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Zusammenfassung

Die stark wachsende Weltbevölkerung erfordert aufgrund des kontinuierlich stei-
genden Bedarfs an Lebensmitteln, Futtermitteln, und Biokraftstoffen neuartige
Ansätze in der landwirtschaftlichen Produktion. Die begrenzten Anbauflächen
und verschärften Anforderungen an den Umweltschutz stellen eine große Her-
ausforderung dar. So führt der derzeit übliche Einsatz von Agrochemikalien zu
Umweltschäden und einem beschleunigtem Artensterben. Die notwendige Inten-
sivierung der landwirtschaftlichen Produktion kann vermutlich ökonomisch und
ökologisch nur durch eine nachhaltigere Nutzung der vorhandenen Ressourcen in
Verbindung mit neuen Technologien erreicht werden.

Agrarroboter sind ein mögliches Hilfsmittel um dieses Ziel zu erreichen. Diese
Systeme können die Produktivität durch eine automatisierte, kontinuierliche und
selektive Behandlung einzelner Pflanzen steigern und gleichzeitig den Einsatz von
Agrochemikalien deutlich reduzieren. Die Entwicklung solcher automatisierten
Roboter wird in der Zukunft der landwirtschaftlichen Produktion eine wesentliche
Rolle spielen. Solche Roboter sind mit Sensoren, verschiedenen Aktuatoren und
mechanischen Werkzeugen ausgestattet. Dadurch können Pflanzen individuell mit
einer hohen räumlichen und zeitlichen Auflösung überwacht und bedarfsgerecht,
selektiv behandelt werden.

Der Fokus der vorliegenden Arbeit liegt in der Registrierung von Sensordaten,
die wesentlicher Bestandteil dieser Robotersysteme ist. Ziel der Registrierung ist
die Verknüpfung von räumlich und zeitlich getrennt erfassten Daten durch eine
Transformation in ein einheitliches Koordinatensystem. Sie ist ein zentraler Be-
standteil der Zustandsschätzung in der Robotik, Geodäsie und Photogrammetrie.
Aus diesem Grund wurde die Registrierung von Sensordaten in der Literatur von
verschiedenen Disziplinen ausgiebig untersucht. Die bestehenden Verfahren sind
jedoch aufgrund einer Reihe einzigartiger Herausforderungen im landwirtschaftli-
chen Bereich nicht zuverlässig einsetzbar. Starke, saisonal bedingte, visuelle und
strukturelle Veränderungen einzelner Pflanzen sowie der gesamten Ackerfläche
in den verschiedenen Wachstumsphasen erschweren beispielsweise die Aufgabe
der Registrierung. Wenn Daten von unterschiedlichen luft- und bodengestützten
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Systemen erfasst werden, führt dies zu Abweichungen durch unterschiedliche Per-
spektiven. In dieser Arbeit präsentieren wir daher verschiedene, neuartige Tech-
niken zur Registrierung, welche die oben genannten Herausforderungen explizit
berücksichtigen. Wir zeigen, dass unsere Verfahren zur Registrierung auch unter
komplexen Bedingungen zuverlässig funktionieren sowie ihre Vorteile gegenüber
herkömmlichen Methoden. Dabei stellen wir dar, wie diese Registrierungsverfah-
ren für die Langzeitüberwachung von Nutzpflanzen, die Lokalisierung und der
Navigation von bodengestützten Robotern im Feld einsetzbar sind. Des Weiteren
führen wir eine automatisierte Phänotypisierung durch, um das Wachstum ein-
zelner Pflanzenteile aus Punktwolkendaten zu analysieren. Wir untersuchen auch
die Auswirkungen von Ausreißern in Daten für Registrierungs-und Zustandsschät-
zungsprobleme und schlagen eine allgemeine Lösung für eine robuste Zustands-
schätzung in Anwesenheit von verschiedenen Ausreißern vor, die bei diesen Auf-
gaben auftreten. Die in dieser Arbeit entwickelten Registrierungsverfahren tra-
gen zum robusten Betrieb von autonomen Robotern, auch über lange Zeiträume
hinweg, bei. Sie bilden das Rückgrat von Anwendungen, die räumlich-zeitliche
Merkmalen von Pflanzen untersuchen.

Zusammengefasst leistet diese Arbeit mehrere Beiträge im Kontext der räum-
lichen und zeitlichen Registrierung im pflanzenbaulichen Bereich. Im Vergleich
herkömmlichen Methoden ermöglichen unsere Ansätze eine robustere und län-
gerfristige Registrierung der erfassten Daten und gehen effektiv mit den Heraus-
forderungen um, die sich aus dem natürlichen Pflanzenwachstum ergeben. Alle
in dieser Arbeit beschriebenen Ansätze sind in begutachteten Konferenzbeiträ-
gen und Zeitschriftenartikeln veröffentlicht worden. Darüber hinaus haben wir die
meisten der in dieser Arbeit entwickelten Techniken als Open-Source-Software der
wissenschaftlichen Community zur Verfügung gestellt und auch drei anspruchs-
volle Datensätze für langfristige räumlich-zeitliche Registrierungsaufgaben veröf-
fentlicht.
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Abstract

A critical challenge that we face today is to meet the rising demand for food, feed,
fiber, and fuel from an ever-growing world population. We must meet this demand
within the limited arable land available to us and do so in the aggravated situation
caused by climate change. Moreover, present-day levels of agro-chemical usage
is unsustainable. They lead to large scale environmental pollution and adverse
effects on the biodiversity of our planet. A promising way to meet this challenge
is through intensifying production sustainably using existing resources and novel
technology in combination. Robotic systems deployed in agricultural fields are
seen as a potential solution to achieve this goal. These systems can increase
productivity by providing high-quality site-specific treatment at the level of an
individual plant through continuous monitoring and timely intervention in the
field, while drastically reducing or eliminating the use of agro-chemicals. The
development of such automated robotic systems is envisioned to play an essential
role in the future of agricultural plant production.

Agricultural robots are ideal platforms to monitor the plants in the field with
a high spatial and temporal frequency and provide intervention capability when-
ever an action is required. In this thesis, we focus on the fundamental task of
registration, which would form the core of such robotic systems. The goal of reg-
istration is to bring two sets of measurements into a common coordinate frame,
which forms the basis for associating data separated in space and time. It is
a core building block for solving several state estimation problems in robotics,
geodesy, and photogrammetry. As a result, registration of sensor data has been
extensively studied in the literature from multiple disciplines. However, existing
techniques fail to perform reliably in the agricultural domain due to a unique set
of challenges. These challenges vary from the large change in the visual appear-
ance of the field over time to the structural change of individual plants as they
grow over the crop season and to the vastly differing viewpoints where data is
captured from multiple platforms in an aerial-ground robotics system.

Our main contribution in the thesis is a set of novel registration techniques
that explicitly considers the challenges brought forward by the spatio-temporal
nature of the task in agricultural application. We show that our registration
techniques perform reliably in challenging conditions and demonstrate their ad-
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vantages over state-of-the-art registration approaches. We use these registration
techniques to demonstrate their application for long-term monitoring of crops in
the field, for accurate localization of ground robots for navigation in crop fields,
and for performing automated phenotyping to analyze the growth of individual
plant parts from high-fidelity point cloud data. We also study the effect of out-
liers in data for registration and state estimation problems and propose a general
solution for robust state estimation in the presence of different outlier distribu-
tions that occur in these tasks. The registration techniques developed in this
thesis contribute to the robust operation of autonomous robots in crop fields over
long periods of time and form the backbone of applications interested in tracking
spatio-temporal traits of plants.

In sum, this thesis makes several contributions in the context of spatio-
temporal registration in the agricultural domain of plant production. Compared
to the current state-of-the-art, the approaches presented in this thesis allow for
a more robust and longer-term registration of data captured by robots in the
fields and effectively handle the challenges resulting from plant growth. All ap-
proaches described in this thesis have been published in peer-reviewed conference
papers and journal articles. In addition to that, we have released most of the
techniques developed in this thesis as open-source software and also published
three challenging datasets for long-term spatio-temporal registration tasks.
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Chapter 1

Introduction

Demand for food, feed, fiber, and fuel is on the rise due to an ever-growing world
population. It is estimated that we need to nearly double the global crop yield by
2050 to meet the projected demands [43]. This goal needs to be achieved within
the limited arable land available while drastically reducing the environmental
footprint of agricultural production. Furthermore, present-day levels of agro-
chemical usage is leading to large-scale environmental pollution and detrimental
effects on bio-diversity. The situation is aggravated by climate change putting
further stress on the limited resources available [10]. Therefore, achieving suffi-
cient crop production to meet the growing demands in a sustainable manner has
become an issue of critical importance.

One of the ways to meet this demand is to intensify production but do that
sustainably. This means using technologies that increase production per hectare
without negative environmental consequences. The next generation of agriculture
techniques realized through automated robotic systems are key technologies to
approach this goal. These systems can allow continuous monitoring of crops and
their environment. Novel forms of agriculture envision providing necessary care
at the individual plant level throughout the whole crop season through robots.
The ability to continuously monitor the status of the crop and its environment
ensures that timely action is taken to maximize the yield and reduce any potential
loss of produce. Another dimension of precision agriculture is providing targeted
mechanisms for various field management activities. For example, instead of
applying chemicals uniformly over the entire field to manage the weeds, precision
agriculture systems are able to identify individual weeds and selectively spray
required chemicals on the targeted weeds. This can lead to a drastic reduction in
the overall usage of agro-chemicals and limits the negative environmental impact.

Robotic systems have the capacity to accomplish precision agricultural tasks
effectively. For example, an integrated robotic system consisting of multiple
platforms working collaboratively can provide flexible solutions to accomplish
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Figure 1.1: Example of a multi-robot system for precision agriculture. Left: A team of UAV
and UGV equipped with sensors and actuators to perceive and execute actions in the field.
These robots collaborate with each other to carry out precision agriculture tasks jointly in the
field. Right: Concept of a robotic system for performing continuous crop monitoring and weed
management used in the EU project Flourish [94], courtesy of ASL, ETH Zurich.

different precision agricultural tasks. Such a system could consist of unmanned
aerial vehicles (UAVs) equipped with sensors to analyze the crop field and un-
manned ground robots (UGVs), which can carry out farm management tasks on
the field through its onboard implements. These platforms are often equipped
with sensors that complement each other and help perform tasks effectively on
the field. An example of such a system used in the EU project Flourish is shown
in Figure 1.1 (left), where a team of a UAV and a UGV operate jointly, carrying
continuous monitoring and weed management for crop fields. This system’s typi-
cal operation is illustrated in Figure 1.1 (right). During this operation, a UAV first
performs a survey flight over the field and identifies regions where intervention
actions such as removing the weeds are required. The UAV then communicates
this information to the UGV, which then proceeds to the identified regions and
uses its onboard implements to execute the intervention action. These robotic
systems can bring to practice the ideals envisioned by precision agriculture of
providing care at the individual plant level and eventually lead to an increase in
productivity in a sustainable manner.

One of the fundamental capabilities for developing such robotic systems is
to register the data captured by the onboard sensors of the robots. The task of
registration is essentially of bringing two sets of measurements into a common
coordinate frame. These sets of measurements can be separated over time, i.e.,
measurements of the surroundings are acquired at different points of time by the
same robot. Similarly, the measurements can be separated over space, i.e., mea-
surements are acquired simultaneously but from different viewpoints, possibly
from different robots. Or a combination of both, i.e., the measurements are sep-
arated both in time and space, which leads us to the spatio-temporal registration
task.
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1. Introduction

Registration is of critical importance as it forms the core of several state esti-
mation problems in robotics as well as applications to analyze the surroundings.
For example, by registering measurements captured by a robot against a map of
the environment, we can figure out where the robot is at each instance of time,
which is also referred to as the localization task. Registration is also critical for
understanding the environment in which the robots operate. In the agricultural
domain, this includes registering plant data, which is acquired at different points
of time and from different robots to analyze its growth. In this thesis, we will
focus on developing novel spatio-temporal registration techniques, which would
contribute towards the operation of autonomous robots in the field over long pe-
riods of time and provide a basis to analyze the growth at an individual plant
level.

The task of registering spatio-temporal data is riddled with several challenges,
some of which are rather unique to the agricultural domain. The registration
methods must perform robustly in the presence of large spatial and temporal
changes in the field environment. We highlight some of these challenges that
we tackle in this thesis in Figure 1.2. For example, the appearance of the field
changes dramatically between two images captured a week apart by a UAV, mak-
ing the task of registering these images difficult, as illustrated in Figure 1.2 (top).
Another critical challenge that arises is to register data observed from different
viewpoints, such as images taken from UAVs to those from UGVs as seen in Fig-
ure 1.2 (middle). Finally, a further challenge in registering data from the agricul-
tural domain is introduced due to the plant growth dynamics. The change in the
size, shape, and topology of the plant over time, as shown in Figure 1.2 (bottom),
requires a sophisticated approach to register them against each other. All these
challenges put together render the spatio-temporal registration task in agricul-
tural applications a difficult one.

In this thesis, we present novel spatio-temporal registration approaches, which
can perform robustly facing the various challenges that arise in the agricultural
robotics domain. This includes techniques for registering images acquired by
UAVs over a crop season, and registering data from UAVs and UGVs to enable
collaborative operations, and registering high fidelity plant pointclouds over time
for phenotyping applications. Each of these registration tasks typically involves
a data association step, which is often affected by outliers. We address this by
developing a robust estimation framework that adapts to the prevailing outlier
distribution dynamically and does not rely on a specific, previously chosen robust
kernel. This framework to deal with outliers is also applicable outside of the
agricultural domain, including several registration and state estimation problems
in robotics.

3



Week 2 Week 3

UAV UGV 

Figure 1.2: Challenges of spatio-temporal registration in the agricultural domain. Top: Large
difference in the visual appearance of the field over time due to growth of the plants, changing
lighting conditions, state of the soil etc. Middle: Strong viewpoint difference between images
from different robotic platforms, here shown for an UAV camera looking down from a height
of 15 m and a UGV image in a perspective view from about 3 m above ground. Bottom: Time
series of tomato plant point clouds capturing the change in the size, shape and structure as new
leaves emerge over time.
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1. Introduction

1.1 Main Contributions

The main contribution of this thesis is a set of novel spatio-temporal registration
techniques designed to meet relevant challenges faced in agricultural robotics.
The techniques we propose in this thesis provide the basis for long-term oper-
ation of robots in the field environment and form the backbone for phenotypic
applications such as analyzing the plant growth over time.

The first contribution, which is presented in Chapter 2, provides a solution
for monitoring crop fields using UAVs over long periods of time. We develop a
registration technique for associating images captured over an entire season by
exploiting the inherent geometric structure of a crop field. Our approach provides
robust correspondences between images despite the dramatic change in the visual
appearance as illustrated in Figure 1.2 (top). We achieve this by proposing a
novel feature descriptor that exploits crop and gap location information along
the crop rows, which is mostly invariant within the same field over time. This
spatial information about crops and gaps provides critical cues to our approach,
allowing us to successfully register images even in situations where matching based
on state-of-the-art visual descriptors fail completely. Based on the registration
results, we show that it is possible to analyze an individual plant’s growth in the
field, which in-turn is invaluable data for the farmers and crop scientists to make
informed decisions.

The second contribution of this thesis is to enable collaboration between UAVs
and UGVs and exploit the flexibility of using multiple robots to navigate in crop
fields. In Chapter 3, we explore the advantages of collaboration with a UAV to
improve the localization capabilities of a UGV. We develop a localization frame-
work for the UGV, which exploits aerial images of the field captured using a UAV.
We propose a novel data association scheme to register the data observed from
UAV and UGV with large viewpoint differences as seen in Figure 1.2 (middle).
This leads to a novel pointwise feature descriptor targeted to crop fields. We are
able to solve this data association challenge by exploiting the geometry as well
as the semantics of the crop field, and additionally, integrate it within a Monte-
Carlo localization framework to estimate the pose of the ground robot in the
UAV map in an online fashion. We also show that our approach provides reliable
localization with crop-row level accuracy over several sessions despite the large
changes in the field and provides better pose estimates than by a single-phase
GPS-based localization.

As a third contribution, we explore techniques suited for registering high-
fidelity point cloud data for phenotyping tasks. In Chapter 4, we present a novel
approach for spatio-temporal registration of 3D point clouds of individual plants.
The proposed approach works for raw sensor data stemming from a range sensor
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1.1. Main Contributions

such as a 3D LiDAR or a depth camera. We perform the registration in a fully
automated fashion without any manual intervention. Our approach is designed to
perform robustly given the challenges visualized in Figure 1.2 (bottom) and regis-
ter the temporal data from growing plants. We capture the non-rigid deformation
as well as the change in shape that occurs during plant growth by exploiting the
skeletal structure and the semantics of the plant. This technique gives us the
capability to analyze individual parts of the plant and analyze their growth over
time. This level of precise and high-resolution analysis of plant growth is required
for phenotyping and is used by scientists involved in crop breeding and other re-
lated applications. We evaluate our approach on datasets from two plant species
and demonstrate an automated phenotyping application of tracking plant traits
over time.

As the final contribution of the thesis, we propose a solution to deal with
challenge caused by outliers and its effects on the robustness of registration and
other state estimation techniques. The outliers arise typically from the data asso-
ciation process. These outliers could be due to different reasons such as incorrect
matches between features computed in UAV images due to lack of descriptor
specificity (Chapter 2), or ambiguous correspondences made between features
computed in UGV images to the features in the reference maps generated from
UAV images due to aliasing (Chapter 3), or wrong correspondences made between
skeleton nodes of temporally separated plant point cloud data (Chapter 4). In
Chapter 5, we thus propose a general solution for robust state estimation in the
presence of different outlier distributions that occur in these tasks. The technique
we propose looks into general robust estimation and applies to several other es-
timation tasks common to robotics and computer vision applications. It avoids
specifying a particular robust kernel such as Huber or Cauchy beforehand and
allows to adapt the shape of the kernel during the optimization process.

In sum, we propose novel methods that form building blocks of the perception
and navigation system of future agricultural robots.
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1.2 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles, or are currently under review:

• N. Chebrolu, P. Lottes, A. Schäfer, W. Winterhalter, W. Burgard, and
C. Stachniss. Agricultural Robot Dataset for Plant Classification, Localiza-
tion and Mapping on Sugar Beet Fields. Intl. Journal of Robotics Research
(IJRR), 36(10):1045–1052, 2017

• N. Chebrolu, T. Läbe, and C. Stachniss. Robust Long-Term Registration
of UAV Images of Crop Fields for Precision Agriculture. IEEE Robotics
and Automation Letters (RA-L), 3(4):3097–3104, 2018

• N. Chebrolu, P. Lottes, T. Läbe, and C. Stachniss. Robot Localization
Based on Aerial Images for Precision Agriculture Tasks in Crop Fields. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019

• N. Chebrolu, T. Läbe, and C. Stachniss. Spatio-Temporal Non-Rigid Reg-
istration of 3D Point Clouds of Plants. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2020

• N. Chebrolu, F. Magistri, T. Läbe, and C. Stachniss. Registration of Spatio-
Temporal Point Clouds of Plants for Phenotyping. PLOS ONE, 16(2):1–25,
2021

• N. Chebrolu, T. Läbe, and C. Stachniss. Adaptive Robust Kernels for Non-
Linear Least Squares Problems. IEEE Robotics and Automation Letters
(RA-L), 6(2):2240–2247, 2021

• D. Schunck, F. Magistri, R. A. Rosu, A. Cornelißen, N. Chebrolu, S. Paulus,
J. Léon, S. Behnke, C. Stachniss, H. Kuhlmann, and L. Klingbeil. Pheno4D:
A Spatio-Temporal Dataset of Maize and Tomato Plant Point Clouds for
Phenotyping and Advanced Plant Analysis. PLOS ONE, 2021. Revised
version submitted, under review.

The following are publications I was involved in during my doctorate, but
which are not covered in the chapters of this thesis:

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Joint
Stem Detection and Crop-Weed Classification for Plant-specific Treatment
in Precision Farming. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018
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• P. Lottes, N. Chebrolu, F. Liebisch, and C. Stachniss. UAV-based Field
Monitoring for Precision Farming. In 25. Workshop Computer-Bildanalyse
in der Landwirtschaft, 2019

• F. Magistri, N. Chebrolu, and C. Stachniss. Segmentation-Based 4D Regis-
tration of Plants Point Clouds for Phenotyping. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020

• A. Ahmadi, L. Nardi, N. Chebrolu, and C. Stachniss. Visual Servoing-
based Navigation for Monitoring Row-Crop Fields. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2020

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Robust
Joint Stem Detection and Crop-Weed Classification using Image Sequences
for Plant-Specific Treatment in Precision Farming. Journal of Field Robotics
(JFR), 37:20–34, 2020

• A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck,
F. Fleckenstein, A. Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes,
A. Milioto, D. Nardi, S. Nardi, J. Pfeifer, M. Popović, C. Potena, C. Pradalier,
E. Rothacker-Feder, I. Sa, A. Schaefer, R. Siegwart, C. Stachniss, A. Wal-
ter, W. Winterhalter, X. Wu, and J. Nieto. Building an Aerial-Ground
Robotics System for Precision Farming. IEEE Robotics and Automation
Magazine (RAM), 2020

• I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson Surface
Reconstruction for LiDAR Odometry and Mapping. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2021

• F. Magistri, N. Chebrolu, J. Behley, and C. Stachniss. Towards In-Field
Phenotyping Exploiting Differentiable Rendering with Self-Consistency Loss.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021

To facilitate further research in spatio-temporal registration techniques for
precision agriculture applications, we have open-sourced our code for the com-
munity:

• Temporal UAV image matching using similarity invariant geometric feature:
https://github.com/PRBonn/sigf

• Python toolkit for working with datasets captured with agricultural robot:
https://github.com/PRBonn/pybonirob

• Spatio-temporal registration of plant point clouds:
https://github.com/PRBonn/4d_plant_registration
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1. Introduction

We have further published the following challenging datasets for long-term
spatio-temporal registration tasks:

• Long-term UAV image registration dataset from sugarbeet fields together
with the Autonomous Sustems Lab and the Crop Science Group at ETH
Zürich:
https://www.ipb.uni-bonn.de/data/uav-sugarbeets-2015-16/

• Agricultural robot dataset for plant classification, localization and mapping
on sugar beet fields together with Autonomous Intelligent Systems Lab,
University of Freiburg:
https://www.ipb.uni-bonn.de/data/sugarbeets2016/

• 4D plant point cloud registration dataset developed together with Institute
for Geodesy and Geo-information, University of Bonn:
https://www.ipb.uni-bonn.de/data/4d-plant-registration/
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Chapter 2

Spatio-Temporal Registration of
UAV Images of Crop Fields

Continuous crop monitoring is an important aspect of modern farming, and a
necessary step towards providing care at an individual plant level throughout the
crop season. It allows the farmers to make informed decisions regarding when,
where, and how much fertilizer or pesticide to apply in the field as well as to
improve yield estimation. It also plays an important role in understanding plant
growth and provides critical information to scientists involved in the crop breeding
process. In this chapter, we investigate how UAV images can enable monitoring
crop fields over long periods of time.

With the wide availability of commercial UAVs, it has become fairly easy
to repeatedly acquire image data of the fields without any expert assistance.
However, in order to exploit this data captured by UAVs for monitoring appli-
cations, it is necessary to register the data captured at different locations and
time instances into a common coordinate frame. This kind of spatio-temporal
registration forms the backbone of any application that analyzes plant growth
over time. For typical scenes urban scenes, such as buildings and other perma-
nent structures, state-of-the-art image registration methods are able to register
them and compute 3D models of the environment [40]. Typically, these methods
rely on a visual descriptor such as SIFT, ORB, BRIEF or similar to perform the
data association amongst the images. A critical assumption that these methods
make is that the appearance of the scene remains the same over time. In crop
farming, however, fields and crops are affected by strong visual changes due to
the weather, growing crops, and farm equipment such as tractors affecting the
soil as shown in Figure 2.2. As a result, most registration methods are not able
to cope well with these changes in appearance.

In this chapter, we address the problem of registering UAV images of a field
recorded over the crop season in the presence of large visual changes caused by
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Figure 2.1: Matching UAV images taken three weeks apart. Our method uses geometric cues
to perform matching successfully whereas matching using SIFT fails in challenging conditions
with large visual changes. Figure 2.2 shows a zoomed-in view of the field shown in the blue
boxes above to highlight the changes.

crop growth and field management. The main idea of our approach is to take
advantage of the fact that the position of crops as well as gaps between crops
remains roughly the same over time, even if the visual appearance of the plants
themselves changes dramatically. A two-image matching example is depicted in
Figure 2.1. The first row shows SIFT-based correspondences. As we can see from
the lines connecting the identified corresponding points, SIFT based association
is rather poor. Our approach, however, finds better correspondences, as seen in
the second row.

The main contribution of this chapter is a novel method for registering images
of a crop field taken using a UAV across the crop season. Our approach provides
robust correspondences between images under changing conditions caused by crop
growth, weather, and field management. It also copes with the visual aliasing
problem in crop fields. We achieve this by presenting a descriptor that exploits
crop and gap location information along the crop rows, which is mostly invariant
within the same field over time. We exploit this spatial information about crops
and gaps for matching images when the visual appearance is drastically changing.

Finally, using our approach for matching images taken from a UAV during
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A B

Figure 2.2: Zoomed-in view of the same area on the field three weeks apart. In addition to the
vegetation growth, the texture of soil also changes dramatically over time. Texture rich regions
such as the tire marks from the tractor in the left image are washed away in the rain while
revealing other new objects like the stones embedded in the ground. Such strong changes make
it very challenging for visual matching methods to work reliably.

multiple sessions, we can compute a 3D model of the field with a temporal di-
mension capturing the evolution of growing plants in the field. This model, in
turn, allows us to monitor crop growth parameters such as leaf area over time.
Through this application, we demonstrate the possibility of analyzing the growth
of an individual plant in the field, which provides important data for the farmers
and crop scientists to make informed decisions.

2.1 Our Approach to Long-Term UAV Image
Registration

In this chapter, we present a technique for registering images of agricultural
fields taken by a UAV over the crop season and present a complete pipeline for
computing temporally aligned 3D point clouds of the field. Our approach exploits
the inherent geometry of the crop arrangement in the field, which remains mostly
static over time. This allows us to register the images even in the presence of
strong visual changes. To this end, we propose a scale-invariant, geometric feature
descriptor that encodes the local plant arrangement geometry.

To register images over multiple sessions, i.e., different UAV flights over the
crop season, into a common reference frame, we perform the registration based on
four consecutive steps. First, we compute a point-based geometric representation
for the images exploiting the crop arrangement on the field as described in Sec-
tion 2.1.2. This leads to a detection of points, which remains mostly static over
different sessions. Second, we exploit this information to encode the local geom-
etry around each detected point in the image using a scale-invariant descriptor
as proposed in Section 2.1.3. We then compute point correspondences between
overlapping images in a data association step as explained in Section 2.1.4. Fi-
nally, through bundle adjustment followed by a dense matcher, we compute the
optimized camera poses and spatially aligned 3D point clouds of different sessions

13
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in a common reference frame as detailed in Section 2.1.5. The comparison of the
point clouds allows us, on the one hand, to qualitatively check the registration
accuracy, and on the other hand, to derive crop growth parameters, which serve
as an application example.

2.1.1 Assumptions
Our approach is able to match UAV images of the field taken over multiple data
acquisition sessions separated over time and makes the following assumptions
regarding the setup:

• the UAV camera is mounted in a near-nadir view, and there is sufficient
overlap between consecutive images;

• the field is roughly planar in a local region (i.e., our approach may not work
in wine yards);

• the images have a ground sampling distance so that plants span over several
pixels, but this ground sampling distance does not need to be known nor
to be constant;

• the crops are planted in rows, the row positions and plant spacing, however,
is unknown (c.f. Figure 2.1).

In the following sections, we discuss the steps outlined above that form the
registration process.

2.1.2 Extract Geometry Information from UAV Images
To capture the structure of the crop field that remains invariant over time, we
need to identify the static aspects given the images. Once the crops are planted,
they do not move, and the stems/centers of the crops remain rather fixed over
time. Therefore, the locations of the crop centers can be used as a fairly static
description of the field. The local constellations formed by these points can be
seen as a geometric signature of a particular local region covered by an image. Our
current implementation assumes that crops are planted in rows as this simplifies
the computation of features. The row arrangement is not assumed to be known
beforehand, but the existence of crop rows is assumed.

We can compute the crop centers using the following procedure which is also
illustrated in Figure 2.3:

1. Compute the vegetation mask exploiting the excess green index (ExG) given
by

IExG = 2 IG − IR − IB (2.1)
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original image vegetation mask

1 2 3

crop rows

1 2 3

crop pixels along rows

crop row direction
1

2

3

peaks/valleys as crop/gap centers shown by pink/green
crosses

1 2 3

crop/gap center locations shown by pink/green crosses

Figure 2.3: Steps for computing crop and gap centers from the image.
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Figure 2.4: Extracted points (left for crops, right for gaps) for the same image.

where IR, IG and IB correspond to intensities of the red, blue, and green
channels of the original image. We then apply a threshold θ given by the
Otsu’s method [86] on IExG to get a binarized image (Figure 2.3, top right).

2. Fit or compute the lines through the vegetation pixels using the Hough
transform for finding crop rows (Figure 2.3, middle left).

3. Compute a histogram of vegetation pixels perpendicular to the direction
of the detected rows. The width w is taken to be half the inter crop row
distance (Figure 2.3, middle right).

4. Find the peaks of this histogram to identify the potential centers of the
crops (Figure 2.3, bottom row).

We observed in multiple experiments that instead of crop centers, the missing
crops, i.e., the gaps within the rows, provide an even more distinctive represen-
tation than the crop centers itself. This is particularly the case for later growth
stages, in which nearby crops often overlap. Therefore, we use the gaps instead
of the crop centers as the points representing the geometry in the field based on
the images.

To exploit the gaps instead of the crop centers, we follow the same procedure
as for the crop centers, but with the difference that the gaps correspond to the
valleys in the histogram computed in Step 3, which are marked with green crosses
in Figure 2.3 (bottom row, right). Multiple missing crops occurring consecutively
are represented by a single gap point at the center of the valley. Further steps of
the method are agnostic to the choice of points or how these points are calculated.
Figure 2.4 illustrates an example with the extracted crop centers and gaps overlaid
on the original image.
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Figure 2.5: Computing a scale-invariant descriptor for a point using local geometry. Left:
descriptor computation for two gap points Pa and Pb with k = 4. Right: visualizes the corre-
sponding descriptors.

2.1.3 Scale-Invariant Local Geometry Descriptor
Given the points identified in Section 2.1.2, we aim to encode the local geometry
around each point as a descriptor vector to facilitate image matching. We exploit
the nadir-view assumption of the UAV and thus can assume that images taken
during different flights may only differ in scale, translational offset, and rotation in
the image domain. No affine transformation needs to be considered because of the
nadir view. To estimate these transformation parameters, we need a descriptor,
which is scale-invariant in addition to being invariant to translation and rotation.
We construct an own descriptor for each point P using the ratios of distances
and relative angles between the k nearest neighboring points of P in the image
to meet these criteria. The number of neighbors to consider is a user-defined
parameter. The smaller the k, the less expressive/unique is the descriptor of
P and the larger k, the more sensitive is the description with respect to outlier
points. In our implementation and all experiments, we use k = 4, i.e., we consider
the four nearest points to P for the computation of the descriptor. In this work,
we chose the value of k empirically by evaluating the number of matches obtained
for different values of k ∈ [3, 8] and found that k = 4 gave the best results for
our datasets. Consider Figure 2.5 for an illustration of how to compute the
descriptor D for a given point P . More formally, this is defined by the following
computations:

1. Given the k nearest points Qk = {q1, . . . , qk} to P , we compute the so-called
reference point R as the point in Qk with the largest distance to P in the
image:

R = argmax
q∈Qk

∥P − q∥. (2.2)
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Without loss of generality, we assume that q1 is the reference point R in
Qk and that Qk is ordered according to the anti-clockwise angle between
the line Pq1 (dashed line in Figure 2.5) and the lines Pqi with i = 2, . . . , k.
Computing all the elements of the descriptor in this order makes the de-
scriptor rotation invariant.

2. The descriptor D will be 2(k − 1)-dimensional and consists of two parts of
equal size D = (Ddr, Dang).

3. The first half Ddr of the descriptor vector D consists of distance ratios from
P to the individual point, normalized by ∥P − q1∥:

Ddr =

[
∥P − q2∥
∥P − q1∥

,
∥P − q3∥
∥P − q1∥

, . . . ,
∥P − qk∥
∥P − q1∥

]
. (2.3)

We chose distance ratios in the descriptor because they remain invariant to
scale as opposed to individual distances between keypoints in the image.

4. The second half Dang of the descriptor vector D consists of the angles that
each point in Qk has with respect to Pq1, normalized by 2π:

Dang =

[
∠(q1, P, q2)

2π
,
∠(q1, P, q3)

2π
, . . . ,

∠(q1, P, qk)
2π

]
. (2.4)

The term ∠(q1, P, qi) refers to the angle between the lines Pq1 and Pqi. An
example illustrating the descriptor vector computation for two points Pa

and Pb is shown in Figure 2.5.

2.1.4 Data Association amongst Images
We compute the set of feature descriptors for each image, one descriptor per
detected point in the image. Our data association consists of three steps; the
first two steps of the data association are rather standard. First, we compute a
pair-wise matching of the descriptors of I1 and I2 and compare them using the
L2 norm. In the same spirit as done by Lowe [74] for SIFT matching, we reject
those matches that have a high distance under the L2 norm as well as those
where the Lbest

Lsecond
> 0.8, where Lbest and Lsecond are the scores for best and the

second-best match for a descriptor respectively. Second, we compute similarity
transformations in a RANSAC loop to identify and remove outliers from the set
of corresponding points.

The third step is a correspondence recovery step that deviates from standard
data association approaches. Given that the crop arrangement on the field is
highly repetitive, i.e., has high visual aliasing, a comparably large number of
correspondences get eliminated by Lowe’s ratio test. In this step, we consider
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to re-add those correspondences that were eliminated in the second step in case
they are compatible with the transformation found by RANSAC. Thus, the first
two steps provide the initial alignment from a potentially small set of correspon-
dences, which is typically free of gross errors. Then, we refine the alignment
estimate by re-adding those correspondences, which are consistent with the ini-
tial guess. These are locally distinct but potentially ambiguous with respect to
the descriptor globally and thus were eliminated before. To ensure high-quality,
one-to-one correspondences, we use the Hungarian method [83] for data associa-
tion in this recovery step. This step allows us to recover more correspondences
that were not obtained directly by descriptor matching by using the transfor-
mation estimated in the RANSAC step. The Hungarian method computes the
theoretically optimal assignment but has a complexity of O(n3) and thus is com-
putationally expensive. However, given that the number of possible associations
with low distances compatible with the transformation is typically not too large,
this does not turn out to be a computational bottleneck in practice, and we can
apply this optimal method. Figure 2.6 depicts the correspondence between two
images after each step of the matching.

2.1.5 Point Cloud Computation using Bundle
Adjustment

As a final step, we perform a pairwise matching between all overlapping images,
both spatially and in time across different sessions. Here, we have two options. If
we have (a low quality) GPS information available, we can generate a candidate
set of overlapping images using the location as prior information. This allows
for increasing the speed as only a subset of the images must be tested for corre-
spondences. If no GPS or other position information is available, all image pair
combinations are tested.

We compute the possible matches between all the potentially overlapping im-
ages and feed them into a bundle adjustment procedure. This algorithm combines
the pairwise matches to object points with multiple observations and generates
approximate values for the camera poses and 3D object points, which serves as
an initial guess for the subsequent optimization. After the adjustment, we ob-
tain a set of optimized camera poses in a common reference frame. For each
session separately, we can then compute a dense point cloud using these poses.
Any dense matcher can be used here, and we applied the patch-based multi-view
stereo reconstruction technique (PMVS) by Furukawa and Ponce [40]. The indi-
vidual point clouds from each session are already aligned to a common reference
frame since the used poses result from a common adjustment in the previous step.
The complete pipeline is illustrated in Figure 2.7.
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Initial descriptor matching

After RANSAC step

After recovery step using Hungarian assignment

Figure 2.6: Stages of data association procedure. The details regarding each stage is discussed
in Section 2.1.4.
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Images

Data association
over space

Data association
over time

Bundle
Adjustment

Dense point cloud
reconstruction using

PMVS

camera poses in
common frame

Figure 2.7: 3D reconstruction pipeline showing steps for computing temporally aligned point
clouds from different sessions.

Table 2.1: Overview of the datasets

Field Session Date # of images crop size weather

A

1 May 20 45 7 cm cloudy
2 May 27 175 10 cm sunny
3 June 17 121 15 cm overcast
4 June 22 140 20 cm cloudy

B 1 May 8 99 5 cm sunny
2 June 5 95 15 cm cloudy

2.2 Experimental Evaluation
The experiments in this section are designed to illustrate the capability of our im-
age registration approach for field monitoring tasks in agriculture and to support
the claims made in the introduction of the chapter.

2.2.1 Dataset Description
We recorded several datasets 1 of sugar beet crops spanning over multiple weeks
for two different fields, referred as A and B here. For the field A, we recorded
the datasets across four sessions using a DJI MATRICE 100 UAV. The flight
altitude for each session is between 8 m to 12 m above the ground. We recorded
the images using the Zenmuse X3 camera with an image resolution of 4000×2250

pixels having a ground sampling distance of 4 mm per pixel at a height of 10 m.
For the field B, we used a DJI PHANTOM 4 UAV across two sessions recorded
almost one month apart. The UAV was equipped with a GoPro camera set up to
take an image every second at a resolution of 3840× 2880. The flight altitude for
the two sessions varied between 10 m and 18 m above the ground having a ground
sampling distance of 9 mm per pixel at 15 m height. As the GoPro uses a wide

1The datasets used in the chapter can be downloaded from here:
http://www.ipb.uni-bonn.de/data/uav-sugarbeets-2015-16/
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2.2. Experimental Evaluation

Table 2.2: Matching statistics across the crop season

Field Session points per
image pair

# of matches residual error
(pixels)Lowe test RANSAC Recovery

A
1-2 58 27 11 42 4.21
2-3 55 20 7 38 4.38
3-4 57 24 9 40 4.35

B 1-2 74 39 15 56 4.91

angle lens, we first undistort the images before applying the registration pipeline.
The average plant sizes in the fields range from 5 cm to 20 cm in diameter across
the crop season. Furthermore, the images were taken under different weather and
soil conditions. Table 2.1 provides an overview. The most challenging datasets
are Session 2-3 (A) and Session 1-2 (B) due to the large time gap of 3-4 weeks
between them whereas Session 3-4 (A) is the easiest being only 5 days apart.

2.2.2 Matching Images across the Crop Season

The first experiment is designed to show that our approach is able to match
images across the crop season having large difference in visual appearance. We
perform matching between overlapping images then across sessions. As described
in Section 2.1, we compute the gap points and construct our geometric descriptor
for each of the images. We compute descriptors with k = 4 neighboring points
to encode the local geometry. Table 2.2 summarizes the overall statistics for
matching images across the sessions. It lists the average number of common gap
points per image pair, the number of correspondences after the Lowe-ratio test,
RANSAC, and recovery steps as well as the average residual error. We observe
that around 30% of the initially matched points survive the RANSAC step and
correspondences for roughly 70% of the points are re-established in the recovery
step. Overall for field A, we observe an average residual error of 4.3 pixels, which
corresponds to a ground distance of less than 2 cm. We have similar residual errors
for field B at 4.9 pixels. While this accuracy does not match up to the usual sub-
pixel accuracy of visual matching methods such as SIFT applied in non-changing
environments, it is still a very good performance given the fact that physical
growth of the plants and their changing appearance limits the accuracy with
which the crop centers or the gaps can be detected. Figure 2.8 shows example
results from consecutive sessions for both fields. In all examples, visual matching
using SIFT fails to find any reasonable set of correspondences.
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Field A: Session 1 - Session 2 (1 week apart)

Field A: Session 2 - Session 3 (3 weeks apart)

Field A: Session 3 - Session 4 (5 days apart)

Field B: Session 1 - Session 2 (4 weeks apart)

Figure 2.8: Matching between image pairs from consecutive sessions.
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Table 2.3: Evaluation against visual descriptor matching

Field/
Session

SIFT / SIFT-gaps / ORB / BRIEF / Our approach
% pairs matched max matches % inlier

A/1-2 26 / 15 / 10 / 0 / 89 10 / 8 / 10 / 0 / 42 19 / 29 / 15 / 0 / 41
A/2-3 16 / 40 / 5 / 0 / 85 4 / 12 / 4 / 0 / 38 10 / 34 / 8 / 0 / 35
A/3-4 84 / 75 / 80 / 65 / 86 103 / 22 / 75 / 70 / 40 67 / 65 / 65 / 55 / 38

B/1-2 9 / 15 / 0 / 0 / 87 4 / 9 / 0 / 0 / 56 7 / 21 / 0 / 0 / 39

2.2.3 Comparison against SIFT, ORB, and BRIEF

This experiment is designed to compare the matching performance of our ap-
proach against visual matching procedures using different descriptors. We per-
form the comparison between overlapping image pairs between each consecutive
session for both the fields. In addition to the standard SIFT matching proce-
dure using the default detector, we also compute the SIFT descriptor at the gap
points computed by the detector in our approach. The intuition for doing this
is that the gap regions are the least affected regions due to the movement of the
tractor etc. on the field. Therefore, it provides the possibility of matching the
texture of the soil in these regions across different sessions. Table 2.3 provides
a comparison of the matching performance using standard SIFT, SIFT at gap
points, ORB, BRIEF, and our approach. The table lists the percentage of image
pairs matched successfully, maximum matches found for an image pair, and the
inlier percentages for the matches computed by the three approaches. We con-
sider image pairs having at least 4 matches resulting in a correct transformation
as a successful match. For both fields A and B, we see that for most challeng-
ing datasets, i.e, Session 2-3 (A) and Session 1-2 (B), visual matching using the
SIFT descriptor only matches between 9% to 16% of the image pairs successfully.
Even for the successfully matched image pairs, the number of matches is very
few, and the percentage of inlier matches is only around 10%, indicating that
the matches are not reliable. The percentage of successful matches obtained with
ORB and BRIEF is even worse. For example, they cannot match any pairs from
the dataset Session 1-2 (B). The SIFT descriptor computed at the gap points
slightly improves the percentage of successful matches for Session 2-3 (A) while
providing no improvement for other cases. However, for the relatively simpler
dataset, i.e., Session 3-4 (A), the visual approaches perform well as these images
were captured only five days apart and are visually similar. For this dataset,
we observe that the SIFT based matching gives the best performance with the
highest number of matches and the best inlier percentage. This occurs mainly
because the appearance of the field during the two sessions remains static. As a
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Table 2.4: Evaluation against ground truth

Field Session % of estimated
matches

residual error (cm)
(est/ref)

registration error
(trans/rot/scale)

A
1-2 91.67 1.47/0.98 3.19 px /0.38◦ /0.31%
2-3 84.86 1.75/0.77 4.54 px /0.60◦ /0.42%
3-4 85.19 1.74/0.86 4.07 px /0.42◦ /0.32%

B 1-2 87.22 3.93/2.16 3.94 px /0.47◦ /0.35%

result, the SIFT based matching is able to exploit the texture information to find
the correspondences, which was not possible with the other datasets. Overall,
our approach consistently matched around 85% of the image pairs with higher
inlier percentages for each of the sessions, including the challenging datasets of
Session 2-3 (A) and Session 1-2 (B). This is because our approach exploits the
geometry rather than relying on the visual appearance of the field.

2.2.4 Ground Truth Accuracy Evaluation
This experiment evaluates the accuracy of our matching results against the ground
truth. We compare our results with ground truth parameters for 10 image pairs
between each session to perform this analysis. All the evaluation parameters are
summarized in Table 2.4. The ground truth parameters are computed based on
control points, which have been provided manually. Using these control points,
we compute the reference ground truth registration parameters under a similarity
transform. We further manually establish unique correspondences between the
image pair points under these registration parameters and consider them as the
ground truth correspondences. We provide a measure of the quality of matching
in terms of the percentage of correspondences estimated by our method compared
to the ground truth correspondences. On average, our method is able to recover
up to 90% of all possible correspondences. We also compute the residual error
based on the estimated correspondences and compare it to the residual error of
the manually generated ground truth. For field A, we obtain an average residual
error of around 1.6 cm, indicating that the estimated parameters are correct. The
residual error for field B is in the same range as that of field A. The absolute value
of the error is higher only due to the lower ground resolution of 9 mm per pixel
for this flight. Further, we evaluate the accuracy of the registration parameters
by computing the average errors (translation, rotation, and scale) with respect
to the ground truth parameters. We observe an average translation error of close
to 4 pixels. We also obtain an average rotational error of 0.5◦, and a scale error
of less than 0.5% with respect to the ground truth parameters.
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Figure 2.9: Descriptor robustness under varying noise levels assessed in terms of percentage of
correct matches (true positives) and false matches (false positives + false negatives).

2.2.5 Descriptor Performance Under Noisy Detections

This experiment shows the robustness of the descriptor under noisy detection con-
ditions. We perform this analysis by simulating two kinds of noise, (i) a Gaussian
noise affecting the location of the keypoints, and (ii) missing/spurious detection
of keypoints. The missing points refer to the keypoints that exist in the image
but have not been detected, whereas the spurious points refer to the keypoints
which have been detected but do not correspond to a true keypoint in the image.
We perform the analysis considering the gap centers as the keypoints. We assess
the performance of descriptors by computing the percentages of correct matches
(true positives) and the false matches under varying levels of noise. The false
matches include both false positives, i.e., the points that are incorrectly matched,
and false negatives, i.e., the matches that were missed. For the noise of type
(i), we vary the standard deviation of the Gaussian noise on the location of gap
centers up to 15 pixels. The typical noise level for the gap detection procedure for
our images is around 5 pixels. In Figure 2.9 (left), we observe that even for high
noise levels (15 pixels), about 30% of the correspondences are identified correctly,
whereas the false matches are below 20% after performing the Lowe’s test. We
observe a similar trend under missing/spurious points noise in Figure 2.9 (right).
We can identify up to 20% of the matches even when one-fourth of the points are
wrongly detected. These correspondences provide sufficient information for our
data association procedure to match the images successfully. Furthermore, the
RANSAC step eliminates the wrong correspondences resulting from incorrect de-
scriptor matching. We finally recover only the consistent but initially ambiguous
correspondences during the recovery step. This further supports the claim that
we can perform matching robustly under substantial noise.
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Figure 2.10: Temporally aligned 3D point clouds. Top: 3D reconstruction for a portion of the
field from the same viewpoint for Session 2 (left) and Session 3 (right). Bottom: cross section of
a part of the point cloud from Session 3. The color of the point cloud represents the difference
between the point clouds from the two sessions, i.e. Session 2 and Session 3. The portion
close to ground does not change much between the sessions and therefore has a small difference
indicated with blue color. In contrast, the top parts of the crops are colored green/yellow/red
indicating bigger differences between the point clouds from the two sessions. This is due to the
physical growth of the plant between the two sessions.

2.2.6 Time-Aligned 3D Point Clouds

This experiment is designed to show that our reconstruction pipeline allows us to
compute temporally aligned 3D point clouds of the field (Section 2.1.5) and thus
support our second claim. We first compute matches within the same session
and matches between images in consecutive sessions. We then feed them all into
a single bundle adjustment to obtain the 3D camera poses of all sessions in a
common reference frame. Using the aligned poses, we now can compute dense
3D point clouds for each session separately with PMVS [40]. Due to the common
bundle adjustment, the point clouds for different sessions are already registered to
each other and can be compared directly. The top two point clouds in Figure 2.10
illustrate the result by rendering a portion of the field from the exact same camera
position both for Session 2 and Session 3 respectively. This allows us to monitor
the evolution and the changes on the field over time. Note that the point clouds
from two sessions are aligned based on the respective camera poses obtained from
the bundle adjustment and not a point-to-point correspondence of the 3D point
clouds over time. To assess the quality of the alignment, we visualize the difference
between the two aligned point clouds. The bottom part of Figure 2.10 shows a
cross-section view of the point cloud from Session 3, where the color signifies the
difference between the point cloud from Session 2 and Session 3. The difference
increases as the color changes from blue to red. We see that the alignment of
the point clouds looks qualitatively correct as the space in-between the crop rows
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Ses 1 Ses 2

Ses 3 Ses 4

Figure 2.11: Monitoring crop growth parameters. Same crop identified in the bounding box
over different sessions using our registration results.

has a small difference indicated by the blue color. We also observe that the
lower portions of the crops have a smaller difference as this portion overlaps with
the crops from Session 2, whereas portions at the top have a larger difference
reflecting the crop growth between the two sessions.

2.2.7 Monitoring Crop Growth Parameters
To support our final claim, we show in the following experiment that our regis-
tration results allow us to monitor growth parameters at a per plant level. We
manually provide bounding boxes around crops in the first session and compute
the locations of the new bounding boxes in the corresponding images from differ-
ent sessions using our registration results. Figure 2.11 shows an example where
the same plant is identified through different sessions. To monitor the plant’s
growth, we compute the total leaf area (from the top view) for the plant in each
of the sessions. We compute this area by first extracting a vegetation mask in-
side the bounding box using the excess green index (ExG) and compute the area
under it. Figure 2.11 shows the plot of the total leaf area for individual plants
at five different sites on the field over all the sessions. Here each site refers to a
distinct 30 cm x 30 cm region on the field. As expected, we see a general trend of
increasing leaf area with time. For the plant shown in our example , the leaf area
increases from about 150 cm2 in Session 1 to 430 cm2 in Session 4. The growth
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Figure 2.12: Monitoring crop growth parameters. Plot of leaf cover over time at five different
sites in the field. Each site refers to a distinct 30 cm x 30 cm region on the field.

on the sites is consistent with the BCCH growth scale index for sugar beets. This
experiment illustrates that our registration results are accurate enough for mon-
itoring growth parameters at a per plant level. However, it should be noted our
main goal here is not to analyze crop growth but to facilitate such analysis by
registering images taken over time to a common coordinate frame. Other works
such as [69], [92] address the issue of analyzing crop growth in more detail. Later
in Chapter 4, we investigate techniques for registering high-fidelity point cloud
data, which allows us to monitor plant growth at a much higher resolution.

2.3 Related Work

With the wide availability of commercial UAVs, it has become fairly easy to ac-
quire image data repeatedly without any expert assistance. This has also resulted
in the gathering of large amounts of field data and led to the development of sev-
eral new applications in the agricultural robotics community. Das et al. [29] and
Bryson et al. [16] propose various sensor setups and software components for
some typical field monitoring tasks using ground and aerial vehicles. Some other
techniques have been developed with the goal of performing intervention tasks
in the field. For example, Lottes et al. [73, 71] focuses on distinguishing crops
and weeds for targeted weeding application while Kusumam et al. [62] detect
and localize broccoli heads for selective harvesting. Other works such as [69, 92]
have investigated towards analyzing plant growth from multi-spectral images and
point clouds. However, most of these works focus on the interpretation of data at
a given point of time. They do not consider the temporal changes in the field that
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present challenging situations in terms of data association. In this chapter, we
have aimed at bridging this gap and presented a method for temporal registration
of field images.

In related literature from long-term localization and place recognition applica-
tions, several methods address the problem of finding data associations amongst
images having large differences in visual appearance. Visual localization and
place recognition for long-term applications require robust image matching in the
presence of strong illumination and seasonal changes [82, 125]. A comprehensive
survey of the visual place recognition techniques can be found in [75]. Most of
these techniques are designed for autonomous driving applications and do not
lend themselves to be used for finding matches in field images having a large
baseline. Griffith et al. [45] go further by incorporating 3D structure information
in the scene to address the problem of aligning images of natural scenes across
seasons. Martin-Brualla et al. [80] have created impressive time-lapse videos of
dynamic scenes such as construction sites or glacier movements over the years.
These methods utilize a large number of photos from the Internet to warp them
into a single viewpoint. However, they still require temporally close images to
have a substantial portion of the scene to be similar for the data association to
be performed using standard visual descriptors such as SIFT [74].

Some other works [121, 88] are directed towards detecting the changes in
the scene and updating the model accordingly. Ulusoy et al. [121] propose an
approach that updates an initial model of the environment by analyzing the
geometric discrepancy between current measurements and the previously built
model. Similarly, Palazzolo et al. [88] develop a method to quickly find the rough
location of structural changes between the current state of the world and a ref-
erence 3D model using only a few images of the scene. Sakurada et al. [103]
and Taneja et al. [118] address the issue of detecting the changes in urban en-
vironments using images from a camera mounted on a vehicle. Qin et al. [97]
highlight the challenges of detecting changes in measurements acquired at differ-
ent resolutions and provides an overview of techniques aimed at addressing these
challenges. However, these change detection techniques are restricted to a local
region of the scene and do not apply to our situation where the whole field is
continuously changing over time. Instead of computing local changes, we match
the whole images that are acquired at different times, and the changes in terms of
the growth of the individual plants are then computed based on the registration
results.

Descriptors that exploit geometrical patterns have been used in various ap-
plications, and a large corpus of literature exists for matching point patterns in
images and other synthetic data. Gold et al. [44] and Hancock et al. [17] propose
different formulations for estimating correspondences from noisy point sets en-
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abling them to deal with deformable objects in the image. Wolfson [130] proposes
a hashing based method using invariant properties of transformations to retrieve
the correct object from a large database of objects. Our use of geometric descrip-
tor is similar to Moreau et al. [133] where they use affine invariant properties
to construct a descriptor for tracking planar objects. While these works are not
directly applicable to our scenario, we borrowed ideas from them and designed
a new descriptor as well as a robust matching procedure suitable for matching
point patterns detected in nadir view UAV images.

A closely related work has been proposed by Dong et al. [34] that address
the problem of matching images from a field across time for the purposes of crop
monitoring. They use a SLAM system to fuse the measurements from different
sensors such as camera, GPS, IMU, etc., to obtain a high-quality estimate of
the camera poses and the field structure. This information is used to reject
outliers during the data association step and improve overall robustness. As the
matching still relies on visual information, it is still bound to fail when visual
appearance changes dramatically, such as in situations like rain as well as any
large change in the appearance of the field. In contrast, our method can deal with
such situations since it uses geometrical information that remains mostly static
even if the appearance of the field changes dramatically.

2.4 Conclusion
In this chapter, we investigated the challenging temporal data association prob-
lem that arises while matching images of crop fields taken over the course of a
crop season. Our main insight was to exploit the local geometrical patterns that
remain relatively static despite the large change in the appearance of the plants
and the field itself. Building upon this idea, we presented a novel approach ca-
pable of registering UAV images of agricultural fields despite the large variation
in the visual appearance over the crop season. We proposed a descriptor that
captures the inherent geometry of the crop arrangement in the field by exploiting
the negative information about missing crops, i.e., gaps in the crop rows, and
use these descriptors for matching images from different times. This approach
allowed us to successfully register images even when matching based on common
visual descriptors such as SIFT, ORB, or BRIEF fail. Finally, in the experiments,
we demonstrated our approach provides a robust and efficient method for regis-
tering crop field images. The registration results, in turn, allowed us to compare
individual plants in temporally separated images and capture their growth. We
also showed that these registration results could also be exploited by a bundle
adjustment procedure to obtain temporally aligned 3D point cloud and monitor
changes in plant properties such as the canopy height. We believe that this work
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would form an important step for UAV-supported monitoring applications such
as in-field phenotyping, continuous yield forecasting, which require temporally
aligned models of whole fields up to an individual plant level.
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Chapter 3

Collaborative Localization in
Fields Exploiting UAV Imagery

The ability to localize is a key capability for robots to navigate autonomously in
the environment. To localize means to means to answer the question “where is
the robot?”. Localization is often done with respect to a map of the environment
that is built beforehand. An accurate localization system is critical for robots as it
provides the knowledge of their current location, which is necessary for planning
and navigation in the environment. This is also the case in agricultural fields,
where the UGV needs to localize itself accurately to navigate through the crop
rows, perform monitoring and precise intervention actions in the field.

Although several localization approaches exist, the crop field environment
poses several unique challenges, which are difficult to cope with. For example,
the repetitive structure of the crops in the field gives rise to aliasing. This easily
results in multi-modal distributions about the robot’s pose that is difficult to
resolve. In addition to this, the appearance of the vegetation in the field changes
continuously over time, even on the same day. This makes it challenging to local-
ize over multiple sessions, which is a requirement in most agriculture applications
requiring monitoring and precise intervention. Collaboration between UAVs and
UGVs has the potential to provide flexible solutions to accomplish different preci-
sion agricultural tasks effectively. In this chapter, we explore how can we improve
the localization capabilities of a UGV by collaborating with a UAV.

Presently, the solution for localization in field environments is through the
use of high-precision real-time kinematic (RTK) GPS. Although these sensors
can provide the desired accuracy most of the time, they are rather expensive
and are still vulnerable to signal outages resulting in degraded estimates. Several
other localization approaches based on visual features such as SIFT [74] or similar
features often fail due to the large difference in the appearance of the field over
the crop season, as illustrated in the previous chapter.
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In this chapter, we present a solution to the localization problem for ground
robots operating in crop fields over long periods in a collaborative manner using
images captured from a UAV. This localization system can also be used indepen-
dently to provide redundancy to other localization systems such as those based on
GPS. Our system only requires the ground robot to be equipped with a monocular
camera, an odometer and uses an aerial map of the field as a map. Such a simple
image-map can be obtained easily from unmanned aerial vehicles (UAVs) flying
over the field. The key idea of our approach is to take advantage of the salient fea-
tures in the field that are easily identifiable from different viewpoints and remain
invariant over the crop season, even when the visual appearance changes dramat-
ically. To meet these criteria, we propose to use the locations of the plants and
the gaps in the field as features capturing the inherent geometry of the field and
exploit the plant semantics to further tackle visual ambiguities. The idea of using
crop and gap locations as features is inspired from the previous chapter, and we
modify them to perform data association between different platforms, i.e., a UAV
and a UGV, with varied viewpoints. Furthermore, we also capture the changes
in the field by explicitly modeling the existence of plants as a probabilistic belief
and using this information to curate the map after each session.

In the previous chapter, we developed a technique for registering UAV images
of crop fields captured at different time instances by exploiting local geometric
patterns in the fields. Similarly, in this chapter, we exploit the semantics as well
as the locations of crops, weeds, and gaps for localizing the ground robot. Here,
we use these feature detections within an estimation framework to obtain an
online estimation for the ground robot pose. Different from the previous chapter,
the features are observed from different viewpoints from the two platforms and
thus violate some of the previously made assumptions. The UAV observes the
field in a near-nadir view with a large field of view. In contrast, the ground
robot observes a small region of the field from a close distance, often with a
tilted camera resulting in perspective distortions. As a result, we need to employ
more sophisticated detection algorithms to extract the features and estimation
frameworks capable of dealing with more ambiguous data associations.

The main contribution of this chapter is a novel localization system for robots
operating in crop fields over an extended period of time. Initially, we construct a
reference map as a set of sparse features encoding the geometry and semantics of
the field using the images taken from a UAV. For localization, we use the feature
detections from the ground robot within a Monte-Carlo localization algorithm
to estimate the robot’s pose using an observation model targeted to the crop
field domain. In addition to that, we update the map of the field at the end
of each session based on the belief of the existence of each feature. The map
update allows us to reduce the potential for wrong feature associations and thus
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Figure 3.1: Top: Robot trajectory estimated by our approach recorded at two different points
in time (sessions) visualized on top of the aerial map used as a reference map. Bottom: Images
from the ground robot recorded at same location but at the different times of data acquisition.
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improve the performance of the feature-based localization over time in changing
environments such as agricultural fields.

Our approach proposed in this chapter enables a UGV to (i) localize with
sufficient accuracy allowing the robot to navigate within the gap between adjacent
crop rows, (ii) provide better performance than standard GPS approaches and is
more robust to environmental changes over the season as compared to methods
relying on purely visual features, (iii) perform localization over multiple sessions
without needing to remap the field each time, and (iv) maintain an updated map
of the environment by integrating the current measurements allowing the system
to function smoothly over long time periods. This kind of localization capability
for a UGV is a pre-requisite to perform precision agriculture tasks and operate
reliably in challenging field environments over longer periods of time.

3.1 Ground Robot Localization using Aerial
Images of Crop Fields

Here, we present our localization system for a ground robot operating in the crop
fields by using aerial maps that have been acquired from UAV survey flights. We
achieve an accurate localization estimate for the ground robot through several
steps. First, we compute an aerial orthomosaic of the field using the images
captured by the UAV during a survey flight. We then compute distinctive fea-
tures such as stem locations of the crops and weeds on the aerial orthomosaic by
employing an end-to-end fully convolutional network (FCN) as explained in Sec-
tion 3.2. When deploying the ground robot in the field, we compute the features
on the live frames from the camera stream, also using an FCN and match them
against the aerial map features to estimate the robot’s pose using a particle fil-
ter. This procedure is described in Section 3.3. Finally, we update the aerial
reference map periodically as the field conditions are constantly changing due to
plant growth as well as other management activities such as weeding operations.
The aerial map is updated each time the ground robot enters the field using its
current measurements as described in Section 3.4. By keeping the map updated,
the ground robot is able to localize in the fields for longer periods of time.

3.2 Features for Localization in Crop Fields
In order to localize the robot using aerial images of fields, we need to find data
associations between the UAV and the ground robot images. As these images are
taken from two very different viewpoints, we need to extract features that are
visible in both images. This section describes how to compute these features and
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use them to estimate the robot’s pose.

3.2.1 Generating Aerial Landmark Map
To generate the aerial landmark map, we capture images of the field from a UAV
with a downward-looking camera over the whole field. We align these UAV images
with a standard bundle adjustment procedure [120] and estimate the camera
poses and the digital elevation model of the field. Using these estimates, we
stitch individual images to generate the aerial orthomosaic. This is done using
the commercially available software Agisoft PhotoScan.

From this orthomosaic, we compute a landmark-based representation, which
consists of stem locations of the plants. The main idea behind using the plant
stem locations as landmarks is that they provide a representation of the field that
is comparably static. In addition to the stem location, we further use the camera
images to classify each plant as a crop or a weed and use this information to avoid
inter-class associations of the features during localization. Thereby, our approach
takes advantage of the natural semantics of the field.

Both, the stem locations of individual plants and the semantic label, are
estimated using an end-to-end trainable fully convolutional network (FCN), which
is described by Lottes et al. [70]. In addition to that, we compute the gap locations
between crops in the field, i.e., positions of missing crops on the field surface. We
are able to do this because we expect the crops to grow in a row. The gap locations
provide a more distinctive pattern, which allows us to tackle the problem of visual
aliasing in row crops as described in the previous chapter.

From these features, we construct a map M of the environment as collection
of landmark tuples

M =
{
(l(1), s(1)), . . . , (l(L), s(L))

}
, (3.1)

where l = (lx, ly)
⊤ is the location of the landmark in the global coordinate frame

derived from the aerial reference map and s ∈ {crop,weed, gap} denotes its cor-
responding semantic label. Figure 3.2 (left) show an example with landmarks
computed for an UAV image with crop (green), weed (red), and gap (blue) fea-
tures.

3.2.2 Extracting Features from Ground Robot Images
For the ground robot, we extract features for every incoming image to find a
data association between the current observation and the aerial landmark map.
We extract the same features as in the aerial image, i.e., the locations of crop
and weed stems as well as gaps between the crops. However, extracting precise
locations of plants from the ground robot images is more challenging as the camera
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Figure 3.2: Feature detections from an UAV (left) and ground robot image (right). We visualize
crop (green), weed (red) and gap (blue) features detected from both views.

Figure 3.3: Projecting a feature x(k)
d from the image plane to the coordinate frame of the mapM.

orientation is tilted with respect to the nadir view. This camera setup results
in images with varying ground sampling distance, where the farther parts of the
field have a lower resolution. Furthermore, during the later stages, when the
crops are bigger, this view suffers from occlusions induced by large crops in the
front of the scene. To deal with these challenges, we deploy a re-trained version
of the same FCN [70], which we had used for the aerial data. To allow the FCN
to detect stems from a perspective view, we fine-tune it by additional training
on a small portion of labeled image data captured from the ground robot. At
inference time, the FCN yields in a set of feature detections for an image

F =
{
(x

(1)
d , s(1)), . . . , (x

(K)
d , s(K))

}
, (3.2)

where xd is the pixel location of a feature in the image coordinate frame and s

denotes the semantic label of the detection. Figure 3.2 (right) shows the feature
detections for a ground robot image extracted using this procedure.

3.2.3 Camera Projection
To match the features detected in the ground robot image, we project each de-
tection x

(k)
d ∈ F onto the aerial map M. For making this projection, we need

to know the pose of the camera WTC and the parameters of the ground plane A

in the world frame (illustrated in Figure 3.5). We assume to have a calibrated

38



3. Collaborative Localization in Fields Exploiting UAV Imagery

camera and that the relative transformation from the robot base to the camera
CTB is known. The pose of the robot base WTB is estimated by the localization
algorithm explained in the next section.

To obtain the projected point p(k) in the map M corresponding to x
(k)
d , we

first compute the direction of the ray r(k) in world coordinates using the camera
calibration matrix K and the rotation matrix R from the WTC as

r(k) = RTK−1x
(k)
d . (3.3)

Then, we compute the location p(k) of the feature observation on the plane A

as the intersection of the ray r(k) and the plane A. This can be obtained efficiently
by expressing r(k) in Plücker coordinates. We express r(k) as a line L(k) joining
the camera projection center C and a point q = C + r(k) along the ray as

L(k) =

[
Lh

L0

]
=

[
C − q(k)

C × q(k)

]
. (3.4)

From L(k), we compute the transposed Plücker matrix

ΓT(L(k)) =

[
S(L0) Lh

−LT
h 0

]
, (3.5)

where S(L0) is the skew symmetric matrix computed through the vector L0.
Finally, we obtain p(k) as

p(k) = ΓT(L(k))A. (3.6)

Due to the limited field of view of the camera, the number of features detected
in a single image frame is often small (around 30). Typically, such data is not
distinct enough to cope with the visual aliasing in the environment. Therefore, we
aggregate features from consecutive images into a small sub-map until it covers
an area of 15 m2. The accumulated data represents an observation for the particle
filter described in the subsequent section.

This allows the accumulated observations to have sufficient features in order
to be able to match against the aerial map effectively. These accumulated ob-
servations, i.e., the set of all points p(k) and their semantics s(k) in the sub-map,
form the measurement Z for our system

Z = {(p(1), s(1)), . . . , (p(N), s(N))}, (3.7)

where p is location of feature projected in the global co-ordinate frame and s

denotes corresponding the semantic label.
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3.3 Global Localization in Crop Fields
Due to the repetitive structure of the environment, data association between
the ground robot observations Z and the aerial landmark map M is potentially
ambiguous. Additionally, detecting features from the ground robot images is noisy
and can result in false detections that have no correct associations in the map.
This makes the application of EKF-based systems challenging. Therefore, we
use the Monte-Carlo localization or MCL [30] to estimate the pose of the ground
robot as it provides a natural way to better deal with multiple hypotheses.

MCL estimates a belief over the robot pose using a set of weighted particles
where each particle represents a possible pose of the robot. For our implementa-
tion, we consider pose as the position and its orientation of the robot on the field
surface. The MCL filter performs three main steps to maintain the belief over
the pose. It first propagates the particles based on the odometry estimated by
the wheel encoder measurements from the robot. We use the odometry motion
model based on the wheel encoder readings as described in [119] to implement
this step. Whenever a new measurement Z is available, it updates the weight of
each particle based on an observation model. This model provides a measure of
how well the observation agrees with the map given the current pose. Finally, a
new set of particles is re-sampled from the old ones, where the chance of survival
for each particle is proportional to its weight in the old particle set.

We design an observation model that takes into account the semantics of the
features in addition to their locations. By considering the semantics, we are able
to reduce the number of wrong data associations, which helps us deal with the
aliasing in the field. We define an error ξs(zi) for each point of the semantic type
s. The error ξs(zi) is computed as the distance to the nearest landmark l of the
same semantic type s in the map M. This means that we only associate crop
features in the observations to crops in the map. Similarly, weeds and gaps in
the observations are associated against their counterparts in the map.

We can compute ξs(zi) efficiently using a distance transform map Ds [81],
which is pre-computed separately for each feature type, i.e., crop, weed, and
gap. The distance transform map Ds is essentially a look-up table providing the
distance to the nearest landmark for each location in the map. Therefore, the
error for the measurement zi is obtained simply by looking-up the value in Ds at
p(i), which is the projection of the feature on the mapM. We then compute the
average error from all points belonging to a semantic type Qs = {(p, ζ) ∈ Z | ζ =

s}:

ξsavg(z,m) =
1

|Qs|
∑
Qs

Ds(p(i)), (3.8)
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Figure 3.4: Left: Hazard function λT (t) for crop, weed, and gap features specifying the prior
information regarding their survival. Right: existence belief for a gap feature computed by the
persistent filter.

and update the particle weight under our observation model as

w ∝
∏
s

exp
(
−
ξsavg

2σd

)2

, (3.9)

where σd is the expected measurement noise in the feature detection. The average
error ξsavg is truncated to a maximum value for robustness against outliers, which
is equivalent to using a truncated Gaussian. This turns our observation model
into a likelihood field, which can be evaluated efficiently and is used the correction
step of the particle filter.

3.4 Map Update
Typically, the map M used for localization is constructed only once at the be-
ginning of the crop season. However, over time as the field appearance changes,
new plants will appear and some of the existing ones may no longer be present.
For example, new weeds appear in the field, while some of the gaps are no longer
present when the crops increase in size. Therefore, to account for these changes in
the field, we integrate the ground robot observations into our mapM and curate
it over time. If our observations were perfect, we would only need to remove a
feature from the map if that feature’s location is re-observed and the feature is
not detected, and equivalently for the situation of adding a new feature to the
map. In reality, however, the detector outputs are noisy which compounded by
the error in estimated pose of the robot itself. This makes it difficult to deter-
mine unambiguously if a feature is present in the map or not. Therefore, the best
we can achieve is to estimate a belief over the presence of the feature given the
observations.
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To compute this belief, we realize the so-called persistence filter described by
Rosen et al. [99]. In addition to integrating the observations Z, the persistence
filter also provides an elegant way to incorporate prior information about the
feature in terms of its expected survival time in the environment. One of the
ways to integrate this survival prior is through a hazard function λT (t), which
encodes the information of how the feature disappearance rate varies over time.
A hazard function λT (t) allows us to describe the various changes occurring in
the field in an intuitive manner. In our implementation, we design three different
hazard functions to model the survival priors for crops, weeds and gaps. These
three hazard function are visualized in the left image of Figure 3.4 (left). For
example, the hazard function λT (t) for crops (green) is very small and constant
through out as we expect the crops to survive till the end of the season. Instead,
λT (t) for gaps (blue) increases over time as some of the gaps get covered by the
nearby crops and are not detectable anymore. Finally, for weeds (red) we see a
sharp rise at t = 3, this is to account for a weeding treatment performed at t = 3

on the field after which we expect the majority of weeds to be removed. Similarly,
this hazard function can be adapted to reflect the different weed management
activities performed in the field.

Once the survival priors are defined via the hazard functions λT (t) for all the
features, the filter fuses the observation at time t to update the feature existence
belief. Thus, every feature maintains an existence probability that can be used
to add/remove features. As an example, we show the belief computed by the
filter for a weed feature in the field (Figure 3.4, right). We observe that despite
the false detections, the filter maintains a belief close to the ground truth by
exploiting the prior information and using successive observations. At the end of
each session, we update the map M by removing the features whose existence
belief is less than a fixed threshold. We also add the newly discovered features
from the current session and initialize them with an existence probability of one.

3.5 Experimental Evaluation
In the experimental section, we evaluate the performance of our localization sys-
tem for the ground robot exploiting the aerial maps as described in the chapter.
The experiments are designed to evaluate the localization accuracy of our system,
and its applicability for navigation in crop-row fields. We compare the accuracy
of our localization estimates against that of a standard single-phase GPS as well
as localization using state-of-the-art visual feature detectors. We also compare
the estimated trajectory for the robot against high-fidelity ground truth trajec-
tory obtained using an external tracking system. Finally, we show the impact of
updating the map over time using live measurements from the ground robot on
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Figure 3.5: Platforms used for the experimental evaluations. Left: Clearpath Husky robot used
as the ground robot with a Leica the tracking setup used to record ground truth trajectory in
the crop fields. Right: A DJI Phantom 4 used to collect the images for the aerial reference
map.

our overall system.

3.5.1 Experimental Setup
The experiments were performed on a real sugarbeet field, where we recorded
data over several weeks. The images for generating the aerial map were taken
at the beginning of the season using a DJI Phantom 4 UAV. The images were
captured from a height of 10 m covering the whole field. The orthomosaic map
generated from the images has a ground resolution of 5 mm per pixel. We used
a Clearpath HuskyA200 equipped with wheel encoders, Ublox EVK-7 GPS, and
a ZED stereo camera for recording the ground robot data. We only use the
RGB images from the left camera for our experiments. The camera was mounted
at the height of 1.2 m from the base, tilted at an angle of 45 ◦ towards the
ground, see Figure 3.5. We operated the ground robot by manually joysticking
it with an average speed of 0.6 m/s. We collected the data over five different
sessions, each roughly separated by a week. During this period, the crop size
ranged between 5 cm to 20 cm in diameter. Additionally, the farmers performed
a weeding treatment just before the third session, by which most of the weeds in
the field were removed. We also recorded the robot’s ground truth trajectory by
tracking a prism target placed on top of the robot using a Leica Total Station
TS50 with an accuracy of substantially below 1 cm.

3.5.2 Evaluation of Localization Accuracy
The first experiment is designed to show that we are able to localize with sufficient
accuracy required to carry out precision agriculture tasks in crop fields. This
essentially requires that the robot both localizes in the correct crop row and is
accurate enough to navigate within that row. This means a global accuracy of

43



3.5. Experimental Evaluation

ground truth

single-phase GPS 

our appraoch
(without GPS) 

0
0 50 100 150 200

10

20

30

Distance travelled (m)

A
b
so

lu
te

 e
rr

o
r 

(c
m

)

ConvergedInit

Figure 3.6: Top: Comparison of the trajectory estimated by our localization approach against
GPS and ground truth. Bottom: Absolute trajectory error over the whole trajectory.
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under 25 cm is required, which corresponds to the inter-crop row distance in our
field. This accuracy has to be achieved under changing appearance and strong
visual aliasing.

We begin the experiment by initializing our MCL filter with 5,000 particles
with an initial variance of 5 m around the estimate provided by the GPS. In
Figure 3.6, we show the localization results for the first session using the aerial
map created on the same day. To visualize the performance of the filter, we
plot the estimated mean pose of the robot (blue), GPS (yellow), and ground
truth (red) measurements overlaid on the map. The filter converges after the
robot travels a distance of about 6 m (dashed-blue). In Figure 3.6 (top), we
see that our approach (blue) provides a smooth estimate of the robot’s path
along the crop rows, whereas the GPS measurements often “jump” between the
crop rows. We evaluate the accuracy of our trajectory estimate in terms of the
absolute difference between our solution and the ground truth. We also note
that our estimated trajectory is close to the ground truth, indicated by the blue
(ours) follows the red (ground truth) trajectory. Once the filter has converged, we
obtain an average error of 4.3 cm, with the maximum error being around 17 cm.
This error is less than the inter-crop row distance of 25 cm, such that the robot
can navigate safely without going over the crops. The localization error over the
entire trajectory is plotted in Figure 3.6 (bottom). These results also suggest that
our localization system is suitable for crop-row fields with a smaller inter-crop row
distance.

Further, we perform an ablation study highlighting the effect of the different
feature types and semantics on the localization performance. The results are
summarized in Table 3.1. We observe that using detections from all feature
types, i.e., crops, weeds, and gaps, provides the best performance. Also, we see
that by additionally using semantics, localization the performance is better than
using the same features but without the semantic information. In particular,
the maximum error is lower while using the semantics. In the last row of the
Table 3.1, we observe that when using just the crop features (and not gaps), the
filter estimate converges to the wrong row indicated by its mean error of around
50 cm (shifted by two rows). This is caused by the high visual aliasing in the
crop fields and indicates that crop locations alone are not sufficient to address
this aliasing challenge.

3.5.3 Localization Performance over Multiple Sessions
In this experiment, we demonstrate that our system can localize the robot success-
fully over multiple sessions spanning several weeks. In contrast, state-of-the-art
methods relying on visual features are unable to work properly. For this experi-
ment, we update the map at the end of each session and use it as the reference for
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Table 3.1: Ablation study on the localization performance with different features

Feature type µ, σ (cm) max (cm)

With
Semantics

crops + weeds + gaps (4.3, 2.8) 16.7
crops + weeds (5.8, 3.9) 18.3

Without
Semantics

crops + weeds + gaps (5.1, 3.1) 22.7
crops + weeds (6.6, 3.5) 28.4
crops (54.5, 3.5) 79.3

Session 2 Session 3

Session 4 Session 5

Figure 3.7: Robot localizing over multiple sessions overlaid on updated reference map from the
previous session. Dashed trajectory corresponds to the initialization phases. Zoomed-in view
visualizes the changes in the map due to the update step reflecting the actual changes in the
field.
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Table 3.2: Localization performance over multiple sessions

Initial Map Updated Map
Session µ (σ)[cm] max [cm] µ(σ) [cm] max [cm]

1 4.3 (2.8) 16.7 – –
2 5.3 (3.6) 18.6 4.8 (2.9) 16.2
3 6.1 (3.8) 21.2 6.9 (3.5) 16.7
4 7.4 (6.2) 29.2 5.1 (3.3) 12.2
5 ∞ ∞ 4.2 (3.8) 14.9

localizing the robot in the next session. Figure 3.7 visualizes the estimated tra-
jectory for sessions 2-5. We were able to localize successfully over all the sessions
with an average error of about 5 cm and a maximum error of about 17 cm. Note
that in Figure 3.7, the trajectory from different sessions sometimes visit different
crop rows. This is because the robot was actually joysticked through these rows
and is not an error in the estimated trajectory. In the same figure, we see the
zoomed-in view for a particular location in the field, where the landmarks in the
map have been updated based on the observations from the previous sessions.
This allows the robot to localize accurately despite the changes in the field.

We also analyze the advantage of the map update step by comparing the
performance against the setup where the initial map was used as the reference for
all the sessions. The results are summarized in Table 3.2. In general, we see that
using the updated map results in better performance, both in terms of a lower
mean and maximum error. In particular, we see that for session 5, the filter fails
to localize using the initial map while it is successful while using the updated
map. This is due to the fact that the field changed substantially since the initial
map was acquired.

As a qualitative evaluation of the map update step, we report the number
of features in the updated map after each session in Table 3.3. We note that
the number of crops remain roughly the same over the whole season, and the
number of gaps reduce gradually over time as crops grow and gaps are closed by
the canopy cover. In particular, we can see that after the map update for session
3, the number of weeds drops from 303 in session 2 to 76 in session 3, reflecting
the actual state of the field due the execution of weed control by the farmer. The
estimated number further goes down in session 4 when more robot measurements
are integrated by the persistence filter described in Section 3.4.

Our approach was able to localize over multiple sessions due to the combina-
tion of features that can be detected effectively in a crop field and a map that
is curated after each session using robot observations. In contrast, we were un-
able to localize over multiple sessions using visual features such as SIFT, ORB,
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Table 3.3: Number of features after each map update

Feature type Session 1 Session 2 Session 3 Session 4 Session 5

crops 2472 2422 2406 2384 2353
gaps 417 341 221 211 206

weeds 306 303 76 14 22

Table 3.4: Performance of visual matching across sessions

Desc.
Type

% pairs matched successfully
Session Session Session Session Session
1 vs. 1 1 vs. 2 1 vs. 3 1 vs. 4 1 vs. 5

SIFT [74] 93.8 25.0 12.5 8.3 4.2
ORB [100] 91.7 22.9 18.7 6.2 0
BRISK [68] 89.6 16.7 0 0 0

BRISK or similar. This is because we are not able to find data associations re-
liably between different sessions. Table 3.4 reflects this situation where matched
images from each session and the corresponding images UAV images taken from
the first session. Here, we observe that while matching images from session 2 to
session 1, about 75% percent of the images fail to match against corresponding
images from session 1 when using SIFT descriptor for matching. The situation
gets worse when matching images from session 5, where 96% of the pairs do not
match. These results are consistent with the results obtained in Chapter 2.

3.5.4 Limitations

Our approach assumes the field to be locally planar while projecting the feature
detections on the map. The MCL filter used to estimate the robot’s pose also
uses positions and orientations on the plane. In principle, to deal with fields with
slopes, we can estimate the height by augmenting it to each particle in MCL and
defining an appropriate motion update model. However, in our experiments, we
did not take it into consideration. Also, as our approach relies on the location
of crops, weeds, and gaps, it is suited for crop fields such as sugarbeet, carrot,
maize, strawberry, etc., but would not work for example, in wheat/rice fields.
Also, note that based on the type of weed treatment, for example, chemical
treatment instead of mechanical removal, the prior introduced in the persistent
filter needs to be changed, reflecting the actual physical process of the weeds
dying slowly rather than instantly.
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3.6 Related Work

The combination of aerial survey capabilities of UAVs with targeted intervention
abilities of agricultural UGVs can provide effective robotic systems for carrying
out precision agriculture tasks. In this context, building and updating a common
map of the field is an essential but challenging task. However, the maps built using
robots of different types have differences in terms of scale, resolution, and per-
spective. In addition, the repetitive nature of the crop row structure found within
agricultural context renders standard visual feature based registration techniques
ineffective. In order to meet these challenges, Potena et al. [93] develop a regis-
tration pipeline that uses a multi-modal environment representation including a
vegetation index map and a digital surface model to associate the data captured
from UAV and UGV. Similar to this work, we exploit the semantics of the field
in terms of the crop, weed and gaps to obtain data association in this chapter. In
addition to the semantics, our localization system also explicitly accounts for the
changes in the field over time resulting from plant growth as well as other farm
management activities. Therefore, our work presented in chapter differs from the
existing approaches by addressing both the viewpoint difference in data acquired
from different platforms, and the changes in the field environment over time.

In the past, several works have used aerial imagery as a reference map for
localization. This is motivated by the fact that such prior information about the
environment can be exploited to improve the localization quality. For example,
Kümmerle et al. [64] show that by incorporating aerial imagery into a SLAM sys-
tem, they are able to both localize better and acquire maps with increased global
consistency. The main challenge in exploiting information from aerial images is
to find the data associations to the ground robot sensor data. This is often chal-
lenging due to large viewpoint difference between the two sources. To find these
associations, several approaches [122], [79], [67], [63] propose new features that
can be detected and matched against aerial images. These approaches typically
employ a robust outlier rejection mechanism to deal with the large number of
false correspondences. Other approaches by Ding et al. [33] and Wang et al. [128]
obtain correspondences between ground and aerial views by finding vertical struc-
tures and other keypoints such as corners and planes which are seen from both
views. However, most of the methods that we have discussed are tailored for ur-
ban environments having planar surfaces and vertical edges which is not the case
for crop fields. But in the spirit of identifying features which can be commonly
observed, we exploit plant and gap locations as features which are more suitable
for agricultural fields as these locations do not change.

Some other works have looked at developing systems that can localize under
appearance changes and different weather conditions. Churchill et al. [27] present
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a localization framework that maintains an environment model using multiple
images of the same place taken under different conditions, which is then used
for localization in future runs. Milford et al. [82] develop a system for matching
image sequences under strong seasonal changes by computing a similarity score
between the images in a query and database sequence and determine the best-
matched image through a graph search procedure. Vysotska et al. [125, 126]
extended this idea towards an online approach with lazy data association and
built up a data association graph online on-demand. These approaches typically
exploit cues from image sequences and maintain multiple hypotheses to obtain
robust localization performance. They also often employ features that can be
detected in images taken in different seasons and viewpoints. Building on ideas
from these works, we proposed using features suited for crop fields and using
them effectively in an MCL filter to tackle the data association challenge.

Several other approaches exploit semantic information from the environment
to find better and robust features for the localization task. For example, Ruchti et
al. [101] and Christie et al. [26] use range information from the laser scanner along
with semantics of the environment for matching ground level images against aerial
images or OpenStreetMap data. In the agricultural domain, some recent works
by Dong et al. [34], Winterhalter et al. [129], and Kraemer et al. [60] have aimed
at exploiting situations specific to crop fields for performing data association.
Taking inspiration from these works, we incorporated semantics of the plants in
terms of crops and weeds which help both in finding correspondences and tackling
the visual ambiguity problem.

With a similar goal of operating in the field environments over time, Dong et
al. [34] propose a localization and mapping system which fuses measurements
from different sensors such as camera, GPS, IMU. However, in this approach as
matching data from different sessions still relies visual features, it remains vul-
nerable when visual appearance changes substantially. However, these changes
are typical in agricultural fields where the vegetation grows continuously, soil ap-
pearance changes due to rain or tire tracks left by tractors operating on the field.
On the other hand, our method is able to deal with such situations since it uses
the geometrical information which remains mostly static even if the appearance
changes dramatically.

3.7 Conclusion
The ability to localize is a pre-requisite for a robot carrying out monitoring and
other precision agriculture tasks in a crop field environment. The field environ-
ment presents unique challenges such as the highly repetitive structure of the
crops leading to visual aliasing as well as the continuously changing appearance
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of the field, making it difficult to localize over time. In this chapter, we explored
the advantages of collaboration with a UAV to improve the localization capa-
bilities of a ground robot. To realize this, we presented a localization system,
which uses an aerial map of the field generated from UAV images. We exploited
the semantic information of the crops, weeds, and their stem positions as well as
gaps in the field to resolve the visual aliasing problem by finding reliable data
associations. The choice of our features is motivated by the fact that they must
be matched in the presence of large viewpoint differences. These features are
observed in a near nadir-view from the UAV, whereas the UGV images are much
closer to the ground with a perspective view due to the camera tilt. An addi-
tional factor in choosing these features, i.e., the location of the crops, weeds, and
gaps, is that they are relatively static over time, and making them suitable for
localization over extended time periods.

Using these features, we proposed a Monte-Carlo localization framework to
estimate the pose of the ground robot. MCL provides an elegant way to con-
sider multiple hypotheses arising from the similar-looking crop rows and avoids
committing to a single crop-row until enough evidence is gathered. In the exper-
iments, we showed that our approach provides crop-row accurate localization. It
is better than the accuracy of a typical single-phase GPS that often provides an
estimate in the wrong crop row. This is a critical requirement as the UGV must
be in the correct crop-row to carry out the various tasks using its implements.

Finally, we keep the reference map of the environment updated by integrat-
ing current observations from the ground robot during its operation. This step
captures the changes occurring in the environment and allows us to localize for
multiple sessions over the crop season successfully. We update the probabilities
for each feature’s existence via a persistence filter that takes into account the
flaws in the detection pipeline as well as any prior information about the feature
coming from the field setting. We conducted experiments spanning several weeks
on a real sugarbeet field and evaluated our approach over multiple sessions. The
experiments demonstrated that our approach provides reliable crop-row level ac-
curacy over several sessions despite the large changes in the field. We also showed
that using the UAV reference maps in combination with well-designed features,
the ground robot could robustly localize over long periods, whereas current local-
ization techniques relying on typical visual features fail.
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Chapter 4

Spatio-Temporal Registration of
3D Point Clouds of Plants

In plant sciences and modern agriculture, high-resolution monitoring of plants
plays a vital role [127, 39]. It forms the basis for analyzing crop performance
and provides an indicator of the plant stresses. Measuring how individual plants
develop and grow over time is often a manual and laborious task. It often even
requires invasive methods that harm the crop. For example, the standard ap-
proach to measuring the leaf area is to cut off the leaves and scan them with
a flatbed scanner. New measurement technologies for measuring and tracking
phenotypic traits employing robots and robotic sensors open up possibilities to
automate the process of measuring plant performance [37, 38]. In Chapter 2, we
registered UAV images over time, which allows us to analyze the growth of the
crops in the field. Similarly, in this chapter, we develop a registration technique
that operates on data acquired with much higher spatial resolution enabling us
to analyze the growth of the parts on an individual plant.

Recent studies by Paulus et al. [91] and Klose et al. [57] showcase the use
of 3D laser data for computing geometric plant traits with high fidelity. This
has the potential to be scaled up by equipping agricultural robots equipped with
such laser scanners that can acquire 3D plant data from fields and facilitate high-
resolution phenotyping. This would be a step forward for scaling up phenotyping
from plants grown in a greenhouse to the level of plots and maybe even entire
fields. To facilitate such a scale-up in phenotyping using 3D sensing, one of the
fundamental requirements is the ability to register scans taken at different times
in an automated manner.

Registering plant scans recorded at different points in time is a comparably
challenging task due to the anisotropic growth of different organs of the plant,
the change in its topology, and the non-rigid deformations caused due to exter-
nal stimuli such as wind or sunlight. Also, the measurement process using laser
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Figure 4.1: A time-series of 3D point clouds of Maize (top) and Tomato (bottom) captured
during its growth. Our goal is to develop techniques for automatically registering such 3D
scans captured under challenging conditions of changing topology and anisotropic growth of
the plant.

scanners usually results in incomplete scans of the plant due to the numerous
self-occlusion amongst leaves. Given these challenges, we aim at developing tech-
niques that facilitate the automatic computation of phenotypic traits from 3D
time-series point clouds of plants.

Typically, point cloud registration is performed using ICP-based approaches.
However, these approaches are often unable to capture the dynamic deformations
in the object and are prone to divergence due to new or missing plant organs.
This chapter investigates an approach to account for the growth and non-rigid
deformations that the plant undergoes. This bears quite some resemblance to the
SLAM problem [112], loop closing [28, 25], and ICP-based scan matching [12],
often used in the context of laser-based SLAM. Similar to graph-based SLAM in
non-static environments, we need to make data associations in changing scenes,
align point clouds, and perform optimizations and iterative refinement proce-
dures.

The main contribution of this chapter is a fully automatic registration tech-
nique for plant point clouds that have been acquired over time. We propose
using the plant’s skeleton structure to drive the registration process as it pro-
vides a compact representation of the plant by capturing its overall shape and
topology. We propose a method for extracting the skeletal structure along with
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semantic information to perform the data association step. We classify each point
of the plant as a leaf or stem point, and a further clustering allows us to com-
pute individual leaf instances. We then determine correspondences between plant
skeletons using a hidden Markov model. These correspondences allow us to esti-
mate parameters, which can capture the deformation and the growth of the plant
skeleton. We then transfer the deformations estimated on the plant skeletons to
the whole point cloud to register the temporally separated point clouds. Using
these registration parameters, we are also able to interpolate over the registration
parameters to obtain an estimated point cloud at a time instant in-between the
actual acquisition times.

The approach that we propose in this chapter enables us to (i) register tempo-
rally separated plant point clouds by explicitly accounting for the growth, defor-
mations, and changes in the plant topology, (ii) exploit the skeletal structure as
well as semantic information computed from the data, (iii) find correspondences
between the different organs of the plant and track them over time. Using our
approach, we show robust registration results on long-term datasets of two plant
species captured using a 3D laser scanner mounted on a robotic arm. We also
demonstrate how our registration procedure forms the basis of an automated phe-
notyping application where we estimate some basic phenotypic parameters such
as leaf area, leaf length, as well as stem length and diameter, and track their
development over time in an automated fashion.

4.1 Our Approach to Plant Point Cloud
Registration

Our approach to registration operates on a time-series of 3D point clouds of
plants. The registration procedure starts with extracting a skeleton along with
the organ level semantics for each point cloud. The skeletons are undirected
acyclic graphs, which represent the topology or the inner structure of the plant.
Each node contains the x, y, z coordinates of its position, a 4x4 affine transforma-
tion matrix T to describe the local transformation, and a semantic class label as
attributes. We use affine transformations to capture the non-rigid deformations
caused due to plant growth. The skeletons extracted from the point cloud data
are often imperfect, and we consider this aspect explicitly during the registration
procedure. We operate directly on unordered point clouds and do not require
a mesh structure or other cues such as the normals providing the inside-outside
information of the surface. The skeleton structures allow us to compute data as-
sociations between temporally separated 3D scans and use these correspondences
to perform an iterative procedure that registers the plant scans obtained at dif-
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ferent times. Finally, the registered skeletons are used to deform the complete
point cloud, e.g., the point cloud from time step t1 deformed to time step t2.

This approach for registering a point cloud pair (P1,P2) in an iterative manner
is similar to the iterations of the popular ICP approach [12]. We alternate be-
tween correspondence estimation steps and registration steps given the correspon-
dences. In contrast to the nearest neighbor, point-to-plane, or normal-shooting
correspondences used in typical ICP procedures, we use the skeletal structure of
the plant to establish correspondences C12. The procedure for the extraction of
the skeleton structure from the plant point cloud is described in Section 4.1.1.
The correspondence estimation is done via a hidden Markov model (HMM) for-
mulation as detailed in Section 4.1.2. Also, in deviation from a standard ICP
procedure, which assumes a rigid transformation between P1 and P2, we explic-
itly model the deformation through different 3D affine transformations defined
for each node of the skeleton S1. We estimate this set of affine registration param-
eters T12 using a non-linear least-squares procedure as described in Section 4.1.3.
We exit the iterative scheme when there is no change in the estimated correspon-
dence set Ct12. After computing the registration parameters between the nodes of
the skeletons S1 and S2, we apply these parameters to the entire point cloud to
obtain the final registered point clouds as described in Section 4.1.4.

4.1.1 Extracting the Skeletal Structure and Semantics
The first step of our approach is to extract the skeleton structure S of the plant
from the input point cloud P . Following the idea proposed by Magistri et al. [78],
we exploit the semantics of the plant to drive the skeleton extraction process from
the point cloud. We first perform a segmentation step aimed at grouping points
that belong to the same plant organ, namely a leaf instance or the stem. To do
this, we start by classifying each point of the point cloud P as a point belonging
to either the stem or leaf category. We use a standard support vector machine
classifier with the x, y, z coordinates along with with the fast point feature his-
tograms (FPFH) [102] as a feature vector. The FPFH technique computes a his-
togram of directions around a point using the neighborhood information, thereby
capturing the local surface properties in a compact form. With these feature vec-
tors as inputs, the support vector machine classifies each point of a plant point
cloud into stem and leaf points. We train the support vector machine model in a
supervised manner during the training phase by providing labels for a subset of
point clouds from the temporal sequence.

After the model is trained, we use it to predict the semantics for all the re-
maining point clouds of the sequence. Once the classification step is complete,
we perform a clustering step to find the individual leaves or the stem as unique
instances. We perform the clustering using the density-based spatial clustering
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Figure 4.2: Extracting skeletal structure using semantics of the plant. The figure illustrates the
skeletonization pipeline for a maize (top) and tomato (bottom) plant scan. Note that for the
tomato plant, we classify individual leaflets (green + yellow + light-blue) as separate instances
rather than as an individual leaf. The leaflets can be combined into a single leaf in case this
distinction is not desired/required for the application.

algorithm [36]. It uses the x, y, z coordinates of the points to obtain an initial seg-
mentation, which is then refined by discarding small clusters and assigning each
discarded point to one of the remaining clusters based on a k-nearest neighbor
approach.

At this stage, each point in the point cloud P is assigned to an organ, namely
to the stem or to a particular leaf instance. We then learn a set of keypoints
for each organ using self-organizing maps [59], which helps us determine the
skeleton structure. These keypoints form the nodes of the skeleton structure.
Self-organizing maps are unsupervised neural networks that use the concept of
competitive learning for clustering the data. They take as input a grid of key-
points that organizes itself to capture the topology of the input data. Given an
input grid G and the input set of points P , the self organizing map defines a fully-
connected layer between G and P . This network learns a transformation for the
grid G points in manner to cluster the data P effectively. The learning process
is composed of two alternating steps until convergence. First, the winning unit
is computed as:

x = argmin
p∈P

||p− wi||, (4.1)

where p is a randomly chosen sample from P and wi is the weight vector most
similar to x, also called the best matching unit. The second step consists of
updating the weights of each unit according to:

wn = wn + η β(i) (x− wi), (4.2)
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Figure 4.3: Left: Example of skeletal matching with all the variables involved. Right: Hidden
Markov model used for correspondence estimation. The red line depicts the sequence of best
correspondence estimated by the Viterbi algorithm.

where η is the learning rate and β(i) a function, which weights the distance
between unit n and the best matching unit.

In our case, we exploit the knowledge that individual components of the skele-
ton can be well explained using curved lines in the local neighborhood. As a result,
we define the grid G for each organ as an n× 1 chain of 3D points that will form
the nodes along the skeleton for that organ. The length of the chain n is pro-
portional to the size of the organ, such that the keypoints are expected to have
a minimum distance between 1 cm between them. In this way, it is possible to
obtain a skeleton-like structure for each plant of the temporal sequence of plant
point clouds that is consistent in terms of the number of nodes depending on the
plant’s size. Figure 4.2 visualizes the organ segmentation as well as the skeleton
structures extracted from the input point cloud P for two sample scans of our
dataset.

Although we use the skeletal structure extracted using the procedure described
above, our registration procedure is independent of how the skeletons are com-
puted. There are several techniques for extracting the skeleton structures from
point clouds. Huang et al. [52] and Tagliasacchi et al. [117] propose approaches
to extract curve skeletons from unorganized point clouds, which can be used as
an input to our approach. A detailed state-of-the-art review for extracting skele-
tons of 3D objects is given by Tagliasacchi et al. [116]. The skeletons obtained
from any of these techniques can be used for the next steps of the registration
procedure.

4.1.2 Estimating Skeletal Correspondences
Before data from any 3D objects can be aligned, we need to establish the data
associations between the sensor readings, i.e., estimating which part of the source
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4. Spatio-Temporal Registration of 3D Point Clouds of Plants

point cloud P1 corresponds to which parts of the target point cloud P2. Estab-
lishing this data association is especially hard for objects that change their ap-
pearance, and automatic processes are likely to contain data association outliers,
which affects the subsequent alignment. For registering temporally separated
plant scans, we propose to perform data association by matching the correspond-
ing skeleton structures and not work directly on the raw point clouds.

In this data association step, we estimate correspondences between two skele-
tons by exploiting their geometric structure and semantics, which are computed
using the approach described in the previous section. As the skeleton structure
and the semantics are estimated from sensor measurements, it might suffer from
several imperfections. To cope with these imperfections in the individual skeletons
and inconsistencies between them, we use a probabilistic approach to associate
the skeleton parts instead of graph matching approaches, which typically do not
tolerate such errors well. We, therefore, formulate the problem of finding cor-
respondences between the skeleton pair, i.e., the source skeleton S1 and target
skeleton S2 using a hidden Markov model formulation [98] as illustrated in Fig-
ure 4.3. The HMM model provides the flexibility to encode different cues, define
constraints for the correspondences, as well as include prior information about
the skeleton structure. This allows us to track several correspondence candidates
and choose the best correspondences between the skeleton pair.

The unknowns or the hidden states of the HMM model represent all the
potential correspondences between the nodes of the two skeletons. In addition,
we also add a so-called “not matched state” for each node in the HMM to account
for the situations in which the node may have no correspondences at all. For
example, this happens when nodes belong to new organs that were not present
before or when new nodes emerge on the curve skeleton due to the plant growth.
As required in a HMM formulation, we need to define the emission cost Z and the
transition cost Γ. The emission cost Z describes the cost for a given hidden state
(here the correspondence information) to produce a certain observation. In our
case, the observations are the sequence of nodes of the first skeleton S1 arranged
in depth first manner starting from the node at the base of the stem. We define
this cost for a correspondence cij ∈ C12 between node ni of S1 and node nj of S2
as:

Z(cij) = wd|deg(ni)− deg(nj)|+
we ∥xi − xj∥+
wsemρsem(L(ni),L(nj)), (4.3)

where the first term yields the absolute difference, denoted by | · |, between the
degrees of the corresponding nodes, where deg(n) is the number of edges incident
to a node. The second term refers to the Euclidean distance, denoted by ∥·∥,
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between them with xi, xj being the 3D locations of the nodes ni, nj respectively.
The final term ρsem is set to one in case the semantics for the corresponding
nodes L(ni),L(nj) the are not the same; otherwise, it is set to zero. The idea
behind combining these three terms is to capture the geometric aspects, i.e., the
topology difference, the spatial distance between the nodes, and the semantics
of the skeleton nodes being matched. This combined cost will be smaller for
correspondences between nodes that have similar topology, are located close to
each other, and have the same semantic label. We weigh all the three terms
using wd, we, and wsem to properly scale the measures.

The transition cost Γ describes the cost involved in transitioning from one
hidden state cij to another ckh. This can be treated as the cost involved in
having ckh as a valid match given that cij is a valid match as well. We define this
cost as:

Γ(cij, ckh) = |dg(ni, nk)− dg(nj, nh)|+
wnbr|nbr(ni, nk)− nbr(nj, nh)|+
ρdir((xi − xj), (xk − xh)), (4.4)

where the first term computes the difference of the geodetic distances dg between
the nodes involved in the two correspondence pairs along their respective skele-
tons. This means that a pair of correspondences (cij, ckh) having equal geodetic
lengths dg(ni, nk) along S1 and dg(nj, nh) along S2 will have a lower cost than the
ones which have much different lengths along the skeleton. The second term cap-
tures the difference in the number of branches nbr, i.e., nodes with degree greater
than 2, along the way on the skeleton. The weight wnbr is automatically set as
the maximum geodetic distance between all node pairs of the first skeleton. The
final term ρdir is a function that penalizes the correspondence pairs (cij, ckh) with
a large cost if the directions determined by (xi − xj) and (xk − xh) are opposite,
i.e., the angle between them are greater than π

2
.

Once the emission and transition costs are defined, we compute the correspon-
dences between the skeletons by performing an inference on the HMM. The result
is the most likely sequence of hidden variables, i.e., the set of correspondences
between S1 and S2. We perform this inference using the Viterbi algorithm [123].
In case a node has more than one correspondence, we choose the correspondence
with the smaller Euclidean distance to ensure a one-to-one correspondence. Fig-
ure 4.3 (left) shows an example skeleton pair for which we want to estimate the
correspondences C12. Figure 4.3 (right) depicts the HMM for the example pair
where the red path indicates the set of correspondences estimated by the Viterbi
algorithm. The HMM model only shows a subset of the connections between the
hidden states, where in practice each state is connected to every other state.
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4.1.3 Computing Skeletal Deformation Parameters

In this step, we compute the registration parameters between S1 and S2 given the
set of correspondences C12. While registering temporally separated plant scans,
the shape and the topology of the plant changes. Therefore, to capture these
changes, we need to forego the usual assumption of rigidity often used in point
cloud registration. Our goal is to capture the non-rigid changes by computing
sets of deformation parameters between skeleton parts of the respective plant
scans. We estimate these deformation parameters through a non-linear least-
squares optimization procedure based on the correspondences obtained from the
procedure described in the previous section.

To model the deformations between the plant scans, we attach an affine trans-
formation Ti to each node ni of the skeleton S1 Figure 4.4 (left). The intuition
behind such a model is that the skeleton may be deformed differently at different
locations along the skeleton. By modeling the deformations through a 3D affine
transformation with 12 unknown parameters per node, we are able to capture
the growth as well as bending of the plant via the scaling, shearing, and rotation
parameters.

We define the objective function of the optimization problem as a combination
of the three energy terms. The first term Ecorresp is defined as:

Ecorresp =
∑

cij∈C12

∥Tixi − yj∥, (4.5)

where xi and yj are the node positions given by the correspondence pair cij
estimated in Section 4.1.2. This energy term captures the distance between cor-
responding nodes in S1 and S2 and strives to make this error as small as possible
during optimization.

The second energy term Erot captures how close the estimated affine transfor-
mation is to a pure rotation and it determines the smoothness of the deformation.
We define Erot as:

Erot =
3∑

i=1
j=mod(i+1,3)

(R⊤
ci
Rcj)

2 +
3∑

i=1

(R⊤
ci
Rci − 1)2, (4.6)

where Rci represents the columns of the rotation part of affine transformation (i.e.
the first three rows and columns of Ti). The first term in Erot in Equation (4.6)
measures the deviation for a pair of columns to be orthogonal with each other,
whereas the second term measures the deviation of each column from being unit
length. The term Erot forces the estimated affine parameters Ti to be as close to
a true rotation as possible.
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We also define a regularization term Ereg as:

Ereg =
∑

j∈N(i)

normF (T
−1
i Tj − I), (4.7)

where Ti, Tj are transformations corresponding to nodes ni, nj such that j is the
neighbor N(i) along S1, and normF is the Frobenius norm after performing the
homogeneous normalization of the involved matrices. The term Ereg is a regu-
larizer, which forces the transformation parameters of neighboring nodes to be
similar. This results in a smooth deformation along the skeleton and achieves sim-
ilar results as the as-rigid-as-possible constraint described by Sorkine et al. [111].
The regularization term is also necessary to constrain the nodes that do not
have any correspondences. Finally, the combined energy Etotal is obtained as a
weighted combination of all the three energies as:

Etotal = wcorrespEcorresp + wrotErot + wregEreg (4.8)

We use the weights wcorresp = 100, wrot = 10, and wreg = 1 for all the ex-
ample in our datasets. The weights have been chosen such that the cost due to
each component of the loss is in the same order of magnitude. We employ the
standard Gauss-Newton algorithm to solve the unconstrained non-linear least
squares problem [49]. We also use Cauchy’s robust kernel [76] for the error resid-
uals belonging to Ecorresp as this prevents incorrect correspondences from having
an adverse effect during the optimization process. The robust kernel down-weighs
potentially wrong correspondences, which have large residuals. Later, in chap-
ter Chapter 5, we propose to use an adaptive robust kernel to deal with a larger
number of wrong correspondences.

Overall, our procedure in this section is related to the formulation by Sumner
et al. [114] for estimating deformation parameters for surfaces parametrized as tri-
angular meshes. In our case, we adapt the energy terms to reflect the constraints
valid for deformation between curve skeletons as opposed to surfaces. Further-
more, the approach by Sumner et al. [114] cannot fully constrain the nodes with
a degree smaller than 3, but is essential for the registration of curve skeletons.

4.1.4 Point Cloud Deformation
Traditional approaches to point cloud registration assume rigid objects. In this
case, the alignment results in the execution of a 6 degree of freedom transfor-
mation consisting of rotations and translations. This, however, is substantially
different in our case. To obtain the final registered point cloud P̂1 of a growing
plant, we need to apply the deformation parameters estimated for the skeleton
nodes to all the 3D points of the scan. This means that the individual data points
will be affected by individual affine transformation to obtain the aligned cloud.
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Figure 4.4: Left: Registering the skeleton pair involves estimating the deformation parameters
attached to the nodes of the source skeleton S1. Right: Transferring the deformation results to
the entire point cloud.

For each point p ∈ P1, we obtain the deformed point p̂ as a weighted sum of
affine transformations corresponding to the two nearest nodes to the point p as

p̂ =
∑

k∈N(p)

αkTkp, (4.9)

where k is the index of the nearest node N(p) and αk is computed according
to the projection of the point p on the edge of the skeleton determined by the
nearest nodes. Let pe be the projection of point p on edge e. Then the weight is
given by:

αk = 1− ∥p− e∥
∥e∥

. (4.10)

An example of the resulting deformed source point cloud P̂1 overlaid on the target
point cloud P2 is visualized in Figure 4.4 (right).

4.1.5 Iterative Non-Rigid Registration Procedure
We use the steps from the previous sections to formulate an iterative approach to
register the point cloud pair (P1,P2) as summarized in Algorithm 1. Similar to
the popular ICP approach [12], we alternate between correspondence estimation
steps and registration steps given the correspondences. We start out by comput-
ing the organ level instance segmentation and skeleton structure with semantic
information (lines 3-6 of Algorithm 1). We then start the iterative procedure,
which alternates between estimating the correspondences C12 (line 9) and the
registration parameters, i.e., the 3D affine transformations attached to each node
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Algorithm 1 Skeleton-driven iterative non-rigid registration procedure
1: P1,P2 ▷ Input point clouds
2: Ct−1

12 , Ct12 = ∅ ▷ Initialization
3: O1 ← performInstanceSegmentation(P1) ▷ Segment P1

4: O2 ← performInstanceSegmentation(P2) ▷ Segment P2

5: S1 ← computeSemanticSkeleton(P1,O1) ▷ Compute skeleton S1
6: S2 ← computeSemanticSkeleton(P2,O2) ▷ Compute skeleton S2
7: while (Ct12 \ Ct−1

12 ) ∪ (Ct−1
12 \ Ct12) = ∅ do ▷ Repeat until matches are same

8: Ct−1
12 = Ct12

9: Ct12 ← findSkeletalCorrespondences(S1,S2) ▷ Compute matches
10: T12 ← compSkeletalDeformation(S1,S2, Ct12) ▷ Compute

deformation
11: P̂1 ← applyDeformation(P1, T12) ▷ Apply deformation to P1

(line 10). By iterating through these steps multiple times, we can obtain new
correspondences, which might not have been captured before due to the large
distance between the skeletons given their initial configuration. Finally, we exit
the iterative scheme when there is no change in the estimated correspondence
set Ct12. After computing the registration parameters T12 between the nodes of
the skeletons S1 and S2, we apply these parameters to the entire point cloud P1,
which results in the registered point cloud P̂1 (line 11).

4.1.6 Interpolating Point Clouds

In addition to registering the plant scans recorded at different times, we would
also like to interpolate how the plant may be deformed at an intermediate time
in-between the actual acquisition times. We compute the deformed point cloud by
interpolating the deformation parameters T estimated between the two registered
scans in Section 4.1.3. To obtain a smooth interpolation, we first decompose
the estimated affine transformation T into scale/shear transformation Ts, pure
rotation TR, and a pure translation Tt using the polar decomposition approach
described by Shoemake [109].

T = TsTRTt (4.11)

We then linearly interpolate Ts and Tt to obtain the transformation at time t.
For interpolating TR, we use the spherical linear interpolation described by Shoe-
make [108]. We show an example of point cloud interpolation at an intermediate
time interval in Figure 4.5.
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Figure 4.5: Top: interpolation of point clouds at an intermediate time interval. Point clouds
(gray) at time t−1 and t come from actual scan measurements whereas the points cloud (pink)
at an in-between instant ti is the interpolated scan. Bottom left: shows the skeletons at time
t − 1 (blue), ti (pink) and t (green). Bottom right: shows the corresponding point clouds in
the same color as the skeletons. We see that the interpolated skeleton and the point cloud (in
pink) captures the growth well between t− 1 and t.

4.2 Experimental Evaluation
In this section, we evaluate the performance of our skeleton-driven non-rigid reg-
istration technique. We show that our approach is able to (i) compute a skeleton
from the plant point cloud by exploiting the semantics, (ii) register temporally
separated plant point clouds by explicitly accounting for the growth, deforma-
tions and changes in the plant topology, (iii) find correspondences between the
different organs of the plant, which allows for tracking plant growth parameters
over time, (iv) demonstrate robust registration results on challenging datasets of
two different plant types.

4.2.1 Dataset Description
We evaluate our approach on time-series 3D point cloud data of three sample
plants of maize (Zea mays) and tomato plants (Solanum lycopersicum). The
scans were recorded using a robotic arm (Romer Absolute Arm) equipped with
a high precision laser scanner. The dataset was recorded daily over a period
of 10 days. This results in a total of 60 point clouds, which are used for the
experimental evaluation. Some sample point clouds from the datasets are shown
in Figure 4.6. The plants have been scanned in a manner so as to minimize self
occlusions whenever possible. The point cloud data undergoes a pre-processing
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step where all the points that do not belong to the plant are removed, such as the
points belonging to the soil and the pot. The datasets cover substantial growth
of the plants, starting from the two cotyledons (i.e., seed leaves) at the start to
around eight leaflets (2 cotyledons + 2 leaves) for the tomato plants and 1 to 4
leaves for the maize plants. The plants undergo substantial leaf and stem growth
and includes several branching events till the end of the dataset acquisition period
as illustrated in Figure 5.1.

The datasets used in experiments have been captured by researchers at the
Institute of Geodesy and Geo-information [105]. We have post-processed the
data as described above and also labeled a portion of the data used to train the
algorithm for the semantic segmentation task. The data used in the evaluation is
available at https://www.ipb.uni-bonn.de/data/4d-plant-registration/.

4.2.2 Evaluation of Semantic Classification of Plant
Point Clouds

In the first experiment, we evaluate the performance of our approach for organ
level semantic classification. The classification system has been trained on two
randomly selected point clouds from each dataset. All the remaining point clouds
in the sequence are used as test datasets. The ground truth information for
both the training and test sets have been generated manually by human users.
We show the qualitative results computed by our approach by visualizing the
semantic instances for some point clouds from the two datasets in Figure 4.6.
Each stem and leaf instance is visualized with a different color. We can visually
inspect the stem and the leave instances throughout the temporal sequence and
see that the classification is successful for instances despite their size and shape
changing over time. The colors of the same leaf instances do not persist over
the temporal sequence since the data associations between them have not been
computed at this stage.

We also perform a quantitative evaluation of the classification performance of
our classification approach by computing standard metrics such as precision

p =
tp

tp + fp , (4.12)

recall,

r =
tp

tp + fn , (4.13)

and intersection over union (IoU)

IoU =
tp

tp + fp + fn , (4.14)
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Figure 4.6: Semantic classification of Maize (top) and Tomato (bottom) point clouds. Each
stem and leaf (or leaflet) instance is visualized with a different color. Note that the colors of
same leaf instances do not correspond over time, as data associations have not been computed
at this stage.

for the maize and tomato plant datasets. The results are summarized in Table 4.6,
Table 4.7, and Table 4.8 respectively. For each metric, we show the mean, min-
imum, and maximum values over the dataset as well as the standard deviation.
In the definitions above, tp stands for true positive, fp for false positive, and fn
for false negative. In all tables, the SVM is responsible for the stem and the leaf
class, while instance refers to the unsupervised clustering of individual leaves. We
obtain over 90% precision and recall for leaf point in both the datasets, whereas
they are around 85% for the stem points. Regarding the leaves instances, all the
three metrics are around 90%. The results are summarized in Table 4.5.

Despite these accurate results, it is worth noticing that the ability of the SVM
to classify stem points is lower on the maize dataset than on the tomato dataset.
This is due to a smoother transition between stem and leaves in the maize plants.
In contrast, the performance of the clustering is higher on the maize dataset. This
behavior can be explained by looking at how leaves develop in the two species.
While for the maize plants, there is a clear separation between individual leaves,
this separation is not as clear for the leaves in the tomato plants.
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Table 4.1: Semantic classification results for datasets

Dataset Precision Recall IoU
Leaf Stem Instance Leaf Stem Instance Leaf Stem Instance

Maize 95.5 86.3 94.4 92.9 85.7 94.7 94.75 80.01 94.02
Tomato 97.9 89.6 83.4 96.5 92.2 78.2 93.42 82.58 69.14

Table 4.2: Precision values for class-wise and instance segmentation on our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 86.3 74.5 99.6 8.6 95.5 93.6 99.4 2.2 94.4 91.9 99.6 2.7
Tomato 89.6 68.6 99.2 9.6 97.9 96.9 99.0 0.9 83.4 59.8 99.7 15.4

Table 4.3: Recall values for class-wise and instance segmentation on our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 85.7 48.6 99.1 16.3 92.9 89.1 99.8 3.3 94.7 91.3 99.6 3.1
Tomato 92.2 60.6 99.4 11.4 96.5 74.0 99.6 8.3 78.2 66.6 99.4 11.2

Table 4.4: Intersection over Union (IoU) score for our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 80.0 47.8 94.6 12.7 94.6 88.9 97.4 2.5 94.0 91.0 97.6 2.3
Tomato 82.6 60.6 92.2 10.4 93.4 73.9 99.0 7.8 69.1 51.4 98.7 15.7
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Table 4.5: Semantic classification results for datasets

Dataset Precision Recall IoU
Leaf Stem Instance Leaf Stem Instance Leaf Stem Instance

Maize 95.5 86.3 94.4 92.9 85.7 94.7 94.75 80.01 94.02
Tomato 97.9 89.6 83.4 96.5 92.2 78.2 93.42 82.58 69.14

Table 4.6: Precision values for class-wise and instance segmentation on our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 86.3 74.5 99.6 8.6 95.5 93.6 99.4 2.2 94.4 91.9 99.6 2.7
Tomato 89.6 68.6 99.2 9.6 97.9 96.9 99.0 0.9 83.4 59.8 99.7 15.4

Based on these organ level semantic classification results, we extract the skele-
tons for each plant point cloud as described in Section 4.1.1. We obtain a suitable
skeleton representation for individual plant scans and ensure that it is connected,
which is an assumption that the deformation estimation step described in Sec-
tion 4.1.3 relies upon. As the skeletal representation in itself is not uniquely
defined, we do not provide any quantitative evaluation for resulting skeletons.
They are, however, suitable for performing registration between different scans,
as shown in further experiments. We see some examples of the plant skeletons
extracted using this approach in Figure 4.7 and Figure 4.8.

Based on these organ level semantic classification results, we extract the skele-
tons for each plant point cloud as described in Section 4.1.1. We obtain a suitable
skeleton representation for individual plant scans, and ensure that it is connected,
which is an assumption that the deformation estimation step described in Sec-
tion 4.1.3 relies upon. As the skeletal representation in itself is not uniquely
defined, we do not provide any quantitative evaluation for resulting skeletons.
They are, however, suitable for performing registration between different scans
as shown in further experiments. We see some examples of the plant skeletons
extracted using this approach in Figure 4.7 and Figure 4.8.

Table 4.7: Recall values for class-wise and instance segmentation on our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 85.7 48.6 99.1 16.3 92.9 89.1 99.8 3.3 94.7 91.3 99.6 3.1
Tomato 92.2 60.6 99.4 11.4 96.5 74.0 99.6 8.3 78.2 66.6 99.4 11.2
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Table 4.8: Intersection over Union (IoU) score for our datasets

Dataset Stem Leaf Instances
mean min max std mean min max std mean min max std

Maize 80.0 47.8 94.6 12.7 94.6 88.9 97.4 2.5 94.0 91.0 97.6 2.3
Tomato 82.6 60.6 92.2 10.4 93.4 73.9 99.0 7.8 69.1 51.4 98.7 15.7

4.2.3 4D Registration of Plant Point Clouds

The second experiment is designed to illustrate the results of our plant registra-
tion pipeline for time-series point cloud data of the plants and to quantitatively
evaluate the accuracy of the registration pipeline. Figure 4.7and Figure 4.8 illus-
trate the results of the registration procedure for two example scan pairs. The
first example (Figure 4.7) visualizes the registration results for scans from consec-
utive days, whereas the second example (Figure 4.8) shows registration between
scans which are farther apart (4 days here). For both examples, we show the
input point clouds (P1,P2) along with their corresponding skeletons. The cor-
respondences estimated during the registration procedure are depicted by the
yellow-lines joining nodes of the skeleton pair. Our approach was able to find the
correspondences reliably despite the growth and the change in topology, which is
especially prominent in the second example (Figure 4.8). We visualize the final
registered point cloud P̂1 (in pink) by deforming the point cloud P1 using the
deformation parameters estimated by our approach and overlay it on the target
point cloud P2 (in gray) and observe that it overlaps well indicating that the
registration results are reasonable.

Further, we quantitatively evaluate the accuracy of our registration pipeline
by registering all consecutive scans of the two datasets. First, we compute the
accuracy of our skeleton matching procedure by computing the percentage of
correspondences estimated correctly. We define the correct correspondences as
those which belong to the same organ (i.e., the same leaf or the stem) in the
skeleton pair as there is no unique way to define a correct correspondence due to
the growth in the plant. We manually label the different organs of the plant with
a unique identifier to provide the ground truth to compute this metric. For our
tomato datasets, we obtain an average of 95% correct correspondences between
consecutive skeleton pairs with most pairs having all the correspondences esti-
mated correctly. For the maize dataset, we obtain 100% of the correspondences
between consecutive days correctly. Similarly, we also evaluated the accuracy of
the correspondence estimation between skeleton pairs with 2 and 3 days apart
from each other. For the tomato dataset, we obtain again an average of 95%
correspondences with scans taken 2 days apart, whereas this falls down to 88%
with scans taken 3 days apart. Again for the maize dataset, we obtain all the
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Figure 4.7: 4D registration of point clouds. Shows registration results between scans from
consecutive days (Day 1 and Day 2). The left column shows the two input point clouds (P1,P2)
along with their skeletons, middle column shows the estimated correspondences (yellow lines)
between the skeletons, and the right column shows the deformed point cloud P̂1 (in pink)
overlaid on P2 along with registration error visualized as a heat map.

correspondences correctly both with skeletons taken 2 and 3 days apart. The
higher accuracy for the maize plants is likely due to the simpler shape of the
plant as compared to the tomato plants.

Secondly, we evaluate the accuracy of the estimated registration parameters
by computing the error between the deformed source point cloud P̂1 and the
target point cloud P2. We define this registration error ereg as:

ereg =
1

|P̂1|

|P̂1|∑
i=1

j∈N(i)

∥∥p̂i1 − pj2
∥∥ , (4.15)

where pj2 is the nearest point to pi1 and |P̂1| is the number of points in P̂1.
For our datasets, we obtain a mean error of 3mm and a maximum error

of 13mm for consecutive scans, which indicates that the registration results are
accurate. As a baseline comparison, we computed the average overlap error by as-
suming a rigid transformation between the scans and obtain an average error ereg
of 35mm and maximum error of 166mm. The large errors using a rigid trans-
formation assumption are both due to the plant growth, and in some cases, the
ICP procedure diverging completely. This indicates that a rigid transformation
assumption is inadequate, and a non-rigid registration procedure is required to
capture the growth and movement of the plant.

We visualize the registration error as a heat map for the two example point
cloud pairs in Figure 4.7 and Figure 4.8 (bottom right of each example). The
heat map is projected on P̂1 to show how well different portions of the plant
are registered. The blue regions in the heat map represent a smaller registration
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Figure 4.8: 4D registration of point clouds. Registration results between scans which are 4 days
apart (Day 6 and and Day 10). The left column shows the two input point clouds (P1,P2) along
with their skeletons, middle column shows the estimated correspondences (yellow lines) between
the skeletons, and the right column shows the deformed point cloud P̂1 (in pink) overlaid on
P2 along with registration error visualized as a heat map.

error, whereas the yellow regions indicate large errors. Most of the regions are
blue, indicating successful registration. However, we notice that the errors are
usually high towards the outer sections of the leaves, which are farther away from
the skeleton curve. This effect is to be expected as the skeleton curves do not
capture this area well.

4.2.4 Temporal Tracking of Phenotypic Traits

In this experiment, we show that the spatial-temporal registration results com-
puted by our approach allow us to compute several phenotypic traits and track
them temporally. We compute the area la and length ll for leave instances and
the diameter sd and length sl of the stem for each point cloud in the temporal
sequence and associate it over time using the data associations estimated by our
approach during the registration process. The tracking results for the three sam-
ple plants from the maize and tomato datasets are visualized in Figure 4.9. The
first two columns in Figure 4.9, track the leaf area and leaf length over time. Dif-
ferent shades of blue and green in these plots represent individual leaf instances.
Besides, we can also detect specific events, which mark a topological change in
the structure of the plant, such as the appearance of a new leaf. These events
can be recognized from the leaf area or leaf length plots in Figure 4.9 whenever
a new line rises from the zero level. In the rightmost column in Figure 4.9, we
see that stem length and diameter for both the datasets increase considerably
over the data acquisition period. Such phenotypic information can also be used
to compute the BBCH scale [51] of the plant, which is a growth stage scale and
provides valuable information to the agronomists.
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Figure 4.9: Tracking phenotypic traits for individual organs of the plant. Our registration
procedures allows us to track the growth of the stem and different leave lengths over time and
detect topological events such as the emergence of new leaves.
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Figure 4.10: Interpolation of point clouds at intermediate time intervals. Point clouds (gray) at
time t−1 and t come from actual scan measurements, whereas the points clouds (pink) at time
instants ti1, t

i
2, t

i
3 visualize the three interpolated scans. We see that at time instants t− 1 and

t, the interpolated point clouds in gray overlap entirely with the actual point clouds in pink as
they correspond to the original measurements.

4.2.5 Temporal Interpolation of Point Clouds
In the last experiment, we illustrate that the registration results can be used
to interpolate the point clouds at intermediate points in time, i.e., in between
the actual acquisition times of the scans. The ability to interpolate is useful for
analyzing the properties of the plants even when actual measurements are not
available. It allows us to predict both the motion and growth at intermediate
time intervals. We visualize the interpolated point cloud at three time instances
ti1, t

i
2, t

i
3 between the two scans in top of Figure 4.10. This allows us to animate a

time-lapse view of the plants. The pink point clouds represent the interpolated
scans and overlap well with the point cloud (gray) at time t, indicating that
the interpolation is reasonable. As the interpolation procedure does not actually
model the movement or the plant’s growth, the result of the interpolation may
differ from the actual plant at those instances. In order to evaluate the interpola-
tion step, we take the scans on day t−1 and day t+1, then interpolate the point
cloud at day t and compare against the actual point cloud on day t. We compute
the registration error as described in Equation (4.15) and obtain a mean ereg
of 4 mm, suggesting that our interpolation is a reasonable approximation of the
real plant growth.

4.3 Related Work
Over the last decade, automated phenotyping has emerged an important topic
within the precision agriculture community [39]. It also has attracted the at-
tention of the robotics as well as the agricultural research community. Various
techniques for automated phenotyping have been developed, analyzing the sensor
data captured at different spatial and temporal resolutions. The choices of the
techniques often depend on the sensor setup and the frequency of measurements
that the particular application allows for.

At a coarse spatial resolution level, approaches such as those by Carlone et
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al. [18], Dong et al. [34], and Lottes [73] et al. aim at obtaining plant traits over
the entire field using image data captured from UAVs or ground robots. This is
similar to the scenario that we addressed in Chapter 2. Such approaches achieve a
typical spatial resolution in the range of 10 cm2 to 1 m2, which is already sufficient
for a coarse phenotypic analysis. This performance can further be improved by
equipping the UAVs with higher resolution cameras that are often only feasible
with larger UAVs. Another drawback with such approaches is that they are lim-
ited to top-down views, making it challenging to capture traits other than those
visible on the canopy of the plants. On the other hand, the advantage of these
approaches is that they also allow for high-frequency measurements providing a
dense temporal resolution, as it is a reasonably small effort to fly UAVs over the
field to capture new data regularly.

Instead, in this chapter, we aim to exploit the high-resolution plant point
clouds acquired from close range using a LiDAR scanner, which has become more
prevalent in the precision agriculture community. Over the last decade, several
works such as those by Klose et al. [57], Alenya et al. [5], and Paulus et al. [91]
have looked at using this high-resolution 3D data with the goal of computing
phenotypic traits with high fidelity. Li et al. [69] and Paproki et al. [89] extend
the analysis over a time-series of point cloud data to detect topological events
such as branching, decay and track the growth of different organs. While these
works emphasize obtaining phenotypic traits at an organ level, our main objective
in this chapter has been to develop basic techniques for matching and registering
temporally separated scans of individual plants using the whole point cloud data.
Our work essentially brings the temporal plant data into a common coordinate
frame and allowing for other phenotypic applications that rely on temporal data
association to be developed on top of it.

As raw point clouds are often cumbersome to use and lack any inherent struc-
ture, a common approach is to extract a skeleton structure that captures the
topology of the object in a compact manner. Several techniques in the past have
attempted to leverage the topological structure of the object to drive the regis-
tration process, primarily in the field of human motion tracking [41, 50, 106]. A
large corpus of literature exists for extracting skeletons from 3D models, which
are then used for different applications such as animation, surface reconstruction,
etc. Huang et al. [52] and Tagliasacchi et al. [117] propose approaches to extract
curve skeletons from unorganized point clouds, which can be used as an input to
our approach. A detailed state-of-the-art review for extracting skeletons of 3D
objects is given by Tagliasacchi et al. [116]. In contrast to these approaches, in
our work, we exploited both supervised and unsupervised machine learning tech-
niques to compute the skeleton curve for the plant point clouds. In this process,
we classify the plant into stem and leaf points, cluster them together as individual
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organs and use this semantic information for computing the skeleton structure
effectively.

Exploiting semantic information of the plant for extracting the skeleton struc-
ture is quite helpful. While a large corpus of literature exists for classification
in 2D images, the number of approaches that operate on 3D point clouds is rel-
atively small. Paulus et al. [90] propose an SVM-based classifier that relies on
a surface histogram to classify each point in a 3D point cloud as leaf or stem.
The recent approach by Zermas et al. [136] uses an iterative algorithm called
randomly intercepted node to tackle the same problem. Sodhi et al. [110] use 2D
images to extract 3D phytomers, namely fragments of the stem attached to a leaf
for leaves detection. Shi et al. [107] propose a multi-view deep learning approach
inspired by Su et al. [113] to address the organ segmentation problem, while Zer-
mas et al. [135] uses a skeletonization approach to segment leaf instances. More
recently, deep neural-networks such as PointNet [95] and PointNet++ [96] have
been proposed operating directly on 3D raw point clouds to produce the seman-
tic segmentation. These methods have shown impressive results. However, they
typically require large datasets with labels for the training process, which is often
difficult to get in the plant domain. In our work, we go for a more straightfor-
ward approach as our primary goal of segmenting the point cloud is to use this
information for extracting the skeleton structure. We build upon the work of
Paulus et al. [90] and additionally group the leaf points with an unsupervised
clustering algorithm to extract leaf instances. In this way, we achieve an organ
segmentation exploiting labeled data for the leaves. We use this in turn as the
basis for our registration approach across plant point clouds.

Registering point clouds is a common problem in a lot of disciplines, and
multiple techniques have been proposed for laser-based or RGB-D-based mapping
systems [12, 84, 137]. These techniques typically work under the assumption
the objects being registered only undergo rigid motion. They have also been
extended by relaxing the rigidity assumption, and several non-rigid registration
techniques such as those by Bouaziz et al. [15], Sorkine et al. [111], and Sumner et
al. [114] aim at capturing the deformation in the object. Other approaches such
as [47, 55, 87] aim at reconstructing scenes in an online fashion either in the
presence of dynamic objects or deformations. Such approaches typically operate
on scans captured at a high frame rate (10-30 Hz) and thereby deal with rather
small deformations in-between consecutive scans. This assumption is violated for
the point cloud data considered here. In our application, the plants are usually
scanned at a comparably low frequency (once per day), thereby showing larger
growth and deformations between consecutive scans. In addition, the problem
becomes even more complicated if the object changes its appearance and topology
over time. Zheng et al. [139] proposes an interesting approach to register 3D
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temporal point clouds of objects by exploiting skeleton structures of different
objects. In their applications, the objects have roughly the same size and retain
their topology over the entire sequence. Our work in this chapter builds upon their
ideas and extends them to deal with the plant’s growth as well as its changing
topology. We achieve this by introducing an improved data association approach,
which accounts for the topology and the semantics of the plant. These data
associations are then used to register temporally separated 3D plant point clouds
in an iterative non-rigid registration scheme.

The problem at hand, as well as the technique used in our approach to ad-
dress plant registration, shows some relation to techniques from the SLAM com-
munity [7, 8, 112]. This similarity starts with the iterative scan alignment pro-
cedures such as ICP [12, 47], although we build upon a skeleton representation
and not the point cloud itself. Furthermore, we build up data associations over
time between skeleton nodes using a hidden Markov model formulation. For
the optimization, least-squares approaches related to graph-based SLAM [46] are
used, including robust kernel functions. Unlike typical SLAM systems, however,
we allow for multiple affine transformations between plant parts and extend the
rigid-body transformations often found in the SLAM literature.

4.4 Conclusion
This chapter presented a novel approach for spatio-temporal registration of 3D
point clouds of individual plants. The proposed method works for raw sensor
data stemming from a range sensor such as a 3D LiDAR or a depth camera,
which is processed fully automated fashion without any manual intervention. We
implemented and evaluated our approach on datasets of tomato and maize plants
presenting challenging situations. The experiments in the chapter show that our
registration approach can be used as a basis for tracking plant traits temporally
and contribute towards automated phenotyping. In sum, our approach works
by first estimating the skeletal structure of the plant, also exploiting a point-
wise classification approach to compute a skeleton representing the plant. This
skeleton structure, along with the semantic information, is used to find reliable
correspondences between parts of the plant recorded at different points in time
using a novel data association approach that relies on a hidden Markov model.
As our results showcase, this approach can deal with changing appearance and
topology of the 3D structure of the plant. This is an essential capability to form
a robust alignment of the 4D data, i.e., of 3D geometry and time. Given the data
associations, we explicitly model the deformation and growth of the plant over
time using multiple affine transformations associated with the individual nodes
of the skeleton structure. In this way, individual parts of the plant are trans-
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formed using different affine transformation modeling the different growth along
the plant. The parameters for these transformations are estimated using a robust
least-squares approach, including regularizations. Given the resulting parame-
ters, we can align 3D scans taken at different points in time and transform them
according to the growth. This, in turn, allows us to estimate basic phenotypic
parameters such as leaf area, leaf length, as well as stem diameter or length and
track their development over time in an automated fashion.
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Chapter 5

Adaptive Robust Kernels for
Registration and State
Estimation

In the previous chapters, we have developed different spatio-temporal registra-
tion techniques for applications in agricultural robotics. A common challenge
that each of this approach faces is the presence of outliers, which arise typically
from the measurements and the data association process. Outliers may result
from incorrect matches between features computed in UAV images due to lack of
descriptor specificity (Chapter 2), or ambiguous correspondences made between
features computed in UGV images to the features in the reference maps generated
from UAV images due to aliasing (Chapter 3), or wrong correspondences made
between skeleton nodes of temporally separated plant point cloud data (Chap-
ter 4). Such types of errors happen in a large range of perception problems,
including the ones just mentioned above. Thus, the ability to deal with outliers
is of high relevance for a large set of state estimation process.

In order to address these challenges, we employed different strategies in our
registration pipelines to make them robust to outliers. For example, in Chapter 2,
we use a RANSAC approach and other heuristics to identify and remove the
outliers from the set of all candidate matches between corresponding images.
Instead, in Chapter 3, we deal with the ambiguous correspondences between the
UGV detections and the aerial reference map by both exploiting extra information
about the features in terms of semantics as well as choosing a particle filter-based
framework to deal with the multiple correspondence hypotheses. For the 4D
registration approach in Chapter 4, we used a hidden Markov model framework,
which tends to choose a set of correspondences that are mutually consistent with
each other. In addition, we use a robust loss function to minimize the effect of
any outlier in the registration process. In this chapter, we build upon this idea of

79



using robust kernels and discuss an automated technique for robustifying general
registration and state estimation tasks.

Registration and state estimation form important building blocks not just in
applications related we have seen in the previous chapters, but are also used in
a variety of different components in robotics, including simultaneous localization
and mapping. A large number of state estimation solvers perform some form of
non-linear least squares minimization. Prominent examples are the optimization
of SLAM graphs consisting of landmarks and poses, the ICP algorithm, robot
localization, visual odometry, or bundle adjustment, which all seek to find the
minimum of some error function. As soon as real-world data is involved, outliers
will occur in the data. A common source of such outliers stems from data asso-
ciation mistakes, for example, when matching features. Robust kernel functions
are used to down-weight the effect of gross errors and avoid that just a few such
outliers have strong effects on the final solution. Several robust kernels have been
developed to deal with outliers arising in different situations. Prominent exam-
ples include the Huber, Cauchy, Geman-McClure, or Welsch functions, which can
be used to obtain a robustified estimator [138].

The optimal choice of the best kernel for a given problem is not straightfor-
ward. As the robust kernels define the distribution from which the outliers are
generated, their choice is problem-specific. In practice, the choice of the kernel
is often made in a trial and error manner, as we have only limited prior knowl-
edge about the outlier process in most situations. For some approaches such as
bundle adjustment, today’s implementations even vary the kernel between itera-
tions or pair them with outlier rejection heuristics. Moreover, for several robotics
applications such as SLAM, the outlier distribution itself changes continuously
depending on the structure of the environment, dynamic objects in the scene, and
other environmental factors like lighting. This often means that a fixed robust
kernel chosen a-priori cannot deal effectively with all situations.

In this chapter, we aim at circumventing the trial and error process for choos-
ing a kernel and at exploring the automatic adaptation of kernels to the outliers
online. To achieve this, we use a family of robust loss functions proposed by Bar-
ron [9], which generalizes several popular robust kernels such as Huber, Cauchy,
Geman-McClure, Welsch, etc. The key idea is to dynamically tune this gener-
alized loss function automatically based on the current residual distribution so
that one can blend between such robust kernels and make the choice a part of
the optimization problems.

The main contribution of this chapter is an easy-to-implement approach for
dynamically adapting the robust kernels in non-linear least squares (NLS) solvers,
which builds on top of the generalized formulation of Barron [9]. We achieve this
by estimating a hyper-parameter for a generalized loss function, which controls
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Figure 5.1: Probability densities of different robust kernels. The four plots correspond to
different residual distributions (in gray) occurring during the state estimation process. Different
fixed kernels and the adaptive kernel distributions are overlaid on top. The closer the kernel
distribution is to the actual residual distribution, the better that particular kernel is for dealing
with the outliers in that situation. We see that the adaptive robust kernel (in yellow) is able to
describe the actual residual distribution in different situations better than a fixed robust kernel
for all cases. As a result, it provides better robustness to different types of outliers during the
state estimation process.

the shape of the robust kernel. This parameter becomes part of the estimation
process, and we determine it along with the unknown parameters of the model.
We extend the usable range of this parameter compared to the formulation of
Barron [9]. This allows us to better deal with a larger set of outlier distributions
compared to fixed kernels and to the Barron formulation. See Figure 5.1 for a
visualization.

In sum, in this chapter, we develop an approach that performs robust estima-
tion without committing to a fixed kernel beforehand or requiring any manual
tuning and automatically adapts the shape of the kernel to the actual outlier
distribution. We also illustrate the advantage of our approach for the plant point
cloud registration task from Chapter 4, as well as two typical problems from the
robotics and photogrammetry applications, namely ICP and bundle adjustment.
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5.1 Least Squares with an Adaptive Robust
Kernel

We present an approach that dynamically adapts robust kernels when solving
NLS problems. This is done by estimating a hyper-parameter that controls the
shape of the robust kernel. This parameter becomes part of the estimation process
in an alternating error minimization procedure. Before explaining our approach,
we first explain robust NLS estimation and generalized kernels to give a complete
view in Section 5.1.1. We then present the generalized robust kernel proposed
by Barron [9], which is the foundation of our work in Section 5.1.2. Our main
contribution in this chapter is to extend Barron’s robust kernel to deal with
strong outliers typically encountered in robotics applications in Section 5.1.3. We
propose a novel algorithm for using the adaptive robust kernel for solving typical
non-linear least squares problems with minimal changes to existing optimization
frameworks in Section 5.1.4.

5.1.1 Robust Least Squares Estimation
Several state estimation problems in robotics involve estimating unknown param-
eters θ of a model given noisy observations zi with i = 1, . . . , N . These problems
are often framed as non-linear least squares optimization, which aims to minimize
the squared loss:

θ∗ = argmin
θ

1

2

N∑
i=1

wi ∥ri(θ)∥2 , (5.1)

where ri(θ) = fi(θ)−zi is the residual and wi is the weight for the ith observation.
The estimate θ∗ is statistically optimal if the error on the observations zi is Gaus-
sian. In case of non-Gaussian noise, however, the estimate θ∗ can be poor [53].
To reduce this impact of outliers, sub-quadratic losses are typically applied. The
main idea of a robust loss is to downweight large residuals that are assumed to
be caused from outliers such that their influence on the solution is reduced. This
is achieved by optimizing:

θ∗ = argmin
θ

N∑
i=1

ρ(ri(θ)), (5.2)

where ρ(r) is a sub-quadratic loss also called the robust loss or kernel. Several
robust kernels such as Huber, Cauchy, and others have been proposed to deal with
different outlier distributions [138]. A summary of the popular robust kernels can
be found in the work by MacTavish et al. [76].
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The optimization problem in Equation (5.2) can be solved using the itera-
tively reweighted least squares (IRLS) approach [138], which solves a sequence
of weighted least squares problems. We can see the relation between the least
squares optimization in Equation (5.1) and robust loss optimization in Equa-
tion (5.2) by comparing the respective gradients, which go to zero at the opti-
mum:

1

2

∂(wir
2
i (θ))

∂θ
= wiri(θ)

∂ri(θ)

∂θ
(5.3)

∂(ρ(ri(θ)))

∂θ
= ρ′(ri(θ))

∂ri(θ)

∂θ
. (5.4)

By setting the weight,

wi =
1

ri(θ)
ρ′(ri(θ)), (5.5)

we can solve the robust loss optimization problem by using the existing techniques
for weighted least-squares. This scheme allows standard solvers using Gauss-
Newton and Levenberg-Marquardt algorithms to optimize for robust losses and
is implemented in popular optimization frameworks such as Ceres [3], g2o [61],
GTSAM [31], and iSAM [56].

5.1.2 Adaptive Robust Kernel
We build on the work by Barron [9] who proposes a single robust kernel that
generalizes for several popular kernels such as Huber/L1-L2, Cauchy, Geman-
McClure, Welsch. The generalized kernel ρ by Barron is given by:

ρ(r, α, c) =
|α− 2|

α

((
(r/c)2

|α− 2|
+ 1

)α/2

− 1

)
, (5.6)

where α is a real-valued parameter that controls the shape of the kernel and c > 0

is the scale parameter that determines the size of quadratic loss region around
r = 0. Adjusting the parameter α essentially allows us to realize different robust
kernels. Some special cases are squared/L2 loss (α = 2), Huber/L1-L2 (α = 1),
Cauchy (α = 0), Geman-McClure (α = −2), and Welsch (α = −∞).

The general loss function ρ(r, α, c) and the corresponding weights curve w(r, α, c)
are illustrated in Figure 5.2 for several values of α. The shape of the weights curve
provides an insight into the influence that a residual has on the solution while
minimizing the robust loss function in Equation (5.2). For example, for α = 2, the
weights for all residuals are one, meaning that all residuals are treated the same
as done for non-robust least squares. On the other extreme, for α = −∞, the
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Figure 5.2: Left: General robust loss ρ(r, α, c) takes different shapes depending on the value of
α. Right: Corresponding weights for kernels with different α values. A smaller α corresponds
to a larger down-weighting of the residuals.

weights for all the all residuals greater than 3c are close to zero, basically resulting
in these large residuals that are potential outliers not affecting the solution θ∗.

With this generalized robust loss, we can interpolate between a range of robust
kernels simply by tuning α. To automatically determine the best kernel shape
through the parameter α, we treat α as an additional unknown parameter while
minimizing the generalized loss:

(θ∗, α∗) = argmin
(θ,α)

N∑
i=1

ρ(ri(θ), α). (5.7)

However, the optimization problem in Equation (5.7) can be trivially mini-
mized by choosing an α that weighs down all residuals to near-zero values without
affecting the model parameters θ, essentially treating all data points as outliers.
Barron [9] avoids this by constructing a probability distribution based on the
generalized loss function ρ(r, α, c) as

P (r, α, c) =
1

cZ(α)
e−ρ(r,α,c), (5.8)

Z(α) =

∫ ∞

−∞
e−ρ(r,α,1) dr, (5.9)

where Z(α) is a normalization term, also called partition function, which defines
an adaptive general loss as the negative log-likelihood of Equation (5.8),

ρa(r, α, c) = −logP (r, α, c) (5.10)
= ρ(r, α, c) + log cZ(α). (5.11)

The adaptive loss ρa(·) is simply the general loss ρ(·) shifted by the log parti-
tion. This shift introduces an interesting trade-off. A lower cost for increasing the
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Figure 5.3: Left: Probability distribution P (r, α, c) of generalized robust loss function for differ-
ent values of α. Right: Adaptive robust loss ρa(r, α, c) obtained as the negative log-likelihood
of P (r, α, c). This adaptive loss enables automatic tuning of α ∈ [0, 2].

set of outliers comes with a penalty for the inliers and vice versa. This trade-off
forces the optimization in Equation (5.7) to choose a suitable value for α instead
of trivially ignoring all residuals by turning every data point into an outlier.
The probability distribution P (r, α, c) and the adaptive loss function are plotted
in Figure 5.3 for visualization.

5.1.3 Truncated Robust Kernel

The probability distribution P (r, α, c) is only defined for α ≥ 0, as the integral
within the partition function Z(α) is unbounded for α < 0. This means that
values for α < 0 cannot be achieved while minimizing the adaptive loss ρa(·)
in Equation (5.10). This limits the range of kernels that can be dynamically
adapted. As we can see in Figure 5.2, the smaller the parameter α is, the stronger
is the down-weighting of outliers. Such a behavior is often desired in situations
where a large number of outliers are present in the data.

In this chapter, we propose an extension to the adaptive loss in Equation (5.10),
which allows the parameter α to be dynamically adapted for a larger range of
values, especially those below zero. We achieve this by limiting the value of the
partition function Z(α) to bounded values. To re-gain the kernels correspond-
ing to the negative range of α with the adaptive loss function, we compute an
approximate partition function Z̃(α) as

Z̃(α) =

∫ τ

−τ

e−ρ(r,α,1)dr, (5.12)

where τ is the truncation limit for approximating the integral. This results in a
finite partition Z̃(α) for all α as the integral is computed within the limits [−τ, τ ].
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Figure 5.4: Left: Modified probability distribution P̃ (r, α, c) obtained by truncating P (r, α, c)

at |r| < τ . Right: The truncated robust loss ρ̃a(r, α, c) allows the automatic tuning of α in its
complete range, including α < 0.

We use this to define our truncated loss function ρ̃a as

ρ̃a(r, α, c) = ρ(r, α, c) + log cZ̃(α). (5.13)

The truncated probability distribution P̃ (r, α, c) and the corresponding trun-
cated loss ρ̃a(r, α, c) are shown in Figure 5.4. Since the truncated loss is defined
for all values of α including α < 0, we can adapt α in its entire range during
the optimization procedure. We discuss the effect of this truncation of the loss
function below in Section 5.1.5.

5.1.4 Optimization of α via Alternating Minimization
We propose to solve the joint optimization problem over θ and α in an iterative
manner using an alternating minimization procedure. The joint loss is defined as

(θ∗, α∗) = argmin
(θ,α)

N∑
i=1

ρ̃a(ri(θ), α). (5.14)

The procedure alternates between two steps. In the first step, the maximum
likelihood value for α is computed, and in the second step, the optimal parameters
for the model given the α from the previous step is computed. This approach
can be seen as a variation of a coordinate descent approach. By solving the joint
optimization in this manner, we decouple the estimation of the robust kernel
parameter α from the original optimization problem. This allows to us solve
for the model parameters θ in the same way as before α was introduced, and
leverage existing solvers such as Ceres [3], g2o [61], GTSAM [31], and iSAM [56]
to perform the optimization. This means that we can reuse our existing code for
optimization and only need to extend it by the alternating minimization.
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Algorithm 2 Optimization with adaptive robust kernel
1: Initialize θ0 = θ, α0 = 2, c

2: while !converged do
3: Step 1: Minimize for α

4: αt = argminα−
∑N

i=1 logP (ri(θ
t−1), αt−1, c)

5: Step 2: Minimize robust loss using IRLS
6: θt = argminθ

∑N
i=1 ρ(ri(θ), α

t, c),

We estimate the parameters α in the first step by minimizing the negative
log-likelihood of observing the current residuals,

L(α) = −
N∑
i=1

logP (ri(θ), α, c) (5.15)

=
N∑
i=1

log cZ̃(α) + ρa(ri(θ), α, c), (5.16)

i.e.,

α∗ = argmin
α

L(α). (5.17)

A solution to Equation (5.17) can be obtained by setting its first deriva-
tive dL(α)

dα
= 0. Since its not possible to derive the partition function Z̃(α) ana-

lytically, we settle for a numerical solution. As α is a scalar value, L(α) can be
minimized comparably easily by performing a 1-D grid search for α ∈ [αmin, 2].

In terms of a practical implementation, we chose lower bound αmin = −10 as
its difference to the corresponding weights for α = −∞ for large residuals (|r| > τ)

is small and in most practical problems negligible. The difference in weights for
α = −10 and α = −∞ is less than 10−5 for a residual |r| = τ . The maximum
value for α is set to 2 as this corresponds to the standard least squares problem.
The scale c of the robust loss is fixed beforehand and not adapted during the
optimization. This value for c is usually fixed based on the measurement noise
for an inlier observation z and the accuracy of the initial solution. To be compu-
tationally efficient, we pre-compute Z̃(α) as a lookup table for values α ∈ [αmin, 2]

with a resolution of 0.1 and use the lookup table during optimization. This leads
to the overall minimization approach shown in Algorithm 2.

5.1.5 Effect of using the Truncated Loss
The truncated loss approximation affects the first step of the optimization proce-
dure in Algorithm 2, i.e., determining the parameter α. By using our truncated
loss, we are implicitly assuming that no outliers have a residual |r| > τ during the
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first step. If we choose a large enough value for τ , the error that we introduce af-
fects situations with large outliers only and therefore results in small values of α.
The effect of small α values such as α = −10 vs. α = −∞ on the optimization,
however, is negligible as the outliers will be down-weighted to basically zero. We
observe in our experiments that by setting choosing τ = 10c, we are able to deal
with all of the outlier distributions in practice for ICP, SLAM, BA applications.

5.2 Experimental Evaluation
In the experimental section, we evaluate the performance of our adaptive robust
kernel approach on the spatio-temporal point cloud registration application from
the previous chapter and two typical applications in robotics, namely the Iterative
Closest Point (ICP) algorithm and bundle adjustment (BA). The experiments
are designed to evaluate the effectiveness of our approach in the presence of
strong outliers and showcase its applicability for common NLS problems. We
compare the performance of our approach against hand-crafted outlier rejection
mechanisms using fixed robust kernels on multiple datasets.

5.2.1 Application to Registration of Plant Point Clouds

In the first experiment, we show the advantages of using the adaptive robust
kernel for the spatio-temporal registration of plant point clouds proposed in the
previous chapter. As described in Chapter 4, we compute the registration pa-
rameters between the temporally separated plant skeleton nodes using a robust
kernel to deal with the wrong data associations computed during the correspon-
dence estimation step. In the previous chapter, we used a fixed Cauchy’s robust
kernel to perform this step. We replace the fixed robust kernel used in the reg-
istration procedure with our truncated adaptive robust kernel proposed in this
chapter. We then repeat the registration experiment performed in Section 4.2.3,
where we register all consecutive scans from the maize and the tomato time-series
datasets. We then evaluate the accuracy of the registration process as defined
in Equation (4.15) in Chapter 4, which computes the error between the deformed
source cloud and the target cloud. Using the fixed Cauchy’s robust kernel, we ob-
tain a mean error of 3 mm and a maximum error of 13 mm for consecutive scans.
The accuracy results improve using our truncated adaptive robust kernel with an
average mean error of 2.5 mm and a maximum error of 7.2 mm. We see a con-
siderable improvement in the worst-case scenario from 13 mm to 7.2 mm. These
are precisely the cases where outliers have a large effect on the registration, and
our approach deals with it better than a fixed robust kernel. We obtained similar
results by using the original adaptive robust kernel formulation by Barron [9]
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giving a mean registration error of 2.8 mm and a maximum error of 8.6 mm.
To further investigate the advantages of using our adaptive robust kernel, we

simulated addition correspondence errors while matching the plant point clouds.
We then repeat the previous experiment of registering plant point clouds from
consecutive days with the additional correspondence errors that have been artifi-
cially added. We varied the percentage of additional correspondence errors from
10% to 50% with an increment of 5% each time. We categorize the registration
between the point clouds to be successful if the registration error ereg < 20mm.
With this experimental setup, we observe that registration with fixed Cauchy’s
kernel was successful up to 15% additional outliers for the tomato dataset and
25% for the maize dataset. Using the original Barron’s adaptive kernel [9], the
registration succeeded with 25% additional outliers for the tomato dataset and
40% for the maize datasets. Finally, using our approach with the modified trun-
cated loss, the registration was successful up to 45% additional outliers for the
tomato dataset and 50% for the maize datasets. This is a considerable gain in
terms of the number of outliers that our approach can handle. Overall, we ob-
tain better registration results both for maize and tomato datasets, especially in
challenging outlier situations. These results suggest that our approach provides
better registration performance when the percentage of outliers is high in the
data, which is necessary in case of errors during the data association step.

5.2.2 Application to Iterative Closest Point
In this experiment, we show the advantages of our approach for LiDAR-based
registration in the form of ICP. We integrated our truncated adaptive robust
kernel into an existing SLAM system, called surfel-based mapping (SuMa) [11],
which performs point-to-plane projective ICP for 3D LiDAR scans. The ICP
registration is performed in a frame-to-frame fashion on consecutive scans. We
compare the performance of our approach against two fixed robust kernels, i.e.,
Huber and Geman-McClure, as well as to a hand-crafted outlier rejection scheme
as used in the original implementation of SuMa [11]. This hand-crafted scheme
combines a Huber kernel with an additional outlier rejection step that removes all
correspondences, which have a distance of more than 2m or an angular difference
greater than 30◦ between the estimated normals of observations and the corre-
sponding normals of the surfels. Finally, we compare it to the original adaptive
kernel as proposed by Barron [9].

We evaluate all these approaches on the odometry datasets of the KITTI
vision benchmark [42] and summarize the results in Table 5.1. The best perfor-
mance in terms of relative translation error for each sequence is highlighted in
bold. We observe that our proposed approach, which does not require an outlier
rejection step at all, performs better or is on-par with fixed kernel plus outlier re-
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Figure 5.5: Adaptive kernel performance on KITTI-01 sequence. Left: plot showing α values
estimated at each frame based on the residual distribution for KITTI 01 sequence. Right:
translation error (in meters) for our approach and fixed kernel ICP. The lower α values (stronger
outlier down-weighting) are observed while matching scans consisting of outliers arising from
dynamic objects in the scene. The blue and dotted red lines show the translational error using
our approach and fixed kernel, respectively. We observe that around frame 400, the fixed kernel
ICP shows a large translation error of 3 m, indicating that the ICP process diverged.

jection scheme for many of the sequences. At the same time, using only the fixed
kernel without the outlier rejection step fails for some of the sequences. In par-
ticular, for Sequence 04, both the fixed kernel using Huber and the hand-crafted
outlier rejection scheme fail, whereas our approach performs the best on this se-
quence. Our approach performs slightly better with respect to the adaptive kernel
by Barron [9], with the biggest gain in Sequence 01, which requires negative val-
ues of α to deal with the outliers coming from dynamic objects in the scene. On
average over all the sequences, our approach provides the best accuracy in terms
of a relative translation error. Here, we note that our approach is not the best in
terms of relative rotational error but is around the 1% mark, which is on-par with
other approaches. These results are promising as by using our adaptive robust
kernel, we do not need any hand-crafted outlier rejection mechanism, which in
practice requires manual tuning for new data, different sensor configurations, or
different tasks.

As a qualitative evaluation, we illustrate the advantage of using the adaptive
robust kernel for a challenging dataset (Sequence 01), which contains several
moving cars moving with the vehicle itself along the highway with little additional
geometric structures. In Figure 5.5 (left), we plot the values of α for each iteration
while mapping the sequence. We observe that α adapts to smaller and more
negative values whenever there are more outliers, which arise mainly from moving
vehicles in the scan. This effect can be seen in Figure 5.5 (right) where the
translation error for the fixed kernel increases as it cannot handle the outlier
situation well. At the same time, the error remains small for our adaptive kernel.

The two 3D scenes show the registrations at the same point in time, once
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Table 5.1: Results on KITTI odometry datasets [Relative rot. error in degrees per 100m / relative trans. error in %]

Sequence
Approach 00 01 02 03 04 05 06 07 08 09 10 Average

Our Approach 1.5/2.8 1.3/3.8 0.91/1.8 1.5/1.9 0.81/0.95 0.97/1.7 0.51/1.1 2.1/2.6 1.3/2.7 0.80/1.4 1.3/1.7 1.18/2.03

Adaptive Kernel 1.6/3.0 1.2/6.7 0.93/1.9 1.4/1.8 0.82/1.0 0.97/1.8 0.51/1.1 2.2/2.7 1.3/2.8 0.88/1.4 1.2/1.7 1.19/2.35
(Barron [9])

Fixed Kernel 0.93/2.1 1.2/4.5 0.79/2.3 0.7/1.4 1.1/49 0.79/1.5 0.64/0.95 1.2/1.8 0.96/2.5 0.78/1.9 0.97/1.8 0.92/6.34
(Huber)

Fixed Kernel 1.8/3.4 1.3/3.8 1.0/1.9 1.5/2.0 0.88/1.2 0.98/1.7 0.62/1.3 2.6/3.0 1.5/3.0 1.0/1.6 1.3/1.9 1.32/2.27
(Geman-McClure)

Hand-Crafted 0.9/2.1 1.2/4.0 0.8/2.3 0.7/1.4 1.1/11.9 0.8/1.5 0.6/1.0 1.2/1.8 1.0/2.5 0.8/1.9 1.0/1.8 0.9/2.90
Outlier Rejection [11]
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Figure 5.6: Registration by ICP and our approach on a challenging dataset. An example ICP
result for a pair of consecutive frames where ICP converges to the correct transformation using
our adaptive kernel (right) whereas it diverges for a fixed kernel (left). In the left image, the
alignment error can be noticed with the sign-board along the road as well as the trees in the
background.

computed with the adaptive kernel and once with a fixed one. The adaptive kernel
results in a successful alignment while the fixed kernel fails to find the correct
solution due to the outlier in the data association, see Figure 5.6. The adaptive
kernel-based ICP can correctly treat the observations belonging to the moving
car as outliers and nullify their effect during optimization automatically. For this
sequence, we note that for large portions of the scans, α is negative and even
reaches down to αmin = −10 in some instances. This suggests that our truncated
adaptive loss proposed in Equation (5.13) is critical for the successful application
of ICP as it enables using values α < 0, whereas the original formulation of the
adaptive loss is limited to α ∈ [0, 2]. Thus, our approach greatly supports ICP-
based registration as it avoids hand-crafted outlier strategies and simultaneously
adapts to the outlier challenges present in each pair of scans automatically, and
will adapt that for every pair of scans in a dataset.

5.2.3 Application to Bundle Adjustment

The second experiment is designed to illustrate the performance of our approach
and its advantages for a state estimation problem. We choose the bundle adjust-
ment problem using a monocular camera as an example as it is a commonly solved
optimization problem in photogrammetry and computer vision, and entails esti-
mating a large number unknowns of the model, namely the 6 DoF camera pose
corresponding to each image and the 3D coordinates of features in the environ-
ment. We integrated the adaptive robust kernel to an existing bundle adjustment
framework proposed by Schneider et al. [104]. The initial estimate for camera
poses and 3D points is obtained by three commonly used steps. First, extract
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Figure 5.7: Examples images from CARLA simulated datasets. Top left: front-looking image
mounted on a car from the first dataset. Top right: UAV image in a nadir view looking
downwards from the second dataset. Bottom left: front-looking image with strong shadows
and reflections from the third dataset. Bottom right: side facing image from the fourth dataset
where portions of the image have significant motion blur.

SIFT features and compute possible matches between all image pairs. Second,
compute the relative orientation using Nister’s 5-point algorithm [85] together
with RANSAC for outlier rejection and chaining the subsequent images to obtain
the initial camera trajectory. Third, compute the 3D points as described by Läbe
et al. [65] given the camera trajectory of the second step.

To test the performance of our approach in solving the bundle adjustment
problem, we created four datasets covering different scenarios using the CARLA
simulator [35] generating near-realistic images. The advantage of the simulator is
that ground truth information for the camera poses is available. The first dataset
contains images from a front looking camera mounted on a car, the second dataset
simulates downward-looking aerial images from a UAV, the third dataset contains
images where around half of each image shows strong shadows, and the fourth
dataset simulates a side-ward looking camera where close-by objects suffer from
significant motion blur. We have generated these datasets to cover situations
where feature matching is challenging, thereby resulting in a large number of
outliers. Example images from the datasets are depicted in Figure 5.7.

For each of these datasets, we evaluate the bundle adjustment results by
comparing the performance of our approach against squared error loss as well as
the standard Huber loss as a fixed kernel. We compute the accuracy of the camera
pose estimates by comparing against the ground truth poses from the simulator
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Figure 5.8: Translation and rotational errors for BA on different datasets.

Squared Loss Huber

Geman-McClure Our Approach

Figure 5.9: Convergence analysis for BA. Green points indicate poses for which BA converged,
whereas red points indicate divergence. The blue circles represent the ground truth camera
poses. The larger spread of green points reflects that our approach obtains a larger convergence
basin than other fixed kernels. This indicates that our approach is more robust to error in
initial solutions.

as described by Dickscheid et al. [32]. This difference is computed by estimating
the optimal transformation between the bundle adjustment result and the ground
truth using all 6 DoF pose parameters with the approach by Dickscheid et al. [32].
Figure 5.8 illustrates the results for all the four datasets where our approach has
a lower translation and rotational error than using squared error or the fixed
Huber kernel. We obtain a translation and rotational error, which is between 2

to 5 times better as compared to using Huber. We perform the ground truth
comparison based only on the camera poses and do not consider the 3D point as
they have been extracted using the SIFT descriptor from the simulated images.
Thus, no ground truth 3D information is available.

The last experiment in this section is designed to analyze the influence of
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Figure 5.10: Effect of the truncation parameter τ on the accuracy on the bundle adjustment
task.

our approach on the convergence properties of BA. A large basin of convergence
is important for robust operation, especially for BA, due to the missing range
information with the image data. We initialized the bundle adjustment procedure
by adding significant noise to the initial camera poses, i.e., σ ∈ [0.1m, 5m] to the
ground truth poses of the camera. The noise in the camera poses is propagated
to the 3D points during the forward intersection step. We sample 20 instances of
each noise level (500 instances in total) and run the bundle adjustment for our
approach, using squared loss, the Geman-McClure as well as the Huber kernel.
We consider the adjustment to have converged if the final RMS error of the
camera center is less than 1 cm from the true position. We visualize the results
in Figure 5.9 where the poses from which the BA has converged are shown in
green and the ones that caused divergence in red. We can clearly see that our
approach has a larger convergence radius as the green points are spread over
a larger area compared to the squared loss or fixed Huber or Geman-McClure
kernel. We obtain a successful convergence rate for 45% of all instances for our
approach against 24.8% for squared loss, 33% for Huber, and 28.2% for Geman-
McClure. Overall, the experiments suggest that by using our approach, we can
obtain a more accurate estimate and have a larger convergence area than a fixed
kernel. Thus, our approach is an effective and useful approach for optimization
in bundle adjustment problems.

5.2.4 Effect of the Truncation Parameter
In this experiment, our goal is to analyze the effect of the truncation parameter
τ on the state estimation task. The parameter τ is used to define the integral
limits for the partition function in Equation (5.12). This approximate partition
function is used to define our truncated loss function proposed in this chapter.
By choosing a value of τ from the set {10c, 20c, 50c, 100c}, we define a truncated
partition function Z̃(·) for each value of τ . This results in multiple robust kernels
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ρ̃a(·) which are then used for solving the bundle adjustment problem on the four
datasets as described in Section 5.2.3. The results for these experiments are
shown in Figure 5.10. We observe that the accuracy results using different values
of τ is similar for all the datasets. The maximum difference in the translation
error is about 5%, and the difference in rotational error is 8% using different
values for τ . We also note that during the experiments, the α estimated in Step 1
of Algorithm 2 of the optimization process belongs to a similar range of α values
for each of the τ used. These results in this experiment suggest that the approach
is not critically sensitive to the value of the truncation parameter used and can
be used effectively for multiple state estimation tasks without any need for tuning
it.

5.3 Limitations and Potential Future Work
In this chapter, we have mainly focused on extending the generalized robust kernel
formulation by Barron [9] for its use in common state estimation problems in
photogrammetry and robotics. It shows a notable performance gain and performs
better than existing techniques. However, there are several interesting directions
in which this work could be extended. We see the following aspects that offer
space for further investigations:

Adapting the scale parameter c: In our current implementation, we use a fixed
scale parameter c, which is set based on the measurement noise for an inlier ob-
servation. In principle, both the shape parameter α and the scale parameter c can
be adapted simultaneously. In practice, however, learning both these parameters
jointly becomes tricky as each of them can individually find some explanation of
the residual distribution. Typically, a large change in the residuals can be cap-
tured by a relatively small change in c without affecting α at all. This results in
a situation where the shape parameter α cannot be estimated properly. At least
the straight forward integration of c as an additional variable in the optimization
problem did not lead to an effective method. This suggests that a different and
more advanced optimization scheme needs to be developed to adapt the param-
eter α and the scale parameter c jointly to respond to a change in the outlier
distribution.

Use of multiple α parameters: We use a single α value to capture the outlier
distribution for the individual optimization problem in our example applications.
For example, in the ICP case, we estimate only one α value for all the points
for a scan pair. This means the α value is adapted between different scan pairs,
however, it is the same for all the points in the scan pair at one timestep t. By
estimating a different α value for groups of points belonging to different objects
(e.g., vegetation, road, vehicles, etc.) in the scan, we can model an inlier/outlier
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weight for each group of points in addition to time. The effect may be even more
extreme for the BA task, as all images are considered in a single optimization
problem. The current approach can only adapt α at each iteration of the op-
timization procedure but not estimate different α values for individual points.
Here, one could estimate different α values for each sub-block of the optimiza-
tion problem, where each of the sub-block could consist of the camera poses and
measurements of a particular location in the environment.

Use of an alternative regularization term for the truncated loss: The trun-
cated partition function Z̃(α) can be seen as playing the role of a regularizer
for α in Equation (5.13). An alternative approach to regularizing α would be
to replace the truncated integral term Z̃(α) with a suitable regularizer that is
defined for any α in the range [−∞, 2]. This is possible as there is no strict re-
quirement that a robust loss ρ(·) must correspond to the negative log-likelihood
of a probability distribution function as we have defined in this paper. This opens
up the possibility of designing regularization terms with potentially better outlier
rejection properties and provides an interesting direction for future work.

5.4 Related Work
Robust kernels are the de-facto solution to perform state estimation using least-
squares minimization in the presence of outliers. The idea of using robust kernels
for least-squares problems emerged from the seminal works by Huber [54], Ham-
pel [48], and Koch [58]. Several robust kernels such as Huber, Cauchy, Geman-
McClure, or Welsch have been proposed in the literature to deal with different
outlier distributions. Zhang [138] and Bosse [14] apply these kernels to different
kind of estimation problems in vision and robotics. Black and Rangarajan [13]
investigate equivalence between robust loss minimization and outlier processes
and apply this idea to several vision problems such as surface reconstruction,
segmentation, optical flow, etc. Babin et al. [6] analyzed several popular robust
kernels for registration problems and provided advice for using different kernels
depending on the scenario. Similar analysis and recommendations are provided
by MacTavish [76] and Zach [134] for visual odometry and BA. In this work, in-
stead of choosing a specific robust kernel for a particular scenario, we dynamically
adapt a robust kernel to the actual outlier distribution during the optimization
process. To do this, we build upon the generalized kernel formulation recently
proposed by Barron [9] for training neural networks. It generalizes over popular
robust kernels, and we formulate an approximation of it for use in NLS estimation.

Several approaches have been explored in robotics literature to deal with the
outliers dynamically, particularly for SLAM and bundle adjustment problems.
Sünderhauf and Protzel [115] propose introducing additional switch variables
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to the original optimization problem, which determines whether an observation
should be used or discarded during optimization. This essentially results in turn-
ing a particular constraint on or off during the optimization based on the residual
distribution. Agarwal et al. [2] propose a robust kernel that dynamically weighs
the observations without requiring to estimate any additional variables. Lajoie et
al. [66] and Yang et al. [132] further this idea as a truncated least squares prob-
lem that can be solved efficiently as a semi-definite program. They also provide
solutions with certain robustness guarantees for the registration and SLAM prob-
lem. Recently, Yang et al. [131] propose a robust estimation framework based on
graduated non-convexity methods, which solves a sequence of minimization prob-
lems that are initially convex and converge eventually to the original non-convex
robust loss. In a similar spirit to these approaches, we dynamically adapted the
shape of a generalized robust kernel formulation based on the residual distribu-
tion resulting from the observations. We proposed a mechanism to use it within
existing NLS optimization frameworks for state estimation tasks.

Taking a probabilistic view, several robust kernels are understood to arise
from a probability distribution, which can be used to determine the best kernel
type based on the actual observations. This means that if we know the outlier
distributions for the set of observations, then we can choose a suitable robust
kernel for that problem based on this knowledge. However, in practice, the outlier
distribution is either unknown or changing over space and time. Agamennoni
et al. [1] propose to use an elliptical distribution to represent several popular
robust kernels. They estimate hyper-parameters for each kernel type based on
the residual distribution and perform a model comparison to determine the best
kernel for the situation at hand. In this chapter, we take a different approach
and adapt the robust kernel shape by using the probability distribution of a
generalized loss function [9]. We also do not require an explicit model comparison
to choose the best kernel and estimate the kernel shape through an alternating
minimization procedure.

5.5 Conclusion
State estimation is a key ingredient in photogrammetric, geodetic, and robotic
systems and is often performed using some form of least squares minimization.
Almost all error minimization procedures that work on real-world data use robust
kernels as the standard way for dealing with outliers in the data. These kernels,
however, are often hand-picked, sometimes in different combinations, and their
parameters need to be tuned manually for a particular problem. In this chapter,
we explored using a generalized robust kernel family, which is automatically tuned
based on the distribution of the residuals and includes the common m-estimators.
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Our robust optimization approach avoids the need to commit to a fixed robust
kernel and potentially has a broad application area for state estimation. We use
a generalized robust kernel that can adapt its shape with an additional param-
eter that has recently been proposed by Barron [9]. We extended the original
formulation, which enabled us to use the adaptive kernel also in situations with
a large proportion of outliers. We integrated our adaptive kernel into and tested
it for the spatio-temporal point cloud registration and for two further popular
state estimation problems in robotics, namely ICP and bundle adjustment. The
experiments showcase that we achieve better performance as compared to using
fixed kernels such as Huber or Geman-McClure, and at the same time, do not
require any hand-crafted outlier rejection schemes. We evaluate our approach
on the KITTI dataset for the registration task using ICP, and show that our
approach on average gives the best accuracy when compared against other state-
of-the-art robust kernels and avoids failures in strong outlier situations where
other approaches tend to fail. We also show that our approach increases the
radius of convergence for the bundle adjustment task suggesting that it can deal
with larger errors in the initial estimates of the unknowns in the problem. We
believe that several other problems in robotics, which rely on robust least-squares
estimation, can benefit from our proposed approach.
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Chapter 6

Conclusion

To meet the increasing demand for agricultural produce for an ever-growing world
population is one of the critical challenges we face today. We need to achieve
this goal within the limited arable land available to us sustainably, all the while
dealing with the challenges put forth by climate change. One way to meet this
challenge is by intensifying production in a sustainable manner, and we look
towards the potential of robotics systems deployed in agricultural fields to achieve
this goal. These robotics systems have the ability to increase productivity by
providing localized high-quality care for each individual plant through continuous
monitoring and timely intervention in the field while drastically reducing the
use of agro-chemicals, which have taken a severe toll on our environment and
biodiversity. The development of automated robotic systems has the potential to
play an important role in the future of agricultural production.

In this thesis, we have developed techniques that are relevant for monitoring
and phenotyping tasks for robotics systems in the agricultural domain. We have
focused on the core task of registration, which is a fundamental requirement for
any mobile system that perceives its surroundings. Existing techniques for reg-
istering sensor data from agricultural settings fail to perform reliably due to a
unique set of challenges inherent to this domain. These challenges vary from the
large change in the field’s visual appearance, to the structural change of individual
plants as they grow over the crop season, and to the vastly differing viewpoints
where data is captured from multiple platforms in an aerial-ground robotics sys-
tem. Throughout the thesis, we have developed registration techniques that are
designed to handle these challenges and explicitly take into account the spatio-
temporal nature of the task. We build on these registration techniques to demon-
strate their application for long-term monitoring of crops in the field, developing
an accurate localization system for navigation in crop fields, and performing au-
tomated phenotyping tools to analyze the growth of individual plant parts from
high fidelity point cloud data.
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We believe that the registration techniques developed here would contribute
to the robust operation of autonomous robots in the field over long periods of time
and provide a basis for analyzing plants on a large scale. The key contributions
of this thesis are novel techniques for spatio-temporal registration, which enable
the operation of agricultural robots over long time periods and perform robustly
in the face of various challenges that arise in this domain.

The first contribution of this thesis is a registration technique that enabled
monitoring crop fields using UAVs over long periods of time. We designed a novel
descriptor and a data association scheme designed for crop fields, which allowed
for registering UAV images over an entire crop season. We exploited the fact the
plants change their appearance but cannot move. Based on this knowledge, we
took into account the geometric patterns in the crop field to develop an effective
solution in challenging situations where state-of-the-art visual descriptor based
association failed. Using our registration results, we showed that it is possible to
analyze the plant growth in fields over long time periods at a spatial resolution
few square centimeters.

The second contribution of this thesis is a localization system for UGVs oper-
ating in crop fields by exploiting aerial maps generated by UAVs. We register the
data captured from the two platforms with a large viewpoint difference reliably
based on a combination of features that captures the geometry and the seman-
tics of the crop field. The semantic information of the crops, weeds, and their
stem positions allowed us to resolve the visual aliasing problem caused due to the
similarly looking crop rows. This feature combination allowed us to match the
images captured from the UGV to the aerial map of the field generated from a
prior UAV survey flight. We also built upon domain knowledge of crop fields and
other field management operations to capture the changes and integrate them
properly into our state belief. All this information enabled us to register the
data robustly, captured both from differing viewpoints and with extended time
intervals between the sessions. Our robust registration procedure along coupled
with a particle filter based estimation framework, helped us realize an accurate
localization system and provided better pose estimates than by a typical single
phase GPS-based localization approach.

The third contribution is a novel approach for spatio-temporal registration
of high fidelity 3D point clouds of plants. This is relevant for tracking plant
growth at a detailed level, which is used in crop sciences for phenotyping tasks.
We addressed the task of registering high-resolution plant scans, which enabled
us to deal with the non-rigid motion as well as plant growth. We took advan-
tage of the skeletal structure and the semantic information of the plant to find
reliable matches between corresponding parts of the plant over time, which was
then used to drive the registration process through an iterative procedure. The
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Figure 6.1: Photos from various integration and review meetings of the Flourish project. Left:
Integration of the precision spraying system on the robot for weed treatement. Middle: Demon-
stration of precision weeding capability in autonomous mode to local farmers and other stake-
holders in Ancona, Italy. Right: The UAV and UGV team entering the field for final project
demonstration in Eschikon, Switzerland.

experimental results showed that our approach effectively dealt with changing
appearance and topology of the plant, whereas typical state-of-the-art registra-
tion techniques that consider only rigid motions are not suitable for plant data.
Based on the registration technique developed in this thesis, we analyzed plant
growth at an organ level. We also detected interesting events such as the emer-
gence of new leaves, all of which play a key role in characterizing phenotypic
traits of a plant. We evaluated our approach on challenging datasets from two
plant species and demonstrated how automated phenotyping could be performed
using our registration approach.

As the final contribution of the thesis, we propose a technique for dealing
with outliers, which arise during the data association process. These outliers
result in registration failures and lead to poor solutions during the state estima-
tion process. To deal with this, we studied a generalized robust kernel approach,
which adapts automatically based on the current error residual. We extended
the capability of this technique to deal with strong outlier distributions. We ap-
plied it successfully in the context of least-squares optimization problems, which
are frequently required for registration tasks, as well as other state estimation
procedures in robotics and photogrammetry.

6.1 Contributions to the Projects Flourish and
PhenoRob

The spatio-temporal registration techniques for crop fields presented in this the-
sis have contributed to the development of an autonomous robotics system for
precision agriculture as part of a successful EC-funded project Flourish, H2020-
ICT-644227-FLOURISH and later on to the cluster of excellence EXC-2070 Phe-
noRob. The goal of the project was to show the feasibility of using an autonomous
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robotic system for precision agriculture tasks such as continuous plant monitor-
ing and target intervention for field management using a team of an aerial and a
ground robot.

On September 18, 2018, the final review of the 42-month project was success-
ful and Flourish project has been evaluated excellently in all the review meetings.
The techniques presented in this thesis provided core building blocks for register-
ing data acquired by sensors on-board the robots, and enabled the spatio-temporal
analysis of the plant growth. Figure 6.1 shows photos from various integration
and project review meetings as well demonstrations given in an effort to reach
the public and other stakeholders.

Our work in Chapter 4 on spatio-temporal registration of plant point clouds
happened in the context of PhenoRob for deriving plant traits and analyzing
growth from high-resolution scans, and is linked to core project 1 on 4D crop re-
construction. Thus, we would also like to acknowledge that parts of this thesis are
contributions to the Excellence cluster PhenoRob supported by the German Re-
search Foundation under Germany’s Excellence Strategy, EXC-2070-390732324.

In addition to the contributions to the projects, we have released most of
the techniques developed in thesis as open source software, and published three
challenging datasets for long-term spatio-temporal registration tasks.

6.2 Future Work
The techniques we developed as well as the promising results presented in this
thesis open different directions for future research. In Chapter 2, we proposed a
descriptor for registering UAV images of crop fields that exploited the geometric
arrangement of crops and gaps, i.e., the missing crops along the crop-row. We
developed this idea in the classical expert-driven way, where we arrived at this
descriptor by carefully observing the data and exploiting this pattern to design
the descriptor. However, such patterns may not be available for other fields,
or their distribution could be completely different, in which case our approach
might not be adequate. An alternative approach is not to specify the pattern
directly but to use the data itself to figure out the pattern. Given the recent
advancements in deep learning techniques over the last few years, new descriptors
learned from data suited for field environments could offer potential solutions.
These approaches would have several challenges in terms of generalizability and
re-training effort required to achieve robust performance. However, exploiting
some prior knowledge of the fields might tackle some of these problems and offer
an interesting research avenue.

Later in Chapter 2, we proposed a co-operative localization system where the
information exchange between the UAV and UGV is only via the maps that the
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two robots share. There is further scope for having much closer and higher fre-
quency collaboration between different robots operating on the field. In the field
scenario, there are potentially several situations in which the robots can antic-
ipate each others’ behavior and thereby take actions that increase throughput
and productivity for the desired task. Developing techniques that further tighter
collaborations between the robots would be a critical requirement for realizing
several field applications.

Our registration approach for the plant point clouds in Chapter 4 assumes to
have high-quality scans available. Although this is a reasonable assumption to
make for data acquired in laboratory settings or at a small scale in green houses,
data captured in the fields from moving platforms will often be much lower reso-
lution, with larger noise levels, with parts of the plant unobserved. Extending our
approach to deal with the noisier point cloud data in these challenging situations
would be an important milestone.

Finally, in Chapter 5, we had mainly focused on applying a generalized ro-
bust kernel formulation to common state estimation problems in robotics. We
identified several aspects such as adapting the scale parameter c of the kernel dy-
namically, using multiple α parameters for large state estimation problems and
using alternative regularization terms for the loss function. We think that further
investigation into these issues opens up the possibility of achieving better outlier
rejection properties and provides an interesting direction for future work.

Overall, we believe that this thesis provides a strong baseline for long-term
registration techniques in the agricultural domain and provides solutions to em-
ploy in real systems. As always, there are several dimensions that one could
build upon this work, including extending our techniques to a larger variety of
plants, improving the computational complexity of the registration techniques,
and dealing with even more challenging data.
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