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1 Introduction

1.1 Overview

This thesis is concerned with two objects from seemingly different fields: on the one hand,
the membrane model from probability theory, and on the other hand, the Green’s function of
the discrete Bilaplacian from the theory of partial differential equations (PDEs) or numerical
analysis. As it turns out, though, these two objects are closely related, and an improved
understanding of one of them can also help in the study of the other.

The membrane model is an example of a random interface model. Such models arise
when studying the thermal fluctuations in interfaces in physics, chemistry and biology. The
membrane model, specifically, is relevant when this interface is very flexible so that the
bending modes dominate. It is used, for instance, to describe the behaviour of biomembranes
such as those in the walls of cells.

There are also purely mathematical reasons to be interested in the membrane model.
Namely, it is a natural variant of the most fundamental example of a random interface
model, the so-called discrete Gaussian free field. This model has some particularly nice
features (such as random walk representations and correlation inequalities), and in the
last three decades this model has been very well understood. On the other hand, there
are general classes of random interface models where very little is known. The membrane
model might now serve as a stepping stone to investigate these more complicated models.
Namely, it shares some of the features of the discrete Gaussian free field, but not all of them.
Thus, even though the membrane model is expected to behave similarly to the discrete
Gaussian free field, one is forced to develop new techniques to make this rigorous.

In this thesis we study various features of the membrane model, filling several gaps in the
literature. In each case the answer had previously been known for the discrete Gaussian
free field, and we extend these results to the case of the membrane model.

In Chapter 3 we study the effect of a hard wall that forces the field to be positive on
the interface, focussing on dimensions 2 and 3. This chapter is based on the publication
[BDKS19] which is joint work with Simon Buchholz, Jean-Dominique Deuschel and Noemi
Kurt and has appeared in the Electronic Communications in Probability.

In Chapter 4 we investigate the behaviour of the maximum of the field in dimension 4.
This chapter is based on the publication [Sch20a] which has appeared in The Annals of
Probability.

Chapter 6 is dedicated to the effects that a small attractive potential has on the interface, in
dimensions 4 and above. This potential localizes the field, and we study how this localization
manifests itself. This chapter is based on the preprint [Sch20b] that will be submitted for
publication.

The starting point for all these results is the fact that the covariance function of the
membrane model is the Green’s function of the discrete Bilaplacian. Heuristically, this object
should behave similarly to the Green’s function of the continuous Bilaplacian. A major
part of this thesis will be to make this heuristic rigorous. To that end we combine various
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methods from PDE theory with methods from numerical analysis.

In fact, in Chapter 2 we prove estimates for the Green’s function in dimensions 2 and
3 using a compactness argument and results for continuous elliptic equations in domains
with singularities. This chapter is the basis for the results in Chapter 3. It is based on the
publication [MS19], which is joint work with Stefan Miiller and has appeared in the Vietnam
Journal of Mathematics.

Furthermore, as a part of Chapter 4 we prove estimates for the Green’s function in
dimension 4, using estimates for finite difference schemes and preexisting results on the
continuous Green’s function.

For the application in Chapter 4 we do not need the full strength of the estimates for the
finite difference scheme we use. Optimizing such estimates is, however, very interesting
for numerical analysis itself. In Chapter 5 we improve the best known estimates on the
approximation quality of the scheme we use in Chapter 4 and some other schemes. This
chapter is based on the publication [MSS20] which is joint work with Stefan Miiller and
Endre Siili and has appeared in the SIAM Journal on Numerical Analysis.

In this introductory chapter we will lay the foundation for these results and discuss the
necessary background, and we will give a more detailed description of the results in the
following chapters.

In Section 1.2 we discuss random interface models and their basic properties. We begin
by describing the motivation from physics and biochemistry for the study of these mod-
els. Each random interface model is given as a probability measure, the so-called Gibbs
measure, for a certain Hamiltonian, and so we explain the physical background as well as
the mathematical theory underlying these measures. We then introduce some important
examples of random interface models (including the membrane model), and describe some
of their basic properties. In particular, we discuss the existence of subcritical, critical and
supercritical dimensions. We also survey the most important mathematical tools used to
study random interface models. Finally, we describe how to simulate random interface
models on a computer, and how the images throughout this introduction were generated.

In Section 1.3 we then give more details on the membrane model. We compare it with
a few other random interface models, namely the discrete Gaussian free field (or gradient
model), the V ¢-model with strictly convex V and the V ¢-model with slightly non-convex V.
We discuss various aspects of these models, reviewing the existing results in the literature
and describing the new contributions of this thesis. We begin with infinite volume limits
of the interfaces, and then discuss the maximum of the fields. Afterwards, we discuss
the phenomena of entropic repulsion, pinning, and wetting. Finally, we mention a few
further interesting questions. As part of this section, we outline the results of Chapters 3,
4 and 6 on entropic repulsion for the subcritical membrane model, the maximum of the
critical membrane model, and pinning for the critical and supercritical membrane model,
respectively.

In Section 1.4 we describe the connection between the membrane model and the Green’s
function of the discrete Bilaplacian, and discuss discrete Green’s functions more generally.
We begin with a summary of some facts from elliptic PDE theory and numerical analysis.
We then focus on discrete Green’s functions and describe the tools available to study them.
As part of this we summarize the results of Chapters 2 and 4 on the subcritical and critical
Green’s function of the discrete Bilaplacian. The estimates from Chapter 4 are based on
estimates for a certain finite difference scheme. We explain this connection, and describe
further results on such schemes that are contained in Chapter 5.



1.2 Random interface models

Most of the content of this introduction is an exposition of well-known results in the
literature. Other than the summaries of the results of the later chapters, the only slightly
original parts are the description of some algorithms to generate samples from the membrane
model in Section 1.2.7, and the discussion of Hessian Gibbs measures in Section 1.3.1.

1.2 Random interface models

In this section we will give some background on random interface models, describe some
examples and discuss basic properties.

1.2.1 Motivation
Macroscopic interfaces

In physics there are many systems that can form sharp interfaces. Let us discuss two main
examples.

As a first example, consider a substance that can be in the solid, liquid or gaseous phase.
Under certain circumstances two or more of these phases can coexist, and there will be
interfaces between them. For example, for water at 0° Celsius and standard pressure both
ice and liquid water can appear. More generally, a variety of materials can form stable
crystals within a surrounding liquid. We assume that the system is in equilibrium. This
assumption is not always reasonable (e.g. ice crystals look very different than the conjectured
equilibrium shape), but for some materials such as small crystals of certain metals it aligns
well with experiments [RW84]. Under this equilibrium assumption, the macroscopic theory
of interfaces for crystals was pioneered by Wulff [Wul01]. He proposed that the atoms in the
crystal arrange themselves in a shape U C R so that U minimizes the "Wulff functional”

w) = /au o(n(x)) dH?(x)

under the constraint that the volume of U is fixed. Here n € S? is a normal vector to oU,
and o is the so-called surface tension. This variational problem is an anisotropic variant of
the isoperimetric problem. Its minimizer (the Wulff shape) can be constructed using the
so-called Wulff construction, and in practice this variational problem is well understood.
Note that if we write 9U locally as the graph of a function u: A C R*> — R, then the
integrand in the Wulff functional becomes a certain functional of Vu.

Our second example of interfaces is from biology, and for details on the following see
[Lip95]. Many biological membranes, such as the wall of a cell, are formed by bilayers
of lipids. Lipids are molecules with a hydrophilic head and a hydrophobic tail, and in a
solution they can arrange themselves in quite stable double layers with the hydrophobic
tails pointing inwards. Such a structure is called a bilayer. The lipid molecules in the bilayer
are typically in the liquid phase, meaning that the single lipids can move almost freely
around in the membrane while maintaining the bilayer structure. The lipid bilayers are
quite resistant to stretching (instead they rupture before stretching significantly) but have
low resistance to bending. This suggests that the energy of a bilayer should depend mainly
on the curvature of the bilayer. Indeed, Helfrich [Hel73] (cf. also [BWW17]) proposed a
variational problem for the surface X occupied by a closed bilayer, namely that it minimizes
the "Helfrich functional"

H(Z) :/Zsz(H—co)z%—deHz(x).
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Here H and K are the mean and Gaussian curvature, respectively, k. and k are bending
moduli and ¢y is the spontaneous curvature. By the Gauss-Bonnet theorem the integral
over kK evaluates to 27tkx(XZ), where x(Z) is the Euler characteristic of =. Thus, for fixed
topology of the bilayer we can neglect the second summand and study

k

AT) = / 2 (H = coPdH2(x)
b

instead. We can again write X locally as the graph of a function u: A C R? — R. If the

spontaneous curvature is close to 0 and the bilayer is locally almost planar, we can neglect

Vu, and the dominant term looks like % |V2u/|?. In particular, the functional now involves

only second derivatives.

Microscopic interfaces

The next question then is to analyse the interfaces that we just described on a microscopic
level, to study thermic fluctuations and to derive the respective functionals from atomistic
theories. The tools for this issue are provided by statistical mechanics (cf. the next section).

For our first example of a solid-to-liquid transition this line of research was initiated by
Dobrushin, Kotecky and Shlosman [DKS92], who analysed macroscopic interfaces arising
from the Ising model, and since then there have been many works in that direction, cf.
[BIVOO]. On a macroscopic level, the Wulff shape is a deterministic subset of R3, and we
can represent its boundary locally as the graph of a function R?> — R. On the microscopic
scale, however, the interface will not be stationary, and there will be fluctuations. We make
the rather strong simplifying assumption that these fluctuations can locally be represented
as the graph of a random function A C R?> — R (and thus we in particular assume that
there are no holes or overhangs in our interface). As we are interested in atomistic models,
it is reasonable to assume that A is discrete, and we take it to be a subset of the lattice
Z? or (hZ)?. We are thus left to study random height functions on A. The probability to
observe a certain height function (i.e. a certain microscopic configuration) will depend on
the temperature of the system and on the energy of that configuration. It turns out that
this energy is (at least approximately) a certain functional of the discrete gradient. This is
unsurprising when one compares it with the Wulff functional itself.

For our second example of bilayer membranes one can, in principle, proceed similarly.
We are not aware of any rigourous mathematical derivation of the properties of membrane
bilayers from atomistic models, but there many results in the physics literature on thermal
fluctuations in bilayers and how they influence the macroscopic properties of the membrane
(see e.g. [DGT06, NP87, Lip95, HL97, RCMS05]). On a microscopic level these fluctuations
are once again governed by an energy consisting of discrete curvature terms, and so we
arrive once again at the problem of studying the arising probability distribution of height
functions.

More generally, a random interface model will be a probability distribution on functions
A — R, where A C RY. Before we discuss the actual random interface models that we are
interested in, let us discuss the physical and mathematical background necessary to choose
and define these probability distributions.



1.2 Random interface models

1.2.2 Statistical mechanics

In our examples of interfaces we encountered the situation that the interface takes a certain
deterministic macroscopic equilibrium shape. Its microscopic state, meanwhile, is hard or
rather impossible to predict, and moreover it will change incredibly fast, so that it does not
really make sense to speak of "a" microscopic state, but rather of an ensemble of such. This
idea can best be formalized by using concepts of statistical mechanics.

More generally, statistical mechanics is concerned with the study of systems with many
degrees of freedom, and with deriving their behaviour from their microscopic structure. The
subject was introduced in the late 19th century by Boltzmann, Gibbs, Maxwell and others,
and has since developed into an important part of modern physics. A landmark reference is
[Gib02], and a comprehensive treatment can be found in [LL58]. We will briefly discuss the
notions that are most important to us, mostly following [Tho72, FV18].

We would like to describe the macroscopic behaviour of a physical system consisting of a
large number of constituents (e.g. the atoms in a crystal or the molecules that form a gas). In
classical physics, such a system can be parametrized by the positions and momenta of all the
constituents, and knowing these, the Hamilton equations describe the state of the systems
for all future times. In practice, however, this is completely infeasible: there is no practical
way to know the initial state of a system. Even if one did, the evolution of the system would
be incredibly complicated due to the huge number of constituents. Furthermore, we are not
actually interested in the detailed evolution of the constituents, but rather in the evolution
of some macroscopic quantities.

The starting point of statistical mechanics is thus to replace the given microscopic initial
state w that we have no way to know with a probability distribution I over the set of all
microstates (). Of course, this probability distribution should be supported only on those
microstates that are compatible with our knowledge about the macrostate. For our analysis
we need a Hamiltonian H: () — R that gives the energy of each microstate, and an a priori
measure A on Q) (typically the Hausdorff measure). We restrict ourselves to the case that our
systems are static on a macroscopic scale.

Suppose that all we know about our system is that it consists of N particles that are
located in some A C RY with volume |A| = V and that the energy of our system is some
constant E. Denoting by ()5 y the set of all microstates compatible with the assumptions on
the number of particles and their occupied volume, it has then been postulated by Gibbs
that if we have no further information the equilibrium measure on Q5 x should be given by

1

AEN

NEN(dw) = Lg(w)=£lweasyAdw) .

Here 1 is equal to 1 if s is true and otherwise 0. This is the so-called microcanonical
ensemble, and the normalization factor Z g n is the so-called microcanonical partition
function.

Of greater interest to us, however, is a different ensemble where we do not fix the energy,
but the temperature. Here we need to proceed differently as it is not clear how to define
the temperatue T(w) of a microstate w. Physically, one way to prescribe the temperature is
to assume that our system is in contact with a heat reservoir, i.e. with another system with
which it can exchange energy. If that other system is very large, this will lead to both systems
being at approximately the temperature of the heat reservoir. Assuming that both systems
together are described by the microcanical ensemble, one can, in principle, calculate the
marginal distribution of the system we are interested in. When one pursues this calculation
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at least on a heuristic level, one obtains the equilibrium measure

ap N (dw) = exp(—BH(w))Lyea, A (dw).

ZABN
Here f is proportional to %, and we choose units in such a way that the proportionality
constant is equal to 1. This is the so-called canonical ensemble, and Z, g v is the canonical
partition function. The factor exp(—pH(w)) is called Boltzmann weight.

Another viewpoint on the canonical ensemble is that it is chosen in such a way as to
maximize the relative entropy of P \; with respect to A under the constraint that the
expected value of the energy takes some fixed value.

The canonical ensemble is also called the (canonical) Gibbs measure. The Boltzmann
weight is the larger, the smaller H(w) is. If B is large (i.e. the temperature is low) then
the Gibbs measure will mostly be supported on those states with small energy. On the
other hand, if B is small (i.e. the temperature is high) then the Gibbs measure does not
discriminate as much between states with lower and higher energy.

Often one does not know (or care about) the precise value of N beyond the fact that it
is very large. This suggests that one should directly study the system in the limit N — oo.
Then the volume V needs to grow simultaneously in such a way that the particle density &
has a finite limit. This procedure is called taking the thermodynamic limit.

1.2.3 Spin systems, Gibbs measures and random interface models

We now apply the theory of the previous section to the case of random interface models,
aiming for mathematical rigor. We follow [Geo88, Bov06, FV18]. In particular, in [Geo88]
the theory is described in much greater generality.

We are looking for a discretized mathematical model of an interface. This interface is
formed by a set of particles in R¢*! such that the first d coordinates of each particle are fixed,
while the (d + 1)-th coordinate is free.

We thus consider an at most countable S C RY as the parameter set (we will take S = Z¢
or S = (hZ)! for some h > 0), and a set E C R (we will take E = R or E = Z) with the
Borel o-algebra £ and a reference measure A as the single spin space. We consider the set
Q) = E® of all possible configurations, equipped with the product c-algebra F = £°. Let
P(Q), F) be the set of all probability measures on Q). For a ¢ € Q) we write ¢, for the value
of patx € S,and for A C Swelet Fp = 0(¢Py: x € A).

Given a F-measurable Hamiltonian H: QO — R U {+0c0} we would now like to define the
canonical ensemble as in the previous section, i.e. the measure

P(dy) = - exp(—BH(p)) [TAdp).
B x€eS

If S is finite this definition works well. However, reasonable Hamiltonians will be infinite
when S is infinite, and so we need a different construction in that case. The crucial idea here,
due to Dobrushin, Lanford and Ruelle [Dob68, Dob70, LR69], is to define a measure u as a
Gibbs measure for H, if for every finite A C S the law of the field under u conditioned on
the values of the field outside of A is the correct one.

We restrict ourselves to finite-range interactions. That is, we consider an interaction of
the form ® = {® 4} acs, where ®4: S — R is Fy-measurable (and by A € S we denote
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that A is a compact, i.e. finite, subset of S). We also assume sup , _q || P4/~ < oo, and that
®,4 = 0when |A| > R for some R. Then for A € S we can define the Hamiltonian

Ha(p) = ). @a(yp)

AES
ANNED
and for ¢ € Q) the Gibbs specification
1
Pg’f%,ﬁ(dﬂb) = 9 exp(—BHA (¢ H A(dy) H g, (dpy).
Zonp xeA xeS\A

One can check that this definition is self-consistent in the sense that if A C A’ then
IPED Z\, (de")PP EDK/S ]Péfz\,,ﬂ for each ¢ € Q). (1.2.1)
We then define that a probability measure IPg g on (Q), F) is a Gibbs measure for & if

Pop(E | Fae) =Py, s(E) Popas. foreach E € Fand A € Z9.

One can show that IP¢ g is a Gibbs measure if and only if it satisfies the analogue of (1.2.1)
in infinite volume, i.e. if and only if forany A C S

Pg,3(dg’) P ;A)ﬁ — Po. (1.2.2)

This equation is called the DLR equation after Dobrushin, Lanford and Ruelle. The relation
(1.2.2) formalizes the intuition that a system is in equilibrium if any of its subsystems is in
equilibrium and thus distributed according to the canonical Gibbs measure.

Of course, this raises the question of existence and uniqueness of Gibbs measures. In
our case the spin space is non-compact, and so neither question is trivial. In fact, it may
happen that there is no infinite volume Gibbs measure or that there are infinitely many. One
may hope to construct a Gibbs measure by choosing a specific sequence of domains (e.g.
An = [—N, N]4N Z9) together with a choice of boundary data (e.g. ¢ = 0) and considering
a weak limit of the corresponding sequence of finite volume Gibbs measures (the so-called
thermodynamic limit). If such a weak limit exists, it is easy to see that in our setting it will
be a Gibbs measure.

We will discuss the question of existence and uniqueness of Gibbs measures in more detail
once we have introduced some examples of random interface models.

1.2.4 Examples of random interface models

Now that we have laid the theoretical foundations, we can introduce and describe some
important examples of random interface models. As explained in the previous section, to
describe an interface model we need an interaction ® and an inverse temperature . From a
physical point of view it would be important to treat these two objects separately. However,
all the models we consider have Hamiltonians that allow an arbitrary positive prefactor (and
so we can include g in that prefactor) or have a Hamiltonian that is positively homogenous
of some degree (and so a change of 8 only scales the field by a deterministic factor). Thus,
there is no loss when we set B = 1 in all of the following and omit it in our notation.

We choose S = Z9 as our parameter space. In most of the following, we describe
continuous models in the sense that we take the single spin space E = R. At the end we
will briefly mention discrete models where E = Z. For now, we always take the reference
measure A(dy) to be the Lebesgue measure (simply denoted di). We also write d(x, A) for
the (Euclidean) distance from x to A.
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Discrete Gaussian free field

The first and most important example of a random interface model is the discrete Gaussian
free field (also called gradient model or harmonic crystal). This model is given by the
interaction @4 (1) = 1 ¥rea |Vix|?, where Vi, := (D}9y)L ;| := (Yxre, — Px)% ;. This
yields the measure

@) (dy) = 20 ——— exp —% Yo Vi | [T dys T 0. (dgpy). (1.2.3)

V,A xezd xeA xeZ\A
d(x,A)<1

If ¢ = 0 we can remove the restriction on x in the sum, so that the measure with zero
boundary values takes the form

—exp (— ). |V1¢x|2> [Tde: T do(dyy) (1.2.4)

xeZd xEA xe€ZI\A

Py a(dy) =

where we drop the superscript (0) for brevity.

The Hamiltonian here is the discrete L2-norm of the gradient of ¢. It thus penalizes
large slopes in 1, in line with what we expected for the solid-liquid-interface models in
Section 1.2.1. This model is particularly nice from a mathematical point of view. Namely,
the Hamiltonian is a quadratic function of ¢, and so the measure is Gaussian.

The discrete Gaussian free field has a continuous analogue, the (continuous) Gaus-
sian free field. Informally, this is the measure on functions ¢: RY — R with density
2 exp (—3||V[2,) dy, but the actual definition is as a Gaussian measure on a negative
Sobolev space, see e.g. [She07]. This measure appears as a scaling limit of a variety of
models in probability, e.g. the dimer model in integrable probability [Ken01] or fields in
random matrix theory [RV07]. It is also related to quantum field theory, where one tries
to construct operator-valued Gaussian and non-Gaussian fields. This explains the name
"free", since the Gaussian field corresponds to systems without interaction in that setting (cf.
[GT87]).

The discrete Gaussian free field will be one important example for us. We will mostly call
it the gradient model, as this emphasizes the contrast to the membrane model (to be defined
shortly).

V g-interface models

In the context of the application to solid-to-liquid phase transitions in 1.2.1 there is no reason
to assume that slopes are penalized precisely by 1| - |2. If we instead use an arbitrary even
function V: R — R, we obtain the (Ginzburg-Landau) V ¢-model

d

1
P a(dy) = ——exp | = L YVl | [Tdex TT dp(dys)  (125)
Zvv A xezd =1 xeA xeZd\A

V), d(x,A)<1

and its variant with zero boundary data

= ! Aexp< Y. Zv (D}x) > [Tdys JT do(dyy).  (1.2.6)

xeZdi= xeA x€ZI\A

v, (dY)



1.2 Random interface models

As we will explain in the following sections, this model behaves quite similarly to the
discrete Gaussian free field when V is strictly convex and satisfies some other mild regularity
assumptions. Physically, this should not be surprising, as the convexity of V ensures that
mixtures of different slopes are energetically unfavourable in comparison to pure slopes. The
regularity assumptions one needs for V change from application to application. Typically
one requires V € C?(R) and ¢ < V"(x) < C, but occasionally results in the literature require,
e.g., that V € C*(RR). In the following we will not be precise in this regard, and just speak
of the V¢-model with strictly convex V.

When V is not convex, but in a suitable sense close to being convex, the model still behaves
similarly to the Gaussian free field, although much less is known. Rigorous results on this
are perturbative, and they require that V is close to a strictly convex function in a sufficiently
strong norm. Again we will be rather vague, and speak of the V¢-model with slightly
non-convex V in the following.

For the case that V is far from being convex the model behaves very differently, see the
discussion below.

The membrane model

Our discussion of lipid bilayers suggests that one should also study interface models
involving second instead of first derivatives. The easiest such model is the membrane model
where one considers the interaction ®4 () = 1 e |A1¢px|?, where Ay = Y8 hre, —
2¢x + Py, In principle 3 ¥ 4 |V39:|?, where Vi, = (D}Dl,]-llﬁx)?,j:y would be an
equally natural choice, but a discrete integration by parts shows that this leads to exactly
the same model. In any case, one obtains the probability measure

1 1
]p(Aﬁf’) (dtp):Z( exp | —5 Y. (A | TTdge T 0. (dgp) (1.2.7)

v }\ xeZd xEA x€ZI\A
’ d(x,A)<2

or the zero boundary variant

Paa(dy) =

exp (—; ). |A1¢x12> [Tdy: TT do(dys). (1.2.8)

Zv,A xezd xeA xeZd\A

Once again this is a Gaussian measure. The Hamiltonian here penalizes high curvature.
This model also has a continuous relative, the (continuous) membrane model (see e.g.
[CDH19] for a precise definition). In recent years this model has also been identified as the
scaling limit of several fields in probability theory, e.g. the odometer in divisible sandpiles
[CHR18] or certain spanning trees related to the loop-erased random walk [LSW19].
See Figure 1.1 for pictures of samples of the membrane model in various dimensions.

Other examples

Let us mention some other examples of random interface models. For simplicity we only
give each model with zero boundary condition.

First of all, it remains to discuss the V g-interface with a potential V' that is far from being
convex. In that case the random interface can behave very differently from the models that
we have mentioned so far. In particular, there can be phase transitions in the sense that there
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0 0

(b)d =3

Figure 1.1: Samples of the membrane model in dimension d &€ {2,3,4,5} on the
domain {0, ...,20}9. The pictures show the values of the sample on
the slice {0,...,20}? x {10}972. See Section 1.2.7 for a description
how the samples were generated.
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(c)d=4

0.6 -

0 0

d)d=5

Figure 1.1: Samples of the membrane model (continued)
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1 Introduction

may be more than one Gibbs measure with the same tilt. We will not discuss this further,
but see [BK07, Buc19].

Next, just like the V g-interface models are a generalization of the discrete Gaussian
free field, one can consider the generalization of the membrane model where one uses an
arbitrary even function V: R — R instead of 1| - |2. This yields the model

d
exp <_ Z ZV(Aﬂ,Ux)) Hdlpx H Sg, (dipx) . (1.2.9)

1
Pa(dy) =
Z xeZdi=1 xeEA xeZI\A

V,A

This model should behave similarly to the membrane model when V is strictly convex or a
small perturbation of a strictly convex function, while the case where V is far from being
convex is presumably very complicated. The only work where this model is studied is
[Kurl2].

Of course, it is also reasonable to consider models where first and second derivatives
are mixed. One such model has been studied very recently in [CDH20]. It is given by the
probability measure

exp (— Y \V1¢x12+aAyA1¢x!2> [Tdv: ] dp.(dypx) (1.2.10)

1
Paa(dy) =
VA rezd xeA xeZI\A

Here ap is a scalar that may depend on A. In the limit A oo it depends on the choice of
ax whether the behaviour of this model resembles that of the discrete Gaussian free field,
that of the membrane model, or shows some genuinely new mixed behaviour.

It is also reasonable to not only use first and second order difference operators, but higher
polyharmonic difference operators or various linear combinations. Such models are not
studied much in the literature (an exception is [Sak03]). The reason for this probably is that
these models do not add much from a mathematical point of view, while the notation be-
comes increasingly complicated. In particular, all the results for the membrane models to be
discussed in the following should have analogues for the case of higher-order polyharmonic
operators in place of A%.

All the models discussed so far have in common that the specification ¥ is translation-
invariant. There are also interesting examples where this is not the case. In particular,
one can sample the (¥ 4. x),cz¢ from some random distribution. This leads to disordered
random interface models. One can investigate their properties either for almost every
realization of the specification, or averaged over the randomness of the specifications. The
disorder can drastically change the behaviour of the field (see [Vel06], or e.g. [GL18] for
recent work).

It is also possible to consider all the models considered so far with the continuous spin
space E = R (with the Lebesgue measure) replaced by the discrete spin space E = Z (with
the counting measure). The phenomenology is generally rather similar for those discrete
models (at least when S is small enough), but there are also new phenomena when g is large
and there is a so-called roughening transition (see e.g. [She05, Vel06]).

1.2.5 Critical dimensions and log-correlated fields

In Figure 1.1 one can see that the membrane model becomes progressively rougher as the
dimension increases. This phenomenon is not unique to the membrane model. In fact, for
most of the models discussed above, there is a critical dimension so that the behaviour of

12



1.2 Random interface models

the field is very different depending on whether d is less than, equal or larger than that
dimension. These regimes are called subcritical, critical and supercritical, respectively.

Typically, in the subcritical dimensions the variance of i, for some x € A is unbounded
and grows like a power of d(x,dA), the distance of x to the boundary of A. In the critical
dimension the variance of ¢, is still unbounded but only grows like the logarithm of
d(x,0A), while in the supercritical dimensions the variance of ¢, is bounded uniformly in x
and A. In the following sections we describe a number of implications of this.

For now let us mention that the critical dimension of both the discrete Gaussian free field
and the V ¢-interface models is d = 2, while the critical dimension of the membrane model
is d = 4. This already gives a hint of the heuristic that the d-dimensional membrane model
behaves in many aspects like the (d — 2)-dimensional discrete Gaussian free field.

Of particular interest is the case of the critical dimension. This case is in many aspects
borderline between the very different sub- and supercritical dimensions. It turns out that
in the critical dimension not only the variances grow like the logarithm of the distance to
the boundary, but also the covariances decay like the logarithm of the distance between
the respective sites. Discrete random fields with these properties are called log-correlated
tields. Of course one can also define (continuous) log-correlated fields. Both discrete and
continuous log-correlated fields have been a topic of intensive study in the past years. In
particular, there are various predictions of universality in this class, meaning that various
properties of the field do not depend on the precise structure of the correlations, but only
the fact that these decay logarithmically. See [DRSV14, DRSV17] for an overview.

The interest in log-correlated fields is fueled by the fact that these arise in a variety of
contexts. Beyond the random interface models that we have already described, let us
mention branching random walks and branching Brownian motion (see [Bov17] for an
overview), the characteristic polynomial of certain random matrices and (closely related)
the values of the Riemann ¢ function on the critical line (see [FHK12, FK14] for important
conjectures and [CMN18, ABB'19] and the references therein for recent rigorous results).

1.2.6 Mathematical tools to study random interface models

Before describing in detail what is known about the membrane model and the other random
interface models, we will outline the main mathematical techniques that have been used to
study these models. The message that we want to transmit here is the following: For the
discrete Gaussian free field there exist many powerful techniques one can use to study it.
The V g-interface model with strictly convex V and the membrane model both are more
difficult than the discrete Gaussian free field. However, this difficulty manifests itself in
different ways: for each of the two models only some of the tools survive while others can
no longer be applied. Finally, the V ¢-interface model with slightly non-convex V is the
most difficult model, and there are few existing techniques that can be applied. See Figure
1.2 for a schematic drawing of the relations between the models.

Markov property

The (domain) Markov property is a rather obvious, but nonetheless useful consequence of
our definition of random interface models. It applies to all random interface models in the
sense of our definition. For the following see [Fun05, Bis20]. Recall that we have assumed
that the terms ® 4 in our interaction are 0 when diam ® > R. Then the field values in some
A C A depend only on the boundary data on the sites that are at most R away from A.

13
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N |

gradient model

V p-model, slightly non-convex V more dAlfﬁcult
/ A \ i
V p-model, convex V membrane model 3

less difficult

Figure 1.2: Relations between the random interface models

More formally, let B = {x € A\ A: dist(x, A) < R}. Then

CDA(E“F ) cI)A(E|fB\A) fOTallEGIA.

For Gaussian measures such as the discrete Gaussian free f1eld and the membrane model
we can even give a somewhat explicit descr1pt10n of ]P (- | Fp\a)- Suppose that ¢ is

distributed according to ]Pé))\ and let h, = IEq),A(gle \ fB\A) forx € A. Then {¢y —hy: x €
A} is independent of F . and its law is given by P 4.

Random walk representations

Random walk representations exist for the discrete Gaussian free field and the V g-interface
models with strictly convex V. We begin with the former case, where the situation is less
complicated.

Recall that the discrete Gaussian free field is a centred Gaussian measure, and as such it is
determined by its covariance matrix. It is easy to see (cf. e.g. [Fun05]) that this covariance
matrix is equal to the Green’s function of the symmetric random walk on Z killed when
leaving A. That is, when (X;);>0 is the path of a (continuous time) symmetric random walk
on Z9 that jumps at rate 2d to a uniformly chosen neighbour and [E¥ denotes the expectation
with respect to the law of (X;)¢>o when Xy = x, then

Thc
Pya(pxpy) = E* < /0 ]lXt_ydt> (1.2.11)

where Thc = inf{n > 0: X,, ¢ A}. This representation allows to use estimates for random
walks to conclude estimates on the behaviour of the covariance.

For V ¢g-interface models we do not have a representation as simple as (1.2.11). However,
there is a more complicated version due to Helffer and Sjostrand [HS94] that allows to write

Thc
V). (Yatpy) = BTV ( /0 ' Jlx,ydt> : (1.2.12)

Here (X;)¢>0 describes a continuous time random walk in a time-dependent random envir-
onment given by the Langevin dynamics of the field. This random walk exists when V is
strictly convex. See [Fun05] for the details. Actually (1.2.12) is only a special case of the full
Helffer-Sjostrand representation, which applies to the covariances of arbitrary observables
of the field.

14



1.2 Random interface models

Of course, this representation is only useful if one is also able to control the right-hand
side. This amounts to understanding random walks in a random environment, a subject
where the methods of quantitative stochastic homogenization apply. The Helffer-Sjostrand
representation was first used in the study of V ¢-interface models by Naddaf and Spencer in
[NS97] with later refinements in [DGI00, GOS01]. Recently Armstrong and Wu [AW19] have
made further progress by systemically using the emerging theory of quantitative stochastic
homogenization as described in [AKM19].

Let us note an important fact: clearly the existence of a random walk representation for
the covariance as in (1.2.11) or (1.2.12) implies that the covariance is pointwise nonnegative,
and indeed this is the case for the discrete Gaussian free field as well as the V ¢-interface
model with strictly convex V. For the membrane model, however, the covariance is, in
general, not pointwise nonnegative, and so there is no random walk representation. One
way to see this is to explicitly compute the covariance on some small domains. For example,
ford =2and A = {0,..., 20}2 the Green’s function is negative in the corners of the domain.
Closely related to the question of nonnegativity of the covariances of the membrane model is
the question of nonnegativity of the Green’s function of the continuous Bilaplacian. We will
discuss the latter in Section 1.4.1. See [Gia01, Appendix A.2] for a more detailed discussion
of random walk representations.

PDE estimates for the Green’s function

For some of the Gaussian models, in particular the discrete Gaussian free field and the
membrane model, one can alternatively apply estimates from PDE theory and numerical
analysis. As they are Gaussian measures, they are determined by their covariance matrix.
The point is that an easy calculation (cf. again [Fun05]) reveals that the covariance matrix
of the discrete Gaussian free field is also given by the Green’s function of —A; on A with
zero boundary data, i.e. that Py A (¢:¢,) = Gy, a(x,y), where for each y € A the function
Gv,a(+,y) is the solution of the partial differential equation

—MGya(y) =6y n A (1.2.13)
i 2.

Gva(y) onZd\A.

Similarly, one can show that Px A (¢x,) = Gaa(x,y), where Gaa(-,y) is the Green’s
function of A%, i.e. the solution of the partial differential equation

N2Gan(,y) =6 in A
1Gan(y) oy (1.2.14)

Gana(y) onZ4\ A.

Thus, one can hope to use methods from the theory of partial differential equations to derive
results for Gy A(+,y) and G A (-, y). Furthermore, one can consider (1.2.13) and (1.2.14) as
finite difference schemes for the Laplacian and Bilaplacian, respectively, and so apply tools
from numerical analysis. In fact, these are the main approaches used in this thesis. We
postpone a more detailed exposition to Section 1.4.

Correlation inequalities

Another very important tool in the study of random interface models are correlation inequal-
ities. We describe two of them: The FKG inequality and the Gaussian correlation inequality.
The former can be applied to the discrete Gaussian free field and the V ¢-interface models,
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the latter to all Gaussian measures (and so in particular to the discrete Gaussian free field
and the membrane model). These are not the only correlation inequalities important for the
study of random interface models, though. Let us mention the Brascamp-Lieb inequality
(cf. [Fun05, Section 4.2] or [Gia01, Appendix A.2]) and the GKS inequality (cf. [DMRR92,
Appendix A]).

However, we focus on the FKG-inequality and the Gaussian correlation inequality. We
begin with the former, introduced by (and named after) Fortuin, Kasteleyn and Ginibre
[FKG71]. In the context of random interface models this is the statement that whenever A, B
are events that are increasing (i.e. if € A and ¢’ > ¢ pointwise then ¢’ € A, and similarly
for B) then

PA (ANB) >Pp(A)PA(B) .

This inequality is an extremely powerful tool. One typical application is to use that condi-
tioning on some increasing event (say, the field being large on some subset of A) increases
the probability of some other increasing event (say, the field being large on another subset of
A). For V g-interface models with stricty convex V the FKG inequality follows easily from
the Helffer-Sjostrand representation, cf. [Fun05]. For Gaussian interface models it is even
easier to decide whether the FKG inequality holds: According to a criterion of Pitt [Pit82]
this is the case if and only if the correlation matrix is elementwise nonnegative. As already
mentioned that is the case for the discrete Gaussian free field but not for the membrane
model. So we see that the membrane model does not satisfy the FKG inequality.

The other correlation inequality that we want to discuss, the Gaussian correlation inequal-
ity, looks quite similar. This is the statement that whenever A, B are closed events that are
symmetric around 0 then

PA (ANB) >Pp (A)PA (B) .

It was a longstanding open conjecture that this inequality holds for all Gaussian measures
IP 5. This conjecture was settled in 2014 by Royen [Roy14] (see also [LM17] for an exposition
of the proof). There is no reason to believe that this correlation inequality holds for general
(log-concave) probability measures such as the V ¢-interface models with stricty convex
V. For instance, a counterexample can be constructed out of a suitable Gaussian measure
conditioned to be small, similar to Remark 6.2.1.

Other techniques

Let us mention a few other techniques that have been employed in the study of the mem-
brane model. We have already briefly mentioned the Langevin dynamics associated to a
V g-interface model with strictly convex V. Beyond their occurrence in the Helffer-Sjostrand
representation they can also be used directly to understand the underlying Gibbs measure.
This was pioneered by Funaki and Spohn [FS97]. For that model also some other techniques
such as Sheffield’s cluster swapping [She05] exist.

Finally, we need to mention some techniques available for the V ¢-interface model with
slightly non-convex V. The main technical tools used for that model are various imple-
mentations of the renormalization group from theoretical physics, ranging from a one-step
renormalization scheme in [CDMO09] to a very subtle multi-step renormalization scheme in
[ABKM19].
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1.2.7 Sampling from the models

Before discussing more detailed properties of the models, let us describe how to efficiently
generate samples of a random interface model. In particular, we want to explain how the
samples in Figure 1.1 and in Figures 1.3 and 1.4 were generated. The problem is that while
we have an explicit expression for the Boltzmann weight exp(—H), the partition function is
given by a high-dimensional integral that is very hard to calculate explicitly or numerically,
so a direct computation of the probability density seems infeasible. Let us describe some
alternative approaches.

Gibbs sampler

A general method for sampling from a Gibbs measure P is to use a Markov chain Monte
Carlo method, or, more precisely, a Gibbs sampler (see e.g [LPW09, Section 3.3]. The idea
here is that while the joint density of all field heights is too complicated to understand, the
conditional density of the height of a single site while all other heights are fixed is easy to
compute. This suggests an algorithm where we iteratively resample the field at a (randomly
chosen) site. This resampling defines a Markov chain (1/1("));":0 whose unique stationary
measure is the Gibbs measure we want to sample from. Under some weak assumptions on
the Markov chain, for any initial configuration ¢(*) the distribution of ¥¥) converges (as
k — o0) in total variation distance to IP. In practice, one needs to decide how to choose k.
For this one would need to know how far the distribution of 1,0(") still is from [P, i.e. how fast
the Markov chain mixes. Unfortunately, this is in general a very hard problem (see again
[LPWO09] for a review of what is known), and so in practice one often has to make a guess.

We have implemented this algorithm in Matlab to generate samples from the membrane
model on the domains {0, ..., N}%. Itis clear that we need to resample each site at least once
to have a chance to see the actual behaviour of the model, and so we need at least (N + 1)¢
iterations. In practice, for N = 20 and d = 4 it seems that 10°N¢ iterations are not quite
enough (as the maximum of the field is not as high as the theory predicts), while 103 N¢
iterations seem reasonable. This means that to sample the membrane model for N = 20
and d = 4 we should use at least 103N9 =~ 2 - 108 iterations, while for d = 5 one would need
already approximately 4 - 10° iterations. For comparison, the author’s laptop computer was
able to process about 10° iterations per second.

We have generated Figures 1.3 and 1.4 using this method (with 2 - 108 iterations), as its
flexibility allowed to easily include the single site potentials that will appear there. For
Figure 1.1 we used another approach to be described below.

Naive direct sampling for Gaussian measures

When sampling from a Gaussian measure such as the discrete Gaussian free field or the
membrane model, it is also possible to use the Gaussian structure of the measure to directly
sample from the measure. This has the advantage that we can be sure that our sample has
the correct distribution, and we do not need to guess how many iterations to use.

We focus on the membrane model, but the situation is similar for other Gaussian Gibbs
measures. The probability distribution (1.2.8) of the membrane model can be rewritten as

1 1
Panldp) = 5o oxp (5 (0 dacay))  TTdps T] donla)

L2(A) xeA x€ZI\A
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where (-, -)j2(5) denotes the standard scalar product on RA. This means we need to sample
a centred normal random variable with covariance (A%|5xx)~!. Such a sample is given
by MX, where X € R” is a vector of i.i.d. standard Gaussians and M € R*** is a matrix
such that MM = (A%|pAxa) 1. An efficient way to compute a possible M is to compute the
Cholesky decomposition A?|sxx = LL! with a lower triangular matrix L and then choosing
M=L"1

We have implemented this algorithm in Matlab. It works well for small domains or for
small dimensions, but for d = 5 and N = 20, we would have |A| = (N +1)9 ~ 4 % 10°, and
computing the Cholesky decomposition of a matrix this large is infeasible (in fact, Matlab
runs out of memory quickly when attempting this on a laptop computer).

Improved direct sampling for Gaussian measures

For Gaussian models there is also a better direct sampling algorithm. We again focus on the
membrane model with zero boundary data. For this we use ideas of Sheffield [She(7, Section
4.4] for the discrete Gaussian free field that can easily be adapted to the membrane model.
The first observation is that the membrane model is much easier to sample when we first
sample a complex version and our domain is a torus (Z/N'Z)¢, as we can then use discrete
Fourier analysis. For that end consider the scalar product (i, ¢') := (Mg, Ayp') 12z Nz
on the space H of lattice functions on (Z/N’Z)? with average 0. Our goal is to sample from
the Gaussian measure with density % exp (—% (,9)) dyp, and one easily checks (cf. [She07,

Proposition 2.1] that a sample i from that measure has the same law as ):]I-V:l j_l ¢;X;j, where
() f\]:l 1_1 is a fixed orthonormal basis of H, and the X; are i.i.d. standard Gaussians. We can

generate such an orthonormal basis using the eigenfunctions of the discrete Bilaplacian. We
take the functions

kix1+ ...+ kaxg
iy g (X) = gy, g exp (1 N

fork; € {0,...,d — 1}, not all 0, where

1
ke = 1d/2 (12 ((kar 2 (k)
AN (sm (W>+...+sm (W))

X

Thus, a fast way to generate a sample of the membrane model on a torus is to compute the
array (&g, .k, Xky,... kq )21/~~-/kd:1’ where Xy, o = 0 and all other X arei.i.d. standard Gaussians,
and then take the multidimensional discrete Fourier transform of that array. Both steps can
be done extremely fast (in a few seconds even if d = 5 and N = 20).

Of course, this is not yet quite what we wanted, as we were looking for zero and not
periodic boundary conditions. For this we use another observation from [She(07, Section
4.4], namely, that the domain Markov property still applies. Thus, we embed our domain
{0,...,N}¢into (Z/N’'Z)? for some N’ > N + 5. Now, given a sample of the membrane
model on (Z/N'Z)4, we only need to subtract the conditional expectation of the field given
its values outside of {0,...,N }d to obtain a sample of the membrane model with zero
boundary dataon {0, ..., N }d. It remains to compute that conditional expectation, i.e. the
biharmonic extension of the boundary values. For that purpose we need to solve the system
A3|pxau = f for one right-hand side. This is a large system (about 4 - 10° unknowns ifd = 5
and N = 20), but the matrix A? is very sparse, and we can use an iterative solver such as
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Matlab’s preconditioned conjugate gradient method to compute a very good approximative
solution within several minutes of computation.
We have used this algorithm to generate the samples in Figure 1.1.

1.3 Properties of the membrane model and other interface models

We will now consider specific aspects of random interface models and describe what is
known about them. We focus on the models described in Section 1.2.4, that is, the discrete
Gaussian free field (or gradient model), the V ¢-model with strictly convex 1, the membrane
model, and the V ¢-model with slightly non-convex V. The reader should keep in mind the
relation between these models illustrated in Figure 1.2. For most of the properties that we
will mention, the answers for the gradient model are known. For quite a few of them the
answer is also known for the V ¢-model with strictly convex V and the membrane model
(and this thesis makes some further progress in the case of the membrane model). For the
V p-model with slightly non-convex V, only little is known. In fact, in some of the following
sections, we will not even mention it, as there are no results. It is a long-term hope that
progress on models such as the membrane model or the V ¢p-model with strictly convex V
also furthers the understanding of this model.

For the following sections most of the material on the gradient model and the V ¢-model
with strictly convex V is taken from [Fun05, Vel06].

1.3.1 Gibbs measures and scaling limits
Gibbs measures

After the discussion in Section 1.2.3 an obvious question is that of the existence of Gibbs
measures for our random interface models. Because all the specifications we have considered
are invariant under shifts of the field by a constant, it is clear that if there is a Gibbs measure,
then there are infinitely many. Thus, a Gibbs measure is never unique, and the interesting
question is whether one exists at all.

It turns out that this is the case if and only if the dimension is supercritical. Indeed, in
supercritical dimensions the variance at a single site is uniformly bounded, as can be seen for
the gradient model and the membrane model from straightforward estimates on the Green’s
function, for the V ¢p-model with strictly convex V from the Brascamp-Lieb inequality and
for V p-model with slightly non-convex V from the techniques in [ABKM19, Hil19]. Now
the boundedness of the variances is easily seen to imply tightness of the finite volume Gibbs
measures, and each subsequential weak limit will be a Gibbs measure. In the critical and
subcritical dimensions the variances diverge as A grows, and so there is no hope for the
existence of a Gibbs measure (cf. e.g. [Geo88] for a rigorous proof in the case of the gradient
model).

Gradient Gibbs measures and Hessian Gibbs measures

It is of course quite unsatisfactory that there is no infinite volume Gibbs measure in the
critical and subcritical dimensions. In the case of the gradient model and the V ¢-model
one alternative way to make sense of an infinite volume limit of the field is to use so-called
gradient Gibbs measures. The idea here is to consider not the field heights i, but their
gradients V11, and to pass to a limit of the field of gradients. The limit field should then
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also satisfy some variant of the DLR equations (1.2.2). Making this intuition rigorous is
somewhat technical and we refer to [FS97] and in particular [She05, Section 3.1] for the
details.

The point for the gradient model is that while Vary A (¢x) = Gy a(x, x) diverges in
dimensions d < 2, we have

Vary, A (D} ¢x) = Ev,a(Prie, — Px)°
=Gya(x+e,x+e)—2Gya(x,x+e)+ Gyalx, x)
= D},xDillva,A(x,x)

where D}/x and Dil, denote the discrete derivative with respect to the first and second
variable, respectively. That is, by passing to the gradients of ¥, we have gained two
derivatives. Now, V1,V1,Gv a(x,x) is uniformly bounded for all d > 1, and so one
can see that there is a gradient Gibbs measure for the gradient model in all dimensions.
Choosing boundary data ¢, = a - x for some a € R¢, we can construct a gradient Gibbs
measure with given tilt (i.e. expected value of the gradient at each single site) 2. One can
show that every shift invariant ergodic gradient Gibbs measure IP which is tempered (i.e.
satisfies E(D!y,)? < oo forall x € Z9,i € {1,...,d}) is equal to one of these gradient
Gibbs measures with the corresponding tilt. Indeed, this follows easily from the uniform
boundedness of V1,V1,Gv,a(x,x) together with [Geo88, Theorem 13.24 and Theorem
13.26] and the well-known fact that every bounded discrete harmonic function is constant.

This characterization of gradient Gibbs measure for the gradient model is actually a special
case of a result by Funaki and Spohn [FS97] who have extended the above considerations
to the V¢-model with strictly convex V. Again gradient Gibbs measures exist in every
dimension, and the tempered ones are parametrised by their tilt.

For the membrane model one can proceed similarly. But in view of the fact that the
Hamiltonian now involves second derivatives instead of first ones, it is more natural to
consider not the gradients of the field but their Hessians, i.e. consider "Hessian Gibbs
measures". While it seems that this has not been worked out in detail anywhere in the
literature, the construction can proceed analogously to [She05, Section 3.1], so we only
sketch the outcome. A short calculation as above shows that

VarA,A(D}Dlij) = IEV,A<1/)x+ei — Px — l/’x—}—q—q + ll)x—e])z = Dilrxlej,xDil,yle]‘,yGA,A(xl x)

That is, by passing to Hessian Gibbs measures we have gained four derivatives, and so
Hessian Gibbs measures can be constructed in all dimensions. For every A € RY*9 by
choosing the boundary values ¢, = 1xAx we can find a Hessian Gibbs measure with
expected value of the Hessian at every site equal to A. Just as for the gradient model, one
sees that all shift-invariant ergodic Hessian Gibbs measures which are tempered (i.e. satisfy
lE(D}Dl_].lpx)z < ooforallx € Z4,i,j € {1,...,d}) are given this way. For the proof one
needs the fact that every bounded discrete biharmonic function on Z¢ is constant. This fact
might not be completely obvious, but it can be shown, for example, by combining Lemma
2.3.1 and Lemma 2.5.1 from Chapter 2 to see that such a function needs to be affine.

Scaling limits

A different, but closely related question is whether it is possible to extract a scaling limit of
the field. To do so, we first need to define an appropriate rescaling of the field. We choose
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1.3 Properties of the membrane model and other interface models

some bounded domain D C R¢ and consider the domains Ay = ND N Z. Then, if ¢y is
distributed according to Py A, and a € R, we can consider the field Py (x) = N*yPn(Nx)

as a random function on D N (%Z)d. Now there are various ways to interpolate ¥y to a
function defined on all of D, and one can wonder whether for the right choice of « these
random functions on D have a scaling limit, and if so, in which topologies the convergence
to the scaling limit holds.

For the gradient model the answer is straightforward. The correct choice for a here
is & = 952, and the scaling limit is the continuum Gaussian free field that was already
mentioned in Section 1.2.4. In the subcritical dimension d = 1 the continuum Gaussian free
field is nothing else than Brownian motion. As D is bounded and connected, it is an interval.
The gradient model with zero boundary data on A is just a random walk bridge, and it is
well-known that under rescaling with factor N ~% and piecewise linear interpolation this
random walk bridge converges to a Brownian bridge on D, where the convergence takes
place in the Holder spaces C*” for any 7y < 3. In the critical and supercritical dimensions the
convergence takes place in negative Sobolev spaces. We interpolate i in some reasonable
way (e.g. piecewise affinely on a triangulation subordinate to Z¢). Then the interpolated
fields converge in H=5(D) for any s > 952, where H~%(D) is the dual space of the Hilbert
space Hj(D) [She07]. It is also possible to prove analogous results for non-zero boundary
conditions.

The V ¢-model with strictly convex V behaves similarly to the gradient model. In particu-
lar, we still take o« = 0'2;2, and the scaling limit is still (a scalar multiple of) the continuum
Gaussian free field. The main focus in the literature has been to show the convergence in
D', the space of distributions. This was first shown in [NS97]. Whether one can upgrade
this to convergence in law in some negative Sobolev space then depends on the precise
assumptions made on V. In [GOS01] it is shown that under fairly general assumptions
the convergence holds in H*(D) for any s > d + 1. The situation with nonzero boundary
conditions was investigated in [Mil11].

For the V ¢-model with slightly non-convex V one still has convergence to the continuum
Gaussian free field [Hil16, ABKM19]. Somewhat surprisingly, this even holds for some very
non-convex V), at least in the zero-boundary case [BS11].

For the membrane model one observes a different scaling limit, namely the continuum
membrane model that was also already mentioned in Section 1.2.4, and the correct choice
for a turns out to be a = 95%. Other than that, the situation is very similar as for the gradient
model: provided that one chooses a sufficiently smooth interpolation, the convergence holds
in the subcritical dimensions in the Holder space CL7)47} (D) for any ¢ < 44 This result
can be found in [CDH19], with a crucial ingredient being the estimates in Chapter 2 of this
thesis. In the critical and supercritical case the convergence holds in some negative Sobolev
space H~*(D). The published result [CDH19] allows s > s, for some s, ~ Zd, but it should
be possible to improve their result to the optimal s > %.

1.3.2 Extrema of the field

This section includes parts of the introduction of the author’s paper [Sch20a].

Existing results

We can now turn to discuss finer properties of the random interface models. The first such
property is the behaviour of the extrema of the field. All of our models are invariant under
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reflection around 0, and so we only need to consider the maximum. We always consider the
field on the domain Ay = [0, N]¢ N Z4. For ® € {V,V(V), A} we denote a sample from
Py A, by tpﬁ, and let M?\’, = maxyep, Px. We are interested in the asymptotics of the random
variables M$ as N — co. The answer here depends very much on whether the dimension is
subcritical, critical or supercritical, and so we will discuss those cases separately.

In the subcritical dimensions (d = 1 for the gradient model and the V ¢-models, d < 3 for
V(V) A

My M M e el .
the membrane model) we have that =%, —4— and —%; converge in distribution, which
N2 N 2 N 2

follows from the fact that the whole rescaled field converges weakly in C°, as discussed in
the previous section.

In the supercritical dimensions (d > 3 for the gradient model and the V¢-models, d > 5
for the membrane model) the correlations decay rapidly, so one can expect that the maximum
of the field behaves as if the ) were independent. In the cases of the gradient model and
the membrane model this can be made rigorous using Stein’s method. Thereby it was shown
in [CCH16b, CCH16a] that My, behaves as if the (lpy],x)xevN were independent, i.e. that

/2dlog N \/8Y (log(dlog N) + log 47t)
V2dlogN MY, — \/2dgY¥ log N + Bldlog i
\/gd

converges in distribution to a Gumbel random variable, where x is a lattice point closest to
the centre of [0, N]¢ and gy = limy e Var(ipy ). The analogous statement holds true for
MS&,. Tt is likely that a similar result also holds for the V g-model with strictly convex ¢, but
this has not been rigorously shown yet (cf. [CCH16a, Remark 3]).

The most interesting and most subtle case is the critical one (d = 2 for the gradient model
and the V¢-models, d = 4 for the membrane model). For the gradient model, in a series
of papers making successive improvements [BDG01, BDZ11, BZ12, BDZ16] it was shown
that My, — my, converges in distribution to a randomly shifted Gumbel variable, where

my, = \/7 log N — log log N. For the V ¢-model with strictly convex ¢ convergence in
v<v>
law of the maximum is a challenging open problem, but it is known that X W converges

in probability [BW20] and that there is a deterministic subsequence (N ), along which
MK,}EV) —Eywv)ay M;\),}EV) is tight [WZ19]. For the membrane model previously there were

only partial results. The best result [Kur(09] is that lé\g%\, converges to 1 in probability. The

question whether a centred version of M, converges in distribution was posed for example
in [Roy16, CDH19]. In Chapter 4 (that is based on the publication [Sch20a]) we prove that
this is the case, i.e. that MA Mﬁ, converges to a randomly shifted Gumbel variable, where
my = LlogN — 16n loglog N.

The maximum of the critical membrane model

Let us give a few more details on the result of Chapter 4 on the maximum of the membrane
model in dimension d = 4. The precise result will be the following:

Theorem 1.3.1. Let d = 4. The random variable

1 3

A A A

- = — —log N+ ——loglog N
My — my = My og 1o, loglog
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1.3 Properties of the membrane model and other interface models

converges in distribution. The limit law is a randomly shifted Gumbel distribution p, given by

8t

foo((—00,t]) = Ee™ 7 2" it
where «v* is a constant and Z is a positive random variable that is the limit in law of

Zy=V8 Y} (logN — Ty, e SUoBN=TYNa)

xeVy

For this result it is very important that the critical membrane model is a log-correlated
Gaussian field (cf. Section 1.2.5). As discussed there, it is conjectured that these form a
universality class. One example of a feature that is conjectured to be universal is the beha-
viour of the maximum of the field, and one expects that convergence in law of the recentred
maximum holds true for general log-correlated fields. However, it is a challenging problem
to verify this fact for specific examples of log-correlated fields. In recent years convergence
in law of the recentred maximum has been proven for the critical gradient model, as already
discussed, and also for various other models. Let us mention branching Brownian motion
[Bra83], branching random walks [Aid13], and also problems from random matrix theory
(see [CMN18] for partial results).

Furthermore, there have been efforts to give sufficient criteria for convergence in law of
the maximum that cover a wide range of log-correlated fields. In [Mad15] this was done
for so-called *-scale invariant models. Most importantly for us, in [DRZ17] Ding, Roy and
Zeitouni gave some sufficient conditions on the covariances that ensure that the maximum
of the field converges in distribution. Their approach is based on a very subtle comparison
of the interface with a modified branched random walk. The result from [DRZ17] reduces
the proof of Theorem 1.3.1 to the verification of certain estimates on the Green’s function of
the discrete Bilaplacian. We discuss these in Section 1.4.3.

1.3.3 Entropic repulsion

This section includes parts of the introduction of the paper [BDKS19], written jointly by
Simon Buchholz, Jean-Dominique Deuschel, Noemi Kurt and the author.

Existing results

In this and the following sections we will consider the effect of various single-spin potentials
to the boundary. We begin with the phenomenon of entropic repulsion. That is, we restrict
the interface to be non-negative on some subset of the domain A. In physics, this corresponds
to the presence of a hard wall that the interface cannot cross. This hard wall leads to a
competition between energetic and entropic effects: on the one hand it is energetically
favourable for the interface to stay flat and thus close to the hard wall, on the other hand the
hard wall severely limits the possible fluctuations, so that it is entropically advantageous for
the interface to keep a distance from the wall. Therefore, there will be some repulsive effect
of the wall, that is, its local averages will increase. We speak of entropic repulsion if the
order by which the field increases is strictly larger than the order of the square root of the
variances of the original field, [LM87, Gia01]. See Figure 1.3 for a sample of the membrane
model under entropic repulsion, in particular in comparison to Figure 1.1a. This and related
problems have also been studied in the physics literature, e.g. in [HL97].

This leads to the question how big this repulsive effect is for our models of interest,
and whether there is entropic repulsion in the sense just mentioned. As in the previous
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Figure 1.3: A sample of the membrane model in dimension d = 2 on the do-
main {0, ...,20}¢ under entropic repulsion on all of the domain. See
Section 1.2.7 for a description how the sample was generated.

section, the answer strongly depends on whether the dimension is subcritical, critical or
supercritical. In fact, it is known (or conjectured) that entropic repulsion happens if and
only if the dimension is critical or supercritical.

We consider the field on the domain Ay = [0, N]¢ N Z4, and for some D C [0,1]¢ we
let Dy = ND N Z9. We consider the event Qp,,+ = {¢: P« > 0Vx € Dy}, and we are
interested in the behaviour of the fields when conditioned on being nonnegative on Dy.
A first step to understand that behaviour will be to estimate the probability of Qp, 4. We
focus on the two cases D € [0,1]¢ (i.e. D is compactly contained in [0,1]¢), or D = [0,1]¢.

In the critical and supercritical dimensions there are very precise results known for the
Gaussian free field. Namely, if D € [0, 1]¢, then the probability Py A, (Qp, +) scales like
exp(—CyqpN92logN) if d > 3, and like exp(—Cyp(log N)?) if d = 2, while the field is
repelled to a height Cyp+/log N if d > 3, and to a height Cqplog N if d = 2. Here the
constants are explicitly known and they depend on d and on the capacity of D with respect
to [0,1]9. If D = [0,1]¢, then Py A, (Qp,,+ ) scales like exp(—CqpN9~1) for any d > 2 (this
is a boundary effect), while the field is repelled to a height of the same order as before.
These results are due to [BDZ95, Deu96, BDGO01]. Similar, but somewhat weaker results
(namely with upper and lower bounds on the rates that differ by a constant factor) are
known for the V g-interface model with strictly convex V [DG00]. For the membrane model
only the case that D € [0, 1]¢ has been studied. There one finds that IPs a,, (Qp,,+ ) scales
like exp(—CqypN9*log N) or exp(—Cqy p(log N)?) for d > 5 and d = 4, respectively, while
the field is repelled to heights Cy4 p+/log N or C4 p log N, respectively [Sak03, Kur07, Kur(09].
In all cases, the order of the height to which the field is repelled is larger than the square
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root of the variance of the unperturbed field, and so there actually is entropic repulsion in
the sense defined above.

The subcritical case is rather different. For the gradient model in dimension d = 1 we
actually observe a simple random walk bridge conditioned to be positive on some part
of its domain. If D € [0,1]¢ this random walk has as its scaling limit a Brownian bridge
conditioned to be positive on D, while if D = [0, 1] the scaling limit is the Brownian excursion
(cf. e.g. [CC13]). In particular, Py A, (Qp,,+) > cp if D C [0,1], while Py A, (Qp,+ ) scales
like & (as can easily be shown using the reflection principle). In both cases the field is
repelled to the height cpv/N. These statements are also still valid for the V ¢-interface model
with strictly convex V, as can be seen using renewal methods, cf. e.g. [FO01, Gia07]. For the
membrane model in dimension d = 1 the scaling limit is an integrated Brownian bridge,

and we expect that Py o, (Qp,,+) > cp if D C [0,1], while Py A, (Qp,,,+ ) scales like %,

and the field is repelled to the height cp N 2. This has rigorously been shown only for the
one-sided problem [DW15] (see also the earlier results [Sin92, DDG13]), but the method
should carry over.

Of course, for the membrane model d = 1 is not the only subcritical dimension, and
so we are left to discuss what happens when d € {2,3}. It is likely that just as in the
other subcritical cases there is no entropic repulsion here, i.e. the field is repelled only to
the height N'z°. Moreover, Py, Ay (Qpy, +) should be bounded below for any D € [0,1]9,
while it should decay at a surface rate if D = [0,1]¢. The only previous rigorous result
on this topic, however, is [Sak16], where it is shown that for sufficiently small D we have
Py ay(Qpy,+) > cp. In Chapter 3 (that is based on the publication [BDKS19]) we give a
significant improvement and prove that Py A, (Qp,+ ) behaves as expected. Unfortunately,
we only have partial results on the behaviour of the field when conditioned on Qp,, .

Probability to be positive for the subcritical membrane model

We will now give a few more details on the results of Chapter 3. There we prove the
following result.

Theorem 1.3.2. Letd =2 ord = 3. For 6 € (0,1) there is a constant ¢; > 0 such that

1
¢s < Pan(Qag+) < 5-
Moreover,

exp(—CN9 ™) <Py n (Qay+) < exp(—cNeT)

We can even prove a result interpolating between the two estimates above, i.e. we can
take Dy = An 1, for some Ly depending on N (see Theorem 3.1.1). Theorem 1.3.2 easily
implies that the field still has a scaling limit in some Holder space when conditioned on
being positive on ()4, + for § < 1. However, this is a soft argument that relies on the
lower bound on Py(Qj,, +) being uniform in N. In the case D = [0,1]¢ the probability
Pn(Qa,y,+) is exponentially small in N, and so it is difficult to analyse what happens when
one conditions on that event. For this we do not know yet how to proceed.

A crucial ingredient for the proof are estimates for the Green’s function of the discrete
Bilaplacian and its derivatives that are sharp up to the boundary. These estimates are shown
in Chapter 2 (that is based on [MS19]), and we will give an outline in Section 1.4. Here we
focus on the probabilistic aspects of the proof of Theorem 1.3.2.
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The upper bound in Theorem 1.3.2 follows easily from the estimates on the Green’s func-
tion. Namely, it turns out that the correlations at sites close to the boundary decay rapidly,
so we can take a sparse subset of cardinality > c4N¢~! where the correlations are very small.
In fact, the correlations will be so small that we can use a Gaussian comparison lemma from
[LS04] to compare to the situation where the heights at our subsets are independent, and so
the upper bound immediately follows.

For the lower bound we use the fact that the field is Holder continuous up to the boundary,
with a random Holder constant for which we have tail bounds. This means that if the field
is positive at a certain site x, it is positive in a neighbourhood of x with a decent probability
as well. Unfortunately, in the absence of the FKG inequality there is no direct way to patch
these local results together. To solve this problem, note that we can also conclude from the
Holder continuity that the field is locally small with a decent probability, and these results
we can patch together using the Gaussian correlation inequality. This is not yet the result we
were looking for, but one can use a change of measure argument to bound the probability
that the field is close to any given macroscopic profile from below. For a sufficiently positive
profile this then implies the result.

1.3.4 Pinning

This section includes parts of the introduction of the author’s preprint [Sch20b].

Existing results

In the previous section we discussed the effect of a hard wall that repels the field from 0. In
this section we will do the opposite, namely consider the effect of a small attractive potential.
So we add a small attractive potential that rewards the field for being equal to (or close to) 0.
It is clear that this should pull the interface closer to 0, and one can explore to what extent
this effect happens. The physical motivation for this is mainly that it serves as a stepping
stone for understanding the phenomenon of wetting, where one considers the competition
between pinning and entropic repulsion. We shall discuss that problem in the next section,
and keep our focus on pinning here.

Various pinning potentials have been considered in the literature. We restrict ourselves to
the mathematically easiest one, namely &dp with Jy a point-mass at 0. That is, we consider
the probability measures

exp(—HA(tp)) H(A(dlpx) + 8(50(dl/7x)) H 50(dl/]x> (1-3~1)

%),A(dl/)) = 7€
DA XEA xeZ\A

for some ¢ > 0.

If A is the Lebesgue measure on IR, we cannot understand this as a Gibbs measure with a
priori measure A (as dy is singular with respect to the Lebesgue measure), but the formalism
from Section 1.2.3 works well if we directly take A + &dy as the a priori measure.

The first question about pinning is whether the additional effect of the pinning measure is
strong enough to actually localize the field. In the supercritical dimensions the variances
are bounded already without any pinning, so one can expect that the field stays bounded
when pinned. In the critical and subcritical dimensions the answer is less easy to guess. See
Figure 1.4 for a sample of the pinned membrane model in comparison to Figure 1.1c.

To give a rigorous answer we first have to define what we mean by localization, or being
pinned. For each sample of P§, , there will be some x € A with i, = 0 which we call the
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1.3 Properties of the membrane model and other interface models

Figure 1.4: A sample of the membrane model in dimension d = 4 on the domain
{0,...,20}9, pinned with pinning strength e = 1. The picture shows
the values of the sample on the slice {0, ...,20}2? x {10}?. See Section
1.2.7 for a description how the sample was generated.

pinned points. We call IPg, , pinned if the expected fraction of points in A that are pinned
is bounded below uniformly in A. One easily checks that being pinned is a monotonic
property in ¢, so there will some critical value epin « € [0, 00] such that the field is pinned
if € > €pin« but not if ¢ < &pin «. Now for the gradient model and the V ¢-interface models
with strictly convex V it turns out that the field is always pinned, i.e. &pin+« = 0 in any
dimension. For d = 1 this follows again from renewal theory methods as in [Gia07], for
d = 2 this follows from [DMRR92, DV00], and the case d > 3 is almost trivial. The situation
is more exciting for the membrane model. We still have ¢, « = 0 for d > 2 [Sak12, Sak18],
but somewhat surprisingly 0 < epin,« < o0 if d =1 [CDO08].

Thus, in most cases the pinning effect manages to localize the field in the sense that it
touches the 0-plane on a positive fraction of A. It is natural to ask whether this localization
also manifests itself in some other ways. In particular, it is expected that the variance of the
pinned field is bounded, and the covariance decays exponentially in the distance (i.e. a mass
is generated). Physically speaking, this corresponds to a finite transverse and longitudinal
correlation length, respectively. For the case of the gradient model, this was studied in
[BB01, IV00, BDGO1] in d > 2. There not only finiteness of the variance and existence of a
mass is known, but even the e-asymptotic of these quantities for small e. The former result
is also known for V g-interface models with strictly convex V [DV00]. For d = 1 and both
models there are even better results [Gia07, Gia08].

For the membrane model very refined results are known if d = 1 [CD08, CD09]. These
include boundedness of the variance, and should easily imply exponential decay of the
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covariances. It is also known that in the supercritical dimensions d > 5 (where variances
are trivially bounded) one has a positive mass [BCK17]. Other than that the only previous
result is that in the critical dimension d = 4 the correlations decay stretched-exponentially
[BCK16]. In Chapter 6 that is based on the preprint [Sch20b] we improve these results
by showing that the variances are bounded and the covariances decay exponentially (i.e.
the mass is positive) also if d = 4. We also give asymptotics for these quantities if d > 4.
This leaves open the cases d € {2,3}. Already in [BCK17] the authors wondered whether
exponential decay of correlations also holds in that dimensions. This seems likely, but we
do not know how to prove this.

Pinning for the critical and supercritical membrane model

There are quite a few new results in Chapter 6. The following theorem summarizes the most
important ones.

Theorem 1.3.3. Let d > 4, and x € A € Z4. If ¢ is sufficiently small, the variances of the pinned
field satisfy
ca < Ej A7) < Cy
ifd > 5, and
loge|
32m?
ifd > 4 and x is sufficiently far from the boundary.
We also have the lower bounds for the mass m, (i.e. exponential rate of decay of the covariances)

| loge|
1672

— Cylog |loge| <IEj A(¢7) < +Cylog | loge|

cdel/4§mS
ifd > 5, and
el/4
p———= < m
Hlogep/s = 7
ifd =4.

Moreover for every € > 0 the fields have a unique thermodynamic limit as A 7 Z9.

The first step to establish the results of Theorem 1.3.3 is to understand the set of pinned
points. The first important observation of Chapter 6 is that this set is positively correlated (as
follows from the Gaussian correlation inequality). The heuristic is that this set behaves like
a Bernoulli point process with a certain density. This is true in a rather strong sense if d > 5,
and still true in a weakened sense if d = 4 (as we show following a two-scale argument from
[BDGO1]). If d < 3 this breaks down completely, however, and so the arguments have no
chance to work in that case.

Having established these estimates on the set of pinned points, the estimates on the
variance follow easily. The estimates on the covariance are much more complicated. This
problem resembles the classical problem of the homogenization of elliptic PDEs in perforated
domains (see [CM97]), and the arguments are inspired from this connection. We proceed
by using from [BCK17] the idea to use a Widman hole filler argument [Wid71] on random
annuli. The details, however, are rather different. We use a multipolar Hardy-Rellich
inequality for second derivatives (inspired by similar inequalities for first derivatives as
e.g. in [CZ13]) to estimate the local effect of the pinned points. We also use a rather subtle
multiscale construction to construct the required cut-off functions, and to prove that this
construction can be done with sufficiently high probability. This is the most technical part of
the chapter, and it is novel to the best of our knowledge.
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1.3 Properties of the membrane model and other interface models

1.3.5 Wetting

As already briefly mentioned in the previous section, one can consider a competition
between the effects of a hard wall and an attractive potential. This problem is known as
wetting. It should be plausible that, depending on the strength of the attractive potential,
one or the other effect might win. That is, the interface could be repelled far away from the
boundary or the interface could stay close to the wall and touch it at many points (the two
phases are called dry/wet [Gia01] or partially wetted /wetted [Vel06] in the literature; we
stick to the former).

The physical interpretation of this problem explains the terminology. Namely, this model
arises when analyzing the coexistence of a liquid and a gas in a domain, where the liquid
prefers to stick to the boundary of the domain due to certain molecular forces. Our height
function then describes the interface between the liquid and the gas. It could happen that
there are only a few drops of liquid at the wall with the rest of the wall being dry, or that the
whole wall is covered by a liquid film. Which of the two phenomena occurs depends on the
amount of liquid present (which itself depends on the attractive forces of the wall). See e.g.
[Lip01] and the references therein for biophysical work on this problem.

Another physical interpretation arises when considering a biomembrane contained in
a domain that experiences some attractive forces close to the wall of the domain, while
entropic effects tend to keep it away from the wall, cf. [Lip95].

Mathematically, wetting consists in the analysis of the measure (1.3.1) conditioned on the
event Op + = {¢P: P > 0Vx € A}. We call those sites where ¢, = 0 under the conditioned
measure the dry sets, and define the field to be dry when the expected value of the fraction
of points in A that are dry is positive (and otherwise wet). As for pinning, one can argue
that there is a critical value eyet . € [0, 0] such that the field is wet if € > eyer « but not if
€ < Ewet,+- NOW one can investigate whether et « is nontrivial and how the field behaves in
the dry and wet phases.

There are only a few rigorous results on this problem: For the gradient model it is known
that eyet« = 0if d > 3 [BDZ00], while eyt > 0if d < 2 [CVO0O]. It is unknown whether the
same holds for the V g-interface model other than in the case d = 1 [HV04]. Similarly for
the membrane model it is only known that epin« < €wet+« < o0 ind = 1 [CDO08]. The only
pathwise results in the literature are in [Vel04] where the main result is an estimate of the
typical height of the wet interface.

As mentioned, for the membrane model it is not even known whether eyt > 0 for some
d > 2, although in analogy with the gradient model one can conjecture that eyet« > 0 if and
only if d < 4. Maybe a combination of the results in [Kur(9] on pure entropic repulsion
combined with the results of Chapter 6 on pure pinning can help shed light on this question.

1.3.6 Further aspects and open questions
There are many more interesting questions about random interface models that one can
study. Let us describe three of them where there is active research right now.

Near-extrema and thick points

In view of the results on the maximum of the fields in Section 1.3.2, it is natural to wonder
whether one can say more about the behaviour of the field at or near its maximum. This
question is interesting mainly in the critical case. For the case of the gradient model, this has
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been thoroughly addressed in [BL16, BL18, BL20]. There, convergence of the full extremal
process (encoding height, location and local neighbourhoods of near-maxima) to some
limiting process is shown, and the law of the locations of those near-maxima is identified as
critical Liouville quantum gravity (cf. [Ber15] for an introduction).

One can also study the so-called A-thick points of the field, i.e. those points whose height
is approximately A times the height of the maximum. This was done in [BL19], where
the authors show that the locations of the A-thick points converge to subcritical Liouville
quantum gravity . This refines an earlier result, [Dav06] finding the Hausdorff dimension of
that set.

Analogous results for the V¢-model with strictly convex V seem out of reach, as one
does not even know the precise height of the maximum yet. For the membrane model
there is more hope in view of the results of Chapter 4. However, some of the results for
the gradient model that we have just mentioned rely on its conformal invariance and thus
on some special properties of the two-dimensional space, and so these probably have no
replacement for the membrane model. Let us mention, though, that the results on the
Hausdorff dimension of the set of thick points have already been adapted to the case of the
membrane model in [Cip13].

Level surfaces

Another natural question for the random interface models is how their level surfaces look
like. We focus on the zero contour, i.e. the set where the (suitably interpolated) interface
intersects the O-plane. This is mainly interesting in the critical case. For the gradient model
and the V g-model with strictly convex V in d = 2 it turns out that the scaling limit of the
contour surfaces (which then are contour lines) is the conformal loop ensemble CLE(4), a
variant of the Schramm-Loewner evolution. This was shown in [SS09, Mil10].

For the membrane model in d = 4 the analogous question is very interesting, but probably
also extremely difficult. In the absence of conformal invariance it is not even heuristically
clear what the scaling limit might be.

Level set percolation

A random interface model also gives rises to a strongly correlated percolation model. This
is most natural in the supercritical dimensions, as then there is an infinite volume limit of
the field without rescaling. One can then consider the interface on all of 74 and for some
t € R study the set E; = {x: ¢y > t}, and in particular its percolative properties. Then one
can define various critical values for t. The most natural of them, t,, is such that E; contains
almost surely an infinite connected component if t < t,, but not if t > t.. For the gradient
model it is known that 0 < t, < oo for all d > 3 [BLM87, RS13, DPR18]. This means in
particular that both the set where the gradient model is positive and its complement contain
an infinite connected component. This needs to be contrasted with Bernoulli percolation,
where this coexistence is almost surely impossible.

In a recent breakthrough [DCGRS20] it was shown that ¢, agrees with a variety of other
critical values, and so there are clearly defined subcritical and supercritical phases for
percolation.

As a link to Section 1.3.3, one can consider the interface conditioned on the event that for
some D € [0,1]9 the sets Dy = ND N Z% and Z¢\ [0, N]¢ are not connected in E;. For t < ¢,
this is an unlikely event, and conditioning on it will lead to a repulsion of the interface. For
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the gradient model, this problem was studied in [CN20], using the result from [DCGRS20]
to derive sharp estimates for the resulting entropic repulsion.

It would be very interesting to see whether one can transfer these results to the V¢-model
for strictly convex V or to the membrane model. For the former, a first result can be found
in [Rod16].

1.4 Discrete Green’s functions and finite difference schemes

We will now turn to the second important topic of this thesis, namely the discrete Bilaplace
equation and its Green’s function. We first provide some context and discuss the continuous
counterparts of these objects, and then we turn to the new results of this thesis.

1.4.1 Continuous elliptic partial differential equations and Green’s functions
Equations in smooth domains

Elliptic partial differential equations are a class of partial differential equations that gener-
alize Poisson’s equation. There exists a vast amount of theory on this subject, and we will
just briefly mention a few notions important to us. The following results are classical (see
e.g. [LM72a, Gia83]). We focus on constant coefficient operators L = }_|;<p,, @49“. Such an
operator is called elliptic if its principal symbol is invertible, i.e. if }_ 5o, 225" 7# 0 for any
& € R4\ {0}, where we use the usual multi-index notation. Given a domain Q C R¢ with
C™~l-boundary, one can then consider the boundary value problem

Lu=f in(Q,

14.1
*u=0 onoQ VO<k<m-1 14D

Elliptic regularity theory implies that, informally speaking, u is better than f by 2m deriv-
atives. That is, there are interior estimates of the form ||V*"u||x < C||f||x for a variety of
function spaces X. Such estimates hold locally in the interior of () in any case, and if the
domain () has a sufficiently smooth boundary, they extend to global estimates. In particular,
the equation is uniquely solvable for f € X.

Under the stated assumptions there also exists a Green’s function G for L. Formally G(-,vy)
is the solution of (1.4.1) with f = §,, the -distribution at y € (). One can show that this is a
well-defined function on Q x Q\ {(x,x): x € Q}, and that for f € L?(Q) one can represent
the solution of (1.4.1) as

uz/QG(-,y)f(y) dy

This should make it obvious that the Green’s function G is closely linked to the elliptic
operator L, and that it is important to understand the behaviour of G to analyse the elliptic
boundary value problem associated to L. In particular, understanding the behaviour of G
near its singularity at the diagonal can lead via the theory of singular integral operators to
regularity estimates for the boundary value problem (1.4.1).

In the full space (i.e. Q) = RY), one can analyse the Green’s function using Fourier analysis
and obtain an explicit expression for it. For bounded () one can then use some regularity
theory for (1.4.1) to show that the Green’s function behaves similarly to the full space
Green’s function. In fact, using this approach precise estimates on the Green’s function and
its derivatives are known in smooth domains (see e.g. [Kra67, DS04, GGS10]).
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Equations in domains with singularities

If the domain Q) no longer has a smooth boundary, the situation becomes much more diffi-
cult. An important class of non-smooth domains are polyhedra (i.e. convex hulls of a finite
number of points in RY), or, more generally, domains with piecewise smooth boundary. In
that case there is still an existence and regularity theory for elliptic equations, although
typically one has to introduce weighted function spaces, where the weight measures the
distance to the singular part(s) of the boundary (cf. e.g. the series [KMR97, KMR01, MR10]).
There are eigenvalue problems associated with the singularities, and these determine for
what range of parameters the existence and regularity theory applies, and when one encoun-
ters a nontrivial kernel of L. One can still define a Green’s function of (1.4.1), and derive
asymptotics for its behaviour. In the interior of the domain this Green’s function behaves
again like the full-space one, while near the boundary it might be sensitive to the geometry
of the domain.

When the boundary of () is no longer piecewise smooth, general results become rare, but
they still exist. In particular, for general domains there is an existence and regularity theory
in various spaces that are sufficiently close to the energy space H" (Q)) (see e.g. [MM13]).
There is also still a Green’s function, and one can establish various estimates on it that are
independent of the geometry of the domain [MM14].

The continuous Bilaplace equation

The differential operator that is most important to this thesis is the Bilaplacian operator,
given as A? (where A is the standard Laplacian). This is a fourth-order elliptic operator, and
probably the most important such operator. It arises for example in linear elasticity, fluid
dynamics and the theory of phase separation.

All the general considerations from the previous paragraphs apply to the Bilaplace
operator. While this operator is quite similar to the Laplacian, one important difference is
the absence of a maximum principle. One can ask whether the operator is still positivity-
preserving in the sense that f > 0 in (1.4.1) implies that u > 0 as well. This is equivalent
to the Green’s function of the Bilaplacian being nonnegative. From a physical point of
view this seems quite plausible.In fact, in 1908 Hadamard [Had08] was convinced that this
was the case when () is convex, even though he had no proof. Later it turned out that
the conjecture is false. A first counterexample was found in 1949 by Duffin [Duf49], who
showed that for a long thin rectangle the Green’s function can become negative. Later on,
many other counterexamples (including ones with smooth boundary such as certain ellipses)
were found. For more on the history of this conjecture see [GGS10, Section 1.1.2].

Of course, in Section 1.2.6 we had already remarked that the Green’s function of the
discrete Bilaplacian can be negative, so with this in mind the failure of the conjecture should
be not surprising.

1.4.2 Numerical analysis of partial differential equations

Finite differences and finite elements

While partial differential equations are a fairly universal tool to describe physical phenom-
ena, they are ill-suited to computations. In order to actually compute an (approximate)
solution, one typically wants to discretize the problem in some way, so that one obtains a
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finite-dimensional problem which one can then solve exactly or approximately. This is one
of the main topics of numerical analysis, see e.g. [Col60, JS14, Hac17].

One way to obtain such a discretization is to use finite differences. This means that one
replaces the domain Q by some lattice, typically O, = QN (hZ)Y, and the derivatives in the
differential operators by some finite differences at the lattice points. In particular, one can
replace the partial derivative d;u(x) by the forward difference Du := }((u(x + he;) — u(x)),
the backward difference D" ;u := ((u(x) — u(x — he;)) or the central difference Dfj ;u :=
o ((u(x + he;) — u(x — he;)). Thus, a simple finite difference scheme for the boundary value
problem (1.4.1) would be

Lyuy = fr, in Q)y,

(1.4.2)
u, =0 on (hz)?\ O
where uy,: (hZ)® = R, fiy = flnzys Lt = Ljaj<am @Dy, and Dy = (D})* ... (D})*. This is
a linear system with | ()| unknowns, and one can solve it by using various efficient methods.
One can devise other finite difference schemes using Taylor expansion, and in general one
has to weigh simplicity of the scheme against its convergence properties. For our boundary
problem (1.4.1) we could easily discretize the boundary condition by requiring uy, to be zero
outside of (), but for other boundary conditions this might be difficult, in particular, when
the shape of the boundary is complicated as well. Sometimes it might also be advantageous
or necessary to choose f;, in some other way than just the restriction of f to the lattice.
While not important for the present thesis, we should also mention that another major
method to discretize PDEs is to use a finite element method. Here one reformulates the
PDE as a variational problem in some Hilbert space, and then picks a finite-dimensional
subspace of that Hilbert space to solve the variational problem in. Typically one picks that
finite-dimensional subspace as the span of a set of basis functions that have particularly nice
properties (in particular, that most pairs of basis functions are orthogonal).

Consistency, stability and convergence

Whether by finite differences or finite elements, there are many ways to discretize a PDE.
Of course, such schemes are only useful, if one can relate the solution of the discretized
problem and the solution of the original PDE, i.e. if one understands the discretization error.
This is again a classical topic of numerical analysis, well covered by the above references.
Our presentation follows [Arn15].

It is a basic principle in this regard, dating back to [CFL28, Ger30, vING47] that consistency
and stability imply convergence of a scheme. Let us explain what these terms mean. We
do so for the finite difference scheme (1.4.2). We define two Banach spaces Vj, and W), with
norms || - ||y, and || - ||w, denoting the spaces in which u;, and wj, live (in our example the
underlying vectorspace for both Vj, and W, is R®%).

First of all, to compare the solutions u and uy, of (1.4.1) and (1.4.2), we need them to live in
the same space. This we can achieve by using a suitable map u — U, € Vj,, e.g Uy = u|q, .
Then our goal is to control the error ||U; — uy||y,. Now the consistency error measures
how far U}, is from being a solution of (1.4.2). We define it as ||L, U}, — f;, ”W;,' We call the
system consistent, if the consistency error tends to 0 as i — 0. We also define the stability
constant as the operator norm of L, Las a map W;, — Vj,, and we call the scheme stable if
that constant is bounded uniformly in .
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Now it is easy to check that consistency and stability imply convergence, and that we
actually have a quantitative version of this result. Namely, one calculates

U — sl = ||y (ot = )|, < L3 w1t = fi)llw,

and so the error is bounded by the product of the stability constant and the consistency
error.

In practice, it is of course a minimum requirement on a finite difference scheme that it
converges. One looks for finite difference schemes whose error converges as fast as possible,
while the schemes stays simple enough that the required calculations are feasible. Thus, an
important topic in the field is to analyse a given finite difference schemes and to estimate its
approximation error.

1.4.3 Estimates for discrete Green’s functions

This section includes parts of the introduction of the paper [MS19], written jointly by
Stefan Miiller and the author, as well as the introduction of the author’s paper [Sch20a].

Overview

We consider partial difference equations, that is systems of the form (1.4.2) with L;, some
discretization of an elliptic differential operator. If that discretization is chosen in such a way
that Ly, is elliptic (i.e. positive definite as a linear operator on R*), then there is a Green’s

1 x=
function Gy, for Ly, i.e. G, (-, y) is a solution of (1.4.2) with f,(x) = Jj,,(x) = {gd xl v
else
is cleary interesting in its own right to study the behaviour of its Green’s function.
In addition to that, these Green's functions (withh =1and L, = —A, or L;, = Aﬁ) are the

same Green’ function as the ones discussed in Section 1.2.6, and in that Section we have
already discussed the importance of these Green’s functions for the study of the gradient
and the membrane model.

Note that the Green’s functions for different & are all related to each other via scaling, and
so we can equally well study the Green’s functions on Ay, := [0,1]¢ N (kZ)? to conclude
results for the Green’s functions on [0, N]¢ N Z¢ that arise in the study of Gaussian interface
models. In fact, the former interpretation is oftentimes better suited to the application
of tools from PDE theory or numerical analysis. In view of our applications to Gaussian
interface models, our main focus here is on the discrete polyharmonic operators L, = Af for
k>1.

In order to prove results on the behaviour of the Green’s function, there are a variety
of approaches one can pursue. Just like in the continuous case, for simple domains such
as the full-space (hZ)9 one can apply discrete Fourier analysis to compute somewhat
explicit expressions for the Green’s function, and these in turn can be used to derive precise
asymptotics for the Green’s function. This method has led to asymptotics for the Green’s
function of the discrete Laplacian (e.g. [MW40, Duf53]), and more generally, for the Green’s
function of discrete polyharmonic operators [DS58, Sim67, Man67]. In particular, in [Man67]
Mangad gives an algorithm that allows to compute the asymptotic expansion of the Green’s
function of AX up to arbitrarily high order.

Apart from that, one can try to transfer some techniques available to study continuous
PDEs and continuous Green’s functions to the discrete setting. For some of them this seems
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hopeless, e.g. flattening the boundary, or polar coordinates for corner singularities. Some
other techniques carry over well, e.g. approaches based on well-chosen test functions. For
example, in the author’s MSc thesis [Sch16] Campanato’s approach to elliptic regularity
[Cam80] was adapted to the discrete setting, leading to a regularity theory for A% in L?
and LP*°. This was based on earlier work of Dolzmann [Dol93, Dol99], who used the same
approach for error estimates for finite element schemes. This approach also works for other
discrete polyharmonic operators. Also in [Kur09, Cip13] a similar approach was used to
derive estimates for the Green’s function of the discrete Bilaplacian in d = 4.

Alternatively, one can also try to transfer existing results for continuous Green’s functions
to discrete ones. For that purpose one needs a quantitative estimate that those Green’s
functions (or truncated versions of themselves) are close. One way to derive such estimates
are estimates for the appropriate finite difference scheme, as discussed in Section 1.4.2. One
can also try to use results for discrete PDEs (as in the previous paragraph) to establish this
convergence.

In the following paragraphs we will describe how we have put these methods into
practice.

Estimates for the discrete Bilaplacian for d € {2,3} via continuous elliptic theory

As we have discussed, the subcritical membrane model is quite regular in the bulk. As a
consequence, its behaviour at and near boundary is important for its global behaviour. In
particular, as described in Section 1.3.3, the question of entropic repulsion is dominated by
its boundary behaviour. Thus, one is interested in estimates for the Green’s funcion of that
model, i.e. the Green’s function of the discrete Bilaplacian, that are sharp up to the boundary.
Furthermore, to establish the Holder continuity of the field via Kolmogorov’s continuity
criterion, one requires estimates for the mixed second derivatives of G, that again are valid
up to the boundary.

In Chapter 2, that is based on the publication [MS19], we derive such estimates. In fact,
the main result of that chapter is the following.

Theorem 1.4.1. Let d = 2 or d = 3, and let d(z) denote the distance of z € A, = [0,1] N (hZ)®
to (hZ) \ Ay,. Then there exist ¢, C > 0 independent of h such that for any x,y € (hZ)4

d d x)?2 2
|Gi(x,y)| < Cmin (d(x)z_Zd(y)z—z, dUd(y)) ,

(e — g+ h)?
. g (d(x)+h)d(y)?
_ v
|Vh,xGh(xr]/)| < Cmin <d(y) ’ (]x—]/’—i—h)d ’
_dy)? =
e c1o$ (1 +1(”+h)2y>z =2
Cmin (Ix—y|+h’ <|xfy|+h>3> d=3
(d(x) +h) (d(y)+h) _
Clog (1 + “GRE ™) d=2

Vi Vi Gu(x,y)| <

: 1 (dx)+h)(d(y)+h) _a
Cmm(|x—y|+h' (x—yl+h)? ) d=3

Besides its application to the problem of entropic repulsion in Chapter 3, this result
has also been used in [CDH19] to rigorously establish the scaling limit of the subcritical
membrane model.

Let us briefly mention how we prove Theorem 1.4.1. Our main tool are Caccioppoli (or
reverse Poincaré) inequalities. That is, for some u that is discretely biharmonic on some
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large ball, we want to control the L®-norm of its Hessian on a small ball by the L? norm of its
Hessian on a larger ball. This is an interior estimate, and combined with the corresponding
exterior estimate, and the results on the full-space discrete Green’s function from [Man67],
one can derive the estimates in 1.4.1 using some careful reasoning.

The main challenge thus is to derive such Caccioppoli inequalities. In the interior or near
flat parts of the boundary, we could, in principle, use for that purpose the classical approach
based on test functions (as is done in [Dol93, Dol99]). Near the singularities of [0, 1]d, this
is no longer possible. There we use that the continuous theory for biharmonic functions
in domains with singularities [KMR97, MR10] predicts that these functions decay rather
rapidly near the singularities. Using a compactness argument based on a discrete version of
the Kolmogorov-Riesz-Fréchet criterion and the Caccioppoli inequality, we can transfer this
to a discrete Caccioppolli inequality near the corresponding singularity. Since we anyhow
need to introduce this compactness framework, we directly use it for the estimates in the
interior or near flat parts of the boundary, as well.

Estimates for the discrete Bilaplacian for d = 4 via finite difference schemes

For the critical membrane model, the boundary behaviour is less important. Instead, most
relevant for the analysis of the field is the logarithmic correlation structure in the bulk. In
particular, as discussed in Section 1.3.2, one can obtain the convergence of the maximum of
the field provided one has very sharp estimates on the Green’s function in the bulk. These
estimates are derived in Chapter 4 which is based on the publication [Sch20a]. The main
result on the Green’s function there is too technical to state in full here, but we give some of
the estimates.

Theorem 1.4.2. Letd = 4, and A;, = [0,1]* N (hZ)*. Also let d(x) = d(x,9[0,1]%). Then for all

e Lo
max(d(x),d(y

C.
h+[x —y|

IN

872G u(x,y) — log <2 +

Furthermore, there are a constant 6y > 0, a continuous function f1: (0,1)* — R and a function
fo: Z* x Z* — R such that the following holds. For all L,e > 0, 0 > 0y there exists N} =
N4 (L, e,0) such that for all h < Ni(,] with 3 € N, all x € Ay, such that d(x) > h|logh|® and for all

u,v € [0, L]* N Z* we have
187G (x + hu, x 4+ ho) +logh — f1(x) — fo(u,0)| <.

Similarly, there are a constant 6; > 0 and a continuous function f3: D* — R, where D* =
{(x,y) : x,y € (0,1)* x # y} such that the following holds. For all L,e > 0, 0 > 0y there
exists Nj = Nj(L,¢,0) such that for all h < Ni{ with % € N and for x,y € Ay such that
min(d(x),d(y)) > h|logh|® and |x — y| > 1 we have

182Gan(x,y) — fa(x,y)| <e.

The compactness methods from Chapter 2 are not well-suited to be applied here for two
reasons. First of all, the relevant continuous estimates have not yet been worked out for
d = 4 in the literature. In addition, the estimates obtained using compactness methods and
Caccioppoli inequalities are all up to a possibly large constant, while in Theorem 1.4.2 we
are interested in estimates with an error that tends to 0 as & — 0.
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Instead we follow another of the strategies mentioned above. Namely, we use an estimate
for the approximation quality of finite difference schemes to compare truncated versions of
the discrete and continuous Green’s function. This estimate is similar to the one in Chapter
5 to be discussed below, although it is easier than this result and can be established using
textbook methods as in [JS14]. Besides this error estimates we again use the results from
[Man67] on the discrete Green’s function in the full-space, as well as results similar to ones
in [MM13, MM14] for the continuous Green's function in [0, 1]%.

1.4.4 Estimates for finite difference schemes for the Bilaplacian

This section includes parts of the introduction of the author’s paper [MSS20], written
jointly by Stefan Miiller, Endre Siili and the author.

Overview

We have already described the importance of the Bilaplace equation, as well the relevance of
finite difference schemes together with error bounds. The convergence analysis of numerical
methods for the approximate solution of the biharmonic equation has therefore been of
considerable interest. Some references are the early papers by Tee [Tee64], Bramble [Bra66],
Smith [Smi68, Smi70], and Ehrlich [Ehr71]; see also [Col60, Ch. V, §1.5 Il and Table VI in the
Appendix]. For the numerical analysis of finite difference approximations of the biharmonic
equation in rectangles a fast algorithm was given by Bjerstad [Bjo83]. For a modern review
in the context of the approximate solution of the Navier-Stokes equations in planar domains,
see [BACF13].

In these works the data and the solution to the boundary-value problems under consider-
ation were assumed to be sufficiently smooth. This assumption, however, is quite restrictive,
as in practice one often encounters right-hand sides that are rather rough. One of many
examples is that of turbulence in a fluid. Another example is given by the analysis of discrete
Green’s function, as just discussed in Section 1.4.3.

Finite difference schemes for rough right-hand sides were considered by Lazarov [Laz81],
Gavrilyuk et al. [GLMP83], and Ivanovic et al. [1IS86], for example. For a detailed survey of
the relevant literature see the monograph of Jovanovi¢ and Siili [JS14], devoted to the finite
difference approximation of linear partial differential equations with generalized solutions.

Consider for instance the boundary value problem

ANu=f inQ,
u=0 onl, (1.4.3)
J,u=0 onadQ),

where Q = (0,1)9. A finite difference scheme associated with this boundary value problem
is given by

AU = Th*2f in A,
U=0 onTy, (1.4.4)
Di U =0 onTy.

where T'?2f is a certain smoothing operator (to be defined precisely in Chapter 5), Aj, =
[0,1]9N (hZ)9, and T}, = (3]0, 1]4) N (hZ)9. The operator T"?2 f regularizes the right-hand
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side, and so (1.4.4) makes sense whenever f € H'(Q) for t > —%. This scheme has been
studied in [GMP83, JS14] for d = 2 and u in the fractional Sobolev space H*((0,1)9) (for
s=t+4>3).

In [JS14, Theorem 2.69] the error bound

< Chmin{s—2,3/2} | log h,l—\sgn(s—7/2)\

[u— UHHg(Ah) )H”HHS((O,l)d)

for g < s < 4 is established, and in [GMP83] the error bound
-2
I = Ullz(ay) < Bl b 01)9)
is shown for % < s < 4, albeit under the additional assumption that the third normal
derivative of u vanishes at the boundary.
These results seem suboptimal, because the operator Dy j, has truncation error /%, and so

one can hope that one actually has an error estimate of order h? unconditionally. In Chapter
5 we prove that we actually have such an estimate, and this not only if d = 2.

Improved estimates for a finite difference scheme
In fact, in Chapter 5, that is based on the publication [MSS20], we prove the following result.

Theorem 1.4.3. Let d > 2. Suppose that : max(5,d) < s < 4, and let u € H*(Q) N H3(Q);
then, there exists a positive constant C = C(d, s), independent of h, such that

| — UHH}%(A,,) < Ch572|‘uHHS(Q) :

The restrictions on the range of s in [JS14, Theorem 2.69] and on the third normal derivat-
ive of u in [GMP83] arise for the following reason: in order to compare the finite difference
approximation with the original problem one needs an extension of the (generalized) solu-
tion u from Q) to RY \ Q) that preserves the Sobolev regularity of u and has, ideally, zero
discrete boundary values. The assumptions in [JS14, Theorem 2.69] and in [GMP83] permit
the use of the symmetric extension of u across 02 for that purpose.

In our setting, with % max(5,d) < s < 4, this is no longer possible. The main novelty
of the proof of Theorem 1.4.3 is to use a different, carefully chosen, extension of u. This
extension will no longer have zero boundary values, but we will show that they can be made
small (in an appropriate norm, in terms of positive powers of the discretization parameter
h), so that we can still close the argument. More precisely, we prove that the boundary
values of u are small in a discrete version of the H!/2-norm on the boundary. We also show
that this implies that there is an extension of the boundary values back into A; with small
L?-norm of the Hessian. We can then subtract this extension from u — U and apply classical
energy space estimates as in [JS14] to bound the remaining error terms.

1.5 Notation

We have made an attempt to keep the notation consistent throughout the whole thesis.
However, this has not always been possible, and we indicate near the beginning of each
chapter when the notation there deviates. If some notation is only relevant for a particular
chapter, we also only introduce it there.

Let us summarize here the notation that is relevant for all of the thesis.
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1.5 Notation

e We use the convention that ¢ and C denote generic constants whose precise value can
change from occurrence to occurrence. Constants that are denoted by any other Latin
or Greek letter have some fixed value and keep it. By adding subscripts to a constant
we emphasize that the precise value of that constant may depend on the variables in
the subscript (and typically on no others).

In a few places we use the standard Landau notation. That is, we write a = b+ O(d)
to denote |a — b| < Cd, and a = b + o(d) to denote that % tends to zero (in a limit
that will be clear from the context). Again we add subscripts to emphasize what the
implied constant or the implied convergence rate depend on.

e We denoteby N = {0,1,2,...}, Nt = {1,2,...}, Q, R and C the natural numbers,
positive integers, rational numbers, real numbers, and complex numbers, respectively.

e We denote the cardinality of a set A by |A|.

e We use the standard notation for multiindexes &« € IN9. We will sometimes omit the
underline, when there is no risk of confusion.

e We denote by d € N the dimension of our space. The standard basis of R is denoted
e1,...,ed4. We consider the lattice Z¢ ¢ RY, and for & > 0 such that % € INT also the
lattices (hZ)9.

e We write B,(x) for the open ball of radius r > 0 around x € RY, and Q,(x) =
x + (—r,r)? for the open cube of sidelength 2r. We also use discrete cubes. That is, we
define

Qi(x) = {y € (hZ)*: |y — x| <1} = Q;(x) N (hZ)°.
When x = 0 we sometimes omit the x.

As an exception to this, in Chapter 6 we will only use discrete cubes, and so we can
drop the superscript in Q"(x) there. We will recall this in the introduction of that
chapter.

e OnRY we use the [P-norms | - |, for p € [1,0]. When p = 2 we often drop the subscript
p so that | - | denotes the Euclidean norm. For x € RYand A, A’ C RY we letd(x, A) =
infyc 4 [x — y| be the Euclidean distance of x to A, and d(A, A") = infycp ycar [x — Y]
be the Euclidean distance of A and A’. By adding a subscript to d we indicate that
either we take the distance with respect to some other norm or that A is some fixed set
(say A = Ay). This will be defined in detail in the corresponding chapters.

e Given N € IN*t, Ay denotes a lattice square of sidelength comparable to N, with
lattice width 1. Similarly for & > 0 such that } € N+ we denote by A, a lattice square
of sidelength comparable to 1, with lattice width comparable +. The reader should
think of Ay = [0, N]9NZ%and A, = [0,1]¢ N (hZ)9, but see the introductions of the
individual chapters for the precise definitions.

e We define the forward difference quotient D"u(x) = u(x + he;) — u(x), the backward
difference quotient D" .u(x) = u(x) — u(x — he;) and the centred difference quotient
Dg,iu(x) := 5= (u(x + he;) — u(x — he;)). The discrete gradient is the vector Vju(x) :=
(DMu(x))%,, the discrete Hessian is the tuple V2u(x) := (D?D’jju(x) )gjzl, the discrete
Laplacian is Aju(x) := Y%, D!'D" u(x), and the discrete Bilaplacian is A2 := Ay, 0 Ay,
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For a multi-index &« € N we write Dlu(x) = (D¥)* ... (D})*u(x), and for k € N
with k > 3 we let V¥u(x) be the the collection of all D"u(x) with |a| = k.

More generally, for a vector a € Z9 of unit length we define the forward differ-

ence quotient Dhu(x) := ( (x + ha) — u(x)), the backward difference quotient

D" ju(x) := #(u(x) — u(x — ha)) and the centred difference quotient Dg/av(x) =
)-

2h( v(x+ha) —v(x — ha)

We use the translation operators 7/, defined by T u(x) = u(x & he;). More generally,
for a € 79 we set T/'u(x) = u(x + ha).

For a domain ) C RY and p € [1, 0] we use the standard LP-norms || - ||1»(q), and for
k € N the Sobolev-norms | - [|yykp(). When p = 2, we also write || - || (@) instead of
| - lwkz()- Furthermore, for a € [0 1] we use the Holder seminorms [-]co« () and the
Holder norms || - || coe(y)- We extend these norms to vector-valued functions by taking
the Euclidean norm of the norms of the components. Each of these norms comes with
an associated function space.

We also use various discrete function spaces. For A C (hZ)9 and p < oo we define a
discrete LZ—norm
d
el ) = L el

xXEA
if p < o0, and
H“HL;O(Q) = Suphd\”(xﬂ

xeA

and the associated function spaces. For p = 2 this norm is induced by the scalar

product
u Z) L2 Z hd
x€A
When there is no risk of confusion, we drop the subscript /. We also use various other
discrete function spaces that are defined in the individual chapters.

For A € (hZ)? we denote the gradient and membrane by Py 5 and P4 A (as intro-
duced in Section 1.2.4). We denote samples from these measures by iy o and §a A,
respectively, and write Gy o and Gy s for the associated Green’s functions. When
A = Ay or A = Ay, wejust write N or h instead of Ay or Aj,. We drop the subscripts
V and A when there is no risk of confusion.



2 Estimates for the Green’s function of the
discrete Bilaplacian in dimensions two and
three

This chapter is based on the paper [MS19], written jointly by Stefan Miiller and the author,
with only minor changes. A small part of the content of this chapter has already appeared
in the author’s M.Sc. thesis [Sch16], where a result similar to Theorem 2.1.1 was shown,
but only for d = 2 and using a different and more complicated approach.

2.1 Introduction

In this chapter we will establish estimates for the Green’s function of the subcritical discrete
Bilaplacian, as described in Section 1.4.3. In particular we prove Theorem 1.4.1. Actually,
we prove a slightly different statement: while we still set A, = [0,1]9 N (hZ)9, we take the
Green’s function on intA;, = [, 1 — h]¢ N (hZ)? instead of Aj,. The precise statement is
Theorem 2.1.1 below. It is easy to see that this Theorem is equivalent to Theorem 1.4.1 as
stated in the introduction.

We use the notation from Section 1.5. As this chapter is only concerned with the Bilapla-
cian, we drop all subscripts A right away. We define Ay = [-N, N]9 N Z<.

We first state an unrescaled version of our main result (i.e. with unit lattice width).

Theorem 2.1.1. Let d = 2 or d = 3, let Gy be the Green's function of the discrete Bilaplacian
with zero boundary data outside Ay, and let d(z) = dist(z, Z4 \ An). Then there exist c,C > 0
independent of N such that Gy and its discrete derivatives satisfy the following estimates.

i) Forany x,y € Z4

. e ovog d(x)%d(y)?
< 24 2—4  a\x)a\y) 1.
Gl < Camin (a0, AEAUEY @11
. _q (d(x) +1)d(y)?
. e N
VsG] < Cmin (d)* ¢, G DENE), 212)
d(y)? _
IV2Gn(x,y)| < {Ck’? (Hf"“y“ff(y))z =2 2.1.3)
Cmin (e eaery) 4=
Clog (1+ bty o)) g
V.V, Gn(x,y)| < { R A . (2.1.4)
Cmin (e, AR ) =3
ii) Forany x € Z1
Gn(x,x) > cd(x)*9. (2.1.5)
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2 Estimates for the Green’s function of the discrete Bilaplacian

Gn is symmetric in x and y, so we also have the analogous estimates for |V, Gy/(x,y)| and
|V§ Gn(x,vy)|. For the optimality of these estimates, see the discussion after Theorem 2.1.3.

The estimates (2.1.1) and (2.1.5) immediately provide estimates for the variance and
covariance of ¢ under Py. From the estimates (2.1.1) and (2.1.5) and a thinning procedure
one can also deduce estimates on the probability of the membrane model to be positive. We
give details on these arguments in Chapter 3.

In addition Theorem 2.1.1 implies the following continuity estimates.

Corollary 2.1.2. Let d = 2 or d = 3. Under Py, the random field 1 satisfies
—yl? _N_ —
Clx —y| log<2+|x7y|> d=2, .

(2.1.6)
Clx —y| d=3

En(px — 9y *) <

To show (2.1.6) for d = 2 one uses the identity
En(l$x — 9y[*) = Gn(x,%) — Gn(x,y) — Gn(y, x) + Gn(y,y), (2.17)

as well as a discrete counterpart of the identity

1 1
H(x,x)—H(x,y)—H(y,x)+H(y,y):/0 /0 0s0:H(x +s(y — x),x +t(y — x)) dsdt,

valid for every smooth function H, and (2.1.4). For d = 3 one uses (2.1.7) and the estimates
for G(x,x) — G(x,y) and G(y,y) — G(y, x) provided by (2.1.2) and its analogue for the y-
derivative. Since 1 is a Gaussian field the estimate (2.1.6) and the Kolmogorov continuity
criterion imply that the rescaled fields ¢!, = N~27¢/2¢y,,, are uniformly Hélder continuous
with exponents & < ag where a, = 1and a3z = % More precisely

P({l/)’: sup hbx’_lpy”

<KY) >1—eu(K)
wry X =Y }) “

with limg_,« €, (K) = 0. After the publication of these results, Cipriani-Dan-Hazra [CDH19]
completed the argument sketched above and proved that the membrane model has a
Holder-continuous scaling limit in dimensions d < 3.

In order to prove Theorem 2.1.1, we need regularity improving estimates for discrete
biharmonic functions and optimal decay estimates for various norms in annuli around
the singularity. The corresponding estimates for continuous biharmonic functions can be
proved using well-established techniques. One insight of this chapter is that these estimates
can be transferred to the discrete realm using two ingredients: a new compactness argument
and the discrete version of the Caccioppoli (or reverse Poincaré) inequality. It should also
be possible to transfer continuous estimate to discrete estimates by using error estimates in
numerical analysis, see the discussion below Corollary 2.1.4.

In order to derive the estimates in detail and to highlight the similarities between the
continuous and discrete setting, it is convenient to change notation. In particular, we rescale
our lattice to have width h, while the domain is fixed. We also shift the boundary by h
inwards.

Consider the lattice (hZ)¢, where we assume € N. Let A, = [0,1]4 N (hZ)4, intA;, =

[}, 1— ﬂd N (hZ)4 and let A;, be the discrete Laplacian on (hZ)d. Let Gy (x,y) be the
Green'’s function for A? = (A;)? on int A;, with zero boundary values on (hZ)9 \ int Aj,. In
this setting, Theorem 2.1.1 becomes
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Theorem 2.1.3. Letd = 2 ord = 3, and let d(z) denote the distance of z € int Ay, to (hZ)9 \ int Ay,.
Then there exist c, C > 0 independent of h such that

i) forany x,y € (hZ)4

: _d g d(x)%d(y)?
IG(%,y)| < Cmin (d(x)2 Ld(y)? (|x(_)y|(+y)h)d> , (2.1.8)
. _q (d(x)+h)d(y)?
< 3-d { 1.
|VixGu(x,y)| < Cmin <d(y) =yl +h)e ) (2.1.9)
d(y)* _
V2 Gu(x,y)| < Clog (1-+ e ‘ (2.1.10)
I ¢ min (o M) d=3’ -
[x—y|+h’ (Ix—y|+h)’ -
Clog (1 + W)ty ) g
X Vh, . y)+h) —
Comin (i, “RLEH ) =3
ii) forany x € (hZ)4
G(x,x) > cd(x)* 4. (2.1.12)

Theorem 2.1.1 can be easily derived from Theorem 2.1.3 if one chooses h = ﬁ, rescales
by a factor of 2N + 2 and observes that the estimates are scale-invariant. One can also obtain
estimates for higher discrete derivatives, see Remark 2.8.4 below.

Comparison with the Green’s function of the continuous Bilaplacian in the ball (see
[Bog05, eqn. (48)] or [GGS10, eqn. (2.65) and Thm. 4.7]), a general bounded smooth set
[DS04, Thm. 3 and Thm. 12] or a half-space [GGS10, eqn. (2.66)] shows that the estimates in
Theorem 2.1.3 are optimal in the interior and near the regular boundary points (edges for
d = 2 and faces for d = 3).

Near the singular boundary points (corners for d = 2 and edges and corners for d = 3)
the continuous regularity theory gives a more rapid decay of biharmonic functions (and
their derivatives) and hence a more rapid decay for the Green’s function with a decay
exponent y. Our compactness argument can be used to establish a similar decay estimate
for all exponents ' < 1. Since the general continuum theory provides an open interval of
admissible exponents -y (due to possible logarithmic terms) there is no loss in passing to the
discrete estimates.

The general statement is rather tedious, so let us look instead at an illustrative example,
the corner point 0 of the square (0,1)2. In this case the distance of a point x from the corner
point is given by |x|. If [x| < L|y| then [x —y| > l|y| > 1d(y) and the continuous theory
implies that

H 2+6/2 X
G(x,y)| <C <’y|> d*(y). (2.1.13)
where 0 < 0 < 6y, and 0y ~ 3.47918. To see this use Lemma 2.5.13 and note that

||v2G('r]/)||L2(Q|y‘/zﬂ(0,l)2) < Cly|~'d*(y)

(this follows from the continuous counterparts of (2.8.2) and Lemma 2.6.2). Moreover we
have

sup  G(-,y) <slIV2G(-y)llzqno1))
QsN(0,1)2
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2 Estimates for the Green’s function of the discrete Bilaplacian

by the Sobolev-Poincaré inequality and scaling.
The estimate (2.1.13) is better than the estimate

G(x,y) < dz(x)dz(y) ~ Cd(x)2d2<y)

T x—yl? lyl?

if 1+6/4
()
ly| ly|

Note that this condition holds in particular if |x| and d(x) are comparable and |x| < |y|. The
compactness argument shows that the discrete Green’s function Gy, satisfies a counterpart of
(2.1.13) if we replace 6 by any smaller exponent 6’ and C by Cy.

It is also easy to show that the discrete Green’s function converges to the the continuous
Green’s function.

Corollary 2.1.4. Letd = 2 ord = 3. Let G(-,y) € W3*((0,1)9) denote the continuous Green’s
function, i.e., the unique weak solution of A*G(-,y) = 6,. Extend Gy(x,y) toy € (0,1)¢ by
piecewise constant interpolation in the second variable. Then for each y € (0,1)9 the following
assertions hold.

1) We have
I,fCGh(-,y) — G(-,y) wuniformly,

where I denotes the piecewise constant interpolation in the first variable.

ii) Ifd = 2 then IV ,Gy,(-, y) converges uniformly to VG(-,y) and I}°V2Gy(-,y) converges
to V2G(-,y) in LP((0,1)?) for all p < co.

iii) Ifd = 3 then I'°V,Gy,(-, y) is uniformly bounded and converges to VG(-,y) in LP((0,1)3)
forall p < oo and locally uniformly in [0,1]> \ {y}. Moreover I!°V2Gy,(-,y) converges to
V2G(-,y) in LP forall p < 3.

A slight variant of the argument given below shows that the convergence in i) is also
uniform in v, i.e., that we have uniform convergence of the piecewise constant interpolation
of G, to Gin (0,1)4 x (0,1)9. The proof of asssertion i) in Corollary 2.1.4 uses essentially
only the elementary discrete W2 estimate in Lemma 2.8.1 and the compact embedding from
W22 to CY. The other two assertion follow from Theorem 2.1.3 and the local compactness
argument in Section 2.5. See Section 2.8 for the details.

For d = 2 quantitative estimates for the discrete W>? norm of difference between the
solutions of the discretised and the continuous biharmonic equation under weak assump-
tions on the regularity of the continuous solution have been obtained by Lazarov [Laz81],
Gavrilyuk, Makarov and Pirnazarov [GMP83], Gavrilyuk et al. [GLMP83] and Ivanovig,
Jovanovi¢ and Siili [1IS86], see also Chapter 2.7 in [JS14] which includes estimates for more
general fourth order equations in divergence form with variable coefficients. More precisely,
let u € (W3 N W*2)((0,1)2) and let i}, be the solution of

Al = Ky * A*u inint A?
subject to the discrete boundary conditions

0,(x) =0 and aj,(x +he;) —dy(x —he;)) =0 Vx € AZ\intA? Vie {1,2}. (2.1.14)
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Here K, (x) = h2K(%}) and K(z) = (1 — |z1])+(1 — |z2|)+. The boundary condition (2.1.14)
has the advantage that it leads to a higher order of consistency compared to our boundary
condition u;, = 0 on (hZ)?\ int Ay, (this latter condition is arguably more natural from
the point of view of probability and statistical mechanics). For the discrete W*? norm the
optimal error estimates

[ — ez (a,y < CH° 72 ullwsz(01y2) (2.1.15)

were established in [GMP83] for s = 3 and in [JS14, Thm. 2.69] for % <s < % In [GMP83]
the estimate (2.1.15) is also proved for s = 4, but under the additional condition that that
the symmetric extension i of u outside (0, 1)? still belongs to W*2. This holds only if the
third normal derivatives of u (which exist in the sense of trace) vanish.

Because Kj, * § = J), these estimates can be used to compare the continuous Green’s
function Gy € Wg’z and the discrete Green’s function Gh,y (defined using the boundary con-
ditions (2.1.14) rather than Gy, = 0 on (hZ)?\ int A,) and one obtains ||G, — Gh,y w22, <
Csh®=2d3~5(y) for s € (3,3). More precise estimates can be obtained if one applies the error
estimates to u = G, — G, where G, is a suitable Green’s function in IR? and 7 is a suitable
cut-off function (see below).

One can also use Theorem 2.1.3 to obtain quantitative error estimates for G, — G and its
discrete derivatives.

Let us briefly discuss some other approaches to prove Theorem 2.1.3. For d = 2 the
estimates (2.1.8) and (2.1.12) as well as a discrete BMO estimate for the mixed derivative
were proved in the author’s M.Sc. thesis [Sch16]. There a different approach was used
to obtain the estimates near the corners. One starts from a discrete biharmonic function,
defines a careful interpolation to get a continuous functions which is biharmonic up to
a small error and uses the continuous theory to get good estimates for that interpolation
which can then be transferred back to the original discrete function. This approach can in
principle be extended to d = 3, but we found the compactness argument more flexible and
more convenient to use.

Hackbusch [Hac83, Thm. 2.1] has developed a very general approach to derive discrete
stability estimates on a scale of Banach spaces from the corresponding continuous estimates.
One advantage of the compactness method is that it avoids the construction of suitable
discrete norms and restriction and prolongation operators which is a bit delicate near the
singular boundary points.

Alternatively, for d = 2 and the symmetric boundary condition (2.1.14) one can use the
optimal error estimates (2.1.15) in connection with the asymptotic expansion of the discrete
Green’s function Gh,y on (hZ)? in [Man67] (see also Section 2.7). One applies the estimate
(21.15) withs =3 tou = G, — qéy where Gy is a suitable Green’s function in R?. It is not
difficult to estimate the additional error term w;, = G, — 17@;, — 11, in the discrete W2 norm
by computing AZw, and testing with wy,. This yields the estimate [|Gyy — Gy [l y22( a2y < Ch
and the discrete inverse estimate implies that || Gh,y — GyHWZ,oo( Ay < C. Together with the
known estimates for V2G, one concludes in particular that

IViGhyl < Cd*(y)/(|x —y|+h)* for|x—y| < Cd(y). (2.1.16)

To get the optimal estimate for |x — y| > d(y) one may proceed as follows. From the
estimate for |x — y| < Cd(y) one can obtain the crucial discrete L* — L? estimate (2.6.1) for
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2 Estimates for the Green’s function of the discrete Bilaplacian

the second discrete derivatives for cubes of length 2r that touch the boundary by using
the identity u(x) = ¥ycinta, Gn(x,y) A2 (qu) (y)h? for an arbitrary lattice function u and a
suitable cut-off function 7 with |V¥#| < Cyr~*. For cubes which do not touch the boundary
one can apply the identity v(x) = ¥ cinta, Gi(x,y)A2(170) (y)h* to v(x) = u(x) —a—b-x
where 4 is the average of u over the cube and b is the average of Vju. Together with the
duality argument in Lemma 2.6.2 and Theorem 2.6.3 and similar estimates for the discrete
y-derivatiyes of G, — Gh,y this yields the estimates in Theorem 2.1.3 for d = 2 for the Green’s
function Gy, which satisfies the modified boundary conditions (2.1.14). The same argument
applies to Gj,.

These estimates initially hold for Gh,y and not for the function Gy, in Theorem 2.1.3. Note,
however, that Afl (Gh,y — Gh,y) = 0 in int A,. Using this fact as well as careful comparison of
the different boundary conditions for Gy, and G, one can show that ||Gy,, — Gy llw22(a,) <
Ch. This shows that the estimate (2.1.16) also holds for Gj,. For the estimates for |x — y| >
d(y) one can then argue as for G,

The remainder of this chapter is organised as follows. In Section 2.2 we introduce some
notation in the discrete setting and recall discrete counterparts of the product rule as well as
Sobolev and Poincaré estimates. In Section 2.3 we give the weak and strong formulation of
the discrete Bilaplace equation and prove the Caccioppoli inequality (or reverse Poincaré
inequality). The proof is very similar to the argument in the continuous case based on
testing the equation with a cut-off function times the solution, but due to the discrete
product rule some additional terms appear. In Section 2.4 we associate to each discrete
function a continuous function by discrete convolution with a B-spline and prove basic
estimates of the interpolation.

Sections 2.5 and 2.6 contain the key estimates. The first key ingredient is an L® — L? estim-
ate for the discrete second derivative of discrete biharmonic functions in cubes which may
intersect the boundary (see Theorem 2.6.1). This estimate is deduced from decay estimates
for the second derivative of continuous biharmonic functions using a discrete version of
the Kolmogorov-Riesz-Fréchet compactness criterion and the Caccioppoli inequality. The
transition from continuous to discrete decay estimates is carried out in Section 2.5 separately
for interior cubes, cubes near regular boundary points and cubes near singular boundary
points.

The second key estimate is an L® decay estimate for discretely biharmonic functions in
the complement of a cube (see Lemma 2.6.2 and Theorem 2.6.3). This follows by duality
from the L® — L? estimate in Theorem 2.6.1. The estimates in the interior and near regular
boundary points can alternatively be derived by using discrete scaled L? estimates, i.e.,
by translating the continuous Campanato regularity theory to the discrete setting (see
Dolzmann [Dol93, Dol99]). For the behaviour near the singular boundary points there
seems to be no argument, however, which is only based on scaled L2-norms and testing. For
ease of exposition we use the compactness approach in all three regimes: interior points,
regular boundary points and singular boundary points.

In Section 2.7 we recall Mangad’s [Man67] asymptotic expansion of a Green's function Gy,
of the discrete biharmonic operator in (hZ)9. Finally in Section 2.8 we prove Theorem 2.1.3
and Corollary 2.1.4. An L? estimate for the second discrete derivatives of G is easily
obtained by testing with Gj, and Poincaré’s inequality. We then choose a suitable cut-off
function 77, and use the fact that Gy, (-, y) — 7,(x) Gy, (x — ) is biharmonic near x = y to prove
estimates for the mixed third discrete derivative V%’ +Vi,yGn- The estimates for the lower
derivatives now follow essentially by discrete integration over suitable paths (the relevant
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path are the discrete counterparts of the paths used in [DS04]). For the estimate for the
tirst discrete derivatives for d = 3 we directly use the discrete Sobolev embedding since
integration of the second derivative would generate an unnecessary additional logarithmic
term.

2.2 Preliminaries

2.2.1 Notation

In the following C denotes a constant that may change from line to line but is independent
of I, unless stated otherwise.

Given a € RY, we define 7,f = f(- +a) for any f. This corresponds to shifting f by —a.

For a function f we denote by [f]q = ‘g)—' Jq f dx its average over the bounded open set
Q.

For discrete quantities we choose notation in such a way that it resembles the continuous
notation. Let i > 0 be the (typically small) lattice width. We consider the lattice (hZ)¢ C RY.

For r € R we define ||, := h | /|, the largest element of hZ less than or equal to r.

F

Given Ay C (hZ)4, we define a corresponding subset (A),c C R as

(Ap)pe = int (A + [—Z, Z]d) .

For example, for x € (hZ)9, r € hN, (Qi‘(x))pc

we define its piecewise constant interpolation I} ‘uy,: Ayc — R by I} “uj,(y) = uy(x) on each

= Qr+%(x). For a function u,: A, — R,

d
square x + [—%, %) , where x € A.

For a multi-index « € N9 we define D%, u,(x) = (D)) ... (D" )%uy(x), and fora € N,
a > 2 we set VZuh(x) = (D}iilDZ e DZuh(x))illizln_,id.
The discrete product rule then takes the form

D! (fugn) = (D! fu)gn + T fuDl'gn

When dealing with functions of several variables we use a sub- or superscript to indicate
the variable with respect to which a derivative is taken. So for example in V, .V}, , Gy, (x,y)
we take one gradient in each variable.

As mentioned in the introduction, we set A;, = [0,1]9 N (hZ)? and int A}, = [%, 1-— %] In
(hZ)9. We also set dA;, = Ay, \ int A,

2.2.2 Function spaces and inequalities

Let uy,, vy,: (hZ)? — R. For Q C RY measurable, p € [1,00], k € N, a € [0,1] we define
(slightly abusing notation)

ey = I unllre(q) -

(nyon) 200y 3= (1, w00 1700) 12y

HuhHwkm(Q) = (Z HI}FZCDZuhHZ?(Q)) ’

|| <k

==
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2 Estimates for the Green’s function of the discrete Bilaplacian

[ () — I un(y))|
[Un]coa(q) = sup h — ha
h x,ye) |x y ’
[x—y[=h
For [] con we add the index I to emphasize the fact that we only take the supremum over
x,y with |[x —y| > h.
For A, C (hZ)! these definitions take a familiar form. For example, if p < oo

1
14
[unllrran),e = <Z hd\“h(x)’p> ,

xXeAy

|up(x) — un(y)|
u 0 = Su .
Hnlct(ann = SO T e
X7y

We extend these definitions to vector-valued functions by taking the Euclidean norm of
the norms of the components.

We also set [u]a = [I] ‘up]o = ‘1@ Jo I up.

We then have the discrete analogues of Poincaré and Sobolev inequalities. All of them
can be proved easily by applying their continuous counterpart to the piecewise multilinear
interpolation of the function. We state the results that we will need.

Lemma 2.2.1 (Poincaré inequality on cubes with 0 boundary values). Let p € [1, 0], let
up: (hZ)® = R, x € (hZ)4, r € N + %, and suppose that uy, = 0 on at least one of the faces of
Q(x). Then

lunllLr (0. x)) < CrllVaunllrig, x)

where C is independent of h and r.

Lemma 2.2.2 (Poincaré inequality on annuli with 0 boundary values). Let p € [1,00],
wp: (hZ)d — R, let x € (hZ)4, r,s € KN+ %, s < r and suppose that u, = 0 on at least
one of the faces of Q' (x). Then

lnllLr (@ Qo)) < CrllVittnller @, (x0\Qu ()
where C only depends on %, p and d.

Lemma 2.2.3 (Sobolev-Poincaré inequality on cubes with 0 boundary values). Let p € [1, 0],
up: (hZ)? — R, let x € (hZ)%, r € N + %, and suppose that uj, = 0 on at least one of the faces

of QF ().
If g € [1, 00] is such that g +1> %and (r,q) # (d,0), then

lunllrao,(x) < CVlJr%_%HVh“hHLP(Qr(x))

and if o € (0,1] is such that & + % < 1, then

_d_ g
1], ) < €77 IV ntnlr(u(a)
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2.3 The discrete Bilaplacian equation

2.3 The discrete Bilaplacian equation

2.3.1 Definitions and basic properties

We consider the space of functions
&), = {up: (hZ)? = R: uy(x) = 0Vx € (hZ)*\int Ay} .
The discrete Bilaplacian equation on Aj;, with 0 boundary data is the equation
Auy, = f, in int Ay, (2.3.1)

where f;,: (hZ)? — R is given and we are looking for a solution u;, € ®;,.
This equation is the discrete analogue of the Bilaplace equation with clamped boundary
conditions,
Au=f in0,1]¢,
u=0 onal0,1]¢,
Dyu=0 ona[0,1]9.

If we multiply (2.3.1) with a test function ¢;, € ®; and use summation by parts, we obtain
the weak form of the Bilaplace equation

(Vitn, Vion)izwey = (f @n)12re)y Yo € Oy (23.2)

It is easy to check that (2.3.1) and (2.3.2) are equivalent.
Written as a sum over lattice points, (2.3.2) becomes

Y Vi) Vien® =i Y ful@ ().

XENy, xeint Ay

Observe that the sum on the left-hand side has nonzero terms for x € Aj, whereas the
right-hand side has nonzero terms only for x € int Ay,.
If we choose ¢, = uy, in (2.3.2), we obtain

(A, ) 2 (rey = (Vi Viun) 2wey = [ Viunl|T2(ge) -

Hence A%l, seen as a linear operator on &y, is positive definite and hence invertible, and so
(2.3.1) has a unique solution for any right-hand side fj,.

The discrete Green’s function G;, is now defined as the inverse of A%Z (considered as a
matrix operating on R™%: with the scalar product (uy, vy,) = (uy, vy,) 12(R¢))-

Let us also give an alternative description of Gj: The discrete delta function is given as

1

(Sh,x(y) = {hd

0 otherwise

ifx=y

The discrete Green’s function G, of A¢ is then the function (hZ)9 x (hZ)? — R such that
Gn(x,y) = 0 when y ¢ int Ay, and such that Gy (+,y) is the unique solution in ®;, of

Aiuh = 5h,y in int Ay,

when y € int Ay,
As in the continuous case one can easily show that Gj is symmetric in x and y. We will
frequently denote Gy, (x, ) and G (-, y) by Gy, » and Gy, respectively.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Let us return our attention to (2.3.2) for a moment. If f is given in divergence form as
divy, div_j, g, this equation takes the form

(Vi Vien) 12 re) = (81 Vion)r2(ra)

and if we choose ¢;, = uj, we obtain the energy estimate
Hvﬁuh ||L2(1Rd) < llgn ||L2(IRd) .

2.3.2 Caccioppoli inequalities

We will need a discrete counterpart of the Caccioppoli (or reverse Poincaré) estimate for
biharmonic functions (see e.g. [Cam80, Cap. II, Lemma 1.II]). It can be derived by testing
Aﬁu n = 0 with n,uy, for a suitable cut-off function #;, and some manipulations of the error
terms.

Lemma 2.3.1. Letd € N, u, € @, x € (hZ)?, r > 0 and assume that Aruy,(y) = 0 for all
y € Q" , (x) Nint Ay. Then for any 0 < s < r — 4h we have

C C
IVitnllizo.m) < = galtaloe + =zl Vil w) -

The proof is similar to the continuous case. However, the fact that the discrete chain rule
only holds up to translations generates additional error terms. Therefore we will give the
somewhat lenghty proof in full detail. The proof is adapted from that of Lemma 2.9 in
[Dol93].

Proof. By replacingrby |r— 4|, + 2 andsby [s— %], + 3%, we canassume thatr,s € hZ + %
and s < r — 3h.
Choose a discrete cut-off function 7, with support in Q,_,;(x) thatis 1 on Q. (x) und

such that V| < ﬁ for k < 2. Note that 7ju), € @y, and 17}u;, = 0 whenever A2uy, # 0.

Thus the weak form of (2.3.2) with ¢, = njuy, is

0= (MWW%W)LZ = (V%“hr V%(’?ﬁ“h))

(R9) L2(RY)

We can expand the right-hand side and obtain

0= (Vhus, Vi)

d
_2 h myh 41 h
= l] <D71D] uh,ﬁthiDj uh)LZ(]Rd)

d
+ 3 (D™D}, D) ()7 D, + D" () <" Dy
i,j

> L2(RY)

d
h myh h myh h h
+ Z (Dle] uh, D,ZD] (7’]%)1—711—] u;l)Lz(le) .
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2.3 The discrete Bilaplacian equation

We can rewrite this as

d 2
2x72 2 _ 21yh h
HrlhvhuhHU(]Rd) - ZZ]: thD*iD]' Un L[2(RY)

d
) (DliiD]h”h/ D]h(’?ﬁ)T]hD;ii“O +

= I2(R¢)

d
h 1k ho( 4\ h Tk
IZ]: (DfiDj “h/Dfi(ﬂh>TfiDj uh>L2(1Rd)

d

[ h 4\ h - h
Lj

+

(2.3.3)
We will estimate the terms on the right-hand side separately.
Using ”2%24 = a3+ a’b+ab*+ b3 fora =yito T].h and b = 77} we can rewrite the summands
of the first term as

h myh h, 4\ hmyh

(P 3, 2 h 2 4 thp3) Dhy £ Dh
B <D_1Dj U, (’7h TG T T T '7’1) D D_iuh>L2(1Rd)
. h 1k 3 hyh
= (Dle] uh/4]7hDj Wh’r] D*iuh> L2(R9)
h yh 20 h h2 2 h,3 3 hy ThDh
+ (D,iDj U, (ﬂh(Tj M=)+ (T = ) + (57— ﬂh)> ek Dfiuh)Lz(le) '
The second term here is problematicl, because it does not contain a factor U%D}i Z-D]’-1 u,. We

will control it by moving a factor % from the left-hand side to the right-hand side, so that we
are no longer taking second derivatives of u;. We obtain

" Dy, Dyt D"
(D,iDj un, D (17)7; D*i”h) L2(RY)

_ 21k h h hyh
— (WthiD]' uh,417hD]- 17hT] D*iuh)LZ(]Rd)

hyh h 2yh h,,2 hi,3 h hyh
+ (Tj DZup — DZup, (WhDj M+ 1uDj (1) + D; (’7;1)) Dy D—i”h)LQURd) .
Therefore, using the Cauchy-Schwarz inequality, ab < da® + 4%5b2 and the pointwise bounds
on 77, and its derivatives we get

d
B (DliiD?”hz D]}'l(ﬂﬁ)l-]hDPiiuh>

= L2(R¢)

d
Z (q,%D’iiD]}-‘uh, 417;,D;717h"r]-hD;iiuh>
ij

L2(R)

d
B (FﬁhD}ii”h — Dy, (W%Dfﬁh + D} (77) + Dfl('?ﬁ)) D]hﬂhT]hD}ii”h>
i

+
L2(RY)

1 d ho hh |12
< gl Viualfame) + 2 |4 Dy 1200 (x)
i,j r=

1 d hyh h 2
- hph 4, — D",
+2(r—s)2§HT’ =it P g, )

INote that in a continuous setting this term would not occur at all.
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2 Estimates for the Green’s function of the discrete Bilaplacian

2
L2(Qr—n(x))

(W%D]h’?h + UhD]h(n,%) + Df(;yi)) D]}?ththLuh

NN

C C
*H’?hvh“hHLz (Re) T WH“hHLz Q) T m“vh“hﬁz(gm) :

Analogously we can find the same upper bound for the other two terms on the right-hand
side of (2.3.3). Then we obtain

C C
A A A e N e g
and hence

C C
777 V|| 2 ey < m”“h”%z(g,(x)) + m”vhuhniqgr(m-

This implies the claim, once one notes that || Viuy|lr2(0.x)) < 175 Viunllizwey. O O

2.4 Interpolation

We want to deduce discrete estimates from their continuous counterparts using compactness
arguments. To do so, we need an interpolation operator that turns discrete functions
into continuous functions having similar features. The most important property of this
interpolation operator that we require is that the continuous derivatives of the output are
comparable to the discrete derivatives of the input.

To construct such an operator we use B-splines (cf., e.g., [Sch81, §4.4]): Form > 1, x € R
the m-th normalized B-spline is given by

(") max(x —,0)""

i m!

The function N is piecewise a polynomial of degree m — 1, has supportin [0, m] and satisfies
Y.cz N"(x —z) = 1forall x € R. Furthermore its discrete and continuous derivatives are
closely related. Indeed we have

0:N™(x) = N" 1 (x) = N" 1 (x —1) = D} ;N" }(x) (2.4.1)

for all x € R (see [Sch81] for proofs).
We need a multidimensional version of these splines which is also adapted to the lattice
(hZ)4. Soforh >0, = (p1,..., 1) € NY with p; > 1 let

I — N (BN (X
N (x1,...,x0) =N (h) N (h)
It follows easily from (2.4.1) that for any a € IN9 with a; < ; for all i we have
D*N// = D*,N/'""" (2.4.2)

Using this, we can define our interpolation operator:
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2.4 Interpolation

Definition 2.4.1. Leth > 0, = (p1, ..., 1) € N9 with y; > 1 for all i. Define ];;: RUZ)
Lj,.(RY) by

(Jpup)(x) = Y up(z)Nj) (x —z)

z€(hZ)d
and extend J!' to vector-valued functions component-wise.

Note that N{: has compact support so that the above sum has only finitely many nonzero
terms.

JI' does not interpolate the values of uy, (i.e. in general we will not have J}'u;,(x) = u,(x)
for all x € (hZ)%). The maps J! uj, and 1y, however, share so many properties that we still
call JI' an interpolation operator.

Let us collect some properties of |} .

Proposition 2.4.2. Let ]}’ be the family of interpolation operators that we have just defined, and let
uy: (hZ)d — R.
i) ],7: is linear.

i) ],’: uy, is piecewise a polynomial and is in the Sobolev space Wl(orzﬁn" pi) =12

iii) ]}, is local in the sense that (]}, uy,)(x) only depends on the values of uy, in Qmax, u;)n(X)-
iv) J)! preserves constant functions, i.e. (J;c)(x) = c for any c € R and any x € RY.
v) For every o with a; < p; we have (D*J}uy) (x) = (J; " (Dfuy))(x).

vi) For every a with a; < p; and any p € [1, 00| there is a constant C = C(u, w,d, p) such that
forany x € RY and any r > s + (1 + max; p;)h we have

”Da];f“hHLP(Qs(x)) < CHDZ‘uhHm(Q,(x)) (2.4.3)

and
IDfunll o0,y < CID* Tl re(q, (x) - (2.4.4)

Proof. Properties i), ii) and iii) are obvious. Property iv) easily follows from }_, ., N (x —
z) = 1forall x € R, so it remains to prove v) and vi).

For v), note that we can assume that uy, is zero far away from x by iii). This means that
all sums in the following calculations have only finitely many nonzero terms. Now, using
(2.4.2), we can calculate that

(D"J}juy)(x) = D* ( ) ”h(Z)Nf(xz))

(hzZ)¢

= ) uy(z)D*NJ (x — z)
z€(hZ)d

= )Y un(z)D%,N; " (x —2)
ze(hZ)d

= Y Diuy(z)N) “(x—z) = (J;“(Dpup))(x).
ze(hz)d
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2 Estimates for the Green’s function of the discrete Bilaplacian

Finally we prove vi). In view of v) it is sufficient to consider the case « = 0 here. We can
also assume that x € (hZ)? and r,s € hIN + 1, r > s + (max; y;)h (otherwise move x to the
nearest lattice point, and replace r and s by |r — 4], + 4 and [s — %, + 3 respectively).

Lety € Qé’ (x). The definition of ];f immediately implies

ITsunllie(@ua) <C - sup  un(2)]
ze(hz)¢
|z—y|<(max; p;)h
and thus
TOTY p p
il <€ 2 lm@P < Cllmlfg o

z€(hzZ)¢
|z—y|<(max; p;)h

If we sum this over all y € Q/'(x), we easily obtain (2.4.3).
For (2.4.4), by a similar argument it suffices to show

un(y)| < CH];l[”hHLP(Qh/z(y)) (2.4.5)

forally € Q(x).

One can see this as follows: N} has support [0, ji1] X - - - x [0, ). This means that the
values of J}uy in Qp/2(y) depend on the finitely many values {uy,(z)}.e1,, where I, :=
[y1 — p1] X -+ x [yg — pa] N (hZ)? and no others. Furthermore by linear independence of
the B-splines (see [Sch81, Theorem 4.18] for the one-dimensional case; the d-dimensional
case is analogous) ]} uy, is identically 0 in Qy/>(y) only if all {u;(z)}.¢j, are 0. This means
that ||]}uy,|| LP(Quy(y)) 18 NOt only a seminorm on R but actually a norm. Now all norms on
a finite-dimensional vector space are equivalent, so in particular

1

2
lanlliz ) = (E Iuh(2)|2> < Cll Ty unllee(@us )

z€Ily

for a constant C that is independent of y. This immediately implies (2.4.5).
O

Using these interpolation operators ]I’ we define the two operators that we will actually
%) and the other is the matrix interpolation operator Tn

given by (Th)l] _ ]]/(13,3,...,3)*61'*6/' o Tl‘h (fOI' example (Th)ll _ ]}(11,3,...,3) o Tlh)

One easily checks using parts ii) and v) of Proposition 2.4.2 that for any f,: (hZ)? — R
we have J,f;, € W>*(R9) and

loc

use most often: One is Jj, := ]}(13’3""’

V2 ufn = nVifu- (2.4.6)

2.5 Inner decay estimates for discrete biharmonic functions:
special cases

Our goal is to prove an L®-L? estimate for discrete biharmonic functions (see Theorem 2.6.1):
Ifu, € ®,, x € Ay, r > 0and A2uy(y) = 0 forall y € Q,,(x) Nint A, then, for all
z € Qs (x) N Ay,

C
[ Viun(z)| < g’WiWHLZ(g(@)-
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

To prove this estimate it will be necessary to distinguish where x lies in relation to dAy: x
can be far inside Ay, near a face, near an edge or near a vertex. In the following subsections
we will study these cases separately and prove some decay estimates that we will then
assemble to prove the aforementioned estimate.

2.5.1 Full space

Lemma 2.5.1. Letd € N, uy: (hZ)? — R, let x € (hZ)4, r > 0. Suppose AZuy(y) = 0 for all
y € Q" (x). Then

C
| Viun(x)] < EHV%WHLZ(Q,(;C))-
The main tool to prove this statement will be the following estimate:

Lemma 2.5.2. Let d € N. There exist constants M € N, 0 < p < % with the following property:
Let uy: (hZ)? — R, r > 0, such that A2uy,(y) = 0 forally € Q" ,. Assume that pr > Mh. Then
we have that

2

2 2
Hthh - [thh] LZ(Qpr) o,

< 0 |V - [V

Qor 2(Qr)

We will prove this lemma by contradiction using a compactness argument and the follow-
ing decay estimate for continuous biharmonic functions:

Lemma 2.5.3. Letd € N, 0 < s < %, u € W**(Q,) such that A*u = 0 weakly in Q,. Then we

have ,
2 S d+§
< —
sIL2(Qs) — ¢ (7’>

Proof. The estimate (2.5.1) expresses the fact that the second derivatives of biharmonic

HVZ (V2] 2.5.1)

VZu — [Vul

OllizQn) -

functions are in the Campanato space L2443 ~ C03/4, The easiest way to show it is to use
Schauder estimates for higher order elliptic equations as follows.

By scaling we can assume r = 1. By replacing u with u — § [V2u] g, X ®Xxwecan assume
that [Vzu} Q= 0. Now by Schauder estimates (see e.g. [Mor66, Theorem 6.4.8] or [Cam80,

Cap. II, Teorema 6.1]) we have that any C%*-Hélder seminorm of V2u in Q;  is bounded by
the L?-norm of V2u in Q;. In particular, we have

[V2u] , <C HVZuHLZ(Q )

c” (Q1/z)

On the other hand, Jensen’s inequality easily yields that

2 1
V2 — [V2u <o L L IVPu) = VAuly) P dydy
H Jal2g < 0] Jo, Jo IV 1W) (v)? dy dy
d+3 2
< Cs2 [V ]C 301
Together with the previous estimate this yields the result. O

We will also need a local version of the well-known Kolmogorov-Riesz-Fréchet compact-
ness theorem.

Lemma 2.54. Letd € N, p € [1,00), let U, V,W C RY be open with U compactly contained in
V, and V compactly contained in W. Let A be a subset of LF(W).

55



2 Estimates for the Green’s function of the discrete Bilaplacian

i) If A is bounded in LP (W) and

el Sl =0

then A (or rather the restriction of the elements of A to U) is precompact in LV (U).

ii) If A is precompact in LP (W) then

PRI S =0

Proof. Parti) follows by applying the usual Kolmogorov-Riesz-Fréchet compactness theorem
(see e.g. [Brell, Corollary 4.27 and Exercise 4.34]) to the family {f: f € A}, where yjis a
smooth cut-off function that is 1 on U and 0 outside of V.

For part ii) let V be open such that V is compactly contained in V and V is compactly
contained in W, and let  be a cut-off function that is 1 on V and 0 outside of W. Then the
family {(f: f € A} is precompact in LP(IRY) and the statement is obtained by applying the
converse of the Kolmogorov-Riesz-Fréchet compactness theorem to that family. O

After these preparations we can return to the proofs of Lemma 2.5.1 and Lemma 2.5.2.

Proof of Lemma 2.5.2.

Step 1: Set-up of the compactness argument

Let the constant p < 3 be fixed later, and suppose that the statement for that fixed p is wrong.
Then for any k € IN there exist My > k, by > 0, uy, : (hZ)* — R, re > 0 such that

2 2

> pd+1

Lz(QPYk)

Hviw%—[vium} (2.5.2)

2 2
thuhk — [thuhk}

ok Tk

L2(Qr)

By rescaling the lattice by a factor of 7, we can assume that all the 7y are equal to 1. Because
he < ML;( <, we have that iy — 0. Omitting finitely many k, we can assume that all . are
small (less than 35, say).

By replacing u;, with u;, — % [V%kuhk} o : X ® x we can assume that [V%kuhk} o =0, and

by scaling we can assume that H V;zlk“hk

= 1 (note that V; identicall
12(Q1) (note that Vj, uy, cannot be identically 0,

as then u;, would be affine, and so both sides of (2.5.2) would be 0). Then (2.5.2) implies

that
2

> pdtt, (2.5.3)
L2(Qp)
Finally, we replace uy, by uj, — a — by - x, where a, € R, by € RY are constants that will be
chosen below (such that equation (2.5.4) is satisfied). This leaves V%kuhk unaffected, so all

2 2
ot - ¥

Qo

the above statements about V%ku n, Temain true.
We let vy = Jj, up,, where J;, =] }(53) is the interpolation operator introduced in Sec-
: 2
tion 2.4. From thk”hk

Hvzvl‘”LZ(Qw/M) <C

Now we choose a; and by in such a way that

oy 1 and Proposition 2.4.2 vi) we immediately conclude that
1

[0klouu =0, [Vugy,, =0. (2.5.4)
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

The Poincaré inequality on Qy3/14 implies that [|vg|lw22(g,,,.) < ClIV0kll12(04,0) < C-
Therefore the vy are bounded in W2?((Q13,14) and hence have a subsequence (not relabeled)
that converges weakly to some v € W?2(Q13/14)-

Step 2: A>v =0
We claim that A?v = 0 weakly in Q13,14. To prove this, let ¢ € C°(Q13,14) be arbitrary and
let ¢y, be its restriction to (hZ)". We need to prove that |, Ous1s V2v: V2ipdx = 0.

We have by (2.4.6) that

/ V20 : Vch dx = / Vz]hk“hk : Vzgodx
Qu3/14

Q13/14
:/ T V3,00 : V2 dx
Q13/14

d

= Z/ ]}(Ii'?) """ 3)_ei_ejo’(l.thT‘iD]}-lkkaiD]'qux
i,j=1"Qu3/14
d
(33,...3)—ei—e; I 1
= Z/ Y, N, '(x —z)D;*D;*uy, (z) DiDjg(x) dx

z'j:l Q13/14 ze (I Z)e
he 1~ I (3,3,....3)—e;—e¢;
= Z Y. D, “D;*u )/ N, "(x —z)D;Dj¢p(x) dx.
i,j=1ze(Z)d Qiz/14

(33 3)=bi—

Now Taylor expansion and the fact that |, O, b =1 imply that

J, N~ 2) DiDjg(x) dx = Dibjg(z) + O(h) = DD} gy, (2) + Ol
13/14

In addition, from Aﬁkuhk = 01in Q13,14 we conclude that

d d
Y ¥ DDMuy, (2)DfDley(z)= Y. Y D"DMu,(z)D"Dlgy(2)
i,j=1ze(h2Z)¢ i,j=1ze (R Z)d

= (V%kuhk’ V%kq)hk)LZ(le) = 0

and so we obtain

2
<C thkuhk .

‘ / V20, : V2 dx
Q13/14

Using weak convergence of Vv, we can pass to the limit here and get

he = Chy.
1)

/ V% : Vipdx =0.
Q13/14

Step 3: Strong convergence of vy
Let wy = Iﬁ;V%kuhk. We claim that both V?v; and wy converge strongly in L?(Q; ;) to V2.
Step 3.1: Precompactness of wy
We first prove that (wy)ren is precompact in L?(Qy,7).
Because (V%kuhk) is bounded in L?(Q;), wy is bounded in L2(Q;). So, according to
Lemma 2.5.4 i), it suffices to verify that

lim sup | Tatwox — will12(qs,,) =0 (2.5.5)
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2 Estimates for the Green’s function of the discrete Bilaplacian

Leta € (hZ)9 such that |a| < % Then A%k(rauhk — up,) = 01in Q11 /14, so by the Caccioppoli
inequality we obtain

2 2 ;i
||th(7a”hk - th)HLZ(Q5/7(x)) < Cliaun, — uthLz(Qu/M(x))
+ CHth (Tauhk - uhk) H%Z(Qn/u(x)) )

Here the left-hand side is equal to || T,wy — wk||%2( 0s/7)/ while we can use Proposition 2.4.2
vi) to bound the right-hand side. We obtain

| Tatoy — wkH%z(QS/ﬂ < Cllwor - ka%Z(Q6/7(X)) +CllwVor - Vka%Z(Qeﬁ(x)) ’

Recall that (vy) is bounded in W22(Q13,14). Hence by the compact Sobolev embedding, (vy)
and (Vuy) are precompact in L?(Q13,14). Thus by Lemma 2.5.4 ii),

m%ﬁﬁ@nw O S E A V@N@%MW)ZO
(note that this expression is defined for all a > 0, not just those in (hZ)9).
In particular,

limsup sup (Hravk kaLQ )+ 1T Vor — Vor|22 ) =0
60 kN ae (1,2 (Qe/7(x (Qe/7(x))
la|<é
and therefore
lim sup sup HTawk - wkHLZ(Q5/7(x)) =0.
070 keN 4e (1)
|a| <o
It remains to consider shifts 7, where a ¢ (1 Z)9. This is possible because wy is piecewise
constant on cubes of sidelength . This easily implies that for any 2 € RY we have

I Tat0x — Will 2@y g () < € sUP (| Tot0k — W[ L2y () -
bE(l’lkZ)d
[b—a| <h

Combining this with the previous estimate we find that

limsup sup |[Tawk — Will12(Qypu(x)) = 0-
—0 k€N geRd

‘ﬂ|§(5+hk
Because hy — 0, this implies
lim lim sup | Tawr — Wil 12(Qy 1y (x)) = 0- (2.5.6)
a€R? k00

|a|—0

We finally show that (2.5.6) already implies (2.5.5). It follows from (2.5.6) that for every
fixed & > 0 there are 6 > 0, K € IN such that sup -y || Tawr — wil[12(Qy 1, (x)) < € for all a with
|a| < 0. For the finitely many k < K, we use that lim ,ga || Tawr — wi||12(q,,,(x)) = O to see
|a]—0
that for a potentially smaller ¢’ we have sup; . [|Tawx — Wil 12(gy 1, (x)) < € for all a with
la] <&'.
Therefore the sequence (wy) is precompact in L2(Qy,7(x)). Choose a subsequence (not
relabeled) converging strongly to some w € L?(Qy/7(x)).
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

Step 3.2: Strong convergence of (V2vy) and w = V?v
We split w into a smooth part and a part with small L2-norm. Let ¢ > 0 be arbitrary, and
choose a w'® in C*(Qy,/7) such that [|[w — w(® || 12(Qy/y) < € We denote the restriction of w'®)

to (hZ)? by w}(;) Using Taylor expansion, one immediately verifies that then I ﬁkcw](qi) and

fhkw,(;) converge to w(®) in L2(Q,,7) and L?(Q; /), respectively.

This means in particular that

kh—l;ilo ngzi) o v%lkuhk”Lz(in/ﬁ = Hw(e) o wHL2(Q4/7) <e.
Using Proposition 2.4.2 vi), we conclude that

< Ce.

lim sup H]hk (wizk) thuhk> L2(Qu2) —

k—o0

The left-hand side here equals limsup, ., |w — V20|12, ,), and so we obtain

lirkn sup |lw — VzkaLQ(Quz) < Ce.
—00

Since ¢ was arbitrary, we conclude that (V2v;) converges strongly in L?(Q1,,) to w. But
we already know that (V?v;) converges weakly in L?(Q13/14) to V2o, so we obtain that
VZU =win Q1/2.

Step 4: Conclusion of the argument
We proved that wy, = I,’:;V%kuhk converges strongly in L2(Q;/,) to VZv. Because p < 3 then

also Vj up, — [V%kuhk] o, COnverges strongly in L2(Qy2) to V20 — [V20] o, and so from

(2.5.3) we conclude that
2

> d+1
gy = F
In addition, we know that || VZvg||,, (Quiapg) = C, and also that V2vy converges weakly in

L?(Q13/14) to V20. This implies

Hvz V2 ]

Qo

Hvz VZ }

< ([0 gy < liminf |92 7,

Q13/14 (Quz/14) (Q13/14) =C

L2(Qi3/14)
In summary, we have proved that there is a constant C; independent of p such that

2
LZ(Qp)

2

HVZU B [VZ ] L2(Quz/ia)

Hv% — [V20]

(2.5.7)

Qp Q13/14

On the other hand, A%v = 0 in Qy3,14, and thus Lemma 2.5.3 implies that

) d+3
[% 2 2
12(Q,) =G (ﬁ) HV V ]Q13/14

2

V20— [v2]
L2(Q13/14)

Qo

for a constant C; independent of p.
This is a contradiction to (2.5.7) provided that we choose p small enough, namely p <

C21C2 (E)ZHS. So we finally fix a p satisfying this condition, and proved that falsity of the
12
claim leads to a contradiction. O

Now we can return to Lemma 2.5.1.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Proof of Lemma 2.5.1. We can assume w.l.0.g. that x = 0.
We claim that for any 0 < s’ < s < r we have

2

258
12(Qy) ( )

d+1 )
gc( > |V = [Vhun] o,

| Vi = [Viun) o, e

To prove this estimate, observe first that we can assume s’ > g, as otherwise the left-hand
side is 0. We can also assume 3 > 2M (where M is the constant from Lemma 2.5.2), as
otherwise we can trivially estlmate

HVﬁuh — [Viun) ol < HV%uh — [Viun)

Qsllr2(Q,)

2

d+1
< C ( ) thuh - [V%uh} Qs Lz(Qs) s

which holds for C > (2M)4+1,
So we assume s’ > % and 5 > 2M. Then in particular s > Mh. Consider the p from
Lemma 2.5.2 and let « be the largest integer such that p*s > max(s’, Mh). We can then apply

Lemma 2.5.2 repeatedly with radii s, ps, ..., p*s to find

2 2
2, o2 K(d+1) 2
th“h [vhuh]prs 12(Qyr.) sp th”h [Vh”h]gs 120,
Because s’ < p*s, we also have
2

Vau Vau < HVZu — [Viu .

H hh [ h h} Qy L2(Qy) nh [ h h] Qprs L2(Qpxs)
Here we have used the fact that || f — [f]all;2() is monotone in Q. If we combine the last

2Ms

two estimates and observe that p*t1s < max(s Mh) < 2Ms/, ie. p* < , we indeed

d+1

obtain (2.5.8) with C = (224 >
Now using (2.5.8) to prove the lemma is a standard iteration argument as e.g. in [Gia93,
Theorem 3.1]. For the sake of completeness we sketch the proof.
If we apply (2.5.8) with s = r and s’ = 5; or s’ = 57, we can estimate

2
V2 - [Vi
H[ huh]Qr/zAl [ h”h]Q,/z)\ L2(Q, /p141)

<2||V2uy, — [V i 2|| Vi = [Vi 2
< 2| Viu, - [Viu +2||Viw, - [Viu

H hth [ h h]Qr/Z)‘ L2(Q, /) n [ " h]Q’/ZA“ L2(Q, /oa1)

2
2
S 2/\ d+1 thuh_ [V”luh]Qr LZ(Qr)
and hence
2 2 -
“vhuh}Qr/zAﬂ N [thh]Qr/z)‘ - r% 7 thh a [thh]Q' 12(Q,)

If we sum this for A = 0,1, ... and observe that for A small enough [Vﬁuh] = Vﬁuh(O)

. Qr/Z)‘
we obtain

Vh”h - [vl%”h]

‘V%Mh(()) - [V%uh]Q . Q,

d
2

12(Q,)

60



2.5 Inner decay estimates for discrete biharmonic functions: special cases

Now we can estimate
2
‘thh < 2 ‘Vh”h ) [thh ‘ +2 ’ thh ‘

<thuh [Viun] g,

+H thQ

)
L2(Qr)

which proves the claim. O

L2(Qy)

= rj\W%“hH%Z(Q)

2.5.2 Half-space

In the half-space we want to prove the following statement, which is a slightly weaker
analogue of Lemma 2.5.1:

Lemma 2.5.5. Letd € N, uy: (hZ) — R, let x € (hZ)4,r > 0, v € {e1, —e1,...,en, —€y}.
Suppose that u,(y) = 0 for all y € Q! (x) such that (y — x) -v < 0, and A2uy,(y) = 0 for all
y € Q" , (x) such that (y — x) - v > 0. Then, for any s < r,

d
o
IViuillz@uw) < € (5) " 1VEmll 2o, -

The proof is mostly similar to that of Lemma 2.5.1, so we only give details where a new
idea is required.

Forr > 0let Q,+ = Q, N {x1 > 0}. The main step in the proof of Lemma 2.5.5 will be to
prove the following estimate.

Lemma 2.5.6. Let d € IN. There exist constants M € IN, 0 < p < 1 with the following property:
Let uy: (hZ)* — R, r > 0 be such that uy,(y) = 0 whenever y € Q" and y; < 0, and A2uy,(y) = 0
forally € Q" , such that y1 > 0. Assume that pr > Mh. Then we have

2
HV%Mh — [D}ilDi’uh] 0 e1 ®e

or,+

Lz(Qpr,+)
2
< pd+1 V%uh — [D}ilD’fuh] 0 61 ® e

T+

L2 (Qr,+ )

Using a compactness argument, we will deduce this estimate from the following continu-
ous estimate.

Lemma 2.5.7. Letd € N, 0 < s < 5, u € W?*(Q,,1.). Assume that A*u = 0 weakly in Q,, 4 and
that u = 0, Diu = 0 on 0Q,,+ N {x1 = 0} in the sense of traces. Then we have

3
LD

Proof. This follows like Lemma 2.5.3 from Schauder estimates up to the boundary (cf.
[Mor66, Theorem 6.4.8]). O

2

2 2
— D .
HV u—[Diuly e ®@e 12(Q,)

V?u — [Diu] 0, c1®e1

Proof of Lemma 2.5.6.
Step 1: Preparations
We follow the same strategy as in the proof of Lemma 2.5.2. That is, we assume that the
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2 Estimates for the Green’s function of the discrete Bilaplacian

claim is wrong for some fixed p, and consider a sequence of counterexamples u;, and their
interpolations vy = Ij, u;, . We can assume that 7, = 1.

{X1(32+h) x>0

we have wy(x) = 0if x; < 0 and
0 x1 <0

Next observe that for wy(x) :=

1 x>0
D}LlDi’wh(x) = {0 xl ; o So by replacing uj; with uj, — [DﬁlDiluh] o
. )

assume [D" | Diu,]

wy, we can also
N

o,, = 0. Having normalized uj, on Q1 4 in this way, we now consider
+

Q1 again. We can assume

2 _
|7, o) 259
Note that
2 2 2
2 _ |2 2
thk”hk 2(Q) thk”hk LZ(Q1,+)+thkuhk L2((=h/20)x(=11)¢)
and
oo i
W22 0px (et T I (/2 x (1,000

Now (2.5.9) combined with the last two equalities implies that H V%kuhk

> %, so that

L?(Q1,+)
2 pd+1

Hvﬁkuhk — | D" D, | L > (2.5.10)

o+

L2(Qp+)

By (2.5.9), Proposition 2.4.2 and the Poincaré inequality with 0 boundary values (v) is
bounded in W22(Qj3,4), and so a non-relabeled subsequence converges weakly to some v in
W?2(Qs3/4)-

As in step 2 of the proof of Lemma 2.5.2 we can show that A?v = 0 weakly in Q3,4 . We
have u;,, = 0in Q; N {x; < 0} and hence vy = 0in Q3,4 N {x1 < —3M}. Since vy converges
to v strongly in L?(Q3/4), v = 0in {x; < 0}, and because v € W??(Q3,4), we obtain that
v =0and D1v = 0 on Q3,4 N {x1 = 0} in the sense of traces.

We define w, = I,’:;V%kuhk and want to show next that V2v; and wy converge to Vv
strongly in L2(Q;,,). We cannot directly reuse the argument in Step 3 of the proof of
Lemma 2.5.2, as we now have to deal with boundary values. However, we can use that
argument on any cube Q(%) C Qs N {x1 > 0} to conclude that V?v; and wy converge to
V?2v strongly in L2(Q;/). Since we can do this for any such cube, we conclude that V2o
and wy, converge to V20 strongly in L2 (Qs/s ).

Because u;, = 0in Qs;5 N {x1 < =3k}, we also have that V?v; and wy converge to 0
strongly in L? (Qs;s N {x1 < 0}). In summary, we have proved that V?v; and wy converge
to V2o strongly in L2 (Qsys \ {x1 = 0}).

We still have to deal with {x; = 0}, and for this we need a new idea.

Step 2: Nonconcentration at the boundary
We claim that for any y € Q1,2 N {x; = 0} we have

=0. (2.5.11)
L2(Qr(y))

. . 2
%1_>mO lim sup thk”hk
k—o0

To see this, let 7 > 0. For /i small enough Lemma 2.3.1 and Proposition 2.4.2 imply that

V2 u :
hk hk

C 2 C 2
L2(Qs () S 72 thkuthLz(sz(y)) + 74 HuthLZ(Qy(y))
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

C 2 C 2
< 2 IVorlizaigu ) + 72 1oellz2 gy ) -
Now o) converges to v weakly in W22(Q3,4), so v; and Vu; converge strongly in L2(Q3/4)-
Hence we can pass to the limit in the above inequality and find

, 2 Ci C.
lim sup ||V, u, < 2 IVolliz gy ) + 52 10120y ) -

o L2(Qs(y))

Furthermore v is 0 in Q47(y) N {x1 < 0}, so we can apply the Poincaré inequality to conclude

) -

- 2
lim sup H Vi, Ui
k—o0

2 2 112
L2(Q:(y)) S ¢ HV UHLZ(QH(W

Now V?2v is a fixed L2-function, so if we pass to the limit # — 0 here, we indeed obtain
(2.5.11).
It is easy to see that (2.5.11) together with the fact that wy = I,kaV%luhk converges to

V2v strongly in L? (Qs/s \ {x1 = 0}) imply that wy actually converges to Vv strongly in

L2(Q1/2)-
We have for any y € Q1,, N {x; = 0} and 7 > 0 that

] 2 . 2
hr;fo?p V20| 2y < Chrknj;lp thkuhk L2(Qar(y))

and so from (2.5.11) we also conclude

T 2 .
limlimsup |[VE0| 12 g, () =0

This in turn implies that also Y20y converges to V2v strongly in L?(Qy 7).

Step 3: Conclusion of the arqument
We can now continue as in Step 4 of the proof of Lemma 2.5.2: The strong convergence of wy
to V20 allows us to conclude from (2.5.10) that

HVZU— [Div], e1®e ’ > ﬁ
Qo+ 2(Qps) — 2
On the other hand, we have
HVZU — [D%U] Qs s 61 ®ep iz <C
‘ (Q3/4,+)

and it is easy to check that we arrive at a contradiction to Lemma 2.5.7 once we choose p
small enough. O

Proof of Lemma 2.5.5. The proof is similar to the first half of the proof of Lemma 2.5.1: One
can assume that x = 0, v = ;. Then one first proves that, forany 0 < s’ <s <,

2
HV%uh - [D}LlD’fuh] e Qe
Qu ¢ 12(Qy )
s’ d+1 2
<C <) V%uh — [D’ilD’fuh] e1 ®er ,
° Qe [2(Qs)
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2 Estimates for the Green’s function of the discrete Bilaplacian

which already looks similar to the claimed estimate. We can again use this with s = r and

[

s’ = 3y or s’ = 5l to conclude

' [D’ilD’fuh]
C
22

Qr/Z)‘JrlHr

< V%uh -

N>

r

Let Ag be the largest integer such that

T, 5. ; and sum to conclude

— [D}ilDiluh}

/24 +

[D;ilDi‘uh} o e1 ®eq

r+

L2(Qr,+ )

5% = S We can apply this estimate with radii

7 2)\0
C
D" D _[p".D < = ||\V?u, — |D" D" :
[ 1 1uh} . [ 1 1uh} 0| = ntn [ -1 1“4 0. e1®e L20,)
Using all this, we can estimate
2 2
HV%W’HLZ(QH) < HV%uhHLZ(Qr/z%,J
2
2 V,zzuh — |:Dh 1D1 uh} 61 ®ey
20+ Lz(Qr/z)‘o,+)
2
42 [Dthluh}
/20 + LZ(Q,/on,ﬁ
< ¢ \ D" D! 2
S @y + 2A0n hUh — [ -1 1”4 O e1®e o)
c [Dh Dhuh] :
2/\01’! -1+ N LZ(Q7/+)
2

= 2Aon IViunllizqq, ) -

which implies
2 r 2
HV%uhHLZ(QSHr) S C <g> Hv%uhHLZ(Qr,+) (2 5 12)
r\d 2 o
=C (*) Vil 12q,) -
Now by the same argument as in Step 1 of the proof of Lemma 2.5.6 we have
2 2
HV%”hHLZ(Qs) <2 HV%“hHLZ(QH) :

Combining this with (2.5.12) yields the result. O

2.5.3 Edges and vertices

It remains to prove the analogue of Lemma 2.5.5 near edges (in 3D) and vertices (in 2D and

3D). The actual compactness argument

requires no new idea, so we will only give a very

brief sketch of the proofs. However, this time the continuous estimate require a bit more
work, so we will go into detail there. Let us first state the two results:
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

Lemma 2.5.8. Let uy: (hWZ)® — R, let x € (hZ), r > 0, v;,1» € {e;,—e1,...,e3,—€3}
such that vi # +vo. Suppose that u,(y) = 0 for all y € QF(x) such that (y —x)-v; < 0
or (y—x) v <0, and Nuy(y) = 0 forally € Q" ,(x) such that (y — x) -1, > 0 and
(y —x)-va > 0. Then, forany s <,

3

N
IVaunll 20,0y < C (;)2 IV inll 200, (x)) -

Lemma 2.5.9. Letd = 2ord = 3, uy: (hZ)d — R, let x € (hZ)4,r > 0, v; € {e;, —e;} for
i €{1,...,n}. Suppose that u,(y) = 0 forall y € Q" (x) such that (y — x) - v; < 0 for at least one
i, and A2uy,(y) = 0 forally € Q" _, (x) such that (y — x) - v; > O for all i. Then, for any s <,

d
s g
IVl 20,y < C (;)2 IV hunll2(Q, (x)) -

Proof of Lemma 2.5.8 and Lemma 2.5.9. This follows easily from the following two lemmata.
O

Lemma 2.5.10. There are constants M € IN, 0 < p < 3 with the following property: let
up: (hZ)® — R, r > 0, such that uy(y) = 0 for all y € Q} such that y; < 0ory, < 0, and
A2uy,(y) =0 forally € Q" , (x) such that y; > 0 and y, > 0. Then we have that

2 2
Hv%uhHLZ(QW) < ¢ HviuhHLz(Q,) :

Lemma 2.5.11. There are constants M € IN, 0 < p < I with the following property: let d = 2 or
d=3,uy: (hZ)* = R, r > 0, such that uy(y) = 0 for all y € Q! such that y; < 0 for at least one
i€{1,...,n},and Auy,(y) = Oforally € Q" , such that y; > 0 for all i. Assume that pr > M.
Then we have that X 5
2 d |2
thuhHLZ(QP,) <P th”hHLZ(Q,) :

We will deduce these two lemmata from the following continuous estimates. D, denotes
the derivative in normal direction.

Lemma 2.5.12. There is a constant 6 > 0 with the following property: letd = 3,0 < s < 7,
u € W?2(Qy 1+ ), where Qr 4+ = Q, N {x1 > 0,x2 > 0}. Assume that A*u = 0 weakly in Q,
and that u = 0, Dyu = 0 0on 9Q,++ N{x1 = 0V xp = 0} in the sense of traces. Assume that
pr > Mh. Then we have

2 s\ 3+0 2
HVZMHLZ(Qs,++) <C (;) HvzuHLz(Qr,++) )

Lemma 2.5.13. There is a constant 6 > 0 with the following property: let 0 < s < 5, u €

W22(Qya), where Qg = Qr g = QrN{x1 > 0,x0 > 0} ifd = 2, and Qpay = Qr 444 =
QrN{x; >0,x2 >0,x3 >0} ifd = 3. Assume that A*u = 0 weakly in Q, 4 and that u = 0,
Dyu = 00n0Q, 4+ N {x; = 0 for some i} in the sense of traces. Then we have

2 12 s\ d+6 2 112
IVl <C () IVl
The proof of Lemma 2.5.12 and Lemma 2.5.13 relies heavily on the theory of elliptic

equations in domains with singularities. We use results from [KMR97] and [MR10] and
refer the reader to these monographs for more background information.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Proof of Lemma 2.5.12. LetR%, = R®>N {x; > 0,x, > 0}. For x € R | write x = (x/, x3).

The statement is trivial if s > 7, so assume s < 7. Lety € CZ° (Q;) be a cut-off function
thatis 1 on Q,/ ;+ and such that [V*y| < & for x < 4. Then A%y = 0in dR3 ,, and we
can calculate (as an identity in the sense of distributions) that

A (qu) = (A*n)u+ 4V Ay - Vu +2AnAu +4V2%y - V2u +4Vy - VAu.
In order to avoid terms with too many derivatives of u we rewrite the last term as
V- VAu = div(VyAu) — AyAu
to obtain
A (qu) = Nnqu +4V Ay - Vu — 2A7Au + 4V72y : Viu 4+ 4div(VyAu) =: f.

Because u € WZ’Z(Qr,d+) with zero boundary values on 81R3+ +, the right-hand side f is an
element of W=2%(RR3 . ), while 7ju is in Wg’z (R, ). Hence (cf. [MR10], Theorem 2.5.1) we
can represent 7ju via the Green’s function of R? | as

()(x) = [, Glx.)f(@)de.

3
LS

For x € Qs++ C Q4+ this implies
Viu(x) = [ | VAG(x,&)f()dz.
Ry,

Now f is supported in Q, 1+ \ Q,/2++, whereas x € Qs+ C Q,/a,+. So a decay
estimate for G will directly lead to a pointwise estimate for V2u.
In fact, Theorem 2.5.4 in [MR10] states that if |x — | > min(|x’|,|¢’|) we have, for every

e>0,
|x/|1+5+—|:x\—£|€/‘l+§,—\‘3\—s

|x — E[1Ho++o-+j+k—2e

D% DL, DA DE G(x,8)| < Ce (2.5.13)
Here 61 and 6_ are certain real parameters defined in terms of eigenvalue problems related
to the Bilaplacian (see [MR10, Section 2.4] for the precise definition). According to [MR10,
Section 4.3] we have that 0, = J_ ~ 2.73959. In particular, 6+ > 1, so we can choose 6 > 0
suchthatl—i—% < 04+.Thenlete =64 — 1 —g > 0.

We are interested in the case where x € Qs+, ¢ € Qr 1+ \ Qy/2.++. In that case the
inequality |x — &| > min(|x’|, |¢’|) certainly holds, and we can estimate |x'| <'s, |¢'| <,
|x — ¢| > £, so that (2.5.13) turns into

D2 D}, DD G(x,8)| < Ces'+0v el —epe-e Bl -k
sz+%*|“|

PHEHIBl+K

This estimate is sharp enough to allow us to estimate the terms of f. For example we can
calculate using the Poincaré and Holder inequality that

0
g2t3-2 1

[, Vit on@ue | < C GIR:

—_———— |U
4 4 ’
Qr++ }’1+2+0+0+0 r
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

S
:C—/ 4l d
1’5+% Qr,++| | g
0

and that

[ ViGGe ) div(Tran @) dz| = | [ VAViG(x2)- Va@)au)df

1

0
Qv r¥tar

0 1
7 2
<Coy (/ V2ul? d(;) .
rata RS,

We can estimate the other terms on f analogously. If we integrate the sum of the squares of
all these inequalities with respect to x we immediately obtain the conclusion. O

SIS

S

<C [Au(Z)| dg

Proof of Lemma 2.5.13. The proof in the case of a vertex is very similar. One can again deduce
the representation

Viu(x) = [ V3G(x2)f(@)de (2514)

for x € Q,/4,4+, so that one only needs sharp estimates for the Green’s function to complete
the argument.

If d = 2, we can use for this purpose Theorem 8.4.8 in combination with Theorem 6.1.2
in [KMR97]. Theorem 8.4.8 gives a Green’s function for right-hand sides in L?. However,
according to Theorem 6.1.2, the solution operator has a continuous extension to right-hand
sides in W22, so that (2.5.14) holds for this Green’s function. Now Theorem 8.4.8 also gives
asymptotics for G in terms of the eigenvalues of a certain eigenvalue problem. If we stay in
the eigenvalue-free strip, this estimate reads

IDXDEG(x, &)| < Celx| 1o lul—e|g 1 =0 —IPl+e

where 2|x| < |¢| and € > 0 is arbitrary. Using this estimate we can continue as in the proof
of Lemma 2.5.12.

The case d = 3 is slightly more complicated. We can use [MR10, Theorem 3.4.5], which
states that if 2|x| < |¢], then for any € > 0

|DEDEG(x,8)|
< Cg‘x|/\+—\zx|—£|§’1—A+—\5\+£ﬁ (;fj(x)>l+5+|tx|8ﬁ <7’k(§)>1+5ﬁ£

=1 | x| k=1 94

where J. are as before, A is another constant defined in terms of a certain eigenvalue
problem (see [MR10, Section 3.4] for the precise definition) and r;(x) denotes the distance of
x to the line {x; = 0}. If we choose ¢ < 6, —1 = J_ — 1, then the exponents of the terms
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2 Estimates for the Green’s function of the discrete Bilaplacian

) and &) are non-negative whenever |« < 2 and < 2. So we obtain under these
2] H &
assumptions

IDEDEG(x, &)| < Celx| Ml =e|g = lplte,

In [MR10, Section 4.3] it is proved that A, > 3. This allows us to take 8 > 0 such that
2+ % <Aiand1+ g < J+. By choosing ¢ = min (A} —2 — g,éi —1) we conclude

0_
]D"‘DﬁG(x &) < CM
¥e ’ o r1+g+|ﬁ|

for |a| <2 and |B| < 2. Now we can continue as in the proof of Lemma 2.5.12 (observe that
in that proof we only needed estimates for ch‘Dg G(x,¢) with |a| <2and |B] <1). O

Proof of Lemma 2.5.10 and Lemma 2.5.11. We follow the proofs of Lemma 2.5.2 and Lemma
2.5.6. The proof is slightly easier than the proof of Lemma 2.5.6 because we no longer need
to worry about the subtraction of the averages of u;. We assume that the claim is wrong
for some fixed p, and consider a sequence of counterexamples u;, and their interpolations

= 1, and conclude that (vy)
L2(Q1)

is bounded in W??2(Q3/4), and so a non-relabeled subsequence converges to some v in

W?2(Qs3/4)-
As before we see that A?>v = 01in Q3,4 and Q3 /a,d+ respectively and that v has 0

vy = Iy uy,. We can assume that 7, = 1 and Hvik”hk

boundary values. Also we obtain strong convergence of V2, and wy = IZ’C‘V%kuhk in

L? (Qsss\ 0Q3/4+++) and L2 (Qsys \ 0Q3/1,4+ ), respectively. Now, as in Step 2 of the
proof of Lemma 2.5.6, we find that V;Zlk”hk does not concentrate at the boundary, so that
V2vy and wy, actually converge strongly in L2(Qy/,).

This convergence allows us to pass to the limit in
2 d

>p

VZ
[ 12(Qy)

so that we easily arrive at a contradiction to Lemma 2.5.12 or Lemma 2.5.13 once we choose
p small enough. O

2.6 Inner and outer decay estimates for discrete biharmonic
functions

2.6.1 Inner estimates

We can now combine the results from the previous section in one general decay estimate for
biharmonic functions:

Theorem 2.6.1. Letd =2 ord = 3, uj, € ®y,. Let x € Ay, r > 0 and suppose that A7y (y) = 0
forally € Qu_y(x) Nint A§. Then, forall z € Q! ,(x) N Aj,

C
(Viun(z)| < 1 Vil 20, (x)) - 2.6.1)

r2

Observe that V2u, = 0 is zero in (hZ)? \ A,. Therefore we could equivalently only
integrate over Q,(x) N (Ay,)pc on the right-hand side.
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2.6 Inner and outer decay estimates for discrete biharmonic functions

Proof. The proofs for the cases d = 2 and d = 3 are similar, but the latter is somewhat more
tedious. Therefore we give the proof for d = 2 in detail and then describe how to adapt it to
the cased = 3. So let d = 2.

We first prove the statement in the special case z = x. By rotating and reflecting A? we
may assume X, < x; < 1. We may also assume r > %, as otherwise we can replace r by %
without changing (2.6.1).

Let x* = (x1,0) be a point on aAi closest to x. We consider the three cases r < x»,
X <r<wxyandr > x.

Casel:r < xp
In this case the interior estimate Lemma 2.5.1 applied to Q,(x) directly implies

C
Vi (x)| < ?Hv%uhHLz(Qr(x))'

Case2: xp <r<ux
Apply first Lemma 2.5.1 to Q,,+5/2(x) to find

C

Viun(0)| < ——5 IViunll2o,,a()
2

If r < 3x; then this already implies (2.6.1) once we increase C by a factor of 3. If r > 3x, we
have Qy,+1n/2(x) C Qoxyiny2(x*) C Qr(x*) C Q;(x) and so, by Lemma 2.5.5,

2xp + 1
IViunllizq e < Vi 2(ug e < € I Vil )

This together with the previous equation implies (2.6.1).
Case3: x1 <r
As in the previous case we obtain

[Viup(x)| <

oI HV%“hHU(Qw,,/Z(X*)) . (2.6.2)
1773

Now either r < 3x; and we are done, or we can continue with Lemma 2.5.9 to find

h
2x1 + 2 Hvz
r h

IVl 200 )y < NViRI 200, 1a0)) < C nll2(q,(0))

which in combination with (2.6.2) implies (2.6.1).

This proves (2.6.1) in the case z = x. For general z, it suffices to observe that Q,/»(z) C
Qr(x) and apply the statement we have just proved to Q,»(z).

The proof for d = 3 is analogous. However there is one more case and hence we need one
more intermediate step, where we deal with the case of an edge. So one applies Lemmata
2.5.1,2.5.5,2.5.8,2.5.9 in order until one reaches a radius of order r. We omit the details. [

2.6.2 Outer estimates via duality

Theorem 2.6.1 states that if a discrete function is biharmonic in a subcube Q,(x) of Ay,
then we have pointwise control over its second derivatives in a smaller subcube Q, /»(x).
Remarkably, a dual statement is also true: If a discrete function is biharmonic outside a
subcube Q,(x) of Ay, then we have control over its second derivatives outside of a larger
subcube Qo (x). The following lemma does not claim pointwise control, but only control in
L%. However we will combine it with Theorem 2.6.1 into Theorem 2.6.3 where we actually
obtain pointwise control.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Lemma 2.6.2. Letd = 2ord = 3, let u, € ®;. Let x € Ay, v > d(x) and suppose that
A2uy(x) = 0forall x € int Ay \ Q(x). Then, forall s > r,

d
4
IVhunll2re 0, (v)) < C (;) Vil 2 re\ 0, () - (2.6.3)

Proof. Consider first the case r < h. Then d(x) = 0, i.e. x € dA;, and the assumptions imply
A?uy = 0inint Ay, i.e. u, = 0 in int Aj, by the uniqueness of the Bilaplacian equation. So
both sides of (2.6.3) are zero and the inequality holds.

So we can assume r > h. The statement is trivial in the case that s < 23r, so we can also
assume s > 23r. We can then replace rand sby 7 = [r — 4], + L and s = [s — 4], + &,
respectively. It is easy to see that then7 > r, 5 < sand § > 117, and it suffices to prove the
theorem for 7,5. So we will directly assume r,s € hIN + %, s> 1lrandr > %

Let f, = V%uh XA\, (x), Where x 4 is the indicator function of a set A. Let v, € &), be the
unique solution of Aivh = div_j, divy, f;. Then, for any ¢, € &y,

(Vion, Vion)rawey = (i Vion)r2(ra) - (2.6.4)
Also let {j, and ), be discrete cut-off functions such that {j, is 1 on Ay, \ Qs,(x), 0 on
Qs (x )ﬂAh, ni is 1 on Q7(x) N Ay, 0 on Ay \ Qo(x) and such that [V5Z,| < & and
(Ve < § forx < 2.
These choices ensure that
V2(Znuy) = Viuy, on the support of f, (2.6.5)
and that
#n = 1 on the support of AZ(Zj,uy,) . (2.6.6)

Indeed, for example the support of A? (1) is contained in Qs, 25 (x) \ Qzr—2n(x) C Q7 (x).
This implies

HV%”hH%Z(]Rd\Q = (fu thh)Lz (RY)
(26%( Vi (Cnn)) 12(re)

6.4
:% Viow Vi( huh))LZ(le)

(TJ ( huh) L2(Rd) (2.6.7)
=(V

266
110 A7 (Tnttn) ) 12 (o)

7 (mon), Vi (Znttn) ) 12 (re
< IV mwon) 2 (re) Hvﬁ(Chuh)HLz RY)

Now by the product rule

Whvh Z D D;’qhvh + T]hD}iiﬁhD]hUh + TﬁiD]hﬂhDLUh + Tﬁi’l']'hT]hD}iiD]hUh
ij=1

and so, using the Poincaré inequality? on Qo,(x),

2Here we have used the assumption r > d(x) (or rather 7r > d(x)): It ensures that we have zero boundary
data somewhere on Q% (x) \ Q¥ (x) so that we can indeed use the Poincaré inequality.
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2.6 Inner and outer decay estimates for discrete biharmonic functions

C C
IV iz < gz 0ol + 5 IVl o) + CIVE o) 66
< CHthhHLQ(Qgr(x))'

Similarly, by the Poincaré inequality on the annulus Q7,(x) \ Q,(x),

c C
VR l2re) < 3 lunllizionene ) + 5 1 Vathll@r oo + Cl Vit zmea g, )
< Cl\Viunll 2 re\g, (1) -

If we plug the last two estimates into (2.6.7) and then use Theorem 2.6.1 for v;, we obtain

Va2 a0 0oy < CHIVEORI 20 ) | Vittall 2ro\ 0, ()

9r
<c( )HVﬂmwmwmvhwmww&»

This implies (2.6.3) once we use the energy estimate

IVionllzrey < I fullizwray = 1Viunll2re g0 -
]

Now we can combine this lemma with Theorem 2.6.1 to obtain a pointwise outer estimate.
Theorem 2.6.3. Letd = 20rd = 3, let u, € ®y,. Let x € Ay, v > 0and suppose that A7y (x) = 0
forall x € int Ay \ Qy(x).

Then, for all y € Ay \ Qo (x),

(max(d(x),r))*
[x =yl
Proof. As in the proof of Lemma 2.6.2 we see that d(x) = 0 implies u = 0 everywhere and

(2.6.9) holds. So assume d(x) > h.

Lety € Ay \ Qur(x). If y € Qayx)(x) we use Theorem 2.6.1 on Q) (v) C R\ Qz(x) to
obtain

[Viun(y)] < C IVhunllr2re\ 0, (1)) - (2.6.9)

| Viun(y)] <

[0 20y 01 < 7 V0 120k o0

d(x)? d(x)$
which implies (2.6.9) because |x — y| < /n|x — Y| < 24/nd(x) and hence ( ;< 4n|x(y)|2

If, on the other hand, y € Ay, \ Qay(x) (x) then we use Theorem 2.6.1 on Q| /2(y) and
then Lemma 2.6.2 as follows:

C
[Viun(y)| < TthuhHL (Qpeylor2(¥))
Byl

C
< 7¢|th”h”L2 (RNQ)x e /2(x))
|x —yl&

d
C max d X),r ’
< g ( = )> V540 2R\ Qe (4)

p—ys \ e

max(d(x),r))%
X —yl%

which implies (2.6.9). O

SC(

IVl 2 (RN Qpax(d()) () 7
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2 Estimates for the Green’s function of the discrete Bilaplacian

2.7 The discrete full-space Green’s function

In order to obtain estimates for Gj,, we will compare Gy, with a Green’s function of (hZ)9. In
the absence of boundary conditions such a Green’s function is not uniquely defined. We will
choose a normalization that is best suited for our application. The necessary asymptotics for
the Green’s function of (hZ)9 have been derived by Mangad [Man67] using Fourier-theoretic
methods.

By F we denote the Fourier transform of tempered distributions (where we use the
convention (Ff)(x fIRd e 2ixE 4 ).

Theorem 2.7.1 ([Man67], Section 4). Let d € IN. Define F: Z¢ x Z¢ — R by

469 i
(45, sin?(rgy))

where V € C®([—1,1]9) is chosen such that V = 1 near 0 and Y ,c, V(x +z) = 1 for all x, and

o V(g )( o denotes the tempered distribution given by its finite part in the sense of Hadamard
iq sin”(7tg;
(see ][ Sch66, Chapitre I1, §2 and §3]).
Then F is a Green's function for A? in the sense that AIF(-,y) = &,. It satisfies the following

asymptotic expansion: If d = 2and z = x — y,

F(x,y)=F (x—y)

| 2

z[°log|z| | (y—1+logm)|z* logl|z| , 4(z}+23)
Foy) ===+ 87 167 |24

—12log m — 127y — 3—|—O<’1|2)

where vy is the Euler-Mascheroni constant, and ifd = 3and z = x — y,

lz| | Z+z3+7; 1 1
F .
(xy) = T8 " 647|z[° + 6471|z| +0 1z

2
Let us briefly sketch how to prove this theorem: Observe that o (&) := (4 Z?:l sin?(7t& ])>

is the symbol of A2, so that AZF(x,y) = F(V)(x — y). On the other hand one easily checks
that Y., V(x + z) = 1 implies that F (V) (m) = éy(m) for any m € Z9. This proves that F
is a Green’s function. To derive the asymptotic expansion, one develops a Laurent series

1 1 f—2(¢) d
= + + +---+o .
0.(6) 167rz|§|4 |§|2 fO(C) (!C! )
Then one can check using the explicit formulas for the Fourier transforms of |§|™ (see
[Sch66]) and the Riemann-Lebesgue lemma that

V@)— ! f-2(¢) o) = o(lx| 9N
f(”(@) 167r2m4+ HE + fo(€) + ) ([x[7°7)

so it suffices to compute the Fourier transform of %;W +1 Tél(f) + fo(¢) + - --. This one

can again do explicitly and thereby obtain an asymptotic expansion for F up to O(|x|4). For
details we refer to [Man67].

By scaling the lattice we can deduce from this estimates for Green’s functions on (hZ)¢.
We state the estimates that we will need.
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2.7 The discrete full-space Green’s function

Lemma 2.7.2. Letd =2o0rd =3, h > 0, r > 4h. There exists a function Gy,: (hZ)? x (hZ)4 —
R such that A3 Gy (-, y) = &, and such that the following estimates are satisfied:

[ViyGulx,y)| < Cr*~ iflx—yle < 5 (27.1)

~ C "

2 < . B <!
|vh,xvh,yGh('x1y)| = (’x — y’ T+ h)d_l lf’x y|oo =5 (272)

- C r

2 w2 - . B <!
’vh,xvh,yGh(x/y)’ = (’x _y’ +”l)d Zf’X y‘oo =5 (273)

and

\DZ,fo,yGh(x,y)y < crA—d—lal-1g z’f% <lx—ylo <7, lal + (8] <4, (274)

For d = 2 the function G;, depends on r, but we will suppress this dependence for ease of
notation.

Proof. We begin with the slightly easier case d = 3. The asymptotic expansion in The-
orem 2.7.1 easily implies that

D} DY F(x,y)| < Clx —y|' = 1A

for |a| + |B| < 4 and any x,y with |x — y| > 10, say (observe that ¢ = O(|x|~%) implies
D!.¢(x) = O(]x|7%), so we do not need to care about the error term). On the other hand F
is finite everywhere, so that

DYDY F(x,y)| < C

for |a| + |B|] < 4 and any x,y with |x —y| < 10. If we combine these two estimates we
conclude that we have

|D%rXDf,yF(x/y)’ <C(lx—yl+ 1)1_‘“‘_\/3\ )
Now if we set Gy (x,y) = hF (#,%) then Gy, satisfies
1D, DF Gilx,y)| < C(Jx — y| + )18,

which immediately implies the claimed estimates.
If d = 2 we need to take care of the logarithmic terms. So we set

x—yllog (%)

F(x,y) = F(x,y) + oy

Then F has the asymptotic expansion

_cProglzf |, Gog(}) +r—1+log Iz g
(2) = gt | 87T ©1l6m

4(z +25) 1
— 1 27 121 — 12y — —
2] og7 — 12y 3+O<VP)

and this implies

D% DY E(x,y)| < Clx — y[> 1= 1A (

h
log|x —y| +log <r> ' —|—1>
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2 Estimates for the Green’s function of the discrete Bilaplacian

for |a| + |B| < 2 and any x,y with |x —y| > 10. Because Dﬁ‘,fo/yF(x,y) is bounded by
C <1 + ‘log (%) D for [x — y| < 10, we conclude

D% DY F(x,y)| < C(Jx —y| +1)>7 1= :

log (hﬂx—yHl))’ .

We now set G (x,y) = h*F (3, 1) and obtain
> ]~ x—yl+h
ID;‘l‘,xD,f,yGh(x,y)\ < C(|x —y| +h)? lee|—[B] ’10g <|~Z> ‘ .

It is easy to check that this implies (2.7.1) and (2.7.4) for |a| + || < 2. If |a| + |B] > 3 we
need to be slightly more careful: Observe that third discrete derivatives of |x — y|? vanish,
so that we actually have

o B gl < c __
|V1,xvl,y1:(x y)| —= |X—y‘|“‘+‘ﬁ|_2

if |x — y| > 10 from which we conclude

C

o B By
|v1,xv1,yp(x V)l = |x — y| 4 1)lel+1Al-2

(
for any x,y. Recalling that G;,(x,y) = h*F (%, }) we immediately obtain (2.7.2), (2.7.3) and
(2.7.4) for |a| + |B| > 3. O

2.8 Proof of the main theorem

We are now able to prove Theorem 2.1.3. We first give the straightforward proof of part ii)
and then continue with part i).

2.8.1 Lower bounds for G (x, x)

The proof is rather short and based on the choice of an appropriate test function.

Proof of Theorem 2.1.3 ii).
We can assume d(x) > h, as otherwise d(x) = 0 and hence G, (x,x) = 0. If we test the
equation A%l Gpx = 0y with Gy, ,, we find

V3G |72 ke = (B3Gis G 2(re) = (S0 G 2wy = G, %) (2.8.1)

Now let ¢, € ;. Then testing the equation A%l Gnx = opx with @, and using the Cauchy-
Schwarz inequality we find

Pn(x) = (VG Vion)12(re)
< IV3Ghllr2re | Vi @nll 2 (rey

=/ Gh(x/x)Hv}zl(PhHLz(]Rd) .

If ¢y, is not identically zero this implies

Gh(x x) > (q)h(x))Z
B ||vi§0h||%2(ﬂ{d)
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2.8 Proof of the main theorem

and so it remains to find a ¢, (x) such that ﬁ > Cd(x)*"%. But this is easy:
12(Rd)

Take ¢y, € @y, supported in Qg (x) such that ¢, (x) = 1 and such that (Vagnxl < < S E
and extend it by 0 to all of A{.

2.8.2 Upper bounds for Gy (x, )

In this section we prove part i) of Theorem 2.1.3.
We begin with a rather weak estimate for G, (x,y).

Lemma 2.8.1. Letd = 2 or d = 3 and Gy, be the Green'’s function of AS. Then we have
0 < G(x,%) = [ V3Ghallf2 ey < Cd(x)*¢ (2.8.2)

forany x € Ay and
Gp(x,y)| < Cd(x 23 4(y)* 2 (2.8.3)
y y

forany x,y € Ay,
Proof. We first prove (2.8.2). By (2.8.1) we have
HszthLZ RY) Gh(x/ X) . (2.8.4)

If x € dA), then Gj,(x,x) = 0 and (2.8.2) holds. So assume x € int Ay, i.e. d(x) > h. The
Sobolev-Poincaré inequality implies that

24
Gu(x,x) < HGh,xHL‘”(Qd(xHh/z(x)) sC <d<x) * 2> HV%Gh’xHLZ(Qd(xHh/Z("))
< CA(x) 2 VEGha 2@y ) -
If we combine this estimate with (2.8.4) we find that

_d _d
V3Gl T2 ey = Gulx,x) < Cd(x)*72||V3Ghall2 () < CA(x)* 2| ViGyll2(re)

(QZd(x)-%—h/Z x
and hence
0 < Gi(x,%) = | VGl B < Ci(x)"~

This proves (2.8.2). For (2.8.3), we test A% Gp,x = Op,x with Gy, and use the Cauchy-Schwarz
inequality to obtain

G, 9)| = | (B2 g 2w
= ‘ (VG ViGiy) 12(re)

< IV3iGhxlli2re) 1V Gyl 12(re)

(2.8.2)
< Cd(x)?2d(y)*

d

The next lemma gives estimates for G, and its derivatives that are sharp when x and y are
far apart. We first prove a pointwise estimate for vi/xvh,ych by applying Theorem 2.6.3 to a
cut-off version of Vy,, Gy, ,. Afterwards we integrate it along suitable paths to deduce the
estimates in the lemma.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Lemma 2.8. 2 Let d = 2 ord = 3 and Gy, be the Green's function of AS. If x,y € A, and
|x — Y]oo > ) then

,Gﬂxw,SCWOﬁ+£f€g%+M{ (2.8.5)
VG2, < L2 +’ : )_(E;(‘Z) +h? (2.8.6)

Vi 2Gi(x, )| < CW, (2.8.7)
Ve Vg Ga(x, )] < €4 Txhz(;fj/ ) +h) (2.8.8)

Proof.
Step 1: Pointwise estimate for V;, Vy,,Gy(x,y)

We claim that if x,y € Ay and |x — Y| > d(sy) then

d(y)+h

ny)Tn (2.8.9)
|x —yl

V2.V, Gilx,y)] < C
In the following all derivatives will be with respect to x unless we mark them with a sub- or
superscript .
If d(y) < 160h we can use a trivial estimate: From Lemma 2.8.1 we know

N\D—

V3G ll12re) < Cd(y') 25 < cn
if | — Y| < h. If we now use

2
"2

2
DIAWE = (3Ul-+e) =) < G0ly-+ e+ )

with f, = V%Gh we get that

130Gyl < 2 (175 Gl + V3G g ) < €2,
ie. )
V2D Gyl 2 ey < CH' 2
Then Theorem 2.6.3 with r = h implies

d
2y max(d(y), h)? \ ooy —
V2D, Gh(x,y)ISCWHV Gl 2 (re) <CW’1 Z—Cmf

which implies (2.8.9) if we choose C there large enough.
So assume d(y) > 160h. Let 1, be a discrete cut—off function that is 1 on Q) 32421, 0 o0

(hz)4 \ Qa(y)/16—21(x), and such that [V, | < 7 ) for k < 2. Let Hy(x,y) = Gy(x,y) —

11 (x)Gy,(x,y), where Gy, is the function from Lemma 2.72withr = 1(—6). We write Hj,, for
Hy(-y).
Then, fori € {1,...,n}, Dh’y Hy, v € @;,. Also, the singularities near y cancel out, so that
h, .
AﬁDi th,y =0in Qd(y)/32(y) and in int Ay, \ Qd /16( )-

76



2.8 Proof of the main theorem

Next, we want to bound HV%DZMH;WH 12(ré)- 10 do so, we introduce another cut-off
function , thatis T onint Ay \ Qq(y)/32(y), 0 on Qg /64(y) and such that [V*Z;| < ﬁ for
x < 2. Then we have that

1

ED! iy = 0SED! Hiy = =0u3D (miGiy) = =0utS} (miD) Gy )
where we have used that 77, does not depend on y. Thus
IVAD} Hg ey = (AFD} Hiy, DI Hiy) 12
= ~(&u (74D Giy), D Hiy )12y
= _(A%(Wth}'l’yéh,y)/ghD?,th,y)LZ(]Rd) (2.8.10)
= ~ (V30D Giy), Vi(ED}" Hiy)) 2 e

hy h,
< IV D5 Gy 12 rey | V7 (80D Hiy ) | 12(we) -

If we use the pointwise estimates for Gh,y from Lemma 2.7.2, we conclude
hy ~ _
V5 (D Gy, < Cd(y)' e

and hence , ,
V3 (1nD;Y Gy ) || p2(rey < Cd(y)' 7.

Furthermore, as in (2.6.8), the Poincaré inequality on Qu(,)+1/2(y) and the pointwise
estimates for {;, imply that

h,
Hvﬁ(ghDi th,y>HL2(]Rd)
C h,y C h,y
< WHDZ‘ Hh,yHLZ(Qd(th/z(y)) + r(y) thDi Hh:yHLz(Qd(th/z(y))

h,
+ || V3D, th,yHLZ(IRd)
h,
< C||IViD{" Hyy |l 2(we) -
If we combine the last two estimates with (2.8.10) we conclude that
h, _d
||V;21Di th,yHLZ(]Rd) < Cd(}/)l z.

We recall that A7H; = 0 in int Ay \ Qi(y)/16 and use Theorem 2.6.3 to find that, for
x € Ap\ Quyy/s(y),

d d
2 yhy < AW ooy < 4y)? 1-9 _ ~_4y)
|th1 Hh(x)’ —C|x_y’dehD1 Hh||L2(Rd) _C|x—y|dd(y) 2 C|x—y|d'

This implies (2.8.9) because D?’y Hy,, is equal to D?’y G,y in Ay, \ Qay) /16(y) and therefore
V%D?’th,y is equal to V%D?’yGM in Ay \ Qay)/s(y)-

Step 2: Proof of (2.8.8)
We can obtain (2.8.8) by integrating (2.8.9) along a well-chosen path in x. Let (x(k))lfzO
be a path of length Lk from x(©) = x to x(I) € (hZ)?\ A}, such that [x(+D) — x®)|, = B,
|x%) —y| > |x — y|o for all k, and L < 2(d(x) + k). To construct such a path begin with the
straight path from x to a closest point x* € (hZ)?\ Aj, (which will have length d(x) + h).
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2 Estimates for the Green’s function of the discrete Bilaplacian

If this path does not intersect QTxfywah(y)’ we are done. Else we modify the path by
taking a (shortest-possible) detour around Q‘hxfy‘wfh(y). This detour lengthens the path
by at most |x — y|«, and it is easy to check that if it is necessary then y € QZ( %) (x), so that
|¥ — Y| < d(x), and our path has length at most d(x) + 1 + |x — y|eo < 2(d(x) + h).

Now, by (2.8.9),

d(y)+h d(y)+h d(y)+h
V2 Vi Gi(x®,y)| < C < <C :
Vi Vi S =y e = SO gl + 8 = U=yl + 10

Now we can perform discrete integration along (x*))L_ . Note that V},,V}, , G (x(),y) = 0
and so

L—-1
Ve Viy G 9)| < Y Vi Vi Gru(x ), y) = V3, V3, G (2, )|
k=0

L—-1
< Y nVi Vi Gi(x®, )
k=0

d(y) +h
<L ,
= (Ix =Yl + 1)

which implies (2.8.8).

Step 3: Proof of (2.8.7)
We proceed as in the previous step with the only difference that this time we integrate
in y along a path that avoids x. Let (y) L_, be a path of length Lk from vy = yto
yH) € (hz)d\ A, such that [y*+) — y®)| =k, [y® — x| > |y — x|o for all k, and
L < 2(d(y) + h). If we construct this path as in the previous step, we can in addition
ensure that d(y¥)) < d(y) for all k (then in particular |y®) — x| > d(yT(k)), so that (2.8.9) is
applicable for all y(k)).

Now by (2.8.9)

dy ) +h o dy®O)+h L dy)+h
(lx =y®+m)¢ = " (Jx = yWeo + )¢~ (]x = Yloo + 1)1

Vi Vi Gul(x,y™)| < C

and if we integrate this along (y*))F_,, we obtain (2.8.7).

Step 4: Proof of (2.8.6) and (2.8.5)
We proceed as in the previous two steps. If we integrate (2.8.7) along a path (x%)) L_, that
avoids y once, we obtain (2.8.6), and if we integrate once more, we obtain (2.8.5). O

Now we complement this lemma with an estimate when x and y are close:

Lemma 2.8.3. Let d = 2 or d = 3 and Gy, be the Green’s function of AY. If x,y € Ay and
|X — Y]oo < @ then

[Gi(x,y)| < C(d(x) + h)* "2 (d(y) + )%, (2.8.11)
Vi, Gr(x,y)| < Cld(y) +h)*, (2.8.12)
Clog i(_y)Jrh d=2
Vi Gnlx )| < { c (7555) i (2.8.13)
lx—y|+h -
Clog ( @@)+h)(d(y)+h) d=2
I VixViyGi(x,y)| < & ( (x=yl+h)* ) (2.8.14)
EE d=
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2.8 Proof of the main theorem

Proof.
Step 1: Pointwise estimate for V%,xvh,yGh(x,y

We claim that if x,y € Ay and |x — Y| < # then

C

2

< .0.
Vinx ViyGn(x,y)| < CETELE (2.8.15)
The fact that we prove this for |x — y|e < ) will give us a bit of space to wiggle around in

the following steps where we integrate (2. 8 15). The proof of (2.8.15) is similar to the proof
of (2.8.9). The main difference is that this time we choose the cut-off function further away
from the singularity.

If d(y) < 10h we can again use a trivial estimate: By Lemma 2.8.1, G, (x’, ") is bounded
by Cd(x’)%%d(y’)z*% < Ch*4if |x' — x|e < hand |y — y|e < B, so that

1
Vi ViyGn(x,y)| < Cozh*™¢ = Ch' 4.

Therefore (2.8.15) holds if we choose C sufficiently large.

So assume that d(y) > 10h. Let 7, be a discrete cut-off functlon thatis 1 on Qg /2421 (¥)
and 0 on (hZ)9\ Qu(y)—21(y) and such that [Vy,| < 7 ) for « < 2 and let Hh(x y) =
Gn(x,y) — nh(x)éh(x,y), where G, is the function from Lemma 2.7.2 with r = d(y).

Then, fori € {1,...,n}, D}"Hj,, € ® and A2D}"Hj,,, = 0in Qu,),2(y) and in int Ay, \
Qu(y)(y). We can estimate || V%Dlh’y Hyy |l 12(re) just as in Step 1 of the proof of Lemma 2.8.2
and obtain that , )

VD" Hyyll 12 (rey < Cd(y)' 2. (2.8.16)

Now recall that H}, is biharmonic in Qg(y)/2(y). So Theorem 2.6.1 implies for x € QZ(y) /4(Y)

h, _
V2D Hy,, (x)| < IV2D!" Hyyy |l 12 (rey < Cd(y)' ¢

d(yﬁ

Because V%D?’y Hy, = V%D?’y Gy — V%D?’y Ghy in Qqy)/2(y) we can use (2.7.2) and obtain

~ 1 1
v2pM"G < |v2DMH V2D G <C < > .
‘ i h,y(x)’ > ‘ i h,y(x)’ ‘H i h,y<x>‘ = d(y)dfl + (|x—y| +h)d—1
This implies (2.8.15) if we use that |x — y|e < ( ) and d(y) > 10h so that |[x —y| +h <

Cd(y).
Step 2: Proof of (2.8.14)

If d(y) < 9h we can repeat the trivial estimate from the previous step, so assume d(y) > 9h.

We want to integrate (2.8.15) along a suitable path. So let (x (k)) ,[;:0 be a straight path
from x(%) = x to a closest point x(L) € Quay)/4(y) \ Qua(y)/a—n(y)- This path will have length
Lh = [@Jk — |x — y[oo and we have |y — x| > 9 _j > W By Temma 2.8.2 we
have

(L) h)(d h d h)? 1
(L) (d(x™) +h)(d(y) +h) (d(y) +h)
Vi ViyGu(x™,y)| < C X0 — y|d =C d(y) + h|d < C\d(y) IACE
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2 Estimates for the Green’s function of the discrete Bilaplacian

Furthermore (2.8.15) implies that

C C

v G =
| hxvhy h( Y| < (|x®) —y|+ )41 = (]x —y| + (k+ 1)h)d-1

(2.8.18)

Now we can integrate (2.8.18) along (x(k)) 1%:0 and use (2.8.17), and after a short calculation
we arrive at (2.8.14).

Step 3: Proof of (2.8.13)
If d(y) < 79h we can again use the trivial estimate from Step 1, so assume d(y) > 79h.

This is similar to the prev10us step: We choose a shortest-possible path (y(*)) L_, from
)

vy = y to a point y(L) € Qa(x)/6(x) \ Qagx)/6-n(y)- Then ly®) — x| < de, so that

2d(x) <d(yW) < Zd(x )and hence

Therefore we can apply (2.8.15) at the point (x,y¥)) for each k and conclude
C C

< .0.
On the other hand,
ay®) > 2d(x) > > 2d(y) > Seh
so that " "
d(x) d(y™) d(y™)
@) _ oyl > 2 > _
Y™ = x> h> =5 —h > =%
This means that we can apply (2.8.8) at the point (x, (")) and conclude
(L) 2 2
V2 Gu(x, ) < C @y +h)7 @) h° ! (2.8.20)

|x =y} |dy) + k¢ = ld(y) +h|2

Now we can integrate (2.8.19) along the path (%)) L_, and use the estimate (2.8.20) for the
one endpoint to obtain (2.8.13).

Step 4: Proof of (2.8.12)
We could try to prove this by integrating (2.8.13) along a path. However, this turns out to be
not sharp enough at least if d = 3 (we would get a logarithmic term instead of a constant
term). Instead we will use the Sobolev inequality on the function Hy, , from Step 1. Thereby
we get a bound for V,, Gy (x,y) if x, y are close. By the symmetry of G, we can turn this into
a bound for Vj, .Gy (x,y).

If d(y) < 10h we can again use the trivial estimate from Step 1, so assume d(y) > 10h.
Recall the function Hy,, from Step 1. If we use the Sobolev and Poincaré inequality on
Qu(y)+r/2(y) and the estimate (2.8.16) we obtain

hy 2-4 o2 hy
ID:” Hiy l2(Qyyy 2y < Cy) +1/2)" 2 IViD Hiyll 1200, 0(0))
h,
< Cd(y)* 2| VD" Hyy || 2 (e
< Cd(y)*

and therefore
|V iy Hiy (x)] < Cd(y)>
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2.8 Proof of the main theorem

forany x € Q) (¥). Now we can use (2.7.2) and the fact that D?’y Hy, = D?’y Ghy — Df’y Gy
in Q4(y),2(y) and obtain

h, h, hy ~ _
DGy ()] < D} Hyy (x)] + D} Gy ()] < Cal(y)>

forany x € Qq(,),2(y) andanyi € {1,...,n}. By the symmetry of G in x and y we conclude
that also
DG (y)| < Cd(x)*¢ (2.8.21)

forany y € Qgx)/2(x)-

Now in the setting of (2.8.12) we are given x,y with |y — x| < @. These satisfy
2d(y) < d(x) < 3d(y), so that |y — x| < 3d(x) and in particular y € Qy(y)/2(x). Thus we
can apply (2.8.21) and obtain

DGy, (y)| < Cd(x)>~4 < Cd(y)*¢,

which implies (2.8.12).
Step 5: Proof of (2.8.11)
This follows immediately from (2.8.3). O

Proof of Theorem 2.1.3 i). Now that we have proved Lemma 2.8.3 and Lemma 2.8.2 the proof
is straightforward. First observe that it suffices to consider x,y € A, as otherwise G, and its
relevant derivatives are trivially 0.

We claim that we can combine (2.8.8) and (2.8.14) to obtain (2.1.11). Indeed, if [x — | <

@ we have d(y) < ?d(X) and [x —y| +h < /n|x — y|e +h < d(y) + h which implies

(d(x) + 1) (d(y) +h)

1<
= (x—yl+h)?

and we are done by (2.8.14).
If however |x — y|eo > @, then we have in particular |x — y| > h, so that |[x —y| +h <
2|x — y|. We also have d(y) < 8|x —y| and d(x) < 9|x — y| and we easily see that
(d(x) +m)(dy) +h) _ C
d = d—2
|x =yl (lx —yl+h)

so we are done by (2.8.8).
Similarly, we can combine (2.8.7) and (2.8.13) into the estimate
(d(y)+h)? _
Clog (1 + (‘x_th)z) d=2

. 1 (d(y)+h)? _a
Cmin (b, (H2H5) d=3

‘vi,xGh(xfy)l < {

This is not quite (2.1.10), but it implies (2.1.10) unless d(y) = 0. On the other hand, if
d(y) = 0 theny € dA;,. Therefore G, , is identically 0, so that V;, ,2Gy,(x,y) = 0 and (2.1.10)
holds as well.

Similarly we can combine (2.8.6) and (2.8.12), and (2.8.5) and (2.8.11) into

X 2
[ Vi,xGi(x,y)| < Cmin ((d(y) Ry, (ﬂ(i‘(x >_+y |h)+d}(13)/3 ) ,

respectively. These estimates imply (2.1.9) and (2.8.11), except in the cases d(x) = 0 or
d(y) = 0, which are again trivial. O
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2 Estimates for the Green’s function of the discrete Bilaplacian

Remark 2.8.4. As a byproduct of the proofs of Lemma 2.8.3 and Lemma 2.8.2 we proved the
estimates (2.8.9) and (2.8.15) which can easily be combined into the estimate

V2 .V}, Ga(x, )] < Cmin ((\x _ y\1+ T (|xd£yy)|++hh) d) (2.822)
for any x,y € (hZ).

With the same method of proof it is possible to prove an estimate for V%’xV%,yGh as well.
One again considers Hy,, = Gy, — 7,Gp,, in Lemma 2.8.3 and Lemma 2.8.2 and derives
estimates for HVﬁ,fobth,y |12(re)- In combination with the pointwise estimates for Gy (in
particular (2.7.3)) these again yield estimates for V%,XV%& Gy, in the two regimes where x and
y are far away and close together, respectively. The final result is

C

- 2.8.23
(x—yl+ 1) (2:823)

’ v%,xv%,yGh (x/ ]/) ’ <
for any x,y € (hZ).

Actually it is even possible to derive estimates for higher derivatives V;’I’XV;’W Gy, at least
when a <2 or b < 2. However we cannot expect these estimates to be optimal any more,
because high derivatives are increasingly divergent near the singular boundary points, and
our approach does not really capture this behaviour.

2.8.3 Convergence of Green’s functions

Proof of Corollary 2.1.4. We begin with the proof of assertion i). We can assume that i < 3.
There exists a unique y;, € Ay such thaty € y;, + [—%, %)2 Set uy,(x) = Gy(x,y,). We extend
uy, by zero to (hZ)9 \ int Ay,

To prove (i) we have to show that u; converges uniformly to G(-, y). Testing the equation
for A%uh with u, we get (see Lemma 2.8.1)

V20 2y < Cd? 2 (yy) < C.

The discrete Sobolev-Poincaré inequality implies in particular that the u; are uniformly
Holder continuous

<C. (2.8.24)

[uh]C%(]Rd) S

Denote by Jj, the interpolation operator introduced in Section 2.4. From Proposition 2.4.2
vi) and the Poincaré inequality we deduce that the sequence Jj,u;, is bounded in W2 (RY)
and Jyuy = 0in RY\ (=3k,1 + 3h)9. It follows that for a subsequence

T, —u inW22(RY),  u=0inR?\ (0,1)°.

From the uniform Hoélder continuity (2.8.24) and Proposition 2.4.2 iii), iv) and vi) we deduce
that, for any x € (=3h, 1+ 3h)9,

c 1
gt () = T 1 ()| = [T (o () = 2y () ()| < Cllaagy, = 103 () 20y () < Chict

and therefore

1
sup | Jithn, (%) = Ifug ()| < Chyv
xe(—1,2)d
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In connection with the compact embedding from W% ((—1,2)9) to C°((—1,2)%) we conclude
that
I}icuhk — u uniformly . (2.8.25)

If we can show that u(x) = G(x,y) then by uniqueness of the limit it follows that the
convergences above do not only hold along a particular subsequence i, — 0 but for every
subsequence h; — 0 and we are done.

To show that u(x) = G(x,y) we use that by definition of G(-,y;) we have for each
¢ € C2((0,1)9)

yhk = Z Ahk”hk Z ”hk )hd

xeint Ay, x€int Ay,

_/ Ipcuhk b AL e(x) dx.

Now by Taylor expansion |I£:Aikgo — A?¢| < Chy. Together with (2.8.25) we get

_ _ pc pc 2
o(y) = lim ¢(yy) = lim (0,1)1 Iy A, pn dx = /(0,1)duA @dx.

Thus A%u = §, in the sense of distributions. Since we also know that u € WZ2((0,1)%) we
conclude that u(x) = G(x,y) as desired.

To prove ii) note that the estimates in Theorem 2.1.3 show that the second discrete
derivatives are bounded in L” for all p < co. Hence by the discrete Sobolev embedding
theorem the discrete first derivatives are bounded in C%* for all « < 1. This implies that

117V yu — ¥V Jjuy| < Ch*. (2.8.26)

Moreover the L? bound on the discrete second derivatives and (2.4.3) give a bound of Juy,
in W2, Hence a subsequence of J,uj converges in Cl® to G(+,y). Since the limit is unique,
the whole sequence converges in C* to G. Together with (2.8.26) this yields uniform
convergence of the discrete first derivatives.

The local compactness argument in Section 2.5 (and a diagonalisation argument) shows
that a subsequence of I}°V2u;, converges in L2 ((0,1)\ {y}) to a function v. Since I V2u,,
is also bounded in L7 for some g > 2 we get strong convergence in L?((0,1)?). Using again
the L7 bound we get strong convergence in all L with p < gq. Since we have L7 bounds for
all g < co we get strong convergence for all p < co. It remains to show that v = V2G(-, y).
To obtain this identity we can use discrete integration by parts and pass to the limit on both
sides, as in the proof that Ay = dy.

The proof of (iii) is similar. Uniform boundedness of the discrete derivatives follows
directly from Theorem 2.1.3. This theorem also shows that the second discrete derivatives are
uniformly bounded on the complement of any cube Q,(y). It follows that the functions 1,
are uniformly Lipschitz on the complement of any cube Q,(y) and we obtain locally uniform
convergence of I}V uy, in the complement of those cubes as in the proof of (ii). Combined
with the uniform boundedness we immediately conclude convergence of I ﬁ “Vuy, in LP for
all p < co.

The proof of L? convergence of I} V2w, for p < 3 is again analogous to the argument for
d=2.

g
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3 Probability to be positive for the membrane
model in dimensions two and three

This chapter is based on the paper [BDKS19], written jointly by Simon Buchholz, Jean-
Dominique Deuschel, Noemi Kurt and the author, with only minor changes. A small part
of the content of this chapter has already appeared in the author’s M.Sc. thesis [Sch16],
where the upper bound on the probability to be positive is shown using a very similar
approach.

3.1 Introduction

In this section we consider entropic repulsion for the subcritical membrane model, as dis-
cussed in Section 1.3.3. Actually, for convenience we make a small change in comparison to
the results mentioned there: instead of Ay = {0,..., N} we consider Ay = {—N,...,N}4.
This means that we only consider boxes with odd sidelengths, and this has the small ad-
vantage that the centre of Ay is a lattice point. However, it is clear that our proof would
also apply to boxes with even sidelengths. As we are only concerned with the membrane
model, we drop the subscripts A.

3.1.1 Main results

Let A = [-1,1]9 and Ay = NANZ4 withd € N* and N € IN*. We are interested in
the event Qp, + = {¢: P > 0Vx € Dy}, where Dy C Ay, as well as the behaviour of
conditioned on Qp, +.

Our main result is the following.

Theorem 3.1.1. Let d = 2 or d = 3. There are constants C, ¢ such that for all N € NT,
0<L<N,

d—1 d—1
_C_N 7C( N

e T <Py (Qay 4) <e 5T (3.1.1)

A first result in this direction was already established by Sakagawa [Sak16] who proved
that for every x € A there is a small neighbourhood By such that Px(Qnp,,+) > ¢ for some
(universal) constant c.

Let us emphasize the two important special cases of our theorem that were already
mentioned in Section 1.3.3. We first consider the case Dy = Ayy for § € (0,1), where
the hard wall stays away from the boundary. In that case the fact that the membrane
model is Holder continuous suggests that the field has a decent chance to be positive if it is
uniformly positive on a sufficiently dense set of lattice points of bounded cardinality. Thus
the probability that ¢ is positive on Dy = A,y should be comparable to the probability of
uniform positivity on that dense set, and hence bounded away from zero. Indeed, Theorem
3.1.1 implies the following corollary.
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Corollary 3.1.2. Letd =2 ord = 3. For 6 € (0,1) there is a constant c¢; > 0 such that

1
X

When Dy = Vy, the situation is somewhat different. While the Holder continuity holds
up to the boundary, the ¢, for x near the boundary are only weakly correlated and behave
almost like independent random variables. This suggests that the probability to be positive
on all of Vy can at best scale like e=N""" (note that the number of points of distance 1 to
the boundary is of the order N d=1), On the other hand, if the field is positive at all near-
boundary points it gets pushed up in the interior quite a bit, and so the probability to be
positive everywhere should be of the same order.

Indeed, another particular case of Theorem 3.1.1 is an estimate for Pn(Qp,,+)-

cs < ]PN(QAJN7+) <

Corollary 3.1.3. Let d = 2 or d = 3. There are constants C, c¢ such that
e N <Py (Qpy ) SN

We expect this result to be true for the membrane model and the gradient model in any
dimension d > 2. For the gradient model a stronger result has been shown for d > 3
in [Deu96, Theorem 4.1]. Note that the behaviour for general L > 1 in Theorem 3.1.1 is
different for the gradient model in dimension d > 3.

We give a proof of the lower and upper bound in Theorem 3.1.1 in Section 3.3 and 3.4,
respectively.

3.1.2 Implications for entropic repulsion

Corollary 3.1.2 has some easy implications on the behaviour of the field when conditioned
on Oy, +. To state them precisely we need some preparation.

We define the interpolation Iy: RAY — C%1([—1,1]9) by Iyf(x) = N~z f(Nx) for
x € (%Z)d N[—1,1]9, and interpolated piecewise affinely on simplices for other values
of x. As the proof of [CDH19, Theorem 2.1] shows, the pushforward measures IN#Py
converge weakly in C%*([—1,1]¢) for any & < %3¢ to a limit law Pe. The limit P is the
continuum Bilaplace field, i.e., the centred Gaussian field whose covariance is the Green’s
function of the continuum Bilaplace operator on A. Now Corollary 3.1.2 implies that the
laws In#Py still converge when one conditions on ()4, +. Indeed, if we introduce the event
Op, ={uc Co%([-1,1]%): u(x) > 0Vx € D} for D C [—1,1]4, we have the following
result.

Corollary 3.1.4. Letd =2ord = 3,and 6 € (0,1). Then IN#Pn(- | Qa,,,+) converges weakly
in CO*([—1,1]¢) for any & < 439 to P ( ‘ Q;A/+>. In particular, we have

4-d
Iim Ey ([ N~ 2

xeEAN

QA".N’+> < 0.

The corollary follows from the facts that P, <Q:§ A +) is a continuous function of § and
that (OF, . is a continuity set for [P, (these both follow from [Bog98, Corollary 4.4.2]). Note
that the second point combined with the convergence of IN#Py — P and Corollary
3.1.2 implies that P, (Qj A Jr) > 0 so that the conditioned measure P, ( ‘ Q5 +) is well-
defined.
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3.2 Preliminaries

This corollary shows that there is no entropic repulsion when conditioning on Qj,,, 4.

We conjecture that a similar result remains true if we condition on Q) . However, due
to the fact that the probability of (), + is exponentially small this is a difficult problem
even in dimension one.

Conjecture 3.1.5. For d = 2 and d = 3 the measures IN#Py (- | Qa,,+) converge weakly in

COo%([—1,1]9) for any a < % to some limiting measure. In particular,

Iim Ey (N_42d max Py
N—oo

XEAN

QAN/+> < 0.

As an analogue to this conjecture one can consider the gradient model in one dimension
(i.e. the random walk on {—N, —N +1,..., N} with i.i.d. Gaussian increments conditioned
to be zero at its endpoints). It is well-known that this model, suitably rescaled, converges
weakly in C%*([—1,1]) for « < } to a Brownian bridge. Moreover, if one conditions the
walk to be non-negative it converges weakly in C°([—1,1]) to a Brownian excursion (see
[CC13] and the references therein). Similar results (in particular a local limit theorem for the
conditioned field) have also been shown for the membrane model in one dimension (at least
if one only considers zero boundary data on one end of the interval), see [DW15].

3.1.3 Notation

For x € Z% let dy(x) = diste(x, Z4 \ Ay) be the distance to the boundary of Ay.
In the following ¢, C and C’ denote constants that may change from line to line, but are
always independent of N and L.

3.2 Preliminaries

Let us recall the relevant results that will be used in the proof of the main theorems. Let Gy
be the Green’s function of AZ on Ay with 0 boundary data outside Ay, i.e. Gn(-,y) = 0if
y & An and

A*Gn(y) =6, inAy,,
Gn(vy) =0
if y € An. The Green’s function Gy agrees with the covariance matrix of ¢, i.e. we have that

Covn (¢, ¢y) = Gn(x,y), see also [Kur09]. Our proofs are based on the estimates for the
Green’s function Gy from Chapter 2.

outside Ay

Theorem 3.2.1. Let d = 2 or d = 3. Then we have for any x,y € An

cdn (%) < Gn(x,x) < Cdn(x)*9, (3.2.1)

|V1xGn(x,y)| < Cdn(x)*79, (3.2.2)

|Gn(x,%) = Gn(x,y)] < Cdn(x)* % = yloo, (32.3)
dn(x)*dn(y)?

|G (x, )] SC(‘x—yL,o—}-l)d’ (3.2.4)

where V1 x denotes the discrete gradient with respect to x.
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3 Probability to be positive for the membrane model in dimensions two and three

Proof. The estimates (3.2.1), (3.2.2) and (3.2.4) are taken from Theorem 2.1.1, while (3.2.3)
follows from (3.2.2) by discrete integration along a path from x to y. O

The lower bound relies on Dudley’s inequality proved in [Dud67]. To state the inequality
we introduce the following two notions. For a Gaussian process (X;);er we define the
pseudometric dx by

dx (s, t) = \/E(|Xs — X¢|?). (3.2.5)

The entropy number N (T, dx, r) is the minimal number of open balls of radius 7 in the dx
metric that are needed to cover T.

Theorem 3.2.2. Let (X;):er be a centred Gaussian process. Then

E (sup Xt> < 24/Oo \/InN(T,dx,r)dr.
0

teT

Remark 3.2.3. The theorem is true for arbitrary sets T if one defines the supremum appropri-
ately, see e.g. [Tal96]. Since we only apply it to finite index sets we do not discuss this issue
here any further.

We also use the Gaussian correlation inequality due to Royen [Roy14] (see also [LM17]).

Theorem 3.2.4. Let v be a centred Gaussian measure on R™ and K, L C R™ be closed, symmetric

and convex. Then
v(KNL)>v(K)v(L). (3.2.6)

Finally, we recall a Gaussian correlation inequality do to Li and Shao [LS04, Lemma 5.1]
that will be used in the proof of the upper bound

Lemma 3.2.5. Let m € N, and X = (Xq,... Xn), Y = (Y4, ...Yy) be Gaussian random vectors
with mean 0 and positive definite covariance matrices Xx, Xy, and let P denote their joint measure.
If Xy > Xx (in the sense of symmetric matrices, i.e., Xy — Xx is positive semidefinite) then for every
Borel set F C R™

detXx
detXy

For the convenience of the reader we repeat the short proof.

]P(YGP)2< )éP(XeF).

Proof. Let fx, fy be the densities of X and Y. The assumption Xy > Xy implies that
Z;(l > Z;l and hence (x, Z;(lx) > (x, Z;lx) for all x € R™. Therefore:
1 1 _
fr(x) = - T exp (—Z(x,Zylx)>
(271)2 (detXy)2

1
> — exp (—5(x, Xy x
<det2Y (27)% (detZx)2 p< 200 2 )>

. detXx 2

N <det2y> fX(x)
Then
1 1
detXx 2 . detXy 2
P(Y € F) = ny(x) x> <det2y) Ff (x)dx = (det2y> P(X € F)
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3.3 Lower bounds

3.3 Lower bounds

Let
QAN—L/‘X’ = {l/) WJX‘ < dN(x)% Vx € ANfL}

be the event that ¢ is uniformly small on Ax_.

If  was C%*3*-Holder continuous with Holder constant < 1 with probability bounded
below uniformly in N, this event would have a positive probability uniformly in N and
L. Now 9 is only C%*2"~¢-Hglder continuous (see Chapter 2 and [CDH19]), so we cannot
expect a lower bound independent of N. Instead, we prove in Subsection 3.3.2 that the

d—1
probability of Q4 , « is bounded below by ¢ T, Then, using a change of measure
argument, we show in Subsection 3.3.3 that, given f: Ay — R, we have

_1 2
Py (f + Qnay o) = e 2Py (N, o). (3.3.1)

Suppose now that we can find a function f such that f(x) > dy(x)"z" for x € Ay_; and

such that ||Af|)?, < c% Then O, , 4 O f+ Qa0 and thus (3.3.1) will imply that

]PN(QAN—L/+) > Py (f + QAN—L/OO)

_1af|2
> e ZHAfHLZIPN(QAN,L,oo)
nd—1

> e ST PN (Qay o) -

Combined with a lower bound on Py (Qx,,_, ) this implies the lower bound in Theorem
3.1.1. In Lemma 3.3.4 we construct an f with the desired properties.

3.3.1 Local smalilness of the field

We first prove that locally the field is small with a positive probability. For xo € Ay and
v > 0 we define the set

Axyy = {x € An: [x = Xo[eo < 7dN(x0)} - (3.3.2)

Lemma 3.3.1. Let d = 2 or d = 3. There is a pair of constants -y, 6 > 0 with the following property:
For all xo € Ay the following estimate holds

Py (¢; | < di(x)'2 Vx € Axm> > 5. (33.3)

Proof. We apply Theorem 3.2.2 to the Gaussian process ¢ distributed according to IPy. We
assume 7y < 3 so that x € Ay, implies

dN(xo)
2

3dn(x0)
<dn(x) < %

Therefore we will always estimate distances to the boundary for x € Ay, by dn(xp) in the
following. The bound (3.2.3) implies

En(¢x — ¢y)” < |Gn(x,x) — Gn(x,9)| + IGn (Y, y) — G (v, x)| < Odn (x0)> ] — Yoo
(3.3.4)
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3 Probability to be positive for the membrane model in dimensions two and three

for x,y € Ay, and some ® > 0. Therefore we estimate the Gaussian pseudometric defined
in (3.2.5) by

dy(x,y) < /Oy (x0)*4|x — ylo.

This implies that for r > 0 and x,y € Ay, such that |x — e < W;O)H we have
dy(x,y) <r.
In particular Be (x, W) C By, (x,r) and therefore

d
N Ay, dy, 1) < {WN(XO) } <1V (27®dN(x0)4_d>d .

2
o r
Ody (x0)3~d

Then Theorem 3.2.2 implies

29Ody (x0 )44 4-d\ d
) <cau [T (200G,
0 r

]EN( sup ¥y

XEAx,y

(3.3.5)

4—d

B 1
< 24dN(xo)%\/2'y®n/ V=2Inrdr < A/ydn(x0) 2
0

where A only depends on d.
If we take v = (16A) 2 we obtain

1 B
IEN< sup l,bx> < EdN(xo)%.

XEAx)y

(3.3.6)

Define the oscillation of a function f on a set T as usual by
osct f =sup f —inff.
T T

Since 1, is a centred process (3.3.5) implies

—_

4—d

IEN (OSCAx(w Ipx) S ng(XQ)% .

This implies that

4—d
2

]PN<OSCAx0n l/Jx < }LdN(XO)) =

N —

Note that we have the inclusions

{0 19 < v vx € Axgy } O {2 9l < Jaln(x0) 7 W € Ay }
5 {osea,, e < Tan(x0) 'S 0 {0 [l < dn(ao)F )
Now the Gaussian correlation inequality (3.2.6) together with (3.2.1) imply that

Pr ({3 19l < dn(0) 7 V€ A }) 2 3P (Il < Jaw(o) ) 2 6

for some fixed 6 > 0. O
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3.3 Lower bounds

Remark 3.3.2. The use of the Gaussian correlation inequality could be avoided here: from
(3.3.6) and (3.2.1) one easily obtains

4—d

IEN< sup |¢x|) sm( sup |¢x—¢x0|)+1EN<|wa|>sa w(x0)' 7

xeAxo,y xeAxo,y

for some & > 0 and therefore

I\J\l—‘

P (: [92] < 48N (x)2° ¥x € Anyy) = Py (93 ] < 28dn(x0)"7 Vi € Ay ) >
We could work with this estimate instead of (3.3.3) by using

QANfLIOO = {lp |¢X‘ < 4‘EdN(x)% Vx € AN,L}

instead of ()5, | « in the following.

3.3.2 Global smallness of the field

From the previous we know that on small boxes the field is small with probability bounded
away from zero. We can cover Ay_; with these small boxes, and then use the Gaussian
correlation inequality to obtain a bound on the probability that the field is globally small.

Lemma 3.3.3. Letd = 2 0rd = 3, let O, | « be as before. Then we have

Nd-1

IPN(QAN_L,OO) > efc(u—l)d—l )

Proof. Recall the definition of A, , in (3.3.2). Fix 7y such that the conclusion of Lemma 3.3.1
holds and use the shorter notation Ay := A, ,.

We want to construct a subset By of Ay such that |[By| < C ( and such that

L+1)d 1

An_1 C U Ay.

xEBN

If we have found such a set, then the Gaussian correlation inequality (Theorem 3.2.4) and
Lemma 3.3.1 imply that

POy ) 2 P () 193 1] < )= Wy € A )

XEBN
> TT P (9: Il < dnly) =" vy € Ax)
X€By
By < —C
> [[6=6">e¢ ~@oT,
XEBN

It remains to prove the existence of By. The size of the boxes Ay depends on the distance to
the boundary, so in order to construct By it is convenient to split Ay into the dyadic annuli
Wi = {x € An: 2F <dy(x) < 2"} fork =0,1,..., |log, N|. For x € Wy the cube Ay
has diameter 2ydy/(x) > 72"+1. Because Wy has outer sidelength 2(N — 2F) < 2N and
thickness 2¥, we can cover it by at most

2N \971 ok Nd-1
2n <2fyzk+1> 272k+1§C2k(d71)

91



3 Probability to be positive for the membrane model in dimensions two and three

cubes Ay, i.e. we find a set By x of at most C% points in Ay such that

WheC | Ax.

XEBN,](

Let kg = [log, (L + 1)] which implies that A1 C Uk, Wik

Consider By = U}:fioN Bn - Then An-p C Uyep, Ax, and we have

[log, N o pjd-1 Nd-1 Nd-1
< < < < )
|Bn| < k;ﬂ Bl < Ckgo #a D = ConE S C(L T 1)t

3.3.3 Change of measure

We can now prove the lower bound in Theorem 3.1.1. The idea is simple: We use an explicit
calculation with densities to prove that the probability of the event Px(f + Qa,_, «) is

bounded below by e 1ML p N(QAy_,,00)- Then it remains to make a good choice of f.

Proof of Theorem 3.1.1, lower bound. Let f: Ay — IR be a function to be specified later, and
extend it by 0 to all of Z¢. We want to estimate the probability of the event f + Qx| 00 =
{f+¢:¢ € Qry_, o} Todoso, we calculate

1 1
Py(f + Qny oo :/ —exp [~ Ay|? ) d
MO = [ e (glavi:)

1 1
[ gew(-3Ia0 +pIE:) v (632

Q/\N—boo

1 1 1
— [ e (51001~ S1AvIE: — (8F,89):z ) dy.

QANfL,oo

Because ()5, , « is symmetric around the origin, we can replace ¢ by —1 and obtain that

1 1 1
PN (f + Qay o) = / 7 P (—ZHAJ(H%Z - EHAVJH%Z + (Af,Al/J)Lz> dy. (3.3.8)

If we add (3.3.7) and (3.3.8) and use the estimate e/ +¢~! > 2, we conclude

, o 218f 1221189117, (e(Af,Alp)Lz +e—(Af,A47)L2>
PN+ 00y 1) = 3 Ony_ e ZN a

~4lay]? (33.9)
> o~ 2lI6f1 /Q ¢ ZZN 2 dy

AN-L®

_ e_%HAinZ]PN(QAN,L,oo) '

Note that the conclusion in (3.3.9) could also be derived from (3.3.7) using Jensen’s inequality.
We now choose f as in Lemma 3.3.4 below. Then

Nd—l
IAf]12, < C( (3.3.10)

L+1)d-1"
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3.3 Lower bounds

k> fi1 k>

Figure 3.1: The functions f;.

Moreover this choice of f ensures that Q5 , + D f + Qa, ;,~, and so (3.3.9), (3.3.10) and
Lemma 3.3.3 imply that

_1 2
PN(QAN—L/+) > ]PN(f + QAN—L/OO) >e ZHAfHLzlPN(QANfL,OO)

c_nd-1 nd—1 o _No
> W)ITo T(Lndl — o 7 (L1d-T

O]

Lemma 3.3.4. There is a constant C > 0 such that for every N and 0 < L < N there is a function
f:Z9 — Rsuch that supp f C Ay, f(x) > dn(x)"2" forall x € Ay_r and
Nd-1
A T
L WO e
Proof. We again use a dyadic construction. Recall Wy x = {x € Ay: 2F < dy(x) < 281} for
k=0,1,...,[log, N|. Let in addition Wy,_1 = 79\ Ay.

Fix a smooth function 77: R — R such that7 > 0,7 =1 on [1,00) and # = 0 on (—o0,0].
Fori € {1,2,...,n} and x € Z9 we introduce the distance d;(x) = dist(x, Z% \ (ZI~1 x
{—N,...,N} x Z47%)) of x to the boundary in direction x;.

Forj=0,1,...|log, N| — 1 consider the function

‘x:2@+1d w
fi(x) Eﬂ(zj )

(cf. Figure 3.1). Note that

4d)

fi(x) = 1 (3.3.11)
for all x € Ay such that dy(x) > 2/. Moreover

CH’? ||L°°
22] - 2%

"

[Afi(x)] < €2

(3.3.12)

In fact Af;(x) = 0if dy(x) > 2/ because fj is constant on Ay _,;. We define the function

[log, N
f= L f
j=log,(L+1)]
For x € An—1 let now k be such that x € Wy, and observe that [log,(L+1)] < k <
|log, N|. The estimate (3.3.11) implies

k(4—d) 4-d

> (2-2">42d >dn(x) 2.

f(x) = fix) =2
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3 Probability to be positive for the membrane model in dimensions two and three

For an arbitrary x € 74 let again k € {—1,0,1,...} be such that x € Wy . Then (3.3.12)
implies that

[log, N| ) " !
|Af(x)| < Z |Af]‘ = 2 CHT]/‘dHL < (kleog(Hl)J)d :
j=kV [log,(L+1)] j=kv|log,(L+1)] 272 2 72

Using that |Wy x| < C2¥N9~1 for k > 0 and that Af(x) is zero on Wy, _; except possibly
on the set A1 \ Ay of cardinality CN9~! < C'271N9~1, the previous estimate implies that

) LlogzNJ 00 szd 1
Y AP < ) ) IAf(x Z oL
xezZd k=—1 x€Wpnk
- [log,(L+1)] Cszd—l N 00 CZkNd_l
== 2lesy(Lt1)ld e g (T41) +1 2kd
d—1 d—1 d—1
<c N e N _c N .
(L+1)d-1 (L+1)d-1 (L+1)d-1

3.4 Upper bounds

In order to prove the upper bound in Theorem 3.1.1, we will find a suitably sparse set
En 1 of points at the boundary such that the random variables {¢,: x € Ey 1} are almost
independent in the sense that their covariance matrix is diagonally dominant. We can then
use Lemma 3.2.5 to compare them to actually independent random variables. The following
argument is taken from [Sch16, Section 6.2.1].

Proof of Theorem 3.1.1, upper bound. Note that for N > L > I the upper bound is trivial.
Indeed, An-_ is nonempty and so the symmetry of the field implies Py (Qa, ,+) < %,

while the right hand side of (3.1.1) exceeds % if L > % and c < 279, We assume L < % in
the following. Let Ex; = Ax_r N ((Ja(L+1)]Z)4"! x {N — L}) where a > 1 is a constant
to be chosen later. This is a set of points on one face of [N + L, N — L] such that any two
points have distance at least aL. Its cardinality satisfies

N-L a1 N-Y o
[Ene|= <2L[R(L+1)1J “) = (L(L%—l){HJ “)
(3.4.1)

N d-1 d—1
> 22— >c N .
a(L+1)+1 ad=1(L+1)d-1
Clearly dy(x) = L+ 1 for any x € Ey 1. Therefore according to (3.2.4) for x # y

(L+1)* (L+1)*
(Jx—ylo+1)4 = "[x—yld~

If we combine this with (3.2.1) we obtain for any x € Ey .

[Gh(xy)l <C

G (%, )l (L+1)*
<C
YEENL \/GN(X'X)GN(]//]/) ye%i (L+ 1)47d|x - y|§'o
y#Fx y#x
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3.4 Upper bounds

v . . (L+1)9

—CEHVE EnL: \y—x’w—][“(L+1)W}\m
vy

swdgj

where a; =2 ford =2 and 4; = 8j ford = 3. Thus } ;2 ;id] < oo and hence

[Gn (%, y) c
) = = <5 (34.2)
yGEN,L \/ N(x’ X) N(y’y)
y#x
We now choose « large enough that the right hand side of (3.4.2) becomes less than ;.
We define the Gaussian random vector (Xy)regy, by Xx = lpix( Let Xx be its
. NX,X

covariance matrix. Then (Xx),, = 1 for all x and (3.4.2) implies that

1
2 |(Ex)eyl < 5 (3.4.3)
YeEy,
y#IJVcL

Let {Yi}reky, be iid. normal variables distributed according to N/ (0, %) and let Xy =
%]IEN/L be their joint covariance matrix, where 1, , is a unit matrix indexed by En 1.
Because of (3.4.3) the matrix 2y — X x then satisfies

3 1
(ZY - Z‘X)x,x - E -1= E > Z (ZX)x,y
yGEN,L
y#x

This means that Xy — X.x is strictly diagonally dominant and hence positive definite. Hence
we can apply Lemma 3.2.5 and obtain

1
detTy )\ 2

> Pn(Q) .

= (det2y> N (O ot)

. . . . E
It remains to estimate jﬁg’; Since Yy is diagonal, det Xy = (%) | N’L‘. On the other hand, by

(3.4.3) the matrix Xy — 31 Ey, is still diagonally dominant and hence positive semidefinite.

Hence all eigenvalues of >Xx must be at least %. Therefore detXx > (%) lEN’L|.
We conclude

1\ Bl £ detzy \ 2
< |z
Pn(Qay.+) < (2) <det2x>

|En,L

1\ Bl 7372\ 2 1Bl
() GA) -(5) - e

IN
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3 Probability to be positive for the membrane model in dimensions two and three

Recall that by (3.4.1) we have |Ey | > Cwﬁ- Thus we finally obtain

Ndfl
PN (Qay_p+) < exp <_C(L_|_1)dl>

1

fOI'C:W

log 2.
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4 The maximum of the four-dimensional
membrane model

’This chapter is based on the author’s paper [Sch20a], with only minor changes.

4.1 Introduction

As discussed in Section 1.3.2, in this chapter we will study the maximum of the four-
dimensional membrane model. The main part of the proof are estimates for the Green’s
function of the discrete Bilaplacian in dimension 4. These were described in Section 1.4.3.

4.1.1 Main result for the membrane model

Recall that ¥y denotes a sample of Py 5,, where Ay = [0,N]9 N Z¢ and that MY =
maXxEAN ¢N,X'
Our main result is the following.

Theorem 4.1.1. Let d = 4. The random variable
1 3
A A A
— = ——1 ——logl
My — my = My p- OgN+167r oglog N

converges in distribution. The limit law is a randomly shifted Gumbel distribution po, given by

—8nx

foo((—00,x]) = Ee 7" 2¢ " Vx
where «y* is a constant and Z is a positive random variable that is the limit in law of

ZN = \/g Z (IOgN — ﬂlPN,v)e_S(logN_mPN”) .

vEAN

Before we discuss our proof strategy, let us point out a generalization.

Remark 4.1.2. Our approach is not limited to the membrane model. In fact, consider for
| € N* the V/-model, given by the probability measure

1
ZLX) exp _% Yoz |AF lPUP) [Toea d¥oIToeza\a do(dypy) I even

PY (dy) =

-1
2

-1
ﬁ exp _% Yoezd V1, 90v‘2> [Toea dipo [Toeze\a do(dy,) [odd
A

(note that I = 1 corresponds to the gradient model and / = 2 to the membrane model) in
the critical dimension d = 2/ on the cube A = [0, N]¢ N Z9. Then Theorem 4.1.1 generalizes
to this setting, and the maximum of the field, appropriately centred, converges in law to
a randomly shifted Gumbel distribution. Our proof in the following would only require
minor modifications to yield this more general result. However, since the case | = 1 is
covered by [BDZ16], while the V!-model for I > 2 is rarely studied, we choose to focus on
the case | = 2 in the following. This allows us to avoid more complicated notation.
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4 The maximum of the four-dimensional membrane model

4.1.2 Log-correlated fields

As discussed in Section 1.3.2, one needs to consider this result in the context of log-correlated
Gaussian fields, where one expects certain universality properties of features such as the
maximum of the field. In particular, in [DRZ17] Ding, Roy and Zeitouni gave a set of four
assumptions that ensure that the maximum of a field converges in distribution. Let us recall
their result, slightly reformulated (we have changed the domain from [0, N — 1]4 to [0, N]¢,
and replaced log, |a| with log(1 4 [a[) in (A.0) and (A.1), but it is straightforward to check
that the theorem stated here is equivalent to the theorem as stated in [DRZ17]). We write
dn(v) := dist(v, [0, N]¢) for the distance of v to the boundary of [0, N]¢ and d(x) := dq(x).

Theorem 4.1.3 ([DRZ17, Theorem 1.3 and Theorem 1.4]). Let Ay = [0, N]9NZ4, and let
¢N = {@Nv: v € AN} be a centred Gaussian field. Assume that

(A.0) (Logarithmically bounded fields) There is a constant g > 0 such that for all u,v € An,
Var ¢n,» < log N + ap

and
E(ono, — (pN,u)2 < 2log(1+ |u—v|) — | Var ¢n» — Var ¢n | +4ap .

(A.1) (Logarithmically correlated fields) For any & > O there is a constant a'®) > 0 such that
forall u,v € Ay with min(dy(u),dn(v)) > 6N

| Cov(gn,o, @nu) — (log N —log(1+ |u —o]))| < al®).

(A.2) (Near diagonal behaviour) There are both a continuous function f1: (0,1)¢ — Rand a
function f: Z9 x Z9 — R such that the following holds. For all L,e,é6 > 0, there exists
No = No(L,¢,8) such that for all x € [0,1]9, N > N such that Nx € Z4 and d(x) > 6,
and for all u,v € [0, L]4 N Z9 we have

| Cov(@N,Nx+or PN Nxtu) —log N — f1(x) — fa(u,v)| <e.

(A.3) (Off diagonal behaviour) There is a continuous function f3: DY — R, where D¢ =
{(x,y) : x,y € (0,1)¢,x # y} such that the following holds. For all L,e,§ > 0 there exists
N; = Ni(L,¢,6) > O such that for all x,y € [0,1]¢, N > Ny such that Nx, Ny € Z¢,
min(d(x),d(y)) > 6 and |x — y| > 1 we have

| Cov(on,ne e Ny) — f3(x,y)] <e.

Let My = maxyen, @N,0 and

3
my = V2dlogN — ——loglog N.
N & 2v/2d 8706

Then the sequence My — my converges in distribution to a randomly shifted Gumbel distribution
Ueo- The limit distribution is given by

VOO ((—OO, x] ) — E377*267¢27dx \v/x
where «v* is a constant and Z is a positive random variable that is the limit in law of

Zn=), (V2dlog N — q)N,v)e_‘/Td(mlOgN_q”N”) .

vEAN
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4.1 Introduction

This theorem easily implies Theorem 4.1.1 once we show that % (or rather v/87y%)
satisfies assumptions (A.0), (A.1), (A.2), (A.3). In fact we can prove even slightly stronger
statements than these. Let us state the precise results that we will prove. We abbreviate

= /8.
Theorem 4.1.4. The field oy := AL in dimension d = 4 satisfies
(A.0°) There is a constant tx6 > 0 such that for all u,v € Ay,
Var ¢n, < min (log N + ag, ajlog(2 + dn(v)))

and
Var ¢ » — Cov(on o, onu) < log(14 |u —v|) + 2ay.

(A.1) There is a constant oy > 0 such that for all u,v € Ay

max(dN(u),dN(v))>'< 1"

1+ u—1v| =%

Cov(¢n o, oNu) — log <2 +

(A.2') There are a constant 6y > 0, a continuous function f1: (0,1)* — R and a function fy: Z* x
Z* — R such that the following holds. For all L,e > 0, 6 > 6, there exists N} = N}(L,¢,0)

such that for all x € [0,1]*, N > N} such that Nx € Z* and d(x) > (IOgN , and for all
u,v € [0, L]* N Z* we have

| Cov(@n Nxtvs @NNxtu) —log N — f1(x) — fa(u,v)| < e.

(A.3') There are a constant 6, > 0 and a continuous function f3: D* — R, where D* = {(x,y) :
x,y € (0,1)%,x # y} such that the following holds. For all L,e > 0, 8 > 0 there
exists N| = Nj(L,¢,0) such that for all x,y € V, N > Nj such that Nx,Ny € Z*,
min(d(x),d(y)) > (1og7]\;\1)9 and |x —y| > + we have

| Cov(pn,nx, onNy) — f3(%,y)| <e.

It is not hard to check that the assumptions (A.0"), (A.1"), (A.2"), (A.3") imply (A.0), (A.1),
(A.2), (A.3) respectively, so that Theorem 4.1.1 is a straightforward corollary of Theorem
4.1.4. We give a few more details in Section 4.4.

The proof of Theorem 4.1.4 is the main contribution of this chapter. In the next section we
will describe our approach.

4.1.3 Green’s function estimates

The covariance function of the membrane model is the Green’s function GY; of the discrete
Bilaplacian on the grid [0, N]¢ with zero boundary data, and the assumptions (A.0'), (A.1"),
(A.2), (A.3") all correspond to certain estimates for this Green’s function. Therefore our goal
is to understand this Green’s function. We are going to apply tools from PDE theory and
numerical analysis, so before proceeding further it is convenient to rescale our domain to
aunitbox. Leth = &, let A, = [0,1]* N (hZ)*, and let Py = l/)f, x- Let GY and G be the

covariance functions of ¢ and ¢. Then also G{ (x,y) = G& (%, h)
Using G and G;}, Ay and A, and ¢y and 9, simultaneously is a slight abuse of notation.
It should, however, always be clear from the context which object we are referring to. Let
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4 The maximum of the four-dimensional membrane model

us also remark that from a PDE point of view it would arguably be more natural to choose
h= ﬁ and rescale [0, N]* to [, 1 — h]*, as this would give our domain a natural boundary
layer of zeros, matching the continuous Dirichlet boundary data. Our choice of rescaling,
however, is in line with [DRZ17].

Observation 4.1.5. Under the aforementioned rescaling, each statement (A.0°), (A.1°), (A.2'),
(A.3') from Theorem 4.1.4 for Ay, in dimension d = 4 is equivalent to the corresponding following
statement for G

(B.0’) There is a constant wfy > O such that for all x,y € Ay,

/\ZG}?(X,X) < min <_10gh+“6/“610g <2+ d(hx)>>

and
A2 (G,f(x,x) - G,f(x,y)) < log (1 + ‘xh_y‘> +2a.

(B.1) There is a constant ) > O such that for all x,y € Ay,

A2Gi(x,y) — log <2 + ma;fﬁ);d;fﬁ)) ' <af.

(B.2') There are a constant 6y > 0, a continuous function f1: (0,1)* — R and a function fp: Z* x
Z* — R such that the following holds. For all L, > 0, 6 > 0 there exists N = Nj(L,¢,0)
such that for all h < N%S with } € N, all x € Ay such that d(x) > h|logh|® and for all

u,v € [0, L]* N Z* we have

‘A2Gﬁ(x+hu,x+hv) +logh — fi(x) — fa(u,v)| < e.

(B.3) There are a constant 6, > 0 and a continuous function f3: D* — R, where D* = {(x,y) :
x,y € (0,1)% x # y} such that the following holds. For all L,e > 0, 0 > 6, there exists
Ni = N{(L,¢&0) such that for all h < 3 with ; € N and for x,y € Ay such that
1
min(d(x),d(y)) > h|logh|® and |x —y| > 1 we have

MG (xy) — folxy)| <e.
Let us discuss how one might prove Theorem 4.1.4, or rather the statements (B.0"), (B.1"),

(B.2'), (B.3). We write T, = (hZ)* N ([—h,1 + h]*\ [0, h]*). The function G is the Green’s
function associated to the discrete boundary value problem

Aiuh = fh in Ah
up =20 only (411)
fouh =0 on [},

(where D'u(x) = w and v is an outward unit normal vector). That is, for y € Ay,

the function Gy (-, y) is the unique solution of that equation with right hand side f;, = J,(y),
1 fy =

defined as dj,, (x) = ¢ Bx=y
0 otherwise
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4.1 Introduction

One previous strategy to prove estimates for G, introduced in [Kur09] and used as

. . —A . . .
well in [Cip13], was to compare Gﬁ to G, the Green’s function associated to the discrete
boundary value problem

A%Mh = fh in Ah
up, =0 onTy, (4.1.2)
Ayu=0 onI’,

where T} = (hZ)* N ([-2h,1+2h]*\ [—h,1+ h]*). The problem (4.1.2) can be seen as
an iterated version of the discrete Poisson problem, and so many of the analytic and
probabilistic tools available for the latter also have a version for (4.1.2). In particular,

there are random walk representations for E,? that allow to control it well. The strategy in
[Kur09] then was to use PDE techniques to compare solutions of (4.1.1) and (4.1.2). This
allows to estimate the difference between G, and Gj, uniformly in compact subsets of (0,1)%.
For our purposes, this is not good enough, as for (B.2) and (B.3’) an error term that is only
bounded is already too much. Note however that results similar to (B.0"), (B.1") can be
proved using these methods. In fact, [Kur09, Proposition 1.1] and [Cip13, Lemma 2.1] are
already weaker versions of (B.0") and (B.1").

In Chapter 2 we considered GhA in dimensions 2 and 3, and used a very different strategy,
namely a compactness argument to transfer estimates for the continuous Green’s function
in domains with singularities to the discrete setting. This allowed us the prove discrete
Caccioppoli inequalities (i.e. L>-based decay estimates on balls of various sizes) and to
conclude from these estimates for G. In principle, this strategy can also be applied in our
four-dimensional setting. One obstacle to this is that, unlike the two- or three-dimensional
case, the relevant continuous estimates cannot be found in the literature. Even more
importantly, the estimates in Chapter 2 are all up to a possibly large constant, and so the
argument would have to be modified significantly to obtain estimates such as (B.2") and
(B.3").

Instead of the aforementioned approaches to derive estimates for G, we will use estimates
for the approximation quality of finite difference schemes for the Bilaplacian. This idea
is not completely new, as for example in [CDH19] estimates for finite difference schemes
from [Tho64] were used to prove convergence of the rescaled four-dimensional membrane
model in some negative Sobolev space. However, we would like to obtain a much stronger
conclusion, namely pointwise estimates for the difference of the discrete and continuous
Green’s function. The result from [Tho64] is very general, but because of its generality it
requires in our specific case very strong assumptions on the solution of the continuous
Bilaplace equation to be approximated (being C°) to yield estimates useful for us (the
W§’2—approximation error decaying like hz).

We will use a rather different estimate for the approximation quality of finite difference
schemes. We will discuss the details in Section 4.2.2. Roughly speaking, the result is the
following: Let2 < s < 3,letu € W2 Wg’z((O, 1)*) extended by 0 to R*, and assume that
A*u = fin (0,1)*, so that u satisfies

Nu=f in (0,1)*
u=0 on 9(0,1)* (4.1.3)
oyu =0 on 9(0,1)*.
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4 The maximum of the four-dimensional membrane model

Furthermore, let u,: (hZ)* — R be the solution of

Ny, = Th3333f in A,
u, =0 on (hZ)*\ A,
where T"3333 is a certain regularization operator. Then

i = unllwp2 n,y < CH2llullwsz(o1y)

where || - ||W}?,z( A, 18 a discrete Sobolev norm.

This result is inspired by closely related results in Chapter 5. However, in that chapter the
focus is on obtaining estimates as above for s as large as possible. In the case of interest to
us, s < %, the result can essentially be shown using the methods from [GMP83, 11586, JS14].

We will use this result to compare solutions of (4.1.1) with solutions of (4.1.3). In particular,
we will use it when u is the regular part of the continuous Green'’s function on [0, 1]%. To
do so, we need regularity estimates for solutions of (4.1.3). As already mentioned, optimal
estimates for higher order elliptic problems on four-dimensional polyhedral domains are
not yet in the literature. Instead we will use much weaker estimates (similar to ones in
[MM13, MM14]) which are nonetheless sharp enough for our purposes. These estimates
will allow us to place the regular part of the Green’s function in W2**02 for some small
ko > 0, and this is good enough to apply the estimate above.

We will also need to have good estimates for the discrete Green’s function on the full
space (hZ)4. These were derived in [Man67] using Fourier analysis. Furthermore, Theorem
4.2.3 gives us control over the W,f’z—norm of the difference of u and uj,, while we are actually
interested in the Lj’-norm and want it to decay. To achieve this, we will use a discrete
Sobolev-inequality that allows us to control the L;’-norm by the Wﬁ’z—norm at the cost of a
term logarithmic in /. The presence of this term is the reason why we can prove (B.2”) and
(B.3) only up to distance |logk|? to the boundary. For (B.0’) and (B.1") we do not need a
decaying but only a bounded error term and so we can prove these estimates on the whole
domain.

We will give the details of the argument that we sketched here in the following sections. In
Section 4.2 we gather various useful results: The aforementioned result on finite difference
schemes, as well as some discrete inequality of Poincaré-Sobolev-type. These tools will
allow us to compare G} with various other Green’s functions: the discrete Green’s function
of the full space (that we discuss in Section 4.3.1) and the continuous Green’s functions of
the box [0, 1]* and of the full space (that we both discuss in Section 4.3.2). After all these
preparations we can then turn to the proof of Theorem 4.1.4 in Section 4.4. We first prove a
crucial lemma, Lemma 4.4.1 that shows that the regular part of the discrete and continuous
Green’s functions on the box are uniformly close, and then we use this Lemma and the
results of the preceding sections to establish Theorem 4.1.4. Finally we use Theorem 4.1.3 to
conclude Theorem 4.1.1 as well.

4.1.4 Notation

From now on we will only consider the membrane and not the gradient model, so there is
no risk of confusion when we drop all superscripts A.
Occasionally we write r = s + O(t) to express |r —s| < Ct.
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4.2 Preliminaries

We use the Sobolev space W*2(Q)) with the norm HuH%V,(/Z(Q) = Yja|<k \ya“u\y§2(0). For
s > 0 not an integer (i.e. s = k+t where k € IN, 0 < t < 1) we will also encounter the
fractional Sobolev space W*?(Q)) with norm [Jul[?,.., @ Hu||sz ha [u]%vsz( q) and the

We2(q) = Lial= v Jo Ja dedy For any s < 0 we define W52(Q))

as the dual of W™ 2(O) We extend these definitions to vector-valued functions by taking
the Euclidean norm of the norms of the components.
For A C (hZ)*and u;: A — R, we define HuhHZ = Y ven Pt uy(x))?, and l[nll L2 () =

sup,. 4 [up(x)|. We will also use the discrete Sobolev—norm ||uh||WZZ 4 = ||uh]|i%(A) +

seminorm [u]?

Vit ||2, T IV 5un|2, (A) , where we extend the definitions to vector-valued functions as
h h
before.
Let us also fix once and for all a smooth function 77: R* — R that is equal to 1 on B 1 (0)
and 0 outside B;(0). We define (") (x) = 5(rx), 175” (x) = 7 (x — y) and let 77}(3 be the

restriction of 173) to (hZ)*. Thus W;r) and 17,% are cut-off functions at scale r around y.

4.2 Preliminaries

4.2.1 Discrete Inequalities

We collect here two discrete inequalities that we will use several times in the following. We
begin with a Poincaré inequality.

Lemma 4.2.1. Let x, € (hZ)*, r > 0. Let uy,: (hZ)* — R and suppose that uj, vanishes on at
least one of the faces of Q,(x). Let this face be contained in a plane x; = c. Then

||uhy|§§(Q,:(x*)) < Cr? Y 4| Dltuy (x))? < cr2|\vhuh|\%}%@h (4.2.1)

(x.)) "
x: {x,x+he; }CQl (xx)

Proof. This is a particular case of Lemma 2.2.1, but let us give a direct proof for the case
at hand. The second inequality is obvious, so we only prove the first. By translating
and reflecting the lattice and renaming the coordinates, we can assume i = 4, Q/'(x,) =
[0,27]* N (hZ)*. We write x = (x/,x4) where ¥’ € R3, x4 € R, u, = 0if x4 = 0. We will
prove the one-dimensional estimate

Yoo Jup(x,xg) P < CF ) | Dy (x, xg) . (4.2.2)
x4€[0,2r|NhZ x4€[0,2r—h]NhZ

Once we have established this, (4.2.1) follows by multiplying (4.2.2) by h* and summing
over all x’ € [0,2r]3 N (hZ)3. To prove (4.2.2), we use u(x’,0) = 0 and write

’Mh(.x/, X4)‘ = Z “h(x,,]ﬂl + h) - uh(x//y4)
y4€[O,X4—h]ﬂhZ

= ) hDMuy, (x', y4)
y4€[0,x47h]th

<n () ( ) Dzuh<xcy4>2)

Y4€ [O,X4 —I’l] NhZ.

1
2
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4 The maximum of the four-dimensional membrane model

1
2

< V2hr ( ). D]Zuh(x'/y4)2)

y4€[02r—h|NhZ

and therefore

2r
Yoo fun(xx) P < 5 2hr Y | Djup(x', ya)|?
x4€[0,2r]NhZ ya€[0,2r—h|NhZ

< 472 Z |Duy (', y4) 2.
y4€[0,2r—h|NhZ

This shows (4.2.2). O

Next we give an inequality of Poincaré-Sobolev type. Given uy,: (hZ)* — R that vanishes
outside of A;, we would like to estimate its pointwise values by the |Juy, HWZ'2( (hz)»~noTm.
We cannot hope for such an estimate to hold with a constant independent of /, as the
(continuous) Sobolev space W?2((0,1)*) does not embed into L*((0,1)*). However, by
Strichartz’s [Str72] version of the Moser-Trudinger inequality any u € W22((0,1)%) with
[l wez((o1y4) = 1 satisfies [ (0,14 @ dx < C, and this suggests that u can diverge at
worst like /|log|x||. So back in the discrete setting we can hope for an estimate with a
factor scaling like /| log /1|. Indeed we have the following result:

Lemma 4.2.2. Assume that uy,: (hZ)* — R vanishes outside of Ay,. Then for any x € A}, we have

d(x
|uh(x)| < C\/log (2 + (h)) ||uh||w§'2((hZ)4) .

This lemma in combination with Theorem 4.2.3 will allow us to control the distance
between the solution of a continuous Bilaplace equation and its discrete approximation at
the cost of a logarithmic divergence (which we will be able to absorb in the applications in
Section 4.4).

Proof of Lemma 4.2.2. We first want to localize to a ball around x. Let v;, = n}(ldx(x) +h)uh. Then

vp(x) = uy(x). Furthermore vy, is supported on QZ(X) . (x). The discrete chain rule implies
that

h
Do)l <C sup DIy (2)| sup [uy(z)]

ZGQ;,( ZEQZ(y)
+C sup gt (@) sup D ()]
z€Qi(y) z€Qi(y)
2
h
<C swp DI L ()P
2€Q;(v) z€Q}(y)

N|—=

+C sup ‘17,” )(Z)( Z Dzhuh(z)z)

zeQ)(y zeQl(y)

and a similar expression for |D!D" On (y)]- If we sum the squares of these eximates over y,
we see that
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4.2 Preliminaries

d h
lonlwzzqozyey < Cllm™ ’HLw oz IVl 2, e
+ ClIVa ™ o s IIthhIILz (@12 ())

+ClIVEE ™ o yllnllzz g, 0 (4.2.3)

C

2

< IVl o) T 3y 11 P20 )
C

* (d(x)+ h)? HuhHLﬁ(QZ(tzh(x)) ’

We can apply Lemma 4.2.1 to uj, and Dfluh foranyi € {1,...,4}, because these vanish on
QZ(XHZh(x) \ [=h, 1+ h]* and hence in particular on a face of Qg(x)ﬂh(x). Thus we obtain

) < C(d(x )+2h)HthhHL2 (@) 120 (¥)) (4.2.4)
< Cld() + 22 T3y, - -

H“hHL2 Q4

If we combine this with (4.2.3) and note that d(x) + 2h < 2(d(x) + h), we obtain
thHwﬁrz((th) < CHuhHWf,Z((hZ)zx) . (4.2.5)
Furthermore, an argument analogous to the one that led to (4.2.4) shows that
onllr2(nzys) < CA(x) + 02 (IVionll 2 (nzys) - (4.2.6)

Now we are in a position to apply discrete Fourier analysis, similar to the proof of [Kur09,
Proposition B.1]. Let

o(2) =h Y oy)e*
ye(hz)*
forany ¢ € [-%, F] * be the Fourier transform of v,. Then we also have the inverse formula
1 () =iz
(27_[)4/[7}””4 on(8)e dg

for any z € (hZ)*, and Plancherel’s formula in the form

/[— Ja@)FdE = 2t 3 o) = @) on W) T e -

] ye(hz)t

op(z) =

=N

We have o ' '
Don(€) = (e — 1) . (e 8~ 1)%453,(0)

forany o € IN*. This implies

Dlon(@)] 2 el |2l 5|

=
C
forany ¢ € [— z %} *. In combination with Plancherel’s formula and (4.2.6) we conclude

/[ o 2P < ClIVionl T zyey < Cllonllipzuzys) 4.2.7)
T h'h
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4 The maximum of the four-dimensional membrane model

/[ 1O <l iz < CA) + 1) ol - (428)

h’h

Next, we estimate

\vh<x>|=1‘/
<c/_M RIES

gc(/[ - <m4 i T @(é)ﬁd@)z
) </[] (1" + G 7i) dg)z |

Using (4.2.7) and (4.2.8) we see that

fopar (80 oy ) IOR 8 < Clonli oz

Furthermore we can compute using polar coordinates that

]4 Uh (g)e—ix'r: dg

:-\:1
=

dg

Putting everything together we indeed arrive at

|t (x)] = Jon (x)]

U

X
C\/log <2 + (h> HU;,HW;/z((th)

~—

IA

U
~—

=

X

4.2.2 Estimates for finite difference schemes

Let us discuss next the estimate for the approximation order of finite difference schemes
that was already mentioned in the introduction.

To state it we need some definitions. These definition will be discussed in more detail in
Chapter 5. For j > 1 let 0; be the standard univariate centred B-spline of degree j — 1 (cf.
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[JS14, Section 1.9.4]). Of interest to us are

-2 ki<
93(2) = % (|Z| — %) % < |Z| < % ,
0 else
1 |z| <t
0,(z) : = 2
1) {0 else

Using this, we can define the smoothing operator Tl.h’j forl1 <i<4as

h]f : h/fxl,.. L Xi 1, i, Xit, - ..,x4)9j<xi;yi> dy;
extended to distributions on R* in the obvious way. Furthermore, we set
Th’j""’jf = Tlh’j 0---0 Tf’jf.
It is important for us that Tl.h’j maps constant functions to themselves and that
T2 f = DID", T/ *f .

If we define the shorthand

133,332 ._ Th3 h3 1 h3 h3
T ’.—T1 oT oT oTZJrl oT4
we also have
T"33339} f = DD T'33372¢1 f (4.2.9)

Theorem 4.2.3. Let 2 < s < 3, let u € WSZ((O 1)4), extended by 0 to i € WS?(R*). Let
A%l = f as distributions, so that in particular

Nu=f in(0,1)*
Furthermore, let uy,: (hZ)* — R be the solution of

Nowy, = TM3333F  in A,
up =0 on (hZ)*\ Ay

Then we have
I = T2y < G lullwzons) -

Note that f = A%i € W #2(IR*) is in a negative Sobolev space. The operator T"3333
maps W2(R*) to C(IR*) for any t > —3 (see [JS14, Section 1.9.4]). So in particular T"3333
has pointwise values and the difference scheme in Theorem 4.2.3 makes sense.

This theorem is closely related to Theorem 5.1.2 in Chapter 5. In that theorem one takes
2 <'s < 3,and T"3333 is replaced by T"*222. The novelty of that chapter lies in choosing a
good extension # and dealing with its boundary values. In our case we can just extend u by
0 and thereby avoid many of these subtleties. In fact, all the ideas for the proof of Theorem
4.2.3 are already for example in [JS14].

To make this chapter more self-contained we give some details for a proof of Theorem
423.
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4 The maximum of the four-dimensional membrane model

Proof of Theorem 4.2.3. First of all, s < 3 and u € Wy?((0,1)*) imply that i is actually in
Wo2(IR*) and ||| yyszray = I1ttllws2((0,1)4)-
Letey,: (hZ)* — R be given by e, = i — uy,. Then,

Ney = A2iT — N2uy, = Nt — T'3333A%0 on A,

ep =0 on (hZ)*\ Ay
and by summation by parts we have
|\vﬁehy|§%((hz)4) = (e Afen) 2(nzys) = (en AFE — T2 A20) o (70 - (4.2.10)

We can rewrite A2l — Th3333 241 using (4.2.9) as
4
A2l — Th3333 27 — Z Dlh D" Ayt — TH333392 A4

= ZDhDh Ayil — DD Th333372¢ Ay

'S

DD
=) DiDZgi

i=1

where
gi = Ahﬁ _ Th,3,3,3,3—26,'AL~l )

We can insert this into (4.2.10) and use summation-by-parts once again to obtain

Mu;

IVhenll T2 zye) = 2o (en DIDi81) 2wz

Il
_

I
-

Y (DI D" jen, 81) 12 ((hzy

Il
—_

M%

||ngL2 (hz)* ||Vhf?h||L2 (hZ)*)

Il
—_

and thus

IVienll 2z < ZIIgZIILz (h2)" 4.2.11)
i=1

The summands on the right hand side can be bounded using the Bramble-Hilbert lemma
(see e.g. [JS14, Theorem 2.28]): Ass > 2,

|81 ()| < Cullil] oo (x4 (—3h723072)%) < Cs ] b5 (- (—3m/2,30/2)1) -

Because s > 3 and T"3333~%:if(x) only depends on |, (_3/231/2)+ We can conclude from
[Js14, Theorem 1.67] and the locality of T"3333=2¢i that

| T"33337 26 A1 (x) | < Cp 1| s (4 (— 30 /2,30/2)8) -

Thus g;(x) is a bounded linear functional of i € W%?(x + (—3h/2,3h/2)*). This functional
vanishes when 7, , (_3;/23/2)4 is @ polynomial of degree at most 2. Indeed, if that is the
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4.3 Estimates for other Green’s functions

case then Adl| | (_3;/23/2)4 is a constant function, and A (x) is equal to the same constant,

and the claim follows from the fact that T1h’3 e Tl.h_’a1 Tl-h’1 Ti}fl .
to themselves.

We have shown that g;(x) is a bounded linear functional of i € W% (x + (—3h/2,3h/2)%)
that vanishes on polynomials of degree at most 2. By the Bramble-Hilbert lemma it is
bounded by Cy,s[i]ys2(xt(—3n/2,31/2)4) for s < 3. Using a scaling argument to determine the
correct prefactor of 11, we obtain

. Tf’g' maps constant functions

191 (%) < Coh* H [l (vt (—an/23n/2)%)

and hence

Hgi”%g((hzyt) < Ch* Z h2(574)[ﬁ]%,vs,z(x+(_3h/2’3h/2)4)
xe(hZ)* (4.2.12)

< Gl D[ sy < G2 [tz o110

for those s. Now we can plug (4.2.12) into (4.2.11) and obtain
IVienll iz nzysy < Gl 2 llullwsa (o))

for s < 3. Using the discrete Poincaré inequality completes the proof. O

4.3 Estimates for other Green’s functions

4.3.1 Estimates for the discrete Green’s function of the full space

Our strategy will be to compare G, with several other Green’s functions, so let us introduce
these first.

Recall that A = /87t. Let G be the Green’s function of the continuous Bilaplacian on [0, 1]*
with Dirichlet boundary data (i.e. of the problem (4.1.3)). We also need Green’s functions on
the full space. Let G(x,y) := —55 log |x — y|. It is easy to check that this is a fundamental
solution of the Bilaplacian (i.e. that A% (— % log |- —y|) = J, in the sense of distributions).
We also define Gy,: (hZ)* x (hZ)* — R by Gy(x,y) = F (%) - % log h where F is the
function introduced in the following lemma. We added the summand —% log h here to
ensure that G;, has the same asymptotic behaviour as G. We also define shifted versions of
Gy and G, namely for r > 0 we let ) = G + %, and G\ = G+ 19" We occasionally
write Gy for G(-,y), and define Gy Gy, éh,y, Gy) and G,(Zry) analogously.

Lemma 4.3.1 ([Man67, pp. 96-97]). There is a function F: Z* — R such that A3F(x) =

1 x=0
* , satisfying the asymptotics
0 else

1 1 xf+x5+ 23+ o 1
872

F(x) = —gzloglxl+ 545 |x|6

forx #0.
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4 The maximum of the four-dimensional membrane model

In [Man67], F is defined using the discrete Fourier multiplier associated to A7. By expand-
ing that multiplier into a Laurent series and computing the Fourier transform termwise
it is possible to give asymptotic expansions to arbitrary high order. This technique also
applies to other discrete polyharmonic Green’s functions. For our purposes the first two
terms quoted above are sufficient.

Lemma 4.3.1 immediately gives us an asymptotic expansion of Gy, and so we can easily
obtain estimates for G;, and (A}}(ly).

Lemma 4.3.2. Let h > 0, and r > 192h. Let « € IN* with |a| < 2. Then for any x,y € (hZ)*
with & < |x — Y| < 167 we have

A 1 r
G;(zr)(xz]/) 2 log <\x—y|—|—h> <C, (4.3.1)
hA(r) <
)D“G,W(x) < (43.2)
Alr Alr h
‘DZG,S/;(x) — G (x)| < Coir - (4.3.3)

A(r)

Proof. By translation invariance we may assume y = 0. The definition of G, * implies that

X 1

GA,Y)(x,O) =F (ﬁ) —5 logh+ — ¥ logr
1 ] | B x4 xf g ht 1 1
__ﬁlgh +247r2 <o +0 e —ﬁlogh—kﬁlogr
1 r W2 x{+ x5+ x5+ g h*
e 1T Xt X3+ Xy o
2208 [ T oa x[o O\ e

(4.3.4)
From this we immediately conclude (4.3.1) in the case x # 0. In case x = 0 we can directly
use

Alr 1 r
¢\7(0,0) = F(0) + 5 log

to obtain (4.3.1).
The explicit formula for G reveals that

if Z < |x|w, and thus (4.3.2) easily follows from (4.3.3).
For (4.3.3) we want to take discrete derivatives of each summand in (4.3.4) separately. If

0 s
S1xl| =

g=0 (‘ \4> then |Dl'g(x)| < hi‘ IZ\: = Chr “4‘ so for |a| < 2 we can neglect the error term.

Using Taylor’s theorem we can see that

1 r W2 xt+xi+xi+x} 1 r h
Dh il | 1 2 3 4) — 3%~ oo — of———_1.
# <A2 8Tt 242 x[6 22 OB T\ e
Note that we can avoid the singularity here because |x| > Z; > 3h. This easily implies
(4.3.3). O
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4.3 Estimates for other Green’s functions

4.3.2 Estimates for continuous Green’s functions

We want to compare G and Gj,. This is only useful if we also have estimates for G to begin
with. We will derive such estimates in this section. The following estimates are far from
optimal, but sufficient for our purposes.

We obviously have a well-posedness result for the Bilaplace equation in the energy space
W22, The following result states that the same holds true if we raise the regularity slightly.

Theorem 4.3.3. There exists ko > 0 with the following property: Let 0 < x < «o. Then for each
f € W2t%2((0,1)*) there is a unique u € W2*%2 N\ W3*((0,1)*) such that A*u = f in the sense
of distributions, and we have the estimate

lullwzrwaqo,1ye) < Coll fllw-2002((01)%) (4.3.5)
for a constant Cy depending only on .

For convenience we will assume in the following that xy < %, and fix such a xy. Note that
W2 A WF2((0,1)%) = W 2((0,1)*) if k < 1.

Proof of Theorem 4.3.3. This is a special case e.g. of [MM13, Theorem 6.32], but for the
convenience of the reader we give the short argument.

We begin with the case ¥ = 0. In that case we can test the weak form of A?u = f with u
and obtain

IV2ul[2 0,00 = (1, 8%u) 12(0109) = (1, 2oy < Nutllwezqons 1 w2200 -

The Poincaré inequality implies ||u|y22((g1)) < C|IV2ul| 12((0,1)+) and so we obtain (4.3.5).
For the general case we can use a stability result for analytic families of operators on
Banach spaces: The spaces W*2((0,1)%) and WS’Z((O, 1)*) each form an interpolation family
with respect to complex interpolation, and so by [TVV88, Proposition 4.1] the set of those s
for which A?: WS’Z((O, 1)%) — W 42((0,1)*) has a bounded inverse is open. We know that
this set contains 2, so the existence of xy as in the theorem follows. O

Next we state some estimates for G. We begin by estimating the regular part of G in
logr

certain Sobolev norms. Recall that G) (x,y) = G(x,y) + e

for any r > 0.

Lemma 4.3.4. Let g be as in Theorem 4.3.3, and let 0 < x < k. Let K > 2,7 > 0,y € (0,1)* be
such that &Ky) <r< %y). Then

< CKx (4.3.6)

(r)ar)
HGy_%’ Gy W2HR2((01)4) 1%

for a constant Ck  depending only on K and «.
Proof. Let H") = Gy — 173(,” Gy). By Theorem 4.3.3 it suffices to show

CK,K
re

IAZHO) || yy-2n2( (g 1y8) < (4.3.7)

By standard interpolation theory and our assumption ¥ € [0,x9] C [0,2] it suffices to
establish this for x € {0,2}.

Observe that A2H(") is zero in (0,1)* \ B,(y) as well as in B, 5(y) (as the two singularities
cancel out). This means that A>H(") is supported in B,(y) \ B,,»(y) and there it is equal to
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4 The maximum of the four-dimensional membrane model

—A? (qy) Gy) ) We have an explicit formula for CA;y) , and so it is straightforward to check

that ‘AZ (q&r)éy)) ‘ is bounded by %’f on B,(y) \ B,/2(y). This easily implies (4.3.7) for x = 2.

()

For the case ¥ = 0 we need to be slightly more careful: Let x; * be a cut-off function that

is 1 on B,(y) \ B,/2(y) and zero outside By, () \ B,/4(y) (e.g. Xb(f) = 17;2” — 17 (r/2)y Then we

have A2H(") = — Xy)Az (qy) Gér)) and thus we can calculate

IAZH || yy-22(0,1)4) = /AZ
—l

H(PH 22 (01)4

= sup / —A? (qb(,r) Cf) )(y)go
H(PHW(%,Z((OJ)AI)21

= sup [—a(nE)) a0 e)
Hs””wzz (0h =1

) Ar) (r)

<C|A G su A

H ( Y ) L2(B2r(W\Br/a (V) |||, P :1H (Xy ¢)||L2((0,1)4)
Wy ((0,1)%)

To estimate the second factor we proceed as in the calculation that led to (4.2.5). We have a
Poincaré inequality
1l 2 (—s,5)t) < Csl[ V|l 2z (—s5)0) (4.3.8)

for any u € W2(z + (—s,s)*) that is zero (in the sense of traces) on one of the faces of
z+ (—s,s)*. This is the continuous analogue to Lemma 4.2.1, and the proof is very similar.
Using (4.3.8) we can estimate

C C
18 9)i2(01) < IVl 208100 + IV @208 00 + 5210280 01

d d(y)?
<C (1 + (ry) (ry2) ) IVl L2y 4 (—atw)at)))

< CK||(P||w§/2((O,1)4) .

We also have that A (ny)GAb(,r)) is bounded by r% on By (y) \ B;/4(y) and hence

|a (m7ei”) Py )\Bay)) — 72

Using this we obtain (4.3.7) for x = 0. O

Next we give some estimates on the local behaviour of G. The first two allow us to control
G far from and close to the singularity, respectively, while the last one expresses the Holder
continuity of G — G near the diagonal.

Lemma 4.3.5. Let kg be as in Theorem 4.3.3. Let y € (0,1)*. The function G, is smooth on
(0,1)*\ {y}, and G — G is symmetric and smooth on (0,1)* x (0,1)*\ {(x,x): x € (0,1)*} and
can be extended continuously to (0,1)* x (0,1)*. Slightly abusing notation, we write

Glyy)—Glyy) = | lim G(y.y") - G, y").
vy )# ,(,y,y)
y'#y

112



4.3 Estimates for other Green’s functions

Let K > 1. We have the following estimates, where dy) < < 4.

K 2
Gyl <C iyl > Y 439)
G(x,y) = G(x,y)| < Cx if[x—y| <d(y). (4.3.10)

Furthermore if r > 0 is arbitrary, |y’ —y| < Ty and |y —y| < %W ) we have the estimate

Y’ —yl"O + |y =yl
d(y)* '

Proof. The smoothness of G and G — G follows from standard regularity theory for higher
order elliptic equations. The estimate (4.3.9) is given in [MM14, Theorem 8.1]. There also a

Gy, y") - 6 y") ~ (Gl y) - V() ) <C (4.3.11)

variant of (4.3.10) (without the correction % and with slightly worse error term) is given.
The results in [MM14] however are in a far more general setting, so we prefer to give an
elementary proof of the specific estimates we need.

We use a standard Caccioppoli inequality (see e.g. [Cam80, Capitolo II, Teorema 3.1I or
Teorema 6.1]): If u € W?2(B,(z)) and A*u = 0 in By(z) then

C
V21| (B, . (2) < 57|\V2“HL2(BS(Z))- (43.12)

</2

We will also need a special case of the Gagliardo-Nirenberg interpolation inequality, namely

1
1wl (B, (z)) < C <52HV2”||L°°(BS(2)) + Sz””HU(&(z))) : (4.3.13)

To see this, observe first that by scaling we can assume s = 1. The Poincaré inequality implies
that [|u —a —b- (- — 2)||z~(5,(2)) < ClIV?1| (B, (2)), where a = |Bl—1| Juandb = \BlT\ J Vu,
and so we only have to bound a and b. We have [a| < C||ul|;2(p,(;)), and the estimate
lu—alli2(s,z)) < llullr2(s,(z)) implies

1b] < Cl[b- (- — 2128, (2))
<C (H” —a—b-(-—2)|l2p, @) + llu— aHLZ(Bl(z))>
<C (HVZM||L°°(Bl(z)) + HuHLZ(Bl(z))) :

This completes the proof of (4.3.13).
After these preparations we can now begin with the proof of (4.3.9). We first assume that

d(x) < 2d(y). Let HYW)/8) = Gy — qéd(y)/s)ééd(y)/g). Lemma 4.3.4 with ¥ = 0 implies that
IV2HEW/8) || 1201y < C. (4.3.14)

The function H(%)/®) agrees with G, on (0,1)*\ By(y)/8(y)- Because #g) + @ < %y) <

|x — yleo we have By, /16(x) N By(y)/8(y) = @ and thus (4.3.14) implies
IV2Gylli2(8,re() < C-

Using the Caccioppoli inequality (4.3.12) we conclude

IV2Gy|| 1 (Baay /(1)) < (4.3.15)

d(x)?’
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4 The maximum of the four-dimensional membrane model

Next, note that the Poincaré inequality (4.3.8) applied on x + (—d(x),d(x))* and (4.3.14)
imply that

IHEO g, ey < CAEIVEHEOD D 2 g aays) < Cd(x)?

and therefore
|| Gy || LZ(Bd(X>/32(X)) S Cd(x>2 *
Recalling (4.3.15), an application of (4.3.13) concludes the proof.

It remains to consider the case d(x) > 2d(y). In that case |x —y| > d(x) —d(y) > @, so
we can interchange the roles of x and y and repeat the above proof (using that G(x,y) =
G(y, x))-

Next we give a proof of (4.3.10). This is quite similar to the preceding argument. Because
G differs from G“@¥) only by at most 13 L log K < Ck we can assume r = d(y). Let again

HEW) = Gy — qéd(y))éé W) Observe f1rst that if |x — y| > 4y then (4.3.9) implies (4.3.10).

Therefore we can restrict our attention to the case |x y| < By Lemma 4.3.4 we have
that
2
IV2HY) || 2 01y4 < C.

The function H@(¥)) agrees with Gy — G; ) on Bd(y) /z(y). Thus, as before, the Caccioppoli
inequality implies that

HVZ(Gy - Gy)HL""(Bdm/z;(y)) <

d(y)?

and the Poincaré inequality implies
A d(y 2
1Gy = Gylli2(B,) 4 () < |H (j))HLZ(Bd(y)(y)) < Cd(y)

so that the conclusion follows from the interpolation inequality (4.3.13).

For (4.3.11) observe that by Lemma 4.3.4 we control the W2**02-norm of Gy — iyéd(y ) ééd(y)).
That Sobolev space embeds into the Holder space C®* and so we have

(G, — Gl < ¢ |Gy — i

o ((01)4)

W2+K0/2((0,1)4) d(y)KO .

d(y))

( A(d(y))
y

WG agrees with G, — G

Because G, — 11/ on By(,)/2(y) this implies

4 7 7 7 >~ d(y)KO

If we add and subtract k’gﬁ{#m on the left-hand side we obtain

GW.y) - E" . - (G - Ey)| <c |yd(y)y;q|)
Similarly we obtain

Tk

"y - (Glny) - 6 )‘ <clh dy')e

(N

Gy -

where we used that d(y') > Zd(y) so thaty,y” € By(,),2(y'). If we add the last two estimates
and use once again that d(y') > %d(y) we arrive at (4.3.11). O
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4.4 Proof of the main theorems

4.4 Proof of the main theorems

In this section we will finally prove that G, satisfies (B.0’), (B.1’), (B.2’), (B.3"), which accord-
ing to Observation 4.1.5 implies Theorem 4.1.4.

Recall that Gy, is the Green’s function of the discrete Bilaplacian on A;, with zero boundary
data outside Ay, G is the Green’s function of the continuous Bilaplacian on (0, 1)4 with
zero Dirichlet boundary data, and G;(lr) and G) are shifted versions of the discrete and
continuous full space Green’s function.

The main technical statement used in the proof of Theorem 4.1.4 will be the following.

Lemma 4.4.1. Let xq be as in Theorem 4.3.3. Let K > 2, and v > 192h. Then for all x,y € Ay, with
()<r< ()wehave

(Guw ) =y ()G () = (Gley) =1y (06 (x,) ) |
< CK% log <2+ d(hx)> .

This lemma is so useful because it simultaneously provides control over the difference
between the discrete and continuous Green’s function when x, y are far apart and over the
difference of the regular part of the discrete and continuous Green’s function when x, y are
close.

Proof of Lemma 4.4.1. We define Hy, = Gy, n,(ly)é}(l )and H = Gy — nﬁr) Gy). Let Hj, be the

solution of
A2H), = T'3333A2H  in A,
H,=0 on (hZ)*\ Ay,.
Our goal is to estimate |Hj,(x) — H(x)|. We will estimate H, — H, and H;, — H separately.
The estimate of the latter term is straightforward: Using Theorem 4.2.3 and Lemma 4.3 .4,
we obtain

~ h*o
[ Hp — H||W}f,z((hz)4) < CKhKOHHHwZ”o,Z((o,l) 4 < Ck—-

r*o

Estimating Hj, — Hj, is more tedious. Similarly as in the proof of Lemma 4.3.4 we let

xﬁ” = ;754” — ;7;?/ Y and )(,(;; be the restriction of X;r) to (hZ)*. Then we have

A} (Hy — Fiy) = 83 (Giy — i) Glly ) — TH333A2 (Gy—;yﬁ’)éy)
- K128 (G0 1361~ 6,0l
_ thAz <;7hy >+ rTh3333A2<17§) ;))

4

:—thA2< r)+Z;)(rTh333382 (%)é&r))

- ;pgm (8 (1610 + 4393528 (40E0) )

Because Hj, — Hj, is supported in Aj, we have

(4.4.1)

|V2(Hy — Hy)|?

||L%((hZ)4) = (A%(Hh - I:Ih)/Hh - I:Ih)

Li((hz)*)
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4 The maximum of the four-dimensional membrane model

< sup (A%(Hh - Hh) G”h)Lz (hz)* HHh I:IhHW}z,z((hZ)4)
@p=0on (hZ)*\ Ay '

=1
H Ph HW;Z"Z((hZ)‘l)

which together with the Poincaré inequality implies that

1Hy = Hnllwezzyey <C - sup (AF(Hy = Hi), 1) 2z -
@, =0 on (hZ)*\A,,
H%”h”wﬁ,z((,,Z)z;):l

Combining this with (4.4.1), and abbreviating T := T"3333-2¢ we see that

14 = Hillwz2 iz

4

<cC sup Y (DID"; (-, 1SN A (106, x W gy
(PhOOn(hZ)‘*\Ahi_l( Z Z< (h'y hy) <y y )) hyTh) 2
H(P””wi'zuhzﬁ):l

<c  sup Y (=M (mnGhy) + T8 (n6)) DID Ao
4’h—00n(hZ)4\Ahi=1( ( & ,y) ( ) f
llnll 2,2 hZ)4):1

I/\
Mﬂk

H B (’7%(1; ;(l;) +T7A (,757)63))

(r)
X — Oil?;ll)z)zt\/\h HV% <Xh,y(Ph>
012 0,1

L%(er( )\Qr/g,z( ))

L2((hz)))

(4.4.2)

where we used that 7(8 is supported in By, (y) \ B,/s(y) so that the support of A, (Xg;qo;)

is certainly contained in Qf,(y) \ Q! ,,(y). The discrete product rule and the Poincaré
inequality imply that

|2 (xiyen)

Li((hz)*))

C C
2
< ClIVienllzar, o0 T 7 1Vaerllizgr, L on T 2lonllze, o

dly)+h  (d(y) +h)?
< (14 T B g oy

+

< Cillpnllwanzy

and hence

sup HV2 (thqoh) 12 < Ck. (4.4.3)

on=0o0n (hZ)*\ n(1Z2)%)
lonll, W22z~ 1

Let us now also estimate the first factor in (4.4.2). The operator T"%333~2¢ preserves
constant functions. Therefore for any z with |z — y|e > 55
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(Th,B,S,S,S—ZEiA (175)@5’))) (z)
—A (773(;)@;7)) (z) + (Th’3’3'3’3_2€" (A (@ﬂéﬁﬂ) () —A (”éf)éy)) (x))) (z)

where we have used that |T"333372¢ f(z)| < Csup, +(—3h/23n/2) |f] in the second step as

well as the explicit formula for G()(z, y) in the third step. From Lemma 4.3.2 and Taylor’s
theorem we know that for Z; < |z — y|e < 167

Y rlal+1
A 1
h
DaG;(J;(Z) =0 )

If we combine these estimates with the discrete product rule we obtain that for any z with
35 <[z =Yl < 81

M (1)Giy) ) = 8 (16)) () +0 <r3> . (4.4.5)

Combining (4.4.4) and (4.4.5) we find that

_A, (’7}5; >+Z§Th3333 26 A (175)@ )

on Qf (y) \ Q" /3 (y) and therefore

If we use this result and (4.4.3) in (4.4.2) we see that

(’7;(1;@ )+2Th3333 2¢i p (Ué)éy)

<ch.
=1 s

L3 (Q4 (\Q 5 ()

~ h
HHh - HhHWE'Z((hZ)ﬂ < CK; .
In summary,

1Hn = Hllwz uzysy < 1Hr = Hillwez uizysy + 1 = Hllw2 gz
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Ko Ko
cor(Be8) <ol

r*o - ko

because % < 1. Finally, Lemma 4.2.2 allows us to conclude that for any x € (hZ)*

d(x h*o d(x
\Hh(x) — H(x)] < CK\/log (2 + (h)) HHh — H|‘W§'2((h2)4) < CKrKo\/log <2+ (h)> .

This completes the proof. ]

Before we turn to the proof of Theorem 4.1.4 let us observe that Lemma 4.2.2 already
implies an upper bound on Gj,(x, ).

Lemma 4.4.2. For any x,y we have that

Gu(x,y)| < C\/log (2 + d(hx)) log (2 + d(hy)> : (4.4.6)

Proof. The idea is the same as in the proof of Lemma 2.8.1. We have

Gu(%,y) = (Ghx, Ony) 12 ((hzyt) = (Gier AiGy) 2 (nzy) = (VG ViGiy) 12z -
This implies on the one hand
1Gu(x, )| < IVEGhll 2z | VEGhy 2 (hzy) (44.7)
and on the other hand (by choosing y = x) that
|G, 2) = [ ViGhall T2 zys) -

From Lemma 4.2.2 we know that

d(x
Gu(x,3)] < \/1og (2+ 82 ) I9 Gl
Combining the last two estimates we obtain

|Gp(x,x)| < Clog <2+ d(hx))

which is (4.4.6) in the special case x = y. For the general case we can use (4.4.7) to see that

d(x d
G| < 193Gz 1V 3Csll 32 < cwog (2+ 5 ) 10g (24 12).

t
Now we can turn to the proof of the main technical result of this chapter, Theorem 4.1.4.

Proof of Theorem 4.1.4. Recall that according to Observation 4.1.5 we actually have to verify
(B.0’), (B.1"), (B.2") and (B.3).

Step 1: Proof of (B.1)
Let x,y € (hZ)*. We can assume w.l.o.g. that d(x) < d(y) (else interchange x and
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y). If d(y) < 768h we have that ‘log (2 + M) ‘ < C, and by Lemma 4.4.2 also

hot|x—y|
|G (x,y)| < C, so that (B.1") holds trivially. Thus we can assume d(y) > 768h.
Consider first the case [x —y| < ( 40) Then Lemma 4.4.1 with K =2, i.e. r = % > 192h
implies
A(d(y)/2 d(y)/2 A
G y) — i P ()G () = Glx,y) + " ()G ()
< C— \/ log 2+ d(hx
which implies that

A . .
’Gh(x,y) _ G]Sd(y)/Z)(x,y) _ G(x,y) + G(d(y)/z)(x,y)‘ < CilKO log (2 n 2}:) .
The function s — - /log (2 + 2s) is bounded on [1, %), so that we actually obtain

Gulx,y) = G (x,y) - Glay) + G ()| < C. (448)

From Lemma 4.3.2 we know

A(d(y) /2) 1 d(y)
G, Y (x,y)—)\zlog<|x_y|+h <C

(where we have absorbed a term % log 2 into the constant). Furthermore by Lemma 4.3.5

Glx,y) — GO ()| < C

If we use these estimates in (4.4.8) we obtain

1 d
i) =58 (i) | < ©

Because |x —y| < @, ‘xi(yy‘)ﬂl is bounded away from 1 by a constant, and so

1 d(y) 1 d(y)
ﬂmQ%mw>AW4“uﬁuhgc

Combining this with the preceding inequality we arrive at (B.1").

If |x —y| > a( 4y ) we argue similarly. We use Lemma 4.4.1 with r = @ > 192h and
conclude

Gr(x,y) = G(x,y)| < C.

This combined with Lemma 4.3.5 implies again (B.1’), as now x
Step 2: Proof of (B.2')
Recall from Lemma 4.3.5 that the term a(x) := A2 lim v ) (4 ) (G (¥, x") — G(x',x")) is

X' Ex"
well-defined for each x € (0,1)* and thata: (0,1)* — R is continuous.

After this remark we can proceed similarly as in the first step. We choose f1(x) = a(x),
f2(u,v) = A*F(u — v) with the F from Lemma 4.3.1. Furthermore we choose b = 5

Given L and 6 > 6y we take N}, so large that 768L < |logh|? when h < 57+ Thend(x) >

d(y)
—y|+h

is bounded above.

‘ -
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4 The maximum of the four-dimensional membrane model

h|logh|® > 768Lh. We want to apply Lemma 4.4.1 with K = 8 and r = @ at the point
(x 4 hu,x 4+ hv). We have that r = @ < d(x+h40)+Lh < d(x;hv) M’
and alsor = @ > 192Lh > 192h so that all assumptions of the lemma are satisfied. We
obtain

and similarly r >

Gu(x + hu, x + ho) — C;(Zd(x)ﬂ) (x + hu, x + ho)

— G(x 4 hu, x + ho) + GO/ (x 4 hu, x + ho)

h*o d(x+ hu) h*\/|logh| h*o\/|log h| 1 x
< C— — | < < 0,
_CrKO \/log <2+ p > <C g C(h|lo 7o) < C|logh|:
(4.4.9)

Here we could omit the cut-off functions U,Sd(x)/ 4 and 1@()/4) because |x + hu — (x + hv)| <
4Lh < ( ) Slnce Oxo > oxo = 1, for N} large enough the term on the right hand side will
be less than 5 /\2 whenever h < 16'

By (4.3.11) in Lemma 4.3.5 we have for u,v € [0, L]*
a(x) d(x)

/4
‘G(x+hu,x+hv) G (x + hu, x + ho) — 2 _)L2 08—,
[t + | o h ~6x
< < < 0,
<cC < oo ) = Craggye < Cillogh

Thus we can choose N, large enough such that for 1 < , we have

- a(x) dix)| _ ¢
sup G(x + hu, x + ho) — G/ )(x+hux+hv)———— og ——| < —
u,ve[0,LJ4NZ4 A2 A2 4 22
uniformly in x. Our definition of G,gd(x)/ 4 implies that
A(d(x)/4) _ X + hu B X + hv 1 1 d(x)
G, (x+hu,x+hv)-1—"< p p 2 gh+/\21g 1
1 1 d(x)
=F(u—v)— Azlogh—l—)@l 8y -
Using these results in (4.4.9) we arrive at
a(x) €
Gh(x—i—hu,x—l—hv)—F(u—v)%—ﬁlg -7 gﬁ

forh < N, , which implies (B.2").

Step 3: Proofof(B 3)
This is very similar to Step 2. We set f3(x,y) = A2G(x,y), which is continuous away from
the diagonal according to Lemma 4.3.5.

We use Lemma 4.4.1 with K = Land r = @ < 1 < |x —y|. For Nj large enough we
have r > 192h, and the lemma implies

|Gn(x,y) — G(x,y
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4.4 Proof of the main theorems

and it suffices to take Nj so large that the right hand side is less than +; for any & < ﬁ
1
Step 4: Proof of (B.0')
Here we actually need to prove three estimates, namely

A2Gy(x,x) < |logh| +C (4.4.10)
A2Gy(x,x) < Clog <2 + d(hx)> (4.4.11)
A%(Gp(x,x) — Gu(x,y)) < log (1 + ’xh_y‘> +C. (4.4.12)

Now (4.4.10) follows immediately from (B.1), and (4.4.11) is a special case of Lemma 4.4.2.
Finally, (4.4.12) can be obtained from (B.1") as follows. We know that

A*(Gp(x,x) — G(x,y)) < log (2+ d(hx)> “log (2+ ma;fﬁ);iy(f/))) e

. (d(x) +2h)(|x —y| +h)
= log <h(h+ Ix—y] +2max(d(x),d(y)))> e

so one only has to observe that

d(x) +2h

=yl + 2max(d(x),dy)) = ©

Finally we give the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. Because of Theorem 4.1.3 and Observation 4.1.5 all we have to check
is that each of the statements (A.0"), (A.1"), (A.2'), (A.3") implies its counterpart without the
prime.

We begin with (A.0") = (A.0). We know that

Var ¢n» < min (log N + ag, aglog(2 + dn(v)))

and this implies in particular that
Var gy < log N + aj.

Furthermore, if we know

Var ¢n,o — Cov(¢n,o, onu) < log, |u —v| 4+ 2a
then by symmetry this also holds with u, v interchanged, so that we actually have

max (Var ¢, — Cov(@n,0, ¢Nu), Var . — Cov(one, ¢nu)) < log, [u— o] + 2a5
and a short calculation shows that this is the same as
E(¢n,o — ¢nu)? < 2log, [u—v| — | Var gy, — Var gnu| + C.
For (A.1’) => (A.1) one has to verify that min(d(u),d(v)) > 6N implies

max(dy(u),dn(v)) N
— - <
1°g<2+ 1+ |u—ol log 1+ |u—vl =Co

which is straightforward.

For (A.2") = (A.2) we fix some 6 > 6. Given L,¢,6, we choose Ny > Ny(L,¢,0) large
enough such that | log N|? < N for all N > Nj and conclude (A.2). Analogously one sees
that (A.3") = (A.3).

O
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5 Optimal order finite difference
approximation of generalized solutions to
the biharmonic equation in a cube

This chapter is based on the paper [MSS20], written jointly by Stefan Miiller, Endre Siili
and the author, with only minor changes.

5.1 Introduction

In this chapter we show some error estimates for finite difference schemes for the Bilaplacian.
In Section 1.4.4 we gave some background and described some of the results. We begin by
stating our results in detail.

5.1.1 Main results

We mostly follow the notation from the introduction (see, however, Section 5.1.3 for the
precise definitions). Letd € N*, Q) := (0,1)¢, T := 9Q. For h € R* such that % € NN, let
A= QN (hZ)4, Ty, :=TN(hz)9, and

Ay = [-m1+h190 (hZ)4\ {~h,1+h}.

Consider the elliptic boundary-value problem

ANu=f inQ,
u=0 onT, (5.1.1)
Jdu=0 onT,

where d, denotes the derivative in the normal direction (v is a unit outward normal vector
to I'). We approximate the solution of this problem by the finite difference scheme (compare
[JS14, Section 1.9.4])

AU = Th*2f in Ay,
uUu=20 only, (5.1.2)
Di U =0 onTy.

Here U is defined on Ay, D} U(x) := 5;(U(x +hv) — U(x — hv)) !, and T"?-2f is a
smoothing operator acting on f, defined by convolving f with a B-spline on the scale & (see
below for the precise definition).

L At the singular points (i.e., at the vertices and points on the faces/edges) of I’ there are up to d possible
boundary normal vectors. For (5.1.2) we consider all of them. Because U = 0 on I';, by assumption, this
corresponds to setting U = 0 at all points of Ay, \ (A, UT},) that have distance } to a singular point of ',
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5 Optimal order finite difference approximation

The finite difference scheme (5.1.2) makes sense in any dimension d, as the smoothing
operator T"*+2 maps f € H** into a continuous function whenever s > 3 (cf. [JS14,
Theorem 1.69]).

Our objective is to prove an error bound in the discrete Sobolev norm || - || H2(n,) (Whichiis
denoted by [| - [|yz(4,) in [JS14, Section 2.2.4]).

Theorem 5.1.1. Suppose that 3 max(5,d) < s < 4, and let u € H*(Q) N H3(Q); then, there
exists a positive constant C = C(n, s), independent of h, such that

[ = Ullgpa,y < CF 2]l ) - (5.1.3)
h

This improves [JS14, Theorem 2.69] (where the above result was proved for d = 2 and g <
s < 4 in the more general setting of fourth-order elliptic equations with nonsmooth variable
coefficients, but the order of convergence O(h™n{s=23/2}|Jog h|1~Isgn(s=7/2)l) established
there was optimal only in the case of 3 < s < £, and is reduced to the suboptimal rate of
O(h% ), instead of the optimal rate of O(h*~2), for § < s < 4) as well as the main result in
[GMP83] (where the theorem was proved for d = 2 under the additional assumption that
the third normal derivative of u vanishes at the boundary).

Our method also yields estimates for other discretizations of the boundary conditions.
Consider, for instance, the finite difference scheme

A%u* — Th,Z,...,Zf in Ah ,
us=0 onTy, (5.1.4)
D'u* =0 onTy.

Here again U* is defined on A, and D*U*(x) := § (U*(x + hv) — U*(x)). The conditions
U* = 0 and D'"U* = 0 on T}, are equivalent to U* = 0 on Ay \ Ay, so that we could
equivalently consider the finite difference scheme

AU =TV 2 f in A,

B (5.1.5)
u =0 on Ah \ Ah .

For this difference scheme we can show the following error bound.

Theorem 5.1.2. Suppose that 3 max(5,d) < s < 3, and let u € H*(Q) N H3(Q); then, there
exists a positive constant C = C(n, s), independent of h, such that

lu = U g2,y < CH 21t () - (5.1.6)

In Theorems 5.1.1 and 5.1.2 we made the assumption % max(5,d) < s. In view of the fact
that the problem (5.1.1) makes sense already for s > 3, the requirement § max(5,d) < s
might seem surprising. The condition s > 7 ensures that u is continuous. Otherwise,
|lu — U]l H2(Ay) and ||u — U*|| H2(a,) Would be undefined. The condition s > 2 implies that

Th2-2f is continuous so that its pointwise values are defined and the finite difference
schemes (5.1.2) and (5.1.4) make sense. It should be possible to relax the assumption
s > 3 by replacing u in the expressions ||u — U||yz(4,) and [[u — U*[|2(5,) with a suitably
mollified version of u. Similarly, one can relax the assumption s > 3 by replacing T"%-2
with a stronger mollification operator; see also Remark 5.4.3 for additional comments in this

direction.
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5.1 Introduction

Our results extend to more general fourth-order elliptic elliptic operators with variable
coefficients, such as those treated in [JS14, Section 2.7], with similar proofs. The main
difference compared to the analysis here is that in addition to terms appearing in our error
bounds one encounters a variety of mixed terms. On can deal with these as in the proof of
Theorem 2.68 in [JS14], using the bilinear Bramble-Hilbert lemma. It should also be possible
to extend our results to other (higher order) elliptic operators, such as the polyharmonic
operator A¥ for k > 3, but the study of that question is beyond the scope of this chapter.

5.1.2 Outline of the proof

We discuss the proof of Theorem 5.1.1 only; the proof of Theorem 5.1.2 is very similar. We
proceed similarly to the proof of [JS14, Theorem 2.69]. In fact, when s < Z we could directly
use the argument in [JS14] with only minor notational changes. Let us review that argument
here briefly. We begin by extending u symmetrically across I to a H*-function i on (—1,2)¢
such that ||| ys((_1,0¢) < Cl|ut| (). Here and henceforth C signifies a generic positive
constant, which may depend on the Sobolev index s and on the number of space dimensions
d, but is independent of the discretization parameter h. Let E := i — U. Then, E satisfies

E=0 on Iy,
D{,E=0 only,

and we calculate (compare [JS14, Equation (2.209)])
NE = Npit — AJU = Ajit — T2 f = ALl — T2 A%
Using summations by parts we obtain
IVEEN2(a,) < 8GR = T"2202%0] 1y 2,

where Vﬁ is the discrete Hessian. Now one can use the Bramble-Hilbert lemma (cf. [JS14])
to deduce that the right-hand side is bounded by Ch*~2||u|| s (), which directly implies
(5.1.3).

When s > 7 one can no longer extend u symmetrically across the boundary while
preserving its Sobolev regularity. This means that we cannot make D’(},Vu equaltoOonT,
and therefore the above argument based on summation by parts no longer works.

Our alternative approach is as follows. Although we cannot ensure that the boundary
values of DS‘/VE are exactly zero, we will show that they can nevertheless be made small in
an appropriate norm. To this end, we will first show (in Section 5.2.1) that we can take a
slightly different extension @ with ||| s ((—1,2)4) < Cl[u||s(a), 7 <'s <4, such that i and its
derivatives vanish on the hyperplanes supporting the faces of I'.

This will allow us to estimate the boundary values in an optimal space. In fact, in Section

5.2.2 we prove that

h s=2|| 7
Dbl < O 2l 5.17)
Actually, we only control the Hé -norm on each of the faces of I';, but we ignore this issue
here for the sake of simplicity and refer the reader to Section 5.2.2 for precise statements.
Then, in Section 5.2.3, we show that (5.1.7) implies the existence of a function E that agrees
with i on Ay, \ A, and such that ||V%ZE”HL2(A,,) < Ch2||ul| ys(r)- We shall construct E by
giving an explicit extension using the Fourier series representation of the boundary values,
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5 Optimal order finite difference approximation

which we then carefully cut off to comply with the boundary conditions. This is a special
case of an inverse trace theorem in the following sense: for any function ¢ on the boundary
there is a lattice function w such that

w=0 only,

Dg/vw =13 only,

and

IViwll2a,) < Cliyll, (5.1.8)

1 .

hz (rh)
Now that we have E at our disposal, we can apply the argument formulated at the

beginning of this subsection to E — E (which has zero boundary values) and find that

IVE(E = B)lli2(a,) < C (B2 ullie + 183El 2,
Thus, by observing that

HA%EHHJZ(Ah) < CIIViEl 12, < CHDo,uﬁHH%(r : < Ch° 72 ull gs(ary »
h h

we directly deduce (5.1.3). The details for this argument are given in Section 5.3.2.

The heart of the matter, resulting in our main result stated in Theorem 5.1.1, are the trace
estimate (5.1.7) and the inverse trace estimate (5.1.8), established in Section 5.2.2 and Section
5.2.3, respectively.

5.1.3 Notation and preliminaries

Our notation is based on that in [JS14], however we made some changes that we will review
in the following.

For s > 0 and & C IRY open with Lipschitz boundary we define the Sobolev space H*(Z)
as the space of restrictions of H*(IRY)-functions to E. By Hj(Z) we denote the closure of the
set of all C°(E)-functions in the || - || gs(z)-norm.

Assume that & := I X - - - X Iy, where I; C R are (possibly unbounded) open intervals.
This assumption ensures that we have H¢~!-almost everywhere on 9E an axiparallel normal
vector. Given a k € Ny with k + 1 < s, we denote by H{y, (E) the space of all functions

u € H*(E) such that the traces of 9iu for 0 < i < k vanish on each face of 9Z. We extend
this definition to k > s — 1, provided s ¢ N + 1, by setting H{y, (B) = H\s_1/2)) ().
There are several other equivalent definitions of H " (E). Let C°(E) denote the space of

functions on E, which are in C*(E), for which all derivatives admit continuous extensions
to £, and which are supported in K N E for some K C RY compact. In other words, C°(E)
denotes the set of restrictions of C2°(IRY)-functions to Z, where the equivalence follows
from Whitney’s extension theorem [Whi34]. Then, Hf, (E) is also the closure in the H*(E)-
norm of the set of all functions in C®(Z) whose derivatives up to order k vanish on 9=
Furthermore, Hiy, (E) is equal to H*(E) N HE™(E) if s > k + 1, and equal to H}(E) if
s < k+ 1. In particular, the space H*(Q)) N H3(Q2) from the main theorems can now be
written as Hf,, (Q).

The fact that these definitions are equivalent should not be surprising. Nonetheless we
could not locate a reference for this precise equivalence result, and so we present its proof in

Appendix 5.4.2.
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5.2 Discrete trace and inverse trace theorems

Given a j € IN, we let 6, be the standard univariate centered B-spline of degree j — 1,

defined, for example, as the indicator function of the closed interval [— %, %] convolved with

itself j — 1 times (cf. [JS14, Section 1.9.4]). Using this, we define the smoothing operator Tl.h’j
for1 <i<das

=)

where *; means convolution in the variable x;. This is a well-defined operator on distribu-
tions on RY. Furthermore, we set

Third o T e TH

Each 6; is in H'(R) for any t < j — 3. Using this, one can verify (cf. [JS14, Section 1.9.4]) that
T'i~-I is a bounded linear operator from H'(R?) to C,(R?) whenever t > —j + 3.

We define the discrete Sobolev norm ||v|| H2(a) Of U Aj, — R as the sum of the L2-norms

of v, Vv and Vv, wherever they are defined; more precisely,

d
ol = ¥ W)+ ) h(Dfv(x))?

XEQ], i=1 XEQ;,:
x—&-heie()h
d
+ Y Y W (DID" o(x))?.
l’]:1 Xe()h:

x+hei,xfhej,x+he,'fhejeﬂh
Note that we have the crucial property
h,j—2 h,j~2
DID" TV f = T9%f (5.1.9)

for any i and any j > 2.

5.2 Discrete trace and inverse trace theorems

5.2.1 Construction of a good extension

Recall that Hf, (Q)) denotes the space of functions u € H*(Q)) for which u and Vu vanish
on dQ). Our first goal is to construct an extension 7 of u that preserves its Sobolev regularity
and has the additional property that 7 and Vil vanish on the hyperplanes supporting the
faces of ).

Later in our argument it will be necessary to localize the functions concerned in order to
deal with the 2¢ corners of Q) = (0, 1)9 separately. Actually, it is most convenient to do so
right from the start. Thus we shall use a partition of unity, which allows us to split u into 2¢
parts localized near the corners. These parts can all be dealt with in a similar way, so we

. : d
focus on one of them and assume that u is supported in [0, 3)".

Lemma 5.2.1. Let % < s <4 letue Hfl)(Q) be supported in [0,%)d. Then, there exists a
function it € Hy((—1,1)9) such that 72| s ((~1,0)0) < Cllullps ), #jo = u, and it =0, Vit = 0

on the (d — 1)-dimensional hyperplanes x; = 0 for i € {1,...,n} in the sense of traces.
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5 Optimal order finite difference approximation

Because # € H((—1,1)4), we can extend @ outside (—1,1)¢ by zero to a function in
H?(RY) (that we continue to call 7).

The construction of the extension is classical; see, e.g., [LM72a, Section 11.5]. Nonetheless
we give some details, in particular because a similar construction will be used in Section
5.2.3.

Proof. We proceed by applying an extension operator similar to the one in [LM72a, Section
2.2] once across every hyperplane (or in other words by applying a tensorized version of
that extension operator). There exist A_1, A_» € R such that

A+ A28 =(=1)% fork e {2,3}.
We also let A; = 1. Then we define the extension # of u by

i(x1,...,x4) = Z Z Agy +oovs Aggtt(€1X1, ..., €4X4) -

€1:1 if X1 20 £d:1 if Xd 20
e1e{-1,-2} if x,<0 eg€{—1,-2} if x4<0

For example, for d = 2 we have

u(xl,xz) for X1 2 O,XZ Z 0,
A_qu(—x1,x2) + A_pu(—2x1,x2) forx; <0,x, >0,
ﬁ(X1,X2) = A,lu(xh —x2) + /\_zu(xl, —ZXZ) forx; > 0,x <0,

(A,1>2M(—X1, —XZ) + A,l)x_zu(—xl, —ZXQ)
+A A ou(—2x1, —x2) + (A_2)?u(—2x1, —2x7) forx; < 0,x, < 0.

One easily checks that both 7 = 0 and Vii = 0 on the face x; = 0 fori € {1,...,d}. In
addition, the support of i is contained in (—%, %)d C (-1, 1)d.
It remains to show that 7 € H%((—1,1)¢) and

7| s ((—1,109) < Cllull () - (5.2.1)

For this we use interpolation. If s = 4, and u € Hzll) (Q)) observe that by the construction

of il for k € {0,1,2,3} the traces of 9¥iI from the two sides of {x; = 0} agree. This implies
that 7 € H*((—1,1)%) and 7] b —1,1y0) < Cllullpgey- Ifs =land u € H(ll)(ﬂ) = H{(Q))
we can use the same argument to obtain (5.2.1) once again. Now, by Lemma 5.4.9 from the

Appendix, for any 3 < s < 4 the interpolation space [H?l) (Q),H(ll)(Q)} L) is equal to
3(&—s

H ?1) (Q). Thus (5.2.1) follows by standard function space interpolation theory. O

5.2.2 Estimate of the boundary values

In this section we prove the estimate (5.1.7), i.e., that the discrete normal derivatives of i at

the boundary can be estimated in the fractional discrete Sobolev space H. % One can think
of this result, stated in Lemma 5.2.2, as a discrete trace theorem. Before giving the precise
statement we define the appropriate (semi-)norms.

Let S be a subset of RY that is contained in an axiparallel (d — 1)-dimensional affine
subspace of RY such that S N (hZ)? # @, and let w: SN (hZ)4 — R. We then define

[w]? — Z |w(x) —w(y)Ithd—z
Hi (S0(hZ)!) ¢y esninz) |x —y|
x#y
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5.2 Discrete trace and inverse trace theorems

and
IWII = [w]? + ) h ).
(Sm(hZ) ) HZ (SN(hz)4) xeSN(hZ)

For the discrete inverse trace theorem stated in Section 5.2.3 we will need to use the extension
by zero of D’g ,il and D!"i. Therefore we directly estimate the H; 2 -seminorm of that extension
in the following lemma.? At the first glance it might seem problematlc that we are extending
Dé’rvﬁ by zero, because for s > 3 this extension does not preserve the H*-regularity of i.
However it turns out that it is possible to estimate [Dé‘,vﬁ]H 1 by expressions that involve

h
several derivatives in the direction eq, but at most one derivative in the directions ¢; for
1 <i < d—1,so our assumptions on the boundary values are sufficient.

Lemma 5.2.2. Let s > 1 max(3,d) and let i be as in Lemma 5.2.1. Fori € {1,...,d} let g,
and gj; ; be the extension by zero of D, ;i and D" it in the hyperplane (hZ))'~' x {0} x (hZ)*~,
respectively, i.e., gyi: (hZ)'™' x {0} x (hZ)*™" — Rand gj; ;: (hZ)' "' x {0} x (hZ)?~" - R
satisfy

pute) = {PBA) e 07 0 <0

0 otherwise,

h di(x when x 0o)i—1 0o )d—i
8h,i(0) = {Di (x) hen x € (0,00)"% x {0} x [0,00)7,

0 otherwise .

We have that, if s < 4, then

[ gn,ill < CH2(|ull sy s (5.2.2)

HE (02) 10} < (Z)9-0)
and, if s < 3, then
< Ch*2||ul| g () - 523
154013 10z S (523)
We can assume that i = d, the other cases being analogous. For simplicity we identify R9~!
with the hyperplane R~ x {0} C RY, and write x = (x/, x4), with x’ := (x1,...,x4_1)-
Before embarking on the proof of our main result, we state and prove two estimates that
we will need.

Lemma 5.2.3. Let s >  max(3,d) and v € H¥(RY) such that v = 0 and d4v = 0 on R~ in the
sense of trace. Let h > 0, let x' € (hZ)4~1, # € R9~1 x {0} and suppose that |x' — #'| < L.
Let further Qy2(x') := x' + (=h/2,h/2)%"! be the (d — 1)-dimensional axiparallel cube of edge-
length h centered at x'. If s < 4, we have that

. X _d
[o(x', h) —v(x', —h) —o(2',h) +o(&', —h)| < CH°"2[|v]| (@, » (x') xR) / (5.2.4)
and if s < 3 we have that

[0(x',0) — o(x/, — 1) — 0(%,0) + v(£/, =h)| < Ch* [0 1:(Qy o ()< R) (5.2.5)

1
2Alternatively one could define a discrete analogue of the H,-norm from [LM72a, Section 11.5]; that however
leads to unnecessary technicalities in the present context.
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5 Optimal order finite difference approximation

Proof. We begin with (5.2.4). By scaling and translating we can assume that without loss of
generality that 1 = 1 and x’ = 0. Because s > § the left-hand side of (5.2.4) is bounded by
Cllvll55(1(0)x (~2,2))- Furthermore it vanishes when v is a polynomial of degree at most 3.
Indeed the boundary condition ensures that each monomial of degree at most 3 has degree
at least 2 in x4 and the left-hand side vanishes for such monomials. So (5.2.4) follows from
the Bramble-Hilbert lemma (applied in H*(Q1,2(0) x (—2,2))). The estimate (5.2.5) can be
proved analogously. O

Lemma 5.2.4. Let s > 3 and v € H%((0,00)4"1 x R). Suppose that foralli € {1,...,d — 1} we
have v = 0 on {x; = 0} in the sense of trace, and that furthermore we have dq4v = 0 on {x4 = 0} in
the sense of trace. Let 0 be the extension by zero in the first d — 1 variables of v to RY, i.e.,

5(x) = v(x) xe€ (0,.00)"_1 X R,
0 otherwise,

and let h > 0. If s < 4, then we have that

1) = 00 =)l 3 gy < [0l 0w 526
and if s < 3, then we have that
1910 = 8, =)l oy < O ol 1 527)

Proof. Let us define the function spaces G*((0,00)¢~! x R) for s € [0,00) \ {1, 32} as follows.

When s > %, G? is the space that is mentioned in the statement of the lemma, i.e.,
G*((0,00)47 1 X R) := H%((0,00)4 ! x R) N {u: u = 00na((0,0)4 ! x R)}
N {u: 9gu = 0 on (0,00)47 1 x {0}}.
When % <s< %,
G5((0,00)97 X R) := H*((0,00)9™ 1 x R) N {u: u =00na((0,00)47 1 xR)},

and if s < %,
G*((0,00)471 x R) := H%((0,00)4"! x R).

According to Lemma 5.4.10 from the Appendix we have that, fors ¢ {3,3},

7
i}

G3((0,00)4"1 x R) = [G4((o,oo)d—1 x R), G1((0,00)91 x JR)}

'
[

G*((0,00)* " x R) = [G*((0,00)° " x R), G ((0,00)*" " x R}, _ -
Z
Thus it suffices to prove (5.2.6) fors = 4and s = 1 and (5.2.7) for s = 3 and s = 1, and then
the result follows by interpolation. We prove the former two statements; the proofs of the
latter two are completely analogous.

If s = 1, the condition that v = 0 on {x; = 0} in the sense of trace ensures that 6 € H'(RY)
and (| 1 (rey < (|9l g1((0,00)0-1 xR)- NOW we can use standard trace theorems to bound

16(-/ 1) = o(, =h)]|

H%(]Rd,l) S H’0</h)HH% (]Rd,l) + H’UA(’ _h)HH% (]Rd,l)

< ZHvHHl((O,oo)d*lxIR) .
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5.2 Discrete trace and inverse trace theorems

If s = 4 the proof is less straightforward. The main difficulty is that 9 is in general not in
H*(RY). Instead we write

o(-,h) = v(-,0) + hdgqo(-,0) + —az .,s)ds.

This does not make sense as a pointwise equality, but we can interpret it as an equality
in H: ((0,00)971), with the integral on the right-hand side being understood as a Bochner
integral. Similarly, we have

d3v(-,s)ds.

2 2
v, —h) = 0(,0) = hdqo(-, 0) + %aﬁv(‘,o) - /_Oh . +2 °)

Because we know that o(-,0) = 0 and d4v(-,0) = 0 in Hz((0,0)4"1), we deduce from this
that

o( 1) —o(, —h) = K2 /_hh m () 30(s) ds, (5.2.8)
{%(1 —t)?2 fort >0,

11412 fort<0.
Let @ be the extension by zero in the first d — 1 variables of 93v to RY, i.e.,

as an identity in H2 ((0,00)¢~1), where m(t) :=

(x) = d3v(x) forx € (0,00)4" 1 xR,
0 otherwise.

Our assumptions on v imply that 930 belongs to H}((0,0)9~! x R). Therefore @ € H!(RY)
and ||@|| g (rey = 03] H1((0,00)¢1 xR)- Furthermore (5.2.8) continues to hold for the exten-
sions by zero of both sides, so that we also have

h

(- k) — 0(-, —h) = h2/

as an identity in H 2 (R4-1), and hence

h
5( 1) — (-, — 2 S (-
[9C,1) = 0, =) 3 o sy < /_hm (7) 1G9y vy
k1
<12 [ Sl ds
< B (1030 1 (0,000 1 xR)
< h3HUHH4((O,oo)d*1 XR) 7
which is (5.2.6). O
Proof of Lemma 5.2.2. We begin with (5.2.2). As before, we shall assume without loss of
generality that i = d, and we identify R4~! with R4~ x {0} C RY and write x = (x/, xg).
Note that D], i(x) makes sense for any x € [0,1)?"! x {0}, not only for those in (hZ)“.

We denote by g4 the extension by zero of D i in the hyperplane R~ x {0}, i.e., g4: R4 x
{0} — R satisfies

(x) = Df4ii(x) forx € (0,00)471 x {0},
& 0 otherwise.
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5 Optimal order finite difference approximation

Then, gy, 4 is the restriction of g4 to (hZ)4, and our goal will be to relate the discrete H,i/ 2.
norm of g;, 4 and the continuous H'/2-norm of g4. We begin by estimating the latter.
Applying Lemma 5.2.4 to hg;, 4 we obtain

I2al 3 gasy = 1D6all 3 ory < CH 2 s - (5.2.9)

Next, let x' € (hZ)?"!, # € R%"!, and suppose that [x' — #'|c < 4. Recall that Qy,/»(x') =
x'+(—=h/2,h/2)% lis the (d — 1)-dimensional axiparallel cube of edge-length & centered at
x'. Then, Lemma 5.2.3 implies that

~ s e . 4
i@(x', h) —a(x', —h) — @(&', 1) + 4(2', =h)| < Ch°~2 ||| s, p (x')xR) -

Ifx; >0foralli=1,...,d—1, then
Iga(x') — ga(#)] = % (X, h) — a(x, —h) — A(#, k) + @(2, —h)|. (52.10)

On the other hand, if x; < 0 for some i € {1,...,d — 1}, then i (x',h) = di(x',—h) =
2d(x’,0) = 0and

s |i(2,h) — (2, —h)| forx’ € (0,00)471,

0 otherwise.

18a(2)| = {

This, together with (5.2.10), implies that we have in any case

8a(x') — a(#)] < o |, 1) — (!, ~h) — (2, 1) + a(2, ~h)].
Thus we get that

. o1 dr- oo1-9d -
18a(x) = ga ()] < CH 12 [ s(, p vy x k) < CH 12| sy o ) R) - (5.2.11)

Now let x',y' € (hZ)?1, 2 € Qp/2(x') and §' € Qy/2(y"). We then have that
184(x) —ga(¥)| < Iga(2') = 8(9)[ + [8(x") — ()| + [8(¢) — g(#)]-

This implies that [g4(x") — ga(¥")|* < 3(|ga(%') — ga(#")* + 184 (x’) — ga(2) [ + |ga(¥') —
g4(7')]?), and, using (5.2.11), we deduce that

18a(x") — ga(v)I?

< 3|ga(2") = ga (@) * + CH* 2 |23, (2 (—amany) + CHZ 279 |1]

2
HE(Qu(y') x (~2h,21)) -
(5.2.12)

Thus, taking the average of (5.2.12) over all £ € Q;/»(x’) and ' € Qy,/2(y’), we obtain

ga) —gol )P <322 [ [ Jgy(#) — galg)Pd¥ df
Qu2(x") JQuy2(y')

+ O (1181 i) + 11wy -

Observe that for [x" —y/| > h we have

===y = =)+ =)
<=yl -2+l -7
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5.2 Discrete trace and inverse trace theorems

<=y +h <2 -y
Using this, we deduce that

|8 (x') _gd(y/)|2 2d—2
h = h
g d] 3 H? (hZ)+1) x,,yle%z)dl |x" — y'|¢
X' Ay
iz [ [ B S oy
- Ré-1 JRd-1 |£ yA |d Y
_ 1 (5.2.13)
+Chd+25 4 Z |y x,w””HH5 (Qn(x")xR)
x/,yle(hz)d—l
XAy

+ Chd +25—4 Z 1

x’,y’e(hZ d 1 | ! y |
X'y

The first term on the right-hand side is a constant times [g4]? , (Ri-1y To estimate the second
H2 (Ré-

dHuHH Qh ) )

term, notice that
1 1 1 d_1
I d T fd—1 ! _ /|d
X | h y’G(hZ)dfl,]/#x’ |y X ‘
C 1 C
e — _dy < =
BT iy vz y =23 Y = e

y’e(hZ)dfl,y’yéx/ |y

and

>l

'e(hz)d-1 Hs(Qn(x')xR) < HIZH%{S(]Rd),

by superadditivity of the fractional Sobolev norm.
Together with the analogous estimate for the third term and (5.2.9) we arrive at

2 2s—4 (1 ~112
8058 < 8L O

< CHP 4|13 o (5.2.14)

< Ol

It remains to estimate ||, 4| 12((hz)e-1)- A simple way to do so is to observe that we have a

Poincaré-type inequality. Indeed, g, 4 is supported in [0, %] n (hZ)?~! and therefore

[gh d] 1 = Z |gd(x/) — gd(y/)|2h2d72
h?((hz) ) x//yle(hz)d,1 ’xl - y/‘d
xl#y/
AN N\ 12
> Z ’gd(x)/ 8;19 ) j2d-2
Ye)IN(Z)IT y'e[-2,-1)I N (hZ)4 ! x = y'|
> |8a(x I)|2h2d_2
B x’G[Ol)d_lﬂ(hZ) - ye[ 2,— ])d 1ﬁ hZ d—1 (3\/7)

g0 () .
> G, mﬁ%mwl ,

Combining this with (5.2.14) we obtain (5.2.2). The proof of (5.2.3) is similar, with the only
difference that we use (5.2.5) and (5.2.7) instead of (5.2.4) and (5.2.6). O

133



5 Optimal order finite difference approximation

5.2.3 A discrete inverse trace theorem on the cube

In the previous section we proved that the discrete normal derivative of i has small trace

in Hh% , and thus the same holds true for E = ii — U and E* = i — U*. We now want to
construct a function E such that E and E agree on I';, and such that the H?-norm of Eis
small (and similarly for E*). The existence of E and E* follows from a discrete inverse trace
theorem, as in (5.1.8). However we will not prove (or even state precisely) a general result,
as we did in (5.1.8); instead, we shall state the result when applied directly to E and E*. The
following two lemmas concern the boundary conditions appearing in Theorems 5.1.1 and
5.1.2, respectively.

Lemma 5.2.5. Let % max(3,d) < s < 4and let ii be as in Lemma 5.2.1. Then, there is a function E
on Ay, such that

N

E=0 onTy,
D¢, E=D},i  only,

and such that HV%EHLZ(AM < Ch2|ul| s () -

Lemma 5.2.6. Let %max(?), d) < s < 3and let ii be as in Lemma 5.2.1. Then, there is a function
E* on Ay, such that

E*=0 onTy,
D'E*=D'i  onTy,

and such that "V%E*"LZ(Ah) < ChS*ZHuHHs(Q).

The strategy for the proof of both lemmas is the following. It suffices to consider the
case when D!il is nonzero only on one face, say {xq = 0}. We construct an extension of the
boundary values there in Fourier space. This extension is constructed in such a way that we

can control its H?-norm by the H;% -norm of the boundary values (at least after localizing to
a bounded set). However this extension does not yet have the appropriate boundary values
at {x; = 0} for i < d. To fix this we use a projection operator H> — Hﬁ/o on each fixed slice
{x4 = ¢} and show that we retain control of the H2-norm.

Proof of Lemma 5.2.5. Step 1: Preliminaries

Because we have localized i, Dg/vﬁ has nonzero boundary values only on the faces I';, N
{x; = 0}. We can deal with the faces separately. In fact we will construct functions E;
fori € {1,...,d} such that E;=0onTy, Dg,uﬁi = Dg,yﬁ on x; = 0 while Dé’,vﬁi = 0on
Ty \ {x; = 0}, satisfying the estimate || V2E;i||12(5,) < Ch*?||ul|zs(qr)- Then we can choose
E =¥, E;, which will have the desired properties. As the E; can be constructed analogously,
we shall focus on Eg4 only.

Step 2: Construction of an extension in Fourier space
Recall the function gj, 4, the extension by zero of D’(},dﬁ. Thanks to our assumption, gy, 4 is

supported in [0, 3] “n (hZ)4~!. We can extend this function periodically with period 2

and represent it by its discrete Fourier series

gh,d (xl) — Z ,yk,eiﬂ(k/.x/) )
Ke{—F+1...3 }dfl
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5.2 Discrete trace and inverse trace theorems

where

n\ 4! o
Yo = (2> Y. gnd (&) e ¢
&el-1,1)

d-1n(pz)d-1

and k' := (ky,...,k,_;) € 741,
It is easy to verify that

Y QKD <Clgnal®y (52.15)
pe{-1+1.1}"" Hi (hz)@=1)

1
Indeed, the Fourier norm on the left-hand side is controlled by the H. }f -norm on the torus
([-1,1]9"1 N (hZ)4"1)/ » (compare, e.g., [Hac81, Section 2.3]) and the latter is bounded by

1
the H?-norm on (hZ)“! because the support of g, 4 is bounded away from 9[—1,1]41,

Define

wne Tl
Ke{—f+1..% }‘H

It is then easy to check that a(x’,0) = 0 and D{ ja(x',0) = g;q4(x') for x’ € (=1,1)4"1 N
(hZ)dfl. Furthermore, the H}Zl-norm of a is controlled. Indeed, we have that

Via(x',xq) = ) oK', h, xq) e €™,

Kef{ -1+t

where the coefficients o (k', 11, xq) satisfy |o(k', i, x4)| < C|K'|(|K|xg + 1)e~¥'1*¢. This can be
seen using Taylor’s theorem in the form VZv(x) = V?0v(x) + O (h SUP|¢_ x| <h V30 (%) |)
For example,

D", Dk (xde’|k/|xdei”k/'x’>

_ (|k’\2xd _2’k/’)e*|k’|xdei7rk’-x’ —|—O(h(’k/|2+ ’k/’3(xd +h))e*\k’\(xd*h))/

and therefore ‘DﬁdDé‘ <xde_|k/‘xdei”k,'x/> < CIK'|(|K|xq + 1)e_|k/|xd.
Now, using orthogonality in x” we get, for x4 > 0,
) W Via (', xg)[* = 297 Y (K, b, x4) | vie |
x’e[fl,l)d_lﬂ(hZ)d_l k’G{—%—i—l,...,%}d_l

<C )3 K (K25 + 1) e 2K e 2,
Ke{-1+1..,0 3"

and hence

hd |Via(x', xq)|?
x€[~1,1)¢-1x[0,2]N(hZ)¢

<Ch ), )y K Pk P + 1) e 2K P e
WEDAXMZ e f _14q, 114

Next, we use the estimate

Y. e ?fhe<c, / gre W dz = Cy / Pedo < C T
%4€[0,2]NhZ 0 K| 0 K]
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5 Optimal order finite difference approximation

for « =2 and &« = 0 to deduce that

)3 | Via(x', xg)|* < C ). K|
x€[-1,1)4-1x[0,2]N(hZ)4 Kef{ -1+, d-1

and thus, taking into account (5.2.15) and (5.2.2),

IVall 2110200z < C[ghd]Hr%((hZ)dil) < Ch 2 |lul ps(ar) - (5.2.16)

Similarly, we estimate

IVhall2((—1,001x 0 20n0z)0) < Ch* 2]l () (5.2.17)
lall 21,191 o210 (0z)0) < Ch*=2|lull s () (5.2.18)
(note that for these estimates we actually need control of ||gy4|| 1 (z) not just of
HZ ((hz)4-
[8n,d] 1} (2o 1))

Step 3: Localization
Let 7 € C®(R) be such thaty = 1in [—3,2], 7 =0in R\ [-1,1], and let

a(x) :=n(x1)-...-n(xq)a(x).

Because a = 0 on {xZ = 0} for all i, we have that @ = 0 on I';,. Furthermore, Dg,da = 0 except

possibly in [, g] x {0}, and the product 7(x1) - - - n(xq) is equal to the constant 1 in a

neighborhood of that set. Therefore, D} ;7 = D ja = g4 on {xg = 0}.
Using the estimates (5.2.16), (5.2.17), (5.2.18) and the discrete product rule, we also obtain

Hv%ﬁHLﬁ(Ah) < C(HV%’ZHH ~11)d-1x[02)N(hzZ)d) T HVWHLZ —1,1)4-1x[0,2]N(hZ)9)

5.2.19
+ HaHL%((—Ll)d1><[0,2]ﬁ(hz)d)> ( )

< Ch* 2 |lull (o)

Step 4: Correction of the boundary values
Unfortunately, @ does not yet have the correct boundary values at {x; =0} for1 <i <d-—1.
To rectify this we use a discrete projection from H? to H3. First we define the corresponding
continuous projection. It is defined in a similar way as the extension we used in the proof
of Lemma 5.2.1, namely by tensorizing the restriction operator from [LM72a, Section 11.5].
Thus we choose A_1, A_» € R such that

A4+ A28 = (=DM fork e {0,1}.

(ie, Aoy = =3,A_ = 2); welet Ay = 1 and define a restriction operator R: Hz(]Rd_l) —
H3((0,00)4"1) by
Ro(x) := Yoo Y A Ago(e1x, . €do1Xg 1)

e1e{1,-1,-2}  eqe{1,—1,-2}

One can check that we indeed have Rv € HZ((0,00)9!) and RO 2 (0,00)0-1) < ClI0ll 2 (re-1).-
If we extend Ro by zero to IR~ we can also consider R as an operator mapping H?(IR4~1)
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5.2 Discrete trace and inverse trace theorems

to itself. Note that if x' € (hZ)?"!, then Ro(x") depends only on 0|(nzya1. Thus we can
define R,: H2((hZ)*') — HZ((hZ)4") by

Ro(x) for x' € [0,00)471,
Ryv(x") := < Ro(x' +2he;) for x’ € [0,00)"1 x {—h} x [0,00)d~ 1,
0 otherwise.
We claim that
IRno| 12 0,001 (hzpe-1) < Clloll2((nzpe1) « (5.2.20)
ViRl 2 (0,000 1nnz)s-1) < ClIVIl 2 ((nzye1) » (5.2.21)
IVERKO! 12 (0,001 101z )0-1) < CIIVEDl 2 (zpe) - (5.2.22)

Indeed, these estimates follow from the discrete chain rule. The only exception are the
terms D?Dﬁ Rpv(x') in (5.2.22), which are not, a priori, controlled on {x; = 0}. However an
explicit calculation shows that for such x’ one has

R "+ he;
D!'D" .Ryo(x') = 2—hv(x + hei)

2
v(x’ 4 he;) — 3v(x’ — he;) + 2v(x’ — 2he;)

=2 "

B 2v(x’ + he;) — 2v(x’) + v(x’ — he;) +40(x’) —20(x" — he;) + v(x" — 2he;)

h? h?

= 2D'D" v(x') +4DI'D" v(x' — he;),

so that these terms, which are ‘crossing the boundary’, are still controlled.?
We now apply R}, along every slice (hZ)4~! x {x4},1i.e., we set

b(x) i= Ryd(-, ) (x')..

Then by construction of R, we have b = 0 and Dg,ib(x) = 0 on {x; = 0}. Furthermore, b is
supported in [, 3] ¢ and we have b = 0 on {xq = 0}. We know that D{ 4@ = gna on {xg =
0}. In addition, Rygsa = &ha on [0,00)4" 1 x {0}, and so D{ 4b = g4 on [0,00)4 7 N (hZ)4~!
follows from the fact that Rj, and Dé’/d commute.

We next estimate HV%bHLZ(A}’) = || V3Rl 12(a,)- If i, j < d — 1 then (5.2.22) implies that

||D?D;i]'th||L2(Ah) < CHV%ﬁHLﬁ((hz)d—l) .

When taking derivatives in the direction eq we use (5.2.21) and the fact that D" and R,
commute, to obtain (for i < d) that

HD?DEdRhﬁHLZ(Ah) = HD?RhD}idﬁHLZ(AI,)
< C||D/D" 4l 12, -

and similarly, using (5.2.20),

IDED" 4Ryl 12,y < ClIDED" ]| 12, -

31t is of course no coincidence that we have such an identity. In fact, V?(Ru) is bounded in the L? norm thanks
to the construction of R, and one can therefore also expect R;, to be well-behaved at the boundary.
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5 Optimal order finite difference approximation

If we combine the last three estimates and use (5.2.19) we deduce that
IVEbll2an) = VRl (s, < CHE 2 ullia)
Thus we can set b = Eg4, and have shown that Eg4 has all of the desired properties. O

Proof of Lemma 5.2.6. The proof is quite similar to the proof of Lemma 5.2.5. Let us outline
the differences. In Step 2 we use a different extension operator, namely

a* (x,, Xd) = Z ?]/(]/(‘,h Xq e—\k’\xd eiT[k’~x’ ,
Kef{-t+1.13"" ¢

so that a*(x/,0) = 0 and D" ja(x’,0) = gna(x') forx’ € (-1, 1)4-1N (hz)9-1. Using Lemma
5.2.2 we then again obtain

IVEa* 2 ((—11)-1x 020 (z)) < C[ghfd]H%(lefl) < CB* 2 ||ull ()
h

for s < 3. The localization step remains unchanged. To correct the boundary values we use

Rio(x') = Ro(x') forx’ € [0,00)471,
h ’ 0 otherwise,

instead of Rj,. By using this projection operator we can then proceed as before. O

5.3 Estimates for the finite difference schemes

5.3.1 Summation-by-parts formulae and Poincaré inequalities

For the sake of completeness we record some summation-by-parts formulae that we will
use in the following. These formulae are adapted to the two boundary conditions that we
encounter in (5.1.2) and (5.1.4). Zero boundary conditions are easier to deal with, so we
begin with those.

Lemma 5.3.1. Let v, ¢: A, — R, and assume that ¢ = Dl'}¢ = 0on T},
We have that

Y hdAﬁv(z)go(z):i Y., h'DID";0(z)DiD" p(z). (5.3.1)

z€NR Uy, i,j=1z€/A\,UI',
So, if we define the scalar product (f, g)L% (AyuTy) 0N functions f, g: Ay — R™" by
(f, g)Lh*(AhUFh =), Z hfij(2)8i(2)
zeN, 1,j=1

we have
(Ao, P2 (a,ur,) = (Vio, vlzl(P)Lﬁ,*(Ahth) : (5.3.2)

Furthermore, we have, for any i € {1,...,d}, that

(D?D}iivl(P)Lﬁ(AhUFh) (0, D/D" i®)i2(a,ury) - (5.3.3)
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Proof. Observe that we have the summation-by-parts identity

Y, DLif(z)8(z)= Y. f(z)D%g(2) (5.3.4)

z€(hZ)d z€(hZ)4

for f,g: (hZ)4 — R such that at least one of f, g has compact support, and i € {1,...,d}
(this follows from the one-dimensional case, where it can be easily checked). This immedi-
ately implies (5.3.3).

Next, observe that none of the terms in (5.3.1) depends on values of v or ¢ outside of Ay,
Thus we can extend v and ¢ by 0 to all of (hZ)9 and prove equivalently that

d
Z i A2u(z)g(z) = Z W A0(2)App(z) = Z Z thf’D’i]-v(z)D?D;ijq)(z).
ze(hZ)d ze(hZ)d ij=1ze(hz)4
This follows from repeated application of (5.3.4). O

For the case of the boundary conditions in (5.1.2), the situation is slightly more involved.
We define, fori,j € {1,...,d} withi # j, the set

= {Z ely: Z—|—hA,‘j C [0,1]d},
where A;; is the discrete square
Aij = {0,e;, —¢j e — ¢},

and note that B
zeT\T] = (@E+hAj)NA, =0 ifi#j.
Lemma 5.3.2. Let v, ¢: Ay, — R, and assume that ¢ = DOVq) = 0 on I'y,. We then have that

d

Y E6()e(z) = Y. X #DID! o(z)DID" 4(2)
ZEAhUF;, l]*].ZEAh
(5.3.5)

+5 Z Y hDID" v(z)DI'D";¢(z) + Z Y. n'D{D" 0(z)D{ D" ;¢(2) .

l 1z€ly i,j= 1261";1]

So, if we define the scalar product (f,g)le _(A,ur,) On functions f, g: Ay — R™" by

(f, 82 2 _(ApUTy) ¢ Z Z hdfl] gz] )+ 5 Z Zhdfzz z)ii(z) + Z thll gll

i,j=1z€Ay z 1z€ly, z]?é 1 zel“”
i

then we have that
(Ajo, P)2(aury) = (Vio, Vh(P)LZ (ARUT) * (5.3.6)

In addition, if we also define for f,g: Ay, — R the scalar product

(f, &) 2 _(AUTy) *= Z hdfij(z)gu "’ Z hdfzz 2)8ii(z),

zZEA, ZEA;,

then we have, for any i € {1,...,d}, that

(DiD" o, Pz (a,ur,) = (D D" v, (P)Lilw(/\hurh) (v, D}D" (P)L2 _(ApUTy) - (5.3.7)
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5 Optimal order finite difference approximation

¢(z) forze Ay

Proof. Define ¢: (hZ)¢ — R as §(z) = { . Then we can apply Lemma

0 otherwise
5.3.1 to v, ¢ and obtain

d
Y. hA()ez) = Y, hAwp@EMgG) =Y, Y kD!D"0(z)DID" ¢(z).

ze N UL, ze AU, Z,]:1 ze A\, ULy,

We trivially have
Y. MA@ = Y, hAju(E)e(z).
ze /ULy, ze AUy,
Furthermore, Dl’?D’ijq")(z) is equal to D?D’ijgo(z) if z € Ay. If z € T, we have DI'D" .¢(z) =
D?D’ij(p(z) forz € TV

" Therefore,

I1D!D" .¢(z) and DI'D" .¢(z) =
2 DiD2,9(2) ! ,190() 0 otherwise

d d
Y, Y rDID"0(2)DID";¢(z) = Y Y h'D!D" 0(z)DI D" ;4(z)

l,]:1 ze A\, ULy, Z,]:1 zEN

14 . d .
+5 Y ¥ hDID! 0(z)D!D" () + Y. Y hDID" 0(z)DID! 16(z).

i=12z€T), Bj=1 yeri

By combining the last three displayed equalities we deduce (5.3.5). With a similar argument
we can obtain (5.3.7) from (5.3.3). O

Next, we state Poincaré-type inequalities for the two sets of boundary conditions con-
sidered.

Lemma 5.3.3. Let v: A, — R, and suppose that ¢ = D}'¢ = 0 on T}, Then,

ol < CIVEDIL2 (A, (5.3.8)
Lemma 5.3.4. Let v: /~\h — R, and suppose that ¢ = Dé‘,vgp =0onTy. Then,

o]l 2 (a,) < CHV%UHL%/N(A,I)' (5.3.9)

Proof of Lemma 5.3.3. We can extend v by 0 to (hZ)? without changing the statement of the
lemma. Now observe that for f: (hZ)¢ — R with support contained in a cube of side-length
L,andi € {1,...,d}, we have the Poincaré inequality

”fHLﬁ((hz)d) < CLHDiifHLﬁ((hZ)d) .

Indeed this follows from the one-dimensional case, which can be proved by a straight-
forward summation by parts. If we apply this inequality to v and Vv, we easily deduce
(5.3.8). O

v(z) forz e Ay

Proof of Lemma 5.3.4. Let 9(z) := { . Then, 7 satisfies the assumptions of

0 otherwise
Lemma 5.3.3, so that

lalliza,) < CUVlliz (-
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5.3 Estimates for the finite difference schemes

Furthermore it is easy to check that
. 2
HV%UHLﬁl*(Ah) < thvHLﬁ/N(Ah)

and
HUHH,f(A,,) < zHﬁqu(Ah) ,

and hence we directly deduce (5.3.9). O

5.3.2 Proofs of the main theorems

We have already sketched the proof of Theorem 5.1.1 in the introduction. We now provide
additional details. Parts of the following argument already appeared in the proof of Theorem
4.23.

Proof of Theorem 5.1.1. As was mentioned at the start of Section 5.2.1, we can assume that u
is supported in [0, %)2 Let E: A;, — R be defined by E := u — U. Then,

E=0 only,
Dy,E=D;,ii  onTy.
Let E be the function from Lemma 5.2.5. Then,

E-E=0 onTy,
D (E—E)=0 onTj.

Therefore, using the results from Section 5.3.1 we deduce that

2 A A
_(apury) — (Ah(E —E)E— E)L%(Ahurh)
= (A%E/E - E)L%(Ahurh) - (V%E, V%(E - E))L%VN(A,,urh) .

Vi (E— E)H
(5.3.10)

Using (5.1.9) we can rewrite A%E as follows
NE = Ahu — N2U = A2ii — T*+2f = A2t — T2 A%
= 2 D}'D" Ayt — T"*297 Ail
i=1

= ZDhDh Ayil — DID" TV TIATE

B2 A
R SV

d
=Y D'D".¢;,
i=1

where we have abbreviated

@i = Ayl — T T T

h2 A ~
- LTy oA

If we insert this into (5.3.10) and use the summation-by-parts formula (5.3.7) we arrive at

A

d
IVHE = E)1; o) = (90 DIDAE = By = (VEE VA(E = Bz a,omy

i=1
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5 Optimal order finite difference approximation

d
< ( ||§9iHLg(Ahurh) + HV%EHL%(A;,UF;,)> HV%(E - E)HLZ (A,UTy) 7
i=1

h,~

and thus
2 2 d
IViEllz (a,ury < IViEllza,or,) + Y l9ill 2 (aur,) - (5.3.11)
' i—1

The first term on the right-hand side here is bounded by Ch*~?||u|| js(y) by construction
of E. The summands of the sum can be bounded using the Bramble-Hilbert lemma as in the
proof of [JS14, Theorem 2.68]. Let us sketch the argument for completeness:

Recall that

@i(x) = Ayii(x) — TV ... T T

M LT A(x)

Because s > %,

| Ayt (x)| < COE oo g (=) < CONEN s (e (=) -
In addition s > % implies according to [JS14, Theorem 1.67] that

h,2 h,2 h,2
T2 T2 T

il Té”zAﬁ(x)] < C(h)HﬁHHS(er(fh,h)d) :

Thus ¢;(x) is a bounded linear functional of # € H*(x + (—h, h)?). This functional vanishes
when i, (_j sy is a polynomial of degree at most 3. Indeed, then Aii(y) is equal to some
affine function a(y), and Ayii(x) = a(x). On the other hand, the smoothing operators Tjh’2
map affine functions to themselves, so that ¢;(x) = 0.

To summarize @;(x) is a bounded linear functional of # € H*(x + (—h,h)?) that vanishes
on polynomials of degree at most 3. Hence by the Bramble-Hilbert lemma it is bounded
by C(h)[#] s (x4 (—n,n)e) for the range of s as in the statement of the theorem. Using a scaling
argument to determine the correct prefactor of /1, we obtain

H(PiHLiN(AhUI’h) < CR° [ s (rey < CH ||t () (5.3.12)

for those s.
Now we substitute (5.3.12) into (5.3.11) and obtain the bound

HV%EHLﬁ,N(AhUFh) < CB°2{|ull s )

for the range of s as in the statement of the theorem. The discrete Poincaré inequality, Lemma
5.3.4, immediately implies the asserted error bound. O

Proof of Theorem 5.1.2. The proof is the same as that of Theorem 5.1.1. The only differences
are that we work with the inner product (-, -) 12, (AUTy) instead of (-, ) 12 _(aur,), use E

instead of £, and Lemma 5.3.3 instead of Lemma 5.3.4. O
5.4 Further remarks

5.4.1 Variants and extensions

Let us finally collect some miscellaneous remarks on possible variations of our results and
their proofs.
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5.4 Further remarks

Remark 5.4.1. By Section 5.2.3 we know that there are extensions of the boundary values of i
with controlled || - || ~-norm and || - || «-norm respectively. In fact, the optimal such extension
is in both cases the biharmonic extension of the boundary values, i.e., the unique function V
with the given boundary values that satisfies A7V = 0 in (). Indeed, if ¢ is a function such
that p =0, DS’/VIP = 0onT, then

||v%l(v + lp)”iﬁﬁ(/\hurh) = HV%VH%’N(AWM) + HV%I’UH%%,N(AWDI) + Z(ViV, v%‘/’)Lﬁ,N(Ahurh)

and (V3V, V%lp)Lﬁ (a,ury) = 0, and similarly for | - || I2_(A,ur,)- This means that we could

assume L to be discretely biharmonic, and this would simplify the proof of Theorem 5.1.1
slightly. However, for more general fourth-order elliptic operators one cannot use this fact,
so we chose to avoid it here.

Remark 5.4.2. Using function space interpolation as in Lemma 5.4.9 it is possible to deduce
the intermediate cases of Theorem 5.1.1 and 5.1.2 from the borderline cases s = 4 (or s = 3)
and s = 3 + &. Our method of proof for s = 4 (or s = 3) however directly yields the desired
bounds for all relevant s, without the need to resort to function space interpolation here.

Remark 5.4.3. Our smoothing operator T"?2 has the advantage that it is given by convolu-
tion with a kernel with support in [, h]9 so that, when it is applied to f, the values in Ay,
of the resulting function do not involve values of f outside (). However, one might want to
use stronger mollification operators, as in [JIS85], for example. In particular using T"33
would allow one to weaken the assumptions on s to s > % max(3,d). This is possible if one
extends f to a function in H~*(IRY) in some way or redefines the finite difference scheme
appropriately near the boundary. Apart from this issue, our proof applies equally well to
regularization by T"% 3, See Theorem 4.2.3 in Chapter 4 for a result of this kind.

Remark 5.4.4. In (5.1.2) and (5.1.4) we regularized the right-hand side by applying T'%-2.
One might wonder whether some other choice of a regularizing operator, T} say, would
have been equally appropriate here.

While we do not have a full answer to this question, we shall present a few necessary
conditions on T} that will clarify why T"2-2 is a natural choice. We only consider T, defined
by convolution with some kernel ®),, where ®, = © (E) for some ®: RY — R. As discussed
in the previous remark, ® should have support in [—1,1]¢. We want T} f to be continuous
for each f € H*"*(Q)), where s > 2, and this requires © € N3 H*75(Q)). Furthermore, T} f
should approximate f in some sense, and thus we require T} f — f pointwise as h — 0 for
any f € C*(Q), say.

Suppose now that the analogues of Theorem 5.1.1 and Theorem 5.1.2 hold with T} in
place of T"?+2. This means that u + U’ is uniformly bounded in & as a map from Hj(Q)
into H2(A) for any 3 < s < 4; note that one can easily verify that Hu||H]3 < Cllullgs )
uniformly in & < 1. This means that f — T} f is uniformly bounded in / as a map from
H**(Q) into H, ?(Ay,) . and therefore

(T}lszqp)L%(Qh) < C||fHH5*4(Q)||§0||H}2,(Qh) NS H%,O(Ah)/

uniformly in & < 1. After a short calculation one sees that this implies that

)3 @<x;> 9(x)

xeNy

< CHQDHHﬁ(Ah) V¢ € Hyo(n), (5.4.1)
Hy™(Q)

4Here the norm on H ' 2(Ayp,) is given as the dual of the norm on H%/O (Ay,), the subspace of HZ(A;,) consisting
of those functions which are 0 outside of Ay,.

143



5 Optimal order finite difference approximation

uniformly in & < 1. In particular the H*~-seminorm of the term on the left stays bounded
as h — 0. Choosing s > 1 and using test functions ¢ of the form ¢(x) = (a - x + b)5(x) for
some cut-off function # that is equal to 1 on some open set, one can show that (5.4.1) implies
that
Y (a-x+b)®(x—-) isaffine for eacha € R?and b € R.
xeZd

This affine function needs to be the same function y +— a - y + b as otherwise T} f does not
approximate f for functions f that are locally equal to y +— a - y + b. Therefore we actually
need that

Y (a-x+b)®(x —-) = a-y+bis affine for each a € RYand b € R. (54.2)

xeZd

This is a rather strong condition on @. If we also recall the requirements supp © C [—1,1]
and O € . H*75(Q), then in dimension d = 1 the only remaining © is given by ®(x) =
6>(x). In dimension d > 2 there are other choices beyond ©(x) = 6,(x1) - ... 62(xq4), but
that kernel is the unique one if we also demand that it factorizes into functions of the d
coordinates. For further results on mollifiers in Sobolev spaces the reader is referred to [JS14,
Section 1.9].

5.4.2 Density results

This section is concerned with the various definitions of the space Hik) in the introduction.

Let us recall what we want to prove.

Lemma 5.4.5. Let Let & = I} x - - - X Iy, where [; C R are (possibly unbounded) open intervals,
s €R,s>0,and k € INg such that k + % < s. Then, the following spaces are equal:

i) Hp, (E), the space of all u € H*(Z) such that the traces of d',u for 0 < i < k vanish on 9Z;

I-llms (=

i) {u e C®(E): 0,u=00n0EVi <k} ', the closure in the H®(Z)-norm of the set of all

functions in C*(E) whose derivatives up to order k vanish on 0Z;
—_ in(k+1,8) /—
iii) He(8) N Hyne) (g,

Remark 5.4.6. This result actually holds in far more generality (with basically the same proof):
on the one hand one can replace the condition 9,u = 0 for 0 < i < k by the more general
condition 9/,u = 0 for i € K, where K C IN, as long as s — % ¢ K. On the other hand one can
take 2 to be any domain with Lipschitz boundary. The only additional difficulty then is
to define 9/,u in view of the fact that v is in general only a measurable function. However
if one defines 9! u as the appropriate linear combination of the traces of 9*u for |a| = i (cf.
[MM13, p. 156]) the results still hold.

Proof of Lemma 5.4.5. As was already remarked in Section 5.1.3, for the Lipschitz domain &,
every function in C®°(E) is the restriction of a function in C®°(IRY) to E. In particular, we
have that C°(E) C H%(E).

We will prove the inclusions

{1 € Co(E): obu = DondEVi < k] ™  pp(z) 0 Mk (z) (5.43)
— min(k+1,5) /= -
B (@) N Hy " (@) ¢ 1Y (8), (5.4.4)
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5.4 Further remarks

[RIPHE

Hfyy () € {u € C2(E): dju=00n0Z Vi < k}
(5.4.5)

The inclusion (5.4.4) follows immediately from the definitions and standard trace theorems.
Next observe that trivially

[ llms

{ueCe(E):0u=00ndZVi<k} == CHT),

so in order to prove (5.4.3) we only need to verify that

(1€ Co(E): hu = DondEVi < k)| " ¢ gmintkt1s) )

To see this, it suffices to prove that

1. . .
(e Ce(Z): o0u=0ondE Vi< k}l\ | gmin(i+1,5) ) c H(I)mn(k+1,s)(3).

This follows from general theory (e.g. [MM13, Theorem 3.18]), but it is also easy to
verify by direct calculations: we need to check that we can approximate any function
ve{ueCPE): du=00n0dZ Vi< k} with C®(E)-functions in the H™nk+15)-norm.

The proof of this assertion proceeds as follows. The assumptions on v imply that the
extension @ of v by 0 to R? is in C*(R?). In addition, & € H**1(IRY). To verify this one can
use that all derivatives of v of order k are continuous, have zero trace, and are in H'(Z).
Hence, their extensions by zero belong to H!(IRY). This is well known for general Lipschitz
domains (and is easily seen by a partition of unity argument and transformation to the
half-space situation by composition with a bi-Lipschitz map). Now dilation is continuous in
H*1(RR?), and hence v can be approximated by Hi ™1 (Z) functions in the H**! norm. Thus,
v € H51(E). Consequently, v can be approximated in the || - || e+1 norm, and in particular
in the possibly weaker norm || - || yminsi1) by C°(2) functions.

It remains to prove (5.4.5). We first observe that

{u € C(E): 0u =00ndE Vi< k} = C(E) N Hjjy (8).

Taking this into account, we need to verify that C°(E) N H? (K )(H) is dense in Hf, (E). Itis

easy to see that C*(E) N H{, )( Z) is dense in C®(E) N Hj, )(”), so it remains to prove that
the latter space is dense in ka) (E). To see this we apply the criterion of Burenkov [Bur98,
Theorem 2 on p. 49]. The first three assumptions of that theorem are obviously satisfied, and
for the fourth we need to check that every u € H?k) (E) of compact support is continuous

under translations, which is once again clear. O

5.4.3 Remarks on Interpolation

In this section we shall collect and discuss various results on interpolation spaces that
were used in our work. As we only consider Hilbert spaces, we do not need the theory of
interpolation spaces in its full generality and can make some simplifications.

We consider two separable Hilbert spaces X and Y such that X C Y is dense and the
injection is continuous. Then, given 6 € [0, 1], we can consider the associated interpolation
spaces [X, Y] := D(A'~?) equipped with the graph norm, where A is a self-adjoint positive
operator on Y with domain X (see [LM72a, Section 2] for details, starting with the nontrivial
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5 Optimal order finite difference approximation

fact that such a A always exists). Because we are considering Hilbert spaces, this definition
yields up to equivalence of norms the same space as the complex interpolation space [X, Y]y
or the real interpolation space [X, Y]g (see [LM72a, Section 14.2 and Section 15] for proofs).
Thus we will be able to freely use results for either of these interpolation techniques from
the literature.

Our first task is to study whether the spaces H: ?k) (E) form an interpolation scale, where

Z c RYis open and connected. If E has a smooth boundary this was shown in [Gri67]
with an alternative proof in [L6f92]. However we are interested in the cases & = (0,1) or
E = (0,00)4, and the two aforementioned proofs do not easily extend to that case. On the
other hand, if & has Lipschitz boundary then there are results concerning the interpolation
scales H*(E) and Hj(E) (see e.g. [Bra95]), but not for our mixed case.

Fortunately, in our case it is possible to use the fact that our domain is a cartesian product
in combination with results from [LM72a] to give a proof of the desired result by induction
on the dimension.

We begin by stating a one-dimensional but vector-valued result that we will need in the
proof of the following lemmas. In addition to the notation from the introduction, we define
H;(I), where I C R is an open interval such that 0 € I, as the closure of the linear space of
functions u contained in C*(I) N H*(I) with ¥/(0) = 0 in the || - || ys=-norm.

Lemma 5.4.7. Let E be a separable Hilbert space, I C R a (possibly unbounded) open interval, and
ke€N.Lets>t>1andlet € (0,1). Ifs—% ¢ {0,1,... k}and (1—0)s— 3 ¢ {0,1,...,k},
then we have that

s 1-60)s
[H(k)(lf E), LZ(I/ E)}G = H((k) ) (I/ E)- (5.4.6)

Furthermore, if0 € I, s # % and (1 —0)s # %, then
[Hj(I,E),L*(1,E)], = Hy "°(LE). (5.4.7)

Proof. If E = R then (5.4.6) is a special case of [Gri67, Théoreme 8.1]. The Hilbert-space-
valued case follows from a simple general tensorization argument, see Lemma 5.4.8 below.
For (5.4.7) it suffices again to consider the case E = IR. The inclusion “C” is straightfor-
ward. For the converse inclusion we adapt the strategy from [Gri67]. Our goal is to construct
for any given f € H((;_Q)S(I) some u € L*(R*, Hf,, (I) N Hz (R, L2(I)) with u(-,0) = f (cf.
[Gri67, Definition 2.2i).
If s < 3 then Hj(I) = H*(I) and the assertion follows by standard results. Thus we may
assume s > 3.
We first assume that s — % ¢ Nand (1—6)s— % ¢ IN. We first define the extension u of f on
INR* and IN R~ separately. Let 7 € C*([0,1)) with 7 = 1 on [0, ] and set, for x € INR*Y,

fo(x) = f(x),

—0 fori<k< L1

fr=0 forl<k<zg—73,
g (0,y) =0,

.aff ) 1 )
+ _ iZ) _ _ =
g = (F) 5 (0)n(y) forj<(1-0)s—7andj#1,
1

1
:t H
gj(O,y)—O for(1—6)s—-<j<s—z=.
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Then, the compatibility conditions in [Gri67, Théoréme 7.2] are satisfied and thus there exist
u® € IA(RT, H (INRF)) N H@ (RT, L2(INRY))
such that
uw*(0,x) = f(x),
2 (5,0) = g )

Set u(y, x) = u™(y, x) for +x > 0. Then, in particular #’(y,0) = 0. The condition f € H(1~%)s
implies that (—1)/ 8§ = g;r for j < (1 —6)s — 1 and hence this condition holds for all ;.
Because s ¢ Ny + 3 it follows that u(-,y) € H*(I) for ally > 0 and in fact u(-,y) € Hj(I).
Thus,

u € LARY, Hy(I)) nH= (R, LA(I))
and u(0, x) = f(x). By [Gri67, Definition 2.2] we deduce that f € [Hj(I), L*(I)],, and this
concludes the proof of (5.4.7).

It remains to remove the assumptions (1 —6)s — 3 ¢ N and s — § ¢ IN. This can easily be
handled by using [LM72a, Theorem 13.3] and reiteration. For the convenience of the reader
we give the details.

Consider the cases — 3 € N, but (1 —0)s — 3 & N. Lets, > s > 3 besuch thats, — 3 ¢ N
and let 0, be such that s = (1 — 6, )s.. By the reiteration theorem [LM72a, Theorem 6.1] we
have

[Hi(D), L2(D)], = [[H;*(I)/LZ(I)]& ,LZ(I)]G = [H;*(D'LZ(I)]G-%G*—QG*

and the right-hand side equals HS*G)S(I ) by what we have already shown (note that
(1—(0+46,—00,))s. = (1—10)s).

Next consider the remaining case that (1 — 6)s — 3 € N. Choose §_ < 6 < 6, close
enough to 0 such that (1 —61)s — 3 ¢ Nand 3 ¢ [(1 —6.)s, (1 — 6_)s]. Let § be such that
0 = (1—0)0_ + 06,. Again by reiteration and the previous results we have

[H3(1), L2(1)], = [ [H3(D, L3(D)], , [Hi(D, LA(D], | = [H @), B ()]

and it suffices to show that the right-hand side equals Hélfg)(lfe’)sw(l*o*)s (I)=H (1-6)s (I).
To that end, observe that

Hy(I) = {{f € H'(I): f'(0) =0} fort> 3,

HY(I) fort < 3,

is a closed subspace of H'(I) of finite codimension for any ¢ # 3. Now [LM72a, Theorem
13.3] implies that for t < ' < 3 or 3 <t <+ and 0 € [0,1] we have

HE (1), BY(D|, = B ).

In particular,
|:H4(#1*97)S (I), H#(:*QJF)S (I):| — Hél*é)(lfef)sﬁ’g(l*GJF)S (I) .

This completes the proof.
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5 Optimal order finite difference approximation

Lemma 5.4.8. Let X C Y be Hilbert spaces of real-valued functions, as above. Let E be a separable
Hilbert space and denote by X ® E and Y ® E the corresponding spaces of E-valued functions. Then,
forall 6 € (0,1),

[X®EY®E]p=[X,Y]p®E,

with equivalent norms. Here for a Hilbert space Z of real-valued functions the scalar product
on Z ® E is defined as follows. If (en)S_, is an orthonormal basis of E and f = Y ;71 fuem,

Q=Y 1 Qmem, then

(o]

(f, 8)xeE = Z (fm gm)x

m=1
Proof. To show the inclusion “D>” leta € [X,Y]p ® E and § > 0. Then a,, € [X, Y]y and by
[Gri67, Definition 2.2]) there exist u,, € L2(R*, X) N Hz (R*,Y) with a,, = u,,(0) and

e )+ il g g < U+ Olanllixn, =12,

Taking the square and summing over m we see that

Z ||“m||L2 R+,X) + ||“m||2 s < (1+5)ZHQHZX,Y ®E *
Jin [X,Y]e

(R+,Y)

Set u := ¥°_, . Since S < oo we see that u € L2(RT, X ® E) N H%(R*,Y ® E). Thus
a=1u(0) € [X®E,Y®E]pand

lallxeryer, <25 <2(1+68)al v ok -

The proof of the converse inclusion, “C”, is similar: Leta € [X ® E,Y ® E|g. Then there is
auc L2(RY,X®E)NH»(R",Y ® E) with u(0) = a and

[l 2 xco) + [l < (1+9)allxer v, -

H2 (R YQE) —
In particular u,, = (u,e,)r satisfies u,, € L>(R*,X) N HleJ(R*,Y), m = 1,2,.... Thus
am = uy(0) € [X, Y]y, and we have

[ee]

2
H“H [X,Y]p®E — Z Hﬂmu[x,y}e

m=1

<2 Z H”mHLZ R+,x) T H“m”2

o] 9 (R+,Y)
= 2l + 20l
<2(1+46) ||a||[X®E,y®E}9 .
That completes the proof of the lemma. O

Now we can establish the desired interpolation results in higher dimensions. For the
following lemma, we are interested in the cases & = Qandk =1or & = (0, oo)d and k = 0.

Lemma 5.4.9. Let & = [ X -+ X Iy, where I; C R are (possibly unbounded) open intervals.
Let K = {kl,... km} C No. Lets >t > 0, and let 0 € [0,1]. If none of s — 1, t — 5 and
(1—0)s+6t—Jarein {0,1,...k}, then

S — — 1-6)s+6t /1~
{H(k)(‘:‘)/HEk)(‘:‘)} )= Hgk) SHE), (5.4.8)
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and, in particular, if s ¢ {0,1,...k}, (1 —0)s — 1 € {0,1,...k}, then
[ o (E),LZ(E)L = {17 (w). (5.4.9)

Proof. The identity (5.4.8) immediately follows from (5.4.9) and reiteration, so it suffices to
establish (5.4.9).

We proceed by induction on d. The case d = 1 was established in Lemma 5.4.7. Now
assume that the theorem holds for d — 1 dimensions. The following argument is similar to
the one in Section 2.1 in [LM72b].

LetZ =1} x -+ x Iy_1, and write x = (x/,x4). If we interpret a function E — R as a
function Iy — (E' — R), we claim that

L*(8) = L*(Iy, L*(Z")) (5.4.10)

and
o(8) = L2(ls, Hyy (21) N Hy (1e, LA (Z)) (5.4.11)

Indeed, (5.4.10) is obvious. For (5.4.11) one can argue as follows. It is well-known (and can
be proved using the Fourier transform, for example) that

HY(RY) = L2(R, H*(RY™1)) N HS(R, L2(R471)) . (5.4.12)

The sets &' and Iy have Lipschitz boundary, and so there exists an extension operator
E, mapping H!(Z) continuously to H!(RY) for t € {0,s}, that also maps H!(Z" x {x4})
continuously to H!(RY~! x {x4}) for any x4 € I3. One can construct such an E by first
applying an appropriate extension operator on each slice &' x {x4} C R4 x {x4} and
then extending in the direction eq. Using this extension operator, one can easily check that
(5.4.12) implies also that

[x]

H*(E) = L*(Iq, H*(Z")) N H¥ (14, L*(Z")).

From this we want to deduce (5.4.11) by considering the faces of Z separately. We begin
with “C”in (5.4.11). Letu € H?k) (Z),and take j < d —1. Let E}/i x I4 be the two faces of &

orthogonal to e] By assumption the trace of 8iu for i < k vanishes on :; 4 X Iy as an element
of H* 7/~ 1/2( 4 X Ig) and thus also as an element of L2(Id H—i—12(5! By ). In particular, for
almost every xd the trace of 81 (+,x4) vanishes on E! i X {x4}. Thisholds forall j <d —1
and alli < k,and sou € LZ(Id,Hf )(”/)). We can argue similarly for the case j = d to

deduce that u € Hj, (I3, L?(Z')) and have thus shown “C” in (5.4.11). The argument for
“>” is analogous. Thus we have established (5.4.11).
We have that L2(Ig, H{, )(”’ )) is the domain of an unbounded positive operator A; on

L%(14,L?(E")), and A; is an operator in x’, independent of xg4. Similarly, Hpy (I3, L2(E)) is
the domain of an unbounded positive operator Ay on L?(Iy, L>(E')), and A; is an operator

in x’, independent of x4. In particular, A; and A, commute. Thus we can apply the criterion
for the interpolation space of an intersection [LM72a, Theorem 13.1] and obtain that

[Hiy @), 123)],
_ [L (Lo, Hipy (1)) N HE (Lo, LA(E")), L3(1, L2(E)

[L2(Lg, (i (29), L2 (1, LAE))| 0 | f><rd,L2<a ) L2 (1, L)),

=)
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5 Optimal order finite difference approximation

Now, according to [LM72a, Remark 14.4] and using the induction hypothesis (5.4.9) for
d — 1, we have

|L2(ls, Hiyy (), L (e, LX) || = L7 (1, [H3 (&), 12(@)] )
= 12(Is, HY, 7*(2)).
Similarly, using (5.4.6), we find

= = —0)s -
[Hj (ha L2(21), 1200, L&), = (10, 1))

If we combine the last three equalities, we deduce that

[Hiy(2),L2(®)] | = 21, Hiy (@) 0 i " (10, LX)

That completes the proof of the lemma. O

For the next lemma recall the definition of G® from the proof of Lemma 5.2.4.

Lemma 5.4.10. Let s >t > 0, and let 0 € (0,1). Then, if none of s, t and (1 — 0)s + 6t are in

%, %} we have

[Gs((O,oo)d_l x R), G((0, 00)4~1 x ]R)} =G (0,004 I X R),  (5413)

and in particular, if s & {%,% ,(1—-0)s ¢ {%, %}, then

[GS((O,ooyH x R), L2((0, 00)4"! x ]R)} L= GU7((0,00)" ! X R). (5.4.14)

Proof. As in the previous lemma, (5.4.13) follows from (5.4.14) and reiteration, so we will
only prove (5.4.14). Observe that
G*((0,00)™ X R) = L*(IR, H{y ((0,00)~")) N Hy(R, L*((0, 00)* 1)
and
L2((0,00)7! x R) = L*(IR, L*((0,00)* ™)) .
Intersection and interpolation commute by the same argument as in the proof of Lemma

5.4.9, and so we have

[G°((0,00) ™ X R, L2((0,00) ™ X R = [L2(R ) ((0,00)% 1), (R, L3((0,0) )

N [Hi(R, L2((0,00)* 1), L2(R, L*((0,00)* 1))

0
.
Now, by Lemma 5.4.9 we have
[L2(R, ) ((0,00)~1), L2(R, L2((0,00) 1)) | = LA(R, H{g " ((0,e0)%71),
and Lemma 5.4.7 implies that
|H (R, L2((0,00)4~1), LA(R, L2((0,00) ™)) | = Hy" (R, L2((0, 00) ).

The last three equalities combined imply (5.4.14). O
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6 Pinning for the membrane model in
dimension four and above

’This chapter is based on the author’s preprint [Sch20b], with only minor changes.

6.1 Introduction

In this chapter we study the pinned membrane model in dimension four and above. The
problem and our main results were described in Section 1.3.4. In this chapter we are focussed
on the membrane model, and so we drop all subscripts A.

Recall that we consider the membrane model

Pa(dy) = iexp (— ). |A1¢x12> [Tdy: TT do(dyn). (6.1.1)

xeZd xeA x€ZI\A

on some A € Z4 as well as the membrane model with J-pinning of strength ¢ > 0,

P4, (dy) = 1 77 o (— Y !Alwa) [T(dy: +edo(dys)) TT do(dys).  (612)

xezd XEA xe€ZI\A

6.1.1 Main results

Let us describe our results in detail. First of all, expanding the bracket in (6.1.2), we see that
for f: RZ' — R we have

BS(f) = Zl [exe (— D |A1¢xrz> £0) TT (s + edo(dp)) [T do(clp)

xeZd xeA xeZI\A
): /exp (- Y Arys |2> e TT dgo [T  do(dys) (6.1.3)
A ACA veZd reA\A xeZ9\(A\A)
€| |Z A
=) Zig[\\]EA\A(f>'
ACA A

where [Ef and E A\A denote the expectation with respect to I, and IP A\As respectively. Thus,
we have

Pj(dy) = ) Th(A)Pra(dy) (6.1.4)
ACA
where 4
. - & ZA\A
A (A) = T
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6 Pinning for the membrane model in dimension four and above

so that (% is a probability measure on PB(A), the powerset of A. It describes the set of pinned
points. In fact, one easily sees that for any A C A we have

A={x € A: ¢y =0} P, y-almostsurely.

By (6.1.4), P, is a mixture of the Gaussian measures IP5\4 for A C A. Our first goal
will therefore be to understand the weights of this mixture, i.e. the measure (% . We write
C5(f) for " aca f(A)C4 (A). The first result is that the measures % satisfies a correlation
inequality.

Theorem 6.1.1. The measure (' satisfies the FKG inequality, i.e.

Ta(f8) = CA(FITA(8)
for any pair of increasing functions f,g: P(A) — R.

This FKG inequality allows us to prove directly that a thermodynamic limit of the ’
exists. We can also prove that a thermodynamic limit of the IP%, exists. That result relies on
the estimates for the Green’s function which we state in Theorem 6.1.5 below.

Theorem 6.1.2. If d > 4, the thermodynamic limit

fi= 1 e
4 A;r%dgA

exists and is translation invariant.
Furthermore, there is a constant e4 depending on d only such that for any e < ey the thermody-
namic limit

exists and is translation invariant.

The convergence here is meant as weak convergence of measures on RZ’ equipped with
the cylinder o-algebra, i.e. the measures integrated against any bounded local function
converge.

It is easy to see that [P is an infinite volume Gibbs measure for the interaction (6.1.2) (with
appropriate boundary conditions). We write [E® for the expectation with respect to IP*.

We will now state a few results on (f, and IP, that hold uniformly in A. Theorem 6.1.2
then implies that they hold for ¢* and P as well.

We begin with precise estimates on the pinned set. The heuristic is that this set behaves
like a Bernoulli point process with density py depending on e. It turns out that this is true
in a rather strong sense if d > 5. In d = 4 this no longer holds, but fortunately we can still
compare the probabilities that large sets are free of pinned points, and this is sufficient to
continue with our argument. The precise result is the following. For the definition of strong
stochastic domination see Definition 6.2.2. We denote by A a random variable distributed
according to Zf, .

Theorem 6.1.3. Let d > 4. There are constants cq, Cq, €4 « depending on d only with the following
properties.
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6.1 Introduction

a) Ifd > 5and py_ = cqye, then for any A @ Z% and any € < ¢4 . the measure {5 strongly
dominates the Bernoulli measure on B () with parameter pqy_. In particular for any E C A

(1—pa ) > 5 (ANE = 2). (6.1.5)

b) Ifd > 5and pyy = Cqe, then for any A € Z% and any e < &4 . the measure & is strongly
dominated by the Bernoulli measure on () with parameter pq 1. In particular for any
ECA

(1—pa ) < ZH(ANE = 2). (6.1.6)

c) Ifd=4and ps_ = c4 TTog 72 1oggg\1/2' then for any E C A and any € < &4, we have
(1—ps,)F > 5 (ANE=2). 6.1.7)

d) If d = 4, then there is for any a« > 0 a constant Cy, depending on d and « such that with
Pa s = C4,anor any E C Awithd(E,Z%\ A) > e * and any ¢ < ¢4, we have

(1—par ) <TQ(ANE =2). (6.1.8)

All estimates also hold with {* in place of (', .

Let us warn the reader that we use the notation pq4 1 in the opposite way as in [BVO01].
Our convention here follows [BCK17].

Note carefully that we do not claim any domination result in case d = 4. In fact, the
same argument as in [BV01, Section 2] shows that neither {7 is strongly dominated by
the Bernoulli measure on P(A) with parameter p4 1, nor that { strongly dominates the
Bernoulli measure on 3(A) with parameter py .

In the subcritical dimensions d < 4 the set of pinned points is too correlated for any
meaningful comparison with a Bernoulli measure. This is the reason why new techniques
would be necessary to study the pinned membrane model in dimensions 2 and 3.

From Theorems 6.1.2 and 6.1.3 one immediately obtains the following corollary, which
strengthens Sakagawa’s result [Sak12] that the density of pinned points is positive for any
e > 0.

Corollary 6.1.4. Let d > 4. Consider the density of pinned points

= liminf § (A 11m 1nf A|C
Pe Aogd [A]°A )= A;A’ ICA(A

For each € > 0 we have p > cqpq,— > 0.

It is unclear whether the limit here exists in general. However, using Theorem 6.1.1 and a
subadditivity argument one can show that it exists along the sequence A, = [—n,n]4NZ9,

say.

Using the knowledge about % from Theorem 6.1.3 we can now establish some more
precise results on IP¢. For any vector 6 € S9! (where 54! is the unit sphere in RY) define
the mass

mg(0) := —limsup — p log IE* (ot ko) )| - (6.1.9)

k—oc0
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6 Pinning for the membrane model in dimension four and above

where we set log0 = —oo. Note that we take the absolute value of E*(¢iie) in this
definition. This is because for the membrane model correlations can be negative. In fact,
the heuristic in Section 6.1.2 below suggests that IE* (4|4 ) behaves like an underdamped
harmonic oscillator. In particular, we expect that the limit in (6.1.9) does not exist. In contrast,
for the gradient model the limit in (6.1.9) exists, even without the absolute values, cf. [BV01,
Appendix A].

We can show the following results on the variance, covariance and mass. Here d(x, E)
denotes the distance from x to the set E.

Theorem 6.1.5. Let d > 4, and A € Z9. There are constants cq,Cy, €4+« depending on d only
with the following property.

a) Let x € A. Then for ¢ < &4 .. we have the following estimates on the variance: if d > 5, then
cg < Ej(y3) < Cq, (6.1.10)
while if d = 4 and o > 0, then

| log ¢
32772

— Cyqlog |loge| < B (y2) < + Cylog |loge|, (6.1.11)

where the lower bound only holds if d(x, Z8 \ A) > e=* + e~ /4. The same estimates hold for
IE¢ instead of ES, (with the condition on d(x, Z% \ A) becoming vacuous).

b) Let x,y € A. Then for € < €q .. we have the following estimates on the covariance: ifd > 5,

then c
[ES (Pxtpy)| < 8172 exp (—cds“‘*!x - y\) , (6.1.12)
while if d = 4, then
€ lo 55/4 C€1/4x—
B (Pxpy)| < Cy (\;‘;UL +log(1+ |x — y\)) exp (_4|log|s|3/8y’> . (6.1.13)

The same estimates hold for IE® instead of E’, .

In particular, we have the following estimates on the mass: if d > 5, then

cqet/t <m(9) VOeSiL, (6.1.14)
while if d = 4, then
cl/4 5

The estimates in Theorem 6.1.5 are only valid for sufficiently small ¢ > 0. However,

a calculation similar to (6.1.3) reveals that for ¢ < ¢ the measure IPX) is a mixture of the

measures ]ng,\) 4, and so the theorem also implies that for any ¢ > 0 the measure IPEf) has
bounded variances and exponentially decaying covariances.

In the next section we describe some heuristics for the exponential decay of the correlations.
These heuristics suggest that the exponential rates in (6.1.12) and (6.1.13) are optimal, but
the prefactors are not. In fact, we have made no real effort to optimise these prefactors, as
this would require further technicalities. Nonetheless, as we believe that the exponential

rates in (6.1.12) and (6.1.13) are optimal, the same holds for the rates in (6.1.14) and (6.1.15).
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6.1 Introduction

The results of Theorem 6.1.5 are a far-reaching generalization of the results in [BCK16,
BCK17]. In [BCK17] it is shown that for d > 5 the mass is positive for each fixed € > 0. No
explicit lower bound on the mass is given, but if one keeps track of the constants in their
argument one can check that their proof gives the estimate

(2d+4)(2d+1)
cqe d < mg().

For d = 4 in [BCK16] stretched-exponential decay of the covariances is shown, and it was
unknown whether the decay is actually exponential.

6.1.2 Heuristics: The continuous Bilaplace equation in a perforated domain

Before we describe the proofs of our results in more detail, let us discuss a related problem
that provides some heuristics. Namely we consider the continuous Bilaplace equation in
a domain perforated by small holes. This is a well-studied problem, and the analogous
problem for the Laplacian even more so, cf. [CM97, MKO06]'. If one lets the size of the holes
tend to zero while keeping their capacity density constant, the problem converges (in an
appropriate sense) to a Bilaplace equation with a mass term on the whole domain. The
Green’s function of the associated operator decays exponentially, and so it is unsurprising
that the same holds true already for the Green'’s function in the perforated domain.

In our context, this connection gives a hint how to deduce Theorem 6.1.5 if one assumes
Theorem 6.1.3. Let us explain this in detail: fix e > 0, and consider a fixed large, but bounded
domain Q) C RY with smooth boundary. Let N € IN be a large parameter to be chosen later.
We perforate the domain NQ) with small holes of radius r > 0, centred at a subset of Z4.
Theorem 6.1.3 suggests that we choose a fraction py _ of the points in Z9 as the centres of
these holes. For now we consider the simplest case of equally-spaced holes, i.e. we place
them at (AmicZ)9, where Apie ~ (pd,_)_% is an integer. That is, we consider the equation

Nu=f inNQ\ |J Bl(x),
XG(AmiCZ)d (6.1.16)
u=0 else.

The Green’s function G of this problem should predict the behaviour of the covariances in
Theorem 6.1.5.
We can rescale (6.1.16) back to a unit domain by letting f(y) = i f (Ny), a(y) =

~a(Ny), so that 2 and f solve

NMa=f in0\ |J B0,
x€((Amic/N)Z)¢ (6.1.17)

=0 else.

In order to apply now results from [CM97], we need to treat d > 5 and d = 4 separately.
We begin with the former case. The collection of balls U¢((x,../n)z)¢ Br/n(x) has capacity
density

N \¢ d—4
u==Cq <7\mic> (%) = CdN4rd_4Ar;fC ~ CdN4rd_4pd,, = CyN*rd—4¢.

INote that the original French and Russian works date back to the 70s and 80s.
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6 Pinning for the membrane model in dimension four and above

We want to consider a limit of dense small holes where y is constant, and so we choose
N = ¢ /4, Then, according to [CM97, Example 2.14], the solution of (6.1.17) in the limit
¢ — 0 behaves like the solution of

(6.1.18)

This is a Bilaplace equation with a mass term. Its Green’s function G behaves like the Green’s
function GRe of the same equation in the full space R? (at least when we stay away from
the boundary of ()). The latter Green’s function can be computed quite explicitly using
separation of variables in spherical coordinates. One finds that Gga(%,7) = F(u'/4|x —y|),
where F(r) is a linear combination of Re <(§8r) (d=2) /QH((d) 2 /2(§sr)). Here HS" is the
Hankel function of the first kind, and (s runs through the primitive eighth roots of unity. A
short calculation using the asymptotic expansion for these functions (cf. [AS64, Equation
9.7.2]) and the fact that Gga needs to decay at infinity reveals that

. R e e P e o
Gro(%,9) = Ca (1742~ 71) <Sm (W—wd>+0(u Y4z — gl 1))

1/4 £—10
X exp <_‘u 2‘1/2 y|>

where wy is a phase shift depending only on d, and we used the standard Landau notation.
Neglecting the error term altogether, we thus expect

Cls 1 (d-1)/2 /412 — ¢ /412 — ¢
(x y) (H1/4‘x |> sin <W — wd) exp <_‘u,2|1/2y|> (6.1.19)

when |£ — | > p~1/4, and the Green’s function of (6.1.17) should behave similarly (at least
if () is large enough, i.e. diam Q) >> u~1/%). Rescaling back, we thus expect for the Green'’s
function G of (6.1.16) that

Glxy) = N‘}*‘* > (%%)

—(d-1)/2
Lo (=g iy B~y
ffuNd4Cd< XN, sin | =75y W ) exXP | oAy
CdE(d_7)/8

~ - 1/4,(d—4)/4
T D@48y — y[d-1)/2 Sin <_Cd€ P44 —y| - wd)

X exp (—Cd€1/4r(d’4)/4|x — y])

when |x — y| > Nu~1/4 = ¢71/4=(d=4)/4 Thus, G decays exponentially, with polynomial

corrections and an oscillatory term that makes G change sign. While the polynomial
corrections and the oscillatory term are not captured in (6.1.12), the exponential decay rates
in both estimates are the same (up to constant factors).

If d = 4, the argument is in principle the same, but we need to use extra care when
defining the capacity density. Following [CM97, Example 2.14] we define

V_C<N>4 L onty 1 ~C Ne
Amic ) |log §| 4’_logN—1ogr (logN—logr)\logs\%
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6.1 Introduction

. . loge|3/8 loge|/8log |1
We want ¢ — 0 while y is constant, and so we choose N = \9572 + O, (W) =

|1°g£|3/8t10}§|10g£|3/8) accordingly. Then we conclude from [CM97, Example 2.14] that the
solutions of (6.1.17) and (6.1.18) are close. The Green’s function of (6.1.18) in d = 4 still

behaves like (6.1.19), and so, rescaling back, we find again

G =6 (5 4)

1/4), -3/2 1/41.. 1/4),
%C<H |x y> Sin(_ﬂ |x y!_w4>exp<_ﬂ [x y>

N 212N 212N
C|loge|/16 Cel/4|x — y|
~ 378 372 Sin (‘ 3/8 3/8 _“’4>
e/8|x —yl |log e[3/8 + 0, (| log e[3/8))

X ex — C81/4’X _ y‘
P\ TlogeP® +o,([logeP’®)) )

when |x —y| >, Nu=1/* ~ e71/4|loge|3/8. This is again exponential decay with polynomial
corrections and an oscillatory term. The exponential decay rate is again the same as in (6.1.13)
(up to constants).

In summary, our heuristic predicts the same exponential decay rates as in Theorem 6.1.5.
The heuristic we used is rather simplistic, though. One problem is that in the context of the
membrane model a single pinned point forces the field to be zero there, but does not pose
any restrictions on the gradient of the field. In contrast, in (6.1.16) we force the field and
all its derivatives to be zero at the pinned balls. One way to improve the heuristics would
thus be to only prescribe that u has average zero over each B,(x) for x € (AmiCZ)d, instead
of it being identically zero there. This is not a serious change, though, as a modification of
[CM97, Example 2.14] or an application of the general framework in [MK06] show that the
convergence of (6.1.17) to (6.1.18) still holds, albeit with a different constant prefactor in y.

A more serious problem is that the pinned points are not distributed on a lattice, but
following the probability distribution (. If this distribution were, say, a Poisson point
process, then the framework from [MKO06] would still apply. Our actual ¥, is possibly quite
correlated (at least if d = 4), though, and so it is not clear that the heuristic still applies.
On the other hand, we are not actually interested in "quenched" estimates that hold for
all realizations of the sets of pinned points, but rather in "annealed" estimates where we
average over the randomness of the pinned points. So there is hope to retain the heuristic.

A further question is how to rigorously show that the convergence of the boundary
value problem (6.1.17) to the boundary value problem (6.1.18) implies that the Green’s
function of (6.1.17) already has the predicted behaviour. There are very few results on
this in the literature. One exception is [NV06], where this is proved rigorously for the
case of the Laplace equation in d = 3. However, that approach relies on the maximum
principle, and so one cannot extend it to our situation. Instead, in [HV18] a more robust
approach is used: There (in another context) exponential decay of the L2-norm of harmonic
functions on perforated large annuli is shown, using Widman'’s hole filler technique [Wid71]
in combination with the fact that one has a local Poincaré inequality. A similar argument is
also used in [BCK17], and the authors describe that they learned it from Vladimir Maz'ya.
The decay rates in [HV18] are not optimal, but a small modification of their argument leads
to the optimal decay rate. These arguments are the inspiration for our proof of Theorem
6.1.5 from Theorem 6.1.3. We shall explain this in more detail in the next subsection, where
we outline the proofs of our results.
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6 Pinning for the membrane model in dimension four and above

6.1.3 Main ideas of the proofs

This chapter consists of two main parts. We first establish the various results on the pinned
set, and then deduce from them the results on the variances and covariances. We will discuss
these parts separately. Before doing so, let us remark that there are two natural lengthscales
occuring. There are the average distance between pinned points

1
~ Sl/d d Z 5
Amic ~ \logs\l/s s
B d=4

and the lengthscale on which the correlations decay

1
A N{w4 d=>5
mac ™~ 10 83/8 .
logel ™ d=4

Note that we have 1 < Apic < Amac as € — 0 for any d > 4.

Estimates on the pinned set

The first novel result of this chapter is the FKG inequality for the pinned set, Theorem 6.1.1.
As already mentioned, it follows rather directly from the Gaussian correlation inequality
[Roy14], and it is standard to deduce from the FKG inequality the existence of the thermo-
dynamic limit of the set of pinned points, i.e. the first part of Theorem 6.1.2. We give these
proofs in Section 6.2.1. Note, however, that our proof of Theorem 6.1.1 is specific to the case
of /-pinning, and we conjecture that the result is not true for other pinning potentials such
as a square-well potential. The point is that conditioning a Gaussian vector on being 0 at
some coordinates yields another Gaussian vector, but that is no longer true if we condition
on some coordinates being small instead. We give a more detailed explanation in Remark
6.2.1.

For the proof of Theorem 6.1.3 in Section 6.2.2 we follow [BV01] rather closely. The
domination results in Theorem 6.1.3 a) and b) are actually already in [BCK17]. They follow
via a short calculation from the boundedness of the Green’s function in d > 5. Part d) is
a little more difficult. It could be proven as in [BV01, Section 3.2], but we give a slightly
simpler proof. The idea is that if x € E is quite far from the pinned points we have already
found, the fluctuations of ¢, are quite big, and so the chance that x is pinned is low.

By far the most difficult part of Theorem 6.1.3 is part c), where we again mostly follow
[BV01]. There we want to control the probability that E C A is free of pinned points from
above. To do so, we need to find for any configuration of pinned points that avoids E many
others that intersect E. This is done using a two-scale argument. We first consider the case
that E is a union of boxes of sidelength CAp;c, and prove (6.1.7) in this case by carefully
tracking how a pinned point in one of these boxes makes it likely that there are pinned
points in the neighbouring boxes. Next, we pass to the larger lengthscale CAmac and deduce
from the first step that for an arbitrary E, most points of E are at a distance < CApac from a
pinned point. Finally we use this knowledge together with an argument similar to the first
step to construct many configurations of pinned points that intersect E.

The main difference to [BV01] is that one cannot use random walk estimates to see how
pinning at some x € A influences the variance at y # x. Instead we use an explicit variance
estimate (Lemma 6.2.4) that follows from the monotonicity of the variance in the set of
pinned points. We also streamline the argument from [BV01] at some points and correct a
minor mistake there.
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Asymptotics for the variances and covariances

The remainder of the chapter is then concerned with proving Theorem 6.1.5 and the second
part of Theorem 6.1.2. In [BV01] the random walk representation of the Green’s function of
the Laplacian is used for that purpose. In our case there is no such representation, so we
need a completely new argument.

It turns out that the estimates for the variance follow quite easily from Theorem 6.1.3 and
the variance estimate in Lemma 6.2.4. We give details in Sections 6.5.1 and 6.5.2.

The estimates on the covariance in Theorem 6.1.3 are much more difficult. The general
strategy is the same as in [BCK17]. That is, we show that the L2-norm of the second
derivative of the "quenched" Green’s function decays exponentially on large annuli. These
annuli have to be chosen adapted to the set of pinned points, and so we do not get an
estimate valid for all realizations of .A. But our estimates hold up to an exponentially small
probability, so that we control G\ 4 for all but exponentially few A. For these we can use
a rather crude estimate. Finally, we can average these quenched estimates for the Green’s
function over A to deduce "annealed" bounds for the covariance.

The existence of the thermodynamic limit of the field in Theorem 6.1.2 follows then from
the existence of the thermodynamic limit of the set of pinned points and the quenched decay
estimates on the Green’s function. The somewhat technical proof is given in Section 6.5.3.

For the remainder of this section, let us describe in more detail how we prove the quenched
estimates on the covariance. Our main technical result used for that purpose is, roughly
speaking, the following (see Theorem 6.4.1 for the precise statement): There is a constant Ny
such that if k € IN and ¢ is sufficiently small there is an event Oy, with {5 (Qgx) > 1 — %
such thatif A € Q, and if u: Z¢ — Ris a function such that u = 0on A \ U and uA?u = 0
on Z9 \ U, we have the estimate

1
<% I (6.1.20)

2 2 2
V5012 20 (1 Qg 0 |2 (114 0y 01D -

Here szNd Ao (0) denotes a cube of halfdiameter 2k NgAmac centred at 0. This is an exterior
decay estimate for biharmonic functions that holds up to exponentially small probability
(and we state and prove in Theorem 6.4.1 also the analogous interior decay estimate).
Applying (6.1.20) with u = Ga\ 4(+,¥) it is a bit tedious but not difficult to deduce the
aforementioned quenched estimates on the Green’s function, and we do so in Sections 6.5.1
and 6.5.2.

Let us describe how to prove (6.1.20). We first outline the basic strategy that was used
in [BCK17] and (in another context) in [HV18], and then describe our novel ideas. For
convenience we pretend in the following that u is a continuous function. Adapting the
argument to the discrete setting will be somewhat technical but not hard.

We try to iterate a Widman hole filler argument [Wid71] (see, e.g., [GM12, Section 4.4]
for a modern presentation). That is, given U C RY, we want to find U’ D U, so that the
L2-norm of V2u on RY \ U is controlled by a constant less than 1 times the L?-norm of V?u
on U\ U. We also want dist(U,R% \ U’) < CAmac. Once we have such an estimate, we can
iterate it to deduce exponential decay at rate ﬁmac, at least on the L2-level.

So suppose that U C U’ are open sets and 7 is a smooth cut-off function such that

{(Nu#0ycUc{p=0yc{n#1}clU.
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6 Pinning for the membrane model in dimension four and above

Then we have

0 = (A%u,qu) = (V2u, Vi(qu)) = /17|V2u|2+2/V2u : Vu®V17+/uV2u : V27

(6.1.21)
and one can rewrite this using the Cauchy-Schwarz inequality as
/ ‘VZM ‘2
R\ U
< [nIvup
(6.1.22)

:—Z/Vzu:Vu®V11—/uV2u:V217

1 1 5
<z [ VPSP [ VR R
<5 [ [Tuls [ VR g [ el [ ey

Now if we could choose 7 in such a way that the second and fourth summand here are both
bounded by % J u\u |V2u|? we would obtain the desired decay estimate. In fact, this is what
was done in [BCK17]. However, in order to bound both the second and fourth summand,
one needs to impose strong pointwise conditions on V# and V27, and, in particular, both
need to be near zero on mesoscopic holes in the pinned set. These conditions do not allow
growth of 7 at the optimal rate, and so using this argument one cannot obtain the optimal
estimate for the decay rate (but is it comparably easy to construct an 7 that satisfies these
conditions and grows at a non-optimal rate, cf. [BCK17]).

To solve this problem we first rewrite the right hand side of (6.1.21) so that there are no
longer any terms containing V#. An integration by parts shows that

/VZM:VM®V17:—/Vu-(V-(Vu@VU)):—/Vzu:Vu®V;7—/|Vu|2A17

and hence

/V2u :Vu® Vy = —;/|Vu|2A17.

Plugging this into (6.1.21) we see that

/quzuyz = ;/[Vu\qu - /quu V2. (6.1.23)

Using the assumptions on 77 and the Cauchy-Schwarz inequality we can now estimate

S VP < [l
RA\U'

_ 1 2 2. .72
_ E/|vu| A;y—/]Rd\uuv w: V2 (6.1.24)
< 1/|Vu\2A17—|—/]u\2\V217]2+1/ |V2ul?.

2 4 Junu

If we can now arrange things in such a way that the first two summands here are each
bounded by } fw\u |V2u|?, we see that

/ VPR <3 [ v (6.1.25)
R\U/ 4 Junu
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6.1 Introduction

and now we can try to iterate this estimate to obtain exponential decay of the L2-norm of
V2u. Note that unlike (6.1.22) we now only need to impose conditions on V2.

As it turns out, the first summand in (6.1.24) can be controlled by the second and third
summand using an interpolation inequality on lengthscale A, that we discuss in 6.3.2.

The remaining task is thus to choose 7 in such a way that it grows fast enough, but we
nonetheless can bound the term [ [u|?| V2>, For that purpose we need some sort of local
Poincaré inequality on scale Apm;.. Of course, such an estimate can only hold if there are
enough pinned points close to the point of interest. In [BCK17, Lemma 4.1] this was done
provided there is a nearby cube of 3¢ points, which are all pinned. On that small cube
we then have u = Vu = 0, and some version of the Hardy-Rellich inequality forces u to
be small near that cube as well. However, this is not optimal, as cubes of 3d points that
are all pinned are very rare. We show that it is sufficient if there are d 4 1 pinned points
somewhere nearby that are well-spread out. The number d + 1 arises from the fact that we
need to eliminate nonzero affine functions on IRY. Thus, in some sense we use a multipolar
Hardy-Rellich inequality instead of a unipolar one. For multipolar Hardy inequalities cf. e.g.
[CZ13]; we could not find a detailed discussion of multipolar Hardy-Rellich inequalities in
the literature.

The local Poincaré inequality result is, roughly speaking, the following (see Theorem 6.3.1
for the precise result): Let A C A, and V C A be an arbitrary subset. Let R € IN, R > 2be a
parameter. Then

2
Hu]l'GXRH%Z(V) < Cde(l + 1g=g logR) “vzu“Lz(V+QR(O))

where Xk is the set of those points that have d + 1 well-separated pinned points at distance
< RAmic around them, and we write 1.cx, for the indicator function of that set.

This result makes it clear what we need to require of 77. Namely we want | V25| < Cl.cx,
for some R. If we have this relation, then our multipolar Hardy-Rellich inequality allows us
to control the second term on the right hand side in (6.1.24), and we can close the argument
for the exponential decay estimate.

It thus remains to choose R and construct 7 such that |[V?| < Cl.cx, in such a way
that 7 grows fast enough, and the construction should work up to an exponentially small
probability. This is the content of Sections 6.4.1 and 6.4.3. This is the technical heart of the
present chapter, and the arguments are novel. We can think of Xz as the good set, and its
complement as the bad set, and we need to construct # such that it is locally affine on the
bad set, but still grows quadratically. To execute this construction, we start with one #, that
grows quadratically, and then try to modify it so that it becomes affine on the bad set. For
such modifications it is necessary that the components of the bad set are well-separated
from each other. In general this will not be the case, but we make a multiscale composition
of the bad set into parts that live on lengthscale ¢; and are well-separated on that lengthscale,
and then we change 7. to be affine on those parts separately. The correct choice of the
lengthscales /; turns out to be the rather strange looking ¢; = CMjSAmiC, where M is some
large integer. The construction can be carried out provided the multiscale decomposition
vanishes beyond some large lengthscale. Using the results from Theorem 6.1.3 we show that
this is the case up to a probability that can be made arbitrarily small.

Unfortunately "arbitrarily small" is not quite good enough, as that means that there are
still exceptional pairs (U, U’) on which we cannot deduce (6.1.25). But such exceptional
pairs are rare, and when we iterate (6.1.25) to conclude (6.1.20) it is sufficient if we can apply
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6 Pinning for the membrane model in dimension four and above

(6.1.25) on at least half of the possible (U, U’), which is possible up to an exponentially small
probability.

This completes the construction of 7. Once we have 5 at our disposal, we can complete
the proof of (6.1.20). We refer to Section 6.4 for a more detailed exposition of the argument.

6.1.4 Notation and preliminaries

Recall the conventions from Section 1.5.

We will freely use various summation by part identities as in Chapter 2.

For r > 0 and x € Z* we let Q,(x) = x + [—r,7]* N Z* be the cube of diameter 2r around
x. Note that this deviates from the definitions in Section 1.5. We will frequently use the
Minkowski-sum of sets E, E’ defined by E4+ E' = {e+¢': e € E, ¢’ € E'}. In particular,
E + Q,(0) is the set of all points at distance < r from E.

For measures y on P(A) we write pu(f) for [ fdu = Yaca f(A)u(A). We denote a
sample from (4 by A. We define A = AU (Z\ A) for A C A and analogously A =
AU (Z9\ A). Welet Gy 4 be the discrete Green’s function of A7 on A\ A, i.e. Ga\a(x,Yy) :=
P ava($atpy).

We use these distances d with respect to | - |1 and | - |« instead of | - |, and in that case we
write dq or d instead of d.

We will use two different length scales Amic and Amac. The former describes the typical
distance between two pinned points, which according to Theorem 6.1.3 is of the order 81% if

d > 5and \1og154\11/8 if d = 4. We hence define

€

P el% + &mic5(€) d>5
mic = | Jlogel's _
7a— T &mic4 () d=4

Here amicd(€) € [0,2) is chosen in such a way that Apic is an odd integer.
The latter corresponds to the length scale on which correlations decay, and so, in line with
Theorem 6.1.5 we set

A = o7 + Omacs(€) d>5
mac ‘ logEP/S .
7/ T &mac,4 (e) d=4

where amacd(€) € [0,2Amic) is chosen such that Apac is an odd multiple of Ayic. Note that
forany d > 4 we have 1 < Apjc < Amac ase — 0.
Given an odd integer | > 0, we consider the set of /-boxes

Q= {Ql/z(x)i X € (lZ)d} = {x+ [—;ﬂd Nz xe (lZ)d}

and the set
pZZ{UQZICQl}
Qel

of I-polymers. We identify each box with the polymer consisting just of that box. We call
polymers connected if they are connected as subgraphs of Z4 with nearest-neighbour edges.
We say that two polymers touch if they are disjoint but their union is connected.
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6.2 Structure of the pinned set

The boxes in Q) form a partition of Z4. Later on we will also need boxes with some
overlap. Thus if I > 0 is an odd multiple of 3 we define

Qf = {QZ/z(x)i x € <;Z>d} = {x+ [—;,;]dﬁzd: xe <;Z>d} .

Then every point of Z¢ is contained in precisely 3¢ boxes in OF.
For some statement s we let 1, be the indicator function of s, thatis 1 = 1 if s is true, and
1s = O else.

6.2 Structure of the pinned set

In this section we prove our results on the distribution of the pinned set, i.e. Theorem 6.1.1,
the first part of Theorem 6.1.2, as well as Theorem 6.1.3.

6.2.1 Correlation inequalities

We want to establish the FKG inequality for the set of pinned points in Theorem 6.1.1. We
begin with a useful calculation. Let A C A’ C A € Z9. Then, using that do(dy) is a weak
limit of the measures % Lye(—tndyp ast — 0, we have

Za\ A 1 1
A _ /exp <_2 Z ‘All/’x|2) H dipx H do(dyx)

Za\a Za\a xeZd XEA\A x€Zd\(A\A)

1 . 1
= lim [ exp (—2 Z ‘A1¢v|2>

A\A =0 xezsd 6.2.1)
1
X H dipx H E]ltpxe(—t,t)dlpx H So(dypx)
xeA\A’ x€A\A x€ZI\(A\A)

. 1 /
We can also interpret the right hand side as the density at zero of the Gaussian vector
(x)xcan a under P\ 4 (this observation was essentially already made in [Vel06, p. 143]).
If A7\ A = {x} is a singleton, the density of ¢, at 0 is equal to \/% times the inverse of its
standard deviation. We thus obtain the formula

Z
AV ! . 6.2.2)
Za\4 27tGp\ A (X, X)
Proof of Theorem 6.1.1. We will prove the FKG lattice condition
CE(AUANG(ANAY) > 5 (A)G(A) VA A CA. (6.2.3)

It is well-known that this is a sufficient condition for the validity of the FKG inequality.
Now (6.2.3) is an easy consequence of the Gaussian correlation inequality [Roy14, LM17].
Indeed, note that by definition of {’, the estimate (6.2.3) is equivalent to

ZA\(AUAYZA\(ANAY) 2 Za\AZa\ar
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6 Pinning for the membrane model in dimension four and above

(here we used [AU A'| + |[AN A’| = |A| +|A'|). Dividing both sides by (Z\(an1)* and
using (6.2.1) we only have to verify

lim P (1] < £ € (A A)U (A A7)
2 }E%PA\(AmA’)(WJx‘ <tVx € AP\ A)Pp(anay ([P <tVx e A\ A').

Thesets {y: |y < tVx € A’\ A} and {¢: |¢x| < tVx € A\ A’} are convex and symmetric
around the origin, and the measure IP 5\ (4 /) is Gaussian. Thus, the claim follows from the
Gaussian correlation inequality, applied for each t > 0. O

Remark 6.2.1. In [BVO01] it is shown that the set of pinned points for the gradient model
satisfies a FKG inequality not only in the case of §-pinning, but also in the case of pinning
by a square-well potential b1.|,. The proof in [BV01] uses the Ginibre (or GKS) inequality
(as described in detail e.g. in [DMRR92, Appendix A]), and thus requires that the measure
describing the field is an even fermionic measure. This is certainly not the case for the
membrane model, and so that proof cannot be applied in our setting.

Our proof of Theorem 6.1.1 only used that P is a non-degenerate Gaussian measure.
However, this proof would not work if we considered pinning by a square-well potential
b1}y|<, instead of 5-pinning. Namely, in this case we would need to consider PA (- | [thx| <
aVx € AN A’) instead of P A\(4na'), and the former measure is not Gaussian, so that we
cannot apply the Gaussian correlation inequality.

This is not a shortcoming of our proof. Namely, we conjecture that the analogue of (6.2.3)
in the case of pinning by a square-well potential is false. We do not have a counterexample
for the case of the membrane model. However, we can give an example of a Gaussian
measure where the set of pinned points with respect to a square-well potential does not
satisfy (6.2.3).

For this example, let X;, X, be independent standard Gaussians, and N > 0 a large
parameter, and define

Y1
Y,
Y3
Yy
Ys
Ye

—_ o Z o~

Then Y is a multivariate Gaussian vector. It is degenerate, but one can fix this later by adding
some small Gaussian noise to it, so we will ignore that point. Let also A = {1,3,5,6} and
A" =1{2,4,56}.

In this setting (6.2.3) would correspond to

P(Yi|<tVte AUAP (Y| <tVte ANA) >P (Y| <tVte A)P(|Y;| <tVie A)

(6.2.4)
for any t > 0. The probabilities here are equal to the Gaussian measure of certain sets in
IR? (cf. Figure 6.1). Ast — 0, we can approximate this Gaussian measure by the Lebesgue
measure, and thereby compute that

271 4
. </t | < / _
%gr(} tZIP(]YZ\_tVtEAUA) NZ/
limz—an(m <tVte ANA") =2
t—0 12 = ’
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6.2 Structure of the pinned set

27 4 2
i 200 | < - - _ =
%1_% tz]P(]Yl] <tVte A) N N2
L 42

In particular, for N large and ¢ small (6.2.4) is wrong by a factor arbitrarily close to 2.

x
¥

Figure 6.1: The sets associated to the probabilities in (6.2.4). The product of the
areas of the large and small square is about half the product of the
two areas of the thin rectangles.

Theorem 6.1.1 directly implies the existence of a thermodynamic limit of the {’:

Proof of Theorem 6.1.2, first part. It suffices to check that the limit lim, ~za % (f) exists for
each bounded f: B(Z?) — R that is a local function (i.e. depends only on finitely many
points). Each such f is a linear combination of increasing functions, and so it actually suffices
to check that lim _»za {3 (f) exists for each local increasing f.

For that purpose note that Theorem 6.1.1 implies that for any A C A’ € Z¢ large enough
so that f only depends on the points in A, we have {3 (f) > {3/ (f). Thus, limge 05 0) (f)
exists as a limit of a bounded decreasing sequence. Furthermore, for any A € Z¢ with
Q,(0) C A C Qr(0) we have

0.0 () Z CA(f) = Lop(0)(f) = lim Z5y ) (f) -

R—o0

Since A Z4 allows us to take r — oo, we see from this that indeed lim , 74 O3 (f) exists

and is equal to limg e Iy () (f).
Thus, the unique weak limit ¢ exists. Its translation invariance follows from the fact that

C() = Jim () = Jim C (- 2) = E(F( - )

for any x € A O

6.2.2 Estimates on the pinned set

We will prove the various domination results of Theorem 6.1.3. We first show some estimates

on the variance of the membrane model. We begin with the straightforward proofs of part a)

and b), then show part d), and finally part c). See Section 6.1.3 for an outline of the proofs.
Let us first give the precise definition of (strong) domination, as in [BV01].
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6 Pinning for the membrane model in dimension four and above

Definition 6.2.2. Let A be a finite set, and let v, 1’ be two probability measures on J3(A). We
say that v dominates v/ if we have

v(f) = v'(f)
for all increasing functions f: P(A) — R. We say that v strongly dominates v/, if for all
x € Aand forall EC A\ {x} we have
V(Ao x| A\{x}=E) >V (A>x]| A\ {x} =E).

It is easy to see that strong stochastic domination implies stochastic domination, and the
latter implies
V(ANE=2)<V(ANE=9) VECA.

Our proof of Theorem 6.1.3 is based on the proof of the corresponding result for the
gradient model in [BV01]. We begin with some useful estimates on the variance of the
membrane model.

The first one states the fact that the variance is non-increasing in the size of the pinned set.

Lemma 6.2.3. Let AC A’ C A €@ Z%, and let x € A. Then Gavar(x,x) < Gpyalx, x).

Proof. This follows easily from the Markov property of the field. See e.g. [BCK17, Corollary
3.2]. O

The preceding lemma allows us to conclude bounds on the variances.

Lemma 6.2.4. Let @ # A C A € Z9, and let x € A. Ifd > 5, we have

cd < Gpavalx,x) <Cq. (6.2.5)
If d = 4, we have
1 1

Proof. We begin with the upper bound in (6.2.6). Let 2 € A be such that [x —a| = d(x, A).
Let N € IN. For large enough N we have A C Qn(x). Now Lemma 6.2.3 implies that

GA\A(x/ x) < GQN(x)\{a} (x, x) (627)

for all N large enough. The right hand side can be computed quite explicitly: We have

Goy(x) (4, %)

Santonta) (50 %) = Goun (%) = 5 0
N(x)\*r

and by Theorem 4.1.4 we have

1 N
Goye) W y') — @108 <1+|y—y’|) ‘ <C

forally,y’ € Qn(x) withd(y,dAN) > cN,d(y',0AN) > cN.
Using this in (6.2.7) we find for N large enough
2
N
(10% (1+|xfa|) o C)

logN — C

1
Gou(x\fa} (1,%) < g | logN +C —
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6.2 Structure of the pinned set

1
< _
S log(1+|x—a|)+C

and this implies the upper bound in (6.2.6). The lower bound is similar: This time we
compare G\ 4 (¥, x) with GQoy1(x) (x,x).

Finally, the proof of (6.2.5) is similar, using that G, (x)(x, x) is bounded above and below
ifd > 5. O

Proof of Theorem 6.1.3 a) and b). The two results are already proven in [BCK17, Lemma 3.4].
Nonetheless, we repeat the short argument: For x € A, E C A\ {x} we have

CAASx [ AN{x} =E) = gf\(E?é(iUC{gt) {x})
_ G(EU{x})
{5 (E) + 5 (EU{x})
Zn -1 (6.2.8)
=1+ ——""—
( " £ZA\(Eu{x}>>
-1

27tGp\g(x, X)
=[1+ -

where the last step follows from (6.2.2). Now in dimensiond > 5we have cq < G \g(x, x) <
Cq by Lemma 6.2.4, and this implies

cg€ < CR(A> x| A\ {x} =E) < Cq4e¢

for all e small enough. From this we immediately conclude the strong domination results
from both sides, and these easily imply (6.1.5) and (6.1.6). O

Remark 6.2.5. When d = 4 the calculation (6.2.8) is still valid, but we do no longer have a
uniform upper bound on G\g(x, x). Let us point out for future use though that (6.2.8) and
Lemma 6.2.4 imply that

Ta(As x| A\{x} =E) <Ce

and thus the measure (9 is strongly dominated by the Bernoulli measure on PB(A) with
parameter p) , := Ce.

Proof of Theorem 6.1.3 d). One could prove (6.1.8) analogously as in [BV01, Section 3.2]. We,
however, give a slightly different proof in the following.
The events A > x for x € E are decreasing, and so by the FKG property of %, we have

CAANE=2) =} (ﬂ{A;ﬂ) > []eA(AZ ).

x€E x€eE

Thus, to establish (6.1.8) it suffices to show

&
€ S1_C._ <
éA(A¥X) _]. C“’loggll/z

or equivalently
€

€ < - -
CA(A =) .X') S C“ | logg|1/7~

(6.2.9)
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6 Pinning for the membrane model in dimension four and above

where the constant C, depends only on «.
For this we consider the box Q := Qpin(e-v,¢1/5)(x). We can write

Ta(A3x) = (ANQ = {x}) + [A(ANQ 2 {x})

SGUsx AN\ =) +aanea h.
By Remark 6.2.5 the second summand can be estimated as
CNANQ 2 {x}) < ply — o (1)
= Ce(1— (1 —Ce)lQ1y
< Ce?|Q| (6.2.11)
<ce (871/5)4
— Ceb/5

whenever ¢ is small enough. For the first summand we can use the FKG property once more
and then proceed as in (6.2.8) to see that

CA(A2>x | AN(Q\{x}) =2) < H(A3x [ AN(Q\{x}) =2, ADA\Q)
= oA x| AC {x})
%18t
~ 5@ + ()

-1
€20\ {x}

_ <1+ MZTL’GQ(X,X))_l .

From Lemma 6.2.4 we know
1 1
Go(x,x) > c log (1 —I—min(s_‘",e_l/S) > C7| log €|

and thus .

o |log g|l/2”
When we combine this with (6.2.10) and (6.2.11) we obtain (6.2.9). This completes the
proof. O

Ca(Asx[AN(Q\{x}) <C

In this proof the choice of e~ 1/5 for the halfdiameter of Q might seem arbitrary. Indeed,
one could also choose £¢~/4| log | ~1/® and obtain the same result. This is still smaller than
Amic which is the actual length scale that one expects here. However, because we have to use
Remark 6.2.5 instead of a comparison with p, , we lose some logarithmic factor and hence
cannot use the natural length scale for the size of Q. Fortunately, this does not affect the
proof as the estimate (6.2.11) shows that the second summand in (6.2.10) is of lower order.

Proof of Theorem 6.1.3 c¢). The following proof is based on the proof in [BV01, Section 3.3],
which itself is based on [DV00, IVO0]. However, that proof is a bit hard to follow as one has
to refer to all three references. Furthermore, there is a small mistake in [IV00] that needs to
be fixed (cf. Remark 6.2.6 below). Thus, we give a complete proof for the case at hand.
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6.2 Structure of the pinned set

Step 1: Growing microscopic polymers
For reasons that will become clear in the next step we need a procedure to grow microscopic
polymers in a controlled way. Thus, we begin with the necessary definitions.

Let K be an odd integer to be fixed later (in (6.2.18)). We consider the polymers in Px,_. .
Let E € Pk, be such a polymer. Suppose that it has # connected components . We want to
define for any multiindex k € IN" an enlarged polymer E®) € Py, _in such a way that we
add k; boxes to the i-th connected component.

To be precise, fix some enumeration of the boxes in Qk,_.. by the natural numbers. Let
the connected components of E be Ej, ..., E;, named in such a way that the minimal label of
a box in E; increases with i.

Foric {1,...,n},j € {0,...,k;} we define inductively a polymer E(/) > E as follows. If
j =0, welet E(W) = E(=1ki1) (and E(X0) = E). If j > 0, let E; be the connected component
of Ei~1) that contains Ej, let QU/) € Q. be the box of smallest index that touches Ej,
and let E(W) = EG/—=1) y Q). Finally we let EE = E(nkn),

Let us note some properties of EX. First of all, it contains precisely |k|; := ki + ... +k;,
boxes of Ok, . more than E. In other words,

)Ek‘ = |E| + [k K*A% . (6.2.12)

Furthermore, EX has at most n connected components. Each E; is contained in one of the
connected components of EX, and the latter has grown by at least k; boxes. Also each fixed
box in Q.. is eventually contained in EX whenever |k|; is large enough. Let us also note
that each connected component of E consists of at least one box. Therefore we have the
estimate

(6.2.13)

Step 2: Estimate for microscopic polymers
We first prove (6.1.7) for the special case that E is a polymer in Pk, _., where K is a constant
as in Step 1. That is, we claim that there is &4 , such that for any E C A such that E € Pk,
and any ¢ < g4, we have

mic

£
(1 . c,logi’m> > G (ANE=2). (6.2.14)

Suppose that E has  connected components, and consider for k € IN” the polymers E )
constructed in the previous section. For [ € IN" we write [ > k to denote [; > k; for all i and
I; > k; for at least one i. Recall that A = AU (Z4\ A).

For |k|; large enough we have E®) ¢ A and therefore AN E®) £ & almost surely. Thus

IG(ANE=02)=(5(ANE=2)=1_% (3@ eN": ANEW =g, ANEY £ zv] > k)
and so in particular

GANE=2)< Y 4 ([lmE(@ =2, AnEY ;é@v;>k)

keIN"

< Y G (ANEW =2 AnED 2oV > k) .
keN™

(6.2.15)
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6 Pinning for the membrane model in dimension four and above

Note that this sum is actually a finite sum as for large enough |k|; the conditional probability
is equal to 0. Let us estimate the summands in (6.2.15) separately. We have

z (AmE@ -, ANED 7A@v1>k)
g5 (ANEW £ VI > k)

& (me@ = g|AnEW #@ka) =

z
Z €|A|é\7£\A
ACA\E® A
_ AnEWD#g VI>k
- Z
I
_ AcCA A
ANED £z Vi>k
A
B A Z\ 4
ACA\EW
. ANED £z vi>k
) r elAFIBIZ A\ (auB)

BCE®  AcA\E®
ANEW £z Vi>k
-1
A
D e Zn\ (aup)

ACA\E®
INEW
_ 2 8‘B|AQE # VI>k .
BCE® L el |ZA\A
ACA\EW

AnNED £5 vi>k
-1

Z
BeE® ACME®  Zp\a
ANED £z VI>k
(6.2.16)
where we have used % > min;e; % in the last step.
Next, we estimate this minimum from below, at least for sufficiently many sets B. Let

— 1EY
RS
exactly one point in each box of E®).

Consider some A C A\ E® such that ANEW # & forall | > k. The properties of A
imply that each connected component of E®) touches a box that contains a point of 4, as
otherwise we could still grow one of the components (by choosing a larger multiindex)
without intersecting A. Therefore we can enumerate the boxes of E®) as Dy, ..., D,, in such
a way that each D; touches a box that contains a point of A or a box Dj with j < i. As
mentioned, we consider sets B = {by, ..., by} that contain one point b; in each box D;. Let

B; = {b1,...,b;} (and By = &). We have that

be the number of boxes in E®). We will consider the class of sets B that contain

Zx\(AUB) " ZA\(AUB)

Zya  in Zavaos )
Picksomei € {1,...,m}. Our construction of the D; ensures that D; touches a box containing
a point of AU B;_;. In particular, b; € D; has distance at most v/22 + 12 4 12 + 12KA e =
V7K A ic from a point in AU B;_1. Now, (6.2.2) and Lemma 6.2.4 imply that

ZA\(AUB)  _ 1
ZA\(AUB,',1) \/ZﬂGA\(AUBF])(bir bl)
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6.2 Structure of the pinned set

1

C\/log (1 + \ﬁKAmic)

1
>
~ Clloge|1/2

>

as soon as ¢ is small enough (depending on K). Thus,

Zx\(AUB) - 1 "
ZA\A - C|10g€|1/2 '

This estimate holds forall A C A\ E ®) such that A N EW # @ for all | > k, and all B that
contain exactly one point in each box of E®. The number of such sets B is (K*A%. )™, and
so (6.2.16) implies that

my\ —1
. . 1
o (ANEW = 2| AnED 2 oV > k) < <(K4?\fmc)’”€m <C|10g€|1/2> )

4 —m
|loge|'/® €
< 2K 6.2.17
— (( el/4 C|log€|1/2 ( )

(%)

for a certain constant y. We can now choose K as an odd integer such that

K > (eq)14. (6.2.18)
Then (6.2.17) in combination with (6.2.12) implies
o (/lﬂ E® = | AnED £ v > k) < exp(—m)
|EW)|
e 2 K4A4

mic

E
= exp (—Kl/\i — |k|1> .

mic

Now we can use this result in (6.2.15) and obtain

GANE=2) < T ew (- dr — Ikh

keIN” mic

_ |E| - =
= exp (_K4)\4 ) (kl‘éoexp(—kﬂ) (knz_zoexp(—kl)>

mic

_ __|E] e \"
—OP e ) e

= exp <_K4‘)Eti. +n(1—log(e—1))> .

Finally, we can recall (6.2.13) and conclude

|E|
K4A2

mic

|El
K4A2

mic

+

(A(ANE=9) <exp (— (1—log(e — 1)))
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6 Pinning for the membrane model in dimension four and above

whenever ¢ is small enough, and the K (that is now fixed) has been absorbed into the
constant. This completes the proof of (6.2.14).

Step 3: Density of pinned points on macroscopic scales
We now show that on the length scale Amac most points of a set E C A are close to a point in
A. To make this precise, we need to make a few definitions. Let L be an odd integer to be
fixed later (in (6.2.20) and (6.2.22)). We consider polymers in Py, ... Observe that KLAmac
is an odd multiple of KApc, the lengthscale from Step 2. For E C A let

SE=1{Q € Qkir: QNE # @}

and
Stpad(A) ={Q € Sg: QNA = a}.
We think of the boxes in Sg paq(.A) as bad boxes, as they contain points of E but no pinned

point. We will show that not too many boxes are bad. Note that |Sg| > ﬁ Our claim
now is that there is &4 , such that for any E C A and any € < &4, we have
2 (18epa(A)] > —1E Y < (1-c—& . (6.2.19)
AT 2(KL)*Aac )~ |loge['/2) h

To see this, we use the result from the previous step to estimate

E
Th (\SE,bad(A)’ > 2(I<L|)4’)\4>

mac

= ) CA(SEpad(A) =T)
TCSg
IT|>|E|/(2(KL)*Ak0)

< ) CA(SEpad(A) D T)
TCSg
IT|>|E|/ (2(KL)*Afac)

= )3 GA(AHUQ:®>

TCSEg QeT
T2 E|/ (2(KL)* Myoe)
) ITI(KL) A e
< - c)
%E ( | log e|1/2

|T|=[E|/(2(KL)*Afnac)
4

|SE| JKLYAL
B () )
j=TEl/ @KL A1 N |log €|

< SZE: <‘SE‘> exp <_C8(KL)4A4 ]>
=TI/ QLY Ay j |log e|1/2 mac
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6.2 Structure of the pinned set

3] 3/2
= ) ('575') exp (—C — 1/Z(KL)‘*“OgS’ ]'>
j=1El/ (KL %,01 N T | log e e

_ SZE' (|5E |) LKLY
j=T1El/ (KLY Ao ] N/

for a certain constant '. We now want to apply the estimate for binomial sums that is stated
in Lemma 6.2.7 below with N = |Sg|, p = e X1)*"/ and r = 5 E]

(KL)4/\14naC‘SE‘ ’
p <r <3 Becausel < % < (KL)*A%L .. we always have r < 1, and for p < r it suffices
that e K1)/ <

[ S
— 2(KL)*|logel3/2*

To do so, we need

To ensure the latter we choose L such that

7/1/4
L> " (6.2.20)
and ¢ is small enough. Using Lemma 6.2.7 we then obtain
: El N\ pys
&5 (|sg,bad<A>r > KDL ) <(5) - (6:221)
We can estimate that
P _ _ 4,1 _ |E|
2 = exp ( (KL)*v'|loge| —2log (KLY AS 5]
1
< —(KL)*y'|1 2log ———7—7—
_exp( ( ) ’)/| 0g£|+ ng(KL)A}A;LnaC)
< exp (—(KL)47’| log e| + 2| log e| + 2log(2(KL)*) + log(| 1ogey3/2)) .
Provided that we choose
(29)14
L> (6.2.22)

K
we can estimate this as

£ < exp(—Clloge])

whenever ¢ is small enough (depending on K, L that are now fixed). Returning to (6.2.21),
we see that

Ca | ISEpad(A)] > S -
AT 2(KL)*A%

mac

E|
< _
) < exp ( Clog el s rpyag 57 1°F!

&
< —C——|E
= e"p< [Toge 72 ')

which implies (6.2.19).
Step 4: Estimate for arbitrary sets
We now can prove the actual result (6.1.7). So let E C A. Using the notation from the
previous step, we let
Ebad(-A) =EN U Q
QESEpad (A)
be the set of bad points (those which are far from a pinned point). We have the estimate
|Epad (A)] < (KL)*A% . |SEpad(A)| and so the previous step implies that

: B _ . | e\
T <|Ebad(A)| > 2) <Zi <|SE,bad(A)\ > 2(KL)47\4> = (1 _C|10g8|1/2> :

mac
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6 Pinning for the membrane model in dimension four and above

We can now write

gp!

CA(ANE=2) <0} <«4ﬂE — 0| Epaa(A)] < | ') +3 <|Ebad(A)| > '5')

N
1-C——
) * < C|1oge|1/2>

and so we only need to estimate the first term to establish (6.1.7). If {% (|Ebad(A)| < @) =

0, that term is equal to 0 and we are trivially done. So we can assume otherwise, and estimate

N[E |

< (Ams: &, |Enna(A)] <

re <Amg: B, |Epaa(A)| < ’i’) <4 <AmE:@'1Ebad(A)! < “25') :

Next, we can apply a similar argument as in (6.2.16) to see that

D e Z\ 4
| 12112
€ ﬁ E =g E a < 1=l — bad =

BCE ACA\E
|Ebad (A)|<|E|/2

Y Y g|A|+IB\ZA\(AUB)
ACA\E BCE
|Ebad(A)‘;‘E‘/2 (6.2.23)
)y el Z\a
ACA\E
|Evad (A)I<|E|/2

-1

-1

Z
min ¢lPl ZA\(AUB)

ACA\E BCE ZA\A
|Epaa (A)|<|E|/2

IN

Note that unlike in (6.2.16) we interchanged the summations over A and B in an intermediate
step, which allows us to have miny4 ) g instead of ) 3 min,4 in the result of this calculation.
We can estimate this further by only allowing good points for B, that is by estimating

-1
Z
T <.AﬂE = ®’|Ebad<-/4)| < U;‘) < min E €|B\M

B ACA\E Znn
|Epad (A)|<|E| /2 BEE \Epaa (4) \

(6.2.24)
Consider some A C A\ E, and some B C E \ Epaq(A). By definition of Ep,q(A), each point
in B is in the same macroscopic box as a point of A. In particular, each point in B has distance
at most /7KL A mac to a point of A. Thus, if we let B = {by, ..., b|B|}, and B; = {by,...,b;}
we see as in Step 2 that
7t Zavaos)
1 Za\(auB; 1)
\

1

i=1 1/27Ga\ (auB;_, ) (bi, bi)

ZA\(AUB)

ZA\A B i=
B
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6.2 Structure of the pinned set

I'EI 1
>
i=1 C\/ log (1 + ﬁKLAmaC)

1 1B
> -
- (CllogEIW)

where we used (6.2.2) and Lemma 6.2.4. Returning to (6.2.23) and (6.2.24), we obtain

E
&5 (AnE =2 lEwaa)] < 1)
-1
= (emgas)
< min € 7
ACAE g pH ) Clloge|1/2

|Epad (A)|<|E|/2

I 'E\E§<A><|E\Eb_adm>|)< : )f'

ACA\E = j C|loge|1/2
|Evaa(A)|<[El/2 )
1
e |E\Epad (4)]
= min 1+ ————
ACA\E < C| logs\1/2>

|Epad (A)|<|E|/2

E|l/2\ ~!
<((1+__°
_<( CHO%SP”) )

. IE|
<l1l-—— .
- ( Cllog€|”2>

This finally completes the proof. ]

Remark 6.2.6. In [BV01] a similar argument is used. However, for growing the polymers
[BVO01] refers to [IV00], where a construction that is different from ours is used. Unfortu-
nately, the argument from [IV00] contains a small gap.

The problem is as follows: Take d > 2. In [IV00] the grown polymer EF is only defined for
certain admissible k. Using our notation, one defines EX by adding k; layers of microscopic
cubes to E;, i.e. one replaces E by

n
Ek.— U Ei + QkiK)\mic (0) .
i=1
However, this is only done if for each i € {1,...,n} we have that E; + Qk.xr,,.(0) and
U;;l E; + Qk,ka,,. are disjoint or k; = 0 (and the k with this property are called admissible).
Now in [IV00, p. 398] it is claimed that this construction satisfies
|EX| > [E| + [kl K9Aq (6.2.25)

mic 7

or in other words that we have added at least |k|; boxes. This is not true in general: For
example if L is a large odd number and

£, — _KAmic K)\mic
! 2 2

}mzd

175



6 Pinning for the membrane model in dimension four and above

. KL/\mic KLAmic 3K)\mic 3KAmic d
= ([ e [ R o

and E = E; U Ey, then for any ky € {1, 551} the multiindex k = (k;,0) is admissible, but to
obtain EX we only add the 3¢ — 1 cubes that form the gap between E; and E,. If L is large
enough, we can take k; > 39, and we arrive at a contradiction to (6.2.25).

Note that this problem is not present in the construction that we used in Step 1 of the
proof of Theorem 6.1.3 c), as our construction directly ensures that (6.2.12) holds. The same
construction could also be used in [IV00] to fix the gap there.

Alternatively (as pointed out to the author by Yvan Velenik) one can also fix the gap in
[IV00] by first ordering the Ey in such a way that no E; completely surrounds an E; with
i<j.

In our proof of Theorem 6.1.3 c) we used a tail bound for certain binomial sums. We will
use this estimate a few more times in Section 6.4.3, so we state and prove it separately.

Lemma 6.2.7. Let N € N, and % >r>p>0. Then
N . rN
Y <N) pl < (%) : (6.2.26)
j=IrN1 N !

This estimate is very similar to standard Chernoff tail bounds for the binomial distribution.
A special case was used in [BV01, Section 3.3.2]. For the proof we will follow the proof of
the Chernoff tail bound.

Proof. For any t > 0 we have the estimate

£ (=i (e

j=rN1 N j=0 \J
<e "™N(1+4efp)N.

The optimal choice for t is t = log (m) , and this yields

f=$7m <Z;]> = ((1—;)rl>NprN_

It remains to observe that for 0 < r < % one has

_ a\r—1
A= 1
7’ —1,2r

6.3 Some inequalities
In this section we provide some tools that will be used in the next two sections to estab-

lish Theorem 6.1.5, namely a discrete multipolar Hardy-Rellich inequality as well as an
interpolation inequality. We begin with the former.
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6.3 Some inequalities

6.3.1 A discrete multipolar Hardy-Rellich inequality

We want to give a quantitative estimate on the strength of the pinning effect on x € A. More
precisely, consider a function u: A — R such thatu =0on A = AU (Z4\ A). We want to
control a weighted L2-norm of u by the L>-norm of V3u. The weight at x € A will have to
depend on the location of x with respect to A. If V2u is small, then u is (locally) close to an
affine function. We need to ensure that this affine function is close to zero near x, and for
this purpose we need that u is close to 0 at d + 1 points that are well-spread out, i.e. we need
that x is close to d + 1 pinned points.

To state our precise result we need some definitions. First we construct d 4+ 1 cones of
directions that are well-spread out: Let 0y, ...,0411 € 891 be such that 6; - 0, = —% fori #j
(e.g. take (91-)?;1 to be the vertices of a regular d-dimensional simplex with circumsphere
Sdfl).

For x > 0 let ®; = B, (6;) N S4~L. For x small enough we have 6/ - 0; < Oforall0; € ©;,

0; € ©; fori # j. Fix one such choice of x. Finally let &; = {y e R4\ {0}: |]y/7| € ®i} (cf.
Figure 6.2).

Figure 6.2: The sets &; ford = 2

For x € Alet

dD(x,A)= inf |x—al,
EGAO(JC*FE,')

d.(x, A) = dD(x, A
(x4) el a1} (x4)

with the convention that inf @ = +occ. Thus, for each x there are d 4 1 points in A which are
well-spread out around A with distance at most d..(x, A).
Then we have the following statement.

Theorem 6.3.1. Let A C A be arbitrary. Let V. C A be an arbitrary subset. Let R € IN, R > 2 be
a parameter. Suppose that u: A — R is such that u = 0 on A. Then

V10r(0)) (6.3.1)

2
d 2112
Hu]ld*("A)SRHLZ(V) S CdR (1 -+ ]ld:4 10gR) HVﬂx[HLZ(
where the constant is independent of R, V and A.

Proof. We begin with the case d > 5. We fix an enumeration of the points in Z¢.
We first establish a pointwise bound for ul, (. z)<g- Let x € V such that d. (x,A) <R.
Fori € {1,...,d + 1} consider the points in AN (x + E;) of minimal /!-distance to x, and
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6 Pinning for the membrane model in dimension four and above

let a§f) be the one among those that comes first with respect to our fixed enumeration. By
assumption |x — a) b =d?(x,A) <R
We first claim

lu(x)| < max ‘u(ay)) —u(x) — Vyu(x) - (a;i) — x)‘
‘ (6.3.2)

u(x) + Viu(x) - (a,(f) - x)‘ :

= max
ie{l,...d+1}

Indeed, we can assume u(x) > 0 (the other case is analogous). There is an index i such that
Viu(x) - (a,(f) — x> > 0, as otherwise the d + 2 vectors

Vlu(x),a,(cl) —x,.. .,a,(cdﬂ) —x

would have pairwise negative scalar products, while it is easy to see that this is possible in
RY for at most d + 1 vectors. In particular, we have

\V/ AaD — %) >o0.
nax | Viu(x) - (a —x) =

By assumption u(a,(f)) = 0 and so
(i)
< .
u(x) < u(x) +i {{r_\%( 5 Viu(x) (ax x)

= max u(x)— u(agci)) + Viu(x) - (a,(f) — x)

ie{1,...d+1}
(i) (i)
< — . _
- ie{{?iﬁl} u(x) —u(ax’) + Viu(x) (ax x)‘

which implies (6.3.2).

We now want to pick a nearest neighbour path v = (‘PS) 0),..., ) (d (x, A))) such
that ¥ (0) = x, y i) (dD(x, A)) = . We can pick this path in such a way that all of its
points have distance at most v/d from the straight line connecting x and agf), and such that

all but possible the first @4 of its vertices lie inside the widening cone x + =, (cf. Figure 6.3).
Here &4 is a constant depending only on d and the &;.

Figure 6.3: Choice of the path ‘I’)(Ci). We require all points to have distance at most

V/d from the straight line between x and 2 (i.e. to be in the dashed
strip), and all but the first &4 to be inside the cone x 4 =,.

We can now apply a discrete version of the fundamental theorem of calculus along the
paths ¥ to the function v := u(-) —u(x) — Viu(x) - (- — x). Namely, we know v(x) =0
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and Vjou(x) = 0. The point ‘I’,(f)(l) is one of the 2d neighbours of x. If it happens that
) (1) e {x+eq,...,x+eq}, then v(‘I’J(f) (1)) = 0 and we can write

o(al) = 0¥ (s + 1)) — 20(¥ (5)) + (¥ (s — 1)).

On the other hand, if "I’,(f)(l) € {x—e1,...,x —eq}, we can temporarily add a point
y ) (=1) =2x— i) (1) to our path, so that v(‘i’)(f) (—=1)) =0, and then write

, dO(x,A)—1¢-1 ) ) )
o@y = Y Yot (s+1) —20¥V(s)) +o(¥ (s - 1)).
t=0 s=0

In both cases we can conclude that

u(u,(f)) —u(x) — Vyu(x) - (a,(f) — x)‘ = ‘v(ag))’
d<’>(x,/§)—1 t—1 .
< Y Y |Vee?6))
t=0 s=0

0 (x,A)~14-1 ‘
= Y L[V 6
t=0 s=0

d@ (x,A)—1 ' _ )
= Y @A) =) | (s))
s=0

where we have changed the order of summation in the last step. Thus, (6.3.2) implies that

(y _ 0
|u<x>\§i€{g}_e;;<ﬂ}\u<ax> u(x) = Viu(x) - (af) x|

d® (x,A)—1 0 (6.3.3)
= d(l) ,A — vz ‘lIf ! .
e, L @A) - V(e (s))
We have this estimate for all x such that d. (x, A) < R. Defining ¥ arbitrarily for the other
x and summing the square of (6.3.3) over x, we find

xev xev ie{l.d} 20

. 2
d(x,A)—1 } ~ )
Y 1) Py pyr < X ﬂd*(x,m( max ) <d<l><x,A>s>v%u<T§><s>>)

d+1 d(xA)-1 ‘ ?
<221d*(x,A><R< )y <d<l><x,A>s)(v%uwﬁz)(s)))) :

s=0
(6.3.4)
Consider a nonzero summand of the outer two sums. Then d.(x, A) < R, and (recalling that
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6 Pinning for the membrane model in dimension four and above

d > 5) we can apply Holder’s inequality to the innermost sum to obtain

a1 , ?
( Y, (@(x,A)~s) v%uaf&”(s)))

s=0

d(x,A)—1 1 40 (x,A)—1 ' ) . i ; ,
< Z (d(i)(x,A) —S)d_3 ; (d(l)(x,A) —5)7 | Viu(¥y (s))‘

s=0 s=0
d(i)(x,A)fl ‘ _ . 2

<G Y (@A) -5 |V ()]
s=0

| | (6.3.5)
If s > &4, we know ‘Fg(f)(s) € x + &;, and hence ‘I’S)(s) + E; C x+ E;, which implies
d" (‘I’,(f) (s),A) > d"(x,A) —s. If s < &g, we can just use the estimate (d()(x, A) —s)4~1 <
R,
Using this in (6.3.5) we obtain

A1 , 2
( )3 (d(’)(x,A)S)V%u(‘I’S)(S))‘)

s=0
d(x,A)-1 , _ , 2 ] . 2
<Ci Yy dF(s), A V(e (s)| + Co YR VEu(E ()]
s=fq+1 5=0
_ 2
< (Cq Z <1l|yfx|1>ocd (]/; )d 1+1l|y x|1<zxd 1) ’V%M(]/)‘
ey
2
<Co ¥ (Vyrtstaatnmaad @ A Ly gz, + Ly-h<a R V()]
yery
_ 2
=G Z(‘) <ﬂ|y—x|l>5¢d,d(’>(%A)>54dd()(y’ )d l+ﬂ‘y r<igR 1+1> }V ‘
yeyy

We can insert this into (6.3.4) and change the order of summation once more to obtain that

2‘” |]ld (x,A)<

xeV
d+1

<Cad) Y Vg (ui)<r

i=1 xeV

d—1 d—1

Y (Voo @ 0 A 1y < R 1) [V
yety

d+1

<Y Y Vi)

=1 yeV+Qgr(0)

Z ]]'d*(X,A)SR <:H-‘y_x|1>&d,d(i)(y,A)>ﬁdd( )(y' )d ! + :H-‘y x‘1<ade 1 + 1>

X: ye‘lfgf)
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d+1

<Y Y V)

i=1 yeV+Qr(0)

(

+ Hx: A ‘I’g), ly —x|p < EcdH R4 ‘{x: AS ‘I’J(Ci),d*(x,A) < RH ) )
(6.3.6)
The cardinality of the second set here is trivial to estimate and we find [{x: y € ‘I’,(Ci), ly —
x|y < &g}| < Cy&d. Similarly, y € ¥ and d.(x,A) < Rimply |x —y|; < R, and so the
cardinality of the third set can be estimated as [{x: y € v d, (x,A) < R}| < C4Re.
To estimate the cardinality of the first set we need to work a bit. The heuristic here is

{xyeqﬁmy—xh>a¢ﬂ%%Ay>%J4LA)gRHﬂ%%AW4

that the paths ‘I’g) are close to straight lines with the same endpoint passing through v,
so there cannot be too many of them. To make this precise, fix y with d()(y, A) > &y and

consider some x such thaty € i), ly — x|; > &g and d.(x, A) < R. Because |y — x|y > a4

and d() (y,A) > &yq, we know that ay) €ey+E andy € x + &;, and hence ay) C x+ &;.

Thus, ab(,z) is one of the candidates for the endpoint of the path ‘P,(f), and our definition of the

paths ensures that we actually have ag(f) = a;l). Because v € ‘I’S), the point y has distance
(i) _ (i)

at most v/d from the straight line connecting x and a,’ = ay . Therefore x is contained in
fixed ith tip 4 and openi e< G = G
some fixed cone with tip 4, and opening angle < D T GA

contained in the cube around ay) with diameter 2R, as otherwise d.(x, A) < 44 (x, A) =

The point x is also

|x — ay) l1 > |x — ay) | > R. Thus, x is contained in the intersection of the aforementioned

d—1 .
ith that cube. This intersecti tains at tCR(L) T
cone wi at cube 1S 1Ntersection contains at mos d d(l)(y,A) d ( (y A))

lattice points, and so

Hx: RS ‘i’gf), ly — x|y > &g, dP(y, A) > &q,d.(x,A) < R}‘ <Cq—i———

Returning now to (6.3.6), we find

E u(x ‘zld <R
xeVv
<C i v2 2 Ridd(i) Ayd-1 4 5. R4-1 4 Rd
>~ Ud Z 2 ’ 1M(]/)} d(l)( ANd—1 (y/ ) + a4 +
i=1 y€V+QR (0)
d+1

< C4R¢ Z Z ‘V%u(y)‘z

i=1 yeV+Qg(0)

<CRY Y [Viuy)
yevroR(0)

‘ 2

This completes the proof in the case d > 5. The case d = 4 is very similar. The only
difference is that in the estimate (6.3.5) we no longer have
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6 Pinning for the membrane model in dimension four and above

but instead
d(x,A)—1

1 : .
—— < Clog(2+d"%(x,A)) < ClogR.
Sg(:) d(l)(x,A) —s = Og( + (x )) )
This is the additional factor log R that appears on the right hand side in (6.3.1). O

Later we will also use a probabilistic quenched version of this estimate.

Lemma 6.3.2. Let d > 4. There is an odd integer Ny with the following property: Let A € Z9,
and let x € A, and k € IN. Then if ¢ is sufficiently small (depending on d) there is an event ()
such that C5 (Qy ) > 1 — 2% and such that whenever A € Q) the following estimate holds: if

u: 79 -5 Ris a function such that u = 0 on A, then

kd/2 (1 + Ild:4((10gk)1/2 +] log£|3/4))
/2

u(x)] < Ca IVl oy (637)

Proof. We want to apply Theorem 6.3.1 with V = {x} and R = kNAp;.. Then RY(1 +

ly—slogR) < Cyn k(11 4(1°gk+|1°g€|3 ) and so (6.3.7) follows with the choice Ny = N
provided that d, (x A) <kN )Lmlc Thus, 1f we define

Oy ={ACA:di(x,A) < kNAmic}

it remains to choose N in such a way that we can show that % (Qy ;) > 1 — 217
For an odd integer N, let &; yna,. (X) = (¥ + &) N QN (X). When kN > N for some
dimensional constant N} (and so in particular when N > N) the fraction of points in
dyd
QkNa,, (%) that are in B xn, . (x) is bounded below, i.e. we have |Z;xna,. (¥)] > %
On the other hand, d.(x, A) < kNAp;c holds if and only if all 5; xn,, . () contain some point

in A. Therefore, using Theorem 6.1.3 c) we see

1— 5 (Qk) = T3 (ds(x, A) > kNAmic)
< 3 (de(x, A) > kNAmic)
=3 (Fie{l,...,d+1}: ANEjin,, (x) = 9)
d+1

= ZCA (ANE iNAm (X) = D)

d+1
" (1= pg ) Eiim )

kN)dAd
. p<_pd,_< Ly
i—1 Cd

IA
7]

a o~
Il
—_ =

For any d > 4 we have pq Ad > C%y and so

mic =

1= 5. (Oy) < (d+ 1) exp (—("N)d)

and it suffices to choose Ny > N} in such a way that the right hand side is less than 2% when
N > Nj.
O
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6.3 Some inequalities

6.3.2 An interpolation inequality

Let Q C A be a discrete cube of sidelength R. In the following section we will need to
control || Vyu|12(q) by terms involving only u and Viu. Usually one would expect to do
this by an interpolation inequality of the form

1
IV1ull2 o) < Ca (RZHV%I’[H%Z(Q) + Rz“”H%Z(Q)>

where the factors R*2 are due to scaling. For our purposes this is not good enough, however,
as we do not control u on all of Q. So it is crucial for us that a similar inequality still holds
when we only control u on a large enough subset of Q. Indeed we have the following result.

Lemma 6.3.3. Let d € IN. Let R be an odd integer and let Q C A be a discrete cube of sidelength
R (ie. Q = Qg 2(xy) for some x, € Z9), and assume R > 12(1/d)?~1\/d. Let B C Q such that
|B| > |Q|. Let u: A — R. Then we have the estimate

1
HVWH%z(Q) < Gy (RZHV%L{H%Z(Q) + RQHLGB”H%Z(Q)) . (6.3.8)

Proof. By translation invariance we can assume that Q is centred at 0.
We first prove (6.3.8) with u replaced by an affine function v, where v(x) = b - x + a for
some a € R, b € RY. That is, we want to show

1
|b|2 S CWHHGBUH%Z(Q) . (6.3.9)

To see this, note first that we can assume b # 0 (else there is nothing to show). Let
0= |—Z‘ € $9-1 For A > 0 consider the set E = {x € Q: ‘9 - X+ ‘”ﬂ < /\}. The set E is the
intersection of Q with a slab of width 2A, and so for each point x € E the cube x + [— %, %] d
is contained in [— %, %} d intersected with a slab of width 2A + v/d. Thus, we can estimate
the number of points in E as

|E| < (2A + Vd)(RVd)4 L.
If we assume A > v/d, we can bound this by
|E| < 3A(RVd)4,

W. This is possible, as W% > v/d by our assumption on R.
Then for our choice of A we see that |E| < 1R? = 1|Q|.

On the other hand, we know |B| > 1|Q|, and therefore |B \ E| > 1|Q|. Now for each
xGB\ECQ\Ewehave’G-x%—%b“ > A and hence

We want to pick A = -

a R|b|
v(x)| = |b 9-x+‘22xb > —
o] = 16165+ | > Alel > 7

Summing the square of this estimate over all x € B\ E, we see that

)DL

x€B\E x€B\E

R2|b‘2
Cyq

21112
b2 _ 1

o= 4l0
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6 Pinning for the membrane model in dimension four and above

which immediately implies (6.3.9).

Let now (u)g = |1@2er u(x) and (Viu)g = H@erQ Viu(x), and define v(x) =
(u)g + (Viu)g - x. Then v is an affine function to which we will be able to apply (6.3.9),
while u — v and V;(u — v) have average zero over Q, which allows using the discrete
Poincaré inequality with zero mean. We can thus write

19112 0) < 21V10]2 ) + 20V (1 = 0) B2

< 211 cnolldg) + CaRIVE( — o)y
- RZHH 80l 2 ) + CoR2|V2ul2
< S n(n— o)y + ol Lculg) + CaR? il
< e G - ol% Cd ol + CaR? Vil
< IC{(;R4||V H%Z(Q) + T||1-€B”||L2(Q) +CdR2||V%”H%2
< 1. cpulag) + CoR?Viul

This is what we wanted to show. O

6.4 Probabilistic decay of the L?-norm for biharmonic functions

In this section we will prove a decay estimate for the L?>-norm of the Hessian of a discrete

biharmonic function. This estimate does not hold for all realizations of A, but we prove that

it holds for all but an exceptional set of realizations whose probability decays exponentially.
The precise result is the following. Recall that 4 = AU (Z4\ A).

Theorem 6.4.1. Let d > 4. There is an odd integer Ny with the following property: Let A € Z¢,
Let U € Py, .. bea polymer consisting of n = < Y boxes, and k € N. Then if € is sufficiently

Nd/\dmac
small (depending on d only) there is an event Quc;i such that 5 (Quy) > 1 — %, and such that

2€/
whenever A € Qi the following estimates hold:

a) Ifu: Z¢ — Ris a function such that u = 0 on A\ U and uA?u = 0 on Z4\ U, we have the
estimate

2 1
IV 226\ U Q) S 2 V30 2 (U Qapy e OV (641)

b) Ifu: Z% — Ris a function such that u = 0 on (U + Qyx., (0)) N A and uAju = 0 on
U + Qoifiyn (0), we have the estimate

2 1 2
Vil 2y < o IViull2

< | (6.4.2)

((U+Q2kﬁd/\mac (O))\U) )
We have already outlined the strategy of the proof in Section 6.1.3. Namely, to prove

(6.4.1) and (6.4.2) we want to iterate the Widman hole filler argument k times, that is we
need to find k pairs Uj, LI]’- on which we can apply it.
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

In order to make the Widman hole filler argument work, we need to be able to apply
Theorem 6.3.1 and Lemma 6.3.3. We can ensure this by finding a cut-off function 7; that
grows from 0 to 1 in such a way that V7; = 0 on those points on which Theorem 6.3.1 or
Lemma 6.3.3 cannot be applied.

For that purpose pick an odd integer N to be fixed later and decompose Z¢ into the boxes
in Ona,.... We will declare some of these boxes to be bad in such a way that on the good (i.e.
non-bad) boxes we can construct an 7 growing from 0 to 1 on that box and satisfying the
conditions on V7. If we can show that bad boxes are rare, then with high probability we can
find at least k annuli consisting only of good boxes inbetween U and Z4 \ (U + Qaxna,...(0)),
and then we can iterate the Widman hole filler argument on these annuli.

In Section 6.4.1 we describe in detail how we choose the bad boxes, and we prove that on
the good boxes there exist cut-off functions as required. In Section 6.4.2 we carry out the
Widman hole filler argument provided all relevant boxes are good. Finally, in Section 6.4.3
we show that the bad boxes are sparse enough that with sufficiently high probability we can
find enough annuli to use the hole filler argument on. Using this result we will complete the
proof of Theorem 6.4.1.

6.4.1 Bad boxes and cut-off functions

The definition of the bad boxes depends on three odd integers K, L, M, where K is always a
multiple of 3, and M > 12. Eventually (in Section 6.4.3), we will choose them large enough
in the order M, K, L to close the argument. For now we will track all dependencies on K, L,
M. The parameters K and L will play similar roles as in the proof of Theorem 6.1.3 ¢), albeit
not quite the same. We hope this will not confuse the reader.

There will be two reasons that lead to a cube Q € Qkg,,,. being bad. The first one
is related to Lemma 6.3.3. We want to be able to apply that Lemma on each subcube
Q' € 9k, such that Q' C Q with 1. being the indicator function from Theorem 6.3.1.
So we will define Q to be bad of type I if there is a subcube Q" C Q on which the indicator
function from Theorem 6.3.1 is equal to 0 too often.

The second reason is more complicated. We want to be able to modify an initial guess
11+ for the cut-off function in such a way that V37 = 0 on those sets on which the indicator
function from Theorem 6.3.1 is equal to 0 (and we think of those points as bad as well). This
is easy if the bad points are very isolated and sparse, as we then can make local adjustments
to 77, that do not interfere with each other. So we start at scale £p = KA. and consider the
bad points (or actually the bad boxes in Qk,_.. that contain at least a bad point) and split
them into the isolated and the clustered ones. The former ones we ignore for the moment,
and the latter ones can be covered by cubes in QZ such that each cube covers at least two
of the small cubes. These are the bad cubes on scale /1. Now we can once again split those
cubes into the isolated ones (that we ignore for the moment) and those that are clustered
and can be covered by cubes on scale ¢, and we continue like this. This process terminates
once at some scale all bad cubes are isolated. Then we can adjust 7. on those isolated cubes,
and then proceed backwards and apply our adjustment also on the isolated cubes on the
smaller scales. We thus call Q bad of type I if this process terminates too late.

We have not mentioned yet how to choose the scales ¢;. There is a trade-off here: on
the one hand, the lengthscale should grow fast so that we have enough space around each
isolated bad cube on scale /; to adjust 77, there. On the other hand we want many of the
cubes to be isolated, so that our process terminates soon, and this we can achieve by letting
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6 Pinning for the membrane model in dimension four and above

¢; not grow too fast. It turns out that a good compromise is
3
4 j = M] K/\mic
for each j > 0. We give a more detailed explanation of this choice later, in Remark 6.4.9.

Let us now give the precise definitions. Recall that Q) = {Ql nx):xe (lZ)d} and QF =

the macroscopic

mic”/

d
{Ql n(x):x € (éZ) } We consider the microscopic cubes in Q)

cubes in Qkr,,.., and the further sets of boxes 9/, and Qz for j > 1, associated to ¢; =

mac”’

M’ KAmic for j > 0. The reason that we use Q’Zj and not ng for j > 1 is that we want to

ensure that for any two cubes on lengthscale /; 1 that are sufficiently close there is a cube in
QZ that contains both of them. We assumed M > 12, and so ¢ -1 < 11—26 jforeachj > 1. We

fix for later use an enumeration of the boxes in each Q’};.
We define

Sggz\/l,bad(A) = {Q S QK/\mic: dx € Q with d*(x/A) > KAmic} .

Note that S;(%\/Ibad( ) C Qi = Qiy C Qf - For M large enough the set SI(<O,3\/I,ba 4(A)is

finite (as cubes far outside of A will not be bad).
For j > 1 we define Sg,)M,ba 4A) c 9F 1nduct1vely as follows: Given S§< M%)a 4(4) C

Q‘ZH such that the set S%;ﬂ) Wq(A) is firute, we want to split it into two sets of boxes:

Sg;ﬂj ad,clust(A) Will contain those boxes that are clustered in the sense that there is another

bad box at distance < F ; that is disjoint from the original box, and S§< M)ba disol (A) will
contain the other boxes. These other boxes are isolated in the sense that all bad boxes that
are disjoint from them are far away. Let us make this precise: we define

(j-1)
SK] M,bad,clust (A)

L
{Q € SKM)bad( ):3Q" € SKMLad(A) with Q' NQ = 3,dx(Q, Q) < 21}
i1
SE,M}Dad,iSOl(A) S§<Mbad( )\SKMbad clust(A)

If Sg]\/}{)ad qust(A) = @, we define S§<)Mbad(A) . Otherwise, if Q € SKM%jad Clust(A) and

Qe SKMLad(A) is a witness for this in the sense that Q' N Q = @ and dw(Q, Q') < Ef then

also Q" € Sy M)ba dclust(A), as Q then is a witness for Q'. In particular,

(j-1)
SK] M ,bad,clust (A>

) ) oy ol

Q € SKMbad( ) ElQ € SKMbadclust(A) with Q N Q = Q’d (Q’Q ) )
Furthermore, if Q, Q' € SKMLad dust(A) withQ'NQ = @ and de(Q, Q') < Y then Qand Q'
are contained in a common box of sidelength at most Zj +20; 4 < 2—[ (aslj1 < 112€ i), and so
there is a cube in Q# containing both of them. This means that we can cover SI(< M)b ad, cust(A)

by finitely many cubes from QF ‘ in such a way that each cube from the cover contains at least
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

(j—=1)

two small cubes from S/ K Mbad clust (A) that are disjoint. We can consider the set of subsets of
Qz with that property,

K,Mpad (A4) = {S < QZ‘ U Qc U Q
Q,ngg/llz)adclust(A) QES

¥Q € 53Q,Q" € S 11 b daue(A) With Q' NQ" = ,Q' UQ" C Q}.

The previous discussion implies that if S§< M{) ad,clust(4) 1S non-empty, then also SI(<];)1\/I,b d(A)

is non-empty. Now we consider the elements of S I(< )M bad (A) of minimum cardinality, and

among those we define S%)M bad (A) to be that element that is lexicographically first (with
respect to the enumeration of Q#] that we had fixed).
(j—1)

To summarize, SE)M bad (A) is a finite subset of Q# that covers S}/ K Mpbad,clust(4) insuch a

way that each of its boxes contains two disjoint elements from S§< ML adclust (A)-

Finally we can define macroscopic bad boxes. Let j.(¢) be the largest integer j such
that 6]- < % (we assume that ¢ is small enough so that j.(¢) > 1). We consider the

macroscopic boxes in Qkr,.., and call a macroscopic box bad of type I if it contains at least
(j«(€))

one box in §* K Mba d( ), bad of type II if one of its KApmac-subboxes contains many boxes in

Sg\d,ba 4(A), and bad if it is bad of type I or type II. More precisely

mac”’

SI?,IL,M,bad( ) = {Q € QLA I € 5§<1\(/1)t3ad(A) withg N Q # Q} /

SI*<ILIMbad( ) = {Q € Qkir: 3Q' € ki, With Q' C Q,
Hq € Sihpaa(A): g C Q }

1 <Amac ) d
4 /\mic ’
Sk Mpad(A) = SI*<IL Mpad (A) U S;ILIMbad(A)

The point of these def1n1t10ns is that we can apply our construction of a cut-off function
on all cubes in Qgra,.. \ sl K.LMba Gl(A) while we can apply Lemma 6.3.3 on every KAmac-

subcube of the cubes in Q.. \ sl K L Mpa 4(A). Of course, this is only useful if we show
that bad cubes are rare. This will be established in Section 6.4.3. For now we show that
our definition of good boxes fulfils its purpose in the sense that we can construct a cut-off
function growing from 0 to 1 on them in such a way that their second derivatives are 0 on
the set of microscopic bad boxes.

Lemma 6.4.2. Let d > 1. Then there is a constant My > 12 with the following property: Let K,
L, M be odd integers such that K is a multiple of 3, and M > My. Then for all € sufficiently small
(depending on d, K) the following holds: Let U € Pk, be a polymer. Suppose that none of the
KLAmac-boxes touching its boundary (in the 1*°-sense) are bad of type I, i.e.

{Q € it Q C (U + Qi (0) \ U NSY] p110a(A) = @
Then there is a function 7: Z8 — R such that

i) n(x) =0for x € U+ Qax,, (0),
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6 Pinning for the membrane model in dimension four and above

ii) 17(x) =1forx € z4 \ (U + QKA e —2K A mic (0)),

iii) [Vin(x)| < gtz lawoy o o=o

QES M bad (4)

Here the constant Cq depends only on d.

Morally, property iii) is |V35(x)| < mcf/\z]lxgu o- However, the discrete

mac QesKMbad<A)
product rule lets translation operators arise, and this is why we require the slightly stronger

condition iii) above.
To prove Lemma 6.4.2, we will begin with a function 7, which satisfies i) and ii), but only
|V% (x)] < W instead of iii). Then we will modify 7, iteratively to make it affine

on larger and larger subsets of S§<,3\/I,ba 4(A), so that eventually iii) is satisfied as well. The
following lemma gives details on how to carry out a single of these modification steps.

Lemma 6.4.3. Let d > 1. There is a constant vyq > 0 with the following property: Let x € Z8, let
r, R be positive integers such that R > 16r. Let v: Z¢ — R be a function. Then there is a function
w: Z4 — R with the following properties:

i) w=00n2Z4\ Qr_1(x),

i) V3(v+w) = 0o0n Qr(x),
i) V30 + ) |s(0u) < (1+ mgimgr) 1930 =(0eto)
Note that condition i) ensures that V3w = 0 on Z¢ \ Qg(x).

Proof. By translation invariance we can assume x = 0. Suppose for the moment that there is
a function &: Z¢ — R such that £ = 1 on Q,,1(0), & = 0on Z\ Qr_1(0) and

Sy <1
Cq
Vig(y)| < ly|(logR —logr)’
2 Cd
IViE(y)| < lyZ(log R — logr)

for y € Qr(0).

Let u be the affine function u(y) = v(0) +y - V12(0). Then we canset w(y) = ¢(v) (u(y) —
v(y)). This choice of w clearly satisfies i) and ii), and so we only have to check iii). We know
that #(0) — v(0) = 0 and V1u(0) — V12(0) = 0, and so by discrete Taylor expansion, using
that u is affine, we have

[Viu(y) = Vio(y)| < CalyllIViolli=(ox0))
u(y) —o(y)| < CalyPIVT0ll Lo (0r(0)) -

Note that v + w = ¢u + (1 — ¢)v. The discrete product rule allows us to write

D!D' (0 +w)(y) = D!D' joly) it} ;(1 — £)(y) + D} (u — 0) (y)7/ D' &(y)
+ DY j(u —0)(y)T ,D}EW) + (u — 0)(4y)DID! &(y)
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

and thus, using the estimates on ¢ and v — u,

IDiD(v+w)(y)| < [D;DLju(y)| + |Di (1~ 0)(y)| max_[V1Z(z)]

|z=y]e0 <1
+IDY (= 0))| max [ViE)|+|(u—0)(w)] max VEE(a)
1
< |D!D!, ~
< |DiDLj0(y)| + Calyl | Violl = (gr (0 y[(log R —log r)
1
2
+ CalyPIIV3oll 1 (0r (0)) ) yP(log R — logr)

1

< IDIDL ()] + Call Violiou0) (165 R —Tog )

This immediately implies that v satisfies iii).

It remains to show the existence of ¢ with the desired properties. To do so, we choose a
function y € C®(IRY) thatis 1 on [—1,1]4, 0 outside of [—2,2]9 such that 0 < x < 1, and for
p > 0define x, = x (’;) We define ¢: RY — R by

F0) — _ logR — log|y|
¢(y) = x2r(¥) + (xr/a(y) = x2 () logR —logr °
One can check that 0 < < 1, & = 1 on [-2r,2r]¢ D Q,;1(0), = 0onR?\ [_%%]d >

749\ Qr_1R(0) as well as

C
k < d k
VWIS JyFiog R —Togn)
for k > 1. We can now let & be the restriction of & to Z9. The estimates on ¢ together with
Taylor’s theorem then imply the corresponding estimates on ¢. O

Before we turn to the proof of Lemma 6.4.2, let us investigate the structure of the

Sg,)M,b .q(A) in more detail. Note first that

(/) (j+1)
’SK],M,bad(A ‘ = ‘SK],M,bad,clust ‘ ‘SK]Mbad(A)’ +1
as each cube of Sgﬁla 4(A) covers at least two cubes of S§<)Mba dust(4), and Sgﬂéa q(A)is

chosen with the smallest possible cardinality. We have already noted that S§<)M,b J(A)isa
finite set. This implies that Sg,)M,b .q(A) = @ for j sufficiently large.

IfQe Sg,)M,bad(A) for some j > 0, then either Q € Sg’)M,bad’isol(A) orQ e Sg,)M,bad,clust(A)'
In the latter case there is at least one Q' € Sgﬂ,)ba 4(A) such that Q C Q'. If there is more

than one such Q’, we choose the one that comes first with respect to the enumeration of Q?
]

that we had fixed, and call it the parent of Q. In this manner, given Q € 5533\4,13 1q(A) we can

find a sequence

QcQWc...cqV
such that each cube is the parent of the preceding cube. This sequence is necessarily
finite as S§<],)M,ba 4(A) = @ for j sufficiently large. It terminates as soon as we reach a cube

QU ¢ Sg,)M,ba disol(4)- We denote that value j by jisol o- In summary, we have a sequence

Q=00 c W ... cQlisio) (6.4.3)
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6 Pinning for the membrane model in dimension four and above

where each cube is the parent of the preceding cube, the cubes QU) for j < jiso 0 are

in Sg,)M,ba dclust(4), while QUisole) € S%ﬁiid,isol(A)' This allows us to find for each cube

Qe S§<0,3\/Lb .q(A) alengthscale /;_ , on which its parents become isolated. It will be that
lengthscale on which we will ensure that 7 is locally affine on Q.
After these preparations we can turn to the proof of the main result of this section, the

construction of a cut-off function.

Proof of Lemma 6.4.2.
Step 1: Construction of a function satisfying a weaker version of iii)
We assume that ¢ is small enough so that Ayic > 4, say. Then also £; > 4 forall j > O We first

W This
should be intuitively clear, as we want to interpolate from 0to 1 on scale KLAmac. One way

claim that there is a function 7 satisfying i) and ii) and such that |V117*( x)| <

to make this rigorous is as follows. Let I = U + [ 5 2] Choose a function § € C*(RY)

thatis 1 on [—1,1]4, 0 outside of [—3, 7}d and such that 0 < xy < 1. For each Q € Qkra
such that Q C U let xp be its centre, and define 7.: R — R by

. ~ [ Y—XQ
i(y) =TI (1—x<7 >> .
Q€ QKLAmac 8 KLAmac

Qcu

mac

_ 3KLApye 3KLApg]®
8 4 8

This function is then equal to 0 on U + and also equal to 1 on RY \

- d
<ll + [—%, %} > . Each of the factors in the definition of 7j, satisfies

C—x
vk 1— % Q
H ( ' <§K“mac>>

for k > 0. Furthermore, for each fixed y € R there is a neighbourhood in which at most
39 of the factors are non-constant. Thus, if we compute V7, (i) we get contributions only
from these at most 39 factors. Therefore,

Ca
= (KL)AL

mac

L®(RR9)

Ca

V * oo T~~~

for k > 0. We can now let 17* be the restriction of 77, to Z4. Then Taylor’s theorem implies

easily that \V% (x)| < W

mac

Note also that 7, is equal to 0 on U + {—%, %} and equal to 1 on Z4\ (U +

Qskr,./8(0)). Therefore, V27, is equal to 0 except possibly on V := (U + Qskra,.../8+1(0) \

(U + Q3k1A e /8-1(0)).

Step 2: Modification of 1,
Letg € S§<O,3\/Lba 4(A) with g C (U + Qkira,,.(0)) \ U, and consider the sequence of cubes
(6.4.3) with Q = g. By our assumption none of the macroscopic cubes in (U + Qkp,,..(0)) \

U are bad of type I, i.e. thereisno Q' € ngl\(/i)b)ad(A) intersecting (U + Qxra,,..(0)) \ U. This
means that the sequence (6.4.3) necessarily terminates before j = j,(¢). In particular, we
have jiso1,4 < j«(€). We can now partition the cubes in Sg%ba 4(A) according to the value of

Jisol,q, and define for j € {0, ..., j.(e) — 1} the set

T (4) = {4€ S paa(A): 4 C (U + Qktre(0) \ Usisolg =} -
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

We will now construct a sequence of functions 7/) by reverse induction in such a way
that V257) = 0 on Usk>j UgeTi s (a) (4 + Q1(0)). Eventually, we will show that the choice
n = 10 satisfies the properties claimed in the Lemma.

Thus, we start with 70+) = 4., Let also VU+() = V, and note that supp V%ﬂ(j* @) is
a subset of VU+(®)) = V. Suppose now that for some j € {1,...,j.(¢)} we have defined
7 and V1) with supp V27() ¢ V) and #) = 5, on 24\ V1) such that V35) = 0 on
Uskzj UgeTna) (@ + Q1(0)), and let us define 70~ and VU~

Since supp Vziy( i) ¢ V1), we trivially have Vli’]( J) = 0 on those cubes that do not intersect
V(), and so there is no need to change /) there. Let

YI(<]X41%/( A) = {Q € SKMbadlsol( ): (Q+ Q1(0)) Avy) - g}

be the set of cubes where we will adjust #/). By definition, this is a set of Cubes on scale
¢;_1 that either overlap or are far apart. That is ifQe Y1(<] X/Il%/(A) thenall Q' € st X ML aq(A)

either satisfy QN Q' # @ or do(Q,Q’) > +4. Let YI(<M %/(A) be a subset of YI(<M L(A) of

maximum cardinality such that the cubes in YK] Ml %, (A) are pairwise disjoint. By construction

foreach Q € YI(ZX,}%,(A) thereisa Q' € KM v( ) (possibly equal to Q) with QN Q' # @.
In particular,

—~N

U ec U (©+Q,,00)).

Qe KMV(A) QEYK]MlV(A)

Letnow Q € YI(<] X,}%,(A) We know that there is no cube Q" € Sy MLa 4(A) that intersects

(Q+Qy/2(0)\ (Q+ Q. , (0 )) This has several implications. An obvious one is that the
cubes Q + Qy,/4(0) for Q € Y1(<], ;;%,(A) are pairwise disjoint. Slightly less obviously, we claim
that for Q € YIQ;;%,(A) thereisno g € Ui>; Tk, mk(A) such that 4N ((Q + Qy,/4+1(0)) \ (Q+
Qe,_,(0))) # @. Indeed, if g € Ui>j Tk, mx(A) then we have jiso14 > j, so the sequence (6.4.3)
contains a parent g C qU~1 € Sg,;vll,)bad(A)‘ Then gU~Y) cannot intersect (Q + Qe,/2(0)) \
(Q+Qy,_,(0)), and so the same holds true for g.

We would now like to apply Lemma 6.4.3 to the function v = ) and the cubes Q +
QZHH(O) CQ+ Qg],/4(0). For that purpose we fix My = 8 max (16, exp(y4)), where 74 is
the constant from Lemma 6.4.3. If M > My, then

PP ‘ ‘
[’Tl + z’J N $ 1 MKAme _1
[+ +1] 2 SMUTUKAme 8

M3 (6.4.4)

The term on the right hand side is in particular bounded below by ¥ > 16, and thus we
can indeed apply the lemma. We obtain that there is a function wg such that wg = 0 on
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6 Pinning for the membrane model in dimension four and above

79\ (Q+ er/471(0))/ v% (wQ + ;7(]')) is zeroon Q + QgHH(O), and such that

3 (e )

‘L“’(Zd)

’)/ .
d 2,7(1)

< (1+10g(421+‘f;) 10%(6’21%]-1“)) |73
- <1 ' log (é]\;lysjzwﬂ)) HV%UU)

1 .
< - 2,07
= (1+3j2—3j+1> |7

where we have used (6.4.4) and the fact that Ingd%) < og ez}d) G = 1. We set

QeT) v (4)

L(2Z9)
(6.4.5)

L= (Z9)

L=(z9)

and ' '
vi-1 = y0i) 4 Qy,(0)
and finally we set 7 = (0.

Step 3: Proof that the 1) are locally affine on the bad cubes with Jisol,Q = ]

We prove by reverse induction that supp /) ¢ V1), () = 5, on 24\ V() and V251) = 0
on Ug>j Ugety yi(a) (9 + Q1(0)). This is obvious for j = j.(e), so assume that it holds for
somej e {1,...,7.(¢)}.

We claim that then also V3701 = 0 on Uy UgeTipi(a) (@ + Q1(0)). To see this, let
q € Tx,mi(A) for k = jisor,g > j — 1. We distinguish the two cases jiso1 4 > j and jfisorg = j — 1.

In the former case by our inductive assumption already V2;() = 0 on g + Q1 (0). Further-
more, we have argued that g does not intersect (Q + Qy,/2+1(0)) \ (Q + Qy,_,(0)) for any
Qe YI(Z%VIV(A) So either g does not intersect Q + Qg/./4+1(0) forany Q € YI@VLV(A), or qis
contained in Q + Qy, , (0) for exactly one Q € YI(<] B\A,V(A)' In the former case, all V3w are
equal to 0 on g + Q1(0), and thus V35U~ = V23 = 0 on g + Q1(0), while in the latter
case it holds that V37U~ = V2(3) + wg) on g+ Q1(0), and thus by construction of wg
we have V270-1) = 0on g + Q1 (0).

It remains to consider the case that jiso; = j — 1. In that case the sequence (6.4.3) contains
a parent g C gU-1 ¢ Sglg/lliad(A). If (qU=Y +Q1(0) N VW = &, then V24) = 0 on
gU=Y + Q1(0). Furthermore, by the definition of Ylg ;Al%,(A), qU=1) does not intersect (Q +
Qu,/4+1(0)) \ (Q + Qr;_,(0)) for any Q € Ylgx/fl%/(A) C YI(ZX/}%,(A), and so neither does g.
Arguing as in the previous case, we find that V%n(j - = V%ﬂ(j ) on g+ Q1(0). On the other
hand, it could be that (gU~" + Q;(0)) N V) # &. Then gU~1 € YIEJX,}%/(A), and so there
is some Q € Ylg;/ll%/(A) withg c gU=) c Q + Qy,_,(0). Then it holds once again that
VinU=t = Vi(n" +wg) = 0on g+ Qi(0).

This proves that V37U=1) = 0 on Usk=j—1 UgeT pr(4)(q + Q1(0)). Furthermore, each
Qe Y1(<] X/}%/ (A) is contained in V) 4 Qz(gjil_‘_z‘) (0), so the support of ’Fhe associated w, is con-
taiped in V0 + Qz(‘gj71+2)+gj/4‘_1(0). So, V%I’](]_l). is supported in V1) + Qz(gj71+2)+gj/4(0) C
Vi) 4 Qy,(0) = VU=, and #1) = 5, on 24\ VU=, This completes the induction.
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

Step 4: Proof that v satisfies i), ii) and iii)
We define 17 = (%), In the previous step we have shown that V21 is supported in V() and
7 =17, on 24\ V(O We have

VO =V +Qu(0)+...+Q, , (0)
CV+0Qu, ,(0) CV 4 Qkin/a(0) € (U + Qrkirgess+1(0)) \ (U + Qkirgess-1(0)) -

Thus, N ="Nx = Oon U + QKLAmaC/871 (0), N ="Nx= 1on Zd \ (u + Q7KL)\mac/8+1 (0)) This
means that 7 satisfies i) and ii) as soon as ¢ is small enough (depending on d and K).

In Step 3 we have also seen that 7 = 7(?) satisfies V37 = 0 on Usk=0 UgeT ue(a) (g +
1(0)) = qu SO () (9 + Q1(0)). Thus, to show that # also satisfies iii) we only have to

K,M,bad C
check that ||v%17||Loo(Zd) < W

To see this, note the supports of the functions V3w for Q € Ylg X;%,(A) are disjoint. Thus,
(6.4.5) implies the bound

HV%”(H)

1 .
< . 2.,,(j)
L2(zd) = (1 + 3/2 —3j + 1) va L=(Z9)

for j > 1. Iterating this, we find that

j= (¢) 1
R o (e e ) [

j=1
= 1 Cq (6.4.6)
S ((r— s
(E( 37 —3j+1 > (KL)?Afhac
Cq

< __ =4
= (KL)*Afac

1

where in the last step we used that 3371

is summable and therefore H}";l (1 + ﬁ) <
co. This completes the proof.

6.4.2 Decay estimates on good domains

Now that we have a construction of a cut-off function at our disposal, we can execute the
Widman hole filler argument.

Lemma 6.4.4. Let d > 1 and let My be the constant from Lemma 6.4.2. Let K, L, M be odd integers
such that K is a multiple of 3 and M > My. Then for all € sufficiently small (depending on d, K) the
following holds. Let U € Pk, be a polymer. Suppose that none of the KLAmac-boxes touching U
(in the l-sense) are bad of type I or 11, i.e.

{Q € Qi s Q C (U + QKo (0)) \UF N S 1 Mpaa(A) = 2
Then the following holds.

a) Ifu: 79 — Ris a function such that u = 0 on A\ U and uA?u = 0 on Z4\ U, we have the
estimate

2
HV%”HL2<zd\(U+QmmC(0)))

Cde74 (1 + Ng—y log K)

1 ) 12 (6.4.7)
= ( L2 + 4) V22 w4 e OV -
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6 Pinning for the membrane model in dimension four and above

b) Ifu: Z¢ — R is a function such that u = 0 on (U + Qkpa,,..(0)) N A and uA3u = 0 on
U + QkLA,. (0), we have the estimate

2 CyK9™ (1 + 1g—glogK) 1 2
HV%”HB(U)S( e R +4> IV 2 Qe O 1) - 6:48)

Proof. The proof proceeds as outlined in Section 6.1.3. We begin with the proof of part a);
the proof of part b) will be very similar.

Step 1: Discrete integration by parts
We know that none of the cubes in (U + Q... (0)) \ U is bad of type I. Thus, we can apply
Lemma 6.4.2. Let 7 be the cut-off function that we obtain from that Lemma.

We now carry out the discrete analogue of the calculation that lead to (6.1.24). Namely
we see that

0= (A%H,WM)LZ(Zd)
& (ipl . il
= D-D;u,D-D; u
1-;( /DL, DIDL; (gu))
d
=) (D}Dl_ (uD D!+ D}ut! D! 5y + D! ut! Dy + D} D! ut!t ﬂy))

2 d
=1 L2(z7)

d
=Y ) D}Dlju(x)) il (x) + Z Y u(x)D; D1 u(x )D}Dljiy(x)
i,j=1xezd i,j=1xcZ4
d d
+‘E ) D}Dl_ju(x)D}u(x)T}Dl_jiy(x)~|— Z ) D}Dl_ju(x)Dl_ju(x)leDiliy(x).
i,j=1xczd i,j=1xezd

(6.4.9)
Consider the third term in this sum. We can apply summation by parts here and obtain

Z L DiD ju(x)7! DLy (x)
i,j=1xczd
d
= _1'121 sz Dl-lu(x)D]1 <D}u(x)’ri1D1,]-77(x)>
=lxe
= — Z Y Dju( (x)7' D} DL Z Y. Diu(x)D}Dju(x)7 7 DL n(x)
i,j=1xezd i,j=1xczd
d
=—Y Y IDlu(x)t'D}D! Z Y Dju(x)D;D"ju(x)t/ D! i5(x)
i,j=1xeczd i,j=1xeZ4

where in the last step we changed the index of summation from x to Tt jX- This implies

d
Y. Y. DiDLu(x)Dju(x)t' DL y(x) = —5 Z Y ID}u(x)Pt' D} D! iy (x).

i,j=1xezd 11 1xezd

Similarly, we find for the fourth summand in (6.4.9) that

ZZDDl Lu(x) Tl Din(x =—*ZZ|D1 x)[2t!, D} D! (x).

i,j=1xezZd i,j=1xezZd
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

If we use the last two equalities in (6.4.9), we arrive at

Y Y

2
D}Dlju(x)‘ Tilﬂjiy(x)

i,j=1xezd
- 2 Z |D1 |2T1D1D1 + Z Z |D1 ‘ZTl D].D] 77( )
1] 1xezd 1] 1xezd
- Z Y u(x)DiDLju(x)DiDLn(x).
i,j=1xeZd

Here, in the second summand on the right-hand side, we can shift the summation from x to
x + ¢j and then interchange the indices i and j to see that

33

2
D}Dlju(x)‘ Tl-lﬂjiy(x)
i,j=1xezd

d
E Z Z |D1 |2T1D Dl + Z Z |D1 |2D1D1]7’]( )
i,j=1xezd l] 1xezd
d

— Y., Y u(x)D;DLu(x)Di DL (x) (6.4.10)

i,j=1xezd
13 ¥ Dl (DD iy(x) + DID ()

i,j=1xezd
- Z Y. u(x)D;DLu(x)D; DL (x).
i,j=1xezd

This is the discrete analogue of (6.1.23). To continue, we can use the Cauchy-Schwarz
inequality on the second term on the right hand side of (6.4.10) and obtain

33

i,j=1xezd

2
DID ju(x)| 7t ()

3 X, I 1Dt (2010 ) DDk y) + 1 1 ) [pfo

1] 1xezd i,j=1xczd

+ZZ

i,j=1xezd

1
D Dju(x ‘ Lo2y(x)20

(6.4.11)
which is the discrete analogue of (6.1.24). Next, we use the properties of 7. First, recall

that 7 = 1 on Z4\ (U + Qxra,..—2k0,. (0)), and 7 = 0 on U + Qaxa,,.(0). Therefore
certainly T}ﬂjn = 1lon Z4\ (U+ Qxin,,.(0)), and V3 = 0 on Z¢\ V, where V :=
(U + QA —Kkrmi (0)) \ (U + Qka,,.(0)), which we can use to bound the left-hand side and
the third term on the right-hand side of (6.4.11). We also know that

Cq
V2 (x < =5 lo _
| 117( )’ — (KL)2/\12nac ( )QUQ SKMbad(A)Q %)
which implies that
Cq
Tl D Dt <
Tk ]17( ©)l (KL)?A2 .. ngQ SKMbad(A)Q
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6 Pinning for the membrane model in dimension four and above

forany i, j k € {1,...,d}. We can use this for the first and second term on the right-hand
side of (6.4.11). Putting everything together, we see that

2
HV%”HLZ(zd\(ummm (0)))
d

-y T |t

ij=1 xezd\(u+Qmmc (0))

|Diu(x
KL zAlzr\aC ;xg/ x%U Qe §<3\Ab a ©
lu( +2 DID!, ’
KL>4/\?nac x;/ ngQﬁ}(O,}VIb © 1]211 x;/
Ca Viul. 2 Co ul 2

___—<a 1 —_—
(KL)Z/\%nac ¢UQ SI<Mbad(A)Q L2(V) (KL)4A;LHaC ¢UQGSKMbad(A)Q L2(v)

1,22 2
+ 1 HVWHLz(V)

(6.4.12)

Step 2: Use of Poincaré and interpolation inequalities
We continue by estimating the first term on the right hand side of (6.4.12). To do so, we
want to apply Lemma 6.3.3 on each of the KAmac-boxes in (U + Qxra,...(0)) \ U. Note that
(U + Qkra,.. (0)) \ U € Pkpa,,., i-e. itis the disjoint union of some cubes in Qk;, ... Let Q
be one such cube. It is the disjoint union of L9 cubes in Q... Let g be one of them, and let
By:=gnV\ UQes 4) Q. We claim that |B;| > 3|q| = 3K9Ad,. To see this, note that

bad

lg\ V| < 2dK A9 TKA e = 2dK9IAS A e

mac

Furthermore, by assumption Q' is not bad of type II. Therefore, each of its KAmac-subcubes

d
. 1 ( Am . (0) .
contains at most (—Am:> cubes in S 11, 4(A) e

1 / Amac dyd 1 4.4 1
| Q< -~ K AS. = —K°A = —|g|.
€5k, M,bad

Therefore,

1 1
Byl =gl = lg\VI—jan U Q= lal = glal = 24K AzcAmic > 5 gl
Qes%bad(f‘)

whenever ¢ is small enough (in terms of d, K) so that 2K pic < %)\mac. Thus, we can apply
Lemma 6.3.3 on g with B = B, and obtain

2
V1 ul. ¢U Q
H QESKMbad(A) L2(VPg)
2
= ||VitLleny Q
' QES}(,B\/Lbad(A) L2(g)
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

2
2 Cd
< CdK2 m V u + ul \% ’
* H HLZ(VQq) Kz/\rznac < \UQ SKMbad(A>Q L2(q)
and summing this over all Q" and all § C Q" we see that
2
V11/lﬂ
H ¢UQESKMbad(A)Q L2(V)
< CdKZ HV MHZZ + Cd H -2 0 ’ .
Mac L2(V) Kz)\%nac QeSKMbad(A) 12(v)
Using this estimate in (6.4.12) we arrive at
2 12
HVWHLZ (Z\ (U+Qkiamac (0)))

=72 HV H;(v)"' 4(2:d4 ul.gy Q 2

L KA*LZA% o QeSIN 1 baq () 12(v)

. C 2 .\ 1 HV2 H2 (6.4.13)

- u
(KL)*A% gUQESKMbad(A)Q ) 4 1*1lr2(v)
Cq 1) ) 12 Cq >

< — | |Viu 4+ |lul

<L2 4 H ! HLZ(V) K4L2A;Lnac gUQGSKMbad(A)Q L2(v)

where we used L > 1 in the last step.
Theorem 6.3.1 with R = KA. allows to bound

2

2
< CdeA?nic (1 4+ 1g—4 IOg(K/\mIC)) HV%MHLZ(VJrQKA (o))
L2(V) mic

< CyKAL e (1+ La—g Tog(KAmio)) || V3u

ul. #U, Q

ESKMbad(A)

((U4QxLAmac (O)\NU)

(6.4.14)
Now one easily checks that for any d > 4 we have A9 (1 + T4—410g Amic) < CyAt ... Thus,

combining (6.4.13) and (6.4.14) we see that

mic

2
V3 220\ (U4 ren (01))

Cd 1 2
= <L2 * 4) Ve 2 Qusme 0010

Cde_4 (1 + Ny—y 10g K) 2 112
* L2 VTl 12 (U O 00\
CaK4™* (14 1g—4logK) 1 2 112
S < LZ + 1 HvluHLZ((U+QKLAmaC(O))\u)

which is (6.4.8).

Step 3: Proof of part b)
We proceed completely analogously as in Step 1 and 2. The only difference is that we work
with 7§ := 1 — 57 instead of ;7. The assumptions for V37 carry over to V37, and so the proof

carries over.
U
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6 Pinning for the membrane model in dimension four and above

Lemma 6.4.4 has the following straightforward corollary:

Lemma 6.4.5. Let d > 1 and let My be the constant from Lemma 6.4.2. Let K be an odd multiple
of 3and M > My. Then there is a constant Lq x depending on d and K only such that for any
odd integers L > Lqx, M > Mgy and for all € sufficiently small (depending on d, K) the following
holds: Let Uy, ..., Uy € Pxra,,. be polymers. Suppose that for each j € {0,...,k — 1} we have
Uj + QKLAp (0) C Ujyq and

{Q € Okttt Q C (Uj + QrLrae (0) \ Ui} N Sk 1 Mpad(A) = 9.

Then the following holds:

mac

a) Ifu: Z4 — Ris a function such that u = 0 on A\ Uy and uA3u = 0 on Z9 \ Uy, we have
the estimate .
ok

Hv%“HiZ(zd\uk) <5 IV (6-4.15)

2

02U Ot 11

b) Ifu: Z% — Ris a function such that u = 0 on Uy N A and uA3u = 0 on Uy, we have the
estimate

5 112 1 5 12
HVluHLZ(Uo) = 2k HvluHLz((ukfl‘FQKLAmac(0))\uk71) ' (6.4.16)
Proof. We choose L large enough so that the prefactors on the right-hand side in (6.4.7) and

(6.4.8) become less than 1, and then apply Lemma 6.4.4 iteratively on each Uj. O

6.4.3 Sparsity of bad boxes

In order to conclude Theorem 6.4.1 from Lemma 6.4.5 it remains to show that with sufficiently
high probability we can find sets U; as in that Lemma. For that purpose we need to show
that bad cubes are sparse enough.

In fact, we will show that we can make the probability of a cube in Q € Qkr,,.. being
bad arbitrarily small. We even have a slightly stronger result, namely that for each finite
T* C Qkra,,.. We can control the probability that all cubes in T* are bad.

Lemma 6.4.6. Let d > 4, let p > 0 be arbitrary. Let M > 12 be an odd integer. Then there is
Ky, m,p depending on d, M and p only with the following property: let K > Ky um,p be an odd multiple
of 3, let L be an odd integer, let € be small enough (depending on d, L, M and p), and let T* be an
arbitrary finite subset of Qgra,.... Then

&5 (T S apaa ) <977, (6.4.17)

0 (T € S wipaa ) <P, (6.4.18)
. o g I

O (T" C Sk mpad(A)) <2(4p) = . (6.4.19)

In order to prove this Lemma, we will have go to into the definition of the bad cubes of

type Iand II, and, in particular, we will have to understand how rare cubes in Sg,)M,ba d (A)
are. This is quantified in the following Lemma.

Lemma 6.4.7. Let d > 4. There is a constant K, with the following property: Let € be small enough
(depending on d only) so that the conclusion of Theorem 6.1.3 holds. Let M > 12 be an odd integer
and assume that K > K/ is an odd multiple of 3. Let j > 0. Then we have the following estimates.
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

a) Ifj = 0and TO) C Qy, is a finite subset, then

dy\ 1T
25 (T C S paa(A)) < <1<z‘3(d +1)2 exp <—Ié>> . (6.4.20)
" d
b) Ifj > 0and TV C QZ is a finite subset such that the elements of TU) are pairwise disjoint,
then
|T<f>\
2j

Z: (TU') c s¥ (A)) < | 3@-2dpps9 (K24 (d + 1) exp K

A K,M,bad — Cd
(6.4.21)

where sj := B + Y, _ m32i—m,
Here part a) is rather easy to show. If Q € Séogw bad (A), then there are too few pinned
points around Q, and the probability for that can be estimated using Theorem 6.1.5. The

crucial point is that by choosing K large this probability can be made arbitrarily small.
()

Part b) then follows by induction. Each cube in S K] Mpad (A) contains at least two cubes in

Sgg/ﬂ) .q(A), and so if the latter cubes are rare, an union bound will show that the former

cubes will be rare as well.

Proof. We show first part a), then part b) for j = 1, and then use that result to start an
induction that will yield part b) for j > 1 as well.

Step 1: Proof of part a)
This is similar to the proof of Lemma 6.3.2. However, we want a uniform estimate over the
cubes in T(O), and so we need to be more careful.

Let Q € T, and let g € Q,_._be such that g C Q. Suppose that g has centre x € Z¢.
Fori € {1,...,d + 1} consider the sets Z;(q) = MNye,(y + Zi) and E; xa,../2(9) = Ei(q) N
QA /2(%)-

Figure 6.4: A set E;(q), given as the intersection of x + &; for x € 4.

The set E;(g) is an intersection of translates of the same cone, where the tips of the cone
range over the set g of diameter < Vd A mic (cf. Figure 6.4). As soon as K > K/, for some
dimensional constant K, the fraction of points in Qxj, . /2(x) that are in Z;x, . /2(q) is
bounded below. We fix such a K. In other words, we have the estimate

- 1
| K /2(9) | > C—d(KAmic)d (6.4.22)
for K > K|,. Furthermore, if 5; g, . /2(q) N A # @ then d® (y, A) < %)\mic + %Amic < KAmic

forally € gq.
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6 Pinning for the membrane model in dimension four and above

The preceding discussion implies that if &; k.. /2(9) N A # @ for all i then d.(y, A) <
KAmic for all y € g. Thus, if Eix)_. 2(9) N A # & holds for all i and all § C Q then

Q¢ Sgw,bad(/l). Using this we can write
¢ 0
Ca (T(O) C S§<,3\/I,bad("4))
=5 (VQ e T 3gq € Qu,, Jig € {1,...,d+ 1} withgo C Q, B, knp./2(90) N A = @)

=% <VQ e T 3o € Q. Jip € {1,...,d+1} withgo C Q

suchthat  (J Zigie2(q0) NA = ®> :
QeT®)

We can estimate this probability by summing over all choices g = (90) 510 € (Q LA
and i = (ig) pep € {1,...,d+1}7" to find

0 — T
Ta (T(O) < S§<3\/Lbad(“4)) = )y )3 G ( U Eig Krme/2(7Q) N A = @) :
ge(QAmic)Tw) ie{1,...,d+1}7? QeT©
q90CQ VQ6T<O>

Assume for the moment that the elements of T() are well-separated in the sense that for any
Q,Q € TO with Q # Q' we have do(Q, Q') > KAmic. Because Eio KAme/2(4Q) is a subset
of go + Qka,../2(0), it is a subset of the cube with sidelength 2KA ;. concentric to Q. In
particular, by our temporary assumption, if Q # Q’, then &, kx,./2(90) and E; , kx,./2(40’)
are disjoint. Thus, (6.4.22) implies

O]
Cq

U Eiokrmes2(90)| = (KAmic)® .

QeT®

Using Theorem 6.1.3 we now see

G (10 Cshma) < L L (- pen)lleroFormeao)

qe(Qy, )™ ieft,...d+1}7®
70CQ vQeT®

T(O) K/\micd
COr T e )

q0CQ vVQeT®
|T(O) | (KAmiC)d

S Z Z exp <_pd,—Cd> .
q0CQ VQeT®

In any dimension d > 4 we have pd,,)\d > Cid We also have (Kd) T choices for q, and

mic
(d+ 1)|T(0)| choices for 7, and so

(0) | gd
7 (T(O) - Sgg\/l,bad(AD < (Kd)‘m”(d + 1)\T<o>| exp (JTC(JI() . (6.4.23)
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

This estimate was derived under the assumption that T is such that for any Q, Q' € T
with Q # Q' we have d(Q, Q') > 2KApic. In general, this will not be the case. However,
we can partition T(?) into 2¢ subsets Ti(o) fori € {1,...,29} such that for any i and any

Q,Q € Ti(o) with Q # Q' we have deo(Q, Q') > KAmic. At least one of these subsets, say

Ti(*o), will contain at least |T2(§ I boxes. Then we can apply the estimate (6.4.23) to Tl.(*o) and

obtain

65 (T € Sihuma()) = 8 (T € Shpnaa()

(0| (0)) (0)| gd
< (K (d+1) 9 exp (—'T K )

24C4
a1
< (K;j(d + 1)2Ld exp <—K)>
o

which is (6.4.20).

Step 2: Proof of part b) for j = 1
We want to prove (6.4.21) by induction on j. In principle, we would want to use (6.4.20)
as the base case. However, that statement is for Q,, instead of Q#O, and so we first derive
(6.4.21) for j = 1 from (6.4.20) and then use this assertion to start our induction.

Let Q € T(). By construction Q € Sggwb .q(A) if and only if there are at least two disjoint
cubes q,¢4" € Sg\,llbad,dust(/l) C Sl(ggwlbad(fl) such that g,4" C Q, and so

& (T € Shppaa(A))

= 5 (vQ € T 3q0,q € Qy, with 70 N = 2,40 Ud € Q {70,90} € SkhipaalA))

=4 (VQ eTW EqQ,qb € Qy, withgg N q’Q =,qqU q/Q cQ

0
such that U {qQ,qb} C S§<,3\/Lbad(“4>> '
QeT®

As in Step 1 we can estimate this expression by the sum over all possibilities for g¢, 9, to
find

€ 1 € 0
2 (T € S hpaa(A) < )3 & U {9000} © Sl | -
30'€(Qy)™ QeT()
10N76=2,40U4,CQ VQeTW

By assumption the elements of T() are pairwise disjoint. Therefore, all o and qq are

pairwise distinct. Hence, the set Ugcrm){q0, 9} has cardinality 2|TM], and so (6.4.20)
implies

25 (T € Shipaa(A)

IN
7N
~
2
—

o
+
—
SN—

RRJ=
o
b
o
/?
SlkeN
~_
~
~
=

(1)
94'€(Q)"
10N716=2,40U1HCQ YQeT™
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6 Pinning for the membrane model in dimension four and above

2a\ 1TV d\ 21T
g(&) ) (ké@snbep (-£))
fo Cd

MO (g 1 K\
= 2 (d+1)29 exp -
d

— <M2d (K’;ﬁ(d +1) exp (_§:>)z>

which is (6.4.21) (as s1 = 2).

Step 3: Proof of part b) for j > 1
We proceed by induction on j, using the result from Step 2 as the base case. That is, we
assume that (6.4.21) holds for j — 1, and we want to conclude that it also holds for j. The
argument for this is analogous to the previous step. The only difference is that now the
smaller cubes g, ¢’ live in inl instead of Q, ,, and so the number of possible g, q' is now

larger. Arguing as in Step 2, we obtain, using the assumption that the elements of |T()| are
pairwise disjoint, that

Ch (T(j) C Sg,)M,bad(A))
< L G ( U {9090} © sEJ,A},Lad<A>)
)

ﬂfi’g(gﬁj,l QeT®
1QN9G=240U15CQ vQeT®

30, \ 2 T0)]| N 270 (6.4.24)
< = 3(21*1_2)dMS/71d Kz% (d + 1)2% exp _Kf
< i c
g o \T(j)‘
= (32d+2(2]12)dM2(j3(j1)3)d+2511d (K;’(d i 1)2% exp (_J\é)) )
It remains to observe that 2d + 2(21'*1 —2)d = (2]' —2)dand
j—1 ,
27 = (j = 1)")d +25j-1d = 2d (f (-1 + (- + ¥ m321—1—m>
m=0
j—1 ,
=d (21'3 +y m321—m>
m=0
j .
=d |+ ) mP2"| =sd.
m=0
O

Now we can turn to the proof of Lemma 6.4.6.

Proof of Lemma 6.4.6.

Step 1: Proof of (6.4.18)

Our main tool will be Lemma 6.4.7 a), and the argument is similar to the one in Step 3 of the
proof of Theorem 6.1.3 ¢). We will choose Kqy u1,, > Kj so that Lemma 6.4.7 can be applied.
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

Proceeding as in the proof of Lemma 6.4.7 we can estimate
A1
& (T € Siapaa(A)

S (VQ € T"3Q0 € Qi With Qo C Q,
0 1 /\mac d
‘{qeséj\d,bad@At)ZqCQb}’ ZZ <)\mic> >

{q € Sgb,bad(fl): qC Q/QH > i (iﬁ:)d)

d
> 1 (5me) )
4 )\mic

< )Y GlvQer
Qe(Q, )"
QfCQ VQeT*

e 0

< Y CA <|{’7 € S§<,3\/I,bad<"4): ¢ U Qb}
ge(gfj*(g))T* QeT*
Q{CQ VQET"

Let i
To={9€Q4:9C |J Qg}

QeT*

. d
and note that ‘TQ/ = (é‘ﬁ:) |T*|. Using (6.4.20) we can now continue to estimate

€ * *, 11 e ~ (0) 1~
Ca (T c SK,L,M,bad(‘A)) < ) G <’TQ’ﬁ SK,M,bad(‘A)’ Z 3T
Qe )"
Eei%,
Q,cQ VQeT*

= 7 (0) .

B D 2 G <Tgm Sk Mpad(A) = T)
ge ( Q[]* () )T* TCTQ/
QyCcQ vQeT* ITI>/Ty /4

0
= L Z Ch <T C S§<,3\4,bad(“4)>
ge(Q(]* e )T* TCTQ/
QLCQ VQeT* T|=|Ty|/4

d 1 Kd ‘T|
S K29 (d+1)2 2
< ¥ L (kernrer(-g))
QG(Q% . )T TCTQif
QLCQ VQeT* T|=|Ty|/4

ITo| -

Tor d\ '
LE B () et (5)
)T i=[|Tgy|/4]

LelQr,
Q,CQ ¥QeT*

here we have abbreviated N = | Tgy| = (%m)* |T*|. Let pgx = K3 (d + 1) K

where we have abbreviated N := [Ty | = (m) |T*|. Let pgx := K29 (d+1)29 exp <—C—d>.
Clearly limg ;0 pax = 0, so we can pick Ky, (at this point independently of M) large
enough such that for K > Kq 1, we have pgx < 31—2 Then Lemma 6.2.7 with that choice of p
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6 Pinning for the membrane model in dimension four and above

implies that

¢ [ %, e
5 (17 € Sl ma) < @7 (3)

For ¢ small enough (depending on d, L, and p) the term in brackets is less than p, and we
obtain (6.4.18).

Step 2: Proof of (6.4.17)
We can use Lemma 6.4.7 b). Given Q € Qkr,,,., there are at most

d d
({BKL)\mﬂ . 3) - <4KLAmaC>
€i.e) €i.(e)

cubes in Q? o that intersect Q (we used that K[L(m)“ > 8). We can now proceed as in the
x (€ “jx (€

]
proof of Lemma 6.4.7 and obtain

Ch (T* C SKLMbad(A))
=35 (vQeT 390 € Q| withqoNQ # 2,90 € SEu(A))

=5 (VQ €T Jqp € QZ* « With g0 N Q # @ such that U {490} C SKM)b)ad(A))
QeT*

= ). < U {q0} C SKMbad(‘A)> :

g€ 7 \QeT
- Jx (€
JoNQ#2 VQET*

If we assume for the moment that none of the cubes in T* are [**-neighbours, then the g are
pairwise distinct, and so Uger- {90} has cardinality |T*|. Now (6.4.21) implies

8 (T C SYLmpaa(A)

; ) Kd 2j(€)
< Y (3(21* 2)d 5. ()4 <sz(d +1)2 exp <_Cd>> )
)"

qe(Qf.
- Jx(e)
qoNQ#D YQET*

o\ 7]
d
< [ [ #RLAmac 3@ =2)d psic (sz (d+1)2 eXP< : ))
bive) c
(6.4.25)

To remove the assumption that none of the the elements of T* are neighbours we proceed as
\

2ie@\ Tl

in Step 1 of the proof of Lemma 6.4.7 and find a subset T;" of T* of cardinality at least |
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

for which this is the case. Using (6.4.25) for T;" instead of T* we arrive at

Ch (T* C SKLMbad('A))
< Ch (T* C SKLMbad(A>)

|T*] |T*]

o ol d 2ix(e)\ 2d
< [ ( #KLAmac 322 pod (K (d 4 1) exp (-
b B
(6.4.26)

It remains to bound the right hand side in (6.4.26). We begin by bounding s; from above.
We have

m=0

4 J i , ]'3 I3 } © .3 ,
sp=/+ ), m2"=2 5+n12271 < 4+m§)2—m =30-2
and so (6.4.26) implies that

ay T

AKLA o 0 Kd 2jx(€) \ 2d
EREAmac (500K (d+ 1)d2d exp
bi(e) G

dy T
4KLAmac v | *
= T . Pdkm
j=(#)

where we have abbreviated pgxm = 3M3OKd 2 (d+1) o exp (——) Note for each fixed

IN

2 (T" € Sipaa(A)

M and d we have limg . pgx,m = 0, and so we can pick Kqg a1, such that pg M <1 5 for

K > Kqmp-
4 |T*|
(41<LAmac2_2j*<s>> :
b (e)

For these choices of K we then know that
4K LA mac 2_2]* 24

<pd (6.4.27)
. e)

IN

G (T* C SI?,IL,M,bad(A))

and we only need to show that

when ¢ is small enough. To show this, we need to bound j.(¢) from below. By definition,
j«(€) is equal to the largest integer j such that £; < KL)‘““C . In particular, ¢; (o)1 > KLQ"“"‘C, ie.

MUEFD KA e > %. Estimating (j.(¢) + 1)3 < (2] ()3, we conclude

Let us also abbreviate Xy, = L?\;“;“, and observe that lim,_,g Xq,1 = oo. For t sufficiently

large we have 1 7v/1logy, t > log, logz(tz) This means that for X4, ; sufficiently large (i.e. ¢
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6 Pinning for the membrane model in dimension four and above

sufficiently small) we have j.(e) > 3{/1og Xaer > log,log, (X3, ). Using this and the
rather crude estimate ¢ i(e) 2 £j, = KAmjc for the denominator, we find

4KLAmac

10821082(?(%/8;) < 32Xd,€,L o 32
4. (e)

2—2]*(€) < 32Xd,g,L2_2 < . —
Xd,S,L Xd,S,L

for ¢ sufficiently small. This clearly implies that (6.4.27) holds for ¢ sufficiently small, which
is (6.4.18).

Step 3: Proof of (6.4.19)
We can assume without loss of generality that p < 1, as otherwise the estimate is trivial.
Using (6.4.17) and (6.4.18) we see that

T (T C Sk Lmpad (A))

1 1
< Y (T CShmpaal A T € Silyna(A)
T;UT}=T*

€ * *,1 € * x,I1
< ) G (TI = SK,L,M,bad(‘A)> + ) G (TH C SK,L,M,bad(‘A)>
TiCT* T;CT*
Ty |=|T7|/2 Tr|=IT"(/2

|T*| T\

< 1

2 £, ()
i=[|T*|/2]

il

<2(4p)

where we have used Lemma 6.2.7 in the last step. O

Using Lemma 6.4.6 we can now estimate the probability that we find sets U; as in Lemma
6.4.3.

Lemma 6.4.8. Letd > 4, and A € Z9. Let M > 12 be an odd integer. Then there is Ky
depending on d, M only with the following property: Let K > Kqy p be an odd multiple of 3, let L
be an odd integer. Let U € Pxp,,... be a polymer consisting of n = % boxes. Let k > 0 be
an integer and let Oy x be the event that there exist Uy, . .., Uy € Pxia,,.. such that U C Uy, for
jE€ {0, ...,k — 1} we have U]' + QKL (0) C U]’_H, U C U+ QkkrA . (0), and

{Q € Oxirme: Q C (Uj + Qkiamae (0)) \ Ui} NSk 1 Mpad(A) = 2.

Then, if € is small enough (depending on K, L and d), we have
n
Ta(Qup) >1— . (6.4.28)

Proof. Let p > 0 be a constant to be chosen later (depending on d only). We pick Kqm >
Kg,m,p with the Ky p1,, from Lemma 6.4.6 so that this lemma can be applied.

We try to define the U; using a greedy algorithm. That is, we define U; as the union of all
cubes Q € Qkpa,... that can be connected to U by a non-selfintersecting [*-path of cubes in
OKrLA,,. that contains at most j non-bad cubes. More precisely, Q € Qkr,,.. is a subset of U
if and only if there are | > 0 and Q0 =0,00,...,00 cue KL, Pairwise disjoint,
with doo(Q(i), Q(iJrl)) <1foralli € {0,...,] —1}, such that at most j of QO oW, .., Q-1
are notin S yrp.4(A).
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6.4 Probabilistic decay of the L>-norm for biharmonic functions

This definition ensures that all [**-neighbouring cubes to U, are not in Sk ; ,,,.4(A). So
one sees that the U; satisfies all the conditions from )y x except that we do not yet know
whether Uy C U + Qakra,,. (0). This means that

1 =33 (Qui) <354 (U ¢ U+ Qakkrrgg (0)) (6.4.29)

and so it suffices to estimate the latter probability.
To do so, we define ITj; to be the set of non-selfintersecting /*°-nearest neighbour paths

Y= (Q(O) =Q,0W,. .., Q(Z)> of cubes, that connect a cube Q outside of Qakra,...(0) with

Q) ¢ U. For ¥ = (Q<0> —0,00,. .. Q<l>) let ¥ = {Q<0>, Qm, ... QU)} be the set of
cubes in ¥, and let |¥| = [¥| = I + 1 be the number of cubes in it.

If Uy ¢ U+ Qakkrn,,.(0), then there is some ¥ € ITj;; that contains at most k cubes
within Q(©, ..., QU= (and thus at most k + 1 cubes within the cubes in ¥) that are not bad.
Because ¥ connects U with a cube outside of U + Qakxra,..(0), we have [¥| > 2k + 2. We
can now continue (6.4.29) by using a union bound over all ¥ € I, and later over all bad
subsets of ¥, and obtain using Lemma 6.4.6 that

1= (Qug) < C3 (FY € Ty [\ Sk mpaa(A)| < k+1)

< ) G ([¥\ Sk mpad(A)] Sk +1)
TGHU,}(

= ) (W(T C¥:TY C SipampaalA), TS = [¥] —k—1)
TGHU,}(

< ) Y. Ca (T8 CSkpmpaa(A)

Yellyy  T3CY
| Tg|>[¥]—k-1

Iyl
< Y Y, 204p):
Yellyy T3
|Tg|>[¥]—k—1

< ¥ 20p)e

‘PEHU’k

We can reorganize this expression by summing over the lengths of Y. Recall that this length
needs to be at least 2k + 2, and note that there are at most 1(2d) paths in ITj;; of length
[ + 1. Thus, we obtain

> Ik
1-55Quy) < Y Y 2(4p)-
1=2k+1 Yl
[¥|=1+1
< Y n(d)2(4p) 7
1=2k+1
2n ad

o 1
= Gy L, V)

We choose p < ﬁ, so that 4d,/p < % Then, in particular, the series on the right-hand side

converges, and we can continue

n (4dﬁ)2k+l

1= A (Quyi) < CypF 1-4dyp
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6 Pinning for the membrane model in dimension four and above

- n(4d,/p)*
 (2yp)r
= n(8d>/p)".

We finalize our choice of pas p = ﬁ. Then (6.4.28) follows. O

Proof of Theorem 6.4.1. We want to combine Lemma 6.4.5 and Lemma 6.4.8. That is, we first
choose M so large that Lemma 6.4.5 can be applied. Then we choose K large enough that
Lemma 6.4.8 can be applied. Then Lemma 6.4.5 applies for sufficiently large L. We choose
Ny = KL, and note that Lemma 6.4.8 implies the bound on the probability of ;.

It remains to check that (6.4.15) and (6.4.16) imply (6.4.1) and (6.4.2) if Oy« holds. This
follows from the observation that (Up + Q... (0)) \ Uo C (U + Q1. (0)) \ U and

(Uk-1 + Qigrmae (0) N U1 € (U + Qoyiyn, (0)) \ UL O

mac mac

Remark 6.4.9. Let us comment on why the lengthscales ¢; = M7 KAmic are a natural choice.

For the construction in Step 2 of the proof of Lemma 6.4.2 we need that log E}% is summable

as otherwise we could not bound || V1#]| 1 in (6.4.6). This means that /; needs to grow rather

fast (e.g., {; = M7 KAmic would not be fast enough). On the other hand, for the estimate on

the probability of bad cubes of type I in Lemma 6.4.6 we need that the exponent s;d of M
, \2d

in (6.4.21) is at most C42/. This exponent arises from the combinatorial factors (%) in

(6.4.24). This means that ¢; cannot grow too fast (e.g., {; = szK/\miC would be too fast).

Fortunately, both requirements are compatible, and in fact, our choice ¢; = Mj3K)Lmic
satisfies both of them.

6.5 Pathwise bounds on the field

We can now turn to the proof of Theorem 6.1.5 and of the second part of Theorem 6.1.2.
Before we actually give the proofs, however, we state and prove various quenched estimates
for G\ 4 that hold for all A, or at least up to exponentially small probability in A. The main
tool for that will be Theorem 6.4.1.

We prove those estimates in Section 6.5.1. Then, in Sections 6.5.2 and 6.5.3 we use them to
deduce Theorem 6.1.5 and the second part of Theorem 6.1.2, respectively.

6.5.1 Quenched estimates on the Green’s function

We write Gy, for GA(-,y). We have the following straightforward result for G». This is
essentially the same as Lemma 2.8.1 or Lemma 4.4.2.

Lemma 6.5.1. Let A € Z% and x,y € Z°. Then

Ga(x,y) = (ViGax, ViGay) (6.5.1)

[2(z¢) -

Furthermore, we have

1GA(x, )| < /Galx,x)GA ). (652)
Proof. For (6.5.1) we calculate

GA(x/y) = (]l~:x/ GA,y)Lz(Zd) = (A%GA,x/ GA,y)LZ(Zd) = (V%GA,XI V%GA,y)LZ(Zd) .
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6.5 Pathwise bounds on the field

The estimate (6.5.2) follows directly from the interpretation of G, as a covariance. Alternat-
ively, we can use (6.5.1) together with the Cauchy-Schwarz inequality to estimate

Galx, )| = | (T3Gnx, V3Gay) 12z,
< HV%GA/xHLZ(Zd) HV%GA/yHLZ(Zd)

= /Gax,1)GA ).

O]

Next, we establish some quenched tail estimates on G\ 4(x, x). If d > 5, then there are
deterministic bounds on G\ 4(x, x) by (6.2.5), so this is only interesting if d = 4.

Lemma 6.5.2. If d = 4, there is a constant ¥ > 0 such that if A € Z%, x € A and ¢ is small
enough (depending on d only) then for any t > 4 we have

eexp(167(t — 7))) , (6.5.3)

Th (Gavalx,x) <t) > 1—exp T
C|loge|z

and forx > 0, x € Awithd(x,Z3\ A) > e ®and 0 < t < #log (1+d(x,Z\A) — ™) —
4 we have

2 ~
05 (Gaa(x,0) < ) < 1—exp [~ 2EP (3277(¢ + 7)) (6.5.4)
| log |2
for some constant C.
Furthermore, ifd > 4, k € IN, and y € A there are constants 44 such that
logk + |loge . 1
Ta (GA\A(%.‘V) < ﬂd_4w + ’)’d) 21— (6.5.5)

Proof. We begin with (6.5.3). This follows easily from Lemma 6.2.4 and Theorem 6.1.3 c).
Indeed, if x € A then GA\A(x, x) = 0, while if x ¢ A we know from (6.2.5) that

1 o 1 o 1
Gaalx, x) < Rlog(l +d(x, A))+C< Rlog(d(x,fl)) +C< Rlog(d(x,fl)) +C.

So, there is a constant 7' such that G\ 4(x, x) > t for t > 4 implies d(x, A) > exp(47*(t —
4")). Using (6.1.7) we can estimate that

Ca (Gavalx x) < 1) > 03 (d(x, A) < exp(47(t = 7))

=1-04 (Aﬂ Qexpar2(t—3) (x) = ®>
>1-(1- p4,,)‘QGXP(MZ(F?’))(J‘)'

20+ _ /N4
>1— exp <_P4, eXp(47é (t=9") >
2(4 _ &I
> 1 exp _eexp(lém (t1 7))
C|loge|2

which is (6.5.3), if we choose § > 7.
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6 Pinning for the membrane model in dimension four and above

The argument for (6.5.4) is similar. We have that

1 - 1 -
GA\A(X,X) > @log(l +d(x,A)) —-C > ﬁlog(d(x,/l)) —C

if x ¢ Aand Gy, 4(x,x) = 0if x € A. So there is a constant 4" such that G\ 4(x, x) <t im-
plies d(x, A) < exp(87%(t+")). Our assumption t < gy log (1 +d(x, Z\ A) —e7*) —
ensures that exp(87%(t +7"")) < 1+d(x,Z%\ A) — ¢ *. This means that Qe (gr2(1+37)) (X)
still has distance at least e from Z¢ \ A (and in particular d(x, A) < d(x,Z% \ A), so that
d(x, A) < d(x, A). Thus, we can apply (6.1.8) and obtain

T (Gaalx,x) < 1) < 35 (d(x, A) < exp(872(t+77)))
=1- 65\ (A N QeXp(Sﬂz(t+7/’))(x) = @)

Cpeexp(3272(t + 7"
1 e [ Ctep2(+7)
| log 2

This is (6.5.4), if we choose 7 > 4"
Regarding (6.5.5), note that if d > 5 this is a trivial consequence of (6.2.5), while if d = 4

we can consider the choice t = bgk;g% + 4 in (6.5.3) to obtain

2 logk+|1

oge|
logk + |log¢| ~> eexp(l6m> 8- 785)
A1 G Y) < —————+ >1- - &
CA< mAWY) < = T)=1-exp Clioge)?

k
<l—-exp|———
( C!10g€!2>

and the right-hand side is at least 1 — % if ¢ is small enough. O

Next, we prove quenched bounds on the covariance.

Lemma 6.5.3. Letd > 4, A € Z9, and x,y € A. Then, if e is small enough (depending on d), we
have

£yl 1+ Loy log el £yl
25 (1Gm o) < Cooxp (1500 A >1-exp (gt

(6.5.6)

for some constant Cy.

Proof. By translating A and A we can assume y = 0. This ensures in particular that y is

in the centre of a box in Q; for any I. Let U = Qg (0) with the Ny from Theorem 6.4.1,
and consider for now the case that |x — y]e > 8NyAmac. Letk = {8‘;‘:7%“"’-‘ , and note that
XYl
k S 4Nd)‘mac )
Assume that A € Q7 with the 3y, from Theorem 6.4.1. Then that theorem (applied to
Ga\ay) and (6.5.1) imply that

2
ViG
H 1 A\A/y LZ(Zd\(u+Q2kﬁdAmaC (0))

<1 HVZG ’
)~ 2k 19A\Ay L2(ZA\U)

! 6.5.7)
= ?GA\A(%]/) .
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6.5 Pathwise bounds on the field

Furthermore, suppose that A € ), with the (), from Lemma 6.3.2. Then we can
conclude

\GA\A(x,JMZ = ‘GA\A,y(x”z

k4 (1 + Ly—s(logk + |loge[>/2)) (6.5.8)

< Cq IViGA Ay T2, )

3
For ¢ small enough (depending on d) we have NgAmic < NgAmac. Then U + Qi A (0) =
Q (2k+1) NigAmac (0) and Qkn, .. (x) are disjoint, and so we can combine (6.5.7) and (6.5.8) into

k¢ (14 La—s(logk + | loge*/?))
S

|GA\A (v, y) ’2 < Cq | v2GA\AJH%Z(kad/\miC (x))

k4 (1+ Ly—s(logk + | loge[>/2)) 2
=< Cq Hvl AAY|| 1274 .
€ L2(Z\ (U4 Qo yAmac (0)))
kd 1+ ]ld:4(10 k + ‘ lo 8‘3/2)
<, ke losd™ ) 6, uw.
(6.5.9)
Next, let Qy,k be the event from (6.5.5). If A € lek, then (6.5.5) and (6.5.9) imply
k9 (14 14—4(logk + | loge|?/?
Gnale ) < o Rt OBELIOBEDN (41, o+ 1oge)
k 5/2
<c, <i> 1+ ]ld_4llog£\
5/2 (6.5.10)
< Ciex ( o 3\x—y\oo> 1+ 14-4|loge|
= eP 8 4 4I\]d)\mac €
|x —yloo> 1+ 1g_y|loge*’?
< Cyexp | — .
=P < CdAmac €

This estimate holds if A € Oy N Qyx N Oy & But that probability is easy to bound:

~ 1 1 1 k X — Yoo
(NN ) >1—— —— ——>1-— — ) >1- = J=)
O (QurN Qe NOy) 21 =55 =5 —p 2 1-exp <Cd> o ( chmac>

Therefore we have shown that the set of A for which (6.5.10) holds has measure at least

1—exp ( ‘Cx Ayt’:) and this implies (6.5.6).

It remains to consider the case that |x — ¥« < 8NyAmac. In that case we need to show

1+ ]ld:4’ 10g€‘5/2>
€

& (\GA\A<x,y>\ < ¢y > cq.

This follows immediately from (6.5.5) and (6.5.2). O
We also need to quantify that for a large domain A the covariances far inside A depend
only weakly on the precise shape of A.

Lemma 6.5.4. Letd >4, A’ C A @ Z9. Let € be small enough (depending on d only). Suppose
that r, R are integers with NiAmac < 7, 87 < R and Qr(0) C A. we have

R—7\ 1+ 14—y|loge|>*
Ch (xyfggx |Gava(x,y) — Ganalx,y)| < Caexp <_Cd)\mac> 172

Zl—Cdrdexp (—CRA_V ) .
d/‘Ymac

(6.5.11)
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6 Pinning for the membrane model in dimension four and above

Proof. The idea is that Hy := G\ 4,, — Gan 4, is biharmonic in Qg (0). We will use Theorem
6.4.1 a) to conclude that the L?>-norm of V2H outside of Qg,2(0) is exponentially small, and
then use Theorem 6.4.1 b) to conclude that the L?-norm of V2H in Q,(0) is exponentially
small. Of course these estimates hold not for all realizations of A, but we will estimate that
they hold for sufficiently many.

Let7 = || NaAmac and R = | 2| RyAmac. Thenr <7 < 2r, § < R < R. We let
U = Qr(0) and note that U € Py, isa polymer consisting of ( Nd . ) boxes in Qg , .
— | _R=F
Let k - {4NdA;acJ
we have
2 2 < 1le2
Hvch\A,y = 5k HleA\Ay 12(Z4\U)

L2(Z\ (U4 Qe apnac (0))) — 2K
1

as Gayay = 0 on A\ U and GA\A,yA%GA\A/y =0onzd\ U.
Analogously we have

1
HleA \Ay < ?GA’\A(%]/)

L2(Z\ (U Qo g rmac (0)))

as Gy\ay = Oon A\ U and GA/\A,yA%GA’\A,y = 0 on Z9\ U (even though Gana,y is not
biharmonic everywhere on A \ (AU U)).
If we define Hy y =: Ga\a,, — Gan\ a4, the preceding two estimates imply that

2
H V%HA,y HL2(Zd\(U+szNdAmac ©)))

2
+2 Hv%cA/\ Ay (6.5.12)

2
< 21|V3G
S H 1YA\Ay LZ(Zd\(UJermdAmaC(O)))

L2(Z9N\ (U Qo A mac (0)))

1
< 1 (Gavavoy) + Ganaly,y)) -

- + Zk) boxes in QNd P The function H,

is biharmonic on U + Qyx.1. . (0) C Qr(0) as the two singularities cancel out. So we can
apply Theorem 6.4.1 b) and obtain on the event (Oy; o . (0« that
dAmac

The polymer U + Qyx,1,... (0) consists of ( A

(6.5.13)

2 2
HleA’yHLZ(UJFszNd,\maC (0)) LZ((UJFQALkNd/\maC (0))\(U+Q2kNdAmac(0))) ’

Furthermore, we can introduce the event ()y,k as in (6.5.5). By definition we have
Gava(y,y) < Cq (1+ La—s(logk + [loge|)) (6.5.14)
on that event. We claim that on the event Qy,k we also have

Gana(y,y) < Ca (1 + Lg=s(logk + |logel)) . (6.5.15)
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6.5 Pathwise bounds on the field

Indeed, if d > 5 this is once more a trivial consequence of (6.2.5), while if d = 4 we can use
(6.2.6) to estimate

Ganalyy) < gz Tog(1+d(x, (AU (Z4\ A'))) +C
41210g(1—|—d( (AU (Z9\A)))+C
<Gpaualyy) +C

so that (6.5.15) is a consequence of (6.5.14).
Finally, if A € Q) with the event (), ; from Lemma 6.3.2, we have

k¢ (14 La—s(logk + | loge*/?))
€

|Hay(x)|? < Cy4 ||V%HA,y(x)||%2(QkNdAmic(x)). (6.5.16)

We choose ¢ small enough so that NyAmic < 2NyAmac. Then, in particular, Qpn, .. (X) C

U + Qrngayi (0) € U+ QriokNga e (0).
Now we can combine the estimates we have just collected. More precisely, assume that

A€ Ouin QU+sz kN Qy,k N Qy k. Then we can use (6.5.12), (6.5.13), (6.5.14), (6.5.15)
dAmac
and (6.5.16) to obtain

1Gava(x,y) = Ganalxy)|*
= [Ha,(x)]?

k9 (1 + 1g—4(logk + |loge[>/?)
( : L9y,

k! (1+ La—s(logk + | loge[>?))
€ H V%HA,y H L2 (U+Qyixiy Amac (0))

< (4

(QiNgA e (*))

< Cq4

k4 (1+ L4—s(logk + |loge|3/2)
2ke

k4 (1+ L4—s(logk + |loge|3/2)
2ke

k9 (1 + 1g—4(logk + |loge[>/?)

< C4 ( 2%k Tg ) (Gava(w,y) + Gana(y,y))

k¢ (14 Lg4(logk + | loge*/?))
22k—1¢

1\ 14 14_y|logel?/?
<c, <> + 14—4|loge|

< Cy4

) 2 2
’ ‘ vl HA’y ’ ‘ L2(( U+Q4kl§ld/\mac )\(U+Q2kl§ld)\mac (0)))

< Cy HV2HAyHL2 (6.5.17)

U+ Qo Amac (0)))

< Cq4 (14 14—4(logk + |logel))

2 €

R 1+ 14= 4]10g8]5/2
<
B Cd eXP < Cd)\mac> €

From (6.5.17) we see that on the event

O:= Qu,k N QU+Q2kNd/\mac (0),k N ﬂ ()y,k N ﬂ Qx,k
y€Q,(0) x€Q,(0)

we have the desired estimate. So it only remains to bound the probability of () from below.
For this we use a union bound to see

d d
7 1 7 1 1 a1
E)>1——— ) = ——+2k| = 2 1)"— — (2 1
gA( ) - (Nd/\mac> 2k (Nd)\mac * > Zk ( T ) 2 ( T ) 2
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6 Pinning for the membrane model in dimension four and above

>1— Cdrd exp (_éc)
d

Zl—Cdrdexp (—CR/\_r ) .
d/‘mac

This completes the proof. O

6.5.2 Estimates on variance and covariance

Proof of Theorem 6.1.5. We first prove part a) and then part b).
Step 1: Estimates on the variance
We have that

ES(93) = Y CA(AEAAW2) = Y G5 (A)Gaalx, ). (6.5.18)
ACA ACA

Thus, (6.1.10) follows immediately from (6.2.5). For (6.1.11) we use Lemma 6.5.2. Indeed,
using Fubini’s theorem and (6.5.3) we can rewrite (6.5.18) as

By (93) = [ i (Gaale) 2 1)

< [T (Graten) 2 1) di+g
Y

) 2(4 _ &
S/ exp _eexp(lérm (1,‘1 7)) dt + 5
7 Cl|loge|2

) 2
< / exp _z?,exp(167r1 t) df+C
0 C|loge|2

- %Jr%ldt%— o0 exp (_eexp(167rft)> df+C
: b e Clioge?
2
<l gl [ (ST o
clon
< ‘11(6)g2‘ + Clog | log €|

for € small enough, which establishes the upper bound in (6.1.11). For the lower bound we
argue similarly using (6.5.4) and obtain

EAW) = [0 (Gaale) = 1) dr

2 log(1+d(x,Z2\A) - 1) -5 2 ~
Z/Snz ( ) exp _ Caeexp(327 1(H—'y)) df—C
0 | loge|2

>

e e RN
0 | log ¢

The assumption d(x, Z4 \ A) > e~* + ¢~ /% ensures that the second term in the minimum
here is smaller than the first, and so we see that indeed

|loge| log|loge| Ca
g —_——
EA\(y3) 2 3272 64772 1 |log €|
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6.5 Pathwise bounds on the field

Step 2: Estimates on the covariance
Asin (6.5.19) we have

<) CA(A)|Gavalx, y)l- (6.5.19)
ACA

Y CA(A)En 4 (¥xpy)

ACA

[EA ($xpy)| =

From Lemma 6.5.3 we know

¢ X — Y|\ 14 Lgs|loge|>/* X = Yl
05 (1Gm Al )] < Coenp (22 ) IRt 0B ) o g g (B2

Abbreviate the event described here by (). The decomposition (6.5.19) implies

X —Yloo\ 1+ Ly_s|logel>/4
B (et € T Caexp (—IEtle ) TERBE 4 5 45(4)(Gpao)

ACA ACA
AEQ AgQ
\x—yloo> 1+ 14-4|logel>/*
< Cqexp | — + )|G X,
sorp (g ) FHEARES 4 E )Gty
AZ0

(6.5.20)
and so we only need to bound |G\ 4(x, y)| on the rare event O)°.
If d > 5, we can use the bound

Gaval(x,y) <max (Gaya(x,x),Gavaly,y)) < Ca
that follows from (6.2.5) and (6.5.2) to conclude from (6.5.20) that

X —Y|co 1
5 ()] < Caoxp (-5 012) ki )
X —ylo 1 X — Y]oo
< _ _
= G =P < CdAmac 81/ 2 T Caex P CdAmac
Cq X — Yloo
< -4 _
- 51/2 P < Cd/\mac
which implies (6.1.12).

If d = 4, the estimate is slighty more complicated, as Gx\ (¥, ) is no longer uniformly
bounded. Instead we use Lemma 6.5.2 to deduce a tail bound on G\ 4 (x,y). Note first that
if x = y then (6.1.13) follows (6.1.11), and so we can assume x # y. By (6.5.2) and (6.5.3) we
have for any t > 4 that

Ta (IGa\a(x y)| > t) < Ti (max (Gaalx,x), Gava(y,y)) > t)
< i (Gavalx,x) > t) + T3 (Gavaly,y) > t)

eexp(167%(t — ¥
<2exp [~ EXPUOT(E=T)) )
Cl|loge|z
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6 Pinning for the membrane model in dimension four and above

We can now use Fubini’s theorem to estimate the second summand in (6.5.20) as

Y Za(A)|Gava(x,y)|
ACA
420

< /Ooo Ca (IGaa(x y)| >t A ¢ Q) dt
< [ min (2 (1Gaatow)] 2 1),55,(00) a
< [;min (GA (IGaa(x, )| > 1), 53 (Q)) dt+/7g;(m dt

o gexp(167%t) < |x y\oo> - < |x _y‘w>
< / min | 2ex ——— | ,ex dt + yex —_— .
0 ( p ( C’ logs]% p Cd)\mac 7 p C/\ng : 21)

To estimate the remaining integral, note that for a,b < 1 we have a = exp(—bexp(167%t))
fort =t, := 16”2 (log | logal| + |logb|) and so

/Ooo min(a, exp(—bexp(167%t))) dt
= /Ot* adt + /too exp(—bexp(167r°t)) dt
=ta+ /Ooo exp(—bexp(167°t,) exp(167r°t)) dt
<ta+ /O " exp(—bexp(1672,) (1 + 1672t)) dt
= t.a+ exp(—bexp(167°t,)) /Ooo exp(—167%thexp(167r°t,)) dt

exp(—bexp(167%t,))
167t2b exp(1672t..)

= t.a+

a
Y I .
at 1672| log a|

1
= 16 2<aloglloga\+a\logb\“ |>
< Ca(log|logal + | logb|)

With the choices a = ex | y |°° and b = £~ we then obtain from (6.5.21) that
P Clloge'72

Y. (A |GA\A )|

ACA
AgQ
X — Yoo X — Yoo €
< - 1 log —=+|+1
= Cep < Chmac ) \% Chmae | 8 Cllog e[ 72| ©
!x—y\oo> < X =Yl | 10! 0g€|1/2 )
<Cexp | — log ———— +1
- < Chmac ) U8 Amac
< Cex _M 1 — —
< Cexp (log [x — y|e — log [ loge| +1)
CAmac
where we have used that 4log Ai + log “(’gg‘ —log |loge|. Finally we can return to
(6.5.20) and obtain
[EA (¥xpy)]
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6.5 Pathwise bounds on the field

x—Yleo\ |logel>/4 x —
SCexp<_|CdAZLC>| jvl/l —|—Cexp< |C)\Ii|> (log |x — y|eo —log|loge| + 1)

|loge[>/* |* — Yloo
S C<51/2 +10g’x—y‘oo eXp — C)\mac

which implies (6.1.13).
Finally, the estimates (6.1.14) and (6.1.15) are straightforward consequences of (6.1.12) and
(6.1.13), respectively. O

6.5.3 Existence of the thermodynamic limit of the field

It remains to prove the existence of the thermodynamic limit of the pinned field. This
is significantly more difficult than the existence of the thermodynamic limit of the set of
pinned points, as we do not have correlation inequalities for the field or a random walk
representation. Instead we show by hand that the exponential decay of correlations implies
convergence of [Ef (f) for any bounded local f.

Proof of Theorem 6.1.2, second part. As in the proof of the first part it suffices to check that the
limit limy 7« B (f) exists for any bounded local function f: RZ" — R. Our tail estimates
on IPY easily imply boundedness of IES (f), so if the limit exists it is finite.

So let a local function f be given. Suppose that f only depends on the values of i in Q,(0)
for some r. We can assume that 7 > Nj. Let R € IN with R > 8r. We set A/ = Qr(0). Let )
be the event described in (6.5.11). Let also k € IN and consider the event Qg from (6.5.5)
(with y = 0). Note thatif A € ()O,k we have

Ga\a(0,0) < Cq (14 Ly=4(logk + |logel)) .
Similarly as for (6.5.15), we see that this implies for any x € Q,(0)
Gava(x,x) < Cq (14 Ty=4(logr +logk + |logel)) =: Xgexr
and in combination with (6.5.2) also

max }GA\A X,y ‘ < Xdekr-
xy€Qr(0

We can now write

Af) = L Eaa(Nia(A) =} Eaa(HZa(A)+ ) Eaalf)Za(A).

ACA ACA ACA
ANk AZONO
(6.5.22)
The second summand here is an error term that is easy to estimate. We have
Yo EaaNCA(A)| < fliezey Y. Ta(A)
ACA ACA
AZ(QNQo) AZONQo (6.5.23)

< £l (zey (G (Q7) + T4 (O5))

R—r 1
< <cdrd exp (— - Am) 2) ez
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6 Pinning for the membrane model in dimension four and above

and note that the right-hand side tends to 0 as k, R — oo, uniformly in A D> Qg(0).

Next, we begin to analyse the main term in (6.5.22), i.e. the first summand. P A\A is the
law of a multivariate Gaussian measure. Thus, E,\4(f) depends only on the variances
and covariances of that measure. Because of the locality of f it depends only on those
variances and covariances where the sites are in Q,(0). In particular, E(f) is a continu-

ous function of (GA\A(x,y))xyeQ 0 € R (0xQr(0) " 1f we restrict it to the compact set

[—Xaekr Xaerr 2 ©*2O) it is uniformly continuous.
From Lemma 6.5.4 we know that for A € Q)

‘(GA\A<x'y))x,y€Qr(0) - (GQR(O)\A(X’y))x,yeQAm w0

R—7 \ 1+ 14-4|logel>*
< _
> Cd exp ( Cd)\mac> 81/2

and the right-hand side tends to 0 as R — co. Moreover, we have for A € Qo,k that

(GA\A (x’ y))x,yeQr(o) € [_Xd,E,k,r/ Xd,s,k,r]Qy(O) xQr(0) .

Thus, the uniform continuity of IE(f) implies that there is a function wq fx,(R) (independ-
ent of A) with img e Wy e i(R) = 0 such that forall A € QN Qo

En4(f) = Bogonalf)] < @aepsr(R).

This implies for the first summand in (6.5.22) that

Y. EaalfZa(A) = ) Egonalf)Za(A)

ACA ACA
AEQQQO,]{

<| Y BauAZ(A) = Y EouopnalfH)IalA)

ACA ACA
AeQNQqx AN
(6.5.24)
+1 Y PoopnalfEa(a)
ACA
AZONOy
< Y @aepkr(R)CA(A) + (1 fllimze) (TA(Q) +CA(Q54))
AG?)CQ%O’](
R—r 1
d
< g (R + (Cortenp (= ) o) I oy
where we have estimated the error term the same way as in (6.5.23).
We also know that
AZAIEQR nalNZa(A) =}, Egonalf) ) Za(A'ua”)
C Al Al
CQr(0) CA\Qr(0) . (6.5.25)
= ) Egpona (f)CA(ANQRr(0) = A").
A'CQRr(0)
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6.5 Pathwise bounds on the field

Putting (6.5.22), (6.5.23), (6.5.24), (6.5.25) together, we find

EA(f)— Y. Eguopa(f)ZA(ANQR(0) = A")

A'CQgr(0)

(6.5.26)
d R—7r 1
< wWye fhr(R) +2 ( Car®exp e 5 1l (z9) -

We now want to take the limits A * Z4 R — o0, k — oo in that order. For that purpose,
note that the weak convergence of (% to (¢ implies that lim, »z4 {3 (AN Qr(0) = A’) =
*(ANQgr(0) = A’), and so (6.5.26) implies

lim sup lim sup lim sup =0.

k— o0 R—o0 A 74

EA(f)— Y, Eguopa(f)Z(ANQR(0) = A')

A'CQg(0)

From this we see that

1. IEE — 1 ]E , € Am 0 :A/
i, Alf) Rl—%’mcg{(o) arona (F)ZF(ANQr(0) )

and that in particular both limits exist. This is what we wanted to show.
The translation invariance follows as in the proof of the first part of the theorem.
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