose of optimizing the neural networks parameters, we use the ADAM stochastic
optimization (Kingma and Ba 2014) method with a learning rate of 10−4 (except for the neural
mempool model where we use 10−5). We split the data into training and test sets. The test set is
defined as ∼ 5% of the time series. For all the arrival models, we used the Gated Recurrent Units
(Cho et al. 2014) for the non parametric state transition functions Eq. 4.2.2. The dimension of the
GRU is 64 for the PS models, 16 for the PT and Github dataset, 128 for the New York dataset and
256 for the Stackoverflow dataset. For the RAS model, LSTMs where used as state transitions in
the arrival model. The MLP for the NS model has two hidden layers with 256 dimensions, whereas
the adversarial generator and the critic in the AS and RAS model have 3 hidden layers of 100 units.
For the mempool dataset, the NMS model requires perceptrons with dimension 32 and LSTM
units of size 16 for the unconfirmed transactions. For the service model the dimensions of the
perceptrons is 32 and for the LSTM it is 62. The AMS model has 20 units for the unconfirmed
transactions generator and critic, and 20 units for the transition function. For the service dynamics,
the adversarial model required 10 hidden units for the generator and critic and 10 units for the
LSTM transitions.

We evaluate the performance of our models using two different metrics evaluated on the test set.
We consider the prediction error defined as 1/N

∑
i |si−〈s̃i〉| , where si denotes the empirical value

and 〈s̃i〉 denotes the prediction obtained by Monte Carlo sampling, where we use the number of
samples to be 20. Moreover, we calculate the Kolmogorov-Smirnov (KS) statistics between the
empirical and the predictive distribution.

5https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
6https://jochen-hoenicke.de/queue

59

Chapter 4. Recurrent Adversarial Service Times

4.4.3 Results

In the experiments section below we shall compare our RAS model with the the Adversarial
Time-to-Event (ATE) model of Chapfuwa et al. (2018). The latter can be understood as defined by
Eq. (111), but with both hΦ

i and hai replaced by xi. We also introduce RATE, a recurrent version
of the ATE model, namely Eq. (111) without hai .

Table 4.3 – Mempool dataset results.

Unconfirmed Transactions Departures
mean 0.2484 0.2159

error KS error KS
PAR 0.2513 0.2417 0.1173 0.2781
LNO 0.2687 0.2527 0.1173 0.4760
GAM 0.1948 0.2550 0.1173 0.4760
NMS 0.1725 0.1472 0.3080 0.2481
AMS 0.0271 0.0236 0.0016 0.0290

Table 4.2 compares the predictive error and the KS statistics for the different models in both the
synthetic and empirical datasets. The RAS model outperform the NS and the AS models regarding
the KS values in most of the data sets. This indicates an improvement of the models with the
inclusion of independent dynamics for the service time distribution. For sound evaluation of our
models we have also fitted the data with theoretical models Pareto (PAR), Lognormal (LNO) and
Gamma (GAM). Such long tail distributions are common stationary distributions for service times
in closed form solutions. Note that these theoretical models cannot capture the censored arrivals.
The NS models represents the closest representation to these theoretical estimates, due to the
gamma form of the distribution. Therefore the NS model is a natural extension of the theoretical
ones and serves as a baseline in the predictive error Table 4.2.

Table 4.2 leads us to also make the following observations: (i) our service time distributions depend
on the arrival process. Indeed, note that conditioning the service time models on the customer
RPP process significantly improves their performance in either metric (AS vs ATE; RAS vs RATE).
These models successfully use the vector representation hai encoding the arrival dynamics; (ii)
service systems have their own dynamics. RAS outperforms the AS model in almost all datasets.
This corroborates our assumption that including a model for the service system’s dynamic response
helps in describing the system’s behavior.

In order to provide an intuition for the qualitative behavior of the models we show the inferred
distributions in comparison to the empirical and theoretical distributions in Fig. 16. The adversarial
solutions capture the complex data distributions while the theoretical estimates fail to recover the
short time service time (upper left point in the distributions) as well as providing no solution for
censoring events i.e. arrivals without known service.

In Table 4.3 we present the results for the mempool model. The adversarial solution clearly
outperforms all other models both in the error as well as in the distribution shape as stated in the
KS statistics. Here, we can also include the theoretical models in the prediction error, because there
are no censored events in the dataset. We can see the qualitative behavior of the mempool models
in Fig. 17, where we compare the AMS model with the empirical distribution and the theoretical
models. One can immediately notice the superiority of the adversarial model over the other models,
which is the only model that capture the multimodal nature of the mempool datasets distributions.

Fig. 18 shows the comparison of the proposed models among each other for the Github and
Mempool Service dataset. Only the adversarial models correctly capture the distribution for the
short-term as well as the long-term response of the system, while the neural models fails in both
regimes.

60

Relations to formal analysis of queuing systems

4.5 Relations to formal analysis of queuing systems

Being non-parametric, our constructions do not allow a formal theoretical treatment in the spirit of
traditional queuing system results (Williams 2016). However, one could employ neural network
analysis to obtain estimates of service times, which could eventually be related to formal results
in the queuing community. To illustrate, assume the simplified service time model7 s̃i := θk ◦
σk . . . σ1 ◦θ1(hi), where hi := concat(hai , ε), with hai defined in (4.2.2) and ε ∈ Rh with its elements
sampled from Pε as above; σ = ReLU and θj labels the weights of the jth layer.

Lemma 1 Suppose that the simplified model above fits the data within a mean average error of ε.
Then the average service time is bounded above as follows

〈s̃i〉 ≤Mk lim sup
i
‖hai ‖+

Mk+1 − 1

M − 1
+ ε. (115)

Here M is a positive constant bounding the operators norm ‖θj‖ for all j. This straightforward
estimate is proved and related to the average queue length in the Appendix 10.

4.6 Discussion and Outlook

In this chapter, we present a novel deep nonparametric solution for queue systems’ service time
distributions for general arrivals distributions. Our solutions incorporate censoring of services times
and rich estimates for complex distributions and independent dynamical representations for the
service systems dynamics. Our methodologies outperform theoretical results and reproduce complex
distributions for service times, providing richer representations that can recover multi modal and
long tail distributions. We also present a tailored solution for the bitcoins mempool queues systems.
Future lines of work include: incorporating richer representations for the arrivals processes. For
example, in mobility systems, the geographic information and user interactions can be encoded
through hidden networks of relations. Moreover, one could make the system’s response explicit by
providing new remaining service times with each new arrival.

In the next chapter, we will study once again point process models. Now, however, instead of
prediction, we are interested in extracting knowledge from data. We will develop an unsupervised
learning algorithm that uncovers regularities from data via a spectral clustering procedure. We
also include an outlier detection procedure. As one is interested in sparse point processes, the goal
is different. Now the inference will be performed through a spline interpolation approach for the
intensity function. This requires fewer parameters than the recurrent neural network and allows for
the study of realizations with sparse data.

7Note that this simpler model is close to our AS baseline model.

61

Chapter 5

Temporal Patterns for Point
Processes

In this chapter, we return our attention to an unsupervised task. Similar to Switching Dynamical
Systems one is possed with the goal of extracting structure from data. Now, however, we provide a
solution on the level of the population of time series instead of the local nature of the switching
dynamics above. We aim at extracting common behaviors for different time series, here temporal
point processes. Hawkes process with Gaussian process excitations and Adversarial services, the
previously studied models for point process, aimed at improving the prediction for the next arrivals
times or the corresponding service time. In this chapter, is the aggregated behavior which comes
to the foreground. Unlike switching dynamical systems, we do not find the different dynamical
classes in one time series, but among the timer series. After clustering is performed, the categorical
variable will index the time series pertaining to a particular dynamical class. As is common among
unsupervised and clustering tasks, there is an inherent subjectivity to what constitutes the right
clustering—posted differently, what criteria define the objective function to be optimized? Due to
the stochastic nature of point process, we developed a similarity measure that characterizes local
translational invariance and scale invariance.

From the point of view of application, we once again focus on data from web services due to their
data richness. Understanding dynamics on the user level is thus pivotal for effective site management
because knowledge as to typical usage patterns allows for the design of targeted advertisements or
improved allocation of resources. Work on analyzing temporal Web user data often employs either
pure data-driven approaches or models of behavior (Petrovic et al. 2011; Gao et al. 2015). Our
work in this chapter covers a middle ground: we develop an unsupervised algorithm that allows us
to uncover patterns of behavior in a population of users, detect deviations from these patterns, and
identify outliers within the population.

Moreover, most work on user behavior analysis focuses on aggregated data of whole populations of
Web users. Examples include models that seek to understand how collective attention to memes,
tags, or news items evolves over time (Dezsö et al. 2006; Wu and Huberman 2007; Yang and
Leskovec 2011; Cunha et al. 2011; Lehmann et al. 2012; Weng et al. 2012; Bauckhage et al. 2013;
Radinsky et al. 2012). In spite of the relevance of the individual user, the bulk of the studies
concerning dynamical patterns concentrates on the aggregate behavior (Dezsö et al. 2006; Wu and
Huberman 2007; Yang and Leskovec 2011; Cunha et al. 2011; Lehmann et al. 2012; Weng et al.
2012; Radinsky et al. 2012). Models seek to understand how particular memes, tags or news items
evolve over time. Yet, understanding the underlying dynamic atoms, i.e. the dynamic behaviors of
individual users, presents different challenges. First of all, individual user activities are discrete and
sparse. Second of all, individual user activities depend on individual preferences as well as on the
design of the site or service and thus are very diverse. When faced with the problem of identifying
individual dynamical patterns, analysts thus require flexible as well as scalable methods.

The theory of temporal point processes provides an ideal framework for this setting since individual

63

Chapter 5. Temporal Patterns for Point Processes

user actions can be understood in terms of arrivals, which are governed by an intensity function.
Unlike the correlation structure uncovered in the Self Excitation chapter, we want to provide a
less specific characterization and allow for fast inference. Different versions of hawkes process have
been applied to populations data. (Kobayashi and Lambiotte 2016; Zhao et al. 2015b). However,
previous work in this direction requires the (manual) specification of functional representations of
the intensity and its dependencies, devoided of a non parametric form that informs the intensity.

Therefore, in this chapter, we aim at a considerably more flexible methodology that does not require
manual tweaking to be applicable to a wider range of use cases. To extract descriptive (process)
knowledge from given activity data, we propose an algorithm that generalizes the k-spectral centroid
algorithm (Yang and Leskovec 2011) in that it involves kernel operations which can cope with
the inherent randomness of the intensities of a Poisson process. To cope with the large variety of
possible user behaviors, we develop a spline interpolation model that can be substituted for the
intensity function of a Poisson process. This way, our approach provides a scalable and flexible
approach towards learning intensities and circumvents the need to have to specify functional forms
or dependencies. In summary, our technical contributions in this chapter are as fourfold:

• Poisson process intensity inference we introduce a scalable and flexible methodology for
handling temporal Poisson process intensities based on spline interpolation.

• Similarity measure for time series we propose a way of measuring similarities among time
series that is invariant to translations of local patterns.

• Time series clustering given our similarity measure, we extend the K-SC algorithm towards
a flexible, piecewise variant that allows for efficient computation and thus scales to a large
amount of data.

• Outlier detection for point processes given cluster centers determined by our new algorithm,
we propose an entropy measure to determine how well a cluster prototype represents a certain
(intensity) time series; this allows for the detection of outliers within a sample of temporal
patterns.

In practical experiments, we apply our framework to three large datasets. In particular, we analyze
question answering behaviors on StackOverflow, transactions within the BitCoin network, and push
events on Github. Our data comprises observations of 2.6, 24, and 1 million individual activities,
respectively. Our results indicate that the proposed framework can uncover diverse yet interpretable
prototypic behavior patterns.

64

P
oi

ss
on

In
te

ns
it

y
λ

(t
) sine function inferred intensity arrivals

Time (t)

Figure 19 – Example of an inhomogeneous Poisson process with intensity function x(t) = sin(t) (red)
and inferred intensity function obtained from running our splines procedure (black).

Our goal is to uncover prototypic dynamics from sets of discrete time series. Each of the time series
we are concerned with reflects the dynamical behavior of an individual user or agent with respect
to a Web service and is thus comprised of sets of arrivals. In this section, we first review the basics
of the Poisson process modeling for our purpose and discuss how to do parameter inference for such
models. We then introduce our clustering algorithm as well as our procedure for outlier detection.

5.0.1 Problem Definition

Throughout, we assume that an arrival is a point in time when a user or agent interacts with a Web
service. Examples of possible actions include a click on a link or the playing of an online video but
also the posting of an answer on a StackOverflow site, a transaction from a given Bitcoin address
to another, or a push event in a Github repository.

We also assume that we are given N users with arrivals aui , where u ∈ 1, . . . , N indexes the user
and i ∈ 1, . . . ,Mu indexes the observed arrivals for each user.

For each au we obtain the corresponding intensity function λu(t) using the splines interpolation as
explained below. We define λi = λ(ai). The intensity function is formally defined as in Chapter
2.1.1. Here it is important to note that learned intensity functions encode the dynamical behavior
of individual users. Given these, our goal is to be able to cluster intensity functions in such a way
that functions in the same cluster represent agents with similar dynamical patterns. The number of
desired clusters K is given a priori. Once a clustering has been computed, clusters centers represent
a notion of normal behavior and outlier time series are detected based on their dissimilarity to the
cluster centers.

5.0.2 Fast Intensity Inference Using Splines

Since our goal is to characterize many patterns of behavior, we need an efficient method to represent
the general shape of instensities as opposed to a detailed description of functional form or time
dependencies. Since a fast and very flexible method is to use spline interpolation, we adapt the
procedure in (Ogata and Katsura 1988) to temporal processes.

For a given set of a user’s arrivals Au = {aui }, we maximize the likelihood L(Au | θ) =

P
(
au1 , . . . , a

u
Mu
| λ(t; θ)

)
. Its log-likelihood is given by

logL(Au | θ) =
∑
i

log aui −
∫ T

0

λ(t; θ) dt (116)

where the support is defined over [0, T]. We approximate λ(t; θ) =
∑
j θj Fj(x) in terms of a spline

65

Chapter 5. Temporal Patterns for Point Processes

expansion.

Due to the large number of parameters of the spline model, a direct maximization of L(Au| θ) will
likely entail over-fitting which, in turn, would induce rapid local changes in the intensity function
λ(t). We therefore regularize the likelihood and introduce roughness penalties defined via functionals

Φ1(λ) =

∫ (
d

dt
λ(t′)

)2

dt′ (117)

and

Φ2(λ) =

∫ (
d2

dt2
λ(t′)

)2

dt′ (118)

so that the penalized log-likelihood becomes

Lp(Au | θ) = L(Au | θ)−
{
w1Φ1(λ) + w2Φ2(λ)

}
. (119)

The new hyperparameters w1 and w2 allow for weigthing the different contributions of the roughness
terms and can be obtained through type II maximum likehood techniques. To maximize the
penalized likehood in (119), we resort to the L-BFHS-B algorithm for large-scale bound-constrained
optimization (Zhu et al. 1997). A didactic example as to the kind of results we obtain in this way
is shown in Fig. 19.

5.0.3 A Dynamic Piecewise Time Series Similarity Measure

To be able to cluster spline representations of the intensity functions of arrivals of individual users
into groups refelcting similar behavior, we need a suitable notion of similarity.

In order to illustrate the requirements a suitable similarity measure should fulfill in our context,
Fig. 20 shows examples of Poisson process intensities that were learned from real data. From these
plots, we recognize that different peaks of intensities may differ in shape, size, and location.

Since we are interested in uncovering patterns of user behavior, we require our similarity measure
to consider two time series as similar when they have similar shapes, irrespective of their difference
in size.

Furthermore, our application context demands local translation invariance for different time scales.
This means that we would like to differentiate among users who work in a particular month, week,
or number of days. The time scale which we are able to differentiate should depend on parameters
given as input to the algorithm. For example, if we are interested in locating users who work
during particular seasons, say summer and winter, users who only differ by a few weeks should be
considered similar. In other words, a user which has the same workload in the first week of June
and the last week of November should be similar to a user which also has the same workload, but in
the last week of June and the first week of November.

This requirement also arises due to the nature of our spline algorithm. Our procedure for inferring
the intensities is sensitive to the sparsity of data.

To address these problems and requirements, we therefore propose a similarity measure which is
able to identify intensities located at different but close minima as similar.

Consider the two time series, i.e. learned intensity functions, λ = {λi}Di=1 and λ = {λi}Di=1, where
D is the dimensionality of the series. We divide them into 0 < R ≤ D equal parts and obtain
p = {ps}Rs=1 and q = {qt}Rt=1.

These different sections or pieces of the series allow us to handle similarities depending on the time
scale of our choice. In order to allow a similarity among different sizes, we introduce a rescaling

66

5

10

15

20

P
oi

ss
on

In
te

ns
it

y
λ

(t
)

0 50 100 150 200 250 300 350

Time (t)

0

5

10

15

P
oi

ss
on

In
te

ns
it

y
λ

(t
)

0 50 100 150 200 250 300 350

Time (t)

Figure 20 – Examples of intensities inferred from users arrivals, which, in spite of variations in the position
of some peaks, should be recognized as similar due to our requirements.

between any two pieces of the time series d̃α with α as a scaling factor

d̃α (ps, qt) =
‖ps − αqt‖2

‖p‖2
(120)

To handle similarities among different pieces, we introduce a temporal kernel k[0,1] which should
weight every piecewise contribution among different sections of the series and its particular choice
depends on the application at hand. Finally, we aggregate our metrics and define the Dynamic
Piecewise Time similarity measure

d2 (p, q) =
1

2R
min
α

R∑
s=1

R∑
t=1

k[0,1] (s, t) d̃α (ps, qt) (121)

Note that the role of the kernel is to weight different pairs ps, qt according to the sectioning times
s, t. In our case, if we want to uncover common user behavior patterns, we would like closer times
to correspond to a more important similarity contribution. In order to reproduce this behavior, we
use the common RBF kernel

k[0,1] (s, t) = c2 exp

(
− (s− t)2

2l2

)
(122)

Another possible choice for a temporal kernel could be the uniform kernel k[0,1] (s, t) = I{|s−t|<δ}.
This kernel compares every piece from the first time series with pieces of the second that are close
in time and the parameter δ defines how close two pieces have to be.

As we need to perform similarity calculations many times when running the algorithm, computational
efficiency is key. We therefore rewrite the double sums in (121) in terms of matrix products. That

67

Chapter 5. Temporal Patterns for Point Processes

Algorithm 4: K-PSC(p,K,R, σ) clustering
Data: time series pi, i = 1, . . . , N , number of clusters K, number of pieces R, length scale of an RBF kernel σ
Initial cluster assignments C = {C1, . . . , CK}
G = ceil

(
D
R

)
K ← k[0,1] (s, t) where s, t = 1, . . . , R

K̃ ← K ⊗ IG

L← diag

k (0, 0) , . . . , k (0, 0)︸ ︷︷ ︸
G

, . . . , k (R,R) , . . . , k (R,R)︸ ︷︷ ︸
G

repeat

C̃ ← C
for j = 1 to K do

M ←
∑

pi∈Ck

(
L− 2ATi K̃ +ATi LAi

)
µj ← The smallest eigenvector of M
Cj ← ∅

end
for j = 1 to N do

j∗ ← argmin
j=1,...,K

d2 (pi,µj)

Cj∗ ← Cj∗ ∪ {i}
end

until C̃ = C
return C,µ1, . . . ,µK

is, we let let G = ceil(DR) be the number of points in the different sections of p (or q) of the time
series λ (or λ′) and introduce

K =

k(0, 0) · · · k(0, R)
...

. . .
...

k(R, 0) · · · k(R,R)

 .
We then consider the Kronecker product K̃ = K ⊗ I, where I is the identity matrix of size G×G,
and the diagonal matrix

L = diag

k(0, 0), . . . , k(0, 0)︸ ︷︷ ︸
G

, . . . , k(G,G), . . . , k(G,G)︸ ︷︷ ︸
G

 .

To minimize d2 (p, q) w.r.t. α, we solve ∂
∂αd

2 (p, q) = 0 and obtain

α =
pT K̃q

qTLq
(123)

which then allows us to rewrite the distance measure in (121) simply as

d2 (p, q) =
1

2R‖p‖2
(
pTLp− 2αpT K̃q + α2qTLq

)
. (124)

5.0.4 A K-Piece Wise Spectral Centroid Algorithm

Next, we describe our algorithm for clustering according to the above similarity measure; for brevity,
we will refer to it as the K-Piece Wise Spectral Centroid or K-PSC.

K-PSC is an iterative algorithm similar to the k-means or the k-SC algorithm (Yang and Leskovec
2011), but it is specifically tailored towards efficiently finding clusters under the DPT similarity
measure in (121). Similar to the conventional k-means algorithm, it iterates over two steps,
assignment and refinement. In the assignment step, time series of activity rates are assigned to the
closest cluster based. In the refinement step, clusters centroids are recalculated (see Alg.5).

With respect to the refinement step, we observe the following: we are given a data set of time
series pi, a number of clusters K, the number of pieces R for time series subdivision, as well as
kernel parameters. Defining clusters Ck in terms of cluster prototypes or centroids µk, the goal is

68

(a) (a) time series (b) (b) K-SC centroids (c) (c) K-PSC centroids.

Figure 21 – Four time series and cluster centroids obtained from the K-SC and K-PSC algorithm. Our
K-PSC methodology is invariant to local translation.

to minimize

F =
K∑
k=1

∑
pi∈Ck

d2 (µk,pi) . (125)

To determine suitable centroids µk, we thus need to solve

µ∗k = argmin
µ

∑
pi∈Ck

d2 (µ,pi) . (126)

which, after some algebra, is equivalent to

µ∗k = arg min
µ
µT

M

2R‖µ‖2
µ, (127)

where

M =
∑
pi∈Ck

(
L− 2AT

i K̃ +AT
i LAi

)
(128)

and

Ai = (λTi Lλi)
−1(K̃pTi ⊗ pi). (129)

The solution µ∗k to the minimization problem in (127) then is the eigenvector um corresponding to
the smallest eigenvalue ψm of matrix M .

Note that the well known k-means algorithm updates centroids by averaging over the data in the
corresponding cluster. However, since our similarity measure is scale invariant, not all elements of a
cluster contribute equally to the cluster averages in our scenario. Our algorithm therefore needs to
take scales into account. and this is what (128) accomplishes.

Figure 21 compares results of our K-PSC algorithm to those of the original K-SC algorithm. Similar
to our methodology K-SC rescales the time series but it also shifts the positions of their peaks.
This creates a rather undesirable clustering for our application as seen in the merging of three
intensities in the bottom of the second column.

5.0.5 Outlier Detection

In order to identify patterns of user or agent behavior that deviate from normal behaviors, i.e. whose
intensity functions differ considerably from that of the closest cluster centroid µk, we follow the
formalism in (Benkabou et al. 2016). To this end, we extend the objective in (125) by entropy term,

69

Chapter 5. Temporal Patterns for Point Processes

namely

Fo =

K∑
k=1

∑
pi∈Ck

wi d
2 (µk,pi) + φ

∑
i

wi logwi, (130)

Here, the weights wi define how much a given time series belongs to a cluster. Minimizing Fo
can be accomplished using the same assignment and refinement steps as above. The weights wi,
however, can be updated independently and when minimizing (130), we find

wi =
exp{−Di/φ}∑
j exp{−Dj/φ}

(131)

where Di = d2 (µk,pi) if xi ∈ Ck.

This procedure is akin to a maximum entropy principle: we must maximize the amount of uncertainty
encoded in the assignments wi so as to obtain an unbiased definition of the distribution given by wi
(Jaynes 1957). The parameter φ enters as an inverse Lagrange multiplier which fixes the information
which is known, namely the distance to the cluster centers. If the time series is in effect and outlier,
it will be poorly represented in the centroids and, as a consequence, the weight wi will be small.

5.0.6 Scalability

Having discussed all components of our framework, we next analyze its overall complexity.

With repsect to the spline interpolation for the intensity of the arrivals, we note that the intensity
function xu(t) for a user u is defined over [0, T] and requires spline basis function over S interpolation
points. Maximizing the penalized likelihood Lp in (119) is accomplished using L-BFHS-B (Zhu
et al. 1997) which runs in O(SQ) where Q is the number of quadrature points required for numeric
integration. (The derivatives in the regularization term can be performed analytically.) Alltogether,
accounting for the numberMu of arrivals per user, the full calculation of each step takes O(Mu+SQ).
In comparison, competing models with the same degree of flexibility but based on Gaussian processes
(Samo and Roberts 2015b) require efforts of O(Mu P

2) where P is a typically large number of
inducing points.

With respect to the problem of clustering the learned intensity functions xu(t) of N users into K
clusters, we observe the following. If the length of the time series is L, the assignment step of our
clustering algorithm requires O(NKL) runtime. The refinement steps requires the computation of
the M in (128) and its eigenvectors. In contrast to the original the K-SC algorithm, our matrix
M requires the calculation of the kernel matrix K̃ and thus O(NL3) complexity. This translates
into a final complexity of O(max(NL3,KL3)). Improvements are achieved via approaches similar
to incremental k-means thorugh the discrete Haar Wavelet transform (Yang and Leskovec 2011).

5.0.7 Results on StackOverflow Data

Next, we describe temporal patterns obtained from intensity functions inferred for the StackOverflow
data.

For inference of the intensities we used 12 splines knots so that different peaks occurring within a
time window of two moths will be deemed similar. Figure 24 shows prototypic intensities or user
activity time series we obtained from K-PSC clustering with K = 18 . Despite a high degree of
variability in the behavior of individual users, we can recognize several tendencies. The clusters
in the first row of Fig. 24 correspond to rather peaked behavior where the width of the peaks
varies between about 2 to 3 months. Since an active profile on StackOverflow is believed to boost
careers opportunities in the tech industry, peaked behaviors like these might indicate users who
seek to gain reputation quickly so as to land a job. The second row of Fig. 24 shows that there

70

are StackOverflow users whose activities either decline or grow over time. We also observe several
peaks with different volumes and outliers to such patterns represent users with less clear patterns
of growth or decline. The clusters in the third row of the figure are indicative of user behaviors
with patterns of seasonality. Except for the clusters in Figs 24m and 24n, we see patterns of high
volume work at the beginning and the end of the year but with limited activity during the summer.

Overall, peaks of prototypic time series determined for this data show peaks located at rather
complementary points in time. If they were aggregated, the different peaks would cover the whole
period studied here. Our results thus indicate a rather interesting behavior as it seems that
prototypic answering behaviors are characterized by peak activity periods. From the point of view
balancing the work on StackOverflow, our results therefore suggest that rather than expecting
individual users to work more in low activity periods, more users would need to be enticed to work
in these periods at all. Dynamical awarded scores rewarding users for participating at particular
times instead of others could potentially achieve this goal.

5.0.8 Results on BitCoin Data

Our BitCoin data set is richer and of different nature than the StackOverflow data because here
arrivals indicate points of activities addresses rather than users. In other words, although such
addresses reflect individual entities, these entities need not be individual humans but could also
represent banks or gambling sites. In this sence, the behavior contained in the BitCoin data does
not exclusively reflect human behavior.

Again, we used splines with 12 knots for intensity inference. For the selection of kernel parameters,
we chose the model with lowest clustering entropy. This was obtained for R = 6 different sections
and convolution kernel parameters of b = 0.1 and l = 10−5. We show our results in Fig. 25. As
before we have a wide range of dynamical natures. In the first row of the figure, we observe peaks
of activity of around two months. As opposed to the StackOverflow data, outliers identified in the
BitCoin data differ more clearly from the corresponding cluster centers. In particular, we observe
replicas (other peaks) as well as substantially varying widths of peaks. In the second row of Fig. 25,
we observe activities covering most of the observation period of 6 months but with sudden drops
of activities. In the last row, except for Fig. 25m, there are intensity prototypes which describe
activities that increase noticeably towards the end of the observation period. This is well in line
with the development of the value of a BitCoin over the course of the year 2017. In other words, it
seems as if the surge in value led to an increase of trading as users tried to capitalize.

5.0.9 Results on Github Data

Next, we present results for the Github data set. This dataset has a different granularity as we
only studied arrivals in a period of a month.

We selected 8 knots for spline interpolation so that the polynomials can capture 2 peaks per week.
The entropy criterion yielded similar parameters as above and we partitioned the time series into
R = 7 parts and used convolution kernel parameters of b = 10−5 and l = 0.001. In Fig. 26, we
selected prototypic examples of six out of K = 18 behavior clusters.

Figures 26a, 26b, and 26c show highly active users who work either at the beginning or the end of
the month or over about three quarters of the observation period. Outliers to these prototypes
represent dips the plateaus or abrupt decays of activity before the end of the month. Figures 26d,
26e, and 26f, on the other hand, show patterns of periodic activity where users commit their work
at the beginning and at the end of the month. Here, outliers typically represent a phase difference
in these periods.

In this section, we evaluate our approach in several large, real world data sets. We first introduce

71

Chapter 5. Temporal Patterns for Point Processes

10 20 30 40 50

Number of Clusters

0.080

0.085

0.090

0.095

0.100

A
ve

ra
ge

S
ilh

ou
et

te
C

oe
ffi

ci
en

t

7.7145

7.7150

7.7155

7.7160

7.7165

E
nt

ro
py

Figure 22 – Cluster quality (in terms of entropy and silhouette coefficient) for different clusterings of the
StackOverflow data.

these data sets and then present and discuss our results.

5.0.10 Datasets

To develop an understanding of temporal patterns in the individual behavior of users of Web sites
or services, we gathered data sets from three application domains.

StackOverflow is a questions answering platform for programmers and technology professionals.
Here, we gathered data about 2,500 users and 2,600,000 answers they posted between January and
June 2017. For this data set, we consider an arrival to be the point in time when a user answered a
question.

BitCoin is a cryptocurrency and payment system based on the decentralized blockchain technology.
Here, we collected data as to 600,000 addresses within the Bitcoin network and the 24,000,000
transactions these were involved in between January and June 2017. For this data set, an arrival is
defined as the point in time when a particular address sent a Bitcoin.

Github is a popular version control repository and Internet hosting service. Here, we crawled
data about 110,000 different users who initiated about 1,000,000 push events during January 2017.
Correspondingly, for this data, an arrival is understood to be the point in time where a push event
occurred.

5.0.11 Experimental Setup

For each of our three data sets, we performed intensity inference via spline interpolation as discussed
in section 5.0.2.

We maximize the likehood until the Akaike information criteria (Akaike 1998) exceed a threshold
and the average of the number of arrivals given by

m(t) =

∫ t

0

λ(τ) dτ (132)

lies within less then a 0.1% difference of the empirical value. The number of knots for the spline
basis functions were selected such that there was at least one maximum per polynomial per week.

72

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

A 9.05

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

B 7.10

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

C 0.09

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

D 1.91

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

E 81.85

(a) (a) clusters of common user behavior obtained using K-Means and the L2 norm

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

A 28.57

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

B 24.13

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

C 10.03

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

D 16.86

J an Jun Dec
Day

0.0

0.5

1.0

In
te
ns
ity

E 20.41

(b) (b) clusters of common user behavior obtained using K-Means and dynamic time warping

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

A 22.27%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

B 22.58%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

C 21.87%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

D 18.37%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

E 14.91%

(c) (c) clusters of common user behavior obtained using K-SC

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

A 22.45%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

B 17.75%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

C 18.19%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

D 17.66%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

E 23.96%

(d) (d) clusters of common user behavior obtained using the K-PSC algorithm proposed in this chapter

Figure 23 – Five clusters of common behaviors of StackOverflow users as determined by K-means, K-SC,
and K-PSC. The bold orange line in each panel represents the cluster centroid, the bold red line represents
the outlier with the smallest value of wi, and the transparent blue lines represent intensities of users assigned
to the corresponding cluster. Percentages at the top of each panel indicate the size of the cluster relative to
the total number of users of the site.

With respect to kernel parameter selection, we choose the model with lower entropy, i.e. the model
that led to cluster centers which yield the biggest information encoding gain for the system behavior.
We also selected the number of clusters to be determined based in the entropy criterion. As an
example, Fig. 22 plots cluster quality measures against the number of clusters for the StackOverflow
data.

Once clustering had been performed as discussed in section 5.0.4, we determined outliers according
to the approach in section 5.0.5. That is, we determined the weights wi as prescribed by (130) and
defined outliers to be those intensities whose wi had values in the bottom 0.1% of all weights.

5.0.12 K-PSC versus K-SC or K-Means

First, we compare the results of our K-PSC algorithm against two baselie procedures, namely K-SC
and K-means.

We considered the StackOverflow data set and determined K = 5 clusters. Fig. 23 shows results
for K-means with Euclidean distance and dynamic time warping distances (Müller 2007) as well
as for the K-SC algorithm and for our K-PSC approach. Both K-means variants were computed
from vectors indicating numbers of arrivals per day, i.e. without any intensity learning via spline
interpolation.

The prototypes resulting from K-means (Figs. 23a and 23b) are not clearly distinguishable and
thus do not yield easily interpretable results. This is likely, because individual user activity data
are sparse and too irregular for for a mode seeking algorithm to succeed. Yet, problems due to

73

Chapter 5. Temporal Patterns for Point Processes

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(a) (a) 4.04%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(b) (b) 3.33%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(c) (c) 4.17%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(d) (d) 7.88%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(e) (e) 8.62%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(f) (f) 6.70%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(g) (g) 2.80%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(h) (h) 5.41%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(i) (i) 7.54%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(j) (j) 6.97%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(k) (k) 6.92%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(l) (l) 6.26%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(m) (m) 4.84%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(n) (n) 3.77%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(o) (o) 3.73%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y
(p) (p) 6.55%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(q) (q) 6.58%

Jan Jun Dec

Day

0.0

0.5

1.0

In
te

ns
it

y

(r) (r) 3.90%

Figure 24 – Eighteen clusters representing common behaviors of StackOverflow users. The bold
orange line in each panel represents the cluster centroid, the bold red line represents the outlier with
the smallest value of wi, and the transparent blue lines represent intensities of users assigned to the
corresponding cluster. Percentages at the top of each panel indicate the size of the cluster relative to the
total number of users of the site.

sparseness can be avoided using our spline approximation of arrival intensity functions.

One of the key advantages of our methodology is that the model allows us to extract information
about dynamical patterns not merely from arrivals but from inferred distributions of the numbers
of events. While this is beneficial for K-SC and K-PSC alike, we observe that prototypes found by
the original K-SC procedure tend to show several modes of activity while most K-PSC prototypes
show just one mode. This is because K-PSC scales every time-series differently in order to find
cluster centroids. As this decreases the influence of outliers, it leads to more clearly distinguishable
centroids. In other words, compared to K-SC, our K-PSC approach can identify patterns w.r.t. their
location in time.

In Tab. 5.1, we list clustering qualities according to two measures, namely entropy as defined
in (130) and silhouette scores. Higher silhouette scores and low entropies are indicative of good
clustering. According to these measures, our model outperforms the others and yields better cluster
centroids both in terms of closeness to the centroids (silhouette) and encoding of the dynamical
information (entropy).

74

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(a) size: 4.24%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(b) size: 3.94%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(c) size: 7.44%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(d) size: 4.15%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(e) size: 5.62%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(f) size: 4.29%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(g) size: 6.40%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(h) size: 6.71%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(i) size: 6.16%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(j) size: 7.26%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(k) size: 5.40%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(l) size: 7.00%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(m) size: 3.50%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(n) size: 7.70%

J an Mar Jun
Day

0.0

0.5

1.0
In
te
ns
ity

(o) size: 5.05%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(p) size: 5.33%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(q) size: 4.45%

J an Mar Jun
Day

0.0

0.5

1.0

In
te
ns
ity

(r) size: 5.37%

Figure 25 – Eighteen clusters representing common transaction patterns of BitCoin addresses.
The bold orange line in each panel represents the cluster centroid, the bold red line represents the outlier
with the smallest value of wi, and the transparent blue lines represent intensities of transactions assigned
to the corresponding cluster. Percentages at the top of each panel indicate the size of the cluster relative to
the total number of transactions.

Table 5.1 – Cluster quality measures.

5 Clusters 20 Clusters
Silhouette Entropy Silhouette Entropy

K-means L2 0.0881 8.9 0.0777 8.6
K-means DTW 0.0951 8.2 -0.0820 7.9
K-SC 0.0604 7.2 0.0472 7.1
K-PSC 0.1029 7.1 0.0873 7.0

Differing from our spline-based approach towards characterizing Poisson intensities for individual
Web user behavior analysis, previous related work often focused on behavior analysis on the
population level (Dezsö et al. 2006; Wu and Huberman 2007; Yang and Leskovec 2011; Cunha
et al. 2011; Lehmann et al. 2012; Weng et al. 2012; Bauckhage et al. 2013; Radinsky et al. 2012).
Moreover, the focus of works like these was mainly on specific functional forms that would allow for
describing the dynamics of growth and decline of activities commonly observed in Web user data.

In the work reported here, however, we are interested in distinguish among empirical functional

75

Chapter 5. Temporal Patterns for Point Processes

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y
(a) size: 5.66%

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y

(b) size: 5.24%

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y

(c) size: 6.81%

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y

(d) size: 5.92%

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y

(e) size: 6.11%

1 15 31

Day

0.0

0.5

1.0

In
te

ns
it

y

(f) size: 7.18%

Figure 26 – Six out of eighteen clusters representing common behaviors of GitHub users. The
bold orange line in each panel represents the cluster centroid, the bold red line represents the outlier
with the smallest value of wi, and the transparent blue lines represent intensities of users assigned to the
corresponding cluster. Percentages at the top of each panel indicate the size of the cluster relative to the
total number of users of the site.

forms. Previous related work considered inter event times and found power law distributions
arising from bursty behavior for email as well as for telephone communication (Barabasi 2005).
The presence of a double Poisson process accounting for different time scales of user behavior has
also been proposed in (Malmgren et al. 2008). More recently, similar approaches were used to
characterize the intensity function for retweets, citations and Hastags dynamics (Gao et al. 2015;
Kobayashi and Lambiotte 2016). These approaches are based on reinforced Poisson processes or
Hawks processes and characterizations of rate functions are achieved through competing dynamics
of loss of attention as well as richer get richer mechanisms.

The perspective of the individual user, however, has largely been ignored in analyses such as those
above. This is likely due to the natural sparsity of individual user data as well as to the lack of
flexible methods for incorporating variability into individual rate functions. Both these issues make
it more difficult to specify functional forms for individual users than for a population as a whole.
Here, however, we tackled both these problems trough our use of spline interpolation for Poisson
process modeling.

5.0.13 Discussion and Outlook

In this chapter, we presented a framework for Poisson point process clustering and outlier detection.
It allows us to study the dynamical behavior of individual users of Web sites or services, a setting
where observed activities are naturally sparse, such as answers on StackOverflow or commits on
Github.

In more specific terms, we were concerned with what kind of dynamical classes of individual user
behavior can be identified. In practical experiments, we applied our approach to two large data
sets crawled from StackOverflow and Github and a substantial sample of BitCoin transaction data.
Our methodology uncovered a wide range of prototypic patterns ranging from bursty and seasonal
activities, over increasing and decreasing activities with replicas, to uniform activities.

Contrary to previously studied methods using predefined functional forms for the Poisson intensities,
our approach provides more flexibility and is, therefore, better able to cope with the considerable
diversity of individual users’ behavior.

To cluster the resulting time series data, we proposed a similarity measure that allows for variations
in the location and width of peaks. The K-Piecewise Spectral Centroid (K-PSC) algorithm we

76

proposed for time series clustering is independent of the particular method used to identify a
Poisson process’s intensities. Moreover, when formulated in terms of tensor- and matrix operations,
it allows for the use of special-purpose linear algebra packages for highly efficient computation. In
an evaluation against baseline methods, we also found it to yield more concise results.

Unlike previous chapters, we do not explicitly include self excitations or clustering in the modeling
of the point processes. Ona could perform inference of the process using the methodologies in
Chapter 1, and use the clustering algorithm in the obtained excitation function. Depending on the
memory kernel’s behavior, a direct application of the splines algorithm to self-exciting data might
leads to a noise detection of and intensity associated with inhomogeneous processes.

In the next part of the dissertation, we will work with representation learning instead of inference
methods for stochastic processes. The dynamics will be studied not in itself but in how the
representation structures affect them. In the last chapter, we will design representations constrained
on properties of stochastic processes defined with them, the application case, will be that of black
box explanation.

77

Part III

Taxonomies, Representations and
Stochastic Processes

79

For the final part of the dissertation, we will study the relation between semantic representations
and stochastic processes. Here the notion of semantics is understood under two different paradigms.
One, similar to knowledge bases, ontologies, taxonomies, or population-designed folksonomies, are
knowledge structures that appear in several web pages for the population to organize user content.
Under the approach of representation learning, we also study semantics as representations learn
from an autoencoder. The latter view is related to dimensionality reduction and compression,
where one develops procedures to extract the data’s most relevant coordinates. Different from
other chapters, we do not aim at developing an inference procedure. For the folksonomies, we
are interested in how these structures affect user behavior. For the auto encoders, we introduce
inductive bias to uncover the behavior of black-box classifier decisions.

81

Chapter 6

Dynamical Inheritance

This chapter dwells in a different direction from the previous agenda. Although a learning algorithm
is provided, the focus is on the relationship among knowledge structures as provided by a population
and its consequent dynamical behavior. This chapter’s character is rather phenomenological in
nature, and different from the machine learning nature of the previous chapters. One can argue
that the contribution lies in the realm of sociophysics or quantitative social analysis. The task is
to establish relationships between user behavior and the knowledge structures they produce and
consume in a particular site.

Question Answering sites are Web platforms where users can pose questions to a general population.
They gained notoriety over the last decade, and popular sites such as Yahoo Answers, Quora, or the
Stack Exchange family of sites such as Stackoverflow and Mathoverflow provide online communities
with seamless mechanisms to organize and share knowledge. These platforms’ content is usually
organized by their users who use tags, hashtags, keywords, or other identifiers to categorize questions
they post. This chapter asks if and how the information contained in such knowledge folksonomies
influences user behaviors and activities?

Our focus is on the stack exchange family of questions answering sites, where questions address
topics in areas such as physics, chemistry, or biology which are rigorous scientific disciplines whose
sub-fields can be organized in hierarchical taxonomies that reflect degrees of specialization (think
for instance of the ACM Computing Classification System). Hence, when posting questions on a
stack exchange site, users typically choose tags that pertain to sub-fields of a particular scientific
discipline. The co-occurrence pattern of such tags and their frequencies can, therefore, be assumed
to be related to hierarchical structures. Uncovering these structures and understanding their
dynamics or evolution over time, therefore, provides insights into the online communities’ collective
behavior and can help to balance resources, i.e. to recommend questions or tags to users.

6.1 Summary of Contributions

In this chapter, we propose an algorithm to learn hierarchical taxonomies. This algorithm considers
the cooccurrences of tags assigned to questions. Questions come with n-tuples of tags that define our
data points, and our algorithm infers hidden hierarchies only from sets of co-occurring tags, i.e. from
all the n-tuples a given tag appears in. Two main principles are used in order to identify subject
hierarchies automatically. First, items or keywords which occur high in the hierarchy are expected
to co-occur with a larger set of different tags. Second, parent child relationships are established
provided that a child appears in the parent’s co-occurrence set and that children of the child
also co-occur with the parent. Our latent hierarchy discovering algorithm thus follows ideas from
agglomerative clustering. We initialize all available items as the tree leaves and then run a bottom-up
procedure to identify parent-child relationship. We define a user tagging process that incorporates
the taxonomical organization from the beginning. This allows us to simulate synthetic user behavior,

83

Chapter 6. Dynamical Inheritance

which provides experimental ground for testing our algorithm. The proposed algorithm unveils
the underlying knowledge structure of the analyzed question-answering sites. We finally link the
taxonomies with the dynamical behavior of the users posting questions. Our extensive empirical
evaluation indicates that the tagging process of parent nodes is highly dependent on the tagging
process of their descendants. Thus will give rise to a dynamical inheritance phenomenon.

84

Related Work

6.2 Related Work

In research on question answering sites, a common approach towards mining tag relationships
and their influence on user behavior is to define a network structure over the tags, either from
projections of bipartite tag-question pairs, tag-user pairs (Yang et al. 2008; Adamic et al. 2008; Li
et al. 2012; Nam et al. 2009), or through other similarity measures (Begelman et al. 2006). Once
networked relations are modeled, traditional graph mining algorithms are employed to discover
relevant tags, clusters, and motifs. Although these methods have proven relevant for selecting
important or central tags, the relationship between structure and the temporal dynamics have been
largely ignored. Under the graph model, there is no notion of inheritance in that a tag does not
pertain to another tag – a relationship that we found to be relevant in our empirical analysis.

On the other hand, algorithms that yield hierarchies from user annotations have been developed
for a variety of sites already (Koller and Sahami 1997; Schmitz 2006; Tibély et al. 2013). These
approaches were successful in detecting structure but focused on the algorithmic aspects without
providing deeper insights into the behavior of the system in question. However, the dynamics of
tagging have been studied in the context of generative models which realize preferential attachment
mechanisms (Halpin et al. 2007; Golder and Huberman 2006). These approaches provide plausible
explanations as to how the behavior of users leads to a Pareto distribution for the frequencies of
tags. In our current work, we focus on the “activities” of tags. That is, does the frequency in which
a tag appears depend on the frequency of its co-occurring tags? For example, on the stack exchange
site for mathematics, a user posting questions in the field of linear algebra might later on post
questions about eigenvectors or eigenvalues and we are interested in uncovering such developments.

We approach this problem by considering tag patterns to be influenced by hierarchies. This way, we
can devise a generative model that incorporates the dynamics of the tagging process. Generative
models for topic modeling often adhere to the Bayesian framework (Ramage et al. 2009; Blei et al.
2010) which provided tools for detecting hierarchies. The generative process is seen from the point
of view of distributions rather than from a dynamical perspective. This framework also comes with
the added drawbacks of only handling small taxonomies due to the complexity of approximate
inference, and inferring the topics mainly from the content. Ideally, however, tags themselves
indicate topics. Our approach focuses directly on tags and their classification and is able to capture
different branching sizes for different taxonomies.

6.3 Stack Exchange Data

The stack exchange family of question answering (QA) sites covers a wide range of topics. Regardless
of its subject, every site allows subscribed users post questions to their community. Answers are
submitted and rated by the community and can be deemed acceptable by the user who posted
the question. A major incentive for users to answer questions is a reputation building feature
where a user’s reputation grows with favorable ratings and increasing numbers of accepted answers.
Indeed, reputation scores may nowadays boost careers; Stackoverflow, the main site of the stack
exchange network, is known to be used as a recruitment platform where companies are looking for
knowledgeable talent and experts.

In this chapter, we focus on the analysis of 5 different sub communities of the stack exchange
network: Biology, Physics, Finance, Statistics, Math Overflow, and English (see Tab. 6.1).

Our goal is to uncover emergent knowledge structures from sets of questions and to investigate their
relationship to user behavior on the different stack exchange sites. Locally, individual questions
only refer to a reduced set of subjects which are constrained by the site and the specific concern of
the user. It is in the aggregated behavior of users where knowledge taxonomies become apparent
(Bhat et al. 2014). Since the tags themselves are expected to identify topics, our main focus is on

85

Chapter 6. Dynamical Inheritance

Table 6.1 – Statistics of the data from the different stack exchange sites studied in this chapter.

stack exchange site observed since # questions # answers # users # tags # n-tuples
Biology 2011 8958 11628 10631 642 5643
English 2009 57112 147517 91621 947 19381
Finance 2010 4098 6416 8155 495 3186
MathOverflow 2009 63161 102447 46379 2602 28639
Physics 2010 39355 63579 39117 824 24095
Statistics 2009 42921 47755 40324 1032 28232

Site Ratio #NT/#Q Ratio #NT/#U
Biology 0.63 0.53
English 0.34 0.21
Finance 0.78 0.39
MathOverflow 0.45 0.62
Physics 0.61 0.62
Statistics 0.66 0.70

Table 6.2 – Main statistics for the Stack Exchange Sites studied

using the overall set of tags, i.e. n-tuples of tags assigned to questions, and not on analyzing the
content of questions. Prior work on tag dynamics on induced tag ontologies (Halpin et al. 2007;
Ramage et al. 2009) indicate that tags are indeed a reliable proxy for content classification.

Table 6.1 summarizes statistics as to the data we consider in this chapter (observation periods,
numbers of questions, answers, users, and tags crawled, and number of observed n-tuples).

Clearly the numbers of site specific sets of observed n-tuples or combinations of tags (which are
limited a maximum number of tags the site allows users to use) exceed the number of different
observed. If we were to consider, say, all possible pairs of tags possible, we would have

(
N
2

)
∼ N2

choices where N is the number of tags. For the N in our data sets this is in the order of 106 whereas
the observed number of actually observed different tuples varies only around 104.

Table 6.2 lists the ratio between the number of different observed n-tuples and the number of
questions and users. These ratios indicate that questions and users apply sets of repeating tuples.
This statistics thus suggests that users are not randomly selecting any pairs of tuples but are guided
by some latent relationship among the tags.

The main empirical motivation behind our work is the striking similarity between tag frequency
distributions and the distribution of the size of sets of co-occurring tags (see Figure 27). Although
in principle co-occurrence should by guided by semantic relationships whereas frequency by interest
of the populations, the striking similarity between the distributions point to a deeper relationship
that we aim to explain in the current work. For both distribution, we fitted the histograms trough
maximum likelihood estimation to main statistical distribution functions Log Normal, Normal,
Gamma, Pareto, Weibull, and Exponential. By comparing Kolmogorov-Smirnov (KS) statistics, we
determined the best fitting model to be the Log Normal distribution (shown as solid lines in the
figure). Similar to prior work on other community sites, the Log Normal is a fat tailed distribution
which, for a certain range of parameter values, behaves as the commonly found Pareto distribution
(Halpin et al. 2007). This distribution also complies with our hypothesis that a hierarchical structure
modulates the tagging process. If the number of tags which co-occur with a given tag is proportional
to the number of leafs in a taxonomic sub-tree emanating from it, then we can obtain this number by
the successive multiplication of random variables. These random variables depend on the branching
factor of the taxonomy. As it is known (Gallager 2012), the Log Normal process does indeed account
for multiplicative processes involving uniform random variables.

86

Definitions and Concepts

100 101 102 103 104

Cardinality

10-6

10-5

10-4

10-3

10-2

10-1

100

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

100 101 102 103 104

Cardinality

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

100 101 102 103

Cardinality

10-5

10-4

10-3

10-2

10-1

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

100 101 102 103 104

Cardinality

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

100 101 102 103 104

Cardinality

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

100 101 102 103 104

Cardinality

10-7

10-6

10-5

10-4

10-3

10-2

10-1

O
cc

u
rr

a
n

ce
s

tuplesPerTag

differentTuplesPerTag

Figure 27 – For each of the studied stack exchange sites, this figure shows the histogram of the number of
questions per tag (red circles) and the size of the set of tags which co-occur with each tag (blue triangles).
Solid lines correspond to maximum likehood estimations of log normal distributions which show the best
fits to the empirical data.

6.4 Definitions and Concepts

We begin our technical discussion by defining the main concepts and notation required below. Let
T ≡ {t1, t2, . . .} denote the set of different tags or items or keywords contained in our n-tuple data.
An n-tuple α is defined as an item set of the form α ≡ {t1(α), t2(α), . . .} where ti(α) ∈ T .

Since we want to infer a tree structured taxonomy which is assumed to have generated the set of
tuples, we may henceforth also use the term node when we refer to a tag. Given these prerequisites,
we let

• Θ ≡ {α1, α2, . . .} denote the set of observed n-tuples; we do not expect different αi to have
the same size but assume their sizes to be finite

• O(ti) = {ti1 , ti2 , . . .} denote the set of tags which co-ocurr with tag ti, that is the set of tags
where there exists at least one αk ∈ Θ such that ti, tij ∈ αk.

• p(ti) denote the parent of node ti

• C(ti) denote the set of children of node ti

• D(ti) denote the set of all descendants of node ti, i.e. the children of the children of node ti

Based on these concepts, we define the support set of a node tk over a node ti as the set

S[tk](ti) = O(tk) ∩D(ti), (133)

i.e. as the set of all the descendants of ti which co-occur with tk. The relative support is then given
by

s[tk](ti) =
|S[tk](ti)|
|D(ti)|

(134)

and indicates the proportion of the descendants which co-occur with with node tk.

Furthermore, we define a hierarchy H as a pair

H ≡
(
T, P (T)

)
(135)

87

Chapter 6. Dynamical Inheritance

α1 = {B,D}
α2 = {E,H}
α3 = {A,C}
α4 = {A,C}
α5 = {A}
α6 = {E,H}
α7 = {A,B}
α8 = {A,D}

α9 = {A,E}
α10 = {B,E}
α11 = {B,E}
α12 = {B,A,F}
α13 = {E,A,F}
α14 = {A}
α15 = {E,G}
α16 = {A,C}

α17 = {B,A,G}
α18 = {E,B,F}
α19 = {E,F}
α20 = {A,D}
α21 = {B,F}
α22 = {B,E}
α23 = {A,B,H}
α24 = {A,C}

t 2 3
A 7 {C,B,E,D,G,F,H}
B 6 {A,E,D,G,F,H}
E 5 {A,H,B,G,F}
H 3 {A,B,E}
F 3 {A,B,E}
G 3 {A,B,E}
D 2 {A,B}
C 1 {A}

Figure 28 – Data set exaxmple as obtained from a synthetic tree following the anmalous tagging procedure.
Rightmost panel shows the data structure used by our taxonomy learning algorithm; it can be obtained
directly from the training set.

A7

C
1

B
6

D
2

E
5

F
3

G
3

H
3

Figure 29 – Example of a taxonomy tree along with training set of n-tuples of tags resulting from a non
anomalous tagging process guided by this tree. In the tree, letters represent tags and numbers indicate
with how many other tags a tag co-occurs in the training set.

where P (T) = {p(t1), p(t2), . . .} denotes the set of parents of all nodes. On the following we will
refer to the leafs nodes as those with no children. The ancestors of a node of the set of parents,
parents all the way to the root node. Finally, we are prepared to state the following

Problem Definition: Given a set Θ of tuples of tags, find the hierarchy H which best reflects the
joint occurrences of tags in tuples in Θ. In doing so, assume that tag co-occurrence patterns are
due to a process described below.

6.5 Tagging Process Model

Our task at hand is to identify a taxonomy or tree structure of topics from observed co-occurrences
of tags. This is an unsupervised learning problem where we need to learn a a model (the taxonomy)
from a set of data points (the n-tuples of tags). In order for this learning task not to be ill-posed, we
shall inform it with prior knowledge that is with a model of a hypothetical process which describes
how users assign tags to questions.

To this end, we assume that there are universal hidden hierarchies which define relations between
different tags and which are, to some extend, known to the users. For instance, these could be
discipline specific taxonomies which define part-of relations among tags. On the biology stack
exchange site, for example, human anatomy will be a part of human biology.

We also assume that the way users assign tags to questions is conditioned on these hierarchies or
trees. One of the tags assigned to a question will reside on a tree level less or equal than all other
tags. We define this tag or node as the subject node. Due to the coarse to fine inheritance of
scientific categories, the question is then related to every tag or node above the given tag. If we
follow the branch of all ancestor nodes of the tag up to the root node of the tree, we encounter all

88

Tagging Process Model

the knowledge areas to which the given question pertains. To describe the content of the question,
the user is thus assumed to randomly select tags from this branch. Under this model, the creation
of the question is a local process; the user only knows about the branch to which the question
pertains. The overall tree, on the other hand, is a global construct; the hierarchical structure we
want to uncover emerges from the cumulative process of collective question answering.

6.5.1 Anomalous Tagging Behavior

There is a possibility for anomalous tagging behavior. By this we refer to tagging behavior which is
not guided by latent taxonomies but instead arises from random user behavior. For example, a
user might pose a question related human-biology and botany. Questions like these do not provide
information as the latent hierarchy. To be able to argue formally, we define different uninformative
tagging process:

1. Children Tagging: once the subject node is selected (conditioned on the latent tree), the user
selects the upper branch as well as several children as possible tagging options; this will create
co-occurrences between tags on the same level of the tree.

2. Horizontal Tagging: the user selects a subject node, its upper branch as well as random tags
which exist on the same level.

3. Random Tagging: the user decides for a subject node and then randomly selects from all
nodes on levels above the given one.

Although we can think of additional possible tagging strategies, these anomalous behaviors account
for any possible co-occurrences of tags in our data set.

6.5.2 Taxonomy Learning Algorithm

The learning algorithm which we describe next, relies on simple principles which is a direct
consequence of the assumed tagging process: if a tag ta is a parent of tb, then, provided that
anomalous tagging is rare and that ta has more than one child, the co-occurrence set O(ta) is larger
than O(tb). This is a consequence of the the descendants of tb also being descendants of ta and of
the co-occurrence set of ta containing the descendants D(tb) of tb as well as the siblings of tb.

Given this principle, the proposed inference algorithm then works as follows:

First, we determine the co-occurrence set O(ti) for each tag ti in our data set.

We then initialize a list J containing these these sets and sort it in an ascending order according to
the size of its elements (see Fig. 28(c)).

Next, we realize a bottom up process to identify child parent relationships. To this end, we consider
tb is a candidate child of ta if it co-occurs with ta, i.e. tb ∈ O(ta), We then look for the ta that
has the biggest support over tb from the tags up in the list, i.e. ta is the tag which co-occurs most
frequently with all the descendants of tb and is above a threshold given by the user. Formally

ta = argmax
ti

{s[ti](tb)} and s[ti](tb) > τ (136)

This rule helps to safeguard against the anomalous tagging. Although a particular tag might
co-occur with another by random, the subsequent co-occurrence with the descendant set enforces
the tree relationship.

In Fig. 28, we show an example of a small taxonomy tree and different n-tuples of tags sampled
from the tree. The number attached to each node of the tree indicates the size of the co-occurrence

89

Chapter 6. Dynamical Inheritance

set of the corresponding tag. According to the exemplary data, tag C will be set as a child of tag
A, subsequently tags F, G and H will be set children of E. In Fig. 28(c), each row of the table
corresponds to a index of the data structure J . The bottom row corresponds to index 0. We
perform one bottom up past over the list to define each relationship.

6.5.3 Validation on Synthetic Taxonomies

In order to quantitatively evaluate the taxonomy learning algorithm, we perform taxonomy inference
on synthetic data. Given artificially created taxonomy trees, we sample n-tuples of tags using the
above tagging process model. We then apply our algorithm to infer a taxonomy from the data and
compare the results to the ground truth, i.e. to the taxonomy tree used for sampling. This allows
us to test the algorithm under different anomalous tagging behaviors as well as under different
taxonomy structures.

To create artificial taxonomies for testing, we consider a branching probability Pb(|C(ti)| = C)

which indicates how likely a given node ti has C children and proceed as follows: starting with the
root node t0, we iterate from upper levels down to lower levels. For each node on the current level,
we sample its number of children according to Pb and create children correspondingly. In order to
assign a name or artificial tag to a newly created node N , we use natural numbers such that t0 = 0

and tN = tN−1 + 1. This process continues, until a maximum number of nodes Tmax is reached.
This construction is in essence a Galton process, similar to the one presented in Section 2.1.3 for
the hawkes process.

To quantify the quality of taxonomies inferred from data samples, we applied a variant of the
concept of dendogram purity (Heller and Ghahramani 2005). In classification, purity is defined
by taking two random leafs and calculating the proportion of leafs from the common ancestor
which also belong to the real tree. Instead of class labels, we calculate for all nodes in the tree the
proportion of leafs they have in common

〈P 〉 =
|LH(ti) ∩ LĤ(ti)|
|LH(ti)|

(137)

In (137), H refers to the ground truth tree, whereas Ĥ is the tree inferred by our algorithm. Both,
for different tag anomalies and different branching factors, the algorithm is observed to perform
better for growing numbers of n-tuples and we were able to obtain over 0.8 purity (see Fig. 30
where colors indicate purities).

To investigate the role of taxonomy structure, we tested different branching probability distributions
with different parameters. In Figure 30a, a uniform distribution over the interval [2, u] was used
and the upper bound u of the branching factor as well as the number of tuples for training were
varied. If the number of tuples is too small (below 600), an increase in the branching factor will
decrease the purity. For big enough numbers of training tuples, an increase in the branching factor
will increase in purity.

In Fig. 30c shows same behavior for a Gaussian branching probability. Here, we fixed the variance
σ2 = 2 and modified the mean branching factor µ as well as the number of training tuples.

To understand the influence of noise or anomalous behavior according to our process model, we
performed inference for different noise levels p, i.e. different proportions of tuples generated using
the anomalous behaviors of section 6.5.1.

Figure 30b shows the influence of noise under a uniform branching distribution and Fig. 30d shows
it for a Gaussian branching function. In both cases, we observe that for, small numbers of training,
tuples noise will always be detrimental w.r.t. purities obtained. However, if enough samples of
n-tuples are provided, lower levels of noise lead to higher purities.

90

Stack Exchange Results

1
0
0

3
5
0

6
0
0

8
5
0

1
1
0
0

1
3
5
0

1
6
0
0

1
8
5
0

3

5

7

9

11

13

15

17

19
0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

(a) x: number of tuples
y: max branching factor

1
0

0
2

5
0

4
0

0
5

5
0

7
0

0
8

5
0

1
0

0
0

1
1

5
0

1
3

0
0

1
4

5
0

1
6

0
0

1
7

5
0

1
9

0
0

0.0
0.029
0.057
0.086
0.114
0.143
0.171

0.2
0.229
0.257
0.286
0.314
0.343
0.371

0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) x: number of tuples,
y: proportion of anomalies

1
0

0

5
5

0

1
0

0
0

1
4

5
0

1
9

0
0

2
3

5
0

2
8

0
0

3
2

5
0

3
7

0
0

4
1

5
0

4
6

0
0

5
0

5
0

3

5

7

9

11

13

15

17

19
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) x: number of tuples, y: mean
of Gaussian branching probability

1
0

0

5
5

0

1
0

0
0

1
4

5
0

1
9

0
0

2
3

5
0

2
8

0
0

3
2

5
0

3
7

0
0

4
1

5
0

4
6

0
0

5
0

5
0

0.0

0.073

0.145

0.218

0.291

0.364

0.436

0.509

0.582

0.655

0.727

0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) x: number of tuples,
y: proportion of anomalies

Figure 30 – For quantitative evaluation, of our taxonomy learning algorithm, we performed taxonomy
inference on synthetic data sets of n-tuples of tags sampled from given taxonomy trees. The quality of the
inferred taxonomies was quantified using the average purity in (137). The number of children per node in
the taxonomy trees where sampled from uniform or Gaussian branching functions. The behavior of the
algorithm was tested for different sample sizes (x-axis), different branching factors, and different amounts
of anomalous samples. For large sample sizes, we consistently obtained purities above 0.8.

6.6 Stack Exchange Results

We performed taxonomy inference for all the Stack Exchange sites in our data set. Figure 4 shows
excerpts of the trees we obtained for the biology site, the Physics site, and the English site. Notice
that these hierarchies result from from the tagging behavior of the Stack Exchange communities.
For instance, in Fig. 4b, general relativity appears as sub-field of quantum field theory. Although
this would not be the case in a typical physics taxonomy, an inspection of the siblings of general
relativity shows that research level is a sibling indicating that, as a research field, general relativity
is a sub-field of quantum field theory. Given the current state of physics research on a unified field
theory, this is in deed an acceptable taxonomic classification.

6.6.1 Taxonomy Statistics

To further characterizes the taxonomy trees we obtained and to uncover how topics are structured,
we show different dendrogram statistics in Fig. 5. One of the main advantages of our algorithm is
its ability to handle unbalanced and highly heterogeneous latent trees. The existence of imbalanced
knowledge folksonomies across the various Stack Exchange communities becomes apparent from
looking at Fig. 5a. This distribution quantifies the depths of the trees obtained. We note that most
of the tags have a preferred branch size of 6 ancestors. The physics taxonomy, however, has longer
overall branch sizes. To characterize distribution of tags per level, Fig. 5b shows the number of
tags per level. This gives an impression of the widths of the corresponding trees. We note that,
for mathematics and statistics, the maximum number of tags is usually obtained around level 3.
Physics and English have larger numbers of tags at deeper level of the trees. Together with the
longer branch sizes, this indicates that specialization occurs at deeper levels of the tree. Aiming
at a structural definition of the tree analogous to the degree distribution for the co-occurrence
network, we plot the branching distribution in Fig. 5c which shows the distribution of the number

91

Chapter 6. Dynamical Inheritance

evolution

dogs
excreta
instinct
anthropology
morphology

extinction

macroevolution
climate-change
conservation-biology
dna-damage

human-evolution demography
lifespan

speculative
chloroplasts
extremophiles
speciation

reptile scales
cladistics

life death

population-genetics
quantitative-genetics
snp
ichthyology

behaviour artificial-selection
collective-behaviour

theoretical-biology sociality
adaptation

ecology

allelopathy
environment
species
population-dynamics
natural-selection

zoology

pigmentation
sensation
ethology
biophysics
entomology

genetics

research-tools
allele
exons
sex
software
book-recommendation
mutations
cancer
botany
dna

0.56

Figure 31 – Biology

92

Stack Exchange Results

quantum-field-theory

clifford-algebra dimensional-reg

fermis-golden-rule irreversible

non-perturbative
fock-space
amplituhedron
propagator

grand-unification effective-field-theory
kaluza-klein

greens-functions qft-in-curved-spacetime
s-matrix-theory

parity dirac-matrices
elementary-particles

eigenvalue semiclassical
correlation-function

yang-mills
sigma-models
gauge-symmetry
gauge-invariance

fermions grassmann-numbers

conformal-field-theory compactification
differentiation

operators
commutator
dirac-equation
field-theory

research-level

fermi-liquids
instantons
partition-function
lattice-model
probability

string-theory

supergravity
second-quantization
supersymmetry
scattering

particle-physics

high-energy-physics
higgs-mechanism
anomalies
large-hadron-collider
quantum-chromodynamics
standard-model

general-relativity

metric-space
reference-frames
renormalization
differential-geometry
black-holes
gravity

0.56

Figure 32 – Biology

93

Chapter 6. Dynamical Inheritance

etymology

italian basque
biology

homophones homonyms
surnames

origin-unknown
tongue-twisters
20th-century-language
aphorism

irregular i-mutation
ablaut

french foreign-phrases
canadian-english

gender
sex-vs-gender
derived-terms
gender-neutral

old-english to-be

offensive-language
rude-words
irish-english
latin

capitalization names

history alphabet
geography

orthography

se-ce
o-ou
silent-letters
ordinals
figures-of-speech
loan-words

british-english

hindi
british-dialect
international
middle-english
north-american-english
archaic

american-english

blending
military
short-form
reading
lyrics
date
vocabulary
pronunciation

0.56

Figure 33 – Biology

94

Stack Exchange Results

0 2 4 6 8 10 12 14

Branch Sizes

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f

B
ra

n
ch

e
s

Biology

Statistics

Finance

English

MathOverflow

Physics

(a) branch sizes for different tax-
onomies

0 2 4 6 8 10

Branch Level

0

100

200

300

400

500

N
u
m

b
e
r

O
f

T
a
g
s

Biology

Statistics

Finance

English

MathOverflow

Physics

(b) tags per level

0 2 4 6 8 10

Number of Childs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty

poisson branching

(c) [branching distribution

Figure 34 – Statistics of the learned taxonomy trees in terms of their empirical branching factors, branch
sizes (or depths of the trees), and counts of tags per level (or widths of the trees).

1 2 3 4 5 6

Branch Level

0.5

0.6

0.7

0.8

0.9

1.0

A
v
e
ra

g
e
 S

co
re

Biology

Statistics

Finance

English

MathOverflow

Physics

Figure 35 – Average user score per level.

of children per node. After Kolmogorov-Smirnov tests were performed, the Poisson distribution
gave the best fit for the branching distribution. The Poisson distribution is known to be a limiting
case of the binomial distribution and characterizes random walks on networks with many steps
small transition probabilities [20]. In essence, this indicates a random process for the local extension
of the taxonomies collaboratively created by the users of the Stack Exchange sites.

The quality of Stack Exchange answers can be studied by looking at the average score at the
different taxonomic levels. Figure 35 shows the average score normalized by the maximum value
per site. For all sites, it shows a slightly diminishing trend, possibly because the complexity of
the subjects increases on deeper levels of the taxonomies and it may be more difficult for users to
provide acceptable answers.

6.6.2 Inverse Dynamical Inheritance

Having inferred taxonomic structures, we are now positioned to study the effect of the taxonomies
on the overall behavior of the stack exchange communities. That is we ask: Does the knowledge
structure of a field impact the number of answers a particular tag receives?

Here, it is important to note that the taxonomies were derived solely from observed co-occurrences
of tags. According to our model, there is a difference between the dynamics of the tagging process
and the intrinsic hierarchy of the knowledge. That is, the probability of selecting a given node as
the subject node is independent of the node’s location in the hierarchy. Yet, this location usually
depends on the current interest of the population in the corresponding topic. Nonetheless, another
node might be selected trough the branch dependencies or a highly active tag might arise as a
consequence of users filling knowledge gaps.

We refer to this process as Inverse Dynamical Inheritance. The structure of the hierarchy
affects the dynamics in a backwards manner. Parent nodes get activated through activities of their
descendants. Quantitative results as to this phenomenon can be seen in Fig. 36. Here, we plot the
activity of a node against the activity of all its descendants. As defined above, activity is given by
the number of answers to questions where a particular tag occurs. In order to remove spurious

95

Chapter 6. Dynamical Inheritance

100 101 102 103 104 105 106

Descendants Activity

100

101

102

103

104

105

N
o
d
e
 A

ct
iv

it
y

Coocurrants PC: 0.504

Descendants PC: 0.778

(a) English

100 101 102 103 104

Descendants Activity

100

101

102

103

N
o
d
e
 A

ct
iv

it
y

Coocurrants PC: 0.561

Descendants PC: 0.757

(b) Finance

100 101 102 103 104 105

Descendants Activity

100

101

102

103

104

N
od

e
A

ct
iv

ity

Coocurrants PC: 0.579
Descendants PC: 0.775

(c) Physics

1 2 3 4 5 6

Branch Depth

100

101

102

R
es

po
ns

e
Ti

m
e

(d
ay

s)

Biology
Statistics

Finance
English

MathOverflow
Physics

(d) response times per level

0 1 2 3 4 5 6

Branch Level

101

102

103

104

105

Po
pu

la
rT

ag
A

ns
w

er
s

Biology
Statistics

Finance
English

MathOverflow
Physics

(e) maximum tag activity per level

0 1 2 3 4 5 6

Branch Level

101

102

103

104

105

A
ve

ra
ge

Ta
g

A
ct

iv
ity

Biology
Statistics

Finance
English

MathOverflow
Physics

(f) average tag activity per level

Figure 36 – Dynamical dependance between taxonomy structures and community behaviors; (a)–(c)
shown via correlations of the activities related to a parent node and activities related to its descendants
(blue); as a reference, activities are also shown for tags and their co-occurrence sets (red); (d)–(f) show the
average response times per level, the number of answers for the most popular tag per level, and the average
number of answers per level.

correlations due to using the same set of answers, we remove all the answers which where also
part of the descendants. Conversely, the answers of the descendant set of tags do not contain the
answers where the parent is involved.

For comparison, we also plotted tag activities against the activities of the co-occurrence sets of each
tag (devoid of the descendant set O(ti)\D(ti)). This allows us to study the dynamic dependance as
provided trough the hierarchy and not through co-occurrence. For all inferred taxonomy trees, we
obtained a Pearson correlation of 0.7 or above for the descendants activities. For the co-occurrence
activities, a Pearson correlation of 0.5 was obtained.

Figure 36 also shows changes in the activities per level. Figure 36d displays the average response
time per level. Interestingly, fluctuations are small and response times are almost invariant. This
is unexpected given the dependance on descendants and that fewer descendants could have been
thought to imply less activity since fewer users may specialize in the corresponding topics. Yet,
once again, specialization seems not to impact response time. This might be attributed to the
reward mechanism of the stack exchange sites. Independent of the taxonomic level, users responds
as soon as possible to gain reputation in their community.

Figure 36e shows the number of answers for the most popular tag at different levels. As expected,
there is a decreasing trend since deeper levels indicate higher degrees of specialization. Yet, the
fluctuations in these curves indicate that tag related activity is not solely level driven. Tag in
deeper levels can show more activity than their parents. Finally, average activities per tag per level
are displayed in Figure 36f and show a more pronounced decreasing trend.

In this context, it is important to note that, according to our model, if not enough time is allowed
for, some co-occurrences may not manifest in observed data due to low activity of certain nodes
or topics. That is, nodes have to be active enough so as to be able to sample at least the node
with is parent. In this sense, our work in this chapter resembles complex network research where
the dynamics of different process, epidemics, random walker, or synchronization phenomena, are
constrained by the structure of the network (Newman 2003). This implies that the frequency of
appearance of a tag alone is not a good predictor of its position in the tree. In order to develop the

96

Implications for Complex Systems Analysis

algorithm we focus on the coocurrance patterns, i.e. the tree structure has to be inferred only from
the set of tuples which are present in the data set. Ignoring the frequency of the item sets or of the
tags themselves.

6.7 Implications for Complex Systems Analysis

The analysis of this work was inspired by the works in the interdisciplinary field of complex systems.
However, the relationships between structure and dynamics in past research is slightly different.
Hierarchical structures in physics are studied in the context of random walks in ultra-metrics spaces
and relaxation in glassy materials (Palmer et al. 1984; Bachas and Huberman 1986), this accounts for
phenomena that occur in the hierarchies or hierarchies which arise as a result of complex behavior.
In economics, studies have mapped the relationships between agents and macro economic behavior
through the use of hierarchical organization as well as the emergence of hierarchical time scales
(Aoki 1994; Sornette 2006; Sornette and Johansen 1998). Also, in neuroscience and psychology
(Alvarez-Lacalle et al. 2006; Érdi et al. 1992; Saaty 1990), the organizational structure of the brain
as well as the semantic representations is studied. In all of these cases, a detailed direct empirical
study was lacking due to the difficulty of obtaining the specifics of the dynamics and structure.
The results were indirect or restricted to mathematical modeling. Our work presents an empirical
investigation along those lines as we are able to observe in detail the dynamical process at all levels
of the tree. As a whole, the questions answering sites represent a complex system which process
information as the system seeks to answers the question provided by some users. The dynamical
inheritance implies that if a given site requires a particular point in the tree to increase it activities,
it can do so by the activities of its descendants. The topological characteristics of the tree encoded
in metrics as the branching distributions will impose constrains in the dynamics. In a sense, the
tree structure give insights as to how to aggregate the behavior of the different tags which depends
upon the given parent in the same way that a graph allows to propagate an epidemic through its
edges. The ubiquity of the tagging paradigm indicates that this agenda can be extended to sites as
diverse as Twitter or Instagram.

6.8 Discussion and Outlook

In the present chapter, we presented an algorithm to infer knowledge taxonomies from n-tuples of
tags assigned to questions on the stack exchange family of question-answering sites. The algorithm
was based on a probabilistic model of the tagging process, and extensive quantitative evaluations
on data for which there was ground truth showed favorable performance characteristics.

We applied the proposed algorithm to data crawled from stack exchange and used our results to
analyze dynamics within the stack exchange communities and verify whether these depend on
the respective fields’ taxonomies. We found that the automatically uncovered taxonomies and
relations between tags can account for certain tags’ popularity. The approach proposed in this
chapter provides a way of encoding the knowledge structures of QA sites that differs from previous
graph-based models in that it naturally incorporates coarse-to-fine relations. In future work, we
intend to study how a user’s reputation is related to their level of expertise as reflected by where in
the taxonomy, their answers are located.

In the next and final chapter of the dissertation, we will work in the opposite direction presented in
the current chapter. Instead of obtaining the effects of the representation structures in dynamics,
but instead, we will define representations constrained in specific properties of the stochastic
processes defined from them. Instead of ontologies, we will work with autoencoders, both from
a variational inference and adversarial inference approach. The nature of the paper is somewhat
theoretical, as proofs for the constructions are presented.

97

Chapter 7

Auto Encoding Explanatory
Examples

A considerable drawback of the deep classification paradigm is its inability to provide explanations
as to why a particular model arrives at a decision. This black-box nature of deep systems is one
of the main reasons why practitioners often hesitate to incorporate deep learning solutions in
application areas, where legal or regulatory requirements demand decision-making processes to be
transparent. A state-of-the-art approach to explain misclassification is saliency maps, which can
reveal a classifier’s sensitivity to its inputs. Recent work (Adebayo et al. 2018), however, indicates
that such methods can be misleading since their results are at times independent of the model, and
therefore do not provide explanations for its decisions. The failure to correctly explain some of
these methods lies in their sensibility to feature space changes, i.e. saliency maps do not leverage
higher semantic representations of the data. This motivates us to provide explanations that exploit
the semantic content of the data and its relationship with the classifier. Thus we are concerned
with the question: can one find semantic differences which characterize a classifier’s decision?

In this work, we propose a formalism that differs from saliency maps. Instead of characterizing
particular data points, we aim to generate a set of examples that highlight differences in the decision
of a black-box model. Let us consider the task of image classification and assume a misclassification
has taken place. For example, imagine that a female individual was mistakenly classified as male,
or a smiling face was classified as not smiling. Our main idea is to articulate explanations for such
misclassifications through sets of semantically connected examples that link the misclassified image
with a correctly classified one. Starting with the misclassified point, we suitably change its features
until we arrive at the correctly classified image. Tracking the black-box output probability while
changing these features can help articulate why the misclassification happened in the first place.
Now, how does one generate such a set of semantically-connected examples? Here we propose a
solution based on a variational auto-encoder framework.

We use interpolations in latent space to generate a set of examples in feature space connecting
the misclassified and the correctly classified points. We then condition the resulting feature-space
paths on the black-box classifier’s decisions via a user-defined functional. Optimizing the latter
over the space of paths allows us to find paths that highlight classification differences, e.g. paths
along which the classifier’s decision changes only once and as fast as possible. A basic outline of
our approach is given in Fig. 37.

Note that providing explanations is a rather subjective task. Here I can mention the different
approaches, and explanin that one thig is to explain a aparticular desicion and another is to explain
a classifiers, and the limits of non linears manifolds.

Within our framework, this implies that the types of changes that a particular user expects to
see along an example path are likely data and application dependent. We thus propose a general
formalism that allows users to specify the nature of the example path providing the explanation

99

Chapter 7. Auto Encoding Explanatory Examples

that better suits their needs. We achieve this by introducing and formalizing the notion of stochastic
semantic paths : stochastic processes on feature space created by latent code interpolations. Expected
changes of a data point are characterized in terms of stochastic functionals along the path, which
leads to the notion of a semantic Lagrangian. To train, say, a Variational Auto-Encoder, one must
define a new training cost by solving the variational problem that minimizes the functional along
the paths.

7.0.1 Summary of the Chapter

In what follows, we introduce and formalize the notion of stochastic semantic paths — stochastic
processes on feature (data) space created by decoding latent code interpolations. We formulate the
corresponding path integral formalism, which allows for a Lagrangian formulation of the problem,
viz. how to condition stochastic semantic paths on the output probabilities of black-box models,
and introduce an example Lagrangian which tracks the classifier’s decision along the paths. We
show the explanatory power of our approach on the MNIST and FashionMNIST datasets.

100

Related Work

7.1 Related Work

The bulk of the explanation literature for deep/ black box models relies in input dependent
methodologies. Gradient Based approaches (Simonyan et al. 2013a; Erhan et al. 2009) derive a
sensibility score for a given input example and class label by computing gradient of the classifier with
respect to each input dimension. Generalization of this methodology address gradient saturation by
incorporating gradients values in the saliency map (Shrikumar et al. 2016) or integrating scaled
versions of the input (Sundararajan et al. 2017). Ad hoc modifications of the gradient explanation
via selection of if required value (Springenberg et al. 2014a) and (Zeiler and Fergus 2014) as well as
direct studies of final layers of the convolutions units of the classifiers (Selvaraju et al. 2016a) are
also provided.

Different from gradient based approaches, a different categories of explanatory models rely on
reference based approaches which modify certain inputs with uninformative reference values (Shriku-
mar et al. 2017). Bayesian approaches, treat inputs as hidden variables and marginalize over the
distribution to obtain the saliency of the input (Zintgraf et al. 2017). More recent generalizations
exploit a variational Bernoulli distribution over the pixels values (Chang et al. 2018).

Other successfully methodologies include substitution of black box model with locally interpretable
linear classifiers. This is further extended to select examples from the data points in such a way
that the latter reflect the most informative components in the linear explanations. (Ribeiro et al.
2016).

Studies of Auto encoder interpolations seek to guarantee reconstruction quality. In (Arvanitidis
et al. 2017) authors characterize latent space distortions compared to the input space through
an stochastic Riemannian metric. Other solutions include adversarial cost on the interpolations
such as to improve interpolation quality compare to the reconstructions (Berthelot et al. 2018).
Examples which are able to fool classifier decisions have been widely studied in the framework
of adversarial examples (Goodfellow et al. 2014b). This methodologies however do not provide
interpretable explanations or highlight any semantic differences which lead to classifier decisions.

7.2 Explanations

We are concerned with the problem of explaining a particular decision of a black-box model. In
broad terms, to explain we mean (Ribeiro et al. 2016) to provide textual or visual artifacts that
provide qualitative understanding of the relationship between the data points and the model prediction.
Recent attempts to clarify such a broad notion of explanation c.f. (Doshi-Velez et al. 2017) require
the answers to questions such as: (1) What were the main factors in a decision?, as well as (2)
Would changing a certain factor have changed the decision?. To provide an answer to such questions,
one must be able to define a clear notion of factors. One can think of factors as the minimal
set of coordinates that allows us to describe the data points. A good description is then given
by information which allows us to reconstruct a data point. As such, this definition mirrors the
behavior of the autoencoder code (defined below). By training an autoencoder one can find a code
which describes a particular data point. Our role here is to provide a connection between these
codes and the classifier’s decision. Changes on the code should change the classification decision
in a user-defined way. Defining such a code will allow us to formalize the framework required to
provide an answer to question (1) and (2). Following (Ribeiro et al. 2016) we require explanations
to be agnostic, i.e independent of the model, interpretable, and expressing local fidelity.

101

Chapter 7. Auto Encoding Explanatory Examples

7.3 Explaining Through Examples

We define a defendant black-box model B(l|x) as a classifier which provides classification decisions
l over the data x. This model was trained on a dataset D = {(xi, li)}, where x ∈ X is the data
in feature space. A plaintiff is defined as the tuple (l0, x0). A litigation case is defined as the
6-tuple CL = (x−T , xT , l0, x0, lt,B(l|x)), wherein a plaintiff with a given data x0 presents a complain
over a particular classification decision l0 of model B, and provides a desired solution lt. x−T is a
representative data point for label l0, whereas xT is a representative data point for the label lt. These
representatives should provide examples for which the classifier correctly performs the classification,
as expected by the plaintiff, the defendant (if agreed) or the institution upon which the complain
or litigation case is presented (say the court). For a given generative model Pθ(X) of the data —
possible defined by an autoencoder: an explanation is an example set E = {xE−E , . . . , xE0 , . . . , xEE}
where xEk ∼ Pθ(X). The index k runs over semantic changes that highlight classification decisions.
This example set constitutes the context revealing how factor changes impact the classification
decision (see Section 7.2). In this chapter we provide explanations for particular representative
pairs. However, the inherent multimodality of the data distribution for each label might require
explanations for several representative examples. One could then perform the procedure proposed
here multiple times for different representative pairs.

7.4 Semantics and Example Generation: Auto-Encoders

Following the discussion above, we use the autoencoder formalism to introduce a notion of semantics
useful to qualitatively explain the decisions of a black-box classifier. This formalism will allow us to
both infer a code from the data point which inputs the classifier, and define a generative model
of examples associated to that code. Let us denote the data (feature) space by X and the latent
space of codes (describing the data) by Z, where usually dim(Z) < dim(X). We generically think
of an autoencoder as a tuple of (either, stochastic or deterministic) maps: an encoding map from
X to Z, defined by z = Qφ(z|x) parametrized by φ, and a decoding map from Z to X , given by
x̃ = Pθ(x̃|z), with θ its parameter set and x̃ ∈ X an approximate reconstruction of the input x.
The autoencoder formalism allows to efficiently infer a latent variable code z associated to a data
point x by training both Pθ and Qφ to minimize some reconstruction error c(x, x̃) between x and
its reconstruction x̃. Once the model is trained one can think of the inferred code z as containing
some high-level description of the input data x.

Within the VAE framework (Kingma and Welling 2013a) the latent code becomes a random variable
Z distributed according to some fixed prior distribution P (Z). Both encoder and decoder maps
become stochastic within this picture, and are constrained to have a computable and differentiable
probability density. That is, the encoder and decoder are now given by the distributions Qφ(Z|X)

and Pθ(X|Z), with X,Z random variables taking values in X ,Z, respectively1. The encoder thus
provides an approximation to the true posterior distribution P (Z|X) over the latent code, whereas
the decoder’s density, which we denote by pθ(x|z), yields the likelihood function of the data given
the code. Following the exposition presented in Eq. 5. VAE are then trained by minimizing:

LVAE = −EPD(X)EQφ(Z|X) [log pθ(x|z)] +DKL (Qφ(Z|X), P (Z)) , (138)

where PD(X) corresponds to the input data distribution and DKL denotes the Kullback-Leibler
divergence between the prior and the approximate posterior distribution. In contrast to VAE,
within the Wasserstein Autoencoder framework (WAE) (Tolstikhin et al. 2018) one only needs to
be able to sample from Qφ(Z|X) and Pθ(X|Z) — i.e. their density is not needed. Similar to the
adversarial training presented in Section 4.3.2. WAE is trained by minimizing a (penalized) optimal
transport divergence (Bousquet et al. 2017) — the Wasserstein distance, between the input data

1In the literature both Qφ(Z|X) and Pθ(X|Z) are usually chosen to be Normal distributions parametrized by
neural networks.

102

Stochastic Semantic Processes and Corresponding Paths

distribution PD(X) and the implicit latent variable model Pθ(X). As in VAE, the latter is defined
by first sampling Z from P (Z) and then mapping Z to X through the decoder Pθ(X|Z). The loss
function of WAE is given by

LWAE = EPD(X)EQφ(Z|X) [c (X,Pθ(X|Z))] + λDZ (Qφ(Z), P (Z)) , (139)

where c is a distance function and DZ is an arbitraty divergence between the prior P (Z) and the
agregate posterior Qφ(Z) = EPD(X) [Qφ(Z|X)], weighted by a positive hyperparameter λ. Minimiz-
ing Eq. (139) corresponds to minimizing the Wasserstein distance if the decoder is deterministic
(i.e. Pθ(X|Z = z) = δgθ(z)∀z ∈ Z, with the map gθ : Z → X) and the distance term is optimized.
If the decoder is stochastic Eq. (139) yields an upper bound on the Wasserstein distance (Bousquet
et al. 2017). It is essential to notice the fundamental difference from that which was presented in
Section 4.3.2. Here we are interested in obtaining a representation Z, whereas in Section 4.3.2, only
the ability to sample from the data distribution was required.

7.5 Stochastic Semantic Processes and Corresponding Paths

In this section we first formalize the notion of semantic change by introducing the concept of
(stochastic) semantic interpolations in feature space X . This will allow us to generate examples
which provide local fidelity, as the examples are smooth modifications of the latent code associated
to the plaintiff data point x0. We then define a collection of probability measures over semantic
paths in X . These measures will be used later in Section 7.6 to constrain the paths to be explanatory
with respect to the classifier’s decision.

7.5.1 Semantic Interpolations

One of the main motivations behind the VAE formalism is the ability of the inferred latent code z
to provide semantic high-level information over the data set. If one is to generate examples which
have characteristics common to two different data points, say x0 and xT from the litigation case,
one can perform interpolations between the latent codes of these points, that is z0 and zT , and
then decode the points along the interpolation. A main observation is that these interpolations in
latent space can be used to induce certain interpolating stochastic processes on feature
space2 X . We refer to these as stochastic semantic processes. In what follows, we first focus on
linear latent interpolations, i.e.

z(t) := t z0 + (1− t)zT , (140)

and construct an interpolating stochastic semantic process Xt on X by using the decoder distribution
Pθ(X|Z = z(t)). In practice, the generation process of such stochastic interpolations consists then
of three steps: (i) sample Qφ(Z|X) at the end points x0 and xT using the reparametrization trick
(Kingma and Welling 2013a), (ii) choose a set of points zt along the line connecting z0 and zT and
(iii) decode the zt by sampling Pθ(X|Z = zt). A formal description of this procedure is given below,
in subsection 7.5.2, and an impression of the stochastic process thus constructed is presented in Fig.
40c.

7.5.2 An Approach via Explicit Family of Measures

We observe that for every sequence of points {ti}ni=0 there is a natural measure on piecewise linear
paths starting at x0 ∈ X and terminating at xT ∈ X . More precisely, we define the probability of a

2Moreover, under appropriate assumptions on the auto-encoder mappings (Pθ, Qφ) the proposed induced stochastic
processes could posses additional properties (e.g. trajectory regularity, controlled moments, etc).

103

Chapter 7. Auto Encoding Explanatory Examples

(a) Paths in feature space. Lines with slahes,
corresponds to level lines for the classifier values.

(b) Propagator. Upper lines corresponds to the in-
terpolation of the z variables, while lower line corre-
sponds to samples in data space.

Figure 37 – Stochastic Semantic Paths

piecewise linear path x(t) with nodes x1, x2 . . . , xn ∈ X as

dPt0,...,tn(x(t)) :=

∫
Z

∫
Z

(
n∏
i=1

pθ(xi|z(ti))

)
× qφ(z0|x0)qφ(zT |xT) dz0 dzT , (141)

where qφ, pθ label the densities of Qφ, Pθ, respectively, and where z(t) is defined by eq. (140) 3.
In other words, for every pair of points x0 and xT in feature space, and its corresponding code
samples z0 ∼ Qφ(Z|X = x0) and zT ∼ Qφ(Z|X = xT), the decoder Pθ(X|Z) induces a measure
over the space of paths {x(t)|x(0) = x0, x(T) = xT }. Formally speaking, the collection of measures
dPt0,...,tn given by different choices of points {ti}ni=0 in (141) defines a family of consistent measures
(cf. Definition in the Appendix, Subsection Consistent-Measures). This implies that these different
measures are assembled into a stochastic process on feature space X over the continuous interval
[0, T]:

Proposition 1 The collection of measures prescribed by (141) induces a corresponding continuous-
time stochastic process. Moreover, under appropriate reconstruction assumptions on the auto-encoder
mappings Pθ, Qφ, the sample paths are interpolations, that is, start and terminate respectively at
x0, xT almost surely.

The statement goes along the lines of classical results on existence of product measures. For the sake
of completeness we provide all the necessary technical details in the Appendix. Another important
remark is that the stochastic semantic process construction in Proposition 1 is just one way to
define such a process — there are other natural options, e.g. in terms of explicit transition kernels
or Itô processes.

7.6 Principle of Least Semantic Action

Having described a procedure to sample stochastic semantic processes in X , we need to discover
auto-encoding mappings (Pθ, Qφ) that give rise to reasonable and interesting stochastic paths.
Specifically, to generate examples which are able to explain the defendant black-box model b(l, x)

in the current litigation case (Section 7.3), one needs to ensure that semantic paths between the
data points x0 and xT highlight classification differences, i.e. classifications of the model along this
path are far apart in the plaintiff pair of labels. Thus, to design auto-encoding mappings Pθ, Qφ
accordingly, we propose an optimization problem of the form

min
θ,φ

SPθ,Qφ [Xt], (142)

where Xt is a stochastic semantic process and SPθ,Qφ is an appropriately selected functional that
extracts certain features of the black-box model b(l, x). A couple of remarks are in place:

3We remark that the integral (eq. 141) is, moreover, finite, if, for example, the densities pθ are bounded with
respect to z.

104

Principle of Least Semantic Action

• The functional SP,Q is tailored along the problem at hand - in our example above SP,Q should
be defined as to extract certain features of the black box model Bθ(l|x),

• An important remark related to the the variational problem (142) is the following: one
could develop plenty of meaningful functionals SP,Q that involve taking velocities or higher
derivatives - to this end, one is supposed to work over spaces of curves with certain regularity
assumptions. However, as stated above we are working over stochastic paths Xt whose
regularity is, in general, difficult to guarantee (we refer to the Appendix for further remarks
on Hölder regularity and diffusion Itô processes). A straightforward way to alleviate this issue
is to consider a "smooth" version of the curve Xt - e.g. by sampling Xt through a decoder
with controllable or negligible variance or by means of an appropriate convolution.

Furthermore, one could also approach such stochastic variational analysis via Malliavin
calculus - however, in the present work we do not pursue this direction (cf. Section 7.9).

The minimization problem (142) can be seen in the context of Lagrangian mechanics. In mechanics,
the optimization given by suitable Lagrangians delivers physically meaningful paths, e.g. following
equations of motion ((Landau and Lifshitz 2013)). In our case, a guiding intuition is that the
semantic Lagrangian should reflect how the black-box B was taking decisions along the path Xt,
starting at x0 and ending at xT - e.g. whether the classifications along Xt were certain (from the
point of view of B); whether the decisions were taken in a gradually changing fashion; etc. In this
direction, minimization of the semantic action (i.e. finding minimizing paths Xt) should make these
classification aspects prominent. In our case, the paths are sampled from the measure induced by
the autoencoder pair. To find semantic paths translates into finding auto encoders pairs.

For a given stochastic semantic process Xt, and given initial and final feature “states" x0 and xT ,
we introduce the following function, named the model-b semantic Lagrangian

L : [0, 1]×X × X → R, (t, x0, xT) 7→ L[Xt, x0, xT], (143)

which gives rise to the semantic model action:

S[Xt] :=

∫ T

0

L[Xt, x0, xT]dt. (144)

Recalling that the semantic stochastic processes are constructed through the encoder/decoder
mechanism, we come to the heart of our discussion: by optimizing and further tuning the autoencoder
pair P,Q we aim to generate and sample stochastic processes Xt that minimize the semantic action
S. In other words, we attempt to find autoencoder pairs that would allow us to generate meaningful
explanations in the form of example collections given by semantic stochastic paths. Specifically,
minimization of (144) plays a similar role to that of the well-known variational lower bound
in the variational autoencoding framework - one can discretize the integral and perform the
reparametrization trick at each time step in order to average over the semantic stochastic paths.
In our case, the paths are sampled from the measure induced by the autoencoder pair. To find
semantic paths translates into finding auto encoders pairs. Our problem, viz. to find encoding
mappings Pθ, Qφ which yield explainable semantic paths with respect to a black-box model, is then
a constrain optimization problem whose total objective function we write as

L(θ, φ) := LVAE(θ, φ) + λEdP [x(t)]S[x(t)], (145)

where LVAE is given by eq. (138), S[x(t)] corresponds to the Lagrangian action and λ is an hyper
parameter controlling the action’ scale. The average over the paths (Majumdar 2007; Feynman
and Mechanics 1965) is taken with respect to the stochastic paths and the corresponding measure
dP [x(t)] from Proposition 1, that is, the path integral

EdP [x(t)]S[(x(t))] =

∫
L[x(t), x0, xT]dP [x(t)] (146)

≈ 1

nK

K∑
k

n∑
t

L[xkt , x0, xT], (147)

105

Chapter 7. Auto Encoding Explanatory Examples

where xkt labels the tth point along the the kth path, sampled as described in Section 7.5, n is the
number of points on each path, K is the total number of paths, and the estimator on the right
hand side corresponds to an explicit average over paths4. In practice, both LVAE and the action

Algorithm 5: PATH Auto-Encoder
Data: Dataset D = {(xi, li)} Litigation case (x−T , xT , l0, x0, lt,B(l|x))
Encoder Pθ(x|z), Decoder Qφ(z|x)

while φ and θ not converged do
Draw {x1, ..., xn} from the training set
Calculate Auto-Encoder Loss LVAE(θ, φ)

Sample Litigation Codes
z−T ∼ Qφ(Z|x−T), z0 ∼ Qφ(Z|x0), zT ∼ Qφ(Z|xT)

Generate Latent Interpolations
tkj ∼ Sort(Uniform(0,1))

zkj = z−T × tkj + z0 × (1− tkj)

Sample k Paths in Feature Space
xkt ∼ Pθ(X|zkj)

Evaluate Semantic Action for each path k
and average over k
LS = EdP[x(t)][S(x(t))]
Update Pθ and Qφ by descending: LVAE(θ, φ) + LS(θ, φ)

end
return Pθ, Qφ

term are optimized simultaneously. Note that the VAE loss function LVAE is trained on the entire
data set on which the black-box performs. The action term, in contrast, only sees the x0 and xT
points. This can be seen explicitly in Algorithm 5, which shows an overview of the auto-encoder
pair training algorithm. Let us finally note that, drawing analogies with the adversarial formalism
(Goodfellow et al. 2014b), the defendant black-box model plays the role of a fixed discriminator,
not guiding the example generation, but the interpolations among these examples.

7.6.1 The Choice of Lagrangians

There are plenty of options for Lagrangian functionals that provide reasonable (stochastic) example-
paths — roughly speaking, we attempt to define an objective value for a certain subjective notion
of explanations. In what follows we illustrate three different Lagrangians.

Minimum Hesitant Path

We want to find an example path such that the classifier’s decisions along it changes as quickly as
possible, as to highly certain regions in X . In other words, the path is forced to stay in regions
where the black-box produces decisions with maximum/minimum probability. An intuitive way to
enforce this is via the simple Lagrangian

L1(x(t), x0, xT) := − (b(lT , x(t))− b(l0, x(t)))
2
, (148)

where l0, lT are the labels of the litigation case in question. Roughly speaking, given the appropriate
initial conditions, the paths that minimize the action associated to L1 are paths that attempt to
keep L1 close to 1 over almost the entire interpolation interval.

4Note that, as mention in Sec. 7.5, one must resort to the reparametrization trick to sample from Qφ and
efficiently evaluate the gradients of the action term. Note also that Proposition 1 tells us that different choices of
the discrete (approximation) grids in the t integration are qualitatively related to the same underlying stochastic
interpolation process.

106

Principle of Least Semantic Action

Figure 38 – Probability Paths for the litigation case l0 = 2, lT = 7. Y axis corresponds to classification
probability and x axis corresponds to interpolation index. Interpolation images for a specific paths are
presented below the x axis.

Minimum Transformation Path

Another meaningful Lagrangian construction is given by following the geometry of B itself and
attempting to find paths that are close to being gradient-descent lines. This can be embodied by
defining

S3(x(t), x0, xt) :=

∫ T

0

‖∇B(lT |x(t))− αẋ(t)‖2dt :=

∫ T

0

L3(x(t), x0, xt), (149)

where α is a suitably chosen positive constant describing the extent to which the stochastic path
should follow the geometry of B.

Minimum Deformation Path

In addition to following the geometry of the black box B, one could also impose a natural condition
that the stochastic paths minimize distances on the manifold in feature space that the auto-encoder
pair induces. We recall from basic differential geometry that the image of the decoder as a subset of
the feature space is a submanifold with a Riemannian metric g induced by the ambient Euclidean
metric in the standard way (for background we refer to (do Carmo 1976)). In the simple case of a
deterministic auto-encoder, one can think of g as the matrix JTJ where J denotes the Jacobian of
the decoder - thus g gives rise to scalar product g(X,Y) := XJTJY . In the stochastic case, one
can use suitable approximations to obtain g in a similar manner - e.g. in (Arvanitidis et al. 2017)
the authors decompose the decoder into a deterministic and a stochastic part, whose Jacobians
J1, J2 are summed as JT1 J1 + JT2 J2 to obtain the matrix g. Now, having Riemannian structure (i.e.
the notion of a distance) on the data submanifold, geodesic curves naturally arise as minimizers of
a suitable distance functional, namely:

S4(x(t), x0, xt) :=

∫ T

0

‖ẋ(t)‖gdt, (150)

where the norm ‖·‖g is computed with respect to the Riemannian metric g, that is
√
g(·, ·). We note

that the utilization of geodesics for suitable latent space interpolations was thoroughly discussed in
(Arvanitidis et al. 2017).

Other regularizers

Additionally we require b(lT , x(t)) to be a monotonous function along the interpolating path x(t).
Furthermore, in accordance with Proposition 1 we require certain level of reconstruction at the end
points. To enforce these conditions we introduce the regularizers rm, re. The first, corresponds to

107

Chapter 7. Auto Encoding Explanatory Examples

an criteria tha enforces that the interpolations do not interfere with the reconstruction at the ends,
whereas re stands for explanatory examples. An explanatory path is a mapping x : [0, T]→ X with
x(0) = x0, x(T) = xT so that B(lt|x(t)) is a monotonous function. Explanatory paths are preferable
in the sense that they provide examples following a particular trend along the disputed labels.
The classifier must change decision in a monotonous fashion, as the interpolation proceeds the
probability of classification of the l0 decreases whereas the classification probability for lT increases.
These paths can be enforced in a straightforward way by introducing the constraint:

re =
d

dt
B(lT |x(t)) < 0, ∀t ∈ [0, T]. (151)

Note that this constraint requires differentiability of x(t) - in contrast, the notion of explanatory
path is not relying on such. We approximate the differential with finite differences. Our final loss
reads:

L(θ, φ) := LVAE(θ, φ) + λEdP [x(t)]S1[x(t)] + λmrm + λere, (152)

where λ, λm, λe are hyper-parameters and S1 is the action associated to the minimum hesitant
Lagrangian L1 in eq. (148).

7.7 Comparison to other models

Although the aim of our methodology is to provide representations which are embedded with
explanatory power, traditional approaches rely on different philosophy to provide explanations.
A saliency maps is a another image S ∈ RP×P where P is the number of pixels, which highlight
important areas of the images that the black box classifier show in classification. We will use the
interpolations as obtained by the auto encoders trained with our procedure to define a saliency
maps. We will achieve this by creating weighed sum over the images in a given interpolation. Since
the aim is to know the relevant characteristics that change the classification decision, it is natural
to use the change in the probabilities as the corresponding weigth. Formally the Interpolation
saliency Map is defined as:

S(x0) = 1/T

∫
δB(x|x0)δxdP [x(t)] = 1/T

∫
{B(lT |x(t))−B(l0|x(t))} (x(t)−x0)dP [x(t)]. (153)

We obtained approximations o this integral by using a discrete approximation as performed in the
calculation of the action Eq. 146

7.7.1 Evaluation

In order to quantitatively evaluate the effectiveness of our methodology, we use a masking procedure.
For a given image x and its corresponding saliency map s, the masking is accomplished by changing
the pixels of x which have a saliency value bigger than the τ percentile set of values of the map
s itself. We then quantify the change in the odds probability, per number of pixel changed (in
percentage values)

logP (c|x) = logP (c|x)− log(1− P (c|x)). (154)

In short, a good saliency map, will achieve the biggest change in the log odds, with the least amount
of pixel changed. It is to be noted that, we have to define the fill in new pixel procedure. We
utilized for tree options. The minimum and higher value of a pixel (for a given image set), as well as
a random uniform pixel value along this values. We show an example of the saliency maps obtained
for one classification in Fig. 39. In order to obtain statistics of the procedure, we obtained the
relevance values for 100 different black box missclassifications and provide the average in table 7.1.
Here we compare against traditional saliency maps as well as variations of our own methodology
for different Lagrangian’s combinations. We find that the minimum transformation action applied

108

Experimental results

Figure 39 – Saliency Maps Comparison: Vanilla Gradients (Simonyan et al. 2013b), Smooth Gradients
(Smilkov et al. 2017), Guided BackProp (Springenberg et al. 2014b), Grad CAMP (Selvaraju et al. 2016b),
Interpolations, Difference with Representative. Upper row corresponds to lT = 2, lower row to lT = 7.

index max min mean random

VAE mhp (1.0) mdp (5.0) 26.890537 13.248348 13.780094 24.259376
VAE mdp (5.0) 17.528036 12.430488 13.249453 16.323000
VAE mtl (5.0) 22.425894 1.593850 17.865745 18.878264
VAE mhp (1.0) mtl (5.0) 41.968799 3.516279 25.474598 41.076384
WAE mdp (5.0) 1.348628 7.626165 4.758138 2.598853
WAE mhp (1.0) mdp (5.0) 28.650618 19.274864 13.260943 24.217626
WAE mtl (5.0) 33.308588 1.721710 10.395801 27.469413
WAE mhp (1.0) mtl (5.0) 21.113389 25.378131 6.343344 16.944631
vanilla 18.799356 12.129845 12.124648 18.617377
smooth 2.626274 16.802856 10.184854 3.966701
guided 25.264783 4.653241 2.523255 15.527908
mask 4.276590 0.248701 3.414551 3.244211

Table 7.1 – Relevance Statistics for Different Models and Comparison Saliency Maps. Here Minimum
hesitant path (mhp), minimum transformation path (mtp), minimum deformation path (mdp). The numbers
in parentesis indicate the value of the corresponding λ hyperparameters. Here Vanilla (Simonyan et al.
2013b), Smooth (Smilkov et al. 2017), guided (Springenberg et al. 2014b), mask (Selvaraju et al. 2016b)

to the Wasserstein autoeoncoder achieves better performance, as might be explained by its longest
change along the path as opposed by the minimum hesitant.

7.8 Experimental results

We evaluate our method in two real-world data sets: MNIST, consisting of 70k Handwriting digits,
(LeCun 1998) and the CelebA dataset (Liu et al. 2015) with roughly 203k images of celebrities
faces. We use a vanilla version of the VAE (Kingma and Welling 2013a) with Euclidean latent
spaces Z = R

dz and an isotropic Gaussian as a prior distribution P (Z) = N (Z|0, Idz). We used
Gaussian encoders, i.e. Qφ(Z|X) = N (Z|µφ(X),Σφ(X)), where µφ, σφ are approximated with
neural networks of parameters φ, and Bernoulli decoders Pθ(X|Z). We compare the standard VAE,
VAE-EDGE (VAE augmented with the edge loss re) and PATH-VAE (our full model, eq. (152)).
The black-box classifier b(l, x) is defined as a deep network with convolutional layers and a final
soft-max output layer for the labels. Details of the specifics of the architectures as well as training
procedure are left to the Appendix. For MNIST we studied a litigation case wherein l−T , lT = 2, 7

and l0 = 2, whereas its true label (i.e. that of x0) is lt = 7 (see Section 7.3). The results are
presented in Fig. 38. VAE delivers interpolations which provide uninformative examples, i.e. the
changes in the output probability b(l0, x) cannot be associated with changes in feature space. In
stark contrast, PATH-VAE causes the output probability to change abruptly. This fact, together
with the corresponding generated examples, allows us to propose explanations of the form: what
makes the black-box model classify an image in the path as two or seven, is the shifting up of
the lower stroke in the digit two as to coincide with the middle bar of the digit seven. Similarly,

109

Chapter 7. Auto Encoding Explanatory Examples

(a) Minimum Hesitant (b) Minimum Transformation (c) Fixed Lenght Scales

Figure 40 – Box Plot Statistics for different action values vs its un regularized auto encoder variance for
different lagrangians

the upper bar of the digit seven (especially the upper left part) has a significant decision weight.
Further comparison are presented in more detail in Fig. 41. In order to provide a more quantitative
analysis we demonstrate the capability of our methodology to control the path action while retaining
the reconstruction capacity. Hereby, we use not only the VAE as the underlying generative model,
but also Wasserstein Auto-Encoder (WAE) (Bousquet et al. 2017). The theoretical details and
corresponding architectures are presented in the Appendix. In order to validate our hability to
control the action values during the training procedure, we present, in Fig. 40, the action values
defined over random litigation end pairs (x−T , xT). The PATH version of the model indeed yields
correspondign changes in the action values. Furthermore, these models tend to reduce the variance
within the different paths. This is expected since there is one path that minimizes the action, hence,
the distribution will try to arrive at this specific path for all samples.

For the CelebA dataset we use a black box classifier base on the ResNet18 architecture (He et al.
2016). We investigate two specific misclassifications. In the first case, a smile was not detected
(Fig. 42 a). Here we only interpolate between the misclassified image (left) and correctly classified
one of the same person (right). Interpolations obtained by the VAE model are not informative:
Specific changes in feature space corresponding to changes in the probability can not be detected
since the latter changes rather slowly over the example path. This observation also holds for the
VAE-EDGE model, except that the examples are sharper. Finally, our PATH-VAE model yields a
sharp change in the probability along with a change of the visible teeth (compare the third and
fifth picture in the example path), revealing that this feature constitutes one decisive factor in the
probability of detecting a smile. The second case deals with a woman who was wrongly classified
as a man (Fig. 42 b). We observe the same pattern as above, i.e., the VAE and the VAE-EDGE
model do not reveal decisive features, since the probability along the path changes too slowly.
In contrast, the probability in the PATH-VAE model features a sudden jump. Comparing the
corresponding images (the eighth and the ninth image) suggests that the eyebrows might have
a strong effect on the decision. It is important to note that these observations represent one of
many possible path changes that could change the classifier decision; the current realization and
representative endpoints constrain this. The important result is that our methods can shape the
classifier’s behavior along the path.

7.9 Discussion and Outlook

It is important to understand that our methodology is limited by the autoencoders’ ability to provide
proper samples in the data manifold. Although recent developments in the autoencoder community
have vastly improved this capacity, one needs to remember that the datasets in which autoencoders
are applicable are usually those already segmented within one object class. So autoencoders work
correctly in datasets as MNSIT of CelebA, which are only comprised of digits or faces. Traditional
methods of image explanations then work in larger datasets that do not provide enough regularity
and are abundant in classes with low representation e.g. ImageNet (Deng et al. 2009). This does not
stop the autoencoders for providing meaningful representations for say, classification, and variations

110

Discussion and Outlook

(a) Regular VAE

(b) Minimum Hesitant L1

(c) Minimum Deformation L3

Figure 41 – Probability Paths for a litigation case (l0 = 2,lT = 7). Y axis corresponds to classification
probability for the different labels and x axis corresponds to interpolation index. Interpolation images for a
specific paths are presented below the x axis. The final and initial image corresponds to the plaintiff class
representatives X−T and XT . The center image corresponds to the plaintiff x0

of our methodology using statistics of classifications on the interpolated code can also be attained.

In summary, in the present chapter, we provide a novel framework to explain black box classifiers
through examples obtained from deep generative models. To summarize, our formalism extends
the autoencoder framework by focusing on the interpolation paths in feature space. We train
the autoencoder, not only by guaranteeing reconstruction quality but by imposing conditions on
its interpolations. These conditions are such that information about the model’s classification
decisions B is encoded in the example paths. Beyond the specific problem of generating explanatory
examples, our work formalizes the notion of stochastic process induced in feature space by latent
code interpolations. It provides quantitative characterization of the interpolation through the

111

Chapter 7. Auto Encoding Explanatory Examples

0 1interpolation step t0

1

P(
sm

ile
)

PATH-VAE
VAE-EDGE
VAE

VA
E

VA
E-

ED
GE

PA
TH

-V
AE

(a) Smile

0 1interpolation step t0

1

P(
w

om
an

)

PATH-VAE
VAE-EDGE
VAE

VA
E

VA
E-

ED
GE

PA
TH

-V
AE

(b) Sex

Figure 42 – Probability Paths for the case of detecting a smile (a) or the sex (b) in images of celebrities.
Y axis corresponds to classification probability and x axis corresponds to interpolation index. Interpolation
images for a specific paths are presented below the x axis. The images are vertically aligned with a
corresponding tick in the x-axis determining the interpolation index of the image

semantic Lagrangian’s and actions. Our methodology is not constrained to a specific Auto Encoder
framework provided that mild regularity conditions are guaranteed for the autoencoder and decoder.

112

Part IV

Appendix

113

Chapter 8

Proof Concerning Regularity of
Paths

8.1 Stochastic Semantic Processes: Proof of Proposition 1

Briefly put, the construction we utilize makes use of the well-known notion of consistent measures,
which are finite-dimensional projections that enjoy certain restriction compatibility; afterwards, we
show existence by employing the central extension result of Kolmogorov-Daniell.

8.1.1 Collections of Consistent Measures

We start with a couple of notational remarks.

Definition 1 Let S, F be two arbitrary sets. We denote

SF := {f : F → S}, (155)

that is, the set of all maps F → S.

Definition 2 Let (S,B) be a measurable space and let G ⊆ F ⊆ [0, T] for some positive number T .
We define the restriction projections πF,G by

πF,G : SF → SG, f ∈ SF 7→ f |G ∈ SG. (156)

Moreover, for each F ⊆ [0, T] the restriction projections induce the σ-algebra BF which is the
smallest σ-algebra on SF so that all projections

πF,{t} : SF → S{t} ∼= S, ∀t ∈ F, (157)

are measurable. In particular, the projections πF,G are measurable with respect to BF ,BG.

Definition 3 Let us denote by Fin([0, T]) the set of all finite-element subsets of [0, T]. A collection
of finite measures {(µF ,BF), F ∈ Fin([0, T])} is called consistent if it is push-forward compatible
with respect to the restriction projection mappings, i.e.

(πF,G)∗ µF = µG, ∀F,G ∈ Fin([0, T]), G ⊆ F. (158)

Here

(πF,G)∗ µF (A) := µF (π−1
F,G(A)), ∀A ∈ BG. (159)

Proposition 2 Let F = {0 ≤ t1 < t2 < · · · < tn ≤ T} ∈ Fin([0, T]) be an arbitrary finite set. The
mapping

µF (A) :=

∫
χA(x1, x2, . . . , xn)

(
n∏
i=1

pθ(xi|zi)

)
qφ(z0|x0)qφ(zT |xT)dz0dzT dx1 . . . dxn (160)

115

Chapter 8. Proof Concerning Regularity of Paths

defines a consistent collection of finite measures.

Let us fix

F1 := {0 ≤ t1 < t2 < · · · < tn ≤ T} ∈ Fin([0, T]), (161)

F2 := {0 ≤ t1 < t∗ < t2 < · · · < tn ≤ T} ∈ Fin([0, T]), (162)

Without loss of generality, it suffices to check consistency for the pair (F1, F2). We have

(πF1,F2)∗µF2(A) = µF2

(
π−1
F1,F2

(A)
)

(163)

=

∫
χπ−1

F1,F2
(A)(x1, s, x2, . . . , xn)

(
n∏
i=1

pθ(xi|zi)

)
(164)

× pθ(s|zt∗)qφ(z0|x0)qφ(zT |xT)dsdz0dzT dx1dx2 . . . dxn (165)

=

∫
χA(x1, x2, . . . , xn)

(
n∏
i=1

pθ(xi|zi)

)
qφ(z0|x0)qφ(zT |xT)dz0dzT dx1 . . . dxn

(166)

= µF1
(A), (167)

where we have used L1-finiteness and integrated out the s variable via Fubini’s theorem. Note also,
that by the definitions above

χπ−1
F1,F2

(A)(x1, s, x2, . . . , xn) = χA(x1, x2, . . . , xn). (168)

for any fixed s ∈ X .

We briefly recall the following classical result due to Kolmogorov and Daniell:

Theorem 1 (Theorem 2.11, (Bär and Pfäffle 2012)) Let (S,B(S)) be a measurable space
with S being compact and metrizable and let I be an index set. Assume that for each J ∈ Fin(I)
there exists a measure µJ on SJ ,BJ , such that the following compatibility conditions hold:

µJ1 = µJ2 ◦ π−1
J1
, ∀J1 ⊆ J2 ∈ Fin(I). (169)

Here πJ1 : SJ2 → SJ1 denotes the canonical projection (obtained by restriction).

Then, there exists a unique measure µ on (SI ,BI) such that for all J ∈ Fin(I) one has

µ ◦ π−1
J = µJ . (170)

We recall that a well-known way to construct the classical Wiener measure and Brownian motion
is precisely via the aid of Theorem 1 ((Taylor 2011)). We are now in a position to construct the
following stochastic process.

Proposition 3 There exists a continuous-time stochastic process Xt : [0, T]→ R
D satisfying

P((Xt1 , Xt2 , . . . , Xtn) ∈ A) =

∫
χA(x1, x2, . . . , xn) (171)

×

(
n∏
i=1

pθ(xi|zi)

)
qφ(z0|x0)qφ(zT |xT)dx1 . . . dxn. (172)

(173)

Moreover, for small positive numbers ε, δ we have X0 ∈ Bδ(x0) with probability at least (1 − ε),
provided the reconstruction error of encoding/decoding process is sufficiently small. In particular, if
x0 stays fixed after the application of encoder followed by decoder, then X0 = x0 almost surely. A
similar statement holds also for the terminal point Xt and xT respectively.

By applying Theorem 1 to the collection of consistent finite measures prescribed by Proposition 2

116

Stochastic Semantic Processes: Proof of Proposition 1

we obtain a measure µ on the measurable space (S[0,T],B[0,T]). Considering the probability space
(S[0,T],B[0,T], µ) we define stochastic process

Xt := π[0,T],{t} : S[0,T] → S. (174)

It follows from the construction and the Theorem of Kolmogorov-Daniell that P ((Xt1 , Xt2 , . . . , Xtn) ∈ A)

is expressed in the required way. This shows the first claim of the statement.

Now, considering a small ball Bδ(x0) we have

P(X0 ∈ Bδ(x0)) =

∫
χBδ(x0)(x)pθ(x|z0)qφ(z0|x0)qφ(zT |xT)dxdz0dzT (175)

=

∫
χBδ(x0)(x)pθ(x|z0)qφ(z0|x0)dxdz0 (176)

:= R(x0, χBδ(x0)). (177)

Here, the function R(x∗, U) measures the probability that the input x∗ is decoded in the set U .
Thus, if the reconstruction error gets smaller, R converges to 1. This implies the second statement.

Finally, if we assume that the auto-encoder fixes x0 in the sense above, we similarly get

P(X0 = x0) =

∫
χ{x0}(x)pθ(x|z0)qφ(z0|x0)qφ(zT |xT)dxdz0dzT (178)

=

∫
χ{x0}(x)pθ(x|z0)qφ(z0|x0)dxdz0 (179)

= δx0
(χ{x0}) (180)

= 1. (181)

8.1.2 Concerning the Regularity of Sample Paths

An important remark related to the the variational problem (142) is the following: one could
develop plenty of meaningful functionals SPθ,Qφ that involve taking velocities or higher derivatives -
thus one is supposed to work over spaces of curves with certain regularity assumptions. However,
as stated above we are working over stochastic paths Xt whose regularity is, in general, difficult
to guarantee. A straightforward way to alleviate this issue is to consider a "smooth" version of
the curve Xt - e.g. by sampling Xt through a decoder with controllable or negligible variance or
by means of an appropriate smoothing. Furthermore, one could also approach such stochastic
variational analysis via Malliavin calculus - however, we do not pursue this direction in the present
work.

We now briefly discuss a few remarks about the regularity of the stochastic semantic process from
Proposition 1. First, we state a well-known result of Kolmogorov and Chentsov:

Theorem 2 (Theorem 2.17, (Bär and Pfäffle 2012)) Let (M,ρ) be a metric measure space
and let Xt, t ∈ [0, T] be a stochastic process. Suppose that there exists positive numbers a, b, C, ε
with the property

E [ρ(Xs, Xt)
a] ≤ C|t− s|(1+b), ∀s, t, |s− t| < ε (182)

Then, there exists a version Yt, t ∈ [0, T] of the stochastic process Xt whose paths are α-Hölder
continuous for any α ∈ (0, b/a).

Thus, roughly speaking, an estimate on E [ρ(Xs, Xt)
a] can be regarded as a measure of the extent

to which Theorem 2 fails. To give an intuitive perspective, let us consider the stochastic process
given by Proposition 1 and, considering only the points Xs, Xs+δ for a small positive number δ, let

117

Chapter 8. Proof Concerning Regularity of Paths

us write the expectation in (182) as:

∫ ∫ ∫ ∫
‖xs+δ − xs‖ pθ(xs+δ|zs+δ)pθ(xs|zs)qφ(z0|x0)qφ(zT |xT)dxsdxtdz0dzT , (183)

where we have used the standard Euclidean distance. To estimate the integral further, let us for
simplicity assume that the encoder is deterministic and the decoder is defined via a Gaussian Ansatz
of the type µ(z) + σ(z)⊗ ε for a normal Gaussian variable ε. Thus the last integral can be written
as: ∫ ∫

‖xs+δ − xs‖
(2π)n

√
|Σs+δ||Σs|

exp

(
−1

2
[(xs+δ − µ(zs+δ))

TΣ−1
s+δ(xs+δ − µ(zs+δ)) (184)

+(xs − µ(zs))
TΣ−1

s (xs − µ(zs))]
)
dxsdxt, (185)

where we denote the covariance matrix at time s by Σs. Now, if Σs+δ becomes sufficiently small
as δ converges to 0, then the exponential factor will dominate and thus (182) holds. In other
words, Hölder regularity of the process is verified provided that pθ(x|z) becomes localized in x and
converges to a Dirac measure (similarly to the case of the heat kernel propagator and Brownian
motion). From this point of view, the variance of the decoder can be considered as an indicator of
how far the stochastic process is from being Hölder continuous.

Below we discuss two other stochastic process constructions, one of which is built upon Itô diffusion
processes and enjoys further path-regularity properties.

8.1.3 Stochastic Semantic Processes: Further Constructions

In this Subsection we briefly provide a couple of additional methods as to how one can construct
various types of stochastic semantic processes - in an upcoming work we investigate these in further
detail.

As a first suggestion, we recall that a stochastic process can be induced via a specific transition
kernel κt(x, y) which, roughly speaking, prescribes the probability that at time t the process will
jump from x to y (e.g. Brownian motion is induced by the heat kernel ht(x, y)). Now, using the
auto-encoder pair one can come up with various transition kernels. A natural suggestion is:

κt(x0, x) :=

∫ ∫
pθ (x|tz0 + (1− t)z) qφ(z|x)qφ(z0|x0)dz0dz. (186)

Aside from transition kernels, one can also propose a construction in the spirit of Brownian bridges.
To set some notation, we recall that the decoding map is often decomposed ((Kingma and Welling
2013a)) by means of the following Ansatz:

P (z) = µθ(z) + σθ(z) · ε, ε ∼ N (0, ID), (187)

where the symbol · denotes element-wise multiplication. Roughly, the decoder is decomposed into a
deterministic µθ(z) and a stochastic σθ(z) part. We introduce the following Itô process:

dXt = Dµθ(ż(t))dt+ η(σθ(z(t)))dBt, (188)

where Dµθ denotes the differential of µθ; ż(t) is a smooth semantic interpolation; η : X → R

is a smooth function estimating the effect of the variance and Bt denotes the standard Wiener
process. For instance, reasonable choices of η include powers of the Euclidean distance. Under
appropriate assumptions on the auto-encoding mappings P,Q (in particular, µθ, σθ), the Itô process
(188) defines a stochastic process Xt starting and terminating respectively at x0, xT and possessing
regular sample paths. Moreover, the mean of Xt is given by µθ(z(t)) and the variance is estimated

118

Stochastic Semantic Processes: Proof of Proposition 1

in terms of η(σθ(z)).

119

Chapter 9

Deep Neural Networks Architectures

Long Short Term Memory Network

One of the most common variants of recurrent neural networks, aimed at solving the vanishing
gradient problem, is the long short-term memory network (Hochreiter and Schmidhuber 1997). Let
us define ŵ as the observed data1. The LSTM network recursively processes each element ŵj

i in
review j while updating its hidden state sj as follows

it = σ(W1
i ŵt + W2

i st−1 + bi),

ot = σ(W1
o ŵt + W2

o st−1 + bo), (189)

ft = σ(W1
f ŵt + W2

f st−1 + bf),

ct = ft � ct−1 + it � tanh(W1
c ŵt + W2

c st−1 + bc),

st = ot � tanh(ct).

Here it, ot ft, ct, and st are the input, output, forget, memory and hidden states of the LSTM,
respectively; “t" runs from one to L, the number of words in the jth review (note we have omited j
above); σ labels the ReLU nonlinearity and � labels element-wise multiplication.

9.1 Models Training Details

9.1.1 A simple VAE model: MNIST

There was no preprocessing on the 28x28 MNIST images. The models were trained with up to
25 epochs with mini-batches of size 1024. Our choice of optimizer is Adam with learning rate
α = 10−3. The weight of the KL term of the VAE is λkl = 1, the path loss weight is λp = 10−3 and
the edge loss weight is λe = 10−3. We estimate the path and edge loss during training by sampling
100 paths, each of those has 20 steps.

Encoder Architecture

x ∈ R28×28×1 → FC400 → ReLU

↪→ FC20 → µ ∈ R20

↪→ FC20 → σ ∈ R20

µ ∈ R20, σ ∈ R20 → z ∼ N (z;µ, σ)

1traditionally LSTMs are used for the pourpose of text analysis, and w corresponds to one word in the context of
natural language processing

121

Chapter 9. Deep Neural Networks Architectures

Decoder Architecture

z ∈ R20 → FC400 → ReLU

→ FC28×28×1 → Sigmoid

Here FCk stands for the fully connected layer to Rk and ReLU for the rectified linear units. The
output of the first the rectifier linear unit is passed to two independent fully connected layers. The
latent code z is sampled from a normal distribution.

9.1.2 A Gaussian CNN Encoder and CNNDecoder: MNIST and CelebA

Similarly, there was no preprocessing on the 28x28 MNIST images. The models were trained with
up to 100 epochs with mini-batches of size 32. Our choice of optimizer is Adam with learning rate
α = 10−3. The weight of the KL term of the VAE is λkl = 1, the path loss weight is λp = 103 and
the edge loss weight is λe = 10−1. We estimate the path and edge loss during training by sampling
5 paths, each of those has 20 steps.

Encoder Architecture

x ∈ R28×28×3 → Conv64 → BN→ ReLU

→ Conv128 → BN→ ReLU

→ Conv256 → BN→ ReLU→ FC8

Decoder Architecture

z ∈ R8 → FC4×4×512

→ FSConv256 → BN→ ReLU

→ FSConv128 → BN→ ReLU

→ FSConv64 → Sigmoid

Both the encoder and decoder used fully convolutional architectures with 3x3 convolutional filters
with stride 2. Convk denotes the convolution with k filters, FSConvk the fractional strides
convolution with k filters (the first two of them doubling the resolution, the third one keeping
it constant), BN denotes batch normalization (Ioffe and Szegedy 2015), and as above ReLU the
rectified linear units, FCk the fully connected layer to Rk.

The pre-processing of the CelebA images was done by first taking a 140x140 center crop and then
resizing the image to 64x64. The models are trained with up to 100 epochs and with mini-batches of
size 128. Our choice of optimizer is Adam with learning rate α = 10−3. The weight of the KL term
of the VAE is λkl = 0.5, the path loss weight is λp = 0.5 and the edge loss weight is λe = 10−3. We
estimate the path and edge loss during training by sampling 10 paths, each of those has 10 steps.

Encoder Architecture

x ∈ R64×64×3 → Conv64 → BN→ ReLU

→ Conv128 → BN→ ReLU

→ Conv256 → BN→ ReLU

→ Conv512 → BN→ ReLU→ FC500

122

Models Training Details

Decoder Architecture

z ∈ R500 → FC4×4×512

→ FSConv256 → BN→ ReLU

→ FSConv128 → BN→ ReLU

→ FSConv64 → Sigmoid

Both the encoder and decoder used fully convolutional architectures with 3x3 convolutional filters
with stride 2. Convk denotes the convolution with k filters, FSConvk the fractional strides
convolution with k filters (the first two of them doubling the resolution, the third one keeping it
constant), BN denotes batch normalization, and as above ReLU the rectified linear units, FCk the
fully connected layer to Rk.

123

Chapter 10

Relations to formal analysis of
queuing systems

A common practice to study queuing systems is through parametric analysis – assuming the systems
obeys certain distribution laws one usually attempts to explicitly estimate moments of the quantities
of interest. Our construction assumes no parametric forms and thus does not allow for standard
theoretical treatment of moments, etc. However, analyzing the model itself in terms of the neural
networks involved could lead to interesting relations with several theoretical results in the subject.
We illustrate a straight-forward estimate along the lines of the classical Little’s law (Little 1961)
specifying the average number of clients in the system.

First, we define the counting process

{N(t)|t ≥ 0, N(t) = max{i : ai ≤ t}},

the number of arrivals during (0, t]. Let {Nd(t)|t ≥ 0} denote the counting process for the
departure times {di}, with Nd(t) the number of customers who have departed by time t. Note that
Nd(t) ≤ N(t), t ≥ 0. Finally, we define L(t), the total number of customers in the system at time t.

Definition 4 Let us assume that the following limits exist:

λ = lim
t→∞

N(t)

t
, r = lim

n→∞

1

n

n∑
j=1

rj , l = lim
t→∞

1

t

∫ t

0

L(s)ds, (190)

which we refer to as the system’s arrival rate, the average sojourn time and the average number of
customers, respectively.

The classical form of the celebrated Little’s law states that

Theorem 3 Assume that λ, r exist and are finite. Then l exists and the following relationship
holds:

l = λr. (191)

Recall that in our approach we model the service times by using a neural network, i.e. by setting:

s̃i := θk ◦ σk ◦ θk−1 . . . σ2 ◦ θ1(hi), (192)

where hi := concat(hai , ε), with hai the hidden representation of the RPP model (see main text),
and ε ∈ Rh with its elements sampled from Pε, an isotropic Gaussian; σj denotes a non-linearity
and θj denotes the application of the weights θ̂j (and bias bj) of the jth layer of the neural network.

Lemma 2 Let us assume that σj = ReLU for each layer j and let us assume that the operator
norms ‖θ̂j‖, ‖bj‖ are bounded by a positive constant M for each j. Then

|s̃i| ≤Mk‖hi‖+
Mk+1 − 1

M − 1
. (193)

125

Chapter 10. Relations to formal analysis of queuing systems

The estimate follows from a straightforward application of the triangle inequality and induction.

The estimate (193) can be made sharper provided subtler assumptions on the linear layers θ̂j and
the bias vectors bj are assumed. It could, moreover, be replaced by an estimate on the Lipschitz
constant of the neural network - for further applications to spectral bias and Fourier transforms, cf.
(Rahaman et al. 2019).

Lemma 3 Suppose that the service time model above fits the data within a mean average error of
ε. Then the average service time is bounded above as follows

〈s̃i〉 ≤Mk lim sup
i
‖hi‖+

Mk+1 − 1

M − 1
+ ε. (194)

We easily obtain

〈s̃i〉 = lim
n→∞

1

n

n∑
i=1

si = lim
n→∞

1

n

n∑
i=1

|si − s̃i + s̃i| (195)

≤ lim
n→∞

1

n

n∑
i=1

|si − s̃i|+ lim
n→∞

1

n

n∑
i=1

s̃i (196)

≤ ε+Mk 1

n

n∑
i=1

‖hi‖+
Mk+1 − 1

M − 1
(197)

≤ ε+Mk lim sup
i
‖hi‖+

Mk+1 − 1

M − 1
, (198)

where we have used the estimate (193).

Corollary The average number of clients/customers in the system, l, is bounded above as follows

l ≤ λ
(
Mk lim sup

i
‖hi‖+

Mk+1 − 1

M − 1
+ ε

)
, (199)

where λ,M,hi and ε are as above.

The statement follows directly by combining Little’s law and the bound (194).

We remark that one could also estimate λ from above by a similar procedure in terms of the neural
network that models the arrival process, that is, our RPP model.

126

Bibliography

Bibliography

D. P. Kingma and M. Welling, arXiv preprint arXiv:1312.6114 (2013a).

Y. Ogata, Journal of the American Statistical association 83, 9 (1988).

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec, in Proc. KDD (2015a).

S. W. Linderman and R. P. Adams, arXiv preprint arXiv:1507.03228 (2015).

A. G. Hawkes and D. Oakes, Journal of Applied Probability 11, 493 (1974).

Y. Lee, K. W. Lim, and C. S. Ong, in International Conference on Machine Learning (2016), pp.
79–88.

Y.-L. K. Samo and S. Roberts, in International Conference on Machine Learning (2015a), pp.
2227–2236.

C. Lloyd, T. Gunter, M. Osborne, and S. Roberts, in International Conference on Machine Learning
(2015), pp. 1814–1822.

C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor, in Gaussian Processes in Practice
(2007), pp. 1–16.

C. E. Rasmussen and C. K. Williams, Gaussian process for machine learning (MIT press, 2006).

N. G. Polson, J. G. Scott, and J. Windle, Journal of the American statistical Association 108, 1339
(2013).

S. Linderman, M. Johnson, and R. P. Adams, in Advances in Neural Information Processing Systems
(2015), pp. 3456–3464.

R. G. Gallager, Discrete stochastic processes, vol. 321 (Springer Science & Business Media, 2012).

D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II: general
theory and structure (Springer Science & Business Media, 2007a).

J. F. C. Kingman, Poisson processes (Wiley Online Library, 1993).

D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II: general
theory and structure (Springer Science & Business Media, 2007b).

J. G. Rasmussen, Methodology and Computing in Applied Probability 15, 623 (2013).

H. W. Watson and F. Galton, The Journal of the Anthropological Institute of Great Britain and
Ireland 4, 138 (1875).

J. Møller and J. G. Rasmussen, Advances in applied probability 37, 629 (2005).

R. P. Adams, I. Murray, and D. J. MacKay, in Proceedings of the 26th Annual International
Conference on Machine Learning (ACM, 2009), pp. 9–16.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, Machine learning 37, 183 (1999).

C. M. Bishop, Machine Learning (2006).

L. Csató, Ph.D. thesis, Aston University (2002).

M. Titsias, in Artificial Intelligence and Statistics (2009), pp. 567–574.

S. Geman and D. Geman, IEEE Transactions on pattern analysis and machine intelligence pp.
721–741 (1984).

S. Nakamoto (2008).

127

Chapter 10. Relations to formal analysis of queuing systems

O. Stetter, D. Battaglia, J. Soriano, and T. Geisel, PLoS computational biology 8, e1002653 (2012).

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
2016a), pp. 1555–1564.

X. Xuan and K. Murphy, in Proceedings of the 24th international conference on Machine learning
(ACM, 2007), pp. 1055–1062.

S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert, International Journal of Computer Vision 77, 103
(2008).

Y. Saatçi, R. D. Turner, and C. E. Rasmussen, in Proceedings of the 27th International Conference
on Machine Learning (ICML-10) (Citeseer, 2010), pp. 927–934.

S. Linderman, M. Johnson, A. Miller, R. Adams, D. Blei, and L. Paninski, in Artificial Intelligence
and Statistics (2017), pp. 914–922.

E. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, in Advances in Neural Information
Processing Systems (2009), pp. 457–464.

F. Stimberg, A. Ruttor, and M. Opper, in Artificial Intelligence and Statistics (2012), pp. 1117–1124.

D. P. Kingma and M. Welling, arXiv preprint arXiv:1312.6114 (2013b).

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio, in Advances in Neural
Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett (Curran Associates, Inc., 2015), pp. 2980–2988.

I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, and Y. Bengio, in AAAI
(2017), pp. 3295–3301.

P. Becker-Ehmck, J. Peters, and P. Van Der Smagt, in Proceedings of the 36th International
Conference on Machine Learning, edited by K. Chaudhuri and R. Salakhutdinov (PMLR, Long
Beach, California, USA, 2019), vol. 97 of Proceedings of Machine Learning Research, pp. 553–562.

G. Ackerson and K.-S. Fu, IEEE Transactionson Automatic Control 15, 10 (1970).

S. Hochreiter and J. Schmidhuber, Neural computation 9, 1735 (1997).

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, in Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (2016), pp. 1480–1489.

D. Bahdanau, K. Cho, and Y. Bengio, arXiv preprint arXiv:1409.0473 (2014).

P. Schwab, D. Miladinovic, and W. Karlen, arXiv preprint arXiv:1802.02195 (2018).

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, ICLR-2017 (2017).

E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, arXiv preprintarXiv:1511.06297 (2015).

S. Linderman, https://github.com/slinderman/recurrent-slds.

D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).

E. N. Lorenz, Journal of Atmospheric Sciences 20, 130 (1963).

M. Liwicki and H. Bunke, in Eighth International Conference on Document Analysis and Recognition
(ICDAR’05) (IEEE, 2005), pp. 956–961.

S. Bai, J. Z. Kolter, and V. Koltun, arXiv preprint arXiv:1803.01271 (2018).

128

https://github.com/slinderman/recurrent-slds

Bibliography

C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, in Proceedings of the tenth ACM
international conference on web search and data mining (ACM, 2017), pp. 495–503.

H. Jing and A. J. Smola, in Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining (ACM, 2017), pp. 515–524.

T. Zhou, H. Qian, Z. Shen, C. Zhang, C. Wang, S. Liu, and W. Ou, in Proceedings of the 27th
International Joint Conference on Artificial Intelligence (AAAI Press, 2018), pp. 3704–3710.

H. Mei and J. M. Eisner, in Advances in Neural Information Processing Systems (2017a), pp.
6754–6764.

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
2016b), pp. 1555–1564.

S. Xiao, M. Farajtabar, X. Ye, J. Yan, L. Song, and H. Zha, in Advances in Neural Information
Processing Systems (2017), pp. 3247–3257.

A. Daw and J. Pender, Stochastic Systems 8, 192 (2018).

S. Asmussen, Applied probability and queues, vol. 51 (Springer Science & Business Media, 2008).

C. Sutton and M. I. Jordan, The Annals of Applied Statistics pp. 254–282 (2011).

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, in Advances in Neural Information Processing Systems 27, edited by Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Curran Associates, Inc., 2014a),
pp. 2672–2680.

R. J. Williams, Annual Review of Statistics and Its Application 3, 323 (2016).

D. Bertsimas, Operations Research 38, 139 (1990).

O. Boxma, O. Kella, and M. Mandjes, Queueing Systems 92, 233 (2019).

P. Chapfuwa, C. Tao, C. Li, C. Page, B. Goldstein, L. Carin, and R. Henao, in ICML (2018).

M. Chambers and C. Mount-Campbell, International Journal of Production Economics 79, 93
(2002).

D. G. Kendall, Ann. Math. Statist. 24, 338 (1953).

L. Zhu, Journal of Applied Probability 50, 760 (2013).

H. Mei and J. M. Eisner, in Advances in Neural Information Processing Systems (2017b), pp.
6738–6748.

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song, in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
2016c), pp. 1555–1564.

A. Graves, arXiv preprint arXiv:1308.0850 (2013).

M. Arjovsky, S. Chintala, and L. Bottou, in Proceedings of the 34th International Conference on
Machine Learning, edited by D. Precup and Y. W. Teh (PMLR, International Convention Centre,
Sydney, Australia, 2017), vol. 70 of Proceedings of Machine Learning Research, pp. 214–223.

C. Villani, Optimal Transport: Old and New (Springer, 2009).

H. Petzka, A. Fischer, and D. Lukovnikov, in International Conference on Learning Representations
(2018).

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, in NIPS (2017).

129

Chapter 10. Relations to formal analysis of queuing systems

O. Mogren, CoRR abs/1611.09904 (2016).

S. Hyland, C. Esteban, and G. Rätsch, Real-valued (medical) time series generation with recurrent
conditional GANs (2018).

A. ElBahrawy, L. Alessandretti, A. Kandler, R. Pastor-Satorras, and A. Baronchelli, Royal Society
open science 4, 170623 (2017).

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, arXiv preprint arXiv:1409.1259 (2014).

S. Petrovic, M. Osborne, and V. Lavrenko, Proc. ICWSM (2011).

S. Gao, J. Ma, and Z. Chen, in Proc. WSDM (2015).

Z. Dezsö, E. Almaas, A. Lukács, B. Rácz, I. Szakadát, and A.-L. Barabási, Physical Review E 73
(2006).

F. Wu and B. A. Huberman, PNAS 104 (2007).

J. Yang and J. Leskovec, in Proc. WSDM (2011).

E. Cunha, G. Magno, G. Comarela, V. Almeida, M. A. Gonçalves, and F. Benevenuto, in Proc.
Workshop on Languages in Social Media (ACL, 2011).

J. Lehmann, B. Goncalves, J. J. Ramasco, and C. Cattuto, in Proc. WWW (2012).

L. Weng, A. Flammini, A. Vespignani, and F. Menczer, Scientific Reports 2 (2012).

C. Bauckhage, K. Kersting, and F. Hadiji, in Proc. ICWSM (2013).

K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E. Horvitz, in Proc. WWW (2012).

R. Kobayashi and R. Lambiotte, in Proc. ICWSM (2016).

Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec, in Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining (2015b), pp.
1513–1522.

Y. Ogata and K. Katsura, Annals of the Institute of Statistical Mathematics 40 (1988).

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, ACM Transactions on Mathematical Software 23
(1997).

S.-E. Benkabou, K. Benabdeslem, and C. Bruno, in Proc. ICML Workshop on Anomaly Detection
(2016).

E. T. Jaynes, Physical Review 106 (1957).

Y.-L. K. Samo and S. Roberts, in Proc. ICML (2015b).

H. Akaike, in Selected Papers of Hirotugu Akaike, edited by E. Parzen, K. Tanabe, and G. Kitagawa
(Springer, 1998), pp. 199–213.

M. Müller, in Information Retrieval for Music and Motion (Springer, 2007), pp. 69–84.

A.-L. Barabasi, Nature 435 (2005).

R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A. Amaral, PNAS 105 (2008).

J. Yang, L. Adamic, and M. Ackerman, in Proc. ICWSM (AAAI, 2008).

L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, in Proceedings of the 17th international
conference on World Wide Web (ACM, 2008), pp. 665–674.

B. Li, T. Jin, M. R. Lyu, I. King, and B. Mak, in Proceedings of the 21st international conference
companion on World Wide Web (ACM, 2012), pp. 775–782.

130

Bibliography

K. K. Nam, M. S. Ackerman, and L. A. Adamic, in Proceedings of the SIGCHI conference on human
factors in computing systems (ACM, 2009), pp. 779–788.

G. Begelman, P. Keller, F. Smadja, et al., in Proc. WWW’06 Workshop on Collaborative Web
Tagging (2006).

D. Koller and M. Sahami, Tech. Rep., Stanford InfoLab (1997).

P. Schmitz, in Proc. WWW’06 Workshop on Collaborative Web Tagging (2006).

G. Tibély, P. Pollner, T. Vicsek, and G. Palla, PloS ONE 8 (2013).

H. Halpin, V. Robu, and H. Shepherd, in Proc. WWW (ACM, 2007).

S. A. Golder and B. A. Huberman, J. of Information Science 32 (2006).

D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-Molina, in Proc. WSDM (ACM, 2009).

D. Blei, T. Griffiths, and M. Jordan, J. of the ACM 57 (2010).

V. Bhat, A. Gokhale, R. Jadhav, J. Pudipeddi, and L. Akoglu, in Proc. ASONAM (2014).

K. Heller and Z. Ghahramani, in Proc. ICML (2005).

M. E. Newman, SIAM review 45, 167 (2003).

R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Physical Review Letters 53, 958
(1984).

C. P. Bachas and B. A. Huberman, Physical review letters 57, 1965 (1986).

M. Aoki, Journal of economic dynamics and control 18, 865 (1994).

D. Sornette, Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder:
concepts and tools (Springer Science & Business Media, 2006).

D. Sornette and A. Johansen, Physica A: Statistical Mechanics and its Applications 261, 581
(1998).

E. Alvarez-Lacalle, B. Dorow, J.-P. Eckmann, and E. Moses, Proceedings of the National Academy
of Sciences 103, 7956 (2006).

P. Érdi, T. Grőbler, and P. Marton, in Nature, cognition and system II (Springer, 1992), pp.
193–203.

T. L. Saaty, European journal of operational research 48, 9 (1990).

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, in Advances in Neural
Information Processing Systems (2018), pp. 9525–9536.

K. Simonyan, A. Vedaldi, and A. Zisserman, arXiv preprint arXiv:1312.6034 (2013a).

D. Erhan, Y. Bengio, A. Courville, and P. Vincent, University of Montreal 1341, 1 (2009).

A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, arXiv preprint arXiv:1605.01713
(2016).

M. Sundararajan, A. Taly, and Q. Yan, in Proceedings of the 34th International Conference on
Machine Learning-Volume 70 (JMLR. org, 2017), pp. 3319–3328.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, arXiv preprint arXiv:1412.6806
(2014a).

M. D. Zeiler and R. Fergus, in European conference on computer vision (Springer, 2014), pp.
818–833.

131

Chapter 10. Relations to formal analysis of queuing systems

R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, arXiv preprint
arXiv:1611.07450 (2016a).

A. Shrikumar, P. Greenside, and A. Kundaje, in Proceedings of the 34th International Conference
on Machine Learning-Volume 70 (JMLR. org, 2017), pp. 3145–3153.

L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, arXiv preprint arXiv:1702.04595 (2017).

C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud (2018).

M. T. Ribeiro, S. Singh, and C. Guestrin, in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (ACM, 2016), pp. 1135–1144.

G. Arvanitidis, L. K. Hansen, and S. Hauberg, arXiv preprint arXiv:1710.11379 (2017).

D. Berthelot, C. Raffel, A. Roy, and I. Goodfellow, arXiv preprint arXiv:1807.07543 (2018).

I. J. Goodfellow, J. Shlens, and C. Szegedy, arXiv preprint arXiv:1412.6572 (2014b).

F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman, D. O’Brien, S. Schieber, J. Waldo,
D. Weinberger, and A. Wood, arXiv preprint arXiv:1711.01134 (2017).

I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, in International Conference on Learning
Representations (2018), URL https://openreview.net/forum?id=HkL7n1-0b.

O. Bousquet, S. Gelly, I. Tolstikhin, C. J. Simon-Gabriel, and B. Schölkopf, Tech. Rep. (2017).

L. D. Landau and E. M. Lifshitz, Course of theoretical physics (Elsevier, 2013).

S. N. Majumdar, in The Legacy Of Albert Einstein: A Collection of Essays in Celebration of the
Year of Physics (World Scientific, 2007), pp. 93–129.

R. Feynman and A. H. Q. Mechanics, Quantum Mechanics (Welland (1965).

M. P. do Carmo, Differential geometry of curves and surfaces (Prentice Hall, 1976), ISBN 978-0-13-
212589-5.

K. Simonyan, A. Vedaldi, and A. Zisserman, arXiv preprint arXiv:1312.6034 (2013b).

D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, arXiv preprint arXiv:1706.03825
(2017).

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, arXiv preprint arXiv:1412.6806
(2014b).

R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, arXiv preprint
arXiv:1611.07450 (2016b).

Y. LeCun, The mnist database of handwritten digits. nec research institute (1998).

Z. Liu, P. Luo, X. Wang, and X. Tang, in Proceedings of the IEEE international conference on
computer vision (2015), pp. 3730–3738.

K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE conference on computer vision
and pattern recognition (2016), pp. 770–778.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, in 2009 IEEE conference on computer
vision and pattern recognition (Ieee, 2009), pp. 248–255.

C. Bär and F. Pfäffle, Preprints des Instituts für Mathematik der Universität Potsdam 1 (2012).

M. Taylor, Applied Mathematical Sciences 116, Springer-Verlag New York (2011).

S. Ioffe and C. Szegedy, arXiv preprint arXiv:1502.03167 (2015).

132

https://openreview.net/forum?id=HkL7n1-0b

Bibliography

J. D. C. Little, Operations Research 9, 383 (1961).

N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville,
in Proceedings of the 36th International Conference on Machine Learning, edited by K. Chaudhuri
and R. Salakhutdinov (PMLR, Long Beach, California, USA, 2019), vol. 97 of Proceedings of
Machine Learning Research, pp. 5301–5310, URL http://proceedings.mlr.press/v97/rahaman19a.
html.

133

http://proceedings.mlr.press/v97/rahaman19a.html
http://proceedings.mlr.press/v97/rahaman19a.html

Chapter 10. Relations to formal analysis of queuing systems

Publications

César Ojeda, Ramsés J. Sánchez, Kostadin Cvejosky, Jannis Schücker, Christian Bauckhage and
Bogdan Georgiev. Auto Encoding Explanatory Examples with Stochastic Paths. (Accepted in)
International Conference on Pattern Recognition, ICPR, 2020.

César Ojeda, Ramsés J. Sánchez, Kostadin Cvejosky, Jannis Schücker, Christian Bauckhage and
Bogdan Georgiev. Switching Dynamical Systems with Deep Neural Networks. (Accepted in)
International Conference on Pattern Recognition, ICPR, 2020

César Ojeda, Kostadin Cvejosky, Ramsés J. Sánchez, Jannis Schücker, Bogdan Georgiev, Christian
Bauckhage. Recurrent Adversarial Service Times. CoRR abs/1906.09808 (2019).

César Ojeda, Kostadin Cvejoski, Rafet Sifa, and Christian Bauckhage. Patterns and Outliers
in Temporal Point Processes. In Proceedings of Advances in Intelligent Systems and Computing,
IntelliSys, 2019.

César Ojeda, Kostadin Cvejoski, Rafet Sifa and Christian Bauckhage. Inverse Dynamical Inheritance
in Stack Exchange Taxonomies, The 11th International AAAI Conference on Web and Social Media,
AAAI, 2017.

134

	Abstract (English/Deutsch)
	Acknowledgements
	Contents
	1 General Introduction
	1.1 Learning Methodologies
	1.1.1 Non Parametrics
	1.1.2 Deep Parametric Models
	1.1.3 Generative Adversarial Models

	1.2 Datasets
	1.2.1 Point processes
	1.2.2 Service Times
	1.2.3 Switching Dynamical Systems
	1.2.4 Semantics Related Process

	1.3 Thesis outline

	I Bayesian Inference for Stochastic Processes
	2 Self Exciting Point Processes
	2.1 Background
	2.1.1 Point Processes
	2.1.2 Cox and Cluster Process
	2.1.3 Hawkes Processes

	2.2 Sigmoid Gaussian Excitations
	2.3 Likelihood
	2.3.1 Poisson augmentation
	2.3.2 Pólya-gamma augmentation
	2.3.3 The augmented likelihood

	2.4 Variational Inference
	2.4.1 Optimal Poisson Variables
	2.4.2 Optimal Branching Structure
	2.4.3 Optimal Gaussian Processes
	2.4.4 Optimal Base Intensity 0
	2.4.5 Evaluating the Bound

	2.5 Hyperparameter Estimation
	2.6 MCMC
	2.7 Prediction
	2.7.1 Number of Arrivals
	2.7.2 Arrival Time

	2.8 Empirical Results
	2.8.1 Synthetic Data
	2.8.2 Real World Data
	2.8.3 Results

	2.9 Discussion and Outlook

	3 Switching Dynamical System
	3.1 Related Work
	3.2 Background
	3.2.1 Switching Linear Dynamical System models
	3.2.2 Modeling Time Series with Recurrent Neural Networks

	3.3 Neural Variational Switching Dynamical Systems (NVSDS)
	3.4 Experiments
	3.4.1 Baseline Models
	3.4.2 Training Details
	3.4.3 Lorentz Attracttor
	3.4.4 Switching Oscillatory Dynamics
	3.4.5 Handwriting
	3.4.6 Basketball Dataset

	3.5 Discussion and Outlook

	II Adversarial Training and Unsupervised Learning for Populations
	4 Recurrent Adversarial Service Times
	4.1 Related work
	4.2 Background
	4.2.1 Queues
	4.2.2 Recurrent Point Process

	4.3 Models: Deep Service Times
	4.3.1 Neural Service Times
	4.3.2 Adversarial Service Times
	4.3.3 Recurrent Adversarial Service Time
	4.3.4 Bitcoin Mempool

	4.4 Experiments
	4.4.1 Empirical datasets
	4.4.2 Training details and evaluation metrics
	4.4.3 Results

	4.5 Relations to formal analysis of queuing systems
	4.6 Discussion and Outlook

	5 Temporal Patterns for Point Processes
	5.0.1 Problem Definition
	5.0.2 Fast Intensity Inference Using Splines
	5.0.3 A Dynamic Piecewise Time Series Similarity Measure
	5.0.4 A K-Piece Wise Spectral Centroid Algorithm
	5.0.5 Outlier Detection
	5.0.6 Scalability
	5.0.7 Results on StackOverflow Data
	5.0.8 Results on BitCoin Data
	5.0.9 Results on Github Data
	5.0.10 Datasets
	5.0.11 Experimental Setup
	5.0.12 K-PSC versus K-SC or K-Means
	5.0.13 Discussion and Outlook

	III Taxonomies, Representations and Stochastic Processes
	6 Dynamical Inheritance
	6.1 Summary of Contributions
	6.2 Related Work
	6.3 Stack Exchange Data
	6.4 Definitions and Concepts
	6.5 Tagging Process Model
	6.5.1 Anomalous Tagging Behavior
	6.5.2 Taxonomy Learning Algorithm
	6.5.3 Validation on Synthetic Taxonomies

	6.6 Stack Exchange Results
	6.6.1 Taxonomy Statistics
	6.6.2 Inverse Dynamical Inheritance

	6.7 Implications for Complex Systems Analysis
	6.8 Discussion and Outlook

	7 Auto Encoding Explanatory Examples
	7.0.1 Summary of the Chapter
	7.1 Related Work
	7.2 Explanations
	7.3 Explaining Through Examples
	7.4 Semantics and Example Generation: Auto-Encoders
	7.5 Stochastic Semantic Processes and Corresponding Paths
	7.5.1 Semantic Interpolations
	7.5.2 An Approach via Explicit Family of Measures

	7.6 Principle of Least Semantic Action
	7.6.1 The Choice of Lagrangians

	7.7 Comparison to other models
	7.7.1 Evaluation

	7.8 Experimental results
	7.9 Discussion and Outlook

	IV Appendix
	8 Proof Concerning Regularity of Paths
	8.1 Stochastic Semantic Processes: Proof of Proposition 1
	8.1.1 Collections of Consistent Measures
	8.1.2 Concerning the Regularity of Sample Paths
	8.1.3 Stochastic Semantic Processes: Further Constructions

	9 Deep Neural Networks Architectures
	9.1 Models Training Details
	9.1.1 A simple VAE model: MNIST
	9.1.2 A Gaussian CNN Encoder and CNN Decoder: MNIST and CelebA

	10 Relations to formal analysis of queuing systems
	Bibliography

