
Bose-Einstein condensation
of erbium atoms

for fractional quantum Hall physics

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Daniel Frank Babik
aus

Köln
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Abstract

With the advent of ultracold atomic gases experimentally realized by laser cooling techniques
nearly 40 years ago, the doors to accessing novel physical behaviour have been opened wide
and far. The possibility to prepare pure atomic samples of high coherence that can be precisely
controlled and manipulated led to an abundance of opportunities for the study of fundamental
quantum physical laws. Highlights in this research domain include the realization of Bose-
Einstein condensation in dilute gases, degenerate atomic Fermi gases and even novel molecular
physics. Experimentally, the investigation started with alkali atoms, proceeded with alkaline
earth atoms, and only more recently laser cooling of atoms with higher complexity of their
spectrum, as e.g. the highly dipolar lanthanide atomic species erbium and dysprosium, was
realized. Those elements possess a non-vanishing orbital angular momentum in the ground
state, leading to ample advantages for the manipulation with far-detuned laser light in phase
imprinting schemes, as losses due to spontaneous scattering can be suppressed radically in
comparison to the case of alkali atomic species. This beneficial behaviour will be used in the
future for the generation of synthetic magnetic fields for electrically neutral erbium atoms
aimed at investigating fractional quantum Hall physics. It will also be interesting to study
novel interaction effects that due to the large dipole moment of the aforementioned lanthanide
elements could arise in the context of artificial gauge fields.

This thesis describes in the first part the generation of an atomic erbium Bose-Einstein con-
densate in a hybrid crossed optical dipole trap. The main purpose of this endeavor was an
enhancement of absolute atom number of the degenerate ensemble and long-term stability
of the experimental setup with respect to the use of a single beam dipole trap. Atoms are
loaded from an atomic erbium beam originating from an oven located inside an ultra-high
vacuum chamber with the help of a spin-flip Zeeman slower and a transversal cooling stage at
the transition wavelength near 400.91 nm wavelength into a narrow-line magneto-optical trap
operating near 582.84 nm wavelength. After spatially compressing this trap, the cold atoms
are loaded into a hybrid crossed optical dipole trap realized with two far-detuned focused
laser beams, a mid-infrared beam near 10.6µm wavelength emitted by a CO2 laser and a
transverse beam near 1.064µm wavelength emitted by a Nd:YAG laser, and are subsequently
evaporatively cooled until quantum degeneracy is reached. Starting from 5 · 107 atoms in the
compressed magneto-optical trap, 7 · 106 atoms are loaded into the optical dipole trap, and
finally a Bose-Einstein condensate with 3.5 · 104 atoms is realized. Here the critical temper-
ature for the phase transition to a Bose-Einstein condensate was experimentally determined
to be around 170 nK. The condensate is spin-polarized, and has a lifetime of up to 12 s. Also,
a comparison of the here achieved results with respect to those achieved in only a single CO2

laser beam dipole trap is presented.

In the second part of this thesis a theoretical evaluation of the generation of synthetic mag-
netic fields for ultracold erbium atoms in prospect for experimental investigations of fractional
quantum Hall physics is given. One of the most promising techniques for the realization of
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strong synthetic magnetic fields is by phase imprinting via Raman manipulation. Here for
the theoretical calculation of such fields with erbium atoms a compared to earlier work on
alkali atoms new modified optical Raman coupling scheme in a σ+ − σ− beam polarization
configuration is chosen. It is shown that sufficiently high field strengths with good spatial
homogeneity can be reached for experimentally viable parameters. Additionally, an estima-
tion for the expected Laughlin gap in the proposed erbium atomic fractional quantum Hall
system is given.

For the future, it will be important to experimentally realize the expected possible large
synthetic magnetic fields for a quantum gas of ultracold erbium atoms. Already at moderate
synthetic field strengths, the study of vortices in such a dipolar quantum gas is an interesting
topic. For larger field strengths the reaching of the fractional quantum Hall regime for the
ultracold atomic gas sample is expected. On the theoretical side, here work describing the
form of the ground state in the presence of both the synthetic magnetic field and dipolar
interactions is of utmost importance.
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1 Introduction

The generation of ultracold atomic gases offers the possibility to study a wide range of quan-
tum phenomena in a very pure and well controllable system, with vibrant research activity
since the mid 1980s. One of the highlights achieved with cold atoms is the demonstration of
Bose-Einstein condensation, an effect theoretically discovered roughly 100 years ago. In 1924
A. Einstein predicted a new state of matter in the wake of his work on quantum statistics
of massive bosonic particles, i.e. particles with integer spin: the Bose-Einstein condensate
(BEC) [1–3]. Here single atoms are fully delocalized and the lowest energy state is macroscop-
ically occupied, mathematically expressible by a single wavefunction describing the motion
of the whole ensemble of particles, which is highly advantageous or often even absolutely
essential for the study of quantum mechanical phenomena.

To reach such a condensate in atomic systems, the ensemble has to be cooled to ultralow
temperatures typically in the nK regime, as the thermal de Broglie wavelength has to be
larger than the average distance between the particles. The first experimental realization in
the gaseous phase was achieved in 1995 by the groups of C. E. Wieman and E. A. Cornell as
well as W. Ketterle [4,5]. From then on many fundamental experiments regarding the coher-
ence of macroscopic quantum states, novel quantum phases in optical lattices and interaction
aspects of ultracold bound states were conducted with the help of BECs [6–8]. Importantly,
Bose-Einstein condensates can be used for simulations of physics of other domains. One of
the most notable areas has to be solid-state physics with systems that are generally not as
flexible and easily manipulated as in the quantum optics case, where e.g. periodic structures
can here be emulated by tunable optical lattices. A well-known example in this domain is the
transition from a superfluid to a Mott-insulator [9]. Notable other experiments involve the
detection of Bloch oscillations, and the study of topologically protected edge states [10, 11].
Besides variations of trapping potentials and irradiation with light fields, one popular way of
manipulating ultracold atomic ensembles is by modifying the inter-particle interaction, which
can be attractive, vanishing, or repulsive, with the help of an external magnetic field, where
at distinct magnetic field strengths Feshbach resonances can occur [12–15].

Experimental simulations with BECs also come in handy when time dynamics of systems
become too complex to study numerically, as e.g. for out-of-equilibrium interacting quan-
tum matter [16]. Further research areas of interest for such simulations include fundamental
concepts of statistical physics [17], and possibly quantum chemistry as well as high-energy
physics [18]. Bose-Einstein condensation was also achieved for polaritons as well as pho-
tons [19, 20], where condensation is achieved at higher temperatures [20, 21]. Besides Bose-
Einstein condensates, also degenerate quantum gases with fermionic atoms and corresponding
Fermi-Dirac statistics could be realized experimentally [22–24], offering the possibility of a
plethora of studies, as e.g. Fermi-Hubbard physics in optical lattices, aiding in the under-
standing of high-temperature superconductivity [25].
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1 Introduction

While in earlier works with cold atoms most of the Bose-Einstein condensates and degen-
erate Fermi gases were generated with elements from the group of the alkali atoms, as e.g.
rubidium [4], which exhibit a comparatively simple electronic level structure due to their
single valence electron, and later with elements from the group of the alkaline earth atoms,
as e.g. strontium [26], which possess two valence electrons and feature a richer spectrum, a
few years thereafter studies on spectrally very complex atomic species as e.g. the lanthanides
from the group of rare earth metals increased, leading to the Bose-Einstein condensation and
degenerate Fermi gas generation of several magnetic elements like dysprosium [27,28], ytter-
bium [29], and erbium [30,31], or in the case of thulium and holmium to laser-cooled atomic
ensembles [32–34]. Additionally dipolar quantum mixtures of erbium and dysprosium have
been realized [35]. Both dysprosium and erbium exhibit very rich spectra, and feature bosonic
as well as fermionic isotopes with high relative occurrence, a non-vanishing electronic orbital
angular momentum in their electronic ground states, which amount to L = 6 and L = 5
respectively, and high magnetic moments of 10 and 7 Bohr magnetons respectively. Reason
for the complex energy spectra of lanthanides, with many transitions of various linewidths
ranging from broad to ultra-narrow, are their incompletely filled 4f electron shells, leading to
a so-called submerged shell structure, as the 4f shells are surrounded by the completely filled
outer-lying 6s shell. For both dysprosium and erbium the d-wave collapse due to dipole-dipole
interactions, as well as an abundance of Feshbach resonances, stemming from the lanthanides
intricate electronic energy level structures, could be observed and described by random ma-
trix theory [36, 37]. Other research in conjunction with dipolar physics included Fermi sur-
face deformations, Feshbach-induced erbium molecules, an extended Bose-Hubbard model
accounting for dipole-dipole-interactions, anisotropic collisions, BEC crossovers to dipolar
macrodroplets, and studies of dipolar supersolids [38–43].

Ultracold atoms as a quantum simulator could also be used in the study of novel topological
phases of matter that form in the sample when subjected to strong magnetic fields [44]. In
this regard very interesting phenomena are expected for fractional quantum Hall states, as
some of those could exhibit non-Abelian properties to possibly form topologically protected
qubits [45], a feature that is highly sought after as current implementations of quantum com-
puters despite tremendous advances in the field still suffer from non-robustness for too high
numbers of qubits. As quantum Hall physics is normally only observable for charged particles
subject to strong magnetic fields, for the electrically neutral ultracold lanthanide atomic case
strong artificial magnetic fields via optical Raman manipulation have to be generated.

Prior experiments with the alkali atomic species rubidium were successful in creating syn-
thetic magnetic fields, resulting in the observation of vortices in the rubidium BEC [46].
However, the maximum strength of the synthetic magnetic field is in alkali atoms based im-
plementations using a phase imprinting scheme limited by the maximum useable detuning
of the Raman light field. Elements from the group of the alkali atoms exhibit a S-ground
state, i.e. possess an electronic orbital angular momentum of L = 0. The state-dependent
manipulation with laser light of these atoms requires a detuning of magnitude below the
size of the fine structure splitting of the electronically excited state [47]. Otherwise the en-
ergy shifts of all ground state levels become identical and are not dependent of the magnetic
quantum number any more [48]. To prevent this behaviour the detuning of state-dependent
optical lattices for example has to be chosen smaller than the fine structure, leading to higher
photon scattering rates and therefore shorter coherence times of the BECs. Using erbium
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or dysprosium atoms and their corresponding L 6= 0 ground state, such decoherence effects
can be avoided, allowing state-dependent lattices with higher detuning, leading to longer co-
herence times [49]. Moreover, Raman manipulation between different ground state Zeeman
sublevels, as of interest for the synthetization of large magnetic fields by phase imprinting,
should then be possible with large detuning and corresponding long coherence times. For
sufficiently strong synthetic magnetic fields studies of fractional quantum Hall physics with
ultracold quantum gases could become possible [50,51].

Specifically for the erbium system, the first realization of a magneto-optical trap (MOT),
the latter being the standard tool to prepare a laser cooled ensemble as a first step in cold
atom experiments, has despite the complex electronic structure of this lanthanide atomic
species been achieved by McClelland and Hansen [52]. Further, evaporative cooling of these
atoms due to their high dipolar moments and associated interaction effects require the use of
traps being able to confine atoms in the lowest energetic Zeeman component of the electronic
ground state, as possible with optical dipole traps. In earlier work of our group an experiment
was built up which successfully prepared an ultracold atomic ensemble of erbium in a magneto-
optical trap [53, 54], which was subsequently loaded into a quasi-electrostatic optical dipole
trap realized by a focused CO2 laser beam, where atoms were in a first step evaporatively
cooled down to a few µK [55]. However due to the broad linewidth and the consequent high
Doppler temperature of the 401 nm transition, together with the relatively high branching
ratio of the transition, the losses during the cooling procedure were so high, that a BEC was
ultimately not attainable. By using two cooling transitions, the 401 nm transition for slowing
of the atomic beam on its way to the MOT chamber in a Zeeman slower, and the more nar-
row 583 nm transition for the actual trapping process, the group around F. Ferlaino finally
managed to generate an erbium BEC. There after loading atoms from the narrow-line MOT
into a crossed dipole trap formed by two laser beams at 1075 nm and 1064 nm wavelength,
respectively, evaporative cooling was performed until quantum degeneracy was reached [30].
Enthused by the narrow-line magneto-optical trap setup, our working group was successful in
creating an erbium BEC by evaporating atoms in a single beam CO2 laser dipole trap [56,57].

In the here presented thesis, a hybrid crossed dipole trap, consisting of a focused mid-infrared
beam of a CO2 laser operating near 10.6µm wavelength and a Nd:YAG laser beam near
1064 nm wavelength, was realized. Erbium atoms loaded in such a trap were evaporatively
cooled to Bose-Einstein condensation. Compared to the single beam CO2 laser dipole trapping
geometry, an increased atom number in the condensate and an improved long-term stability
were achieved. A comparison of results obtained in both the single beam CO2 laser dipole
trap and the new hybrid crossed dipole trapping geometry is presented.

In further work contained in this thesis, a proposal to realize strong synthetic magnetic
fields with cold erbium atoms is given based on phase imprinting by Raman manipulation.
The unusual electronic structure of this rare earth multi-level atom is expected to allow for
large synthetic magnetic fields. An estimate for the size of the Laughlin gap of the proposed
two-dimensional system, devised for the future observation of the fractional quantum Hall
effect, is given.

The work presented here consists of six chapters, with the introduction at hand being Chap. 1.
In the following Chap. 2 properties of atomic erbium are described, and theoretical consider-
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1 Introduction

ations regarding the various experimental steps for generating a Bose-Einstein condensate of
erbium atoms are laid out. Chap. 3 shows the experimental setup and methods, including the
vacuum apparatus and the employed light sources, as well as the controlling setup of the opti-
cal dipole trap light. In the subsequent Chap. 4 a characterization of the experimental setup
and the obtained experimental results are given. The theoretical derivation of a synthetic
magnetic field for ultracold erbium atoms is conducted in Chap. 5, followed by a look on the
Laughlin gap of the described system. The thesis closes with a conclusion and an outlook on
future prospects in Chap. 6. There further plans for the next theoretical and experimental
steps are outlined.
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2 Theoretical background: Ultracold atomic
erbium quantum gases

The generation of Bose-Einstein condensates involves several experimental steps, here tai-
lored for the erbium atomic case. Below theoretical considerations for the understanding of
the experiment are presented, starting with the treatment of ultracold Bose gases in a har-
monic trapping potential, followed by a review of important properties of atomic erbium, and
proceeded with the theoretical discussion regarding the at this experiment employed stages
for the realization of an erbium Bose-Einstein condensate.

2.1 Low-temperature behaviour of Bose gases

S. N. Bose first introduced the concept of an ideal Bose gas consisting of free, non-interacting
particles via Bose-statistics [3], which was extended to massive bosons by A. Einstein, who
also predicted a phase transition of a thermal Bose gas to a Bose-Einstein condensate [2],
where the particles occupy the ground state of the system macroscopically, leading to a single
wavefunction for the whole ensemble. It takes place for sufficiently high phase space densi-
ties, that can be achieved by increasing the density and decreasing the temperature of the
ensemble below a critical non-vanishing temperature. This phase transition works only for
bosonic particles with integer spin, which exhibit a symmetric multi-particle wavefunction,
and therefore can be in the same quantum mechanical state simultaneously as the Pauli prin-
ciple does not hold. In contrast for fermions with half-integer spin, the Pauli principle holds
and a quantum mechanial state cannot be occupied by two or more fermions with the same
set of quantum numbers [58].

The below mathematical treatment follows [6, 56, 59]. Consider N bosonic atoms trapped
in an external harmonic potential, so that the particles act as N individual harmonic oscilla-
tors, an approximation for the center of mass motion of the whole ensemble. The potential
for each particle will take the form of

Vext(r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (2.1)

with position space vector r = (x, y, z), mass m of the bosons, and trap frequencies ωx,y,z.
For a dilute gas we can neglect the atom-atom interaction, and the system’s Hamiltonian can
be written as the sum of single-particle Hamiltonians with energy levels

ε(nx, ny, nz) =
(
nx + 1

2

)
~ωx +

(
ny + 1

2

)
~ωy +

(
nz + 1

2

)
~ωz, (2.2)

where ~ = h/2π is the reduced Planck constant, and for the quantum numbers nx,y,z it holds
that nx,y,z ∈ N. In the case of grand canonical ensembles the mean occupation number
〈n(εnx,ny ,nz)〉 of state |nx, ny, nz〉 with energy ε(nx, ny, nz) is defined by
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2 Theoretical background: Ultracold atomic erbium quantum gases

〈n(εnx,ny ,nz)〉 =
1

e(εnx,ny,nz−µ)/kBT − 1
, (2.3)

where all εnx,ny ,nz > µ, with µ being the chemical potential, kB the Boltzmann constant, and
T the temperature. Here µ is fixed by the total particle number

N =
∑

nx,ny ,nz

1

e(εnx,ny,nz−µ)/kBT − 1
, (2.4)

but is still a function of the temperature T . To calculate the critical temperature one has
first to determine the density of states g(ε). By integrating Eq. 2.4 one obtains the number
of states G(ε) below energy ε (excluding the zero-point energy), and finally can calculate the
density of states as g(ε) = dG/dε = ε2/(2~3ωxωyωz). As a next step the number of excited
states for a vanishing chemical potential can be considered via

Nex =

∫ ∞
0

dεg(ε)〈n(ε, µ = 0)〉. (2.5)

With this condition the critical temperature Tc is defined as the highest temperature at which
a macroscopical occupation of the lowest energy state appears, and the following holds:

N = Nex(Tc) =

∫ ∞
0

dεg(ε)
1

eε/kBTc − 1
. (2.6)

Solving Eq. 2.6 leads to the critical temperature as

Tc =
~
kB

(
ωxωyωzN

ζ(3)

)1/3

≈ 0,94 · ~ω̄
kB
N1/3. (2.7)

where ζ(α) is Riemann’s Zeta function, and ω̄ = (ωxωyωz)
1/3 is the geometric average of

the oscillator frequencies. As long as the temperature is below the critical temperature Tc,
a macroscopically occupation of the lowest energy level is possible. With in this experiment
typical values for the mean trap frequency of about ω̄ = 2π · 93 Hz, and for the atom number
of approximately 3.5 · 104, the phase transition from an ideal Bose gas to a Bose-Einstein
condensate should theoretically occur at a critical temperature of Tc = 136 nK. The fraction
of atoms in the condensate for temperatures below Tc can be calculated via the relation

N0

N
= 1−

(
T

Tc

)3

, (2.8)

where N0 is the atom number in the ground state, N is the total atom number, and T < Tc

is the temperature of the ensemble. For a temperature of T = 0 the gas would theoretically
condensate completely.
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2.2 Some properties of the atomic erbium system

Bosons can be considered as quantum mechanical objects that appear in the form of wavepack-
ets with size in the order of the de-Broglie wavelength λdB =

√
2π~2/(mkBT ). Near the

critical temperature interparticle distances become comparable to λdB, and the wavepackets
start to overlap. The phase space density ρ is an important marker in determing the current
phase the ensemble exhibits. It is defined as the number of particles in a cube of edge length
equal to the thermal de Broglie wavelength λdB:

ρ = nλ3
dB = n

(
2π~2

mkBT

)3/2

. (2.9)

When the critical phase space density ρc is reached, the transition to quantum degeneracy
occurs. The resulting macroscopical wavefunction from the overlapping wavepackets can
be interpreted as the Bose-Einstein condensate. Assuming a uniform Bose gas in a three-
dimensional box with volume V the critical temperature can be calculated as

Tc =
2π

kB[ζ(3/2)]3/2
~2n3/2

m
≈ 3.31 · ~

2n3/2

m
, (2.10)

where n = N/V is the particle number density. Using Eq. 2.9 and Eq. 2.10 one obtains the
critical phase space density as

ρc ≈ 2.612. (2.11)

Thus for the preparation of a Bose-Einstein condensate the atoms must be prepared as dense
and cool as possible. On the other hand measurements of the phase space density can provide
a neat way to experimentally verify if Bose-Einstein condensation occured.

2.2 Some properties of the atomic erbium system

Erbium is one of the chemical elements in the lanthanide series with atomic number of Z = 68
and atomic mass of 167.26 amu, with 1 amu = 1.6605402 · 10−27 kg [60], discovered in a mix-
ture of rare earth metal elements, which show similar geochemical characteristics, in 1843,
and first successfully isolated in 1934 [61–63]. Naturally, erbium occurs mostly in chemical
compounds as e.g. monazites, a brown phosphate ore mineral. Pure solid erbium appears
as a soft, silvery-white metal if kept away from air, as it would otherwise oxidize slowly to
the tarnished erbium(III) oxide. It possesses a melting point of 1802 K and a boiling point of
3136 K [64].

Besides the many qualities of ionic erbium Er3+ as a doping agent for crystals in technical and
scientific applications ranging from telecommunications to quantum storage and even medical
therapies [65–69], another outstanding feature is found for atomic erbium with its high mag-
netic moment of 7µB, where µB is the Bohr magneton [70], which belongs to the strongest
magnetic moments in the periodic table, leading to interesting dipolar effects observable in
the ultracold regime. In comparison alkali metals only possess a magnetic moment of 1µB. In
nature there exist six different stable isotopes of erbium, five bosonic and one fermionic, with
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2 Theoretical background: Ultracold atomic erbium quantum gases

Isotope Abundance [%] Nuclear spin I[~]

162Er 0.14 0
164Er 1.56 0
166Er 33.4 0
167Er 22.9 7/2
168Er 27.1 0
170Er 14.9 0

Tab. 2.1: Properties of the different erbium isotopes: Listed are the relative abundance and the nuclear
spin which is 0 for all bosonic isotopes. 167Er is the only fermionic isotope of erbium. Although 166Er
has the highest relative abundance, in this experiment the highlighted 168Er is used as it exhibits
favorable scattering properties beneficial for efficient evaporative cooling. Data from [56,64].

their respective relative occurence listed in Tab. 2.1. Due to favorable scattering properties
and therefore greater rethermalization rates in evaporative cooling processes the isotope of
choice for Bose-Einstein condensation became 168Er [71]. Commercially, bulk erbium with a
purity of around 99.99 % with its natural relative abundance of all stable isotopes is readily
available. Erbium exhibits getter properties acting beneficial on ultra-high vacuums employed
in ultracold atoms experiments [72].

Erbium atoms feature 68 electrons that are distributed corresponding to the aufbau prin-
ciple and the Madelung rule. The 6s orbital gets filled before the 4f orbital, leading to an
inner partially unfilled shell, which for erbium results in the following electronic configuration:

[Xe] 4f12 6s2, (2.12)

where [Xe] indicates the electronic configuration of Xenon. In the atomic erbium ground state
the 4f shell misses two electrons to be completey filled, leading to a so-called submerged shell
structure, and the occurrence of a large orbital angular momentum quantum number L = 5,
and spin quantum number S = 1. For the ground state LS-coupling is applicable, leading to
an angular momentum quantum number of J = 6 and a ground state expression of

[Xe] 4f12 6s2 3H6, (2.13)

with the state notation 2S+1LJ . For the case of excited states of atomic erbium the jj-
coupling becomes more prominent, at which here J1J2-coupling is applied, where the electrons
in all inner shells, i.e. electrons in the [Xe] configuration, and all outer electrons in the 6s
shell couple independently according to the LS-coupling to states with angular momentum
quantum numbers J1 and J2. These states get summed up via quantum number J , denoted
as (J1,J2)J , to the total angular momentum quantum number J = J1 + J2 [73].

2.2.1 Energy level scheme and relevant transitions

Erbium displays a rich energy level scheme as a result of its complex submerged electronic
shell structure, which is partly shown in Fig. 2.1, with all states up to an energy of 25000 cm−1.
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2.2 Some properties of the atomic erbium system

Wavelength [nm] Energy
[
cm−1

]
Natural linewidth

400.91 24943.272 (29.7± 0.6) MHz
582.84 17157.307 (186± 10) kHz
631.04 15846.549 (28± 7) kHz
841.22 11887.503 (8.0± 0.2) kHz

Tab. 2.2: Some prospective optical cooling transitions starting from the atomic erbium ground state
[71,77–79], three of which are shown in Fig. 2.1. While the transitions near wavelength 400.91 nm and
582.84 nm are used for optical cooling in this experiment, the inner-shell transition near 841.22 nm
will be utilized in the future for Raman manipulation within the scope of generating articial magnetic
fields.

Erbium ionizes at 49262 cm−1, corresponding to the energy of a photon of about 203 nm wave-
length. In total there exist 674 states, ranging from J = 1 to 12 [74], however it is assumed
that the spectroscopic data is still to this date not complete, with more dipole allowed tran-
sitions of the ground state predicted [75]. Suitable optical transitions for laser cooling, as
discussed later in this chapter, with J → J ′ = J + 1, while also changing parity to yield a
non-vanishing matrix element, have to be as optically closed as possible. Especially as some
of erbium’s states exhibit comparatively large lifetimes, called metastable states, decays from
higher excited laser cooling states into these states would require the usage of repumping
lasers to rescue the atoms to the ground state to make them again available for laser cooling,
which for many metastable states can quickly become experimentally unfeasible [76]. In ear-
lier work potentially usable cooling transition were studied [77], shown in Tab. 2.2.

In this experiment the transition near 400.91 nm wavelength is used for the Zeeman slower
and transversal cooling process, as well as absorption imaging purposes, as it exhibits a broad
natural linewidth providing a strong deceleration force acting on the atoms [52]. For the
magneto-optical trap, however, the narrow-line transition near 582.84 nm wavelength is used,
as it features a small natural linewidth and correspondingly a lower Doppler temperature,
which is beneficial for reaching quantum degeneracy in later experimental steps as the start-
ing conditions greatly improve in comparison to the broad blue erbium transition here only
used for optimizing the atomic loading rate into the magneto-optical trap, similar to other
work [30]. No repump lasers are needed for these transitions, as very few loss channels with
small transition rates are present, especially for the transition near 582.84 nm [77, 80]. More
details on the Zeeman slower and the magneto-optical trap can be found in Secs. 2.3.1 and
2.3.2. Laser systems and optical setups were mainly implemented within the scope of previous
work at our experiment [55–57]. Wavelengths of laser light used in subsequent experimental
steps for optical dipole trapping should in general be as far away as possible from any excited
state transition to minimize off-resonant scattering, further discussed in 2.3.3.

The three relevant transitions highlighted in Fig. 2.1 are shortly discussed in the following.
For the broad 400.91 nm transition with a natural linewidth of around 29.7 MHz an excited
6p electron couples with the remaining 6s electron to a 1P1 singlet state. The other inner
electrons LS-couple to a 3H6 state. Both these states then jj-couple to a (J1,J2)J state, lead-
ing to an excited state [Xe]4f12(3H6)6s6p(1P1)(6,1)7. Analog for the 582.84 nm transition the
excited 6p electron couples with the remaining electron to a 3P1 triplet state, representing
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2 Theoretical background: Ultracold atomic erbium quantum gases

5

Fig. 2.1: Energy level scheme for atomic erbium. Shown are levels with even parity in red, and
levels with odd parity in black respectively, up to an energy of 25000 cm−1. Three transitions are
illustrated, from which two are needed for optical cooling (blue and yellow), and an inner-shell one is
needed for the experimental realization of optical Raman manipulation (dark red), for which theoretical
considerations can be found in Chap. 5 of this thesis. Data from [74], image adapted from [52].

an intercombination line, i.e. an electric dipole transition that violates the spin-conserving
selection rule, which features a narrow natural linewidth of about 186 kHz. Accordingly the
resulting excited state is [Xe]4f12(3H6)6s6p(3P1)(6,1)7. Now for the very narrow 841.22 nm
transition with a natural linewidth of approximately 8 kHz an inner-shell electron from the
4f orbital is excited to the 5d5/2 state. Here the remaining electrons couple to a 4I15/2

state. The resulting excited state from the jj-coupling between those states is denoted as
[Xe]4f11(4I15/2)5d5/26s2(15/2,5/2)7. Some relevant characteristics of the three transitions are
listed in Tab. 2.3.

Several lanthanide elements feature extraordinary large magnetic moments, a property caused
by the submerged shell structure and the corresponding electron spin-orbit coupling resulting
in large total angular momentum quantum numbers J . As values of the magnetic quantum
numbers mJ , indicating the projection of J on an externally set quantization axis, can range
from −J to J , the magnetic moment is then proportionally large according to

µ = mJgJµB, (2.14)

where µB is Bohr’s magneton, and gJ is the atomic Landé g-factor. In the case of ground state
erbium the Landé g-factor was experimentally determined to be gJ = 1.163801(1) [81], with
theoretical derivations showing similar results [71]. Lanthanides with the largest magnetic
moment include terbium and dysprosium (about 10µB each), holmium (approximately 9µB),
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2.3 Background on an experimental realization of a Bose-Einstein condensate

Wavelength λ [nm] 400.91 582.84 841.22

Transition rate Γ
[
s−1
]

1.9 · 108 1.2 · 106 5.0 · 104

Natural linewidth ∆ν [MHz] 29.7 0.186 0.008
Saturation intensity IS [mW/cm2] 60.3 0.13 0.002
Doppler temperature TD [µK] 714 4.6 0.2
Recoil temperature TR [nK] 717 339 81

Tab. 2.3: Characteristics of atomic erbium transitions used in the here presented work [71, 78, 79].
The saturation intensity is defined as IS = πhcΓ/(3λ3), with c being the speed of light, and λ being
the transition wavelength. Doppler TD and recoil temperatures TR are discussed within Eq. 2.17 and
Eq. 2.19 respectively. As the transition near 582.84 nm exhibits a Doppler temperature roughly 150
times smaller than the broad transition near 400.91 nm, the starting conditions for the generation
of a Bose-Einstein condensate can be greatly improved by the use of a two-stage optical cooling
process consisting of a broad-line Zeeman slower and transversal cooling stage, as well as a narrow-line
magneto-optical trap.

and europium as well as erbium (roughly 7µB each) [70]. More precisely erbium’s magnetic
moment in the lowest magnetic state with mJ = −6, in which the prepared spin-polarized
ultracold atomic erbium ensemble resides in this experiment, amounts to

µ = −6.982806(6)µB. (2.15)

Alkali metal atoms on the other hand possess a small magnetic moment of µ = 1µB in the
ground state stemming from their single s-orbital electron.

In an external magnetic field B states with a total angular momentum quantum number
J split into 2J + 1 states with magnetic quantum number mJ [82]. The Zeeman energy shift
∆EZ relative to the energy at zero magnetic field is calculated via

∆EZ = mJgJµBB = µB. (2.16)

For smaller external magnetic fields the energy splitting between two neighboring mJ states
of atomic erbium shows linear behaviour with a slope of gJµB = 1.628879 MHz/G [71, 83].
Effectively, for all experimentally achievable magnetic field strengths employed within the
scope of ultracold atom experiments, this linear dependency should hold due to erbium’s
large spin-orbit coupling constant [83]. To drive a transition between two Zeeman states
mJ → m′J = mJ ± 1, radio frequency (rf) fields can be applied to the atoms, which in this
experiment is e.g. used to unambiguously verify the spin-polarization of the atomic ensemble
after preparation in the magneto-optical trap.

2.3 Background on an experimental realization of a Bose-Einstein
condensate

Here the various experimental ingredients needed for the generation of an atomic erbium
Bose-Einstein condensate are introduced, and their theoretical background discussed. In
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2 Theoretical background: Ultracold atomic erbium quantum gases

short the steps include first stage laser cooling of an atomic erbium beam via broad-line
Zeeman slower and transversal cooling, second stage laser cooling via narrow-line magneto-
optical trap, loading into single or hybrid optical dipole traps, and subsequent evaporative
cooling until quantum degeneracy is reached. The ensemble is prepared inside an ultra-high
vacuum chamber to minimize perturbations by the environment.

2.3.1 Laser cooling

Laser cooling is an experimental method to decelerate atoms, and thus for an equilibrium
distribution to reduce the mean velocity of atoms, by the use of light, as in the following de-
scribed via [84]. The mean kinetic energy of all particles of an ideal gas is proportional to its
mean squared velocity v2 and temperature T , respectively [85], so that the temperature can
be expressed via T = mv2/(3kB). The velocity of each atom inside the gas can be decreased
by momentum transfer from photons with appropriate momentum of |p| = ~ |k| per photon,
with k being the wavevector of the absorbed photon. After absorption the atom occupies an
energetically excited state for a mean duration of the spontaneous lifetime, from which it can
then relaxate into a lower state by stimulated or spontaneous emission of a photon. While
for the case of stimulated emissions no net momentum transfer takes place, for spontaneous
emissions a net momentum transfer occurs after many absorption and emission cycles as the
sum of all momenta from emitted photons averages to zero over time, but the sum of all
momenta from absorbed photons does not, leading to a so-called spontaneous force, which
for the case of a magneto-optical trap in one dimension is shown in Eq. 2.21. Thus we can
change the velocity v = p/m of atoms by directed illumination with resonant photons from
e.g. a laser beam. The spontaneous force can be mathematically derived from the description
of a two-level system using the Bloch equations [84]. For atoms moving in opposite direction
to the laser light propagation direction, the Doppler shift ∆ω = ±ω0v/c = kv, where ∆ω is
the frequency shift away from the atomic resonance frequency ω0 [86], has to be countered
by red-detuning the light frequency.

For optical cooling of an atomic ensemble in a fixed position in space, three pairs of counter-
propagating laser beams are necessary. The atomic ensemble, then also called optical mo-
lasses, only experiences a reduction of the mean velocity, but not a restoring force in position
space, so that they can spatially diffuse out of the molasses [87]. The in Sec. 2.3.2 discussed
upgrade, named magneto-optical trap, adds such a restoring force by applying a linear mag-
netic field gradient in each spatial dimension to make trapping of atoms without diffusion
possible. In the idealized system of a two-level atom with the choice of a red-detuning of
δ = −Γ/2, where Γ = 1/τ , and τ being the lifetime of the excited state, one obtains the
so-called Doppler temperature, which acts as a lower limit for the standard optical cooling
process, as

TD =
~Γ

2kB
. (2.17)

Other cooling techniques like polarization gradient cooling can reach even lower temperatures
[88]. The fundamental limit stemming from the discrete momentum transfer of a single photon
is represented by the recoil temperature [89]
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2.3 Background on an experimental realization of a Bose-Einstein condensate

TR =
~2Γ2

mkB
. (2.18)

It should be noted that also techniques for subrecoil laser cooling have been demonstrated [90].

In the present experiment, erbium atoms are loaded from an atomic beam into the magneto-
optical trap for the preparation of an ultracold atomic ensemble. As erbium exists as a solid at
room temperature, it has to be heated greatly in a crucible, embedded in a two-stage effusion
cell including apertures for collimation, as seen in a sketch in Fig. 2.2, and in a technical draw-
ing in Fig. 3.2. The emerging atomic beam from the effusion cell can be further collimated by
means of transversal cooling techniques [71,91], which reduces the mean transversal velocity of
the atoms and therefore the divergence angle of the atomic beam [92,93]. Transversal cooling
utilizes laser cooling in one dimension using two counter-propagating resonant laser beams
perpendicular to the atomic beam. This is typically applied in both dimensions orthogonal to
the atomic beam axis, so that in total two beam pairs (four beams) irradiate the atoms. Ide-
ally elliptically shaped beam profiles are used to maximize the interaction area and therefore
interaction time of the light with the passing atoms, leading to a stronger collimation effect.
Ultimately the atomic flux is increased, as indicated in Fig. 2.2. It is however limited by the
aperture with diameter dct of the next connecting tube in the vacuum system that leads to
the Zeeman slower.

v

d
ct

transversal
cooling beams

Zeeman
slower beam

Fig. 2.2: Outline of the transversal cooling and Zeeman slower light setup. With two counter-
propagating resonant laser beams in one dimension perpendicular to the atomic beam axis the latter
can be collimated, i.e. the divergence angle can be reduced (here shown from cyan to lavender), leading
to a higher atomic flux at the aperture with diameter dct of the connecting tube between effusion cell
chamber and main vacuum chamber. The here used laser beams exhibit an elliptic beam profile to
maximize the interaction area with the atomic beam. The Zeeman slower laser beam (shown in dark
purple, with some part of the Zeeman slower coil profile here being indicated as coppery geometry)
travels along the tube axis and counter-propagates the atomic beam. A portion of the collimated
beam scatters light from the Zeeman slower beam and is continuously decelerated on the way to the
main vacuum chamber inside the Zeeman slower. A complete view of the setup can be seen in Fig. 3.1.
Transversal cooling sketch adapted from [56].

The transversal cooling stage only collimates the atomic beam, but does not slow the atoms
in longitudinal direction. Due to a much higher mean velocity than the capture velocity of
the magneto-optical trap, as briefly discussed in Sec. 3.2, such a longitudinal deceleration is
needed and here provided by a so-called Zeeman slower [94]. A counter-propagating laser
beam reduces the velocity of the atoms via optical cooling as sketched in Fig. 2.2. Because a
somewhat slowed down atom soon would not be resonant with the laser beam of frequency ω
anymore due to the Doppler effect, the resonance condition
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2 Theoretical background: Ultracold atomic erbium quantum gases

ω0 − kv(z) +
µ̃

~
B(z) = ω (2.19)

has to be continuously met with the help of a spatially varying magnetic field B(z) along
the Zeeman slower axis in z-direction, which changes the energy levels of the atoms via the
Zeeman effect at each position appropriately. µ̃ = µB(geme− ggmg) is the difference between
magnetic moments of excited and ground state. Here a long-standing spin-flip Zeeman slower
with a maximum capture velocity of vZS

max ≈ 600 m/s and an arbitrarily low minimum capture
velocity, respectively, is used [55].

2.3.2 Magneto-optical trap

In addition to the laser cooling effect possible in the optical molasses discussed in Sec. 2.3.1 to
cover also a restoring force in position space and actually trap atoms spatially without the risk
of diffusion, one can apply a magnetic quadrupole field resulting in a so-called magneto-optical
trap (MOT) [76], where the theoretical description below follows [84]. The MOT consists of
three pairs of red-detuned, counter-propagating and circularly polarized laser beams, with one
pair along each spatial direction, and two magnetic field coils in anti-Helmholtz configuration,
shown as a sketch in Fig. 2.3. The coils produce the magnetic quadrupole field with its point
of origin lying at the intersection point of the laser beams, which exhibits an approximately
linear behaviour in each spatial axis around the origin. For simplicity we consider only one
spatial dimension and a two level system with a J = 1 excited state in the following. The
inhomogeneous magnetic field of form B(z) = bz, with slope b and B(0) = 0, splits the three
Zeeman levels mJ = 0,±1 of the excited state energetically in respect to position z, while
the single Zeeman level of the ground state with J = 0 and mJ = 0 is unaffected, as seen in
Fig. 2.4(a).

If the two counter-propagating beams in direction of the magnetic field gradient are right (σ+)
and left circularly (σ−) polarized respectively, due to the selection rules for electric dipole
transitions they preferably excite the mJ = +1 and mJ = −1 transition respectively. If σ+

polarized light is irradiated from the side with the mJ = +1 state being energetically lower
and therefore closer to resonance with the laser light (z < 0), atoms further away from the
center will experience an increased spontaneous force pushing them back to the center of the
MOT. For the same considerations of the other side (z > 0) now with σ− polarized light, one
ascertains that the atoms will here also experience a spontaneous force directed to the MOT
center region. Thus for a pair of counter-propagating beams along each of the three spatial
axes the atoms can be trapped position-dependently in space. The spontaneous force along
one axis, e.g. the z-axis, can be written as

FMOT
z =

~kΓ

2

(
s

1 + s+ 4(δ−kvz+µ̃∂zBz/~)2

Γ2

− s

1 + s+ 4(δ+kvz−µ̃∂zBz/~)2

Γ2

)
, (2.20)

where s = I/IS is the saturation parameter with I being the light intensity, and IS being the
saturation intensity respectively.
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2.3 Background on an experimental realization of a Bose-Einstein condensate
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Fig. 2.3: Sketch of a magneto-optical trap setup, where atoms are trapped in the intersection volume
of three counter-propagating laser beam pairs, that are arranged orthogonally in respect to each other
along the x, y, and z-axis (suggested as dashed gray lines), respectively, with the beams on each axis
being oppositely circularly polarized. The magnetic field coils in anti-Helmholtz configuration (with
the current direction marked with orange arrows) generate a magnetic quadrupole field, which behaves
approximately linearly in the center region of the trap. As an example the magnetic field lines (solid
black) are here indicated for the x-y-plane, but can be imagined rotationally symmetric around the
y-beam axis for the shown coil configuration.

Magneto-optical trap for erbium atoms with narrow-line transition light

The narrow-line erbium transition at λ = 582.84 nm offers a big advantage since the Doppler
temperature of the atomic ensemble becomes much smaller than for a broader transition as
e.g. the one at λ = 400.91 nm (cf. Tab. 2.3), leading to a much better starting point to
reach quantum degeneracy in further experimental steps. This narrow-line transition is not
completely optically closed, but possesses two sufficiently small loss channels into metastable
states which permits successful MOT operation without the need for repumping [77,80]. The
use of a narrow-line cooling transition introduces a more sophisticated trapping behaviour,
which is briefly discussed in this section, with more details to be found in [56,71,95].

Due to the narrow-line and therefore weak MOT transition, the comparatively strong light of
the Zeeman slower would perturb the trapping (or so-called loading) of atoms into the MOT
if both would be spatially overlayed as in typical configurations. One can utilize the weak
force of the MOT light via a far detuning of several linewidths from resonance, in combination
with a corresponding tuning of the MOT magnetic field gradient, to create a sphere of larger
radius, effectively seperating Zeeman slower beam and magneto-optical trapping region [96].
Considering also gravitation, the atoms are then not trapped inside a sphere but gather in a
gravitational sag of an ellipsoid, see sketched in Fig. 2.4(b) and photographed in Fig. 4.2(a).
Thereby the atomic ensemble mostly interacts with the lower σ− polarized MOT beam along
y so that the ensemble becomes spin-polarized as most atoms will occupy the Zeeman state
with mJ = −6, an effect that will be beneficial for the further experimental steps. The total
force acting on an atom in the axis featuring gravitation, here the y-axis, with velocity vy at
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2 Theoretical background: Ultracold atomic erbium quantum gases
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Fig. 2.4: Magneto-optical trap. (a) Operation principle of a magneto-optical trap in one dimension.
σ+ polarized light preferably excites atoms to the mJ = +1 state on the left side (z < 0) of the
MOT, and vice versa σ− polarized light preferably excites atoms to the mJ = −1 state on the right
side (z > 0). Note that the J = 1, mJ = 0 level is not shown here. Overall the atoms experience
a spontaneous force in direction to the MOT center region located at z = 0, however due to the
narrow linewidth of the cooling light, this is for the one-dimensional case only true inside small regions
around the illustrated arrows. After a loading phase with a somewhat larger red-detuned light several
linewidths away from resonance (orange level with ωload), the MOT is compressed in position space
by reducing the detuning (yellow level with ωcomp) amongst other things as discussed in Sec. 4.1.2.
(b) For detunings δ much larger than the power broadened transition linewidth Γpb = Γ

√
1 + s atoms

experience a spontaneous force only in regions far away from the MOT center, similar to the case
in (a), described in three dimensions by an ellipsoid. Atoms inside the narrow-line magneto-optical
trap gather in a gravitational sag due to the weak transition exerting only a force comparable to
the magnitude of the gravitational force mg. A welcomed effect of this configuration is the spin-
polarization of the atomic ensemble as it mostly interacts with the lower σ− polarized MOT beam
along y. After reducing the detuning correspondingly to the scheme in (a), the atomic ensemble
gets spatially compressed and lifted up to the center of the MOT region, which enhances the loading
efficiency into the optical dipole trap. Images modified from [71].

position y can be written as

Fy = F̃MOT
y + Fg =

~kΓ

2

 s

1 + s′ +
4(δ+kvy−µ̃∂yBy/~)2

Γ2

−mg, (2.21)

where m is the mass of an atom, g is the gravitational acceleration, and s′ is an adjusted
saturation parameter accounting for the beams in the other axes. Here the effective detuning
δ − µ̃∂yBy/~ stays constant, as for different light detunings δ the position y adjusts accord-
ingly, meaning that dampening and diffusion processes, as well as equilibrium parameters of
the atomic ensemble do not depend on δ. The equilibrium time τeq of the far-detuned MOT,
a characteristic time length for the decrease of kinetic energy of the trapped atoms, can be
expressed as

τeq =
mR2s

4~k2
√
Rs− s− 1

(2.22)
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2.3 Background on an experimental realization of a Bose-Einstein condensate

and the equilibrium temperature of the far-detuned loading MOT can be defined as

Teq =
~Γ
√
s

2kB

R

2
√
R− 2/s

, (2.23)

where R = ~kΓ/(2mg), so that experimentally τeq and Teq are only dependent on the satu-
ration parameter s. For typical experimental parameters of the loading MOT, Teq,load should
lie in the region of 17µK, while τeq,load should amount to approximately 110 ms. After com-
pressing, the values change for the equilibrium temperature to a few µK, concordantly with
the Doppler temperature of 4.6µK of the narrow-line transition, and for the equilibrium time
to approximately 15 ms respectively, as the intensity of the MOT light is ramped down sig-
nificantly during the compression phase (cf. Fig. 4.1). The maximum capture velocity of the
far-detuned MOT can also be estimated via

vMOT
cap =

d

τeq
, (2.24)

where d is the diameter of the MOT light beams. With d = 36 mm one arrives at vMOT
cap =

3.3 m/s, illustrating the need of a well-adjusted Zeeman slower. After loading atoms from the
Zeeman slowed atomic beam into the far-detuned MOT, the MOT is subsequently compressed
via changes of detuning δ and the magnetic field gradient ∂yB to achieve a much better
overlapping with – and therefore increased loading into – the optical dipole trap used in the
next experimental step. Details about the experimental MOT compression process can be
found in Sec. 4.1.2.

2.3.3 Single and hybrid crossed optical dipole traps

To circumvent temperature and density limits of atom traps based on optical cooling tech-
niques and ultimately reach quantum degeneracy, the atomic ensemble has to be transferred
(or loaded) into other types of traps with high coherence times capable of performing evap-
orative cooling. Two of those types are magnetic traps and optical dipole traps, from which
the latter is employed in this experiment and theoretically discussed in this section. An
optical dipole trap is generally a laser field configuration with at least one point of stable
equilibrium for the atomic motion, so that a mean restoring force is exterted on the atoms if
they should be displaced from that point of stability. As this thesis describes the transition
from a single optical dipole trap (SODT) to a hybrid crossed optical dipole trap (HCODT),
both geometries, including trap depths and trap frequencies, are here studied and in Sec. 4.2
experimentally compared, respectively. The theoretical description follows [48,97].

Dipole trap potential and scattering rate

Far-detuned light can induce an electric dipole moment in particles that then in turn interacts
with the light field, leading to a so-called dipole force acting upon the particles. In the presence
of an ac electric field E(r, t) = êẼ(r)e−iωt of amplitude Ẽ(r) and frequency ω according to
the oscillator model the dipole moment dg,e(r, t) = êd̃g,e(r)e−iωt is induced on an atom, with
ê being the unit polarization vector, and g and e denoting the ground state and excited state
of the atom, respectively. Electric field amplitude and dipole moment are related via

17



2 Theoretical background: Ultracold atomic erbium quantum gases

d̃g,e(r) = α(ω)Ẽ(r), (2.25)

where α(ω) is the frequency-dependent complex polarizability. The interaction or dipole
potential can be expressed with the field intensity I(r) = 2ε0c|Ẽ(r)|2 as

Udip(r, ω) = −1

2
〈dg,e(r, ω)E(r, ω)〉 = − 1

2ε0c
Re[α(ω)]I(r). (2.26)

As the potential is proportional to the light intensity, e.g. a red-detuned focused laser beam
can be used for trapping cold atoms. The photon scattering rate is given by

Γdip(r, ω) =
〈ḋg,e(r, ω)E(r, ω)〉

~ω
=

1

~ε0c
Im[α(ω)]I(r). (2.27)

Here the imaginary part of the complex polarizability Im[α(ω)] relates to the number of
phase-shifted dipole oscillations. As scattering events, i.e. absorption and emission cycles,
and therefore heating processes take place, the atoms inside an optical dipole trap have a
finite lifetime, which for a given atomic species is dependent on intensity and frequency of
the light. The damping rate Γd, that describes to the spontaneous decay rate of the excited
level |e〉 into the ground state |g〉, can be calculated by looking at the corresponding dipole
matrix element µ via

Γd =
ω3

0

3πε0~c3
|〈e|µ|g〉|2. (2.28)

Optical dipole trapping of erbium atoms

The above discussion of the dipole trap potential implied an atomic two-level system consisting
of a ground state and an excited state. In reality atoms possess multi-level structures, which
for e.g. the erbium case can be highly complex, so that this idealization does not necessarily
hold anymore as in general the dipole potential can depend on the substate of the atom,
which e.g. can lead to laser light polarization dependencies. We first discuss a multi-level
atom without degeneracy, after which the multi-level case with degeneracy follows. The
effect of off-resonant laser light acting on atomic levels can be described using second-order
perturbation theory. In a dressed states approach, the energy shift ∆Ei of state i stemming
from a perturbation Hamiltonian Hint = −µ̂ ·E, with eletric dipole operator µ̂, can be written
as [98]

∆Ei =
∑
j 6=i

|〈j|Hint|i〉|2

Ei − Ej
. (2.29)

A dressing of the states with unperturbed energies Ei of the i-th state is applied by considering
the overall system consisting of atom plus laser light field. Here Ei = n~ω is the ground state
energy that is fully provided by the laser field’s energy as the internal ground state energy
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2.3 Background on an experimental realization of a Bose-Einstein condensate

amounts to zero. Photon absorption leads to an internal energy of ~ωj of the excited atom
and a field energy of (n − 1)~ω, respectively. This results in the energy difference of states
being ~∆ij = Ei − Ej = ~(ω − ωj), and with Eq. 2.28 one arrives for a two-level system at
the simplified expression

∆E = ±|〈e|µ|g〉|
2

∆eg
|E|2 = ±3πc2

2ω3
0

Γd

∆eg
I(r), (2.30)

which is known as the ac Stark shift, where the ± signs relate to the ground and excited state,
respectively [99, 100]. Here ∆eg = ω − ω0 is the light detuning from the atomic resonance
frequency ω0 of the two-level system. For low light saturation intensities the atoms mostly
occupy the ground state, so that the ac Stark shifted ground state becomes the relevant dipole
potential for the movement of the atoms.

When an electronic substructure is considered, one has to sum over all possible excited states
|ej〉 for a given ground state |gi〉. For this the dipole matrix elements µij = 〈ej |µ|gi〉 of the
corresponding transitions have to be calculated, with specific transition elements

µij = cij ||µ||, (2.31)

where ||µ|| is the reduced dipole matrix element which is dependent on the electronic orbital
wavefunctions and can be expressed via Eq. 2.28. Here cij are the real transition coefficients,
which define the coupling strength between sublevels i and j, and are dependent on the
polarization of the trapping light as well as on the electronic and nuclear angular momenta,
respectively. Considering Eq. 2.28, Eq. 2.29 and Eq. 2.31, the dipole potential for a ground
state i in the case of large detunings and negligible saturation results as

Udip,i(r, ω) = −
∑
j

3πc2

2ω3
j

(
c2
ijΓj

ωj − ω
+

c2
ijΓj

ωj + ω

)
I(r), (2.32)

where ωj is the resonance frequency, and Γj the damping rate respectively, for a transition
from |gi〉 to |ej〉. For absolute values of detunings much smaller than the resonance frequency,
i.e. |∆ij | � ωj , the second so-called counter-rotating term inside the parentheses can be
neglected within the scope of the rotating wave approximation. Importantly, for blue-detuned
light with ω > ωj the potential is positive, and for red-detuned light with ω < ωj negative,
respectively. With red-detuned light a dipole force in direction of maximum intensity is
created, which presents a viable setting for a focused laser beam trap. For blue-detuned light
the dipole force pushes particles out of regions with high intensity. The scattering rate is
given by

Γdip,i(r, ω) =
∑
j

3πc2

2~ω3
j

(
ω

ωj

)3
(
c2
ijΓj

ωj − ω
+

c2
ijΓj

ωj + ω

)2

I(r), (2.33)

where again the rotating wave approximation can be applied for |∆ij | � ωj , eliminating the
second counter-rotating term inside the parentheses.
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2 Theoretical background: Ultracold atomic erbium quantum gases

Quasi-electrostatic optical dipole trapping

For the special case of very far-detuned laser light with ω � ω0, as it is the case for CO2

laser light at 10.6µm wavelength used in this experiment as the beam of the SODT and the
main beam of the HCODT respectively, the light field oscillates very slowly in respect to
the atomic eigenfrequency. In this limit the induced dipole moment can follow the electric
field essentially without a phase shift, i.e. statically. The rotating wave approximation as
mentioned above is in this case not valid, however as now for e.g. the two-level case the
approximation ω0 − ω ≈ ω0 + ω ≈ ω0 holds, a quasi-electrostatic expression can be found for
a simplified dipole potential according to

Uquest
dip (r) = −3πc2

ω3
0

Γd
ω0
I(r), (2.34)

that is independent of ω. In general for the quasi-electrostatic approximation in the limit of
ω → 0 the potential can also be expressed with the static polarizability αstat → α(0) as

Uquest
dip (r) = −αstat

I(r)

2ε0c
. (2.35)

In contrast to the treatment before the shifted potential for excited states is now also attrac-
tive. One advantage of such potentials is that even different atomic species and molecules
could be simultaneously trapped independent of their internal state [101, 102], as the trap
depth in Eq. 2.35 does not reference any specific transition frequency. Another advantage
is the very small scattering rate obtainable due to the very large detuning from any atomic
resonance. It can be calculated from its relation to the dipole potential as

Γquest
dip (r, ω) = 2

(
ω

ω0

)3 Γd
~ω0

Uquest
dip (r). (2.36)

Typical scattering rates lie in the order of 10−3 s−1 [103] with recoil energies of approximately
kB ·1 nK, so that a conservative trap with negligible decoherence effects by photon absorption
can be realized. For such low scattering rates, the lifetime of the atoms will almost exlusively
result from collisions with the background gas in the ultra-high vacuum chamber.

Atomic polarizabilities

As erbium is a multi-level atom with a rich electronic spectrum, Eq. 2.32 has to be applied.
One can, however, express the dipole trap potential for an atom in a state with J and
mJ by inserting the transition coefficients into that equation so that the atomic transition
properties are captured in the atomic scalar αscal, vector αvect, and tensor polarizability αtens,
respectively, and parameters of the light field polarization are explicitely set via

Udip(r, ω,A, θk, θp) =
I(r)

2ε0c

(
Re [αscal(ω)] +A cos(θk)

mJ

2J
Re [αvect(ω)]

+
3m2

J − J(J + 1)

J(2J − 1)
· 3 cos2(θp)− 1

2
Re [αtens(ω)]

)
,

(2.37)
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2.3 Background on an experimental realization of a Bose-Einstein condensate

where A is the ellipticity parameter describing the polarization state of the light [75]. Here
θk is the angle between quantization axis z and wavevector k, and θp is chosen so that
|ê · ez| = cos2(θp), where ê is the unit polarization vector. The scattering rate can be ob-
tained by replacing all instances of Re [αi(ω)] in Eq. 2.37 with Im [αi(ω)]. The values of the
ground state erbium polarizabilities for both the CO2 laser light main dipole trap beam at
λ = 10.6µm (equaling 943.4 cm−1) as well as the Nd:YAG laser light cross dipole trap beam
at λ = 1064 nm (corresponding to 9398.5 cm−1) are given in Tab. 2.4.

ω [cm−1]

Polarizability [a.u.] 0 943.40 9398.50

Re [αscal] 141 141 164

Re [αvect] 0 -0.084 -0.943

Re [αtens] -2.52 -2.53 -3.93

Im [αscal] /10−6 1.51 1.52 2.34

Im [αvect] /10−6 0 −0.129 −1.74

Im [αtens] /10−6 −0.421 0.421 −0.69

Tab. 2.4: Theoretical polarizability values of ground state erbium atoms at different light frequencies
in atomic units of 4πε0a

3
0 [55, 75], which especially for the scalar polarizability were experimentally

verified to good agreement in [104]. Here values for the CO2 laser light at ω = 943.40 cm−1 and
the Nd:YAG laser light at ω = 9398.50 cm−1 are shown. The electrostatic case is depicted in the
column with ω = 0 cm−1. The values for the imaginary part of the polarizability for the case of
ω = 9398.50 cm−1 have to be taken with a pinch of salt, since due to the (ω/ω0)3 scaling of the
phase-space factor, which possibly has not been taken into account, smaller values for the scattering
rate are expected here.

For the case of the CO2 laser light the frequency lies far below all atomic transition frequencies,
as seen in Fig. 2.1 where the lowest excited state is located at energies of about 5000 cm−1,
so that static and scalar polarizability are almost equal, with Re [αstat] ≈ Re [αscal(0)] =
Re
[
αscal(943.4 cm−1)

]
= 141, whereat this isotropic behaviour of the polarizability in the

ground state seems to be a result of the completely filled 6s shell [75]. As the value for
the scalar polarizability is much greater than all other contributions, the dipole potential in
Eq. 2.35 can be well approximated by setting Re [αstat] = Re [αscal,CO2 ]. It should be noted
that vector and tensor polarizabilities can reach values comparable to αstat for wavelengths
associated with transitions of the incompletely filled submerged shell.

In comparison for the case of Nd:YAG laser light near λ = 1.064µm wavelength the po-
larizability values differ from the static case, although here Re [αscal] also is the dominant
quantity, so that the Nd:YAG light contribution to the overall dipole potential of the crossed
trap hardly depends on the light polarization or atomic quantization axis, too, so that in good
approximation Eq. 2.35 can be written with the replacement Re [αstat] → Re [αscal,YAG]. On
the other hand the imaginary parts of scalar, vector, and tensor polarizability respectively es-
pecially for the laser light near λ = 1.064µm wavelength are of the same order of magnitude
so that the light polarization and atomic quantization axis have a strong influence on the
scattering rate. A linear polarization of the dipole trapping beams seems to achieve longer
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2 Theoretical background: Ultracold atomic erbium quantum gases

trap lifetimes [75].

Single optical dipole trap geometry

There are various dipole trap geometries feasible for capturing neutral atoms, with classic
setups for red-detuned light being single focused Gaussian beam traps, crossed Gaussian beam
traps, and standing wave traps [105–107]. From those mentioned the first two configurations
are employed in this experiment and compared within this thesis. Starting with the simplest
single Gaussian beam configuration, the intensity profile of such a beam propagating along z
can be described as

I(r, z) =
2P

πw2(z)
exp

(
2

r2

w2(z)

)
, (2.38)

where P is the beam power, and the radial coordinate r =
√
x2 + y2 is the distance from the

z axis, with y being the direction of gravity. The 1/e2 beam radius along z is given as

w(z) = w0

√
1 +

(
z

zR

)2

, (2.39)

where
√

2w0 is the beam radius at which the Rayleigh length zR = πω2
0/λ is reached [108],

which results for typical dipole trapping light wavelengths in the spatial confinement being
in radial direction much stronger than in the axial direction. With Eq. 2.35 one obtains the
dipole trap potential in the quasi-electrostatic case for the CO2 laser beam as

Uquest
dip (r, z) = −αstat

2ε0c

2P

πw2(z)
e−2r2/w2(z), (2.40)

and the maximum trap potential depth as

U0 = −Uquest
dip (r = 0, z = 0) =

αstat

2ε0c

2P

πw2
0

=
αstat

2ε0c
I0, (2.41)

where I0 = I(r = 0, z = 0) is the maximum intensity at the center of the Gaussian beam
waist. For thermal energies kBT of the atomic ensemble much smaller than the trap potential
depth U0, the spatial extent of the ensemble in radial direction is small compared to the beam
waist, and in axial direction small compared to the Rayleigh range, respectively, so that the
trap potential can be approximated as a cylindrically symmetric harmonic oscillator potential
by means of a Taylor expansion around z = 0 and r = 0 up to second order, leading to

Uquest
dip (r, z) ≈ −U0

(
1− 2

(
r

w0

)2

−
(
z

zR

)2
)

(2.42a)

= −U0 +
1

2
mω2

rr
2 +

1

2
mω2

zz
2. (2.42b)
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2.3 Background on an experimental realization of a Bose-Einstein condensate

The corresponding oscillator (or trap) frequencies, with which the atoms move inside the
single beam optical dipole potential, are then found in the radial case as

ωr =

√
4U0

mw2
0

= ωz

√
2πw0

λ
, (2.43)

and in the axial (or longitudinal) case as

ωz =

√
2U0λ2

mπ2w4
0

=

√
2U0

mz2
R

. (2.44)

As seen in Sec. 3.4.2, measurements of the trap frequencies are crucial for the calculation of
the phase space density inside the trap. Be it that an elliptic beam profile is prevalent one
has to consider two different beam waists w0,h in horizontal and w0,v in vertical direction
respectively, and their corresponding radial trap frequencies, as well as a modified axial trap
frequency via an effective Rayleigh length [109]. For a not too large ellipticity, the beam waist
can be approximated by w̃0 =

√
w0,hw0,v.

Hybrid crossed optical dipole trap geometry

In this section properties of a hybrid crossed optical trap are discussed. The general idea is
to increase the spatial confinement in each direction as single beam trapping can suffer from
weak confinement in axial direction. The hybrid trap here consists of a Gaussian main dipole
trap beam provided by a CO2 laser with wavelength λ = 10.6µm, aligned in z-direction,
and a Gaussian secondary dipole trap beam provided by a Nd:YAG laser with wavelength
λ = 1064 nm, which crosses the main trap beam at an angle of 67.5 ◦ and is adjusted in a way so
that the central regions of both the respective beam waists overlap, s. Fig. 2.5. For maximum
confinement a crossing angle of 90 ◦ would be optimal, however this was in the present work
technically not possible due to the available vacuum chamber setup. Characteristic properties
of the two trapping beams are listed in Tab. 2.5 and 2.6. As the two individual potentials are
additive, the complete spatial profile of the hybrid crossed optical dipole trap potential can
be described as

U cross
dip (x, y, z) = UYAG(x, y, z) + UCO2(x, y, z)

=
U0,YAGw

2
0,YAG

w2
YAG(x, z)

exp

(
−2

(x cos(3π/8) + z sin(3π/8))2 + y2

w2
YAG(x, z)

)
+
U0,CO2w

2
0,CO2

w2
CO2

(z)
exp

(
−2

x2 + y2

w2
CO2

(z)

)
.

(2.45)

For a perfect overlap of the beam waists of both beams, the maximum trap depth can be
obtained by just adding the individual maximum trap depths of the beams, as U cross

0,dip =
U0,YAG + U0,CO2 . A Taylor expansion of Eq. 2.45 for the potential near the trap bottom, i.e.
around x = y = z = 0, leads to
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2 Theoretical background: Ultracold atomic erbium quantum gases

U cross
dip (x, y, z) ≈ U0,CO2 + U0,YAG

−

(
2U0,CO2

w2
0,CO2

+
2 cos2(3π/8)U0,YAG

w2
0,YAG

+
sin2(3π/8)U0,YAG

z2
R,YAG

)
x2

−

(
2U0,CO2

w2
0,CO2

+
2U0,YAG

w2
0,YAG

)
y2

−

(
U0,CO2

z2
R,CO2

+
2 sin2(3π/8)U0,YAG

w2
0,YAG

+
cos2(3π/8)U0,YAG

z2
R,YAG

)
z2.

(2.46)

From this the total trap frequencies of the hybrid crossed optical dipole trap in x-, y-, and
z-direction respectively are determined as

ωx = 2

√
U0,CO2

mw2
0,CO2

+
cos2(3π/8)U0,YAG

mw2
0,YAG

+
sin2(3π/8)U0,YAG

2mz2
R,YAG

(2.47a)

ωy = 2

√
U0,CO2

mw2
0,CO2

+
U0,YAG

mw2
0,YAG

(2.47b)

ωz =

√
2U0,CO2

mz2
R,CO2

+
sin2(3π/8)U0,YAG

mw2
0,YAG

+
2 cos2(3π/8)U0,YAG

mz2
R,YAG

. (2.47c)

The smallest trap frequency for a given setup corresponds to the weakest confinement in
that spatial axis. Note that due to the use of two different wavelengths for the trapping
beams, interference effects on the optical dipole potential can be neglected here. Those are
present for crossed beams of the same wavelength, which often is an unwanted effect that,
however, can be mitigated by detuning one of the trap beams, but can also be utilizied for
e.g. investigations of Raman or sideband cooling [110,111].

Exp. values Nd:YAG laser trap CO2 laser trap

λ [µm] 1.064 10.6

αstat [4πε0a
3
0] 164 141

w0 [µm] 55.6 36.2

Pinit [W] 1.59 72.6

Propagation in (z, x) plane
(
cos
(

3π
8

)
,− sin

(
3π
8

))
(1,0)

Tab. 2.5: Experimental values for the CO2 and Nd:YAG laser beams, respectively. The static po-
larizabilities αstat are fixed by choice of the laser wavelengths λ. Experimental quantities that can be
controlled are the beam waists w0, initial beam powers Pinit and propagation pathways. Beam waists
were measured in [97].

2.3.4 Evaporative cooling

Phase space densities of atomic ensembles captured in magneto-optical traps or in optical
dipole traps directly after loading are generally to small to reach Bose-Einstein condensation.
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Fig. 2.5: (a) Sketch of the single (SODT) and (b) hybrid crossed optical dipole trap (HCODT)
geometry, respectively. For the HCODT the Gaussian secondary Nd:YAG laser beam crosses the
Gaussian CO2 laser main beam at an angle of 67.5 ◦. Here gravity points into the drawing plane.
Characteristic values of the two trapping beams can be found in Tab. 2.5 and 2.6.

Theo. geometry Nd:YAG laser trap CO2 laser trap

Beam waist w0,YAG

√
1 +

(
z cos 3π

8
−x sin 3π

8
zR,YAG

)2

w0,CO2

√
1 +

(
z

zR,CO2

)2

U(x, y, z)
U0,YAGw

2
0,YAG

w2
YAG(x,z)

exp
(
−2

(x cos 3π
8

+z sin 3π
8

)2+y2

w2
YAG(x,z)

)
U0,CO2

w2
0,CO2

w2
CO2

(z)
exp

(
−2 x2+y2

w2
CO2

(z)

)
Tab. 2.6: Theoretical geometry, i.e. calculated beam waists and dipole trap potentials, for two
Gaussian trapping beams with different wavelength and propagation pathways chosen as in Tab. 2.5
and shown in Fig. 2.5.

To reduce the temperature of an ensemble further, the evaporative cooling technique can be
employed [112]. For this the Maxwell-Boltzmann distribution gets truncated by removing
atoms in the high-energy tail of the thermal distribution from the trap, followed by rether-
malization of the remaining atoms via elastic collisions, leading to a velocity distribution of
now smaller temperature, i.e. a colder atomic ensemble, as sketched in Fig. 2.6 [105]. That is
typically achieved by lowering the optical dipole potential more and more until a satisfactory
phase space density is reached. Theoretical considerations in this section follow [113].

For efficient evaporative cooling the optical dipole trap potential depth has to be lowered
quickly enough so that the process does not stagnate, as a drop of temperature also reduces
the rethermalization rate drastically, but slow enough so that the atoms have the chance to
rethermalize at all. The efficiency of evaporative cooling is characterized by the cut-off pa-
rameter η = U/(kBT ). For very cold atoms in comparison to the potential depth, kBT < U ,
the number of colliding pairs of atoms with high enough energy for one atom to leave the
trap is proportional to e−η. After loading atoms into the optical dipole trap, a short period
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2 Theoretical background: Ultracold atomic erbium quantum gases

of so-called natural evaporation in the order of seconds takes place, and latest when this
effect tapers off the potential U has to be continuously lowered, if one wants to avoid a rapid
decrease of the rethermalization rate. For optimal results, the lowering process should run
adiabatically, and η should be kept constant. For this so-called induced evaporation one then
yields a temporal evolution of the atom number as

N(t)

Ninit
=

(
U(t)

Uinit

)3/[2(η′−3)]

, (2.48)

where η′ = η+ (η− 5)/(η− 4) can be used in the case of an approximate harmonic potential
[114]. For a constant η the temperature should change proportionally with the potential
depth. Most interesting is the temporal evolution of the phase space density ρ, which can be
expressed via

ρ(t)

ρinit
=

(
Uinit

U(t)

)3(η′−4)/[2(η′−3)]

. (2.49)

The for the experimental implementation important temporal evolution of the trap depth can
be written with help of the time constant τevap for evaporation as

U(t)

Uinit
=

(
1 +

t

τevap

)−2(η′−3)/η′

, (2.50)

where 1/τevap = 2η′(η − 4) exp(−η)γinit/3 is then the rethermalization rate, and γinit is the
initial collision rate between atoms. As one has also to consider atom losses from the trap
due to collisions with the residual background gas of the ultra-high vacuum, the replacement
t→ 1− exp(t · Γloss)/Γloss, with the collision loss rate Γloss, has to be applied in Eq. 2.50.

Additionally the gravitation has to be considered, which becomes relevant for small trap
depths near the end of the evaporative cooling process. The total potential acting on the
atomic ensemble is then for a HCODT via Eq. 2.45 given by

U tot
dip(x,y,z) = U cross

dip (x,y,z)−mgy, (2.51)

with g as the gravitational acceleration. Thus gravity introduces modifications to the po-
tential, which lead to a reduced effective trap depth, as one side of the potential well gets
lowered, resulting in a faster evaporation process at low trap potential depths in the order of
the gravitational potential, as indicated in Fig. 2.7(b). This effect, however, can be increased
by an applied magnetic field gradient adjusted so that the Stern-Gerlach force acts in the same
direction as the gravitational force, which then results in an even faster evaporation process
that can be tuned experimentally [115], and was first implemented in our experiment within
the scope of a previous thesis [56]. The total acceleration amounts then to atot = aSG + g,
where aSG = mJgJµB∂yBy/m is the Stern-Gerlach acceleration in y-direction [116], which
modifies Eq. 2.51 via g → atot. The advantage here is that for the same effective potential
depth the spatial occlusion is stronger, leading to higher phase space densities, as indicated in
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Fig. 2.6: Basic concept of induced evaporative cooling. (a) Shown is a harmonically trapped ther-
malized atomic ensemble with temperature T0. In the panel below the associated Maxwell-Boltzmann
velocity distribution N(v) can be seen, with the most probable velocity being marked as vp. (b) A
lowered trap depth leads to an escape of atoms of highest kinetic energy, indicated as a removal of the
high-energy tail of the velocity distribution. (c) Rethermalization of the remaining atoms via elastic
collisions leads to a lower temperature T1 < T0 of the ensemble, with a correspondingly lower most
probable velocity v′p of an altered Maxwell-Boltzmann distribution. Image modified from [55].

Fig. 2.7(c). For calculations of trap frequencies when considering small potential trap depths,
modifications by gravitation and applied magnetic field gradients have to be considered by
using the effective trap depths.

For the experimental realization of an efficient evaporative cooling process all parameters
are initially set according to the given experimental properties as e.g. the determined trap
depth U and temperature T of the atomic ensemble inside the optical dipole trap, and are
then optimized for highest phase space density at end of evaporation. More details on the
implementation of the evaporation ramp for the case of the hybrid crossed optical dipole trap
are given in Sec. 4.3.1.

27



2 Theoretical background: Ultracold atomic erbium quantum gases

po
te

nt
ia

 d
ep

th

position

po
te

nt
ia

l d
ep

th

position

U
0

Uev,gravUev,unmod

U
0

po
te

nt
ia

l d
ep

th

position

U
0

Uev,grav+mag

(a) (b) (c)

with gravity

with gravity
+ magnetic 

field gradient

Fig. 2.7: Modification of the dipole trap potential during evaporation via gravity and applied magnetic
field gradient. (a) Shown is a schematic of the trap potential for two different trap beam powers: U0

as the primordial trap potential with maximum power P0 before evaporation, and Uev,unmod as the
trap potential at the end of the evaporation process with a much lower power Pev, here unmodified,
i.e. without any influence of gravity or an applied magnetic field gradient. The spatial confinement
in the bottom region of the trap potential lessens as the trap potential depth is lowered. (b) When
accounting for gravity one side of the trap potential gets lifted while the other decreases, leading to
a lowered effective trap depth. This effect is only noticeable for small potential depths (here Uev,grav)
in the order of the gravitational potential. For effective trap depths that are comparable to the case
in (a) the spatial confinement in the lower part of the potential is stronger. (c) For an additionally
applied magnetic field gradient with Stern-Gerlach force pointing in the same direction as gravity, the
effects discussed in (b) increase. Note that in these schematics the potential depths are not to scale.

28
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Here the experimental apparatus and used techniques for the generation as well as character-
ization of an atomic erbium Bose-Einstein condensate (BEC) are presented. The core setup
consisting of the vacuum chamber including the effusion cell and Zeeman slower, as well as
the blue and yellow laser light setups for optical cooling were constructed within the scope
of previous works [56, 117–119], so that these topics are discussed only briefly, while more
attention is paid to the updated setup of the single (SODT) and hybrid crossed optical dipole
traps (HCODT), respectively.

3.1 Experimental overview

Initially erbium atoms in the metallic state are heated in an atomic beam oven to form an
effusive atomic beam. A transversal cooling stage reduces its transverse velocity spread, while
a Zeeman slower decelerates a portion of the atoms to sufficiently low velocities so that they
can get captured by the narrow-line MOT. Once trapped inside the MOT, the trap is spa-
tially compressed (cMOT) to achieve a higher atom transfer efficiency into the next stage: the
optical dipole trap (either in SODT or HCODT configuration). After successful loading into
the optical dipole trap, evaporative cooling is performed until Bose-Einstein condensation is
accomplished. The whole setup described is set into an ultra-high vacuum chamber with a
pressure of order of 10−10 mbar, leading to a lifetime in the optical dipole trap that should
only be limited by collisions with residual background particles [120]. Fig. 3.4 indicates the
overall setup including sketches of the laser pathways, where all components are placed onto
three optical tables (with the two larger ones featuring pneumatically damped bed-plates to
suppress mechanical vibrations). The light for laser cooling purposes is connected to the main
table with the main vacuum chamber via optical fibers, which ensures an uncoupling of the
optical setup on the main table from maintenance adjustments of the laser systems on other
tables.

In this experiment the process of trapping atoms and cooling them down to quantum de-
generacy followed by a measurement is performed periodically, as a) measurements are typ-
ically invasive so that the atoms are heated or even lost during that process, and b) often
one experimental parameter is varied from measurement to measurement. The experimen-
tal cycle is controlled by an electronic real-time controller (ADwin Pro II, manufactured by
Jäger Messtechnik) with a temporal resolution of 1µs by delivering trigger signals and ana-
log control signals to many experimental components as e.g. rf electronics and mechanical
shutters. The experimental cycle can be customized via a graphical interface1 on PC, which
is connected by ethernet to the controller. Many measurements are done via optical imaging
with the help of a camera that sends the recorded images to the PC for further analysis.

1Programmed by C. Geckeler in python for an ADwin Pro system.
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3.2 Vacuum system

The stainless steel ultra-high vacuum chamber consists of an oven chamber, a Zeeman slower
tube, and a main vacuum chamber, respectively, which are discussed shortly in this section.
The used vacuum chamber was constructed in earlier works, with more information available
in [56,119].

The oven chamber consists of the effusion cell, the corresponding inset crucible, and a sixfold
crosspiece, which is used for four purposes: optical access for transversal cooling, connection
of an ion getter vacuum pump (75 L/s, supplier: Varian), connection of a pressure gauge
(model Ionivac, supplier: Oerlikon), and connection of a valve that can be used to connect a
turbo vacuum pump, and is shown in Fig. 3.1. Connections can be made via Con-Flat (CF)
flanges. The crosspiece includes another 10 mm aperture to suppress atomic erbium contam-
ination of the following acccess optics. The described oven vacuum chamber can be sealed
off from the Zeeman slower tube and main vacuum chamber with the help of an ultra-high
vacuum valve, so that e.g. bulk erbium can be refilled in the crucible without having to break
the ultra-high vacuum in the main chamber. Typical pressures inside the oven chamber lie
in the region of 2.5 · 10−10 mbar.

Fig. 3.1: Technical drawing of the complete ultra-high vacuum setup. Shown on the left is the oven
chamber with effusion cell and sixfold crosspiece, with the transversal cooling stage built into the
latter one. The oven chamber is connected with the main vacuum chamber via the Zeeman slower
tube. Left of the Zeeman slower is an ultra-high vacuum valve located so that the oven chamber can
be cut off from the remaining vacuum setup. In the main vacuum chamber the magneto-optical trap
and optical dipole traps are set up. The ultra-high vacuum is maintained by two ion getter pumps, as
well as a titanium sublimation pump, and monitored by two pressure gauges. Drawing was provided
by the Feinmechanik-Werkstatt of the Institut für Angewandte Physik, Bonn.

Employed is a commercial effusion cell (model DFC-40-10-284-SHE, supplier: CreaTec Fis-
cher & Co. GmbH ), shown in Fig. 3.2(a), whose crucible gets filled with up to 25 g of metallic
bulk erbium (99.99 % purity, offered by smart-elements GmbH ) and closed with two inlets
including apertures. Several components are made from tantalum, which exhibits a very high
melting point of about 3300 K: the crucible, both inlet parts, the two-stage heating filaments,
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3.2 Vacuum system

and thermal isolation sheetings that surround the heating filaments. All those parts are
enclosed inside a double-walled stainless steel vacuum cylinder tube which is water-cooled.
With the two-stage heating configuration two different temperatures can be set along the
oven, and monitored by temperature sensors, with an operation temperature in the deeper
part of the effusion cell sufficient for sublimation of erbium, and a slightly higher tempera-
ture within the inlet construction (also called hot-lip) near the shutter, so that condensation
of atomic erbium at the inlet apertures can be minimized. The atomic oven shutter can be
used to block or release the atomic beam, with opening and closing times of about 150 ms each.

apertures of new
crucible inlet

crucible

heating
filaments

thermal
isolation

oven shutter

CF 40 flange cooling water

feedthroughs CF 63 flange

(a) (b)

crucible

old inlet
design

crucible

new inlet
design

shutter motor

Fig. 3.2: (a) Technical drawing of the effusion cell. On the right side, the water-cooled effusion cell can
be seen. The crucible is located at the front of the effusion cell, surrounded by heating filaments. An
oven shutter can block or release the atomic beam fast within roughly 150 ms. Additionally electrical
and mechanical feedthroughs as well as the shutter motor are sketched. The original drawing was
provided by the manufacturer, modified in [56], and has been updated here for the new inlet design.
(b) Due to condensation issues of atomic erbium in older crucible versions, the design had to be
changed several times until a satisfactory operation without clogging of the apertures could be found,
here labeled as the new inlet design.

When the bulk erbium sublimates, a vapor pressure depending on the vapor temperature T
is created. With apertures a stream of fast moving, i.e. hot, atoms can be formed, where
the atomic flux denotes the number of atoms that pass an area during a time interval. The
higher the flux is, the higher the loading rate into the magneto-optical trap and therefore
the number of trapped atoms can be [55]. A theoretical description of the atomic flux can
be found in [121] and [122], with a short treatment relevant to the vacuuum setup of this
experiment presented in [56]. Under the assumption that the atomic erbium vapor behaves
as an ideal gas and the atoms roughly follow a Maxwell-Boltzmann distribution, the width of
the velocity distribution is obtained as ξ =

√
2kBT/m, where kB is the Boltzmann constant,

and m is the atomic mass of erbium. For a characterization typically the mean v̄ = 3
√
πξ/4 as

well as the most probable velocity vp =
√

3/2ξ are given. In this thesis the oven was typically
operated at a temperature of 1373 K, leading to values of ξ = 369 m/s, v̄ = 490 m/s, and
vp = 452 m/s. With such an atomic beam a magneto-optical trap can be loaded, although
due to the high mean velocity v̄ of the atoms and a much smaller capture velocity of the
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3 Experimental setup

magneto-optical trap of roughly vMOT
cap = 3.3 m/s precooling methods like Zeeman slowing,

and potentially also transversal cooling, are needed.

Although efforts were made to minimize the condensation of erbium at the apertures with
the two-stage heating setup, there still emerged the issue of erbium clogged-up apertures,
and consequently a decreased atomic beam flux. Additionally several breakdowns of the
atomic oven seemingly due to excessive sublimation of bulk erbium lead to short-circuits of
the heating filaments, and malfunctioning temperature sensors and oven shutter respectively,
which prompted a redesign of the crucible inlet. With a sketch of the final version shown
in Fig. 3.2(b) condensation effects could be reduced to a satisfactory level. Together with a
reduction of the effusion cell operation temperature to 1373 K further breakdowns could be
prevented.

Between oven chamber and main chamber the Zeeman slower tube including a 60 cm long
magnetic field coil segment is located, as seen in Fig. 3.1. The tube is double-walled to allow
water-cooling of the attached coils. All coils are winded with double coated copper wire of
1 mm core diameter, and are attached to the tube as well as to already wrapped wire via
thermally conductive glue. Coils include an offset coil, the Zeeman slower profile coil, two
high current coils (for varying the maximum capture velocity of the Zeeman slower, and for
varying the outcoupling velocity towards the main chamber respectively), and a compensation
coil (to set the total Zeeman slower magnetic field to roughly zero at the position of the MOT).

More details about the required and eventually implemented magnetic coil profile can be
found in [55], while the construction and characterization of the Zeeman slower is documented
in [117]. The preparation of the Zeeman slower light is also briefly discussed in Sec. 3.3.1.

The main vacuum chamber is of flat cylindrical form with a diameter of 380 mm and a height
of 100 mm, and originates from a previous ultracold potassium experiment [123] (made and
modified for our purposes by Vab Vakuum Anlagenbau GmbH ). It possesses 15 radial access
drill holes, as well as one large central axial drilling of 256 mm diameter along the cylinder
axis which provides the chamber volume. All access holes can be closed via CF flanges of
various sizes. For most of the optical accesses 7056 glass is used, while for some silica glass is
employed which provides less wavefront perturbations needed for the operation of absorption
imaging and (planned) optical lattices. The optical access glasses are coated with anti-reflex
coating for the used optical beams with wavelengths λ = 400.91 nm, 582.84 nm, and 1064 nm,
respectively. For the CO2 laser dipole trap beam, however, all optics have to be made from
zinc selenide, which includes the corresponding viewports in the trap beam axis as well as
two spherically corrected lenses (supplier: II-VI Deutschland GmbH ). Those lenses are each
mounted to one of two stainless steel tubes which themselves are each attached to a stainless
steel membrane bellow. With the help of a tripod construction the lenses can be positioned
inside the chamber [124]. A technical drawing including sketches of the here used optical
pathways in the main vacuum chamber can be seen in Fig. 3.3.

The remaining flanges are used for another pressure probe (model Ionivac, supplier: Oer-
likon), a blank flange, and a viewport for a photomultiplier typically used for calibration
measurements. Both larger flanges in axial direction are closed with viewports of 122 mm
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Fig. 3.3: Technical drawing of the main vacuum chamber. (a) Shown is the view from above including
sketches of the optical pathways inside the chamber. Details on all optical setups can be found in the
following sections. The plotted angles amount to α = 21.3 ◦, β = 23.7 ◦, and γ = 36.7 ◦. (b) Side view
of the main chamber. The front access from this perspective is used as an entry of the CO2 laser dipole
trap beam (marked red). Modified images, with the original drawings provided by the manufacturer.

window diameter. The coils for the quadrupole magnetic field employed in the magneto-
optical trap are positioned on the top (bottom) of the chamber above (below) the viewport.
They can generate a magnetic field gradient of about 0.2 G/(A cm) at the center of the main
chamber. Additionally there are in total six coils placed around the main chamber for the
generation of offset magnetic fields in each spatial direction. Two coils in Helmholtz config-
uration are attached to the MOT coils that generate a homogeneous offset magnetic field of
(2.7 ± 0.3) G/A at the center of the main chamber. Placed at four of the CF50 flanges (in
CO2 laser dipole trap beam and absorption imaging axis respectively, cf. Fig. 3.3(a)), two
Helmholtz offset coil pairs generate magnetic fields of (0.30 ± 0.03) G/A each at the main
chamber center. More details on the characterization of these magnetic field coils can be
found in [119]. At the larger CF100 flange another ion getter pump (100 L/s, model IGP,
supplier: Schwarz Vakuumtechnik KG), as well as a titanium sublimation pump stemming
from an earlier experiment [123] are connected. The pressure inside the main chamber usually
lies in the order of 1 · 10−10 mbar.

3.3 Optical setup

In this section all laser systems and corresponding optical setups used in this experiment
are described. Emphasis is laid on the preparation of light for the single and hybrid crossed
optical dipole traps respectively. An overview of all laser systems including sketches of the
optical pathways can be found in Fig. 3.4. The various laser systems are used in the following
way:

� Blue laser light: transversal cooling, Zeeman slower, absorption imaging

� Yellow laser light: magneto-optical trap
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� CO2 laser light: single and hybrid crossed optical dipole trap

� Nd:YAG laser light: hybrid crossed optical dipole trap (together with CO2 laser light)

dye
laser
head

ref. cell ULE
cavityPDH setup

ZS

effusion cell Zeeman slower

main chamber

TC abs.
imag.

atomic beam

transversal cooling

MTS

CO
2
 laser optics

YAG laser optics

Nd:YAG laser

CO
2
 laser

AOMs for TC, ZS,
absorption imagingdiode laser,

TA & SHG

Fig. 3.4: Sketched overview of all laser systems used to generate an atomic erbium Bose-Einstein
condensate. Shown in the upper left is the dye laser (consisting of head and reference cell), which is
locked to an ultra low expansion (ULE) cavity via the Pound-Drever-Hall (PDH) method (upper right),
and provides the yellow laser light near 582.84 nm wavelength for the magneto-optical trap. Blue light
near 400.91 nm wavelength used for transversal cooling (TC), Zeeman slower (ZS) and absorption
imaging respectively is provided by a diode laser whose light output is subsequently amplified via a
tapered amplifier (TA) and frequency-doubled via a second-harmonic generation (SHG) cavity. The
diode laser system frequency is locked with the help of modulation transfer spectroscopy (MTS). Light
of both dye laser and diode laser are transferred to the main optical table via optical fibers. The CO2

and Nd:YAG lasers used for the single and hybrid optical dipole trap respectively are already placed
on the main table and are guided via optical elements to the main chamber.

3.3.1 Blue laser light setup

For transversal cooling, Zeeman slower and absorption imaging, respectively, blue laser light
at 400.91 nm near the 4f126s2

(
3H6

)
→ 4f12(3H6)6s6p(1P1)(6,1)7 atomic erbium transition is

used, provided by a commercial diode laser consisting of a grating-stabilized laser diode, whose
output at 801.82 nm is amplified via a semiconductor tapered amplifier (TA) and subsequently
frequency-doubled with the help of a second-harmonic generation (SHG) ring cavity (model
DLC TA-SHG PRO, supplier: TOPTICA Photonics AG), leading to a light output power
near 401 nm of 1.4 W. As a result of an internal locking process the linewidth of the output
light amounts to approximately 200 kHz, which is much lower than the natural linewidth of
the considered atomic transition of about 29.7 MHz. However long-term frequency drifts are
still larger (in the order of 2.5 MHz/min) and have to be suppressed using a stable reference.
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3.3 Optical setup

Here the laser frequency is shifted by an acousto-optic modulator (AOM) (model 3200-125,
supplier: Gooch & Housego PLC ) and locked to an atomic resonance of 168Er by means of
modulation transfer spectroscopy (MTS) [125,126] on an erbium hollow cathode lamp (model
3QQAYEr, supplier: Heraeus Noblelight GmbH ). The error signal stemming from the spec-
troscopy can be fed directly into the diode laser electronics, which then stabilizes the laser
frequency against long-term drifts via the Pound-Drever-Hall technique [127]. Details on the
characterization of the diode laser and the locking procedure via MTS can be found in [128].

The light for absorption imaging, Zeeman slower, and transversal cooling respectively has
to be prepared before it is sent via optical fibers to the main optical table (as sketched in
Fig. 3.4 in the upper right corner). For this each optical pathway includes another AOM used
to appropriately shift the light frequency. As the laser light frequency is locked by MTS to a
value shifted from atomic resonance by an AOM (see above), another AOM (model 3307-121,
supplier: Gooch & Housego PLC ) employed for absorption imaging light preparation has to
cancel this shift to make the probing light again approximately resonant with the atomic en-
semble. After transferring the absorption imaging light to the main table via an optical fiber
it propagates through the main vacuum chamber and is subsequently guided onto a camera
sensor (model 5.5 sCMOS, supplier: Andor Technology Ltd.) to image the shadow of the
atomic cloud, as discussed in Sec. 3.4.1.

Preparation of the Zeeman slower light is done with the help of an AOM (model 3220-120,
supplier: Crystal Technology, Inc.) by red-shifting the light about 600 MHz (≈ 20 natural
linewidths) away from the atomic erbium resonance near 400.91 nm wavelength. Afterwards
the shifted light is coupled into a high power optical fiber (model aeroGUIDE-10-PM-APC,
supplier: NKT Photonics GmbH ) and delivered to the main optical table, where the output
beam with a typical power of 300 mW is widened with a telescope to a beam radius of ap-
proximately 4 mm and guided into the main chamber to counterpropagate the atomic beam
axis.

Light for the transversal cooling stage is prepared with an AOM (model 3307-121, supplier:
Gooch & Housego PLC ), red-shifting the frequency roughly 20 MHz (equaling 0.7 natural
linewidths) away from atomic resonance. After transfer of the light to the main optical table
via optical fiber, its transversal beam profile is transformed from a circular to an elliptical
shape via a telescope consisting of cylindrical lenses to increase the interaction length of the
light with the atomic beam. The beam with a power of about 80 mW is then lead into the
sixfold crosspiece of the oven vacuum chamber in a way so that two counterpropagating laser
beam pairs orthogonal to each other each illuminate the atomic beam transversally. More
details on the light preparation and the particular transversal cooling setup can be found
in [56].

3.3.2 Yellow laser light setup

Laser light near 582.84 nm wavelength is employed for the magneto-optical trap, while utiliz-
ing the 4f126s2

(
3H6

)
→ 4f12(3H6)6s6p(3P1)(6,1)7 atomic erbium transition, provided by a

commercial dye laser system (model Matisse DX, supplier: Sirah Lasertechnik GmbH ). Here
the active dye medium is Rhodamin 6G (type Rhodamin 590 Chlorid, supplier: Exciton, Inc.)
solved in ethylene glycole with a mass concentration of 0.75 g/L, which is optically pumped
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by a frequency-doubled Nd:YAG laser (model Verdi G12, supplier: Coherent, Inc.) with
output power of 12 W at 532 nm. The dye laser system consists of a head where the light
near 582.84 nm wavelength is generated from the optically pumped dye in a ring cavity, and a
reference cell which is used for internal frequency stabilization via Pound-Drever-Hall (PDH)
locking [127], leading to a linewidth of approximately 35 kHz. The output power amounts to
roughly 1.7 W.

The output light’s linewidth is smaller than the atomic transition’s natural linewidth of
186 kHz, so that the laser light exhibits sufficient short term stability. However a large long-
term drift of about 100 MHz per hour made it necessary to lock the frequency of the laser onto
a stable reference, that additionally has to feature a linewidth in the region of the natural
linewidth. Unfortunately, spectroscopy techniques as the MTS performed on a hot atomic
ensemble (and successfully used for the blue light setup) are not precise enough in view of the
here smaller natural linewidth, as typical frequency uncertainties lie in the region of 1 MHz
due to pressure broadened transition linewidths.

For long-term frequency stabilization an external, ultra low expansion (ULE) cavity of high
stability was built. The plano-spherical ULE cavity, consisting of a 150.9 mm long spacer and
two mirrors, is made from an extremely temperature-insensitive glass (type Corning ULE
premium grade, Corning Code 7972, supplier: Corning, Inc.) with a very small coefficient of
thermal expansion of (0± 30) · 10−9 K−1. It is placed inside a separate vacuum chamber with
pressure in the order of 10−8 mbar, including active (temperature stabilization) and passive
(several thermal shieldings) temperature control as well as vibrations damping elements. The
dye laser light is frequency-shifted by two AOMs (model 3200-125 each, supplier: Crystal
Technology, Inc.) and then locked to an appropriately set cavity resonance peak (with cavity
linewidth of (220.5 ± 1.0) kHz) via PDH technique [127]. As the daily frequency drift of the
ULE cavity amounted to only (1.23± 0.01) kHz in 2014 (and is projected to become smaller
over the years due to reduced material creep), a stable operation of the magneto-optical trap
can be assured. More details on the dye laser system, the setup and characterization of the
ULE cavity as well as the external laser lock can be found in [118]. Extant locking issues
mentioned in that work could be resolved shortly after with the introduction of a modified
hardware module from the manufacturer.

The main portion of the dye laser light output is frequency-shifted by an AOM (model 3080-
125, supplier: Crystal Technology, Inc.), subsequently coupled into an optical fiber and guided
onto the main optical table. There a small percentage of the light is seperated for an intensity
stabilization scheme. Most of the light, however, is widened with a telescope to a large beam
diameter, and subsequently cut via an aperture to get a laser beam of radius of 36 mm with
a nearly homogeneous intensity profile. This beam is split into three parts with the help
of half-wave plates and polarizing beam splitters, which together with their retroreflected
counterparts form the magneto-optical trap (MOT) and are adjusted orthogonally to each
other inside the main vacuum chamber, as sketched in Figs. 3.3 and 3.4. Quarter-wave plates
are put at the entry and exit viewports on each MOT axis to provide the appropriate light
polarizations shown in Fig. 2.3. Details on the experimental setup of the MOT can be found
in [56]. A newly added feature is the artificial broadening of the MOT light from 35 kHz to
about 1 MHz in the early stages of the loading process to increase the trapped atom number,
realized by the application of an rf modulation signal onto the main rf input of the MOT
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AOM. Such techniques were previously successfully implemented in other works [129].

3.3.3 CO2 laser radiation setup

Here the CO2 laser light setup, used for the single optical dipole trap (SODT), and as the
main beam for the hybrid crossed optical dipole trap (HCODT), is discussed. The cross beam
for the HCODT is provided by a Nd:YAG laser and its setup is reviewed in Sec. 3.3.4.

The used CO2 laser system (model GEM-100, supplier: Coherent, Inc.) emits light at
10.6µm wavelength with a typical output power of 118 W, and is driven by a radio frequency
source (model D-1000, supplier: Coherent, Inc.). Both components have to be water-cooled
and temperature-stabilized by a chiller (model WWK 14/17706, supplier: DELTATHERM
Hirmer GmbH ). If the temperature remains sufficiently constant, lasing occurs in a single
mode, which is monitored via a Fabry-Perot interferometer setup, and is typically obtained
approximately 1 hour after turning on the laser.

The main portion of the output beam is guided through a water-cooled AOM (model AGM-
406B1M, supplier: Intra Action Corp.) which is driven with a radio frequency input of
40 MHz, controlling the intensity in the 1st diffraction order. In contrast to older setups,
where also an additional driving at 30 MHz was employed to suppress thermal drifts and
therefore unwanted beam walks by keeping the radio frequency power in the AOM constant
when the main rf power (in that case at 30 MHz) was ramped down during evaporative
cooling [56], here no additional frequency input is used. Instead the CO2 laser beam path
was significantly shortened which also reduced unwanted beam walks to sufficiently low levels.

CO
2
 laser

FPI

PD

beam dump
AOM

0th order

1st order

telescope

main chamber

adjustment light

Fig. 3.5: Sketch of the CO2 laser light setup used for the single optical dipole trap (SODT), and
for the main beam of the hybrid crossed optical dipole trap (HCODT). The output laser beam is
seperated into a weak beam (dashed line), led to a Fabry-Perot interferometer (FPI) where single
mode operation is monitored via a photodiode (PD) on an oscilloscope, and a strong beam (solid line)
that is guided through an AOM, where the 1st order beam is subsequently widened by a telescope
and led into the main vacuum chamber where it is focused onto the position of the cMOT. All optical
plates and lenses used here are made of zinc selenide (ZnSe). Light at 582.84 nm wavelength can be
overlayed for adjustment purposes.

The 1st order beam diameter is then widened and collimated by a ZnSe telescope, and sub-
sequently guided into the main vacuum chamber. Here it is first focused on the region of the
MOT by a ZnSe lens, and afterwards collimated again by a ZnSe lens of same focal length.
The beam leaves the main chamber through a viewport and ends in a beam dump. The
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maximum power directly before the main chamber amounts to approximately 73 W. For ad-
justment purposes light at 582.84 nm can be overlayed with the CO2 beam. The complete
setup is sketched in Fig. 3.5.

The beam waist w0 of the CO2 laser light was determined by a razor-edge measurement
outside the vacuum chamber with a proxy setup identical to the setup inside the main cham-
ber, accessible via a flip mirror [97]. For this the collimated beam radius w at the lens
position is measured, from which the beam waist at the trapping site can be estimated via
w0 = λf/(πw), where λ is the wavelength of the light, and f = 63.5 mm is the focal length
of the lens [130]. To check for an eventual ellipticity of the transversal beam profile, hori-
zontal w0,h as well as vertical beam waists w0,v were measured. A slightly elliptically-shaped
Gaussian beam can be approximated by an ideal Gaussian beam via w̃0 =

√
w0,hw0,v. This

approximation avoids to overcomplexify especially the already dense formulas describing the
trapping potential and trapping frequencies of the HCODT (cf. Eqs. 2.46 and 2.47). The
CO2 laser light beam waists showed indeed a flattening of (w0,h − w0,v)/w0,v ≈ 0.67, where
the effective beam waist was obtained as w̃0 ≈ 36µm. This value (together with that of the
effective beam waist of the Nd:YAG trap beam) is later used for the theoretical determination
of trap frequencies of the SODT and HCODT, as well as the phase space density of the atomic
ensemble inside the trap. Experimental determination of those quantities is done via different
measurement methods described in Sec. 3.4.

Intensity control

The intensity of the 1st diffracted order beam can be controlled via the AOM radio frequency
(rf) power input, which is proportional to the diffraction efficiency, up to a saturation regime.
High rf powers lead to a heating of the germanium crystal inside the AOM, causing a change
of the refractive index and subsequently a beam walk in the order of several mm for a length
of 2 m. Therefore in earlier iterations of the experiment an additional driving frequency had
to be implemented to keep the temperature of the germanium crystal stable while changing
the main driving rf power at in that case 30 MHz [56]. Here the path length of the CO2 laser
beam was significantly reduced so that the influence of thermal drifts of the non-stabilized
AOM on the spatial beam stability became negligible for the operation of an optical dipole
trap.

The intensity control setup for the CO2 laser light is shown in Fig. 3.6, with the rf path
(indicated with yellow arrows) that leads to the AOM for continuous operation consisting
of the following parts in the installed order (if not stated otherwise the rf components are
supplied by Mini-Circuits, Inc.):

� Signal generator (model SMY 01, supplier: Rohde & Schwarz GmbH & Co. KG) with
a 40 MHz rf output

� Switch (model ZYSWA-2-50DR)

� Amplifier (model LZY-1+)

� Voltage variable attenuator (VVA, custom model from the Elektronikwerkstatt Physikalis-
ches Institut Tübingen)

� Mixer (model ZSC-2-1 )

� Switch (same switch model as before)
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Fig. 3.6: Intensity control of the CO2 laser light via AOM. A signal generator outputs a radio
frequency (rf) signal at 40 MHz, which is passed through a switch used for turning the signal on and
off, is then amplified and can subsequently be attentuated via a voltage variable attentuator (VVA).
Auxiliary signals (e.g. a second driving frequency at 30 MHz) can then be added by a mixer, but this
is typically not done in this experiment anymore. After passing a second switch and a filter stage, the
signal arrives at the AOM. Another switch is implemented, which is given a TTL signal stemming from
either a constant voltage source (ADwin channel) for normal optical dipole operation, or from a pulse
generator for a chop mode during the atom loading phase from MOT to dipole trap (s. Sec. 4.2.1).
For measurements which require an amplitude modulation (AM) of the light, a function generator can
be employed which modulates the rf output amplitude of the signal generator.

� One high pass as well as two low pass filters (models BHP-25 and BLP-50 respectively)

The resulting rf signal is then coupled into the AOM. Optionally a function generator (model
AFG3102, supplier: Tektronix, Inc.) is used to modulate the rf output signal amplitude of
the signal generator for amplitude modulation (AM) measurements needed to determine the
trap frequencies of the SODT and HCODT.

A pulse generator (model 9520, supplier: Quantum Composer) is employed to perform a
chopping (fast alternating on- and off-switching) of MOT and optical dipole trap light for
better loading efficiency from the MOT into the optical dipole trap (s. Sec. 4.2.1 for the
exact chopping sequence). This chop signal is put into a switch (same model as before).
Another signal which is fed into the second input of the switch is a constant voltage signal
stemming from an ADwin channel, which is used for the regular continuous operation of the
optical dipole trap. The switch can therefore quickly toggle between constant and chop mode
by using its output as a TTL signal for the second switch in the rf path mentioned above.
This toggle process between chop and constant mode is in turn triggered by a TTL signal
coming from another ADwin channel.

3.3.4 Nd:YAG laser light setup

The cross beam for the HCODT is provided by a Nd:YAG laser (model Mephisto 2000NE,
supplier: Coherent, Inc.) run at a wavelength of 1064 nm. The laser operates in single longi-
tudinal as well as single transverse mode, and the emission is nearly linearly polarized. The
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output power amounts to 2 W. Similar to the case of the CO2 laser, the intensity control is
here realized by an AOM. For this an rf signal at 80 MHz is applied to the AOM according
to the scheme shown in Fig. 3.8.
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Fig. 3.7: Sketch of the Nd:YAG laser light setup used for the cross beam of the hybrid crossed optical
dipole trap (HCODT). The slightly eliptically polarized output laser beam is linearly polarized via
half-wave plate (λ/2) and polarizing beam splitter, as well as collimated to a smaller beam diameter
via telescope for better AOM diffraction efficiency. The AOM is used for intensity control of the
Nd:YAG laser light. The 1st order diffracted beam is subsequently widened by a telescope and again
linearly polarized to ensure optimized scattering rates in the trap. Light can be coupled out to be used
for e.g. beam waist measurements. The primary beam is led into the main vacuum chamber where it
is focused onto the position of the atomic ensemble inside the SODT.

The optical setup is sketched in Fig. 3.7. After linearization by a half-wave plate and a
polarizing beam splitter, and passing the AOM, the 0th order beam is sent into a beam
dump, while the 1st order beam is widened by a telescope. Another half-wave plate and
polarizing beam splitter are then used to couple a portion of the light out, so that it can be
used for e.g. beam waist measurements, where an exact copy of the main beam path leading
into the main vacuum chamber is set up. The main beam is focused onto the spatial volume
in which the atomic ensemble in the SODT sits by a lens with focal length of 250 mm. Here
the beam exhibits a maximum power of 1.59 W and an effective beam waist of w̃0 ≈ 55.56µm.
The transversal Nd:YAG light beam profile at the position of the lens showed only a very
small flattening of (w0,h − w0,v)/w0,v ≈ 0.03, meaning that the beam shape is in very good
approximation circular.

Intensity control

Analog to the intensity control scheme for the CO2 laser light, here it is also realized by
setting the rf driving signal of an AOM. The rf path leading to the AOM (indicated with
yellow arrows in Fig. 3.8) consists of the following parts in the implemented order (if not
stated otherwise the rf components are supplied by Mini-Circuits, Inc.):

� Voltage controlled oscillator (VCO, model ZOS-100+) with an rf output at about
80 MHz

� Mixer (custom model built at this experiment)

� Bias tee (to again add DC parts that get blocked in the previous mixer)

� Switch (model ZYSWA-2-50DR)

� Pre-amplifier (model ZFL-500-BNC )
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� Voltage variable attenuator (VVA, custom model from the Elektronikwerkstatt Physikalis-
ches Institut Tübingen)

� Amplifier (model LZY-1+)

The prepared rf signal is then coupled into the AOM. The initial rf signal stemming from
the VCO can also be combined with a signal from a function generator (model AFG3102,
supplier: Tektronix, Inc.) for amplitude modulation (AM).

The Nd:YAG laser beam does not have to be chopped like the CO2 laser beam, as it is only
employed in the later stage of the evaporative cooling process, after loading of the atomic
ensemble from the MOT into the optical dipole trap already took place.

VCO
in

function
generator

out
for AM

from ADwin

rf out
80 MHz

50 Ω

in

switch

AOM AMP

from ADwin

VVA amp

bias tee
mixer

1

2
3

DC

Fig. 3.8: Intensity control of the Nd:YAG laser light via AOM. A voltage controlled oscillator (VCO)
outputs a radio frequency (rf) signal at about 80 MHz. For measurements which require an amplitude
modulation (AM) of the light, a function generator can be employed which modulates the rf output
amplitude of the VCO by combining the rf signals (and blocking the direct current (DC) part). A bias
tee is used to add a DC signal again. The resulting signal is passed through a switch used for turning
AOM diffraction on and off. It is then pre-amplified (amp), subsequently attentuated via a voltage
variable attentuator (VVA), and amplified again (AMP). Afterwards the resulting signal is coupled
into the AOM.

3.4 Measurement methods

In this section measurement methods used for the characterization of atomic clouds, i.e. their
spatial extend as well as atom number, and of optical dipole traps, i.e. their trap frequencies,
respectively, are briefly discussed.

3.4.1 Absorption imaging

To determine the optical density and thus the atom number of the atomic cloud the absorp-
tion imaging technique can be utilized [131]. The atomic cloud is illuminated with a spatially
filtered, collimated, resonant and linearly polarized light beam (typically after turning the
current trap potential off), which is partly absorbed by the atoms, and the shadow casted by
the atomic ensemble is imaged onto a camera by a lens, as seen in Fig. 3.9.
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Fig. 3.9: Sketch of the absorption imaging setup. The atomic ensemble gets illuminated with resonant
light traversing through the main vacuum chamber along the z-axis, and its shadow is imaged by a
lens onto a camera and subsequently detected, leading to an intensity distribution in the x-y-plane.
The spatial resolution of the absorption imaging is limited to (4± 1)µm, given by the object distance
g of approximately 270 mm.

According to Lambert-Beer’s law the spatial intensity distribution I(x, y) of a beam, after
traversing along z through some volume with an optical density distribution D(x, y), is ob-
tained from an initial spatial intensity distribution I0(x, y) by [132]

I(x,y) = I0(x, y)e−D(x,y). (3.1)

Knowing the optical density distribution, the atom number N can then be calculated via

N =

∫
n(x, y, z) dxdydz =

1

σπ

∫
D(x, y)dxdy, (3.2)

where n(x, y, z) is the atomic density distribution, and the photon absorption cross section
for linearly polarized light σπ is obtained as

σπ = C2 3λ2

2π

1

1 + (2δ/Γ)2
, (3.3)

with C2 = 0.385 being the mean square of the Clebsch-Gordan coefficients for the transition
probabilities of the different mJ states from −6 to +6 for the transition near 400.91 nm
wavelength. The above treatment is valid in an intensity regime of negligible saturation. By
measuring the intensity distribution Iabs(x, y) with, and the distribution I0,abs(x, y) without
atomic ensemble, respectively, one can obtain the optical density distribution. To account
for background illumination of the camera sensor, a third background intensity distribution
measurement Ibg(x, y) without absorption imaging light is performed. All three images are
taken successively with an exposure time of 80µs for each individual image. The optical
density distribution can then be expressed as
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D(x,y) = − ln

(
I(x, y)

I0(x, y)

)
= − ln

(
Iabs(x, y)− Ibg(x, y)

I0,abs(x, y)− Ibg(x, y)

)
. (3.4)

The spatial resolution of the absorption imaging amounts to (4±1)µm. By taking absorption
images at different points in time (while for each image a new experimental cycle has to be
conducted as the method is destructive), the temporal evolution of e.g. expanding clouds after
trap release can be documented (called time of flight measurement), which for this example
can be used to determine the temperature of the atomic ensemble, as further discussed in
Sec. 4.1.2.

3.4.2 Trap frequency measurements and phase space density determination

The atomic density has to be known for the determination of the phase space density, and
can be calculated from the trap frequencies [48]. We here assume a Gaussian atomic density
distribution according to

n(x, y, z) = n0 exp

(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
, (3.5)

where σi is the 1/e2 atomic cloud radius in direction along i, with i = x, y, z, and n0 =
N/((2π)3/2σxσyσz) is the central atomic density. The total atom number N is obtained via
Eq. 3.2. The cloud radii can be calculated by means of the virial theorem, which connects
the temporal mean of potential and kinetic energy, respectively, the latter here provided by
the thermal motion of the atoms in the considered spatial direction i [133]. For a harmonic
potential and a Gaussian density distribution it follows that

σi =

√
kBT

mω2
i

. (3.6)

With Eq. 2.9 and the central atomic density n0, the phase space density is obtained as

ρ =
~3N

k3
BT

3
ω2
rωz, (3.7)

where ωx = ωy = ωr is assumed. The trap frequencies can be measured by means of para-
metric excitations of the trap. Two methods are used in this thesis and discussed below.
Together with the temperature T , the phase space density can therefore be calculated from
measurable quantities in the experiment.

Amplitude modulation

Here the amplitude of the optical dipole trap potential is sinusoidally modulated to find the
trap frequencies νtrap = ωtrap/(2π) of the optical dipole trap. For this the atomic ensemble is
first loaded from the MOT into the dipole trap, then evaporatively cooled up to a set point
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(e.g. until 10.00 % of the initially used power is reached, as is the case in Fig. 3.10), and
subsequently subjected to the trap potential while its amplitude is modulated around the set
point, realized by the modulation of the CO2 laser light power via modulation of the AOM
rf driving power, or in the case of a hybrid crossed dipole trap additionally by synchronous
Nd:YAG laser light modulation via its corresponding AOM rf driving. The amplitude modu-
lation (AM) is performed with a fixed number of modulation periods, here 100 times, for each
modulation frequency that is used in the measurements. Parametric excitation occurs for
modulation frequencies equal to the doubled trap frequency νmod = 2νtrap or to a harmonic
multiple νmod = 2νtrap/n, with n ∈ N, given an adequate phasing, so that the atoms receive
so much energy that they can leave the trap.

If one measures the atom number via absorption imaging after amplitude modulation for
different modulation frequencies, one observes strong dips at the resonance frequencies, as
seen in Fig. 3.10(a). The depth of modulation was individually set for each end power mea-
surement series to obtain observable dips, typically ranging from 5.5 to 30 %, with greater
depths for higher end powers. As the number of modulation periods is fixed, for very small
modulation frequencies the total modulation time t = 100/νmod becomes so large that the
atom’s lifetime inside the trap becomes relevant. To get a baseline measurement showing only
the atom losses due to the finite trap lifetime, the same measurement, but without amplitude
modulation, is performed, s. Fig. 3.10(b). With the amplitude modulation technique one can
measure trap frequencies in all spatial directions [48,107].
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Fig. 3.10: Measurement of trap frequencies via amplitude modulation (AM) of the trap depth, here
for the single optical dipole trap (SODT) at 10.00 % of the maximum possible power of roughly 73 W.
(a) Several resonances can be seen which could be identified as the radial trap frequency 2νr at
(1303 ± 4) Hz, the harmonic multiple with n = 2 of the radial trap frequency νr at (678 ± 4) Hz, the
axial trap frequency 2νz at (132 ± 1) Hz, and the harmonic multiple with n = 2 of the axial trap
frequency νz at (68 ± 10) Hz. Note that for approximately circularly shaped beams in transversal
direction the trap frequencies νx and νy overlap strongly and merge into one radial trap frequency νr
for both directions. Here the systematic errors are estimated to lie in the same order of magnitude
as the given errors stemming from the fit. (b) A baseline measurement without AM was performed
to account for the finite lifetime of the atoms inside the trap, and also, as one measurement series
for a specific AM set point takes several hours to perform, to account for possible thermal drifts
in the experiment which could change the atom number in the MOT or optical dipole trap in later
experimental cycles slightly over long periods of time. Especially for small modulation frequencies the
total modulation times reached sizes comparable to the trap lifetime. The baseline fit function was
chosen by convenience.
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Kohn breathing mode

For the Kohn breathing mode method to determine the trap frequency in the axis of gravity,
here the y-axis, one first turns the potential of the optical dipole trap off for a short period
of time of 500µs, to allow the atoms to acquire kinetic energy by falling down due to the
gravitational force. Subsequently the trap is turned on again, recapturing the atoms, leading
to an oscillation of the atoms inside the trap with the trap frequency νr = ωr/(2π). The
atoms are released after a variable holding time and are allowed to freely expand, effectively
enlarging the periodic movement of the atoms so that it can be seen on camera. After a
fixed time of free expansion, absorption imaging is performed to determine the position of
the atomic ensemble. Measurements show a cosine-like behaviour of the position over time,
together with an exponential damping as the atoms lose kinetic energy due to friction and
losses into other spatial dimensions, as seen for the case of the HCODT in Fig. 3.11. Note
that here only the radial trap frequency can be determined [59, 134], which however can be
utilized to unambiguously establish the correct trap frequency labeling of the atom number
dips seen in amplitude modulation measurements.
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Fig. 3.11: Measurement of trap frequencies via Kohn breathing mode method, here for the hybrid
crossed optical dipole trap (HCODT) at 0.52 % of the maximum possible CO2 laser power of about
73 W, and at 42 % of the maximum possible Nd:YAG laser power of roughly 1.6 W. This corresponds
to a scaling factor scalU = U0,YAG/U0,CO2

= 0.5 between the trap depths of both beams. Atoms are
allowed to acquire kinetic energy by turning the HCODT off for a short period of time so that the atoms
can drop due to gravity, after which they are recaptured and begin to oscillate in the trap potential.
Following a variable holding time inside the trap, the atoms are released again for a fixed period of
free expansion. Absorption imaging is performed to determine the position after free expansion vs
the holding time. A cosine function with exponential damping is fitted to the data, leading here to a
radial trap frequency νr of (211± 1) Hz.
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In this chapter results regarding the characterization of the experimental setup for the gen-
eration of an atomic erbium Bose-Einstein condensate (BEC) in a hybrid crossed dipole trap
are presented. Starting with the narrow-line magneto-optical trap (MOT), properties as the
temperature of the atomic ensemble and the total atom number, as well as the compressing
process are shown. Next the atom loading procedure from the compressed MOT into the
optical dipole trap is described. Following this, many properties of the trap, as e.g. the trap
frequencies, in single optical dipole trap (SODT) configuration and in hybrid crossed optical
dipole trap (HCODT) configuration, respectively, are discussed and compared. Here the sec-
ond (cross) beam for the hybrid crossed optical dipole trap is only used in the later stages of
the experimental cycle after the evaporative cooling process has already started. This evapo-
ration process is then as well compared for both possible setups (SODT/HCODT). Emphasis
is also put on the spin-polarization of the atomic ensemble inside the optical dipole trap, mea-
sured via an Stern-Gerlach type experiment. In the end proof of Bose-Einstein condensation,
including a determination of the phase space density and the lifetime in the different trap
configurations, is presented.

4.1 Magneto-optical trap

Atoms decelerated by the Zeeman slower are captured in the magneto-optical trap. A char-
acterization of the atomic beam including the efficiency of the Zeeman slower can be found
in [56] and is not repeated here as the corresponding part of the setup remained mainly
unchanged. The atoms leave the atomic oven with a mean velocity of 490 m/s. Here the
operation temperature of the effusion cell was reduced by 100 K to 1373 K in comparison to
older iterations of the experiment to preserve the atomic oven against further breakdowns
mentioned in Sec. 3.2. Due to the capture velocity of the MOT of vMOT

cap = 3.3 m/s a portion
of the atoms in the atomic beam has to be slowed down considerably. For this the Zeeman
slower beam operated at about 400.91 nm wavelength is roughly aligned by maximizing its
decelarating influence on the atomic beam observable via velocity-sensitive fluorescence imag-
ing [56]. After that, fine-tuning of the Zeeman slower takes place by maximizing the loading
rate of the MOT and therefore the maximal number of trapped atoms after a fixed loading
period. The transversal cooling stage efficiency is optimized in the same manner. The in this
way pre-cooled atoms are then loaded into the MOT which is roughly located at the center
of the main vacuum chamber.

4.1.1 Loading of the magneto-optical trap

More precisely, there exist two MOT phases: a loading phase where atoms from the decel-
erated atomic beam are captured, operated with light of large detuning from resonance near
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582.84 nm wavelength, resulting in a large spherical trapping volume (called MOT in the
following), and a compressing phase where the detuning and intensity of the MOT light is
decreased, leading to a spatial shrinking of the MOT volume (called cMOT in the following),
utilized to maximize the efficiency of the following step, a transfer process into the optical
dipole trap. The temporal evolution of the corresponding experimental parameters can be
seen in Fig. 4.1, and in situ images of the atomic fluorescence during the different MOT phases
are shown in Fig. 4.2. In this section measurements for the characterization of the loading
process of the magneto-optical trap are presented.

Atom numbers in the loading MOT during this thesis amount up to 5 · 107 after a loading
time of 10 s. Here the use of a transversal cooling stage increased the final atom number in
the MOT roughly by a factor 2, comparable to earlier works [56]. The loading MOT light is
operated at a detuning of −44 natural linewidths away from resonance. The magnetic field
gradient is set to 3.8 G/cm. The light intensity per axis amounts to roughly 8 mW/cm2. Due
to the large detuning the atoms gather in a gravitational sag below the Zeeman slower beam.

Then the number of atoms could be increased by another factor of 1.5 compared to ear-
lier work [56] by modulating the MOT light at the beginning of the loading phase, leading to
a very broad linewidth of the light of approximately 3.2 MHz. This is done by applying an rf
modulation signal onto the AOM originally used for intensity control of the MOT light. Due
to the increased linewidth, MOT light scattering and therefore optical cooling takes place for
a broader velocity class of atoms from the atomic beam. The broadening is ramped down
linearly in time and vanishes during the loading phase.

The qualitative loading behaviour is discussed in [56] and is not further examined here for
brevity. The holding time in the MOT after turning off the Zeeman slower light also has
not changed significantly from earlier setups and lies in the region of a few minutes, which is
more than sufficient for trapping and subsequent loading into the optical dipole trap. Typical
equilibrium temperatures lie theoretically in the region of 20µK, but are in practice difficult
to determine, as the trapping volume has to be estimated. A more interesting quantity is the
temperature in the cMOT after the compression phase ended, which is discussed in the next
section.

4.1.2 Compressing process

For a good spatial overlap of the atomic cloud inside the MOT and the comparatively small
beam volume of the optical dipole trap, the MOT is compressed by changing the light fre-
quency and intensity, as well as the magnetic field gradient linearly over time. This also
changes the absolute position of the atomic ensemble inside the MOT, which is in the loading
process below the center height of the main vacuum chamber and therefore the optical dipole
trapping laser beams, but after the compressing phase on the correct height. The detuning of
the MOT light frequency is ramped to approximately −3 natural linewidths, while the light
intensity per axis is lowered to 0.13 mW/cm2, both within a time interval of 400 ms, which is
much bigger than the equilibrium time of 15 ms, as discussed in Sec. 2.3.2, and thus should
not cause any additional heating of the atoms. For an overview of all parameters changed
during the compressing phase, see Fig. 4.1. The cMOT encompasses about 5 · 107 atoms
with a radius of approximately 160µm in both horizontal axes, and 60µm in the vertical
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Fig. 4.1: Schedule for magneto-optical trap operation. The overall MOT phase consists of a loading
phase (with conventional MOT operation), and a compressing phase (called cMOT). The MOT is
loaded from an atomic beam, partially decelerated by a Zeeman slower, for 10 s. Here the frequency of
the loading MOT light is detuned about −44 natural linewidths ∆ν from the atomic resonance, and the
intensity per axis amounts to roughly 60 saturation intensities IS. A short artificial broadening segment
at the beginning of the loading phase increases the linewidth of the light to approximately 17 natural
linewidths, which is then linearly ramped down to the laser linewidth of about 35 kHz ≈ 0.19 ∆ν.
The magnetic field gradient is set to 3.8 G/cm, and the constant offset magnetic field B, used as a
preference axis for the spin-polarization, is first set to 4.6 G and ramped slightly down to eventually
3.6 G. After the loading procedure, the Zeeman slower light is turned off and the atomic beam is
blocked by a mechanical shutter. For compressing, in 400 ms the detuning of the MOT light is ramped
to approximately −3 natural linewidths, its intensity per axis is reduced to a value of 1.0 IS, and the
magnetic field gradient is changed to approximately 1.1 G/cm. After the compression phase has ended,
the atoms are loaded into the optical dipole trap (ODT), with more details to be found in Fig. 4.4.

axis, assuming an oblate spheroid for the cMOT volume.

The temperature of the spatially compact ensemble inside the cMOT can be determined with
good accuracy via the time of flight (TOF) technique [135]. Here the trapping potential is
turned off, followed by absorption imaging of the atomic ensemble for varying times of free
flight, which delivers the temporal evolution of the density distribution n(x, y), showing a
spatial expansion of the thermal cloud that is related to its temperature via the Maxwell-
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Fig. 4.2: Images of the fluorescence from atoms trapped inside the magneto-optical trap taken with
a digital single-lens reflex camera (DSLR). (a) Shown is the fluorescence during the loading phase.
Here the frequency of the MOT light is operated several natural linewidths away from resonance. As
a blue arrow the Zeeman slower beam is sketched, indicating that the atoms gather in a gravitational
sag below it. (b) Shown is the fluorescence near the end of the compression phase. Here the detuning
to resonance and intensity of the light are each much smaller than in the loading phase. The atomic
cloud is compressed and spatially pulled to the center of the main vacuum chamber. During this phase
the Zeeman slower light and atomic beam are already shut off, so that atoms in the compressed MOT
do not receive a momentum transfer by blue light or collide with fast atoms, as both would lead to
losses in the trap.
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Fig. 4.3: Time of flight (TOF) measurement of the compressed MOT (cMOT) already optimized for
loading into the optical dipole trap. To determine the temperature of the atomic ensemble, Eq. 4.1 is
fitted to the measured data, resulting in a temperature of (29.8± 0.7)µK.

Boltzmann velocity distribution. For an atomic cloud initially trapped inside a harmonic
trap potential the density distribution exhibits a Gaussian profile according to n(x, y, t) ∝
exp[−r2/(2σ2(t))], with r =

√
x2 + y2, and thus the 1/e2 radius σ of the atomic cloud can

be extracted from the absorption measurement. The temporal evolution of the radius is
described by

σ(t) =

√
σ2

0 +
kBT

m
t2, (4.1)
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where σ0 = σ(t = 0) is the initial radius. A fit of Eq. 4.1 yields the temperature T of the
ensemble as a fit parameter [131], with a TOF measurement of the cMOT shown in Fig. 4.3,
resulting in temperatures of around 30µK, laying roughly two orders of magnitude below
values for a broad-line atomic erbium MOT operated at a wavelength of 400.91 nm [55].
Under the assumption of an approximately oblate spheroidal volume of the cMOT, with
long radii of 160µm and a short radius of 60µm, the phase space density can be calculated
according to Eq. 2.9 to roughly 1.2 · 10−4, which compares to similar experiments as well as
earlier iterations of this experiment [56], but is still 4 orders of magnitude smaller than needed
for a phase transition to a BEC [80]. To increase the phase space density further, atoms are
loaded into an optical dipole trap, where evaporative cooling is employed, as discussed within
the next sections.

4.2 Characterization of single and hybrid crossed dipole trap

In this section the optical dipole trap (ODT) in single (SODT) and hybrid crossed (HCODT)
configuration, used for evaporative cooling of the atomic ensemble, is characterized. For this,
first the loading process from the cMOT into the CO2 laser dipole trap is discussed, after
which measurements of characteristic quantities are shown. Measurements include the trap
frequencies, holding times, temperatures and spin-polarization of the atomic ensemble. Lastly
the phase space density is calculated from measurement outcomes. Results are compared for
the single beam trap and hybrid crossed beam trap case.

4.2.1 Loading process

A portion of the atomic ensemble is loaded from the cMOT into the optical dipole trap. In
the beginning of either SODT or HCODT operation, only the CO2 laser beam is let into the
main vacuum chamber. Early attempts to just overlay cMOT and ODT turned out to be
unfeasible due to the ac Stark effect, treated in Sec. 2.3.3, as the atomic states shift negated
the resonance condition for the cMOT light, and the atoms were repelled, leading then to no
transfer into the ODT. This issue could be resolved by fast alternating off- and on-switching,
so-called chopping, of cMOT and ODT light during the loading process [136].

The chopping procedure is sketched in Fig. 4.4. The MOT and ODT light are alternately
turned on- and off respectively for 20µs each, with a very short phase of 2µs between each
reversal in which both lights are kept off. With chopping the influence from the ac Stark shift
by the CO2 laser light is dispelled. The exact sequence was found by optimizing the loading
efficiency into the ODT. The loading efficiency compared to a transfer without chopping but
abrupt conversion from cMOT to ODT was increased by roughly 20 %. After loading into the
ODT and a holding time of 15 ms typically 7 ·106 atoms reside in the trap. Due to an overlap
with the atomic cloud from the cMOT an earlier precise measurement of the atom number
inside the ODT is not possible, but has to be postponed to times in which the cMOT ensem-
ble dropped outside the absorption imaging area near the ODT due to gravity. Absorption
images showing the transfer from cMOT to ODT, alongside the dropping of the non-loaded
atoms, are depicted in the first 5 panels of Fig. 4.5.
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Fig. 4.4: Schedule of the atom transfer from cMOT to the optical dipole trap (ODT). To load atoms
efficiently, cMOT and ODT are alternately turned on and off respectively during a 110 ms long transfer
period (equaling 2500 chopping cycles). There cMOT and ODT are each turned on for 20µs, with
a 2µs long pause in between where neither light is turned on to ensure no temporal overlap. The
MOT compressing, i.e. linear ramping of experimental parameters, is still performed during chopping,
and at the end of transfer, the cMOT light is turned off. After a holding time of 200 ms inside the
ODT provided by the CO2 laser beam the evaporation process begins by lowering its beam power. In
SODT configuration no second beam is turned on. In HCODT configuration however a cross beam
provided by a Nd:YAG laser is added after a variable time tYAG,start, which depends amongst others
on the final CO2 laser beam power at end of evaporation and the desired ratio between individual
dipole trap depths, scalU = U0,YAG/U0,CO2

, see Eq. 4.2. The power of the Nd:YAG trapping beam is
continuously adjusted so that scalU stays constant during the remaining evaporation process. During
evaporation the magnetic field gradient is linearly ramped back up to 1.4 G/cm. The offset magnetic
field is first ramped to 6.8 G during the holding phase inside the ODT, and subsequently ramped
down to a value of roughly 1.3 G during evaporation. All parameters are optimized for a maximum
Bose-Einstein condensate atom number at end of evaporation.
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Fig. 4.5: Absorption images showing loading from cMOT into ODT as well as subsequent holding in
SODT configuration. Here gravitation points downwards. The first panel shows roughly 5 · 107 atoms
trapped in the cMOT at the end of the compression phase. In the second panel the same point in
time is shown, but now with an enabled CO2 laser beam for the ODT. In the bottom right of all ODT
panels the holding time since the start of the ODT phase (depicted in Fig. 4.4) is denoted. Note that
no forced evaporation is employed here, and thus the power of the CO2 laser beam stays constant after
enabling it. Approximately 7 · 106 atoms are trapped inside the ODT after 15 ms holding time. One
can see in the last panel that after a 60 s holding sequence still about 35000 atoms remain inside the
SODT. Each panel image is averaged from three individual measurements. The color scale denoting
the optical density is set the same for all images and was not recalibrated while measuring.

4.2.2 Trap frequencies

Trap frequencies were measured via amplitude modulation (AM) and Kohn breathing mode
methods (cf. Sec. 3.4.2). Fig. 4.6 shows results for the AM measurements for both SODT
and HCODT configuration. Fitted are functions of form ν(Pend) ∝

√
Pend to each data series,

with Pend being the power of the CO2 laser beam at the end of evaporation. Notably while
the radial trap frequencies are not significantly altered by the addition of the Nd:YAG laser
trap beam, the axial trap frequencies are muchly increased. This is understood as the radial
confinement by the CO2 laser beam is much stronger than its axial confinement.

Fig. 4.7 shows results for the Kohn breathing mode measurements, that are directly compared
to the AM measurement results from Fig. 4.6. The measurement comparison shows a general
agreement between AM and Kohn breathing mode method with a discrepancy of the (solid)
fit functions ν(Pend) ∝

√
Pend for each data series, with Pend being the power of the CO2

laser beam at the end of evaporation, of approximately 7 %. Note that only the radial trap
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Fig. 4.6: Trap frequency measurements via amplitude modulation (AM) method for SODT and
HCODT configuration, plotted in double logarithmic scale. Shown is data for the radial trap frequency
νr and harmonics 2νr as well as νr/2, and the axial trap frequency νz and harmonic 2νz. Data
points for SODT (HCODT) configuration are depicted as diamonds (circles). Fit function of form
ν(Pend) ∝

√
Pend for each data series, with Pend being the power of the CO2 laser beam at end of

evaporation, and Pinit = 72.6 W being the initial power, are also depicted for SODT (dotted lines)
and HCODT (solid lines) configuration. The scaling factor between individual trap depths was set to
scalU = U0,YAG/U0,CO2

= 0.5 in the HCODT case. While the radial trap frequencies are not changed
significantly when the Nd:YAG laser beam is added (HCODT), the axial trap frequencies are increased
notably.

frequency νr is evaluated here as it is the only one that can be measured via Kohn breathing
mode. This fact can, however, be used to undoubtedly identify νr and subsequently all
other trap frequencies in the AM measurement. It should also be noted that the discrepancy
could stem from the circumstance that the Kohn breathing mode measurement in practice
determines νy, while the AM measurement maps νr which arises from an overlap of νx and
νy for transversally non-spherically shaped beams. Values for the trap frequencies obtained
from the AM measurements can be found in Tab. 4.1.

4.2.3 Holding time and temperature

For characterization of the atomic ensemble inside the SODT and HCODT respectively, the
holding times, temperatures and phase space densities for each configuration was determined.
In the case of the holding time measurement, the atoms were loaded from cMOT into the
optical dipole trap (here in SODT configuration) and held for a variable time. After that
the trap was turned off, followed by absorption imaging. Here no evaporative cooling took
place as the CO2 laser beam power was kept constant at its maximum. The number of atoms
can be obtained from the absorption images for different holding times, shown in Fig. 4.8(a),
revealing a double exponential progress. The first decay with time constant τ1 = 0.60 s at
the beginning of the holding process is caused by natural evaporation. The second decay was
expected to be only caused by collisions with the background gas, which would result in very
long holding times in the order of at least 30 s [123]. Instead, the time constant only amounts
to τ2 = 12.71 s, indicating either further natural evaporation processes [56] or possibly three-
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Fig. 4.7: Trap frequency measurements via Kohn breathing mode method, compared to AM mea-
surement results for SODT and HCODT configuration, plotted in double logarithmic scale. Shown is
data for the radial trap frequency νr. Data points for SODT (HCODT) configuration are depicted
as diamonds (circles). Fit functions of form ν(Pend) ∝

√
Pend for each data series, with Pend being

the power of the CO2 laser beam at end of evaporation, and Pinit = 72.6 W being the initial power,
are also depicted for SODT (dotted lines) and HCODT (solid lines) configuration. The scaling factor
between individual trap depths was set to scalU = U0,YAG/U0,CO2

= 0.5 in the HCODT case. A good
agreement between AM and Kohn breathing mode measurement was found, with a discrepancy of the
(solid) fit functions of only 7 %.

body losses, which can become relevant at high atomic densities [48].

A temperature measurement via TOF, depicted in Fig. 4.8(b), shows a higher temperature
of the atomic ensemble of (103.6± 5.2)µK in the optical dipole trap in SODT configuration
at maximum power of Pinit,CO2 = 72.6 W after a holding time of 200 ms, compared to the
temperature found in the cMOT (cf. Fig. 4.3). The temperature here is, however, still much
lower than the trap potential depth U0,init,CO2 which amounts to typical values of 2.1 mK/kB

in this experiment. Note that the measurements presented in this section were only performed
for SODT configuration as the Nd:YAG cross laser beam is only employed in the later stages
of the evaporation process, as discussed in Sec. 4.3.

4.2.4 Spin-polarization

To verify spin-polarization of the atomic ensemble, it is evaporatively cooled to an ultracold
thermal ensemble (in this case without reaching quantum degeneracy), and is subsequently
exposed to a Stern-Gerlach type experiment. For this the optical dipole trap (in HCODT
configuration) is turned off after evaporation and a short holding time, while a magnetic field
gradient of roughly 3.8 G/cm is applied, and the atomic ensemble is allowed to freely expand.
After a fixed time after trap release, absorption imaging takes place [137]. The magnetic field
gradient causes a spin-dependent force, which spatially separates atoms in different mJ states,
so that for an in very good approximation spin-polarized ensemble, i.e. virtually all atoms
being in the same mJ state, no measurable separation occurs, with the here obtained experi-
mental result shown in the upper panel of Fig. 4.9(a). A weak homogeneous magnetic field,
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Fig. 4.8: (a) Measurement of the holding time inside the optical dipole trap in SODT configuration
with 100 % of the available power of 72.6 W, showing a double exponential progression of the atom
number vs holding time. The fast decay caused by natural evaporation exhibits a time constant of
τ1 = 0.60 s, while the causes for the slower decay with time constant τ2 = 12.71 s were not entirely
understood (see text). (b) Temperature measurement of the atomic ensemble inside the SODT after
a holding time of 200 ms at maximum power of Pinit = 72.6 W via TOF. The atoms get heated (cf.
Fig. 4.3) to a temperature of (103.6± 5.2)µK during loading.

turned on at the beginning of the compression phase of the MOT, aligns the atomic dipoles
and preserves the spin-polarization that formed in the cMOT, as described in Sec. 2.3.2.
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Fig. 4.9: (a) Stern-Gerlach type experiment for an ultracold erbium atomic ensemble without (upper
panel) and with applied rf signal (lower panel). After an evaporation process and subsequent switch-off
of the ODT the atoms freely expand while a magnetic field gradient of roughly 3.8 G/cm is applied,
followed by absorption imaging. If no rf signal is applied, the atoms do not spatially separate, indi-
cating full spin-polarization of the ensemble. For confirmation an rf signal is applied during the same
measurement process as before, now transferring atoms into other mJ states, leading to a spatial split-
ting of the atomic ensemble by the magnetic field gradient. In both panels gravity points in the right
direction. (b) Measurement of the radio frequency resonance for which most atoms are transferred into
other mJ states. For this the frequency of the rf signal is varied for each Stern-Gerlach measurement.
The here obtained result of (434± 1) kHz can be used to determine the absolute magnetic field at the
position of the atomic ensemble, yielding (0.267± 0.001) G.

To further investigate this behaviour a radio frequency (rf) signal was additionally applied
to the atoms during the Stern-Gerlach type experiment via a coil sitting centrally on top of
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4.3 Evaporative cooling of atoms

the main vacuum chamber. Here the rf signal at a frequency of 434 kHz with an amplitude
of −4 dBm was applied for 2 ms during a portion of the holding time. The rf signal transfers
the atoms from the mJ = −6 state into other Zeeman states mainly with mJ = −5,−4 and
−3 respectively, leading to a Stern-Gerlach separation that can be seen in the lower panel of
Fig. 4.9(a). This measurement confirms the assumption that the atomic ensemble exhibits
full mJ = −6 spin-polarization.

Additionally it is possible to determine the absolute magnetic field at the position of the
atomic cloud, which is relevant to know, if one, for example, wants to avoid Feshbach reso-
nances of atomic erbium that start at 0.9 G [30,36,71], as those can act detrimentally on the
ODT holding time via increase of collision rates as well as inelastic processes [31]. The radio
frequency reducing the atom number of the ensemble in mJ = −6 states most effectively
was found by varying the frequency and fitting a Lorentzian to the measured data, shown
in Fig. 4.9(b). With the resulting center frequency of 434 kHz the absolute magnetic field
can be calculated via Eq. 2.16 as approximately 0.267 G, which is sufficiently low to not ex-
perience any Feshbach resonances. Note that the offset magnetic fields employed during the
experimental cycle in the region of several G (cf. Figs. 4.1 and 4.4) do not reflect the absolute
magnetic field in the main chamber as they are used to counter strong residual magnetic
fields. As this measurement reveals, those offset magnetic fields reduce the overall magnetic
field successfully to a value much below field strengths required for Feshbach resonances in
the atomic erbium case.

Another experimental investigation involved the question if the atomic ensemble can be trans-
ferred from the mJ = −6 state to a fully spin-polarized sample in the mJ = +6 state without
too much losses, if for any reasons this configuration might become convenient in future ex-
perimental steps or a comparison between different spin-polarized samples becomes an area
of interest. For this the amplitude of the rf signal at 434 kHz was increased to approximately
+1.2 dBm. Fig. 4.10(a) shows a normal absorption image of the ultracold atomic ensemble
without neither magnetic field gradient nor rf signal, which defines the zero position in space.
Fig. 4.10(b) depicts a Stern-Gerlach type experiment with applied magnetic field gradient,
with the atomic ensemble being in the mJ = −6 Zeeman state, similar to the upper panel
of Fig. 4.9(a), showing a displacement from the zero position defined in Fig. 4.10(a). If the
strong rf signal is additionally applied approximately all atoms that are not lost in the rf
driving process are transferred into the mJ = +6 Zeeman state, leading to the same absolute
displacement, but now in the opposite direction, as seen in Fig. 4.10(c). The observed transfer
efficiency from mJ = −6 to +6 amounts to roughly 33 %.

4.3 Evaporative cooling of atoms

To reach the phase transition to a Bose-Einstein condensate (BEC), spin-polarized atoms
loaded from the cMOT into the ODT are evaporatively cooled by ramping down the trap
potential according to Eq. 2.50, with details for SODT and HCODT configuration respectively
found below. A phase transition to a BEC is indicated, and further discussed in Sec. 4.4.
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Fig. 4.10: (a) Absorption image of an atomic ensemble after evaporation without added magnetic field
gradient or rf signal, defining a zero point in space. Atoms are spin-polarized in the mJ = −6 Zeeman
state. (b) Stern-Gerlach type experiment similar to the case depicted in the upper panel of Fig. 4.9(a),
showing a displacement from the zero point. As no rf signal is applied here, the atoms remain in the
mJ = −6 state. (c) Stern-Gerlach type experiment with added strong rf signal, transferring a portion
of approximately 33 % of the atoms into the mJ = +6 Zeeman state. This is confirmed by the position
of the atomic ensemble, which exhibits the same absolute displacement from the zero point, but now
in the opposite direction, while considering the influence of gravity. In all panels gravity points in the
right direction.

4.3.1 Evaporation ramp

The used temporal evolution of the CO2 laser beam trapping potential is given by Eq. 2.50
and therefore dependent on the cut-off parameter η, the collision rate γ, the initial trap depth
U0, and the end trap depth U(tend). The cut-off parameter should stay constant during the
complete evaporation process, as discussed in Sec. 2.3.4. As the maximal trap depth provided
by the CO2 laser beam amounts to approximately U0,init,CO2 = 2.1 mK/kB, and the tempera-
ture of the atomic ensemble in the SODT right after loading from the cMOT lies in the region
of 100µK (cf. Fig. 4.8), initial optimization started with η = 21, and was finally set to 7.25.
Due to the addition of the Nd:YAG beam in HCODT configuration and therefore an relative
increase of the total potential depth in the later stages of the evaporation cycle, and the fact
that collisions with the residual background gas modify the temporal evolution, it is imper-
ative to optimize η experimentally. The order of magnitude for the starting parameter of γ
is known from previous work [56] and gets also experimentally optimized to a final value of 325.

In HCODT configuration the Nd:YAG laser beam joins the evaporation process at a vari-
able time tYAG,start after the evaporation process via lowering of the CO2 laser beam power
has started (cf. Fig. 4.4), calculated by

tYAG,start = −
(

U0,init,YAG

scalUU0,init,CO2

)−1/β ( U0,init,YAG

scalUU0,init,CO2

)1/β−1

τevap, (4.2)

where β = 2(η′ − 3)/η′, and scalU = U0,YAG/U0,CO2 which (if not stated otherwise) is set to
0.5. The full temporal evolution of the trap potential depth provided by the Nd:YAG laser
beam is chosen as

U0,YAG(t) =

{
U0,init,YAG, t < tYAG,start

scalUU0,CO2(t), t ≥ tYAG,start
. (4.3)
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4.3 Evaporative cooling of atoms

A constant scaling factor scalU was introduced so that the trap potential shape does not vary
significantly during the evaporation power ramp of both beams. The temporal evolution of the
crossed beam trap potential U cross

dip (x, y, z, t) (HCODT configuration) as seen in Eq. 2.45 for the
static case is then given by UYAG(x, y, z, t)+UCO2(x, y, z, t), where U0,CO2 and U0,YAG become
time-dependent. The needed power of both laser beams during evaporation can be calculated
via Eq. 2.41. From the cutoff parameter η and Eq. 2.50 the temperature T of the atomic
ensemble inside the optical trap potential should follow according to T (t)/Tinit = U0(t)/U0,init.

As mentioned in Sec. 2.3.4 the optical trap potential stemming from the CO2 and Nd:YAG
laser beams is modified by gravity and an external magnetic field gradient, which can have
an effect for small trap potential depths. The resulting effective trap potential can be de-
termined experimentally by measuring the acceleration atot = g + aSG caused by gravitation
and applied magnetic field gradient in free fall. As g is known, the Stern-Gerlach like accel-
eration aSG can be obtained. Within the scope of earlier work for the here presented setup
this magnetic acceleration was determined to be aSG = (0.74 ± 0.08) m/s2, although also a
measured acceleration of (0.57±0.01) m/s2 without applied magnetic field gradient indicated
the presence of a weak residual magnetic field gradient inside the main chamber [97]. Inter-
estingly in older works of our group without a supplementary Nd:YAG laser trapping beam,
the magnetic acceleration amounted to a much higher value of (8.93± 1.80) m/s2, which had
to be employed to deal with the weaker spatial confinement of the single beam trap [56]. The
total trap potential is modified as described at the end of Sec. 2.3.4.

4.3.2 Characterization of the atomic ensemble during evaporation

After loading from the cMOT into the ODT and a subsequent holding time of 200 ms the
erbium atomic ensemble was evaporatively cooled as described in Sec. 4.3.1. For the char-
acterization of this evaporation process the atom number as well as the temperature of the
atomic ensemble were measured at different points in time during evaporation.

Atom number during evaporation

The temporal evolution of the atom number during the evaporation phase is depicted in
Fig. 4.11 for the case of the hybrid crossed optical dipole trap for the full evaporation scheme
in (a), as well as only the later part of evaporation with the CO2 laser beam’s power below
1 % of its initial power in (b), and Fig. 4.12 for both configurations (single and hybrid crossed
optical dipole trap respectively) for the later part of evaporation. Atom numbers were in
all cases measured via absorption imaging. At the same end power of the CO2 laser beam
the HCODT configuration provides a higher number of trapped atoms due to additional trap
depth contributions from the Nd:YAG laser beam and a stronger confinement respectively.
For higher end powers the SODT traps a higher amount of atoms, which might be due to the
fact that the introduction of the Nd:YAG cross trap beam separates the colder atoms in the
center (or beam waist) region of the CO2 laser beam from hotter atoms located further away
from the beam waist of the cigar-shaped CO2 laser beam, which are then not trapped in the
HCODT and rethermalize to a higher temperature, thus leaving the trap.

59



4 Characterization of the setup and experimental results

0.0

1.0

2.0

3.0

4.0

 0.2  0.4  0.6  0.8  1
CO

2
 laser beam end power [% of initial power]

data
fit

1.0

2.0

3.0

4.0

5.0

 0  10  20  30  40  50  60  70  80  90  100
CO

2
 laser beam end power [% of initial power]

data

at
om

 n
um

be
r [

10
6 ]

at
om

 n
um

be
r [

10
5 ]

0.0

(a) (b)

scal
U
 = 0.5 scal

U
 = 0.5

Fig. 4.11: (a) Measurement of the atom number as a function of the CO2 laser beam power Pend at the
end of evaporation, with initial power of Pinit = 72.6 W, in HCODT configuration (with scalU = 0.5),
showing the full range of the evaporation phase. (b) Same measurement settings as in (a), but now
with a detailed view on the later stages of the evaporation phase with low CO2 laser beam end powers.
A function of form Natom(Pend) ∝

√
Pend − Pzero is fitted to the measured data, with Pzero being the

(theoretical) end power at which no atoms are trapped anymore.
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Fig. 4.12: Measurement of the atom number as a function of the CO2 laser beam power Pend at
the end of evaporation, with initial power of Pinit = 72.6 W, in SODT (blue) as well as HCODT
(green) configuration (with scalU = 0.5) respectively. In contrast to Fig. 4.11 the data here was
aggregated from various measurements (e.g. of trap frequencies, ensemble temperatures, ensemble
lifetimes and condensate fractions respectively) which as a by-product yielded the corresponding atom
numbers. The data of those measurements was then averaged, with the standard deviation used as
the error. Functions of form Natom(Pend) = Ninit · (e−a/(Pend−Pzero) + 1 − e−b/Pend) were fitted to
each data series, chosen by convenience to accurately illustrate the progression. Here Pzero is the
(theoretical) evaporation end power at which no atoms are trapped anymore, and a and b are fit
coefficients respectively. The HCODT configuration shows a higher atom number for CO2 laser beam
powers below 0.52 % of Pend in comparison to the SODT configuration, while for higher end powers
this effect reverses (for possible reasons, see text).

Temperature during evaporation

Time-of-flight (TOF) measurements were performed, similar to the case in Fig. 4.3, only here
for different powers Pend of the CO2 laser beam at the end of evaporation, to determine
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4.3 Evaporative cooling of atoms

the temporal progression of the temperature of the atomic ensemble during the evaporation
process. Fig. 4.13 shows the results for three different configurations in the low end power
regime: single optical dipole trap (scalU = 0.0) and hybrid crossed optical dipole trap for
two different scaling factors between the trap depths of both beams (scalU = 0.5 and 1.0)
respectively. As the start of the phase transition to a BEC was observed in this measurement,
the critical temperature could be determined to be Tc,exp = (169.3± 20.9) nK.

With the knowledge of the progress of trap frequencies (cf. Sec. 4.2.2), atom number and
temperature of the atomic ensemble during evaporation, the phase space density during this
experimental phase can be determined, with the results presented in Sec. 4.4.2.
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Fig. 4.13: Measurement results for the temperature of the atomic ensemble during the evapora-
tion process. Each plotted data point was obtained from a TOF measurement after reaching the
corresponding CO2 laser beam power Pend at the end of evaporation, performed for three different
settings: in SODT configuration (with scalU = 0.0), as well as in HCODT configuration with two
different trap depth ratios scalU = 0.5 and 1.0 respectively. Atoms trapped in HCODT configuration
possess a higher temperature for the same CO2 laser beam end power, which is understood as the
total trap depth is higher due to the contribution of the Nd:YAG laser beam. Linear functions of
form T (Pend) = mTPend + Toff were fitted to each data set, where mT denotes the slope and Toff the
temperature offset at which the fitted function crosses the y-axis respectively. Measurements were
performed until a transition to a BEC became noticable due to the emergence of a bimodal density
distribution (s. Sec. 4.4.1 for details). From this the (averaged) critical temperature Tc,exp can be
estimated as (169.3± 20.9) nK, where the error was obtained from the standard deviation of the three
data sets. This is slightly above the theoretical value, calculated from Eq. 2.10 to be Tc,theo = 136 nK.
Finite-size effects would decrease the theoretical result by roughly 4 nK, while interaction effects can
in principle be larger, but would also only reduce the theoretical critical temperature. Density fluctu-
ations however increase the theoretical critical temperature, in the case of s-wave scattering by about
4 nK [138], cancelling finite size effects in this case, so that these effects should not play a role for the
discrepancy. Systematic measurement errors on the one hand as well as d-wave scattering contributions
on the other hand could, however, be a cause for the observed discrepancy.
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4.4 Bose-Einstein condensation of erbium atoms

By means of the evaporation process characterized in the previous section, the transition to
quantum degeneracy was successful, leading to the generation of an erbium atomic Bose-
Einstein condensate (BEC) in an optical dipole trap either consisting of a single CO2 laser
beam (SODT configuration), or of a hybrid crossed beam setup provided by the CO2 laser
beam and an additional Nd:YAG laser beam (HCODT configuration). Atom numbers in the
pure condensate usually amount up to 3.5 · 104. This section presents work to search for
signatures of the phase transition to a BEC, namely by bimodal density distribution mea-
surements as well as phase space density calculations from measurement data. Subsequently
the lifetime of the ultracold atomic ensemble is characterized, and a brief note regarding the
long-term stability of the experiment is given.

4.4.1 Bimodal density distribution

To verify the successful generation of a BEC, the spatial density distribution can be measured
for different times during the evaporation process. If a transition to quantum degeneracy oc-
curs, the density distribution should change from a Maxwell-Boltzmann distribution to a
bimodal distribution, which should then revert back to a monomodal distribution when all
trapped atoms reach quantum degeneracy during evaporation [6]. Fig. 4.14 shows four such
measurements during evaporation, i.e. for different end powers of the trapping beams, in
HCODT configuration. One clearly observes the emergence of bimodality in panels (b) and
(c), while for further evaporation shown in (d) the density distribution reverts back to a
monomodal distribution, indicating a macroscopic occupation of the ground state. The form
of the density distribution for a BEC is determined by the trap potential shape [6]. As here
the harmonic trap potential exhibits a nearly parabolic shape for cold atoms sitting in the
bottom region of the potential, the resulting density distribution is of inverted parabolic form
(yellow curves).

If one plots the condensate fractions obtained via measurement methods discussed in Fig. 4.14
for various trap depth ratios scalU = U0,YAG/U0,CO2 , one obtains the results depicted in
Fig. 4.15.

4.4.2 Phase space density

The phase space density can be determined via several experimentally accessible parameters
according to Eq. 3.7. As shown in Fig. 4.16, it exceeds the critical phase space density of
2.612 during evaporation with a sudden increase, and reaches values of up to 61±55 in SODT
configuration, and 9.8± 6.5 in HCODT configuration respectively, confirming the generation
of an atomic erbium Bose-Einstein condensate, which was observed in situ in Fig. 4.14. Cor-
responding measured experimental quantities are listed in Tab. 4.1.

A third method to detect the generation of a BEC, the observation of a radius inversion after
free expansion of the condensate due to a repulsive interaction between the atoms [40, 59],
could for the here used crossed dipole trapping geometry not be reliably observed, other than
in earlier measurements with a single CO2 laser beam dipole trap [56]. In the hybrid crossed
optical dipole trap setup the spatial distribution of atoms is more spherically symmetric, while
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PCO2 [%] 0.35 0.44 0.52 1.00 3.00 10.00

scalU 0.0 0.0 0.0 0.0 0.0 0.0

N [103] 33.9± 0.8 100.0± 0.9 176.0± 2.0 374.7± 7.0 686.9± 13.7 1305± 15

νy,K [Hz] 156± 2 195± 1 209± 1 296± 1 467± 7 700± 15

2νr,AM [Hz] 336± 1 388± 3 407± 1 554± 1 844± 3 1303± 3

νr,AM [Hz] 140± 1 177± 3 197± 1 268± 1 452± 2 678± 4

2νz,AM [Hz] 37± 9 46± 1 48± 1 61± 1 85± 1 132± 1

νz,AM [Hz] 18± 2 22± 1 15± 5 30± 4 53± 16 68± 10

T (nK) − 50± 14 133± 16 628± 31 2690± 94 −
ρ − 61± 55 4.8± 3.4 0.36± 0.11 0.041± 0.013 −

PCO2 [%] 0.30 0.35 0.44 0.52 1.00

scalU 0.5 0.5 0.5 0.5 0.5

N [103] 25.7± 1.2 68.4± 1.9 135.4± 3.8 188.7± 3.9 277.1± 9.6

νy,K [Hz] 134± 1 167± 1 196± 1 211± 1 300± 1

2νr,AM [Hz] 307± 2 353± 2 378± 1 407± 1 557± 2

νr,AM [Hz] 132± 1 160± 1 182± 1 198± 1 274± 4

2νz,AM [Hz] 46± 5 56± 1 61± 4 72± 1 123± 1

νz,AM [Hz] 31± 9 31± 2 32± 4 36± 1 68± 2

T [nK] 54± 6 108± 7 205± 9 291± 10 809± 20

ρ 9.8± 6.5 4.8± 1.4 1.8± 0.5 1.2± 0.2 0.30± 0.01

Tab. 4.1: Relevant quantities of the atomic ensemble captured in the optical dipole trap during evap-
oration for different CO2 laser beam end powers PCO2

, given as a percentage from the initial power of
PCO2,init = 72.6 W, for SODT (scalU = 0.0) and for HCODT (scalU = 0.5) configuration respectively.
The measured number of atoms N , the trap frequencies νi stemming from Kohn breathing mode (K)
as well as from amplitude modulation (AM) measurements respectively, and the temperatures T ex-
tracted from time-of-flight measurements are given. From those values the phase-space densities ρ were
calculated via Eq. 3.7. Errors on the temperature values come from the propagation of uncertainty
of the linear temperature fits (cf. Fig. 4.13), and errors on the trap frequencies stem from the fitting
process, while errors on the atom number are of statistical nature. These lead due to propagation to
the given errors on the phase space density. Systematic uncertainties are not provided in this table,
but are expected to lie in the same order of magnitude as the listed errors.
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Fig. 4.14: Measurement of the optical density distribution for various CO2 laser beam evaporation
end powers in HCODT configuration (with scalU = 0.5). Shown are intersections of the radial den-
sity distribution of the trapped atomic ensemble (blue). All measurements were normalized to 1 for
maximum optical density. Condensate fractions ABEC/(ABEC + Athermal) were determined from the
areas Ai below curves i. The insets show averaged absorption images over five measurements, with
the plotted intersections corresponding to a single measurement from each series. (a) Optical density
distribution for a CO2 laser beam end power PCO2,end = 0.44 % of the initial beam power of 72.6 W,
showing a Maxwell-Boltzmann distribution (purple curve) of the purely thermal atomic ensemble. (b)
Emergence of bimodality in the density distribution in form of a parabolically shaped portion (yellow
curve) sitting on top of the Maxwell-Boltzmann distributed thermal cloud, here shown for a CO2 laser
beam end power of 0.38 %. The sum of Maxwell-Boltzmann and parabolic distribution is plotted as the
green bimodal density distribution curve. (c) Further increase of the condensate fraction by lowering
the trap depth during the evaporation phase, here with an end power of 0.33 %. (d) Fully condensed
atomic ensemble with a monomodal parabolic density distribution at an end power of 0.29 %.

in single beam optical dipole traps the atomic cloud is more cigar-shaped, which might be
a reason for no clear radius inversion to occur here. Another possible explanation could be
the specific arrangement of homogeneous (offset) magnetic fields and magnetic field gradients
inside the main vacuum chamber, which differs significantly from the previous setup, and
the resulting change of dipolar interaction effects in the atomic ensemble, possibly leading
to spatial distortions of the cloud, as also observed in other work [30]. For ultracold erbium
atoms, the van-der-Waals interaction, determined by the s-wave scattering length, and the
long-range, non-isotropic dipole-dipole interaction are of same order of magnitude [139], so
that for a radius inversion to occur, the interaction between atoms has to be repulsive (where
maximum repulsiveness is achieved for an exact parallel alignment of atomic dipoles), which
might have not been fulfilled in this particular setup.

4.4.3 Condensate holding time

A sufficiently high lifetime of the BEC inside the optical dipole trap is crucial for further
experimental steps. To determine the holding time, the atomic ensemble was measured for
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Fig. 4.15: Measurement results for the condensate fraction at different CO2 laser beam powers at
the end of evaporation for various trap depth ratios scalU = U0,YAG/U0,CO2

. The initial power of the
CO2 laser beam amounts to 72.6 W. Functions are fitted by convenience to illustrate the progression
of the condensate fraction during evaporation. The higher the trap depth ratio is, the lower the CO2

laser beam end power can be for reaching a pure condensate, which is understood from the trap depth
contributions and added confinement provided by the Nd:YAG cross trapping beam. Accordingly for
HCODT configuration (with scalU > 0) the phase transition to a pure BEC happens in a smaller CO2

laser beam end power interval than for SODT configuration, for the same reasons stated before.

different trap potential depths at end of evaporation, seen in Fig. 4.17(a). As the condensate
fraction for those measurements were also determined, the holding time can also be plotted
against it, as shown in Fig. 4.17(b). The measurements were performed for SODT config-
uration (scalU = 0.0) as well as for two different HCODT configurations (scalU = 0.5 and
1.0) respectively. In general the holding time of the condensate decreases with increasing
involvement of the Nd:YAG cross trap beam, which could have two reasons. The first cause
could be erbium’s higher scattering rate for laser light at 1064 nm in comparison to the very
far-detuned CO2 laser light at 10.6µm, while the second cause could be the higher occurance
of three-body collisions due to a possibly higher spatial atomic density in the hybrid crossed
optical dipole trap. Collisions with the background gas however seem not to be a cause, as
trap lifetimes for the here employed ultra-high vacuum are in the order of 30 s.

Typical holding times for a full condensate lie in the region of 12 s for SODT configuration,
and between 8 to 10 s for HCODT configuration respectively. This is an improvement to ear-
lier work, which determined the BEC holding time in SODT configuration to be (8.7± 0.9) s,
by roughly 30 %. As the HCODT achieves a similar holding time as the SODT in earlier
work, although here the scattering rate and the occurance of three-body collisions are pos-
sibly higher, consequentially the confinement was apparently proportionally increased for
successful trapping with comparable parameters.

4.4.4 Long-term stability

A big advantage of the hybrid crossed optical dipole trap setup compared to a single beam
optical dipole trap setup is the enhanced long-term stability of the experiment, leading to less
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Fig. 4.16: Progression of the phase space density during the evaporation process for different CO2 laser
beam end powers as a percentage from the initial power Pinit = 72.6 W. Shown are data points calcul-
cated from measurements results (blue) according to Tab. 4.1, as well as curves calculated from indirect
measurements, theoretical values and fits (yellow), for optical dipole traps in (a) SODT (scalU = 0.0)
and (b) HCODT (scalU = 0.5) configuration respectively. For the curves the trap frequencies were
indirectly calculated from the measured beam waists via knife-edge method at a particular beam power
instead of measuring them directly by Kohn breathing mode or amplitude modulation techniques, and
subsequently calculated for all CO2 laser beam end powers via ν(Pend) ∝

√
Pend. For the temper-

ature and atom numbers respectively, continuous values were obtained from fits shown earlier. The
comparatively large errors on data points above the critical phase space density for a Bose-Einstein
condensate (plotted as a green line) stem mainly from significant errors on low temperatures as well
as axial trap frequencies for small trap potential depths, exacerbated by means of error propagation.
However the data points including error margins at end of evaporation lie above the critical phase
space density defined in Eq. 2.11, confirming the formation of a BEC discussed in Sec. 4.4.1. For the
hybrid crossed optical dipole trap configuration the CO2 laser beam power range, in which the phase
space density including errors lies above the critical value, is roughly 50 % larger than for the single
beam optical dipole trap, leading to a more stable long-term setup as here fluctuations of the CO2

laser beam power have a lower impact on the BEC. Relative power drifts and fluctuations for the
Nd:YAG laser beam have generally been found to be lower than for the CO2 laser beam.

everyday maintenance efforts in the laboratory, and a better reproducibility of measurement
results compared to older setups. As discussed in the context of Fig. 4.16, for the HCODT
configuration the CO2 laser beam power range, in which the phase space density including
errors lies above the critical value, is roughly 50 % larger than for SODT configuration. Thus
fluctuations and drifts of the CO2 laser beam power have overall a lower impact on the BEC
size than in the single beam optical dipole trap case, as for the cross Nd:YAG laser beam
relative power drifts and fluctuations have in general been found to be much lower.
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Fig. 4.17: Holding time measurement of the atomic erbium Bose-Einstein condensate in the optical
dipole trap potential. (a) Shown is the holding time of the condensate for different CO2 laser beam
end powers, given as a percentage value from the initial power of Pinit = 72.6 W, for three data series:
one in SODT configuration (with scalU = 0.0), and two in HCODT configuration (with scalU = 0.5
and 1.0) respectively. Fitted are linear functions to describe the progression of the holding time in the
low trap potential depth regime. (b) Plotted is the same holding time data series as in (a), but here
linked with values from corresponding condensate fraction measurements. Typical holding times of a
full condensate lie in the region of 12 s (SODT), and 8 to 10 s (HCODT), showing an improvement
from older setups.
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5 Prospects for synthetic magnetic fields for
ultracold erbium atoms

In this part of the thesis a theoretical treatment of synthetic magnetic fields for electrically
neutral bosonic erbium atoms, strong enough to reach the fractional quantum Hall regime,
is presented. After an introduction of the general concept and a review of the better known
case of gauge fields for charged particles, firstly the simpler three-level atomic system will be
discussed, after which the more complex atomic erbium case is treated. Here a parameter
regime is given, for which strong synthetic magnetic fields with good spatial homogeneity are
predicted. Finally an estimation of the Laughlin gap, the energetic gap between the lowest
and the other remaining Landau levels of a two-dimensional atomic erbium microcloud in the
synthetic magnetic field, expected from the s-wave contribution of the interaction is presented.
The main findings in this chapter were also published in [50].

5.1 Introduction to synthetic gauge fields

Ultracold atomic clouds are extremely well-suited systems to study matter behaviour, as those
systems are pure and controllable to a high degree. Atoms are electrically neutral, which is
usually an advantage for many experimental studies. For the study of some currently very
interesting phenomena as the fractional and integer quantum Hall effect [140], the spin Hall
effect [141, 142] and topological insulators [143] an analogon of the Lorentz force is needed,
which is present for electrically charged electrons in a magnetic field. To overcome this
limitation artificial gauge fields can be constructed, imitating a circular motion of particles
subject to the synthetic gauge field leading to the introduction of a Berry phase (analogous
to the Aharonov-Bohm phase), and thus creating a Lorentz force equivalent [144,145]. Tech-
niques include trap rotation [146, 147], lattice shaking [148], or phase imprinting via photon
recoil [46, 149–154]. Since trap rotation and lattice shaking techniques historically produced
only comparably weak synthetic magnetic fields, in this thesis the possibility of the genera-
tion of strong artificial gauge fields for neutral lanthanide erbium atoms with a non-vanishing
angular orbital momentum L in their ground state by phase imprinting via Raman manipu-
lation beams is theoretically investigated.

Current implementations of such synthetic magnetic fields (for e.g. alkali atoms with their
L = 0 S-electronic ground state) are not strong enough for fractional quantum Hall states
to form, mainly because of limitations of the achievable coherence time, caused by the im-
possibility to detune the Raman light field further away from resonance than the electronic
fine structure splitting of the excited states. However, another readily available Bose-Einstein
condensated lanthanide atomic species is dysprosium, for which a similar, yet different scheme
for artificial magnetic fields was proposed [49], which recently was utilized for theoretical in-
vestigations of dysprosium topological quantum Hall systems [51]. Further atomic species
with a suitable P -electronic ground state as the oxygen atom are difficult to laser cool due to

69



5 Prospects for synthetic magnetic fields for ultracold erbium atoms

technical inconvenient UV electronic transition wavelengths and a large number of required
repumping lasers.

Instead of looking at atoms circulating in a lattice and accumulating a Peierls phase [155], our
system is composed of a bulk gas whose atoms are adiabatically transferred to dressed states
by altering the bandstructure. While the here presented system as well as earlier published
work construct Abelian gauge fields [46], (synthetic) gauge fields can also be extended to the
non-Abelian case [156], e.g. to study spin-orbit coupling [157, 158] leading to the spin Hall
effect [159].

5.1.1 Review: Gauge fields for charged particles

To establish the basic concept the case of gauge fields in classical electrodynamics is discussed.
The electric and magnetic (gauge) fields, E and B, can be described by the vector and scalar
potentials, A and φ:

E = −∇φ− ∂A

∂t
, B = −∇×A. (5.1)

Here A and φ are only defined up to a gauge, meaning that certain constraints can be specified
for them, leaving the resulting interaction of the particles in the gauge field unchanged –
or invariant to the gauge. In a magnetic field B particles with mass m, charge q, and
velocity v then experience the Lorentz force F = qv×B, which can also be expressed as the
Hamiltonian [160]

Ĥ =
(p− qA)2

2m
+ qφ, (5.2)

where p is the canonical momentum operator, originating from the replacement for a free
particle p → p − qA, in which an additional term −qA is introduced into the dispersion
relation of the particle. As we are especially interested in the strength of the (synthetic)
magnetic field, the cyclotron frequency is an important quantity. For e.g. a uniform magnetic
field B = Bez along the z-axis, the cyclotron frequency of the circular motion a particle with
charge q experiences in the x− y-plane can be defined as

ωc =
|q|B
m

. (5.3)

The minimal cyclotron orbit size, called magnetic length, is then [161]

`mag =

√
~

mωc
, (5.4)

which serves as a characteristic length scale for e.g. the determination of the vortex density in
a given system. To later reach experimentally interesting regimes for the study of fractional
quantum Hall states, the vortex density has to be higher than the atomic density in the
system.
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5.2 Synthetic magnetic fields for three-level atoms

5.2 Synthetic magnetic fields for three-level atoms

To keep the discussion simple, the treatment is started by considering the generation of a
synthetic magnetic field for a three-level atom with two stable ground state levels and an
excited state in a Λ-configuration. This setup has similarities with the rubidium alkali case
in [47], however here we assume a different polarization configuration of the Raman beams,
and consider Raman transitions with a Zeeman quantum number difference of ∆mF = 2.

5.2.1 Hamiltonian and dispersion relation

To begin with, a three-level atom with two stable ground state levels |g+1〉 and |g−1〉 and one
spontaneously decaying excited state level |e0〉 is considered, as shown in Fig. 5.1(b). The in-
dex denotes the corresponding Zeeman quantum number. The here suggested implementation
follows the work of I. Spielman [47] developed for alkali atoms, however our approach chooses
the atoms to be driven by two far-detuned counter-propagating laser beams in a σ+ − σ−
polarization configuration, which results in Raman coupling between ground state sublevels
|g+1〉 and |g−1〉 with ∆mF = 2. For comparison the scheme for rubidium alkali atoms used a
π − σ polarization configuration with ∆mF = 1 coupling between sublevels.

The basic idea is to construct a Hamiltonian offering an atomic dispersion that mimics that
of a charged particle in the presence of a position-dependent vector potential A∗, so that a
synthetic magnetic field B∗ = ∇×A∗ emerges. Considering A∗ = (A∗x, A

∗
y, A

∗
z), the compo-

nents A∗i with i = x, y, z themselves can be of scalar, vectorial or matrix-valued nature. Here
only the case for A∗x 6= 0 is regarded, so that A∗ = (A∗x, 0, 0) (Landau gauge). Note that the
superscript ∗ denotes synthetic quantities to distinguish them from real ones, e.g. synthetic
and real magnetic fields.

From Eq. 5.1 one can see that for a time-varying synthetic vector potential a synthetic electric
field, and for the case of a spatially varying synthetic vector potential a synthetic magnetic
field can be constructed. The latter can be achieved with a transversal gradient of the (real)
magnetic field, which leads to a two-photon detuning δ = ω+ − ω− − ωZ, where ω+ and
ω− denote the laser frequencies with corresponding polarizations, and ~ωZ is the energetic
difference between |g+1〉 and |g−1〉 that is position-dependent. Both the magnetic field B =
Bxex and the counter-propagating laser beams are assumed to be oriented along the x-axis,
and a magnetic field gradient along the y-axis, as seen in Fig. 5.1(c). This results in Bx(y) =
B0,x + y∂Bx/∂y, which realizes a position-dependent Raman detuning

δ(y) = ∆mFgµB
∂Bx
∂y

y, (5.5)

where g is the atomic Landé g-factor and µB the Bohr magneton.

As the next step an experimentally tunable energy momentum dispersion relation (p −
qA∗)2/(2m∗), with m∗ as an effective mass for the motion along the x-direction, account-
ing for the differently shaped dispersion, has to be created. The momentum of the atoms in
x-direction is identified as p = ~k = ~kxex, where k is the atomic wave vector, and kx is the
absolute value of the wave vector along ex. Here the dynamics of a free particle in y-direction
and a strong confinement in z-direction are assumed, and hereinafter only the Hamiltonian
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Fig. 5.1: Level schemes for two- and three-level atomic systems, respectively, as well as a schematic for
the generation of synthetic magnetic fields. (a) Shown is a reduced level scheme of alkali atoms, with
an S-electronic ground state (L = 0). (b) A reduced level scheme for a transition from a ground state
with L = 1 to an electronically excited state with L′ = 0 is depicted. This system gives an example for
an electronic transition starting from a higher orbital angular momentum ground state, for which even
with radiation far-detuned from the electronically excited state Raman transitions between different
ground state spin projections become possible (the ground state |g0〉 is shown in gray, because it is
not relevant for the atom-light coupling here). Raman transitions with ∆mF = 2 can be induced for
the shown case of L = 1, when they are driven with a σ+ − σ− optical polarization configuration.
(c) Displayed is a schematic for synthetization of an artificial magnetic field for atoms using optical
driving with two counter-propagating Raman beams and a transverse gradient of the (real) magnetic
field.

in ex is considered, which is possible due to the separability of the overall Hamiltonian. The
light field consists of two counter-propagating Raman laser beams in the x-axis with wave
vectors k1

∼= kL = kLex and k2
∼= −kL, where ∼ ±2~kL momentum per Raman transition

is transferred to the atoms, and kL = 2π/λ. In reality there will be a very small angle φ
between both beam axes so that the effective single-photon recoil momentum amounts to
kL = π/(λ cos(φ/2)). For our purposes φ = 0 is assumed. The laser electric field is defined as

Elaser = E0,+e+ cos(kLx− ω+t) + E0,−e− cos(−kLx− ω−t), (5.6)

where E0,± denotes the field amplitudes of the σ+, σ− polarized optical beams, and e± are
the corresponding unit polarization vectors. It is assumed for the remainder of this thesis
that E0,+ = E0,−.

In the following, |gα,p〉 denotes an atom in the internal state gα and with momentum p. Af-
ter utilizing the rotating wave approximation and adiabatically eliminating the upper states,
which is possible due to a large detuning ∆ from the excited states, the effective Hamiltonian
for a single atom confined to the x-y plane is yielded, here written in the basis of the coupled
levels |g−1, ~(k + kL)〉 and |g+1, ~(k− kL)〉 as

Ĥ =

(
~2(kx − kL)2/2m+ ~δ(y)/2 ~ΩR/2

~ΩR/2 ~2(kx + kL)2/2m− ~δ(y)/2

)
+

~2k2
y

2m
, (5.7)

where ΩR denotes the effective Rabi frequency of the two-photon Raman transition. For an
uncoupled system (i.e. for ΩR = 0) the variation of the eigenstates is shown in Fig. 5.2(a),
for which the usual parabolic dispersion centered at −kL and kL for states |g−1〉 and |g+1〉
respectively is obtained. Here the atoms behave as free particles along ex. If a non-vanishing
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Fig. 5.2: Energy quasimomentum dispersion relation in a three-level configuration. (a) Dispersion
relation for the undressed case (ΩR = 0), (b) a weakly dressed case (ΩR = EL/~), and (c) a strongly
dressed case (ΩR = 16EL/~), all for a vanishing two-photon detuning δ. (d) Here the dispersion
relation with the same strong dressing as in (c) is shown, but for a non-vanishing two-photon detuning
δ = 16EL/~, leading to a shift of kx,min in k-space. The energy curves for the undressed case are
plotted in (c) and (d) as gray dotted lines for comparison.

Raman coupling (ΩR = 16EL/~, where EL = ~2k2
L/2m denotes the recoil energy), is chosen, a

dressing of the energy levels is induced, leading to the dispersion relation seen in Fig. 5.2(c).
Generally for a dressing of ΩR & 4EL/~ the two resulting energy curves have a combined
single minimum, which for δ = 0 appears at kx = 0, but can be shifted from that position
in k-space by a non-vanishing value of δ, see Fig. 5.2(d). For ΩR . 4EL/~ the lowest energy
curve exhibits two minima, as shown in Fig. 5.2(b).

We are now interested in the lower of the two dressed energy levels, with the dispersion shown
as a solid red line in Fig. 5.2(b)-(d). Here the position of the minimum kx,min depends on
the value of the Raman detuning δ, see e.g. Fig. 5.2(d). In the presence of the gradient
of the real magnetic field, ∂Bx/∂y, this Raman detuning depends in turn on the transverse
position y (cf. Fig. 5.3(a)). The effective Hamiltonian for the lower dressed state can thus be
approximated as

Ĥeff ≈ E0 +
~2(kx − kx,min(y))2

2m∗
+

~2k2
y

2m
(5.8a)

= E0 +
~2

2m∗

(
kx −

q∗A∗x(y)

~

)2

+
~2k2

y

2m
, (5.8b)

where kx,min(y) denotes the wavevector at which the described minimum of the dispersion
curve occurs. In Eq. 5.8b the replacement kx,min(y) = q∗A∗x(y)/~ was used, where A∗x is the
synthetic vector potential discussed above and q∗ is a synthetic charge, which will be chosen by
convenience. It should be noted that both the effective mass m∗ and kx,min (correspondingly
also the synthetic vector potential A∗x and the synthetic magnetic field B∗z , the latter as
introduced in Eq. 5.10 below) depend on the used value of the effective Rabi frequency ΩR.
To subsume, an energy momentum dispersion relation E(kx) ≈ (~kx − q∗A∗x)2/2m∗ was
constructed, which importantly is experimentally tunable via δ and ΩR by changing the real
magnetic field Bx(y) and the laser beam intensity I ∼ |E0,±|2 respectively.
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5.2.2 Vector potential and synthetic gauge field

If the normalized synthetic vector potential q∗A∗x/~kL = kx,min/kL is now plotted against
the normalized detuning ~δ/EL for a Rabi frequency of ΩR = 16EL/~, the curve shown
in Fig. 5.3(a) is obtained, giving the exact dependence for the corresponding parameters.
Here the synthetic vector potential possesses point symmetry around A∗x(δ = 0) = 0, whereat
q∗A∗x/~ is confined within +kL and −kL. Near y = 0, for which δ ≈ 0, A∗x varies linearly with
the two-photon detuning δ, and correspondingly the transverse position y.

Then, given the transverse detuning variation from the gradient of the (real) magnetic field
along ey, it is expected to obtain a non-vanishing value of the synthesized magnetic field along
ez:

B∗ = −∇×A∗ =

(
0, 0,−∂A

∗
x

∂y

)
, (5.9)

where the component in z-direction is B∗z = −∂A∗x(y)/∂y = −~/q∗∂kx,min(y)/∂y. With δ′ =
∂δ/∂y = ∆mFgµB∂Bx/∂y as the detuning gradient, one arrives at

B∗z = −~δ′

q∗
∂kx,min(y)

∂δ
. (5.10)

The spatial variation of the generated synthetic magnetic field along ey, with a maximum
at y = δ(y) = 0, is shown in Fig. 5.3(b), where it was assumed to have q∗ = e and
δ′/(2π) = 2.66 kHz/µm, as obtained e.g. with g = 1 and a gradient of the real magnetic
field of 9.5 G/cm. The magnitude of the synthetic field in the center can for ΩR � EL/~
be estimated when noting that in the limit of a detuning δ & ΩR (δ . −ΩR) one has
kx,min = −kL(+kL) respectively (cf Fig. 5.2(d)), so that one expects a slope near δ = 0 of
order ∂kx,min/∂δ ≈ −kL/ΩR, from which B∗z (y = 0) ≈ ~kLδ

′/q∗ΩR is found. If a Taylor
expansion up to lowest order in δ (for ΩR � EL/~) is employed for the analytically derived
expression of the position of the minimum kx,min, the same results are obtained, which is
plotted as the orange dashed line in Fig. 5.3(a), showing the based on this expansion derived
value of the synthetic vector potential versus the detuning.

Experimental parameters for the magnetic field gradient, as well as the obtained magnitude
and spatial variation of the synthetic magnetic field are comparable to the case of the rubid-
ium experiment of [47]. The here introduced different transferred momentum of the Raman
transitions with counter-propagating laser beams only account for changes of order below a
factor of 2. The inhomogeneity of the effective magnetic field B∗z , as shown in Fig. 5.3(b), is
an evident disadvantage of the three-level scheme.

5.3 Synthetic magnetic fields for erbium atoms

The following discussion explores the possibility of generating synthetic magnetic fields for
atomic erbium, using the transitions 4f126s2(3H6)→ 4f11(4I0

15/2)5d5/26s2(15/2, 5/2)0
J ′ , with

J ′ = 5, 6 and 7 at transition wavelengths of λ = 877 nm, λ = 847 nm, and λ = 841 nm respec-
tively. These transitions excite an electron within the incompletely filled submerged f -shell
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Fig. 5.3: Synthetization of magnetic fields in a three-level configuration. (a) Generated vector poten-
tial q∗A∗x(δ)/~ versus the two-photon detuning δ for ΩR = 16EL/~ (blue solid line) and the dependence

obtained from a Taylor expansion up to lowest order in δ (kTaylor
x,min /kL = −δ/ΩR), yielding a linear slope

(orange dotted line). (b) The generated synthetic magnetic field in the case of applying a transverse
detuning gradient δ′/(2π) = 2.66 kHz/µm with a gradient of the real magnetic field vs position y. Here
q∗ = e was assumed.

of the atom, and all have a relatively small natural linewidth, e.g. Γ/2π = 8.0 kHz for the
J = 6→ J ′ = 7 transition near λ = 841 nm wavelength [77], which is also assumed for the
remaining transitions.

As the energetic distance to neighbouring levels in terms of the linewidths is comparatively
large, the systems are very attractive for Raman manipulation with far-detuned optical beams.
Eventually, it is expected that the atomic lifetime will be limited by off-resonant scattering
from e.g. the strong blue cooling transition near 401 nm (with linewidth Γblue/2π ≈ 28 MHz),
which is detuned by an amount of order of the optical frequency. This defines a limit on the
usable detuning from the upper state from the narrow-line transition of order ∆/Γ ' 107,
and within this limit it is assumed in the following that off-resonant contributions from other
excited states are negligible. Regardless of the small scattering rate for radiation corre-
spondingly tuned in the vicinity of such an inner-shell transition, scalar, vector, and tensor
polarizabilities become comparable [75].

5.3.1 Hamiltonian and dispersion relation

From now on a nuclear spin of I = 0 is assumed, as is the case for all stable bosonic erbium
isotopes (e.g. 168Er), so that F = J . As the 3H6 ground state of atomic erbium possesses
a total angular momentum of J = 6 (with L = 5, S = 1), 13 mF -sublevels exist. The here
proposed Raman coupling scheme uses a σ+ − σ− configuration, coupling only states with
∆mF = ±2, so that 7 ground state sublevels |gα〉, with mF = α and α = −6,−4, ..., 6, are
coupled by the Raman beams, which is shown in Fig. 5.4 for the coupling scheme of the
J = 6→ J ′ = 7 transition. The coupling scheme is chosen symmetric, which is believed to
later generate an axially symmetric synthetic magnetic field. The laser electric field, with a
σ+ and a σ− circularly polarized beam respectively, is, as in the three-level case, set to

Elaser = E0,+e+ cos(kLx− ω+t) + E0,−e− cos(−kLx− ω−t). (5.11)

The relative strength of the coupling between a certain ground state sublevel |gα〉 component
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Fig. 5.4: Relevant atomic erbium levels for the J = 6→ J ′ = 7 transition driven by Raman beams in a
σ+−σ− optical polarization configuration. The Raman beams are irradiated in a counter-propagating
geometry.

and an excited state component |en〉 with α = n ± 1 is characterized by the corresponding
Clebsch-Gordan coefficient cα,n.1 The laser coupling between levels can be written in the
form

Ω±cα,α±1 =
〈eα±1|e±d|gα〉E0,±

~
, (5.12)

where d denotes the dipole operator, and Ω+,Ω− the Rabi frequencies for the σ+,σ− polarized
waves, respectively, for a transition with a Clebsch-Gordan coefficient of unity. The upper
states can again be adiabatically eliminated for a large detuning ∆ from the excited levels,
resulting in an effective interaction Hamiltonian for the coupling to the laser fields

Ĥ ′eff =
p2

2m
+

6∑
α=−6
α/2∈Z

~
[
ωAC,α −

α

2
δ
]
|gα〉〈gα|

+

4∑
α=−6
α/2∈Z

~Ω̃R,α,α+2

2
|gα〉〈gα+2|e−i2kLx

+
6∑

α=−4
α/2∈Z

~Ω̃R,α,α−2

2
|gα〉〈gα−2|ei2kLx,

(5.13)

where

Ω̃R,α,α±2 =
cα,α±1cα±2,α±1Ω±Ω∓

2∆
(5.14)

denotes effective two-photon Rabi frequencies between ground state sublevels and

1A list of relevant Clebsch-Gordan coefficients for the three erbium transitions mentioned above can be found
in the appendix.
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Fig. 5.5: Energy quasimomentum dispersion relation for the multi-level erbium case. (a) Dispersion
relation E(kx) of the seven undressed (with ΩR = 0) states for δ = 0. (b) Dispersion of the dressed
state system with moderate Raman coupling (ΩR = 8EL/~, for which ΩR < m2

F,maxEL/~) and δ = 0.
(c) Zoom into the lower energy regions of (b) to reveal the well structure of the lowest energy band.
(d) Dispersion for a larger value of the Raman coupling (ΩR = 64EL/~, for which ΩR > m2

F,maxEL/~,
with mF,max = 6), for which the lowest energetic dressed state level has a near parabolic shape, again
here for δ = 0.

ωAC,α =
c2
α,α+1Ω2

+ + c2
α,α−1Ω2

−
2∆

(5.15)

is the ac Stark shift of the ground state sublevels. Any excited-state shifts δn can be neglected,
as here a large detuning ∆ was chosen. In the basis of eigenstates |gα,p + α~kL〉 with
α = −6,−4, ..., 6, where p = ~k, Eq. 5.13 can be written more explicitely using the matrix
form

Ĥeff =



H−6,−6 Ω̃−6,−4 0 0 0 0 0

Ω̃−4,−6 H−4,−4 Ω̃−4,−2 0 0 0 0

0 Ω̃−2,−4 H−2,−2 Ω̃−2,0 0 0 0

0 0 Ω̃0,−2 H0,0 Ω̃0,2 0 0

0 0 0 Ω̃2,0 H2,2 Ω̃2,4 0

0 0 0 0 Ω̃4,2 H4,4 Ω̃4,6

0 0 0 0 0 Ω̃6,4 H6,6


, (5.16)

where Hα,α = ~(ωAC,α − αδ/2) + ~2((kx + αkL)2 + k2
y)/2m and Ω̃α,α±2 = ~Ω̃R,α,α±2/2. To

find the eigenenergies of the multi-level system, the eigensystem 5.16 was solved numerically.

Fig. 5.5(a) shows the seven energy dispersion curves for δ = 0 of the uncoupled system
(ΩR = 0), and Figs. 5.5(b)-(d) for different values of ΩR = 8EL/~ and 64EL/~ respectively,
where ΩR = Ω±Ω∓/(2∆) denotes the effective two-photon Rabi frequency for Clebsch-Gordan
coefficients of unity.

As in future experiments the atoms are planned to be adiabatically loaded from a BEC into
the ground state of the dressed system, we are here only interested in the dispersion of the
lowest energetic eigenstate. Whereas for lower values of the two-photon Rabi coupling, as seen
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Fig. 5.6: Dependence of the dispersion relation on the two-photon detuning δ. (a) Dispersion for a
large value of the Raman coupling (ΩR = 96EL/~, for which ΩR > m2

F,maxEL/~, with mF,max = 6).
Here a non-vanishing two-photon detuning δ = 4EL/~ was used, resulting in a minimum of the
dispersion curve at kx,min 6= 0. (b) Dispersion for the same ΩR with δ = 0, showing symmetry around
kx = 0. (c),(d) Dispersion for the same ΩR, but with increasing negative detuning δ = −8EL/~
and −16EL/~ respectively, showing kx,min shifting towards kx/kL = mF,max (for increasing positive
detuning δ, kx,min shifts towards −mF,max correspondingly).

in Fig. 5.5(b) and especially (c), that curve has seven minima (corresponding to the seven
ground state sublevels), the plot shown in Fig. 5.5(d) with ΩR = 64EL/~ depicts a smooth,
near parabolic dispersion of the lowest energy dressed state. In general, for the J = 6→ J ′ = 7
transition it appears that for Rabi frequencies ~ΩR & (mF ,max~kL)2/(2m) = m2

F ,maxEL, with
mF ,max = 6, corresponding to the recoil energy associated with the momentum difference
between atoms in an outermost and a central Zeeman sublevel, the dispersion can be ap-
proximated as E(δ) = E0 + ~(kx− kx,min(δ))2/(2m∗) for small enough values of the detuning
δ. Using A∗x(δ) = ~kx,min(δ)/q∗, where in the presence of the transverse gradient of the real
magnetic field δ = δ(y) holds, it becomes apparent that one can describe the atomic dynamics
also in the multi-level case by an effective Hamiltonian of the form of Eq. 5.8b. Additionally,
a scalar potential emerges, leading to a negligible, spatially almost homogeneous energy off-
set, which can be seen in all dispersion relation panels with ΩR 6= 0 as the curve minimas
move away from E(kx)/EL = 0. The dependence of the dispersion relation on the two-photon
detuning δ is depicted in Fig. 5.6, showing a shift of kx,min towards kx/kL = ±mF ,max for
increasing positive or negative δ respectively.

5.3.2 Vector potential and synthetic gauge field

The generated synthetic vector potential can be plotted versus the detuning δ, here shown
in Fig. 5.7(a), which varies smoothly between −6~kL/q

∗ and 6~kL/q
∗ for high values &

m2
F ,maxEL/~ of the effective Rabi frequency ΩR. For too low ΩR this variation of the synthetic

vector potential becomes first bumpy, then even discontinuous as kx,min starts hopping from
one distinct sublevel well of the dispersion relation to the next (as seen in Fig. 5.5(c)). With
Eq. 5.10, again the synthetic magnetic field can be directly calculated from kx,min(y), leading
to the blue solid curve shown in Fig. 5.7(b), for a detuning gradient of δ′/(2π) = 21 kHz/µm,
as obtained with a gradient of the real magnetic field of 70.3 G/cm for the erbium case with
g = 1.166. The synthetic magnetic field is spatially very uniform over a relatively large dis-
tance (∼ 10µm), with additional peaks at the edge. For smaller values of the two-photon Rabi
frequency ΩR the synthetic magnetic field loses spatial homogeneity, and for values below the
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multi-photon recoil even becomes spikey, as shown in Fig. 5.7(c)), again as understood from
the multiple minima of the dispersion curve in this parameter range.

To reach a ratio of ~ωc/EL = 1 (with EL/(2π~) ' 1.68 kHz) in the center, where ωc =
eB∗/m∗ denotes the value of the cyclotron frequency, a gradient of the real magnetic field
of ∂Bx/∂y = 70.3 G/cm was used. This is expected to be a desirable parameter regime for
the observation of fractional quantum Hall physics in such systems, as laid out in [161].
Then the magnetic length calculates as `mag =

√
~/mωc ≈ 0.19µm, which yields an area

per flux quantum in the order of A ∼ 2π`2mag, translating to an atomic area density of
na ' 1/(4π`2mag) ≈ 2µm−2 at half filling. The area of spatial homogeneity of around 10µm
diameter, as depicted in Fig. 5.7(b), should in a circular 2D geometry be sufficient to load up
to about 200 atoms into a Laughlin state. In Fig. 5.7(b) for comparison the spatial variation
of the synthetic magnetic field for the case of an idealized three-level system, as defined in
Fig. 5.1(b), is shown (red dashed line), with parameters chosen as to also obtain ~ωc = EL at
y = 0. It should be noted that typical area densities of cold atom systems differ from values
used in electron fractional quantum Hall systems [162], so that also required (synthetic or
real respectively) magnetic field strengths differ.

For a detuning ∆/(2π) ' 80 GHz from the J = 6→ J ′ = 7 atomic erbium transition, one
arrives at a ratio ∆/Γ = 107. The required Raman beam intensity of ∼ 14.6 W/mm2, corre-
sponding to e.g. ' 115 mW beam power on a 100µm beam diameter, as well as the specified
value of the magnetic field gradient are experimentally well achievable. For the quoted pa-
rameters one e.g. obtains Ω̃R,0,±2 = c0,±1c±2,±1ΩR =

√
2/13 · 3

√
5/96 · 96EL/~ ' 26EL/~,

which is roughly about a factor 2 above the value investigated for rubidium in [47]. The
Clebsch-Gordan coefficients for the σ+ − σ− polarization configuration considered here are
more favorable than for the σ+−π case investigated in the rubidium works, so that the ratio
of Rabi coupling and spontaneous scattering at comparable detuning for the erbium and ru-
bidium cases is expected to be roughly comparable. As mentioned earlier, the lanthanide case
is expected to allow for larger values of ∆/Γ, leading to a reduced influence of spontaneous
scattering. Since for a smooth variation of the low energy dispersion curve with a single min-
imum, ΩR should be above ∼ m2

F ,maxEL/~, from the point of a low spontaneous scattering,
rare earth atoms with not too high values of mF ,max seem advantageous. The latter, however,
limits the magnitude of the obtainable synthetic magnetic flux.

In addition, rare-earth atoms with a comparatively small value of mF ,max have a reduced
magnetic dipole-dipole interaction. This phenomenon is already relevant when comparing
the erbium (168Er) and dysprosium (164Dy) cases, with ratios of the dipole-dipole interaction
and s-wave interaction, assuming the background scattering length, of εdd,168Er ' 0.4 and
εdd,164Dy ' 1.45 respectively. However dipolar physics still remains important also for the
erbium case [163].

The magnitude of the synthetic field can also for the multi-level case be varied by choice
of a suitable detuning gradient δ′. Corresponding to the three-level case, for the here con-
sidered erbium transition one obtains kx,min = −mF,maxkL (mF,maxkL) respectively, assuming
ΩR > m2

F,maxEL/~ in the large detuning limit of mF,maxδ & ΩR (mF,maxδ . −ΩR), as in-
dicated in Fig. 5.6(d). The synthetic field in the central spatial region (around y = 0) will
be of order B∗z ∼ ~kLm

2
F,maxδ

′/(ΩRq
∗) for the here relevant case of ΩR > m2

F,maxEL/~. The
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Fig. 5.7: Synthetization of magnetic fields for the multi-level erbium case. (a) Variation of the
synthetic vector potential A∗x versus the two-photon detuning δ for different values of the effective two-
photon Rabi frequency ΩR. For smaller values of ΩR (roughly below m2

F,maxEL/~, with mF,max = 6),
no continuous variation is observed. Level scheme as in Fig. 5.4. (b) Corresponding synthetic magnetic
field (blue solid line) versus position along the y-axis for a transverse gradient of the real magnetic
field of ∂Bx/∂y = 70.3 G/cm. For ΩR = 96EL/~ a over a relatively large spatial region good spatial
homogeneity is reached. For comparison, also the spatial variation of the synthetic magnetic field
obtained for a pure three-level system as shown in Fig. 5.1(b) is depicted here (red dashed line), where
a two-photon Rabi frequency ΩR = 16EL/~, g = 1, and a magnetic field gradient of 595 G/cm was
assumed, for which the desired value of ~ωc = EL in the center (at y = 0) is achieved. (c) Whereas
the synthetic magnetic field is homogeneous in the center region for large values of ΩR, it becomes
spikey for the case of small values of e.g. ΩR = 16EL/~ < m2

F,maxEL/~. Additionally the extend of
the synthetic field in real space reduces for smaller ΩR, if the condition ~ωc = EL is kept unchanged.

synthetic field is dependent on the effective Rabi frequency ΩR, which is understood from the
influence of the coupling on the dressed system dispersion relation, as depicted in Fig. 5.5.
Since the dispersion curve requires a smooth progression, ΩR is not truly a free parameter, but
preferably has to be choosen as a few times m2

F,maxEL/~. Accordingly, the dependence of the
synthetic field on the maximum Zeeman quantum number mF,max effectively cancels, in view
of the for large values of mF,max required increased Rabi coupling. However, for large values
of mF,max the possible maximum momentum transfer mF,max~kL increases, which leads to a
larger spatial area over which the synthetic magnetic field is imprinted, and correspondingly
to a higher synthetic flux.

Besides the above considered transition, two other, namely the J = 6 → J ′ = 5 and J ′ = 6
components of the 4f126s2(3H6)→ 4f11(4I0

15/2)5d5/26s2(15/2, 5/2)0
J ′ erbium transition, were

investigated regarding their use for synthetic magnetic fields. A comparison can be found in
the top panel of Fig. 5.8, where dispersion curves for the J = 6→ J ′ = 5, 6, 7 transitions are
given for δ = 4EL/~ and ΩR = 96EL/~. The middle and lower panels depict the detuning de-
pendence of the synthetic vector potential and the spatial variation of the synthetic magnetic
field respectively. For the J = 6→ J ′ = 5 component it is also expected to reach a spatially
quite uniform synthetic magnetic field and obtain ~ωc = EL in the center, with comparable
parameters for the transverse magnetic field gradient. However for the J = 6→ J ′ = 6 case
the synthetic field essentially reduces to a single divergent spike in the center, which is un-
derstood from the less favorable variation of Clebsch-Gordan coefficients with the Zeeman
quantum number, with relatively small couplings near the center of the Zeeman diagram
(|mF | ≈ 0). Therefore, the lowest energetic dispersion curve has two, rather than a single
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J ′ = 5 J ′ = 7

ΩR/EL δ′/2π ∂Bx/∂y I δ′/2π ∂Bx/∂y I

32 9.18 28.14 4.52 10.43 31.94 4.90

64 15.78 48.36 8.98 14.99 45.92 9.74

96 24.11 73.88 13.51 20.96 70.34 14.64

Tab. 5.1: Calculated experimental parameters for different Raman coupling strengths. Detuning gra-
dient δ′/2π (in kHz/µm), real magnetic field gradient ∂Bx/∂y (in G/cm) and Raman beam intensity
I (in W/mm2), chosen to reach a cyclotron frequency of ~ωc = EL, for the two feasible Raman transi-
tions for different values of the two-photon Rabi frequency ΩR for unity Clebsch-Gordan coefficients.

minimum. It is reckoned that the J = 6 → J ′ = 6 component cannot be used for the pur-
pose of generating a synthetic magnetic field suitable to construct an experimental system for
reaching fractional quantum Hall physics.

Tab. 5.1 gives a comparison of the required gradients of the real magnetic field to reach
a value of the cyclotron frequency of ~ωc/EL = 1 at y = 0 for different values of the two-
photon Rabi frequency ΩR for both the J = 6 → J ′ = 5 and J = 6 → J ′ = 7 transitions.
For the lower values of ΩR, while requiring smaller Raman beam intensities and gradients
of the real magnetic field, the spatial homogeneity of the synthetic gauge field reduces. It
was found that for the both here considered suitable erbium transitions for sufficient spatial
homogeneity, the two-photon Rabi frequency ΩR should lie at least above 50EL/~.

5.4 Laughlin-Gap

There exist two physical regimes for bosonic atoms in a synthetic magnetic field. If the ap-
plied artificial field is small, the ground state remains a Bose-Einstein condensate (BEC),
characterized by a macroscopically occupied single-particle wavefunction, and the artificial
magnetic field can induce vortices in the condensate. However as long as the density of vor-
tices is small compared to the density of atoms, the condensate is not destroyed. In the
ground state the vortices form a regular structure closely related to the Abrikosov lattice of
type-II superconductors [164]. This regime is experimentally well accessible. For much larger
values of the applied artificial magnetic field, when the density of vortices approaches that of
the atomic gas, the vortex lattice melts, and in the presence of interactions the ground state
can become a bosonic quantum Hall liquid.

All atoms subject to the synthetic gauge field have to be in the lowest Landau level (LLL), if
one wants to observe the fractional quantum Hall effect in the latter regime. In the calcula-
tions below a LLL with a filling factor of ν = 1/2 is assumed, and theory results from [165]
are used, in which an ensemble of atoms subject to s-wave interactions is considered. The
filling factor is here defined as

ν =
Na

Φ
=

hNa

q∗B∗z
, (5.17)
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where Na is the number of atoms, and Φ = q∗B∗z/h is the number of vortices or magnetic flux
quanta, respectively, in the sample area. The true ground state becomes a highly correlated
Laughlin state in the presence of interactions [165,166], which is particularly interesting since
some of the excitations above this ground state possess anyonic character [167]. The ener-
getic gap to the next excited state, the so-called Laughlin gap ∆ELG, should be sufficiently
large to allow for a selective loading by adiabatic mapping from e.g. an initial Bose-Einstein
condensate.

It may seem preferable to use small atom numbers in view of experimental limits on the
experimentally realizable flux of the gauge field. In the investigation below, it is assumed
that the besides the usual s-wave interactions additional dipole-dipole interactions present
for the erbium case do not introduce significant alterations to the described picture. It should
be noted that in the case of longer-range interactions, such as 1/r3 couplings due to dipole-
dipole interactions, higher order Haldane pseudopotentials increase in importance, so that
the ground state may not be well characterized by a Laughlin state. For large filling fractions
however, such as ν = 1/2, the ground state is still a Laughlin state, as discussed for example
for the case of bosons with van-der-Waals 1/r6 interactions in [168]. Here, a disk-shaped
trapping geometry called microtrap is considered, with the confinement along the axis of the
synthetic magnetic field (i.e. the z-axis) being sufficiently strong to restrict the atomic dy-
namics to the two transverse directions (i.e. in the x-y plane).

In the following the case of Na = 4 atoms per microtrap is considered. Then the Laughlin gap
can be estimated to ∆ELG ≈ 0.16gint, where gint =

√
32π~ωcas/`z is the 2D interaction coeffi-

cient, as the s-wave scattering length and `z =
√

~/mωz the confinement length in z-direction.
Here ωz is the corresponding trapping frequency. One way to realize the disk-shaped config-
uration is by the dipole potential induced by a far-detuned one-dimensional standing wave
with wavelength λtrap. In this configuration one obtains ωz/(2π) =

√
2U0/m/λtrap, where

U0 denotes the trap depth. For a trapping light wavelength λtrap = 1.064µm and a typical
trap depth U0 = 50EL,trap, with EL,trap = h2/(2mλ2

trap), one arrives at `z ' 64 nm and
ωc/(2π) = 14.8 kHz. To reach the quantum Hall regime with roughly ~ωc = EL, as expected
to achieve using parameters described in section 5.3.2, a Laughlin gap of ∆ELG ≈ h · 720 Hz
is estimated for the case of a Raman beams wavelength tuned to near the J = 6 → J ′ = 7
transition and a s-wave scattering length of as = 200a0 [36], where a0 is Bohr’s radius.
For larger atom numbers the predicted size of the Laughlin gap slightly reduces, and in the
asymptotic case (Na � 1) reaches ∆ELG ' 0.1gint, corresponding to ≈ h · 450 Hz for the
above parameters. Accordingly for the case of the J = 6 → J ′ = 5 transition a Laughlin
gap of ∆ELG ≈ h · 600 Hz is obtained for Na = 4, and respectively ∆ELG ≈ h · 380 Hz in the
asymptotic case with Na � 1.

Considering the calculated gap sizes, adiabatic loading from a Bose-Einstein condensate seems
realistic. Moreover larger atom numbers per trap are experimentally feasible, where one ben-
efits from the incompressibility of the Laughlin phase, pushing quasi-holes to the outer trap
regions, leading to a useable configuration when applying spatially resolved detection tech-
niques only monitoring the central trap region.
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5.4 Laughlin-Gap
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Fig. 5.8: Comparison of results for the different narrow-line transition components J = 6→ J ′ = 5, 6,
and 7 (left, middle, and right panels respectively) of the erbium transition, where ΩR = 96EL/~ is
assumed in all cases. (a) Energy wavevector dispersion E(kx) for a two-photon detuning δ = 4EL/~.
(b) Synthetic vector potential A∗x versus the two-photon detuning δ, and (c) the synthetic magnetic
field versus position y for a transverse gradient of the (real) magnetic field of 73.9 G/cm in the case
of J ′ = 5 and of 70.3 G/cm in the case of J ′ = 7, for which in both cases ~ωc = EL is reached in the
center. Then for both the J = 6→ J ′ = 5 and J ′ = 7 transitions the lowest energetic dispersion curve
has only a single minimum, enabling the synthetization of a – within the central region – spatially
relatively homogeneous synthetic magnetic field. In the case of the J = 6→ J ′ = 6 transition the
lowest energy dispersion curve for the same value of the Raman coupling has two minima, with the
absolute minimum alternating from kx,min < 0 to kx,min > 0 for δ > 0 and δ < 0 respectively, so
that the synthetic vector potential exhibits a step-like behaviour. The resulting expected synthetic
magnetic field (shown here for a transverse gradient of the real magnetic field of 70.3 G/cm) exhibits
a divergence at y = 0, as understood from the here discontinuous variation of the vector potential
versus δ. The synthetic magnetic field in the latter case is estimated to not be usable for the purpose
of constructing an experimental system capable of reaching fractional quantum Hall physics.
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6 Conclusion and outlook

Quantum degenerate atomic rare earth gases are attractive systems for both studies of novel
dipolar gas effects as well as for the physics of atoms in strong gauge fields. This thesis
reports of an experiment where an atomic erbium Bose-Einstein condensate was generated in
a hybrid crossed optical dipole trap realized with a focused mid-infrared beam near 10.6µm
wavelength generated by a CO2 laser and a beam near 1.064µm wavelength generated by a
Nd:YAG laser. In further work of this thesis, a proposal for the generation of strong synthetic
magnetic fields based on ultracold erbium atoms is given.

In the first experimental part of the thesis, ultracold erbium atoms were generated by initially
decelerating an erbium atomic beam with a Zeeman slower, as to load a magneto-optical trap
operated on a narrow-line transition. After spatially compressing the trapped atomic ensem-
ble, it is loaded into an optical dipole trap potential provided by a CO2 laser beam near
10.6µm wavelength, which then is supplemented by an additional crossing beam stemming
from a Nd:YAG laser operated near 1064 nm wavelength during evaporation. Here it was
possible to increase the phase space density above the critical value of 2.612, and observe the
formation of a Bose-Einstein condensate consisting of up to 3.5 · 104 erbium atoms, showing
an improvement of more than 15 % compared to earlier iterations of the experiment with a
single beam optical dipole trap setup. The BEC exhibits a condensate lifetime of up to 12 s,
increased by 30 % in comparison to former single beam optical dipole trap setups. Further-
more the general long-term stability of the experimental setup was improved significantly,
leading to much less maintenance efforts and downtimes of the experiment, which arguably
was the main challenge of the old setup.

As an experimental outlook it should be mentioned that also other optical dipole trap con-
figurations are tested in setups succeeding this thesis, especially a crossed optical dipole trap
consisting of a CO2 laser beam and an erbium fiber laser beam operated at 1550 nm to po-
tentially further optimize condensate lifetimes due to lower scattering rates with the cross
beam in comparison to Nd:YAG laser light. In parallel the experimental realization of syn-
thetic magnetic fields by phase imprinting via Raman manipulation in prospect of fractional
quantum Hall physics has begun at this experiment, with theoretical work carried out within
the scope of this thesis to determine critical future experimental parameters.

For the latter the laser-induced synthetization of gauge fields in the atomic erbium lan-
thanide system with a ground state orbital angular momentum L > 0 was investigated here.
A configuration with two counter-propagating oppositely circularly polarized Raman beams
was shown to be an attractive approach for both on J = 6→ J ′ = 5 and J ′ = 7 narrow-line
atomic erbium transitions. In the presence of a transverse gradient of the real magnetic field,
sufficiently strong synthetic magnetic fields with good spatial homogeneity are predicted to be
possible, with estimated photon scattering rates roughly two orders of magnitude lower than
in implementations with alkali atomic systems. Moreover the size of the expected Laughlin

85



6 Conclusion and outlook

gap arising from s-wave interactions for typical experimental parameters was estimated, show-
ing that rare earth atomic systems are attractive candidates for experimental investigations
of fractional quantum Hall physics.

For the future, it will be important to experimentally realize synthetic magnetic fields in
an erbium atomic system. Attractive areas of research interest then include the investigation
of vortices in such a dipolar quantum gas, as well as the generation and detection of frac-
tional quantum Hall states. Here theoretical work describing the form of the ground state
in the presence of both the synthetic magnetic field and dipolar interactions will be cru-
cial [169,170]. A far future outlook would be the achievement of fundamental understandings
of fractional quantum Hall states and their topology-induced robustness as well as their non-
Abelian dynamics, possibly supporting the realization of a fault-tolerant topological quantum
computer [145].
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Appendix

In Tab. 6.1 the Clebsch-Gordan coefficients for the here relevant ground state sublevels of
the three transitions with J = 6 → J ′ = 5, 6, 7 respectively are listed. Here mF denotes the
ground state sublevel from which a transition to mF ′ = mF + 1 (with ∆mF = +1) or mF − 1
(with ∆mF = −1) originates.

mF −6 −4 −2 0 2 4 6

J = 6→ J ′ = 5

∆mF = +1
√

11
13

√
15
26

√
14
39

√
5
26

1√
13

1√
78

∆mF = −1 1√
78

1√
13

√
5
26

√
14
39

√
15
26

√
11
13

J = 6→ J ′ = 6

∆mF = +1 − 1√
7
−
√

5
14 −

√
10
21 − 1√

2
−
√

3
7 −

√
11
42

∆mF = −1
√

11
42

√
3
7

1√
2

√
10
21

√
5
14

1√
7

J = 6→ J ′ = 7

∆mF = +1 1√
91

√
6
91

√
15
91

2√
13

3
√

5
91

√
66
91 1

∆mF = −1 1
√

66
91 3

√
5
91

2√
13

√
15
91

√
6
91

1√
91

Tab. 6.1: Relevant Clebsch-Gordan coefficients for the three transitions J = 6→ J ′ = 5, 6, 7.
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[93] N. Leefer, A. Cingöz, B. Gerber-Siff, A. Sharma, J. R. Torgerson, and D. Budker,
Transverse laser cooling of a thermal atomic beam of dysprosium, Phys. Rev. A 81,
043427 (2010).

[94] W. D. Phillips and H. Metcalf, Laser Deceleration of an Atomic Beam, Phys. Rev. Lett.
48, 596–599 (1982).

[95] T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, Narrow line cooling and
momentum-space crystals, Phys. Rev. A 70, 063413 (2004).

[96] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Magneto-Optical Trapping and
Cooling of Strontium Atoms down to the Photon Recoil Temperature, Phys. Rev. Lett.
82, 1116–1119 (1999).

93



BIBLIOGRAPHY

[97] C. V. Harnik, A hybrid crossed optical dipole trap for Bose-Einstein condensation of
atomic erbium, Masterarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn (2019).

[98] P. W. Langhoff, S. T. Epstein, and M. Karplus, Aspects of Time-Dependent Perturbation
Theory, Rev. Mod. Phys. 44, 602–644 (1972).

[99] J. Stark, Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien. I.
Quereffekt, Ann. d. Phys. 348, 965–982 (1914).

[100] J. Stark and G. Wendt, Beobachtungen über den Effekt des elektrischen Feldes auf
Spektrallinien. II. Längseffekt, Ann. d. Phys. 348, 983–990 (1914).

[101] A. Mosk, S. Kraft, M. Mudrich, K. Singer, W. Wohlleben, R. Grimm, and M. Wei-
demüller, Mixture of ultracold lithium and cesium atoms in an optical dipole trap, App.
Phy. B 73, 791–799 (2001).

[102] A. N. Nikolov, E. E. Eyler, X. T. Wang, J. Li, H. Wang, W. C. Stwalley, and P. L.
Gould, Observation of Ultracold Ground-State Potassium Molecules, Phys. Rev. Lett.
82, 703–706 (1999).

[103] T. Takekoshi, J. R. Yeh, and R. J. Knize, Quasi-electrostatic trap for neutral atoms,
Opt. Commun. 114, 421–424 (1995).

[104] J. H. Becher, S. Baier, K. Aikawa, M. Lepers, J.-F. Wyart, O. Dulieu, and F. Ferlaino,
Anisotropic polarizability of erbium atoms, Phys. Rev. A 97, 012509 (2018).

[105] C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in
a crossed dipole trap, Phys. Rev. Lett. 74, 3577–3580 (1995).

[106] T. Takekoshi and R. J. Knize, CO2 laser trap for cesium atoms, Opt. Lett. 21, 77
(1996).

[107] M. Weitz, S. Friebel, R. Scheunemann, J. Walz, and T. W. Hänsch, A CO2 laser
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bor tatkräftig unterstützt haben. Das war vor allem Roberto Röll, mit dem das Forschen
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