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The most exciting phrase to hear in science, the one that heralds new discov-
eries, is not “Eureka!” but “That’s funny…”.

— Isaac Asimov
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Introduction

Given a ring R and a group G, a fundamental construction in algebra is that of the group
ring RG, that is, of the free R-module with basis the elements of G and multiplication
extended R-linearly from that on G. Even though the group ring provides a very simple
way to obtain a ring from a group, it is a major object of study and plays a role in numerous
fields of mathematics, including but not limited to algebraic topology, dynamical systems,
representation theory, and theoretical computer science.

For a finite group G and a field K, studying the group ring KG amounts to under-
standing the linear representations of G, for which ordinary (if K is of characteristic 0)
and modular (if K is of prime characteristic) character theory provide plenty of tools. In
the particularly well-behaved case of a coefficient field of characteristic prime to the order
of G, the group ring KG decomposes into matrix rings over division K-algebras, i.e., it is
semisimple, and the individual factors can be understood in terms of characters.

Much less is known in the case where G is an infinite group. Without the help of
character theory, the methods used to study the group ring KG naturally become more
ring-theoretic in nature. Whereas the decomposition into matrix rings over division rings
provides a full classification of the non-trivial idempotents, zero divisors, and units in the
case of a finite group, the analogous questions for torsion-free groups are open in general:
Conjecture (Kaplansky conjectures). Let G be a torsion-free group and K a field. Then
(a) all idempotents in KG are trivial, i.e., if x2 = x for x ∈ KG, then x = 0 or x = 1;

(b) all zero divisors in KG are trivial, i.e., if xy = 0 for x, y ∈ KG, then x = 0 or
y = 0;

(c) all units in KG are trivial, i.e., if xy = yx = 1 for x, y ∈ KG, then x = kg with
k ∈ K and g ∈ G.

The Kaplansky conjecture on units implies that on zero divisors, which in turn implies
that on idempotents. The Kaplansky idempotent conjecture has been approached quite
successfully with methods from C∗-algebras and algebraic K-theory, relying on the fact
that it is implied by both the Baum–Connes conjecture (see [Val02]) and the Farrell–Jones
conjecture (see [BLR08]). The unit conjecture has yet to be embedded into a conceptual
algebraic framework and progress has so far mostly gone through the strictly stronger
unique product property, which is known to be false for general torsion-free groups [Pro88].
In the following, we will thus focus on the zero divisor conjecture, which represents an
interesting middle ground between the two other conjectures.

For a commutative ring R without non-trivial zero divisors, there is always an associ-
ated algebraic object that certifies the absence of such elements: By adjoining inverses of
all non-zero elements to R, we obtain a field, the so-called field of fractions, into which
R embeds. Clearly, a ring that is contained in a field cannot contain non-trivial zero
divisors and the same holds true more generally for a subring of a division ring, i.e., a not
necessarily commutative ring in which every non-zero element is invertible. Thus, a natu-
ral strengthening of the Kaplansky zero divisor conjecture is the subject of the following
question:
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8 Introduction

Open Problem ([Kourovka, 1.5]). Let G be a torsion-free group and K a field. Does
KG embed into a division ring, i.e., a ring in which every non-zero element is invertible?

Starting well before its first inclusion in the Kourovka notebook in 1965, many positive
and no negative answers to this question have been obtained. In particular, it has been
answered in the positive for the free metabelian group on two generators [Mou37], free
and more generally biorderable groups [Mal48; Neu49], and torsion-free one-relator groups
[LL78]. All of these results have in common that they give explicit constructions of the
embedding division rings.

More recently, initiated by an influential paper of Linnell [Lin93] from 1993, the ques-
tion whether the group ring of a torsion-free group embeds into a division ring has seen
tremendous progress via methods stemming from an interplay between algebraic topology
and functional analysis. In order to motivate this connection, we will first consider a poten-
tial application of the embedding question to a common situation in algebraic topology.
Given a topological space X with an action by a group G, the singular chain complex
C∗(X) admits the structure of a ZG-chain complex. If we assume that G is torsion-free
and embeds into a division ring D, then it could be expected that the possibly infinite
natural numbers

bDn (X) := dimDHn(C∗(X)⊗ZG D),

where D is viewed as a ZG-module via the embedding, bear topological significance similar
to that of ordinary Betti numbers. Even though this is opposite to how the theory of
L2-invariants evolved historically, we will review in Chapter 2 that the most prominent
conjecture in the field, the strong Atiyah conjecture, ensures that the so-called L2-Betti
numbers can be expressed in this way and in particular that ZG embeds into a division
ring.

The key difference between classical embedding results and those obtained as a conse-
quence of the strong Atiyah conjecture is that the latter start with a naturally defined von
Neumann regular overring of the group ring, the ∗-regular closure RKG, that exists for all
groups. This overring is then shown to be a division ring, but it already has some con-
venient properties to start with. This additional structure enables proofs both for larger
classes of groups and of inheritance properties, such as permanence under certain types of
extensions and (co-)limits. Furthermore, RKG is also defined for groups G with torsion
and the strong Atiyah conjecture implies the characteristic 0 case of the following more
general embedding conjecture:

Open Problem. Let G be a group with a finite bound on the order of its finite subgroups
and K a field. Does KG embed into a semisimple ring?

The aim of this thesis is to study the structure of the ring RKG both in general and
in restricted settings, such as assuming certain variants of the strong Atiyah conjecture or
considering only particular classes of groups.

Structure of the thesis
Chapter 1 sets up the methods and notions from ring theory that will be used throughout
the thesis. Both crossed products, which are generalizations of group rings, as well as
non-commutative localizations of rings are introduced here and play a fundamental role in
all following chapters. The class of rings that will be most important for us is that of von
Neumann regular rings. These rings are easily defined as those in which for every element
x there exists an element y satisfying xyx = x, that is, where y acts as a two-sided inverse
of x after being multiplied by x. This innocuous property turns out to have a profound
impact on the homological algebra of these rings, making them almost as convenient as
division rings in many aspects.
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The key construction reviewed in this chapter is the ∗-regular closure of a ring R
inside a von Neumann regular ring S with a compatible involution. As opposed to other
classical notions of ring closures, such as division and rational closures, the ∗-regular
closure always enjoys good ring-theoretic properties: it is again von Neumann regular
and its finitely presented modules are formal difference of modules induced from finitely
presented R-modules. Intuitively, this type of closure enjoys the convenient properties of
S while still being very close to R in all matters related to finitely presented modules.

In Chapter 2, we introduce the theory of L2-invariants, first and foremost L2-Betti
numbers, which can be assigned to topological spaces with an action by a group G. Their
construction involves the group von Neumann algebra N (G), which can be viewed as a
completion of the complex group ring CG. Given that our general focus lies on algebraic
aspects of the theory, we quickly pass from N (G) to a suitable localization, the algebra
of affiliated operators U(G), which enjoys even better ring-theoretic properties by being
von Neumann regular. Both of these rings are introduced in Section 2.1. The particular
usefulness of N (G) and U(G) stems from the existence of a real-valued additive dimension
function for modules over these rings, known as the von Neumann dimension. We will
review its general properties in Section 2.2.

Even though our introduction to L2-invariants may, apart from a few black boxes from
functional analysis, seem quite algebraic, the origins of L2-Betti numbers lie in the spectral
analysis of heat kernels on Riemannian manifolds. It may therefore come as a surprise that
these numbers, defined as von Neumann dimensions of homology groups with coefficients
in the algebra of affiliated operators, often turn out to be integers. This was already
remarked by Atiyah when he first introduced L2-Betti numbers in [Ati76] and led to the
famous conjecture about the rationality of L2-Betti numbers that is now firmly attached
to his name. We refer to it as the weak Atiyah conjecture given that we will discuss quite
a few variations of the “Atiyah question” in this thesis. The conjecture together with
counterexamples will be discussed in Section 2.3.

The strong Atiyah conjecture, which we have already alluded to in the introduction, is
formally introduced in Section 2.4. It goes beyond the weak Atiyah conjecture in that it
prescribes the possible denominators of L2-Betti numbers for a particular group G, but
only applies to groups with a uniform bound on the orders of their finite subgroups. Fur-
ther consequences for the values of von Neumann dimensions are discussed in Section 2.4.1.
Even though most of the fundamental results on the Atiyah conjecture that hold for all
groups are well-known, we aim to give self-contained proofs that highlight the role of the
∗-regular closure RKG as an algebraically well-behaved intermediary between the group
ring KG and the algebra of affiliated operators U(G). As an advantage of this approach,
we in some cases obtain results that are slightly stronger than those recorded in the litera-
ture. Among these results are bounds on all structure constants of the Artin–Wedderburn
decomposition of RKG assuming only the strong Atiyah conjecture (see Proposition 2.4.6)
as well as an equivalent formulation of the conjecture in terms of von Neumann dimen-
sions of arbitrary RKG-modules (see Proposition 2.4.10). Following an introduction to
commonly used classes and properties of groups, a detailed overview of the current status
of the strong Atiyah conjecture over arbitrary subfields of C is given in Section 2.4.3. The
first two major results on the conjecture include a proof by Linnell [Lin93] for a class of
groups C that contains all free-by-{elementary amenable} groups as well as a proof by
Schick [Sch01] for a class of groups D that contains all residually {torsion-free elementary
amenable} groups. More recently, the conjecture has been resolved for locally indicable
groups by Jaikin-Zapirain and López-Álvarez [JL20]. Our presentation of the current sta-
tus puts particular emphasis on those inheritance properties that are not just enjoyed by a
particular constrained subclass of groups, but rather hold for the classes of all torsion-free,
sofic, or arbitrary groups satisfying the strong Atiyah conjecture.



10 Introduction

We conclude with a brief introduction to the center-valued Atiyah conjecture in Sec-
tion 2.5, which is even stronger than the strong Atiyah conjecture and allows for a full
description of the semisimple structure of RKG in terms of the finite subgroups of G. The
implications between this and other variants of the Atiyah conjecture treated in this thesis
are summarized in a diagram in Section 2.6.

Having set the stage around the strong Atiyah conjecture and the ∗-regular closure
RKG in the first two chapters, the remaining chapters branch out into two natural and
mutually orthogonal directions of research: Groups with torsion are the focus of Chapter 3,
whereas torsion-free groups are treated in Chapters 4 and 5.

Chapter 3 opens to an investigation of the so-called algebraic Atiyah conjecture, which
was introduced by Jaikin-Zapirain in [Jai19a]. The unique characteristic of this conjecture
is its purelyK-theoretic formulation in terms of the elements ofK0(RKG) that are induced
from finite subgroups. Our first result on the algebraic Atiyah conjecture answers one of
the questions Jaikin-Zapirain raised in his survey:

Theorem (Theorem 3.1.4). The algebraic Atiyah conjecture is equivalent to the center-
valued Atiyah conjecture.

Even though this means that the algebraic Atiyah conjecture does not constitute a new
variant of the Atiyah conjecture from a logical point of view, its algebraically convenient
formulation nonetheless makes it very helpful for proving inheritance properties. As an
example of such an application, we combine the techniques underlying the base change
result for the strong Atiyah conjecture for sofic groups obtained by Jaikin-Zapiran [Jai19c]
with a careful analysis of the K-theoretic effects of a change of coefficients for semisimple
algebras to obtain the following result:

Theorem (Special case of Theorem 3.1.4). Let G be a sofic group with lcm(G) < ∞. If
G satisfies the center-valued Atiyah conjecture over Q, then it satisfies the center-valued
Atiyah conjecture over C.

We conclude the chapter with results on RKG that are not conditional on the strong
Atiyah conjecture. A slight generalization of an argument of Lück based on the Hattori–
Stallings rank provides an unconditional lower bound, matching the upper bound implied
by the center-valued Atiyah conjecture, on the rank of K0(RKG) in terms of the elements
of G of finite order. Focusing on the conjectured torsion-freeness of K0(RKG) instead of
its rank, we again make use of Jaikin-Zapirain’s base change techniques to give a partial
answer to a question of Ara and Goodearl raised in [AG17]:

Theorem (Theorem 3.4.6). Let K ⩽ C be of infinite transcendence degree over Q and
closed under conjugation and let G be a sofic group. Then RKG is unit-regular.

In Chapter 4, the focus lies exclusively on torsion-free groups. Given that the strong
Atiyah conjecture over Q for a group G implies that the group ring ZG embeds into a
division ring, it is a natural question to ask whether a theory analogous to that of L2-
invariants can be developed based on any such embedding and without additional input
from functional analysis. Starting with nothing but a fixed map from a group ring ZG to
a division ring D, we define analogues of L2-Betti numbers, universal L2-torsion, twisted
L2-Euler characteristics, and the L2-polytope, where the latter have been introduced by
Friedl and Lück in a series of papers [FL19; FL17]. In the case where the chosen map is the
embedding of KG into the division ring RQG provided by the strong Atiyah conjecture,
our so-called agrarian invariants recover the classical L2-invariants.

Apart from providing evidence for the point of view that most of the structural prop-
erties of L2-Betti numbers are indeed rooted in the group ring itself rather than special
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properties of the rings U(G) and RQG, we also offer an application of agrarian invariants
to one-relator groups. In [FT20], Friedl and Tillmann introduced an invariant of two-
generator one-relator groups that is defined in terms of a group presentation and takes
two-dimensional integral polytopes as values. They also relate the thickness of the poly-
tope to the minimal complexity of HNN splittings of the group. The question whether this
invariant is independent of the choice of the presentation was picked up by Friedl and Lück
in [FL17], where a positive answer is given assuming that the group is torsion-free and
satisfies the strong Atiyah conjecture. At the time, this conjecture was not yet known to
hold for all one-relator groups even though it had already been established in [LL78] that
the group rings of such groups embed into division rings. Using agrarian invariants, specif-
ically the agrarian polytope and twisted agrarian Euler characteristics, we can remove the
assumption on the strong Atiyah conjecture:

Theorem (Precise formulation in Theorems 4.6.16 and 4.6.21). The Friedl–Tillmann poly-
tope invariant for two-generator one-relator groups admits a construction that is intrinsic
to the group and in particular does not depend on a choice of a group presentation. The
thickness of the polytope in a given direction corresponds to the minimal complexity of an
HNN splitting of the group with that direction as its character.

The strong Atiyah conjecture for one-relator groups has since been resolved by Jaikin-
Zapirain and López-Álvarez [JL20], which provides an alternative proof of this result.

In Chapter 5, we study group rings of free-by-{infinite cyclic} groups, which are always
torsion-free and satisfy the strong Atiyah conjecture as members of Linnell’s class C. As
this already provides us with an embedding of the group rings into division rings, we
can further analyze the way in which the division ring is constructed out of the group
ring, with the aim of identifiying this process as a particular kind of non-commutative
localization. We exploit the fact that these group rings can be expressed as skew Laurent
polynomial rings over group rings of free groups, where the homological algebra of the
latter is particularly constrained as in such rings every ideal turns out to be free of unique
rank. This very strong property ensures that the group rings of free groups embed into
division rings over which all matrices that possibly could become invertible, i.e., that they
are Sylvester domains. We modify a homological criterion for this property due to Jaikin-
Zapirain [Jai19b] and combine it with recent results on the Farrell-Jones conjecture for
normally poly-free groups by Brück, Kielak, and Wu [BKW19] to prove that the group
rings of free-by-{infinite cyclic} groups satisfy this property stably:

Theorem (Special case of Theorem 5.B). Let K be a field of arbitrary characteristic and
G a group arising as an extension

1 → F → G→ Z → 1

where F is a free group. Then the group ring KG is a pseudo-Sylvester domain uncondi-
tionally and a Sylvester domain if and only if every stably free KG-module is free.

Using the theorem, we provide new examples of group rings that are pseudo-Sylvester
domains but not Sylvester domains.

Relation to published work
Chapters 4 and 5, exclusively, are based on published joint work as indicated at their
respective beginnings.
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Notation and conventions

We write A ⩽ B for two objects A and B of the same category that is clear from the
context to indicate that A is a subobject of B. For example, we will use this notation for
subgroups, subrings, subfields and submodules.

Groups are understood to be discrete. The neutral element of a group is denoted by e.
If G is a group, then we write N P G to indicate that N is a normal subgroup of G.

Rings are associative and unital, but not necessarily commutative. Morphisms of rings
are understood to be unital. If R is a ring, then R× denotes the group of units, i.e., of two-
sided invertible elements, of R. The center of R, i.e., the subring consisting of elements x
such that xy = yx for all y ∈ R, is denoted by Z(R).

Modules are understood to be left modules if not specified otherwise. If R is a ring,
then we use Mm×n(R) to denote the R-module of m× n-matrices with entries in R and if
A ∈Mm×n(R), then Aij denotes the entry of A in the i-th row and j-th column. Most of
the time, we will consider Mn(R) =Mn×n(R), the ring of square matrices with entries in
R.

A zero divisor in a ring R is an element z ∈ R for which there exists a non-zero element
z′ ∈ R such that zz′ = 0 or z′z = 0. Since 0 is a zero divisor in every non-trivial ring,
we usually speak of non-trivial zero divisors, which exclude 0. A ring (commutative or
non-commutative) without non-trivial zero divisors is called a domain.

A division ring is a ring in which every non-zero element is a unit. A field is a
commutative division ring. If K is a field, then a division K-algebra is a division ring that
is also a K-algebra.
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Chapter 1

Ring theory

This chapter reviews several notions and constructions from non-commutative ring theory
that will be used throughout the thesis. The most important notions are that of a ∗-
regular ring, treated in Section 1.5, and the associated ∗-regular closure, which is defined
in Section 1.7. While none of the proofs in this chapter are original, we extract a structural
result on finitely presented modules over ∗-regular closures from the proof of a result by
Jaikin-Zapirain.

1.1 Crossed products
Let K be a field and consider a short exact sequence of groups:

1 → N → G
pr−→ Q→ 1.

Then the group ring KN is naturally a subring of KG. Viewed as a KN -module, we can
then express KG as the internal direct sum

⊕
q∈Q q̃KN , where for each q ∈ Q we fix a

choice q̃ of an element in the preimage pr−1(q). Written in this way, the ring KG starts
to resemble the group ring (KN)Q. However, there are two notable differences:

• For n ∈ N and q ∈ Q, the elements n and q̃ of KG do not necessarily commute.
In general, we only have the tautological identity q̃n = (q̃nq̃−1)q̃, with the brack-
eted term representing an element of KN given that N is a normal subgroup of G.
Forgetting the existence of the ambient group G for a moment, we observe that q̃
and n commute up to an action of Q (viewed as a set) on KN , i.e., a map of sets
Q→ Aut(KN).

• For q1, q1 ∈ Q, we do not necessarily have that q̃1q2 = q̃1q̃2. This is because we chose
the preimages of elements of q independently and did not demand any coherence
properties such as the assignment q 7→ q̃ being a group homomorphism. Of course,
if the short exact sequence above is not split, we cannot do any better and have to
introduce correction terms: Certainly

pr(q̃1q̃2) = pr(q̃1) pr(q̃2) = q1q2 = pr(q̃1q2)

and thus q̃1q̃2q̃1q2−1 ∈ N = KN×. In this way, the multiplication of representatives
q̃ is twisted by a map of sets Q×Q→ KN×.

Abstracting away the concrete situation of a group extension, we can turn the observed
structure of KG as a “product” of KN and Q into a general definition:
Definition 1.1.1. Let R be a ring and G a group. A crossed product R ∗G is a ring that
as a left R-module is free on a copy of G usually denoted by G̃ = {g̃ | g ∈ G} and such
that the ring multiplication is determined by the following two properties:

15
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(1) There is a map of sets σ : G→ Aut(R), called the action, such that g̃ · r = σ(g)(r) · g̃
for every r ∈ R and g ∈ G.

(2) There is a map of sets α : G×G→ R×, called the twisting, such that g̃·h̃ = α(g, h)·g̃h
for every g, h ∈ G.

Note that even though verifying that a given ring is a crossed product requires the
choice of an R-basis as well as producing the auxiliary action and twisting maps, we do
not consider this additional data to be part of what constitutes a crossed product. We will
use the term crossed product structure to refer to a ring that is a crossed product together
with particular choices of a basis and action and twisting maps.

Whenever we use a crossed product, we will additionally assume that σ(e) = idR and
α(g, e) = α(e, g) = 1, for every g ∈ G and e ∈ G the neutral element, which makes ẽ the
unit of the crossed product. The map r 7→ r · ẽ is then an embedding of R into R ∗G. For
any given crossed product together with a choice of basis and structure maps, this can
always be arranged by a diagonal change of basis and modifications to the twisting and
action, but without changing the ring.

As we will also want to construct rings as crossed products out of a ring R and a group
G, we need sufficient conditions for given action and twisting maps as in Definition 1.1.1 to
assemble to a crossed product structure. This is achieved by the following classical result
on crossed products:
Proposition 1.1.2 ([Pas89, Lemma 1.1]). The associativity of the ring multiplication of
a crossed product R∗G is equivalent to the following conditions on the action and twisting
maps for all g, h, k ∈ G:
(1) α(g, h)α(gh, k) = σg(α(h, k))α(g, hk);

(2) σg◦σh = cα(g,h)σgh, where cu for u ∈ R× denotes the conjugation map cu(r) = uru−1.
For every crossed product R ∗ G and every subgroup H ⩽ G we obtain an induced

crossed product R ∗ H by restricting the basis as well as the action and twisting. Our
initial example of a crossed product can then be generalized as follows:
Lemma 1.1.3 ([Pas89, Lemma 1.3]). Let 1 → N → G→ Q→ 1 be a short exact sequence
of groups and let R ∗G be a crossed product for an arbitrary ring R. Then

R ∗G = (R ∗N) ∗Q.

Proof. For every section s : Q→ G of the homomorphism G→ Q viewed as a map of sets,
we obtain a crossed product structure for (R ∗ N) ∗ Q, with R ∗ N -basis {s(q) | q ∈ Q},
action σ(q)(r) = s(q)rs(q)−1 and twisting α(q1, q2) = s(q1)s(q2)s(q1q2)

−1.

Example 1.1.4. Let R be a ring and τ an automorphism of R. The skew Laurent polynomial
rings R[t±1; τ ], in which tr = τ(r)t for all r ∈ R, are particular instances of crossed
products with σ(tn) = τn and trivial α. In fact, every crossed product R ∗Z is isomorphic
to such a skew Laurent polynomial ring for some choice of τ (see [Sán08, Remark 4.6] and
[Haz16, 1.1.4]).

We will conclude our introduction to crossed products with an equivalent definition
that does not use auxiliary maps. Whereas the precise restrictions on action and twisting
map vary in the literature, this point of view on crossed products is helpful in verifying
that they are all equivalent.
Definition 1.1.5. Let Γ be a group. A ring R is called a Γ-graded ring if its underlying
additive group can be expressed as a direct sum

⊕
g∈ΓRg where each Rg is an additive

subgroup of R and RgRh ⊆ Rgh for all g, h ∈ Γ. The subring Re of R is called the base
ring of R.
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If R is a Γ-graded ring, then every Rg for g ∈ Γ is an Re-Re-bimodule and 1R ∈ Re.

Definition 1.1.6. A Γ-graded ring R is called a crossed product (of R0 and Γ) if Rg∩R× 6=
∅ for every g ∈ Γ, i.e., if every Rg contains a unit of R.

A ring is a crossed product in the sense of Definition 1.1.1 if and only if it is one in the
sense of Definition 1.1.6, see [Haz16, 1.1.4].

1.2 Non-commutative localization
A natural approach to constructing a division ring into which a given ring R embeds is
to study rings obtained from R obtained by adjoining inverses to a prescribed subset of
elements of R. This procedure can be formalized as follows:

Definition 1.2.1. Let R be a ring and S ⊆ R a multiplicatively closed subset. The
localization of R at S is the universal ring homomorphism ϕ : R → S−1R such that ϕ(s)
is invertible for every s ∈ S.

The localization of R at S always exists and is well-defined up to unique isomorphism,
but may be the zero ring.

If R is a commutative ring and S ⊂ R is a subset without zero divisors, then the map
R→ S−1R is injective and the elements of S−1R can all be taken to be of the form r

s with
r ∈ R, s ∈ S. In particular, if S = R \ {0}, then S−1R is a field, the field of fractions of R.

The situation is much more complicated for a general ring R. We will start with
a condition on R and the subset S which ensures that the localization S−1R behaves
analogously to the commutative setting.

Definition 1.2.2. Let R be a ring and S ⊂ R a multiplicatively closed subset that contains
no zero divisors. Then R is said to satisfy the left Ore condition with respect to S if for
every a ∈ R and every s ∈ S there exist b ∈ R and t ∈ S such that

ta = bs.

The motivation behind the Ore condition is that if R′ were any ring containing R
in which elements of S are invertible, then the condition would allow us to rewrite the
left fraction as−1 as the right fraction t−1b. If it is satisfied, then the elements of the
localization S−1R can indeed all be represented as left fractions:

Theorem 1.2.3 ([Row88, Theorem 3.1.4]). Let R be a ring and S ⊂ R a multiplicatively
closed subset that contains no zero divisors. If R satisfies the left Ore condition with
respect to S, then the localization R → S−1R is injective and all elements of S−1R are
of the form s−1r for s ∈ S, r ∈ R. In particular, if R does not contain non-trivial zero
divisors, then S−1R is a division ring.

If the Ore condition is satisfied, then localization is an exact functor, just as in the
commutative case:

Lemma 1.2.4 ([GW04, Corollary 10.13]). If R satisfies the left Ore condition with respect
to S, then S−1R is a flat right R-module, i.e., the functor S−1R⊗R? is exact.

While there are even more general versions of the Ore condition that allow the subset
S to contain zero divisors, we will usually contend ourselves with the following special
case:
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Definition 1.2.5. A ring R is said to satisfy the left Ore condition if it satisfies the left
Ore condition with respect to the subset SR of elements that are not zero divisors. If
this is the case, then we also denote the ring S−1

R R by Ore(R) and call it the Ore ring of
fractions of R.

Assuming that R does not contain non-trivial zero divisiors, the ring Ore(R) = S−1R
is a division ring if R satisfies the Ore condition. If this is the case, we will call R an Ore
domain and Ore(R) its Ore division ring of fractions.

Completely analogously, one can consider the right Ore condition and arrive at a
representation of the localization S−1R in which all elements are represented by right
fractions. While there are rings that satisfy the Ore condition only one one side, this will
not be the case for the rings of interest to us in this thesis. For this reason, we will usually
omit the side in the following.

The Ore condition for a ring R implies that for a matrix ring over R:

Proposition 1.2.6 ([Rei98, Proposition 13.7]). Suppose that R satisfies the Ore condition
with respect to the set S. Then Mn(R) satisfies the Ore condition with respect to the set
S · In and the canonical embedding Mn(R) ↪→Mn(S

−1R) induces an isomorphism

(S · In)−1Mn(R)
∼=−→Mn(S

−1R).

The following remarkable result is a very useful way to verify the Ore condition for an
abstract ring:

Theorem 1.2.7 (Goldie’s theorem [Lam99, (11.13)]). If R is a left Noetherian ring that
is also left semiprime, i.e., that has no non-zero nilpotent left ideals, then R satisfies the
left Ore condition and Ore(R) is semisimple.

There is also a direct analogue where “left” is replaced with “right”.
Example 1.2.8. Let R be a left and right Noetherian ring and τ an automorphism of R.
Then the skew Laurent polynomial ring of the form R[t±1; τ ] is again two-sided Noetherian
by [GW04, Corollary 1.15] as well as a domain and hence semiprime. By Goldie’s theorem,
the polynomial ring is a left and right Ore domain and admits an Ore division ring of
fractions.

For a certain class of group rings, the Ore condition is satisfied automatically if the
ring does not contain non-trivial zero divisors:

Theorem 1.2.9. Let D ∗ G be a crossed product of a division ring D and a group G.
Assume that D ∗ G does not contain non-trivial zero divisiors. Then D ∗ G satisfies the
Ore condition with respect to its non-zero elements if G is amenable. Furthermore, the
reverse implication holds if D is a field and D ∗G is an ordinary group ring.

Proof. For the first statement see [Kie20, Theorem 2.14]. The second statement is proved
in [Bar19, Appendix A].

While Theorem 1.2.9 is very useful for the study of group rings of amenable groups, it
also serves to show that embeddings of group rings of torsion-free non-amenable groups,
e.g., free groups, into division rings cannot be constructed simply by adjoining inverses
of ring elements. The definition of the non-commutative analogue of a field of fractions
that also applies to such rings will use the following generalization of a surjective ring
homomorphism:

Definition 1.2.10. A ring homomorphism f : R → S is called epic if α ◦ f = β ◦ f for a
pair of ring homomorphisms α, β : S → T implies that α = β.
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The two main classes of examples of epic ring homomorphisms are given by surjective
ring homomorphisms and by maps R→ Ore(R) for rings R that satisfy the Ore condition.
A ring homomorphism R → D to a division ring is an if and only if its image generates
D as a division ring (see [Coh06, Corollary 7.2.2]). If we were only interested in maps
to division rings, this would have allowed use to introduce epicity in a radically simpler
fashion. However, the notion of epicity will not only be useful for maps to division rings, so
the more elaborate definition is warranted. For later use, we record the following important
equivalent characterization:

Proposition 1.2.11 ([Ste75, Proposition XI.1.2]). A ring homomorphism f : R → S is
epic if and only if the multiplication map S⊗RS → S, s⊗ t 7→ st is an isomorphism, where
S is viewed as an R-R-bimodule via f .

We can now define the non-commutative analogue of a field of fractions:

Definition 1.2.12. Let R be a ring. A ring S together with an epic ring homomorphism
R→ S is called an epic R-ring. If R→ S is additionally injective and S is a division ring,
then it is called a division R-ring of fractions.

An example of a division ring of fractions that does not arise as an Ore division ring of
fractions is given by the inclusion of the group ring QF2 of the free group on two generators
into its universal field of fractions, which will be introduced and studied in more detail in
Chapter 5.

1.3 K0, G0 and the Farrell–Jones conjecture
Definition 1.3.1. For a ring R, denote by K0(R) the abelian group on generators [A]
for every finitely generated projective R-module A and with a relation [A] = [B] + [C] for
every short exact sequence 0 → B → A→ C → 0.

If f : R→ S is a ring homomorphism and A is a finitely generated projective R-module,
then S ⊗R A is a finitely generated projective S-module. Since short exact sequences of
projective modules split, this makes K0(?) a functor from the category of rings to the
category of abelian groups.

The Farrell–Jones conjecture makes far-reaching claims about the K-theory (and L-
theory) of group rings or, more generally, additive categories with group actions. It is
known for many classes of groups and satisfies a number of useful inheritance properties.
For a full statement of the Farrell–Jones conjecture and an overview of the groups for
which it is known, we refer the reader to the surveys [BLR08] and [RV18], and also to
[Lüc10; Lüc19]. We will only record the following basic consequence of the Farrell–Jones
conjecture:

Theorem 1.3.2. If the group G satisfies the Farrell–Jones conjecture, then the map

colim−−−−−→
F⩽G
|F |<∞

K0(KF )
∼=−→ K0(KG)

is an isomorphism for every field K.

By considering all finitely generated modules instead of just the projective ones, we
obtain another invariant of rings that takes values in abelian groups:

Definition 1.3.3. For a ring R, denote by G0(R) the abelian group on generators [A] for
every finitely generated R-module A and with a relation [A] = [B] + [C] for every short
exact sequence 0 → B → A→ C → 0.
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If R is a semisimple ring, e.g., a group ring KF for a field K and a finite group F , then
every R-module is projective and K0(R) = G0(R). In general, there is only the forgetful
map K0(R) → G0(R), which will usually not be an isomorphism.

As opposed to K0(?), the assignment R 7→ G0(R) is not functorial in general as ring
homomorphisms need not preserve short exact sequences of finitely generated modules.
However, if f : R→ S is flat, then it induces a well-defined map G0(f) : G0(R) → G0(S).

That G0(?) falls short of being a functor just serves as an example of the many ways
in which G0(R) behaves more intricately than K0(R). Whereas non-trivial computations
of K0(KG) for infinite groups G have been carried out via the Farrell–Jones conjecture,
it remains consistent with current knowledge that G0(CG) = 0 for every non-amenable
group G (see [Lüc02, Remark 9.69]).

1.4 Von Neumann regular rings
Definition 1.4.1. A ring R is called von Neumann regular if for every x ∈ R there is an
element y ∈ R such that xyx = x.

The notion of a von Neumann regular ring as defined above should not be confused
with that of a regular ring from commutative algebra. The latter notion will however
only play a minor role in this thesis, appearing only in Chapter 5, which should limit the
potential for misunderstandings.

If x ∈ R is invertible, its inverse x−1 could be taken as the element y in Definition 1.4.1.
For a general ring element x, an element y such that xyx = x can intuitively be viewed
as an inverse of x “away from its kernel”. For example, if R is the endomorphism ring of
a finite-dimensional Hilbert space and x ∈ R is an endomorphism, then y could be taken
to be the inverse of x|ker(x)⊥ on im(x) and 0 on im(x)⊥.
Example 1.4.2. The following rings are von Neumann regular:

• division rings;

• rings of square matrices over von Neumann regular rings;

• endomorphism rings of not necessarily finite-dimensional vector spaces.

While Definition 1.4.1 is certainly the most elementary way to define von Neumann
regular rings, there are a number of equivalent definitions that make this class of rings
very useful for the purposes of homological algebra:

Proposition 1.4.3. The following statements are equivalent for a ring R:

(a) R is von Neumann regular.

(b) Every finitely generated left (resp. right) ideal of R is generated by an idempotent.

(c) Every finitely generated submodule of a finitely generated left (resp. right) R-module
is a direct summand.

(d) Every finitely presented left (resp. right) R-module is projective.

(e) Every left (resp. right) R-module is flat.

The following structure theorem for projective modules over von Neumann regular rings
originally appeared as [Kap58, Theorem 4]. Our formulation is obtained by combining the
result with Proposition 1.4.3 (b).
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Theorem 1.4.4. Every projective left (resp. right) module over a von Neumann regular
ring R is a direct sum of modules isomorphic to left (resp. right) ideals of R, each of which
is generated by a single idempotent.

As a consequence of these properties, we can see that von Neumann regular rings are
as rich in zero divisors as possible:

Proposition 1.4.5. An element of a von Neumann regular ring is either a unit or a zero
divisor.

Proof. Let R be a von Neumann regular ring and consider the ideal xR generated by an
element x ∈ R. By Proposition 1.4.3 (b), there is an idempotent e ∈ R such that xR = eR.
In particular, there is z ∈ R such that x = ez. If x is not a unit, the ideal xR does not
contain 1, thus e 6= 1. But then (1 − e)x = (1 − e)ez = 0 where 1 − e 6= 0, so x is a zero
divisor.

We also record the following elementary consequence of our definition of a von Neu-
mann regular ring:

Lemma 1.4.6. Every left (resp. right) ideal I in a von Neumann regular ring is idempo-
tent, i.e., I2 = I. In particular, if J is a nilpotent left (resp. right) ideal, i.e., Jn = (0)
for some n ∈ N, then J = (0).

Proof. Let I be a left ideal in a von Neumann regular ring R and consider an element
x ∈ I. Since R is von Neumann regular, there is y ∈ R such that xyx = x. Thus
x = x(yx) ∈ I2.

1.5 ∗-regular rings
While von Neumann regular rings are already quite convenient to work with, they lack
a technical property that will be crucial for our purposes: If {Ri}i∈I is a family of von
Neumann regular subrings of an ambient von Neumann regular ring R, then there is no
reason why the intersection

⋂
i∈I Ri should again be a von Neumann regular ring. We

will fix this deficiency by extending Definition 1.4.1 such that, given an element x of the
ring, there is a preferred choice of y such that xyx = x. This will require the following
additional structure:

Definition 1.5.1. A ∗-ring is a ring R together with an involution ?∗ : R → R, i.e., a
map that has the following properties:

(1) 1∗ = 1;

(2) (x+ y)∗ = x∗ + y∗;

(3) (xy)∗ = y∗x∗;

(4) (x∗)∗ = x.

A subring S of a ∗-ring R is called a ∗-subring if ∗ restricts to an involution of S. A ∗-ring
R is called proper if x∗x = 0 implies x = 0 for every x ∈ R.

A ∗-subring of a proper ∗-ring is again proper. If R is a ∗-ring, then the matrix ring
Mn(R) becomes a ∗-ring by setting (A∗)ij := A∗

ji.
A ∗-ring admits a refined notion of an idempotent:

Definition 1.5.2. An element x ∈ R in a ∗-ring R is called a projection if it is an
idempotent and x∗ = x.
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The relation between idempotents and projections in a ∗-ring is similar to that of
(arbitrary) projections and orthogonal projections in a Hilbert space: While there are
usually many different projection onto a given subspace, there is only one orthogonal
projection. Following this intuitive picture, we are able to resolve our technical difficulties
by adding the structure of a proper ∗-ring to a von Neumann regular ring:

Definition 1.5.3. A ∗-regular ring is a proper ∗-ring that is also von Neumann regular.
A ∗-regular subring of a ∗-regular ring is a von Neumann regular ∗-subring, which is
automatically ∗-regular.

Example 1.5.4. The following ∗-rings are ∗-regular:

• subfields of C that are closed under complex conjugation, with the involution given
by complex conjugation;

• rings of square matrices over ∗-regular rings, with the involution given by transposi-
tion followed by element-wise application of the involution.

The most important property of ∗-regular rings is that for every x ∈ R there is a
canonical choice of y ∈ R such that xyx = x:

Lemma 1.5.5. Let R be a ∗-regular ring and let x ∈ R.

(a) There exist unique projections LP(x),RP(x) ∈ R such that LP(x)R = xR and
RRP(x) = Rx, respectively.

(b) There exists a unique element x[−1] ∈ RP(x)RLP(x) such that xx[−1] = LP(x) and
x[−1]x = RP(x).

(c) xx[−1]x = x.

(d) x[−1] = (x∗x)[−1]x∗.

Proof. For the proofs of (a), (b), and (d) see [Jai19c, Proposition 3.2 (3), (4) & (6)].
Let z ∈ R such that LP(x)z = x. Then

xx[−1]x = LP(x)x = LP(x)LP(x)z = LP(x)z = x,

which proves (c).

Definition 1.5.6. Let R be a ∗-regular ring. For every x ∈ R, we call the unique element
x[−1] of Lemma 1.5.5 (b) the relative inverse of x.

If one considers a matrix ring Mn(C) equipped with the ∗-structure coming from
complex conjugation on C, then the relative inverse of a matrix agrees with the so-called
Moore–Penrose inverse of the matrix.

Lemma 1.5.7. Let R be a ∗-regular ring and {Ri}i∈I a family of ∗-subrings of R, i.e., of
subrings of R that are preserved by ∗. Then

⋂
i∈I Ri is a ∗-regular ring.

Proof. Let x ∈
⋂
i∈I Ri be any element in the intersection. Since R is ∗-regular, we obtain

from Lemma 1.5.5 (b) that x[−1] ∈ Ri for every i ∈ I. Thus x[−1] ∈
⋂
i∈I Ri and

⋂
i∈I Ri is

von Neumann regular by Lemma 1.5.5 (c). The intersection of proper ∗-subrings is clearly
again a proper ∗-subring, hence

⋂
i∈I Ri is ∗-regular.
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1.6 Semisimple Artinian rings
We will now look at a particularly well-behaved class of von Neumann regular rings that
intuitively are not too far from being division rings. Recall that a ring R is a division ring
if and only if every R-module is free.

Definition 1.6.1. A ring R is called semisimple if every R-module is projective.

Every semisimple ring is von Neumann regular by Proposition 1.4.3 (d).
The following fundamental result on semisimple rings provides a complete classification

and implies that it does not matter whether one considers left or right R-modules in the
definition of semisimplicity:

Theorem 1.6.2 (Artin–Wedderburn theorem [Gri07, IX, Theorem 3.3 & Corollary 3.11]).
Let R be a semisimple ring. Then there is s ∈ N as well as ni ∈ N and division rings Di

for i = 1, . . . , s such that:

R ∼=Mn1(D1)× · · · ×Mns(Ds).

Furthermore, the numbers s and ni and the division rings Di are uniquely determined by
R up to permutations of the indices and every such choice gives rise to a semisimple ring.

If K is a field and R is a K-algebra, then Di is also a K-algebra for every i = 1, . . . , s.

Definition 1.6.3. Let R be a ring. A non-trivial R-module S is called simple if it has no
submodules other than 0 and S.

Proposition 1.6.4. Let R be a semisimple ring and let s, ni and Di be as in Theorem 1.6.2.

(a) Every simple R-module is isomorphic to a minimal left ideal of some Mni(Di) and
all minimal left ideals of Mni(Di) are isomorphic as R-modules.

(b) Every simple R-module is finitely presented.

(c) Every R-module is isomorphic to Sm1
1 ⊕ · · · ⊕ Sms

s for unique cardinal numbers
m1, . . . ,ms, where Si is some fixed choice of a minimal left ideal of Mni(Di) for
every i = 1, . . . , s.

(d) Mni(Di) is a direct sum of ni minimal left ideals.

Proof. (a) and (c) follow from [Gri07, IX, Proposition 1.8, 3.6 & 3.7] and (d) is the
statement of [Gri07, IX, Proposition 1.7].

For (b), note that every minimal left ideal is necessarily principal and in particular
finitely generated. Since every R-module is projective, the simple R-modules are therefore
finitely generated projective and thus finitely presented.

As a consequence of Propositions 1.6.4 (c) and 1.6.4 (d), we obtain the following
computation of K0 of a semisimple ring:

Corollary 1.6.5. Let R be a semisimple ring and let s, ni and Di be as in Theorem 1.6.2,
so that R

∼=−→ Mn1(D1) × · · · ×Mns(Ds) via an isomorphism Φ. For every i = 1, . . . , s,
denote by ei the central idempotent corresponding to the projection onto the i-th factor of
the right-hand side, and by si any choice of a generator of a minimal left ideal of Mni(Di).
Then K0(R) is freely generated as an abelian group by the elements

[Φ−1(si)] =
1

ni
[Φ−1(ei)], i = 1, . . . , s.
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In the following, we will frequently identify a semisimple ring R with a fixed choice
of an Artin–Wedderburn decomposition as a product of matrix rings over division rings.
In this situation, by virtue of Corollary 1.6.5, there is a canonical identification of K0(R)
with

1

n1
Z⊕ · · · ⊕ 1

ns
Z.

1.7 Division and ∗-regular closure
Having introduced several particularly convenient classes of rings, such as ∗-regular and
semisimple rings, we will consider closures of arbitrary subrings of such rings. More
specifically, for a subring R of a ∗-regular ring S, we want to construct an intermediate
ring R′ with R ⊆ R′ ⊆ S such that R′ inherits structural properties such as regularity
from S, but is otherwise “close” to R. We begin with a classical construction that does
however falls short of our goal in general:
Definition 1.7.1. Let S be a ring and R ⩽ S a subring. Then R is division closed in S
if the inverse of every element of R which is invertible in S already lies in R.

Since inverses are unique if they exist, arbitrary intersections of division closed subrings
are again division closed. This enables the following construction:
Definition 1.7.2. Let S be a ring and R ⩽ S a subring. The division closure of R in S,
denoted by D(R,S), is the smallest division closed subring of S containing R.

The division closure of a subring in a division ring is the division ring generated by
the subring. In the case of a more general ambient ring, the division closure is not certain
to inherit desirable properties, as the following example shows:
Example 1.7.3. Let S =Mn(C) for some n ∈ N, n ⩾ 2, which is semisimple. Consider the
subring R ⩽ S given by upper triangular matrices. Since every upper triangular matrix
can be brought into diagonal form via elementary row operations that are themselves upper
triangular matrices, the subring R is division closed in S. However, R is not even von
Neumann regular for the following reason: The matrices in R with a single non-zero entry
in the upper right corner form a non-zero ideal I such that I2 = (0). By Lemma 1.4.6,
this is impossible in a von Neumann regular ring.

For this reason, we will now introduced a larger closure that will always be a ∗-regular
ring if the ambient ring is. It has first been considered in [LS12].
Definition 1.7.4. Let S be a ∗-regular ring and R ⩽ S a ∗-subring. The ∗-regular closure
of R in S, denoted by R(R,S), is the smallest ∗-regular subring of S containing R.

The ∗-regular closure always contains the division closure:
Lemma 1.7.5. A von Neumann regular ring is division closed in every overring.
Proof. If an element of the von Neumann regular ring is not a unit, then it is a zero divisor
by Proposition 1.4.5 and hence cannot become a unit in an overring.

In the situation of Example 1.7.3, the ∗-regular closure behaves much better than the
division closure:
Example 1.7.6. Let R and S be as in Example 1.7.3. Then R(R,S) = S, which can be
seen as follows: Let Ei,j for 1 ⩽ i, j ⩽ n denote the matrix with all zero entries except for
a one at the position (i, j). Viewed as an element of the ∗-regular ring S, we obtain in the
notation of Lemma 1.5.5 that LP(Ei,j) = Ei,i, RP(Ei,j) = Ej,j and E[−1]

i,j = Ej,i. Since R
contains Eij for i ⩽ j, the ∗-regular closure of R in S consequently also contains Ei,j for
all j ⩽ i and thus coincides with S.
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Remark 1.7.7. The abstractly defined division and ∗-regular closure can also be constructed
explicitly as follows. Starting with the subring R0 := R of S, inductively define Ri+1

for i ⩾ 0 to be the subring of S generated by Ri and {x−1 | x ∈ R, x ∈ S×} (resp.
{x[−1] | x ∈ R}). Then the division closure (resp. ∗-regular closure) of R in S is given by⋃
i⩾0Ri, see [AG17, Proposition 6.2].
The following result is implicit in the proof of [Jai19c, Proposition 5.11].

Proposition 1.7.8. Let S be a ∗-regular ring and R a ∗-subring such that S = R(R,S).
For every t ∈ S, there exist a finitely presented R-module L and an element 1⊗t′ ∈ S⊗RL
such that St ∼= S(1⊗ t′) as left S-modules, where the isomorphism is compatible with the
canonical maps S → St and S → S(1⊗ t′).

Proof. In this proof, all tensor products are taken over R.
Every R-module can be expressed as a directed colimit over finitely presented modules.

In particular, we can write S = colim−−−−−→j∈J Lj for a directed set (J,⩽), a family of finitely
presented R-modules {Lj | j ∈ J} and a family of homomorphisms {ϕij : Li → Lj | i ⩽ j}
satisfying ϕjj = idLj and ϕik = ϕjk ◦ϕij for all i ⩽ j ⩽ k. The directed colimit comes with
canonical maps ϕj : Lj → S for j ∈ J . Since tensor products preserve colimits, we obtain
an induced isomorphism S ⊗ S ∼= colim−−−−−→j∈J S ⊗ Lj , where the structure homomorphisms
are given by the family {idS ⊗ ϕij | i ⩽ j}.

Consider the surjective homomorphism p : S → St given by s 7→ st. Since S is von
Neumann regular and St is a finitely generated left S-submodule of S, we obtain from
Proposition 1.4.3 (c) that p splits. Hence, the kernel of p, which we denote by C, is of the
form Sd for an element d ∈ S.

We now choose k ∈ J large enough such that t = ϕk(tk) for some tk ∈ Lk. Since the em-
bedding of R into S is epic by [Jai19c, Proposition 6.1], we obtain from Proposition 1.2.11
that

(idS ⊗ ϕk)(d⊗ tk) = d⊗ ϕk(tk) = d⊗ t = dt⊗ 1 = 0.

As d ⊗ tk maps to 0 in the colimit colim−−−−−→j∈J S ⊗ Lj , there is l ∈ J, l ⩾ k such that
(idS ⊗ϕkl)(d⊗ tk) = 0 in S⊗Lk. We abbreviate t′ := 1⊗ϕkl(tk) ∈ S ⊗Lk and obtain the
following characterization of C:
Claim.

C = {s | s ∈ S, st′ = 0}

We first show that C is contained in the right-hand side. For this, let c ∈ C = Sd and
choose an element sc ∈ S such that c = scd. We obtain

ct′ = c · (idS ⊗ ϕkl)(1⊗ tk) = sc · (idS ⊗ ϕkl)(d⊗ tk) = 0.

To prove the other containment, let s ∈ S such that st′ = 0 and observe that

0 = (idS ⊗ ϕl)(s · (1⊗ ϕkl(tk))) = s⊗ ϕk(tk) = s⊗ t ∈ S ⊗ S.

Using the epicity of R ↪→ S a second time, we conclude that s ⊗ t = 0 implies st = 0. It
follows that s ∈ C, which establishes the claim.

The claim allows us to conclude that the image St′ of the map S → S ⊗ Ll given by
s 7→ st′ is isomorphic as an S-module to S/C = S/{s | s ∈ S, st′ = 0}, which by definition
of C is then seen to be isomorphic to St.

As a corollary, we obtain that finitely presented modules over a ∗-regular closure can
be expressed as formal differences of modules induced from the base ring. This property of
the closure will prove particularly useful when we later study additive dimension functions
for modules over these rings.
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Corollary 1.7.9. Let S be a ∗-regular ring and R a ∗-subring such that S = R(R,S). Then
every finitely presented S-module is virtually induced from finitely presented R-modules,
i.e., for every finitely presented S-module M there exist finitely presented R-modules N1

and N2 such that
M ⊕ S ⊗R N1

∼= S ⊗R N2.

Proof. Since S is von Neumann regular, the finitely presented S-module M is also pro-
jective by Proposition 1.4.3 (d). Using Theorem 1.4.4, we obtain that M ∼=

∑n
i=1 Sei

for certain ei ∈ S, i = 1, . . . , n. We apply Proposition 1.7.8 to this embedding and each
of the ei to obtain finitely presented R-modules Li and elements ti ∈ S ⊗R Li such that
Sei ∼= S(1⊗R ti) for i = 1, . . . , n. For each i, we have the following exact sequence:

0 S(1⊗R ti) S ⊗R Li S ⊗R Li/(1⊗R ti) 0

Since the third module is a quotient of a finitely presented S-module, it is projective by
Proposition 1.4.3 (d) and the sequence splits. Considering the direct sum of all these split
sequences, we obtain that

M ⊕ (S ⊗R

n⊕
i=1

Li/ti) ∼=
n⊕
i=1

S(1⊗R ti)⊕ (S ⊗R Li/(1⊗R ti)) ∼= S ⊗R

n⊕
i=1

Li,

which concludes the proof.



Chapter 2

L2-Betti numbers and the Atiyah
conjecture

This chapter begins with a streamlined introduction to the theory of L2-Betti numbers that
is meant to provide the shorted route to a convenient formulation of the Atiyah conjecture
on the possible values of these numbers. Whereas L2-Betti numbers were originally defined
via analytic methods, we will isolate the input from functional analysis in a few black boxes
discussed in Sections 2.1 and 2.2.

Our study of the Atiyah conjecture is picked up in Section 2.3, where we also mention
the known examples of groups that admit non-rational L2-Betti numbers. The commonly
used strong Atiyah conjecture, to which no counterexample is known as of today, is intro-
duced in Section 2.4 together with a detailed discussion of its status. The even stronger
center-valued Atiyah conjecture is formulated in Section 2.5 and will play an important
role in our study of groups with torsion in Chapter 3. We end in Section 2.6 with a
diagrammatic overview of the implications between the various variants of the Atiyah
conjecture introduced in this and the following chapters.

2.1 The group von Neumann algebra and the algebra of
affiliated operators

Definition 2.1.1. Let G be a group. Denote by `2(G) the complex Hilbert space of
square-summable formal C-linear combinations of elements of G, i.e.,{∑

g∈G
λgg | λg ∈ C, g ∈ G,

∑
g∈G

‖λg‖2 <∞
}
,

together with the scalar product〈∑
g∈G

λgg,
∑
g∈G

µgg

〉
:=
∑
g∈G

λgµg,

where ? denotes complex conjugation.
Formal multiplication by elements of G equips the Hilbert space `2(G) with both a left

and a right action of G by C-linear isometries.
Definition 2.1.2. Let H be a Hilbert space. Denote by B(H) the Banach algebra of norm-
continuous linear operators from H to iself, where multiplication is given by composition.
Definition 2.1.3. Let G be a group. The group von Neumann algebra N (G) of G is the
subalgebra of B(`2(G)) of operators that are equivariant with respect to the left action of
G on `2(G).

27
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For every x ∈ CG, right multiplication by x defines a G-equivariant norm-continuous
linear operator on `2(G), and in this way CG can be viewed as a subalgebra of N (G).

The rings CG and N (G) can be equipped with compatible ∗-ring structures:

Definition 2.1.4. Let G be a group and K ⩽ C a subfield closed under complex conju-
gation. Define the map ?∗ : KG → KG by

∑
g∈G λgg 7→

∑
g∈G λgg

−1. Similarly, the map
?∗ : N (G) → N (G) is defined by mapping an operator to its adjoint.

Both maps are well-defined involutions and agree on CG. Furthermore, the ∗-ring
N (G) is proper since f∗f = 0 implies that

0 = 〈(f∗ ◦ f)(x), x〉ℓ2(G) = 〈f(x), f(x)〉ℓ2(G) = ‖f(x)‖2ℓ2(G)

for each x ∈ `2(G), from which it follows that f = 0.
The group von Neumann algebra N (G), viewed as a ring, is semihereditary by [Lüc02,

Theorem 6.5 & 6.7], which means that every finitely generated submodule of a projective
N (G)-module is again projective. As we have seen in Proposition 1.4.3 (c), von Neumann
regular rings satisfy a slightly stronger property. While the group von Neumann algebra
is in general not von Neumann regular, it turns out not to be too far away:

Theorem 2.1.5 ([Lüc02, Theorem 8.22 (1) & (3)]). Let G be a group. The group von
Neumann algebra N (G) satisfies the Ore condition and Ore(N (G)) is a von Neumann
regular ring.

The resulting localization of N (G) can alternatively be constructed as an algebra of
densely defined unbounded operators affiliated to the von Neumann algebra N (G), which
explains its name:

Definition 2.1.6. Let G be a group. The ring Ore(N (G)) is called the algebra of affiliated
operators of G and is denoted by U(G).

Since ∗ : N (G) → N (G) maps units to units, the universal property of localizations
ensures that the ∗-ring structure can be extended to U(G). Furthermore, the ∗-ring
U(G) is proper and thus ∗-regular, which can be seen as follows: Since U(G) satisfies
the Ore condition, every element of U(G) is of the form fg−1 for f, g ∈ N (G). If
0 = (fg−1)∗fg−1 = (g∗)−1 · (f∗f) · g, then necessarily f∗f = 0 as g and g∗ are units
in U(G). But then f = 0 since N (G) is a proper ∗-ring.

The ∗-regularity of U(G) enables the following construction of rings that lie between
the group ring and the algebra of affiliated operators and play the most important role in
this thesis:

Definition 2.1.7. Let G be a group and K ⩽ C a field closed under complex conjugation.
We denote the ∗-regular closure (resp. the division closure) of KG in U(G) by RKG (resp.
DKG ).

Starting with the group ring KG for a field K ⩽ C closed under complex conjugation,
we have constructed the following commutative square of ring inclusions:

KG N (G)

RKG U(G)

Example 2.1.8 (Fundamental example). If G = Z, then the Fourier transform provides
a G-equivariant isomorphism between `2(Z) and the space L2(S1) of square-integrable
functions on the circle, where n ∈ Z acts on L2(S1) via multiplication by the function
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z 7→ zn. Under this identification, the commutative square above takes the following
form:

K[z±1] L∞(S1)

K(z) L(S1)

Here, L∞(S1) and L(S1) denote the commutative C-algebras of essentially bounded func-
tions and all measurable functions on S1, respectively, with ring multiplication given by
pointwise multiplication. The ∗-operation on L(S1) is given by f 7→ f and restricts to∑

n∈Z anz
n 7→

∑
n∈Z anz

−n on KG since z = z−1 for z ∈ S1.
This example provides useful general intuition for the objects RKG,N (G) and U(G):

L∞(S1) contains many zero divisors (all functions whose support is not all of S1) and every
element that is not a zero divisors becomes invertible in L(S1). Moreover, all projections
in L(S1), which are given by the functions that take the values ±1 only, are already
contained in L∞(S1). The ∗-regular closure K(z) is a field. We will later see that the
so-called strong Atiyah conjecture for a torsion-free group implies that RKG is a division
ring.

2.2 The von Neumann dimension
The algebra of affiliated operators U(G) is not only useful for its von Neumann regularity,
but also because it admits a highly non-trivial additive dimension function, which we will
now introduce.

Definition 2.2.1. Let G be a group. The von Neumann trace is the C-linear map

trN (G) : N (G) → C
f 7→ 〈f(e), e〉ℓ2(G),

where e ∈ G is the neutral element. For every n ∈ N, we also use the same notation for
the following extension:

trN (G) : Mn(N (G)) → C

A 7→
n∑
i=1

trN (G)(Aii).

Example 2.2.2. The map trN (Z) : L
∞(S1) → C is given by

f 7→
∫
S1

f dµ,

where µ denotes the Lebesgue measure on S1.
Using the trace, we can define a dimension for finitely generated projective N (G)-

modules:

Definition 2.2.3. Let G be a group and P a finitely generated projective N (G)-module.
The von Neumann dimension of P is given by

dimN (G)(P ) := trN (G)(A) ∈ [0,∞)

for any matrix A ∈ Mn(N (G)) such that A2 = A∗ = A, and the image of the map
rA : N (G)n → N (G)n given by right multiplication by A is N (G)-isomorphic to P .
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The existence of a matrix A as in Definition 2.2.3 is the subject of [Lüc02, Lemma 6.23]
and the independence of the choice of A is verified in [Lüc02, (6.4)]. If f ∈ N (G) is such
that f2 = f∗ = f , then

trN (G)(f) = 〈f(e), e〉 = 〈(f∗ ◦ f)(e)), e〉 = 〈f(e), f(e)〉 ⩾ 0,

so trN (G)(f) is real and non-negative. This property then easily extends to matrices A
satisfying A2 = A∗ = A.
Example 2.2.4. The map trN (Z) : L

∞(S1) → C is given by

f 7→
∫
S1

f dµ,

where µ denotes the Lebesgue measure on S1.
Based on an axiomatic framework for the extension of dimension functions to arbitrary

modules introduced in [Lüc98] and a careful analysis of the lattice of projections in U(G),
the dimension function dimU(G) has been extended from finitely generated projective to
arbitrary U(G)-modules in [Rei01]. We summarize its main properties in the following
theorem:

Theorem 2.2.5. For every group G, there exists a unique function dimU(G) that assigns
to every U(G)-module a non-negative real number or infinity, called the von Neumann
dimension, such that the following conditions are satisfied:

Invariance under isomorphisms. dimU(G)(M) depends only on the isomorphism class
of M .

Extension property. If M = U(G) ⊗N (G) P for a finitely generated projective N (G)-
module P , then

dimU(G)(U(G)⊗N (G) P ) = dimN (G)(P ).

Additivity. If U(G)-modules M0,M1,M2 fit into an exact sequence

0 →M0 →M1 →M2 → 0,

their von Neumann dimensions satisfy

dimU(G)(M1) = dimU(G)(M0) + dimU(G)(M2).

Cofinality. If a U(G)-module M =
⋃
i∈IMi is a directed union of U(G)-submodules Mi,

then
dimU(G)(M) = sup{dimU(G)(Mi) | i ∈ I}.

Furthermore, the dimension function satisfies the following additional properties:

Monotonicity. If N ⩽ M is a submodule of a U(G)-module M , then dimU(G)(N) ⩽
dimU(G)(M).

Faithfulness. If P is a projective U(G)-module, then dimU(G)(P ) = 0 if and only if
P = 0.

Invariance under induction. If H ⩽ G is a subgroup and M is a U(H)-module, then

dimU(H)(M) = dimU(G)(U(G)⊗U(H) M).
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Proof. All properties in the statement of the theorem except for Faithfulness and Induction
are direct consequences of [Rei01, Theorem 3.11]. The a priori different Extension property
stated there is equivalent to the the one we use by [Lüc02, Theorem 8.22 (7)], which says
that every finitely generated projective U(G)-module is up to isomorphism induced from
a finitely generated projective N (G)-module.

The induction property is proved in [Lüc02, Theorem 6.29 (2)] for dimN (?), but also
follows for dimU(?) by the Extension property.

For the proof of Faithfulness, see [Lüc02, Theorem 8.29].

For a subring S of U(G), we set dimS(M) := dimU(G)(U(G)⊗SM) for every S-module
M and call this value the von Neumann dimension of M whenever the particular subring
S is clear from the context. For example, understood in this way, we obtain a dimension
function dimN (G) for arbitrary N (G)-modules that agrees with the one defined in [Lüc02,
Chapter 6].

2.3 L2-Betti numbers and the Atiyah question
We will now come to the main application of the construction of a dimension function for
U(G)-modules. For a G-space X, the singular chain complex Csing

∗ (X) inherits a linear
action by G that also descends to its homology. However, since ZG is in general a very
complicated ring, it is usually impractical to extract any useful information, such as Betti
numbers, out of these homology groups. For example, the group ring ZF2 of the free group
on two generators admits an injection (ZF2)

2 ↪→ ZF2 and thus cannot have a non-trivial
additive dimension function. Given its convenient algebraic properties, most notably its
∗-regularity, and the availability of a dimension function, at this point the overring U(G)
of ZG would seem well-suited to act as a replacement for ZG. Following through on this
idea, we arrive at the following rather algebraic definition of L2-Betti numbers.

Definition 2.3.1. For a G-space X and n ∈ N, the n-th L2-Betti number of X, denoted
by b(2)n (X), is given by

b(2)n (X) = dimU(G)

(
Hn(U(G)⊗ZG C

sing
∗ (X))

)
.

If X admits a G-CW-structure, the L2-Betti numbers can alternatively be computed in
terms of the cellular chain complex of X (see [Lüc98, Lemma 4.2]), which is more amenable
to explicit computations.

For an overview of the computational properties of L2-Betti numbers, most notably
their homotopy invariance and multiplicativity under finite coverings, we refer the reader
to [Lüc02, Chapter 6].

The historically first construction of L2-Betti numbers was carried out by Atiyah in
[Ati76]. He defined L2-Betti numbers for free and cocompact actions of a discrete group G
on a non-compact Riemannian manifold X using L2-index theory. That the almost fully
algebraic definition of L2-Betti numbers of Definition 2.3.1 agrees with the classical one
whenever the latter makes sense is the content of the L2-Hodge–de Rham theorem, which
was proved by Dodziuk in [Dod77]. A textbook presentation of the proof can be found in
[Lüc02, Section 1.4].

Rephrased in our terminology, Atiyah posed the following seminal problem about the
possible values of the L2-Betti numbers of X:

A priori the numbers b(2)n (X̃) are real. Give examples where they are not
integral and even perhaps irrational.
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Even though Atiyah left open whether he expected such examples to exist or not, the
conjecture that L2-Betti numbers of coverings of Riemannian manifolds or, equivalently,
of finite free G-CW-complexes are rational is invariably named after him: the Atiyah
conjecture. Due to the algebraic focus of this work, our precise formulation of (one version
of) this conjecture involves von Neumann dimensions of finitely presented KG-modules
for a subfield K ⩽ C rather than L2-Betti numbers of manifolds.

Definition 2.3.2. Let G be a group and K ⩽ C a field. We say that the weak Atiyah
conjecture for G holds over K if every finitely presented KG-module M satisfies

dimU(G)(U(G)⊗KGM) ∈ Q.

While the present formulation of the (weak) Atiyah conjecture restricts the von Neu-
mann dimensions of finitely presented KG-modules, the usual formulation given in e.g.
[Lüc02, Conjecture 10.3] restricts the von Neumann dimensions of kernels of linear oper-
ators on U(G)n given by multiplication by matrices over KG. Since finitely presented
KG-modules are precisely the cokernels of maps given by right multiplication by matrices
over KG, it should not be surprising that the two formulations turn out to be equivalent:

Lemma 2.3.3. Let G be a group and K ⩽ C a field. Then the two additive subgroups of
R generated by

{dimU(G)(U(G)⊗KGM) |M finitely presented KG-module}

and
{dimU(G)(ker(U(G)m

·A−→ U(G)n)) | A ∈Mm×n(KG)}

coincide.

Proof. Taking M to be a free module and A to be a zero matrix, both additive subgroups
are seen to contain Z. In a similar way as in the proof of [Lüc02, Lemma 10.7], we will
prove that both subgroups differ only by an integral shift, which combined with the first
observation implies that they coincide.

For a matrix A ∈ Mm×n(KG), we consider the homomorphisms rA : KGm → KGn

and rU(G)
A : U(G)m → U(G)n given by right multiplication by A. We consider the following

exact sequence associated to the map rU(G)
A :

0 → ker(rU(G)
A ) → U(G)m

r
U(G)
A−−−→ U(G)n → coker(rU(G)

A ) → 0.

Since U(G)⊗KG? is right exact, we conclude that the U(G)-modules coker(rU(G)
A ) and

U(G)⊗KG coker(rA) are isomorphic. By splitting the exact sequence into two short exact
sequences and using the additivity of the von Neumann dimension for each, we thus obtain:

dimU(G)(ker(rU(G)
A )) = m− n+ dimU(G)(U(G)⊗KG coker(rA)).

The proof is concluded by observing that every finitely presented KG-module M is of the
form coker(KGm ·A−→ KGn) for some A ∈Mm×n(KG) and for every such A, the resulting
KG-module is finitely presented.

The equivalence of the weak Atiyah conjecture for G over Q and Atiyah’s original
question about the rationality of L2-Betti numbers of coverings of Riemannian manifolds is
now implied by Lemma 2.3.3, [Lüc02, Lemma 10.5] and the L2-Hodge–de Rham-Theorem.

Since the question of rationality of L2-Betti numbers had first become an area of
research, many positive results on the weak Atiyah conjecture have been obtained. A
survey of such results is provided in Section 2.4.3. The first negative result, disproving the
weak Atiyah conjecture for arbitrary groups, has been obtained by Austin:



2.4. The strong Atiyah conjecture 33

Theorem 2.3.4 ([Aus13]). There exist an uncountable index set I and families of finitely
generated groups Gi and elements qi ∈ QGi in their rational group rings such that the
values

vi := dimU(G)(U(Gi)⊗QG QGi/qi) ∈ R

for i ∈ I are pairwise distinct. In particular, since there are only countably many algebraic
numbers, there are uncountably many indices i ∈ I for which vi is transcendental.

Grabowski later studied connections between Turing machines and values of L2-Betti
numbers, thereby obtaining the following characterization of possible values:

Theorem 2.3.5 ([Gra14]). The set of von Neumann dimensions arising from finitely
generated groups is equal to the set of non-negative real numbers. The set of von Neumann
dimensions arising from finitely presented groups contains all numbers with computable
binary expressions.

In their work, both Austin and Grabowski relied on the following construction of
finitely generated groups with arbitrarily large finite subgroups:

Definition 2.3.6. Let G and H be groups. The wreath product of G and H, denoted by
G oH, is the group ⊕

h∈H
G

⋊H,

where H acts on the direct sum by left translation on the index set.

The easiest class of non-trivial examples of wreath products is given by the so-called
lamplighter groups. Their name stems from an intuitive way of describing their elements,
which can be imagined as tracking the state of a doubly infinite sequence of lamps that
can be in a finite number of states as well as the position of a lamplighter standing at one
of the lamps.

Definition 2.3.7. For every natural number p ∈ N, p > 1, the p-state lamplighter group
is the finitely generated group Lp := Z/p o Z.

Grabowski gave the first explicit examples of elements of the rational group rings of
unmodified p-state lamplighter groups that realize transcendental von Neumann dimen-
sions:

Theorem 2.3.8 ([Gra16, Theorem 2]). For every natural number p ∈ N, p > 1, there
exists an explicit matrix Tp ∈Mn(QLp) with entries in QLp such that

dimU(G)(U(G)⊗QG QGn/QGnTp)

is transcendental.

All counterexamples to the weak Atiyah conjecture known to date involve groups that
contain arbitrarily large finite subgroups.

2.4 The strong Atiyah conjecture
As we have seen in the previous section, the weak Atiyah conjecture cannot be expected
to hold in the presence of arbitrarily large finite subgroups. We will thus restrict our
attention to groups that admit a finite bound on the orders of their finite subgroups.
Under this additional assumption, we can study an even stronger version of the weak
Atiyah conjecture that further restricts the possible denominators of L2-Betti numbers.
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Definition 2.4.1. For a group G, denote by lcm(G) the least common multiple of the set
{|F | | F ⩽ G, |F | <∞} if that set is finite and ∞ otherwise.

Definition 2.4.2. Let G be a group with lcm(G) < ∞ and K ⩽ C a field. We say that
the strong Atiyah conjecture for G holds over K if every finitely presented KG-module M
satisfies

dimU(G)(U(G)⊗KGM) ∈ 1

lcm(G)
Z.

Remark 2.4.3. The statement of the strong Atiyah conjecture is optimal in the following
sense: The additive subgroup of R generated by the values of dimU(G)(U(G)⊗KGM) where
M runs through all finitely presented KG-modules always contains 1

lcm(G)Z. Namely, if
F ⩽ G is any finite subgroup, then the trivial KF -module K is finitely presented and
dimU(F )(U(F ) ⊗KF K) = 1

|F | . Consider the induced KG-module MF := KG ⊗KF K,
which is again finitely presented. Using [Lüc02, Theorem 6.29 (2)] in the penultimate step,
we obtain

dimU(G)(U(G)⊗KGMF ) = dimU(G)(U(G)⊗CG CG⊗KG KG⊗KF K)

= dimU(G)(U(G)⊗CG CG⊗CF C)
= dimU(G)(U(G)⊗U(F ) C)

= dimU(F )(C) =
1

|F |
.

The additive subgroup of R generated by the fractions 1
|F | is

1
lcm(G)Z.

2.4.1 Consequences for dimU(G) and RKG

Even though we formulated the strong Atiyah conjecture as a condition on the possible
values of von Neumann dimensions of finitely presented KG-modules, we will see now that
it has strong implications on the structure of the ∗-regular closure as well as topological
consequences. It will also become evident that the restriction to finitely presented modules
is redundant.

Recall from Definition 2.1.7 that RKG denotes the ∗-regular closure of KG in U(G).
The statement of the strong Atiyah conjecture can be extended to cover finitely presented
RKG-modules:

Proposition 2.4.4. Let G be a group with lcm(G) < ∞ and K ⩽ C a field closed under
complex conjugation. Then the strong Atiyah conjecture for G holds over K if and only if
every finitely presented RKG-module N satisfies

dimU(G)(U(G)⊗RKG
N) ∈ 1

lcm(G)
Z.

Proof. If M is a finitely presented KG-module, then N := RKG ⊗KG M is a finitely
presented RKG-module with

dimU(G)(U(G)⊗KGM) = dimU(G)(U(G)⊗RK
N),

which proves one implication.
We can apply Corollary 1.7.9 toKG ⩽ RKG and any finitely presentedRKG-moduleN

to obtain two finitely presented KG-modules N+ and N− such that N ⊕RKG⊗KGN
− ∼=

RKG ⊗KG N
+. Using the additivity of dimU(G), we compute that

dimU(G)(U(G)⊗RKG
N)

= dimU(G)(U(G)⊗KG N
+)− dimU(G)(U(G)⊗KG N

−)
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which is contained in 1
lcm(G)Z since the strong Atiyah conjecture for G is assumed to hold

over K.

The following lemma shows that the von Neumann dimension is faithful for projective
RKG-modules:

Lemma 2.4.5. Let P be a projective RKG-module. If dimU(G)(U(G)⊗RKG
P ) = 0, then

P = 0.

Proof. Since U(G)⊗RKG
P is a projective U(G)-module, we conclude from the assumption

and faithfulness of the von Neumann dimension that U(G) ⊗RKG
P = 0. We now use

that P is in particular flat as an RKG-module, which implies that the RKG-linear map
RKG ⊗RKG

P → UKG ⊗RKG
P induced from the injective map RKG ↪→ U(G) is again

injective. The codomain of the map is trivial and the domain is isomorphic to P , thus
P = 0.

The following proposition and its corollary connect the strong Atiyah conjecture to
the ring-theoretic structure of RKG. The statement about semisimplicity is not known to
hold for the division closure DKG assuming just the strong Atiyah conjecture.

Proposition 2.4.6. Let G be a group with lcm(G) < ∞ and K ⩽ C a field closed under
complex conjugation. If the strong Atiyah conjecture for G holds over K, the ring RKG is
semisimple. Furthermore, the parameters s and ni of its Artin–Wedderburn decomposition
satisfy

s∑
i=1

ni ⩽ lcm(G).

Proof. We first assume that RKG is semisimple and prove the second statement. Let
Mn1(D1) × · · · ×Mns(Ds) be the Artin–Wedderburn decomposition of RKG. We denote
by Si some choice of a minimal left ideal of Mni(Di) for every i = 1, . . . , s as in Proposi-
tion 1.6.4 and obtain from this proposition that as RKG-modules

RKG
∼= Sn1

1 ⊕ · · · ⊕ Sns
s .

For every i = 1, . . . , s, theRKG-module Si is finitely presented by Proposition 1.6.4 (b),
and hence dimU(G)(U(G)⊗RKG

Si) ∈ 1
lcm(G)Z as a consequence of Proposition 2.4.4. Fur-

thermore, since Si is projective and non-trivial, we conclude from Lemma 2.4.5 that
dimU(G)(U(G)⊗RKG

Si) > 0. All in all, we obtain that

1 = dimU(G)(U(G)⊗RKG
RKG) =

s∑
i=1

ni dimU(G)(U(G)⊗RKG
Si) ⩾

∑s
i=1 ni

lcm(G)
,

and thus
∑s

i=1 ni ⩽ lcm(G).
We now return to the proof of the first statement. Since RKG is von Neumann regular,

every finitely presented RKG-module is projective by Proposition 1.4.3 (d). Thus, the last
paragraph in fact proves the more general statement that whenever RKG contains a direct
sum of non-trivial finitely presented RKG-submodules, then the number of summands is
at most lcm(G) and in particular finite.

Now assume for the sake of contradiction that RKG is not semisimple. Then some
ideal J of RKG is not a direct summand, see [Gri07, Proposition 3.1]. This is impossible
for finitely generated ideals by Proposition 1.4.3 (c), so we find a non-finitely generated
ideal J of RKG. By repeatedly adjoining an element not contained in Ji, we obtain a
chain of finitely generated ideals Ji of RKG, where i ∈ N, with strict inclusions:

{0} = J0 ⊊ J1 ⊊ J2 ⊊ · · · ⊊ J.
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We use Proposition 1.4.3 (c) again to conclude that every Ji is a direct summand in Ji+1,
with the non-trivial finitely generated projective, and hence finitely presented, complement
denoted by Ki. But then ⊕i∈NKi is an infinite direct sum of non-trivial finitely presented
RKG-submodules of RKG and we have reached a contradiction.

The following corollary shows that the strong Atiyah conjecture for a torsion-free group
implies the Kaplansky zero divisor conjecture. For the class of torsion-free amenable
groups, the two conjectures are equivalent by [Lüc02, Lemma 10.16].
Corollary 2.4.7. Let G be a torsion-free group and K ⩽ C a field closed under complex
conjugation. Then the strong Atiyah conjecture for G holds over K if and only if the ring
RKG is a division ring. If this is the case, then DKG = RKG.

Proof. We first assume the strong Atiyah conjecture for G over K and prove that DKG =
RKG is a division ring. Since lcm(G) = 1, Proposition 2.4.6 implies that s = 1 and n1 = 1
in the Artin–Wedderburn decomposition of RKG. Hence, RKG is a division ring, which is
in particular division closed in every overring. As it is also a subring of U(G) and contains
KG, we obtain

DKG = D(KG,U(G)) = D(KG,RKG) = R(KG,RKG) = RKG.

IfRKG is a division ring, everyRKG-module is free and thus has integral von Neumann
dimension by addivity. We conclude from the easy direction of Proposition 2.4.4 that this
implies the strong Atiyah conjecture for G over K.

The restriction on the fieldK can in fact be dropped if one replaces the ∗-regular closure
in Corollary 2.4.7 by the division closure. We refer the reader to [Lüc02, Lemma 10.39]
for the slightly more technical proof.
Theorem 2.4.8. Let G be a torsion-free group and K ⩽ C a field. Then the strong Atiyah
conjecture for G holds over K if and only if the ring DKG is a division ring.

Since the subgroup 1
lcm(G)Z of R is discrete, the finiteness assumption on the KG-

module M in Definition 2.4.2 can in fact be dropped. The proof of this fact requires a
special case of the following lemma:
Lemma 2.4.9. Subquotients of finitely generated U(G)-modules have finite von Neumann
dimension.

Proof. We first show that finitely generated U(G)-modules have finite von Neumann dimen-
sion. Let M be a finitely generated U(G)-module and choose a surjection p : U(G)n →M
for some n ∈ N. Since dimU(G) is additive on exact sequences, applying it to the short
exact sequence

0 → ker(p) → U(G)n →M → 0

shows that

∞ > n = dimU(G)(U(G)n)
= dimU(G)(ker(p)) + dimU(G)(M)

⩾ dimU(G)(M).

Now let N ⩽ M be a submodule of the finitely generated U(G)-module M . Using
additivity again, we obtain that

∞ > dimU(G)(M) = dimU(G)(N) + dimU(G)(M/N) ⩾ dimU(G)(N).

The same argument then shows that quotients of N have finite von Neumann dimension.
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Proposition 2.4.10. Let G be a group with lcm(G) < ∞ and K ⩽ C a field. Then the
strong Atiyah conjecture for G holds over K if and only if every (arbitrary) RKG-module
N satisfies

dimU(G)(U(G)⊗RKG
N) ∈ 1

lcm(G)
Z ∪ {∞}.

Proof. If M is an arbitrary finitely presented KG-module, then its von Neumann dimen-
sion dimU(G)(U(G) ⊗KG M) is finite by Lemma 2.4.9. Hence, from the assumption on
arbitrary RKG-modules, we obtain that

dimU(G)(U(G)⊗RKG
RKG ⊗KGM) ∈ 1

lcm(G)
Z,

which confirms the strong Atiyah conjecture for G over K.
We now assume that the strong Atiyah conjecture for G holds over K and consider

an arbitrary RKG-module N . By Proposition 2.4.6, our assumption implies that the ring
RKG is semisimple. Consequently, Proposition 1.6.4 implies that N ∼= Sm1

1 ⊕ · · · ⊕ Sms
s

for some fixed choice {S1, . . . , Ss} of a set of representatives for the isomorphism classes
of simple RKG-modules and suitable cardinal numbers m1, . . . ,ms.

By Proposition 1.6.4 (b), simple RKG-modules are finitely presented. We can therefore
apply Proposition 2.4.4 to each Si and get that

bi := dimU(G)(U(G)⊗RKG
Si) ∈

1

lcm(G)
Z.

Using the additivity and cofinality of dimU(G), we obtain that

dimU(G)(U(G)⊗RKG
Smi
i ) = dimU(G)((U(G)⊗RKG

Si)
⊕mi) = mi · bi,

where mi · bi is understood to be 0 if bi = 0, ∞ if bi 6= 0 and mi is an infinite cardinal, and
the result of ordinary multiplication otherwise. With the additional convention that the
sum of two cardinal numbers is infinite if any of the two summands is, we finally conclude
that

dimU(G)(U(G)⊗RKG
N) = m1 · b1 + · · ·+ms · bs ∈

1

lcm(G)
Z ∪ {∞}.

Although our formulation of the strong Atiyah conjecture is quite algebraic, its ver-
sion with coefficients in Q can in fact be formulated equivalently in terms of topological
invariants:

Theorem 2.4.11. The following statements are equivalent for a group G with lcm(G) <
∞:

(a) The strong Atiyah conjecture for G holds over Q.

(b) For every finite free G-CW-complex X and every n ∈ N, the n-th L2-Betti number
b
(2)
n (X) is contained in 1

lcm(G)Z.

(c) For every G-space X and every n ∈ N, the n-th L2-Betti number b(2)n (X) is either
infinite or contained in 1

lcm(G)Z.

Proof. (a)⇒(c): Given that RQG is a von Neumann regular ring, U(G) is flat as an RQG-
module by Proposition 1.4.3 (e). We thus obtain that

Hn(U(G)⊗ZG C
sing
∗ (X))

∼=Hn(U(G)⊗RQG
RQG ⊗ZG C

sing
∗ (X))

∼=U(G)⊗RQG
Hn(RQG ⊗ZG C

sing
∗ (X)),
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which in particular implies that

b(2)n (X) = dimU(G)

(
Hn(U(G)⊗ZG C

sing
∗ (X))

)
= dimU(G)

(
U(G)⊗RQG

Hn(RQG ⊗ZG C
sing
∗ (X))

)
.

Given our assumption that the strong Atiyah conjecture holds for G over Q, Proposi-
tion 2.4.10 allows us to conclude that the last term is either infinite or contained in

1
lcm(G)Z.

(c)⇒(b): If X is a G-CW-complex, we have

Hn(U(G)⊗QG C∗(X)) ∼= Hn(U(G)⊗QG C
cell
∗ (X))

by [Lüc98, Lemma 4.2]. The latter U(G)-module is obtained as a subquotient of the finitely
generated U(G)-module U(G)βn(X), where βn(X) denotes the number of equivariant n-cells
of X, and thus has finite von Neumann dimension by Lemma 2.4.9.

(b)⇒(a): This is implied by [Lüc02, Lemma 10.5] since every free G-CW-complex is
automatically proper and a G-CW-complex is cocompact if and only if it is finite.

Corollary 2.4.12. Let G be a group with lcm(G) < ∞. If the strong Atiyah conjecture
for G holds over Q, then Atiyah’s question has a positive answer, that is, the L2-Betti
numbers b(2)n (X) are rational (or infinite) for every G-space X.

2.4.2 Classes of groups
Before we can formulate the current state of knowledge on the strong Atiyah conjecture,
we need to introduce a few commonly used classes of groups.

Definition 2.4.13. Let PN and PQ be two properties of groups, e.g., being finite. A
group G is called a PN -by-PQ group if there exist a group N satisfying PN and a group Q
satisfying PQ such that G fits into a short exact sequence

1 → N → G→ Q→ 1.

We will sometimes put curly brackets around properties that are expressed with more
than one word, e.g., when we consider free-by-{infinite cyclic} groups.

Definition 2.4.14. Let P be a property of groups. A group G is called locally P if every
finitely generated subgroup of G satisfies P .

Definition 2.4.15. A group G is called amenable if it admits a finitely additive left-G-
invariant probability measure.

The class of amenable groups contains all abelian and all finite groups and is closed un-
der taking subgroups, quotients, extensions, and directed unions (see [CC10, Section 4.5]).
The groups that arise from these base groups via this list of inheritance properties are called
elementary amenable. Every free group on at least two generators is not amenable (see
[CC10, Corollary 4.5.2]) and there are amenable groups that are not elementary amenable
(see [Gri84]).

Definition 2.4.16. Let P be a property of groups. A group G is called residually P if
for every g ∈ G, g 6= 1 there exists an epimorphism p : G → Q to a group Q satisfying P
such that p(g) 6= 1. G is called fully residually P if for every finite subset F ⊂ G there
exists an epimorphism p : G → Q to a group Q satisfying P such that p is injective when
restricted to F .
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A group that is fully residually P is clearly residually P . The converse holds if the
property P is preserved under taking subgroups and finite products, e.g., this holds for
the properties of being finite or amenable. For example, free groups are residually finite
(see [CC10, Theorem 2.3.1]) and therefore fully residually finite.

We will now discuss a model for considering limits of finitely generated groups. Recall
that Fk denotes the free group on k generators.

Definition 2.4.17. For every natural number k ∈ N, a k-marked group is an equivalence
class of epimorphisms p : Fk ↠ G, where p1 : Fk → G1 and p2 : Fk → G2 are equivalent if
there exists a group isomorphism u : G1 → G2 such that p2 = u ◦ p1.

Note that k-marked group are necessarily finitely generated.
The k-marked groups are in natural bijective correspondence to normal subgroups of

Fk. Via this correspondence, we view the set of n-marked groups as a subset of the set
P(Fk) ∼= {0, 1}Fk of all subsets of Fk, which allows for the following definition:

Definition 2.4.18. For every natural number k ∈ N, the space of k-marked groups is the
subspace Mk of {0, 1}Fk corresponding to the k-marked groups.

The space Mk is a totally disconnected compact Hausdorff space (see [CC10, Propo-
sition 3.4.1]) that is metrizable (see [CC10, Remark 3.4.2]). Intuitively, two k-marked
groups are close to each other in Mk if the intersections of the corresponding normal
subgroups with a large finite subset of Fk coincide.

Definition 2.4.19. Let k ∈ N be a fixed natural number and let (Fk ↠ Gn)n∈N be a
convergent sequence of k-marked groups. The codomain of the limit of the sequence in
Mk is called the marked limit of (Fk ↠ Gn)n∈N.

For example, a residually finite group is the marked limit of its finite quotients.
Marked limits generalize the concept of a fully residually P group for finitely generated

groups and coincide with it when considering finitely presented groups:

Proposition 2.4.20. Let P be a property of groups. A finitely generated group G is fully
residually P if and only if it is a marked limit of quotients of itself satisfying P . If G is
finitely presented, these conditions are further equivalent to G being an arbitrary marked
limit of marked groups satisfying P .

Proof. The first statement is proved simply by unraveling the definition of convergence of
quotients in a space of marked groups. The second statement is proved analogously to
[CC10, Corollary 7.1.21].

If S is a set, we denote by Sym(S) the group of permutations on S. For two permuta-
tions σ1, σ2 ∈ Sym(F ), where F is a finite set, we set

dF (σ1, σ2) :=
{x ∈ F | σ1(x) 6= σ2(x)}

|F |
.

Definition 2.4.21. A group G is called sofic if for every finite subset K ⊂ G and every
ε > 0 there exist a non-empty finite set F and a map of sets ϕ : G→ Sym(F ) such that:

(1) dF (ϕ(xy), ϕ(x)ϕ(y)) ⩽ ε for all x, y ∈ K;

(2) dF (ϕ(x), ϕ(y)) ⩾ 1− ε for all x, y ∈ K,x 6= y.
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The class of sofic groups contains all amenable groups and all residually sofic groups and
is closed under taking subgroups, extensions by amenable groups, products, coproducts,
directed unions, colimits of directed systems, limits of directed inverse systems, and marked
limits (see [CC10, Section 7.5] and [ES06]). There exists a finitely presented sofic group
that is not a marked limit of amenable groups or, equivalently, not residually amenable
(see [Cor11, Corollary 3]). An important open question is whether there exist non-sofic
groups.

We will now introduce a class of groups that is not modeled on finite groups, but rather
on infinite cyclic groups:

Definition 2.4.22. A group G is called indicable if it admits a homomorphism onto Z or
is the trivial group.

The class of locally indicable groups includes all one-relator groups (see [Bro84]) and
(left) orderable amenable groups (see [Mor06]), is closed under subgroups, extensions, and
directed unions. It is is possible that there exists a non-sofic locally indicable (even one-
relator) group.

2.4.3 Current status
In order to simplify the statements, we will in this section only refer to the following classes
of groups:

Definition 2.4.23. For a field K ⩽ C, we denote by

• SACK the class of groups satisfying the strong Atiyah conjecture over K;

• SACtfK the subclass of torsion-free groups in SACK ;

• SACsK the subclass of sofic groups in SACsK .

Especially within the class of sofic groups many results on the strong Atiyah conjecture
use some version of Lück approximation, which often allows to compute L2-Betti numbers
over limits or colimits of directed (inverse) systems of groups in terms of L2-Betti numbers
over the members of the systems. In order to treat such approximation results in a uniform
way, we introduce some notation:

Definition 2.4.24. LetG be a group and (Gi)i∈I a family of groups for a directed, possibly
inverse system I. The pair (G, (Gi)i∈I) is said to satisfy the Lück approximation condition
if for every finitely presented KG-module M there exist finitely presented KGi-modules
Mi for every i ∈ I such that

dimU(G)(U(G)⊗KGM) = lim
i∈I

dimU(G)(U(G)⊗KGi Mi).

Definition 2.4.25. Let (Gi)i∈I be a family of groups for an index set I. We set

lcm((Gi)i∈I) := lcm{lcm(Gi) | i ∈ I},

which is a finite natural number unless the set on the right-hand side contains ∞ or there
is no upper bound on the prime divisors or exponents of the elements of the set.

We now have the following abstract criterion that allows to deduce the strong Atiyah
conjecture from an approximation statement:

Lemma 2.4.26. Let K ⩽ C be a field and consider a pair (G, (Gi)i∈I) of a group and
a directed, possibly inverse system that satisfies the Lück approximation condition. If
additionally lcm(G) < ∞, lcm((Gi)i∈I) | lcm(G), and every Gi for i ∈ I satisfies the
strong Atiyah conjecture over K, then so does G.
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Proof. Since every Gi satisfies the strong Atiyah conjecture over K, the von Neumann
dimension of a finitely presented KGi-module lies in 1

lcm(Gi)
Z, which by assumption is a

subgroup of 1
lcm(G)Z. The latter is a discrete subgroup of R and thus the Lück approxima-

tion condition implies that the von Neumann dimension of an arbitrary finitely presented
KG-module lies in 1

lcm(G) , i.e., the strong Atiyah conjecture over K holds for G.

The following theorem summarizes most of the known results on the strong Atiyah
conjecture. For classes of groups that we have not introduced, we refer the reader to the
references listed in the proof.

Theorem 2.4.27. The following is known about the classes of groups SACK , SACtfK , and
SACsK :

(a) Base change.

(a1) If K ⩽ L ⩽ C are fields, then SACL ⊂ SACK .
(a2) SACsQ = SACsC.

(b) Specific groups. Groups G with lcm(G) < ∞ that are contained in any of the
following classes of groups are in SACK for every subfield K ⩽ C:

(b1) free-by-{elementary amenable} groups;
(b2) residually {torsion-free elementary amenable} groups;
(b3) braid groups;
(b4) right-angled Artin and Coxeter groups;
(b5) virtually special groups;
(b6) fundamental groups of connected orientable compact irreducible 3-manifolds with

empty or toroidal boundary that is not a closed graph manifold;
(b7) primitive link groups;
(b8) virtual congruence subgroups;
(b9) torsion-free pro-p groups of finite rank;
(b10) locally indicable groups;
(b11) one-relator groups.

(c) Inheritance properties. For every field K ⩽ C that is closed under complex
conjugation, a group G with lcm(G) <∞ is contained in SACK if it is

(c1) a subgroup of a group G′ ∈ SACK with lcm(G) = lcm(G′);
(c2) a directed union of groups in SACK with a uniform bound on the order of finite

subgroups;
(c3) an extension of a group by an elementary amenable group A such that the

preimage of each finite subgroup of A in G lies in SACK ;
(c4) an extension of a group in SACK by a torsion-free elementary amenable group;
(c5) an extension of a group H ∈ SACK by an elementary amenable group, where H

has a finite classifying space, enough torsion-free quotients, and is cohomologi-
cally complete (e.g., if H is a pure braid, primitive link, or right-angled Artin
group);

(c6) an extension of a group H ∈ SACK by an elementary amenable group Q whose
finite subgroups are all p-groups, where H has a finite classifying space, enough
torsion-free quotients, and is cohomologically p-complete (e.g., if H is the com-
mutator subgroup of a right-angled Coxeter group);
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(c7) an extension of a group H ∈ SACK by an elementary amenable group, where H
has a finite classifying space, is a good group and has the factorization property
(e.g., if H is cocompact special).

(d) Inheritance properties for sofic groups. The class SACsC = SACsQ contains a
group G with lcm(G) <∞ if it

(d1) is the colimit (also called “direct limit”) of a directed system (Gi)i∈I , assuming
that lcm((Gi))| lcm(G) and Gi ∈ SACsQ for all i ∈ I;

(d2) is the limit (also called “inverse limit”) of a directed inverse system (Gi)i∈I ,
assuming that lcm((Gi))| lcm(G) and Gi ∈ SACsQ for all i ∈ I;

(d3) is the marked limit of a sequence of marked groups (Fk ↠ Gn)n∈N, assuming
that lcm((Gn))| lcm(G) and Gn ∈ SACsQ for all n ∈ N.

(d4) admits a chain of subgroups G = N0 ⩾ N1 ⩾ N2 ⩾ . . . , each of which is normal
in G, such that

⋂
n∈NNn = {1}, lcm((G/Nn))| lcm(G) and G/Nn ∈ SACsQ for

each n ∈ N.

(e) Inheritance properties for torsion-free groups. For every field K ⩽ C, the
class SACtfK is closed under taking

(e1) subgroups;
(e2) directed unions;
(e3) extensions by locally indicable groups.

The arguably most desirable inheritance property missing from Theorem 2.4.27 is that
of passing to products or coproducts of groups. At least for torsion-free groups, this,
however, is not much of an issue in practice, as has first been remarked by Schick in
[Sch01]:

Theorem 2.4.28. Let K ⩽ C be a field that is closed under complex conjugation. The
subclass of SACtfK ∩ SACsK obtained from the groups listed in Theorem 2.4.27 (b1)–(b7)
via the inheritance properties (c), (d1), (d2), (d4), (e1), and (e2) is closed under arbitrary
products and coproducts.

Proof. We show that the subclass coincides with the class D introduced in [Sch01, Defi-
nition 1.10], which has the desired property by [Sch01, Proposition 1.13]. Properties (c1)
and (e1) as well as (c2), (d1), (d2), and (e2) are built into the definition of the class D con-
sidered in [Sch01] as properties (2) and (3). In the presence of (e1), property (d4) follows
from (d2) as the group G is a subgroup of the inverse limit of the quotients by the normal
subgroups. The proof of [Sch01, Proposition 1.13] also covers properties (b1), (b3)–(b7),
and (c4)–(c7) as they all go through (b2) and (c3), which are consequences of [Sch01,
Corollary 2.7] and property (1) of the class D considered in [Sch01], respectively.

Note that it is not clear whether Theorem 2.4.28 remains valid if the subclass is also
assumed to be closed under (e3). This is because locally indicable groups are not known
to be sofic and while the Lück approximation condition is known for both sofic groups and
locally indicable groups individually, the latter by [JL20, Theorem 1.5], it is not known
for products of groups from both classes.

Proof of Theorem 2.4.27: (a1) If M is a finitely presented KG-module, then LG⊗KGM
is a finitely presented LG-module with the same von Neumann dimension.

(a2) [Jai19c, Theorem 1.1]
(b1) [Lin93, Theorem 1.5] (see also [Lüc02, Chapter 10])
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(b2) By [Dod+03, Theorem 1.4], residually {torsion-free elementary amenable} groups
satisfy the strong Atiyah conjecture over Q. Since such groups are sofic, they also satisfy
the strong Atiyah conjecture over C by (a2) and thus over all subfields of C by (a1).

(b3) Pure braid groups are residually {torsion-free nilpotent} by [LS07, Theorem 5.40]
and thus satisfy the strong Atiyah conjecture over C by (b2). Furthermore, by the same
result, they satisfy the conditions of (c5).

(b4) By [LOS12, Proposition 9], both right-angled Artin groups and the commutator
subgroups of right-angled Coxeter groups are residually {torsion-free nilpotent} and thus
satisfy the strong Atiyah conjecture over C by (b2). They also satisfy the conditions of
(c5) and (c6), respectively, as is shown in the proof of [LOS12, Theorem 2]. As is observed
there, right-angled Coxeter groups are extensions of their commutator subgroups by finite
2-groups.

(b5) By a remarkable result of Haglund and Wise in [HW08], cocompact special groups
are subgroups of right-angled Artin groups and thus satisfy the strong Atiyah conjecture
over C by (b4) and (e1). They satisfy the conditions of (c7) by [Sch14, Corollary 4.3],
which then also covers virtually special groups.

(b6) These groups are virtually special by [FL19, Theorem 3.2 (3)], thus (b5) applies.
(b7) Since primitive links are in particular not splittable, their complements in S3

are connected, orientable, compact, and irreducible 3-manifolds with non-empty toroidal
boundary. It thus follows from (b6) that primitive link groups satisfy the strong Atiyah
conjecture over C. They also satisfy the properties of (c5) by [LS07, Proposition 5.34] and
[BLS08, Theorem 1.4].

(b8) [FL06, Theorem 1.1]
(b9) [FL06, Theorem 7.4]
(b10) [JL20, Theorem 1.1]
(b11) One-relator groups are either locally indicable (if they are torsion-free) or virtu-

ally special (if they contain torsion), so this follows from (b7) and (b10) (see also [JL20,
Corollary 1.3]).

(c1) If M is a finitely presented KG-module, then KG′ ⊗KGM is a finitely presented
KG′-module with the same von Neumann dimension because the dimension is invariant
under induction.

(c2) Let G be a directed union of subgroups Gi for some index set i ∈ I and assume
that there is a uniform bound on the order of finite subgroups of the groups Gi. Since
every finite subgroup of G arises as a finite subgroup of some Gi and thus has bounded
order, the group G satisfies lcm(G) <∞. We now consider an arbitrary finitely presented
KG-module M and a fixed choice of a presentation matrix A ∈ Mm×n(KG). Since A
has only finitely many entries and each entry has finite support, there exists i ∈ I such
that A ∈Mm×n(KGi). We denote by M the finitely presented KGi-module with A as its
presentation matrix. Using the invariance under induction of the von Neumann dimension,
we conclude that

dimU(G)(U(G)⊗KGM) = dimU(G)(U(G)⊗KGi M) = dimU(Gi)(U(Gi)⊗KGi M).

The right-hand side is contained in 1
lcm(Gi)

Z by the assumption that Gi satisfies the strong
Atiyah conjecture over K. Since every finite subgroup of Gi is also a finite subgroup of G,
it is thus contained in 1

lcm(G)Z.
(c3) [LS07, Corollary 2.7]
(c4) This follows from (c3) since the only finite subgroup of a torsion-free group is the

trivial group, the preimage of which is assumed to satisfy the strong Atiyah conjecture
over K.

(c5) [LS07, Corollary 4.62] (see also the proofs of (b3), (b4), and (b7))
(c6) [LOS12, Proposition 10] (see also the proof of (b4))
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(c7) [Sch14, Theorem 1.1] (see also the proof of (b5))
(d1) & (d2) These appear as situations (1) and (2) of [Dod+03, Situation 3.5]. By

Lemma 2.3.3 and [Dod+03, Theorem 3.26], the Lück approximation condition is satisfied
in these cases if the groups Gi satisfy the determinant bound conjecture over Q, which is
formulated in [Dod+03, Definition 3.1]. This conjecture is proved for all sofic groups in
[Jai19a, Theorem 10.10]. The Lück approximation condition and the assumptions imply
the strong Atiyah conjecture for G over Q by Lemma 2.4.26.

(d3) The case of a marked limit is also a consequence of Lemma 2.4.26 since the Lück
approximation condition holds by [Jai19c, Corollary 1.4].

(d4) is a special case of (d3).
(e1) & (e2) These properties are direct consequences of (c1) and (c2) since lcm(G) = 1

for every torsion-free group G.
(e3) [JL20, Proposition 6.5]

2.5 The center-valued Atiyah conjecture
As we have observed in Proposition 2.4.6, the strong Atiyah conjecture forG overK implies
certain restrictions on the structure of the ring RKG. In particular, it is always semisimple
and all numeric parameters in its Artin–Wedderburn decomposition are bounded above
by lcm(G). However, if G is not torsion-free, these conditions are not sufficient to fully
determine the parameters.

In this section, we will discuss a slightly stronger version of the strong Atiyah conjec-
ture that, among its many equivalent statements, admits a complete description of the
semisimple ring RKG, assuming its division ring components are treated as black boxes.

At the same time, this version will answer another question one might reasonably ask
about the Atiyah conjecture: To what extent do L2-Betti numbers remain restricted if one
replaces the standard trace trN (G) underlying the construction of the dimension function
dimU(G) by a different trace function? For example, if g ∈ G has finite conjugacy class (g),
then

tr(g)N (G) : N (G) → C

f 7→
∑
h∈(g)

〈f(e), h〉ℓ2

satisfies all of the required properties and could be used to define an alternative dimension
function for U(G)-modules. Fortunately, there is a universal choice of a trace-like function,
the center-valued trace truN (G) on N (G). It takes values in the center Z(N (G)) and all
possible traces on N (G) factor through it. The various properties of truN (G) are listed in
[Lüc02, Theorem 9.5].

Just as dimN (G) is constructed from trN (G), one can define a dimension function
dimu

N (G), the center-valued von Neumann dimension, for finitely generated projective
N (G)-modules using truN (G). This dimension function takes values in the subspace of
Z(N (G)) of elements satisfying a = a∗ and provides a full classification of finitely gen-
erated projective N (G)-modules up to isomorphism: two such modules are isomorphic if
and only if their center-valued dimensions agree (see [Lüc02, Theorem 9.13]).
Definition 2.5.1. Let G be a group with lcm(G) <∞ and K ⩽ C a field. We say that the
center-valued Atiyah conjecture for G holds over K if every finitely presented KG-module
M satisfies

dimu
N (G)(N (G)⊗KGM) ∈ LK(G) ⊂ Z(N (G)),

where LK(G) is the additive subgroup of Z(N (G)) generated by
{truN (G)(p) | p ∈ KF, p = p2 = p∗, F ⩽ G, |F | <∞}.
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The subgroup LK(G) ⩽ Z(N (G)) is discrete per [KLS17, Corollary 3.7], which furthers
the similarity between the center-valued and the strong Atiyah conjecture and implies that
the values of any dimension function on N (G) constructed out of a trace function will form
a discrete subset of R.

Since finite groups satisfy the strong Atiyah conjecture, the image of LK(G) in C under
trN (G) is given by 1

lcm(G)Z. We thus conclude:

Proposition 2.5.2. The center-valued Atiyah conjecture for G over K implies the strong
Atiyah conjecture for G over K.

While Definition 2.5.1 is most similar to the statement of the strong Atiyah conjecture,
other equivalent formulations given in [KLS17] provide more insight into the strength of
the center-valued Atiyah conjecture:

Theorem 2.5.3 ([KLS17, Theorem 3.7]). Let G be a group with lcm(G) <∞ and K ⩽ C
a subfield closed under complex conjugation. The following statements are equivalent:

(a) The center-valued Atiyah conjecture holds for G over K.

(b) DKG is Atiyah-expected Artinian.

(c) DKG is semisimple and the map⊕
F⩽G
|F |<∞

K0(KF ) → K0(DKG)

is surjective.

(d) The map ⊕
F⩽G
|F |<∞

G0(KF ) → G0(DKG)

is surjective.

Due to its quite technical nature, we will not give the full definition of what it means for
DKG to be Atiyah-expected Artinian and instead refer the reader to [KLS17, Definition 3.6]
for all details. If DKG is Atiyah-expected Artinian, then it is semisimple and the number of
factors in its Artin–Wedderburn decomposition is bounded above by the number of finite
conjugacy classes of elements of finite order in G. More precisely, the number of factors is
given by the number of finite K-conjugacy classes of elements of finite order in G, a notion
that will be introduced and studied in detail in Section 3.3. Furthermore, the dimension
of every matrix ring factor can be expressed entirely in terms of the Artin–Wedderburn
decompositions of the group rings KF for finite subgroups F of G.

Theorem 2.5.3 (c) implies that for a torsion-free group G, the strong Atiyah conjecture
implies the center-valued Atiyah conjecture. This implication remains valid in the more
general case of a group G that does not contain elements that are simultaneously of finite
order and have only a finite number of conjugates (see [LS12, Theorem 1.3]).

In Section 3.1, we will add an equivalent statement to Theorem 2.5.3 that involves only
the K-theory of RKG.

The following theorem summarizes most of what is known about the center-valued
Atiyah conjecture and uses an extension of Theorem 2.4.27 (a2) that will be proved in
Corollary 3.2.14:
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Theorem 2.5.4. Let K ⩽ C be a field closed under complex conjugation and assume that
either K ⩽ Q or Q ⩽ C. The center-valued Atiyah conjecture over K holds for the groups
listed in Theorem 2.4.27 (b), except possibly for virtual congruence subgroups with torsion,
and has the inheritance properties corresponding to (c2)–(c7) as well as (d4), where the
condition on lcm(G) in the latter is replaced by the stronger condition that for every finite
subgroup F ⩽ G/Ni there is a finite subgroup of G which is mapped to F isomorphically
by the projection G↠ G/Ni.

Proof. We first consider the case K ⩽ Q. That the groups listed in Theorem 2.4.27 (b1)
and (b3)–(b7) satisfy the center-valued Atiyah conjecture over K is the content of [KLS17,
Corollary 4.6]. The groups in (b2), (b9), (b10), and (b11) as well as torsion-free virtual
congruence subgroups satisfy the strong Atiyah conjecture over K by Theorem 2.4.27 and
thus the center-valued Atiyah conjecture over K as they are torsion-free. Properties (c2)
and (c3) are proved in [KLS17, Lemma 4.2 & 4.3]. The proofs of properties (c4)–(c7) all go
through (b2) and (c3). Finally, property (d4) with the extra condition on finite subgroups
appears as [KLS17, Proposition 4.4].

In the case that K ⩽ Q we apply Corollary 3.2.14 to obtain the corresponding state-
ments for sofic groups. Of the groups considered in this theorem, only the locally indicable
groups are potentially not sofic so that the corollary does not apply. However, these groups
are always torsion-free and satisfy the strong Atiyah conjecture over C.

2.6 An overview of variants of the Atiyah conjecture
The following diagram visualizes the implications and equivalences between the various
variants of the Atiyah conjecture. Variants and implications marked with an asterisk next
to their reference are introduced or proved, respectively, in this thesis.

Center-valued Atiyah conjecture (2.5.1)
dimu

U(G)(U(G)⊗KGM) ∈ LK(G)

Strong Atiyah conjecture (2.4.2)
dimU(G)(U(G)⊗KGM) ∈ 1

lcm(G)Z

Weak Atiyah conjecture (2.3.2)
dimU(G)(U(G)⊗KGM) ∈ Q

Algebraic Atiyah conjecture (3.1.1)⊕
K0(KF ) → K0(RKG)

Rank of K0(RKG) (3.3.8*)
rkZ(K0(RKG)) = | conK(G)f,cf |

Rationalized algebraic
Atiyah conjecture (3.1.5*)⊕
K0(KF )⊗Z Q → K0(RKG)⊗Z Q

(3.1.4*)

(2.5.2) (3.3.8*)

(3.3.8*)

(3.1.6*)



Chapter 3

The structure of the ring RKG

We have seen in the previous chapter that the structure of the ∗-regular closure RKG is
determined in large parts by suitable variants of the Atiyah conjectures. If G is torsion-
free, than the story ends here, with RKG being a division ring. However, if G contains
non-trivial torsion, there is more to say about this ring.

The aim of the current chapter is to further study RKG and its zeroth K-group in the
presence of torsion. In Section 3.1, we discuss another variant of the Atiyah conjecture, the
algebraic Atiyah conjecture, that has been introduced by Jaikin-Zapirain and is formulated
entirely in terms of the K-theory of RKG and the group rings of finite subgroups of G.
Relying on results of Knebusch, Linnell, and Schick, we prove that this conjecture is
equivalent to the center-valued Atiyah conjecture. Even though it is not new from this
point of view, its K-theoretic formulation turns out to be rather useful when studying
inheritance properties. In Section 3.2, we thus benefit from using the algebraic Atiyah
conjecture in an analysis of center-valued Atiyah conjecture’s behavior under a change
of the coefficient field. Based on a base change result of Jaikin-Zapirain for the strong
Atiyah conjecture for sofic groups, we prove that the center-valued Atiyah conjecture for
such groups over Q implies that over any field with sufficiently many roots of unity or
transcendental extensions thereof.

In the second part of the chapter, we turn to structural results on RKG that do not
depend on the strong Atiyah conjecture. Building on work of Lück, we show in Section 3.3
that the rank of K0(RKG) always admits a lower bound in terms of generalized conjugacy
classes of elements of finite order in G. This lower bound matches the rank predicted by
the center-valued Atiyah conjecture. Finally, in Section 3.4, we discuss an open question
of Handelman about the unit-regularity of ∗-regular rings for the specific case of RKG.
We prove that for a sofic group G, the ring RKG is always unit-regular if K has infinite
transcendence degree over Q, thereby providing a partial answer to a question by Ara and
Goodearl.

3.1 The algebraic Atiyah conjecture
In his survey article [Jai19b], Jaikin-Zapirain introduces the following variant of the Atiyah
conjecture:

Definition 3.1.1 ([Jai19a, Conjecture 6.2]). Let G be a group and K ⩽ C a subfield
closed under complex conjugation. We say that the algebraic Atiyah conjecture for G
holds over K if the map ⊕

F⩽G
|F |<∞

K0(KF ) → K0(RKG)

is surjective. We call this map the algebraic Atiyah map.

47



48 3. The structure of the ring RKG

By the universal property of the colimit, the algebraic Atiyah map factors as⊕
F⩽G
|F |<∞

K0(KF ) ↠ colim
F⩽G
|F |<∞

K0(KF ) → K0(KG) → K0(RKG),

where the first map is always surjective. It follows that the algebraic Atiyah conjecture for
G holds over K if and only if the composition of the second and third map is surjective.
Remark 3.1.2. If the group G satisfies the K-theoretic Farrell–Jones conjecture, the second
map above is an isomorphism. In this case, the algebraic Atiyah conjecture for G over
K is thus equivalent to the surjectivity of the map K0(KG) → K0(RKG). The latter
condition notably no longer directly involves the finite subgroups of G. In this sense, it
can be viewed as a generalization of Corollary 2.4.7 to groups with torsion.

Lemma 3.1.3. Let G be a group and K ⩽ C a subfield closed under complex conjugation.
Then DKG is a ∗-subring of U(G).

Proof. Consider the subrings Ri ⩽ U(G) defined in Remark 1.7.7 in the situation R := KG
and S := U(G). Since K is closed under complex conjugation, the ring R0 = KG is a
∗-subring of U(G). Now assume that Ri is a ∗-subring of U(G) for some i ⩾ 0. The set
Ui := {x−1 | x ∈ Ri, x ∈ U(G)×} is closed under ∗ since the anti-automorphism maps
units to units. Thus, also the ring Ri+1, which is generated by Ri and Ui, is a ∗-subring
of U(G). By induction, all subrings Ri ⩽ U(G) are ∗-subrings, and therefore also their
directed union DKG.

The following theorem answers a question of Jaikin-Zapirain raised in [Jai19a, 6.1].

Theorem 3.1.4. Let G be a group with lcm(G) < ∞ and K ⩽ C a subfield closed under
complex conjugation. The algebraic Atiyah conjecture for G holds over K if and only if
the center-valued Atiyah conjecture for G holds over K.

Proof. Assume that G satisfies the algebraic Atiyah conjecture. We adapt the proof
of [KLS17, Theorem 3.7] to use RKG instead of DKG and K-theory instead of G-theory.
Let M be a finitely presented KG-module. The RKG-module M := RKG ⊗KG M is
again finitely presented and, since RKG is von Neumann regular, also projective by
Proposition 1.4.3 (d). It thus represents a class in K0(RKG), which by assumption is
an integer linear combination of classes in K0(KFi) for finitely many finite subgroups
Fi ⩽ G, i = 1, . . . , k. Recall that KF is semisimple for a finite group F , which implies
that K0(KF ) is generated by classes that are represented by idempotents in KF . Using
the assumption, we thus deduce that there are idempotents x+i , x−i ∈ KFi, i = 1, . . . , k,
which may be 0 or 1 and where the same finite subgroup can appear multiple times, such
that

M ⊕
k⊕
i=1

RKGx
−
i
∼=

k⊕
i=1

RKGx
+
i .

By inducing up further to U(G) and applying the dimension function dimu
G for finitely

presented U(G)-modules, we obtain

dimu
U(G)(U(G)⊗KGM) = dimu

U(G)

(
U(G)⊗RKG

M
)

= dimu
U(G)

( k⊕
i=1

U(G)x+i

)
− dimu

U(G)

( k⊕
i=1

U(G)x−i

)

=

k∑
i=1

dimu
U(G)(U(G)x

+
i )−

k∑
i=1

dimu
U(G)(U(G)x

−
i ) ∈ LK(G).
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Now assume that G satisfies the center-valued Atiyah conjecture over K. By Theo-
rem 2.5.3 (c), DKG is semisimple and in particular von Neumann regular. Since K ⩽ C
is closed under complex conjugation, Lemma 3.1.3 implies that it is even ∗-regular. But
KG ⩽ DKG ⩽ RKG ⩽ U(G) by construction and RKG is the smallest ∗-regular subring
of U(G) containing KG, hence DKG = RKG and the algebraic Atiyah conjecture for G is
implied by Theorem 2.5.3 (c).

Given its purely K-theoretic formulation, the algebraic Atiyah conjecture lends itself
to being considered rationally:

Definition 3.1.5. Let G be a group and K ⩽ C a subfield closed under complex conju-
gation. We say that the rationalized algebraic Atiyah conjecture for G holds over K if the
map ⊕

F⩽G
|F |<∞

K0(KF )⊗Z Q → K0(RKG)⊗Z Q

is surjective. We call this map the rationalized algebraic Atiyah map.

Theorem 3.1.6. Let G be a group and K ⩽ C a subfield closed under complex conjugation.
Then the rationalized algebraic Atiyah conjecture for G over K implies the weak Atiyah
conjecture for G over K.

Proof. Let M be a finitely presented KG-module. As in the proof of Theorem 3.1.4, the
RKG-module M := RKG ⊗KG M represents a class in K0(RKG). Since we assumed the
algebraic Atiyah map to be rationally surjective, we can find n ∈ Z such that n[M ] ∈
K0(RKG) lies in its image. As in the proof of Theorem 3.1.4, we thus find finitely many
finite subgroups Fi ⩽ G and idempotents x−i , x+i ∈ KFi, where i = 1, . . . , k, such that

Mn ⊕
k⊕
i=1

RKGx
−
i
∼=

k⊕
i=1

RKGx
+
i .

We now apply the classical von Neumann dimension and obtain

n · dimU(G)(U(G)⊗KGM)

= dimU(G)(U(G)⊗KGM
n)

= dimU(G)(U(G)⊗RKG
Mn)

= dimU(G)

( k⊕
i=1

U(G)x+i

)
− dimU(G)

( k⊕
i=1

U(G)x−i

)

=
k∑
i=1

dimU(G)(U(G)x+i )−
k∑
i=1

dimU(G)(U(G)x−i )

=
k∑
i=1

dimU(G)(U(G)⊗KFi KFix
+
i )−

k∑
i=1

dimU(G)(U(G)⊗KFi KFix
−
i ).

Since finite groups satisfy the strong Atiyah conjecture over K, we conclude that

dimU(G)(U(G)⊗KGM) ∈ 1

n · lcm{|Fi| | i = 1, . . . , k}
Z.

In particular, it is a rational number.
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Corollary 3.1.7. For the lamplighter group L2 introduced in Definition 2.3.7 and every
subfield K ⩽ C, the map

K0(KL2)⊗Z Q → K0(RKL2)⊗Z Q

is not surjective.

Proof. For every K ⩽ C, the lamplighter group L2 does not satisfy the weak Atiyah
conjecture over K by Theorem 2.3.8. We obtain from Theorem 3.1.6 that the rational
algebraic Atiyah map is not surjective. Since L2 satisfies the K-theoretic Farrell–Jones
conjecture, see [Lüc02, Remark 10.25], this completes the proof by Remark 3.1.2.

3.2 The center-valued Atiyah conjecture over subfields of
C

Having seen that the algebraic Atiyah conjecture is equivalent to the center-valued Atiyah
conjecture, we will now use the former as a tool to study how the latter behaves under a
change of the coefficient field. Such a base change result was obtained by Jaikin-Zapirain
in [Jai19c] for the strong Atiyah conjecture for sofic groups. We crucially rely on his
methods, but face some additional technical complications.

Most importantly, as opposed to the strong Atiyah conjecture, the center-valued Atiyah
conjecture does not pass to subfields, which means that the case of the conjecture over
C no longer implies the general case. As a consequence, in order to obtain a result that
applies to as many coefficient fields as possible, we are not be able to start over Q as
Jaikin-Zapirain did, but instead consider all base fields with sufficiently many roots of
unity.

As was shown in the proof of the base change result for the strong Atiyah conjecture,
for a sofic group G, a change of fields from K to an extension field L changes the ∗-regular
closure RKG in a well-behaved way: The tensor product RKG ⊗K L satisfies the Ore
condition and the Ore ring of fractions is RLG. Given that assuming the strong Atiyah
conjecture over K both the ring RKG and the group rings KF of finite subgroups F of G
are semisimple, we start in Section 3.2.1 with a unified analysis of the K-theoretic effects
of scalar base changes for semisimple rings.

The proof of our base change results for the center-valued Atiyah conjecture, Corol-
lary 3.2.14 and Proposition 3.2.15 are then obtained from a mostly formal argument, using
both the abstract base change results for semisimple rings as well as additional results on
central division ring extensions.

3.2.1 Base change for semisimple rings
Definition 3.2.1. A ring is simple if it has no two-sided ideals other than the zero ideal
and the ring itself.

Note that simple rings are not necessarily semisimple as they might not have a minimal
left ideal. A semisimple ring is simple if and only if its Artin–Wedderburn decomposition
consists of a single direct factor, i.e., if it is of the form Mn(D) for n ∈ N and a division
ring D.

We need the following simplified version of [Jai99, Lemma 2.15]:

Lemma 3.2.2. Let R1 and R2 be simple rings and C a ring that is isomorphic to subrings
of Z(R1) and Z(R2). Then R1 ⊗C R2 is almost simple, i.e., every non-trivial ideal has
non-trivial intersection with its center.
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The proof of the following lemma is mostly contained in that of [Jai99, Lemma 10.7 (2)],
but we present it in detail in order to clarify the required assumptions.

Lemma 3.2.3. Let K be a field of characteristic 0 and R a semisimple K-algebra. For
every field extension L/K, the Ore condition is satisfied for the L-algebra R⊗K L. If L/K
is finitely generated, then Ore(R ⊗K L) is semisimple, and in general Ore(R ⊗K L) is a
directed union of semisimple rings.

Proof. By Theorem 1.6.2, the semisimple K-algebra R is isomorphic to a finite product of
matrix rings over division K-algebras. Since localization commutes with direct sums and
a finite direct sum of semisimple rings is again semisimple, we can restrict to the case that
R =Mn(D) for a division ring D, i.e., that R is simple Artinian.

Then, since any field is simple, we conclude from Lemma 3.2.2 that R⊗K L is almost
simple. This means that every non-trivial ideal of R ⊗K L has a non-trivial intersection
with Z(R ⊗K L) = Z(D)⊗K L. Since K ⊂ R has characteristic 0, it is perfect, and thus
Z(D)⊗K L is reduced by [Bou90, V.§15, Theorem 3 d)]. Thus, if R⊗K L were to contain
a non-trivial nilpotent ideal I, then I ∩Z(R⊗K L) would be a non-trivial nilpotent ideal
in a reduced ring, which is not possible. It follows that R⊗K L is semiprime.

We assume for the moment that L/K is finitely generated as a field extension. Then
R⊗KL is Noetherian by the Hilbert basis theorem (see [Row88, Proposition 3.5.2]), where
we use additionally that Noetherianity passes to localizations at central elements (see
[Row88, Proposition 3.1.13]). As it is also semiprime, Theorem 1.2.7 implies that R⊗K L
satisfies the left Ore condition and Ore(R⊗K L) is a semisimple ring.

We now return to the case of a general field extension L/K, which can always be ex-
pressed as the directed union of its finitely generated subextensions. Since a directed
union of rings Ri satisfying the Ore condition again satisfies the Ore condition and
Ore(

⋃
Ri) =

⋃
Ore(Ri), this concludes the proof.

We will now study the effect of a base change on the zeroth K-group. In the situation
of Lemma 3.2.3, we can consider the map ΦLK : K0(R) → K0(Ore(R ⊗K L)) induced by
the embedding R ↪→ R⊗K L. Recall from Corollary 1.6.5 that K0(R) of a semisimple ring
R has a particularly simple structure: If R ∼= Mn1(D1) × · · · ×Mns(Ds), then K0(R) ∼=
1
n1
Z ⊕ · · · ⊕ 1

ns
Z, where the generator of each direct summand corresponds to a minimal

left ideal in Mni(Di).
Before we continue with general structural results on the possible map ΦLK , it will be

instructive to consider the following two prototypical examples:
Example 3.2.4. If L/K = Q(i)/Q and R = Q(i), then RL := R ⊗K L can be identified
with Q(i) × Q(i), with the map R ↪→ RL given by the diagonal embedding. Since RL
is semisimple, it agrees with Ore(RL). Denote by e1 and e2 the central idempotents
(1, 0) and (0, 1) in Q(i) × Q(i). Then K0(R) = {k · [R] | k ∈ Z} = Z, K0(R ⊗K L) =
{k · [RLe1] + l · [RLe2] | k, l ∈ Z} = Z2, and the map ΦLK is the diagonal embedding
Z ↪→ Z2, k 7→ (k, k).
Example 3.2.5. If K/L = Q(i)/Q and R = H = {a + bi + cj + dk | a, b, c, d ∈ R}, the
quaternions, then RL := R⊗K L can be identified with M2(Q(i)), with the map R ↪→ RL
given by

a+ bi+ cj + dk 7→

(
a+ bi c+ di
−c+ di a− bi

)
.

Since RL is semisimple, it agrees with Ore(RL). Denote by e ∈ RL the idempotent matrix
with ones in the first and zeros in the second column. Then K0(R) = {k · [R] | k ∈ Z} = Z,
K0(RL) = {k · [RL]

2 = k · [RLe] | k ∈ Z} = 1
2Z, and the map ΦLK is the index 2 embedding

Z ↪→ 1
2Z, k 7→ k.
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In both examples, the map ΦLK is injective, but fails to be surjective due to a splitting
phenomenon: A division ring splits either into a product of division rings, which increases
the rank of K0, or into a matrix ring over a new division ring, which makes ΦLK an
embedding of non-trivial finite index. In slightly more abstract terms, in these examples,
the increased complexity of K0(RL) compared to K0(R) stems from the appearance of
(additional) zero divisors in R ⊗K L. We will now see that this holds more generally:
The map ΦLK is always injective and it is surjective if and only if the division rings in the
Artin–Wedderburn decomposition remain non-commutative domains after base change.
This result will be key to our study of the base change in the algebraic and center-valued
Atiyah conjecture in the next section.

Proposition 3.2.6. Let L/K be an extension of fields of characteristic 0 and R a semisim-
ple K-algebra. Then ΦLK : K0(R) → K0(Ore(R⊗K L))

(a) is injective;

(b) is surjective if and only if for every division ring D in the Artin–Wedderburn decom-
position of R the ring D ⊗K L is a domain.

Proof. For the sake of comprehensibility, we abbreviate Ore(R ⊗K L) to RL and proceed
in steps of increasing generality, where we list in each step all of the restrictions on R and
L that are assumed in addition to those in the statement of the proposition.

Step 1: (a) for R = D division ring, L/K finitely generated. We have K0(D) =
{k · [D] | k ∈ Z}, so that ΦLK is injective if k · [DL] 6= 0 in K0(DL) for every k 6= 0.
Since L/K is finitely generated, the ring DL is semisimple by Lemma 3.2.3. Thus, using
the calculation of K0(DL) of Corollary 1.6.5, we conclude that [DL] always generates an
infinite cyclic subgroup of K0(DL).

Step 2: (a) for R = D division ring. We can write L/K as a directed union over its
finitely generated subextensions Li/K for i ∈ I for some index set I. This gives rise to a
directed union of rings DLi , together with compatible embeddings of D inducing the maps
ΦLi
K on K0. Since K0(?) commutes with directed colimits and all the ΦLi

K are injective by
Step 1, the map ΦLK is injective as well.

Step 3: (a) for R = Mn(D), D division ring. By [Ros94, Theorem 1.2.4], also
known as Mortia invariance, there is a natural isomorphism K0(D)

∼=−→ K0(Mn(D)) for
every n ∈ N. Since both ?⊗K L and Ore(?) commute with Mn(?), the latter by Proposi-
tion 1.2.6, this step reduces to the previous one.

Step 4: (a). We identify R with Mn1(D1) × · · · × Mns(Ds) for ni ∈ N and Di

a division K-algebra for every i = 1, . . . , s. Denote by ei ∈ R the central idempotent
corresponding to the projection onto the i-th factor, so that K0(R) is free abelian on
1
ni
[Rei] for i = 1, . . . , s.
Since L is commutative, the idempotents ei are also central in R⊗KL. They remain so

in RL := Ore(R⊗K L) since in every ring as = sa implies as−1 = s−1sas−1 = s−1ass−1 =
s−1a. We conclude that RL can be expressed as the product RLe1 × · · · × RLes, where
every factor RLei is a non-trivial ring with unit ei.

In K0, these decompositions as products of rings give rise to direct sum decompositions
K0(R) ∼= K0(Re1)⊕ · · · ⊕K0(Res) and K0(RL) ∼= K0(RLe1)⊕ · · · ⊕K0(RLes) which are
natural in the sense that the map ΦLK is given by the direct sum of the maps K0(Rei) →
K0(RLei). These maps are of the form ΦLK for rings as in Step 3, which concludes the
proof of (a) since the direct sum of injective maps is again injective.

Step 5: (b) for R = D division ring, L/K finitely generated.
We observe that by construction, DL = Ore(D ⊗K L) admits non-trivial zero divisors

if and only if D ⊗K L does. Since both R1 × R2 and Mn(R1) contain non-trivial zero
divisors for non-zero rings R1 and R2 and n ⩾ 2, the Artin–Wedderburn theorem implies



3.2. The center-valued Atiyah conjecture over subfields of C 53

that the semisimple ring DL has no non-trivial zero divisors if and only if it is a division
ring. We are thus left to show that ΦLK is surjective if and only if DL is a division ring.

If DL is a division ring, then ΦLK is clearly an isomorphism of infinite cyclic groups and
in particular surjective. If DL is not a division ring, then by Corollary 1.6.5 there exists
an element x ∈ K0(DL) that cannot be expressed as k · [DL] and is thus not contained in
the image of ΦLK .

Step 6: (b) for R = D division ring. We again write L/K as a directed union over
its finitely generated subextensions Li/K for i ∈ I for some index set I, as in Step 2.

If ΦLK is not surjective, then there is some i ∈ I and x ∈ K0(DLi) such that x is not
in the image of ΦLi

K . By Step 5, there is a non-trivial zero divisor in D ⊗K Li. Since the
maps D⊗K Li → D⊗K L are all injective, this element remains a non-trivial zero divisor
in D ⊗K L.

At last, we consider a non-trivial zero divisor z ∈ D ⊗K L, witnessed by an element
z′ ∈ D ⊗K L, z′ 6= 0 such that zz′ = 0. Then there exists i ∈ I such that z, z′ ∈ D ⊗K Li,
which means that D ⊗K Li has non-trivial zero divisors. By Step 5, there is x ∈ K0(DLi)
that is not contained in the image of ΦLi

K . We additionally observe that, since the canonical
map

Ore(Ore(D ⊗K Li)⊗Li Lj) → Ore(D ⊗K Lj)

is an isomorphism, the maps on K0 induced by the connecting maps in the directed union
of rings DLi are themselves of the form Φ

Lj

Li
for i, j ∈ I, i ⩽ j. If ΦLK were surjective, there

would be y ∈ K0(D) such that ΦLK(y) = ΦLLi
(x). But then ΦLLi

(ΦLi
K (y)) = ΦLK(y) = ΦLLi

(x),
which implies that ΦLi

K (y) = x since ΦLLi
is injective by (a) applied to the semisimple Li-

algebra DLi and the field extension L/Li. This contradicts the fact that x is not contained
in the image of ΦLi

K and we have established that ΦLK is not surjective.
Step 7: (b). This reduces to the situation of Step 5 as in Step 3 and 4 by noting that

a direct sum of surjective maps between abelian groups is surjective if and only if every
individual map is.

3.2.2 Base change in the algebraic and center-valued Atiyah conjecture
Now that we have studied the K-theoretic effects of a base change on semisimple rings, we
will apply our results to the two classes of semisimple rings relevant to the center-valued
Atiyah conjecture for a group G over a field K: the group rings KF for finite subgroups
F of G as well as the ∗-regular closure RKG. The former rings are inherently linked to the
linear representation theory of finite groups, which will play a role in the following form:

Definition 3.2.7. Let G be a group. We say that a field K ⩽ C realizes G if every
linear C-representation of a finite subgroup of G is isomorphic to C ⊗K V for a linear
K-representation V .

The usefulness of this notion in the present context lies in the following K-theoretic
reformulation:

Lemma 3.2.8. If a field K ⩽ C realizes a group G, then the map

K0(KF ) → K0(LF )

is an isomorphism for every K ⩽ L ⩽ C and every finite subgroup F of G.

Proof. Since the group ring of a finite group is semisimple by Maschke’s theorem, we can
apply the results of the previous section. Taking R = KF , the map in the statement turns
out to be of the form ΦLK and is thus always injective by Proposition 3.2.6.
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As K realizes G, the map ΦC
K is also surjective since by Proposition 1.6.4 (c) and

Corollary 1.6.5 two C-representations are isomorphic if and only if they represent the same
element in K0. The same argument applies to ΦC

L. As both ΦC
K and ΦC

L are isomorphisms
and ΦC

K = ΦC
L ◦ ΦLK , the map ΦLK is also an isomorphism

For a group G, we denote the order of an element g ∈ G by ord(g). Recall that
exp(G) := lcm{ord(g) | g ∈ G, ord(g) <∞} is the exponent of G. The exponent of G may
be infinite, but we always have exp(G) ⩽ lcm(G).

Proposition 3.2.9. Let G be a group with exp(G) < ∞ and ω ∈ C a primitive root of
unity ω of order exp(G). Then Q(ω) realizes G.

Proof. For any finite subgroup F of G we have that exp(F )| exp(G) by definition. Thus,
Q(ω) contains a primitive exp(F )-th root of unity for any finite subgroup F , which suffices
to realize every linear representation of F by the Brauer induction theorem, see [Ser77,
12.3].

We will also need the following generalization of a well-known notion from field theory
that will allow us to invoke Proposition 3.2.6:

Definition 3.2.10. Let D be a division ring of characteristic 0 and K ⩽ Z(D) a subfield
of its center. We call K totally algebraically closed in D if for every field extension L/K
the ring D ⊗K L is a domain.

A reader well-versed in field theory will notice that being relatively algebraically closed
usually means something else and that what we call a totally algebraically closed extension
is called a regular extension in the literature. We make this deliberate choice since the
term “regular” is already attached to two other concepts of relevance to this thesis. There
should be no potential for confusion as we are exclusively working in characteristic 0 in
this chapter, where an extension D/K is totally algebraically closed in our sense if and
only if it is totally algebraically closed in the usual sense.

Checking whether a given central subfield K of a division ring D is totally algebraically
closed reduces to understanding the base change to the algebraic closure of K:

Theorem 3.2.11 ([CD80, Corollary 6]). Let D be a division ring of characteristic 0 and
K ⩽ Z(D) a subfield of its center. Then K is totally algebraically closed in D if and only
if D ⊗K K is a division ring.

In [Jai19c], Jaikin-Zapirain has studied the base change from Q to C in the Lück
approximation and the strong Atiyah conjecture for sofic groups, showing that the latter
holds over C if it holds over Q. He achieves this by showing that for a sofic group G the
∗-regular closure RCG coincides with Ore(RQ ⊗Q C) and is thus obtained via the type of
central base change of a semisimple algebra studied in the previous section. In the final
step, he uses the assumption that the strong Atiyah conjecture holds over Q to apply the
special case of Theorem 3.2.11 where K = K = Q. The first part of this proof applies
more generally:

Theorem 3.2.12. Let G be a sofic group with lcm(G) < ∞. Let K ⩽ L ⩽ C be
subfields closed under complex conjugation. Then the inclusion KG ↪→ LG extends to an
isomorphism

Ore(RKG ⊗K L)
∼=−→ RLG.

If the field extension L/K is algebraic, the same statement holds also without applying
Ore(?).
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Proof. The inductive strategy used to show that RCG ∼= Ore(RQG ⊗Q C) in the proof of
[Jai19c, Theorem 10.7 (2)] can be applied verbatim to the more general situation in which
Q is replaced by K and C is replaced by L. Specific properties of Q are only used to
conclude that extending the coefficients of a division ring from Q to some extension field
does not introduce zero divisors, which is not needed for our purposes (and also far from
true in our more general setting).

The second statement appears in the proof of [Jai19c, Theorem 10.7 (2)] in the induc-
tive step for the algebraic closure and again does not use any specific properties of the
base field.

We can now put the pieces together and obtain a base change result for the algebraic
Atiyah conjecture in the presence of sufficiently many roots of unity:

Theorem 3.2.13. Let G be a sofic group with lcm(G) <∞ and K ⩽ Q a subfield closed
under complex conjugation. Assume that K realizes G and that G satisfies the algebraic
Atiyah conjecture over Q. Then G satisfies the algebraic Atiyah conjecture over every
L ⩽ C that contains K and is closed under complex conjugation.

Proof. We consider the following commutative diagram, where all maps are induced from
the corresponding embedding of rings:⊕

F⩽G
|F |<∞

K0(KF ) K0(RKG)

⊕
F⩽G
|F |<∞

K0(QF ) K0(RQG) K0(RKG ⊗K Q)

f1

f2
f5

f3

f4

By Lemma 3.2.8 combined with the assumption that K realizes G, the map f2 is an
isomorphism and in particular surjective. The map f3 is surjective since G satisfies the
algebraic Atiyah conjecture over Q. The map f4 is an isomorphism as it is induced by
the map RKG ⊗K Q → RQG, which is an isomorphism by Theorem 3.2.12 applied to
the algebraic extension Q/K. Taken together, these facts imply that the concatenation
f−1
4 ◦ f3 ◦ f2 of the maps along the left and lower edge of the diagram is surjective. By
commutativity, we conclude that also the concatenation f5◦f1 of the maps along the upper
and right edge is surjective. In particular, the map f5 is surjective.

Since G satisfies the algebraic Atiyah conjecture over Q, it also satisfies the strong
Atiyah conjecture over Q by Theorem 3.1.4 and Proposition 2.5.2. As opposed to the
algebraic Atiyah conjecture, the strong Atiyah conjecture clearly descends to subfields,
so that it holds over every subfield of Q. We conclude from Proposition 2.4.6 that RKG

and RKG ⊗K Q ∼= RQ are both semisimple. Note that a semisimple ring is in particular
von Neumann regular and hence, by Proposition 1.4.5, coincides with its localization at
the non-trivial zero divisors. We have thus identified f5 as the map ΦQ

K appearing in
Proposition 3.2.6 for the semisimple ring R = RKG and L = Q. In particular, f5 is also
injective, which means that the surjectivity of f5 ◦f1 implies that f1 is surjective. We have
thus verified that the algebraic Atiyah conjecture for G holds over K and are left to show
that this extends to all fields L between K and C.

If Mn1(D1) ⊕ · · · ⊕Mns(Ds) is the Artin–Wedderburn decomposition of RKG, then,
using Proposition 3.2.6, we obtain as a consequence of the surjectivity of ΦQ

K that Di⊗KQ
is a domain for every i = 1, . . . , s. By Theorem 3.2.11, the field K is totally alge-
braically closed in each of the Di. We are now in a position to apply the other direc-
tion of Proposition 3.2.6 to any extension L/K as in the statement of the theorem. In
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that case, since K is totally algebraically closed in each of the Di, we conclude that
the map ΦLK : K0(RKG) → K0(Ore(RKG ⊗K L)) is surjective. Another application of
Theorem 3.2.12, this time to the extension L/K, yields that Ore(RKG ⊗K L) → RLG

is an isomorphism of rings. Combined with the surjectivity of ΦLK , we conclude that
K0(RKG) → K0(RLG) is surjective.

The situation we have arrived at can be summarized in the following commutative
diagram, where the upper horizontal map is surjective since we have already verified above
that the algebraic Atiyah conjecture for G holds over K:⊕

F⩽G
|F |<∞

K0(KF ) K0(RKG)

⊕
F⩽G
|F |<∞

K0(LF ) K0(RLG)

Since the diagram is commutative, we read off that the lower horizontal map is sur-
jective, which is precisely the statement of the algebraic Atiyah conjecture for G over
L.

Corollary 3.2.14. Let G be a sofic group such that lcm(G) <∞. If G satisfies the center-
valued Atiyah conjecture over Q, then G satisfies the center-valued Atiyah conjecture over
any K ⩾ Q(ω) that is closed under complex conjugation, where ω is a primitive exp(G)-th
root of unity. In particular, it satisfies the center-valued Atiyah conjecture over C.

Proof. The field Q(ω) realizes G by Proposition 3.2.9, hence the corresponding statement
for the algebraic Atiyah conjecture follows from Theorem 3.2.13. Now use the equivalence
to the center-valued Atiyah conjecture proved in Theorem 3.1.4.

While Corollary 3.2.14 allows us to deduce the center-valued Atiyah conjecture over
most subfields of C once we know it for Q, in certain situations the existence of sufficiently
many roots of unity may not be guaranteed. For this reason, we also want to mention
the following result, which allows passing to purely transcendental extensions without any
assumption on the base field.

Proposition 3.2.15. Let G be a sofic group such that lcm(G) < ∞. Let K ⩽ C be
a subfield and assume that G satisfies the algebraic Atiyah conjecture over K. Then G
satisfies the algebraic Atiyah conjecture over every purely transcendental extension L of
K. The corresponding statements hold for the center-valued Atiyah conjecture.

Proof. As in the proof of Theorem 3.2.13, we conclude from the assumption that RKG is
semisimple. Take its Artin–Wedderburn decomposition to be Mn1(D1) ⊕ · · · ⊕Mns(Ds)
and choose a transcendence basis X of L over K. Then Theorem 3.2.12 implies that

RLG
∼= Ore(RKG ⊗K L) ∼= ⊕s

i=1Mni(Ore(Di ⊗K K(X)).

Since Di ⊗K K(X) embeds into the domain Di(X), i.e., the ring of rational functions
in central indeterminants X with coefficients in Di, it is itself a domain for i = 1, . . . , s.
We now deduce from Proposition 3.2.6 that the canonical map K0(RKG) → K0(RLG) is
surjective, which finishes the proof exactly as in the proof of Theorem 3.2.13.

Corollary 3.2.16. Let K be a subfield of C that

(1) is a purely transcendental extension of a subfield of Q, or
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(2) contains all roots of unity.

Then the center-valued Atiyah conjecture over K is true for all elementary amenable
extensions of pure braid groups, of right-angled Artin groups, of primitive link groups, of
cocompact special groups, or of products of such, assuming that the lcm of the orders of
their finite subgroups is finite. In particular, the center-valued Atiyah conjecture over C
holds for these groups.

Proof. First note that all groups in the classes under consideration are residually elemen-
tary amenable, as is explained in the proof of [KLS17, Corollary 4.6], and in particular sofic.
IfK ⩽ Q, then the center-valued Atiyah conjecture overK holds by [KLS17, Corollary 4.6].
It extends to purely transcendental extensions by Proposition 3.2.15 and Theorem 3.1.4
and holds for subfields of C that contain all roots of unity by Corollary 3.2.14.

3.3 The algebraic Atiyah map and rkZ(K0(RKG))

Given that the algebraic Atiyah conjecture highlights the important role played by the
map colimK0(KF ) → K0(RKG), we will now take a closer look at this map and derive
unconditional lower bounds on the rank of its image and codomain. These bounds are
obtained via an extension of the methods used in [Lüc02, p. 9.5]to detect non-trivial ele-
ments in G0(CG) for amenable groups. They match the formula for the rank of K0(RKG)
that is implied by the algebraic Atiyah conjecture and, in the opposite direction, if these
bounds are attained the weak Atiyah conjecture holds.

The lower bound on rkZ(K0(RKG)) will be expressed in terms of the following gener-
alization of conjugacy that is defined in the presence of finite subgroups:

Definition 3.3.1. Let K ⩽ C be a field. Fix an integer m ⩾ 1 and a primitive m-th
root of unity ζm ∈ C. Let K(ζm) ⩾ K be the Galois extension obtained by adjoining ζm
to K and denote the Galois group of this extension by Γ(m,K). Identify Γ(m,K) with
a subgroup of Z/m× by mapping σ ∈ Γ(m,K) to the unique element u(σ) ∈ Z/m× such
that σ(ζm) = ζ

u(σ)
m . Two elements g1, g2 ∈ G of finite order are called K-conjugate if

for some, and hence all, positive integers m with gm1 = gm2 = 1 there exists an element
σ ∈ Γ(m,K) such that gu(σ)1 and g2 are conjugate in G.

For example, if K = C, then the extension K(ζm) ⩾ K is trivial and so is Γ(m,K),
which means that two elements of G are C-conjugate if and only if they are conjugate.
Two elements of G are Q-conjugate if and only if the cyclic subgroups they generate are
conjugate.

Definition 3.3.2. Let G be a group and K ⩽ C a field. Denote by con(G) the set of
conjugacy classes (g) of elements g ∈ G. Furthermore, denote by conK(G)f the set of
K-conjugacy classes (g)K of finite order elements g ∈ G and by conK(G)f,fc the subset of
conK(G)f of those K-conjugacy classes that are finite.

For a group homomorphism f : G → G′ we get induced maps on conK(G), conK(G)f
and conK(G)f,fc by applying f to any representative of a conjugacy class.

Informally speaking, the larger the field K, the smaller the Galois group Γ(m,K) and
thus the more K-conjugacy classes exist. More precisely, if K is a subfield of L, then we
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can consider the following diagram of fields:

L(ζm)

K(ζm) L

K(ζm) ∩ L

K

By standard Galois theory, see [Lan02, Theorem VI.1.12], there is an isomorphism

Gal(L(ζm)/L) → Gal(K(ζm)/L ∩K(ζm)).

As a consequence, the group Gal(L(ζm)/L) is a subgroup of Gal(K(ζm)/K) and this
containment is compatible with the identification of the latter group with Z/m×. In
particular, every K-conjugacy class of G is a disjoint union of L-conjugacy classes.

We will now consider linear combinations of conjugacy classes, which will allow us to
study the way K-conjugacy classes split into L-conjugacy classes in more detail:

Definition 3.3.3. Let G be a group and K ⩽ C a field. Denote by classK(G), classK(G)f ,
and classK(G)f,fc the K-vector spaces with bases con(G), conK(G)f , and conK(G)f,fc,
respectively.

Since it is a likely source of confusion, the reader should pause at this point and take
note of the fact that while the basis of classK(G) consists of ordinary conjugacy classes in
G, the bases of classK(G)f and classK(G)f,cf consist of K-conjugacy classes.

If K ⩽ L ⩽ C are fields, we can consider the K-linear map

cLK : classK(G)f → classL(G)f
(g)K 7→

∑
(h)L∈conL(G)f

(h)L.

The map cLK is well-defined since (g)K can split up into the at most finitely many L-
conjugacy classes (g)L, (g2)L, . . . , (gn)L, where n is the order of g. It is also injective since
every element of G of finite order lies in exactly one K-conjugacy class and every element
in its L-conjugacy class shares the sameK-conjugacy class. We also define analogous maps
on classK(G)f,cf and observe that these are compatible with the projections classK(G)f ↠
classK(G)f,cf .

We further consider the chain of inclusions

classK(G)f
cCK
↪−→ classC(G)f ↪→ classC(G) = classK(G)⊗K C.

It is clear from the definition of cCK that its image consists purely of elements of classC(G)
that are K-linear combinations of the basis elements con(F ). We will view classK(G)f as
a K-subspace of classK(G) in this way.

After this setup, we can now study the following entirely algebraic trace-like function
on KG:

Definition 3.3.4. Let G be a group and K a field. The universal trace on KG is the
map truKG : KG→ classK(G) given by

truKG
(∑
g∈G

λgg

)
:=
∑
g∈G

λg(g).



3.3. The algebraic Atiyah map and rkZ(K0(RKG)) 59

The universal trace is clearly natural in G and can be extended to square matrices
A ∈Mn(KG) by setting

truKG(A) :=
n∑
i=1

truKG(Aii).

Definition 3.3.5. Let G be a group and K a field. The Hattori–Stallings rank HSKG of
a finitely generated projective KG-module P is defined to be truKG(A), where A is any
idempotent in Mn(KG) such that the image of the map rA : KGn → KGn given by right
multiplication by A is KG-isomorphic to P .

The Hattori-Stallings rank is well-defined (see [Lüc02, (6.4)]). Since a representative of
a direct sum of modules can be taken to be a block diagonal matrix, the Hattori–Stallings
rank induces the following Hattori–Stallings homomorphism:

K0(KG)⊗Z K
HSKG−−−−→ classK(G)

[P ]⊗ λ 7−−−−→ λ ·HSKG(P ).

The Hattori–Stallings homomorphism is natural in G and K. For a finite group F , it
is an isomorphism onto its image:

Lemma 3.3.6. Let F be a finite group and K a field of characteristic 0. Then

K0(KF )⊗Z K
HSKF−−−−→ classK(F )

is an isomorphism onto its image classK(F )f .

Proof. While the proof is that of [BLR08, Lemma 5.1], it is important to note that the
statement of that lemma is not correct: In our notation, it claims that classK(F ) =
classK(F )f , which is not true in general since the left-hand side has as dimension the
number of conjugacy classes, whereas the right-hand side has as dimension the number
of K-conjugacy classes. A concrete counterexample is given by the alternating group A4,
which has 4 (C-)conjugacy classes, but only 3 different Q-conjugacy classes.

If one takes the colimit over all finite subgroups of a potentially infinite group G, the
Hattori–Stallings homomorphisms for the individual subgroups assemble to an isomor-
phism onto classK(G)f :

Lemma 3.3.7 ([BLR08, Lemma 5.2]). Let G be a group and K a field of characteristic 0.
Then the composite

hK : colim
F⩽G
|F |<∞

K0(KF )⊗Z K
aK⊗idK−−−−−→ K0(KG)⊗Z K

HSKG−−−−→ classK(G)

is an isomorphism onto its image classK(G)f .

We will now show that the following diagram is commutative by proving that the
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subdiagrams (1) through (7) are commutative:

colimK0(KF ) classK(G)f classK(G)f,cf

colimK0(CF ) classC(G)f classC(G)f,cf

K0(KG) K0(CG) classC(G) classC(G)cf

K0(RKG) K0(N (G)) Z(N (G))Z/2 Z(N (G))

K0(U(G))

hK

aK

(1) (2)cCK

(3) aC

hC

(4) (5)

(6) (7)

HSCG

k

∼=

dimu
N (G) j

We will introduce the maps that make up the diagram during our verification of its
commutativity.

The maps in square (1) are obtained by restricting the map hK (resp. hC) introduced
in Lemma 3.3.7 to colimK0(KF ) and corestricting it to its image. It commutes since
HSKG and aK are natural in K.

The maps that make up the squares (2) and (5) have already been introduced above,
where they have also been seen to commute.

The subdiagrams (3) and (6) clearly commute since all maps are induced from the
respective inclusions of rings. That K0(N (G)) → K0(U(G)) is an isomorphism is the
content of [Rei01, Theorem 3.7].

The square (4) is introduced and proved to be commutative in [Lüc02, Theorem 9.49],
where the maps aC and hC are called a and h, respectively, and additionally the functor
?⊗Z C is applied to the left vertical map.

The entire subdiagram (7) is introduced and proved to be commutative in [Lüc02,
Lemma 9.56]. Furthermore, it is shown there that j, k, and dimu

N (G) are injective.
Having checked the commutativity of the diagram, we can now prove the main result

of this section:

Theorem 3.3.8. Let G be a group and K ⩽ C a subfield closed under complex conjugation.
Set rKG := rkZ(K0(RKG)). Then:

(a) rKG ⩾ | conK(G)f,cf |.

(b) If G satisfies the center-valued Atiyah conjecture over K, then rKG = | conK(G)f,cf |.

(c) If rKG = | conK(G)f,cf |, then G satisfies the weak Atiyah conjecture over K.

Proof. (a) According to the commutative diagram, the map u : colimK0(KF ) → Z(N (G))
factors through K0(RKG). We will thus obtain a lower bound for rKG from any lower
bound on the rank of the image im(u).

We conclude from Lemma 3.3.7 that the image of the Z-linear map

hk : colimK0(KF ) → classK(G)f

generates the codomain as a K-vector space. Following along the upper and right-hand
edge of the diagram, we thus read off that im(u) generates a K-subspace of Z(N (G)) of
dimension | conK(G)f,cf |. But this is only possible if

rkZ(im(u)) ⩾ | conK(G)f,cf |.
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(b) This can be extracted from [KLS17, Lemma 3.2 & 3.3] by unraveling the use of
Galois descent and rephrasing it in terms of K-conjugacy.

Alternatively, it is possible to argue in a different way, which will additionally allow
us to identify K0(RKG) with im(u). If the center-valued Atiyah conjecture holds, then
RKG is semisimple and we can use [Lüc02, Lemma 10.87] to conclude that the map
K0(RKG) → K0(U(G)) is injective. While this result is formulated only for DCG, its proof
only uses that DCG is a semisimple ring between KG and U(G) and that every e ∈ U(G)
that commutes with every element of DCG already commutes with every element of CG.
While the latter is tautological for DCG, it remains true for RKG since C is central in
U(G).

Since dimu
N (G) and j are also injective and G satisfies the algebraic Atiyah conjecture

over K by Theorem 3.1.4, we arrive at the epi-mono factorization

colimK0(KF ) ↠ K0(RKG) ↪→ Z(N (G)).

The uniqueness of this factorization implies that K0(RKG) = im(u) when viewed as sub-
groups of Z(N (G)).

(c) Our proof of (a) obtained a lower bound of | conK(G)f,cf | for rkZ(im(u)). Since
u factors through the algebraic Atiyah map colimK0(KF ) → K0(RKG), the rank of the
image of this map also satisfies the lower bound. By the assumption, the image has full
rank, which means that the algebraic Atiyah map is rationally surjective. This implies the
weak Atiyah conjecture by Theorem 3.1.6.

3.4 Unit-regularity of RKG

Continuing our unconditional study of the ring RKG, we now focus on the following
stronger notion of von Neumann regularity:

Definition 3.4.1. A ring R is called unit-regular if for every x ∈ R there is a unit u ∈ R×

such that xux = x.

Example 3.4.2. The following rings are unit-regular:

• semisimple rings;

• U(G), see [Rei01, Proposition 2.1(v)].

In particular, for a group G and a subfield K ⩽ C closed under complex conjugation,
the ∗-regular closure RKG is unit-regular if the strong Atiyah conjecture holds for G over
K as a consequence of Proposition 2.4.6. This should not come as a surprise given the
following long-standing open problem:

Open Problem (Handelman, [Goo91, Open Problem 48]). Is every ∗-regular ring unit-
regular?

Since RKG is ∗-regular, it is a natural candidate to validate this open question on:

Open Problem ([AG17, Question 6.4]). LetK ⩽ C be countable and closed under complex
conjugation, and let G be a group. Is RKG unit-regular?

The following theorem, which is mentioned in [AG17], is a direct consequence of the
general unit-regularity result [GM88, Corollary 5.3], which applies to von Neumann regular
K-algebras with a faithful rank function for every uncountable field K:

Theorem 3.4.3. Let K ⩽ C be uncountable and closed under complex conjugation, and
let G be a group. Then RKG is unit-regular.
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A von Neumann regular K-algebra with a faithful rank function for a countable field K
will not necessarily be unit-regular, see [CL90] for the construction of counterexamples for
any such field. In light of the general unit-regularity result for uncountable fields and the
genericity of the counterexamples for countable fields, an extension of Theorem 3.4.3 to
at least some countable fields would provide some evidence that it should hold in general.

In the special case of RKG for a sofic group G, we can slightly improve upon Theo-
rem 3.4.3 and provide examples of countable fields K for which RKG is unit-regular. Since
we will make use of the part of the unit-regularity criterion underlying the proof of [GM88,
Corollary 5.3] that is not a cardinality argument, we repeat its short proof for the sake of
completeness:

Lemma 3.4.4 ([GM88, Lemma 5.1]). Let R be a von Neumann regular ring. Suppose
that for every x, y ∈ R there exists a unit u ∈ R× such that x − u and y − u−1 are both
units. Then R is unit-regular.

Proof. Let x ∈ R be given and choose y ∈ R such that xyx = x. By assumption, there is
a unit u ∈ R× such that x− u and y − u−1 are both units. Then

x(u−1 − y)u = x− xyu = xy(x− u),

and hence we get that the unit v := (u−1 − y)u(x− u)−1 satisfies

xvx = x(u−1 − y)u(x− u)−1x = xy(x− u)(x− u)−1x = xyx = x.

Since x was arbitrary, we conclude that R is unit-regular.

The following lemma is a consequence of Jaikin-Zapirain’s solution to the algebraic
eigenvalue conjecture in [Jai19c, Corollary 1.5]:

Lemma 3.4.5. Let L ⩽ C be closed under complex conjugation and G a sofic group. Then
a number λ ∈ C that is transcendental over L cannot be an eigenvalue of x ∈ RLG, i.e.,
the element x− λ is invertible in RL(λ)G.

Proof. Considering x as a 1×1 matrix, we obtain from [Jai19c, Corollary 1.5] that x−λ is
invertible in U(G). Since RL(λ)G contains RLG and λ, it also contains x−λ. Furthermore,
as a von Neumann regular ring, it is divison closed in U(G) by 1.7.5, and thus (x−λ)−1 ∈
RL(λ)G.

Theorem 3.4.6. Let K ⩽ C be of infinite transcendence degree over Q and closed under
complex conjugation and let G be a sofic group. Then RKG is unit-regular.

Proof. We will use Lemma 3.4.4 and thus consider two arbitrary elements x, y ∈ RKG.
By the explicit construction of the ∗-regular closure described in Remark 1.7.7, every

fixed element of RKG can be obtained from finitely many elements of KG by applying
ring operations and taking relative inverses finitely many times. This allows us to find a
finitely generated field extension L/Q, L ⩽ K such that x, y ∈ RLG ⩽ RKG, which we can
assume to be closed under complex conjugation.

As a finitely generated extension, L has finite transcendence degree over Q. Thus, by
our assumption on K, there exists λ ∈ K that is transcendental over L. We can now apply
Lemma 3.4.5 to x and λ and obtain that x − λ is a unit in RL(λ)G ⩽ RKG. In the same
way, we obtain that y − λ−1 is also a unit in RKG, which concludes the proof.

Example 3.4.7. Since π is transcendental, its powers 1, π, π2, . . . are linearly independent
over Q. By the Lindemann–Weierstrass theorem (see [Bak75, Theorem 1.4]), the num-
bers e, eπ, eπ2

, . . . are algebraically independent over Q. Thus, for the countable field
K = Q(e, eπ, eπ

2
, . . . ) and every countable sofic group G, the ring RKG is unit-regular by

Theorem 3.4.6.
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Whereas most von Neumann regular rings appearing in practice have torsion-free K0,
arbitrary countable abelian torsion groups can arise as subgroups of K0(R) for a unit-
regular ring R, see [Goo95]. If G satisfies the strong Atiyah conjecture over K, then RKG

is semisimple by Proposition 2.4.6, and hence K0(RKG) is a torsion-free abelian group.
We are thus led to the following question, which is a priori weaker than the strong Atiyah
conjecture:

Open Problem. Let G be a group and K ⩽ C a subfield closed under complex conjugation.
Is K0(RKG) torsion-free?

For sofic groups, we can at least show that in order to answer this question for all fields
K ⩽ C it suffices to prove the strong Atiyah conjecture over Q:

Proposition 3.4.8. Let G be a sofic group and assume that G satisfies the strong Atiyah
conjecture over Q. Then RKG is unit-regular and K0(RKG) is torsion-free for every
K ⩽ C that is closed under complex conjugation conjugation.

Proof. The assumption on G implies by Proposition 2.4.6 that RQ[G] is semisimple. As-
suming for the moment that K/Q is a finitely generated extension, we obtain from The-
orem 3.2.12 an isomorphism Ore(RQ[G] ⊗Q K)

∼=−→ RKG of semisimple rings, which are
always unit-regular and have torsion-free K0.

If K/Q is now taken to be any extension, it can be expressed as the directed union of
its finitely generated subextensions, and thus RKG is a directed union of semisimple rings.
Since K0 commutes with and unit-regularity is preserved under directed unions, the result
follows.





Chapter 4

Agrarian invariants and
two-generator one-relator groups

This chapter is based on the paper “The agrarian polytope of two-generator one-relator
groups” [HK20], the corresponding preprint [HK19b], and the preprint “Agrarian and L2-
invariants” [HK19a], all of which report on joint work with Dawid Kielak.

The story of L2-invariants does not end with the L2-Betti numbers introduced in Sec-
tion 2.3, but rather continues with other examples such as L2-torsion and Novikov–Shubin
invariants. In [FL19; FL17], Friedl and Lück added twisted L2-Euler characteristics, uni-
versal L2-torsion, and the L2-polytope to the list of L2-invariants. While their construc-
tions have a very algebraic flavor throughout and, assuming the strong Atiyah conjecture,
mostly play out within the Linnell division ring DQG, certain crucial steps rely on input
from functional analysis.

In this chapter, we will propose fully algebraic analogues of their invariants starting
with nothing more than a ring homomorphism from a group ring to any division ring D.
Recall that a group G is agrarian if its integral group ring ZG embeds in a division ring.
This terminology was introduced in [Kie20], but the idea dates back to Malcev [Mal48],
and is a central theme of the work of Cohn [Coh95]. Taking a specific agrarian embedding
ZG ↪→ D for some division ring D, or more generally an agrarian map ZG → D, allows
us to define the notion of (D-)agrarian Betti numbers: when G acts cellularly on a CW-
complex X, we simply compute the D-dimension of the homology of D⊗ZG C∗, where C∗
is the cellular chain complex of X. When G is torsion-free and satisfies the strong Atiyah
conjecture over Q, D can be taken to be DKG and the D-agrarian Betti numbers are
precisely the L2-Betti numbers. We show in Proposition 4.2.8 that for two non-equivalent
agrarian embeddings, there is always a CW complex whose agrarian Betti numbers with
respect to the two embeddings differ.

When the agrarian Betti numbers vanish and G acts on X cocompactly, we define
the agrarian torsion, in essentially the same way as Whitehead or Reidemeister torsion is
defined. Again, when division ring D is taken to be Linnell’s division ring DKG, we obtain
an invariant very closely related to the universal L2-torsion. In fact, in this case agrarian
and universal L2-torsion often contain the same amount of information by a theorem of
Linnell–Lück [LL18].

The vanishing of L2-Betti numbers is guaranteed when X fibres over the circle due to
a celebrated theorem of Lück; the agrarian Betti numbers also vanish in this setting, as
we show in Theorem 4.2.12, provided that the agrarian map used satisfies the additional
technical condition of being rational (see Definition 4.1.5). Let us remark here that every
agrarian map can be turned into a rational one, whose target we will usually denote by
Dr.

The final invariant, the agrarian polytope, is a little more involved. In the context of
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L2-invariants, one can write the universal L2-torsion as a fraction of two elements of a
(twisted) group ring of the free part of the abelianization of G. Both the numerator and
the denominator can be converted into polytopes, using the Newton polytope construction,
and the L2-torsion polytope is defined as the formal difference of these Newton polytopes.
The L2-torsion polytope naturally lives in the polytope group of G, defined in [FL17] and
investigated further by Funke [Fun19]. In the agrarian setting it is precisely the notion of
rationality which allows us to express the agrarian torsion as a fraction of two elements of
a (twisted) group ring of the free part of the abelianization of G, in complete analogy to
the L2 case. The agrarian polytope is then constructed in the same way as the L2-torsion
polytope.

An advantage of agrarian invariants over L2-invariants lies in the fact that they are
defined for a group G as long as ZG maps to any division ring – not necessarily the one
known to exist if G were to satisfy the Atiyah conjecture. Even when we require the
agrarian map to be injective, the class of agrarian groups is a priori larger than the class
of torsion-free groups satisfying the Atiyah conjecture.

Furthermore, even if one is not interested in this additional generality, the perspective
offered by agrarian invariants can provide more formal answers to questions about the
origins of the many convenient properties enjoyed by the L2-invariants: Are they rooted
in the group ring ZG, potentially applying on a more fundamental level, or are they specific
to the particular analytic constructions involved in the definitions of L2-invariants? This
question is picked up in Section 4.7.1.

An inconvenience that comes with our more general approach is that for a torsion-free
group G not known to satisfy the Atiyah conjecture, there is no longer a canonical choice
of an agrarian embedding of G. In general, different agrarian embeddings will lead to
differing values for the associated agrarian invariants, which makes it important to keep
track of the embedding used to define them.

After the more theoretical groundwork has been laid, we present an application of
agrarian invariants to two-generator one-relator groups in Section 4.6. In [FT20], Friedl–
Tillmann assigned a marked polytope to a fixed presentation of a torsion-free two-generator
one-relator group. By recognizing this polytope as an agrarian polytope, we are able to
prove that their construction does in fact not depend on the chosen presentation. We can
also relate the thickness of the polytope in a given direction to another agrarian invariant,
which in the case of two-generator one-relator groups will turn out to compute a measure
of complexity for possible HNN splittings of the group.

After the work on the main results of this chapter had been concluded, the strong
Atiyah conjecture for torsion-free one-relator groups was proved by Jaikin-Zapirain and
López-Álvarez in [JL20]. We refer the reader to Section 4.7.2 for a discussion of alternative
proofs of the main results that have become possible as a result of this achievement.

4.1 Agrarian maps and groups
Let G be a group and denote by ZG the integral group ring of G.

Definition 4.1.1. Let G be a group. A ring homomorphism α : ZG → D to a division
ring D is called an agrarian map for G. A morphism between two agrarian maps is an
inclusion of division rings that together with the maps from ZG forms a commutative
triangle.

While many formal properties of the agrarian Betti numbers we will introduce below
hold in the situation of an arbitrary agrarian map, concrete calculations and definitions
of higher invariants usually require the map to be injective:
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Definition 4.1.2. Let G be a group. An agrarian embedding for G is an injective agrarian
map. IfG admits an agrarian embedding (into a division ringD), it is called a (D-)agrarian
group.

An agrarian group G is necessarily torsion-free; also, it satisfies the Kaplansky zero
divisor conjecture, that is, ZG has no non-trivial zero divisors.

At present, there are no known torsion-free examples of groups which are not agrarian.
There is however a plethora of positive examples of agrarian groups:

• Torsion-free groups satisfying the strong Atiyah conjecture over Q are agrarian as
they embed into the Linnell division ring D(G) := DQG by Corollary 2.4.7.

• Extensions of the groups from 1 by a torsion-free amenable group A are agrarian,
assuming that the crossed products D ∗ A for an arbitrary division ring D do not
contain non-trivial zero divisors.

• Countable fully residually agrarian groups are again agrarian by an ultraproduct
construction.

A more comprehensive list of examples and inheritance properties, including proofs, is
given in [Kie20, Section 4]. It should be noted however that some of the results mentioned
there have meanwhile been subsumed by the recent advancements of Jaikin-Zapirain and
López-Álvarez on the strong Atiyah conjecture in [JL20]. More specifically, as stated in
Theorem 2.4.27 (e3), the class of torsion-free groups satisfying the strong Atiyah conjecture
is now known to be closed under extensions by locally indicable groups, improving tremen-
dously upon previous considerations about extensions of agrarian groups by biorderable
groups. Furthermore, the new result recovers the classical result of [LL78] that torsion-free
one-relator groups are agrarian.

4.1.1 The rationalization of an agrarian map
The construction of a crossed product out of a short exact sequence of groups as in Sec-
tion 1.1 can be extended to agrarian maps. This technique is formulated in the following
lemma, which will be our main source of crossed products.

Lemma 4.1.3. Let α : ZG → D be an agrarian map for a group G. Let N ⩽ G be a
normal subgroup and set Q := G/N . Then α restricts to an agrarian map ZN → D
for N that is equivariant with respect to the conjugation action of G. Moreover, for any
set-theoretic section s : Q→ G of the quotient map, this restriction of α extends to a ring
homomorphism

ZN ∗s Q→ D ∗s Q,

where ZN ∗s Q is the crossed product structure constructed out of s in Lemma 1.1.3 and
D ∗sQ is a crossed product structure with the same basis elements and action and twisting
maps extended from those of ZN ∗ Q. The ring D ∗s Q is independent of the choice of
the section s up to ring isomorphism and the basis of the crossed product structure is
independent up to a diagonal change of basis, i.e., the ring isomorphism can be chosen to
map

∑
q∈Q uqq to

∑
q∈Q vqq such that for every q ∈ Q, the elements uq and vq differ only

by an element of D×.

Proof. By definition, α restricts to an agrarian map for N . Note that an element g ∈ G
acts on D by conjugation with α(g), which is always invertible in D since g is invertible in
ZG. Since N is normal in G, the conjugation action of G on ZG preserves ZN and hence
induces an action on ZN . The restricted agrarian map α : ZN → D is equivariant with
respect to these actions by construction.
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Let s : Q → G be a set-theoretic section of the group epimorphism pr : G → Q and
denote by ZN ∗s Q the crossed product with the basis and structure maps associated to
the section s as in Lemma 1.1.3. Since the automorphism ZN given by conjugation by
s(q) extends to an inner automorphism of D ⊃ ZN , we can apply the crossed product
construction of Proposition 1.1.2 also to D and Q in such a way that the map (ZN)∗sQ→
D ∗s Q extends ZN → D.

Let s1 and s2 be two set-theoretic sections of pr : G→ Q. Denote byD∗s1Q andD∗s2Q
the associated crossed product structures. We claim that the map Φ: D ∗s1 Q→ D ∗s2 Q
given by ∑

q∈Q
uq · q 7→

∑
q∈Q

(uqs1(q)s2(q)
−1) · q

is a ring isomorphism. Since s1(q)s2(q)−1 ∈ G ⊂ D× for all q ∈ Q, it is clear that Φ is an
isomorphism between the underlying free D-modules and changes the coefficients by a unit
in D only. We omit the straightforward verification that Φ respects the multiplications
(see [HK19a, Lemma 2.5]).

We now consider the case of an agrarian map α : ZG→ D and a normal subgroup K ⩽
G such that G/K is a finitely generated free abelian group H. Lemma 4.1.3 then provides
us with a crossed product D ∗ H and a ring homomorphism ZG ∼= (ZK) ∗ H → D ∗ H.
Since H is free abelian, it is in particular biorderable and hence D ∗H contains no non-
trivial zero divisors (this is a standard fact following from the existence of an embedding
of D ∗H into its Malcev–Neumann completion; for details see [Kie20, Theorem 2.6]). It
then follows from Theorem 1.2.9 that D ∗H satisfies the Ore condition and thus has an
Ore division ring of fractions.

Our construction is summarized in
Definition 4.1.4. Let α : ZG → D be an agrarian map for a group G. Let K be a
normal subgroup of G such that H := G/K is finitely generated free abelian. The K-
rationalization of α is the composite agrarian map

αK : ZG ∼= (ZK) ∗H → D ∗H ↪→ Ore(D ∗H),

where Ore(D ∗ H) is the Ore division ring of fractions of the crossed product D ∗ H of
Lemma 4.1.3.

The construction of the K-rationalization of an agrarian map ZG → D of course
depends on a choice of a set-theoretic section of the projection G → G/K, which we will
assume to be fixed once and for all for any group G being considered. By Lemma 4.1.3,
at least the target division ring of the K-rationalization is independent of this choice up
to isomorphism.

Also note that the K-rationalization of an agrarian embedding is again an embedding.
The typical situation in which we consider the K-rationalization of a given agrarian

map is that where K is the kernel of the projection of G onto the free part of its abelian-
ization.
Definition 4.1.5. Let G be a finitely generated group and let α : ZG→ D be an agrarian
map for G. Denote the free part of the abelianization of G by H and the kernel of the
canonical projection of G onto H by K. For this particular choice of K, we simply call
the K-rationalization of α the rationalization and denote it by αr. The agrarian map α is
called rational if there exists a division subring D′ ⊆ D such that α is of the form

ZG ∼= ZK ∗H → Ore(D′ ∗H),

where the crossed product structure on D′ ∗H is obtained from that of the rationalization
by restriction.
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The rationalization of an agrarian map is rational with D′ = D.
The term rational is chosen to indicate that the target of a rational agrarian map

should be viewed as a division ring of rational functions in finitely many variables with
coefficients in a division ring. While the special structure of rational functions is crucial
for the development of the theory of agrarian invariants, the specific choice of the division
ring of coefficients is mostly immaterial.
Remark 4.1.6. Let G be a finitely generated group and α : ZG → D a rational agrarian
map for G. If we restrict the codomain of α to the division subring generated by the image
of α, then the resulting agrarian map will again be rational. In fact, if we denote the free
part of the abelianization of G by H and the kernel of the projection of G onto H by K,
then the division subring of D generated by α(ZG) is Ore(D′∗H), where D′ is the division
subring of D generated by α(ZK).

For later use, we record a result allowing us to pass to the “full” K-rationalization by
performing two “partial” rationalizations whenever we are given a chain K P K ′ P G of
normal subgroups:
Lemma 4.1.7. Let G be a finitely generated group with agrarian map α : ZG → D.
Denote by pr : G → H the projection onto the free part H of the abelianization of G. Let
ϕ : G → H ′ be an epimorphism onto a finitely generated free abelian group, inducing the
following commutative diagram of epimorphisms:

G H

H ′

pr

φ
φ

Denote the kernels of pr, ϕ and ϕ by K, Kφ and Kφ, respectively. Further let s and t be
sections of the epimorphisms pr and ϕ, respectively. Then

β : (D ∗t Kφ) ∗s H ′ → D ∗s◦t H∑
h′∈H′

( ∑
k∈Kφ

uk,h′ · k
)
· h′ 7→

∑
h′∈H′
k∈Kφ

uk,h′ · kt(h′)

is a ring isomorphism presersing the crossed product structures defined in terms of s and
t. It extends to an isomorphism

β : Ore(Ore(D ∗Kφ) ∗H ′)
∼=−→ Ore(D ∗H)

of division rings.
Proof. The left D-bases of (D ∗t Kφ) ∗s H ′ and D ∗s◦t H are given by k ∗ h′ and kt(h′)
respectively for k ∈ Kφ and h′ ∈ H ′. These bases are identified bijectively by β with
inverse h 7→ ht(ϕ(h)−1) · ϕ(h). It follows that β is an isomorphism of left D-modules.
Checking that β is a ring homomorphism is a tedious but direct computation that we will
omit.

Since D∗Kφ is a subring of D∗H, and since the rings have no non-trivial zero divisors,
β extends to an injection Ore(D ∗ Kφ) ∗ H ′ ↪→ Ore(D ∗ H) that contains D ∗ H in its
image. Passing to the Ore division ring of fractions, this implies that β extends to an
isomorphism Ore(Ore(D ∗Kφ) ∗H ′) → Ore(D ∗H).

4.2 Agrarian Betti numbers
From now on, G will denote a group with a fixed agrarian map α : ZG → D. Unless
indicated explicitly, all tensor products will be taken over ZG.
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4.2.1 Definition of agrarian Betti numbers
Let C∗ be a ZG-chain complex and let n ∈ Z. Viewing D as a D-ZG-bimodule via
the agrarian map α, the chain complex D ⊗ C∗ becomes a D-chain complex. Since D
is a division ring, the D-module Hp(D ⊗ C∗) is free and we can consider its dimension
dimDHp(D ⊗ C∗) ∈ N t {∞}. This leads to the following definition of agrarian Betti
numbers:

Definition 4.2.1. Let G be a group with an agrarian map α : ZG→ D and C∗ a ZG-chain
complex. For n ∈ Z, the n-th D-Betti number of C∗ with respect to α is defined as

bDn (C∗) := dimDHn(D ⊗ C∗) ∈ N t {∞},

A ZG-chain complex is called D-acyclic if all of its D-Betti numbers are equal to 0.

If the agrarian map α is chosen to be the augmentation homomorphism

ZG→ Z ↪→ Q,

the associated agrarian Betti numbers of a ZG-chain complex C∗ reduce to the ordinary
Betti numbers of the quotient complex C∗/G. In the special case where G satisfies the
strong Atiyah conjecture over Q and the agrarian map is chosen to be the agrarian embed-
ding ZG ↪→ D(G) = DQG, the D-Betti numbers of any ZG-chain complex C∗ agree with its
L2-Betti numbers b(2)∗ (C∗;G) by [FL19, Theorem 3.6 (2)]. Note that the assumption that
C∗ is projective is not used in the proof, the theorem thus holds for arbitrary ZG-chain
complexes.

We will mainly be concerned with the agrarian Betti numbers assigned to G-CW-
complexes, which are equivariant analogues of CW-complexes and very convenient models
for G-spaces. A typical example of a G-CW-complex is the universal covering of a con-
nected CW-complex X with G = π1(X).

Definition 4.2.2. Let G be a (discrete) group. A G-CW-complex is a CW-complex X
together with an implicit (left) G-action mapping p-cells to p-cells and such that any cell
mapped into itself is fixed pointwise by the action. An action satisfying these properties
is called cellular. The p-skeleton of a G-CW-complex X, denoted by Xp, is the p-skeleton
of the underlying CW-complex together with the restriction of the G-action. If X = Xp

for some p and p is minimal with this property, then X is said to be of dimension p. Any
G-orbit of a p-dimensional cell of the underlying CW-complex constitutes a p-dimensional
G-cell of X. A G-CW-complex is connected if the underlying CW-complex is connected.
The cellular (ZG-)chain complex C∗(X) is obtained from the cellular chain complex of the
underlying CW-complex by considering the induced left action by G. All differentials are
ZG-linear.

Definition 4.2.3. A G-CW-complex X is called free if its G-action is free. It is called of
finite type if for every p ⩾ 0 there are only finitely many p-dimensional G-cells in X. If
the total number of G-cells of any dimension in X is finite, the G-CW-complex X is called
finite.

Definition 4.2.4. A ZG-chain complex C∗ is called free (of finite type) if Cn is a free
(finitely generated) ZG-module for every n ∈ Z. It is called bounded if there is N ∈ N
such that Ci = 0 for i > N and i < −N .

If a G-CW-complex is free (of finite type), then its associated cellular chain complex
C∗(X) is free (of finite type). If it is finite, then its cellular chain complex is bounded and
of finite type.

We now define agrarian Betti numbers for G-CW-complexes:
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Definition 4.2.5. Let X be an G-CW-complex. For p ⩾ 0, the p-th D-Betti number of
X with respect to α is defined as

bDp (X) := bDp (C∗(X)) ∈ N t {∞}.

A G-CW-complex X is called D-acyclic if all of its D-Betti numbers are equal to 0.

If X is an G-CW-complex of finite type, then the D-Betti numbers of X will all be
non-negative integers.

4.2.2 Dependence on the agrarian map
Note that the agrarian Betti numbers may depend not only on the division ring D but
also on the particular choice of agrarian map. We will first consider a typical situation in
which two different agrarian maps define the same agrarian Betti numbers.
Remark 4.2.6. Recall that a ring homomorphism f : R→ S is called epic if g1 ◦ f = g2 ◦ f
implies g1 = g2 for any ring homomorphisms g1, g2 : S → T . Any agrarian map α : ZG→ D
factors in a canonical way through an epic agrarian map, namely the map to the division
subring D′ of D generated by α(ZG). Now any D′-module, and in particular the overfield
D, is flat as a right module over the division ring D′. Hence, we get

dimDHn(D ⊗ C∗) = dimDHn(D ⊗D′ D′ ⊗ C∗)

= dimDD ⊗D′ Hn(D
′ ⊗ C∗)

= dimD′ Hn(D
′ ⊗ C∗)

for any ZG-chain complex C∗ and n ∈ Z, i.e., D and D′ yield the same agrarian Betti
numbers. We can thus restrict our attention to epic agrarian maps when computing
agrarian Betti numbers.
Remark 4.2.7. We conclude from Remark 4.1.6 that the epic agrarian map obtained from
any rational agrarian map α : ZG → D is again rational. In fact, the division subring D′

of D considered in Definition 4.1.5 will in this case be generated by α(ZK), which is the
minimal choice.

The epic agrarian map ZG → Z → Q given by the augmentation homomorphism
always produces positive zeroth agrarian Betti numbers, whereas the zeroth agrarian Betti
numbers with respect to any other epic agrarian map is always zero, as we will see in
Theorem 4.2.9 (d). For agrarian embeddings, the situation is as follows:

Proposition 4.2.8. Let G be a finitely generated agrarian group. The agrarian Betti
numbers for any connected finite free G-CW-complex are independent of the choice of
agrarian embedding if and only if there exists an epic agrarian embedding for G that is
unique up to isomorphism.

Proof. If there is a unique isomorphism type of epic agrarian embeddings for G, then by
the preceding discussion every choice of an agrarian embedding factors through an epic
agrarian embedding of this type and hence gives the same agrarian Betti numbers even
for all ZG-complexes.

Now let ZG ↪→ D1 and ZG ↪→ D2 be non-isomorphic epic agrarian embeddings.
By [Coh95, Theorem 4.3.5] there exists an m × n-matrix A over ZG which becomes in-
vertible when viewed as a matrix over D1, but becomes singular over D2 (without loss of
generality). We realise A topologically by constructing the skeleta of a connected finite
free G-CW-complex X step by step as follows: Choose a generating set S = {x1, . . . , xk}
for G and consider the Cayley graph C(G,S) as a 1-dimensional G-CW-complex X1. We
now attach m 2-dimensional spheres to each vertex, and extend the action of G in the
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obvious way; this way we arrive at the 2-skeleton X2 of X. For every 1 ⩽ j ⩽ n, we
then attach a 3-dimensional G-cell to X2 in such a way that the resulting boundary map
C3(X) → C2(X) in the cellular chain complex of the resulting space coincides with the
matrix A. This concludes the construction of the connected finite free G-CW-complex X.

The cellular chain complex C∗(X) is concentrated in degrees 0, 1, 2 and 3 and looks
as follows:

ZGn A−→ ZGm 0−→ ZGk (x1−1,...,xk−1)−−−−−−−−−→ ZG

As A becomes invertible over D1, but singular over D2, we have

H2(X;D1) = 0 6= H2(X;D2),

and hence the D1- and D2-Betti numbers of X differ.

Translated into our setting, in [Lew74, Section V], Lewin constructs two non-isomor-
phic epic agrarian embeddings of F6, the free group on six generators. Using the previous
lemma, we conclude that the notion of the agrarian Betti numbers of an F6-CW-complex
is not well-defined. Nonetheless, we will later give examples of complexes for which the
D-Betti numbers can be shown to not depend on D.

4.2.3 Computational properties
In order to formulate and prove agrarian analogues of the properties of L2-Betti num-
bers, as collected by Lück in [Lüc02, Theorem 1.35], we have to introduce a few classical
constructions on G-CW-complexes and chain complexes.

Recall that for a free G-CW-complex X and a subgroup H ⩽ G of finite index, the
H-space resHG X is obtained from X by restricting the action to H. A free (finite, finite
type) H-CW-structure for this space can be obtained from a free (finite, finite type) G-
CW-structure of X by replacing a G-cell with |G : H| many H-cells.

If H ⩽ G is any subgroup and Y is a free H-CW-complex, then G×H Y is the H-space
G× Y /(g, y) ∼ (gh−1, hy). A free (finite, finite type) H-CW-structure of Y determines a
free (finite, finite type) G-CW-structure of G×H Y by replacing an H-cell with a G-cell.

We now consider a chain complex C∗ with differentials c∗. Its suspension ΣC∗ is the
chain complex with Cn−1 as the module in degree n and n-th differential equal to −cn−1.
If f∗ : C∗ → D∗ is a chain map between chain complexes with differentials c∗ and d∗,
the mapping cone cone∗(f∗) is the chain complex with conen(f∗) = Cn−1 ⊕Dn and n-th
differential given by

Cn−1 ⊕Dn

−cn−1 0
fn−1 dn


−−−−−−−−−−−→ Cn−2 ⊕Dn−1.

The mapping cone of f∗ fits into the following short exact sequence:

0 → D∗ → cone∗(f∗) → ΣC∗ → 0.

The following theorem covers all the properties of agrarian Betti number we will use
in computations:

Theorem 4.2.9. The following properties of D-Betti numbers hold, where we fix an
agrarian map α : ZG→ D for a group G:
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(a) (Homotopy invariance). Let f : X → Y be a G-map of free G-CW-complexes of
finite type. If the map Hp(f ;Z) : Hp(X;Z) → Hp(Y ;Z) induced on cellular homology
with integral coefficients is bijective for p ⩽ d− 1 and surjective for p = d, then

bDp (X) = bDp (Y ) for p ⩽ d− 1;

bDd (X) ⩾ bDd (Y ).

In particular, if f is a weak homotopy equivalence, we get for all p ⩾ 0:

bDp (X) = bDp (Y ).

(b) (Euler-Poincaré formula). Let X be a finite free G-CW-complex. Let χ(X/G)
be the Euler characteristic of the finite CW-complex X/G, i.e.,

χ(X/G) :=
∑
p⩾0

(−1)p · βp(X/G),

where βp(X/G) denotes the number of p-cells of X/G. Then

χD(X) :=
∑
p⩾0

(−1)p · bDp (X) = χ(X/G).

(c) (Upper bound). Let X be a free G-CW-complex. With βp(X/G) as above, for
all p ⩾ 0 we have

bDp (X) ⩽ βp(X/G).

(d) (Zeroth agrarian Betti number). Let X be a connected free G-CW-complex
of finite type and assume that the agrarian map α : ZG→ D does not factor through
the augmentation homomorphism ZG→ Z ↪→ Q. Then

bD0 (X) = 0.

(e) (Induction). Let H ⩽ G be a subgroup of G. If X is a free H-CW-complex, then
for p ⩾ 0

bDp (G×H X) = bDp (X),

where the agrarian map for H is chosen as the restriction of α to ZH.

(f) (Amenable groups). Let X be a free G-CW-complex of finite type and assume
that the agrarian map α : ZG → D is actually an agrarian embedding. Further
assume that G is amenable. Then

bDp (X) = dimD(D ⊗Hp(X;ZG)).

Proof. (a) We replace f by a homotopic cellular map. Consider the ZG-chain map

f∗ : C∗(X) → C∗(Y )

induced by f on the cellular chain complexes and its mapping cone cone∗(f∗), which
fits into a short exact sequence

0 → C∗(Y ) → cone∗(f∗) → ΣC∗(X) → 0

of ZG-chain complexes. Applying the assumptions on the map Hp(f ;Z) to the long
exact sequence in homology associated to this short exact sequence, we obtain that
Hp(cone∗(f∗)) = 0 for p ⩽ d.
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Claim. The homology of D ⊗ cone∗(f∗) vanishes in degrees p ⩽ d.

Assume for the moment that this indeed holds. SinceD⊗cone∗(f∗) = cone∗(idD⊗f∗)
and D ⊗ ΣC∗(X) = Σ(D ⊗ C∗(X)), the short sequence

0 → D ⊗ C∗(Y ) → D ⊗ cone∗(f∗) → D ⊗ ΣC∗(X) → 0

is also exact. We now consider the associated long exact sequence in homology, in
which the terms Hp(D⊗ cone∗(f∗)) for p ⩽ d vanish by the claim. The exactness of
the sequence then implies that the differentialsHp(D⊗ΣC∗(Y ))

∼=−→ Hp−1(D⊗C∗(X))
are isomorphisms for p ⩽ d and the differentialHd+1(D⊗ΣC∗(Y )) ↠ Hd(D⊗C∗(X))
is an epimorphism. Applying dimD and using the definition of the suspension then
yields the desired statement.
We are left with proving the claim. Since cone∗(f∗) is bounded below and consists
of free modules, we can inductively construct a ZG-chain homotopy equivalent ZG-
chain complex Z∗ which vanishes in degrees p ⩽ d. Tensoring with D then yields a
D-chain homotopy equivalence between D ⊗ cone∗(f∗) and D ⊗ Z∗. As Zp = 0 for
p ⩽ d, the same holds true forD⊗Z∗ and henceHp(D⊗cone∗(f∗)) = Hp(D⊗Z∗) = 0
for p ⩽ d.

(b) This is a consequence of two immediate facts: first, the Euler characteristic of a chain
complex over a division ring does not change when passing to homology; second, we
have the identity βp(X/G) = dimDD ⊗ Cp(X).

(c) This holds sinceHp(X;D) is a subquotient ofD⊗Cp(X) and the latter has dimension
βp(X/G) over D (as remarked above).

(d) If X is empty, then the claim is trivially true. Otherwise, we will first argue that,
without loss of generality, we may assume X/G to have exactly one 0-cell. Let
T be a maximal tree in the 1-skeleton of the CW-complex X/G and denote by
q : X/G → (X/G)/T the associated cellular quotient map, which is a homotopy
equivalence. Note that (X/G)/T has a single 0-cell. Let p : (X/G)/T → X/G be
a cellular homotopy inverse of q. We denote by X ′ the total space in the following
pullback of the G-covering X → X/G along p:

X X ′

X/G (X/G)/T
q

p

Alternatively, we can view X ′ as being obtained from X by collapsing each lift of T
individually to a point. Since (X/G)/T is a connected free G-CW-complex of finite
type, X → X/G is a G-covering and X is connected, the G-CW-complex X ′ is also
connected, free and of finite type. Furthermore, X ′ is G-homotopy equivalent to X
via any G-equivariant lift of the homotopy equivalence p. By Theorem 4.2.9 (a), the
D-Betti numbers of X and X ′ agree, so we may assume without loss of generality
that X has a single equivariant 0-cell.
Since X is a free G-CW-complex of finite type which has a single 0-cell, the differ-
ential c1 : C1(X) → C0(X) in its cellular chain complex is of the form

ZGn
⊕n

i=1(1−gi)−−−−−−−→ ZG
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for gi ∈ G, i = 1, . . . , n, n ∈ N for any choice of a ZG-basis of C∗(X) consisting of cells.
The image of the differential is contained in the augmentation ideal I = 〈g−1 | g ∈ G〉
of ZG, and, as X is assumed to be connected, has to coincide with it for H0(X;Z)
to be isomorphic to Z. By our additional assumption on the agrarian map, there
is thus an element in the image of the differential that does not lie in the kernel
of the agrarian map. But the image of this element is invertible in D, and hence
H0(X;D) = 0 as claimed.

(e) On cellular chain complexes, G×H? translates into applying the functor ZG⊗ZH?.
The claim thus follows from the canonical identification

D ⊗ZG ZG⊗ZH C∗(X) ∼= D ⊗ZH C∗(X).

(f) As G is agrarian, its group ring QG does not admit zero divisors (this is immediate,
since QG embeds into the same division ring D as ZG does). Since G is amenable,
we conclude from Theorem 1.2.9 that QG and hence ZG admits an Ore division
rings of fractions F . In particular, F is flat over ZG and every embedding of ZG
into a division ring, such as the agrarian embedding α : ZG ↪→ D, factors through
the natural inclusion ZG ↪→ F . We thus obtain the following for any p ⩾ 0, using
first that F ↪→ D is flat and then that ZG ↪→ F is flat:

bDp (X) = dimDHp(X;D) = dimDD ⊗F Hp(X;F )

= dimDD ⊗F F ⊗Hp(X;ZG) = dimDD ⊗Hp(X;ZG).

The behavior of L2-Betti numbers under restriction to finite-index subgroups carries
over to agrarian invariants under an additional assumption on the agrarian map:

Proposition 4.2.10. Let H ⩽ G be a subgroup of G of finite index |G : H| < ∞. Let
α : ZG→ D be an epic agrarian map for G and denote the division subring of D generated
by α(ZH) by D′. Assume that the map

Ψ: D′ ⊗ZH ZG→ D,x⊗ g 7→ x · α(g−1)

of D′-ZG-bimodules is an isomorphism. If X is a free G-CW-complex of finite type, then
for p ⩾ 0

bDp (resHG X) = |G : H| · bDp (X).

Proof. Since D′⊗ZH ZG⊗ZG C∗(X) ∼= D′⊗ZH C∗(resHG X), the map Ψ induces an isomor-
phism

D′ ⊗ZH C∗(resHG X)
∼=−→ resD′

D D ⊗ZG C∗(X)

of D′-chain complexes. Passing to agrarian Betti numbers on both sides, we obtain

bDp (resHG X) = dimD′ resD′
D Hp(D ⊗ZG C∗(X)). (4.1)

Since ZG is a free left ZH-module of rank |G : H|, the isomorphism Ψ exhibits D as a left
D′-vector space of dimension |G : H|. As a consequence,

dimD′ resD′
D V = |G : H| · dimD V

holds for any left D-vector space V . We arrive at the claimed formula by applying this
identity to the right-hand side of (4.1).
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Mapping tori

In subsequent sections, we will study invariants of CW complexes with vanishing agrar-
ian Betti numbers. In the context of L2-invariants, an extremely useful way of showing
the vanishing of L2-Betti numbers comes from a theorem of Lück [Lüc94, Theorem 2.1]
concerning mapping tori. Below, we offer a straightforward adaption of Lück’s result to
the setting of agrarian Betti numbers. If G satisfies the strong Atiyah conjecture over
Q, then our version reduces to the classical L2-formulation if one considers the agrarian
embedding ZG ↪→ D(G) into the Linnell division ring.

Definition 4.2.11. Let f : X → X be a selfmap of a path-connected space. The mapping
torus Tf of f is obtained from the cylinder X × [0, 1] by identifying (x, 1) with (f(x), 0)
for every x ∈ X. The canonical projection is the map Tf → S1 sending (x, t) to exp(2πit).
It induces an epimorphism π1(Tf ) → π1(S

1) = Z.

If X has the structure of a CW-complex with βp(X) cells of dimension p and f is
cellular, then Tf can be endowed with a CW-structure with βp(Tf ) = βp(X) + βp−1(X)
cells of dimension p for each p ⩾ 0.

Theorem 4.2.12. Let f : X → X be a cellular selfmap of a connected CW-complex X
and π1(Tf )

φ−→ G
ψ−→ Z any factorisation into epimorphisms of the epimorphism induced

by the canonical projection. Let Tf be the covering of the mapping torus Tf associated to
ϕ, endowed with the structure of a connected free G-CW-complex. Let α : ZG → D be a
rational agrarian map for G. If the d-skeleton of X (and thus of Tf ) is finite for some
d ⩾ 0, then for all p ⩽ d

bDp

(
Tf

)
= 0.

Proof. The topological part of the proof is the analogue of the proof for L2-Betti numbers,
see [Lüc02, Theorem 1.39].

By Remarks 4.2.6 and 4.2.7, we may assume that α is epic. Fix p ⩾ 0. For any n ⩾ 1,
define Gn ⩽ G to be the preimage of the subgroup n · Z ⩽ Z under ψ : G → Z, for which
we consider the induced agrarian map ZGn ↪→ ZG α−→ D. Further denote the kernel of
ψ by K and the division subring of D generated by ZK by D′. Since the agrarian map
α is epic and rational, the division subring Dn of D generated by α(ZGn) is given by
Ore(D′(Gn/K)).

Claim. For our choice of α : ZG → D and H := Gn, the map Ψ of Proposition 4.2.10 is
an isomorphism.

We first conclude the proof assuming the claim. Since Gn has index n in G, we deduce
from the claim and Proposition 4.2.10 that

bDp

(
Tf

)
=

1

n
· bDp

(
resGn

G Tf

)
. (4.2)

Reparametrizing yields a homotopy equivalence h : Tfn ≃−→ Tf/Gn of CW-complexes, where
fn denotes the n-fold composition of f . Let Tfn be the Gn-space obtained as the following
pullback, or equivalently, as the covering of Tfn corresponding to the kernel of π1(Tfn) ∼=
π1(Tf/Gn) → Gn:

Tfn resGn
G Tf

Tfn Tf/Gn

h

h
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Since h is a homotopy equivalence between base spaces of Gn-coverings, h is a Gn-
homotopy equivalence. By Theorem 4.2.9 (a), we obtain

bDp

(
Tfn
)
= bDp

(
resGn

G Tf

)
(4.3)

for p ⩾ 0. Since Tfn has a CW-structure with βp(X) + βp−1(X) cells of dimension p and
this number is finite by assumption, using Theorem 4.2.9 (c) we conclude:

bDp

(
Tf

) (4.2)
=

1

n
· bDp

(
resGn

G Tf

) (4.3)
=

1

n
· bDp

(
Tfn
)
⩽ βp(X) + βp−1(X)

n
.

Letting n→ ∞ finishes the proof of the theorem assuming the claim.
Proof of the claim. For this proof, it is instructive to reinterpret the objects we are
dealing with. Recall that D = Ore(D′(G/K)), and hence its elements are twisted rational
functions in one variable, say t, with coefficients in D′. Similarly, Dn consists of such
rational functions in a single variable tn, and the embedding Dn → D is obtained by
identifying the variable tn in the former ring of rational functions with the nth power of t
in the latter (as the notation suggests).

Now it becomes clear that Dn⊗ZGn ZG is generated by elements of the form pq−1⊗ tm
wherem ∈ {0, . . . , n−1} and where p, q are twisted polynomials in tn with q 6= 0. Therefore
we may view Dn⊗ZGn ZG as consisting of elements of the form pq−1 where q is a non-zero
polynomial in tn, and p is a polynomial in t. Viewed in this way, the mapΨ: Dn⊗ZGnZG→
D maps identically into D.

We are left to see that Ψ is surjective, which we will achieve by equipping its domain
with a ring structure. If we denote the cyclic group G/Gn of order n by Zn, then Dn⊗ZGn

ZG is identified with the crossed product DnZn via the map pq−1 ⊗ tm 7→ pq−1 ∗ m,
where m ∈ {0, . . . , n− 1} and p, q are twisted polynomials in tn with q 6= 0. We can thus
replace the domain of Ψ with DnZn and note that the resulting map, which we again
denote by Ψ, is in fact an injective ring homomorphism. Since Zn is a finite group and Dn

is a division ring of characteristic 0, the crossed product DnZn is semisimple by [Lüc02,
Lemma 10.55] – note that this is a version of Maschke’s theorem for crossed products. Since
a semisimple subring of a division ring is a division ring and D is assumed to be generated
by ZG ⊂ DnZn, we conclude that Ψ is also surjective and hence an isomorphism.

4.3 Agrarian torsion
Having introduced agrarian Betti numbers together with computational tools allowing us
to prove their vanishing for certain spaces, we will now present a secondary invariant for
such spaces. This invariant will be called agrarian torsion and arises as Reidemeister
torsion with values in the abelianized units of the division ring D. It is motivated by
the construction of universal L2-torsion by Friedl and Lück [FL17]. We will reference the
rather general treatment of torsion by Cohen [Coh73] throughout this section.

As usual, in this section G will always be a group with a fixed agrarian map α : ZG→
D.

4.3.1 Non-commutative Reidemeister torsion
In order to define agrarian torsion, we require a contractible D-chain complex. In our case,
contractibility is governed by the agrarian Betti numbers because of

Proposition 4.3.1 ([Ros94, Proposition 1.7.4]). Let R be a ring and C∗ an R-chain
complex. If C∗ is acyclic, vanishes in sufficiently small degree and consists of projective
R-modules, then C∗ is contractible.
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Lemma 4.3.2. A finite ZG-chain complex C∗ is D-acyclic if and only if D ⊗ C∗ is
contractible.

Proof. Since C∗ is finite, the D-chain complex D⊗C∗ is in particular bounded below. All
its modules are free because D is a division ring, and hence the statement follows from
Proposition 4.3.1.

Agrarian torsion, being constructed as non-commutative Reidemeister torsion, natu-
rally takes values in the first K-group of D:

Definition 4.3.3. Let R be a ring. Denote by GL(R) the direct limit of the groups GLn(R)
of invertible n×n matrices over R with the embeddings given by adding an identity block
in the bottom-right corner. The K1-group K1(R) is defined as the abelianization of GL(R).
The reduced K1-group K̃1(R) is defined as the quotient of K1(R) by the subgroup {(±1)}.

We now consider a D-acyclic finite free ZG-chain complex (C∗, c∗). Such a complex
will be called based if it comes with a choice of preferred bases for all chain modules. By
the previous lemma, we can find a chain contraction γ∗ of D⊗C∗. Set Codd :=

⊕
i odd

Ci and

Ceven :=
⊕
i even

Ci. Note that D-acyclicity guarantees that dimDD⊗Codd = dimDD⊗Ceven.

Lemma 4.3.4. In the situation above, the map c∗ + γ∗ : D ⊗ Codd → D ⊗ Ceven is an
isomorphism of finitely generated based free D-modules and the class in K̃1(D) defined by
the matrix representing it in the preferred basis does not depend on the choice of γ.

Proof. That the map is an isomorphism is the content of [Coh73, (15.1)], the independence
is covered by [Coh73, (15.3)].

4.3.2 The Dieudonné determinant
The K1 groups of division rings can be determined using a generalization of the classical
determinant of a matrix over a field to matrices over division rings, which is known as
the Dieudonné determinant. As opposed to the situation for fields, there is no longer
a polynomial expression in terms of the entries of the matrix; rather, the Dieudonné
determinant is defined by an inductive procedure:

Definition 4.3.5. Let A = (aij) be an n×n matrix over a division ring D. The canonical
representative of the Dieudonné determinant detcA ∈ D is defined inductively as follows:

(a) If n = 1, then detcA := a11.

(b) If the last row of A consists of zeros only, then detcA := 0.

(c) If ann 6= 0, then we form the (n − 1) × (n − 1) matrix A′ = (a′ij) by setting a′ij :=
aij − aina

−1
nnanj , and declare detcA := detcA′ · ann.

(d) Otherwise, let j < n be maximal such that anj 6= 0. Let A′ be obtained from A by
interchanging rows j and n. Then set detcA := − detcA′.

TheDieudonné determinant detA ofA is defined to be the image of detcA inD×/[D×, D×],
i.e., in the abelianized unit group of D, if detcA 6= 0, and is understood to be 0 otherwise.
We also write D×

ab for the abelianized unit group of D.

As a convention, we will write the group operation of the abelian group D×
ab (and its

quotients) additively.
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If D is a commutative field, then the Dieudonné determinant coincides with the usual
determinant as the matrix A is brought into upper-diagonal form during the inductive
procedure defining detcA.

The Dieudonné determinant is multiplicative on all matrices and takes non-zero values
on invertible matrices [Die43].
Proposition 4.3.6 ([Ros94, Corollary 2.2.6]). Let D be a division ring. Then the
Dieudonné determinant det : GL(D) → D×

ab induces group isomorphisms

det : K1(D)
∼=−→ D×

ab and

det : K̃1(D)
∼=−→ D×

ab/{±1}.

4.3.3 Definition and properties of agrarian torsion
Relying on the explicit description of K̃1(D) obtained above, we can motivate
Definition 4.3.7. The D-agrarian torsion of a D-acyclic finite based free ZG-chain com-
plex (C∗, c∗) is defined as

ρD(C∗) := det([c∗ + γ∗]) ∈ D×
ab/{±1},

where [c∗ + γ∗] ∈ K̃1(D) is the class determined by the (representing matrix of the) iso-
morphism constructed in Lemma 4.3.4.

The usual additivity property for torsion invariants directly carries over to the agrarian
setting in the following form:
Lemma 4.3.8 ([Coh73, (17.2)]). Let 0 → C ′

∗ → C∗ → C ′′
∗ → 0 be a short exact sequence

of finite based free ZG-chain complexes such that the preferred basis of C∗ is composed of
the preferred basis of C ′

∗ and preimages of the preferred basis elements of C ′′
∗ . Assume that

any two of the complexes are D-acyclic. Then so is the third and

ρD(C∗) = ρD(C
′
∗) + ρD(C

′′
∗ ).

The difference in agrarian torsion between ZG-chain homotopy equivalent chain com-
plexes is measured by the Whitehead torsion of the chain homotopy equivalence, analo-
gously to the statement of [FL17, Lemma 2.10] for universal L2-torsion:
Lemma 4.3.9. Let f : C∗ → E∗ be a ZG-chain homotopy equivalence of finite based
free ZG-chain complexes. Denote by ρ(cone(f∗)) ∈ K̃1(ZG) the Whitehead torsion of the
contractible finite based free ZG-chain complex cone(f∗). If one of C∗ and E∗ is D-acyclic,
then so is the other and we get

ρD(E∗)− ρD(C∗) = detD
(
α∗
(
ρ(cone(f∗))

))
,

where α∗ : K̃1(ZG) → K̃1(D) is induced by α : ZG→ D.
Proof. Since f∗ is a ZG-chain homotopy equivalence, the finite free ZG-chain complex
cone(f∗) is contractible and hence its Whitehead torsion ρ(cone(f∗)) is defined. The
finite free D-chain complex D ⊗ cone(f∗) is again contractible and since the matrix
defining its agrarian torsion are already invertible over ZG, we get that ρD(cone(f∗)) =
detD(α∗(ρ(cone(f∗)))).

We now apply Lemma 4.3.8 to the short exact sequence
0 → E∗ → cone∗(f∗) → ΣC∗ → 0

with cone∗(f∗) and one of ΣC∗ and E∗ being D-acyclic. Since ρD(ΣC∗) = −ρD(C∗),
as is readily observed from the definition of ρD, we obtain that ρD(E∗) − ρD(C∗) =
ρD(cone(f∗)) = detD(α∗(ρ(cone(f∗)))).
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Our goal is to apply the concept of D-agrarian torsion to G-CW-complexes. Since
the free cellular chain complexes associated to such complexes do not admit a canonical
ZG-basis, but only a canonical Z-basis (up to orientation), we have to account for this
additional indeterminacy by passing to a further quotient of D×

ab:

Definition 4.3.10. Let X be a D-acyclic finite free G-CW-complex. The D-agrarian
torsion of X is defined as

ρD(X) := ρD(C∗(X)) ∈ D×
ab/{±g | g ∈ G},

where C∗(X) is endowed with any ZG-basis that projects to a Z-basis of C∗(X/G) con-
sisting of unequivariant cells.

That ρD(X) is indeed well-defined can be seen from [Coh73, (15.2)].

4.3.4 Comparison with universal L2-torsion
A rich source of agrarian groups is the class of torsion-free groups that satisfy the strong
Atiyah conjecture over Q. For these groups, there is a canonical division ring D(G) in
which the group ring ZG embeds. In the case of D = D(G), agrarian torsion coincides
with the determinant of the universal L2-torsion introduced by Friedl and Lück in [FL17],
as we will see now.

Universal L2-torsion naturally lives in a weak version of the K1-group of the group
ring, which is defined as follows:

Definition 4.3.11 ([FL17, Definition 2.1]). Let G be a group. Denote by Kω
1 (ZG) the

weak K1-group, which is defined to be an abelian groups with the following generators and
relations:

Generators [A] for square matrices A over ZG that become invertible after the change
of rings ZG ↪→ D(G)

Relations • [AB] = [A] + [B] for matrices A and B of compatible sizes and such that
A and B become invertible over D(G).

• [D] = [A] + [C] for a block matrix

D =

(
A B
0 C

)
with A and C square and invertible over D(G).

Define the weak Whitehead group Whω(G) as the quotient of Kω
1 (ZG) by the subgroup

generated by the 1× 1-matrices (±g) for all g ∈ G.

Note that there are canonical maps K1(ZG) → Kω
1 (ZG) and Kω

1 (ZG) → K1(D(G))
given by [A] 7→ [A] and [A] 7→ [1⊗A] on generators, respectively.

The following result by Linnell and Lück indicates that the abelian groups in which
agrarian torsion and universal L2-torsion take values coincide up to isomorphism for a
large class of groups:

Theorem 4.3.12 ([LL18]). Let C be the smallest class of groups which contains all free
groups and is closed under directed union and extensions by elementary amenable groups.
Let G be a torsion-free group which belongs to C. Then D(G) is a division ring and the
composite map

Kω
1 (ZG) → K1(D(G))

det−−→ D(G)×ab

is an isomorphism.
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Let X be a finite free G-CW-complex that is L2-acyclic, i.e., whose L2-Betti numbers
vanish. Friedl and Lück [FL17, Definition 3.1] associate to such a G-CW-complex an
element ρ(2)u (X) ∈ Whω(G) called the universal L2-torsion of X. We can obtain from this
an element

det(ρ(2)u (X)) ∈ D(G)×ab/{±g | g ∈ G},

which by Theorem 4.3.12 carries an equivalent amount of information as ρ(2)u for many
groups G.

The statement of the following theorem is implicit in [FLT19, Section 2.3] by Friedl,
Lück and Tillmann.

Theorem 4.3.13. Let G be a torsion-free group that satisfies the strong Atiyah conjecture
over Q. Then G is D(G)-agrarian. Furthermore, if X is any finite free G-CW-complex,
then X is D(G)-acyclic if and only if it is L2-acyclic. If this is the case, we have

ρD(G)(X) = det(ρ(2)u (X)) ∈ D(G)×ab/{±g | g ∈ G}.

Proof. During the proof, we will use the notion of universal L2-torsion for L2-acyclic finite
based free ZG-chain complexes as defined in [FL17, Definition 2.7]. The universal L2-
torsion of a finite free G-CW-complex is then obtained as the universal L2-torsion of the
associated cellular chain complex together with any basis consisting of G-cells. We will
also abuse notation in that we consider classes in K̃ω

1 (ZG) to be represented by both square
matrices over ZG (our convention) and ZG-endomorphisms of some ZGn (the convention
in [FL17]).

The first statement is proved analogously to one direction of [Lüc02, Lemma 10.39],
the second statement then follows from Lemma 4.3.2 and [FL17, Lemma 2.21].

In order to prove the last statement, we want to make use of the universal property of
universal L2-torsion (see [FL17, Remark 2.16]). To this end, we first consider ZG-chain
complexes of the following simple form: Let [A] ∈ K̃ω

1 (ZG) be represented by an n × n
matrix A over ZG, and let CA∗ be the ZG-chain complex concentrated in degrees 0 and
1 with the only non-trivial differential given by rA : ZGn → ZGn, x 7→ x · A. Since A
becomes an isomorphism over D(G), such a complex is always D(G)- and thus L2-acyclic.

The universal L2-torsion of CA∗ is computed from a weak chain contraction (δ∗, v∗)
of CA∗ as defined in [FL17, Definition 2.4]. In this particular case, we can take δ0 =
idZGn , δp = 0 for p 6= 0 and v0 = v1 = rA, vp = 0 for p 6∈ {0, 1}. According to [FL17,
Definition 2.7], the universal L2-torsion of CA∗ is thus given by

ρ(2)u (CA∗ ) = [v1 ◦ rA + 0]− [v1] = [r2A]− [rA] = [A] ∈ K̃ω
1 (ZG)

and hence det(ρ(2)u (CA∗ )) = detA ∈ D(G)×ab/{±1}.
The D(G)-agrarian torsion of CA∗ is computed from a (classical) chain contraction of

D(G)⊗ CA∗ ; let γ∗ be such a contraction with γ0 = (idD(G) ⊗ rA)
−1 and γp = 0 for p 6= 0.

Since γ vanishes in odd degrees, the construction of D(G)-agrarian torsion yields

ρD(G)(C
A
∗ ) = det([idD(G) ⊗ rA + 0]) = detA ∈ D(G)×ab/{±1},

and hence det(ρ(2)u (CA∗ )) = ρD(G)(C
A
∗ ).

The pair (D(G)×ab/{±1}, ρD(G)) consists of an abelian group and an assignment that
associates to aD(G)-acyclic (i.e., L2-acyclic) finite based free ZG-chain complex an element
ρD(G) ∈ D(G)×ab/{±1}. The assignment is additive by Lemma 4.3.8 and maps complexes
of the shape ZG ±idZG−−−−→ ZG to 1 ∈ D(G)×ab/{±1} by construction. It hence constitutes an
example of an additive L2-torsion invariant in the sense of [FL17, Remark 2.16]. Since
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by [FL17, Theorem 2.12] the pair (K̃ω
1 (ZG), ρ

(2)
u ) is the universal such invariant, there is

a unique group homomorphism f : K̃ω
1 (ZG) → D(G)×ab/{±1} satisfying f ◦ ρ(2)u = ρD(G).

It is left to check that f and det agree as maps K̃ω
1 (ZG) → D(G)×ab/{±1}. We have

seen already that det(ρ(2)u (CA∗ )) = ρD(G)(C
A
∗ ). But ρ

(2)
u (CA∗ ) = [A], and hence {ρ(2)u (CA∗ ) |

[A] ∈ K̃ω
1 (ZG)} generates K̃ω

1 (ZG) as a group. Since f agrees with det on this generating
set, we conclude that f = det.

4.3.5 Agrarian torsion via matrix chains
While the construction of agrarian torsion described so far is well-suited for the comparison
to L2-torsion, a more computational approach based on matrix chains will be more suitable
for applications.

We will use concepts and notation from [Tur01, p. I.2.1]. Assume that we are given
a D-acyclic finite free ZG-chain complex C∗ concentrated in degrees 0 through m, which
is equipped with a choice of a preferred basis. By fixing an ordering of the preferred
basis, we identify subsets of {1, . . . , rkCp} with subsets of the preferred basis elements of
Cp. We then denote by Ap, for p = 0, . . . ,m − 1, the matrix representing the differential
cp+1 : Cp+1 → Cp in the preferred bases. Note the shift in grading between Ap and cp+1,
which is needed in order to bring our notation in line with that of Turaev. The matrix Ap
consists of the entries apjk ∈ ZG, where j = 1, . . . , rkCp+1 and k = 1, . . . , rkCp.

Definition 4.3.14. A matrix chain for C∗ is a collection of sets γ = (γ0, . . . , γm), where
γp ⊆ {1, . . . , rkCp} and γ0 = ∅. Write Sp = Sp(γ) for the submatrix of Ap formed by the
entries apjk with j ∈ γp+1 and k 6∈ γp. A matrix chain γ is called a τ -chain if Sp is a square
matrix for p = 0, . . . ,m − 1. A τ -chain γ is called non-degenerate if detD(Sp) 6= 0 for all
p = 0, . . . ,m− 1.

We want to point out that the reference [Tur01, p. I.2.1] only considers chain complexes
over a commutative field F. Nonetheless, all statements and proofs directly carry over
to our setting of chain complexes over a division ring D if we throughout replace the
commutative determinant detF : GL(F) → F× with the Dieudonné determinant detD. In
particular, there is still a well-behaved notion of the rank of a matrix A over a division
ring D, which can be defined in any of the following equivalent ways:

• the largest number r such that A contains an invertible r × r-submatrix;

• the D-dimension of the image of the linear map of left D-vector spaces given by right
multiplication by A;

• the D-dimension of the right D-vector space spanned by the columns of A (the
column rank);

• the D-dimension of the left D-vector space spanned by the rows of A (the row rank).

With this convention, the proofs in [Tur01, p. I.2.1] carry over verbatim.
Taken together, [Tur01, Theorem I.2.2 & Remark I.2.7] imply that any non-degenerate

τ -chain can be used to compute the agrarian torsion of C∗ and such a τ -chain always
exists if the complex is D-acyclic. Note though that, compared to our definition of torsion
in Definition 4.3.7, Turaev’s conventions differ in that he writes torsion multiplicatively
instead of additively and uses the inverse of the torsion element in K̃1(D) we construct,
see [Tur01, Theorem I.2.6]. Correcting for these differences by inserting a sign, we obtain
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Theorem 4.3.15. For any non-degenerate τ -chain γ of a D-acyclic finite free ZG-chain
complex C∗ with a choice of a preferred basis, we have

ρD(C∗) =

m−1∑
p=0

(−1)p detD(Sp(γ)) ∈ D×
ab/{±1}.

Furthermore, any D-acyclic finite free ZG-chain complex with a choice of a preferred basis
admits a non-degenerate τ -chain.

4.4 Agrarian polytope
Building on the notions of agrarian Betti numbers and agrarian torsion, we are now able
to associate to a D-acyclic finite G-CW-complex X a polytope. This polytope, called
the agrarian polytope of X, arises as the convex hull of the support of the associated
agrarian torsion, viewed as a quotient of suitable twisted polynomials. The idea to study
the Newton polytope of a torsion invariant goes back to [FL17].

4.4.1 The polytope group
We begin with polytope-specific terminology:

Definition 4.4.1. Let V be a finite-dimensional real vector space. A polytope in V is
the convex hull of finitely many points in V . For a polytope P ⊂ V and a linear map
ϕ : V → R we define

Fφ(P ) := {p ∈ P | ϕ(p) = min
q∈P

ϕ(q)}

and call this polytope the ϕ-face of P . The elements of the collection

{Fφ(P ) | ϕ : V → R}

are the faces of P . A face is called a vertex if it consists of a single point.

In the following, the ambient vector space V will always be R ⊗Z H for some finitely
generated free abelian group H. For such V , we will consider a special type of polytope:

Definition 4.4.2. A polytope P in V is called integral if its vertices lie on the lattice
H ⊂ V .

Given two integral polytopes P and Q in V , their pointwise orMinkowski sum P+Q =
{p+ q | p ∈ P, q ∈ Q} is again an integral polytope. Any vertex of the resulting polytope
is a pointwise sums of a vertex of P and a vertex of Q. Equipped with the Minkowski sum
the set of all integral polytopes in V becomes a cancellative abelian monoid with neutral
element {0}, see [Råd52, Lemma 2]. Hence, the monoid embeds into its Grothendieck
group, which was first considered in [FT20, p. 6.3]:

Definition 4.4.3. Let H be a finitely generated free abelian group. Denote by P(H) the
polytope group of H, that is the Grothendieck group of the cancellative abelian monoid
given by all integral polytopes in R⊗ZH under Minkowski sum. In other words, let P(H)
be the abelian group with generators the formal differences P − Q of integral polytopes
and relations (P − Q) + (P ′ − Q′) = (P + P ′) − (Q − Q′) as well as P − Q = P ′ − Q′ if
P +Q′ = P ′ +Q′. The neutral element is given by the one-point polytope {0}, which we
will drop from the notation. We view H as a subgroup of P(H) via the map h 7→ {h}.



84 4. Agrarian invariants and two-generator one-relator groups

An element of the polytope group that is of the form P − 0, for which we also just
write P , is called a single polytope and is uniquely represented in this form. Any other
element is called a virtual polytope.

In order to later get well-defined invariants with values in the polytope group, we will
mostly be dealing with the following quotient of the full polytope group:

Definition 4.4.4. The translation-invariant polytope group of H, denoted by PT (H), is
defined to be the quotient group P(H)/H.

4.4.2 The polytope homomorphism
As is the case for the L2-torsion polytope, the following simple construction underpins the
definition of the agrarian polytope:

Definition 4.4.5. Let D be a division ring and let H be a finitely generated free abelian
group. Let D ∗H denote some crossed product structure formed out of D and H, fixing
in particular its left D-basis that is identified with H. The Newton polytope P (p) of an
element p =

∑
h∈H uh · h ∈ D ∗ H is then defined as the convex hull of the support

supp(p) = {h ∈ H | uh 6= 0} in H1(H;R).

Since H is finitely generated free abelian, as in Definition 4.1.4 we can consider the
Ore division ring of fractions Ore(D ∗ H) of the crossed product D ∗ H. The previous
definition can then be extended to elements of Ore(D ∗H) as follows:

Definition 4.4.6. The group homomorphism

P : Ore(D ∗H)×ab → P(H)

pq−1 7→ P (p)− P (q)

is called the polytope homomorphism of Ore(D∗H) (with respect to a fixed crossed product
structure on D ∗H). It induces a homomorphism

P : Ore(D ∗H)×ab/{±h | h ∈ H} → PT (H).

The well-definedness of P is immediate from the construction of P(H). The fact that
P is a group homomorphisms is not hard, and has been shown in [Kie20, Lemma 3.12]
(see also the discussion following the lemma).

4.4.3 Definition of the agrarian polytope for agrarian maps
With the polytope homomorphism at our disposal, we will now define the agrarian polytope
of an appropriate chain complex in two steps: We first restrict our attention to the special
case of a rational agrarian map and then show that we obtain a well-defined polytope for
all agrarian maps by passing to any rationalization.

The agrarian polytope for rational agrarian maps
We now consider a finitely generated group G and take the free abelian group H to be
the free part of the abelianization of G. Furthermore, we denote the canonical projection
onto H by pr and its kernel by K.

In [FL17], the Newton polytope is constructed for the Linnell division ring D(G), which
can be expressed as the Ore division ring of fractions of a crossed product D(K)∗H. While
the target of an arbitrary agrarian map for G is of course not always an Ore division ring
of fractions of a suitable crossed product, this will be the case for the rational agrarian
maps introduced in Definition 4.1.5.
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Definition 4.4.7. Let α : ZG → D be a rational agrarian map for G and consider a D-
acyclic finite based free ZG-chain complex C∗. The D-agrarian polytope of C∗ is defined
as

PD(C∗) := P (−ρD(C∗)) ∈ P(H).

The purpose of the sign in the definition of the D-agrarian polytope is to get a single
polytope in many cases of interest.

We will mostly be interested in the agrarian polytope associated to the cellular chain
complex of a G-CW-complex, where we have to account for the indeterminacy caused
by the need to choose a basis of cells by considering the resulting polytope only up to
translation:

Definition 4.4.8. Let α : ZG→ D be a rational agrarian map for G, i.e., one of the form
ZG→ ZK ∗H → Ore(D′∗H) = D for some division subring D′ of D. Consider a D-acylic
finite free G-CW-complex X. The D-agrarian polytope of X is defined as

PD(X) := P (−ρD(X)) ∈ PT (H).

Proposition 4.4.9. The D-agrarian polytope PD(X) is a G-homotopy invariant of X.

Proof. Let X and X ′ be D-acyclic finite free G-CW-complexes G-homotopy equivalent via
f : X → X ′. We denote the induced homotopy equivalence between X/G and X ′/G by f .
By Lemma 4.3.9, the agrarian torsions of X and X ′ are related via

ρD(X
′)− ρD(X) = detD(ρ(f)).

After applying the polytope homomorphism, we obtain

PD(X ′)− PD(X) = P (detD(ρ(f))).

The latter polytope is a singleton by [Kie20, Corollary 5.16] and hence PD(X ′) = PD(X) ∈
PT (H).

Because of the previous proposition, the agrarian polytope of the universal covering of
the classifying space of a group, which is only well-defined up to G-homotopy equivalence,
does not depend on the choice of a particular G-CW-model. We are thus led to

Definition 4.4.10. Assume that G is of type F, i.e., let there be an unequivariantly
contractible finite free G-CW-complex EG. Let α : ZG → D be a rational agrarian map
for G. We say that G is D-acyclic if any such G-CW complex is D-acyclic. If this is the
case, we define the D-agrarian polytope of G to be

PD(G) := PD(EG).

For future reference, we record the following direct consequence of Lemma 4.3.8:

Lemma 4.4.11. Let 0 → C ′
∗ → C∗ → C ′′

∗ → 0 be a short exact sequence of finite based
free ZG-chain complexes such that the preferred basis of C∗ is composed of the preferred
basis of C ′

∗ and preimages of the preferred basis elements of C ′′
∗ . Assume that any two of

the complexes are D-acyclic. Then so is the third and

PD(C∗) = PD(C ′
∗) + PD(C ′′

∗ ).
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The agrarian polytope for arbitrary agrarian maps
Let α : ZG→ D be an agrarian map for a finitely generated group G, and denote the free
part of the abelianization of G by H. In this situation, we can pass to the rationalization
ZG → Ore(D ∗ H) of α as introduced in Definition 4.1.5, which is always rational. Via
this replacement, we can extend Definitions 4.4.7, 4.4.8 and 4.4.10 to arbitrary agrarian
maps. Three remarks are in order.

First, passing to the rationalization involves a choice of a section of the projection
G ↠ H. A priori, the polytope may depend on this choice. However, by Lemma 4.1.3,
the crossed product structures obtained from any two choices differ by an isomorphism
preserving supports and thus give rise to the same agrarian polytope.

Second, note that it is not clear that a chain complex C∗ that is D-acyclic is also
Ore(D ∗ H)-acyclic (nor vice versa). Hence, in order to compute an agrarian polytope
with respect to an arbitrary agrarian map, it is always necessary to check acyclicity with
respect to its rationalization. In our application, we will obtain a computation of the
agrarian Betti numbers that is uniform across all possible agrarian embeddings, so that
this point will not be an issue for us.

Third, we have now introduced two potentially different definitions of the agrarian
polytope for an agrarian map ZG → D that is already rational: We could calculate the
polytope directly with respect to this map or first replace it by its rationalization. As
it turns out, these two a priori different approaches lead to the same agrarian polytope.
By verifying that our two definitions are compatible, we will as a byproduct establish a
comparison with the L2-torsion polytope.

We will first show that passing to the rationalization of an agrarian map α : ZG→ D
that is already rational only changes the agrarian torsion by pushing forward along an
inclusion of division rings:

Lemma 4.4.12. Let G be a finitely generated group and α : ZG→ D a rational agrarian
map. Denote the rationalization of α by αr and its target division ring by Dr. Then αr
factors through α, and hence any finite free G-CW-complex is D-acylic if and only if it is
Dr-acyclic. If this is the case, then

ρDr(X) = j∗(ρD(X)) ∈ Dr
×
ab/{±g | g ∈ G},

where j∗ : D
×
ab/{±g | g ∈ G} → Dr

×
ab/{±g | g ∈ G} is induced by an injective map

j : D ↪→ Dr between the respective agrarian maps.

Proof. We again write H for the free part of the abelianization of G and K for the kernel
of the projection of G onto H. Recall that since α is assumed to be rational, it is of the
form

ZG ∼= ZK ∗H → D′ ∗H ↪→ Ore(D′ ∗H) = D

for some division subring D′ ⩽ D. Analogously, the construction of αr exhibits it as the
composition

ZG ∼= ZK ∗H → D ∗H ↪→ Ore(D ∗H) = Dr.

Here, the structure functions of the twisted group ring D′ ∗ H are determined by the
images of h ∈ H under α′ ◦ s : H → D′, where s is the section of the projection G → H
chosen to define D′ ∗H. We consider D′ as a division subring of D via d′ 7→ d′∗1

1 , which
is a ring homomorphism since s(1) = 1. The same choice of a section results in the same
basis and structure functions (up to enlargening their codomains to D) being used for the
construction of D ∗ H, and hence we get an induced inclusion of rings D′ ∗ H → D ∗ H
that together with the maps ZG→ D′ ∗H and ZG→ D∗H forms a commutative triangle.
Passing to Ore fields of fractions, we obtain the desired injective map j : D ↪→ Dr between
the agrarian maps α and αr.
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As discussed in Remark 4.2.6, the agrarian maps α and αr yield the same agrarian
Betti numbers, which proves the acyclicity statement.

We now turn to the statement on agrarian torsion. By [Lüc02, Lemma 10.34 (1)],
a division ring (and more generally, a von Neumann regular ring) is rationally closed in
any overring, i.e., every matrix over the division ring that becomes invertible over the
overring is already invertible in the division ring. Applied to our situation, we obtain
that the invertible matrices appearing in the construction of ρDr following Definition 4.3.7
are already invertible over the division subring D. Since the Dieudonné determinant is
by construction natural with respect to inclusions of division rings, the second statement
holds.

In our case, one can also replace the use of the lemma by the more direct observation
that we may put the matrices appearing in the construction of ρDr into an upper-triangular
form using elementary matrices over the division ring D since the entries of the matrices
lie in ZG, and hence in D. A (square) matrix in upper-triangular form over a division
ring is invertible if and only if its diagonal elements are non-zero, in particular invertibility
over Dr implies invertibility over D.

Theorem 4.4.13. Let G be a finitely generated group and α : ZG→ D a rational agrarian
map. Denote the rationalization of α by αr and its target division ring by Dr. Let X be
a D- or Dr-acyclic finite free G-CW complex. Then X is both D- and Dr-acyclic and

PDr(X) = PD(X) ∈ PT (H).

Proof. By Lemma 4.4.12, the agrarian torsions of X with respect to D and Dr are related
via

ρDr(X) = j∗(ρD(X)) ∈ Dr
×
ab/{±g | g ∈ G}, (4.4)

where j∗ is induced by the inclusion j : D ↪→ Dr. Recall that we defined the agrarian
polytope with respect to Dr as PDr(X) = P (−ρDr(X)), where we use that Dr is the
Ore division ring of fractions of the twisted group ring D ∗H. Analogously, the agrarian
polytope with respect to D is defined as PD(X) = P (−ρD(X)), where we use that D is
the Ore division ring of fractions of a twisted group ring D′ ∗H for some division ring D′.
In light of 4.4, we are thus left to check that taking the support over D′ ∗ H gives the
same result as pushing forward to D ∗ H using j and taking supports there. But j was
constructed in Lemma 4.4.12 specifically to preserve the crossed product structures and
in particular the support.

4.4.4 Comparison with the L2-torsion polytope
We will now apply the results of the previous section to the Linnell division ring D(G) of
a finitely generated torsion-free group G that satisfies the strong Atiyah conjecture. As
before, we denote the free part of the abelianization of G by H and the kernel of the
projection of G onto H by K. Our aim is to compare the L2-torsion polytope introduced
in [FL17] to the agrarian polytope associated to the agrarian embedding ZG ↪→ D(G).

The most important feature of the Linnell division ring D(G) is that it is the Ore
division ring of fractions of a twisted group ring in which ZK embeds, namely D(K) ∗H,
see [Lüc02, Lemma 10.69]. Translated into the agrarian language, this means that the
agrarian embedding ZG ↪→ D(G) is rational. We have already observed in Theorem 4.3.13
that universal L2-torsion and agrarian torsion define the same element in the abelianized
units of the Linnell division ring, whenever both are defined. The construction of the
L2-torsion polytope in [FL17, Definition 4.21] is thus equivalent to our definition of the
agrarian polytope with respect to the rational agrarian embedding ZG ↪→ D(G). By
Theorem 4.4.13, the resulting polytope agrees with the agrarian polytope constructed
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using the rationalization of ZG ↪→ D(G), i.e., without using the special structure of the
Linnell division ring.

Summarizing our discussion, we have established

Theorem 4.4.14. Let G be a finitely generated torsion-free group that satisfies the strong
Atiyah conjecture over Q and consider the agrarian embedding ZG ↪→ D(G) into the Linnell
division ring. Denote by D(G)r the target of the rationalization of this embedding. Let X
be an L2-acyclic finite free G-CW complex. Then X is both D(G)- and D(G)r-acyclic and

PL2(X) = PD(G)(X) = PD(G)r(X) ∈ PT (H).

4.4.5 Thickness of Newton polytopes
The agrarian polytope is usually rather difficult to compute for a concrete group. Its
thickness along a given line is often more accessible. With an approach similar to [FL19],
we will see in Section 4.5 that it can be computed in terms of agrarian Betti numbers of
a suitably restricted chain complex.

Definition 4.4.15. Assume that G is finitely generated and denote the free part of its
abelianization byH. Let ϕ : G→ Z be a homomorphism factoring throughH as ϕ : H → Z.
Let P ∈ P(H) be a single polytope. The thickness of P along ϕ is given by

thφ(P ) := max{ϕ(x)− ϕ(y) | x, y ∈ P} ∈ Z⩾0.

Since it respects the Minkowski sum and vanishes on polytopes consisting of a single point,
the assignment P 7→ thφ(P ) extends to a group homomorphism thφ : PT (H) → Z.

An equivalent way of thinking of a twisted group ring D ∗ H constructed from an
agrarian map ZG→ D in the case H = Z is as a twisted Laurent polynomial ring D[t±1].
In order to see the correspondence, note that since Z is free with one generator, we can
choose a section s of the epimorphism ϕ : G → Z which is itself a homomorphism. By
Lemma 4.1.3, the resulting twisted group ring will be independent of the choice of the
(group-theoretic or not) section. If we stipulate that tdt−1 = s(1)ds(1)−1 for d ∈ D, then
the ring D[t±1]φ, with ϕ added as an index to indicate the origin of the twisting, will be
canonically isomorphic to D ∗ Z.

For elements of the Laurent polynomial ring, the Newton polytope will be a line of
length equal to the degree of the polynomial. Here, the degree deg(x) of a non-trivial Lau-
rent polynomial x is the difference of the highest and lowest degree among its monomials.
In particular, the degree of a single monomial is always 0 and the degree of a polynomial
with non-vanishing constant term coincides with its degree as a Laurent polynomial.

Let now G be a finitely generated agrarian group with agrarian map ZG → D and
denote by K the kernel of the projection of G onto the free part of its abelianization,
which we denote H. Further let ϕ : G → Z be an epimorphism with kernel Kφ, and
denote the induced map H → Z by ϕ with kernel Kφ. Recall that by Lemma 4.1.7, the
iterated Ore field Ore(Ore(D ∗Kφ) ∗ Z) can be identified with the Ore field Ore(D ∗H)
via the isomorphism β. We write Ore(D ∗Kφ) ∗ Z as a twisted Laurent polynomial ring
Ore(D ∗Kφ)[t

±1]φ. The idea behind the following lemma is now based on the fact that
the Newton polytope of a multi-variable Laurent polynomial x determines all the Newton
‘lines’ of x when viewed as a single-variable Laurent polynomial with more complicated
coefficients.

Lemma 4.4.16. In the situation above, for any x ∈ Ore(D ∗Kφ)[t
±1]φ with x 6= 0, we

have
thφ(P (β(x))) = deg(x).
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Proof. Since multiplying by a common denominator of all Ore(D ∗ Kφ)-coefficients of x
does neither change its degree nor the support of its image under β, we can restrict to
the case x ∈ D ∗Kφ[t

±1]φ. Thus x will be of the form x =
∑

n∈Z(
∑

k∈Kφ
uk,n · k)tn with

uk,n ∈ D. Denoting the group-theoretic section of ϕ used to construct the twisted Laurent
polynomial ring by s, we obtain:

β(x) =
∑
n∈Z
k∈Kφ

uk,n · ks(n).

The elements ks(n) form a basis of the free D-module D ∗H, and thus no cancellation can
occur between the individual uk,n. By the analogous argument for the twisted group ring
D ∗Kφ, cancellation can also be ruled out for the sum

∑
k∈Kφ

uk,n · k for each n ∈ Z. We
conclude:

thφ(P (β(x))) =max{ϕ(k1s(n1))− ϕ(k2s(n2)) | k1, k2 ∈ Kφ, n1, n2 ∈ Z, uki,ni
6= 0}

=max{n1 − n2 | k1, k2 ∈ Kφ, n1, n2 ∈ Z, uki,ni
6= 0}

=max{n1 − n2 | ∃ki ∈ Kφ : uki,ni
6= 0 for i = 1, 2}

=max{n1 − n2 |
∑
ki∈Kφ

uki,ni
· ki 6= 0 for i = 1, 2}

= deg(x).

4.5 Twisted agrarian Euler characteristic
While the shape of the agrarian polytope introduced in the previous section is often hard
to determine, there is a convenient equivalent description of its thickness along a given line.
To this end, we will introduce the agrarian analogue of the twisted L2-Euler characteristic
introduced by Friedl and Lück in [FL19]. We assume that G is a finitely generated D-
agrarian group with a fixed agrarian map α : ZG→ D. We use H to denote the free part
of the abelianization of G, and let K be the kernel of the canonical projection of G onto
H.

4.5.1 Definition of the twisted agrarian Euler characteristic
We now introduce twisted agrarian Euler characteristics, which arise as ordinary agrarian
Euler characteristics of cellular ZG-chain complexes twisted by an epimorphism from G
to the integers:

Definition 4.5.1. Let X be a finite free G-CW-complex and let ϕ : G → Z be a homo-
morphism. We denote by ϕ∗Z[t±1] the ZG-module obtained from the Z-module Z[t±1]
by letting G act as g · tn = tn+φ(g). Consider the ZG-chain complex C∗(X) ⊗Z ϕ

∗Z[t±1]
equipped with the diagonal G-action and set

bDp (X;ϕ) := bDp (C∗(X)⊗Z ϕ
∗Z[t±1]) ∈ N ∪ {∞},

hD(X;ϕ) :=
∑
p⩾0

bDp (X;ϕ) ∈ N ∪ {∞},

χD(X;ϕ) :=
∑
p⩾0

(−1)pbDp (X;ϕ) ∈ Z, if hD(X;ϕ) <∞.

We say that X is ϕ-D-finite if hD(X;ϕ) < ∞, and in this case χD(X;ϕ) is called the
ϕ-twisted D-agrarian Euler characteristic of X. More generally, we will also consider the
ϕ-twisted agrarian Euler characteristic χD(C∗;ϕ) for any finite free ZG-chain complex C∗,
with C∗ taking the role of the cellular chain complex C∗(X).
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The aim of this section is to prove that the thickness of the agrarian polytope in a
prescribed direction can be computed as a twisted agrarian Euler characteristic. Recall
that G is a finitely generated group with a fixed agrarian map α : ZG → D and that we
denote by αr : ZG→ Dr the rationalization of α as introduced in Definition 4.1.5.

Theorem 4.5.2. Let X be a Dr-acyclic finite free G-CW-complex and ϕ : G → Z a
homomorphism. Then

thφ(PDr(X)) = −χDr(X;ϕ).

For universal L2-torsion, the analogous statement has been proved by Friedl and Lück
in [FL17, Remark 4.30]. Their proof is based on the fact that universal L2-torsion is the
universal abelian invariant of L2-acyclic finite based free ZG-chain complexes C∗ that is
additive on short exact sequences and satisfies a certain normalisation condition. While
large parts of the verification of this universal property are purely formal, in the proof
of [FL17, Lemma 1.5] it is used that the combinatorial Laplace operator on C∗ induces the
L2-Laplace operator on N (G)⊗C∗, which has no analogue over a general division ring D.
We instead establish Theorem 4.5.2 using the matrix chain approach to the computation
of Reidemeister torsion explained in [Tur01, I.2.1].

4.5.2 Reduction to ordinary Euler characteristics
Before we get to the proof, we will transfer some of the helpful lemmata in [FL19, Sec-
tions 2.2 & 3.3] to the agrarian setting.

The following lemma allows us to restrict our attention to surjective twists ϕ : G→ Z
in the proof of Theorem 4.5.2:

Lemma 4.5.3. Let X be a finite free G-CW-complex and let ϕ : G → Z be a group
homomorphism.

(a) For any integer k ⩾ 1 we have that X is (k ·ϕ)-D-finite if and only if X is ϕ-D-finite,
and if this is the case we get

χD(X; k · ϕ) = k · χD(X;ϕ).

(b) Denote the trivial homomorphism G→ Z by c0. The complex X is c0-D-finite if and
only if X is D-acylic, and if this is the case we get

χD(X; c0) = 0.

Proof. (a) This follows from the direct sum decomposition (k·ϕ)∗Z[t±1] ∼=
⊕k

i=1 ϕ
∗Z[t±1]

and additivity of Betti numbers.

(b) This is a direct consequence of C∗(X) ⊗Z c
∗
0Z[t±1] ∼=

⊕
ZC∗(X) and additivity of

Betti numbers.

We will now see that twisted D-agrarian Euler characteristics over G can equivalently
be viewed as ordinary D-agrarian Euler characteristics over the kernel of the twist homo-
morphism.

Lemma 4.5.4. Let X be a finite free G-CW-complex and let ϕ : G→ Z be an epimorphism.
Denote the kernel of ϕ by Kφ. Then X is ϕ-D-finite if and only if

∑
p⩾0 b

D
p (res

Kφ

G X) <∞,
and in this case we have

χD(X;ϕ) = χD(resKφ

G X).
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Proof. The proof is based on the following isomorphism of ZG-chain complexes:

ZG⊗ZKφ res
Kφ

G C∗(X)
∼=−→ C∗(X)⊗Z ϕ

∗Z[t±1]

g ⊗ x −→ gx⊗ tφ(g),

the inverse of which is given by y⊗ tq 7→ g⊗ g−1y for any choice of g ∈ ϕ−1(q). Using the
isomorphism, we obtain for every p ⩾ 0:

Hp(D ⊗ C∗(X)⊗Z ϕ
∗Z[t±1]) ∼= Hp(D ⊗ ZG⊗ZKφ res

Kφ

G C∗(X))

= Hp(D ⊗ZKφ res
Kφ

G C∗(X)).

We conclude that bDp (X;ϕ) = bDp (res
Kφ

G X) by applying dimD, which yields the claim after
taking the alternating sum over p ⩾ 0.

Remark 4.5.5. Let G be a group of type F with an agrarian map α : ZG → D. Let
ϕ : G→ Z be an epimorphism with kernelKφ. IfKφ is also of type F, then by Lemma 4.5.4
and Theorem 4.2.9 (b)

χD(EG;ϕ) = χD(resKφ

G EG) = χD(EKφ) = χ(Kφ).

In particular, in this case the value of χD(EG;ϕ) does not depend on the choice of agrarian
map.

Lemma 4.5.6. Let C∗ be a D-acyclic ZG-chain complex of finite type. Let ϕ : G → Z
be an epimorphism with kernel Kφ. Consider D[t±1]φ as a ZG-module via the map
ZG ∼= (ZKφ)Z → DZ = D[t±1]φ constructed in Lemma 4.1.3 for K := Kφ, where we use
that G/K ∼= Z via ϕ. Then

bDn (res
Kφ

G C∗) = dimDHn(D[t±1]φ ⊗ C∗) <∞.

In particular, the D[t±1]φ-modules Hn(D[t±1]φ ⊗ C∗) are torsion.

Proof. The proof is analogous to that of [FL19, Theorem 3.8 (4)] with D taking the role
of D(K). The assumption that C∗ be projective is in fact not used in the proof of the
theorem and hence is not part of the statement of Lemma 4.5.6.

Corollary 4.5.7. Let X be a D-acyclic finite free G-CW-complex. Let ϕ : G → Z be an
epimorphism with kernel Kφ. Then X is ϕ-D-finite and

χD(X;ϕ) =
∑
p⩾0

(−1)p dimDHp(D[t±1]φ ⊗ C∗(X)).

Proof. Apply Lemmata 4.5.4 and 4.5.6.

4.5.3 Thickness of the agrarian polytope
We are now able to give the proof of Theorem 4.5.2:

Proof of Theorem 4.5.2. We will actually prove the more general statement that for every
Dr-acyclic finite based free ZG-chain complex C∗ concentrated in degrees 0 through m

thφ
(
P (−ρDr(C∗))

)
= −χDr(C∗;ϕ). (4.5)

Since thφ and P are homomorphisms, we can drop the signs from both sides. Using
Lemma 4.5.3, we can further assume that ϕ is an epimorphism.
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By Theorem 4.3.15, we find a non-degenerate τ -chain γ such that

thφ
(
P
(
ρDr(C∗)

))
= thφ

(
P
( m∑
p=0

(−1)p detDr

(
Sp(γ)

)))
.

Crucially,
Ore(Ore(D ∗Kφ)[t

±1]φ) ∼= Ore(D ∗H) = Dr

via the isomorphism β constructed in Lemma 4.1.7, where Kφ is the kernel of the epimor-
phism ϕ : H → Z induced by ϕ. The subring

Ore(D ∗Kφ)[t
±1]φ

of the left-hand side, which contains β−1(ZG) and thus all entries of Sp = Sp(γ), is a
(non-commutative) Euclidean domain. This means that we can diagonalize the matrices
Sp by multiplying them from the left and right with permutation matrices and elemen-
tary matrices over this twisted Laurent polynomial ring. This diagonalization procedure
occurs as part of an algorithm that brings a matrix into Jacobson normal form, which
is a non-commutative analogue of the better-known Smith normal form for matrices over
commutative PIDs. For details, we refer to the proof of [Jac43, Theorem 3.10]. Recall
that a permutation matrix is a matrix obtained from an identity matrix by permuting
rows and columns. An elementary matrix over a ring R is a matrix differing from the
identity matrix in a single off-diagonal entry. The determinant of either type of matrix
is 1 or −1, and thus the thickness in direction of ϕ of their polytopes vanish. Hence,
thφ(P (det(Sp))) = thφ(P (det(Tp))) for the diagonal matrix Tp obtained from Sp in this
way. We denote the diagonal entries of Tp by λp,i ∈ Ore(D ∗Kφ)[t

±1]φ for i = 1, . . . , |γp|
and note that all the entries λp,i are non-zero since all matrices Sp become invertible over
Dr. Using that both thφ and P are homomorphisms, and applying Lemma 4.4.16 once
more, we compute:

thφ
(
P (ρDr(C∗))

)
= thφ

(
P
( m∑
p=1

(−1)p detDr

(
Sp(γ)

)))

=

m−1∑
p=0

(−1)p
|γp|∑
i=1

thφ(P (β(λp,i)))

=

m−1∑
p=0

(−1)p
|γp|∑
i=1

deg(λp,i).

We will now consider the right-hand side of (4.5). For this, we use that the agrarian
map ZKφ → Dr = Ore(Ore(D ∗ Kφ) ∗ Z) factors through the agrarian map ZKφ →
Ore(D ∗ Kφ), and thus the map ZG ∼= (ZKφ)Z → Dr[t

±1]φ introduced in Lemma 4.5.6
factors through ZG ∼= (ZKφ)Z → Ore(D ∗ Kφ)[t

±1]φ. Since Dr is flat over the division
ring Ore(D ∗Kφ), we conclude from Corollary 4.5.7 that

χDr(C∗;ϕ) =

m∑
p=0

(−1)p dimDr Hp(Dr[t
±1]φ ⊗ C∗)

=

m∑
p=0

(−1)p dimOre(D∗Kφ)Hp(Ore(D ∗Kφ)[t
±1]φ ⊗ C∗).

Since C∗ is Dr-acyclic, we have Hm(Dr ⊗C∗) = 0. But Cm+1 is trivial, which means that
the differential cm must be injective. In particular, the summand corresponding to p = m
vanishes.
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In order to establish (4.5), we are now left to prove that
|γp|∑
i=1

deg(λp,i) = dimOre(D∗Kφ)Hp(Ore(D ∗Kφ)[t
±1]φ ⊗ C∗) (4.6)

holds for p = 0, . . . ,m − 1. In order to not overload notation, we abbreviate Ore(D ∗
Kφ)[t

±1]φ as R. Recall that the homology modules Hp(R⊗C∗) consist solely of R-torsion
elements by Lemma 4.5.6. Furthermore, since R⊗Cp−1 is a free R-module, any R-torsion
maps into it trivially. We are thus able to express the homology modules as torsion
submodules of a cokernel in the following way:

Hp(R⊗ C∗) = ker(idR ⊗ cp)/ im(idR ⊗ cp+1)
∼= ker

(
idR ⊗ cp : (R⊗ Cp)/ im(idR ⊗ cp+1) → R⊗ Cp−1

)
= torsR((R⊗ Cp)/ im(idR ⊗ cp+1))

= torsR(coker(idR ⊗ cp+1)).

Instead of performing elementary operations on the matrix Sp to obtain the diagonal
matrix Tp, we can instead apply them to the entire matrix Ap representing idR ⊗ cp+1.
This procedure will not change the isomorphism type of the cokernel of the map given by
right multiplication with this matrix. Applying further elementary operations over R, we
can achieve that all the entries not contained in Sp consist only of zeros with the submatrix
Sp now being of the form Tp. This is possible since Sp has the same rank as Ap over the
division ring of fractions of R by the same rank counting argument used to prove [Tur01,
p. I.2.2]. Hence

Hp(R⊗ C∗) ∼= torsR(coker(idR ⊗ cp+1)) ∼= ⊕|γp|
i=1R/(λp,i),

which yields (4.6) after applying dimOre(D∗Kφ).

4.6 Application to two-generator one-relator groups
Now that we have successfully set up the framework of agrarian invariants, we will compute
the invariants for two-generator one-relator groups. This will allow us to give intrinsic and
presentation-independent definitions of invariants first considered by Friedl and Tillmann
in [FT20] as well as to remove amenability assumptions from the results obtained in their
work.

4.6.1 The Bieri–Neumann–Strebel invariants and HNN extensions
With the agrarian polytope and the twisted agrarian Euler characteristic, we have devel-
oped useful tools to study (kernels of) homomorphisms of groups to free abelian groups of
finite rank. Before we apply these tools to two-generator one-relator groups, we need to
introduce the group-theoretic invariants and constructions based on such homomorphisms.
Definition 4.6.1. Let G be a group generated by a finite subset S, and let X denote
the Cayley graph of G with respect to S. Recall that the vertex set of X coincides with
G. We define the Bieri–Neumann–Strebel (or BNS) invariants Σ1(G) to be the subset of
H1(G;R) ∖ {0} consisting of the non-trivial homomorphisms (the characters) ϕ : G → R
for which the full subgraph of X spanned by ϕ−1([0,∞)) ⊆ G is connected.

The BNS invariants were introduced by Bieri, Neumann and Strebel in [BNS87] via a
different, but equivalent definition. It is an easy exercise to see that Σ1(G) is independent
of the choice of the finite generating set S.

We now aim to give an interpretation of lying in the BNS invariant for integral char-
acters ϕ : G→ Z. To do so, we need to introduce the notion of HNN extensions.
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Definition 4.6.2. Let A be a group and let α : B
∼=−→ C be an isomorphism between two

subgroups of A. Choose a presentation 〈S | R〉 of A and let t be a new symbol not in S.
Then the group A∗α defined by the presentation

〈S, t | R, tbt−1 = α(b) ∀b ∈ B〉

is called the HNN extension of A relative to α : B
∼=−→ C. We call A the base group and B

the associated group of the HNN extension.
The HNN extension is called ascending if B = A.
The homomorphism ϕ : A∗α → Z given by ϕ(t) = 1 and ϕ(s) = 0 for every s ∈ S is

the induced character.

Proposition 4.6.3 ([BNS87, Proposition 4.3]). Let G be a finitely generated group, and
let ϕ : G→ Z be a non-trivial character. We have ϕ ∈ Σ1(G) if and only if G is isomorphic
to an ascending HNN extension with finitely generated base group and induced character
ϕ.

Definition 4.6.4. Suppose that G is finitely generated. Let P be a single polytope in the
R-vector space H1(G;R), and let F be a face of P . A dual of F is a connected component
of the subspace

{ϕ ∈ H1(G;R) \ {0} | Fφ(P ) = F}.

A marked polytope is a pair (P,m), where P is a single polytope in H1(G;R), and m
is a marking, that is a function m : H1(G;R) → {0, 1}, which is constant on duals of faces
of F , and such that m−1(1) is open.

The pair (P,m) is a polytope with marked vertices if m−1(1) is a union of some duals
of vertices of P .

The marking m will usually be implicit, and the characters ϕ with m(ϕ) = 1 will be
called marked.

In [FT20], Friedl–Tillmann use a different notion of a marking of a polytope, which
corresponds to a polytope with marked vertices in our terminology where the marking m
is additionally required to be constant on all duals of a given vertex. Thus, our notion is
more general, and the two notions differ when the polytope in question is a singleton in a
1-dimensional ambient space: with our definition of marking, such a polytope admits four
distinct markings (just as every compact interval of non-zero length does), whereas with
the Friedl–Tillmann definition such a polytope admits only two markings in which either
every character is marked or none is.

4.6.2 The agrarian invariants of two-generator one-relator groups
Definition 4.6.5. A (2, 1)-presentation is a group presentation of the form 〈x, y | r〉, i.e.,
with two generators and a single relator. A group that admits a (2, 1)-presentation is
called a two-generator one-relator group.

The story of the usefulness of agrarian invariants for two-generator one-relator groups
begins with the following result:

Theorem 4.6.6 ([LL78, Theorem 1]). Torsion-free one-relator groups are agrarian.

In the following, for a group presentation π, we will denote the groups it presents by
Gπ.

In order to describe the cellular chain complex of the universal coverings of classifying
spaces for two-generator one-relator groups, we will use Fox derivatives, which were origi-
nally defined in [Fox53]. Let F be a free group on generators xi, i ∈ I. The Fox derivative
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with respect to xi is then defined to be the unique Z-linear map ∂
∂xi

: ZF → ZF satisfying
the conditions

∂1

∂xi
= 0,

∂xi
∂xj

= δij and
∂uv

∂xi
=

∂u

∂xi
+ u

∂v

∂xi

for all u,w ∈ F , where δij denotes the Kronecker delta. The fundamental formula for Fox
derivatives [Fox53, (2.3)] states that for every u ∈ ZF we have

u− 1 =
∑
i∈I

∂u

∂xi
· (xi − 1).

In the particular case of a two-generator one-relator group G = 〈x, y | r〉, the fundamental
formula applied to r implies that the following identity holds in ZG, since there r− 1 = 0:

∂r

∂x
· (x− 1) = −∂r

∂y
· (y − 1). (4.7)

We will need the following non-triviality result for Fox derivatives in two-generator
one-relator groups:

Lemma 4.6.7. Let π = 〈x, y | r〉 be a (2, 1)-presentation with cyclically reduced relator r,
and take z to denote either x or y. Denote the number of times z or z−1 appears in the
word r by s. Then the Fox derivative ∂r/∂z ∈ ZF2 is a sum of the form

∑s
j=1±wj for

words wj representing mutually distinct elements gj ∈ Gπ. In particular, ∂r/∂z 6= 0 in
ZGπ if s > 0.

Proof. This follows from [FT20, Corollary 3.4]. While the statement of the corollary only
asserts the distinctness of the group elements gj together with their scalar factors of ±1,
the proof actually shows that the elements themselves are distinct. Also note that, in the
proof of the corollary, ns is actually always strictly smaller than l, which is crucial for the
correctness of the penultimate sentence.

We are now able to show that the agrarian torsion of torsion-free two-generator one-
relator groups is defined and can be calculated explicitly:

Lemma 4.6.8. Let π = 〈x, y | r〉 be a (2, 1)-presentation with r cyclically reduced. Denote
the universal covering of the presentation 2-complex of Gπ associated to this presentation
by EGπ. Then EGπ is contractible and D-acyclic with respect to any agrarian embedding
ZGπ ↪→ D. If x or x−1 appears as a letter in r, then

ρD(EGπ) = −
[
∂r

∂x

]
+ [y − 1] ∈ D×

ab,

where [−] : D× → D×
ab is the canonical quotient map. If y or y−1 appears in r, then the

analogous statement holds with the roles of x and y interchanged.

Proof. That EGπ is contractible follows from [LS01, Chapter III, Proposition 11.1]. The
cellular ZGπ-chain complex of EGπ takes the following form in terms of the Fox derivatives
∂r
∂x and ∂r

∂y , see [Fox53]:

ZGπ

(
∂r
∂x

∂r
∂y

)
−−−−−−−→ ZG2

π

x− 1
y − 1


−−−−−−→ ZGπ.

We will now construct a non-degenerate τ -chain for the associated D-chain complex and
simultaneously obtain that the complex is acyclic. Note that acyclicity is also a general
consequence of the existence of a non-degenerate τ -chain by [Tur01, Lemma I.2.5].
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Since r is assumed to be cyclically reduced, the only case in which any of the generators
is trivial in ZGπ is when r consists of a single letter. Let us suppose for now that this is
the case, and without loss of generality let us take r = x. In this case, the chain complex
under investigation becomes

ZGπ

(
1 0

)
−−−−−→ ZG2

π

 0
y − 1


−−−−−−→ ZGπ.

Since y 6= 1 as G = 〈y〉, we immediately see that the complex is D-acyclic and comes with
an obvious choice of a non-degenerate τ -chain.

We will now assume that both generators represent non-trivial elements of Gπ. By
Lemma 4.6.7, the Fox derivative ∂r

∂x resp. ∂r
∂y represents the trivial element of ZGπ and

hence of D only if x resp. y does not appear in the word r, possibly inverted. Since Gπ
is not the free group on two generators, at least one of the letters x and y appears in this
way, and hence at least one of the Fox derivatives represents an invertible element in D.

In conclusion, both differentials in D ⊗ C∗(EGπ) have maximal rank, namely 1, and
so the complex is acyclic, since it is a complex of modules over a division ring.

We obtain a non-degenerate τ -chain by choosing the submatrices S1 and S0 to corre-
spond to a non-trivial Fox derivative and the generator which is not the one with respect
to which that Fox derivative was taken, respectively. With this choice, the formula for the
agrarian torsion is obtained from Theorem 4.3.15.

By the work of Waldhausen [Wal78, Theorem 17.5 & Theorem 19.4], two presentation
complexes associated to two (2, 1)-presentations of isomorphic torsion-free two-generator
one-relator groups are always simple homotopy equivalent. Since agrarian Betti num-
bers are homotopy invariant and agrarian torsion is a simple homotopy invariant by
Lemma 4.3.9, Lemma 4.6.8 actually implies that EG is D-acyclic for every torsion-free
two-generator one-relator group G and its agrarian torsion can be calculated from any
(2, 1)-presentation 〈x, y | r〉 with r cyclically reduced.

Since the agrarian polytope is homotopy invariant by Proposition 4.4.9, we obtain the
following result even without appealing to the work of Waldhausen:

Proposition 4.6.9. Let G be a torsion-free two-generator one-relator group that is not
isomorphic to the free group on two generators, and let ZG ↪→ D be an agrarian embedding.
Denote the free part of the abelianization of G by H. If π = 〈x, y | r〉 is any (2, 1)-
presentation of G such that r is cyclically reduced and x or x−1 appears as a letter in r,
we have

PDr(G) = PDr(EGπ) = P ([∂r/∂x])− P ([y − 1]) ∈ PT (H).

If y or y−1 appears in r, then the analogous statement holds with the roles of x and y
interchanged.

Since the space EG is unique up to G-homotopy equivalent, the polytope PDr(G) is
an invariant of the group G and does not depend on the choice of a (2, 1)-presentation.

In [FT20], Friedl and Tillmann associate a polytope to nice (2, 1)-presentations, which
are defined as follows:

Definition 4.6.10. A (2, 1)-presentation π = 〈x, y | r〉 giving rise to a group Gπ is called
nice if

(a) r is a non-empty word,

(b) r is cyclically reduced and
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(c) b1(Gπ) = 2.

Their construction of the polytope is equivalent to the following definition by [FT20,
Proposition 3.5]:

Definition 4.6.11. Let π = 〈x, y | r〉 be a nice (2, 1)-presentation giving rise to a group
Gπ. Denote by H the free part of the abelianization of G and write w for the image of an
element w ∈ ZG under the projection to ZH. Then we set

Pπ := P

(
∂r

∂x

)
− P

(
y − 1

)
= P

(
∂r

∂y

)
− P

(
x− 1

)
∈ PT (H).

It is shown in [FT20, Proposition 3.5] that the element Pπ ∈ PT (H) defined in this
way is indeed a single polytope.

For a nice (2, 1)-presentation π, Friedl and Tillmann also endow Pπ with a marking
of vertices, turning it into a marked polytope Mπ. A vertex of Pπ is declared marked
if any of its duals contains a character lying in Σ1(G). Friedl–Tillmann prove in [FT20,
Theorem 1.1] that every character lying in any dual of a marked vertex lies in Σ1(G), and
hence the markings of Pπ and Σ1(G) determine one another.

If π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 are two (2, 1)-presentations such that there exists an
automorphism f : 〈x, y〉 → 〈x, y〉 of the free group on two generators satisfying f(r) = r′,
then the two presentations clearly define isomorphic groups. The automorphism f induces
an isomorphism f : Hπ → Hπ′ between the free parts of the abelianizations of Gπ and Gπ′ .

Proposition 4.6.12. Let π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 be two nice (2, 1)-presentations.
Assume that there exists an automorphism f : 〈x, y〉 → 〈x, y〉 with f(r) = r′. Then

Pπ′ = PT (f)(Pπ) ∈ PT (Hπ′).

Proof. The automorphism group of a finitely generated free group is generated by the
elementary Nielsen transformations, which in the case of two generators x and y consist
of the following operations:

• Interchange x and y: f1(x) = y, f1(y) = x.

• Replace x with x−1: f2(x) = x−1, f2(y) = y.

• Replace x with xy: f3(x) = xy, f3(y) = y.

Since the statement of the proposition is functorial in f , we are thus left to show that
Pπ′ = PT (f)(Pπ) holds whenever f is one of f1, f2 and f3.

The chain rule for Fox derivatives [Fox53, (2.6)] applied to f takes the following form:

∂

∂x
f(r) = f

( ∂
∂x
r
)
· ∂
∂x
f(x) + f

( ∂
∂y
r
)
· ∂
∂x
f(y).

For the three elementary Nielsen transformations, we obtain

∂

∂x
f1(r) = f1

( ∂
∂x
r
)
· 0 + f1

( ∂
∂y
r
)
· 1 = f1

( ∂
∂y
r
)

∂

∂x
f2(r) = f2

( ∂
∂x
r
)
· (−x−1) + f2

( ∂
∂y
r
)
· 0 = f2

( ∂
∂x
r
)
· (−x−1)

∂

∂x
f3(r) = f3

( ∂
∂x
r
)
· 1 + f3

( ∂
∂y
r
)
· 0 = f3

( ∂
∂x
r
)
.

When f = f2 or f = f3, we read off that ∂r′/∂x and f(∂r/∂x) differ only by a factor of
the form ±g for some g ∈ Gπ′ . It follows that P (∂r′/∂x) and P(f)(P (∂r/∂x)) agree up
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to translation and hence define the same class in PT (Hπ′). Since f(y) = y in these cases,
the same holds true for the polytopes Pπ and Pπ′ .

For f1, we obtain using (4.7) that

Pπ′ = P
( ∂
∂x
f1(r)

)
− P (y − 1) = PT (f1)

(
P
( ∂
∂y
r
))

− PT (f1)
(
P (x− 1)

)
= PT (f1)

(
P
(( ∂
∂y
r
)
(y − 1)

)
− P

(
y − 1

)
− P

(
x− 1

))
= PT (f1)

(
P
(( ∂
∂x
r
)
(x− 1)

)
− P

(
x− 1

)
− P

(
y − 1

))
= PT (f1)

(
P
( ∂
∂x
r
)
− P

(
y − 1

))
= PT (f1)(Pπ),

which concludes the proof also in this case.

There are (2, 1)-presentations π = 〈x, y | r〉 and π′ = 〈x, y | r′〉 giving rise to isomorphic
groups, such that no isomorphism lifts to an automorphism of 〈x, y〉 mapping r to r′.
The first examples of such pairs of presentations appeared in [MP73], one of which is
〈x, y | x2y−2x2y−3〉 ∼= 〈x, y | x2y−5〉. This raises the question whether the (marked)
polytopes associated to π and π′ are still related. A possible answer to this question has
been formulated as a conjecture by Friedl and Tillmann:

Conjecture 4.6.13 ([FT20, Conjecture 1.2]). If G is a group admitting a nice (2, 1)-
presentation π, then Mπ ⊂ H1(G;R) is an invariant of G (up to translation).

In more formal terms, the conjecture asserts that if f : Gπ → Gπ′ is an isomorphism of
two groups associated to (2, 1)-presentations π and π′, then Pπ′ = PT (f)(Pπ) ∈ PT (Hπ),
where f : Hπ → Hπ′ is the isomorphism of the free parts of the abelianizations of Gπ and
G′
π induced by f .
As evidence for their conjecture, Friedl and Tillmann prove:

Theorem 4.6.14 ([FT20, Theorem 1.3]). If G is a torsion-free group admitting a nice
(2, 1)-presentation π and G is residually {torsion-free elementary amenable}, then Mπ ⊂
H1(G;R) is an invariant of G (up to translation).

They further remark that the polytope does not change (up to translation) when the
relator is permuted cyclically.

Making use of their construction of universal L2-torsion, Friedl and Lück resolved this
conjecture and provided a construction ofMπ intrinsic to the group G under the additional
assumption that G is torsion-free and satisfies the Atiyah conjecture:

Theorem 4.6.15 ([FL17, Remark 5.5]). If G is a torsion-free group admitting a nice (2, 1)-
presentation π and G satisfies the strong Atiyah conjecture over Q, then Mπ ⊂ H1(G;R)
is an invariant of G (up to translation). Moreover, Pπ = PL2(G).

By using agrarian torsion instead of universal L2-torsion, we are able to remove the
additional assumptions on G, thereby resolving Conjecture 4.6.13:

Theorem 4.6.16. If G is a group admitting a nice (2, 1)-presentation π, then Mπ ⊂
H1(G;R) is an invariant of G (up to translation). Moreover, if G is torsion-free then
Pπ = PDr(G) ∈ PT (Z2) for any choice of an agrarian embedding ZG ↪→ D.

Proof. We start by looking at the case of G containing torsion. The solution to this case
was found and communicated by Alan Logan.

First note that in this case, the BNS invariant Σ1(G) is empty – this follows im-
mediately from Brown’s algorithm [Bro87], or equivalently, from the construction of the
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marking of Mπ. An alternative way to see this is to observe that the first L2-Betti number
of G is not zero, see [DL07].

Since Σ1(G) = ∅, we need only worry about Pπ. If one alters the presentation π by
applying an automorphism f of the free group F2 = 〈x, y〉 to the relator r, the polytope
remains invariant in the sense of Conjecture 4.6.13 by Proposition 4.6.12. But it was
shown by Pride [Pri77] that when G contains torsion, every two two-generator one-relator
presentations of G are related by an automorphism of F2, up to possibly replacing the
relator r in one of the presentations by r−1. This last operation does not alter the class
of the polytope since, as a consequence of the product rule for Fox derivatives, we get
∂r−1/∂x = −r−1∂r/∂x, and thus the polytopes associated to ∂r−1/∂x and ∂r/∂x agree
up to translation.

Now suppose that G is torsion-free. Then the equality Pπ = PDr(G) follows directly
from the definitions of Pπ and PDr(G) by the computation done in Proposition 4.6.9,
and the agrarian polytope is an invariant of the group by construction. We conclude
from [FT20, Theorem 1.1] that once Pπ is known to be an invariant of G, the same is true
for the marked version Mπ since marked vertices are determined by the BNS invariant
Σ1(G) of the group G.

As a consequence of the equality Pπ = PDr(Gπ) for a (2, 1)-presentation π giving rise
to a torsion-free group we conclude that PDr(Gπ) is actually independent of the choice of
agrarian embedding.

Simple (2, 1)-presentations
Friedl and Tillmann claim in [FT20, Proposition 8.1] and the subsequent two paragraphs
that they can associate a single polytope Pπ to any (2, 1)-presentation π = 〈x, y | r〉 where
r is non-trivial and cyclically reduced, even without assuming the presentation to be nice.
If b1(Gπ) = 1, x represents a generator of the free part of the abelianization of Gπ and y
represents the trivial element therein, they call such a presentation simple. For a simple
presentation π, the polytope Pπ is computed by the formula involving the Fox derivative
of r with respect to x from Definition 4.6.11, and therefore agrees with PDr(Gπ) if Gπ is
torsion-free.

The statement and proof of [FT20, Proposition 8.1] are not fully correct, as the follow-
ing example shows:
Example 4.6.17. Consider the simple (2, 1)-presentation π = 〈x, y | y2〉. Then the associ-
ated polytope Pπ is only a virtual polytope, more specifically the additive inverse of the
class of a unit interval in PT (Z) = PT (〈x〉).

In the proof of [FT20, Proposition 8.1], the assumption that the relator r is either of
the form xm1yn1 · · ·xmkymk or yn1xm1 · · · ymkxmk for non-zero integers m1, n1, . . . ,mk, nk
is incorrect; in our example k = 1, m1 = 0 and n1 = 2.

In order to fix the statement and the proof of the proposition, it is necessary to consider
the case of group presentations 〈x, y | yn〉, n ∈ Z, n 6= 0 separately. These presentations are
the only simple ones for which any of the mi is zero. In this case, the polytope P (∂r/∂x) is
an interval of length D = 0, which means that Pπ is the additive inverse of a unit interval
in PT (Z).

With this additional case considered, we now observe that the correct result of [FT20,
Proposition 8.1] should be that Pπ is a single polytope for a simple (2, 1)-presentation π
if and only if Gπ is not isomorphic to Z ∗ Z/nZ for any n ∈ Z. The polytope Pπ can
be turned into a marked polytope Mπ in the Friedl–Tillmann sense if and only if Gπ is
neither isomorphic to Z ∗ Z/nZ nor to B(±1, n) := 〈x, y | xy±1x−1y−n〉 for n ∈ Z.

The problem with the Baumslag–Solitar groups B(±1, n) is that the resulting polytope
is a singleton lying in a 1-dimensional R-vector space. Since Σ1(B(±1, n)) is non-trivial
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and proper in H1(B(±1, n);R), there is no marking of Pπ in the Friedl–Tillmann sense
which would correctly control the BNS invariant. Our notion of marking of vertices of a
polytope circumvents this problem, and allows for a definition of Mπ also for these groups
by marking one of the duals of the only face and not marking the other.

The groups Z ∗ Z/nZ arising from the presentations 〈x, y | yn〉 all admit a virtual
polytope which is the additive inverse of the unit interval in PT (Z〈x〉). The notion of a
marked polytope readily extends to additive inverses of single polytopes by describing a
marking for the single polytope. Since Z ∗ Z/nZ is an ascending HNN extension along
any of the two possible epimorphisms to Z if n = ±1 and contains torsion otherwise, the
polytope will have all duals of its only face marked if n = ±1 and not marked if n 6= ±1.

4.6.3 Polytope thickness and splitting complexity
We continue with the notation of the previous section. Our aim now is to show that the
thickness of Pπ controls the minimal complexity of certain expressions of G as an HNN
extension over a finitely generated group. Before we state the precise connection, we need
to introduce the following concept:

Definition 4.6.18 ([FLT19, Section 5.1]). Let Γ be a finitely presented group and let
ϕ : Γ → Z be an epimorphism. A splitting of (Γ, ϕ) is a presentation of Γ as an HNN
extension with induced character ϕ and finitely generated base and associated groups.

It is proved in [BS78, Theorem A] that any pair (Γ, ϕ) admits a splitting. Hence we
can define the splitting complexity of (Γ, ϕ) as

c(Γ, ϕ) := min{rk(B) | (Γ, ϕ) splits with associated group B},

where rk(B) denotes the minimal number of generators of B. We also define the free
splitting complexity of (Γ, ϕ) as

cf (Γ, ϕ) := min{rk(F ) | (Γ, ϕ) splits with associated free group F},

which may be infinite. We always have c(Γ, ϕ) ⩽ cf (Γ, ϕ).
Friedl and Tillmann observed the following connection between the thickness of Pπ

and the (free) splitting complexity of G:

Theorem 4.6.19 ([FT20, Theorem 7.3]). Let G be a residually {torsion-free elemen-
tary amenable} group admitting a nice (2, 1)-presentation π. Then for any epimorphism
ϕ : G→ Z we have

c(G,ϕ) = cf (G,ϕ) = thφ(Pπ) + 1.

Note that every residually {torsion-free elementary amenable} group must itself be
torsion-free. Friedl, Lück, and Tillmann then noted in [FLT19, Theorem 5.2] that the
original proof could be adapted to the setting of [FL19], thereby giving the same formula
for groups satisfying the Atiyah conjecture.

We will now extend these results to general torsion-free two-generator one-relator
groups. For this, we require the following strengthened form of a proposition of Harvey,
which is evident from the last sentence of its original proof:

Proposition 4.6.20 ([Har05, Proposition 9.1]). Let D be a division ring and D[t±1] a
twisted Laurent polynomial ring with coefficients in D. Let M = A + tB where A and
B are two l ×m matrices over D. Then the map rM : D[t±1]l → D[t±1]m given by right
multiplication by M satisfies

dimD tors(coker(rM )) ⩽ rkD B.
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We are now in a position to improve upon both [FT20, Theorem 7.3] and [FLT19,
Theorem 5.2] by recasting the proof of [FT20, Theorem 7.3] in the agrarian world. In the
statement of the following theorem, the agrarian polytope PDr(G) can be replaced by Pπ
for any nice or simple (2, 1)-presentation π of G in the sense of [FT20, Section 8.1].

Theorem 4.6.21. Let G be a torsion-free two-generator one-relator group other than the
free group on two generators. Then for every epimorphism ϕ : G→ Z we have

c(G,ϕ) = cf (G,ϕ) = thφ(PDr(G)) + 1.

Proof. The inequality cf (G,ϕ) ⩽ thφ(Pπ) + 1 is proved in [FT20, Proposition 7.4] for
all nice (2, 1)-presentations. The proof of [FT20, Lemma 7.7] also applies to any simple
(2, 1)-presentation 〈x, y | r〉 for which r is not a word in just one of the generators and
its inverse, since then the numbers m1 and n1 appearing in the proof are non-zero. Any
other simple (2, 1)-presentation π is, up to renaming the generators, of the form 〈x, y | xn〉
for n ∈ N, n 6= 0, and there are only two different epimorphisms Gπ → Z. It is then easy
to see right from the definitions that the splitting complexity and thickness of Pπ with
respect to any of the two epimorphisms are given by 0 and −1, respectively.

Since every torsion-free two-generator one-relator group G that is not the free group
on two generators admits either a nice or a simple presentation π and PDr(G) = Pπ by
Proposition 4.6.9, we are left to show that c(G,ϕ) ⩾ thφ(PDr(G))+ 1. By Theorem 4.5.2,
this is further reduced to the following statement about the ϕ-twisted Dr-agrarian Euler
characteristic of G:

c(G,ϕ)− 1 ⩾ −χDr(G;ϕ).

Recall from the proof of Lemma 4.6.8 that the Cayley 2-complex X associated to a
(2, 1)-presentation of G serves as a model of EG and that the application of Theorem 4.5.2
is justified since we constructed a non-degenerate τ -chain. By Lemmata 4.5.4 and 4.5.6,
we can thus compute χDr(G;ϕ) from the Betti numbers of the complex Dr[t

±1]φ⊗C∗(X):

Dr[t
±1]φ

(
∂r
∂x

∂r
∂y

)
−−−−−−−→ Dr[t

±1]2φ

x− 1
y − 1


−−−−−−→ Dr[t

±1]φ.

Since Dr[t
±1]φ is a (non-commutative) principal ideal domain, the kernel of the differential

originating from degree 2 is free. It is also seen to be torsion by Lemma 4.5.6 and hence
dimDr Hp(Dr[t

±1]φ ⊗ C∗(X)) = 0 for p ⩾ 2.
We let c = c(G,ϕ) and choose a splitting

G = 〈A, t | µ(B) = tBt−1〉

of (G,ϕ) with associated group B generated by x1, . . . , xc; in particular A ⊆ ker(ϕ) is
finitely generated. We pick a presentation A = 〈g1, . . . , gk | r1, r2, . . . 〉, which is possible
since G and thus A are countable. Denote the number of relations in this presentation by
l ∈ Z⩾0 ∪{∞}. The splitting of (G,ϕ) then gives the following alternative presentation of
G:

G = 〈g1, . . . , gk, t | r1, r2, . . . , µ(x1)−1tx1t
−1, . . . , µ(xc)

−1txct
−1〉.

Note that the words ri, xj and µ(xj) are words in the generators gi of A. Denote by
Y the Cayley 2-complex associated to this presentation. By construction, π1(Y /G) =
π1(X/G), and thus Y can be turned into a model for EG by attaching G-cells in dimension
3 and higher only. Hence, its homology with arbitrary coefficients agrees with that of
X up to dimension 1, which in particular implies that dimDr Hp(Dr[t

±1]φ ⊗ C∗(X)) =
dimDr Hp(Dr[t

±1]φ ⊗ C∗(Y )) for p = 0, 1.
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In conclusion, we will know χDr(G;ϕ) if we compute the first two Dr[t
±1]φ-Betti

numbers of the G-CW-complex Y . For this, we need to consider its shape in more detail.
The complex Y is a two-dimensional free G-CW-complex with one zero-cell, k+1 one-cells
and l + c two-cells, and its cellular chain complex takes the form

· · · → 0 → ZGl+c
(
M0 M1

)
−−−−−−−−→ ZG⊕ ZGk

v0
v1


−−−−→ ZG,

where the (potentially infinite) block matrix M =
(
M0 M1

)
representing the second

differential consists of the Fox derivatives of the relations with respect to t and the gi,
respectively, and v0 = t − 1, v1 = (g1 − 1, . . . , gk − 1)t. Since the relations r1, r2, . . . are
words in ZA, their Fox derivatives with respect to t are trivial and their derivatives with
respect to each gi again lie in ZA. For the other relations, we obtain

∂

∂t
(µ(xj)

−1txjt
−1) = µ(xj)

−1 − µ(xj)
−1txjt

−1 ∈ ZA and
∂

∂gi
(µ(xj)

−1txjt
−1) =

∂

∂gi
(µ(xj)

−1) + µ(xj)
−1t

∂

∂gi
xj ∈ ZA+ t · ZA.

Hence, the matrix M is of the shape

0
... ∈ ZA
0

∈ ZA
... ∈ ZA+ t · ZA

∈ ZA





l

c

k

with the block M0 consisting of the first column of M . Now consider the following chain
map of Dr[t

±1]φ-chain complexes, where the vertical maps are given by projections and
both complexes continue trivially to the left and right:

Dr[t
±1]l+cφ Dr[t

±1]φ ⊕Dr[t
±1]kφ Dr[t

±1]φ

0 Dr[t
±1]kφ/(Dr[t

±1]l+cφ M1) Dr[t
±1]φ/(t− 1)

(
M0 M1

) v0
v1



(
v1

)

Since multiplication from the right with t − 1 is injective on Dr[t
±1]φ, the chain map

induces an isomorphism on homology in degrees 0 and 1. Since all the homology modules
Hi(Dr[t

±1]φ ⊗ C∗(Y )) are torsion by Lemma 4.5.6, the same holds true for the homology
of the lower chain complex. Using Proposition 4.6.20, we thus get the bound

dimDr Dr[t
±1]kφ/(Dr[t

±1]l+cφ M1) = dimDr tors(coker(rM1)) ⩽ c.

As deg(t− 1) = 1, we also get

dimDr Dr[t
±1]φ/(t− 1) = 1.
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In particular, the lower chain complex consists of finite Dr-vector spaces. Applying
the rank-nullity theorem to its only non-trivial differential, we obtain

thφ(Pπ) = −χDr(X;ϕ)

= dimDr H1(Dr[t
±1]φ ⊗ C∗(Y ))− dimDr H0(Dr[t

±1]φ ⊗ C∗(Y ))

= dimDr Dr[t
±1]kφ/(Dr[t

±1]l+cφ M1)− dimDr Dr[t
±1]φ/(t− 1)

⩽ c− 1.

We end with an example of a two-generator one-relator group that is not residually
solvable and thus not covered by the results of [FT20]. Its (2, 1)-presentation is a nice ver-
sion of the non-residually finite two-generator one-relator group constructed by Baumslag
in [Bau69].
Example 4.6.22. For words x, y ∈ 〈a, b〉, we define xy := y−1xy and [x, y] := x−1y−1xy.
Consider the two-generator one-relator group G defined by〈

a, b

∣∣∣∣ [a, b] = [[a, b], [a, b]b]〉 ,
which can be presented in cyclically reduced form as

π :=
〈
a, b

∣∣∣ a−1bab−1a−1bab−2a−1baba−1b−2ab
〉
.

We see directly from the first presentation of G that the relator becomes trivial in the
abelianization, hence b1(G) = 2 and π is a nice (2, 1)-presentation. By [LS01, Proposi-
tion II.5.18], the group G is also torsion-free since the single relator is not a proper power.

We claim that G is not residually solvable, i.e., not every element maps non-trivially
into a solvable quotient of G. Since the element [a, b] can be written as an arbitrarily
deeply nested iterated commutator (using the relation of the first presentation above), it
is contained in all derived subgroups of G and hence of every quotient. But if a quotient
is solvable, some derived subgroup and hence the image of [a, b] will be trivial. It is thus
left to show that [a, b] is non-trivial in G. Assume that [a, b] = 1 in G. Then G is abelian
and hence also [b, a] = b−1a−1ba = 1 in G. But [b, a] appears as a proper subword of the
relator in π and thus represents a non-trivial element by [LS01, Proposition II.5.29].

We conclude that a method such as the one employed in [FT20, Lemma 6.1] cannot be
used to deduce that G is residually {torsion-free elementary amenable} and hence satisfies
the assumptions of Theorem 4.6.14. We deem it plausible that G is even not residually
{torsion-free elementary amenable} and is thus not covered by Theorem 4.6.14, but to the
best of the authors’ knowledge no two-generator one-relator group has been shown to have
this property.

If we denote the single relator of π by r, an easy but tedious computation shows that

∂r

∂a
=−

(−1,−1)︷ ︸︸ ︷
b−1a−1+

(−1,0)︷ ︸︸ ︷
b−1a−1b−

(−1,−1)︷ ︸︸ ︷
b−1a−1bab−1a−1+

(−1,0)︷ ︸︸ ︷
b−1a−1bab−1a−1b

−

(−1,−2)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1+

(−1,−1)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1b−

(−1,0)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1baba−1

+

(−1,−2)︷ ︸︸ ︷
(b−1a−1ba)2b−2a−1baba−1b−2,

with the image in the abelianization of each summand noted in brackets. The convex
hull of these points in R2 corresponds to an interval of length 2 in the b-direction, hence
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Pπ = PDr(G) is an interval of length 1 in the b-direction. The marked polytope Mπ has
no markings since all abelianized monomials appear multiple times.

Let ϕb : G→ Z be the homomorphism sending a to 0 and b to 1. Since thφb
(PDr(G)) =

1, we conclude from Theorem 4.6.21 that cf (G,ϕb) = c(G,ϕb) = 2. A (free) splitting of G
along ϕb of minimal rank is thus given by

G =
〈
a, b, x, y

∣∣∣ x = [x, y], y = xb, x = [a, b]
〉

=
〈
a, x, y, b

∣∣∣ x = [x, y], y = xb, ax = ab
〉
.

4.7 Concluding remarks
Looking back and contemplating on the results obtained in the main part of this chapter,
we will now try to understand what makes L2-invariants special from the agrarian per-
spective. We will further remark on how the recent proof of the strong Atiyah conjecture
for one-relator groups provides an alternative route to our main application.

4.7.1 What makes ZG ↪→ D(G) special?
Let G be a torsion-free group that satisfies the strong Atiyah conjecture over Q. As a con-
sequence of Corollary 2.4.7, there is the agrarian embedding ZG ↪→ D(G) = DQG = RQG
into the Linnell division ring. Applied to this particular embedding, agrarian invariants
recover most of the information contained in the L2-invariants they are modeled on. From
this abstract perspective, the Linnell division ring is as good as any other, but it still en-
joys a number of special properties that make it particularly useful for both computations
and theoretic considerations. At certain points in the proofs given in this chapter, we
have already encountered these properties because we had to work around their absence
in order to construct agrarian invariants for general agrarian maps. We will now revisit
these points hoping that their discussion will provide an improved understanding of why
L2-invariants have been so successful and computationally tractable.

ZG ↪→ D(G) is an embedding
As a careful review of the preceding sections shows, there is no need to consider only those
agrarian maps that are embeddings anywhere in the construction of the agrarian invariants
or the proofs of their general properties. However, as soon as we needed to prove that
a certain chain complex was indeed D-acyclic in Lemma 4.6.8, we crucially used that no
elements of the group ring map to 0 in the division ring to conclude that the differentials
attain the ranks required for acyclicity. Given that the agrarian invariants other than
Betti numbers can only be defined for D-acyclic chain complexes, agrarian maps thus do
not seem to offer significantly increased generality over agrarian embeddings in the context
of higher invariants.

ZG ↪→ D(G) is strongly Hughes-free
By [Lüc02, Lemma 10.58], the ZG-ring D(G) is strongly Hughes-free, i.e., whenever N P H
is a normal subgroup of a subgroup H ⩽ G, elements of H ⊂ D(G) that are in mutually
distinct cosets of H with respect to N are D(N)-linearly independent. This property can
be traced back to the construction of D(G) out of the free linear action of ZG on `2(G).
It comes in useful in two ways related to agrarian invariants.

First, the agrarian embedding ZG ↪→ D(G) is rational to start with and thus does not
need to be replaced by its rationalization before the agrarian polytope can be constructed.
However, this does not seem to confer much of a benefit in practice: Even though there
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is no direct comparison in terms of specializations, a given agrarian embedding and its
rationalization appear to be equally tractable (or intractable), so that computations for
one should be expected to also apply for the other. In our application, the particular
structure of the embedding division ring was completely immaterial for the computations.

Second, when applied to finite-index normal subgroups, the fact that D(G) is strongly
Hughes-free implies that the condition of Proposition 4.2.10 is satisfied and thus that the
D(G)-agrarian Betti numbers satisfy the restriction identity enjoyed by L2-Betti numbers.
Even though we were able to work around this issue in our application as the passage to
a subgroup played out entirely in the rational part of the agrarian embedding, it is likely
the most severe limitation faced when considering general agrarian embeddings.

L2-acyclicity is witnessed by the combinatorial Laplacian

As explained in detail in [Lüc02, Lemma 2.5], the L2-acyclicity of a ZG-chain complex
C∗ is witnessed by the combinatorial Laplacian inducing a level-wise isomorphism on
D(G)⊗ZGC∗. Equivalently, the chain complex C∗ admits a weak type of chain contraction
that consists of maps defined entirely over ZG. The origin of this convenient property of
D(G) can be traced back all the way to the Hodge decomposition of the Laplacian on
`2(G) and thus to the existence of a scalar product.

This extra structure has no analogue for a general agrarian map and, consequently, a
chain contraction for a ZG-chain complex that is D-acyclic may need to involve elements
from D that are not in ZG. Furthermore, the lack of this convenient type of chain con-
traction in the general setting is why the agrarian torsion we construct does not appear
to enjoy a universal property in the way universal L2-torsion does. In [FL19], this prop-
erty is used to prove that the thickness of the L2-polytope can be expressed as a twisted
L2-Euler characteristic. Luckily, it turns out that it is not required for the correctness of
this statement, allowing us to give a different, albeit more laborious proof based on matrix
chains.

Apart from the lack of a universal property, the missing connection to the combinatorial
Laplacian also means that the combinatorial approach to calculating L2-torsion described
in [Lüc02, 3.7] is not applicable to agrarian invariants.

Analytic expressions of L2-invariants

Apart from computing L2-invariants such as L2-Betti numbers and L2-torsion from their
basic computational properties, one can also calculate them by analytic means, using the
L2-Hodge–de Rham theorem (see [Lüc02, 1.3.2]) and the deep result that analytic and
topological L2-torsion agree ([Bur+96], see also [BFK98]). Computations obtained via
these bridges into analysis have no counterpart in the agrarian world.

In summary, assuming the strong Atiyah conjecture, the convenient properties of L2-
invariants can be, for the most part, traced back to the strongly Hughes-free agrarian
embedding ZG ↪→ D(G). Both the combinatorial as well as the analytic approach to L2-
Betti numbers and L2-torsion serve as notable exceptions to this statement and provide
important ways of computing these L2-invariants that are not at all applicable to agrarian
invariants.

4.7.2 The proof of the strong Atiyah conjecture for one-relator groups
After the work on Theorem 4.6.16 and Theorem 4.6.21 had been concluded, Jaikin-Zapirain
and López-Álvarez publicized a proof of the conjecture for locally indicable groups, which
has meanwhile appeared as [JL20]. Since torsion-free one-relator groups are locally indi-
cable by a result of Brodskii [Bro84], the torsion-free part of Theorem 4.6.16 thus follows
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directly from Theorem 4.6.15. Furthermore, a proof of Theorem 4.6.21 assuming the strong
Atiyah conjecture is indicated in [FLT19, Theorem 5.2].

The proofs provided in this chapter as well as the proof of the agrarianicity of torsion-
free one-relator groups of [LL78] are more laborious, but serve to show that the additional
structure enjoyed by the Linnell division ring is in fact not required to obtain the desired
results.



Chapter 5

Pseudo-Sylvester domains and
skew Laurent polynomials over
firs

This chapter is based on the preprint “Pseudo-Sylvester domains and skew Laurent poly-
nomials over firs” [HL20], which reports on joint work with Diego López-Álvarez.

Our discussion of non-commutative localizations in Section 1.2 ended with the obser-
vation that we cannot construct division rings out of group rings of non-amenable groups
simply by inverting elements. It was P.M.Cohn who realized that, in the same way that
we can obtain a field from a commutative ring by localizing at a prime ideal (and then
taking the residue field), we can obtain a division ring D from any ring R by means of
universal localization at prime matrix ideals (see [Coh06]). Similarly to the commutative
case, the division ring obtained in this way is generated as a division ring by the image
of R under the corresponding map R → D. The pair given by D and the map R → D,
or sometimes just D if the map is clear from the context, is usually referred to as epic
division R-ring.

Adopting the previous terminology, recall that a homomorphism from a commutative
ring R to an epic field K is completely characterized by its kernel, which is a prime ideal
of R, in the sense that K can be recovered as mentioned above, i.e., by localizing at the
kernel and taking the residue field. This is equivalent to saying that such a homomorphism
is determined by the set of elements that become invertible in K, the ones outside the
kernel. In the very same spirit, P.M.Cohn showed that a prescribed epic division R-
ring is completely characterized by its singular kernel, which is a prime matrix ideal, or
equivalently by the set Σ of matrices becoming invertible under the homomorphism. The
latter point of view is particularly useful since the map will be injective if and only if Σ
contains every non-zero element of R.

Assume that we are given an embedding R ↪→ D of the domain R into the division
ring D. Then, a natural necessary condition for an n × n matrix A over R to become
invertible over D is that it cannot be expressed as a product A = BC for some matrices
B, C of sizes n × m and m × n, respectively, where m < n. Otherwise, the usual rank
rkD(A) of A over D would be less or equal than m, and hence A would not be invertible.
A matrix satisfying this necessary condition is called full. Therefore, one may wonder
whether, among the division rings in which R can be embedded, there exists one in which
we can invert every full matrix. The rings for which this is possible, originally studied
by W. Dicks and E. Sontag ([DS78]) as those satisfying the law of nullity with respect to
the inner rank function, comprise the family of Sylvester domains. The first examples of
Sylvester domains were the free ideal rings (firs) (see [Coh06, Section 5.5]).

In addition, observe that if the matrix A is to become invertible in a division ring, then
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the same holds true for A ⊕ Im, the block diagonal matrix with blocks A and Im, where
Im denotes the m ×m identity matrix. Thus, A ⊕ Im must in fact be full for every non-
negative integer m. A matrix with this property is called stably full and, of course, in a
Sylvester domain it is the case that every full matrix is stably full. Nevertheless, in general
there may be full matrices that are not stably full, and hence, the question of whether
there exists a division ring D in which R embeds and in which we can invert every stably
full matrix over R is interesting in its own right. The rings with this property are the
pseudo-Sylvester domains, which were introduced in [CS82] as the family of stably finite
rings satisfying the law of nullity with respect to the stable rank function. Notice that if
such a division ring D exists, then it is necessarily universal in the sense of P.M.Cohn (see
Section 5.1.1), meaning that if a matrix A over R becomes invertible over some division
ring, then it is also invertible over D.

Recently, in [Jai19b], Jaikin-Zapirain introduced a new homological criterion for a ring
to be a Sylvester domain. In this chapter, we provide a similar recognition principle for
pseudo-Sylvester domains and use it to prove the following result:

Theorem 5.A. Let F be a fir with universal division F-ring of fractions DF, and consider
a crossed product ring S = F ∗ Z. Then, the following holds:

(a) S is a pseudo-Sylvester domain if and only if every finitely generated projective
S-module is stably free.

(b) S is a Sylvester domain if and only if it is projective-free.

In any of the previous situations, DS = Ore(DF ∗ Z) is the universal division S-ring of
fractions and it is isomorphic to the universal localization of S with respect to the set of
all stably full (resp. full) matrices.

As a particular application of Theorem 5.A, we obtain the next result through the
recent advances on the Farrell–Jones conjecture by Bestvina–Fujiwara–Wigglesworth and
Brück–Kielak–Wu:

Theorem 5.B. Let E be a division ring and G a group arising as an extension

1 → F → G→ Z → 1

where F is a free group. Then every crossed product E ∗G is a pseudo-Sylvester domain.
In particular, DE∗G = Ore(DE∗F ∗Z) is the universal division E ∗G-ring of fractions and
is isomorphic to the universal localization of E ∗ G with respect to the set of all stably
full matrices. Moreover, E ∗ G is a Sylvester domain if and only if it has stably free
cancellation.

Some examples of groups as in Theorem 5.B with and without stably free cancellation
are discussed in Section 5.3.2.

Note that Jaikin-Zapirain already showed in [Jai19d, Theorem 1.1 & Theorem 3.7]
that E ∗ G has a universal division ring of fractions. With Theorem 5.B, we provide
an independent proof of this fact as well as a description of the matrices that become
invertible over DE∗G. Furthermore, in [LL18, Theorem 2.17], it has already been shown
that KG, where K is a subfield of C, admits a universal localization that is a division ring.

This chapter is organized as follows. In Section 5.1 we recall the major notions that
are going to play a role in the proof of our main result. We recall in Section 5.1.1 and
Section 5.1.3 the basics on localization, stably freeness and stably finiteness, three notions
needed to introduce properly (pseudo-)Sylvester domains in Section 5.1.4. In Section 5.1.2
we introduce the main homological tools that we are going to work with.
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Section 5.2 is devoted to prove Theorem 5.A. We first state the criteria for Sylvester and
pseudo-Sylvester domains in Section 5.2.1 and obtain additional input from homological
algebra in Section 5.2.2.

In Section 5.3, we prove Theorem 5.B as an application of Theorem 5.A and the recent
proof of the Farrell–Jones conjecture for the family of groups considered. In Section 5.3.2
we end with some examples of group rings to which our results apply.

5.1 Definitions and background
In this section, we will review the required notions and basic results related to non-
commutative localizations and homological algebra that are relevant for the formulation
and proofs of our main results.

5.1.1 Universal localization
We have seen in Section 1.2, specifically in Theorem 1.2.9, that division rings of fractions
of general non-commutative domains cannot be obtained simply by passing to fractions of
elements. We will now see that one can get much further by adjoining inverses of matrices
instead of just ring elements. This generalized notion of non-commutative localization,
known as universal localization goes back to P.M.Cohn and is part of this theory of epic
division R-rings (see [Coh06, Chapter 7]). It builds on the notion of prime matrix ideals,
certain subsets of the set of all square matrices over a ring that behave similarly to a prime
ideal in a commutative ring. We refer the reader to [Coh06, Section 7.3] for the details of
their definition.

Definition 5.1.1. Given a set Σ of (square) matrices over R, and a homomorphism of rings
ϕ : R→ S, we say that the map ϕ is Σ-inverting if every element of Σ becomes invertible
over S. We say that ϕ is universal Σ-inverting if any other Σ-inverting homomorphism
factors uniquely through ϕ. In this latter case, we denote S = RΣ and we call RΣ the
universal localization of R with respect to Σ.

If we allow RΣ to be the zero ring, the existence of the universal localization can always
be proved by taking a presentation of R as a ring and formally adding the necessary gener-
ators and relations. Moreover, the universal Σ-inverting homomorphism will be injective
if and only if there exists a Σ-inverting embedding to some ring ([Coh06, Theorem 7.2.4]).

Cohn’s main result is that epic division R-rings, as defined in Definition 1.2.12, are
completely characterized (up to R-isomorphism) by the set Σ of matrices over R that
become invertible in the division ring, and that they always arise as residue fields of a
universal localization RΣ ([Coh06, Theorem 7.2.5 & Theorem 7.2.7]). In addition, such
sets Σ are precisely the complements in the set of square matrices over R of prime matrix
ideals P ([Coh06, Theorem 7.4.3]). Thus, we would obtain a division R-ring of fractions
if we could construct such a set Σ including all non-zero elements in R.

Finally, if among all the possible division R-rings of fractions, there exists one in which
we can invert “the most” (relative to R) matrices possible, we call it the universal division
R-ring of fractions. More precisely:

Definition 5.1.2. The division R-ring of fractions R ↪→ D is called the universal division
R-ring of fractions if, for any other epic division R-ring D′, the set Σ′ of matrices that
become invertible over D′ is contained in the set Σ of matrices that become invertible over
D.

In Section 5.1.4 we will introduce two families of rings, namely Sylvester and pseudo-
Sylvester domains, for which there exists a universal division ring of fractions and for which
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the set Σ of matrices becoming invertible under the embedding can be characterized in a
natural way only depending on R. Our main result will be build on a homological criterion
for a ring to belong to one of these families, which is why we need to introduce parts of
the dimension theory of (non-commutative) rings in the following.

5.1.2 Weak and global dimensions
Recall that a module N over a ring R has projective dimension at most n (abbreviated
pd(N) ⩽ n) if N admits a resolution

0 → Pn → . . .→ P0 → N → 0

of projective R-modules. In particular, observe that N is projective if and only if pd(N) =
0. The supremum among the projective dimensions of all left (resp. right) R-modules is
called the left (resp. right) global dimension of R, and it is not left-right symmetric in
general. This concept is deeply related to Ext functors.

Lemma 5.1.3 ([Rot09, Proposition 8.6]). Let N be a left R-module. Then pd(N) ⩽ n if
and only if Extn+1

R (N,N ′) = 0 for all left R-modules N ′.

Analogously, we say that the flat dimension of N is at most n, and we write fd(N) ⩽ n,
if it admits a resolution of flat R-modules

0 → Qn → . . .→ Q0 → N → 0,

and define the left (resp. right) weak dimension of R as the supremum of the flat dimen-
sions of all left (resp. right) R-modules. It turns out that this notion is always left-right
symmetric ([Rot09, Theorem 8.19]) and hence we can just talk about the weak dimension
of R. As it happens with pd(N) and Ext∗R(N, ?), the flat dimension of N (resp. of a
right R-module M) can be characterized in terms of TorR∗ (?, N) (resp. TorR∗ (M, ?)). Ob-
serve though that, unlike the previous case, here we need to change the argument while
considering left or right modules.

Lemma 5.1.4 ([Rot09, Proposition 8.17]). Let N be a left R-module. Then fd(N) ⩽ n if
and only if TorRn+1(M,N) = 0 for all right R-modules M .

We finish this section with the following result regarding Tor, sometimes referred to
as Shapiro’s Lemma (see [Rot09, Corollary 10.61] for a generalization).

Lemma 5.1.5. Let R be a subring of S such that S is flat as a left R-module. Then, for
any right R-module M , for any left S-module N and for any n ⩾ 0, we have

TorRn (M,RN) ∼= TorSn(M ⊗R S,N)

where RN denotes N considered as a left R-module.

5.1.3 Stably freeness and stably finite rings
The criteria we are going to introduce in Section 5.2 rely on proving that certain submod-
ules are finitely generated free or stably free, respectively. Therefore, we need to deal with
the latter concept and its relation with the notion of stably finite rings.

Definition 5.1.6. A module M over a ring R is called stably free if there exists n ⩾ 0
such that M ⊕Rn is a free R-module.
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By a result of Gabel, a proof of which is given in [Lam78, Proposition 4.2], any stably
free module that is not finitely generated is already free. For this reason, we will restrict
our attention to finitely generated stably free modules in the following.

If M is a finitely generated stably free R-module and M ⊕ Rn is free, then this free
module is necessarily finitely generated and hence isomorphic to some Rm. In general,
the difference m − n needs neither be positive nor uniquely determined by M . It is here
where the stably finite property enters the scene. Recall that a ring R is said to be stably
finite (or weakly finite) if whenever A and B are two n × n-matrices over R such that
AB = In, then also BA = In. This can be reformulated in terms of modules by saying
that if Rn ⊕K ∼= Rn, then K = 0. For example, every division ring is stably finite. Also,
if K is a field of characteristic 0 and G is any group, or if K has positive characteristic and
G is sofic, the group ring KG is stably finite (see [Jai19a, Corollary 13.7]). Furthermore,
any subring of a stably finite ring is clearly again stably finite.

If M is a non-trivial module over a stably finite ring R and M ⊕ Rn ∼= Rm, then the
difference m − n is positive and constant among all such representations. We call this
positive number the stably free rank of M and denote it by rksf (M).

To finish this subsection, let P be a finitely generated projective module over R. We
will recall in the next subsection that if R is a Sylvester domain then P is necessarily free,
while if R is just a pseudo-Sylvester domain, we can only deduce that P is stably free.
Thus, a first (and in fact, the only) obstruction for a pseudo-Sylvester domain to be a
Sylvester domain is the following property:

Definition 5.1.7. A stably finite ring R is said to have stably free cancellation (SFC) if
every finitely generated stably free R-module M is free of rank rksf (M).

Examples of group rings with and without stably free cancellation will be given in
Section 5.3.2.
Remark 5.1.8. Let R be a ring. If M is a left (right) R-module, then M∗ := HomR(M,R),
called the dual of M , is naturally a right (left) R-module. For every ring R, the functor
P 7→ P ∗ defines an equivalence between the category of finitely generated projective left R-
modules and the opposite of the category of finitely generated projective right R-modules,
with the inverse functor given in the same way. To see that P ∼= P ∗∗, note that taking
the dual commutes with finite direct sums and the claim thus needs to be checked only
for R itself viewed as an R-module, where it is clear. The equivalence defined in this way
restricts to equivalences of the respective subcategories of finitely generated stably free
and finitely generated free modules.

As a consequence, every property of rings that can be expressed in terms of these
categories in a way that is invariant under passing to an equivalent or opposite category
will hold for left modules if and only if it holds for right modules. In particular, whether or
not any of the classes of finitely generated projective, stably free or free modules coincide
for a ring does not depend on whether left or right modules are considered.

5.1.4 (Pseudo-)Sylvester domains
In this section we introduce the main families of rings we are going to deal with throughout
the chapter, namely, Sylvester domains and pseudo-Sylvester domains, which requires us
to first introduce the notions of inner and stable rank.

Let R be a ring, and A an m × n matrix over R. Recall that the inner rank ρ(A) is
defined as the least k such that A admits a decomposition A = Bm×kCk×n. We say that
a square matrix A of size n× n is full if ρ(A) = n. Recall also that the stable rank ρ∗(A)
is given by

ρ∗(A) = lim
s→∞

[
ρ(A⊕ Is)− s

]
,
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whenever the limit exists, where A⊕ Is denotes the block diagonal matrix with blocks A
and Is. We analogously say that a square matrix is stably full if it has maximum stable
rank. When R is stably finite, ρ∗(A) is well-defined and non-negative, and it is positive if
A is a non-zero matrix ([Coh06, Proposition 0.1.3]). For this reason, in the following we
restrict our attention to stably finite rings.

Observe that from the definition of the inner rank it follows that the sequence in the
limit is always non-increasing and bounded above by ρ(A). In particular, for an n × n
matrix A we obtain that ρ∗(A) ⩽ ρ(A) ⩽ n and that ρ∗(A) = n if and only if the sequence
is constantly n. Thus, A is stably full if and only if ρ(A⊕ Is) = n+ s for every s ⩾ 0.

We summarize useful properties of the stable rank over stably finite rings.

Lemma 5.1.9. Let R be a stably finite ring. Then the following holds for every matrix A
over R:

(a) For every k ⩾ 0, ρ∗(A⊕ Ik) = ρ∗(A) + k.

(b) There exists N ⩾ 0 such that for every l ⩾ N , ρ∗(A⊕ Il) = ρ(A⊕ Il).

(c) 0 ⩽ ρ∗(A) ⩽ ρ(A).

Proof. Since R is stably finite, we know that ρ∗(A) = r ⩾ 0. This means that there exists
N ⩾ 0 such that for any l ⩾ N we have ρ(A⊕ Il)− l = r. Thus, for k ⩾ 0,

ρ∗(A⊕ Ik) = lim
s→∞

[
ρ(A⊕ Ik ⊕ Is)− (s+ k) + k

]
= r + k = ρ∗(A) + k.

From here, we also deduce that for l ⩾ N one has

ρ(A⊕ Il) = l + r = l + ρ∗(A) = ρ∗(A⊕ Il).

The last statement has already been observed above.

We can now introduce the main notions of the subsection. Let us define first the notion
of Sylvester domain, together with the main examples and properties.

Definition 5.1.10. A non-zero ring R is a Sylvester domain if R is stably finite and
satisfies the law of nullity with respect to the inner rank, i.e., if A ∈ Matm×n(R) and
B ∈ Matn×k(R) are such that AB = 0, then

ρ(A) + ρ(B) ⩽ n

In fact, it can be shown that the condition that R is stably finite is redundant here,
but we keep it as a requirement to show the symmetry with the upcoming definition of
pseudo-Sylvester domain. The following rings serve as the most prominent examples of
Sylvester domains ([Coh06, Proposition 5.5.1]):

Definition 5.1.11. A free ideal ring (fir) is a ring in which every left and every right
ideal is free of unique rank (as a module).

As a consequence, in a fir every submodule of a free module is again free (see [Coh06,
Corollary 2.1.2] and note that every submodule of a free R-module of rank κ is max(|R|, κ)-
generated). For instance, a division ring D is a fir, and the inner rank over D is just its
usual rank, which will be denoted by rkD. An important example is the group ring KF ,
where K is a field and F is a free group. This result was originally proved by P.M.Cohn,
and we refer the reader to [Lew69, Theorem 1] for a concise treatment. More generally,
for any division ring E and free group F , the crossed product E ∗ F is a fir. This is a
consequence of Bergman’s coproduct theorem (see [Sán08, Theorem 4.22 (i)]).

The following property of a ring, which by Remark 5.1.8 is left-right symmetric, is
intimately related to Sylvester domains.



5.1. Definitions and background 113

Definition 5.1.12. A ring R is called projective-free if every finitely generated projective
R-module is free of unique rank.

Note, for instance, that if K is a field, then the polynomial ring K[t1, . . . , tn] in n
indeterminates is projective-free, a result known as the Quillen–Suslin theorem.

Every Sylvester domain is projective-free and has weak dimension at most 2 (see [DS78,
Theorem 6] and the subsequent discussion). In Theorem 5.A, we will provide a class of
rings of weak dimension at most 2 which are Sylvester domains if and only if they are
projective-free.

In the same way that Sylvester domains are defined in terms of inner rank, pseudo-
Sylvester domains are defined in terms of stable rank.

Definition 5.1.13. A non-zero ring R is a pseudo-Sylvester domain if R is stably finite
and satisfies the law of nullity with respect to the stable rank, i.e., if A ∈ Matm×n(R) and
B ∈ Matn×k(R) are such that AB = 0, then

ρ∗(A) + ρ∗(B) ⩽ n.

Example 5.1.14. The following rings are pseudo-Sylvester domains, but not Sylvester do-
mains:

• The polynomial ring D[x, y] in two variables over a division ring D is a pseudo-
Sylvester domain by [CS82, Proposition 6.5] and [Bas68, Theorem XII.3.1]. It is not
projective-free by [OS71, Proposition 1] if D is non-commutative.

• The Weyl algebra A1(K) for a field K, which is the quotient of the free algebra on
two generators x and y by the ideal generated by xy − yx− 1, is a pseudo-Sylvester
domain by [CS82, Proposition 6.5] and [Sta77b, Theorem 2.2]. An example of a
projective non-free ideal is provided in [Sta77a, Section 6].

In analogy to the case of Sylvester domains, any finitely generated projective module
over a pseudo-Sylvester domain is stably free [Coh06, Proposition 5.6.2]. Moreover, a
pseudo-Sylvester domain is a Sylvester domain if and only if the ring has stably free
cancellation by [CS82, Proposition 6.1].

Several characterizations of Sylvester and pseudo-Sylvester domains can be found in
[Coh06, Theorem 7.5.13] and [Coh06, Theorem 7.5.18], respectively. In particular, they
can be defined in terms of universal localizations and universal division rings of fractions.
In this flavour, observe that for an n × n matrix A to become invertible over a division
ring D, we need A to be stably full, since otherwise there would exists s ⩾ 0 such that
ρ(A ⊕ Is) < n + s and hence A ⊕ Is would not be invertible over D. Thus, one can
wonder whether there exists a division ring in which R embeds and in which every stably
full matrix can be inverted. The family of rings for which this is possible is precisely the
family of pseudo-Sylvester domains.

For a Sylvester domain, the inner rank is additive, in the sense that ρ(A ⊕ B) =
ρ(A) + ρ(B) holds for any matrices A and B (see [Coh06, Lemma 5.5.3]), and thus the
inner and stable rank coincide. Indeed, if ρ∗(A) = r, then by Lemma 5.1.9 (b) there exists
s ⩾ 0 such that ρ(A⊕ Is) = ρ∗(A⊕ Is), from where Lemma 5.1.9 (a) and additivity tell us
that ρ∗(A) = ρ(A). As a consequence, every full matrix is actually stably full, and hence
Sylvester domains will form the family of rings embeddable into a division ring in which
we can invert all full matrices.

We record this in the following proposition, whose statement is implicit in [Coh06,
Theorem 7.5.13 & Theorem 7.5.18].

Proposition 5.1.15. For a non-zero ring R, the following are equivalent:
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(a) R is a Sylvester (resp. pseudo-Sylvester) domain.

(b) There exists a division R-ring of fractions R ↪→ D such that every full (resp. stably
full) matrix over R becomes invertible over D.

Moreover, if R satisfies one, and hence each of the previous properties, D is the universal
division R-ring of fractions, and it is isomorphic to the universal localization of R with
respect to the set of all full (resp. stably full) matrices over R.

5.2 Proof of Theorem 5.A
This section is devoted to prove Theorem 5.A by verifying the conditions of Theorems 5.2.3
and 5.2.4, both of which will be stated in Section 5.2.1. The former is a particular case
of a homological criterion introduced by Jaikin-Zapirain in [Jai19b] to determine when a
ring with a prescribed embedding into a division ring is a Sylvester domain. The latter is
the analogous recognition principle adapted to pseudo-Sylvester domains.

Throughout this section, F will always denote a fir with universal division F-ring of
fractions DF, and we will consider any crossed product ring S = F ∗ Z.

The following lemma tells us in particular that the crossed product structure S = F∗Z
can always be extended to a crossed product structure DF ∗Z, and that this ring is an Ore
domain.

Lemma 5.2.1. Let R be a (pseudo-)Sylvester domain with universal division R-ring of
fractions DR and let R ∗ Z be a crossed product. Then we can form a crossed product
DR ∗ Z together with an embedding R ∗ Z ↪→ DR ∗ Z such that

(1) The composition R∗Z ↪→ DR ∗Z ↪→ Ore(DR ∗Z) is a division R∗Z-ring of fractions.

(2) The left R ∗ Z-modules DR ∗ Z and (R ∗ Z) ⊗R DR (resp. the right R ∗ Z-modules
DR ∗ Z and DR ⊗R (R ∗ Z)) are isomorphic.

Proof. First, we are going to see that every automorphism ϕ of R extends uniquely to an
automorphism of DR. Indeed, let Σ denote the set of (stably) full matrices over R and
notice that ϕ preserves Σ (i.e., ϕ(Σ) = Σ). Thus, the composition R

φ−→ R ↪→ DR is a
Σ-inverting embedding, and hence the universal property of universal localization gives us
a unique injective map ϕ : RΣ = DR → DR such that the diagram

R DR

R DR.

φ∼= φ̃

commutes. Since DR is generated by R as a division ring, ϕ̃ is also surjective, and hence
an automorphism of DR.

As mentioned in Example 1.1.4, we have a ring isomorphism R∗Z ∼= R[t±1; τ ] for some
automorphism τ of R, and taking the automorphism τ̃ of DR that extends τ , we can form
the ring DR[t

±1; τ̃ ], so that we have a commutative diagram

R DR

R[t±1; τ ] DR[t
±1; τ̃ ].

To see that the bottom map is epic, let S be any ring and f, g : DR[t
±1; τ̃ ] → S ring

homomorphisms that agree on R[t±1; τ ]. They induce ring homomorphisms DR → S that
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coincide on R, and hence, since the embedding R ↪→ DR is epic, f and g agree on DR.
Since they also agree in the indeterminate, we deduce that f = g.

Thus, we have an epic embedding R ∗ Z ∼= R[t±1; τ ] ↪→ DR[t
±1; τ̃ ] = DR ∗ Z, the latter

ring is an Ore domain by Theorem 1.2.9 and since the map DR ∗Z ↪→ Ore(DR ∗Z) is also
epic and Ore(DR ∗Z) is a division ring, the composition R ∗Z ↪→ Ore(DR ∗Z) is a division
R ∗ Z-ring of fractions. This finishes the proof of (1).

Finally, note that since R ∗ Z is isomorphic to R[t±1; τ ] as a ring, (2) follows from the
fact that the left R[t±1; τ ]-linear map

R[t±1; τ ]⊗R DR → DR[t
±1; τ̃ ]

tn ⊗ λ 7→ τ̃n(λ)tn

is an isomorphism since it is also right DR-linear and maps the basis {tn ⊗ 1 | n ∈ Z} to
the basis {tn | n ∈ Z}. The statement for right modules is proved analogously.

We are interested in the homological properties of DS = Ore(DF ∗ Z), to which we
will dedicate Section 5.2.2. In the previous lemma we explored the S-module structure of
DF ∗Z. The next one, applied to the case R := DF ∗Z, O := DS and S := S, will allow us
later to restrict our attention to S-submodules of DF ∗ Z.

Lemma 5.2.2. Let R be a right Ore domain with Ore division ring of fractions O and S
a subring of R. Then every finitely generated S-submodule M of the left S-module O is
isomorphic to a finitely generated S-submodule of R.

Proof. Let M be generated as a left S-module by x1, . . . , xm ∈ O. We find pi, qi ∈ R such
that xi = piq

−1
i for i = 1, . . . ,m. If m ⩾ 2 we can use the Ore condition to find non-zero

a, b ∈ R such that q1a = q2b, and hence x1 = (p1a)(q1a)
−1 and x2 = (p2b)(q2b)

−1 can be
expressed as fractions with common denominators. By repeatedly applying this procedure
we produce p′i, q ∈ R, q 6= 0 such that xi = p′iq

−1 for all i.
We now consider the left S-submodule M ′ of R generated by x1q, . . . , xmq. The map

f : M → M ′ given by y 7→ yq is S-linear since O is associative and surjective since its
image contains the generators. Finally, it is injective, since O is a division ring and hence
zq 6= 0 for every z 6= 0. We conclude that f is an S-linear isomorphism.

5.2.1 Recognition principles for (pseudo-)Sylvester domains
As mentioned above, we are going to use the next two theorems to prove Theorem 5.A.
The first one is a direct consequence of a criterion for a ring to be a Sylvester domain
which was recently formulated by Jaikin-Zapirain in [Jai19b, Theorem 2.3].

Theorem 5.2.3. Let R ↪→ D be a division R-ring of fractions. Assume that

(1) TorR1 (D,D) = 0 and

(2) for any finitely generated left or right R-submodule M of D and any exact sequence
0 → J → Rn →M → 0, the R-module J is free of finite rank.

Then R is a Sylvester domain and D is the universal division R-ring of fractions.

The second theorem is an analogue for pseudo-Sylvester domains, involving stably free
modules instead of free modules. The proof proceeds similarly, but we include it here for
the sake of completeness. Given an embedding R ↪→ D of R into a division ring and a
matrix A over R, we will denote by rkD(A) the usual D-rank of A considered as a matrix
over D. Similarly, if M is a left R-module, we take dimD(M) to denote the D-dimension
dimD(D ⊗RM) of the left D-module D ⊗RM .
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Theorem 5.2.4. Let R ↪→ D be a division R-ring of fractions. Assume that

(1) TorR1 (D,D) = 0 and

(2) for any finitely generated left or right R-submodule M of D and any exact sequence
0 → J → Rn →M → 0, the R-module J is finitely generated stably free.

Then R is a pseudo-Sylvester domain and D is the universal division R-ring of fractions.

Proof. Notice that by Proposition 5.1.15 it suffices to show that every stably full matrix
over R becomes invertible over D. Thus, let A be an n×n matrix over R with ρ∗(A) = n,
and assume that A is not invertible over D, i.e., rkD(A) < n. Since R is a subring of a
division ring, it is necessarily stably finite.

Let N be the left R-module N = Rn/RnA. Then A is also the presentation matrix
of D ⊗R N , and therefore dimD(N) = n − rkD(A), which is finite and positive. This
implies that D ⊗R N ∼= Dk as D-modules for some k ⩾ 1 and, thus, composing the R-
homomorphism N → D ⊗R N given by x → 1 ⊗ x with an appropriate projection, we
obtain a non-trivial R-homomorphism N → D. Therefore, if M is the image of this map,
the surjection N →M gives us a commutative diagram with exact rows:

0 RnA Rn N 0

0 J Rn M 0.

Here, J is the kernel of the map Rn →M and the dotted arrow is such that the left square
commutes (see [Rot09, Proposition 2.71]) and therefore injective. Moreover, notice that
D ⊗RM is non-trivial since the multiplication map to D is non-trivial. We conclude that
dimD(M) > 0.

Now we have by (2) that J is stably free, i.e., there exists s ⩾ 0 such that J ⊕ Rs

is free. Moreover, since J is finitely generated and R, as a subring of a division ring, is
stably finite, we conclude that J ⊕ Rs ∼= Rrksf (J)+s, where rksf denotes the stably free
rank. In fact, we obtain that rksf (J) = dimD(J) by applying D⊗R?. Notice also that the
previous diagram remains exact and commutative if we add 0 → Rs → Rs → 0 → 0 to
both rows. Thus, setting t := dimD(J), the situation can be summarized in the following
commutative diagram:

Rn+s

RnA⊕Rs Rn+s

Rt+s J ⊕Rs Rn+s.

rA⊕Is

rA⊕Is

∼=

Here, rA⊕Is denotes the homomorphism given by right multiplication by A ⊕ Is, so
that all maps except the isomorphism behave identically on the Rs summand. In terms of
matrices, this factorization of rA⊕Is allows us to express A⊕Is as a product of two matrices
of dimensions (n+ s)× (t+ s) and (t+ s)× (n+ s), respectively. Thus, ρ(A⊕ Is) ⩽ t+ s
right by definition. Since A is stably full, we have ρ(A ⊕ Is) = n + s for every s, so we
conclude that n ⩽ t.

We are going to show on the other hand that t < n, a contradiction. Observe first
that the condition (2) tells us in particular that the flat (in fact, projective) dimension of
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any finitely generated right R-submodule of D is at most 1. Hence, using Lemma 5.1.4
and the fact that Tor commutes with directed colimits (see [Rot09, Proposition 7.8]), we
obtain that for any left R-module Q,

TorR2 (D, Q) = TorR2
(
lim
−→

Li, Q

)
∼= lim

−→
TorR2 (Li, Q) = 0,

where Li runs through all finitely generated R-submodules of the right R-module D. Again
by Lemma 5.1.4, this means that D itself has flat dimension at most 1 as a right R-module.

Now, since M is an R-submodule of D, we have an exact sequence of left R-modules
0 → M → D → Q → 0 for some left R-module Q, and hence, applying D⊗R? we can
construct a long exact sequence containing the following exact part:

· · · → TorR2 (D, Q) → TorR1 (D,M) → TorR1 (D,D) → · · · .

The first term is trivial by the previous argument, while the third term is trivial because
of (1). Thus, we deduce that TorR1 (D,M) = 0. From here, it follows that applying D⊗R?
to the exact sequence 0 → J → Rn →M → 0 returns an exact sequence of left D-modules

0 → D ⊗R J → Dn → D ⊗RM → 0,

from which we obtain
t = dimD(J) = n− dimD(M) < n.

This is the desired contradiction, which shows that necessarily rkD(A) = n.

In the case of F ∗ Z, the role of D will be played by the Ore division ring of fractions
DS = Ore(DF ∗ Z).

5.2.2 The homological properties of DS

We will now study the homological properties of the S-module DS and its submodules. In
particular, we will derive vanishing results for Tor and Ext, which will allow us to verify
condition (1) and a weak version of condition (2) of Theorems 5.2.3 and 5.2.4. From this,
we will finally derive Theorem 5.A.

The following theorem, which combines Theorem 4.7 and 4.8 of [Sch85], will be very
useful in verifying condition (1):

Theorem 5.2.5. Let R → S be an epic ring homomorphism. Then the following are
equivalent:

(a) TorR1 (S, S) = 0.

(b) TorR1 (M,N) = TorS1 (M,N) for every right S-module M and every left S-module N .

(c) Ext1R(M,M ′) = Ext1S(M,M ′) for all right S-modules M and M ′.

(d) Ext1R(N,N ′) = Ext1S(N,N ′) for all left S-modules N and N ′.

If S = RΣ is a universal localization of R, then all of these properties are satisfied.

The importance of this theorem lies in the fact that, since firs are Sylvester domains,
the universal division F-ring of fractions DF is precisely the universal localization of F with
respect to the set of all full matrices. Therefore, each of the statements in Theorem 5.2.5
holds for the epic embedding F ↪→ DF, which will serve as the starting point for the proof
of the main result. The other crucial property in our setting is the following:
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Lemma 5.2.6. Let R be a ring of right (resp. left) global dimension at most 1. Then any
crossed product R ∗ Z has right (resp. left) global dimension at most 2. In particular, if F
is a fir, then F ∗ Z has right and left global dimension at most 2.

Proof. This can be found in [MR01, Corollary (ii) on page 265] noting the symmetry in
the definition of a crossed product. The last statement follows because firs have right and
left global dimension at most 1.

We are now ready to study the homological properties of DS and its submodules.

Lemma 5.2.7.

(a) Ext3S(M,M ′) = 0 for all left (resp. right) S-modules M and M ′.

(b) DF ∗ Z has projective dimension at most 1 as a left and right S-module.

(c) Every left or right S-submodule of DF ∗ Z has projective dimension at most 1.

(d) Every finitely generated left or right S-submodule of DS has projective dimension at
most 1.

Proof. (a) Since S has global dimension at most 2 by Lemma 5.2.6, this is a consequence
of Lemma 5.1.3.

(b) Since F has global dimension at most 1, the left F-module DF admits a resolution
0 → P1 → P0 → DF → 0 with P1 and P0 projective left F-modules. We now apply the
functor S⊗F? to this short exact sequence, where we view S as an S-F-bimodule. Since S is
a free right F-module, the resulting sequence is a projective resolution of the left S-module
S ⊗F DF, and thus the projective dimension of this module is at most 1. This finishes the
proof, since the left S-modules S ⊗F DF and DF ∗ Z are isomorphic by Lemma 5.2.1. The
corresponding statement for the right S-module DF ∗ Z follows analogously.

(c) For every left (resp. right) S-module M ′, the Ext long exact sequence obtained by
applying the functor HomS(?,M

′) to the short exact sequence 0 →M → DF ∗Z → Q→ 0
for an appropriate S-module Q contains the following exact part:

. . .→ Ext2S(DF ∗ Z,M ′) → Ext2S(M,M ′) → Ext3S(Q,M ′) → . . .

Here, the first term vanishes by (b) and Lemma 5.1.3, and the third term vanishes by
property (a). By exactness, we conclude that the term in the middle also vanishes. Thus,
the claim follows from Lemma 5.1.3.

(d) This follows directly from (c) and Lemma 5.2.2.

Lemma 5.2.8.

(a) TorF1(DF,DF) = 0.

(b) TorS2 (DF ∗ Z, N) = 0 for every left S-module N .

(c) TorS1 (DF ∗ Z, N) = 0 for every left DF ∗ Z-module N .

(d) TorS1 (DF ∗ Z, N) = 0 for every left S-submodule N ⩽ DS .

(e) TorS1 (DS , N) = 0 for every left S-submodule N ⩽ DS .

(f) TorS1 (N,DS) = 0 for every right S-submodule N ⩽ DS .

(g) TorS1 (DS ,DS) = 0.
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Proof. (a) Since F is a fir, we know that DF is the universal localization of F with respect
to the set of all full matrices, so this follows from Theorem 5.2.5.

(b) The flat dimension of a module is at most its projective dimension, so this follows
from Lemma 5.2.7 (b) and Lemma 5.1.4.

(c) Observe that DF ∗Z is isomorphic to DF⊗F S as a right S-module by Lemma 5.2.1
and that S is a free left F-module (in particular flat). Thus, Lemma 5.1.5, together with
(a) and Theorem 5.2.5 (b), tells us that

TorS1 (DF ∗ Z, N) ∼= TorF1(DF, N) ∼= TorDF

1 (DF, N) = 0.

(d) We have a short exact sequence 0 → N → DS → Q→ 0 for some left S-module Q.
Applying DF ∗ Z⊗S? to this sequence, we obtain a long exact sequence that contains the
following subsequence:

. . .→ TorS2 (DF ∗ Z, Q) → TorS1 (DF ∗ Z, N) → TorS1 (DF ∗ Z,DS) → . . .

Since the first and third term vanish by (b) and (c), respectively, we obtain the result.
(e) Let

. . .→ Pk → . . .→ P0 → N → 0

be a projective resolution of N . We can compute TorS1 (DS , N) as the first homology group
of the S-chain complex

. . .→ DS ⊗S Pk → . . .→ DS ⊗S P0 → 0.

Since DS⊗S? ∼= DS ⊗DF∗Z DF ∗ Z⊗S?, this complex is S-isomorphic to:

C∗ : . . .→ DS ⊗DF∗Z DF ∗ Z⊗S Pk → . . .→ DS ⊗DF∗Z DF ∗ Z⊗S P0 → 0.

Using that DS is the Ore division ring of fractions of DF∗Z, which implies that the functor
DS⊗DF∗Z? is exact, we obtain that H∗(C∗) ∼= DS ⊗DF∗Z H∗(D∗), where

D∗ : . . .→ DF ∗ Z⊗S Pk → . . .→ DF ∗ Z⊗S P0 → 0.

But the homology of this complex computes TorSk (DF ∗ Z, N), and thus

TorS1 (DS , N) ∼= H1(C∗) ∼= DS ⊗DF∗Z H1(D∗) ∼= DS ⊗DF∗Z TorS1 (DF ∗ Z, N)
(d)
= 0.

(f) Every step in the proof of (e) can be adapted for right modules since S is also a
free right F-module, and we can apply Lemma 5.2.7, Lemma 5.2.1 and the corresponding
version of Lemma 5.1.5 for right modules.

(g) This is a special case of (e).

We obtain from the previous results a weaker version of conditions (2) of Theorem 5.2.3
and Theorem 5.2.4:

Proposition 5.2.9. For every finitely generated left or right S-submodule M of DS and
every exact sequence 0 → J → Sn → M → 0, the S-module J is finitely generated
projective.

Proof. Since M has projective dimension at most 1 by Lemma 5.2.7 (d) and Sn is projec-
tive, it follows from Schanuel’s lemma that J is projective.

If M is a left S-module and we apply the functor DS⊗S? to the short exact sequence
defining J , the sequence remains exact by Lemma 5.2.8 (e). In particular, DS ⊗S J is
isomorphic to a DS-submodule of the finitely generated DS-module (DS)

n. But DS is
a division ring, thus DS ⊗S J is itself finitely generated. Since J is projective, [LLS03,
Lemma 4] applies and we obtain that J is finitely generated.
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We finally have all the necessary ingredients for the proof of Theorem 5.A.

Proof of Theorem 5.A. By Lemma 5.2.8 (g), the conditions (1) of Theorem 5.2.4 and The-
orem 5.2.3 are satisfied for S ↪→ DS , while we obtain from Proposition 5.2.9 that the
module I appearing in the conditions (2) is finitely generated and projective. Therefore, if
every finitely generated projective S-module is stably free (resp. free), we deduce that S is
a pseudo-Sylvester domain (resp. Sylvester domain). Conversely, over a pseudo-Sylvester
domain every finitely generated projective module is stably free (see [Coh06, Proposition
5.6.2]), while Sylvester domains are always projective-free (see [Coh06, Proposition 5.5.7]).

In any of the previous cases, we conclude from the criteria that DS = Ore(DF∗Z) is the
universal division F∗Z-ring of fractions, and hence isomorphic to the universal localization
of F ∗ Z with respect to the set of all stably full (resp. full) matrices.

As we mentioned in Section 5.1.4, one could also use the results of Cohn and Schofield
in [CS82] to deduce Theorem 5.A b) from a).

5.3 Application to free-by-{infinite cylic} groups
The aim of this section is to prove Theorem 5.B. Thus, throughout this section the main
object of study will be a crossed product E ∗G, where E is a division ring and G denotes
a group that fits into a short exact sequence

1 → F → G→ Z → 1

with F a non-necessarily finitely generated free group. Since Z is a free group, any such
extension splits and G arises as a semi-direct product F ⋊ Z.

The crossed product E ∗G can be expressed as an iterated crossed product (E ∗F ) ∗Z
by [Pas89, Lemma 1.3], using that the free subgroup F is normal in G. Since E ∗ F is a
fir, we are in the situation of Theorem 5.A with F = E ∗ F and S = E ∗G.

In this section, we use DE∗F to denote the universal division E ∗F -ring of fractions and
set DE∗G = Ore(DE∗F ∗ Z). The apparent notational collision with the division closure
of a group ring in the algebra of affiliated operators introduced in Definition 2.1.7 is not
an oversight. To see why, observe that if K ⩽ C is a field, then the division closure
of the group ring KF of the free group F in the algebra of affiliated operators U(G) is
isomorphic as an epic KF -ring to the universal division ring of fractions DKF considered
in this chapter ([Lin93], see also [Lüc02, Lemma 10.81]). Then, since both DKG and
the division closure of KG in U(G) are obtained from these isomorphic division rings by
extending the crossed product structure of KF ∗ Z and passing to Ore division rings of
fractions, also these division rings are isomorphic (as KG-rings).

In Section 5.3.1 we use the Farrell–Jones conjecture in algebraic K-theory to show that
E ∗G is always a pseudo-Sylvester domain. Whether this ring is even a Sylvester domain
is a much more delicate question and not much can be said in general. In Section 5.3.2 we
give examples of group rings for which this question has a known answer.

5.3.1 The Farrell–Jones conjecture and the proof of Theorem 5.B
In this subsection we use recent results on the Farrell–Jones conjecture to prove that the
finitely generated projective E∗G-module J that appears in condition (2) of Theorem 5.2.4
is actually stably free, which will conclude the first part of the proof of Theorem 5.B. The
following piece of the algebraic K-theory of a ring is needed to phrase the results:
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Definition 5.3.1. Let R be a ring. Then we denote byK0(R) the abelian group generated
by the isomorphism classes [P ] of finitely generated projective R-modules together with
the relations

[P ⊕Q]− [P ]− [Q] = 0

for all finitely generated projective R-modules P and Q.

Every element of K0(R) is of the form [P ] − [P ′] for finitely generated projective R-
modules P and P ′. The identity [P ] = [P ′] ∈ K0(R) holds for two finitely generated
projective R-modules P and P ′ if and only if there is a finitely generated projective R-
module Q such that P ⊕Q ∼= P ′ ⊕Q, where Q can even be taken to be free.

If f : R→ S is a ring homomorphism and P is a finitely generated projective R-module,
then S ⊗R P is a finitely generated projective S-module. In this way, K0(?) becomes a
functor from rings to abelian groups.

The conditions of Remark 5.1.8 are satisfied for K0(?) and thus it does not depend on
whether we use left or right modules in its definition.

We will need the following consequence of the Farrell–Jones conjecture which is cer-
tainly well-known, but has not been made explicit in the literature. For further references
on the conjecture, see Section 1.3.

Proposition 5.3.2. Let E be a division ring, Γ a torsion-free group and E ∗ Γ a crossed
product. If theK-theoretic Farrell–Jones conjecture with coefficients in an additive category
holds for Γ, then the embedding E ↪→ E ∗ Γ induces an isomorphism

K0(E)
∼=−→ K0(E ∗ Γ).

In particular, since K0(E) = {n[E] | n ∈ Z}, every finitely generated projective E ∗ Γ-
module is stably free.

Proof. For a given crossed product E ∗ Γ, we will denote the additive category defined
in [BR07, Corollary 6.17] by AE∗Γ. We will freely use the terminology and notation
of that paper. Furthermore, we will denote the family of virtually cyclic subgroups of
a given group by VCyc and the family consisting just of the trivial subgroup by Triv.
The K-theoretic Farrell–Jones conjecture for the group Γ with coefficients in the additive
category AE∗Γ arises as an instance of the more general meta-isomorphism conjecture
[Lüc19, Conjecture 13.2] for the Γ-homology theory HΓ

∗ (?;KAE∗Γ) introduced in [BR07]
and the family F = VCyc. It states that the assembly map

HΓ
∗ (EVCyc(Γ);KAE∗Γ) → HΓ

∗ (pt;KAE∗Γ)

is an isomorphism, where the right-hand side is isomorphic to K∗(E ∗Γ) by [BR07, Corol-
lary 6.17].

In order to arrive at the desired conclusion, we need to reduce the family from VCyc
to Triv. Since Γ is assumed to be torsion-free and hence all its virtually cyclic sub-
groups are infinite cyclic, we can arrange for this via the transitivity principle of [Lüc19,
Theorem 13.13 (i)] if the meta-isomorphism conjecture holds for the Z-homology theory
HZ

∗ (?;KAE∗Z) and the family F = Triv. A model for the classifying space ETriv(Z) is given
by R and we may again assume that the crossed product E ∗ Z is a skew Laurent poly-
nomial ring E[t±1; τ ]. In this situation, since E is regular (not to be confused with von
Neumann regular), the assembly map coincides with the map provided by the analogue
of the Fundamental Theorem of algebraic K-theory for skew Laurent polynomial rings,
which is an isomorphism (see [BL20, Theorems 6.8 & 9.1] or [Gra88] for a more classical
treatment).
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Since the K-theoretic Farrell–Jones conjecture with coefficients in an additive category
is assumed to hold for Γ, we now obtain from the transitivity principle that the assembly
map

HΓ
∗ (ETriv(Γ);KAE∗Γ) → HΓ

∗ (pt;KAE∗Γ)
∼= K∗(E ∗ Γ)

is an isomorphism. The space ETriv is a free Γ-space and the value at the coset Γ/{1} of the
Or(Γ)-spectrum KAE∗Γ is K-∞(AE∗Γ ∗ Γ/{1}). We can thus simplify the left-hand side of
the assembly map as follows:

HΓ
∗ (ETriv(Γ);KAE∗Γ)

∼= H∗(BΓ;K-∞(AE∗Γ ∗ Γ/{1})).

Here, BΓ denotes the standard classifying space of the group Γ and homology is taken with
local coefficients. Using [BR07, Corollary 6.17] once more, we observe that K-∞(AE∗Γ ∗
Γ/{1}) is weakly equivalent to K-∞(E), which is connective by [Lüc19, Theorem 3.6] since
E is a regular ring. In particular, the Atiyah–Hirzebruch spectral sequence provides the
following natural isomorphism:

H0(BΓ;K-∞(AE∗Γ ∗ Γ/{1})) ∼= H0(BΓ;π0(K-∞(AE∗Γ ∗ Γ/{1}))),

where homology is again taken with local coefficients. Since π0(K-∞(AE∗Γ ∗ Γ/{1})) ∼=
K0(AE∗Γ ∗ Γ/{1}) and the Γ-action on AE∗Γ ∗ Γ/{1}, which is induced from that on the
Γ-space Γ/{1}, preserves isomorphism types, the local coefficients are in fact constant. We
conclude that

H0(BΓ;K-∞(AE∗Γ ∗ Γ/{1})) ∼= H0(BΓ;K0(E)),

and thus the assembly map in degree 0 simplifies to

K0(E) ∼= H0(BΓ;K0(E))
∼=−→ K0(E ∗ Γ).

This proves the first statement.
The second statement is a direct consequence since every finitely generated projective

E ∗Γ-module P represents an element n[E ∗Γ] in K0(E ∗Γ) for some n ⩾ 0 and thus there
exists a finitely generated free E ∗ Γ-module Q such that P ⊕Q ∼= (E ∗ Γ)n ⊕Q, which is
free.

The following is the K-theoretic part of [BFW19, Theorem 1.1] in the case of a finitely
generated free group F and [BKW19, Theorem A] in the general case:

Theorem 5.3.3. The K-theoretic Farrell–Jones conjecture with coefficients in an additive
category holds for every group that arises as an extension

1 → F → G→ Z → 1

with F a (not necessarily finitely generated) free group.

The previous result provides the final step in the proof of Theorem 5.B.

Proof of Theorem 5.B. Since G satisfies the K-theoretic Farrell–Jones conjecture with co-
efficients in additive categories by Theorem 5.3.3, we obtain from Proposition 5.3.2 that
every finitely generated projective E ∗ G-module is stably free. Therefore, the statement
follows from Theorem 5.A.
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5.3.2 Examples and non-examples
The main examples of groups of the form 1 → F → G → Z → 1 are the free-by-{infinite
cyclic} groups (terminology usually reserved in the literature for the case where F is
finitely generated) and fundamental groups of connected closed surfaces with genus g ⩾ 1
other than the projective plane (which has to be excluded since its fundamental group
has torsion). In the latter family, we have to distinguish the fundamental groups Sg of
orientable closed surfaces of genus g ⩾ 1, which admit the presentations

Sg = 〈a1, b1, . . . , ag, bg | [a1, b1] · . . . · [ag, bg]〉,

and the fundamental groups of non-orientable closed surfaces of genus g ⩾ 2, which admit
the presentations

Sg = 〈a1, . . . , ag | a21 · . . . · a2g〉.

That these groups contain a normal free subgroup F such that G/F is infinite cyclic is a
consequence of the fact that their infinite index subgroups are free (see [HKS72]) and that
their abelianizations contain an infinite cyclic summand.

Within these families, there are some cases of group rings for which it is known whether
they admit stably free cancellation. In the following examples, K is any field of character-
istic 0.

• Examples of group rings of free-by-{infinite cyclic} groups with stably free cancella-
tion and thus of Sylvester domains are K[Z2] = K[S1] (see [Swa78]) and K[F2 × Z]
(see [Bas68, IV.6.4], using that K[Z] is a PID and thus a projective-free Dedekind
domain).

• Examples of group rings which do admit non-free stably free modules are given by
K[Z ⋊ Z] = K[S2] (see [Sta85, Theorem 2.12]) and Q[〈x, y | x3 = y2〉] = Q[F2 ⋊ Z]
(see [Lew82] and note that the non-free projective ideal in the main theorem is
actually stably free). Here, the latter example is the rational group ring of the
fundamental group of the complement of the trefoil knot, which fibers over the
circle and hence admits a free-by-{infinite cyclic} fundamental group (see [BZH14,
Corollary 4.12]). Both group rings serve as examples of pseudo-Sylvester domains
that are not Sylvester domains.

There do not seem to be any similar results for surface groups of higher genus:

Open Problem. Do the rings C[Sg] for g ⩾ 2 and C[Sg] for g ⩾ 3 have stably free
cancellation?

As we have seen, this is equivalent to asking whether the group rings are Sylvester
domains.
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space of, 39

polytope, 83
translation-invariant, 84

residually P , 38
sofic, 39
two-generator one-relator, 94

Hattori–Stallings
homomorphism, 59
rank, 59

HNN extension, 94
ascending, 94
induced character of, 94

Hughes-free
strongly, 104

K-conjugate, 57
K0(R), 19
K1(R), 78
K̃1(R), 78
Kω
1 (ZG), 80

`2(G), 27
lcm, 34
localization, 17

universal, 109
Lück approximation condition, 40

mapping torus, 76
marked limit, 39
matrix

full, 111
stably full, 112

Minkowski sum, 83
Mk, 39
Mn(R), 13
module, 13

dual, 111
simple, 23
stably free, 110

N (G), 27

Ore
condition, 17

division ring of fractions, 18
domain, 18
ring of fractions, 18

P(H), 83
polytope, 83

agrarian
of a chain complex, 85
of a G-CW-complex, 85
of a group, 85

face, 83
dual, 94

group, 83
translation-invariant, 84

homomorphism, 84
integral, 83
marked, 94
marking, 94
Newton, 84
ϕ-face, 83
single, 84
thickness, 88
vertex, 83
virtual, 84
with marked vertices, 94

prime matrix ideal, 109
projection, 21
PT (H), 84

∗-regular closure, 24
rank, 82

column, 82
inner, 111
row, 82
stable, 111
stably free, 111

rationalization, 68
relative inverse, 22
ring, 13

∗-regular, 22
base, 16
division, 13
division closed, 24
domain, 13
pseudo-Sylvester, 113
Sylvester, 112

epic R-ring, 19
free ideal ring (fir), 112
group-graded, 16
homomorphism
epic, 18, 71

projective-free, 113
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∗-ring, 21
proper, 21

semihereditary, 28
semisimple, 23
simple, 50
stably finite, 111
stably free cancellation, 111
unit-regular, 61
von Neumann regular, 20
weakly finite, 111

RKG, 28
rksf , 111

torsion
agrarian, 77
of a G-CW-complex, 80
of a chain complex, 79

universal L2-, 77, 81
trace

center-valued, 44
universal, 58
von Neumann, 29

twisted Euler characteristic
agrarian, 89
L2-, 89

U(G), 28
universal Σ-inverting, 109

Whω(G), 80
wreath product, 33

Z(R), 13
zero divisor, 13
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