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Abstract
by Fadime Sener Merzbach

for the degree of

Doctor rerum naturalium

Complex activity videos are long-range videos composed of multiple sub-activities
following some temporal structuring and connected purpose. Recognizing human ac-
tivities in such videos is a long-standing goal with a broad spectrum of applications,
such as assistive technologies, robot-human interactions, or security systems. Although
extensive efforts have been made to recognize human actions from short trimmed
videos, complex activity videos have received attention only recently. This disser-
tation provides several models and techniques for understanding human activities in
these long-range videos. In particular, we focus on the problems of action anticipation
and temporal action segmentation with both supervised and unsupervised learning
approaches.

Motivated by decreasing the high annotation costs for learning models on complex
activity videos, we present two approaches. Given a collection of videos, all of the same
complex activity, our temporal action segmentation method partitions videos into sub-
activities based on only the visual data in an unsupervised way, following an iterative
discriminative-generative approach. Our action anticipation approach generalizes in-
structional knowledge from large-scale text-corpora and transfers this knowledge to the
visual domain using a small scale annotated video dataset. In this work, we challenge
ourselves to develop models for describing complex activities with natural language,
enabling translation between elements of the visual and textual domains. We also
present a complex activity dataset of videos aligned with textual descriptions. We
finally present a generic supervised approach for learning representations from long-
range videos that we apply to action anticipation and temporal action segmentation.
In this work, we investigate the required temporal extent, the representation granular-
ity, and the influence of semantic abstraction with our flexible multi-granular temporal
aggregation framework for reasoning from short and long-range observations.

This dissertation advances the state of the art in complex activity understanding,
challenges the community with new problems, presents novel models that learn visual
and temporal relations between human actions, and contributes a dataset for studying
the intersection of vision and language. We thoroughly evaluated our approaches
and compared them with the respective state of arts on a set of benchmarks. We
conclude this dissertation by reporting the characteristics of future research directions
and presenting some open issues on complex activity understanding research.

Keywords: complex activity understanding, temporal action segmentation, action
anticipation.
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Zusammenfassung
von Fadime Sener Merzbach

zur Erlangung des Doktorgrades

Doctor rerum naturalium

Videos, die komplexe Aktivitäten zeigen, sind mehrere Minuten lang und beste-
hen aus mehreren Unteraktivitäten mit einer bestimmten zeitlichen Reihenfolge und
gemeinsamem Ziel. Das Ziel, menschliche Aktivitäten aus solchen Videos zu erken-
nen, besteht seit vielen Jahren, und ebnet den Weg für ein breites Spektrum an An-
wendungen, z.B. in Form von Assistenzsystemen, Mensch-Roboter-Interaktion oder
Sicherheitssystemen. Obwohl es bereits zahlreiche Anstrengungen gibt, menschliche
Handlungen anhand kurzer, geschnittener Videos zu erkennen, haben Videos von kom-
plexeren Aktivitäten erst kürzlich Beachtung erlangt. Diese Dissertation bietet ver-
schiedene Modelle und Techniken zur Erkennung menschlicher Aktivitäten aus dieser
Art von Videos. In dieser Dissertation konzentrieren wir uns konkret auf die Vorhersage
und die zeitliche Segmentierung menschlicher Aktivitäten, sowohl mit überwachten, als
auch mit unüberwachten Lernansätzen.

Wir stellen zwei Ansätze vor, beide sind mit einer Reduktion des hohen Annota-
tionsaufwands motiviert, der beim Training auf Videos von komplexen menschlichen
Handlungen entsteht. Gegeben eine Videokollektion ein und derselben komplexen
Aktivität unterteilt unsere Segmentierungsmethode Videos unüberwacht in Unterak-
tivitäten. Die Segmentierung basiert dabei rein auf den visuellen Videodaten und
folgt einem iterativen diskriminativ-generativen Ansatz. Unser Ansatz zur Aktiv-
itätsvorhersage verallgemeinert Wissen, gelernt aus großen Textkorpora, und überträgt
es mithilfe einer deutlich kleineren, annotierten Videodatenbank ins Visuelle. In dieser
Arbeit stellen wir uns der Herausforderung Modelle zu entwickeln, durch die kom-
plexe Aktivitäten mittels natürlicher Sprache beschrieben werden können. Dadurch
sind wir in der Lage, Wissen zwischen dem Visuellen und dem Textuelle zu über-
tragen. In diesem Rahmen präsentieren wir außerdem einen Datensatz komplexer
Aktivitätsvideos, annotiert mit synchronisierten Textbeschreibungen. Zum Schluss
präsentieren wir einen generischen, überwachten Ansatz zum Repräsentationslernen
auf längeren Videos, den wir zur Vorhersage und zur zeitlichen Segmentierung von
Aktivitäten anwenden. In dieser Arbeit über unser flexibles, multi-granulares Aggre-
gationsframework untersuchen wir das beste Maß an zeitlichem Kontext und dessen op-
timalen Detailgrad, sowie den Einfluss des semantischen Abstraktionslevels, um kurze
und lange Beobachtungen interpretieren zu können.

Diese Dissertation verbessert den Stand der Forschung zur Erkennung und In-
terpretation komplexer Aktivitäten aus Videos, stellt neue Herausforerungen an die
Forschungsgemeinschaft, präsentiert neue Modelle, die visuelle und zeitliche Zusam-
menhänge menschlicher Handlungen lernen, und liefert einen Datensatz zur Unter-
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suchung der Schnittstelle zwischen der maschinellen verarbeitung von visuellen und
sprachlichen Daten. Wir führen eine gründliche Evaluation unsere Ansätze durch
und vergleichen anhand einer Reihe von Benchmarks mit dem jeweiligen Stand der
Forschung. Wir schließen diese Dissertation mit einem Ausblick auf zukünftige
Forschungsrichtungen und einigen offenen Fragen zur Forschung über die Interpre-
tation komplexer Handlungen.

Schlagwörter: interpretation komplexer Aktivitäten, zeitgleiche Segmentierung von
Aktivitäten, Vorhersage von Aktivitäten.
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1.1 Motivation

Daily events are high-level semantic concepts. They are composed of different human actions
or activities that happen around us simultaneously and / or sequentially without pause.
Recognizing such activities in everyday life plays a significant role in human-to-human in-
teraction and relations. As such, humans are experts at recognizing what actions other
people are performing, when they started, how far these actions have progressed, what type
of transformations are brought to the environment through these actions, and what people
will do next. They can effortlessly learn these complicated visual and temporal relations,
generalize them to new observations from a few examples through past experience, and con-
struct descriptions about their visual world. Such abilities are similarly highly essential for
artificial intelligence applications, including video security or surveillance systems, assistive
technologies, and robot-human interactions.

Every day, people are creating a tremendous amount of video data on the internet through
streaming platforms such as Youtube, Instagram, etc. People share their daily activities
in the form of vlogs, release how-to videos, or teach online courses. This creates a large
pool of data for learning intelligent visual systems for tasks closely related to peoples’ daily
routines, including housework, repairing devices, and hobbies. Naturally, developing methods
for automatic understanding of human activities using this abundant source of data could have
a broad range of high-impact societal applications. Augmented reality and virtual reality can
be used to embody an intelligent assistant and help with cooking, maintenance, and learning
new skills. Robots can be trained to help in eldercare and healthcare as an assistant. Future



2 Chapter 1. Introduction

prediction and intention recognition systems can help in decreasing accidents or unintentional
actions.

The need for technologies and applications to recognize other persons’ activities has made
understanding human activities from videos a central problem in computer vision since the
early times of the field. The problem is simple: given a sequence of images, the task is to
automatically analyze the video’s contents and classify human activities. As easy as this
question appears, it has been difficult finding a solution. The vision community pursued
this problem over the last 20 years. Early research started with experiments in controlled
environments with limited data and resources. Over the last years, driven by deep learning
and engineering efforts, it evolved into advanced solutions trained on millions of hours of
video and can already be used for recognizing daily activities in the wild. Despite this, a vast
gap remains between humans and the state-of-the-art methods’ performance.

Despite the difficulty of the task, motivated by the potential application and the success
of humans who easily accomplish complex visual recognition, in this dissertation, we investi-
gate models and techniques for understanding human activities from long-range untrimmed
videos. In particular, we develop frameworks for studying “complex activity” videos, e.g., of
instructional or daily activities.

1.2 What is a Complex Activity?

We begin by describing the “complex activities” we will be working with throughout this
dissertation. Let us start by presenting the difference between an “action” and “activity”.
Researchers distinguish the two terms differently, depending on the task they target and
the data they use. Some establish a hierarchical categorization (Poppe, 2010; Chaaraoui
et al., 2012), starting from action primitives, also known as gestures, moving to actions,
and finally, arriving at activities. According to Poppe (2010), an “action” is a collection of
action primitives and might correspond to, possibly, cyclic movement of the entire body. He
defines an activity as a consecutive execution of several actions. He provides a clear example
of a person performing the activity “jumping hurdles”, where “left leg forward” is an action
primitive, and “running” is an action that is composed of multiple such primitives. Finally,
“jumping hurdles” is an activity as the human performs “starting”, “running” and “jumping”
actions.

To date, there is no agreed definition for action or activity (Poppe, 2010; Chaaraoui et al.,
2012; Wang et al., 2016b). A strict separation or definition is difficult as their hierarchy is
fluid and depends heavily on the annotation granularity of the dataset of interest (Sener
et al., 2020). In terms of the datasets we work on, we are interested in two levels of hierarchy,
by considering a complex activity to be composed of multiple “actions” that follow some
ordering. First, we take the rather rigid definition of an “action” from Poppe (2010) and
relax it to the description from Wang et al. (2016b): an action can affect the state of an
object or the environment. We then take the definition of an “activity” from Poppe (2010)
and define “complex activities” as the composition of these actions following some ordering
and connected with purpose. To better emphasize that “actions” are building blocks of the



1.2. What is a Complex Activity? 3

6) pour coffee 5) see coffee 4) put stove 1) fill water 2) grind coffee 3) screw top

Instructional activities are procedural tasks with actions or sub-activities that follow loose orderings

(a) Instructional activities

wash baking tray
throw paper 

into bin
change garbage 

bag
wash plate

put pizza slice
onto plate

move leftovers 
in the fridge

Daily activities are sequences of actions or sub-activities that follow partial orderings

(b) Daily activities

Figure 1.1: In this dissertation, we experiment on two types of complex activity videos. Our
primary focus is on instructional activities with certain actions or sub-activities that follow a
loose ordering. In (a), there are six actions, and a person performs each action following this
order with the goal of “making coffee”. The second type are videos of daily activities, which
contain a stream of only partially ordered actions that summarize people’s daily routine. The
ordering is partial because certain sub-activities can be executed independently of others. In
(b), the person could put the leftovers into the fridge at any time. However, to be able to
start washing a baking tray, one should first dispose of the baking sheet on top of it.

larger, more complex “activities”, we instead use the terms “sub-activity” or “step”. In this
dissertation, we will thus use the terms “action”, “sub-activity” and “step” interchangeably.
For example, a complex activity is “making orange juice” with sub-activities “cut oranges”,
“squeeze oranges”, “strain juice” and “pour into glass”.

The work in this dissertation is mainly focused on complex instructional activities where a
person has a well-defined goal that requires the execution of multiple actions or sub-activities
in a loose order, depending on the type of the task. For example, a “changing tire” activity has
a more rigid order of actions than “making fruit salad”, which is determined by the degree
of temporal interdependencies between the individual sub-activities. We also study daily
activities which are also composed of multiple steps. However, the occurrence of their sub-
activities only needs to be partially ordered; for example, a person might “change a garbage
bag” at any time, but will have to “heat the oven” before “baking”. We show some examples
of such complex activities in Figure 1.1. In the instructional activity example (a), “making
coffee” is a complex activity. This complex activity is further divided into the following steps:
“fill water”, “grind the coffee”, “screw top”, “put stove”, “see coffee” and “pour coffee”. Similarly,
the example daily activity sequence (b) is a composition of steps of “wash plate”, “put pizza
slide on the plate”, “move the pizza in the fridge”, “change garbage bin”, “throw the used
baking paper into the bin”, and “wash the baking tray”.
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To sum up, actions or sub-activities are short, and they transform objects and environ-
ments. Complex activities are composed of sequences of actions or sub-activities. Finally, a
complex activity video either records an instructional task or a daily activity.

1.3 Contributions of the Dissertation

Analyzing motions and actions in videos has been of interest since the early days of computer
vision (Hogg, 1983; Rohr, 1994). The focus has mostly been on classifying short video clips,
which are manually trimmed to contain only video frames of human actions (Poppe, 2010;
Herath et al., 2017). Human action recognition from such videos is a well-studied problem that
recently has seen a remarkable performance boost with deep learning based approaches (Lin
et al., 2019a; Carreira and Zisserman, 2017; Feichtenhofer et al., 2019). Developing models
for such videos assumes observing trimmed clips during inference as well. However, we receive
data in continuous streams; we do not get such tidily trimmed short clips in our daily lives.
For practical applications, we need to develop algorithms that learn from and perform on
long-range untrimmed videos.

The long-range untrimmed nature of complex activities makes the problem significantly
more challenging, but the outcomes directly impact humans’ daily lives, as we can directly
benefit from potential applications. The richness in information present in complex activities
lends itself well for us to define many variants of practical applications, such as early action
recognition (Ma et al., 2016), action anticipation (Farha et al., 2018; Furnari and Farinella,
2019), verification tasks like compliance (Jaiswal et al., 2019), skill determination (Doughty
et al., 2019), task completion (Becattini et al., 2017), generating notifications for missing
actions (Soran et al., 2015), temporal action segmentation (Kuehne et al., 2014b), action
localization in videos (Gao et al., 2019) and video summarization (Zhang et al., 2018). In
this dissertation we mainly work on two different tasks on complex activities: temporal
action segmentation and action anticipation. Research on these topics is very young and
open for diverse research directions (Sener et al., 2015; Alayrac et al., 2016; Zhao et al.,
2017; Farha et al., 2018; Richard et al., 2018b; Farha and Gall, 2019b). We develop novel
temporal models with varying supervision levels and experiment on multiple datasets of
complex activity videos.

Humans solve complex recognition tasks effortlessly and naturally, making it look straight-
forward. However, computers fall short in solving such high level-semantic tasks. Despite the
progress made in recent years, we are still far from solving the complex activity understand-
ing problem. Working with complex activities poses several difficulties. In the following, we
analyze the main challenges of complex activity understanding and present our contributions
verified on the action anticipation and temporal action segmentation tasks.

1.3.1 Learning with Less Supervision or Auxiliary Data

Complex activity videos are usually annotated with the temporal boundaries and the types of
their sub-activities. Although there is a large amount of video data available on the internet,
collecting and annotating such data can be very costly and time-consuming. Moreover, similar



1.3. Contributions of the Dissertation 5

to humans who associate observations with background knowledge, vision algorithms should
be able to learn and generalize from a few training examples.

1.3.1.1 Challenges

Using less supervision: Following the trends of other computer vision problems, the first
option to develop models for complex activities would be to follow a fully supervised setting.
However, collecting and annotating data is expensive and tedious. This is because besides the
need for action labels, supervised approaches also require knowledge of where the actions start
and end. Alternatively, we might take a weakly supervised approach without using explicit
start and end points of the actions, but other information we can acquire more cheaply. This
might be narrations, other accompanying text, or an ordered list of sub-activities for the
videos. However, approaches using such data assume a rigid order or alignment of textual
and visual information. Unsupervised solutions with minimal assumptions are more desirable
for removing the costs of labelling.

Generalizing to unseen activities: When considered from a traditional supervised point
of view, where multiple demonstrations of the same activity are required, complex activity
tasks would require large quantities of temporally segmented videos. Such annotations are
costly, do not scale with the number of classes, and will not generalize to new activities.
Thus, we require methods that minimize the amount of labelling effort required and do not
need to be trained for every single possible complex activity.

1.3.1.2 Contributions

In Chapter 3, we present the first fully unsupervised method for temporal action segmentation
on instructional videos without requiring any accompanying textual data or temporal annota-
tions. Given a video collection of the same complex activity as input, we propose an iterative
discriminative-generative approach to parse videos into their sub-activities. For this, we al-
ternate between discriminatively learning the appearance of sub-activities and generatively
modelling their temporal structure.

Our work in Chapter 4 is based on knowledge transfer, which allows avoiding the costly
annotation of large video datasets and is the first work to explore zero-shot learning for the
task of action anticipation. Our main contribution in this work is a learning paradigm: we
prove that it is possible to learn models from text and transfer their knowledge to video to
solve a very challenging vision problem. We decouple the problem into learning sequence
semantics from text and appearance from video. By first aggregating information from a
large text corpus, we learn the procedural structure of complex activities. This stage is un-
supervised as the direct usage of text does not require any labelling. Based on the knowledge
learned from the textual data, we develop models that learn future prediction on a small-scale
video dataset. This stage is fully-supervised as we are using labeled video data. Finally, at
inference time, we predict future steps for unseen complex activities. Decoupling the problem
allows us to leverage text data for learning a richer semantic model, and thus minimizes the
need for large-scale labeled video datasets.
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1.3.2 Temporal Modelling of Complex Activities

Complex activity videos are untrimmed sequences where multiple sub-activities take place
over time. Most importantly, these sub-activities are not independent but are related to
each other through sequence dynamics. For example, Figure 1.1 shows two sequences of sub-
activities connected with temporal relations. This makes temporal modelling more critical
for understanding complex activities, compared to simple action recognition (Huang et al.,
2018b).

1.3.2.1 Challenges

Unsupervised temporal modelling of complex activities: Prior works in unsupervised
video parsing have two main weaknesses. First, they assume that some text, e.g., narrations,
accompany the video (Sener et al., 2015; Alayrac et al., 2016). Second, and most importantly,
they enforce strict ordering of sub-activities. This conflicts with the characteristic of complex
activities which might include missing steps and deviations in orderings. We thus require
temporal models that do not assume additional data sources, and can account for temporal
variations.

Modelling instructional knowledge using language and vision: Learning procedural
knowledge from text data and transferring it to visual data both requires approaches that can
model instructional data and can combine text and visual modalities. Although sequence-to-
sequence learning (Sutskever et al., 2014) has been shown to successfully generate continuous
text, these approaches tend to perform poorly for instructional sequences, as they cannot fully
capture their underlying structure. Even though there is a large body of work for relating
visual and textual data in the captioning and visual grounding domains (Venugopalan et al.,
2015; Rohrbach et al., 2014), such approaches are tailored for short videos, less for complex
activities. We thus require methods that can model linguistic knowledge and integrate it into
the visual recognition process of instructional data.

Modelling long-range temporal relationships: When built into the architecture, tem-
poral models tend to fall short for complex activities. Growing memory requirements limit
the temporal horizon that can be processed and therefore prevent using long-range informa-
tion. For anticipation, models restricted to reason only from the most recent observations
might miss helpful cues from the longer-range past. This can ultimately lead to a loss of
accuracy in the predictions. We thus require methods that can capture long-range temporal
relations. Moreover, succeeding in integrating long-range information raises questions about
the necessary temporal extent and scale of context.

1.3.2.2 Contributions

In this dissertation, we present three different ways of modelling the temporal relations be-
tween sub-activities with respect to our three targets in Chapters 3, 4, 5.

Our first contribution is a novel way of handling temporal modelling for unsupervised
temporal video segmentation, presented in Chapter 3. We treat the ordering as a sequence
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of permutable activities. In this way, we can then model a probabilistic distribution over the
permutations with a Mallows model (Fligner and Verducci, 1986). We assume a canonical
ordering, and given an observed ordering, we can then define the ordering likelihood as an
exponential function based on the distance between the canonical and observed ordering with
some dispersion parameter that controls how much the distance influences the likelihood.
The advantage of using a Mallows model is that it enforces global ordering constraints while
allowing non-strict orderings and missing steps.

Our second contribution is an action anticipation framework which learns multi-step pro-
cedures with text and visual context, presented in Chapter 4. We construct a hierarchical
system that is composed of four recurrent neural networks (RNNs). A sentence encoder RNN
maps text data into context vectors. The context is given as input to another RNN, which
models the sequential structure of the instructional activity and predicts the following steps,
which are subsequently decoded back into sentences using a sentence decoder RNN. For train-
ing on videos, the sentence encoder is replaced with a video encoder RNN that maps video
data into context vectors. The text encoder is used only for training, while the video encoder
is applied at test time. Our hierarchical model trained on textual data allows for capturing
the underlying sequential nature of the instructions and transferring this knowledge to visual
data.

Our third contribution is a framework that pairs recent observations with long-range past
or future information at different scales and granularities, presented in Chapter 5. This form
of coupling has not been considered for minute-long videos. We split video streams into snip-
pets of equal length and max-pool the frame features within the snippets over multiple scales.
We then relate the max-pooled recent observations to max-pooled past information using at-
tention mechanisms. In our experiments we demonstrate simple max-pooling, together with
attention, to be effective tools for aggregating multi-scale past and recent information to
represent long-range videos that span tens of minutes. We show that the extent of long-range
context is beneficial, however, that it depends on the nature of the activity and label granu-
larity. Our framework is very flexible and can be used for different tasks with slight changes.
We successfully evaluate our model for next action anticipation, dense anticipation, com-
plex activity recognition, action recognition, and temporal action segmentation with minimal
modifications.

1.3.3 Visual Representations

Working with complex activities poses several difficulties. They inherit the typical computer
vision problems, like variations in camera motion, viewpoint, illumination, and often involve
further challenges.

1.3.3.1 Challenges

Fine-grained visual recognition of sub-activities: Low inter-class and high intra-class
variations are naturally challenging. In the complex activities we are working with, this
becomes more prominent, as there are considerable variations in the visual appearance of the
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same sub-activities across different videos, while the different sub-activities in the same video
tend to be visually similar. To be able to distinguish sub-activities, we need discriminative
representations. This is more critical for unsupervised than for supervised approaches, as we
cannot rely on sub-activity labels.

Irrelevant content: In instructional videos, it is common to see some video segments
where the actor is talking or highlighting previous or subsequent sub-activities and giving
recommendations. These frame groups, which we call “background frames”, are not related
to the sub-activities and can occur with various durations and at arbitrary locations. We
thus need models that work under these uncertainties due to background frames.

Influence of different modalities and semantic abstraction: Videos can be represented
in various ways, ranging from low-level visual features to high-level semantic representations
across different modalities, or their combinations. Although appearance-based video fea-
tures are frequently used for complex activities, methods would also benefit from different
modalities to get more discriminative video representations.

1.3.3.2 Contributions

We examine the problem of representing fine-grained action classes and irrelevant frames in
Chapter 3. Our first contribution is a discriminative approach for representing fine-grained
sub-activities. We propose a discriminative appearance model via clustering by grouping
frames according to their semantic similarity with respect to their sub-activity rather than
relying entirely on visual appearance. Our second contribution is explicit background han-
dling. We introduce a variant of our model for handling background to account for frames
unrelated to the actual sub-activities.

Our temporal aggregates model in Chapter 5 is a highly flexible framework that handles
low-level features or high-level semantic abstractions as input. We experiment with ensembles
of different features and compare the influence of video-based features such as appearance
and motion features and high-level semantic labels from actions and objects. With our simple
feature ensembles we obtain state-of-the-art performances. Our target task in this chapter is
action anticipation which is a task that might benefit from high-level representations of past
observations, e.g., action labels. One way to achieve this is to assign labels with a temporal
action segmentation algorithm and then use them for anticipation. This approach is adopted
by the state of the art in action anticipation. However, temporal action segmentation is
a challenging and not fully solved task itself. We evaluate our model with the outputs of
different segmentation algorithms, their combination with visual features, and ground truth
labels. Our experiments confirm that higher abstraction levels, such as frame-wise action
labels are more beneficial for anticipation. However, there is still a large gap between using
the outputs of temporal action segmentation algorithms in comparison to ground truth labels.

1.3.4 Natural Language Descriptions of Complex Activities

Many complex activity datasets are annotated with action categories composed of verb-noun-
pairs; e.g. “boil water”. However, working with such categories has several disadvantages.
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The number of categories grows exponentially with the number of actions and objects, which
leads to very long-tailed distributions. Moreover, the end-users of vision systems are humans
who use sentences, which makes working with sentence-based outputs more desirable, as it
removes the need for translations between natural language and category labels. Instead
of using category-based labels, another scope of this dissertation is shifting the focus to
describing human activities with sentences.

1.3.4.1 Challenges

Lack of sentence-based datasets with diverse complex activities: Typical existing
complex activity datasets consist of multiple demonstrations of the same activity and are
labeled with category-based labels. There are a few datasets that have sentence-based labels.
However, they either lack diversity in their complex activities (Zhou et al., 2018b), which is
essential to show the zero-shot / few-shot recognition or anticipation performance, or they
lack temporal alignments between text and video (Malmaud et al., 2015). Thus, there is a
demand for a video dataset annotated with aligned sentences, over a diverse set of complex
activities.

Evaluating sentences: Category-based label predictions are straightforward to evaluate,
as we can precisely measure the output quality. Sentences are, on the other hand, difficult
to evaluate. Although there are widely used sentence evaluation methods, they often fail in
capturing linguistic fluency and coherence. Moreover, tasks like action anticipation are even
more difficult to evaluate because there might not always be a single outcome but multiple
possible future actions. Thus we need reliable evaluation systems for assessing the correctness
of the generated sentences.

1.3.4.2 Contributions

We address these challenges in Chapter 4. We collect a new dataset which is annotated with
sentences and contains a large number of different complex activities. Our dataset is composed
of videos of around 2.500 different cooking recipes accompanied by temporally aligned recipe
steps. In this work, we design a zero-shot action anticipation framework using sentences.
We avoid the dependence on category labels by training with and predicting sentences, i.e.,
“add water” vs. “Gradually add the water to the bowl until combined”. Using sentences adds
richness to the instructions. It also allows for anticipation of not only actions but also objects
and attributes. Finally, it makes data labelling manageable. We are the first to predict the
future in the form of sentences. In some sense, this is analogous to video captioning except
that our sentences describe a possible future instead of current observations.

Our last contribution are the various ways of evaluating our sentences. We use several
state-of-the-art sentence evaluation methods along with ingredient and verb recalls. Since so
far, there is no well-established method for assessing the quality of anticipation predictions,
apart from using the aforementioned automatic metrics, we also consult human raters to
evaluate our predictions.
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1.4 Organization of the Dissertation

In this dissertation, we develop new models for understanding human activities in complex
activity videos and verify them on the action anticipation and temporal action segmentation
tasks. The dissertation is organized as follows.

We present a thorough analysis of the methods on complex activity understanding in
videos and relate our contributions to prior work in Chapter 2, Background.

Chapter 3 presents our unsupervised method for temporal action segmentation
on videos. We parse video streams into semantically meaningful sub-activities and also cap-
ture the temporal relationships that occur between these sub-activities. Specifically, we work
with instructional activities. The content of this chapter corresponds to our CVPR 2018 pub-
lication, Unsupervised Learning and Segmentation of Complex Activities from Video (Sener
and Yao, 2018).

Chapter 4 introduces the new problem of zero-shot action anticipation for instruc-
tional activities, and presents our transfer learning-based solution. Contrary to standard
action recognition, where the task is to assign action labels to videos, our interest in this
work is to predict future actions based on current and past observations, i.e., action an-
ticipation. Here, “zero-shot” refers to the anticipation of future steps for complex activities
previously unseen during training. The content of this chapter corresponds to our ICCV 2019
publication, Zero-shot Anticipation for Instructional Activities. (Sener and Yao, 2019).

Chapter 5 addresses the lack of methods that can handle long-range videos and intro-
duces our temporal aggregate representations model. We design a generic framework
for long-range video representation and verify it on several tasks, including action antici-
pation and temporal action segmentation. The content of this chapter corresponds to our
ECCV 2020 publication, Temporal Aggregate Representations for Long-Range Video Under-
standing. (Sener et al., 2020).

Finally, in Chapter 6, we summarize the addressed and remaining challenges, and con-
clude this dissertation.
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In this chapter, we first provide a preliminaries section where we present an overview of
video representation methods in Section 2.1.1 and review state-of-the-art action recognition
approaches in Section 2.1.2. In Section 2.2, we provide a detailed overview of complex activity
datasets, action anticipation and temporal action segmentation approaches. This section also
includes an overview on temporal action detection and key-step localization approaches which
are compared against in the proposed works in Chapters 3, 4, 5. Finally, we summarize joint
video and text modelling methods in Section 2.3.

2.1 Preliminaries

2.1.1 Video Representation

Video representation is an important part of the research presented in this dissertation, where
we represent long videos with some generic frame/snippet-based features and build our models
on top of them. In this section we overview several common image/video representation
approaches. We first review the hand-crafted representations and then focus on deep learning
based representations.
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2.1.1.1 Hand-crafted Representations

Conventional approaches for computing video representations are composed of three main
stages. The first stage is detecting sparse (Laptev, 2005) or dense (Wang et al., 2011) spatio-
temporal interest points. In the second stage, these interest points are described using local
spatio-temporal features such as histograms of oriented gradients (Dalal and Triggs, 2005),
histograms of optical flow, and motion boundary histogram (Dalal et al., 2006). The fi-
nal stage is computing a high dimensional encoding of these features and combining them
to a fixed-size video-level description vector. For example, Laptev et al. (2008) quantize
spatio-temporal features using a learned k-means-based “visual vocabulary” over these fea-
tures and compute bags of features over varying spatio-temporal grids. These fixed-length
representations are then used to train a classifier, such as an SVM.

Wang et al. (2011) track interest points using optical flow fields to form dense trajec-
tories. Then, they compute spatio-temporal features along these trajectories. Wang and
Schmid (2013) improve this approach using camera motion to correct the trajectories and
present improved dense trajectories. They use Fisher vector (Perronnin et al., 2010) encoding
along trajectories, which achieves state-of-the-art performance. Different than bag of visual
words, Fisher vector encoding employs a Gaussian mixture clustering and benefits from soft-
assignment. State-of-the-art hand-crafted video representations are built on improved dense
trajectories and Fisher vector encoding to compute video features.

2.1.1.2 Deep Learning Based Representations

Deep learning refers to machine learning algorithms that learn representations for inputs by
passing them through a hierarchy of transformations. A notable example are convolutional
neural networks (CNN), which are composed of multiple layers where the inputs are convolved
with filter weights, and non-linear transformations are applied to the filter responses. Such
networks usually contain millions of parameters and require large-scale labeled datasets to
support their learning process.

Convolutional networks learn feature hierarchies ranging from low-level representations
like edges to higher-level semantic concepts such as objects. They implicitly learn powerful
and interpretable (Zeiler and Fergus, 2014) representations where the upper-layers can be
used for extracting high-level feature representations. Such features demonstrate a strong
ability to generalize to images outside the dataset they are trained on, making them very
valuable as generic representations. In this section, we first overview standard CNNs trained
for image classification, followed by a review on architectures trained for action classification.

Convolutional Neural Networks Trained for Image Classification:

Image classification aims at automatically annotating images with pre-defined categories.
ImageNet (Russakovsky et al., 2015) is a standard benchmark for large-scale image classi-
fication, which is used for the ImageNet large scale visual recognition challenge (ILSVRC).
The goal is to classify images into one of the 1000 object categories selected from humans’
daily lives, including animals, household objects, vehicles, etc. AlexNet (Krizhevsky et al.,
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2012) was the winner of ILSVRC in 2012 by a significant margin, which made CNNs re-
ceive massive attention. Later a variety of CNN architectures have been proposed for image
classification with architectures improved in terms of accuracy (He et al., 2016) and compu-
tational costs (Szegedy et al., 2015). For this, researchers both developed hand-crafted CNN
architectures and explored neural architecture search (Liu et al., 2018). In the following, we
list the most prominent CNN architectures to date, which we also refer to throughout this
dissertation. Although these CNNs are trained for image classification, they can be used for
high-level feature extraction from video frames.

AlexNet (Krizhevsky et al., 2012) contains five convolutional layers, which are followed
by an activation function and max pooling respectively, and three fully-connected layers.
Several novelties made AlexNet the state of the art. Instead of sigmoids – a standard in
traditional neural networks, it uses rectified linear unit (ReLU) activations as non-linearity.
ReLUs are computationally more efficient compared to sigmoids, as they do not involve ex-
pensive evaluations of the exponential function. Most importantly, the sigmoid’s derivative
becomes very small for saturating inputs, which leads to vanishing gradients. AlexNet also
uses dropout (Srivastava et al., 2014) layers after every fully connected layer to reduce over-
fitting.

VGGNet (Simonyan and Zisserman, 2014b) replaces the large convolutional filters of
Alexnet, 11× 11 and 5× 5, with small-sized 3× 3 filters. Stacking smaller-sized filters allows
for deeper networks, e.g., 16 and 19 layers, which enables learning more complex functions.
The disadvantages of VGGNet are its huge time and memory requirements.

GoogLeNet (Inception-v1) (Szegedy et al., 2015) introduces the inception module, which,
instead of going deeper, grows wider using multiple parallel filters of different sizes, to cap-
ture fine-grained features at varying scales. Additionally, it introduces several novelties, which
both increase the accuracy and computational efficiency. It uses 1×1 convolutions for dimen-
sionality reduction and faster computations. Instead of using fully connected layers, which
contain a large number of parameters, e.g., around 90% of those in Alexnet, GoogLeNet uses
global average pooling across feature maps after the last convolution layer, which decreases
the total number of parameters significantly.

Residual Networks (Resnet) (He et al., 2016): Deep CNNs up to 30 layers (Simonyan
and Zisserman, 2014b; Szegedy et al., 2015; He et al., 2015; Ioffe and Szegedy, 2015) have
been shown to improve the performance. However, going deeper in these CNNs is shown to
drop their generalization capability due to optimization difficulties, which even increases the
training error. Instead of learning a direct mapping, h(x) = y, from an input x to an output
y, He et al. (2016) propose learning a residual function, f(x) = h(x) − x as the difference
between a mapping of the input, h(x), and the input, x. Therefore a “skip connection” from
the previous layer is used to let the following layers approximate such a residual function.
This has been proven to successfully train networks with varying depths of up to 152 layers.
Similar to VGGnet, Resnets use 3 × 3 filters, and like GoogLeNet, they use global average
pooling to reduce parameters. With their compelling results, Resnets are frequently used by
many vision applications.
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CNNs trained for Action Recognition on Videos:

The previously mentioned CNN architectures are trained on Imagenet and could be used
for extracting frame-wise features for videos. However, it is shown that these features do
not lead to better performances than the state-of-the-art hand-crafted features (Wang et al.,
2013) for video-based action recognition (Karpathy et al., 2014). Several works extend these
CNN architectures for action recognition by modelling the temporal structure of videos using
motion in a second stream (Simonyan and Zisserman, 2014a) or extending 2D convolutions to
the temporal dimension (Tran et al., 2015; Carreira and Zisserman, 2017). These models can
be pre-trained on large video datasets for action classification and used to extract features
on other datasets. Since they are trained for action classification, the features extracted from
such networks also generalize better to action recognition related tasks.

The two-stream (Simonyan and Zisserman, 2014a) and convolutional 3D (C3D) (Tran
et al., 2015) networks are early architectures used for extracting video features. The two-
stream network combines a spatial stream, where action recognition is performed on single
frames, and a temporal stream for action recognition on motion using stacks of optical flow
images from consecutive frames. C3D is one of the early 3-dimensional convolutional net-
works, extending convolutions to the temporal domain. It includes eight convolutional and
two fully connected layers and can process 16 frames per video with a spatial resolution of
112× 112.

Inflated 3D ConvNet (I3D) (Carreira and Zisserman, 2017) is currently the state-of-the-art
architecture to extract generic features for video understanding. It builds on the state-of-
the-art image classification architectures and inflates their filters and pooling kernels to 3D.
Motivated by the success of 2D CNNs trained on very large image datasets, it is trained on
the Kinetics dataset (Kay et al., 2017). Kinetics covers 400/600/700 human action classes in
different dataset versions, where at least 400/600/700 video clips for each action are collected
from Youtube. These actions are human-centric and cover various interactions with other
humans and objects. I3D takes 64 frames as input with 224× 224 spatial resolution.

2.1.2 Action Recognition on Videos

In this dissertation, we work on complex activities that are composed of multiple actions.
Research on complex activities has already considerably benefited from solutions for action
recognition (Furnari and Farinella, 2019; Huang et al., 2016; Farha and Gall, 2019b). Ad-
vancements in this area will lead to further gains in complex activity research. We now
continue our overview with simple action classification in videos containing a single action.

In a broad perspective, action recognition refers to classifying an input video into a
pre-defined action category. This section focuses on approaches and recent developments
in recognizing actions on short and often trimmed videos using deep models. Such videos
are composed of a sequence of frames that are associated with a single action class. We
restrict our discussion mainly to fully supervised learning based approaches. We start our
overview with two-stream-based solutions and continue with 3D CNNs. Finally, we review
the approaches that aim at capturing long-range dependencies for action recognition.
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2.1.2.1 Two-stream Networks

CNNs’ success on image classification promptly made them the method of choice in video-
based action recognition. Initial approaches are built on 2D CNNs using only 2D convolution
and pooling operations. Karpathy et al. (2014) propose one of the first approaches for action
recognition using CNNs with detailed analysis of several architectures to capture local spatio-
temporal information in videos. Their main CNN architecture is composed of two streams
where one works on low-resolution frames, while the other works on high-resolution crops
from the middle-portion of these frames. However, their results are significantly worse than
using hand-crafted representations (Wang and Schmid, 2013) (85.9% vs. 65.4%). This lack
of performance has been accounted for by other two-stream approaches, where one stream
processes RGB frames, and the other optical flow images to account for motion in the videos.

Some actions can easily be identified from the appearance contained in a single frame,
e.g., “eating apple” or “slicing apple”. However, single frames can be confusing for others,
where motion information might be crucial, e.g. “closing lid” or “opening lid”. Simonyan and
Zisserman (2014a) propose a two-stream network where a 2D CNN is used to model appear-
ance of actions from single frames and another to capture their motion from stacks of optical
flow images. Although this network outperforms using hand-crafted representations (Wang
and Schmid, 2013), it does not relate the motion in the the optical flow stream to the appear-
ance stream. To address the missing relations, e.g., “what is moving where”, Feichtenhofer
et al. (2016) fuse the two streams. They report the best results with a fusion after the last
convolutional layer. Their improvement over Simonyan and Zisserman (2014a) suggests the
importance of jointly reasoning on appearance and temporal features for action recognition.
Feichtenhofer et al. (2017) further investigate adding residual connections between the two
streams.

Similar to Simonyan and Zisserman (2014a), Wang et al. (2016a) learn motion and ap-
pearance information in two streams in their temporal segment networks (TSNs). Differently,
TSNs partition videos into segments and separately process each in two streams, to finally
aggregate their outputs using a consensus function. This allows for incorporating more tem-
poral information from the videos, which increases the accuracy over the two-stream model of
Simonyan and Zisserman (2014a) by 10%. Kazakos et al. (2019) build on TSNs, but instead
of using late fusion, apply mid-level fusion, which is shown to improve the performance in
two-stream networks (Feichtenhofer et al., 2016).

Two-steam approaches are frequently used in action recognition. Chéron et al. (2015) fuse
motion and appearance of human body parts for action recognition. Weinzaepfel et al. (2015);
Gkioxari and Malik (2015) employ such architectures for action localization. Recently, with
audio becoming a popular modality in newly collected datasets (Damen et al., 2018; Zhukov
et al., 2019), a third stream is included for audio (Kazakos et al., 2019; Xiao et al., 2020).

2.1.2.2 3D Convolutional Neural Networks

Two-steam approaches are computationally efficient, as they build on 2D convolutions. How-
ever, their ability to encode temporal order or relationships is limited to the optical flow
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stream. Now we will briefly overview related works on 3D CNNs, which apply convolution
and pooling operations over the temporal dimension as well.

An early neural network using 3D convolutions is proposed by Ji et al. (2012) who train
this network for action recognition on regions detected to contain humans. Tran et al. (2015)
design a 3D CNN, namely “C3D”, trained over frames of a large-scale action recognition
dataset (Karpathy et al., 2014). To find the best 3D architecture for video processing Tran
et al. (2017) employ neural architecture search. However, due to the large number of param-
eters of 3D CNNs, these early 3D CNNs are based on relatively shallow custom architectures.
Instead, Carreira and Zisserman (2017) propose I3D, which utilizes established successful 2D
architectures by inflating their filter and pooling kernels to 3D. This approach is shown to
obtain state-of-the-art performances in all benchmarks. Recently, Feichtenhofer et al. (2019)
propose SlowFast networks using two-streams of 3D ResNets, where one stream operates at a
low frame rate but high resolution to capture spatial semantics, and the other on high frame
rates but low resolution to capture motion. The two streams are fused by connections at
multiple layers and achieve state-of-the-art results.

3D CNNs are successful at spatial and temporal representation learning, however, such
architectures are large and expensive. Therefore, several approaches seek a balance between
speed and accuracy by replacing 3D with low-cost 2D convolutions. Xie et al. (2018) apply
this replacement in the initial layers while keeping the 3D convolutions in deeper layers. Their
model, S3D, which stands for “separable 3D CNN”, achieves good performance, indicating that
a temporal modelling is more important for higher-level features. Another way of decreasing
the computational costs is factorizing the 3D convolutions into 2D spatial and 1D temporal
convolutions. Sun et al. (2015) use 2D spatial kernels in the early, and temporal kernels
in the deeper layers of their network. Tran et al. (2018) propose an architecture, R(2+1)D,
where the 3D convolutions are factorized to successively operated 2D spatial and 1D temporal
convolutions for each layer.

Recently, Lin et al. (2019a) propose their temporal shift module (TSM) with similar
motivations. This module when incorporated to a 2D CNNs achieves the superior perfor-
mance of 3D CNNs, while maintaining the low complexity of 2D CNNs. Given a video, TSM
shifts channels along the temporal dimension, which blends the information from neighboring
frames. It can be inserted into 2D CNNs with no additional costs and is shown to have strong
spatio-temporal modelling ability compared to 3D networks (Damen et al., 2020a).

Optical flow is used as an additional modality by several state-of-the-art architectures
which train separate models on flow and RGB images (Carreira and Zisserman, 2017; Fe-
ichtenhofer et al., 2019; Lin et al., 2019a; Damen et al., 2020a). Although combining the
results from two networks improves the performance, it also adds the costs of computing and
storing optical flow images. Moreover, since optical flow is a hand-designed representation,
such networks are often not learned end-to-end and introduce extra inference time. Some
recent works (Crasto et al., 2019; Stroud et al., 2020) focus on incorporating flow information
into 3D networks using knowledge distillation. A teacher network, which recognizes actions
from optical flow sequences, transfers knowledge into an RGB-based student network, which
recognizes actions from videos.
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Even though 2D CNNs cannot capture temporal information in videos, their competitive
performance implies that most of the action information is contained in the appearance
features. Huang et al. (2018b) propose two models for analyzing how important the temporal
modelling in 3D CNNs is for accurate action recognition. Their first model synthesizes a video
from a subset of frames and the other chooses key-frames from videos independent of motion.
They show that C3D (Tran et al., 2015) trained with either synthesized frames or key-frames
performs comparably to using the original video for training. This suggests a tighter upper
bound for the influence of motion for recognition. They provide a detailed evaluation on
the UCF (Soomro et al., 2012) and Kinetics (Carreira and Zisserman, 2017) datasets, where
they show motion to be necessary only for some classes. Even for these classes, they show
that the entire video is not necessary. They also show that motion is dataset-specific; for
example, it is less critical for Kinetics. In a later work, Sevilla-Lara et al. (2019) shuffle
frames in time to evaluate the influence of temporal order on action recognition. They
define a new set of actions from the classes which cannot be recognized without the correct
order. Performance on this set measures a network’s ability to capture temporal information.
They also show that inflated convolutions are biased towards classes where motion is not
important. Such observations and experiments become further interesting for recognizing
actions from the daily lives of humans, where human-object interactions are abundant. Li
et al. (2018c) argue that there are object-, scene-, or person-centric biases in existing action
recognition datasets. They claim that most of the time, the action class is determined merely
by an accurate recognition of objects, scenes, or person-centric captures. They collect a new
dataset of diving videos, where they try to minimize such biases, so that models can focus
on understanding the temporal dynamics.

2.1.2.3 Capturing Long-range Dependencies

CNNs are inefficient in modelling long-range interdependencies between frames, as they are
limited by their convolution operators, which only capture local features and relations. More-
over, 3D CNNs are usually limited to 8 to 32 frames as input, as increasing the temporal
extent increases memory requirements and computations (He and Sun, 2015), and runs risk
of over-fitting. These reduce chances of learning long-range temporal relations in videos.
Different methods have been proposed to tackle these issues.

Several works model temporal relationships across video frames using 2D CNNs and
posthoc fusion. Such fusion can be implemented with recurrent neural networks. Yue-Hei Ng
et al. (2015) extract frame-wise features from a two-stream framework and propose several
ways of aggregating them. They show that max-pooling over frame features performs compa-
rably to RNNs. Similarly, Donahue et al. (2015) employ RNNs to learn representations from
2D CNNs for several tasks, such as activity recognition, image and video description. Li et al.
(2018d) and Sharma et al. (2015) show improvements by incorporating attention mechanisms
into RNNs. Fernando et al. (2016) learn ranking functions to capture the temporal evolution
of sequences. Zhou et al. (2018a) propose a module, called temporal relation network (TRN),
which reasons about the temporal interactions between frames at multiple time scales. They
sparsely sample frames from different temporal segments and feed them into different frame
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relation modules. Although TRNs are good at capturing high-level temporal structures, they
cannot capture low-level temporal relations, as those are lost during feature extraction.

A direct way for temporal modelling is to use 3D CNNs. However, these could be limited
in modelling long-range interdependencies due to the locality of convolutional operations.
Wang et al. (2018c) propose non-local neural networks, which exhaustively correlate features
between all locations using attention mechanisms, to relate long-range dependencies in both
space and time. Chen et al. (2019) project features into a latent interaction space and perform
graph convolutions to extract relation-aware features. The features are then projected back
to the original coordinate space. Recently, Wu et al. (2019) incorporate long-range feature
information from object regions into the 3D CNNs using non-local operations.

Humans can understand what happens in a video by looking at the appearance, states, and
locations of objects. Reasoning on what happened to objects is crucial for understanding ac-
tions that are dominated by human-object interactions. To model finer-grained interactions,
a large body of works employs pre-computed object proposals, given by pre-trained detectors.
Wang and Gupta (2018) construct spatio-temporal graphs, where nodes correspond to object
region proposals from the entire video. They perform reasoning on this graph representation
via graph convolutions. Baradel et al. (2018) use a pre-trained object segmentation network
to extract object regions and model their relationships through space and time. They model
inter-frame interactions between all objects using a pairwise mapping, which is then fed into
an RNN for action classification. A similar solution is used by Tekin et al. (2019) on 3D
poses of hands and objects. Ma et al. (2018) model the co-occurrence of object regions using
a module which selects object subsets that are important for discriminating human actions.
Wang et al. (2020d) explore the relations between objects and motion.

Although the methods discussed so far show quite impressive results, they are mostly
tested for action recognition on short trimmed videos. For example, 3D CNNs do not allow
processing more than a limited amount of frames per video at a time. Several approaches use
sampling (Wang et al., 2016a) and striding (Feichtenhofer et al., 2017) to process larger spans
of video. However, their extend is still limited, and sampling might miss important frames in
untrimmed videos. One solution to enable modelling longer untrimmed sequences for simple
action recognition is pre-computing frame-wise features and applying temporal modelling on
them. Several works have been evaluated on the Youtube8M dataset (Li et al., 2017), which
provides audio and appearance features pre-extracted for its untrimmed sequences. These
works are focused on developing temporal models and aggregating features to arrive at a
robust and discriminative video representation. Miech et al. (2017) pass the features through
some learnable pooling modules (Arandjelovic et al., 2016), and use a two-stream architecture
for aggregating audio and visual features. Tang et al. (2018) use non-local operations with
pooling for constructing more representative video descriptors. Skalic and Austin (2018)
employ model distillation over an ensemble of numerous models, such as LSTMs, which
improves the performance while reducing the model size.. However, since these works operate
on pre-extracted features, they are not end-to-end trainable and thus cannot optimize the
features for the target task.
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2.2 Understanding Complex Activities

Human activities exhibit various potential directions to explore, including action recognition,
detection, anticipation, captioning, and temporal action segmentation. This dissertation
is particularly focused on two of these, namely temporal action segmentation and action
anticipation. However, in this section, we also overview several other tasks carried out on
complex activity videos, as we either provide comparisons to models targeting such tasks,
e.g., key-step localization, or refer to these works frequently in our related works. We first
overview datasets frequently used in complex activity research. We then provide a detailed
review of related works on action anticipation and temporal action segmentation. Finally, we
briefly summarize temporal temporal action localization and key-step localization on complex
activities.

2.2.1 Datasets

The need for developing algorithms to understand complex activities in real-world scenarios
has prompted the construction of standardized datasets. This section provides an overview
of complex activity datasets that are composed of untrimmed videos with multiple actions.

We divide complex activity datasets into two categories. The first category are those
datasets which are composed of instructional activity videos (Stein and McKenna, 2013;
Kuehne et al., 2014b; Alayrac et al., 2016; Zhou et al., 2018b), where the videos are com-
positions of sub-activities following some loose orderings. The second category consists of
datasets that are composed of sequences of daily activities (Pirsiavash and Ramanan, 2012;
Damen et al., 2018; Sigurdsson et al., 2016), where the sub-activities follow partial order-
ing, as some sub-activities can be executed independently of others. In this section, we also
present several other long-range video datasets where the order of sub-activities does not
matter (Gorban et al., 2015), or they are mostly employed for tasks where the temporal
structure is not leveraged (Caba Heilbron et al., 2015).

2.2.1.1 Instructional Activities Datasets

In instructional activity videos, a person executes a sequence of actions, following some order,
to arrive at a goal, such as “making a dish” or “assembling furniture”. Instructional activities
can be divided into two groups, where some are recorded datasets (Fathi et al., 2011b; Kuehne
et al., 2014b; Li et al., 2018b), and some are collected from online video sharing platforms such
as YouTube (Zhou et al., 2018b; Tang et al., 2019). In Table 2.1, we provide detailed statistics
and comparisons for each dataset. In this table, we can see that the recorded datasets are
either captured from only an egocentric point of view (Fathi et al., 2011b; Li et al., 2018b),
or from a third-person view (Rohrbach et al., 2012; Kuehne et al., 2014b; Toyer et al., 2017).
The collected datasets are usually composed of multi-view videos. Finally, the majority of
instructional datasets focus on cooking activities, which might create biased solutions towards
one domain.

Instructional activity datasets are usually composed of multiple demonstrations of the
same complex activities, e.g., YouCookII includes 89 different complex activities, with
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around 22 sample videos for each of them. Different than these datasets, our Tasty Videos
dataset (Sener and Yao, 2019) (see Chapter 4) includes a diverse set of complex activities.
The majority of the instructional datasets are annotated with category-based labels such as
“pour milk”, while several others contain sentences (Malmaud et al., 2015; Zhou et al., 2018b)
including our newly collected Tasty Videos dataset.

In the following, we present a list of instructional activity datasets sorted by the year
they are published.

Georgia Tech Egocentric Activities (GTEA) (Fathi et al., 2011b) is a recorded dataset
that contains videos from seven complex activities of making: “hotdog sandwich”, “instant
coffee”, “peanut butter sandwich”, “jam & peanut butter sandwich”, “sweet tea”, “coffee &
honey”, and “cheese sandwich”. The videos are recorded with a camera mounted on a cap,
worn by four participants. It includes 28 videos with 560 sub-activity segments from 71
classes.

MPII-Cooking Activities (Rohrbach et al., 2012) is a recorded dataset with 44 videos from
14 cooking activities such as “making fruit salad” or “making cake”. There are 65 fine-grained
sub-activities. Twelve participants prepare dishes in a single kitchen using a static camera.
As a result, the dataset does not exhibit any scene and motion biases. The participants
are instructed verbally, but frequently divert from the instructions using different utensils or
ingredients. This dataset is later extended to MPII Cooking 2 (Rohrbach et al., 2015) which
contains 273 videos from 30 participants. There are 67 fine-grained sub-activities from 59
diverse dishes. The extension also includes a large number of textual scripts that describe
how to prepare certain dishes. These scrips are collected independently of the videos and do
not have any temporal association. Even though the number videos are limited, using these
scrips enable knowledge transfer for recognizing unseen sub-activities.

TACoS (Regneri et al., 2013) includes 185 videos from the MPII Cooking 2 Dataset from
26 dishes and provides multi-sentence descriptions for 8.8K segments.

50Salads (Stein and McKenna, 2013) is composed of 50 recorded videos of 25 participants
making two different mixed salads. There are 17 sub-activities in total. The average duration
of the videos is 6.4 minutes. The videos are captured by a camera with a top-down view
onto the work-surface. The participants are provided with recipe steps which are randomly
sampled from a statistical recipe model. The dataset provides RGB-D videos and data from
wireless accelerometers which are attached to the kitchen utensils.

Breakfast Actions (Kuehne et al., 2014b) targets recording videos “in the wild”, in 18
different kitchens, as opposed to the controlled lab environments in the previous datasets.
The participants are not given any scrips and the recordings are unrehearsed and undirected.
The dataset is composed of the 10 complex activities of breakfast-related tasks, of making
“coffee”, “orange juice”, “chocolate milk”, “tea”, “bowl of cereals”, “fried eggs”, “pancakes”, “fruit
salad”, “sandwich”, and “scrambled eggs”. Each video is composed of a set of sub-activities
from 48 different classes such as “pour water” or “stir coffee”. This dataset is recorded with
52 participants with multiple cameras, all from a third-person point of view. The number of
cameras per participant varies from 3 to 5. There are 1712 videos, when accounting for the
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multi-camera views, and around 8500 sub-activity segments in total. The average duration
of the videos is 2.3 minutes.

What’s Cooking (Malmaud et al., 2015) is the largest collected dataset with 180K videos.
For every video, there is a textual cooking recipe along with the ingredients. Additionally,
YouTube’s automatic speech recognition output is provided, which provides loose alignments
between the textual recipe steps and the video. The dataset does not provide sub-activity
labels or their locations in the videos.

Inria Instructional Videos (Alayrac et al., 2016) is a collected dataset, composed of the
activities of “changing a tire”, “performing CPR”, “repotting a plant”, “making coffee” and
“jumping car”. There are 30 videos for each complex activity and 47 sub-activities in total.

IKEA Furniture Assembly (IKEA-FA) (Toyer et al., 2017) is a dataset recorded from
third person view. It is composed of 101 videos of assembling an IKEA table. There are
12 sub-activity classes, such as “pick leg”, “attach leg” and “flip table”. The dataset pro-
vides the temporal locations of the sub-activities along with the bounding box for the table.
This dataset is one of the rare examples of recorded instructional datasets without cooking
activities.

EGTEA Gaze+ (Li et al., 2018b) is a recorded egocentric dataset which contains 86 se-
quences from 32 subjects preparing seven different meals in a naturalistic kitchen environ-
ment. The tasks are making “pasta salad”, “turkey sandwich”, “bacon and eggs”, “continental
breakfast”, “cheeseburger”, “Greek salad”, and “pizza.” There are 106 sub-activity classes
with an average duration of 3.2 seconds. This dataset provides audio, gaze tracking data,
and pixel-level hand masks.

YouCookII (Zhou et al., 2018b) is a dataset collected from YouTube. There are 89 complex
activities, all from cooking recipes. Each recipe has around 22 videos, in total there are 2000
videos. Each video is annotated with temporal boundaries of the recipe steps and their
textual description.

CrossTask (Zhukov et al., 2019) is a dataset collected from YouTube. It has two types of
tasks: 18 primary tasks which are fully annotated with the sub-activities’ temporal locations,
and 65 related tasks without any temporal annotations, which are collected to complement
the primary tasks. There are 4.7K videos, 2.7K of which have temporal annotations. There
are 107 sub-activities in the primary tasks.

COIN (Tang et al., 2019) includes videos collected from the 12 domains of “nursing and car-
ing”, “vehicles”, “leisure and performance”, “gadgets, “electric appliances”, “household items”,
“science and craft”, “plants and fruits”, “snacks and drinks dishes”, “sports”, and “housework”.
There are 11.8K videos from 180 different complex activities from these twelve domains.
There are 46K annotated segments for 778 sub-activity classes. It is the largest instructional
activity dataset with temporal sub-activity annotations.
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2.2.1.2 Daily Activities Datasets

Such datasets capture individuals’ daily routines, usually in their homes. In Table 2.1, we
present detailed statistics and comparisons with instructional activity datasets. The daily
activity datasets are usually composed of recorded videos and are not limited to specific
domains like cooking (Pirsiavash and Ramanan, 2012; Sigurdsson et al., 2018). Usually,
these datasets are collected with an egocentric view (Pirsiavash and Ramanan, 2012; Damen
et al., 2018). The Charades-EGO dataset (Sigurdsson et al., 2018) stands out with recordings
that include paired third-person and egocentric view videos.

In the following, we present an overview of daily activity datasets ordered by the year of
publication.

Activities of Daily Living (ADL) (Pirsiavash and Ramanan, 2012) is a dataset with
egocentric recordings where 20 participants’ daily activities are recorded in their homes.
These recordings are not scripted. The dataset is annotated with 18 sub-activities such as
“brushing teeth”, “watching TV” and “cleaning house”. The dataset also is annotated with 42
different objects and their interaction status, indicating whether they are being interacted
with or not.

Charades (Sigurdsson et al., 2016) is a dataset recorded from a third-person view by around
260 participants in their own homes. The participants are asked to act out a script in front
of the camera. Since the storyline is pre-defined, this dataset is considered to contain less
natural looking actions. This is because in real-life scenarios, people make mistakes or look
for things. The dataset includes around 9800 videos with 30 second duration on average.
There are 66K action segments from 157 classes.

Charades-EGO (Sigurdsson et al., 2018) is a large-scale dataset of paired first-person and
third-person videos. 112 participants are asked to record two videos using the scripts from
the Charades (Sigurdsson et al., 2016) dataset. One video captures the person enacting the
script from a third-person view. The other captures the same person repeating the same script
through a camera fixed to their forehead. This dataset is interesting, as it could be used for
modelling actions jointly from the first and third person’s perspective. The recordings are
not identical but follow the same semantic structure. The collection has 4000 pairs of videos.

Epic-Kitchens-55 (Damen et al., 2018) is a large-scale egocentric dataset with 432 videos
from 32 participants in their kitchens. The participants record their daily routine over three
days. The dataset has 55 hours of recording where the video durations range from 1 to 55
minutes. Each video is densely annotated with actions, e.g., “take plate”, “open fridge”. The
dataset leads to a long-tailed distribution where only 149 action classes have 50 or more
sample clips available. There are, in total, 125 verbs, 331 nouns, and 2513 actions.

Epic-Kitchens-100 (Damen et al., 2020a) is a recently extended version of Epic-Kitchens-
55 (Damen et al., 2018) where the total duration of the dataset is increased to 100 hours with
newly collected videos. The number of action classes is increased to 4025, the total number
of segments to 70K.
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2.2.1.3 Other Datasets

Finally, we overview other long-range video datasets, which include multiple actions with
irrelevant order or are used for tasks where the temporal dynamics of these actions are not
leveraged.

ActivityNet (Caba Heilbron et al., 2015) is a large-scale video dataset with 203 actions such
as “painting furniture” or “vacuuming floor”. The collected videos, ranging between 5 and 10
minutes, are annotated with the temporal boundaries of these 203 action classes. On average,
there are 137 untrimmed videos per class, and there might be multiple actions annotated in
some videos. The dataset is mainly used for the tasks of temporal action localization and
captioning events.

Thumos (Gorban et al., 2015) is a dataset collected from YouTube for temporal action
localization in long untrimmed videos. It consists of 7700 temporally untrimmed videos that
may include any action from the 101 action classes of UCF101 (Soomro et al., 2012).

2.2.2 Action Anticipation

Predicting the future is a goal of many areas of computer vision. There has been a variety
of research on predicting future frames (Liang et al., 2017; Lee et al., 2018a; Castrejon et al.,
2019; Wu et al., 2020), human poses (Corona et al., 2020; Hernandez et al., 2019; Gui et al.,
2018; Martinez et al., 2017), trajectories (Rasouli et al., 2019; Amirian et al., 2019; Sadeghian
et al., 2019), action tubes (Singh et al., 2018, 2017), or active objects (Furnari et al., 2017).
Others predict semantic (Luc et al., 2017) or instance segmentation (Luc et al., 2018), or
optical flow (Jin et al., 2017) of future frames. Another task is predicting locations, e.g., of
events in sports (Wei et al., 2014; Felsen et al., 2017), or of hands and objects (Fan et al.,
2018). Further research directions are the anticipation of instruments in surgery (Rivoir et al.,
2020), or even the prediction of future actions of dogs (Ehsani et al., 2018). However, in this
section, we restrict our discussion mainly to predicting future human actions.

We now continue our overview with the topic of action anticipation, where the task is
to predict the upcoming actions in videos. Anticipation is a perception task that makes an
inference about the future given a sequence of observations. It is highly entangled with the
advancements in action recognition, since the perception part is similar to the one required
for recognition. It is also closely related to temporal action segmentation, as such algorithms
provide high-level abstractions for visual data that could be directly used for anticipation.

In this overview, we study anticipation methods according to the prediction horizon they
target, i.e., short and long-term. We first summarize early prediction approaches, which are
focused on predicting ongoing, but not yet completed, actions as early as possible. Next, we
present works that target “short-term anticipation” where the task is to predict the next action
seconds before it starts. Finally, we review approaches that perform “long-term anticipation”
into the future.
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Dataset Duration #Seq. #Seg. Domain Source #C.A #Actions Year View

GTEA 0.4h 28 0.5K cooking R 7 71 2011 egocentric
MPII Cooking 9.5h 44 5.5K cooking R 14 65 2012 3rd-person

TACoS 16h 185 8.8K cooking R 26 - 2013 3rd-person
50Salads 5.5h 50 0.9K cooking R 1 17 2013 top-view
Breakfast 77h 1712 11K cooking R 10 48 2014 3rd person

MPII Cooking 2 27h 273 14K cooking R 59 67 2015 3rd-person
Ikea-FA 4h 101 1.9K furniture R 1 12 2017 3rd person

EGTEA Gaze+ 29h 86 10K cooking R 7 106 2018 egocentric

What’s Cooking 3,000h 180K - cooking C - - 2015 mixed
Inria Instructional 7h 150 - mixed C 5 47 2016 mixed

YouCookII 176h 2K 15K cooking C 89 - 2018 mixed
CrossTask 376h 4.7K 34K mixed C 83 107 2019 mixed

COIN 476h 11.8K 46K mixed C 180 778 2019 mixed
Tasty Videos 37h 2.5K 21K cooking C 2.5K - 2019 top-view

ADL 10h 20 0.4K mixed R - 18 2012 egocentric
Charades 69h 8000 68K mixed R - 157 2016 3rd-person

Charades-EGO 82h 9848 66K mixed R - 157 2018 mixed
Epic-Kitchens-55 55h 432 39K cooking R - 2043 2018 egocentric

Epic-Kitchens-100 100h 700 70K cooking R - 4025 2020 egocentric

Thumos 430h 7.7K - mixed C - 101 2015 mixed
ActivityNet 849h 27.8K 39.2K mixed C - 203 2015 mixed

Table 2.1: We present comparisons of existing complex activity video datasets. We first
present the recorded instructional activity datasets: GTEA (Fathi et al., 2011b), MPII-
Cooking Activities (Rohrbach et al., 2012), MPII Cooking Activities 2 (Rohrbach et al.,
2015), TACoS (Regneri et al., 2013), 50Salads (Stein and McKenna, 2013), Breakfast Ac-
tions (Kuehne et al., 2014b), Ikea Furniture Assembly (IKEA-FA) (Toyer et al., 2017),
EGTEA Gaze+ (Li et al., 2018b), and collected instructional activity datasets: What’s Cook-
ing (Malmaud et al., 2015), Inria Instructional Videos (Alayrac et al., 2016), YouCookII (Zhou
et al., 2018b), CrossTask(Zhukov et al., 2019), COIN (Tang et al., 2019), and Tasty
Videos (Sener and Yao, 2019). We then list the faily activity datasets: Activities of Daily
Living (ADL) (Pirsiavash and Ramanan, 2012), Charades (Sigurdsson et al., 2016), Charades-
EGO (Sigurdsson et al., 2018), Epic-Kitchens-55 (Damen et al., 2018) and Epic-Kitchens-
100 (Damen et al., 2020a). Finally we present other datasets where order is irrelevant:
ActivityNet (Caba Heilbron et al., 2015) and Thumos (Gorban et al., 2015) datasets. The
datasets are ordered based on the year they are released. Here “#Seq” corresponds to the
number of videos, “#Seg.” corresponds to the number of action segments, “Source” is either
recorded, “R”, or collected, “C”, “#C.A” corresponds to the total number of different com-
plex activities such as “making coffee”, “#Actions” corresponds to the total number of action
classes in the dataset. The datasets might include egocentric, 3rd person, top-view, or mixed
views. The majority of the datasets are from the cooking domain.
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2.2.2.1 Early Prediction

The goal of early prediction approaches is to enable early recognition of unfinished actions.
Although they target inference on unfinished actions, early action prediction approaches are
often wrongly referred to as “anticipation”. Nevertheless, the two tasks are highly related;
progress made in one can be useful for the other.

A variety of approaches for recognizing the current action/activity as early as possible have
been proposed in the literature. In the following, we first summarize early action recognition
methods, then we list approaches assessing the completeness of actions. Finally, we present
methods that perform intention anticipation in long, complex sequences.

Early action recognition aims at recognizing ongoing actions from partially observed
videos. One of the earliest attempts at formulating the concept of early action recognition
is proposed by Ryoo (2011), who bases his solution on temporally integrated bag-of-words
representations and models variations in the distribution of these histograms over time. Yu
et al. (2012) implement a 3D extension of the implicit shape model (Leibe et al., 2008) to
capture the spatio-temporal structure of local features and then perform pattern matching
between testing and training videos. Hoai and De la Torre (2012) target early localization
of starting frames of incomplete events by training a structured-output SVM on sequentially
arriving observations. They constrain the SVM to ensure monotonically increasing classifica-
tion confidence, so that partial observations are not classified more confidently than the more
complete ones. Instead of directly classifying partial observations, Xu et al. (2015b) explore
ranking all potential actions by utilizing auto-completion methods on prefix-candidate pairs.
They temporally segment videos by clustering discriminative frame patches and use these
segments to construct the prefix and candidate action pairs. Although small-scale datasets
with limited action variations (Ryoo et al., 2010) are used in these eary works, with the ad-
vancement of deep learning, they are replaced by large-scale realistic video datasets (Soomro
et al., 2012; Caba Heilbron et al., 2015) for early recognition.

Recurrent neural networks have been widely used to encode the sequential structure of
videos (Ma et al., 2016; Zhou et al., 2016; Aliakbarian et al., 2017; Kong et al., 2018; Shi et al.,
2018; Wang et al., 2019b; Gammulle et al., 2019b; Sun et al., 2019b; Wang et al., 2020a). To
capture the progression of observations, Ma et al. (2016) use LSTMs with two ranking losses
to encourage the rank of the correct action to increase, as the video progresses. One loss
forces the classification score for the correct class to be monotonically non-decreasing with
time, while the other ensures a non-decreasing margin between the detection score of the
correct and the maximum score of the wrong classes. To encourage the correct predictions
as early as possible, Aliakbarian et al. (2017) introduce a loss to penalize false negatives at
the beginning of the sequence. They use a multi-stage LSTM architecture to extract context-
aware features from the entire image and action-aware features using weighted activation
maps (Zhou et al., 2016). These maps correspond to the image regions that are discriminative
w.r.t. the action category. With a similar motivation to improve the recognition accuracy
for early observations, Kong et al. (2018) use LSTMs augmented with a memory module to
remember hard-to-predict samples. Their memory module averages latent features from the
LSTM to create key-value pairs for querying the ongoing action class.
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Instead of directly predicting action labels from partial observations, early recognition
performance can be boosted by exploiting the future. One way of achieving this is predicting
a future representation. Given partial observations in the form of a motion image for time
t, Rodriguez et al. (2018) use a convolutional auto-encoder to hallucinate motion represen-
tations for subsequent frames. The hallucinated motion images are then fed to a CNN for
classification. With a similar motivation, Shi et al. (2018) employ an RNN-based architecture
to generate future features and feed them to a multi-layer perceptron (MLP) to predict the
action class. Instead of learning future representations and their classification in two stages,
Gammulle et al. (2019b) jointly learn action prediction and the synthesis of future represen-
tations using generative adversarial networks (GANs). They show that learning a context
descriptor that is shared between early action recognition and representation prediction leads
to good results. Another way of benefiting from the future is by transferring knowledge from
complete to incomplete observations. Kong et al. (2017) reconstruct features of complete
from those of incomplete sequences. Wang et al. (2019b) employ a knowledge distillation
framework where a teacher model with access to complete videos transfers knowledge to a
student model that only observes partial videos.

While Hoai and De la Torre (2012) and Ma et al. (2016) predict the starting points of
actions after processing partial observations, De Geest et al. (2016) introduce the problem
of online action detection, where the task is to classify frames in untrimmed, streaming
videos as soon as they arrive. For the same online task, Xu et al. (2019b) incorporate future
information by simultaneously predicting current and future actions. Similarly, Eun et al.
(2020) only accumulate past information if it is relevant to the ongoing action to learn a more
discriminative representation.

Early human activity recognition has also been investigated for actors and their inter-
actions (Sun et al., 2019b) or group activities (Chen et al., 2020a; Yao et al., 2018). Some
works rely on different modalities, such as skeleton data (Li et al., 2020; Ke et al., 2019a).
In a very recent approach, Wang et al. (2020a) study early recognition in environments with
multiple cameras, assuming that, due to some system limitations, data can only be received
from one active camera at a time. They solve camera selection and early action recognition
problems, considering missing or unobserved frames, using reinforcement learning.

Action completeness is introduced by Heidarivincheh et al. (2016), who propose a method
that classifies sequences into complete and incomplete categories. In a concurrent work, Li
et al. (2016) propose a joint classification and regression framework that predicts the class,
start, and end time of the ongoing action. Later works propose solutions for regressing the
time left to finish the action. Becattini et al. (2017) predict the action progress, which corre-
sponds to the percentage of the action that is completed until the partial observation. They
also localize the actions in the videos. Similarly, Twinanda et al. (2018) predict remain-
ing surgery durations from partial videos. Several works attempt detecting the “completion
moment” of actions, i.e., the exact onset of an action, e.g., turning the handle during a door-
opening action. Heidarivincheh et al. (2018) predict the completion moment by accumulating
frame-level votes. In a later work, Heidarivincheh et al. (2019) address the same problem in
a weakly supervised setting using sequence labels, e.g., “complete” and “incomplete”. Most of



2.2. Understanding Complex Activities 27

these works rely on RNNs to encode sequences.

Intention prediction targets early prediction on sequences with multiple actions. For
example, if a subject wears shoes and takes the house keys, this indicates that the person
will go out.

In one of the early approaches, Pei et al. (2011) hierarchically decompose videos into
activities using and-or-graphs over objects, actors and their interactions, which are then
used to predict the intended actions, e.g., “using a microwave”. Li et al. (2012) propose
using “actionlets” – the atomic actions in activities, e.g., “making a phone call” which can
be decomposed into the atomic actions of “reaching”, “picking up”, “answering” and “hanging
up the phone”. They detect actionlet segments in partial observations by discovering motion
velocity peaks and use probabilistic suffix trees to learn actionlet patterns. Inferring others’
intentions is an important subject for human-robot interactions and has been investigated
for playing tennis (Wang et al., 2012), helping humans with daily activities (Koppula and
Saxena, 2015), or predicting harmful events (Ryoo et al., 2015).

Recently, several works studied intention prediction on dedicated newly collected datasets.
Wu et al. (2017) use on-wrist sensors, including a camera and an accelerometer, to observe
human actions and collect an “intention” dataset. They use an RNN to encode the sequence
over accelerometer and camera data. While the accelerometer data is cheap to store and
compute, the camera frames are more expensive and are thus only triggered on demand by
a policy network. Rhinehart and Kitani (2017) collect a dataset of videos of participants
performing goal-seeking behavior in home-, office- or laboratory-environments using scripts
like “obtain a snack and plate in kitchen, eat at dining room table.” They aim to forecast
the participants’ long-term goals via an online inverse reinforcement learning approach. The
goals in this dataset are rooms, e.g., bathroom or living room in homes, and lounge or kitchen
for offices.

2.2.2.2 Short-term Anticipation

We now present a detailed overview of the related works on action anticipation, where the task
is to predict upcoming actions before they occur. More formally, let τα be the “anticipation
time”, i.e., how many seconds in advance to anticipate the next action. Then the task of
action anticipation is to predict upcoming action, τα seconds before it starts. In many recent
approaches, τα is considered to be 1 second (Miech et al., 2019a; Furnari and Farinella, 2019)
but could vary between several zero (Lan et al., 2014) and several seconds (Koppula and
Saxena, 2015).

Early works are focused on anticipating simple movement primitives, such as “reaching”,
“moving”, “placing”, to plan ahead for robotic responses. Koppula and Saxena (2013a,b,
2015) model the interactions between human pose, environment and object affordances using
spatio-temporal graphs. Lan et al. (2014) target anticipating human interactions such as
“hugging”. They use a multi-layer “moveme” hierarchy, which represents human movements
at multiple levels of semantic and temporal granularities, and use a max-margin learning
framework to relate information across different movemes for predicting future interactions.
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One of the most popular sequence encodings are recurrent neural networks. The frame-
work of Mahmud et al. (2017) jointly learns predicting the label of the next action and
its starting time. Predictions are made based on the combined output of three branches,
where two fully connected layers encode the object and recent action information, and an
LSTM encodes the sequence. Pirri et al. (2019) use LSTMs with internal dynamic memory,
which contributes to taking into account long-term past observations. Recently, Furnari and
Farinella (2019) propose an anticipation architecture with two LSTMs, where one summarizes
the past observations, and the other conditions on the hidden and cell states of the first to
make predictions about the future at multiple anticipation times.

Similar to the early recognition literature, several action anticipation works exploit the
future instead of making predictions based on past observations only. A majority of these
works predict future features and perform next action classification on those. Vondrick et al.
(2016) predict the visual representations of future frames by training a CNN on large-scale
unlabelled video data. They later learn to recognize next actions from these features. To
predict future frame features, they only rely on the last observed frame. Differently, Gao
et al. (2017c) take a sequence of past frames as input, and output a sequence of future frame
features. Their framework is composed of a video feature extractor, an encoder-decoder that
predicts future features from past observations, a classification module to anticipate the action
class, and a reinforcement module to reward the network for making a correct prediction as
early as possible. Similarly, Zeng et al. (2017b) formulate predicting future representations
as a inverse reinforcement problem. Zolfaghari et al. (2019) address the ambiguous nature
of the future and predict multiple feature vectors corresponding to possible future outcomes
along with their uncertainties. They fuse these multiple feature representations and feed
them into an LSTM for predicting the future action. Different than predicting the future
features, Tran et al. (2019) propose a knowledge distillation model. They train a teacher
network for recognizing the future action, and a student network for next action anticipation.
The teacher guides the student to attend relevant information needed for predicting the next
action.

Predicting whether an action will occur or not is a more straightforward task but could be
very critical for real-world scenarios like autonomous driving and accident prevention. Zhou
and Berg (2015) propose one of the most straightforward scenarios for future prediction.
Given an observation and snippets of two actions, they select the snippet most likely to
happen next. Zeng et al. (2017a) focus on the accident anticipation problem where the task
is to predict if a person will encounter an accident or not. In their LSTM-based framework,
they also localize the region where the accident might happen. Suzuki et al. (2018) collect
a dataset with a large number of near-miss accidents. They base their solution on a quasi-
recurrent neural network (Bradbury et al., 2016) with a new loss that gradually learns early
anticipation and outputs the probability of a future accident. Similarly, Neumann et al.
(2019) present a method tested on two tasks: if and when a car will stop, and if and when a
player will shoot a basketball. They study several representations and losses to make accurate
predictions up to 10 seconds before an action happens. Manglik et al. (2019) focus on the
“when” question and forecast the exact time-to-collision in the following six seconds.
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The future is uncertain, as given some observation, there might be multiple future ac-
tions. Several works note that action labels in the standardized datasets are not complete
to train models for action anticipation and propose dedicated losses or transferring knowl-
edge from other sources. Furnari et al. (2018) consider anticipation as a multi-label learning
problem with missing labels, as there might be multiple potential future actions for a given
observation, but each is associated with only one action in the ground truth. They com-
pare several loss functions and evaluation measures and conclude that Top-K losses (Berrada
et al., 2018) produce encouraging results, as they are designed to produce small errors when
the correct label is among the top-K predictions. Following the same multi-label missing
labels definition, Camporese et al. (2020) use additional data sources to reduce the predic-
tion uncertainty. They propose a knowledge distillation framework where a teacher network
injects semantic prior information, e.g., word embeddings (Pennington et al., 2014), via label
smoothing (Szegedy et al., 2016). Miech et al. (2019a) use additional data sources in the
form of visual attribute classifiers. They fuse two approaches, one to anticipate the next ac-
tion directly from the observations, the other to first predict visual attributes of the current
frames and then to anticipate the next action based on these predictions.

Recent interest in egocentric vision has started a new line of approaches dedicated to such
recordings. The main idea is to benefit from hand and object regions and their interactions.
Shen et al. (2018) use a temporal attention module directed by different egocentric modalities
such as gaze and hand masks in an LSTM architecture. Liu et al. (2020) propose a deep
network that jointly predicts future hand trajectories, hand-object interaction regions on
the last observable frame, and future action labels. In a very recent work, Dessalene et al.
(2020) build object manipulation graphs using hand and object interaction regions to produce
state representations, which model relations between hands and objects. They are then fed
to an LSTM to model long-term video dynamics for anticipation. All these models require
supervisory signals such as gaze, hand trajectories, interaction hotspots or hand masks during
training.

All these approaches make future predictions in the form of categorical action labels.
In Chapter 4, we present our anticipation work which generates sentence descriptions for
upcoming actions. Our model can be used for next action anticipation and can also be
extended for multiple step predictions into the future. Similar to us, recently, Mahmud
et al. (2020) output sentence-based generations for the next actions by extending action
anticipation framework from Mahmud et al. (2017).

2.2.2.3 Long-term Anticipation

The approaches we reviewed until now target short-term and mostly next action anticipation.
This type of anticipation is shown to be successfully performed by processing only the recent
observations (Furnari and Farinella, 2019). In recent years, research on predicting multiple
future actions gained attention, as e.g., exercised in “dense anticipation”, which refers to
predicting multiple future actions and their durations for long horizons of up to several
minutes. However, for this type of anticipation, models need to understand long-range past
in complex activities. We now review approaches which predict long-term future by exploiting
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long-term past observations.

One of the first approaches for dense anticipation is presented by Farha et al. (2018).
Their method is composed of two stages. The first stage is assigning action labels to each
frame using some temporal action segmentation algorithm. The second stage uses these labels
as input for two future prediction algorithms, one using RNNs, the other CNNs. The RNN
conditions on the past action sequence and predicts the remaining duration and label of the
current action, and it recursively predicts future actions and their durations. The CNN-
based method makes future predictions in the form of a matrix. Gammulle et al. (2019a)
point out the limitations of LSTMs for capturing long-term dependencies and propose using
memory networks with LSTMs. They use two memory modules, one for their CNN-based
frame-level features and the other for action labels of sequences. Ke et al. (2019b) argue
that recursive predictions might accumulate and propagate errors and that the CNN-based
solution from Farha et al. (2018) introduces many parameters and requires a predefined scale
for the predicted matrix, which limits the prediction horizon. They propose an approach that,
given a future time point, makes a time-conditioned future action prediction. As such, their
model only relies on observations to make future predictions and thus does not accumulate
anticipation errors.

Unlike methods mentioned earlier, which work in a two-stage setting and either use the
outputs of a segmentation algorithm (Farha et al., 2018; Ke et al., 2019b) or the ground truth
action labels (Gammulle et al., 2019a), our work, presentend in Chapter 5, performs dense
anticipation in a single stage (Sener et al., 2020). Similarly, Farha et al. (2020) propose a
sequence-to-sequence model that encodes visual features to predict future actions and their
durations recursively. They also employ a cycle consistency module that, given the predictions
for future actions, predicts past actions and their durations, which is shown to improve the
prediction performance.

Given an observation, multiple possible actions might occur in the future. Uncertainty in
the future led researchers to develop models that can make multiple dense future predictions.
Mehrasa et al. (2019) propose a variational auto-encoder to predict a distribution over the
future actions and their starting times. Using these distributions, they can sample multiple
sequences for the future. Similarly, Farha and Gall (2019a) employ the RNN from Farha et al.
(2018) and separately model probability distributions of future actions and their durations,
and use them to generate possible future predictions. In a very recent work, Zhao and Wildes
(2020) propose a discrete sequential generative adversarial network (GAN) for predicting
realistic future sequences in the form of action labels and their durations. They combine the
GAN with a distance regularizer that encourages the generator to produce diverse sequences.

Different than the aforementioned dense anticipation methods, which predict future action
labels and their durations, Nagarajan et al. (2020) only predict a list of actions that are likely
to occur in the long-term future. They first construct a topological graph of the environment
from egocentric videos, where nodes correspond to action zones and edges to people visiting
these zones. Using graph convolutional operations, they relate information across zones and
create a video representation to predict multiple future actions in egocentric videos.
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2.2.3 Temporal Action Segmentation

Temporal action segmentation from videos aims at dense labelling of video frames with action
classes. The datasets frequently used for segmentation are instructional activity datasets like
Breakfast Actions (Kuehne et al., 2014b), GTEA (Fathi et al., 2011b; Li et al., 2018b),
50Salads (Stein and McKenna, 2013) or Inria Instructional Videos (Alayrac et al., 2016),
where the long-range temporal modelling is important. In videos there might be many garbage
or background frames that are irrelevant to actions, i.e., no action of interest occurs. Related
works in our review achieve dense labelling by using additional mechanisms such as explicit
modelling of a background class (Hoai et al., 2011; Cheng et al., 2014; Richard and Gall,
2016; Lei and Todorovic, 2018; Sener and Yao, 2018) or implicit modelling of the background
as the group of frames that are not covered during an action (Fathi and Rehg, 2013).

The outputs from temporal action segmentation algorithms could be used as a prior
step for several applications. For example, Soran et al. (2015) propose generating notifica-
tions about missing actions given unsegmented egocentric stream. They segment the input
video stream to issue notifications about these actions. Similarly, in action anticipation,
several approaches utilize segmentation methods to represent past observations with action
labels (Farha et al., 2018; Ke et al., 2019b; Gammulle et al., 2019a). This is because such
labels contain high-level semantic information which is more preferable than visual features
for anticipation tasks (Sener et al., 2020).

The success of temporal action segmentation methods is closely related to advancements
in traditional action recognition, particularly to feature extraction and action representation.
The pipeline of temporal action segmentation is usually composed of two stages. First, frame-
or snippet-wise features are extracted, and then a long-range temporal modelling approach
is used to model the sequence of actions. Such temporal models capture high-level patterns.
In the literature, a variety of such models are utilized for temporal action segmentation,
including conditional random fields (Hoai et al., 2011), hidden Markov models (Lea et al.,
2016), recurrent neural networks (Singh et al., 2016) and recently temporal convolutions (Lea
et al., 2017).

We now continue our overview by summarizing temporal action segmentation methods
that have been proposed in the literature. Two particularly important factors, when compar-
ing temporal action segmentation strategies, are the type of the employed temporal models
and the annotations provided during training. Since in this dissertation, we propose both
an unsupervised and a supervised segmentation method, we now summarize related works
based on the extent of training annotations they use. In the following, we overview supervised,
weakly supervised, and unsupervised temporal action segmentation strategies.

2.2.3.1 Supervised Approaches

Supervised temporal action segmentation methods require frame-wise action labels during
training. Although there are several early works that are tested on short-term activity
videos (Hoai et al., 2011), the majority of the following approaches are tested on at least
one of the instructional complex activity datasets like Breakfast, GTEA, or 50Salads.
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Early approaches rely on hand-crafted features and bag-of-words-like representations.
Usually, these works involve extensive pre-processing and might be slow, especially for long-
range videos. Fathi et al. (2011a) represent actions as relations between objects and hands.
They first assign action scores to frames using classifiers learned on features capturing such
relations. Given the action scores, they learn further classifiers to recognize complex activ-
ities, like “making tea” and train a conditional random field for each complex activity to
assign action labels to sequences. Although, their action segmentation solution is prone to
error propagation due to wrong complex activity recognition, they show that objects-wise rep-
resentations are very beneficial for action recognition and segmentation. In a similar spirit
to using object-centric representations, Fathi and Rehg (2013) focus on changes in object
states through manipulation. They first discover changing regions in frames based on motion
and color changes. Next, they train SVM-based state-specific detectors over these regions
to represent each frame by a vector of detector responses. Finally, they segment videos by
localizing the initial and final segment frames with transition constraints between actions,
e.g., “pour milk” cannot occur after “close milk”. Hoai et al. (2011) treat the segmentation
problem as finding a set of change points for time series, given action models learned using
a multi-class SVM. They segment videos based on maximizing the difference between the
SVM scores of the top two action classification scores. However, this model does not capture
the temporal relations between actions. Contrarily, the work of Cheng et al. (2014) models
long-term relations in sequences. They split videos into snippets, each represented with visual
words, and use a Bayesian non-parametric language model to capture temporal dependencies
among the sequence of snippets (words), independent of their action classes. They integrate
this temporal model and action classification into a framework to jointly segment and classify
video sequences.

Another line of early methods use probabilistic models to predict the most probable se-
quence of actions. Vo and Bobick (2014) use a stochastic context-free grammar to represent
the temporal structure of complex activities. Given the grammar, they construct a graphical
model, where the outputs of action detectors are the observed nodes, and the action dura-
tions are the hidden variables. They use message passing to parse a video by computing
the start and end times of all actions if they occur. Kuehne et al. (2014b, 2016) combine
a set of hidden Markov models, which model the actions, with a context-free grammar to
determine the most probable sequence of actions. Richard and Gall (2016) propose a proba-
bilistic model composed of three components, where an action model maps visual features to
action probabilities, a language model provides sequence level action probabilities for action
segments, and a length model predicts the duration of these segments. They use dynamic
programming to obtain the most likely segmentation that maximizes the joint probability of
these components.

Deep learning-based features coupled with temporal models have proven to be successful
in recent years. Lea et al. (2016) propose a CNN which uses large 1D convolutional filters for
capturing the spatio-temporal feature relations. They segment videos with a semi-Markov
model using the features from this CNN. However, this model cannot capture long-range
temporal structure, as an action is only conditioned on its previous segment. Singh et al.
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(2016) propose using an RNN-based temporal modelling method. They split videos into
snippets and pass them through a multi-stream network with two appearance and two motion
streams (whole frame and cropped by human tracker) to compute visual representation. These
representations are then fed into a bi-directional LSTM, which predicts action labels for each
snippet considering temporal dependencies.

In recent years, temporal convolutional networks (TCNs) gained attention in temporal
action segmentation, as they can capture long-term dependencies and are faster than RNN-
based models. Lea et al. (2017) are the first to use temporal convolutional networks for action
segmentation. They propose a hierarchy of 1D temporal convolutional and deconvolutional
kernels in an encoder-decoder framework. The work from Ding and Xu (2017) replaces the
decoder in the framework of Lea et al. (2017) with a bi-directional LSTM. By that they end up
with a hybrid temporal convolutional and temporal recurrent network. However, this network
yields high computation costs due to the recurrences. Lei and Todorovic (2018) also build on
top of the work of Lea et al. (2017) by replacing the temporal convolutions with deformable
temporal convolutions and adding a residual stream to the encoder-decoder model. The
residual stream processes videos in full temporal resolution, while the other stream captures
temporal context at different scales. Although the aforementioned approaches based on TCNs
work on the entire video – referred to as full resolution – these methods downsample the videos
to a temporal resolution of a few frames per second beforehand, which might cause a loss of
fine-grained details. In contrast, Farha and Gall (2019b) propose a multi-stage hierarchical
temporal convolutional network, MS-TCN, that works on exact full resolution video. Each
stage consists of multiple temporal convolutional layers with 1D dilated temporal convolutions
and outputs an initial prediction, which is refined by the following stages. This work improves
the segmentation performance compared to Lea et al. (2017) and Lei and Todorovic (2018)
by a large margin.

As we remarked before, most temporal action segmentation networks operate on two-
stages: feature extraction and temporal modelling. Although several approaches (Lea et al.,
2016; Singh et al., 2016) propose improving the feature quality with their CNN models,
the focus of all these works is mainly to enhance temporal modelling. Conversely, Mac
et al. (2019) propose a method purely for learning spatio-temporal feature representations
better capable of modelling fine-grained actions. Instead of using optical flow in a second
stream to model the temporal relations, they use locally-consistent deformable convolutions to
capture motion information. Using the features from this network with existing segmentation
works (Lea et al., 2017; Lei and Todorovic, 2018) improves the performance. With a similar
motivation, Gammulle et al. (2019c) use a recurrent segmentation architecture composed of
two GANs to improve visual representations. While one GAN takes RGB frames as input, the
other works on supplementary modalities such as depth maps or optical flow. Both GANs are
trained to produce similar vector representations for the current action, called action codes,
which are used for classifying the video frames. The videos are processed sequentially by
feeding the action codes from the previous frame as input to both GANs at every step to
provide context.

A very recent collection of methods targets improving the performance of existing tem-
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poral action segmentation algorithms. They develop special modules that can either be
integrated into a backbone segmentation method or applied to its outputs to improve the
segmentation quality. In a very recent work, Chen et al. (2020b) argue that spatio-temporal
variations of human actions – referred to as different domains – are the reason for low perfor-
mance in supervised action segmentation, as training a model in one domain and testing in
another will fail due to the variations across videos. They improve a source model’s perfor-
mance on target data using two self-supervised auxiliary tasks to decrease differences between
the feature spaces of the source and target domains. One task predicts which domain a sin-
gle frame’s feature vector comes from, while the other predicts domain labels for a shuffled
sequence of source and target segments. They integrate their self-supervised model to the
MS-TCN of Farha and Gall (2019b) and, without using additional labeled data, significantly
improve the action segmentation performance. Similarly, Zhang et al. (2019) propose a bilin-
ear pooling module that can be integrated into TCNs to serve as a computationally efficient
feature fusion operation, e.g., by replacing the last 1 × 1 convolution layer in the first stage
of MS-TCN (Farha and Gall, 2019b). Given an initial segmentation, e.g., from some existing
action segmentation algorithm, Huang et al. (2020) refine it using graph convolutional net-
works (GCNs) by modelling temporal relations between actions. However, the improvement
of their outcome strongly depends on the quality and degree of fragmentation of the initial
segmentation.

Another emerging idea to improve the performance of existing segmentation algorithms
is to correct the segmentation results at the boundaries. Wang et al. (2020e) raise concerns
over the boundary ambiguity and over-segmentation issues in existing works and specifically
propose a module that could be used with multi-stage segmentation algorithms (Farha and
Gall, 2019b). Their module enables the later stages to focus on ambiguous frames. Addition-
ally, a newly introduced pooling operator smooths noisy boundary predictions with confident
ones. A similar boundary refining model is proposed by Ishikawa et al. (2020) that could be
used with any action segmentation algorithm.

2.2.3.2 Weakly Supervised Approaches

As discussed earlier, there is a diverse set of fully-supervised approaches for temporal action
segmentation. However, such approaches require action labels and boundaries to be provided
during training, which can be tedious to obtain.

In this section, we provide an overview of weakly-supervised approaches that do not need
the action boundaries. We divide such methods into three categories. Methods in the first
one receive supervision as an ordered list of sub-activities, which are called transcripts. In
the second one, an unordered list of sub-activities are used, which are called action sets. The
last category is the group of segmentation methods that use complementary textual data such
as narrations to provide temporal constraints for segmentation.

Transcripts: ordered list of sub-activities:

Given a video and its transcript, the task is to locate start and end times of the transcript
actions in the video. This type of supervision significantly reduces the cost of annotating
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videos. Bojanowski et al. (2014) are one of the first to use transcript-based supervision.
However, they target the task of alignment between frames and transcript actions, as they
assume the transcripts will be provided both during training and testing (see Section 2.3.5).
Later, several approaches adopt transcript-based supervision for temporal action segmenta-
tion. We divide them into iterative two-stage and single-stage methods.

We start with two-stage approaches, where the segmentation is achieved with iterative
refinement of previous predictions. Kuehne et al. (2017) extend a supervised approach from an
early work of theirs (Kuehne et al., 2016) to a weakly supervised setting. In their framework,
the actions are modeled by a set of hidden Markov models (HMM), while the observations are
modeled by Gaussian mixture models (GMM). They start with segments uniformly initialized
based on the transcripts and iteratively refine them. Richard et al. (2017) build on this idea
and replace GMMs with recurrent neural networks. They also further divide the actions
into snippets to capture their finer-detailed characteristics. Ding and Xu (2018) extend
the temporal convolutional networks from Lea et al. (2017) by adding lateral connections
between the encoder and decoder layers. They use a soft labelling mechanism at the segment
boundaries and iteratively refine the segmentation.

The two-step approaches are sensitive to initialization and might suffer from an oscil-
lation effect, as these models are learned incrementally. Single-stage approaches allow for
direct learning of segmentation. Huang et al. (2016) propose an extended version of connec-
tionist temporal classification (CTC) (Graves et al., 2006) for aligning the transcripts with
video frames with consistency constraints. They enforce the frame-wise similarities to be
consistent with the action alignments. This reduces the space of possible paths and avoids
degenerate segmentations, which might occur due to a large number of frames in long videos.
Richard et al. (2018b) propose a method, Neuralnetwork-Viterbi, which considers Viterbi
decoding as part of the loss function to train a segmentation network. The Viterbi algo-
rithm generates pseudo ground truths over the output probabilities of the network, which are
then used for computing the loss. This method provides significant improvements over the
previous methods, however, it is costly to train due to the Viterbi decoding. Chang et al.
(2019) propose a differentiable alignment loss to discriminatively model positive and negative
transcripts. A similar discriminative training is proposed by Li et al. (2019) who build their
solution on Neuralnetwork-Viterbi with ordering constraints. Unlike the randomly selected
negative transcripts by Chang et al. (2019), Li et al. (2019) generate candidate valid and
invalid segmentations using a segmentation graph, where invalid candidates violate the tran-
scripts. They recursively estimate each candidate’s segmentation energy and formulate a new
loss based on the energy differences between valid and invalid candidates. They improve over
previous works by a significant margin, however, the training gets more expensive. Criticizing
the state of the art being costly to train, Souri et al. (2019) employ a sequence-to-sequence
network that performs comparably to earlier works, but is much faster. Their network is
composed of two branches, where one predicts transcripts and action durations, while the
other outputs frame-wise predictions. The predictions from the two branches are used to
compute a mutual consistency loss to enforce similar predictions.
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Action sets:

In this setting, the methods assume that a set of action labels is provided during training,
without knowing the temporal location, the order, or how often they occur. This type of
labelling could arise in the form of meta-tags e.g., from video-sharing platforms. Richard et al.
(2018a) are the first to propose a weak segmentation model using action sets. Their framework
is composed of three components similar to Richard and Gall (2016), with action, length,
and sequence models, and aim to find the most likely segmentation. They generate multiple
transcripts using context-free grammars to restrict the search space and convert the problem
into a weakly supervised segmentation setting with multiple transcripts. The most likely
segmentation is achieved by using a Viterbi algorithm. However, this work cannot generate
all possible sequences of a set of action labels, which might degrade segmentation quality.
Fayyaz and Gall (2020) learn a segmentation network that directly uses provided annotations
for learning. They start by splitting videos into regions and estimate action probabilities
and temporal lengths for them in one branch, and use a second branch to produce frame-
wise predictions. They measure the consistency of the frame-wise predictions w.r.t. region
predictions, which significantly improves the model’s accuracy. They also define several
losses and regularizers for purposes, such as encouraging temporally consistent predictions
for neighboring regions, or regularizing region lengths. Li and Todorovic (2020) use a set-
constrained Viterbi algorithm to generate more accurate pseudo ground truths and an n-pair
loss to minimize the distance between pairs of training videos sharing action classes in their
action sets.

Textual data:

Text data is straightforward to obtain, as it comes for free with videos in the form of
scripts, subtitles or narrations. It is frequently used for video and text alignment (Malmaud
et al., 2015; Bojanowski et al., 2015) and step localization (Alayrac et al., 2016; Zhukov et al.,
2019). There are also several works that make use of such data for weakly supervised action
segmentation.

Duchenne et al. (2009) propose using subtitles and scripts as weak supervision to seg-
ment actions from movies. They align the subtitles and scripts to provide coarse temporal
localization of actions. Then they segment the videos based on the aligned regions with an
additional margin, assuming that there will be a single action in each segment. Finally, they
use discriminative clustering to temporally localize the actions in each segment, labelling the
frames outside the localized area as background. As opposed to Duchenne et al. (2009), who
do not use any temporal modelling, Sener et al. (2015) and Fried et al. (2020) capture the
temporal relations between the actions. Sener et al. (2015) first generate object proposal
segments from a collection of videos of the same complex activity and compute visual vocab-
ularies. Using those together with textual vocabularies, which are computed over narrative
text, they represent each frame by a binary histogram over visual and textual words. To
identify the sub-activities shared among the videos, they utilize the generative beta process
mixture model from Fox et al. (2014), but on binary observations. Fried et al. (2020) propose
an approach that uses canonical step ordering and transcribed narrations in videos as super-
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vision for segmentation. Canonical step ordering refers to the sequence in which the steps
of complex activities are typically performed. It is the same for each video from a complex
activity. They propose modelling the segment duration, location, order, and features by a
semi-Markov model. Although they do not use the narrations during testing, they use the
canonical ordering, as these constraints affect their model parameters.

The main disadvantage of models employing textual data is the assumption that all the
videos are accompanied by temporally aligned text. However, text data might not always be
aligned or even completely missing.

2.2.3.3 Unsupervised Approaches

The related works on activity segmentation we discussed earlier either require full or weak
supervision in the form of sub-activity lists or textual data. In this section, we discuss
unsupervised action segmentation approaches that neither require any action labels or their
temporal boundaries, nor any textual data.

Very early approaches on unsupervised segmentation do not consider global temporal
modelling. The majority of them are focused only on change-point detection using sliding
windows in the time dimension, e.g., segmenting music signals (Harchaoui et al., 2009) or
financial data (Xuan and Murphy, 2007). Zelnik-Manor and Irani (2001) segment videos by
clustering frames using normalized cuts.

Unsupervised segmentation of sequences has been popular on motion capture data, which
is less complex than video data. Barbič et al. (2004) propose a solution based on probabilistic
principal component analysis and place a cut when the distribution of poses is observed to
change. Zhou et al. (2008, 2012) propose aligned cluster analysis, which combines k-means
with dynamic time alignment. They measure the similarities between two temporally aligned
segments through dynamic time warping kernels. These measures are then used with k-
means to determine the segment clusters. Fox et al. (2014) examine multiple motion capture
recordings at the same time to extract global features of actions that are modeled with
HMMs. The feature selection is achieved via a beta process model. They define a segment
when the recordings change from one to another HMM. Similarly, Wu et al. (2015) propose a
topic-modelling-based approach for segmenting human actions using skeleton data and object
features. They divide sequences into overlapping splits and use k-means to cluster them
for computing action-words. Frames are then represented with action-words and complex
activities with a set of action-topics. They use Gibbs sampling to infer complex activities
from action-words.

We propose an unsupervised temporal action segmentation approach (Sener and Yao,
2018) that works solely with visual data without any supervision, presented in Chapter 3.
Following our segmentation approach on instructional activity videos, several new approaches
have been proposed. In our setting, we assume we are given a collection of videos, all of the
same complex activity, and the number of sub-activities as input. The recent related works
also follow similar settings and provide further improvements. For example, Kukleva et al.
(2019) propose an extension of their method to work on collections of different complex
activities, while Aakur and Sarkar (2019) do not require the number of sub-activities as
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input.

Rivoir et al. (2019) propose using our segmentation framework as a preliminary task
for predicting the remaining time of long surgery videos. They extend our work (Sener
and Yao, 2018) by replacing linear mapping for discriminative appearance modelling with
a CNN-LSTM-based mapping. They later either use the features from this mapping or
the segmentation output to predict the remaining surgery time. Our model has a notable
limitation in that it cannot model repeated sub-activities, as we treat the ordering of sub-
activities as a sequence of permutable steps. Goel and Brunskill (2018) propose a generative
hierarchical Bayesian model that allows for repeated sub-activities. They use Gibbs sampling
to perform the inference of the latent variables. However, this model assumes that all the
videos follow the same underlying ordering. They also introduce several new metrics to
evaluate repeated structures, as well as over- and under-segmentation.

Recent works propose exciting new directions and significant improvements to unsuper-
vised segmentation. Kukleva et al. (2019) propose an approach where they first learn con-
tinuous temporal embeddings of frame-wise features. They then cluster the embedded fea-
tures and decode videos based on ordered clusters of embedded frame-wise features using
the Viterbi algorithm. Different than our work (Sener and Yao, 2018) which gets the com-
plex activity label as input, Kukleva et al. (2019) propose a version of their method without
this requirement by grouping videos into complex activity clusters in a pre-processing stage.
Aakur and Sarkar (2019) propose a self-supervision-based approach to detect action bound-
aries for unsupervised segmentation. They recurrently predict features of the next frame and
compute the difference to the observed features to determine action boundaries. Instead of
using pre-computed visual features, they propose joint training with a CNN (Simonyan and
Zisserman, 2014b) to encode the frames. Different than other unsupervised works (Sener and
Yao, 2018; Kukleva et al., 2019), this method automatically determines the number of sub-
activities from boundary transitions. VidalMata et al. (2021) propose a joint visual-temporal
learning model for unsupervised action segmentation. They separately train the temporal
embedding from Kukleva et al. (2019) and an encoder-decoder visual embedding network
which predicts the features of subsequent frames. These two embedding networks are in turn
trained in a joint framework to learn useful representations of visual and temporal attributes.
The embedding space is then used for clustering to form the action segments. They achieve
significant improvements in performance on the Breakfast Actions dataset.

Recently, Fried et al. (2020) proposed a method that can be used for supervised, weakly
supervised and unsupervised action segmentation of videos. They train a hidden semi-Markov
model in an unsupervised way to maximize the feature likelihoods for all videos. In their
work, they systematically evaluate how much models improve with the degree of supervision,
e.g., using canonical ordering, transcripts from narrations or full supervision. They only
report results for the CrossTask dataset (Zhukov et al., 2019), as it includes narrations and
canonical orderings for complex activities, which allow for their systematic evaluation.
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2.2.4 Temporal Action Detection / Localization

The goal of temporal action localization is to search actions throughout a video and localize
them. It is closely related to temporal action segmentation, however, action detection ap-
proaches do not necessarily target dense labelling of video frames. Moreover, these methods
usually target localizing actions in untrimmed videos from the Thumos (Gorban et al., 2015)
and ActivityNet (Caba Heilbron et al., 2015) datasets, and typically do not consider the tem-
poral structure of sub-activities. Temporal action localization tasks on instructional datasets
are mostly focused on discovering key steps (sub-activities) in the form of single timestamps.
In this section, we first give a brief overview of temporal action localization works in general.
Then, we overview the approaches on key-step localization.

2.2.4.1 Temporal Action Localization

Temporal action localization in untrimmed long videos usually does not consider temporal
connections between actions but focuses on localizing proposal-based predictions for individ-
ual actions. In the following, we overview supervised, weakly supervised, and unsupervised
works, respectively.

Supervised Approaches:

Early works produce proposals based on sliding windows and focus on designing hand-
crafted feature representations (Gaidon et al., 2013; Jain et al., 2014), while more recent
works use deep networks.

Many of the recent methods adopt a two-stage approach that generates candidate action
proposals in a first, and classifies them in a second stage. A common way to generate proposals
is using sliding windows. For example, Shou et al. (2016) rank sliding-window-based proposals
and use non-maximum suppression for post-processing. However, such generic proposals do
not produce precise temporal boundaries of actions. As such several works propose refinement
strategies. Shou et al. (2017) predict at the frame level and combine frames with proposals for
better localization. Xiong et al. (2017) group snippets based on actionness scores. Gao et al.
(2017b) employ temporal coordinate offset regression. Since sliding window-based approaches
produce redundant proposals, several works focus on better methods for proposal generation.
Buch et al. (2017) densely predict proposals in a single pass using a recurrent architecture.
Chao et al. (2018) utilize 2D object detection architectures for proposal generation in the
temporal domain. Lin et al. (2019b) target predicting temporally precise proposals based
on boundary probabilities. Instead of improving proposal generation, several works focus on
accurate action classification. Zhao et al. (2017) model the temporal structure of actions using
structured temporal pyramids. Heilbron et al. (2017) utilize action-object and action-scene
relationships to prune out unrelated actions.

Some works perform proposal generation and classification simultaneously in a single
stage. Yeung et al. (2016) use reinforcement learning with an RNN-based agent. Long et al.
(2019) optimize the temporal scales of proposals using Gaussian kernels. Xu et al. (2020)
employ graph convolutional networks to fully exploit the video context. Several works model
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the evolution of actions explicitly. Yuan et al. (2017) use a two-stream network to generate
frame-wise scores and search for the structured maximal sum of these scores. Hou et al.
(2017) cluster videos into temporally connected snippets and discover actions as sequences
of ordered snippets.

Weakly supervised approaches:

These works aim at learning models on untrimmed videos annotated only with action
classes, without relying on their temporal locations. Some works split videos into short
clips and perform clip selection. Wang et al. (2017) use a ranking module to select the
important clips, and Nguyen et al. (2018) use an attention module to identify a sparse set
of clips which minimizes the classification loss. Shou et al. (2018) predict temporal action
boundaries by encouraging action scores outside the action segments to be smaller than on
the inside. Nguyen et al. (2019) show that explicitly modelling background frames improves
the performance in the weakly supervised setting.

Unsupervised approaches:

Gong et al. (2020) address temporal action localization without using any annotation.
They alternate between a clustering stage to get pseudo-action labels, which are then used
as input for a localization stage to detect the actions temporally.

2.2.4.2 Temporal Action Localization on Daily and Instructional Videos

Contrary to the setting of common action localization datasets, several works attempt localiz-
ing actions on instructional and daily video datasets. Zhou et al. (2018b) localize procedural
segments based on their visual appearance and temporal relations, irrelevant of their action
class, on the instructional YouCookII dataset. Their model comprises a context encoder based
on bi-directional LSTMs, a proposal generation network utilized from object detection works,
and an LSTM-based sequential prediction module that selects the final proposals. Damen
et al. (2020a) generate action proposals (Lin et al., 2019b) for the daily activity videos in the
Epic-Kitchens-100 dataset, and use SlowFast (Feichtenhofer et al., 2019) for classifying and
selecting the final list of action proposals. Damen et al. (2020a) also start a temporal action
localization challenge on this dataset, which might motivate future research to employ the
sequential relationships in such activities rather than independent localization of actions.

2.2.4.3 Key-step Localization

Different than temporally localizing actions with their start and end times, these works
propose identifying single timesteps for these actions, which are also referred to as key-steps.

Alayrac et al. (2016) target finding such steps in a collection of narrated videos of the same
complex activity. Their method is composed of two discriminative clustering-based solutions,
one on text and the other on video. The first clustering is performed over the narrations to find
the total number of sub-activities, K, and their canonical ordering per complex activity in an
unsupervised way, by formulating it as a multiple sequence alignment problem. The second
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clustering is over visual features and is formulated as a discriminative clustering approach
using the narrations as temporal constraints. Their model predicts K steps in each video
which follow a strict ordering. Similarly, Zhukov et al. (2019) assume narrated instructional
videos will be provided during training. Different than Alayrac et al. (2016), they do not
parse the narrations, but assume that a canonical ordering of sub-activities per complex
activity is already provided. Their goal is to discover a set of classifiers for objects, verbs,
and prepositions extracted from the categorical tags of sub-activities in this ordering. Their
objective is to simultaneously optimize key-step locations and classifiers over all complex
activities using constraints from the narrations. Their predictions, for each complex activity,
follow a canonical ordering, provided both during training and testing.

Subset selection aims at discovering a small subset of the most informative data points
and is frequently used in document summarization. It is recently also employed for key-step
localization in instructional videos using varying degrees of supervision. Elhamifar and Naing
(2019) employ subset selection for unsupervised localization on a collection of videos of the
same complex activity. They partition videos into segments using superframes segmenta-
tion (Zhang et al., 2016). They learn an HMM with latent states, some of which correspond
to key steps, while the rest corresponds to background. Using dynamic programming, they
find a subset of hidden states and their assignments to video segments. They then perform
multiple sequence alignment, similar to Alayrac et al. (2016), to obtain a final sequence of
key steps. Different than early works, this method allows for missing steps, repetitions or
deviations from the canonical ordering. Unlike existing key-step localization works, which
assume that the videos are from the same complex activity, Elhamifar and Huynh (2020)
develop an unsupervised method to discover the key-steps from a collection of videos of mul-
tiple complex activities. In their deep neural network, a spatial attention module learns
attending informative regions in frames, and an unsupervised subset selection component
localizes key-steps, whose outputs are used as pseudo labels for a key-step localization and
a complex activity classification module. This network learns complex activity-dependent
attention features and discovers and localizes key-steps. Naing and Elhamifar (2020) learn
key-step localization given videos partially annotated with a small subset of key-steps. Given
training labels in the form of one frame from each sub-activity, Xu and Elhamifar (2019)
develop a supervised subset selection framework.

2.3 Joint Video and Text Modelling

When reasoning about what they do and will do, vision and language are primary references
for humans to derive knowledge from. The predominant approach for video analysis applica-
tions is to model the visual recognition problem as a task of classifying videos or frames into
some number of fixed visual categories. However, with rapid advances in neural networks
and availability of large-scale data in recent years, research in computer vision has focused
on developing approaches that combine the visual domain with natural language to enable
language-based predictions. In this section, we first overview language representation ap-
proaches, then we give a short overview of modelling instructional textual data, and present
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methods that model video and text jointly. Finally we briefly summarize video captioning
on complex activities and temporal video-text aligment methods.

2.3.1 Representing Textual Data

Throughout the years, various approaches have been used to represent sentences, including
one-hot encodings, recurrent neural networks, and, more recently, transformer architectures.
In visual tasks, pre-training models is shown to offer significant improvements over learning
models from scratch (Karpathy et al., 2014; Carreira and Zisserman, 2017). Similarly, to
improve language processing tasks, several works propose employing language model pre-
training. In the following, we first give an overview of standard sequence modelling architec-
tures, and then review pre-trained language models that can be used for computing generic
sentence representations.

2.3.1.1 Recurrent Neural Networks (RNNs)

Recurrent layers (Elman, 1990) are powerful building blocks for modelling natural language
and are also actively used in video representation (Donahue et al., 2015; Furnari and Farinella,
2019). The central units in RNNs are the input and hidden states at each time step. RNNs
handle sequential input (sentences) by having a recurrent rule that takes the input and hidden
state at time t (word) and updates the hidden state at time t+ 1. The hidden states act as
a running summary of all information in the previous steps until that time step t. This rule
is shared among all time steps.

Mikolov et al. (2010) applied RNNs in language modelling and brought substantial ad-
vancements across a wide range of language tasks. However, RNNs suffer from short-term
memory and are unable to associate information over long sequences. As a solution, to address
the limitations of vanilla RNNs, two variants have been proposed: Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al.,
2014). The LSTM is designed to avoid the long-term dependency problem of RNNs using a
gating mechanism that controls memoizing. In addition to a hidden state, LSTMs maintain
a memory cell state. At each time step, the LSTM can choose to write to, read from, or
reset the cell using gating units (input, output, and forget), which control how much infor-
mation will flow into and out of the memory. GRUs do not use separate memory cells, but
instead, use gating units to modulate the information flow inside each recurrent unit. GRUs
contain fewer training parameters and use less memory, while LSTMs lead to better results,
particularly for long sequences.

Although RNNs can handle variable-length sequence input and the model size does not
increase with the size of the input, they are slow in computation due to recurrences, as they
do not allow for parallel computation. Moreover, even with the variants such as LSTM, RNNs
have difficulties in accessing information from a long time ago.
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2.3.1.2 Transformer Language Model

The transformer architecture (Vaswani et al., 2017) is a non-recurrent encoder-decoder design
that uses a series of self-attention layers. In this architecture, a self-attention mechanism
computes similarity scores between inputs in a sequence by attending to all other positions. To
retain the temporal order in sequences, it uses positional embeddings. It reduces the training
time for learning sequence models via parallel computation and reduces the performance
drop for long dependencies as every input is connected to all other inputs. Transformer
architectures have become the de-facto standard for natural language processing tasks and
are recently getting popular in computer vision (Zhou et al., 2018c; Dosovitskiy et al., 2020).
Their parallelization ability enables training on larger datasets, which allows developing and
pre-training models such as BERT (Devlin et al., 2019), or VideoBERT (Sun et al., 2019a).

2.3.1.3 Pre-training Language Representations

Instead of training sentence representations from scratch, several works propose learning
fixed-length vector representations for sentences, pre-trained on large text corpora.

Learning representations in an unsupervised manner has been a popular approach in
NLP. A naïve approach is computing sentence representations through word embeddings
using neural networks. For example, Le and Mikolov (2014) map sentences or documents to
vectors, to act as a memory of the context. These vectors are then concatenated with vectors
of the surrounding words to predict the next words. The other direction is learning generic
representations through sentence-level embeddings. In their work, skip-thought vectors, Kiros
et al. (2015) encode sentences using recurrent neural networks and use their embeddings to
reconstruct the previous and next sentences. Recent advancements rely on transformer-based
models. BERT (bidirectional encoder representations from transformers) (Devlin et al., 2019)
is a multi-layer bidirectional transformer encoder, and is trained using two unsupervised tasks.
The first task is predicting randomly masked words using a bi-directional context. In the
second one, the next sentence is replaced with a random sentence. Here the task is a binary
prediction of whether the next sentence succeeds the first sentence. Pre-trained BERT models
could be used for feature extraction or fine-tuned for new tasks.

Several works explore learning supervised representations. Conneau et al. (2017) compare
standard recurrent models, trained on a natural language inference task, and show that
the sentence representations extracted from these models can be transferred to other tasks
successfully. Similarly, McCann et al. (2017) train a sequence-to-sequence model for machine
translation and use the encoder for transferring knowledge to other NLP tasks.

2.3.2 Modelling Sequential Instructions

In the NLP literature, there is a large body of work for modelling and generating long
text, including summarization (Cohan et al., 2018), poetry generation (Wang et al., 2016c),
continuous text generation (Holtzman et al., 2018), dialogue generation (Cho et al., 2014),
or generating biographies (Lebret et al., 2016). In this section, we focus on modelling long
instructional text with instructive flow, particularly cooking recipes.
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Recipes are popular data sources in natural language processing used to model instruc-
tional data. There have been many attempts to understand them. Early works focus on
parsing the recipes to extract actions and ingredients (Tenorth et al., 2010; Malmaud et al.,
2014; Kiddon et al., 2015; Jermsurawong and Habash, 2015). For example, Tenorth et al.
(2010) generate plans from textual instructions, Kiddon et al. (2015) map recipes to action
graphs, Beetz et al. (2011) use parsed instructions to make robots cook pancakes.

In recent years, neural network based solutions gained attention. Sequence-to-sequence
learning (Sutskever et al., 2014; Kiros et al., 2014) has made it possible to successfully gen-
erate continuous text and build dialogue systems (Cho et al., 2014; Vinyals and Le, 2015).
However, for recipe texts, such representations tend to perform poorly and suffer from inco-
herence, since they do not fully capture the underlying sequential nature of the instruction
set. A number of solutions have been proposed to improve the coherence in such genera-
tions. Kiddon et al. (2016) propose a neural recipe generation model, assuming that the title
and ingredients of the recipes are given as input. They train an encoder-decoder language
model (Sutskever et al., 2014) with a checklist mechanism to keep track of the ingredients.
Bosselut et al. (2018) develop a reinforcement learning based solution with discourse-aware
rewards which encourage generating instructions with a correct order. H. Lee et al. (2020)
produce personalized recipes by fusing users’ previously consumed recipes with an attention
mechanism.

In computer vision, generating recipes from images is becoming popular. Salvador et al.
(2019) generate cooking recipes from food images. They first predict ingredients in food
images and use these as input to a transformer-based decoder to generate sentences. However,
since they generate an entire recipe as a block of long continuous text, their model is limited
to the length of the decoder model which might generate incomplete paragraphs as recipes.
Instead, Wang et al. (2020b) split recipes into several chunks and predict the instructions for
each chunk guided by position encoders. Similarly, Wang et al. (2020c) propose a structure-
aware generation network. Using an unsupervised approach, they first parse the recipes to
obtain sentence-level tree structures. Using these trees as labels, they train an RNN to
generate recipe trees from images. They then incorporate these trees into their model via
attention to provide global guidance during recipe generation. Instead of using a single food
image, Nishimura et al. (2019) generate instructional text given a photo sequence. Conversely,
Zhu and Ngo (2020) propose an image generation method from recipe text using an instruction
encoder to represent fine-grained details.

2.3.3 Learning Video Representations Using Text

Strong visual representations are essential for the performance of machine learning models.
Videos, particularly instructional ones, naturally come with auxiliary modalities like sound
and narrations. Those are valuable sources for learning video representations from multiple
modalities. In this section, we overview two types of approaches for combining visual and
textual data. The first one is learning a joint embedding space for text and visual data, the
second is cross-modal learning.
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2.3.3.1 Multi-Modal Embeddings

Many computer vision applications rely on joint understanding of visual and textual cues to
get better representations, including captioning (Karpathy and Fei-Fei, 2015), retrieval (Kiros
et al., 2014; Salvador et al., 2017), question answering (Malinowski et al., 2015), or video
summarization (Plummer et al., 2017). A common approach is to learn a mapping of text and
video in a shared embedding space where semantically similar data from different modalities
is mapped to similar locations.

Frome et al. (2013) introduce a model to map images, encoded by CNNs, and categorical
labels, encoded using word2vec (Mikolov et al., 2013), to a common space using a ranking
loss. Kiros et al. (2014) extend this work for learning a common embedding space between
image and sentences for image-caption retrieval. They encode sentences using an LSTM and
extract image features from CNNs. The image features are then projected to the embedding
space of the LSTM’s hidden states. A pairwise ranking loss is used to map the correct target
closer to the query than the other instances in the dataset. Faghri et al. (2017) extend this
work by incorporating hard negatives in the loss function. Instead of embedding images or
sentences into a common space, Karpathy and Fei-Fei (2015) learn multi-modal embedding
spaces between sentences and image regions to generate descriptions of these regions.

Although it is easy to represent a single sentence, either using the average of word2vec
vectors, or using RNNs, these representations would not perform well for long text. Salvador
et al. (2017) learn joint embeddings between long instructional text from cooking recipes and
food images. They represent their sentences using skip-thought vectors (Kiros et al., 2015)
and use an LSTM on top of these vectors to model the textual instructions. They learn a
shared embedding space between food images, textual instructions, and cooking ingredients,
using a pairwise ranking loss. Carvalho et al. (2018) extend this work using a triplet loss.
Instead of giving equal importance to all samples during training, Wang et al. (2019a) leverage
a hard sample mining approach with a triplet loss. They also introduce an adversarial loss
to enforce modality alignment and a consistency loss to ensure recipe-to-image and image-
to-ingredients translation consistency.

Learning a common embedding space between videos and textual data has also been
explored. To make the semantic relationships between videos and sentences stronger for the
task of caption generation, Pan et al. (2016) propose learning a common embedding space for
video and text and generating captions jointly. To learn powerful representations for zero-shot
retrieval, Dong et al. (2019) first learn multi-level encodings of video and text to represent
global, local, and temporal patterns. These multi-level encodings are then combined and
projected to a common embedding space to learn joint embeddings, similar to Faghri et al.
(2017). Miech et al. (2018) propose learning a joint embedding space between text and a
varying number of video descriptors like global appearance, motion, audio, and face, any of
which might be missing for some videos. Their mixture of embedding experts learn an expert
model for each descriptor and combine them using weighting to obtain a final similarity score
between the video and input sentence.

Instead of learning such embedding spaces from small-scale annotated datasets, some
works focus on large-scale instructional video datasets. Miech et al. (2019b) collect a video
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dataset with 130M video clips, extracted from 1.2M narrated web videos. They show that
the visual representations they obtain through this joint space perform superior to previous
works on tasks like text-to-video retrieval and action localization. However, their model does
not handle misaligned narrations in the videos and also requires pre-trained CNNs to extract
visual features. Miech et al. (2020) propose a multiple instance learning-based method to
enable learning from such misaligned data sources. They also train their joint video-text
embedding model from scratch without relying on pre-trained models.

2.3.3.2 Cross-Modal Learning

Early works use sound for learning better representations of videos by employing deep con-
volutional architectures to produce sound from image sequences (Owens et al., 2016) or
videos (Aytar et al., 2016).

Recent works focus on using textual and visual data from large-scale instructional videos,
which usually come with narrations. Sun et al. (2019a) propose using text from automatic
speech recognition systems to provide supervision for learning representations on cooking
videos. Their method, VideoBERT, is based on the BERT architecture (Devlin et al., 2019)
and uses visual and textual words together, where the visual words are computed from video
frames via vector quantization. Instead of the next sentence prediction task, VideoBERT
is trained with a linguistic-visual alignment task by predicting whether the sentences are
aligned with the visual data. They show that the high-level features learned by their model
achieve significant improvements on dense video captioning (Zhou et al., 2018c) and activity
recognition tasks. However applying vector quantization to video frames leads to a loss of
fine-grained visual content. Zhu and Yang (2020) propose, ActBERT, which benefits from
global actions and local regional objects. It encodes each modality with separate transformers
that are tangled with cross-modal interactions.

2.3.4 Video Captioning

While the early works on video captioning are based on Markov models (Yu and Siskind, 2013)
and ontologies (Das et al., 2013), later works mostly use deep learning. There is an extensive
body of works on generating captions for short videos. Usually, in these works, videos are
encoded into feature representations, which are then fed into a recurrent neural network to
generate sentences (Venugopalan et al., 2015; Yao et al., 2015; Gan et al., 2017). There are
many techniques used to improve the quality of generated captions, including attention (Yao
et al., 2015), spatio-temporal graphs (Pan et al., 2020), complementary features (Zhang et al.,
2017), joint embeddings for text and video (Pan et al., 2016), attributes or concepts (Pan
et al., 2017), or reconstruction losses (Wang et al., 2018a). However, in this section we only
focus on works targeting dense captioning of long videos as we present comparisons to these
approaches in Chapter 4 where we generate sentences for the future actions.

Initial works focus on generating paragraph descriptions on the TACoS (Regneri et al.,
2013) dataset. Rohrbach et al. (2014) temporally segments videos using hierarchical clus-
tering based on the outputs of attribute classifiers. They then use phrase-based statistical
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machine translation (Koehn et al., 2007) to generate sentences for these segments. Yu et al.
(2016) generate sentences on ground truth segments by combining a sentence and a paragraph
generator, with the latter encoding the temporal dependency among sentences.

The majority of later works are focused on dense captioning on more complex datasets like
ActivityNet (Caba Heilbron et al., 2015), first tackled by Krishna et al. (2017) on this dataset.
Similar to temporal action detection approaches, Krishna et al. (2017) first generate temporal
proposals and then combine them with a captioning module that exploits the past and future
with an attention mechanism. Wang et al. (2018b) use a bidirectional LSTM to improve the
quality of event proposals. However, generic proposals are usually inconsistent and redundant,
and Krishna et al. (2017) and Wang et al. (2018b) fail to consider temporal dependencies
between captions. Several works thus select a sequence of coherent proposals and sequentially
generate captions for them (Xiong et al., 2018; Xu et al., 2019a; Mun et al., 2019). Weakly
supervised captioning is also explored on ActivityNet, by only providing captions without
their temporal locations during training. Shen et al. (2017) describe video regions with
lexical labels and form temporal regions based on their outputs. Rahman et al. (2019)
use an attention-based multimodal fusion model on text, audio, and video data to generate
temporal regions. Both methods use these temporal regions to generate captions. Duan et al.
(2018) alternate between sentence localization for the captions and caption generation for the
localized segments, using captioning and reconstruction losses.

Instead of separating the captioning problem into the two stages of proposal generation
and captioning, Zhou et al. (2018c) produce proposals and descriptions simultaneously and
mainly work on the YouCookII (Zhou et al., 2018b) dataset. Their work is composed of
a transformer-based (Vaswani et al., 2017) video encoder for context-aware features, a pro-
posal decoder similar to Zhou et al. (2018b) that localizes action proposal candidates, and
finally a transformer-based decoder that generates captions. Since fine-grained differences in
instructional videos are difficult to distinguish from visual features alone, some works also
use narrations with transformer-based models (Hessel et al., 2019; Shi et al., 2019).

2.3.5 Temporal Video-Text Alignment

Given videos along with natural language descriptions, the goal of temporal alignment meth-
ods is to find the start and end times of these descriptions. The descriptions could be coming
from a set of instructions, narrations, subtitles, or summaries. The alignment task assumes
access to descriptions, both during training and testing.

There is a recent and growing body of work focused on grounding natural language de-
scriptions in videos. Given an untrimmed video and a textual query, they aim at determining
the start and end times of the segment that matches the query the most. The pioneering
works are proposed by Anne Hendricks et al. (2017), who learn a shared embedding space
for video and language and use a ranking loss for matching them, and Gao et al. (2017a),
who use sliding windows to generate candidate regions and rank them using alignment scores
and location regressors. Soon after, grounding textual queries gained attention, and different
strategies were proposed to tackle the problem, including using reinforcement learning (He
et al., 2019), generating discriminative proposals (Chen and Jiang, 2019), attention-based
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localization models (Yuan et al., 2019; Opazo et al., 2019), or visual-textual graphs (Chen
and Jiang, 2020). However, these methods assume a single description and operate on short
untrimmed videos instead of the complex activity videos we work with.

In this section, we overview works that target aligning or grounding multiple textual
descriptions in long videos, given a video and a sequence of sentence descriptions. Note that
these approaches either directly use the sentences for alignment or convert them to object
and verb pairs.

The early works perform alignment without using location supervision during training.
One of the early works for alignment between videos and transcripts is proposed by Bo-
janowski et al. (2014) and is based on discriminative clustering. Bojanowski et al. (2015)
extend this work for aligning video with natural language on cooking activities. Naim et al.
(2014, 2015) match sentences with video frames and nouns in sentences with scene objects
using hierarchical HMMs and CRFs, respectively. Song et al. (2016) extend these works by
incorporating alignment of verbs to actions.

Temporal alignment is also linked to weakly supervised action segmentation, as such
approaches can be employed for video and transcript-based alignments. Several weakly-
supervised action segmentation works are utilized to align videos with transcripts, which are
also provioded during testing (Chang et al., 2019; Richard et al., 2018b; Huang et al., 2016).

In the cooking domain, finding instructions and corresponding videos is easy, where in-
structions correspond to the recipes. Malmaud et al. (2015) target alignment of textual
instructions with videos using narrations. They first align the recipes to narrations in the
videos using HMMs. They then refine these alignments on videos using visual food detectors.
Hahn et al. (2018) propose a video-recipe alignment framework. They extract visual features
from frames and decide with an LSTM whether frames belong to an action or background.
Action frames are then used to extract objects; similarly, sentences are parsed to extract
action-object pairs. Using a similarity score, the action segments are aligned to recipe steps.
Lin et al. (2020) first learn pairwise text-text, text-video, and video-video alignments from
recipe pairs of the same dish. To derive joint alignments across multiple recipes of the same
dish, they then use these pairwise alignments to construct a graph for each dish. Instead of
relying on raw narrations, Huang et al. (2017) focus on referring expressions and propose a
method for resolving noise in the narrations. In a follow-up work Huang et al. (2018a) resolve
such visual-linguistic ambiguities to perform visual grounding in cooking videos.

Instead of using instructional activities, Zhu et al. (2015) propose a method for align-
ing books to their movie releases, where they represent sentences using skip-thought vec-
tors (Kiros et al., 2015). They first match sentences from the books to subtitles in the
movies and then learn a joint embedding space for videos and sentences (Kiros et al., 2014).
Initial alignments based on the similarity between movie clips and sentences from books
are subsequently smoothed using a pairwise CRF. Dogan et al. (2018) propose a supervised
neural architecture based on four LSTMs encoding movie clips, text, actions, and previous
alignments. In another supervised setting, given a list of sentence descriptions,
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This chapter addresses the problem of temporal action segmentation in instructional
videos. The content of this chapter corresponds to our CVPR 2018 publication, Unsupervised
Learning and Segmentation of Complex Activities from Video (Sener and Yao, 2018). Given
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Given: Collection of videos, 
all of the same complex activity

Outputs: Temporal localization of 
each sub-activity

v1

v3

v2

Each color represents a sub-activity label

Figure 3.1: We aim to discover and segment the sub-activities of a complex activity from a
collection of videos. We assume we are given a collection of videos, all of the same complex
activity, and we specify the number of sub-activities, K. The goal is to find and temporally
localize these sub-activities.

a collection of videos, all from a complex activity, we aim to find and temporally localize the
instructional steps (see Figure 3.1).

We present a new method for unsupervised segmentation of complex activities from video
into multiple steps, or sub-activities, without any textual input. We propose an iterative
discriminative-generative approach which alternates between discriminatively learning the
appearance of sub-activities from the videos’ visual features to sub-activity labels and gener-
atively modelling the temporal structure of sub-activities using a Generalized Mallows Model.
In addition, we introduce an extension of our model to account for background frames unre-
lated to the actual activities. We validate our approach on the challenging Breakfast Actions
and Inria Instructional Videos datasets.

3.1 Introduction

This work addresses the problem of understanding complex activities from video sequences.
Complex activities can be found in instructional videos; YouTube hosts hundreds of thousands
of such videos on activities as common as “making coffee” to the more obscure “weaving
banana fibre cloths”. Another relevant domain for complex activity understanding is assistive
robotics; a robot that can understand and parse the steps of a household task such as ‘doing
laundry’ can anticipate and support upcoming steps or sub-activities.

Complex activity understanding has received little attention in the computer vision com-
munity compared to the more popular simple action recognition task. In simple action recog-
nition, short, trimmed clips are classified with single labels, e.g., of sports, playing musical
instruments (Karpathy et al., 2014; Soomro et al., 2012), and so on. Performance on simple
action recognition has seen a remarkable boost with the use of deep architectures (Karpathy
et al., 2014; Simonyan and Zisserman, 2014a; Tran et al., 2015). Such methods, however, are
rarely applicable for temporally localizing and/or classifying actions from longer, untrimmed
video sequences, usually due to the lack of temporal consideration. Even works which do
incorporate some modelling of temporal structure (Fernando et al., 2015; Sharma et al.,



3.1. Introduction 51

2015; Srivastava et al., 2015; Tran et al., 2015) do little more than capturing frame-to-frame
changes, which is why the state of the art still relies on either optical flow (Simonyan and Zis-
serman, 2014a) or dense trajectories (Tran et al., 2015; Wang et al., 2013). Moving towards
understanding complex activities then becomes even more challenging, as it requires not only
parsing long video sequences into semantically meaningful sub-activities but also capturing
the temporal relationships that occur between these sub-activities.

We aim to discover and segment the steps of a complex activity from collections of videos
in an unsupervised way based purely on visual inputs. Labelling video sequences is tedious
and expensive; it is much easier to collect videos of the same complex activity by querying
of platforms such as YouTube. Within the same activity class, it is likely that videos will
share common steps and follow a similar temporal ordering. Before our work, works in a
similar vein of unsupervised learning all require inputs from narration; the sub-activities and
sequence information are extracted either entirely from (Alayrac et al., 2016) or rely heavily
on text (Malmaud et al., 2015; Sener et al., 2015). Such works assume that the text is
well-aligned with the visual information of the video so that visual representations of the
sub-activities are learned from within the text’s temporal bounds. This is not always the
case for instructional videos, as it is far more natural for the human narrator to first speak
about what will be done and then carry out the action. Carefully checking many videos,
most of the time, we see people talk about an action before/after performing it, or they talk
about an alternative action/object. Sometimes people talk about an action but do not show
it. Such choices cause various misalignments between video and narrations. Finally, reliably
parsing spoken natural language into scripts1 is an unsolved and open research topic in itself.
As such, it is in our interest to rely only on visual inputs.

Temporal segmentation of complex activities purely from video data is a challenging task,
see Figure 3.2. First of all, in these complex activities, the ordering is loose but not fixed.
In other words, one can accomplish the same task with a slightly different order or even skip
some steps. There might be many garbage or background frames that are not relevant to what
we are interested in. There might be significant appearance variations amongst the frames
of the same sub-activities from different videos. Moreover, appearance variations between
different sub-activities from the same video can have very fine-grained differences.

We propose an iterative model which alternates between learning a discriminative rep-
resentation of a video’s visual features to sub-activities and a generative model of the sub-
activities’ temporal structure. By combining the sub-activity representations with the tem-
poral model, we arrive at a segmentation of the video sequence, which is then used to update
the visual representations (see Figure 3.3). We represent the sub-activities by learning linear
mappings from visual features to a low dimensional embedding space with a ranking loss.
The mappings are optimized such that visual features from the same sub-activity are pushed
together, while different sub-activities are pulled apart.

Temporally, we treat a complex activity as a sequence of permutable sub-activities and
model the distribution over permutations with a Generalized Mallows Model (GMM) (Fligner

1Here, we refer to the NLP definition of a script as “a predetermined, stereotyped sequence of actions that
define a well-known situation” (Schank and Abelson, 1975).
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grind coffee, video #1 grind coffee, video #2

(d) Missing steps

fill waterfill water fill water

(c) Huge appearance variations

(e) Variable orderings

add coffee put filterfill water fill water put filter add coffee

(b) Irrelevant frames

fill water background background

(a) Visually confusing sub-activities

remove stoveput stove

Figure 3.2: What makes temporal action segmentation in complex activities difficult? (a)
First of all, due to the fine-grained nature of the data, the visual appearance variations can
be quite confusing; for example, the two sub-activities “put stove” and “remove stove” have
very fine-grained differences, while overall looking very similar. (b) In instructional videos,
there might be a lot of garbage or background frames, which are not relevant to what we
are interested in. (c) There might be huge appearance variations between the same sub-
activities, e.g., “filling water” frames from different videos can look very different. (d) In
some complex activities, some steps can be skipped. (e) Finally, and most importantly, in
complex activities, the ordering is loose but not fixed.

and Verducci, 1986). GMMs have been used in combination with topic models in the nat-
ural language processing community to model document structures (Chen et al., 2009) and
script knowledge (Frermann et al., 2014). In our method, the GMM assumes that a canonical
sequence ordering is shared among videos of the same complex activity, as per the feasibil-
ity assumption of doing unsupervised learning. There are several advantages of using the
GMM for modelling temporal structure. First and foremost, the canonical ordering enforces
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a global ordering constraint over the activity – something not possible with Markovian mod-
els (Kuehne et al., 2014b; Richard et al., 2017; Sener et al., 2015) and recurrent neural
networks (RNNs) (Yeung et al., 2016). Secondly, considering the temporal structure as a
permutation offers flexibility and richness in modelling. We can allow for missing steps and
deviations, all of which are characteristic of complex activities, but cannot be accounted for
with works which enforce a strict ordering (Alayrac et al., 2016). Finally, the GMM is com-
pact – parameters grow linearly with the number of sub-activities, versus quadratic growth
in parameterization in pairwise relationships e.g., in HMMs.

Within a video, it is unlikely that every frame corresponds to a specified sub-activity.
They may be interspersed with unrelated segments of the actor talking or highlighting pre-
vious or subsequent sub-activities. Depending on how the video is made, such segments can
occur arbitrarily with varying lengths. It becomes difficult to maintain a consistent temporal
model under these uncertainties, which in turn affects the quality of visual representations.
In this work, we extend our segmentation method to represent such “background frames”,
and therefore be robust against such frames. In this variant, we explicitly learn about and
represent such frames so that we can exclude them from the temporal model.
Our contributions can be summarized as follows:

• We are the first to explore a fully unsupervised method for temporal understanding
of complex activities in video without requiring any text. We design a discriminative
appearance learning model to enable the use of GMMs on visual data with visual
features (Sánchez et al., 2013; Tran et al., 2015; Wang et al., 2013).

• We verify our method on real-world videos of complex activities which do not follow
strict orderings and are heavily interspersed with background frames.

• We demonstrate that our method achieves competitive results comparable or better
than the state of the art on two challenging complex activity datasets, Breakfast Ac-
tions (Kuehne et al., 2014b) and Inria Instructional Videos (Alayrac et al., 2016).

3.2 Related Work

Modelling temporal structures in activities has been focused predominantly at a frame-wise
level (Fernando et al., 2015; Sharma et al., 2015; Srivastava et al., 2015; Tran et al., 2015).
Existing works on complex activity understanding typically require fully annotated video
sequences with start and end points of each sub-activity (Kuehne et al., 2014b; Richard and
Gall, 2016; Rohrbach et al., 2012). Annotating every frame in videos is expensive and makes
it difficult to work at a large scale. Instead of annotations, a second line of work tries to use
cues from accompanying narrations (Alayrac et al., 2016; Malmaud et al., 2015; Sener et al.,
2015). These works assume that the narrative text is well-aligned with the visual data, with
performance governed largely by the quality of the alignment. For example, Alayrac et al.
(2016) use instruction narrations as temporal boundaries of sub-activities for discriminative
clustering. Sener et al. (2015) represent every frame as a concatenated histogram of textual
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and visual words, which are used as input to a probabilistic model. The applicability of these
methods is limited because neither the existence of accompanying text, nor their proper
alignment to the visual data can be taken for granted.

More recent works focus on developing weakly-supervised solutions, i.e., where the or-
derings of the sub-activities are provided either only during training (Huang et al., 2016;
Richard et al., 2017) or testing as well (Bojanowski et al., 2014). These methods try to align
the frames to the given ordered sub-activities. Similar to us, the work of Bojanowski et al.
(2014) includes a “background" class. However, they assume that the background appears
only once between every consecutive pair of sub-activities, while our model does not force any
constraints on the occurrence of background. Others (Huang et al., 2016; Richard et al., 2017)
borrow temporal modelling methods from speech recognition such as connectionist temporal
classification, RNNs and HMMs.

In the bigger scope of temporal sequences, several previous works have also addressed
unsupervised segmentation (Fox et al., 2014; Zhou et al., 2012; Krüger et al., 2017) on motion
capture data. Similar to us in spirit is the work of Fox et al. (2014), who propose a Bayesian
nonparametric approach to model multiple sets of time series data concurrently. However, it
has been applied only to motion capture data. Since skeleton poses are lower-dimensional and
exhibit much less variance than video, it is unlikely for such a model to be directly applicable
to video without a strong discriminative appearance model. To our knowledge, we are the
first to tackle the problem of complex activity segmentation working solely with visual data
without any supervision.

3.3 Probability Theory

3.3.1 Preliminaries

A random variable x represents an uncertain quantity which could be the results of an experi-
ment or a measurement. Some values are observed frequently, and some rarely. A probability
distribution, P (x), of random variable x, provides the probabilities of occurrence of different
possible outcomes in a sample space.

We distinguish between discrete and continuous random variables. A discrete random
variable, x, takes values from a pre-defined set, e.g., head or tail, in a coin flip experiment.
We use a probability mass function to assign a probability to each possible outcome. The
associated probabilities must be all positive, and the sum of the probabilities of all outcomes
is 1.

P (x = xi) > 0,
∑
i

P (x = xi) = 1. (3.1)

A continuous random variable takes an uncountable infinite number of possible values. The
probability of a random variable taking any particular value is 0. So instead, we define the
probability that falls in some interval. The function that represents a continuous probability
distribution is called a probability density function. Its integral sums to 1.
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3.3.1.1 Joint and Conditional Probabilities

Given two random variables, x and y, their joint probability can be written as P (x, y). A
joint probability is composed of two or more variables. It might relate only discrete or only
continuous variables, as well as a mixture of both. The total joint probability sums up to 1.

The process of recovering any random variable from a joint distribution via summing (dis-
cretely) or integrating (continuously) over other random variables is called marginalization.
For continuous variables the marginal distributions can be computed as follows:

P (x) =

∫
P (x, y)dy, P (y) =

∫
P (x, y)dx. (3.2)

The conditional probability of P (x|y = y∗), usually abbreviated as P (x|y), shows us the
tendency of x taking different outcomes given that the random variable y is fixed to the
value y∗. Here, the vertical line | is read as “given”. Fixing y, we can compute the values of
x. However, this won’t sum up to 1. Thus, we also need to normalize using the marginal
probability distribution:

P (x|y) =
P (x, y)∫
P (x, y)dx

=
P (x, y)

P (y)
, (3.3)

which can be rearranged as

P (x, y) = P (x|y)P (y) = P (y|x)P (x). (3.4)

3.3.1.2 Independence and Conditional Independence

If knowing x does not provide further information about y and vice-versa, we say x and y

are independent:
P (x, y) = P (x|y)P (y) = P (x)P (y). (3.5)

When more random variables are introduced, the definition of independence also gets com-
plex. For example,

P (x|y, z) = P (x|y)P (z), (3.6)

where x is conditionally independent of z given y. If we know y, then z does not provide
further information on x. Such independence is not symmetric. Also, this does not mean
that x and z are independent. Conditional independence allows us to remove redundancies
and describe distributions with fewer parameters. For example, if given y, x and z are
independent, then we can simplify the following joint distribution:

P (x, y, z) = P (x|y, z)P (y|z)P (z) (3.7)

= P (x|y)P (y|z)P (z). (3.8)

3.3.1.3 Relevant Probability Distributions

In this section, we define several probability distributions occurring in this thesis.
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The Bernoulli distribution is a univariate, binary, discrete distribution used to model
binary trials where the random variable takes the value of 1 with probability λ and 0 with
probability 1 − λ, where λ ∈ [0, 1]. There are two possible outcomes, x ∈ {0, 1}, which
correspond to “failure” and “success”. It can be used to represent a (possibly biased) coin toss
with outcomes heads and tails, or it can be used to represent the probability of an image
containing a cat or not. The probability distribution can be written as follows

PBern(x) = λx(1− λ)(1−x), (3.9)

λ is the only parameter to govern the distribution. It determines the probability of success
such that PBern(x = 1) = λ and failure PBern(x = 0) = 1− λ.

The beta distribution is a univariate continuous distribution defined on a single variable
bounded between λ ∈ [0, 1] with parameters α, β ∈ [0,∞]. The probability distribution can
be written as follows:

Pbeta(λ) =
Γ(α+ β)

Γ(α)Γ(β)
λ(α−1)(1− λ)β−1, (3.10)

where Γ(·) is the gamma function, an extension of the factorial to real numbers,
Γ(z) =

∫∞
0 xz−1e−xdx and for any positive integer it is Γ(z) = (z − 1)!. Pbeta is a suitable

distribution for representing the uncertainty in parameter λ in the Bernoulli distribution.
Its generalization to multiple variables is a Dirichlet distribution.

The categorical distribution is a univariate, discrete distribution used to represent the
probability of observing one of K possible outcomes. It is a generalization of the Bernoulli
distribution with multiple outcomes. For example, it could be used to describe the proba-
bility of rolling a dice, or the probability of an image containing a cat, human, car, or bird.
The probability of observing K outcomes are modeled with vector, λ = [λ1, λ2, ..., λK ] where
λi ∈ [0, 1] and

∑K
i=1 λi = 1. The categorical distribution simply returns the probability of a

given event, Pcat(x = i) = λi.

The multinomial distribution models observing the values {1, ...,K} with probabilities
λ = [λ1, ..., λK ] for N repeated trials, where each trial has a discrete set of possible outcomes.
Here λi ∈ [0, 1] and

∑K
i=1 λi = 1. It is a generalization of the categorical distribution with

N = 1. For example, it can be used to model the probability of getting every time an
outcome of 2 in an experiment where a dice is rolled N=3 times. It is also a generalization of
a binomial experiment where each trial can result in two possible outcomes. The probability
function can be written as

Pmult(x) =
Γ(
∑

i xi + 1)∏
i Γ(xi + 1)

K∏
i=1

λxii , where
∑
i

xi = N. (3.11)

The Dirichlet distribution is a multivariate, continuous distribution defined over K con-
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tinuous values [λ1, ..., λK ] where λi = [0, 1] and
∑K

i=1 λi = 1. For K dimensions it has K
parameters [α1, ..., αK ] where αi > 0. The probability distribution can be written as follows:

PDir(λ1...K) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

λαi−1
i . (3.12)

The Dirichlet distribution can be used to express our prior beliefs about the parameters of a
categorical or multinomial distribution.

3.3.2 Bayes’ Theorem

Bayes’ theorem describes how to update the probabilities when given evidence. For example,
we can find the probability of a person having cancer from incidence rates in a population.
However, given additional evidence of this person being a smoker, we need to update the
probability, as smoking increases the risk of getting cancer.
Using equation 3.4, we can define the following relationship between the conditional distri-
butions of P(x|y) and P(y|x):

P (x|y)P (y) = P (y|x)P (x). (3.13)

We can write Bayes’ rule as follows:

P (x|y) =
P (y|x)P (x)

P (y)
(3.14)

=
P (y|x)P (x)∫
P (x, y)dx

(3.15)

=
P (y|x)P (x)∫
P (y|x)P (x)dx

, (3.16)

where P (x|y) is the posterior that we are trying to estimate. It corresponds to what we
know about x given some evidence, y. P (y) is the evidence, while P (x) refers to the prior,
representing all we know about x before some evidence is taken into account. P (y|x) describes
the likelihood, which is the probability of observing new evidence given x.

3.3.3 Conjugate Prior

When we fit models to data, we also want to measure how uncertain we are about a fit.
Some probability distributions are commonly used to model data, e.g., Bernoulli or cate-
gorical, while others, such as beta or Dirichlet, are used to represent the uncertainty over
the parameters of the fitted models. The parameters of this second distribution are called
hyperparameters.

In Bayesian theory, if the posterior and the prior probability distributions are in the
same distribution family, the prior distribution is called conjugate prior for the likelihood
function. For example, the beta distribution can be used to define a distribution over the
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parameter of the Bernoulli distribution, while Dirichlet can model the parameters of the
categorical distribution. Therefore the beta distribution is a conjugate prior to the Bernoulli
distribution, and the Dirichlet is conjugate prior to the categorical distribution.

For some likelihood functions, if we choose a certain prior, the posterior ends up be-
ing distributed according to the same type of distribution as the prior, but with different
parameters. For example, using beta as the prior distribution of the Bernoulli:

P (λ|x) ∝ PBern(x|λ)Pbeta(λ)

= λx(1− λ)(1−x) Γ(α+ β)

Γ(α)Γ(β)
λ(α−1)(1− λ)β−1

= λx+α−1(1− λ)(β−x) Γ(α+ β)

Γ(α)Γ(β)

(3.17)

Expanding with the following constant c = Γ(x+α+β−x+1)
Γ(x+α)Γ(β−x+1) allows rearranging to:

P (λ|x) ∝ ĉ · Γ(α̂+ β̂)

Γ(α̂)Γ(β̂)
λ(α̂−1)(1− λ)β̂−1 (3.18)

where ĉ = Γ(x+α)Γ(β−x+1)
(α+β)Γ(α)Γ(β) is a constant, and P (λ|x) is another beta distribution with param-

eters α̂ = α+ x and β̂ = β + 1− x.
Let N denote the number of observations. The posterior hyperparameters can be computed
as α̂ = α+

∑N
i=1 xi and β̂ = β+

∑N
i=1(1−xi). This allows us to easily compute the posterior,

as the conjugate priors allow us to integrate out the actual parameters of a distribution. It
also allows for measuring how much our beliefs change after observing new data.

3.3.4 Fitting Probability Models

We can use maximum likelihood or maximum a posteriori for predicting model parameters,
θ, for a dataset composed of {x1, . . . , xN}.
Maximum likelihood, ML, estimation is concerned with finding a set of parameters θ̂
under which the data is most likely. Assuming each data point is independently drawn, the
likelihood function P (x1, . . . , xN |θ) can be written as the product of individual likelihood
functions at a single data point P (xi|θ), which can be easily maximized:

θ̂ = arg max
θ

[
N∏
i=1

P (xi|θ)

]
. (3.19)

Maximum a posterior, MAP, estimation utilizes prior information on parameters θ and
maximizes the posterior probability P (θ|x1, . . . , xN ):

θ̂ = arg max
θ

P (θ|x1, . . . , xN ). (3.20)
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By using Bayes’ rule we get

θ̂ = arg max
θ

[∏N
i=1 P (xi|θ)P (θ)

P (x1, . . . , xN )

]
, (3.21)

where the P (x1, . . . , xN ) is constant w.r.t. the model parameters, and as such we can omit.
This makes the fitting similar to maximum likelihood estimation with an additional prior
term.

3.3.5 Sampling

When computing the posterior is not tractable, an alternative is drawing samples from the
posterior distribution. A Markov chain Monte Carlo (MCMC) method is a popular way of
generating samples from any complex high-dimensional probability distribution. It generates
a chain of samples from the distribution where each sample depends on the previous one
(Markov chain), with a non-deterministic generation process (Monte Carlo).

3.3.5.1 Gibbs sampling

A common MCMC sampling approach is Gibbs sampling (Griffiths and Steyvers, 2004) which
is used to draw samples from multivariate probability distributions. It generates a chain of
samples by cycling through each variable in turn in any order. It draws a sample from
the conditional distribution P (xi|x\i), where x\i corresponds to the the set of all variables
except xi. After repeating this process for a burn-in period, such that the initial conditions
are forgotten, a sample is considered to be drawn from the joint distribution. The sampling
process can be summarized as in Algorithm 3.1. The conditional distribution of one variable
given all others is proportional to the joint distribution:

P (xi|x\i) =
P (x1, . . . , xN )

P (x\i)
∝ P (x1, . . . , xN ). (3.22)

Algorithm 3.1 Gibbs sampling.

1: Initialize the chain x(0)
i

2: for iterations t = 1, 2, 3, ... do
3: for variables x(t)

i do
4: x

(t+1)
i ∝ P (x

(t+1)
i |x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, x

(t)
i+2, . . .)

3.3.5.2 Slice sampling

Slice sampling (Neal, 2003; MacKay, 2003) is another MCMC sampling approach. Consider
the goal of obtaining samples from a univariate distribution P (x). We introduce a new
uniform random variable u, conditioned on x P (u|x) ∼ uniform([0, P (x)]). We fix x and
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sample u uniformly from the region under the curve of the density function P (x). We then
fix u and sample x from the slice through the distribution, which is constructed by stepping
into both directions with a fixed step size and narrowed down by rejecting those x that
are sampled above P (x). The algorithm alternates between sampling u uniformly in the
vertical direction and uniform sampling from the horizontal “slice” defined by the current
vertical position, u. Slice sampling is an alternative to Gibbs sampling that avoids the need
to sample from non-standard distributions.

3.4 The Generalized Mallows Model (GMM)

Permutations appear naturally in a wide variety of domains such as information re-
trieval (Farah and Vanderpooten, 2007) or classification (Cheng and Hüllermeier, 2009). The
Mallows model (MM) is a distribution that models orderings or permutations.

In the standard Mallows model (Mallows, 1957), the probability of observing some order-
ing π is defined by a dispersion parameter ρ and a canonical ordering σ,

PMM (π|σ, ρ) =
e−ρ·d(π,σ)

ψ(ρ)
, (3.23)

where any distance metric for rankings or orderings can be used for d(·, ·). A frequently used
metric is the Kendall τ distance which measures the minimum number of swaps between
adjacent positions required to transform π to the canonical ordering σ. As such, orderings
close to the canonical ordering will have high probability and the probability of an ordering
π decreases exponentially with an increased distance to the canonical ordering. The extent
to which the probability decreases as π differs from σ is controlled by a dispersion parameter
ρ > 0; ψ(ρ) serves as a normalization constant. Similarly, an increasing value of ρ implies
strong penalization of the distance. There are several extensions of the Mallows model, such
as non-parametric models (Lebanon and Mao, 2008) and mixture models (D’Elia and Piccolo,
2005). The Generalized Mallows Model (GMM) is the most popular extension among all.

The GMM, first introduced by Fligner and Verducci (1986), extends the standard Mallows
model by introducing a set of dispersion parameters ρ = [ρ1, . . . , ρK−1], each affecting a
particular position of the permutation, to allow individual parameterization of theK elements
in the ordering. This allows for modeling a distribution with more emphasis on the consensus
of certain positions in the ordering while at the same time having more uncertainty in the
others.

3.4.1 The Distance Function in GMM

The distance function between orderings now can be considered as a set of independent com-
ponents. The GMM represents permutations as a vector of inversion counts v = [v1, . . . , vK−1]

with respect to the canonical ordering, where element vk corresponds to the total number of
elements in (k + 1, . . . ,K) that occur before k in the ordering π. We assume the canonical
ordering as a parameter to the distribution and set it as the identity permutation (1, ...,K).
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Note that only K − 1 elements are needed since vK is 0 by definition, as there cannot be any
elements greater than K.

We present the algorithms for converting an inversion count vector, v computed with
respect to the identity permutation to the ordering π in Algorithm 3.2 and π to v conversion
in Algorithm 3.3. For example, given an ordering of π = [4 2 1 3 6 5], the inversion count
vector is computed as v=[2 1 1 0 1]. v1 is 2 as 4 and 2 occur before 1 in π as elements which
are greater than 1. Similarly, v2 is 1, as only 4 appears before 2 as a greater element. The
sum of all positions in the inversion count corresponds to the ordering’s Kendall τ distance
from the canonical ordering.

Algorithm 3.2 Algorithm for converting the vector of inversion counts v to ordering π.
Require: v,K
1: π[0, ...,K − 1]← 0
2: π[0]← K
3: for i = K − 1 down to 1 do
4: for j = K − i down to v[i− 1] + 1 do
5: π[j]← π[j − 1]
6: π[v[i− 1]]← i
7: return π

Algorithm 3.3 Algorithm for converting the ordering π to the vector of inversion counts v.
Require: π,K
1: v[v1, ..., vK−1]← 0
2: for i = K − 1 down to 1 do
3: for j = 0 to i− 1 do
4: if π[j] > π[i] then
5: v[π[i]− 1]← v[π[i]− 1] + 1
6: return v

3.4.2 The GMM

GMM introduces the dispersion parameters ρ = [ρ1, ..., ρK−1] to MM where a dispersion
parameter is assigned to each position which defines individual levels of tolerance for the
distance function. The probability of an ordering becomes

PGMM (π|σ,ρ) =
e−

∑K−1
k=1 ρk·d(πk,σk)

ψ(ρ)
. (3.24)

If we assume that σ is the identity permutation, then a natural distance, d(π,σ), with an
inversion count vector v, can be defined as

∑
k ρkvk, leading to
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PGMM (v|ρ) =
e−

∑K−1
k=1 ρkvk

ψk(ρ)

=
K−1∏
k=1

e−ρkvk

ψk(ρk)
,

(3.25)

with ψk(ρk) = 1−e−(K−k+1)ρk

1−e−ρk as the normalization. We omit this constant in the rest of the
chapter as we work with the unnormalized GMM distribution.
GMM allows for the factorization of the distribution into individual components:

PGMMk
(vk|ρk) ∝ e−ρkvk . (3.26)

This allows for position-specific penalty parameters, and therefore individual degrees of tem-
poral flexibility for ordering positions. A high value of ρk indicates fewer inversions and,
therefore, less tendency to deviate from the canonical ordering.

As the GMM is a member of the family of exponential distributions, a conjugate prior can
be defined. The conjugate prior can be factorized into element-wise components like GMM.
The natural prior (Fligner and Verducci, 1990) for each element ρk is the conjugate:

PGMM0(ρk|vk,0, ν0) ∝ e(−ρkvk,0−logψk(ρk))ν0 , (3.27)

with hyperparameters vk,0 and ν0, which need to be defined manually. Intuitively, the prior
states that over ν0 previous trials, ν0 ·vk,0 inversions will be observed (Chen et al., 2009). The
distribution can be updated with the observed vk. We manually set the sample size prior, ν0,
which corresponds to the weight of the prior information. However, the hyperparameter vk,0,
which encodes the distance of an element from its canonical position in trials, is difficult to
set. For simplicity, we do not set multiple priors for each k and instead introduce a common
prior ρ0 as per (Chen et al., 2009), such that

vk,0 =
1

eρ0−1
− K − k + 1

e(K−k+1)ρ0 − 1
. (3.28)

We again set the prior dispersion hyperparameter, ρ0, manually. Higher values for ρ0 indicate
an ordering closer to the canonical ordering.

3.5 Proposed Model

Assume we are given a collection of M videos, all of the same complex activity, and that
each video is composed of an ordered sequence of multiple sub-activities. A single video i
with Ji frames can be represented by a design matrix of features Fi ∈ RJi×D where D is the
feature dimension. We further define F as the concatenated design matrix of features from
all M videos, and F\i as the features excluding video i.



3.5. Proposed Model 63

In Figure 3.3, we present an overview of our full model. Our goal is to assign a sub-
activity label to each frame in the video collection. We represent the sub-activity assignment
as a bag of frame counts, ai. Since our algorithm is unsupervised, we start with uniform
initialization, e.g., in Figure 3.3 the initial sub-activity count is 4 for all sub-activities. The
order, πi, for our K sub-activities is initialized to the canonical ordering. Together the
counts and the ordering form the sub-activity assignments to video frames. With our initial
assignments, we first discriminatively learn a joint embedding space between the sub-activity
labels. This is necessary because naïve clustering of the video frames leads to groupings
according to video rather than sub-activity, see Figure 3.5 (left). Section 3.5.1 describes how
we discriminatively learn the features F, as a better representation for video frames. We then
continue with our generative process to update the sub-activity count and orderings in the
second step in Figure 3.3. We provide the details of the generative process of our temporal
model in Section 3.5.2 and our full model, which models background frames in Section 3.5.3.

An overview of our iterative process for our standard model without background can
be found in Figure 3.4. According to this we first learn video frame embeddings w.r.t. the
pseudo-labels obtained from an initialization or previous segmentation step. We then sample,
for each video; first, the activity counts a, and then the ordering π, both via Gibbs sampling.
For the entire collection we then sample the dispersion parameter, ρ, with slice sampling.
Then we construct the new segmentation, z, for each video through a and π. We iterate over
these steps until our stopping criterion is reached.

3.5.1 Sub-Activity Representation

Within a video collection of a complex activity, there may be huge variations in visual
appearance, even with state-of-the-art visual feature descriptors (Sánchez et al., 2013; Tran
et al., 2015; Wang et al., 2013). Suppose for frame j of video i we have video features Xij

with dimensionality V . These features, if clustered naively, are most likely to group together
according to video rather than sub-activity, see Figure 3.5 (left). To cluster the features more
discriminantly, we learn a linear mapping of these features into a latent embedding space,
i.e., Φf (Xij) : RV → RE . We also define in the latent space K anchor points, with locations
determined by a second mapping Φa(k) : {1, . . . ,K} → RE . More specifically,

Φf (Xij) = WfXij , Wf ∈ RE×V , (3.29)

Φa(k) = Wa(k), Wa ∈ RE×K , (3.30)

where Wf and Wa are the learned embedding weights and E is the dimensionality of the
joint latent space. Here, Wa(k) is the k-th column of Wa, which corresponds to the location
of anchor k in the latent space. Together, Wf and Wa make up the parameter W. We
use the similarity of the video feature with respect to these anchor points as a visual feature
descriptor, i.e.,
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Figure 3.3: Overview: Our iterative model alternates between learning the visual appear-
ance and temporal structure of the sub-activities. We combine the visual appearance with
the temporal model to obtain a segmentation of the video sequence which is then used to
update the visual appearance representation for the next iteration.

Fij = Wa
ᵀWfXij , (3.31)

where Fij = [f1, ..., fK ]ij . Each element fkij is inversely proportional to the distance between
Xij and anchor point k in the latent space. By using K anchor points, this implies that
D = K.

Our objective in learning the embeddings is to cluster the video features discriminatively,
see Figure 3.5 (right). We achieve this by encouraging the Xij belonging to the same sub-
activity to cluster closely around a single anchor point while being far away from the other
anchor points. If we assign each anchor point to a given sub-activity, then we can learn W

by minimizing a pair-wise ranking loss L, where

L =

M,Ji∑
i,j

K∑
k=1,k 6=k∗

max[0, fkij − fk
∗

ij + ∆] + γ||W||22. (3.32)
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Figure 3.4: We present a plate model representation for our standard model without back-
ground along with the inference procedure. Given a segmentation z, we can define an appear-
ance model. The segmentation is composed of a, the bag of activity counts, which we model
as a multinomial, as well as π, the ordering, based on the Mallows model. For segmenting
videos, we iterate over the following: Given some initial or previous segmentation, we first
embed the videos as a group, learned via stochastic gradient descent. For each video we then
sample (Gibbs) activity counts, a, and ordering, π. Finally, the dispersion parameter, ρ, is
obtained via slice sampling, and a new segmentation, z, is constructed for each video through
a and π.

In this loss, k∗ is the anchor point associated with the true sub-activity label for Fij , ∆ is a
margin parameter and γ the regularization constant for the l2 regularizer of W. The loss in
Eq. 3.32 encourages the distance of Xij in the latent space to be closer to the anchor point
k∗ associated with the true sub-activity than any other anchor point by a margin ∆.

The above formulation assumes that the right anchor point k∗, i.e., the true sub-activity
label, is known. This is not the case in an unsupervised scenario so we follow an iterative
approach where we learn W at each iteration from an assumed sub-activity based on the
segmentation of the previous iteration. More details on learning are given in Section 3.5.4.

3.5.2 Standard Temporal Model

Given a collection of M videos of the same complex activity, we would like to infer the
sub-activity assignments to video frames, z = {zi}, i ∈ {1...M}. For video i, zi = {zij}, j ∈
{1...Ji}, zij ∈ {1...K} can be assigned to one of K possible sub-activities. Note that for
convenience, we overload the use of K for both the number of elements in the ordering for
the GMM model as well as the number of sub-activities, as the two are equal when applying
the GMM.
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Figure 3.5: We compare the naïve clustering of frames with our discriminative clustering.
Here, border colors correspond to videos, while sub-activity labels are shown as text. If we
cluster frame features naïvely (left), what we end up with are clusters grouped according to
the frames of each video, rather than according to the sub-activity of interest. Instead, we
apply a discriminative clustering technique where we try to group frames according to their
semantic similarity with respect to sub-activity rather than purely visual appearance (right).

We introduce ai, a bag of sub-activity labels for video i, i.e., the collection of elements in zi
but without consideration for the temporal frame ordering. The ordering is then described by
πi. ai is expressed as a vector of counts of the K possible sub-activities, while πi is expressed
as an ordered list. Together, ai and πi determine the sub-activity label assignments zi to
the frames of video i. a and π are redundant to z; the extra set of variables gives us the
flexibility to separately model the sub-activities’ visual appearance (based on a) and the
temporal ordering (based on π). We model a as a multinomial, with parameter θ and a
Dirichlet prior with hyperparameter θ0. For the ordering π, we use a GMM with the prior
from Eq. 3.27 and hyperparameters ρ0 and ν0. The joint distribution of the model factorizes
as follows:

P (z,θ,ρ,F|θ0, ρ0, ν0)

∝ P (F|z)P (a|θ)P (π|ρ)P (θ|θ0)P (ρ|ρ0, ν0)

=
[ M,Ji∏
i,j=1

P (Fij |zij)
][ M∏

i=1

P (ai|θ)P (πi|ρ)
]

=
[ K∏
k=1

P (θk|θ0)
][K−1∏

k=1

P (ρk|ρ0, ν0)
]
,

(3.33)

based on the assumption that each frame of each video as well as each video are all indepen-
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Figure 3.6: Plate diagrams of our model. Shaded nodes are observed variables; rectangles
denote fixed hyperparameters with fixed values, and dashed arrows indicate deterministically
constructed variables. Left: our standard model. Right: our full model with background.

dent observations. We show a diagram of the model in Figure 3.6 (left).
When using the GMM, performing maximum likelihood estimation to find a consensus

or canonical ordering over a set of observed orderings is an NP hard problem, though several
approximations have been proposed. Our case is the reverse, in which we assume that a
canonical ordering is already given and we would like to find a (latent) set of orderings.
Our interest is to infer the posterior P (z,ρ|F, θ0, ρ0, ν0) for the entire video corpus. Directly
working with this posterior is intractable, so we make Markov chain Monte Carlo (MCMC)
sampling-based approximations. We integrate out all but three sets of hidden variables:
sub-activity a, orderings π, and permutation inversion parameters ρ. Specifically, we are
using slice sampling (Neal, 2003) for ρ and Gibbs sampling (Griffiths and Steyvers, 2004)
for z. Since z is fully specified by a and π, it is equivalent to sample a and π. After a
burn-in period, we treat the last samples of sub-activity a, orderings π, as a draw from the
posterior. Before elaborating on the sampling equations, we first detail how we model the
video likelihood P (Fi|zi).

3.5.2.1 Video Likelihood

Video likelihood P (Fi|zi) can be broken down into the product of frame likelihoods, since
each frame is conditionally independent given the frame’s sub-activity, i.e.,

P (Fi|zi,F\i, z\i) =

Ji∏
j=1

P (Fij |zij ,F\i, z\i). (3.34)

Since our temporal model is generative, we need to make some assumptions about the gen-
erating process behind the video features. We directly model the frame likelihoods and use
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K mixtures of Gaussians, one for each sub-activity k. Each mixture has Q components with
weights ωk, means µk and covariances Σk, with likelihood scores for each mixture selected
according to the assignments zij :

P (Fij |zij = k,F\i, z\i) ∼
Q∑
q=1

ωqk · N (µqk,Σk). (3.35)

3.5.2.2 Sampling Sub-activity Counts

Sampling sub-activity ai is done with collapsed Gibbs sampling. Recall that a is modelled
as a multinomial with K outcomes parameterized by θ. We sample aij , the j-th frame for
video i, from the posterior conditioned on all other variables. Without the redundant terms,
this posterior is expressed as

P (aij = k| . . . ) ∝ P (aij = k|a\ij , θ0) · P (Fi|zi,F\i, z\i), (3.36)

where the second term is the video likelihood from Eq. 3.34. The first term is a prior over the
sub-activities, and can be estimated by integrating over θ. The integration is done via the
collapsed Gibbs sampling and as we assumed a Dirichlet prior, i.e., θ ∼ Dir(θ0), this results
in

P (aij = k|a\ij , θ0) =
Nk + θ0∑K

k=1Nk +Kθ0

, (3.37)

where Nk is the total number of times the sub-activity k is observed in all the sequences and∑K
k=1Nk is the total number of sub-activity assignments. We compute aij over all possible

topic assignments and select the new value for aij by sampling from this probability.
Note that sampling for aij does not correspond to the sub-activity assignment to the j-th

frame. The assignment is given by zij which can only be computed after sampling aij for all
Ji frames of video i and then re-ordering the bag of frames according to πi.

3.5.2.3 Sampling Orderings

Sampling ordering πi is done via Gibbs sampling. Recall that the ordering follows a GMM
as described in Section 3.4 and is parameterized for elements in the ordering individually via
inversion count vector vi. As such, we sample a value for each position in the inversion count
vector from k = 1 to K − 1 independently. The value states the mobility of the position
according to:

P (vik = c|z,ρ,F) ∝ P (vik = c|ρk) · P (Fi|zi,F\i, z\i), (3.38)

where c indicates the inversion count assignment to vik. Again, the second term is the video
likelihood from Eq. 3.34, while the first term corresponds to PGMM (vik = c; ρk), and is
computed according to Eq. 3.25. We estimate the probability of every possible value of vik,
which ranges from 0 to K − k, and sample a new inversion count value c based on these
probabilities.
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3.5.2.4 Sampling the Dispersion Parameter

We draw our ordering parameters ρ from the conjugate prior distribution of the GMM in
Eq. 3.27. Sampling GMM dispersion parameter ρk is done for each sub-activity k = 1 to
K − 1 independently. The number of trials, ν0 and the number of previously encountered
inversions vk,0 are updated as follows

(ν0, vk,0) = (N + ν0,

∑
i vik + vk,0ν0

N + ν0
). (3.39)

Since the normalizing constant is unknown, it is not straightforward to sample from this
distribution. The distribution is univariate and unimodal, we therefore draw ρk using slice
sampling (Neal, 2003) from the conjugate prior distribution PGMM0 according to Eq. 3.27
with the updated parameters. As GMM parameters do not have a direct effect on sub-activity
assignments z, we sample those parameters once after Gibbs sampling is done.

3.5.3 Background Modelling

To consider background, we extend the label assignment vector z with a binary indicator
variable bij ∈ {0, 1} for each frame. The indicator bij follows a Bernoulli variable parameter-
ized by λ, with a beta prior, i.e., λ ∼ Beta(α, β). In this setting, zi is determined by the bag
of sub-activities ai, the ordering πi, and background vector bi = {bij}, where bi indicates
the frames to be excluded from sub-activity consideration.

As an example, for video i, given ai = [6 3 5], πi = [2 3 1] and bi =

[1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 1], the sub-activity assignment is
zi = [2 2 2 0 0 3 3 3 0 0 3 3 0 0 0 1 1 1 1 0 0 1 1]. We show a diagram of this model
in Figure 3.6 (right).
The joint distribution of the model can be expressed as

P (z,θ,ρ,F|θ0, α, β, ρ0, ν0, ) ∝ P (a|θ, θ0) ·P (π|ρ, ρ0, ν0) ·P (b|λ, α, β) ·P (F|a,π,b). (3.40)

Drawing samples from this full model requires a small modification to the sub-activity sam-
pling ai. More specifically, we need a Gibbs sampler that samples aij and bij jointly while
integrating over θ and λ.

3.5.3.1 Sampling Background

Sampling background bi is done from the joint conditional

P (bij , aij | . . . ) ∝ P (bij |α, β) · P (aij |a\ij , θ0) · P (Fi|zi,F\i, z\i). (3.41)

This is equivalent to the following for a sub-activity frame:
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P (bij =1, aij =k| . . . ) ∝
Nf + α

Nf +Nb + α+ β
· Nk + θ0∑K

k=1Nk +Kθ0

· P (Fi|bij =0, aij =k,F\i, z\ij),

(3.42)
where Nf and Nb are the total number of sub-activity frames and background frames in the
corpus respectively. For a background frame, the joint distribution is equal to

P (bij =0, aij | . . . ) ∝
Nb + α

Nf +Nb + α+ β
· P (Fi|bij =1, aij ,F\i, z\ij). (3.43)

The video likelihood in Eqs. 3.42 and 3.43 are computed in a similar way as defined in
Eqs. 3.34 and 3.35, with the exception that we now iterate over the joint states of background
and sub-activity labels for the frame likelihoods. Note that this only adds one extra proba-
bility in being computed, i.e., b= 1, since the state of aij is then irrelevant. The rest of the
the Gibbs sampling remains the same.

Algorithm 3.4 The algorithm for our full model.
Require: K, Q, X, θ0, α, β, ρ0, ν0

Ensure: z and ρ
1: initialize a,b,π and construct z
2: randomly initialize W
3: for each iteration do
4: learn W with z
5: for k = 1 to K do
6: learn {ωk,µk,Σk}
7: for i = 1 to M do
8: for j = 1 to Ji do
9: for k = 1 to K do
10: P (bij = 1, aij = k| . . . )← Eq. 3.42
11: P (bij = 0, aij | . . . )← Eq. 3.43
12: {aij , bij} ← draw from P (bij , aij | . . . )
13: for k = 1 to K − 1 do
14: P (vik| . . . )← Eq. 3.38
15: vij ← draw from P (vik| . . . )
16: for k = 1 to K − 1 do
17: P (ρk| . . . )← Eq. 3.27
18: construct z with new a,b,π

3.5.4 Inference Procedure

Our model’s inputs are the frame features X, the number of sub-activities K and the
number of Gaussian mixtures Q. We iterate between solving for F and sampling z and ρ
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from the posterior P (z,ρ|F, θ0, α, β, ρ0, ν0).
The inference process is summarized in Algorithm 3.4. To initialize zi for each video i,

the sub-activity counts ai are split uniformly over K sub-activities; πi is set to the canonical
ordering; bi is set with every other frame being background (see schematic in Figure 3.3).
Using the current assignments z, we first learn W of the latent embeddings to solve for F

and then for each sub-activity k, (step 4). Then using the same z and F we learn K mixture
of Gaussian, one for each sub-activity with the Gaussian mixture components {ωk,µk,Σk},
(step 6).

Next, for each video i, we proceed to re-sample {ai,bi}, πi, in that order, using Gibbs
sampling using equations 3.42, 3.43 and 3.38 respectively (steps 10, 11, 14). These variables
are used to construct zi. After repeating for each video, we can then re-sample the dispersion
parameter ρ according to Eq. 3.27, step 17. From the new z and ρ, we then repeat the steps
between 4-18 until our stopping criteria is reached.

3.5.5 Implementation Details

To optimize Eq. 3.32 for learning W, we use Stochastic Gradient Descent (SGD) with mini-
batches of 200 and momentum of 0.9. We set the hyperparameters ρ0 = 1, α = 0.2, β = 0.2,
ν0 = 0.1 times the number of videos, θ0 = 0.1. The learning rate we use for the Instructional
Videos Dataset (Alayrac et al., 2016) is 1−5 and for the Breakfast Actions Dataset (Kuehne
et al., 2014b) it is 1−7.

3.6 Experimentation

3.6.1 Datasets & Evaluation Metrics

We analyze our model’s performance on two challenging datasets, Breakfast Actions (Kuehne
et al., 2014b) and Inria Instructional Videos (Alayrac et al., 2016). Breakfast Actions has
1,712 videos of 52 participants performing ten breakfast preparation activities such as “making
coffee” and “scrambling eggs”. There are 48 sub-activities; videos vary according to the partic-
ipants’ preference of preparation style and orderings. We use the visual features from Kuehne
et al. (2016) based on improved dense trajectories (Wang and Schmid, 2013), encoded with
Fisher vectors (Sánchez et al., 2013) and reduced to 64 dimensions via PCA. This dataset
has no background and sub-activities transition directly from one to another.

Inria Instructional Videos contains 150 narrated videos of 5 instructional activities col-
lected from YouTube using the activity name as the search term. The videos are on average
2 minutes long with 47 sub-activities. We use the visual features provided by Alayrac et al.
(2016), which are based on improved dense trajectories and VGG-16 (Simonyan and Zisser-
man, 2014b) conv5 layer responses taken over multiple windows per frame. The trajectory
and CNN features are each encoded with bag-of-words into vocabularies of 2000 and 1000
respectively and concatenated into a 3000-dimensional vector for each frame. The videos are
labelled with background, i.e., frames in which the sub-activity is not visually discernible,
usually when the person stops to explain upcoming steps. As such, the sub-activities are
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video3
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subactivity background

video13

background subactivity

video14
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Figure 3.7: Segmentation outputs on three “making coffee” examples from Inria Instruc-
tional Videos Dataset (Alayrac et al., 2016), from video 3, 13 and 14 respectively. Colors
indicate different sub-activities, black the background frames. Since our algorithm is fully
unsupervised, we established one-to-one color mappings between the ground truth and our
outputs for visualization purposes. The horizontal axis is time and below we show some
example sub-activity and background frames. The first row (GT) is the ground truth; the
second until the last rows show the progression from the initialization (INIT), some itera-
tions, and the (FINAL) segmentation. Our method performs well when the appearance of the
sub-activities is discriminative, e.g., for video 3, occurrence of a hand during a sub-activity
vs. none during the background frames, or people talking for video 13. We fail in detecting
background when there are also interactions with objects of interest, e.g., in video 14. Our
model does not enforce continuity over the background frames and may result in fragmen-
tation, but as shown, with good appearance modelling, the background clusters naturally.
Furthermore, the final segmentations may contain a different number of sub-activities while
still maintaining a global order, e.g., the orange sub-activity tends to appear last and follows
the grey one.

separated by hundreds of background frames (73% of all frames). We evaluate our standard
model without background modelling by removing these frames from the sequence as well as
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our model with background modelling on the original sequences.

To evaluate our segmentation results in the fully unsupervised setting, we need one-to-one
mappings between the segment and ground truth labels. In line with (Alayrac et al., 2016;
Sener et al., 2015), we use the approach described by Liao (2005) who use the Hungarian
method to find the mapping that maximizes the evaluation scores. We use three evaluation
metrics. The mean over frames (MoF) evaluates the quality of temporal localization of sub-
activities with the percentage of frames correctly labelled. The Jaccard index, computed
as intersection-over-detections, quantifies the difference between ground-truth and predicted
segmentations. Finally, we use the F1 score that ranges between between 0 and 1 to compare
against the state of the art on the Instructional Videos Dataset (Alayrac et al., 2016). With
all three measures, higher values indicate better performance.

We also show a partly supervised baseline in which we use ground truth sub-activity labels
for learning F but learn the temporal alignments unsupervised. This can be thought of as an
upper bound on performance for our fully unsupervised version, in which we iteratively learn
the temporal alignment and discover the visual appearance of the sub-activities. We refer to
these to as “ours GT” and “ours iterated” respectively in the experimental results.

3.6.2 Sub-Activity Representation Modelling

By projecting the frames’ visual features and the sub-activity labels into a joint feature
space, we learn a visual appearance model for the sub-activities. We first consider our stan-
dard model on Inria Instructional Videos with the background frames removed. The plot
in Figure 3.8(a) tells us that the appearance model can be learned successfully in an iter-
ative fashion and begins to stabilize after approximately 5 iterations between learning the
sub-activity appearance and the GMM.

Our model’s performance depending on the the number of Gaussian mixture components
Q is shown in Figure 3.8(b). The resulting sub-activity representations are very low dimen-
sional and highly separable so that we achieve higher MoF with a few number of components.
We use Q = 3 mixture components for our iterative and Q = 1 for the ground truth experi-
ments.

In Figure 3.8(c), we use our iterated method to show the MoF for different values of E, or
embedding dimensionality, over the training epochs. We find only small differences in MoF
for different E values. We fix the embedding size E = 200 with 12 epochs of training and
5 iterations of sub-activity and GMM learning for subsequent experiments on both datasets.
The run time of a single iteration of our algorithm is proportional to the number of frames Ji
in each video and the assumed number of sub-actvitiesK. We evaluate the performance of our
system, on a computer with an Intel Core i7 3.30 GHz CPU. Our model, for a single iteration,
takes approximately 115 seconds (109 for learning the sub-activity appearance model and 6

seconds for estimating the temporal structure).
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Figure 3.8: Influence of our model’s parameters are tested on the Instructional Videos
Dataset (Alayrac et al., 2016) without background frames. We set K to the ground truth
sub-activity number of the all five activities. Our method’s performance over the iterations
is shown in (a), using different numbers of Gaussian mixture components in (b) and dimen-
sionality of embedding space in (c).

3.6.3 Temporal Structure Modelling

The GMM models temporal ordering – without it, one can only classify each frame’s sub-
activity label based on the visual appearance. Even if these appearance models are trained
on ground truth, the segmentation results would be very poor. On Inria Instructional Videos
without background, the MoF is 32.2 without versus 69.2 with the GMM (see Figure 3.9).

The only GMM parameter is K, the number of assumed sub-activities. We again consider
the Inria Instructional Videos without background and show the MoF as a function of K,
once partially unsupervised (sub-activity appearance model from ground truth) and once
fully unsupervised in Figure 3.9(a) and (b) respectively. As can be expected, the MoF drops
when moving from the partially to the fully unsupervised case. This drop can be attributed
to the fact that the Inria Instructional Videos dataset is extremely difficult and exhibits a lot
of variation across the videos. In both partially and fully unsupervised scenarios, however,
the MoF remains stable with respect to K, demonstrating that our method is quite robust
with respect to varying K. This is also the case once background is considered in the full
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Figure 3.9: Our results on Instructional Videos (Alayrac et al., 2016) without background
frames with varying K. The legend gives the ground truth K for each subactivity in braces,
for example “changing tire (11)”, where the ground truth number of sub-activities is 11. Each
color correspond to a different activity. Results are reported as mean over frames (MoF).
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Figure 3.10: Our standard model vs. background model on original Inria Instructional
Videos sequences. The fractions of background are changing tire (0.46), making coffee (0.71),
perform CPR (0.56), jump car (0.83) and repot plant (0.66).

model with the original sequences (see Figure 3.11).

3.6.4 Background Modelling

In Figure 3.10, we demonstrate the effectiveness of our full model in capturing the background
in the original sequences in Inria Instructional Videos. Figure 3.10 shows the improvement in
F1 score once the background is accounted for as a part of the model; there are improvements
on every activity, with the most significant being a three-fold increase for ‘Jump car’ despite
the sequences being 83% background. In Figure 3.7, we show qualitative examples of how
our model copes with background, where it succeeds and where it fails.
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Figure 3.11: Comparison of our method with Alayrac et al. (2016) on the Instructional
Videos Dataset. To be compatible to the key step detection of Alayrac et al. (2016), we
report the mean over 15 randomly selected frame from each segment.
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Figure 3.12: Comparison of our supervised setting against Alayrac et al. (2016)’s super-
vised method on the Instructional Videos Dataset. Here, our model learns the sub-activity
appearance from the ground truth annotations. Alayrac et al. (2016) use the ground truth
annotations as constraints for their discriminative clustering based algorithm.

3.6.5 Comparison to the State of the Art

3.6.5.1 Inria Instructional Videos

We compare our full model to Alayrac et al. (2016) in Figure 3.11 on the Inria Instructional
Videos dataset. The method of Alayrac et al. (2016) outputs a single representative frame for
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each sub-activity and reports an F1 score on this single frame. To make a valid comparison,
since our work is aimed at finding entire segments, we randomly select a frame from each
segment and then find a one-to-one mapping between our prediction set and the ground truth
annotations based on the method proposed by Liao (2005). We report our results over this
prediction set by the F1 score and compare against Alayrac et al. (2016).

Our performance across the five activities is consistent and varies much less than Alayrac
et al. (2016). We have stronger performance in three out of five activities, while we are
worse on ‘perform cpr’ and ‘changing tire’. The GMM is a distribution on permutations and
orderings; it is by definition unable to account for repeating sub-activities but in ‘perform
CPR’, ‘give breath’ and ‘do compression’ are repeated multiple times and account for more
than 50% of the sequence frames. In general, we attribute our stronger performance to the fact
that the GMM can model flexible sub-activity orderings, while Alayrac et al. (2016) enforces
a strict ordering. The GMM parameter ρ has a prior with hyperparameter ρo (Sec. 3.4).
A smaller ρ0 allows more flexible orderings, while a larger ρ0 encourages the ordering π to
remain similar to the canonical ordering σ. In all of our reported results, we fixed ρ0=1.
We find that for an activity such as ‘change tire’, which follows a strict ordering, a larger
ρ0 is more appropriate; with ρ0 = 5 we are comparable to Alayrac et al. (2016) (0.41 vs.
0.42 F1 score). For ‘jump car’ our method outperforms Alayrac et al. (2016), however our
overall performance is the lowest as our model struggles with separating the visually very
similar ‘remove cable A’ and ‘remove cable B’. We observe a similar trend when we learn the
sub-activity appearances using ground truth labels (see Figure 3.12).

Supervision Level Method MoF Jaccard

Fully Supervised
SVM (Huang et al., 2016) 15.8 -

HTK (Kuehne et al., 2014b) 19.7 -

Weakly Supervised
OCDC (Bojanowski et al., 2014) 8.9 23.4

HTK (Kuehne et al., 2014b) 25.9 -
ECTC (Huang et al., 2016) 27.7 -

Fine2Coarse (Richard et al., 2017) 33.3 47.3
Unsupervised ours iterated 34.6 47.1

Table 3.1: Comparisons on the Breakfast Actions dataset (Kuehne et al., 2014b). Methods
are evaluated according to mean over frames (MoF) and Jaccard index. For both, a higher
result indicates better performance.

3.6.5.2 Breakfast Actions

This dataset has no background labels so we apply our standard model and compare with
other fully supervised and semi-supervised approaches in Table 3.1. Of the supervised meth-
ods, the SVM method (Huang et al., 2016) classifies each frame individually without any
temporal consideration and achieves an MoF of 15.8%. This shows the strength (or neces-
sity) of temporal information.
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Our full model, ‘ours iterated’, is the only fully unsupervised method. We set K, the
number of sub-activities in the complex activity, based on ground truth. In comparison, the
weakly supervised methods (Huang et al., 2016; Richard et al., 2017; Bojanowski et al., 2014)
require both K as well as an ordered list of sub-activities as input. OCDC (Bojanowski
et al., 2014) is based on discriminative clustering, while ECTC (Huang et al., 2016) and
Fine2Coarse (Richard et al., 2017) are RNN and HMM-based methods. We find that our
fully unsupervised approach has performance that is the state of the art compared to all
previous methods. We also tested our method with I3D (Carreira and Zisserman, 2017)
features and obtained a MoF of 42.5% which shows us that there is room for improvement
for our method using better feature representations.

3.7 Conclusion and Future Works

In this work we present an unsupervised method for partitioning complex activity videos into
coherent segments of sub-activities. We learn a function assigning sub-activity scores to a
video frame’s visual features and we model the distribution over sub-activity permutations
by a Generalized Mallows Model (GMM). Furthermore, we account for background frames
not contributing to the actual activity.

We successfully test our method on two datasets of this challenging problem and are either
comparable to or out-perform the state of the art, even though our method is completely
unsupervised, in contrast to the existing work. Our method is able to produce coherent
segments, at the same time being flexible enough to allow missing steps and variations in
ordering. Our model’s performance drops slightly for complex activities including repetitive
sub-activities, as the GMM does not allow for such repeating structures.

As GMM cannot handle repetitions in the ordering of sub-activities, a potential future
work could be approaching GMM in a hierarchical manner to handle repeating blocks as a
single step, which can then be further subdivided. Additionally, our framework could be
extended to generate segmentation outputs for multi-modal data, which could be in the form
of multi-view video data as in the Breakfast Actions dataset (Kuehne et al., 2014b) or video,
audio, and motion capture data as in the CMU-Kitchen dataset (Torre et al., 2008).
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In this chapter, we present our method for zero-shot action anticipation on instructional
activity videos. The content of this chapter corresponds to our ICCV 2019 publication, Zero-
shot Anticipation for Instructional Activities (Sener and Yao, 2019). Given instructional
observations, action anticipation aims at predicting future actions without seeing the future
frames. Within the action recognition community, the models developed for instructional
tasks mainly follow a traditional supervised setting, where the test time tasks are available
as multiple demonstrations during training. The key to gain human-level intelligence is to
generalize from a few or zero demonstrations. To learn a new task, humans do not need
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significantly many demonstrations as they can transfer experience from previous tasks to
new environmental conditions. Motivated by the abilities of humans who quickly learn and
adapt to new tasks using prior experience, we develop our models for predicting future actions
on never-before-seen instructional tasks (see Figure 4.1).

Zero-shot action anticipation  

TestingTrainingGiven instructional observations,         predict the future steps

1. Combine cake mix, 
oil, eggs, strawberries

2. Add in 
cream cheese

3. Mix 
ingredients

4. Scoop the dough 
into baking sheet 

5. Bake

Action anticipation

Figure 4.1: Action anticipation methods tackle the problem of predicting future actions
before observing their frames. In our work, we are interested in zero-shot action anticipation
where our models might be trained on making all sorts of cookie videos but making chocolate
chip cookies. During inference, our models make future predictions on never-before-seen
chocolate chip cookies videos.

How can we predict what will happen next to an activity we have never seen before?
We address this problem of zero-shot anticipation by presenting a hierarchical model that
generalizes instructional knowledge from large-scale text-corpora and transfers the knowledge
to the visual domain. Given a portion of an instructional video, our model predicts coherent
and plausible actions multiple steps into the future, all in rich natural language. To demon-
strate the anticipation capabilities of our model, we collected a new dataset, the Tasty Videos
dataset, a collection of cooking recipes that could be used for zero-shot learning, recognition,
and anticipation.

4.1 Introduction

Imagine a not-so-distant future, where a kitchen is serviced by a robot chef1. How should we
teach robots to cook? By reading all the recipes on the web? By watching all the cooking
videos on YouTube? The ability to learn and generalize from a set of instructions, be it in
text, image, or video form, is a highly challenging and open problem faced by those working
in machine learning and robotics.

In this work, we limit our scope of training the next robo-chef to predict subsequent steps
as it watches a human cook a never-before-seen dish. We frame our problem as one of future
action prediction in a zero- and/or few-shot learning scenario. This best reflects the situation
under which service robots will be introduced (Finn et al., 2017; Sünderhauf et al., 2018).
The robot is pre-trained extensively, but not necessarily with knowledge matching exactly
the deployment environment, thereby forcing it to generalize from prior knowledge. At the
same time, the robot needs to anticipate what will happen in the future, to ensure a safe
and smooth collaborative experience with the human (Koppula and Saxena, 2015; Wu et al.,
2016).

1Robots cooking specific recipes (Moley, 2018; Beetz et al., 2011; Tenorth et al., 2013) already exist!
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1) Learn instructional tasks from text
1. Cream butter or margarine and sugar.
2. Add eggs and beat.
3. Add flour 1/2 cup at a time.
4. Add the vanilla and lemon extracts.
5. Turn into a greased and floured pan.
6. Bake in preheated 350 degree oven.
7. Cool briefly, and serve. 
8. Enjoy

1. Add dry ingredients to a coffee mug.
2. Add the egg and mix thoroughly.
3. Pour in the milk and oil.
4. Add the chocolate chips and vanilla.
5. Microwave the mug for 3 minutes.
6. The cake will rise over the top of the mug.

1. Preheat oven to 350 degrees.
2. Grease and flour a baking pan.
3. In a bowl, combine sugar, flour, salt.
4. Stir in the oil, eggs and pie filling.
5. Stir until just combined.
6. Spoon batter into the prepared pan.
7. Bake at 350 degrees for 45 minutes. ...

1. Beat together the butter and sugar.
2. Add the eggs and beat.
3. Add vanilla and the mashed bananas.
4. Mix the flour, baking powder.
5. Add the dry ingredients to the first part.
6. Pour into the mold.
7. Bake.

2) Transfer knowledge to video

Strawberry Cream Cookies
 1. Combine cake mix, strawberries, oil, eggs in a bowl. 
 2. Add in cream cheese and mix.
 3. Using a scoop, form balls of cookie dough 
 4. Transfer to a baking sheet and bake for 10 minutes.

video
encoder

sentence
decoder

recipe
network

sentence
encoder

sentence
decoder
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network

3) Zero-shot Task: predict next steps

Scoop 6 balls of dough onto
a baking tray.

Chocolate 
Chip Cookies

predicted 
next step

video
encoder

sentence
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1) Learn instructional tasks from text
1. Cream butter or margarine and sugar.
2. Add eggs and beat.
3. Add flour 1/2 cup at a time.
4. Add the vanilla and lemon extracts.
5. Turn into a greased and floured pan.
6. Bake in preheated 350 degree oven.
7. Cool briefly, and serve. 
8. Enjoy

1. Add dry ingredients to a coffee mug.
2. Add the egg and mix thoroughly.
3. Pour in the milk and oil.
4. Add the chocolate chips and vanilla.
5. Microwave the mug for 3 minutes.
6. The cake will rise over the top of the mug.

1. Preheat oven to 350 degrees.
2. Grease and flour a baking pan.
3. In a bowl, combine sugar, flour, salt.
4. Stir in the oil, eggs and pie filling.
5. Stir until just combined.
6. Spoon batter into the prepared pan.
7. Bake at 350 degrees for 45 minutes. ...

1. Beat together the butter and sugar.
2. Add the eggs and beat.
3. Add vanilla and the mashed bananas.
4. Mix the flour, baking powder.
5. Add the dry ingredients to the first part.
6. Pour into the mold.
7. Bake.

2) Transfer knowledge to video

Strawberry Cream Cookies
 1. Combine cake mix, strawberries, oil, eggs in a bowl. 
 2. Add in cream cheese and mix.
 3. Using a scoop, form balls of cookie dough 
 4. Transfer to a baking sheet and bake for 10 minutes.
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Figure 4.2: An overview of our model. We first learn procedural knowledge from large text
corpora and transfer it to the visual domain to anticipate the future. Our system is composed
of four Recurrent Neural Networks (RNNs): a sentence encoder, a sentence decoder, a video
encoder, and a recipe network.

Instructional data and, in particular, cooking recipes can be readily found on the web (In-
structables, 2005; Wikihow, 2005). The richest forms are multi-modal, e.g., images plus text,
or videos with narrations. Such data fits well into our scenario in which the service robot visu-
ally recognizes the current context and makes future predictions. However, learning complex,
multi-step activities requires significant amounts of data, and despite their online abundance,
it is still challenging to find sufficient examples in multi-modal form. Furthermore, learning
the visual appearance of specific steps would require temporally aligned data, which is less
common and/or expensive to obtain. Our strategy is, therefore, to separate the procedural
learning from visual appearance learning. Procedural knowledge is learned from text, which
is readily available in large corpora on the scale of millions (Salvador et al., 2017). This
knowledge is then transferred to video so that the learning of visual appearances can then
be simplified to only a grounding model done via aligned video and text. More specifically,
we encode text and/or video into fixed-length context vectors. The context is fed to a recipe
network, which models the sequential structure of the recipe and makes following step pre-
dictions in vector form, which are then decoded back into sentences using a sentence decoder.
The text encoder is used only for training, while the video encoder is applied at test time.
An overview is shown in Figure 4.2.

Our work is highly novel in two key regards. First and foremost, we are working with
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zero-shot action anticipation under a semi-supervised setting, as we target prediction for
never-before-seen dishes. We achieve this by generalizing cooking knowledge from large-scale
text corpora and then transferring the knowledge to the visual domain. This relieves us of the
burden and impracticality of providing annotations for a domain in which there are virtually
unlimited categories (dishes) and sub-categories (instructional steps). We are the first to
tackle such a problem in this form; prior works in complex activity recognition are severely
limited in the number of categories and steps (Alayrac et al., 2016; Kuehne et al., 2014b,a;
Rohrbach et al., 2012), while works in action anticipation rely on strong supervision (Farha
et al., 2018; Lan et al., 2014; Zhou and Berg, 2015).

Second, we do not work with closed categories derived from word tags; instead, we train
with and also predict full sentences, e.g., “Cook the chicken wing until both sides are golden
brown.” vs. “cook chicken”. This design choice makes our problem significantly more chal-
lenging, but also offers several advantages. First of all, it adds richness to the instruction,
since natural language conveys much more information than simple text labels (Lin et al.,
2015; Zhou et al., 2018b). It also allows for anticipation of not only actions but also objects
and attributes. Finally, as a byproduct, it facilitates data collection, as the number of class-
based annotations grows exponentially with the number of actions, objects, and attributes
and leads to very long-tailed distributions (Damen et al., 2018).

When transferring knowledge from text recipes to videos, we need to ground the
two domains; video with temporally aligned captions. To the best of our knowledge,
YouCookII (Zhou et al., 2018b) is currently the only dataset with such labels. However,
it lacks diversity in the number of dishes and, therefore, different recipe steps. As such,
we collect and present our new Tasty Videos dataset, a diverse set of 2511 different cooking
recipes2 accompanied by a video, ingredient list, and temporally aligned recipe steps. Video
footage is taken from a fixed birds-eye view and focuses almost exclusively on the cooking
instructions, making it well-suited for understanding the procedural steps.

We summarize our main contributions as follows:

• We are the first to explore zero-shot action anticipation by generalizing knowledge from
large-scale text-corpora and transferring it to the visual domain.

• We propose a modular hierarchical model for learning multi-step procedures with text
and visual context.

• Our model generalizes cooking knowledge and is able to predict coherent and plausible
instructions for multiple steps into the future. The predictions, in rich natural language,
score higher in standard NLP metrics than state-of-the-art video captioning methods,
which observe the visual data on both YouCookII and Tasty Videos.

• We demonstrate how the proposed approach can be useful for making future step pre-
dictions in a zero-shot scenario compared to a supervised setting.

2Collected from the website https://tasty.co/

https://tasty.co/
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• We present a new and highly diverse dataset of cooking recipes which is publicly avail-
able3 and will be of interest for those working in anticipation, complex activity recog-
nition and video captioning.

4.2 Related Works

Complex Activity Understanding:

Understanding complex activities and their sub-activities have been addressed typically
as a supervised temporal video segmentation and recognition problem (Kuehne et al., 2014b;
Richard and Gall, 2016; Rohrbach et al., 2012). However, annotating every frame in video
can be expensive, making it difficult to work at a large scale. Newer alternative lines of work
are either weakly-supervised, using cues from accompanying narrations (Alayrac et al., 2016;
Malmaud et al., 2015; Sener et al., 2015) or known orderings of the sub-activities (Huang
et al., 2016; Richard et al., 2017; Bojanowski et al., 2014), or are fully unsupervised (Sener
and Yao, 2018; Kukleva et al., 2019). Our work is similar to those using text cues; however,
we do not rely on aligned visual text data for learning the activity models (Alayrac et al.,
2016; Sener et al., 2015). Instead, we use a large corpus of unlabeled data in the text domain
and apply only a very small set of aligned data for grounding the visual evidence.

Action Anticipation:

Action prediction is a new but fast-growing topic within computer vision. In the past,
the closely related task of early event recognition, in which on-going or incomplete actions
are recognized, was sometimes referred to in literature as action prediction (Ryoo, 2011; Hoai
and De la Torre, 2014). However, this term is a misnomer since at least a portion of the
action has already been observed and models (Ryoo, 2011; Hoai and De la Torre, 2014; Xu
et al., 2015a) are simply performing inference with incomplete data.

Prior work in forecasting activities before making any observations have been limited to
simple movement primitives such as reaching, moving, placing, etc. (Koppula and Saxena,
2015), or personal interactions such as hand-shaking, hugging etc. (Lan et al., 2014; Vondrick
et al., 2016). Single predictions are made, and the anticipated actions typically occur within
a few seconds time frame. Recently, Farha et al. (2018) predicts multiple actions into the
future; our method also predicts multiple steps into the future, but unlike Farha et al. (2018),
we do not work in a fully supervised framework and do not require repetitions of activity
sequences for training.

Cooking Data:

The cooking domain is popular in NLP research since recipes are rich in natural language
yet are reasonably limited in scope. Modelling the procedural aspects of the text and gen-
erating coherent recipes span several decades of work (Dale, 1989; Hammond, 1986; Morris

3Tasty Video Dataset https://cvml.comp.nus.edu.sg/tasty

https://cvml.comp.nus.edu.sg/tasty
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et al., 2012; Mori et al., 2014; Kiddon et al., 2016; Bosselut et al., 2018; Salvador et al., 2019).
In multimedia, recipes are involved in tasks such as food recognition (Herranz et al., 2018),
recommender systems (Min et al., 2017) and indexing and retrieval (Carvalho et al., 2018;
Salvador et al., 2017).

In computer vision, cooking has been well-explored for complex and fine-grained activity
recognition (Damen et al., 2018; Kuehne et al., 2014a; Rohrbach et al., 2014, 2012; Zhou
et al., 2018b), temporal segmentation (Kuehne et al., 2014a; Zhou et al., 2018b) and cap-
tioning (Rohrbach et al., 2013; Regneri et al., 2013; Zhou et al., 2018c). Several cooking
and kitchen-related datasets have been presented (Damen et al., 2018; Malmaud et al., 2015;
Sener et al., 2015; Kuehne et al., 2014b; Zhou et al., 2018b) and feature a wide variety of
labels depending on the task. What’s Cooking (Malmaud et al., 2015) and YouCookII (Zhou
et al., 2018b) are similar to our new dataset, in that they include recipe texts and accom-
panying videos. However, YouCookII has limited diversity in activities with only 89 dishes,
and What’s Cooking is larger in scale, but lacks temporal alignments between recipe texts
and videos.

4.3 Modelling Sequential Instructions

Sequence-to-sequence learning (Sutskever et al., 2014) has made it possible to successfully
generate continuous text and build dialogue systems (Cho et al., 2014; Vinyals and Le, 2015).
Recurrent neural networks (RNNs) are used to learn rich representations of sentences (Hill
et al., 2016; Ba et al., 2016a; Kiros et al., 2015) in an unsupervised manner, using the
extensive amount of text that exists in book and web corpuses. Examples include skip-
thoughts vectors (Kiros et al., 2015) and FastSent (Hill et al., 2016), both of which are highly
effective for generation tasks. However, for instructional text such as cooking recipes, such
representations tend to do poorly, and suffer from coherence from one time step to the next,
since they do not fully capture the underlying sequential nature of the instruction set. As
such, we propose a hierarchical model with four components, where two dedicated RNNs
represent the sentences and the steps of the recipe: the sentence encoder and the recipe
RNN respectively. A third RNN decodes predicted recipe steps back into sentence form for
human-interpretable results (sentence decoder). These three RNNs are learned jointly as
an auto-encoder in an initial training step. A fourth RNN encoding visual evidence (video
encoder) is then learned in a subsequent step to replace the sentence encoder to enable
interpretation and future prediction from video data. An overview is shown in Figure 4.3,
while details of the RNNs are given in Sections 4.3.1 to 4.3.3.

4.3.1 Sentence Encoder and Decoder

The sentence encoder produces a fixed-length vector representation of each textual recipe
step. We use a bi-directional LSTM, but instead of representing a sentence by the last
hidden vector, we follow the highly effective approach of Conneau et al. (2017) and apply
a max-pooling over each dimension of the hidden units. This type of architecture and, in
particular, the max-pooling step has been shown to perform very well on sentence encoding
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Figure 4.3: Our system is composed of four RNNs: a sentence encoder and a decoder, a
video encoder, and a recipe RNN. Given the ingredients as initial input and context in either
text or visual form, the recipe RNN recurrent predicts future steps. The sentence decoder
converts predicted future steps back into natural language. We continue predicting future
steps by repeatedly feeding the next steps encoded by the sentence or video encoder. We first
learn the sentence encoder, decoder, and recipe RNN jointly as an auto-encoder on textual
data. Then we replace the sentence encoder with the video encoder and jointly train video
encoder, sentence decoder, and recipe RNN on video data.
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tasks (Conneau et al., 2017). More formally, let sentence sj from step j of a recipe (we assume
each step is one sentence) be represented by M words, i.e., sj = {wtj}t=1...M and xtj be the
word embedding of word wtj . For each sentence j, at each (word) step t, the bi-directional
LSTMse outputs ytj , where

ytj =
[
LSTMse

(
{x1

j , ...,x
t
j}
)
,LSTMse

(
{xMj , ...,xtj}

)]
, (4.1)

which is a concatenation of the hidden states from the forwards and backwards pass of
LSTMse. The overall sentence representation rj is determined by a dimension-independent
max-pooling over the time steps, i.e.,

(rj)d = max
t∈{1,...,M}

(ytj)d, (4.2)

where (·)d, d ∈ {1, ..., D}, indicates the d-th element of the D-dimensional bi-directional
LSTM outputs ytj .

The sentence decoder is an LSTM-based neural language model that converts the fixed-
length representation of the steps back into human-interpretable sentences. More specifically,
given the vector prediction r̂j from the recipe RNN of step j, it decodes the sentence ŝj

ŝj = LSTMd(r̂j) = {ŵ1
j , ..., ŵ

M̂
j }. (4.3)

4.3.2 Recipe RNN

We model the sequential ordering of recipe steps with an LSTM, which takes as input
{rj}j=1,...,N , i.e., fixed-length representations of the steps of a recipe with N steps, where j
indicates the step index. At each (recipe) step, the hidden state of the recipe RNN hj can be
considered a fixed-length representation of all recipe steps {s1, ..., sj} seen up to step j; we
directly use this hidden state vector as a prediction of the sentence representation for step
j + 1, i.e.,

r̂j+1 = hj = LSTMr({r0, ..., rj}). (4.4)

The hidden state of the last step hN can be considered as a representation of the entire
recipe. Due to the standard recursion of the hidden states in LSTMr, each hidden state
vector and, therefore, each future step prediction is conditioned on the previous steps. This
allows predicting recipe steps that are plausible and coherent with respect to previous steps.

Recipes usually include an ingredient list, a rich source of information that can also serve
as a strong modelling cue (Kiddon et al., 2016; Salvador et al., 2017, 2019). To incorporate the
ingredients, we form an ingredient vector I for each recipe in the form of a one-hot encoding
over a vocabulary of ingredients. I is then transformed with a separate fully connected layer
in the recipe RNN to serve as the initial input, i.e., r0 = f(I).



4.3. Modelling Sequential Instructions 87

4.3.3 Video Encoder

For inference, we would like the recipe RNN to interpret sentences from text inputs and also
visual evidence. We can conveniently replace the sentence encoder with an analogous video
encoder due to the modular nature of our proposed model. Suppose the jth video segment cj
is composed of L frames, i.e., cj = {f tj}t=1,...,L. Each frame f tj is represented as a high-level
CNN feature vector – we use the last fully connected layer output of ResNet-50 (He et al.,
2016) before the softmax layer. Similar to the sentence encoding rj in Eqs. 4.1 and 4.2, we
determine the video encoding vector, vj , by applying a dimension-independent max pooling
over the time steps of the segment representations, ztj , where :

ztj =
[
LSTMve

(
{f1

j , ...,f
t
j}
)
,LSTMve

(
{fLj , ...,f tj}

)]
, (4.5)

(vj)d = max
t∈{1,...,L}

(ztj)d, (4.6)

The video encoder, LSTMve, is trained such that vj can directly replace rj , as detailed in
the following.

4.3.4 Model Learning and Inference

Our full model is learned in two stages. First, the sentence encoder (LSTMse), recipe RNN
(LSTMr) and sentence decoder (LSTMd) are jointly trained end-to-end. Given a recipe of N
steps, a loss can be defined as the negative log probability of each reconstructed word:

L(s1, ..., sN ) = −
N∑
j=1

Mj∑
t=1

logP (wtj |wt
′<t
j , r̂j), (4.7)

where P (wtj |wt
′<t
j , r̂j) is parameterised by a softmax function at the output layer of the

sentence decoder to estimate the distribution over the words, w, in our vocabulary V . The
overall objective is then summed over all recipes in the corpus. The loss is computed only
when the LSTM is learning to decode a sentence. This first training stage is unsupervised,
as the sentence encoder and decoder and the recipe RNN require only text inputs that can
easily be scraped from the web without human annotations.

In a second step, we train the video encoder (LSTMve) while keeping the recipe RNN
(LSTMr) and sentence decoder (LSTMd) fixed. We simply replace the sentence encoder
with the video encoder while applying the same loss function as defined in Eq. 4.7. This
step is supervised, as it requires video segments of each step temporally aligned with the
corresponding sentences.

During inference, we provide the ingredient vector r0 as an initial input to the recipe RNN,
which then outputs the predicted vector r̂1 for the first step of the video (see Figure 4.3). We
use the sentence decoder and generate the corresponding first sentence, ŝ1. Then, we sample
a sequence of frames from the video and apply the video encoder to generate v1, which we
again provide as an input to the recipe RNN. The output prediction of the recipe RNN, r̂2,
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is for the second step of the video. We again use the sentence decoder and generate the
corresponding sentence ŝ2.

Our model is not limited to one step ahead predictions: for further predictions, we can
simply apply the predicted output r̂j as contextual input rj . During training, instead of
always feeding in the ground truth rj , we sometimes (with 0.5 probability after the 5th
epoch) use our predictions, r̂j , as the input for the next step predictions that helps us with
being robust to feeding in bad predictions (Bengio et al., 2015).

4.3.5 Implementation and Training Details

We use a vocabulary V of 30171 words provided by the Recipe1M dataset (Salvador et al.,
2017); words are represented by 256-dimensional embeddings shared between the sentence
encoder and decoder. Our ingredients vocabulary has 3769 ingredients selected from the
training set of Recipe1M; the one-hot ingredient encodings are mapped into a 1024 dimen-
sional vector r0. The RNNs are all single-layer LSTMs implemented in PyTorch; LSTMse,
LSTMve, LSTMd have 512 hidden units while LSTMr has 1024. We train our model using
the Adam optimizer (Kingma and Ba, 2014) with a batch size of 50 recipes and a learning
rate of 0.001. We train our text-based model (LSTMse, LSTMr, LSTMde) for 50 epochs and
the visual model (LSTMve, LSTMr, LSTMde) for 25 epochs.

4.4 Tasty Videos Dataset

Our new Tasty Videos Dataset has 2511 unique recipes collected from the Buzzfeed website
https://tasty.co. Our dataset is publicly available https://cvml.comp.nus.edu.sg/tasty.
Each recipe has an ingredient list, step-wise instructions, and a video demonstrating the
preparation of the dish. The recipes are drawn from three major culinary locations (Americas,
Europe, and Asia), spanning a variety of meals (breakfast, lunch, dinner, snacks), desserts,
and drinks from 185 categories such as smoothies, pies, soups. We define a split ratio of 8:1:1
for training, validation, and testing, each containing different recipes. Our test setting is,
therefore, zero-shot, as we make predictions on unseen recipes. We further divide the test
set into recipes with similarities in the training set (183 videos), e.g., “Strawberry Breakfast
Muffins” vs. “Carrot Cake Muffins” and “Pizza Muffins” and those without any similarities
(72 videos) e.g., “Pigs In A Blanket”.

The Tasty Videos are captured with a fixed overhead camera and focus entirely on the
preparation of the dish (see Figure 4.3, 4.8). This viewpoint removes the added challenge
of distractors and irrelevant actions. While we are aware that it may not exactly reflect the
visual environments one may find in the home, this simplification allows us to focus the scope
of our work on modelling the sequential nature of instructional data, which is already a highly
challenging and open research topic. Videos are designed to be primarily visually informative
without any narrations. Unlike other datasets with text data that are crowd-sourced (Zhou
et al., 2018b; Damen et al., 2018), the recipes in our dataset are written by experts, which
ensures specificity and richness in the instruction.

https://tasty.co
https://cvml.comp.nus.edu.sg/tasty
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The videos are well-suited for learning complex instructional activities because they are
short (on average, 1551 frames / 54 seconds), yet they contain a challenging number of steps
(9 on average). For each recipe step, we annotated the temporal boundaries in which the step
occurs within the video, omitting those without visual correspondences, such as alternative
recommendations, non-visualized instructions such as “Preheat oven.” and stylistic statements
such as “Enjoy!”.

Figure 4.4: (left) Rough categorization of the recipes in our dataset. (right) Distribution of
the number of ingredients over all our recipes (out of 1199 unique ingredients).

# visual steps

Figure 4.5: Distribution of the number of visual steps in our dataset. The x-axes indicate
the number of visual steps. There are nine visual steps on average.

Figure 4.6: Distribution of video durations (left) and annotated visual step durations (right).

Our dataset has a large variety of meals, including main courses, snacks, sides etc., (see
Figure 4.4, left). In our dataset, there are 1199 unique ingredients, and the average number
of ingredients per recipe is nine, (see Figure 4.4, right). In comparison, the number of unique
ingredients in the Recipe1M dataset is 3769 (2.5K vs. 1M recipes).
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In Figure 4.5, we show the distribution of the number of visual recipe steps over all recipes
in our dataset. The average number of visual recipe steps is 9, and there are 21236 visual
recipe steps in total. In Figure 4.6 (left), we report the distribution of the duration of our
videos. Our shortest video lasts 6 seconds while the longest lasts 233 seconds. The average
video duration is 1551 frames (54 seconds). In Figure 4.6 (right), we report the distribution
of the duration of the visual steps over all recipes. The average visual step duration is 144
frames (5 seconds).

4.5 Experiments

4.5.1 Datasets and Evaluation Measures

We train and evaluate our method with Recipe1M (Salvador et al., 2017), YouCookII (Zhou
et al., 2018b), and our own Tasty Videos datasets. Recipe1M is a large-scale dataset with, as
the name suggests, approximately one million recipes with a recipe name, list of ingredients,
a sequence of instructions, and images of the final dish for each recipe. YouCookII is a
collection of cooking videos from YouTube with around 2000 videos of 89 dishes. Each video
is captured from a third-person viewpoint. Each dish has, on average, 22 videos annotated
with the temporal boundaries of each step and their corresponding descriptions. The average
number of steps per video is 7.70.

We use the ingredients and instructions from the training split of the Recipe1M dataset
to learn our sentence encoder, sentence decoder, and recipe RNN. To learn the video encoder,
we use the aligned instructions and video data from the training split of either YouCookII
or Tasty Videos datasets. We evaluate our model’s prediction capabilities with text inputs
from Recipe1M and video and text inputs from YouCookII and Tasty Videos.

Our predictions are in sentence form; evaluating the quality of generated sentences is
known to be difficult in captioning and natural language processing (Vedantam et al., 2015;
Lopez, 2008). We apply a variety of evaluation measures in order to offer a broad assessment.
First, we target the matching of important keywords, specifically, ingredients and verbs, since
they indicate the next active objects and actions and are analogous to the assessments made in
action anticipation (Damen et al., 2018). Second, we evaluate with sentence matching scores
BLEU (BiLingual Evaluation Understudy) (Papineni et al., 2002) and METEOR (Metric for
Evaluation of Translation with Explicit ORdering) (Banerjee and Lavie, 2005) scores which
are also used for video captioning methods (Regneri et al., 2013; Rohrbach et al., 2013; Zhou
et al., 2018c). BLEU computes an n-gram based precision for predicted sentences w.r.t.
the ground truth sentences. METEOR creates an alignment between the ground truth and
predicted sentence using the exact word matches, stems, synonyms, and paraphrases; then,
it computes a weighted F-score with an alignment fragmentation penalty.

For the uninformed reader, we note that sentence scores are best at indicating sentences
with precise word matches to the ground truth (GT). In natural spoken language, much
variation may exist between sentences conveying the same ideas. Automated scores might
fail in matching sentences a human would consider equivalent. This is the case even in
text with very specific language such as cooking recipes. For example, for the ground truth



4.5. Experiments 91

Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2

ING bacon, brown sugar, cooking spray,
breadsticks

step1 Preheat oven to 325 degrees F ( 165
degrees C ).

Preheat oven to 400 degrees F. 36.0 0.0 26.0 1.5 1.5

step2 Line 2 baking sheets with alu-
minum foil or parchment paper and
spray with cooking spray.

Line a baking sheet with aluminum
foil.

23.0 0.0 23.0 1.0 1.0

step3 Wrap 1 bacon strip around each
breadstick, leaving about 1 inch
uncovered on each end.

Place bacon strips in a single layer
on the prepared baking sheet.

13.0 0.0 9.0 0.5 1.5

step4 Place wrapped breadsticks on the
prepared baking sheet.

Place rolls on a baking sheet. 48.0 0.0 30.0 1.5 1.5

step5 Sprinkle brown sugar evenly over
breadsticks.

Bake in the preheated oven un-
til breadsticks are golden brown,
about 15 minutes.

15.0 0.0 13.0 0.0 1.5

step6 Bake in the preheated oven until
bacon is crisp and browned, 50 to
60 minutes.

Bake in preheated oven until bacon
is crisp and breadsticks are golden
brown, about 15 minutes.

63.0 43.0 36.0 1.0 1.0

step7 Cool breadsticks on a piece of
parchment paper or waxed paper
sprayed with cooking spray.

Remove from oven and let cool for
5 minutes.

6.0 0.0 4.0 0.5 1.5

Figure 4.7: Predictions of our text-based method for “Candied Bacon Sticks” along with
the automated scores and human ratings. For “HUMAN1 (HUM1)” we ask the raters to
directly assess how well the predicted steps match the corresponding Ground Truth (GT)
sentences, for “HUMAN2 (HUM2)” we ask to judge if the predicted step is still a plausible
future prediction (see Sec. 4.5.9). Our prediction for step6 matches the GT well, while step5
does not. However, according to “HUMAN2 (HUM2)” score, our step5 prediction is still a
plausible future action.

sentence “Garnish with the remaining wasabi and sliced green onions.”, our method predicts
“Transfer to a serving bowl and garnish with reserved scallions.”. For a human reader, this
is half correct, especially since “scallions” and “green onions” are synonyms, yet this example
would have only a BLEU1 score of 30.0, BLEU4 of 0.0 and METEOR of 11.00. For another,
for the ground truth sentence “Place patties on the grill, and cook for 5 minutes per side.”
versus a prediction by our model “Place on the grill, and cook for about 10 minutes, turning
once.”, we would have a BLEU1 score of 65.0, BLEU4 of 44.0, and METEOR of 29.0.

As such, human evaluations are still the gold standard in dialogue generations (Liu et al.,
2016) and captioning (Li et al., 2018a). We, therefore, conduct a user study and ask people
to assess how well the predicted step matches the ground truth in meaning; if it does not
match, we ask if the prediction would be plausible for future steps. This gives flexibility in
case predictions do not follow the exact aligned order of the ground truth, e.g., due to missing
steps not predicted, or steps that are slightly out of order (see Figures 4.7 and 4.8).

4.5.2 Learning of Procedural Knowledge

We first verify the learning of procedural knowledge with a text-only model, i.e., the sentence
encoder, sentence decoder, and the recipe RNN by evaluating on Recipe1M’s test set of 51K
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INGREDIENTS (ING) : caramel, whipped cream, sea salt, caramel sauce, chocolate, whole milk 

5

4

3

2

1

GT: Enjoy! PRED: Enjoy!

GT: Gently heat the milk in a saucepan over a medium heat.
PRED: In a saucepan, bring the milk to a boil.

GT: Stir in the dark chocolate, caramel, and sea salt.
PRED:Add the caramel sauce and stir until the chocolate is melted.

GT: Take off the heat and pour into a tall glass.
PRED: Once the caramel has melted, remove from heat and stir in the 
            caramel sauce.

GT: Top with whipped cream, caramel sauce, and chocolate shards.
PRED: Top with whipped cream and caramel sauce.

Figure 4.8: Next step predictions from our visual model for “Salted Caramel Hot Chocolate”.
The blue sentences are our model’s predictions. Note that our model predicts the next steps
before seeing these segments!

recipes. For a recipe of N steps, we evaluate our model’s ability to predict steps j+1 to N ,
conditioning on steps 1 to j as input context. N varies from recipe to recipe, so we separately
tally recipes with N=9 steps (4.3K recipes; 9 is also the average number of recipe steps in
the test set) and recipes in the entire test set.

For comparison, we look at the generations from a common sequence-to-sequence model,
specifically a skip-thoughts (ST) model (Kiros et al., 2015). Skip-thoughts models are trained
to decode temporally adjacent sentences from a current encoding, i.e., given step j to the
encoder, the decoder predicts steps j+1 and j−1, and have been shown to be successful
in generating continuous text (Cho et al., 2014; Vinyals and Le, 2015; Kiddon et al., 2016).
We train the skip-thoughts model on the training set of the Recipe1M dataset. Because
the skip-thoughts model generations are not trained to accept an ingredient list as a 0th or
initialization step, we make skip-thoughts predictions only from the second step onwards.

We report our results over the recipes with 9 steps and the entire test set of the Recipe1M
dataset in Figures 4.9 (ingredients), 4.11 (verbs), 4.12 (sentences). We report scores of the
predicted steps averaged over multiple recipes. Only those recipes which have at least j steps
contribute to the average for step j. Compared to the recipes with exactly 9 steps, results
over the entire test set are not significantly different in trends.

4.5.2.1 Key Ingredients

We first look at our model’s ability to predict important keywords, i.e., ingredients and verbs
on Recipe1M. We compare the recall of ingredients in our predictions to a skip-thoughts (ST)
model and a variation of our model trained without ingredients, (“Ours noING”). We train
our model without any ingredients and compute the recall of the ingredients with this variant.
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Figure 4.9: The recall of ingredients predicted by our model (“Ours”), by our model trained
without the ingredients (“Ours noING”) and the by the skip-thoughts model (“ST”) over the
recipes with 9 steps (a) and entire test set (b) of the Recipe1M dataset. The x-axes in the
plots indicate the step number being predicted in the recipe; each curve begins on the first
prediction, i.e., the (j + 1)th step after having received steps 1 to j as input.
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Figure 4.10: The absolute number of ingredients detected in the ground truth steps (“GT”),
steps predicted by our model (“ours”), and the skip-thoughts model (“ST”) computed over
recipes with exactly 9 steps. The number of ingredients detected in a recipe decreases towards
the end of the recipe.

Rather than directly cross-referencing the ingredient list, we limit the evaluation to in-
gredients mentioned explicitly in the recipe steps. This is necessary to avoid ambiguities that
may arise from specific instructions such as “add chicken, onion, and bell pepper” versus the
more vague “add remaining ingredients”. Furthermore, the ingredient lists in Recipe1M are
often automatically generated and may be incomplete.

In Figure 4.9, we compare the recall of the ingredients detected in our predicted steps
versus steps generated by the skip-thoughts method and our model trained without ingredient
inputs. We present our comparisons on the recipes with 9 steps and all recipes. On the
recipes with 9 steps, we can see that our model’s predictions successfully incorporate relevant
ingredients with recall rates as high as 43.3% with the predicted next step, 31.0% with second,
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24.3% with third and 19.4% with the predicted fourth step. The overall recall decreases
with the latter steps, likely due to increased difficulty once the overall number of ingredient
occurrences decreases, which tends to happen in later steps. Based on the ground truth, we
observe that the majority of the ingredients occurs in the early and middle steps and decreases
in the last steps, see Figure 4.10. The last steps are usually related to the already completed
dish and do not explicitly mention as many ingredients as the earlier steps. Compared to
the recipes with 9 steps, the scores over the recipes in the entire test set are not significantly
different in trends.

Compared to the skip-thoughts model, our predictions’ ingredient recall is higher regard-
less of whether or not ingredients are provided as an initial input. Without ingredient input,
the overall recall is lower, but after the initial step, our model’s recall increases sharply, i.e.,
once it receives some context. Our model without the ingredient input still performs better
than the skip-thoughts predictions. We attribute this to the strength of our model to gener-
alize across related recipes so that it is able to predict relevant co-occurring ingredients. Our
predictions include common ingredients such as salt, butter, eggs and water and also recipe-
specific ones such as couscous, zucchini, or chocolate chips. While the skip-thoughts model
predicts some common ingredients, such as water and butter, it fails to predict recipe-specific
ingredients.

4.5.2.2 Key Verbs
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Figure 4.11: The recall of verbs computed between the predicted and the ground truth
sentences. We compare the recall of our model (“Ours”) and the skip-thoughts (“ST”) model
over the recipes with 9 steps (a) and the entire test set (b) of the Recipe1M dataset. The
x-axes in the plots indicate the step number being predicted in the recipe; each curve begins
on the first prediction, i.e., the (j + 1)th step after having received steps 1 to j as input.

Key verbs indicate the main action for a step and are also cues for future steps both
immediate (e.g., after “adding” ingredients into a bowl, a common next step may be to “mix”)
and long-term (e.g., after ‘preheating’ the oven, one expects to “bake”). We tag the verbs
in the training recipes with the Natural Language Toolkit (NLTK, 2018) and select the 250
most frequent verbs for evaluation. Similar to ingredients, we check for recall of these verbs
only if they appear in the ground truth steps. In the ground truth steps, there are between
1.55 and 1.85 verbs per step, i.e., steps often include multiple verbs such as “add and mix”.
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Figure 4.11 shows that our model recalls up to 30.9% of the verbs with the predicted next
step on the recipes with 9 steps (a). Our model’s performance is worst in the first steps, due
to ambiguities when given only the ingredients without any further knowledge of the recipe.
After the first steps, our model’s performance quickly increases and stays consistent across
the remaining steps. In comparison, the ST model’s best recall is only 20.1% for the next
step prediction. Compared to the recipes with 9 steps, the scores over the entire test set are
similar in trends with a slight decrease.

4.5.2.3 Sentences
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Figure 4.12: The sentence scores, BLEU1, BLEU4, and METEOR, are computed between
the predicted and the ground truth sentences for our model (“Ours”) and the skip-thoughts
(“ST”) model over the recipes with 9 steps (a) and entire test set (b) of the Recipe1M dataset.
The x-axes in the plots indicate the step number being predicted in the recipe; each curve
begins on the first (relative) prediction, i.e., the (j + 1)th step after having received steps 1
to j as input.

Key ingredients and verbs alone do not capture the rich instructional nature of recipe
steps, compare e.g., “whisk” and “egg” to “Whisk the eggs till light and fluffy”. As such, we
also evaluate the quality of the entire predicted sentences.

We evaluate our predicted sentences as a whole and compare to skip-thoughts predictions
based on BLEU1, BLEU4, and METEOR in Figure 4.12. For our results on recipes with 9
steps, the BLEU1 scores are consistently high, at around 25.0 for the next step predictions,
with a slight decrease towards the end of the recipes. Predictions further than the next
step have lower scores, though they stay above 15.0. The BLEU4 scores are highest in the
very first step, around 7.5, and range between 1.0 and 5.0 over the remaining steps. The high
performance, in the beginning, is because many of the recipes start with common instructions
such as “Preheat oven to X degrees” or “In a large skillet, heat the oil”. For similar reasons,
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we also tend to do well towards the end of recipes, where instructions with respect to serving
and garnishing are common, e.g., “Season with salt and pepper.”. Trends for the METEOR
score are similar to our BLEU1 scores. METEOR scores are between 15.0 for the next step
predictions and do not go lower than 7.5 for the further step predictions.

Our proposed method outperforms skip-thoughts predictions across the board. In fact,
predictions up to four steps into the future surpass the predictions made by skip-thoughts
predictions only one step ahead. This can be attributed to the dedicated long-term modelling
of the recipe RNN; as such, we are able to incorporate the context from all sentence inputs
up to the present. In contrast, skip-thoughts are Markovian in nature and can only take the
current step into account.

One interesting and unexpected outcome of our model is that it can also make recommen-
dations. In cooking recipes, one does not only find strict recipe steps but also suggestions
based on the writer’s experience, e.g., “If using wooden skewers, make sure to soak in water
for about 30 minutes.”. Our learned model is also able to generate such suggestions. For
example, for the ground truth “If it’s too loose at this point, place it in the freezer for a little
while to let freeze.”, our model predicts “If you freeze it, it will be easier to eat”.

Our model is able to predict coherent and plausible instructional sentences, as shown in
Figure 4.7. We show more examples of predictions of our text-based method in Figures 4.20,
4.21, 4.23, 4.24, 4.22, 4.25, 4.26, along with the automated scores and human ratings.

4.5.3 Ablation Studies on Textual Model

Since our method is modular, we conduct an ablation study to check the interchangeability
of the sentence encoder on the Recipe1M dataset. Instead of using our own sentence encoder,
we represent the sentences using skip-thoughts vectors trained on the Recipe1M dataset, as
provided by Salvador et al. (2017). These vectors have been shown to perform well for their
recipe retrieval task. For this experiment, we train the recipe RNN and sentence decoder
jointly using the pre-trained skip-thoughts vectors as sentence representations. Note that in
all experiments for the ablations, the recipe RNN and sentence decoder have been trained
with the same parameter settings.

Figure 4.13 compares sentence scores of our joint model (“Ours”), our joint model trained
without ingredient inputs (“Ours noING”) and our model when the sentence encoder is re-
placed with pre-trained skip-thoughts vectors (“ST vectors”) when “X%”, X = {0, 25, 50, 75},
of a recipe is observed. We can see that our sentence encoder performs on par with skip-
thoughts encodings. Moreover, our encoder and decoder can all be trained jointly and do not
require a separate pre-training of a sentence auto-encoder.

Similar to our observations in Figure 4.9 for ingredient scores, we see that ingredient
information is very important for predicting sentences, especially for the initial steps. In
subsequent steps, when 25%, 50% of the recipe steps (enough context) are observed, the
model’s performance starts to improve.
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Figure 4.13: Ablation study to check the interchangeability of the sentence encoder and show
the influence of ingredient inputs for sentence generation. We present our results evaluated on
the entire test set of Recipe1M. We compare the sentence scores of our joint model (“Ours”),
our joint model without ingredient inputs (“Ours noING”), and our model when sentence
encoder is replaced with pre-trained skip-thoughts vectors (“ST vectors”). “X% seen” refers
to the number of steps the model receives as input, while predicting the remaining (100−X)%.

4.5.4 Recipe Visualization using tSNE

Our method can model recipes, as the output of the recipe RNN, especially after seeing
all N steps, serves as a feature vector representing the entire recipe. For validating these
representations, we conduct a recipe visualization experiment. We select recipes from the
nine most common recipe categories in the test set of the Recipe1M dataset and encode them
with our model by taking the final hidden output of the recipe RNN. For comparison, similar
to Salvador et al. (2017), we compute the mean of the skip-thoughts vectors across the recipe
steps. We visualize a two-dimensional representation computed using tSNE (Maaten and
Hinton, 2008) of both recipe representations in Figure 4.14. We find that with our method,
the recipes are better separated according to category.

4.5.5 Video Predictions

We evaluate our model for making predictions on video inputs on YouCookII’s validation set
and Tasty Videos’ test set. We test two video segmentation settings for inference: one ac-
cording to ground truth (“Ours Visual (GT)”) and one based on fixed windows (“Ours Visual
(window)”). In both settings, we sample every fifth frame in GT or window-based segments
and feed the visual features of these frames into the video encoder. The representations from
the video encoder are then fed to recipe RNN as context vectors. Through the video encoder,
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Figure 4.14: Recipe encoding visualization with tSNE (Maaten and Hinton, 2008) over
a subset of recipes from the nine most common categories in the Recipe1M test set. Our
representations successfully create clusters of recipes from the same categories. The mean of
the skip-thoughts vectors fails in separating recipes from similar categories such as “IceCream”
and “Cupcakes”.
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Figure 4.15: We compare our visual model when tested with GT segments, “Visual GT”,
and our textual model, “Text”, on the Tasty Videos dataset for next step predictions using the
recall of predicted ingredients and verbs, and sentence scores. Compared to our text-based
model, our visual model has lower performance, but follow similar trends. The x-axes in the
plots indicate the step number being predicted in the recipe.
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Figure 4.16: We compare the performance of our visual models when tested with GT
segments, “Visual GT”, and fixed window-sized segments, “Visual window”, using the recall
of predicted ingredients and verbs, and sentence scores. Compared to using GT segments,
using fixed window-sized segments show lower results. The x-axes in the plots indicate the
step number being predicted in the recipe.

our model can interpret visual evidence, and make plausible predictions of the next steps
that can be seen in examples in Figures 4.8, 4.29, 4.28, 4.27, 4.30). In Figure 4.18, we show
an example of our visual model, which corrects itself after observing new evidence.

We present our results for our visual model in Table 4.1 for Tasty Videos dataset and
in Table 4.2 for YouCookII dataset. Compared to using ground truth segments, (“Ours
Visual (GT)”), using fixed window segments, (“Ours Visual (window)”), result in a decrease
in performance, with the most extreme drop on the most challenging sentence score, BLEU4
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Method ING VERBS BLEU1 BLEU4 METEOR
S2VT (Venugopalan et al., 2015) (GT) 7.59 19.18 18.03 1.10 9.12

S2VT (Venugopalan et al., 2015), next (GT) 1.54 10.66 9.14 0.26 5.59
End-to-end (Zhou et al., 2018c) - - - 0.54 5.48

Ours Visual (GT) 20.40 19.18 19.05 1.48 11.78
Ours Visual (window) 16.66 17.08 17.59 1.23 11.00

Ours Text 26.09 27.19 26.78 3.30 17.97
Ours Text noING 9.04 22.00 20.11 0.92 13.07

Ours joint video-text 22.27 23.35 21.75 2.33 14.09

Table 4.1: Evaluations on the Tasty Videos dataset for our visual and text-based model
along with comparisons against video captioning methods (Venugopalan et al., 2015; Zhou
et al., 2018c). Performance drops when fixed-sized windows based segments (“Ours Visual
(window)”) are used compared to using GT segments (“Ours Visual (GT)”). Ingredient inputs
are important for our model’s success. Our method performs better than video captioning.

Method ING VERBS BLEU1 BLEU4 METEOR
End-to-end (GT) (Zhou et al., 2018c) - - - 0.87 8.15
TempoAttn (GT) (Yao et al., 2015) - - - 1.42 11.20

Ours Visual (GT) 21.36 27.55 23.71 1.66 11.54
End-to-end (Zhou et al., 2018c) - - - 0.08 4.62
TempoAttn (Yao et al., 2015) - - - 0.30 6.58

Ours Visual (window) 17.64 25.11 22.55 1.38 10.71
Ours Text 24.60 29.39 26.49 2.66 13.31

Table 4.2: Evaluation for our visual and text-based models and comparison against two video
captioning methods (Yao et al., 2015; Zhou et al., 2018c) on YouCookII’s validation set. We
perform better than the state-of-the-art captioning method (Zhou et al., 2018c).

(around 17% for both datasets), and ingredient scores (around 18% for both datasets). For
the verb, BLEU1, and METEOR scores, the decrease is not as big (lower than 10%). We
compare the prediction performance of our visual model with the GT segments vs. fixed-
window based segment in Figure 4.16 for different recipe steps. Overall, using fixed windows
show lower results for different steps, especially for ingredient and BLEU4 scores, but the
results follow similar trends across recipe steps.

In Tables 4.1 and 4.2, we present our text-based results as upper-bound for both datasets.
Given that our model is first trained on text and then transferred to video, the drop in
performance from text to video is as expected, though video results still follow similar trends.
This can be seen in Figure 4.15, where we provide step-wise comparisons of our textual and
visual models. Comparing the performance of our visual with the textual model, the textual
results are better overall on the Tasty Videos than YouCookII.

We further investigate the influence of the ingredients on the performance of our method
on the Tasty videos dataset in Table 4.1. When ingredients are not provided, our method
fails to make plausible predictions. The performance decrease is mainly noticeable in the
ingredient scores and the BLEU4 scores.
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In some instructional scenarios, there may be semi-aligned text that accompanies the
video, e.g., narrations. We test such a setting by training the sentence and video encoder,
as well as sentence decoder and recipe RNN jointly, for making future step predictions. We
concatenate the sentence and video context vectors and then pass them through a linear
layer before feeding them as input to the Recipe RNN. We observe that the results are better
than our video alone results but not better than our text alone results (see “Ours joint video-
text” in Table 4.1). Even with joint training, it is still challenging to make improvements,
which we attribute to the diversity in our videos and variations in the text descriptions for
similar visual inputs. On the other hand, when there is accompanying text, our model can
be adapted easily and improve prediction performance.

Method ING VERBS BLEU1 BLEU4 METEOR
Ours Visual (window 70) 12.40 13.26 14.73 0.93 8.31
Ours Visual (window 90) 13.15 13.99 15.97 1.06 9.24
Ours Visual (window 110) 14.06 15.58 16.84 1.18 10.05
Ours Visual (window 130) 14.97 15.40 17.94 1.09 10.32
Ours Visual (window 150) 16.70 17.59 18.94 1.07 11.25
Ours Visual (window 170) 16.66 17.08 17.59 1.23 11.00
Ours Visual (window 190) 17.14 17.38 17.18 1.09 11.60
Ours Visual (window 210) 15.99 15.90 17.43 1.19 10.85
Ours Visual (window 230) 15.40 15.48 16.19 1.06 10.31

Table 4.3: Window size selection for our visual model on the Tasty Videos dataset.

Method ING VERBS BLEU1 BLEU4 METEOR
Ours Visual (window 30) 15.18 20.38 19.99 0.60 9.21
Ours Visual (window 50) 15.86 22.60 21.29 1.10 10.02
Ours Visual (window 70) 17.64 25.11 22.55 1.38 10.71
Ours Visual (window 90) 18.13 26.31 22.87 1.32 10.93
Ours Visual (window 110) 18.86 26.91 22.93 1.32 10.83
Ours Visual (window 130) 18.21 26.05 22.51 1.28 10.83
Ours Visual (window 210) 18.05 26.40 21.83 1.20 9.83

Table 4.4: Window size selection for our visual model on the YouCookII dataset.

Fixed-sized Window Selection: For “Ours Visual (window)” experiments, we first parti-
tion the video until the latest observation into chunks of fixed-sized windows. We sequentially
feed the representations of these chunks, which we obtain from the video encoder, into our
recipe RNN. Overall, our method is relatively robust to window size. We report our results
for different window sizes for Tasty in Table 4.3 and for YouCookII in Table 4.4. We select
a window of 70 frames for YouCookII and 170 for Tasty Videos.

4.5.6 Supervised vs. Zero-Shot Learning

We compare the differences between supervised and zero-shot learning on the YouCookII
dataset. The provided splits for this dataset are not zero-shot. Therefore we create new
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Method ING VERBS BLEU1 BLEU4 METEOR
Supervised Visual (GT) 20.93 24.76 22.11 1.21 10.66

Supervised Visual 18.90 23.15 21.09 1.03 10.22
Supervised Visual no pre-train 2.69 19.43 15.05 0.15 5.89

Supervised Text 24.56 27.24 24.94 1.99 12.50
Zero-shot Visual (GT) 17.77 23.11 20.61 0.84 9.51

Zero-shot Visual 6.04 23.19 20.30 0.76 9.27
Zero-shot Visual no pre-train 1.58 17.83 14.54 0.01 5.03

Zero-shot Text 19.90 24.86 23.06 1.47 10.98

Table 4.5: Comparison of our zero-shot and supervised setting on the YouCookII dataset
computed using 4-fold cross-validation. Supervised results are better overall. Without pre-
training, the performance drop is significant.

splits over the training and validation sets of YouCookII. We divide the dataset into four
splits based on the 89 dishes, 22 dishes per split. We create our splits based on distinct
dishes. The first split includes all videos from dish labels between 1 and 125, second from
126 and 222, third from 223 and 316, and fourth split from 317 and 425. We use three splits
for training and half of the videos in the fourth split for testing. In the zero-shot setting, the
videos from the other half of the fourth split are unused, while in the supervised setting, they
are included as part of the training. We report results averaged over the four cross-folds in
Table 4.5.

As expected, the predictions are better when the model is trained under a supervised
setting in comparison to a zero-shot setting. This is true for all inputs, with the same
drop as observed previously when moving from text to video inputs and when moving from
ground truth video segments to fixed window segments. However, the difference between the
supervised versus zero-shot setting (see Table 4.5 “Supervised Visual” vs. “Zero Visual”) is
surprisingly much smaller than the difference between a supervised setting with and without
pre-training on Recipe1M (“Supervised Visual” vs. “Supervised Visual no pre-train”). This
suggests that having a large corpus for pre-training is more useful than repeated observations
for a specific dish.

The YouCookII dataset has 22 videos per dish on average. We use 11 for testing; for
supervised-training, we use the other 11 for training, but exclude them for a comparable
zero-shot scenario. In Figure 4.17, we show a detailed experiment where we start with the
zero-shot scenario (no videos about the evaluated dish in the training set), and we continue
with one-shot learning (only one similar video) and so on until the fully supervised case (on
average 11 videos from the same dish in the training set). One can see that the more videos
are added, the more the performance increases. This indicates that the model is, in fact,
learning and that more than 11 videos (current supervised setting) will further improve the
supervised performance.

While the test set of Tasty Videos is fully zero-shot, 183 videos are of recipes that occur
with some variations in the training set, while 72 are without any variations. As expected,
when comparing the predictions on these subsets separately (see Table 4.6), we observe higher
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Figure 4.17: Zero-shot (“Zero”) vs. Supervised (“Sup.”) comparison when the number of
training videos from the same dish is increased. When more videos from the same dish are
added into the training set, the BLEU4 score increases.

Method ING VERBS BLEU1 BLEU4 METEOR
without variations 14.20 17.08 16.67 0.76 10.00
with variations 25.40 20.41 20.54 2.16 13.00
all test videos 22.24 19.47 19.45 1.77 12.15

Table 4.6: Evaluations on the test set of the Tasty Videos with and without variations in
the training set. Out of 255 test videos, 183 are variations of training videos, while 72 are
unrelated. We do better on variations.

performance on videos with variations, especially for the challenging BLEU4 score. For the
videos with no variations, the decrease from the ingredient recall and BLEU4 scores are 45%
and 65%, respectively. This suggests that our method generalizes better when it receives
visually similar recipes.

4.5.7 Knowledge Transfer

Method ING VERBS BLEU1 BLEU4 METEOR
Ours Text (100%) 26.09 27.19 26.78 3.30 17.97
Ours Text (50%) 23.01 24.90 25.05 2.42 16.98
Ours Text (25%) 19.43 23.83 23.54 2.03 16.05
Ours Text (0%) 5.80 9.42 10.58 0.24 6.80

Table 4.7: Evaluations on the Tasty Videos dataset for the textual model when the number
of training recipes varies. Performance drops when the amount of pre-training decreases.

At the core of our method is the transfer of knowledge from text resources to solve a
challenging visual problem. We evaluate the effectiveness of the knowledge transfer by varying
the amount of training data from Recipe1M to be used for pre-training. We train our method
with 100%, 50%, and 25% of the Recipe1M training set. We present our results in Table 4.7.
Looking at the averaged scores over all the predicted steps on the Tasty Videos dataset, we
observe a decrease in all evaluation measures as we limit the amount of data from Recipe1M
(see “Ours Text” 100%, 50%, 25% and 0%), with the most significant decrease occurring for
the BLEU4 score. When using less text data, our method’s performance decreases from 3.30
of BLEU4 score to 2.42 when half of the Recipe1M is used, and to 2.03 when a quarter of
the dataset is used. While we observe a similar decrease in the ingredient detection scores,
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GT: Prepare the garlic butter by mixing the butter, garlic,
       and parsley.
PRED:Serve hot.

GT: Coat the knots with the butter mixture and bake
       for another 5 minutes.
PRED: Brush the garlic butter mixture over the bread.

GT: Bake in a 350°F (180°C) oven for 10 minutes.
PRED: Bake for 20 minutes, or until the bread is golden 
           brown.

Figure 4.18: Next step prediction of our visual model. Blue sentences are our model’s
predictions. After baking, our model predicts that the dish should be served, but after
visually observing the butter parsley mixture, it predicts that the knots should be brushed.
Note that our model predicts the next steps before seeing these segments.

the decrease in BLEU1, METEOR, and verb scores remains less significant. If there is no
pre-training, i.e., when the model is learned only on text from Tasty Videos (“Ours Text
(0%)”), the decrease in scores, is noticeable for all evaluation criteria. These results verify
that pre-training has a significant effect on our method’s performance.

4.5.8 Comparisons to Video Captioning

We show that knowledge transfer considerably improves our method’s predictions. To vali-
date our claims further, we compare our method against different video captioning methods
in Tables 4.1 and 4.2 for the Tasty Videos and YouCookII datasets respectively. Unlike
predicting future steps, captioning methods generate sentences after observing their visual
data, which makes it a much easier task than predicting the future. We train and test
S2VT (Venugopalan et al., 2015), an RNN based encoder-decoder approach, on the ground
truth segments of the Tasty Videos dataset. Our visual model outperforms this baseline,
especially for ingredient recall, by 13%, and with an improvement of 0.3 in BLEU4 score in
Table 4.1. To highlight the difficulty of predicting future steps compared to captioning, we
train S2VT for predicting the next step from the observation of the current step (see Table 4.1
“S2VT Venugopalan et al. (2015) next (GT)”). Our visual model outperforms this variation
with a big margin for all scores. We also test a state-of-the-art video captioning method,
End-to-end Masked Transformer (Zhou et al., 2018c), on the Tasty Videos dataset and get a
BLEU4 and METEOR score of 0.54 and 5.48, respectively (vs. our future prediction scores
1.23 / 11.00). The poor performance is likely due to the increased dish diversity and difficulty
of our dataset compared to YouCookII.

We compare our model on the validation set of the YouCookII dataset against two cap-
tioning methods (Yao et al., 2015; Zhou et al., 2018c) in Table 4.2. End-to-end Masked
Transformer (Zhou et al., 2018c) performs dense video captioning by both localizing steps
and generating descriptions for these steps, while TempoAttn (Yao et al., 2015) is an RNN-
based encoder-decoder approach with attention. TempoAttn is tested on YouCookII by Zhou
et al. (2018c) after several changes were made to the model, including adding a Bi-LSTM con-
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text encoder and adding temporal attention. Again, even though our task is more difficult
than captioning, our method outperforms both of the captioning methods in BLEU4 and
METEOR scores. Compared to the state-of-the-art video captioning method, End-to-end
Masked Transformer (Zhou et al., 2018c), our visual model achieves a METEOR score twice
as high, and a BLEU4 score four times higher. We attribute the better performance of our
method compared to the captioning methods to the pre-training on the Recipe1M dataset,
which allows our model to generalize. Note that for YouCookII, as we use all the videos in
the training set, our training is no longer a zero-shot but a supervised scenario.

4.5.9 Human Ratings
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Figure 4.19: We conduct a user study and ask human raters to asses how well the predicted
sentences matches the ground truth sentences. We present the comparison of human ratings
(a) versus automated sentence scores (b) over a subset of 30 recipes.

As automated scores such as BLEU and METEOR are not fully representative of the
correctness of the predicted steps, we also ask humans to evaluate our model’s predictions.
We ask human raters to directly assess how well the predicted steps match the ground truth
with scores 0 (“not at all”), 1 (“somewhat”), or 2 (“very well”). If the prediction receives a
score of 0, we additionally ask the human to judge if the predicted step is still a plausible
future prediction, again with the same scores of 0 (“not at all”), 1 (“somewhat”), or 2 (“very
likely”). We conduct this study with three people on a subset of 30 recipes from the test
set of the Recipe1M dataset, each with seven steps, and present their ratings in Figure 4.19
while comparing them to automated sentence scores.

In Figure 4.19, the upper graph (a) shows the results of the human raters. In this plot,
“exact match” corresponds to humans assessing if the predicted steps match the ground truth,
Raters report a score close to 1 for the initial step predictions indicating that our method,
even by only seeing the ingredients, can start predicting plausible steps. Scores increase
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towards the end of the recipe and are lowest at step 3. “future match” corresponds to humans
assessing if that step a plausible future prediction. The average score of the predicted steps
being a possible future prediction is consistently high across all steps. Even if the predicted
step does not exactly match the ground truth, human raters still consider it possible for the
future, including the previously low rating for step 3. Overall, the ratings indicate that the
predicted steps are plausible.

The lower graph (b) in Figure 4.19 shows automated scores for the same set of recipes
used in our user study. The left plot shows the standard scores for the predicted sentences
matching the ground truth. Overall, trends are very similar to the user study, including
the low-scoring step 3. To match the second setting of the user study, we compute the
sentence scores between the predicted sentence ŝj , and the next four future ground truth
steps {sj , sj+1, sj+2, sj+3} and select the step with the maximum score as our future match.
These scores are plotted in the lower right plot of Figure 4.19. Similar to the second setting
in the human study, the sentence scores increase overall.

To assess the reliability of agreement between our human raters, we use Fleiss’s
kappa (Fleiss et al., 1971) measure. It is used to analyze how much the annotators agree in
their decisions. A high level of agreement (at most 1) indicates that the human rating study
was reliable. Our, inter-rater agreement, measured via Fleiss’s kappa by aggregating across
all rating tasks, is 0.43, which is statistically significant at p < 0.05.

4.6 Conclusion and Future Works

In this chapter, we present a method for zero-shot action anticipation in videos. Our model
learns to generalize instructional knowledge from the text-domain. Applying this knowledge
to videos allows us to tackle the challenging task of predicting steps of complex tasks from
visual data, which is otherwise ruled out because of the scarcity of or difficulty in annotating
training data. We present a new, diverse dataset of cooking videos that is of high interest
to the community. We successfully validate our method’s performance on both text and
video data. We show that our model can produce coherent and plausible future steps. We
conclude that our knowledge transfer strategy works much better than captioning methods
and generalizes well on different datasets.

We extended our Tasty dataset to 4000 videos, all annotated with the temporal boundaries
of the textual steps. In our current work, we use sliding windows to split the videos into fixed
segments. We are planning to incorporate proposal generation and segmentation methods for
partitioning the past observations in the videos. For richer representations of observations, we
also want to replace our current video encoder with our temporal aggregates model presented
in Chapter 5. Our framework could be further improved by replacing our current RNN-based
encoders and decoder with state-of-the-art sentence architectures such as transformers (Devlin
et al., 2019). To improve our evaluations, we also plan to use the newly presented, BERT-
based metric, BLEURT (Sellam et al., 2020).
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Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING salt, pepper, onion, egg, bacon,

ketchup, ground beef, Worcestershire
sauce, parmesan cheese, hamburger
buns, shredded cheddar cheese

step1 Preheat a grill for high heat. In a large bowl, combine the first six
ingredients.

11.0 0.0 3.0 0.0 1.5

step2 In a large bowl, mix together the
Cheddar cheese, Parmesan cheese,
onion, egg, ketchup, Worcestershire
sauce, salt and pepper.

In a large bowl, mix together the
ground beef, onion, Worcestershire
sauce, egg, salt

66.0 38.0 33.0 1.0 1.0

step3 Crumble in the ground beef, and mix
together by hand.

Shape into 4 patties. 0.0 0.0 0.0 0.0 1.0

step4 Form into 6 patties, and wrap two
slices of bacon around each one in both
directions.

Form into 4 patties. 4.0 0.0 10.0 0.5 1.5

step5 Secure bacon with toothpicks. Place on the grill, and cook for about
10 minutes, or until the bacon is
cooked through

6.0 0.0 9.0 0.0 1.0

step6 Place patties on the grill, and cook for
5 minutes per side, or until well done.

Place on the grill, and cook for about
10 minutes, turning once.

48.0 32.0 22.0 1.5 1.5

step7 Remove toothpicks before serving on
hamburger buns.

Serve on buns with lettuce, tomato,
and ketchup.

25.0 0.0 14.0 0.5 1.5

Figure 4.20: Predictions of our text-based method for “Cheddar Bacon Wrapped Hamburgers” along with
the automated scores and human ratings. step4 prediction is half correct. step7 is a plausible prediction.

Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING milk, carrots, poultry seasoning, fresh

ground black pepper, chicken bouillon
cubes, celery ribs, chicken breasts

step1 Place chicken in a slow cooker. Place chicken in a large pot and cover
with water.

40.0 26.0 29.0 0.5 1.0

step2 Heat broth in microwave; dissolve
bouillon in broth.

Add celery, carrots, and celery. 0.0 0.0 0.0 0.0 2.0

step3 Add next 4 ingredients to broth. Pour over chicken. 0.0 0.0 0.0 0.0 1.5
step4 Pour over chicken. Pour over chicken. 100 3.0 100 2.0 2.0
step5 Cover and cook on low for 6-8 hours,

until chicken falls apart when poked
with a fork.

Cover and cook on low for 8 hours. 28.0 23.0 26.0 1.5 1.5

step6 Combine buttermilk biscuit mix and
milk, then drop spoonfuls over chicken
to form dumplings.

Remove chicken from broth, cool and
shred.

11.0 0.0 5.0 0.0 1.0

step7 Cover and cook on high for 35 minutes
or until dumplings are done.

Cover and cook on low for 8 to 10
hours or until chicken is tender.

47.0 20.0 26.0 0.5 0.5

Figure 4.21: Predictions of our text-based method for “Slow Cooker Chicken and Dumplings” along with
the automated scores and human ratings. step2 prediction is a plausible future step. step5 is correct.

Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING sugar, celery, black olives, chopped

tomatoes, green olives
step1 Boil your noodles as directed on box. Mix all ingredients together. 0.0 0.0 0.0 0.0 0.5
step2 Do not overcook! Drain and rinse with cold water. 0.0 0.0 0.0 0.0 2.0
step3 Drain. Drain and rinse with cold water. 17.0 0.0 26.0 1.5 1.5
step4 Add veggies to pasta in large bowl. In a large bowl, mix together the

noodles, celery, tomatoes, olives, and
sugar.

23.0 0.0 16.0 1.5 1.5

step5 Add Italian dressing and Splenda or
sugar and ground pepper.

Add all other ingredients. 6.0 0.0 6.0 1.5 1.5

step6 Mix well, chill and enjoy! Mix well. 22.0 0.0 24.0 1.5 1.5
step7 Add more dressing the next day as

needed, if put in the fridge overnight!
I like to add a little bit of olive oil to
the salad and I add a little more

16.0 0.0 6.0 0.5 1.0

Figure 4.22: Predictions of our text-based method for “My Mom’s Summer Pasta Salad” along with the
automated scores and human ratings. step2 is a plausible future step. step4 is correct as veggies refer to
celery tomatoes and olives. step7 is a plausible suggestion even though it does not match the GT step.
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Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING pineapple, strawberries, oranges,

flaked coconut, fresh mint leaves,
vanilla yogurt, kiwi fruits

step1 Quarter pineapple lengthwise; remove
core.

In a large bowl, combine the strawber-
ries, kiwi, oranges, and pineapple.

9.0 0.0 7.0 0.0 1.0

step2 Cut crosswise into small chunks. Cut into 1/2-inch cubes. 39.0 0.0 12.0 1.0 1.0
step3 Place in large serving bowl. In a large bowl, combine fruit, kiwi,

and pineapple.
33.0 0.0 20.0 0.0 1.0

step4 Add clementine segments, strawber-
ries, kiwifruit, and coconut; gently
toss.

Add fruit and nuts. 14.0 0.0 7.0 0.5 0.5

step5 Spoon into dessert glasses. Serve immediately or store in refriger-
ator up to 3 days.

0.0 0.0 0.0 0.0 0.5

step6 Top with a dollop of vanilla yogurt or
sweetened sour cream.

Garnish with orange slices and mint. 7.0 0.0 2.0 0.0 1.0

step7 Garnish with mint sprigs if desired. Garnish with orange slices and mint. 50.0 0.0 22.0 1.0 1.0

Figure 4.23: Predictions of our text-based method for “Ambrosia Fruit Salad” along with the automated
scores and human ratings. step1, step3, and step6 are plausible future step predictions.

Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING butter, cheese, eggs, salt and pepper
step1 Whisk the eggs till light and fluffy. Preheat oven to 350 degrees. 0.0 0.0 0.0 0.0 0.0
step2 Add cheese, salt and pepper. Add the cheese and season with salt

and pepper.
56.0 0.0 43.0 2.0 2.0

step3 Mix well. Melt butter in a pan. 0.0 0.0 0.0 0.0 1.5
step4 Heat a 7 inch non-stick skillet and add

butter.
Melt butter in a pan. 18.0 0.0 11.0 1.0 1.0

step5 As the butter begins to smoke, lower
heat and pour the beaten egg mixture.

Pour in egg mixture. 6.0 0.0 14.0 1.0 1.0

step6 Cook covered for a minute. Let cook until eggs are set. 17.0 0.0 10.0 1.5 1.5
step7 Fold over and serve immediately. Turn the heat down to low and cook

for about 5 minutes.
8.0 0.0 3.0 0.0 1.0

Figure 4.24: Predictions of our text-based method for “Cheese Omelette” along with the automated
scores and human ratings. step5 is a correct prediction. step7 is a plausible prediction.

Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING salt and pepper, parmesan cheese, gar-

lic cloves, extra virgin olive oil, diced
tomatoes, fusilli, pesto sauce, fresh
basil leaves

step1 Heat oil in a medium skillet over
medium heat.

Heat the oil in a large skillet over
medium heat.

80.0 39.0 43.0 2.0 2.0

step2 Saute garlic for 2 minutes, then add
tomatoes and simmer for 10 minutes.

Add garlic and cook until fragrant,
about 30 seconds.

21.0 0.0 9.0 0.5 1.5

step3 Meanwhile, bring a large pot of lightly
salted water to a boil.

Add pesto and cook for 1 minute. 0.0 0.0 4.0 0.0 1.5

step4 Add pasta and cook for 8 to 10 minutes
or until al dente; drain and return to
pot.

Add pasta and cook for 8 to 10 minutes
or until al dente; drain.

75.0 75.0 54.0 2.0 2.0

step5 Season tomato sauce with salt and
pepper; stir in pesto.

Add pesto and basil to pasta and toss
to combine.

20.0 0.0 7.0 0.5 1.5

step6 Pour sauce over hot cooked pasta and
mix well.

Pour sauce over pasta and toss to coat. 55.0 0.0 25.0 1.0 1.0

step7 Sprinkle with cheese, garnish with
basil leaves and serve immediately.

Serve immediately. 2.0 0.0 14.0 1.0 1.0

Figure 4.25: Predictions of our text-based method for “Easy Fusilli with Tomato Pesto Sauce” along
with the automated scores and human ratings. step3 is a plausible future prediction. step5 is half correct.
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Ground Truth (GT) Prediction BLEU1 BLEU4 MET. HUM1 HUM2
ING salt, butter, cheese, cream cheese, scal-

lions, cauliflower, black pepper, bacon
bits, whole milk

step1 Preheat oven to 350 Preheat oven to 350 degrees F. 67.0 51.0 50.0 2.0 2.0
step2 Chop cauliflower and boil in salted wa-

ter for about 3-4 mins until a little ten-
der

Place cauliflower in a large pot and
cover with water.

30.0 0.0 10.0 1.0 1.0

step3 Strain cauliflower and mash with a
potato masher.

Add the butter, salt, and pepper, and
stir to combine.

10.0 0.0 2.0 0.0 1.5

step4 Place in bowl and mix all ingredients Melt butter in a large skillet over
medium heat.

11.0 0.0 3.0 0.0 1.0

step5 Add ingredients to a buttered 8x8 dish
and top with extra cheese and bacon.

Pour mixture into a baking dish and
bake for 20 minutes

21.0 0.0 7.0 0.5 1.5

step6 Bake for 30 mins until nice and bubbly. Bake for 30 minutes. 27.0 0.0 28.0 2.0 2.0
step7 Enjoy! Serve with a side of buttered toast. 0.0 0.0 0.0 0.5 1.5

Figure 4.26: Predictions of our text-based method for “Baked Loaded Cauliflower” along with the auto-
mated scores and human ratings. step5 is half correct.

ING: chocolate,  honey,  almonds,  raisins,  candy,  peanuts, rolled oats, peanut butter  

Enjoy! Enjoy!6

5

4

3

2

1

GT: Melt peanut butter and honey together in the microwave, stirring 
every 15 seconds.
PRED: In a large bowl, combine the oats chocolate chips, honey, and 
peanut butter

GT: Add oats, almonds, peanuts, and raisins into the bowl and mix 
until well coated.
PRED: Stir in oats and peanuts.

GT: Add chocolate candies and mix just until combined. 
PRED: Press into a greased 9x9-inch pan.

GT: Line a baking dish with parchment paper and pour the cooled mixture 
into the pan.
PRED: Using a small, sharp knife, cut into squares.

GT: Cool in the refrigerator for at least 2 hours.
PRED: Enjoy !

Figure 4.27: Next step prediction of our visual model for “Trail Mix Bars”. The blue
sentences are our model’s predictions. Our model’s prediction for step3 is a plausible future
step prediction as the mixture is placed in a pan in step4. Note that our model predicts the
next steps before seeing these segments!
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 ING: salt,  pepper, onion, milk, egg, meatballs, ground beef, Worcestershire sauce, parmesan cheese, 
         canola oil, beef broth, fresh parsley, seasoned bread crumbs

Enjoy! Enjoy!9

8

7

6

5

4

3

2

1

GT: In a large bowl, combine the ground beef, breadcrumbs, onion, 
egg, salt, and pepper, mixing until evenly combined. 
PRED: In a large bowl, combine the ground beef, bread crumbs, milk, 
egg, parsley, onion

GT: Place the meatballs into the pot, cooking for one minute.
PRED: Add the meatballs to the pan and cook for about 5 minutes on 
each side.

GT: Flip the meatballs.
PRED: In a medium bowl, combine the meatballs, sauce, and parsley.

GT: Add the beef broth, milk, salt, pepper, and Worcestershire sauce 
and give it a stir.
PRED: Transfer the meatballs to a baking sheet lined with parchment
paper.

GT: Bring the liquid to a boil, then add the egg noodles..
PRED: Pour the meatballs into the baking dish.

GT: Stir constantly until the pasta is cooked and the liquid has reduced to 
a sauce that coats the noodles, about seven to eight minutes..
PRED: Add the meatballs to the sauce and stir to combine.

GT: Add the parmesan and the parsley, stirring until the cheese is melted.
PRED: Enjoy!

GT: Heat the canola oil in a pot over medium-high heat.
PRED: Pour mixture into a loaf pan and bake for about 1 hour.

Figure 4.28: Next step prediction of our visual model for “One-pot Swedish Meatball Pasta”.
The blue sentences are our model’s predictions. Our prediction for step3 matches the GT
step4. Prediction for step4 is somehow plausible as a future step as the GT in step5 suggests
mixing the sauce and meatballs. Note that our model predicts the next steps before seeing
these segments!
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ING: salt, butter, flour, garlic, olive oil, cloves, warm water, bread flour, fresh parsley, dry yeast 

Enjoy! Enjoy!10

GT: Coat the knots with the  butter mixture and bake for another 5 minutes.
PRED: Brush the garlic  butter mixture over the bread.

9

GT: Prepare the garlic butter by mixing the butter, garlic, and parsley.
PRED: Serve hot.8

GT: Bake in a 350°F (180°C) oven for 10 minutes.
PRED: Bake for 20 minutes, or until the bread is golden brown.

7

GT: Place the knots on a baking tray.
PRED: Place on a baking tray lined with parchment paper.6

GT: Tear the dough into 9 separate balls and then roll into long tubes, 
       folding over to make a knot.
PRED: Once the dough has risen, roll it out on a floured surface to a
            thickness  of  about 1/4.

5

GT: Place the dough in the bowl, cover, leave to rise in a warm place 
       for 1 hour.
PRED: Knead the dough for 5 minutes, then knead for a few minutes 
             until smooth and elastic.

4

GT: Knead for about 7-10 minutes until the dough is springy. 
PRED: Knead the dough for a few minutes, then cover and leave to rise 
            for 1 hour.3

GT: Pour the water and 1 teaspoon of olive oil into the well and mix 
       together.
PRED: Add the yeast mixture and  mix until the dough comes together.

2

GT: For the dough, mix together the  flour, yeast,and salt, and make 
       a well  in the middle. 
PRED: In a small bowl, combine  the yeast, water and salt.1

Figure 4.29: Next step prediction of our visual model for “Garlic Knots”. The blue sentences
are our model’s predictions. After baking, in step7, our model predicts that the dish should
be served, but after visually seeing the butter parsley mixture in step8, it correctly predicts
that the knots should be brushed in step9. Note that our model predicts the next steps before
seeing these segments!
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 ING: salt, pepper, olive oil, tomatoes, green beans, chicken thighs, basil pesto

Or serve immediately! Enjoy!9

8

7

6

5

4

3

2

1
GT: In a large pan, heat olive oil and add chicken thighs.
PRED: Preheat oven.

GT: When the chicken is completely cooked through, remove from pan.
PRED: Cook for about 5 minutes on each side, or until cooked through.

GT: Slice into strips, and set aside.
PRED: Add the green beans to the pan and cook for 2 minutes.

GT: Add green beans and cook until crisp tender.
PRED: Place the chicken thighs on top of the pesto.

GT: Return the chicken strips to the pan, then add tomatoes and pesto.
PRED: Add the pesto and tomatoes.

GT: Stir until fully incorporated.
PRED: Pour the remaining sauce over the chicken and vegetables.

GT: Divide into 4 food storage containers and store in the refrigerator.
PRED: Enjoy!

GT: Season with salt and pepper.
PRED: Season with salt and pepper.

Figure 4.30: Next step prediction of our visual model for “Weekday Meal-prep Pesto Chicken
and Veggies”. The blue sentences are our model’s predictions. Our model’s prediction for
step4 is a plausible future step prediction as it happens in step5. Predictions for step8 and
step9 are plausible recommendations. Note that our model predicts the next steps before
seeing these segments!
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In this chapter, we present our method for learning representations for long-range activity
videos. The content of this chapter corresponds to our ECCV 2020 publication, Temporal Ag-
gregate Representations for Long-Range Video Understanding. (Sener et al., 2020). Figure 5.1
shows an example video where a person is preparing coffee. There are five sub-activities, in-
cluding the background, SIL, with varying lengths of frames. Modelling such long-range
videos is crucial for tasks like temporal action segmentation, action anticipation, and action
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Figure 5.1: Our temporal aggregation model is designed to represent minutes-long videos.
Our model can encode the recent and long-term observations to predict actions a few seconds
before they start and perform dense anticipation. It can also be employed to perform action
recognition and temporal action segmentation in videos with slight modifications.

recognition. We present a temporal aggregation model that could be used for these tasks
with slight modifications.

In our work, we mainly focus on validating our approach on action anticipation on in-
structional and daily activities. Future prediction requires reasoning from current and past
observations and raises several fundamental questions. How much past information is nec-
essary? What is a reasonable temporal scale to process the past? How much semantic
abstraction is required? We address all of these questions with a flexible multi-granular tem-
poral aggregation framework. We show that it is possible to achieve state-of-the-art results
in both next action and dense anticipation using simple techniques such as max-pooling and
attention. We conduct experiments on the Breakfast Actions, 50Salads, and Epic-Kitchens
datasets to demonstrate the anticipation capabilities of our model, where we achieve state-of-
the-art or comparable results. We also show that our model can be used for temporal action
segmentation and action recognition with minimal modification.

5.1 Introduction

We tackle long-range video understanding, specifically anticipating not-yet-observed but up-
coming actions. When developing intelligent systems, one needs not only to recognize what is
currently taking place – but also predict what will happen next. Anticipating human actions
is essential for many applications such as smart surveillance, autonomous driving, assistive
robotics, and other human-computer interfaces.

While action anticipation is a niche (albeit rapidly growing) area, the key issues that
arise are germane to long-range video understanding as a whole. How should temporal or
sequential relationships be modelled? What temporal extent of information and context
needs to be processed? At what temporal scale should they be derived, and how much
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semantic abstraction is required? The answers to these questions are not only entangled
with each other but also depend very much on the videos being analyzed. Here, one needs
to distinguish between clipped actions, e.g., of UCF101 (Soomro et al., 2012), versus the
multiple actions comprising complex activities in long video streams, e.g., of the Breakfast
Actions dataset (Kuehne et al., 2014b). In the former, the actions and video clips are on the
order of a few seconds, while in the latter, it is several minutes. As such, temporal modelling
is usually not necessary for simple action recognition (Huang et al., 2018b), but more relevant
for understanding complex activities (Kuehne et al., 2014b; Huang et al., 2016; Lea et al.,
2017; Richard et al., 2017; Sener and Yao, 2018).

Temporal models that are built into the architecture (Ding and Xu, 2018; Farha and
Gall, 2019b; Huang et al., 2016; Kuehne et al., 2014b; Richard et al., 2017) are generally
favored because they allow frameworks to be learned end-to-end. However, this means that
the architecture also dictates the temporal extent that can be accounted for. This tends
to be short, either due to difficulties in memory retention, as is the case with LSTMs and
transformers, or due to model size, as with 3D CNNs, temporal convolution networks (TCNs),
and transformers. As a result, the context for anticipation can only be drawn from a limited
extent of recent observations, usually on the order of seconds (Lan et al., 2014; Vondrick
et al., 2016; Miech et al., 2019a). This, in turn, limits the temporal horizon i.e., only the next
(few) action(s) and granularity of the prediction i.e., next action label vs. dense predictions.
However, observations from further temporal contexts may contain some critical cues. For
example, a person making scrambled eggs can add salt at any time from start to end; if
we are able to ascertain from (further) past actions that salt has already been added, the
next action is less likely “adding salt”. In our model, we attempt to make use of the entire
observation to make more accurate predictions.

One way to ease the computational burden, especially under longer temporal extents, is
to use higher-level but more compact feature abstractions, e.g., by using already detected
objects and people (Wu et al., 2019) or even sub-activity labels (Farha et al., 2018; Ke et al.,
2019b) based on the outputs of temporal action segmentation algorithms (Richard et al., 2017;
Farha and Gall, 2019b). Such an approach places a strong semantic load on the initial task
of segmentation and is often difficult to train in a single-stage. Furthermore, since labelling
and segmenting actions from videos are difficult tasks and open areas of research themselves,
their errors which may then propagate onwards when anticipating future actions.

Motivated by these questions of temporal modelling, extent, scaling, and level of semantic
abstraction, we aim to perform a systematic study for long-range video understanding. Based
on conclusions drawn from these studies, we design and propose a general framework for
encoding long-range video. We aim for flexibility in frame input, i.e., ranging from low-level
visual features to high-level semantic labels, and the ability to meaningfully integrate recent
observations with long-range context, all in a computationally efficient way.

To do so, we split video streams into snippets of equal length and max-pool the frame
features within the snippets. We then create ensembles of multi-scale feature representations
that are aggregated bottom-up based on scaling and temporal extent. Our motivation for
creating video snippets is sampling from long videos, where the samples are supposed to be
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as representative of the actions as possible. However, the duration of actions varies a lot in
complex activities. Furthermore, for different complex activities, it might be necessary to
use a different number of snippets. To achieve this, we use an ensemble of different scales for
long-range and recent observations. In this way, depending on the duration of the snippets,
we expect to capture actions at different granularities, ranging from gestures such as “reach
for milk”, over actions such as “pour milk”, to compositional actions such as “open fridge and
get the milk out of fridge”.

Temporal aggregation (Kline and Snodgrass, 1995) is a form of summarization used in
temporal database systems. Our framework is loosely analogous as it summarizes the past
observations through aggregation, so we name it “temporal aggregates”. Temporal aggregate
features can be applied to several video understanding tasks; in addition to action anticipa-
tion, it can also be used for recognition and temporal action segmentation.

In particular, we aim to integrate and relate recent observations with the long-range
observations at various granularities to predict the future, recognize current actions, or to
perform temporal action segmentation and do so in a computationally efficient manner. Our
temporal aggregates model is similar in spirit to the long-term feature banks (Wu et al.,
2019) in that we couple the recent with the long-range past using attention. However, one key
difference is that we work with an ensemble of multiple scalings and granularities, whereas Wu
et al. (2019) work at a single (frame-level) granularity. As such, we can handle long streams
of videos that can span tens of minutes, while they are only able to work on short video clips.
Furthermore, their method requires a preliminary step of object and person detection while
we can work directly on frame-wise features, making our inputs much simpler.
We summarize our main contributions as follows:

• We propose a flexible and simple single-stage framework of multi-scale temporal aggre-
gates for long-range video understanding by relating recent observations to the long-
range past. It can encode long video durations and attend to salient segments to predict
the future or recognize the current actions.

• Our representations can be applied to several video understanding tasks; in addition
to action anticipation, it can be used for recognition and temporal action segmentation
with minimal modifications and is able to achieve competitive results.

• Our model has minimal constraints regarding the type of anticipation (dense or next
action), type of the dataset (instructional or daily activity datasets), and type of input
features (visual features or frame-level labels).

• We show that our method either outperforms or is on par with the state of the art
for anticipation, recognition, and segmentation with experiments conducted on three
datasets: Breakfast Actions (Kuehne et al., 2014b), 50Salads (Stein and McKenna,
2013) and Epic-Kitchens (Damen et al., 2018).
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5.2 Related Works

Early activity recognition: The earlier future prediction works were mostly focused on
predicting ongoing but not yet completed activities as early as possible. The problem is
formulated as inference under incomplete observations (Ryoo, 2011; Hoai and De la Torre,
2014), and recently it has been tackled mostly with RNNs (Ma et al., 2016; Kong et al.,
2018). Methods for early event recognition require partial observations of the already ongoing
actions. Unlike these, we address the more challenging task of action anticipation, seconds
before the action starts.

Action recognition has advanced significantly with deep networks in recent years. Many
directions have been explored successfully with new feature representations, backbones, etc.
Notable works include two steam networks (Simonyan and Zisserman, 2014a; Wang et al.,
2016a), 3D convolutional networks (Tran et al., 2015; Xie et al., 2018; Carreira and Zisser-
man, 2017), and recurrent neural networks (Donahue et al., 2015; Yue-Hei Ng et al., 2015).
These methods have been designed to encode short clips of a few seconds and are typically
applied to the classification of trimmed videos containing a single action such as those found
in the UCF (Soomro et al., 2012) and Kinetics (Kay et al., 2017) datasets. In contrast, in our
work, we are working with long untrimmed sequences of complex activities where the actions
are not cleanly segmented. Such long videos are not simply a composition of short indepen-
dent actions, as the composing segments are related to each other with sequence dynamics.
Various models for complex activity understanding have been addressed before (Ding and
Xu, 2018; Richard et al., 2017; Sener and Yao, 2018); these approaches are designed to work
on instructional videos by explicitly modelling their sequence dynamics. These models are
not flexible enough to be extended to daily activities with loose orderings. Moreover, when
only partial observations are provided, e.g., for anticipation, these models cannot be trained
in a single-stage.

Action anticipation, a fast-growing field, aims to forecast actions before they occur. We
distinguish between immediate anticipation of the next action label and dense anticipation.

Prior works in immediate anticipation were initially limited to movement primitives like
reaching or moving (Koppula and Saxena, 2015) or interactions such as hugging and hand-
shaking. Vondrick et al. (2016) classify predicted future frame features to anticipate inter-
actions. Mahmud et al. (2017) present a model for predicting both the next action and
its starting position. Damen et al. (2018) present a large daily activities dataset, along
with a challenge for anticipating the next action one second before occurrence. Miech et al.
(2019a) propose direct next action anticipation from recent observations. Recently, Furnari
and Farinella (2019) proposed using an LSTM to summarize the past and another LSTM for
future prediction. All these works assume current or near-past information, whereas we make
use of long-range past for anticipation.

Dense anticipation predicts actions multiple steps into the future. Previous meth-
ods (Farha et al., 2018; Ke et al., 2019b) to date have all relied on having already segmented
temporal observations. For example, Farha et al. (2018) uses outputs of a temporal ac-
tion segmentation method (Richard et al., 2017) to iteratively predict future actions using
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an RNN. Ke et al. (2019b) bypass the iterative approach and proposes a time-conditioned
method that directly anticipates actions for specific future times. They also require an aux-
iliary segmentation method for generating input data. Different than these, our model can
perform dense anticipation in a single-stage on visual features without any pre-segmented
nor labelled inputs.

Datasets for action anticipation should include videos of real-life environments and sce-
narios. As such, we use three datasets: Breakfast Actions (Kuehne et al., 2014b), 50Sal-
ads (Stein and McKenna, 2013), and Epic-Kitchens (Damen et al., 2018), which reflect the
actual durations and orderings of actions. This is crucial for real-world deployment of an-
ticipations models. Datasets frequently used in action localization (Caba Heilbron et al.,
2015) are not suitable for our purposes, as they contain videos repeating a single action. In
contrast, the videos we work with contain a sequence of different actions. Similarly, sports
datasets (Felsen et al., 2017), which involve multiple people, make anticipation more chal-
lenging, as it requires explicit detection of people and their interactions. In our datasets, a
single person performs a sequence of different actions, which provides a nicely constrained
scenario where we can test our model.

Motion and temporal dynamics: The role of motion and temporal dynamics has been
well-explored for video understanding, though the focus has been on short video clips (Lin
et al., 2019a; Donahue et al., 2015; Carreira and Zisserman, 2017; Huang et al., 2018b; Miech
et al., 2017). Some works were able to use longer-term temporal contexts in short videos
using pre-computed features (Li et al., 2017; Tang et al., 2018). Wu et al. (2019) proposed
integrating long-term features with 3D CNNs for action recognition in short videos and
showed the importance of incorporating temporal context for action recognition. Recently
Feichtenhofer et al. (2019) proposed slow-fast networks, which similar to our model, encode
time-wise multi-scale representations. Using a two-stream architecture working on differently
sampled versions of the video, they aim to capture slow spatial semantics and fast motion
features that are successively concatenated. In contrast, our multi-scale spanning past is built
on standard features extracted at a fixed sampling rate. Our spanning features of all scales
are processed w.r.t. all recent scales via an attention mechanism. Most importantly, these
approaches are limited to short videos and cannot be extended to minute-long videos due
to computational constraints. Our temporal modelling enables encoding minute-long videos
while being flexible enough to be applied to any dataset for several tasks.

5.3 Representations

We begin by introducing the representations which are given as inputs to the building blocks
of our framework. A schematic of the representations can be found in Figure 5.2. We had two
rationales when designing our network. First, the coupling blocks relate recent observations
to long-range past, since some actions directly determine what future actions can or cannot
be. Second, to represent recent and long-range past at various granularities, we pool snippets
over multiple scales.
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Figure 5.2: Model overview: in this example we use 3 scales for computing the “spanning
past” snippet features SK1 ,SK2 ,SK3 , and 2 starting points to compute the “recent past”
snippet features, Ri1 ,Ri2 , by max-pooling over the frame features in each snippet. Each
recent snippet is coupled with all the spanning snippets in our Temporal Aggregation Blocks
(TABs). An ensemble of TAB outputs is used for dense or next action anticipation. Best
viewed in color.

5.3.1 Video Representations

For a video of length T , we denote the feature representation of a single video frame indexed
at time t as ft ∈ RD, 1 ≤ t ≤ T . ft can be derived from low-level features, such as IDT (Wang
and Schmid, 2013) or I3D (Carreira and Zisserman, 2017), or high-level abstractions, such
as sub-activity labels derived from segmentation algorithms. To reduce computational load,
we work at a snippet-level instead of a frame level. We define a snippet feature Fij;K as
the concatenation of max-pooled features from K snippets, where snippets are partitioned
consecutively from a range of frames starting at i and ending at j:

Fij;K = [Fi,i+k, Fi+k+1,i+2k, ..., Fj−k+1,j ], where

(Fp,q)d = max
p≤t≤q

{ft}d , 1 ≤ d ≤ D, k = (j − i)/K. (5.1)

Here, Fp,q indicates the maximum over each dimension d of the frame features in a given
snippet between frames p and q, though it can be substituted with other alternatives. In the
literature, methods representing snippets or segments of frames range from simple sampling
and pooling strategies to more complex representations such as learned pooling (Lin et al.,
2018; Miech et al., 2017), 3D CNNs (Carreira and Zisserman, 2017) and LSTMs (Ostyakov
et al., 2018). Especially for long snippets, it is often assumed that a learned representation
is necessary (Girdhar et al., 2017; Lee et al., 2018b), though their effectiveness over simple
pooling is still controversial (Wang et al., 2016a). The learning of novel temporal pooling
approaches goes beyond the scope of this work and is an orthogonal line of development.
In this work, we verify established methods (see Section 5.5.5) and find that a simple max-
pooling is surprisingly effective and sufficient.
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Figure 5.3: Overview of model components: non-local blocks (NLB) compute interactions
between two representations via attention (see Section 5.4.1). Two such NLBs are combined
in a Coupling Block (CB) which calculates the attention-reweighted spanning and recent past
representations (see Section 5.4.2). We couple each recent with all spanning representations
via individual CBs and combine their outputs in a Temporal Aggregation Block (TAB) (see
Section 5.4.3). The outputs of multiple such TABs are combined to perform anticipation, see
Figure 5.2. Colors in the input video sequence refer to the action. Best viewed in color.

5.3.2 Recent vs. Spanning Representations

Based on different start and end frames i and j and number of snippets K, we define two
types of snippet features: ‘recent’ features {R} from recent observations and “spanning”
features {S} drawn from the entire video. The recent snippets cover a couple of seconds (or
up to a minute, depending on the temporal granularity) before the current time point, while
spanning snippets refer to the long-range past and may last up to ten minutes. For “recent”
snippets, the end frame j is fixed to the current time point t and the number of snippets is
fixed to KR. Recent snippet features R can be defined as a feature bank of snippet features
with different start frames i, i.e.,

R = {Fi1t;KR ,Fi2t;KR , ...,FiRt;KR} = {Ri1 ,Ri2 , ...,RiR}, (5.2)
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where Ri ∈ RD×KR is a shorthand to denote Fi t;KR , since endpoint t and number of snippets
KR are fixed. In Figure 5.2 we use two starting points to compute the “recent past” snippet
features and represent each with KR=3 number of snippets ( & ).

For “spanning” snippets, i and j are fixed to the start of the video and current time
point, i.e., i= 0, j= t. Spanning snippet features S are defined as a feature bank of snippet
features with varying number of snippets K, i.e.,

S = {F0 t;K1 ,F0 t;K2 , ...,F0 t;KS} = {SK1 ,SK2 , ...,SKS}, (5.3)

where SK ∈ RD×K is a shorthand for F0 t;K . In Figure 5.2 we use three scales to compute
the “spanning past” snippet features with K = {7, 5, 3} ( , & ).

Key to both types of representations is the ensemble of snippet features from multiple
scales. We achieve this by varying the number of snippets K for the spanning past. For
the recent past, it is sufficient to keep the number of snippets KR fixed, and vary only the
start point i, due to redundancy between R and S for the snippets that overlap. For our
experiments, we work with snippets ranging from seconds to several minutes.

5.4 Framework

In Figure 5.3 we present an overview of the components used in our framework, which we
build in a bottom up manner, starting with the recent and spanning features R and S,
which are coupled with non-local blocks (NLB) (Section 5.4.1) within coupling blocks (CB)
(Section 5.4.2). The outputs of the coupling blocks from different scales are then aggre-
gated inside temporal aggregation blocks (TAB) (Section 5.4.3). Outputs of different TABs
can then be chained together for either next action anticipation or dense anticipation (Sec-
tions 5.5.6, 5.5.8).

5.4.1 Non-Local Blocks (NLB)

We apply non-local operations to capture relationships amongst the spanning snippets and
between spanning and recent snippets. Non-local blocks (Wang et al., 2018c) are a flexible
way to relate features independently from their temporal distance and thus capture long-
range dependencies. We use the modified non-local block from Wu et al. (2019), which adds
layer normalization (Ba et al., 2016b) and dropout (Srivastava et al., 2014) to the original
one by Wang et al. (2016a). Figure 5.3 (left-top) visualizes the architecture of the block, the
operation of which we denote as NLB(·, ·).
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5.4.2 Coupling Block (CB)

Armed with the NLB operation, we define attention-reweighted spanning and recent outputs
as:

S′K = NLB(SK ,SK) (5.4)

R′i,K = NLB(S′K ,Ri). (5.5)

The coupling is done by concatenating R′i,K with either Ri or S′K and passed through linear
layers. This results in the fixed-length representations R′′i,K and S′′i,K , where i is the starting
point of the recent snippet and K is the scale of the spanning snippet.

5.4.3 Temporal Aggregation Block (TAB)

The final representation for recent and spanning past is computed by aggregating outputs
from multiple CBs. For the same recent starting point i, we concatenate R′′i,K1

, ..., R′′i,KS for
all spanning scales and pass the concatenation through a linear layer to compute R′′′i . The
final spanning past representation S′′′i is a max over all S′′i,K1

, ...,S′′i,KS . We empirically find
that taking the max outperforms other alternatives like linear layers and/or concatenation
for the spanning past (see 5.5.5).

TAB outputs, by varying recent starting points {i} and scales of spanning snippets {K},
are multi-granular video representations that aggregate and encode both the recent and long-
range past. We name these temporal aggregate representations. Figure 5.2 shows an
example with 2 recent starting points and 3 spanning scales. Temporal aggregate representa-
tions are generic and can be applied in various video understanding tasks (see Section 5.4.4)
from long streams of video. We find they are especially well-suited for anticipation, as they
are designed to encode long video durations while attending to salient snippets (see Sec-
tion 5.5.5.4). Next, we describe how we use temporal aggregates as inputs to various predic-
tion models.

5.4.4 Prediction Model

5.4.4.1 Classification

For single-label classification tasks such as next action anticipation, temporal aggregate repre-
sentations can be used directly with a classification layer (linear + softmax). A cross-entropy
loss based on ground truth labels Y can be applied to the predictions Ŷi, where Y is either
the current action label for recognition, or the next action label for next action prediction,
see Figure 5.4.

When the individual actions compose a complex activity (e.g., “take bowl” and “pour milk”
as part of “making cereal” in Breakfast (Kuehne et al., 2014b)), we can add an additional loss
based on the complex activity label Z. We postulate that predicting Z as an auxiliary task
will boost the performance. For this we concatenate S′′′i1 , . . . ,S

′′′
iR

from all TABs and again
pass them through a classification layer to obtain Ẑ. Our final loss formulation is the sum of
the cross entropies over the action and complex activity labels respectively:
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Figure 5.4: Prediction models for classification (left) and sequence prediction (right).

Lcl = Lcomp + Laction = −
NZ∑
n=1

Zn log(Ẑ)n −
R∑
r=1

NY∑
n=1

Yn log(Ŷir)n, (5.6)

where ir is one of the R recent starting points, and NY and NZ are the total number of actions
and complex activity classes respectively. During inference, the predicted scores, post soft-
max for all starting points ir, are summed for a final prediction, i.e., Ŷ =maxn(

∑R
r=1 Ŷir)n.

We also frame sequence segmentation as a classification task. Here the task is predicting
frame-level action labels of complex activity videos. We generate multiple sliding windows
with start and end times ts and te. Our goal is to classify each window into an action using
the loss in Equation 5.6.

5.4.4.2 Sequence prediction

The dense anticipation task predicts frame-wise action labels of the entire future sequence.
Others (Farha et al., 2018) have formulated this task as predicting future segment labels and
regressing their durations. We adopt a similar approach, but also estimate the duration via
classification. We discretize the sequence duration into ND intervals and represent durations
as one-hot encodings D ∈ {0, 1}ND .

For dense predictions, we perform multi-step estimates, distinguishing between the current
action and its duration versus future actions and durations. We first estimate the current
action and complex activity label, as described in Equation 5.6. The current duration D

is then estimated via a classification layer applied to the concatenation of recent temporal
aggregates R′′′i1 , ...,R

′′′
iR
.

For future actions, we concatenate all recent and spanning temporal aggregates
R′′′i1 , ...,R

′′′
iR

and S′′′i1 , ...,S
′′′
iR
, as well as the classification layer outputs Ŷi1 , ..., ŶiR , and pass

the concatenation through a linear layer before feeding the output to a one-layer LSTM. The
LSTM consecutively predicts M future action labels and their durations. For this, at each
iteration m, the LSTM predicts an action vector Ŷ m and a duration vector D̂m. At each
step the future action and its duration are combined and fed to the LSTM to predict the
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next future action and length (see Figure 5.4).
We formulate the dense anticipation loss as the sum of the cross-entropies over the current

action, its duration, future actions and durations, and task labels respectively:

Ldense = Lcl −
ND∑
n=1

Dn log(D̂)n −
1

M

M∑
m=1

(
NY∑
n=1

Y m
n log(Ŷ m)n +

ND∑
n=1

Dm
n log(D̂m)n

)
. (5.7)

During inference we sum the predicted scores (post soft-max) for all starting points ir
to predict the current action as maxn(

∑R
r=1 Ŷir)n. The LSTM is then applied recursively

to predict subsequent actions and durations by feeding previous predictions until the full
sequence length is reached.

5.4.5 Implementation Details

We train our model using the Adam optimizer (Kingma and Ba, 2014) with batch size 10,
learning rate 10−4 and dropout rate 0.3. We train for 25 epochs and decrease the learning
rate by a factor of 10 every 10th epoch. We use 1024 dimensions for all non-classification
linear layers for the Breakfast Actions and 50Salads datasets and 512 dimensions for the
Epic-Kitchens dataset. The LSTMs in dense anticipation have one layer and 512 hidden
units.

5.5 Experiments

5.5.1 Datasets and Features

We conduct experiments on two instructional activity datasets, Breakfast Actions (Kuehne
et al., 2014b) and 50Salads (Stein and McKenna, 2013), and one daily activity dataset, Epic-
Kitchens (Damen et al., 2018).

The Breakfast Actions dataset (Kuehne et al., 2014b) contains 1712 videos and shows
complex activities related to breakfast preparation of 10 high-level tasks like “making coffee”,
“making tea” and so on. Each video is composed of multiple actions. Overall, there are 48
different actions, such as “pouring water” or “stirring coffee”, with approximately 11.3K sam-
ples, including around 3.6K “silence (SIL)” samples. The average duration of the videos is 2.3
minutes. There are, on average, six actions per video. There are four splits, and we report
our results averaged over these predefined splits. We use two types of frame-wise features:
Fisher vectors computed as in by Farha et al. (2018) and I3D features (Carreira and Zisser-
man, 2017). The Fisher vectors are computed over the improved dense trajectories (Wang
and Schmid, 2013), over which a 64 dimensional PCA is applied.

The 50Salads dataset (Stein and McKenna, 2013) includes 50 videos and 17 different
actions for a single task, namely making mixed salads. Since 50Salads has only a single
complex activity (making salad), we omit complex activity prediction for it. On average,
50Salads has 20 actions per video due to repetitions. The average video duration is 6.4



5.5. Experiments 125

Dataset segment duration
median, mean ±std # actions # verbs # noun # segments

Breakfast(@15fps) 15.1s, 26.6s ±36.8 48 14 34 11.3K
50Salads(@30fps) 29.7s, 38.4s ±31.5 17 6 12 0.9K
EPIC(@60fps) 1.9s, 3.7s ± 5.6 2513 125 351 39.6K

Table 5.1: Detailed statistics about the three datasets used in our work.

Dataset {i}(in seconds) spanning scope KR {K}
Breakfast(@15fps) {t− 10, t− 20, t− 30} entire past 5 {10, 15, 20}
50Salads(@30fps) {t− 5, t− 10, t− 15} entire past 5 {5, 10, 15}
EPIC(@60fps) {t−1.6, t−1.2, t−0.8, t−0.4} 6 seconds 2 {2, 3, 5}

Table 5.2: Our model parameters for the datasets used in our work.

minutes. There are five splits, and we again average our results over them. We represent the
frames using Fisher vectors (Farha et al., 2018) and I3D features (Carreira and Zisserman,
2017). Note that since the 50Salads is a very small dataset, for our next action and dense
anticipation on the 50Salads, we augment our training data by shifting the starting frame by
several seconds.

The Epic-Kitchens dataset (Damen et al., 2018) is a large first-person video dataset
which contains 432 sequences and 39,594 action segments recorded by participants performing
non-scripted daily activities in their kitchen. The average duration of the videos is 7.6 minutes
ranging from 1 minute to 55 minutes. An action is defined as a combination of a verb and
a noun, e.g. “boil milk“. There are in total 125 verbs, 351 nouns, and 2513 actions. The
dataset provides a training and test set which contains 272 and 160 videos, respectively.
The test set is divided into two splits: Seen Kitchens (S1), where sequences from the same
environment are in the training data, and Unseen Kitchens (S2) where complete sequences
of some participants are held out for testing. The labels for the test set are not shared, as
there is an action anticipation 1 and action recognition challenge 2. We use the appearance
(rgb), motion (optical flow), and object-based features provided by Furnari and Farinella
(2019). They independently train the spatial and motion CNNs using the TSN (Wang et al.,
2016a) framework for action recognition on Epic-Kitchens. They also train object detectors
to recognize the 352 object classes of the Epic-Kitchens dataset. The feature dimensions
are 1024, 1024, and 352 for appearance, motion, and object features, respectively. We use a
validation set provided by Furnari and Farinella (2019), which is constructed using 40 videos
from the training set for selecting Epic-Kitchens parameters. For Epic-Kitchens, we report
our results both on this validation set and on the test set of the anticipation challenge.
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5.5.2 Statistics, Evaluations Measures & Parameters

The sequences in these datasets reflect realistic durations and orderings of actions, which is
crucial for real-world deployment of anticipation models. We provide relevant statistics about
the datasets used in our work to show a broader comparison of their scale and label granularity
in Table 5.1. One notable difference between these datasets is the label granularity; it is very
fine-grained for Epic-Kitchens, hence their 2513 action classes, versus the coarser 48 and 17
actions of Breakfast and 50Salads. As a result, the median action segment duration is 8-16x
shorter.
Evaluation measures we are using in this work are class accuracy (Accuracy (%)) for next
action prediction and mean over classes accuracy (Farha et al., 2018) for dense prediction.
For Epic-Kitchens, we report Top-1 and Top-5 accuracies to be consistent with (Miech et al.,
2019a; Furnari and Farinella, 2019).
Parameters: The spanning scales {K}, recent scale KR, recent starting points {i} and
spanning scope for each dataset are given in Table 5.2. We cross-validated the parameters on
different splits of 50Salads and Breakfast and used a validation set provided by Furnari and
Farinella (2019) for selecting Epic-Kitchens parameters. We use intervals of 5 and 20 seconds
for Breakfast and 50Salads for discretizing the durations in dense anticipation. The starting
points for Epic-Kitchens are much smaller than the others due to its fine label granularity as
the average action duration is on the order of seconds vs. minutes for the other datasets. We
use a spanning scope of 6 seconds for Epic-Kitchens while we are using the entire past as our
“long range” past for the other datasets. “Long-range” and “entire past” are relative concepts.
For instructional datasets, e.g., the Breakfast and 50Salads, the average action duration is
around 15 and 30 seconds, and the annotations are coarse. Also, instructional activities
follow a loose ordering for completing a task, and therefore, models benefit from observing
the entire past. For such datasets, we use the entire past. People in daily activities act
unscripted, and thus the long-range past might be less relevant. Moreover, Epic-Kitchens is
a special daily dataset where the action annotations are very fine-grained, lasting 3.7 seconds
on average. An example sequence of annotations in Epic-Kitchens is “take kettle - put down
kettle - pour water - watch boiling water”, while in the Breakfast the same group of actions
would be annotated as “boil water”. In 20 seconds, one observes, on average, 5-6 actions
in Epic-Kitchens videos. Therefore, in Epic-Kitchens, we define the long-range duration in
terms of seconds (see Section 5.5.7 for detail).

5.5.3 Model Validation

For validating our method’s capabilities in modelling sequences, we make baseline compar-
isons. The most straightforward approach for solving the next action anticipation task is
using a transition matrix (TM) (Miech et al., 2019a), which encodes the transition from one
action to the next. A more sophisticated solution is building a lookup table (LUT) of varying
length sequences, which allows encoding the context in a more explicit manner. The problem

1https://competitions.codalab.org/competitions/20071
2https://competitions.codalab.org/competitions/20115

https://competitions.codalab.org/competitions/20071
https://competitions.codalab.org/competitions/20115
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cereal coffee f.egg juice milk panc. salat sand. s.egg tea mean±std
TM 77.8 50.8 57.2 57.2 40.1 39.6 57.9 52.4 59.4 54.2 54.6±10.8
LUT 57.5 59.9 56.2 58.8 56.1 57.3 55.1 49.6 61.2 60.1 57.2±3.1
LSTM 79.8 47.2 52.9 61.2 72.7 73.9 64.3 46.9 60.5 68.7 62.8±11.3
ours 69.8 54.7 62.5 65.7 72.9 66.2 63.6 64.6 58.0 64.1 64.2±5.2

Table 5.3: Model validation using GT labels for next action anticipation on the Breakfast
Actions, presented are accuracies. We compare transition matrices (TM), lookup tables
(LUT), LSTMs, and our temporal aggregates model (without complex activity prediction).

ours, (obj+flow+rgb) ours (GT) TM (GT) BiLSTM 5 (GT) BiLSTM 10 (GT)
15.5 17.9 17.4 17.3 15.1

Table 5.4: Model validation using GT labels for next action anticipation on the Epic-Kitchens
dataset. We report Top-1 action prediction accuracies. We compare our temporal aggregates
model trained on the object, appearance and flow features, transition matrices (TM), our
model trained on GT action labels, lookup tables (LUT), and LSTMs.

with LUTs is that their completeness depends on the coverage of the training data, and they
rapidly grow with the number of actions. So far, for next step prediction, RNNs achieve good
performance (Farha et al., 2018), as they learn modelling the sequences.

For our baseline comparisons, instead of frame features, we use the frame-level ground
truth labels as input to our model. We compute the TM, LUT, and LSTMs on the ground
truth segment-level labels. In Table 5.3 we present comparisons on the Breakfast Actions for
the next action anticipation per complex activity. Overall, transition matrices provide the
worst results. LUTs improve the results, as they incorporate more contextual information.
Both the LSTMs and our method outperform the other alternatives, while our method still
performs better than the LSTMs on average. However, applying LSTMs requires parsing
the past into action sequences (Farha et al., 2018), which turns the problem into separate
segmentation and prediction phases. Our model, on the other hand, can be trained in one
stage and can represent the long-range observations good enough to outperform LSTMs. We
show that our model is doing better than simply learning pairwise statistics of the dataset.

We conduct similar experiments using frame-level ground truth labels as input to our
model on Epic-Kitchens. For the RNN experiments, we split the video sequences in the
training set into sequences of L = {5, 10} actions with a sliding window using a stride of
1. We train a BiLSTM on these short sequences and predict the next action. Table 5.4
presents our comparisons. Our method outperforms both TM and BiLSTM. Compared to
the Breakfast dataset, TM performs better than BiLSTM and the difference between the
accuracy of TM and our model is marginal. We also see that when more past actions are
incorporated, “BiLSTM 10 (GT)”, the BiLSTM gets less accurate. These might be due to
the dataset size, which falls short compared to its large number of actions. Therefore, our
model and LSTMs cannot learn all the variants of long-term relationships. Compared to
using visual features, “ours, (obj+flow+rgb)”, we observe a difference of 2.4% in accuracy,
which indicates that there is still room for improvement for our model.
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Note that for our experiments on the Breakfast Actions and Epic-Kitchens datasets, we
use the hyper-parameters reported in Table 5.2. For our experiments using ground truth
labels, we use one-hot vector encoding and use this vector as input to our model.

5.5.4 Recognizing Long-range Complex Activities

Method Fine-tuning Accuracy (%)
I3D no 64.3
I3D + Timeception (Hussein et al., 2019) no 69.3
I3D + ours no 80.8
I3D yes 80.6
I3D + Timeception (Hussein et al., 2019) yes 86.9
I3D+ PIC (Hussein et al., 2020) yes 89.8

Table 5.5: Comparisons to methods developed for recognizing long-range complex activities,
Timeception (Hussein et al., 2019) and PIC (Hussein et al., 2020) on the Breakfast Actions
dataset. Our method outperforms Timeception (Hussein et al., 2019) by a significant margin
showing the superiority of our method modelling long-range activities.

To validate our model further, we present comparisons on classifying long-range com-
plex activities. Since these videos include multiple actions and are several minutes long, it
becomes more challenging to model their temporal structure compared to short-term sin-
gle action videos. Recently, Hussein et al. (2019) proposed a neural layer, “Timeception”,
which uses multi-scale temporal-only convolutions for modelling minutes-long complex ac-
tivity videos, such as “cooking a meal”. Placed on top of backbone CNNs, the permutation
invariant convolution layer, PIC (Hussein et al., 2020), also aims at modelling only the tem-
poral dimension. PIC is invariant to temporal permutations as it models their correlations
regardless of their order, which helps to handle different action orderings in videos. It also
uses pairs of key-value kernels to learn the most representative visual signals in long and
noisy videos.

We report our comparisons in Table 5.5 on the Breakfast Actions dataset using two
types of I3D features, where one is the features from an I3D model trained on Kinetics only,
and the other is the features from an I3D model fine-tuned on the Breakfast dataset. Our
method outperforms Timeception (Hussein et al., 2019) by 11.4%, and the I3D backbone by
16.5%. Hussein et al. (2020) use the fine-tuned I3D features on Breakfast and show a 3.1%
improvement over Timeception (Hussein et al., 2019). Fine-tuning improves the accuracy by
16.3% and shows that there is room for improvement for our method using better feature
representations.

5.5.5 Component Validation

The design choices for our framework are inspired by trends in the state of the art, such
as attention (Wang et al., 2018c; Wu et al., 2019) and careful experimentation. We verify
each component’s utility via a series of ablation studies which are summarized in Tables 5.6.
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As our main motivation was to develop a representation for long video streams to perform
anticipation, we experiment on the Breakfast Actions dataset for next action anticipation.
Our full model gets a performance of 40.1% accuracy averaged over actions.

5.5.5.1 Video Representation

Pooling type Frame sampling GRU BiLSTM Mean-pooling Max-pooling
Accuracy (%) 32.1 37.9 38.7 36.6 40.1

Table 5.6: Ablations on the influence of different snippet representations on the Breakfast
Actions dataset.

Several short-term spatio-temporal feature representations have been proposed for video,
e.g., 3D convolutions (Tran et al., 2015), or combining CNNs and RNNs for sequences (Yue-
Hei Ng et al., 2015; Donahue et al., 2015). For long video streams, it becomes difficult to work
with all the raw features. Selecting representative features can be as simple as sub-sampling
the frames, as e.g., in the SlowFast Networks (Feichtenhofer et al., 2019; Xiao et al., 2020),
or pooling (Wang et al., 2016a), to more complex RNNs (Yue-Hei Ng et al., 2015). Current
findings in the literature are not in agreement. Some propose learned strategies (Miech et al.,
2017; Lee et al., 2018b), while others advocate pooling (Wang et al., 2016a). Our experiments
align with the latter, showing that max-pooling is superior to both sampling (+8%) and the
GRU (+2.2%) or bi-directional LSTM (Conneau et al., 2017) (+1.4%). The performance of
GRU and bi-LSTM are comparable to average-pooling but significantly increases the training
and inference time. Of the variants of pooling, max-pooling works best. This is in contradic-
tion to the findings of Wang et al. (2016a). We attribute this to the fact that we pool over
minutes-long snippets, and it is likely that mean-pooling smooths away salient features that
are otherwise preserved by max-pooling. The minimum and maximum snippet durations,
over which we apply pooling, are 0.4s and 115.3s for 50Salads, 0.1s and 64.5s for Breakfast,
and 1.2s and 3.0s for Epic-Kitchens. Note that we conducted a similar pooling ablation be-
tween mean- and max-pooling on Epic-Kitchens, where we observed a 1.3% increase with
max-pooling.

5.5.5.2 Recent and Spanning Representations

In our ablations, unless otherwise stated, an ensemble of 3 spanning scales K = {10, 15, 20}
and 3 recent starting points i={t−10, t−20, t−30} are used.

Table 5.7 (a) compares single starting points for the recent snippet features versus an
ensemble. With a single starting point, points too near to and too far from the current time
decrease the performance. The worst individual result is with i4 = 0, i.e., using the entire
sequence; the peak is at i2 = t − 20, though an ensemble is still best. In Table 5.7 (b), we
show the influence of spanning snippet scales. These scales determine the temporal snippet
granularity; individually, results are not significantly different across the scales, but as we
begin to aggregate an ensemble, the results improve. The ensemble with 4 scales is best
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(a) starting points, i {i1, i2, i3} i1 = t− 10 i2 = t− 20 i3 = t− 30 i4 = 0
Acc. 40.1 36.9 37.7 37.2 35.1

(b) spanning scales, K {5,10,15,20} {10,15,20} {10, 15} {5} {10} {15} {20}
Acc. 40.2 40.1 39.0 37.4 38.0 37.5 37.4

(c) recent scales, KR 1 3 5 10
Acc. 38.7 39.5 40.1 38.6

Table 5.7: Ablations on the influence of recent and spanning representations on the Breakfast
Actions dataset, reported are accuracies. The highlighted cells in each row are the same model
trained with the parameters reported in Table 5.2.

but only marginally better than 3, at the expense of a larger network, so we choose K =

{10, 15, 20}. In Table 5.7 (c), we show the influence of recent snippet scales, we find KR = 5

performs best.

5.5.5.3 Block Ablations

We report our results for ablations on our model blocks in Table 5.8.

Influence of Changes in components Acc.(Drop)
Non-Local Blocks (NLB) replace all NLBs with concatenation + linear layer 33.7 (6.4%)

Coupling Blocks (CB)
only couple the SK and SK in CBs 35.1 (5.0%)
only couple the Ri and Ri in CBs 34.2 (5.9%)
replace CBs with concatenation + linear layer 33.4 (6.7%)

Temporal Aggregation
Blocks (TAB)

a single CB is used in TABs 38.0 (2.1%)
three CBs are used in a single TAB 37.7 (2.4%)
a single a CB is used without any TABs 32.1 (8.0%)

Table 5.8: Ablations on the influence of different blocks in our model on the Breakfast Actions
dataset, reported are accuracies.

Non-local Blocks: Previous studies on simple (single action, several seconds long du-
ration) video understanding have shown the benefits of using features from both the recent
and long-term past (Li et al., 2017; Wu et al., 2019). A naïve way to use both recent and
long-term features is to simply concatenate the two. However, combining the two in a learned
way, e.g., via attention, is superior (+6.4%). To incorporate attention, we apply non-local
blocks (NLBs) (Wang et al., 2018c), which is an adaptation of the attention mechanism that
is popularly used in machine translation.

Coupling Blocks: Different than the simple feature vector concatenations like in Slow-
Fast (Feichtenhofer et al., 2019; Xiao et al., 2020), we couple the max-pooling outputs in our
Coupling Blocks (CBs) which are very essential components of our model. When we replace
our CBs with concatenation + linear layer, we observe a drop of 6.7%. When we do not
use coupling but separately pass the Ri and SK through concatenation + linear layer, we
observe a drop of 7.5%. We find that coupling the recent Ri and long range SK informa-
tion is critical. Coupling only recent information (-5.9%) does not keep sufficient context,
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Figure 5.5: Attention visualization on the Breakfast Actions dataset for next action antici-
pation. Rectangles are the top 5 five spanning snippets (at different granularities where K =
10,15,20), weighted highest by the attention mechanism in the non-local blocks (NLB). Best
viewed in color.

whereas coupling only long-range past (-5%) does not leave sufficient representation for the
more relevant recent aspects.

The Temporal Aggregation Blocks (TAB) are the most critical components for our
model. Omitting them and directly classifying a single CB’s outputs significantly decrease
accuracy (-8%). The strength of the TAB comes from using an ensemble of coupling blocks
as input (single, -2.1%) and using the TABs in an ensemble (single, -2.4%).
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5.5.5.4 Additional Ablations

When we omit the auxiliary complex activity prediction, i.e., removing the Z term from
Equation 5.6 (“no Z”), we observe a slight performance drop of 1.1%. In our model we
max pool over all S′′i,K1

, ...,S′′i,KS in our TABs. When we replace the max-pooling with
concatenation + linear, we reach an accuracy of 37.4%. We also try to disentangle the
ensemble effect from the use of multi-granular representations. When we fix the spanning
past scales K to {15, 15, 15} and all the starting points to i = t − 20, we observe a drop of
1.2% in accuracy which indicates the importance of our multi-scale representation. We also
trained a simple attention based model that enables learning and selecting important frame
features. For next action anticipation, this baseline drops the performance by 9% drop on
Breakfast and 4.2% on EPIC. This validated the importance of our multi-granular pairing of
the recent with long-range past.

Our method can encode long video durations while attending to salient snippets. In Fig-
ure 5.5, we present example visualizations of regions attended by our model when performing
action anticipation. We show the five highest weighted spanning snippets (at different gran-
ularities). Our model attends different regions over the videos; for example, for predicting
’fry egg’ when making fried eggs, it attends regions both when pouring oil and cracking eggs.

5.5.6 Anticipation on Procedural Activities: Breakfast & 50Salads

Method Input Segmentation Method & Feature Accuracy
Vondrick et al. (2016) FC7 features - 8.1
Miech et al. (2019a) R(2+1)D - 32.3
RNN (Farha et al., 2018) segmentation output Richard et al. (2017), Fisher 30.1
CNN (Farha et al., 2018) segmentation output Richard et al. (2017), Fisher 27.0
ours “no Z” Fisher - 29.2
ours Fisher - 29.7
ours I3D - 40.1
ours “no Z” I3D - 39.0
ours segmentation output ours, I3D 43.1
ours segmentation output + I3D ours, I3D 47.0
ours frame GT - 64.7
ours frame GT + I3D - 63.1

Table 5.9: Performance of next action anticipation on the instructional Breakfast Ac-
tions dataset and comparisons against the state of the art, given different frame inputs:
GT action labels , Fisher vectors , I3D features.

5.5.6.1 Next Action Anticipation

For this task, we predict the action that occurs 1 second from the current time t. We
compare to the state of the art in Table 5.9 with two types of frame inputs: spatio-temporal
features (Fisher vectors or I3D) and frame-wise action labels (either from ground truth or via
a separate segmentation algorithm) on Breakfast actions. Compared to previous methods
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Method Input Segmentation Method & Feature Accuracy
Vondrick et al. (2016) FC7 features - 6.2
RNN (Farha et al., 2018) segmentation output Richard et al. (2017), Fisher 30.1
CNN (Farha et al., 2018) segmentation output Richard et al. (2017), Fisher 29.8
ours “no Z” Fisher - 31.6
ours I3D 40.7
ours frame GT - 63.8

Table 5.10: Next action anticipation on the instructional 50Salads dataset and comparisons
to the state of the art, given frame inputs as GT action labels , Fisher vectors , I3D features.

using only visual features as input, we outperform CNN features (Vondrick et al., 2016)
(FC7 features (Krizhevsky et al., 2012)) and spatio-temporal features R(2+1)D (Miech et al.,
2019a) by a large margin (+32.3% and +8.1%). While the inputs are different, R(2+1)D
features were shown to be comparable to I3D features (Tran et al., 2018). Given that Miech
et al. (2019a) uses only recent observations, we conclude that incorporating the spanning
past into the prediction model is essential.

As can be expected, our method degrades when we replace I3D with the weaker Fisher vec-
tors (40.1% vs. 29.7%). Nevertheless, this result is competitive with methods that use action
labels (Farha et al., 2018) (30.1% with RNN) derived from segmentation algorithms (Richard
et al., 2017) using Fisher vectors as input. For a fair comparison, we report a variant of our
model without the complex activity prediction (“no Z”), which has a slight performance drop
of 0.5% and 1.1% when Fisher vectors and I3D features are used respectively.

If we use action labels as inputs instead of visual features, our performance improves
from 40.1% to 43.1%; merging labels, and visual features give another 4% boost to 47%.
In this experiment, we use segmentation results from our own framework, adapted for the
task of temporal action segmentation (see Section 5.5.9). However, if we substitute ground
truth labels instead of segmentation labels, we still find a 21.6% gap. This suggests that the
quality of the segmentation matters. When the segmentation is very accurate, then adding
additional features does not help and actually slightly deteriorates results (see Table 5.10
“frame GT” vs. “frame GT + I3D”). Note that for using the ground truth and segmentation
labels as inputs to our model, we represent each frame with a one-hot vector encoding. Each
vector has a length of the total number of classes that all zero values except the index of the
correct class.

In Table 5.10, we also report our results for 50Salads. Using Fisher vectors, we both
outperform the state of the art (Richard et al., 2017) by 1.8% and the baseline with CNN
features (Vondrick et al., 2016) by 25.4%. Similar to our observations on the Breakfast
Actions, our method’s performance increases when we replace Fisher vectors. We observe an
accuracy of 23.1% when we use the ground truth labels instead of I3D features.

5.5.6.2 Dense Anticipation

Dense anticipation predicts frame-wise actions; accuracies are given for specific portions of
the remaining video (Pred.) after observing a given percentage of the past (Obs.). Competing
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Obs. 20% 30%
Pred. 10% 20% 30% 50% 10% 20% 30% 50%
A Labels (GT)
RNN (Farha et al., 2018) 60.4 50.4 45.3 40.4 61.5 50.3 45.0 41.8
CNN (Farha et al., 2018) 58.0 49.1 44.0 39.3 60.3 50.1 45.2 40.5
Ke (Ke et al., 2019b) 64.5 56.3 50.2 44.0 66.0 55.9 49.1 44.2
ours 65.5 55.5 46.8 40.1 67.4 56.1 47.4 41.5
B Features (Fisher)
CNN (Farha et al., 2018) 12.8 11.6 11.2 10.3 17.7 16.9 15.5 14.1
ours 15.6 13.1 12.1 11.1 19.5 17.0 15.6 15.1
C Labels (Fisher + Richard et al. (2017) (Frame-wise Acc. 36.8/42.9))
RNN (Farha et al., 2018) 18.1 17.2 15.9 15.8 21.6 20.0 19.7 19.2
CNN (Farha et al., 2018) 17.9 16.4 15.4 14.5 22.4 20.1 19.7 18.8
Ke (Ke et al., 2019b) 18.4 17.2 16.4 15.8 22.8 20.4 19.6 19.8
ours 18.8 16.9 16.5 15.4 23.0 20.0 19.9 18.6

Concatenate B and C
ours 25.0 21.9 20.5 18.1 23.0 20.5 19.8 19.8
D Features (I3D)
ours 24.2 21.1 20.0 18.1 30.4 26.3 23.8 21.2
E Labels (I3D + our seg.(Frame-wise Acc. 54.7/57.8))
ours 37.4 31.2 30.0 26.1 39.5 34.1 31.0 27.9

Concatenate D and E
ours 37.1 31.8 30.1 27.1 39.8 34.2 31.9 27.8

Table 5.11: Dense anticipation mean over classes on the instructional Breakfast Actions
dataset, given different frame inputs GT action labels , Fisher vectors , I3D features.

methods Farha et al. (2018) and Ke et al. (2019b) have two stages; they first apply temporal
action segmentation and then use the segmentation outputs (Richard et al., 2017), i.e., frame-
wise action labels, as inputs for anticipation. We experiment with both action labels and
visual features.

For the Breakfast Actions dataset (Table 5.11), when using GT frame labels, we outper-
form the others, for shorter prediction horizons. For the 50Salads dataset (Table 5.12), we
outperform the state of the art for the observed 20%, and our predictions are more accurate on
long-range anticipation (Pred. 50%). We outperform Farha et al. (2018) when we use visual
features as input (B Features (Fisher)). When using the segmentation outputs (from Richard
et al. (2017), which has a frame-wise temporal segmentation accuracy of 36.8% and 42.9%
for the observed 20% and 30% of video respectively), we are comparable to the state of the
art (Ke et al., 2019b).

We further merge visual features with action labels for dense anticipation. With Fisher
vectors and the frame labels obtained from Richard et al. (2017), we observe a considerable
performance increase in performance compared to only using the frame labels (up to +7%)
in the Breakfast Actions dataset. In 50Salads, this increase is not significant nor consistent.
This may be due to the better performing segmentation algorithm on the 50Salads dataset
(frame-wise accuracy of 66.8% and 66.7% for 20% and 30% observed respectively). We
observe further improvements on Breakfast Actions once we substitute Fisher vectors with
I3D features and segmentations from our own framework (I3D + ours seg.), which has a



5.5. Experiments 135

Obs. 20% 30%
Pred. 10% 20% 30% 50% 10% 20% 30% 50%
A Labels (GT)
RNN (Farha et al., 2018) 42.3 31.2 25.2 16.8 44.2 29.5 20.0 10.4
CNN (Farha et al., 2018) 36.1 27.6 21.4 15.5 37.4 24.8 20.8 14.1
Ke (Ke et al., 2019b) 45.1 33.2 27.6 17.3 46.4 34.8 25.2 13.8
ours 47.2 34.6 30.5 19.1 44.8 32.7 23.5 15.3
B Features (Fisher)
CNN (Farha et al., 2018) - - - - - - - -
ours 25.5 19.9 18.2 15.1 30.6 22.5 19.1 11.2
C Labels (Fisher + Richard et al. (2017) (Frame-wise Acc. 66.8/66.7))
RNN (Farha et al., 2018) 30.1 25.4 18.7 13.5 30.8 17.2 14.8 9.8
CNN (Farha et al., 2018) 21.2 19.0 16.0 9.9 29.1 20.1 17.5 10.9
Ke (Ke et al., 2019b) 32.5 27.6 21.3 16.0 35.1 27.1 22.1 15.6
ours 32.7 26.3 21.9 15.6 32.3 25.5 22.7 17.1

Concatenate B and C
ours 34.7 25.9 23.7 15.7 34.5 26.1 19.0 15.5

Table 5.12: Dense anticipation mean over classes on the instructional 50Salads dataset, given
different frame inputs GT action labels , Fisher vectors .

frame-wise temporal segmentation accuracy of 54.7% and 57.8% for the observed 20% and
30% of video respectively. Similar to next action anticipation, our performance drops when
using only visual features as input (I3D is better than Fisher vectors). When using I3D
features and the frame label outputs of our segmentation method, we obtain our model’s
best performance, with a slight increase over using only frame label outputs.

In Figure 5.6, we provide qualitative results from our method for dense anticipation on
the Breakfast Actions dataset. We show our method’s predictions after observing 30% of the
video. We compare our results when we use the GT labels and I3D features as input. It can
be seen that using the GT labels are leading to better predictions.

5.5.7 How much spanning past is necessary?

We vary the duration of spanning snippets (Equation 5.3) with start time i as fractions of
the current time t; i= 0 corresponds to the full sequence, i.e., 100% of the spanning past,
while i= t corresponds to none, i.e., using only recent snippets since the end points j remain
fixed at t. Using the entire past is best for the Breakfast Actions dataset (Figure 5.7 left).
Interestingly, this effect is not observed on Epic-Kitchens (Figure 5.7 right). Though we see a
small gain by 1.2% until 40% past for the appearance features (rgb), beyond this, performance
saturates.

We believe this has to do with the fine granularity of labels in Epic-Kitchens; given that
the median action duration is only 1.9s, one could observe as many as 16 actions in 30
seconds. Given that the dataset has only 28.5K samples (excluding the test and validation
sets) split over 2513 action classes, we speculate that the model cannot learn all the variants
of long-term relationships beyond 30 seconds. Therefore, increasing the scope of the spanning
past does not further increase the performance, see Figure 5.7 (right). Based on experiments
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Figure 5.6: Qualitative results for dense anticipation on Breakfast Actions dataset when
using the GT labels and I3D features. Best viewed in color.

on the validation set, we set the spanning scope to 6 seconds for Epic-Kitchens for the rest
of the chapter. In Figure 5.7, we report our results for appearance (rgb), optical flow and
object-based features and the late fusion of the predictions from these modalities. Overall
the appearance and object-based features outperform the optical-flow features.

5.5.8 Anticipation and Recognition on Daily Activities: Epic-Kitchens

5.5.8.1 Action Anticipation

The anticipation task of Epic-Kitchens requires anticipating the future action τα=1s before
it starts. For fair comparison to the state of the art, (Furnari and Farinella, 2019), denoted
by “RU”, we use the same features (appearance, motion, and object) provided by the authors.
We train our model separately for each feature modality with the same hyper-parameters;
during inference, we apply a late fusion of the predictions from the different modalities by



5.5. Experiments 137

0 20 40 60 80 100

past % (100% is approx. 10 minutes)

35

40

45

a
c
c
u

ra
c
y Breakfast actions

0 20 40 60 80 100

past % (100% is 3 minute)

10

20

30

40

a
c
c
u

ra
c
y

flow rgb obj fusion

Figure 5.7: Effect of spanning scope on instructional vs. daily activities. For Epic-Kitchens
(right) we report Top-5 accuracy on the validation set with rgb, optical-flow and object
features and late fusion.

Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

TSN (Damen et al., 2018) 31.8 16.2 6.0 76.6 42.2 28.2
Miech et al. (2019a) 30.7 16.5 9.7 76.2 42.7 25.4

S1 RU (Furnari and Farinella, 2019) 33.0 22.8 14.4 79.6 50.9 33.7
ours 31.4 22.6 16.4 75.2 47.2 36.4
ours v+n 37.9 24.1 16.6 79.7 54.0 36.1
TSN (Damen et al., 2018) 25.3 10.4 2.4 68.3 29.5 6.6
Miech et al. (2019a) 28.4 12.4 7.2 69.8 32.2 19.3

S2 RU (Furnari and Farinella, 2019) 27.0 15.2 8.2 69.6 34.4 21.1
ours 27.5 16.6 10.0 66.8 32.8 23.4
ours v+n 29.5 16.5 10.1 70.1 37.8 23.4

Table 5.13: Action anticipation comparisons on Epic tests sets, seen (S1) and unseen (S2)

average voting. Note that for experiments on this dataset, we do not use the entire past for
computing our spanning snippet features as increasing the scope of the spanning past does
not further increase the performance (see Section 5.5.7).

We report our results for hold-out test data of Epic-Kitchens in Table 5.13 both for seen
kitchens (S1) with the same environments as in the training data and unseen kitchens (S2)
of held out environments. We outperform the temporal segment networks (TSN) (Damen
et al., 2018) for both Top-1 and Top-5 accuracy by a great margin. Miech et al. (2019a)
performs anticipation by combining two transitional models: one is based on recognizing
the current action, and the other is based on visual attributes. We outperform this model
in the Top-1 action accuracies by 6.7% and 2.8% on S1 and on S2, respectively. We also
outperform the state of the art, RU (Furnari and Farinella, 2019), in the Top-1 and Top-5
action accuracies by 2% and 2.7% on S1 and by 1.8% and 2.3% on S2. When we add verb
and noun classification to our model as auxiliary tasks to help with anticipation, “ours v+n”,
our performance improves for action and especially for noun and verb scores.

Besides predicting the next actions for τα = 1s, Furnari and Farinella (2019) also report
prediction results at multiple anticipation times between 0.25s and 2s on Epic-Kitchens. We
present our comparisons to this setting in Table 5.14 on the validation set. Our prediction
scores are better than Furnari and Farinella (2019) for all time points, where our improve-
ments are more significant when the anticipation time decreases.
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Figure 5.8: Exemplary qualitative results for next action anticipation on Epic-Kitchens
dataset, showing the success of our method. We list our Top-5 predictions at different antic-
ipation times, τα. The closer τα is to the next action, the better are our model’s predictions.
Best viewed in color.
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Top-5 Accuracy%
τa 2s 1.75s 1.5s 1.25s 1.0s 0.75s 0.5s 0.25s

RU 29.4 30.7 32.2 33.4 35.3 36.3 37.4 39.0
ours 30.9 31.8 33.7 35.1 36.4 37.2 39.5 41.3

Table 5.14: Action anticipation on Epic-Kitchens validation set for different anticipation
times τα compared to RU (Furnari and Farinella, 2019).

Top-1 Accuracy (%) Top-5 Accuracy (%)
Set Rank Team Verb Noun Action Verb Noun Action

1st NUS_CVML 37.87 24.10 16.64 79.74 53.98 36.06
2nd VI-I2R 36.72 24.61 16.02 80.39 54.90 37.11

S1 3rd Ego-OMG 32.20 24.90 16.02 77.42 50.24 34.53
4th UNIPD-UNICT 36.73 24.26 15.67 79.87 53.76 36.31
5th GT-WISC-MPI 36.25 23.83 15.42 79.15 51.98 34.29
1st Ego-OMG 27.42 17.65 11.81 68.59 37.93 23.76
2nd VI-I2R 28.71 17.21 10.11 71.77 40.49 23.46

S2 3rd NUS_CVML 29.50 16.52 10.04 70.13 37.83 23.42
4th GT-WISC-MPI 29.87 16.80 9.94 71.77 38.96 23.69
5th UNIPD-UNICT 28.51 16.59 9.32 71.66 37.97 23.28

Table 5.15: Action anticipation results on Epic-Kitchens egocentric action anticipation chal-
lenge (2020) for seen (S1) and unseen (S2) test sets. Our submission (Team “NUS_CVML”)
is ranked first on S1 and third on S2 sets.

In Figure 5.8, we present qualitative results from our method for next action anticipation
on the Epic-Kitchens dataset for multiple anticipation times τα between 0.25 and 2 seconds.
We show examples where our method is certain about the next action for all different times.
We also show examples where our method’s prediction gets more accurate when the antici-
pation time is closer.

5.5.8.2 Action Anticipation Challenge

For anticipation, we follow the protocol of the Epic-Kitchens egocentric action anticipation
challenge (2020) and participate in this challenge (Damen et al., 2020b). We report our results
and our ranking for the hold-out test datasets for seen kitchens (S1) and unseen kitchens (S2)
in Table 5.15. The official ranking on the challenge is based on the Top-1 action accuracy.
Our submission (Team “NUS_CVML”) is ranked first on S1 and third on S2.

In Table 5.15, team “VI-I2R”, extends the rolling-unrolling LSTMs (Furnari and Farinella,
2019) by extracting better feature representations for appearance, optical-flow, and objects
and adding a past action prediction module to improve future action prediction perfor-
mance. Team “Ego-OMG”(Dessalene et al., 2020) localizes hand and object interaction
regions and builds object manipulation graphs which are fed to an LSTM to model long-
term sequences. This method performs very well on the unseen kitchens, which indicates
the significance of focusing on object regions for action anticipation in new environments.
“UNIPD-UNICT” (Camporese et al., 2020) utilizes knowledge distillation with using the
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Top-1 Accuracy% Top-5 Accuracy%
Verb Noun Action Verb Noun Action

TSN (Damen et al., 2018) 48.2 36.7 20.5 84.1 62.3 39.8
RU (Furnari and Farinella, 2019) 56.9 43.1 33.1 85.7 67.1 55.3
LFB Wu et al. (2019) 60.0 45.0 32.7 88.4 71.8 55.3

S1 TBN (Kazakos et al., 2019) 64.8 46.0 34.8 90.7 71.3 56.7
SlowFast + audio (Xiao et al., 2020) 65.7 46.4 35.9 89.5 71.7 57.8
ours 63.2 49.5 41.3 87.3 70.0 63.5
ours v+n 66.7 49.6 41.6 90.1 77.0 64.1
TSN (Damen et al., 2018) 39.4 22.7 10.9 74.3 45.7 25.3
RU (Furnari and Farinella, 2019) 43.7 26.8 19.5 73.3 48.3 37.2
LFB Wu et al. (2019) 50.9 31.5 21.2 77.6 57.8 39.4

S2 TBN (Kazakos et al., 2019) 52.7 27.9 19.1 79.9 53.8 36.5
SlowFast + audio (Xiao et al., 2020) 55.8 32.7 24.0 81.7 58.9 43.2
ours 52.0 31.5 26.2 76.8 52.7 45.7
ours v+n 54.6 33.5 27.0 80.4 61.0 46.4

Table 5.16: Action recognition comparisons on Epic tests sets, seen (S1) and unseen (S2)

rolling-unrolling LSTMs architecture (Furnari and Farinella, 2019) where a teacher network
provides semantic prior information through glove-based word embeddings (Pennington et al.,
2014) and sequence transition probabilities. Team “GT-UWISC-MPI” proposes a method
composed of three modules that allow for joint prediction of hand motions, interaction re-
gions, and future actions.

To conclude, these teams show that utilizing hand-object interactions and regions is essen-
tial for action anticipation, especially when the environment is unseen, where the appearance
features tend to perform poorly compared to seen environments. The influence of hand-
object regions on anticipation could be evaluated in detail on the newly released extension
of Epic-Kitchens (Damen et al., 2020a), where hands and interacting objects are localized
using bounding boxes which are made publicly available. Moreover, using additional informa-
tion sources such as word embeddings could further be evaluated, considering the long-tailed
actions distribution in EPIC.

5.5.8.3 Action Recognition

For recognition, we follow the protocol of the Epic-Kitchens Action Recognition Challenge
to classify pre-trimmed action segments. For this task, we adjust the scope of our spanning
and recent snippets according to the action start and end times ts and te. Spanning snippet
features are computed on a range of [ts − 6, te + 6]; the first recent snippet scope is fixed to
[ts, te] and the rest to [ts − 1, te + 1], [ts − 2, te + 2] and [ts − 3, te + 3]. Remaining hyper-
parameters are kept the same.

In Table 5.16, we compare our results to the state-of-the-art methods. We show that our
model outperforms the other recognition methods, including the state of the art SlowFast
networks with audio data (Xiao et al., 2020) (+5.4% on S1, +2.2% on S2 for Top-1 Accuracy).
TBN (Kazakos et al., 2019) utilizes RGB, flow, and audio, along with an approach for tem-
poral binding of modalities based on temporal segment networks. Both TBN (Kazakos et al.,
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Verb Acc.% Noun Acc.% Action Acc.%
ours verb & ours noun 63.09 49.15 35.95

ours action 60.53 47.33 41.21

Table 5.17: We compare our model when we directly predict the actions to a variant of our
model where we predict the verbs and nouns separately on the validation set of Epic-Kitchens,
reported are Top-1 accuracies.

2019) and the SlowFast network by Xiao et al. (2020) use audio data. We outperform both
of these works without audio and think that including audio modality will further improve
our model’s performance. We also outperform Long-term Feature Banks (Wu et al., 2019),
which also uses non-local blocks (+8.6% on S1, +5% on S2 for Top-1). We show that our
method outperforms Furnari and Farinella (2019) by approximately +7% on both S1 and
S2. Together with the anticipation results from the previous paragraph, we can conclude
that our method generalizes to both anticipation and recognition tasks and is able to achieve
state-of-the-art results on both, while Furnari and Farinella (2019) performs very well on
anticipation but poorly on recognition. Similar to our anticipation results, when we add verb
and noun classification to our model, “ours v+n”, we observe improvements in our action,
verb, and noun scores.

Epic-Kitchens has a long-tailed action distribution, which means “head” classes have a
large number of samples, and “tail” classes have a small number of samples per class. More-
over, in Epic-Kitchens, there are action classes in the test set which do not have any training
instances. Therefore several approaches, TBN (Kazakos et al., 2019), SlowFast (Xiao et al.,
2020), and LFB (Wu et al., 2019), are trained for predicting verbs and nouns separately, and
the outputs of the verb and noun models are later combined for action recognition.

Like Furnari and Farinella (2019), we directly predict actions and marginalize the action
scores to get verb and noun scores. We compute a variant of our model where we separately
predict the verbs and nouns on the validation set of Epic-Kitchens. We present our com-
parisons to our model when we directly predict the action on the validation in Table 5.17.
When predicting verbs and nouns separately, our verb accuracy improves by 3.5%, and noun
accuracy improves by 1.9%. However, the action accuracy drops to 36.0% while predicting
directly the actions has an accuracy of 40.9%. We believe this is due to the verbs and nouns
not being independent. Similar observations were made by Furnari et al. (2018).

5.5.8.4 Action Recognition Challenge

We participated in the Epic-Kitchens egocentric action recognition challenge (2020). We
report our ranking and comparisons in Table 5.18 for seen kitchens (S1) and unseen kitchens
(S2). The official ranking on the challenge is based on the Top-1 action accuracy. Our
submission (Team “NUS_CVML”) is ranked second on S1 and third on S2.

In table 5.18, team “UTS-Baidu” presents the best performing model on both the seen and
unseen kitchens (Wang et al., 2020d). For top-K detected object bounding boxes obtained
from an object detector, they extract features from pre-trained flow and appearance-based
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Top-1 Accuracy% Top-5 Accuracy%
Set Rank Team Verb Noun Action Verb Noun Action

1st UTS-Baidu 70.41 52.85 42.57 90.78 76.62 63.55
S1 2nd NUS_CVML 66.70 49.55 41.59 90.10 76.98 64.11

3rd SAIC-Cambridge 69.43 49.71 40.00 91.23 73.18 60.53
1st UTS-Baidu 60.43 37.28 27.96 83.07 63.67 46.81

S2 2nd GT-WISC-MPI 60.02 37.49 27.38 82.55 63.47 45.10
3rd NUS_CVML 54.56 33.46 26.97 80.40 60.98 46.43

Table 5.18: Action recognition results on Epic-Kitchens egocentric action recognition chal-
lenge (2020) for seen (S1) and unseen (S2). Our submission (Team “NUS_CVML”) is ranked
second on S1 and third on S2 sets.

models and use an attention mechanism to enable interactions between them to select the
most action-relevant features for classifying nouns and verbs. Team “SAIC-Cambridge” pro-
poses a spatio-temporal attention network (Perez-Rua et al., 2020) aiming at focusing on
action related regions. Motivated by the relations of gaze and actions for egocentric vision (Li
et al., 2018b), team “GT-WISC-MPI” proposes utilizing gaze as a probabilistic distribution
of attention in the context of an action. They perform well on the unseen kitchens indicating
the importance of focusing on the action regions for better feature representations.

5.5.8.5 Influence of Modality

We use appearance (rgb), motion (flow), and object-based features provided by Furnari and
Farinella (2019) for our anticipation and recognition experiments. In Table 5.19, we report
our results, “ours”, separately for anticipation and recognition for different modalities. Overall
the most important features are appearance-based features for both anticipation and recog-
nition. Object-based features seem to be very important for anticipation, while flow does not
significantly influence anticipation, 11.6% vs. 7.7%. For action recognition, object and flow-
based features perform similarly. When we apply late fusion of the predictions from all these
modalities by average voting, we get a 3% accuracy improvement over the best performing
modality in anticipation and a 7.8% improvement in recognition.

In Eq. 5.6, we show that we can add complex activity classification, Z, as an auxiliary
task. Epic-Kitchens (Damen et al., 2018) videos are recorded with 32 participants in 32
different kitchens. We can use the kitchen prediction as an auxiliary task similar to using
complex activity classification, Z. We report our results, “ours + kitchen ”, in Table 5.19.
We observe slight improvements for both anticipation and recognition.

Anticipation Recognition
obj flow rgb obj+flow+rgb obj flow rgb obj+flow+rgb

ours 11.6 7.7 12.5 15.5 28.6 28.1 33.5 41.2
ours + kitchen 11.5 8.0 12.9 15.8 28.7 28.3 33.4 41.4

Table 5.19: Influence of different modalities, experimented on the validation set of Epic-
Kitchens for anticipation and recognition. Reported are Top-1 accuracies.
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# samples s # classes %validation
instances

Accuracy
(rgb)

Accuracy
(flow)

Accuracy
(obj)

Accuracy
(rgb+flow+obj)

Accuracy
GT nouns

Accuracy
GT verbs

s > 350 2 4.2 79.2 82.5 67.3 87.7 82.5 46.9
300 < s ≤ 350 5 6.5 64.6 63.0 51.9 77.0 74.2 47.2
250 < s ≤ 300 5 6.2 49.2 52.1 34.4 63.0 71.1 54.7
200 < s ≤ 250 7 5.9 66.7 64.3 53.7 73.5 60.9 47.4
150 < s ≤ 200 10 7.3 42.0 43.4 43.7 56.1 68.0 32.3
100 < s ≤ 150 16 7.4 39.6 39.6 34.7 55.7 72.7 13.4

s > 100 45 37.5 54.7 55.2 46.0 67.1 71.0 38.9
75 < s ≤ 100 11 4.0 50.5 37.9 47.0 61.6 68.2 17.2
50 < s ≤ 75 29 6.7 39.6 20.7 36.7 51.4 64.3 17.1
s > 50 85 48.1 52.3 49.0 44.8 64.5 69.8 34.1

40 < s ≤ 50 23 4.2 32.2 17.3 25.5 39.0 56.3 14.4
30 < s ≤ 40 38 5.1 28.9 14.2 23.7 31.6 54.9 16.2
20 < s ≤ 30 77 8.1 24.9 16.5 25.2 33.3 48.2 11.6
15 < s ≤ 20 78 5.7 17.8 12.6 17.1 22.7 41.6 10.5
10 < s ≤ 15 94 4.7 15.0 7.3 13.3 21.8 29.9 11.1
s > 10 395 76.0 41.8 36.1 36.2 51.7 61.2 26.2

5 < s ≤ 10 231 6.1 14.6 4.3 6.6 13.3 28.5 7.0
1 < s ≤ 5 787 8.1 10.4 5.2 8.2 12.9 19.1 7.2
s = 1 878 2.9 2.1 0.7 1.4 2.1 14.8 3.5
s = 0 222 7.0 0.0 0.0 0.0 0.0 0.0 0.0
s > 0 2513 100 33.5 28.1 28.6 41.2 50.2 21.0

Table 5.20: Our accuracy reported on different groups of classes on the validation set (Furnari
and Farinella, 2019) of Epic-Kitchens for recognition. Each row starts with the range of the
number of instances in the training set. For example, in the first row, we are interested in the
classes with more than 350 cases in the training set. There are two such classes. These classes
comprise 4.2% of the validation instances. We report the average Top-1 action accuracy over
subsets of the validation set, which include only the instances of the classes that fall into the
range reported in the “# samples s” column. For example, in the first row, the average is
calculated only over the instances in the validations set that belong to the two largest classes,
containing more than 350 instances of the training set.

5.5.8.6 Epic-Kitchens – A Long-Tailed Action Distribution

We compute our model’s performance on action recognition as the mean accuracy over all
the instances in the validation set in Table 5.19. Since the Epic-Kitchens dataset has a long-
tailed action distribution, we further explore our model’s performance on different action
groups in Table 5.20. We first divide the validation set into several groups of classes based
on the number of instances in the training set. For example, in the first row of Table 5.20,
we show the two most common classes, namely “open door” and “open drawer”, which each
include more than 350 instances in the training set. These two classes comprise 4.2% of the
validation instances. Similarly, we have five classes, which are “take plate”, “take spoon”, “put
plate”, “open fridge”, “close door”, that have between 300 and 350 instances in the training
set. These five classes comprise 6.5% of the validation instances.

We report our results for six different feature types / combinations in Table 5.20. In each
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row, we average our model’s accuracy over the subset of instances in the validation set that
only includes the classes in the “# classes s” column. We report our accuracies for appearance,
motion and object-based features separately, in columns “Accuracy(rgb)”, “Accuracy(flow)”,
“Accuracy(obj)” respectively. We report our late fusion results in “Accuracy(rgb+flow+obj)”.
We also use ground truth noun and verb labels to represent each frame using a one-hot
vector encoding. The results are reported in columns “Accuracy GT nouns” and “Accuracy
GT verbs”.

Late fusion improves average accuracy over the entire validation by 7.7% over using rgb, by
13.1% over flow, and by 12.6% over object-based features. When we use ground truth nouns
to form frame-level features, we get an improvement of 9% over using late fusion. Using the
verb labels to form frame-level features performs poorly, even worse than flow-based action
recognition accuracy (7.1% decrease).

Our model with GT nouns outperforms our late fusion based model for every range but
for “s > 350” (5.2% drop), “300 < s ≥ 350” (2.8% drop) and with the largest gap at range
“200 < s ≥ 250” (12.6% drop) where there are several actions sharing the same object such as
“turn off tap”, “close tap”, “put down pan”, “wash pan”. This shows that when there is enough
data to train a model, visual features will perform better and should be preferred. The object-
based features achieve half of the performance compared to using GT nouns, indicating the
challenges of training a state-of-the-art object detector on fine-grained datasets.

Our model’s performance degrades towards the classes with fewer and fewer examples.
Especially for classes with less than 50 instances in the training set, our performance drops
by more than 10% when using late fusion. For classes with only one instance, one-shot
classes, our late fusion-based model’s performance drops to 2.1%. When we use GT nouns
to form our frame-level features, we observe an increase of 12.7% accuracy. This shows that
object labels are more useful when the training data is scarce, as nouns provide high-level
discriminative information. Using the GT verbs to form our frame-level features does not
improve accuracy. For zero-shot classes, our performance is zero for all our models, as we
directly predict actions, and these classes are simply unknown to our models.

One-shot and zero-shot classes comprise 10% of the validation dataset. Tail classes com-
prise 24% of the dataset (classes with less than ten examples in the training set). Possible
solutions could be utilizing models that work on long-tail distributions, using complemen-
tary data in the form of text, or retrieving similar actions from different datasets or the web
to increase the amount of the training data. For the newly collected Epic-Kitchens exten-
sion (Damen et al., 2020a), the authors compute two types of accuracies, calculated over all
classes vs. tail classes, which contain either a tail verb class or a tail noun class. These new
evaluations might motivate future research to explore long-tail distributions (Kang et al.,
2020) or generalized few-shot-learning methods (Schonfeld et al., 2019) on Epic-Kitchens.

5.5.8.7 Epic-Kitchens - Anticipation Using GT Labels

We also experimented using ground truth nouns, verbs, and action labels on the Epic-Kitchens
dataset for next action anticipation. We report our results in Table 5.21. Our model’s upper
bound is 17.9 % when using the ground truth action label, “GT actions”, for forming the
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obj+flow+rgb GT nouns GT verbs GT actions
15.5 14.0 5.8 17.9

Table 5.21: The influence of using ground truth labels for action anticipation, evaluated on
the validation set of Epic-Kitchens. Reported are Top-1 accuracies.

frame-wise feature representations. Using verb labels, “GT verbs”, reduces the accuracy
significantly, by 12.1%. Using only the noun labels, “GT nouns” decreases the accuracy by
3.9%, supports our previous findings that object-based representations are more important
than verbs for action anticipation.

create sliding windows of 2sTraining

Testing window of 2s

window of 5s

classify into an action

classify into an action

Figure 5.9: For temporal action segmentation, the task is predicting frame-level action
labels in videos. We use a sliding window of 2 seconds to generate multiple windows. We
train our model to learn labelling each window with an action. We test our model with 2
and 5-second windows separately.

5.5.9 Temporal Action Segmentation

Here the task is predicting frame-level action labels of complex activity videos. We use a
sliding window of 2 seconds and generate multiple windows with start and end times, ts and
te. Our goal is to classify each window into an action. For this task we only change the end
time of our recent and spanning snippets. We use start and end point ranges [ts, te], [ts −
2, te + 2], [ts − 5, te + 5] for computing the recent, and the entire video for computing the
spanning snippet features. The rest of the parameters are kept the same. We compare
our performance against the state of the art, MS-TCN (I3D) (Farha and Gall, 2019b), in
Table 5.22 on Breakfast actions. We test our model with 2s and 5s windows (see Figure 5.9).

We report the frame-wise accuracy (Acc), segmental edit distance and F1 scores at over-
lapping thresholds of 10%, 25% and 50%. In the example sequences and also in the F1 scores
and edit distances in Table 5.22, we observe more fragmentation in our segmentation for
2s than for 5s windows. However, for 2s, our model produces better accuracies, as the 5s
windows are smoothing the predictions at action boundaries. We perform comparably to
the state of the art in terms of accuracies and we outperform it in the F1 scores when we
use 5s windows for testing. Additionally we provide our model’s upper bound, “ours (I3D)
pre-trimmed action segments”, for which we classify GT action segments instead of sliding
windows. The results indicate that there is room for improvement, which we leave as future
work. We show that we are able to easily adjust our method from its main application and
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GT

2s  PRED

5s  PRED

F1@{10, 25, 50} Edit Acc.
MS-TCN (I3D) (Farha and Gall, 2019b) 52.6 48.1 37.9 61.7 66.3
ours (I3D) 2s 52.3 46.5 34.8 51.3 65.3
ours (I3D) 5s 59.2 53.9 39.5 54.5 64.5
ours (I3D) pre-trimmed action segments - - - - 75.9

Table 5.22: Exemplary temporal action segmentation and comparison to the state of the art
on the Breakfast Actions dataset.

already get close to the state of the art, with slight modifications. Currently, we segment
naively by classifying snippets aggregated with long-range information. Our segmentations
will likely improve with stronger sequence models.

5.6 Discussion & Conclusion

In this chapter, we presented a temporal aggregate model for long-range video understanding.
Our method computes recent and spanning representations pooled from snippets of video that
are related via coupled attention mechanisms. Validating on three complex activity datasets,
we show that temporal aggregates are either comparable or outperform the state of the art
on three video understanding tasks: action anticipation, recognition and temporal video
segmentation.

In developing our framework, we faced questions regarding temporal extent, scaling, and
level of semantic abstraction. Our experiments show that max-pooling is a simple and efficient
yet effective way of representing video snippets; this is the case even for snippets as long as
two minutes. For learning temporal relationships in long video, attention mechanisms relating
the present to long range context can successfully model and anticipate upcoming actions.
The extent of context that is beneficial, however, may depend on the nature of activity
(instructional vs. daily) and label granularity (coarse vs. fine) of the dataset.

We found significant advantages to using ensembles of multiple scales, both in recent
and spanning snippets. Our aggregates model is flexible and can take as input either visual
features or frame-wise action labels. We achieve competitive performance with either form
of input, though our experiments confirm that higher levels of abstraction such as labels are
more preferable for anticipation. Nevertheless, there is still a large gap between what can be
anticipated with inputs from current segmentation algorithms in comparison to ground truth
labels, leaving room for segmentation algorithms to improve.
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6.1 Overview

Let us imagine a future where we have robot assistants capable of recognizing what we are
doing and predicting our future actions to help us getting things done without expecting to
take any orders. The state-of-the-art technologies might not be there yet, but they have been
improved over time, with the intention to be good enough that machines will be able to work
alongside humans.

This dissertation deals with complex activity understanding in videos. Such activities are
rich sources for understanding humans’ daily lives and developing algorithms to make our lives
easier. They could be used in a wide variety of ambitious problem settings relavant to smart
systems to assist humans. Despite the difficulties of working with long-range untrimmed
videos, there has been a growing interest in working on them in recent years (Rohrbach
et al., 2012; Kuehne et al., 2014b; Sener et al., 2015; Malmaud et al., 2015; Alayrac et al.,
2016; Huang et al., 2016; Richard and Gall, 2016; Farha et al., 2018; Ke et al., 2019b; Damen
et al., 2020a). We present a detailed overview of complex-activity-associated tasks in Chapter
2, Background.

In this dissertation, we developed models and techniques for understanding human ac-
tivities in complex activity videos and verified our solutions on the two challenging tasks of
temporal action segmentation (Sener and Yao, 2018; Sener et al., 2020) and action anticipa-
tion (Sener and Yao, 2019; Sener et al., 2020). In Chapter 3, we presented our first work,
where we investigated temporal action segmentation in complex activity videos. In contrast
to fully supervised approaches, which rely on temporal action annotations, we addressed
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unsupervised learning from easily accessible online videos. In Chapter 4, we presented the
details of our second work where we challenged ourselves with the new task of zero-shot
action anticipation. In Chapter 5, we presented a generic framework for learning long-range
video representations which can be employed for action anticipation and temporal action
segmentation.

In this chapter we conclude this dissertation. The remainder of this chapter is organized
as follows. We first present a summary of our works and contributions. We then conclude this
dissertation with a broad review of the challenges of developing algorithms for understanding
complex activities along with perspectives for future research.

6.2 Summary of Contributions

The overall goal of this dissertation was to develop novel approaches to model complex activ-
ities under different supervision levels, on different datasets and for different tasks. Towards
this goal we investigated several challenges related to working with such activities and pre-
sented our contributions in Chapters 3, 4, 5. In the following, we summarize our contributions
to the complex activity domain individually with respect to our solutions. We mainly focused
on developing novel temporal models, using less supervision, utilizing auxiliary data, mea-
suring the influence of visual representations, and investigating the role of natural language
in complex videos.

The potential reward for developing algorithms requiring little or no supervision becomes
more prominent as the amount of online data grows rapidly. Even though there have been
several works on unsupervised learning from complex activity videos (Sener et al., 2015;
Alayrac et al., 2016), they assume videos with textual data in the form of narrations. It is
common that people talk when teaching or instructing. However, the alignment between the
spoken and visual content is not always guaranteed. In Chapter 3, we presented a method
which does not require any text, and automatically segments videos based on visual data
only. Following our work, there has been recent interest in unsupervised temporal action
segmentation in videos in the vision community (Goel and Brunskill, 2018; Kukleva et al.,
2019; Aakur and Sarkar, 2019; Mounir et al., 2020).

In computer vision, the majority of complex activity datasets are composed of multiple
demonstrations of the same activities. However, this does not match human experience, as
humans do not need many demonstrations to learn new tasks and are experts at transferring
previous experience. Moreover, relying on multiple demonstrations does not scale well to all
complex activities, and data collection gets costly. Reducing the number of demonstrations
needed for individual tasks is also known to be important for teaching robots using a few
demonstrations (Finn et al., 2017). In Chapter 4, we considered the transfer of knowledge
as the ability to make predictions on tasks that we have never seen before, similar to how
humans perform. We learned the structure of instructions from text data in an unsupervised
way and transferred it to the visual domain to anticipate the future actions on unseen videos.
Transferring the knowledge to the video domain is supervised and requires a small-scale video
dataset annotated with temporal labels. Our work shows promising results for a challenging
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task that, without transferring knowledge, would otherwise require collecting orders of mag-
nitude more video data and thus a much more costly labelling process. With our zero-shot
problem description on complex activity videos, we believe that we started a new challenge
for the vision community.

In this dissertation, we proposed three temporal models for understanding human ac-
tivities in untrimmed complex activity videos. In Chapter 3, we separated the unsupervised
temporal action segmentation problem into two components of discriminative learning of sub-
activity representations and their temporal modelling. We generatively modeled the temporal
structure of sub-activities using a generalized Mallows model (Fligner and Verducci, 1986),
which models the distribution over sub-activity permutations. Since our algorithm is un-
supervised, we start with some initial label assignment to video frames. We then alternate
between discriminatively learning the appearance of sub-activities and generatively modelling
their temporal structure. We showed that our method is flexible enough to allow missing steps
and variations in ordering and is able to produce coherent segments. In Chapter 4, we pre-
sented an action anticipation framework for learning the structure of instructions from text
and transferring it to video data. In particular, we worked on cooking recipes where one can
find a vast amount of instructional data both in the text and video domain. We introduced
a hierarchical system that is composed of four recurrent neural networks (RNN), where two
RNNs encode the sentences and videos, one generates sentences, and another RNN captures
the sequential structure of the instructional activity. Our hierarchical model allowed us to
separate the procedural learning from the visual appearance learning and predict coherent
and plausible future instructions. Finally, in Chapter 5, we proposed a novel way to learn rep-
resentations of long videos and showed its strength through successful experiments on several
tasks, including action anticipation and temporal action segmentation. Our main novelty is
our multi-granular pairing of recent observations with long-range past/future observations.
We modelled the relationships between recent observations and long-range context using sim-
ple techniques such as max-pooling and attention. Our engineering efforts, when interpreted
with extensive experiments, give insight for long-range video understanding, including topics
of temporal extent and level of semantic abstraction. We showed that our model can be used
for multiple tasks with minimal modifications and does not pose any constraints on the type
of activity, i.e., it can be used for daily and instructional activities alike. We believe that our
method’s success is a meaningful contribution that will spawn more research in the future.

To improve the robustness of our temporal models to visual representations, we presented
several solutions. In Chapter 3, we proposed a discriminative appearance model and an
extension of our model to handle the frames which are irrelevant to the complex activities.
In this work, we separated the modelling of appearance and their temporal relations. We
discriminatively modelled the appearance of sub-activities via clustering, where we group
frames according to their semantic similarity with respect to their sub-activity rather than
purely visual features. We also showed that explicitly handling the irrelevant frames within
the model improves the performance. In Chapter 5, we experimented with different types
of visual representations such as appearance or flow-based features as well as higher-level
abstractions such as object labels. We showed that an ensemble of such complementary
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features yields improvements.
Different from related works (Farha et al., 2018; Damen et al., 2018; Ke et al., 2019b),

in Chapter 4, we did not make category-based predictions but instead predict the future
in the form of sentences. Our motivation for using sentences is to decrease the load for
annotating the video datasets and adding richness to our predictions, as sentences convey
information about the objects, their states, and the actions. Additionally, as humans are the
end-users of such systems, it is natural to present the results of such systems as sentences
for smoother interactions. We collected a new video dataset annotated with sentences where
we have a single demonstration of around 2.500 different cooking recipes. We think that
our publicly available dataset will be of interest to those working in anticipation, complex
activity recognition, and video captioning. We also presented various ways of evaluating our
generated sentences, including using human raters.

6.3 Discussion and Outlook

Human activities exhibit various potential research directions to explore, ranging from action
recognition, detection, anticipation, retrieval, captioning, to temporal action segmentation.
In this dissertation, we closely worked on long-range complex activity videos and proposed
solutions for temporal action segmentation and action anticipation from videos. Throughout
our works, we faced many challenges and introduced novel solutions.

In the following, we present an overview of the challenges of developing vision-based
solutions for complex activities, along with our contributions and future directions. First, we
start with an analysis of the complex activity datasets. Next, we highlight the importance
of temporal modelling in complex videos. We then review feature representations for videos.
Finally, we conclude with an overview of annotations and evaluations on complex activity
datasets.

6.3.1 Datasets

There are several frequently used standardized complex activity video datasets. We split
them into instructional and daily activities. For the instructional activities (Kuehne et al.,
2014b; Zhukov et al., 2019) the actors usually have a well-defined task and an end goal,
and the sub-activities follow some loose order. Daily activities (Damen et al., 2018), on the
other hand, are composed of multiple actions that are following some partial order, as certain
sub-activities can be executed independently of others. In the following, we compare such
datasets based on how they are collected and annotated, as well as their limitations.

• Although there are several recorded datasets (Kuehne et al., 2014b; Damen et al., 2018),
recently, the trend is to collect videos from online resources such as YouTube. This is
due to the large number and variety of videos on such platforms (Malmaud et al.,
2015; Zhou et al., 2018b; Zhukov et al., 2019; Tang et al., 2019; Sener and Yao, 2019).
However, collected datasets have limitations regarding the applicability to every task.
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For example, action anticipation and augmented reality-related scenarios might re-
quire dedicated, realistic recording settings, as collected videos tend to be edited, e.g.,
with fast-forwarding, annotated frames, or changing viewpoints. Among the recorded
datasets, the Epic-Kitchens (Damen et al., 2018, 2020a) is the most recent and largest
daily activity dataset. For instructional activities, the largest recorded dataset, the
Breakfast Actions dataset (Kuehne et al., 2014b), was created in 2014, and is much
smaller than Epic-Kitchens.

• Recorded datasets have either third-person or egocentric views. Recently, egocentric
datasets gained attention. The Epic-Kitchens (Damen et al., 2018, 2020a) is the largest
dataset in egocentric vision that captures untrimmed daily activities. There are also
several instructional activity datasets with egocentric view (Fathi et al., 2011b; Li et al.,
2018b), but on a much smaller scale. Activity understanding research can benefit from
datasets with multi-view recordings, including both third-person and egocentric views.
The Breakfast Actions dataset (Kuehne et al., 2014b) contains multi-view recordings.
However, all the views are from a third-person perspective. Egocentric views do not
capture the physical environment as a well as a third-person view would. The third-
person view, on the other hand, might not be as good as the egocentric view in capturing
objects, tools and hand-object interaction spots, which are essential ingredients for
recognizing fine-grained actions correctly.

• The diversity in complex activity datasets is limited. Although the collected datasets
recently started including diverse domains (Tang et al., 2019), almost all the recorded
datasets with a few exceptions (Toyer et al., 2017) cover only cooking activities.

6.3.2 Temporal Modelling

Action recognition from short videos has seen a considerable boost with the use of deep
architectures (Simonyan and Zisserman, 2014a; Wang et al., 2016a; Carreira and Zisserman,
2017; Feichtenhofer et al., 2019; Lin et al., 2019a). However, complex activity videos tend
to be long, ranging from minutes to hours. They exhibit arbitrarily-long temporal durations
depending on the type of activity (Kuehne et al., 2014b; Zhou et al., 2018b; Damen et al.,
2018). As a result, it becomes challenging to process an entire complex activity video at once.
Therefore, taking state-of-the-art action recognition models that usually work on seconds-long
videos and applying them directly to complex videos becomes challenging.
We consider the challenges of modelling complex activity videos as the following:

• Complex activities are untrimmed sequences where multiple sub-activities take place
over time. Most importantly, these sub-activities are not independent but are related to
each other through sequence dynamics. This makes temporal modelling more critical for
understanding complex activities compared to simple action recognition (Huang et al.,
2018b). A variety of such models are already utilized for modelling complex activities,
including context-free grammars (Kuehne et al., 2014b), hidden Markov models (Lea
et al., 2016; Elhamifar and Naing, 2019), recurrent neural networks (Singh et al., 2016;
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Farha et al., 2018; Sener and Yao, 2019), Mallows model (Sener and Yao, 2018) and
temporal convolutions (Lea et al., 2017; Farha and Gall, 2019b). Temporal models
should capture long and short-range temporal dependencies, account for variable or-
derings, missing or repeating sub-activities in videos. Ideally, the the developed models
should be generic and applicable to both daily and instructional videos, which is a
lacking feature in recent approaches, as the majority of them assume that the data will
be in the form of instructional videos (Sener et al., 2015; Alayrac et al., 2016; Huang
et al., 2016; Sener and Yao, 2018; Elhamifar and Naing, 2019).

• There is a large amount of video data available on the internet. However, collecting and
annotating video data can be very costly and time-consuming. Therefore, particularly
for video data, unsupervised methods are preferred over supervised ones. Similarly,
research directions toward weakly supervised and transfer learning-based solutions are
favored.

• In complex activity videos, a considerable portion of the data might be composed
of irrelevant content, i.e., frames that cannot be classified into any action class of
interest. Therefore, models should be supplied with additional mechanisms to handle
such noise (Sener and Yao, 2018; Elhamifar and Naing, 2019).

• Standard action recognition datasets (Soomro et al., 2012; Kay et al., 2017) have usually
balanced action class distributions. However, complex activities might contain long-
tailed distributions (Damen et al., 2018). This is because the number of category-based
annotations grows arbitrarily with the number of new complex activities, as more and
more objects will be in interaction. For example, there are 10 different complex activities
and 52 action classes in the Breakfast Actions dataset (Kuehne et al., 2014a) while
there are 432 different complex sequences with in total 2513 action classes in Epic-
Kitchens (Damen et al., 2018). There is a large body of work on long-tailed (Kang
et al., 2020; Zhou et al., 2020) and few-shot learning (Schonfeld et al., 2019) that the
complex activity research can benefit from for modelling actions.

6.3.3 Representation

When working with videos their representation is a fundamental question. Dut to the long-
range videos, so far, the research on complex activities (Kuehne et al., 2014b; Richard et al.,
2017; Farha and Gall, 2019b) is focused on representing video frames with standard image or
video-based features, both handcrafted (Wang and Schmid, 2013) and deep learning-based
(He et al., 2016; Carreira and Zisserman, 2017), and only then applying temporal models on
top of these representations.
When representing videos, we need to account for the following aspects:

• First of all, we are faced with all typical computer vision challenges, like significant vari-
ations in camera motion, changes in viewpoint, illumination conditions, or background.
We need features that are robust to all these variations. Additionally, there might be
considerable appearance variations between videos of the same complex activity due
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to diverse scenery. In contrast, appearance changes between different sub-activities in
the same video might be very subtle. Ideally, a good representation should reflect sim-
ilarities between the same sub-activities in different videos and provide discriminative
cues for different sub-activities in the same video. Recently several works have been
proposed to learn strong representations for video data by using joint embedding spaces
between text and video (Miech et al., 2019b, 2020) and cross modal learning (Sun et al.,
2019a). These works can be utilized for obtaining robust representations.

• Besides appearance-based video features, we could use auxiliary modalities to get more
discriminative video representations from motion, audio, text, and high-level features
such as object labels. Motion-based features might better represent the actions at dif-
ferent speeds (Simonyan and Zisserman, 2014a). Although it might fail at distinguish-
ing fine-details, audio can contribute discriminative cues for actions such as “frying”
or “washing”. Text obtained through narrations (Alayrac et al., 2016) or additional
sources (Malmaud et al., 2015) can be a helpful cue, as it is high-level and directly re-
lated to action labels. However, it should be noted that the performance gain is largely
governed by the quality of the alignment between text and video. Since complex activi-
ties are composed of fine-grained and mostly object-centric actions, explicitly detecting
objects (Ren et al., 2015) in videos and using object-based features can provide dis-
criminative information.

6.3.4 Labelling

Complex activity videos are annotated with the temporal boundaries and the types of their
sub-activities. In the following we present differences among annotations in existing datasets:

• Depending on the task of interest, temporal annotations in datasets can exists at dif-
ferent granularities. For example, in one dataset (Kuehne et al., 2014b), a sequence
labeled with “pour oil” might be annotated in another dataset (Damen et al., 2018) with
five sub-activities of “taking oil bottle”, “opening the bottle”, “pouring oil”, “closing the
oil lid” and “placing it in the cupboard”. The labelling granularity affects the temporal
extent of actions. The duration of the same action may vary significantly across differ-
ent datasets. Such differences make the generalizability of models to different datasets
very challenging.

• Although the majority of datasets in the literature are presented with category-based
labelling (Kuehne et al., 2014b; Damen et al., 2018; Tang et al., 2019), there are several
datasets with sentence descriptions (Malmaud et al., 2015; Zhou et al., 2018b), including
our Tasty Videos dataset (Sener and Yao, 2019). On the one hand, natural language
descriptions of activities convey a lot more information than simple category-based
labels and allow for better understanding of actions and objects (Lin et al., 2015; Zhou
et al., 2018b). On the other hand, modelling language and evaluating it is an open
research topic itself. One direction when annotating datasets could be following the
recent Epic-Kitchens (Damen et al., 2020a) dataset, which provides both narrations
and category-based annotations.
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6.3.5 Evaluation

The mode of evaluation in complex activity related tasks might differ from standard metrics
used in recognition.

• Usually, for complex activity related tasks such as temporal action segmentation or ac-
tion detection, the labels are predicted per frame. As such, many methods use metrics
such as frame accuracy (Kuehne et al., 2014b) or mean average precision (Caba Heilbron
et al., 2015) to assess the quality of the results. However, as a new but fast-growing
topic without well established evaluation methods, action anticipation is still difficult
to evaluate accurately. Currently, the standard is to evaluate using conventional recog-
nition metrics such as accuracy and recall (Farha et al., 2018; Furnari and Farinella,
2019). However, these do not allow assessing the plausibility of outcomes, which is nec-
essary, as the future is not always fixed and might lead to alternative actions. Although
it might be very costly, one solution could be annotating the datasets with multiple
possible future labels.

• For evaluating sentence-based predictions, standard challenges in natural language pro-
cessing remain (Vedantam et al., 2015; Lopez, 2008). Although there are widely used
sentence evaluation metrics (Papineni et al., 2002; Banerjee and Lavie, 2005), human
evaluations are still considered the gold standard.

• Existing works are mainly focused on improving their accuracy and thus are only focused
on their correctly predicted outcomes. An interesting future direction could be to more
closely investigate negative outcomes (Negative, 2018) to better understand potential
shortcomings of temporal methods and problems of complex activity datasets.
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