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Abstract

Entering the “big data” era, a number of different research areas have witnessed
an enormous increase in data at an exponential rate. For drug discovery, various
publicly available protein structure and compound bioactivity databases enable data-
driven drug identification, which are further facilitated by advanced computational
methods. The principle objective of structure-activity relationship (SAR) analysis
is to identify structural determinants that are responsible for biological activities of
compounds or other drug-relevant properties. Central to SAR analysis is the no-
tion of molecular similarity, which can be assessed based on different principles and
molecular representations. As a primary focal point of SAR analysis, activity cliffs
(ACs) are receiving increased attention. By definition, ACs are formed by pairs of
structurally similar compounds with large differences in potency, and thus encapsu-
lating the notion of minor chemical modifications having large biological effects.

This thesis concentrates on large-scale AC analysis using different structural sim-
ilarity and potency difference criteria, and corresponding practical implications for
compound optimization in medicinal chemistry. First, AC networks, a central data
structure for cliff-associated SAR analysis, was simplified yielding immediate ac-
cess to SAR information. Then, a variety of molecular similarity approaches were
developed, which were utilized in AC analysis to derive SAR determinants from dif-
ferent structural perspectives. Moreover, activity class-dependent potency difference
criteria were derived by taking potency value distributions of target-based compound
activity classes into account. Analyzing these similarity and potency difference cri-
teria, this thesis represents a further evolution of the AC concept: from single- to
multi-site ACs and from general to activity class-dependent AC definitions. Going
beyond molecular similarity and potency difference thresholds in AC assessment,
the inclusion of privileged substructures, structural isomers and single-site analogs
further extended the AC concept for medicinal chemistry.
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Chapter 1

Introduction

1.1 Structure-Activity Relationship

Structure-activity relationship (SAR), i.e., the relation between the chemical
structure of a molecule and its biological activity, encompasses the central concept
that structural modifications lead to modulations of its activity.1,2 Historically, the
idea can be traced back to a publication by Crum-Brown and Fraser in 1868.3 De-
convolution of available medical chemistry data can enable the determination of the
critical chemical structural properties that are responsible for eliciting certain bi-
ological effects. For medicinal chemists, such SAR analysis has become a well-
established daily routine and is frequently performed on individual, small and ho-
mogeneous compound sets which might be organized in an intuitive R-group table
format for one specific target. However, when encountering much larger and het-
erogeneous bioactivity data, case-by-case SAR analysis is no longer feasible. For
example, ChEMBL4 (version 27) which has been manually compiled from primary
published literatures, contains around two million distinct compounds with activ-
ity annotations against more than 13,000 targets, yielding a total of ∼16 million
compound-target interactions. Such extensive heterogeneous data complicates SAR
analysis, and thus efficient computational methods for comprehensive SAR studies
have become a focal point of cheminformatic research. A variety of computational
approaches have been introduced to perform large-scale SAR analysis such as the
scaffold tree,5 SAR matrix,6 numerical SAR index,7 2D/3D activity landscape,8,9

network-like similarity graph (NSG),10 LASSO graph11 or the AnalogExplorer.12

Beyond the identification of SAR determinants, it is equally important in SAR
analysis to build mathematical models relating the chemical structure to biological
activity. Derived models can be utilized for predicting the activities of untested com-
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pounds and are known as quantitative structure-activity relationship (QSAR) mod-
els.13,14 For predictive QSAR modeling, various state-of-the-art machine learning
approaches have been applied such as XGBoost or support vector regression (SVR).
Apart from modeling compound activity, predictive models have been utilized for
modeling other properties such as toxicity, the acid dissociation constant (pKa),
the water octanol partition coefficient (logP) or mechanisms of action for kinase
inhibitors.15–18

A core aspect of QSAR modeling is the similarity-property principle (SPP) and
its applicability forms the basis of many QSAR approaches.19–21 The validity of the
SPP can be deduced from many observations indicating that gradual structural mod-
ifications are accompanied by small to moderate potency changes, corresponding to
“SAR continuity”.22 However, in violation of the SPP, pairs of structurally similar
compounds with large potency differences can also occur when compounds are opti-
mized. Especially at the hit-to-lead stage when improving compound potency is the
primary task, structural neighbors of hits are heavily explored, some of which may
show heterogeneous biological activity, indicating “SAR discontinuity”. Large-scale
data mining efforts demonstrate that SAR continuity and discontinuity often coex-
ist in many activity classes,22 as shown in Figure 1. Activity cliffs (ACs), defined
as pairs of structurally similar compounds with large differences in potency, are the
most prominent manifestation of SAR discontinuity.23,24

Figure 1: SAR characteristics of coagulation factor III. Shown are exemplary scenarios of SAR
continuity (horizontal) and discontinuity (vertical). Compound potency values are reported (pKi val-
ues) and structural modifications highlighted in red.
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Although ACs restrain the predictive power of potency value prediction via
QSAR modeling and thus are viewed controversially,23,25,26 they also reveal the pos-
sibility of maximizing the biological response with only minimal structural modifica-
tions, and thus are highly informative in SAR analysis. In addition, AC formation is
often accompanied by increased ligand efficiency, which quantifies binding affinity
per atom of a ligand, and is frequently used as metric in the selection and optimiza-
tion of fragments, hits, and leads.27,28

1.2 Molecular Representation

Typically, SAR analysis is performed based on quantitative or qualitative struc-
tural compound comparisons which strongly depend on how molecular structures
are presented. In order to characterize and represent molecular structures, a variety
of methods have been developed which can be roughly divided into three categories:
one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) represen-
tations. Simple 1D representation includes the chemical formula of a molecule,
which comprises atom types (e.g., carbon, oxygen or nitrogen) and respective atom
counts. In 2D representation, the molecular structure is treated as a graph. The idea
behind the molecular graph representation lies in mapping the atoms and bonds that
form a molecule to sets of nodes and edges.29 In practice, molecular structures are

Figure 2: Molecular representations. Shown is an exemplary small molecule targeting epider-
mal growth factor receptor with different representations. The experimentally confirmed three-
dimensional binding conformation is extracted from RCSB Protein Data Bank database with PDB
code 5U8L.

3



frequently deposited as Simplified Molecular-Input Line-Entry System (SMILES)
notation in different chemogenomic databases with the advantages of disk-efficient
storage and rapid indexing.30 SMILES is a linear and computer-friendly notation
encoding the structural graph by using short ASCII strings without losing compound
structure information that encompass atom types, bond types, branching, stereo-
chemistry, cyclic, aromaticity, etc. The SMILES strings can also be easily con-
verted into two-dimensional drawings by molecule editing software such as Chem-
Draw. Molecular graphs are usually depicted as planar 2D structures and, with the
exception of stereochemical annotations, lack any information about the spatial ar-
rangement of bonds and atoms. Therefore, 3D representations are introduced which
contain such information by taking conformational flexibility of a molecule into ac-
count.31 Hence, while 1D and 2D representation are well defined by the chemical
compound, multiple (reasonable) 3D representations of a compound can exist de-
pending on the its conformation(s). Exemplary molecular representations are de-
picted in Figure 2

1.3 Molecular Fingerprint

Given a molecular representation, the structural characteristics of small
molecules need to be converted into a computer-readable form in a way that allows
the comparison between molecules. Most commonly, continuous or binary numeri-
cal values known as molecular descriptors are determined from molecular represen-
tations resulting in multidimensional feature vectors that represent certain molecu-
lar properties of interests (e.g., substructures, physiochemical properties, topology,
or pharmacophores).32 Two-dimensional (2D) fingerprints derived from molecular
graphs, such as the molecular access system (MACCS)33 and extended-connectivity
fingerprint (ECFP),34 are some of the most popular descriptors in characterizing
chemical structures. In the MACCS fingerprint, each predefined chemical substruc-
ture is represented by a fixed vector position with a length of 166 bits (i.e., 166
structural patterns), each of which accounts for the presence or absence of a specific
structural pattern (Figure 3a). ECFP fingerprints are circular topological finger-
prints, which capture local atom environments by considering circular layers cen-
tered at each non-hydrogen atom with increasing bond diameter up to a predefined
maximum. ECFP4 encodes three layers of circular atom environments up to a max-
imum bond diameter of four (Figure 3b). Applying a hashing function, patterns of
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ECFP fingerprints can be encoded into a single integer value and further folded into
a fixed length fingerprint of commonly used 1024- or 2048-bits.

Figure 3: Molecular fingerprints. Shown are a typical substructure-based fingerprint (a) and a cir-
cular fingerprint (b) used for characterizing a molecular structure. In (a), the MACCS fingerprint
is represented by 166 predefined substructures placed at fixed vector positions. In the vector, the
corresponding bit is set on (grey background), if the predefined structure pattern is presented in the
molecule; otherwise, the bit is set off indicating the absence of particular features. In (b), the calcula-
tion of an ECFP fingerprint with bond diameter four centered on a carbon atom (yellow) is illustrated.
The resulting topological environments with increasing diameter representation are shown. The con-
nectivity information beyond the observed diameter is given by dashed lines, with dummy atoms
represented by asterisks (*).

1.4 Molecular Similarity

How to assess and quantify molecular similarity represents one of the most fun-
damental and intensely studied topics in cheminformatics.2,31,35 Molecular similar-
ity assessment might seem a deceptively simple question for a specific compound
optimization project. However, in order to systematically evaluate and extract struc-
turally similar compounds from large volumes of compound depositories covering
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an extensive chemical space, molecular similarity assessment must be clearly stated
out and consistently applied. A variety of computational approaches for molecular
similarity assessment have been established from quantitative or qualitative perspec-
tive yielding continuous numerical or binary values, respectively.

1.4.1 Numerical Similarity Metrics

1.4.1.1 Fingerprint-Based Similarity

In cheminformatics, fingerprint-based methods are often applied for compound
similarity assessment. Molecular similarity can be quantified using various simi-
larity indices usually ranging from 0 (no overlapping fingerprints) to 1 (identical
fingerprints).31 The most popular index is the Jaccard index or Tanimoto coefficient
(Tc), which is defined by

Tc(A,B) =
c

a+b− c
Here, a and b are the number of chemical features detected in compound A and B,
respectively, and c denotes the number of chemical features shared by both com-
pounds.36 Given that Tanimoto-based similarity accounts for whole-molecule simi-
larity, a high Tc value sometimes does not necessarily correlate with a high structural
similarity of compound pairs from a chemical viewpoint. Even If two compounds
have a Tc value of 1, it does not indicate two compounds are identical since this
formula does not consider chemical feature frequency or how detected structural
patterns are connected to each other. Similarity of compounds is often determined
by setting a threshold to judge whether compound pairs should be viewed as suf-
ficiently structurally similar. However, there is no universally applicable threshold
since the calculated Tc values are fingerprint-dependent. In general, Tc values of
0.55 and 0.85 are widely used for ECFP4 and MACCS fingerprints, respectively.37

At the top of Figure 4, an exemplary compound similarity calculation on the basis
of MACCS fingerprint is shown.

1.4.1.2 3D-Based Similarity

Three-dimensional molecular representation allows compounds to be compared
based on the spatial arrangements of atoms and bonds. For ligands, this requires
knowledge of 3D conformations that can be obtained either using experimental meth-
ods such as X-ray diffraction techniques or by computational methods. On the basis
of protein-ligand crystal structures stored in the PDB database,38 three-dimensional
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Figure 4: Predefined thresholds to assess compound similarity. Depicted are exemplary ap-
proaches applying fingerprint- and 3D-based methods to define structurally similar compound pairs.
For the fingerprint approach, the MACCS fingerprint is used. For three-dimensional assessment, the
binding modes of two ligands co-crystalized with prothrombin are superposed and aligned to yield a
3D similarity value. Structural modifications are highlighted in red in the structural graph represen-
tations.

binding modes of ligands can be isolated from the complexes. To systematically
quantify the 3D similarity of paired ligands, a computational method has been in-
troduced to explore 3D similarity relationships between a set of crystallographic
ligands.39,40 This methodology is based on the use of property density functions tak-
ing the binding conformations and orientations (3D coordinates) of paired ligands
into account. Accordingly, the first step is the superposition of α-carbon atoms of
selected protein structures that can be used for comparing the positional difference
of paired ligands. Then, a property density function is computed for each ligand ac-
counting for four different atomic properties (aromaticity, hydrophobic, hydrogen-
bond acceptor and donor characters) and the atomic coordinates. The 3D similarity
values are calculated according to the normalized overlapping density function of
paired ligands. Exemplary compound pair with high 3D similarity value is illustrated
in Figure 4 (bottom). In the event that no experimentally confirmed binding modes
are available, putative 3D confirmations can be generated by computational algo-
rithms, such as the OMEGA toolkit implemented in OpenEye scientific software.
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Then, a shape-based superposition method (ROCS) is applied which quantified the
molecular similarity on the basis of shape-based similarity metrics. ROCS aligns
two molecules using a solid-body optimization process that maximizes the overlap
volume between them.41,42 The 3D similarity evaluations also require a predefined
similarity threshold. However, 3D similarity evaluations provide a new angle for
analyzing SAR information and are often much more intuitive and practical for ana-
lyzing interactions, or deriving potential target annotations for database compounds
with complex structures (e.g., natural products).41

1.4.2 Substructure-Based Similarity

Substructure-based similarity measurement derived from 2D graph representa-
tions is a popular alternative similarity assessment method and, due to its inter-
pretable and chemically intuitive nature, largely appreciated by medicinal chemists.
In this approach, the existence of a common core structure of significant size is a pre-
requisite for considering two molecules similar or not, yielding a binary similarity
assessment. Hence, it circumvents the abstract nature of similarity calculations based
on numerical similarity assessments, which require predefined similarity thresholds.
Different substructure-based methods for determining the common core structure
have been suggested such as the formation of matched molecular pairs43 or analog
series-based scaffolds,44 as reported herein.

1.4.2.1 Matched Molecular Pairs

By definition, a matched molecular pair (MMP), also termed single-site analog
pair, is a pair of compounds that are only distinguished by a chemical modification
or an R-group replacement at a single site.43 Accordingly, an MMP can be charac-
terized by a shared core and two R-groups (i.e., a “chemical transformation”),45,46

as shown in Figure 5a. Because of its chemically intuitive and easily interpretable
nature, the MMP concept is appealing for medicinal chemists and has gained wide
popularity in the scientific community in recent years. From a computational as-
pect, such pairs can be efficiently and easily identified in large compound databases
through the application of compound fragmentation algorithms that systematically
generate all feasible cores and R-groups of a compound.46 In order to generate R-
groups that are typically observed in medicinal chemistry, additional criteria can be
applied during MMP generation. So called size-restricted MMPs45 are generated
using the following criteria: (i) the heavy-atom count of the core structure must be at
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least twice as large as that of the R-group; (ii) R-group must not contain more than
13 heavy atoms; (iii) the size difference between two exchanged R-groups must not
exceed eight heavy atoms.

Figure 5: Single-site analogs. Shown are exemplary analogs forming a pair (a) or a series (b). For
the MMP relationship (a), the core structure and chemical transformation are provided. The structural
modifications (exchanged substituents) are highlighted in red.

By default, MMPs are generated considering arbitrary acyclic single bonds. By
requiring fragmentation bonds to follow predefined retrosynthetic rules (RECAP
rules),47 so-called RECAP-MMPs or RMMPs are generated, which take synthetic
accessibility into account.48 As an extension of the MMP concept, matched molecu-
lar series (MMS) is generated which is defined as a series of two or more analogs (≥
two compounds) with chemical modifications at a single site (Figure 5b).49,50 The
utilization of the MMP or MMS concept facilitates the analysis of structure-activity
or structure-kinetic relationships (e.g., on- and off-rates of binding),51 or provides
the rationale suggestion of suitable R-groups to be explored in compound optimiza-
tion stages.49
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1.4.2.2 Analog Series

An analog series (AS) can be defined as a set of compounds that share the same
core structure but carry different R-groups at the same or different core substitution
site(s). Previously, two computational approaches have been introduced to system-
atically extract analog series from large compound data sets. The first one, based
on the identification of RMMP clusters, was introduced five years ago.44 Here, for
a given data set, compounds are first collected and subjected to bond fragmentation
to generate RMMPs. Then, all RMMPs are organized into a network where nodes
indicate RMMP-forming compounds and edges pairwise RMMP relationships. In
the network, each disjoint connected component (cluster) is viewed as an individual
AS.

Figure 6: Illustration of compound-core relationship method. Shown is an analog series (AS)
generated by the CCR algorithm. Six analogs are fragmented according to retrosynthetic reaction
rules as indicated by the dashed colored lines. After compound fragmentation, the compounds sharing
the same core are grouped together and viewed as analogs. Here, the analogs are represented by an
AS with two substitution sites (R1 and R2) highlighted in red and cyan, respectively.

Recently, another methodology on the basis of compound-core relationships
(CCRs)52 was proposed to systematically organize compounds into different ana-
log series (Figure 6). The CCR method is mainly comprised of three steps. Firstly,
all compounds are subjected to bond decomposition according to RECAP rules, per-
mitting at most five substitution sites per compound. Then, similar to MMP gener-
ation,45 size restrictions are enforced to confine R-group sizes to at most 13 heavy
atoms. Lastly, upon bond fragmentations, the cleavage sites of the cores are replaced
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by hydrogen atoms, yielding so-called generalized cores and all compounds sharing
the same generalized core are organized into individual analog series. As a result, by
adding appropriate substitution sites to the generalized cores, the compounds in one
AS can be easily visualized in a R-group table format.

1.4.2.3 Scaffolds and Privileged Substructures

Scaffolds are predominately used to describe the core structures of a set of com-
pounds.53,54 Core structures can be defined in a variety of ways and are subjective by
nature. In one specific medicinal chemistry project, especially in late stage lead opti-
mization, fine-tuning of interesting molecular structures is often performed in order
to improve pharmacodynamic properties. In this scenario, the core structure is easily
captured. However, systematically extracting core structures from chemical libraries
require a predefined core structure definition and time-efficient computational algo-
rithms.55 A first formal and widely used definition of scaffold is the Bemis-Murcko
scaffold (BM scaffold).56 The essence behind BM scaffolds is that compounds typi-
cally comprise three components, i.e., ring systems, chemical linkers between rings,
and R-groups attached at rings and/or linkers. If the branches (R-groups) are re-
moved, the remaining parts, i.e., ring system and linkers, are termed the BM scaffold.
BM scaffolds can be further simplified by converting all non-carbon heavy atoms and
non-single bonds into carbon atoms and single bonds, respectively, yielding a more
generic cyclic skeleton (CSK),57 as shown in Figure 7.

Although BM scaffolds could be used to organize a set of compounds, this ap-
proach has certain limitations. Since ring systems are central in defining BM scaf-
folds, adding or deleting one ring, or just converting a single heavy atom to another
one in a ring (e.g., C ←→ N) will easily yield a new BM scaffold. As such, BM
scaffolds are not consistent with analog generation through chemical reactions where
simple five- or six-member rings could also be viewed as attached R-groups to the
core.58

To overcome this shortcoming, a new scaffold derived from analog series (analog
series-based scaffold or ASB scaffold) was introduced.59,60 Following the RMMP-
based network approach as mentioned above, one disjoint cluster represents an in-
dividual analog series comprising at least one RMMP. In the network, all possible
RMMP cores are enumerated in a specific cluster. If analogs in one cluster are only
distinguished by a single substitution site, the minimal RMMP core structure (i.e.,
the core with the minimum number of heavy atoms) is taken as the scaffold of this
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Figure 7: Compound-scaffold-CSK hierarchy. The stepwise generation of BM scaffolds and CSK
skeleton from four exemplary small molecules is depicted. The two BM scaffolds colored red are
topologically equivalent, yielding a single common CSK skeleton (blue)

AS, representing the first generation ASB scaffold which covered around 70% of
ASs in ChEMBL 22 database.44 The ASB scaffold definition was further extended
by considering the ASs with multiple substitution sites. For such ASs, the over-
lapping part of all RMMP cores leads to the introduction of second generation ASB
scaffolds with a coverage of more than 90% of ASs in the ChEMBL database.60,61 To
some extent, this network-based method can avoid the limitations of BM scaffolds,
it takes retrosynthetic information into account and is not confined to a restricted
molecular hierarchy. However, for some extremely complex clusters representing
around 10% of ASs in ChEMBL 22 database, it was still difficult to extract one
unambiguous ASB scaffold to represent the corresponding AS.60,61 The recently
developed CCR method (as described above) has been a significant and robust im-
provement to address these issues. It is applicable to large data sets and able to
identify large AS with single unique core structures containing multiple substitution
sites.52

The concept of core structures and the detection of ASs make it possible to iden-
tify core structures shared by many compounds that are enriched within specific data
sets. When biological activities are associated with each compound, scaffold iden-
tification for ASs allows the exploration of “structural motifs” or “privileged sub-
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structures” having specific target family preference.62 The idea of privileged sub-
structures was firstly put forth by Evans in the late 1980s when he was studying the
benzodiazepine nucleus.63 Given the appeal of this notion, many so-called privileged

Figure 8: privileged substructure-containing bioactive compounds. Shown are two exemplary
scaffolds, i.e., biphenyl and indole, embedded in different molecules with diverse target annotations.
The privileged substructures are colored pink and the target annotations (below) are provided.

substructures were identified, typically through frequency of occurrence analysis of
chemical entities, in different therapeutic target families. The most comprehensive
privileged substructure compendium extracted from drugs and natural products was
provided by Welsch et al.64 These frequently occurring building blocks indicate their
usefulness for designing drug-like compounds targeting a desired target family but
do not necessarily imply they are selective for that family. Indeed, firm evidence
indicates that “target family-directed privileged substructures” might not truly exist.
Instead they are frequently detected in completely different target families65 such
as the benzodiazepine scaffold found in many ligands of G protein-coupled recep-
tors (GPCRs), ion channels and protein kinases; similarly, compounds containing
biphenyl66 or the indole moiety,67,68 can be found in compounds active against dis-
tinct targets (Figure 8). However, due to the drug-like properties and high tendency
to preferentially bind to specific target families, these PSs will continue to be of high
interest as a starting point to design novel bioactive compounds.
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1.5 Progress in Activity Cliff Research

1.5.1 Activity Cliff Criteria and Categorization

ACs represent the most prominent instances of SAR discontinuity and reveal
SAR determinants, and thus are highly informative in SAR analysis. ACs are defined
as pairs of structurally similar compounds with a large difference in potency. For a
rigorous definition of ACs, two criteria must be clearly specified: (i) when should
a pair of compounds be considered structurally similar, (ii) what is the minimum
potency difference required to indicate SAR discontinuity for a specific target. Dif-
ferent evaluations in assessing molecular similarity have been proposed, such as the
comparison of fingerprints or the presence of common core structure, as mentioned
above.24 To ensure the reliability of AC assessment, the use of high quality activity
annotations with assay-independent equilibrium constants (Ki values) is highly rec-
ommended.69 Unlike structural similarity assessment, little attention has been paid
to investigating to when a potency difference might be considered statistically signif-
icant and sufficiently large for AC formation. Instead, a 100-fold change in potency
is frequently applied irrespective of the activity classes.24 The combination of dif-
ferent similarity assessments and an at least 100-fold difference in potency leads to
the introduction of different AC categories. Different generations of ACs allow SAR
determinant explorations from diverse structural perspectives, and thus mirrors the
evolution of the AC concept.24,70

1. Fingerprint-based activity cliff: high Tanimoto coefficient (Tc) values accord-
ing to fingerprint comparisons (Tc ≥ 0.85 in the case of MACCS fingerprint)
plus at least two orders of magnitude (100-fold) difference in potency.71

2. Substructure-based activity cliff: the presence of a common core structure for
paired compounds such as the formation of MMP relationships or compounds
differing by the configurations at a single stereo center with at least two orders
of magnitude difference in potency.45

3. Three-dimensional activity cliff (3D-cliff): compounds show at least 80% sim-
ilarity of experimentally confirmed binding modes but have at least two orders
of magnitude difference in potency.40

Exemplary ACs are shown in Figure 9. Specifically, ACs based on chemically
intuitive similarity assessments, like MMP-cliffs or chirality cliffs, have been in-
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tensely studied24,45,72 and various machine learning models have been developed to
differentiate cliff and non-cliff pairs.73–76

Figure 9: Activity cliff categorization. From top to bottom, shown are five exemplary ACs evalu-
ated by comparing MACCS fingerprints (blue), common substructures (orange) and binding modes
(green). For each AC type, the structural modifications are highlighted in red. Scaffold/topology cliff
indicates that pairs of compounds share topologically equivalent scaffolds but have differing R-group
topologies.72 The corresponding target annotations and compound potency (reported as pKi or pIC50
values) are given. In addition, the aligned binding mode for the compounds forming an 3D-cliff is
provided and PDB codes are reported.
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1.5.2 Inactive Compounds in Cliff Analysis

High-throughput screening (HTS) provides an opportunity to identify novel hits
by automatically assaying large compound depositories against variable targets.77

However, even in large-scale screening projects, the hit rate from experimental HTS
is often low, which in turn yields a large fraction of inactive chemical entities.77–79

According to the screening data deposited in the PubChem BioAssay database, a
surprising proportion of small molecules tested in ≥ 100 assays are consistently in-
active, an observation which is also referred to as dark chemical matter (DCM).80,81

The screening results do not necessarily indicate inactive compounds are biologi-
cally inert. Instead, a lot of studies demonstrated the attractiveness of DCM.80 For
example, Ballante et al. identified GPCR ligands with sub-micromolar affinities with
the aid of molecular docking to screen a commercially available fraction of DCMs
against A2A adenosine and D4 dopamine receptors.82 Hence, if appropriate targets
for these neglected subsets are identified, they could be highly selective.

Apart from target identification for inactive molecules, additional knowledge can
be gained by involving confirmed inactive compounds in SAR studies. Attempts
have been made to systematically extract ACs formed by confirmed active and inac-
tive molecules from the PubChem database.83 For defining ACs involving inactive
compounds, the potency difference threshold is not applicable. Instead, in order to
avoid weakly potent compounds forming ACs with inactive compounds, a potency
threshold is applied to define active compounds; specifically, a minimum potency
value of 10 µM is often required.83 ACs involving inactive compounds provide ad-
ditional insights in understanding how small chemical modifications could trans-
form (highly) potent active compounds to compounds with essentially no biological
response. Such information is extremely valuable at the early stage of SAR explo-
ration, especially for underexplored targets with only a limited number of known
bioactive compounds.

1.5.3 Activity Cliff Characteristics and Visualization

A large-scale study of ACs in the ChEMBL database revealed that around 5% of
structurally similar compound pairs met AC potency difference criteria which were
formed by ∼25% of all available high-confidence bioactive compounds.84,85 Most
of the identified ACs were formed between compounds within the micromolar and
nanomolar potency range.84
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Figure 10: Exemplary activity cliff network. Shown is an exemplary MMP-cliff network formed
by cannabinoid CB2 receptor ligands. In the network, nodes represent AC compounds and edges
pairwise MMP-cliff relationships. In addition, nodes are colored green, red or yellow if AC com-
pounds are highly, weakly or highly/weakly potent cliff partners, respectively. Representative recur-
rent topologies are encircled with black dashed lines. Statistical network analysis is provided.

Although ACs are defined on the basis of compound pairs, ACs are not typically
formed in an isolated manner. On the contrary, more than 90% of them are formed
in a coordinated manner where compounds are involved in more than one AC, a phe-
nomenon that can be observed irrespective of the molecular representations. This
is shown in AC networks where nodes represent AC-forming compounds and edges
pairwise AC relationships (Figure 10).71 In AC network representations, the disjoint
AC clusters often showed different AC compositions and network topologies such as
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recurrent stars, chains and rectangles within these clusters.86 The coordinated man-
ner of ACs leads to the introduction of the activity ridge concept, which comprises
multiple highly and weakly potent compounds where each possible pair of highly
and weakly potent compound forms an AC.87 In addition, AC compounds having an
extremely high propensity to form ACs (i.e., “hubs” in densely connected AC clus-
ters) are termed “AC generators”.8 Taken together, coordinated ACs giving rise to
varying size of clusters are much more informative than isolated ACs. Case-by-case
SAR analysis of sub-clusters requires interactive network analysis, however, how to
systematically extract and analyze SAR information from clusters especially these
densely connected clusters requires advanced computational methods.

1.5.4 Cliff-Associated SAR Analysis

Large-scale AC analysis or AC prediction falls into the domain of cheminfor-
matics. ACs encapsulate important SAR information, although, how to appropri-
ately interpret and communicate this information to medicinal chemists for guiding
compound optimization is a non-trivial task.24 Indeed, for more than 75% of MMP-
cliffs, no evidence was observed indicating that advanced analogs of highly potent
cliff-forming compounds had been identified. The limited utilization of AC-based
SAR information might be attributed to AC data not being immediately accessible to
medicinal chemistry in a chemically intuitive format. On the other hand, for around
25% of ACs, further chemical modifications of highly potent cliff partners have been
observed, among which for ∼15% of ACs more potent analogs were identified indi-
cating optimization efforts.88

Given the underutilization of the AC concept and complexity of some AC clus-
ters, attempts have been made to systematically extract SAR information from AC
clusters by applying computational methods. Taking MMP-cliffs as an example, nu-
merical cluster indices, i.e., the MMP index and MMP core index, were introduced
to correlate structural similarity of AC-forming compounds and AC diversity. The
MMP index value indicates the proportion between the number of existing MMPs
and the number of theoretically possible MMPs formed by compounds within a given
cluster which quantifies the degree of structural similarity across AC compounds.
Whereas, the MMP core index is the ratio of the number of cliff cores relative to
the number of MMP-cliffs which indicates AC diversity. This methodology was de-
signed to characterize and prioritize AC clusters, and systemically organize these
clusters into an index map which was further divided into four regions according to

18



both index values.89–91 Hence, this approach provides partial cliff-associated SAR
analysis by reorganizing AC clusters according to numerical index values indicating
the complexity of SAR information within the clusters.

Alternatively, compounds in one disjoint AC cluster might be distinguished by
single and/or multiple substitution site(s). If an AC cluster contains analogs differ-
ing only at a single substitution site, by definition, it can be organized into one MMS
which provides a simple scenario for SAR analysis. If an AC cluster contains analogs
differing at multiple substitution sites, in principle, it contains at least two MMSs.
MMSs can be paired by identifying compounds shared between two series. Ac-
cordingly, SAR information can be viewed in a pairwise manner based on MMSs.50

Paired MMSs sometimes exhibit the transfer of SAR information from one series
to another series.92 Thus, this approach provides another angle for cliff-associated
SAR analysis by dissecting AC clusters according to shared AC compounds.

1.5.5 Activity Cliff Rationalization

Since ACs indicate minor chemical modifications with large potency effects, the
induced effects on binding may imply critical protein-ligand interactions or binding
conformational changes which could be explained with the aid of crystallographic
structures, if available.93 In the cases of 3D-cliffs, which take the experimentally
confirmed ligand binding modes into consideration, clear interaction differences for
∼40% of 3D-cliffs could be attributed to lipophilic/aromatic group-associated hy-
dration or shape complementarity effects, followed by H-bond and/or ionic interac-
tions accounting for around 30% (Figure 11). For a small fraction of AC instances
(∼0.4%), the interaction differences due to the presence of water-mediated hydro-
gen bonds were detected. These structural waters involved in specific interactions
are often considered as a part of the protein structure.40,94,95

A more systematic and accessible method for the detection of the interaction
hotspots or differences depending on generation terms protein-ligand interaction fin-
gerprints. This fingerprint format encodes interactions as bit vectors with “1” and
“0” indicating the presence or absence of specific interactions, respectively.96 Inter-
action fingerprints have been widely used in two major therapeutic target groups,
protein kinases and GPCRs.97–99 In analogy to fingerprint-based ACs, interaction
cliffs were introduced and defined as pairs of ligands extracted from ligand-target
complexes with high structural and interaction similarity and a large difference in
potency.100 Interaction fingerprints provide another angle for rationalizing AC for-
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Figure 11: Exemplary three-dimensional activity cliff. Shown are an exemplary 3D-AC extracted
from cyclin-dependent kinase 2 target and the corresponding binding mode analysis. The carbon
atoms of the protein and the highly and weakly potent cliff ligands are colored yellow, cyan and grey,
respectively. The interaction differences are highlighted using red dashed circle. PDB IDs of X-ray
complexes (upper left), compound structure and potency values are provided. In addition, the green
dashed line indicates hydrogen bond formation.

mation and interaction cliffs can help to detect interaction hotspots. However, this
approach might fail to prioritize key interactions which contribute more to the total
free binding energy.101

Taken together, these detectable interaction differences between highly/weakly
potent cliff-forming compounds can aid in the identification of the interactions be-
tween key residues and ligand atoms that are important for molecular recognition.
Hence they provide structural rationale for activity cliff formation which is bene-
ficial to structure-based drug discovery.93,94 However, a certain percentage of ACs
remain difficult to interpret and rationalize such as the recently introduced off-pocket
ACs102 whose modified sites are located in solvent-exposed areas. The absence of
obvious interactions between ligand atoms and residues complicates the AC ratio-
nalization, and thus hinders their practical applications in medicinal chemistry. Even
for these identified interaction differences, further experimental tests are needed to
confirm the binding free energy contribution of specific interactions. In the instance
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of the "magical methyl" group, the introduction of such a group yielding ≥ 100-fold
boost in potency stems possibly from the cooperative interplay of conformational,
hydrophobic, desolvation or other effects, rather than being attributed to one specific
interaction.103 Moreover, the target-ligand complex provided by X-ray diffraction is
a static and time-average view under experimental crystallization conditions. It does
not reveal dynamics of protein-ligand interactions, which include multiple aspects
such as desolvation, entropic penalty due to configurational restriction, enthalpic ef-
fects, and other long-distance interactions.95,104–106 Additionally, lack of paired X-
ray complexes for cliff-forming ligands (as one might expect, databases are typically
devoid of the structural complexes of the weakly potent cliff compounds and their
biological targets), further complicates the AC analysis on the basis of structural
data. In these cases, more advanced computational methods for dynamic molec-
ular modeling such as molecules dynamics (MDs) are needed to probe the possi-
ble mechanistic reasons for molecular recognitions between structurally similar cliff
molecules.107,108

1.6 Thesis Outline

This PhD thesis focuses on the further investigation of ACs. Different computa-
tional methods evaluating compound similarity are developed, mirroring the contin-
ued evolution of the AC concept. Furthermore, the practical implications of ACs in
compound design are discussed.

• Given the popularity of network representation in AC analysis, in chapter 2

a methodology aiming to reduce network complexity and to easily access the
SAR information stored in a network is reported. This approach is built upon
the MMS concept and pairing series according to second-round fragmenta-
tion. Simplified networks could serve as complementary and easily accessible
structures to visualize and analyze cliff-associated SAR information within the
original AC network.

• Chapter 3 extends the MMP-cliff data structure through the introduction of
structural isomers for MMP-cliff compounds. The combination of structural
isomer and matched molecular pair relationships yields a new AC category,
which encodes the potency effects of the moving substituents around different
core positions.
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• Chapter 4 systematically explores the frequency of occurrence of privi-
leged substructures (PSs) in bioactive compounds deposited in the ChEMBL
database. Different molecular properties are used to differentiate the ACs with
PSs and without PSs. In addition, PS-based AC networks are constructed to
analyze structure context-dependent biological activities.

• Chapter 5 reports a unified strategy for extracting different types of graph-
based ACs reported in former chapters. For ACs differing at two substitution
sites, a four-compound data structure for dual-site ACs is suggested for SAR
analysis. All identified ACs have been made available to the public for follow-
up analysis.

• Chapter 6 systematically extracts ACs that capture minimal structural alter-
ations, i.e., heteroatom walk or replacement. For these 2D-cliffs, search for
X-ray complexes of cliff compounds and their cliff targets is conducted in the
PDB database to rationalize AC formation at atomic levels.

• Chapter 7 explores the difference of AC frequencies across different activity
classes. The formation of ACs is rationalized by relating structural similar-
ity relationship and potency value distribution to each other, which are further
analyzed, visualized and rationalized in an RMMP-based network representa-
tion.

• In chapter 8, activity class-dependent potency difference criteria are derived.
Newly derived potency difference criteria are systematically compared with
activity class-independent potency difference criteria (i.e., at least two orders
of magnitude).

• In chapter 9, AC characteristics in analog series are investigated with activ-
ity class-dependent potency difference criteria. The overwhelming majority
of ACs are single-site ACs. Multi-site ACs are also identified. Different po-
tency effects of substituent combinations are observed, which are instructive
for enlightening future compound design.

The final chapter (chapter 10) summarizes and discusses the main findings of this
work.
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Chapter 2

Simplified Activity Cliff Network
Representations with High
Interpretability and Immediate
Access to SAR Information

Introduction

Activity cliffs (ACs) are formed by pairs of structurally similar compounds with
large difference in potency. Although ACs are defined on the basis of compound
pairs, more than 90% of ACs are actually formed in a coordinated manner rather
than by isolated pairs of compounds. Coordinated ACs are formed by sets of struc-
tural analogs that participate in multiple cliffs. Such ACs can be organized and vi-
sualized in a network representation where nodes represent AC-forming compounds
and edges pairwise AC relationships. In principle, coordinated ACs are more infor-
mative than isolated ACs. However, increasing numbers of densely connected AC
compounds give rise to disjoint AC clusters of varying size and complexity, which
complicates the immediate access to SAR information, Therefore efficient computa-
tional methods for deconvoluting AC clusters are required.

In this chapter, a new methodology for simplifying AC networks is introduced
using three representative activity classes. The advantages of the novel approach are
discussed.
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Abstract
Activity cliffs (ACs) consist of structurally similar compounds with a large difference in potency against their target. Accord-
ingly, ACs introduce discontinuity in structure-activity relationships (SARs) and are a prime source of SAR information. In 
compound data sets, the vast majority of ACs are formed by differently sized groups of structurally similar compounds with 
large potency variations. As a consequence, many of these compounds participate in multiple ACs. This coordinated forma-
tion of ACs increases their SAR information content compared to ACs considered as individual compound pairs, but com-
plicates AC analysis. In network representations, coordinated ACs give rise to clusters of varying size and topology, which 
can be interactively and computationally analyzed. While AC networks are indispensable tools to study coordinated ACs, 
they become difficult to navigate and interpret in the presence of clusters of increasing size and complex topologies. Herein, 
we introduce reduced network representations that transform AC networks into an easily interpretable format from which 
SAR information in the form of R-group tables can be readily obtained. The simplified network variant greatly improves the 
interpretability of large and complex AC networks and substantially supports SAR exploration.

Key words Activity cliffs · Reduced activity cliff networks · SAR information · Matching molecular series · R-group tables

Introduction

Activity cliffs (ACs) are generally defined as pairs or groups 
of structurally similar or analogous compounds that share 
the same biological activity but have large differences in 
potency [1–3]. Accordingly, ACs encode small chemical 
changes having large effects on compound potency, which 
rationalizes their relevance for structure-activity relation-
ship (SAR) analysis and chemical optimization [1–6]. For 
AC assessment, it must be decided when two compounds 
are sufficiently similar and their potency differences large 
enough to qualify as an AC. The evaluation of molecular 

similarity depends on chosen molecular representations and 
similarity measures [7]. For AC definition, different similar-
ity and potency difference criteria are applicable and their 
choice characterizes different generations of ACs [8]. For 
systematic computational identification and analysis of ACs, 
consistent definitions must be applied [2, 3]. In addition, 
reliable AC assignments also depend on the use of high-
quality activity measurements [6]. Much of our current 
knowledge about ACs and their distribution has resulted 
from systematic search calculations in large compound 
databases. Depending on the molecular representations that 
are used for structural similarity assessment and potency 
difference criteria that are applied, the frequency of ACs 
moderately varies. For example, ~ 20–30% of bioactive com-
pounds participate in the formation of ACs and ~ 5–6% of 
pairs of structurally similar compounds form ACs if an at 
least 100-fold difference in potency is required [2, 3]. When 
alternative AC definitions are considered in parallel, on the 
order of 100,000 ACs are obtained on the basis of currently 
available bioactive compounds (unpublished data), which 
provide a rich source of SAR information.

One of the most important characteristics of ACs is 
that they rarely represent “isolated” compound pairs, i.e., 
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compounds having no other structural neighbors. Instead, 
ACs are typically formed by groups of structurally similar 
compounds with significant potency variations, giving rise 
to series of “coordinated” ACs in which many compounds 
are involved in multiple cliffs [9]. Regardless of the AC cri-
teria that are applied, greater than 90% of all ACs found 
in compound activity classes are formed in a coordinated 
manner [9]. AC coordination can be explored in network 
representations, in which nodes represent compounds and 
edges pairwise ACs. In such networks, coordinated ACs 
give rise to the formation of AC clusters of varying size 
and topology [9]. AC clusters have higher SAR information 
content than ACs studied individually but, their interactive 
analysis is arduous when clusters increase in size and their 
topologies become rather complex [10]. Therefore, attempts 
have been made to computationally extract SAR informa-
tion from AC clusters, for example, by organizing them in 
index maps on the basis of different intra-cluster structural 
relationships [10] or by isolating sequences of AC com-
pounds from clusters that follow a potency gradient [11]. 
These approaches help to dissect clusters selected from AC 
networks and isolate AC subsets, providing at least partial 
access to SAR information.

While AC networks are essential for the rationalization 
and exploration of coordinated ACs, the interpretability of 
complex networks is limited. Difficulties in interpreting 
complex AC networks hinder SAR exploration on the basis 
of AC clusters. Therefore, we have developed a network var-
iant that reduces complexity and provides immediate access 
to SAR information, as reported herein.

Materials and methods

Compound activity classes

Activity classes for AC network analysis were extracted 
from ChEMBL release 26 [12]. Compounds directly inter-
acting with human targets (target relationship type: “D”) at 
the highest assay confidence level (assay confidence score: 
9) having equilibrium constants  (Ki values) with exact “=” 
relationships as potency measurements were selected. If 
multiple measurements were available they were averaged, 

provided all potency values fell within the same order of 
magnitude; otherwise, the compound was disregarded. 
Table 1 summarizes the composition of three large activity 
classes used for AC network analysis.

Compound decomposition

Systematic single-cut fragmentation of exocyclic single 
bonds was carried out using an algorithm for the genera-
tion of matched molecular pairs (MMPs) [13]. An MMP is 
defined as a pair of compounds that are only distinguished 
by a chemical modification at a single site [13]. During 
each fragmentation step two fragments per compound were 
obtained including a core and a substituent. In the core, 
a hydrogen atom was added to the substitution site. Size 
restrictions were applied to confine cores and substituents 
to those typically observed in analog series [14]. First, the 
number of non-hydrogen (heavy) atoms in the core was 
required to be at least twice as large as  in the substitu-
ent. Second, the substituent fragment was restricted to at 
most 13 heavy atoms. Third, the size difference between 
exchanged substituents in an MMP was set to at most eight 
heavy atoms.

Activity cliffs

For AC analysis, the MMP-cliff definition was used [14], 
which is tailored towards medicinal chemistry applications 
[6]. Accordingly, as AC criteria, two compounds from the 
same activity class are required to form a size-restricted 
MMP and have an at least 100-fold potency difference (ΔpKi 
≥ 2.0). By definition, MMP-cliffs contain a single substitu-
tion site.

Matching molecular series

As an extension of MMP concept, matching molecular series 
(MMSs) were systematically extracted from all AC com-
pounds. An MMS consists of two or more analogs that share 
the same core (MMS-core) and are only distinguished by 
substituents at a single site [15]. All identified MMS-cores 
were subjected to a second round of MMP fragmentation, 
as described above, to identify structurally analogous cores. 

Table 1  Activity classes

For AC network analysis, three large activity classes were taken from ChEMBL. For each class, the 
ChEMBL target ID, target name, number of qualifying compounds (CPDs), their potency value  (pKi) 
range, and the number of MMP-cliffs are reported.

Target ID Target name No. CPDs pKi range No. MMP-cliffs

259 Melanocortin receptor 4 1281 [3.65, 10.10] 426
244 Coagulation factor X 1641 [3.59, 11.40] 915
237 Kappa opioid receptor 1982 [4.09, 11.52] 987
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Two MMS-cores were structurally analogous if they formed 
a core-MMP and the corresponding MMSs were the classi-
fied as an MMS-pair (MMSP). Figure 1 shows an exemplary 
MMSP.

Networks

AC networks were generated in which nodes represent 
compounds and edges indicate the formation of pairwise 
MMP-cliffs [14]. Reduced AC networks were designed as 
detailed below. All network representations were drawn with 
Cytoscape [16].

Results and discussion

Network design principles

AC networks such as the one shown in Fig. 2 (top) are 
essential for visualizing and rationalizing the coordinated 

formation of ACs. Moreover, individual clusters emerging 
in AC networks provide a basis for the extraction of SAR 
information. With a total of 426 ACs (including only two 
isolated ACs) organized in 17 clusters, the AC network for 
melanocortin receptor 4 ligands has moderate size and com-
plexity and is interpretable. However, extracting SAR infor-
mation from the three largest clusters is already difficult, if 
not impossible by interactive analysis, requiring the applica-
tion of computational approaches [10, 11]. We note that the 
use of the MMP concept as a substructure-based similarity 
criterion for AC formation supports interpretability of the 
network structure because MMP relationships are clearly 
defined and select structural analogs modified at a single 
site as AC compounds. Moreover, extension of the MMP 
concept through the MMS formalism makes it possible to 
trace MMSs in AC clusters as a basis for series-centric SAR 
analysis [11]. However, tracing single or multiple MMSs 
in AC clusters does not simplify the network structure [11].

To enable interpretation of AC networks of increasing 
size and complexity and facilitate direct extraction of SAR 
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Fig. 2  Activity cliff network 
representations. At the top, 
the AC network formed by 
melanocortin receptor 4 ligands 
is shown that contains 424 
coordinated and two isolated 
MMP-cliffs. Nodes represent 
AC compounds and edges the 
formation of pairwise MMP-
cliffs. Nodes are color-coded 
to distinguish three types of 
AC compounds: green, highly 
potent AC compound; red, 
weakly potent AC compound; 
yellow, highly/weakly potent 
compound in different ACs. The 
network reveals the formation 
of AC clusters of varying size 
and topology. At the bottom, the 
reduced network is displayed. 
Design principles, as discussed 
in the text, are summarized 
on the right. In the reduced 
network, nodes represent MMSs 
and edges pairwise MMSP 
relationships
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information, we have developed an approach for the reduc-
tion of AC networks that employs the MMS formalism in 
different ways. Design principles for the simplified network 
are summarized in Fig. 2 (bottom). A central idea underlying 
the network reduction approach is transforming the entire 
cluster structure of the AC network into an array of MMSs 
and MMSPs. Thereby, all ACs are represented on the basis 
of MMSs and structurally related MMS-cores are identified. 
In the corresponding reduced network, each node represents 
an MMS comprising two or more analogs. The inclusion of 
compound pairs accounts for isolated ACs. Edges between 
nodes indicate MMSP relationships (in algorithmic terms, 
the formation of a core-MMP). Nodes are scaled in size 
according to the number of compounds per MMS and can 
be color-coded according to different potency characteristics 
(or other properties) such as the largest potency of MMS 
members. This color scheme accounts for the distribution 
of highly potent AC compounds across MMSs. AC informa-
tion is also conveyed through node borders, the thickness of 
which reflects the AC propensity within MMSs. Propensity 
represents the percentage of all possible analog pairs that 
form an AC in a given MMS. By design, individual MMS 
clusters in the reduced network may combine multiple origi-
nal AC clusters, but have simpler topologies and limited 
complexity. However, all AC information is retained and 
MMSs or MMSPs with high AC propensity can be readily 
identified and selected for further analysis.

Reducing complex activity cliff networks

The utility of reduced networks becomes immediately evi-
dent when AC networks of increasing size and complexity 
are considered such as the example in Fig. 3a. The network 
at the top consists of 915 ACs (including only 15 isolated 
ACs) and contains several densely connected spherical clus-
ters. The two largest AC clusters are essentially impossible 
to analyze interactively. By contrast, the reduced network 
at the bottom is immediately interpretable. It consists of 91 
MSSs including 71 that form a total of 87 MMSPs. In addi-
tion, there are 20 single MSSs. In the reduced network, the 
largest AC cluster (with 363 ACs) from the original network 
is mostly (96%) represented by the MMS cluster encircled 
using a blue dashed line. It can be seen that this cluster 
combines nine MMSs of greatly varying size that contain 
highly potent cliff compounds. Seven of the nine MMSs are 
densely connected including the two largest and the small-
est ones. The remaining two MMSs only form one or two 
pairs including a medium size MMS with multiple ACs. In 
contrast to the original AC network, the reduced network can 
be easily navigated including the largest clusters. Another 
example is shown in Fig. 4a. Here, the AC network of kappa 
opioid receptor ligands (top) comprises 987 ACs that are 
organized in 54 clusters, the largest of which dominates the 

network view. In the reduced network (bottom), this very 
large and densely connected cluster (with 493 ACs) is exclu-
sively represented by the encircled MMS cluster at the upper 
left (containing MMSP 1/2). Other clusters in the reduced 
network have simple topologies and are straightforward to 
analyze.

Extracting SAR information from reduced networks

A key feature of reduced networks is that individual MMSs 
or MMSPs of interest can be easily selected and represented 
in standard R-group tables. These tables are most popular in 
medicinal chemistry for the representation of analog series 
and provide immediate access to SAR information includ-
ing ACs formed within the MMSs. Examples are shown 
in Figs. 3b and 4b. Compared to original AC networks, 
extraction of SAR information from reduced networks is 
greatly simplified. Notably, generating R-group tables from 
MMSPs, as shown in Figs. 3b and 4b, further supports SAR 
analysis compared to single MMSs. This is the case because 
MMS-cores of MMSPs are structurally analogous by design. 
Since these cores are algorithmically generated for large-
scale AC analysis, they should always be compared from a 
chemical perspective when individual MMSs are considered. 
In some instances, algorithmically defined cores might be 
chemically sufficiently similar such that the R-group tables 
of the MMSP can be jointly analyzed or even combined. For 
example, this would be the case for the MMSP in Fig. 3b. In 
other instances, cores might be chemically distinct -although 
they are structurally analogous- likely giving rise to different 
SAR characteristics exhibited by related MMSs. Examples 
are provided in Fig. 4b. Since these MMSs from reduced 
networks contain ACs, they likely reveal SAR determinants 
for related yet distinct series. The reduced networks pro-
vide many opportunities for comparing SARs encoded by 
MMSPs on the basis of their R-group tables, which benefits 
SAR exploration from a medicinal chemistry perspective.

Conclusions

The vast majority of ACs are formed in a coordinated man-
ner. For their analysis, network representations play a central 
role. In AC networks, coordinated ACs centred on different 
analog series emerge as disjoint clusters of different com-
position and varying topology. These AC clusters become 
a primary focal point for SAR exploration. However, with 
increasing size and complexity, AC networks become dif-
ficult to navigate and clusters hard to analyze interactively. 
Accordingly, there is a need for making coordinated ACs 
and the information they provide available in a format that 
is readily interpretable. We have reasoned that network 
reduction might be suitable for this purpose, provided that 
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Fig. 3  Activity cliff networks 
for coagulation factor X 
inhibitors. In a, the original AC 
network (top) and the reduced 
network (bottom) are displayed 
according to Fig. 2. Numbers 
at an encircled node and cluster 
mark an exemplary isolated 
MMS (1) and an MMSP (2/3), 
respectively. In b, R-group 
tables representing the isolated 
MMS (top) and MMSP (bot-
tom) are shown.
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Fig. 4  Activity cliff networks 
for kappa opioid receptor. In a 
the original AC network (top) 
and the reduced network (bot-
tom) are displayed according 
to Fig. 2. Numbers at encircled 
clusters mark three exemplary 
MMSPs (1/2, 3/4, and 5/6). In b 
R-group tables representing the 
three MMSPs are shown
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AC information could be fully retained. Therefore, in this 
work, we have introduced an approach for the generation 
of simplified AC networks that is conceptually based upon 
the MMS formalism and the assessment of structural rela-
tionships between MMSs. In reduced networks, resulting 
MMSPs and individual MMSs resolve the original AC 
cluster structure and replace it with a higher-level structural 
organization scheme, which results in simplified network 
views and ensures interpretability. This represent a key 
aspect of the design strategy. As shown herein, original and 
reduced networks can be analyzed side-by-side, providing 
complementary views. Moreover, from reduced networks, 
MMSs and MMSPs can be easily selected and represented as 
R-group tables that reveal ACs and SAR information. This is 
another key feature of the approach. Presenting analog series 
from simplified networks in the form of R-group tables ena-
bles SAR analysis from a medicinal chemistry perspective, 
without requiring further computational input, and hence 
supports practical applications. In our proof-of-concept 
study, representative activity classes and AC populations 
have been investigated to demonstrate the utility of the 
approach. Reduced networks have been generated for many 
more activity classes, consistently enabling interpretation 
of AC clusters and SAR analysis on the basis of R-group 
tables. We also note that reduced network representations 
will not replace original AC networks, but are designed to 
aid in their analysis through the generation of complemen-
tary simplified views. AC networks remain important tools 
for globally visualizing the coordinated formation of ACs 
and comparing AC populations originating from differ-
ent compound data sets. However, reduced networks will 
be essential for detailed analysis of large AC clusters with 
complex topologies.
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Summary

Coordinated ACs forming clusters of varying size contain much SAR informa-
tion. A variety of approaches have been developed to systematically explore SAR
information in AC clusters, for instance, by defining numerical indices indicating
intra-cluster structural relationships and AC diversity, or by identifying compounds
shared between two MMSs to analyze SARs in a pairwise manner. Herein we intro-
duce another methodology aiming to simplify the analysis of complex AC clusters.
In the original MMP-cliff network, one disjoint AC cluster contains multiple com-
pounds with one or several different MMP cores which can be organized into distinct
MMSs according to the shared MMP cores. Then a second-round core fragmenta-
tion is conducted to build edge relationships between individual MMSs. Therefore,
in the reduced network, the nodes represent individual MMSs instead of individual
compounds as in AC networks and the edges MMS pairs for which the cores form
MMP relationships. Additional node properties such as mean potency values of the
AC compounds for each MMS, number of AC compounds, or cliff propensity of
each MMS can be added and easily visualized in the reduced network.

After AC network simplification, the SAR information of large AC clusters is
intuitively interpretable and easily accessible. In the next chapter, we extend the
MMP-cliff data structure with the inclusion of structural isomers, leading to the in-
troduction of isomer/MMP-cliffs.
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Chapter 3

Introducing a New Category of
Activity Cliffs Combining Different
Compound Similarity Criteria

Introduction

Given the popularity of MMP-based compound similarity evaluations, MMP-
cliffs have been intensively studied. By definition, two compounds forming an MMP
relationship are distinguished at a single substitution site. Accordingly, the formation
of an MMP-cliff indicates the replacement of one substituent (R-group) with another
one at the same core position resulting in a large difference in potency. A natural
question to ask is whether the replaced R-group has to be confined to a designated
core position to elicit a strong biological effect. R-groups attached at different core
positions are known as structural isomers in organic chemistry.

In this chapter, we systematically extracted MMP-cliffs and identified structural
isomers for MMP-cliff compounds carrying the same substituent at varying core
positions. Potency values of structural isomers and MMP-cliff compounds are com-
pared giving rise to the new AC category: isomer/MMP-cliffs.
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Introducing a new category of activity cliffs
combining different compound similarity criteria

Huabin Hu and Jürgen Bajorath *

Activity cliffs (ACs) are pairs of structurally similar or analogous active compounds with large differences in

potency against the same target. For identifying and analyzing ACs, similarity and potency difference criteria

must be determined and consistently applied. This can be done in various ways, leading to different types

of ACs. In this work, we introduce a new category of ACs by combining different similarity criteria,

including the formation of matched molecular pairs and structural isomer relationships. A systematic

computational search identified such ACs in compounds with activity against a variety of targets. In addition

to other ACs exclusively formed by structural isomers, the newly introduced category of ACs is rich in

structure–activity relationship (SAR) information, straightforward to interpret from a chemical perspective,

and further extends the current spectrum of ACs.

Introduction

Structurally similar active compounds with large potency
differences form activity cliffs (ACs).1,2 They can be detected
in analog series during chemical optimization or extracted
from compound data sets. ACs reveal small chemical
modifications that significantly impact biological activity and
are thus of high interest in structure–activity relationship
(SAR) analysis.2,3 In the practice of medicinal chemistry, ACs
might be subjectively assessed on a case-by-case basis when
encountered during compound optimization efforts. However,
for systematic identification and organization as well as
consistent representation and evaluation of ACs, similarity
and potency difference criteria must be clearly defined and
consistently applied.2,3 We note that similarity is generally
considered as a subjective criterion but in chemistry and
other scientific fields, different metrics and measures have
been introduced to quantify similarity in reproducible ways.4

In medicinal chemistry, this provides the foundation for
establishing compound similarity relationships beyond
subjective assessment and chemical intuition and enabling
systematic SAR exploration.4 For large-scale identification and
analysis of ACs, computational methods play an important
role.2 The choice and combination of alternative similarity
and potency difference criteria give rise to different categories
of ACs having different characteristics.

The question if two compounds are sufficiently similar to
form an AC can be addressed in different ways, for example,
by calculating Tanimoto similarity on the basis of graph-
based molecular representations or by applying substructure-
based similarity concepts.2–4 Substructure-based measures
include, for example, the conservation of compound
scaffolds,4,5 formation of matched molecular pairs (MMPs),6,7

or presence of analog relationships (i.e., two compounds
belong to the same analog series).8,9 If numerical similarity
metrics are applied, a similarity threshold for AC formation
must be set, which is not only representation-dependent, but
also subjective in nature.3

For substructure-based similarity assessment, MMPs have
become increasingly popular. They are defined as pairs of
compounds that only differ by a confined chemical change at
a single site, which is termed a chemical transformation.6

MMPs can be extracted from large compound collections in
computationally efficient ways,6 which supports large-scale
analysis. Hence, the MMP concept can also be applied to
computationally identify structural analogs7 and series of
analogs.8 In addition to applying molecular graph-based
similarity measures, ACs have also been determined on the
basis of X-ray structures of ligand-target complexes.10 This
requires the calculation of three-dimensional (3D) similarity
of experimentally observed compound binding modes,
yielding so-called 3D-cliffs.10

The question when potency differences between analogs
become sufficiently large to qualify a compound pair as an
AC can also be addressed in different ways. For example, a
constant potency difference threshold can be applied that
reflects a statistically significant difference in potency across
many compound data sets (activity classes, also termed
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target sets).2,3 Alternatively, target set-dependent potency
difference thresholds can be determined, which take set-
specific potency value distributions into account.11 As a
constant potency difference threshold, a potency difference
of at least two orders of magnitude between similar
candidate compounds has often been applied.3,7 For
comparison, potency difference thresholds of target set-
dependent ACs frequently range from 1.5 to 2.5 orders of
magnitude11 and are thus comparable.

The application of different similarity measures and
potency difference thresholds characterize subsequent
generations of ACs, beginning with ACs that were defined on
the basis of numerical similarity measures and constant
potency difference thresholds1,2 and leading to ACs based
upon substructure-based similarity criteria and target set-
dependent potency difference thresholds.9,11

For large scale-analysis of ACs across many different
compound classes, MMP-cliffs6 have been particularly
useful,12,13 given their computationally efficient generation
and chemically intuitive nature. For MMP-cliffs, the similarity
criterion that must be met by candidate compounds is the
formation of a transformation size-restricted MMP and a
constant potency difference of at least two orders of
magnitude is required.7

Herein, we introduce a new category of ACs by assessing
similarity in a previously unconsidered manner. For the first
time, different similarity criteria are applied in combination
to define ACs, leading to the identification of new ACs with
high SAR information content for a variety of pharmaceutical
targets.

Materials and methods
Compounds and activity data

Bioactive compounds were extracted from ChEMBL version
24.1.14 For our analysis, the following selection criteria were
applied. Only compounds with direct interactions (target
relationship type “D”) with human target proteins at the
highest assay confidence level (ChEMBL confidence score 9)
and available numerically specified equilibrium constants (Ki

values) were selected. Approximate measurements such as
those indicated by “<”, “>” or “∼” were not considered. On
the basis of these criteria, a total of 73 965 unique
compounds with activity against 915 targets were obtained
and divided into 915 target sets.

Systematic compound fragmentation

Following the MMP fragmentation scheme,6 exocyclic
bonds in test compounds were subjected to systematic
single-cut fragmentation (i.e., a single bond was cleaved
per iteration), which produced two substructures (core and
substituent). The following size restrictions were applied:7

the size of the core (number of non-hydrogen atoms) was
required to be at least twice the size of the substituent
and the size of the substituent was limited to at most 13

non-hydrogen atoms. The fragmentation protocol was
applied to systematically generate MMPs and identify
structural isomers (see below).

Generation of matched molecular pairs

An MMP is defined as a pair of compounds that only differ
by a chemical change at a single site. For MMP generation,
the size restrictions specified above were complemented by
applying an additional rule, i.e., the size difference between
exchanged fragments (representing a chemical
transformation) was limited to at most eight non-hydrogen
atoms. The application of these rules yielded transformation
size-restricted MMPs.7

Identification of structural isomers

Structural isomers are compounds that have the same
chemical composition formula but are topologically distinct.
Herein, structural isomers were identified that only differed
in the core position of the substituent fragment,
corresponding to sets of analogs in which the same
substituent fragment occurred at different positions. To
systematically identify and classify such structural isomers
in target sets, generalized cores were constructed with the
aid of the OpenEye Chemistry toolkit,15 in which each
attachment site of a substituent fragment was substituted
with a hydrogen atom. All structural isomers originating
from a target set that were represented by the same
generalized core and fragment were then combined into an
isomer set.

Activity cliff criteria

Three types of ACs were investigated herein, consistently
requiring an at least 100-fold difference in potency between
cliff compounds. First, standard MMP-cliffs were extracted
from target sets. In addition, “isomers cliffs” were defined to
be formed by two structural isomers from the same set, also
having an at least 100-fold difference in potency. A separate
search for isomer cliffs was carried out. We note that isomer
cliffs, as defined herein, are related to “topology cliffs” that
were reported previously applying a scaffold-based similarity
criterion.4 Furthermore, “isomer/MMP-cliffs” were
introduced. As described in more detail below, in isomer/
MMP-cliffs, one MMP-cliff compound was replaced by a
structural isomer. Hence, searching for isomer/MMP-cliffs
required combining MMP- and structural isomer-based
similarity assessment. Therefore, as a pre-requisite of
identifying isomer/MMP-cliffs, MMP-cliff compounds were
determined that also belonged to isomer sets. The
corresponding ACs were termed “MMP-cliffs with isomer
extension”. If multiple MMP-cliffs were found to be
associated with the same isomer set, only the MMP-cliff with
the largest potency difference was retained for further
exploration of isomer/MMP-cliffs, thus avoiding potential AC
redundancy.

RSC Medicinal ChemistryResearch Article
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Results and discussion
Systematic exploration of structural relationships

Fig. 1 illustrates different structural relationships
investigated in this work. Bioactive compounds with high-
confidence activity data were systematically searched for
transformation size-restricted MMPs. In parallel, a search
was carried out for sets of structural isomers. Then, MMP-
cliff compounds were identified that also participated in
isomer sets, thus combining MMPs and isomer sets for AC
analysis.

Extending the current spectrum of activity cliffs

Three types of ACs investigated herein are depicted in
Fig. 2. As a standard, MMP-cliffs were systematically
identified. In addition, isomer sets were independently
identified and searched for pairs of isomers with an at least
100-fold difference in potency, yielding isomer cliffs. In
these ACs, compounds were distinguished by the position
of a given substituent (resulting from molecular

fragmentation). So-called “chirality cliffs”5 or “chiral cliffs”16

in which compounds with large potency differences are only
distinguished by the configuration at a single stereo center
have been described previously.5,16 By contrast, isomer cliffs
as defined herein have not been introduced before (but -as
stated above- are related to scaffold-based topology cliffs).
Moreover, isomer/MMP-cliffs also shown in Fig. 2 represent
a novel category of ACs. We reasoned that adding structural
isomers to MMP-cliffs would further extend their SAR
information content. By definition, structural analogs
forming MMP-cliff are distinguished by a substitution at
one and only one site. However, replacing an MMP-cliff
compound by a structural isomer adds another substitution
site. Hence, compounds forming an isomer/MMP-cliff are
distinguished by different substituents (R-groups) at two
sites, which can be accounted for following MMP
terminology as H ↔ R transformations. Combining
different similarity criteria is a characteristic feature of
isomer/MMP-cliffs setting them apart from other AC
categories.

Fig. 1 Structural relationships. The schematic representation illustrates structural relationships that were systematically identified. For this
purpose, a small compound (CPD) set with four analogs is used. For this exemplary set, MMP and structural isomer relationships are shown.
Initially, compounds from all qualifying target sets were subjected to fragmentation of exocyclic single bonds to detect MMPs. Cleaved bonds are
indicated by dashed red lines and the resulting fragments are shown on a blue background. For each MMP, the chemical transformation was
recorded. The MMP fragmentation scheme was also adapted to identify structural isomers (that share the same composition formula, but are
topologically distinct). Therefore, a search was carried out for structurally distinct (unique) compounds that yielded the same fragment and core of
the same composition. Such compounds were represented by the same fragment and generalized core, in which fragmentation sites were
hydrogen substituted (shown in red), and combined into an isomer set. Finally, MMP compounds were identified that also belonged to isomer sets,
thereby combining different structural relationships.
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Searching for activity cliffs

A systematic search for the three types of ACs was carried
out in ChEMBL, as summarized in Fig. 3. From nearly
74 000 compounds with qualifying activity data for 915
targets, more than 600 000 MMPs were extracted that
yielded 26 966 MMP-cliffs originating from 351 target sets.
These MMP-cliffs involved 14 008 unique compounds. In
addition, 10 571 different isomer sets (with the median and
maximum size of two and eight isomers, respectively) were
identified comprising 13 867 unique compounds from 412
target sets. These isomer sets contained 16 314 isomer pairs
that yielded 493 isomer cliffs for 124 different targets.
Fig. 4a shows that in only 425 (4.0%) of all isomer sets, the
potency difference threshold for AC formation was met. By
contrast, in 5706 isomer sets, maximal pairwise potency
differences were close to zero and in more than 8000 sets,
they fell within one order of magnitude. Hence, structural

isomers mostly had similar potency against their targets.
Although the absolute number of isomer cliffs was much
smaller than of MMP-cliffs, the percentage of isomer cliffs
among isomer pairs (3.0%) was comparable to the
proportion of MMP-cliffs among MMPs (4.4%). Fig. 4b
shows two isomer sets with three isomers each in which
isomer cliffs were formed.

Next, we searched for MMP-cliffs with isomer extension,
i.e., MMP-cliff compounds that also belonged to isomer
sets. For 1182 MMP-cliffs (4.4%) originating from 147
target sets, structural isomers were identified, as reported
in Fig. 3. From these MMP-cliffs with isomer extension, a
total of 597 isomer/MMP-cliffs were extracted, which
consisted of 636 unique compounds with activity against
80 different targets. Thus, 39.8% of MMP-cliffs with
isomer extension represented isomer/MMP cliffs and
provided informative AC constellations for further analysis,
as discussed below. First, we take a closer look at MMP-

Fig. 2 Activity cliff categories. Shown are exemplary ACs belonging to different categories including (from the top to the bottom) an MMP-cliff,
isomer cliff, and isomer/MMP-cliff. In each case, the target of the AC compounds is given.

RSC Medicinal ChemistryResearch Article

Pu
bl

is
he

d 
on

 0
7 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 M

ac
qu

ar
ie

 U
ni

ve
rs

ity
 o

n 
1/

7/
20

20
 3

:1
4:

17
 P

M
. 

View Article Online



RSC Med. Chem.This journal is © The Royal Society of Chemistry 2020

cliffs with isomer extension and the chemical
transformations they contained.

Chemical transformations in extended MMP-cliffs

We systematically analyzed chemical transformations
associated with MMP-cliffs. For the 1182 MMP-cliffs with
isomer extension, 676 unique chemical transformations
were detected. Interestingly, small transformations involving
hydrogen atom replacements were among the most
frequently observed chemical changes in MMP-cliffs with
isomer extension, as shown in Fig. 5a. The replacement of a

hydrogen atom by a methyl group occurred most frequently
(and with similar frequency as in all MMP-cliffs), followed
by hydrogen replacements with a methoxy group and
chlorine atom, respectively. For extended MMP-cliffs with
hydrogen atom replacements, broad distributions of
maximum potency differences between MMP-cliff
compounds and structural isomers were observed, as
reported in Fig. 5b, often with median values around two
orders of magnitude.

Fig. 6a shows exemplary MMP-cliffs with an H ↔ CH3

transformation for which structural isomers of weakly potent
cliff compounds were available. These extended MMP-cliffs

Fig. 3 Identification of different activity cliffs. The workflow chart summarizes the identification of MMP-cliffs, isomer cliffs, MMP-cliffs with
isomer extension, and isomer/MMP-cliffs across different target sets.
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nicely illustrate “magic methyl” effects as a consequence of
positional variations. Fig. 6b depicts corresponding examples
of extended MMP-cliffs with an H ↔ F transformation, which
revealed potency effects of fluorine substitutions at varying
positions.

Among the 1182 MMP-cliffs with isomer extension,
structural isomers of weakly potent, highly potent, or both cliff
compounds were detected for 589, 496 and 97 MMP-cliffs,
respectively (with a median value of one isomer per MMP-cliff).
Fig. 7 shows examples of MMP-cliffs with different chemical
transformations for which structural isomers of both weakly
and highly potent cliff compounds were available. These
examples illustrate various effects of methyl to phenyl or
chlorine to bromine replacements at different positions.

Taken together, the representative examples discussed
above reveal that extension of MMP-cliffs with structural

isomers was SAR-informative even in cases where the AC
potency difference threshold was not reached and no
formally defined isomer/MMP-cliffs were obtained. However,
isomer extension generally resulted in an increase in relevant
compound relationships and positional effects of
substitutions provided additional SAR information for nearly
1200 MMP-cliffs with activity against 147 targets (Fig. 3).

Isomer/MMP-cliffs

Our analysis yielded a total of 597 isomer/MMP-cliffs,
which represented the subset of MMP-cliffs with isomer
extension having largest potency effects. Compared to
MMP-cliffs, the small number of currently available
isomer/MMP-cliffs indicates that SARs involving isomers of
specific substitutions are only little explored. This also

Fig. 4 Potency differences in isomer sets and isomer cliffs. (a) The distribution of maximum pairwise potency differences (ΔpKi) in
isomer sets is reported. In only 4% of all isomers sets (yellow bars), the 100-fold potency difference threshold for AC formation was
met. (b) Shown are exemplary isomer cliffs (with ΔpKi values given in red) for two isomer sets formed by serotonin 6 (5-HT6) receptor
ligands.

RSC Medicinal ChemistryResearch Article

Pu
bl

is
he

d 
on

 0
7 

Ja
nu

ar
y 

20
20

. D
ow

nl
oa

de
d 

by
 M

ac
qu

ar
ie

 U
ni

ve
rs

ity
 o

n 
1/

7/
20

20
 3

:1
4:

17
 P

M
. 

View Article Online



RSC Med. Chem.This journal is © The Royal Society of Chemistry 2020

Fig. 5 Transformations in MMP-cliffs with isomer extension. (a) Listed are the top 15 most frequent chemical transformations in MMP-cliffs with
isomer extension. Nine transformations representing hydrogen atom replacements are highlighted using a gray background. (b) For these nine
chemical transformations, the distribution of maximum pairwise potency differences between MMP-cliff compounds and structural isomers is
shown in boxplots. In each case, the median value is reported.
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indicates that newly introduced substituents at a given
sites are only infrequently considered at other positions in
active compounds. This has implications for practical
medicinal chemistry and suggests further analog design
strategies such as the introduction of new substituents at
proximal yet distinct sites (yielding an MMP with isomer
extension).

Fig. 8 shows exemplary isomer/MMP-cliffs for which
qualifying structural isomers of highly potent (Fig. 8a) or
weakly potent cliff compounds (Fig. 8b) were available.
The examples illustrate how an isomer/MMP-cliff
transforms a standard MMP-cliff into an AC with different
substituents at two sites, thereby extending the MMP-
formalism according to which substitutions are limited to

Fig. 6 MMP-cliffs with smallest transformations and isomer extension. Shown are exemplary MMP-cliffs with isomer extension that captured the
smallest possible chemical transformation including the replacement of a hydrogen atom with a (a) methyl group (H ↔ CH3) and (b) fluorine atom
(H ↔ F). Compound targets are given.
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a single site. ACs with substitutions at multiple sites can
also be obtained if they are extracted from analog series
including computationally identified series.9 In Fig. 8a,
structural isomers of highly potent MMP-cliff compounds
have comparable potency. In Fig. 8b, isomers of weakly
potent cliff partners display larger potency variations, but
the pre-defined AC potency difference threshold is met in
both instances. Comparison of MMP-cliffs and
corresponding isomer/MMP-cliffs makes it possible to
better understand if the chemical nature of a substitution
and/or its position might be more important for achieving
high compound potency, which can be further assessed
through the design of additional analogs. Since only a
small proportion of isomer sets contained compounds
with potency variations of large magnitude, as also shown
herein, isomer/MMP-cliffs are also likely to indicate
regions in potent compounds where key substituents
might be positioned in different ways, as illustrated in
Fig. 8, hence providing alternatives for chemical synthesis.

Conclusions

In this study, we have introduced a new category of ACs by
associating MMP-cliffs with structural isomers, leading to the
definition of isomer/MMP-cliffs. These ACs uniquely combine
different similarity criteria and transform MMP-cliffs into
ACs with different substituents at two sites. Through large-
scale compound data analysis, the presence of isomer cliffs

and isomer/MMP-cliffs in different target sets was confirmed
and a data set of MMP-cliffs with isomer extension was
obtained. We have shown that isomer extension provides
additional SAR information for MMP-cliffs, regardless of
whether isomer/MMP-cliffs are formed or not, which depends
on the chosen potency difference threshold. Hence, MMP-
cliffs with isomer extension and isomer/MMP-cliffs might be
considered to reveal a continuum of SARs and potency
effects, rather than as discrete states. Regardless, the newly
introduced data structure is highly SAR-informative. In some
instances, very small chemical modifications such as the
introduction of a methyl group at varying positions led to
significant potency alterations in active compounds. In
others, positional variation of larger substituents that were
critical for high potency was readily tolerated. Such findings
make this data structure interesting for SAR exploration in
medicinal chemistry. From a computational perspective,
isomer/MMP-cliffs are also thought to provide meaningful
test cases for potency prediction methods. Hence, taken
together, the extension of the MMP-cliff concept and new AC
category introduced herein widen the current spectrum of AC
and provide additional opportunities for SAR exploration.
These opportunities also include complementary analysis of
new two- and three-dimensional ACs,17 which can be
extended through structure-based predictive modeling.18 For
SAR analysis or other investigations, our data set of MMP-
cliffs with isomer extension is freely available upon
request.

Fig. 7 Fully extended MMP-cliffs. Exemplary MMP-cliffs are shown for which structural isomers of both highly and weakly potent cliff compounds
were available.
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Summary

In this chapter, the AC concept was extended by combining the structural iso-
mer and MMP concepts. Firstly, MMP-cliffs were generated using the ChEMBL
database. For the sake of identifying structural isomers of MMP-cliff compounds,
the attachment site of the core was replaced by hydrogen and structural isomers of
the MMP compounds with the same core were identified. These isomers also had
to display a potency difference of at least two orders of magnitude compared to the
MMP partner in order to form an isomer/MMP-cliff. In general, only for a limited
percentage of MMP-cliffs (4.4%), structural isomers were found implying that struc-
tural isomers are typically less studied in compound optimization. For MMP-cliffs
with isomers, around 40% of MMP-cliffs could be extended with additional com-
pounds with significantly large differences in potency, resulting in 597 new ACs.
Although this AC category is less frequently observed than MMP-cliffs, it is richer
in SAR information. Since a large proportion of MMP-cliffs could not be extended
to isomer/MMP-cliffs, i.e., no structural isomers were available, the study of this AC
category suggested to further consider positional alteration of R-groups in compound
optimization.

In the next chapter, we relate the privileged substructure concept to activity cliffs
and systematically explore the frequency of occurrence of privileged substructures
in an AC analysis.
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Chapter 4

Systematic Exploration of Activity
Cliffs Containing Privileged
Substructures

Introduction

The privileged substructure (PS) concept was originally introduced to identify
core structures that preferentially occurred in compounds with activity against a
given target family. Subsequently, many target family-privileged substructures have
been proposed. However, an increasing number of studies indicate that their high
prevalence in bioactive compounds does not necessarily imply that they are exclu-
sively active against a desired target family.

In this chapter, we analyzed PS distributions among different target families, and
for the first time, studied PSs in ACs. Different types of ACs were systematically
extracted and further divided into two different AC categories depending on whether
they contained predefined PSs or not. A comprehensive analysis in comparing ACs
with and without PSs was conducted.
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ABSTRACT: The privileged substructure (PS) and activity cliff
(AC) concepts are popular in pharmaceutical research. PSs have
been empirically identified as preferred building blocks for target-
class-directed generation of active compounds. Although some PSs
are controversially viewed, they continue to receive much attention
in drug discovery. ACs are formed by structurally similar active
compounds with large potency differences and thus capture
structure−activity relationship (SAR) discontinuity and reveal SAR
determinants. So far, the PS and AC concepts have not been
investigated in context. We have systematically explored ACs formed by compounds containing different PSs (PS-ACs). Such ACs
were frequently identified in different series of compounds. PS-ACs were thoroughly characterized and compared to ACs formed by
other compounds. The analysis revealed differences in AC formation between PSs. For example, individual PSs with an unusually
high proportion of AC-forming compounds were identified. Furthermore, PS-AC network analysis identified clusters of ACs
containing the same PS in different compound structure contexts with activity against different targets. From such PS-AC clusters,
target-specific SAR information for PSs in different structural environments can be extracted.

KEYWORDS: activity cliffs, privileged substructures, target classes, structure−activity relationships, compound design

■ INTRODUCTION

The activity cliff (AC) concept is widely applied in
computational medicinal chemistry and drug design.1 Defined
as pairs of structurally analogous active compounds with large
differences in potency against their targets,1 ACs represent the
apex of structure−activity relationship (SAR) discontinuity.1,2

Accordingly, they have high SAR information content and are
focal points of SAR exploration in medicinal chemistry. During
compound optimization, ACs are typically considered on a
case-by-case basis, without the need to formally specify cliff
criteria. By contrast, for computational identification and
consistent evaluation of ACsincluding investigations of large
compound data setssimilarity and potency difference criteria
for AC formation must be unambiguously defined and
consistently applied.1,3

The AC concept has been evolved and refined over time.2−5

Alternative molecular similarity approaches have been
investigated including fingerprint-descriptor- and substruc-
ture-based similarity.3−5 The use of descriptor-based numerical
similarity values requires the application of thresholds for AC
formation, which are typically subjectively defined. Alter-
natively, substructure-based similarity criteria are applicable
such as the presence of a conserved compound core structure
(representing a series of analogues)3,4 or the formation of a
matched molecular pair (MMP),6−8 defined as a pair of
compounds that are only distinguished by a chemical change at

a single site.6 Core-structure- or analogue-series-based
similarity assessment makes it possible to consider multiple
substitution sites for AC formation.5 Furthermore, potency
distributions of active compounds have been evaluated on a
large scale and in an activity-class-dependent manner in order
to determine the significance of potency differences between
structural analogues for AC formation.9,10 Taken together,
these investigations have led to the introduction of alternative
definitions and different types of ACs for a variety of
applications.4,5

The privileged substructure (PS) concept is also very
popular in medicinal chemistry.11−14 It is not related to the AC
concept. Originally introduced by Evans et al.,11 PSs represent
recurrent substructures in compounds with preferential activity
against specific target families or classes,11,12 Although PSs are
typically not specific for a given target class,15 their tendency to
preferentially bind to, for example, G protein coupled receptors
(GPCRs)16 or kinases17,18 continues to be of high interest for
target-class-directed compound design.12,13 Typical examples
include the benzodiazepine substructure found in many GPCR
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Figure 1. Compound core generation and structural relationships. (a) For four exemplary compounds, the construction of an exemplary core is
illustrated. The generation involves single-site cleavage (red dashed line) of a bond to a qualifying substituent, followed by hydrogen atom
replacement (red) in the core. (b) For compounds sharing a given core, three types of structural relationships are illustrated. Substituents
distinguishing paired compounds are highlighted using a blue background.
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Figure 2. Privileged substructure analysis. (a) Shown are 24 PSs. The given numerical PS identifiers (IDs) are consistently used. (b) For each PS,
the distribution of PS-to-compound (CPD) heavy atom ratios is reported in a boxplot. Red dots indicate mean values. The total number of active
compounds containing each PS is given above each plot. (c) The bar graph reports the distribution of PSs over targets (color-coded according to
classes). The total number of targets is given above each bar. PSs are arranged in the order of decreasing compound numbers.
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ligands11,16 or the quinazoline moiety that is recurrent in
kinase inhibitors.18 Origins of PS characteristics at the
molecular level of detail are yet to be fully explored. However,
their high frequency of occurrence in ligands active against
different target classes indicates that PSs typically yield
compounds with sustainable SARs for these targets.
In this work, we have investigated the AC and PS concepts

in context by systematically searching for different types of
ACs formed by compounds containing PSs. These ACs were
analyzed and compared to others without PSs. AC network
analysis distinguished between PSs with different SAR
characteristics.

■ METHODS AND MATERIALS
Compounds and Activity Data. From ChEMBL19

(version 25), compounds forming direct interactions with a
single human target protein (i.e., assay relationship type “D”)
at the highest confidence level (i.e., assay confidence score 9)
were extracted. As potency measurements, numeric-assay-
independent equilibrium constants (Ki values) with standard
relationship “=” were required. If a compound had multiple Ki
values for the same target, the geometric mean of all values was
calculated as the final potency, provided all values fell within
the same order of magnitude (otherwise, the compound was
disregarded). On the basis of these selection criteria, 77 189
unique compounds with activity against 962 targets were
obtained (yielding a total of 130 810 activity annotations).
Target Classes. Biological targets of active compounds

were assigned to eight classes following the ChEMBL target-
classification scheme.19 These included six major target classes
(enzymes, membrane receptors, ion channels, transporters, tran-
scription factors, and epigenetic regulators). In addition, others
and unclassif ied referred to the union of several small target
classes and targets not assigned to other classes, respectively.
Compound Core Generation. Applying a fragmentation

algorithm for MMP generation,7 single exocyclic bonds in
compounds were systematically cleaved yielding two fragments
per operation. Fragments were accepted on the basis of the
following size restrictions:8 The number of non-hydrogen
atoms of one fragment was required to be at least twice as large
as that of the other, and the size of the smaller fragment was
confined to at most 13 non-hydrogen atoms. The larger
fragment was defined as the “core”, and the smaller was defined
as the “substituent”. In the core, the cleaved off smaller
fragment was replaced with a hydrogen atom. Core generation
is illustrated in Figure 1a. The calculations were carried out
using in-house scripts with the aid of OpenEye chemistry
toolkit.20

Structural Relationships. For all generated cores,
compound pairs sharing the same core were systematically
identified. Accordingly, each pair combined two structural
analogues. Paired compounds were then computationally
examined for the presence of three different types of structural
relationships, as illustrated in Figure 1b. Specifically,
compounds forming a pair were distinguished by

(i) Two substituents at the same position in the core. This
relationship corresponded to the formation of an MMP.

(ii) The same substituent at dif ferent core positions. This
relationship represented a pair of structural isomers.

(iii) Two substituents at dif ferent core positions. This relation-
ship captured a pair of analogues with substitutions at
two sites, termed dual-site analogues (ds-analogues). For

ds-analogues, an additional size restriction was intro-
duced. Accordingly, substituents at both sites were
permitted to differ by at most eight non-hydrogen
atoms.

Activity Cliffs. As a constant potency difference threshold
for AC formation, an at least 100-fold difference between Ki
values of structural analogues forming a qualifying pair was
required. On the basis of the different pairwise structural
relationships specified in Figure 1b, three types of ACs were
identified:

(i) MMP-clif fs (MMP-ACs).8 Paired analogues differ by
substitutions at a single site.

(ii) Isomer-clif fs (iso-ACs). Paired analogues are structural
isomers.

(iii) Dual-site-ACs (ds-ACs).21 Paired analogues differ by
substitutions at two sites.

Privileged Substructures. The PS collection of Welsch et
al.14 was used, which mostly originated from drugs and natural
products. PSs were selected if they were found in at least 100
bioactive compounds by substructure searching. A given
compound might contain more than one PS. Figure 2a
shows 24 PSs that qualified for our analysis.

Compound Properties. For each AC compound, the
fraction of sp3 carbon atoms, topological polar surface area,
and logP (octanol/water partition coefficient) were calculated
with the RDKit toolkit22 implemented in KNIME protocols.23

In addition, ligand efficiency (LE) was computed using the
binding efficiency index (BEI)24 defined as

K
LE

p
MW

log unit/kDai= [ ]
, in which MW stands for molecular weight. Since LE were
only compared for structural analogues, corrections for
potential size dependence25 were not required.

■ RESULTS AND DISCUSSION
Considering Privileged Substructures and Activity

Cliffs in Context. In our study, we have aimed to identify ACs
involving PSs and compare these ACs with others formed by
compounds without PSs. ACs with PSs have thus far not been
considered. In pharmaceutical research, target-class preferences
of PSs were for the most part empirically assigned on the basis
of expert knowledge and compounds becoming available over
time. While there is no general rationale for target-class
selectivity of PSs, preferential binding has often been attributed
to class-characteristic binding patterns,12,16 resulting in a
tendency to enrich compounds containing PSs with certain
bioactivities. As such, PSs are attractive for compound design
and SAR exploration and hence fall into the applicability
domain of the AC formalism. ACs capture SAR discontinuity
among active compounds and indicate optimization potential
of candidate compounds. We investigated the formation of
ACs among PS-containing compounds and also compared PSs
on the basis of AC analysis, thereby establishing a link between
the PS and AC concepts.

Privileged Substructure Analysis. Initially, we analyzed
the 24 PSs in Figure 2a that were found in at least 100 active
compounds in more detail. The PSs are indexed in the order of
decreasing compound numbers. The majority of these PSs
consisted of a condensed aromatic ring system with different
heteroatom substitutions. According to current standards,
planar aromatic compounds are not necessarily among
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preferred starting points for medicinal chemistry efforts.
However, these PSs were recurrent in active compounds and
prioritized over time, having a long history in medicinal
chemistry.
The 24 PSs were detected in 31 773 (41.2%) of all active

compounds. Hence, they were widely distributed, and the
generated data set was suitable for our analysis. The most
frequently occurring PS was indole (PS 1, 6038 compounds),
followed by biphenyl (PS 2, 5091), arylpiperazine (PS 3,
4591), and quinoline (PS 4, 3153). Figure 2b reveals that
active compounds containing PSs were typically more than
twice as large as the respective PS, which likely resulted from
compound optimization efforts. We also examined the target
distribution of PS compounds on the basis of eight broadly
defined target classes. The membrane receptor class was
mostly comprised of GPCRs, while the enzyme class contained
many different families that were not further differentiated. As
shown in Figure 2c, this general target classification was
sufficient to confirm that compounds containing PSs were not
class-specific, consistent with earlier findings. While there was a
tendency for most PSs to occur in compounds active against
membrane receptors and various enzymes, which dominated
the distribution, all PSs were found in compounds with activity
against different target classes.
Identification of Activity Cliffs. A systematic search for

three types of ACs was carried out including MMP-ACs, iso-
ACs, and ds-ACs. As described in Methods and Materials,
these types of ACs were distinguished by different structural
relationships between participating analogues including sub-
stitutions at a given site in a conserved core structure (MMP-
ACs), substitutions at two sites (ds-ACs), or topology
differences (iso-ACs).
The systematic search for ACs is outlined in Figure 3, and

the results are summarized. A total of 704 019 compound pairs
meeting AC similarity criteria were identified that were active
against 677 targets. Applying a ΔpKi ≥ 2.0 potency difference
threshold, a total of 34 049 ACs were obtained that involved
16 821 unique compounds with activity against 373 targets.
These ACs included 26 584 MMP-ACs, 6945 ds-ACs, and 520
iso-ACs. Thus, MMP-ACs represented the majority of cliffs.
We then examined ACs for the presence of PSs and identified
15 919 ACs in which both compounds containing the same PS
(PS-ACs). These ACs were formed by 6927 unique
compounds with activity against 204 targets. In addition,
18 130 ACs were identified that did not contain PSs. These
ACs involved 10 016 unique compounds that were active
against 328 targets. Hence, comparably large numbers of PS-
ACs and other ACs were obtained for further analysis. Overall,
∼22% of all active compounds were involved in the formation
of one or more ACs, consistent with earlier results of global
AC analysis.9

Activity Cliffs with Privileged Substructures. Figure 4
shows exemplary PS-ACs. In Figure 4a, MMP-ACs for
different receptors are depicted, and in Figure 4b, MMP-
ACs, iso-ACs, and ds-ACs with activity against other receptors,
carbonic anhydrase II, or the PI3-kinase p110-alpha subunit
are depicted.
Table 1 details the distribution of ACs over PSs and their

target coverage (PSs are numbered according to Figure 2a).
The distribution was uneven, as anticipated on the basis of
significantly varying numbers of compounds containing each
PS (Figure 2b). For several PSs with low compound numbers,
less than 50 ACs were identified. However, there were notable

exceptions. For example, 159 compounds containing piper-
idinyl-benzimidazolone (PS 21) were available that formed
186 MMP-ACs. Furthermore, 360 compounds containing
coumarin (PS 17) yielded 41 MMP-ACs, 5 iso-ACs, and 73 ds-
ACs. However, although coumarin has a long history in
medicinal chemistry and is classified as a PS, coumarin
derivatives have also been implicated in assay interference
effects.26 Hence, a word of caution is advised when
investigating coumarin as a PS. Similar concerns have also
been raised about other well-recognized PSs such as chromone
(PS 19), which might be reactive under certain assay
conditions.27 On the other hand, chromone is also found as
a substructure in several marketed drugs.14 Hence, it remains
difficult to generalize undesirable assay interference effects,28

especially for PSs.
Other PSs with large numbers of available compounds

dominated the distribution of PS-ACs. There were 7 PSs for
which more than 1000 ACs were identified. Biphenyl (PS 2)
yielded by far the largest number of PS-ACs, with 5607
instances including 5094 MMP-ACs. Purine (PS 6) followed
with 2109 instances (1218 MMP-ACs, 870 ds-ACs, and 21 iso-
ACs), and arylpiperidine (PS 5) with 1482 ACs (including
1018 MMP-ACs). By far the largest target coverage was
observed for indole- (78 targets) and biphenyl-containing ACs
(72).
Taken together, the results showed that PS-ACs were

consistently detected and that their frequency of occurrence
roughly scaled with available compound numbers, with some
exceptions. As observed globally, MMP-ACs also dominated
the distribution of PS-ACs, whereas iso-ACs were only
infrequently detected (consistent with the limited formation

Figure 3. Identification of activity cliffs. The flowchart summarizes
the identification of different types of ACs formed by compounds with
and without PSs. For each analysis step, applicable compound, target,
and AC statistics are provided.
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of analogue pairs by structural isomers). AC frequency was
comparable for compounds with and without PSs. On average,
an AC compound without PS was involved in 3.6 ACs, while a
PS-containing AC compound participated in 4.6 ACs. Thus,
compounds from PS-ACs displayed a tendency to form more
AC relationships than others.

Property Analysis. We next analyzed molecular properties
of ACs. First, ligand efficiency (LE) was investigated.
Formation of ACs is generally associated with an increase in
LE from the weakly potent to the highly potent cliff
compound. This is the case because participating structural
analogues have comparable (or the same) size but a large
difference in potency.
Figure 5 shows the distribution of ΔLE values for different

types of ACs combining PS-ACs and others. On average,
MMP-ACs were found to have the lowest ΔLE value (5.67).
For iso-ACs and ds-ACs, mean ΔLE values were larger but
comparable (7.22 vs 7.23). In the case of iso-ACs, the ΔLE
value was solely a consequence of potency differences.
Next, ΔLE and ΔlogP values were compared for PS-ACs

and ACs without PSs, as shown in Figure 6a. The value
distributions were very similar, with essentially no differences.
Notably, AC formation was overall not accompanied by an
increase in hydrophobicity from the weakly to the highly
potent cliff partner (as is often observed during compound
optimization). For highly potent cliff compounds extracted
from ACs with and without PSs, LE, logP, and additional
properties were analyzed including the fraction of sp3 carbon
atoms and topological polar surface area. The results are shown
in Figure 6b. The only systematic difference was the lower
polar surface area of highly potent cliff compounds from PS-

Figure 4. Exemplary activity cliffs with different privileged
substructures. For selected PSs (depicted at the top in pink on a
gray background), exemplary ACs of different types are shown. In
each case, styles of lines connecting weakly (left) and highly potent
(right) AC compounds indicate the cliff type (i.e., solid black line,
MMP-AC; solid green, iso-AC; dashed black, ds-AC). In AC
compounds on the left, the PS is colored pink. Distinguishing
substituents are highlighted using a blue background. For each
compound, the pKi value is given. For each AC, the target is provided,
and the LE difference between AC partners is reported. For different
PSs, (a) shows MMP-ACs, and (b) shows ACs of all three types.

Table 1. Distribution of Activity Cliffs across Privileged
Substructuresa

PS IDs total no. ACs no. MMP-ACs no. iso-ACs no. ds-ACs

1 1298 (78) 844 (69) 37 (18) 417 (43)
2 5607 (72) 5094 (67) 36 (24) 477 (41)
3 1058 (31) 652 (30) 36 (9) 370 (19)
4 788 (44) 585 (40) 28 (13) 175 (23)
5 1482 (22) 1018 (20) 22 (10) 442 (14)
6 2109 (24) 1218 (23) 21 (6) 870 (9)
7 1206 (24) 725 (23) 27 (9) 454 (16)
8 687 (35) 572 (33) 7 (7) 108 (15)
9 465 (30) 310 (28) 14 (7) 141 (16)
10 181 (26) 127 (24) 5 (5) 49 (9)
11 351 (12) 170 (11) 9 (3) 172 (4)
12 1247 (10) 1157 (10) 4 (1) 86 (4)
13 105 (17) 87 (16) 5 (4) 13 (5)
14 339 (13) 234 (13) 0 (0) 105 (5)
15 81 (20) 49 (18) 1 (1) 31 (7)
16 48 (10) 34 (10) 1 (1) 13 (3)
17 119 (9) 41 (8) 5 (2) 73 (7)
18 53 (9) 27 (7) 4 (3) 22 (6)
19 44 (9) 24 (8) 3 (2) 17 (4)
20 5 (3) 5 (3) 0 (0) 0 (0)
21 186 (5) 186 (5) 0 (0) 0 (0)
22 85 (8) 79 (8) 2 (2) 4 (3)
23 14 (4) 7 (4) 0 (0) 7 (3)
24 27 (3) 27 (3) 0 (0) 0 (0)

aReported are the numbers of three different types of ACs across PSs.
For each PS, the number in parentheses gives the total number of
targets of its ACs.
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ACs (median value of 73.1 Å2) than from ACs without PSs
(median of 83.6 Å2). However, although PS compounds
mostly contained aromatic ring systems, the fraction of sp3

carbon atoms of PS-AC and non-PS-AC compounds was
similar (with a median value of 0.3). Taken together, the
results showed that no significant molecular property differ-
ences were observed for PS-ACs compared to ACs without
PSs.

Differences between Privileged Substructures. We
further investigated the composition of PS-ACs. For each PS,
the ratio of AC compounds to all compounds containing the
PS was determined (Figure 7a, top) as well as the ratio of
highly potent AC compounds to all AC compounds (bottom).
The average ratio values of 21.8% for AC compounds to all PS
compounds and of 57.3% for highly potent AC compounds to
all AC compounds were very similar to corresponding mean
ratios for ACs without PSs. However, PSs displayed a tendency
to yield more highly than weakly potent AC compounds,

Figure 5. Ligand efficiency for activity cliffs. For different types of
ACs with or without PSs (comprising all 34 049 ACs according to
Figure 3), the density plot reports the distribution of LE differences
between highly and weakly potent cliff partners (LEhighly − LEweakly).

Figure 6. Comparison of molecular properties. Density plots compare property values for ACs with (solid line) or without (dashed line) PSs. (a)
LE and logP differences between highly and weakly potent AC compounds are reported. (b) For highly potent AC compounds, values of different
properties are compared.
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which was the case for 19 of 24 PSs (Figure 7a, bottom). In
addition, the ratio strongly varied for several PSs with
comparable compound numbers. For example, for benzoxazol

(PS 16), nearly 70% of all AC compounds were highly potent.
By contrast, for coumarin (PS 17), only 39% were highly
potent.

Figure 7. Compound proportions forming activity cliffs. For compounds (CPDs) containing each PS, (a) reports the ratio (%) of AC CPDs to all
CPDs (top) and highly potent AC CPDs to all AC CPDs (bottom). In (b), the mean LE difference for ACs (LEhighly − LEweakly) containing each PS
is reported. Dashed red lines indicate global average values. For each PS, values above and below the global mean are marked with red and gray
dots, respectively.
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Figure 8. Activity cliff network analysis. (a) Shows the AC network representation for PS 4 (ID according to Figure 2a). In the network, nodes
represent AC compounds and edges different types of pairwise ACs (indicated by line styles according to Figure 5). Network statistics are provided.
Isolated ACs are formed by individual compound pairs, while coordinated ACs (with partners involved in multiple cliffs) give rise to the formation
of increasingly large AC clusters. Four selected AC clusters are shown in dashed rectangles and identified using numbers I − IV. In (b−e), these
clusters and their AC constellations are depicted in detail (the AC representation is according to Figure 5). AC compounds are numbered. In (d),
substitutions distinguishing different ACs within the large cluster III are highlighted using differently colored backgrounds.

Molecular Pharmaceutics pubs.acs.org/molecularpharmaceutics Article

https://dx.doi.org/10.1021/acs.molpharmaceut.9b01236
Mol. Pharmaceutics 2020, 17, 979−989

987



Further differences between PSs were observed for the ratio
of AC compounds to all compounds. In this case, three PSs
had a significantly higher proportion of AC compounds than
others including purine (PS 6), isoquinoline (PS 12), and
piperidinyl-benzimidazolone (PS 21), for which significantly
different numbers of compounds were available. For PS 21,
more than 50% of available compounds were involved in AC
formation, an unusual observation. These findings indicated
the presence of high SAR information content in sets of
compounds with different PSs.
We also determined the mean ΔLE value accompanying AC

formation for each PS, which revealed large differences
between PSs (with large fluctuations around the mean), as
shown in Figure 7b. For example, AC formation for PSs such
as quinoxaline (PS 14) or coumarin (PS 17) was associated
with unusually large LE improvements (with mean ΔLE = 8.8
and 10.3, respectively), whereas in other cases such as a
carbohydrate substructure (PS 20), only small changes were
observed (ΔLE = 3). Taken together, there were substantial
differences in AC formation between PSs.
Activity Cliff Network Analysis. SAR information can be

visualized in and extracted from AC networks, in which nodes
represent AC compounds and edges indicate pairwise AC
formation.4,5 We also studied AC networks for PSs. Figure 8a
shows an exemplary network for quinoline (PS 4) combining
different types of ACs. Quinoline was contained in 3153
compounds, representing one of the largest PS-based sets.
These compounds formed a total of 788 PS-ACs with activity
against 44 targets (including, among others, 25 membrane
receptors and nine enzymes). Only 40 ACs were formed by
isolated analogue pairs. The others represented coordinated
ACs where one or both AC compounds participated in
multiple cliffs. In network representations, coordinated ACs
lead to the formation of clusters (disjoint network
components) with at least three compounds. These clusters
typically have increasing size, different composition, and
strongly varying topology. The 788 ACs depicted in Figure
8a formed a total of 101 clusters, 25 of which contained
different types of ACs. The 748 coordinated ACs gave rise to
61 increasingly large clusters. Four representative clusters with
different size and topology are marked in Figure 8a (I−IV) and
their AC configuration is depicted in detail in Figure 8b−d,
illustrating that AC clusters are particularly rich in SAR
information.
Compounds forming cluster I in Figure 8b were PI3-kinase

p110-alpha subunit inhibitors and only distinguished by
substitutions at a single site (hence forming MMP-ACs).
Different from cluster I, cluster II in Figure 8c contained all
three types of ACs. Here, fluorine isomers alone displayed
significant potency variations, which were complemented by
other AC-inducing substitutions. We note that for structurally
well-explored targets such as kinases, X-ray data might also be
taken into consideration to further explore AC formation in
the presence or absence of PSs.5

All compounds forming cluster III in Figure 8d were active
against the cannabinoid CB2 receptor. This large cluster with
complex topology contained a variety of coordinated ACs and
was particularly rich in SAR information. Exemplary ACs are
shown in detail revealing different substitution patterns with
large potency effects. By contrast, the small cluster IV in Figure
8e contained only three compounds with activity against the
beta-2 adrenergic receptor. The analogues formed iso-ACs

involving a methyl group, which revealed a “magic methyl”
position outside the quinoline moiety.
The examples in Figure 8 show how a PS can be embedded

in different structural environments provided by distinct series
of analogues and illustrate how relevant SAR information can
be extracted from AC clusters.

■ CONCLUSIONS

We have explored AC formation by compounds containing PSs
that have a long history in pharmaceutical research and have
become focal points for generating target-class-directed
compounds. Although prominent PSs are not class-specific,
as also shown herein, compounds containing PSs are often
enriched with specific biological activities. Some PSs are
controversially viewed considering potential liabilities such as
assay interference, but even these PSs are found in marketed
drugs, indicating that compounds containing such PSs must be
analyzed on a case-by-case basis. In our large-scale analysis,
ACs containing PSs were frequently detected. Molecular
properties of compounds forming PS-ACs were very similar
to those forming other ACs. However, compounds from PS-
ACs formed on average more AC relationships than others.
Furthermore, substantial differences in AC formation between
individual PSs were detected. Some PSs were present in much
larger proportions of AC compounds than other PSs.
Moreover, ACs containing selected PSs displayed unusually
large improvements in ligand efficiency. We also emphasize
that PSs are embedded in compounds in rather different ways
and that their activity is structurally context-dependent. This
was well accounted for by PS-AC network analysis, which
separated clusters of ACs formed by different analogue series
containing the same PS with activity against different targets.
As we have shown, these clusters reveal target-specific SAR
information for compound series containing a given PS. Thus,
AC network analysis should aid in further exploring features of
PSs that contribute to activity in different structural environ-
ments and determine target-based SARs. In addition to
network analysis, ACs can also be further explored, for
example, with the aid of complex X-ray structures, at least for
structurally well-characterized targets, to examine individual
interactions contributing to AC formation.
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Summary

With the aid of a PS collection, a large-scale substructure search for PSs was
conducted in the ChEMBL database. In this analysis, we only selected PSs that were
contained in at least 100 distinct bioactive compounds, yielding 24 PSs for further
analysis. These 24 PSs were found in around 42% of all high-confidence bioactive
compounds, indicating their high utilization as templates for compound design. We
also reevaluated the hypothesis that these PSs were not truly target family-privileged
substructures. Instead, most of them were found in distinct target families. Three
different types of ACs, i.e., MMP-clifs, isomer cliffs and dual-site ACs, were sys-
tematically generated and searched for the presence of PSs. ACs with and without
PSs showed similar distributions with respect to total AC numbers. Moreover, no
significant differences in molecular properties (e.g., ligand efficiency, logP, PSA and
sp3 carbon) between ACs with and without PSs were observed. When different PSs
were compared, some PSs showed a high propensity to form ACs. For PSs detected
in different activity classes, PS-based AC networks were constructed which showed
that the same PS embedded in different structural contexts displayed distinct activi-
ties, as reflected by disjoint AC clusters.

ACs have been generally underutilized in medicinal chemistry. In the next chap-
ter, a unified strategy for extracting different types of ACs is introduced. These ACs
are made available to the public for subsequent analysis and extended AC data struc-
ture for rationalizing dual-site ACs is suggested.
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Chapter 5

Increasing the Public Activity Cliff
Knowledge Base with New Categories
of Activity Cliffs

Introduction

In the previous chapter, different types of ACs were computationally generated.
The comparison of ACs with and without PSs indicated that they were difficult to dif-
ferentiate based on molecular properties. However, the drug-likeness and promiscu-
ous manner of these PSs will continue to be highly attractive for bioactive compound
design.

In this chapter, dual-site cliffs, isomer cliffs, and ACs containing PSs (PS-ACs)
are described and made available to the public. Additionally, for dual-site ACs, a
practical approach for extracting SAR information is suggested, thus making them
more enticing for medicinal chemistry.
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Increasing the public activity cliff knowledge
base with new categories of activity cliffs
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Aim: Extending the public knowledge base of activity cliffs (ACs) with new categories of ACs having special
structural characteristics. Methodology: Dual-site ACs, isomer ACs and ACs with privileged substructures
are described and their systematic identification is detailed. Exemplary results & data: More than 7400
new ACs belonging to different categories with activity against more than 200 targets were identified
and are made publicly available. Limitations & next steps: For dual-site ACs, limited numbers of isomers
are available as structural analogs for rationalizing contributions to AC formation. The search for such
analogs will continue. In addition, the target distribution of ACs containing privileged substructures will
be further analyzed.

Lay abstract: Activity cliffs (ACs) are formed by small molecules that have very similar structures, are active
against the same biological target, but have a large difference in potency against their target. Accord-
ingly, ACs are of interest in medicinal chemistry because they reveal small structural changes that greatly
influence the potency of active compounds. This information can be used for compound optimization.
Computational methods are applied to search for ACs in large compound databases. Here, we further
extend the public AC knowledge base with new categories of ACs having special structural characteristics.

Graphical abstract: Shown are an exemplary dual-site activity cliff (AC) (top), isomer AC (middle) and
an AC containing a privileged substructure (bottom). Structural differences between AC compounds are
highlighted in blue and the privileged substructure is colored pink. Compound targets and potency (pKi)
values are reported.
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Activity cliffs (ACs) are defined as pairs or groups of structurally similar (analogous) compounds that are active
against the same target but have a large difference in potency [1–4]. ACs have also been studied on the basis of
compounds, which are highly potent against a given target and structural analogs that are confirmed inactive
against this target [4]. Furthermore, ACs have been investigated from a variety of research perspectives including
the consideration of different AC concepts, different types of data analysis and AC predictions [1–9]. In medicinal
chemistry, ACs are of particular interest because they capture small chemical modifications of active compounds
that substantially contribute to, or determine, structure–activity relationships (SARs) [2,3].

For formally defining ACs, molecular similarity and potency difference criteria must be specified [2–4]. Similarity
can be calculated on the basis of chemical descriptors and numerical similarity metrics (descriptor-based/numerical
similarity) or on the basis of substructure relationships (substructure-based similarity) [3,4]. Substructure-based
similarity measures include shared scaffolds, the formation of matched molecular pairs (MMPs) or membership in
the same analog series (AS) [4,10,11]. Compounds forming MMP-based ACs are confined to chemical changes at a
single substitution site [10,12], whereas AS-based ACs may contain single or multiple substitution sites [11,13].

Furthermore, for defining ACs, constant potency difference thresholds can be applied across different compound
activity classes (e.g., at least 100-fold potency difference) [2,3]. Alternatively, activity class-dependent potency
difference thresholds can be determined on the basis of statistically significant potency differences, with respect to
intra-class potency value distributions [14,15]. In either case, the use of assay-independent equilibrium constants (Ki

values) as potency measurements is generally preferred over assay-dependent measurements such as IC50 values.
The use of Ki values makes it possible to compare ACs for a given target and across different targets in a meaningful
way.

Considering the evolution of the AC concept in medicinal chemistry [4], we have defined three generations of
ACs [4,16], depending on the structural similarity and potency difference criteria that are applied:

First generation ACs
Similarity criterion: numerical or substructure-based similarity.
Potency difference criterion: constant potency difference threshold across all activity classes.

Second generation ACs
Similarity criterion: MMP formation (analog pairs with single substitution site).
Potency difference criterion: variable activity class-dependent potency difference thresholds.

Third generation ACs
Similarity criterion: structural analogs originating from the same AS (with single or multiple substitution sites).
Potency difference criterion: variable activity class-dependent potency difference thresholds.
Previously, we have generated a large collection of second generation ACs [15,17] and made it publicly available

as an open access deposition [17,18].
For nearly 100 different activity classes, each representing a unique target protein, more than 20,000 activity

class-dependent ACs were identified, also taking structural analogs of potent compounds into account that were
confirmed inactive against the same target [15,17]. Compound activity data were extracted from medicinal chemistry
sources (ChEMBL database) [19] and high-throughput screens (PubChem Bioassays) [20].

Herein, we further increase the public AC knowledge base through addition of three recently introduced
categories of ACs including dual-site ACs (ds-ACs) [13], isomer ACs (iso-ACs) [21] and ACs containing ‘privileged
substructures’ (PS-ACs) [22]. These AC categories are detailed in the methodology section and an in-depth analysis
of each category is reported in its original publication.

The PS concept was originally introduced in medicinal chemistry by Evans et al. [23] and has become increasingly
popular over time [24,25]. PSs are frequently found in compounds with preferential activity against specific target
families. They usually are not selective for a particular target but display a tendency of preferential binding to
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Figure 1. Privileged substructures. Shown are the structures of 24 privileged substructures found in at least 100 unique bioactive
compounds.

an individual target family over others. Accordingly, PSs are often considered as family-directed core structures
in medicinal chemistry [23–25]. Studying PS-ACs is attractive because these ACs reveal different levels of SAR
information associated with individual PSs, as described in detail [22].

In the following, we report a systematic search for ds-ACs, iso-ACs and PS-ACs, resulting in a new collection
of ACs that further extends our knowledge base of ACs and is made available as an open access deposition.
Importantly, ds-ACs, iso-ACs and PS-ACs were originally introduced in independent studies. Herein, we report
a new unified search strategy that has made it possible to identify these ACs in bioactive compounds in concert
applying consistent criteria, determine the overlap between different AC categories and study ACs belonging to
these categories. This strategy is related to, yet distinct from the one applied in the original assessment of PS-ACs,
which were most recently introduced [22], and has yielded the first public collection of PS-ACs. All new ACs
identified in our systematic analysis are made freely available as a part of this study, providing a wealth of examples
for follow-up investigations.

Methodology
Compound activity data
Bioactive compounds were extracted from the latest version of the ChEMBL [19] database (release 25). For selection
of high-confidence activity data, rigorous criteria were applied. Only compounds forming direct interactions
with human targets (i.e., assay relationship type ‘D’) at the highest assay confidence level (i.e., assay confidence
score 9) were selected. Furthermore, only equilibrium constants (i.e., Ki values) with specified numerical values
(‘=’ relationship) were accepted as potency measurements for given targets.

Privileged substructures
PSs were defined according to Welsch et al. [25]. A systematic search was carried out for PSs that were contained in
100 or more unique ChEMBL compounds. Figure 1 shows 24 PSs that were identified and further considered for
AC analysis.

Compound fragmentation
To ensure consistent generation of ACs belonging to different categories, a recently introduced compound frag-
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Figure 2. Exemplary activity cliffs belonging to different categories. From the top to the bottom, an exemplary ds-AC, iso-AC and PS-AC
are shown. For each AC, the target and compound potency (pKi) values are reported. Structural modifications and the PS are colored blue
and pink, respectively.
AC: Activity cliff; ds-AC: Dual-site activity cliff; iso-AC: Isomer activity cliff; PS: Privileged substructure.

mentation scheme was applied [22]. Using a decomposition algorithm for MMP generation [10], exocyclic single
bonds in compounds were systematically fragmented, yielding two fragments per step. During the fragmentation
process, the following size restrictions were applied to obtain a core and substituent fragment [12]. The number of
nonhydrogen atoms of the core fragment was required to be at least twice as large as the number of nonhydrogen
atoms comprising the substituent fragment. In addition, the size of the substituent was restricted to at most 13
nonhydrogen atoms. Furthermore, the substituent in the core fragment was replaced by a hydrogen atom (R →
H). The calculations were carried out using in-house scripts with the aid of the OpenEye chemistry toolkit (NM,
USA) (version 1.7.7) [26].

Analog pairs & activity cliffs
Following fragmentation, compounds having the same activity and sharing the same core were organized into
individual sets of analogs. Then, analog pairs (APs) differing at two substitution sites were systematically enumerated
and categorized as follows:

• Structural isomers: the same substituent occurred at two different sites (core positions).
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High-confidence activity data
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Containing PSsNot containing PSs

Figure 3. Unified search strategy for the identification of different activity cliffs. The identification of ds-ACs,
iso-ACs and PS-ACs is summarized. Numbers of compounds, targets and ACs are given at each stage.
AC: Activity cliff; CPD: Compound; ds-AC: Dual-site activity cliff; ds-AP: Dual-site analog pair; iso-AC: Isomer activity
cliff; PS: Privileged substructure; PS-AC: Privileged substructure-containing activity cliff.

• Dual-site analogs: two different substituents occurred at different sites. The size difference between these
exchanged substituents was restricted to at most eight non-hydrogen atoms.

For each AP, it was determined whether the participating compounds had an at least 100-fold difference in potency,
which qualified the pair as an iso-AC or ds-AC. We note that iso-ACs are confined to structural isomers and hence
distinct from chirality or chiral cliffs [4,9] where cliff compounds are distinguished by different chirality at a given
stereocenter. Furthermore, for each AC, it was determined if it contained a PS. ACs with PSs were also classified as
PS-ACs. Figure 2 shows exemplary ACs belonging to different categories. By definition, iso-ACs represent a special
case of ds-ACs.

Detection of isomers of dual-site activity cliff compounds
For ds-AC compounds, a further systematic search for structural isomers (from the same activity class) with the
same substituent at the other substitution site was carried out. If such isomers were identified, it was possible
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to generate an extended data structure for a ds-AC, revealing the contributions of substituent positions to AC
formation, as further discussed below.

Exemplary results & data
Unified search strategy for activity cliffs belonging to different categories
Originally, ds-ACs, iso-ACs and PS-ACs were separately studied. Here, we have implemented a unified search
strategy to identify ACs belonging to these categories in parallel and determine their overlap. The search strategy
is summarized in Figure 3. After compound fragmentation, a total of 112,537 qualifying APs were identified that
yielded a total of 7465 ACs, which were assigned to different categories, as further detailed below.

Extended dual-site activity cliff data structure
For SAR exploration, ds-ACs can be extended to generate a data structure comprising four analogs, as illustrated
in Figure 4. This data structure makes it possible to examine the contributions of substituent positions to ds-AC
formation and is thus rich in SAR information [13]. Its generation requires the identification of isomers of ds-AC
compounds with inversely repositioned substituents, as shown in Figure 4. A systematic search for such isomers
revealed that 396 ds-ACs could be fully extended with two qualifying isomers. In addition, for 2320 other ds-ACs,

10.2144/fsoa-2020-0020 Future Sci. OA (2020) FSO472 future science group



New categories of activity cliffs Data Note

only one isomer was identified. Among analogs from different series, structural isomers are statistically under-
represented when compared with analogs carrying different substituents. A possible reason might be that medicinal
chemists, from an SAR perspective, typically prefer introducing different substituents at a given site, rather than
synthesizing analogs with a ‘moving’ substituent (structural isomers). Regardless, the extended data structure based
upon ds-ACs offers additional opportunities for SAR analysis and illustrates the utility of this AC category.

Data
Our systematic search identified a total of 3696 ACs without PSs that were formed by 2757 unique compounds
with activity against 191 targets. These ACs included 3401 ds- and 295 iso-ACs. Thus, only a limited number of
iso-ACs were available. In addition, the search identified 3769 PS-ACs formed by 2559 unique compounds with
activity against 131 targets. These PS-ACs included 3544 ds- and 225 iso-ACs. ACs with and without PSs shared
84 targets.

Our analysis revealed that approximately half of the newly identified ACs contained one of 24 predefined PSs that
were detected in at least 100 unique bioactive compounds. The high frequency with which a predefined set of PSs
occurred in ds- and iso-ACs, thus combining different AC categories, indicated that PSs yielded SAR-informative
compounds with potential for further optimization. Hence, on the basis of AC analysis, these PSs deserve further
consideration in medicinal chemistry. The PS-ACs provided as a part of our study should aid in further exploring
these PSs.

Data deposition
All ACs identified herein are provided in a text file. For each AC, category membership(s) are specified. For AC
compounds, the ChEMBL ID, canonical SMILES representation and potency value are reported. For PS-ACs
identified herein (forming a subset of iso-ACs and ds-ACs), the SMILES string of the PS is also provided. The data
are made freely available as a deposition on the ZENODO open access platform [27].

Limitations & next steps
The extended ds-AC data structure enables the analysis of substitution site-specific contributions to AC formation.
However, among structural analogs, structural isomers are under-represented and only limited numbers of isomers
are currently available for ds-AC analysis. This is essentially the only data-dependent limitation associated with
exploring the new AC categories introduced here. Hence, the search for isomers as structural analogs for ds-AC
analysis will continue. Furthermore, the large number of PS-ACs we identified makes it possible to investigate the
target distribution and SAR information content of PS-containing compounds and their analogs in greater detail.
For this purpose, PS-ACs provide immediate focal points.

Executive summary

• The activity cliffs (AC) concept is rationalized.
• Different generations of ACs are defined.
Methodology
• Procedures for AC identification are detailed.
• Recently introduced AC categories are described.
• Search routines are implemented.
Exemplary results & data
• A unified search strategy for identifying different ACs is detailed.
• Search results are summarized.
• An extended data structure based upon dual-site ACs is introduced.
• A collection of ACs is generated.
• Details of its open access deposition are provided.
Limitations & next steps
• Limited availability of isomers of dual-site AC compounds is discussed.
• Further analysis of privileged substructure-containing ACs is proposed.
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Summary

Herein, through a unified strategy, 6945 dual-site cliffs and 520 isomer cliffs were
obtained, which were formed by a total of 5310 compounds with activity against
more than 200 targets. 3769 ACs (∼ 50.4%) contained at least one PS implying
that PSs were frequently used for SAR exploration. For these dual-site cliffs, a sys-
tematic structural isomer search for highly and weakly potent AC compounds was
performed. Only 396 dual-site cliffs could be fully extended with two isomers with
inversely repositioned substituents. For 2320 ACs, only one structural isomer of ei-
ther the highly or weakly potent AC compound was identified. For the remainder,
no structural isomers were detectable. These observations implied that structural
analogs forming isomer relationships with AC compounds were generally underrep-
resented. The isomers in extended dual-site ACs helped to rationalize such cliffs and
demonstrated the utility of this AC category. Associated ACs were made available
to the public in an open-access deposition.

Since ACs encode unexpected biological responses, they might be involved in
critical protein-ligand interactions. If these could be identified, they would be highly
informative for structure-based drug design. In the next chapter, ACs with minimal
chemical modifications are systematically extracted and rationalized with the aid of
X-ray structures.

79



80



Chapter 6

Activity Cliffs Produced by
Single-Atom Modification of Active
Compounds: Systematic
Identification and Rationalization
Based on X-Ray Structures

Introduction

Molecular recognition largely depends on various favorable interactions such as
hydrogen bond formation or covalent bonding. In drug discovery, it is highly appre-
ciated when minor structural modifications are accompanied with increase in activi-
ties, yielding promising candidates. Such effects indicate specific SAR determinants,
which are of particular interest in structure-based drug design.

In this chapter, we introduced computational methods to systematically extract
ACs that captured minimal structural modifications including heteroatom replace-
ment and positional difference. Since the total number of heavy atoms between AC
compounds remains the same, the formation of this AC category indicates a ligand
efficiency improvement that originates purely from potency effects. For these newly
identified ACs, a search for X-ray complexes was performed to rationalize the AC
formation at the atomic level.
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a b s t r a c t

In medicinal chemistry, activity cliffs (ACs) are considered as sources of critical structure-activity rela-
tionship (SAR) information. ACs are capable of revealing such SAR information because they are formed
by pairs or groups of structural analogs that are distinguished by small chemical modifications leading to
large variations in compound potency. Such modifications can reveal critically important substitution
sites in analog series. Small AC-encoded chemical changes enable the identification of SAR determinants.
In this work, we have searched medicinal chemistry data for most “subtle” ACs in which participating
compounds are only distinguished by single-atom modifications. These ACs can be directly associated
with lead optimization strategies such as positional atom scanning (atom “walks”) or heteroatom re-
placements in ring structures. More than 1500 of these ACs with activity against a variety of targets were
identified. To further explore newly identified ACs, we searched for X-ray structures of ligand-target
complexes containing participating AC compounds. For a subset of subtle ACs, X-ray structures of
complexes made it possible to examine effects of single-atom changes in light of well-defined ligand-
target interactions. Since ACs capturing minimal chemical changes are of particular interest for lead
optimization and drug design, we make all newly identified ACs and associated structural information
freely available as an open access deposition.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

Compound optimization depends on the exploration of
structure-activity relationship (SAR) information that is typically
collected while generating series of analogs [1]. Alternatively, going
beyond individual analog series, SAR information can be obtained
through systematic analysis of compound activity data [2]. To
capture critical SAR information provided by analog series or large
compound data sets, the activity cliff (AC) concept was introduced
[3,4]. ACs were originally defined as pairs of structurally similar
active compounds with large potency differences [3]. As such, ACs
can be understood as the pinnacle of SAR discontinuity in com-
pound series. Accordingly, their occurrence is typically desirable
during the early stages of compound optimizationwhen compound
potency must be improved and detection of potency gradients is

desirable [5]. By contrast, during late stages of lead optimization
when high potency levels must be retained while balancing mul-
tiple compound properties, encountering steep SARs, as indicated
by ACs, is less desirable [5]. Regardless, ACs have high SAR infor-
mation content and often reveal SAR determinants, the notion of
which aids in guiding compound optimization efforts.

Over time, the general pair-based definition of ACs has evolved
and molecular similarity and potency difference criteria underlying
AC assessment have been further refined [3,6]. In addition, alter-
native AC representations have been considered ranging from
molecular graph-based feature sets to bioactive compound con-
formations [6]. As a source of knowledge for practical applications
in medicinal chemistry, ACs are typically most useful if they are
represented by structural analogs with well-defined substitution
sites [6]. In addition, simple compound modifications increase the
chemical interpretability of ACs. The smaller AC-inducing sub-
stitutions are, the more likely they are to identify sites in analogs
that determine SARs. Formation of ACs has also been observed for
stereoisomers and structural isomers [7]. However, in these cases,
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AC-inducing effects are often difficult to understand without
additional data.

We have been interested in exploring ACs that encode minimal
chemical modifications: single-atom modifications. Therefore, we
have conducted a systematic search for ACs with single-atom
modifications. Such “subtle” ACs are of particular interest for me-
dicinal chemistry, for two reasons. First, since these ACs contain
minimal chemical modifications there is a high probability that
they reveal SAR determinants. Second, these AC can be directly
associated with advanced lead optimization strategies including
positional atom scanning, also referred to as atom “walks”, or
heteroatom replacements in ring structures [8,9]. In addition, such
ACs are also of particular interest as test cases for computational
chemistry, especially for calibrating or benchmarking (free) energy
methods or scoring functions. Therefore, we have systematically
identified such ACs across current compound activity classes on the
basis of curated high-confidence activity data. ACs capturing min-
imal chemical modifications are also of interest for structure-based
compound design because they are likely to single out individual
interactions that are important for ligand binding. Hence, we have
searched X-ray structures of ligand-target complexes for AC targets
and compounds and studied key interactions in detail, as also re-
ported herein. As a part of our study, the newly identified ACs are
made freely available for medicinal and computational chemistry
applications.

2. Experimental

2.1. Compounds and activity data

From ChEMBL [10] version 26, all bioactive compounds meeting
the following criteria were extracted. Only compounds forming
direct interactions (assay relationship type: “D”) with human tar-
gets at the highest confidence level (assay confidence score: 9)
were selected. As potency measurements, only numerically speci-
fied equilibrium constants (Ki values) or IC50 values were consid-
ered and separately organized into two data sets, i.e., a Ki- and IC50-
based set. Approximate potency measurements with “>“, “<” or “~”
relationships were removed. If a compound had multiple potency
values, the geometric mean of all values was calculated as the final
potency annotation, provided all values fell within the same order
of magnitude; otherwise, the compound was disregarded.

On the basis of these stringent selection criteria, a total of 85,598
unique bioactive compounds forming 144,356 interactions with
993 targets were obtained for the Kiebased data set. In addition,
the IC50ebased set consisted of a total of 225,498 unique com-
pounds with activity against 1841 targets, forming a total of 317,474
interactions.

Because Ki and IC50 measurements cannot be directly compared,
analog pairs (APs) with single-atom modifications and corre-
sponding ACs were separately identified for these two data sets, as
described in the following.

2.2. Analog pairs and activity cliffs with single-atom modifications

On the basis of these high-confidence data sets, analog pairs
(APs) with single-atom modifications were systematically identi-
fied with the aid of RDKit [11] and organized into corresponding AP
sets.

Two compounds were paired if they:

(i) contained a single-atom replacement. Four different types of
atom replacements were considered: N to C (NeC), OeC,
NeO, and SeO. Such analogs formed an atom-replacement AP.

(ii) were distinguished only by the position of a single hetero-
atom, forming an atom-walk AP.

The IC50 and Ki sets yielded a total of 36,526 qualifying APs with
activity against 1046 targets and 17,526 qualifying APs with activity
against 489 targets, respectively. These sets of APs with single-atom
modifications provided the basis for the identification of corre-
sponding ACs.

An AP was classified as an AC if the two participating analogs
displayed an at least 100-fold difference in potency. A potency
difference of at least two orders of magnitude has frequently been
generally applied as an AC criterion across different compound
activity classes (also termed target sets) [3,6].

2.3. Activity cliff networks

To study the formation of newly identified ACs in context, AC
networks were generated inwhich nodes represented participating
AC compounds and edges pairwise AC relationships [12]. Partly
overlapping ACs formed by groups of analogs with large potency
variations are referred to as coordinated ACs [6,12]. In AC networks,
the presence of coordinated ACs gives rise to the formation of
clusters, which are rich in SAR information [12] and can be indi-
vidually selected and studied. Network representations were
drawn with Cytoscape [13].

2.4. Target classification and X-ray structures with activity cliff
compounds

AC targets were assigned to different target classes and groups
according to the ChEMBL l1 and l2 target/protein family classifi-
cation scheme, respectively [10].

The RCSB Protein Data Bank (PDB) [14] was searched for X-ray
structures of AC targets in complex with AC compounds identified
herein. For AC targets, ChEMBL identifiers (IDs) were mapped to
UniProt [15] and UniProt IDs were then used to search for PDB
entries with the aid of KNIME protocols [16]. X-ray structures of AC
targets were searched for co-crystallized AC compounds.

Ligand-target interactions in crystal structures with AC com-
pounds were determined and visualized using protein structure
analysis functions of the Molecular Operating Environment (MOE)
[17,18].

Table 1
Activity cliff statistics.

Type IC50 data set Ki data set

Atom-replacement Atom-walk Atom-replacement Atom-walk

NeC 396 (15,136) 256 (8182) 176 (6792) 113 (3782)
OeC 119 (4990) 25 (956) 61 (2435) 8 (467)
NeO 162 (4388) 3 (96) 110 (2170) 3 (78)
SeO 45 (2754) 0 (24) 37 (1779) 0 (23)
Total number 722 (27,268) 284 (9258) 384 (13,176) 124 (4350)

For each data set, the number of atom-replacement and atom-walk ACs and corresponding number of APs (in parentheses) are reported.
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2.5. Computational methods summary

The approach applied herein is summarized as follows: Initially,
large volumes of compounds and activity data were curated to
focus the analysis on high-confidence data, which is essential for AC
analysis. Then, pairs of structural analogs with activity against the
same target and well-defined single-atom modifications were
systematically identified. From these APs, ACs were selected in
which the two participating analogs had an at least 100-fold dif-
ference in potency. The formation of these ACs was then visualized
and studied in detail in network representations in which nodes
represented AC compounds and edges pairwise AC relationships.
Finally, a search was carried out for X-ray structures of complexes
between AC target proteins and AC compounds. Ligand-target in-
teractions in these crystallographic structures were analyzed to aid
in the rationalization of newly identified ACs with single-atom
modifications.

3. Results and discussion

3.1. Identification of activity cliffs produced by single-atom
modifications

ACs with single-atom modifications capture minimal chemical
changes leading to large potency variations and are thus of
particular relevance for lead optimization efforts. Relevant single-
atom modifications include specific atom replacements and posi-
tional changes of heteroatoms. Accordingly, we systematically
searched bioactive compounds for atom-replacement or atom-walk
APs. The resulting AP populations were then screened for ACs with
an at least 100-fold difference in potency between paired analogs.
The results are summarized in Table 1.

For both the IC50- and Ki-based AP collections, it was found that
2.6%e3.1% of all APs formed ACs. Thus, large-magnitude potency
changes as a consequence of single-atom modifications were

Fig. 1. Activity cliff categories. Shown are exemplary atom-replacement (top) and atom-walk ACs (bottom). In each case, the chemical modification is highlighted in red. For each
AC, negative logarithmic potency (pKi or pIC50) values and the target protein are reported. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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generally rare and less frequent than generally observed for analog
pairs. On average, ~5% of exhaustively enumerated analog pairs
meet or exceed a 100-fold difference in potency [3,6].

Given the very large number of qualifying APs we detected, in
total more than 54,052, the small proportion of ~3% of ACs among
them still resulted in large absolute numbers. The IC50 set yielded
722 atom-replacement and 284 atom-walk ACs. For the Ki set, the
corresponding numbers were 384 and 124 ACs, respectively. Hence,
atom-replacement ACs were more frequent than atom-walk ACs
(proportional to the corresponding numbers of APs). In total, 1514
high-confidence ACs with single-atom modifications were ob-
tained, a larger number than we anticipated, providing a substan-
tial knowledge base for medicinal and computational chemistry

applications. Fig. 1 shows exemplary atom-replacement and atom-
walk ACs with activity against different targets.

3.2. Network analysis

To further investigate the formation of ACs with single-atom
modifications, data set-dependent AC networks were generated,
as shown in Fig. 2. These network views combine atom-
replacement and atom-walk ACs and highlight the formation of
coordinated ACs with three or more participating analogs. For the
IC50 set, 325 of the total number of 1006 ACs (~32%) were formed in
a coordinatedmanner, giving rise to 127 distinct AC clusters. For the
Ki set, 138 of 508 ACs (~27%) were coordinated, resulting in 59

Fig. 2. Activity cliff networks. For the IC50 (top) and Ki (bottom) data set, AC networks with AC clusters formed by at least three compounds are shown. Nodes represent AC
compounds and edges indicate the pairwise formation of ACs. Highly and weakly potent AC compounds are colored green and red, respectively. Dashed and solid black lines indicate
atom-replacement and atom-walk ACs, respectively. Network statistics are provided. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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clusters. In both cases, the majority of clusters consisted of three
compounds and only few large clusters with more complex to-
pologies were observed. Thus, the majority of ACs with single-atom
modifications was formed by individual compound pairs and only a
limited number of AC compounds participated in more than one
AC. These findings set ACs with single-atom modifications apart
from previously studied ACs, more than 90% of which were formed
in a coordinated manner [6]. For ACs with single-atom modifica-
tions, the much lower proportion of coordinated ACs was consis-
tent with the lower than average rate of large potency variations as
a consequence of subtle chemical changes, as discussed above.
Accordingly, if such ACs are formed, they are likely to reveal key
positions of SARs in analogs.

Network analysis also revealed that clusters of coordinated ACs
with single-atommodifications often combined atom-replacement
and atom-walk ACs. Hence, AC compounds frequently participated
in both types of ACs. For example, in Fig. 2, two AC clusters are
encircled (cluster I and II) that combine atom-replacement and
atom-walk ACs in different ways. In Fig. 3, these clusters are
depicted in detail. In both cases, a weakly potent AC compound
formed different types of ACs with highly potent analogs, illus-
trating high SAR information content of these clusters.

3.3. Target distribution

Next, we determined the distribution of ACs with single-atom
modifications across different target groups. The results are re-
ported in Table 2 and Table 3 for the IC50 and Ki data set, respec-
tively. In both cases, ACs were widely distributed across different
classes of targets including a variety of enzymes, receptors, and ion
channels. Overall, most ACs were available for G protein-coupled
receptors (GPCRs) and protein kinases, which are among the
most popular therapeutic targets. The IC50 set contained 310 ACs
formed by kinase inhibitors and 147 ACs with ligands of family A
GPCRs while the Ki set yielded 31 and 264 ACs formed by kinase
inhibitors and family A GPCRs, respectively.

3.4. X-ray structures with activity cliff information

Given the subtle nature of ACs with single-atom modifications,
we also intended to further explore possible reasons for AC for-
mation. For studying ACs at the atomic level of detail, X-ray struc-
tures of ligand-target complexes provide a sound scientific basis.
For GPCRs, structural data of ligand-target complexes are still
sparse. By contrast, a wealth of structural information is currently
available for kinases and their inhibitors. For all AC targets we

Fig. 3. Activity clusters. Two clusters highlighted in Fig. 2 (I and II) are shown in detail, which combine the formation of atom-replacement and atom-walk ACs. Target names and
potency (pKi or pIC50) values are reported.

H. Hu and J. Bajorath European Journal of Medicinal Chemistry 207 (2020) 112846

5



identified, a systematic search was carried out for X-ray structures
of complexes with AC compounds.

For the IC50 set, crystal structures of a lyase target in complex
with both AC compounds were available, hence fully characterizing
one AC. In addition, for 33 other ACs, a crystal structure of an AC
target with one AC compound was identified, covering 10 different
target classes. In 30 of 33 cases, the crystallographic AC compound
represented the highly potent AC analog. Structures of kinase-
inhibitor and GPCR-ligand complexes were associated with 15
and two ACs, respectively.

For the Ki set, two ACs were fully characterized by correspond-
ing pairs of X-ray complexes and for 23 other ACs, an X-ray

structure of an AC target with one AC compound was available,
covering 10 target classes. In 22 of these cases, the crystallographic
AC compound was the highly potent AC analog.

Taken together, for a total of 59 ACs with single-atom modifi-
cations, X-ray structures were available. Of these ACs, 50 involved
atom replacements and the remaining nine examples represented
atomwalks, all of which involved nitrogen atoms. In addition, NeC
was also the most frequent atom replacement, accounting for 29 of
the 59 ACs.

3.5. Rationalization of activity cliffs

The presence or absence of specific ligand-target interactions as
a consequence of compound modifications provides a possible
rationale for AC formation. While contributions of specific in-
teractions seen in X-ray structures to the free energy of binding
must still be confirmed, ACs with single-atom modifications are
particularly attractive for structure-based analysis because they
frequently account for the presence or absence of atom-based in-
teraction(s). Single-atom modifications as analyzed herein pre-
dominantly affect hydrogen bond formation or hydrogen-p
interactions. The corresponding ACs thus provide an opportunity to
focus on individual interactions that might implicated in large
potency effects. Fig. 4 shows an exemplary AC from the Ki data set
for which X-rays structures with both AC analogs were available.
This nitrogen-walk AC was formed by inhibitors of coagulation
factor X, a popular therapeutic protease target.

In this case, the “walking” nitrogen atom of the weakly potent
AC analog forms a water-mediated hydrogen bond with factor X
residue Ser214 that is absent in the highly potent AC analog when
the nitrogen position changes. However, in the absence of this
hydrogen bond, the highly potent analog forms a hydrogen bond
with NH of residue Gly216 and another bifurcated water-mediated
hydrogen bond involving the main chain carbonyl oxygen of res-
idue Gly216 and the NH of residue Gly218. This rearranged
hydrogen bonding pattern is accompanied by a conformational
adjustment, as illustrated by the aligned binding modes of both AC

Table 2
Activity cliff distribution across different target groups (IC50 data set).

Target class Target group Number of ACs

Enzyme Kinase 310
Membrane receptor Family A G protein-coupled receptor 147
Enzyme Protease 80
Enzyme Transferase 72
Enzyme Phosphodiesterase 71
Enzyme Oxidoreductase 63
Ion channel Voltage-gated ion channel 46
Enzyme Hydrolase 37
Enzyme Unclassified 31
Enzyme Cytochrome P450 30
Transcription factor Nuclear receptor 21
Transporter Electrochemical transporter 19
Epigenetic regulator Eraser 17
Membrane receptor Family C G protein-coupled receptor 14
Other cytosolic protein Unclassified 11
Enzyme Ligase 7
Ion channel Ligand-gated ion channel 7
Enzyme Isomerase 5
Enzyme Lyase 5
Epigenetic regulator Writer 4
Ion channel Other ion channel 2
Transcription factor Unclassified 2
Membrane receptor Unclassified 1
Membrane receptor Family B G protein-coupled receptor 1
Secreted protein Unclassified 1
Transporter Primary active transporter 1
Unclassified protein Unclassified 1

Table 3
Activity cliff distribution across different target groups (Ki data set).

Target class Target group No. ACs

Membrane receptor Family A G protein-coupled receptor 264
Enzyme Protease 58
Enzyme Lyase 47
Enzyme Kinase 31
Other cytosolic protein Unclassified 16
Ion channel Ligand-gated ion channel 15
Enzyme Transferase 13
Transporter Electrochemical transporter 8
Enzyme Cytochrome P450 7
Enzyme Hydrolase 7
Enzyme Phosphodiesterase 6
Ion channel Voltage-gated ion channel 6
Transcription factor Nuclear receptor 6
Enzyme Oxidoreductase 4
Epigenetic regulator Eraser 4
Membrane receptor Family B G protein-coupled receptor 4
Enzyme Ligase 3
Epigenetic regulator Reader 2
Membrane receptor Family C G protein-coupled receptor 2
Unclassified protein Unclassified 2
Enzyme Unclassified 1
Enzyme Isomerase 1
Ion channel Other ion channel 1
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analogs, which partly alters their fit into the binding site.
Also shown is an inhibitor analog of these two AC compounds.

This analog is only distinguished from the highly potent crystallo-
graphic AC compound by an NeC replacement, leading to the
absence of the quaternary ammonium, which is involved in
hydrogen bond and hydrogen-p interactions in the X-ray structure.
Comparisons of these two analogs indicated that the NeC
replacement and resulting loss of interactions involving the qua-
ternary ammonium led to a nearly 100-fold loss in compound
potency.

Surveying X-ray structures with AC compounds revealed a
number of instances in which single-atom modifications

represented by ACs could be associated with individual in-
teractions, but also others where structural data did not provide a
possible rationale for AC formation. Fig. 5 shows representative
examples from different target classes.

Fig. 5a shows a nitrogen-walk AC formed by casein kinase II
alpha inhibitors having a more than 1000-fold difference in po-
tency. In the X-ray structure of the complex, the “walking” nitrogen
forms a partly buried hydrogen bondwith the NH of residue Val116,
which could no longer be formed when the nitrogen changes its
position. Whether or not this single interaction could account for
the large potency differences would require further investigation.

In Fig. 5b, another large-magnitude nitrogen-walk AC is shown

Fig. 4. X-ray structures representing an activity cliff. On the left, two factor X inhibitors are shown that form a nitrogen atom-walk AC and for which X-ray structures are available
(right, with PDB IDs). Also shown is their binding mode alignment (obtained by superposition of the target structures in both complexes). A solvent-accessible surface view of the
binding site is shown. Protein and ligand carbon atoms are colored yellow and cyan, respectively. Dashed green and magenta lines represent hydrogen bonds and hydrogen-p
interactions, respectively. In the center separating the two X-ray structures, an analog of the AC compounds is shown that differs from the highly potent compound by a single NeC
replacement. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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encoding a more than 1000-fold difference in potency. In this case,
the respective nitrogen atom of the highly potent phosphodies-
terase 10A inhibitor is involved in a network of hydrogen bonds
that could not be formed in the case of the weakly potent analog.
The absence of this hydrogen bond network is likely to cause a
significant reduction in potency.

In the example in Fig. 5c, the NeO atom replacement converts a
hydrogen bond donor of the highly potent factor X inhibitor into an
acceptor in the weakly potent analog, which would affect two
hydrogen bonds formed with different protein residues seen in the
X-ray structure, which also provides a likely explanation for the
observed reduction in potency.

The kinase inhibitors in Fig. 5d form a CeN atom-replacement

AC. In the X-ray structure with the highly potent inhibitor,
possible interactions involving the respective carbon atom become
only apparent following a side chain rotamer adjustment of residue
Phe49. In the presence of a preferred rotamer, a hydrogen-p
interaction is possible. The CeN replacement captured by the AC
would not permit this type of interaction in the case of the weakly
potent analog.

The representative examples discussed so far illustrate different
types of interaction hypotheses for rationalizing the formation of
ACs with single-atommodifications. In some instance, well-defined
interactions are very likely to be affected; in others, putative
interaction differences between highly and weakly potent analogs
are less evident. Finally, Fig. 5e presents an example where a

Fig. 5. Relating interactions in X-ray structures to activity cliffs. In a-e, exemplary ACs are shown for which an X-ray structure of the target with the highly potent (aed) or
weakly potent (e) AC analog was available (indicated by an arrow). The representation is according to Fig. 4.
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relevant X-ray structure does not provide a possible explanation for
AC formation. In this case, an X-ray structure of the complex
involving a weakly potent JAK2 kinase inhibitor was available that
was converted into a highly potent analog through an OeC atom
replacement. However, in the X-ray structure, the aliphatic ring in
which the replacement occurred was exposed to the solvent envi-
ronment at the entrance of the binding pocket and not involved in
detectable interactions. Hence, in this case, it must be assumed that
conformational changes accompanying interactions with the more
hydrophobic analog and/or other components of the binding pro-
cess such as entropic effects contributed to AC formation.

4. Conclusions

Herein, we have introduced a new category of ACs that capture
single-atommodifications including atom replacements and walks.
Thus, these ACs encode minimal chemical changes, which reflect
corresponding compound optimization strategies, and reveal SAR
information that can be attributed to interactions depending on
individual atoms. We have systematically searched for these ACs

and identified an unexpectedly large number of more than
1500 ACs with single-atom modifications and activity against a
variety of targets. Network analysis showed that individual active
compounds were capable of forming atom-replacement and atom-
walk ACs with different analogs. Furthermore, we have searched for
X-ray structures associated with these ACs that can be analyzed to
study and potentially rationalize AC formation at the atomic level of
detail. In addition, ligand-target interactions affected by single-
atom modifications are likely to significantly contribute to SARs.
The analysis revealed a variety of ways in which individual in-
teractions might be affected, leading to large potency effects.

In summary, in this work, we have:

(1) introduced a new type of ACs with minimal chemical
changes, i.e. single-atom replacements or atom walks;

(2) identified more than 1500 of these new ACs through large-
scale activity data analysis;

(3) rationalized AC formation on the basis of X-ray structure of
ligand-target complexes.

Fig. 5. (continued).
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For SAR exploration, ACs capturingminimal chemical alterations
provide a viable knowledge base. Furthermore, for computational
chemistry and drug design, these ACs and associated X-ray struc-
tures provide interesting test cases because theymake it possible to
computationally probe individual interactions and their energetic
contributions to binding. Therefore, we make our potency
measurement-based collections of ACs with single-atom modifi-
cations and the associated structural information freely available in
an open access deposition that is detailed in an associated Data in
Brief note.
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Summary

In this study, more than 1500 ACs with single-atom modifications were iden-
tified. This AC category is generally rare accounting for around 3% of qualifying
compound pairs. The majority of them (1106 ACs) were atom-replacement ACs.
An AC network demonstrated that ∼ 30% of all ACs were formed in a coordinated
manner. Typically, this AC category was frequently observed for protein kinases and
G protein-coupled receptors, but ACs for other target families were also detected.

For these ACs, the crystallographic complexes for both cliff compounds were
only available in three cases. In addition, we also detected 56 ACs for which only one
X-ray ligand-target complex was available. Taken together, these 59 ACs provided
the possibility to rationalize AC formation based on crystallographic structures. Ob-
vious interaction differences such as hydrogen bond formation or hydrogen-π in-
teractions between AC-forming compounds were observed which could be directly
attributed to individual heteroatom modifications. Since the X-ray structures only
provide an incomplete picture of binding events, further experimental tests are re-
quired to probe the binding free energy contributions of particular interactions. The
identified ACs with single-atom modifications have been made available to the pub-
lic for follow-up studies.

The formation of ACs is generally a rare event. Currently, ACs are often globally
analyzed and the criterion of at least two orders of magnitude difference in potency
is universally applied irrespective of compound activity classes. In the next chapter,
we attempt to rationalize AC formation across different activity classes by relating
potency value distribution and structural similarity relationships to each other.
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Chapter 7

Rationalizing the Formation of
Activity Cliffs in Different Compound
Data Sets

Introduction

Primary AC analysis has been mainly focused on globally exploring AC charac-
teristics such as coordinated or isolated ACs, frequency of occurrence, or extraction
of associated SAR information from AC clusters. Large-scale AC studies indicate
that the formation of ACs is a rare event accounting for only ∼ 5% of structurally
similar compound pairs. However, the reason behind this statistic has not yet been
explored in detail. Compound potency value distributions in activity classes often
significantly differ. Thus, the analysis of AC characters on a per activity class (tar-
get) basis could provide further insight into its AC formation.

In this chapter, activity classes with high-confidence activity data from the
ChEMBL database were systematically extracted. The qualifying activity classes
were assigned to different categories according to their potency value distributions.
RMMP-based networks were constructed to visualize and rationalize the difference
in AC formation across different activity classes.
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ABSTRACT: Activity cliffs are formed by structurally analogous com-
pounds with large potency variations and are highly relevant for the
exploration of discontinuous structure−activity relationships and compound
optimization. So far, activity cliffs have mostly been studied on a case-by-
case basis or assessed by global statistical analysis. Different from previous
investigations, we report a large-scale analysis of activity cliff formation with
a strong focus on individual compound activity classes (target sets).
Compound potency distributions were systematically analyzed and
categorized, and structural relationships were dissected and visualized on a
per-set basis. Our study uncovered target set-dependent interplay of potency
distributions and structural relationships and revealed the presence of
activity cliffs and origins of cliff formation in different structure−activity
relationship environments.

Activity cliffs are formed by structurally similar (analogous)
active compounds with large differences in potency.1−4 Because
activity cliffs represent small chemical changes having large
biological activity effects, they embody the pinnacle of
structure−activity relationship (SAR) discontinuity,3 which is
detrimental for quantitative SAR predictions.2 However,
discontinuous SARs and activity cliffs often reveal SAR
determinants, especially when encountered during early stages
of compound optimization, and thus provide viable information
for medicinal chemistry.3,4

For a consistent assessment of activity cliffs, similarity and
potency difference criteria must be clearly defined.3 On the basis
of globally assessed potency range distributions of pairs of active
analogues, an at least 100-fold difference in potency (on the
basis of equilibrium constants, if available) has been proposed
and frequently been used as an activity cliff criterion.4,5 The
definition of activity cliffs also depends on the molecular
representations and similarity measures that are used.4,6

Compound similarity for activity cliff definition can be
quantified in different ways, for example, by calculating
Tanimoto similarity on the basis of molecular fingerprint
representations or by applying substructure-based similarity
criteria.3,4 Numerical similarity measures, such as the Tanimoto
coefficient, yield a continuum of values, and a threshold must be
set for defining activity cliffs. By contrast, substructure-based
methods produce a binary readout, for example, two compounds
share the same core structureand are classified as similaror
they do not. In addition to comparing molecular graph-based
(two-dimensional) representations, activity cliffs have also been
determined in three dimensions by calculating the similarity of
experimental compound binding modes taken from complex X-
ray structures.7

For graph-based activity cliff definition, substructure
similarity assessment isin our experiencegenerally more
consistent than numerical similarity calculations and often easier
to interpret from a chemical perspective.4 Among substructure-
based approaches, the matched molecular pair (MMP)
concept8,9 is particularly attractive for activity cliff definition.
An MMP is defined as a pair of compounds that are only
distinguished by a chemical modification at a single site.8 This
modification corresponds to the exchange of a pair of
substructures,8,9 which is termed a chemical transformation.9

By introducing appropriate transformation size restrictions, the
formation of MMPs can be limited to structural analogues
typically generated during compound optimization.10 Applying
this similarity criterion yields a structurally conservative and
chemically intuitive definition of activity cliffs.4,10 Moreover,
transformation size-restricted MMPs can be efficiently gen-
erated algorithmically,9,10 hence enabling large-scale analysis of
activity cliff populations.
In light of these considerations, our preferred activity cliff

definition encompasses the formation of a transformation size-
restricted MMP by two compounds sharing the same biological
activity that have an at least 100-fold difference in potency.4,10

Whenever possible, potency differences are determined on the
basis of (assay-independent) equilibrium constants. The so-
defined activity cliffs have been termed MMP-cliffs.10

The definition of activity cliffs is focused on compound pairs
and hence accounts for pairwise relationships. However, activity
cliffs in compound data sets are mostly not formed by isolated
compound pairs (i.e., pairs without structural neighbors forming
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1. INTRODUCTION



additional activity cliffs). Rather, the vast majority of activity
cliffs are formed in a coordinated manner by groups of
structurally related compounds with large potency variations,
meaning that individual compounds are involved in the
formation of multiple activity cliffs with different analogues.11,12

In activity cliff networks where nodes represent compounds and
edges pairwise activity cliffs, compound subsets forming
coordinated cliffs give rise to the formation of disjoint clusters.12

These activity cliff clusters are a rich source of SAR information
and much more informative than cliffs considered as isolated.13

More than 95% of MMP-cliffs detected across different data sets
were formed in a coordinated manner.14 In activity cliff
networks, clusters often include “hubs,” that are, nodes
representing molecules that are centers of local activity cliff
formation with multiple partner compounds. Such molecules
have also been termed “activity cliff generators.”15,16

In addition to activity cliff coordination, the frequency with
which activity cliffs occur across different data sets has been
determined.5,14 There has been substantial growth in activity
cliff information over time. For example, from June 2011 until
January 2015, the number of MMP-cliffs originating from the
ChEMBL database,17 the major public repository of compounds
and activity data from medicinal chemistry sources, nearly
doubled; with a total of more than 17 000 MMP-cliffs available
at the beginning of 2015.14 In addition, the target coverage of
MMP-cliffs increased from about 200 to 300 individual target
proteins over this period of time. However, despite this strong
growth, the proportion of bioactive compounds involved in the
formation of MMP-cliffs across different compound data sets
remained essentially constant at close to 23%.14

So far, activity cliffs have been studied in exemplary
compound sets on a case-by-case basis or surveyed by global
statistical analysis.5,14 In addition, cliff populations have been
organized and visualized in network representations.12,13

However, what has not been attempted thus far is systematically
exploring and comparing activity cliff formation in different
compound activity classes (also called target sets). To these
ends, we have analyzed in detail potency distributions and
structural relationships between compounds in many different
target sets, studied how activity cliffs were formed, and
determined the differences between sets. Hence, the focus of
our current study has been on details of activity cliff
arrangements in individual compound sets rather than on global
statistical exploration. Our analysis revealed many characteristic
differences in activity cliff formation between target sets.

2. MATERIALS AND METHODS

2.1. Activity Cliff Definition. For our current analysis, we
introduced a modification of our preferred MMP-cliff definition
stated above.4,10 For MMP generation, standard random
fragmentation of exocyclic single bonds9 was replaced by
fragmentation according to retrosynthetic (RECAP) rules,18

yielding (transformation size-restricted) RECAP-MMPs
(RMMPs).19 Retrosynthetic MMPs were generated to further
increase the chemical relevance (synthetic accessibility) of
compound pairs, forming cliffs. Accordingly, the formation of an
RMMPwas used as a similarity criterion for activity cliffs, and an
at least 100-fold difference in potency between RMMP
compounds was required, as before. The so-defined activity
cliffs are referred to as RMMP-cliffs.

2.2. Compounds and Activity Data. Bioactive com-
pounds with high-confidence activity data were assembled from
ChEMBL version 23.17 The following selection criteria were
applied: First, only compounds involved in direct interactions
(type “D”) with human targets at the highest confidence level
(assay confidence score 9) were selected. Second, only
numerically specified equilibrium constants (Ki values) were
considered as potency measurements. Equilibrium constants
were reported as pKi values. On the basis of these selection
criteria, a total of 71 967 unique compounds were obtained with
activity against a total of 904 targets. Accordingly, these
compounds were organized into 904 target sets.

2.3. RMMP Analysis. RMMPs were systematically gen-
erated for all target sets, yielding 354 094 target set-based
RMMPs (243 110 unique RMMPs) that were formed by 46 977
compounds from 574 target sets. For the subsequent analysis,
only target sets that contained at least 100 RMMPs were
retained, which resulted in 237 sets yielding a total of 347 025
target-based RMMPs (238 795 unique RMMPs) formed by
44 451 compounds.
For each target set, an RMMP network was generated in

which nodes represented compounds and edges pairwise
RMMP relationships. In this network, each separate RMMP
cluster represented a unique series of analogues. RMMP
networks were also used to represent RMMP-cliffs by
highlighting edges that represented both RMMP and activity
cliff relationships. All network representations were drawn with
Cytoscape.20

2.4. Potency Distributions. For the 237 qualifying target
sets, compound potency distributions were monitored in
boxplots. On the basis of the interquartile range (IQR), that
is, the range between quartile 1 (Q1) and 3 (Q3), target sets

Figure 1. Potency distribution in target sets and categorization. The compound potency distributions of all 237 target sets were analyzed in a boxplot
and the IQR, that is, the difference between quartile 3 and 1, was determined. On the basis of the IQR, target sets were divided into three different
categories (CAT 1: IQR < 1; CAT 2: 1 ≤ IQR < 2; CAT 3: IQR ≥ 2).
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were assigned to three different categories, as shown in Figure 1:
category 1 (CAT 1), IQR was smaller than 1 order of magnitude
(<10-fold difference in potency); CAT 2, IQR fell between 1
and less than 2 orders of magnitude (10- to 100-fold difference);
and CAT 3, IQR no smaller than 2 orders of magnitude (≥100-
fold difference in potency). By definition, the IQR represented
the potency range of∼50% of the compounds in each target set.

3. RESULTS AND DISCUSSION
3.1. Study Concept. Activity cliffs have so far mostly been

studied on the basis of individual compound series or by global
statistical analysis.3−5 Our current study was designed to
systematically investigate, for the first time, the differences in
activity cliff formation and frequency between different target
sets by relating compound potency distributions and structural
relationships to each other. Therefore, potency distributions
were determined for many different target sets, categorized,
compared, and related to intra-set analogue relationships, which
were systematically determined. Primary goals of the analysis
included the assessment of differences in activity cliff formation
and frequency between different target sets and the ration-
alization of such differences on the basis of potency and
structural criteria, as defined in the following. To better
understand target set-dependent activity cliff distributions,
they were visualized in network representations. Taken together,
these features set our current analysis apart from previous
studies of activity cliffs in computational and medicinal
chemistry.3,4

3.2. Structural Relationships. Close structural relation-
ships between active compounds are one of the two major
determinants of activity cliffs, in addition to potency differences.
RMMP (or MMP) calculations reveal close structural relation-
ships and identify pairs of analogues. Importantly, however, the
number of RMMPs produced by a given target set cannot be
reliably used as an indicator of structural homogeneity. Rather,
the presence or absence of multiple subsets of analogues
comprising different series strongly influences structural
heterogeneity or homogeneity, which is reflected by the cluster
structure of RMMP networks, as illustrated in Figure 2. Here,
two target sets with similar numbers of RMMP-forming

compounds are compared. The target set on the left was
dominated by a large cluster of analogues and was thus
structurally homogeneous, whereas the set on the right
contained 20 different small clusters and 1 larger cluster and
was structurally heterogeneous. It follows that the cluster
structure of RMMP networks must be carefully considered as a
prerequisite for RMMP-cliff formation.

3.3. Potency Distributions and Profiles. The likelihood
of large potency differences between similar compounds can be
estimated by monitoring the potency distributions of target sets.
For our analysis, we assigned potency distributions to three
different categories (CAT 1−3) on the basis of boxplot-derived
IQR values, as shown in Figure 1. CAT 1, 2, and 3 comprised 25,
169, and 43 target sets, respectively. Hence, the majority of
target sets fell into CAT 2 whose IQR spanned 1 to 2 orders of
magnitude in potency and thus delineated an activity cliff-
relevant range, which was further expanded by CAT 3. These
observations supported our categorization of potency distribu-
tions. Accordingly, potency distributions became increasingly
variable fromCAT 1 to 3, as revealed by the potency distribution
profiles in Figure 3. The CAT 1 profiles in Figure 3a reflect
narrow potency distributions on the basis of which activity cliff
formation is unlikely. By contrast, the CAT 2 profiles in Figure
3b and, especially, CAT 3 profiles in Figure 3c reveal large
potency variations between structural analogues, resulting in a
principally high propensity of activity cliffs.

3.4. RMMP-Cliffs. In 207 of the 237 qualifying targets sets,
RMMP-cliffs were identified, amounting to a total of 11 834
cliffs. Table 1 reports that the number of RMMP-cliffs increased
over target sets of CAT 1, 2, and 3, with on average 2, 52, and 69
cliffs per set, respectively. Thus, there was a general trend of
increasing number of RMMP-cliffs with increasing variability of
potency distributions. The very small number of RMMP-cliffs
for CAT 1 sets was directly attributable to the narrow potency
distributions characterizing this category. Table 2 reports that
the 48 target sets containing 50 to a maximum of 820 RMMP-
cliffs exclusively belonged to CAT 2 and CAT 3 that had activity
cliff-relevant IQR values. By contrast, target sets with less than
50 RMMP-cliffs were found in all 3 categories. Figure 4 shows
that the majority of target sets with large number of 100 or more

Figure 2. Structural similarity in target sets. For two exemplary target sets, RMMP networks are shown in which blue nodes represent compounds and
edges pairwise RMMP relationships. Separate clusters represent a unique series of analogues. Although the number of RMMP-forming compounds
(CPDs) was similar for both target sets, the number of clusters differed significantly.
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RMMP-cliffs belonged to CAT 2, which was due to the large
number of 169 target sets in this category compared to only 43
sets in CAT 3. A systematic increase in the number of activity
cliffs with increasing IQR values was not observed.
However, despite these general trends, the propensity to form

RMMP-cliffs could not solely be attributed to the variability and
spread of potency distributions. Rather, as further discussed
below, potency distributions in target sets must be viewed in

combination with RMMP networks and their cluster structure.
Table 1 also reports that target sets in CAT 1, 2, and 3 contained
on average 10, 54, and 37 RMMP clusters, respectively. Thus,
CAT 2 and CAT 3 sets contained large number of clusters
(analogue series) whose local potency distributions strongly
influenced RMMP-cliff formation.

3.5. Interplay of Potency Patterns and Structural
Relationships. The 207 target sets containing RMMP-cliffs
were individually examined to evaluate potency distribution
profiles and RMMP networks in context and rationalize why
RMMP-cliffs were formed with different frequencies. The
analysis revealed a number of characteristic features determining
cliff formation that are summarized in Figure 5 by comparing
exemplary target sets. Figure 5a (top) shows a set of
phosphodiesterase 3A inhibitors with a flat CAT 1 potency
distribution profile, which prohibited RMMP-cliff formation,
despite the presence of two analogue series with in-part

Figure 3. Potency distribution profiles. Shown are exemplary potency
distribution profiles for target sets belonging to different categories
[(a), CAT 1; (b), CAT 2; (c), CAT 3] according to Figure 1. Black dots
represent RMMP compounds and red dots singletons not participating
in RMMPs.

Table 1. Target Set Statisticsa

CAT # target sets # clusters (mean) # RMMP-cliffs (mean)

1 25 10 2
2 169 54 52
3 43 37 69

aFor each target set category (CAT), the number (#) of target sets,
mean number of RMMP clusters per set, [# clusters (mean)], and
mean number of RMMP-cliffs are reported.

Table 2. RMMP-Cliff Distributiona

# RMMP-cliffs (range) # target sets CATs

0 30 1, 2, 3
[1, 10) 77 1, 2, 3
[10, 20) 33 1, 2, 3
[20, 50) 49 1, 2, 3
[50, 100) 20 2, 3
[100, 500) 25 2, 3
[500, 820] 3 2, 3

aFor different ranges of RMMP-cliffs, the number of target sets (#
targets) and categories (CATs) they belong to are reported.

Figure 4. RMMP-cliffs vs IQR values. For each of the 237 target sets,
the number of RMMP-cliffs (y-axis) is plotted against increasing IQR
values (x-axis). Red vertical lines separate target sets belonging to CAT
1, 2, and 3.
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Figure 5. continued
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extensive RMMP relationships. In addition, Figure 5a (bottom)
displays somatostatin receptor 5 ligands with a variable CAT 2
distribution and more than 100 RMMP-forming compounds.

Although cliff formation was more likely in this case, the target
set did not contain any RMMP-cliffs either. This was a direct
consequence of a heterogeneous cluster structure and local

Figure 5.Differences in RMMP-cliff formation. In (a−c), exemplary target sets with characteristic differences in activity cliff formation are compared,
as described in the text. For each set, its potency distribution profile and RMMP network are shown and RMMP statistics are reported. Network nodes
are colored by potency using a continuous color spectrum from red (lowest potency in the target set) over yellow (intermediate) to green (highest
potency). If available, compounds forming exemplary RMMP-cliffs are shown and consistently labeled in all display items.
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potency distributions over different subsets of analogues
forming 16 clusters, as revealed by the RMMP network of this
set.
Figure 5b shows two different sets of kinase inhibitors with

similar CAT 2 potency distributions but different RMMP cluster
structures that yielded 40 (top) and 27 (bottom) RMMP-cliffs,
respectively. Exemplary RMMP-cliffs are displayed. In both
instances, the target sets were structurally heterogeneous but
RMMP-cliffs were formed across different clusters, revealing
high degrees of SAR discontinuity.
In Figure 5c, sets of anandamide amidohydrolase (top) and

Bcl-X (bottom) inhibitors are compared having CAT 2 (top)
and CAT 3 (bottom) distributions, respectively. The
anandamide amidohydrolase inhibitors contained only 49
RMMP-forming compounds. The RMMP network was
dominated by a densely connected cluster of 19 analogues
that formed 79 coordinated RMMP-cliffs (exemplary cliffs are
shown). Thus, in this case, the number of RMMP-cliffs was
much larger than the number of participating analogues because
of extensive coordination of cliffs. Hence, this cluster
represented an SAR hotspot. By contrast, the Bcl-X inhibitors
contained a much larger number of 119 RMMP-forming
compounds that were distributed over 20 clusters. Although
the CAT 3 potency distribution of this target set was highly
variable, the majority of compounds in individual clusters had
comparable potency, whereas the potency levels of clusters
significantly differed, giving rise to the presence of only three
RMMP-cliffs.
Taken together, the results in Figure 5 were representative of

many target sets we studied. Analyzing the potency distribution
profiles and in combination with RMMP networks revealed the
characteristic features of target sets and clearly rationalized
differences in RMMP-cliff frequency across target sets.

4. CONCLUSIONS

Herein, we have reported a systematic analysis of RMMP-cliffs
in more than 200 target sets to investigate and better understand
the origins of cliff formation and differences in the frequency of
cliffs. Our study was strongly focused on individual target sets
and their comparison. Potency distributions were determined
and categorized, and structural relationships were analyzed at
the level of RMMPs and organized in networks. Structural
homogeneity of target sets and potency distributions of
increasing variability generally supported the formation of
RMMP-cliffs. However, the interplay of structural and potency
relationships determined the frequency with which RMMP-cliffs
were formed, as revealed by relating potency profiles and RMMP
networks to each other and studying local potency distributions
across different RMMP clusters.
The analysis scheme introduced herein reveals target set-

dependent formation of activity cliffs, provides immediate visual
access to characteristic activity cliff-relevant features of target
sets, and rationalizes differences in the frequency of cliffs across
sets.
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Summary

In this study, the differences in the frequency of occurrence of AC formation
across activity classes were investigated by relating potency distribution and struc-
tural similarity to each other. To obtain statistically sound results, we only selected
activity classes containing at least 100 RMMPs. These qualifying activity classes
were assigned to three categories according to the interquartile range (IQR) values
of compound potency distributions monitored in boxplots. IQR values indicated the
likelihood of the activity classes meeting the criterion of a large difference in po-
tency. For the majority of activity classes, the IQR values fell between one and two
orders of magnitude. However, increasing IQR values did not correlate with increas-
ing number of ACs. Given a large potency variation, structural similarity has to be
taken into account to evaluate the possibility of AC formation. To this end, a RMMP-
based network was constructed where edges highlighted the AC relationships.

The study demonstrated that the likelihood of AC formation largely depended
on the potency variations of intra-RMMP-clusters. For some activity classes with
large potency fluctuations, if intra-cluster potency levels were comparable, the for-
mation of ACs was less likely. Conversely, a proportion of activity classes had high
propensity for AC formation, which was a consequence of the structural homogene-
ity and large potency variation within the clusters. The integration of potency value
distribution and RMMP-based network analysis made it possible to rationalize the
differences of AC frequency among activity classes.

Since potency distributions across activity classes often differ significantly, uni-
versal application of the “at least two orders of magnitude difference in potency"
criterion might not be appropriate. In the next chapter, we derive statistically deter-
mined potency difference criteria tailored for individual activity classes.
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Chapter 8

Second-Generation Activity Cliffs
Identified on the Basis of Target
Set-Dependent Potency Difference
Criteria

Introduction

Many efforts in identifying ACs focused on different molecular representations
to assess molecular similarity, yielding different AC categories such as (R)MMP-
cliffs, fingerprint-based cliffs or 3D-cliffs. Less attention has been paid to studying
the potency difference criteria for AC assessment. Typically, a general threshold of
at least 100-fold difference in potency is frequently applied.

As the results of the preceding chapter showed, the interplay of potency varia-
tions and structural similarity relationships within the RMMP-based clusters strongly
influenced the frequency of occurrence of ACs. In this chapter, we derived an activity
class-dependent potency difference criterion for AC assessment.
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In medicinal chemistry and chemoinformatics, a pair of structurally similar compounds with a significant potency
difference constitutes an activity cliff (AC) [1–3]. ACs are of particular interest for the analysis of structure–activity
relationships (SARs) and chemical optimization because they encode small structural changes with large potency
effects [2]. To evaluate ACs in a consistent manner and systematically analyze ACs in different target sets (compound
activity classes), two criteria must be clearly defined: the ‘similarity’ criterion and the ‘potency difference’ criterion [2–

4].
For ACs, molecular similarity has originally been calculated on the basis of fingerprint descriptors and the

Tanimoto similarity metric [1,2]. Setting thresholds of calculated similarity values for AC formation is convenient for
computational analysis, but calculated similarity relationships are often difficult to reconcile in medicinal chemistry
terms. Accordingly, molecular similarity has also been assessed on the basis of substructure relationships between
active compounds [3,4]. For substructure-based AC definition, the matched molecular pair (MMP) concept [5,6]

has been proven to be very useful [3,4]. An MMP represents a pair of compounds that are only distinguished by
a single chemical modification [5,6]. Following MMP terminology, the chemical modification (exchange of two
substituents) is referred to as a transformation [5]. MMPs can be effectively generated algorithmically [5], which
is an added plus for AC exploration, enabling efficient large-scale analysis. For substructure-based AC definition,
MMPs with size-restricted transformations have been generated [7]. Size-restricted transformations represent typical
R-group replacements in medicinal chemistry, leading to the introduction of MMP-cliffs [7]. Importantly, MMP-
cliffs focus AC analysis on structurally analogous compound pairs and analog series. Series of structural analogs
with significant potency variations preferentially form coordinated ACs, in other words, multiple and overlapping
ACs [8,9]. Most ACs are formed in a coordinated manner, rather than by isolated pairs of compounds [8].

To further increase medicinal chemistry relevance and synthetic accessibility, MMPs can also be generated
by bond fragmentation on the basis of retrosynthetic criteria such as RECAP rules [10]. Accordingly, structural
modifications in such MMPs are synthesis-based. MMPs generated on the basis of retrosynthetic fragmentation
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Figure 1. Retrosynthetic matched molecular pair-cliff. Shown is an exemplary RMMP-cliff formed by two C–C chemokine receptor type 8
antagonists (compounds A and B). The structural modification distinguishing the cliff partners is highlighted on a gray background, the
reaction rule leading to bond fragmentation and RMMP formation is given and the logarithmic potency difference between the two
compounds is reported.
RMMP: Retrosynthetic matched molecular pair.

were termed retrosynthetic (RECAP) MMPs (RMMPs) [11]. RMMPs can also be used to define ACs, resulting in
RMMP-cliffs [12], in analogy to MMP-cliffs.

In addition to the similarity criterion, the potency difference criterion for AC formation must be clearly defined.
Different from calculated similarity, potency values and resulting potency differences are experimentally determined
properties. However, the comparison of different types of potency measurements must be avoided. For example,
(assay-dependent) pIC50 and (assay-independent) pKi values cannot be directly compared. If available, equilibrium
constants are preferred potency measurements for ACs. Importantly, ACs have so far been defined on the basis of
constant potency difference thresholds that were generally applied across target sets [2]. Specifically, on at least 100-
fold difference in potency has often been used as a potency difference criterion for AC formation [2]. Our preferred
general AC definition requires the formation of a transformation size-restricted MMP (or RMMP) with at least a
100-fold difference in potency between the paired structural analogs. Figure 1 shows an exemplary RMMP-cliff.

Applying the general MMP-cliff definition to target sets in ChEMBL [13], approximately 25% of all bioactive
compounds, for which high-confidence activity data were available, were found to be involved in the formation of
at least one AC. In addition, approximately 6% of all MMPs formed by compounds with high-confidence activity
data represented ACs [14]. These findings provided insights into AC frequency when a general definition was applied
across different targets sets.

Recently, we have gone a step further and analyzed compound potency distributions in target sets and their
influence on AC formation [12]. Potency distributions of different variability were identified and assigned to three
statistically distinct categories. Narrow potency distributions comprising category (CAT) 1 were unlikely to yield
ACs, whereas more variable CAT 2 and CAT 3 distributions often yielded ACs, depending on intra-set structural
relationships [12]. Taken together, the findings of our analysis suggested that potency difference criteria for ACs
should be determined in a target set-dependent manner, as a complement or alternative to a generally applied
potency difference criterion.

Herein, we present, for the first time, an assessment of ACs on the basis of target set-dependent potency difference
thresholds, leading to a new set-dependent AC definition. Second-generation ACs further increase cliff information
for target sets and extend the AC concept.
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Materials & methods
Compounds & activity data
ChEMBL version 23 [13] was used as a source of compounds with well-defined (high-confidence) activity measure-
ments applying the following selection criteria:

• Compounds with direct human target interactions (type ‘D’) and highest assay confidence (assay confidence
score 9);

• Specified Ki values (equilibrium constants).

Application of these criteria yielded 71,967 unique compounds that were assigned to 904 target sets.

RMMP analysis
For RMMP generation, the following conditions were applied:

• Transformation size restrictions [7];
• Bond fragmentation following retrosynthetic rules (RECAP rules) [10,11].

A total of 354,094 target set-based RMMPs (243,110 unique RMMPs) were generated that involved 46,977
unique compounds from 574 target sets. Only target sets with at least 100 RMMPs were subjected to AC analysis
(237 sets).

This RMMP threshold was applied to ensure that statistically meaningful potency distributions were obtained
for RMMP-forming compounds. The 237 remaining sets yielded a total of 347,025 target-based RMMPs (238,795
unique RMMPs) involving 44,451 distinct RMMP-forming compounds.

Interquartile ranges of potency distributions
Following our previously established classification scheme [12], potency distributions of the 237 target sets were
assigned to different categories on the basis of the interquartile range (IQR) in box plots capturing the distributions.
The IQR represents the potency range between quartile 1 (Q1) and 3 (Q3) for approximately 50% of the compounds
per set, as shown in Figure 2 (top). The following observations were made:

• CAT 1: IQR less than tenfold potency difference;
• CAT 2: IQR 10- to <100-fold potency difference;
• CAT 3: IQR ≥100-fold potency difference.

By definition, the IQR captured the potency range of approximately 50% of the compounds in each target set.
CAT 1 potency distributions were typically narrow, as illustrated in Figure 2 (bottom), and hence, unlikely to yield
ACs, except due to questionable outliers.

AC definition
Two alternative potency difference criteria were applied for defining RMMP-cliffs. The general (target set-
independent) AC definition required a potency difference (� pKi) of at least two orders of magnitude between
RMMP partner compounds, as discussed above. For the newly introduced target set-dependent AC definition,
qualifying potency differences between RMMP partners were set to the mean plus at least two standard deviations
(σ) of the potency distribution among RMMPs of a given set, as shown in Figure 3.

As a structural similarity criterion for AC formation, we required the formation of a transformation size-restricted
RMMP (instead of a conventional MMP). Thus, ACs identified herein were designated RMMP-cliffs.

Compound networks
An RMMP network was generated for each target set (nodes: compounds, edges: pairwise RMMPs) in which
disjoint clusters were formed by individual analog series. RMMP networks were used to represent RMMP-cliffs by
highlighting corresponding edges. All network representations were drawn with Cytoscape [15].
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Results & discussion
Formal criteria for AC definition & assessment
Defining and representing ACs in a consistent and generally applicable manner requires consideration of com-
pound similarity criterion and potency difference criterion. Similarity can be evaluated using different compound
representations and similarity functions [2,3]. We developed a preference for substructure-based similarity assess-
ment [7], which ultimately resulted in the introduction of RMMP-cliffs [11,12], emphasizing medicinal chemistry
relevance and synthetic accessibility. While AC research has so far preferentially focused on the similarity criterion
and AC representation, less attention has been paid to the experimentally grounded potency difference criterion.
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Figure 4. Distribution of target set-dependent potency
difference thresholds. The global distribution of target
set-dependent potency difference threshold values
determined for 212 sets according to Figure 3 is shown in
a boxplot. Values of the lower whisker, first quartile,
median, third quartile and upper whisker are given. In
addition, the number of target sets with potency
difference thresholds of � pKi ≥ 2 and � pKi < 2,
respectively, is reported.

However, the use of high-confidence activity data has been emphasized to ensure that ACs convey reliable SAR
information [3,4]. A generally applicable definition of ACs requires setting the magnitude of the potency difference
threshold to a constant value that must be met or exceeded. This approach has dominated AC analysis over the years.
By contrast, no target set-dependent AC definition has so far been introduced. Compound potency distributions
strongly influence SARs and differences between distributions affect AC formation. Taking such differences into
account requires the assessment of ACs at the level on individual target sets, which has motivated the introduction of
a target set-dependent AC definition applying a constant similarity criterion and structural representation (Figure 1)
and a variable potency difference criterion.

Potency distributions
Introducing target set-dependent potency difference threshold values for AC definition was expected to adapt ACs
to target set characteristics and further increase the relevance of ACs for SAR exploration. Systematic analysis of
compound potency distributions across target sets has revealed different levels of intra-set variability that were
categorized on the basis of distribution statistics [12], as illustrated in Figure 2. CAT 1 sets with IQR values smaller
than one have narrow potency distributions and are unlikely to yield ACs, except due to outliers, which should
be considered with caution. By contrast, potency distributions of CAT 2 and 3 sets with larger IQR values are
variable and likely to yield ACs, depending on intra-set structural relationships. Therefore, these sets have high
priority for AC investigation. Whether or not target sets yield ACs depends on their SAR features and not all sets
are expected to contain ACs. We determined that 25 of the 237 target sets that were preselected for our analysis
had narrow potency distributions belonging to CAT 1. Accordingly, these sets were omitted and 212 CAT 2 and 3
sets remained for AC analysis.

target set-dependent potency differences
Next, we determined potency difference distributions for these 212 target sets by calculating potency differences for
compound pairs forming RMMPs in each set, as illustrated in Figure 3. The median, mean and standard deviation
of the potency difference distributions were determined.

In most instances, adding two standard deviations to the mean of the potency difference distributions resulted in
values significantly exceeding the third quartile of the distributions, as shown in Figure 3. Therefore, the ‘mean plus
two σ’ was set as a potency difference criterion to calculate target set-dependent threshold values for RMMP-cliff
definition.

Figure 4 shows the resulting distribution of target set-dependent thresholds that included 63 sets with � pKi ≥ 2
and 149 sets with 0.5 ≤ � pKi < 2. The median value of the � pKi distribution was 1.7 and thus similar to
the potency difference threshold of 2.0 typically set for globally assessing ACs. The third quartile boundary of the
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Table 1. Retrosynthetic matched molecular pair-cliff statistics.
Definition General target set-dependent

Target sets with RMMP-cliffs, n 195 212

RMMP-cliffs, n 11,773 16,096

RMMP-cliffs (mean per set), % 3.6 4.9

RMMP-cliffs (range per set), % 0.2–40.9 1.1–8.3

Coordinated RMMP-cliffs, % 92.8 92.7

RMMP-cliff statistics are compared for the general and targetset-dependent definition.
RMMP: Retrosynthetic matched molecular pair.
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Figure 5. Distribution of RMMP-cliffs over
set-dependent potency difference thresholds. For each
target set, the number of RMMP-cliffs is plotted against
the set-dependent potency difference threshold.
RMMP: Retrosynthetic matched molecular pair.

distribution was 2.1 (Figure 4). Thus, approximately 25% of the � pKi values exceeded the potency difference
threshold generally applied for AC analysis.

target set-dependent formation of ACs
RMMP-cliffs were defined in a target set-dependent manner by setting the potency difference criterion to the ‘mean
plus two σ’ of the RMMP-based potency difference distribution. As reported in Table 1, a total of 16,096 RMMP-
cliffs were obtained across all 212 target sets. Figure 5 shows the distribution of RMMP-cliffs over calculated
set-dependent potency difference thresholds. The majority of target sets contained fewer than 100 RMMP-cliffs.
However, in some target sets, much larger numbers of RMMP-cliffs were detected. Irrespective of the number
of RMMP-cliffs per target set, the majority of target set-dependent potency difference thresholds fell into the �

pKi interval (1.5–2.5). Therefore, to further evaluate AC frequency as a function of target set-dependent potency
difference thresholds, control calculations were carried out. In these calculations, a ‘mean plus one σ’ difference
threshold criterion was applied, which resulted in more than 48,000 RMMP-cliffs across all target sets. This strong
increase in ACs further supported the application of the statistically derived and more conservative ‘mean plus two
σ’ criterion for target set-dependent threshold calculations.

Comparison of target set-dependent and generally defined ACs
Target set-dependent RMMP-cliffs were compared with those obtained on the basis of the general definition
(� pKi ≥ 2). The results are summarized in Table 1. Generally defined RMMP-cliffs were detected in 195 of
212 target sets, involving a total of 7948 (12.6%) unique cliff-forming compounds. No cliffs were detected in
17 sets. All 212 CAT 2 and 3 target sets contained set-dependent cliffs that were generated by 11,167 (17.7%)
unique cliff-forming compounds. Overall, more target set-dependent RMMP-cliffs (i.e., 16,096) than generally
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Figure 6. RMMP-cliff frequency for alternative definitions. The frequency of RMMP-cliffs applying the general
definition (constant potency difference criterion of at least two orders of magnitude; dashed line) and the target
set-dependent definition (solid line) is reported using different bins (x-axis). For each data point, the corresponding
number of target sets falling into the frequency bin is given.
RMMP: Retrosynthetic matched molecular pair.

defined cliffs (11,773) were identified, with a nearly identical proportion of coordinated cliffs (92.7 vs. 92.8%).
61 target sets contained fewer set-dependent than generally defined RMMP-cliffs whereas 147 sets contained more
set-dependent cliffs. In only four target sets, both definitions yielded the same number of RMMP-cliffs. Thus, the
target set-dependent definition significantly modified RMMP-cliff populations across target sets. Figure 6 compares
RMMP-cliff frequency on a target set basis and highlights definition-dependent variations in cliff frequency.

Applying the general definition, 3.6% of all RMMPs formed cliffs, with a range of 0.2–40.9% per set; applying
the target set-dependent definition, 4.9% of all RMMPs represented cliffs, with a range of 1.1–8.3% per set
(Table 1). Thus, as illustrated in Figure 7, the target set-dependent definition produced a much more balanced
distribution of RMMP-cliffs across target sets than the general definition, both for sets containing small and
large numbers of RMMPs. This was a direct consequence of applying the statistically derived target set-dependent
potency difference criterion.

Figure 8A–C shows the potency distribution of compounds involved in the formation of RMMPs (top left) and
the distribution of potency differences among RMMPs (bottom left) for three exemplary target sets. In addition,
RMMP-cliff distributions resulting from the application of the general and target set-dependent AC definitions
are compared. The target sets differed in the number of RMMP-forming compounds (Figure 8A: 62, B: 167 and
C: 258 compounds) and in the corresponding potency ranges (Figure 8A: 4.7, B: 5.7 and C: 8.2). The number of
RMMP-forming compounds did not correlate with the number of RMMPs (Figure 8A: 502, B: 534 and C: 605
RMMPs). In addition, potency differences captured by RMMPs were variable. For example, the RMMP-forming
compounds reported in Figure 8C spanned a potency range of more than eight orders of magnitude. However, only
six of 605 RMMPs exceeded a potency difference of more than two orders of magnitude, which resulted in the lower
potency difference criterion for AC formation for the given target set. By contrast, RMMP-forming compounds
from the target set in Figure 8A spanned a potency range of four orders of magnitude but RMMPs in this target
set displayed a wider range of potency differences, with 59 RMMPs exceeding � pKi ≥ 2. This resulted in a larger
potency difference criterion for AC formation for this target set. Furthermore, corresponding RMMP network
representations are compared highlighting RMMP-cliffs resulting from the alternative AC definitions. Differences
in AC formation indicate changes in SAR information content depending on the applied AC definition. In
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Figure 7. Proportion of RMMPs forming activity cliffs. Two scatter plots (general definition, left; target
set-dependent definition, right) report the proportion of RMMPs forming RMMP-cliffs (RMMP-cliffs %) for each
target set. For clarity, two outlier sets with very large percentages were omitted.
RMMP: Retrosynthetic matched molecular pair.

Figure 8A, a target set is depicted for which the set-dependent potency difference threshold (� pKi = 2.5) exceeded
the generally applied threshold (� pKi = 2.0), which resulted in the formation of fewer set-dependent than
generally defined RMMP-cliffs. Comparison of the RMMP networks shows that cliff formation in this structurally
homogenous set was, in both instances, mostly confined to a large cluster of structural analogs with extensive
RMMP relationships. In Figure 8B, a target set is shown for which the set-dependent potency difference threshold
(� pKi = 1.7) was smaller than the general threshold, resulting in more target set-dependent cliffs. Similar to the
set in Figure 8A, RMMP-cliff formation in this structurally homogenous set was also mostly confined to a large
compound cluster with extensive RMMP relationships. By contrast, in Figure 8C, a structurally heterogeneous
target set is depicted yielding an RMMP network with diversified cluster structure. As in Figure 8C, the target
set-dependent potency threshold (� pKi = 1.4) was smaller in this case than the general threshold. Comparison
of the resulting RMMP-cliff populations revealed that the increase in target set-dependent RMMP-cliffs led to
cliff formation in several clusters representing different compound subsets. This observation was frequently made
for structurally heterogeneous target sets with increasing numbers of set-dependent RMMP-cliffs. Hence, in these
cases, cliff formation occurred in different structural contexts, thereby increasing the SAR information associated
with set-dependent RMMP-cliffs compared with generally defined RMMP-cliffs; an important characteristic of
set-dependent cliffs. Figure 8D shows exemplary set-dependent RMMP-cliffs for all three target sets together with
their RMMP cluster locations.

Figure 9 shows examples of RMMP-cliffs that were formed if the general AC definition and the target set-
dependent definition were applied. These RMMP-cliffs involved a single highly potent compound (on the left in
Figure 9) and varying numbers of weakly potent analogs. When the general definition was applied, 10 RMMP-
cliffs were obtained with similar potency differences and a variety of R-group replacements, giving rise to obvious
redundancy in AC information. If the target set-dependent potency difference criterion � pKi = 2.2 was applied
only six of these 10 RMMP-cliffs were obtained (with weakly potent cliff compounds shown in the right column
of Figure 9), which revealed essentially the same SAR information. Hence, in this case, the target set-dependent
decrease in the number of RMMP-cliffs reduced redundancy and balanced AC information. In total, 484 generally
defined and 323 target set-dependent RMMP-cliffs were obtained for this target set.

Figure 10 shows four exemplary RMMP-cliffs for another target set. Three of these RMMP-cliffs (except the
one at the top in Figure 10) were only detected if the target set-dependent potency difference criterion � pKi = 1.3
was applied. These RMMP-cliffs further increased the associated SAR information content because, as can be seen,
they were formed in different structural contexts. In total, this target set yielded only two generally defined and 28
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Second-generation activity cliffs with target set-dependent potency differences Research Article

0

1

2

3

4
5

9

10

7

6

8

11
12

13

0 10 20 30 5040 60 70
RMMP-forming CPD

p
K

i

0

1

2

3

4

5

6

0 102 204 306 408 510
RMMP

Δ
 p

K
i

2.5

2.0

C-C chemokine receptor type 8, 62 RMMP-forming CPDs, 502 RMMPs

Definition

General

Target set-dependent

General definition

Target set-dependent definition

Δ pKi

2

2.5

Cliff
clusters (n)

1

1

Total

59

18

Coordinated

RMMP-cliffs (n)

59

18

Isolated

0

0

Nodes: CPDs

Node color: pKi
Low High 

Edges: RMMP-cliffs

RMMPs

Figure 8. Comparison of definition-dependent activity cliff formation. For individual target sets (target name given
at the top), the potency value distribution for RMMP-forming compounds (CPDs) is shown (left, upper plot) and
potency differences between RMMP partners are reported (left, lower plot). Dashed gray lines indicate potency
difference threshold values for the general AC definition (� pKi ≥ 2, constant) and the target set-dependent
definition (variable, e.g. � pKi ≥ 2.5 in 8A). In addition, RMMP networks are shown after applying the general (right,
upper representation) and target set-dependent definition (right, lower representation). Network nodes are colored
by potency using a continuous spectrum (shown at the bottom) from light gray (lowest compound potency in the
target set) to black (highest potency). RMMP-cliffs are highlighted using thick edges connecting nodes. Individual
clusters from which exemplary RMMP-cliffs are shown in 8D are encircled and numbered. Furthermore, RMMP-cliff
statistics are reported (top). (A) Decrease in RMMP-cliffs. Details are provided for a target set for which the
application of the target set-dependent definition resulted in a decrease in the number of RMMP-cliffs relative to the
general definition. (B) and (C) Increase in RMMP-cliffs. Details are given for target sets with an increase in the number
of RMMP-cliffs for the target set-dependent relative to the general definition. (D) Exemplary RMMP-cliffs. Shown are
RMMP-cliffs applying the target set-dependent definition from clusters encircled in (A)–(C).
AC: Activity cliff; CPD: Compound; RMMP: Retrosynthetic matched molecular pair.
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Figure 8. Comparison of definition-dependent activity cliff formation (cont.). For individual target sets (target name
given at the top), the potency value distribution for RMMP-forming compounds (CPDs) is shown (left, upper plot) and
potency differences between RMMP partners are reported (left, lower plot). Dashed gray lines indicate potency
difference threshold values for the general AC definition (� pKi ≥ 2, constant) and the target set-dependent
definition (variable, e.g. � pKi ≥ 2.5 in 8A). In addition, RMMP networks are shown after applying the general (right,
upper representation) and target set-dependent definition (right, lower representation). Network nodes are colored
by potency using a continuous spectrum (shown at the bottom) from light gray (lowest compound potency in the
target set) to black (highest potency). RMMP-cliffs are highlighted using thick edges connecting nodes. Individual
clusters from which exemplary RMMP-cliffs are shown in 8D are encircled and numbered. Furthermore, RMMP-cliff
statistics are reported (top). (A) Decrease in RMMP-cliffs. Details are provided for a target set for which the
application of the target set-dependent definition resulted in a decrease in the number of RMMP-cliffs relative to the
general definition. (B) and (C) Increase in RMMP-cliffs. Details are given for target sets with an increase in the number
of RMMP-cliffs for the target set-dependent relative to the general definition. (D) Exemplary RMMP-cliffs. Shown are
RMMP-cliffs applying the target set-dependent definition from clusters encircled in (A)–(C).
AC: Activity cliff; CPD: Compound; RMMP: Retrosynthetic matched molecular pair.
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Figure 8. Comparison of definition-dependent activity cliff formation (cont.). For individual target sets (target name
given at the top), the potency value distribution for RMMP-forming compounds (CPDs) is shown (left, upper plot) and
potency differences between RMMP partners are reported (left, lower plot). Dashed gray lines indicate potency
difference threshold values for the general AC definition (� pKi ≥ 2, constant) and the target set-dependent
definition (variable, e.g. � pKi ≥ 2.5 in 8A). In addition, RMMP networks are shown after applying the general (right,
upper representation) and target set-dependent definition (right, lower representation). Network nodes are colored
by potency using a continuous spectrum (shown at the bottom) from light gray (lowest compound potency in the
target set) to black (highest potency). RMMP-cliffs are highlighted using thick edges connecting nodes. Individual
clusters from which exemplary RMMP-cliffs are shown in 8D are encircled and numbered. Furthermore, RMMP-cliff
statistics are reported (top). (A) Decrease in RMMP-cliffs. Details are provided for a target set for which the
application of the target set-dependent definition resulted in a decrease in the number of RMMP-cliffs relative to the
general definition. (B) and (C) Increase in RMMP-cliffs. Details are given for target sets with an increase in the number
of RMMP-cliffs for the target set-dependent relative to the general definition. (D) Exemplary RMMP-cliffs. Shown are
RMMP-cliffs applying the target set-dependent definition from clusters encircled in (A)–(C).
AC: Activity cliff; CPD: Compound; RMMP: Retrosynthetic matched molecular pair.
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black (highest potency). RMMP-cliffs are highlighted using thick edges connecting nodes. Individual clusters from which exemplary
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AC: Activity cliff; CPD: Compound; RMMP: Retrosynthetic matched molecular pair.

10.4155/fmc-2018-0299 Future Med. Chem. (Epub ahead of print) future science group



Second-generation activity cliffs with target set-dependent potency differences Research Article

pKi: 7.0 pKi: 6.8

pKi: 6.8

pKi: 6.5

pKi: 6.2

pKi: 6.0

pKi: 6.0

pKi: 7.0

pKi: 7.0

pKi: 7.0

pKi: 9.0

N O

O

N
H

H
N

O

OH
R1

N
H

OH

O

R1
N
H

OH

O

R1
N
H

OH

O

R1
OH

O

N
H

R1 N
H

OH

O

R1

OHO

N
H

R1 OH
N
H

O

R1

N

S

OH

O
N
H

R1

O

OH

N
H

R1 N
H

OH

O

Figure 9. Balancing activity cliff redundancy. Shown are retrosynthetic combinatorial analysis. Procedure matched molecular pairs-cliffs
from the cannabinoid CB2 receptor target set. Increasing the potency difference criterion for activity cliff formation from the generally
applied � pKi ≥ 2 to the target set-dependent � pKi ≥ 2.2 led to a reduction in the number of highly similar activity cliffs.

target set-dependent RMMP-cliffs. Hence, in this case, given the target set-dependent potency distribution, the
majority of SAR-informative compound pairs would have not been identified if the general AC definition had been
applied.

Taken together, the examples in Figure 9 and Figure 10 further illustrate the utility and SAR relevance of
second-generation ACs introduced herein.

Future perspective
In this work, we have explored ACs on the basis of target set-dependent potency value distributions and introduced
a novel AC concept considering target set-dependent potency difference criteria. This extension of generally defined
ACs is of high relevance for SAR analysis because potency value distributions vary significantly across target sets.
Narrow potency distributions in target sets are unlikely to yield ACs. The presence of variable potency distributions is

future science group 10.4155/fmc-2018-0299



Research Article Hu, Stumpfe & Bajorath

H2N

NH

H
N

HO

H2N

NH

H
N

O

NH2

NH2

N

Cl

N

S
N
H O

O

OHO
NH2

NH2

NH2

N

N
S

O

O

N

Cl

N

NH2

N

S

S

NH

NH2

N

S

S

S

NH

NH2

S

H
N

O

O
O

HN

N

N

O O

NH2

S

H
N

O

O
O

HN

N

N

O

Δ pKi: 2.6

Δ pKi: 1.7

Δ pKi: 1.3

pKi: 8.1 pKi: 5.5

pKi: 6.2

pKi: 5.3

pKi: 5.1

pKi: 8.1

pKi: 7.0

pKi: 6.4

Δ pKi: 1.9

Figure 10. Increase in activity cliff-associated structure–activity relationship information. Shown are retrosynthetic matched molecular
pair-cliffs from the urokinase-type plasminogen activator target set. Decreasing the potency difference criterion for activity cliff from the
generally applied � pKi = 2.0 to a target set-dependent � pKi = 1.3 increased the number of RMMP-cliffs and associated structure–activity
relationship information. This was the case because activity cliffs with different structural contexts were identified.

10.4155/fmc-2018-0299 Future Med. Chem. (Epub ahead of print) future science group



Second-generation activity cliffs with target set-dependent potency differences Research Article

a necessary but insufficient condition for AC formation, which is also strongly influenced by structural relationships
between active compounds. For example, if all analogs in a given structurally unique subset of a target set have high
potency and all analogs in another unique subset have low potency, no ACs are formed, despite strong potency
variations within the set. However, taking differences in potency distributions into account adapts AC analysis to
target set-specific features, and hence, increases the SAR relevance of the analysis. To these ends, the first target
set-dependent AC definition has been introduced herein. On the basis of statistical analysis, a target set-dependent
potency difference criterion was derived and applied to calculate target set-dependent potency difference thresholds
for AC formation. For qualifying target sets with statistically significant potency variations, the potency difference
criterion for set-dependent AC formation was set to the mean plus at least two standard deviations of the potency
difference distribution of RMMPs. For the majority of target sets, a larger number of set-dependent than generally
defined RMMP-cliffs was obtained, and the distribution of RMMP-cliffs was more balanced across target sets. For
structurally diverse target sets, a relative increase in set-dependent RMMP-cliffs also resulted in AC formation across
different compound subsets. Thus, ACs were formed in a different structural context provided by compounds from
different subsets, which led to an increase in AC-associated SAR information. Thus, target set-dependent definition
and assessment of ACs further supports SAR analysis and extends the utility of AC information for medicinal
chemistry applications.

ACs have been and continue to be of high interest in medicinal chemistry. It is anticipated that the introduction
of second-generation ACs will lead to a more extensive exploration of ACs in target sets of interest, especially as
new target sets evolve. Adding AC information from public compound sources to medicinal chemistry projects
will provide new opportunities for compound optimization. Making this information available in the practice of
medicinal chemistry will depend on the involvement of computational scientists who are capable of working with
rapidly increasing amounts of compound and activity data. Thus, investigators trained in data science and chemistry
might be highly sought after in the future to operate at the interface between computational and medicinal chemistry.
Regardless, for systematically exploring ACs and associated SAR information, a methodological foundation has
been laid and the key criteria have been thoroughly investigated. Hence, the consideration of second-generation
ACs is expected to provide many future opportunities for practical applications in medicinal chemistry.

Summary points

Formal criteria for activity cliff definition & assessment
• The definition of activity cliffs (AC) requires the specification of similarity and potency difference criteria.

• General definitions have been applied so far on the basis of given molecular representations and similarity
measures and constant potency difference threshold values.

Variable potency distributions
• Determining target set-dependent potency difference thresholds was expected to further increase the relevance

of ACs for structure–activity relationship (SAR) exploration.

• Potency value distributions displayed high variability across target sets.
target set-dependent potency differences
• Analysis of potency difference distributions for pairs of structurally analogous compounds in target sets enabled

the derivation of a target set-dependent potency difference criterion for AC formation.
target set-dependent formation of activity cliffs
• A target set-dependent definition of ACs was introduced by applying a constant similarity criterion and variable

potency difference thresholds.
Comparison of target set-dependent & generally defined activity cliffs
• The target set-dependent definition yielded more ACs than the general definition and a more balanced

distribution of ACs across target sets.

• An increase in the number of set-dependent ACs compared with general ACs was often accompanied by AC
formation in different compound subsets, thereby increasing AC-associated SAR information content.

Future perspective
• Target set-dependent ACs account for different potency value distributions and improve the utility of ACs for SAR

analysis.

• The target set-dependent definition of ACs further extends the AC concept in medicinal chemistry.
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Summary

Since potency distributions across activity classes are generally not comparable,
a constantly applied potency difference criterion might not always be suitable for
defining ACs. In this study, a formula for computing activity class-dependent po-
tency difference thresholds was introduced by considering the mean plus two stan-
dard deviations of potency differences of RMMPs as a threshold for AC formation.
Using RMMP as the structural similarity criterion, activity class-dependent potency
difference thresholds frequently ranged from 1 to 2.5 orders of magnitude with a
median value of 1.7 (∆pKi). The comparison of activity class-dependent and gener-
ally defined potency difference criteria indicated that the activity class-dependent AC
definition generally yielded higher cliff numbers (16,096 vs. 11,773 RMMP-cliffs)
with higher cliff target coverage (212 vs. 195 targets) and a balanced cliff percent-
age of (1.1-8.3% vs. 0.2-40.9%). Moreover, RMMP network analysis indicated
that activity class-dependent potency difference criterion balanced AC formation in
different AC clusters, thus enabling AC formation within diverse structural contexts.

In the following analysis, we systematically explored AC formation in analog se-
ries using the newly introduced activity class-dependent potency difference criteria.
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Chapter 9

Introducing a New Category of
Activity Cliffs with Chemical
Modifications at Multiple Sites and
Rationalizing Contributions of
Individual Substitutions

Introduction

For graph-based molecular similarity evaluation, matched molecular pairs
(MMPs), also termed single-site analog pairs, have been intensively studied. Herein,
we analyzed AC characteristics by considering ACs from analog series (AS). ASs
were computationally identified using the recently introduced compound-core rela-
tionship (CCR) algorithm. Since the CCR methodology permits at most five non-
hydrogen substitution sites for each compound, paired analogs from the same AS
might be distinguished by one or multiple substitution sites. Multi-site ACs were
obtained by extracting analog pairs from ASs and their formation was rationalized.
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A R T I C L E I N F O
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A B S T R A C T
Activity cliffs (ACs) are formed by structurally similar active compounds with large potency differences. Inmedicinal chemistry, ACs are of high interest because they reveal structure-activity relationship (SAR) in-formation and SAR determinants. Herein, we introduce a new type of ACs that consist of analog pairs withdifferent substitutions at multiple sites (multi-site ACs; msACs). A systematic search for msACs across differentclasses of bioactive compounds identified more than 4000 of such ACs, most of which had substitutions at twosites (dual-site ACs; dsACs). A hierarchical analog data structure was designed to analyze contributions of in-dividual substitutions to AC formation. Single substitutions were frequently found to determine potency dif-ferences captured by dsACs. Hence, in such cases, there was redundancy of AC information. In instances whereboth substitutions made significant contributions to dsACs, additive, synergistic, and compensatory effects wereobserved. Taken together, the results of our analysis revealed the prevalence of single-site ACs (ssACs) in analogseries, followed by dsACs, which reveal different ways in which paired substitutions contribute to the formationof ACs and modulate SARs.

1. Introduction
In medicinal chemistry and chemical informatics, activity cliffs(ACs) are generally defined as structurally similar compounds thatshare the same activity but have large differences in potency.1,2 Thus,ACs reveal small chemical modifications having a profound effect onbiological activity. Accordingly, ACs are important sources of structure-activity relationship (SAR) information.2,3For identifying and studying ACs, molecular similarity relevant forAC formation and the magnitude of potency differences that qualifycompound pairs as ACs must unambiguously defined.2,3 This has beendone in different ways, reflecting an evolution of the AC concept overthe years.4 Originally, ACs were defined by quantifying compound si-milarity through calculation of the Tanimoto coefficient (Tc) usingmolecular fingerprints as descriptors, a key technique in chemical in-formatics.2,4 For AC definition, Tc calculations have some limitations.First, a numerical threshold value for similarity must be subjectivelydefined. Second, Tc-based compound similarity is not related to che-mical reactions and often difficult to reconcile from a medicinalchemistry perspective.Instead of threshold-based calculations, substructure-based

similarity criteria have also been applied such as, for example, thepresence of shared molecular scaffolds4 or the formation of matchedmolecular pairs (MMPs),4,5 i.e. pairs of compounds that are only dis-tinguished by a chemical modification at a single site.5,6 Applyingmeaningful size restrictions for chemical modifications,7 MMP calcu-lations have been used to identify pairs of compounds for AC explora-tion, leading to the introduction of MMP-cliffs.7 For AC analysis,random deletion of bonds in compounds to generate MMPs6 has alsobeen replaced by fragmentation according to retrosynthetic rules,8,9which has further increased the chemical interpretability of MMP-cliffsin light of reaction information.9 While Tc-based ACs might includemultiple structural changes, depending on a given pair of similarcompounds, a characteristic feature of MMP-cliffs is that they onlycarry modifications as a single site.7,9In addition to evaluating molecular similarity relationships, a po-tency difference threshold must be determined to identify ACs.2,3 Theconsistent application of a similarity criterion and potency differencethreshold is essential for unambiguously analyzing ACs,3,4 especiallywhen searching for ACs across different data sets.10 A potency differ-ence of at least two orders of magnitude (100-fold) has often beenapplied as an AC criterion,4,10 given that potency differences of this
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magnitude are considered significant in medicinal chemistry.The general application of a constant potency difference thresholddoes not take into consideration that potency value distributions oftensignificantly differ across compound activity classes (also called targetsets), which affects AC formation.11 Therefore, we have recently in-troduced the derivation of target set-dependent potency differencethresholds, which takes set-dependent potency variations into accountand focuses AC analysis on most significant potency differences.12 Thishas led to the introduction of second-generation MMP-cliffs with targetset-dependent potency difference thresholds.12Herein, we report a further extension of the AC concept by in-troducing analog pair-based ACs with different substitutions at multiplesites. Computational identification of analog series13,14 in target sets isfollowed by systematically enumerating all possible analog pairs.Single-site ACs (ssACs) and multi-site ACs (msACs) are then defined onthe basis of target set-dependent potency differences.In systematic search calculations, more than 4000 msACs wereidentified in more than 140 qualifying target sets. More than 90% of themsACs had different substitutions at two sites and were termed dual-site ACs (dsACs). For these ACs, a hierarchical analog data structurewas designed to investigate contributions of individual substitutions toAC formation. ssACs were frequently found to represent dsACs. FordsACs where both substitutions significantly contributed to AC forma-tion, additive, synergistic, and compensatory effects of substitutionswere detected, thus making these ACs informative test cases for SARexploration.
2. Materials, methods, and analysis concepts
2.1. Compounds and activity data

Bioactive compounds were extracted from ChEMBL version 24.1.15Only compounds with reported direct interactions (target relationshiptype: “D”) with human targets at the highest confidence level (assayconfidence score: 9), numerically defined equilibrium constants (Kivalues), and exact measurements (“=”) were selected. Equilibriumconstants were reported as pKi values. To ensure accuracy of AC as-signments it is essential to limit the use of potency values to exact

measurements. Given these criteria, a total of 73,965 unique com-pounds with activity against 915 different targets were obtained.Compounds with reported activity against each target were combinedinto an individual target set.
2.2. Target set-dependent potency distributions

For each of the 915 target sets, compound potency (pKi) distribu-tions were analyzed in boxplots. The interquartile range (IQR) of eachpotency distribution was determined, i.e., the value range covering theintermediate ~50% of the compounds.11 Target sets were only furtherconsidered if their IQR was at least 1 (one order of magnitude). Thiscriterion was applied because target sets with smaller IQR rarely yieldACs.11 Accordingly, 525 target sets qualified for further analysis.
2.3. Determination of analog series

For each of the 525 target sets, a systematic search for analog series(ASs) was carried out applying a recently introduced computationalmethodology.14 In each case, compounds were systematically decom-posed by bond fragmentation according to retrosynthetic combinatorialanalysis procedure (RECAP) rules,8 permitting a maximum of fivesubstitution sites per compound. Each fragmentation step produced acompound core and substituent fragment. A core was generally re-quired to have at least twice the size (number of non-hydrogen atoms)of the fragment or combined multiple fragments. For each compound,all possible core-fragment combinations with single to at most fivesubstitution sites were retained and substituents at each site were re-placed by a hydrogen atom, thereby establishing a compound-core re-lationship (CCR) for each site.14 Subsequently, all compounds sharingthe same core were organized into an individual AS. Accordingly,compounds belonging to the same AS were distinguished by modifica-tions at a single and/or multiple substitution sites. Fig. 1 shows ex-emplary analogs from two different ASs of adenosine A2a receptor li-gands with a single and with two substitution sites. For 410 of the 525qualifying target sets, a total of 15,087 target set-based ASs wereidentified.

Fig. 1. Analog series with different number of substitution sites. Exemplary analogs from two different series of adenosine A2a receptor ligands are shown that differin the number of substitution sites. Analogs from the series at the top are distinguished by modifications at a single substitution site (highlighted in orange), whileanalogs from the series at the bottom have modifications at two sites (highlighted in blue and orange, respectively).
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2.4. Enumeration of analog pairs
By definition, all compounds belonging to one AS form pairwiseanalog relationships. For each target set, all analog pairs were extractedfrom its ASs. These analog pairs provided the basis for the identificationof ACs, as described below. For our analysis, only target sets werefurther considered if they contained at least 100 analog pairs for ACanalysis. This criterion reduced the number of target sets to 209,yielding a total of 14,065 target-based ASs comprising 39,540 uniquecompounds. These compounds formed a total of 334,306 analog pairsthat were used to identify ACs.

2.5. Activity cliff definition and identification
For defining and evaluating ACs, a similarity criterion and potency

difference criterion must be applied. In our analysis, two compoundswere considered similar if they belonged to the same AS and henceformed an analog pair. Accordingly, the presence of a common struc-tural core was required as a substructure-based similarity criterion forAC formation. An analog pair was then classified as an AC if the potencydifference between the analogs was greater than or equal to the targetset-dependent potency difference threshold.12 In contrast to a generallyapplied potency difference value for AC formation, target set-dependentpotency difference threshold takes the specific potency value distribu-tion of compounds having the same activity into account, which cansignificantly differ between target sets.11 A target set-dependentthreshold for AC formation was determined as the mean value of thepotency differences of all analog pairs per set plus two standard de-viations (sigma).12 For each target set, all ACs were then determined. Asreported below, ssACs were found to dominate the distribution of ACsand dsACs the distribution of msACs.
2.6. Single-site analogs

For dsACs, a systematic search for single-site analogs was carried outthat contained one of the two substitutions of the dsAC. Effects ofstructural modifications in a given dsACs were separately considered iftwo single-site analogs were identified for the cliff. Single-site analogswere required to originate from the same target set as the corre-sponding dsACs and have high-confidence activity data. Search calcu-lations for single-site analogs were carried out with the aid of theOpenEye chemistry toolkit.16
2.7. Activity cliff redundancy

If an individual substitution was identified on the basis of single-siteanalogs that fully accounted for the potency difference captured by adsAC, the dsAC was considered redundant because the SAR informationwas already provided by an ssAC. By contrast, if single substitutionswere not detected that fully accounted for dsAC formation, and bothsubstitutions contributed to the cliff, the dsAC was classified as con-firmed. To avoid boundary effects in assigning redundant dsACs, a 10%potency difference deviation (margin) was permitted. Thus, if a potencydifference matched by a single-site analog was detected within −10%of the observed value or above, the corresponding dsAC was classifiedas redundant.
2.8. Differential contributions of individual and combined substitutions

For confirmed dsACs, the sum of the Δ pKi values for substitutionsconverting the weakly potent cliff partner into the single-site analogswas compared to the Δ pKi of the dsAC. Three different effects weredistinguished for combined single-site modifications:
(i) Additive effect: the Δ pKi sum of single-site substitutions was com-parable (± 10%) to the Δ pKi of the dsAC.(ii) Synergistic effect: the Δ pKi sum was lower than the Δ pKi (−10%)of the dsAC.(iii) Compensatory effect: the Δ pKi sum was greater than the Δ pKi(+10%) of the dsAC.

Fig. 2. Activity cliffs formed by analogs with single or multiple substitutionsites. (a) The histogram reports the number of ACs formed by analogs dis-tinguished at 1–5 substitution sites. The bar for dual-site ACs (dsACs), which areprevalent among multi-site ACs, is highlighted in yellow. (b) An exemplarydsAC formed by histamine H3 receptor ligands is shown.

Table 1Activity cliffs with varying number of substitution sites and single-site analogs.
Substitution sites (n) Type of ACs # Single-site analog(s) # ACs # Redundant dsACs # Confirmed dsACs
Single n= 1 ssAC - 12,249 - -
Multiple n= 2 dsAC 0 1012 – –1 2496 764 –2 297 141 156n≥3 msAC n. d. 400 – –

D. Stumpfe, et al. Bioorganic & Medicinal Chemistry 27 (2019) 3605–3612
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Thus, synergy increased the potency gain of combined individualsubstitutions, whereas compensation reduced the potency gain due tounfavorable combinatorial effects.
3. Results and discussion
3.1. Study concept

The study was designed to investigate a new category of ACs thatare formed by pairs of analogs (substructure-based similarity criterion),meet target set-dependent potency difference thresholds, and containmultiple substitution sites. So-defined ACs were investigated for thefirst time. Therefore, ASs with single and/or multiple substitution siteswere systematically extracted from target sets and set-dependent po-tency difference thresholds for ACs were derived. Then, a systematicsearch for ssACs and msACs was carried out across qualifying targetsets. Subsequently, a search was conducted for single-site analogs ofdsACs to determine contributions of individual substitutions to ACformation and differentiate effects of combined substitutions. Majoraims of the study included the identification of newly defined msACs,exploration of relationships between ssACs and msACs, and elucidationof potency effects associated with individual and combined substitu-tions in ACs.
3.2. Distribution of activity cliffs with varying number of substitution sites

The final selection of 209 target sets yielded a total of 16,454 ACswith single or multiple substitution sites. These ACs included 12,249ssACs and 4205 msACs, as reported in Fig. 2a and Table 1. Thus, thedistribution of ACs across different target sets was dominated by ssACs,which was not expected. Yet, more than 25% of the detected ACs weremsACs. Most of the msACs (3805 cliffs; 90.5%) were dsACs and only400 msACs with three or more substitution sites were detected(Table 1). Therefore, our subsequent analysis focused on dsACs. Anexemplary dsAC is shown in Fig. 2b.

Reported are the numbers of activity cliffs (# ACs) with varyingsubstitution sites (n) including ssACs, dsACs, and msACs. Here dsACs(in italics) are the focal point. For dsACs, the number of ACs with 0, 1,or 2 available single-site analogs is reported. For dsACs with 1 or 2single-site analogs, the number of redundant dsACs (# redundantdsACs) is given. In addition, for dsACs with two single-site analogs, thenumber of confirmed dsACs (# confirmed dsACs) is reported. msACswith three or more substitution sites were not further analyzed becausetheir number was small compared to dsACs. “n.d.” means not de-termined.
3.3. Dual-site activity cliffs and single-site analogs

In contrast to ssACs where the potency difference is directly attri-butable to a single substitution, contributions of individual substitu-tions to dsACs must be further analyzed. Therefore, a systematic searchwas carried out for single-site analogs of dsACs across the 136 quali-fying target sets, which identified a total of 3090 single-site analogs.Fig. 3 shows an exemplary dsAC for which two single-site analogswere identified. For the AC compounds and single-site analogs, pKivalues are reported. The data structure depicted in Fig. 3 was used toinvestigate the contributions of individual substitutions to dsAC for-mation. Comparing potency differences between weakly potent dsACcompounds, single-site analogs, and highly potent dsAC compoundsmade it possible to search for individual substitutions that were re-sponsible for the potency difference captured by a dsAC.For 297 of the 3805 dsACs, both single-site analogs were identified.In addition, for 2496 other dsACs, one single-site analog was found. Forthe remaining 1012 dsACs, no single-site analog was detected.
3.4. Redundant and confirmed dual-site activity cliffs

For the 297 dsACs with two single-site analogs, the contributions ofindividual substitutions to AC formation were analyzed. As shown inFig. 4, two different cases were distinguished in assigning redundant

Fig. 3. Dual-site activity cliffs and single-site analogs. For an exemplary dsAC, two single-site analogs are shown that contain the individual substitutions found in thedsAC. Modifications at the two substitution sites are highlighted in blue and orange, respectively. The analogs are PI3-kinase p110-alpha subunit inhibitors. For eachcompound, the pKi value is reported. In this case, the target set-dependent potency difference (Δ pKi) threshold for AC formation is 1.61. The solid arrow indicates theformation of the dsAC and dashed arrows indicate contributions of the individual substitutions. Analyzing individual contributions to multi-site ACs requires theavailability of corresponding single-site analogs with potency measurements.
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dsACs. First, a structural modification transforming a weakly potentcliff partner into a single-site analog might account for dsAC-basedpotency difference (Fig. 4a). Second, a structural modification of a
single-site analog producing the highly potent cliff partner might alsoaccount for the potency difference (Fig. 4b). Both cases were consideredto be equivalent.

Fig. 4. Redundant dual-site activity cliffs. Two dsACs are shown that can be rationalized on the basis of ssACs (Δ pKi highlighted in red) formed between (a) theweakly potent cliff partner and a single-site analog or (b) a single-site analog and the highly potent cliff partner. The presentation is according to Fig. 3. Thecompounds in (a) originate from the PI3-kinase p110-alpha subunit target set (with a target set-dependent AC potency difference threshold of 1.61 pKi units) and thecompounds in (b) from the melatonin receptor 1B target set (with a target set-dependent AC potency difference threshold of 2.59).
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We determined that 141 dsACs were covered by a correspondingssAC; 41 of these ssACs were formed by a weakly potent dsAC com-pound and a single-site analog and 51 between a single-site analog andthe highly-potent cliff partner. In addition, 49 dsACs were representedby multiple ssACs, involving both cliff partners and single-site analogs.Furthermore, 764 of the 2496 dsACs for which only one single-siteanalog was available were found to be covered by an ssACs involvingthis single-site analog. For the remaining dsACs, it remained uncertainwhether or not they might be represented by an ssAC because thesecond single-site analog was not available.Taken together, the results of single-site analog analysis revealed asignificant degree of redundancy for dsACs. Of the 297 dsACs for whichboth single-site analogs were available, 156 dsACs were confirmed, butnearly 50% were redundant (Table 1). Hence, considering the largenumber of ssACs compared to msACs that were initially identified andthe large proportion of redundant dsACs (Table 1), AC formation wasoverall dominated by single substitutions.In Fig. 4a, the potency difference of the dsAC (Δ pKi 1.75) was al-ready obtained (within a 10% margin) by replacing the hydrogen atomof the hydroxyl group of the weakly potent cliff partner by a methylgroup (Δ pKi 1.66). In Fig. 4b, a single-site analog formed an ssAC withthe highly potent cliff partner, with a Δ pKi of 3.31 (compared to 3.23for the dsAC). Again, the replacement of the hydrogen atom of thehydroxyl group in the single-site analog by a methyl group producedthe AC, but only if the tricyclic ring was already substituted. By con-trast, separately considered individual substitutions of the weakly po-tent cliff partner did in this case not cover the potency difference of thedsAC. Thus, the structural context of the single-site analog was requiredfor the methyl replacement to generate an ssAC covering the dsACs.

3.5. Potency effects of substitutions in confirmed dual-site activity cliffs
For the 156 confirmed dsACs, both substitutions generating single-site analogs were essential for the potency difference captured by thedsAC. For each confirmed dsAC, the sum of the potency differences ofthe individual substitutions was compared to the Δ pKi of the dsACs. Asshown in Fig. 5, the 156 confirmed dsACs were found to include 38cliffs with additive, 62 with synergistic, and 56 with compensatoryeffects. Thus, although additivity of potency effects was observed, formore than 75% of the confirmed dsACs, the substitutions yielded sy-nergistic or compensatory effects. Thus, dsACs cannot be confidentlypredicted by addition of potency changes from corresponding single-site analogs. Fig. 6 shows examples for additive (6a), synergistic (6b),and compensatory (6c) substitutions in confirmed dsACs, illustratingthat dsACs and corresponding single-site analogs provide instructiveexamples for SAR exploration.

3.6. Substitution patterns in dual-site activity cliffs and different potencyeffects
Substitution combinations contained in all dsACs were system-atically analyzed. The set of 3805 dsACs contained 3264 dsACs (85.8%)with unique combinations of substitutions. Hence, there was a highdegree of diversity among dsAC substitution combinations and therewere no substitution patterns that occurred with high frequency indsACs. The most frequent combination was a pair of hydrogen atom vs.methoxy group (H/methoxy) replacements that was found in 54 uniquedsACs, followed by a H/methoxy plus H/methyl combination in 26unique dsACs and a pair of H/methyl substitutions in 15 unique dsACs.These substitutions were the smallest and hence most generic sub-stitutions detected in dsACs. Overall, there were no preferred sub-stitution combinations leading to dsAC formation.For the subset of 156 confirmed dsACs, it was possible to relatesubstitution patterns to different potency effects. Corresponding to theobservation made for all dsACs, the 156 confirmed dsACs included 131dsACs (84.0%) with unique combinations. Only two to at most fiveconfirmed dsACs were detected that shared the same combination.Interestingly, most of dsACs with a shared combination had differentpotency effects. For example, in four dsACs containing a pair of H/methoxy replacements, the individual substitutions had compensatory,synergistic, or additive effects, as described above. The same observa-tions were made for four other dsACs containing a pair of H/methylreplacements. Thus, potency effects of the same substitution combina-tions in dsACs strictly depended on the target the cliff compounds wereactive against.

4. Conclusions
Herein, we have introduced a new category of ACs with multiplesubstitution sites based upon systematically identified pairs of analogsfrom many different series. For defining these ACs, target set-dependentpotency difference criteria were applied. A systematic search for analogpair-based ACs war carried out, which identified more than 12,000ssACs and 4000 msACs. Hence, ssACs were much more frequent thanmsACs. Furthermore, more than 90% of the newly identified msACswere dsACs. These dsACs were found in nearly 65% of all qualifyingtarget sets. To analyze contributions of individual substitutions to dsACformation, a data structure was devised combining dsACs with single-site analogs representing individual substitutions. A systematic searchidentified single-site analogs for about 2800 dsACs, thus enabling fur-ther detailed analysis. For 297 dsACs, both single-site analogs weredetected. Surprisingly, nearly half of these dsACs were found to be re-presented by ssACs, revealing redundancy among dsACs. Taken

Fig. 5. Varying effects of single-site substitutions in confirmed dual-site activitycliffs. For the 156 confirmed dsACs, the sum of the Δ pKi values for convertingthe weakly potent cliff partner into the two single-site analogs is plotted againstthe Δ pKi value of the dsAC, revealing additive (blue), synergistic (green), andcompensatory (purple) effects. Each dot represents a dsAC.
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together, our findings revealed a clear dominance of ssACs over msACs,which was not anticipated. For confirmed dsACs, different effects ofcombined substitutions were identified and synergistic or compensatoryeffects outnumbered additive contributions. Although ssACs are morefrequent than msACs, newly identified dsACs further extend the currentspectrum of ACs. However, our study also shows that significant po-tency variations among analogs from medicinal chemistry pre-ferentially result from single substitutions, which has interesting im-plications for compound optimization efforts, suggesting thorough

exploration of individual substitution sites before multiple site areconsidered simultaneously.
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Fig. 6. Additive, synergistic, and compensatory effects in dual-site activity cliffs. Shown are exemplary dsACs with (a) additive, (b) synergistic, and (c) compensatoryeffects of single-site substitutions. The representation is according to Fig. 3. The dsACs in (a), (b), and (c) are taken from the delta opioid receptor (target set-dependent AC potency difference threshold of 1.70), adenosine A1 receptor (1.90) and progesterone receptor (2.07) target set, respectively.
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Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmc.2019.06.045.
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Summary

In this analysis, we systematically explored ACs from ASs using high-confidence
activity data from the ChEMBL database. Activity class-dependent potency differ-
ence criteria were calculated and applied to define ACs. The results indicated that
more than 74% of ACs were formed by single-site analog pairs. ACs differing max-
imally five substitution sites were also observed, of which dual-site ACs dominated
the distribution (91%). Since dual-site ACs carry two different R-groups at distinct
substitution sites, we systematically identified single-site analogs that contained one
of these two R-group replacements. The introduction of single-site analogs provided
an opportunity to rationalize the formation of dual-site ACs. For only 297 dual-site
ACs, single-site analogs for both substitution sites were found, hence characterizing
the complete ACs. Potency comparisons between AC compounds and corresponding
single-site analogs revealed that 141 ACs were redundant and could be represented
by single-site ACs. For the remaining 156 confirmed dual-site ACs, three different
potency effects for substituent combinations, i.e., synergistic, additive, and compen-
satory, were detected. Since potency effects in confirmed dual-site ACs were dom-
inated by synergistic and compensatory effects, practical guidelines for compound
optimization could be formulated.
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Chapter 10

Conclusion

The “similarity-property principle" states that structurally similar compounds
tend to display similar properties, e.g., biological activity. This principle depends
heavily on how compound similarity is assessed. Given the rapidly increasing
amount of compounds and activity data deposited in various databases, efficient com-
putational methods for assessing compound similarity and performing large-scale
SAR analysis are highly desirable. However, the presence of unexpected potency
changes between structurally similar compounds forming ACs, indicates SAR dis-
continuity and often disappoints QSAR modeling. This does not imply, however, that
AC formation should be negatively viewed. By contrast, if appropriately interpreted
and rationalized, ACs are highly informative for SAR analysis. In this thesis, differ-
ent approaches for addressing compound similarity are applied for AC analysis and
associated informative AC data structures are introduced. Furthermore, alternative
potency difference criteria for AC formation were investigated in detail.

Network representations have proven to be an indispensable tool to globally ana-
lyze and visualize AC information. However, increasing size and complexity of net-
works limit immediate SAR information assessment; thus, a new methodology aim-
ing to simplify networks was derived based on a dual-round fragmentation scheme
(chapter 2). The reduced network complemented the original AC network and sim-
plified the analysis of cliff-associated SAR information. Given the popularity of
the MMP concept, the MMP-cliff data structure was further extended through the
inclusion of structural isomers, yielding isomer/MMP-cliffs (chapter 3). The intro-
duction of isomer/MMP-cliffs indicated that the strategy of "walking" substituents at
different core positions could be instructive for compound design. Then, the medic-
inal chemistry concept of privileged substructures (PSs) was explored using high-
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confidence activity data and related to AC analysis (chapter 4). Widespread distribu-
tions of PSs across different target families were observed indicating the promiscu-
ous behavior of these PSs. PS-based AC network analysis implied that the structural
context of PS embedding was critical for eliciting distinct biological activities. In
order to increase the utilization of ACs in practice, a unified strategy for extract-
ing dual-site ACs, isomer cliffs and PS-containing ACs was reported in chapter 5.
Furthermore, for dual-site ACs, a four-compound data structure including two struc-
tural isomers was introduced to explore the influence of positional alternations on
potency in detail. Beyond positional alterations of R-groups, single-atom modifi-
cations including atom replacements or atom walks represented minimal structural
changes between compounds. The utilization of single-atom modifications in AC as-
sessment resulted in the definition of atom-walk or atom-replacement ACs (chapter

6). The results indicated that around 3% of analog pairs with single-atom modifica-
tions formed ACs, the majority of which were atom-replacement ACs. Moreover, 59
ACs with at least one X-ray complex were available, which made the rationalization
of AC formation at the structure-based level possible.

Large-scale AC analysis has been performed using curated data sets. Typically,
only about 5% of analog pairs meet AC criteria. Some targets have a high propen-
sity to form ACs while for others only limited numbers of ACs are available. In
chapter 7, the frequency of occurrence of AC formation was rationalized by relat-
ing structural similarity relationships and potency distributions to each other. AC
formation was found to be largely depended on potency fluctuations within RMMP-
based clusters. To account for diverse potency distributions across different activity
classes, activity class-depended potency difference criteria were introduced in chap-

ter 8. In this study, statistically determined potency difference criteria were derived
by considering potency value distributions of individual activity classes. Of note,
activity class-dependent potency difference criteria were found to identify ACs that
were more diversely distributed, emphasizing the presence of diverse structural con-
texts for AC analysis. In the final study (chapter 9), activity class-dependent AC
criteria were applied to systematically analyze AC characteristics in analog series
(ASs). Using AS membership as a criterion for structural similarity assessment,
the overwhelming majority of ACs were found to be single-site ACs. Among ACs
with multiple substitution sites, dual-site ACs (90.5%) dominated the distribution.
Individual substitutions in dual-site ACs might lead to different potency effects (syn-
ergistic, compensatory, or additive). This finding implied that the systematic study
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of these effects, for instance, with the help of SAR matrices, can support practical
applications in compound design.

In conclusion, this thesis introduced different approaches to assess molecular
similarity and derive activity class-dependent potency difference criteria for AC as-
sessment. The combinations of alternative similarity and potency difference criteria
represent further evolution and refinement of the AC concept: from single- to multi-
site ACs, from general to activity class-dependent ACs. Moreover, the incorporation
of PSs, structural isomers, and single-atom modifications in AC analysis highlights
practical relevance of AC analysis for medicinal chemistry.

143



144



Bibliography

[1] McKinney, J. D. The Practice of Structure Activity Relationships (SAR) in
Toxicology. Toxicological Sciences 2000, 56, 8–17.

[2] Barbosa, F.; Horvath, D. Molecular Similarity and Property Similarity. Cur-

rent Topics in Medicinal Chemistry 2004, 4, 589–600.

[3] Brown, A. C.; Fraser, T. R. On the Connection between Chemical Constitu-
tion and Physiological Action. Part I. On the Physiological Action of the Salts
of the Ammonium Bases, Derived from Strychnia, Brucia,Thebaia, Codeia,
Morphia, and Nicotia. Philosophical Transactions of the Royal Society of Lon-

don 1868, 25, 151–203.

[4] Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.;
Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P.
ChEMBL: a Large-Scale Bioactivity Database for Drug Discovery. Nucleic

Acids Research 2012, 40, D1100–D1107.

[5] Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M. A.; Waldmann, H.
The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical
Scaffold Classification. Journal of Chemical Information and Modeling 2007,
47, 47–58.

[6] Wassermann, A. M.; Haebel, P.; Weskamp, N.; Bajorath, J. SAR Matrices:
Automated Extraction of Information-Rich SAR Tables from Large Com-
pound Data Sets. Journal of Chemical Information and Modeling 2012, 52,
1769–1776.

[7] Peltason, L.; Bajorath, J. SAR Index: Quantifying the Nature of Structure-
Activity Relationships. Journal of Medicinal Chemistry 2007, 50, 5571–5578.

145



[8] Méndez-Lucio, O.; Pérez-Villanueva, J.; Castillo, R.; Medina-Franco, J. L.
Identifying Activity Cliff Generators of PPAR Ligands Using SAS Maps.
Molecular Informatics 2012, 31, 837–846.

[9] Peltason, L.; Iyer, P.; Bajorath, J. Rationalizing Three-Dimensional Activ-
ity Landscapes and the Influence of Molecular Representations on Landscape
Topology and the Formation of Activity Cliffs. Journal of Chemical Informa-

tion and Modeling 2010, 50, 1021–1033.

[10] Wawer, M.; Peltason, L.; Weskamp, N.; Teckentrup, A.; Bajorath, J. Structure-
Activity Relationship Anatomy by Network-like Similarity Graphs and Lo-
cal Structure-Activity Relationship Indices. Journal of Medicinal Chemistry

2008, 51, 6075–6084.

[11] Gupta-Ostermann, D.; Hu, Y.; Bajorath, J. Introducing the LASSO Graph
for Compound Data Set Representation and Structure–Activity Relationship
Analysis. Journal of Medicinal Chemistry 2012, 55, 5546–5553.

[12] Zhang, B.; Hu, Y.; Bajorath, J. AnalogExplorer: a New Method for Graphi-
cal Analysis of Analog Series and Associated Structure–Activity Relationship
Information. Journal of Medicinal Chemistry 2014, 57, 9184–9194.

[13] Isarankura-Na-Ayudhya, C.; Naenna, T.; Nantasenamat, C.; Prachayasit-
tikul, V. A Practical Overview of Quantitative Structure-Activity Relationship.
EXCLI Journal 2009, 8, 74–88.

[14] Yousefinejad, S.; Hemmateenejad, B. Chemometrics Tools in QSAR/QSPR
Studies: a historical perspective. Chemometrics and Intelligent Laboratory

Systems 2015, 149, 177–204.

[15] Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity
Prediction using Deep Learning. Frontiers in Environmental Science 2016, 3,
80.

[16] Yang, Q.; Li, Y.; Yang, J.; Liu, Y.; Zhang, L.; Luo, S.; Cheng, J. Holistic
Prediction of the pKa in Diverse Solvents Based on a Machine-Learning Ap-
proach. Angewandte Chemie International Edition 2020, 59, 19282–19291.

[17] Plante, J.; Werner, S. JPlogP: An Improved logP Predictor Trained Using Pre-
dicted Data. Journal of Cheminformatics 2018, 10, e61.

146
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