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1 Introduction

1.1 Overview

This thesis is concerned with two objects from seemingly different fields: on the one hand,
the membrane model from probability theory, and on the other hand, the Green’s function of
the discrete Bilaplacian from the theory of partial differential equations (PDEs) or numerical
analysis. As it turns out, though, these two objects are closely related, and an improved
understanding of one of them can also help in the study of the other.

The membrane model is an example of a random interface model. Such models arise
when studying the thermal fluctuations in interfaces in physics, chemistry and biology. The
membrane model, specifically, is relevant when this interface is very flexible so that the
bending modes dominate. It is used, for instance, to describe the behaviour of biomembranes
such as those in the walls of cells.

There are also purely mathematical reasons to be interested in the membrane model.
Namely, it is a natural variant of the most fundamental example of a random interface
model, the so-called discrete Gaussian free field. This model has some particularly nice
features (such as random walk representations and correlation inequalities), and in the
last three decades this model has been very well understood. On the other hand, there
are general classes of random interface models where very little is known. The membrane
model might now serve as a stepping stone to investigate these more complicated models.
Namely, it shares some of the features of the discrete Gaussian free field, but not all of them.
Thus, even though the membrane model is expected to behave similarly to the discrete
Gaussian free field, one is forced to develop new techniques to make this rigorous.

In this thesis we study various features of the membrane model, filling several gaps in the
literature. In each case the answer had previously been known for the discrete Gaussian
free field, and we extend these results to the case of the membrane model.

In Chapter 3 we study the effect of a hard wall that forces the field to be positive on
the interface, focussing on dimensions 2 and 3. This chapter is based on the publication
[BDKS19] which is joint work with Simon Buchholz, Jean-Dominique Deuschel and Noemi
Kurt and has appeared in the Electronic Communications in Probability.

In Chapter 4 we investigate the behaviour of the maximum of the field in dimension 4.
This chapter is based on the publication [Sch20a] which has appeared in The Annals of
Probability.

Chapter 6 is dedicated to the effects that a small attractive potential has on the interface, in
dimensions 4 and above. This potential localizes the field, and we study how this localization
manifests itself. This chapter is based on the preprint [Sch20b] that will be submitted for
publication.

The starting point for all these results is the fact that the covariance function of the
membrane model is the Green’s function of the discrete Bilaplacian. Heuristically, this object
should behave similarly to the Green’s function of the continuous Bilaplacian. A major
part of this thesis will be to make this heuristic rigorous. To that end we combine various

1



1 Introduction

methods from PDE theory with methods from numerical analysis.
In fact, in Chapter 2 we prove estimates for the Green’s function in dimensions 2 and

3 using a compactness argument and results for continuous elliptic equations in domains
with singularities. This chapter is the basis for the results in Chapter 3. It is based on the
publication [MS19], which is joint work with Stefan Müller and has appeared in the Vietnam
Journal of Mathematics.

Furthermore, as a part of Chapter 4 we prove estimates for the Green’s function in
dimension 4, using estimates for finite difference schemes and preexisting results on the
continuous Green’s function.

For the application in Chapter 4 we do not need the full strength of the estimates for the
finite difference scheme we use. Optimizing such estimates is, however, very interesting
for numerical analysis itself. In Chapter 5 we improve the best known estimates on the
approximation quality of the scheme we use in Chapter 4 and some other schemes. This
chapter is based on the publication [MSS20] which is joint work with Stefan Müller and
Endre Süli and has appeared in the SIAM Journal on Numerical Analysis.

In this introductory chapter we will lay the foundation for these results and discuss the
necessary background, and we will give a more detailed description of the results in the
following chapters.

In Section 1.2 we discuss random interface models and their basic properties. We begin
by describing the motivation from physics and biochemistry for the study of these mod-
els. Each random interface model is given as a probability measure, the so-called Gibbs
measure, for a certain Hamiltonian, and so we explain the physical background as well as
the mathematical theory underlying these measures. We then introduce some important
examples of random interface models (including the membrane model), and describe some
of their basic properties. In particular, we discuss the existence of subcritical, critical and
supercritical dimensions. We also survey the most important mathematical tools used to
study random interface models. Finally, we describe how to simulate random interface
models on a computer, and how the images throughout this introduction were generated.

In Section 1.3 we then give more details on the membrane model. We compare it with
a few other random interface models, namely the discrete Gaussian free field (or gradient
model), the∇ϕ-model with strictly convex V and the∇ϕ-model with slightly non-convex V .
We discuss various aspects of these models, reviewing the existing results in the literature
and describing the new contributions of this thesis. We begin with infinite volume limits
of the interfaces, and then discuss the maximum of the fields. Afterwards, we discuss
the phenomena of entropic repulsion, pinning, and wetting. Finally, we mention a few
further interesting questions. As part of this section, we outline the results of Chapters 3,
4 and 6 on entropic repulsion for the subcritical membrane model, the maximum of the
critical membrane model, and pinning for the critical and supercritical membrane model,
respectively.

In Section 1.4 we describe the connection between the membrane model and the Green’s
function of the discrete Bilaplacian, and discuss discrete Green’s functions more generally.
We begin with a summary of some facts from elliptic PDE theory and numerical analysis.
We then focus on discrete Green’s functions and describe the tools available to study them.
As part of this we summarize the results of Chapters 2 and 4 on the subcritical and critical
Green’s function of the discrete Bilaplacian. The estimates from Chapter 4 are based on
estimates for a certain finite difference scheme. We explain this connection, and describe
further results on such schemes that are contained in Chapter 5.

2



1.2 Random interface models

Most of the content of this introduction is an exposition of well-known results in the
literature. Other than the summaries of the results of the later chapters, the only slightly
original parts are the description of some algorithms to generate samples from the membrane
model in Section 1.2.7, and the discussion of Hessian Gibbs measures in Section 1.3.1.

1.2 Random interface models

In this section we will give some background on random interface models, describe some
examples and discuss basic properties.

1.2.1 Motivation

Macroscopic interfaces

In physics there are many systems that can form sharp interfaces. Let us discuss two main
examples.

As a first example, consider a substance that can be in the solid, liquid or gaseous phase.
Under certain circumstances two or more of these phases can coexist, and there will be
interfaces between them. For example, for water at 0◦ Celsius and standard pressure both
ice and liquid water can appear. More generally, a variety of materials can form stable
crystals within a surrounding liquid. We assume that the system is in equilibrium. This
assumption is not always reasonable (e.g. ice crystals look very different than the conjectured
equilibrium shape), but for some materials such as small crystals of certain metals it aligns
well with experiments [RW84]. Under this equilibrium assumption, the macroscopic theory
of interfaces for crystals was pioneered by Wulff [Wul01]. He proposed that the atoms in the
crystal arrange themselves in a shape U ⊂ R3 so that U minimizes the "Wulff functional"

W(U) =
∫

∂U
σ(n(x))dH2(x)

under the constraint that the volume of U is fixed. Here n ∈ S2 is a normal vector to ∂U,
and σ is the so-called surface tension. This variational problem is an anisotropic variant of
the isoperimetric problem. Its minimizer (the Wulff shape) can be constructed using the
so-called Wulff construction, and in practice this variational problem is well understood.
Note that if we write ∂U locally as the graph of a function u : A ⊂ R2 → R, then the
integrand in the Wulff functional becomes a certain functional of ∇u.

Our second example of interfaces is from biology, and for details on the following see
[Lip95]. Many biological membranes, such as the wall of a cell, are formed by bilayers
of lipids. Lipids are molecules with a hydrophilic head and a hydrophobic tail, and in a
solution they can arrange themselves in quite stable double layers with the hydrophobic
tails pointing inwards. Such a structure is called a bilayer. The lipid molecules in the bilayer
are typically in the liquid phase, meaning that the single lipids can move almost freely
around in the membrane while maintaining the bilayer structure. The lipid bilayers are
quite resistant to stretching (instead they rupture before stretching significantly) but have
low resistance to bending. This suggests that the energy of a bilayer should depend mainly
on the curvature of the bilayer. Indeed, Helfrich [Hel73] (cf. also [BWW17]) proposed a
variational problem for the surface Σ occupied by a closed bilayer, namely that it minimizes
the "Helfrich functional"

H(Σ) =
∫

Σ

kc

2
(H − c0)

2 + kKdH2(x) .

3
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Here H and K are the mean and Gaussian curvature, respectively, kc and k are bending
moduli and c0 is the spontaneous curvature. By the Gauss-Bonnet theorem the integral
over kK evaluates to 2πkχ(Σ), where χ(Σ) is the Euler characteristic of Σ. Thus, for fixed
topology of the bilayer we can neglect the second summand and study

H̃(Σ) =
∫

Σ

kc

2
(H − c0)

2dH2(x)

instead. We can again write Σ locally as the graph of a function u : A ⊂ R2 → R. If the
spontaneous curvature is close to 0 and the bilayer is locally almost planar, we can neglect
∇u, and the dominant term looks like kc

8 |∇2u|2. In particular, the functional now involves
only second derivatives.

Microscopic interfaces

The next question then is to analyse the interfaces that we just described on a microscopic
level, to study thermic fluctuations and to derive the respective functionals from atomistic
theories. The tools for this issue are provided by statistical mechanics (cf. the next section).

For our first example of a solid-to-liquid transition this line of research was initiated by
Dobrushin, Kotecký and Shlosman [DKS92], who analysed macroscopic interfaces arising
from the Ising model, and since then there have been many works in that direction, cf.
[BIV00]. On a macroscopic level, the Wulff shape is a deterministic subset of R3, and we
can represent its boundary locally as the graph of a function R2 → R. On the microscopic
scale, however, the interface will not be stationary, and there will be fluctuations. We make
the rather strong simplifying assumption that these fluctuations can locally be represented
as the graph of a random function Λ ⊂ R2 → R (and thus we in particular assume that
there are no holes or overhangs in our interface). As we are interested in atomistic models,
it is reasonable to assume that Λ is discrete, and we take it to be a subset of the lattice
Z2 or (hZ)2. We are thus left to study random height functions on Λ. The probability to
observe a certain height function (i.e. a certain microscopic configuration) will depend on
the temperature of the system and on the energy of that configuration. It turns out that
this energy is (at least approximately) a certain functional of the discrete gradient. This is
unsurprising when one compares it with the Wulff functional itself.

For our second example of bilayer membranes one can, in principle, proceed similarly.
We are not aware of any rigourous mathematical derivation of the properties of membrane
bilayers from atomistic models, but there many results in the physics literature on thermal
fluctuations in bilayers and how they influence the macroscopic properties of the membrane
(see e.g. [DGT06, NP87, Lip95, HL97, RCMS05]). On a microscopic level these fluctuations
are once again governed by an energy consisting of discrete curvature terms, and so we
arrive once again at the problem of studying the arising probability distribution of height
functions.

More generally, a random interface model will be a probability distribution on functions
Λ→ R, where Λ ⊂ Rd. Before we discuss the actual random interface models that we are
interested in, let us discuss the physical and mathematical background necessary to choose
and define these probability distributions.

4



1.2 Random interface models

1.2.2 Statistical mechanics

In our examples of interfaces we encountered the situation that the interface takes a certain
deterministic macroscopic equilibrium shape. Its microscopic state, meanwhile, is hard or
rather impossible to predict, and moreover it will change incredibly fast, so that it does not
really make sense to speak of "a" microscopic state, but rather of an ensemble of such. This
idea can best be formalized by using concepts of statistical mechanics.

More generally, statistical mechanics is concerned with the study of systems with many
degrees of freedom, and with deriving their behaviour from their microscopic structure. The
subject was introduced in the late 19th century by Boltzmann, Gibbs, Maxwell and others,
and has since developed into an important part of modern physics. A landmark reference is
[Gib02], and a comprehensive treatment can be found in [LL58]. We will briefly discuss the
notions that are most important to us, mostly following [Tho72, FV18].

We would like to describe the macroscopic behaviour of a physical system consisting of a
large number of constituents (e.g. the atoms in a crystal or the molecules that form a gas). In
classical physics, such a system can be parametrized by the positions and momenta of all the
constituents, and knowing these, the Hamilton equations describe the state of the systems
for all future times. In practice, however, this is completely infeasible: there is no practical
way to know the initial state of a system. Even if one did, the evolution of the system would
be incredibly complicated due to the huge number of constituents. Furthermore, we are not
actually interested in the detailed evolution of the constituents, but rather in the evolution
of some macroscopic quantities.

The starting point of statistical mechanics is thus to replace the given microscopic initial
state ω that we have no way to know with a probability distribution P over the set of all
microstates Ω. Of course, this probability distribution should be supported only on those
microstates that are compatible with our knowledge about the macrostate. For our analysis
we need a Hamiltonian H : Ω→ R that gives the energy of each microstate, and an a priori
measure λ on Ω (typically the Hausdorff measure). We restrict ourselves to the case that our
systems are static on a macroscopic scale.

Suppose that all we know about our system is that it consists of N particles that are
located in some Λ ⊂ Rd with volume |Λ| = V and that the energy of our system is some
constant E. Denoting by ΩΛ,N the set of all microstates compatible with the assumptions on
the number of particles and their occupied volume, it has then been postulated by Gibbs
that if we have no further information the equilibrium measure on ΩΛ,N should be given by

Pmic
Λ,E,N(dω) =

1
ZΛ,E,N

1H(ω)=E1ω∈ΩΛ,N λ(dω) .

Here 1s is equal to 1 if s is true and otherwise 0. This is the so-called microcanonical
ensemble, and the normalization factor ZΛ,E,N is the so-called microcanonical partition
function.

Of greater interest to us, however, is a different ensemble where we do not fix the energy,
but the temperature. Here we need to proceed differently as it is not clear how to define
the temperatue T(ω) of a microstate ω. Physically, one way to prescribe the temperature is
to assume that our system is in contact with a heat reservoir, i.e. with another system with
which it can exchange energy. If that other system is very large, this will lead to both systems
being at approximately the temperature of the heat reservoir. Assuming that both systems
together are described by the microcanical ensemble, one can, in principle, calculate the
marginal distribution of the system we are interested in. When one pursues this calculation
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at least on a heuristic level, one obtains the equilibrium measure

Pcan
Λ,β,N(dω) =

1
ZΛ,β,N

exp(−βH(ω))1ω∈ΩΛ,N λ(dω) .

Here β is proportional to 1
T , and we choose units in such a way that the proportionality

constant is equal to 1. This is the so-called canonical ensemble, and ZΛ,β,N is the canonical
partition function. The factor exp(−βH(ω)) is called Boltzmann weight.

Another viewpoint on the canonical ensemble is that it is chosen in such a way as to
maximize the relative entropy of Pcan

Λ,β,N with respect to λ under the constraint that the
expected value of the energy takes some fixed value.

The canonical ensemble is also called the (canonical) Gibbs measure. The Boltzmann
weight is the larger, the smaller H(ω) is. If β is large (i.e. the temperature is low) then
the Gibbs measure will mostly be supported on those states with small energy. On the
other hand, if β is small (i.e. the temperature is high) then the Gibbs measure does not
discriminate as much between states with lower and higher energy.

Often one does not know (or care about) the precise value of N beyond the fact that it
is very large. This suggests that one should directly study the system in the limit N → ∞.
Then the volume V needs to grow simultaneously in such a way that the particle density N

V
has a finite limit. This procedure is called taking the thermodynamic limit.

1.2.3 Spin systems, Gibbs measures and random interface models

We now apply the theory of the previous section to the case of random interface models,
aiming for mathematical rigor. We follow [Geo88, Bov06, FV18]. In particular, in [Geo88]
the theory is described in much greater generality.

We are looking for a discretized mathematical model of an interface. This interface is
formed by a set of particles in Rd+1 such that the first d coordinates of each particle are fixed,
while the (d+ 1)-th coordinate is free.

We thus consider an at most countable S ⊂ Rd as the parameter set (we will take S = Zd

or S = (hZ)d for some h > 0), and a set E ⊂ R (we will take E = R or E = Z) with the
Borel σ-algebra E and a reference measure λ as the single spin space. We consider the set
Ω = ES of all possible configurations, equipped with the product σ-algebra F = ES. Let
P(Ω,F ) be the set of all probability measures on Ω. For a ψ ∈ Ω we write ψx for the value
of ψ at x ∈ S, and for Λ ⊂ S we let FΛ = σ(ψx : x ∈ Λ).

Given a F -measurable Hamiltonian H : Ω→ R∪ {+∞} we would now like to define the
canonical ensemble as in the previous section, i.e. the measure

P(dψ) =
1

Zβ
exp(−βH(ψ)) ∏

x∈S
λ(dψx) .

If S is finite this definition works well. However, reasonable Hamiltonians will be infinite
when S is infinite, and so we need a different construction in that case. The crucial idea here,
due to Dobrushin, Lanford and Ruelle [Dob68, Dob70, LR69], is to define a measure µ as a
Gibbs measure for H, if for every finite Λ ⊂ S the law of the field under µ conditioned on
the values of the field outside of Λ is the correct one.

We restrict ourselves to finite-range interactions. That is, we consider an interaction of
the form Φ = {ΦA}AbS, where ΦA : S → R is FA-measurable (and by A b S we denote
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1.2 Random interface models

that A is a compact, i.e. finite, subset of S). We also assume supAbZd ‖ΦA‖L∞ < ∞, and that
ΦA = 0 when |A| > R for some R. Then for Λ b S we can define the Hamiltonian

HΛ(ψ) = ∑
AbS

A∩Λ 6=∅

ΦA(ψ)

and for ϕ ∈ Ω the Gibbs specification

P
(ϕ)
Φ,Λ,β(dψ) =

1

Z(ϕ)
Φ,Λ,β

exp(−βHΛ(ψ)) ∏
x∈Λ

λ(dψx) ∏
x∈S\Λ

δϕx(dψx) .

One can check that this definition is self-consistent in the sense that if Λ ⊂ Λ′ then

P
(ϕ)
Φ,Λ′,β(dϕ′)P

(ϕ′)
Φ,Λ,β = P

(ϕ)
Φ,Λ′,β for each ϕ ∈ Ω . (1.2.1)

We then define that a probability measure PΦ,β on (Ω,F ) is a Gibbs measure for Φ if

PΦ,β(E | FΛc) = P
(·)
Φ,Λ,β(E) PΦ,β-a.s. for each E ∈ F and Λ b Zd .

One can show that PΦ,β is a Gibbs measure if and only if it satisfies the analogue of (1.2.1)
in infinite volume, i.e. if and only if for any Λ ⊂ S

PΦ,β(dϕ′)P
(ϕ′)
Φ,Λ,β = PΦ,β . (1.2.2)

This equation is called the DLR equation after Dobrushin, Lanford and Ruelle. The relation
(1.2.2) formalizes the intuition that a system is in equilibrium if any of its subsystems is in
equilibrium and thus distributed according to the canonical Gibbs measure.

Of course, this raises the question of existence and uniqueness of Gibbs measures. In
our case the spin space is non-compact, and so neither question is trivial. In fact, it may
happen that there is no infinite volume Gibbs measure or that there are infinitely many. One
may hope to construct a Gibbs measure by choosing a specific sequence of domains (e.g.
ΛN = [−N, N]d ∩Zd) together with a choice of boundary data (e.g. ϕ = 0) and considering
a weak limit of the corresponding sequence of finite volume Gibbs measures (the so-called
thermodynamic limit). If such a weak limit exists, it is easy to see that in our setting it will
be a Gibbs measure.

We will discuss the question of existence and uniqueness of Gibbs measures in more detail
once we have introduced some examples of random interface models.

1.2.4 Examples of random interface models

Now that we have laid the theoretical foundations, we can introduce and describe some
important examples of random interface models. As explained in the previous section, to
describe an interface model we need an interaction Φ and an inverse temperature β. From a
physical point of view it would be important to treat these two objects separately. However,
all the models we consider have Hamiltonians that allow an arbitrary positive prefactor (and
so we can include β in that prefactor) or have a Hamiltonian that is positively homogenous
of some degree (and so a change of β only scales the field by a deterministic factor). Thus,
there is no loss when we set β = 1 in all of the following and omit it in our notation.

We choose S = Zd as our parameter space. In most of the following, we describe
continuous models in the sense that we take the single spin space E = R. At the end we
will briefly mention discrete models where E = Z. For now, we always take the reference
measure λ(dψ) to be the Lebesgue measure (simply denoted dψ). We also write d(x, Λ) for
the (Euclidean) distance from x to Λ.
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Discrete Gaussian free field

The first and most important example of a random interface model is the discrete Gaussian
free field (also called gradient model or harmonic crystal). This model is given by the
interaction ΦA(ψ) = 1

2 ∑x∈A |∇1ψx|2, where ∇1ψx := (D1
i ψx)di=1 := (ψx+ei − ψx)di=1. This

yields the measure

P
(ϕ)
∇,Λ(dψ) =

1

Z(ϕ)
∇,Λ

exp

−1
2 ∑

x∈Zd

d(x,Λ)≤1

|∇1ψx|2

 ∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx) . (1.2.3)

If ϕ = 0 we can remove the restriction on x in the sum, so that the measure with zero
boundary values takes the form

P∇,Λ(dψ) =
1

Z∇,Λ
exp

(
−1

2 ∑
x∈Zd

|∇1ψx|2
)

∏
x∈Λ

dψx ∏
x∈Zd\Λ

δ0(dψx) (1.2.4)

where we drop the superscript (0) for brevity.
The Hamiltonian here is the discrete L2-norm of the gradient of ψ. It thus penalizes

large slopes in ψ, in line with what we expected for the solid-liquid-interface models in
Section 1.2.1. This model is particularly nice from a mathematical point of view. Namely,
the Hamiltonian is a quadratic function of ψ, and so the measure is Gaussian.

The discrete Gaussian free field has a continuous analogue, the (continuous) Gaus-
sian free field. Informally, this is the measure on functions ψ : Rd → R with density
1
Z exp

(
− 1

2‖∇ψ‖2
L2

)
dψ, but the actual definition is as a Gaussian measure on a negative

Sobolev space, see e.g. [She07]. This measure appears as a scaling limit of a variety of
models in probability, e.g. the dimer model in integrable probability [Ken01] or fields in
random matrix theory [RV07]. It is also related to quantum field theory, where one tries
to construct operator-valued Gaussian and non-Gaussian fields. This explains the name
"free", since the Gaussian field corresponds to systems without interaction in that setting (cf.
[GJ87]).

The discrete Gaussian free field will be one important example for us. We will mostly call
it the gradient model, as this emphasizes the contrast to the membrane model (to be defined
shortly).

∇ϕ-interface models

In the context of the application to solid-to-liquid phase transitions in 1.2.1 there is no reason
to assume that slopes are penalized precisely by 1

2 | · |2. If we instead use an arbitrary even
function V : R→ R, we obtain the (Ginzburg-Landau) ∇ϕ-model

P
(ϕ)
V(∇),Λ(dψ) =

1

Z(ϕ)
V(∇),Λ

exp

− ∑
x∈Zd

d(x,Λ)≤1

d

∑
i=1
V(D1

i ψx)

 ∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx) (1.2.5)

and its variant with zero boundary data

PV(∇),Λ(dψ) =
1

ZV(∇),Λ
exp

(
− ∑

x∈Zd

d

∑
i=1
V(D1

i ψx)

)
∏
x∈Λ

dψx ∏
x∈Zd\Λ

δ0(dψx) . (1.2.6)
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1.2 Random interface models

As we will explain in the following sections, this model behaves quite similarly to the
discrete Gaussian free field when V is strictly convex and satisfies some other mild regularity
assumptions. Physically, this should not be surprising, as the convexity of V ensures that
mixtures of different slopes are energetically unfavourable in comparison to pure slopes. The
regularity assumptions one needs for V change from application to application. Typically
one requires V ∈ C2(R) and c ≤ V ′′(x) ≤ C, but occasionally results in the literature require,
e.g., that V ∈ C∞(R). In the following we will not be precise in this regard, and just speak
of the ∇ϕ-model with strictly convex V .

When V is not convex, but in a suitable sense close to being convex, the model still behaves
similarly to the Gaussian free field, although much less is known. Rigorous results on this
are perturbative, and they require that V is close to a strictly convex function in a sufficiently
strong norm. Again we will be rather vague, and speak of the ∇ϕ-model with slightly
non-convex V in the following.

For the case that V is far from being convex the model behaves very differently, see the
discussion below.

The membrane model

Our discussion of lipid bilayers suggests that one should also study interface models
involving second instead of first derivatives. The easiest such model is the membrane model
where one considers the interaction ΦA(ψ) =

1
2 ∑x∈A |∆1ψx|2, where ∆1ψx := ∑d

i=1 ψx+ei −
2ψx + ψx−ei . In principle 1

2 ∑x∈A |∇2
1ψx|2, where ∇2

1ψx := (D1
i D1
−jψx)di,j=1, would be an

equally natural choice, but a discrete integration by parts shows that this leads to exactly
the same model. In any case, one obtains the probability measure

P
(ϕ)
∆,Λ(dψ) =

1

Z(ϕ)
∇,Λ

exp

−1
2 ∑

x∈Zd

d(x,Λ)≤2

|∆1ψx|2

 ∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx) (1.2.7)

or the zero boundary variant

P∆,Λ(dψ) =
1

Z∇,Λ
exp

(
−1

2 ∑
x∈Zd

|∆1ψx|2
)

∏
x∈Λ

dψx ∏
x∈Zd\Λ

δ0(dψx) . (1.2.8)

Once again this is a Gaussian measure. The Hamiltonian here penalizes high curvature.
This model also has a continuous relative, the (continuous) membrane model (see e.g.

[CDH19] for a precise definition). In recent years this model has also been identified as the
scaling limit of several fields in probability theory, e.g. the odometer in divisible sandpiles
[CHR18] or certain spanning trees related to the loop-erased random walk [LSW19].

See Figure 1.1 for pictures of samples of the membrane model in various dimensions.

Other examples

Let us mention some other examples of random interface models. For simplicity we only
give each model with zero boundary condition.

First of all, it remains to discuss the ∇ϕ-interface with a potential V that is far from being
convex. In that case the random interface can behave very differently from the models that
we have mentioned so far. In particular, there can be phase transitions in the sense that there
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(a) d = 2

(b) d = 3

Figure 1.1: Samples of the membrane model in dimension d ∈ {2, 3, 4, 5} on the
domain {0, . . . , 20}d. The pictures show the values of the sample on
the slice {0, . . . , 20}2 × {10}d−2. See Section 1.2.7 for a description
how the samples were generated.
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1.2 Random interface models

(c) d = 4

(d) d = 5

Figure 1.1: Samples of the membrane model (continued)
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may be more than one Gibbs measure with the same tilt. We will not discuss this further,
but see [BK07, Buc19].

Next, just like the ∇ϕ-interface models are a generalization of the discrete Gaussian
free field, one can consider the generalization of the membrane model where one uses an
arbitrary even function V : R→ R instead of 1

2 | · |2. This yields the model

P∆,Λ(dψ) =
1

Z∇,Λ
exp

(
− ∑

x∈Zd

d

∑
i=1
V(∆1ψx)

)
∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx) . (1.2.9)

This model should behave similarly to the membrane model when V is strictly convex or a
small perturbation of a strictly convex function, while the case where V is far from being
convex is presumably very complicated. The only work where this model is studied is
[Kur12].

Of course, it is also reasonable to consider models where first and second derivatives
are mixed. One such model has been studied very recently in [CDH20]. It is given by the
probability measure

P∆,Λ(dψ) =
1

Z∇,Λ
exp

(
− ∑

x∈Zd

|∇1ψx|2 + aΛ|∆1ψx|2
)

∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx) (1.2.10)

Here aΛ is a scalar that may depend on Λ. In the limit Λ↗ ∞ it depends on the choice of
aΛ whether the behaviour of this model resembles that of the discrete Gaussian free field,
that of the membrane model, or shows some genuinely new mixed behaviour.

It is also reasonable to not only use first and second order difference operators, but higher
polyharmonic difference operators or various linear combinations. Such models are not
studied much in the literature (an exception is [Sak03]). The reason for this probably is that
these models do not add much from a mathematical point of view, while the notation be-
comes increasingly complicated. In particular, all the results for the membrane models to be
discussed in the following should have analogues for the case of higher-order polyharmonic
operators in place of ∆2

1.
All the models discussed so far have in common that the specification Ψ is translation-

invariant. There are also interesting examples where this is not the case. In particular,
one can sample the (ΨA+x)x∈Zd from some random distribution. This leads to disordered
random interface models. One can investigate their properties either for almost every
realization of the specification, or averaged over the randomness of the specifications. The
disorder can drastically change the behaviour of the field (see [Vel06], or e.g. [GL18] for
recent work).

It is also possible to consider all the models considered so far with the continuous spin
space E = R (with the Lebesgue measure) replaced by the discrete spin space E = Z (with
the counting measure). The phenomenology is generally rather similar for those discrete
models (at least when β is small enough), but there are also new phenomena when β is large
and there is a so-called roughening transition (see e.g. [She05, Vel06]).

1.2.5 Critical dimensions and log-correlated fields

In Figure 1.1 one can see that the membrane model becomes progressively rougher as the
dimension increases. This phenomenon is not unique to the membrane model. In fact, for
most of the models discussed above, there is a critical dimension so that the behaviour of
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1.2 Random interface models

the field is very different depending on whether d is less than, equal or larger than that
dimension. These regimes are called subcritical, critical and supercritical, respectively.

Typically, in the subcritical dimensions the variance of ψx for some x ∈ Λ is unbounded
and grows like a power of d(x, ∂Λ), the distance of x to the boundary of Λ. In the critical
dimension the variance of ψx is still unbounded but only grows like the logarithm of
d(x, ∂Λ), while in the supercritical dimensions the variance of ψx is bounded uniformly in x
and Λ. In the following sections we describe a number of implications of this.

For now let us mention that the critical dimension of both the discrete Gaussian free field
and the ∇ϕ-interface models is d = 2, while the critical dimension of the membrane model
is d = 4. This already gives a hint of the heuristic that the d-dimensional membrane model
behaves in many aspects like the (d− 2)-dimensional discrete Gaussian free field.

Of particular interest is the case of the critical dimension. This case is in many aspects
borderline between the very different sub- and supercritical dimensions. It turns out that
in the critical dimension not only the variances grow like the logarithm of the distance to
the boundary, but also the covariances decay like the logarithm of the distance between
the respective sites. Discrete random fields with these properties are called log-correlated
fields. Of course one can also define (continuous) log-correlated fields. Both discrete and
continuous log-correlated fields have been a topic of intensive study in the past years. In
particular, there are various predictions of universality in this class, meaning that various
properties of the field do not depend on the precise structure of the correlations, but only
the fact that these decay logarithmically. See [DRSV14, DRSV17] for an overview.

The interest in log-correlated fields is fueled by the fact that these arise in a variety of
contexts. Beyond the random interface models that we have already described, let us
mention branching random walks and branching Brownian motion (see [Bov17] for an
overview), the characteristic polynomial of certain random matrices and (closely related)
the values of the Riemann ζ function on the critical line (see [FHK12, FK14] for important
conjectures and [CMN18, ABB+19] and the references therein for recent rigorous results).

1.2.6 Mathematical tools to study random interface models

Before describing in detail what is known about the membrane model and the other random
interface models, we will outline the main mathematical techniques that have been used to
study these models. The message that we want to transmit here is the following: For the
discrete Gaussian free field there exist many powerful techniques one can use to study it.
The ∇ϕ-interface model with strictly convex V and the membrane model both are more
difficult than the discrete Gaussian free field. However, this difficulty manifests itself in
different ways: for each of the two models only some of the tools survive while others can
no longer be applied. Finally, the ∇ϕ-interface model with slightly non-convex V is the
most difficult model, and there are few existing techniques that can be applied. See Figure
1.2 for a schematic drawing of the relations between the models.

Markov property

The (domain) Markov property is a rather obvious, but nonetheless useful consequence of
our definition of random interface models. It applies to all random interface models in the
sense of our definition. For the following see [Fun05, Bis20]. Recall that we have assumed
that the terms ΦA in our interaction are 0 when diam Φ > R. Then the field values in some
A ⊂ Λ depend only on the boundary data on the sites that are at most R away from A.
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gradient model

membrane model∇ϕ-model, convex V

∇ϕ-model, slightly non-convex V

less difficult

more difficult

Figure 1.2: Relations between the random interface models

More formally, let B = {x ∈ Λ \ A : dist(x, A) ≤ R}. Then

P
(ϕ)
Φ,Λ(E | FAc) = P

(ϕ)
Φ,Λ(E | FB\A) for all E ∈ FA .

For Gaussian measures such as the discrete Gaussian free field and the membrane model
we can even give a somewhat explicit description of P

(ϕ)
Φ,Λ(· | FB\A). Suppose that ψ is

distributed according to P
(ϕ)
Φ,Λ and let hx = E

(ϕ)
Φ,Λ(ψx | FB\A) for x ∈ A. Then {ψx − hx : x ∈

A} is independent of FAc and its law is given by PΦ,A.

Random walk representations

Random walk representations exist for the discrete Gaussian free field and the ∇ϕ-interface
models with strictly convex V . We begin with the former case, where the situation is less
complicated.

Recall that the discrete Gaussian free field is a centred Gaussian measure, and as such it is
determined by its covariance matrix. It is easy to see (cf. e.g. [Fun05]) that this covariance
matrix is equal to the Green’s function of the symmetric random walk on Zd killed when
leaving Λ. That is, when (Xt)t≥0 is the path of a (continuous time) symmetric random walk
on Zd that jumps at rate 2d to a uniformly chosen neighbour and Ex denotes the expectation
with respect to the law of (Xt)t≥0 when X0 = x, then

P∇,Λ(ψxψy) = Ex
(∫ TΛc

0
1Xt=ydt

)
(1.2.11)

where TΛc = inf{n ≥ 0 : Xn 6∈ Λ}. This representation allows to use estimates for random
walks to conclude estimates on the behaviour of the covariance.

For ∇ϕ-interface models we do not have a representation as simple as (1.2.11). However,
there is a more complicated version due to Helffer and Sjöstrand [HS94] that allows to write

PV(∇),Λ(ψxψy) = Eδx⊗PV(∇),Λ

(∫ TΛc

0
1Xt=ydt

)
. (1.2.12)

Here (Xt)t≥0 describes a continuous time random walk in a time-dependent random envir-
onment given by the Langevin dynamics of the field. This random walk exists when V is
strictly convex. See [Fun05] for the details. Actually (1.2.12) is only a special case of the full
Helffer-Sjöstrand representation, which applies to the covariances of arbitrary observables
of the field.
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Of course, this representation is only useful if one is also able to control the right-hand
side. This amounts to understanding random walks in a random environment, a subject
where the methods of quantitative stochastic homogenization apply. The Helffer-Sjöstrand
representation was first used in the study of∇ϕ-interface models by Naddaf and Spencer in
[NS97] with later refinements in [DGI00, GOS01]. Recently Armstrong and Wu [AW19] have
made further progress by systemically using the emerging theory of quantitative stochastic
homogenization as described in [AKM19].

Let us note an important fact: clearly the existence of a random walk representation for
the covariance as in (1.2.11) or (1.2.12) implies that the covariance is pointwise nonnegative,
and indeed this is the case for the discrete Gaussian free field as well as the ∇ϕ-interface
model with strictly convex V . For the membrane model, however, the covariance is, in
general, not pointwise nonnegative, and so there is no random walk representation. One
way to see this is to explicitly compute the covariance on some small domains. For example,
for d = 2 and Λ = {0, . . . , 20}2 the Green’s function is negative in the corners of the domain.
Closely related to the question of nonnegativity of the covariances of the membrane model is
the question of nonnegativity of the Green’s function of the continuous Bilaplacian. We will
discuss the latter in Section 1.4.1. See [Gia01, Appendix A.2] for a more detailed discussion
of random walk representations.

PDE estimates for the Green’s function

For some of the Gaussian models, in particular the discrete Gaussian free field and the
membrane model, one can alternatively apply estimates from PDE theory and numerical
analysis. As they are Gaussian measures, they are determined by their covariance matrix.
The point is that an easy calculation (cf. again [Fun05]) reveals that the covariance matrix
of the discrete Gaussian free field is also given by the Green’s function of −∆1 on Λ with
zero boundary data, i.e. that P∇,Λ(ψxψy) = G∇,Λ(x, y), where for each y ∈ Λ the function
G∇,Λ(·, y) is the solution of the partial differential equation

−∆1G∇,Λ(·, y) = δy in Λ

G∇,Λ(·, y) = 0 on Zd \Λ .
(1.2.13)

Similarly, one can show that P∆,Λ(ψxψy) = G∆,Λ(x, y), where G∆,Λ(·, y) is the Green’s
function of ∆2

1, i.e. the solution of the partial differential equation

∆2
1G∆,Λ(·, y) = δy in Λ

G∆,Λ(·, y) = 0 on Zd \Λ .
(1.2.14)

Thus, one can hope to use methods from the theory of partial differential equations to derive
results for G∇,Λ(·, y) and G∆,Λ(·, y). Furthermore, one can consider (1.2.13) and (1.2.14) as
finite difference schemes for the Laplacian and Bilaplacian, respectively, and so apply tools
from numerical analysis. In fact, these are the main approaches used in this thesis. We
postpone a more detailed exposition to Section 1.4.

Correlation inequalities

Another very important tool in the study of random interface models are correlation inequal-
ities. We describe two of them: The FKG inequality and the Gaussian correlation inequality.
The former can be applied to the discrete Gaussian free field and the ∇ϕ-interface models,
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the latter to all Gaussian measures (and so in particular to the discrete Gaussian free field
and the membrane model). These are not the only correlation inequalities important for the
study of random interface models, though. Let us mention the Brascamp-Lieb inequality
(cf. [Fun05, Section 4.2] or [Gia01, Appendix A.2]) and the GKS inequality (cf. [DMRR92,
Appendix A]).

However, we focus on the FKG-inequality and the Gaussian correlation inequality. We
begin with the former, introduced by (and named after) Fortuin, Kasteleyn and Ginibre
[FKG71]. In the context of random interface models this is the statement that whenever A, B
are events that are increasing (i.e. if ψ ∈ A and ψ′ ≥ ψ pointwise then ψ′ ∈ A, and similarly
for B) then

PΛ (A ∩ B) ≥ PΛ (A)PΛ (B) .

This inequality is an extremely powerful tool. One typical application is to use that condi-
tioning on some increasing event (say, the field being large on some subset of Λ) increases
the probability of some other increasing event (say, the field being large on another subset of
Λ). For ∇ϕ-interface models with stricty convex V the FKG inequality follows easily from
the Helffer-Sjöstrand representation, cf. [Fun05]. For Gaussian interface models it is even
easier to decide whether the FKG inequality holds: According to a criterion of Pitt [Pit82]
this is the case if and only if the correlation matrix is elementwise nonnegative. As already
mentioned that is the case for the discrete Gaussian free field but not for the membrane
model. So we see that the membrane model does not satisfy the FKG inequality.

The other correlation inequality that we want to discuss, the Gaussian correlation inequal-
ity, looks quite similar. This is the statement that whenever A, B are closed events that are
symmetric around 0 then

PΛ (A ∩ B) ≥ PΛ (A)PΛ (B) .

It was a longstanding open conjecture that this inequality holds for all Gaussian measures
PΛ. This conjecture was settled in 2014 by Royen [Roy14] (see also [LM17] for an exposition
of the proof). There is no reason to believe that this correlation inequality holds for general
(log-concave) probability measures such as the ∇ϕ-interface models with stricty convex
V . For instance, a counterexample can be constructed out of a suitable Gaussian measure
conditioned to be small, similar to Remark 6.2.1.

Other techniques

Let us mention a few other techniques that have been employed in the study of the mem-
brane model. We have already briefly mentioned the Langevin dynamics associated to a
∇ϕ-interface model with strictly convex V . Beyond their occurrence in the Helffer-Sjöstrand
representation they can also be used directly to understand the underlying Gibbs measure.
This was pioneered by Funaki and Spohn [FS97]. For that model also some other techniques
such as Sheffield’s cluster swapping [She05] exist.

Finally, we need to mention some techniques available for the ∇ϕ-interface model with
slightly non-convex V . The main technical tools used for that model are various imple-
mentations of the renormalization group from theoretical physics, ranging from a one-step
renormalization scheme in [CDM09] to a very subtle multi-step renormalization scheme in
[ABKM19].
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1.2 Random interface models

1.2.7 Sampling from the models

Before discussing more detailed properties of the models, let us describe how to efficiently
generate samples of a random interface model. In particular, we want to explain how the
samples in Figure 1.1 and in Figures 1.3 and 1.4 were generated. The problem is that while
we have an explicit expression for the Boltzmann weight exp(−H), the partition function is
given by a high-dimensional integral that is very hard to calculate explicitly or numerically,
so a direct computation of the probability density seems infeasible. Let us describe some
alternative approaches.

Gibbs sampler

A general method for sampling from a Gibbs measure P is to use a Markov chain Monte
Carlo method, or, more precisely, a Gibbs sampler (see e.g [LPW09, Section 3.3]. The idea
here is that while the joint density of all field heights is too complicated to understand, the
conditional density of the height of a single site while all other heights are fixed is easy to
compute. This suggests an algorithm where we iteratively resample the field at a (randomly
chosen) site. This resampling defines a Markov chain (ψ(k))∞

k=0 whose unique stationary
measure is the Gibbs measure we want to sample from. Under some weak assumptions on
the Markov chain, for any initial configuration ψ(0) the distribution of ψ(k) converges (as
k → ∞) in total variation distance to P. In practice, one needs to decide how to choose k.
For this one would need to know how far the distribution of ψ(k) still is from P, i.e. how fast
the Markov chain mixes. Unfortunately, this is in general a very hard problem (see again
[LPW09] for a review of what is known), and so in practice one often has to make a guess.

We have implemented this algorithm in Matlab to generate samples from the membrane
model on the domains {0, . . . , N}d. It is clear that we need to resample each site at least once
to have a chance to see the actual behaviour of the model, and so we need at least (N + 1)d

iterations. In practice, for N = 20 and d = 4 it seems that 102Nd iterations are not quite
enough (as the maximum of the field is not as high as the theory predicts), while 103Nd

iterations seem reasonable. This means that to sample the membrane model for N = 20
and d = 4 we should use at least 103Nd ≈ 2 · 108 iterations, while for d = 5 one would need
already approximately 4 · 109 iterations. For comparison, the author’s laptop computer was
able to process about 106 iterations per second.

We have generated Figures 1.3 and 1.4 using this method (with 2 · 108 iterations), as its
flexibility allowed to easily include the single site potentials that will appear there. For
Figure 1.1 we used another approach to be described below.

Naive direct sampling for Gaussian measures

When sampling from a Gaussian measure such as the discrete Gaussian free field or the
membrane model, it is also possible to use the Gaussian structure of the measure to directly
sample from the measure. This has the advantage that we can be sure that our sample has
the correct distribution, and we do not need to guess how many iterations to use.

We focus on the membrane model, but the situation is similar for other Gaussian Gibbs
measures. The probability distribution (1.2.8) of the membrane model can be rewritten as

P∆,Λ(dψ) =
1

Z∇,Λ
exp

(
−1

2
(ψx, ∆2

1|Λ×Λψx)

)
L2(Λ)

∏
x∈Λ

dψx ∏
x∈Zd\Λ

δϕx(dψx)
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where (·, ·)L2(Λ) denotes the standard scalar product on RΛ. This means we need to sample
a centred normal random variable with covariance (∆2

1|Λ×Λ)
−1. Such a sample is given

by MX, where X ∈ RΛ is a vector of i.i.d. standard Gaussians and M ∈ RΛ×Λ is a matrix
such that MMt = (∆2

1|Λ×Λ)
−1. An efficient way to compute a possible M is to compute the

Cholesky decomposition ∆2
1|Λ×Λ = LLt with a lower triangular matrix L and then choosing

M = L−1.
We have implemented this algorithm in Matlab. It works well for small domains or for

small dimensions, but for d = 5 and N = 20, we would have |Λ| = (N + 1)d ≈ 4 ∗ 106, and
computing the Cholesky decomposition of a matrix this large is infeasible (in fact, Matlab
runs out of memory quickly when attempting this on a laptop computer).

Improved direct sampling for Gaussian measures

For Gaussian models there is also a better direct sampling algorithm. We again focus on the
membrane model with zero boundary data. For this we use ideas of Sheffield [She07, Section
4.4] for the discrete Gaussian free field that can easily be adapted to the membrane model.
The first observation is that the membrane model is much easier to sample when we first
sample a complex version and our domain is a torus (Z/N′Z)d, as we can then use discrete
Fourier analysis. For that end consider the scalar product 〈ψ, ψ′〉 := (∆1ψ, ∆1ψ′)L2((Z/N′Z)d)

on the space H of lattice functions on (Z/N′Z)d with average 0. Our goal is to sample from
the Gaussian measure with density 1

Z exp
(
− 1

2 〈ψ, ψ〉
)

dψ, and one easily checks (cf. [She07,
Proposition 2.1] that a sample ψ from that measure has the same law as ∑N′d−1

j=1 ϕjXj, where

(ϕj)
N′d−1
j=1 is a fixed orthonormal basis of H, and the Xj are i.i.d. standard Gaussians. We can

generate such an orthonormal basis using the eigenfunctions of the discrete Bilaplacian. We
take the functions

ψk1,...,kd(x) = αk1,...,kd exp
(

i
k1x1 + . . . + kdxd

N′

)
for kl ∈ {0, . . . , d− 1}, not all 0, where

αk1,...,kd =
1

4N′d/2
(

sin2
(

k1π
N′

)
+ . . . + sin2

(
k1π
N′

)) .

Thus, a fast way to generate a sample of the membrane model on a torus is to compute the
array (αk1,...,kdXk1,...,kd)

d
k1,...,kd=1, where X0,...,0 = 0 and all other X are i.i.d. standard Gaussians,

and then take the multidimensional discrete Fourier transform of that array. Both steps can
be done extremely fast (in a few seconds even if d = 5 and N = 20).

Of course, this is not yet quite what we wanted, as we were looking for zero and not
periodic boundary conditions. For this we use another observation from [She07, Section
4.4], namely, that the domain Markov property still applies. Thus, we embed our domain
{0, . . . , N}d into (Z/N′Z)d for some N′ ≥ N + 5. Now, given a sample of the membrane
model on (Z/N′Z)d, we only need to subtract the conditional expectation of the field given
its values outside of {0, . . . , N}d to obtain a sample of the membrane model with zero
boundary data on {0, . . . , N}d. It remains to compute that conditional expectation, i.e. the
biharmonic extension of the boundary values. For that purpose we need to solve the system
∆2

1|Λ×Λu = f for one right-hand side. This is a large system (about 4 · 106 unknowns if d = 5
and N = 20), but the matrix ∆2

1 is very sparse, and we can use an iterative solver such as
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1.3 Properties of the membrane model and other interface models

Matlab’s preconditioned conjugate gradient method to compute a very good approximative
solution within several minutes of computation.

We have used this algorithm to generate the samples in Figure 1.1.

1.3 Properties of the membrane model and other interface models

We will now consider specific aspects of random interface models and describe what is
known about them. We focus on the models described in Section 1.2.4, that is, the discrete
Gaussian free field (or gradient model), the∇ϕ-model with strictly convex V , the membrane
model, and the ∇ϕ-model with slightly non-convex V . The reader should keep in mind the
relation between these models illustrated in Figure 1.2. For most of the properties that we
will mention, the answers for the gradient model are known. For quite a few of them the
answer is also known for the ∇ϕ-model with strictly convex V and the membrane model
(and this thesis makes some further progress in the case of the membrane model). For the
∇ϕ-model with slightly non-convex V , only little is known. In fact, in some of the following
sections, we will not even mention it, as there are no results. It is a long-term hope that
progress on models such as the membrane model or the ∇ϕ-model with strictly convex V
also furthers the understanding of this model.

For the following sections most of the material on the gradient model and the ∇ϕ-model
with strictly convex V is taken from [Fun05, Vel06].

1.3.1 Gibbs measures and scaling limits

Gibbs measures

After the discussion in Section 1.2.3 an obvious question is that of the existence of Gibbs
measures for our random interface models. Because all the specifications we have considered
are invariant under shifts of the field by a constant, it is clear that if there is a Gibbs measure,
then there are infinitely many. Thus, a Gibbs measure is never unique, and the interesting
question is whether one exists at all.

It turns out that this is the case if and only if the dimension is supercritical. Indeed, in
supercritical dimensions the variance at a single site is uniformly bounded, as can be seen for
the gradient model and the membrane model from straightforward estimates on the Green’s
function, for the ∇ϕ-model with strictly convex V from the Brascamp-Lieb inequality and
for ∇ϕ-model with slightly non-convex V from the techniques in [ABKM19, Hil19]. Now
the boundedness of the variances is easily seen to imply tightness of the finite volume Gibbs
measures, and each subsequential weak limit will be a Gibbs measure. In the critical and
subcritical dimensions the variances diverge as Λ grows, and so there is no hope for the
existence of a Gibbs measure (cf. e.g. [Geo88] for a rigorous proof in the case of the gradient
model).

Gradient Gibbs measures and Hessian Gibbs measures

It is of course quite unsatisfactory that there is no infinite volume Gibbs measure in the
critical and subcritical dimensions. In the case of the gradient model and the ∇ϕ-model
one alternative way to make sense of an infinite volume limit of the field is to use so-called
gradient Gibbs measures. The idea here is to consider not the field heights ψx but their
gradients ∇1ψx, and to pass to a limit of the field of gradients. The limit field should then
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also satisfy some variant of the DLR equations (1.2.2). Making this intuition rigorous is
somewhat technical and we refer to [FS97] and in particular [She05, Section 3.1] for the
details.

The point for the gradient model is that while Var∇,Λ(ψx) = G∇,Λ(x, x) diverges in
dimensions d ≤ 2, we have

Var∇,Λ(D1
i ψx) = E∇,Λ(ψx+ei − ψx)

2

= G∇,Λ(x + ei, x + ei)− 2G∇,Λ(x, x + ei) + G∇,Λ(x, x)

= D1
i,xD1

i,yG∇,Λ(x, x)

where D1
i,x and D1

i,y denote the discrete derivative with respect to the first and second
variable, respectively. That is, by passing to the gradients of ψx we have gained two
derivatives. Now, ∇1,x∇1,yG∇,Λ(x, x) is uniformly bounded for all d ≥ 1, and so one
can see that there is a gradient Gibbs measure for the gradient model in all dimensions.
Choosing boundary data ϕx = a · x for some a ∈ Rd, we can construct a gradient Gibbs
measure with given tilt (i.e. expected value of the gradient at each single site) a. One can
show that every shift invariant ergodic gradient Gibbs measure P which is tempered (i.e.
satisfies E(D1

i ψx)2 < ∞ for all x ∈ Zd, i ∈ {1, . . . , d}) is equal to one of these gradient
Gibbs measures with the corresponding tilt. Indeed, this follows easily from the uniform
boundedness of ∇1,x∇1,yG∇,Λ(x, x) together with [Geo88, Theorem 13.24 and Theorem
13.26] and the well-known fact that every bounded discrete harmonic function is constant.

This characterization of gradient Gibbs measure for the gradient model is actually a special
case of a result by Funaki and Spohn [FS97] who have extended the above considerations
to the ∇ϕ-model with strictly convex V . Again gradient Gibbs measures exist in every
dimension, and the tempered ones are parametrised by their tilt.

For the membrane model one can proceed similarly. But in view of the fact that the
Hamiltonian now involves second derivatives instead of first ones, it is more natural to
consider not the gradients of the field but their Hessians, i.e. consider "Hessian Gibbs
measures". While it seems that this has not been worked out in detail anywhere in the
literature, the construction can proceed analogously to [She05, Section 3.1], so we only
sketch the outcome. A short calculation as above shows that

Var∆,Λ(D1
i D1
−jψx) = E∇,Λ(ψx+ei − ψx − ψx+ei−ej + ψx−ej)

2 = D1
i,xD1

−j,xD1
i,yD1

−j,yG∆,Λ(x, x)

That is, by passing to Hessian Gibbs measures we have gained four derivatives, and so
Hessian Gibbs measures can be constructed in all dimensions. For every A ∈ Rd×d by
choosing the boundary values ϕx = 1

2 xt Ax we can find a Hessian Gibbs measure with
expected value of the Hessian at every site equal to A. Just as for the gradient model, one
sees that all shift-invariant ergodic Hessian Gibbs measures which are tempered (i.e. satisfy
E(D1

i D1
−jψx)2 < ∞ for all x ∈ Zd, i, j ∈ {1, . . . , d}) are given this way. For the proof one

needs the fact that every bounded discrete biharmonic function on Zd is constant. This fact
might not be completely obvious, but it can be shown, for example, by combining Lemma
2.3.1 and Lemma 2.5.1 from Chapter 2 to see that such a function needs to be affine.

Scaling limits

A different, but closely related question is whether it is possible to extract a scaling limit of
the field. To do so, we first need to define an appropriate rescaling of the field. We choose
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1.3 Properties of the membrane model and other interface models

some bounded domain D ⊂ Rd and consider the domains ΛN = ND ∩Zd. Then, if ψN is
distributed according to PΨ,ΛN and α ∈ R, we can consider the field ψ̃N(x) = NαψN(Nx)
as a random function on D ∩

( 1
N Z
)d

. Now there are various ways to interpolate ψ̃N to a
function defined on all of D, and one can wonder whether for the right choice of α these
random functions on D have a scaling limit, and if so, in which topologies the convergence
to the scaling limit holds.

For the gradient model the answer is straightforward. The correct choice for α here
is α = d−2

2 , and the scaling limit is the continuum Gaussian free field that was already
mentioned in Section 1.2.4. In the subcritical dimension d = 1 the continuum Gaussian free
field is nothing else than Brownian motion. As D is bounded and connected, it is an interval.
The gradient model with zero boundary data on Λ is just a random walk bridge, and it is
well-known that under rescaling with factor N−

1
2 and piecewise linear interpolation this

random walk bridge converges to a Brownian bridge on D, where the convergence takes
place in the Hölder spaces C0,γ for any γ < 1

2 . In the critical and supercritical dimensions the
convergence takes place in negative Sobolev spaces. We interpolate ψ̃N in some reasonable
way (e.g. piecewise affinely on a triangulation subordinate to Zd). Then the interpolated
fields converge in H−s(D) for any s > d−2

2 , where H−s(D) is the dual space of the Hilbert
space Hs

0(D) [She07]. It is also possible to prove analogous results for non-zero boundary
conditions.

The ∇ϕ-model with strictly convex V behaves similarly to the gradient model. In particu-
lar, we still take α = d−2

2 , and the scaling limit is still (a scalar multiple of) the continuum
Gaussian free field. The main focus in the literature has been to show the convergence in
D′, the space of distributions. This was first shown in [NS97]. Whether one can upgrade
this to convergence in law in some negative Sobolev space then depends on the precise
assumptions made on V . In [GOS01] it is shown that under fairly general assumptions
the convergence holds in H−s(D) for any s > d+ 1. The situation with nonzero boundary
conditions was investigated in [Mil11].

For the ∇ϕ-model with slightly non-convex V one still has convergence to the continuum
Gaussian free field [Hil16, ABKM19]. Somewhat surprisingly, this even holds for some very
non-convex V , at least in the zero-boundary case [BS11].

For the membrane model one observes a different scaling limit, namely the continuum
membrane model that was also already mentioned in Section 1.2.4, and the correct choice
for α turns out to be α = d−4

2 . Other than that, the situation is very similar as for the gradient
model: provided that one chooses a sufficiently smooth interpolation, the convergence holds
in the subcritical dimensions in the Hölder space Cbγc,{γ}(D) for any γ < 4−d

2 . This result
can be found in [CDH19], with a crucial ingredient being the estimates in Chapter 2 of this
thesis. In the critical and supercritical case the convergence holds in some negative Sobolev
space H−s(D). The published result [CDH19] allows s > s∗ for some s∗ ≈ 7

8d, but it should
be possible to improve their result to the optimal s > d−4

2 .

1.3.2 Extrema of the field

This section includes parts of the introduction of the author’s paper [Sch20a].

Existing results

We can now turn to discuss finer properties of the random interface models. The first such
property is the behaviour of the extrema of the field. All of our models are invariant under
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reflection around 0, and so we only need to consider the maximum. We always consider the
field on the domain ΛN = [0, N]d ∩Zd. For Φ ∈ {∇,V(∇), ∆} we denote a sample from
PΦ,ΛN by ψΦ

N , and let MΦ
N = maxx∈ΛN ψx. We are interested in the asymptotics of the random

variables MΦ
N as N → ∞. The answer here depends very much on whether the dimension is

subcritical, critical or supercritical, and so we will discuss those cases separately.
In the subcritical dimensions (d = 1 for the gradient model and the ∇ϕ-models, d ≤ 3 for

the membrane model) we have that M∇N
N

2−d
2

, MV(∇)N

N
2−d

2
and M∆

N

N
4−d

2
converge in distribution, which

follows from the fact that the whole rescaled field converges weakly in C0, as discussed in
the previous section.

In the supercritical dimensions (d ≥ 3 for the gradient model and the ∇ϕ-models, d ≥ 5
for the membrane model) the correlations decay rapidly, so one can expect that the maximum
of the field behaves as if the ψΦ

N were independent. In the cases of the gradient model and
the membrane model this can be made rigorous using Stein’s method. Thereby it was shown
in [CCH16b, CCH16a] that M∇N behaves as if the (ψ∇N,x)x∈VN were independent, i.e. that

√
2d log N√

g∇d

M∇N −
√

2dg∇d log N +

√
g∇d (log(d log N) + log 4π)√

8d log N


converges in distribution to a Gumbel random variable, where xN is a lattice point closest to
the centre of [0, N]d and g∇d = limN→∞ Var(ψ∇N,xN

). The analogous statement holds true for
M∆

N . It is likely that a similar result also holds for the ∇ϕ-model with strictly convex ϕ, but
this has not been rigorously shown yet (cf. [CCH16a, Remark 3]).

The most interesting and most subtle case is the critical one (d = 2 for the gradient model
and the ∇ϕ-models, d = 4 for the membrane model). For the gradient model, in a series
of papers making successive improvements [BDG01, BDZ11, BZ12, BDZ16] it was shown
that M∇N − m∇N converges in distribution to a randomly shifted Gumbel variable, where

m∇N =
√

2
π log N − 3√

32π
log log N. For the ∇ϕ-model with strictly convex ϕ convergence in

law of the maximum is a challenging open problem, but it is known that MV(∇)N
log N converges

in probability [BW20] and that there is a deterministic subsequence (Nk)
∞
k=0 along which

MV(∇)Nk
−EV(∇),ΛN

MV(∇)Nk
is tight [WZ19]. For the membrane model previously there were

only partial results. The best result [Kur09] is that M∆
N

log N converges to 1
π in probability. The

question whether a centred version of M∆
N converges in distribution was posed for example

in [Roy16, CDH19]. In Chapter 4 (that is based on the publication [Sch20a]) we prove that
this is the case, i.e. that M∆

N −M∆
N converges to a randomly shifted Gumbel variable, where

m∆
N = 1

π log N − 3
16π log log N.

The maximum of the critical membrane model

Let us give a few more details on the result of Chapter 4 on the maximum of the membrane
model in dimension d = 4. The precise result will be the following:

Theorem 1.3.1. Let d = 4. The random variable

M∆
N −m∆

N := M∆
N −

1
π

log N +
3

16π
log log N
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1.3 Properties of the membrane model and other interface models

converges in distribution. The limit law is a randomly shifted Gumbel distribution µ∞, given by

µ∞((−∞, t]) = Ee−γ∗Ze−8πt ∀t

where γ∗ is a constant and Z is a positive random variable that is the limit in law of

ZN =
√

8 ∑
x∈VN

(log N − πψN,x)e−8(log N−πψN,x) .

For this result it is very important that the critical membrane model is a log-correlated
Gaussian field (cf. Section 1.2.5). As discussed there, it is conjectured that these form a
universality class. One example of a feature that is conjectured to be universal is the beha-
viour of the maximum of the field, and one expects that convergence in law of the recentred
maximum holds true for general log-correlated fields. However, it is a challenging problem
to verify this fact for specific examples of log-correlated fields. In recent years convergence
in law of the recentred maximum has been proven for the critical gradient model, as already
discussed, and also for various other models. Let us mention branching Brownian motion
[Bra83], branching random walks [Aïd13], and also problems from random matrix theory
(see [CMN18] for partial results).

Furthermore, there have been efforts to give sufficient criteria for convergence in law of
the maximum that cover a wide range of log-correlated fields. In [Mad15] this was done
for so-called ∗-scale invariant models. Most importantly for us, in [DRZ17] Ding, Roy and
Zeitouni gave some sufficient conditions on the covariances that ensure that the maximum
of the field converges in distribution. Their approach is based on a very subtle comparison
of the interface with a modified branched random walk. The result from [DRZ17] reduces
the proof of Theorem 1.3.1 to the verification of certain estimates on the Green’s function of
the discrete Bilaplacian. We discuss these in Section 1.4.3.

1.3.3 Entropic repulsion

This section includes parts of the introduction of the paper [BDKS19], written jointly by
Simon Buchholz, Jean-Dominique Deuschel, Noemi Kurt and the author.

Existing results

In this and the following sections we will consider the effect of various single-spin potentials
to the boundary. We begin with the phenomenon of entropic repulsion. That is, we restrict
the interface to be non-negative on some subset of the domain Λ. In physics, this corresponds
to the presence of a hard wall that the interface cannot cross. This hard wall leads to a
competition between energetic and entropic effects: on the one hand it is energetically
favourable for the interface to stay flat and thus close to the hard wall, on the other hand the
hard wall severely limits the possible fluctuations, so that it is entropically advantageous for
the interface to keep a distance from the wall. Therefore, there will be some repulsive effect
of the wall, that is, its local averages will increase. We speak of entropic repulsion if the
order by which the field increases is strictly larger than the order of the square root of the
variances of the original field, [LM87, Gia01]. See Figure 1.3 for a sample of the membrane
model under entropic repulsion, in particular in comparison to Figure 1.1a. This and related
problems have also been studied in the physics literature, e.g. in [HL97].

This leads to the question how big this repulsive effect is for our models of interest,
and whether there is entropic repulsion in the sense just mentioned. As in the previous
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Figure 1.3: A sample of the membrane model in dimension d = 2 on the do-
main {0, . . . , 20}d under entropic repulsion on all of the domain. See
Section 1.2.7 for a description how the sample was generated.

section, the answer strongly depends on whether the dimension is subcritical, critical or
supercritical. In fact, it is known (or conjectured) that entropic repulsion happens if and
only if the dimension is critical or supercritical.

We consider the field on the domain ΛN = [0, N]d ∩Zd, and for some D ⊂ [0, 1]d we
let DN = ND ∩Zd. We consider the event ΩDN ,+ = {ψ : ψx ≥ 0 ∀x ∈ DN}, and we are
interested in the behaviour of the fields when conditioned on being nonnegative on DN .
A first step to understand that behaviour will be to estimate the probability of ΩDN ,+. We
focus on the two cases D b [0, 1]d (i.e. D is compactly contained in [0, 1]d), or D = [0, 1]d.

In the critical and supercritical dimensions there are very precise results known for the
Gaussian free field. Namely, if D b [0, 1]d, then the probability P∇,ΛN (ΩDN ,+) scales like
exp(−Cd,D Nd−2 log N) if d ≥ 3, and like exp(−Cd,D(log N)2) if d = 2, while the field is
repelled to a height Cd,D

√
log N if d ≥ 3, and to a height Cd,D log N if d = 2. Here the

constants are explicitly known and they depend on d and on the capacity of D with respect
to [0, 1]d. If D = [0, 1]d, then P∇,ΛN (ΩDN ,+) scales like exp(−Cd,D Nd−1) for any d ≥ 2 (this
is a boundary effect), while the field is repelled to a height of the same order as before.
These results are due to [BDZ95, Deu96, BDG01]. Similar, but somewhat weaker results
(namely with upper and lower bounds on the rates that differ by a constant factor) are
known for the ∇ϕ-interface model with strictly convex V [DG00]. For the membrane model
only the case that D b [0, 1]d has been studied. There one finds that P∆,ΛN (ΩDN ,+) scales
like exp(−Cd,D Nd−4 log N) or exp(−Cd,D(log N)2) for d ≥ 5 and d = 4, respectively, while
the field is repelled to heights Cd,D

√
log N or Cd,D log N, respectively [Sak03, Kur07, Kur09].

In all cases, the order of the height to which the field is repelled is larger than the square
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1.3 Properties of the membrane model and other interface models

root of the variance of the unperturbed field, and so there actually is entropic repulsion in
the sense defined above.

The subcritical case is rather different. For the gradient model in dimension d = 1 we
actually observe a simple random walk bridge conditioned to be positive on some part
of its domain. If D b [0, 1]d this random walk has as its scaling limit a Brownian bridge
conditioned to be positive on D, while if D = [0, 1] the scaling limit is the Brownian excursion
(cf. e.g. [CC13]). In particular, P∇,ΛN (ΩDN ,+) ≥ cD if D ⊂ [0, 1], while P∇,ΛN (ΩDN ,+) scales
like cD

N (as can easily be shown using the reflection principle). In both cases the field is
repelled to the height cD

√
N. These statements are also still valid for the∇ϕ-interface model

with strictly convex V , as can be seen using renewal methods, cf. e.g. [FO01, Gia07]. For the
membrane model in dimension d = 1 the scaling limit is an integrated Brownian bridge,
and we expect that P∇,ΛN (ΩDN ,+) ≥ cD if D ⊂ [0, 1], while P∇,ΛN (ΩDN ,+) scales like cD√

N
,

and the field is repelled to the height cD N
3
2 . This has rigorously been shown only for the

one-sided problem [DW15] (see also the earlier results [Sin92, DDG13]), but the method
should carry over.

Of course, for the membrane model d = 1 is not the only subcritical dimension, and
so we are left to discuss what happens when d ∈ {2, 3}. It is likely that just as in the
other subcritical cases there is no entropic repulsion here, i.e. the field is repelled only to
the height N

4−d
2 . Moreover, P∇,ΛN (ΩDN ,+) should be bounded below for any D b [0, 1]d,

while it should decay at a surface rate if D = [0, 1]d. The only previous rigorous result
on this topic, however, is [Sak16], where it is shown that for sufficiently small D we have
P∇,ΛN (ΩDN ,+) ≥ cD. In Chapter 3 (that is based on the publication [BDKS19]) we give a
significant improvement and prove that P∇,ΛN (ΩDN ,+) behaves as expected. Unfortunately,
we only have partial results on the behaviour of the field when conditioned on ΩDN ,+.

Probability to be positive for the subcritical membrane model

We will now give a few more details on the results of Chapter 3. There we prove the
following result.

Theorem 1.3.2. Let d = 2 or d = 3. For δ ∈ (0, 1) there is a constant cδ > 0 such that

cδ ≤ P∆,N(ΩΛδN ,+) ≤
1
2

.

Moreover,
exp(−CNd−1) ≤ P∆,N (ΩΛN ,+) ≤ exp(−cNd−1)

We can even prove a result interpolating between the two estimates above, i.e. we can
take DN = ΛN,LN for some LN depending on N (see Theorem 3.1.1). Theorem 1.3.2 easily
implies that the field still has a scaling limit in some Hölder space when conditioned on
being positive on ΩΛδN ,+ for δ < 1. However, this is a soft argument that relies on the
lower bound on PN(ΩΛδN ,+) being uniform in N. In the case D = [0, 1]d the probability
PN(ΩΛδN ,+) is exponentially small in N, and so it is difficult to analyse what happens when
one conditions on that event. For this we do not know yet how to proceed.

A crucial ingredient for the proof are estimates for the Green’s function of the discrete
Bilaplacian and its derivatives that are sharp up to the boundary. These estimates are shown
in Chapter 2 (that is based on [MS19]), and we will give an outline in Section 1.4. Here we
focus on the probabilistic aspects of the proof of Theorem 1.3.2.
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The upper bound in Theorem 1.3.2 follows easily from the estimates on the Green’s func-
tion. Namely, it turns out that the correlations at sites close to the boundary decay rapidly,
so we can take a sparse subset of cardinality ≥ cdNd−1 where the correlations are very small.
In fact, the correlations will be so small that we can use a Gaussian comparison lemma from
[LS04] to compare to the situation where the heights at our subsets are independent, and so
the upper bound immediately follows.

For the lower bound we use the fact that the field is Hölder continuous up to the boundary,
with a random Hölder constant for which we have tail bounds. This means that if the field
is positive at a certain site x, it is positive in a neighbourhood of x with a decent probability
as well. Unfortunately, in the absence of the FKG inequality there is no direct way to patch
these local results together. To solve this problem, note that we can also conclude from the
Hölder continuity that the field is locally small with a decent probability, and these results
we can patch together using the Gaussian correlation inequality. This is not yet the result we
were looking for, but one can use a change of measure argument to bound the probability
that the field is close to any given macroscopic profile from below. For a sufficiently positive
profile this then implies the result.

1.3.4 Pinning

This section includes parts of the introduction of the author’s preprint [Sch20b].

Existing results

In the previous section we discussed the effect of a hard wall that repels the field from 0. In
this section we will do the opposite, namely consider the effect of a small attractive potential.
So we add a small attractive potential that rewards the field for being equal to (or close to) 0.
It is clear that this should pull the interface closer to 0, and one can explore to what extent
this effect happens. The physical motivation for this is mainly that it serves as a stepping
stone for understanding the phenomenon of wetting, where one considers the competition
between pinning and entropic repulsion. We shall discuss that problem in the next section,
and keep our focus on pinning here.

Various pinning potentials have been considered in the literature. We restrict ourselves to
the mathematically easiest one, namely εδ0 with δ0 a point-mass at 0. That is, we consider
the probability measures

Pε
Φ,Λ(dψ) =

1
Zε

Φ,Λ
exp(−HΛ(ψ)) ∏

x∈Λ
(λ(dψx) + εδ0(dψx)) ∏

x∈Zd\Λ
δ0(dψx) (1.3.1)

for some ε > 0.
If λ is the Lebesgue measure on R, we cannot understand this as a Gibbs measure with a

priori measure λ (as δ0 is singular with respect to the Lebesgue measure), but the formalism
from Section 1.2.3 works well if we directly take λ + εδ0 as the a priori measure.

The first question about pinning is whether the additional effect of the pinning measure is
strong enough to actually localize the field. In the supercritical dimensions the variances
are bounded already without any pinning, so one can expect that the field stays bounded
when pinned. In the critical and subcritical dimensions the answer is less easy to guess. See
Figure 1.4 for a sample of the pinned membrane model in comparison to Figure 1.1c.

To give a rigorous answer we first have to define what we mean by localization, or being
pinned. For each sample of Pε

Φ,Λ there will be some x ∈ Λ with ψx = 0 which we call the
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1.3 Properties of the membrane model and other interface models

Figure 1.4: A sample of the membrane model in dimension d = 4 on the domain
{0, . . . , 20}d, pinned with pinning strength ε = 1. The picture shows
the values of the sample on the slice {0, . . . , 20}2×{10}2. See Section
1.2.7 for a description how the sample was generated.

pinned points. We call Pε
Φ,Λ pinned if the expected fraction of points in Λ that are pinned

is bounded below uniformly in Λ. One easily checks that being pinned is a monotonic
property in ε, so there will some critical value εpin,∗ ∈ [0, ∞] such that the field is pinned
if ε > εpin,∗ but not if ε < εpin,∗. Now for the gradient model and the ∇ϕ-interface models
with strictly convex V it turns out that the field is always pinned, i.e. εpin,∗ = 0 in any
dimension. For d = 1 this follows again from renewal theory methods as in [Gia07], for
d = 2 this follows from [DMRR92, DV00], and the case d ≥ 3 is almost trivial. The situation
is more exciting for the membrane model. We still have εpin,∗ = 0 for d ≥ 2 [Sak12, Sak18],
but somewhat surprisingly 0 < εpin,∗ < ∞ if d = 1 [CD08].

Thus, in most cases the pinning effect manages to localize the field in the sense that it
touches the 0-plane on a positive fraction of Λ. It is natural to ask whether this localization
also manifests itself in some other ways. In particular, it is expected that the variance of the
pinned field is bounded, and the covariance decays exponentially in the distance (i.e. a mass
is generated). Physically speaking, this corresponds to a finite transverse and longitudinal
correlation length, respectively. For the case of the gradient model, this was studied in
[BB01, IV00, BDG01] in d ≥ 2. There not only finiteness of the variance and existence of a
mass is known, but even the ε-asymptotic of these quantities for small ε. The former result
is also known for ∇ϕ-interface models with strictly convex V [DV00]. For d = 1 and both
models there are even better results [Gia07, Gia08].

For the membrane model very refined results are known if d = 1 [CD08, CD09]. These
include boundedness of the variance, and should easily imply exponential decay of the
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covariances. It is also known that in the supercritical dimensions d ≥ 5 (where variances
are trivially bounded) one has a positive mass [BCK17]. Other than that the only previous
result is that in the critical dimension d = 4 the correlations decay stretched-exponentially
[BCK16]. In Chapter 6 that is based on the preprint [Sch20b] we improve these results
by showing that the variances are bounded and the covariances decay exponentially (i.e.
the mass is positive) also if d = 4. We also give asymptotics for these quantities if d ≥ 4.
This leaves open the cases d ∈ {2, 3}. Already in [BCK17] the authors wondered whether
exponential decay of correlations also holds in that dimensions. This seems likely, but we
do not know how to prove this.

Pinning for the critical and supercritical membrane model

There are quite a few new results in Chapter 6. The following theorem summarizes the most
important ones.

Theorem 1.3.3. Let d ≥ 4, and x ∈ Λ b Zd. If ε is sufficiently small, the variances of the pinned
field satisfy

cd ≤ Eε
∆,Λ(ψ

2
x) ≤ Cd

if d ≥ 5, and

| log ε|
32π2 − C4 log | log ε| ≤ Eε

∆,Λ(ψ
2
x) ≤

| log ε|
16π2 + C4 log | log ε|

if d ≥ 4 and x is sufficiently far from the boundary.
We also have the lower bounds for the mass mε (i.e. exponential rate of decay of the covariances)

cdε1/4 ≤ mε

if d ≥ 5, and

c4
ε1/4

| log ε|3/8 ≤ mε

if d = 4.
Moreover for every ε ≥ 0 the fields have a unique thermodynamic limit as Λ↗ Zd.

The first step to establish the results of Theorem 1.3.3 is to understand the set of pinned
points. The first important observation of Chapter 6 is that this set is positively correlated (as
follows from the Gaussian correlation inequality). The heuristic is that this set behaves like
a Bernoulli point process with a certain density. This is true in a rather strong sense if d ≥ 5,
and still true in a weakened sense if d = 4 (as we show following a two-scale argument from
[BDG01]). If d ≤ 3 this breaks down completely, however, and so the arguments have no
chance to work in that case.

Having established these estimates on the set of pinned points, the estimates on the
variance follow easily. The estimates on the covariance are much more complicated. This
problem resembles the classical problem of the homogenization of elliptic PDEs in perforated
domains (see [CM97]), and the arguments are inspired from this connection. We proceed
by using from [BCK17] the idea to use a Widman hole filler argument [Wid71] on random
annuli. The details, however, are rather different. We use a multipolar Hardy-Rellich
inequality for second derivatives (inspired by similar inequalities for first derivatives as
e.g. in [CZ13]) to estimate the local effect of the pinned points. We also use a rather subtle
multiscale construction to construct the required cut-off functions, and to prove that this
construction can be done with sufficiently high probability. This is the most technical part of
the chapter, and it is novel to the best of our knowledge.
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1.3 Properties of the membrane model and other interface models

1.3.5 Wetting

As already briefly mentioned in the previous section, one can consider a competition
between the effects of a hard wall and an attractive potential. This problem is known as
wetting. It should be plausible that, depending on the strength of the attractive potential,
one or the other effect might win. That is, the interface could be repelled far away from the
boundary or the interface could stay close to the wall and touch it at many points (the two
phases are called dry/wet [Gia01] or partially wetted/wetted [Vel06] in the literature; we
stick to the former).

The physical interpretation of this problem explains the terminology. Namely, this model
arises when analyzing the coexistence of a liquid and a gas in a domain, where the liquid
prefers to stick to the boundary of the domain due to certain molecular forces. Our height
function then describes the interface between the liquid and the gas. It could happen that
there are only a few drops of liquid at the wall with the rest of the wall being dry, or that the
whole wall is covered by a liquid film. Which of the two phenomena occurs depends on the
amount of liquid present (which itself depends on the attractive forces of the wall). See e.g.
[Lip01] and the references therein for biophysical work on this problem.

Another physical interpretation arises when considering a biomembrane contained in
a domain that experiences some attractive forces close to the wall of the domain, while
entropic effects tend to keep it away from the wall, cf. [Lip95].

Mathematically, wetting consists in the analysis of the measure (1.3.1) conditioned on the
event ΩΛ,+ = {ψ : ψx ≥ 0 ∀x ∈ Λ}. We call those sites where ψx = 0 under the conditioned
measure the dry sets, and define the field to be dry when the expected value of the fraction
of points in Λ that are dry is positive (and otherwise wet). As for pinning, one can argue
that there is a critical value εwet,∗ ∈ [0, ∞] such that the field is wet if ε > εwet,∗ but not if
ε < εwet,∗. Now one can investigate whether εwet,∗ is nontrivial and how the field behaves in
the dry and wet phases.

There are only a few rigorous results on this problem: For the gradient model it is known
that εwet,∗ = 0 if d ≥ 3 [BDZ00], while εwet,∗ > 0 if d ≤ 2 [CV00]. It is unknown whether the
same holds for the ∇ϕ-interface model other than in the case d = 1 [HV04]. Similarly for
the membrane model it is only known that εpin,∗ < εwet,∗ < ∞ in d = 1 [CD08]. The only
pathwise results in the literature are in [Vel04] where the main result is an estimate of the
typical height of the wet interface.

As mentioned, for the membrane model it is not even known whether εwet,∗ > 0 for some
d ≥ 2, although in analogy with the gradient model one can conjecture that εwet,∗ > 0 if and
only if d ≤ 4. Maybe a combination of the results in [Kur09] on pure entropic repulsion
combined with the results of Chapter 6 on pure pinning can help shed light on this question.

1.3.6 Further aspects and open questions

There are many more interesting questions about random interface models that one can
study. Let us describe three of them where there is active research right now.

Near-extrema and thick points

In view of the results on the maximum of the fields in Section 1.3.2, it is natural to wonder
whether one can say more about the behaviour of the field at or near its maximum. This
question is interesting mainly in the critical case. For the case of the gradient model, this has
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been thoroughly addressed in [BL16, BL18, BL20]. There, convergence of the full extremal
process (encoding height, location and local neighbourhoods of near-maxima) to some
limiting process is shown, and the law of the locations of those near-maxima is identified as
critical Liouville quantum gravity (cf. [Ber15] for an introduction).

One can also study the so-called λ-thick points of the field, i.e. those points whose height
is approximately λ times the height of the maximum. This was done in [BL19], where
the authors show that the locations of the λ-thick points converge to subcritical Liouville
quantum gravity . This refines an earlier result, [Dav06] finding the Hausdorff dimension of
that set.

Analogous results for the ∇ϕ-model with strictly convex V seem out of reach, as one
does not even know the precise height of the maximum yet. For the membrane model
there is more hope in view of the results of Chapter 4. However, some of the results for
the gradient model that we have just mentioned rely on its conformal invariance and thus
on some special properties of the two-dimensional space, and so these probably have no
replacement for the membrane model. Let us mention, though, that the results on the
Hausdorff dimension of the set of thick points have already been adapted to the case of the
membrane model in [Cip13].

Level surfaces

Another natural question for the random interface models is how their level surfaces look
like. We focus on the zero contour, i.e. the set where the (suitably interpolated) interface
intersects the 0-plane. This is mainly interesting in the critical case. For the gradient model
and the ∇ϕ-model with strictly convex V in d = 2 it turns out that the scaling limit of the
contour surfaces (which then are contour lines) is the conformal loop ensemble CLE(4), a
variant of the Schramm-Loewner evolution. This was shown in [SS09, Mil10].

For the membrane model in d = 4 the analogous question is very interesting, but probably
also extremely difficult. In the absence of conformal invariance it is not even heuristically
clear what the scaling limit might be.

Level set percolation

A random interface model also gives rises to a strongly correlated percolation model. This
is most natural in the supercritical dimensions, as then there is an infinite volume limit of
the field without rescaling. One can then consider the interface on all of Zd, and for some
t ∈ R study the set Et = {x : ψx ≥ t}, and in particular its percolative properties. Then one
can define various critical values for t. The most natural of them, t∗, is such that Et contains
almost surely an infinite connected component if t < t∗, but not if t > t∗. For the gradient
model it is known that 0 < t∗ < ∞ for all d ≥ 3 [BLM87, RS13, DPR18]. This means in
particular that both the set where the gradient model is positive and its complement contain
an infinite connected component. This needs to be contrasted with Bernoulli percolation,
where this coexistence is almost surely impossible.

In a recent breakthrough [DCGRS20] it was shown that t∗ agrees with a variety of other
critical values, and so there are clearly defined subcritical and supercritical phases for
percolation.

As a link to Section 1.3.3, one can consider the interface conditioned on the event that for
some D b [0, 1]d the sets DN = ND ∩Zd and Zd \ [0, N]d are not connected in Et. For t < t∗
this is an unlikely event, and conditioning on it will lead to a repulsion of the interface. For
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the gradient model, this problem was studied in [CN20], using the result from [DCGRS20]
to derive sharp estimates for the resulting entropic repulsion.

It would be very interesting to see whether one can transfer these results to the∇ϕ-model
for strictly convex V or to the membrane model. For the former, a first result can be found
in [Rod16].

1.4 Discrete Green’s functions and finite difference schemes

We will now turn to the second important topic of this thesis, namely the discrete Bilaplace
equation and its Green’s function. We first provide some context and discuss the continuous
counterparts of these objects, and then we turn to the new results of this thesis.

1.4.1 Continuous elliptic partial differential equations and Green’s functions

Equations in smooth domains

Elliptic partial differential equations are a class of partial differential equations that gener-
alize Poisson’s equation. There exists a vast amount of theory on this subject, and we will
just briefly mention a few notions important to us. The following results are classical (see
e.g. [LM72a, Gia83]). We focus on constant coefficient operators L = ∑|α|≤2m aα∂α. Such an
operator is called elliptic if its principal symbol is invertible, i.e. if ∑|α|=2m aαξα 6= 0 for any
ξ ∈ Rd \ {0}, where we use the usual multi-index notation. Given a domain Ω ⊂ Rd with
Cm−1-boundary, one can then consider the boundary value problem

Lu = f in Ω,

∂k
νu = 0 on ∂Ω ∀0 ≤ k ≤ m− 1

(1.4.1)

Elliptic regularity theory implies that, informally speaking, u is better than f by 2m deriv-
atives. That is, there are interior estimates of the form ‖∇2mu‖X ≤ C‖ f ‖X for a variety of
function spaces X. Such estimates hold locally in the interior of Ω in any case, and if the
domain Ω has a sufficiently smooth boundary, they extend to global estimates. In particular,
the equation is uniquely solvable for f ∈ X.

Under the stated assumptions there also exists a Green’s function G for L. Formally G(·, y)
is the solution of (1.4.1) with f = δy, the δ-distribution at y ∈ Ω. One can show that this is a
well-defined function on Ω×Ω \ {(x, x) : x ∈ Ω}, and that for f ∈ L2(Ω) one can represent
the solution of (1.4.1) as

u =
∫

Ω
G(·, y) f (y)dy

This should make it obvious that the Green’s function G is closely linked to the elliptic
operator L, and that it is important to understand the behaviour of G to analyse the elliptic
boundary value problem associated to L. In particular, understanding the behaviour of G
near its singularity at the diagonal can lead via the theory of singular integral operators to
regularity estimates for the boundary value problem (1.4.1).

In the full space (i.e. Ω = Rd), one can analyse the Green’s function using Fourier analysis
and obtain an explicit expression for it. For bounded Ω one can then use some regularity
theory for (1.4.1) to show that the Green’s function behaves similarly to the full space
Green’s function. In fact, using this approach precise estimates on the Green’s function and
its derivatives are known in smooth domains (see e.g. [Kra67, DS04, GGS10]).
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Equations in domains with singularities

If the domain Ω no longer has a smooth boundary, the situation becomes much more diffi-
cult. An important class of non-smooth domains are polyhedra (i.e. convex hulls of a finite
number of points in Rd), or, more generally, domains with piecewise smooth boundary. In
that case there is still an existence and regularity theory for elliptic equations, although
typically one has to introduce weighted function spaces, where the weight measures the
distance to the singular part(s) of the boundary (cf. e.g. the series [KMR97, KMR01, MR10]).
There are eigenvalue problems associated with the singularities, and these determine for
what range of parameters the existence and regularity theory applies, and when one encoun-
ters a nontrivial kernel of L. One can still define a Green’s function of (1.4.1), and derive
asymptotics for its behaviour. In the interior of the domain this Green’s function behaves
again like the full-space one, while near the boundary it might be sensitive to the geometry
of the domain.

When the boundary of Ω is no longer piecewise smooth, general results become rare, but
they still exist. In particular, for general domains there is an existence and regularity theory
in various spaces that are sufficiently close to the energy space Hm(Ω) (see e.g. [MM13]).
There is also still a Green’s function, and one can establish various estimates on it that are
independent of the geometry of the domain [MM14].

The continuous Bilaplace equation

The differential operator that is most important to this thesis is the Bilaplacian operator,
given as ∆2 (where ∆ is the standard Laplacian). This is a fourth-order elliptic operator, and
probably the most important such operator. It arises for example in linear elasticity, fluid
dynamics and the theory of phase separation.

All the general considerations from the previous paragraphs apply to the Bilaplace
operator. While this operator is quite similar to the Laplacian, one important difference is
the absence of a maximum principle. One can ask whether the operator is still positivity-
preserving in the sense that f ≥ 0 in (1.4.1) implies that u ≥ 0 as well. This is equivalent
to the Green’s function of the Bilaplacian being nonnegative. From a physical point of
view this seems quite plausible.In fact, in 1908 Hadamard [Had08] was convinced that this
was the case when Ω is convex, even though he had no proof. Later it turned out that
the conjecture is false. A first counterexample was found in 1949 by Duffin [Duf49], who
showed that for a long thin rectangle the Green’s function can become negative. Later on,
many other counterexamples (including ones with smooth boundary such as certain ellipses)
were found. For more on the history of this conjecture see [GGS10, Section 1.1.2].

Of course, in Section 1.2.6 we had already remarked that the Green’s function of the
discrete Bilaplacian can be negative, so with this in mind the failure of the conjecture should
be not surprising.

1.4.2 Numerical analysis of partial differential equations

Finite differences and finite elements

While partial differential equations are a fairly universal tool to describe physical phenom-
ena, they are ill-suited to computations. In order to actually compute an (approximate)
solution, one typically wants to discretize the problem in some way, so that one obtains a
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finite-dimensional problem which one can then solve exactly or approximately. This is one
of the main topics of numerical analysis, see e.g. [Col60, JS14, Hac17].

One way to obtain such a discretization is to use finite differences. This means that one
replaces the domain Ω by some lattice, typically Ωh = Ω ∩ (hZ)d, and the derivatives in the
differential operators by some finite differences at the lattice points. In particular, one can
replace the partial derivative ∂iu(x) by the forward difference Dh

i u := 1
h ((u(x + hei)− u(x)),

the backward difference Dh
−iu := 1

h ((u(x)− u(x− hei)) or the central difference Dh
0,iu :=

1
2h ((u(x + hei)− u(x− hei)). Thus, a simple finite difference scheme for the boundary value
problem (1.4.1) would be

Lhuh = fh in Ωh,

uh = 0 on (hZ)d \Ωh
(1.4.2)

where uh : (hZ)d → R, fh = f |(hZ)d , Lh = ∑|α|≤2m aαDh
α, and Dh

α = (Dh
1)

α1 . . . (Dh
d)

αd . This is
a linear system with |Ωh| unknowns, and one can solve it by using various efficient methods.
One can devise other finite difference schemes using Taylor expansion, and in general one
has to weigh simplicity of the scheme against its convergence properties. For our boundary
problem (1.4.1) we could easily discretize the boundary condition by requiring uh to be zero
outside of Ωh, but for other boundary conditions this might be difficult, in particular, when
the shape of the boundary is complicated as well. Sometimes it might also be advantageous
or necessary to choose fh in some other way than just the restriction of f to the lattice.

While not important for the present thesis, we should also mention that another major
method to discretize PDEs is to use a finite element method. Here one reformulates the
PDE as a variational problem in some Hilbert space, and then picks a finite-dimensional
subspace of that Hilbert space to solve the variational problem in. Typically one picks that
finite-dimensional subspace as the span of a set of basis functions that have particularly nice
properties (in particular, that most pairs of basis functions are orthogonal).

Consistency, stability and convergence

Whether by finite differences or finite elements, there are many ways to discretize a PDE.
Of course, such schemes are only useful, if one can relate the solution of the discretized
problem and the solution of the original PDE, i.e. if one understands the discretization error.
This is again a classical topic of numerical analysis, well covered by the above references.
Our presentation follows [Arn15].

It is a basic principle in this regard, dating back to [CFL28, Ger30, vNG47] that consistency
and stability imply convergence of a scheme. Let us explain what these terms mean. We
do so for the finite difference scheme (1.4.2). We define two Banach spaces Vh and Wh with
norms ‖ · ‖Vh and ‖ · ‖Wh denoting the spaces in which uh and wh live (in our example the
underlying vectorspace for both Vh and Wh is RΩh ).

First of all, to compare the solutions u and uh of (1.4.1) and (1.4.2), we need them to live in
the same space. This we can achieve by using a suitable map u 7→ Uh ∈ Vh, e.g Uh = u|Ωh .
Then our goal is to control the error ‖Uh − uh‖Vh . Now the consistency error measures
how far Uh is from being a solution of (1.4.2). We define it as ‖LhUh − fh‖Wh

. We call the
system consistent, if the consistency error tends to 0 as h→ 0. We also define the stability
constant as the operator norm of L−1

h as a map Wh → Vh, and we call the scheme stable if
that constant is bounded uniformly in h.
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Now it is easy to check that consistency and stability imply convergence, and that we
actually have a quantitative version of this result. Namely, one calculates

‖Uh − uh‖Vh =
∥∥∥L−1

h (LhUh − fh)
∥∥∥

Vh
≤ ‖L−1

h ‖L(Wh→Vh) ‖(LhUh − fh)‖Wh

and so the error is bounded by the product of the stability constant and the consistency
error.

In practice, it is of course a minimum requirement on a finite difference scheme that it
converges. One looks for finite difference schemes whose error converges as fast as possible,
while the schemes stays simple enough that the required calculations are feasible. Thus, an
important topic in the field is to analyse a given finite difference schemes and to estimate its
approximation error.

1.4.3 Estimates for discrete Green’s functions

This section includes parts of the introduction of the paper [MS19], written jointly by
Stefan Müller and the author, as well as the introduction of the author’s paper [Sch20a].

Overview

We consider partial difference equations, that is systems of the form (1.4.2) with Lh some
discretization of an elliptic differential operator. If that discretization is chosen in such a way
that Lh is elliptic (i.e. positive definite as a linear operator on RΩh ), then there is a Green’s

function Gh for Lh, i.e. Gh(·, y) is a solution of (1.4.2) with fh(x) = δh,y(x) =

{
1
hd x = y

0 else
. It

is cleary interesting in its own right to study the behaviour of its Green’s function.
In addition to that, these Green’s functions (with h = 1 and Lh = −∆h or Lh = ∆2

h) are the
same Green’ function as the ones discussed in Section 1.2.6, and in that Section we have
already discussed the importance of these Green’s functions for the study of the gradient
and the membrane model.

Note that the Green’s functions for different h are all related to each other via scaling, and
so we can equally well study the Green’s functions on Λh := [0, 1]d ∩ (hZ)d to conclude
results for the Green’s functions on [0, N]d ∩Zd that arise in the study of Gaussian interface
models. In fact, the former interpretation is oftentimes better suited to the application
of tools from PDE theory or numerical analysis. In view of our applications to Gaussian
interface models, our main focus here is on the discrete polyharmonic operators Lh = ∆k

h for
k ≥ 1.

In order to prove results on the behaviour of the Green’s function, there are a variety
of approaches one can pursue. Just like in the continuous case, for simple domains such
as the full-space (hZ)d one can apply discrete Fourier analysis to compute somewhat
explicit expressions for the Green’s function, and these in turn can be used to derive precise
asymptotics for the Green’s function. This method has led to asymptotics for the Green’s
function of the discrete Laplacian (e.g. [MW40, Duf53]), and more generally, for the Green’s
function of discrete polyharmonic operators [DS58, Sim67, Man67]. In particular, in [Man67]
Mangad gives an algorithm that allows to compute the asymptotic expansion of the Green’s
function of ∆k

h up to arbitrarily high order.
Apart from that, one can try to transfer some techniques available to study continuous

PDEs and continuous Green’s functions to the discrete setting. For some of them this seems
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1.4 Discrete Green’s functions and finite difference schemes

hopeless, e.g. flattening the boundary, or polar coordinates for corner singularities. Some
other techniques carry over well, e.g. approaches based on well-chosen test functions. For
example, in the author’s MSc thesis [Sch16] Campanato’s approach to elliptic regularity
[Cam80] was adapted to the discrete setting, leading to a regularity theory for ∆2

1 in Lp

and Lp,∞. This was based on earlier work of Dolzmann [Dol93, Dol99], who used the same
approach for error estimates for finite element schemes. This approach also works for other
discrete polyharmonic operators. Also in [Kur09, Cip13] a similar approach was used to
derive estimates for the Green’s function of the discrete Bilaplacian in d = 4.

Alternatively, one can also try to transfer existing results for continuous Green’s functions
to discrete ones. For that purpose one needs a quantitative estimate that those Green’s
functions (or truncated versions of themselves) are close. One way to derive such estimates
are estimates for the appropriate finite difference scheme, as discussed in Section 1.4.2. One
can also try to use results for discrete PDEs (as in the previous paragraph) to establish this
convergence.

In the following paragraphs we will describe how we have put these methods into
practice.

Estimates for the discrete Bilaplacian for d ∈ {2, 3} via continuous elliptic theory

As we have discussed, the subcritical membrane model is quite regular in the bulk. As a
consequence, its behaviour at and near boundary is important for its global behaviour. In
particular, as described in Section 1.3.3, the question of entropic repulsion is dominated by
its boundary behaviour. Thus, one is interested in estimates for the Green’s funcion of that
model, i.e. the Green’s function of the discrete Bilaplacian, that are sharp up to the boundary.
Furthermore, to establish the Hölder continuity of the field via Kolmogorov’s continuity
criterion, one requires estimates for the mixed second derivatives of G, that again are valid
up to the boundary.

In Chapter 2, that is based on the publication [MS19], we derive such estimates. In fact,
the main result of that chapter is the following.

Theorem 1.4.1. Let d = 2 or d = 3, and let d(z) denote the distance of z ∈ Λh = [0, 1] ∩ (hZ)d

to (hZ) \Λh. Then there exist c, C > 0 independent of h such that for any x, y ∈ (hZ)d

|Gh(x, y)| ≤ C min
(

d(x)2− d
2 d(y)2− d

2 ,
d(x)2d(y)2

(|x− y|+ h)d

)
,

|∇h,xGh(x, y)| ≤ C min
(

d(y)3−d,
(d(x) + h)d(y)2

(|x− y|+ h)d

)
,

|∇2
h,xGh(x, y)| ≤

C log
(

1 + d(y)2

(|x−y|+h)2

)
d = 2

C min
(

1
|x−y|+h , d(y)2

(|x−y|+h)3

)
d = 3

,

|∇h,x∇h,yGh(x, y)| ≤

C log
(

1 + (d(x)+h)(d(y)+h)
(|x−y|+h)2

)
d = 2

C min
(

1
|x−y|+h , (d(x)+h)(d(y)+h)

(|x−y|+h)3

)
d = 3

.

Besides its application to the problem of entropic repulsion in Chapter 3, this result
has also been used in [CDH19] to rigorously establish the scaling limit of the subcritical
membrane model.

Let us briefly mention how we prove Theorem 1.4.1. Our main tool are Caccioppoli (or
reverse Poincaré) inequalities. That is, for some u that is discretely biharmonic on some
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large ball, we want to control the L∞-norm of its Hessian on a small ball by the L2 norm of its
Hessian on a larger ball. This is an interior estimate, and combined with the corresponding
exterior estimate, and the results on the full-space discrete Green’s function from [Man67],
one can derive the estimates in 1.4.1 using some careful reasoning.

The main challenge thus is to derive such Caccioppoli inequalities. In the interior or near
flat parts of the boundary, we could, in principle, use for that purpose the classical approach
based on test functions (as is done in [Dol93, Dol99]). Near the singularities of [0, 1]d, this
is no longer possible. There we use that the continuous theory for biharmonic functions
in domains with singularities [KMR97, MR10] predicts that these functions decay rather
rapidly near the singularities. Using a compactness argument based on a discrete version of
the Kolmogorov-Riesz-Fréchet criterion and the Caccioppoli inequality, we can transfer this
to a discrete Caccioppolli inequality near the corresponding singularity. Since we anyhow
need to introduce this compactness framework, we directly use it for the estimates in the
interior or near flat parts of the boundary, as well.

Estimates for the discrete Bilaplacian for d = 4 via finite difference schemes

For the critical membrane model, the boundary behaviour is less important. Instead, most
relevant for the analysis of the field is the logarithmic correlation structure in the bulk. In
particular, as discussed in Section 1.3.2, one can obtain the convergence of the maximum of
the field provided one has very sharp estimates on the Green’s function in the bulk. These
estimates are derived in Chapter 4 which is based on the publication [Sch20a]. The main
result on the Green’s function there is too technical to state in full here, but we give some of
the estimates.

Theorem 1.4.2. Let d = 4, and Λh = [0, 1]4 ∩ (hZ)4. Also let d(x) = d(x, ∂[0, 1]d). Then for all
x, y ∈ Vh ∣∣∣∣8π2G∆,h(x, y)− log

(
2 +

max(d(x), d(y))
h + |x− y|

)∣∣∣∣ ≤ C .

Furthermore, there are a constant θ0 > 0, a continuous function f1 : (0, 1)4 → R and a function
f2 : Z4 ×Z4 → R such that the following holds. For all L, ε > 0, θ > θ0 there exists N′0 =

N′0(L, ε, θ) such that for all h ≤ 1
N′0

with 1
h ∈N, all x ∈ Λh such that d(x) ≥ h| log h|θ and for all

u, v ∈ [0, L]4 ∩Z4 we have∣∣8π2G∆,h(x + hu, x + hv) + log h− f1(x)− f2(u, v)
∣∣ < ε .

Similarly, there are a constant θ1 > 0 and a continuous function f3 : D4 → R, where D4 =

{(x, y) : x, y ∈ (0, 1)4, x 6= y} such that the following holds. For all L, ε > 0, θ > θ1 there
exists N′1 = N′1(L, ε, θ) such that for all h ≤ 1

N′1
with 1

h ∈ N and for x, y ∈ Λh such that

min(d(x), d(y)) ≥ h| log h|θ and |x− y| ≥ 1
L we have∣∣8π2G∆,h(x, y)− f3(x, y)

∣∣ < ε .

The compactness methods from Chapter 2 are not well-suited to be applied here for two
reasons. First of all, the relevant continuous estimates have not yet been worked out for
d = 4 in the literature. In addition, the estimates obtained using compactness methods and
Caccioppoli inequalities are all up to a possibly large constant, while in Theorem 1.4.2 we
are interested in estimates with an error that tends to 0 as h→ 0.
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1.4 Discrete Green’s functions and finite difference schemes

Instead we follow another of the strategies mentioned above. Namely, we use an estimate
for the approximation quality of finite difference schemes to compare truncated versions of
the discrete and continuous Green’s function. This estimate is similar to the one in Chapter
5 to be discussed below, although it is easier than this result and can be established using
textbook methods as in [JS14]. Besides this error estimates we again use the results from
[Man67] on the discrete Green’s function in the full-space, as well as results similar to ones
in [MM13, MM14] for the continuous Green’s function in [0, 1]4.

1.4.4 Estimates for finite difference schemes for the Bilaplacian

This section includes parts of the introduction of the author’s paper [MSS20], written
jointly by Stefan Müller, Endre Süli and the author.

Overview

We have already described the importance of the Bilaplace equation, as well the relevance of
finite difference schemes together with error bounds. The convergence analysis of numerical
methods for the approximate solution of the biharmonic equation has therefore been of
considerable interest. Some references are the early papers by Tee [Tee64], Bramble [Bra66],
Smith [Smi68, Smi70], and Ehrlich [Ehr71]; see also [Col60, Ch. V, §1.5 III and Table VI in the
Appendix]. For the numerical analysis of finite difference approximations of the biharmonic
equation in rectangles a fast algorithm was given by Bjørstad [Bjø83]. For a modern review
in the context of the approximate solution of the Navier–Stokes equations in planar domains,
see [BACF13].

In these works the data and the solution to the boundary-value problems under consider-
ation were assumed to be sufficiently smooth. This assumption, however, is quite restrictive,
as in practice one often encounters right-hand sides that are rather rough. One of many
examples is that of turbulence in a fluid. Another example is given by the analysis of discrete
Green’s function, as just discussed in Section 1.4.3.

Finite difference schemes for rough right-hand sides were considered by Lazarov [Laz81],
Gavrilyuk et al. [GLMP83], and Ivanović et al. [IĬS86], for example. For a detailed survey of
the relevant literature see the monograph of Jovanović and Süli [JS14], devoted to the finite
difference approximation of linear partial differential equations with generalized solutions.

Consider for instance the boundary value problem

∆2u = f in Ω ,

u = 0 on Γ ,

∂νu = 0 on ∂Ω ,

(1.4.3)

where Ω = (0, 1)d. A finite difference scheme associated with this boundary value problem
is given by

∆2
hU = Th,2,...,2 f in Λh ,

U = 0 on Γh ,

Dh
0,νU = 0 on Γh .

(1.4.4)

where Th,2,...,2 f is a certain smoothing operator (to be defined precisely in Chapter 5), Λh =

[0, 1]d ∩ (hZ)d, and Γh = (∂[0, 1]d)∩ (hZ)d. The operator Th,2,...,2 f regularizes the right-hand
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side, and so (1.4.4) makes sense whenever f ∈ Ht(Ω) for t > − 3
2 . This scheme has been

studied in [GMP83, JS14] for d = 2 and u in the fractional Sobolev space Hs((0, 1)d) (for
s = t + 4 > 5

2 ).
In [JS14, Theorem 2.69] the error bound

‖u−U‖H2
h(Λh)

≤ Chmin{s−2,3/2}| log h|1−|sgn(s−7/2)|)‖u‖Hs((0,1)d)

for 5
2 < s ≤ 4 is established, and in [GMP83] the error bound

‖u−U‖H2
h(Λh)

≤ Chs−2‖u‖Hs((0,1)d)

is shown for 5
2 < s ≤ 4, albeit under the additional assumption that the third normal

derivative of u vanishes at the boundary.
These results seem suboptimal, because the operator D0,h has truncation error h2, and so

one can hope that one actually has an error estimate of order h2 unconditionally. In Chapter
5 we prove that we actually have such an estimate, and this not only if d = 2.

Improved estimates for a finite difference scheme

In fact, in Chapter 5, that is based on the publication [MSS20], we prove the following result.

Theorem 1.4.3. Let d ≥ 2. Suppose that 1
2 max(5, d) < s ≤ 4, and let u ∈ Hs(Ω) ∩ H2

0(Ω);
then, there exists a positive constant C = C(d, s), independent of h, such that

‖u−U‖H2
h(Λh)

≤ Chs−2‖u‖Hs(Ω) .

The restrictions on the range of s in [JS14, Theorem 2.69] and on the third normal derivat-
ive of u in [GMP83] arise for the following reason: in order to compare the finite difference
approximation with the original problem one needs an extension of the (generalized) solu-
tion u from Ω to Rd \Ω that preserves the Sobolev regularity of u and has, ideally, zero
discrete boundary values. The assumptions in [JS14, Theorem 2.69] and in [GMP83] permit
the use of the symmetric extension of u across ∂Ω for that purpose.

In our setting, with 1
2 max(5, d) < s ≤ 4, this is no longer possible. The main novelty

of the proof of Theorem 1.4.3 is to use a different, carefully chosen, extension of u. This
extension will no longer have zero boundary values, but we will show that they can be made
small (in an appropriate norm, in terms of positive powers of the discretization parameter
h), so that we can still close the argument. More precisely, we prove that the boundary
values of u are small in a discrete version of the H1/2-norm on the boundary. We also show
that this implies that there is an extension of the boundary values back into Λh with small
L2-norm of the Hessian. We can then subtract this extension from u−U and apply classical
energy space estimates as in [JS14] to bound the remaining error terms.

1.5 Notation

We have made an attempt to keep the notation consistent throughout the whole thesis.
However, this has not always been possible, and we indicate near the beginning of each
chapter when the notation there deviates. If some notation is only relevant for a particular
chapter, we also only introduce it there.

Let us summarize here the notation that is relevant for all of the thesis.
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1.5 Notation

• We use the convention that c and C denote generic constants whose precise value can
change from occurrence to occurrence. Constants that are denoted by any other Latin
or Greek letter have some fixed value and keep it. By adding subscripts to a constant
we emphasize that the precise value of that constant may depend on the variables in
the subscript (and typically on no others).

In a few places we use the standard Landau notation. That is, we write a = b + O(d)
to denote |a− b| ≤ Cd, and a = b + o(d) to denote that a−b

d tends to zero (in a limit
that will be clear from the context). Again we add subscripts to emphasize what the
implied constant or the implied convergence rate depend on.

• We denote by N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, Q, R and C the natural numbers,
positive integers, rational numbers, real numbers, and complex numbers, respectively.

• We denote the cardinality of a set A by |A|.

• We use the standard notation for multiindexes α ∈Nd. We will sometimes omit the
underline, when there is no risk of confusion.

• We denote by d ∈N+ the dimension of our space. The standard basis of Rd is denoted
e1, . . . , ed. We consider the lattice Zd ⊂ Rd, and for h > 0 such that 1

h ∈ N+ also the
lattices (hZ)d.

• We write Br(x) for the open ball of radius r > 0 around x ∈ Rd, and Qr(x) =

x + (−r, r)d for the open cube of sidelength 2r. We also use discrete cubes. That is, we
define

Qh
r (x) = {y ∈ (hZ)d : |y− x|∞ ≤ r} = Qr(x) ∩ (hZ)d .

When x = 0 we sometimes omit the x.

As an exception to this, in Chapter 6 we will only use discrete cubes, and so we can
drop the superscript in Qh

r (x) there. We will recall this in the introduction of that
chapter.

• On Rd we use the lp-norms | · |p for p ∈ [1, ∞]. When p = 2 we often drop the subscript
p so that | · | denotes the Euclidean norm. For x ∈ Rd and A, A′ ⊂ Rd we let d(x, A) =

infy∈A |x− y| be the Euclidean distance of x to A, and d(A, A′) = infy∈A,y′∈A′ |x− y|
be the Euclidean distance of A and A′. By adding a subscript to d we indicate that
either we take the distance with respect to some other norm or that A is some fixed set
(say A = ΛN). This will be defined in detail in the corresponding chapters.

• Given N ∈ N+, ΛN denotes a lattice square of sidelength comparable to N, with
lattice width 1. Similarly for h > 0 such that 1

h ∈N+ we denote by Λh a lattice square
of sidelength comparable to 1, with lattice width comparable 1

h . The reader should
think of ΛN = [0, N]d ∩Zd and Λh = [0, 1]d ∩ (hZ)d, but see the introductions of the
individual chapters for the precise definitions.

• We define the forward difference quotient Dh
i u(x) = u(x + hei)− u(x), the backward

difference quotient Dh
−iu(x) = u(x)− u(x− hei) and the centred difference quotient

Dh
0,iu(x) := 1

2h (u(x + hei)− u(x− hei)). The discrete gradient is the vector∇hu(x) :=
(Dh

i u(x))di=1, the discrete Hessian is the tuple∇2
hu(x) := (Dh

i Dh
−ju(x))di,j=1, the discrete

Laplacian is ∆hu(x) := ∑d
i=1 Dh

i Dh
−iu(x), and the discrete Bilaplacian is ∆2

h := ∆h ◦ ∆h.
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For a multi-index α ∈ Nd we write Dh
αu(x) = (Dh

1)
α1 . . . (Dh

d)
αdu(x), and for k ∈ N

with k ≥ 3 we let ∇ku(x) be the the collection of all Dh
αu(x) with |α| = k.

More generally, for a vector a ∈ Zd of unit length we define the forward differ-
ence quotient Dh

a u(x) := 1
h (u(x + ha) − u(x)), the backward difference quotient

Dh
−au(x) := 1

h (u(x) − u(x − ha)) and the centred difference quotient Dh
0,av(x) :=

1
2h (v(x + ha)− v(x− ha)).

• We use the translation operators τh
±i defined by τh

±iu(x) = u(x± hei). More generally,
for a ∈ Zd we set τh

a u(x) = u(x + ha).

• For a domain Ω ⊂ Rd and p ∈ [1, ∞] we use the standard Lp-norms ‖ · ‖Lp(Ω), and for
k ∈N the Sobolev-norms ‖ · ‖Wk,p(Ω). When p = 2, we also write ‖ · ‖Hk(Ω) instead of
‖ · ‖Wk,2(Ω). Furthermore, for α ∈ [0, 1] we use the Hölder seminorms [·]C0,α(Ω) and the
Hölder norms ‖ · ‖C0,α(Ω). We extend these norms to vector-valued functions by taking
the Euclidean norm of the norms of the components. Each of these norms comes with
an associated function space.

• We also use various discrete function spaces. For A ⊂ (hZ)d and p < ∞ we define a
discrete Lp

h-norm
‖u‖p

Lp
h (Ω)

= ∑
x∈A

hd|u(x)|p

if p < ∞, and
‖u‖L∞

h (Ω) = sup
x∈A

hd|u(x)|

and the associated function spaces. For p = 2 this norm is induced by the scalar
product

(u, v)L2
h(Ω) = ∑

x∈A
hdu(x)v(x)

When there is no risk of confusion, we drop the subscript h. We also use various other
discrete function spaces that are defined in the individual chapters.

• For Λ b (hZ)d we denote the gradient and membrane by P∇,Λ and P∆,Λ (as intro-
duced in Section 1.2.4). We denote samples from these measures by ψ∇,Λ and ψ∆,Λ,
respectively, and write G∇,Λ and G∆,Λ for the associated Green’s functions. When
Λ = ΛN or Λ = Λh, we just write N or h instead of ΛN or Λh. We drop the subscripts
∇ and ∆ when there is no risk of confusion.
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2 Estimates for the Green’s function of the
discrete Bilaplacian in dimensions two and
three

This chapter is based on the paper [MS19], written jointly by Stefan Müller and the author,
with only minor changes. A small part of the content of this chapter has already appeared
in the author’s M.Sc. thesis [Sch16], where a result similar to Theorem 2.1.1 was shown,
but only for d = 2 and using a different and more complicated approach.

2.1 Introduction

In this chapter we will establish estimates for the Green’s function of the subcritical discrete
Bilaplacian, as described in Section 1.4.3. In particular we prove Theorem 1.4.1. Actually,
we prove a slightly different statement: while we still set Λh = [0, 1]d ∩ (hZ)d, we take the
Green’s function on int Λh = [h, 1− h]d ∩ (hZ)d instead of Λh. The precise statement is
Theorem 2.1.1 below. It is easy to see that this Theorem is equivalent to Theorem 1.4.1 as
stated in the introduction.

We use the notation from Section 1.5. As this chapter is only concerned with the Bilapla-
cian, we drop all subscripts ∆ right away. We define ΛN = [−N, N]d ∩Zd.

We first state an unrescaled version of our main result (i.e. with unit lattice width).

Theorem 2.1.1. Let d = 2 or d = 3, let GN be the Green’s function of the discrete Bilaplacian
with zero boundary data outside ΛN , and let d(z) = dist(z, Zd \ΛN). Then there exist c, C > 0
independent of N such that GN and its discrete derivatives satisfy the following estimates.

i) For any x, y ∈ Zd

|GN(x, y)| ≤ C min
(

d(x)2− d
2 d(y)2− d

2 ,
d(x)2d(y)2

(|x− y|+ 1)d

)
, (2.1.1)

|∇xGN(x, y)| ≤ C min
(

d(y)3−d,
(d(x) + 1)d(y)2

(|x− y|+ 1)d

)
, (2.1.2)

|∇2
xGN(x, y)| ≤

C log
(

1 + d(y)2

(|x−y|+1)2

)
d = 2

C min
(

1
|x−y|+1 , d(y)2

(|x−y|+1)3

)
d = 3

, (2.1.3)

|∇x∇yGN(x, y)| ≤

C log
(

1 + (d(x)+1)(d(y)+1)
(|x−y|+1)2

)
d = 2

C min
(

1
|x−y|+1 , (d(x)+1)(d(y)+1)

(|x−y|+1)3

)
d = 3

. (2.1.4)

ii) For any x ∈ Zd

GN(x, x) ≥ cd(x)4−d . (2.1.5)
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GN is symmetric in x and y, so we also have the analogous estimates for |∇yGN(x, y)| and
|∇2

yGN(x, y)|. For the optimality of these estimates, see the discussion after Theorem 2.1.3.
The estimates (2.1.1) and (2.1.5) immediately provide estimates for the variance and

covariance of ψ under PN . From the estimates (2.1.1) and (2.1.5) and a thinning procedure
one can also deduce estimates on the probability of the membrane model to be positive. We
give details on these arguments in Chapter 3.

In addition Theorem 2.1.1 implies the following continuity estimates.

Corollary 2.1.2. Let d = 2 or d = 3. Under PN , the random field ψ satisfies

EN(|ψx − ψy|2) ≤

C|x− y|2 log
(

2 + N
|x−y|

)
d = 2 ,

C|x− y| d = 3
. (2.1.6)

To show (2.1.6) for d = 2 one uses the identity

EN(|ψx − ψy|2) = GN(x, x)− GN(x, y)− GN(y, x) + GN(y, y) , (2.1.7)

as well as a discrete counterpart of the identity

H(x, x)− H(x, y)− H(y, x) + H(y, y) =
∫ 1

0

∫ 1

0
∂s∂tH(x + s(y− x), x + t(y− x))ds dt ,

valid for every smooth function H, and (2.1.4). For d = 3 one uses (2.1.7) and the estimates
for G(x, x)− G(x, y) and G(y, y)− G(y, x) provided by (2.1.2) and its analogue for the y-
derivative. Since ψ is a Gaussian field the estimate (2.1.6) and the Kolmogorov continuity
criterion imply that the rescaled fields ψ′x′ = N−2+d/2ψNx′ are uniformly Hölder continuous
with exponents α < αd where α2 = 1 and α3 = 1

2 . More precisely

P
({

ψ′ : sup
x′ 6=y′

|ψ′x′ − ψ′y′ |
|x′ − y′|α ≤ K

})
≥ 1− εα(K)

with limK→∞ εα(K) = 0. After the publication of these results, Cipriani-Dan-Hazra [CDH19]
completed the argument sketched above and proved that the membrane model has a
Hölder-continuous scaling limit in dimensions d ≤ 3.

In order to prove Theorem 2.1.1, we need regularity improving estimates for discrete
biharmonic functions and optimal decay estimates for various norms in annuli around
the singularity. The corresponding estimates for continuous biharmonic functions can be
proved using well-established techniques. One insight of this chapter is that these estimates
can be transferred to the discrete realm using two ingredients: a new compactness argument
and the discrete version of the Caccioppoli (or reverse Poincaré) inequality. It should also
be possible to transfer continuous estimate to discrete estimates by using error estimates in
numerical analysis, see the discussion below Corollary 2.1.4.

In order to derive the estimates in detail and to highlight the similarities between the
continuous and discrete setting, it is convenient to change notation. In particular, we rescale
our lattice to have width h, while the domain is fixed. We also shift the boundary by h
inwards.

Consider the lattice (hZ)d, where we assume 1
h ∈ N. Let Λh = [0, 1]d ∩ (hZ)d, int Λh =[ 1

h , 1− 1
h

]d ∩ (hZ)d and let ∆h be the discrete Laplacian on (hZ)d. Let Gh(x, y) be the
Green’s function for ∆2

h = (∆h)
2 on int Λh with zero boundary values on (hZ)d \ int Λh. In

this setting, Theorem 2.1.1 becomes
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Theorem 2.1.3. Let d = 2 or d = 3, and let d(z) denote the distance of z ∈ int Λh to (hZ)d \ int Λh.
Then there exist c, C > 0 independent of h such that

i) for any x, y ∈ (hZ)d

|Gh(x, y)| ≤ C min
(

d(x)2− d
2 d(y)2− d

2 ,
d(x)2d(y)2

(|x− y|+ h)d

)
, (2.1.8)

|∇h,xGh(x, y)| ≤ C min
(

d(y)3−d,
(d(x) + h)d(y)2

(|x− y|+ h)d

)
, (2.1.9)

|∇2
h,xGh(x, y)| ≤

C log
(

1 + d(y)2

(|x−y|+h)2

)
d = 2

C min
(

1
|x−y|+h , d(y)2

(|x−y|+h)3

)
d = 3

, (2.1.10)

|∇h,x∇h,yGh(x, y)| ≤

C log
(

1 + (d(x)+h)(d(y)+h)
(|x−y|+h)2

)
d = 2

C min
(

1
|x−y|+h , (d(x)+h)(d(y)+h)

(|x−y|+h)3

)
d = 3

. (2.1.11)

ii) for any x ∈ (hZ)d

Gh(x, x) ≥ cd(x)4−d . (2.1.12)

Theorem 2.1.1 can be easily derived from Theorem 2.1.3 if one chooses h = 1
2N+2 , rescales

by a factor of 2N + 2 and observes that the estimates are scale-invariant. One can also obtain
estimates for higher discrete derivatives, see Remark 2.8.4 below.

Comparison with the Green’s function of the continuous Bilaplacian in the ball (see
[Bog05, eqn. (48)] or [GGS10, eqn. (2.65) and Thm. 4.7]), a general bounded smooth set
[DS04, Thm. 3 and Thm. 12] or a half-space [GGS10, eqn. (2.66)] shows that the estimates in
Theorem 2.1.3 are optimal in the interior and near the regular boundary points (edges for
d = 2 and faces for d = 3).

Near the singular boundary points (corners for d = 2 and edges and corners for d = 3)
the continuous regularity theory gives a more rapid decay of biharmonic functions (and
their derivatives) and hence a more rapid decay for the Green’s function with a decay
exponent γ. Our compactness argument can be used to establish a similar decay estimate
for all exponents γ′ < γ. Since the general continuum theory provides an open interval of
admissible exponents γ (due to possible logarithmic terms) there is no loss in passing to the
discrete estimates.

The general statement is rather tedious, so let us look instead at an illustrative example,
the corner point 0 of the square (0, 1)2. In this case the distance of a point x from the corner
point is given by |x|. If |x| < 1

4 |y| then |x− y| ≥ 1
2 |y| ≥

1
2 d(y) and the continuous theory

implies that

|G(x, y)| ≤ C
(
|x|
|y|

)2+θ/2

d2(y) . (2.1.13)

where 0 < θ < θ0, and θ0 ≈ 3.47918. To see this use Lemma 2.5.13 and note that

‖∇2G(·, y)‖L2(Q|y|/2∩(0,1)2) ≤ C|y|−1d2(y)

(this follows from the continuous counterparts of (2.8.2) and Lemma 2.6.2). Moreover we
have

sup
Qs∩(0,1)2

G(·, y) ≤ s‖∇2G(·, y)‖L2(Qs∩(0,1)2)
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2 Estimates for the Green’s function of the discrete Bilaplacian

by the Sobolev-Poincaré inequality and scaling.
The estimate (2.1.13) is better than the estimate

G(x, y) ≤ d2(x)d2(y)
|x− y|2 ∼ C

d(x)2

|y|2 d2(y)

if
d(x)
|y| �

(
|x|
|y|

)1+θ/4

.

Note that this condition holds in particular if |x| and d(x) are comparable and |x| � |y|. The
compactness argument shows that the discrete Green’s function Gh satisfies a counterpart of
(2.1.13) if we replace θ by any smaller exponent θ′ and C by Cθ′ .

It is also easy to show that the discrete Green’s function converges to the the continuous
Green’s function.

Corollary 2.1.4. Let d = 2 or d = 3. Let G(·, y) ∈ W2,2
0 ((0, 1)d) denote the continuous Green’s

function, i.e., the unique weak solution of ∆2G(·, y) = δy. Extend Gh(x, y) to y ∈ (0, 1)d by
piecewise constant interpolation in the second variable. Then for each y ∈ (0, 1)d the following
assertions hold.

i) We have
Ipc
h Gh(·, y)→ G(·, y) uniformly ,

where Ipc
h denotes the piecewise constant interpolation in the first variable.

ii) If d = 2 then Ipc
h ∇hGh(·, y) converges uniformly to ∇G(·, y) and Ipc

h ∇2Gh(·, y) converges
to ∇2G(·, y) in Lp((0, 1)2) for all p < ∞.

iii) If d = 3 then Ipc
h ∇hGh(·, y) is uniformly bounded and converges to ∇G(·, y) in Lp((0, 1)3)

for all p < ∞ and locally uniformly in [0, 1]3 \ {y}. Moreover Ipc
h ∇2

hGh(·, y) converges to
∇2G(·, y) in Lp for all p < 3.

A slight variant of the argument given below shows that the convergence in i) is also
uniform in y, i.e., that we have uniform convergence of the piecewise constant interpolation
of Gh to G in (0, 1)d × (0, 1)d. The proof of asssertion i) in Corollary 2.1.4 uses essentially
only the elementary discrete W2,2 estimate in Lemma 2.8.1 and the compact embedding from
W2,2 to C0. The other two assertion follow from Theorem 2.1.3 and the local compactness
argument in Section 2.5. See Section 2.8 for the details.

For d = 2 quantitative estimates for the discrete W2,2 norm of difference between the
solutions of the discretised and the continuous biharmonic equation under weak assump-
tions on the regularity of the continuous solution have been obtained by Lazarov [Laz81],
Gavrilyuk, Makarov and Pirnazarov [GMP83], Gavrilyuk et al. [GLMP83] and Ivanović,
Jovanović and Süli [IĬS86], see also Chapter 2.7 in [JS14] which includes estimates for more
general fourth order equations in divergence form with variable coefficients. More precisely,
let u ∈ (W2,2

0 ∩Ws,2)((0, 1)2) and let ûh be the solution of

∆2
hûh = Kh ∗ ∆2u in int Λ2

h

subject to the discrete boundary conditions

ûh(x) = 0 and ûh(x + hei)− ûh(x− hei) = 0 ∀x ∈ Λ2
h \ int Λ2

h ∀i ∈ {1, 2} . (2.1.14)
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Here Kh(x) = h−2K( x
h ) and K(z) = (1− |z1|)+(1− |z2|)+. The boundary condition (2.1.14)

has the advantage that it leads to a higher order of consistency compared to our boundary
condition uh = 0 on (hZ)2 \ int Λh (this latter condition is arguably more natural from
the point of view of probability and statistical mechanics). For the discrete W2,2 norm the
optimal error estimates

‖u− ûh‖W2,2(Λh)
≤ Chs−2‖u‖Ws,2((0,1)2) (2.1.15)

were established in [GMP83] for s = 3 and in [JS14, Thm. 2.69] for 5
2 < s < 7

2 . In [GMP83]
the estimate (2.1.15) is also proved for s = 4, but under the additional condition that that
the symmetric extension ũ of u outside (0, 1)2 still belongs to W4,2. This holds only if the
third normal derivatives of u (which exist in the sense of trace) vanish.

Because Kh ∗ δ = δh these estimates can be used to compare the continuous Green’s
function Gy ∈W2,2

0 and the discrete Green’s function Ĝh,y (defined using the boundary con-
ditions (2.1.14) rather than Gh,y = 0 on (hZ)2 \ int Λh) and one obtains ‖Gy− Ĝh,y‖W2,2(Λh)

≤
Cshs−2d3−s(y) for s ∈ ( 5

2 , 3). More precise estimates can be obtained if one applies the error
estimates to u = Gy − ηG̃y where G̃y is a suitable Green’s function in R2 and η is a suitable
cut-off function (see below).

One can also use Theorem 2.1.3 to obtain quantitative error estimates for Gh − G and its
discrete derivatives.

Let us briefly discuss some other approaches to prove Theorem 2.1.3. For d = 2 the
estimates (2.1.8) and (2.1.12) as well as a discrete BMO estimate for the mixed derivative
were proved in the author’s M.Sc. thesis [Sch16]. There a different approach was used
to obtain the estimates near the corners. One starts from a discrete biharmonic function,
defines a careful interpolation to get a continuous functions which is biharmonic up to
a small error and uses the continuous theory to get good estimates for that interpolation
which can then be transferred back to the original discrete function. This approach can in
principle be extended to d = 3, but we found the compactness argument more flexible and
more convenient to use.

Hackbusch [Hac83, Thm. 2.1] has developed a very general approach to derive discrete
stability estimates on a scale of Banach spaces from the corresponding continuous estimates.
One advantage of the compactness method is that it avoids the construction of suitable
discrete norms and restriction and prolongation operators which is a bit delicate near the
singular boundary points.

Alternatively, for d = 2 and the symmetric boundary condition (2.1.14) one can use the
optimal error estimates (2.1.15) in connection with the asymptotic expansion of the discrete
Green’s function G̃h,y on (hZ)2 in [Man67] (see also Section 2.7). One applies the estimate
(2.1.15) with s = 3 to u = Gy − ηG̃y where G̃y is a suitable Green’s function in R2. It is not
difficult to estimate the additional error term wh = Gh − ηG̃h − ûh in the discrete W2,2 norm
by computing ∆2

hwh and testing with wh. This yields the estimate ‖Ĝh,y − Gy‖W2,2(Λ2
h)
≤ Ch

and the discrete inverse estimate implies that ‖Ĝh,y − Gy‖W2,∞(Λ2
h)
≤ C. Together with the

known estimates for ∇2Gy one concludes in particular that

|∇2
hĜh,y| ≤ Cd2(y)/(|x− y|+ h)2 for |x− y| ≤ Cd(y) . (2.1.16)

To get the optimal estimate for |x − y| � d(y) one may proceed as follows. From the
estimate for |x− y| ≤ Cd(y) one can obtain the crucial discrete L∞ − L2 estimate (2.6.1) for
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2 Estimates for the Green’s function of the discrete Bilaplacian

the second discrete derivatives for cubes of length 2r that touch the boundary by using
the identity u(x) = ∑y∈int Λh

Ĝh(x, y)∆2
h(ηu)(y)h2 for an arbitrary lattice function u and a

suitable cut-off function η with |∇k
hη| ≤ Ckr−k. For cubes which do not touch the boundary

one can apply the identity v(x) = ∑y∈int Λh
Ĝh(x, y)∆2

h(ηv)(y)h2 to v(x) = u(x)− a− b · x
where a is the average of u over the cube and b is the average of ∇hu. Together with the
duality argument in Lemma 2.6.2 and Theorem 2.6.3 and similar estimates for the discrete
y-derivatives of Gy − Ĝh,y this yields the estimates in Theorem 2.1.3 for d = 2 for the Green’s
function Ĝh,y which satisfies the modified boundary conditions (2.1.14). The same argument
applies to Gh.

These estimates initially hold for Ĝh,y and not for the function Gh,y in Theorem 2.1.3. Note,
however, that ∆2

h(Gh,y − Ĝh,y) = 0 in int Λh. Using this fact as well as careful comparison of
the different boundary conditions for Ĝh and Gh one can show that ‖Ĝh,y − Gh,y‖W2,2(Λh)

≤
Ch. This shows that the estimate (2.1.16) also holds for Gh. For the estimates for |x− y| �
d(y) one can then argue as for Ĝh.

The remainder of this chapter is organised as follows. In Section 2.2 we introduce some
notation in the discrete setting and recall discrete counterparts of the product rule as well as
Sobolev and Poincaré estimates. In Section 2.3 we give the weak and strong formulation of
the discrete Bilaplace equation and prove the Caccioppoli inequality (or reverse Poincaré
inequality). The proof is very similar to the argument in the continuous case based on
testing the equation with a cut-off function times the solution, but due to the discrete
product rule some additional terms appear. In Section 2.4 we associate to each discrete
function a continuous function by discrete convolution with a B-spline and prove basic
estimates of the interpolation.

Sections 2.5 and 2.6 contain the key estimates. The first key ingredient is an L∞ − L2 estim-
ate for the discrete second derivative of discrete biharmonic functions in cubes which may
intersect the boundary (see Theorem 2.6.1). This estimate is deduced from decay estimates
for the second derivative of continuous biharmonic functions using a discrete version of
the Kolmogorov-Riesz-Fréchet compactness criterion and the Caccioppoli inequality. The
transition from continuous to discrete decay estimates is carried out in Section 2.5 separately
for interior cubes, cubes near regular boundary points and cubes near singular boundary
points.

The second key estimate is an L∞ decay estimate for discretely biharmonic functions in
the complement of a cube (see Lemma 2.6.2 and Theorem 2.6.3). This follows by duality
from the L∞ − L2 estimate in Theorem 2.6.1. The estimates in the interior and near regular
boundary points can alternatively be derived by using discrete scaled L2 estimates, i.e.,
by translating the continuous Campanato regularity theory to the discrete setting (see
Dolzmann [Dol93, Dol99]). For the behaviour near the singular boundary points there
seems to be no argument, however, which is only based on scaled L2-norms and testing. For
ease of exposition we use the compactness approach in all three regimes: interior points,
regular boundary points and singular boundary points.

In Section 2.7 we recall Mangad’s [Man67] asymptotic expansion of a Green’s function G̃h
of the discrete biharmonic operator in (hZ)d. Finally in Section 2.8 we prove Theorem 2.1.3
and Corollary 2.1.4. An L2 estimate for the second discrete derivatives of Gh is easily
obtained by testing with Gh and Poincaré’s inequality. We then choose a suitable cut-off
function ηh and use the fact that Gh(·, y)− ηh(x)G̃h(x− y) is biharmonic near x = y to prove
estimates for the mixed third discrete derivative ∇2

h,x∇h,yGh. The estimates for the lower
derivatives now follow essentially by discrete integration over suitable paths (the relevant
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path are the discrete counterparts of the paths used in [DS04]). For the estimate for the
first discrete derivatives for d = 3 we directly use the discrete Sobolev embedding since
integration of the second derivative would generate an unnecessary additional logarithmic
term.

2.2 Preliminaries

2.2.1 Notation

In the following C denotes a constant that may change from line to line but is independent
of h, unless stated otherwise.

Given a ∈ Rd, we define τa f = f (·+ a) for any f . This corresponds to shifting f by −a.
For a function f we denote by [ f ]Ω = 1

|Ω|
∫

Ω f dx its average over the bounded open set
Ω.

For discrete quantities we choose notation in such a way that it resembles the continuous
notation. Let h > 0 be the (typically small) lattice width. We consider the lattice (hZ)d ⊂ Rd.

For r ∈ R we define brch := h
⌊ r

h

⌋
, the largest element of hZ less than or equal to r.

F
Given Ah ⊂ (hZ)d, we define a corresponding subset (Ah)pc ⊂ Rd as

(Ah)pc = int

(
A +

[
−h

2
,

h
2

]d)
.

For example, for x ∈ (hZ)d, r ∈ hN,
(
Qh

r (x)
)

pc = Qr+ h
2
(x). For a function uh : Ah → R,

we define its piecewise constant interpolation Ipc
h uh : Apc → R by Ipc

h uh(y) = uh(x) on each

square x +
[
− h

2 , h
2

)d
, where x ∈ A.

For a multi-index α ∈Nd we define Dα
±huh(x) = (Dh

±1)
α1 . . . (Dh

±d)
αduh(x), and for a ∈N,

a > 2 we set ∇a
huh(x) = (Dh

−i1 Dh
i2 . . . Dh

iduh(x))i1,i2,...,id .
The discrete product rule then takes the form

Dh
i ( fhgh) = (Dh

i fh)gh + τh
i fhDh

i gh .

When dealing with functions of several variables we use a sub- or superscript to indicate
the variable with respect to which a derivative is taken. So for example in ∇h,x∇h,yGh(x, y)
we take one gradient in each variable.

As mentioned in the introduction, we set Λh = [0, 1]d ∩ (hZ)d and int Λh =
[ 1

h , 1− 1
h

]d ∩
(hZ)d. We also set ∂Λh = Λh \ int Λh.

2.2.2 Function spaces and inequalities

Let uh, vh : (hZ)d → R. For Ω ⊂ Rd measurable, p ∈ [1, ∞], k ∈ N, α ∈ [0, 1] we define
(slightly abusing notation)

‖uh‖Lp(Ω) := ‖Ipc
h uh‖Lp(Ω) ,

(uh, vh)L2(Ω) :=
(

Ipc
h uh, Ipc

h vh
)

L2(Ω)
,

‖uh‖Wk,p(Ω) :=

(
∑
|α|≤k
‖Ipc

h Dα
h uh‖

p
Lp(Ω)

) 1
p

,
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[uh]C0,α
h (Ω) = sup

x,y∈Ω
|x−y|≥h

|Ipc
h uh(x)− Ipc

h uh(y)|
|x− y|α .

For [·]C0,α
h

we add the index h to emphasize the fact that we only take the supremum over
x, y with |x− y| ≥ h.

For Ah ⊂ (hZ)d these definitions take a familiar form. For example, if p < ∞

‖uh‖Lp((Ah)pc) =

(
∑

x∈Ah

hd|uh(x)|p
) 1

p

,

[uh]C0,α
h ((Ah)pc)

= sup
x,y∈Ah

x 6=y

|uh(x)− uh(y)|
|x− y|α .

We extend these definitions to vector-valued functions by taking the Euclidean norm of
the norms of the components.

We also set [uh]Ω = [Ipc
h uh]Ω = 1

|Ω|
∫

Ω Ipc
h uh.

We then have the discrete analogues of Poincaré and Sobolev inequalities. All of them
can be proved easily by applying their continuous counterpart to the piecewise multilinear
interpolation of the function. We state the results that we will need.

Lemma 2.2.1 (Poincaré inequality on cubes with 0 boundary values). Let p ∈ [1, ∞], let
uh : (hZ)d → R, x ∈ (hZ)d, r ∈ hN + h

2 , and suppose that uh = 0 on at least one of the faces of
Qh

r (x). Then
‖uh‖Lp(Qr(x)) ≤ Cr‖∇huh‖Lp(Qr(x))

where C is independent of h and r.

Lemma 2.2.2 (Poincaré inequality on annuli with 0 boundary values). Let p ∈ [1, ∞],
uh : (hZ)d → R, let x ∈ (hZ)d, r, s ∈ hN + h

2 , s < r and suppose that uh = 0 on at least
one of the faces of Qh

r (x). Then

‖uh‖Lp(Qr(x)\Qs(x)) ≤ Cr‖∇huh‖Lp(Qr(x)\Qs(x))

where C only depends on s
r , p and d.

Lemma 2.2.3 (Sobolev-Poincaré inequality on cubes with 0 boundary values). Let p ∈ [1, ∞],
uh : (hZ)d → R, let x ∈ (hZ)d, r ∈ hN + h

2 , and suppose that uh = 0 on at least one of the faces
of Qh

r (x).
If q ∈ [1, ∞] is such that d

q + 1 ≥ d
p and (p, q) 6= (d, ∞), then

‖uh‖Lq(Qr(x)) ≤ Cr1+ d
q−

d
p ‖∇huh‖Lp(Qr(x))

and if α ∈ (0, 1] is such that α + d
p ≤ 1, then

[uh]C0,α
h (Qr(x)) ≤ Cr1− d

p−α‖∇huh‖Lp(Qr(x)) .
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2.3 The discrete Bilaplacian equation

2.3.1 Definitions and basic properties

We consider the space of functions

Φh = {uh : (hZ)d → R : uh(x) = 0 ∀x ∈ (hZ)d \ int Λh} .

The discrete Bilaplacian equation on Λh with 0 boundary data is the equation

∆2
huh = fh in int Λh (2.3.1)

where fh : (hZ)d → R is given and we are looking for a solution uh ∈ Φh.
This equation is the discrete analogue of the Bilaplace equation with clamped boundary

conditions,
∆2u = f in [0, 1]d ,

u = 0 on ∂[0, 1]d ,
Dνu = 0 on ∂[0, 1]d .

If we multiply (2.3.1) with a test function ϕh ∈ Φh and use summation by parts, we obtain
the weak form of the Bilaplace equation

(∇2
huh,∇2

h ϕh)L2(Rd) = ( fh, ϕh)L2(Rd) ∀ϕh ∈ Φh . (2.3.2)

It is easy to check that (2.3.1) and (2.3.2) are equivalent.
Written as a sum over lattice points, (2.3.2) becomes

hd ∑
x∈Λh

∇2
huh(x) : ∇2

h ϕh(x) = hd ∑
x∈int Λh

fh(x)ϕh(x) .

Observe that the sum on the left-hand side has nonzero terms for x ∈ Λh, whereas the
right-hand side has nonzero terms only for x ∈ int Λh.

If we choose ϕh = uh in (2.3.2), we obtain

(∆2
huh, uh)L2(Rd) = (∇2

huh,∇2
huh)L2(Rd) = ‖∇2

huh‖2
L2(Rd) .

Hence ∆2
h, seen as a linear operator on Φh, is positive definite and hence invertible, and so

(2.3.1) has a unique solution for any right-hand side fh.
The discrete Green’s function Gh is now defined as the inverse of ∆2

h (considered as a
matrix operating on Rint Λh with the scalar product 〈uh, vh〉 = (uh, vh)L2(Rd)).

Let us also give an alternative description of Gh: The discrete delta function is given as

δh,x(y) =

{
1
hd if x = y

0 otherwise
.

The discrete Green’s function Gh of Λd
h is then the function (hZ)d × (hZ)d → R such that

Gh(x, y) = 0 when y 6∈ int Λh and such that Gh(·, y) is the unique solution in Φh of

∆2
huh = δh,y in int Λh

when y ∈ int Λh.
As in the continuous case one can easily show that Gh is symmetric in x and y. We will

frequently denote Gh(x, ·) and Gh(·, y) by Gh,x and Gh,y respectively.
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Let us return our attention to (2.3.2) for a moment. If fh is given in divergence form as
divh div−h gh, this equation takes the form

(∇2
huh,∇2

h ϕh)L2(Rd) = (gh,∇2
h ϕh)L2(Rd)

and if we choose ϕh = uh, we obtain the energy estimate

‖∇2
huh‖L2(Rd) ≤ ‖gh‖L2(Rd) .

2.3.2 Caccioppoli inequalities

We will need a discrete counterpart of the Caccioppoli (or reverse Poincaré) estimate for
biharmonic functions (see e.g. [Cam80, Cap. II, Lemma 1.II]). It can be derived by testing
∆2

huh = 0 with ηhuh for a suitable cut-off function ηh and some manipulations of the error
terms.

Lemma 2.3.1. Let d ∈ N, uh ∈ Φh, x ∈ (hZ)d, r > 0 and assume that ∆2
huh(y) = 0 for all

y ∈ Qh
r−h(x) ∩ int Λh. Then for any 0 < s ≤ r− 4h we have

‖∇2
huh‖2

L2(Qs(x)) ≤
C

(r− s)4 ‖uh‖2
L2(Qr(x)) +

C
(r− s)2 ‖∇huh‖2

L2(Qr(x)) .

The proof is similar to the continuous case. However, the fact that the discrete chain rule
only holds up to translations generates additional error terms. Therefore we will give the
somewhat lenghty proof in full detail. The proof is adapted from that of Lemma 2.9 in
[Dol93].

Proof. By replacing r by br− h
2ch +

h
2 and s by bs− h

2ch +
3h
2 , we can assume that r, s ∈ hZ+ h

2
and s ≤ r− 3h.

Choose a discrete cut-off function ηh with support in Qr−2h(x) that is 1 on Qs+h(x) und
such that |∇κ

hη| ≤ C
(r−s)κ for κ ≤ 2. Note that η4

huh ∈ Φh, and η4
huh = 0 whenever ∆2

huh 6= 0.

Thus the weak form of (2.3.2) with ϕh = η4
huh is

0 =
(

∆2
huh, η4

huh

)
L2(Rd)

=
(
∇2

huh,∇2
h(η

4
huh)

)
L2(Rd)

.

We can expand the right-hand side and obtain

0 =
(
∇2

huh,∇2
h(η

4
huh)

)
L2(Rd)

=
d

∑
i,j

(
Dh
−iD

h
j uh, η4

hDh
−iD

h
j uh

)
L2(Rd)

+
d

∑
i,j

(
Dh
−iD

h
j uh, Dh

j (η
4
h)τ

h
j Dh
−iuh + Dh

−i(η
4
h)τ

h
−iD

h
j uh

)
L2(Rd)

+
d

∑
i,j

(
Dh
−iD

h
j uh, Dh

−iD
h
j (η

4
h)τ

h
−iτ

h
j uh

)
L2(Rd)

.
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2.3 The discrete Bilaplacian equation

We can rewrite this as

‖η2
h∇2

huh‖2
L2(Rd) =

d

∑
i,j

∥∥∥η2
hDh
−iD

h
j uh

∥∥∥2

L2(Rd)

≤
∣∣∣∣∣ d

∑
i,j

(
Dh
−iD

h
j uh, Dh

j (η
4
h)τ

h
j Dh
−iuh

)
L2(Rd)

∣∣∣∣∣+
∣∣∣∣∣ d

∑
i,j

(
Dh
−iD

h
j uh, Dh

−i(η
4
h)τ

h
−iD

h
j uh

)
L2(Rd)

∣∣∣∣∣
+

∣∣∣∣∣ d

∑
i,j

(
Dh
−iD

h
j uh, Dh

−iD
h
j (η

4
h)τ

h
−iτ

h
j uh

)
L2(Rd)

∣∣∣∣∣ .

(2.3.3)
We will estimate the terms on the right-hand side separately.

Using a4−b4

a−b = a3 + a2b+ ab2 + b3 for a = η4
h ◦ τh

j and b = η4
h we can rewrite the summands

of the first term as(
Dh
−iD

h
j uh, Dh

j (η
4
h)τ

h
j Dh
−iuh

)
L2(Rd)

=
(

Dh
−iD

h
j uh,

(
η3

h + η2
hτh

j ηh + ηhτh
j η2

h + τh
j η3

h

)
Dh

j ηhτh
j Dh
−iuh

)
L2(Rd)

=
(

Dh
−iD

h
j uh, 4η3

hDh
j ηhτh

j Dh
−iuh

)
L2(Rd)

+
(

Dh
−iD

h
j uh,

(
η2

h(τ
h
j ηh − ηh) + ηh(τ

h
j η2

h − η2
h) + (τh

j η3
h − η3

h)
)

Dh
j ηhτh

j Dh
−iuh

)
L2(Rd)

.

The second term here is problematic1, because it does not contain a factor η2
hDh
−iD

h
j uh. We

will control it by moving a factor 1
h from the left-hand side to the right-hand side, so that we

are no longer taking second derivatives of uh. We obtain(
Dh
−iD

h
j uh, Dh

j (η
4
h)τ

h
j Dh
−iuh

)
L2(Rd)

=
(

η2
hDh
−iD

h
j uh, 4ηhDh

j ηhτh
j Dh
−iuh

)
L2(Rd)

+
(

τh
j Dh
−iuh − Dh

−iuh,
(

η2
hDh

j ηh + ηhDh
j (η

2
h) + Dh

j (η
3
h)
)

Dh
j ηhτh

j Dh
−iuh

)
L2(Rd)

.

Therefore, using the Cauchy-Schwarz inequality, ab ≤ δa2 + 1
4δ b2 and the pointwise bounds

on ηh and its derivatives we get∣∣∣∣∣ d

∑
i,j

(
Dh
−iD

h
j uh, Dh

j (η
4
h)τ

h
j Dh
−iuh

)
L2(Rd)

∣∣∣∣∣
=

∣∣∣∣∣ d

∑
i,j

(
η2

hDh
−iD

h
j uh, 4ηhDh

j ηhτh
j Dh
−iuh

)
L2(Rd)

∣∣∣∣∣
+

∣∣∣∣∣ d

∑
i,j

(
τh

j Dh
−iuh − Dh

−iuh,
(

η2
hDh

j ηh + ηhDh
j (η

2
h) + Dh

j (η
3
h)
)

Dh
j ηhτh

j Dh
−iuh

)
L2(Rd)

∣∣∣∣∣
≤ 1

4
‖η2

h∇2
huh‖2

L2(Rd) +
d

∑
i,j

∥∥∥4ηhDh
j ηhτh

j Dh
−iuh

∥∥∥2

L2(Qr−h(x))

+
1

2(r− s)2

d

∑
i,j

∥∥∥τh
j Dh
−iuh − Dh

−iuh

∥∥∥2

L2(Qr−h(x))

1Note that in a continuous setting this term would not occur at all.

51



2 Estimates for the Green’s function of the discrete Bilaplacian

+
(r− s)2

2

d

∑
i,j

∥∥∥(η2
hDh

j ηh + ηhDh
j (η

2
h) + Dh

j (η
3
h)
)

Dh
j ηhτh

j Dh
−iuh

∥∥∥2

L2(Qr−h(x))

≤ 1
4
‖η2

h∇2
huh‖2

L2(Rd) +
C

(r− s)4 ‖uh‖2
L2(Qr(x)) +

C
(r− s)2 ‖∇huh‖2

L2(Qr(x)) .

Analogously we can find the same upper bound for the other two terms on the right-hand
side of (2.3.3). Then we obtain

‖η2
h∇2

huh‖2
L2(Rd) ≤

3
4
‖η2

h∇2
huh‖2

L2(Rd) +
C

(r− s)4 ‖uh‖2
L2(Qr(x)) +

C
(r− s)2 ‖∇huh‖2

L2(Qr(x))

and hence

‖η2
h∇2

huh‖2
L2(Rd) ≤

C
(r− s)4 ‖uh‖2

L2(Qr(x)) +
C

(r− s)2 ‖∇huh‖2
L2(Qr(x)) .

This implies the claim, once one notes that ‖∇2
huh‖L2(Qs(x)) ≤ ‖η2

h∇2
huh‖L2(Rd).

2.4 Interpolation

We want to deduce discrete estimates from their continuous counterparts using compactness
arguments. To do so, we need an interpolation operator that turns discrete functions
into continuous functions having similar features. The most important property of this
interpolation operator that we require is that the continuous derivatives of the output are
comparable to the discrete derivatives of the input.

To construct such an operator we use B-splines (cf., e.g., [Sch81, §4.4]): For m ≥ 1, x ∈ R

the m-th normalized B-spline is given by

Nm(x) = m
m

∑
i=0

(−1)i(m
i )max(x− i, 0)m−1

m!
.

The function Nm is piecewise a polynomial of degree m− 1, has support in [0, m] and satisfies
∑z∈Z Nm(x− z) = 1 for all x ∈ R. Furthermore its discrete and continuous derivatives are
closely related. Indeed we have

∂x Nm(x) = Nm−1(x)− Nm−1(x− 1) = D1
−1Nm−1(x) (2.4.1)

for all x ∈ R (see [Sch81] for proofs).
We need a multidimensional version of these splines which is also adapted to the lattice

(hZ)d. So for h > 0, µ = (µ1, . . . , µn) ∈Nd with µi ≥ 1 let

Nµ
h (x1, . . . , xn) = Nµ1

( x1

h

)
· · ·Nµn

( xn

h

)
.

It follows easily from (2.4.1) that for any α ∈Nd with αi < µi for all i we have

DαNµ
h = Dα

−hNµ−α
h . (2.4.2)

Using this, we can define our interpolation operator:
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2.4 Interpolation

Definition 2.4.1. Let h > 0, µ = (µ1, . . . , µn) ∈Nd with µi ≥ 1 for all i. Define Jµ
h : R(hZ)d →

L1
loc(R

d) by
(Jµ

h uh)(x) = ∑
z∈(hZ)d

uh(z)Nµ
h (x− z)

and extend Jµ
h to vector-valued functions component-wise.

Note that Nµ
h has compact support so that the above sum has only finitely many nonzero

terms.
Jµ
h does not interpolate the values of uh (i.e. in general we will not have Jµ

h uh(x) = uh(x)
for all x ∈ (hZ)d). The maps Jµ

h uh and uh, however, share so many properties that we still
call Jµ

h an interpolation operator.
Let us collect some properties of Jµ

h .

Proposition 2.4.2. Let Jµ
h be the family of interpolation operators that we have just defined, and let

uh : (hZ)d → R.

i) Jµ
h is linear.

ii) Jµ
h uh is piecewise a polynomial and is in the Sobolev space W(mini µi)−1,2

loc

iii) Jµ
h is local in the sense that (Jµ

h uh)(x) only depends on the values of uh in Q(maxi µi)h(x).

iv) Jµ
h preserves constant functions, i.e. (Jµ

h c)(x) = c for any c ∈ R and any x ∈ Rd.

v) For every α with αi < µi we have (Dα Jµ
h uh)(x) = (Jµ−α

h (Dα
h uh))(x).

vi) For every α with αi < µi and any p ∈ [1, ∞] there is a constant C = C(µ, α, d, p) such that
for any x ∈ Rd and any r ≥ s + (1 + maxi µi)h we have

‖Dα Jµ
h uh‖Lp(Qs(x)) ≤ C‖Dα

h uh‖Lp(Qr(x)) (2.4.3)

and
‖Dα

h uh‖Lp(Qs(x)) ≤ C‖Dα Jµ
h uh‖Lp(Qr(x)) . (2.4.4)

Proof. Properties i), ii) and iii) are obvious. Property iv) easily follows from ∑z∈Z Nm(x−
z) = 1 for all x ∈ R, so it remains to prove v) and vi).

For v), note that we can assume that uh is zero far away from x by iii). This means that
all sums in the following calculations have only finitely many nonzero terms. Now, using
(2.4.2), we can calculate that

(Dα Jµ
h uh)(x) = Dα

 ∑
z∈(hZ)d

uh(z)Nµ
h (x− z)


= ∑

z∈(hZ)d
uh(z)DαNµ

h (x− z)

= ∑
z∈(hZ)d

uh(z)Dα
−hNµ−α

h (x− z)

= ∑
z∈(hZ)d

Dα
h uh(z)Nµ−α

h (x− z) = (Jµ−α
h (Dα

h uh))(x) .
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2 Estimates for the Green’s function of the discrete Bilaplacian

Finally we prove vi). In view of v) it is sufficient to consider the case α = 0 here. We can
also assume that x ∈ (hZ)d and r, s ∈ hN + h

2 , r ≥ s + (maxi µi)h (otherwise move x to the
nearest lattice point, and replace r and s by br− h

2ch +
h
2 and bs− h

2ch +
3h
2 respectively).

Let y ∈ Qh
s (x). The definition of Jµ

h immediately implies

‖Jµ
h uh‖L∞(Qh/2(y)) ≤ C sup

z∈(hZ)d

|z−y|≤(maxi µi)h

|uh(z)|

and thus

‖Jµ
h uh‖

p
Lp(Qh/2(y))

≤ C ∑
z∈(hZ)d

|z−y|≤(maxi µi)h

|uh(z)|p ≤ C‖uh‖
p
Lp(Q(maxi µi+1/2)h(y))

.

If we sum this over all y ∈ Qh
s (x), we easily obtain (2.4.3).

For (2.4.4), by a similar argument it suffices to show

|uh(y)| ≤ C‖Jµ
h uh‖Lp(Qh/2(y)) (2.4.5)

for all y ∈ Qh
s (x).

One can see this as follows: Nµ
h has support [0, µ1]× · · · × [0, µn]. This means that the

values of Jµ
h uh in Qh/2(y) depend on the finitely many values {uh(z)}z∈Iy , where Iy :=

[y1 − µ1]× · · · × [yd − µd] ∩ (hZ)d and no others. Furthermore by linear independence of
the B-splines (see [Sch81, Theorem 4.18] for the one-dimensional case; the d-dimensional
case is analogous) Jµ

h uh is identically 0 in Qh/2(y) only if all {uh(z)}z∈Iy are 0. This means
that ‖Jµ

h uh‖Lp(Qh/2(y)) is not only a seminorm on RIy but actually a norm. Now all norms on
a finite-dimensional vector space are equivalent, so in particular

‖uh‖l2(Iy) =

(
∑

z∈Iy

|uh(z)|2
) 1

2

≤ C‖Jµ
h uh‖Lp(Qh/2(y))

for a constant C that is independent of y. This immediately implies (2.4.5).

Using these interpolation operators Jµ
h we define the two operators that we will actually

use most often: One is Jh := J(3,3,...,3)
h and the other is the matrix interpolation operator J̃h

given by ( J̃h)ij = J
(3,3,...,3)−ei−ej
h ◦ τh

i (for example ( J̃h)11 = J(1,3,...,3)
h ◦ τh

1 ).
One easily checks using parts ii) and v) of Proposition 2.4.2 that for any fh : (hZ)d → R

we have Jh fh ∈W2,2
loc (R

d) and
∇2 Jh fh = J̃h∇2

h fh . (2.4.6)

2.5 Inner decay estimates for discrete biharmonic functions:
special cases

Our goal is to prove an L∞-L2 estimate for discrete biharmonic functions (see Theorem 2.6.1):
If uh ∈ Φh, x ∈ Λh, r > 0 and ∆2

huh(y) = 0 for all y ∈ Qr−h(x) ∩ int Λd
h, then, for all

z ∈ Q r
2
(x) ∩Λh,

|∇2
huh(z)| ≤

C

r
d
2
‖∇2

huh‖L2(Qr(x)) .
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2.5 Inner decay estimates for discrete biharmonic functions: special cases

To prove this estimate it will be necessary to distinguish where x lies in relation to ∂Λh: x
can be far inside Λh, near a face, near an edge or near a vertex. In the following subsections
we will study these cases separately and prove some decay estimates that we will then
assemble to prove the aforementioned estimate.

2.5.1 Full space

Lemma 2.5.1. Let d ∈ N, uh : (hZ)d → R, let x ∈ (hZ)d, r > 0. Suppose ∆2
huh(y) = 0 for all

y ∈ Qh
r−h(x). Then

|∇2
huh(x)| ≤ C

r
d
2
‖∇2

huh‖L2(Qr(x)) .

The main tool to prove this statement will be the following estimate:

Lemma 2.5.2. Let d ∈N. There exist constants M ∈N, 0 < ρ < 1
2 with the following property:

Let uh : (hZ)d → R, r > 0, such that ∆2
huh(y) = 0 for all y ∈ Qh

r−h. Assume that ρr ≥ Mh. Then
we have that ∥∥∥∇2

huh −
[
∇2

huh
]

Qρr

∥∥∥2

L2(Qρr)
≤ ρn+1

∥∥∥∇2
huh −

[
∇2

huh
]

Qr

∥∥∥2

L2(Qr)
.

We will prove this lemma by contradiction using a compactness argument and the follow-
ing decay estimate for continuous biharmonic functions:

Lemma 2.5.3. Let d ∈ N, 0 < s ≤ r
2 , u ∈ W2,2(Qr) such that ∆2u = 0 weakly in Qr. Then we

have ∥∥∥∇2u−
[
∇2u

]
Qs

∥∥∥2

L2(Qs)
≤ C

( s
r

)d+ 3
2
∥∥∥∇2u−

[
∇2u

]
Qr

∥∥∥2

L2(Qr)
. (2.5.1)

Proof. The estimate (2.5.1) expresses the fact that the second derivatives of biharmonic
functions are in the Campanato space L2,d+ 3

2 ' C0,3/4. The easiest way to show it is to use
Schauder estimates for higher order elliptic equations as follows.

By scaling we can assume r = 1. By replacing u with u− 1
2

[
∇2u

]
Q1

: x⊗ x we can assume
that

[
∇2u

]
Q1

= 0. Now by Schauder estimates (see e.g. [Mor66, Theorem 6.4.8] or [Cam80,
Cap. II, Teorema 6.I]) we have that any C0,α-Hölder seminorm of∇2u in Q1/2 is bounded by
the L2-norm of ∇2u in Q1. In particular, we have[

∇2u
]

C0, 3
4 (Q1/2)

≤ C
∥∥∇2u

∥∥
L2(Q1)

.

On the other hand, Jensen’s inequality easily yields that∥∥∥∇2u−
[
∇2u

]
Qs

∥∥∥2

L2(Qs)
≤ 1
|Qs|

∫
Qs

∫
Qs

|∇2u(y)−∇2u(y′)|2 dy dy′

≤ Csd+
3
2
[
∇2u

]2
C0, 3

4 (Q1/2)
.

Together with the previous estimate this yields the result.

We will also need a local version of the well-known Kolmogorov-Riesz-Fréchet compact-
ness theorem.

Lemma 2.5.4. Let d ∈ N, p ∈ [1, ∞), let U, V, W ⊂ Rd be open with U compactly contained in
V, and V compactly contained in W. Let A be a subset of Lp(W).
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2 Estimates for the Green’s function of the discrete Bilaplacian

i) If A is bounded in Lp(W) and

lim
δ→0

sup
f∈A
‖τδ f − f ‖Lp(V) = 0

then A (or rather the restriction of the elements of A to U) is precompact in Lp(U).

ii) If A is precompact in Lp(W) then

lim
δ→0

sup
f∈A
‖τδ f − f ‖Lp(V) = 0 .

Proof. Part i) follows by applying the usual Kolmogorov-Riesz-Fréchet compactness theorem
(see e.g. [Bre11, Corollary 4.27 and Exercise 4.34]) to the family {η f : f ∈ A}, where η is a
smooth cut-off function that is 1 on U and 0 outside of V.

For part ii) let Ṽ be open such that V is compactly contained in Ṽ and Ṽ is compactly
contained in W, and let ζ be a cut-off function that is 1 on Ṽ and 0 outside of W. Then the
family {ζ f : f ∈ A} is precompact in Lp(Rd) and the statement is obtained by applying the
converse of the Kolmogorov-Riesz-Fréchet compactness theorem to that family.

After these preparations we can return to the proofs of Lemma 2.5.1 and Lemma 2.5.2.

Proof of Lemma 2.5.2.
Step 1: Set-up of the compactness argument
Let the constant ρ ≤ 1

2 be fixed later, and suppose that the statement for that fixed ρ is wrong.
Then for any k ∈N there exist Mk ≥ k, hk > 0, uhk : (hkZ)d → R, rk > 0 such that∥∥∥∥∇2

hk
uhk −

[
∇2

hk
uhk

]
Qρrk

∥∥∥∥2

L2(Qρrk )

> ρd+1
∥∥∥∥∇2

hk
uhk −

[
∇2

hk
uhk

]
Qrk

∥∥∥∥2

L2(Qrk )

. (2.5.2)

By rescaling the lattice by a factor of rk, we can assume that all the rk are equal to 1. Because
hk ≤ ρ

Mk
≤ ρ

k , we have that hk → 0. Omitting finitely many k, we can assume that all hk are
small (less than 1

1000 , say).

By replacing uhk with uhk −
1
2

[
∇2

hk
uhk

]
Q1

: x⊗ x we can assume that
[
∇2

hk
uhk

]
Q1

= 0, and

by scaling we can assume that
∥∥∥∇2

hk
uhk

∥∥∥
L2(Q1)

= 1 (note that ∇2
hk

uhk cannot be identically 0,

as then uhk would be affine, and so both sides of (2.5.2) would be 0). Then (2.5.2) implies
that ∥∥∥∥∇2

hk
uhk −

[
∇2

hk
uhk

]
Qρ

∥∥∥∥2

L2(Qρ)

> ρd+1 . (2.5.3)

Finally, we replace uhk by uhk − ak − bk · x, where ak ∈ R, bk ∈ Rd are constants that will be
chosen below (such that equation (2.5.4) is satisfied). This leaves ∇2

hk
uhk unaffected, so all

the above statements about ∇2
hk

uhk remain true.

We let vk = Jhk uhk , where Jhk = J(3,...,3)
hk

is the interpolation operator introduced in Sec-

tion 2.4. From
∥∥∥∇2

hk
uhk

∥∥∥
L2(Q1)

= 1 and Proposition 2.4.2 vi) we immediately conclude that

‖∇2vk‖L2(Q13/14)
≤ C.

Now we choose ak and bk in such a way that

[vk]Q13/14 = 0 , [∇vk]Q13/14 = 0 . (2.5.4)
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The Poincaré inequality on Q13/14 implies that ‖vk‖W2,2(Q13/14)
≤ C‖∇2vk‖L2(Q13/14)

≤ C.
Therefore the vk are bounded in W2,2(Q13/14) and hence have a subsequence (not relabeled)
that converges weakly to some v ∈W2,2(Q13/14).

Step 2: ∆2v = 0
We claim that ∆2v = 0 weakly in Q13/14. To prove this, let ϕ ∈ C∞

c (Q13/14) be arbitrary and
let ϕhk be its restriction to (hkZ)d. We need to prove that

∫
Q13/14

∇2v : ∇2ϕ dx = 0.
We have by (2.4.6) that∫

Q13/14

∇2vk : ∇2ϕ dx =
∫

Q13/14

∇2 Jhk uhk : ∇2ϕ dx

=
∫

Q13/14

J̃hk∇
2
hk

vk : ∇2ϕ dx

=
d

∑
i,j=1

∫
Q13/14

J
(3,3,...,3)−ei−ej
hk

◦ τhk
i Dhk

−iD
hk
j vkDiDj ϕ dx

=
d

∑
i,j=1

∫
Q13/14

∑
z∈(hkZ)d

N
(3,3,...,3)−ei−ej
hk

(x− z)Dhk
i Dhk

j uhk(z)DiDj ϕ(x)dx

=
d

∑
i,j=1

∑
z∈(hkZ)d

Dhk
i Dhk

j uhk(z)
∫

Q13/14

N
(3,3,...,3)−ei−ej
hk

(x− z)DiDj ϕ(x)dx .

Now Taylor expansion and the fact that
∫

Q13/14
N

(3,3,...,3)−δi−δj
hk

= 1 imply that∫
Q13/14

N
(3,3,...,3)−ei−ej
hk

(x− z)DiDj ϕ(x)dx = DiDj ϕ(z) + O(hk) = Dhk
i Dhk

j ϕhk(z) + O(hk)

In addition, from ∆2
hk

uhk = 0 in Q13/14 we conclude that

d

∑
i,j=1

∑
z∈(hkZ)d

Dhk
i Dhk

j uhk(z)Dhk
i Dhk

j ϕhk(z) =
d

∑
i,j=1

∑
z∈(hkZ)d

Dhk
−iD

hk
j uhk(z)Dhk

−iD
hk
j ϕhk(z)

= (∇2
hk

uhk ,∇
2
hk

ϕhk)L2(Rd) = 0

and so we obtain ∣∣∣∣∫Q13/14

∇2vk : ∇2ϕ dx
∣∣∣∣ ≤ C

∥∥∥∇2
hk

uhk

∥∥∥
L2(Q1)

hk = Chk .

Using weak convergence of ∇2vk we can pass to the limit here and get∫
Q13/14

∇2v : ∇2ϕ dx = 0 .

Step 3: Strong convergence of vk
Let wk = Ipc

hk
∇2

hk
uhk . We claim that both ∇2vk and wk converge strongly in L2(Q1/2) to ∇2v.

Step 3.1: Precompactness of wk
We first prove that (wk)k∈N is precompact in L2(Q4/7).

Because (∇2
hk

uhk) is bounded in L2(Q1), wk is bounded in L2(Q1). So, according to
Lemma 2.5.4 i), it suffices to verify that

lim
a∈Rd

|a|→0

sup
k∈N

‖τawk − wk‖L2(Q5/7)
= 0 . (2.5.5)
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Let a ∈ (hZ)d such that |a| ≤ 1
7 . Then ∆2

hk
(τauhk − uhk) = 0 in Q11/14, so by the Caccioppoli

inequality we obtain

‖∇2
hk
(τauhk − uhk)‖

2
L2(Q5/7(x)) ≤ C‖τauhk − uhk‖

2
L2(Q11/14(x))

+ C‖∇hk(τauhk − uhk)‖
2
L2(Q11/14(x)) .

Here the left-hand side is equal to ‖τawk − wk‖2
L2(Q5/7)

, while we can use Proposition 2.4.2
vi) to bound the right-hand side. We obtain

‖τawk − wk‖2
L2(Q5/7)

≤ C‖τavk − vk‖2
L2(Q6/7(x)) + C‖τa∇vk −∇vk‖2

L2(Q6/7(x)) .

Recall that (vk) is bounded in W2,2(Q13/14). Hence by the compact Sobolev embedding, (vk)

and (∇vk) are precompact in L2(Q13/14). Thus by Lemma 2.5.4 ii),

lim
a→0

sup
k∈N

(
‖τavk − vk‖2

L2(Q6/7(x)) + ‖τa∇vk −∇vk‖2
L2(Q6/7(x))

)
= 0

(note that this expression is defined for all a > 0, not just those in (hZ)d).
In particular,

lim
δ→0

sup
k∈N

sup
a∈(hkZ)d

|a|≤δ

(
‖τavk − vk‖2

L2(Q6/7(x)) + ‖τa∇vk −∇vk‖2
L2(Q6/7(x))

)
= 0

and therefore
lim
δ→0

sup
k∈N

sup
a∈(hkZ)d

|a|≤δ

‖τawk − wk‖L2(Q5/7(x)) = 0 .

It remains to consider shifts τa where a 6∈ (hkZ)d. This is possible because wk is piecewise
constant on cubes of sidelength hk. This easily implies that for any a ∈ Rd we have

‖τawk − wk‖L2(Q9/14(x)) ≤ C sup
b∈(hkZ)d

|b−a|≤hk

‖τbwk − wk‖L2(Q5/7(x)) .

Combining this with the previous estimate we find that

lim
δ→0

sup
k∈N

sup
a∈Rd

|a|≤δ+hk

‖τawk − wk‖L2(Q9/14(x)) = 0 .

Because hk → 0, this implies

lim
a∈Rd

|a|→0

lim sup
k→∞

‖τawk − wk‖L2(Q9/14(x)) = 0 . (2.5.6)

We finally show that (2.5.6) already implies (2.5.5). It follows from (2.5.6) that for every
fixed ε > 0 there are δ > 0, K ∈N such that supk≥K ‖τawk −wk‖L2(Q9/14(x)) ≤ ε for all a with
|a| ≤ δ. For the finitely many k < K, we use that lima∈Rd

|a|→0
‖τawk − wk‖L2(Q9/14(x)) = 0 to see

that for a potentially smaller δ′ we have supk∈N ‖τawk − wk‖L2(Q9/14(x)) ≤ ε for all a with
|a| ≤ δ′.

Therefore the sequence (wk) is precompact in L2(Q4/7(x)). Choose a subsequence (not
relabeled) converging strongly to some w ∈ L2(Q4/7(x)).
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Step 3.2: Strong convergence of (∇2vk) and w = ∇2v
We split w into a smooth part and a part with small L2-norm. Let ε > 0 be arbitrary, and
choose a w(ε) in C∞

c (Q4/7) such that ‖w− w(ε)‖L2(Q4/7)
≤ ε. We denote the restriction of w(ε)

to (hkZ)d by w(ε)
hk

. Using Taylor expansion, one immediately verifies that then Ipc
hk

w(ε)
hk

and

J̃hk w(ε)
hk

converge to w(ε) in L2(Q4/7) and L2(Q1/2), respectively.
This means in particular that

lim
k→∞
‖w(ε)

hk
−∇2

hk
uhk‖L2(Q4/7)

= ‖w(ε) − w‖L2(Q4/7)
≤ ε .

Using Proposition 2.4.2 vi), we conclude that

lim sup
k→∞

∥∥∥ J̃hk

(
w(ε)

hk
−∇2

hk
uhk

)∥∥∥
L2(Q1/2)

≤ Cε .

The left-hand side here equals lim supk→∞ ‖w−∇2vk‖L2(Q1/2)
, and so we obtain

lim sup
k→∞

‖w−∇2vk‖L2(Q1/2)
≤ Cε .

Since ε was arbitrary, we conclude that (∇2vk) converges strongly in L2(Q1/2) to w. But
we already know that (∇2vk) converges weakly in L2(Q13/14) to ∇2v, so we obtain that
∇2v = w in Q1/2.

Step 4: Conclusion of the argument
We proved that wk = Ipc

hk
∇2

hk
uhk converges strongly in L2(Q1/2) to ∇2v. Because ρ ≤ 1

2 then

also ∇2
hk

uhk −
[
∇2

hk
uhk

]
Qρ

converges strongly in L2(Q1/2) to ∇2v−
[
∇2v

]
Qρ

, and so from

(2.5.3) we conclude that ∥∥∥∇2v−
[
∇2v

]
Qρ

∥∥∥2

L2(Qρ)
≥ ρd+1 .

In addition, we know that
∥∥∇2vk

∥∥
L2(Q13/14)

≤ C, and also that ∇2vk converges weakly in

L2(Q13/14) to ∇2v. This implies∥∥∥∇2v−
[
∇2v

]
Q13/14

∥∥∥2

L2(Q13/14)
≤
∥∥∇2v

∥∥2
L2(Q13/14)

≤ lim inf
k→∞

∥∥∇2vk
∥∥2

L2(Q13/14)
≤ C .

In summary, we have proved that there is a constant C1 independent of ρ such that∥∥∥∇2v−
[
∇2v

]
Qρ

∥∥∥2

L2(Qρ)
≥ ρd+1

C1

∥∥∥∇2v−
[
∇2v

]
Q13/14

∥∥∥2

L2(Q13/14)
. (2.5.7)

On the other hand, ∆2v = 0 in Q13/14, and thus Lemma 2.5.3 implies that

∥∥∥∇2v−
[
∇2v

]
Qρ

∥∥∥2

L2(Qρ)
≤ C2

(
ρ
13
14

)d+ 3
2 ∥∥∥∇2v−

[
∇2v

]
Q13/14

∥∥∥2

L2(Q13/14)

for a constant C2 independent of ρ.
This is a contradiction to (2.5.7) provided that we choose ρ small enough, namely ρ <

1
C2

1C2
2

( 13
14

)2d+3
. So we finally fix a ρ satisfying this condition, and proved that falsity of the

claim leads to a contradiction.

Now we can return to Lemma 2.5.1.
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Proof of Lemma 2.5.1. We can assume w.l.o.g. that x = 0.
We claim that for any 0 < s′ ≤ s ≤ r we have∥∥∥∇2

huh −
[
∇2

huh
]

Qs′

∥∥∥2

L2(Qs′ )
≤ C

(
s′

s

)d+1 ∥∥∥∇2
huh −

[
∇2

huh
]

Qs

∥∥∥2

L2(Qs)
. (2.5.8)

To prove this estimate, observe first that we can assume s′ ≥ h
2 , as otherwise the left-hand

side is 0. We can also assume s
s′ ≥ 2M (where M is the constant from Lemma 2.5.2), as

otherwise we can trivially estimate∥∥∥∇2
huh −

[
∇2

huh
]

Qs′

∥∥∥2

L2(Qs′ )
≤
∥∥∥∇2

huh −
[
∇2

huh
]

Qs

∥∥∥2

L2(Qs)

≤ C
(

s′

s

)d+1 ∥∥∥∇2
huh −

[
∇2

huh
]

Qs

∥∥∥2

L2(Qs)
,

which holds for C ≥ (2M)d+1.
So we assume s′ ≥ h

2 and s
s′ ≥ 2M. Then in particular s ≥ Mh. Consider the ρ from

Lemma 2.5.2 and let κ be the largest integer such that ρκs ≥ max(s′, Mh). We can then apply
Lemma 2.5.2 repeatedly with radii s, ρs, . . . , ρκs to find∥∥∥∇2

huh −
[
∇2

huh
]

Qρκ s

∥∥∥2

L2(Qρκ s)
≤ ρκ(d+1)

∥∥∥∇2
huh −

[
∇2

huh
]

Qs

∥∥∥2

L2(Qs)
.

Because s′ ≤ ρκs, we also have∥∥∥∇2
huh −

[
∇2

huh
]

Qs′

∥∥∥2

L2(Qs′ )
≤
∥∥∥∇2

huh −
[
∇2

huh
]

Qρκ s

∥∥∥2

L2(Qρκ s)
.

Here we have used the fact that ‖ f − [ f ]Ω‖L2(Ω) is monotone in Ω. If we combine the last
two estimates and observe that ρκ+1s < max(s′, Mh) ≤ 2Ms′, i.e. ρκ ≤ 2M

ρ
s′
s , we indeed

obtain (2.5.8) with C =
(

2M
ρ

)d+1
.

Now using (2.5.8) to prove the lemma is a standard iteration argument as e.g. in [Gia93,
Theorem 3.1]. For the sake of completeness we sketch the proof.

If we apply (2.5.8) with s = r and s′ = r
2λ or s′ = r

2λ+1 , we can estimate∥∥∥[∇2
huh
]

Qr/2λ+1
−
[
∇2

huh
]

Qr/2λ

∥∥∥2

L2(Qr/2λ+1 )

≤ 2
∥∥∥∇2

huh −
[
∇2

huh
]

Qr/2λ

∥∥∥2

L2(Qr/2λ )
+ 2

∥∥∥∇2
huh −

[
∇2

huh
]

Qr/2λ+1

∥∥∥2

L2(Qr/2λ+1 )

≤ C
2λ(d+1)

∥∥∥∇2
huh −

[
∇2

huh
]

Qr

∥∥∥2

L2(Qr)

and hence ∣∣∣[∇2
huh
]

Qr/2λ+1
−
[
∇2

huh
]

Qr/2λ

∣∣∣ ≤ C

r
d
2 2

λ
2

∥∥∥∇2
huh −

[
∇2

huh
]

Qr

∥∥∥
L2(Qr)

.

If we sum this for λ = 0, 1, . . . and observe that for λ small enough
[
∇2

huh
]

Qr/2λ
= ∇2

huh(0)

we obtain ∣∣∣∇2
huh(0)−

[
∇2

huh
]

Qr

∣∣∣ ≤ C

r
d
2

∥∥∥∇2
huh −

[
∇2

huh
]

Qr

∥∥∥
L2(Qr)

.

60



2.5 Inner decay estimates for discrete biharmonic functions: special cases

Now we can estimate∣∣∇2
huh(0)

∣∣2 ≤ 2
∣∣∣∇2

huh(0)−
[
∇2

huh
]

Qr

∣∣∣2 + 2
∣∣∣[∇2

huh
]

Qr

∣∣∣2
≤ C

rd

(∥∥∥∇2
huh −

[
∇2

huh
]

Qr

∥∥∥2

L2(Qr)
+
∥∥∥[∇2

huh
]

Qr

∥∥∥2

L2(Qr)

)
=

C
rd
‖∇2

huh‖2
L2(Qr)

,

which proves the claim.

2.5.2 Half-space

In the half-space we want to prove the following statement, which is a slightly weaker
analogue of Lemma 2.5.1:

Lemma 2.5.5. Let d ∈ N, uh : (hZ)d → R, let x ∈ (hZ)d, r > 0, ν ∈ {e1,−e1, . . . , en,−en}.
Suppose that uh(y) = 0 for all y ∈ Qh

r (x) such that (y− x) · ν ≤ 0, and ∆2
huh(y) = 0 for all

y ∈ Qh
r−h(x) such that (y− x) · ν > 0. Then, for any s ≤ r,

‖∇2
huh‖L2(Qs(x)) ≤ C

( s
r

) d
2 ‖∇2

huh‖L2(Qr(x)) .

The proof is mostly similar to that of Lemma 2.5.1, so we only give details where a new
idea is required.

For r > 0 let Qr,+ = Qr ∩ {x1 > 0}. The main step in the proof of Lemma 2.5.5 will be to
prove the following estimate.

Lemma 2.5.6. Let d ∈N. There exist constants M ∈N, 0 < ρ < 1
2 with the following property:

Let uh : (hZ)d → R, r > 0 be such that uh(y) = 0 whenever y ∈ Qh
r and y1 ≤ 0, and ∆2

huh(y) = 0
for all y ∈ Qh

r−h such that y1 > 0. Assume that ρr ≥ Mh. Then we have∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Qρr,+

e1 ⊗ e1

∥∥∥∥2

L2(Qρr,+)

≤ ρd+1
∥∥∥∥∇2

huh −
[

Dh
−1Dh

1uh

]
Qr,+

e1 ⊗ e1

∥∥∥∥2

L2(Qr,+)

.

Using a compactness argument, we will deduce this estimate from the following continu-
ous estimate.

Lemma 2.5.7. Let d ∈N, 0 < s ≤ r
2 , u ∈W2,2(Qr,+). Assume that ∆2u = 0 weakly in Qr,+ and

that u = 0, D1u = 0 on ∂Qr,+ ∩ {x1 = 0} in the sense of traces. Then we have∥∥∥∇2u−
[
D2

1u
]

Qs,+
e1 ⊗ e1

∥∥∥2

L2(Qs,+)
≤ C

( s
r

)d+ 3
2
∥∥∥∇2u−

[
D2

1u
]

Qr,+
e1 ⊗ e1

∥∥∥2

L2(Qr,+)
.

Proof. This follows like Lemma 2.5.3 from Schauder estimates up to the boundary (cf.
[Mor66, Theorem 6.4.8]).

Proof of Lemma 2.5.6.
Step 1: Preparations
We follow the same strategy as in the proof of Lemma 2.5.2. That is, we assume that the
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claim is wrong for some fixed ρ, and consider a sequence of counterexamples uhk and their
interpolations vk = Ihk uhk . We can assume that rk = 1.

Next observe that for ωh(x) :=

{
x1(x1+h)

2 x1 ≥ 0

0 x1 < 0
we have ωh(x) = 0 if x1 ≤ 0 and

Dh
−1Dh

1ωh(x) =

{
1 x1 ≥ 0

0 x1 < 0
. So by replacing uh with uh −

[
Dh
−1Dh

1uh
]

Q1,+
ωh we can also

assume
[
Dh
−1Dh

1uh
]

Q1,+
= 0. Having normalized uh on Q1,+ in this way, we now consider

Q1 again. We can assume ∥∥∥∇2
hk

uhk

∥∥∥
L2(Q1)

= 1 . (2.5.9)

Note that ∥∥∥∇2
hk

uhk

∥∥∥2

L2(Q1)
=
∥∥∥∇2

hk
uhk

∥∥∥2

L2(Q1,+)
+
∥∥∥∇2

hk
uhk

∥∥∥2

L2((−h/2,0)×(−1,1)d−1)

and ∥∥∥∇2
hk

uhk

∥∥∥2

L2((−h/2,0)×(−1,1)d−1)
=
∥∥∥∇2

hk
uhk

∥∥∥2

L2((0,h/2)×(−1,1)d−1)
.

Now (2.5.9) combined with the last two equalities implies that
∥∥∥∇2

hk
uhk

∥∥∥
L2(Q1,+)

≥ 1
2 , so that

∥∥∥∥∇2
hk

uhk −
[

Dh
−1Dh

1uhk

]
Qρ,+

e1 ⊗ e1

∥∥∥∥2

L2(Qρ,+)

>
ρd+1

2
. (2.5.10)

By (2.5.9), Proposition 2.4.2 and the Poincaré inequality with 0 boundary values (vk) is
bounded in W2,2(Q3/4), and so a non-relabeled subsequence converges weakly to some v in
W2,2(Q3/4).

As in step 2 of the proof of Lemma 2.5.2 we can show that ∆2v = 0 weakly in Q3/4,+. We
have uhk = 0 in Q1 ∩ {x1 < 0} and hence vk = 0 in Q3/4 ∩ {x1 < −3hk}. Since vk converges
to v strongly in L2(Q3/4), v = 0 in {x1 < 0}, and because v ∈ W2,2(Q3/4), we obtain that
v = 0 and D1v = 0 on Q3/4 ∩ {x1 = 0} in the sense of traces.

We define wk = Ipc
hk
∇2

hk
uhk and want to show next that ∇2vk and wk converge to ∇2v

strongly in L2(Q1/2). We cannot directly reuse the argument in Step 3 of the proof of
Lemma 2.5.2, as we now have to deal with boundary values. However, we can use that
argument on any cube Qr̃(x̃) ⊂ Q5/8 ∩ {x1 > 0} to conclude that ∇2vk and wk converge to
∇2v strongly in L2(Qr̃/2). Since we can do this for any such cube, we conclude that ∇2vk
and wk converge to ∇2v strongly in L2

loc(Q5/8,+).
Because uhk = 0 in Q5/8 ∩ {x1 < −3hk}, we also have that ∇2vk and wk converge to 0

strongly in L2
loc(Q5/8 ∩ {x1 < 0}). In summary, we have proved that ∇2vk and wk converge

to ∇2v strongly in L2
loc(Q5/8 \ {x1 = 0}).

We still have to deal with {x1 = 0}, and for this we need a new idea.
Step 2: Nonconcentration at the boundary

We claim that for any y ∈ Q1/2 ∩ {x1 = 0} we have

lim
r̃→0

lim sup
k→∞

∥∥∥∇2
hk

uhk

∥∥∥
L2(Qr̃(y))

= 0 . (2.5.11)

To see this, let r̃ > 0. For hk small enough Lemma 2.3.1 and Proposition 2.4.2 imply that∥∥∥∇2
hk

uhk

∥∥∥2

L2(Qr̃(y))
≤ C

r̃2

∥∥∇hk uhk

∥∥2
L2(Q2r̃(y))

+
C
r̃4

∥∥uhk

∥∥2
L2(Q2r̃(y))
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≤ C
r̃2 ‖∇vk‖2

L2(Q4r̃(y)) +
C
r̃4 ‖vk‖2

L2(Q4r̃(y)) .

Now vk converges to v weakly in W2,2(Q3/4), so vk and ∇vk converge strongly in L2(Q3/4).
Hence we can pass to the limit in the above inequality and find

lim sup
k→∞

∥∥∥∇2
hk

uhk

∥∥∥2

L2(Qr̃(y))
≤ C

r̃2 ‖∇v‖2
L2(Q4r̃(y)) +

C
r̃4 ‖v‖

2
L2(Q4r̃(y)) .

Furthermore v is 0 in Q4r̃(y)∩ {x1 < 0}, so we can apply the Poincaré inequality to conclude

lim sup
k→∞

∥∥∥∇2
hk

uhk

∥∥∥2

L2(Qr̃(y))
≤ C

∥∥∇2v
∥∥2

L2(Q4r̃(y))
.

Now ∇2v is a fixed L2-function, so if we pass to the limit r̃ → 0 here, we indeed obtain
(2.5.11).

It is easy to see that (2.5.11) together with the fact that wk = Ipc
hk
∇2

huhk converges to
∇2v strongly in L2

loc(Q5/8 \ {x1 = 0}) imply that wk actually converges to ∇2v strongly in
L2(Q1/2).

We have for any y ∈ Q1/2 ∩ {x1 = 0} and r̃ > 0 that

lim sup
k→∞

∥∥∇2vk
∥∥

L2(Qr̃(y))
≤ C lim sup

k→∞

∥∥∥∇2
hk

uhk

∥∥∥
L2(Q2r̃(y))

and so from (2.5.11) we also conclude

lim
r̃→0

lim sup
k→∞

∥∥∇2vk
∥∥

L2(Qr̃(y))
= 0 .

This in turn implies that also ∇2vk converges to ∇2v strongly in L2(Q1/2).
Step 3: Conclusion of the argument

We can now continue as in Step 4 of the proof of Lemma 2.5.2: The strong convergence of wk
to ∇2v allows us to conclude from (2.5.10) that∥∥∥∇2v−

[
D2

1v
]

Qρ,+
e1 ⊗ e1

∥∥∥2

L2(Qρ,+)
≥ ρd+1

2
.

On the other hand, we have∥∥∥∇2v−
[
D2

1v
]

Q3/4,+
e1 ⊗ e1

∥∥∥2

L2(Q3/4,+)
≤ C

and it is easy to check that we arrive at a contradiction to Lemma 2.5.7 once we choose ρ

small enough.

Proof of Lemma 2.5.5. The proof is similar to the first half of the proof of Lemma 2.5.1: One
can assume that x = 0, ν = e1. Then one first proves that, for any 0 < s′ ≤ s ≤ r,∥∥∥∥∇2

huh −
[

Dh
−1Dh

1uh

]
Qs′ ,+

e1 ⊗ e1

∥∥∥∥2

L2(Qs′ ,+)

≤ C
(

s′

s

)d+1 ∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Qs,+

e1 ⊗ e1

∥∥∥∥2

L2(Qs,+)

,
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which already looks similar to the claimed estimate. We can again use this with s = r and
s′ = r

2λ or s′ = r
2λ+1 to conclude∣∣∣∣[Dh

−1Dh
1uh

]
Qr/2λ+1,+

−
[

Dh
−1Dh

1uh

]
Qr/2λ ,+

∣∣∣∣
≤ C

r
d
2 2

λ
2

∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Qr,+

e1 ⊗ e1

∥∥∥∥
L2(Qr,+)

.

Let λ0 be the largest integer such that r
2λ0
≥ s. We can apply this estimate with radii

r, r
2 , . . . , r

2λ0−1 and sum to conclude∣∣∣∣∣[Dh
−1Dh

1uh

]
Q

r/2λ0 ,+

−
[

Dh
−1Dh

1uh

]
Qr,+

∣∣∣∣∣ ≤ C

r
d
2

∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Qr,+

e1 ⊗ e1

∥∥∥∥
L2(Qr,+)

.

Using all this, we can estimate∥∥∇2
huh
∥∥2

L2(Qs,+)
≤
∥∥∇2

huh
∥∥2

L2(Q
r/2λ0 ,+

)

≤ 2

∥∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Q

r/2λ0 ,+

e1 ⊗ e1

∥∥∥∥∥
2

L2(Q
r/2λ0 ,+

)

+ 2

∥∥∥∥∥[Dh
−1Dh

1uh

]
Q

r/2λ0 ,+

∥∥∥∥∥
2

L2(Q
r/2λ0 ,+

)

≤
(

C
2λ0(d+1)

+
C

2λ0n

)∥∥∥∥∇2
huh −

[
Dh
−1Dh

1uh

]
Qr,+

e1 ⊗ e1

∥∥∥∥2

L2(Qr,+)

+
C

2λ0n

∥∥∥∥[Dh
−1Dh

1uh

]
Qr,+

∥∥∥∥2

L2(Qr,+)

≤ C
2λ0n

∥∥∇2
huh
∥∥2

L2(Qr,+)
,

which implies ∥∥∇2
huh
∥∥2

L2(Qs,+)
≤ C

( r
s

)d ∥∥∇2
huh
∥∥2

L2(Qr,+)

≤ C
( r

s

)d ∥∥∇2
huh
∥∥2

L2(Qr)
.

(2.5.12)

Now by the same argument as in Step 1 of the proof of Lemma 2.5.6 we have∥∥∇2
huh
∥∥2

L2(Qs)
≤ 2

∥∥∇2
huh
∥∥2

L2(Qs+)
.

Combining this with (2.5.12) yields the result.

2.5.3 Edges and vertices

It remains to prove the analogue of Lemma 2.5.5 near edges (in 3D) and vertices (in 2D and
3D). The actual compactness argument requires no new idea, so we will only give a very
brief sketch of the proofs. However, this time the continuous estimate require a bit more
work, so we will go into detail there. Let us first state the two results:
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Lemma 2.5.8. Let uh : (hZ)3 → R, let x ∈ (hZ)3, r > 0, ν1, ν2 ∈ {e1,−e1, . . . , e3,−e3}
such that ν1 6= ±ν2. Suppose that uh(y) = 0 for all y ∈ Qh

r (x) such that (y − x) · ν1 ≤ 0
or (y − x) · ν2 ≤ 0, and ∆2

huh(y) = 0 for all y ∈ Qh
r−h(x) such that (y − x) · ν1 > 0 and

(y− x) · ν2 > 0. Then, for any s ≤ r,

‖∇2
huh‖L2(Qs(x)) ≤ C

( s
r

) 3
2 ‖∇2

huh‖L2(Qr(x)) .

Lemma 2.5.9. Let d = 2 or d = 3, uh : (hZ)d → R, let x ∈ (hZ)d, r > 0, νi ∈ {ei,−ei} for
i ∈ {1, . . . , n}. Suppose that uh(y) = 0 for all y ∈ Qh

r (x) such that (y− x) · νi ≤ 0 for at least one
i, and ∆2

huh(y) = 0 for all y ∈ Qh
r−h(x) such that (y− x) · νi > 0 for all i. Then, for any s ≤ r,

‖∇2
huh‖L2(Qs(x)) ≤ C

( s
r

) d
2 ‖∇2

huh‖L2(Qr(x)) .

Proof of Lemma 2.5.8 and Lemma 2.5.9. This follows easily from the following two lemmata.

Lemma 2.5.10. There are constants M ∈N, 0 < ρ < 1
2 with the following property: let

uh : (hZ)3 → R, r > 0, such that uh(y) = 0 for all y ∈ Qh
r such that y1 ≤ 0 or y2 ≤ 0, and

∆2
huh(y) = 0 for all y ∈ Qh

r−h(x) such that y1 > 0 and y2 > 0. Then we have that∥∥∇2
huh
∥∥2

L2(Qρr)
≤ ρd

∥∥∇2
huh
∥∥2

L2(Qr)
.

Lemma 2.5.11. There are constants M ∈N, 0 < ρ < 1
2 with the following property: let d = 2 or

d = 3, uh : (hZ)d → R, r > 0, such that uh(y) = 0 for all y ∈ Qh
r such that yi ≤ 0 for at least one

i ∈ {1, . . . , n}, and ∆2
huh(y) = 0 for all y ∈ Qh

r−h such that yi > 0 for all i. Assume that ρr ≥ Mh.
Then we have that ∥∥∇2

huh
∥∥2

L2(Qρr)
≤ ρd

∥∥∇2
huh
∥∥2

L2(Qr)
.

We will deduce these two lemmata from the following continuous estimates. Dν denotes
the derivative in normal direction.

Lemma 2.5.12. There is a constant θ > 0 with the following property: let d = 3, 0 < s ≤ r
2 ,

u ∈W2,2(Qr,++), where Qr,++ = Qr ∩ {x1 > 0, x2 > 0}. Assume that ∆2u = 0 weakly in Qr,++

and that u = 0, Dνu = 0 on ∂Qr,++ ∩ {x1 = 0 ∨ x2 = 0} in the sense of traces. Assume that
ρr ≥ Mh. Then we have

∥∥∇2u
∥∥2

L2(Qs,++)
≤ C

( s
r

)3+θ ∥∥∇2u
∥∥2

L2(Qr,++)
.

Lemma 2.5.13. There is a constant θ > 0 with the following property: let 0 < s ≤ r
2 , u ∈

W2,2(Qr,d+), where Qr,d+ = Qr,++ = Qr ∩ {x1 > 0, x2 > 0} if d = 2, and Qr,d+ = Qr,+++ =

Qr ∩ {x1 > 0, x2 > 0, x3 > 0} if d = 3. Assume that ∆2u = 0 weakly in Qr,d+ and that u = 0,
Dνu = 0 on ∂Qr,d+ ∩ {xi = 0 for some i} in the sense of traces. Then we have

∥∥∇2u
∥∥2

L2(Qs,d+)
≤ C

( s
r

)d+θ ∥∥∇2u
∥∥2

L2(Qr,d+)
.

The proof of Lemma 2.5.12 and Lemma 2.5.13 relies heavily on the theory of elliptic
equations in domains with singularities. We use results from [KMR97] and [MR10] and
refer the reader to these monographs for more background information.
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Proof of Lemma 2.5.12. Let R3
++ = R3 ∩ {x1 > 0, x2 > 0}. For x ∈ R3

++ write x = (x′, x3).
The statement is trivial if s ≥ r

4 , so assume s < r
4 . Let η ∈ C∞

c (Qr) be a cut-off function
that is 1 on Qr/2,++ and such that |∇κη| ≤ C

rκ for κ ≤ 4. Then η∆2u = 0 in ∂R3
++, and we

can calculate (as an identity in the sense of distributions) that

∆2(ηu) = (∆2η)u + 4∇∆η · ∇u + 2∆η∆u + 4∇2η : ∇2u + 4∇η · ∇∆u .

In order to avoid terms with too many derivatives of u we rewrite the last term as

∇η · ∇∆u = div(∇η∆u)− ∆η∆u

to obtain

∆2(ηu) = ∆2ηu + 4∇∆η · ∇u− 2∆η∆u + 4∇2η : ∇2u + 4 div(∇η∆u) =: f .

Because u ∈ W2,2(Qr,d+) with zero boundary values on ∂R3
++, the right-hand side f is an

element of W−2,2(R3
++), while ηu is in W2,2

0 (R3
++). Hence (cf. [MR10], Theorem 2.5.1) we

can represent ηu via the Green’s function of R3
++ as

(ηu)(x) =
∫

R3
++

G(x, ξ) f (ξ)dξ .

For x ∈ Qs,++ ⊂ Qr/4,++ this implies

∇2u(x) =
∫

R3
++

∇2
xG(x, ξ) f (ξ)dξ .

Now f is supported in Qr,++ \ Qr/2,++, whereas x ∈ Qs,++ ⊂ Qr/4,++. So a decay
estimate for G will directly lead to a pointwise estimate for ∇2u.

In fact, Theorem 2.5.4 in [MR10] states that if |x− ξ| ≥ min(|x′|, |ξ ′|) we have, for every
ε > 0,

|Dα
x′D

j
x3 Dβ

ξ ′D
k
ξ3

G(x, ξ)| ≤ Cε
|x′|1+δ+−|α|−ε|ξ ′|1+δ−−|β|−ε

|x− ξ|1+δ++δ−+j+k−2ε
. (2.5.13)

Here δ+ and δ− are certain real parameters defined in terms of eigenvalue problems related
to the Bilaplacian (see [MR10, Section 2.4] for the precise definition). According to [MR10,
Section 4.3] we have that δ+ = δ− ≈ 2.73959. In particular, δ± > 1, so we can choose θ > 0
such that 1 + θ

2 < δ±. Then let ε = δ± − 1− θ
2 > 0.

We are interested in the case where x ∈ Qs,++, ξ ∈ Qr,++ \ Qr/2,++. In that case the
inequality |x − ξ| ≥ min(|x′|, |ξ ′|) certainly holds, and we can estimate |x′| ≤ s, |ξ ′| ≤ r,
|x− ξ| ≥ r

4 , so that (2.5.13) turns into

|Dα
x′D

j
x3 Dβ

ξ ′D
k
ξ3

G(x, ξ)| ≤ Cεs1+δ+−|α|−εrε−δ+−|β|−j−k

= C
s2+ θ

2−|α|

r1+ θ
2+|β|+j+k

.

This estimate is sharp enough to allow us to estimate the terms of f . For example we can
calculate using the Poincaré and Hölder inequality that∣∣∣∣∫

R3
++

∇2
xG(x, ξ)∆2η(ξ)u(ξ)dξ

∣∣∣∣ ≤ C
∫

Qr,++

s2+ θ
2−2

r1+ θ
2+0+0+0

1
r4 |u(ξ)| dξ
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= C
s

θ
2

r5+ θ
2

∫
Qr,++

|u| dξ

≤ C
s

θ
2

r5+ θ
2

r2r
3
2

(∫
Qr,++

∣∣∇2u
∣∣2 dξ

) 1
2

≤ C
s

θ
2

r
3
2+

θ
2

(∫
R3

++

∣∣∇2u
∣∣2 dξ

) 1
2

and that∣∣∣∣∫
R3

++

∇2
xG(x, ξ)div(∇η∆u)(ξ)dξ

∣∣∣∣ = ∣∣∣∣∫
R3

++

∇2
x∇ξ G(x, ξ) · ∇η(ξ)∆u(ξ)dξ

∣∣∣∣
≤ C

∫
Qr,++

s
θ
2

r2+ θ
2

1
r
|∆u(ξ)| dξ

≤ C
s

θ
2

r
3
2+

θ
2

(∫
R3

++

∣∣∇2u
∣∣2 dξ

) 1
2

.

We can estimate the other terms on f analogously. If we integrate the sum of the squares of
all these inequalities with respect to x we immediately obtain the conclusion.

Proof of Lemma 2.5.13. The proof in the case of a vertex is very similar. One can again deduce
the representation

∇2u(x) =
∫

Rd
d+

∇2
xG(x, ξ) f (ξ)dξ (2.5.14)

for x ∈ Qr/4,d+, so that one only needs sharp estimates for the Green’s function to complete
the argument.

If d = 2, we can use for this purpose Theorem 8.4.8 in combination with Theorem 6.1.2
in [KMR97]. Theorem 8.4.8 gives a Green’s function for right-hand sides in L2. However,
according to Theorem 6.1.2, the solution operator has a continuous extension to right-hand
sides in W−2,2, so that (2.5.14) holds for this Green’s function. Now Theorem 8.4.8 also gives
asymptotics for G in terms of the eigenvalues of a certain eigenvalue problem. If we stay in
the eigenvalue-free strip, this estimate reads

|Dα
x Dβ

ξ G(x, ξ)| ≤ Cε|x|1+δ+−|α|−ε|ξ|1−δ+−|β|+ε

where 2|x| ≤ |ξ| and ε > 0 is arbitrary. Using this estimate we can continue as in the proof
of Lemma 2.5.12.

The case d = 3 is slightly more complicated. We can use [MR10, Theorem 3.4.5], which
states that if 2|x| ≤ |ξ|, then for any ε > 0

|Dα
x Dβ

ξ G(x, ξ)|

≤ Cε|x|Λ+−|α|−ε|ξ|1−Λ+−|β|+ε
3

∏
j=1

(
rj(x)
|x|

)1+δ+−|α|−ε 3

∏
k=1

(
rk(ξ)

|ξ|

)1+δ−−|β|−ε

where δ± are as before, Λ+ is another constant defined in terms of a certain eigenvalue
problem (see [MR10, Section 3.4] for the precise definition) and rj(x) denotes the distance of
x to the line {xj = 0}. If we choose ε ≤ δ+ − 1 = δ− − 1, then the exponents of the terms
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rk(x)
|x| and rk(ξ)

|ξ| are non-negative whenever |α| ≤ 2 and |β| ≤ 2. So we obtain under these
assumptions

|Dα
x Dβ

ξ G(x, ξ)| ≤ Cε|x|Λ+−|α|−ε|ξ|1−Λ+−|β|+ε .

In [MR10, Section 4.3] it is proved that Λ+ ≥ 3. This allows us to take θ > 0 such that
2 + θ

2 ≤ Λ+ and 1 + θ
2 < δ±. By choosing ε = min

(
Λ+ − 2− θ

2 , δ± − 1
)

we conclude

|Dα
x Dβ

ξ G(x, ξ)| ≤ C
s2+ θ

2−|α|

r1+ θ
2+|β|

for |α| ≤ 2 and |β| ≤ 2. Now we can continue as in the proof of Lemma 2.5.12 (observe that
in that proof we only needed estimates for Dα

x Dβ
ξ G(x, ξ) with |α| ≤ 2 and |β| ≤ 1).

Proof of Lemma 2.5.10 and Lemma 2.5.11. We follow the proofs of Lemma 2.5.2 and Lemma
2.5.6. The proof is slightly easier than the proof of Lemma 2.5.6 because we no longer need
to worry about the subtraction of the averages of uh. We assume that the claim is wrong
for some fixed ρ, and consider a sequence of counterexamples uhk and their interpolations

vk = Ihk uhk . We can assume that rk = 1 and
∥∥∥∇2

hk
uhk

∥∥∥
L2(Q1)

= 1, and conclude that (vk)

is bounded in W2,2(Q3/4), and so a non-relabeled subsequence converges to some v in
W2,2(Q3/4).

As before we see that ∆2v = 0 in Q3/4,+++ and Q3/4,d+ respectively and that v has 0
boundary values. Also we obtain strong convergence of ∇2vk and wk := Ihk

pc∇2
hk

uhk in
L2

loc(Q5/8 \ ∂Q3/4,+++) and L2
loc(Q5/8 \ ∂Q3/4,d+), respectively. Now, as in Step 2 of the

proof of Lemma 2.5.6, we find that ∇2
hk

uhk does not concentrate at the boundary, so that
∇2vk and wk actually converge strongly in L2(Q1/2).

This convergence allows us to pass to the limit in∥∥∥∇2
hk

uhk

∥∥∥2

L2(Qρ)
> ρd

so that we easily arrive at a contradiction to Lemma 2.5.12 or Lemma 2.5.13 once we choose
ρ small enough.

2.6 Inner and outer decay estimates for discrete biharmonic
functions

2.6.1 Inner estimates

We can now combine the results from the previous section in one general decay estimate for
biharmonic functions:

Theorem 2.6.1. Let d = 2 or d = 3, uh ∈ Φh. Let x ∈ Λh, r > 0 and suppose that ∆2
huh(y) = 0

for all y ∈ Qr−h(x) ∩ int Λd
h. Then, for all z ∈ Qh

r/2(x) ∩Λd
h,

|∇2
huh(z)| ≤

C

r
d
2
‖∇2

huh‖L2(Qr(x)) . (2.6.1)

Observe that ∇2
huh = 0 is zero in (hZ)d \ Λh. Therefore we could equivalently only

integrate over Qr(x) ∩ (Λh)pc on the right-hand side.
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Proof. The proofs for the cases d = 2 and d = 3 are similar, but the latter is somewhat more
tedious. Therefore we give the proof for d = 2 in detail and then describe how to adapt it to
the case d = 3. So let d = 2.

We first prove the statement in the special case z = x. By rotating and reflecting Λ2
h we

may assume x2 ≤ x1 ≤ 1
2 . We may also assume r ≥ h

2 , as otherwise we can replace r by h
2

without changing (2.6.1).
Let x∗ = (x1, 0) be a point on ∂Λ2

h closest to x. We consider the three cases r ≤ x2,
x2 < r ≤ x1 and r > x1.

Case 1: r ≤ x2

In this case the interior estimate Lemma 2.5.1 applied to Qr(x) directly implies

|∇2
huh(x)| ≤ C

r
‖∇2

huh‖L2(Qr(x)) .

Case 2: x2 < r ≤ x1

Apply first Lemma 2.5.1 to Qx2+h/2(x) to find

|∇2
huh(x)| ≤ C

x2 +
h
2

‖∇2
huh‖L2(Qx2+h/2(x)) .

If r < 3x2 then this already implies (2.6.1) once we increase C by a factor of 3. If r ≥ 3x2 we
have Qx2+h/2(x) ⊂ Q2x2+h/2(x∗) ⊂ Qr(x∗) ⊂ Qr(x) and so, by Lemma 2.5.5,

|∇2
huh‖L2(Qx2+h/2(x)) ≤ ‖∇2

huh‖L2(Q2x2+h/2(x∗)) ≤ C
2x2 +

h
2

r
‖∇2

huh‖L2(Qr(x∗)) .

This together with the previous equation implies (2.6.1).
Case 3: x1 < r

As in the previous case we obtain

|∇2
huh(x)| ≤ C

x1 +
h
2

‖∇2
huh‖L2(Qx1+h/2(x∗)) . (2.6.2)

Now either r < 3x1 and we are done, or we can continue with Lemma 2.5.9 to find

‖∇2
huh‖L2(Qx1+h/2(x∗)) ≤ ‖∇2

huh‖L2(Q2x1+h/2(0)) ≤ C
2x1 +

h
2

r
‖∇2

huh‖L2(Qr(0)) ,

which in combination with (2.6.2) implies (2.6.1).
This proves (2.6.1) in the case z = x. For general z, it suffices to observe that Qr/2(z) ⊂

Qr(x) and apply the statement we have just proved to Qr/2(z).
The proof for d = 3 is analogous. However there is one more case and hence we need one

more intermediate step, where we deal with the case of an edge. So one applies Lemmata
2.5.1, 2.5.5, 2.5.8, 2.5.9 in order until one reaches a radius of order r. We omit the details.

2.6.2 Outer estimates via duality

Theorem 2.6.1 states that if a discrete function is biharmonic in a subcube Qr(x) of Λh,
then we have pointwise control over its second derivatives in a smaller subcube Qr/2(x).
Remarkably, a dual statement is also true: If a discrete function is biharmonic outside a
subcube Qr(x) of Λh, then we have control over its second derivatives outside of a larger
subcube Q2r(x). The following lemma does not claim pointwise control, but only control in
L2. However we will combine it with Theorem 2.6.1 into Theorem 2.6.3 where we actually
obtain pointwise control.
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Lemma 2.6.2. Let d = 2 or d = 3, let uh ∈ Φh. Let x ∈ Λh, r ≥ d(x) and suppose that
∆2

huh(x) = 0 for all x ∈ int Λh \Qr(x). Then, for all s ≥ r,

‖∇2
huh‖L2(Rd\Qs(x)) ≤ C

( r
s

) d
2 ‖∇2

huh‖L2(Rd\Qr(x)) . (2.6.3)

Proof. Consider first the case r < h. Then d(x) = 0, i.e. x ∈ ∂Λh, and the assumptions imply
∆2

huh = 0 in int Λh, i.e. uh = 0 in int Λh by the uniqueness of the Bilaplacian equation. So
both sides of (2.6.3) are zero and the inequality holds.

So we can assume r ≥ h. The statement is trivial in the case that s < 23r, so we can also
assume s ≥ 23r. We can then replace r and s by r̃ = br − h

2ch +
3h
2 and s̃ = bs− h

2ch +
h
2 ,

respectively. It is easy to see that then r̃ ≥ r, s̃ ≤ s and s̃ ≥ 11r̃, and it suffices to prove the
theorem for r̃, s̃. So we will directly assume r, s ∈ hN + h

2 , s ≥ 11r and r ≥ 3h
2 .

Let fh = ∇2
huhχΛh\Qs(x), where χA is the indicator function of a set A. Let vh ∈ Φh be the

unique solution of ∆2
hvh = div−h divh fh. Then, for any ϕh ∈ Φh,

(∇2
hvh,∇2

h ϕh)L2(Rd) = ( fh,∇2
h ϕh)L2(Rd) . (2.6.4)

Also let ζh and ηh be discrete cut-off functions such that ζh is 1 on Λh \ Q5r(x), 0 on
Q3r(x) ∩ Λh, ηh is 1 on Q7r(x) ∩ Λh, 0 on Λh \ Q9r(x) and such that |∇κ

hζh| ≤ C
rκ and

|∇κ
hηh| ≤ C

rk for κ ≤ 2.
These choices ensure that

∇2
h(ζhuh) = ∇2

huh on the support of fh (2.6.5)

and that
ηh = 1 on the support of ∆2

h(ζhuh) . (2.6.6)

Indeed, for example the support of ∆2
h(ζhuh) is contained in Q5r+2h(x) \Q3r−2h(x) ⊂ Q7r(x).

This implies

‖∇2
huh‖2

L2(Rd\Qs(x)) = ( fh,∇2
huh)L2(Rd)

(2.6.5)
= ( fh,∇2

h(ζhuh))L2(Rd)

(2.6.4)
= (∇2

hvh,∇2
h(ζhuh))L2(Rd)

= (vh, ∆2
h(ζhuh))L2(Rd)

(2.6.6)
= (ηhvh, ∆2

h(ζhuh))L2(Rd)

= (∇2
h(ηhvh),∇2

h(ζhuh))L2(Rd)

≤ ‖∇2
h(ηhvh)‖L2(Rd)‖∇2

h(ζhuh)‖L2(Rd) .

(2.6.7)

Now by the product rule

∇2
h(ηhvh) =

d

∑
i,j=1

Dh
−iD

h
j ηhvh + τh

j Dh
−iηhDh

j vh + τh
−iD

h
j ηhDh

−ivh + τh
−iτ

h
j ηhDh

−iD
h
j vh

and so, using the Poincaré inequality2 on Q9r(x),

2Here we have used the assumption r ≥ d(x) (or rather 7r ≥ d(x)): It ensures that we have zero boundary
data somewhere on Qh

7r(x) \Qh
r (x) so that we can indeed use the Poincaré inequality.
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‖∇2
h(ηhvh)‖L2(Rd) ≤

C
r2 ‖vh‖L2(Q9r(x)) +

C
r
‖∇hvh‖L2(Q9r(x)) + C‖∇2

hvh‖L2(Q9r(x))

≤ C‖∇2
hvh‖L2(Q9r(x)) .

(2.6.8)

Similarly, by the Poincaré inequality on the annulus Q7r(x) \Qr(x),

‖∇2
h(ζhuh)‖L2(Rd) ≤

C
r2 ‖uh‖L2(Q7r(x)\Qr(x)) +

C
r
‖∇huh‖L2(Q7r(x)\Qr(x) + C‖∇2

huh‖L2(Rd\Qr(x))

≤ C‖∇2
huh‖L2(Rd\Qr(x)) .

If we plug the last two estimates into (2.6.7) and then use Theorem 2.6.1 for vh we obtain

‖∇2
huh‖2

L2(Λh\Qs(x)) ≤ C‖∇2
hvh‖L2(Q9r(x))‖∇2

huh‖L2(Rd\Qr(x))

≤ C
(

9r
s

) d
2

‖∇2
h(vh)‖L2(Rd)‖∇2

huh‖L2(Rd\Qr(x)) .

This implies (2.6.3) once we use the energy estimate

‖∇2
hvh‖L2(Rd) ≤ ‖ fh‖L2(Rd) = ‖∇2

huh‖L2(Rd\Qs(x)) .

Now we can combine this lemma with Theorem 2.6.1 to obtain a pointwise outer estimate.

Theorem 2.6.3. Let d = 2 or d = 3, let uh ∈ Φh. Let x ∈ Λh, r > 0 and suppose that ∆2
huh(x) = 0

for all x ∈ int Λh \Qr(x).
Then, for all y ∈ Λh \Q2r(x),

|∇2
huh(y)| ≤ C

(max(d(x), r))
d
2

|x− y|d ‖∇2
huh‖L2(Rd\Qr(x)) . (2.6.9)

Proof. As in the proof of Lemma 2.6.2 we see that d(x) = 0 implies u = 0 everywhere and
(2.6.9) holds. So assume d(x) ≥ h.

Let y ∈ Λh \Q2r(x). If y ∈ Q2d(x)(x) we use Theorem 2.6.1 on Qd(x)(y) ⊂ Rd \Q2r(x) to
obtain

|∇2
huh(y)| ≤

C

d(x)
d
2
‖∇2

huh‖L2(Qd(x)(y)) ≤
C

d(x)
d
2
‖∇2

huh‖L2(Rd\Q2r(x)) ,

which implies (2.6.9) because |x− y| ≤
√

n|x− y|∞ ≤ 2
√

nd(x) and hence 1
d(x) ≤ 4n d(x)

|x−y|2 .
If, on the other hand, y ∈ Λh \Q2d(x)(x) then we use Theorem 2.6.1 on Q|x−y|∞/2(y) and

then Lemma 2.6.2 as follows:

|∇2
huh(y)| ≤

C(
|x−y|∞

2

) d
2
‖∇2

huh‖L2(Q|x−y|∞/2(y))

≤ C

|x− y|
d
2
∞

‖∇2
huh‖L2(Rd\Q|x−y|∞/2(x))

≤ C

|x− y|
d
2
∞

(
max(d(x), r)

|x−y|∞
2

) d
2

‖∇2
huh‖L2(Rd\Qmax(d(x),r)(x))

≤ C
(max(d(x), r))

d
2

|x− y|d∞
‖∇2

huh‖L2(Rd\Qmax(d(x),r)(x)) ,

which implies (2.6.9).
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2 Estimates for the Green’s function of the discrete Bilaplacian

2.7 The discrete full-space Green’s function

In order to obtain estimates for Gh, we will compare Gh with a Green’s function of (hZ)d. In
the absence of boundary conditions such a Green’s function is not uniquely defined. We will
choose a normalization that is best suited for our application. The necessary asymptotics for
the Green’s function of (hZ)d have been derived by Mangad [Man67] using Fourier-theoretic
methods.

By F we denote the Fourier transform of tempered distributions (where we use the
convention (F f )(x) =

∫
Rd f (ξ)e−2πix·ξ dξ).

Theorem 2.7.1 ([Man67], Section 4). Let d ∈N. Define F : Zd ×Zd → R by

F(x, y) = F

 V(ξ)(
4 ∑d

j=1 sin2(πξ j)
)2

 (x− y)

where V ∈ C∞
c ([−1, 1]d) is chosen such that V = 1 near 0 and ∑z∈Z V(x + z) = 1 for all x, and

V(ξ)

(4 ∑d
j=1 sin2(πξ j)2)

2 denotes the tempered distribution given by its finite part in the sense of Hadamard

(see [Sch66, Chapitre II, §2 and §3]).
Then F is a Green’s function for ∆2

1 in the sense that ∆2
1F(·, y) = δy. It satisfies the following

asymptotic expansion: If d = 2 and z = x− y,

F(x, y) =
|z|2 log |z|

8π
+

(γ− 1 + log π)|z|2
8π

− log |z|
16π

+
4(z4

1 + z4
2)

|z|4

− 12 log π − 12γ− 3 + O
(

1
|z|2

)
where γ is the Euler-Mascheroni constant, and if d = 3 and z = x− y,

F(x, y) = − |z|
8π

+
z4

1 + z4
2 + z4

3
64π|z|5 +

1
64π|z| + O

(
1
|z|3

)
.

Let us briefly sketch how to prove this theorem: Observe that σ(ξ) :=
(

4 ∑d
j=1 sin2(πξ j)

)2

is the symbol of ∆2
1, so that ∆2

1F(x, y) = F (V)(x− y). On the other hand one easily checks
that ∑z∈Z V(x + z) = 1 implies that F (V)(m) = δ0(m) for any m ∈ Zd. This proves that F
is a Green’s function. To derive the asymptotic expansion, one develops a Laurent series

1
σ(ξ)

=
1

16π2|ξ|4 +
f−2(ξ)

|ξ|2 + f0(ξ) + · · ·+ o(|ξ|d) .

Then one can check using the explicit formulas for the Fourier transforms of |ξ|m (see
[Sch66]) and the Riemann-Lebesgue lemma that

F
(

V(ξ)

σ(ξ)
− 1

16π2|ξ|4 +
f−2(ξ)

|ξ|2 + f0(ξ) + · · ·
)
= o(|x|−d−N)

so it suffices to compute the Fourier transform of 1
16π2|ξ|4 +

f−2(ξ)
|ξ|2 + f0(ξ) + · · · . This one

can again do explicitly and thereby obtain an asymptotic expansion for F up to O(|x|d). For
details we refer to [Man67].

By scaling the lattice we can deduce from this estimates for Green’s functions on (hZ)d.
We state the estimates that we will need.
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2.7 The discrete full-space Green’s function

Lemma 2.7.2. Let d = 2 or d = 3, h > 0, r ≥ 4h. There exists a function G̃h : (hZ)d × (hZ)d →
R such that ∆2

hG̃h(·, y) = δh,y and such that the following estimates are satisfied:

|∇h,yG̃h(x, y)| ≤ Cr3−d if |x− y|∞ ≤
r
2

, (2.7.1)

|∇2
h,x∇h,yG̃h(x, y)| ≤ C

(|x− y|+ h)d−1 if |x− y|∞ ≤
r
2

, (2.7.2)

|∇2
h,x∇2

h,yG̃h(x, y)| ≤ C
(|x− y|+ h)d

if |x− y|∞ ≤
r
2

(2.7.3)

and

|Dα
h,xDβ

h,yG̃h(x, y)| ≤ Cr4−d−|α|−|β| if
r
2
≤ |x− y|∞ ≤ r, |α|+ |β| ≤ 4 . (2.7.4)

For d = 2 the function G̃h depends on r, but we will suppress this dependence for ease of
notation.

Proof. We begin with the slightly easier case d = 3. The asymptotic expansion in The-
orem 2.7.1 easily implies that

|Dα
1,xDβ

1,yF(x, y)| ≤ C|x− y|1−|α|−|β|

for |α|+ |β| ≤ 4 and any x, y with |x − y| ≥ 10, say (observe that g = O(|x|−3) implies
D1
±ig(x) = O(|x|−3), so we do not need to care about the error term). On the other hand F

is finite everywhere, so that
|Dα

1,xDβ
1,yF(x, y)| ≤ C

for |α| + |β| ≤ 4 and any x, y with |x − y| < 10. If we combine these two estimates we
conclude that we have

|Dα
1,xDβ

1,yF(x, y)| ≤ C(|x− y|+ 1)1−|α|−|β| .

Now if we set G̃h(x, y) = hF
( x

h , y
h

)
then G̃h satisfies

|Dα
h,xDβ

h,yG̃h(x, y)| ≤ C(|x− y|+ h)1−|α|−|β| ,

which immediately implies the claimed estimates.
If d = 2 we need to take care of the logarithmic terms. So we set

F̃(x, y) = F(x, y) +
|x− y|2 log

(
h
r

)
8π

.

Then F̃ has the asymptotic expansion

F̃(z) =
z|2 log |z|

8π
+

(log
(

h
r

)
+ γ− 1 + log π)|z|2

8π
− log |z|

16π

+
4(z4

1 + z4
2)

|z|4 − 12 log π − 12γ− 3 + O
(

1
|z|2

)
and this implies

|Dα
1,xDβ

1,y F̃(x, y)| ≤ C|x− y|2−|α|−|β|
(∣∣∣∣log |x− y|+ log

(
h
r

)∣∣∣∣+ 1
)
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2 Estimates for the Green’s function of the discrete Bilaplacian

for |α| + |β| ≤ 2 and any x, y with |x − y| ≥ 10. Because Dα
1,xDβ

1,y F̃(x, y) is bounded by

C
(

1 +
∣∣∣log

(
h
r

)∣∣∣) for |x− y| < 10, we conclude

|Dα
1,xDβ

1,y F̃(x, y)| ≤ C(|x− y|+ 1)2−|α|−|β|
∣∣∣∣log

(
h(|x− y|+ 1)

r

)∣∣∣∣ .

We now set G̃h(x, y) = h2F̃
( x

h , y
h

)
and obtain

|Dα
h,xDβ

h,yG̃h(x, y)| ≤ C(|x− y|+ h)2−|α|−|β|
∣∣∣∣log

(
|x− y|+ h

r

)∣∣∣∣ .

It is easy to check that this implies (2.7.1) and (2.7.4) for |α|+ |β| ≤ 2. If |α|+ |β| ≥ 3 we
need to be slightly more careful: Observe that third discrete derivatives of |x− y|2 vanish,
so that we actually have

|∇α
1,x∇

β
1,y F̃(x− y)| ≤ C

|x− y||α|+|β|−2

if |x− y| ≥ 10 from which we conclude

|∇α
1,x∇

β
1,y F̃(x− y)| ≤ C

(|x− y|+ 1)|α|+|β|−2

for any x, y. Recalling that G̃h(x, y) = h2F̃
( x

h , y
h

)
we immediately obtain (2.7.2), (2.7.3) and

(2.7.4) for |α|+ |β| ≥ 3.

2.8 Proof of the main theorem

We are now able to prove Theorem 2.1.3. We first give the straightforward proof of part ii)
and then continue with part i).

2.8.1 Lower bounds for Gh(x, x)

The proof is rather short and based on the choice of an appropriate test function.

Proof of Theorem 2.1.3 ii).
We can assume d(x) ≥ h, as otherwise d(x) = 0 and hence Gh(x, x) = 0. If we test the
equation ∆2

hGh,x = δh,x with Gh,x, we find

‖∇2
hGh,x‖2

L2(Rd) = (∆2
hGh,x, Gh,x)L2(Rd) = (δh,x, Gh,x)L2(Rd) = Gh(x, x) . (2.8.1)

Now let ϕh ∈ Φh. Then testing the equation ∆2
hGh,x = δh,x with ϕh and using the Cauchy-

Schwarz inequality we find

ϕh(x) = (∇2
hGh,x,∇2

h ϕh)L2(Rd)

≤ ‖∇2
hGh,x‖L2(Rd)‖∇2

h ϕh‖L2(Rd)

=
√

Gh(x, x)‖∇2
h ϕh‖L2(Rd) .

If ϕh is not identically zero this implies

Gh(x, x) ≥ (ϕh(x))2

‖∇2
h ϕh‖2

L2(Rd)
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2.8 Proof of the main theorem

and so it remains to find a ϕh(x) such that ϕh(x)
‖∇2

h ϕh‖L2(Rd)

≥ Cd(x)2− d
2 . But this is easy:

Take ϕh,x ∈ Φh supported in Qd(x)(x) such that ϕh,x(x) = 1 and such that |∇2
h ϕh,x| ≤ C

d(x)2

and extend it by 0 to all of Λd
h.

2.8.2 Upper bounds for Gh(x, y)

In this section we prove part i) of Theorem 2.1.3.
We begin with a rather weak estimate for Gh(x, y).

Lemma 2.8.1. Let d = 2 or d = 3 and Gh be the Green’s function of Λd
h. Then we have

0 ≤ Gh(x, x) = ‖∇2
hGh,x‖2

L2(Rd) ≤ Cd(x)4−d (2.8.2)

for any x ∈ Λh and
|Gh(x, y)| ≤ Cd(x)2− d

2 d(y)2− d
2 (2.8.3)

for any x, y ∈ Λh.

Proof. We first prove (2.8.2). By (2.8.1) we have

‖∇2
hGh,x‖2

L2(Rd) = Gh(x, x) . (2.8.4)

If x ∈ ∂Λh then Gh(x, x) = 0 and (2.8.2) holds. So assume x ∈ int Λh, i.e. d(x) ≥ h. The
Sobolev-Poincaré inequality implies that

Gh(x, x) ≤ ‖Gh,x‖L∞(Qd(x)+h/2(x)) ≤ C
(

d(x) +
h
2

)2− d
2

‖∇2
hGh,x‖L2(Qd(x)+h/2(x))

≤ Cd(x)2− d
2 ‖∇2

hGh,x‖L2(Q2d(x)+h/2(x)) .

If we combine this estimate with (2.8.4) we find that

‖∇2
hGh,x‖2

L2(Rd) = Gh(x, x) ≤ Cd(x)2− d
2 ‖∇2

hGh,x‖L2(Q2d(x)+h/2(x)) ≤ Cd(x)2− d
2 ‖∇2

hGh,y‖L2(Rd)

and hence
0 ≤ Gh(x, x) = ‖∇2

hGh,x‖2
L2(Rd) ≤ Cd(x)4−d .

This proves (2.8.2). For (2.8.3), we test ∆2
hGh,x = δh,x with Gh,y and use the Cauchy-Schwarz

inequality to obtain

|Gh(x, y)| =
∣∣∣(δh,x, Gh,y)L2(Rd)

∣∣∣
=
∣∣∣(∇2

hGh,x,∇2
hGh,y)L2(Rd)

∣∣∣
≤ ‖∇2

hGh,x‖L2(Rd)‖∇2
hGh,y‖L2(Rd)

(2.8.2)
≤ Cd(x)2− d

2 d(y)2− d
2 .

The next lemma gives estimates for Gh and its derivatives that are sharp when x and y are
far apart. We first prove a pointwise estimate for∇2

h,x∇h,yGh by applying Theorem 2.6.3 to a
cut-off version of ∇h,yGh,y. Afterwards we integrate it along suitable paths to deduce the
estimates in the lemma.
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2 Estimates for the Green’s function of the discrete Bilaplacian

Lemma 2.8.2. Let d = 2 or d = 3 and Gh be the Green’s function of Λd
h. If x, y ∈ Λh and

|x− y|∞ > d(y)
8 then

|Gh(x, y)| ≤ C
(d(x) + h)2(d(y) + h)2

|x− y|d , (2.8.5)

|∇h,xGh(x, y)| ≤ C
(d(x) + h)(d(y) + h)2

|x− y|d , (2.8.6)

|∇2
h,xGh(x, y)| ≤ C

(d(y) + h)2

|x− y|d , (2.8.7)

|∇h,x∇h,yGh(x, y)| ≤ C
(d(x) + h)(d(y) + h)

|x− y|d . (2.8.8)

Proof.
Step 1: Pointwise estimate for ∇2

h,x∇h,yGh(x, y)

We claim that if x, y ∈ Λh and |x− y|∞ > d(y)
8 then

|∇2
h,x∇h,yGh(x, y)| ≤ C

d(y) + h
|x− y|d . (2.8.9)

In the following all derivatives will be with respect to x unless we mark them with a sub- or
superscript y.

If d(y) < 160h we can use a trivial estimate: From Lemma 2.8.1 we know

‖∇2
hGh,y′‖L2(Rd) ≤ Cd(y′)2− d

2 ≤ Ch2− d
2

if |y′ − y|∞ ≤ h. If we now use

|Dh
i fh(y)|2 =

(
1
h
( fh(y + ei)− fh(y)

)2

≤ 2
h2 ( fh(y + ei)

2 + fh(y)2)

with fh = ∇2
hGh we get that

‖∇2
hDh,y

i Gh‖2
L2(Rd) ≤

2
h2

(
‖∇2

hτ
h,y
i Gh‖2

L2(Rd) + ‖∇
2
hGh‖2

L2(Rd)

)
≤ Ch2−d ,

i.e.
‖∇2

hDh,y
i Gh‖L2(Rd) ≤ Ch1− d

2 .

Then Theorem 2.6.3 with r = h implies

|∇2
hDh,y

i Gh(x, y)| ≤ C
max(d(y), h)

d
2

|x− y|d ‖∇2
hDh,y

i Gh‖L2(Rd) ≤ C
h

d
2

|x− y|d h1− d
2 = C

h
|x− y|d ,

which implies (2.8.9) if we choose C there large enough.
So assume d(y) ≥ 160h. Let ηh be a discrete cut-off function that is 1 on Qd(y)/32+2h, 0 on

(hZ)d \ Qd(y)/16−2h(x), and such that |∇κηh| ≤ C
d(y)κ for κ ≤ 2. Let Hh(x, y) = Gh(x, y)−

ηh(x)G̃h(x, y), where G̃h is the function from Lemma 2.7.2 with r = d(y)
16 . We write Hh,y for

Hh(·, y).
Then, for i ∈ {1, . . . , n}, Dh,y

i Hh,y ∈ Φh. Also, the singularities near y cancel out, so that

∆2
hDh,y

i Hh,y = 0 in Qd(y)/32(y) and in int Λh \Qd(y)/16(y).
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Next, we want to bound ‖∇2
hDh,y

i Hh,y‖L2(Rd). To do so, we introduce another cut-off
function ζh that is 1 on int Λh \Qd(y)/32(y), 0 on Qd(y)/64(y) and such that |∇κζh| ≤ C

d(y)κ for
κ ≤ 2. Then we have that

∆2
hDh,y

i Hh,y = ζh∆2
hDh,y

i Hh,y = −ζh∆2
hDh,y

i

(
ηhG̃h,y

)
= −ζh∆2

h

(
ηhDh,y

i G̃h,y

)
where we have used that ηh does not depend on y. Thus

‖∇2
hDh,y

i Hh,y‖2
L2(Rd) = (∆2

hDh,y
i Hh,y, Dh,y

i Hh,y)L2(Rd)

= −(ζh∆2
h(ηhDh,y

i G̃h,y), Dh,y
i Hh,y)L2(Rd)

= −(∆2
h(ηhDh,y

i G̃h,y), ζhDh,y
i Hh,y)L2(Rd)

= −(∇2
h(ηhDh,y

i G̃h,y),∇2
h(ζhDh,y

i Hh,y))L2(Rd)

≤ ‖∇2
h(ηhDh,y

i G̃h,y)‖L2(Rd)‖∇2
h(ζhDh,y

i Hh,y)‖L2(Rd) .

(2.8.10)

If we use the pointwise estimates for G̃h,y from Lemma 2.7.2, we conclude

|∇2
h(ηhDh,y

i G̃h,y)| ≤ Cd(y)1−d

and hence
‖∇2

h(ηhDh,y
i G̃h,y)‖L2(Rd) ≤ Cd(y)1− d

2 .

Furthermore, as in (2.6.8), the Poincaré inequality on Qd(y)+h/2(y) and the pointwise
estimates for ζh imply that

‖∇2
h(ζhDh,y

i Hh,y)‖L2(Rd)

≤ C
d(y)2 ‖D

h,y
i Hh,y‖L2(Qd(y)+h/2(y)) +

C
d(y)
‖∇hDh,y

i Hh,y‖L2(Qd(y)+h/2(y))

+ ‖∇2
hDh,y

i Hh,y‖L2(Rd)

≤ C‖∇2
hDh,y

i Hh,y‖L2(Rd) .

If we combine the last two estimates with (2.8.10) we conclude that

‖∇2
hDh,y

i Hh,y‖L2(Rd) ≤ Cd(y)1− d
2 .

We recall that ∆2
hHh = 0 in int Λh \ Qd(y)/16 and use Theorem 2.6.3 to find that, for

x ∈ Λh \Qd(y)/8(y),

|∇2
hDh,y

i Hh(x)| ≤ C
d(y)

d
2

|x− y|d ‖∇
2
hDh,y

i Hh‖L2(Rd) ≤ C
d(y)

d
2

|x− y|d d(y)1− d
2 = C

d(y)
|x− y|d .

This implies (2.8.9) because Dh,y
i Hh,y is equal to Dh,y

i Gh,y in Λh \ Qd(y)/16(y) and therefore

∇2
hDh,y

i Hh,y is equal to ∇2
hDh,y

i Gh,y in Λh \Qd(y)/8(y).
Step 2: Proof of (2.8.8)

We can obtain (2.8.8) by integrating (2.8.9) along a well-chosen path in x. Let (x(k))L
k=0

be a path of length Lh from x(0) = x to x(L) ∈ (hZ)d \ Λh such that |x(k+1) − x(k)|∞ = h,
|x(k) − y| ≥ |x− y|∞ for all k, and L ≤ 2(d(x) + h). To construct such a path begin with the
straight path from x to a closest point x∗ ∈ (hZ)d \Λh (which will have length d(x) + h).
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If this path does not intersect Qh
|x−y|∞−h(y), we are done. Else we modify the path by

taking a (shortest-possible) detour around Qh
|x−y|∞−h(y). This detour lengthens the path

by at most |x− y|∞, and it is easy to check that if it is necessary then y ∈ Qh
d(x)(x), so that

|x− y|∞ ≤ d(x), and our path has length at most d(x) + h + |x− y|∞ ≤ 2(d(x) + h).
Now, by (2.8.9),

|∇2
h,x∇h,yGh(x(k), y)| ≤ C

d(y) + h
(|x(k) − y|+ h)d

≤ C
d(y) + h

(|x(k) − y|∞ + h)d
≤ C

d(y) + h
(|x− y|∞ + h)d

.

Now we can perform discrete integration along (x(k))L
k=0. Note that ∇h,x∇h,yGh(x(L), y) = 0

and so

|∇h,x∇h,yGh(x, y)| ≤
L−1

∑
k=0
|∇h,x∇h,yGh(x(k+1), y)−∇h,x∇h,yGh(x(k), y)|

≤
L−1

∑
k=0

h|∇2
h,x∇h,yGh(x(k), y)|

≤ L
d(y) + h

(|x− y|∞ + h)d
,

which implies (2.8.8).
Step 3: Proof of (2.8.7)

We proceed as in the previous step with the only difference that this time we integrate
in y along a path that avoids x. Let (y(k))L

k=0 be a path of length Lh from y(0) = y to
y(L) ∈ (hZ)d \ Λh such that |y(k+1) − y(k)|∞ = h, |y(k) − x|∞ ≥ |y − x|∞ for all k, and
L ≤ 2(d(y) + h). If we construct this path as in the previous step, we can in addition

ensure that d(y(k)) ≤ d(y) for all k (then in particular |y(k) − x|∞ ≥ d(y(k))
8 , so that (2.8.9) is

applicable for all y(k)).
Now by (2.8.9)

|∇2
h,x∇h,yGh(x, y(k))| ≤ C

d(y(k)) + h
(|x− y(k)|+ h)d

≤ C
d(y(k)) + h

(|x− y(k)|∞ + h)d
≤ C

d(y) + h
(|x− y|∞ + h)d

and if we integrate this along (y(k))L
k=0, we obtain (2.8.7).

Step 4: Proof of (2.8.6) and (2.8.5)
We proceed as in the previous two steps. If we integrate (2.8.7) along a path (x(k))L

k=0 that
avoids y once, we obtain (2.8.6), and if we integrate once more, we obtain (2.8.5).

Now we complement this lemma with an estimate when x and y are close:

Lemma 2.8.3. Let d = 2 or d = 3 and Gh be the Green’s function of Λd
h. If x, y ∈ Λh and

|x− y|∞ ≤ d(y)
8 then

|Gh(x, y)| ≤ C(d(x) + h)2− d
2 (d(y) + h)2− d

2 , (2.8.11)

|∇h,xGh(x, y)| ≤ C(d(y) + h)3−d , (2.8.12)

|∇2
h,xGh(x, y)| ≤

C log
(

d(y)+h
|x−y|+h

)
d = 2

C
|x−y|+h d = 3

, (2.8.13)

|∇h,x∇h,yGh(x, y)| ≤

C log
(
(d(x)+h)(d(y)+h)

(|x−y|+h)2

)
d = 2

C
|x−y|+h d = 3

. (2.8.14)
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Proof.
Step 1: Pointwise estimate for ∇2

h,x∇h,yGh(x, y)

We claim that if x, y ∈ Λh and |x− y|∞ ≤ d(y)
4 then

|∇2
h,x∇h,yGh(x, y)| ≤ C

(|x− y|+ h)d−1 . (2.8.15)

The fact that we prove this for |x− y|∞ ≤ d(y)
4 will give us a bit of space to wiggle around in

the following steps where we integrate (2.8.15). The proof of (2.8.15) is similar to the proof
of (2.8.9). The main difference is that this time we choose the cut-off function further away
from the singularity.

If d(y) < 10h we can again use a trivial estimate: By Lemma 2.8.1, Gh(x′, y′) is bounded
by Cd(x′)2− d

2 d(y′)2− d
2 ≤ Ch4−d if |x′ − x|∞ ≤ h and |y′ − y|∞ ≤ h, so that

|∇2
h,x∇h,yGh(x, y)| ≤ C

1
h3 h4−d = Ch1−d .

Therefore (2.8.15) holds if we choose C sufficiently large.
So assume that d(y) ≥ 10h. Let ηh be a discrete cut-off function that is 1 on Qd(y)/2+2h(y)

and 0 on (hZ)d \ Qd(y)−2h(y) and such that |∇κηh| ≤ C
d(x)k for κ ≤ 2 and let Hh(x, y) =

Gh(x, y)− ηh(x)G̃h(x, y), where G̃h is the function from Lemma 2.7.2 with r = d(y).
Then, for i ∈ {1, . . . , n}, Dh,y

i Hh,y ∈ Φh and ∆2
hDh,y

i Hh,y = 0 in Qd(y)/2(y) and in int Λh \
Qd(y)(y). We can estimate ‖∇2

hDh,y
i Hh,y‖L2(Rd) just as in Step 1 of the proof of Lemma 2.8.2

and obtain that
‖∇2

hDh,y
i Hh,y‖L2(Rd) ≤ Cd(y)1− d

2 . (2.8.16)

Now recall that Hh is biharmonic in Qd(y)/2(y). So Theorem 2.6.1 implies for x ∈ Qh
d(y)/4(y)

|∇2
hDh,y

i Hh,y(x)| ≤ C

d(y)
d
2
‖∇2

hDh,y
i Hh,y‖L2(Rd) ≤ Cd(y)1−d .

Because ∇2
hDh,y

i Hh,y = ∇2
hDh,y

i Gh,y −∇2
hDh,y

i G̃h,y in Qd(y)/2(y) we can use (2.7.2) and obtain

|∇2
hDh,y

i Gh,y(x)| ≤ |∇2
hDh,y

i Hh,y(x)|+ |∇2
hDh,y

i G̃h,y(x)| ≤ C
(

1
d(y)d−1 +

1
(|x− y|+ h)d−1

)
.

This implies (2.8.15) if we use that |x − y|∞ ≤ d(y)
4 and d(y) ≥ 10h so that |x − y|+ h ≤

Cd(y).
Step 2: Proof of (2.8.14)

If d(y) < 9h we can repeat the trivial estimate from the previous step, so assume d(y) ≥ 9h.
We want to integrate (2.8.15) along a suitable path. So let (x(k))L

k=0 be a straight path
from x(0) = x to a closest point x(L) ∈ Qd(y)/4(y) \Qd(y)/4−h(y). This path will have length

Lh =
⌊

d(y)
4

⌋
h
− |x − y|∞ and we have |y− x(L)|∞ ≥ d(y)

4 − h > d(y)
8 . By Lemma 2.8.2 we

have

|∇h,x∇h,yGh(x(L), y)| ≤ C
(d(x(L)) + h)(d(y) + h)

|x(L) − y|d
≤ C

(d(y) + h)2

|d(y) + h|d ≤ C
1

|d(y) + h|d−2 .

(2.8.17)
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Furthermore (2.8.15) implies that

|∇2
h,x∇h,yGh(x(k), y)| ≤ C

(|x(k) − y|+ h)d−1
≤ C

(|x− y|+ (k + 1)h)d−1 . (2.8.18)

Now we can integrate (2.8.18) along (x(k))L
k=0 and use (2.8.17), and after a short calculation

we arrive at (2.8.14).
Step 3: Proof of (2.8.13)

If d(y) < 79h we can again use the trivial estimate from Step 1, so assume d(y) ≥ 79h.
This is similar to the previous step: We choose a shortest-possible path (y(k))L

k=0 from
y(0) = y to a point y(L) ∈ Qd(x)/6(x) \ Qd(x)/6−h(y). Then |y(k) − x|∞ ≤ d(x)

6 , so that
5
6 d(x) ≤ d(y(k)) ≤ 7

6 d(x) and hence

|y(k) − x|∞ ≤
d(x)

6
≤ d(y(k))

5
.

Therefore we can apply (2.8.15) at the point (x, y(k)) for each k and conclude

|∇2
h,x∇h,yGh(x, y(k))| ≤ C

(|x− y(k)|+ h)d−1
≤ C

(|x− y|+ (k + 1)h)d−1 . (2.8.19)

On the other hand,

d(y(L)) ≥ 5
6

d(x) ≥ 5
6

6
7

d(y) ≥ 56h

so that

|y(L) − x|∞ ≥
d(x)

6
− h ≥ d(y(L))

7
− h >

d(y(L))

8
.

This means that we can apply (2.8.8) at the point (x, y(L)) and conclude

|∇2
h,xGh(x, y(L))| ≤ C

(d(y(L)) + h)2

|x− y(L)|d
≤ C

(d(y) + h)2

|d(y) + h|d ≤ C
1

|d(y) + h|d−2 . (2.8.20)

Now we can integrate (2.8.19) along the path (y(k))L
k=0 and use the estimate (2.8.20) for the

one endpoint to obtain (2.8.13).
Step 4: Proof of (2.8.12)

We could try to prove this by integrating (2.8.13) along a path. However, this turns out to be
not sharp enough at least if d = 3 (we would get a logarithmic term instead of a constant
term). Instead we will use the Sobolev inequality on the function Hh,y from Step 1. Thereby
we get a bound for∇h,yGh(x, y) if x, y are close. By the symmetry of Gh we can turn this into
a bound for ∇h,xGh(x, y).

If d(y) < 10h we can again use the trivial estimate from Step 1, so assume d(y) ≥ 10h.
Recall the function Hh,y from Step 1. If we use the Sobolev and Poincaré inequality on
Qd(y)+h/2(y) and the estimate (2.8.16) we obtain

‖Dh,y
i Hh,y‖L∞(Qd(y)+h/2(y)) ≤ C(d(y) + h/2)2− d

2 ‖∇2
hDh,y

i Hh,y‖L2(Qd(y)+h/2(y))

≤ Cd(y)2− d
2 ‖∇2

hDh,y
i Hh,y‖L2(Rd)

≤ Cd(y)3−d

and therefore
|∇h,yHh,y(x)| ≤ Cd(y)3−d

80



2.8 Proof of the main theorem

for any x ∈ Qd(y)(y). Now we can use (2.7.2) and the fact that Dh,y
i Hh,y = Dh,y

i Gh,y−Dh,y
i G̃h,y

in Qd(y)/2(y) and obtain

|Dh,y
i Gh,y(x)| ≤ |Dh,y

i Hh,y(x)|+ |Dh,y
i G̃h,y(x)| ≤ Cd(y)3−d

for any x ∈ Qd(y)/2(y) and any i ∈ {1, . . . , n}. By the symmetry of Gh in x and y we conclude
that also

|Dh,x
i Gh,x(y)| ≤ Cd(x)3−d (2.8.21)

for any y ∈ Qd(x)/2(x).

Now in the setting of (2.8.12) we are given x, y with |y − x|∞ ≤ d(y)
4 . These satisfy

3
4 d(y) ≤ d(x) ≤ 5

4 d(y), so that |y− x|∞ ≤ 1
3 d(x) and in particular y ∈ Qd(x)/2(x). Thus we

can apply (2.8.21) and obtain

|Dh,x
i Gh,x(y)| ≤ Cd(x)3−d ≤ Cd(y)3−d ,

which implies (2.8.12).
Step 5: Proof of (2.8.11)

This follows immediately from (2.8.3).

Proof of Theorem 2.1.3 i). Now that we have proved Lemma 2.8.3 and Lemma 2.8.2 the proof
is straightforward. First observe that it suffices to consider x, y ∈ Λh as otherwise Gh and its
relevant derivatives are trivially 0.

We claim that we can combine (2.8.8) and (2.8.14) to obtain (2.1.11). Indeed, if |x− y|∞ ≤
d(y)

8 we have d(y) ≤ 8
7 d(x) and |x− y|+ h ≤

√
n|x− y|∞ + h < d(y) + h which implies

1 ≤ (d(x) + h)(d(y) + h)
(|x− y|+ h)2

and we are done by (2.8.14).
If however |x− y|∞ > d(y)

8 , then we have in particular |x− y| ≥ h, so that |x− y|+ h ≤
2|x− y|. We also have d(y) ≤ 8|x− y| and d(x) ≤ 9|x− y| and we easily see that

(d(x) + h)(d(y) + h)
|x− y|d ≤ C

(|x− y|+ h)d−2

so we are done by (2.8.8).
Similarly, we can combine (2.8.7) and (2.8.13) into the estimate

|∇2
h,xGh(x, y)| ≤

C log
(

1 + (d(y)+h)2

(|x−y|+h)2

)
d = 2

C min
(

1
|x−y|+h , (d(y)+h)2

(|x−y|+h)3

)
d = 3

.

This is not quite (2.1.10), but it implies (2.1.10) unless d(y) = 0. On the other hand, if
d(y) = 0 then y ∈ ∂Λh. Therefore Gh,y is identically 0, so that ∇h,x2 Gh(x, y) = 0 and (2.1.10)
holds as well.

Similarly we can combine (2.8.6) and (2.8.12), and (2.8.5) and (2.8.11) into

|∇h,xGh(x, y)| ≤ C min
(
(d(y) + h)3−d,

(d(x) + h)d(y)2

(|x− y|+ h)d

)
,

|Gh(x, y)| ≤ C min
(
(d(x) + h)2− d

2 (d(y) + h)2− d
2 ,
(d(x) + h)2(d(y) + h)2

(|x− y|+ h)d

)
respectively. These estimates imply (2.1.9) and (2.8.11), except in the cases d(x) = 0 or
d(y) = 0, which are again trivial.
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Remark 2.8.4. As a byproduct of the proofs of Lemma 2.8.3 and Lemma 2.8.2 we proved the
estimates (2.8.9) and (2.8.15) which can easily be combined into the estimate

|∇2
h,x∇h,yGh(x, y)| ≤ C min

(
1

(|x− y|+ h)d−1 ,
d(y) + h

(|x− y|+ h)d

)
(2.8.22)

for any x, y ∈ (hZ)d.
With the same method of proof it is possible to prove an estimate for ∇2

h,x∇2
h,yGh as well.

One again considers Hh,y = Gh,y − ηhG̃h,y in Lemma 2.8.3 and Lemma 2.8.2 and derives
estimates for ‖∇2

h,x∇2
h,yHh,y‖L2(Rd). In combination with the pointwise estimates for G̃h (in

particular (2.7.3)) these again yield estimates for∇2
h,x∇2

h,yGh in the two regimes where x and
y are far away and close together, respectively. The final result is

|∇2
h,x∇2

h,yGh(x, y)| ≤ C
(|x− y|+ h)d

(2.8.23)

for any x, y ∈ (hZ)d.
Actually it is even possible to derive estimates for higher derivatives ∇a

h,x∇b
h,yGh, at least

when a ≤ 2 or b ≤ 2. However we cannot expect these estimates to be optimal any more,
because high derivatives are increasingly divergent near the singular boundary points, and
our approach does not really capture this behaviour.

2.8.3 Convergence of Green’s functions

Proof of Corollary 2.1.4. We begin with the proof of assertion i). We can assume that h ≤ 1
3 .

There exists a unique yh ∈ Λh such that y ∈ yh + [− h
2 , h

2 )
2. Set uh(x) = Gh(x, yh). We extend

uh by zero to (hZ)d \ int Λh.
To prove (i) we have to show that uh converges uniformly to G(·, y). Testing the equation

for ∆2
huh with uh we get (see Lemma 2.8.1)

‖∇2
huh‖L2(Rd) ≤ Cd2− d

2 (yh) ≤ C .

The discrete Sobolev-Poincaré inequality implies in particular that the uh are uniformly
Hölder continuous

[uh]
C

0, 1
4

h (Rd)
≤ C. (2.8.24)

Denote by Jh the interpolation operator introduced in Section 2.4. From Proposition 2.4.2
vi) and the Poincaré inequality we deduce that the sequence Jhuh is bounded in W2,2(Rd)

and Jhuh = 0 in Rd \ (−3h, 1 + 3h)d. It follows that for a subsequence

Jhk uhk ⇀ u in W2,2(Rd) , u = 0 in Rd \ (0, 1)d .

From the uniform Hölder continuity (2.8.24) and Proposition 2.4.2 iii), iv) and vi) we deduce
that, for any x ∈ (−3h, 1 + 3h)d,

|Jhk uhk(x)− Ipc
hk

uhk(x)| = |Jhk(uhk(·)− uhk(x))(x)| ≤ C‖uhk − uhk(x)‖L∞(Q3hk
(x)) ≤ Chk

1
4

and therefore
sup

x∈(−1,2)d
|Jhk uhk(x)− Ipc

hk
uhk(x)| ≤ Chk

1
4 .
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In connection with the compact embedding from W2,2
0 ((−1, 2)d) to C0((−1, 2)d) we conclude

that
Ipc
hk

uhk → u uniformly . (2.8.25)

If we can show that u(x) = G(x, y) then by uniqueness of the limit it follows that the
convergences above do not only hold along a particular subsequence hk → 0 but for every
subsequence hk → 0 and we are done.

To show that u(x) = G(x, y) we use that by definition of Gh(·, yh) we have for each
ϕ ∈ C5

c ((0, 1)d)

ϕ(yhk) = ∑
x∈int Λh

∆2
hk

uhk(x)ϕ(x)hdk = ∑
x∈int Λh

uhk(x)∆2
hk

ϕ(x)hdk

=
∫
(0,1)d

Ipc
hk

uhk Ipc
hk

∆2
hk

ϕ(x)dx .

Now by Taylor expansion |Ipc
hk

∆2
hk

ϕ− ∆2ϕ| ≤ Chk. Together with (2.8.25) we get

ϕ(y) = lim
k→∞

ϕ(yhk) = lim
k→∞

∫
(0,1)d

Ipc
hk

uhk Ipc
hk

∆2
hk

ϕh dx =
∫
(0,1)d

u∆2ϕ dx .

Thus ∆2u = δy in the sense of distributions. Since we also know that u ∈ W2,2
0 ((0, 1)d) we

conclude that u(x) = G(x, y) as desired.
To prove ii) note that the estimates in Theorem 2.1.3 show that the second discrete

derivatives are bounded in Lp for all p < ∞. Hence by the discrete Sobolev embedding
theorem the discrete first derivatives are bounded in C0,α for all α < 1. This implies that

|Ipc
h ∇hu−∇Jhuh| ≤ Chα. (2.8.26)

Moreover the Lp bound on the discrete second derivatives and (2.4.3) give a bound of Juh
in W2,p. Hence a subsequence of Jhuh converges in C1,α to G(·, y). Since the limit is unique,
the whole sequence converges in C1,α to G. Together with (2.8.26) this yields uniform
convergence of the discrete first derivatives.

The local compactness argument in Section 2.5 (and a diagonalisation argument) shows
that a subsequence of Ipc

h ∇2
huh converges in L2

loc((0, 1)2 \ {y}) to a function v. Since Ipc
h ∇2

huh
is also bounded in Lq for some q > 2 we get strong convergence in L2((0, 1)2). Using again
the Lq bound we get strong convergence in all Lp with p < q. Since we have Lq bounds for
all q < ∞ we get strong convergence for all p < ∞. It remains to show that v = ∇2G(·, y).
To obtain this identity we can use discrete integration by parts and pass to the limit on both
sides, as in the proof that ∆2u = δy.

The proof of (iii) is similar. Uniform boundedness of the discrete derivatives follows
directly from Theorem 2.1.3. This theorem also shows that the second discrete derivatives are
uniformly bounded on the complement of any cube Qr(y). It follows that the functions uh
are uniformly Lipschitz on the complement of any cube Qr(y) and we obtain locally uniform
convergence of Ipc

h ∇huh in the complement of those cubes as in the proof of (ii). Combined
with the uniform boundedness we immediately conclude convergence of Ipc

h ∇huh in Lp for
all p < ∞.

The proof of Lp convergence of Ipc
h ∇2

huh for p < 3 is again analogous to the argument for
d = 2.
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3 Probability to be positive for the membrane
model in dimensions two and three

This chapter is based on the paper [BDKS19], written jointly by Simon Buchholz, Jean-
Dominique Deuschel, Noemi Kurt and the author, with only minor changes. A small part
of the content of this chapter has already appeared in the author’s M.Sc. thesis [Sch16],
where the upper bound on the probability to be positive is shown using a very similar
approach.

3.1 Introduction

In this section we consider entropic repulsion for the subcritical membrane model, as dis-
cussed in Section 1.3.3. Actually, for convenience we make a small change in comparison to
the results mentioned there: instead of ΛN = {0, . . . , N}d we consider ΛN = {−N, . . . , N}d.
This means that we only consider boxes with odd sidelengths, and this has the small ad-
vantage that the centre of ΛN is a lattice point. However, it is clear that our proof would
also apply to boxes with even sidelengths. As we are only concerned with the membrane
model, we drop the subscripts ∆.

3.1.1 Main results

Let Λ = [−1, 1]d and ΛN = NΛ ∩Zd with d ∈ N+ and N ∈ N+. We are interested in
the event ΩDN ,+ = {ψ : ψx ≥ 0 ∀x ∈ DN}, where DN ⊂ ΛN , as well as the behaviour of ψ

conditioned on ΩDN ,+.
Our main result is the following.

Theorem 3.1.1. Let d = 2 or d = 3. There are constants C, c such that for all N ∈ N+,
0 ≤ L ≤ N,

e
−C Nd−1

(L+1)d−1 ≤ PN
(
ΩΛN−L,+

)
≤ e

−c Nd−1

(L+1)d−1 . (3.1.1)

A first result in this direction was already established by Sakagawa [Sak16] who proved
that for every x ∈ Λ there is a small neighbourhood Bx such that PN(ΩNBx ,+) > c for some
(universal) constant c.

Let us emphasize the two important special cases of our theorem that were already
mentioned in Section 1.3.3. We first consider the case DN = ΛδN for δ ∈ (0, 1), where
the hard wall stays away from the boundary. In that case the fact that the membrane
model is Hölder continuous suggests that the field has a decent chance to be positive if it is
uniformly positive on a sufficiently dense set of lattice points of bounded cardinality. Thus
the probability that ψ is positive on DN = ΛδN should be comparable to the probability of
uniform positivity on that dense set, and hence bounded away from zero. Indeed, Theorem
3.1.1 implies the following corollary.
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Corollary 3.1.2. Let d = 2 or d = 3. For δ ∈ (0, 1) there is a constant cδ > 0 such that

cδ ≤ PN(ΩΛδN ,+) ≤
1
2

.

When DN = VN , the situation is somewhat different. While the Hölder continuity holds
up to the boundary, the ψx for x near the boundary are only weakly correlated and behave
almost like independent random variables. This suggests that the probability to be positive
on all of VN can at best scale like e−cNd−1

(note that the number of points of distance 1 to
the boundary is of the order Nd−1). On the other hand, if the field is positive at all near-
boundary points it gets pushed up in the interior quite a bit, and so the probability to be
positive everywhere should be of the same order.

Indeed, another particular case of Theorem 3.1.1 is an estimate for PN(ΩΛN ,+).

Corollary 3.1.3. Let d = 2 or d = 3. There are constants C, c such that

e−CNd−1 ≤ PN (ΩΛN ,+) ≤ e−cNd−1
.

We expect this result to be true for the membrane model and the gradient model in any
dimension d ≥ 2. For the gradient model a stronger result has been shown for d ≥ 3
in [Deu96, Theorem 4.1]. Note that the behaviour for general L ≥ 1 in Theorem 3.1.1 is
different for the gradient model in dimension d ≥ 3.

We give a proof of the lower and upper bound in Theorem 3.1.1 in Section 3.3 and 3.4,
respectively.

3.1.2 Implications for entropic repulsion

Corollary 3.1.2 has some easy implications on the behaviour of the field when conditioned
on ΩΛδN ,+. To state them precisely we need some preparation.

We define the interpolation IN : RΛN → C0,1([−1, 1]d) by IN f (x) = N−
4−d

2 f (Nx) for
x ∈

( 1
N Z
)d ∩ [−1, 1]d, and interpolated piecewise affinely on simplices for other values

of x. As the proof of [CDH19, Theorem 2.1] shows, the pushforward measures IN#PN

converge weakly in C0,α([−1, 1]d) for any α < 4−d
2 to a limit law P∞. The limit P∞ is the

continuum Bilaplace field, i.e., the centred Gaussian field whose covariance is the Green’s
function of the continuum Bilaplace operator on Λ. Now Corollary 3.1.2 implies that the
laws IN#PN still converge when one conditions on ΩΛδN ,+. Indeed, if we introduce the event
Ω∗D,+ = {u ∈ C0,α([−1, 1]d) : u(x) ≥ 0 ∀x ∈ D} for D ⊂ [−1, 1]d, we have the following
result.

Corollary 3.1.4. Let d = 2 or d = 3, and δ ∈ (0, 1). Then IN#PN(· | ΩΛδN ,+) converges weakly
in C0,α([−1, 1]d) for any α < 4−d

2 to P∞

(
·
∣∣∣Ω∗δΛ,+

)
. In particular, we have

lim
N→∞

EN

(
N−

4−d
2 max

x∈ΛN
ψx

∣∣∣∣ΩΛδN ,+

)
< ∞ .

The corollary follows from the facts that P∞

(
Ω∗δΛ,+

)
is a continuous function of δ and

that Ω∞
δΛ,+ is a continuity set for P∞ (these both follow from [Bog98, Corollary 4.4.2]). Note

that the second point combined with the convergence of IN#PN → P∞ and Corollary
3.1.2 implies that P∞

(
Ω∗δΛ,+

)
> 0 so that the conditioned measure P∞

(
·
∣∣∣Ω∗δΛ,+

)
is well-

defined.
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This corollary shows that there is no entropic repulsion when conditioning on ΩΛδN ,+.
We conjecture that a similar result remains true if we condition on ΩΛN ,+. However, due

to the fact that the probability of ΩΛN ,+ is exponentially small this is a difficult problem
even in dimension one.

Conjecture 3.1.5. For d = 2 and d = 3 the measures IN#PN (· | ΩΛN ,+) converge weakly in
C0,α([−1, 1]d) for any α < 4−d

2 to some limiting measure. In particular,

lim
N→∞

EN

(
N−

4−d
2 max

x∈ΛN
ψx

∣∣∣∣ΩΛN ,+

)
< ∞ .

As an analogue to this conjecture one can consider the gradient model in one dimension
(i.e. the random walk on {−N,−N + 1, . . . , N} with i.i.d. Gaussian increments conditioned
to be zero at its endpoints). It is well-known that this model, suitably rescaled, converges
weakly in C0,α([−1, 1]) for α < 1

2 to a Brownian bridge. Moreover, if one conditions the
walk to be non-negative it converges weakly in C0([−1, 1]) to a Brownian excursion (see
[CC13] and the references therein). Similar results (in particular a local limit theorem for the
conditioned field) have also been shown for the membrane model in one dimension (at least
if one only considers zero boundary data on one end of the interval), see [DW15].

3.1.3 Notation

For x ∈ Zd let dN(x) = dist∞(x, Zd \ΛN) be the distance to the boundary of ΛN .
In the following c, C and C′ denote constants that may change from line to line, but are

always independent of N and L.

3.2 Preliminaries

Let us recall the relevant results that will be used in the proof of the main theorems. Let GN

be the Green’s function of ∆2 on ΛN with 0 boundary data outside ΛN , i.e. GN(·, y) = 0 if
y 6∈ ΛN and

∆2GN(·, y) = δy in ΛN , ,

GN(·, y) = 0 outside ΛN

if y ∈ ΛN . The Green’s function GN agrees with the covariance matrix of ψ, i.e. we have that
CovN(ψx, ψy) = GN(x, y), see also [Kur09]. Our proofs are based on the estimates for the
Green’s function GN from Chapter 2.

Theorem 3.2.1. Let d = 2 or d = 3. Then we have for any x, y ∈ ΛN

cdN(x)4−d ≤ GN(x, x) ≤ CdN(x)4−d , (3.2.1)

|∇1,xGN(x, y)| ≤ CdN(x)3−d , (3.2.2)

|GN(x, x)− GN(x, y)| ≤ CdN(x)3−d|x− y|∞ , (3.2.3)

|GN(x, y)| ≤ C
dN(x)2dN(y)2

(|x− y|∞ + 1)d
, (3.2.4)

where ∇1,x denotes the discrete gradient with respect to x.
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3 Probability to be positive for the membrane model in dimensions two and three

Proof. The estimates (3.2.1), (3.2.2) and (3.2.4) are taken from Theorem 2.1.1, while (3.2.3)
follows from (3.2.2) by discrete integration along a path from x to y.

The lower bound relies on Dudley’s inequality proved in [Dud67]. To state the inequality
we introduce the following two notions. For a Gaussian process (Xt)t∈T we define the
pseudometric dX by

dX(s, t) =
√

E(|Xs − Xt|2) . (3.2.5)

The entropy number N (T, dX, r) is the minimal number of open balls of radius r in the dX

metric that are needed to cover T.

Theorem 3.2.2. Let (Xt)t∈T be a centred Gaussian process. Then

E

(
sup
t∈T

Xt

)
≤ 24

∫ ∞

0

√
lnN (T, dX, r)dr .

Remark 3.2.3. The theorem is true for arbitrary sets T if one defines the supremum appropri-
ately, see e.g. [Tal96]. Since we only apply it to finite index sets we do not discuss this issue
here any further.

We also use the Gaussian correlation inequality due to Royen [Roy14] (see also [LM17]).

Theorem 3.2.4. Let ν be a centred Gaussian measure on Rm and K, L ⊂ Rm be closed, symmetric
and convex. Then

ν(K ∩ L) ≥ ν(K)ν(L) . (3.2.6)

Finally, we recall a Gaussian correlation inequality do to Li and Shao [LS04, Lemma 5.1]
that will be used in the proof of the upper bound

Lemma 3.2.5. Let m ∈ N, and X = (X1, . . . Xm), Y = (Y1, . . . Ym) be Gaussian random vectors
with mean 0 and positive definite covariance matrices ΣX, ΣY, and let P denote their joint measure.
If ΣY ≥ ΣX (in the sense of symmetric matrices, i.e., ΣY − ΣX is positive semidefinite) then for every
Borel set F ⊂ Rm

P(Y ∈ F) ≥
(

det ΣX

det ΣY

) 1
2

P(X ∈ F) .

For the convenience of the reader we repeat the short proof.

Proof. Let fX, fY be the densities of X and Y. The assumption ΣY ≥ ΣX implies that
Σ−1

X ≥ Σ−1
Y and hence (x, Σ−1

X x) ≥ (x, Σ−1
Y x) for all x ∈ Rm. Therefore:

fY(x) =
1

(2π)
m
2 (det ΣY)

1
2

exp
(
−1

2
(x, Σ−1

Y x)
)

≥
(

det ΣX

det ΣY

) 1
2 1

(2π)
m
2 (det ΣX)

1
2

exp
(
− 1

2 (x, Σ−1
X x)

)
=

(
det ΣX

det ΣY

) 1
2

fX(x) .

Then

P(Y ∈ F) =
∫

F
fY(x)dx ≥

(
det ΣX

det ΣY

) 1
2 ∫

F
fX(x)dx =

(
det ΣX

det ΣY

) 1
2

P(X ∈ F) .
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3.3 Lower bounds

3.3 Lower bounds

Let
ΩΛN−L,∞ :=

{
ψ : |ψx| ≤ dN(x)

4−d
2 ∀x ∈ ΛN−L

}
be the event that ψ is uniformly small on ΛN−L.

If ψ was C0, 4−d
2 -Hölder continuous with Hölder constant ≤ 1 with probability bounded

below uniformly in N, this event would have a positive probability uniformly in N and
L. Now ψ is only C0, 4−d

2 −ε-Hölder continuous (see Chapter 2 and [CDH19]), so we cannot
expect a lower bound independent of N. Instead, we prove in Subsection 3.3.2 that the

probability of ΩΛN−L,∞ is bounded below by e
−c Nd−1

(L+1)d−1 . Then, using a change of measure
argument, we show in Subsection 3.3.3 that, given f : ΛN → R, we have

PN( f + ΩΛN−L,∞) ≥ e−
1
2 ‖∆ f ‖2

L2 PN(ΩΛN−L,∞) . (3.3.1)

Suppose now that we can find a function f such that f (x) ≥ dN(x)
4−d

2 for x ∈ ΛN−L and
such that ‖∆ f ‖2

L2 ≤ C Nd−1

(L+1)d−1 . Then ΩΛN−L,+ ⊃ f + ΩΛN−L,∞ and thus (3.3.1) will imply that

PN(ΩΛN−L,+) ≥ PN( f + ΩΛN−L,∞)

≥ e−
1
2 ‖∆ f ‖2

L2 PN(ΩΛN−L,∞)

≥ e
−C Nd−1

(L+1)d−1 PN(ΩΛN−L,∞) .

Combined with a lower bound on PN(ΩΛN−L,∞) this implies the lower bound in Theorem
3.1.1. In Lemma 3.3.4 we construct an f with the desired properties.

3.3.1 Local smallness of the field

We first prove that locally the field is small with a positive probability. For x0 ∈ ΛN and
γ > 0 we define the set

Ax0,γ := {x ∈ ΛN : |x− x0|∞ ≤ γdN(x0)} . (3.3.2)

Lemma 3.3.1. Let d = 2 or d = 3. There is a pair of constants γ, δ > 0 with the following property:
For all x0 ∈ ΛN the following estimate holds

PN

(
ψ : |ψx| ≤ dN(x)

4−d
2 ∀x ∈ Ax0,γ

)
≥ δ . (3.3.3)

Proof. We apply Theorem 3.2.2 to the Gaussian process ψ distributed according to PN . We
assume γ < 1

2 so that x ∈ Ax0,γ implies

dN(x0)

2
≤ dN(x) ≤ 3dN(x0)

2
.

Therefore we will always estimate distances to the boundary for x ∈ Ax0,γ by dN(x0) in the
following. The bound (3.2.3) implies

EN(ψx − ψy)
2 ≤ |GN(x, x)− GN(x, y)|+ |GN(y, y)− GN(y, x)| ≤ ΘdN(x0)

3−d|x− y|∞
(3.3.4)
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for x, y ∈ Ax0,γ and some Θ > 0. Therefore we estimate the Gaussian pseudometric defined
in (3.2.5) by

dψ(x, y) ≤
√

ΘdN(x0)3−d|x− y|∞ .

This implies that for r > 0 and x, y ∈ Ax0,γ such that |x− y|∞ ≤ r2

ΘdN(x0)3−d we have

dψ(x, y) ≤ r .

In particular B∞

(
x, r2

ΘdN(x0)3−d

)
⊂ Bdψ

(x, r) and therefore

N (Ax0,γ, dψ, r) ≤

 γdN(x0)
r2

ΘdN(x0)3−d


d

≤ 1∨
(

2γΘdN(x0)4−d

r2

)d

.

Then Theorem 3.2.2 implies

EN

(
sup

x∈Ax0,γ

ψx

)
≤ 24

∫ √2γΘdN(x0)4−d

0

√
ln
(

2γΘdN(x0)4−d

r2

)d

dr

≤ 24dN(x0)
4−d

2
√

2γΘn
∫ 1

0

√
−2 ln r dr ≤ λ

√
γdN(x0)

4−d
2

(3.3.5)

where λ only depends on d.
If we take γ = (16λ)−2 we obtain

EN

(
sup

x∈Ax0,γ

ψx

)
≤ 1

16
dN(x0)

4−d
2 . (3.3.6)

Define the oscillation of a function f on a set T as usual by

oscT f = sup
T

f − inf
T

f .

Since ψx is a centred process (3.3.5) implies

EN

(
oscAx0,γ ψx

)
≤ 1

8
dN(x0)

4−d
2 .

This implies that

PN

(
oscAx0,γ ψx ≤ 1

4 dN(x0)
4−d

2

)
≥ 1

2
.

Note that we have the inclusions{
ψ : |ψx| ≤ dN(x)

4−d
2 ∀x ∈ Ax0,γ

}
⊃
{

ψ : |ψx| ≤ 1
2 dN(x0)

4−d
2 ∀x ∈ Ax0,γ

}
⊃
{

ψ : oscAx0,γ ψx ≤ 1
4 dN(x0)

4−d
2

}
∩
{

ψ : |ψx0 | ≤ 1
4 dN(x0)

4−d
2

}
.

Now the Gaussian correlation inequality (3.2.6) together with (3.2.1) imply that

PN

({
ψ : |ψx| ≤ dN(x)

4−d
2 ∀x ∈ Ax0,γ

})
≥ 1

2
PN

(
|ψx0 | ≤ 1

4 dN(x0)
4−d

2

)
≥ δ

for some fixed δ > 0.
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Remark 3.3.2. The use of the Gaussian correlation inequality could be avoided here: from
(3.3.6) and (3.2.1) one easily obtains

EN

(
sup

x∈Ax0,γ

|ψx|
)
≤ EN

(
sup

x∈Ax0,γ

|ψx − ψx0 |
)
+ EN(|ψx0 |) ≤ ΞdN(x0)

4−d
2

for some Ξ > 0 and therefore

PN

(
ψ : |ψx| ≤ 4ΞdN(x)

4−d
2 ∀x ∈ Ax0,γ

)
≥ PN

(
ψ : |ψx| ≤ 2ΞdN(x0)

4−d
2 ∀x ∈ Ax0,γ

)
≥ 1

2
.

We could work with this estimate instead of (3.3.3) by using

Ω̃ΛN−L,∞ :=
{

ψ : |ψx| ≤ 4ΞdN(x)
4−d

2 ∀x ∈ ΛN−L

}
instead of ΩΛN−L,∞ in the following.

3.3.2 Global smallness of the field

From the previous we know that on small boxes the field is small with probability bounded
away from zero. We can cover ΛN−L with these small boxes, and then use the Gaussian
correlation inequality to obtain a bound on the probability that the field is globally small.

Lemma 3.3.3. Let d = 2 or d = 3, let ΩΛN−L,∞ be as before. Then we have

PN(ΩΛN−L,∞) ≥ e
−C Nd−1

(L+1)d−1 .

Proof. Recall the definition of Ax,γ in (3.3.2). Fix γ such that the conclusion of Lemma 3.3.1
holds and use the shorter notation Ax := Ax,γ.

We want to construct a subset BN of ΛN such that |BN | ≤ C Nd−1

(L+1)d−1 and such that

ΛN−L ⊂
⋃

x∈BN

Ax .

If we have found such a set, then the Gaussian correlation inequality (Theorem 3.2.4) and
Lemma 3.3.1 imply that

PN(ΩΛN−L,∞) ≥ PN

( ⋂
x∈BN

{ψ : |ψy| < dN(y)
4−d

2 ∀y ∈ Ax}
)

≥ ∏
x∈BN

PN

(
ψ : |ψy| < dN(y)

4−d
2 ∀y ∈ Ax

)
≥ ∏

x∈BN

δ = δ|BN | ≥ e
−C Nd−1

(L+1)d−1 .

It remains to prove the existence of BN . The size of the boxes Ax depends on the distance to
the boundary, so in order to construct BN it is convenient to split ΛN into the dyadic annuli
WN,k = {x ∈ ΛN : 2k ≤ dN(x) < 2k+1} for k = 0, 1, . . . , blog2 Nc. For x ∈ WN,k the cube Ax

has diameter 2γdN(x) ≥ γ2k+1. Because WN,k has outer sidelength 2(N − 2k) ≤ 2N and
thickness 2k, we can cover it by at most

2n
(

2
2N

γ2k+1

)d−1

2
2k

γ2k+1 ≤ C
Nd−1

2k(d−1)
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cubes Ax, i.e. we find a set BN,k of at most C Nd−1

2k(d−1) points in ΛN such that

WN,k ⊂
⋃

x∈BN,k

Ax .

Let k0 = blog2(L + 1)c which implies that ΛN−L ⊂
⋃

k≥k0
WN,k.

Consider BN =
⋃log2 N

k=k0
BN,k. Then ΛN−L ⊂

⋃
x∈BN

Ax, and we have

|BN | ≤
blog2 Nc

∑
k=k0

|BN,k| ≤ C
∞

∑
k=k0

Nd−1

2k(d−1)
≤ C

Nd−1

2k0(d−1)
≤ C

Nd−1

(L + 1)d−1 .

3.3.3 Change of measure

We can now prove the lower bound in Theorem 3.1.1. The idea is simple: We use an explicit
calculation with densities to prove that the probability of the event PN( f + ΩΛN−L,∞) is

bounded below by e−‖∆ f ‖2
L2 PN(ΩΛN−L,∞). Then it remains to make a good choice of f .

Proof of Theorem 3.1.1, lower bound. Let f : ΛN → R be a function to be specified later, and
extend it by 0 to all of Zd. We want to estimate the probability of the event f + ΩΛN−L,∞ =

{ f + ψ : ψ ∈ ΩΛN−L,∞}. To do so, we calculate

PN( f + ΩΛN−L,∞) =
∫

f+ΩΛN−L ,∞

1
ZN

exp
(
−1

2
‖∆ψ‖2

L2

)
dψ

=
∫

ΩΛN−L ,∞

1
ZN

exp
(
−1

2
‖∆( f + ψ)‖2

L2

)
dψ

=
∫

ΩΛN−L ,∞

1
ZN

exp
(
−1

2
‖∆ f ‖2

L2 −
1
2
‖∆ψ‖2

L2 − (∆ f , ∆ψ)L2

)
dψ .

(3.3.7)

Because ΩΛN−L,∞ is symmetric around the origin, we can replace ψ by −ψ and obtain that

PN( f + ΩΛN−L,∞) =
∫

ΩΛN−L ,∞

1
ZN

exp
(
−1

2
‖∆ f ‖2

L2 −
1
2
‖∆ψ‖2

L2 + (∆ f , ∆ψ)L2

)
dψ . (3.3.8)

If we add (3.3.7) and (3.3.8) and use the estimate et + e−t ≥ 2, we conclude

PN( f + ΩΛN−L,∞) =
1
2

∫
ΩΛN−L ,∞

e−
1
2 ‖∆ f ‖2

L2− 1
2 ‖∆ψ‖2

L2

(
e(∆ f ,∆ψ)L2 + e−(∆ f ,∆ψ)L2

)
ZN

dψ

≥ e−
1
2 ‖∆ f ‖2

L2

∫
ΩΛN−L ,∞

e−
1
2 ‖∆ψ‖2

L2

ZN
dψ

= e−
1
2 ‖∆ f ‖2

L2 PN(ΩΛN−L,∞) .

(3.3.9)

Note that the conclusion in (3.3.9) could also be derived from (3.3.7) using Jensen’s inequality.
We now choose f as in Lemma 3.3.4 below. Then

‖∆ f ‖2
L2 ≤ C

Nd−1

(L + 1)d−1 . (3.3.10)
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2
j(4−d)

2 +1

2j 2j

N

f j+1

f j
f j−1

Figure 3.1: The functions f j.

Moreover this choice of f ensures that ΩΛN−L,+ ⊃ f + ΩΛN−L,∞, and so (3.3.9), (3.3.10) and
Lemma 3.3.3 imply that

PN(ΩΛN−L,+) ≥ PN( f + ΩΛN−L,∞) ≥ e−
1
2 ‖∆ f ‖2

L2 PN(ΩΛN−L,∞)

≥ e
−C Nd−1

(L+1)d−1 e
−C Nd−1

(L+1)d−1 = e
−C′ Nd−1

(L+1)d−1 .

Lemma 3.3.4. There is a constant C > 0 such that for every N and 0 ≤ L ≤ N there is a function
f : Zd → R such that supp f ⊂ ΛN , f (x) ≥ dN(x)

4−d
2 for all x ∈ ΛN−L and

∑
x∈Zd

|∆ f (x)|2 ≤ C
Nd−1

(L + 1)d−1 .

Proof. We again use a dyadic construction. Recall WN,k = {x ∈ ΛN : 2k ≤ dN(x) < 2k+1} for
k = 0, 1, . . . , blog2 Nc. Let in addition WN,−1 = Zd \ΛN .

Fix a smooth function η : R→ R such that η ≥ 0, η = 1 on [1, ∞) and η = 0 on (−∞, 0].
For i ∈ {1, 2, . . . , n} and x ∈ Zd we introduce the distance di(x) = dist(x, Zd \ (Zi−1 ×
{−N, . . . , N} ×Zd−i)) of x to the boundary in direction xi.

For j = 0, 1, . . . blog2 Nc − 1 consider the function

f j(x) = 2
j(4−d)

2 +1
d

∏
i=1

η

(
di(x)

2j

)
(cf. Figure 3.1). Note that

f j(x) = 2
j(4−d)

2 +1 (3.3.11)

for all x ∈ ΛN such that dN(x) ≥ 2j. Moreover

|∆ f j(x)| ≤ C2
j(4−d)

2 +1‖η′′‖L∞
1

22j ≤
C‖η′′‖L∞

2
jd
2

. (3.3.12)

In fact ∆ f j(x) = 0 if dN(x) > 2j because fk is constant on ΛN−2j . We define the function

f =
blog2 Nc

∑
j=blog2(L+1)c

f j .

For x ∈ ΛN−L let now k be such that x ∈ WN,k, and observe that blog2(L + 1)c ≤ k ≤
blog2 Nc. The estimate (3.3.11) implies

f (x) ≥ fk(x) ≥ 2
k(4−d)

2 +1 ≥
(

2 · 2k
) 4−d

2 ≥ dN(x)
4−d

2 .
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3 Probability to be positive for the membrane model in dimensions two and three

For an arbitrary x ∈ Zd let again k ∈ {−1, 0, 1, . . .} be such that x ∈ WN,k. Then (3.3.12)
implies that

|∆ f (x)| ≤
blog2 Nc

∑
j=k∨blog2(L+1)c

|∆ f j| ≤
∞

∑
j=k∨blog2(L+1)c

C‖η′′‖L∞

2
jd
2

≤ C′

2
(k∨blog2(L+1)c)d

2

.

Using that |WN,k| ≤ C2kNd−1 for k ≥ 0 and that ∆ f (x) is zero on WN,−1 except possibly
on the set ΛN+1 \ΛN of cardinality CNd−1 ≤ C′2−1Nd−1, the previous estimate implies that

∑
x∈Zd

|∆ f (x)|2 ≤
blog2 Nc

∑
k=−1

∑
x∈WN,k

|∆ f (x)|2 ≤
∞

∑
k=−1

C2kNd−1

2(k∨blog2(L+1)c)d

≤
blog2(L+1)c

∑
k=−1

C2kNd−1

2blog2(L+1)cd +
∞

∑
k=blog2(L+1)c+1

C2kNd−1

2kd

≤ C
Nd−1

(L + 1)d−1 + C
Nd−1

(L + 1)d−1 = C′
Nd−1

(L + 1)d−1 .

3.4 Upper bounds

In order to prove the upper bound in Theorem 3.1.1, we will find a suitably sparse set
EN,L of points at the boundary such that the random variables {ψx : x ∈ EN,L} are almost
independent in the sense that their covariance matrix is diagonally dominant. We can then
use Lemma 3.2.5 to compare them to actually independent random variables. The following
argument is taken from [Sch16, Section 6.2.1].

Proof of Theorem 3.1.1, upper bound. Note that for N ≥ L > N
2 the upper bound is trivial.

Indeed, ΛN−L is nonempty and so the symmetry of the field implies PN(ΩΛN−L,+) ≤ 1
2 ,

while the right hand side of (3.1.1) exceeds 1
2 if L > N

2 and c < 2−d. We assume L ≤ N
2 in

the following. Let EN,L = ΛN−L ∩ ((dα(L + 1)eZ)d−1 × {N − L}) where α ≥ 1 is a constant
to be chosen later. This is a set of points on one face of [−N + L, N − L]d such that any two
points have distance at least αL. Its cardinality satisfies

|EN,L| =
(

2
⌊

N − L
dα(L + 1)e

⌋
+ 1
)d−1

≥
(⌊

N − N
2

α(L + 1) + 1

⌋
+ 1

)d−1

≥
(

N
2

α(L + 1) + 1

)d−1

≥ c
Nd−1

αd−1(L + 1)d−1 .

(3.4.1)

Clearly dN(x) = L + 1 for any x ∈ EN,L. Therefore according to (3.2.4) for x 6= y

|GN(x, y)| ≤ C
(L + 1)4

(|x− y|∞ + 1)d
≤ C

(L + 1)4

|x− y|d∞
.

If we combine this with (3.2.1) we obtain for any x ∈ EN,L

∑
y∈EN,L

y 6=x

|GN(x, y)|√
GN(x, x)GN(y, y)

≤ C ∑
y∈EN,L

y 6=x

(L + 1)4

(L + 1)4−d|x− y|d∞
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= C
∞

∑
j=1
|{y ∈ EN,L : |y− x|∞ = jdα(L + 1)e}| (L + 1)d

(jdα(L + 1)e)d

≤ C
αd

∞

∑
j=1

aj

jd

where aj = 2 for d = 2 and aj = 8j for d = 3. Thus ∑∞
j=1

aj

jd < ∞ and hence

∑
y∈EN,L

y 6=x

|GN(x, y)|√
GN(x, x)GN(y, y)

≤ C
αd

. (3.4.2)

We now choose α large enough that the right hand side of (3.4.2) becomes less than 1
4 .

We define the Gaussian random vector (Xx)x∈EN,L by Xx = ψx√
GN(x,x)

. Let ΣX be its

covariance matrix. Then (ΣX)x,x = 1 for all x and (3.4.2) implies that

∑
y∈EN,L

y 6=x

|(ΣX)x,y| ≤
1
4

. (3.4.3)

Let {Yx}x∈EN,L be i.i.d. normal variables distributed according to N
(
0, 3

2

)
and let ΣY =

3
21EN,L be their joint covariance matrix, where 1EN,L is a unit matrix indexed by EN,L.

Because of (3.4.3) the matrix ΣY − ΣX then satisfies

(ΣY − ΣX)x,x =
3
2
− 1 =

1
2
> ∑

y∈EN,L
y 6=x

(ΣX)x,y

This means that ΣY − ΣX is strictly diagonally dominant and hence positive definite. Hence
we can apply Lemma 3.2.5 and obtain(

1
2

)|EN,L|
= P(Y ∈ (0, ∞)EN,L)

≥
(

det ΣX

det ΣY

) 1
2

P(X ∈ (0, ∞)EN,L)

=

(
det ΣX

det ΣY

) 1
2

PN(ψx ≥ 0 ∀x ∈ EN,L)

≥
(

det ΣX

det ΣY

) 1
2

PN(ΩΛN−L,+) .

It remains to estimate det ΣX
det ΣY

. Since ΣY is diagonal, det ΣY =
( 3

2

)|EN,L|. On the other hand, by
(3.4.3) the matrix ΣX − 3

41EN,L is still diagonally dominant and hence positive semidefinite.

Hence all eigenvalues of ΣX must be at least 3
4 . Therefore det ΣX ≥

( 3
4

)|EN,L|.
We conclude

PN(ΩΛN−L,+) ≤
(

1
2

)|EN,L| (det ΣY

det ΣX

) 1
2

≤
(

1
2

)|EN,L| (3/2
3/4

) |EN,L |
2

=

(
1√
2

)|EN,L|
. (3.4.4)
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3 Probability to be positive for the membrane model in dimensions two and three

Recall that by (3.4.1) we have |EN,L| ≥ c Nd−1

αd−1(L+1)d−1 . Thus we finally obtain

PN(ΩΛN−L,+) ≤ exp
(
−c

Nd−1

(L + 1)d−1

)
for c = 1

2αd−1 log 2.
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4 The maximum of the four-dimensional
membrane model

This chapter is based on the author’s paper [Sch20a], with only minor changes.

4.1 Introduction

As discussed in Section 1.3.2, in this chapter we will study the maximum of the four-
dimensional membrane model. The main part of the proof are estimates for the Green’s
function of the discrete Bilaplacian in dimension 4. These were described in Section 1.4.3.

4.1.1 Main result for the membrane model

Recall that ψN denotes a sample of P∆,ΛN , where ΛN = [0, N]d ∩ Zd and that M∆
N =

maxx∈ΛN ψN,x.
Our main result is the following.

Theorem 4.1.1. Let d = 4. The random variable

M∆
N −m∆

N := M∆
N −

1
π

log N +
3

16π
log log N

converges in distribution. The limit law is a randomly shifted Gumbel distribution µ∞, given by

µ∞((−∞, x]) = Ee−γ∗Ze−8πx ∀x

where γ∗ is a constant and Z is a positive random variable that is the limit in law of

ZN =
√

8 ∑
v∈ΛN

(log N − πψN,v)e−8(log N−πψN,v) .

Before we discuss our proof strategy, let us point out a generalization.

Remark 4.1.2. Our approach is not limited to the membrane model. In fact, consider for
l ∈N+ the ∇l-model, given by the probability measure

P
(l)
A (dψ) =


1

Z(l)
A

exp
(
− 1

2 ∑v∈Zd |∆
l
2
1 ψv|2

)
∏v∈A dψv ∏v∈Zd\A δ0(dψv) l even

1
Z(l)

A

exp
(
− 1

2 ∑v∈Zd |∇1∆
l−1

2
1 ϕv|2

)
∏v∈A dψv ∏v∈Zd\A δ0(dψv) l odd

(note that l = 1 corresponds to the gradient model and l = 2 to the membrane model) in
the critical dimension d = 2l on the cube A = [0, N]d ∩Zd. Then Theorem 4.1.1 generalizes
to this setting, and the maximum of the field, appropriately centred, converges in law to
a randomly shifted Gumbel distribution. Our proof in the following would only require
minor modifications to yield this more general result. However, since the case l = 1 is
covered by [BDZ16], while the ∇l-model for l > 2 is rarely studied, we choose to focus on
the case l = 2 in the following. This allows us to avoid more complicated notation.
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4 The maximum of the four-dimensional membrane model

4.1.2 Log-correlated fields

As discussed in Section 1.3.2, one needs to consider this result in the context of log-correlated
Gaussian fields, where one expects certain universality properties of features such as the
maximum of the field. In particular, in [DRZ17] Ding, Roy and Zeitouni gave a set of four
assumptions that ensure that the maximum of a field converges in distribution. Let us recall
their result, slightly reformulated (we have changed the domain from [0, N − 1]d to [0, N]d,
and replaced log+ |a| with log(1 + |a|) in (A.0) and (A.1), but it is straightforward to check
that the theorem stated here is equivalent to the theorem as stated in [DRZ17]). We write
dN(v) := dist(v, ∂[0, N]d) for the distance of v to the boundary of [0, N]d and d(x) := d1(x).

Theorem 4.1.3 ([DRZ17, Theorem 1.3 and Theorem 1.4]). Let ΛN = [0, N]d ∩Zd, and let
ϕN = {ϕN,v : v ∈ ΛN} be a centred Gaussian field. Assume that

(A.0) (Logarithmically bounded fields) There is a constant α0 > 0 such that for all u, v ∈ ΛN ,

Var ϕN,v ≤ log N + α0

and
E(ϕN,v − ϕN,u)

2 ≤ 2 log(1 + |u− v|)− |Var ϕN,v −Var ϕN,u|+ 4α0 .

(A.1) (Logarithmically correlated fields) For any δ > 0 there is a constant α(δ) > 0 such that
for all u, v ∈ ΛN with min(dN(u), dN(v)) ≥ δN

|Cov(ϕN,v, ϕN,u)− (log N − log(1 + |u− v|))| ≤ α(δ) .

(A.2) (Near diagonal behaviour) There are both a continuous function f1 : (0, 1)d → R and a
function f2 : Zd ×Zd → R such that the following holds. For all L, ε, δ > 0, there exists
N0 = N0(L, ε, δ) such that for all x ∈ [0, 1]d, N ≥ N0 such that Nx ∈ Zd and d(x) ≥ δ,
and for all u, v ∈ [0, L]d ∩Zd we have

|Cov(ϕN,Nx+v, ϕN,Nx+u)− log N − f1(x)− f2(u, v)| < ε .

(A.3) (Off diagonal behaviour) There is a continuous function f3 : Dd → R, where Dd =

{(x, y) : x, y ∈ (0, 1)d, x 6= y} such that the following holds. For all L, ε, δ > 0 there exists
N1 = N1(L, ε, δ) > 0 such that for all x, y ∈ [0, 1]d, N ≥ N1 such that Nx, Ny ∈ Zd,
min(d(x), d(y)) ≥ δ and |x− y| ≥ 1

L we have

|Cov(ϕN,Nx, ϕN,Ny)− f3(x, y)| < ε .

Let MN = maxv∈ΛN ϕN,v and

mN =
√

2d log N − 3
2
√

2d
log log N .

Then the sequence MN −mN converges in distribution to a randomly shifted Gumbel distribution
µ∞. The limit distribution is given by

µ∞((−∞, x]) = Ee−γ∗Ze−
√

2dx ∀x

where γ∗ is a constant and Z is a positive random variable that is the limit in law of

ZN = ∑
v∈ΛN

(
√

2d log N − ϕN,v)e−
√

2d(
√

2d log N−ϕN,v) .
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4.1 Introduction

This theorem easily implies Theorem 4.1.1 once we show that ψ∆
N (or rather

√
8πψ∆

N)
satisfies assumptions (A.0), (A.1), (A.2), (A.3). In fact we can prove even slightly stronger
statements than these. Let us state the precise results that we will prove. We abbreviate
λ =
√

8π.

Theorem 4.1.4. The field ϕN := λψ∆
N in dimension d = 4 satisfies

(A.0’) There is a constant α′0 > 0 such that for all u, v ∈ ΛN ,

Var ϕN,v ≤ min
(
log N + α′0, α′0 log(2 + dN(v))

)
and

Var ϕN,v −Cov(ϕN,v, ϕN,u) ≤ log(1 + |u− v|) + 2α′0 .

(A.1’) There is a constant α′′0 > 0 such that for all u, v ∈ ΛN∣∣∣∣Cov(ϕN,v, ϕN,u)− log
(

2 +
max(dN(u), dN(v))

1 + |u− v|

)∣∣∣∣ ≤ α′′0 .

(A.2’) There are a constant θ0 > 0, a continuous function f1 : (0, 1)4 → R and a function f2 : Z4 ×
Z4 → R such that the following holds. For all L, ε > 0, θ > θ0 there exists N′0 = N′0(L, ε, θ)

such that for all x ∈ [0, 1]4, N ≥ N′0 such that Nx ∈ Z4 and d(x) ≥ (log N)θ

N , and for all
u, v ∈ [0, L]4 ∩Z4 we have

|Cov(ϕN,Nx+v, ϕN,Nx+u)− log N − f1(x)− f2(u, v)| < ε .

(A.3’) There are a constant θ1 > 0 and a continuous function f3 : D4 → R, where D4 = {(x, y) :
x, y ∈ (0, 1)4, x 6= y} such that the following holds. For all L, ε > 0, θ > θ1 there
exists N′1 = N′1(L, ε, θ) such that for all x, y ∈ V, N ≥ N′1 such that Nx, Ny ∈ Z4,

min(d(x), d(y)) ≥ (log N)θ

N and |x− y| ≥ 1
L we have

|Cov(ϕN,Nx, ϕN,Ny)− f3(x, y)| < ε .

It is not hard to check that the assumptions (A.0’), (A.1’), (A.2’), (A.3’) imply (A.0), (A.1),
(A.2), (A.3) respectively, so that Theorem 4.1.1 is a straightforward corollary of Theorem
4.1.4. We give a few more details in Section 4.4.

The proof of Theorem 4.1.4 is the main contribution of this chapter. In the next section we
will describe our approach.

4.1.3 Green’s function estimates

The covariance function of the membrane model is the Green’s function G∆
N of the discrete

Bilaplacian on the grid [0, N]d with zero boundary data, and the assumptions (A.0’), (A.1’),
(A.2’), (A.3’) all correspond to certain estimates for this Green’s function. Therefore our goal
is to understand this Green’s function. We are going to apply tools from PDE theory and
numerical analysis, so before proceeding further it is convenient to rescale our domain to
a unit box. Let h = 1

N , let Λh = [0, 1]4 ∩ (hZ)4, and let ψ∆
h,x := ψ∆

N, x
h
. Let G∆

N and G∆
h be the

covariance functions of ψ∆
N and ψ∆

h . Then also G∆
h (x, y) = G∆

N
( x

h , y
h

)
.

Using G∆
N and G∆

h , ΛN and Λh, and ψN and ψh simultaneously is a slight abuse of notation.
It should, however, always be clear from the context which object we are referring to. Let
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4 The maximum of the four-dimensional membrane model

us also remark that from a PDE point of view it would arguably be more natural to choose
h = 1

N+2 and rescale [0, N]4 to [h, 1− h]4, as this would give our domain a natural boundary
layer of zeros, matching the continuous Dirichlet boundary data. Our choice of rescaling,
however, is in line with [DRZ17].

Observation 4.1.5. Under the aforementioned rescaling, each statement (A.0’), (A.1’), (A.2’),
(A.3’) from Theorem 4.1.4 for λψ∆

N in dimension d = 4 is equivalent to the corresponding following
statement for G∆

h .

(B.0’) There is a constant α′0 > 0 such that for all x, y ∈ Λh,

λ2G∆
h (x, x) ≤ min

(
− log h + α′0, α′0 log

(
2 +

d(x)
h

))
and

λ2
(

G∆
h (x, x)− G∆

h (x, y)
)
≤ log

(
1 +
|x− y|

h

)
+ 2α′0 .

(B.1’) There is a constant α′′0 > 0 such that for all x, y ∈ Λh∣∣∣∣λ2G∆
h (x, y)− log

(
2 +

max(d(x), d(y))
h + |x− y|

)∣∣∣∣ ≤ α′′0 .

(B.2’) There are a constant θ0 > 0, a continuous function f1 : (0, 1)4 → R and a function f2 : Z4 ×
Z4 → R such that the following holds. For all L, ε > 0, θ > θ0 there exists N′0 = N′0(L, ε, θ)

such that for all h ≤ 1
N′0

with 1
h ∈ N, all x ∈ Λh such that d(x) ≥ h| log h|θ and for all

u, v ∈ [0, L]4 ∩Z4 we have∣∣∣λ2G∆
h (x + hu, x + hv) + log h− f1(x)− f2(u, v)

∣∣∣ < ε .

(B.3’) There are a constant θ1 > 0 and a continuous function f3 : D4 → R, where D4 = {(x, y) :
x, y ∈ (0, 1)4, x 6= y} such that the following holds. For all L, ε > 0, θ > θ1 there exists
N′1 = N′1(L, ε, θ) such that for all h ≤ 1

N′1
with 1

h ∈ N and for x, y ∈ Λh such that

min(d(x), d(y)) ≥ h| log h|θ and |x− y| ≥ 1
L we have∣∣∣λ2G∆

h (x, y)− f3(x, y)
∣∣∣ < ε .

Let us discuss how one might prove Theorem 4.1.4, or rather the statements (B.0’), (B.1’),
(B.2’), (B.3’). We write Γh = (hZ)4 ∩

(
[−h, 1 + h]4 \ [0, h]4

)
. The function G∆

h is the Green’s
function associated to the discrete boundary value problem

∆2
huh = fh in Λh

uh = 0 on Γh

Dh
νuh = 0 on Γh

(4.1.1)

(where Dh
νu(x) = u(x+hν)−u(x)

h and ν is an outward unit normal vector). That is, for y ∈ Λh
the function Gh(·, y) is the unique solution of that equation with right hand side fh = δh(y),

defined as δh,y(x) =

{
1
h4 if x = y

0 otherwise
.
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4.1 Introduction

One previous strategy to prove estimates for G∆
h , introduced in [Kur09] and used as

well in [Cip13], was to compare G∆
h to G∆

h , the Green’s function associated to the discrete
boundary value problem

∆2
huh = fh in Λh

uh = 0 on Γ′h
∆hu = 0 on Γh

(4.1.2)

where Γ′h = (hZ)4 ∩
(
[−2h, 1 + 2h]4 \ [−h, 1 + h]4

)
. The problem (4.1.2) can be seen as

an iterated version of the discrete Poisson problem, and so many of the analytic and
probabilistic tools available for the latter also have a version for (4.1.2). In particular,
there are random walk representations for G∆

h that allow to control it well. The strategy in
[Kur09] then was to use PDE techniques to compare solutions of (4.1.1) and (4.1.2). This
allows to estimate the difference between Gh and Gh uniformly in compact subsets of (0, 1)4.
For our purposes, this is not good enough, as for (B.2’) and (B.3’) an error term that is only
bounded is already too much. Note however that results similar to (B.0’), (B.1’) can be
proved using these methods. In fact, [Kur09, Proposition 1.1] and [Cip13, Lemma 2.1] are
already weaker versions of (B.0’) and (B.1’).

In Chapter 2 we considered G∆
h in dimensions 2 and 3, and used a very different strategy,

namely a compactness argument to transfer estimates for the continuous Green’s function
in domains with singularities to the discrete setting. This allowed us the prove discrete
Caccioppoli inequalities (i.e. L2-based decay estimates on balls of various sizes) and to
conclude from these estimates for G∆

h . In principle, this strategy can also be applied in our
four-dimensional setting. One obstacle to this is that, unlike the two- or three-dimensional
case, the relevant continuous estimates cannot be found in the literature. Even more
importantly, the estimates in Chapter 2 are all up to a possibly large constant, and so the
argument would have to be modified significantly to obtain estimates such as (B.2’) and
(B.3’).

Instead of the aforementioned approaches to derive estimates for G∆
h we will use estimates

for the approximation quality of finite difference schemes for the Bilaplacian. This idea
is not completely new, as for example in [CDH19] estimates for finite difference schemes
from [Tho64] were used to prove convergence of the rescaled four-dimensional membrane
model in some negative Sobolev space. However, we would like to obtain a much stronger
conclusion, namely pointwise estimates for the difference of the discrete and continuous
Green’s function. The result from [Tho64] is very general, but because of its generality it
requires in our specific case very strong assumptions on the solution of the continuous
Bilaplace equation to be approximated (being C5) to yield estimates useful for us (the
W2,2

h -approximation error decaying like h
1
2 ).

We will use a rather different estimate for the approximation quality of finite difference
schemes. We will discuss the details in Section 4.2.2. Roughly speaking, the result is the
following: Let 2 < s < 5

2 , let u ∈Ws,2 ∩W2,2
0 ((0, 1)4) extended by 0 to R4, and assume that

∆2u = f in (0, 1)4, so that u satisfies

∆2u = f in (0, 1)4

u = 0 on ∂(0, 1)4

∂νu = 0 on ∂(0, 1)4 .

(4.1.3)
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4 The maximum of the four-dimensional membrane model

Furthermore, let uh : (hZ)4 → R be the solution of

∆2
huh = Th,3,3,3,3 f in Λh

uh = 0 on (hZ)4 \Λh

where Th,3,3,3,3 is a certain regularization operator. Then

‖u− uh‖W2,2
h (Λh)

≤ Chs−2‖u‖Ws,2((0,1)4)

where ‖ · ‖W2,2
h (Λh)

is a discrete Sobolev norm.
This result is inspired by closely related results in Chapter 5. However, in that chapter the

focus is on obtaining estimates as above for s as large as possible. In the case of interest to
us, s < 5

2 , the result can essentially be shown using the methods from [GMP83, IĬS86, JS14].
We will use this result to compare solutions of (4.1.1) with solutions of (4.1.3). In particular,

we will use it when u is the regular part of the continuous Green’s function on [0, 1]4. To
do so, we need regularity estimates for solutions of (4.1.3). As already mentioned, optimal
estimates for higher order elliptic problems on four-dimensional polyhedral domains are
not yet in the literature. Instead we will use much weaker estimates (similar to ones in
[MM13, MM14]) which are nonetheless sharp enough for our purposes. These estimates
will allow us to place the regular part of the Green’s function in W2+κ0,2 for some small
κ0 > 0, and this is good enough to apply the estimate above.

We will also need to have good estimates for the discrete Green’s function on the full
space (hZ)4. These were derived in [Man67] using Fourier analysis. Furthermore, Theorem
4.2.3 gives us control over the W2,2

h -norm of the difference of u and uh, while we are actually
interested in the L∞

h -norm and want it to decay. To achieve this, we will use a discrete
Sobolev-inequality that allows us to control the L∞

h -norm by the W2,2
h -norm at the cost of a

term logarithmic in h. The presence of this term is the reason why we can prove (B.2’) and
(B.3’) only up to distance | log h|θ to the boundary. For (B.0’) and (B.1’) we do not need a
decaying but only a bounded error term and so we can prove these estimates on the whole
domain.

We will give the details of the argument that we sketched here in the following sections. In
Section 4.2 we gather various useful results: The aforementioned result on finite difference
schemes, as well as some discrete inequality of Poincaré-Sobolev-type. These tools will
allow us to compare G∆

h with various other Green’s functions: the discrete Green’s function
of the full space (that we discuss in Section 4.3.1) and the continuous Green’s functions of
the box [0, 1]4 and of the full space (that we both discuss in Section 4.3.2). After all these
preparations we can then turn to the proof of Theorem 4.1.4 in Section 4.4. We first prove a
crucial lemma, Lemma 4.4.1 that shows that the regular part of the discrete and continuous
Green’s functions on the box are uniformly close, and then we use this Lemma and the
results of the preceding sections to establish Theorem 4.1.4. Finally we use Theorem 4.1.3 to
conclude Theorem 4.1.1 as well.

4.1.4 Notation

From now on we will only consider the membrane and not the gradient model, so there is
no risk of confusion when we drop all superscripts ∆.

Occasionally we write r = s + O(t) to express |r− s| ≤ Ct.
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We use the Sobolev space Wk,2(Ω) with the norm ‖u‖2
Wk,2(Ω)

= ∑|α|≤k ‖∂αu‖2
L2(Ω)

. For
s > 0 not an integer (i.e. s = k + t where k ∈ N, 0 < t < 1) we will also encounter the
fractional Sobolev space Ws,2(Ω) with norm ‖u‖2

Ws,2(Ω)
= ‖u‖2

Wk,2(Ω)
+ [u]2Ws,2(Ω)

and the

seminorm [u]2Ws,2(Ω)
= ∑|α|=k

∫
Ω

∫
Ω
|∂αu(x)−∂αu(y)|2
|x−y|4+2t dx dy. For any s < 0 we define Ws,2(Ω)

as the dual of W−s,2
0 (Ω). We extend these definitions to vector-valued functions by taking

the Euclidean norm of the norms of the components.
For A ⊂ (hZ)4 and uh : A→ R, we define ‖uh‖2

L2
h(A)

= ∑x∈A h4|uh(x)|2, and ‖uh‖L∞
h (A) =

supx∈A |uh(x)|. We will also use the discrete Sobolev-norm ‖uh‖2
W2,2

h (A)
= ‖uh‖2

L2
h(A)

+

‖∇huh‖2
L2

h(A)
+ ‖∇2

huh‖2
L2

h(A)
, where we extend the definitions to vector-valued functions as

before.
Let us also fix once and for all a smooth function η : R4 → R that is equal to 1 on B 1

2
(0)

and 0 outside B1(0). We define η(r)(x) = η(rx), η
(r)
y (x) = η(r)(x − y) and let η

(r)
h,y be the

restriction of η
(r)
y to (hZ)4. Thus η

(r)
y and η

(r)
h,y are cut-off functions at scale r around y.

4.2 Preliminaries

4.2.1 Discrete Inequalities

We collect here two discrete inequalities that we will use several times in the following. We
begin with a Poincaré inequality.

Lemma 4.2.1. Let x∗ ∈ (hZ)4, r ≥ 0. Let uh : (hZ)4 → R and suppose that uh vanishes on at
least one of the faces of Qr(x∗). Let this face be contained in a plane xi = c. Then

‖uh‖2
L2

h(Q
h
r (x∗))

≤ Cr2 ∑
x : {x,x+hei}⊂Qh

r (x∗)

h4|Dh
i uh(x)|2 ≤ Cr2‖∇huh‖2

L2
h(Q

h
r (x∗))

. (4.2.1)

Proof. This is a particular case of Lemma 2.2.1, but let us give a direct proof for the case
at hand. The second inequality is obvious, so we only prove the first. By translating
and reflecting the lattice and renaming the coordinates, we can assume i = 4, Qh

r (x∗) =

[0, 2r]4 ∩ (hZ)4. We write x = (x′, x4) where x′ ∈ R3, x4 ∈ R, uh = 0 if x4 = 0. We will
prove the one-dimensional estimate

∑
x4∈[0,2r]∩hZ

|uh(x′, x4)|2 ≤ Cr2 ∑
x4∈[0,2r−h]∩hZ

|Dh
4uh(x′, x4)|2 . (4.2.2)

Once we have established this, (4.2.1) follows by multiplying (4.2.2) by h4 and summing
over all x′ ∈ [0, 2r]3 ∩ (hZ)3. To prove (4.2.2), we use u(x′, 0) = 0 and write

|uh(x′, x4)| =

∣∣∣∣∣∣ ∑
y4∈[0,x4−h]∩hZ

uh(x′, y4 + h)− uh(x′, y4)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ ∑
y4∈[0,x4−h]∩hZ

hDh
4uh(x′, y4)

∣∣∣∣∣∣
≤ h

( x4

h

) 1
2

 ∑
y4∈[0,x4−h]∩hZ

|Dh
4uh(x′, y4)|2

 1
2
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≤
√

2hr

 ∑
y4∈[0,2r−h]∩hZ

|Dh
4uh(x′, y4)|2

 1
2

and therefore

∑
x4∈[0,2r]∩hZ

|uh(x′, x4)|2 ≤
2r
h

2hr ∑
y4∈[0,2r−h]∩hZ

|Dh
4uh(x′, y4)|2

≤ 4r2 ∑
y4∈[0,2r−h]∩hZ

|Dh
4uh(x′, y4)|2 .

This shows (4.2.2).

Next we give an inequality of Poincaré-Sobolev type. Given uh : (hZ)4 → R that vanishes
outside of Λh we would like to estimate its pointwise values by the ‖uh‖W2,2

h ((hZ)4)-norm.
We cannot hope for such an estimate to hold with a constant independent of h, as the
(continuous) Sobolev space W2,2((0, 1)4) does not embed into L∞((0, 1)4). However, by
Strichartz’s [Str72] version of the Moser-Trudinger inequality any u ∈ W2,2((0, 1)4) with
‖u‖W2,2((0,1)4) = 1 satisfies

∫
(0,1)4 ec|u(x)|2 dx ≤ C, and this suggests that u can diverge at

worst like
√
| log |x||. So back in the discrete setting we can hope for an estimate with a

factor scaling like
√
| log h|. Indeed we have the following result:

Lemma 4.2.2. Assume that uh : (hZ)4 → R vanishes outside of Λh. Then for any x ∈ Λh we have

|uh(x)| ≤ C

√
log
(

2 +
d(x)

h

)
‖uh‖W2,2

h ((hZ)4) .

This lemma in combination with Theorem 4.2.3 will allow us to control the distance
between the solution of a continuous Bilaplace equation and its discrete approximation at
the cost of a logarithmic divergence (which we will be able to absorb in the applications in
Section 4.4).

Proof of Lemma 4.2.2. We first want to localize to a ball around x. Let vh = η
(d(x)+h)
h,x uh. Then

vh(x) = uh(x). Furthermore vh is supported on Qh
d(x)+h(x). The discrete chain rule implies

that

|Dh
i vh(y)| ≤ C sup

z∈Qh
h(y)

∣∣∣Dh
i η

(d(x)+h)
h,x (z)

∣∣∣ sup
z∈Qh

h(y)
|uh(z)|

+ C sup
z∈Qh

h(y)

∣∣∣η(d(x)+h)
h,x (z)

∣∣∣ sup
z∈Qh

h(y)
|Dh

i uh(z)|

≤ C sup
z∈Qh

h(y)

∣∣∣Dh
i η

(d(x)+h)
h,x (z)

∣∣∣
 ∑

z∈Qh
h(y)

|uh(z)|2
 1

2

+ C sup
z∈Qh

h(y)

∣∣∣η(d(x)+h)
h,x (z)

∣∣∣
 ∑

z∈Qh
h(y)

|Dh
i uh(z)|2

 1
2

and a similar expression for |Dh
i Dh
−jvh(y)|. If we sum the squares of these eximates over y,

we see that
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‖vh‖W2,2
h ((hZ)4) ≤ C‖η(d(x)+h)

h,x ‖L∞
h ((hZ)4)‖∇2

huh‖L2
h(Q

h
d(x)+2h(x))

+ C‖∇hη
(d(x)+h)
h,x ‖L∞

h ((hZ)4)‖∇huh‖L2
h(Q

h
d(x)+2h(x))

+ C‖∇2
hη

(d(x)+h)
h,x ‖L∞

h ((hZ)4)‖uh‖L2
h(Q

h
d(x)+2h(x))

≤ C‖∇2
huh‖L2

h(Q
h
d(x)+2h(x)) +

C
d(x) + h

‖∇huh‖L2
h(Q

h
d(x)+2h(x))

+
C

(d(x) + h)2 ‖uh‖L2
h(Q

h
d(x)+2h(x)) .

(4.2.3)

We can apply Lemma 4.2.1 to uh and Dh
i uh for any i ∈ {1, . . . , 4}, because these vanish on

Qh
d(x)+2h(x) \ [−h, 1 + h]4 and hence in particular on a face of Qh

d(x)+2h(x). Thus we obtain

‖uh‖L2
h(Q

h
d(x)+2h(x)) ≤ C(d(x) + 2h)‖∇huh‖L2

h(Q
h
d(x)+2h(x))

≤ C(d(x) + 2h)2‖∇2
huh‖L2

h(Q
h
d(x)+2h(x)) .

(4.2.4)

If we combine this with (4.2.3) and note that d(x) + 2h ≤ 2(d(x) + h), we obtain

‖vh‖W2,2
h ((hZ)4) ≤ C‖uh‖W2,2

h ((hZ)4) . (4.2.5)

Furthermore, an argument analogous to the one that led to (4.2.4) shows that

‖vh‖L2
h((hZ)4) ≤ C(d(x) + h)2‖∇2

hvh‖L2
h((hZ)4) . (4.2.6)

Now we are in a position to apply discrete Fourier analysis, similar to the proof of [Kur09,
Proposition B.1]. Let

v̂h(ξ) = h4 ∑
y∈(hZ)4

vh(y)eiy·ξ

for any ξ ∈
[
−π

h , π
h

]4 be the Fourier transform of vh. Then we also have the inverse formula

vh(z) =
1

(2π)4

∫
[− π

h , π
h ]

4 v̂h(ξ)e−iz·ξ dξ

for any z ∈ (hZ)4, and Plancherel’s formula in the form∫
[− π

h , π
h ]

4 |v̂h(ξ)|2 dξ = (2πh)4 ∑
y∈(hZ)4

|vh(y)|2 = (2π)4‖vh(y)‖2
L2

h((hZ)4) .

We have
D̂h

αvh(ξ) = (e−ihξ1 − 1)α1 . . . (e−ihξ4 − 1)α4 v̂h(ξ)

for any α ∈N4. This implies∣∣∣D̂h
αvh(ξ)

∣∣∣ ≥ 1
C
|ξ1|α1 . . . |ξ4|α4 |v̂h(ξ)|

for any ξ ∈
[
−π

h , π
h

]4. In combination with Plancherel’s formula and (4.2.6) we conclude∫
[− π

h , π
h ]

4 |ξ|4|v̂h(ξ)|2 ≤ C‖∇2
hvh‖2

L2
h((hZ)4) ≤ C‖vh‖2

W2,2
h ((hZ)4)

, (4.2.7)
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∫
[− π

h , π
h ]

4 |v̂h(ξ)|2 ≤ C‖vh‖2
L2

h((hZ)4) ≤ C(d(x) + h)4‖vh‖2
W2,2

h ((hZ)4)
. (4.2.8)

Next, we estimate

|vh(x)| = 1
(2π)4

∣∣∣∣∣
∫
[− π

h , π
h ]

4 v̂h(ξ)e−ix·ξ dξ

∣∣∣∣∣
≤ C

∫
[− π

h , π
h ]

4 |v̂h(ξ)|dξ

≤ C

(∫
[− π

h , π
h ]

4

(
|ξ|4 + 1

(d(x) + h)4

)
|v̂h(ξ)|2 dξ

) 1
2

×
(∫

[− π
h , π

h ]
4

(
|ξ|4 + 1

(d(x) + h)4

)−1

dξ

) 1
2

.

Using (4.2.7) and (4.2.8) we see that∫
[− π

h , π
h ]

4

(
|ξ|4 + 1

(d(x) + h)4

)
|v̂h(ξ)|2 dξ ≤ C‖vh‖2

W2,2
h ((hZ)4)

.

Furthermore we can compute using polar coordinates that

∫
[− π

h , π
h ]

4

(
|ξ|4 + 1

(d(x) + h)4

)−1

dξ =
∫
[− π

h , π
h ]

4

(d(x) + h)4

1 + (d(x) + h)4|ξ|4 dξ

≤ C
∫ 2π

h

0

(d(x) + h)4s3

1 + (d(x) + h)4s4 ds

≤ C log

(
1 + (d(x) + h)4

(
2π

h

)4
)

≤ C log
(

2 +
d(x)

h

)
.

Putting everything together we indeed arrive at

|uh(x)| = |vh(x)|

≤ C

√
log
(

2 +
d(x)

h

)
‖vh‖W2,2

h ((hZ)4)

≤ C

√
log
(

2 +
d(x)

h

)
‖uh‖W2,2

h ((hZ)4) .

4.2.2 Estimates for finite difference schemes

Let us discuss next the estimate for the approximation order of finite difference schemes
that was already mentioned in the introduction.

To state it we need some definitions. These definition will be discussed in more detail in
Chapter 5. For j ≥ 1 let θj be the standard univariate centred B-spline of degree j− 1 (cf.
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[JS14, Section 1.9.4]). Of interest to us are

θ3(z) : =


3
4 − z2 |z| ≤ 1

2
1
2

(
|z| − 3

2

)2 1
2 < |z| ≤ 3

2

0 else

,

θ1(z) : =

{
1 |z| ≤ 1

2

0 else
.

Using this, we can define the smoothing operator Th,j
i for 1 ≤ i ≤ 4 as

Th,j
i f (x) :=

1
h

∫
R

f (x1, . . . , xi−1, yi, xi+1, . . . , x4)θj

(
xi − yi

h

)
dyi

extended to distributions on R4 in the obvious way. Furthermore, we set

Th,j,...,j f := Th,j
1 ◦ · · · ◦ Th,j

4 f .

It is important for us that Th,j
i maps constant functions to themselves and that

Th,j
i ∂2

i f = Dh
i Dh
−iT

h,j−2
i f .

If we define the shorthand

Th,3,3,3,3−2ei := Th,3
1 ◦ . . . ◦ Th,3

i−1 ◦ Th,1
i ◦ Th,3

i+1 ◦ . . . ◦ Th,3
4

we also have
Th,3,3,3,3∂2

i f = Dh
i Dh
−iT

h,3,3,3,3−2ei f . (4.2.9)

Theorem 4.2.3. Let 2 < s < 5
2 , let u ∈ Ws,2

0 ((0, 1)4), extended by 0 to ũ ∈ Ws,2(R4). Let
∆2ũ = f as distributions, so that in particular

∆2u = f in (0, 1)4 .

Furthermore, let uh : (hZ)4 → R be the solution of

∆2
huh = Th,3,3,3,3 f in Λh

uh = 0 on (hZ)4 \Λh .

Then we have
‖uh − ũ‖W2,2

h ((hZ)4) ≤ Cshs−2‖u‖Ws,2((0,1)4) .

Note that f = ∆2ũ ∈ Ws−4,2(R4) is in a negative Sobolev space. The operator Th,3,3,3,3

maps Wt,2(R4) to C(R4) for any t > − 5
2 (see [JS14, Section 1.9.4]). So in particular Th,3,3,3,3 f

has pointwise values and the difference scheme in Theorem 4.2.3 makes sense.
This theorem is closely related to Theorem 5.1.2 in Chapter 5. In that theorem one takes

5
2 < s ≤ 3, and Th,3,3,3,3 is replaced by Th,2,2,2,2. The novelty of that chapter lies in choosing a
good extension ũ and dealing with its boundary values. In our case we can just extend u by
0 and thereby avoid many of these subtleties. In fact, all the ideas for the proof of Theorem
4.2.3 are already for example in [JS14].

To make this chapter more self-contained we give some details for a proof of Theorem
4.2.3.

107



4 The maximum of the four-dimensional membrane model

Proof of Theorem 4.2.3. First of all, s < 5
2 and u ∈ Ws,2

0 ((0, 1)4) imply that ũ is actually in
Ws,2(R4) and ‖ũ‖Ws,2(R4) = ‖u‖Ws,2((0,1)4).

Let eh : (hZ)4 → R be given by eh = ũ− uh. Then,

∆2
heh = ∆2

hũ− ∆2
huh = ∆2

hũ− Th,3,3,3,3∆2ũ on Λh

eh = 0 on (hZ)4 \Λh

and by summation by parts we have

‖∇2
heh‖2

L2
h((hZ)4) = (eh, ∆2

heh)L2
h((hZ)4) = (eh, ∆2

hũ− Th,3,3,3,3∆2ũ)L2
h((hZ)4) . (4.2.10)

We can rewrite ∆2
hũ− Th,3,3,3,3∆2ũ using (4.2.9) as

∆2
hũ− Th,3,3,3,3∆2ũ =

4

∑
i=1

Dh
i Dh
−i∆hũ− Th,3,3,3,3∂2

i ∆ũ

=
4

∑
i=1

Dh
i Dh
−i∆hũ− Dh

i Dh
−iT

h,3,3,3,3−2ei ∆ũ

=
4

∑
i=1

Dh
i Dh
−igi

where
gi := ∆hũ− Th,3,3,3,3−2ei ∆ũ .

We can insert this into (4.2.10) and use summation-by-parts once again to obtain

‖∇2
heh‖2

L2
h((hZ)4) =

4

∑
i=1

(eh, Dh
i Dh
−igi)L2

h((hZ)4)

=
4

∑
i=1

(Dh
i Dh
−ieh, gi)L2

h((hZ)4)

≤
4

∑
i=1
‖gi‖L2

h((hZ)4)‖∇2
heh‖L2

h((hZ)4)

and thus

‖∇2
heh‖L2

h((hZ)4) ≤
4

∑
i=1
‖gi‖L2

h((hZ)4) . (4.2.11)

The summands on the right hand side can be bounded using the Bramble–Hilbert lemma
(see e.g. [JS14, Theorem 2.28]): As s > 2,

|∆hũ(x)| ≤ Ch‖ũ‖L∞(x+(−3h/2,3h/2)4) ≤ Ch,s‖ũ‖Hs(x+(−3h/2,3h/2)4) .

Because s > 3
2 and Th,3,3,3,3−2ei f (x) only depends on f |x+(−3h/2,3h/2)4 we can conclude from

[JS14, Theorem 1.67] and the locality of Th,3,3,3,3−2ei that

|Th,3,3,3,3−2ei ∆ũ(x)| ≤ Ch,s‖ũ‖Hs(x+(−3h/2,3h/2)4) .

Thus gi(x) is a bounded linear functional of ũ ∈Ws,2(x + (−3h/2, 3h/2)4). This functional
vanishes when ũ|x+(−3h/2,3h/2)4 is a polynomial of degree at most 2. Indeed, if that is the
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case then ∆ũ|x+(−3h/2,3h/2)4 is a constant function, and ∆hũ(x) is equal to the same constant,
and the claim follows from the fact that Th,3

1 . . . Th,3
i−1Th,1

i Th,3
i+1 . . . Th,3

4 maps constant functions
to themselves.

We have shown that gi(x) is a bounded linear functional of ũ ∈Ws,2(x + (−3h/2, 3h/2)4)

that vanishes on polynomials of degree at most 2. By the Bramble–Hilbert lemma it is
bounded by Ch,s[ũ]Ws,2(x+(−3h/2,3h/2)4) for s ≤ 3. Using a scaling argument to determine the
correct prefactor of h, we obtain

|gi(x)| ≤ Cshs−4[ũ]Ws,2(x+(−3h/2,3h/2)4)

and hence

‖gi‖2
L2

h((hZ)4) ≤ Ch4 ∑
x∈(hZ)4

h2(s−4)[ũ]2Ws,2(x+(−3h/2,3h/2)4)

≤ Csh2(s−2)[ũ]2Ws,2(R4) ≤ Csh2(s−2)‖u‖2
Ws,2((0,1)4)

(4.2.12)

for those s. Now we can plug (4.2.12) into (4.2.11) and obtain

‖∇2
heh‖L2

h((hZ)4) ≤ Cshs−2‖u‖Ws,2((0,1)4)

for s < 5
2 . Using the discrete Poincaré inequality completes the proof.

4.3 Estimates for other Green’s functions

4.3.1 Estimates for the discrete Green’s function of the full space

Our strategy will be to compare Gh with several other Green’s functions, so let us introduce
these first.

Recall that λ =
√

8π. Let G be the Green’s function of the continuous Bilaplacian on [0, 1]4

with Dirichlet boundary data (i.e. of the problem (4.1.3)). We also need Green’s functions on
the full space. Let Ĝ(x, y) := − 1

λ2 log |x− y|. It is easy to check that this is a fundamental
solution of the Bilaplacian (i.e. that ∆2 (− 1

λ2 log | · −y|
)
= δy in the sense of distributions).

We also define Ĝh : (hZ)4 × (hZ)4 → R by Ĝh(x, y) = F
(

x−y
h

)
− 1

λ2 log h where F is the

function introduced in the following lemma. We added the summand − 1
λ2 log h here to

ensure that Ĝh has the same asymptotic behaviour as Ĝ. We also define shifted versions of
Ĝh and Ĝ, namely for r > 0 we let Ĝ(r) = Ĝ + log r

λ2 , and Ĝ(r)
h = Ĝh +

log r
λ2 . We occasionally

write Gy for G(·, y), and define Gh,y, Ĝy, Ĝh,y, Ĝ(r)
y and Ĝ(r)

h,y analogously.

Lemma 4.3.1 ([Man67, pp. 96-97]). There is a function F : Z4 → R such that ∆2
1F(x) ={

1 x = 0

0 else
, satisfying the asymptotics

F(x) = − 1
8π2 log |x|+ 1

24π2
x4

1 + x4
2 + x4

3 + x4
4

|x|6 + O
(

1
|x|4

)
for x 6= 0.
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4 The maximum of the four-dimensional membrane model

In [Man67], F is defined using the discrete Fourier multiplier associated to ∆2
1. By expand-

ing that multiplier into a Laurent series and computing the Fourier transform termwise
it is possible to give asymptotic expansions to arbitrary high order. This technique also
applies to other discrete polyharmonic Green’s functions. For our purposes the first two
terms quoted above are sufficient.

Lemma 4.3.1 immediately gives us an asymptotic expansion of Ĝh, and so we can easily
obtain estimates for Ĝh and Ĝ(r)

h .

Lemma 4.3.2. Let h > 0, and r ≥ 192h. Let α ∈ N4 with |α| ≤ 2. Then for any x, y ∈ (hZ)4

with r
64 ≤ |x− y|∞ ≤ 16r we have∣∣∣∣Ĝ(r)

h (x, y)− 1
λ2 log

(
r

|x− y|+ h

)∣∣∣∣ ≤ C , (4.3.1)∣∣∣Dh
αĜ(r)

h,y(x)
∣∣∣ ≤ C

r|α|
, (4.3.2)∣∣∣Dh

αĜ(r)
h,y(x)− ∂αĜ(r)

y (x)
∣∣∣ ≤ C

h
r|α|+1

. (4.3.3)

Proof. By translation invariance we may assume y = 0. The definition of Ĝ(r)
h implies that

Ĝ(r)
h (x, 0) = F

( x
h

)
− 1

λ2 log h +
1

λ2 log r

= − 1
λ2 log

|x|
h

+
h2

24π2
x4

1 + x4
2 + x4

3 + x4
4

|x|6 + O
(

h4

|x|4

)
− 1

λ2 log h +
1

λ2 log r

=
1

λ2 log
r
|x| +

h2

24π2
x4

1 + x4
2 + x4

3 + x4
4

|x|6 + O
(

h4

|x|4

)
.

(4.3.4)
From this we immediately conclude (4.3.1) in the case x 6= 0. In case x = 0 we can directly
use

Ĝ(r)
h (0, 0) = F(0) +

1
λ2 log

r
h

to obtain (4.3.1).
The explicit formula for Ĝ reveals that∣∣∣∂αĜ(r)

0 (x)
∣∣∣ = ∣∣∣∣∂α 1

λ2 log
r
|x|

∣∣∣∣ ≤ C
r|α|

if r
64 ≤ |x|∞, and thus (4.3.2) easily follows from (4.3.3).
For (4.3.3) we want to take discrete derivatives of each summand in (4.3.4) separately. If

g = O
(

h4

|·|4

)
then |Dh

αg(x)| ≤ C
h|α|

h4

|x|4 = C h4−|α|

|x|4 so for |α| ≤ 2 we can neglect the error term.
Using Taylor’s theorem we can see that

Dh
α

(
1

λ2 log
r
|x| +

h2

24π2
x4

1 + x4
2 + x4

3 + x4
4

|x|6

)
= ∂α 1

λ2 log
r
|x| + O

(
h

|x||α|+1

)
.

Note that we can avoid the singularity here because |x| ≥ r
64 ≥ 3h. This easily implies

(4.3.3).

110



4.3 Estimates for other Green’s functions

4.3.2 Estimates for continuous Green’s functions

We want to compare G and Gh. This is only useful if we also have estimates for G to begin
with. We will derive such estimates in this section. The following estimates are far from
optimal, but sufficient for our purposes.

We obviously have a well-posedness result for the Bilaplace equation in the energy space
W2,2. The following result states that the same holds true if we raise the regularity slightly.

Theorem 4.3.3. There exists κ0 > 0 with the following property: Let 0 ≤ κ ≤ κ0. Then for each
f ∈W−2+κ,2((0, 1)4) there is a unique u ∈W2+κ,2 ∩W2,2

0 ((0, 1)4) such that ∆2u = f in the sense
of distributions, and we have the estimate

‖u‖W2+κ,2((0,1)4) ≤ Cκ‖ f ‖W−2+κ,2((0,1)4) (4.3.5)

for a constant Cκ depending only on κ.

For convenience we will assume in the following that κ0 < 1
2 , and fix such a κ0. Note that

W2+κ,2 ∩W2,2
0 ((0, 1)4) = W2+κ,2

0 ((0, 1)4) if κ < 1
2 .

Proof of Theorem 4.3.3. This is a special case e.g. of [MM13, Theorem 6.32], but for the
convenience of the reader we give the short argument.

We begin with the case κ = 0. In that case we can test the weak form of ∆2u = f with u
and obtain

‖∇2u‖2
L2((0,1)4) = (u, ∆2u)L2((0,1)4) = (u, f )L2((0,1)4) ≤ ‖u‖W2,2((0,1)4)‖ f ‖W−2,2((0,1)4) .

The Poincaré inequality implies ‖u‖W2,2((0,1)4) ≤ C‖∇2u‖L2((0,1)4) and so we obtain (4.3.5).
For the general case we can use a stability result for analytic families of operators on

Banach spaces: The spaces Ws,2((0, 1)4) and Ws,2
0 ((0, 1)4) each form an interpolation family

with respect to complex interpolation, and so by [TVV88, Proposition 4.1] the set of those s
for which ∆2 : Ws,2

0 ((0, 1)4)→Ws−4,2((0, 1)4) has a bounded inverse is open. We know that
this set contains 2, so the existence of κ0 as in the theorem follows.

Next we state some estimates for G. We begin by estimating the regular part of G in
certain Sobolev norms. Recall that Ĝ(r)(x, y) = Ĝ(x, y) + log r

λ2 for any r > 0.

Lemma 4.3.4. Let κ0 be as in Theorem 4.3.3, and let 0 ≤ κ ≤ κ0. Let K ≥ 2, r > 0, y ∈ (0, 1)4 be
such that d(y)

K ≤ r ≤ d(y)
2 . Then∥∥∥Gy − η

(r)
y Ĝ(r)

y

∥∥∥
W2+κ,2((0,1)4)

≤ CK,κ

rκ
(4.3.6)

for a constant CK,κ depending only on K and κ.

Proof. Let H(r) = Gy − η
(r)
y Ĝ(r)

y . By Theorem 4.3.3 it suffices to show

‖∆2H(r)‖W−2+κ,2((0,1)4) ≤
CK,κ

rκ
. (4.3.7)

By standard interpolation theory and our assumption κ ∈ [0, κ0] ⊂ [0, 2] it suffices to
establish this for κ ∈ {0, 2}.

Observe that ∆2H(r) is zero in (0, 1)4 \ Br(y) as well as in Br/2(y) (as the two singularities
cancel out). This means that ∆2H(r) is supported in Br(y) \ Br/2(y) and there it is equal to
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−∆2
(

η
(r)
y Ĝ(r)

y

)
. We have an explicit formula for Ĝ(r)

y , and so it is straightforward to check

that
∣∣∣∆2

(
η
(r)
y Ĝ(r)

y

)∣∣∣ is bounded by CK
r4 on Br(y) \ Br/2(y). This easily implies (4.3.7) for κ = 2.

For the case κ = 0 we need to be slightly more careful: Let χ
(r)
y be a cut-off function that

is 1 on Br(y) \ Br/2(y) and zero outside B2r(y) \ Br/4(y) (e.g. χ
(r)
y = η

(2r)
y − η

(r/2)
y ). Then we

have ∆2H(r) = −χ
(r)
y ∆2

(
η
(r)
y Ĝ(r)

y

)
and thus we can calculate

‖∆2H(r)‖W−2,2((0,1)4) = sup
‖ϕ‖

W2,2
0 ((0,1)4)

=1

∫
∆2H(r)ϕ

= sup
‖ϕ‖

W2,2
0 ((0,1)4)

=1

∫
−∆2

(
η
(r)
y Ĝ(r)

y

)
χ
(r)
y ϕ

= sup
‖ϕ‖

W2,2
0 ((0,1)4)

=1

∫
−∆

(
η
(r)
y Ĝ(r)

y

)
∆(χ(r)

y ϕ)

≤ C
∥∥∥∆
(

η
(r)
y Ĝ(r)

y

)∥∥∥
L2(B2r(y)\Br/4(y))

sup
‖ϕ‖

W2,2
0 ((0,1)4)

=1
‖∆(χ(r)

y ϕ)‖L2((0,1)4) .

To estimate the second factor we proceed as in the calculation that led to (4.2.5). We have a
Poincaré inequality

‖u‖L2(z+(−s,s)4) ≤ Cs‖∇u‖L2(z+(−s,s)4) (4.3.8)

for any u ∈ W1,2(z + (−s, s)4) that is zero (in the sense of traces) on one of the faces of
z + (−s, s)4. This is the continuous analogue to Lemma 4.2.1, and the proof is very similar.
Using (4.3.8) we can estimate

‖∆(χ(r)
y ϕ)‖L2((0,1)4) ≤ C‖∇2ϕ‖L2(Bd(y)(y)) +

C
r
‖∇ϕ‖L2(Bd(y)(y)) +

C
r2 ‖ϕ‖L2(Bd(y)(y))

≤ C
(

1 +
d(y)

r
+

d(y)2

r2

)
‖∇2ϕ‖L2(y+(−d(y),d(y))4)

≤ CK‖ϕ‖W2,2
0 ((0,1)4) .

We also have that ∆
(

η
(r)
y Ĝ(r)

y

)
is bounded by C

r2 on B2r(y) \ Br/4(y) and hence

∥∥∥∆
(

η
(r)
y Ĝ(r)

y

)∥∥∥
L2(B2r(y)\Br/4(y))

≤ Cr2 · 1
r2 = C .

Using this we obtain (4.3.7) for κ = 0.

Next we give some estimates on the local behaviour of G. The first two allow us to control
G far from and close to the singularity, respectively, while the last one expresses the Hölder
continuity of G− Ĝ near the diagonal.

Lemma 4.3.5. Let κ0 be as in Theorem 4.3.3. Let y ∈ (0, 1)4. The function Gy is smooth on
(0, 1)4 \ {y}, and G− Ĝ is symmetric and smooth on (0, 1)4 × (0, 1)4 \ {(x, x) : x ∈ (0, 1)4} and
can be extended continuously to (0, 1)4 × (0, 1)4. Slightly abusing notation, we write

G(y, y)− Ĝ(y, y) := lim
(y′,y′′)→(y,y)

y′ 6=y′′

G(y′, y′′)− Ĝ(y′, y′′) .
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Let K ≥ 1. We have the following estimates, where d(y)
K ≤ r ≤ d(y)

2 :

|G(x, y)| ≤ C if |x− y| ≥ d(y)
4

, (4.3.9)

|G(x, y)− Ĝ(r)(x, y)| ≤ CK if |x− y| ≤ d(y) . (4.3.10)

Furthermore if r > 0 is arbitrary, |y′ − y| ≤ d(y)
8 and |y′′ − y| ≤ d(y)

8 we have the estimate∣∣∣G(y′, y′′)− Ĝ(r)(y′, y′′)−
(

G(y, y)− Ĝ(r)(y, y)
)∣∣∣ ≤ C

|y′ − y|κ0 + |y′′ − y|κ0

d(y)κ0
. (4.3.11)

Proof. The smoothness of G and G− Ĝ follows from standard regularity theory for higher
order elliptic equations. The estimate (4.3.9) is given in [MM14, Theorem 8.1]. There also a
variant of (4.3.10) (without the correction log r

λ2 and with slightly worse error term) is given.
The results in [MM14] however are in a far more general setting, so we prefer to give an
elementary proof of the specific estimates we need.

We use a standard Caccioppoli inequality (see e.g. [Cam80, Capitolo II, Teorema 3.II or
Teorema 6.I]): If u ∈W2,2(Bs(z)) and ∆2u = 0 in Bs(z) then

‖∇2u‖L∞(Bs/2(z)) ≤
C
s2 ‖∇

2u‖L2(Bs(z)) . (4.3.12)

We will also need a special case of the Gagliardo-Nirenberg interpolation inequality, namely

‖u‖L∞(Bs(z)) ≤ C
(

s2‖∇2u‖L∞(Bs(z)) +
1
s2 ‖u‖L2(Bs(z))

)
. (4.3.13)

To see this, observe first that by scaling we can assume s = 1. The Poincaré inequality implies
that ‖u− a− b · (· − z)‖L∞(B1(z)) ≤ C‖∇2u‖L∞(B1(z)), where a = 1

|B1|
∫

u and b = 1
|B1|
∫
∇u,

and so we only have to bound a and b. We have |a| ≤ C‖u‖L2(B1(z)), and the estimate
‖u− a‖L2(B1(z)) ≤ ‖u‖L2(B1(z)) implies

|b| ≤ C‖b · (· − z)‖L2(B1(z))

≤ C
(
‖u− a− b · (· − z)‖L2(B1(z)) + ‖u− a‖L2(B1(z))

)
≤ C

(
‖∇2u‖L∞(B1(z)) + ‖u‖L2(B1(z))

)
.

This completes the proof of (4.3.13).
After these preparations we can now begin with the proof of (4.3.9). We first assume that

d(x) ≤ 2d(y). Let H(d(y)/8) = Gy − η
(d(y)/8)
y Ĝ(d(y)/8)

y . Lemma 4.3.4 with κ = 0 implies that

‖∇2H(d(y)/8)‖L2((0,1)4) ≤ C . (4.3.14)

The function H(d(y)/8) agrees with Gy on (0, 1)4 \ Bd(y)/8(y). Because d(x)
16 + d(y)

8 ≤
d(y)

4 ≤
|x− y|∞ we have Bd(x)/16(x) ∩ Bd(y)/8(y) = ∅ and thus (4.3.14) implies

‖∇2Gy‖L2(Bd(x)/16(x)) ≤ C .

Using the Caccioppoli inequality (4.3.12) we conclude

‖∇2Gy‖L∞(Bd(x)/32(x)) ≤
C

d(x)2 . (4.3.15)
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Next, note that the Poincaré inequality (4.3.8) applied on x + (−d(x), d(x))4 and (4.3.14)
imply that

‖H(d(y)/8)‖L2(Bd(x)(x)) ≤ Cd(x)2‖∇2H(d(y)/8)‖L2(x+(−d(x),d(x))4) ≤ Cd(x)2

and therefore
‖Gy‖L2(Bd(x)/32(x)) ≤ Cd(x)2 .

Recalling (4.3.15), an application of (4.3.13) concludes the proof.
It remains to consider the case d(x) > 2d(y). In that case |x− y| ≥ d(x)− d(y) ≥ d(x)

2 , so
we can interchange the roles of x and y and repeat the above proof (using that G(x, y) =
G(y, x)).

Next we give a proof of (4.3.10). This is quite similar to the preceding argument. Because
G(r) differs from G(d(y)) only by at most 1

λ2 log K ≤ CK we can assume r = d(y). Let again

H(d(y)) = Gy − η
(d(y))
y Ĝ(d(y))

y . Observe first that if |x− y| ≥ d(y)
4 then (4.3.9) implies (4.3.10).

Therefore we can restrict our attention to the case |x− y| ≤ d(y)
4 . By Lemma 4.3.4 we have

that
‖∇2H(d(y))‖L2((0,1)4) ≤ C .

The function H(d(y)) agrees with Gy − Ĝ(d(y))
y on Bd(y)/2(y). Thus, as before, the Caccioppoli

inequality implies that

‖∇2(Gy − Ĝy)‖L∞(Bd(y)/4(y)) ≤
C

d(y)2

and the Poincaré inequality implies

‖Gy − Ĝy‖L2(Bd(y)/4(y)) ≤ ‖H(d(y))‖L2(Bd(y)(y)) ≤ Cd(y)2

so that the conclusion follows from the interpolation inequality (4.3.13).
For (4.3.11) observe that by Lemma 4.3.4 we control the W2+κ0,2-norm of Gy− η

(d(y))
y Ĝ(d(y))

y .
That Sobolev space embeds into the Hölder space C0,κ0 and so we have[

Gy − η
(d(y))
y Ĝ(d(y))

y

]
C0,κ0 ((0,1)4)

≤ C
∥∥∥Gy − η

(d(y))
y Ĝ(d(y))

y

∥∥∥
W2+κ0,2((0,1)4)

≤ C
d(y)κ0

.

Because Gy − η
(d(y))
y Ĝ(d(y))

y agrees with Gy − Ĝ(d(y))
y on Bd(y)/2(y) this implies∣∣∣G(y′, y)− Ĝ(d(y))(y′, y)−

(
G(y, y)− Ĝ(d(y))(y, y)

)∣∣∣ ≤ C
|y′ − y|κ0

d(y)κ0
.

If we add and subtract log r−log d(y)
λ2 on the left-hand side we obtain∣∣∣G(y′, y)− Ĝ(r)(y′, y)−

(
G(y, y)− Ĝ(r)(y, y)

)∣∣∣ ≤ C
|y′ − y|κ0

d(y)κ0
.

Similarly we obtain∣∣∣G(y′′, y′)− Ĝ(r)(y′′, y′)−
(

G(y, y′)− Ĝ(r)(y, y′)
)∣∣∣ ≤ C

|y′′ − y|κ0

d(y′)κ0

where we used that d(y′) ≥ 7
8 d(y) so that y, y′′ ∈ Bd(y′)/2(y′). If we add the last two estimates

and use once again that d(y′) ≥ 7
8 d(y) we arrive at (4.3.11).
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4.4 Proof of the main theorems

In this section we will finally prove that Gh satisfies (B.0’), (B.1’), (B.2’), (B.3’), which accord-
ing to Observation 4.1.5 implies Theorem 4.1.4.

Recall that Gh is the Green’s function of the discrete Bilaplacian on Λh with zero boundary
data outside Λh, G is the Green’s function of the continuous Bilaplacian on (0, 1)4 with
zero Dirichlet boundary data, and Ĝ(r)

h and Ĝ(r) are shifted versions of the discrete and
continuous full space Green’s function.

The main technical statement used in the proof of Theorem 4.1.4 will be the following.

Lemma 4.4.1. Let κ0 be as in Theorem 4.3.3. Let K ≥ 2, and r ≥ 192h. Then for all x, y ∈ Λh with
d(y)

K ≤ r ≤ d(y)
2 we have∣∣∣(Gh(x, y)− η

(r)
h,y(x)Ĝ(r)

h (x, y)
)
−
(

G(x, y)− η
(r)
y (x)Ĝ(r)(x, y)

)∣∣∣
≤ CK

hκ0

rκ0

√
log
(

2 +
d(x)

h

)
.

This lemma is so useful because it simultaneously provides control over the difference
between the discrete and continuous Green’s function when x, y are far apart and over the
difference of the regular part of the discrete and continuous Green’s function when x, y are
close.

Proof of Lemma 4.4.1. We define Hh = Gh,y − η
(r)
h,yĜ(r)

h,y and H = Gy − η
(r)
y Ĝ(r)

y . Let H̃h be the
solution of

∆2
hH̃h = Th,3,3,3,3∆2H in Λh

H̃h = 0 on (hZ)4 \Λh .

Our goal is to estimate |Hh(x)− H(x)|. We will estimate Hh − H̃h and H̃h − H separately.
The estimate of the latter term is straightforward: Using Theorem 4.2.3 and Lemma 4.3.4,

we obtain

‖H̃h − H‖W2,2
h ((hZ)4) ≤ CKhκ0‖H‖W2+κ0,2((0,1)4) ≤ CK

hκ0

rκ0
.

Estimating Hh − H̃h is more tedious. Similarly as in the proof of Lemma 4.3.4 we let
χ
(r)
y = η

(4r)
y − η

(r/4)
y and χ

(r)
h,y be the restriction of χ

(r)
y to (hZ)4. Then we have

∆2
h(Hh − H̃h) = ∆2

h

(
Gh,y − η

(r)
h,yĜ(r)

h,y

)
− Th,3,3,3,3∆2

(
Gy − η

(r)
y Ĝ(r)

y

)
= χ

(r)
h,y∆2

h

(
Gh,y − η

(r)
h,yĜ(r)

h,y

)
− χ

(r)
h,yTh,3,3,3,3∆2

(
Gy − η

(r)
y Ĝ(r)

y

)
= −χ

(r)
h,y∆2

h

(
η
(r)
h,yĜ(r)

h,y

)
+ χ

(r)
h,yTh,3,3,3,3∆2

(
η
(r)
y Ĝ(r)

y

)
= −χ

(r)
h,y∆2

h

(
η
(r)
h,yĜ(r)

h,y

)
+

4

∑
i=1

χ
(r)
h,yTh,3,3,3,3∂2

i ∆
(

η
(r)
y Ĝ(r)

y

)
= −χ

(r)
h,y

4

∑
i=1

Dh
i Dh
−i

(
∆h

(
η
(r)
h,yĜ(r)

h,y

)
+ Th,3,3,3,3−2ei ∆

(
η
(r)
y Ĝ(r)

y )
))

.

(4.4.1)

Because Hh − H̃h is supported in Λh we have

‖∇2
h(Hh − H̃h)‖2

L2
h((hZ)4) =

(
∆2

h(Hh − H̃h), Hh − H̃h
)

L2
h((hZ)4)
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≤ sup
ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

(
∆2

h(Hh − H̃h), ϕh
)

L2
h((hZ)4))

‖Hh − H̃h‖W2,2
h ((hZ)4)

which together with the Poincaré inequality implies that

‖Hh − H̃h‖W2,2
h ((hZ)4) ≤ C sup

ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

(
∆2

h(Hh − H̃h), ϕh
)

L2
h((hZ)4))

.

Combining this with (4.4.1), and abbreviating T∗i := Th,3,3,3,3−2ei we see that

‖Hh − H̃h‖W2,2
h ((hZ)4)

≤ C sup
ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

4

∑
i=1

(
Dh

i Dh
−i

(
−∆h

(
η
(r)
h,yĜ(r)

h,y

)
+ T∗i ∆

(
η
(r)
y Ĝ(r)

y

))
, χ

(r)
h,y ϕh

)
L2

h((hZ)4))

≤ C sup
ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

4

∑
i=1

(
−∆h

(
η
(r)
h,yĜ(r)

h,y

)
+ T∗i ∆

(
η
(r)
y Ĝ(r)

y

)
, Dh

i Dh
−iχ

(r)
h,y ϕh

)
L2

h((hZ)4))

≤ C
4

∑
i=1

∥∥∥−∆h

(
η
(r)
h,yĜ(r)

h,y

)
+ T∗i ∆

(
η
(r)
y Ĝ(r)

y

)∥∥∥
L2

h(Q
h
8r(y)\Qh

r/32(y))

× sup
ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

∥∥∥∇2
h

(
χ
(r)
h,y ϕh

)∥∥∥
L2

h((hZ)4))
,

(4.4.2)
where we used that χ

(r)
h,y is supported in B4r(y) \ Br/8(y) so that the support of ∆h

(
χ
(r)
h,y ϕh

)
is certainly contained in Qh

8r(y) \ Qh
r/32(y). The discrete product rule and the Poincaré

inequality imply that∥∥∥∇2
h

(
χ
(r)
h,y ϕh

)∥∥∥
L2

h((hZ)4))

≤ C‖∇2
h ϕh‖L2

h(Q
h
d(y)+h(y))

+
C
r
‖∇h ϕh‖L2

h(Q
h
d(y)+h(y))

+
C
r2 ‖ϕh‖L2

h(Q
h
d(y)+h(y))

≤ C
(

1 +
d(y) + h

r
+

(d(y) + h)2

r2

)
‖ϕh‖W2,2

h ((hZ)4)

≤ CK‖ϕh‖W2,2
h ((hZ)4)

and hence
sup

ϕh=0 on (hZ)4\Λh
‖ϕh‖W2,2

h ((hZ)4)
=1

∥∥∥∇2
h

(
χ
(r)
h,y ϕh

)∥∥∥
L2

h((hZ)4))
≤ CK . (4.4.3)

Let us now also estimate the first factor in (4.4.2). The operator Th,3,3,3,3−2ei preserves
constant functions. Therefore for any z with |z− y|∞ ≥ r

32
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(
Th,3,3,3,3−2ei ∆

(
η
(r)
y Ĝ(r)

y

))
(z)

= ∆
(

η
(r)
y Ĝ(r)

y

)
(z) +

(
Th,3,3,3,3−2ei

(
∆
(

η
(r)
y Ĝ(r)

y

)
(·)− ∆

(
η
(r)
y Ĝ(r)

y

)
(x)
))

(z)

= ∆
(

η
(r)
y Ĝ(r)

y

)
(z) + O

h sup
z+(− 3h

2 , 3h
2 )

∣∣∣∇3
(

η
(r)
y Ĝ(r)

y

)∣∣∣


= ∆
(

η
(r)
y Ĝ(r)

y

)
(z) + O

(
h
r3

)
,

(4.4.4)

where we have used that
∣∣Th,3,3,3,3−2ei f (z)

∣∣ ≤ C supz+(−3h/2,3h/2) | f | in the second step as

well as the explicit formula for Ĝ(r)(z, y) in the third step. From Lemma 4.3.2 and Taylor’s
theorem we know that for r

64 ≤ |z− y|∞ ≤ 16r

Dh
αĜ(r)

h,y(z) = ∂αĜ(r)
y (z) + O

(
h

r|α|+1

)
,

Dh
αĜ(r)

h,y(z) = O
(

1
r|α|

)
,

Dh
αη

(r)
h,y(z) = ∂αη

(r)
y (z) + O

(
h

r|α|+1

)
,

Dh
αη

(r)
h,y(z) = O

(
1

r|α|

)
.

If we combine these estimates with the discrete product rule we obtain that for any z with
r

32 ≤ |z− y|∞ ≤ 8r

∆h

(
η
(r)
h,yĜ(r)

h,y

)
(z) = ∆

(
η
(r)
y Ĝ(r)

y

)
(z) + O

(
h
r3

)
. (4.4.5)

Combining (4.4.4) and (4.4.5) we find that∣∣∣∣∣−∆h

(
η
(r)
h,yĜ(r)

h,y

)
+

4

∑
i=1

Th,3,3,3,3−2ei ∆
(

η
(r)
y Ĝy

)∣∣∣∣∣ ≤ C
h
r3

on Qh
8r(y) \Qh

r/32(y) and therefore∥∥∥∥∥−∆h

(
η
(r)
h,yĜ(r)

h,y

)
+

4

∑
i=1

Th,3,3,3,3−2ei ∆
(

η
(r)
y Ĝy

)∥∥∥∥∥
L2

h(Q
h
8r(y)\Qh

r/32(y))

≤ C
h
r

.

If we use this result and (4.4.3) in (4.4.2) we see that

‖Hh − H̃h‖W2,2
h ((hZ)4) ≤ CK

h
r

.

In summary,

‖Hh − H‖W2,2
h ((hZ)4) ≤ ‖Hh − H̃h‖W2,2

h ((hZ)4) + ‖H̃h − H‖W2,2
h ((hZ)4)
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≤ CK

(
hκ0

rκ0
+

h
r

)
≤ CK

hκ0

rκ0

because h
r ≤ 1. Finally, Lemma 4.2.2 allows us to conclude that for any x ∈ (hZ)4

|Hh(x)− H(x)| ≤ CK

√
log
(

2 +
d(x)

h

)
‖Hh − H‖W2,2

h ((hZ)4) ≤ CK
hκ0

rκ0

√
log
(

2 +
d(x)

h

)
.

This completes the proof.

Before we turn to the proof of Theorem 4.1.4 let us observe that Lemma 4.2.2 already
implies an upper bound on Gh(x, y).

Lemma 4.4.2. For any x, y we have that

|Gh(x, y)| ≤ C

√
log
(

2 +
d(x)

h

)
log
(

2 +
d(y)

h

)
. (4.4.6)

Proof. The idea is the same as in the proof of Lemma 2.8.1. We have

Gh(x, y) = (Gh,x, δh,y)L2
h((hZ)4) = (Gh,x, ∆2

hGh,y)L2
h((hZ)4) = (∇2

hGh,x,∇2
hGh,y)L2

h((hZ)4) .

This implies on the one hand

|Gh(x, y)| ≤ ‖∇2
hGh,x‖L2

h((hZ)4)‖∇2
hGh,y‖L2

h((hZ)4) (4.4.7)

and on the other hand (by choosing y = x) that

|Gh(x, x)| = ‖∇2
hGh,x‖2

L2
h((hZ)4) .

From Lemma 4.2.2 we know that

|Gh(x, x)| ≤

√
log
(

2 +
d(x)

h

)
‖∇2

hGh,x‖L2
h((hZ)4) .

Combining the last two estimates we obtain

|Gh(x, x)| ≤ C log
(

2 +
d(x)

h

)
which is (4.4.6) in the special case x = y. For the general case we can use (4.4.7) to see that

|Gh(x, y)| ≤ ‖∇2
hGh,x‖L2

h((hZ)4)‖∇2
hGh,y‖L2

h((hZ)4) ≤ C

√
log
(

2 +
d(x)

h

)
log
(

2 +
d(y)

h

)
.

Now we can turn to the proof of the main technical result of this chapter, Theorem 4.1.4.

Proof of Theorem 4.1.4. Recall that according to Observation 4.1.5 we actually have to verify
(B.0’), (B.1’), (B.2’) and (B.3’).

Step 1: Proof of (B.1’)
Let x, y ∈ (hZ)4. We can assume w.l.o.g. that d(x) ≤ d(y) (else interchange x and
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y). If d(y) < 768h we have that
∣∣∣log

(
2 + max(d(x),d(y))

h+|x−y|

)∣∣∣ ≤ C, and by Lemma 4.4.2 also
|Gh(x, y)| ≤ C, so that (B.1’) holds trivially. Thus we can assume d(y) ≥ 768h.

Consider first the case |x− y| ≤ d(y)
4 . Then Lemma 4.4.1 with K = 2, i.e. r = d(y)

2 ≥ 192h
implies ∣∣∣Gh(x, y)− η

(d(y)/2)
h,y (x)Ĝ(d(y)/2)

h (x, y)− G(x, y) + η
(d(y)/2)
y (x)Ĝ(d(y)/2)(x, y)

∣∣∣
≤ C

hκ0

rκ0

√
log
(

2 +
d(x)

h

)
which implies that

∣∣∣Gh(x, y)− Ĝ(d(y)/2)
h (x, y)− G(x, y) + Ĝ(d(y)/2)(x, y)

∣∣∣ ≤ C
hκ0

rκ0

√
log
(

2 +
2r
h

)
.

The function s 7→ 1
sκ0

√
log (2 + 2s) is bounded on [1, ∞), so that we actually obtain∣∣∣Gh(x, y)− Ĝ(d(y)/2)

h (x, y)− G(x, y) + Ĝ(d(y)/2)(x, y)
∣∣∣ ≤ C . (4.4.8)

From Lemma 4.3.2 we know∣∣∣∣Ĝ(d(y)/2)
h (x, y)− 1

λ2 log
(

d(y)
|x− y|+ h

)∣∣∣∣ ≤ C

(where we have absorbed a term 1
λ2 log 2 into the constant). Furthermore by Lemma 4.3.5∣∣∣G(x, y)− Ĝ(d(y)/2)(x, y)

∣∣∣ ≤ C .

If we use these estimates in (4.4.8) we obtain∣∣∣∣Gh(x, y)− 1
λ2 log

(
d(y)

|x− y|+ h

)∣∣∣∣ ≤ C .

Because |x− y| ≤ d(y)
4 , d(y)

|x−y|+h is bounded away from 1 by a constant, and so∣∣∣∣ 1
λ2 log

(
d(y)

|x− y|+ h

)
− 1

λ2 log
(

2 +
d(y)

|x− y|+ h

)∣∣∣∣ ≤ C .

Combining this with the preceding inequality we arrive at (B.1’).
If |x − y| ≥ d(y)

4 we argue similarly. We use Lemma 4.4.1 with r = d(y)
4 ≥ 192h and

conclude
|Gh(x, y)− G(x, y)| ≤ C .

This combined with Lemma 4.3.5 implies again (B.1’), as now d(y)
|x−y|+h is bounded above.

Step 2: Proof of (B.2’)
Recall from Lemma 4.3.5 that the term a(x) := λ2 lim(x′,x′′)→(x,x)

x′ 6=x′′
(G(x′, x′′)− Ĝ(x′, x′′)) is

well-defined for each x ∈ (0, 1)4 and that a : (0, 1)4 → R is continuous.
After this remark we can proceed similarly as in the first step. We choose f1(x) = a(x),

f2(u, v) = λ2F(u − v) with the F from Lemma 4.3.1. Furthermore we choose θ0 = 1
2κ0

.
Given L and θ > θ0 we take N′0 so large that 768L ≤ | log h|θ when h ≤ 1

N′0
. Then d(x) ≥
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h| log h|θ ≥ 768Lh. We want to apply Lemma 4.4.1 with K = 8 and r = d(x)
4 at the point

(x + hu, x + hv). We have that r = d(x)
4 ≤ d(x+hv)+Lh

4 ≤ d(x+hv)
2 and similarly r ≥ d(x+hv)

8 ,
and also r = d(x)

4 ≥ 192Lh ≥ 192h so that all assumptions of the lemma are satisfied. We
obtain∣∣∣∣Gh(x + hu, x + hv)− Ĝ(d(x)/4)

h (x + hu, x + hv)

− G(x + hu, x + hv) + Ĝ(d(x)/4)(x + hu, x + hv)
∣∣∣∣

≤ C
hκ0

rκ0

√
log
(

2 +
d(x + hu)

h

)
≤ C

hκ0
√
| log h|

rκ0
≤ C

hκ0
√
| log h|

(h| log h|θ)κ0
≤ C| log h| 12−θκ0 .

(4.4.9)
Here we could omit the cut-off functions η

(d(x)/4)
h and η(d(x)/4) because |x + hu− (x + hv)| ≤

4Lh ≤ d(x)
8 . Since θκ0 > θ0κ0 = 1

2 , for N′0 large enough the term on the right hand side will
be less than ε

2λ2 whenever h ≤ 1
N′0

.

By (4.3.11) in Lemma 4.3.5 we have for u, v ∈ [0, L]4∣∣∣∣G(x + hu, x + hv)− Ĝ(d(x)/4)(x + hu, x + hv)− a(x)
λ2 −

1
λ2 log

d(x)
4

∣∣∣∣
≤ C

(
|hu|κ0 + |hv|κ0

d(x)κ0

)
≤ CL

hκ0

d(x)κ0
≤ CL| log h|−θκ0 .

Thus we can choose N′0 large enough such that for h ≤ 1
N′0

we have

sup
u,v∈[0,L]4∩Z4

∣∣∣∣G(x + hu, x + hv)− Ĝ(d(x)/4)(x + hu, x + hv)− a(x)
λ2 −

1
λ2 log

d(x)
4

∣∣∣∣ ≤ ε

2λ2

uniformly in x. Our definition of G(d(x)/4)
h implies that

Ĝ(d(x)/4)
h (x + hu, x + hv) = F

(
x + hu

h
− x + hv

h

)
− 1

λ2 log h +
1

λ2 log
d(x)

4

= F(u− v)− 1
λ2 log h +

1
λ2 log

d(x)
4

.

Using these results in (4.4.9) we arrive at∣∣∣∣Gh(x + hu, x + hv)− F(u− v) +
1

λ2 log h− a(x)
λ2

∣∣∣∣ ≤ ε

λ2

for h ≤ 1
N′0

, which implies (B.2’).
Step 3: Proof of (B.3’)

This is very similar to Step 2. We set f3(x, y) = λ2G(x, y), which is continuous away from
the diagonal according to Lemma 4.3.5.

We use Lemma 4.4.1 with K = L and r = d(y)
L ≤ 1

L ≤ |x− y|. For N′1 large enough we
have r ≥ 192h, and the lemma implies

|Gh(x, y)− G(x, y)| ≤ CL
hκ0
√
| log h|

rκ0
≤ CL| log h| 12−θκ0
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and it suffices to take N′1 so large that the right hand side is less than ε
λ2 for any h ≤ 1

N′1
.

Step 4: Proof of (B.0’)
Here we actually need to prove three estimates, namely

λ2Gh(x, x) ≤ | log h|+ C (4.4.10)

λ2Gh(x, x) ≤ C log
(

2 +
d(x)

h

)
(4.4.11)

λ2(Gh(x, x)− Gh(x, y)) ≤ log
(

1 +
|x− y|

h

)
+ C . (4.4.12)

Now (4.4.10) follows immediately from (B.1’), and (4.4.11) is a special case of Lemma 4.4.2.
Finally, (4.4.12) can be obtained from (B.1’) as follows. We know that

λ2(Gh(x, x)− Gh(x, y)) ≤ log
(

2 +
d(x)

h

)
− log

(
2 +

max(d(x), d(y))
h + |x− y|

)
+ C

= log
(

(d(x) + 2h)(|x− y|+ h)
h(h + |x− y|+ 2 max(d(x), d(y)))

)
+ C

so one only has to observe that

d(x) + 2h
h + |x− y|+ 2 max(d(x), d(y))

≤ C .

Finally we give the proof of Theorem 4.1.1.

Proof of Theorem 4.1.1. Because of Theorem 4.1.3 and Observation 4.1.5 all we have to check
is that each of the statements (A.0’), (A.1’), (A.2’), (A.3’) implies its counterpart without the
prime.

We begin with (A.0’) =⇒ (A.0). We know that

Var ϕN,v ≤ min
(
log N + α′0, α′0 log(2 + dN(v))

)
and this implies in particular that

Var ϕN,v ≤ log N + α′0 .

Furthermore, if we know

Var ϕN,v −Cov(ϕN,v, ϕN,u) ≤ log+ |u− v|+ 2α′0

then by symmetry this also holds with u, v interchanged, so that we actually have

max (Var ϕN,v −Cov(ϕN,v, ϕN,u), Var ϕN,u −Cov(ϕN,v, ϕN,u)) ≤ log+ |u− v|+ 2α′0

and a short calculation shows that this is the same as

E(ϕN,v − ϕN,u)
2 ≤ 2 log+ |u− v| − |Var ϕN,v −Var ϕN,u|+ C .

For (A.1’) =⇒ (A.1) one has to verify that min(d(u), d(v)) ≥ δN implies∣∣∣∣log
(

2 +
max(dN(u), dN(v))

1 + |u− v|

)
− log

(
N

1 + |u− v|

)∣∣∣∣ ≤ Cδ ,

which is straightforward.
For (A.2’) =⇒ (A.2) we fix some θ > θ0. Given L, ε, δ, we choose N0 ≥ N′0(L, ε, θ) large

enough such that | log N|θ ≤ δN for all N ≥ N0 and conclude (A.2). Analogously one sees
that (A.3’) =⇒ (A.3).
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5 Optimal order finite difference
approximation of generalized solutions to
the biharmonic equation in a cube

This chapter is based on the paper [MSS20], written jointly by Stefan Müller, Endre Süli
and the author, with only minor changes.

5.1 Introduction

In this chapter we show some error estimates for finite difference schemes for the Bilaplacian.
In Section 1.4.4 we gave some background and described some of the results. We begin by
stating our results in detail.

5.1.1 Main results

We mostly follow the notation from the introduction (see, however, Section 5.1.3 for the
precise definitions). Let d ∈ N+, Ω := (0, 1)d, Γ := ∂Ω. For h ∈ R+ such that 1

h ∈ N, let
Λh := Ω ∩ (hZ)d, Γh := Γ ∩ (hZ)d, and

Λ̃h := [−h, 1 + h]d ∩ (hZ)d \ {−h, 1 + h}d .

Consider the elliptic boundary-value problem

∆2u = f in Ω ,

u = 0 on Γ ,

∂νu = 0 on Γ ,

(5.1.1)

where ∂ν denotes the derivative in the normal direction (ν is a unit outward normal vector
to Γ). We approximate the solution of this problem by the finite difference scheme (compare
[JS14, Section 1.9.4])

∆2
hU = Th,2,...,2 f in Λh ,

U = 0 on Γh ,

Dh
0,νU = 0 on Γh .

(5.1.2)

Here U is defined on Λ̃h, Dh
0,νU(x) := 1

2h

(
U(x + hν) − U(x − hν)

) 1, and Th,2,...,2 f is a
smoothing operator acting on f , defined by convolving f with a B-spline on the scale h (see
below for the precise definition).

1At the singular points (i.e., at the vertices and points on the faces/edges) of Γh there are up to d possible
boundary normal vectors. For (5.1.2) we consider all of them. Because U = 0 on Γh by assumption, this
corresponds to setting U = 0 at all points of Λ̃h \ (Λh ∪ Γh) that have distance h to a singular point of Γh.
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5 Optimal order finite difference approximation

The finite difference scheme (5.1.2) makes sense in any dimension d, as the smoothing
operator Th,2,...,2 maps f ∈ Hs−4 into a continuous function whenever s > 5

2 (cf. [JS14,
Theorem 1.69]).

Our objective is to prove an error bound in the discrete Sobolev norm ‖ · ‖H2
h(Λh)

(which is
denoted by ‖ · ‖W2

2 (Λh)
in [JS14, Section 2.2.4]).

Theorem 5.1.1. Suppose that 1
2 max(5, d) < s ≤ 4, and let u ∈ Hs(Ω) ∩ H2

0(Ω); then, there
exists a positive constant C = C(n, s), independent of h, such that

‖u−U‖H2
h(Λh)

≤ Chs−2‖u‖Hs(Ω) . (5.1.3)

This improves [JS14, Theorem 2.69] (where the above result was proved for d = 2 and 5
2 <

s ≤ 4 in the more general setting of fourth-order elliptic equations with nonsmooth variable
coefficients, but the order of convergence O(hmin{s−2,3/2}| log h|1−|sgn(s−7/2)|) established
there was optimal only in the case of 5

2 < s < 7
2 , and is reduced to the suboptimal rate of

O(h
3
2 ), instead of the optimal rate of O(hs−2), for 7

2 < s ≤ 4) as well as the main result in
[GMP83] (where the theorem was proved for d = 2 under the additional assumption that
the third normal derivative of u vanishes at the boundary).

Our method also yields estimates for other discretizations of the boundary conditions.
Consider, for instance, the finite difference scheme

∆2
hU∗ = Th,2,...,2 f in Λh ,

U∗ = 0 on Γh ,

Dh
νU∗ = 0 on Γh .

(5.1.4)

Here again U∗ is defined on Λ̃h, and Dh
νU∗(x) := 1

h

(
U∗(x + hν)−U∗(x)

)
. The conditions

U∗ = 0 and Dh
νU∗ = 0 on Γh are equivalent to U∗ = 0 on Λ̃h \ Λh, so that we could

equivalently consider the finite difference scheme

∆2
hU∗ = Th,2,...,2 f in Λh ,

U∗ = 0 on Λ̃h \Λh .
(5.1.5)

For this difference scheme we can show the following error bound.

Theorem 5.1.2. Suppose that 1
2 max(5, d) < s ≤ 3, and let u ∈ Hs(Ω) ∩ H2

0(Ω); then, there
exists a positive constant C = C(n, s), independent of h, such that

‖u−U∗‖H2
h(Λh)

≤ Chs−2‖u‖Hs(Ω) . (5.1.6)

In Theorems 5.1.1 and 5.1.2 we made the assumption 1
2 max(5, d) < s. In view of the fact

that the problem (5.1.1) makes sense already for s > 3
2 , the requirement 1

2 max(5, d) < s
might seem surprising. The condition s > n

2 ensures that u is continuous. Otherwise,
‖u−U‖H2

h(Λh)
and ‖u−U∗‖H2

h(Λh)
would be undefined. The condition s > 5

2 implies that

Th,2,...,2 f is continuous so that its pointwise values are defined and the finite difference
schemes (5.1.2) and (5.1.4) make sense. It should be possible to relax the assumption
s > n

2 by replacing u in the expressions ‖u−U‖H2
h(Λh)

and ‖u−U∗‖H2
h(Λh)

with a suitably

mollified version of u. Similarly, one can relax the assumption s > 5
2 by replacing Th,2,...,2

with a stronger mollification operator; see also Remark 5.4.3 for additional comments in this
direction.
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5.1 Introduction

Our results extend to more general fourth-order elliptic elliptic operators with variable
coefficients, such as those treated in [JS14, Section 2.7], with similar proofs. The main
difference compared to the analysis here is that in addition to terms appearing in our error
bounds one encounters a variety of mixed terms. On can deal with these as in the proof of
Theorem 2.68 in [JS14], using the bilinear Bramble–Hilbert lemma. It should also be possible
to extend our results to other (higher order) elliptic operators, such as the polyharmonic
operator ∆k for k ≥ 3, but the study of that question is beyond the scope of this chapter.

5.1.2 Outline of the proof

We discuss the proof of Theorem 5.1.1 only; the proof of Theorem 5.1.2 is very similar. We
proceed similarly to the proof of [JS14, Theorem 2.69]. In fact, when s < 7

2 we could directly
use the argument in [JS14] with only minor notational changes. Let us review that argument
here briefly. We begin by extending u symmetrically across Γ to a Hs-function û on (−1, 2)d

such that ‖û‖Hs((−1,2)d) ≤ C‖u‖Hs(Ω). Here and henceforth C signifies a generic positive
constant, which may depend on the Sobolev index s and on the number of space dimensions
d, but is independent of the discretization parameter h. Let E := û−U. Then, E satisfies

E = 0 on Γh ,

Dh
0,νE = 0 on Γh ,

and we calculate (compare [JS14, Equation (2.209)])

∆2
hE = ∆2

hû− ∆2
hU = ∆2

hû− Th,2,...,2 f = ∆2
hû− Th,2,...,2∆2û .

Using summations by parts we obtain

‖∇2
hE‖L2

h(Λh)
≤ ‖∆2

hû− Th,2,...,2∆2û‖H−2
h (Λh)

,

where ∇2
h is the discrete Hessian. Now one can use the Bramble–Hilbert lemma (cf. [JS14])

to deduce that the right-hand side is bounded by Chs−2‖u‖Hs(Ω), which directly implies
(5.1.3).

When s ≥ 7
2 one can no longer extend u symmetrically across the boundary while

preserving its Sobolev regularity. This means that we cannot make Dh
0,νu equal to 0 on Γ,

and therefore the above argument based on summation by parts no longer works.
Our alternative approach is as follows. Although we cannot ensure that the boundary

values of Dh
0,νE are exactly zero, we will show that they can nevertheless be made small in

an appropriate norm. To this end, we will first show (in Section 5.2.1) that we can take a
slightly different extension ũ with ‖ũ‖Hs((−1,2)d) ≤ C‖u‖Hs(Ω),

7
2 ≤ s ≤ 4, such that ũ and its

derivatives vanish on the hyperplanes supporting the faces of Γ.
This will allow us to estimate the boundary values in an optimal space. In fact, in Section

5.2.2 we prove that
‖Dh

0,νũ‖
H

1
2

h (Γh)
≤ Chs−2‖ũ‖Hs(Ω) . (5.1.7)

Actually, we only control the H
1
2
h -norm on each of the faces of Γh, but we ignore this issue

here for the sake of simplicity and refer the reader to Section 5.2.2 for precise statements.
Then, in Section 5.2.3, we show that (5.1.7) implies the existence of a function Ê that agrees

with ũ on Λ̃h \ Λh and such that ‖∇2
hÊ‖L2(Λh)

≤ Chs−2‖u‖Hs(Ω). We shall construct Ê by
giving an explicit extension using the Fourier series representation of the boundary values,
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5 Optimal order finite difference approximation

which we then carefully cut off to comply with the boundary conditions. This is a special
case of an inverse trace theorem in the following sense: for any function ψ on the boundary
there is a lattice function w such that

w = 0 on Γh ,

Dh
0,νw = ψ on Γh ,

and
‖∇2

hw‖L2
h(Λh)

≤ C‖ψ‖
H

1
2

h (Γh)
. (5.1.8)

Now that we have Ê at our disposal, we can apply the argument formulated at the
beginning of this subsection to E− Ê (which has zero boundary values) and find that

‖∇2
h(E− Ê)‖L2(Λh)

≤ C
(

hs−2‖u‖Hs(Ω) + ‖∆2
hÊ‖H−2

h (Λh)

)
.

Thus, by observing that

‖∆2
hÊ‖H−2

h (Λh)
≤ C‖∇2

hÊ‖L2(Λh)
≤ C‖Dh

0,νũ‖
H

1
2

h (Γh)
≤ Chs−2‖u‖Hs(Ω) ,

we directly deduce (5.1.3). The details for this argument are given in Section 5.3.2.
The heart of the matter, resulting in our main result stated in Theorem 5.1.1, are the trace

estimate (5.1.7) and the inverse trace estimate (5.1.8), established in Section 5.2.2 and Section
5.2.3, respectively.

5.1.3 Notation and preliminaries

Our notation is based on that in [JS14], however we made some changes that we will review
in the following.

For s ≥ 0 and Ξ ⊂ Rd open with Lipschitz boundary we define the Sobolev space Hs(Ξ)
as the space of restrictions of Hs(Rd)-functions to Ξ. By Hs

0(Ξ) we denote the closure of the
set of all C∞

c (Ξ)-functions in the ‖ · ‖Hs(Ξ)-norm.
Assume that Ξ := I1 × · · · × Id, where Ij ⊂ R are (possibly unbounded) open intervals.

This assumption ensures that we haveHd−1-almost everywhere on ∂Ξ an axiparallel normal
vector. Given a k ∈ N0 with k + 1

2 < s, we denote by Hs
(k)(Ξ) the space of all functions

u ∈ Hs(Ξ) such that the traces of ∂i
νu for 0 ≤ i ≤ k vanish on each face of ∂Ξ. We extend

this definition to k > s− 1
2 , provided s 6∈N + 1

2 , by setting Hs
(k)(Ξ) = Hs

(bs−1/2c)(Ξ).

There are several other equivalent definitions of Hs
(k)(Ξ). Let C∞

c (Ξ) denote the space of
functions on Ξ, which are in C∞(Ξ), for which all derivatives admit continuous extensions
to Ξ, and which are supported in K ∩ Ξ for some K ⊂ Rd compact. In other words, C∞

c (Ξ)
denotes the set of restrictions of C∞

c (Rd)-functions to Ξ, where the equivalence follows
from Whitney’s extension theorem [Whi34]. Then, Hs

(k)(Ξ) is also the closure in the Hs(Ξ)-

norm of the set of all functions in C∞
c (Ξ) whose derivatives up to order k vanish on ∂Ξ

Furthermore, Hs
(k)(Ξ) is equal to Hs(Ξ) ∩ Hk+1

0 (Ξ) if s ≥ k + 1, and equal to Hs
0(Ξ) if

s ≤ k + 1. In particular, the space Hs(Ω) ∩ H2
0(Ω) from the main theorems can now be

written as Hs
(1)(Ω).

The fact that these definitions are equivalent should not be surprising. Nonetheless we
could not locate a reference for this precise equivalence result, and so we present its proof in
Appendix 5.4.2.
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5.2 Discrete trace and inverse trace theorems

Given a j ∈ N, we let θj be the standard univariate centered B-spline of degree j − 1,
defined, for example, as the indicator function of the closed interval

[
− 1

2 , 1
2

]
convolved with

itself j− 1 times (cf. [JS14, Section 1.9.4]). Using this, we define the smoothing operator Th,j
i

for 1 ≤ i ≤ d as

Th,j
i f :=

1
h

f ∗i θj

( ·
h

)
,

where ∗i means convolution in the variable xi. This is a well-defined operator on distribu-
tions on Rd. Furthermore, we set

Th,j,...,j f := Th,j
1 ◦ · · · ◦ Th,j

d f .

Each θj is in Ht(R) for any t < j− 1
2 . Using this, one can verify (cf. [JS14, Section 1.9.4]) that

Th,j,...,j is a bounded linear operator from Ht(Rd) to Cb(R
d) whenever t > −j + 1

2 .
We define the discrete Sobolev norm ‖v‖H2

h(Λh)
of v : Λ̃h → R as the sum of the L2

h-norms
of v, ∇hv and ∇2

hv, wherever they are defined; more precisely,

‖v‖2
H2

h
:= ∑

x∈Ω̃h

hdv(x)2 +
d

∑
i=1

∑
x∈Ω̃h :

x+hei∈Ω̃h

hd(Dh
i v(x))2

+
d

∑
i,j=1

∑
x∈Ω̃h :

x+hei ,x−hej,x+hei−hej∈Ω̃h

hd(Dh
i Dh
−jv(x))2 .

Note that we have the crucial property

Dh
i Dh
−iT

h,j−2
i f = Th,j

i ∂2
i f (5.1.9)

for any i and any j ≥ 2.

5.2 Discrete trace and inverse trace theorems

5.2.1 Construction of a good extension

Recall that Hs
(1)(Ω) denotes the space of functions u ∈ Hs(Ω) for which u and ∇u vanish

on ∂Ω. Our first goal is to construct an extension ũ of u that preserves its Sobolev regularity
and has the additional property that ũ and ∇ũ vanish on the hyperplanes supporting the
faces of Ω.

Later in our argument it will be necessary to localize the functions concerned in order to
deal with the 2d corners of Ω = (0, 1)d separately. Actually, it is most convenient to do so
right from the start. Thus we shall use a partition of unity, which allows us to split u into 2d

parts localized near the corners. These parts can all be dealt with in a similar way, so we
focus on one of them and assume that u is supported in

[
0, 2

3

)d.

Lemma 5.2.1. Let 3
2 < s ≤ 4, let u ∈ Hs

(1)(Ω) be supported in
[
0, 2

3

)d. Then, there exists a
function ũ ∈ Hs

0((−1, 1)d) such that ‖ũ‖Hs((−1,1)d) ≤ C‖u‖Hs(Ω), ũ|Ω = u, and ũ = 0, ∇ũ = 0
on the (d− 1)-dimensional hyperplanes xi = 0 for i ∈ {1, . . . , n} in the sense of traces.
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5 Optimal order finite difference approximation

Because ũ ∈ Hs
0((−1, 1)d), we can extend ũ outside (−1, 1)d by zero to a function in

Hs(Rd) (that we continue to call ũ).
The construction of the extension is classical; see, e.g., [LM72a, Section 11.5]. Nonetheless

we give some details, in particular because a similar construction will be used in Section
5.2.3.

Proof. We proceed by applying an extension operator similar to the one in [LM72a, Section
2.2] once across every hyperplane (or in other words by applying a tensorized version of
that extension operator). There exist λ−1, λ−2 ∈ R such that

λ−1 + λ−22k = (−1)k for k ∈ {2, 3} .

We also let λ1 = 1. Then we define the extension ũ of u by

ũ(x1, . . . , xd) = ∑
ε1=1 if x1≥0

ε1∈{−1,−2} if x1<0

. . . ∑
εd=1 if xd≥0

εd∈{−1,−2} if xd<0

λε1 · . . . · λεdu(ε1x1, . . . , εdxd) .

For example, for d = 2 we have

ũ(x1, x2) =



u(x1, x2) for x1 ≥ 0, x2 ≥ 0 ,

λ−1u(−x1, x2) + λ−2u(−2x1, x2) for x1 < 0, x2 ≥ 0 ,

λ−1u(x1,−x2) + λ−2u(x1,−2x2) for x1 ≥ 0, x2 < 0 ,

(λ−1)
2u(−x1,−x2) + λ−1λ−2u(−x1,−2x2)

+λ−1λ−2u(−2x1,−x2) + (λ−2)2u(−2x1,−2x2) for x1 < 0, x2 < 0 .

One easily checks that both ũ = 0 and ∇ũ = 0 on the face xi = 0 for i ∈ {1, . . . , d}. In
addition, the support of ũ is contained in

(
− 2

3 , 2
3

)d ⊂ (−1, 1)d.
It remains to show that ũ ∈ Hs((−1, 1)d) and

‖ũ‖Hs((−1,1)d) ≤ C‖u‖Hs(Ω) . (5.2.1)

For this we use interpolation. If s = 4, and u ∈ H4
(1)(Ω) observe that by the construction

of ũ for k ∈ {0, 1, 2, 3} the traces of ∂k
i ũ from the two sides of {xi = 0} agree. This implies

that ũ ∈ H4((−1, 1)d) and ‖ũ‖H4((−1,1)d) ≤ C‖u‖H4(Ω). If s = 1 and u ∈ H1
(1)(Ω) = H1

0(Ω)

we can use the same argument to obtain (5.2.1) once again. Now, by Lemma 5.4.9 from the
Appendix, for any 3

2 < s ≤ 4 the interpolation space
[

H4
(1)(Ω), H1

(1)(Ω)
]

1
3 (4−s)

is equal to

Hs
(1)(Ω). Thus (5.2.1) follows by standard function space interpolation theory.

5.2.2 Estimate of the boundary values

In this section we prove the estimate (5.1.7), i.e., that the discrete normal derivatives of ũ at

the boundary can be estimated in the fractional discrete Sobolev space H
1
2
h . One can think

of this result, stated in Lemma 5.2.2, as a discrete trace theorem. Before giving the precise
statement we define the appropriate (semi-)norms.

Let S be a subset of Rd that is contained in an axiparallel (d − 1)-dimensional affine
subspace of Rd such that S ∩ (hZ)d 6= ∅, and let w : S ∩ (hZ)d → R. We then define

[w]2
H

1
2

h (S∩(hZ)d)
:= ∑

x,y∈S∩(hZ)d

x 6=y

|w(x)− w(y)|2
|x− y|d h2d−2
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5.2 Discrete trace and inverse trace theorems

and
|w‖2

H
1
2

h (S∩(hZ)d)
:= [w]2

H
1
2

h (S∩(hZ)d)
+ ∑

x∈S∩(hZ)d
hd−1|w(x)|2 .

For the discrete inverse trace theorem stated in Section 5.2.3 we will need to use the extension
by zero of Dh

0,νũ and Dh
ν ũ. Therefore we directly estimate the H

1
2
h -seminorm of that extension

in the following lemma.2 At the first glance it might seem problematic that we are extending
Dh

0,νũ by zero, because for s ≥ 5
2 this extension does not preserve the Hs-regularity of ũ.

However it turns out that it is possible to estimate [Dh
0,νũ]

H
1
2

h

by expressions that involve

several derivatives in the direction ed, but at most one derivative in the directions ei for
1 ≤ i ≤ d− 1, so our assumptions on the boundary values are sufficient.

Lemma 5.2.2. Let s > 1
2 max(3, d) and let ũ be as in Lemma 5.2.1. For i ∈ {1, . . . , d} let gh,i

and g∗h,i be the extension by zero of Dh
0,iũ and Dh

−iũ in the hyperplane (hZ)i−1 × {0} × (hZ)d−i,
respectively, i.e., gh,i : (hZ)i−1 × {0} × (hZ)d−i → R and g∗h,i : (hZ)i−1 × {0} × (hZ)d−i → R

satisfy

gh,i(x) =

{
Dh

0,iũ(x) when x ∈ (0, ∞)i−1 × {0} × [0, ∞)d−i,

0 otherwise ,

g∗h,i(0) =

{
Dh
−iũ(x) when x ∈ (0, ∞)i−1 × {0} × [0, ∞)d−i,

0 otherwise .

We have that, if s ≤ 4, then

‖gh,i‖
H

1
2

h ((hZ)i−1×{0}×(hZ)d−i)
≤ Chs−2‖u‖Hs(Ω) , (5.2.2)

and, if s ≤ 3, then
‖g∗h,i‖

H
1
2

h ((hZ)i−1×{0}×(hZ)d−i)
≤ Chs−2‖u‖Hs(Ω) . (5.2.3)

We can assume that i = d, the other cases being analogous. For simplicity we identify Rd−1

with the hyperplane Rd−1 × {0} ⊂ Rd, and write x = (x′, xd), with x′ := (x1, . . . , xd−1).
Before embarking on the proof of our main result, we state and prove two estimates that

we will need.

Lemma 5.2.3. Let s > 1
2 max(3, d) and v ∈ Hs(Rd) such that v = 0 and ∂dv = 0 on Rd−1 in the

sense of trace. Let h > 0, let x′ ∈ (hZ)d−1, x̂′ ∈ Rd−1 × {0} and suppose that |x′ − x̂′|∞ < h
2 .

Let further Qh/2(x′) := x′ + (−h/2, h/2)d−1 be the (d− 1)-dimensional axiparallel cube of edge-
length h centered at x′. If s ≤ 4, we have that

|v(x′, h)− v(x′,−h)− v(x̂′, h) + v(x̂′,−h)| ≤ Chs− d
2 ‖v‖Hs(Qh/2(x′)×R) , (5.2.4)

and if s ≤ 3 we have that

|v(x′, 0)− v(x′,−h)− v(x̂′, 0) + v(x̂′,−h)| ≤ Chs− d
2 ‖v‖Hs(Qh/2(x′)×R) . (5.2.5)

2Alternatively one could define a discrete analogue of the H
1
2
00-norm from [LM72a, Section 11.5]; that however

leads to unnecessary technicalities in the present context.
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5 Optimal order finite difference approximation

Proof. We begin with (5.2.4). By scaling and translating we can assume that without loss of
generality that h = 1 and x′ = 0. Because s > d

2 the left-hand side of (5.2.4) is bounded by
C‖v‖Hs(Q1/2(0)×(−2,2)). Furthermore it vanishes when v is a polynomial of degree at most 3.
Indeed the boundary condition ensures that each monomial of degree at most 3 has degree
at least 2 in xd and the left-hand side vanishes for such monomials. So (5.2.4) follows from
the Bramble–Hilbert lemma (applied in Hs(Q1/2(0)× (−2, 2))). The estimate (5.2.5) can be
proved analogously.

Lemma 5.2.4. Let s > 3
2 and v ∈ Hs((0, ∞)d−1 ×R). Suppose that for all i ∈ {1, . . . , d− 1} we

have v = 0 on {xi = 0} in the sense of trace, and that furthermore we have ∂dv = 0 on {xd = 0} in
the sense of trace. Let v̂ be the extension by zero in the first d− 1 variables of v to Rd, i.e.,

v̂(x) :=

{
v(x) x ∈ (0, ∞)d−1 ×R,

0 otherwise,

and let h > 0. If s ≤ 4, then we have that

‖v̂(·, h)− v̂(·,−h)‖
H

1
2 (Rd−1)

≤ Chs−1‖v‖Hs((0,∞)d−1×R) , (5.2.6)

and if s ≤ 3, then we have that

‖v̂(·, 0)− v̂(·,−h)‖
H

1
2 (Rd−1)

≤ Chs−1‖v‖Hs((0,∞)d−1×R) . (5.2.7)

Proof. Let us define the function spaces Gs((0, ∞)d−1 ×R) for s ∈ [0, ∞) \
{ 1

2 , 3
2

}
as follows.

When s > 3
2 , Gs is the space that is mentioned in the statement of the lemma, i.e.,

Gs((0, ∞)d−1 ×R) := Hs((0, ∞)d−1 ×R) ∩ {u : u = 0 on ∂((0, ∞)d−1 ×R)}
∩ {u : ∂du = 0 on (0, ∞)d−1 × {0}} .

When 1
2 < s < 3

2 ,

Gs((0, ∞)d−1 ×R) := Hs((0, ∞)d−1 ×R) ∩ {u : u = 0 on ∂((0, ∞)d−1 ×R)} ,

and if s < 1
2 ,

Gs((0, ∞)d−1 ×R) := Hs((0, ∞)d−1 ×R) .

According to Lemma 5.4.10 from the Appendix we have that, for s 6∈
{ 1

2 , 3
2

}
,

Gs((0, ∞)d−1 ×R) =
[

G4((0, ∞)d−1 ×R), G1((0, ∞)d−1 ×R)
]

4−s
3

,

Gs((0, ∞)d−1 ×R) =
[

G3((0, ∞)d−1 ×R), G1((0, ∞)d−1 ×R)
]

3−s
2

.

Thus it suffices to prove (5.2.6) for s = 4 and s = 1 and (5.2.7) for s = 3 and s = 1, and then
the result follows by interpolation. We prove the former two statements; the proofs of the
latter two are completely analogous.

If s = 1, the condition that v = 0 on {xi = 0} in the sense of trace ensures that v̂ ∈ H1(Rd)

and ‖v̂‖H1(Rd) ≤ ‖v‖H1((0,∞)d−1×R). Now we can use standard trace theorems to bound

‖v̂(·, h)− v̂(·,−h)‖
H

1
2 (Rd−1)

≤ ‖v̂(·, h)‖
H

1
2 (Rd−1)

+ ‖v̂(·,−h)‖
H

1
2 (Rd−1)

≤ 2‖v‖H1((0,∞)d−1×R) .
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5.2 Discrete trace and inverse trace theorems

If s = 4 the proof is less straightforward. The main difficulty is that v̂ is in general not in
H4(Rd). Instead we write

v(·, h) = v(·, 0) + h∂dv(·, 0) +
h2

2
∂2
dv(·, 0) +

∫ h

0

(h− s)2

2
∂3
dv(·, s)ds .

This does not make sense as a pointwise equality, but we can interpret it as an equality
in H

1
2 ((0, ∞)d−1), with the integral on the right-hand side being understood as a Bochner

integral. Similarly, we have

v(·,−h) = v(·, 0)− h∂dv(·, 0) +
h2

2
∂2
dv(·, 0)−

∫ 0

−h

(h + s)2

2
∂3
dv(·, s)ds .

Because we know that v(·, 0) = 0 and ∂dv(·, 0) = 0 in H
1
2 ((0, ∞)d−1), we deduce from this

that

v(·, h)− v(·,−h) = h2
∫ h

−h
m
( s

h

)
∂3
dv(·, s)ds, (5.2.8)

as an identity in H
1
2 ((0, ∞)d−1), where m(t) :=

{
1
2 (1− t)2 for t ≥ 0,
1
2 (1 + t)2 for t ≤ 0 .

Let ŵ be the extension by zero in the first d− 1 variables of ∂3
dv to Rd, i.e.,

ŵ(x) :=

{
∂3
dv(x) for x ∈ (0, ∞)d−1 ×R ,

0 otherwise .

Our assumptions on v imply that ∂3
dv belongs to H1

0((0, ∞)d−1 ×R). Therefore ŵ ∈ H1(Rd)

and ‖ŵ‖H1(Rd) = ‖∂3
dv‖H1

0 ((0,∞)d−1×R). Furthermore (5.2.8) continues to hold for the exten-
sions by zero of both sides, so that we also have

v̂(·, h)− v̂(·,−h) = h2
∫ h

−h
m
( s

h

)
ŵ(·, s)ds

as an identity in H
1
2 (Rd−1), and hence

‖v̂(·, h)− v̂(·,−h)‖
H

1
2 (Rd−1)

≤ h2
∫ h

−h
m
( s

h

)
‖ŵ(·, s)‖

H
1
2 (Rd−1)

ds

≤ h2
∫ h

−h

1
2
‖ŵ‖H1(Rd) ds

≤ h3‖∂3
dv‖H1((0,∞)d−1×R)

≤ h3‖v‖H4((0,∞)d−1×R) ,

which is (5.2.6).

Proof of Lemma 5.2.2. We begin with (5.2.2). As before, we shall assume without loss of
generality that i = d, and we identify Rd−1 with Rd−1 × {0} ⊂ Rd and write x = (x′, xd).

Note that Dh
0,dũ(x) makes sense for any x ∈ [0, 1)d−1 × {0}, not only for those in (hZ)d.

We denote by gd the extension by zero of Dh
0,dũ in the hyperplane Rd−1×{0}, i.e., gd : Rd−1×

{0} → R satisfies

gd(x) =

{
Dh

0,dũ(x) for x ∈ (0, ∞)d−1 × {0} ,

0 otherwise .
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5 Optimal order finite difference approximation

Then, gh,d is the restriction of gd to (hZ)d, and our goal will be to relate the discrete H1/2
h -

norm of gh,d and the continuous H1/2-norm of gd. We begin by estimating the latter.
Applying Lemma 5.2.4 to hgh,d we obtain

‖gd‖H
1
2 (Rd−1)

= ‖Dh
0,dũ‖

H
1
2 (Rd−1)

≤ Chs−2‖ũ‖Hs(Rd) . (5.2.9)

Next, let x′ ∈ (hZ)d−1, x̂′ ∈ Rd−1, and suppose that |x′ − x̂′|∞ < h
2 . Recall that Qh/2(x′) =

x′ + (−h/2, h/2)d−1 is the (d− 1)-dimensional axiparallel cube of edge-length h centered at
x′. Then, Lemma 5.2.3 implies that

|ũ(x′, h)− ũ(x′,−h)− ũ(x̂′, h) + ũ(x̂′,−h)| ≤ Chs− d
2 ‖ũ‖Hs(Qh/2(x′)×R) .

If x′i > 0 for all i = 1, . . . , d− 1, then

|gd(x′)− gd(x̂′)| = 1
2h
|ũ(x′, h)− ũ(x′,−h)− ũ(x̂′, h) + ũ(x̂′,−h)| . (5.2.10)

On the other hand, if xi ≤ 0 for some i ∈ {1, . . . , d − 1}, then ũ(x′, h) = ũ(x′,−h) =

gd(x′, 0) = 0 and

|gd(x̂′)| =
{

1
2h |ũ(x̂′, h)− ũ(x̂′,−h)| for x′ ∈ (0, ∞)d−1 ,

0 otherwise .

This, together with (5.2.10), implies that we have in any case

|gd(x′)− gd(x̂′)| ≤ 1
2h
|ũ(x′, h)− ũ(x′,−h)− ũ(x̂′, h) + ũ(x̂′,−h)| .

Thus we get that

|gd(x′)− gd(x̂′)| ≤ Chs−1− d
2 [ũ]Hs(Qh/2(x′)×R) ≤ Chs−1− d

2 ‖ũ‖Hs(Qh/2(x′)×R) . (5.2.11)

Now let x′, y′ ∈ (hZ)d−1, x̂′ ∈ Qh/2(x′) and ŷ′ ∈ Qh/2(y′). We then have that

|gd(x′)− gd(y′)| ≤ |gd(x̂′)− g(ŷ′)|+ |g(x′)− g(x̂′)|+ |g(y′)− g(ŷ′)| .

This implies that |gd(x′)− gd(y′)|2 ≤ 3
(
|gd(x̂′)− gd(ŷ′)|2 + |gd(x′)− gd(x̂′)|2 + |gd(y′)−

gd(ŷ′)|2
)
, and, using (5.2.11), we deduce that

|gd(x′)− gd(y′)|2

≤ 3|gd(x̂′)− gd(ŷ′)|2 + Ch2s−2−d‖ũ‖2
Hs(Qh(x′)×(−2h,2h)) + Ch2s−2−d‖ũ‖2

Hs(Qh(y′)×(−2h,2h)) .
(5.2.12)

Thus, taking the average of (5.2.12) over all x̂′ ∈ Qh/2(x′) and ŷ′ ∈ Qh/2(y′), we obtain

|gd(x′)− gd(y′)|2 ≤ 3h2−2d
∫

Qh/2(x′)

∫
Qh/2(y′)

|gd(x̂′)− gd(ŷ′)|2 dx̂′ dŷ′

+ Ch2s−2−d
(
‖ũ‖2

Hs(Qh(x′)×R) + ‖ũ‖
2
Hs(Qh(y′)×R)

)
.

Observe that for |x′ − y′| ≥ h we have

|x̂′ − ŷ′| = |x′ − y′ − (x′ − x̂′) + (y′ − ŷ′)|
≤ |x′ − y′|+ |x′ − x̂′|+ |y′ − ŷ′|
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≤ |x′ − y′|+ h ≤ 2|x′ − y′| .

Using this, we deduce that

[gh,d]
2

H
1
2

h ((hZ)d−1)
= ∑

x′,y′∈(hZ)d−1

x′ 6=y′

|gd(x′)− gd(y′)|2
|x′ − y′|d h2d−2

≤ 3 · 2d
∫

Rd−1

∫
Rd−1

|gd(x̂′)− gd(ŷ′)|2
|x̂′ − ŷ′|d dx̂′ dŷ′

+ Chd+2s−4 ∑
x′,y′∈(hZ)d−1

x′ 6=y′

1
|y′ − x′|d ‖ũ‖

2
Hs(Qh(x′)×R)

+ Chd+2s−4 ∑
x′,y′∈(hZ)d−1

x′ 6=y′

1
|x′ − y′|d ‖ũ‖

2
Hs(Qh(y′)×R) .

(5.2.13)

The first term on the right-hand side is a constant times [gd]2
H

1
2 (Rd−1)

. To estimate the second

term, notice that

∑
y′∈(hZ)d−1,y′ 6=x′

1
|y′ − x′|d =

1
hd−1 ∑

y′∈(hZ)d−1,y′ 6=x′

1
|y′ − x′|d hd−1

≤ C
hd−1

∫
|y′−x′|≥h

1
|y′ − x′|d dy′ ≤ C

hd

and
∑

x′∈(hZ)d−1

‖ũ‖2
Hs(Qh(x′)×R) ≤ ‖ũ‖

2
Hs(Rd) ,

by superadditivity of the fractional Sobolev norm.
Together with the analogous estimate for the third term and (5.2.9) we arrive at

[gh,d]
2

H
1
2

h ((hZ)d−1)
≤ C[gd]2

H
1
2 (Rd−1)

+ Ch2s−4‖ũ‖2
Hs(Rd)

≤ Ch2s−4‖ũ‖2
Hs(Rd)

≤ Ch2s−4‖u‖2
Hs(Ω) .

(5.2.14)

It remains to estimate ‖gh,d‖L2
h((hZ)d−1). A simple way to do so is to observe that we have a

Poincaré-type inequality. Indeed, gh,d is supported in
[
0, 2

3

]d−1 ∩ (hZ)d−1 and therefore

[gh,d]
2

H
1
2

h ((hZ)d−1)
= ∑

x′,y′∈(hZ)d−1

x′ 6=y′

|gd(x′)− gd(y′)|2
|x′ − y′|d h2d−2

≥ ∑
x′∈[0,1)d−1∩(hZ)d−1

∑
y′∈[−2,−1)d−1∩(hZ)d−1

|gd(x′)− gd(y′)|2
|x′ − y′|d h2d−2

≥ ∑
x′∈[0,1)d−1∩(hZ)d−1

∑
y′∈[−2,−1)d−1∩(hZ)d−1

|gd(x′)|2

(3
√
d)d

h2d−2

≥ 1
(3
√

n)d ∑
x′∈[0,1)d−1∩(hZ)d−1

hd−1|gh,d(x′)|2 .

Combining this with (5.2.14) we obtain (5.2.2). The proof of (5.2.3) is similar, with the only
difference that we use (5.2.5) and (5.2.7) instead of (5.2.4) and (5.2.6).
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5.2.3 A discrete inverse trace theorem on the cube

In the previous section we proved that the discrete normal derivative of ũ has small trace

in H
1
2
h , and thus the same holds true for E = ũ−U and E∗ = ũ−U∗. We now want to

construct a function Ê such that Ê and E agree on Γh and such that the H2
h-norm of Ê is

small (and similarly for Ê∗). The existence of Ê and Ê∗ follows from a discrete inverse trace
theorem, as in (5.1.8). However we will not prove (or even state precisely) a general result,
as we did in (5.1.8); instead, we shall state the result when applied directly to Ê and Ê∗. The
following two lemmas concern the boundary conditions appearing in Theorems 5.1.1 and
5.1.2, respectively.

Lemma 5.2.5. Let 1
2 max(3, d) < s ≤ 4 and let ũ be as in Lemma 5.2.1. Then, there is a function Ê

on Λh such that

Ê = 0 on Γh ,

Dh
0,νÊ = Dh

0,νũ on Γh ,

and such that ‖∇2
hÊ‖L2(Λh)

≤ Chs−2‖u‖Hs(Ω).

Lemma 5.2.6. Let 1
2 max(3, d) < s ≤ 3 and let ũ be as in Lemma 5.2.1. Then, there is a function

Ê∗ on Λh such that

Ê∗ = 0 on Γh ,

Dh
ν Ê∗ = Dh

ν ũ on Γh ,

and such that ‖∇2
hÊ∗‖L2(Λh)

≤ Chs−2‖u‖Hs(Ω).

The strategy for the proof of both lemmas is the following. It suffices to consider the
case when Dh

ν ũ is nonzero only on one face, say {xd = 0}. We construct an extension of the
boundary values there in Fourier space. This extension is constructed in such a way that we

can control its H2
h-norm by the H

1
2
h -norm of the boundary values (at least after localizing to

a bounded set). However this extension does not yet have the appropriate boundary values
at {xi = 0} for i < d. To fix this we use a projection operator H2

h → H2
h,0 on each fixed slice

{xd = c} and show that we retain control of the H2
h-norm.

Proof of Lemma 5.2.5. Step 1: Preliminaries
Because we have localized ũ, Dh

0,νũ has nonzero boundary values only on the faces Γh ∩
{xi = 0}. We can deal with the faces separately. In fact we will construct functions Êi
for i ∈ {1, . . . , d} such that Êi = 0 on Γh, Dh

0,νÊi = Dh
0,νũ on xi = 0 while Dh

0,νÊi = 0 on
Γh \ {xi = 0}, satisfying the estimate ‖∇2

hÊi‖L2(Λh)
≤ Chs−2‖u‖Hs(Ω). Then we can choose

Ê = ∑i Êi, which will have the desired properties. As the Êi can be constructed analogously,
we shall focus on Êd only.

Step 2: Construction of an extension in Fourier space
Recall the function gh,d, the extension by zero of Dh

0,dû. Thanks to our assumption, gh,d is

supported in
[
0, 2

3

]d−1 ∩ (hZ)d−1. We can extend this function periodically with period 2
and represent it by its discrete Fourier series

gh,d(x′) = ∑
k′∈{− 1

h+1,..., 1
h}

d−1

γk′eiπ(k′·x′) ,
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where

γk′ =

(
h
2

)d−1

∑
ξ ′∈[−1,1)d−1∩(hZ)d−1

gh,d(ξ
′) e−iπk′·ξ ′

and k′ := (k′1, . . . , k′d−1) ∈ Zd−1.
It is easy to verify that

∑
k′∈{− 1

h+1,..., 1
h}

d−1

(1 + |k′|)γ2
k′ ≤ C‖gh,d‖2

H
1
2

h ((hZ)d−1)
. (5.2.15)

Indeed, the Fourier norm on the left-hand side is controlled by the H
1
2
h -norm on the torus

([−1, 1]d−1 ∩ (hZ)d−1)/∼ (compare, e.g., [Hac81, Section 2.3]) and the latter is bounded by

the H
1
2
h -norm on (hZ)d−1 because the support of gh,d is bounded away from ∂[−1, 1]d−1.

Define
a(x′, xd) := ∑

k′∈{− 1
h+1,..., 1

h}
d−1

γk′

cosh(|k′|h) xd e−|k
′|xd eiπk′·x′ .

It is then easy to check that a(x′, 0) = 0 and Dh
0,da(x′, 0) = gh,d(x′) for x′ ∈ (−1, 1)d−1 ∩

(hZ)d−1. Furthermore, the H2
h-norm of a is controlled. Indeed, we have that

∇2
ha(x′, xd) = ∑

k′∈{− 1
h+1,..., 1

h}
d−1

σ(k′, h, xd)γk′ eiπk′·x′ ,

where the coefficients σ(k′, h, xd) satisfy |σ(k′, h, xd)| ≤ C|k′|(|k′|xd + 1)e−|k
′|xd . This can be

seen using Taylor’s theorem in the form ∇2
hv(x) = ∇2v(x) + O

(
h sup|x̂−x|∞≤h |∇3v(x̂)|

)
.

For example,

Dh
−dDh

d

(
xde−|k

′|xdeiπk′·x′
)

= (|k′|2xd − 2|k′|)e−|k′|xdeiπk′·x′ + O(h(|k′|2 + |k′|3(xd + h))e−|k
′|(xd−h)) ,

and therefore
∣∣∣Dh
−dDh

d

(
xde−|k

′|xdeiπk′·x′
)∣∣∣ ≤ C|k′|(|k′|xd + 1)e−|k

′|xd .
Now, using orthogonality in x′ we get, for xd ≥ 0,

∑
x′∈[−1,1)d−1∩(hZ)d−1

hd−1|∇2
ha(x′, xd)|2 = 2d−1 ∑

k′∈{− 1
h+1,..., 1

h}
d−1

|σ(k′, h, xd)|2|γk′ |2

≤ C ∑
k′∈{− 1

h+1,..., 1
h}

d−1

|k′|2(|k′|2x2
d + 1) e−2|k′|xd |γk′ |2 ,

and hence

∑
x∈[−1,1)d−1×[0,2]∩(hZ)d

hd|∇2
ha(x′, xd)|2

≤ Ch ∑
xd∈[0,2]×hZ

∑
k′∈{− 1

h+1,..., 1
h}

d−1

|k′|2(|k′|2x2
d + 1) e−2|k′|xd |γk′ |2 .

Next, we use the estimate

∑
xd∈[0,2]∩hZ

hxα
d e−2|k′|xd ≤ Cα

∫ ∞

0
ξαe−2|k′|ξ dξ = Cα

1
|k′|1+α

∫ ∞

0
θ2 e−2θ dθ ≤ Cα

|k′|1+α
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for α = 2 and α = 0 to deduce that

∑
x∈[−1,1)d−1×[0,2]∩(hZ)d

hd|∇2
ha(x′, xd)|2 ≤ C ∑

k′∈{− 1
h+1,..., 1

h}
d−1

|k′||γk′ |2 ,

and thus, taking into account (5.2.15) and (5.2.2),

‖∇2
ha‖L2

h((−1,1)d−1×[0,2]∩(hZ)d) ≤ C[gh,d]
H

1
2

h ((hZ)d−1)
≤ Chs−2‖u‖Hs(Ω) . (5.2.16)

Similarly, we estimate

‖∇ha‖L2
h((−1,1)d−1×[0,2]∩(hZ)d) ≤ Chs−2‖u‖Hs(Ω) , (5.2.17)

‖a‖L2
h((−1,1)d−1×[0,2]∩(hZ)d) ≤ Chs−2‖u‖Hs(Ω) (5.2.18)

(note that for these estimates we actually need control of ‖gh,d‖
H

1
2

h ((hZ)d−1)
, not just of

[gh,d]
H

1
2

h ((hZ)d−1)
).

Step 3: Localization
Let η ∈ C∞

c (R) be such that η = 1 in
[
− 3

4 , 3
4

]
, η = 0 in R \ [−1, 1], and let

ã(x) := η(x1) · . . . · η(xd)a(x) .

Because a = 0 on {xi = 0} for all i, we have that ã = 0 on Γh. Furthermore, Dh
0,da = 0 except

possibly in
[
− 2

3 , 2
3

]d−1 × {0}, and the product η(x1) · · · η(xd) is equal to the constant 1 in a
neighborhood of that set. Therefore, Dh

0,d ã = Dh
0,da = gh,d on {xd = 0}.

Using the estimates (5.2.16), (5.2.17), (5.2.18) and the discrete product rule, we also obtain

‖∇2
h ã‖L2

h(Λh)
≤ C

(
‖∇2

ha‖L2
h((−1,1)d−1×[0,2]∩(hZ)d) + ‖∇ha‖L2

h((−1,1)d−1×[0,2]∩(hZ)d)

+ ‖a‖L2
h((−1,1)d−1×[0,2]∩(hZ)d)

)
≤ Chs−2‖u‖Hs(Ω) .

(5.2.19)

Step 4: Correction of the boundary values
Unfortunately, ã does not yet have the correct boundary values at {xi = 0} for 1 ≤ i ≤ d− 1.
To rectify this we use a discrete projection from H2 to H2

0 . First we define the corresponding
continuous projection. It is defined in a similar way as the extension we used in the proof
of Lemma 5.2.1, namely by tensorizing the restriction operator from [LM72a, Section 11.5].
Thus we choose λ−1, λ−2 ∈ R such that

λ−1 + λ−22k = (−1)k+1 for k ∈ {0, 1} .

(i.e., λ−1 = −3, λ−2 = 2); we let λ1 = 1 and define a restriction operator R : H2(Rd−1) →
H2

0((0, ∞)d−1) by

Rv(x) := ∑
ε1∈{1,−1,−2}

. . . ∑
εd∈{1,−1,−2}

λε1 · . . . · λεd−1 v(ε1x1, . . . , εd−1xd−1).

One can check that we indeed have Rv ∈ H2
0((0, ∞)d−1) and ‖Rv‖H2((0,∞)d−1) ≤ C‖v‖H2(Rd−1).

If we extend Rv by zero to Rd−1 we can also consider R as an operator mapping H2(Rd−1)
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to itself. Note that if x′ ∈ (hZ)d−1, then Rv(x′) depends only on v|(hZ)d−1 . Thus we can
define Rh : H2

h((hZ)d−1)→ H2
h((hZ)d−1) by

Rhv(x′) :=


Rv(x′) for x′ ∈ [0, ∞)d−1 ,

Rv(x′ + 2hei) for x′ ∈ [0, ∞)i−1 × {−h} × [0, ∞)d−1−i ,

0 otherwise .

We claim that

‖Rhv‖L2
h([0,∞)d−1∩(hZ)d−1) ≤ C‖v‖L2

h((hZ)d−1) , (5.2.20)

‖∇hRhv‖L2
h([0,∞)d−1∩(hZ)d−1) ≤ C‖∇hv‖L2

h((hZ)d−1) , (5.2.21)

‖∇2
hRhv‖L2

h([0,∞)d−1∩(hZ)d−1) ≤ C‖∇2
hv‖L2

h((hZ)d−1) . (5.2.22)

Indeed, these estimates follow from the discrete chain rule. The only exception are the
terms Dh

i Dh
−iRhv(x′) in (5.2.22), which are not, a priori, controlled on {xi = 0}. However an

explicit calculation shows that for such x′ one has

Dh
i Dh
−iRhv(x′) = 2

Rhv(x′ + hei)

h2

= 2
v(x′ + hei)− 3v(x′ − hei) + 2v(x′ − 2hei)

h2

= 2
v(x′ + hei)− 2v(x′) + v(x′ − hei)

h2 + 4
v(x′)− 2v(x′ − hei) + v(x′ − 2hei)

h2

= 2Dh
i Dh
−iv(x′) + 4Dh

i Dh
−iv(x′ − hei) ,

so that these terms, which are ‘crossing the boundary’, are still controlled.3

We now apply Rh along every slice (hZ)d−1 × {xd}, i.e., we set

b(x) := Rh ã(·, xd)(x′) .

Then by construction of Rh we have b = 0 and Dh
0,ib(x) = 0 on {xi = 0}. Furthermore, b is

supported in
[
−h, 3

4

]d and we have b = 0 on {xd = 0}. We know that Dh
0,d ã = gh,d on {xd =

0}. In addition, Rhgh,d = gh,d on [0, ∞)d−1× {0}, and so Dh
0,db = gh,d on [0, ∞)d−1 ∩ (hZ)d−1

follows from the fact that Rh and Dh
0,d commute.

We next estimate ‖∇2
hb‖L2(Λh)

= ‖∇2
hRh ã‖L2(Λh)

. If i, j ≤ d− 1 then (5.2.22) implies that

‖Dh
i Dh
−jRh ã‖L2(Λh)

≤ C‖∇2
h ã‖L2

h((hZ)d−1) .

When taking derivatives in the direction ed we use (5.2.21) and the fact that Dh
±n and Rh

commute, to obtain (for i < d) that

‖Dh
i Dh
−dRh ã‖L2(Λh)

= ‖Dh
i RhDh

−d ã‖L2(Λh)

≤ C‖Dh
i Dh
−d ã‖L2(Λh)

,

and similarly, using (5.2.20),

‖Dh
dDh
−dRh ã‖L2(Λh)

≤ C‖Dh
dDh
−d ã‖L2(Λh)

.

3It is of course no coincidence that we have such an identity. In fact,∇2(Ru) is bounded in the L2 norm thanks
to the construction of R, and one can therefore also expect Rh to be well-behaved at the boundary.
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If we combine the last three estimates and use (5.2.19) we deduce that

‖∇2
hb‖L2(Λh)

= ‖∇2
h ã‖L2(Λh)

≤ Chs−2‖u‖Hs(Ω) .

Thus we can set b = Êd, and have shown that Êd has all of the desired properties.

Proof of Lemma 5.2.6. The proof is quite similar to the proof of Lemma 5.2.5. Let us outline
the differences. In Step 2 we use a different extension operator, namely

a∗(x′, xd) := ∑
k′∈{− 1

h+1,..., 1
h}

d−1

γk′

e|k′|h
xd e−|k

′|xd eiπk′·x′ ,

so that a∗(x′, 0) = 0 and Dh
−da(x′, 0) = g∗h,d(x′) for x′ ∈ (−1, 1)d−1 ∩ (hZ)d−1. Using Lemma

5.2.2 we then again obtain

‖∇2
ha∗‖L2

h((−1,1)d−1×[0,2]∩(hZ)d) ≤ C[gh,d]
H

1
2

h (Rd−1)
≤ Chs−2‖u‖Hs(Ω)

for s ≤ 3. The localization step remains unchanged. To correct the boundary values we use

R∗hv(x′) :=

{
Rv(x′) for x′ ∈ [0, ∞)d−1 ,

0 otherwise ,

instead of Rh. By using this projection operator we can then proceed as before.

5.3 Estimates for the finite difference schemes

5.3.1 Summation-by-parts formulae and Poincaré inequalities

For the sake of completeness we record some summation-by-parts formulae that we will
use in the following. These formulae are adapted to the two boundary conditions that we
encounter in (5.1.2) and (5.1.4). Zero boundary conditions are easier to deal with, so we
begin with those.

Lemma 5.3.1. Let v, ϕ : Λ̃h → R, and assume that ϕ = Dh
ν ϕ = 0 on Γh.

We have that

∑
z∈Λh∪Γh

hd∆2
hv(z)ϕ(z) =

d

∑
i,j=1

∑
z∈Λh∪Γh

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ(z) . (5.3.1)

So, if we define the scalar product ( f , g)L2
h,∗(Λh∪Γh)

on functions f , g : Λ̃h → Rn×n by

( f , g)L2
h,∗(Λh∪Γh)

:= ∑
z∈Λh

d

∑
i,j=1

hd fi,j(z)gi,j(z) ,

we have
(∆2

hv, ϕ)L2
h(Λh∪Γh)

= (∇2
hv,∇2

h ϕ)L2
h,∗(Λh∪Γh)

. (5.3.2)

Furthermore, we have, for any i ∈ {1, . . . , d}, that

(Dh
i Dh
−iv, ϕ)L2

h(Λh∪Γh)
= (v, Dh

i Dh
−i ϕ)L2

h(Λh∪Γh)
. (5.3.3)
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Proof. Observe that we have the summation-by-parts identity

∑
z∈(hZ)d

Dh
±i f (z)g(z) = ∑

z∈(hZ)d
f (z)Dh

∓ig(z) (5.3.4)

for f , g : (hZ)d → R such that at least one of f , g has compact support, and i ∈ {1, . . . , d}
(this follows from the one-dimensional case, where it can be easily checked). This immedi-
ately implies (5.3.3).

Next, observe that none of the terms in (5.3.1) depends on values of v or ϕ outside of Λ̃h.
Thus we can extend v and ϕ by 0 to all of (hZ)d and prove equivalently that

∑
z∈(hZ)d

hd∆2
hv(z)ϕ(z) = ∑

z∈(hZ)d
hd∆hv(z)∆h ϕ(z) =

d

∑
i,j=1

∑
z∈(hZ)d

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ(z) .

This follows from repeated application of (5.3.4).

For the case of the boundary conditions in (5.1.2), the situation is slightly more involved.
We define, for i, j ∈ {1, . . . , d} with i 6= j, the set

Γij
h := {z ∈ Γh : z + hAij ⊂ [0, 1]d} ,

where Aij is the discrete square

Aij := {0, ei,−ej, ei − ej} ,

and note that
z ∈ Γh \ Γij

h =⇒ (z + hAij) ∩Λh = ∅ if i 6= j .

Lemma 5.3.2. Let v, ϕ : Λ̃h → R, and assume that ϕ = Dh
0,ν ϕ = 0 on Γh. We then have that

∑
z∈Λh∪Γh

hd∆2
hv(z)ϕ(z) =

d

∑
i,j=1

∑
z∈Λh

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z)

+
1
2

d

∑
i=1

∑
z∈Γh

hdDh
i Dh
−iv(z)Dh

i Dh
−i ϕ̃(z) +

d

∑
i,j=1

∑
z∈Γij

h

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z) .

(5.3.5)

So, if we define the scalar product ( f , g)L2
h,∼(Λh∪Γh)

on functions f , g : Λ̃h → Rn×n by

( f , g)L2
h,∼(Λh∪Γh)

:=
d

∑
i,j=1

∑
z∈Λh

hd fij(z)gij(z) +
1
2

d

∑
i=1

∑
z∈Γh

hd fii(z)gii(z) +
d

∑
i,j=1
i 6=j

∑
z∈Γij

h

hd fij(z)gij(z) ,

then we have that
(∆2

hv, ϕ)L2
h(Λh∪Γh)

= (∇2
hv,∇2

h ϕ)L2
h,∼(Λh∪Γh)

. (5.3.6)

In addition, if we also define for f , g : Λ̃h → R the scalar product

( f , g)L2
h,∼(Λh∪Γh)

:= ∑
z∈Λh

hd fij(z)gij(z) +
1
2 ∑

z∈Λh

hd fii(z)gii(z) ,

then we have, for any i ∈ {1, . . . , d}, that

(Dh
i Dh
−iv, ϕ)L2

h(Λh∪Γh)
= (Dh

i Dh
−iv, ϕ)L2

h,∼(Λh∪Γh)
= (v, Dh

i Dh
−i ϕ)L2

h,∼(Λh∪Γh)
. (5.3.7)
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Proof. Define ϕ̃ : (hZ)d → R as ϕ̃(z) :=

{
ϕ(z) for z ∈ Λh

0 otherwise
. Then we can apply Lemma

5.3.1 to v, ϕ̃ and obtain

∑
z∈Λh∪Γh

hd∆2
hv(z)ϕ̃(z) = ∑

z∈Λh∪Γh

hd∆hv(z)∆h ϕ̃(z) =
d

∑
i,j=1

∑
z∈Λh∪Γh

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z) .

We trivially have
∑

z∈Λh∪Γh

hd∆2
hv(z)ϕ̃(z) = ∑

z∈Λh∪Γh

hd∆2
hv(z)ϕ(z) .

Furthermore, Dh
i Dh
−j ϕ̃(z) is equal to Dh

i Dh
−j ϕ(z) if z ∈ Λh. If z ∈ Γh we have Dh

i Dh
−i ϕ̃(z) =

1
2 Dh

i Dh
−i ϕ(z) and Dh

i Dh
−j ϕ̃(z) =

{
Dh

i Dh
−j ϕ(z) for z ∈ Γij

h

0 otherwise
. Therefore,

d

∑
i,j=1

∑
z∈Λh∪Γh

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z) =

d

∑
i,j=1

∑
z∈Λh

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z)

+
1
2

d

∑
i=1

∑
z∈Γh

hdDh
i Dh
−iv(z)Dh

i Dh
−i ϕ̃(z) +

d

∑
i,j=1

∑
z∈Γij

h

hdDh
i Dh
−jv(z)Dh

i Dh
−j ϕ̃(z) .

By combining the last three displayed equalities we deduce (5.3.5). With a similar argument
we can obtain (5.3.7) from (5.3.3).

Next, we state Poincaré-type inequalities for the two sets of boundary conditions con-
sidered.

Lemma 5.3.3. Let v : Λ̃h → R, and suppose that ϕ = Dh
ν ϕ = 0 on Γh. Then,

‖v‖H2
h(Λh)

≤ C‖∇2
hv‖L2

h,∗(Λh)
. (5.3.8)

Lemma 5.3.4. Let v : Λ̃h → R, and suppose that ϕ = Dh
0,ν ϕ = 0 on Γh. Then,

‖v‖H2
h(Λh)

≤ C‖∇2
hv‖L2

h,∼(Λh)
. (5.3.9)

Proof of Lemma 5.3.3. We can extend v by 0 to (hZ)d without changing the statement of the
lemma. Now observe that for f : (hZ)d → R with support contained in a cube of side-length
L, and i ∈ {1, . . . , d}, we have the Poincaré inequality

‖ f ‖L2
h((hZ)d) ≤ CL‖Dh

±i f ‖L2
h((hZ)d) .

Indeed this follows from the one-dimensional case, which can be proved by a straight-
forward summation by parts. If we apply this inequality to v and ∇v, we easily deduce
(5.3.8).

Proof of Lemma 5.3.4. Let ṽ(z) :=

{
v(z) for z ∈ Λh

0 otherwise
. Then, ṽ satisfies the assumptions of

Lemma 5.3.3, so that
‖ṽ‖H2

h(Λh)
≤ C‖∇2

hṽ‖L2
h,∗(Λh)

.
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Furthermore it is easy to check that

‖∇2
hṽ‖L2

h,∗(Λh)
≤ ‖∇2

hv‖L2
h,∼(Λh)

and
‖v‖H2

h(Λh)
≤ 2‖ṽ‖H2

h(Λh)
,

and hence we directly deduce (5.3.9).

5.3.2 Proofs of the main theorems

We have already sketched the proof of Theorem 5.1.1 in the introduction. We now provide
additional details. Parts of the following argument already appeared in the proof of Theorem
4.2.3.

Proof of Theorem 5.1.1. As was mentioned at the start of Section 5.2.1, we can assume that u
is supported in

[
0, 2

3

)2. Let E : Λ̃h → R be defined by E := u−U. Then,

E = 0 on Γh ,

Dh
0,νE = Dh

0,νũ on Γh .

Let Ê be the function from Lemma 5.2.5. Then,

E− Ê = 0 on Γh ,
Dh

0,ν(E− Ê) = 0 on Γh .

Therefore, using the results from Section 5.3.1 we deduce that

‖∇2
h(E− Ê)‖2

L2
h,∼(Λh∪Γh)

= (∆2
h(E− Ê), E− Ê)L2

h(Λh∪Γh)

= (∆2
hE, E− Ê)L2

h(Λh∪Γh)
− (∇2

hÊ,∇2
h(E− Ê))L2

h,∼(Λh∪Γh)
.

(5.3.10)

Using (5.1.9) we can rewrite ∆2
hE as follows

∆2
hE = ∆2

hũ− ∆2
hU = ∆2

hũ− T2,...,2 f = ∆2
hũ− Th,2,...,2∆2ũ

=
d

∑
i=1

Dh
i Dh
−i∆hũ− Th,2,...,2∂2

i ∆ũ

=
d

∑
i=1

Dh
i Dh
−i∆hũ− Dh

i Dh
−iT

h,2
1 . . . Th,2

i−1Th,2
i+1 . . . Th,2

d ∆ũ

=
d

∑
i=1

Dh
i Dh
−i ϕi ,

where we have abbreviated

ϕi := ∆hũ− Th,2
1 . . . Th,2

i−1Th,2
i+1 . . . Th,2

d ∆ũ .

If we insert this into (5.3.10) and use the summation-by-parts formula (5.3.7) we arrive at

‖∇2
h(E− Ê)‖2

L2
h,∼(Λh∪Γh)

=
d

∑
i=1

(ϕi, Dh
i Dh
−i(E− Ê))L2

h(Λh∪Γh)
− (∇2

hÊ,∇2
h(E− Ê))L2

h,∼(Λh∪Γh)
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≤
(

d

∑
i=1
‖ϕi‖L2

h(Λh∪Γh)
+ ‖∇2

hÊ‖L2
h(Λh∪Γh)

)
‖∇2

h(E− Ê)‖L2
h,∼(Λh∪Γh)

,

and thus

‖∇2
hE‖L2

h,∼(Λh∪Γh)
≤ ‖∇2

hÊ‖L2
h(Λh∪Γh)

+
d

∑
i=1
‖ϕi‖L2

h(Λh∪Γh)
. (5.3.11)

The first term on the right-hand side here is bounded by Chs−2‖u‖Hs(Ω) by construction
of Ê. The summands of the sum can be bounded using the Bramble–Hilbert lemma as in the
proof of [JS14, Theorem 2.68]. Let us sketch the argument for completeness:

Recall that
ϕi(x) = ∆hũ(x)− Th,2

1 . . . Th,2
i−1Th,2

i+1 . . . Th,2
d ∆ũ(x) .

Because s > d
2 ,

|∆hũ(x)| ≤ C(h)‖ũ‖L∞(x+(−h,h)d) ≤ C(h)‖ũ‖Hs(x+(−h,h)d) .

In addition s > 5
2 implies according to [JS14, Theorem 1.67] that

|Th,2
1 . . . Th,2

i−1Th,2
i+1 . . . Th,2

d ∆ũ(x)| ≤ C(h)‖ũ‖Hs(x+(−h,h)d) .

Thus ϕi(x) is a bounded linear functional of ũ ∈ Hs(x + (−h, h)d). This functional vanishes
when ũ|x+(−h,h)d is a polynomial of degree at most 3. Indeed, then ∆ũ(y) is equal to some
affine function a(y), and ∆hũ(x) = a(x). On the other hand, the smoothing operators Th,2

j
map affine functions to themselves, so that ϕi(x) = 0.

To summarize ϕi(x) is a bounded linear functional of ũ ∈ Hs(x + (−h, h)d) that vanishes
on polynomials of degree at most 3. Hence by the Bramble–Hilbert lemma it is bounded
by C(h)[ũ]Hs(x+(−h,h)d) for the range of s as in the statement of the theorem. Using a scaling
argument to determine the correct prefactor of h, we obtain

‖ϕi‖L2
h,∼(Λh∪Γh)

≤ Chs−2[ũ]Hs(Rd) ≤ Chs−2‖u‖Hs(Ω) (5.3.12)

for those s.
Now we substitute (5.3.12) into (5.3.11) and obtain the bound

‖∇2
hE‖L2

h,∼(Λh∪Γh)
≤ Chs−2‖u‖Hs(Ω)

for the range of s as in the statement of the theorem. The discrete Poincaré inequality, Lemma
5.3.4, immediately implies the asserted error bound.

Proof of Theorem 5.1.2. The proof is the same as that of Theorem 5.1.1. The only differences
are that we work with the inner product (·, ·)L2

h,∗(Λh∪Γh)
instead of (·, ·)L2

h,∼(Λh∪Γh)
, use Ê∗

instead of Ê, and Lemma 5.3.3 instead of Lemma 5.3.4.

5.4 Further remarks

5.4.1 Variants and extensions

Let us finally collect some miscellaneous remarks on possible variations of our results and
their proofs.
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5.4 Further remarks

Remark 5.4.1. By Section 5.2.3 we know that there are extensions of the boundary values of ũ
with controlled ‖ · ‖∼-norm and ‖ · ‖∗-norm respectively. In fact, the optimal such extension
is in both cases the biharmonic extension of the boundary values, i.e., the unique function V
with the given boundary values that satisfies ∆2

hV = 0 in Ω. Indeed, if ψ is a function such
that ψ = 0, Dh

0,νψ = 0 on Γ, then

‖∇2
h(V + ψ)‖2

L2
h,∼(Λh∪Γh)

= ‖∇2
hV‖2

L2
h,∼(Λh∪Γh)

+ ‖∇2
hψ‖2

L2
h,∼(Λh∪Γh)

+ 2(∇2
hV,∇2

hψ)L2
h,∼(Λh∪Γh)

and (∇2
hV,∇2

hψ)L2
h,∼(Λh∪Γh)

= 0, and similarly for ‖ · ‖L2
h,∗(Λh∪Γh)

. This means that we could

assume Ê to be discretely biharmonic, and this would simplify the proof of Theorem 5.1.1
slightly. However, for more general fourth-order elliptic operators one cannot use this fact,
so we chose to avoid it here.

Remark 5.4.2. Using function space interpolation as in Lemma 5.4.9 it is possible to deduce
the intermediate cases of Theorem 5.1.1 and 5.1.2 from the borderline cases s = 4 (or s = 3)
and s = 5

2 + ε. Our method of proof for s = 4 (or s = 3) however directly yields the desired
bounds for all relevant s, without the need to resort to function space interpolation here.

Remark 5.4.3. Our smoothing operator Th,2,...,2 has the advantage that it is given by convolu-
tion with a kernel with support in [−h, h]d so that, when it is applied to f , the values in Λh
of the resulting function do not involve values of f outside Ω. However, one might want to
use stronger mollification operators, as in [JIS85], for example. In particular using Th,3,...,3

would allow one to weaken the assumptions on s to s ≥ 1
2 max(3, d). This is possible if one

extends f to a function in Hs−4(Rd) in some way or redefines the finite difference scheme
appropriately near the boundary. Apart from this issue, our proof applies equally well to
regularization by Th,3,...,3. See Theorem 4.2.3 in Chapter 4 for a result of this kind.

Remark 5.4.4. In (5.1.2) and (5.1.4) we regularized the right-hand side by applying Th,2,...,2.
One might wonder whether some other choice of a regularizing operator, T′h say, would
have been equally appropriate here.

While we do not have a full answer to this question, we shall present a few necessary
conditions on T′h that will clarify why Th,2,...,2 is a natural choice. We only consider T′h defined
by convolution with some kernel Θh, where Θh = Θ

( ·
h

)
for some Θ : Rd → R. As discussed

in the previous remark, Θ should have support in [−1, 1]d. We want T′h f to be continuous
for each f ∈ Hs−4(Ω), where s > 5

2 , and this requires Θ ∈ ⋂s> 5
2

H4−s(Ω). Furthermore, T′h f
should approximate f in some sense, and thus we require T′h f → f pointwise as h→ 0 for
any f ∈ C∞

c (Ω), say.
Suppose now that the analogues of Theorem 5.1.1 and Theorem 5.1.2 hold with T′h in

place of Th,2,...,2. This means that u 7→ U′ is uniformly bounded in h as a map from Hs
0(Ω)

into H2
h(Λh) for any 5

2 < s ≤ 4; note that one can easily verify that ‖u‖H2
h
≤ C‖u‖Hs(Ω),

uniformly in h ≤ 1. This means that f 7→ T′h f is uniformly bounded in h as a map from
Hs−4(Ω) into H−2

h (Λh)
4. and therefore

(T′h f , ϕ)L2
h(Ωh)

≤ C‖ f ‖Hs−4(Ω)‖ϕ‖H2
h(Ωh)

∀ϕ ∈ H2
h,0(Λh) ,

uniformly in h ≤ 1. After a short calculation one sees that this implies that∥∥∥∥∥ ∑
x∈Λh

Θ
(

x− ·
h

)
ϕ(x)

∥∥∥∥∥
H4−s

0 (Ω)

≤ C‖ϕ‖H2
h(Λh)

∀ ϕ ∈ H2
h,0(Ωh) , (5.4.1)

4Here the norm on H−2
h (Λh) is given as the dual of the norm on H2

h,0(Λh), the subspace of H2
h(Λh) consisting

of those functions which are 0 outside of Λh.
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uniformly in h ≤ 1. In particular the H4−s-seminorm of the term on the left stays bounded
as h→ 0. Choosing s > 1 and using test functions ϕ of the form ϕ(x) = (a · x + b)η(x) for
some cut-off function η that is equal to 1 on some open set, one can show that (5.4.1) implies
that

∑
x∈Zd

(a · x + b)Θ(x− ·) is affine for each a ∈ Rd and b ∈ R.

This affine function needs to be the same function y 7→ a · y + b as otherwise T′h f does not
approximate f for functions f that are locally equal to y 7→ a · y + b. Therefore we actually
need that

∑
x∈Zd

(a · x + b)Θ(x− ·) = a · y + b is affine for each a ∈ Rd and b ∈ R . (5.4.2)

This is a rather strong condition on Θ. If we also recall the requirements supp Θ ⊂ [−1, 1]d

and Θ ∈ ⋂s> 5
2

H4−s(Ω), then in dimension d = 1 the only remaining Θ is given by Θ(x) =
θ2(x). In dimension d ≥ 2 there are other choices beyond Θ(x) = θ2(x1) · . . . · θ2(xd), but
that kernel is the unique one if we also demand that it factorizes into functions of the d

coordinates. For further results on mollifiers in Sobolev spaces the reader is referred to [JS14,
Section 1.9].

5.4.2 Density results

This section is concerned with the various definitions of the space Hs
(k) in the introduction.

Let us recall what we want to prove.

Lemma 5.4.5. Let Let Ξ = I1 × · · · × Id, where Ij ⊂ R are (possibly unbounded) open intervals,
s ∈ R, s ≥ 0, and k ∈N0 such that k + 1

2 < s. Then, the following spaces are equal:

i) Hs
(k)(Ξ), the space of all u ∈ Hs(Ξ) such that the traces of ∂i

νu for 0 ≤ i ≤ k vanish on ∂Ξ;

ii)
{

u ∈ C∞(Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖Hs(Ξ)
, the closure in the Hs(Ξ)-norm of the set of all

functions in C∞(Ξ) whose derivatives up to order k vanish on ∂Ξ;

iii) Hs(Ξ) ∩ Hmin(k+1,s)
0 (Ξ).

Remark 5.4.6. This result actually holds in far more generality (with basically the same proof):
on the one hand one can replace the condition ∂i

νu = 0 for 0 ≤ i ≤ k by the more general
condition ∂i

νu = 0 for i ∈ K, where K ⊂N, as long as s− 1
2 6∈ K. On the other hand one can

take Ξ to be any domain with Lipschitz boundary. The only additional difficulty then is
to define ∂i

νu in view of the fact that ν is in general only a measurable function. However
if one defines ∂i

νu as the appropriate linear combination of the traces of ∂αu for |α| = i (cf.
[MM13, p. 156]) the results still hold.

Proof of Lemma 5.4.5. As was already remarked in Section 5.1.3, for the Lipschitz domain Ξ,
every function in C∞

c (Ξ) is the restriction of a function in C∞
c (Rd) to Ξ. In particular, we

have that C∞
c (Ξ) ⊂ Hs(Ξ).

We will prove the inclusions{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖Hs(Ξ) ⊂ Hs(Ξ) ∩ Hmin(k+1,s)
0 (Ξ) , (5.4.3)

Hs(Ξ) ∩ Hmin(k+1,s)
0 (Ξ) ⊂ Hs

(k)(Ξ) , (5.4.4)
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Hs
(k)(Ξ) ⊂

{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖Hs(Ξ)
.

(5.4.5)

The inclusion (5.4.4) follows immediately from the definitions and standard trace theorems.
Next observe that trivially

{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖Hs(Ξ) ⊂ Hs(Ξ) ,

so in order to prove (5.4.3) we only need to verify that

{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖Hs(Ξ) ⊂ Hmin(k+1,s)
0 (Ξ) .

To see this, it suffices to prove that

{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}‖·‖
Hmin(k+1,s)(Ξ) ⊂ Hmin(k+1,s)

0 (Ξ) .

This follows from general theory (e.g. [MM13, Theorem 3.18]), but it is also easy to
verify by direct calculations: we need to check that we can approximate any function
v ∈

{
u ∈ C∞

c (Ξ) : ∂i
νu = 0 on ∂Ξ ∀ i ≤ k

}
with C∞

c (Ξ)-functions in the Hmin(k+1,s)-norm.
The proof of this assertion proceeds as follows. The assumptions on v imply that the

extension v̄ of v by 0 to Rd is in Ck(Rd). In addition, v̄ ∈ Hk+1(Rd). To verify this one can
use that all derivatives of v of order k are continuous, have zero trace, and are in H1(Ξ).
Hence, their extensions by zero belong to H1(Rd). This is well known for general Lipschitz
domains (and is easily seen by a partition of unity argument and transformation to the
half-space situation by composition with a bi-Lipschitz map). Now dilation is continuous in
Hk+1(Rd), and hence v can be approximated by Hk+1

0 (Ξ) functions in the Hk+1 norm. Thus,
v ∈ Hk+1

0 (Ξ). Consequently, v can be approximated in the ‖ · ‖Hk+1 norm, and in particular
in the possibly weaker norm ‖ · ‖Hmin(s,k+1) by C∞

c (Ξ) functions.
It remains to prove (5.4.5). We first observe that{

u ∈ C∞
c (Ξ) : ∂i

νu = 0 on ∂Ξ ∀ i ≤ k
}
= C∞

c (Ξ) ∩ Hs
(k)(Ξ) .

Taking this into account, we need to verify that C∞
c (Ξ) ∩ Hs

(k)(Ξ) is dense in Hs
(k)(Ξ). It is

easy to see that C∞
c (Ξ) ∩ Hs

(k)(Ξ) is dense in C∞(Ξ) ∩ Hs
(k)(Ξ), so it remains to prove that

the latter space is dense in Hs
(k)(Ξ). To see this we apply the criterion of Burenkov [Bur98,

Theorem 2 on p. 49]. The first three assumptions of that theorem are obviously satisfied, and
for the fourth we need to check that every u ∈ Hs

(k)(Ξ) of compact support is continuous
under translations, which is once again clear.

5.4.3 Remarks on Interpolation

In this section we shall collect and discuss various results on interpolation spaces that
were used in our work. As we only consider Hilbert spaces, we do not need the theory of
interpolation spaces in its full generality and can make some simplifications.

We consider two separable Hilbert spaces X and Y such that X ⊂ Y is dense and the
injection is continuous. Then, given θ ∈ [0, 1], we can consider the associated interpolation
spaces [X, Y]θ := D(Λ1−θ) equipped with the graph norm, where Λ is a self-adjoint positive
operator on Y with domain X (see [LM72a, Section 2] for details, starting with the nontrivial
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fact that such a Λ always exists). Because we are considering Hilbert spaces, this definition
yields up to equivalence of norms the same space as the complex interpolation space [X, Y][θ]
or the real interpolation space [X, Y]θ,2 (see [LM72a, Section 14.2 and Section 15] for proofs).
Thus we will be able to freely use results for either of these interpolation techniques from
the literature.

Our first task is to study whether the spaces Hs
(k)(Ξ) form an interpolation scale, where

Ξ ⊂ Rd is open and connected. If Ξ has a smooth boundary this was shown in [Gri67]
with an alternative proof in [Löf92]. However we are interested in the cases Ξ = (0, 1)d or
Ξ = (0, ∞)d, and the two aforementioned proofs do not easily extend to that case. On the
other hand, if Ξ has Lipschitz boundary then there are results concerning the interpolation
scales Hs(Ξ) and Hs

0(Ξ) (see e.g. [Bra95]), but not for our mixed case.
Fortunately, in our case it is possible to use the fact that our domain is a cartesian product

in combination with results from [LM72a] to give a proof of the desired result by induction
on the dimension.

We begin by stating a one-dimensional but vector-valued result that we will need in the
proof of the following lemmas. In addition to the notation from the introduction, we define
Hs

#(I), where I ⊂ R is an open interval such that 0 ∈ I, as the closure of the linear space of
functions u contained in C∞(I) ∩ Hs(I) with u′(0) = 0 in the ‖ · ‖Hs -norm.

Lemma 5.4.7. Let E be a separable Hilbert space, I ⊂ R a (possibly unbounded) open interval, and
k ∈N. Let s ≥ t ≥ 1, and let θ ∈ (0, 1). If s− 1

2 6∈ {0, 1, . . . , k} and (1− θ)s− 1
2 6∈ {0, 1, . . . , k},

then we have that [
Hs

(k)(I, E), L2(I, E)
]

θ
= H(1−θ)s

(k) (I, E) . (5.4.6)

Furthermore, if 0 ∈ I, s 6= 3
2 and (1− θ)s 6= 3

2 , then[
Hs

#(I, E), L2(I, E)
]

θ
= H(1−θ)s

# (I, E) . (5.4.7)

Proof. If E = R then (5.4.6) is a special case of [Gri67, Théorème 8.1]. The Hilbert-space-
valued case follows from a simple general tensorization argument, see Lemma 5.4.8 below.

For (5.4.7) it suffices again to consider the case E = R. The inclusion “⊂” is straightfor-
ward. For the converse inclusion we adapt the strategy from [Gri67]. Our goal is to construct
for any given f ∈ H(1−θ)s

(k) (I) some u ∈ L2(R+, Hs
(k)(I) ∩ H

1
2θ (R+, L2(I)) with u(·, 0) = f (cf.

[Gri67, Definition 2.2]).
If s < 3

2 then Hs
#(I) = Hs(I) and the assertion follows by standard results. Thus we may

assume s > 3
2 .

We first assume that s− 1
2 6∈N and (1− θ)s− 1

2 6∈N. We first define the extension u of f on
I ∩R+ and I ∩ R− separately. Let η ∈ C∞([0, 1)) with η = 1 on [0, 1

2 ] and set, for x ∈ I ∩R+,

f±0 (x) = f (x) ,

fk = 0 for 1 ≤ k <
1
2θ
− 1

2
,

g±1 (0, y) = 0 ,

g±j = (±1)j ∂j f
∂νj (0)η(y) for j < (1− θ)s− 1

2
and j 6= 1,

g±j (0, y) = 0 for (1− θ)s− 1
2
≤ j < s− 1

2
.
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Then, the compatibility conditions in [Gri67, Théorème 7.2] are satisfied and thus there exist

u± ∈ L2(R+, Hs(I ∩R±)) ∩ H
1
2θ (R+, L2(I ∩R±))

such that

u±(0, x) = f (x) ,

∂j

∂νj u±(y, 0) = g±j (y) .

Set u(y, x) = u±(y, x) for±x > 0. Then, in particular u′(y, 0) = 0. The condition f ∈ H(1−θ)s

implies that (−1)jg−j = g+j for j < (1− θ)s − 1
2 and hence this condition holds for all j.

Because s 6∈ N0 +
1
2 it follows that u(·, y) ∈ Hs(I) for all y > 0 and in fact u(·, y) ∈ Hs

#(I).
Thus,

u ∈ L2(R+, Hs
#(I)) ∩ H

1
2θ (R+, L2(I))

and u(0, x) = f (x). By [Gri67, Definition 2.2] we deduce that f ∈
[
Hs

#(I), L2(I)
]

θ
, and this

concludes the proof of (5.4.7).
It remains to remove the assumptions (1− θ)s− 1

2 6∈N and s− 1
2 6∈N. This can easily be

handled by using [LM72a, Theorem 13.3] and reiteration. For the convenience of the reader
we give the details.

Consider the case s− 1
2 ∈N, but (1− θ)s− 1

2 6∈N. Let s∗ > s > 3
2 be such that s∗− 1

2 6∈N

and let θ∗ be such that s = (1− θ∗)s∗. By the reiteration theorem [LM72a, Theorem 6.1] we
have [

Hs
#(I), L2(I)

]
θ
=
[[

Hs∗
# (I), L2(I)

]
θ∗

, L2(I)
]

θ
=
[
Hs∗

# (I), L2(I)
]

θ+θ∗−θθ∗

and the right-hand side equals H(1−θ)s
# (I) by what we have already shown (note that

(1− (θ + θ∗ − θθ∗))s∗ = (1− θ)s).
Next consider the remaining case that (1− θ)s − 1

2 ∈ N. Choose θ− < θ < θ+ close
enough to θ such that (1− θ±)s− 1

2 6∈N and 3
2 6∈ [(1− θ+)s, (1− θ−)s]. Let θ̃ be such that

θ = (1− θ̃)θ− + θ̃θ+. Again by reiteration and the previous results we have[
Hs

#(I), L2(I)
]

θ
=
[[

Hs
#(I), L2(I)

]
θ−

,
[
Hs

#(I), L2(I)
]

θ+

]
θ̃
=
[

H(1−θ−)s
# (I), H(1−θ+)s

# (I)
]

θ̃

and it suffices to show that the right-hand side equals H(1−θ̃)(1−θ−)s+θ̃(1−θ+)s
# (I) = H(1−θ)s

# (I).
To that end, observe that

Ht
#(I) =

{
{ f ∈ Ht(I) : f ′(0) = 0} for t > 3

2 ,

Ht(I) for t < 3
2 ,

is a closed subspace of Ht(I) of finite codimension for any t 6= 3
2 . Now [LM72a, Theorem

13.3] implies that for t < t′ < 3
2 or 3

2 < t < t′ and θ̂ ∈ [0, 1] we have[
Ht′

# (I), Ht
#(I)

]
θ̂
= H(1−θ̂)t′+θ̂t

# (I) .

In particular, [
H(1−θ−)s

# (I), H(1−θ+)s
# (I)

]
θ̃
= H(1−θ̃)(1−θ−)s+θ̃(1−θ+)s

# (I) .

This completes the proof.
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Lemma 5.4.8. Let X ⊂ Y be Hilbert spaces of real-valued functions, as above. Let E be a separable
Hilbert space and denote by X⊗ E and Y⊗ E the corresponding spaces of E-valued functions. Then,
for all θ ∈ (0, 1),

[X⊗ E, Y⊗ E]θ = [X, Y]θ ⊗ E ,

with equivalent norms. Here for a Hilbert space Z of real-valued functions the scalar product
on Z ⊗ E is defined as follows. If (em)∞

m=1 is an orthonormal basis of E and f = ∑∞
m=1 fmem,

g = ∑∞
m=1 gmem, then

( f , g)X⊗E =
∞

∑
m=1

( fm, gm)X .

Proof. To show the inclusion “⊃” let a ∈ [X, Y]θ ⊗ E and δ > 0. Then am ∈ [X, Y]θ and by
[Gri67, Definition 2.2]) there exist um ∈ L2(R+, X) ∩ H

1
2θ (R+, Y) with am = um(0) and

‖um‖L2(R+,X) + ‖um‖
H

1
2θ (R+,Y)

≤ (1 + δ)‖am‖[X,Y]θ , m = 1, 2, . . . .

Taking the square and summing over m we see that

S :=
∞

∑
m=1
‖um‖2

L2(R+,X) + ‖um‖2

H
1
2θ (R+,Y)

≤ (1 + δ)2‖a‖2
[X,Y]θ⊗E .

Set u := ∑∞
m=1 um. Since S < ∞ we see that u ∈ L2(R+, X ⊗ E) ∩ H

1
2θ (R+, Y ⊗ E). Thus

a = u(0) ∈ [X⊗ E, Y⊗ E]θ and

‖a‖2
[X⊗E,Y⊗E]θ

≤ 2S ≤ 2(1 + δ)2‖a‖2
[X,Y]θ⊗E .

The proof of the converse inclusion, “⊂”, is similar: Let a ∈ [X⊗ E, Y⊗ E]θ . Then there is
a u ∈ L2(R+, X⊗ E) ∩ H

1
2θ (R+, Y⊗ E) with u(0) = a and

‖u‖L2(R+,X⊗E) + ‖u‖H
1
2θ (R+,Y⊗E)

≤ (1 + δ)‖a‖[X⊗E,Y⊗E]θ .

In particular um = (u, em)E satisfies um ∈ L2(R+, X) ∩ H
1
2θ (R+, Y), m = 1, 2, . . . . Thus

am = um(0) ∈ [X, Y]θ , and we have

‖a‖2
[X,Y]θ⊗E =

∞

∑
m=1
‖am‖2

[X,Y]θ

≤ 2
∞

∑
m=1
‖um‖2

L2(R+,X) + ‖um‖2

H
1
2θ (R+,Y)

= 2‖u‖2
L2(R+,X) + 2‖u‖2

H
1
2θ (R+,Y)

≤ 2(1 + δ)2‖a‖2
[X⊗E,Y⊗E]θ

.

That completes the proof of the lemma.

Now we can establish the desired interpolation results in higher dimensions. For the
following lemma, we are interested in the cases Ξ = Ω and k = 1 or Ξ = (0, ∞)d and k = 0.

Lemma 5.4.9. Let Ξ = I1 × · · · × Id, where Ij ⊂ R are (possibly unbounded) open intervals.
Let K = {k1, . . . , km} ⊂ N0. Let s ≥ t ≥ 0, and let θ ∈ [0, 1]. If none of s − 1

2 , t − 1
2 and

(1− θ)s + θt− 1
2 are in {0, 1, . . . k}, then[

Hs
(k)(Ξ), Ht

(k)(Ξ)
]

θ
= H(1−θ)s+θt

(k) (Ξ) , (5.4.8)
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and, in particular, if s 6∈ {0, 1, . . . k}, (1− θ)s− 1
2 6∈ {0, 1, . . . k}, then[

Hs
(k)(Ξ), L2(Ξ)

]
θ
= H(1−θ)s

(k) (Ξ) . (5.4.9)

Proof. The identity (5.4.8) immediately follows from (5.4.9) and reiteration, so it suffices to
establish (5.4.9).

We proceed by induction on d. The case d = 1 was established in Lemma 5.4.7. Now
assume that the theorem holds for d− 1 dimensions. The following argument is similar to
the one in Section 2.1 in [LM72b].

Let Ξ′ = I1 × · · · × Id−1, and write x = (x′, xd). If we interpret a function Ξ → R as a
function Id → (Ξ′ → R), we claim that

L2(Ξ) = L2(Id, L2(Ξ′)) (5.4.10)

and
Hs

(k)(Ξ) = L2(Id, Hs
(k)(Ξ

′)) ∩ Hs
(k)(Id, L2(Ξ′)) . (5.4.11)

Indeed, (5.4.10) is obvious. For (5.4.11) one can argue as follows. It is well-known (and can
be proved using the Fourier transform, for example) that

Hs(Rd) = L2(R, Hs(Rd−1)) ∩ Hs(R, L2(Rd−1)) . (5.4.12)

The sets Ξ′ and Id have Lipschitz boundary, and so there exists an extension operator
E, mapping Ht(Ξ) continuously to Ht(Rd) for t ∈ {0, s}, that also maps Ht(Ξ′ × {xd})
continuously to Ht(Rd−1 × {xd}) for any xd ∈ Id. One can construct such an E by first
applying an appropriate extension operator on each slice Ξ′ × {xd} ⊂ Rd−1 × {xd} and
then extending in the direction ed. Using this extension operator, one can easily check that
(5.4.12) implies also that

Hs(Ξ) = L2(Id, Hs(Ξ′)) ∩ Hs(Id, L2(Ξ′)) .

From this we want to deduce (5.4.11) by considering the faces of Ξ separately. We begin
with “⊂” in (5.4.11). Let u ∈ Hs

(k)(Ξ), and take j ≤ d− 1. Let Ξ′j,± × Id be the two faces of Ξ

orthogonal to ej. By assumption the trace of ∂i
ju for i ≤ k vanishes on Ξ′j,± × Id as an element

of Hs−j−1/2(Ξ′j,± × Id) and thus also as an element of L2(Id, Hs−j−1/2(Ξ′j,±). In particular, for
almost every xd the trace of ∂i

ju(·, xd) vanishes on Ξ′j,± × {xd}. This holds for all j ≤ d− 1
and all i ≤ k, and so u ∈ L2(Id, Hs

(k)(Ξ
′)). We can argue similarly for the case j = d to

deduce that u ∈ Hs
(k)(Id, L2(Ξ′)) and have thus shown “⊂” in (5.4.11). The argument for

“⊃” is analogous. Thus we have established (5.4.11).
We have that L2(Id, Hs

(k)(Ξ
′)) is the domain of an unbounded positive operator Λ1 on

L2(Id, L2(Ξ′)), and Λ1 is an operator in x′, independent of xd. Similarly, Hs
(k)(Id, L2(Ξ′)) is

the domain of an unbounded positive operator Λ2 on L2(Id, L2(Ξ′)), and Λ2 is an operator
in x′, independent of xd. In particular, Λ1 and Λ2 commute. Thus we can apply the criterion
for the interpolation space of an intersection [LM72a, Theorem 13.1] and obtain that[

Hs
(k)(Ξ), L2(Ξ)

]
θ

=
[

L2(Id, Hs
(k)(Ξ

′)) ∩ Hs
(k)(Id, L2(Ξ′)), L2(Id, L2(Ξ′))

]
θ

=
[

L2(Id, (Hs
(k)(Ξ

′)), L2(Id, L2(Ξ′))
]

θ
∩
[

Hs
(k)(Id, L2(Ξ′)), L2(Id, L2(Ξ′))

]
θ

.
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Now, according to [LM72a, Remark 14.4] and using the induction hypothesis (5.4.9) for
d− 1, we have[

L2(Id, Hs
(k)(Ξ

′)), L2(Id, L2(Ξ′))
]

θ
= L2

(
Id,
[

Hs
(k)(Ξ

′), L2(Ξ′)
]

θ

)
= L2(Id, H(1−θ)s

(k) (Ξ′)) .

Similarly, using (5.4.6), we find[
Hs

(k)(Id, L2(Ξ′)), L2(Id, L2(Ξ′))
]

θ
= H(1−θ)s

(k) (Id, L2(Ξ′)) .

If we combine the last three equalities, we deduce that[
Hs

(k)(Ξ), L2(Ξ)
]

θ
= L2(Id, H(1−θ)s

(k) (Ξ′)) ∩ H(1−θ)s
(k) (Id, L2(Ξ′))

= H(1−θ)s
(k) (Ξ) .

That completes the proof of the lemma.

For the next lemma recall the definition of Gs from the proof of Lemma 5.2.4.

Lemma 5.4.10. Let s ≥ t ≥ 0, and let θ ∈ (0, 1). Then, if none of s, t and (1− θ)s + θt are in{ 1
2 , 3

2

}
, we have[

Gs((0, ∞)d−1 ×R), Gt((0, ∞)d−1 ×R)
]

θ
= G(1−θ)s+θt((0, ∞)d−1 ×R) , (5.4.13)

and in particular, if s 6∈
{ 1

2 , 3
2

}
, (1− θ)s 6∈

{ 1
2 , 3

2

}
, then[

Gs((0, ∞)d−1 ×R), L2((0, ∞)d−1 ×R)
]

θ
= G(1−θ)s((0, ∞)d−1 ×R) . (5.4.14)

Proof. As in the previous lemma, (5.4.13) follows from (5.4.14) and reiteration, so we will
only prove (5.4.14). Observe that

Gs((0, ∞)d−1 ×R) = L2(R, Hs
(0)((0, ∞)d−1)) ∩ Hs

#(R, L2((0, ∞)d−1)

and
L2((0, ∞)d−1 ×R) = L2(R, L2((0, ∞)d−1)) .

Intersection and interpolation commute by the same argument as in the proof of Lemma
5.4.9, and so we have[

Gs((0, ∞)d−1 ×R), L2((0, ∞)d−1 ×R)
]

θ
=
[

L2(R, Hs
(0)((0, ∞)d−1), L2(R, L2((0, ∞)d−1))

]
θ

∩
[

Hs
#(R, L2((0, ∞)d−1), L2(R, L2((0, ∞)d−1))

]
θ

.

Now, by Lemma 5.4.9 we have[
L2(R, Hs

(0)((0, ∞)d−1), L2(R, L2((0, ∞)d−1))
]

θ
= L2(R, H(1−θ)s

(0) ((0, ∞)d−1) ,

and Lemma 5.4.7 implies that[
Hs

#(R, L2((0, ∞)d−1), L2(R, L2((0, ∞)d−1))
]

θ
= H(1−θ)s

# (R, L2((0, ∞)d−1) .

The last three equalities combined imply (5.4.14).
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6 Pinning for the membrane model in
dimension four and above

This chapter is based on the author’s preprint [Sch20b], with only minor changes.

6.1 Introduction

In this chapter we study the pinned membrane model in dimension four and above. The
problem and our main results were described in Section 1.3.4. In this chapter we are focussed
on the membrane model, and so we drop all subscripts ∆.

Recall that we consider the membrane model

PΛ(dψ) =
1

ZΛ
exp

(
−1

2 ∑
x∈Zd

|∆1ψx|2
)

∏
x∈Λ

dψx ∏
x∈Zd\Λ

δ0(dψx) . (6.1.1)

on some Λ b Zd as well as the membrane model with δ-pinning of strength ε > 0,

Pε
Λ(dψ) =

1
Zε

Λ
exp

(
−1

2 ∑
x∈Zd

|∆1ψx|2
)

∏
x∈Λ

(dψx + εδ0(dψx)) ∏
x∈Zd\Λ

δ0(dψx) . (6.1.2)

6.1.1 Main results

Let us describe our results in detail. First of all, expanding the bracket in (6.1.2), we see that
for f : RZd → R we have

Eε
Λ( f ) =

1
Zε

Λ

∫
exp

(
−1

2 ∑
x∈Zd

|∆1ψx|2
)

f (ψ) ∏
x∈Λ

(dψx + εδ0(dψx)) ∏
x∈Zd\Λ

δ0(dψx)

=
1

Zε
Λ

∑
A⊂Λ

∫
exp

(
−1

2 ∑
v∈Zd

|∆1ψx|2
)

f (ψ)ε|A| ∏
x∈Λ\A

dψv ∏
x∈Zd\(Λ\A)

δ0(dψx)

= ∑
A⊂Λ

ε|A|ZΛ\A

Zε
Λ

EΛ\A( f ) .

(6.1.3)

where Eε
Λ and EΛ\A denote the expectation with respect to Pε

Λ and PΛ\A, respectively. Thus,
we have

Pε
Λ(dψ) = ∑

A⊂Λ
ζε

Λ(A)PΛ\A(dψ) (6.1.4)

where

ζε
Λ(A) =

ε|A|ZΛ\A

Zε
Λ
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so that ζε
Λ is a probability measure on P(Λ), the powerset of Λ. It describes the set of pinned

points. In fact, one easily sees that for any A ⊂ Λ we have

A = {x ∈ Λ : ψx = 0} PΛ\A-almost surely .

By (6.1.4), Pε
Λ is a mixture of the Gaussian measures PΛ\A for A ⊂ Λ. Our first goal

will therefore be to understand the weights of this mixture, i.e. the measure ζε
Λ. We write

ζε
Λ( f ) for ∑A⊂Λ f (A)ζε

Λ(A). The first result is that the measures ζε
Λ satisfies a correlation

inequality.

Theorem 6.1.1. The measure ζε
Λ satisfies the FKG inequality, i.e.

ζε
Λ( f g) ≥ ζε

Λ( f )ζε
Λ(g)

for any pair of increasing functions f , g : P(Λ)→ R.

This FKG inequality allows us to prove directly that a thermodynamic limit of the ζε
Λ

exists. We can also prove that a thermodynamic limit of the Pε
Λ exists. That result relies on

the estimates for the Green’s function which we state in Theorem 6.1.5 below.

Theorem 6.1.2. If d ≥ 4, the thermodynamic limit

ζε := lim
Λ↗Zd

ζε
Λ

exists and is translation invariant.
Furthermore, there is a constant εd depending on d only such that for any ε < εd the thermody-

namic limit

Pε := lim
Λ↗Zd

Pε
Λ

exists and is translation invariant.

The convergence here is meant as weak convergence of measures on RZd
equipped with

the cylinder σ-algebra, i.e. the measures integrated against any bounded local function
converge.

It is easy to see that Pε is an infinite volume Gibbs measure for the interaction (6.1.2) (with
appropriate boundary conditions). We write Eε for the expectation with respect to Pε.

We will now state a few results on ζε
Λ and Pε

Λ that hold uniformly in Λ. Theorem 6.1.2
then implies that they hold for ζε and Pε as well.

We begin with precise estimates on the pinned set. The heuristic is that this set behaves
like a Bernoulli point process with density pd depending on ε. It turns out that this is true
in a rather strong sense if d ≥ 5. In d = 4 this no longer holds, but fortunately we can still
compare the probabilities that large sets are free of pinned points, and this is sufficient to
continue with our argument. The precise result is the following. For the definition of strong
stochastic domination see Definition 6.2.2. We denote by A a random variable distributed
according to ζε

Λ.

Theorem 6.1.3. Let d ≥ 4. There are constants cd, Cd, εd,∗ depending on d only with the following
properties.
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a) If d ≥ 5 and pd,− = cdε, then for any Λ b Zd and any ε < εd,∗ the measure ζε
Λ strongly

dominates the Bernoulli measure on P(Λ) with parameter pd,−. In particular for any E ⊂ Λ

(1− pd,−)
|E| ≥ ζε

Λ(A∩ E = ∅) . (6.1.5)

b) If d ≥ 5 and pd,+ = Cdε, then for any Λ b Zd and any ε < εd,∗ the measure ζε
Λ is strongly

dominated by the Bernoulli measure on P(Λ) with parameter pd,+. In particular for any
E ⊂ Λ

(1− pd,+)
|E| ≤ ζε

Λ(A∩ E = ∅) . (6.1.6)

c) If d = 4 and p4,− = c4
ε

| log ε|1/2 , then for any E ⊂ Λ and any ε < ε4,∗ we have

(1− p4,−)
|E| ≥ ζε

Λ(A∩ E = ∅) . (6.1.7)

d) If d = 4, then there is for any α > 0 a constant C4,α depending on d and α such that with
p4,+,α = C4,α

ε
| log ε|1/2 for any E ⊂ Λ with d(E, Zd \Λ) ≥ ε−α and any ε < ε4,∗ we have

(1− p4,+,α)
|E| ≤ ζε

Λ(A∩ E = ∅) . (6.1.8)

All estimates also hold with ζε in place of ζε
Λ.

Let us warn the reader that we use the notation pd,± in the opposite way as in [BV01].
Our convention here follows [BCK17].

Note carefully that we do not claim any domination result in case d = 4. In fact, the
same argument as in [BV01, Section 2] shows that neither ζε

Λ is strongly dominated by
the Bernoulli measure on P(Λ) with parameter p4,+, nor that ζε

Λ strongly dominates the
Bernoulli measure on P(Λ) with parameter p4,−.

In the subcritical dimensions d < 4 the set of pinned points is too correlated for any
meaningful comparison with a Bernoulli measure. This is the reason why new techniques
would be necessary to study the pinned membrane model in dimensions 2 and 3.

From Theorems 6.1.2 and 6.1.3 one immediately obtains the following corollary, which
strengthens Sakagawa’s result [Sak12] that the density of pinned points is positive for any
ε > 0.

Corollary 6.1.4. Let d ≥ 4. Consider the density of pinned points

ρε = lim inf
Λ↗Zd

1
|Λ| ζ

ε
Λ(|A|) = lim inf

Λ↗Zd

1
|Λ| ∑

A⊂Λ
|A|ζε

Λ(A) .

For each ε > 0 we have ρε ≥ cdpd,− > 0.

It is unclear whether the limit here exists in general. However, using Theorem 6.1.1 and a
subadditivity argument one can show that it exists along the sequence Λn = [−n, n]d ∩Zd,
say.

Using the knowledge about ζε
Λ from Theorem 6.1.3 we can now establish some more

precise results on Pε. For any vector θ ∈ Sd−1 (where Sd−1 is the unit sphere in Rd) define
the mass

mε(θ) := − lim sup
k→∞

1
k

log |Eε(ψ0ψbkθc)| . (6.1.9)
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6 Pinning for the membrane model in dimension four and above

where we set log 0 = −∞. Note that we take the absolute value of Eε(ψ0ψbkθc) in this
definition. This is because for the membrane model correlations can be negative. In fact,
the heuristic in Section 6.1.2 below suggests that Eε(ψ0ψbkθc) behaves like an underdamped
harmonic oscillator. In particular, we expect that the limit in (6.1.9) does not exist. In contrast,
for the gradient model the limit in (6.1.9) exists, even without the absolute values, cf. [BV01,
Appendix A].

We can show the following results on the variance, covariance and mass. Here d(x, E)
denotes the distance from x to the set E.

Theorem 6.1.5. Let d ≥ 4, and Λ b Zd. There are constants cd, Cd, εd,∗∗ depending on d only
with the following property.

a) Let x ∈ Λ. Then for ε < εd,∗∗ we have the following estimates on the variance: if d ≥ 5, then

cd ≤ Eε
Λ(ψ

2
x) ≤ Cd , (6.1.10)

while if d = 4 and α > 0, then

| log ε|
32π2 − C4,α log | log ε| ≤ Eε

Λ(ψ
2
x) ≤

| log ε|
16π2 + C4 log | log ε| , (6.1.11)

where the lower bound only holds if d(x, Zd \Λ) ≥ ε−α + ε−1/4. The same estimates hold for
Eε instead of Eε

Λ (with the condition on d(x, Zd \Λ) becoming vacuous).

b) Let x, y ∈ Λ. Then for ε < εd,∗∗ we have the following estimates on the covariance: if d ≥ 5,
then

|Eε
Λ(ψxψy)| ≤

Cd

ε1/2 exp
(
−cdε1/4|x− y|

)
, (6.1.12)

while if d = 4, then

|Eε
Λ(ψxψy)| ≤ C4

(
| log ε|5/4

ε1/2 + log(1 + |x− y|)
)

exp
(
− c4ε1/4|x− y|
| log ε|3/8

)
. (6.1.13)

The same estimates hold for Eε instead of Eε
Λ.

In particular, we have the following estimates on the mass: if d ≥ 5, then

cdε1/4 ≤ mε(θ) ∀θ ∈ Sd−1 , (6.1.14)

while if d = 4, then

c4
ε1/4

| log ε|3/8 ≤ mε(θ) ∀θ ∈ S3 . (6.1.15)

The estimates in Theorem 6.1.5 are only valid for sufficiently small ε > 0. However,
a calculation similar to (6.1.3) reveals that for ε′ < ε the measure P

(ε)
Λ is a mixture of the

measures P
(ε′)
Λ\A, and so the theorem also implies that for any ε > 0 the measure P

(ε)
Λ has

bounded variances and exponentially decaying covariances.
In the next section we describe some heuristics for the exponential decay of the correlations.

These heuristics suggest that the exponential rates in (6.1.12) and (6.1.13) are optimal, but
the prefactors are not. In fact, we have made no real effort to optimise these prefactors, as
this would require further technicalities. Nonetheless, as we believe that the exponential
rates in (6.1.12) and (6.1.13) are optimal, the same holds for the rates in (6.1.14) and (6.1.15).
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6.1 Introduction

The results of Theorem 6.1.5 are a far-reaching generalization of the results in [BCK16,
BCK17]. In [BCK17] it is shown that for d ≥ 5 the mass is positive for each fixed ε > 0. No
explicit lower bound on the mass is given, but if one keeps track of the constants in their
argument one can check that their proof gives the estimate

cdε
(2d+4)(2d+1)

d ≤ mε(θ) .

For d = 4 in [BCK16] stretched-exponential decay of the covariances is shown, and it was
unknown whether the decay is actually exponential.

6.1.2 Heuristics: The continuous Bilaplace equation in a perforated domain

Before we describe the proofs of our results in more detail, let us discuss a related problem
that provides some heuristics. Namely we consider the continuous Bilaplace equation in
a domain perforated by small holes. This is a well-studied problem, and the analogous
problem for the Laplacian even more so, cf. [CM97, MK06]1. If one lets the size of the holes
tend to zero while keeping their capacity density constant, the problem converges (in an
appropriate sense) to a Bilaplace equation with a mass term on the whole domain. The
Green’s function of the associated operator decays exponentially, and so it is unsurprising
that the same holds true already for the Green’s function in the perforated domain.

In our context, this connection gives a hint how to deduce Theorem 6.1.5 if one assumes
Theorem 6.1.3. Let us explain this in detail: fix ε > 0, and consider a fixed large, but bounded
domain Ω ⊂ Rd with smooth boundary. Let N ∈N be a large parameter to be chosen later.
We perforate the domain NΩ with small holes of radius r > 0, centred at a subset of Zd.
Theorem 6.1.3 suggests that we choose a fraction pd,− of the points in Zd as the centres of
these holes. For now we consider the simplest case of equally-spaced holes, i.e. we place
them at (λmicZ)d, where λmic ≈ (pd,−)

− 1
d is an integer. That is, we consider the equation

∆2u = f in NΩ \
⋃

x∈(λmicZ)d

Br(x) ,

u = 0 else .
(6.1.16)

The Green’s function G of this problem should predict the behaviour of the covariances in
Theorem 6.1.5.

We can rescale (6.1.16) back to a unit domain by letting f̂ (y) = 1
Nd−4 f (Ny), û(y) =

1
Nd u(Ny), so that û and f̂ solve

∆2û = f̂ in Ω \
⋃

x∈((λmic/N)Z)d

Br/N(x) ,

û = 0 else .
(6.1.17)

In order to apply now results from [CM97], we need to treat d ≥ 5 and d = 4 separately.
We begin with the former case. The collection of balls

⋃
x∈((λmic/N)Z)d Br/N(x) has capacity

density

µ = Cd

(
N

λmic

)d ( r
N

)d−4
= CdN4rd−4λ−dmic ≈ CdN4rd−4 pd,− = CdN4rd−4ε .

1Note that the original French and Russian works date back to the 70s and 80s.
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6 Pinning for the membrane model in dimension four and above

We want to consider a limit of dense small holes where µ is constant, and so we choose
N = ε−1/4. Then, according to [CM97, Example 2.14], the solution of (6.1.17) in the limit
ε→ 0 behaves like the solution of

∆2û + µû = f̂ in Ω ,

û = 0 else .
(6.1.18)

This is a Bilaplace equation with a mass term. Its Green’s function Ĝ behaves like the Green’s
function ĜRd of the same equation in the full space Rd (at least when we stay away from
the boundary of Ω). The latter Green’s function can be computed quite explicitly using
separation of variables in spherical coordinates. One finds that ĜRd(x̂, ŷ) = F(µ1/4|x− y|),
where F(r) is a linear combination of Re

(
(ζ8r)−(d−2)/2H(1)

(d−2)/2(ζ8r)
)

. Here H(1)
ν is the

Hankel function of the first kind, and ζ8 runs through the primitive eighth roots of unity. A
short calculation using the asymptotic expansion for these functions (cf. [AS64, Equation
9.7.2]) and the fact that ĜRd needs to decay at infinity reveals that

ĜRd(x̂, ŷ) = Cd

(
µ1/4|x̂− ŷ|

)−(d−1)/2
(

sin
(

µ1/4|x̂− ŷ|
21/2 −ωd

)
+ O(µ−1/4|x̂− ŷ|−1)

)
× exp

(
−µ1/4|x̂− ŷ|

21/2

)
where ωd is a phase shift depending only on d, and we used the standard Landau notation.
Neglecting the error term altogether, we thus expect

Ĝ(x̂, ŷ) ≈ Cd

(
µ1/4|x̂− ŷ|

)−(d−1)/2
sin
(

µ1/4|x̂− ŷ|
21/2 −ωd

)
exp

(
−µ1/4|x̂− ŷ|

21/2

)
(6.1.19)

when |x̂− ŷ| � µ−1/4, and the Green’s function of (6.1.17) should behave similarly (at least
if Ω is large enough, i.e. diam Ω� µ−1/4). Rescaling back, we thus expect for the Green’s
function G of (6.1.16) that

G(x, y) =
1

Nd−4 Ĝ
( x

N
,

y
N

)
≈ 1

Nd−4 Cd

(
µ1/4|x− y|

21/2N

)−(d−1)/2

sin
(
−µ1/4|x− y|

21/2N
−ωd

)
exp

(
−µ1/4|x− y|

21/2N

)
≈ Cdε(d−7)/8

r(d−1)(d−4)/8|x− y|(d−1)/2
sin
(
−Cdε1/4r(d−4)/4|x− y| −ωd

)
× exp

(
−Cdε1/4r(d−4)/4|x− y|

)
when |x− y| � Nµ−1/4 = ε−1/4r−(d−4)/4. Thus, G decays exponentially, with polynomial
corrections and an oscillatory term that makes G change sign. While the polynomial
corrections and the oscillatory term are not captured in (6.1.12), the exponential decay rates
in both estimates are the same (up to constant factors).

If d = 4, the argument is in principle the same, but we need to use extra care when
defining the capacity density. Following [CM97, Example 2.14] we define

µ = C
(

N
λmic

)4 1
| log r

N |
≈ CN4 p4,−

1
log N − log r

≈ C
N4ε

(log N − log r)| log ε| 12
.
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We want ε→ 0 while µ is constant, and so we choose N = | log ε|3/8

ε1/4 +Or

(
| log ε|1/8 log | log ε|

ε1/4

)
=

| log ε|3/8+or(| log ε|3/8)
ε1/4 accordingly. Then we conclude from [CM97, Example 2.14] that the

solutions of (6.1.17) and (6.1.18) are close. The Green’s function of (6.1.18) in d = 4 still
behaves like (6.1.19), and so, rescaling back, we find again

G(x, y) = Ĝ
( x

N
,

y
N

)
≈ C

(
µ1/4|x− y|

N

)−3/2

sin
(
−µ1/4|x− y|

21/2N
−ω4

)
exp

(
−µ1/4|x− y|

21/2N

)
≈ C| log ε|9/16

ε3/8|x− y|3/2 sin
(
− Cε1/4|x− y|
| log ε|3/8 + or(| log ε|3/8))

−ω4

)
× exp

(
− Cε1/4|x− y|
| log ε|3/8 + or(| log ε|3/8))

)
.

when |x− y| �r Nµ−1/4 ≈ ε−1/4| log ε|3/8. This is again exponential decay with polynomial
corrections and an oscillatory term. The exponential decay rate is again the same as in (6.1.13)
(up to constants).

In summary, our heuristic predicts the same exponential decay rates as in Theorem 6.1.5.
The heuristic we used is rather simplistic, though. One problem is that in the context of the
membrane model a single pinned point forces the field to be zero there, but does not pose
any restrictions on the gradient of the field. In contrast, in (6.1.16) we force the field and
all its derivatives to be zero at the pinned balls. One way to improve the heuristics would
thus be to only prescribe that u has average zero over each Br(x) for x ∈ (λmicZ)d, instead
of it being identically zero there. This is not a serious change, though, as a modification of
[CM97, Example 2.14] or an application of the general framework in [MK06] show that the
convergence of (6.1.17) to (6.1.18) still holds, albeit with a different constant prefactor in µ.

A more serious problem is that the pinned points are not distributed on a lattice, but
following the probability distribution ζε

Λ. If this distribution were, say, a Poisson point
process, then the framework from [MK06] would still apply. Our actual ζε

Λ is possibly quite
correlated (at least if d = 4), though, and so it is not clear that the heuristic still applies.
On the other hand, we are not actually interested in "quenched" estimates that hold for
all realizations of the sets of pinned points, but rather in "annealed" estimates where we
average over the randomness of the pinned points. So there is hope to retain the heuristic.

A further question is how to rigorously show that the convergence of the boundary
value problem (6.1.17) to the boundary value problem (6.1.18) implies that the Green’s
function of (6.1.17) already has the predicted behaviour. There are very few results on
this in the literature. One exception is [NV06], where this is proved rigorously for the
case of the Laplace equation in d = 3. However, that approach relies on the maximum
principle, and so one cannot extend it to our situation. Instead, in [HV18] a more robust
approach is used: There (in another context) exponential decay of the L2-norm of harmonic
functions on perforated large annuli is shown, using Widman’s hole filler technique [Wid71]
in combination with the fact that one has a local Poincaré inequality. A similar argument is
also used in [BCK17], and the authors describe that they learned it from Vladimir Maz’ya.
The decay rates in [HV18] are not optimal, but a small modification of their argument leads
to the optimal decay rate. These arguments are the inspiration for our proof of Theorem
6.1.5 from Theorem 6.1.3. We shall explain this in more detail in the next subsection, where
we outline the proofs of our results.
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6 Pinning for the membrane model in dimension four and above

6.1.3 Main ideas of the proofs

This chapter consists of two main parts. We first establish the various results on the pinned
set, and then deduce from them the results on the variances and covariances. We will discuss
these parts separately. Before doing so, let us remark that there are two natural lengthscales
occuring. There are the average distance between pinned points

λmic ≈
{

1
ε1/d d ≥ 5
| log ε|1/8

ε1/4 d = 4
,

and the lengthscale on which the correlations decay

λmac ≈
{

1
ε1/4 d ≥ 5
| log ε|3/8

ε1/4 d = 4
.

Note that we have 1� λmic � λmac as ε→ 0 for any d ≥ 4.

Estimates on the pinned set

The first novel result of this chapter is the FKG inequality for the pinned set, Theorem 6.1.1.
As already mentioned, it follows rather directly from the Gaussian correlation inequality
[Roy14], and it is standard to deduce from the FKG inequality the existence of the thermo-
dynamic limit of the set of pinned points, i.e. the first part of Theorem 6.1.2. We give these
proofs in Section 6.2.1. Note, however, that our proof of Theorem 6.1.1 is specific to the case
of δ-pinning, and we conjecture that the result is not true for other pinning potentials such
as a square-well potential. The point is that conditioning a Gaussian vector on being 0 at
some coordinates yields another Gaussian vector, but that is no longer true if we condition
on some coordinates being small instead. We give a more detailed explanation in Remark
6.2.1.

For the proof of Theorem 6.1.3 in Section 6.2.2 we follow [BV01] rather closely. The
domination results in Theorem 6.1.3 a) and b) are actually already in [BCK17]. They follow
via a short calculation from the boundedness of the Green’s function in d ≥ 5. Part d) is
a little more difficult. It could be proven as in [BV01, Section 3.2], but we give a slightly
simpler proof. The idea is that if x ∈ E is quite far from the pinned points we have already
found, the fluctuations of ψx are quite big, and so the chance that x is pinned is low.

By far the most difficult part of Theorem 6.1.3 is part c), where we again mostly follow
[BV01]. There we want to control the probability that E ⊂ Λ is free of pinned points from
above. To do so, we need to find for any configuration of pinned points that avoids E many
others that intersect E. This is done using a two-scale argument. We first consider the case
that E is a union of boxes of sidelength Cλmic, and prove (6.1.7) in this case by carefully
tracking how a pinned point in one of these boxes makes it likely that there are pinned
points in the neighbouring boxes. Next, we pass to the larger lengthscale Cλmac and deduce
from the first step that for an arbitrary E, most points of E are at a distance ≤ Cλmac from a
pinned point. Finally we use this knowledge together with an argument similar to the first
step to construct many configurations of pinned points that intersect E.

The main difference to [BV01] is that one cannot use random walk estimates to see how
pinning at some x ∈ Λ influences the variance at y 6= x. Instead we use an explicit variance
estimate (Lemma 6.2.4) that follows from the monotonicity of the variance in the set of
pinned points. We also streamline the argument from [BV01] at some points and correct a
minor mistake there.
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Asymptotics for the variances and covariances

The remainder of the chapter is then concerned with proving Theorem 6.1.5 and the second
part of Theorem 6.1.2. In [BV01] the random walk representation of the Green’s function of
the Laplacian is used for that purpose. In our case there is no such representation, so we
need a completely new argument.

It turns out that the estimates for the variance follow quite easily from Theorem 6.1.3 and
the variance estimate in Lemma 6.2.4. We give details in Sections 6.5.1 and 6.5.2.

The estimates on the covariance in Theorem 6.1.3 are much more difficult. The general
strategy is the same as in [BCK17]. That is, we show that the L2-norm of the second
derivative of the "quenched" Green’s function decays exponentially on large annuli. These
annuli have to be chosen adapted to the set of pinned points, and so we do not get an
estimate valid for all realizations of A. But our estimates hold up to an exponentially small
probability, so that we control GΛ\A for all but exponentially few A. For these we can use
a rather crude estimate. Finally, we can average these quenched estimates for the Green’s
function over A to deduce "annealed" bounds for the covariance.

The existence of the thermodynamic limit of the field in Theorem 6.1.2 follows then from
the existence of the thermodynamic limit of the set of pinned points and the quenched decay
estimates on the Green’s function. The somewhat technical proof is given in Section 6.5.3.

For the remainder of this section, let us describe in more detail how we prove the quenched
estimates on the covariance. Our main technical result used for that purpose is, roughly
speaking, the following (see Theorem 6.4.1 for the precise statement): There is a constant N̂d

such that if k ∈N and ε is sufficiently small there is an event ΩU,k with ζε
Λ (ΩU,k) ≥ 1− CU

2k

such that if A ∈ ΩU,k, and if u : Zd → R is a function such that u = 0 on A \U and u∆2
1u = 0

on Zd \U, we have the estimate

∥∥∇2
1u
∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
≤ 1

2k

∥∥∇2
1u
∥∥2

L2((U+Q2kN̂dλmac (0)\U)
. (6.1.20)

Here Q2kN̂dλmac
(0) denotes a cube of halfdiameter 2kN̂dλmac centred at 0. This is an exterior

decay estimate for biharmonic functions that holds up to exponentially small probability
(and we state and prove in Theorem 6.4.1 also the analogous interior decay estimate).
Applying (6.1.20) with u = GΛ\A(·, y) it is a bit tedious but not difficult to deduce the
aforementioned quenched estimates on the Green’s function, and we do so in Sections 6.5.1
and 6.5.2.

Let us describe how to prove (6.1.20). We first outline the basic strategy that was used
in [BCK17] and (in another context) in [HV18], and then describe our novel ideas. For
convenience we pretend in the following that u is a continuous function. Adapting the
argument to the discrete setting will be somewhat technical but not hard.

We try to iterate a Widman hole filler argument [Wid71] (see, e.g., [GM12, Section 4.4]
for a modern presentation). That is, given U ⊂ Rd, we want to find U′ ⊃ U, so that the
L2-norm of ∇2u on Rd \U is controlled by a constant less than 1 times the L2-norm of ∇2u
on U′ \U. We also want dist(U, Rd \U′) ≤ Cλmac. Once we have such an estimate, we can
iterate it to deduce exponential decay at rate 1

Cλmac
, at least on the L2-level.

So suppose that U ⊂ U′ are open sets and η is a smooth cut-off function such that

{∆2u 6= 0} ⊂ U ⊂ {η = 0} ⊂ {η 6= 1} ⊂ U′ .
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Then we have

0 = (∆2u, ηu) = (∇2u,∇2(ηu)) =
∫

η|∇2u|2 + 2
∫
∇2u : ∇u⊗∇η +

∫
u∇2u : ∇2η

(6.1.21)
and one can rewrite this using the Cauchy-Schwarz inequality as∫

Rd\U′
|∇2u|2

≤
∫

η|∇2u|2

= −2
∫
∇2u : ∇u⊗∇η −

∫
u∇2u : ∇2η

≤ 1
5

∫
U′\U
|∇2u|2 + 5

∫
U′\U
|∇u|2|∇η|2 + 1

5

∫
U′\U
|∇2u|2 + 5

4

∫
U′\U
|u|2|∇2η|2 .

(6.1.22)

Now if we could choose η in such a way that the second and fourth summand here are both
bounded by 1

5

∫
U′\U |∇

2u|2 we would obtain the desired decay estimate. In fact, this is what
was done in [BCK17]. However, in order to bound both the second and fourth summand,
one needs to impose strong pointwise conditions on ∇η and ∇2η, and, in particular, both
need to be near zero on mesoscopic holes in the pinned set. These conditions do not allow
growth of η at the optimal rate, and so using this argument one cannot obtain the optimal
estimate for the decay rate (but is it comparably easy to construct an η that satisfies these
conditions and grows at a non-optimal rate, cf. [BCK17]).

To solve this problem we first rewrite the right hand side of (6.1.21) so that there are no
longer any terms containing ∇η. An integration by parts shows that∫

∇2u : ∇u⊗∇η = −
∫
∇u · (∇ · (∇u⊗∇η)) = −

∫
∇2u : ∇u⊗∇η −

∫
|∇u|2∆η

and hence ∫
∇2u : ∇u⊗∇η = −1

2

∫
|∇u|2∆η .

Plugging this into (6.1.21) we see that∫
η|∇2u|2 =

1
2

∫
|∇u|2∆η −

∫
u∇2u : ∇2η . (6.1.23)

Using the assumptions on η and the Cauchy-Schwarz inequality we can now estimate∫
Rd\U′

|∇2u|2 ≤
∫

η|∇2u|2

=
1
2

∫
|∇u|2∆η −

∫
Rd\U

u∇2u : ∇2η

≤ 1
2

∫
|∇u|2∆η +

∫
|u|2|∇2η|2 + 1

4

∫
U′\U
|∇2u|2 .

(6.1.24)

If we can now arrange things in such a way that the first two summands here are each
bounded by 1

4

∫
U′\U |∇

2u|2, we see that

∫
Rd\U′

|∇2u|2 ≤ 3
4

∫
U′\U
|∇2u|2 (6.1.25)
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and now we can try to iterate this estimate to obtain exponential decay of the L2-norm of
∇2u. Note that unlike (6.1.22) we now only need to impose conditions on ∇2η.

As it turns out, the first summand in (6.1.24) can be controlled by the second and third
summand using an interpolation inequality on lengthscale λmic that we discuss in 6.3.2.

The remaining task is thus to choose η in such a way that it grows fast enough, but we
nonetheless can bound the term

∫
|u|2|∇2η|2. For that purpose we need some sort of local

Poincaré inequality on scale λmic. Of course, such an estimate can only hold if there are
enough pinned points close to the point of interest. In [BCK17, Lemma 4.1] this was done
provided there is a nearby cube of 3d points, which are all pinned. On that small cube
we then have u = ∇u = 0, and some version of the Hardy-Rellich inequality forces u to
be small near that cube as well. However, this is not optimal, as cubes of 3d points that
are all pinned are very rare. We show that it is sufficient if there are d+ 1 pinned points
somewhere nearby that are well-spread out. The number d+ 1 arises from the fact that we
need to eliminate nonzero affine functions on Rd. Thus, in some sense we use a multipolar
Hardy-Rellich inequality instead of a unipolar one. For multipolar Hardy inequalities cf. e.g.
[CZ13]; we could not find a detailed discussion of multipolar Hardy-Rellich inequalities in
the literature.

The local Poincaré inequality result is, roughly speaking, the following (see Theorem 6.3.1
for the precise result): Let A ⊂ Λ, and V ⊂ Λ be an arbitrary subset. Let R ∈N, R ≥ 2 be a
parameter. Then

‖u1·∈XR‖
2
L2(V) ≤ CdRd(1 + 1d=4 log R)

∥∥∇2u
∥∥2

L2(V+QR(0))

where XR is the set of those points that have d+ 1 well-separated pinned points at distance
≤ Rλmic around them, and we write 1·∈XR for the indicator function of that set.

This result makes it clear what we need to require of η. Namely we want |∇2η| ≤ C1·∈XR

for some R. If we have this relation, then our multipolar Hardy-Rellich inequality allows us
to control the second term on the right hand side in (6.1.24), and we can close the argument
for the exponential decay estimate.

It thus remains to choose R and construct η such that |∇2η| ≤ C1·∈XR in such a way
that η grows fast enough, and the construction should work up to an exponentially small
probability. This is the content of Sections 6.4.1 and 6.4.3. This is the technical heart of the
present chapter, and the arguments are novel. We can think of XR as the good set, and its
complement as the bad set, and we need to construct η such that it is locally affine on the
bad set, but still grows quadratically. To execute this construction, we start with one η∗ that
grows quadratically, and then try to modify it so that it becomes affine on the bad set. For
such modifications it is necessary that the components of the bad set are well-separated
from each other. In general this will not be the case, but we make a multiscale composition
of the bad set into parts that live on lengthscale `j and are well-separated on that lengthscale,
and then we change η∗ to be affine on those parts separately. The correct choice of the
lengthscales `j turns out to be the rather strange looking `j = CMj3 λmic, where M is some
large integer. The construction can be carried out provided the multiscale decomposition
vanishes beyond some large lengthscale. Using the results from Theorem 6.1.3 we show that
this is the case up to a probability that can be made arbitrarily small.

Unfortunately "arbitrarily small" is not quite good enough, as that means that there are
still exceptional pairs (U, U′) on which we cannot deduce (6.1.25). But such exceptional
pairs are rare, and when we iterate (6.1.25) to conclude (6.1.20) it is sufficient if we can apply
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6 Pinning for the membrane model in dimension four and above

(6.1.25) on at least half of the possible (U, U′), which is possible up to an exponentially small
probability.

This completes the construction of η. Once we have η at our disposal, we can complete
the proof of (6.1.20). We refer to Section 6.4 for a more detailed exposition of the argument.

6.1.4 Notation and preliminaries

Recall the conventions from Section 1.5.
We will freely use various summation by part identities as in Chapter 2.
For r > 0 and x ∈ Z4 we let Qr(x) = x + [−r, r]4 ∩Z4 be the cube of diameter 2r around

x. Note that this deviates from the definitions in Section 1.5. We will frequently use the
Minkowski-sum of sets E, E′ defined by E + E′ = {e + e′ : e ∈ E, e′ ∈ E′}. In particular,
E + Qr(0) is the set of all points at distance ≤ r from E.

For measures µ on P(Λ) we write µ( f ) for
∫

f dµ = ∑A⊂Λ f (A)µ(A). We denote a
sample from ζε

Λ by A. We define Ã = A ∪ (Zd \ Λ) for A ⊂ Λ and analogously Ã =

A∪ (Zd \Λ). We let GΛ\A be the discrete Green’s function of ∆2
1 on Λ \ A, i.e. GΛ\A(x, y) :=

PΛ\A(ψxψy).
We use these distances d with respect to | · |1 and | · |∞ instead of | · |, and in that case we

write d1 or d∞ instead of d.
We will use two different length scales λmic and λmac. The former describes the typical

distance between two pinned points, which according to Theorem 6.1.3 is of the order 1
ε1/d if

d ≥ 5 and | log ε|1/8

ε1/4 if d = 4. We hence define

λmic =

{
1

ε1/d + αmic,5(ε) d ≥ 5
| log ε|1/8

ε1/4 + αmic,4(ε) d = 4
.

Here αmic,d(ε) ∈ [0, 2) is chosen in such a way that λmic is an odd integer.
The latter corresponds to the length scale on which correlations decay, and so, in line with

Theorem 6.1.5 we set

λmac =

{
1

ε1/4 + αmac,5(ε) d ≥ 5
| log ε|3/8

ε1/4 + αmac,4(ε) d = 4

where αmac,d(ε) ∈ [0, 2λmic) is chosen such that λmac is an odd multiple of λmic. Note that
for any d ≥ 4 we have 1� λmic � λmac as ε→ 0.

Given an odd integer l > 0, we consider the set of l-boxes

Ql =
{

Ql/2(x) : x ∈ (lZ)d
}
=

{
x +

[
− l

2
,

l
2

]d
∩Zd : x ∈ (lZ)d

}

and the set

Pl =

{⋃
Q∈I

Q : I ⊂ Ql

}
of l-polymers. We identify each box with the polymer consisting just of that box. We call
polymers connected if they are connected as subgraphs of Zd with nearest-neighbour edges.
We say that two polymers touch if they are disjoint but their union is connected.
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6.2 Structure of the pinned set

The boxes in Ql form a partition of Zd. Later on we will also need boxes with some
overlap. Thus if l > 0 is an odd multiple of 3 we define

Q#
l =

{
Ql/2(x) : x ∈

(
l
3

Z

)d
}

=

{
x +

[
− l

2
,

l
2

]d
∩Zd : x ∈

(
l
3

Z

)d
}

.

Then every point of Zd is contained in precisely 3d boxes in Q#
l .

For some statement s we let 1s be the indicator function of s, that is 1s = 1 if s is true, and
1s = 0 else.

6.2 Structure of the pinned set

In this section we prove our results on the distribution of the pinned set, i.e. Theorem 6.1.1,
the first part of Theorem 6.1.2, as well as Theorem 6.1.3.

6.2.1 Correlation inequalities

We want to establish the FKG inequality for the set of pinned points in Theorem 6.1.1. We
begin with a useful calculation. Let A ⊂ A′ ⊂ Λ b Zd. Then, using that δ0(dψ) is a weak
limit of the measures 1

2t1ψ∈(−t,t)dψ as t→ 0, we have

ZΛ\A′

ZΛ\A
=

1
ZΛ\A

∫
exp

(
−1

2 ∑
x∈Zd

|∆1ψx|2
)

∏
x∈Λ\A′

dψx ∏
x∈Zd\(Λ\A′)

δ0(dψx)

=
1

ZΛ\A
lim
t→0

∫
exp

(
−1

2 ∑
x∈Zd

|∆1ψv|2
)

× ∏
x∈Λ\A′

dψx ∏
x∈A′\A

1
2t
1ψx∈(−t,t)dψx ∏

x∈Zd\(Λ\A)

δ0(dψx)

= lim
t→0

1
(2t)|A′\A|PΛ\A(|ψx| < t ∀x ∈ A′ \ A) .

(6.2.1)

We can also interpret the right hand side as the density at zero of the Gaussian vector
(ψx)x∈A′\A under PΛ\A (this observation was essentially already made in [Vel06, p. 143]).
If A′ \ A = {x} is a singleton, the density of ψx at 0 is equal to 1√

2π
times the inverse of its

standard deviation. We thus obtain the formula

ZΛ\(A∪{x})
ZΛ\A

=
1√

2πGΛ\A(x, x)
. (6.2.2)

Proof of Theorem 6.1.1. We will prove the FKG lattice condition

ζε
Λ(A ∪ A′)ζε

Λ(A ∩ A′) ≥ ζε
Λ(A)ζε

Λ(A′) ∀A, A′ ⊂ Λ . (6.2.3)

It is well-known that this is a sufficient condition for the validity of the FKG inequality.
Now (6.2.3) is an easy consequence of the Gaussian correlation inequality [Roy14, LM17].

Indeed, note that by definition of ζε
Λ the estimate (6.2.3) is equivalent to

ZΛ\(A∪A′)ZΛ\(A∩A′) ≥ ZΛ\AZΛ\A′
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6 Pinning for the membrane model in dimension four and above

(here we used |A ∪ A′|+ |A ∩ A′| = |A|+ |A′|). Dividing both sides by (ZΛ\(A∩A′))
2 and

using (6.2.1) we only have to verify

lim
t→0

PΛ\(A∩A′)(|ψx| < t ∀x ∈ (A′ \ A) ∪ (A \ A′))

≥ lim
t→0

PΛ\(A∩A′)(|ψx| < t ∀x ∈ A′ \ A)PΛ\(A∩A′)(|ψx| < t ∀x ∈ A \ A′) .

The sets {ψ : |ψx| < t ∀x ∈ A′ \ A} and {ψ : |ψx| < t ∀x ∈ A \ A′} are convex and symmetric
around the origin, and the measure PΛ\(A∩A′) is Gaussian. Thus, the claim follows from the
Gaussian correlation inequality, applied for each t > 0.

Remark 6.2.1. In [BV01] it is shown that the set of pinned points for the gradient model
satisfies a FKG inequality not only in the case of δ-pinning, but also in the case of pinning
by a square-well potential b1|·|<a. The proof in [BV01] uses the Ginibre (or GKS) inequality
(as described in detail e.g. in [DMRR92, Appendix A]), and thus requires that the measure
describing the field is an even fermionic measure. This is certainly not the case for the
membrane model, and so that proof cannot be applied in our setting.

Our proof of Theorem 6.1.1 only used that PΛ is a non-degenerate Gaussian measure.
However, this proof would not work if we considered pinning by a square-well potential
b1|ψ|<a instead of δ-pinning. Namely, in this case we would need to consider PΛ(· | |ψx| <
a ∀x ∈ A ∩ A′) instead of PΛ\(A∩A′), and the former measure is not Gaussian, so that we
cannot apply the Gaussian correlation inequality.

This is not a shortcoming of our proof. Namely, we conjecture that the analogue of (6.2.3)
in the case of pinning by a square-well potential is false. We do not have a counterexample
for the case of the membrane model. However, we can give an example of a Gaussian
measure where the set of pinned points with respect to a square-well potential does not
satisfy (6.2.3).

For this example, let X1, X2 be independent standard Gaussians, and N > 0 a large
parameter, and define 

Y1

Y2

Y3

Y4

Y5

Y6


=



1 0
0 1
N 0
0 N
1 1
1 1


(

X1

X2

)
.

Then Y is a multivariate Gaussian vector. It is degenerate, but one can fix this later by adding
some small Gaussian noise to it, so we will ignore that point. Let also A = {1, 3, 5, 6} and
A′ = {2, 4, 5, 6}.

In this setting (6.2.3) would correspond to

P
(
|Yi| ≤ t ∀t ∈ A ∪ A′

)
P
(
|Yi| ≤ t ∀t ∈ A ∩ A′

)
≥ P (|Yi| ≤ t ∀t ∈ A)P

(
|Yi| ≤ t ∀t ∈ A′

)
(6.2.4)

for any t > 0. The probabilities here are equal to the Gaussian measure of certain sets in
R2 (cf. Figure 6.1). As t→ 0, we can approximate this Gaussian measure by the Lebesgue
measure, and thereby compute that

lim
t→0

2π

t2 P
(
|Yi| ≤ t ∀t ∈ A ∪ A′

)
=

4
N2 ,

lim
t→0

2π

t2 P
(
|Yi| ≤ t ∀t ∈ A ∩ A′

)
= 2 ,
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lim
t→0

2π

t2 P (|Yi| ≤ t ∀t ∈ A) =
4
N
− 2

N2 ,

lim
t→0

2π

t2 P
(
|Yi| ≤ t ∀t ∈ A′

)
=

4
N
− 2

N2 .

In particular, for N large and t small (6.2.4) is wrong by a factor arbitrarily close to 2.

2t
N

2t
N

2t

2t

Figure 6.1: The sets associated to the probabilities in (6.2.4). The product of the
areas of the large and small square is about half the product of the
two areas of the thin rectangles.

Theorem 6.1.1 directly implies the existence of a thermodynamic limit of the ζε
Λ:

Proof of Theorem 6.1.2, first part. It suffices to check that the limit limΛ↗Zd ζε
Λ( f ) exists for

each bounded f : P(Zd) → R that is a local function (i.e. depends only on finitely many
points). Each such f is a linear combination of increasing functions, and so it actually suffices
to check that limΛ↗Zd ζε

Λ( f ) exists for each local increasing f .
For that purpose note that Theorem 6.1.1 implies that for any Λ ⊂ Λ′ b Zd large enough

so that f only depends on the points in Λ, we have ζε
Λ( f ) ≥ ζε

Λ′( f ). Thus, limR→∞ ζε
QR(0)

( f )
exists as a limit of a bounded decreasing sequence. Furthermore, for any Λ b Zd with
Qr(0) ⊂ Λ ⊂ QR(0) we have

ζε
Qr(0)( f ) ≥ ζε

Λ( f ) ≥ ζε
QR(0)

( f ) ≥ lim
R→∞

ζε
QR(0)

( f ) .

Since Λ↗ Zd allows us to take r → ∞, we see from this that indeed limΛ↗Zd ζε
Λ( f ) exists

and is equal to limR→∞ ζε
QR(0)

( f ).
Thus, the unique weak limit ζε exists. Its translation invariance follows from the fact that

ζε( f ) = lim
Λ↗Zd

ζε
Λ( f ) = lim

Λ↗Zd
ζε

Λ+x( f (· − x)) = ζε( f (· − x))

for any x ∈ Zd.

6.2.2 Estimates on the pinned set

We will prove the various domination results of Theorem 6.1.3. We first show some estimates
on the variance of the membrane model. We begin with the straightforward proofs of part a)
and b), then show part d), and finally part c). See Section 6.1.3 for an outline of the proofs.

Let us first give the precise definition of (strong) domination, as in [BV01].
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6 Pinning for the membrane model in dimension four and above

Definition 6.2.2. Let Λ be a finite set, and let ν, ν′ be two probability measures on P(Λ). We
say that ν dominates ν′ if we have

ν( f ) ≥ ν′( f )

for all increasing functions f : P(Λ) → R. We say that ν strongly dominates ν′, if for all
x ∈ Λ and for all E ⊂ Λ \ {x} we have

ν(A 3 x | A \ {x} = E) ≥ ν′(A 3 x | A \ {x} = E) .

It is easy to see that strong stochastic domination implies stochastic domination, and the
latter implies

ν(A ∩ E = ∅) ≤ ν′(A ∩ E = ∅) ∀E ⊂ Λ .

Our proof of Theorem 6.1.3 is based on the proof of the corresponding result for the
gradient model in [BV01]. We begin with some useful estimates on the variance of the
membrane model.

The first one states the fact that the variance is non-increasing in the size of the pinned set.

Lemma 6.2.3. Let A ⊂ A′ ⊂ Λ b Zd, and let x ∈ Λ. Then GΛ\A′(x, x) ≤ GΛ\A(x, x).

Proof. This follows easily from the Markov property of the field. See e.g. [BCK17, Corollary
3.2].

The preceding lemma allows us to conclude bounds on the variances.

Lemma 6.2.4. Let ∅ 6= A ⊂ Λ b Zd, and let x ∈ Λ. If d ≥ 5, we have

cd ≤ GΛ\A(x, x) ≤ Cd . (6.2.5)

If d = 4, we have

1
8π2 log(1 + d(x, A))− C ≤ GΛ\A(x, x) ≤ 1

4π2 log(1 + d(x, A)) + C . (6.2.6)

Proof. We begin with the upper bound in (6.2.6). Let a ∈ A be such that |x− a| = d(x, A).
Let N ∈N. For large enough N we have Λ ⊂ QN(x). Now Lemma 6.2.3 implies that

GΛ\A(x, x) ≤ GQN(x)\{a}(x, x) (6.2.7)

for all N large enough. The right hand side can be computed quite explicitly: We have

GQN(x)\{a}(x, x) = GQN(x)(x, x)−
GQN(x)(a, x)2

GQN(x)(a, a)

and by Theorem 4.1.4 we have∣∣∣∣GQN(x)(y, y′)− 1
8π2 log

(
N

1 + |y− y′|

)∣∣∣∣ ≤ C

for all y, y′ ∈ QN(x) with d(y, ∂ΛN) ≥ cN, d(y′, ∂ΛN) ≥ cN.
Using this in (6.2.7) we find for N large enough

GQN(x)\{a}(x, x) ≤ 1
8π2

log N + C−

(
log
(

N
1+|x−a|

)
− C

)2

log N − C


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≤ 1
4π2 log(1 + |x− a|) + C

and this implies the upper bound in (6.2.6). The lower bound is similar: This time we
compare GΛ\A(x, x) with GQd(x,A)−1(x)(x, x).

Finally, the proof of (6.2.5) is similar, using that GQN(x)(x, x) is bounded above and below
if d ≥ 5.

Proof of Theorem 6.1.3 a) and b). The two results are already proven in [BCK17, Lemma 3.4].
Nonetheless, we repeat the short argument: For x ∈ Λ, E ⊂ Λ \ {x} we have

ζε
Λ(A 3 x | A \ {x} = E) =

ζε
Λ(E ∪ {x})

ζε
Λ(E ⊂ A ⊂ E ∪ {x})

=
ζε

Λ(E ∪ {x})
ζε

Λ(E) + ζε
Λ(E ∪ {x})

=

(
1 +

ZΛ\E
εZΛ\(E∪{x})

)−1

=

1 +

√
2πGΛ\E(x, x)

ε

−1

(6.2.8)

where the last step follows from (6.2.2). Now in dimension d ≥ 5 we have cd ≤ GΛ\E(x, x) ≤
Cd by Lemma 6.2.4, and this implies

cdε ≤ ζε
Λ(A 3 x | A \ {x} = E) ≤ Cdε

for all ε small enough. From this we immediately conclude the strong domination results
from both sides, and these easily imply (6.1.5) and (6.1.6).

Remark 6.2.5. When d = 4 the calculation (6.2.8) is still valid, but we do no longer have a
uniform upper bound on GΛ\E(x, x). Let us point out for future use though that (6.2.8) and
Lemma 6.2.4 imply that

ζε
Λ(A 3 x | A \ {x} = E) ≤ Cε

and thus the measure ζε
Λ is strongly dominated by the Bernoulli measure on P(Λ) with

parameter p′4,+ := Cε.

Proof of Theorem 6.1.3 d). One could prove (6.1.8) analogously as in [BV01, Section 3.2]. We,
however, give a slightly different proof in the following.

The events A 3 x for x ∈ E are decreasing, and so by the FKG property of ζε
Λ we have

ζε
Λ(A∩ E = ∅) = ζε

Λ

(⋂
x∈E

{A 63 x}
)
≥ ∏

x∈E
ζε

Λ(A 63 x) .

Thus, to establish (6.1.8) it suffices to show

ζε
Λ(A 63 x) ≥ 1− Cα

ε

| log ε|1/2

or equivalently

ζε
Λ(A 3 x) ≤ Cα

ε

| log ε|1/2 (6.2.9)
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where the constant Cα depends only on α.
For this we consider the box Q := Qmin(ε−α,ε−1/5)(x). We can write

ζε
Λ(A 3 x) = ζε

Λ(A∩Q = {x}) + ζε
Λ(A∩Q ) {x})

≤ ζε
Λ(A 3 x | A ∩ (Q \ {x}) = ∅) + ζε

Λ(A∩Q ) {x}) .
(6.2.10)

By Remark 6.2.5 the second summand can be estimated as

ζε
Λ(A∩Q ) {x}) ≤ p′4,+ − p′4,+(1− p′4,+)

|Q|

= Cε(1− (1− Cε)|Q|−1)

≤ Cε2|Q|

≤ Cε2
(

ε−1/5
)4

= Cε6/5

(6.2.11)

whenever ε is small enough. For the first summand we can use the FKG property once more
and then proceed as in (6.2.8) to see that

ζε
Λ(A 3 x | A ∩ (Q \ {x}) = ∅) ≤ ζε

Λ(A 3 x | A ∩ (Q \ {x}) = ∅,A ⊃ Λ \Q)

= ζε
Q(A 3 x | A ⊂ {x})

=
ζε

Q({x})
ζε

Q(∅) + ζε
Q({x})

=

(
1 +

ZQ

εZQ\{x}

)−1

=

(
1 +

√
2πGQ(x, x)

ε

)−1

.

From Lemma 6.2.4 we know

GQ(x, x) ≥ 1
C

log
(

1 + min(ε−α, ε−1/5
)
≥ 1

Cα
| log ε|

and thus
ζε

Λ(A 3 x | A ∩ (Q \ {x}) ≤ Cα
ε

| log ε|1/2 .

When we combine this with (6.2.10) and (6.2.11) we obtain (6.2.9). This completes the
proof.

In this proof the choice of ε−1/5 for the halfdiameter of Q might seem arbitrary. Indeed,
one could also choose ε−1/4| log ε|−1/8 and obtain the same result. This is still smaller than
λmic which is the actual length scale that one expects here. However, because we have to use
Remark 6.2.5 instead of a comparison with p4,+, we lose some logarithmic factor and hence
cannot use the natural length scale for the size of Q. Fortunately, this does not affect the
proof as the estimate (6.2.11) shows that the second summand in (6.2.10) is of lower order.

Proof of Theorem 6.1.3 c). The following proof is based on the proof in [BV01, Section 3.3],
which itself is based on [DV00, IV00]. However, that proof is a bit hard to follow as one has
to refer to all three references. Furthermore, there is a small mistake in [IV00] that needs to
be fixed (cf. Remark 6.2.6 below). Thus, we give a complete proof for the case at hand.
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Step 1: Growing microscopic polymers
For reasons that will become clear in the next step we need a procedure to grow microscopic
polymers in a controlled way. Thus, we begin with the necessary definitions.

Let K be an odd integer to be fixed later (in (6.2.18)). We consider the polymers in PKλmic .
Let E ∈ PKλmic be such a polymer. Suppose that it has n connected components . We want to
define for any multiindex k ∈Nn an enlarged polymer E(k) ∈ PKλmic in such a way that we
add ki boxes to the i-th connected component.

To be precise, fix some enumeration of the boxes in QKλmic by the natural numbers. Let
the connected components of E be E1, . . . , En, named in such a way that the minimal label of
a box in Ei increases with i.

For i ∈ {1, . . . , n}, j ∈ {0, . . . , ki} we define inductively a polymer E(i,j) ⊃ E as follows. If
j = 0, we let E(i,j) = E(i−1,ki−1) (and E(1,0) = E). If j > 0, let Ẽj be the connected component
of E(i,j−1) that contains Ej, let Q(i,j) ∈ QKλmic be the box of smallest index that touches Ẽj,
and let E(i,j) = E(i,j−1) ∪Q(i,j). Finally we let Ek = E(n,kn).

Let us note some properties of Ek. First of all, it contains precisely |k|1 := k1 + . . . + kn

boxes of QKλmic more than E. In other words,∣∣∣Ek
∣∣∣ = |E|+ |k|1K4λ4

mic . (6.2.12)

Furthermore, Ek has at most n connected components. Each Ei is contained in one of the
connected components of Ek, and the latter has grown by at least ki boxes. Also each fixed
box in QKλmic is eventually contained in Ek whenever |k|1 is large enough. Let us also note
that each connected component of E consists of at least one box. Therefore we have the
estimate

n ≤ |E|
K4λ4

mic
. (6.2.13)

Step 2: Estimate for microscopic polymers
We first prove (6.1.7) for the special case that E is a polymer in PKλmic , where K is a constant
as in Step 1. That is, we claim that there is ε4,∗ such that for any E ⊂ Λ such that E ∈ PKλmic

and any ε < ε4,∗ we have(
1− C

ε

| log ε|1/2

)|E|
≥ ζε

Λ(A∩ E = ∅) . (6.2.14)

Suppose that E has n connected components, and consider for k ∈Nn the polymers E(k)

constructed in the previous section. For l ∈Nn we write l > k to denote li ≥ ki for all i and
li > ki for at least one i. Recall that Ã = A∪ (Zd \Λ).

For |k|1 large enough we have E(k) 6⊂ Λ and therefore Ã ∩ E(k) 6= ∅ almost surely. Thus

ζε
Λ(A∩ E = ∅) = ζε

Λ(Ã ∩ E = ∅) = ζε
Λ

(
∃k ∈Nn : Ã ∩ E(k) = ∅, Ã ∩ E(l) 6= ∅ ∀l > k

)
and so in particular

ζε
Λ(A∩ E = ∅) ≤ ∑

k∈Nn

ζε
Λ

(
Ã ∩ E(k) = ∅, Ã ∩ E(l) 6= ∅ ∀l > k

)
≤ ∑

k∈Nn

ζε
Λ

(
Ã ∩ E(k) = ∅

∣∣∣Ã ∩ E(l) 6= ∅ ∀l > k
)

.
(6.2.15)
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Note that this sum is actually a finite sum as for large enough |k|1 the conditional probability
is equal to 0. Let us estimate the summands in (6.2.15) separately. We have

ζε
Λ

(
Ã ∩ E(k) = ∅

∣∣∣Ã ∩ E(l) 6= ∅ ∀l > k
)
=

ζε
Λ

(
Ã ∩ E(k) = ∅, Ã ∩ E(l) 6= ∅ ∀l > k

)
ζε

Λ

(
Ã ∩ E(l) 6= ∅ ∀l > k

)

=

∑
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ε|A|
ZΛ\A

Zε
Λ

∑
A′⊂Λ

Ã′∩E(l) 6=∅ ∀l>k

ε|A′|
ZΛ\A′

Zε
Λ

=

∑
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ε|A|ZΛ\A

∑
B⊂E(k)

∑
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ε|A|+|B|ZΛ\(A∪B)

=

 ∑
B⊂E(k)

ε|B|

∑
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ε|A|ZΛ\(A∪B)

∑
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ε|A|ZΛ\A


−1

≤

 ∑
B⊂E(k)

ε|B| min
A⊂Λ\E(k)

Ã∩E(l) 6=∅ ∀l>k

ZΛ\(A∪B)

ZΛ\A


−1

(6.2.16)
where we have used ∑i∈I xi

∑i∈I yi
≥ mini∈I

xi
yi

in the last step.
Next, we estimate this minimum from below, at least for sufficiently many sets B. Let

m = |E(k)|
K4λ4

mic
be the number of boxes in E(k). We will consider the class of sets B that contain

exactly one point in each box of E(k).
Consider some A ⊂ Λ \ E(k) such that Ã ∩ E(l) 6= ∅ for all l > k. The properties of A

imply that each connected component of E(k) touches a box that contains a point of Ã, as
otherwise we could still grow one of the components (by choosing a larger multiindex)
without intersecting Ã. Therefore we can enumerate the boxes of E(k) as D1, . . . , Dm in such
a way that each Di touches a box that contains a point of Ã or a box Dj with j < i. As
mentioned, we consider sets B = {b1, . . . , bm} that contain one point bi in each box Di. Let
Bi = {b1, . . . , bi} (and B0 = ∅). We have that

ZΛ\(A∪B)

ZΛ\A
=

m

∏
i=1

ZΛ\(A∪Bi)

ZΛ\(A∪Bi−1)
.

Pick some i ∈ {1, . . . , m}. Our construction of the Dj ensures that Di touches a box containing
a point of Ã ∪ Bi−1. In particular, bi ∈ Di has distance at most

√
22 + 12 + 12 + 12Kλmic =√

7Kλmic from a point in Ã ∪ Bi−1. Now, (6.2.2) and Lemma 6.2.4 imply that

ZΛ\(A∪Bi)

ZΛ\(A∪Bi−1
)
=

1√
2πGΛ\(A∪Bi−1

)(bi, bi)
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≥ 1

C
√

log
(

1 +
√

7Kλmic

)
≥ 1

C| log ε|1/2

as soon as ε is small enough (depending on K). Thus,

ZΛ\(A∪B)

ZΛ\A
≥
(

1
C| log ε|1/2

)m

.

This estimate holds for all A ⊂ Λ \ E(k) such that Ã ∩ E(l) 6= ∅ for all l > k, and all B that
contain exactly one point in each box of E(k). The number of such sets B is (K4λ4

mic)
m, and

so (6.2.16) implies that

ζε
Λ

(
Ã ∩ E(k) = ∅

∣∣∣Ã ∩ E(l) 6= ∅ ∀l > k
)
≤
(
(K4λ4

mic)
mεm

(
1

C| log ε|1/2

)m)−1

≤
((

2K
| log ε|1/8

ε1/4

)4
ε

C| log ε|1/2

)−m

=

(
K4

γ

)−m

(6.2.17)

for a certain constant γ. We can now choose K as an odd integer such that

K ≥ (eγ)1/4 . (6.2.18)

Then (6.2.17) in combination with (6.2.12) implies

ζε
Λ

(
Ã ∩ E(k) = ∅

∣∣∣Ã ∩ E(l) 6= ∅ ∀l > k
)
≤ exp(−m)

= exp

(
− |E

(k)|
K4λ4

mic

)

= exp
(
− |E|

K4λ4
mic
− |k|1

)
.

Now we can use this result in (6.2.15) and obtain

ζε
Λ(A∩ E = ∅) ≤ ∑

k∈Nn

exp
(
− |E|

K4λ4
mic
− |k|1

)

= exp
(
− |E|

K4λ4
mic

)( ∞

∑
k1=0

exp(−k1)

)
· . . . ·

(
∞

∑
kn=0

exp(−k1)

)

= exp
(
− |E|

K4λ4
mic

)(
e

e− 1

)n

= exp
(
− |E|

K4λ4
mic

+ n(1− log(e− 1))
)

.

Finally, we can recall (6.2.13) and conclude

ζε
Λ(A∩ E = ∅) ≤ exp

(
− |E|

K4λ4
mic

+
|E|

K4λ4
mic

(1− log(e− 1))
)
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= exp
(
− log(e− 1)

|E|
K4λ4

mic

)
≤ exp

(
−C

ε

| log ε|1/2 |E|
)

≤
(

1− C
ε

| log ε|1/2

)|E|
whenever ε is small enough, and the K (that is now fixed) has been absorbed into the
constant. This completes the proof of (6.2.14).

Step 3: Density of pinned points on macroscopic scales
We now show that on the length scale λmac most points of a set E ⊂ Λ are close to a point in
Ã. To make this precise, we need to make a few definitions. Let L be an odd integer to be
fixed later (in (6.2.20) and (6.2.22)). We consider polymers in PKLλmac . Observe that KLλmac

is an odd multiple of Kλmic, the lengthscale from Step 2. For E ⊂ Λ let

SE = {Q ∈ QKLλmac : Q ∩ E 6= ∅}

and
SE,bad(A) = {Q ∈ SE : Q ∩ Ã = ∅} .

We think of the boxes in SE,bad(A) as bad boxes, as they contain points of E but no pinned
point. We will show that not too many boxes are bad. Note that |SE| ≥ |E|

(KL)4λ4
mac

. Our claim
now is that there is ε4,∗ such that for any E ⊂ Λ and any ε < ε4,∗ we have

ζε
Λ

(
|SE,bad(A)| >

|E|
2(KL)4λ4

mac

)
≤
(

1− C
ε

| log ε|1/2

)|E|
. (6.2.19)

To see this, we use the result from the previous step to estimate

ζε
Λ

(
|SE,bad(A)| >

|E|
2(KL)4λ4

mac

)
= ∑

T⊂SE
|T|≥|E|/(2(KL)4λ4

mac)

ζε
Λ(SE,bad(A) = T)

≤ ∑
T⊂SE

|T|≥|E|/(2(KL)4λ4
mac)

ζε
Λ(SE,bad(A) ⊃ T)

= ∑
T⊂SE

|T|≥|E|/(2(KL)4λ4
mac)

ζε
Λ

(
A∩

⋃
Q∈T

Q = ∅
)

≤ ∑
T⊂SE

|T|≥|E|/(2(KL)4λ4
mac)

(
1− C

ε

| log ε|1/2

)|T|(KL)4λ4
mac

=
|SE|

∑
j=d|E|/(2(KL)4λ4

mac)e

(
|SE|

j

)(
1− C

ε

| log ε|1/2

)j(KL)4λ4
mac

≤
|SE|

∑
j=d|E|/(2(KL)4λ4

mac)e

(
|SE|

j

)
exp

(
−C

ε

| log ε|1/2 (KL)4λ4
mac j

)
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≤
|SE|

∑
j=d|E|/(2(KL)4λ4

mac)e

(
|SE|

j

)
exp

(
−C

ε

| log ε|1/2 (KL)4 | log ε|3/2

ε
j
)

=
|SE|

∑
j=d|E|/(2(KL)4λ4

mac)e

(
|SE|

j

)
ε(KL)4γ′ j

for a certain constant γ′. We now want to apply the estimate for binomial sums that is stated
in Lemma 6.2.7 below with N = |SE|, p = ε(KL)4γ′ j and r = |E|

2(KL)4λ4
mac|SE|

. To do so, we need

p ≤ r ≤ 1
2 . Because 1 ≤ |E|

|SE| ≤ (KL)4λ4
mac we always have r ≤ 1

2 , and for p ≤ r it suffices

that ε(KL)4γ′ j ≤ ε
2(KL)4| log ε|3/2 . To ensure the latter we choose L such that

L >
γ′1/4

K
(6.2.20)

and ε is small enough. Using Lemma 6.2.7 we then obtain

ζε
Λ

(
|SE,bad(A)| >

|E|
2(KL)4λ4

mac

)
≤
( p

r2

)r|SE|
. (6.2.21)

We can estimate that

p
r2 = exp

(
−(KL)4γ′| log ε| − 2 log

|E|
2(KL)4λ4

mac|SE|

)
≤ exp

(
−(KL)4γ′| log ε|+ 2 log

1
2(KL)4λ4

mac

)
≤ exp

(
−(KL)4γ′| log ε|+ 2| log ε|+ 2 log(2(KL)4) + log(| log ε|3/2)

)
.

Provided that we choose

L >
(2γ′)1/4

K
(6.2.22)

we can estimate this as
p
r2 ≤ exp(−C| log ε|)

whenever ε is small enough (depending on K, L that are now fixed). Returning to (6.2.21),
we see that

ζε
Λ

(
|SE,bad(A)| >

|E|
2(KL)4λ4

mac

)
≤ exp

(
−C| log ε| |E|

2(KL)4λ4
mac|SE|

|SE|
)

≤ exp
(
−C

ε

| log ε|1/2 |E|
)

which implies (6.2.19).
Step 4: Estimate for arbitrary sets

We now can prove the actual result (6.1.7). So let E ⊂ Λ. Using the notation from the
previous step, we let

Ebad(A) = E ∩
⋃

Q∈SE,bad(A)
Q

be the set of bad points (those which are far from a pinned point). We have the estimate
|Ebad(A)| ≤ (KL)4λ4

mac|SE,bad(A)| and so the previous step implies that

ζε
Λ

(
|Ebad(A)| >

|E|
2

)
≤ ζε

Λ

(
|SE,bad(A)| >

|E|
2(KL)4λ4

mac

)
≤
(

1− C
ε

| log ε|1/2

)|E|
.
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We can now write

ζε
Λ(A∩ E = ∅) ≤ ζε

Λ

(
A∩ E = ∅, |Ebad(A)| ≤

|E|
2

)
+ ζε

Λ

(
|Ebad(A)| >

|E|
2

)
≤ ζε

Λ

(
A∩ E = ∅, |Ebad(A)| ≤

|E|
2

)
+

(
1− C

ε

| log ε|1/2

)|E|
and so we only need to estimate the first term to establish (6.1.7). If ζε

Λ

(
|Ebad(A)| ≤ |E|

2

)
=

0, that term is equal to 0 and we are trivially done. So we can assume otherwise, and estimate

ζε
Λ

(
A∩ E = ∅, |Ebad(A)| ≤

|E|
2

)
≤ ζε

Λ

(
A∩ E = ∅

∣∣∣∣|Ebad(A)| ≤
|E|
2

)
.

Next, we can apply a similar argument as in (6.2.16) to see that

ζε
Λ

(
A∩ E = ∅

∣∣∣∣|Ebad(A)| ≤
|E|
2

)
=

∑
A⊂Λ\E

|Ebad(A)|≤|E|/2

ε|A|ZΛ\A

∑
B⊂E

∑
A⊂Λ\E

|Ebad(A)|≤|E|/2

ε|A|+|B|ZΛ\(A∪B)

=


∑

A⊂Λ\E
|Ebad(A)|≤|E|/2

∑
B⊂E

ε|A|+|B|ZΛ\(A∪B)

∑
A⊂Λ\E

|Ebad(A)|≤|E|/2

ε|A|ZΛ\A


−1

≤

 min
A⊂Λ\E

|Ebad(A)|≤|E|/2

∑
B⊂E

ε|B|
ZΛ\(A∪B)

ZΛ\A


−1

.

(6.2.23)

Note that unlike in (6.2.16) we interchanged the summations over A and B in an intermediate
step, which allows us to have minA ∑B instead of ∑B minA in the result of this calculation.

We can estimate this further by only allowing good points for B, that is by estimating

ζε
Λ

(
A∩ E = ∅

∣∣∣∣|Ebad(A)| ≤
|E|
2

)
≤

 min
A⊂Λ\E

|Ebad(A)|≤|E|/2

∑
B⊂E\Ebad(A)

ε|B|
ZΛ\(A∪B)

ZΛ\A


−1

.

(6.2.24)
Consider some A ⊂ Λ \ E, and some B ⊂ E \ Ebad(A). By definition of Ebad(A), each point
in B is in the same macroscopic box as a point of Ã. In particular, each point in B has distance
at most

√
7KLλmac to a point of Ã. Thus, if we let B = {b1, . . . , b|B|}, and Bi = {b1, . . . , bi}

we see as in Step 2 that

ZΛ\(A∪B)

ZΛ\A
=
|B|

∏
i=1

ZΛ\(A∪Bi)

ZΛ\(A∪Bi−1
)

=
|B|

∏
i=1

1√
2πGΛ\(A∪Bi−1

)(bi, bi)
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≥
|B|

∏
i=1

1

C
√

log
(

1 +
√

7KLλmac

)
≥
(

1
C| log ε|1/2

)|B|
where we used (6.2.2) and Lemma 6.2.4. Returning to (6.2.23) and (6.2.24), we obtain

ζε
Λ

(
A∩ E = ∅

∣∣∣∣|Ebad(A)| ≤
|E|
2

)

≤

 min
A⊂Λ\E

|Ebad(A)|≤|E|/2

∑
B⊂E\Ebad(A)

ε|B|
(

1
C| log ε|1/2

)|B|
−1

=

 min
A⊂Λ\E

|Ebad(A)|≤|E|/2

|E\Ebad(A)|

∑
j=0

(
|E \ Ebad(A)|

j

)(
ε

C| log ε|1/2

)j


−1

=

 min
A⊂Λ\E

|Ebad(A)|≤|E|/2

(
1 +

ε

C| log ε|1/2

)|E\Ebad(A)|

−1

≤
((

1 +
ε

C| log ε|1/2

)|E|/2
)−1

≤
(

1− ε

C| log ε|1/2

)|E|
.

This finally completes the proof.

Remark 6.2.6. In [BV01] a similar argument is used. However, for growing the polymers
[BV01] refers to [IV00], where a construction that is different from ours is used. Unfortu-
nately, the argument from [IV00] contains a small gap.

The problem is as follows: Take d ≥ 2. In [IV00] the grown polymer Ẽk is only defined for
certain admissible k. Using our notation, one defines Ẽk by adding ki layers of microscopic
cubes to Ei, i.e. one replaces E by

Ẽk :=
n⋃

i=1

Ei + QkiKλmic(0) .

However, this is only done if for each i ∈ {1, . . . , n} we have that Ei + QkiKλmic(0) and⋃i−1
j=1 Ei + QkiKλmic are disjoint or ki = 0 (and the k with this property are called admissible).

Now in [IV00, p. 398] it is claimed that this construction satisfies

|Ẽk| ≥ |E|+ |k|1Kdλd
mic , (6.2.25)

or in other words that we have added at least |k|1 boxes. This is not true in general: For
example if L is a large odd number and

E1 =

[
−Kλmic

2
,

Kλmic

2

]
∩Zd
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E2 =

([
−KLλmic

2
,

KLλmic

2

]
\
[
−3Kλmic

2
,

3Kλmic

2

])
∩Zd

and E = E1 ∪ E2, then for any k1 ∈
{

1, L−1
2

}
the multiindex k = (k1, 0) is admissible, but to

obtain Ẽk we only add the 3d − 1 cubes that form the gap between E1 and E2. If L is large
enough, we can take k1 ≥ 3d, and we arrive at a contradiction to (6.2.25).

Note that this problem is not present in the construction that we used in Step 1 of the
proof of Theorem 6.1.3 c), as our construction directly ensures that (6.2.12) holds. The same
construction could also be used in [IV00] to fix the gap there.

Alternatively (as pointed out to the author by Yvan Velenik) one can also fix the gap in
[IV00] by first ordering the Ek in such a way that no Ei completely surrounds an Ej with
i < j.

In our proof of Theorem 6.1.3 c) we used a tail bound for certain binomial sums. We will
use this estimate a few more times in Section 6.4.3, so we state and prove it separately.

Lemma 6.2.7. Let N ∈N, and 1
2 ≥ r ≥ p ≥ 0. Then

N

∑
j=drNe

(
N
j

)
pj ≤

( p
r2

)rN
. (6.2.26)

This estimate is very similar to standard Chernoff tail bounds for the binomial distribution.
A special case was used in [BV01, Section 3.3.2]. For the proof we will follow the proof of
the Chernoff tail bound.

Proof. For any t ≥ 0 we have the estimate

N

∑
j=drNe

(
N
j

)
pj ≤ e−trN

N

∑
j=0

(
N
j

)
etj pj

≤ e−trN(1 + et p)N .

The optimal choice for t is t = log
(

r
(1−r)p

)
, and this yields

N

∑
j=drNe

(
N
j

)
pj ≤

(
(1− r)r−1

rr

)N

prN .

It remains to observe that for 0 < r ≤ 1
2 one has

(1− r)r−1

rr ≤ 1
r2r .

6.3 Some inequalities

In this section we provide some tools that will be used in the next two sections to estab-
lish Theorem 6.1.5, namely a discrete multipolar Hardy-Rellich inequality as well as an
interpolation inequality. We begin with the former.
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6.3 Some inequalities

6.3.1 A discrete multipolar Hardy-Rellich inequality

We want to give a quantitative estimate on the strength of the pinning effect on x ∈ Λ. More
precisely, consider a function u : Λ→ R such that u = 0 on Ã = A ∪ (Zd \Λ). We want to
control a weighted L2-norm of u by the L2-norm of ∇2

1u. The weight at x ∈ Λ will have to
depend on the location of x with respect to Ã. If ∇2

1u is small, then u is (locally) close to an
affine function. We need to ensure that this affine function is close to zero near x, and for
this purpose we need that u is close to 0 at d+ 1 points that are well-spread out, i.e. we need
that x is close to d+ 1 pinned points.

To state our precise result we need some definitions. First we construct d+ 1 cones of
directions that are well-spread out: Let θ1, . . . , θd+1 ∈ Sd−1 be such that θi · θj = − 1

d for i 6= j
(e.g. take (θi)

d+1
i=1 to be the vertices of a regular d-dimensional simplex with circumsphere

Sd−1).
For κ > 0 let Θi = Bκ (θi) ∩ Sd−1. For κ small enough we have θ′i · θ′j < 0 for all θ′i ∈ Θi,

θ′j ∈ Θj for i 6= j. Fix one such choice of κ. Finally let Ξi =
{

y ∈ Rd \ {0} : y
|y| ∈ Θi

}
(cf.

Figure 6.2).

θ1

θ2

θ3

Ξ1
Ξ2

Ξ3

0

Figure 6.2: The sets Ξi for d = 2

For x ∈ Λ let

d(i)(x, Ã) = inf
a∈Ã∩(x+Ξi)

|x− a|1 ,

d∗(x, Ã) = max
i∈{1,...,d+1}

d(i)(x, Ã)

with the convention that inf∅ = +∞. Thus, for each x there are d+ 1 points in Ã which are
well-spread out around A with distance at most d∗(x, Ã).

Then we have the following statement.

Theorem 6.3.1. Let A ⊂ Λ be arbitrary. Let V ⊂ Λ be an arbitrary subset. Let R ∈N, R ≥ 2 be
a parameter. Suppose that u : Λ→ R is such that u = 0 on Ã. Then∥∥∥u1d∗(·,Ã)≤R

∥∥∥2

L2(V)
≤ CdRd(1 + 1d=4 log R)

∥∥∇2
1u
∥∥2

L2(V+QR(0))
(6.3.1)

where the constant is independent of R, V and A.

Proof. We begin with the case d ≥ 5. We fix an enumeration of the points in Zd.
We first establish a pointwise bound for u1d∗(·,Ã)≤R. Let x ∈ V such that d∗(x, Ã) ≤ R.

For i ∈ {1, . . . , d+ 1} consider the points in Ã ∩ (x + Ξi) of minimal l1-distance to x, and
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let a(i)x be the one among those that comes first with respect to our fixed enumeration. By
assumption |x− a(i)x |1 = d(i)(x, Ã) ≤ R.

We first claim

|u(x)| ≤ max
i∈{1,...,d+1}

∣∣∣u(a(i)x )− u(x)−∇1u(x) ·
(

a(i)x − x
)∣∣∣

= max
i∈{1,...,d+1}

∣∣∣u(x) +∇1u(x) ·
(

a(i)x − x
)∣∣∣ .

(6.3.2)

Indeed, we can assume u(x) ≥ 0 (the other case is analogous). There is an index i such that
∇1u(x) ·

(
a(i)x − x

)
≥ 0, as otherwise the d+ 2 vectors

∇1u(x), a(1)x − x, . . . , a(d+1)
x − x

would have pairwise negative scalar products, while it is easy to see that this is possible in
Rd for at most d+ 1 vectors. In particular, we have

max
i∈{1,...,d+1}

∇1u(x) ·
(

a(i)x − x
)
≥ 0 .

By assumption u(a(i)x ) = 0 and so

u(x) ≤ u(x) + max
i∈{1,...,d+1}

∇1u(x) ·
(

a(i)x − x
)

= max
i∈{1,...,d+1}

u(x)− u(a(i)x ) +∇1u(x) ·
(

a(i)x − x
)

≤ max
i∈{1,...,d+1}

∣∣∣u(x)− u(a(i)x ) +∇1u(x) ·
(

a(i)x − x
)∣∣∣

which implies (6.3.2).
We now want to pick a nearest neighbour path Ψ(i)

x =
(

Ψ(i)
x (0), . . . , Ψ(i)

x (d(i)(x, Ã))
)

such

that Ψ(i)
x (0) = x, Ψ(i)

x (d(i)(x, Ã)) = a(i)x . We can pick this path in such a way that all of its
points have distance at most

√
d from the straight line connecting x and a(i)x , and such that

all but possible the first α̃d of its vertices lie inside the widening cone x + Ξi (cf. Figure 6.3).
Here α̃d is a constant depending only on d and the Ξi.

a(i)x

x

x + Ξi

Figure 6.3: Choice of the path Ψ(i)
x . We require all points to have distance at most√

d from the straight line between x and a(i)x (i.e. to be in the dashed
strip), and all but the first α̃d to be inside the cone x + Ξi.

We can now apply a discrete version of the fundamental theorem of calculus along the
paths Ψ(i)

x to the function v := u(·)− u(x)−∇1u(x) · (· − x). Namely, we know v(x) = 0
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and ∇1v(x) = 0. The point Ψ(i)
x (1) is one of the 2d neighbours of x. If it happens that

Ψ(i)
x (1) ∈ {x + e1, . . . , x + ed}, then v(Ψ(i)

x (1)) = 0 and we can write

v(a(i)x ) =
d(i)(x,A)−1

∑
t=0

t−1

∑
s=1

v(Ψ(i)
x (s + 1))− 2v(Ψ(i)

x (s)) + v(Ψ(i)
x (s− 1)) .

On the other hand, if Ψ(i)
x (1) ∈ {x − e1, . . . , x − ed}, we can temporarily add a point

Ψ(i)
x (−1) = 2x−Ψ(i)

x (1) to our path, so that v(Ψ(i)
x (−1)) = 0, and then write

v(a(i)x ) =
d(i)(x,Ã)−1

∑
t=0

t−1

∑
s=0

v(Ψ(i)
x (s + 1))− 2v(Ψ(i)

x (s)) + v(Ψ(i)
x (s− 1)) .

In both cases we can conclude that∣∣∣u(a(i)x )− u(x)−∇1u(x) ·
(

a(i)x − x
)∣∣∣ = ∣∣∣v(a(i)x )

∣∣∣
≤

d(i)(x,Ã)−1

∑
t=0

t−1

∑
s=0

∣∣∣∇2
1v(Ψ(i)

x (s))
∣∣∣

=
d(i)(x,Ã)−1

∑
t=0

t−1

∑
s=0

∣∣∣∇2
1u(Ψ(i)

x (s))
∣∣∣

=
d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣
where we have changed the order of summation in the last step. Thus, (6.3.2) implies that

|u(x)| ≤ max
i∈{1,...,d+1}

∣∣∣u(a(i)x )− u(x)−∇1u(x) ·
(

a(i)x − x
)∣∣∣

= max
i∈{1,...,d+1}

d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣ .
(6.3.3)

We have this estimate for all x such that d∗(x, Ã) ≤ R. Defining Ψ arbitrarily for the other
x and summing the square of (6.3.3) over x, we find

∑
x∈V
|u(x)|21d∗(x,Ã)≤R ≤ ∑

x∈V
1d∗(x,Ã)≤R

 max
i∈{1,...,d}

d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣
2

≤
d+1

∑
i=1

∑
x∈V

1d∗(x,Ã)≤R

d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣
2

.

(6.3.4)
Consider a nonzero summand of the outer two sums. Then d∗(x, Ã) ≤ R, and (recalling that
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d ≥ 5) we can apply Hölder’s inequality to the innermost sum to obtaind(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣
2

≤

d(i)(x,Ã)−1

∑
s=0

1
(d(i)(x, Ã)− s)d−3

d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)d−1
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣2


≤ Cd

d(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)d−1
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣2 .

(6.3.5)
If s > α̃d, we know Ψ(i)

x (s) ∈ x + Ξi, and hence Ψ(i)
x (s) + Ξi ⊂ x + Ξi, which implies

d(i)(Ψ(i)
x (s), Ã) ≥ d(i)(x, Ã)− s. If s ≤ α̃d, we can just use the estimate (d(i)(x, Ã)− s)d−1 ≤

Rd−1.
Using this in (6.3.5) we obtaind(i)(x,Ã)−1

∑
s=0

(d(i)(x, Ã)− s)
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣
2

≤ Cd

d(i)(x,Ã)−1

∑
s=α̃d+1

d(i)(Ψ(i)
x (s), Ã)d−1

∣∣∣∇2
1u(Ψ(i)

x (s))
∣∣∣2 + Cd

α̃d

∑
s=0

Rd−1
∣∣∣∇2

1u(Ψ(i)
x (s))

∣∣∣2
≤ Cd ∑

y∈Ψ(i)
x

(
1|y−x|1>α̃d

d(i)(y, Ã)d−1 + 1|y−x|1≤α̃d
Rd−1

) ∣∣∇2
1u(y)

∣∣2
≤ Cd ∑

y∈Ψ(i)
x

(
1|y−x|1>α̃d,d(i)(y,Ã)>α̃d

d(i)(y, Ã)d−1 + 1d(i)(y,Ã)≤α̃d
+ 1|y−x|1≤α̃d

Rd−1
) ∣∣∇2

1u(y)
∣∣2

≤ Cd ∑
y∈Ψ(i)

x

(
1|y−x|1>α̃d,d(i)(y,Ã)>α̃d

d(i)(y, Ã)d−1 + 1|y−x|1≤α̃d
Rd−1 + 1

) ∣∣∇2
1u(y)

∣∣2 .

We can insert this into (6.3.4) and change the order of summation once more to obtain that

∑
x∈V
|u(x)|21d∗(x,Ã)≤R

≤ Cd

d+1

∑
i=1

∑
x∈V

1d∗(x,Ã)≤R

∑
y∈Ψ(i)

x

(
1|y−x|1>α̃d,d(i)(y,Ã)>α̃d

d(i)(y, Ã)d−1 + 1|y−x|1≤α̃d
Rd−1 + 1

) ∣∣∇2
1u(y)

∣∣2
≤ Cd

d+1

∑
i=1

∑
y∈V+QR(0)

∣∣∇2
1u(y)

∣∣2
∑

x : y∈Ψ(i)
x

1d∗(x,Ã)≤R

(
1|y−x|1>α̃d,d(i)(y,Ã)>α̃d

d(i)(y, Ã)d−1 + 1|y−x|1≤α̃d
Rd−1 + 1

)
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≤ Cd

d+1

∑
i=1

∑
y∈V+QR(0)

∣∣∇2
1u(y)

∣∣2
( ∣∣∣{x : y ∈ Ψ(i)

x , |y− x|1 > α̃d, d(i)(y, Ã) > α̃d, d∗(x, Ã) ≤ R
}∣∣∣ d(i)(y, Ã)d−1

+
∣∣∣{x : y ∈ Ψ(i)

x , |y− x|1 ≤ α̃d

}∣∣∣ Rd−1 +
∣∣∣{x : y ∈ Ψ(i)

x , d∗(x, Ã) ≤ R
}∣∣∣ ) .

(6.3.6)
The cardinality of the second set here is trivial to estimate and we find |{x : y ∈ Ψ(i)

x , |y−
x|1 ≤ α̃d}| ≤ Cdα̃d

d. Similarly, y ∈ Ψ(i)
x and d∗(x, Ã) ≤ R imply |x − y|1 ≤ R, and so the

cardinality of the third set can be estimated as |{x : y ∈ Ψ(i)
x , d∗(x, Ã) ≤ R}| ≤ CdRd.

To estimate the cardinality of the first set we need to work a bit. The heuristic here is
that the paths Ψ(i)

x are close to straight lines with the same endpoint passing through y,
so there cannot be too many of them. To make this precise, fix y with d(i)(y, Ã) > α̃d and
consider some x such that y ∈ Ψ(i)

x , |y− x|1 > α̃d and d∗(x, Ã) ≤ R. Because |y− x|1 > α̃d

and d(i)(y, Ã) > α̃d, we know that a(i)y ∈ y + Ξi and y ∈ x + Ξi, and hence a(i)y ⊂ x + Ξi.

Thus, a(i)y is one of the candidates for the endpoint of the path Ψ(i)
x , and our definition of the

paths ensures that we actually have a(i)x = a(i)y . Because y ∈ Ψ(i)
x , the point y has distance

at most
√
d from the straight line connecting x and a(i)x = a(i)y . Therefore x is contained in

some fixed cone with tip a(i)y and opening angle ≤ Cd

|a(i)y −y|1
= Cd

d(i)(y,Ã)
. The point x is also

contained in the cube around a(i)y with diameter 2R, as otherwise d∗(x, Ã) ≤ d(i)(x, Ã) =

|x− a(i)y |1 ≥ |x− a(i)y |∞ > R. Thus, x is contained in the intersection of the aforementioned

cone with that cube. This intersection contains at most CdR
(

R
d(i)(y,Ã)

)d−1
= Cd

Rd

(d(i)(y,Ã))d−1

lattice points, and so∣∣∣{x : y ∈ Ψ(i)
x , |y− x|1 > α̃d, d(i)(y, Ã) > α̃d, d∗(x, Ã) ≤ R

}∣∣∣ ≤ Cd
Rd

(d(i)(y, Ã))d−1
.

Returning now to (6.3.6), we find

∑
x∈V
|u(x)|21d∗(x,Ã)≤R

≤ Cd

d+1

∑
i=1

∑
y∈V+QR(0)

∣∣∇2
1u(y)

∣∣2 ( Rd

d(i)(y, Ã)d−1
d(i)(y, Ã)d−1 + α̃dRd−1 + Rd

)

≤ CdRd
d+1

∑
i=1

∑
y∈V+QR(0)

∣∣∇2
1u(y)

∣∣2
≤ CdRd ∑

y∈V+QR(0)

∣∣∇2
1u(y)

∣∣2 .

This completes the proof in the case d ≥ 5. The case d = 4 is very similar. The only
difference is that in the estimate (6.3.5) we no longer have

d(i)(x,Ã)−1

∑
s=0

1
(d(i)(x, Ã)− s)d−3

≤ Cd
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but instead
d(i)(x,Ã)−1

∑
s=0

1
d(i)(x, Ã)− s

≤ C log(2 + d(i)(x, Ã)) ≤ C log R .

This is the additional factor log R that appears on the right hand side in (6.3.1).

Later we will also use a probabilistic quenched version of this estimate.

Lemma 6.3.2. Let d ≥ 4. There is an odd integer Nd with the following property: Let Λ b Zd,
and let x ∈ Λ, and k ∈ N. Then if ε is sufficiently small (depending on d) there is an event Ωx,k
such that ζε

Λ(Ωx,k) ≥ 1− 1
2kd

and such that whenever A ∈ Ωx,k the following estimate holds: if
u : Zd → R is a function such that u = 0 on Ã, then

|u(x)| ≤ Cd
kd/2 (1 + 1d=4((log k)1/2 + | log ε|3/4)

)
ε1/2 ‖∇2

1u‖L2(QkNdλmic (x)) . (6.3.7)

Proof. We want to apply Theorem 6.3.1 with V = {x} and R = kNλmic. Then Rd(1 +

1d=4 log R) ≤ Cd,N
kd(1+1d=4(log k+| log ε|3/2)

ε , and so (6.3.7) follows with the choice Nd = N
provided that d∗(x, Ã) ≤ kNλmic. Thus, if we define

Ωx,k =
{

A ⊂ Λ : d∗(x, Ã) ≤ kNλmic
}

it remains to choose N in such a way that we can show that ζε
Λ(Ωx,k) ≥ 1− 1

2k .
For an odd integer N, let Ξi,kNλmic(x) = (x + Ξi) ∩QkNλmic(x). When kN ≥ N′d for some

dimensional constant N′d (and so in particular when N ≥ N′d) the fraction of points in

QkNλmic(x) that are in Ξi,kNλmic(x) is bounded below, i.e. we have |Ξi,kNλmic(x)| ≥ (kN)dλd
mic

Cd
.

On the other hand, d∗(x, Ã) ≤ kNλmic holds if and only if all Ξi,kNλmic(x) contain some point
in Ã. Therefore, using Theorem 6.1.3 c) we see

1− ζε
Λ(Ωx,k) = ζε

Λ(d∗(x, Ã) > kNλmic)

≤ ζε
Λ(d∗(x,A) > kNλmic)

= ζε
Λ (∃i ∈ {1, . . . , d+ 1} : A∩ Ξi,kNλmic(x) = ∅)

=
d+1

∑
i=1

ζε
Λ (A∩ Ξi,kNλmic(x) = ∅)

≤
d+1

∑
i=1

(1− pd,−)
|Ξi,kNλmic (x)|

≤
d+1

∑
i=1

exp
(
−pd,−

(kN)dλd
mic

Cd

)
.

For any d ≥ 4 we have pd,−λd
mic ≥ 1

Cd
, and so

1− ζε
Λ(Ωx,k) ≤ (d+ 1) exp

(
− (kN)d

Cd

)
≤
(
(d+ 1) exp

(
−Nd

Cd

))kd

and it suffices to choose Nd ≥ N′d in such a way that the right hand side is less than 1
2kd

when
N ≥ Nd.
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6.3.2 An interpolation inequality

Let Q ⊂ Λ be a discrete cube of sidelength R. In the following section we will need to
control ‖∇1u‖L2(Q) by terms involving only u and ∇2

1u. Usually one would expect to do
this by an interpolation inequality of the form

‖∇1u‖2
L2(Q) ≤ Cd

(
R2‖∇2

1u‖2
L2(Q) +

1
R2 ‖u‖

2
L2(Q)

)
where the factors R±2 are due to scaling. For our purposes this is not good enough, however,
as we do not control u on all of Q. So it is crucial for us that a similar inequality still holds
when we only control u on a large enough subset of Q. Indeed we have the following result.

Lemma 6.3.3. Let d ∈N. Let R be an odd integer and let Q ⊂ Λ be a discrete cube of sidelength
R (i.e. Q = QR/2(x∗) for some x∗ ∈ Zd), and assume R ≥ 12(

√
d)d−1

√
d. Let B ⊂ Q such that

|B| ≥ 1
2 |Q|. Let u : Λ→ R. Then we have the estimate

‖∇1u‖2
L2(Q) ≤ Cd

(
R2‖∇2

1u‖2
L2(Q) +

1
R2 ‖1·∈Bu‖2

L2(Q)

)
. (6.3.8)

Proof. By translation invariance we can assume that Q is centred at 0.
We first prove (6.3.8) with u replaced by an affine function v, where v(x) = b · x + a for

some a ∈ R, b ∈ Rd. That is, we want to show

|b|2 ≤ C
1

Rd+2 ‖1·∈Bv‖2
L2(Q) . (6.3.9)

To see this, note first that we can assume b 6= 0 (else there is nothing to show). Let
θ = b

|b| ∈ Sd−1. For λ > 0 consider the set E =
{

x ∈ Q :
∣∣∣θ · x + a

|b|

∣∣∣ ≤ λ
}

. The set E is the

intersection of Q with a slab of width 2λ, and so for each point x ∈ E the cube x +
[
− 1

2 , 1
2

]d
is contained in

[
−R

2 , R
2

]d
intersected with a slab of width 2λ +

√
d. Thus, we can estimate

the number of points in E as

|E| ≤ (2λ +
√
d)(R

√
d)d−1 .

If we assume λ ≥
√
d, we can bound this by

|E| ≤ 3λ(R
√
d)d−1 .

We want to pick λ = R
12(
√
d)d−1 . This is possible, as R

12(
√
d)d−1 ≥

√
d by our assumption on R.

Then for our choice of λ we see that |E| ≤ 1
4 Rd = 1

4 |Q|.
On the other hand, we know |B| ≥ 1

2 |Q|, and therefore |B \ E| ≥ 1
4 |Q|. Now for each

x ∈ B \ E ⊂ Q \ E we have
∣∣∣θ · x + a

|b|

∣∣∣ > λ and hence

|v(x)| = |b|
∣∣∣∣θ · x +

a
|b|

∣∣∣∣ ≥ λ|b| ≥ R|b|
Cd

Summing the square of this estimate over all x ∈ B \ E, we see that

∑
x∈B\E

|v(x)|2 ≥ ∑
x∈B\E

R2|b|2
Cd

≥ 1
4
|Q|R

2|b|2
Cd
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which immediately implies (6.3.9).
Let now (u)Q := 1

|Q| ∑x∈Q u(x) and (∇1u)Q := 1
|Q| ∑x∈Q∇1u(x), and define v(x) =

(u)Q + (∇1u)Q · x. Then v is an affine function to which we will be able to apply (6.3.9),
while u − v and ∇1(u − v) have average zero over Q, which allows using the discrete
Poincaré inequality with zero mean. We can thus write

‖∇1u‖2
L2(Q) ≤ 2‖∇1v‖2

L2(Q) + 2‖∇1(u− v)‖2
L2(Q)

≤ 2
R2 ‖1·∈Bv‖2

L2(Q) + CdR2‖∇2
1(u− v)‖2

L2(Q)

=
2

R2 ‖1·∈Bv‖2
L2(Q) + CdR2‖∇2

1u‖2
L2(Q)

≤ Cd

R2 ‖1·∈B(u− v)‖2
L2(Q) +

Cd

R2 ‖1·∈Bu‖2
L2(Q) + CdR2‖∇2

1u‖2
L2(Q)

≤ Cd

R2 ‖u− v‖2
L2(Q) +

Cd

R2 ‖1·∈Bu‖2
L2(Q) + CdR2‖∇2

1u‖2
L2(Q)

≤ Cd

R2 R4‖∇2
1u‖2

L2(Q) +
Cd

R2 ‖1·∈Bu‖2
L2(Q) + CdR2‖∇2

1u‖2
L2(Q)

≤ Cd

R2 ‖1·∈Bu‖2
L2(Q) + CdR2‖∇2

1u‖2
L2(Q) .

This is what we wanted to show.

6.4 Probabilistic decay of the L2-norm for biharmonic functions

In this section we will prove a decay estimate for the L2-norm of the Hessian of a discrete
biharmonic function. This estimate does not hold for all realizations of A, but we prove that
it holds for all but an exceptional set of realizations whose probability decays exponentially.

The precise result is the following. Recall that Ã = A∪ (Zd \Λ).

Theorem 6.4.1. Let d ≥ 4. There is an odd integer N̂d with the following property: Let Λ b Zd,
Let U ∈ PN̂dλmac

be a polymer consisting of n = |U|
N̂d
dλd

mac
boxes, and k ∈N. Then if ε is sufficiently

small (depending on d only) there is an event ΩU,k such that ζε
Λ (ΩU,k) ≥ 1− n

2k , and such that
whenever A ∈ ΩU,k the following estimates hold:

a) If u : Zd → R is a function such that u = 0 on Ã \U and u∆2
1u = 0 on Zd \U, we have the

estimate ∥∥∇2
1u
∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
≤ 1

2k

∥∥∇2
1u
∥∥2

L2((U+Q2kN̂dλmac (0))\U)
. (6.4.1)

b) If u : Zd → R is a function such that u = 0 on (U + Q2kN̂dλmac
(0)) ∩ Ã and u∆2

1u = 0 on
U + Q2kN̂dλmac

(0), we have the estimate

∥∥∇2
1u
∥∥2

L2(U)
≤ 1

2k

∥∥∇2
1u
∥∥2

L2((U+Q2kN̂dλmac (0))\U)
. (6.4.2)

We have already outlined the strategy of the proof in Section 6.1.3. Namely, to prove
(6.4.1) and (6.4.2) we want to iterate the Widman hole filler argument k times, that is we
need to find k pairs Uj, U′j on which we can apply it.
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In order to make the Widman hole filler argument work, we need to be able to apply
Theorem 6.3.1 and Lemma 6.3.3. We can ensure this by finding a cut-off function ηj that
grows from 0 to 1 in such a way that ∇2

1ηj = 0 on those points on which Theorem 6.3.1 or
Lemma 6.3.3 cannot be applied.

For that purpose pick an odd integer N to be fixed later and decompose Zd into the boxes
in QNλmac . We will declare some of these boxes to be bad in such a way that on the good (i.e.
non-bad) boxes we can construct an η growing from 0 to 1 on that box and satisfying the
conditions on∇2

1η. If we can show that bad boxes are rare, then with high probability we can
find at least k annuli consisting only of good boxes inbetween U and Zd \ (U + Q2kNλmac(0)),
and then we can iterate the Widman hole filler argument on these annuli.

In Section 6.4.1 we describe in detail how we choose the bad boxes, and we prove that on
the good boxes there exist cut-off functions as required. In Section 6.4.2 we carry out the
Widman hole filler argument provided all relevant boxes are good. Finally, in Section 6.4.3
we show that the bad boxes are sparse enough that with sufficiently high probability we can
find enough annuli to use the hole filler argument on. Using this result we will complete the
proof of Theorem 6.4.1.

6.4.1 Bad boxes and cut-off functions

The definition of the bad boxes depends on three odd integers K, L, M, where K is always a
multiple of 3, and M ≥ 12. Eventually (in Section 6.4.3), we will choose them large enough
in the order M, K, L to close the argument. For now we will track all dependencies on K, L,
M. The parameters K and L will play similar roles as in the proof of Theorem 6.1.3 c), albeit
not quite the same. We hope this will not confuse the reader.

There will be two reasons that lead to a cube Q ∈ QKLλmac being bad. The first one
is related to Lemma 6.3.3. We want to be able to apply that Lemma on each subcube
Q′ ∈ QKλmac such that Q′ ⊂ Q with 1·∈B being the indicator function from Theorem 6.3.1.
So we will define Q to be bad of type II if there is a subcube Q′ ⊂ Q on which the indicator
function from Theorem 6.3.1 is equal to 0 too often.

The second reason is more complicated. We want to be able to modify an initial guess
η∗ for the cut-off function in such a way that ∇2

1η = 0 on those sets on which the indicator
function from Theorem 6.3.1 is equal to 0 (and we think of those points as bad as well). This
is easy if the bad points are very isolated and sparse, as we then can make local adjustments
to η∗ that do not interfere with each other. So we start at scale `0 = Kλmic and consider the
bad points (or actually the bad boxes in QKλmic that contain at least a bad point) and split
them into the isolated and the clustered ones. The former ones we ignore for the moment,
and the latter ones can be covered by cubes in Q#

`1
such that each cube covers at least two

of the small cubes. These are the bad cubes on scale `1. Now we can once again split those
cubes into the isolated ones (that we ignore for the moment) and those that are clustered
and can be covered by cubes on scale `2, and we continue like this. This process terminates
once at some scale all bad cubes are isolated. Then we can adjust η∗ on those isolated cubes,
and then proceed backwards and apply our adjustment also on the isolated cubes on the
smaller scales. We thus call Q bad of type I if this process terminates too late.

We have not mentioned yet how to choose the scales `j. There is a trade-off here: on
the one hand, the lengthscale should grow fast so that we have enough space around each
isolated bad cube on scale `j to adjust η∗ there. On the other hand we want many of the
cubes to be isolated, so that our process terminates soon, and this we can achieve by letting
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`j not grow too fast. It turns out that a good compromise is

`j := Mj3 Kλmic

for each j ≥ 0. We give a more detailed explanation of this choice later, in Remark 6.4.9.

Let us now give the precise definitions. Recall thatQl =
{

Ql/2(x) : x ∈ (lZ)d
}

andQ#
l ={

Ql/2(x) : x ∈
(

l
3 Z
)d}

. We consider the microscopic cubes in QKλmic , the macroscopic

cubes in QKLλmac , and the further sets of boxes Q`0 and Q#
`j

for j ≥ 1, associated to `j =

Mj3 Kλmic for j ≥ 0. The reason that we use Q#
`j

and not Q`j for j ≥ 1 is that we want to
ensure that for any two cubes on lengthscale `j−1 that are sufficiently close there is a cube in
Q#

`j
that contains both of them. We assumed M ≥ 12, and so `j−1 ≤ 1

12`j for each j ≥ 1. We

fix for later use an enumeration of the boxes in each Q#
`j

.
We define

S(0)
K,M,bad(A) =

{
Q ∈ QKλmic : ∃x ∈ Q with d∗(x, Ã) > Kλmic

}
.

Note that S(0)
K,M,bad(A) ⊂ QKλmic = Q`0 ⊂ Q#

`0
. For M large enough the set S(0)

K,M,bad(A) is
finite (as cubes far outside of Λ will not be bad).

For j ≥ 1 we define S(j)
K,M,bad(A) ⊂ Q#

`j
inductively as follows: Given S(j−1)

K,M,bad(A) ⊂

Q#
`j−1

such that the set S(j−1)
K,M,bad(A) is finite, we want to split it into two sets of boxes:

S(j−1)
K,M,bad,clust(A) will contain those boxes that are clustered in the sense that there is another

bad box at distance ≤ `j
2 that is disjoint from the original box, and S(j−1)

K,M,bad,isol(A) will
contain the other boxes. These other boxes are isolated in the sense that all bad boxes that
are disjoint from them are far away. Let us make this precise: we define

S(j−1)
K,M,bad,clust(A)

=

{
Q ∈ S(j−1)

K,M,bad(A) : ∃Q′ ∈ S(j−1)
K,M,bad(A) with Q′ ∩Q = ∅, d∞(Q, Q′) ≤

`j

2

}
,

S(j−1)
K,M,bad,isol(A) = S(j−1)

K,M,bad(A) \ S(j−1)
K,M,bad,clust(A) .

If S(j−1)
K,M,bad,clust(A) = ∅, we define S(j)

K,M,bad(A) = ∅. Otherwise, if Q ∈ S(j−1)
K,M,bad,clust(A) and

Q′ ∈ S(j−1)
K,M,bad(A) is a witness for this in the sense that Q′ ∩Q = ∅ and d∞(Q, Q′) ≤ `j

2 then

also Q′ ∈ S(j−1)
K,M,bad,clust(A), as Q then is a witness for Q′. In particular,

S(j−1)
K,M,bad,clust(A)

=

{
Q ∈ S(j−1)

K,M,bad(A) : ∃Q′ ∈ S(j−1)
K,M,bad,clust(A) with Q′ ∩Q = ∅, d∞(Q, Q′) ≤

`j

2

}
.

Furthermore, if Q, Q′ ∈ S(j−1)
K,M,bad,clust(A) with Q′ ∩Q = ∅ and d∞(Q, Q′) ≤ `j

2 then Q and Q′

are contained in a common box of sidelength at most `j
2 + 2`j−1 ≤

2`j
3 (as `j−1 ≤ 1

12`j), and so

there is a cube inQ#
`j

containing both of them. This means that we can cover S(j−1)
K,M,bad,clust(A)

by finitely many cubes fromQ#
`j

in such a way that each cube from the cover contains at least
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two small cubes from S(j−1)
K,M,bad,clust(A) that are disjoint. We can consider the set of subsets of

Q#
`j

with that property,

S (j)
K,M,bad(A) =

{
S ⊂ Q#

`j
:

⋃
Q′∈S(j−1)

K,M,bad,clust(A)

Q′ ⊂
⋃

Q∈S

Q,

∀Q ∈ S ∃Q′, Q′′ ∈ S(j−1)
K,M,bad,clust(A) with Q′ ∩Q′′ = ∅, Q′ ∪Q′′ ⊂ Q

}
.

The previous discussion implies that if S(j−1)
K,M,bad,clust(A) is non-empty, then also S (j)

K,M,bad(A)

is non-empty. Now we consider the elements of S (j)
K,M,bad(A) of minimum cardinality, and

among those we define S(j)
K,M,bad(A) to be that element that is lexicographically first (with

respect to the enumeration of Q#
`j

that we had fixed).

To summarize, S(j)
K,M,bad(A) is a finite subset of Q#

`j
that covers S(j−1)

K,M,bad,clust(A) in such a

way that each of its boxes contains two disjoint elements from S(j−1)
K,M,bad,clust(A).

Finally we can define macroscopic bad boxes. Let j∗(ε) be the largest integer j such
that `j ≤ KLλmac

8 (we assume that ε is small enough so that j∗(ε) ≥ 1). We consider the
macroscopic boxes in QKLλmac , and call a macroscopic box bad of type I if it contains at least
one box in S(j∗(ε))

K,M,bad(A), bad of type II if one of its Kλmac-subboxes contains many boxes in

S(0)
K,M,bad(A), and bad if it is bad of type I or type II. More precisely

S∗,IK,L,M,bad(A) =
{

Q ∈ QKLλmac : ∃q ∈ S(j∗(ε))
K,M,bad(A) with q ∩Q 6= ∅

}
,

S∗,I I
K,L,M,bad(A) =

{
Q ∈ QKLλmac : ∃Q′ ∈ QKλmac with Q′ ⊂ Q,

∣∣∣{q ∈ S(0)
K,M,bad(A) : q ⊂ Q′

}∣∣∣ ≥ 1
4

(
λmac

λmic

)d
}

,

S∗K,L,M,bad(A) = S∗,IK,L,M,bad(A) ∪ S∗,I I
K,L,M,bad(A) .

The point of these definitions is that we can apply our construction of a cut-off function
on all cubes in QKLλmac \ S∗,IK,L,M,bad(A), while we can apply Lemma 6.3.3 on every Kλmac-
subcube of the cubes in QKLλmac \ S∗,I I

K,L,M,bad(A). Of course, this is only useful if we show
that bad cubes are rare. This will be established in Section 6.4.3. For now we show that
our definition of good boxes fulfils its purpose in the sense that we can construct a cut-off
function growing from 0 to 1 on them in such a way that their second derivatives are 0 on
the set of microscopic bad boxes.

Lemma 6.4.2. Let d ≥ 1. Then there is a constant Md ≥ 12 with the following property: Let K,
L, M be odd integers such that K is a multiple of 3, and M ≥ Md. Then for all ε sufficiently small
(depending on d, K) the following holds: Let U ∈ PKLλmac be a polymer. Suppose that none of the
KLλmac-boxes touching its boundary (in the l∞-sense) are bad of type I, i.e.

{Q ∈ QKLλmac : Q ⊂ (U + QKLλmac(0)) \U} ∩ S∗,IK,L,M,bad(A) = ∅

Then there is a function η : Zd → R such that

i) η(x) = 0 for x ∈ U + Q2Kλmic(0),
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ii) η(x) = 1 for x ∈ Zd \ (U + QKLλmac−2Kλmic(0)),

iii) |∇2
1η(x)| ≤ Cd

(KL)2λ2
mac
1Q1(x)∩⋃

Q∈S(0)K,M,bad(A)
Q=∅.

Here the constant Cd depends only on d.

Morally, property iii) is |∇2
1η(x)| ≤ Cd

(KL)2λ2
mac
1x 6∈⋃

Q∈S(0)K,M,bad(A)
Q. However, the discrete

product rule lets translation operators arise, and this is why we require the slightly stronger
condition iii) above.

To prove Lemma 6.4.2, we will begin with a function η∗ which satisfies i) and ii), but only
|∇2

1η(x)| ≤ Cd

(KL)2λ2
mac

instead of iii). Then we will modify η∗ iteratively to make it affine

on larger and larger subsets of S(0)
K,M,bad(A), so that eventually iii) is satisfied as well. The

following lemma gives details on how to carry out a single of these modification steps.

Lemma 6.4.3. Let d ≥ 1. There is a constant γd > 0 with the following property: Let x ∈ Zd, let
r, R be positive integers such that R ≥ 16r. Let v : Zd → R be a function. Then there is a function
w : Zd → R with the following properties:

i) w = 0 on Zd \QR−1(x),

ii) ∇2
1(v + w) = 0 on Qr(x),

iii) ‖∇2
1(v + w)‖L∞(QR(x)) ≤

(
1 + γd

log R−log r

)
‖∇2

1v‖L∞(QR(x)).

Note that condition i) ensures that ∇2
1w = 0 on Zd \QR(x).

Proof. By translation invariance we can assume x = 0. Suppose for the moment that there is
a function ξ : Zd → R such that ξ = 1 on Qr+1(0), ξ = 0 on Zd \QR−1(0) and

|ξ(y)| ≤ 1 ,

|∇1ξ(y)| ≤ Cd

|y|(log R− log r)
,

|∇2
1ξ(y)| ≤ Cd

|y|2(log R− log r)

for y ∈ QR(0).
Let u be the affine function u(y) = v(0) + y · ∇1v(0). Then we can set w(y) = ξ(y)(u(y)−

v(y)). This choice of w clearly satisfies i) and ii), and so we only have to check iii). We know
that u(0)− v(0) = 0 and ∇1u(0)−∇1v(0) = 0, and so by discrete Taylor expansion, using
that u is affine, we have

|∇1u(y)−∇1v(y)| ≤ Cd|y|‖∇2
1v‖L∞(QR(0))

|u(y)− v(y)| ≤ Cd|y|2‖∇2
1v‖L∞(QR(0)) .

Note that v + w = ξu + (1− ξ)v. The discrete product rule allows us to write

D1
i D1
−j(v + w)(y) = D1

i D1
−jv(y)τ

1
i τ1
−j(1− ξ)(y) + D1

i (u− v)(y)τ1
i D1
−jξ(y)

+ D1
−j(u− v)(y)τ1

−jD
1
i ξ(y) + (u− v)(y)D1

i D1
−jξ(y)
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and thus, using the estimates on ξ and v− u,

|D1
i D1
−j(v + w)(y)| ≤ |D1

i D1
−jv(y)|+ |D1

i (u− v)(y)| max
|z−y|∞≤1

|∇1ξ(z)|

+ |D1
−j(u− v)(y)| max

|z−y|∞≤1
|∇1ξ(z)|+ |(u− v)(y)| max

|z−y|∞≤1
|∇2

1ξ(z)|

≤ |D1
i D1
−jv(y)|+ Cd|y|‖∇2

1v‖L∞(QR(0))
1

|y|(log R− log r)

+ Cd|y|2‖∇2
1v‖L∞(QR(0))

1
|y|2(log R− log r)

≤ |D1
i D1
−jv(y)|+ Cd‖∇2

1v‖L∞(QR(0))
1

(log R− log r)
.

This immediately implies that v satisfies iii).
It remains to show the existence of ξ with the desired properties. To do so, we choose a

function χ ∈ C∞(Rd) that is 1 on [−1, 1]d, 0 outside of [−2, 2]d such that 0 ≤ χ ≤ 1, and for
ρ > 0 define χρ = χ

(
·
ρ

)
. We define ξ̃ : Rd → R by

ξ̃(y) = χ2r(y) + (χR/4(y)− χ2r(y))
log R− log |y|
log R− log r

.

One can check that 0 ≤ ξ̃ ≤ 1, ξ̃ = 1 on [−2r, 2r]d ⊃ Qr+1(0), ξ̃ = 0 on Rd \
[
−R

2 , R
2

]d ⊃
Zd \QR−1R(0) as well as

|∇kξ(y)| ≤ Cd,k

|y|k(log R− log r)

for k ≥ 1. We can now let ξ be the restriction of ξ̃ to Zd. The estimates on ξ̃ together with
Taylor’s theorem then imply the corresponding estimates on ξ.

Before we turn to the proof of Lemma 6.4.2, let us investigate the structure of the
S(j)

K,M,bad(A) in more detail. Note first that∣∣∣S(j)
K,M,bad(A)

∣∣∣ ≥ ∣∣∣S(j)
K,M,bad,clust(A)

∣∣∣ ≥ ∣∣∣S(j+1)
K,M,bad(A)

∣∣∣+ 1

as each cube of S(j+1)
K,M,bad(A) covers at least two cubes of S(j)

K,M,bad,clust(A), and S(j+1)
K,M,bad(A) is

chosen with the smallest possible cardinality. We have already noted that S(j)
K,M,bad(A) is a

finite set. This implies that S(j)
K,M,bad(A) = ∅ for j sufficiently large.

If Q ∈ S(j)
K,M,bad(A) for some j ≥ 0, then either Q ∈ S(j)

K,M,bad,isol(A) or Q ∈ S(j)
K,M,bad,clust(A).

In the latter case there is at least one Q′ ∈ S(j+1)
K,M,bad(A) such that Q ⊂ Q′. If there is more

than one such Q′, we choose the one that comes first with respect to the enumeration of Q#
`j

that we had fixed, and call it the parent of Q. In this manner, given Q ∈ S(0)
K,M,bad(A) we can

find a sequence
Q ⊂ Q(1) ⊂ . . . ⊂ Q(j)

such that each cube is the parent of the preceding cube. This sequence is necessarily
finite as S(j)

K,M,bad(A) = ∅ for j sufficiently large. It terminates as soon as we reach a cube

Q(j) ∈ S(j)
K,M,bad,isol(A). We denote that value j by jisol,Q. In summary, we have a sequence

Q = Q(0) ⊂ Q(1) ⊂ . . . ⊂ Q(jisol,Q) (6.4.3)
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where each cube is the parent of the preceding cube, the cubes Q(j) for j < jisol,Q are

in S(j)
K,M,bad,clust(A), while Q(jisol,Q) ∈ S(jisol,Q)

K,M,bad,isol(A). This allows us to find for each cube

Q ∈ S(0)
K,M,bad(A) a lengthscale `jisol,Q on which its parents become isolated. It will be that

lengthscale on which we will ensure that η is locally affine on Q.
After these preparations we can turn to the proof of the main result of this section, the

construction of a cut-off function.

Proof of Lemma 6.4.2.
Step 1: Construction of a function satisfying a weaker version of iii)

We assume that ε is small enough so that λmic ≥ 4, say. Then also `j ≥ 4 for all j ≥ 0. We first
claim that there is a function η∗ satisfying i) and ii) and such that |∇2

1η∗(x)| ≤ Cd

(KL)2λ2
mac

. This
should be intuitively clear, as we want to interpolate from 0 to 1 on scale KLλmac. One way
to make this rigorous is as follows. Let Ũ = U +

[
− 1

2 , 1
2

]d
. Choose a function χ̂ ∈ C∞(Rd)

that is 1 on [−1, 1]d, 0 outside of
[
− 9

7 , 9
7

]d and such that 0 ≤ χ ≤ 1. For each Q ∈ QKLλmac

such that Q ⊂ U let xQ be its centre, and define η̃∗ : Rd → R by

η̃∗(y) = ∏
Q∈QKLλmac

Q⊂U

(
1− χ̂

(
y− xQ

7
8 KLλmac

))
.

This function is then equal to 0 on Ũ +
[
− 3KLλmac

8 , 3KLλmac
8

]d
and also equal to 1 on Rd \(

Ũ +
[
− 5KLλmac

8 , 5KLλmac
8

]d)
. Each of the factors in the definition of η̃∗ satisfies∥∥∥∥∥∇k

(
1− χ̂

(
· − xQ

7
8 KLλmac

))∥∥∥∥∥
L∞(Rd)

≤ Cd,k

(KL)kλk
mac

for k ≥ 0. Furthermore, for each fixed y ∈ Rd there is a neighbourhood in which at most
3d of the factors are non-constant. Thus, if we compute ∇kη̃∗(y) we get contributions only
from these at most 3d factors. Therefore,

‖∇kη̃∗‖L∞(Rd) ≤
Cd,k

(KL)kλk
mac

for k ≥ 0. We can now let η∗ be the restriction of η̃∗ to Zd. Then Taylor’s theorem implies
easily that |∇2

1η(x)| ≤ Cd

(KL)2λ2
mac

.

Note also that η∗ is equal to 0 on U +
[
− 3KLλmac

8 , 3KLλmac
8

]
and equal to 1 on Zd \ (U +

Q5KLλmac/8(0)). Therefore,∇2
1η∗ is equal to 0 except possibly on V := (U + Q5KLλmac/8+1(0) \

(U + Q3KLλmac/8−1(0)).
Step 2: Modification of η∗

Let q ∈ S(0)
K,M,bad(A) with q ⊂ (U + QKLλmac(0)) \U, and consider the sequence of cubes

(6.4.3) with Q = q. By our assumption none of the macroscopic cubes in (U + QKLλmac(0)) \
U are bad of type I, i.e. there is no Q′ ∈ S(j∗(ε))

K,M,bad(A) intersecting (U + QKLλmac(0)) \U. This
means that the sequence (6.4.3) necessarily terminates before j = j∗(ε). In particular, we
have jisol,q < j∗(ε). We can now partition the cubes in S(0)

K,M,bad(A) according to the value of
jisol,q, and define for j ∈ {0, . . . , j∗(ε)− 1} the set

TK,M,j(A) =
{

q ∈ S(0)
K,M,bad(A) : q ⊂ (U + QKLλmac(0)) \U, jisol,q = j

}
.
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We will now construct a sequence of functions η(j) by reverse induction in such a way
that ∇2

1η(j) = 0 on
⋃

k≥j
⋃

q∈TK,M,k(A)(q + Q1(0)). Eventually, we will show that the choice
η = η(0) satisfies the properties claimed in the Lemma.

Thus, we start with η(j∗(ε)) = η∗. Let also V(j∗(ε)) = V, and note that supp∇2
1η(j∗(ε)) is

a subset of V(j∗(ε)) = V. Suppose now that for some j ∈ {1, . . . , j∗(ε)} we have defined
η(j) and V(j) with supp∇2

1η(j) ⊂ V(j) and η(j) = η∗ on Zd \ V(j) such that ∇2
1η(j) = 0 on⋃

k≥j
⋃

q∈TK,M,k(A)(q + Q1(0)), and let us define η(j−1) and V(j−1).
Since supp∇2

1η(j) ⊂ V(j), we trivially have∇2
1η(j) = 0 on those cubes that do not intersect

V(j), and so there is no need to change η(j) there. Let

Y(j−1)
K,M,V(A) =

{
Q ∈ S(j−1)

K,M,bad,isol(A) : (Q + Q1(0)) ∩V(j) 6= ∅
}

be the set of cubes where we will adjust η(j). By definition, this is a set of cubes on scale
`j−1 that either overlap or are far apart. That is, if Q ∈ Y(j−1)

K,M,V(A), then all Q′ ∈ S(j−1)
K,M,bad(A)

either satisfy Q ∩ Q′ 6= ∅ or d∞(Q, Q′) >
`j
2 . Let Ỹ(j−1)

K,M,V(A) be a subset of Y(j−1)
K,M,V(A) of

maximum cardinality such that the cubes in Ỹ(j−1)
K,M,V(A) are pairwise disjoint. By construction

for each Q ∈ Y(j−1)
K,M,V(A) there is a Q′ ∈ Ỹ(j−1)

K,M,V(A) (possibly equal to Q) with Q ∩ Q′ 6= ∅.
In particular, ⋃

Q∈Y(j−1)
K,M,V(A)

Q ⊂
⋃

Q∈Ỹ(j−1)
K,M,V(A)

(Q + Q`j−1(0)) .

Let now Q ∈ Ỹ(j−1)
K,M,V(A). We know that there is no cube Q′ ∈ S(j−1)

K,M,bad(A) that intersects
(Q + Q`j/2(0)) \ (Q + Q`j−1(0)). This has several implications. An obvious one is that the

cubes Q+ Q`j/4(0) for Q ∈ Ỹ(j−1)
K,M,V(A) are pairwise disjoint. Slightly less obviously, we claim

that for Q ∈ Ỹ(j−1)
K,M,V(A) there is no q ∈ ⋃k≥j TK,M,k(A) such that q∩ ((Q + Q`j/4+1(0)) \ (Q +

Q`j−1(0))) 6= ∅. Indeed, if q ∈ ⋃k≥j TK,M,k(A) then we have jisol,q ≥ j, so the sequence (6.4.3)

contains a parent q ⊂ q(j−1) ∈ S(j−1)
K,M,bad(A). Then q(j−1) cannot intersect (Q + Q`j/2(0)) \

(Q + Q`j−1(0)), and so the same holds true for q.
We would now like to apply Lemma 6.4.3 to the function v = η(j) and the cubes Q +

Q`j−1+1(0) ⊂ Q + Q`j/4(0). For that purpose we fix Md = 8 max (16, exp(γd)), where γd is
the constant from Lemma 6.4.3. If M ≥ Md, then⌊

`j−1
2 +

`j
4

⌋
⌈
`j−1

2 + `j−1 + 1
⌉ ≥ `j

4
2`j−1

=
1
8

Mj3 Kλmic

M(j−1)3 Kλmic
=

1
8

M3j2−3j+1 . (6.4.4)

The term on the right hand side is in particular bounded below by M
8 ≥ 16, and thus we

can indeed apply the lemma. We obtain that there is a function wQ such that wQ = 0 on
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Zd \ (Q + Q`j/4−1(0)), ∇2
1

(
wQ + η(j)

)
is zero on Q + Q`j−1+1(0), and such that∥∥∥∇2

1

(
wQ + η(j)

)∥∥∥
L∞(Zd)

≤

1 +
γd

log
(
`j−1

2 +
`j
4

)
− log

(
`j−1

2 + `j−1 + 1
)
∥∥∥∇2

1η(j)
∥∥∥

L∞(Zd)

≤
(

1 +
γd

log
( 1

8 M3j2−3j+1
)) ∥∥∥∇2

1η(j)
∥∥∥

L∞(Zd)

≤
(

1 +
1

3j2 − 3j + 1

)∥∥∥∇2
1η(j)

∥∥∥
L∞(Zd)

(6.4.5)

where we have used (6.4.4) and the fact that γd

log(M
8 )
≤ γd

log exp(γd)
= 1. We set

η(j−1) = η(j) + ∑
Q∈Ỹ(j)

K,M,V(A)

wQ

and
V(j−1) = V(j) + Q`j(0)

and finally we set η = η(0).
Step 3: Proof that the η(j) are locally affine on the bad cubes with jisol,Q ≥ j

We prove by reverse induction that supp η(j) ⊂ V(j), η(j) = η∗ on Zd \V(j) and ∇2
1η(j) = 0

on
⋃

k≥j
⋃

q∈TK,M,k(A)(q + Q1(0)). This is obvious for j = j∗(ε), so assume that it holds for
some j ∈ {1, . . . , j∗(ε)}.

We claim that then also ∇2
1η(j−1) = 0 on

⋃
k≥j−1

⋃
q∈TK,M,k(A)(q + Q1(0)). To see this, let

q ∈ TK,M,k(A) for k = jisol,q ≥ j− 1. We distinguish the two cases jisol,q ≥ j and jisol,q = j− 1.
In the former case by our inductive assumption already∇2

1η(j) = 0 on q + Q1(0). Further-
more, we have argued that q does not intersect (Q + Q`j/4+1(0)) \ (Q + Q`j−1(0)) for any

Q ∈ Ỹ(j)
K,M,V(A). So either q does not intersect Q + Q`j/4+1(0) for any Q ∈ Ỹ(j)

K,M,V(A), or q is

contained in Q + Q`j−1(0) for exactly one Q ∈ Ỹ(j)
K,M,V(A). In the former case, all ∇2

1wQ are
equal to 0 on q + Q1(0), and thus ∇2

1η(j−1) = ∇2
1η(j) = 0 on q + Q1(0), while in the latter

case it holds that ∇2
1η(j−1) = ∇2

1(η
(j) + wQ) on q + Q1(0), and thus by construction of wQ

we have ∇2
1η(j−1) = 0 on q + Q1(0).

It remains to consider the case that jisol,q = j− 1. In that case the sequence (6.4.3) contains

a parent q ⊂ q(j−1) ∈ S(j−1)
K,M,bad(A). If (q(j−1) + Q1(0)) ∩ V(j) = ∅, then ∇2

1η(j) = 0 on

q(j−1) + Q1(0). Furthermore, by the definition of Y(j−1)
K,M,V(A), q(j−1) does not intersect (Q +

Q`j/4+1(0)) \ (Q + Q`j−1(0)) for any Q ∈ Ỹ(j−1)
K,M,V(A) ⊂ Y(j−1)

K,M,V(A), and so neither does q.
Arguing as in the previous case, we find that ∇2

1η(j−1) = ∇2
1η(j) on q + Q1(0). On the other

hand, it could be that (q(j−1) + Q1(0)) ∩ V(j) 6= ∅. Then q(j−1) ∈ Y(j−1)
K,M,V(A), and so there

is some Q ∈ Ỹ(j−1)
K,M,V(A) with q ⊂ q(j−1) ⊂ Q + Q`j−1(0). Then it holds once again that

∇2
1η(j−1) = ∇2

1(η
(j) + wQ) = 0 on q + Q1(0).

This proves that ∇2
1η(j−1) = 0 on

⋃
k≥j−1

⋃
q∈TK,M,k(A)(q + Q1(0)). Furthermore, each

Q ∈ Ỹ(j−1)
K,M,V(A) is contained in V(j)+Q2(`j−1+2)(0), so the support of the associated wQ is con-

tained in V(j) + Q2(`j−1+2)+`j/4−1(0). So,∇2
1η(j−1) is supported in V(j) + Q2(`j−1+2)+`j/4(0) ⊂

V(j) + Q`j(0) = V(j−1), and η(j) = η∗ on Zd \V(j−1). This completes the induction.
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Step 4: Proof that η satisfies i), ii) and iii)
We define η = η(0). In the previous step we have shown that ∇2

1η is supported in V(0) and
η = η∗ on Zd \V(0). We have

V(0) = V + Q`0(0) + . . . + Q`j∗(ε)
(0)

⊂ V + Q2`j∗(ε)
(0) ⊂ V + QKLλmac/4(0) ⊂ (U + Q7KLλmac/8+1(0)) \ (U + QKLλmac/8−1(0)) .

Thus, η = η∗ = 0 on U + QKLλmac/8−1(0), η = η∗ = 1 on Zd \ (U + Q7KLλmac/8+1(0)). This
means that η satisfies i) and ii) as soon as ε is small enough (depending on d and K).

In Step 3 we have also seen that η = η(0) satisfies ∇2
1η = 0 on

⋃
k≥0

⋃
q∈TK,M,k(A)(q +

Q1(0)) =
⋃

q∈S(0)
K,M,bad(A)

(q + Q1(0)). Thus, to show that η also satisfies iii) we only have to

check that ‖∇2
1η‖L∞(Zd) ≤ Cd

(KL)2λ2
mac

.

To see this, note the supports of the functions ∇2
1wQ for Q ∈ Ỹ(j−1)

K,M,V(A) are disjoint. Thus,
(6.4.5) implies the bound∥∥∥∇2

1η(j−1)
∥∥∥

L∞(Zd)
≤
(

1 +
1

3j2 − 3j + 1

)∥∥∥∇2
1η(j)

∥∥∥
L∞(Zd)

for j ≥ 1. Iterating this, we find that

∥∥∇2
1η
∥∥

L∞(Zd)
≤
(

j∗(ε)

∏
j=1

(
1 +

1
3j2 − 3j + 1

))∥∥∇2
1η∗
∥∥

L∞(Zd)

≤
(

∞

∏
j=1

(
1 +

1
3j2 − 3j + 1

))
Cd

(KL)2λ2
mac

≤ Cd

(KL)2λ2
mac

(6.4.6)

where in the last step we used that 1
3j2−3j+1 is summable and therefore ∏∞

j=1

(
1 + 1

3j2−3j+1

)
<

∞. This completes the proof.

6.4.2 Decay estimates on good domains

Now that we have a construction of a cut-off function at our disposal, we can execute the
Widman hole filler argument.

Lemma 6.4.4. Let d ≥ 1 and let Md be the constant from Lemma 6.4.2. Let K, L, M be odd integers
such that K is a multiple of 3 and M ≥ Md. Then for all ε sufficiently small (depending on d, K) the
following holds. Let U ∈ PKLλmac be a polymer. Suppose that none of the KLλmac-boxes touching U
(in the l∞-sense) are bad of type I or II, i.e.

{Q ∈ QKLλmac : Q ⊂ (U + QKLλmac(0)) \U} ∩ S∗K,L,M,bad(A) = ∅ .

Then the following holds.

a) If u : Zd → R is a function such that u = 0 on Ã \U and u∆2
1u = 0 on Zd \U, we have the

estimate∥∥∇2
1u
∥∥2

L2(Zd\(U+QKLλmac (0)))

≤
(

CdKd−4 (1 + 1d=4 log K)
L2 +

1
4

)∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U))
.

(6.4.7)
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b) If u : Zd → R is a function such that u = 0 on (U + QKLλmac(0)) ∩ Ã and u∆2
1u = 0 on

U + QKLλmac(0), we have the estimate

∥∥∇2
1u
∥∥2

L2(U)
≤
(

CdKd−4 (1 + 1d=4 log K)
L2 +

1
4

)∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U))
. (6.4.8)

Proof. The proof proceeds as outlined in Section 6.1.3. We begin with the proof of part a);
the proof of part b) will be very similar.

Step 1: Discrete integration by parts
We know that none of the cubes in (U + QKLλmac(0)) \U is bad of type I. Thus, we can apply
Lemma 6.4.2. Let η be the cut-off function that we obtain from that Lemma.

We now carry out the discrete analogue of the calculation that lead to (6.1.24). Namely
we see that

0 = (∆2
1u, ηu)L2(Zd)

=
d

∑
i,j=1

(
D1

i D1
−ju, D1

i D1
−j (ηu)

)
L2(Zd)

=
d

∑
i,j=1

(
D1

i D1
−ju,

(
uD1

i D1
−jη + D1

i uτ1
i D1
−jη + D1

−juτ1
−jD

1
i η + D1

i D1
−juτ1

i τ1
−jη
))

L2(Zd)

=
d

∑
i,j=1

∑
x∈Zd

∣∣∣D1
i D1
−ju(x)

∣∣∣2 τ1
i τ1
−jη(x) +

d

∑
i,j=1

∑
x∈Zd

u(x)D1
i D1
−ju(x)D1

i D1
−jη(x)

+
d

∑
i,j=1

∑
x∈Zd

D1
i D1
−ju(x)D1

i u(x)τ1
i D1
−jη(x) +

d

∑
i,j=1

∑
x∈Zd

D1
i D1
−ju(x)D1

−ju(x)τ1
−jD

1
i η(x) .

(6.4.9)
Consider the third term in this sum. We can apply summation by parts here and obtain

d

∑
i,j=1

∑
x∈Zd

D1
i D1
−ju(x)D1

i u(x)τ1
i D1
−jη(x)

= −
d

∑
i,j=1

∑
x∈Zd

D1
i u(x)D1

j

(
D1

i u(x)τ1
i D1
−jη(x)

)
= −

d

∑
i,j=1

∑
x∈Zd

D1
i u(x)D1

i u(x)τ1
i D1

j D1
−jη(x)−

d

∑
i,j=1

∑
x∈Zd

D1
i u(x)D1

i D1
j u(x)τ1

i τ1
j D1
−jη(x)

= −
d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2τ1

i D1
j D1
−jη(x)−

d

∑
i,j=1

∑
x∈Zd

D1
i u(x)D1

i D1
−ju(x)τ1

i D1
−jη(x)

where in the last step we changed the index of summation from x to τ1
−jx. This implies

d

∑
i,j=1

∑
x∈Zd

D1
i D1
−ju(x)D1

i u(x)τ1
i D1
−jη(x) = −1

2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2τ1

i D1
j D1
−jη(x) .

Similarly, we find for the fourth summand in (6.4.9) that

d

∑
i,j=1

∑
x∈Zd

D1
i D1
−ju(x)D1

−ju(x)τ1
−jD

1
i η(x) = −1

2

d

∑
i,j=1

∑
x∈Zd

|D1
−ju(x)|2τ1

−jD
1
i D1
−iη(x) .
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If we use the last two equalities in (6.4.9), we arrive at

d

∑
i,j=1

∑
x∈Zd

∣∣∣D1
i D1
−ju(x)

∣∣∣2 τ1
i τ1
−jη(x)

=
1
2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2τ1

i D1
j D1
−jη(x) +

1
2

d

∑
i,j=1

∑
x∈Zd

|D1
−ju(x)|2τ1

−jD
1
i D1
−iη(x)

−
d

∑
i,j=1

∑
x∈Zd

u(x)D1
i D1
−ju(x)D1

i D1
−jη(x) .

Here, in the second summand on the right-hand side, we can shift the summation from x to
x + ej and then interchange the indices i and j to see that

d

∑
i,j=1

∑
x∈Zd

∣∣∣D1
i D1
−ju(x)

∣∣∣2 τ1
i τ1
−jη(x)

=
1
2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2τ1

i D1
j D1
−jη(x) +

1
2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2D1

j D1
−jη(x)

−
d

∑
i,j=1

∑
x∈Zd

u(x)D1
i D1
−ju(x)D1

i D1
−jη(x)

=
1
2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2

(
τ1

i D1
j D1
−jη(x) + D1

j D1
−jη(x)

)
−

d

∑
i,j=1

∑
x∈Zd

u(x)D1
i D1
−ju(x)D1

i D1
−jη(x) .

(6.4.10)

This is the discrete analogue of (6.1.23). To continue, we can use the Cauchy-Schwarz
inequality on the second term on the right hand side of (6.4.10) and obtain

d

∑
i,j=1

∑
x∈Zd

∣∣∣D1
i D1
−ju(x)

∣∣∣2 τ1
i τ1
−jη(x)

≤ 1
2

d

∑
i,j=1

∑
x∈Zd

|D1
i u(x)|2

(
τ1

i D1
j D1
−jη(x) + D1

j D1
−jη(x)

)
+

d

∑
i,j=1

∑
x∈Zd

|u(x)|2
∣∣∣D1

i D1
−jη(x)

∣∣∣2
+

1
4

d

∑
i,j=1

∑
x∈Zd

∣∣∣D1
i D1
−ju(x)

∣∣∣2 1∇2
1η(x) 6=0

(6.4.11)
which is the discrete analogue of (6.1.24). Next, we use the properties of η. First, recall
that η = 1 on Zd \ (U + QKLλmac−2Kλmic(0)), and η = 0 on U + Q2Kλmic(0). Therefore
certainly τ1

i τ1
−jη = 1 on Zd \ (U + QKLλmac(0)), and ∇2

1η = 0 on Zd \ V, where V :=
(U + QKLλmac−Kλmic(0)) \ (U + QKλmic(0)), which we can use to bound the left-hand side and
the third term on the right-hand side of (6.4.11). We also know that

|∇2
1η(x)| ≤ Cd

(KL)2λ2
mac

1Q1(x)∩⋃
Q∈S(0)K,M,bad(A)

Q=∅

which implies that

|τ1
±kD1

i D1
−jη(x)| ≤ Cd

(KL)2λ2
mac

1x 6∈⋃
Q∈S(0)K,M,bad(A)

Q
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6 Pinning for the membrane model in dimension four and above

for any i, j, k ∈ {1, . . . , d}. We can use this for the first and second term on the right-hand
side of (6.4.11). Putting everything together, we see that∥∥∇2

1u
∥∥2

L2(Zd\(U+QKLλmac (0)))

=
d

∑
i,j=1

∑
x∈Zd\(U+QKLλmac (0))

∣∣∣D1
i D1
−ju(x)

∣∣∣2
≤ Cd

(KL)2λ2
mac

d

∑
i=1

∑
x∈V
|D1

i u(x)|21x 6∈⋃
Q∈S(0)K,M,bad(A)

Q

+
Cd

(KL)4λ4
mac

∑
x∈V
|u(x)|21x 6∈⋃

Q∈S(0)K,M,bad(A)
Q +

1
4

d

∑
i,j=1

∑
x∈V

∣∣∣D1
i D1
−ju(x)

∣∣∣2
=

Cd

(KL)2λ2
mac

∥∥∥∥∇1u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

+
Cd

(KL)4λ4
mac

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

+
1
4

∥∥∇2
1u
∥∥2

L2(V)
.

(6.4.12)
Step 2: Use of Poincaré and interpolation inequalities

We continue by estimating the first term on the right hand side of (6.4.12). To do so, we
want to apply Lemma 6.3.3 on each of the Kλmac-boxes in (U + QKLλmac(0)) \U. Note that
(U + QKLλmac(0)) \U ∈ PKLλmac , i.e. it is the disjoint union of some cubes in QKLλmac . Let Q′

be one such cube. It is the disjoint union of Ld cubes in QKλmac . Let q be one of them, and let
Bq := q ∩V \⋃

Q∈S(0)
K,M,bad(A)

Q. We claim that |Bq| ≥ 1
2 |q| =

1
2 Kdλd

mac. To see this, note that

|q \V| ≤ 2dKd−1λd−1
macKλmic = 2dKdλd−1

macλmic .

Furthermore, by assumption Q′ is not bad of type II. Therefore, each of its Kλmac-subcubes

contains at most 1
4

(
λmac
λmic

)d
cubes in S(0)

K,M,bad(A), i.e.∣∣∣∣∣∣∣q ∩
⋃

Q∈S(0)
K,M,bad(A)

Q

∣∣∣∣∣∣∣ ≤
1
4

(
λmac

λmic

)d

Kdλd
mic =

1
4

Kdλd
mac =

1
4
|q| .

Therefore,

|Bq| ≥ |q| − |q \V| −

∣∣∣∣∣∣∣q ∩
⋃

Q∈S(0)
K,M,bad(A)

Q

∣∣∣∣∣∣∣ ≥ |q| −
1
4
|q| − 2dKdλd−1

macλmic ≥
1
2
|q|

whenever ε is small enough (in terms of d, K) so that 2Kdλmic ≤ 1
4 λmac. Thus, we can apply

Lemma 6.3.3 on q with B = Bq and obtain

∥∥∥∥∇1u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V∩q)

=

∥∥∥∥∥∇1u1·∈V\⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥∥
2

L2(q)
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≤ CdK2λ2
mac
∥∥∇2

1u
∥∥2

L2(V∩q) +
Cd

K2λ2
mac

∥∥∥∥∥u1·∈V\⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥∥
2

L2(q)

,

and summing this over all Q′ and all q ⊂ Q′ we see that∥∥∥∥∇1u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

≤ CdK2λ2
mac
∥∥∇2

1u
∥∥2

L2(V)
+

Cd

K2λ2
mac

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

.

Using this estimate in (6.4.12) we arrive at∥∥∇2
1u
∥∥2

L2(Zd\(U+QKLλmac (0)))

≤ Cd

L2

∥∥∇2
1u
∥∥2

L2(V)
+

Cd

K4L2λ4
mac

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

+
Cd

(KL)4λ4
mac

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

+
1
4

∥∥∇2
1u
∥∥2

L2(V)

≤
(

Cd

L2 +
1
4

)∥∥∇2
1u
∥∥2

L2(V)
+

Cd

K4L2λ4
mac

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

(6.4.13)

where we used L ≥ 1 in the last step.
Theorem 6.3.1 with R = Kλmic allows to bound

∥∥∥∥u1·6∈⋃
Q∈S(0)K,M,bad(A)

Q

∥∥∥∥2

L2(V)

≤ CdKdλd
mic (1 + 1d=4 log(Kλmic))

∥∥∇2
1u
∥∥2

L2(V+QKλmic (0))

≤ CdKdλd
mic (1 + 1d=4 log(Kλmic))

∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U)
.

(6.4.14)
Now one easily checks that for any d ≥ 4 we have λd

mic (1 + 1d=4 log λmic) ≤ Cdλ4
mac. Thus,

combining (6.4.13) and (6.4.14) we see that∥∥∇2
1u
∥∥2

L2(Zd\(U+QKLλmac (0)))

≤
(

Cd

L2 +
1
4

)∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U)

+
CdKd−4 (1 + 1d=4 log K)

L2

∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U)

≤
(

CdKd−4 (1 + 1d=4 log K)
L2 +

1
4

)∥∥∇2
1u
∥∥2

L2((U+QKLλmac (0))\U)

which is (6.4.8).
Step 3: Proof of part b)

We proceed completely analogously as in Step 1 and 2. The only difference is that we work
with η̂ := 1− η instead of η. The assumptions for ∇2

1η carry over to ∇2
1η̂, and so the proof

carries over.

197



6 Pinning for the membrane model in dimension four and above

Lemma 6.4.4 has the following straightforward corollary:

Lemma 6.4.5. Let d ≥ 1 and let Md be the constant from Lemma 6.4.2. Let K be an odd multiple
of 3 and M ≥ Md. Then there is a constant Ld,K depending on d and K only such that for any
odd integers L ≥ Ld,K, M ≥ Md and for all ε sufficiently small (depending on d, K) the following
holds: Let U0, . . . , Uk ∈ PKLλmac be polymers. Suppose that for each j ∈ {0, . . . , k− 1} we have
Uj + QKLλmac(0) ⊂ Uj+1 and

{Q ∈ QKLλmac : Q ⊂ (Uj + QKLλmac(0)) \Uj} ∩ S∗K,L,M,bad(A) = ∅ .

Then the following holds:

a) If u : Zd → R is a function such that u = 0 on Ã \U0 and u∆2
1u = 0 on Zd \U0, we have

the estimate ∥∥∇2
1u
∥∥2

L2(Zd\Uk)
≤ 1

2k

∥∥∇2
1u
∥∥2

L2((U0+QKLλmac (0))\U0)
. (6.4.15)

b) If u : Zd → R is a function such that u = 0 on Uk ∩ Ã and u∆2
1u = 0 on Uk, we have the

estimate ∥∥∇2
1u
∥∥2

L2(U0)
≤ 1

2k

∥∥∇2
1u
∥∥2

L2((Uk−1+QKLλmac (0))\Uk−1)
. (6.4.16)

Proof. We choose L large enough so that the prefactors on the right-hand side in (6.4.7) and
(6.4.8) become less than 1

2 , and then apply Lemma 6.4.4 iteratively on each Uj.

6.4.3 Sparsity of bad boxes

In order to conclude Theorem 6.4.1 from Lemma 6.4.5 it remains to show that with sufficiently
high probability we can find sets Uj as in that Lemma. For that purpose we need to show
that bad cubes are sparse enough.

In fact, we will show that we can make the probability of a cube in Q ∈ QKLλmac being
bad arbitrarily small. We even have a slightly stronger result, namely that for each finite
T∗ ⊂ QKLλmac we can control the probability that all cubes in T∗ are bad.

Lemma 6.4.6. Let d ≥ 4, let p > 0 be arbitrary. Let M ≥ 12 be an odd integer. Then there is
Kd,M,p depending on d, M and p only with the following property: let K ≥ Kd,M,p be an odd multiple
of 3, let L be an odd integer, let ε be small enough (depending on d, L, M and p), and let T∗ be an
arbitrary finite subset of QKLλmac . Then

ζε
Λ

(
T∗ ⊂ S∗,IK,L,M,bad(A)

)
≤ p|T

∗| , (6.4.17)

ζε
Λ

(
T∗ ⊂ S∗,I I

K,L,M,bad(A)
)
≤ p|T

∗| , (6.4.18)

ζε
Λ
(
T∗ ⊂ S∗K,L,M,bad(A)

)
≤ 2(4p)

|T∗|
2 . (6.4.19)

In order to prove this Lemma, we will have go to into the definition of the bad cubes of
type I and II, and, in particular, we will have to understand how rare cubes in S(j)

K,M,bad(A)
are. This is quantified in the following Lemma.

Lemma 6.4.7. Let d ≥ 4. There is a constant K′d with the following property: Let ε be small enough
(depending on d only) so that the conclusion of Theorem 6.1.3 holds. Let M ≥ 12 be an odd integer
and assume that K ≥ K′d is an odd multiple of 3. Let j ≥ 0. Then we have the following estimates.
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6.4 Probabilistic decay of the L2-norm for biharmonic functions

a) If j = 0 and T(0) ⊂ Q`0 is a finite subset, then

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)
≤
(

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))|T(0)|
. (6.4.20)

b) If j > 0 and T(j) ⊂ Q#
`j

is a finite subset such that the elements of T(j) are pairwise disjoint,
then

ζε
Λ

(
T(j) ⊂ S(j)

K,M,bad(A)
)
≤

3(2
j−2)dMsjd

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))2j
|T(j)|

(6.4.21)
where sj := j3 + ∑

j
m=0 m32j−m.

Here part a) is rather easy to show. If Q ∈ S(0)
K,M,bad(A), then there are too few pinned

points around Q, and the probability for that can be estimated using Theorem 6.1.5. The
crucial point is that by choosing K large this probability can be made arbitrarily small.

Part b) then follows by induction. Each cube in S(j)
K,M,bad(A) contains at least two cubes in

S(j−1)
K,M,bad(A), and so if the latter cubes are rare, an union bound will show that the former

cubes will be rare as well.

Proof. We show first part a), then part b) for j = 1, and then use that result to start an
induction that will yield part b) for j > 1 as well.

Step 1: Proof of part a)
This is similar to the proof of Lemma 6.3.2. However, we want a uniform estimate over the
cubes in T(0), and so we need to be more careful.

Let Q ∈ T(0), and let q ∈ Qλmic be such that q ⊂ Q. Suppose that q has centre x ∈ Zd.
For i ∈ {1, . . . , d+ 1} consider the sets Ξi(q) =

⋂
y∈q(y + Ξi) and Ξi,Kλmic/2(q) = Ξi(q) ∩

QKλmic/2(x).

q

Ξi(q)

Figure 6.4: A set Ξi(q), given as the intersection of x + Ξi for x ∈ q.

The set Ξi(q) is an intersection of translates of the same cone, where the tips of the cone
range over the set q of diameter ≤

√
dλmic (cf. Figure 6.4). As soon as K ≥ K′d for some

dimensional constant K′d the fraction of points in QKλmic/2(x) that are in Ξi,Kλmic/2(q) is
bounded below. We fix such a K′d. In other words, we have the estimate

|Ξi,Kλmic/2(q)| ≥
1

Cd
(Kλmic)

d (6.4.22)

for K ≥ K′d. Furthermore, if Ξi,Kλmic/2(q) ∩ Ã 6= ∅ then d(i)(y, Ã) ≤ K
2 λmic +

1
2 λmic ≤ Kλmic

for all y ∈ q.
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6 Pinning for the membrane model in dimension four and above

The preceding discussion implies that if Ξi,Kλmic/2(q) ∩ Ã 6= ∅ for all i then d∗(y,A) ≤
Kλmic for all y ∈ q. Thus, if Ξi,Kλmic/2(q) ∩ Ã 6= ∅ holds for all i and all q ⊂ Q then
Q 6∈ S(0)

K,M,bad(A). Using this we can write

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)

= ζε
Λ

(
∀Q ∈ T(0) ∃qQ ∈ Qλmic ∃iQ ∈ {1, . . . , d+ 1} with qQ ⊂ Q, ΞiQ,Kλmic/2(qQ) ∩ Ã = ∅

)
= ζε

Λ

(
∀Q ∈ T(0) ∃qQ ∈ Qλmic ∃iQ ∈ {1, . . . , d+ 1} with qQ ⊂ Q

such that
⋃

Q∈T(0)

ΞiQ,Kλmic/2(qQ) ∩ Ã = ∅
)

.

We can estimate this probability by summing over all choices q = (qQ)Q∈T(0) ∈ (Qλmic)
T(0)

and i = (iQ)Q∈T(0) ∈ {1, . . . , d+ 1}T(0)
to find

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)
≤ ∑

q∈(Qλmic )
T(0)

qQ⊂Q ∀Q∈T(0)

∑
i∈{1,...,d+1}T(0)

ζε
Λ

 ⋃
Q∈T(0)

ΞiQ,Kλmic/2(qQ) ∩ Ã = ∅

 .

Assume for the moment that the elements of T(0) are well-separated in the sense that for any
Q, Q′ ∈ T(0) with Q 6= Q′ we have d∞(Q, Q′) ≥ Kλmic. Because ΞiQ,Kλmic/2(qQ) is a subset
of qQ + QKλmic/2(0), it is a subset of the cube with sidelength 2Kλmic concentric to Q. In
particular, by our temporary assumption, if Q 6= Q′, then ΞiQ,Kλmic/2(qQ) and ΞiQ′ ,Kλmic/2(qQ′)

are disjoint. Thus, (6.4.22) implies∣∣∣∣∣∣ ⋃Q∈T(0)

ΞiQ,Kλmic/2(qQ)

∣∣∣∣∣∣ ≥ |T
(0)|

Cd
(Kλmic)

d .

Using Theorem 6.1.3 we now see

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)
≤ ∑

q∈(Qλmic )
T(0)

qQ⊂Q ∀Q∈T(0)

∑
i∈{1,...,d+1}T(0)

(1− pd,−)

∣∣∣⋃
Q∈T(0)

ΞiQ ,Kλmic/2(qQ)
∣∣∣

≤ ∑
q∈(Qλmic )

T(0)

qQ⊂Q ∀Q∈T(0)

∑
i∈{1,...,d+1}T(0)

exp

(
−pd,−

|T(0)|(Kλmic)d

Cd

)

≤ ∑
q∈(Qλmic )

T(0)

qQ⊂Q ∀Q∈T(0)

∑
i∈{1,...,d+1}T(0)

exp

(
−pd,−

|T(0)|(Kλmic)d

Cd

)
.

In any dimension d ≥ 4 we have pd,−λd
mic ≥ 1

Cd
. We also have (Kd)|T

(0)| choices for q, and

(d+ 1)|T
(0)| choices for i, and so

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)
≤ (Kd)|T

(0)|(d+ 1)|T
(0)| exp

(
−|T

(0)|Kd

Cd

)
. (6.4.23)
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This estimate was derived under the assumption that T(0) is such that for any Q, Q′ ∈ T(0)

with Q 6= Q′ we have d∞(Q, Q′) ≥ 2Kλmic. In general, this will not be the case. However,
we can partition T(0) into 2d subsets T(0)

i for i ∈ {1, . . . , 2d} such that for any i and any

Q, Q′ ∈ T(0)
i with Q 6= Q′ we have d∞(Q, Q′) ≥ Kλmic. At least one of these subsets, say

T(0)
i∗ , will contain at least |T

(0)|
2d boxes. Then we can apply the estimate (6.4.23) to T(0)

i∗ and
obtain

ζε
Λ

(
T(0) ⊂ S(0)

K,M,bad(A)
)
≤ ζε

Λ

(
T(0)

i∗ ⊂ S(0)
K,M,bad(A)

)
≤ (Kd)

|T(0) |
2d (d+ 1)

|T(0) |
2d exp

(
−|T

(0)|Kd

2dCd

)

≤
(

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))|T(0)|

which is (6.4.20).
Step 2: Proof of part b) for j = 1

We want to prove (6.4.21) by induction on j. In principle, we would want to use (6.4.20)
as the base case. However, that statement is for Q`0 instead of Q#

`0
, and so we first derive

(6.4.21) for j = 1 from (6.4.20) and then use this assertion to start our induction.
Let Q ∈ T(1). By construction Q ∈ S(1)

K,M,bad(A) if and only if there are at least two disjoint

cubes q, q′ ∈ S(0)
K,M,bad,clust(A) ⊂ S(0)

K,M,bad(A) such that q, q′ ⊂ Q, and so

ζε
Λ

(
T(1) ⊂ S(1)

K,M,bad(A)
)

= ζε
Λ

(
∀Q ∈ T(1) ∃qQ, q′Q ∈ Q`0 with qQ ∩ q′Q = ∅, qQ ∪ q′Q ⊂ Q, {qQ, q′Q} ⊂ S(0)

K,M,bad(A)
)

= ζε
Λ

(
∀Q ∈ T(1) ∃qQ, q′Q ∈ Q`0 with qQ ∩ q′Q = ∅, qQ ∪ q′Q ⊂ Q

such that
⋃

Q∈T(1)

{qQ, q′Q} ⊂ S(0)
K,M,bad(A)

)
.

As in Step 1 we can estimate this expression by the sum over all possibilities for qQ, q′Q to
find

ζε
Λ

(
T(1) ⊂ S(1)

K,M,bad(A)
)
≤ ∑

q,q′∈(Q`0 )
T(1)

qQ∩q′Q=∅,qQ∪q′Q⊂Q ∀Q∈T(1)

ζε
Λ

 ⋃
Q∈T(1)

{qQ, q′Q} ⊂ S(0)
K,M,bad(A)

 .

By assumption the elements of T(1) are pairwise disjoint. Therefore, all qQ and q′Q are
pairwise distinct. Hence, the set

⋃
Q∈T(1){qQ, q′Q} has cardinality 2|T(1)|, and so (6.4.20)

implies

ζε
Λ

(
T(1) ⊂ S(1)

K,M,bad(A)
)
≤ ∑

q,q′∈(Q`0 )
T(1)

qQ∩q′Q=∅,qQ∪q′Q⊂Q ∀Q∈T(1)

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))2|T(1)|
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≤
((

`1

`0

)2d
)|T(1)| (

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))2|T(1)|

= M2d|T(1)|
(

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))2|T(1)|

=

(
M2d

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))2)|T(1)|

which is (6.4.21) (as s1 = 2).
Step 3: Proof of part b) for j > 1

We proceed by induction on j, using the result from Step 2 as the base case. That is, we
assume that (6.4.21) holds for j− 1, and we want to conclude that it also holds for j. The
argument for this is analogous to the previous step. The only difference is that now the
smaller cubes q, q′ live in Q#

`j−1
instead of Q`j−1 , and so the number of possible q, q′ is now

larger. Arguing as in Step 2, we obtain, using the assumption that the elements of |T(j)| are
pairwise disjoint, that

ζε
Λ

(
T(j) ⊂ S(j)

K,M,bad(A)
)

≤ ∑
q,q′∈(Q#

`j−1
)T(j)

qQ∩q′Q=∅,qQ∪q′Q⊂Q ∀Q∈T(j)

ζε
Λ

 ⋃
Q∈T(j)

{qQ, q′Q} ⊂ S(j−1)
K,M,bad(A)



≤
((

3`j

`j−1

)2d
)|T(j)|

3(2
j−1−2)dMsj−1d

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))2j−1
2|T(j)|

=

32d+2(2j−1−2)dM2(j3−(j−1)3)d+2sj−1d

(
K

d
2d (d+ 1)

1
2d exp

(
−Md

Cd

))2j
|T(j)|

.

(6.4.24)

It remains to observe that 2d+ 2(2j−1 − 2)d = (2j − 2)d and

2(j3 − (j− 1)3)d+ 2sj−1d = 2d

(
j3 − (j− 1)3 + (j− 1)3 +

j−1

∑
m=0

m32j−1−m

)

= d

(
2j3 +

j−1

∑
m=0

m32j−m

)

= d

(
j3 +

j

∑
m=0

m32j−m

)
= sjd .

Now we can turn to the proof of Lemma 6.4.6.

Proof of Lemma 6.4.6.
Step 1: Proof of (6.4.18)
Our main tool will be Lemma 6.4.7 a), and the argument is similar to the one in Step 3 of the
proof of Theorem 6.1.3 c). We will choose Kd,M,p ≥ K′d so that Lemma 6.4.7 can be applied.
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Proceeding as in the proof of Lemma 6.4.7 we can estimate

ζε
Λ

(
T∗ ⊂ S∗,I I

K,L,M,bad(A)
)

= ζε
Λ

(
∀Q ∈ T∗∃Q′Q ∈ QKλmac with Q′Q ⊂ Q,

∣∣∣{q ∈ S(0)
K,M,bad(A) : q ⊂ Q′Q

}∣∣∣ ≥ 1
4

(
λmac

λmic

)d )
≤ ∑

Q′∈(Q`j∗(ε)
)T∗

Q′Q⊂Q ∀Q∈T∗

ζε
Λ

(
∀Q ∈ T∗

∣∣∣{q ∈ S(0)
K,M,bad(A) : q ⊂ Q′Q

}∣∣∣ ≥ 1
4

(
λmac

λmic

)d
)

≤ ∑
Q′∈(Q`j∗(ε)

)T∗

Q′Q⊂Q ∀Q∈T∗

ζε
Λ

(∣∣∣∣∣
{

q ∈ S(0)
K,M,bad(A) : q ⊂

⋃
Q∈T∗

Q′Q

}∣∣∣∣∣ ≥ 1
4

(
λmac

λmic

)d

|T∗|
)

.

Let
T̃Q′ = {q ∈ Q`0 : q ⊂

⋃
Q∈T∗

Q′Q}

and note that
∣∣∣T̃Q′

∣∣∣ = (λmac
λmic

)d
|T∗|. Using (6.4.20) we can now continue to estimate

ζε
Λ

(
T∗ ⊂ S∗,I I

K,L,M,bad(A)
)
≤ ∑

Q′∈(Q`j∗(ε)
)T∗

Q′Q⊂Q ∀Q∈T∗

ζε
Λ

(∣∣∣T̃Q′ ∩ S(0)
K,M,bad(A)

∣∣∣ ≥ 1
4

∣∣∣T̃Q′
∣∣∣)

= ∑
Q′∈(Q`j∗(ε)

)T∗

Q′Q⊂Q ∀Q∈T∗

∑
T⊂T̃Q′

|T|≥|T̃Q′ |/4

ζε
Λ

(
T̃Q′ ∩ S(0)

K,M,bad(A) = T
)

≤ ∑
Q′∈(Q`j∗(ε)

)T∗

Q′Q⊂Q ∀Q∈T∗

∑
T⊂T̃Q′

|T|≥|T̃Q′ |/4

ζε
Λ

(
T ⊂ S(0)

K,M,bad(A)
)

≤ ∑
Q′∈(Q`j∗(ε)

)T∗

Q′Q⊂Q ∀Q∈T∗

∑
T⊂T̃Q′

|T|≥|T̃Q′ |/4

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))|T|

= ∑
Q′∈(Q`j∗(ε)

)T∗

Q′Q⊂Q ∀Q∈T∗

|T̃Q′ |

∑
i=d|T̃Q′ |/4e

(|T̃Q′ |
i

)(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))i

= (Ld)|T
∗|

N

∑
i=dN/4e

(
N
i

)(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))i

where we have abbreviated N := |T̃Q′ | =
(

λmac
λmic

)d
|T∗|. Let pd,K := K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

)
.

Clearly limK→∞ pd,K = 0, so we can pick Kd,M,p (at this point independently of M) large
enough such that for K ≥ Kd,M,p we have pd,K ≤ 1

32 . Then Lemma 6.2.7 with that choice of p
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implies that

ζε
Λ

(
T∗ ⊂ S∗,I I

K,L,M,bad(A)
)
≤ (Ld)|T

∗|
(

1
2

) N
4

=

Ld

(
1
2

) 1
4

(
λmac
λmic

)d|T
∗|

.

For ε small enough (depending on d, L, and p) the term in brackets is less than p, and we
obtain (6.4.18).

Step 2: Proof of (6.4.17)
We can use Lemma 6.4.7 b). Given Q ∈ QKLλmac , there are at most(⌈

3
KLλmac

`j∗(ε)

⌉
+ 3

)d

≤
(

4KLλmac

`j∗(ε)

)d

cubes in Q#
`j∗(ε)

that intersect Q (we used that KLλmac
`j∗(ε)

≥ 8). We can now proceed as in the
proof of Lemma 6.4.7 and obtain

ζε
Λ

(
T∗ ⊂ S∗,IK,L,M,bad(A)

)
= ζε

Λ

(
∀Q ∈ T∗ ∃qQ ∈ Q#

`j∗(ε)
with qQ ∩Q 6= ∅, qQ ∈ S(j∗(ε))

K,M,bad(A)
)

= ζε
Λ

(
∀Q ∈ T∗ ∃qQ ∈ Q#

`j∗(ε)
with qQ ∩Q 6= ∅ such that

⋃
Q∈T∗
{qQ} ⊂ S(j∗(ε))

K,M,bad(A)
)

≤ ∑
q∈(Q#

`j∗(ε)
)T∗

qQ∩Q 6=∅ ∀Q∈T∗

ζε
Λ

( ⋃
Q∈T∗
{qQ} ⊂ S(j∗(ε))

K,M,bad(A)
)

.

If we assume for the moment that none of the cubes in T∗ are l∞-neighbours, then the qQ are
pairwise distinct, and so

⋃
Q∈T∗{qQ} has cardinality |T∗|. Now (6.4.21) implies

ζε
Λ

(
T∗ ⊂ S∗,IK,L,M,bad(A)

)
≤ ∑

q∈(Q#
`j∗(ε)

)T∗

qQ∩Q 6=∅ ∀Q∈T∗

3(2
j∗(ε)−2)dMsj∗(ε)d

(
K

d
2d (d+ 1)

1
2d exp

(
−Kd

Cd

))2j∗(ε)
|T∗|

≤

(4KLλmac

`j∗(ε)

)d
|T∗|3(2

j∗(ε)−2)dMsj∗(ε)d
(

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))2j∗(ε)
|T∗| .

(6.4.25)
To remove the assumption that none of the the elements of T∗ are neighbours we proceed as
in Step 1 of the proof of Lemma 6.4.7 and find a subset T∗i∗ of T∗ of cardinality at least |T

∗|
2d
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for which this is the case. Using (6.4.25) for T∗i∗ instead of T∗ we arrive at

ζε
Λ

(
T∗ ⊂ S∗,IK,L,M,bad(A)

)
≤ ζε

Λ

(
T∗i∗ ⊂ S∗,IK,L,M,bad(A)

)

≤

(4KLλmac

`j∗(ε)

)d

|T∗|
2d
3(2

j∗(ε)−2)dMsj∗(ε)d
(

K
d

2d (d+ 1)
1

2d exp
(
−Kd

Cd

))2j∗(ε)

|T∗|
2d

.

(6.4.26)
It remains to bound the right hand side in (6.4.26). We begin by bounding sj from above.
We have

sj = j3 +
j

∑
m=0

m32j−m = 2j

(
j3

2j +
j

∑
m=0

m3

2m

)
≤ 2j

(
4 +

∞

∑
m=0

m3

2m

)
= 30 · 2j

and so (6.4.26) implies that

ζε
Λ

(
T∗ ⊂ S∗,IK,M,bad(A)

)
≤


4KLλmac

`j∗(ε)

(
3M30K

1
2d (d+ 1)

1
d2d exp

(
−Kd

Cd

))2j∗(ε)
 d

2d

|T∗|

=

(4KLλmac

`j∗(ε)
p2j∗(ε)
d,K,M

) d
2d
|T

∗|

where we have abbreviated pd,K,M = 3M30K
1

2d (d+ 1)
1

d2d exp
(
−Kd

Cd

)
. Note for each fixed

M and d we have limK→∞ pd,K,M = 0, and so we can pick Kd,M,p such that pd,K,M ≤ 1
2 for

K ≥ Kd,M,p.
For these choices of K we then know that

ζε
Λ

(
T∗ ⊂ S∗,IK,L,M,bad(A)

)
≤

(4KLλmac

`j∗(ε)
2−2j∗(ε)

) d
2d
|T

∗|

and we only need to show that

4KLλmac

`j∗(ε)
2−2j∗(ε) ≤ p

2d
d (6.4.27)

when ε is small enough. To show this, we need to bound j∗(ε) from below. By definition,
j∗(ε) is equal to the largest integer j such that `j ≤ KLλmac

8 . In particular, `j∗(ε)+1 > KLλmac
8 , i.e.

M(j∗(ε)+1)3
Kλmic >

KLλmac
8 . Estimating (j∗(ε) + 1)3 ≤ (2j∗(ε))3, we conclude

j∗(ε) ≥
1
2

3

√
logM

Lλmac

8λmic
.

Let us also abbreviate Xd,ε,L = Lλmac
8λmic

, and observe that limε→0 Xd,ε,L = ∞. For t sufficiently
large we have 1

2
3
√

logM t ≥ log2 log2(t
2). This means that for Xd,ε,L sufficiently large (i.e. ε
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sufficiently small) we have j∗(ε) ≥ 1
2

3
√

logM Xd,ε,L ≥ log2 log2(X2
d,ε,L). Using this and the

rather crude estimate `j∗(ε) ≥ `j0 = Kλmic for the denominator, we find

4KLλmac

`j∗(ε)
2−2j∗(ε) ≤ 32Xd,ε,L2−2log2 log2(X2

d,ε,L) ≤ 32Xd,ε,L

X2
d,ε,L

=
32

Xd,ε,L

for ε sufficiently small. This clearly implies that (6.4.27) holds for ε sufficiently small, which
is (6.4.18).

Step 3: Proof of (6.4.19)
We can assume without loss of generality that p ≤ 1

4 , as otherwise the estimate is trivial.
Using (6.4.17) and (6.4.18) we see that

ζε
Λ
(
T∗ ⊂ S∗K,L,M,bad(A)

)
≤ ∑

T∗I ∪T∗I I=T∗
ζε

Λ

(
T∗I ⊂ S∗,IK,L,M,bad(A), T∗I I ⊂ S∗,I I

K,L,M,bad(A)
)

≤ ∑
T∗I ⊂T∗

|T∗I |≥|T∗|/2

ζε
Λ

(
T∗I ⊂ S∗,IK,L,M,bad(A)

)
+ ∑

T∗I I⊂T∗

|T∗I I |≥|T∗|/2

ζε
Λ

(
T∗I I ⊂ S∗,I I

K,L,M,bad(A)
)

≤ 2
|T∗|

∑
i=d|T∗|/2e

(
|T∗|

i

)
pi

≤ 2(4p)
|T∗|

2

where we have used Lemma 6.2.7 in the last step.

Using Lemma 6.4.6 we can now estimate the probability that we find sets Uj as in Lemma
6.4.3.

Lemma 6.4.8. Let d ≥ 4, and Λ b Zd. Let M ≥ 12 be an odd integer. Then there is Kd,M

depending on d, M only with the following property: Let K ≥ Kd,M be an odd multiple of 3, let L
be an odd integer. Let U ∈ PKLλmac be a polymer consisting of n = |U|

(KL)dλd
mac

boxes. Let k ≥ 0 be
an integer and let ΩU,k be the event that there exist U0, . . . , Uk ∈ PKLλmac such that U ⊂ U0, for
j ∈ {0, . . . , k− 1} we have Uj + QKLλmac(0) ⊂ Uj+1, Uk ⊂ U + Q2kKLλmac(0), and

{Q ∈ QKLλmac : Q ⊂ (Uj + QKLλmac(0)) \Uj} ∩ S∗K,L,M,bad(A) = ∅ .

Then, if ε is small enough (depending on K, L and d), we have

ζε
Λ(ΩU,k) ≥ 1− n

2k . (6.4.28)

Proof. Let p > 0 be a constant to be chosen later (depending on d only). We pick Kd,M ≥
Kd,M,p with the Kd,M,p from Lemma 6.4.6 so that this lemma can be applied.

We try to define the Uj using a greedy algorithm. That is, we define Uj as the union of all
cubes Q ∈ QKLλmac that can be connected to U by a non-selfintersecting l∞-path of cubes in
QKLλmac that contains at most j non-bad cubes. More precisely, Q ∈ QKLλmac is a subset of U
if and only if there are l ≥ 0 and Q(0) = Q, Q(1), . . . , Q(l) ⊂ U ∈ QKLλmac pairwise disjoint,
with d∞(Q(i), Q(i+1)) ≤ 1 for all i ∈ {0, . . . , l− 1}, such that at most j of Q(0), Q(1), . . . , Q(l−1)

are not in S∗K,L,M,bad(A).
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This definition ensures that all l∞-neighbouring cubes to Uj are not in S∗K,L,M,bad(A). So
one sees that the Uj satisfies all the conditions from ΩU,k except that we do not yet know
whether Uk ⊂ U + Q2kKLλmac(0). This means that

1− ζε
Λ(ΩU,k) ≤ ζε

Λ (Uk 6⊂ U + Q2kKLλmac(0)) (6.4.29)

and so it suffices to estimate the latter probability.
To do so, we define ΠU,k to be the set of non-selfintersecting l∞-nearest neighbour paths

Ψ =
(

Q(0) = Q, Q(1), . . . , Q(l)
)

of cubes, that connect a cube Q outside of Q2kKLλmac(0) with

Q(l) ⊂ U. For Ψ =
(

Q(0) = Q, Q(1), . . . Q(l)
)

let Ψ̃ =
{

Q(0), Q(1), . . . Q(l)
}

be the set of

cubes in Ψ, and let |Ψ| = |Ψ̃| = l + 1 be the number of cubes in it.
If Uk 6⊂ U + Q2kKLλmac(0), then there is some Ψ ∈ ΠU,k that contains at most k cubes

within Q(0), . . . , Q(l−1) (and thus at most k + 1 cubes within the cubes in Ψ) that are not bad.
Because Ψ connects U with a cube outside of U + Q2kKLλmac(0), we have |Ψ| ≥ 2k + 2. We
can now continue (6.4.29) by using a union bound over all Ψ ∈ ΠU,k, and later over all bad
subsets of Ψ̃, and obtain using Lemma 6.4.6 that

1− ζε
Λ(ΩU,k) ≤ ζε

Λ
(
∃Ψ ∈ ΠU,k :

∣∣Ψ̃ \ S∗K,L,M,bad(A)
∣∣ ≤ k + 1

)
≤ ∑

Ψ∈ΠU,k

ζε
Λ
(∣∣Ψ̃ \ S∗K,L,M,bad(A)

∣∣ ≤ k + 1
)

= ∑
Ψ∈ΠU,k

ζε
Λ
(
∃T∗Ψ ⊂ Ψ̃ : T∗Ψ ⊂ S∗K,L,M,bad(A), |T∗Ψ| ≥ |Ψ| − k− 1

)
≤ ∑

Ψ∈ΠU,k

∑
T∗Ψ⊂Ψ̃

|T∗Ψ|≥|Ψ|−k−1

ζε
Λ
(
T∗Ψ ⊂ S∗K,L,M,bad(A)

)

≤ ∑
Ψ∈ΠU,k

∑
T∗Ψ⊂Ψ̃

|T∗Ψ|≥|Ψ|−k−1

2(4p)
|T∗Ψ |

2

≤ ∑
Ψ∈ΠU,k

2(4p)
|Ψ|−k−1

2 .

We can reorganize this expression by summing over the lengths of Ψ. Recall that this length
needs to be at least 2k + 2, and note that there are at most n(2d)l paths in ΠU,k of length
l + 1. Thus, we obtain

1− ζε
Λ(ΩU,k) ≤

∞

∑
l=2k+1

∑
Ψ∈ΠU,k
|Ψ̃|=l+1

2(4p)
l−k

2

≤
∞

∑
l=2k+1

n(2d)l2(4p)
l−k

2

=
2n

(2
√

p)k

∞

∑
l=2k+1

(4d
√

p)l .

We choose p ≤ 1
144d2 , so that 4d

√
p ≤ 1

3 . Then, in particular, the series on the right-hand side
converges, and we can continue

1− ζε
Λ(ΩU,k) ≤

2n
(2
√

p)k

(4d
√

p)2k+1

1− 4d
√

p
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≤
n(4d
√

p)2k

(2
√

p)k

= n(8d2√p)k .

We finalize our choice of p as p = 1
256d4 . Then (6.4.28) follows.

Proof of Theorem 6.4.1. We want to combine Lemma 6.4.5 and Lemma 6.4.8. That is, we first
choose M so large that Lemma 6.4.5 can be applied. Then we choose K large enough that
Lemma 6.4.8 can be applied. Then Lemma 6.4.5 applies for sufficiently large L. We choose
N̂d = KL, and note that Lemma 6.4.8 implies the bound on the probability of ΩU,k.

It remains to check that (6.4.15) and (6.4.16) imply (6.4.1) and (6.4.2) if ΩU,k holds. This
follows from the observation that (U0 + QN̂dλmac

(0)) \ U0 ⊂ (U + Q2kN̂dλmac
(0)) \ U and

(Uk−1 + QN̂dλmac
(0)) \Uk−1 ⊂ (U + Q2kN̂dλmac

(0)) \U.

Remark 6.4.9. Let us comment on why the lengthscales `j = Mj3 Kλmic are a natural choice.

For the construction in Step 2 of the proof of Lemma 6.4.2 we need that log `j
`j+1

is summable

as otherwise we could not bound ‖∇2
1η‖L∞ in (6.4.6). This means that `j needs to grow rather

fast (e.g., `j = Mj2 Kλmic would not be fast enough). On the other hand, for the estimate on
the probability of bad cubes of type I in Lemma 6.4.6 we need that the exponent sjd of M

in (6.4.21) is at most Cd2j. This exponent arises from the combinatorial factors
(

`j
`j−1

)2d
in

(6.4.24). This means that `j cannot grow too fast (e.g., `j = M2j
Kλmic would be too fast).

Fortunately, both requirements are compatible, and in fact, our choice `j = Mj3 Kλmic

satisfies both of them.

6.5 Pathwise bounds on the field

We can now turn to the proof of Theorem 6.1.5 and of the second part of Theorem 6.1.2.
Before we actually give the proofs, however, we state and prove various quenched estimates
for GΛ\A that hold for all A, or at least up to exponentially small probability in A. The main
tool for that will be Theorem 6.4.1.

We prove those estimates in Section 6.5.1. Then, in Sections 6.5.2 and 6.5.3 we use them to
deduce Theorem 6.1.5 and the second part of Theorem 6.1.2, respectively.

6.5.1 Quenched estimates on the Green’s function

We write GΛ,y for GΛ(·, y). We have the following straightforward result for GΛ. This is
essentially the same as Lemma 2.8.1 or Lemma 4.4.2.

Lemma 6.5.1. Let Λ b Zd and x, y ∈ Zd. Then

GΛ(x, y) =
(
∇2

1GΛ,x,∇2
1GΛ,y

)
L2(Zd)

. (6.5.1)

Furthermore, we have
|GΛ(x, y)| ≤

√
GΛ(x, x)GΛ(y, y) . (6.5.2)

Proof. For (6.5.1) we calculate

GΛ(x, y) =
(
1·=x, GΛ,y

)
L2(Zd)

=
(
∆2

1GΛ,x, GΛ,y
)

L2(Zd)
=
(
∇2

1GΛ,x,∇2
1GΛ,y

)
L2(Zd)

.
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The estimate (6.5.2) follows directly from the interpretation of GΛ as a covariance. Alternat-
ively, we can use (6.5.1) together with the Cauchy-Schwarz inequality to estimate

|GΛ(x, y)| =
∣∣∣(∇2

1GΛ,x,∇2
1GΛ,y

)
L2(Zd)

∣∣∣
≤
∥∥∇2

1GΛ,x
∥∥

L2(Zd)

∥∥∇2
1GΛ,y

∥∥
L2(Zd)

=
√

GΛ(x, x)GΛ(y, y) .

Next, we establish some quenched tail estimates on GΛ\A(x, x). If d ≥ 5, then there are
deterministic bounds on GΛ\A(x, x) by (6.2.5), so this is only interesting if d = 4.

Lemma 6.5.2. If d = 4, there is a constant γ̃ > 0 such that if Λ b Zd, x ∈ Λ and ε is small
enough (depending on d only) then for any t ≥ γ̃ we have

ζε
Λ
(
GΛ\A(x, x) ≤ t

)
≥ 1− exp

(
− ε exp(16π2(t− γ̃))

C| log ε| 12

)
, (6.5.3)

and for α > 0, x ∈ Λ with d(x, Zd \Λ) ≥ ε−α and 0 ≤ t ≤ 1
8π2 log

(
1 + d(x, Zd \Λ)− ε−α

)
−

γ̃ we have

ζε
Λ
(
GΛ\A(x, x) ≤ t

)
≤ 1− exp

(
−Cαε exp(32π2(t + γ̃))

| log ε| 12

)
(6.5.4)

for some constant C.
Furthermore, if d ≥ 4, k ∈N, and y ∈ Λ there are constants γ̃d such that

ζε
Λ

(
GΛ\A(y, y) ≤ 1d=4

log k + | log ε|
16π2 + γ̃d

)
≥ 1− 1

2k . (6.5.5)

Proof. We begin with (6.5.3). This follows easily from Lemma 6.2.4 and Theorem 6.1.3 c).
Indeed, if x ∈ A then GΛ\A(x, x) = 0, while if x 6∈ A we know from (6.2.5) that

GΛ\A(x, x) ≤ 1
4π2 log(1 + d(x, Ã)) + C ≤ 1

4π2 log(d(x, Ã)) + C ≤ 1
4π2 log(d(x,A)) + C .

So, there is a constant γ̃′ such that GΛ\A(x, x) > t for t ≥ γ̃′ implies d(x,A) ≥ exp(4π2(t−
γ̃′)). Using (6.1.7) we can estimate that

ζε
Λ
(
GΛ\A(x, x) ≤ t

)
≥ ζε

Λ
(
d(x,A) ≤ exp(4π2(t− γ̃′))

)
= 1− ζε

Λ

(
A∩Qexp(4π2(t−γ̃′))(x) = ∅

)
≥ 1− (1− p4,−)

|Qexp(4π2(t−γ̃′))(x)|

≥ 1− exp
(
− p4,− exp(4π2(t− γ̃′))4

C

)
≥ 1− exp

(
− ε exp(16π2(t− γ̃′))

C| log ε| 12

)

which is (6.5.3), if we choose γ̃ ≥ γ̃′.
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The argument for (6.5.4) is similar. We have that

GΛ\A(x, x) ≥ 1
8π2 log(1 + d(x, Ã))− C ≥ 1

8π2 log(d(x, Ã))− C

if x 6∈ A and GΛ\A(x, x) = 0 if x ∈ A. So there is a constant γ̃′′ such that GΛ\A(x, x) ≤ t im-
plies d(x, Ã) ≤ exp(8π2(t + γ̃′′)). Our assumption t ≤ 1

8π2 log
(
1 + d(x, Zd \Λ)− ε−α

)
− γ̃

ensures that exp(8π2(t + γ′′)) ≤ 1 + d(x, Zd \Λ)− ε−α. This means that Qexp(8π2(t+γ̃′′))(x)
still has distance at least ε−α from Zd \Λ (and in particular d(x, Ã) < d(x, Zd \Λ), so that
d(x, Ã) < d(x,A). Thus, we can apply (6.1.8) and obtain

ζε
Λ
(
GΛ\A(x, x) ≤ t

)
≤ ζε

Λ
(
d(x,A) ≤ exp(8π2(t + γ̃′′))

)
= 1− ζε

Λ

(
A∩Qexp(8π2(t+γ̃′′))(x) = ∅

)
≤ 1− exp

(
−Cαε exp(32π2(t + γ̃′′))

| log ε| 12

)

This is (6.5.4), if we choose γ̃ ≥ γ̃′′.
Regarding (6.5.5), note that if d ≥ 5 this is a trivial consequence of (6.2.5), while if d = 4

we can consider the choice t = log k+| log ε|
16π2 + γ̃ in (6.5.3) to obtain

ζε
Λ

(
GΛ\A(y, y) ≤ log k + | log ε|

16π2 + γ̃

)
≥ 1− exp

(
−

ε exp(16π2 log k+| log ε|
16π2 )

C| log ε| 12

)

≤ 1− exp

(
− k

C| log ε| 12

)

and the right-hand side is at least 1− 1
2k if ε is small enough.

Next, we prove quenched bounds on the covariance.

Lemma 6.5.3. Let d ≥ 4, Λ b Zd, and x, y ∈ Λ. Then, if ε is small enough (depending on d), we
have

ζε
Λ

(
|GΛ\A(x, y)| ≤ Cd exp

(
−|x− y|∞

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2

)
≥ 1− exp

(
−|x− y|∞

Cdλmac

)
(6.5.6)

for some constant Cd.

Proof. By translating Λ and A we can assume y = 0. This ensures in particular that y is
in the centre of a box in Ql for any l. Let U = QN̂dλmac

(0) with the N̂d from Theorem 6.4.1,

and consider for now the case that |x− y|∞ ≥ 8N̂dλmac. Let k =
⌈
|x−y|∞

8N̂dλmac

⌉
, and note that

k ≤ |x−y|∞
4N̂dλmac

.
Assume that A ∈ ΩU,k with the ΩU,k from Theorem 6.4.1. Then that theorem (applied to

GΛ\A,y) and (6.5.1) imply that∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
≤ 1

2k

∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd\U)

=
1
2k GΛ\A(y, y) .

(6.5.7)
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Furthermore, suppose that A ∈ Ωx,k with the Ωx,k from Lemma 6.3.2. Then we can
conclude

|GΛ\A(x, y)|2 = |GΛ\A,y(x)|2

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

‖∇2
1GΛ\A,y‖2

L2(QkNdλmic (x)) .
(6.5.8)

For ε small enough (depending on d) we have Ndλmic ≤ N̂dλmac. Then U + Q2kN̂dλmac
(0) =

Q(2k+1)N̂dλmac
(0) and QkNdλmic(x) are disjoint, and so we can combine (6.5.7) and (6.5.8) into

|GΛ\A(x, y)|2 ≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

‖∇2
1GΛ\A,y‖2

L2(QkNdλmic (x))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
2kε

GΛ\A(y, y) .

(6.5.9)
Next, let Ω̃y,k be the event from (6.5.5). If A ∈ Ω̃y,k, then (6.5.5) and (6.5.9) imply

|GΛ\A(x, y)|2 ≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
2kε

(1 + 1d=4(log k + | log ε|))

≤ Cd

(
3
4

)k 1 + 1d=4| log ε|5/2

ε

≤ Cd exp
(
− log

3
4
|x− y|∞
4N̂dλmac

)
1 + 1d=4| log ε|5/2

ε

≤ Cd exp
(
−|x− y|∞

Cdλmac

)
1 + 1d=4| log ε|5/2

ε
.

(6.5.10)

This estimate holds if A ∈ ΩU,k ∩Ωx,k ∩ Ω̃y,k. But that probability is easy to bound:

ζε
Λ
(
ΩU,k ∩Ωx,k ∩ Ω̃y,k

)
≥ 1− 1

2k −
1

2kd
− 1

2k ≥ 1− exp
(

k
Cd

)
≥ 1− exp

(
−|x− y|∞

Cdλmac

)
.

Therefore we have shown that the set of A for which (6.5.10) holds has measure at least
1− exp

(
− |x−y|∞

Cdλmac

)
, and this implies (6.5.6).

It remains to consider the case that |x− y|∞ < 8N̂dλmac. In that case we need to show

ζε
Λ

(
|GΛ\A(x, y)| ≤ Cd

1 + 1d=4| log ε|5/2

ε

)
≥ cd .

This follows immediately from (6.5.5) and (6.5.2).

We also need to quantify that for a large domain Λ the covariances far inside Λ depend
only weakly on the precise shape of Λ.

Lemma 6.5.4. Let d ≥ 4, Λ′ ⊂ Λ b Zd. Let ε be small enough (depending on d only). Suppose
that r, R are integers with N̂dλmac ≤ r, 8r ≤ R and QR(0) ⊂ Λ′. we have

ζε
Λ

(
max

x,y∈Qr(0)

∣∣GΛ\A(x, y)− GΛ′\A(x, y)
∣∣ ≤ Cd exp

(
− R− r

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2

)
≥ 1− Cdrd exp

(
− R− r

Cdλmac

)
.

(6.5.11)
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Proof. The idea is that Hy := GΛ\A,y − GΛ′\A,y is biharmonic in QR(0). We will use Theorem
6.4.1 a) to conclude that the L2-norm of ∇2

1H outside of QR/2(0) is exponentially small, and
then use Theorem 6.4.1 b) to conclude that the L2-norm of ∇2

1H in Qr(0) is exponentially
small. Of course these estimates hold not for all realizations of A, but we will estimate that
they hold for sufficiently many.

Let r̃ =
⌈

r
N̂dλmac

⌉
N̂dλmac and R̃ =

⌊
R

N̂dλmac

⌋
N̂dλmac. Then r ≤ r̃ ≤ 2r, R

2 ≤ R̃ ≤ R. We let

U = Qr̃(0) and note that U ∈ PN̂dλmac
is a polymer consisting of

(
r̃

N̂dλmac

)d
boxes in QN̂dλmac

.

Let k =
⌊

R̃−r̃
4N̂dλmac

⌋
and note that k ≥ R−r

Cdλmac
. Theorem 6.4.1 a) implies that on the event ΩU,k

we have ∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
≤ 1

2k

∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd\U)

≤ 1
2k

∥∥∥∇2
1GΛ\A,y

∥∥∥2

L2(Zd)

=
1
2k GΛ\A(y, y)

as GΛ\A,y = 0 on Ã \U and GΛ\A,y∆2
1GΛ\A,y = 0 on Zd \U.

Analogously we have∥∥∥∇2
1GΛ′\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
≤ 1

2k GΛ′\A(y, y)

as GΛ\A,y = 0 on Ã \U and GΛ′\A,y∆2
1GΛ′\A,y = 0 on Zd \U (even though GΛ′\A,y is not

biharmonic everywhere on Λ \ (A ∪U)).
If we define HA,y =: GΛ\A,y − GΛ′\A,y, the preceding two estimates imply that∥∥∇2

1HA,y
∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))

≤ 2
∥∥∥∇2

1GΛ\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))
+ 2

∥∥∥∇2
1GΛ′\A,y

∥∥∥2

L2(Zd\(U+Q2kN̂dλmac (0)))

≤ 1
2k−1

(
GΛ\A(y, y) + GΛ′\A(y, y)

)
.

(6.5.12)

The polymer U + Q2kN̂dλmac
(0) consists of

(
r̃

N̂dλmac
+ 2k

)d
boxes in QN̂dλmac

. The function Hy

is biharmonic on U + Q2kN̂dλmac
(0) ⊂ QR(0) as the two singularities cancel out. So we can

apply Theorem 6.4.1 b) and obtain on the event ΩU+Q2kN̂dλmac (0),k
that

∥∥∇2
1HA,y

∥∥2
L2(U+Q2kN̂dλmac (0))

≤ 1
2k

∥∥∇2
1HA,y

∥∥2
L2((U+Q4kN̂dλmac (0))\(U+Q2kN̂dλmac (0)))

. (6.5.13)

Furthermore, we can introduce the event Ω̃y,k as in (6.5.5). By definition we have

GΛ\A(y, y) ≤ Cd (1 + 1d=4(log k + | log ε|)) (6.5.14)

on that event. We claim that on the event Ω̃y,k we also have

GΛ′\A(y, y) ≤ Cd (1 + 1d=4(log k + | log ε|)) . (6.5.15)
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Indeed, if d ≥ 5 this is once more a trivial consequence of (6.2.5), while if d = 4 we can use
(6.2.6) to estimate

GΛ′\A(y, y) ≤ 1
4π2 log(1 + d(x, (A ∪ (Zd \Λ′))) + C

≤ 1
4π2 log(1 + d(x, (A ∪ (Zd \Λ))) + C

≤ GΛ\A(y, y) + C

so that (6.5.15) is a consequence of (6.5.14).
Finally, if A ∈ Ωx,k with the event Ωx,k from Lemma 6.3.2, we have

|HA,y(x)|2 ≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

‖∇2
1HA,y(x)‖2

L2(QkNdλmic (x)) . (6.5.16)

We choose ε small enough so that Ndλmic ≤ 2N̂dλmac. Then, in particular, QkNdλmic(x) ⊂
U + QkNdλmic(0) ⊂ U + Qr+2kNdλmac(0).

Now we can combine the estimates we have just collected. More precisely, assume that
A ∈ ΩU,k ∩ΩU+Q2kN̂dλmac (0),k

∩ Ω̃y,k ∩Ωx,k. Then we can use (6.5.12), (6.5.13), (6.5.14), (6.5.15)
and (6.5.16) to obtain∣∣GΛ\A(x, y)− GΛ′\A(x, y)

∣∣2
= |HA,y(x)|2

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

‖∇2
1HA,y‖2

L2(QkNdλmic (x))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
ε

∥∥∇2
1HA,y

∥∥2
L2(U+Q2kN̂dλmac (0))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
2kε

∥∥∇2
1HA,y

∥∥2
L2((U+Q4kN̂dλmac )\(U+Q2kN̂dλmac (0)))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
2kε

∥∥∇2
1HA,y

∥∥2
L2(Zd\(U+Q2kN̂dλmac (0)))

≤ Cd
kd
(
1 + 1d=4(log k + | log ε|3/2)

)
22k−1ε

(
GΛ\A(y, y) + GΛ′\A(y, y)

)
≤ Cd

kd
(
1 + 1d=4(log k + | log ε|3/2)

)
22k−1ε

(1 + 1d=4(log k + | log ε|))

≤ Cd

(
1
2

)k 1 + 1d=4| log ε|5/2

ε

≤ Cd exp
(
− R− r

Cdλmac

)
1 + 1d=4| log ε|5/2

ε
.

(6.5.17)

From (6.5.17) we see that on the event

Ω := ΩU,k ∩ΩU+Q2kN̂dλmac (0),k
∩

⋂
y∈Qr(0)

Ω̃y,k ∩
⋂

x∈Qr(0)

Ωx,k

we have the desired estimate. So it only remains to bound the probability of Ω from below.
For this we use a union bound to see

ζε
Λ(Ω) ≥ 1−

(
r̃

N̂dλmac

)d 1
2k −

(
r̃

N̂dλmac
+ 2k

)d 1
2k − (2r + 1)d

1
2kd
− (2r + 1)d

1
2k
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≥ 1− Cdrd exp
(
− k

Cd

)
≥ 1− Cdrd exp

(
− R− r

Cdλmac

)
.

This completes the proof.

6.5.2 Estimates on variance and covariance

Proof of Theorem 6.1.5. We first prove part a) and then part b).
Step 1: Estimates on the variance

We have that

Eε
Λ(ψ

2
x) = ∑

A⊂Λ
ζε

Λ(A)EΛ\A(ψ
2
x) = ∑

A⊂Λ
ζε

Λ(A)GΛ\A(x, x) . (6.5.18)

Thus, (6.1.10) follows immediately from (6.2.5). For (6.1.11) we use Lemma 6.5.2. Indeed,
using Fubini’s theorem and (6.5.3) we can rewrite (6.5.18) as

Eε
Λ(ψ

2
x) =

∫ ∞

0
ζε

Λ
(
GΛ\A(x, x) ≥ t

)
dt

≤
∫ ∞

γ̃
ζε

Λ
(
GΛ\A(x, x) ≥ t

)
dt + γ̃

≤
∫ ∞

γ̃
exp

(
− ε exp(16π2(t− γ̃))

C| log ε| 12

)
dt + γ̃

≤
∫ ∞

0
exp

(
− ε exp(16π2t)

C| log ε| 12

)
dt + C

≤
∫ | log ε|

16π2 +
log | log ε|

32π2

0
1 dt +

∫ ∞

| log ε|
16π2 +

log | log ε|
32π2

exp

(
− ε exp(16π2t)

C| log ε| 12

)
dt + C

≤ | log ε|
16π2 +

log | log ε|
32π2 +

∫ ∞

0
exp

(
−exp(16π2t)

C

)
dt + C

≤ | log ε|
16π2 +

log | log ε|
32π2 + C

≤ | log ε|
16π2 + C log | log ε|

for ε small enough, which establishes the upper bound in (6.1.11). For the lower bound we
argue similarly using (6.5.4) and obtain

Eε
Λ(ψ

2
x) =

∫ ∞

0
ζε

Λ
(
GΛ\A(x, x) ≥ t

)
dt

≥
∫ 1

8π2 log(1+d(x,Zd\Λ)− 1
ε )−γ̃

0
exp

(
−Cαε exp(32π2(t + γ̃))

| log ε| 12

)
dt− C

≥
∫ min

(
1

8π2 log(1+d(x,Zd\Λ)−ε−α), | log ε|
32π2 −

log | log ε|
64π2

)
−γ̃

0
exp

(
− Cα

| log ε|

)
dt− C .

The assumption d(x, Zd \Λ) ≥ ε−α + ε−1/4 ensures that the second term in the minimum
here is smaller than the first, and so we see that indeed

Eε
Λ(ψ

2
x) ≥

| log ε|
32π2 −

log | log ε|
64π2

(
1− Cα

| log ε|

)
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≥ | log ε|
32π2 − Cα log | log ε| .

Step 2: Estimates on the covariance
As in (6.5.19) we have

|Eε
Λ(ψxψy)| =

∣∣∣∣∣ ∑
A⊂Λ

ζε
Λ(A)EΛ\A(ψxψy)

∣∣∣∣∣ ≤ ∑
A⊂Λ

ζε
Λ(A)|GΛ\A(x, y)| . (6.5.19)

From Lemma 6.5.3 we know

ζε
Λ

(
|GΛ\A(x, y)| ≤ Cd exp

(
−|x− y|∞

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2

)
≥ 1− exp

(
−|x− y|∞

Cdλmac

)
.

Abbreviate the event described here by Ω. The decomposition (6.5.19) implies

|Eε
Λ(ψxψy)| ≤ ∑

A⊂Λ
A∈Ω

Cd exp
(
−|x− y|∞

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2 + ∑
A⊂Λ
A 6∈Ω

ζε
Λ(A)|GΛ\A(x, y)|

≤ Cd exp
(
−|x− y|∞

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2 + ∑
A⊂Λ
A 6∈Ω

ζε
Λ(A)|GΛ\A(x, y)|

(6.5.20)
and so we only need to bound |GΛ\A(x, y)| on the rare event Ωc.

If d ≥ 5, we can use the bound

GΛ\A(x, y) ≤ max
(
GΛ\A(x, x), GΛ\A(y, y)

)
≤ Cd

that follows from (6.2.5) and (6.5.2) to conclude from (6.5.20) that

|Eε
Λ(ψxψy)| ≤ Cd exp

(
−|x− y|∞

Cdλmac

)
1

ε1/2 + Cdζε
Λ(Ω

c)

≤ Cd exp
(
−|x− y|∞

Cdλmac

)
1

ε1/2 + Cd exp
(
−|x− y|∞

Cdλmac

)
≤ Cd

ε1/2 exp
(
−|x− y|∞

Cdλmac

)
which implies (6.1.12).

If d = 4, the estimate is slighty more complicated, as GΛ\A(x, y) is no longer uniformly
bounded. Instead we use Lemma 6.5.2 to deduce a tail bound on GΛ\A(x, y). Note first that
if x = y then (6.1.13) follows (6.1.11), and so we can assume x 6= y. By (6.5.2) and (6.5.3) we
have for any t ≥ γ̃ that

ζε
Λ
(
|GΛ\A(x, y)| ≥ t

)
≤ ζε

Λ
(
max

(
GΛ\A(x, x), GΛ\A(y, y)

)
≥ t
)

≤ ζε
Λ
(
GΛ\A(x, x) ≥ t

)
+ ζε

Λ
(
GΛ\A(y, y) ≥ t

)
≤ 2 exp

(
− ε exp(16π2(t− γ̃))

C| log ε| 12

)
.
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We can now use Fubini’s theorem to estimate the second summand in (6.5.20) as

∑
A⊂Λ
A 6∈Ω

ζε
Λ(A)|GΛ\A(x, y)|

≤
∫ ∞

0
ζε

Λ
(
|GΛ\A(x, y)| ≥ t,A 6∈ Ω

)
dt

≤
∫ ∞

0
min

(
ζε

Λ
(
|GΛ\A(x, y)| ≥ t

)
, ζε

Λ(Ω
c)
)

dt

≤
∫ ∞

γ̃
min

(
ζε

Λ
(
|GΛ\A(x, y)| ≥ t

)
, ζε

Λ(Ω
c)
)

dt +
∫ γ̃

0
ζε

Λ(Ω
c)dt

≤
∫ ∞

0
min

(
2 exp

(
− ε exp(16π2t)

C| log ε| 12

)
, exp

(
−|x− y|∞

Cdλmac

))
dt + γ̃ exp

(
−|x− y|∞

Cλmac

)
.

(6.5.21)
To estimate the remaining integral, note that for a, b < 1 we have a = exp(−b exp(16π2t))
for t = t∗ := 1

16π2 (log | log a|+ | log b|) and so∫ ∞

0
min(a, exp(−b exp(16π2t)))dt

=
∫ t∗

0
a dt +

∫ ∞

t∗
exp(−b exp(16π2t))dt

= t∗a +
∫ ∞

0
exp(−b exp(16π2t∗) exp(16π2t))dt

≤ t∗a +
∫ ∞

0
exp(−b exp(16π2t∗)(1 + 16π2t))dt

= t∗a + exp(−b exp(16π2t∗))
∫ ∞

0
exp(−16π2tb exp(16π2t∗))dt

= t∗a +
exp(−b exp(16π2t∗))

16π2b exp(16π2t∗)

= t∗a +
a

16π2| log a|

=
1

16π2

(
a log | log a|+ a| log b| 1

| log a|

)
.

≤ Ca(log | log a|+ | log b|)

With the choices a = exp
(
− |x−y|∞

Cdλmac

)
and b = ε

C| log ε|1/2 we then obtain from (6.5.21) that

∑
A⊂Λ
A 6∈Ω

ζε
Λ(A)|GΛ\A(x, y)|

≤ C exp
(
−|x− y|∞

Cλmac

)(
log
|x− y|∞
Cλmac

+

∣∣∣∣log
ε

C| log ε|1/2

∣∣∣∣+ 1
)

≤ C exp
(
−|x− y|∞

Cλmac

)(
log
|x− y|∞

λmac
+ log

| log ε|1/2

ε
+ 1
)

≤ C exp
(
−|x− y|∞

Cλmac

)
(log |x− y|∞ − log | log ε|+ 1)

where we have used that 4 log 1
λmac

+ log | log ε|1/2

ε = − log | log ε|. Finally we can return to
(6.5.20) and obtain

|Eε
Λ(ψxψy)|
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≤ C exp
(
−|x− y|∞

Cdλmac

)
| log ε|5/4

ε1/2 + C exp
(
−|x− y|∞

Cλmac

)
(log |x− y|∞ − log | log ε|+ 1)

≤ C
(
| log ε|5/4

ε1/2 + log |x− y|∞
)

exp
(
−|x− y|∞

Cλmac

)
which implies (6.1.13).

Finally, the estimates (6.1.14) and (6.1.15) are straightforward consequences of (6.1.12) and
(6.1.13), respectively.

6.5.3 Existence of the thermodynamic limit of the field

It remains to prove the existence of the thermodynamic limit of the pinned field. This
is significantly more difficult than the existence of the thermodynamic limit of the set of
pinned points, as we do not have correlation inequalities for the field or a random walk
representation. Instead we show by hand that the exponential decay of correlations implies
convergence of Eε

Λ( f ) for any bounded local f .

Proof of Theorem 6.1.2, second part. As in the proof of the first part it suffices to check that the
limit limΛ↗Zd Eε

Λ( f ) exists for any bounded local function f : RZd → R. Our tail estimates
on Pε

Λ easily imply boundedness of Eε
Λ( f ), so if the limit exists it is finite.

So let a local function f be given. Suppose that f only depends on the values of ψ in Qr(0)
for some r. We can assume that r ≥ N̂d. Let R ∈N with R ≥ 8r. We set Λ′ = QR(0). Let Ω
be the event described in (6.5.11). Let also k ∈ N and consider the event Ω̃0,k from (6.5.5)
(with y = 0). Note that if A ∈ Ω̃0,k we have

GΛ\A(0, 0) ≤ Cd (1 + 1d=4(log k + | log ε|)) .

Similarly as for (6.5.15), we see that this implies for any x ∈ Qr(0)

GΛ\A(x, x) ≤ Cd (1 + 1d=4(log r + log k + | log ε|)) =: Xd,ε,k,r

and in combination with (6.5.2) also

max
x,y∈Qr(0)

∣∣GΛ\A(x, y)
∣∣ ≤ Xd,ε,k,r .

We can now write

Eε
Λ( f ) = ∑

A⊂Λ
EΛ\A( f )ζε

Λ(A) = ∑
A⊂Λ

A∈Ω∩Ω̃0,k

EΛ\A( f )ζε
Λ(A) + ∑

A⊂Λ
A 6∈Ω∩Ω̃0,k

EΛ\A( f )ζε
Λ(A) .

(6.5.22)
The second summand here is an error term that is easy to estimate. We have∣∣∣∣∣∣∣∣ ∑

A⊂Λ
A 6∈(Ω∩Ω̃0,k)

EΛ\A( f )ζε
Λ(A)

∣∣∣∣∣∣∣∣ ≤ ‖ f ‖L∞(Zd) ∑
A⊂Λ

A 6∈Ω∩Ω̃0,k

ζε
Λ(A)

≤ ‖ f ‖L∞(Zd)

(
ζε

Λ(Ω
c) + ζε

Λ(Ω̃
c
0,k)
)

≤
(

Cdrd exp
(
− R− r

Cdλmac

)
+

1
2k

)
‖ f ‖L∞(Zd)

(6.5.23)
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and note that the right-hand side tends to 0 as k, R→ ∞, uniformly in Λ ⊃ QR(0).
Next, we begin to analyse the main term in (6.5.22), i.e. the first summand. PΛ\A is the

law of a multivariate Gaussian measure. Thus, EΛ\A( f ) depends only on the variances
and covariances of that measure. Because of the locality of f it depends only on those
variances and covariances where the sites are in Qr(0). In particular, E( f ) is a continu-
ous function of

(
GΛ\A(x, y)

)
x,y∈Qr(0)

∈ RQr(0)×Qr(0). If we restrict it to the compact set

[−Xd,ε,k,r, Xd,ε,k,r]
Qr(0)×Qr(0), it is uniformly continuous.

From Lemma 6.5.4 we know that for A ∈ Ω∣∣∣∣(GΛ\A(x, y)
)

x,y∈Qr(0)
−
(

GQR(0)\A(x, y)
)

x,y∈Qr(0)

∣∣∣∣
∞

≤ Cd exp
(
− R− r

Cdλmac

)
1 + 1d=4| log ε|5/4

ε1/2

and the right-hand side tends to 0 as R→ ∞. Moreover, we have for A ∈ Ω̃0,k that(
GΛ\A(x, y)

)
x,y∈Qr(0)

∈ [−Xd,ε,k,r, Xd,ε,k,r]
Qr(0)×Qr(0) .

Thus, the uniform continuity of E( f ) implies that there is a function ωd,ε, f ,k,r(R) (independ-
ent of Λ) with limR→∞ ωd,ε, f ,k,r(R) = 0 such that for all A ∈ Ω ∩ Ω̃0,k∣∣∣EΛ\A( f )−EQR(0)\A( f )

∣∣∣ ≤ ωd,ε, f ,k,r(R) .

This implies for the first summand in (6.5.22) that∣∣∣∣∣∣∣∣ ∑
A⊂Λ

A∈Ω∩Ω̃0,k

EΛ\A( f )ζε
Λ(A)− ∑

A⊂Λ
EQR(0)\A( f )ζε

Λ(A)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ ∑
A⊂Λ

A∈Ω∩Ω̃0,k

EΛ\A( f )ζε
Λ(A)− ∑

A⊂Λ
A∈Ω∩Ω̃0,k

EQR(0)\A( f )ζε
Λ(A)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ ∑
A⊂Λ

A 6∈Ω∩Ω̃0,k

PQR(0)\A( f )ζε
Λ(A)

∣∣∣∣∣∣∣∣
≤ ∑

A⊂Λ
A∈Ω∩Ω̃0,k

ωd,ε, f ,k,r(R)ζε
Λ(A) + ‖ f ‖L∞(Zd)

(
ζε

Λ(Ω
c) + ζε

Λ(Ω̃
c
0,k)
)

≤ ωd,ε, f ,k,r(R) +
(

Cdrd exp
(
− R− r

Cdλmac

)
+

1
2k

)
‖ f ‖L∞(Zd)

(6.5.24)

where we have estimated the error term the same way as in (6.5.23).
We also know that

∑
A⊂Λ

EQR(0)\A( f )ζε
Λ(A) = ∑

A′⊂QR(0)
EQR(0)\A( f ) ∑

A′′⊂Λ\QR(0)
ζε

Λ(A′ ∪ A′′)

= ∑
A′⊂QR(0)

EQR(0)\A′( f )ζε
Λ(A∩QR(0) = A′) .

(6.5.25)
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6.5 Pathwise bounds on the field

Putting (6.5.22), (6.5.23), (6.5.24), (6.5.25) together, we find∣∣∣∣∣Eε
Λ( f )− ∑

A′⊂QR(0)
EQR(0)\A′( f )ζε

Λ(A∩QR(0) = A′)

∣∣∣∣∣
≤ ωd,ε, f ,k,r(R) + 2

(
Cdrd exp

(
− R− r

Cdλmac

)
+

1
2k

)
‖ f ‖L∞(Zd) .

(6.5.26)

We now want to take the limits Λ ↗ Zd, R → ∞, k → ∞ in that order. For that purpose,
note that the weak convergence of ζε

Λ to ζε implies that limΛ↗Zd ζε
Λ(A ∩ QR(0) = A′) =

ζε(A∩QR(0) = A′), and so (6.5.26) implies

lim sup
k→∞

lim sup
R→∞

lim sup
Λ↗Zd

∣∣∣∣∣Eε
Λ( f )− ∑

A′⊂QR(0)
EQR(0)\A′( f )ζε(A∩QR(0) = A′)

∣∣∣∣∣ = 0 .

From this we see that

lim
Λ↗Zd

Eε
Λ( f ) = lim

R→∞
∑

A′⊂QR(0)
EQR(0)\A′( f )ζε(A∩QR(0) = A′)

and that in particular both limits exist. This is what we wanted to show.
The translation invariance follows as in the proof of the first part of the theorem.
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