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Abstract

This interdisciplinary thesis deals with the numerical investigation of bone
remodeling around dental implants during the healing period with regard to
biomechanical aspects. The aim of the study was to develop algorithms for
the simulation of the tissue behavior during this very critical phase of im-
plant healing, including osseointegration processes at the implant surface as
a time-dependent function in response to local mechanical stimulus.

Initially, two dimensional (2D) and three dimensional (3D) Finite Ele-
ment (FE) simulations were performed to calculate the loading of the bone
bed around dental implants. The remodeling theory presented by Li et al.
was used in our remodeling simulations. Three different layers with three dif-
ferent thicknesses were added around the implant in the models to simulate
the osseointegration phases. Phase 1: Layers of 0.1, 0.2, and 0.3 mm, respec-
tively, of connective tissue (CT), surrounded the implant. Phase 2: Layers
of 0.1, 0.2, and 0.3 mm CT, soft callus (SOC), and intermediate soft callus
(MSC) surrounded the implant. Phase 3: Layers of 0.1, 0.2, and 0.3 mm
SOC, MSC, and stiff callus (SC) surrounded the implant. Different bound-
ary conditions and material properties were applied to the models considering
different bone remodeling parameters. Various forces (100-300 N) were ap-
plied on the implants at 20◦ and 0◦ from their long axis. The model was
subjected to a compression and tension pressure with 0.5-10.0 MPa on the
lingual and the labial sides to simulate muscle forces. Additionally, implant
stability and the effect of the bending forces were investigated in this thesis.

By comparing the applied force on the implant of 100 and 300 N, the
density of bone reached the maximum value on the cortical bone and the
outside of the spongious bone at 300 N. Comparing the muscle forces on the
models, the bone formation was obtained in the spongious bone and around
the implant at 1.5-4.0 MPa. Osseointegration was observed with a layer of
0.1 mm thickness in the 2D model. With a layer of 0.3 mm simulation re-
sulted in bone resorption.

The results of these simulations compared to the studies of several other
authors. Subsequently, so-called bone remodeling theories were used to sim-
ulate the long-term behavior of the bone bed around the cyclically loaded
implant. A stable region for all remodeling parameters could be determined,
such that bone density resulted in an equilibrium state with a soft tissue layer



of 0.1 mm, which is in accordance with clinical findings. These studies will
help to predict the osseointegration of dental implants and will help to as-
sess the clinical reliability, especially of immediately loaded implants, and, if
necessary, to optimize their design and their prosthetic superstructure. This
could offer a future way into a patient dependent treatment planning and
the prediction of long-term stability of dental implants.
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1 INTRODUCTION

In this chapter, we want to give some information about anatomical planes,
facial skeleton, muscle, and tooth positions in the human body. There is
just a short introduction to the tissues surrounding the teeth. The aim
of this chapter was to give some information to engineers, physicists, or
mathematicians, not to the medical scientist.

1.1 Anatomical Reference Frames

We start by describing anatomical planes of the human body. It is also
essential to talk about the localization of the body. The coronal, sagittal,
and transverse planes are corresponding to a frontal, profile, and bottom-up
view, respectively, see Fig.1.1.

Figure 1.1: Anatomical planes of the human body (modified from [1]).
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Figure 1.1 displays six orientations: anterior-posterior is from front to
back, cranial-caudal is from head to toes, lateral is towards the exterior of
the body, medial is towards the center of the body, the distal is at the tip of
the limb, the proximal one is where it joins the body.

1.2 The Facial Skeleton

Figure 1.2 is a view of the facial skeleton. The superior facial complex has
thirteen bones. The facial skeleton has mainly two parts called Maxilla and
Mandible. Maxilla in Figure 1.2 is the main bone in this region. The most
important tasks of the Maxilla are to protect the face, hold the upper teeth
in place, and design the floor of the nose [1].

Figure 1.2: Anterior-posterior views of the facial skeleton (adapted from [2]).

Figure 1.3: Mandible (modified after [1, 2]).
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The mandible however, is responsible for holding the teeth in place and
promoting the lower part of the face (Figure 1.3). The only mobile bone of the
face is the mandible, which is necessary to move the mouth. The mandible
is joined on both sides by the temporomandibular joints. Several muscles of
the face are attached to the mandible. Attachment sites of the muscles are
shown in Figure 1.4 on page 4. Masseter (M1, M2), anterior temporalis (M3,
M4), lateral pterygoid (M5, M6), medial pterygoid (M7, M8), and anterior
digastric (M9, M10) muscles are shown in Figure 1.4. The directions of the
muscles are shown with the arrows. The points of both condyles are shown
with the direction of their forces (Fcondyle,R, Fcondyle,L) [1, 2].

Teeth are the hardest structure of the body, but all teeth are not in the
same structure. For example, molars are powerful and the strongest teeth.
Figure 1.5 shows the tooth positions. The tooth crown is the visible portion
of the tooth; the root is the lower two-thirds of the tooth. It is surrounded by
and anchored in the bone. All teeth have different roots. For example, molars
and premolars are multi-rooted, one root and one root, respectively. Figure
1.6 shows the surrounding tissues around the tooth. The crown is covered
by enamel, which is the outer layer of the tooth. The enamel is protecting
the teeth against damage. Tooth enamel is the hardest tissue in the human
body. The second layer of the tooth is dentin, which is the largest part of the
tooth. Dental pulp is a chamber that contains nerve tissues and blood vessels.

The periodontal ligament (PDL) is a connective tissue between jaw bone
and cementum. It is one of the tissues that support the tooth. The PDL is
responsible for attaching the tooth to the jaw bone. It has many functions,
like supporting and remodeling functions. Alveolar bone has cortical plates
and trabecular bone. It is part of the jaws that form and also support the
teeth. Damage to the alveolar bone results in serious problems. Loss of teeth
is the main and most serious problem when alveolar bone is damaged.

1.3 Bone Biology

Bone is a dynamic and living tissue that continually remodels. It has one of
the most complex structures in the body. Magnetic resonance imaging (MRI)
and nano-indentation are now offering new insights into bone microstructure.
Furthermore, not all the cells are visible under light microscopy. Bone can
adapt to mechanical factors. One of the primary roles of bone is to protect
the soft organs in the body.
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1.3.1 Bone Tissue

Figure 1.4: Muscles and anatomical
forces on the mandible (modified after
[1, 2]).

Bone tissue is the major supportive
connective tissue of the body. Bone
tissue includes water, organic com-
ponents, and non-organic mineral
salts. Collagen fibers are an exam-
ple of organic components. Calcium,
phosphate, and magnesium are the
main non-organic components in the
bone tissue. Bone tissue also has
a living component and bone cells.
Many types of factors with differ-
ent types of cells are active in bone
activities. Osteoblasts, osteoclasts,
and osteocytes are the three main
cells for bone activities. Osteoblasts
are responsible for new bone forma-
tion, and osteoclasts mainly remove
bone tissue. The carrying of calcium
and other ions between bone miner-
als and blood plasma is arranged by osteocytes [4]. They are the major
constituents involved in the process of bone remodeling.

Figure 1.5: Position of the teeth in both maxilla and mandible (adapted from
[1, 2]).
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Figure 1.6: Surrounding tissues around teeth (adapted from [3]).

Bone has a self-repair mechanism with its own vessels and living cells.
It produces red and white blood cells. Bone has a complex internal and
external structure. The bone has a self-repairing feature in external loading.
It can adjust itself to its mass, shape, and properties against the external
loads without breaking or causing pain. Bone has two significant forms of
bone tissue, which is called cortical bone and trabecular bone. The outside
of the bone is called cortical bone, which is denser than the trabecular bone
[5]. Cancellous bone is comprised of trabeculae. Naturally, cortical bone has
its predominant location in the neighborhood of the joints, and trabecular
bone has the predominant location in the central section of the bone [6].

1.3.2 Cancellous Bone (or Trabecular Bone)

Cancellous bone is also called spongy bone or trabecular bone because it
is composed of short struts of bone material called trabeculae, as shown in
Figure 1.7. Spongy bone is less dense, softer, and weaker compared to cortical
bone. It is surrounded by cortical bone. Spongy bone is vascularized and
has red bone marrow to produce blood cells. Osteoblast cells are produced
in the tissue of the spongy bone area.

In Figure 1.8, a spongy bone is shown that has a connection with rods
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and plates. Spongy bone keeps the bone marrow and the calcium between
the rods and plates. This part of the bone plays an important role in being
replaced and renewed by remodeling within years. The regions of these tissues
will remodel to be enough stronger in the way of forces [7].

Figure 1.7: Cancellous bone (modified after [8]).

1.3.3 Cortical Bone (or Compact Bone)

Cortical bone is a solid body. It is transversed by many channels, as shown
in Figure 1.9. The percentage of the density in the porosity is the impressive
point between cortical and spongy bone. In the porosity regions, cortical
bone is less than 5%, where spongy bone is much less in the shape of rods
or plates [Figure 1.9]. Cortical bone percentage is 80% of bony tissue in
the human body. In Figure 1.9 the Haversian system is shown which is
the functional unit of cortical bone. The Haversian system is also called an
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Figure 1.8: A micro-CT reconstruction of a section of trabecular bone. Red
areas correspond to regions under the highest calculated local stresses that
could be generated by a 1% compressive strain; blue areas experience the
lowest stresses. Each rod is approximately 100 µm in diameter (modified
after [9]).

osteon. The diameter of the osteon is approximately 100 to 300 µm, and it is
a cylindrical structure. Additionally, blood vessels and nerves are found in
the Haversian canal. Between different Haversian systems, the blood vessels
and osteons are connected with the Volkmann’s canals [10].

1.4 Bone Modeling and Remodeling

Bone modeling and remodeling processes are described as two different mech-
anisms from different types of bone cells that work individually to create bone
formation and bone resorption [12]. These two processes work together in
the growing skeleton to repair structurally compromised regions of bone.
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Figure 1.9: Structural organization of bone. Modified from [10].

Bone modeling is a process that works when bone resorption and for-
mation occur on separate surfaces. During bone modeling, osteoblasts and
osteoclasts are individually working at the different sites of the bone. Bone
changes its shape and mass with the bone modeling process. An example
of this process is in length and diameter of long bones. This process occurs
from birth to adulthood.

In 1892, the first time the German scientist Julius Wolff defined a basic
aspect of a theory to describe bone remodeling processes and bone adapta-
tion [13], and the process of bone modeling and remodeling is called ”‘Wolff’s
Law”’. Although - with respect to Physics or Mathematics - Wolff did not
formulate a quantitative law, he described the relationships between bone
loading and bone structure. Furthermore, he described the orientation of the
trabeculae that follow the stress trajectories due to the external loading. He
assumed that all processes are regulated on the bony tissue level, and cellular
reactions on local tissue stress control the bone mass.

In the past thirty years, a number of bone remodeling theories have been
developed. They all are based upon the assumption that it is the loading
history of the bone that determines its structure and its adaptation [14–16].
The term loading history collects all variations combined with the external
loading of the bone. Due to the idealizations, the models developed must be
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Figure 1.10: Corroded bone cortex with the effect of bone remodeling. The
endocortical surface (white line A of a specimen from a 27-year-old) denotes
the true medullary cavity/cortical interface achieved at completion of growth.
If the surface of the thinned but still compact appearing cortex (white line
B in a 70-year-old or C in a 90-year-old) is erroneously described as the
endocortical surface, several errors occur by incorrectly apportioning in the
cortical fragments and porosity that created them to the seemingly expanded
medullary canal (modified after [11]).

regarded as being phenomenological and qualitative. A Schematic view of
bone remodeling is shown in Figure 1.11 on page 10.

Bone resorption and bone formation are balanced in a homeostatic equi-
librium. In this equilibrium, bone can be continuously repaired by new tissue;
in this way, bone adapts to mechanical loads and strain. Frost has defined
this fact as bone remodeling in 1990 [18]. Furthermore, bone remodeling has
always the same procedure as shown below [19]:
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Figure 1.11: Schematic view of bone remodeling phases (modified after [17]).

activation → resorption → formation sequence (A → R → F ).

Bone remodeling has two different phenomenological descriptions, which
are called ”‘surface”’ and ”‘internal”’ remodeling [20]. Osteoclasts and os-
teoblasts work together in the bone remodeling process in so-called basic
multicellular units (BMU). Because of the large surface of trabecular bone,
it is more actively remodeled than cortical bone. The moving speed of the
osteoclasts is approximately 25 µm/day on the surface of trabecular bone
[21]. Remodeling peaks until the mid ’30s and by the way, until the age of
40. Thus adults begin to lose bone mass at a significant rate.

In a basic BMU, each unit of cells remodels bone in reaction of mechani-
cal and biological stimuli. Bone remodeling is a sensible process concerning
mechanical and piezo-electrical conditions. Bone formation increases when
mechanical stresses increase in bone [22].

The processes of resorption and formation are matching each other as
a coupled phenomenon, where the osteoblast cells work after the osteoclast
cells because of the morphology of the remodeling BMU. This relationship
is a controlled process, ensuring that where old bone is removed, new bone
will be repaired [23].

The process of old bone removal and new bone formation in bone re-
modeling is called bone balance. This bone balance can be affected in many
disease states, i.e., in osteoporotic patients, resorption and formation are
coupled though more bone is resorbed than is replaced from the BMU [24].
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Bone remodeling tissue is regularly remodeled in BMUs in the growing,
adult, and aging skeleton. The BMUs depend on many factors in a specified
volume of tissue at any one moment [25]. The activation frequency (Ac.f)
is the first factor. This factor is the ”‘birth rate”’ of new BMUs. In a large
number of secondary osteons, ultimately, and a large number of active BMUs,
a high activation frequency will result. The longevity of individual BMUs
is the second factor, which is correlated to the speed with which the BMU
travels over the tissue area. This second factor is called the sigma period
(σRC). This sigma factor quantifies the time which takes a BMU to remodel
a two-dimensional part through a part of the bone. This concept would take
approximately 120 days for the entire BMU to pass through a plane, leaving
a new osteon behind in the human cortical bone. The initiation and increase
of the diameter of the resorption cavity by the osteoclasts would take roughly
20 days. And after that, by ten days of relative quiescence, the centripetal
deposition of bone matrix by osteoblast teams would take 90 days. Sigma
periods are often subdivided into two periods which are called resorption
[σRC(r)] and formation [σRC(f)] periods [26].

The average age of cortical bone is 20 years, and it is one to four years
for trabecular bone [27]. Bone remodeling plays several roles in the bone
during its process. It assists in removing microdamage and replacing dead
bone and also adapting microarchitecture to local stress. Bone remodeling
removes trabeculae on cancellous bone. Also, it increases cortical porosity
on the cortical bone, decreases cortical width, and reduces bone strength [5].
For example the radius remodels in reaction to the extra load applied when
the ulna was removed from a pig [28]. Bone remodeling reacts individually to
mechanical loading in immature bone. Increased stress at the growth plate
reduces bone growth, decreased stress at the growth place increases it [29].
This affair may lead to the deformity in pediatric scoliosis and Blount’s dis-
ease. In immature bone, the piezo-electrical charges can have contrary effects
on bone remodeling. The electro-negative effect happens with the compres-
sion side of the bone, and it is stimulating bone formation with osteoblasts.
On the other hand, a electro-positive effect happens with the tension side
of the bone, and it is stimulating bone resorption with osteoclasts [22]. In
other words, bone formation types occur due to the kind of force applied
to the bone. Compressive forces, tensile forces, and shear forces stimulate
endochondral ossification, intramembranous ossification, and fibrous tissue
formation, respectively [30]. This relationship is important for bone healing.
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1.4.1 Bone Remodeling and Mechanical Stimulus

Bone is an active tissue in the human skeletal system, and it evolves to adapt
to the changes in the environment. More than a century, the ability of the
bone has been an alluring research topic for scientists. But we can say it
openly that the scientists have to work more with the bone to understand
the bone resorption and deposition processes thoroughly.

As mentioned before, Wolff proposed the earliest theory to explain the
bone deposition and resorption in 1870, and elaborated it in a monograph in
1892. Wolff’s law is well known in the biomechanics community. According
to Wolff’s law, for an increase in the function, the bone reacts with deposi-
tion, and for a decrease in function, the bone reacts with resorption. In 1892
Wolff’s law was defined as follows: ”Every change in the form and function
of a bone or of their function alone is followed by certain definite changes in
their internal architecture, and equally definite secondary alteration in their
external conformation, in accordance with mathematical laws.” Wolff said
that bone formation occurs from the force of muscular tensions and static
stresses of the body in the erect position. All these forces always act with the
correct angles to the bone. Even though many authors agree with Wolff’s
law, some of them still have some doubts about this theory.

According to clinical experiments, bone ”melts away” from around or-
thopedic implants and screws where too high stresses are located. Conse-
quently, the bone may either be sensible against the demand placed upon
it or may have got an upper demand cut-off level above which it changes
its response [31]. Bassett wanted to propose a restatement of Wolff’s law
in modern terms: ”The form of the bone being given, the bone elements
place or displace themselves in the direction of the functional pressures and
increase or decrease their mass to reflect the amount of functional pressure”
[32]. Wolff’s law is also summarized as a feedback mechanism by Bassett [33].

For decades, many theories have been suggested to define the loading
mechanism in bone structure. Many scientists thought that the mechanical
stress is somehow directly acting on current osteoblasts or osteoclasts to
influence bone shape and mass. The mechanostat theory is one of the most
accepted theories which was defined by Harold Frost [34–36].
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1.4.2 Harold Frost’s Mechanostat

Frost described the adaptation of bone tissues to their mechanical environ-
ment. He proposed that bone mass fits the typical mechanical usage (MU) of
a healthy skeleton. This idea shows that some mechanism(s) create(s) their
biological mechanisms from the MU of bone to fix the incongruence between
bone mass and its MU. That mechanism was called a mechanostat. He also
created a relation between MU and bone mass [20, 34]:

Relation (1): Relationship between biological mechanism, bone architecture
and bone mass.

Relation (1) shows the communication between biological mechanisms
and bone architecture and bone mass originally with a feedback loop, which
was suggested by Frost [20] and later accepted by most biomechanist [37–
39]. The mechanostat should involve three different biological mechanisms:
growth, modeling, and remodeling. In response to the MU, the bone mass
can be affected in some way by all these mechanisms. In this theory, MU
consists of all physical loads and motions imposed on the bony skeleton [34].

Strain or deformation is a geometrical change in the dimension of the
material when an external force is applied. The ratio of this change of size in
the material to its actual length is called strain. Strain is therefore expressed
in absolute terms without units or percentage. Frost defined four different re-
gions of bone deformation and related each region to a mechanical adaptation
(Figure 1.13):

• Disuse Atrophy,

• Steady State,

• Physiological Overload and

• Pathological Overload.

The strain is dimensionless because it changes in length over length. In
regard to bone, for strain commonly the term microstrain (10−6) is used be-
cause bone strains are typically very small, which is between 100 and 2,000
µε. Frost proposed that bone responds to a complex interaction of time and
strain, ideas that incorporated elements of frequency, rate, and magnitude.
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Figure 1.13: The Mechanostat Theory from Frost. In the disuse atrophy, the
limit of strain magnitude with minimal Effective Strain (MES) of 50 to 250
µε is all-important to provide the bone mass according to the bone loss. Bone
remodeling area is from 50 to 250 and 2,500 to 4,000 µε. Shaded area shows
the scope of response in terms of change in bone mass. Peak load magnitudes
creating strains above 2,500 to 4,000 µε MES, lead to new bone formation
(modelling) that continues until increased bone mass decreases strain values
below modelling MES. At the end, the rapid catastrophic fracture takes place
when peak load levels exceed 25,000 µε (modified after [40]).

Because of this reason, he used the term ”‘strain”’ in a more general sense
than it is normally used [41].

In Figure 1.13, Frost suggested that the magnitude of the strain is the
mechanical stimulus for bone functional adaptation. When the peak strain
magnitude falls below 50-250 µε, disuse atrophy is suggested to occur at low
frequencies. If an area of bone lost mechanical loading, then a relative disuse
atrophy would exist in which there is a loss of net bone mass.

In general, bone mass (an indirect measure of the effects of local me-
chanical and structural properties) would be preserved in a physiologically
reasonable range that arranges acceptable mechanical properties for the kind
of loads the local area of bone experienced. Bone mass and bone strength
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are reduced in this regime as well as bone opposition and bone repair (re-
modeling).

When strain is between ca. 200 µε and ca. 2,500 µε bone formation
and bone resorption are equal, which means bone mass and bone strength
stay constant and bone repair (remodeling) is in the steady-state region.
In the physiological overload region, which is between 2,500 and 4,000 µε,
bone growth (modeling) happens in this part. It means bone mass and bone
strength are increased between these strain values. Immature bone occurs in
the physiological overload region mineralized, and after that weaker than the
lamellar bone. Bone mass will increase during strain increase in this regime
as far as the bony interface fits to these changes, and then load strain values
will fall back into the region of steady-state. This procedure for example
causes ridge resorption after tooth loss. The pathological overload regime
is defined with peak strain magnitudes of over 4,000 µε, which may result
in net bone resorption. Bone fracture occurs in this region while maximum
elastically deformation exceeds in the pathological overload region.

Cumulative activity
MU increased: growth and modeling increase; remodeling declines
MU decreased: growth and modeling decrease; remodeling increases

Compact bone mass
MU increased: mass increases in children, is conserved in adults
MU decreased: gains decrease in children, mass decreases in adults due
to marrow cavity expansion

Trabecular bone mass
MU increased: existing spongious is conserved at all ages; additions of
new spongious increases in children
MU decreased: loss of existing spongious increases at all ages; addition
of new spongious decreases in children

Bone architecture
MU increased: Children: thicker cortex, greater outside bone diameter,
denser spongious, smaller marrow cavity, slightly longer bone
Adults: conserved spongious and cortical-endosteal bone
MU decreased: Children: smaller outside diameter of bone, osteopenic
spongious, slightly shorter bone
Adults: larger marrow cavity, osteopenic spongious

Table 1.1: Mechanical usage (MU) effects on bone growth, modeling, global
remodeling, and mass.
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Table 1.1 shows MU effects which are shown by many clinical, experi-
mental, and histomorphometric evidence, some cited by [38, 42–56].

The total amount of spongious bone increases during growth because the
growth-related additions of new primary spongious bone exceeds the removal
by continuing remodeling of the existing spongious bone. When growth stops
at maturity, its addition of new spongious bone do likewise; after that, the
net losses due to continuing remodeling begins to become apparent (table 1.1
adapted from material in [57]). Growth and modeling drifts are not ordinarily
effective in human adults [34].

1.4.3 Experimental Investigation of Bone Remodeling

The mechanism of mechanostat theory from Frost has been applied in numer-
ous in vivo studies in animals in which artificial loads have been applied to the
bones on one side and the modeling and remodeling responses in the loaded
bones were compared with those in the non-loaded contra-lateral pair [58–
67] on the other side. For example, several researchers [68–79] worked with
rabbit tibia, rat ulna, mice, mouse ulna, murine tibia, mouse tibia, mouse
fibula in vivo. Pearce et al. [80] worked with different animals to check
the resemblance between animal and human bone in terms of macrostruc-
ture, microstructure, bone composition, and bone remodeling rate in dogs,
sheep/goat, pigs, and rabbits. This article showed that pigs have the most
similar bone remodeling behavior with human bone. Dogs, sheep/goats, and
rabbits have less similarity with human bone.

Besides that, an animal experiment reported that in rapidly growing male
rats in single period of dynamic high-magnitude axial loading of the ulna on
one side was correlated with significant levels of new cortical bone forma-
tion at the periosteal surface of the contra-lateral non-loaded ulna and in
the cortical regions of adjacent bones in the loaded limbs. In this study it
was concluded that mechanically adaptive bone (re)modeling is dominated
by procedures with substantial systemic and central nervous components [81].

Bone remodeling has been investigated via numerous animal experiments.
Hert designed the first systematic series of tests to investigate the mechanism
of functional adaptation in bone tissue [82]. Later then he and his coworkers
worked with the tibias of rabbits applying artificial loads [82–84]. Some other
researchers have worked with sheep experiments under controlled dynamic
loads [85, 86], followed by chicken experiments [87, 88], and finally turkeys
[89].
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Then again bone mass increased with increasing loading during the load-
ing applied to the bone in vivo in some other animal experiments like turkey
ulna, mouse tibia, and mouse caudal vertebra, respectively from [90–92], and
some other animal experiments [93–97]. In some studies it has been reported
that there is a relationship between static load and remodeling activity [98–
100].

A research group were the first to work with deer antler. A novel animal
study, using the deer antler as an implant bed has been established. This
animal study allows the investigation of the healing processes around dental
implants, without the necessity to sacrifice the animals [101].

Many studies reported that minor influence of loading on peri-implant
bone contrasts with the large anabolic response on intact bone [64, 92, 102].
Lambers and colleagues studied using the mouse caudal vertebra. They re-
ported that bone mass increases when increasing loading is applied to the
bone in vivo [92]. Ogawa and colleagues studied the proximal tibia of rats
to simulate immediate loading after implantation [103]. Mechanically, bone
(re)modeling is stimulated with the local bone formation and resorption oc-
curs at sites of high and low tissue strains, sequentially [102, 104, 105]. Jari-
wala et al. [106] studied with the proximal tibia of rats. They adopted in
vivo micro-CT to characterize the time course of cancellous bone regenera-
tion around non-loaded and loaded implants. The authors applied loading
directly to the implant and observed a large influence on osseointegration at
the bone-implant interface. Also, Li and colleagues pointed out the influ-
ence of mechanical loading on peri-implant bone regeneration [107]. Bone
remodeling around dental implants has been studied in different periods, un-
til complete osseointegration of the implants was achieved in Sika deer antlers
[108].

1.4.4 Computer Simulation of Bone remodeling

Numerical simulation of the bone/implant system using finite element meth-
ods (FEM) only represents a stationary impression of the current mechanical
status. Changing the bone loading by the insertion of an implant means that
an existing state of equilibrium is disturbed. The bone, in turn, tries to adapt
to the new loading situation, thus changing in structure and density, which
changes the mechanical condition again. This process runs until a new state
of equilibrium is reached, which is adapted to the changed loading situa-
tion. This process might go so far that the implant loses its anchorage in

17



the bone. Strictly speaking, the bone is a dynamic, self-optimizing structure
that should be simulated with an appropriate model.

Different physical properties on the cellular level are possible and have
been used as a key stimulus to formulate the bone remodeling simulations
[38, 109–113]: piezoelectric signals, flow potentials, mechanical stresses and
strains, strain energy densities, invariant quantities derived from the afore-
mentioned. A first mathematical model was presented in 1972 by Kummer to
formulate the bone remodeling theory [114]. In this model, the bone remod-
eling was connected to the tension in the bone by a cubic approach. Further
work about mechanical stimuli that have been considered in bone remod-
eling include strain or stress tensors [115], strain [6, 116], stress [114, 117],
effective stress [109, 118, 119], strain energy [112, 120], or strain rate [111].
Several researchers have investigated mathematical theories that might clar-
ify development of bone density [121, 122], trabecular architecture [123] and
[118, 121, 124] as effects of external forces, using finite element analysis (FEA)
computer simulation models. From mechanical point of view, the model pre-
sented by Huiskes and his co-works seems to be the most advanced. It can
either simulate external shape adaptation or internal adaptation by a change
of the trabecular structure, respectively. Additionally, processes of combined
internal and external bone adaptation can be simulated. Good correlation
was found in combined animal experimental and numerical studies [125].
Furthermore, a theory assuming mechano-sensory and signaling functions for
the osteocytes could explain the mechanical adaptation of trabecular density
and trabecular architecture [126–128] within the conceptual theories of Frost
[18, 129].

Bone remodeling theory on the cellular scale was simulated using FEM
by one research group. According to their theory, osteoclasts could cause tra-
becular perforations if they resorb bone based on local microdamage. They
calculated the local mechanical behavior of the tissue and extrapolated the
cellular behavior based on a threshold response to the strain [130].

Bone adaptive behavior was simulated with mathematical models using
FE methods as a simulation tool [131, 132]. Additionally, a two-dimensional
finite element analysis (FEA) model was built up to test a balance between
osteoclast resorption and osteoblast formation, modulated by external loads
through osteocytic sensing and signaling [133, 134]. Subsequently, a three-
dimensional version of the FEA model was created to test its predictions
relative to trabecular bone metabolism as it occurs in the reality of bone
modeling and remodeling [135]. A bone remodeling model, including the
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directional activity of BMUs, has been published by Martinez et al. [136].
The goal of the study was to describe the macroscopic evolution of BMUs
during bone remodeling and relate it with the anisotropy distribution in
bone, which is influenced by the loads borne by certain specimens. An FE
model was created to obtain the anisotropic and mechanical properties of
the human proximal femur under physiological loads with initial conditions
corresponding to a heterogeneous/isotropic bone. The potential of the model
was analyzed to predict the alignment of the bone microstructure with ex-
ternal loads in different situations.

Geraldes described a novel method of achieving a physiological orthotropic
heterogeneous model of the femur by incorporating a bone adaptation algo-
rithm with FE modeling of the femur spanning the hip and knee joints. The
purpose of the thesis was to describe the creation, development, and valida-
tion of this method of achieving a physiological orthotropic heterogeneous
model of the femur. A fully balanced loading configuration was remodeled
using muscle and ligament forces applied to the 3D FE model [137]. Lou et
al. [138] performed numerical studies with human femur remodeling using
medical image data. The purpose of the study was the utilization of human
medical computer tomography (CT) images to quantitatively evaluate two
kinds of ”‘error-driven”’ material algorithms, that is, the isotropic and or-
thopic algorithms, for bone remodeling. In this study, a combination of the
FE method and the material algorithms was used for bone remodeling sim-
ulations. This ”‘error-driven”’ bone material algorithm has been developed
from [133, 139–141] and [142, 143], assuming bone is either an isotropic or
orthotropic material, respectively. This algorithm was also used with total
hip arthroplasty [144, 145] for bone remodeling.

1.4.5 Computer Simulation of Bone Remodeling Around Dental
Implants

The developed adaptive finite element models are capable of simulating bone
remodeling phenomena as a result of a given stress/strain distribution. An
application of these theories to describe bone remodeling phenomena around
dental implants should follow these concepts. Today, even on an interna-
tional level there are only a few groups that work in this field [146–154], and
only some papers report about simulations of the healing phase [155–158]
or a comparison of the bone development in the early stage after implanta-
tion with animal experimental and/or histological data. Consequently, this
extremely decisive phase of implant healing and bone ingrowth into the im-
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plant surface has not yet been investigated biomechanically in detail. Strain
Energy Density (SED), equivalent stress, and equivalent strain were used to
predict bone remodeling around dental implants based on existing theories.
The stress states of loaded implant-bone interfaces were analyzed before and
after osseointegration using FEM. The results from this mechanical stimulus
were then compared with in vivo data [159].

Furthermore, the effect of bone loss on mechanical responses was studied
using FE models [160–162]. In another study, an alternative mathematical
model is proposed for bone remodeling from Li et al. [146]. Li et al. de-
scribed the change in bone density as a function of the mechanical stimulus.
They developed a new bone remodeling algorithm by introducing an addi-
tional quadratic term using the theory of Weinans et al. [121]. The theory of
Weinans simulates both, underload and overload resorption using the SED
as the stimulus for bone remodeling. The algorithm of Li et al. [146] was ap-
plied in conjunction with FEM to simulate a dental implant treatment. The
process of time-dependent bone adaptation was studied via computer simula-
tions based on the implementation of remodeling theories on dental implants
[148]. Lian et al. [163] proposed a new algorithm for bone remodeling based
on existing theories [112, 121, 123, 126]. Two-dimensional FE models of im-
plant and jaw bone were studied to demonstrate the ability of the proposed
algorithm in predicting the density distribution of bone surrounding a dental
implant. Lazy zone and SED parameters were used in this study. Besides,
Eser et al. [164] studied bone remodeling around dental implants by apply-
ing the Stanford isotropic bone remodeling model. The aim of the study
was focused on the influence of different designs of screw-shaped implants
and predict the time-dependent changes in the cortical and trabecular bone
around immediately loaded implants with different macro geometric designs
by application of the Stanford theory which was defined by Beaupré et al.
[14]. Also, Lin et al. [165] described a similar analysis of bone remodeling
around dental implants. The purpose of the study was to show how bone
remodeling increases the bone density in the peri-implant region. They used
a mandible model with a trabecular bone body surrounded by a cortical shell
of fixed thickness.

Hasan and her coworkers have analyzed the biomechanical FEA of small
diameter and short dental implants. Both implant types were inserted in an
idealized bone bed representing the anterior mandibular jaw region. Immedi-
ate loading conditions were applied to the models [149]. Furthermore, Hasan
et al. aimed to predict the distribution of bone trabeculae, as a density
change per unit volume around dental implants based on applying a selected
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mathematical remodeling model. The apparent bone density change as a
function of the mechanical stimulus was the base of the applied remodeling
model that described disuse and overload bone resorption. A screw-shaped
dental implant was tested with an FE model of an idealized bone segment.
A sensitivity analysis with different parameters was performed as well [157].
Therefore, trabecular bone structure around dental implants has been simu-
lated on a computer tomography (CT)-based FE model. In this study, CT
images were used of a patient taken six years after the dental implant inser-
tion [156].

Eser et al. worked with time-dependent bone remodeling theories around
tissue and bone-level implants inserted in bone with reduced width [166].
Different Young’s moduli of dental implants were used by application of the
Stanford theory. Rungsiyakull et al. studied the bone remodeling responses
of two different abutment configurations, implant-implant-supported versus
tooth-implant-supported fixed partial dentures [167]. In this study, two 3D
FE models were created based on computerized tomography data. As a
mechanical stimulus for driving the bone remodeling, the SED induced by
occlusal loading was used. Numerical simulation of bone remodeling around
dental implants has been published by Ojeda et al. [168]. Several mathemat-
ical models [169–171] of bone remodeling are used to study the homogenized
structural evolution of peri-implant bone. 3D FE models were used to study
the influence of the diameter and length of dental implants made of pure tita-
nium on their long-term stability. An ”‘error-driven”’ algorithm was used by
various groups to predict bone remodeling around dental implants [172, 173]
and the stress, strain, or SED usually served as a mechanical stimulus. The
main hypothesis for this algorithm is that higher mechanical load causes an
increase in the amount of local bone where lower mechanical load leads to a
decrease.

Bone remodeling under tooth loading was studied by Su et al. [174]. They
aimed at developing a numerical algorithm to simulate bone remodeling ac-
tivities under mechanical loading. 2D FE models were generated to calculate
the strain/stress distribution in the alveolar bone under tooth loading. Reg-
ular chewing and biting forces were simulated using FEM in teeth and their
surrounding tissues. A recent paper reported about biomechanical analysis of
bone remodeling following mandibular reconstruction using fibula free flap.
The purpose of the study was to evaluate the bone healing/remodeling activ-
ity in a reconstructed mandible and its influence on jaw biomechanics using
CT data. FE analyses were conducted to quantify the bone mechanobiolog-
ical stimuli. In this study, SED was defined as a mechanobiological stimulus
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for the simulations [175].

Bone remodeling processes around dental implants during the healing
period were simulated by Salih et al. They aimed to simulate the tissue
behavior at the implant surface as a time-dependent function in response to
local mechanical stimulus. In this study, 2D and 3D FE models were used to
simulate classical bone remodeling theory under different loading conditions
and different bone remodeling parameters [158].

1.4.6 Numerical Background of Bone Remodeling

Several scientists investigated the bone remodeling process mathematically
in order to accurately predict bone resorption and formation [6, 57, 114]. In
some situations, it is necessary that the internal mechanical stimulus in bone
structure can be defined in terms of strains and stresses, for what the FEM
is a useful tool [176]. Quantitative predictions of bone resorption and forma-
tion in bone structures can be made by combining the mathematical bone
remodeling distributions involving FE models [109, 112, 119, 124, 177, 178].
Basically, these models are all based on the principle that bone remodeling is
induced by a mechanical stimulus that activates the osteocytes. Furthermore,
it is supposed that the bone has its own sensors to detect the mechanical stim-
ulus and, depending on the magnitude of this mechanical stimulus, causes
local bone adaptation. A generic mathematical expression can describe this
procedure, using the apparent density as the characterization of internal mor-
phology. The rate of change of apparent density of the bone structure with
ρ = ρ(x, y, z) at a particular location dρ/dt, can be described as an objec-
tive function F , which depends on a specific stimulus at location (x, y, z).
It is assumed that this mechanical stimulus is precisely comprehended with
the local mechanical load in the bone structure and can be determined from
the local stress tensor σ(x, y, z), the local strain tensor ε(x, y, z), and the
apparent density ρ = ρ(x, y, z):

dρ

dt
= F (σ, ε, ρ), 0 < ρ 6 ρcb, (1.4.1)

where ρcb is the maximal density of the considered material (cortical
bone). When the objective function F reaches zero, the system is in equilib-
rium. The relationship between bone density change and mechanical stimulus
was defined in the remodeling theory developed by Weinans et al. [121]:

dρ

dt
= B(S − k), 0 < ρ 6 ρcb, (1.4.2)
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where B is a constant, S = S(x, y, z) represents mechanical stimulus and
k = k(x, y, z) is the threshold value or simply a constant for the stimulus.
When combined with a FE model, S is usually expressed per element. In
that case, it is assumed that there is precisely one sensor point per element.
Equation 1.4.2 signifies that the stimulus strives to become equal to the
reference value k, which can either be site-specific [k = k(x, y, z)] or non-
site-specific (k = constant) [121]. The relationship between the loading and
the threshold value is described in equation 1.4.2. If the loading is below
the threshold value, the density change will be negative. That means bone
resorption will take place because of under-loading. On the contrary, if the
loading is above the threshold value, the density change will be positive,
which means bone growth will occur. The lazy zone is the range of stimulus
within which no net bone remodeling takes place [112].

1.5 Bone Remodeling Theories

It is well known that mechanical loading plays an important role in bone
remodeling in both cortical and spongious bone. Numerous researchers have
been encouraged to propose mathematical models for the bone remodeling
process based on Wolff’s Law [13]. Wollf indicated that there is a direct
mathematical relationship between skeletal loads and bone shape. Wollf’s
composite illustration shows trabecular arches in a diagrammatic drawing of
a human femur in 1870 [179], see Fig. 1.14.

Bone adapts its shape and/or its internal remodeling [20]. Frost devel-
oped the mechanostat theory to explain bone remodeling with mathematical
theory, which was a starting idea for current mathematical theories [34]. An
adaptive elasticity theory was developed by Cowin and Hegedus [6, 116].
This theory considered strain as a mechanical stimulus to initiate the bone
remodeling process. Huiskes and his coworkers used a similar approach using
the SED as the mechanical stimulus [112]. The driving force for adaptation
of the apparent density would be the difference between actual and reference
SED at the same location. Consequently, in equation 1.4.2, S = S(x, y, z)
and k = k(x, y, z) would be the actual SED and the reference SED, respec-
tively. For more information the normal stimulus distribution k = k(x, y, z)
must be known or be determined from a normal equilibrium density distribu-
tion, to predict the bone adaptation process to an abnormal situation [121].
Bone was assumed to be an isotropic linear elastic material in most of these
approaches. There are just a few papers that have worked with bone material
as an anisotropic material [181–183].
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Figure 1.14: Wollf’s composite diagram including eight figures which include
reproductions of Culmann’s cantilevered beam and ’crane’. Wolff obtained
most of the structures (i.e., drawing of the ’crane’) from Culmann in 1870 and
1892. Fig. 1. Illustration of forces and trajectories that act on the interior
of a bone. The students made the original drawing of Professor Culmann
under his supervision. Fig. 2. Schematic reproduction of human femur. Fig.
3-7 These five figures are related to the explanation of the ’graphical static’
method. Fig. 8. Schematic illustration of a bridge built with stress-carrying
structural members (image adapted from [180]).

1.5.1 Micro-Damage of Bone Remodeling

A semi-mechanistic model for bone remodeling was introduced by Huiskes et
al. in 2000 [133] which included the experimental findings in bone cell physi-
ology [184], such as a separate description of osteoblastic formation and osteo-
clastic resorption [185], a mechanosensory system from osteocytes [186, 187],
and role of micro damage [188]. Nowadays, several bone remodeling the-
ories considered both, microdamage and mechanical loads [189]. Firstly,
microdamage was described by Frost [190]. Fatigue loading increases micro-
damage which activates bone remodeling and osteocyte apoptosis [191]. Like
any structure that can withstand repeated stress, bone also suffers micro-
damage, which can impair its mechanical competence. However, in contrast
to inert materials, biologically active bone can recognize and counteract the
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development of microdamage. It is assumed that human supporting bone,
such as the tibia, would break in only three years of normal stress [192] with-
out such a mechanism of material repair. The microdamage formation itself
contributes to the toughness of the bone by shielding the crack tip. Some
microdamage studies showed that too much in vivo cracks propagate during
in vitro fatigue loading [193]. The role of microdamage of trabecular bone is
less studied until now. Zilch et al. showed that bovine trabecular bone has
fatigue and creep characteristics similar to human cortical bone [194]. More
data into crack growth mechanisms in trabecular bone is required, because
of the correlations with the mechanism of cortical bone.

1.5.2 Internal and External Remodeling

Julius Wolff showed: Every change in the function of bone is followed by
specific, definite changes in internal architecture and external conformation
in accordance with mathematical laws [13]. The adaptation between bone
tissue and bone density is called interior remodeling (spongy bone). External
remodeling (cortical bone) is the apposition of bone tissue on the surface of
the bone. That’s why external remodeling is known as surface remodeling.
In 1964, Frost proposed that internal and external remodeling should be
differentiated [20]. Cowin et al. and Huiskes et al. separated internal and
external remodeling. Strains were used as a mechanical stimulus by Cowin
et al. [16]. On the other hand, Huiskes et al. regarded the SED as the signal
that controls bone remodeling [112].

1.5.3 Cowin and Hegedus’ Adaptive Elasticity Theory

In 1976, the theory of ’adaptive elasticity’ was developed by Cowin and
Hegedus. Following a suggestion by Frost [20], Cowin et al. separately
modelled the internal and external remodeling using the following equations
which were developed to explain the remodeling behavior of cortical bone.
It is supposed that cortical bone has site-specific natural or homeostatic
equilibrium strain state. The elastic modulus which is related to density was
formulated to change in agreement with:

dE

dt
= Aij(eij − e◦ij), (1.5.1)

where eij is the actual strain tensor, e◦ij is the equilibrium strain tensor,
E is the local modulus of elasticity, and Aij is the matrix of remodeling coef-
ficients. The strain state at the periosteal and endosteal surfaces simulated
that the bone was assumed to add or remove material on those surfaces, in
agreement with:
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dX

dt
= Bij(eij − e◦ij), (1.5.2)

where Bij is again a remodeling coefficient and X is a characteristic sur-
face coordinate perpendicular to the surface [112]. Hart et al. used a 3D
computational model based on FEM to determine the remodeling shape both
on the endosteal and periosteal surfaces [124, 195, 196]. Cowin et al. used
the strain tensor as the mechanical stimulus for bone remodeling [16, 197].
Later on, they used the theory of external remodeling to simulate animal
experiments and found agreement between animal experimental results and
theoretical predictions.

1.5.4 Strain Energy Density Theory by Huiskes et al.

The theory from Cowin et al. [6] was extended by Huiskes et al. [112]
with two main differences. They added a lazy zone, which was proposed
by Carter [198]. The lazy zone effect was suggested based on experimental
investigation. Later on, this effect used to become an essential factor from
other researchers in the simulation of the bone remodeling process.

The ”‘lazy zone”’ describes that the bone has no net density change, and
is defined as U

ρ
. Additionally, SED U [J/mm3] was used in their remodeling

equation as the mechanical signal. The SED is the strain energy per unit
volume:

SED =
U

ρ
(1.5.3)

The SED can be calculated as [159, 199]:

U =
1

2
εσ, (1.5.4)

where U is the SED, ε is the strain tensor, and σ is the stress tensor
of the bone tissue. Cowin [200] and Rouhi [201] defined that the use of
the strain tensor as mechanical stimulus for remodeling makes it difficult to
determine the remodeling rate coefficients. With the purpose to determine
the remodeling rate coefficient, Huiskes et al. [112] recommended the SED, a
scalar quantity, as a suitable mechanical signal for both, external and internal
remodeling. Considering the external remodeling, the bone can either add
material or remove material according to:

dX

dt
= Cx(U − U∗), (1.5.5)
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where dX
dt

is the rate of surface growth of bone, Cx is the remodeling rate
coefficient, U is the SED, U∗ is the equilibrium value of SED that determines
the boundary between bone resorption and formation. On the other hand,
for internal remodeling the bone could adapt its density value, that means
there will be changes in bone apparent density. By this, assuming that the
elastic modulus relates to the apparent density one can write:

dE

dt
= Ce(U − U∗), (1.5.6)

where dE
dt

is the rate of change of elastic modulus, E is the local elastic
modulus, Ce is a proportionality constant. These both equations 1.5.5, 1.5.6
can be transformed into finite difference formulations as follows. For external
remodeling:

∆X = ∆tCx(U
i(t)− U i

m) i = 1,m, (1.5.7)

where ∆X is the growth of the surface nodal point normal to the surface,
m is the number of surface nodal points considered, ∆t is the period of one
time step, and Cx is a constant to determine the external remodeling rate.

For internal remodeling:

∆E = ∆tCe(U
i(t)− U i

n) i = 1, n, (1.5.8)

where ∆E is the change in the elastic modulus in one time step, n is
the number of elements for internal remodeling, ∆t is the period of one time
step, and Ce is a constant to determine the internal remodeling rate.

Concept of a lazy zone proposed by Carter [198]: Carter defined that bone
is ‘lazy’ in terms of reacting to mechanical stimulus. This concept occurs out
of the bone resorption and formation, see figure 1.15. The idea of ‘lazy zone’
means that there are thresholds to be exceeded before bone adaptation can
occur (figure 1.15). Huiskes et al. used the concept of the lazy zone in their
model [112]. The Huiskes model was able to express bone adaptation on
a macroscopic level [135]. This theory was successfully applied to evaluate
bone adaptation in 3D femur models after implantation of hip arthroplasty.
The FE models were constructed from an animal experiment.

Additionally, Huiskes et al. suggested a new theory to explain bone re-
modeling, a semi-mechanistic bone remodeling theory, which includes spongy
bone remodeling. This semi-mechanistic spongy bone remodeling theory is
depicted as a coupling process of bone formation, and resorption on the bone
surfaces [133].
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Figure 1.15: The assumed, local bone adaptation as a function of SED with
lazy zone effect (adapted from [112]). There is no adaptive response in the
lazy zone.

1.5.5 Stanford Theory

The theory of Beaupré and Carter [14], the so-called Stanford theory, was
selected as the mathematical model for bone remodeling around implants. A
daily stress stimulus is used as a mechanical stimulus in this theory. In 1989,
Carter et al. worked with the proximal human femur and 2D FEM. The
work aimed to solve the distribution of bone morphology and to consider the
bone as an initially isotropic, inhomogeneous structure in which the apparent
density and modulus could subsequently vary as a function of position as
their computer programs remodeled the bone [119]. The Young’s modulus E
was calculated as a power function of the apparent density ρ since the bone
apparent density changes during the bone remodeling as given by Carter and
Hayes [202]:

E = 3, 790 ρ3. (1.5.9)

The equation 1.5.9 is used for spongy and cortical bone, as the bone re-
modeling takes place on bone surfaces of marrow/voids in cancellous bone
and Haversian canals in cortical bone [14]. The new elastic modulus can be
calculated for each step by using the equation 1.5.9.
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Carter and coworkers expanded the single-load approach for predicting
bone density to include the history of multiple loading of bone over time.
Stress magnitudes or cyclic SED and the number of loading cycles are identi-
fied for bone loading histories for an average day. Multiple loading conditions
were used with FE models as there is no single loading condition that can be
reasonably excepted to be the stimulus for the full trabecular architecture.
The theory described in their previous work in 1987 [118] was used. That
theory considered a relationship between element density and an effective
stress. The study hypothesized that the apparent local density of cancellous
bone could be approximated by the relationship [119]:

ρ = K

(

c
∑

i=1

niσ
M
i

)(1/2M)

, (1.5.10)

where the daily loading history has been summarized as K and M which
are constants, c is the number of discrete loading conditions, n is the num-
ber of loading cycles, σ continuum model cyclic peak effective stress (scalar
quantity) which is the energy stress, and ρ the bone apparent density defined
as:

σenergy =
√

2EavgU, (1.5.11)

where U is the continuum model SED, and E is the continuum model
elastic modulus. In the proximal femur, the distributions of calculated den-
sity are similar. Defining the remodeling rate was done as the variation in
density as a function of effective stress. A lazy zone was also added in the
equation system of Carter et al. in 1987 [118]. Weinans and coworkers also
used the Stanford theory in 1992. They applied this theory to a 2D FEM of
a proximal femur. Because of mechanical stimulation, the bone was repre-
sented as a continuum, capable of adapting its apparent density [121]. The
Stanford theory was used in all these studies in long bones.

1.6 Bone Density

Bone density is a key factor for a successful long term implant treatment.
The bone quality in dentistry typically is defined in four classes [203]:

• Quality 1: This consists of primarily dense cortical bone. It is located
in the anterior mandible.

• Quality 2: The quality of this part has a thick cortical bone that sur-
rounds a core of dense cancellous bone. It is associated with the pos-
terior mandible.
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• Quality 3: This consists of a thin layer of cortical bone, which also
surrounds a core of dense cancellous bone, and it is usually associated
with the anterior maxilla.

• Quality 4: This consists of a thin layer of cortical bone that surrounds
a core of lower density cancellous bone.

These four classifications have been used in treatments for implant place-
ment. Later on, some other researchers have proposed an extension of this
idea by comparing the surgical resistance of the bone during osteotomy prepa-
ration [204–207]. It is consensus that titanium dental implants have a high
success rate by both the quality and quantity of available bone in the long-
term [208–211]. Some parameters can affect the modeling and remodeling
as the direction, magnitude, and repetition rate of biomechanical quantities.
Bone has the ability to resist immediate loading, and bone quality is increased
under repetitive forces. Density can increase when the simulation is within
the physiological limits, it may generate an increase in osseous density at the
implant-bone interface [198, 212–215]. The spread and the distribution of
contacts are the advantages of immediately loaded implant systems during
the first days and weeks after immediate/early loading. The distribution of
force to all abutments can be affected by the rigid splinting of the prosthe-
sis. Computer tomography can be used for bone quality assessment before
surgery using Housfield unity [216, 217]. The bone mineral density (BMD)
can be measured with quantitative computer tomography images from corti-
cal and spongy bone separately [218]. However, the position of implant can
not find during the process of measuring the BMD since BMD values vary
locally to a high extent [219].

1.7 Bone Healing Process

Bone fracture happens mostly from physical trauma. The inflammatory
phase, the soft callus phase, the hard callus phase, and the remodeling phase
are the four overlapping phases of the regeneration process of fractured bone
[220]. The initial bone healing stage is starting with the process which turns
from cortical bone, periosteum, and surrounding soft tissues, and rupturing
numerous blood vessels [221]. Growth factors affect the healing process into
the regeneration area from the surrounding tissues [220]. Not only growth
factors but also a variety of other factors, including the mechanical and the
biological environment affect bone healing. After the bone has healed and
undergone remodeling, the fracture area will have returned to the pre-injury
condition.
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Bone forming and regenerative processes are similar principles as bone
fracture healing. Some examples of these processes are, e.g., bone tissue
engineering, limb lengthening, bone ingrowth on implants, and long bone
growth during fetal development. Some research groups approved that me-
chanical stimulation can activate fracture healing [222, 223]. Nevertheless, it
is still unknown how the mechanical signals are transferred into a biological
response.

Computer modeling has a significant influence on mechanobiology [224].
Computational models are useful to calculate the relationship between global
mechanical loads and the local stresses and strains that influence tissue for-
mation. Mathematical models are favorable to simulate the complex systems
as many biological processes, including bone healing, are complicated, either
too time-consuming, too expensive, or impossible. Computational models
are used with both in vivo and in vitro experiments to explain the effect of
mechanical stimulus on cells and tissue differentiation, growth, adaptation,
and maintenance of bone [225]. Augat et al. studied with shear movements
at the fracture site the result in healing with decreased external callus for-
mation [226]. In vivo experimental models have been used to investigate
the effect of mechanical loading during bone healing [227]. Strain, stability,
pressure, and fluid velocity are salient parameters that react as stimuli for
tissue formation during fracture healing [228].

Bone healing has two forms called primary and secondary healing.

1.7.1 Primary Bone Healing

Primary healing is also called as direct healing or intramembranous bone
formation. There is no callus formation during the primary healing. It can
occur either with a small gap or direct contact of the fractured compact bone
ends. The primary bone healing is a slow process that takes a few months to
a few years until the process ends. The gap of the fracture is a critical point.
The osteoblast cells fill the fracture gap, if the fracture gap is between 800 µm
and 1 mm. Two bone fragments are connected directly by osteoblasts and
osteoclasts [229].

1.7.2 Secondary Bone Healing

Secondary fracture healing is known as indirect fracture healing, which is
the most common form of bone healing. The secondary healing process
is a natural process that occurs in the presence of some interfragmentary
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movement between the fractured bone ends. It includes a consecutive tissue
differentiation process as shown in figure 1.16 [230]. Four overlapping stages
consist of sequentially inflammation, soft callus tissue, hard callus tissue, and
remodeling (resorption of the callus) [231, 232].

Figure 1.16: Some sequential processes happen during the secondary healing:
an initial heamatoma, soft callus formation, hard callus formation, external
bony bridging, and bone remodeling (left to right, modified after [228]).

1.7.3 Bone Healing around Dental Implants

Branemark and coworkers have suggested a direct relationship between im-
plant and bone and introducted the term of osseointegration in 1977 [233].
The interface between bone and implant covered with a clot form, blood, and
inflammatory cells [234]. Osteoclast cells remove the damaged bone, and new
bone is formed on top of the bone by osteoblast cells.

1.7.4 Osseointegration

The implant can be integrated with the bone when it is inserted into the
jawbone. This direct contact between implant and bone is defined as os-
seointegration after an implant was inserted into the bone. If the primary
stability is not achieved and the implant moves during integration, then bone
can repair with a fibrous capsule around it [235]. If fibrous tissue is formed
around the implant, osseointegration is not possible, and the anchorage is
then not sufficient for the prostheses to function like a regular tooth. The
type and quantity of bone affects the primary stability at the implant site
[235, 236].
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1.8 Dental Implant Design

Many factors can affect implant failure, e.g., the implant, abutment, or dental
prosthesis, the patient may not be satisfied with the result, or it might not
have been inserted adequately [237]. In case the osseointegration is lost,
a so far successfully osseointegrated implant can fail too. When the bone
quality or volume in the area is not sufficient to bear the occlusal load, the
osseointegrated implant fails [238]. Smoking and the age of the patient are
also risk factors for bone. The diameter and length of implants are major
critical factors for the long term implant stability. The diameter of the
implant may vary between 1.8 and 6.5 mm. The optimum diameter can
be used according to the bone quality and the location in the jaw, i.e., the
mastication force. On the other side, the length of the dental implant is 10.00
mm or longer; nevertheless, shorter implants can also be used depending
on the anatomical structures. An inferior prognosis is seeable with shorter
implants [239]. There are different implants with different screw designs in
the dental sector. These different implant designs exist to raise the fixture
stability and encourage osseointegration [240].

33



2 MATERIALS AND METHODS

2.1 Investigation of Implants

The scope of this thesis was to develop theoretical models to define a bone
remodeling theory for the early healing phase of dental implants. The theory
is based on work of Li et al. [146]. The work program of the project part
applied here consists of theoretical studies and FE simulations, as well as
numerical biomechanical investigations. In this chapter, different 2D and 3D
implant models used to investigate the bone remodeling process around den-
tal implants with and without osseointegration are presented. All numerical
simulations were run in the Marc Mentat FE software from MSC. The bone
remodeling algorithm was developed in ’C++’ programming language and
by special subroutines implemented in Marc Mentat.

2.1.1 Geometry of 2D Implants

The basic 2D FE implant models without screw pitches were developed to
quantify changes in bone loading conditions by forces at the beginning of the
research. Later on, screw pitches were added to the implant models (figure
2.1). The diameter and length of implants were varied to find the standard
dimensions for bone remodeling theory in our FE models with ø=3 mm and
L=11 mm. The material properties of implants are defined as titanium (table
2.1).

2.1.2 Geometry of 3D Implants

Different commercial dental implants were used for the 3D models in this
research. tioLogic© ST and Dentaurum CITO mini®dental implants were
used, which are shown in figure 2.2. The dimensions of the tioLogic© ST
implant were ø=3.7 mm and L=13 mm, and ø=2.2 mm and L=15 mm for
the mini implant.

Material Young’s modulus (MPa) Poisson’s ratio
Titanium alloy 110,000 0.30

Table 2.1: Material properties of 2D and 3D implants.
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Figure 2.1: Two different basic 2D FE implant models were developed with
and without screw pitches.

Figure 2.2: 3D implant designs: (a) Dentaurum CITO mini®dental implant
and (b) tioLogic© ST.
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2.2 Bone Remodeling Theory

Some numerical background for remodeling will be given in this section. The
theory aimed to investigate the response of the bone around dental implants
in fully or non osseointegrated cases. Various boundary conditions, different
cortical and spongious bone material properties, loading magnitudes and
directions, bone quality, and different implant designs are used during all
simulations. After that, different tissue types with different thicknesses in
the simulations were tested to simulate different osseointegration phases.

2.2.1 Bone Remodeling Basics

When a mechanical load is applied to a bony structure, the bone responds
to this load and is remodeled depending on the magnitude of this load. This
remodeling process can change the density of the existing bone and/or change
the geometry of the bone.

C++ programming language is used to write the codes to formulate the
bone remodeling theory of Li et al. [146]. The change of bone density is
considered in these codes. In the following text, ρ denotes the local bone
density. For cortical bone 0 < ρ 6 ρcb will be assumed, where ρcb is the
maximum density of cortical bone (ρ = 1.74 gcm−3). Later this bone remod-
eling model will be expanded to also contain remodeling processes during the
osseointegration phase of dental implants. For this case, above assumptions
on the limits of bone density have to be slightly adapted. For the different
tissue types that are evolving during the osseointegration, 0 < ρ 6 ρtt will
be assumed, where ρtt is the maximum density of current tissue type.

This C++ code is mainly based on the bone remodeling model developed
by Li et al. [146] and extended by Hasan et al. [149, 240]. They calculated
the density change over time as a function of SED U within the bone and
the current local density ρ:

dρ

dt
= f(U, ρ) = B(

U

ρ
− k)−D(

U

ρ
− k)2,

(2.2.1)

where B and D are constants, U/ρ is the mechanical daily stimulus, k
is the threshold value for the stimulus and ρcb is the ideal density of bone
without porosity. Li et al. aimed at expressing the SEDU as a function of the
stress σ. For uni-axial loading, the SED U can be expressed as U = σǫ/2,
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which in turn can be expanded to U = σ2/2E using σ = Eǫ, where E is
Young’s modulus of the given material. Using this in the above formula
results in:

dρ

dt
= f(σ, ρ) = B(

σ2

2Eρ2
− k)−D(

σ2

2Eρ2
− k)2.

(2.2.2)

Several approaches have been made to describe Young’s modulus E of
bone as a function of the bone density ρ. While Li et al. [146] used a
relationship formulated by Carter and Hayes [202], we will stick to a more
general approach by simply using E = E(ρ):

dρ

dt
= f(σ, ρ) = B(

σ2

2E(ρ)ρ2
− k)−D(

σ2

2E(ρ)ρ2
− k)2.

(2.2.3)

This formula 2.2.3 is implemented in the function which calculates the
density change based on the current density and mechanical stimulus. This
function implements the two differential equations 2.2.4 and 2.2.5 from [146];

dρ

dt
= f(σ, ρ), (2.2.4)

dρ

dt
= f(U, ρ),

(2.2.5)

both extended to include a ’dead zone’ surrounding k, in which no bone
remodeling takes place. The Euler method can be used to solve this differ-
ential equation numerically;

ρ∗n+1 = ρn +∆tf(σ, ρn), (2.2.6)

ρn+1 = ρn +
∆t

2
[f(σ, ρn) + f(σ, ρ∗n+1)]. (2.2.7)

The same approach can be used if the density change is expressed directly
as a function of the SED using the function f(U, ρ). The iterative process
for the Euler method is implemented in the function, which calculates the
density change. σ is the equivalent stress in the element, ρ is the current
density in the element. As a time step ∆t was selected.
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2.2.2 The ’lazy’ or ’dead’ Zone

Several authors suggested that a certain amount in over- or underloading
must be exceeded before the bone remodeling occurs. The loading area be-
tween these threshold levels is often referred to as the ’lazy zone’ or ’dead
zone’ [112, 146, 198]. While the basic idea to implement such a dead zone
is straight forward, there are some implementation details that have to be
considered. The current implementation in which calculation of the density
change is based on the current density and mechanical stimulus, uses the
following non-continuous approach (where w is half of the width of the dead
zone):

dρ

dt
=











0 if U
ρ
∈ [(1− w)k, (1 + w)k]

and

B( U
ρ2

− k)−D(U
ρ
− k)2 otherwise

(2.2.8)

Alternative approaches would shift parts of the function dρ
dt

horizontally to
the left or the right below or above the dead zone, respectively (which would
change the roots of the function) or use a modified function which retains the
roots. Further investigations have been performed to determine the influence
of these different approaches to the final bone distribution. Hasan et al. [241]
extended the theory from Li [146] with the dead zone. Figure 2.3 shows the
bone density change over time against mechanical stimulus U/ρ.

Figure 2.3: Schematic representation of the functional dependency between
the current stimulus U/ρ and the resulting density change in the bone, with
permission from [241].
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2.2.3 Relationship between Bone Density and Elasticity

Several papers propagate a functional relationship between the density ρ of
the bone and it’s Young’s modulus E. This relationship is used in different
places, some are obvious like calculating density changes, some are less obvi-
ous. For example, calculating the remodeling parameters k, B and D from
some clinically observed (or derived) stress or strain values requires to cal-
culate the density from Young’s modulus and vice versa. Carter and Hayes
[202] formulated the relationship as:

E(ρ) = Cρ3, with C = 3790MPa(gcm−3)−3. (2.2.9)

Beaupré and coworkers [14] defined this 2.2.9 relationship as:

E(ρ) =

{

2014ρ2.5 if ρ ≤ 1.2,
1736ρ3.2 otherwise

}

(2.2.10)

Weinans and his coworkers [242] defined:

E(ρ) =

{

1353ρ1.48 if 0.0 ≤ ρ ≤ 1.4 gcm−3,
34623ρ− 46246 if 1.4 ≤ ρ ≤ 2.0 gcm−3,

}

(2.2.11)

The two functions which convert Young’s modulus into the bone density
and convert the bone density into Young’s modulus are currently imple-
mented in the model proposed by Carter and Hayes [202].

2.2.4 Tissue Types

To be able to describe the osseointegration process, the remodeling of differ-
ent tissue types have to be considered. All tissue types are assigned in the
FE model in this way. Four different tissue types are distinguished during
remodeling:

• stiff callus (SC), i.e. cortical bone,

• connective tissue (CT), i.e., blood, bone marrow and bone fragments
directly after insertion of the implant,

• soft callus (SOC) and

• intermediate soft callus (MSC).

The healing phases are shown in figure 2.4. Three different stages occur
during the healing periods with the different tissue types.

39



Figure 2.4: Histologically, osseointegration consists of three phases of dif-
ferent tissue states: a) Immediately after implant insertion to two weeks:
haematoma, connective tissue (CT). b) After two months: intermediate stiff
callus (MSC), soft callus (SOC), connective tissue (CT). c) After four months:
stiff callus (SC), intermediate stiff callus (MSC), soft callus (SOC).

2.2.5 Remodeling Parameters

The remodeling parameters k, B and D are functions of the critical stresses
(or strains) and the maximum density of each of the tissue types. As the
density is used to determine the maximum Young’s modulus of each type, the
final values of these parameters depend on the exact functional dependency
between density and Young’s modulus as well. The two roots of the density
change function dρ

dt
are k and B/D+ k. In 1992, Weinans et al. [242]

used 0.01 gcm−3 and 1.74 gcm−3 as lower and upper limits of the density,
respectively. They derived the upper limit by using the inverse function to
the formula E(ρ) = Cρ3 [202] with a maximum Young’s modulus of 20,000
GPa. The dead zone is an area around the daily stimulus k in which no
remodeling occurs. This area is defined as the range [(1−w)k, (1+w)k],
where w is half of the width of the dead zone.

At the lower critical stress and the upper critical stress, bone density does
not change. The lower critical stress is defined as σ1 to calculate the constant
k:

|k∗| =
σ1

2

2Cρ4cb
, (2.2.12)

and to calculate the constant D with the upper critical stress σ2:

|k∗| =
2Cρ4cbB

σ2
2 − 2Cρ4cbk

∗

. (2.2.13)

Different remodeling parameters from different tissue types are shown in
table 2.2.
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Tissue Types B k D w dt nmax ρmax ρmin

SC 1.0 0.0001 55.0 0.2 3.0 100000 1.74 0.1
CT 1.0 0.0000004 55.0 0.2 1.0 100000 0.07 0.01
SOC 1.0 0.00002 55.0 0.2 1.0 100000 0.75 0.01
MSC 1.0 0.00008 55.0 0.2 1.0 100000 1.4 0.01

Table 2.2: Remodeling parameters of the different tissue types.

2.2.6 Flow Chart Diagram for the Bone Remodeling

The work package of the study, which includes C++ codes and FE simula-
tions for the algorithm of bone remodeling, is illustrated in Figure 2.5.

We first need to define and design the initial geometry, the external loads,
material properties, and the other boundary conditions for FE analysis. The
bone remodeling algorithm then consists first of a loop over the load incre-
ments in time steps. The scaling factor is a variable to control the amount
of density change per iteration. If the calculated density change is taken
into account at full scale, the differences between two iterations may be too
drastic. But the clinical situation corresponds to a gradual change of the
bone density, as even a small change in the density distribution changes the
distribution of strains and stresses within the anatomical structures, which
in turn control the ongoing remodeling. Different scaling factors were used
in the study, which are shown in table 2.3. The critical scaling factor is that
factor, at which the resulting maximum possible density change is too small
to move the current element from its current material group into an adjacent
material group. The maximum possible density change is:

critical scaling factor =+/-(scaling factor*ρmaxtissuetype).

Scaling Factor: 0.01 0.05 0.1 0.2 0.33 0.5

Table 2.3: Scaling factors used in the study.
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Initial model

SED, effective σ of bone

S = U
ρ
= σ2

2Cρ4
n

ρ∗ = B(S − k)−D(S − k)2

ρ∗n+1 = ρn +∆tf(σ, ρn), ρn+1 = ρn +
∆t
2
[f(σ, ρn) + f(σ, ρ∗n+1)]

En+1 = Cρ3n+1

∫ n

1
ρ

Daily stimulus

Input

Solver

Updated σ

ρ0

Figure 2.5: Outline of the algorithm of bone remodeling used in FE analyses.
Adapted from [240].
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2.3 2D and 3D Models for Bone Remodeling Simula-
tion

At the beginning of the study, the basic model was created with a basic dental
implant in the FE software. The aim of developing a basic 2D model was to
quantify the optimal boundary conditions for the later simulations of bone
remodeling and osseointegration phases. The proposed 2D model consists
of cortical bone, spongy bone, and implant. The reason for no periodontal
ligament (PDL) is that there is no PDL after implant insertion into the bone.
All material properties of analysis are presented in table 2.4.

Material Young’s modulus (MPa) Poissonfls ratio
Implant 110,000 0.30
Cortical bone 18,000 0.30
Spongious bone 1,000 0.30

Table 2.4: Material properties of basic 2D FE models.

2.3.1 Sensitivity Tests with 2D Models

The mathematical model for bone remodeling was implemented into the FE
package using 2D models. Different sensitivity tests were simulated in this
section.

2.3.1.1 Influence of the Spongious Bone Stiffness

The definition of the material properties of elements in the model is shown
in figure 2.6, where each color refers to different material properties in the
model. Blue, dark brown, and cream colors are showing implant, cortical
bone, and spongy bone, respectively. The boundary conditions are shown
in figure 2.6. Total force was applied directly to the implant with 100 N, as
shown in the figure 2.6.

The fixation was done from both sides of the model. The FE mesh con-
sisted of a triangular element class. The triangular element used in this study
was type 6, class 3 in the commercial FE software MSC.Marc/Mentat library.
This triangular class has three nodes for plane strain applications, where ge-
ometry is more complicated. The whole model consisted of 359 nodes and
640 elements. The implant was modeled without pitches in the basic model.
Different Young’s modulus of spongious bone was used in the simulations
of 1 MPa, 10 MPa, 100 MPa, 125 MPa, 130 MPa, 140 MPa, 150 MPa, 175
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Figure 2.6: Boundary conditions of the basic 2D model.

MPa, 200 MPa, 300 MPa, 400 MPa, 500 MPa, 600 MPa, 700 MPa, 800 MPa,
900 MPa, and 1000 MPa. The scaling factor was 0.05.

2.3.1.2 Influence of the Element Size

The model for sensitivity analysis was developed with different element
edge lengths (EEL), namely: 0.5, 0.25, 0.2, 0.167, 0.125, 0.1 mm. The model
was used as shown in the figure 2.6. The total force was used in the simu-
lations of 100, 200, 300, 500, and 1000 N. The remodeling parameters were
used from [146, 240] as below:

From [146]: k= 0.0004 Jg−1, B= 1.0 (gcm−3)2 MPa−1(timeunit)−1, D=
60.00 (gcm−3)−3 MPa−2(timeunit)−1,
From [240]: k= 0.0004 Jg−1, B= 1.0 (gcm−3)2 MPa−1(timeunit)−1, D=
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19.48 (gcm−3)−3 MPa−2(timeunit)−1.

All these remodeling parameters were used for the stiff callus (SC), i.e.,
cortical bone. Later on, the other tissue types were added into the simulation,
including healing phases.

2.3.1.3 Influence of the Cortical Bone

To get the ideal model of bone for the bone remodeling simulation, the
structure of the bone was changed. For this purpose, a new part of the
cortical bone was also added in the lower part of the model, see in figure 2.7.
The model was fixed from both sides of the cortical bone.

Figure 2.7: Geometry of 2D model with additional cortical part to the bottom
of the model.
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2.3.1.4 Influence of the Implant Geometry

The objective of this section was to see the effect of the pitches in the
implant. The bone was considered to be isotropic material with Young’s
modulus of 20,000 MPa and 300 MPa for cortical and spongious bone, re-
spectively. Poisson's ratio was set to 0.3. For this simulation, similar model
was used as shown in figure 2.8, additionally implant was designed with
pitches. Density changes were observed after all processes, as shown in the
flow chart 2.5. The boundary conditions were similar as before. The model
was fixed from both sides of the cortical bone, and the total force was 100
N, applied on the implant. Additionally, muscle pressures were applied as
compression and tension to the model from both sides with a force of 5 N.

Figure 2.8: Implant with screw pitches in the 2D model.
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Later on, the muscle pressure was added in the model to simulate the
muscle, which opens the mouth. For this purpose, the opener muscle was
attached at the bottom of the model with a surface load, see figure 2.9.

Figure 2.9: Opener muscle and boundary conditions that were used for test-
ing the simulations. The presented model was meshed with EEL of 1.0 mm

2.3.1.5 Influence of the Thickness of Bone

In this section, the model was extended in the Z direction to change the
dimension of the model from 2D to 3D. The model is shown in figure 2.10.
The total force was applied on the implant at 20◦ from its long axis with 100
N. The model was developed with different element edge lengths, namely:
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0.5, 0.2. Different material properties of spongious bone were used during
this section to get the ideal material properties: 100 MPa, 250 MPa, 350
MPa, 500 MPa, 800 MPa, 1000 MPa. At the end of this section, muscle
force was simulated in the model. Cortical bone was subjected to a tension
pressure on the lingual side and a compression pressure on the buccal side
at the same time. The muscle pressure were 1.0-15.0 N.

Figure 2.10: The model was extended in the Z direction in order to change
the model from 2D to 3D.

2.3.1.6 Influence of the Different Bone Models

Two different models were created in these sections to simulate different
implant-bone conditions. Both models were developed with varying shapes
of the implant, i.e., diameter and length.
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2.3.1.6.1 First Model of Bone
The first model was created with a more realistic bone geometry sur-

rounding the implant. The shape of the model was bigger and longer than
previous models. The total force was applied directly from the Y direction
to the implant with 100 N. The model was fixed at the bottom nodes from
the cortical bone in X, Y, and Z directions. Young’s modulus of spongious
bone was 1,000 MPa. Also, muscle face loads were applied to the model from
the labial and lingual side as compression with 1 N to 15 N (see figure 2.11).
The implant dimensions were ø=3 mm and L=11 mm.

Figure 2.11: View of more realistic geometry in 2D FE model with face loads
and boundary conditions.
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2.3.1.6.2 Second Model of Bone
The second model was generated with different shape (figure 2.12). The

thickness of the cortical bone was higher, and the diameter of the implant
was more comparing the model in figure 2.11. The differences between this
model and the first model were muscle loads and the total force. Opener
muscle loads were simulated in this second model with 2 MPa as pressure
applied to several bottom nodes. The total force was applied to the implant
at 20 ◦ from its long axis with 100 N. The fixation was done from the corner of
the upper side of the cortical bone with X, Z directions, and also the bottom
side of the cortical bone from just two nodes with X, Y, Z directions. The
implant geometry was ø=4 mm and L=13 mm.

Figure 2.12: View of the second 2D FE model with more realistic geometry.
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2.3.1.7 Influence of Osseointegration Phases

A 2D FE model of an implant in a bone segment was created. The bone
segment consisted of a 2.0 mm layer of cortical bone surrounding a core of tra-
becular bone. A separate connective layer was modeled at the bone/implant
interface, consisting of up to three different material components (see figure
2.13), to allow the simulation of the healing process. All these layers were
done to simulate a full osseointegration.

Figure 2.13: Representation of three different histological healing stages in
the FE models, phase 1, phase 2, and phase 3, respectively (see Fig.2.4).

Initial FE model used in the simulations: A compressive pressure of 2.0
MPa on the mesial and distal side was used to simulate functional loading,
like muscle pressure. In order to get a stable initial bone distribution, bone
remodeling was performed for the whole bone and the connective layer using
the “classical” remodeling. Elements were assigned to the next tissue group
whenever they had reached the maximum density of the respective tissue
type. Thereafter, the remodeling resulted in a further density increase in
that element. The total thickness of the interface layer was varied from 0.1
to 0.3 mm. Three different healing phases were used. Depending on the
healing state, up to three different sublayers with separate initial material
properties were used. We created all tissue types around the implant and
remodeled them too. The model was developed with different element edge
lengths (EEL), namely: 1.0, 0.5, 0.2. The model EEL of 1.0 had 480 nodes,
892 elements, and it was fixed from the corner up and down of the cortical
bone.

Material properties and remodeling parameters are shown in table 2.5.
The Young’s modulus listed here refers to the initial start value of the ma-
terial at the beginning of the remodeling.
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Material
Initial Young’s
modulus (MPa)

Poisson’s ratio
Maximum Density

(gcm-3)
Reference Stimulus

(Jg-1)
CT 1 0.17 0.07 0.0000004
SOC 1,000 0.3 0.75 0.00002
MSC 6,000 0.3 1.40 0.00008
SC 10,000 0.3 1.74 0.0004

Table 2.5: Material and remodeling parameters used for the different tissue
types during the healing stages [240].

Figure 2.14: View of 2D FE model with different tissue types (see figure
2.13). As an example, Phase 2 is presented in this figure with tissue types
CT, MSC and SOC.
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2.3.1.8 Influence of Healing Phases with Homogeneous Bone

The 2D FE model was created with a bone segment that had a 1.0 mm
layer of cortical bone surrounding a core of trabecular bone. The bone was
considered to be an isotropic and homogeneous material with Young’s modu-
lus of 20 GPa for the cortical bone and Poisson's ratio of 0.3. In the region of
the trabecular bone, a grid represented the spongious structure. To simulate
the osseointegration state, a separate connective layer was modeled at the
bone-implant interface, consisting of up to three different material compo-
sitions. Histologically, osseointegration consists of three phases of different
tissue states, as in figure 2.13. Cortical, spongious bone, and all tissue types
were remodeled during the simulation. The material used to design a dental
implant was titanium with Young’s modulus of 110 GPa and Poisson's ratio
of 0.3.

Two different scenarios were used in this study to simulate bone remod-
eling theory around dental implants using 2D FE analysis:
1- A 2D FE model of a bone with an implant was developed without osseoin-
tegration. For this scenario, remodeling was performed for the whole bone
using the ”‘classical”’ remodeling, to get a stable initial bone distribution.
2- A 2D FE model of a bone with the implant and osseointegration phases
was developed.

In Figure 2.15, the total thickness of the interface layer was varied from
0.1 to 0.3 mm. Depending on the healing state, up to three different sub-
layers with separate initial material properties were used. Elements were
assigned to the next tissue group whenever they had reached the maximum
density of the particular tissue type, and the remodeling resulted in a further
density increase in that element.

In this study, different forces were applied on the implant with different
angles at 0 ◦ and 20 ◦ from its long axis with 100, 200, 300, 500, 1,000 N,
see figure 2.15 . The models were tested with different element edge length
(EEL) as 0.2 mm and 0.5 mm. The dimensions of the whole model were 14
mm (length) x 15 mm (height). The implant was modeled with L=11 mm,
ø= 3 mm. The FE mesh was constructed using triangle elements. Hence,
the system comprised about 12,840 elements with 6,570 nodes: i.e., 1,200
elements for the implant, 5,200 for the cortical bone, and 4,100 for the can-
cellous bone. The mechanical parameters of cancellous bone (initial values
before starting remodeling process) were E= 20, 50, 100, 300, 500, 1,000
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Figure 2.15: View of 2D FE model with homogeneous bone and with different
tissue types (see figure 2.13). As an example, Phase 2 is presented in this
figure with tissue types; CT, MSC and SOC.

MPa, and Poisson's ratio 0.3.

For simulating muscle loads, different forces were applied to the model to
both lingual and labial sides with 1.0, 2.0, 3.0, 4.0, and 5.0 (MPa) as a tension
and compression face load, respectively. Four different tissue types with three
different phases were modeled between the implant-bone interface to simulate
the healing phases. The thickness of the tissue layers also changed with
different EELs as 1.0, 2.0, and 3.0 (mm). Tissue layers were initial connective
tissue (CT), Soft Callus (SOC), intermediate stiffness callus (MSC), and stiff
callus (SC). The material parameters of tissue layers is shown in table 2.5.
The three different healing phases were created from these four tissue layers
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(see figure 2.13). Material properties and remodeling parameters are shown
in table 2.5 as used before.

2.3.1.9 Influence of Time Steps

A further 2D model was generated to simulate the effect of the different
scaling factors with respect to the number of times steps. As different pa-
rameters, we defined the cortical and spongious bone around the implant, as
shown in Fig. 2.16. That means there is no healing phases in this section.
EEL was 0.5 mm. The total force was applied to the implant at 20 ◦ from
its long axis with 100 N. Muscle loads were simulated with 2 MPa as com-
pression from both labial and lingual sides of the model. Young’s modulus
of spongious bone was 300 MPa. Scaling factors were 0.33 and 0.01 with the
number of time steps of 300 and 10,000, respectively.

Figure 2.16: View of the material components in the 2D model to simulate
the effect of the different time steps.
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2.3.2 Sensitivity Tests with 3D Models

3D FE models were used in this section to simulate the mathematical model
for bone remodeling with different sensitivity tests in more realistic models.

2.3.2.1 Influence of the Bone Remodeling Theory

A 3D FE model was created by implementing the mathematical expres-
sions of the bone remodeling theory. The remodeling simulations performed
in this section were based on the remodeling theory presented by Li et al.
[146]. All spongious and cortical bone were remodeled during the simulations.
The material components are shown in figure 2.17.

Figure 2.17: View of the material components in the 3D model.

The total force was applied to the implant, and the model was fixed from
the nodes of the cortical bone, and some points of the spongious bone, see
figure 2.18.

56



Figure 2.18: Boundary conditions of the 3D model.

The FE mesh was constructed using element type tetrahedral from the
library. The model has 107,383 elements with 20,378 nodes: i.e., 17,076
elements for the implant, 36,408 for the cortical bone, and 53,899 for the
cancellous bone. An idealized finite element model of the implant (ø 3.7
mm, L 13 mm) in a bone segment was created. The element size of the bone
was 0.5 mm, and the mesh of the implant was 0.2 mm. The total model size
was (10 mm x 15 mm x 10 mm). The tioLogic© ST implant was used in
the model. The bone segment consisted of a 1.0 mm layer of cortical bone
surrounding a core of cancellous bone. The bone remodeling parameters k,
B, and D used from [146, 240] were as in previous sections:
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From [146]: k= 0.0004 Jg−1, B= 1.0 (gcm−3)2 MPa−1(timeunit)−1, D=
60.00 (gcm−3)−3 MPa−2(timeunit)−1,
From [240]: k= 0.0004 Jg−1, B= 1.0 (gcm−3)2 MPa−1(timeunit)−1, D=
19.48 (gcm−3)−3 MPa−2(timeunit)−1.

The scaling factor was 0.33. The bone was considered to be isotropic
material with Young’s modulus of 20 GPa and 300-1,000 MPa for cortical
and cancellous bone, respectively. Two force magnitudes were applied on the
implant at 20 ◦ from its long axis: 100 N and 300 N.

2.3.2.2 Influence of the Muscle Forces

In this section, the effect of the muscle forces were simulated in the 3D
FE model. Like the previous model, the numerical model consisted of 1.0
mm thick cortical bone surrounding a core of spongious bone. The bone was
considered as isotropic and homogeneous material. The scaling factor was
0.33. Young’s modulus of spongious bone was 1,000 MPa, and total forces
were applied on the implant at 20 ◦ from its long axis of 100-300 N. Addi-
tionally, the cortical bone was subjected to a tension pressure on the lingual
side and a compression pressure on the buccal side at the same time. Green
and blue colors show muscle loads from labial and lingual sides, respectively
(see figure 2.19). The ’dead zone’ was used as 20 % of k, as suggested by Li
et al. [146] and Hasan [240]. Bone remodeling parameters were used as below:

From [240]: k= 0.0004 Jg−1, B= 1.0 (gcm−3)2 MPa−1(timeunit)−1, D=
19.48 (gcm−3)−3 MPa−2(timeunit)−1.

Another view to show the muscle loads from the opposite side of the
model is shown in figure 2.20. As shown in the model, compression loads
were applied to the model from the labial side, and tension loads were applied
to the model from the lingual side.

Muscle pressures were between 0 and 5.0 MPa, as shown in table 2.6. The
maximum time steps and scaling factors were 100 and 0.33, respectively.
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Figure 2.19: Muscle loads and boundary conditions in the 3D model.
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Figure 2.20: Another view of the muscle pressures and total force in the 3D
model. The position of the muscle pressures are presented in this figure as
compression and tension of labial and lingual sides, respectively.

Compression (Labial Side) Tension (Lingual Side)
Face Load (MPa) 0.5 -0.5

0.7 -0.7
1.0 -1.0
1.5 -1.5
2.0 -2.0
2.5 -2.5
3.0 -3.0
4.0 -4.0
5.0 -5.0
3.0 0
0 -3.0
4.0 0
0 -4.0
5.0 0
0 -5.0

Table 2.6: Types of face loads. Different face loads were applied to the
models as compression and tension.
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2.3.2.3 Influence of the Boundary Conditions

Previous models were fixed from the front and the back of the model from
cortical and some points of the spongious bone. In this section, additionally,
different fixations were applied to the model, e.g., at the lower part of the
model from the cortical bone. The model is shown in figure 2.21. Hence,
muscle loads were changed. Both muscle loads were applied to the model as
compression, see figure 2.21. Muscle loads were 2 MPa for both sides. Two
steps were done in this section:

1- Only spongious bone was remodeled during the simulations.
2- All bone components (cortical and spongious) were remodeled.

Figure 2.21: View of the boundary conditions in the 3D model.
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Subsequently, the fixation was changed in the model. The upper and
lower parts of the cortical bone were fixed from the outer lines, as shown
in Fig. 2.22. Muscle pressures were 2.0 and 5.0 MPa as compression and
tension.

Figure 2.22: Different fixation conditions in the model.

2.3.2.4 Influence of the Element Size

Until now, the EEL was used as 1.0 mm. Maximum EEL was used in the
simulations. This section aimed to see the effect of the EEL of 0.5 mm. The
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model was meshed with EEL of 0.5 mm (see figure 2.23). The same boundary
conditions were applied to the model except for muscle loads. Compression
and tension muscle loads were applied to the model from both sides with
2 MPa. The model had 859,064 elements and 161,096 nodes. The scaling
factor and maximum iterations were 0.33 and 100, respectively.

Figure 2.23: The view of the 3D model with reduced element size of 0.5 mm.

2.3.2.5 Influence of the Bending Force

Functional mastication loads are applied via the teeth. This is the reason
why the mandibular bone is a unique structure. The functional loads create
bending with maximal stresses in the mandibular bone. In this section, we
wanted to simulate the effect of the bending of the mandible. The model had
292,804 elements with 52,211 nodes.
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Figure 2.24: Total force (F) and bending force (Fb) were applied to the 3D
model. Fb had connection with the nodes of the cortical and spongious bone.

Figure 2.24 shows the bending force in the model. A point was defined
20 cm far from the model, and this point had a connection with the nodes of
that surface of the model with 10, 50, and 100 N from Y and Z directions.
Different muscle loads were applied to the model as previous simulations from
the labial as compression and lingual side as tension during the bending tests
between 1.5-2.5 MPa. The fixation was applied at the back of the model.

2.3.2.6 Influence of the Fixation

The fixation is a significant effect for all simulations regarding its remark-
able influence on bone deformation. We aimed to simulate a new fixation
in the model to get the ideal conditions for the simulations. For this aim,
the model was fixed from two points, which were created 20 cm far from the
model. These two points were connected to the nodes on the surface of the
model from both cortical and spongious bone; see figure 2.25.
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Figure 2.25: The view of the 3D model with different fixations from both
sides.

The fixation was done from X, Y, and Z directions and rotation around
the Z axis. The model was fixed and rotation was inhibited except for the
front part, as seen in the figure. Additionally, muscle pressure was applied
with 1.0, 1.5, 2.0, and 2.5 MPa to the model as previous simulations from
the labial as compression and lingual side as tension. The total force was
applied to the implant at 20 ◦ from its long axis with 100 N.

2.3.2.7 Influence of the Implant Geometry

Until now, the posterior tooth area was generated for all simulations.
For comparing different parts of bone, the anterior tooth area was used in
this section. Different boundary conditions and material properties were
previously changed and applied to the models during the simulations. In
this section, a mini dental implant was used to show the effect of the implant
design on the bone remodeling process. Titanium mini-implant was used
with Young’s modulus of 110 GPa, see the mini implant model with ø=2.2
mm and L=15 mm in figure 2.2.

The bone was considered to be an isotropic and homogeneous material
with Young’s modulus of 20 GPa and 1,000 MPa for the cortical bone and
spongious bone, respectively (see figure 2.26). Poisson's ratio was 0.3. The
thickness of the cortical bone was 1.2 mm, and 2.66 mm for spongious bone.
The length of the spongious bone was 14.6 mm. The thickness of the total
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Figure 2.26: View of material properties of the 3D model with Dentaurum
CITO mini ®implant. Dimensions of mini implant were ø=2.2 mm and L=15
mm.

model was 5 mm, and the length of the total model was 17 mm, except for
the implant. Two steps were done in this section:

1. Step: Boundary conditions: The total force was applied to the implant
from Y direction with 10, 50, 100, 150, 200, 300, and 500 N. The model was
just fixed from both front and back sides from all cortical and spongious
bone, see figure 2.27.

2. Step: The same model was used. Additionally, muscle loads were
applied to the model with face loads of 1.0, 2.0, and 3.0 MPa as previous
simulations from the labial similar to compression and lingual side as tension
loads, see figure 2.28.

The scaling factor and maximum iterations were 0.33 and 100, respec-
tively. The element size was 0.4 mm. The model had 886,112 elements with
156,327 nodes: i.e., 303,949 elements for the implant, 59,090 for the cortical
bone, and 523,073 for the spongious bone.
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Figure 2.27: The boundary conditions of the model with mini implant.

Figure 2.28: View of applied muscle pressure to the 3D model with mini
implant, as compression and tension.
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3 RESULTS

Bone remodeling simulations with both 2D (with and without osseointegra-
tion) and 3D (no osseointegration) FE models were performed, as explained
in the previous section. The results of all sensitivity tests for all models are
presented in this section. Different mechanical stimuli were applied to the
models. The density change will also be presented in this section. The new
density was calculated during the simulations when the mechanical stimulus
was applied to the old density. Scaling factor is a variable to control the
amount of density change per iteration while different maximum iterations
were used for the simulations, like 100, 300, 500, 1,000, and 10,000.

3.1 Sensitivity Tests with 2D Models

Changes in bone density with the different mechanical parameters are pre-
sented after the different number of time steps depending on the simulations.
Results for total deformation, stress, total strain, total strain-energy density,
and total displacement between bone-implant interface were evaluated.

3.1.1 Influence of the Spongious Bone Stiffness

It is to be expected that the initial Young’s modulus used to describe
spongious bone before remodeling has at least a limited effect on the remod-
eling outcome. If the spongious bone elements start with a too low Young’s
modulus, this will probably result in a fast bone resorption due to overload-
ing these elements, while with a too high Young’s modulus we might see a
quick resorption due to disuse. Thus we need to verify that we start with
Young’s modulus that is within a stable region, that is neither too low nor
too high.

To verify this, a series of simulations was performed with different initial
values for the Young’s modulus of the spongious bone. Application of the
bone remodeling algorithm in the 2D model is illustrated in figure 3.1. Three
results of density changes are demonstrated with an initial Young’s modulus
of bone of 300, 700, and 1,000 MPa. These limits represent typical values
of bone elasticity used in literature when a homogeneous spongious bone
is simulated (e.g. [243]). There was resorption in the bone when Young’s
modulus was too small. Furthermore, the bone got too stiff when Young’s
modulus was higher than 1,000 MPa. Density distribution within the range
of 0.0 to 1.74 g/cm3 was used to demonstrate the results. In the yellow part,
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density was higher than 1.74 g/cm3. The lower part of the spongious bone
had maximum density, with Young’s modulus of 700 MPa comparing with
1,000 MPa. Similar results were obtained when the initial Young’s modulus
was in the range of 300 and 1000 MPa. An initial Young’s modulus of 200
MPa and below resulted in a fast overload resorption. Based on these results,
in the further steps of the sensitivity analysis two different Young’s moduli
of 300 and 1000 MPa were tested to represent this stable range.

Figure 3.1: Density distribution of spongious bone with Young’s modulus of
(a) 300 MPa, (b) 700 MPa, and (c) 1,000 MPa.

3.1.2 Influence of the Element Size

Figure 3.2 shows the density distribution with a total force of 500 N.
Bone resorption occured when the total force was below 500 N. Furthermore,
overloading resorption was obtained when total force was above 500 N. The
results with EEL 0.5 mm and 0.2 mm were used in the figure 3.2 to show the
effect of the EEL in the same model under the same boundary conditions.
The boundary conditions were the same as in figure 3.1 except of the total
force and EEL. Maximum number of time steps was 100. As seen in the
figure 3.2, 0.5 mm EEL showed very dense elements within the spongious
bone, while 0.2 mm EEL showed interesting density variations resembling
trabecular bone.
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Figure 3.2: Density distribution with total force of 500 N, (a) with element
edge lengths EEL of 0.5 mm, and (b) EEL of 0.2 mm.

3.1.3 Influence of the Cortical Bone

The effect of the extra cortical bone, which was added to the bottom
of the model was simulated. Figure 3.3 shows the density changes with
different parameters: (a) EEL with 0.5 mm and (b) EEL with 0.2 mm,
respectively. Density distribution within the range of 0.0 to 1.74 g/cm3 was
used to demonstrate the results. The maximum number of time steps was
100. The cortical and spongious bone reached maximum density under both
(a) element edge lengths of 0.5 mm, and (b) EEL of 0.2 mm. Bone resorption
was obtained below the tip of the implant in both models.
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Figure 3.3: View of density distribution with total force of 100 N: (a) EEL
of 0.5 mm, (b) EEL of 0.2 mm.

3.1.4 Influence of the Implant Geometry

Figure 3.4 shows the density distribution after the first and the maximum
iterations which was done with 100 in the bone remodeling simulations. The
maximum number of time steps was 100. The muscle pressure was 5 MPa
in this simulation. Blue parts are resorption in the sides of the bone due
to overloading. The red parts are showing bone formation, which generally
takes place in spongious bone and around the implant.

Furthermore, figure 3.5 shows the density changes with the effect of the
different muscle loads. Opener muscle loads were of 5 N applied to the
model. Additionally, two different muscle loads were applied to the model
from both sides as (a) compression, and (b) tension of 5 MPa. Total force
on the implant was 100 N during the simulation. New bone formation was
observed around the implant and also on some part of the spongious bone in
both (a) and (b). The cortical bone was reduced in density under tension,
which is shown in (b).
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Figure 3.4: View of density changes under total force on the implant of 200
N, muscle pressure of 5 MPa and EEL of 0.5 mm.

Figure 3.5: The effect of the opener muscle loads of 5 N with different muscle
pressures as (a) compression and (b) tension to both sides of the model of 5
MPa. Total force on the implant was 100 N.
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3.1.5 Influence of the Thickness of Bone

The extended models were studied in this section. Figure 3.6 shows the re-
sults of two different simulations. Varying boundary conditions were applied
to those models with different total force, EEL, muscle loads, and also dif-
ferent Young’s modulus of spongious bone. Figure 3.6, (a) shows the effect
of Young’s modulus of spongious of 100 MPa, (b) with Young’s modulus of
spongious of 350 MPa. New bone formation was observed in part of the
spongious bone and around the implant in (a) and on the other hand, spon-
gious bone reached the maximum value in (b). Despite, overload resorption
occured in both models on the cortical bone.

Figure 3.6: The effect of Young’s modulus of spongious bone (a) with 100
MPa, (b) with 350 MPa.

3.1.6 Influence of the Different Bone Models

3.1.6.1 First Model of Bone
Figure 3.7 shows the effect of the different muscle loads on the model with
realistic geometry, which is longer and bigger than other models. Bone for-
mation was obtained around the implant and the sides of both models (a) and
(b). The density reaches a steady-state in the bottom part of both models.
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Figure 3.7: The effect of the muscle pressures: (a) with 5 MPa, (b) with 15
MPa.

3.1.6.2 Second Model of Bone

In Fig. 3.8, first and maximum iterations are presented to show the den-
sity changes. EEL was 0.2 mm, opener muscle faces were applied with 2 MPa
as compression. Young’s modulus of spongious bone was 1,000 MPa. Some
new bone formation occurred around the implant. Lower part of spongious
bone reached the maximum density. Furthermore, overloading resorption
was obtained in the right part of cortical bone. The aim of these last two
sections was to simulate the effect of the different bone models which were
used in the literature [244]. We wanted to model the real bone shape with
implant. Nevertheless, we did not get significant results with a spongious
structure in the models as seen in the Fig. 3.7 and 3.8. That’s why the
further sections were done with basic 2D bone models as previous sections.
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Figure 3.8: Variation of the initial bone stiffness for spongious bone from 1.
iteration and maximum (100th) iterations. Number of time steps presents as
iterations.

3.1.7 Influence of the Osseointegration Phases

Total force was applied at the implant of 100 N and Young’s modulus
of spongious bone of 1 GPa. Muscle force was applied as compression from
both sides of the model with 2 MPa. CT, SOC, and MSC were used in these
simulations for simulating osseointegration. All tissue types were remodeled
during the simulations as cortical and spongious bone. Figure 3.9, 3.10, and
3.11 show totally nine different results of bone remodeling simulations with
EEL 0.2 with phase 1, phase 2, and phase 3, respectively. Each figure shows
the influence of the thickness of the tissue types with 0.1 mm, 0.2 mm, and
0.3 mm.

New bone formation occurred around the implant with 0.1 mm in Fig.
3.9. On the other hand, overloading resorption was obtained around the im-
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plant with 0.2 mm and 0.3 mm in Fig. 3.9. Furthermore, the results with
0.2 mm were better than 0.1 and 0.3 mm on the left side of the implant neck.
Bone resorption was obtained below the tip of the implant with 0.2 and 0.3
mm comparing with 0.1 mm. These results show that osseointegration was
achieved with the thickness of the tissue types with 0.1 mm better than 0.2
mm and 0.3 mm.

Conversely, bone formation was obtained at the neck of the implant with
0.2 and 0.3 mm in Fig. 3.10. On the other side, bone resorption occurred
at the neck of the implant with 0.1 mm. Bone resorption was obtained in
cortical bone near the left side of the implant neck and on the right side of
the implant body in cortical and spongious bone with 0.3 mm. Besides, nice
bone formation results was obtained around the implant body and below the
implant tip with 0.1 mm.

Osseointegration was achieved with the thickest layers, i.e., 0.2 mm and
0.3 mm in phase 3 in Fig. 3.11. Bone resorption occurred on the left side
of the implant neck with 0.1 mm. Bone reached maximum density in all
thicknesses in phase 3. The optimal bone healing was observed with phase 3
comparing phase 1 and phase 2. Phase 1 and phase 2 did not achieve good
results like phase 3. Because, phase 1 and phase 2 had softy tissue types and
phase 3 had stiff materials.

Figure 3.9: Influence of the thickness of the tissue types with 0.1 mm, 0.2
mm, and 0.3 mm after 100th iterations in phase 1.
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Figure 3.10: Influence of the thickness of the tissue types with 0.1 mm, 0.2
mm, and 0.3 mm after 100th iterations in phase 2.

Figure 3.11: Influence of the thickness of the tissue types with 0.1 mm, 0.2
mm, and 0.3 mm after 100th iterations in phase 3.
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The following paragraphs deal with the changes of different model results
over the course of the iterative simulation process. The course of the mean
density change, of the mean values of the strain energy density and of the
mean value of the stresses in the bone are shown as curve plots versus the
number of simulation cycles in Fig. 3.12, 3.13, and 3.14 for all three osseoin-
tegration phases. All results are presented with an EEL of 0.2 mm. Different
thicknesses of tissue types of 0.1 mm, 0.2 mm, and 0.3 mm are presented in
the graphs.

The mean values of the density changes in the whole model over the
course of each iteration step are presented in Fig. 3.12. Most changes oc-
cur within the first 10 steps for all graphs, then it stabilizes to an almost
constant level. After time step 25, density change was stable around zero in
the graphics. The highest density changes were observed in the first steps of
Phase 3, independent of the thickness of the osseointegration layer.

The mean values of the strain energy density for three different thick-
nesses of tissue types are presented in Fig. 3.13. Higher SED changes were
observed in Phase 2 and Phase 3 at the beginning of time steps comparing
with Phase 1. At the beginning of the simulations, SED decreased in phase
1 and phase 2. After that, the it increased in all phases and thicknesses.
Nearby time steps 10, positive change obtained for all Phases in all thick-
nesses. Most changes observed within the first 20 steps for all graphs, then it
stabilizes to an almost constant level. After time step 50, SED was stable in
the graphics. Furthermore, there was an small curve with 0.3 mm in phase
2 at the time steps 80 and then it stabilizes too.

The mean values of the Equivalent von Mises stress are presented in Fig.
3.14 with three different phases and thicknesses of tissue types. The initial
stress value was approximately 8 MPa, which rose to a maximum value of 16
MPa at time steps 10, then declined back to the initial value at time steps 15
and remained constant after that in Phase 1 and Phase 2. The peak stress
value was obtained in time steps 10 in Phase 1 and Phase 2. More inter-
esting behavior was observed for a stress rate as represented by the curve of
Phase 3 in all graphics. Phase 3 has no high stress change after time steps
10 comparing Phase 1 and Phase 2.
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Figure 3.12: Density change histories under different osseointegration phases:
Phase 1, Phase 2, and Phase 3 with tissue thickness of a) 0.1, b) 0.2, and c)
0.3 mm.
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Figure 3.13: Strain energy density in Phase 1, Phase 2, and Phase 3 with
tissue thickness of a) 0.1, b) 0.2, and c) 0.3 mm.
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Figure 3.14: Equivalent von Mises stress in Phase 1, Phase 2, and Phase 3
with tissue thickness of a) 0.1, b) 0.2, and c) 0.3 mm.
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3.1.8 Influence of Healing Phases with Homogeneous Bone

1- Simulations without healing phases

The first scenario was developed without healing phases. In figure 3.15,
the model was created with an EEL of 0.2 mm, and muscle pressure was
applied with 2 MPa. The maximum number of time steps was 300, becasue
bone resorption was obtained with less time steps. The effect of Young’s
modulus of spongious bone is shown in figure 3.15, with 20 MPa and 300 MPa.
Bone formation was obtained with Young’s modulus of 300 MPa around the
implant and neck of the implant comparing with Young’s modulus of 20 MPa.
But overloading resorption occurred in the lower part of the model in cortical
and spongious bone with Young’s modulus of 300 MPa, see Fig.3.15 (b).

Figure 3.15: Variation of the initial Young’s modulus of spongious bone with
20 and 300 MPa.

2- Simulations with healing phases

In the region of the trabecular bone, a grid represented the spongious
bone. This was a different between this section and section 3.1.7. The
following images show the bone density distribution after 300 time steps of
bone remodeling of the healing phase for the three different healing states
and the three different healing layer thicknesses. The bone density in all
images is colour-coded to the same scale shown in figure 3.16. Figures 3.16,
3.17, and 3.18 are presented with EEL of 0.5 mm.
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Osseointegration was achieved for a thickness of 0.1 mm in Phase 1, see
Fig. 3.16, which corresponds to clinical observations. In the later healing
stages, the thickness of the healing layer showed less influence. On the other
side, new bone formation occurred around the implant with the thickness of
0.1 and 0.3 mm in Phase 2, see Fig. 3.17. Bone resorption was observed on
the left side of the implant body with 0.2 mm. Furthermore, bone resorption
occurred on the left side of the implant neck with 0.3 mm, see Fig. 3.17.
Besides, bone reached maximum density around the implant with 0.2 and
0.3 mm comparing 0.1 mm, see Fig. 3.18. Bone resorption was obtained on
the left side of the implant tip with 0.3 mm.

Figure 3.16: Phase 1- Immediately after implant insertion to two weeks, EEL
of 0.5 mm. Better bone formation was obtained with thickness of 0.1 mm,
comparing with 0.2 and 0.3 mm.

Figure 3.17: Phase 2- After two months, EEL of 0.5 mm. Bone formation
occurred around the implant with a thickness of 0.1 mm.
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Figure 3.18: Phase 3- After four months, EEL of 0.5 mm. More dense bone
was obtained with increasing the thickness of the layer. These could be
explained with tissue layers in phase 3 having high Young’s Modulus.

Figures 3.19, 3.20, and 3.21 show simulation results with EEL of 0.2
mm. Osseointegration was achieved with a thickness of 0.1 mm in the early
loading phase 1 and phase 2, which corresponds to clinical observations. The
thickness of the healing layer of 0.3 mm did not deliver nice result in phase
1 and phase 2. Only in phase 3, nice bone formation was observed with 0.3
mm, see Fig. 3.21. Comparing the muscle loads on the model, the bone
density reached the maximum value on the cortical bone and outside of the
spongious bone at 3 MPa.

Figure 3.19: Phase 1- Immediately after implant insertion to two weeks, EEL
of 0.2 mm. Bone resorption increased around the implant with increasing the
thickness of the layer.
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Figure 3.20: Phase 2- Situation after two months, EEL of 0.2 mm. Bone
formation decreased when the thickness of layer increased.

Figure 3.21: Phase 3- Situation after four months, EEL of 0.2 mm. Bone
density reached the maximum value around the implant with increasing the
thickness of the layer. Bone formation increased when the thickness of layer
increased.

3.1.9 Influence of Time steps

Further parameters were varied during the bone remodeling simulations
in this section. One of them was changing the scaling factor of 0.33 and 0.01
with the number of time steps of 300 and 10,000, respectively. The scaling
factor is the percentage of applying density to the model. The critical scal-
ing factor is that factor, at which the resulting maximum possible density
change is too small to move the current element from its current material
group into an adjacent material group. The aim of this section was compar-
ing different scaling factors during the osseointegration. The total force was
applied to the implant at 20 ◦ from its long axis with 100 N. Muscle loads
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were simulated as 2 MPa of compression from both, labial and lingual sides
of the model. Young’s modulus of spongious was 300 MPa. Bone was too
stiff when we used Young’s modulus above 300 MPa during these simulations.

Fig. 3.22 shows the results of maximum time steps of 300. The scaling
factor was 0.33 for this simulation. Bone resorption occurred on the left up-
per side of the model in cortical bone and also in the lower part of the model
directly under the tip of the implant.

Fig. 3.23 shows the results with scaling factor 0.01. The maximum time
steps were 10,000. Bone formation was observed in both cortical and spon-
gious bone, especially around the implant. The upper part of the model
reached the maximum density in the area of the cortical bone after approxi-
mately 300 time steps. There was no significant change obtained in the bone
between the time steps 300 and 10,000. Comparing these two results show
that with more time steps bone formation is increased. Increasing the speed
of the simulation with time steps and scaling factor increases the bone re-
sorption.

As a result, more bone formation was observed with scaling factor of 0.01
in Fig. 3.23 compared with scaling factor 0.33 in Fig. 3.22. Bone resorption
was obtained below the implant tip in the results with scaling factor of 0.33,
see Fig. 3.22 although bone formation was observed with scaling factor of
0.01, see Fig. 3.23.

Figure 3.22: View of the results to show the effect of the maximum 300 time
steps.
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Figure 3.23: Sequence of bone remodeling results of 1, 300, 1,000 and 10,000
time steps.
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3.2 Sensitivity Tests with 3D Models

Bone density distribution with the different mechanical parameters is pre-
sented after 1, 25, 100, and 300 time steps. Results for total deformation,
and resulting stresses (stress, total strain, total strain energy density, total
displacement between bone-implant interface) were evaluated.

3.2.1 Influence of the Bone Remodeling Theory

A longitudinal cross-section of 0.1 mm thickness throughout the bone
and application of the bone remodeling algorithm in a simplified 3D model
is shown in figure 3.24. Bone density increased around the implant with the
time steps. The outer of the model reached steady state, generally in cortical
bone.

Figure 3.25 presents the strain distribution with different time steps, re-
spectively. The maximum equivalent strain recorded for the bone around
the implant is shown after 25. iteration. There were also several strain ar-
eas both buccally and lingually and also around implant threads. However,
areas of lower strain values were also seen around several threads, and the
implant’s neck of 100.iterations. However, there was no change results with
300. iterations.

Figure 3.24: A cut through the model shows the density distribution after 1,
25, and 100th iterations in 3D models.
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Figure 3.25: Distribution of the equivalent of total strain (µε) after 1, 25,
and 100 iterations in 3D models.

3.2.2 Influence of the Muscle Forces

The influence of muscle forces are presented in figure 3.26 and figure 3.27.
Figure 3.26 and figure 3.27 present bone formation under different muscle
forces between 0.5 and 2.5 MPa. Density distribution within the range of
0.4 to 1.74 g/cm3 was used to demonstrate the results. A total force of 100
N was applied to the implant at 20 ◦ from its long axis. Muscle forces were
applied on the lingual and labial sides, as compression and tension. Young’s
modulus of spongious bone was 300 MPa. More bone formation was obtained
with muscle forces up to 2.5 MPa, which means that bone density increases
when the muscle force increases.

Figure 3.28 shows the results of effect of the muscle force of 1.5 MPa which
is presented also in Fig. 3.27. The aim to show this figure was presenting
the different views of muscle force 1.5 MPa, a cut through the model on the
left side, and total model with all bone on the rigth side are presented in
Fig. 3.28. Only densities within the range of 0.4 to 1.74 g/cm3 are presented
below. Bone formation was observed in cortical and spongious bone in the
model. Good connection was obtained between bone and implant on the
middle thread of the implant and the neck of the implant. Bone resorption
was highly increased with the muscle loads higher than 4.0 MPa. That
explained that the ideal muscle loads should be between 1.5 and 4.0 MPa for
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the bone remodeling simulations during the remodeling process.

Figure 3.26: Variation of muscle pressure: 0.5 - 1.0 MPa in 3D models.

Figure 3.27: Variation of muscle pressure: 1.5 - 2.5 MPa in 3D models.

3.2.3 Influence of the Boundary Conditions

Two steps were done in this section:

1. Only the spongious bone was remodeled during the simulations.
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Figure 3.28: Variation of muscle pressure of 1.5 MPa using extra fixation
nodes under the model.

2. The whole bone (cortical and spongious) was remodeled.

1. Remodeling of spongious bone

Figures 3.29, 3.30 and 3.31 show density distributions after 1 and 100
time steps. A longitudinal cross section of 0.1 mm thickness throughout the
bone and application of the bone remodeling algorithm in a simplified 3D
model is shown in these figures. Spongious bone was remodeled during the
simulations in this section. Muscle forces were applied with 2 MPa from
lingual and labial sides as compression to both sides, and as compression on
the one side with tension on the other side. Figures 3.30 and 3.31 were fixed
bottom of the model from cortical bone. The additional difference between
these two models was the muscle forces. Figure 3.30 had muscle forces as
compression from both lingual and labial sides with 2 MPa. Figure 3.31 had
muscle loads as compression from lingual and tension from labial sides with
2 MPa.
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The density distributions for Fig. 3.29 and Fig. 3.30 were similar around
the neck of the implant. Density reached the maximum value on the tip
of the implant in spongious bone in Fig. 3.30 and Fig. 3.31. This can be
explained with the effect of the fixation conditions which was done from the
lower part of the cortical bone. Besides, good connection was obtained be-
tween spongious bone and implant on the middle screw pitches of the implant
in all three results, see Fig. 3.29, 3.30 and 3.31.

Significantly, new bone formation observed more on the lingual side than
on the labial side in these three simulations. Similar results were obtained by
Hasan [240]. In our study, more bone formation occurred in the area of the
implant tip with more fixation nodes from the lower part of the cortical bone
than the normal fixation which were just done with some point of spongious
bone and outsides of cortical bone see Fig. 3.30 and Fig. 3.31. That means
the fixation of the model is not only affecting the density but also plays a
vital role around the implant.

Further, the difference between the compression and tension forces was
also simulated. Figure 3.30 and 3.31 present the effect of the compression and
tension muscle forces. Comparing both figures, new bone formation occurred
at some point of the spongious bone when compression force applied to the
model in both lingual and labial sides, see 3.30. Besides this, bone resorption
was obtained in the middle part of the implant surface when compression
force and tension forces at the same time applied in labial and lingual sides,
respectively.
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Figure 3.29: Density distribution after 1 and 100 iterations in 3D models.
Muscle forces: compression from lingual and labial sides with 2 MPa.

Figure 3.30: Density distribution after 1 and 100 iterations in 3D models.
Additionally, model was fixed from the bottom of cortical bone. Muscle
forces: compression from lingual and labial sides with 2 MPa.
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Figure 3.31: Density distribution after 1 and 100 iterations in 3D models.
Additionally, model was fixed from the bottom of cortical bone. Muscle
loads: compression from lingual and tension from labial sides with 2 MPa.

2. Remodeling of the whole bone

Figures 3.32, 3.33 and 3.34 show density distributions after maximum
time steps of 100 iterations. All cortical and spongious bone were remodeled
during the simulations in this section. Muscle loads were applied with face
loads of 2 MPa from lingual and labial sides. Two views are presented in each
figure. On the left side is a view of a longitudinal cross-section of 1.0 mm
thickness throughout the bone. On the right side, the whole model without
implant presented to show the bone formation in all cortical and spongious
bone.

Spongious and cortical bone had bone formation at the neck and the mid-
dle part of the implant in Fig. 3.32. Bone resorption occurred around the
head of the implant in spongious bone in Fig. 3.32. Fig. 3.33 and 3.34 show
an ideal bone formation in all cortical and spongious bone especially around
the whole implant body. Part of the bone reached the maximum density un-
der the head of the implant in Fig. 3.34. The way of applying muscle loads
to the model could have affected the results for lower density distribution at
the left-below part of the model in spongious and cortical bone in Fig. 3.34.
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On these figures, a nice view of bone formation can be observed in all of
the models with cortical bone, spongious bone, and also around the implant.
That can be explained by that all bone has to be in the remodeling process
under the mechanical stimulus. After changing the fixation conditions, the
density distribution changed as well.

Comparing the 1. and 2. steps in this section: more bone formation
was obtained in both cortical and spongious bone and also around the whole
implant body when the cortical bone also remodeled with spongious bone
during the simulations.

Figure 3.32: Density distribution after 100th iteration in 3D models. Muscle
force: compression from lingual and labial sides with 2 MPa.
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Figure 3.33: Density distribution after 100th iteration in 3D models. Ad-
ditionally, model was fixed from the bottom of cortical bone. Muscle force:
compression from lingual and labial sides with 2 MPa.

Figure 3.34: Density distribution after 100th iterations in 3D models. Ad-
ditionally, model was fixed from the bottom of cortical bone. Muscle force:
compression from lingual and tension from labial sides with 2 MPa.
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3.2.4 Influence of the Element Size

The previous simulations were done with an EEL of 1.0 mm. For this
section, the model was meshed with an EEL of 0.5 mm to compare with
previous results. Figure 3.35 shows the density distribution from the 1. time
steps and the maximum 100. time steps. The whole model is also presented
in figure 3.35 to show the inner and outside of the cortical and spongious
bone. New bone formation is observed around the implant.

Comparing the Fig. 3.32 and Fig. 3.35: the differences between these two
simulations were EEL and muscle loads. Fig. 3.35 was generated with EEL
of 0.5 mm and muscle loads were applied with face loads as compression and
tension from labial and lingual sides. On the other hand, muscle loads were
applied as compression from both labial and lingual sides in Fig. 3.32. More
bone formation was obtained in spongious bone and around the implant in
Fig. 3.35. Part of cortical bone reached maximum density in Fig. 3.35.
Despite, there was an overload resorption under the head of the implant in
spongious bone in Fig. 3.32, bone reached the maximum density in the same
area in Fig. 3.35.

Figure 3.35: View of density distribution after 1 and 100th iteration in 3D
models. The mesh of the model was generated with EEL of 0.5 mm. Model
was fixed from the bottom of cortical bone. Muscle loads were applied with
the face loads as compression from lingual and tension from labial sides of 2
MPa.
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3.2.5 Influence of the Bending Force

Bending forces were applied to the models which were meshed with EEL
of 1.0 mm. The total force was applied to the implant at 20 ◦ from its long
axis with 100 N for all simulations. As a different parameter, the fixation
was applied to the backside of the model.

Figure 3.36 presents the results of bending force of -10 N in Z direction
with muscle loads of 1.5 MPa for compression and tension on lingual and
labial sides. Figure 3.37 shows density changes with bending force of -100
N in Z direction with muscle loads of 1.5 MPa as compression and tension
from both labial and lingual sides. The density increased when the bending
force increased too. Bone formation was obtained between bone and implant
pitches in both figures 3.36 and 3.37. Cortical bone reached maximum den-
sity in Fig. 3.37 comparing Fig. 3.36.

In the grand scheme of these results, a reveal interesting bone formation
observed between the bone and implant pitches in the bone remodeling sim-
ulations. This was also observed with muscle loads of 1.5 MPa in Fig. 3.27.
All boundary conditions except bending forces were the same for all these
three figures 3.27, 3.36 and 3.37. There was overload resorption on the lower
part of the spongious bone in Fig. 3.27 comparing the results with bend-
ing forces. The bending forces significantly could mean impact on the bone
formation during the bone remodeling simulations. With increasing bending
loads from 10 to 100 in Z direction, bone reached maximum density in the
cortical bone, see Figure 3.36 and figure 3.37.
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Figure 3.36: Density distribution with bending force of -10 N in Z direction.

Figure 3.37: Density distribution with bending force of -100 N in Z direction.
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As the next step, the bending forces were additionally applied to the
model at the same time in the Y direction and the Z direction.

The EEL was 1.0, and density distributions after maximum time steps
of 100th iterations were presented in this section. All cortical and spongious
bone were remodeled during the bone remodeling simulations. Muscle loads
were applied with face loads of 1.5 MPa from labial and lingual sides as com-
pression and tension, respectively. Additionally, as a different parameter,
the fixation was used to the backside of the model. There are two views
that are presented in each figure. On the left side is a view of a longitudinal
cross-section of 1.0 mm thickness throughout the bone. On the right side,
the whole model without implant is presented to show the bone formation in
all cortical and spongious bone.

Figure 3.38 shows the density changes with the effect of the different
bending forces, i.e. -10 N from Z direction and -50 N from Y direction. Bone
formation occurred in this simulation. Muscle loads were used as 1.5 MPa as
compression and tension. Density distribution presented in figure 3.39 with
the effect of the different bending forces, i.e. -10 N from Z direction and
-100 N from Y direction. Density reached the maximum value in part of the
cortical bone. The bone resorption occurred in the some point of the middle
thread of the implant when the bending forces were applied to the model in
both Z and Y directions, see figure 3.38 and figure 3.39.

In addition to boundary conditions, bending forces were applied in Z di-
rection and in Y direction in figures 3.38 and 3.39 comparing with Fig. 3.27.
More actively bone formation was obtained in both cortical and spongious
bone in Fig. 3.38 and 3.39 in comparison with Fig. 3.27. Maximum density
observed in part of cortical bone in both Fig. 3.38 and 3.39 beside Fig. 3.27.
Bending forces in both Z and Y directions could have lead to it.

Comparing the results of figures 3.27, 3.36 and 3.39: the best bone for-
mation was obtained in figure 3.36 and the reason can be explained with the
bending force of -10 N in the Z direction. Pitches of the implant had good
connection with the spongious bone in this figure comparing with figures
3.27 and 3.39. Resulting in thicker cortical bone in the corner of the model
reached the maximum density in Fig. 3.39 by comparison with figures 3.27
and 3.36. Extra bending force of -100 N in Y direction could have caused
this influence.
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Figure 3.38: Density distribution with bending force of -10 N in Z direction
and -50 N in Y direction.

Figure 3.39: Density distribution with bending force of -10 N in Z direction
and -100 N in Y direction.
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3.2.6 Influence of the Fixation

The effect of the different fixations is presented in figure 3.40. The model
was fixed from two points, which were created 20 cm far from the model.
The connection between these two nodes and bone was made with the node
in the surface of the bone.

As a result, the bone formation was obtained on the right upper side of
the implant with muscle loads of 1.5 MPa in both compression and tension
from the lingual and labial sides, respectively. On the other hand, the outer
edge of the cortical bone reached maximum density, as shown in Fig. 3.40
with yellow color. Overloading resorption observed on the lower - left side of
the implant in the spongious bone. The effect of the different fixation could
lead to bone resorption, as shown in the figure.

Figure 3.40: View of density distribution with different fixation. Muscle loads
of 1.5 MPa: compression and tension in labial and lingual sides, respectively.
EEL was 1.0.

102



3.2.6.1 Influence of the Implant Geometry

The effect of the mini dental implant under different muscle loads were
simulated. Figure 3.41 shows the density distribution of muscle loads with
1 MPa as compression and tension from both sides of the model. There was
no new bone around the implant and in spongious bone area under muscle
loads of 1 MPa. Less muscle loads could have caused this bone formation in
spongious bone.

The figure 3.42 shows results of density changes in mini dental implant
under muscle loads with 3 MPa as compression and tension. Higher muscle
loads lead to new bone formation around the implant. Furthermore, density
reached the maximum values in cortical bone parts, which are shown in yel-
low color.

As compare the figures 3.41 and 3.42: Sufficient muscle loads play an im-
portant role in bone formation. Additionally, comparing the Fig. 3.27 and
Fig. 3.42: As seen in these two results, there two different implant geometry
and two different total force applied each model with also different muscle
loads. These results showed us that sufficiently applying total force and mus-
cle loads assisted new bone formation even the geometry of the implant and
bone were different in these simulations.
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Figure 3.41: Density distribution with effect of muscle loads of 1 MPa as
compression and tension in labial and lingual sides in mini implant. Total
force was applied to the implant from Y direction with 10 N.

Figure 3.42: Results of density distribution with effect of muscle loads of 3
MPa as compression and tension in labial and lingual sides in mini implant.
Total force was applied to this model as 10 N from Y direction.
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4 DISCUSSION

4.1 Micro-Mobility of Dental Implants during Osseoin-
tegration

The goal of this study was to investigate the change of the implant sta-
bility in different phases of osseointegration while taking into account the
ongoing bone remodeling processes. 2D FE models were used, which con-
sisted of the dental implant with cortical and trabecular bone during different
healing phases. A separate connective layer was modeled at the bone/implant
interface, consisting of up to three different material components to allow the
simulation of the healing process. Remodeling was simulated in 100, 300, and
10,000 time steps.

Different factors might affect the implant stability, such as implant de-
sign, the biomechanical properties of the local bone, and the preparation
technique of the implant bed [245]. A previous study showed that the de-
gree of the implant insertion is also important for implant stability [246].
Loading conditions, patient selection, and geometry of implant are impor-
tant criteria for a successful loading procedure [236]. Many researchers have
investigated micromotion using FEA to standardize the dental implant sta-
bility [247, 248]. Besides, another study showed that the important effect of
high implant success rates and the successful osseointegration is the initial
stability [249]. Furthermore, Hasan in 2011 compared the displacement of
two implant designs, Tiolox® and tioLogic©. The mean displacements were
151 µm for Tiolox® and 145 µm for tioLogic© [240]. Some previous studies
have worked on maintaining a constant displacement (micromotion) of the
implant relative to the surrounding healing tissue [106, 250, 251].

In this study, implant stability was investigated during osseointegration.
Results in figure 4.1 show the determined displacements in initial as well as
the final iteration. Phase 1 showed the highest mobility compared to the
other phases. Comparing the thicknesses of the osseointegration layer from
phase 1, the displacement increased with the layer thicknesses. Using the
0.1 mm thickness model in the early phase as a reference, the horizontal and
vertical mobility increased by 35 % and 18 %, respectively, in the 0.3 mm
thickness model in the same healing phase. With ongoing healing, the later
healing stages showed reduced mobility. Compared to the first healing phase,
the vertical movement was reduced by 11 % in the second phase, and by 16
% in the third phase. Implant stability is an essential factor for long-term
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implant treatment. This study shows how implant mobility and, in turn, the
implant stability changes with different osseointegration phases and different
layers around the dental implant during the bone remodeling simulation.

Figure 4.1: Horizontal and vertical implant displacements with healing
phases in 2D FE models. The layer of 0.1 mm thickness model in phase
1 was used as a reference to compare the other thicknesses and phases in
percentage.

4.2 Sensitivity Tests

The healing process of dental implants after insertion is complex. It was
assumed that implant healing is comparable to indirect fracture healing of
long bones. Hence, the aim of the present study was to simulate the re-
modeling process of the bone bed surrounding dental implants, considering
different tissue layers until the osseointegrated state is reached. Some sim-
plifications and assumptions were made and implemented in FEA owing to
the complicated nature of the dental implant scheme to provide a reasonable
approximation of the geometry, material, boundary conditions, and loading
[252, 253]. All analyses were done based on the FEM results for stress and
strain distributions in the jaw bone around dental implants and implant sta-
bility. The bone density changes as a function of the mechanical stimulus
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are described from the remodeling theory as presented by Li et al. [146] and
as extended in previous work by Hasan [240]. Different boundary conditions
and bone remodeling parameters were applied to both 2D and 3D FE models.
Additionally, various implant geometries were used with 2D FE simulations.
For the implant geometry, two different implants were used for 3D FE anal-
ysis, i.e., tiologic© and a mini dental implant.

Several FEA studies have been done with the supporting bones using 2D
as a rectangular block with the implant as a cylindrical object [254], and
3D models treated the mandible as an arch with rectangular section [255].
The interfacial stress gradients decrease with increasing diameter of implant
and length at the cancellous region. On the other hand, interfacial stresses
decrease with increase in the diameter of the implant at the cortical bone
[162]. Changing the implant thread design can change the stress patterns
in the surrounding bone, principally at the area of spongious bone of an
osseointegrated implant [162, 256]. Large-thread implant designs improved
bone anchorage mechanically and histologically compared with small-thread
implants [257]. Furthermore, not only the length of the implant pitches and
configuration but also the condition of bone may have an important influence
on the stress dissipation [258]. Different thread designs might lead to differ-
ent remodeling patterns [148, 258]. An important point should be noted that
the first thread at the coronal part of the implant adjacent to the cortical
bone bears more stress than the second and the third threads. All these
results are based on animal and FE studies [254]. The stress distribution
at the bone-implant interface is affected by the length and diameter of the
implants [259]. Another numerical study showed that the behavior of the
implants is affected by the design of length, diameter, density, and type of
implant-abutment interface [260].

The effective connection between an implant and its surrounding bone is
created from different mechanical factors. One of the basic key factors is the
implant design. Besides, the optimal implant design itself can improve the
bone formation and the stability of the implant. In the present study, differ-
ent implant designs were used during the remodeling simulations in 2D and
3D models. FE simulations were done with threaded and non-threaded im-
plants in 2D models. More new bone formation was obtained with threaded
implants. The biomechanical behavior of implant design factors significantly
influences density distribution at the cervical crestal bone region, which were
defined in the models as cortical bone. However, due to the limitations of the
idealized model geometry in the 2D model, it was not possible to obtain the
perfect and anatomically correct structure in 2D FE models. Furthermore,
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two implant designs were used during 3D FE simulations. A mini implant
design was compared with the standard tioLogic© implant. In figure 3.42,
the density distribution with the effect of muscle loads of 3 MPa is presented
using the mini implant. Comparing tioLogic© implant and mini implant,
higher stress values were observed with the mini implant. Another point
should be noted that this study showed a high risk of overloading of bone for
mini implants. Additionally, more homogeneous distribution was obtained
with tioLogic© implants than with mini implants.

Besides, many studies have been performed using three different types of
material properties in FE modeling; isotropic and orthotropic [261], trans-
versely isotropic [262]. Young’s modulus and Poisson's ratio are required for
isotropic materials because isotropic means that the material properties are
identical in all directions. Most of the studies are done with homogeneous,
isotropic, and linear elastic materials [263]. The bone nonetheless reacts like
an anisotropic material [264] and shows different mechanical behaviors in dif-
ferent directions [255]. In particular, the bone loss phenomenon is connected
with the decrease in cancellous and cortical bone of bone density and min-
eral content. The cancellous bone density in the mandible does not reduce
significantly with age. In reality, the cancellous bone density in the basal
portion of the mandible tends to increase after tooth loss [265].

The sensitivity of the applied model was tested in response to various me-
chanical environments, started by developing ideal bone models surrounding
a dental implant with different material properties. The remodeling models
were simulated using the variation of the initial stiffness of spongious bone
by increasing Young’s modulus from 100 MPa to 1,000 MPa, keeping that of
the cortical bone constant (20 GPa). The modification of Young’s modulus
of chosen components within the spongious bone area was investigated. With
a very low stiffness of the spongious bone of 100 MPa, the highest new bone
formation was obtained around the implant and in most areas of spongious
bone. However, outside of the cortical bone reached the maximum density,
which was color-coded with blue in the figure 3.6. Most probably, this could
happen because of overloading. Furthermore, a continuous increase of the
stiffness of spongious bone from 350 MPa up to 1,000 MPa caused the more
dense bone in the model during the remodeling simulations. That’s why cor-
tical and spongious bone reached the maximum density with high Young’s
modulus. As presented in figure 3.7 and figure 3.8, the highest density was
observed in general in spongious bone. That could perhaps be caused by the
use of a long bone model. Bone formation was obtained around the implant
in these figures.
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Various boundary conditions have been used in FE models, e.g., kine-
matical boundary conditions of 2D triangular element and a quadratic 3D
tetrahedral element [253, 254]. A more realistic FE model was developed with
masticatory muscles, the ligaments and the movements of temporomandibu-
lar joints [266].

During our sensitivity tests, numerous EELs were applied to 2D and 3D
models. Different density distributions and density changes were obtained
with different EEL, from the small one represented by 0.2 mm and with a
large length, which was selected to be 1.0 mm in 2D results. The model
with larger EEL was less complex than with the small EEL. Small EEL in-
creased the number of elements in the model, resulting in a more complex
model. More dense bone was observed in the area of the cortical and spon-
gious bone with the large EEL. As expected from the previous studies, most
of the models had more bone formation when analyzed with a higher EEL.
Furthermore, figure 3.35 shows the effect of the EEL of 0.5 mm in 3D model.
New bone formation was obtained out of the cortical bone and the inner side
of the spongious bone and around the implant.

Further boundary conditions were applied to the 3D models. The fixa-
tion situations are the significant effects during the simulations. Different
fixations applied to the models are shown in figure 2.18 and figure 2.22. Ad-
ditionally, a tension face load of 2 MPa was applied on the periphery of the
cortical bone on one half, which is known as the buccal side, and compression
face load on the other half, which is known as lingual side. Then the muscle
loads were applied to the model as compression and tension at the same time
to the model.

As explained in the previous paragraph, the fixation is a major effect for
all simulations. New fixation conditions were developed in the 3D model to
get the ideal conditions for the bone remodeling simulations. Two points
were defined far from the model on both sides, and then the model was fixed
from these two points with the cortical and spongious bone, as shown in fig-
ure 2.25. The influence of this fixation conditions is presented in the figure
3.40. Hence, various muscle loads were applied to the model from 1.0 MPa
up to 2.5 MPa as compression and tension to both labial and lingual sides,
respectively. The density reached maximum values in the cortical bone and
the part of the spongious bone. On the other hand, some new bone formation
obtained on some parts around the implant. In addition, bone resorption was
observed on the lower left side of the implant in figure 3.40. That could be
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perhaps due to the overloading while the cortical bone reached the maximum
density.

Osseointegration has been simulated from several researchers using FEA,
which show that cortical and spongious bones are ideally bonded to the sur-
face of the implant. This theory matches the clinical conditions. Various
boundary conditions at the bone-implant interface were applied in FE simu-
lations, which offer a variety of frictional contact algorithms [259, 267]. FE
models to explore the impact of bone loss on mechanical reactions have been
created [160–162]. The most popularly used forms of elements in 2D and 3D
dental structures are triangular and tetrahedral elements with two and three
degrees of freedom at each node, either linear or quadratic. The quadratic
forms support more realistic modeling the distribution of strain and stress
[268].

In this section, the influence of the total load on the implant was tested on
the remodeling model using 3D models with a tioLogic© implant. The dis-
tribution of the density increased with the time steps. Cortical bone reached
maximum density from the 1. and until 100th iterations. The cortical bone,
which was near the neck of the implant, reached the maximum density as
well. On the contrary, new bone formation was observed in the area of the
spongious bone and around the implant except for the neck of the implant.
Increasing a total load of more than 300 N increased the stress too during
the simulations. That led to a more dense bone density in the model.

Strain distribution was investigated in this section to show how the total
strain changes over the time steps during the remodeling process. Figure 3.25
shows the strain distribution after iterations in 3D models. The maximum
equivalent of total strain was observed in the outer part the cortical bone
in 25. iteration. The implant had less strain during the simulations. Low
strain was observed in all bone and the implant in 100th iterations. From
a biomechanical perspective, continuously increasing load leads to deficient
strain after specific time steps, see figure 3.25.

Many researchers have studied the effect of muscle loads. The range of
the masticatory forces differs over a wide range. In the study by Bozkaya
et al., the range of the masticatory forces were between 200 N and 900 N
[269]. It was reported that for a complete denture, the occlusal component of
the masticatory force is between 75 N and 200 N, and for implant-supported
denture is between 40 N and 400 N [270]. Furthermore, the complete range
of occlusal forces reported is between 200 N and 3,500 N [271]. Lian and
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coworkers investigated bone remodeling in dental implants using 2D FEA.
In terms of areas of bone formation and resorption, the overall pattern of
density distribution was affected by increased masticatory forces. There is
no significant change observed with the total mass of bone tissue [272].

In this study, the influence of the muscle loads were investigated using
2D and 3D FE models. With the small muscle loads more bone resorption
was observed on the lower part of the model as well as around the implant,
see figure 3.26. New bone formation was obtained by using the muscle loads
between 1.5 and 2.5 MPa, see figure 3.27. Density changes can be seen in
this figure in the cortical and spongious parts. Besides, cortical bone reached
maximum density with 2.5 MPa of muscle force. Bone resorption takes place
in the last two and three threads of the implant because of the overloading.
The point should be noted that these two simulations were done with remod-
eling only the spongious bone.

The cortical and spongious bone were remodeled in the next simulation
to compare the results with just a remodeled spongious bone. Figure 3.28
shows the results of effect of the muscle force of 1.5 MPa. Bone formation
was observed on the left upper side of the model, which contains the corti-
cal and spongious bone. Good connection was obtained between bone and
implant on the middle thread of the implant. Bone resorption was observed
on the lower part of the model. Bone resorption was highly increased with
muscle loads above 4.0 MPa. This explained that the ideal muscle loads
should be between 1.5 and 4.0 MPa for the bone remodeling simulations.
The difference between compression and tension forces was also simulated.
Figure 3.30 and 3.31 present the effect of the compression and tension muscle
loads. As it is seen in both figures, new bone formation occurred at some
point of the spongious bone when just compression force was applied to the
model in both lingual and labial sides; see 3.30. Besides this, bone resorption
was obtained in the middle part of the implant surface when the compression
and tension forces were applied in labial and lingual sides, respectively. The
effect of bending force was also investigated using 3D models. The muscle
force was assumed to be 1.5 MPa during these steps. Bone formation was
observed around the implant and in the area of spongious bone. With in-
creasing bending loads from 10 to 100 N in Z direction, more dense bone
was obtained in the cortical parts, see Figure 3.36 and figure 3.37. The bone
resorption occurred in the some point of the middle thread of the implant
when bending force was applied to the model in both, Z and Y directions,
see figure 3.38 and figure 3.39.
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4.3 Comparison to Literature

A computational model was proposed to clarify the bone remodeling pro-
cesses at a mechanical level [273, 274]. The point to be noted is that despite
the importance only relatively few studies exist to predict the reconstruction
of the dental bone with the FEM. Only a few studies on this topic can be
found [146, 148, 158, 159, 161, 240, 275]. Since there are only few studies
in literature involving dental implant induced remodeling, the available den-
tal bone remodeling algorithms are still incomplete. Therefore, additional
research and validation in this area required for further advancement [268].
Many researchers have investigated bone remodeling.

In 2007, the use of long-term bone remodeling principles in dental bone
remodeling seemed to be a feasible path endorsed by Li and his co-works
[146]. In his study, a mathematical model for simulating the dental bone
remodeling process under mechanical stimulus was developed, and this al-
gorithm was applied to FEM. A quadratic method was used by Li et al. to
account for the overloading effect for dental implant induced bone remodel-
ing. The quadratic curve is shown in figure 1.15, which presents the density
change. The dashed line is the traditional change of density rate against the
applied SED, while the solid line shows the new density change rate against
the applied load. The bone density was slightly improved in the mandible
owing to the extra mechanical stimulus given by the occlusal load. These
results were observable in also some clinical studies, as reported in the study
of Li et al. Bone overload resorption can be explained from the new model.
Hence this effect was absent in most of the current models. The capacity of
the new mathematical model was proven to simulate bone overload resorp-
tion using the FE method. In the results of the study, overload resorption
was observed around the neck of the implant, which represents very low den-
sity. This finding can sometimes be seen in clinical situations. Clinically,
bone loss after implant insertion initially happens quickly, then slows down
after a while. Hence, the density of bone increased slightly at the deeper area
into the mandible because of the additional mechanical stimulus supplied by
the occlusal load. The point to be noted was that all bone elements were
given the same material parameters, which might not be realistic, because
bone has different types of threshold and critical stresses [146].

Frost developed the mechanostat theory to evaluate the change in bone
density by using the biomechanical feedback system. Frost suggested that a
minimum effective strain should be in the range of 0.01 % - 0.15 %. That
means the bone resorption happens when the strain is equivalent to 100µε
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or less. Bone will grow when the strain is equivalent to 1, 500µε or higher, as
shown in figure 1.15 [36, 41]. The realistic bone remodeling process is pre-
sented in figure 1.15. Frost proposed that the strain should be between 0.03
% and 0.3 % to initiate bone remodeling. Bone density will decrease when
the strain below these values. The equations of mechanostat theory were
used in the study of orthodontic tooth movements [34]. In bone remodeling
algorithm, the SED has been extensively used as the mechanical stimulus
[121, 199]. Later on, SED has been used with the topic of dental implant in-
duced bone remodeling projects [146, 159]. Cheong did another study, using
a new bone remodeling algorithm with finite element simulations to model
bone ingrowth in 2018. SED was used as the driver for remodeling in the
FEA models. There was an inverse ratio between implant material and bone
ingrowth, reducing implant material stiffness increases bone ingrowth. Using
lower elastic modulus could promote increased bone remodeling [276].

Hasan and colleagues investigated the computational simulation of in-
ternal bone remodeling around dental implants based on applying a selected
mathematical remodeling model. Sensitivity analysis was done in response to
different mechanical environments, i.e., EEL, different boundary conditions,
and loads. High density was obtained with small EEL within the cancellous
bone, whereas a minimal change in density occurred with large EEL. More
stable density distributions around the outer regions of cortical bone were re-
ceived with the higher load applied on the cortical. In the vertical axis force
range a from 250 to 300 N, a stable behavior of the cortical bone density was
achieved. Within a short time, the significant change in bone density was
obtained with the enormous magnitude of the lateral force combined with a
sudden increase in the bone stresses [157].

Local stress and strain in a fracture gap were studied with three healing
stages using FEM and than compared with an animal fracture model. Low
strains were observed in the first healing stage in all areas along the pe-
riosteal and endosteal surface. Besides, large strains were found in the area
of cortical gap and around the cortical edges. High strains were observed in
comparison in longitudinal direction at the center of the remaining periosteal
surface. Only with the low strains and low hydrostatic pressure, intramem-
branous bone formation occurred. A mechanical environment is required for
an intramembranous bone formation by osteoid apposition from osteoblasts.
The FE studies are mandatory to simulate the generality of new tissue dif-
ferentiation theory further [277]. The point to note was that there are some
limitations on an investigation based on a FEM. Material properties, load-
ing conditions or geometry are important parameters for a quality of the FE
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analysis [278].

A study investigated the biomechanical response of peri-implant bone
in rabbits and the results were compared with FE models in 2014. The
authors found that bone formation occurred with 2.0 MPa stress, bone re-
sorption with higher then 4.0 MPa stresses [279]. Korabi and coworkers
applied a new theory (the failure envelope concept) to dental implants. As
reported by Korabi, more bone will be achieved when the implant is os-
seointegrated. Nonetheless, the failure envelope will be increased, and bone
resorption will be increased if the bone implant contact is reduced, and the
lateral load levels are dominant [275]. Irandoust and Muftu investigated bone
remodeling around early loaded dental implant systems using 2D models to
understand long-term osseointegration. There was no linear correlation be-
tween the mechanical load and the evaluation of tissue type around dental
implants. However, to explain the long-term adaptation of internal bone den-
sity and potential regions of bone resorption, only the tissue-healing phase
is not enough to get information [280]. Lin and coworkers presented that
the cancellous bone reaches the steady-state of bone remodeling at an earlier
stage than the cortical bone. The ratio of bone remodeling can be improved
with the influence of the osseointegration [281]. The stress decreased with
increasing layer thickness when the stress transferred more uniformly in the
dental implants with nanoporous structures [282]. Kurniawan and coworkers
have been worked with osseointegrated dental implants. They reported that
the highest stress observed in the crustal area of the cortical bone. Lower
strain and higher stress obtained with a higher degree of osseointegration.
According to the study, solid and more osseointegrated peri-implant bone
is desirable for minimum strain and stress [283]. The overload resorption
observed only in the case of low initial density [244].

The long-term success of implant treatment is influenced by the mechan-
ical conditions applied to the implant during osseointegration. The present
study describes a progressive healing process by iteratively changing the ele-
ment material properties. Histologically, osseointegration consists of three
phases of different tissue states and thus three different osseointegration
phases with three different thicknesses were developed to simulate the healing
process using 2D models. Phase 1 represents the process immediately after
implant insertion to two weeks: Haematoma, connective tissue (CT). Phase
2 is the situation after two months: Intermediate stiffness callus (MSC), Soft
callus (SOC), Connective tissue (CT). Phase 3 is after four months: Stiff
callus (SC), Intermediate stiffness callus (MSC), Soft callus (SOC). These
three phases were developed with different thicknesses of 0.1, 0.2, and 0.3
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mm to investigate the influence of the thickness of osseointegration layer
during the remodeling process. Different EELs were simulated during the
simulations. A compressive pressure of 2.0 MPa on the labial and lingual
side was used to simulate functional loading like muscle pressure. To get
a stable initial bone distribution, bone remodeling was performed for the
whole bone and the connective layer using the classical remodeling. Figure
3.10 represents the density distribution of phase 2 with different thickness
of tissue layers. Positive remodeling and increased density were obtained in
part of the spongious bone and, in particular, around the implant. Increasing
the thickness of tissue layers increased the density changes too. Phase 1 and
phase 3 could not achieve good bone formation around the implant. That
could be explained in phase 1 has soft material. Phase 3 was too dense for
these boundary conditions.

As the next steps, in the region of the trabecular bone, a grid represented
the spongious structure in the 2D model. Two scenarios were used in this
section;

1- Simulations without osseointegration
This scenario was used without tissue layers between bone and implant

interface using different forces, EEL, Young’s modulus of bone and muscle
loads to get a stable initial bone distribution. The effect of two different
young’s moduli of spongious bone is shown in figure 3.15. Good connection
was achieved between implant and bone by using low Young’s modulus of
spongious bone. Bone resorption was observed in the lower part of the im-
plant with high young’s modulus of spongious bone.

2- Simulations with osseointegration
As second scenario, the tissue types were added between implant and

bone to simulate the osseointegration. All three healing phases were used
as previous sections. In this scenario, different EEL, young’s modulus of
spongious, muscle loads, and total forces were used to see the influence of
different boundary conditions on osseointegration. Figures 3.16, 3.17, and
3.18 represent the density distribution of phase 1, phase 2, and phase 3, re-
spectively. The EEL was 0.5 mm in these figures. Figure 3.16 shows that
the bone resorption occurred in all thicknesses around the implant. Increas-
ing the thickness also increased bone resorption around the implant. On
the other side, figure 3.17 is representing a positive remodeling, and the
best density changes almost in all thicknesses. More dense density obtained
with phase 3 around the implant of thickness 0.2 and 0.3 mm ,see figure 3.18.
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As a next step, EEL was set to 0.2 mm. Figure 3.19 shows density
distribution of phase 1. Osseointegration was observed just with 0.1 mm, and
this result corresponds to clinical observations. Bone resorption was observed
around the implant with 0.3 mm. Besides, bone formation obtained with all
thicknesses in 3.20. Bone resorption obtained in part of the spongious bone
of the left side of the implant. The reason for this could be that the total
forces were applied to the model from the right side. In the figure 3.21, a
favorable bone formation occurred with 0.1 and 0.3 mm. The density reached
the maximum on the right side of the implant with 0.2 mm. Additionally,
bone formation obtained around the neck of the implant in phase 2 and phase
3 with EEL, see 3.20, and 3.21.

4.4 Future Perspectives

The analyses of the 2D and 3D FE models were performed under different
mechanical conditions and bone remodeling parameters for the bone remod-
eling around dental implants. Also, osseointegration phases were simulated
using 2D FE models under various loading conditions and different bone
remodeling parameters using bone remodeling theories around the dental
implant. The bone remodeling algorithm could be successfully applied to
the 2D model as well as to the 3D model. However, due to the limitations of
the idealized model geometry in the 2D model, it was not possible to obtain
an anatomically correct structure consisting of an outer cortical layer and
an inner trabecular structure. Similar boundary conditions can be applied
in future 3D modeling to investigate the different osseointegration phases
around the different dental implants.
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bone remodelling model coupling microdamage growth and repair by 3d
bmu-activity. Biomechanics and Modeling in Mechanobiology, 4:147–
167, 2005.
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