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1 Introduction

The central problem we want to discuss is the computation of the trace in L2 (R, H) of
the operator e−tDD

∗ − e−tD∗D for D = ∂ +A (X) and t > 0.
Let us begin by outlining the foundational situation, and let us give a summary of the

results. We consider a self-adjoint operator A− in a complex, separable Hilbert space H,
which plays the role of a “model operator”, more concretely let A (x), x ∈ R be a family
of self-adjoint operators in H, such that it fulfils the requirements in Definition 2.3 and
a selection of conditions from subsection 2.2. Then the operator A (X) in L2 (R, H) is
well-defined by

(A (X) f) (x) = A (x) f (x) , for a.e. x ∈ R,

and for f ∈ Dom (A (X)), i.e.

f ∈ L2 (R, H) , f (x) ∈ Dom (A (x)) for a.e. x ∈ R and (x 7→ A (x) f (x)) ∈ L2 (R, H) .

The conditions on the family A (x), x ∈ R imply that A− is the limit

A− = lim
x→−∞

A (x) ,

and that also the limiting operator

A+ = lim
x→+∞

A (x) ,

exists (in a specific sense, c.f. Lemma 2.24). Apart from the possible assumption that A+

and A− possess a spectral gap at 0 (cf. Definition 3.8 and Theorem 5.3), there are no
further assumptions on the operator A− (especially a discrete spectrum is not needed).

The new approach, we discuss in this work, is basically that the assumptions made on
the family A (x), x ∈ R do not imply that A (x)− A− is necessarily a relative trace-class
perturbation of A−.
Instead, we consider the conditions in Hypothesis A1 (2.10) or Hypothesis A2 (2.11), which

are furnished around the semi-group e−tA
2
− generated by A2

− and not the resolvent of A2
−.

Befitting the change of perspective from resolvents to semi-groups, the first main results
(c.f. Theorem 4.16 and Theorem 4.17) to mention are the trace formulae concerned with
the semi-groups of the (non-negative) operators H+ = DD∗ and H− = D∗D in L2 (R, H).
For t > 0 we have,

trL2(R,H)

(
H+e

−tH+ −H−e−tH−
)

= (4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)
,

trL2(R,H)

(
e−tH+ − e−tH−

)
= − lim

ε↘0
trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
,

(1)

where for a, b > 0 the real function χa,b is given by

χa,b (z) :=
ebz

2

2

(
erf
(

(a+ b)1/2 z
)
− erf

(
b1/2z

))
, (2)
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with erf denoting the Gaussian error function, and

D =∂ +A (X) , Dom (D) = Dom (∂) ∩Dom
(
Â−

)
,

(∂f) (x) =
df

dx
(x) , for a.e. x ∈ R and f ∈ Dom (∂) ,

Dom (∂) =W 1,2 (R, H)

=
{
f ∈ L2 (R, H) , f weakly differentiable in H, f ′ ∈ L2 (R, H)

}
. (3)

The operator Â− in L2 (R, H) denotes the (constant) point-wise multiplication with the
operator A−.

The trace formulae then imply a version of Pushnitski’s formula for the spectral shift
function of the pair (H+, H−) (c.f. Theorem 5.3),

ξ (λ,H+, H−) = κ+
1

π

∫ λ1/2

−λ1/2

ξ (µ,A+, A−)
(
λ− µ2

)−1/2
dµ, for a.e. λ > 0, (4)

for a constant κ ∈ R. The functions ξ (·, H+, H−) and ξ (·, A+, A−) are appropriately
defined and normalized1 spectral shift functions associated to the pairs of self-adjoint
operators (H+, H−) and (A+, A−) respectively, which are given by Definition 3.23 and
Proposition 3.6.

If we additionally assume that the operators A+ and A− possess a spectral gap at
0 (i.e. they are boundedly invertible in H), we show that the operator D has a well-
defined (semi-group regularized) Witten index, indW (D), a weaker result than D being
Fredholm, however, which is to be expected for a family A (x) − A−, x ∈ R, of not even
relative compact perturbations of A−.

Furthermore, the Witten index is equal to the constant −κ from formula (4), if the
spectral shift function ξ (·, A+, A−), defined according to Proposition 3.6, is replaced by
the spectral shift function η (·, A+, A−), defined according to Definition 3.8, and thus

indW (D) := lim
t→+∞

trL2(R,H)

(
e−tD

∗D − e−tDD∗
)

= lim
t→+∞

lim
ε↘0

trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)

= κ = ξ (λ,H+, H−) , (5)

for some δ > 0 and a.e. λ ∈ (0, δ) (c.f. Theorem 5.3).
The trace formulae (1), the presented version of Pushnitski’s formula (4) and the

calculation of the Witten index for families with invertible endpoints A+ and A− in (5)
are the central results of this work, which will be derived and proven in the following
chapters.

Before we give a more detailed summary of the subsequent chapters and subsections,
we outline the context and history of the discussed problems.
Differential operators with operator coefficients of the form D = ∂ + A (X), where A (x),

1The normalization in this work is necessarily different than in [16] and [30], thus the constant κ is not
present in the original Pushnitski formula.
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x ∈ R, is a family of first order, elliptic, differential operators on a compact, odd dimen-
sional manifold with asymptotic endpoints A±, boundedly invertible, and the family A (x),
x ∈ R, and A± with only discrete spectrum, were discussed by Atiyah, Patodi and Singer
in their seminal papers [2], [3], [4], [5]. Particularly the statement that the Fredholm index
of D is equal to the spectral flow of the family A (x), x ∈ R, through 0 was proven and
was prominently further discussed by Callias in [11]. An abstraction of this result to a
family of self-adjoint operators A (x), x ∈ R, with constant domain in a separable Hilbert
space H was shown by Robbin and Salamon in [34]. Here, the assumption was made that
Dom (A−) embeds densely and compactly (thus implying pure discrete spectra) into H
and that the endpoints A± are boundedly invertible in H.

The results concerned with spectral shift functions of the pairs (H+, H−) and (A+, A−)
respectively, originate from mathematical scattering theory. The spectral shift functions
stand in a defining connection with the perturbation determinant DH+/H− and DA+/A−

(cf. [6], [23], [24], [38]), and are the densities in M. G. Krein’s famous trace formula
(originally presented in [23]),

trH (f (A+)− f (A−)) =

∫
R
f ′ (µ) ξ (µ,A+, A−) dµ, (6)

ξ (·, A+, A−) denoting a spectral shift function of the pair (A+, A−) and f an appropriate
real function. This perspective enables us to discuss the “index=spectral flow”-problem
resulting in the formulas (4) and (5).

The first result connecting spectral flow with the Fredholm index was presented in
[8]. A formula relating the spectral shift functions of the pairs (H+, H−), and (A+, A−)
respectively, in an abstract operator setting, where the assumption on the discreteness
of the spectra of A±, A (x), x ∈ R, was suspended, and also reproducing in this setting
the connection of spectral flow with the Fredholm index, is due to Pushnitski in [30].
Therein, Pushnitski essentially replaced the discreteness of the spectra with a trace-class
assumption on the family of derivatives A′ (x), x ∈ R, i.e.∫

R

∥∥A′ (x)
∥∥
S1(H)

dx <∞, (7)

while A−, the “model operator”, is an arbitrary self-adjoint operator in H. Under this
assumption, it is shown that D is Fredholm and

ind (D) = ξ (0, H+, H−) = ξ (0, A+, A−) . (8)

Central to this result is the proof of the trace formula (coined Pushnitski formula by some
authors, the formula was first presented in the version of a finite dimensional Hilbert space
H by Callias in [11]),

trL2(R,H)

(
(H+ − z)−1 − (H− − z)−1

)
=

1

2z
trH

(
A+

(
A2

+ − z
)−1/2 −A−

(
A2
− − z

)−1/2
)
,

(9)

3



for z ∈ C\ [0,+∞), and the thereof derived formula connecting the spectral shift functions,

ξ (λ,H+, H−) =
1

π

∫ λ1/2

−λ1/2

ξ (µ)
(
λ− µ2

)−1/2
dµ, for a.e. λ > 0. (10)

After this breakthrough in [30] getting rid of the condition of discrete spectra, Pushnitski’s
results were generalized by Gesztesy, Latushkin, Makarov, Sukochev and Tomilov in [16],
which is the principal inspiration of this work.

The presence of resolvents in the trace formula (9) already suggests that a setting in
which one deals with relative trace-class perturbations, instead of the essential condition
(7), is desirable. This goal was achieved in [16], where the essential condition, taking the
place of (7), is ∫

R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
S1(H)

<∞. (11)

Furthermore, there are several minor conditions imposed on the family A (x), x ∈ R,
mainly concerned with (domain) properties of the operators A (x), x ∈ R, and measur-
ability and differentiability of the families A (x), x ∈ R, and A′ (x), x ∈ R, in a specific
sense. All these secondary conditions are implicitly satisfied in the setting of Pushnitski
[30], but must be additionally assumed in [16], to ensure the well-definedness of several
investigated operators and their domains in this unbounded setup.

Under these conditions and the essential condition (11), the authors of [16] were able
to show the trace formula (9) and Pushnitski’s formula (10), albeit with the minor effect
that the spectral shift functions ξ (·, H+, H−) and ξ (·, A+, A−) are no longer (Lebesgue-
)integrable functions, but are integrable with respect to an appropriate density function
times the Lebesgue measure on R. If we assume that A+ and A− are boundedly invertible
in H, it is also shown that D is Fredholm and the index formula (8) is generalized to the
result

ind (D) = SpFlow
(
(A (x))x∈R

)
= lim

ε↘0
ξ (ε,H+, H−)

= ξ (0, A+, A−)

= ind
(
EA− ((−∞, 0)) , EA+ ((−∞, 0))

)
= trH

(
EA− ((−∞, 0))− EA+ ((−∞, 0))

)
= π−1 lim

ε↘0
=
(

log
(

detH

(
(A+ − iε) (A− − iε)−1

)))
, (12)

with a choice of branch of log (detH (·)) on {z ∈ C, = (z) > 0}, according to (14). It is
also shown that

ξ (µ,A+, A−) = π−1 lim
ε↘0
=
(

log
(

detH

(
(A+ − µ− iε) (A− − µ− iε)−1

)))
, (13)

for a.e. µ ∈ R, where the branch of log (detH (·)) on {z ∈ C, = (z) > 0} is chosen such
that

lim
=(z)→+∞

log
(

detH

(
(A+ − z) (A− − z)−1

))
= 0. (14)
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Therefore, the work [16], especially in view of the trace formula (9), gives a complete
discussion of a general setup in which the right hand side of (9) is still sensible, and thus
exhausts the validity of the trace formula, which compares the resolvents of H+ and H−.
It should also be noted that in the survey paper [12] by Carey, Gesztesy, Levitina and
Sukochev, the results of [16] were put in relation to the (resolvent-regularized) Witten
index.

The goal of this work is, roughly speaking, a change of perspective from resolvents as
central objects to semi-groups. Therefore our essential conditions describing the trace-class
nature of the family A (x), x ∈ R are encoded in Hypothesis A1 (2.10) and Hypothesis A2
(2.11). They take the form

f (t, s) :=

∫
R

∥∥∥e−tA2
−A′ (x) e−sA

2
−

∥∥∥
S1(H)

dx, t, s > 0,

f ∈

{
I log−1/4,−1/4, for Hypothesis A1,

I log−3/4,−1/4 ∩ I
log
−1/4,−3/4, for Hypothesis A2,

(15)

where
(
f : (0,+∞)2 → R≥0

)
∈ I loga,b , if and only if for all t0 > 0,

∫ t0

0

∫ t0

0
log (t) log (s) tasbf (t, s) ds dt <∞. (16)

A comparison of the Hypotheses will be discussed in subsection 2.2, in particular it is
shown that they are both weaker than condition (11). The perturbation A (x) − A−,
x ∈ R, is not even necessarily relatively compact with respect to A−, which is the basic
novelty of the approach of this work.

These weaker requirements, however, come at a price. The first one is to be expected,
namely that we get the trace formulae (1), which are weaker than the trace formula (9).
Since one might expect from the aforementioned fact that A (x) − A−, x ∈ R, is not any
more relatively compact with respect to A−, we can not expect that the operator D is in
general Fredholm. However, it is shown that under the additional assumption of boundedly
invertible A±, that the operator D possesses a semi-group regularized Witten index (c.f.
[17]), and we obtain the weaker index formula (5), which generalizes the index formula
(12). We must also amend the choice of normalization for the spectral shift function
ξ (·, A+, A−), which yields the additional constant κ in formula (4)2. The second prize,
one has to pay, is more subtle. In [16], the authors used condition (11) to deduce some
technical facts on domains, closedness, and self-adjointness of the involved operators. The
Hypotheses A1 (2.10) and A2 (2.10), summarized in (15), do not allow these statements
to be made. We therefore have to assume Hypothesis B1 (2.12) or Hypothesis B2 (2.14),
which do not carry any additional requirements on the trace-class properties of the family
A (x), x ∈ R, but are in essence Kato-Rellich bounds.

2To differentiate the two versions of normalization, we choose the symbol η (·, A+, A−) in (4) instead
of ξ (·, A+, A−). The definition of η (·, A+, A−) is subject of Definition 3.9.
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In summary, we are able to weaken the requirements on the family A (x), x ∈ R, to
not relatively compact perturbations, while still retain an interesting trace formula for the
difference of semi-groups of H±, a formula for the Witten index of D, and a formula for
the spectral shift functions of (H+, H−) and (A+, A−) similar to the Pushnitski formula.

To close this introduction, let us give a syllabus of the chapters and the principal
results therein.

1.1 Summary of the chapters

In chapter 2 the precise setting and the assumptions made in this work are presented.
Subsection 2.1 introduces the family A (x), x ∈ R, and the operator A− more thoroughly,
and also fixes notational conventions, which we will use throughout this work. Subsection
2.2 formulates the additional conditions on the family A (x), x ∈ R, and discusses them,
also in comparison to the assumptions in [16], and demonstrate their viability in an ex-
ample. In the following subsection 2.3 we present certain classical, well-known operator
norm inequalities, and prove them by complex interpolation in a self contained manner.
In subsection 2.4 we give the first basic results concerned with the operators H± and D,
which deal mostly with issues of domain, closedness, normality, and self-adjointness. The
final subsection 2.5 of chapter 2 can be considered as the “engine room”, containing all
technical facts, which are needed, but do not fit in the other chapters. Among them are
some integral formulas and some basic facts on Bochner integrability and N-measurability
(c.f. [29]).
Chapter 3 contains the proofs of several trace-class memberships of operators in H and
L2 (R, H). Also the spectral shift functions of the pairs (A+, A−) and (H+, H−) are con-
structed. In the first subsection 3.1 we show that certain operators, derived from the
family A (x), x ∈ R, are trace-class operators in H, for example if Hypothesis A2 (2.11)
holds, we have (c.f. Lemma 3.3)(

1 +A2
−
)−1/4

(A (x)−A−)
(
1 +A2

−
)−3/4 ∈ S1 (H) , x ∈ R ∪ {±∞}(

1 +A2
−
)−3/4

(A (x)−A−)
(
1 +A2

−
)−1/4 ∈ S1 (H) , x ∈ R ∪ {±∞} . (17)

Furthermore, we give estimates of their trace-norms. These memberships allow us to
construct spectral shift functions of the pair (A+, A−) in the ensuing subsection 3.2. Here,
we get different versions (and integrability properties) of spectral shift functions based on
the choice of Hypothesis, and if the operators A± have a spectral gap at 0. In subsection
3.3, the bulk of that chapter, we discuss the trace-class memberships of several operators
in L2 (R, H), among which is the difference e−tH+ − e−tH− . We extensively use Duhamel’s
formula (sometimes also called Duhamel’s principle or Volterra series, c.f. [15]) for the
perturbation of semi-groups (c.f. Lemma 2.29) and the tensoriality of Hilbert-Schmidt-
operators (c.f. Lemma 3.10). Chapter 3 closes with subsection 3.4, in which we construct
the spectral shift function of the pair (H+, H−).

6



In chapter 4 we derive the trace formulae for t > 0

trL2(R,H)

(
H+e

−tH+ −H−e−tH−
)

= (4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)
,

trL2(R,H)

(
e−tH+ − e−tH−

)
= − lim

ε↘0
trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
,

(18)

which were already presented in the introduction as the principal result of this work. To
stress the importance of the “Trace Lemma” by Brüning and Seeley [10], subsection 4.1 is
entirely devoted to citing this important tool and laying out the general strategy of proof
for the trace formulae in the following subsections. The Trace Lemma provides us with
the integral kernel in a specific (operator valued) function space, enabling us to calculate
the trace by integrating over the (fibre-wise) trace of the diagonal of this kernel. In the
next subsection 4.2 we therefore construct integral kernels of the operators P+

t and Q+
t ,

which are given by

P+
t = D∗e−tH+ , Qtt = D∗γ (tH+) ,

γ (z) :=

{
1−e−z
z , z 6= 0

1, z = 0,
(19)

and satisfy for t > 0 on Dom (∂) ∩Dom
(
Â−

)
,

H+e
−tH+ −H−e−tH− =

[
∂, P+

t

]
+
[
A (X) , P+

t

]
, (20)

e−tH+ − e−tH− = −t
[
∂,Q+

t

]
− t
[
A (X) , Q+

t

]
. (21)

Since the identities (20) extend, after composition and pre-composition with e
−ε
(
−∂2+Â2

−

)
,

ε > 0, to identities holding in the trace-class of L2 (R, H), if Hypothesis A2 (2.11) is as-
sumed, we may use the Trace Lemma, and, due to the commutators with ∂, the funda-
mental theorem of calculus, to determine the trace as the trace in H of limx→+∞ k (x, x)
− k (−x,−x), where k are the appropriate integral kernels. In the final subsection 4.3
of chapter 4 we calculate the limits limx→+∞ k (x, x) and limx→−∞ k (x, x) of the two
relevant integral kernels in connection with P+

t and Q+
t in the weak operator topology.

Since these limits must coincide with the aforementioned limit in the trace class of H,
limx→+∞ k (x, x) − k (−x,−x), we conclude the trace formulae (18), which closes the
chapter.
Finally, chapter 5 presents our version of the Pushnitski formula, which is derived from
the trace formulae (18), involving the spectral shift functions of the pairs (A+, A−) and
(H+, H−), which were constructed in chapter 3,

ξ (λ,H+, H−) = κ+
1

π

∫ λ1/2

−λ1/2

ξ (µ,A+, A−)
(
λ− µ2

)−1/2
dµ, for a.e. λ > 0, (22)

where the indeterminacy κ is due to the nature of the first trace identity in (18), essentially
because the limits limz→±∞ ze

−tz2
= 0, t > 0, avoid an opportunity to normalize the

7



spectral shift function of (A+, A−) sensibly. This normalization issue can be fixed by
assuming a spectral gap at 0 of A±, and then the second identity of (18) is used to
determine3 κ to be the Witten index of D, indW (D), in this case, and we close the
chapter with the index formula

indW (D) := lim
t→+∞

trL2(R,H)

(
e−tD

∗D − e−tDD∗
)

= lim
t→+∞

lim
ε↘0

trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)

= κ. (23)

3In (22) we replace ξ (·, A+, A−) by η (·, A+, A−), which is constructed with the normalization of the
spectral gap assumption (c.f. Definition 3.9). For the rigorous formulation c.f. Theorem 5.3.
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2 Preliminaries

The goal of this chapter is to setup the examined operator family A (x) , x ∈ R, and the
operator A−, define the operators D0, H0, H±, and D, and derive basic functional analytic
properties of these operators.
The first subsection 2.1 fixes the notation used throughout this work and we introduce the
operator D0 in L2 (R, H), which plays a central role in the discussion of D as a perturbation
of D0. We also introduce the self-adjoint operator H0 = D∗0D0, and discuss its domain.
The following subsection 2.2 comprises of the presentation of the additional Hypotheses A1
(2.10) and A2 (2.11), which encode the trace-class assumption on the family A (x) , x ∈ R,
and the Hypotheses B1 (2.12) and B2 (2.14), which encode the Kato-Rellich-type bounds
on the family A (x) , x ∈ R. We discuss the significance of these conditions, compare
them to the assumptions made in [16], and illustrate the differences in an example. These
Hypotheses, especially B1 and B2, allow us in the next subsection 2.4 to introduce the
operators D and H± together with a discussion of their domains, showing that D is normal
with Dom (D∗) = Dom (D) = Dom (D0), and that the operators H± are non-negative and
self-adjoint on Dom (H±) = Dom (H0). We should emphasize that this whole chapter
orients itself largely at the preparatory sections in [16], and mainly presents the necessary
amendments.

2.1 Basic Definitions

Let us start with the disclaimer that well-known results, we do not explicitly cite, are
contained in any good textbook on analysis and functional analysis (for example [13], [14],
[31], [32], [33] or [39]).

Throughout the whole of this work we set H to be a separable, complex Hilbert space.
With i we denote the imaginary unit in C and with = and < the imaginary and real part,
respectively. Let us further fix the following notations.
L2 (R) denotes the space of Lebesgue square integrable elements over R. We introduce
the (separable,) complex Hilbert space L2 (R, H) as the completion of L2 (R) ⊗ H with
respect to the tensor Hilbert product. The induced norm on L2 (R, H) is equal to the
norm ‖·‖L2(R,H), given by

‖f‖2L2(R,H) :=

∫
R
‖f (x)‖2H dx, for f ∈ L2 (R, H) . (24)

Note that by this definition, membership of an element in L2 (R, H) automatically implies
its (Bochner)-measurability (c.f. the measurability theorem of Pettis in [1] or abstractly
via tensor products of Banach spaces [35]).

With B
(
H̃
)

we shall denote the bounded linear operators in a Hilbert space H̃.

For the identity in B
(
H̃
)

we use4 the letter 1, and for scalar multiples of the identity

operator we use the scalar itself as its symbol (for example (T − z)−1, z > 0, then denotes

4This clash of notation with scalar numbers is always manageable, the correct meaning is clear in all
contexts.
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the resolvent of T at z).
The domain of an operator T in a Hilbert space H̃ is denoted by Dom (T ).
If an operator T in a Hilbert space H̃ is closable, we denote its closure with T .
If the closure, T , is furthermore a bounded operator in H̃ we write {T} instead of T .

With Sp
(
H̃
)

we denote the space of Schatten-class operators of order p in a Hilbert space

H̃ and the corresponding norm with

‖·‖
Sp(H̃) .

In particular, S1 and S2 denote the trace-class and Hilbert-Schmidt operators respectively,
and with tr

H̃
we denote the trace in H̃.

We will also use the commonly utilized convention,

A .I B,

if there is a constant C ≥ 0, only dependent on the variables in the index set I, such that

A ≤ CB.

Finally we use the common abbreviation “a.e.” for “almost everywhere” in a measure
related context, and use the symbol 1M for the characteristic function of a (Lebesgue)
measurable set M . After we fixed the basic notation, let us introduce some notions central
in this work.
Let B (x), x ∈ R, be a family of (unbounded) operators in H with constant domain
Dom (B). We may define the “vertical multiplication” operator B (X).

Definition 2.1. The domain Dom (B (X)) consists of those elements g ∈ L2 (R, H), such
that

g (x) ∈ Dom (B (x)) , for a.e. x ∈ R,
(y 7→ B (y) g (y)) ∈ L2 (R, H) . (25)

Then define

(B (X) f) (x) := B (x) f (x) , for a.e. x ∈ R, and f ∈ Dom (B (X)) . (26)

If B0 is a fixed operator in H, let us define B̂0 := B0 (X), the constant vertical
multiplication, where B0 (x) := B0, x ∈ R. We note that, especially if B0 is closed in H,

we have Dom
(
B̂0

)
= L2 (R,Dom (B0)Γ), where Dom (B0)Γ :=

(
Dom (B0) , ‖·‖Dom(B0)

)
with

‖φ‖2Dom(B0) := ‖φ‖2H + ‖B0f‖2H , for φ ∈ H. (27)

Clearly, we also have Dom
(
B̂0

)
Γ

= L2 (R,Dom (B0)Γ) as Hilbert spaces. It should also

be noted that B̂0 is symmetric (respectively self-adjoint or normal) in L2 (R, H), if and only
if B0 is symmetric (respectively self-adjoint or normal) in H, which is a simple consequence
of Lemma 2.44, since constant operator families are N-measurable (c.f. Definition 2.42).

On L2 (R, H) we may define the “horizontal derivative” ∂ ≡ ∂H .
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Definition 2.2. The domain Dom (∂H) consists of those elements g ∈ L2 (R, H), such
that g is strongly locally absolutely continuous in H, and such that g′ ∈ L2 (R, H).
Then define

(∂Hf) (x) := f ′ (x) for a.e. x ∈ R and f ∈ Dom (∂H) . (28)

On L2 (R) we use the letter ∂C to avoid confusion.
We remind us of the usual convention of defining sums and products of unbounded oper-
ators A and B, i.e.

Dom (A+B) := Dom (A) ∩Dom (B) ,

(A+B) f := Af +Bf, for f ∈ Dom (A+B) ,

Dom (AB) := {f ∈ Dom (B) , Bf ∈ Dom (A)} ,
(AB) f := A (Bf) , for f ∈ Dom (AB) . (29)

These definitions are in line with the spectral calculus of a self-adjoint operator. We
therefore conclude that for a self-adjoint operator B0 in H we have the following equalities
of Hilbert spaces

Dom
(
B̂2

0

)
Γ

= Dom
(
B̂0

2
)

Γ
= L2

(
R,Dom

(
B2

0

)
Γ

)
. (30)

Let us now introduce the family of operators A (x) , x ∈ R, and the “model operator”
A− in H.

Definition 2.3. Let A− be a self-adjoint operator in H with domain Dom (A−).

Let A (x), x ∈ R, be a family of self-adjoint operators in H with Dom
(
A (x)2

)
= Dom

(
A2
−
)
, for x ∈ R, with

lim
x→−∞

〈φ,A (x)ψ〉H = 〈φ,A−ψ〉H , φ ∈ H, ψ ∈ Dom (A−) . (31)

Let A′ (x), x ∈ R, be a family of closed, symmetric operators in H with Dom (A′ (x))
⊇ Dom (A−), x ∈ R, and such that A′ (x) is a continuous, linear operator from Dom

(
A2
−
)

Γ
to Dom (A−)Γ for x ∈ R. Furthermore, the family A (x), x ∈ R is weakly absolutely
continuous with derivative A′ (x) on Dom (A−) and Dom

(
A2
−
)
, i.e. for all φ ∈ H and

ψ ∈ Dom (A−), we have

d

dx
〈φ,A (x)ψ〉H = 〈φ,A′ (x)ψ〉H , (32)

and for all φ ∈ Dom (A−) and ψ ∈ Dom
(
A2
−
)
, we have

d

dx
〈φ,A (x)ψ〉Dom(A−)Γ

= 〈φ,A′ (x)ψ〉Dom(A−)Γ
, (33)

for a.e. x ∈ R and that A′ (x) is weakly integrable over R on Dom (A−) and Dom
(
A2
−
)
,

i.e. the above displayed equations (32) and (33) hold in L1 (R), the Lebesgue integrable
elements over R. Finally, we require that the families A (x), x ∈ R, and A′ (x), x ∈ R, are
N-measurable (cf. Definition 2.42).
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Remark 2.4. A definition and short discussion of the last requirement, i.e. of N-
measurability, will be carried out at the end of subsection 2.5 by Definition 2.42 and
Lemma 2.44. For the moment, let us note that strong continuity of A′ (·) on Dom (A−)
imply both N-measurabilities.

Let us also introduce the operator D0 on L2 (R, H), which is the unperturbed version
of D, which we will later define and examine.

Definition 2.5. We define

D0 := ∂ + Â−.

Clearly D0 is densely defined, since the dense space C∞c (R)⊗Dom (A−) is contained
in the domain of D0. To further present the properties of D0, we cite [16, Lemma 4.2].

Lemma 2.6. 1. The graph norm ‖·‖Dom(D0) on Dom (D0)Γ is equivalent to the norm

on H1 (R, H)∩L2 (R,Dom (A−)Γ) defined as the maximum of the norms in H1 (R, H)5

and L2 (R,Dom (A−)Γ); consequently D0 is closed.

2. The adjoint D∗0 of the operator D0 in L2 (R, H) is given by

D∗0 = −∂ + Â−, Dom (D∗0) = Dom (D0) = Dom (∂) ∩Dom
(
Â−

)
. (34)

3. The operator D0 is normal in L2 (R, H).

4. The spectra of the operators D0 in L2 (R, H) and A− in H satisfy:

σ (D0) = σ (A−) + iR. (35)

The proof holds ad verbatim as presented in [16]. Since D0 is densely defined, closed
and normal, we may define the operator H0 in L2 (R, H).

Definition 2.7. We define

H0 := D∗0D0 = D0D
∗
0.

Since D0 is closed, we have that H0 is self-adjoint in L2 (R, H) and H0 ≥ 0. By the
general properties of polar decomposition we conclude further that

Dom
(
H

1/2
0

)
= Dom (D0) = Dom (D∗0) = Dom (∂) ∩Dom

(
Â−

)
. (36)

By using the Fourier transform, we may determine the domain of H0 more concretely.

5Here, H1 (R, H) denotes the space of locally absolutely continuous H-valued functions over R, with
derivative in L2 (R, H). Put differently, this is the space of first order, H-valued L2-Sobolev functions
over R. Of course H1 (R, H) = H1 (R) ⊗̂H, the Hilbert space tensor product of the space of first order
L2-Sobolev functions over R and H.
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Lemma 2.8. We have

H0 = −∂2 + Â2
−, (37)

and particularly

Dom (H0) = Dom
(
∂2
)
∩Dom

(
Â2
−

)
. (38)

Proof. We first note that for z /∈ {w ∈ R, w ≤ 0} the resolvent R (z, |D0|) of |D0| is given
by

(R (z, |D0|) f) (x) =
1

2π

∫
R

∫
R
e−i(x−y)ξ

(
z +

(
A2
− + ξ2

)1/2)−1
f (y) dy dξ. (39)

Further, for z /∈ R we have for the resolvent R (z, i∂) of i∂

(R (z, i∂) f) (x) =
1

2π

∫
R

∫
R
e−i(x−y)ξ (z + ξ)−1 f (y) dy dξ. (40)

Therefore, we note that for z /∈ R the resolvents of the operators |D0|, i∂, and ̂(A− + z)−1,

the resolvent of Â−, mutually commute. Thus, also their spectral projections E|D0|, EÂ− ,

and Ei∂ must be mutually commutative, and we obtain a commutative functional calculus
of the three operators. For n ∈ N put

Qn := E
Â−

([−n, n])E|D0| ([−n, n])Ei∂ ([−n, n]) . (41)

We note that the functional calculus implies that J :=
⋃
n∈N rg (Qn) is dense (by the

strong convergence of Qn to 1) in L2 (R, H). For a self-adjoint operator S in H we denote
with Sn the sequence of bounded operators given by Sn := S1[−n,n] (S). Thus for f ∈ J
and for S ∈

{
Â−, i∂

}
we have by Lemma 2.6,

∥∥∥S2
n (1 +H0)−1 f

∥∥∥
L2(R,H)

=

∥∥∥∥(Sn (1 + |D0|)−1
)2

(1 + |D0|)2
(

1 + |D0|2
)−1

f

∥∥∥∥
L2(R,H)

≤ 12 · sup
λ≥0

∣∣∣∣ 1 + λ2

(1 + λ)2

∣∣∣∣ ‖f‖L2(R,H) = ‖f‖L2(R,H) . (42)

Since J is dense in L2 (R, H), the above inequality (42) extends to arbitrary f ∈ L2 (R, H),
also it holds for all n ∈ N and therefore in the (strong) limit. Thus we have∥∥∥(1 +H0)−1 f

∥∥∥
Dom(∂2)∩Dom

(
Â2
−

) ≤ 4 ‖f‖L2(R,H) . (43)

This implies Dom (H0) ⊆ Dom
(
∂2
)
∩Dom

(
Â2
−

)
. For f, g ∈ Dom (H0) we obtain further-

more

〈Â−f, ∂g〉L2(R,H) = lim
m,n→∞

〈Â−mf,−i (i∂)n g〉L2(R,H)
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= − lim
m,n→∞

〈−i (i∂)n f, Â−mg〉L2(R,H)

= −〈∂f, Â−g〉L2(R,H). (44)

Consequently we have

〈H0f, g〉L2(R,H) = 〈D0f,D0g〉L2(R,H) = 〈
(
∂ + Â−

)
f,
(
∂ + Â−

)
g〉L2(R,H)

= 〈∂f, ∂g〉L2(R,H) + 〈Â−f, Â−g〉L2(R,H)

= 〈
(
−∂2 + Â2

−

)
f, g〉L2(R,H). (45)

By the density of Dom (H0) in L2 (R, H) we conclude

H0 ⊆ −∂2 + Â2
−. (46)

Since T0 := −∂2 + Â2
− is densely defined, and symmetric we have

T0 ⊆ T ∗0 ⊆ H∗0 = H0 ⊆ T0, (47)

which shows that T0 = H0. �

2.2 Hypotheses

After we fixed the basic requirements on the operator A− and the family A (x), x ∈ R,
we may specify their relationship by introducing a trace-class membership and certain
integrability conditions. Before we do so, we introduce for convenience the following
recurring space of functions.

Definition 2.9. For α, β ∈ R, let Iα,β denote the space of non-negative, measurable
functions f : (0,∞)2 → [0,∞), such that for all t0 > 0,∫ t0

0

∫ t0

0
xαyβf (x, y) dy dx <∞. (48)

Let I logα,β denote the space of non-negative, measurable functions f : (0,∞)2 → [0,∞), such
that for all t0 > 0, ∫ t0

0

∫ t0

0
xα |log (x)| yβ |log (y)| f (x, y) dy dx <∞. (49)

Let us specify the trace-class assumptions on the family A (x), x ∈ R. This is the
content of the following two Hypotheses A1 (2.10) and A2 (2.11).

Hypothesis 2.10 (Hypothesis A1). We assume that for s, t > 0 and a.e. x ∈ R the
operator

e−tA
2
−A′ (x) e−sA

2
−

14



is a trace-class operator in H and that

y 7→
∥∥∥e−tA2

−A′ (y) e−sA
2
−

∥∥∥
S1(H)

is integrable over R. Finally we require that(
(u, v) 7→

∫
R

∥∥∥e−uA2
−A′ (y) e−vA

2
−

∥∥∥
S1(H)

dy

)
∈ I log−1/4,−1/4. (50)

Hypothesis 2.11 (Hypothesis A2). We assume that for s, t > 0 and a.e. x ∈ R, the
operator

e−tA
2
−A′ (x) e−sA

2
− ,

is a trace-class operator in H and that

y 7→
∥∥∥e−tA2

−A′ (y) e−sA
2
−

∥∥∥
S1(H)

,

is integrable over R. Finally, we require that(
(u, v) 7→

∫
R

∥∥∥e−uA2
−A′ (y) e−vA

2
−

∥∥∥
S1(H)

dy

)
∈ I log−3/4,−1/4 ∩ I

log
−1/4,−3/4. (51)

It is obvious that Hypothesis A2 (2.11) is stronger than Hypothesis A1 (2.10), however,
the distinction of the two is stressed here, since for some parts of this work it is sufficient
to just assume Hypothesis A1 (2.10) (e.g. the central Theorem 3.19).

We also need additional assumptions on the uniformity of the family A (x) , x ∈ R.
This is owed to the fact that Hypothesis A1 (2.10) and A2 (2.11) do not imply Kato-Rellich
bounds on the perturbations A (x) − A−, x ∈ R, relative to A− and D − D0 relative to
D0.
Furthermore, Duhamel’s formula (cf. Lemma 2.29), which is used extensively in chapter
3, especially subsection 3.3, requires in these settings that the domains of H+ and H−
coincide with the domain of H0 (c.f. Definition 2.26), which is another deviation from [16]

(the conditions therein justify only Dom (H+)1/2 = Dom (H−)1/2 = Dom (H0)1/2). Thus,
while our trace-class assumptions are weaker than in [16], the Hypotheses B1 (2.12) and
B2 (2.14) below are stricter than the implicit conditions in [16] (more precisely these are
derived from the trace-class assumption [16, Hypothesis 2.1], c.f. [16, Lemma 4.4]).

Hypothesis 2.12 (Hypothesis B1). Assume that for all φ ∈ Dom (A−) and ψ ∈ Dom
(
A2
−
)

we have 〈φ,A′ (·)ψ〉Dom(A−)Γ
∈ L1 (R) and∫ x

x0

〈φ,A′ (y)ψ〉Dom(A−)Γ
dy = 〈φ, (A (x)−A (x0))ψ〉Dom(A−)Γ

, x, x0 ∈ R,

lim
x→−∞

〈φ,A (x)ψ〉Dom(A−)Γ
= 〈φ,A−ψ〉Dom(A−)Γ

,

x 7→ A (x)φ is continuous. (52)
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We also assume that

ess sup
x∈R

∥∥∥A′ (x)
(
A2
− + z

)−1
∥∥∥
B(H)

z→+∞−−−−→ 0. (53)

Furthermore we assume that there exists z > 1, such that

sup
x∈R

∥∥∥(A (x)2 −A2
−

) (
A2
− + z

)−1
∥∥∥
B(H)

< 1. (54)

Remark 2.13. Note that condition (53) is satisfied if

ess sup
x∈R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
B(H)

<∞, (55)

or in other words, if A′ (x), x ∈ R, is an essentially uniformly bounded family of bounded
operators from Dom (A−)Γ to H.

As an alternative to Hypothesis B1 (2.12) we give a version, which is centred around a
family of “scaling” operators B (x) , x ∈ R. The purpose here is to mitigate the following
issue with Hypothesis B1 (2.12), which does not occur in [16, Hypothesis 2.1].
Assume that we introduce a sufficiently regular, compactly supported scalar function
ρ (x) , x ∈ R. If we consider the commutative family A (x) = ρ (x)A− + A−, x ∈ R,
then the Hypotheses A1 (2.10), A2 (2.11) or [16, Hypothesis 2.1] can be satisfied for all
choices of ρ, if A− possesses an appropriate discrete spectrum. Also conditions (52) and
(53) allow for such non-trivial choices, which can be easily verified. However, if A− is
unbounded, then condition (54) is equivalent to

sup
x∈R

∣∣∣ρ (x)2 + 2ρ (x)
∣∣∣ < 1, (56)

which is very restrictive and even shows that it fails to hold, if ρ is replaced by a multiple
λρ with a sufficiently large number λ (of course for ρ 6= 0.). This strange “non-scalability”
of condition (54) is disturbing, if we consider the overall goal of finding a version of
the “index=spectral flow”-theorem, where both sides of the equation are invariant under
arbitrarily scaling the perturbation A (x)−A−, x ∈ R, by a constant.
We therefore introduce the slightly more complicated to formulate Hypothesis B2 (2.14),
which, however, retains stability under the above demonstrated scaling.

Hypothesis 2.14 (Hypothesis B2). We assume there is a strongly continuous family
of bounded operators (B (x))x∈R ⊂ B (H) ∩ B (Dom (A−)Γ) ∩ B

(
Dom

(
A2
−
)

Γ

)
and that

there exists a bounded operator B0 ∈ B (H)∩B (Dom (A−)Γ)∩B
(
Dom

(
A2
−
)

Γ

)
, which is

invertible in H, Dom (A−)Γ and in Dom
(
A2
−
)

Γ
.

We assume that

sup
x∈R

∥∥∥∥A′ (x)
(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

z→+∞−−−−→ 0. (57)
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Furthermore we assume that for

R1 (x) := A (x)−B (x)∗A−B (x) ,

R2 (x) := A (x)2 − (B (x)∗A−B (x))
2
, (58)

there exist C <∞, 0 < ε < 1, and 0 ≤ α < 1 such that for i ∈ {1, 2}

sup
x∈R

∥∥∥∥((B (x)∗A−B (x))
i − (B∗0A−B0)i

)(
(B∗0A−B0)2 + 1

)−i/2∥∥∥∥
B(H)

≤ ε, (59)

sup
x∈R

∥∥∥∥Ri (x)
(

(B∗0A−B0)2 + 1
)−iα/2∥∥∥∥

B(H)

≤ C. (60)

To give Hypothesis B2 (2.14) some perspective, motivated from the theory of pseudo-
differential operators (c.f. [36]), we should think of B (x) , x ∈ R, as a family of scaling
operators, thus B (x)∗A−B (x) , x ∈ R, as the “leading operators” and of the operator
families Ri (x) , x ∈ R, as operators of “lower order” (condition (60)).

Let us now compare the central Hypotheses A1 (2.10) and A2 (2.11) to the condition∫
R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
S1(H)

dx <∞, (61)

which is the central condition of [16, Hypothesis 2.1].

Lemma 2.15. Assume [16, Hypothesis 2.1] (in particular condition ( 61)). Then also
Hypothesis A2 ( 2.11) and thus Hypothesis A1 ( 2.10) hold. More precisely, [16, Hypothesis
2.1] implies that for t, s > 0 the operator,

e−tA
2
−A′ (x) e−sA

2
− ,

is trace-class in H, the function

y 7→
∥∥∥e−tA2

−A′ (y) e−sA
2
−

∥∥∥
S1(H)

,

is integrable over R and we obtain for all ε > 0,(
(u, v) 7→

∫
R

∥∥∥e−uA2
−A′ (y) e−vA

2
−

∥∥∥
S1(H)

dy

)
∈ I log−1+ε,−1/2+ε ∩ I

log
−1/2+ε,−1+ε. (62)

Proof. For t, s > 0 we may write

e−tA
2
−A′ (x) e−sA

2
− = e−tA

2
−
(
A′ (x)

(
A2
− + 1

)−1/2
)((

A2
− + 1

)+1/2
e−sA

2
−
)
, (63)

which immediately shows that e−tA
2
−A′ (x) e−sA

2
− is trace-class in H and that

y 7→
∥∥∥e−tA2

−A′ (y) e−sA
2
−

∥∥∥
S1(H)
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is integrable over R by [16, Hypothesis 2.1]. On the other hand, if an operator T is trace
class in H, then also T ∗ is trace-class in H, with the same trace norm6. Therefore, we
estimate for t0 > 0, by Corollary 2.39,∫ t0

0

∫ t0

0

∫
R

log (t) log (s) t−1+εs−1/2+ε
∥∥∥e−tA2

−A′ (x) e−sA
2
−

∥∥∥
S1(H)

dx dt ds

≤
∫ t0

0

∫ t0

0
log (t) log (s) t−1+εs−1/2+ε∫
R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
S1(H)

∥∥∥(A2
− + 1

)1/2
e−sA

2
−

∥∥∥
B(H)

dx dt ds

.t0

∫
R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
S1(H)

dx ·
∫ t0

0

∫ t0

0
log (t) log (s) t−1+εs−1+εdt ds

<∞.∫ t0

0

∫ t0

0

∫
R

log (t) log (s) t−1/2+εs−1+ε
∥∥∥e−tA2

−A′ (x) e−sA
2
−

∥∥∥
S1(H)

dx dt ds

≤
∫ t0

0

∫ t0

0
log (t) log (s) t−1/2+εs−1+ε

∥∥∥(A2
− + 1

)1/2
e−tA

2
−

∥∥∥
B(H)∫

R

∥∥∥{(A2
− + 1

)−1/2
A′ (x)

}∥∥∥
S1(H)

dx dt ds

.t0

∫
R

∥∥∥A′ (x)
(
A2
− + 1

)−1/2
∥∥∥
S1(H)

dx ·
∫ t0

0

∫ t0

0
log (t) log (s) t−1+εs−1+εdt ds

<∞. (64)

Thus we conclude that(
(u, v) 7→

∫
R

∥∥∥e−uA2
−A′ (y) e−vA

2
−

∥∥∥
S1(H)

dy

)
∈ I log−1+ε,−1/2+ε ∩ I

log
−1/2+ε,−1+ε, (65)

which implies Hypothesis A2 (2.10) and A1 (2.10). �

Remark 2.16. In view of the estimates in (64), we note that Hypothesis A2 (2.11) is still
satisfied if we replace condition (61) in [16, Hypothesis 2.1] by (the weaker requirement)∫

R

∥∥∥(1 +A2
−
)−1/4+ε

A′ (x)
(
1 +A2

−
)−3/4+ε

∥∥∥
S1(H)

dx <∞,∫
R

∥∥∥(1 +A2
−
)−3/4+ε

A′ (x)
(
1 +A2

−
)−1/4+ε

∥∥∥
S1(H)

dx <∞, (66)

for some ε > 0.

6Since T = S1S2 splits into two Hilbert-Schmidt operators in H with
‖S1‖S2(H) = ‖S2‖S2(H) = ‖T‖1/2

S1(H)
, we conclude that T ∗ = S∗2S

∗
1 is the product of two Hilbert-

Schmidt operators, because the Schwartz kernels of S∗i are (x, y) 7→ ki (y, x), if ki are the Schwartz
kernels of Si, for i = 1, 2. The Hilbert-Schmidt norms of S∗1 and S∗2 are the same as those of S1, and
S2 respectively. Thus T ∗ is trace-class with trace-norm ‖T ∗‖S1(H) ≤ ‖T‖S1(H). If we apply the adjoint
again, we achieve equality of the trace-norms.
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To illustrate the last Remark, let us duplicate [16, Example 3.15] and amend it, such
that Hypothesis A2 (2.11) is satisfied. Note that versions of the cited example and the
example below have been discussed in [37] and originated from [7].

Example 2.17. Let n, k ∈ N, k > p > 2
3n, q > n/2 and ε > 0. Consider

0 ≤ V− ∈ L2
(
Rn,

(
1 + |ξ|2

)q
dnξ
)
∩ L∞ (Rn,dnξ) ,

0 ≤ V (x, ·) ∈ L2
(
Rn,

(
1 + |ξ|2

)q
dnξ
)
∩ L∞ (Rn,dnξ) ,

∂xV (x, ·) ∈ L2
(
Rn,

(
1 + |ξ|2

)q
dnξ
)
∩ L∞ (Rn,dnξ) ,

R 3 x 7→ ∂xV (x, ·) ∈ Ck (R, L∞ (Rn, dnξ)) ,∫
R
‖∂xV (x, ·)‖L2(Rn,(1+|ξ|2)

q
dnξ) dx <∞. (67)

If we denote the operator of multiplication by V−, V , and ∂xV in L2 (Rn, dnx) by the same
letter, we may introduce

A− := (−∆)p/2 + V− + ε, Dom (A−) = Dom
(

(−∆)p/2
)

= W p,2 (Rn) ,

A (x) := A− + V (x, ·)− V−, Dom (A (x)) = Dom (A−) = W p,2 (Rn) , (68)

where −∆ is the self-adjoint Laplacian in L2 (Rn, dnξ), with domain W 2,2 (Rn), W k,2 (Rn)
denoting the L2-Sobolev spaces of order k. The domain properties are easily checked,
because V (x, ·) , x ∈ R and V− are L∞ (Rn)-elements, thus constituting bounded multi-
plication operators in L2 (Rn). Since p > 2

3n and q > n/2 we have for some δ > 0 small
enough

ξ 7→
(
|ξ|2 + 1

)− 3
4
p+δ
∈ L2

(
Rn,

(
1 + |ξ|2

)q
dnξ
)
, (69)

and thus, applying [37, Corollary 4.8], we obtain for δ > 0 small enough,

[∂xV (x, ·)] ((−∆)p + 1)−3/4+δ ∈ S1
(
L2 (Rn, dnξ)

)
, x ∈ R, (70)

which implies for δ > 0 small enough,

A′ (x)
(
A2
− + 1

)−3/4+δ ∈ S1 (H) , x ∈ R, (71)

with H = L2 (Rn,dnξ). Thus, in consideration of Remark 2.16, we conclude that Hypo-
thesis A2 (2.11) holds for this family of operators A (x) , x ∈ R.
Note also that the Ck-regularity and L∞-conditions in (67) imply that, on the one hand
Hypothesis B2 (2.14), with the trivial choice B0 = B (x) = 1, x ∈ R, holds for the family
A (x) , x ∈ R, while on the other hand also the remaining conditions from Definition 2.3
are satisfied.

19



Example 2.17 shows that we are able to decrease the power of the Laplacian power
from p > n in [16, Example 3.15] to p > 2

3n here, while we have to increase the regularity
of V from C1 in [16, Example 3.15] to Ck, k > n, to cope with our domain requirements.

With this example illustrating the trade-off between [16] and our work, we close the
discussion of the Hypotheses. Before we proceed to present the consequences of the hypo-
theses, let us review a selection of classical operator norm inequalities, which we will use
in abundance.

2.3 Some operator norm inequalities

Operator norm inequalities are a field in its own right with many well-known results (for
example, and taking a central role, the famous Heinz and Heinz-Kato inequalities (c.f.
[19],[21])). This subsection is dedicated to review some of those inequalities, which have
been used in some related form also in [16, Theorem 4.1] and [26], and are also of some
relevance to theory of Hilbert scales (c.f. [9]). However, since we will use some of them
regularly we will prove them here in a self-contained manner.

Let T be an (unbounded,) positive operator in a Hilbert space H and let S be densely
defined, and closable in H. It should be noted that in this situation, we have always the
following implications:

Dom
(
S
)
⊇ Dom (T ) , ST−1 is densely defined,

⇐⇒Dom
(
S
)

Γ
⊇ Dom (T )Γ , ST

−1 is densely defined,

⇐⇒
{
ST−1

}
=
{
ST−1

}
exist. (72)

Dom (S) ⊇ Dom (T ) =⇒
{
ST−1

}
=
{
ST−1

}
exist. (73)

The first equivalence of the first line is due to the closed graph theorem. For the
implication of the second line one uses the first line. In both lines one uses that ST−1 is
closable and ST−1 = ST−1.

Let us present an important consequence of the method of complex interpolation for
operator norms.

Lemma 2.18. If
{
T−1S

}
and

{
ST−1

}
exist, then so does

{
T−xST−1+x

}
, for all x ∈

[0, 1]. Furthermore∥∥{T−xST−1+x
}∥∥

B(H)
≤
∥∥{ST−1

}∥∥1−x
B(H)

·
∥∥{T−1S

}∥∥x
B(H)

, x ∈ [0, 1] . (74)

If additionally Dom (S) ⊇ Dom (T ), then also
{
T−xST−1+x

}
, x ∈ [0, 1], exists and{

T−xST−1+x
}

=
{
T−xST−1+x

}
, x ∈ [0, 1].

Proof. We first show that for x ∈ [0, 1], the operator T−xST−1+x is closable. Let
φn ∈ Dom

(
T−xST−1+x

)
be a sequence such that φn → 0 in H and T−xST−1+xφn → ψ

in H. Let C = T−1S. Then T−xST−1+xφn = T 1−xCT−1+xφn. Since the operator T 1−x

has a bounded inverse, we conclude

CT−1+xφn → T−1+xψ in H. (75)
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Since T−1+x is bounded we have that T−1+xφn → 0 in H. Because C is closable
and T−1+xφn ∈ Dom (C) we conclude that T−1+xψ = 0 and thus ψ = 0. Therefore
T−xST−1+x is closable.
Let φ ∈ H and ψ ∈ Dom (T ) ⊆ Dom

(
S
)

and define

fφ,ψ (z) := 〈φ, T−zST−1+zψ〉H . (76)

The function f is holomorphic on {z ∈ C, 0 < <z < 1}. Define

Mφ,ψ (x) := sup
y∈R
|f (x+ iy)| , (77)

the supremum on each vertical line through x. Therefore, by Hadamard’s Three-lines
Theorem (c.f. [32, p.33-34]), we have

Mφ,ψ (x) ≤Mφ,ψ (0)1−xMφ,ψ (1)x . (78)

Furthermore we have that

T−xST−1+x
1[0,n] (T )ψ

n→∞−−−→ T−xST−1+xψ, (79)

since ψ ∈ Dom (T ). But then, by inequality (78), we have for all n ∈ N and by putting

X := {φ ∈ H,ψ ∈ Dom (T ) |‖φ‖ = ‖ψ‖ = 1} , (80)

the inequality∥∥T−xST−1+x
1[0,n] (T )

∥∥
B(H)

≤ sup
ψ∈Dom(T ),‖ψ‖=1

y∈R

∥∥T−x−iyST−1+x+iyψ
∥∥
H

= sup
(φ,ψ)∈X

Mφ,ψ (x)

≤ sup
(φ,ψ)∈X

Mφ,ψ (0)1−x · sup
(φ,ψ)∈X

Mφ,ψ (1)x

≤
∥∥{ST−1

}∥∥1−x
B(H)

·
∥∥{T−1S

}∥∥x
B(H)

. (81)

Since Dom (T ) is dense, we conclude, by the uniform boundedness principle, that
T−xST−1+x

1[0,n] (T ) must converge strongly on H to some linear bounded operator B
in H. On the other hand, for ψ ∈ H, we see that

ψn := 1[0,n] (T )ψ ∈ Dom (T ) ⊆ Dom
(
T−xST−1+x

)
, (82)

and ψn → ψ inH. Furthermore, T−xST−1+xψn
n→∞−−−→ Bψ inH. Since T−xST−1+x is clos-

able, we conclude that ψ ∈ Dom
(
T−xST−1+x

)
and B = T−xST−1+x. So

{
T−xST−1+x

}
exists and we can estimate the operator norm, according to the inequality (81),∥∥{T−xST−1+x

}∥∥
B(H)

= ‖B‖B(H) ≤
∥∥{ST−1

}∥∥1−x ·
∥∥{T−1S

}∥∥x
B(H)

. (83)

In the case that Dom (S) ⊇ Dom (T ), we can copy the proof ad verbatim, starting with the
construction of fφ,ψ (z), and ending with the last line by replacing S with S everywhere.
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Therefore both
{
T−xST−1+x

}
and

{
T−xST−1+x

}
exist. Clearly both are bounded oper-

ators in H, which coincide on the dense subset Dom (T ) of H (Because they are closures
of operators already coinciding on Dom (T )). Therefore{

T−xST−1+x
}

=
{
T−xST−1+x

}
. (84)

�

The above interpolation lemma raises the question in which cases
{
T−1S

}
exists.

Lemma 2.19. Let B be a bounded operator in H. Assume {S∗B∗} exists, then also {BS}
exists, and

‖{BS}‖B(H) ≤ ‖{S
∗B∗}‖B(H) . (85)

Proof. Since S is densely defined, S∗ exists and we have

(BS)∗ = S∗B∗, (86)

which is an everywhere defined operator, in particular the adjoint of BS is densely defined
and therefore BS is closable.
On Dom

(
S
)

we may write, using the right side polar decomposition of S,

BS = BCP,

C := |S∗| =
(
SS∗

)1/2
, (87)

for an appropriate partial isometry P . Let Cn := 1[−n,n] (C). Then BCnP converges
strongly on Dom (S) to BS. On the other hand,

‖BCnP‖B(H) ≤ ‖BCn‖B(H) = ‖CnB∗‖B(H) . (88)

Here, we used the self-adjointness of Cn. Since CB∗ is a bounded operator, because
Dom (C)Γ = Dom (S∗)Γ and {S∗B∗} exists, the terms of (88) must be uniformly bounded
in n by ‖{CB∗}‖B(H). Hence, by the uniform boundedness principle, BCnP converges
strongly to a bounded operator A in H. Since taking adjoints is continuous with respect
to the weak operator topology, we have for φ, ψ ∈ H,

〈φ, S∗B∗ψ〉H
n→∞←−−− 〈φ, P ∗CnB∗ψ〉H

n→∞−−−→ 〈φ,A∗ψ〉H , (89)

and thus A∗ = S∗B∗. By equality (86) we therefore find

A = A∗∗ = (S∗B∗)∗ = (BS)∗∗ = BS, (90)

so {BS} exists. Finally we have by the remark following (88),

‖{BS}‖B(H) ≤ ‖{CB
∗}‖B(H) = ‖{S∗B∗}‖B(H) . (91)

�
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Remark 2.20. Especially, if S is symmetric and Dom (S) ⊇ Dom (T ), the prerequisites
of Lemma 2.19 are satisfied. Therefore both

{
T−1S

}
and

{
ST−1

}
exist, and we may

conclude by Lemma 2.18, that also
{
T−xST−1+x

}
exists for x ∈ [0, 1], and,∥∥{T−xST−1+x

}∥∥
B(H)

≤
∥∥ST−1

∥∥
B(H)

, x ∈ [0, 1] . (92)

Finally, we present the following norm inequality, involving the powers of both S and
T−1, and is sometimes referred to as the Cordes’ inequality.

Lemma 2.21. Let S be additionally non-negative and self-adjoint and assume
{
ST−1

}
exists. Then, for x ∈ [0, 1], also {SxT−x} exists, and∥∥{SxT−x}∥∥

B(H)
≤
∥∥{ST−1

}∥∥x
B(H)

. (93)

Proof. We begin by noting that SxT−x is closed, since Sx is closed and T−x is bounded.
The rest of the proof is similar to the proof of Lemma 2.18, so we will only give an outline.
For φ ∈ H and ψ ∈ Dom (T ) we define

gφ,ψ (z) := 〈φ, SzT−zψ〉H , (94)

which is holomorphic on {z ∈ C, 0 < <z < 1}. Taking suprema on vertical lines and over
φ and ψ appropriately, we arrive at the estimate∥∥SxT−x1[0,n] (T )

∥∥
B(H)

≤ 1 ·
∥∥{ST−1

}∥∥x
B(H)

, (95)

using Hadamard’s three-lines theorem. The uniform boundedness principle allows us to
conclude that the above estimated sequence of bounded operators must converge to a
bounded operator, satisfying the same estimate in norm. This limit, however, must also
be the closure of SxT−x. �

An obvious first use of the above norm inequality is to apply it to the family A (x),
x ∈ R, and its properties in Definition 2.3.

Corollary 2.22. Dom (A (x)) = Dom (A−) , x ∈ R.

Proof. Since we have equality of domains Dom
(
A (x)2

)
= Dom

(
A2
−
)
, x ∈ R, we conclude

that {(
1 +A (x)2

) (
1 +A2

−
)−1
}
, x ∈ R,

exists. By Lemma 2.21 we conclude that also{(
1 +A (x)2

)1/2 (
1 +A2

−
)−1/2

}
, x ∈ R,

exists. Because

Dom (A−) = Dom
((

1 +A2
−
)1/2)

, Dom (A (x)) = Dom

((
1 +A (x)2

)1/2
)
, x ∈ R,

(96)

by the functional calculus of the involved operators, the inclusion Dom (A (x)) ⊇ Dom (A−)
must hold. By interchanging the roles of A− and A (x), x ∈ R, we also have the reverse
inclusion Dom (A (x)) ⊆ Dom (A−), x ∈ R. �
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In the next subsection we will discuss the first consequences of the Hypotheses B1
(2.12) or B2 (2.14) for the family A (x) , x ∈ R, and we will make some further use of the
norm inequalities in this subsection.

2.4 Basic properties and further definitions

The goal of this subsection is to introduce the operators A+ in H, D, and H± in L2 (R, H),
which are the basic objects of inquiry of this work. We do so by applying the Kato-
Rellich estimates from Hypothesis B1 (2.12) or Hypothesis B2 (2.14) to the (unperturbed)
operators D0 and H0. We therefore follow the approach in [16] closely, however with the
necessary amendments. We close the subsection by giving a version of Duhamel’s formula,
and we introduce several operators comprised of D and H±, which play a key role in
calculating the trace formula later on.

We begin by discussing a uniform norm bound on the family A (x), x ∈ R.

Lemma 2.23. supx∈R ‖A (x)‖B(Dom(A−)Γ,H)+supx∈R ‖A (x)‖B(Dom(A2
−)

Γ
,Dom(A−)Γ) <∞.

Proof. For φ ∈ H and ψ ∈ Dom (A−), we know that (y 7→ 〈φ,A′ (y)ψ〉H) ∈ L1 (R), by
Definition 2.3. Therefore,

sup
x∈R
|〈φ, (A (x)−A−)ψ〉H | ≤

∫
R

∣∣〈φ,A′ (y)ψ〉H
∣∣dy <∞, (97)

and thus, by the uniform boundedness principle applied to φ ∈ H and ψ ∈ Dom (A−), we
obtain

sup
x∈R
‖A (x)−A−‖B(Dom(A−)Γ,H) <∞, (98)

which shows, since A− is a constant operator in B (Dom (A−)Γ , H), that

sup
x∈R
‖A (x)‖B(Dom(A−)Γ,H) <∞. (99)

The inequality

sup
x∈R
‖A (x)‖B(Dom(A2

−)
Γ
,Dom(A−)Γ) <∞, (100)

is shown analogously. �

Let us show that the chosen Hypotheses B1 (2.12) or B2 (2.14) and Definition 2.3
already suffice to determine the limit of the family A (x), x ∈ R, at +∞. This limiting
operator A+ retains some of the properties A− possesses, the limit of A (x) , x ∈ R at
−∞, underlining the symmetry of our setup.

Lemma 2.24. Assume one of the Hypotheses B1 ( 2.12) or B2 ( 2.14). Then there exists
a self-adjoint operator A+ in H with domain Dom (A+) = Dom (A−), such that for φ ∈ H
and ψ ∈ Dom (A−), we have

〈φ, (A+ −A−)ψ〉H =

∫
R
〈φ,A′ (y)ψ〉Hdy. (101)

Furthermore, we have Dom (A+)Γ = Dom (A−)Γ and Dom
(
A2

+

)
Γ

= Dom
(
A2
−
)

Γ
.
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Proof. We start by defining the operator A+ with Dom (A+) := Dom (A−) by equation
(101). Apart from the apparent linearity of A+, we may also conclude that A+ is symmet-
ric. However, the self-adjointness of A+ requires the Hypotheses B1 (2.12) or B2 (2.14).
Let us first assume Hypothesis B1 (2.12). Additional to equation (101), the operator A+

must also fulfil the following equation for φ ∈ Dom (A−) and ψ ∈ Dom
(
A2
−
)
:

〈φ, (A+ −A−)ψ〉Dom(A−)Γ
=

∫
R
〈φ,A′ (y)ψ〉Dom(A−)Γ

dy. (102)

This implies that A+ maps Dom
(
A2
−
)

into Dom (A−). Analogous to Lemma 2.23 we may
conclude, by the uniform boundedness principle, and by denoting A (+∞) := A+, that

sup
x∈R∪{+∞}

‖A (x)‖B(Dom(A2
−)

Γ
,Dom(A−)Γ) <∞,

sup
x∈R∪{+∞}

‖A (x)‖B(Dom(A−)Γ,H) <∞, (103)

The symmetric operator A2
+ is thus densely defined on Dom

(
A2
−
)
, and we obtain for

φ ∈ H and ψ ∈ Dom
(
A2
−
)
,

〈φ,
(
A2

+ −A2
−
)
ψ〉H =

∫
R
〈φ,
(
A (y)A′ (y) +A′ (y)A (y)

)
ψ〉Hdy

= lim
x→+∞

∫ x

−∞
〈φ,
(
A (y)A′ (y) +A′ (y)A (y)

)
ψ〉Hdy

= lim
x→+∞

〈φ,
(
A (x)2 −A2

−

)
ψ〉H . (104)

The first and third equality can be shown by assuming φ ∈ Dom (A−) first, considering
the terms 〈A+φ,A+ψ〉H and 〈A (x)φ,A (x)ψ〉H , pushing all operators in the integral
representation to the side of ψ, and then extending the equation by density for all φ ∈ H.
Equation (104) also shows that for z > 1 large enough, we have∥∥∥(A2

+ −A2
−
) (
A2
− + z

)−1
∥∥∥
B(H)

≤ sup
x∈R

∥∥∥(A (x)2 −A2
−

) (
A2
− + z

)−1
∥∥∥
B(H)

< 1. (105)

For z > 1 large enough we thus have the norm convergent (Neumann-) series in B (H),

R :=
(
A2
− + z

)−1
∞∑
k=0

(
−
(
A2

+ −A2
−
) (
A2
− + z

)−1
)k
. (106)

Clearly R also maps H into Dom
(
A2
−
)
. We check that R is a right and left inverse of the

(densely defined, symmetric) operator A2
+ + z

∣∣
Dom(A2

−) and we conclude that Dom
(
A2
−
)

⊆ Dom
(
A2

+

)
is mapped by A2

+ + z onto H, and therefore that A2
+ + z must be already

surjective. By a theorem of von Neumann on the deficiency indices, we conclude that A+

is self-adjoint.
The estimate (105) also shows that A2

+−A2
− is relatively bounded by A2

− with Kato-Rellich

25



bound less than 1 (c.f. [22, Theorem V.4.3]), thus implying that Dom
(
A2
−
)

= Dom
(
A2

+

)
.

The self-adjointness of A+ and A− then imply that the corresponding graph norms must be
equivalent, and thus Dom

(
A2

+

)
Γ

= Dom
(
A2
−
)

Γ
. Lemma 2.21 finally implies Dom (A+)Γ

= Dom (A−)Γ.
Let us now assume Hypothesis B2 (2.14) instead. For z > 1 we estimate, using the fact
that A+ is the weak operator limit on Dom (A−) of A (x) for x→ +∞,∥∥∥∥(A+ −B∗0A−B0)

(
(B∗0A−B0)2 + z

)−1/2
∥∥∥∥
B(H)

≤ sup
x∈R

∥∥∥∥(A (x)−B∗0A−B0)
(

(B∗0A−B0)2 + z
)−1/2

∥∥∥∥
B(H)

≤ε+ C ·
∥∥∥∥((B∗0A−B0)2 + z

)α/2 (
(B∗0A−B0)2 + z

)−1/2
∥∥∥∥
B(H)

≤ε+ C · z−1/2+α/2. (107)

We note that since ε < 1 and α < 1, we may choose z large enough such that the estimate
is strictly smaller than 1. This implies that there is a constant C ′ < ∞ and ε′ < 1 such
that for φ ∈ Dom (B∗0A−B0) = Dom (A−), we have the Kato-Rellich estimate

‖(A+ −B∗0A−B0)φ‖H ≤ ε
′ ‖B∗0A−B0φ‖H + C ′ ‖φ‖H . (108)

Therefore A+ = A+ − B∗0A−B0 + B∗0A−B0 is self-adjoint on the domain of
Dom (B∗0A−B0) = Dom (A−) by Kato-Rellich’s theorem (c.f. [22, Theorem V.4.3]) and
thus Dom (A+)Γ = Dom (A−)Γ.
Similarly one obtains∥∥∥∥(A2

+ − (B∗0A−B0)2
)(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

≤ε+ C · z−1+α, (109)

which shows that A2
+ = A2

+ − (B∗0A−B0)2 + (B∗0A−B0)2 is self-adjoint on the domain of

Dom
(

(B∗0A−B0)2
)

= Dom
(
A2
−
)

by Kato-Rellich’s theorem (c.f. [22, Theorem V.4.3]),

and therefore Dom
(
A2

+

)
Γ

= Dom
(
A2
−
)

Γ
. �

Let us now introduce the operator D in L2 (R, H), which is the focal point of our
investigation in L2 (R, H).

Definition 2.25.

D := ∂ +A (X) .

Under the made assumptions in the Hypotheses and basic definitions we may not pro-
ceed as in [16], since this requires at crucial points the point-wise trace-class membership

and integrability of A′ (·)
(
A2
− + 1

)−1/2
, which is not available to us. Therefore, we must

take a detour to compile the properties of D. To that end, we introduce the operators H±
in L2 (R, H) first, the second central objects of our inquiry in L2 (R, H).
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Definition 2.26. Assume Hypothesis B1 (2.12) or Hypothesis B2 (2.14). Define the

operators M± in L2 (R, H) with domains Dom (M±) = Dom
(
Â2
−

)
by

M± := A (X)2 − Â2
− ±A′ (X) . (110)

Define the operators H± with domains Dom (H±) = Dom (H0) by

H± := H0 +M±. (111)

Remark 2.27. The operators M± are well-defined on Dom
(
Â2
−

)
, by either of the Hypo-

theses B1 (2.12) or B2 (2.14), and therefore also on Dom (H0) by Lemma 2.8.

The above Definition 2.26 prompts us at discussing the operators H± as perturbations

of H0. Since the perturbation M± is an operator with domain Dom
(
Â2
−

)
, we see the

necessity of including the mapping properties of the operator families A (x), x ∈ R, and
A′ (x), x ∈ R, from Dom

(
A2
−
)

Γ
to Dom (A−)Γ to our Hypotheses in contrast to [16,

Hypothesis 2.1] (where only the result Dom
(
H

1/2
±

)
= Dom

(
H

1/2
0

)
is needed).

Proposition 2.28. Assume Hypothesis B1 ( 2.12) or Hypothesis B2 ( 2.14). Then the
operators H± are self-adjoint and non-negative. The graph norms of H± and H0 on

Dom (H0) are equivalent, as well as the graph norms of H
1/2
± , H

1/2
0 and D0 on Dom (D0)

are equivalent. Furthermore, the operator D is closed with

Dom (D) = Dom (D∗) = Dom (D0) , (112)

where all the respective graph norms are equivalent, and

D∗D = H−, DD
∗ = H+. (113)

Proof. The first part of this proof is in some regard identical to the proof of [16, Lemma
4.4]. However, for the convenience of the reader, we will write it out here with the necessary
changes.

We start by assuming Hypothesis B1 (2.12).
Consider the H-valued Fourier transform F in L2 (R, H) defined as in [16, (4.33)]. By
Lemma 2.8 and via the transform F , the operator H0 is unitarily equivalent to the operator

X2 + Â2
− in the space L2 (R, H) with domain

Dom
(
X2 + Â2

−

)
= Dom

(
X2
)
∩Dom

(
Â2
−

)
. (114)

By Lemma 2.44 and the spectral theorem for A−, we obtain for z > 0∥∥∥(Â2
− + z

)
(H0 + z)−1

∥∥∥
B(L2(R,H))

= sup
x∈R

∥∥∥(A2
− + z

) (
x2 +A2

− + z
)−1
∥∥∥
B(H)

= sup
x∈R

sup
λ∈σ(A−)

∣∣∣∣ λ2 + z

x2 + λ2 + z

∣∣∣∣ = 1. (115)
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We thus estimate for z > 1,∥∥∥(A (X)2 − Â2
− ±A′ (X)

)
(H0 + z)−1

∥∥∥
B(L2(R,H))

≤
∥∥∥∥(A (X)2 − Â2

− ±A′ (X)
)(

Â2
− + z

)−1
∥∥∥∥
B(L2(R,H))

∥∥∥(Â2
− + z

)
(H0 + z)−1

∥∥∥
B(L2(R,H))

=

∥∥∥∥(A (X)2 − Â2
− ±A′ (X)

)(
Â2
− + z

)−1
∥∥∥∥
B(L2(R,H))

≤ sup
x∈R

∥∥∥(A (x)2 −A2
−

) (
A2
− + z

)−1
∥∥∥
B(H)

+ sup
x∈R

∥∥∥A′ (x)
(
A2
− + z

)−1
∥∥∥
B(H)

. (116)

The first summand at the bottom line is less than 1 for z � 1, while the second summand
decays to 0 for z →∞, thus, by choosing z large enough, we obtain that∥∥∥(A (X)2 − Â2

− ±A′ (X)
)

(H0 + z)−1
∥∥∥
B(L2(R,H))

< 1, (117)

for z � 1. In other terms, there exists 1 > ε > 0 and η > 0, such that for f ∈ Dom (H0),
we have∥∥∥(A (X)2 − Â2

− ±A′ (X)
)
f
∥∥∥
L2(R,H)

≤ ε ‖H0f‖L2(R,H) + η ‖f‖L2(R,H) . (118)

Thus A (X)2 − Â2
− ± A′ (X) is relatively bounded with respect to H0 in L2 (R, H) with

relative bound ε < 1. Since H0 is self-adjoint in L2 (R, H), also

H± = H0 +A (X)2 − Â2
− ±A′ (X)

must be self-adjoint on Dom (H0) by Kato-Rellich’s theorem (c.f. [22, Theorem V.4.3]).
Assume now Hypothesis B2 (2.14) instead.

Define the self-adjoint, non-negative operator

HB
0 :=

(
DB

0

)∗
DB

0 = DB
0

(
DB

0

)∗
, (119)

where DB
0 := ∂ + ̂B∗0A−B0.7 Similar to Lemma 2.8 one shows

HB
0 = −∂2 + ̂(B∗0A−B0)2. (120)

Thus, by the invertibility of B0, we conclude that Dom
(
HB

0

)
Γ

= Dom (H0)Γ.

By Fourier transformation, HB
0 is unitarily equivalent to the operator X2 + ̂(B∗0A−B0)2

in L2 (R, H). We thus obtain for z > 0 by Lemma 2.44,∥∥∥∥( ̂(B∗0A−B0)2 + z

)(
HB

0 + z
)−1
∥∥∥∥
B(L2(R,H))

= sup
x∈R

sup
λ∈σ(B∗0A−B0)

∣∣∣∣ λ2 + z

x2 + λ2 + z

∣∣∣∣ = 1. (121)

7The operator DB
0 has the same properties as D0 displayed in Lemma 2.6, if A− is replaced with

B∗0A−B0. Note also that Dom (A−)Γ = Dom (B∗0A−B0)Γ by the invertibility of B0.
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For z > 1 we estimate therefore,∥∥∥∥(A (X)2 − ̂(B∗0A−B0)2 ±A′ (X)

)(
HB

0 + z
)−1
∥∥∥∥
B(L2(R,H))

≤

∥∥∥∥∥
(
A (X)2 − ̂(B∗0A−B0)2 ±A′ (X)

)(
̂(B∗0A−B0)2 + z

)−1
∥∥∥∥∥
B(L2(R,H))∥∥∥∥( ̂(B∗0A−B0)2 + z

)(
HB

0 + z
)−1
∥∥∥∥
B(L2(R,H))

=

∥∥∥∥∥
(
A (X)2 − ̂(B∗0A−B0)2 ±A′ (X)

)(
̂(B∗0A−B0)2 + z

)−1
∥∥∥∥∥
B(L2(R,H))

≤ sup
x∈R

∥∥∥∥(A (x)2 − (B (x)∗A−B (x))
2
)(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

+ sup
x∈R

∥∥∥∥A′ (x)
(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

+ sup
x∈R

∥∥∥∥A′ (x)
(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

≤Cz−1+α + ε+ sup
x∈R

∥∥∥∥A′ (x)
(

(B∗0A−B0)2 + z
)−1

∥∥∥∥
B(H)

z→+∞−−−−→ε < 1. (122)

We conclude analogous to the case if Hypothesis B1 (2.12) is assumed, that

A (X)2 − ̂(B∗0A−B0)2 ±A′ (X)

is relatively bounded with respect to HB
0 with relative bound ε < 1. Therefore by Kato-

Rellich’s theorem (c.f. [22, Theorem V.4.3]), the operator

H± = HB
0 +A (X)2 − ̂(B∗0A−B0)2 ±A′ (X) (123)

must be self-adjoint on Dom
(
HB

0

)
= Dom (H0).

So, if Hypothesis B1 (2.12) or B2 (2.14) is assumed, the graph norms of H± and H0

are equivalent on Dom (H0). Furthermore H± must be essentially self-adjoint on any core
of H0, respectively HB

0 , by Kato-Rellich’s theorem ([22, Theorem V.4.3]). We note that

C =
⋃
n∈N

rg
(
1[−n,n] (i∂)1[−n,n]

(
Â−

))
(124)

is a core of H0 and HB
0 , indeed the strong convergence of 1[−n,n] (i∂)1[−n,n]

(
Â−

)
to 1

in L2 (R, H), by functional calculus, shows that for f ∈ Dom (H0) = Dom
(
HB

0

)
we have,

minding the commutativity of the functional calculi of H0, H
B
0 , i∂, and Â−, that

1[−n,n] (i∂)1[−n,n]

(
Â−

)
f

n→∞−−−→ f,

H01[−n,n] (i∂)1[−n,n]

(
Â−

)
f = 1[−n,n] (i∂)1[−n,n]

(
Â−

)
H0f

n→∞−−−→ H0f, (125)
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which means that C is dense in Dom (H0)Γ = Dom
(
HB

0

)
Γ
, and is therefore a core of H0

and HB
0 .

For the second part of the proof define

D− := −∂ +A (X) , D+ := D, Dom (D±) := Dom (D0) . (126)

For f, g ∈ Dom (D0) we have

〈D−f, g〉L2(R,H) = 〈f,D+g〉L2(R,H). (127)

Thus for g ∈ Dom (D0) we have that

f 7→ 〈D−f, g〉L2(R,H) = 〈f,D+g〉L2(R,H), (128)

is an L2 (R, H)-continuous functional on Dom (D−) = Dom (D0), and therefore g
∈ Dom

(
D∗−
)
. So Dom (D0) ⊆ Dom

(
D∗−
)

and analogously we conclude Dom (D0)
⊆ Dom

(
D∗+
)
. Since Dom (D0) is dense, the adjoints D∗± must be densely defined. Thus

D± are closable operators in L2 (R, H). We may construct

H̃− := D∗+D+, H̃+ := D∗−D−, (129)

which are automatically self-adjoint, non-negative operators in L2 (R, H) with dense do-
mains and we have ∣∣D±∣∣ = H̃∓

1/2
. (130)

However, for f ∈ C, we have H±f = H̃±f . Since H± is essentially self-adjoint on C,
we conclude that H± = H̃± and thus the operators H± are non-negative as well. But

then Lemma 2.21 also implies that Dom
(
H

1/2
±

)
Γ

= Dom
(
H

1/2
0

)
Γ

= Dom (D0)Γ holds.

Therefore we get the following continuous (with respect to the graph norms) inclusions

Dom (D0) ⊆ Dom
(
D±
)

= Dom
(∣∣D±∣∣) = Dom

(
H

1/2
∓

)
= Dom (D0) . (131)

Summarily D = D+ = D+ = D and D∗ = D∗+ = D− = D− holds and Dom (D∗)Γ

= Dom (D0)Γ = Dom (D)Γ. �

A first consequence of the above Proposition 2.28 is the following version of Duhamel’s
formula (sometimes also referred to as the (induction step of the) Volterra series) for the
operators H±, which is our basic tool in discussing perturbations of semi-groups, and can
therefore be considered as the “analogue” of the resolvent identities.

Lemma 2.29. Let t0 ≥ t > 0. Then

e−tH± − e−tH0 = −
∫ t

0
e−sH±M±e

−(t−s)H0ds = −
∫ t

0
e−sH0M±e

−(t−s)H±ds. (132)

The integrals converge in B
(
L2 (R, H)

)
-norm and for α ∈ [0, 1] and t0 ≥ t > s > 0∥∥∥e−sH±M±e−(t−s)H0

∥∥∥
B(L2(R,H))

.t0 s
−α (t− s)−1+α ,∥∥∥e−sH0M±e

−(t−s)H±
∥∥∥
B(L2(R,H))

.t0 s
−α (t− s)−1+α . (133)
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Proof. We only prove the first equality of (132) and the first inequality of (133), since the
second ones are proven analogously.

Before we show equality in (132), we have to make sure that the integrand exists as
a bounded operator valued, integrable function in s. We first note that for 0 < s < t
the operator e−(t−s)H0 maps L2 (R, H) continuously into Dom (H0), which is continuously

embedded in Dom
(
Â2
−

)
, by Lemma 2.8. Hence, the integrand of (132) is a bounded

operator. Furthermore, we note that the integrand is B
(
L2 (R, H)

)
-norm continuous for

s ∈ (0, t), by Lemma 2.37, and thus B
(
L2 (R, H)

)
-measurable in s. For α ∈ [0, 1] the

norm of the integrand can be estimated by∥∥∥e−sH±M±e−(t−s)H0

∥∥∥
B(L2(R,H))

=
∥∥∥(e−sH± (H± + 1)α

) (
(H± + 1)−α (H0 + 1)α

) (
(H0 + 1)−αM± (H0 + 1)−1+α

)
(

(H0 + 1)1−α e−(t−s)H0

)∥∥∥
B(L2(R,H))

.t0s
−α ·

∥∥∥{(H0 + 1)−αM± (H0 + 1)−1+α
}∥∥∥

B(L2(R,H))
· (t− s)−1+α

.t0s
−α (t− s)−1+α , (134)

which is inequality (133). Here we used Lemma 2.21, Remark 2.20, and Corollary 2.39.
For α ∈ (0, 1), the norm is integrable in s on [0, t] and the (Bochner-) integral therefore
converges in B

(
L2 (R, H)

)
by Lemma 2.41.

We are left with showing the claimed equality (132). Let f ∈ L2 (R, H). Then
e−(t−s)H0f ∈ Dom (H0), for s < t. On Dom (H0) the equality H± = H0 + M± holds
by Definition 2.26. We may conclude

−
∫ t

0
e−sH±M±e

−(t−s)H0ds f = −
∫ t

0
e−sH± (H± −H0) e−(t−s)H0fds

=

∫ t

0
∂s

(
e−sH±e−(t−s)H0f

)
ds

=
[
e−sH±e−(t−s)H0f

]s=t
s=0

=
(
e−tH± − e−tH0

)
f. (135)

Here we used the well-known strong continuity of one-parameter semi-groups on closed
intervals and differentiability on open intervals. �

Let us proceed by introducing some auxiliary operators, which will play a central role
in calculating the trace formulae.

Definition 2.30. Assume Hypothesis B1 (2.12) or Hypothesis B2 (2.14) and let t > 0.
We define the bounded operator in L2 (R, H)

P+
t := D∗e−tH+ . (136)

Remark 2.31. Since for t > 0 the operator e−tH+ maps L2 (R, H) continuously into

Dom (H0)Γ, and Dom (D∗) = Dom
(
H

1/2
0

)
, by Proposition 2.28, the operator P+

t is indeed

bounded in L2 (R, H).
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The relevance of the operator P+
t stems from the following identity involving a com-

mutator with ∂.

Lemma 2.32. Assume Hypothesis B1 ( 2.12) or Hypothesis B2 ( 2.14) and let t > 0. Then

H+e
−tH+ −H−e−tH− =

{[
∂, P+

t

]}
+
{[
A (X) , P+

t

]}
. (137)

Proof. By Lemma 2.40 we have for f ∈ Dom (D0),

H+e
−tH+f −H−e−tH−f = DD∗e−tH+f −D∗e−tH+Df = DP+

t f − P
+
t Df

=
[
∂, P+

t

]
f +

[
A (X) , P+

t

]
f. (138)

Furthermore P+
t ∂ is a closable operator in L2 (R, H), and

P+
t ∂f = P+

t/2e
−t/2H+∂f = P+

t/2

{
e−t/2H+∂

}
f, (139)

where the right hand side exists by Proposition 2.28 and Lemma 2.19 as a bounded oper-
ator in L2 (R, H) applied to f . Therefore also

{
P+
t ∂
}

and hence
{[
∂, P+

t

]}
exist. For the

existence of
{[
A (X) , P+

t

]}
we argue similarly.

Thus equation (138) extends by continuity and density of Dom (D0) in L2 (R, H) to

H+e
−tH+ −H−e−tH− =

{[
∂, P+

t

]}
+
{[
A (X) , P+

t

]}
. (140)

�

Because the operator P+
t is connected to the difference H+e

−tH+ −H−e−tH− , we close
this subsection by introducing another operator in L2 (R, H), which is connected to the
difference e−tH+ − e−tH− , which will be discussed in more detail in Theorem 3.22.

Definition 2.33. For z ∈ C, let

γ (z) :=
∞∑
k=0

1

(k + 1)!
(−z)k =

{
1−e−z
z , z 6= 0,

1, z = 0.
(141)

γ is an entire function and bounded on {z ∈ R, z ≥ 0}. Define the bounded operator Q+
t

in L2 (R, H) by

Q+
t := D∗γ (tH+) . (142)

Remark 2.34. For z ∈ C and t > 0, we have γ (tz) (1 + z) = γ (tz) + t−1
(
1− e−tz

)
, and

thus

γ (tH±) = (1 +H±)−1 (γ (tH±) + t−1
(
1− e−tH±

))
. (143)

Hence, the operators γ (tH±) map L2 (R, H) continuously into Dom (H0)Γ, by Proposition
2.28, and the operator Q+

t is indeed bounded in L2 (R, H).

In the next subsection, the last of this chapter, we compile all remaining basic tools
and definitions needed for the chapters to come.
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2.5 Auxiliary definitions and facts

The purpose of this subsection is to provide the remaining miscellaneous definitions and
well-known facts, which will be needed in this work, but do not quite fit in some of the
other introductory subsections or rise to the complexity of requiring their own subsection.

We begin by introducing the Gauss kernel, which we will repeatedly use.

Definition 2.35. Let t > 0. We define qt to be the Gauss kernel, i.e. for x ∈ R,

qt (x) := (4πt)−1/2 e−
x2

4t . (144)

Without proof, we cite some well-known facts of the Gauss kernel. They can be shown
by standard integration techniques.

Lemma 2.36. For t > 0 the function (x, y) 7→ qt (x− y) is a smooth integral kernel of
the operator et∂

2
C in L2 (R), i.e. for f ∈ L2 (R)(

et∂
2
Cf
)

(x) =

∫
R
qt (x− y) f (y) dy, for (a.e.) x ∈ R. (145)

Let t > 0 and 1 ≤ p <∞, then

‖qt‖Lp(R) = (4π)
1
2p
− 1

2 p
− 1

2p t
1
2p
− 1

2 ,∥∥q′t∥∥Lp(R)
= (4π)−1/2

(
2 Γ

(
p+ 1

2

))1/p

p
− 1

2
− 1

2p t
1
2p
−1
. (146)

The next simple result extends the well-known strong continuity of semi-groups to
norm continuity on open intervals.

Lemma 2.37. Let T be a linear, (unbounded), non-negative operator in a Hilbert space
X. Then s 7→ e−sT is B (X)-norm continuous for s > 0.

Proof. Let ε > 0. Let 0 < r < s, t. Let R � 0, such that e−R ≤ ε/2, and let δ > 0 be
small enough such that

1− e−r−1Rδ ≤ ε/2. (147)

Then, for |s− t| ≤ δ, we find∥∥e−sT − e−tT∥∥
B(X)

=
∥∥∥e−min(s,t)T

(
1− e−|s−t|T

)∥∥∥
B(X)

≤ sup
λ≥0

∣∣∣e−rλ (1− eδλ
)∣∣∣

≤ sup
λ≥r−1R

∣∣∣e−rλ∣∣∣+ sup
r−1R>λ≥0

∣∣∣1− eδλ∣∣∣
≤ ε/2 + ε/2. (148)

�
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The next estimate allows us to calculate the norm of semi-groups in domains of the
powers of the generating operator.

Lemma 2.38. Let t > 0, β ≥ 0. Then

sup
u≥0

(u+ 1)β e−tu =


(
β
et

)β
et if t ≤ β,

1 if t > β,

≤
(
β

et

)β
et. (149)

Proof. Put φ (u) := (u+ 1)β e−tu. Since

lim
u→∞

φ (u) = 0,

φ (0) = 1, (150)

we only need to check for local extrema of φ on {x ∈ R, x > 0}. The extremum lies at
u0 = βt−1 − 1, hence is only present in case β ≥ t. In this case we find

φ (u0) =

(
β

et

)β
et. (151)

The expression
(
β
et

)β
et, as a function of t, diverges to +∞ for t→ 0+ and t→ +∞. Its

extremum lies at t0 = β, for which
(
β
et0

)β
et0 = 1. Thus, for all t > 0 we have

(
β
et

)β
et ≥ 1,

which finishes the proof. �

Corollary 2.39. Let 0 < t ≤ t0 and β ≥ 0. Let T be a linear, self-adjoint, non-negative
operator in a Hilbert space X. Then∥∥∥(T + 1)β e−tT

∥∥∥
B(H)

.t0,β t
−β. (152)

Proof. The result follows directly from Lemma 2.38 and the functional calculus of T . �

The following Lemma 2.40 provides some commutation relations for the operators
D,D∗, and H±.

Lemma 2.40. Let φ be a continuous, bounded function on {x ∈ R, x ≥ 0} and let f ∈
Dom (D0). Then

D∗φ (H+) f = φ (H−)D∗f,

Dφ (H−) f = φ (H+)Df. (153)

Proof. Let (0, 1] 3 x 7→ ψ (x) := x−1 − 1 ∈ {y ∈ R, y ≥ 0} and ψ (0) := +∞, then
φ◦ψ ∈ C ([0, 1]). By the Stone-Weierstrass theorem there exists a sequence of polynomials
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pn ∈ C [X], which uniformly converges to φ ◦ ψ on [0, 1].
Let f ∈ Dom (D0) and let g := (1 +H+)−1 f , then

(1 +H−)−1D∗f = (1 +H+)−1D∗ (DD∗ + 1) g

= (1 +H+)−1 (D∗D + 1)D∗g = D∗g

= D∗ (1 +H+)−1 f. (154)

Similarly one shows

(1 +H+)−1Df = D (1 +H−)−1 f. (155)

Thus we have for any polynomial p ∈ C [X]

p
(

(1 +H−)−1
)
D∗f = D∗p

(
(1 +H+)−1

)
f,

p
(

(1 +H+)−1
)
Df = Dp

(
(1 +H−)−1

)
f. (156)

The continuous functional calculus therefore implies, for f, g ∈ Dom (D0),

〈g, φ (H−)D∗f〉L2(R,H) = 〈g, (φ ◦ ψ)
(

(1 +H−)−1
)
D∗f〉L2(R,H)

= lim
n→∞

〈g, pn
(

(1 +H−)−1
)
D∗f〉L2(R,H)

= lim
n→∞

〈g,D∗pn
(

(1 +H+)−1
)
f〉L2(R,H)

= 〈Dg, φ (H+) f〉L2(R,H)

= 〈g,D∗φ (H+) f〉L2(R,H). (157)

In the last step, we used that the operator φ (H+) maps Dom (D0)Γ continuously into

itself, since Dom (D0)Γ = Dom
(
H

1/2
±

)
, by Proposition 2.28. By density of Dom (D0) in

L2 (R, H), and the afore mentioned continuity, we obtain

D∗φ (H+) f = φ (H−)D∗f. (158)

Similarly one obtains

Dφ (H−) f = φ (H+)Df. (159)

�

Without proof, we also cite [16, Lemma 3.1] which summarizes the Bochner theorem
in the case of trace-class operators and their Radon-Nikodym property.

Lemma 2.41. Let X be a complex, separable Hilbert-space and F (x), x ∈ R, a family of
trace-class operators in X. Then the following assertions (1) and (2) are equivalent:

1. F (x), x ∈ R, is a weakly measurable family of operators in B (X) and ‖F (·)‖S1(X) ∈
L1 (R).
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2. F (·) ∈ L1
(
R, S1 (X)

)
.

Moreover if either condition (1) or (2) holds, then∥∥∥∥∫
R
F (x) dx

∥∥∥∥
S1(X)

≤
∫
R
‖F (x)‖S1(X) , (160)

and the S1 (X)-valued function

R 3 x 7→
∫ x

x0

F (y) dy, x0 ∈ R ∪ {−∞} , (161)

is strongly absolutely continuous with respect to the norm in S1 (X).
In addition we recall the following fact:

3. Suppose that R 3 x 7→ G (x) ∈ S1 (X) is strongly locally absolutely continuous in
S1 (X). Then H (x) = G′ (x) exists for a.e. x ∈ R, H (·) is Bochner integrable over
any compact interval, and hence

G (x) = G (x0) +

∫ x

x0

H (y) dy, x, x0 ∈ R, (162)

where the integral converges in S1 (X).

Finally, let us deal with the notion of N-measurability, which is assumed in the defini-
tion 2.3 of the family A (x), x ∈ R, and A′ (x), x ∈ R. We summarize the most important
properties presented in [16, Appendix A].

Definition 2.42. A family T (x), x ∈ R, of linear, closed operators in H is N-measurable,
if the families

(|T (x)|+ 1)−1 , T (x) (|T (x)|+ 1)−1 , and (|T (x)∗|+ 1)
−1
, x ∈ R,

are weakly measurable. A family S (x), x ∈ R, is weakly measurable, if for any weakly
measurable family f (x), x ∈ R, in H, such that f (x) ∈ Dom (S (x)) for x ∈ R, the family
of elements S (x) f (x), x ∈ R, is weakly measurable in H. Finally, a family g (x), x ∈ R,
is weakly measurable in H, if for any φ ∈ H the family 〈φ, g (x)〉H , x ∈ R is Lebesgue
measurable over R.

Remark 2.43. The above Definition 2.42 is a compilation of [16, Definition A.3] and [16,
Remark A.4], especially statement [16, (A.10)] in [16, Appendix A].

Lemma 2.44. (Nussbaum, [29]) Assume that T (x), x ∈ R, is a N-measurable family of
densely defined, closed , linear operators in H. Then the following assertions hold:

1. T (X) is densely defined and closed in L2 (R, H) and (T (X))∗ = T ∗ (X),
|T (X)| = |T | (X).

2. T (X) is symmetric (respectively self-adjoint, or normal) in L2 (R, H) if and only if
T (x) is symmetric (respectively self-adjoint, or normal) in H for a.e. x ∈ R.
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3. If T (X) is self-adjoint in L2 (R, H), then T (X) ≥ 0 if and only if T (x) ≥ 0 for a.e.
x ∈ R.

4. If T (X) is normal in L2 (R, H), then p (T (X)) = p (T ) (X) for any polynomial p.

5. If S (x), x ∈ R, are densely defined, closed, linear operators in H and S (x), x ∈ R,
is N-measurable, then T (X) ⊆ S (X) if and only if T (x) ⊆ S (x) for a.e. x ∈ R.

6. If T (x) ∈ B (H) for x ∈ R, then T (X) ∈ B
(
L2 (R, H)

)
if and only if

ess supx∈R ‖T (x)‖B(H) < ∞. In particular under this assumption we have
‖T (X)‖B(L2(R,H)) = ess supx∈R ‖T (x)‖B(H).

Remark 2.45. The above Lemma 2.44 comprises of [16, Theorem A.7], which in turn
stems from [29], and the statements [16, (A.18)] and [16, (A.19)].

The Remark 2.45 above closes this subsection and hence the first chapter, which sets
the scene for this work, by introducing all the involved operators, and reviewing their basic
properties, which are not related to the trace-class. In the next chapter, we will deal with
exactly this so far omitted point of view for the introduced operators in H and L2 (R, H).
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3 Trace-class memberships

In this chapter we will discuss the trace-class properties of several operators related to the
family A (x), x ∈ R in H and the operators D, H±, and H0 in L2 (R, H). While we will
also present some results involving resolvents of operators, our methods deviate largely
from the techniques used in [16], for example we will not use the double operator integral
calculus, which is deployed in [16].

The first subsection 3.1 deals with trace-class memberships of operators in H, which are
derived from the family A (x), x ∈ R. We also give estimates on their trace-norms, which
have the purpose of enabling us to extend integral formulas, stemming from Duhamel’s
formula, to retain convergence in the trace-class.

These results allow us to construct spectral shift functions of the pair (A+, A−) in
subsection 3.2, where one construction uses a result of Koplienko [24].

Analogous to the first subsection, we discuss in subsection 3.3 the trace-class mem-
berships of certain operators in L2 (R, H), which are related to the operators D, D0, and
H±, H0. Especially we show the trace-class memberships of the differences

e−tH+ − e−tH− ∈ S1
(
L2 (R, H)

)
, t > 0,

H+e
−tH+ −H−e−tH− ∈ S1

(
L2 (R, H)

)
, t > 0, (163)

which form the left hand side of the trace formulae (1) presented in the introduction.
We close the chapter in subsection 3.4 by using the trace-class memberships in the

previous subsection 3.3 to construct the spectral shift function of the pair (H+, H−).

3.1 Operators in S1 (H)

We start by giving the first simple result, which is a direct consequence of Hypothesis A1
(2.10), and Hypothesis A2 (2.11) respectively.

Lemma 3.1. Assume Hypothesis A1 ( 2.10). Then for s, t > 0 and x ∈ R ∪ {±∞} the
operator

e−tA
2
− (A (x)−A−) e−sA

2
−

is a trace-class operator in H and

sup
y∈R

∥∥∥e−tA2
− (A (y)−A−) e−sA

2
−

∥∥∥
S1(H)

∈ I log−1/4,−1/4. (164)

If we additionally assume Hypothesis A2 2.11, then

sup
y∈R

∥∥∥e−tA2
− (A (y)−A−) e−sA

2
−

∥∥∥
S1(H)

∈ I log−3/4,−1/4 ∩ I
log
−1/4,−3/4. (165)

Proof. For s, t > 0 the family R 3 y 7→ e−tA
2
−A′ (y) e−sA

2
− is weakly integrable over

(−∞, x), and thus the integral,∫ x

−∞
〈φ, e−tA2

−A′ (y) e−sA
2
−ψ〉Hdy, φ, ψ ∈ H, (166)
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exists. The integral (166) converges in the weak operator topology to the operator in ques-

tion, e−tA
2
− (A (x)−A−) e−sA

2
− . On the other hand, Hypothesis A1 (2.10), respectively

Hypothesis (2.11), together with Lemma 2.41, show us that the above integral (166) must
also converge in S1 (H) to the same limit. The norm estimates then also directly follow
from Lemma 2.41 and the Hypotheses A1 (2.10) or A2 (2.11). �

Remark 3.2. Lemma 3.1 immediately implies that for s, t > 0 and x ∈ R ∪ {±∞} the
operator

e−tA
2
− (A+ −A (x)) e−sA

2
−

is a trace-class operator in H, and

sup
y∈R

∥∥∥e−tA2
− (A+ −A (y)) e−sA

2
−

∥∥∥
S1(H)

∈ I log−1/4,−1/4. (167)

If we additionally assume Hypothesis A2 2.11, then

sup
y∈R

∥∥∥e−tA2
− (A+ −A (y)) e−sA

2
−

∥∥∥
S1(H)

∈ I log−3/4,−1/4 ∩ I
log
−1/4,−3/4. (168)

By virtue of Lemma 3.1, we can derive the trace-class membership of an expression
involving the resolvent of A2

−, via the Laplace-transform.

Lemma 3.3. Assume Hypothesis A1 ( 2.10). Then for x ∈ R ∪ {±∞} the operator(
1 +A2

−
)−3/4

(A (x)−A−)
(
1 +A2

−
)−3/4

is trace-class in H. If we additionally assume Hypothesis A2 ( 2.11), the operators(
1 +A2

−
)−1/4

(A (x)−A−)
(
1 +A2

−
)−3/4

,(
1 +A2

−
)−3/4

(A (x)−A−)
(
1 +A2

−
)−1/4

are trace-class in H. We also have the estimates∥∥∥(1 +A2
−
)−3/4

(A (y)−A−)
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

≤ F (y) ,

if Hypothesis A1 ( 2.10) is assumed,∥∥∥(1 +A2
−
)−1/4

(A (y)−A−)
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

+
∥∥∥(1 +A2

−
)−3/4

(A (y)−A−)
(
1 +A2

−
)−1/4

∥∥∥
S1(H)

≤ G (y) ,

if Hypothesis A2 ( 2.11) is assumed,

where F (y) =

∫ y

−∞
f (z) dz, G (y) =

∫ y

−∞
g (z) dz, for some f, g ∈ L1 (R) . (169)

Furthermore we have the estimates∥∥∥(1 +A2
−
)−3/4

(A+ −A (y))
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

≤ F̃ (y) ,
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if Hypothesis A1 ( 2.10) is assumed,∥∥∥(1 +A2
−
)−1/4

(A+ −A (y))
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

+
∥∥∥(1 +A2

−
)−3/4

(A+ −A (y))
(
1 +A2

−
)−1/4

∥∥∥
S1(H)

≤ G̃ (y) ,

if Hypothesis A2 ( 2.11) is assumed,

where F̃ (y) =

∫ +∞

y
f (z) dz, G̃ (y) =

∫ +∞

y
g (z) dz, for some f, g ∈ L1 (R) . (170)

Proof. By functional calculus we conclude that for a > 0

(
1 +A2

−
)−a

=
1

Γ (a)

∫ ∞
0

e−rA
2
−e−rra−1dr, (171)

where the integral converges in the strong operator topology. Thus we have for a, b > 0,(
1 +A2

−
)−a

(A (x)−A−)
(
1 +A2

−
)−b

=
1

Γ (a) Γ (b)

∫ ∞
0

∫ ∞
0

e−re−sra−1sb−1e−rA
2
− (A (x)−A−) e−sA

2
−ds dr. (172)

If we assume Hypothesis A1 (2.10), Lemma 3.1 allows us to conclude that the integrand in
(172) is trace-class in H and continuous in r and s from (0,∞)2 to S1 (H) and is therefore
S1 (H)-measurable in r and s. Let

g (r, s) :=
∥∥∥e−rA2

− (A (x)−A−) e−sA
2
−

∥∥∥
S1(H)

, (173)

then we find for t0 > 0,∫ ∞
0

∫ ∞
0

e−re−sra−1sb−1g (r, s) ds dr

≤
∫ t0

0

∫ t0

0
e−re−sra−1sb−1g (r, s) ds dr +

∫ t0

0

∫ ∞
t0

e−re−sra−1sb−1g (r, t0) ds dr

+

∫ ∞
t0

∫ t0

0
e−re−sra−1sb−1g (t0, s) ds dr +

∫ ∞
t0

∫ ∞
t0

e−re−sra−1sb−1g (t0, t0) ds dr

<∞, (174)

for a, b = 3/4, if we assume Hypothesis A1 (2.10), and for a = 1/4, b = 3/4 or a = 3/4,
b = 1/4, if we assume Hypothesis A2 (2.11), which we conclude by Lemma 3.1. Therefore
the integrand in (172) is S1 (H)-(Bochner) integrable by Lemma 2.41 and hence the left
hand side of (172) is trace-class in H as well, for the appropriate choices of a and b.
Finally, we obtain the estimates (169) by taking the supremum in (174) and minding the
estimates from Lemma 3.1.
The estimates (170) are obtained analogously by the use of Remark 3.2. �
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The above Lemma 3.3 is essential in constructing spectral shift functions of the pair
(A+, A−) due to an approach of Koplienko [24], which uses powers of resolvents. In the
next Lemma, we discuss the trace-class properties of A′ (x)A (x), x ∈ R, and A (x)A′ (x),
x ∈ R. This consideration is owed to the fact that we will discuss H± as perturbations of
H0 in L2 (R, H), and the perturbation M± contains multiplication with the family A2 (x),
x ∈ R. In subsection 3.3 we will deal with commutators of the operator ∂, which, if applied
to A2 (X), give multiplication with the two mentioned operator families.

Lemma 3.4. Assume Hypothesis A2 ( 2.11) and let r, s > 0. Then e−rA
2
−A (x)A′ (x) e−sA

2
−,

x ∈ R, and e−rA
2
−A′ (x)A (x) e−sA

2
−, x ∈ R, are families of trace-class operators in H for

a.e. x ∈ R with

(r, s) 7→
∫
R

∥∥∥e−rA2
−A (x)A′ (x) e−sA

2
−

∥∥∥
S1(H)

dx ∈ I log−1/4,−1/4,

(r, s) 7→
∫
R

∥∥∥e−rA2
−A′ (x)A (x) e−sA

2
−

∥∥∥
S1(H)

dx ∈ I log−1/4,−1/4. (175)

Proof. Let 0 < r, s. then for a.e. x ∈ R the family

u 7→ e−(r−u)A2
−A (x) e−uA

2
−A′ (x) e−sA

2
−

is a continuously differentiable family of trace-class operators in H for u ∈ (0, r/2) with
derivative

∂u

(
e−(r−u)A2

−A (x) e−uA
2
−A′ (x) e−sA

2
−
)

=A2
−e
−(r−u)A2

−A (x) e−uA
2
−A′ (x) e−sA

2
− − e−(r−u)A2

−A (x)A2
−e
−uA2

−A′ (x) e−sA
2
−

=A2
−e
−(r−u)A2

−
{
A (x) e−u/2A

2
−
}
e−u/2A

2
−A′ (x) e−sA

2
−

−
{
e−(r−u)A2

−A (x)A−

}
A−e

−u/2A2
−e−u/2A

2
−A′ (x) e−sA

2
− , (176)

where in the last step we used that (A (x)A−)∗ ⊇ A−A (x), x ∈ R, the fact that{
A−A (x) e−(r−u)A2

−
}

exists and Lemma 2.19. The derivative (176) is indeed continuous in S1 (H) because

the norm continuity of e−tA
2
− for t > 0 (Lemma 2.37), together with the fact that

e−tA
2
−A′ (x) e−vA

2
− is trace-class for t, v > 0 and a.e. x ∈ R, implies that the last ex-

pression in (176) is S1 (H)-continuous in u ∈ (0, r/2). Furthermore, we may estimate the
derivatives norm in S1 (H) for 0, r, s ≤ t0 according to Corollary 2.39 and Lemma 2.23 by∥∥∥∂u (e−(r−u)A2

−A (x) e−uA
2
−A′ (x) e−sA

2
−
)∥∥∥

S1(H)
.t0 (r − u)−1 u−1/2g (u, s, x) , (177)

where g (u, s, x) :=
∥∥∥e−u/2A2

−A′ (x) e−sA
2
−

∥∥∥
S1(H)

. We note that this bound is integrable in

u ∈ (0, r/2) for a.e. x ∈ R. Since the derivative (176) is continuous in S1 (H), and thus
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S1 (H)-measurable on (0, r/2), we conclude that the Bochner-integral converges in S1 (H)
and therefore ∫ r/2

0
∂u

(
e−(r−u)A2

−A (x) e−uA
2
−A′ (x) e−sA

2
−
)

du

=
[
e−(r−u)A2

−A (x) e−uA
2
−A′ (x) e−sA

2
−
]u=r/2

u=0

=e−r/2A
2
−A (x) e−r/2A

2
−A′ (x) e−sA

2
− − e−rA2

−A (x)A′ (x) e−sA
2
− (178)

is trace-class in H for a.e. x ∈ R. Let

f (u) :=

∫ t0

0
s−1/4 log (s)

∫
R
g (u, s, x) dx ds, (179)

then, ∫ t0

0

∫ t0

0
r−1/4s−1/4 log (r) log (s)

∫
R

∥∥∥e−r/2A2
−A (x) e−r/2A

2
−A′ (x) e−sA

2
−

−e−rA2
−A (x)A′ (x) e−sA

2
−

∥∥∥
S1(H)

dx ds dr

.t0

∫ t0

0
r−1/4 log (r)

∫ r/2

0
(r − u)−1 u−1/2f (u) du dr

.t0

∫ t0/2

0
u−3/4f (u)

∫ t0

2u
(r − u)−1 dr du .t0

∫ t0/2

0
log (t0/u− 1)u−3/4f (u) du

.t0

∫ t0/2

0

∫ t0

0
u−3/4 (log (t0 − u)− log (u)) s−1/4 log (s)

∫
R
g (u, s, x) dx ds du

<∞. (180)

In the penultimate step we used that

(u, s) 7→
∫
R
g (u, s, x) dx ∈ I log−3/4,−1/4. (181)

We note that

e−r/2A
2
−A (x) e−r/2A

2
−A′ (x) e−sA

2
− , (182)

is trace-class in H for a.e. x ∈ R, and that its trace-norm can be estimated by∥∥∥e−r/2A2
−A (x) e−r/2A

2
−A′ (x) e−sA

2
−

∥∥∥
S1(H)

.t0 r
−1/2g (r, s, x) , (183)

therefore we have

(r, s) 7→
∫
R

∥∥∥e−r/2A2
−A (x) e−r/2A

2
−A′ (x) e−sA

2
−

∥∥∥
S1(H)

dx ∈ I log−1/4,−1/4. (184)
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Together with our previous results (178) and (180) we conclude that for r, s > 0 the
operator

e−rA
2
−A (x)A′ (x) e−sA

2
−

is trace-class in H for a.e. x ∈ R and that∫
R

∥∥∥e−rA2
−A (x)A′ (x) e−sA

2
−

∥∥∥
S1(H)

dx ∈ I log−1/4,−1/4. (185)

For the operator

e−rA
2
−A′ (x)A (x) e−sA

2
−

we proceed analogously, and use that

(r, s) 7→
∫
R

∥∥∥e−rA2
−A′ (x) e−sA

2
−

∥∥∥
S1(H)

∈ I log−1/4,−3/4. (186)

�

3.2 The spectral shift function of the pair (A+, A−)

In the previous subsection 3.1 we have shown enough trace-class memberships related to
A+ and A−, such that we may construct their spectral shift function.

We first prove that there is a spectral shift function of the pair (A+, A−), uniquely
determined up to a constant, by a result of Koplienko [24].
To that end, we have to discuss the resolvent comparability in trace class of A+ and A−

Lemma 3.5. Define

R± := (A± − i)−1 , (187)

and let

g (s, t) :=

∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx, s, t > 0. (188)

• If g ∈ I−1/2,−1/2 then R+ −R− ∈ S1 (H).

• If g ∈ I−1/2,0 then (R+ −R−)R− ∈ S1 (H) and R+ −R− ∈ S2 (H).

Proof. We start with the first statement. Noting that R− maps H continuously into the
domains Dom (A−)Γ = Dom (A+)Γ, by the resolvent identity, we find

R+ −R− = −R+ (A+ −A−)R−

=−
{
R+

(
A2
− + 1

)1/2}(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1/2 (
A2
− + 1

)1/2
R−. (189)
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Denoting the bounded operators

B1 := −
{
R+

(
A2
− + 1

)1/2}
, B2 :=

(
A2
− + 1

)1/2
R−, (190)

we proceed to calculate

R+ −R− = B1

∫ ∞
0

∫ ∞
0

e−s (πs)−1/2 (πt)−1/2 e−te−sA
2
− (A+ −A−) e−tA

2
−ds dt B2

=π−1B1

∫ ∞
0

∫ ∞
0

e−s (st)−1/2 e−t
∫
R
e−sA

2
−A′ (x) e−tA

2
−dx ds dt B2. (191)

A priori, the innermost integral and hence the whole expression (the other integrals con-
verge strongly,) converges only in the weak operator topology, by Definition 2.3, since
A′ (x) is a derivative in the weak operator topology. However, for s, t > 0 the family

x 7→ e−sA
2
−A′ (x) e−tA

2
− is a family of trace-class operators in H and g ∈ I−1/2,−1/2. Since

g is monotonously decreasing in both s, t > 0, together with the decay of e−s and e−t, we
conclude that∫ ∞

0

∫ ∞
0

e−s (st)−1/2 e−t
∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx ds dt <∞. (192)

Together with the fact that

(0,∞)2 × R 3 (s, t, x) 7→ (st)−1/2 e−se−te−sA
2
−A′ (x) e−tA

2
−

is weakly measurable in B (H) (by continuity), we conclude, by Lemma 2.41, that

(s, t, x) 7→ (st)−1/2 e−se−te−sA
2
−A′ (x) e−tA

2
− ∈ L1

(
(0,∞)2 × R, S1 (H)

)
. (193)

Thus, the integral in formula (191) converges in trace-class and therefore R+ − R− ∈
S1 (H).

For the second statement, in case of g ∈ I−1/2,0, one concludes completely analogously
that

(R+ −R−)R− = −R+ (A+ −A−)R2
−

=−
{
R+

(
A2
− + 1

)1/2}(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1 (
A2
− + 1

)
R2
−. (194)

Noticing that

−
{
R+

(
A2
− + 1

)1/2}
,
(
A2
− + 1

)
R2
−,

are bounded operators, we proceed to calculate(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1

=π−1/2

∫ ∞
0

∫ ∞
0

e−ss−1/2e−t
∫
R
e−sA

2
−A′ (x) e−tA

2
−dx ds dt. (195)
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The above integral 195 converges analogously to the integral 191 of the first statement in
S1 (H), because g ∈ I−1/2,0, and therefore (R+ −R−)R− ∈ S1 (H). Further, we note that
R+ −R− ∈ S2 (H), is equivalent to (R+ −R−)∗ (R+ −R−) ∈ S1 (H). We investigate the
latter expression

(R+ −R−)∗ (R+ −R−) = −R∗+ (A+ −A−)R∗−R− (A+ −A−)R+

=B3

(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1
B4, (196)

where

B3 := −
{
R∗+
(
A2
− + 1

)1/2}
, B4 := (A+ −A−)R+, (197)

are bounded operators in H. Since(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1
,

is trace-class in H, by (195), we conclude that R+ −R− ∈ S2 (H). �

Proposition 3.6. Let

g (s, t) :=

∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx, s, t > 0. (198)

1. If g ∈ I−1/2,−1/2, then there exists a spectral shift function ξ (·, A+, A−) associated
to the pair (A+, A−), such that

ξ (·, A+, A−) ∈ L1
(
R,
(
ν2 + 1

)−1
dν
)
. (199)

Additionally we have the trace formula

f (A+)− f (A−) ∈ S1 (H) ,

trH (f (A+)− f (A−)) =

∫
R
f ′ (ν) ξ (ν,A+, A−) dν, (200)

where f is twice weakly differentiable with locally bounded derivatives and there is
ε > 0 such that (

ν2f ′ (ν)
)′

=|ν|→∞ O
(
|ν|−1−ε

)
,

lim
ν→−∞

f (ν) = lim
ν→+∞

f (ν) , lim
ν→−∞

ν2f ′ (ν) = lim
ν→+∞

ν2f ′ (ν) . (201)

2. If g ∈ I−1/2,0 (this is implied by Hypothesis A2 ( 2.11)), then there exists a spectral
shift function ξ (·, A+, A−) associated to the pair (A+, A−), such that

ξ (·, A+, A−) ∈ L1
(
R,
(
ν2 + 1

)−(r/2+1)
dν
)
, for all r > 1. (202)
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Additionally we have the trace formula

f (A+)− f (A−) ∈ S1 (H) ,

trH (f (A+)− f (A−)) =

∫
R
f ′ (ν) ξ (ν,A+, A−) dν, (203)

where f is twice weakly differentiable with locally bounded derivatives and there is
r > 1 such that (

ν2f ′ (ν)
)′

=|ν|→∞ O
(
|ν|−1−r

)
,

lim
ν→−∞

f (ν) = lim
ν→+∞

f (ν) , lim
ν→±∞

ν2f ′ (ν) = 0. (204)

Proof. By Lemma 3.5, we have, in case of g ∈ I−1/2,−1/2, that R+−R− ∈ S1 (H). Together
with the conditions posed on f , the prerequisites of [38, Theorem 8.7.1] are fulfilled, thus
proving the first statement.
In case of g ∈ I−1/2,0, we may not use [38, Theorem 8.7.1], but instead we have to use
a similar result by Koplienko, namely [24, Theorem 1.7]. We need to check that its
prerequisites are satisfied. While Lemma 3.5 grants us the existence of a spectral shift
function with respect to A+ and A−, we need to check that the conditions on f suffice to
infer the trace formula (203). Let

ζ =
i− ν
i + ν

∈ T\ {−1} (205)

be the Cayley transform of ν ∈ R to ζ ∈ T, T denoting the 1-dimensional torus. Let
h (ζ) := f (ν). We note that

−2ih′ (ζ) = (i + ν)2 f ′ (ν) ,

−4h′′ (ζ) = (i− ν)2
(

(i + ν)2 f ′ (ν)
)′
. (206)

Therefore, the conditions on f imply that g is twice differentiable on T (and thus g′ is
Hölder-continuous) and that, by the mean value theorem, we have

h′ (ζ) = O (|ζ + 1|r) , for ζ → −1. (207)

Therefore, h ∈ Φr (−1), which in turn means that f ∈ Yr, where Φr and Yr are defined
in [24]. Thus, [24, Theorem 1.7] can be applied and f is amenable for the trace formula
(203). �

In contrast to Proposition 3.6, we may define the spectral shift function η of the pair
(A+, A−) according to equation [38, (8.11.4)], if 0 ∈ ρ (A+) ∩ ρ (A−). We therefore need
the trace comparability of the inverses of A+ and A−.

Lemma 3.7. Let 0 ∈ ρ (A+) ∩ ρ (A−). Let

(s, t) 7→ g (s, t) :=

∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx ∈ I−1/2,−1/2. (208)

Then A−1
+ −A−1

− ∈ S1 (H).
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Proof. The proof of this Proposition is largely analogous to the proof of Lemma 3.5. We
start with the resolvent identity and use the invertibility of A− and A+ to conclude that

A−1
+ −A−1

− = −A−1
+ (A+ −A−)A−1

−

=
{
A−1

+

(
A2
− + 1

)1/2}(
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1/2 (
A2
− + 1

)1/2
A−1
− .

(209)

Since (
A2
− + 1

)−1/2
(A+ −A−)

(
A2
− + 1

)−1/2
,

is trace-class in H, as shown in the proof of Lemma 3.5, we finish the proof by noting that{
A−1

+

(
A2
− + 1

)1/2}
,
(
A2
− + 1

)1/2
A−1
− ,

are bounded operators in H. �

Definition 3.8. Let 0 ∈ ρ (A+) ∩ ρ (A−) and

(s, t) 7→ g (s, t) :=

∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx ∈ I−1/2,−1/2. (210)

Then define the spectral shift function η of the pair (A+, A−) by

η (µ,A+, A−) := −ξ
(
µ−1, A−1

+ , A−1
−
)
, for µ 6= 0,

η (0, A+, A−) := 0. (211)

Here ξ
(
·, A−1

+ , A−1
−
)

is the spectral shift function of the pair
(
A−1

+ , A−1
−
)

defined according
to [38, Theorem 8.2.1], i.e.

ξ
(
µ,A−1

+ , A−1
−
)

:= π−1 lim
ε↘0
=
(

log
(

detH

(
1 +

(
A−1

+ −A−1
−
) (
A−1
− − µ− iε

)−1
)))

, (212)

where the branches of log detH in the upper and lower half-plane are chosen such that

lim
|=(z)|→∞

log
(

detH

(
1 +

(
A−1

+ −A−1
−
) (
A−1
− − z

)−1
))

= 0. (213)

Let us summarize some of the properties of the spectral shift function η (·, A+, A−).

Proposition 3.9. The spectral shift function η (·, A+, A−) from Definition 3.8 is well-
defined. η (·, A+, A−) is constantly 0 in a neighbourhood of 0, and

η (·, A+, A−) ∈ L1
(
R,
(
µ2 + 1

)−1
dµ
)
. (214)

Also the trace formula

f (A+)− f (A−) ∈ S1 (H) ,

trH (f (A+)− f (A−)) =

∫
R
f ′ (µ) η (µ,A+, A−) dµ, (215)
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holds for functions f , which are twice differentiable, with locally bounded second derivative
and that for some δ > 0, we have ∣∣∣(µ2f ′ (µ)

)′∣∣∣ .δ |µ|−1−δ , for µ ∈ R,

lim
µ→−∞

f (µ) = lim
µ→+∞

f (µ) , lim
µ→−∞

µ2f ′ (µ) = lim
µ→+∞

µ2f ′ (µ) . (216)

Proof. Since 0 ∈ ρ (A+)∩ρ (A−), there exists ε > 0 such that (−2ε, 2ε) ⊂ ρ (A+)∩ρ (A−).
Consider the intervals Ω1 = (−∞,−ε) and Ω2 = (ε,∞). Clearly the spectra of A+ and
A− are covered by Ω = Ω1 ∪ Ω2. Let φ (µ) := µ−1. Then

φ′ (µ) = −µ−2 < 0, for µ ∈ Ω. (217)

Since additionally φ is one-to-one, bounded, and twice continuously differentiable on Ω,
we conclude that φ and the covering Ω1, Ω2 satisfy [38, Condition 2, §11]. Therefore,
by equation [38, (8.11.4)] and Lemma 3.7, we may define the spectral shift function η of
(A+, A−) by

η (µ,A+, A−) = −ξ
(
µ−1, A−1

+ , A−1
−
)
, for µ ∈ Ω. (218)

It remains to determine η on R\Ω. The function ξ
(
·, A−1

+ , A−1
−
)

is defined on all of R by
[38, Theorem 8.2.1] and ξ

(
·, A−1

+ , A−1
−
)
∈ L1 (R). Furthermore, since

R\
(
− (2ε)−1 , (2ε)−1

)
⊂ ρ

(
A−1

+

)
∩ ρ
(
A−1
−
)
, (219)

we may conclude by [38, Proposition 8.2.8], that ξ
(
·, A−1

+ , A−1
−
)

is constant on

R\
(
− (2ε)−1 , (2ε)−1

)
. Together with the integrability of ξ

(
·, A−1

+ , A−1
−
)
, we conclude

that this constant must be 0. Therefore Definition 3.8 is well-defined, and furthermore
η (·, A+, A−) is identically 0 in a neighbourhood of 0. According to [38, Theorem 8.11.5]
the trace formula,

f (A+)− f (A−) ∈ S1 (H) ,

trH (f (A+)− f (A−)) =

∫
R
f ′ (µ) η (µ,A+, A−) dµ, (220)

holds for functions f , which are twice differentiable, with locally bounded second derivative
and that for some δ > 0 we have ∣∣∣(µ2f ′ (µ)

)′∣∣∣ .δ |µ|−1−δ , for µ ∈ Ω,

lim
µ→−∞

f (µ) = lim
µ→+∞

f (µ) , lim
µ→−∞

µ2f ′ (µ) = lim
µ→+∞

µ2f ′ (µ) . (221)

Additionally, following inequality [38, (8.2.6)] and the transformation rule, we find∫
R
|η (µ,A+, A−)|

(
µ2 + 1

)−1
dµ .

∫
Ω
|η (µ,A+, A−)|

∣∣φ′ (µ)
∣∣ dµ . ∥∥A−1

+ −A−1
−
∥∥
S1(H)

<∞. (222)

�
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3.3 Operators in S1 (L2 (R, H))

In this subsection we develop the necessary statements on trace-class memberships of
operators in L2 (R, H), especially those in connection with the left hand side of the trace
formulae (1). To do so we need a tool for “lifting” a trace class operator family in H to
a trace class operator in L2 (R, H). It relies on the well known fact that Hilbert-Schmidt
operators are tensorial, which is for example presented in [16, Lemma 4.5].

Lemma 3.10. Let X be a complex, separable Hilbert space. Suppose t (x, y) ∈ S2 (X) for
a.e. (x, y) ∈ R2 and assume that∫

R2

‖t (x, y)‖2S2(X) dy dx <∞. (223)

Define the integral operator T in L2 (R, X) by

(Tf) (x) :=

∫
R
t (x, y) f (y) dy for a.e. x ∈ R, f ∈ L2 (R, H) . (224)

Then T ∈ S2
(
L2 (R, X)

)
, and

‖T‖2S2(L2(R,H)) =

∫
R2

‖t (x, y)‖2S2(X) dy dx. (225)

Conversely, any operator T ∈ S2
(
L2 (R, X)

)
arises in the manner ( 223), ( 224).

Remark 3.11. Lemma 3.10 is, of course, the concrete isometric isomorphism in the
tensorial identification L2

(
R2
)
⊗̂S2 (X) ∼= S2

(
L2 (R, X)

) ∼= S2
(
L2 (R) ⊗̂X

)
.

We use the above property of the Hilbert-Schmidt operators for Proposition 3.12 below,
by splitting the operator therein into to Hilbert-Schmidt operators. The conditions on the
auxiliary operators K1,K2 resemble the conditions on the auxiliary functions in the famous
Schur test (c.f. [18, Theorem 5.2]), from which we therefore borrowed the name.

Proposition 3.12. Assume K1,K2 are integral kernel operators in L2 (R) given by R2-
measurable functions k1, k2, satisfying a Schur test condition, i.e.

(Kif) (x) =

∫
R
ki (x, y) f (y) dy, for a.e. x ∈ R, f ∈ L2 (R) ,

sup
y∈R

∫
R
|k1 (x, y)|2 dx <∞ and sup

x∈R

∫
R
|k2 (x, y)|2 dy <∞. (226)

Assume further that B (·) ∈ L1
(
R, S1 (H)

)
(c.f. Lemma 2.41).

Define the operator T in L2 (R, H) by

T := KH
1 B (X)KH

2 , (227)

where KH
i := Ki⊗̂1H ∈ B

(
L2 (R, H)

)
for i ∈ {1, 2}. Then T ∈ S1

(
L2 (R, H)

)
and

‖T‖S1(L2(R,H)) ≤

(
sup
y∈R

∫
R
|k1 (x, y)|2 dx

)1/2 ∥∥∥‖B (·)‖S1(H)

∥∥∥
L1(R)

(
sup
x∈R

∫
R
|k2 (x, y)|2 dy

)1/2

.

(228)
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Proof. Let (en)n∈N be a orthonormal basis ofH. For a.e. x ∈ R we have a polar decomposi-

tion B (x) = U (x) |B (x)|, where U (x) is an isometry of H and |B (x)| = (B (x)∗B (x))
1/2

.

Let T1 (x) := U (x) |B (x)|1/2 and T2 (x) := |B (x)|1/2. Then

‖T1 (x)‖2S2(H) =
∑
n∈N

∥∥∥U (x) |B (x)|1/2 en
∥∥∥
H

=
∑
n∈N

∥∥∥|B (x)|1/2 en
∥∥∥
H

= ‖T2 (x)‖2S2(H)

=
∑
n∈N
〈|B (x)| en, en〉H = ‖B (x)‖S1(H) . (229)

The operators Ti (X) and B (X) are not necessarily bounded operators in L2 (R, H). How-
ever, they are densely defined since (essentially) bounded L2 (R, H) functions are contained
in their domains. Therefore, by the Schur test condition (226), KH

2 maps into the domains
of T2 (X) and B (X) and furthermore T2 (X)KH

2 and T are bounded. Since K∗1 has the
same Schur test condition as K2 and T1 (X)∗ is bounded on the (essentially) bounded
L2 (R, H) functions, the bounded operator

{
T1 (X)∗

(
KH

1

)∗}
exists. Additionally T1 is

closed by Lemma 2.44. Lemma 2.19 then implies that also
{
KH

1 T1 (X)
}

exists. We fur-
thermore have({

KH
1 T1 (X)

}
g
)

(x) =

∫
R
k1 (x, y) · (T1 (y) g (y)) dy, for a.e. x ∈ R, g ∈ L2 (R, H) ,(

T2 (X)KH
2 g
)

(x) =

∫
R
k2 (x, y) · (T2 (x) g (y)) dy, for a.e. x ∈ R, g ∈ L2 (R, H) .

(230)

For the Hilbert-Schmidt norm we estimate by Lemma 3.10 , equation (229) and the Schur
test condition (226):∥∥{KH

1 T1 (X)
}∥∥2

S2(L2(R,H))
=

∫
R2

|k1 (x, y)|2 · ‖T1 (y)‖2S2(H) dy dx

=

∫
R2

|k1 (x, y)|2 · ‖B (y)‖S1(H) dy dx

≤ sup
y∈R

∫
R
|k1 (x, y)|2 dx ·

∥∥∥‖B (·)‖S1(H)

∥∥∥
L1(R)

<∞.

∥∥T2 (X)KH
2

∥∥2

S2(L2(R,H))
=

∫
R2

|k2 (x, y)|2 · ‖T2 (x)‖2S2(H) dy dx

=

∫
R2

|k2 (x, y)|2 · ‖B (x)‖S1(H) dy dx

≤ sup
x∈R

∫
R
|k2 (x, y)|2 dy ·

∥∥∥‖B (·)‖S1(H)

∥∥∥
L1(R)

<∞. (231)

Thus KH
1 T1 (X)T2 (X)KH

2 = T is trace-class in L2 (R, H) and

‖T‖S1(L2(R,H)) ≤
∥∥{KH

1 T1 (X)
}∥∥

S2(L2(R,H))
·
∥∥T2 (X)KH

2

∥∥
S2(L2(R,H))

≤

(
sup
y∈R

∫
R
|k1 (x, y)|2 dx

)1/2 ∥∥∥‖B (·)‖S1(H)

∥∥∥
L1(R)

(
sup
x∈R

∫
R
|k2 (x, y)|2 dy

)1/2

. (232)
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With this tool, we can directly deduce the following trace-class memberships by using
the trace-class memberships of the operator families in H presented in subsection 3.1.

Lemma 3.13. Assume Hypothesis A2 ( 2.11) and let B ∈ {AA′, A′A}. Then for r, s > 0

e−rH0B (X) e−sH0 ∈ S1
(
L2 (R, H)

)
,(

(u, v) 7→
∥∥e−uH0B (X) e−vH0

∥∥
S1(L2(R,H))

)
∈ I log0,0 . (233)

and

e−rH0A′ (X) e−sH0 ∈ S1
(
L2 (R, H)

)
,(

(u, v) 7→
∥∥e−uH0A′ (X) e−vH0

∥∥
S1(L2(R,H))

)
∈ I log−1/2,0 ∩ I

log
0,−1/2. (234)

Assume Hypothesis A1 ( 2.10). Then for r, s > 0

e−rH0A′ (X) e−sH0 ∈ S1
(
L2 (R, H)

)
,(

(u, v) 7→
∥∥e−uH0A′ (X) e−vH0

∥∥
S1(L2(R,H))

)
∈ I log0,0 . (235)

Proof. Let r, s > 0 and B ∈ {A′, AA′, A′A}. By Lemma 2.8 and the (resolvent) commut-

ativity of ∂ and Â− we conclude for t > 0:

e−tH0 = et∂
2
e−tÂ

2
− = et∂

2
C⊗̂e−tA2

− . (236)

Therefore we have

e−rH0B (X) e−sH0 = KH
1 Cr,s (X)KH

2 , (237)

where K1 = er∂
2
C , K2 = es∂

2
C and Cr,s (x) := e−rA

2
−B (x) e−sA

2
− for a.e. x ∈ R. We want to

apply Proposition 3.12 to equation (237).
For r, s > 0 the operator Cr,s (·) ∈ L1

(
R, S1 (H)

)
(for B = A′ directly by Hypothesis A1

(2.10) or A2 (2.11); for B = AA′ and B = A′A by Lemma 3.4).
Furthermore we conclude by Lemma 2.36 for t > 0

sup
x∈R

∫
R
|qt (x− y)|2 dy = ‖qt‖2L2(R) = sup

y∈R

∫
R
|qt (x− y)|2 dx

= (8πt)−1/2 <∞. (238)

Therefore by Proposition 3.12 the operator e−rH0B (X) e−sH0 is trace-class in L2 (R, H)
and∥∥e−rH0B (X) e−sH0

∥∥
S1(L2(R,H))

≤ (8π)−1/2
∫
R
‖Cr,s (x)‖S1(H) dx (rs)−1/4 <∞. (239)
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Furthermore we have by Hypothesis A2 (2.11) and Lemma 3.4,(
(u, v) 7→ ‖Cu,v (·)‖S1(H)

)
∈ I log−1/4,−1/4, for B ∈

{
AA′, A′A

}
,(

(u, v) 7→ ‖Cu,v (·)‖S1(H)

)
∈ I log−3/4,−1/4 ∩ I

log
−1/4,−3/4, for B = A′, (240)

while if only Hypothesis A1 (2.10) holds we have(
(u, v) 7→ ‖Cu,v (·)‖S1(H)

)
∈ I log−1/4,−1/4, for B = A′. (241)

Combining the memberships (240) and (241) with inequality (239), we obtain the claimed
memberships (233), (234) and (235). �

We use the Laplace transform similarly to Lemma 3.3, and thus may analogously prove
the following Corollary 3.14.

Corollary 3.14. Assume Hypothesis A1 ( 2.10). Then

(1 +H0)−1A′ (X) (1 +H0)−1

is a trace-class operator in L2 (R, H).

Proof. For f ∈ L2 (R, H) we have by the functional calculus

(1 +H0)−1 f =

∫ ∞
0

e−te−tH0fdt, (242)

where the integral converges in L2 (R, H). Therefore we have

(1 +H0)−1A′ (X) (1 +H0)−1 =

∫ ∞
0

∫ ∞
0

e−se−te−sH0A′ (X) e−tH0dt ds, (243)

where the integrals converge in the strong operator topology. However, by Lemma 3.13,
the integrand of (243) is a family of trace-class operators in L2 (R, H), which is trace-norm
continuous in (s, t) ∈ (0,∞)2 and therefore S1

(
L2 (R, H)

)
-measurable.

Similar to the estimate (174) in the proof of Lemma 3.3, we may show, using Lemma 3.13,
that the trace norm of the integrand of (243) is integrable on (s, t) ∈ (0,∞)2.
Therefore, by Lemma 2.41, the integral in (243) converges in S1

(
L2 (R, H)

)
, and hence

the right hand side of (243) must be trace-class in L2 (R, H). �

In L2 (R, H) we have the operator ∂, which is not given by fibre-wise multiplication
in H, which is essential for the use of Proposition 3.12. However, we may use that ∂
commutes with H0 to derive the following trace-class memberships involving ∂.

Lemma 3.15. Assume Hypothesis A2 ( 2.11). Then for r, s > 0{
e−rH0∂

}
A′ (X) e−sH0 ∈ S1

(
L2 (R, H)

)
,(

(u, v) 7→
∥∥{e−uH0∂

}
A′ (X) e−vH0

∥∥
S1(L2(R,H))

)
∈ I log0,0 , (244){

e−rH0A′ (X)
}
∂e−sH0 ∈ S1

(
L2 (R, H)

)
,(

(u, v) 7→
∥∥{e−uH0A′ (X)

}
∂e−vH0

∥∥
S1(L2(R,H))

)
∈ I log0,0 . (245)
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Proof. Let us consider only
{
e−rH0∂

}
A′ (X) e−sH0 , for the other case is analogously

proven, because{
e−rH0A′ (X)

}
∂e−sH0 = e−rH0A′ (X) e−s/2H0

{
e−s/2H0∂

}
, (246)

by the (resolvent) commutativity of H0 and ∂. For r, s > 0 we have{
e−rH0∂

}
A′ (X) e−sH0 = ∂e−r/2H0e−r/2H0A′ (X) e−sH0 . (247)

Thus for all t0 ≥ r, s > 0 we have by Corollary 2.39:∥∥{e−rH0∂
}
A′ (X) e−sH0

∥∥
S1(L2(R,H))

.t0 r
−1/2

∥∥∥e−r/2H0A′ (X) e−sH0

∥∥∥
S1(L2(R,H))

. (248)

Consequently, by Lemma 3.13 {
e−rH0∂

}
A′ (X) e−sH0 ∈ S1

(
L2 (R, H)

)
,(

(u, v) 7→
∥∥{e−uH0∂

}
A′ (X) e−vH0

∥∥
S1(L2(R,H))

)
∈ I log0,0 . (249)

�

So far, we have only considered semi-groups of the operatorH0. To arrive at expressions
involving the semi-groups of H±, we use Duhamel’s formula from Lemma 2.29. This results
in the presence of a logarithmic term, which justifies that the Hypotheses A1 (2.10) and

A2 (2.11) require the memberships in I loga,b and not just Ia,b.

Lemma 3.16. Assume Hypothesis A1 ( 2.10) and either Hypothesis B1 ( 2.12) or Hypo-
thesis B2 ( 2.14). Then for ε1, ε2 ∈ {+,−} and r, s > 0 the operator e−rHε1A′ (X) e−sHε2

is trace-class in L2 (R, H) and(
(u, v) 7→

∥∥e−uHε1A′ (X) e−vHε2
∥∥
S1(L2(R,H))

)
∈ I0,0. (250)

If also Hypothesis A2 ( 2.11) holds, we have additionally(
(u, v) 7→

∥∥e−uHε1A′ (X) e−vHε2
∥∥
S1(L2(R,H))

)
∈ I−1/2,0 ∩ I0,−1/2. (251)

Proof. Let 0 < r, s ≤ t0. We may write, using Lemma 2.29 twice,

e−rHε1A′ (X) e−sHε2 = S1 + S2 + S3 + S4,

S1 := e−r/2Hε1e−r/2H0A′ (X) e−s/2H0e−s/2Hε2 ,

S2 := −
∫ r/2

0
e−(r−u)Hε1Mε1e

−uH0A′ (X) e−s/2H0e−s/2Hε2 du

S3 := −
∫ s/2

0
e−r/2Hε1e−r/2H0A′ (X) e−vH0Mε2e

−(s−v)Hε2 dv

S4 :=

∫ r/2

0

∫ s/2

0
e−(r−u)Hε1Mε1e

−uH0A′ (X) e−vH0Mε2e
−(s−v)Hε2 dv du, (252)
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where all integrals converge in B
(
L2 (R, H)

)
-norm. We note that S1 and the integrands of

S2, S3 and S4 in (252) are trace-class in L2 (R, H) and that the integrands are continuous in
trace norm, by Lemma 2.37 and Lemma 3.13, and therefore are S1

(
L2 (R, H)

)
-measurable.

Let

g (u, v) :=
∥∥e−uH0A′ (X) e−vH0

∥∥
S1(L2(R,H))

, u, v > 0. (253)

By Proposition 2.28 and Lemma 2.19, the trace norm of the integrands can be bounded
in the following way for 0 < r, s ≤ t0.∥∥∥e−(r−u)H±1Mε1e

−uH0A′ (X) e−s/2H0e−s/2Hε2
∥∥∥
S1(L2(R,H))

.t0 (r − u)−1 g (u, s/2) ,∥∥∥e−r/2Hε1e−r/2H0A′ (X) e−vH0Mε2e
−(s−v)Hε2

∥∥∥
S1(L2(R,H))

.t0g (r/2, v) (s− v)−1 , (254)∥∥∥e−(r−u)Hε1Mε1e
−uH0A′ (X) e−vH0Mε2e

−(s−v)Hε2

∥∥∥
S1(L2(R,H))

.t0 (r − u)−1 g (u, v) (s− v)−1 . (255)

We note that all of these expressions (254) are integrable on (0, r/2), (0, s/2), and (0, r/2)×
(0, s/2) respectively. Thus all operators Si, i = 2, 3, 4, are trace-class in L2 (R, H) and
therefore the operator e−rHε1A′ (X) e−sHε2 is trace-class by Lemma 2.41 as well.
Assuming Hypothesis A2 (2.11), for α = 0 or α = 1/2, we have the following trace-norm
estimate of S4∫ t0

0

∫ t0

0
r−αsα−1/2 ‖S4‖S1(L2(R,H)) ds dr

.t0

∫ t0

0

∫ t0

0
r−αsα−1/2

∫ r/2

0

∫ s/2

0
(r − u)−1 g (u, v) (s− v)−1 dv du ds dr

.t0

∫ t0/2

0

∫ t0/2

0
(2u)−α g (u, v) (2v)α−1/2

∫ t0

2u

∫ t0

2v
(r − u)−1 (s− v)−1 ds dr dv du

.t0

∫ t0/2

0

∫ t0/2

0
u−α log (t0/u− 1) g (u, v) vα−1/2 log (t0/v − 1) dv du <∞, (256)

since g ∈ I log−1/2,0 ∩ I
log
0,−1/2, by Lemma 3.13, and g (u, v) is monotonously decreasing if u or

v increase. Similarly one shows for i = 1, 2, 3 that∫ t0

0

∫ t0

0
r−αsα−1/2 ‖Si‖S1(L2(R,H)) ds dr <∞. (257)

Summarily we have that∥∥e−rHε1A′ (X) e−sHε2
∥∥
S1(L2(R,H))

∈ I−1/2,0 ∩ I0,−1/2. (258)
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Assuming only Hypothesis A1 (2.10), we analogously find∥∥e−rHε1A′ (X) e−sHε2
∥∥
S1(L2(R,H))

∈ I0,0. (259)

�

Similarly, we may also use Duhamel’s formula to show the trace-class memberships of
the operators in the following Lemma 3.17, which are essentially build by replacing the
operator A′ (X).

Lemma 3.17. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or Hy-
pothesis B2 ( 2.14). Let B := AA′ + A′A. Then for ε1, ε2 ∈ {+,−} and r, s > 0 the
operators

T1 (r, s) = e−rHε1B (X) e−sHε2 ,

T2 (r, s) =
{
e−rHε1A′ (X)

}
∂e−sHε2 and

T3 (r, s) =
{
e−rHε1∂

}
A′ (X) e−sHε2 , (260)

are trace-class in L2 (R, H) and for i ∈ {1, 2, 3}(
(u, v) 7→ ‖Ti (u, v)‖S1(L2(R,H))

)
∈ I0,0. (261)

Proof. The proof of this Lemma is very similar to that of Lemma 3.16. We will therefore
only point out the essential steps which differ. For T1 there are no important differences,
one replaces A′ (X) with B (X), obtaining

e−rHε1B (X) e−sHε2 = S1 + S2 + S3 + S4,

S1 := e−r/2Hε1e−r/2H0B (X) e−s/2H0e−s/2Hε2 ,

S2 := −
∫ r/2

0
e−(r−u)Hε1Mε1e

−uH0B (X) e−s/2H0e−s/2Hε2 du,

S3 := −
∫ s/2

0
e−r/2Hε1e−r/2H0B (X) e−vH0Mε2e

−(s−v)Hε2 dv,

S4 :=

∫ r/2

0

∫ s/2

0
e−(r−u)Hε1Mε1e

−uH0B (X) e−vH0Mε2e
−(s−v)Hε2 dv du. (262)

In the trace norm estimate of S4, logarithmic terms appear similar to (256). Using Lemma
3.13, we prove (

(u, v) 7→ ‖T1 (u, v)‖S1(L2(R,H))

)
∈ I0,0. (263)

For T2 and T3 we have to take a small detour to find a decomposition like (262). Let
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f ∈ Dom
(
Â−

)
and r > 0, then by, Lemma 2.29, we have

{
e−rH±A′ (X)

}
f =e−r/2H±e−r/2H±A′ (X) f = e−r/2H±e−r/2H0A′ (X) f

− e−r/2H±
∫ r/2

0
e−(r/2−u)H±M±e

−uH0du A′ (X) f

=e−r/2H±
{
e−r/2H0A′ (X)

}
f −

∫ r/2

0
e−(r−u)H±M±e

−u/2H0{
e−u/2H0A′ (X)

}
fdu. (264)

A priori, the integral of the last line of (264) only converges strongly on Dom
(
Â−

)
, but

the integrand can be estimated by Remark 2.20, Lemma 2.19, Proposition 2.28, Lemma
2.6 and Corollary 2.39,∥∥∥e−(r−u)H±M±e

u/2H0

{
e−u/2H0A′ (X)

}∥∥∥
B(L2(R,H))

≤
∥∥∥{e−(r−u)H± (1 +H±)α

}∥∥∥
B(L2(R,H))

∥∥{(1 +H±)−α (1 +H0)α
}∥∥

B(L2(R,H))∥∥∥{(1 +H0)−αM± (1 +H0)−1+α
}∥∥∥

B(L2(R,H))

∥∥∥(1 +H0)1−α e−u/2H0

∥∥∥
B(L2(R,H))∥∥∥A′ (X) (1 +H0)−1/2

∥∥∥
B(L2(R,H))

∥∥∥(1 +H0)1/2 e−u/2H0

∥∥∥
B(L2(R,H))

.t0 (r − u)−α u−1+αu−1/2

.t0,ru
−3/2+α, (265)

where α ∈ [0, 1]. If we choose α > 1/2, (265) is integrable on {0 < u < r/2}. Since the
integrand in (264) is also norm continuous in u and therefore B

(
L2 (R, H)

)
-measurable,

we conclude by Lemma 2.41, that the integral in the last line of (264) converges in norm,
therefore the equality in (264) extend to all f ∈ L2 (R, H),

{
e−rH±A′ (X)

}
= e−r/2H±

{
e−r/2H0A′ (X)

}
−
∫ r/2

0
e−(r−u)H±M±e

−u/2H0{
e−u/2H0A′ (X)

}
du. (266)

We similarly obtain

∂e−sH± = ∂e−s/2H0e−s/2H± −
∫ s/2

0
∂e−vH0M±e

−(s−v)H±dv. (267)

Both (266) and (267) combined give us the formula

T2 = R1 +R2 +R3 +R4,

R1 := e−r/2Hε1
{
e−r/2H0A′ (X)

}
∂e−s/2H0e−s/2Hε2 ,
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R2 := −
∫ r/2

0
e−(r−u)Hε1Mε1e

−u/2H0

{
e−u/2H0A′ (X)

}
∂e−s/2H0e−s/2Hε2 du,

R3 := −
∫ s/2

0
e−r/2Hε1

{
e−r/2H0A′ (X)

}
∂e−vH0Mε2e

−(s−v)Hε2 dv,

R4 :=

∫ r/2

0

∫ s/2

0
e−(r−u)Hε1Mε1e

−u/2H0

{
e−u/2H0A′ (X)

}
∂e−vH0Mε2e

−(s−v)Hε2 dv du.

(268)

With (268) we obtain estimates similar to (256) by using Lemma 3.15 and thus arrive at(
(u, v) 7→ ‖T2 (u, v)‖S1(L2(R,H))

)
∈ I0,0. (269)

The operator T3 is treated analogous to T2 and we obtain the claimed result. �

The next Lemma 3.18 is motivated by Lemma 2.32, in which the commutator of ∂ with
the operator P+

t appears. This commutator is of great importance for the calculation of
the trace, basically due to the fundamental theorem of calculus (c.f. Theorem 4.10).

Lemma 3.18. Assume Hypothesis A2 ( 2.11) and either of the Hypotheses B1 ( 2.12) or
B2 ( 2.14). Let t ≥ 0. Then

[
∂, e−tH±

]
= ∂e−tH± − e−tH±∂ is the restriction to Dom (∂)

of a trace-class operator in L2 (R, H), Ũ (t), given by

Ũ (t) :=−
∫ t

0
e−sH±B (X) e−(t−s)H±ds±

∫ t

0

{
e−sH±A′ (X)

}
∂e−(t−s)H±ds

∓
∫ t

0

{
e−sH±∂

}
A′ (X) e−(t−s)H±ds, (270)

where B := AA′ +A′A.
Furthermore we have for t0 > 0∫ t0

0

∥∥{[∂, e−tH±]}∥∥
S1(L2(R,H))

dt .t0 1. (271)

Proof. First note that for t ≥ 0, the operator U0 (t) :=
[
∂, e−tH±

]
is defined on Dom (∂),

since for t = 0 we have e−tH± = 1, and for t > 0 we know that e−tH± maps into
Dom (H±) ⊆ Dom (∂) by Proposition 2.28.
Let f ∈ Dom (H0) = Dom (H±) and φ (t) := U0 (t) f . Then

lim
t→0

φ (t) = lim
t→0

∂e−tH±f − lim
t→0

e−tH±∂f = ∂f − ∂f = 0 = φ (0) . (272)

Here, we used that e−tH± is strongly continuous on Dom (H±)Γ, by the functional calculus
of H±. Note also that for t > 0, the bounded operator U (t) := ∂e−tH± −

{
e−tH±∂

}
exists

by Lemma 2.19 and Proposition 2.28, and must be the closure of U0 (t) in L2 (R, H). Let
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t > 0, g ∈ L2 (R, H) and f ∈ C∞c (R)⊗Dom
(
A2
−
)

Γ
. Then

〈g,
{
e−tH±∂

}
H±f〉L2(R,H)

=− 〈∂e−tH±g,M±f〉L2(R,H) − 〈∂e−tH±g,H0f〉L2(R,H)

=〈e−tH±g,B (X) f〉L2(R,H) + 〈e−tH±g,
(
A (X)2 − Â2

−

)
∂f〉L2(R,H)

∓ 〈∂e−tH±g,A′ (X) f〉L2(R,H) − 〈∂e−tH±g,H0f〉L2(R,H)

=〈g, e−tH±B (X) f〉L2(R,H) + 〈
(
A (X)2 − Â2

−

)
e−tH±g, ∂f〉L2(R,H)

± 〈g,
{
e−tH±∂

}
A′ (X) f〉L2(R,H) − 〈∂e−tH±g,H0f〉L2(R,H). (273)

And

〈g,H±e−tH±∂f〉L2(R,H)

=〈M±e−tH±g, ∂f〉L2(R,H) + 〈H0e
−tH±g, ∂f〉L2(R,H)

=〈
(
A (X)2 − Â2

−

)
e−tH±g, ∂f〉L2(R,H) ± 〈A′ (X) e−tH±g, ∂f〉L2(R,H)

+ 〈e−tH±g, ∂H0f〉L2(R,H)

=〈
(
A (X)2 − Â2

−

)
e−tH±g, ∂f〉L2(R,H) ± 〈g,

{
e−tH±A′ (X)

}
∂f〉L2(R,H)

− 〈∂e−tH±g,H0f〉L2(R,H). (274)

Combining equations (273) and (274), we obtain

〈g,
(
−
{
e−tH±∂

}
H± +H±e

−tH±∂
)
f〉L2(R,H)

=− 〈g, e−tH±B (X) f〉L2(R,H) ± 〈g,
({
e−tH±A′ (X)

}
∂ −

{
e−tH±∂

}
A′ (X)

)
f〉L2(R,H).

(275)

By continuity and density of C∞c (R) ⊗ Dom
(
A2
−
)

Γ
in Dom (H0)Γ, we extend equation

(275) to g ∈ L2 (R, H) and f ∈ Dom (H0). Therefore we have for t > 0 and f ∈ Dom (H0)

−
{
e−tH±∂

}
H±f +H±e

−tH±∂f

=− e−tH±B (X) f ±
{
e−tH±A′ (X)

}
∂f ∓

{
e−tH±∂

}
A′ (X) f. (276)

Hence, we have for t > 0 and f ∈ Dom (H0)

U ′ (t) f = ∂t
(
∂e−tH±f − e−tH±∂f

)
= −∂e−tH±H±f +H±e

−tH±∂f

= −U (t)H±f −
{
e−tH±∂

}
H±f +H±e

−tH±∂f

= −U (t)H±f − e−tH±B (X) f ±
{
e−tH±A′ (X)

}
∂f ∓

{
e−tH±∂

}
A′ (X) f. (277)

For t0 ≥ t > 0 define

Ũ (t) :=−
∫ t

0
e−sH±B (X) e−(t−s)H±ds±

∫ t

0

{
e−sH±A′ (X)

}
∂e−(t−s)H±ds

∓
∫ t

0

{
e−sH±∂

}
A′ (X) e−(t−s)H±ds. (278)
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We first note that all integrands of (278) are trace-class operators in L2 (R, H) and trace-
norm continuous (and thus S1

(
L2 (R, H)

)
-measurable) in s for 0 < s < t, due to Lemma

3.17 and Lemma 2.37. By Lemma 2.41, the integral constituting Ũ (t) converges in trace-
norm for t > 0.
We estimate each summand of (278) using Lemma 3.17, because there exists a function
g ∈ I0,0 of two variables, such that g is monotonously decreasing if one of the variables
increases, with∥∥∥Ũ (t)

∥∥∥
S1(L2(R,H))

.t0

∫ t

0
g (s, t− s) ds ≤

∫ t/2

0
(g (s, t/2) + g (t/2, s)) ds. (279)

Therefore, we obtain∫ t0

0

∥∥∥Ũ (t)
∥∥∥
S1(L2(R,H))

dt .t0

∫ t0

0

∫ t0/2

0
(g (s, t/2) + g (t/2, s)) ds dt <∞. (280)

Let f ∈ Dom (H±). Then∥∥∥e−sH±B (X) e−(t−s)H±f
∥∥∥
L2(R,H)

=
∥∥∥e−sH±B (X) (1 +H±)−1 e−(t−s)H± (1 +H±) f

∥∥∥
L2(R,H)

. ‖f‖Dom(H±)Γ
,∥∥∥{e−sH±A′ (X)

}
∂e−(t−s)H±f

∥∥∥
L2(R,H)

=
∥∥{e−sH±A′ (X)

}∥∥
B(L2(R,H))

∥∥∥∂ (1 +H±)−1 e−(t−s)H± (1 +H±) f
∥∥∥
L2(R,H)

.t0s
−1/2 ‖f‖Dom(H±)Γ

,∥∥∥{e−sH±∂}A′ (X) e−(t−s)H±f
∥∥∥
L2(R,H)

=
∥∥{e−sH±∂}∥∥

B(L2(R,H))

∥∥∥A′ (X) (1 +H±)−1 e−(t−s)H± (1 +H±) f
∥∥∥
L2(R,H)

.t0s
−1/2 ‖f‖Dom(H±)Γ

. (281)

Therefore ∥∥∥Ũ (t) f
∥∥∥
L2(R,H)

.t0

∫ t

0
s−1/2ds · ‖f‖Dom(H±)Γ

t→0−−→ 0. (282)

On the other hand, we have the estimates∥∥∥e−sH±B (X) e−(t−s)H±
∥∥∥
B(L2(R,H))

=
∥∥∥{e−sH± (1 +H±)1/2

}∥∥∥
B(L2(R,H))

∥∥∥{(1 +H±)−1/2B (X) (1 +H±)−1/2
}∥∥∥

B(L2(R,H))

·
∥∥∥(1 +H±)1/2 e−(t−s)H±

∥∥∥
B(L2(R,H))

.t0 s
−1/2 (t− s)−1/2 ,∥∥∥{e−sH±A′ (X)

}
∂e−(t−s)H±

∥∥∥
B(L2(R,H))
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=
∥∥{e−sH±A′ (X)

}∥∥
B(L2(R,H))

∥∥∥∂ (1 +H±)−1/2
∥∥∥
B(L2(R,H))

·
∥∥∥e−(t−s)H± (1 +H±)1/2

∥∥∥
B(L2(R,H))

.t0 s
−1/2 (t− s)−1/2 ,∥∥∥{e−sH±∂}A′ (X) e−(t−s)H±

∥∥∥
B(L2(R,H))

=
∥∥{e−sH±∂}∥∥

B(L2(R,H))

∥∥∥A′ (X) (1 +H±)−1/2
∥∥∥
B(L2(R,H))

·
∥∥∥e−(t−s)H± (1 +H±)1/2

∥∥∥
B(L2(R,H))

.t0 s
−1/2 (t− s)−1/2 . (283)

This allows us to estimate∥∥∥Ũ (t)
∥∥∥
B(L2(R,H))

.t0

∫ t

0
s−1/2 (t− s)−1/2 ds = π. (284)

We combine (282) and (284), and, using the uniform boundedness principle, we conclude
that Ũ (t) converges strongly to 0 on L2 (R, H), because Dom (H±) is dense in L2 (R, H).
For t > 0 and f ∈ Dom (H±), we have differentiability of Ũ (t) f with

Ũ ′ (t) f = −Ũ (t)H±f − e−tH±B (X) f ±
{
e−tH±A′ (X)

}
∂f ∓

{
e−tH±∂

}
A′ (X) f. (285)

We note that V (t) := U (t) − Ũ (t) is defined for t ≥ 0 and is strongly continuous on
Dom (H±) with V (0) = 0. For f ∈ Dom (H±) and t > 0 we have

V ′ (t) f = −V (t)H±f. (286)

Thus for 0 < s < t and f, g ∈ L2 (R, H), we conclude

∂s〈e−(t−s)H±V (s)∗ f, g〉L2(R,H) = ∂s〈f, V (s) e−(t−s)H±g〉L2(R,H)

= 〈f, V (s) (H± −H±) e−(t−s)H±g〉L2(R,H) = 0. (287)

Therefore, if f ∈ Dom (H±) and g ∈ L2 (R, H), we obtain

〈f, V (t) g〉L2(R,H)

= lim
s↗t
〈f, V (s) e−(t−s)H±g〉L2(R,H) = lim

s↗t
〈e−(t−s)H±V (s)∗ f, g〉L2(R,H)

= lim
s↘0
〈e−(t−s)H±V (s)∗ f, g〉L2(R,H) = 〈f, V (0) e−tH±g〉L2(R,H) = 0. (288)

Here we used that for 0 ≤ s < t the operator e−(t−s)H± maps L2 (R, H) into Dom (H±),
on which V (s) is strongly continuous in s = 0.
Since Dom (H±) is dense in L2 (R, H), equation (288) implies that V ≡ 0 and therefore
that U (·) ≡ Ũ (·). �

We are now ready to derive the fundamental trace-class memberships concerning, and
related to, the operators in L2 (R, H) on the left hand side of the trace formulae (1).
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Theorem 3.19. Assume Hypothesis A1 ( 2.10) and either of the Hypotheses B1 ( 2.12)
or B2 ( 2.14). Let t > 0. Then e−tH+ − e−tH− is trace-class in L2 (R, H) and for t0 > 0
we have ∫ t0

0

∥∥e−tH+ − e−tH−
∥∥
S1(L2(R,H))

dt <∞. (289)

If we assume additionally Hypothesis A2 ( 2.11), we have for t0 > 0∫ t0

0
t−1/2

∥∥e−tH+ − e−tH−
∥∥
S1(L2(R,H))

dt <∞. (290)

Proof. Let 0 < s < t ≤ t0. Consider the family of operators T (s) in L2 (R, H) given by

T (s) := e−sH+A′ (X) e−(t−s)H− . (291)

Lemma 3.16 implies that T (s) is trace-class in L2 (R, H). By Lemma 2.37 we infer that
s 7→ T (s) is S1

(
L2 (R, H)

)
-norm continuous for s ∈ (0, t) and therefore S1

(
L2 (R, H)

)
-

measurable.
Also by Lemma 3.16 (and monotony,) we obtain∫ t

0
‖T (s)‖S1(L2(R,H)) ds

≤
∫ t/2

0

(∥∥∥e−sH+A′ (X) e−t/2H−
∥∥∥
S1(L2(R,H))

+
∥∥∥e−t/2H+A′ (X) e−sH−

∥∥∥
S1(L2(R,H))

)
ds

<∞. (292)

Therefore, by Lemma 2.41 the integral∫ t

0
e−sH+A′ (X) e−(t−s)H−ds

converges in S1
(
L2 (R, H)

)
.

On the other hand, we have for f ∈ L2 (R, H) that

−2

∫ t

0
e−sH+A′ (X) e−(t−s)H−ds f = −

∫ t

0
e−sH+ (H+ −H−) e−(t−s)H−fds (293)

=

∫ t

0
∂s

(
e−sH+e−(t−s)H−f

)
ds (294)

=
[
e−sH+e−(t−s)H−f

]s=t
s=0

=
(
e−tH+ − e−tH−

)
f. (295)

Thus, by estimate (292), Lemma 2.41, and equation (293), the operator e−tH+ − e−tH− is
trace-class in L2 (R, H), for t > 0. We furthermore obtain∫ t0

0

∥∥e−tH+ − e−tH−
∥∥
S1(L2(R,H))

dt

≤2

∫ t0

0

∫ t0/2

0

(∥∥∥e−sH+A′ (X) e−t/2H−
∥∥∥
S1(L2(R,H))

+
∥∥∥e−t/2H+A′ (X) e−sH−

∥∥∥
S1(L2(R,H))

)
ds dt <∞, (296)
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by Lemma 3.16.
If we assume additionally Hypothesis A2 (2.11), we obtain∫ t0

0
t−1/2

∥∥e−tH+ − e−tH−
∥∥
S1(L2(R,H))

dt

≤2

∫ t0

0

∫ t0/2

0
t−1/2

(∥∥∥e−sH+A′ (X) e−t/2H−
∥∥∥
S1(L2(R,H))

+
∥∥∥e−t/2H+A′ (X) e−sH−

∥∥∥
S1(L2(R,H))

)
ds dt <∞, (297)

by Lemma 3.16. �

Theorem 3.20. Assume Hypothesis A1 ( 2.10) and either of the Hypotheses B1 ( 2.12)
or B2 ( 2.14). Let t > 0. Then H+e

−tH+ −H−e−tH− is trace-class in L2 (R, H) and for
t0 > 0 we have ∫ t0

0
t
∥∥H+e

−tH+ −H−e−tH−
∥∥
S1(L2(R,H))

dt <∞. (298)

If we assume additionally Hypothesis A2 ( 2.11), we have for t0 > 0∫ t0

0
t1/2

∥∥H+e
−tH+ −H−e−tH−

∥∥
S1(L2(R,H))

dt <∞. (299)

Proof. We obtain for t > 0

H+e
−tH+ −H−e−tH− =

(
e−t/2H+ − e−t/2H−

)
H+e

−t/2H+ + e−t/2H− (H+ −H−) e−t/2H+

+ e−t/2H−H−

(
e−t/2H+ − e−t/2H−

)
=
(
e−t/2H+ − e−t/2H−

)
H+e

−t/2H+ + 2e−t/2H−A′ (X) e−t/2H+

+H−e
−t/2H−

(
e−t/2H+ − e−t/2H−

)
. (300)

Equation (300) together with Theorem 3.19 and Lemma 3.16 imply that
H+e

−tH+ −H−e−tH− is trace-class in L2 (R, H).
Let

g (r, s) := 2
∥∥∥er/2H−A′ (X) e−s/2H+

∥∥∥
S1(L2(R,H))

. (301)

For t0 > 0 we estimate by equation (300)∫ t0

0
t
∥∥H+e

−tH+ −H−e−tH−
∥∥
S1(L2(R,H))

dt

.t0

∫ t0

0
t
∥∥∥e−t/2H+ − e−t/2H−

∥∥∥
S1(L2(R,H))

· t−1dt+

∫ t0

0
tg (t, t) dt
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+

∫ t0

0
t · t−1 ·

∥∥∥e−t/2H+ − e−t/2H−
∥∥∥
S1(L2(R,H))

dt

≤2

∫ t0

0

∥∥∥e−t/2H+ − e−t/2H−
∥∥∥
S1(L2(R,H))

dt+

∫ t0

0
t · t−1

∫ t

0
g (t, s) ds dt

≤2

∫ t0

0

∥∥∥e−t/2H+ − e−t/2H−
∥∥∥
S1(L2(R,H))

dt+

∫ t0

0

∫ t0

0
g (t, s) ds dt <∞. (302)

Here we used the trace-norm estimates from Theorem 3.19, Lemma 3.16, the norm estimate
from Corollary 2.39 and the monotony of g.
Analogously one obtains, if additionally Hypothesis (2.11) is assumed, that∫ t0

0
t1/2

∥∥H+e
−tH+ −H−e−tH−

∥∥
S1(L2(R,H))

dt <∞. (303)

�

In view of Lemma 2.32, we also obtain the following Theorem 3.21 for the commutator
of ∂ and P+

t .

Theorem 3.21. Assume Hypothesis A2 ( 2.11) and either of the Hypotheses B1 ( 2.12) or
B2 ( 2.14). Let t > 0. Then the operators

{[
∂, P+

t

]}
and

{[
A (X) , P+

t

]}
are trace-class

in L2 (R, H), and for t0 > 0,∫ t0

0
t1/2

∥∥{[A′ (X) , P+
t

]}∥∥
S1(L2(R,H))

dt <∞,∫ t0

0
t1/2

∥∥{[∂, P+
t

]}∥∥
S1(L2(R,H))

dt <∞. (304)

Proof. Let f ∈ C∞c (R)⊗Dom (A−). Then for t > 0 we obtain by Lemma 2.40

∂e−t/2H−D∗f =
{[
∂, e−t/2H−

]}
D∗f +

{
e−t/2H−∂

}
D∗f

=
{[
∂, e−t/2H−

]}
D∗f + e−t/2H−∂D∗f

=
{[
∂, e−t/2H−

]}
D∗f + e−t/2H−D∗∂f + e−t/2H−A′ (X) f

=
{[
∂, e−t/2H−

]}
D∗f +D∗e−t/2H+∂f + e−t/2H−A′ (X) f. (305)

Note that the left hand side and the last right hand side are bounded operators, from
Dom (D0)Γ to L2 (R, H), applied to f . Since C∞c (R)⊗Dom (A−) is dense in Dom (D0)Γ,
we conclude by continuity that for f ∈ Dom (D0), we have

∂e−t/2H−D∗f =
{[
∂, e−t/2H−

]}
D∗f +D∗e−t/2H+∂f + e−t/2H−A′ (X) f. (306)

Since the operator e−t/2H+ maps H into Dom (D0), we obtain for f ∈ Dom (∂)

∂e−t/2H−D∗e−t/2H+f =
{[
∂, e−t/2H−

]}
D∗e−t/2H

+
f + e−t/2H−A′ (X) e−t/2H+f
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+D∗e−t/2H+

{[
∂, e−t/2H+

]}
f +D∗e−tH+∂f (307)

Lemma 2.40 implies that

P+
t = e−t/2H−D∗e−t/2H+ . (308)

Therefore equation (307) yields{[
∂, P+

t

]}
=
{[
∂, e−t/2H−

]}
P+
t/2 + e−t/2H−A′ (X) e−t/2H+ + P+

t/2

{[
∂, e−t/2H+

]}
, (309)

where all three summands are trace-class operators in L2 (R, H), by Lemma 3.16 and
Lemma 3.18.
Theorem 3.20 together with Lemma 2.32 then imply that also

{[
A (X) , P+

t

]}
must be

trace-class in L2 (R, H).
Let

g (r, s) :=
∥∥∥e−r/2H−A′ (X) e−s/2H+

∥∥∥
S1(L2(R,H))

. (310)

The function g is monotonously decreasing in both arguments and, by Lemma 3.16, a
function in I−1/2,0. Thus for t0 > 0 we have∫ t0

0
t1/2g (t, t) dt ≤

∫ t0

0
t1/2 · t−1

∫ t

0
g (t, s) ds dt

≤
∫ t0

0

∫ t0

0
t−1/2g (t, s) ds dt <∞. (311)

Since Dom (D)Γ = Dom (H±)Γ holds, by Proposition 2.28, Corollary 2.39 implies for
t0 ≥ t > 0, ∥∥∥P+

t/2

∥∥∥
B(L2(R,H))

.t0 t
−1/2. (312)

Equation (309) together with the estimates (311) and (312) and Lemma 3.18, enable us
to make the following estimate for t0 > 0:∫ t0

0
t1/2

∥∥{[∂, P+
t

]}∥∥
S1(L2(R,H))

dt

.t0

∫ t0

0
t1/2g (t, t) dt+ 2

∫ t0

0

∥∥∥{[∂, e−t/2H+

]}∥∥∥
S1(L2(R,H))

dt <∞. (313)

Since Theorem 3.20 implies for t0 > 0∫ t0

0
t1/2

∥∥H+e
−tH+ −H−e−tH−

∥∥
S1(L2(R,H))

dt <∞, (314)

we conclude, by Lemma 2.32, that also∫ t0

0
t1/2

∥∥{[A′ (X) , P+
t

]}∥∥
S1(L2(R,H))

dt <∞. (315)

�
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We close this subsection by giving the analogous result for the operator Q+
t instead of

P+
t .

Theorem 3.22. Assume Hypothesis A2 ( 2.11) and either of the Hypotheses B1 ( 2.12)
or B2 ( 2.14). Let t, ε > 0, then

e−εH0
(
e−tH+ − e−tH−

)
e−εH0 = −te−εH0

[
∂,Q+

t

]
e−εH0 − te−εH0

[
A (X) , Q+

t

]
e−εH0 .

(316)

The operators
e−εH0

[
∂,Q+

t

]
e−εH0

and
e−εH0

[
A (X) , Q+

t

]
e−εH0

are trace-class in L2 (R, H).

Proof. We recall the definition of the function γ in Definition 2.33 and note that for z ∈ C
and t > 0, we have

e−tz − 1 = −tzγ (tz) . (317)

Therefore we conclude, by Lemma 2.40, for f ∈ Dom (D0)(
e−tH+ − e−tH−

)
f =

(
e−tH+ − 1 + 1− e−tH−

)
f = −t (H+γ (tH+)−H−γ (tH−)) f

= −t [D,D∗γ (tH+)] f = −t
[
∂,Q+

t

]
f − t

[
A (X) , Q+

t

]
f. (318)

For ε > 0 we find, using the formula from Remark 2.34,

e−εH0
(
e−tH+ − e−tH−

)
e−εH0

=− te−εH0
[
∂,Q+

t

]
e−εH0 − te−εH0

[
A (X) , Q+

t

]
e−εH0

=− te−εH0 [∂,D∗] γ (tH+) e−εH0 − te−εH0D∗ [∂, γ (tH+)] e−εH0

− te−εH0
[
A (X) , Q+

t

]
e−εH0

=− te−εH0A′ (X) (1 +H0)−1 (1 +H0) (1 +H+)−1 (γ (tH+) + 1/t
(
1− e−tH+

))
e−εH0

− t
{
e−εH0D∗

}
{[∂, γ (tH+)]} e−εH0

− te−εH0
[
A (X) , Q+

t

]
e−εH0 . (319)

Since

e−εH0A′ (X) (1 +H0)−1 = (1 +H0) e−εH0 (1 +H0)−1A′ (X) (1 +H0)−1 , (320)

the first summand of the last line of (319),

−te−εH0A′ (X) (1 +H0)−1 (1 +H0) (1 +H+)−1 (γ (tH+) + 1/t
(
1− e−tH+

))
e−εH0 ,
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is a product of a trace-class operator in L2 (R, H), by Lemma 3.14, and of bounded oper-
ators in L2 (R, H), by Proposition 2.28, and therefore trace-class in L2 (R, H).
By the functional calculus we further note that

t−1

∫ t

0
e−sH+ds = γ (tH+) , (321)

where the integral converges in the strong operator topology. We conclude that for f ∈
Dom (D0),

[∂, γ (tH+)] f = t−1

∫ t

0

[
∂, e−sH+

]
fds = t−1

∫ t

0

{[
∂, e−sH+

]}
dsf, (322)

where the last integral converges strongly. On the other hand, by Lemma 3.18, the operator{[
∂, e−sH+

]}
is trace-class for s > 0 and, in regard of{[

∂, e−(s+h)H+

]}
−
{[
∂, e−sH+

]}
=
{[
∂, e−s/2H+

]}(
e−(h+s/2)H+ − e−s/2H+

)
, (323)

and Lemma 2.37, S1
(
L2 (R, H)

)
-continuous on s > 0 (and thus is S1

(
L2 (R, H)

)
-measurable). By Lemma 3.18 ,the trace norm of

{[
∂, e−sH+

]}
is integrable on any com-

pact interval [0, t0] 3 s, for t0 > 0, and thus, by Lemma 2.41, we may conclude that the
last integral of (322) must converge in S1

(
L2 (R, H)

)
.

Therefore {[∂, γ (tH+)]} ∈ S1
(
L2 (R, H)

)
.

By Theorem 3.19 the operator e−tH+−e−tH− is also trace-class in L2 (R, H). In summary,
the first line of (319) is trace-class as well as the first and second summand of the last line
of (319). Thus also the remaining third summand,

−te−εH0
[
A (X) , Q+

t

]
e−εH0 ,

must be trace-class in L2 (R, H).
In regard of the second line of (319) we conclude that also

−te−εH0
[
∂,Q+

t

]
e−εH0

is trace-class in L2 (R, H). �

3.4 The spectral shift function of the pair (H+, H−)

In Theorem 3.19 we have shown that the difference e−tH+−e−tH− is trace-class in L2 (R, H)
for t > 0. In essence, because e−t· is bijective on the spectra of H±, we may construct the
spectral shift function of the pair (H+, H−), by the following procedure taken from [38].

Let t > 0 and let ψt (λ) := e−tλ. Then ψ′t (λ) = −te−tλ < 0, for all λ ∈ R. ψt is
bounded on the non-negative numbers and is twice continuously differentiable and one-
to-one on R. Since σ (H+) ∪ σ (H−) ⊆ [0,∞), and ψt (H+) − ψt (H−) is trace-class in
L2 (R, H) for t > 0, according to Theorem 3.19, we see that [38, Condition 8.11.2] is
fulfilled with Ω = [0,∞) covering itself and ψt as φ. According to equation [38, (8.11.2)],
we may therefore define a spectral shift function of the pair (H+, H−) in the following
way.
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Definition 3.23. Let t > 0. Then define the spectral shift function ξ (·, H+, H−) of the
pair (H+, H−) by

ξ (λ,H+, H−) := −ξ
(
e−tλ, e−tH+ , e−tH−

)
, for λ ≥ 0,

ξ (λ,H+, H−) := 0 for λ < 0, (324)

where ξ
(
·, e−tH+ , e−tH−

)
is the spectral shift function of the pair

(
e−tH+ , e−tH−

)
defined

by [38, Theorem 8.2.1], i.e.

ξ
(
λ, e−tH+ , e−tH−

)
:=π−1 lim

ε↘0
=
(

log
(

det L2(R,H)

(
1 +

(
e−tH+ − e−tH−

) (
e−tH− − λ− iε

)−1
)))

, (325)

where the branches of log det L2(R,H) in the upper and lower half-plane are chosen such
that

lim
|=(z)|→∞

log
(

det L2(R,H)

(
1 +

(
e−tH+ − e−tH−

) (
e−tH− − z

)−1
))

= 0. (326)

Remark 3.24. In accordance with inequality [38, (8.2.6)] we have, by the transformation
rule, that ∫ ∞

0
|ξ (λ,H+, H−)| e−tλdλ ≤ t−1

∥∥e−tH+ − e−tH−
∥∥
S1(L2(R,H))

<∞. (327)

Additionally the trace formula,

trL2(R,H) (f (H+)− f (H−)) =

∫ ∞
0

f ′ (λ) ξ (λ,H1, H0) dλ, (328)

holds for f ∈ C∞c (R) by [38, Lemma 8.11.3].

We may improve on the properties of ξ (·, H+, H−) in Remark 3.24 and the amen-
able functions f for the trace formula, by introducing another spectral shift function,
ξ̃ (·, H+, H−).

Lemma 3.25. Let

(s, t) 7→ g (s, t) :=

∫
R

∥∥∥e−tA2
0A′ (x) e−sA

2
0

∥∥∥
S1(H)

dx ∈ I1/4,1/4. (329)

Then

(1 +H+)−1 − (1 +H−)−1 ∈ S1
(
L2 (R, H)

)
. (330)

Proof. Recall that Dom (H±) = Dom (H0) and H+ − H− = 2 A′ (X)|Dom(H0). Then, by
the resolvent identity, we have

(H+ + 1)−1 − (H− + 1)−1 = −2 (H+ + 1)−1A′ (X) (H− + 1)−1

= −2

∫ ∞
0

∫ ∞
0

e−se−te−tH+A′ (X) e−sH−ds dt, (331)
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where we note that the integral converges in S1
(
L2 (R, H)

)
. Indeed, the integrand is a

continuous family of trace-class operators in L2 (R, H), by Lemma 3.16, in both s, t > 0,
and therefore is S1

(
L2 (R, H)

)
-measurable. Lemma 3.16 also implies

(s, t) 7→
∥∥e−tH+A′ (X) e−sH−

∥∥
S1(L2(R,H))

∈ I0,0. (332)

Since

(s, t) 7→
∥∥e−tH+A′ (X) e−sH−

∥∥
S1(L2(R,H))

, (333)

is monotonously decreasing if t and s increase, minding the factor e−se−t, we conclude
that

(s, t) 7→
∥∥e−se−te−tH+A′ (X) e−sH−

∥∥
S1(L2(R,H))

∈ L1
(

[0,∞)2
)
. (334)

Therefore, (H+ + 1)−1 − (H− + 1)−1 is trace-class in L2 (R, H). �

We introduce the following “alternative” construction of a spectral shift function of the
pair (H+, H−), however we will show later that both spectral shift functions subordinated
to (H+, H−) coincide a.e..

Definition 3.26. Define the spectral shift function ξ̃ (·, H+, H−) of the pair (H+, H−) by

ξ̃ (λ,H+, H−) := −ξ
(

(λ+ 1)−1 , (H+ + a)−1 , (H− + 1)−1
)
, for λ ≥ 0,

ξ̃ (λ,H+, H−) := 0, for λ < 0, (335)

where ξ
(
·, (H+ + 1)−1 , (H− + 1)−1

)
is the spectral shift function of the pair(

(H+ + 1)−1 , (H− + 1)−1
)

, defined by [38, Theorem 8.2.1], i.e.

ξ
(
λ, (H+ + 1)−1 , (H− + 1)−1

)
:=π−1 lim

ε↘0
=
(

log
(

det L2(R,H)

(
1 +

(
(H+ + 1)−1 − (H− + 1)−1

)
(

(H− + 1)−1 − λ− iε
)−1

)))
, (336)

where the branches of log det L2(R,H) in the upper and lower half-plane are chosen such
that

lim
|=(z)|→∞

log

(
det L2(R,H)

(
1 +

(
(H+ + 1)−1 − (H− + 1)−1

)(
(H− + 1)−1 − z

)−1
))

= 0.

(337)

Lemma 3.27. Let f be a twice differentiable function on R with locally bounded second
derivative and satisfying for some δ > 0 the condition(

(λ+ 1)2 f ′ (λ)
)′
.δ |λ|−1−δ , for λ ≥ 0. (338)
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Then the trace formula

trL2(R,H) (f (H+)− f (H−)) =

∫ ∞
0

f ′ (λ) ξ̃ (λ,H+, H−) dλ (339)

holds and we have ξ̃ (·, H+, H−) ∈ L1
(
R,
(
λ2 + 1

)−1
dλ
)

.

Proof. As we have seen before, we prove the statement by showing that [38, Theorem
8.11.5] can be applied. Let φ (λ) := (λ+ 1)−1. Then φ′ (λ) = − (λ+ 1)−2 < 0 for all
λ ≥ 0. φ is bounded on the non-negative numbers and is twice continuously differen-
tiable in a neighbourhood of [0,∞). Since σ (H+) ∪ σ (H−) ⊆ [0,∞), we see that [38,
Condition 8.11.2] is satisfied with Ω = [0,∞) covering itself. This fixes, by equation [38,
(8.11.4)], the spectral shift function ξ̃ (·, H+, H−) of (H+, H−) on Ω = [0,∞). The choice
of ξ̃ (λ,H+, H−) = 0 for λ < 0 is then in accordance with the fact, that the operators H±
are bounded below by 0, and in accordance with the last paragraph in [38, §11] before
[38, Theorem 8.11.5]. We see that the conditions on f are also directly derived from [38,
Theorem 8.11.5] with φ (λ) = (λ+ 1)−1. Therefore the trace formula holds as stated.
For the L1-membership of ξ̃ (·, H+, H−), we see that this again follows by transformation
rule and inequality [38, (8.2.6)],∫

R

∣∣∣ξ̃ (λ,H+, H−)
∣∣∣ (λ2 + 1

)−1
dλ

.
∫ ∞

0

∣∣∣ξ̃ (λ,H+, H−)
∣∣∣ ∣∣φ′ (λ)

∣∣dλ ≤ C ∥∥∥(H+ + 1)−1 − (H− + 1)−1
∥∥∥
S1(L2(R,H))

<∞.

(340)

�

Lemma 3.28. ξ (·, H+, H−) = ξ̃ (·, H+, H−) a.e..

Proof. Let f ∈ C∞c (R). The conditions in Lemma 3.27 are satisfied, and we therefore
have the trace formula with both spectral shift functions ξ (·, H+, H−) and ξ̃ (·, H+, H−)
by Remark 3.24 and Lemma 3.27, i.e.∫ ∞

0
f ′ (λ) ξ (λ,H+, H−) dλ = trL2(R,H) (f (H+)− f (H−)) =

∫ ∞
0

f ′ (λ) ξ̃ (λ,H+, H−) dλ.

(341)

Therefore we have ∫
R
f ′ (λ)

(
ξ (λ,H+, H−)− ξ̃ (λ,H+, H−)

)
dλ

=

∫ ∞
0

f ′ (λ)
(
ξ (λ,H+, H−)− ξ̃ (λ,H+, H−)

)
dλ = 0, (342)

for arbitrary f ∈ C∞c (R), which implies by the Du Bois-Raymond Lemma (c.f. [27,
Theorem 6.11]), that ξ (·, H+, H−) − ξ̃ (·, H+, H−) equals a constant a.e. on R. Since
ξ (λ,H+, H−) = 0 = ξ̃ (λ,H+, H−), for λ < 0 we conclude that the functions must be
identical a.e.. �
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Remark 3.29. Lemma 3.28 implies immediately that all statements made in Lemma 3.27
for ξ̃ (·, H+, H−) hold ad verbatim for ξ (·, H+, H−).
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4 Trace identities

In this chapter, which forms together with the previous chapter 3 the bulk of this work,
we derive the trace formulae (1).

The general strategy is to use appropriate B (H)-valued integral kernels of the oper-
ators P+

t and Q+
t , which stand in relation to the left hand side of the trace formulae (1),

in accordance with the decompositions in Lemma 2.32, and Theorem 3.22 respectively.
We then calculate the traces as integrals over the diagonal of the H-traces of the total
derivative of these kernels, allowing us to calculate the trace in L2 (R, H) as the H-trace of
the difference of the limits of these kernels approaching ±∞, respectively, on the diagonal.
The remaining commutators involving A (X) from the decompositions in Lemma 2.32 and
Theorem 3.22 then are shown to give no contribution to the L2 (R, H)-trace, which finishes
the proof of the trace formulae (1).

Let us begin this chapter by highlighting the importance of the Brüning Seeley Trace
Lemma, which was shown in the annex of [10]. This result enables us to generalize the
elementary idea of calculating the trace by adding the entries of the diagonal of a matrix
to (operator valued-) integral kernels integrated over the diagonal. Note that a similar
result dealing with scalar valued integral kernels is usually referred to as Mercer’s theorem
(c.f. Mercer’s Theorem in [40, Satz VI.4.2]).

4.1 The Brüning Seeley Trace Lemma

At this point we have all trace-class operators at hand, which we need to calculate the
trace of H+e

−tH+−H−e−tH− for t > 0. What is still needed, is an operator-valued version
of Mercer’s theorem, as we want to calculate the trace by integrating the trace in H
of its operator-valued kernel over the diagonal. The result we are looking for is known
as Brüning and Seeley’s Trace Lemma ([10]), which we will cite below with some minor
changes fitting our notation.

Theorem 4.1 (Brüning/Seeley Trace Lemma). Let T be a trace-class operator in
L2 (R, H). Then T has a kernel t (x, y) such that

Tf (x) =

∫
R
t (x, y) f (y) dy, (343)

and

h 7→ t (·, ·+ h) (344)

is a bounded continuous map into L1-maps of R into S1 (H). Further∫
R
‖t (x, x)‖S1(H) dx ≤ ‖T‖S1(L2(R,H)) ,∫
R

trH (t (x, x)) dx = trL2(R,H) (T ) . (345)
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If [∂, T ] extends to trace-class, then (1) is continuous into the absolutely continuous L1-
maps: R→ S1 (H), and so T has a continuous kernel t (x, y). Moreover

‖t (x, y)‖S1(H) ≤ ‖∂T − {T∂}‖S1(L2(R,H)) . (346)

Remark 4.2. The kernel of an integral operator is defined only up to a set of measure
zero in (x, y)-space, so (345) and (346) are meaningless unless the kernel is normalized in
some way. The continuity of (344) normalizes t.

Especially Remark 4.2 to the Trace Lemma 4.1 is important to us. Our task is therefore
to retrieve a kernel of the trace-class extensions of the operators [∂, P+

t ] and [∂,Q+
t ] with

the desired continuity (344).
To that end, we need a method of constructing an B (H)-valued kernel with L2-

regularity first, which we will then manipulate to obtain kernels with the correct regu-
larities in accordance with the Trace Lemma 4.1.

4.2 Construction of an operator valued integral kernel

Before we discuss the operators in L2 (R, H) from our setting, we will build an operator
valued integral kernel for an abstract operator T in L2 (R, H). But first we note the
following fundamental result concerning the relation of strong convergence and trace-class
convergence (and cite it here as it is displayed in [16, Lemma 3.4]).

Lemma 4.3. Let X be a separable, complex Hilbert space. Assume that R, Rn, T ,
Tn ∈ B (X) are bounded operators for all n ∈ N, such that for all φ ∈ X we have
limn→∞ ‖(Rn −R)φ‖X = limn→∞ ‖(Tn − T )φ‖X = 0, and S, Sn ∈ S1 (X) are trace-class
operators for all n ∈ N, such that limn→∞ ‖Sn − S‖S1(X) = 0. Then

lim
n→∞

‖RnSnT ∗n −RST ∗‖S1(X) = 0. (347)

As a consequence, we obtain the following Lemma 4.4, which will help us calculate the
trace of an operator {[∂, T ]}, if it is trace-class.

Lemma 4.4. Assume {[∂, T ]} exists and is trace-class in L2 (R, H) for a bounded operator
T ∈ B

(
L2 (R, H)

)
. Then

trL2(R,H) ({[∂, T ]}) = lim
ε↘0

trL2(R,H)

({[
∂, e−εH0Te−εH0

]})
. (348)

Proof. By the functional calculus we have strong convergence of e−εH0 to 1 for ε ↘ 0.
Thus Lemma 4.3 implies that

lim
ε↘0

∥∥{[∂, T ]} − e−εH0 {[∂, T ]} e−εH0
∥∥
S1(L2(R,H))

= 0. (349)

Furthermore the operators ∂ and e−εH0 commute on the domain of ∂, therefore

e−εH0 {[∂, T ]} e−εH0 =
{[
∂, e−εH0Te−εH0

]}
. (350)

Since the trace is continuous with respect to the trace-norm, we conclude the statement
(348) by combing (349) and (350). �
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We thus introduce the following “mollified” auxiliary kernel kεT , which has good regu-
larity properties.

Proposition 4.5. Let T be a bounded operator in L2 (R, H) and ε > 0. Then

kεT (x, y) :=

(
H 3 φ 7→

∫
R
qε (x− z)

(
e−εÂ

2
−T
(
qε (· − y)⊗ e−εA2

−φ
))

(z) dz

)
, (351)

where the integral is to be understood as a Bochner-integral in H, is well-defined as an
element of B (H) for all x, y ∈ R, and

kεT ∈ C1
b

(
R2, B (H)

)
,

‖kεT ‖C1
b (R2,B(H)) .ε ‖T‖B(L2(R,H)) . (352)

Proof. We first note that for a fixed φ ∈ H, the expression e−εÂ
2
−T
(
qε (· − y)⊗ e−εA2

−φ
)

is an element of L2 (R, H), and thus, because qε (x− ·) ∈ L2 (R), the Bochner integral in
(351) exists. It is also clear, that the right hand side of (351) is linear in the slot of φ.
Furthermore, we may estimate for x, y ∈ R and φ ∈ H:

‖kεT (x, y)φ‖H ≤‖qε‖L2(R)

∥∥∥∥e−εÂ2
−T
(
qε (· − y)⊗ e−εA2

−φ
)∥∥∥∥

L2(R,H)

.ε1 · ‖T‖B(L2(R,H)) ‖qε‖L2(R) · 1 · ‖φ‖H

.ε ‖T‖B(L2(R,H)) ‖φ‖H , (353)

which shows for x, y ∈ R, that kεT (x, y) ∈ B (H).
We proceed by investigating the partial derivatives in x and y of kεT (x, y) as a B (H)-valued
function. Let x, y ∈ R, δ > 0 and, h 6= 0, |h| ≤ δ. Then

h−1 ‖kεT (x+ h, y)− kεT (x, y)

−h ·
(
H 3 φ 7→

∫
R
q′ε (x− z)

(
e−εÂ

2
−T
(
qε (· − y)⊗ e−εA2

−φ
))

(z) dz

)∥∥∥∥
B(H)

≤h−1 sup
‖φ‖H=1

∥∥∥∥((τh − id) qε − hq′ε
)
∗R
(
e−εÂ

2
−T
(
qε (· − y)⊗ e−εA2

−φ
))

(x)

∥∥∥∥
H

≤h−1 sup
‖φ‖H=1

∥∥(τh − id) qε − hq′ε
∥∥
L2(R)

‖T‖B(L2(R,H)) ‖qε‖L2(R) ‖φ‖H

.ε,T

(∫
R

(
h−1 (qε (z + h)− qε (z))− q′ε (z)

)2
dz

)1/2

(354)

In the last line of (354) we wish to use Lebesgue’s theorem of dominated convergence to
conclude that the last expression goes to 0 as h→ 0. This is the case because by the mean
value theorem the expression

2 · sup
|w|≤δ

(
q′ε (z + w)

)2
+ 2 ·

(
q′ε (z)

)2
(355)
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is an integrable dominant (independent of h). Similarly one deals with the partial deriv-
ative in y:

h−1 ‖kεT (x, y + h)− kεT (x, y)

−h ·
(
H 3 φ 7→

∫
R
qε (x− z)

(
e−εÂ

2
−T
(
−q′ε (· − y)⊗ e−εA2

−φ
))

(z) dz

)∥∥∥∥
B(H)

≤h−1 sup
‖φ‖H=1

∥∥∥∥(qε ∗R (e−εÂ2
−T
(
(τh − id) qε − hq′ε

)
(y − ·)⊗ e−εA2

−φ

))
(x)

∥∥∥∥
H

≤h−1 sup
‖φ‖H=1

‖qε‖L2(R) ‖T‖B(L2(R,H))

∥∥(τh − id) qε − hq′ε
∥∥
L2(R)

‖φ‖H

.ε,T

(∫
R

(
h−1 (qε (z + h)− qε (z))− q′ε (z)

)2
dz

)1/2

, (356)

which goes to 0 as h→ 0 like before.
Next, we show the B (H)-norm-continuity of the partial derivatives, which we will do for
the derivative in x. The derivative in y can be handled analogously. Let x, x′, y, and
y′ ∈ R.

‖∂1k
ε
T (x, y)− ∂1k

ε
T (x, y)‖B(H)

= sup
‖φ‖H=1

∥∥∥∥∫
R

(
q′ε (x− z)− q′ε

(
x′ − z

))(
e−εÂ

2
−T
(
qε (· − y)⊗ e−εA2

−φ
))

(z) dz

+

∫
R
q′ε
(
x′ − z

)(
e−εÂ

2
−T
((
qε (· − y)− qε

(
· − y′

))
⊗ e−εA2

−φ
))

(z) dz

∥∥∥∥
H

≤
∥∥(τx′−x − id) q′ε

∥∥
L2(R)

‖T‖B(L2(R,H)) ‖qε‖L2(R) +
∥∥q′ε∥∥L2(R)

‖T‖B(L2(R,H))

∥∥(τy′−y − id) q′ε∥∥L2(R)

.ε,T
∥∥(τx′−x − id) q′ε

∥∥
L2(R)

+
∥∥(τy′−y − id) q′ε∥∥L2(R)

(x,y)→(x′,y′)−−−−−−−−→ 0. (357)

In the last step, we used the strong continuity of the translation map τ· acting on L2 (R).
(Or one uses a suitable dominant and dominated convergence).
Thus, kεT ∈ C1

(
R2, B (H)

)
.

Finally we may estimate the norm of the derivative in x (and y analogously) in a similar
manner as (353). For x, y ∈ R and φ ∈ H we find:

‖∂1k
ε
T (x, y)φ‖H ≤

∥∥q′ε∥∥L2(R)

∥∥∥∥e−εÂ2
−T
(
qε (· − y)⊗ e−εA2

−φ
)∥∥∥∥

L2(R,H)

.ε1 · ‖T‖B(L2(R,H)) ‖qε‖L2(R) · 1 · ‖φ‖H

.ε ‖T‖B(L2(R,H)) ‖φ‖H , (358)

which shows, together with (353), that

‖kεT ‖C1
b (R2,B(H)) .ε ‖T‖B(L2(R,H)) . (359)

�
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The next step shows that the auxiliary kernel kεT is indeed an integral kernel.

Lemma 4.6. Let T be a bounded operator in L2 (R, H) and ε > 0. Then the function kεT ,
defined in Proposition 4.5, is an operator valued integral kernel of e−εH0Te−εH0, i.e. for
f ∈ C∞c (R, H) and a.e. x ∈ R we have(

e−εH0Te−εH0f
)

(x) =

∫
R
kεT (x, y) f (y) dy. (360)

Proof. Since kεT ∈ C1
b

(
R2, B (H)

)
, by Proposition 4.5, we note that the right hand side of

(360) is well-defined as a Bochner integral in H (c.f. Lemma 2.41). Since we seek equality
in (360) almost everywhere, it certainly is sufficient to show equality in L2 (R, H). To that
end, let ρ, η ∈ C∞c and φ, ψ ∈ H, then, by Lemma 2.35, we conclude

〈η ⊗ ψ, e−εH0Te−εH0 (ρ⊗ φ)〉L2(R,H)

=

∫
R
〈
(
e−εH0 (η ⊗ ψ)

)
(z) ,

(
Te−εH0 (ρ⊗ φ)

)
(z)〉Hdz

=

∫
R

∫
R

∫
R
η (w1)ρ (w2) qε (w1 − z) 〈e−εA

2
−ψ,

(
T
(
qε (· − w2)⊗ e−εA2

−φ
))

(z)〉Hdz dw2 dw1

=〈η ⊗ ψ,w1 7→
∫
R

∫
R
qε (w1 − z)

(
e−εÂ

2
−T
(
qε (· − w2)⊗ e−εA2

−φ
))

(z) dz ρ (w2) dw2〉L2(R,H)

=〈η ⊗ ψ,w1 7→
∫
R
kεT (w1, w2) (ρ⊗ φ) (w2)〉L2(R,H). (361)

By linearity, continuity and density we conclude that for f, g ∈ L2 (R, H) we obtain from
(361) that

e−εH0Te−εH0f = x 7→
∫
R
kεT (x, y) g (y) dy, (362)

where the equality holds in L2 (R, H), which finishes the proof. �

Since the kernel kεT is differentiable in both arguments, we may consider the function
(∂1 + ∂2) kεT as an integral kernel. Not surprising, this is a kernel of the commutator{[
∂, e−εH0Te−εH0

]}
.

Corollary 4.7. Let T be a bounded operator in L2 (R, H) and ε > 0. Then the func-
tion (∂1 + ∂2) kεT , defined in Proposition 4.5, is an operator valued integral kernel of{[
∂, e−εH0Te−εH0

]}
, i.e. for f ∈ C∞c (R, H) and a.e. x ∈ R we have({[

∂, e−εH0Te−εH0
]}
f
)

(x) =

∫
R

(∂1 + ∂2) kεT (x, y) f (y) dy. (363)

Proof. We first note that
{[
∂, e−εH0Te−εH0

]}
indeed exists as a bounded operator in

L2 (R, H), since
{
e−εH0∂

}
exists by Proposition 2.8 and Lemma 2.19. By equation (362)

of Lemma 4.6 we find for f, g ∈ C∞c (R, H)

〈
{[
∂, e−εH0Te−εH0

]}
f, g〉L2(R,H)

75



=〈e−εH0Te−εH0f ′, g〉L2(R,H) + 〈e−εH0Te−εH0f, g′〉L2(R,H)

=

∫
R

∫
R

(
〈kεT (x, y) f ′ (y) , g (x)〉H + 〈kεT (x, y) f (y) , g′ (x)〉H

)
dy dx

=

∫
R

∫
R
〈(∂1 + ∂2) kεT (x, y) f (y) , g (x)〉H〉Hdy dx

=〈x 7→
∫
R

(∂1 + ∂2) kεT (x, y) f (y) dy, g〉L2(R,H). (364)

By continuity and density in (364) (recall that kεT ∈ C1
b

(
R2, B (H)

)
by Proposition 4.5),

we conclude for f ∈ L2 (R, H)

x 7→
∫
R

(∂1 + ∂2) kεT (x, y) f (y) dy =
{[
∂, e−εH0Te−εH0

]}
f, (365)

where the equality holds in L2 (R, H), thus finishing the proof. �

As we are equipped now with an integral kernel of “good regularity”, we can compare it
to the integral kernel one obtains from the Trace Lemma 4.1, given the correct trace-class
membership.

Proposition 4.8. Assume that for ε > 0 the operator e−εH0Te−εH0 is trace-class in
L2 (R, H). The function kεT , defined in Proposition 4.5, then satisfies the following mem-
bership

h 7→ (x 7→ kεT (x, x+ h)) ∈ Cb
(
L1
(
R, S1 (H)

))
. (366)

Proof. By the Trace Lemma 4.1 we know that there exists a operator valued integral kernel
mε
T of e−εH0Te−εH0 ∈ S1

(
L2 (R, H)

)
, such that

h 7→ (x 7→ mε
T (x, x+ h)) ∈ Cb

(
R, L1

(
R, S1 (H)

))
(367)

and for all f ∈ C∞c (R, H) and for a.e. x ∈ R we have

(
e−εH0Te−εH0f

)
(x) =

∫
R
mε
T (x, y) f (y) dy. (368)

We wish to show that mε
T and kεT coincide after embedding into a suitable space. To that

end, let K be compact subset of R and consider the Banach space Cb
(
R, L1 (K,B (H))

)
,

endowed with the obvious norm. It is clear that the maps

i1 : Cb
(
R2, B (H)

)
→ Cb

(
R, L1 (K,B (H))

)
f 7→ (h 7→ (x 7→ f (x, x+ h))) ,

i2 : Cb
(
R, L1

(
R, S1 (H)

))
→ Cb

(
R, L1 (K,B (H))

)
g 7→ g, (369)

76



are well-defined, linear, and continuous. Let Bil (X,Y ) denote the space of continuous
(bounded) bilinear forms of Banach spaces X and Y endowed with the norm

‖φ‖Bil := sup
x∈X,y∈Y

|φ (x, y)|
‖x‖X ‖y‖Y

, (370)

which turns Bil (X,Y ) into a Banach space.
We note that C∞c (R) ⊗ H is dense in L1 (R, H), since C∞c (R) is dense in L1 (R) (via
convolution with a mollifier), and because L1 (R)⊗H is dense in L1 (R, H). We also note
that C (K)⊗H is dense in C (K,H) (c.f. also [35]).
Consider the map

(k 7→ φk) : Cb
(
R, L1 (K,B (H))

)
→ Bil

(
L1 (R, H) , C (K,H)

)
φk (f, g) :=

∫
K

∫
R
〈g (x) , k (x, h) f (h)〉Hdh dx. (371)

The map (k 7→ φk) is linear and continuous (bounded) because

‖φk‖Bil(L1(R,H),C(K,H)) = sup
f∈L1(R,H),g∈C(K,H)

∣∣∫
K

∫
R〈g (x) , k (x, h) f (h)〉Hdh dx

∣∣
‖f‖L1(R,H) supy∈K ‖g (y)‖H

≤ sup
f∈L1(R,H)

∫
K

∫
R ‖k (x, h) f (h)‖H dh dx

‖f‖L1(R,H)

≤ sup
f∈L1(R,H)

∫
R
∫
K ‖k (x, h)‖B(H) dx ‖f (h)‖H dx

‖f‖L1(R,H)

≤ sup
h∈R

∫
K
‖k (x, h)‖B(H) dx. (372)

We claim that (k 7→ φk) is injective.
Assume that there is k ∈ Cb

(
R, L1 (K,B (H))

)
, such that for all f ∈ L1 (R, H) and

g ∈ C (K,H) the equality φk (f, g) = 0 holds. Especially with (en)n∈N denoting an
orthonormal basis of H, we have, after using Fubini’s theorem

∀n,m ∈ N, ξ ∈ C (K) , ρ ∈ C∞c (R) :

φk (ρ⊗ en, ξ ⊗ em) =

∫
R
ρ (h)

∫
K
〈ξ (x) em, k (x, h) en〉Hdx dh = 0. (373)

Since

h 7→
∫
K
〈ξ (x) em, k (x, h) en〉Hdx

is continuous (thus especially locally integrable) on R, we conclude, by the principle of
variation, that for all h ∈ R we have∫

K
〈ξ (x) em, k (x, h) en〉Hdx = 0. (374)
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Thus

∀n,m ∈ N, ξ ∈ C (K) , h ∈ R :

∫
K
ξ (x)〈em, k (x, h) en〉Hdx = 0. (375)

Since for all n,m ∈ N and h ∈ R we have 〈em, k (x, h) en〉H ∈ L1 (R), the principle of
variation implies that for a.e. x ∈ R, we have 〈em, k (x, h) en〉H = 0. Because N2 is
countable and a countable union of null sets is still a null set, we may interchange the
“for-a.e. quantor” over x ∈ R with the for-all quantor over n,m ∈ N in (375) and arrive
at

∀h ∈ R for a.e. x ∈ R ∀n,m ∈ N : 〈em, k (x, h) en〉H = 0.

⇒ ∀h ∈ R for a.e. x ∈ R : k (x, h) = 0 in B (H) . (376)

This implies that k ≡ 0 in Cb
(
R, L1 (K,B (H))

)
, proving the injectivity of (k 7→ φk).

Define

k1 := i1 (kεT ) ,

k2 := i2 (h 7→ (x 7→ mε
T (x, x+ h))) . (377)

Let n,m ∈ N, ρ ∈ C∞c (R) and ξ ∈ C (K). Assume that supp ρ ⊆ K ′ for a compact subset
K ′ ⊂ R and choose a compact interval I ⊇ K + K ′. Define for an orthonormal basis
(en)n∈N of H

mε
l,n (x, x+ h) := 〈en,mε

T (x, h) el〉H .

Therefore

h 7→
(
x 7→ mε

l,n (x, x+ h)
)

is a function in Cb
(
R, L1 (R)

)
. Note that for any compact set K ′′ ⊂ R we additionally

have

h 7→
(
x 7→ mε

l,n (x, x+ h)
)
∈ L1

(
K ′′ ×K

)
, (378)

for (h, x) ∈ K ′′ × K. Especially this holds for the compact set K ′′ = I − K ′. Then we
have

φk2 (ρ⊗ el, ξ ⊗ en) =

∫
K

∫
R
ρ (h) ξ (x)mε

l,n (x, x+ h) dh dx

=

∫
(x,y)∈K×R:y−x∈K′′

ρ (y − x) ξ (x)mε
l,n (x, y) dy dx

=

∫
K

∫
I
ρ (y − x) ξ (x)mε

l,n (x, y) dy dx, (379)

where we note that mε
l,n ∈ L1 (K × I), since

K × I ⊆
{

(x, y) ∈ K × R : y − x ∈ K ′′
}
. (380)
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Additionally, we note that we may approximate (x, y) 7→ ρ (y − x) ∈ C (K × I) uniformly
via

ρ (y − x) = lim
j→∞

j∑
i=1

uji (x) ρ
(
y − xji

)
, (381)

where for I =: [a, b] we set xji = a+ (b−a)i
j and choose uji ∈ C∞ (K) to form a partition of

unity subordinated to the cover

U ji := K ∩
(
xji−1 −

b− a
3j

, xji +
b− a

3j

)
. (382)

Note that at most two partition functions have non-empty intersection of supports. The
uniform convergence follows simply by noting that ρ (y − x) is uniformly continuous on
K × I. Clearly

vji := ρ
(
· − xji

)
∈ C∞c (R) , (383)

and thus ∫
K

∫
I
ρ (y − x) ξ (x)mε

l,n (x, y) dy dx

=

∫
K

∫
I

(
lim
j→∞

j∑
i=1

uji (x) vji (y)

)
ξ (x)mε

l,n (x, y) dy dx. (384)

Since

(x, y) 7→ ξ (x)mε
l,n (x, y) ∈ L1 (K × I) , (385)

and the sum (381) converges uniformly on K × I, we conclude that the integrand of right
hand side of (384) converges in L1 (K × I) and we are allowed to pull out the limit j →∞
and the (finite) sum. Since vji ⊗ el ∈ C∞c (R, H) and ξ ⊗ en ∈ L2 (R, H), by continuation
with 0 outside K, we may combine (379), (384) and the above limit exchange consideration
to conclude

φk2 (ρ⊗ el, ξ ⊗ en) = lim
j→∞

j∑
i=1

∫
K

∫
I
〈ξ (x) en,m

ε
T (x, y)

(
vji (y) el

)
〉Hdy dx

= lim
j→∞

j∑
i=1

〈ξ ⊗ ene−εH0Te−εH0

(
vji ⊗ el

)
〉L2(R,H). (386)

We note that

h 7→ (x 7→ 〈en, kεT (x, h) el〉H)
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is also an element of L1 (K ′′ ×K) for any compact set K ′′ ⊂ R, and we similarly obtain

φk1 (ρ⊗ el, ξ ⊗ en) = lim
j→∞

j∑
i=1

∫
K

∫
I
〈ξ (x) en, k

ε
T (x, y)

(
vji (y) el

)
〉Hdy dx

= lim
j→∞

j∑
i=1

〈ξ ⊗ en, e−εH0Te−εH0

(
vji ⊗ el

)
〉L2(R,H). (387)

And thus, by density and continuity of (k 7→ φk), we conclude φk1 = φk2 . The injectivity
of k 7→ φk then implies k1 = k2 as elements of Cb

(
R, L1 (K,B (H))

)
for any compact set

K ⊂ R. This implies that for each h ∈ R and a.e. x ∈ K we have

kεT (x, x+ h) = mε
T (x, x+ h) ∈ S1 (H) , (388)

by (367) and, since K was arbitrary, that

h 7→ (x 7→ kεT (x, x+ h)) = h 7→ (x 7→ mε
T (x, x+ h)) ∈ Cb

(
R, L1

(
R, S1 (H)

))
. (389)

�

Again, we may also consider the commutator with ∂ and the corresponding integral
kernel due to Corollary 4.7, giving us the analogous result and closing this subsection.

Corollary 4.9. Let ε > 0 and assume
{[
∂, e−εH0Te−εH0

]}
exists and is trace-class in

L2 (R, H) for a bounded operator T ∈ B
(
L2 (R, H)

)
. Then function kεT , defined in Pro-

position 4.5, satisfies the following membership

h 7→ (x 7→ (∂1 + ∂2) kεT (x, x+ h)) ∈ Cb
(
L1
(
R, S1 (H)

))
. (390)

Proof. Since
{[
∂, e−εH0Te−εH0

]}
is trace class, there exists an operator valued integral

kernel nεT of
{[
∂, e−εH0Te−εH0

]}
, such that

h 7→ (x 7→ nεt (x, x+ h)) ∈ Cb
(
R, L1

(
R, S1 (H)

))
, (391)

according to the Trace Lemma 4.1. By Corollary 4.7, the B (H)-valued function
(∂1 + ∂2) kεT ∈ Cb

(
R2, B (H)

)
is an operator valued integral kernel of

{[
∂, e−εH0Te−εH0

]}
.

Thus, analogous to the proof of Proposition 4.8, we show that (∂1 + ∂2) kεT must coincide in
Cb
(
R, L1 (K,B (H))

)
with nεT for each compact set K ⊂ R, thus showing the membership

h 7→ (x 7→ (∂1 + ∂2) kεT (x, x+ h)) ∈ Cb
(
L1
(
R, S1 (H)

))
. (392)

�

80



4.3 Calculation of the trace formulae

The previous subsection 4.2 gave us the needed tools to construct an integral kernel sat-
isfying the normalization in the Trace Lemma 4.1. Thus we may calculate the trace of a
commutator with ∂ by the following Theorem 4.10.

Theorem 4.10. Assume {[∂, T ]} exists and is trace-class in L2 (R, H) for a bounded
operator T ∈ B

(
L2 (R, H)

)
. Then for δ > 0 we have

lim
(y,y0)→(x,x0)

kδT (x, x)− kδT (x0, x0) ∈ S1 (H) , for x, x0 ∈ R ∪ {±∞} ,

sup
y,y0∈R

∥∥∥kδT (x, x)− kδT (x0, x0)
∥∥∥
S1(H)

≤ ‖{[∂, T ]}‖S1(L2(R,H)) ,

lim
x→x0

∥∥∥kδT (x, x)− kδT (x0, x0)
∥∥∥
S1(H)

= 0, for x0 ∈ R ∪ {±∞} , (393)

where kδ is defined in Proposition 4.5. Furthermore we have

trL2(R,H) ({[∂, T ]}) = lim
ε↘0

trH

(
lim

(x1,x0)→(+∞,−∞)
kεT (x1, x1)− kεT (x0, x0)

)
. (394)

Proof. By Proposition 4.8, we know that (∂1 + ∂2) kδ satisfies the normalization (344)
of the Trace Lemma 4.1 pointed out in its Remark 4.2. Furthermore, (∂1 + ∂2) kδ is
an operator valued integral kernel of

{[
∂, e−δH0Te−δH0

]}
by Corollary 4.7. Therefore,

recalling equation (350), the Trace Lemma 4.1 enables us to conclude∫
R

∥∥∥(∂1 + ∂2) kδ (x, x)
∥∥∥
S1(H)

dx ≤
∥∥∥{[∂, e−δH0Te−δH0

]}∥∥∥
S1(L2(R,H))

≤ ‖{[∂, T ]}‖S1(L2(R,H)) . (395)

Since also kδ ∈ C1
b

(
R2, B (H)

)
, we have d

dxk
δ (x, x) = (∂1 + ∂2) kδ (x, x), and therefore for

x, x0 ∈ R

kδ (x, x)− kδ (x0, x0) =

∫ x

x0

(∂1 + ∂2) kδ (y, y) dy ∈ S1 (H) . (396)

Furthermore, if x, x0 ∈ R ∪ {±∞}, by (396), the following limits exist in S1 (H)

lim
(y,y0)→(x,x0)

kδ (x, x)− kδ (x0, x0) ∈ S1 (H) . (397)

Equation (396) and the estimate (395) then complete the proof of (393).
The Trace Lemma 4.1 additionally gives us the trace identity

trL2(R,H)

({[
∂, e−εH0Te−εH0

]})
=

∫
R

trH ((∂1 + ∂2) kεT (x, x)) dx

=trH

(∫
R

(∂1 + ∂2) kεT (x, x) dx

)
= trH

(
lim

(x1,x0)→(+∞,−∞)
kεT (x1, x1)− kεT (x0, x0)

)
,

(398)

and therefore, by Lemma 4.4, we obtain the trace identity (394). �
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The above Theorem 4.10 prompts us towards calculating the limits of the considered
integral kernels at the ends of the diagonal. Since we know that these limits must exist in
S1 (H), it is enough to find the limits in a weaker topology.
If we return from an abstract operator T to our concrete setting, the following Proposition
4.11 is dedicated to determine the limits of the kernels kε

P+
t

and kε
Q+
t

at the ends of the

diagonal in the weak operator topology of H. The proof will take some effort and we
therefore inform the reader, that no details of the proof are used at some other point in
this work.

Proposition 4.11. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or B2
( 2.14). Let ε, t > 0 and φ, ψ ∈ H. Define for a, b > 0 and z ∈ C

χa,b (z) :=
ebz

2

2

(
erf
(

(a+ b)1/2 z
)
− erf

(
b1/2z

))
, (399)

where erf denotes the Gaussian error function.
Then we obtain the following limits

lim
x→−∞

〈kε
P+
t

(x, x)φ, ψ〉H = (4π (t+ 2ε))−1/2 〈e−εA2
−A−e

−tA2
−e−εA

2
−φ, ψ〉H ,

lim
x→+∞

〈kε
P+
t

(x, x)φ, ψ〉H = (4π (t+ 2ε))−1/2 〈e−εA2
−A+e

−tA2
+e−εA

2
−φ, ψ〉H ,

lim
x→−∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1〈e−εA2
−χt,2ε (A−) e−εA

2
−φ, ψ〉H ,

lim
x→+∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1〈e−εA2
−χt,2ε (A+) e−εA

2
−φ, ψ〉H . (400)

Proof. Recall that the kernel kεT from Proposition 4.5 is given by

kεT (x, y)φ =

(
qε ∗R

(
e−εÂ

2
−T (qε (· − y)⊗ φ)

))
(x) , for x, y ∈ R and φ ∈ H. (401)

Denote for x ∈ R and φ ∈ H

fφ,xε := qε (x− ·)⊗
(
e−εA

2
−
)
φ ∈ L2 (R, H) . (402)

One easily checks the identity

e−sH0fφ,xε = fφ,xε+s, for x ∈ R, φ ∈ H, ε, s > 0. (403)

Furthermore we have the estimates∥∥∥Dfφ,xε

∥∥∥
L2(R,H)

≤
∥∥∥q′ε (x− ·)⊗ e−εA2

−φ
∥∥∥
L2(R,H)

+

∥∥∥∥A (X) e−εÂ
2
− (qε (x− ·)⊗ φ)

∥∥∥∥
L2(R,H)

.ε,φ 1,∥∥∥H−fφ,xε

∥∥∥
L2(R,H)
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≤
∥∥∥q′′ε (x− ·)⊗ e−εA2

−φ
∥∥∥
L2(R,H)

+

∥∥∥∥(A (X)2 −A′ (X)
)
e−εÂ

2
− (qε (x− ·)⊗ φ)

∥∥∥∥
L2(R,H)

.ε,φ1. (404)

Therefore we have for φ, ψ ∈ H and x ∈ R,

〈kεT (x, x)φ, ψ〉H =

∫
R
qε (x− z) 〈

(
e−εÂ

2
−T
(
qε (· − x)⊗ e−εA2

−φ
))

(z) , ψ〉Hdz

= 〈e−εÂ2
−Tfφ,xε , qε (x− ·)⊗ ψ〉L2(R,H)

= 〈Tfφ,xε , qε (x− ·)⊗ e−εA2
−ψ〉L2(R,H)

= 〈Tfφ,xε , fψ,xε 〉L2(R,H). (405)

Thus if T = P+
t , we have

〈kε
P+
t

(x, x)φ, ψ〉H = 〈e−tH+fφ,xε , Dfψ,xε 〉L2(R,H), (406)

while for T = Q+
t we have

t〈kε
Q+
t

(x, x)φ, ψ〉H = t〈γ (tH+) fφ,xε , Dfψ,xε 〉L2(R,H)

=

∫ t

0
〈e−sH+fφ,xε , Dfψ,xε 〉L2(R,H)ds, (407)

by equation (321). We note further that (407) is the integral of (406), so if we calculate
the limit of (406) in a uniform manner, we also obtain the limit of (407).
Note that

M+ = H+ −H0 = DD∗ −D0D
∗
0 = D (D∗ −D∗0) + (D −D0)D∗0

= D
(
A (X)− Â−

)
+
(
A (X)− Â−

)
D∗0, (408)

which holds true on Dom (H0). Combining (408) with Lemma 2.29 in (406), we obtain

〈e−tH+fφ,xε , Dfψ,xε 〉L2(R,H)

=〈e−tH0fφ,xε , Dfψ,xε 〉L2(R,H) −
∫ t

0
〈M+e

−sH0fφ,xε , e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

=〈fφ,xε+t, Df
ψ,x
ε 〉L2(R,H) −

∫ t

0
〈
(
A (X)− Â−

)
fφ,xε+s, D

∗e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

−
∫ t

0
〈D∗0f

φ,x
ε+s,

(
A (X)− Â−

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds. (409)

We have to discuss all three summands of the last line of (409).
Define

gε (z) :=
∥∥∥e−εA2

−A′ (z) e−εA
2
−

∥∥∥
S1(H)

,
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Cε :=

∫
R
gε (z) dz. (410)

Let δ > 0 and choose R > 0 large enough, such that∫ −R
−∞

gε (z) dz ≤ δ,

(4πε)−1Cε

∫ ∞
R

e−
y2

2ε dy ≤ δ. (411)

For the first summand of the last line of (409) we obtain

〈fφ,xε+t, Df
ψ,x
ε 〉L2(R,H)

=

∫
R
qε+t (x− y) qε (x− y) 〈e−(ε+t)A2

−φ, (A (y)−A−) e−εA
2
−ψ〉Hdy

+

∫
R
qε+t (x− y) q′ε (x− y) 〈e−(ε+t)A2

−φ, e−εA
2
−ψ〉Hdy

+

∫
R
qε+t (x− y) qε (x− y) 〈e−(ε+t)A2

−φ,A−e
−εA2

−ψ〉Hdy

=

∫
R

∫ y

−∞
qε+t (x− y) qε (x− y) 〈φ, e−(ε+t)A2

−A′ (z) e−εA
2
−ψ〉Hdz dy

+

∫
R
qε+t (x− y) q′ε (x− y) dy 〈e−(ε+t)A2

−φ, e−εA
2
−ψ〉H

+ q2ε+t (0) 〈A−e−(2ε+t)A2
−φ, ψ〉H

=

∫
R

∫ y

−∞
qε+t (x− y) qε (x− y) 〈φ, e−(ε+t)A2

−A′ (z) e−εA
2
−ψ〉Hdz dy

+ 0

+ (4π (2ε+ t))−1/2 〈A−e−(2ε+t)A2
−φ, ψ〉H , (412)

where in the last step we used that qε+t is an even function, while q′ε is odd, thus resulting
in an integral of value 0. We estimate for x ≤ −2R∣∣∣〈fφ,xε+t, Df

ψ,x
ε 〉L2(R,H) − (4π (2ε+ t))−1/2 〈A−e−(2ε+t)A2

−φ, ψ〉H
∣∣∣

≤‖φ‖H ‖ψ‖H
∫
R

(∫ y

−∞
gε (z) dz

)
qε+t (x− y) qε (x− y) dy

≤‖φ‖H ‖ψ‖H
(∫ −R
−∞

(∫ −R
−∞

gε (z) dz

)
qε+t (x− y) qε (x− y) dy

+

∫
R
gε (z) dz

∫ ∞
−R

qε+t (x− y) qε (x− y) dy

)
.φ,ψ δ · q2ε+t (0) + Cε (4πε)−1/2 (4π (ε+ t))−1/2

∫ ∞
R

e−
y2

2ε dy

.φ,ψ,ε δ. (413)
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By Lemma 2.40 we may rewrite the second summand of the last line of (409) by∫ t

0
〈
(
A (X)− Â−

)
fφ,xε+s, D

∗e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

=

∫ t

0
〈
(

1 + Â2
−

)−1/4 (
A (X)− Â−

)
fφ,xε+s,

(
1 + Â2

−

)1/4
e−(t−s)H−H−f

ψ,x
ε 〉L2(R,H)ds

=

∫ t

0

∫
R
〈
(
1 +A2

−
)−1/4

(A (y)−A−)
(
1 +A2

−
)−3/4 (

1 +A2
−
)3/4

e−(s+ε)A2
−φ ,((

1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

)
(y)〉Hqε+s (x− y) dy ds . (414)

By Lemma 3.3 there exists a function g ∈ L1 (R) with

C := ‖g‖L1(R) , (415)

such that∥∥∥(1 +A2
−
)−1/4

(A (y)−A−)
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

≤ G (y) :=

∫ y

−∞
|g (z)|dz,∥∥∥(1 +A2

−
)−1/4

(A+ −A (y))
(
1 +A2

−
)−3/4

∥∥∥
S1(H)

≤ G̃ (y) :=

∫ +∞

y
|g (z)|dz. (416)

For t0 > 0 let δ > 0 and choose r > 0 large enough, such that∫ −r
−∞
|g (z)|dz +

∫ +∞

r
|g (z)| dz ≤ δ,(

(4πε)−1
∫ +∞

r

(
1 +
|z|
2ε

)2

e
− z2

2(t0+ε) dz

)1/2

≤ δ. (417)

Corollary 2.39, Lemma 2.36, estimate (404), and (416) imply that we may estimate (414)
for 0 < s < t ≤ t0 and x ≤ −2r by∣∣∣∣∫ t

0
〈
(
A (X)− Â−

)
fφ,xε+s, D

∗e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
.t0 ‖φ‖H

∫ t

0

∫
R
G (y) (s+ ε)−3/4 qε+s (x− y)∥∥∥∥((1 + Â2

−

)1/4
e−(t−s)H−H−f

ψ,x
ε

)
(y)

∥∥∥∥
H

dy ds

.t0,ε,φ

∫ t

0

∫ −r
−∞

∫ y

−∞
g (z) dz qε+s (x− y)

∥∥∥∥((1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

)
(y)

∥∥∥∥
H

dy ds

+

∫ t

0

∫ +∞

−r

∫
R
g (z) dz qε+s (x− y)

∥∥∥∥((1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

)
(y)

∥∥∥∥
H

dy ds

.t0,ε,φδ
∫ t

0
‖qs+ε‖L2(R)

∥∥∥∥(1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

∥∥∥∥
L2(R,H)

ds
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+ C

∫ t

0
‖qs+ε (x− ·)‖L2((−r,+∞))

∥∥∥∥(1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

∥∥∥∥
L2(R,H)

ds

.t0,ε,φ,ψδ
∫ t

0
(s+ ε)−1/4 (t− s)−1/4 ds

+

∫ t

0

(∫ +∞

r
qs+ε (z)2 dz

)1/2

(t− s)−1/4 ds

.t0,ε,φ,ψδt
3/4 +

∫ t

0

(
(4πε)−1

∫ +∞

r
e
− z2

2(t0+ε) dz

)1/2

(t− s)−1/4 ds

.t0,ε,φ,ψδt
3/4 + δt3/4. (418)

For the remaining third summand of the last line of (409) we find∫ t

0
〈D∗0f

φ,x
ε+s,

(
A (X)− Â−

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

=

∫ t

0
〈−∂

(
1 + Â2

−

)1/4
fφ,xε+s,

(
1 + Â2

−

)−1/4 (
A (X)− Â−

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

+

∫ t

0
〈Â−

(
1 + Â2

−

)1/4
fφ,xε+s,

(
1 + Â2

−

)−1/4 (
A (X)− Â−

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

=

∫ t

0

∫
R
〈
(
1 +A2

−
)1/4

e−(s+ε)A2
−φ,

(
1 +A2

−
)−1/4

(A (y)−A−)
(
1 +A2

−
)−3/4

((
1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)〉Hq′s+ε (x− y) dy ds

+

∫ t

0

∫
R
〈A−

(
1 +A2

−
)1/4

e−(s+ε)A2
−φ,

(
1 +A2

−
)−1/4

(A (y)−A−)
(
1 +A2

−
)−3/4

((
1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)〉Hqs+ε (x− y) dy ds .

(419)

Corollary 2.39, Lemma 2.36, estimate (404) and (416) imply that we may estimate (419)
for 0 < s < t ≤ t0 and x ≤ −2r by∣∣∣∣∫ t

0
〈D∗0f

φ,x
ε+s,

(
A (X)− Â−

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
.t0 ‖φ‖H

∫ t

0

∫
R
G (y) (s+ ε)−1/4

∣∣q′ε+s (x− y)
∣∣∥∥∥∥((1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

+ ‖φ‖H
∫ t

0

∫
R
G (y) (s+ ε)−3/4 qε+s (x− y)∥∥∥∥((1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds
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.t0,ε,φ

∫ t

0

∫ −r
−∞

∫ y

−∞
g (z) dz

∣∣q′ε+s (x− y)
∣∣ ∥∥∥∥((1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

+

∫ t

0

∫ +∞

−r

∫
R
g (z) dz

∣∣q′ε+s (x− y)
∣∣ ∥∥∥∥((1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

+

∫ t

0

∫ −r
−∞

∫ y

−∞
g (z) dz qε+s (x− y)

∥∥∥∥((1 + Â2
−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

+

∫ t

0

∫ +∞

−r

∫
R
g (z) dz qε+s (x− y)

∥∥∥∥((1 + Â2
−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

.t0,ε,φδ
∫ t

0

∥∥∣∣q′s+ε∣∣+ qs+ε
∥∥
L2(R)

∥∥∥∥(1 + Â2
−

)3/4
e−(t−s)H+Dfψ,xε

∥∥∥∥
L2(R,H)

ds

+ C

∫ t

0

∥∥∣∣q′s+ε (x− ·)
∣∣+ qs+ε (x− ·)

∥∥
L2((−r,+∞))∥∥∥∥(1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

∥∥∥∥
L2(R,H)

ds

.t0,ε,φ,ψδ
∫ t

0

(
(s+ ε)−3/4 + (s+ ε)−1/4

)
(t− s)−3/4 ds

+

∫ t

0

(∫ +∞

r

(∣∣q′s+ε (z)
∣∣+ qs+ε (z)

)2
dz

)1/2

(t− s)−3/4 ds

.t0,ε,φ,ψδt
1/4 +

∫ t

0

(
(4πε)−1

∫ +∞

r

(
1 +
|z|
2ε

)2

e
− z2

2(t0+ε) dz

)1/2

(t− s)−3/4 ds

.t0,ε,φ,ψδt
1/4 + δt1/4. (420)

Compiling the estimates (413), (418) and (420), we obtain by (406) and (409) for 0 < t ≤ t0
and x ≤ 2 min (r,R)∣∣∣〈kε

P+
t

(x, x)φ, ψ〉L2(R,H) − (4π (2ε+ t))−1/2 〈A−e−(t+2ε)A2
−φ, ψ〉H

∣∣∣
.t0,ε,φ,ψδ

(
1 + t1/4 + t3/4

)
. (421)

And by (407) we obtain∣∣∣∣t〈kεQ+
t

(x, x)φ, ψ〉L2(R,H) −
∫ t

0
(4π (2ε+ s))−1/2 〈A−e−(2ε+s)A2

−φ, ψ〉Hds

∣∣∣∣
.t0,ε,φ,ψ

∫ t

0
δ
(

1 + s1/4 + s3/4
)

ds .t0,ε,φ,ψ,t δ. (422)

Since δ > 0 was arbitrary we conclude from (421)

lim
x→−∞

〈kε
P+
t

(x, x)φ, ψ〉H = (4π (t+ 2ε))−1/2 〈A−e−(t+2ε)A2
−φ, ψ〉H , (423)

and from (422)

lim
x→−∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1

∫ t

0
(4π (s+ 2ε))−1/2 〈A−e−(s+2ε)A2

−φ, ψ〉Hds, (424)
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Integration by substitution yields∫ t

0
(4π (s+ 2ε))−1/2 ze−(s+2ε)z2

ds =
1

2

(
erf
(

(t+ 2ε)1/2 z
)
− erf

(
(2ε)1/2 z

))
= e−2εz2

χt,2ε (z) . (425)

Note also that χa,b is a bounded function on R for a, b > 0, and thus χt,2ε (A±) are bounded
operators in H. Therefore (424) can be restated as

lim
x→−∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1〈e−εA2
−χt,2ε (A−) e−εA

2
−φ, ψ〉H . (426)

Next, let us discuss the limits for x → +∞. Most of the calculations done for x → −∞
carry over and we can argue by analogy, however one has to be careful and consider in
which terms one replaces A− by A+ and in which one does not. We will therefore discuss
the needed amendments.
We first introduce the operator D1 := ∂ + Â+, which has the same properties as the
operator D0. In particular, by Lemma 2.24, we find analogous to Lemma 2.6, that
Dom (D1)Γ = H1 (R, H) ∩ L2 (R,Dom (A−)Γ) and that D∗1 = −∂ + Â+ with Dom (D∗1)
= Dom (D1) = Dom (D0). Introducing H1 := D∗1D1, we note that H1 ≥ 0 is self-adjoint in

L2 (R, H) and H1 = −∂2 + Â2
+ holds, analogous to Lemma 2.8. Lemma 2.24 then implies

that Dom (H1)Γ = Dom (H0)Γ.
Therefore, also the analogy of Lemma 2.29 for H1 holds true, i.e. for t0 ≥ t > 0 we have

e−tH± − e−tH1 = −
∫ t

0
e−sH±N±e

−(t−s)H1ds

= −
∫ t

0
e−sH0N±e

−(t−s)H±ds, (427)

where the integrals converge in B
(
L2 (R, H)

)
-norm and N± := A (X)2− Â2

+±A′ (X). We
replace (408) by

N+ = D
(
A (X)− Â+

)
+
(
A (X)− Â+

)
D∗1, (428)

which holds true on Dom (H1) = Dom (H0). Combining (428) with (427) in (406), we
obtain

〈e−tH+fφ,xε , Dfψ,xε 〉L2(R,H)

=〈e−tH1fφ,xε , Dfψ,xε 〉L2(R,H) −
∫ t

0
〈N+e

−sH1fφ,xε , e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

=〈e−tH1fφ,xε , Dfψ,xε 〉L2(R,H)

−
∫ t

0
〈
(
A (X)− Â+

)
e−sH1fφ,xε , D∗e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

−
∫ t

0
〈D∗1e−sH1fφ,xε ,

(
A (X)− Â+

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds. (429)
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Analogous to (412) we obtain for the first summand of the last line of (429)

〈e−tH1fφ,xε , Dfψ,xε 〉L2(R,H)

=

∫
R
qε+t (x− y) qε (x− y)

〈φ, e−εA2
−e−tA

2
+
(
1 +A2

−
)1/4 (

1 +A2
−
)−1/4

(A (y)−A+) e−εA
2
−ψ〉Hdy

+ 0

+ (4π (2ε+ t))−1/2 〈e−εA2
−A+e

−tA2
+e−εA

2
−φ, ψ〉H . (430)

Let δ > 0 and choose R > 0 large enough, such that

G̃ (R) ≤ δ,
∫ −R
−∞

e−
y2

2ε dy ≤ δ. (431)

Then for t0 ≥ t > 0 and x ≥ 2R we estimate, using (416) in (430)∣∣∣〈e−tH1fφ,xε , Dfψ,xε 〉L2(R,H) − (4π (2ε+ t))−1/2 〈e−εA2
−A+e

−tA2
+e−εA

2
−φ, ψ〉H

∣∣∣
.φ,ψ,t0,ε

∫
R
qε+t (x− y) qε (x− y) t−1/4G̃ (y) dy

.φ,ψ,t0,εt
−1/4

∫ +∞

R
G̃ (R) qε+t (x− y) qε (x− y) dy

+ t−1/4

∫ R

−∞

(∫
R
g (z) dz

)
qε+t (x− y) qε (x− y) dy

.φ,ψ,t0,εt
−1/4

(
δ + ‖g‖L1(R) (4πε)−1/2 (4πt)−1/2

∫ −R
−∞

e−
y2

2ε dy

)
.φ,ψ,t0,εδt

−1/4. (432)

For the second summand of the last line of (429) we find for t0 ≥ t > 0 and x ≥ 2r by
(417) ∣∣∣∣∫ t

0
〈
(
A (X)− Â+

)
e−sH1fφ,xε , D∗e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
.t0,ε,φ

∫ t

0

∫
R
G̃ (y) s−3/4qε+s (x− y)

∥∥∥∥((1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

)
(y)

∥∥∥∥
H

dy ds

.t0,ε,φδ
∫ t

0
s−3/4 ‖qε+s‖L2(R,H)

∥∥∥∥(1 + Â2
−

)1/4
e−(t−s)H−H−f

ψ,x
ε

∥∥∥∥
L2(R,H)

ds

+ C

∫ t

0
s−3/4 ‖qs+ε (x− ·)‖L2((−∞,r))

∥∥∥∥(1 + Â2
−

)3/4
e−(t−s)H−H−f

ψ,x
ε

∥∥∥∥
L2(R,H)

ds

.t0,ε,φ,ψδ
∫ t

0
s−3/4 (t− s)−1/4 ds+

∫ t

0
s−3/4

(∫ +∞

r
qs+ε (z)2 dz

)1/2

(t− s)−1/4 ds

.t0,ε,φ,ψδ. (433)
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Lastly for the third summand of the last line of (429) we find for t0 ≥ t > 0 and x ≥ 2r
by (417) ∣∣∣∣∫ t

0
〈D∗1e−sH1fφ,xε ,

(
A (X)− Â+

)
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
≤
∣∣∣∣∫ t

0
〈−∂

(
1 + Â2

−

)1/4
e−sH1fφ,xε ,

(
1 + Â2

−

)−1/4 (
A (X)− Â+

)(
1 + Â2

−

)−3/4

(
1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
+

∣∣∣∣∫ t

0
〈Â+

(
1 + Â2

+

)1/4
e−sH1fφ,xε ,

(
1 + Â2

+

)−1/4 (
1 + Â2

−

)1/4 (
1 + Â2

−

)−1/4

(
A (X)− Â+

)(
1 + Â2

−

)−3/4 (
1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε 〉L2(R,H)ds

∣∣∣∣
.t0,ε,φ

∫ t

0

∫
R
G̃ (y) s−1/4

∣∣q′ε+s (x− y)
∣∣ ∥∥∥∥((1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

+

∫ t

0

∫
R
G̃ (y) s−3/4qε+s (x− y)

∥∥∥∥((1 + Â2
−

)3/4
e−(t−s)H+Dfψ,xε

)
(y)

∥∥∥∥
H

dy ds

.t0,ε,φδ
∫ t

0

∥∥∥s−1/4
∣∣q′s+ε∣∣+ s−3/4qs+ε

∥∥∥
L2(R)

∥∥∥∥(1 + Â2
−

)3/4
e−(t−s)H+Dfψ,xε

∥∥∥∥
L2(R,H)

ds

+ C

∫ t

0

∥∥∥s−1/4
∣∣q′s+ε∣∣+ s−3/4qs+ε

∥∥∥
L2((−∞,r))∥∥∥∥(1 + Â2

−

)3/4
e−(t−s)H+Dfψ,xε

∥∥∥∥
L2(R,H)

ds

.t0,ε,φ,ψδ
∫ t

0

(
s−1/4 (s+ ε)−3/4 + s−3/4 (s+ ε)−1/4

)
(t− s)−3/4 ds

+

∫ t

0

(
s−1/4 + s−3/4

)(
(4πε)−1

∫ r

−∞

(
1 +
|z|
2ε

)2

e
− z2

2(t0+ε) dz

)1/2

(t− s)−3/4 ds

.t0,ε,φ,ψδt
−1/2 + δt−1/2. (434)

Compiling the estimates (432), (433) and (434), we obtain by (406) and (429) for 0 < t ≤ t0
and x ≥ 2 min (r,R)∣∣∣〈kε

P+
t

(x, x)φ, ψ〉L2(R,H) − (4π (2ε+ t))−1/2 〈e−εA2
−A+e

−tA2
+e−εA

2
−φ, ψ〉H

∣∣∣
.t0,ε,φ,ψδ

(
1 + t−1/4 + t−1/2

)
. (435)

And by (407) we obtain∣∣∣∣t〈kεQ+
t

(x, x)φ, ψ〉L2(R,H) −
∫ t

0
(4π (2ε+ s))−1/2 〈e−εA2

−A+e
−tA2

+e−εA
2
−φ, ψ〉Hds

∣∣∣∣
.t0,ε,φ,ψ

∫ t

0
δ
(

1 + s−1/4 + s−1/2
)

ds .t0,ε,φ,ψ,t δ. (436)
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Since δ > 0 was arbitrary we conclude from (435)

lim
x→+∞

〈kε
P+
t

(x, x)φ, ψ〉H = (4π (t+ 2ε))−1/2 〈e−εA2
−A+e

−tA2
+e−εA

2
−φ, ψ〉H , (437)

and from (436)

lim
x→+∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1

∫ t

0
(4π (s+ 2ε))−1/2 〈e−εA2

−A+e
−sA2

+e−εA
2
−φ, ψ〉Hds,

(438)

Formula (425) yields ∫ t

0
(4π (s+ 2ε))−1/2 ze−sz

2
ds = χt,2ε (z) . (439)

Therefore (438) can be restated as

lim
x→+∞

〈kε
Q+
t

(x, x)φ, ψ〉H = t−1〈e−εA2
−χt,2ε (A+) e−εA

2
−φ, ψ〉H . (440)

�

We are now able to harvest the first trace formula by virtue of the previous Theorem
4.10 and Proposition 4.11.

Proposition 4.12. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or
Hypothesis B2 ( 2.14). Let ε, t > 0 then

A+e
−tA2

+ −A−e−tA
2
− ∈ S1 (H) ,

trL2(R,H)

({[
∂, P+

t

]})
= (4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)
,

kε
P+
t

(x, x)− (4πt)−1/2A−e
−(t+2ε)A2

− ∈ S1 (H) , for all x ∈ R,∥∥∥kε
P+
t

(x, x)− (4πt)−1/2A−e
−(t+2ε)A2

−

∥∥∥
S1(H)

≤
∥∥{[∂, P+

t

]}∥∥
S1(L2(R,H))

, for all x ∈ R.

(441)

Proof. Hypothesis A2 (2.11) implies that for

g (s, t) :=

∫
R

∥∥∥e−sA2
−A′ (x) e−tA

2
−

∥∥∥
S1(H)

dx, (442)

we have g ∈ I−1/2,0 and thus, by the trace formula 200 of Proposition 3.6, that

f (A+)− f (A−) ∈ S1 (H) , (443)

where f is twice weakly differentiable with locally bounded derivatives and there is r > 1
such that (

ν2f ′ (ν)
)′

=|ν|→∞ O
(
|ν|−1−r

)
,
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lim
ν→−∞

f (ν) = lim
ν→+∞

f (ν) , lim
ν→±∞

ν2f ′ (ν) = 0. (444)

We easily verify that f (ν) := νe−tν
2

satisfies condition (444) and thus, by (443) we
conclude

A+e
−tA2

+ −A−e−tA
2
− ∈ S1 (H) , (445)

which is the first statement of (441).
Since

{[
∂, P+

t

]}
is trace-class in L2 (R, H), by Theorem 3.21, statement (393) of Theorem

4.10 implies that

lim
(y,y0)→(x,x0)

kε
P+
t

(x, x)− kε
P+
t

(x0, x0) ∈ S1 (H) , for x, x0 ∈ R ∪ {±∞} , (446)

which must coincide, for x = +∞ and x0 = −∞, with the weak limits derived in Propos-
ition 4.11 and therefore, by statement (394) of Theorem 4.10, we have

trL2(R,H)

({[
∂, P+

t

]})
= (4πt)−1/2 lim

ε↘0
trH

(
e−εA

2
−
(
A+e

−tA2
+ −A−e−tA

2
−
)
e−εA

2
−
)
. (447)

On the other hand, we have (445). Since e−εA
2
− is self-adjoint and converges strongly to

1 in H, we conclude by Lemma 4.3 that we may interchange trace and limit in (447) and
thus

trL2(R,H)

({[
∂, P+

t

]})
= (4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)
, (448)

which is the second statement of (441).
Proposition 4.11 and (446) also immediately imply that

kε
P+
t

(x, x)− (4πt)−1/2A−e
−(t+2ε)A2

− ∈ S1 (H) , for all x ∈ R, (449)

giving us the third statement of (441).
Theorem 4.10 and Proposition 4.11 finally implies the last statement of (441),∥∥∥kε

P+
t

(x, x)− (4πt)−1/2A−e
−(t+2ε)A2

−

∥∥∥
S1(H)

≤
∥∥{[∂, P+

t

]}∥∥
S1(L2(R,H))

, for all x ∈ R.

(450)

�

Similarly we obtain a trace formula concerned with the commutator of ∂ and Q+
t using

Proposition 4.11 and Theorem 4.10.

Proposition 4.13. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or
Hypothesis B2 ( 2.14). Let ε, t > 0 then

trL2(R,H)

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
= t−1trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
,

kε
Q+
t

(x, x)− t−1e−εA
2
−χt,2ε (A−) e−εA

2
− ∈ S1 (H) for x ∈ R ∪ {±∞} . (451)
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Proof. The operator e−εH0
{[
∂,Q+

t

]}
e−εH0 is trace-class in L2 (R, H), by Theorem 3.22.

Analogous to the proof of Theorem 4.10 one concludes that

lim
(y,y0)→(x,x0)

kε
Q+
t

(x, x)− kε
Q+
t

(x0, x0) ∈ S1 (H) , for x, x0 ∈ R ∪ {±∞} , (452)

and

trL2(R,H)

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
= trH

(
lim

(x1,x0)→(+∞,−∞)
kε
Q+
t

(x1, x1)− kε
Q+
t

(x0, x0)

)
.

(453)

The limits in (452) must coincide with the weak limits derived in Proposition 4.11 and
therefore we have

kε
Q+
t

(x, x)− t−1e−εA
2
−χt,2ε (A−) e−εA

2
− ∈ S1 (H) for x ∈ R ∪ {±∞} , (454)

and

trL2(R,H)

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
= t−1trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
. (455)

�

After consideration of the commutator with ∂, it remains for us to discuss the com-
mutators of P+

t and Q+
t with A (X) to obtain the trace formulae (1), reminding us of the

decompositions in Lemma 2.32 and Theorem 3.22. We start by showing that a commutator
with A (X) can only contribute purely imaginary in trace.

Lemma 4.14. Let T ∈ B
(
L2 (R, H) ,Dom

(
Â−

)
Γ

)
be a self-adjoint operator in L2 (R, H)

and assume that {TA (X)} exists, then for ε > 0 and φ ∈ H we have for x ∈ R

〈kε{[A(X),T ]} (x, x)φ, φ〉H ∈ i · R. (456)

Proof. Denote fφ,xε := qε (x− ·) ⊗ e−εA
2
−φ. We remark that fφ,xε ∈ Dom

(
Â−

)
. Since

{[A (X) , T ]} is a bounded operator in L2 (R, H), we have by Proposition 4.5,

〈kε{[A(X),T ]} (x, x)φ, φ〉H

=

∫
R

∫
R
qε (x− z1) qε (x− z2) 〈e−εA2

−θ
{[A(X),T ]}

e
−εA2
−φ

(z1, z2) , φ〉Hdz2 dz1

=〈θ{[A(X),T ]}

e
−εA2
−φ

, qε (x− ·)⊗
(
e−εA

2
−φ
)
⊗ qε (x− ·)〉L2(R2,H)

=〈[A (X) , T ] fφ,xε , fφ,xε 〉L2(R,H)

=〈Tfφ,xε , A (X) fφ,xε 〉L2(R,H) − 〈A (X) fφ,xε , Tfφ,xε 〉L2(R,H)

=2i=
(
〈Tfφ,xε , A (X) fφ,xε 〉L2(R,H)

)
∈ i · R. (457)

�

93



We immediately conclude, keeping the decompositions in Lemma 2.32 and Theorem
3.22 in mind, that the trace of the commutators of P+

t and Q+
t with A (X) need to vanish.

Corollary 4.15. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or Hy-
pothesis B2 ( 2.14) and let ε, t > 0. Then

trL2(R,H)

(
e−εH0

[
A (X) , P+

t

]
e−εH0

)
= 0,

trL2(R,H)

(
e−εH0

[
A (X) , Q+

t

]
e−εH0

)
= 0. (458)

Proof. By Theorem 3.22, respectively Theorem 3.21, we know that the operators
e−εH0

[
A (X) , Q+

t

]
e−εH0 and e−εH0

[
A (X) , P+

t

]
e−εH0 are trace-class in L2 (R, H). By

the Trace Lemma 4.1 and Proposition 4.8 we thus infer for T = P+
t or T = Q+

t , and an
orthonormal basis (en)n∈N of H, that

trL2(R,H)

(
e−εH0 [A (X) , T ] e−εH0

)
=

∫
R

trH

(
kε{[A(X),T ]} (x, x)

)
dx

=

∫
R

∑
n∈N
〈kε{[A(X),T ]} (x, x) en, en〉Hdx

∈ i · R, (459)

where in the last step we used Lemma 4.14 (it is easily checked that P+
t and Q+

t indeed
satisfy the prerequisites).
On the other hand we know by Theorem 3.22 and Proposition 4.13 that

− t · trL2(R,H)

(
e−εH0

[
A (X) , Q+

t

]
e−εH0

)
=trL2(R,H)

(
e−εH0

(
e−tH+ − e−tH−

)
e−εH0

)
+ t · trL2(R,H)

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
=trL2(R,H)

(
e−εH0

(
e−tH+ − e−tH−

)
e−εH0

)
+ trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)

∈R, (460)

where in the last step of (460) we used the observation that the operators in the traces in
the penultimate line of (460) are self-adjoint in L2 (R, H) respectively in H, therefore the
traces take real values.
Similarly one shows that

trL2(R,H)

(
e−εH0

[
A (X) , P+

t

]
e−εH0

)
∈ R. (461)

Combining (460) and (461) with (459), we conclude that the traces must be 0, proving
(458). �

To conclude the chapter, we are now finally able to state and proof the trace formulae
(1) with the correct assumptions.

Theorem 4.16. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or Hy-
pothesis B2 ( 2.14) and let t > 0. Then

trS1(L2(R,H))

(
H+e

−tH+ −H−e−tH−
)

= (4πt)−1/2 trS1(H)

(
A+e

−tA2
+ −A−e−tA

2
−
)
. (462)
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Proof. We conclude using Lemma 4.3, Proposition 4.12, and Corollary 4.15,

trS1(L2(R,H))

(
H+e

−tH+ −H−e−tH−
)

= lim
ε↘0

trS1(L2(R,H))

(
e−εH0

(
H+e

−tH+ −H−e−tH−
)
e−εH0

)
= lim
ε↘0

trS1(L2(R,H))

(
e−εH0

[
∂, P+

t

]
e−εH0

)
+ lim
ε↘0

trS1(L2(R,H))

(
e−εH0

[
A (X) , P+

t

]
e−εH0

)
=trS1(L2(R,H))

({[
∂, P+

t

]})
+ 0

= (4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)
. (463)

�

Theorem 4.17. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or Hy-
pothesis B2 ( 2.14) and let t > 0. Then

trS1(L2(R,H))

(
e−tH+ − e−tH−

)
= − lim

ε↘0
trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
.

Proof. We conclude using Lemma 4.3, Theorem 3.22, Proposition 4.13 and Corollary 4.15

trS1(L2(R,H))

(
e−tH+ − e−tH−

)
= lim

ε↘0
trS1(L2(R,H))

(
e−εH0

(
e−tH+ − e−tH−

)
e−εH0

)
=− t lim

ε↘0
trS1(L2(R,H))

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
− t lim

ε↘0
trS1(L2(R,H))

(
e−εH0

[
A (X) , Q+

t

]
e−εH0

)
=− t lim

ε↘0
trS1(L2(R,H))

(
e−εH0

[
∂,Q+

t

]
e−εH0

)
− 0

=− lim
ε↘0

trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
. (464)

�
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5 A Pushnitski-type formula and the Witten index of D

In the last chapter, we proved Theorem 4.16 and Theorem 4.17, which gave us the trace
formulae (1). These equations, connecting the L2 (R, H)-traces of differences of functions
of H± with H-traces of differences of functions of A±, generate a functional relation
between the spectral shift functions constructed in chapter 3. This functional equation is
necessarily a version of Pushnitski’s formula, up to a normalization constant.
If we fix the normalization of the spectral shift function of the pair (A+, A−) under the
spectral gap assumption 0 ∈ ρ (A−)∩ρ (A+), we determine this normalization constant and
it turns out to be the Witten index of D under this additional statement (in general the
Witten index might not exist). Let us therefore first define the (semi-group regularized)
Witten index abstractly, according to [17].

Definition 5.1. Let T be a densely defined, closed operator in a complex, separable
Hilbert space X. Then the self-adjoint operators T ∗T and TT ∗ are non-negative in X,
and, if the limit

indW (T ) := lim
t→+∞

trX

(
e−tT

∗T − e−tTT ∗
)
, (465)

exists, we say that T possesses the (semi-group regularized) Witten index indW (T ).

Remark 5.2. It should be noted that if T is additionally Fredholm in X, the Witten
index of T exists and coincides with the Fredholm index of T (c.f. [17]), which shows that
the Witten index is a generalization of the Fredholm index.
Although more general than the Fredholm index, the Witten index still retains some
invariance properties under perturbation (c.f. [17, Corollary 3.2]).

Theorem 5.3. Assume Hypothesis A2 ( 2.11) and either Hypothesis B1 ( 2.12) or Hypo-
thesis B2 ( 2.14). Then there exists a constant κ ∈ R, such that for a.e. λ > 0

ξ (λ,H+, H−) = κ+
1

π

∫ +λ1/2

−λ1/2

ξ (µ,A+, A−)
(
λ− µ2

)−1/2
dµ, (466)

where the spectral shift functions ξ (·, H+, H−) and ξ (·, A+, a−) are defined according to
Definition 3.23 and Proposition 3.6 respectively.

If additionally 0 ∈ ρ (A+)∩ρ (A−), then the semi-group regularized Witten index of D,
indW (D), exists and we have

ξ (λ,H+, H−) = indW (D) +
1

π

∫ +λ1/2

−λ1/2

η (µ,A+, A−)
(
λ− µ2

)−1/2
dµ, (467)

where η (·, A+, A−) is defined according to Definition 3.8. Then a.e. in a non-negative
neighbourhood of 0 we have

ξ (·, H+, H−) ≡ indW (D) . (468)

We then also obtain the index formula

indW (D) = lim
t→+∞

lim
ε↘0

trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
. (469)
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Proof. For this proof denote ξH± = ξ (·, H+, H−), ξA± = ξ (·, A+, A−) and η = η (·, A+, A−).
By Remark 3.29 we note that the functions ft (λ) := λe−tλ are amenable for the spectral
shift function trace formula of the pair (H+, H−) for t > 0, i.e.

trL2(R,H)

(
H+e

−tH+ −H−e−tH−
)

=

∫ ∞
0

(1− tλ) e−tλξ (λ) dλ. (470)

We note also that the functions gt (µ) := (4πt)−1/2 µ e−tµ
2
, t > 0, are amenable for the

trace formulae (203) and (215) of the spectral shift function of the pair (A+, A−) defined
in Proposition 3.6 and in Definition 3.8, respectively, for t > 0, i.e.

(4πt)−1/2 trH

(
A+e

−tA2
+ −A−e−tA

2
−
)

=

∫
R

(4πt)−1/2 (1− 2tµ2
)
e−tµ

2
η (µ) dµ

=

∫
R

(4πt)−1/2 (1− 2tµ2
)
e−tµ

2
ξA± (µ) dµ. (471)

By Theorem 4.16, we therefore have for t > 0 that∫ ∞
0

(1− tλ) e−tλξH± (λ) dλ =

∫
R

(4πt)−1/2 (1− 2tµ2
)
e−tµ

2
η (µ) dµ

=

∫
R

(4πt)−1/2 (1− 2tµ2
)
e−tµ

2
ξA± (µ) dµ. (472)

By the L1-memberships of ξH± (cf. Remark 3.29), of η (cf. Proposition 3.6), and of ξA±
(cf. Proposition 3.9), we see that we may integrate both sides of (472) in t from t0 to
t1, where 0 < t0 < t1 < ∞, and we may interchange the order of integration by Fubini’s
theorem. We obtain therefore∫ ∞

0

(
t1e
−t1λ − t0e−t0λ

)
ξH± (λ) dλ =

∫
R

((
t1
π

)1/2

e−t1µ
2 −

(
t0
π

)1/2

e−t0µ
2

)
η (µ) dµ

=

∫
R

((
t1
π

)1/2

e−t1µ
2 −

(
t0
π

)1/2

e−t0µ
2

)
ξA± (µ) dµ.

(473)

Since (π/t)1/2 =
∫∞

0 e−sts−1/2ds, we have (keeping in mind the integrability properties of
η and ξA± ,) for t > 0,∫

R

(
t

π

)1/2

e−tµ
2
η (µ) dµ =

t

π

∫
R
e−tµ

2

∫ ∞
0

e−sts−1/2ds η (µ) dµ

=
t

π

∫
R

∫ ∞
0

1{s>µ2}e
−st (s− µ2

)−1/2
ds η (µ) dµ

= t

∫ ∞
0

e−st

(
1

π

∫ s1/2

−s1/2

η (µ)

(s− µ2)1/2
dµ

)
ds,

∫
R

(
t

π

)1/2

e−tµ
2
ξA± (µ) dµ =

t

π

∫
R
e−tµ

2

∫ ∞
0

e−sts−1/2ds η (µ) dµ
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=
t

π

∫
R

∫ ∞
0

1{s>µ2}e
−st (s− µ2

)−1/2
ds ξA± (µ) dµ

= t

∫ ∞
0

e−st

(
1

π

∫ s1/2

−s1/2

ξA± (µ)

(s− µ2)1/2
dµ

)
ds. (474)

We define

ζη (s) :=
1

π

∫ s1/2

−s1/2

η (µ)

(s− µ2)1/2
dµ, ζξ (s) :=

1

π

∫ s1/2

−s1/2

ξA± (µ)

(s− µ2)1/2
dµ. (475)

By putting (474) into (473) we conclude that for t1 > 0 we have∫ ∞
0

e−t1λξH± (λ) dλ =

∫ ∞
0

e−t1sζη (s) ds+
κηt0
t1

=

∫ ∞
0

e−t1sζξ (s) ds+
κξt0
t1
, (476)

or put differently∫ ∞
0

e−t1λ
(
ξH± (λ)− ζη (λ)− κηt0

)
dλ =

∫ ∞
0

e−t1λ
(
ξH± (λ)− ζξ (λ)− κξt0

)
dλ = 0, (477)

where

κηt0 := t0

∫ ∞
0

e−t0s
(
ξH± (s)− ζη (s)

)
ds,

κξt0 := t0

∫ ∞
0

e−t0s
(
ξH± (s)− ζξ (s)

)
ds, (478)

Thus by Lerch’s theorem (cf. [25]) on the uniqueness of the Laplace transform inversion

we conclude that there are constants κη := κηt0 , κ
ξ := κξt0 (independent of t0 though), such

that

ξH± = ζη + κη = ζξ + κξ, a.e.. (479)

If we additionally assume that 0 ∈ ρ (A−)∩ ρ (A+), then η is constantly 0 on a neighbour-
hood of 0 (say on (−ε, ε) for some ε > 0) by Proposition 3.9. Revisiting the right hand
side of equation (473), we obtain in this case∣∣∣∣∣
∫
R

(
t1
π

)1/2

e−t1µ
2
η (µ) dµ

∣∣∣∣∣ =

∣∣∣∣∣
∫
R\(−ε,ε)

(
t1
π

)1/2

e−t1µ
2 (
µ2 + 1

) (
µ2 + 1

)−1
η (µ) dµ

∣∣∣∣∣
≤ ‖η‖L1(R,(µ2+1)−1dµ) · sup

|x|≥ε

(
t1
π

)1/2

e−t1x
2 (
x2 + 1

)
. (480)

If t1 > 1, there exist no extreme point of the function x 7→ e−t1x
2 (
x2 + 1

)
on R\ (−ε, ε).

Since limx→∞ e
−t1x2 (

x2 + 1
)

= 0, we conclude that∣∣∣∣∣
∫
R

(
t1
π

)1/2

e−t1µ
2
η (µ) dµ

∣∣∣∣∣ ≤ ‖η‖L1(R,(µ2+1)−1dµ) ·
(
t1
π

)1/2

e−t1ε
−2 (

ε−2 + 1
)

t1→∞−−−−→ 0. (481)
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This means that also the limit for t1 → +∞ on the left hand side of equation (473) must
exist. This implies that

lim
t1→+∞

∫ ∞
0

t1e
−t1λξH± (λ) dλ

exists. By virtue of the trace formula in Lemma 3.27 and Remark 3.29 we conclude that
the limit

lim
t1→∞

∫ ∞
0

t1e
−t1λξH± (λ) dλ = lim

t1→∞
trL2(R,H)

(
e−tH− − e−tH+

)
= lim

t1→+∞

∫ ∞
0

t1e
−t1λξH± (λ) dλ. (482)

also exists. Since H− = D∗D and H+ = DD∗, we conclude that the semi-group regularized
Witten index, of D, indW (D), exists and by Theorem 4.17 we conclude

indW (D) = lim
t→+∞

lim
ε↘0

trH

(
e−εA

2
− (χt,2ε (A+)− χt,2ε (A−)) e−εA

2
−
)
. (483)

Furthermore we find

κη ≡ κηt0 = lim
t0→∞

t0

∫ ∞
0

e−t0s
(
ξH± (s)− ζη (s)

)
ds = indW (D) , (484)

where we substituted back equation 474 and used 481. Finally, since ζη is constant 0 in
neighbourhood of 0 (since η is), we conclude that ξH± = indW (D) a.e. in a non-negative
neighbourhood of 0. �
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