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Wir hoffen, mit Hilfe eines neu zu errichtenden wissenschaftlichen
Systems neue Vorgänge zu entdecken; an dem falsifizierenden

Experiment haben wir höchstes Interesse, wir buchen es als Erfolg,
denn es eröffnet uns Aussichten in eine neue Welt von Erfahrungen;

und wir begrüßen es, wenn diese uns neue Argumente gegen die
neuen Theorien liefert.

— Karl Popper, Logik der Forschung, [Pop35]





A B S T R A C T

Machine learning algorithms now make it possible for computers to
solve problems, which were thought to be impossible to automize.
Neural Speech processing [Cha+16], convolutional neural networks
[Vas+15], and other recent advances are powered by frequency-domain
methods like the fast Fourier transform (FFT).
This cumulative thesis presents applications of frequency-domain
methods in recurrent machine learning. It starts by exploring the
combination of the short time Fourier transform (STFT) and recurrent
neural networks. This combination allows faster training through win-
dowing, end-to-end window function optimization, while low-pass
filtering the Fourier coefficients can reduce the model size. Fourier
coefficients are complex numbers, and therefore best processed in
C. The development of a complex recurrent memory cell is an addi-
tional contribution of this text. To move a modern recurrent neural
network (RNN)-cell into the complex domain, we must make various
design choices regarding the gating mechanism, state transition matrix,
and activation functions. The design process introduces a new com-
plex gate activation function the modSigmoid. Afterwards, we explore
the interplay of state transition matrices and cell activation functions.
It is confirmed that unbounded non-linearities require unitary or or-
thogonal state transition matrices to be stable.
General-purpose machine learning models often produce blurry video
predictions. By using the phase of frames in their frequency domain
representation, it is possible to do better. Image registration methods
allow the extraction of transformation parameters. For single pre-
segmented objects on input video frames, phase modification can help
to predict future images.
The FFT represents all inputs in the fixed Fourier representation. The
fast wavelet transform (FWT) works with infinitely many wavelets, all
of which can serve as potential bases. This text proposes a loss func-
tion, which allows wavelet optimization and integrates the FWT into
convolutional and recurrent neural networks. Replacing dense linear
weight matrices with sparse diagonal matrices and fast wavelet trans-
forms allows spectacular parameter reductions without performance
loss in some cases. Finally, the last chapter finds that wavelet quanti-
zation can reduce the memory space required to store and transmit a
convolutional neural network.
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Z U S A M M E N FA S S U N G

Maschinelle Lernalgorithmen erlauben es, Programme zu entwickeln,
die Probleme lösen, die noch vor Kurzem für Computer als unlösbar
galten. Fortschritte in der neuronalen Sprachverarbeitung [Cha+16],
schnelle Faltungsnetze [Vas+15], und andere Neuentwicklungen jün-
gerer Zeit nutzen die schnelle Fourier Transformation (FFT).

Diese kumulative Arbeit widmet sich der Kombination von ma-
schinellen Lernalgorithmen und Datenverarbeitung im Frequenzbe-
reich. Die Kurzzeit-Fourier-Transformation wird mit rückgekoppelten
neuronalen Netzen kombiniert. Diese Kombination erlaubt es, die
Fenster-Funktion gemeinsam mit allen Gewichten zu optimieren. Sie
beschleunigt den Lernprozess und ermöglicht durch Tiefpass-Filtern
die Netzgröße zu reduzieren.

Fourier-Koeffizienten sind komplexe Zahlen, um sie im komplexen
Zahlenraum verarbeiten zu können, wird der Entwurf komplexer
rückgekoppelter Speicherzellen diskutiert. Hierbei kommt den Zell-
Toren, der Aktivierungs-Funktion sowie der Zustands-Matrix beson-
dere Bedeutung zu. Für komplexwertige Tor-Gleichungen wird die
ModSigmoid-Aktivierung vorgeschlagen. Darüber hinaus wird bestä-
tigt, dass unbeschränkte Zell-Aktivierungs-Funktionen orthogonale
oder unitäre Zustandsmatrizen benötigen, um eine stabile Zelle zu
bilden.

Klassische maschinelle Lernmodelle produzieren oft verschmierte
Vorhersagen auf Video-Daten. Diese Arbeit enthält einen Lösungsvor-
schlag für Video-Bilder mit nur einem präsegmentierten Objekt. In
diesem Fall lassen sich, mit Hilfe von Bildregistrierungsmethoden,
Transformationsparameter aus der Phase vorheriger Frames ableiten.
Mit Hilfe dieser Parameter lässt sich dann eine Vorhersage errech-
nen, indem die Phase des aktuellen Bildes modifiziert wird. Eine
rückgekoppelte Zelle zu diesem Zweck wird vorgestellt.

Im Vergleich zur schnellen Fourier Transformation, die immer die
gleiche Basis Nutzt stehen für die schnelle Wavelet Transformation
unendlich viele Basis-Funktionen zur Verfügung. Aus allen möglichen
Wavelets das Richtige auszuwählen ist nicht immer leicht. In dieser Ar-
beit wird daher eine Kostenfunktion zur automatischen Optimierung
von Wavelets vorgeschlagen und die schnelle Wavelet Transforma-
tionen zur Kompression neuronaler Netze genutzt. Anstelle dicht
besetzter Gewichtsmatrizen lassen sich Diagonalmatrizen in Verbin-
dung mit den Vorwärts- und Rückwärts-Transformationen verwenden.
In einigen Fälle hat dieser Ansatz keinen Genauigkeitsverlust zur
Folge. Im letzten Kapitel wird abschließend ein Faltungsnetz mit Hilfe
von Wavelet Quantisierung und Huffman Kodierung komprimiert.
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1
I N T R O D U C T I O N

This cumulative thesis explores links between frequency-domain meth-
ods and recurrent machine learning for sequential data processing.
Each chapter in the research part corresponds to a previously pub-
lished paper. The background part appears in this text for the first
time. It explains the methods and algorithms the research part builds
upon.

1.1 motivation

Recurrent neural networks (RNN) are the go-to choice for sequence
processing [GBC16], however, the best design of their internal machin-
ery is not immediately obvious. Three goals lie at the heart of the
RNN design process. The first is stability, ideally a good cell-structure
should be provably stable. The second and equally important is to
make the memory capacity as large as possible. RNN should be able to
take as many past inputs into account as possible. Last but not least,
any design must be efficient. This includes the number of parameters
and the overall computational cost.

Gated recurrent memory cells outperform simple RNN in terms of
memory capacity because gradients rarely vanish. The added gates
come at the expense of increased network size, and gated architectures
still suffer from the exploding gradient problem. Exploding gradients
limit network stability over long time horizons. The three design goals
are coupled. Reducing network sizes and the study of network stability
and efficiency are the main motivations for the research questions and
challenges studied in this text.

Frequency domain methods often introduce structure into our net-
work weights or input data. Depending on the situation, such structure
allows sparse diagonal weights instead of dense matrices or lowpass
filtered inputs instead of the entire spectrum. Using structure not only
allows us to reduce the number of network parameters but also un-
locks input features, which improve training convergence. Advancing
the integration of frequency-domain methods into neural networks
further is an additional goal of this thesis.

1
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Figure 1.1: Example memory and adding problem benchmark inputs for
T=100. These problems were first proposed in [HS97a] and later
adapted by [ASB16].

1.2 understanding recurrent memory

The adding and memory problems [Hoc91] [ASB16] are benchmark
challenges for recurrent neural networks. New architectures are often
first evaluated on these two problems. The two are visualized in
figure 1.1.

The problems have length T . Example adding problem network
input sequences are shown on the left. This problem uses two-channel
inputs. The first channel consists of T samples drawn from a uniform
distribution U[0, 1]. The second channel marks a sample in the first
and another sample in the second half. All other samples are marked
with zeros. After observing all sequence pairs, the benchmarked RNN
architecture must produce the sum of both marked samples.

The right side of figure 1.1 shows a copy-memory problem-input
as well as the corresponding desired output. The challenge for the
network architecture under evaluation is to observe a sequence of ten
integers and to later reproduce this sequence after T additional zero
inputs.

1.2.1 Contributions to complex network architectures [WY18]

In chapter 7 both problems are used to design a complex gated recur-
rent neural network (cgRNN), while keeping stability, memory capacity,
and efficiency in mind. To do so requires a closer look at complex acti-
vation functions and their effects on network stability. For recurrent
models multiple achitecture choices are possible. Solving both adding-
and memory-problem with few weights is difficult. Gates work very
well on the adding problem, while unitary approaches perform better
on the memory problem. To combine both, complex state and gate
activation functions and their interplay with unitary state transition
matrices are studied. Bounded and unbounded state activation func-



1.3 time series prediction 3

−2
−1

0
1

2

−2
−1

0

1

2
0

0.2

0.4

0.6

0.8

1

<(z)=(z)

|f
(z
)|

Hirose

−2
−1

0
1

2

−2
−1

0

1

2
0

1

2

<(z)=(z)

|f
(z
)|

ModRelu

Figure 1.2: Surface plots showing the magnitude of the bounded Hirose and
unbounded modReLU activations [WY18].

tions such as the Hirose and modRelu activations shown in figure 1.2
exist. The notion that unbounded RNN-state activation functions re-
quire unitary state transition functions is confirmed. A new gating
function for complex RNN the modSigmoid is proposed.

In terms of memory capacity and convergence, cgRNNs combine the
best of the two worlds. This architecture displays unitary recurrent
neural network (uRNN) like stability on the memory problem and the
noise resistance commonly observed for gated RNN on the adding
problem.

1.3 time series prediction

Adjusting T changes the difficulty of adding and memory problems.
This attribute makes the study and debugging of new recurrent cells
easier, but measured real-world data does not share this property.
Proper evaluation of our RNN architectures requires additional sequen-
tial data with different time-relations and structures. Therefore time
series problems, including real-world measurements, are considered
in all chapters of this text. The mono-variate chaotic Mackey-Glass
series and electric power load data are studied in chapter 6. A chal-
lenging multivariate joint position [Ion+14] forecasting problem, as
shown in figure 1.3 on the right, is considered in chapters 6 and 7.
Accurate forecasts of human joint positions may enable more accurate
human-robot collaboration in the future, as robots require an idea of
where humans may move to in the future, to avoid collisions [Bru+20].
Figure 1.3 shows the power load data on the left, and human pose
data on the right.

1.3.1 Contributions to STFT and (complex) RNN integration [WGY20]

RNN cells do not have to be evaluated at every time step. The frequency
of evaluation is called the clock rate [Kou+14]. Instead of processing
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Figure 1.3: Mono- and multi-variate sequence data. Belgian power load in
January 2016 (left) as well as a sequence snippet from the human
3.6m data set. The right image previously appeard in [WGY20].

individual data points, the STFT moves data windows consisting of
multiple samples into the frequency domain. By processing the re-
sulting complex coefficients per window, the clock rate is reduced
significantly. Clock rate reductions make the network computationally
more efficient by reducing the overall number of cell executions. Net-
work stability is improved as well because unstable cells have fewer
opportunities to blow up. Propagating gradients trough the STFT en-
ables window function optimization. Additionally, in some cases, low
pass filtering makes it possible to cut network parameters because dis-
carded coefficients do not appear at input layers. Fourier coefficients
are complex numbers. Ideally, complex-valued machine learning mod-
els should process these without taking them apart. Chapter 6 presents
efficient processing of these complex Fourier coefficients using cgRNN.

1.4 video segment prediction challenges

Videos or image sequences are perhaps the hardest to predict because
standard methods tend to produce blurry predictions. As a precursor
to real video, [SMS15] proposed the moving-MNIST data set to study
this problem. The benchmark consists of MNIST-digits moving on
a white background. Digit wall collisions are elastic and lead to a
change of direction. The data set appears in chapter 8.

1.4.1 Contribution: Segment prediction via phase modification [WYB20]

Translation in space or a shift in time causes a phase-shift in the
frequency-domain and vice-versa. Similarly, by comparing complex
image representations, the transformation parameters can be esti-
mated. A small RNN can then handle collisions in a predictor-corrector
setup. Chapter 8 proposes a specialized RNN. The predictor-corrector
approach is small, efficient, and does not produce blurry predictions.
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1.5 the challenge of compressing neural networks

While neural networks are growing in size and accuracy, new resource-
constrained mobile and embedded applications are emerging. Many
of the most recent models will not run on low resource devices. The
sparsity inducing properties of the Fourier-, Walsh-Hadamard- and
wavelet-transforms are known to be useful for data compression.

1.5.1 Contribution: Wavelet optimization and network compression via the
fast wavelet transform (FWT) [WLY20]

Network compression reduces storage and computational footprints.
Wavelets can compress neural networks by replacing fully connected
layers. Instead of dense matrix multiplication, a combination of di-
agonal matrices, FWT-, inverse fast wavelet transform (iFWT)-, and
permutation matrices can be substituted. Proper wavelets satisfy the
anti-aliasing and perfect reconstruction conditions. Both have histor-
ically been part of the product-filter approach to wavelet design by
hand [SN96]. Since both conditions are differentiable, two new cost
functions can be constructed and added to the overall objective. The
addition effectively turns the conditions into soft constraints. As dis-
cussed in sections 9.3.1 and 9.3.2 this works for convolutional neural
network (CNN) and RNN architectures. In the RNN case, gate parame-
ters can be reduced selectively. With this approach, chapter 9 studies
the relative importance of the various RNN cell gates.

Replacing dense layers can significantly reduce network parameters,
but no obvious initialization is available for the replacement. Therefore
re-training of the entire network or fine-tuning of the replaced layer
is necessary. Compression and quantization in wavelet space avoids
the re-training problem and drastically reduces Huffman-coded file
size. As discussed in section 9.5, this works well for shallow CNN, here
wavelet quantization outperforms simple quantization.

1.6 outline of the thesis structure

This text is divided into a background and research part. The back-
ground part discusses the foundations of the signal processing and
machine learning algorithms required in the research part. The back-
ground part includes descriptions of the fast Fourier and wavelet
transforms, additionally fully connected, convolutional and recurrent
network architectures such as Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU) are explained. The illustrated explanation
includes forward and backward passes for all architectures. Backward
passes are carefully derived. Furthermore, cost functions, as well as
standard optimization methods, are discussed.
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In the research part, chapter 6 combines the short-time Fourier trans-
form and complex-valued recurrent neural network cells [WGY20].
Chapter 7 is concerned with the design of a complex gated recurrent
network cell [WY18].
In chapter 8 phase-based motion registration and image transfor-
mation are integrated into a recurrent cell for object-centered frame
prediction [WYB20].
Chapter 9 presents new adaptive wavelets for network compression
[WLY20].

1.7 open research approach

Scientific discourse requires empirical evidence, for example, in the
form of measurements and observations. Checking evidence makes
it possible to distinguish fact from fiction. Good scientific practice,
therefore, must center around enabling others to reproduce and check
our evidence. As previously cited right after the title in the words of
Karl Popper:

We, and those who share our attitude, will hope to make new discoveries;
and we shall hope to be helped in this by a newly erected scientific system.

Thus we shall take the greatest interest in the falsifying experiment.
We shall hail it as a success, for it has opened up new vistas into a world of
new experiences. And we shall hail it even if these new experiences should

furnish us with new arguments against our own most recent theories.

— Karl Popper, Logik der Forschung [Pop35] translation [Pop59]

In machine learning research, new ideas are often evaluated on stan-
dard data-sets. On standardized data, the new algorithms and their
evaluation take the form of source code. Unlike other sciences where
manual labour in a lab is required, we can often repeat experiments
automatically by running code on a computer. Most papers report
evaluation results along with a short description of new algorithms
or network structures, yet currently, most authors choose not to re-
veal their source code [Hut18]. Machine learning projects typically
involve numerous training and network structure hyper-parameters
as well as various preprocessing steps. Often it is simply impossi-
ble to describe everything in detail without violating the mandatory
page limits imposed by virtually all major conferences. Consequently,
the information present in the paper is not always sufficient to ex-
actly reproduce the measurements described. Making reproduction
and thereby confirmation or falsification as easy as possible not only
means taking Popper seriously, it stands to reason that open code
implementations enable accountability and will help future scientists
drive progress in machine learning. This thesis comes with free and
open-source code for every chapter. The code will make repetition and
extension of the described algorithms and experiments easier.
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N E T W O R K S T R U C T U R E S

This chapter explores the machine learning architectures used in this
thesis. Forward-, backward passes and cost will be discussed in de-
tail. To fully understand the most important related work, a NumPy
implementation of the methods and tools described in this chapter
is available at https://github.com/v0lta/NumPy-backprop. Feedfor-
ward networks are evaluated on MNIST and recurrent structures
on the adding and memory problems. Numpy does not come with
automatic differentiation and automatic gradient computation tools.
Everything discussed in this chapter has been reimplemented, using
only Numpy functions from the ground up.

2.1 cost functions

Neural network optimization is gradient-based, and gradients are
computed with respect to a performance measure or cost-function. A
widespread cost function, in particular for prediction problems, is the
mean squared error function. Given a network output o and a ground
truth value t, the distance between the actual and the desired value
can be measured as [Nie15]

Cmse(t, o) =
1

2

no∑
k

(
ok − tk

)2
=
1

2

(
ok − tk

)T
·
(

ok − tk
)

. (2.1)

With · denoting the matrix product. Taking the derivative with respect
to the output o leads to

∂Cmse(y, o)
∂o

= o − y = 4mse. (2.2)

With no the number of output channels required for the problem
under consideration. The difference above can be used as error input.
Computing the error then is the first step of the backward pass.

For classification problems, the cross-entropy cost function is more
common. Here the last activation function is chosen to be a sigmoid,
to squash the output values into [0, 1], which allows interpretation

9
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as probabilities. The cross entropy loss function is defined as [Nie15;
Bis06]

Cce(t, o) = −

no∑
k

(tk ln ok) + (1− tk) ln(1− ok). (2.3)

If a sigmoidal activation function produced o the gradients can be
computed using [Nie15; Bis06]

∂Cce

∂h
= σ(h) − y = 4ce (2.4)

For the network output h. The following section will use 4 for cost
function gradients and gradients from previous layers.

2.2 fully connected layers and networks

Feed-forward networks can be considered as useful pattern extractors
in their own right. At the same time these layers form important build-
ing blocks in many more complex network architectures. Typically a
simple fully connected layer is defined as

h = Wx + b (2.5)

h = f(h), (2.6)

with h ∈ Rnh,1 the output if the network ends after the layer or
hidden representation if other layers follow. The layer weight matrix
W ∈ Rnh,nx and bias vector b ∈ Rnh,1 contain the layer weights.

During the backward pass the gradients for the weight matrix and
bias vector are computed using [Nie15]

δW = [f ′(h)�4]xT , δb = f ′(h)�4, (2.7)

δx = WT [f ′(h)�4]. (2.8)

The expressions above follow from the application of the chain rule.
4 represents the input from the previous layer or the cost function
backward pass if the fully connected layer was the last one. The δ
is used to indicate the gradient with respect to the value following
it [Gre+16]. δW and δb can be used to update parameters, while δx
flows into subsequent layers. Element-wise product is denoted using
�.

By combining cross-entropy cost and feedforward networks, it is
possible to solve the MNIST digit recognition problem with accuracies
above 90%. However, the dense matrix multiplies, use n2h parame-
ters per layer. It’s possible to do better with fewer parameters using
convolutional layers.
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2.3 convolutional neural networks

Digit recognition using CNN architectures [LeC+98] was an early suc-
cess, which helped to establish convolutional structures for image
processing tasks [Bis06]. Neighbouring pixels are more likely to have
the same colour than distant pixels or, in other words, are more likely
to be correlated. Convolutional networks make use of this fact by
extracting features locally [Bis06] using filters much smaller than
its input. The network can learn about complex-features at higher
layers through repeated convolution, which integrates local features
[NYC16].

Using local receptive fields additionally enables weight sharing. A
corner detector will be equally useful in the top left and bottom right
of an input image. Avoiding to re-learn it at different locations means
sharing the weights.

Coupling the parameters not only leads to a sparse transformation
matrix compared to the fully connected case [GBC16], it also means
that shifting the input shifts the features. The feature shift property is
desirable because moving objects would disappear from view if it was
impossible to compute identical activations elsewhere in an input.

Finally, subsampling operations are part of most convolutional
neural networks [Bis06]. Subsampling eases the computational burden
on higher levels considerably, making it possible to add additional
filters, and thereby more flexibility.

Formally for an image I and a kernel K ∈ Rkw×kh , with kw rows
and kh columns, two-dimensional convolution is defined as [GBC16],

S(i, j) = (I ∗K)(i, j) =
kw∑
m

kh∑
n

(I)(i+m, j+n)K(m,n). (2.9)

This means that for each position in the resulting feature image all
n ·m kernel elements which overlap with the pixel at i, j and those
surrounding it must be summed up. In practice, networks consist
of multiple stacked convolutions, which process batches of inputs.
Figure 2.1 shows the computations which make up a CNN-layer. For
efficiency nb images are typically processed at once. nc is used to
denote the channel count. Convolution layers require an input tensor
I ∈ Rnb×nc×nw×nh , which is shown in the left, and a kernel tensor
K ∈ Rko×ki×kw×kh , which is not shown. Additionally to the kernel-
width kw and height kh, input ki and output channel numbers ko
appear here. The number of image input channels nc must be equal
to the input kernel dimension ki. The kernel tensor stacks ki filters for
each output dimension ko. Figure 2.1 depicts the computational steps
in a convolution layer from left to right. The convolution operation ∗
as defined in equation 2.9 must be evaluated ki · ko times. Once for
each input dimension and output dimension in the convolution kernel
tensor. Summations + along the input channel dimension follow the
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Figure 2.1: Visualization of multi-channel convolution. Convolution compu-
tation using a 3x2x3x3 kernel on a 2x5x5 image is shown. The
image is read from left to right, starting with the two-channel five
by five image on the very left. In a first step, the two input kernels
are convolved with the input channels three times, as indicated by
the convolution blocks ∗. Without padding, this operation leads
to the 3x3 results. Moving towards the right, we add + the two
channels for each of the three resulting tensors. Finally, everything
is stacked, which leads to the final result. [DV16] inspired this
illustration, it contains an excellent introduction to the topic.
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convolutions, leaving ko features. Finally, these ko features are stacked,
leading to the convolution layer output.

2.3.1 Convolution as Matrix Mutliplication

The convolution operation lies not only at the heart of CNNs is also
is the key operation powering the FWT and iFWT. Writing it as a
matrix operator allows the definition of backpropagation equations in
section 2.3.2.

Since convolution is ultimately a linear operation it can be written
as matrix multiplication Ax = b. Using doubly block circulants Cb
[GBC16] puts convolution structures into matrices. The numerical
values depend on the kernel, but the structure is a consequence of the
convolution operation. Unfortunately, the resulting block circulants
are sparse and require dedicated matrix multiplication algorithms for
efficiency.

A more straightforward solution is to introduce the convolution
structure into the vector instead of the matrix. This approach uses
image-to-column and column to image functions. These seek to write
convolution as KfCI, with K ∈ Rko,kk the flattened kernel matrix
and CI ∈ Rnk,nv the image matrix, which is structured such that
multiplication with the flat kernel matrix Kf results in convolution.

The structure of the kernel matrix is straightforward with ko the
number of output channels and kk the product of the remaining kernel
tensor dimensions ki · kh · kw.

The image matrix now lists the image pixels from each patch along
channels, such that matrix multiplication leads to the convolution layer
operation shown in figure 2.1. The image matrices second dimension
therefore must be the product of the output width and height and the
batch size nv = nb · oh · ow (See [DV16] for an excellent description
on how to compute oh and ow).

Using the restructured input vI and the flattened kernel Kf the
forward pass for a convolutional layer turns into

h = KfvI + b (2.10)

hf = f(h). (2.11)

After matrix multiplication the proper shape of the output must be
restored. A good way to do this is a reshape.

2.3.2 Backpropagation

Using the matrix multiplication form makes it possible to draw on the
backward pass for linear layers as described in equations 2.7 and 2.8.

δKf = [f ′(h)�4]fvTI , δb = f ′(h)�4, (2.12)

δx =
(
KTf [f

′(h)�4]f
)
I−1

. (2.13)
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ht−1xt

w = [xt, ht−1]T

tanh(Ww + b)

ht

Figure 2.2: Visualization of a simple recurrent cell. Output yt and cell state
ct at time t depend on the previous state ct−1 and the current
input xt. Figure similar to[Wol17].

In the equations above the subscript, f denotes flattening of the channel
dimensions, while I and I−1 indicate the image to column and column
to image operations.

2.4 recurrent neural networks

Typically RNN structures are chosen to solve sequence modelling tasks.
Words are sequences of characters. Language models, for example,
are used to predict letters or words based on the previously observed
context. Alternatively, in the case of power load prediction, the net-
work has to estimate the load for tomorrow at noon today, given the
consumption over the last couple of days.

2.4.1 Simple-RNN

A simple solution is to add a state to the network and feed this state
recurrently back into the network [Elm90]. Such an approach would
suggest a definition for the forward pass like,

ht = Whht + Wxxt + b, (2.14)

ht+1 = f(ht). (2.15)

The network consists out of the recurrent state weights Wc ∈ Rnc×nc ,
the input weights Wx ∈ Rnc×nx , and the bias term b ∈ Rnc×1. The
state size nc determines the capacity of the network, while nx denotes
the input dimension. The hyperbolic tangent function is often chosen
to be the activation function f.

This approach is visualized in figure 2.2. Output values depend on
the current input, the state representation from the previous time step,
the weight matrix, and bias. The dependence on the previous state



2.4 recurrent neural networks 15

time

sp
ac

e

xt

yt

x1

h1

x2

h2

xn

hn

Figure 2.3: The rolled (left) cell can be unrolled (right) by considering all
inputs it saw during the current gradient computation iteration.
Figure shown as found in [Wol17].

creates a cycle in the graph. Since backpropagation cannot handle
cycles, it is common practice to work with unrolled representation of
recurrent networks as shown in figure 2.3. By considering all time steps
separately cycles are eliminated. Analogous to standard backward
sweeps, the backward pass through a recurrent network rests on the
chain rule. Weights are shared over time, therefore all time steps
have an impact on the gradients. In order to take all time steps into
account and compute the gradients for the unrolled recurrent network
shown in figure 2.3, a recurrent term must be added to the gradient
computation formulae. During the backward pass using the chain rule
we now obtain,

δht = f ′(ht)� (4t + δht+1), (2.16)

δht = WT
hδht, δxt = WT

xδht, (2.17)

δWx =

L∑
t=0

δhtxT , δWh =

L∑
t=0

δht hTt , (2.18)

δb =

L∑
t=0

δht. (2.19)

per time step t. At t = L+ 1 which is one step more than the total
length L, the recurrent delta δht+1 does not exist and is set to zero.
This approach is also referred to as back-propagation through time.

While conceptually simple, this approach is unstable in practice.
It suffers from exploding and vanishing gradients [Hoc91; Hoc+01;
BSF94; GBC16]. In a simplified linear case, the network dynamics
would depend on the largest eigenvalue [GBC16]. Imagine, for exam-
ple, the recurrent weight matrix W had an eigenvalue larger than one.
In this case, since the state is multiplied with the recurrent weight
matrix once per time step, the norm or length of the state vector
will continue to grow over time. Similarly, if the largest eigenvalue
was smaller than one, the state’s norm must continue to shrink. The
linear case suggests that an orthogonal or unitary state matrix with
eigenvalues equal to one are an interesting choice for recurrent weight
matrices. Assuming no error input for all but the last time step 4t = 0
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for all t 6= T , looking at the backward pass for the the network state in
more detail [ASB16; WY18] results in,

∂C

∂ht
=
∂C

∂hT
hT
ht

(2.20)

=
∂C

∂hT

T−1∏
k=T

∂hk+1
∂hk

(2.21)

=
∂C

∂hT

T−1∏
k=T

Dk+1WT
h (2.22)

= 4T
T−1∏
k=T

Dk+1WT
h. (2.23)

With Dk+1 = diag(f ′(hk)), here the diagonal matrix is just another
way to express the element wise Hadamard product. Chossing the
two-norm we have for any combinations of matrices A, B and vectors
v, ‖Av‖ 6 ‖A‖ ‖v‖, as well as, ‖AB‖ 6 ‖A‖ ‖B‖. Application to the
RNN-state gradient leads to [ASB16; WY18],

‖ ∂C
∂ht
‖ = ‖ ∂C

∂hT

T−1∏
k=T

Dk+1WT
h‖ (2.24)

6 ‖ ∂C
∂hT
‖
T−1∏
k=T

‖Dk+1WT
h‖. (2.25)

If the state transition matrix is orthogonal or unitary Wh, it will
be norm preserving, consequently we will have ‖Wh = 1‖ and are
left with a product of diagnoal activation matrix norms‖Dk‖. The
ReLU’s derivative is 1 if the forward pass was active. Since diagonal
matrices such as D carry their eigenvalues on the diagonal, we can
show [ASB16]

‖ ∂C
∂ht
‖ 6 ‖ ∂C

∂hT
‖
T−1∏
k=T

‖Dk+1WT
h‖ (2.26)

= ‖ ∂C
∂hT
‖
T−1∏
k=T

‖Dk+1‖ (2.27)

= ‖ ∂C
∂hT
‖ = ‖4T‖. (2.28)

Which guarantess stability unless all activations are zero. In the non-
linear case the eigenvalues and activation function are therefore con-
nected [WY18]. Chapter 7 explores this connection further.

2.4.2 Long Short Term Memory

The most popular remedy for the vanishing gradient problem is the
memory management that comes with the gates introduced in the
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LSTM cell [HS97b]. This approach is widely considered an algorithm
that has stood the test of time [Hut20] and has since found applications
in handwriting and speech recognition, machine translation, image
captioning, and more [GBC16]. It utilizes three gates to manage the
cell state. Not unlike a differentiable memory chip [Gra12] the LSTM

memory cell has a memory size nh and three gates which govern
the changes to the cell state. All gate output match the cell’s size and
are evaluated using a sigmoidal activation function σ therefore all
gates are real vectors in Rnh ∈ [0, 1]. The gate and state computation
equations for an LSTM cell are defined as [HS97b; Gre+16]

zt = Wzxt + Rzht−1 + bz, (2.29)

zt = tanh(zt), (2.30)

it = Wixt + Riht−1 + pi � ct−1 + bi, (2.31)

it = σ(it), (2.32)

ft = Wfxt + Rfht−1 + pf � ct−1 + bf, (2.33)

ft = σ(ft), (2.34)

ct = zt � it + ct−1 � ft, (2.35)

ot = Woxt + Roht−1 + po � ct + bo, (2.36)

ot = σ(ot), (2.37)

ht = tanh(ct)� ot. (2.38)

The potential new state values zt are called block input. The vector
i is called the input gate. The forget gate is labelled f and finally o
denotes the output gate. Peephole weights are denoted using p ∈ Rnh ,
W ∈ Rni×nh denotes input, while R ∈ Rno×nh are the recurrent
output matrices. The element-wise or Hadamard product indicated by
the � symbol. Figure 2.4 shows a schematic of the LSTM cell equations.
The line on the left running from bottom to top is the state line. All
cell parts which modify the cell state eventually connect to it. Moving
along the line, we first encounter the forget gate. The forget gate
decides which state entries to store and which to delete. Recall that
the sigmoid function produces output values within [0, 1] and that f
has just as many entries as c. A value of zero, therefore, means that
the corresponding state entry is forgotten. Similarly, a value of one
means that it will be kept. Following the state line, just after the forget
gate, the input gate governs the addition of new entries to the memory.
These new values are chosen through the input gate through i� zt.
Since the input and forget gate share the same activation function,
they behave similarly. The input gate picks candidate values from the
block input by producing ones. Potential candidates are blocked if the
corresponding entry is zero. Finally, the output gate chooses which
values from the state c will turn into output values h. Mechanically
its function is identical to the two other gates. Block input and output
values are run through a hyperbolic tangent activation function. State
and output values are therefore within [−1, 1].
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ct−1 xtht−1

w = [xt, ht−1]T

{w, ct−1}

σ(Wfw + pf � ct−1 + bf)

σ(Wiw + pi � ct−1 + bi)

σ(Woz + po � ct + bo)

tanh(Wcw + bc)
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Output Gate
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�
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ct
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Figure 2.4: Visualization of a long short term memory cell. Green boxes
contain concatenation operations. The state line on the very left
records all changes to the cell’s memory. All gate equations ap-
pear in yellow. The gates use sigmoid activations. The sigmoid
activation produces values within zero and one. A zero output
means the corresponding value is blocked. One means it is al-
lowed to pass through. State candidate and output values are
run through the tanh function shown in orange. This ensures the
cell’s memory contents and output values are within [−1, 1]. This
Figure is similar to [Wol17].
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2.4.2.1 Backpropagation through time

In the following equations an overline is used to denote the preac-
tivation input to an equation ·. For example in the case of the in-
put gate i = Wixt + Riht−1 + pi � ct−1 + bi, or for the block input
z = Wzxt + Rzht−1 + bz. T denotes the transpose. The deltas for the
LSTM block are given by [Gre+16];

δht = 4t + RTz δzt+1 + RTi δit+1 + RTf δft+1 + RToδot+1, (2.39)

δot = δht � tanh(ct)� σ ′(ot), (2.40)

δct = δht � ot � tanh ′(ct) + po � δot + pi � δit+1
+ pf � δft+1 + δct+1 � ft+1, (2.41)

δft = δct � ct−1 � σ ′(ft), (2.42)

δit = δct � zt � σ ′(it), (2.43)

δzt = δct � it � tanh ′(zt). (2.44)

The error flowing into the cell from a previous step is denoted by 4t.
If the cell has been placed directly below the cost function 4t = ∂C

∂ht
.

Equation 2.41 describes the error flow backward in time. In comparison
to the simple RNN cell design it is not multiplied by a leading matrix
and therefore not rescaled by it’s largest eigenvalue. The first and the
last summands in equation 2.41 are of particular importance. Here the
output ot and forget ft gates regulate gradient flow back in time. If the
output gate is closed, the error flow within the cell is shielded from the
outside. The last term contains the forget gate and the state gradients
from the previous step in time, when the forget gates removes a state
entry, it also ends the flow of error values over time. Cell weight
gradients can be computed using the cell-deltas [Gre+16];

δW? =

L∑
t=0

δ?txTt , δpi =
L∑
t=0

ct � δit+1, (2.45)

δR? =

L∑
t=0

δ?t+1hTt , δpf =
L∑
t=0

ct � δft+1, (2.46)

δb? =

L∑
t=0

δ?t, δpo =

L∑
t=0

ct � δot. (2.47)

With ? ∈ {z, i, f, o}. Backpropagation through time sums up the indi-
vidual gradient contributions found at each time step. Until the total
sequence length L. In multi-layer architectures the error to a lower
layer is given by [Gre+16]

δxt = WT
z δzt + WT

i δit + WT
f δft + WT

oδot. (2.48)

The delta δxt above can be propagated into lower layers. Multiple
LSTM variants exist. A popular version couples the input and for-
get gates. Since it is often required to delete a value which is going
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to be replaced later instead of learning the input gate, it is set to
ft = 1− it [Gre+16]. Other LSTM variants do not include the peephole
connections, which feed the state into the gates using the p weights.
During the forward pass, this forces the gates to work without knowl-
edge of the cell state, however, during the backward pass, this variant
greatly simplifies equation 2.41, giving control of the error flow en-
tirely to the output and forget gate.

Early versions of LSTM did not include the peephole connections
and forget gate [Gra12], which were added later. The forget gate was
added to give the cell the means to reset its state. The peephole con-
nections allow the cell to look at the memory content while deciding
should be stored, erased, or shared.

2.4.2.2 Derivation of the LSTM backward pass

To derive the LSTM backward pass equations from section 2.4.2.1
the chain rule must be applied to all equations in the forward pass.
Here the rules as described in [LKJ15] are followed, starting at the
output h and working backward. Some equations contribute gradient
summands to a variable that appeared elsewhere previously. + =

signs mark these cases. We start at the cell output ht = tanh(ct)� ot,
and obtain

δot = tanh(ct)� δht, (2.49)

δct = tanh ′(ct)� ot � δht. (2.50)

The output ht connects to the output gate and the cell state. Moving
on to the output gate ot = σ(ot) yields

δot = σ ′(ot)� δot. (2.51)

Next we move through the activation function into the gate ot =

Woxt + Royt−1 + po � ct + bo and obtain

δxt = WT
oδot, (2.52)

δht−1 = RToδot, (2.53)

δct = ct � δot, (2.54)

δbo = δot. (2.55)

From y we have now exhausted the backward path in the o direction
and continue to move into the cell state ct = zt � it + ct−1 � ft which
leads to

δzt = it � δct, (2.56)

δit = zt � δct, (2.57)

δct−1 = ft � δct, (2.58)

δft = ct−1 � δct. (2.59)
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The cell state equation depends on input 2.31 and forget 2.33 gate
as well as the state-candidate value 2.29 equation. Starting with the
forget gate ft = σ(ft) results in

δft = σ ′(ft)δft. (2.60)

The continuation of the backprop process into ft = Wfxt + Rfht−1 +
pf � ct−1 + bf contributes,

δxt+ = WT
f δft, (2.61)

δht−1+ = RTf δft, (2.62)

δct−1+ = pf � δft, (2.63)

δbf = δft. (2.64)

At this point the input gate and state candidates remain. Starting with
the input gate it = σ(it) leads to

δit = σ ′(it)� δit, (2.65)

and it = Wixt + Riht−1 + pi � ct−1 + bi leads to,

δxt+ = WT
i δit, (2.66)

δht−1+ = RTi δit, (2.67)

δct−1+ = pi � δit, (2.68)

δbi = δit. (2.69)

Finally only the state candidate computation zt = Wzxt+Rzht−1+bz
remains it contributes

δxt+ = δWT
z zt, (2.70)

δht−1+ = RTz δzt, (2.71)

δbz = δzt. (2.72)

The equations discussed in section 2.4.2.1 are the result of combining
the individual contributions derived above. The most popular LSTM
[HS97b] variant is the GRU[Cho+14], the main subject of the upcoming
section.

2.4.3 Gated Recurrent Units

Introduced in [Cho+14] in the context of machine translation, GRU use
coupled input/forget gates, no output gate, and an additional reset
gate. For some problems removing the forget gate does not have a
large impact on performance [Gre+16], which perhaps motivates its
absence in GRU. Input and forget gates coupling seems reasonable
from a conceptional point of view, since typically whenever i saturates



22 network structures

at one the corresponding value for f should be zero to make room for
a new value. The GRU equations are defined as [Cho+14],

rt = Wrht−1 + Vrxt + br, (2.73)

rt = σ(rt), (2.74)

ut = Wuht−1 + Vuxt + bu, (2.75)

ut = σ(ut), (2.76)

ht−1 = rt � ht−1, (2.77)

zt = Wht−1 + Vxt + b, (2.78)

zt = tanh(zt), (2.79)

ht = ut � zt + (1− ut)� ht−1. (2.80)

Again the Hadamard or element-wise product is written as�. Through-
out the GRU-equations ht ∈ Rnh denotes the cell state and output
at time t. The block input is called zt ∈ Rnh the same convention
appeared in the LSTM equations. The reset r ∈ Rnh and update gates
u ∈ Rnh take care of memory management. As in the LSTM case,
W ∈ Rni×nh denotes input matrices, V ∈ Rnh×nh is used for re-
current weight matrices. Figure 2.5 visualizes the GRU architecture.
This visualization again shows a state on the left. The first connection
comes from the update gate, which replaces the forget and input
gate. Since the update gate uses a sigmoid σ activation function, the
first Hadamard-product on the state line will erase products if ut
contains a zero. Thanks to the coupling 1− ut, erased state entries
will be replaced by the corresponding value from the block input zt.
In addition to the update gate, GRUs come with the reset gate, which
enables the cell to delete values from the state just before the block
input is computed. Similar to a forget gate, this gate re-introduces an
independent deletion mechanism.

2.4.3.1 GRU Backward pass

Again following the notation in [Gre+16], deltas for the GRU block
are given by

δht = 4t + (1− ut+1)� δht+1 + rt+1 �WTδzt+1
+ WT

uδut+1 + WT
r δrt+1, (2.81)

δzt = ut � δht � tanh ′(zt), (2.82)

δut = (zt − ht−1)� δht � σ ′(ut), (2.83)

δrt = ht � δht−1 � σ ′(rt). (2.84)

Equation 2.81 governs the state error flow. The update gate term
(1 − ut+1) is perhaps the most important summand, it can allow,
dampen or stop the error flow through time.

With gated RNNs gradients do not vanish as much. This insight is
a consequence of equations 2.41 and 2.81. Which unlike 2.17 are not
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Update Gate

Reset Gate

ht−1 xt

w = [xt ht−1]T

σ(Wuw + bu)

σ(Wrw + br)

�
ht−1

r

tanh(Wxt + Vht−1 + b)
ht−1

1− u

� u

�

u

zt
+

ht

Figure 2.5: Visualization of a GRU. This LSTM variant uses only two gates
and a single state activation function. The two yellow gates use
sigmoidal activations and produce outputs within zero and one.
The gate outputs govern cell memory management. The update
gate replaces input and forget gates, its output decides with
memory contents can be modified. The reset gate allows state
value deletion from the block input. The tanh activation appears
only once. No output gate is used.
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repeatedly remapped by a recurrent weight matrix. Gradients can still
explode. As a remedy, it is often necessary to clip gradients.

In our experiments, this simplified LSTM variant performed equally
well on sequence modelling tasks. It will frequently appear in the
research part of this thesis. Chapter 7 moves a GRU like structure into
the complex domain and presents a complex gated recurrent network.
Chapter 9 explores the relative importance of the GRU equations by
selectively compressing some.

2.4.3.2 Derivation of the GRU Backward pass

Equations 2.81 to 2.84 have been derived by applying the chain rule to
equations 2.73 to 2.80, by following the backpropagation procedure
[LKJ15]. Backpropagation accumulates contributions from multiple
equations. If a variable has already appeared, the + = notation is
used to indicate summation with the existing value. Let’s start with
ht = ut � zt + (1− ut)� ht−1, backpropagation yields

δut = (zt − ht−1)� δht, (2.85)

δzt = ut � δht, (2.86)

δht−1 = (1− ut)� δht. (2.87)

moving thought the hyperbolic tangent zt = tanh(zt) leads to

δzt = tanh ′(zt)� δzt. (2.88)

The Backpropagation process has now arrived at the state candidate
value computation, zt = Wht−1 + Vxt + b, its contributions to the
gradients are,

δht−1 = WTδzt, (2.89)

δxt = VTδzt, (2.90)

δb = δzt. (2.91)

(2.92)

Moving further into the cell the process arrives at the multiplication
with the reset gate output ht−1 = rt � ht−1, here the gradients

δht−1 += rt � δht−1, (2.93)

δrt = ht−1 � δht−1 (2.94)

are obtained. To get to the update gate we must pass through it’s
sigmoidal activation ut = σ(ut) and obtain the following deltas,

δut = σ ′(ut)� δut. (2.95)

Using the definition of the update gate ut = Wuht−1 +Vuxt +bu it’s
deltas are,

δht−1 += WT
uδut, (2.96)

δxt += VTuδut, (2.97)

δb = δut. (2.98)
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The process for the reset gate architecture is identical to rt = σ(rt) the
update gate,

δrt = σ ′(rt)� δrt. (2.99)

Similarly for rt = Wrht−1 + Vrxt + br the deltas are,

δht−1 += WT
r δrt, (2.100)

δxt += VTr δrt, (2.101)

δbr = δrt. (2.102)

Going through the equations above and writing all summation expres-
sions as individal equations leads to the gru block backward equations
described earlier.





3
O P T I M I Z AT I O N

Having discussed the cost functions as well as multiple neural network
architectures their gradients and how to obtain them in the previous
chapter, the next step is to use these gradients to iteratively optimize
neural networks.

In its most basic form a gradient update for a weight matrix W can
be [Bis06; GBC16; Nie15],

Wτ+1 = Wτ −
η

nb

nb∑
b=0

δWτ,b, (3.1)

with the update step τ, batch size nb and the gradient tensor δW ∈
Rnb,no,ni . A stochastic gradient descent step computes the mean
gradients for the current batch. The learning rate η can be thought
of as the step size the optimization process is going to take along the
gradient.

3.1 momentum

A common modification to standard stochastic gradient descent is the
addition of momentum. Using only small subsets or batches instead
of the entire training set, leads to stochastic approximations of the
accurate gradient. In order the prevent the stochastic approach from
producing too noisy and therefore rapidly changing gradients momen-
tum is added to the gradient update. Averaging operations are well
known to reduce high-frequency noise. The momentum term gathers
gradient information over multiple batches by running the gradients
trough a moving average. In essence the update rule 3.1 is replaced by
[Nie15; GBC16]

Vτ = µVτ−1 −
η

nb

nb∑
b=0

, δWτ,b (3.2)

Wτ+1 = Wτ + Vτ. (3.3)

The new parameter µ, controls the momentum or resistance to direc-
tion change that is introduced into the optimization procedure. V is
used to store the momentum gradients over multiple iterations.

27
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Numerous other modifications of gradient descent exist. Most vari-
ants improve the scaling and integration of information over multiple
iterations.

3.2 rmsprop

Using a global learning rate for all parameters may not be ideal for
all problems. Especially given the non-convex and stochastic nature
of many neural network optimization problems, more sophisticated
gradient scaling is required. When the learning rate is too big, the
optimization process tends to oscillate. RMSProp attempts to make the
optimization process more robust by moving quickly in the direction
of small but consistent gradients and slowly in directions of larger but
unreliable gradients [HSS12]. One way to scale gradients individually
for each parameter is to divide gradients by running averages of their
recent squared magnitude [HSS12].

Using the learning rate τ as well as the new parameter ρ to control
the learning rate, RMSProp updates the weights during each step
[GBC16],

Gτ =
1

nb

nb∑
b=0

δWτ,b, (3.4)

Rτ = ρRτ−1 + (1− ρ)Gτ �Gτ, (3.5)

Wτ+1 = Wτ −
η√

δ+ Rτ+1
�Gτ. (3.6)

After computing the gradients Gτ, squared gradients are accumulated
in Rτ, the learning rate is then adapted element-wise based on the
values in Rτ [GBC16]. The small constant δ is meant to increase
numerical stability, by guarding against division by tiny numbers.

3.3 adam

The adaptive moments or Adam [GBC16; KB15] approach keeps track
of first and second moments and adds correction terms for both.
The moments are averages of the gradient and the squared gradient.
Based on the corrected moments, individual learning rates for each
parameter are computed [KB15]. Two accumulation hyper-parameters
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ρ1 and ρ2 are present, and must chosen by hand. For a single weight
update Adam computes

Gτ =
1

nb

nb∑
b=0

δWτ,b, (3.7)

Sτ = ρ1Sτ−1 + (1− ρ1)Gτ, (3.8)

Rτ = ρ2Rτ−1 + (1− ρ2)Gτ �Gτ, (3.9)

Ŝτ =
1

1− ρt1
Sτ, (3.10)

R̂τ =
1

1− ρt2
Rτ, (3.11)

Wτ+1 = Wτ − η
Ŝτ

δ+
√

R̂τ+1
. (3.12)

Overall Adam combines RMSProp and Momentum and adds bias
correction. It is regarded as very robust with respect to its hyperpa-
rameters but overall no dominant optimzation approach to neural
networks has emerged [GBC16].





4
S I G N A L P R O C E S S I N G

This thesis explores machine learning using frequency-domain meth-
ods, most notably, the fast Fourier and wavelet transform. Where
complex numbers emerge after the transform, complex-valued ma-
chine learning approaches are developed and deployed.

4.1 complex numbers

Complex numbers frequently appear in the signal processing and
complex machine learning parts of this text. This section aims to
provide a short introduction to the topic. Squaring a real number is
always positive. x2 = −1 has no real solutions. Complex numbers start
from i2 = −1[Str06]. An agreed solution to an old problem. Without it,
not all quadratic or cubic equations have a solution. Proposed in 1572

by Rafael Bombelli [Bor13], complex numbers were not immediately
accepted and were referred to as absurd, useless, or imaginary. The last
term stuck and is still used today, albeit without negative connotation
[Bor13].

Typically written as z = x + iy, complex numbers consist of a
real <(z) = x and imaginary =(z) = y part. Both parts combined
can be used as coordinates in a two-dimensional plane. Like we do
for two dimensional real vectors, complex numbers are added by
adding real and imaginary parts separately. Complex conjugation
has no real equivalent, because it flips the sign of the imaginary part
z̄ = x− iy. Conjugation mirrors z along the real axis. Instead of using
two coordinates points, angle and radius equivalently define a point
in two dimensions. Conventionally the angle is measured counter-
clockwise starting at the x-axis at the origin. This idea leads to the
polar form of complex numbers z = reiφ, with radius r and angle
φ. The polar form simplifies multiplication. Complex numbers are
multiplied by multiplication of both radii and addition of the phase-
angles. Orthogonal complex matrices are called unitary matrices. The
word unitary signals orthogonality in addtion to the complex nature
of the matrix it refers to.
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Figure 4.1: Visualization of a Fourier Series approximating a rectangular
pulse (left). As more and more terms are used the approximation’s
accuracy improves. On the right the magnitued of all fourier
coefficients is shown.

4.2 the discrete fourier transform

The Fourier transform moves a function f from physical space into
frequency space. Once transformed it is represented as a sum of
harmonics ckeiωt [Str06; Zei12],

f(t) =
∑
ω

cke
iωt. (4.1)

With time t, frequency ω and the imaginary unit i. Once moved over
into the frequency domain representation F, the coefficients can be
analyzed and filtered. During the conversion the Fourier coefficients
ck are computed using:

F(ω) =
∑
t

xte
−iωt, (4.2)

In figure 4.1 a signal consisting of rectangular pulses is Fourier trans-
formed. To explore the effect of the sum as described in equation 4.2
more and more coefficients are added to the summed representation of
the signal. As terms are added the approximation’s accuracy increases.
The sum consists of complex exponentials. According to Euler’s For-
mula eix = cos(x) + i sin(x) we require the complex part to cancel
for real valued signals, which leads to the relation c−k = c̄k, in this
case [Zei12]. Convolutions turn into multiplications in the Fourier
domain [Zei12]:

F{f ∗ g} = F(f)F(g). (4.3)

Together with the fast fourier transform, this finding is extremely
important for the efficent implementation of convolutional neural
networks [Vas+15].

Looking at the Fourier coefficients ck means looking at the function
in frequency space. The process of computing the cks from the function
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·i·i

·i ·i

Figure 4.2: Repeated multiplication by i, causes rotation around the origin.
Its important to note that 1 can also be represented by i4, a full
rotation. Full rotations can also be present in representations for
any other point on the unit circle. Minus one for example could
also be i6.

is referred to as forward transform F. The reconstruction of the original
signal from the coefficients is called the inverse transform F−1.

The synthesis operation F−1(c) = Fc, can be seen as multiplication
with a Fourier matrix [Str06]. The matrix follows from formula 4.1.
Time t and frequency ω increase along the rows and columns,

F =



1 1 1 1 . 1

1 w w2 w3 . w(n−1)

1 w2 w4 w6 . w2(n−1)

1 . . . . .

1 wn−1 w2(n−1) w3(n−1) . w(n−1)2


. (4.4)

The ws in the Fourier matrix equal complex exponentials w = e2πj/n.
For n=4 the discrete Fourier matrix is given by,

F4 =


1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

 . (4.5)

With this definition, the synthesis case which takes us from the time
to the frequency space is the complex conjugate F̄.

4.3 the fast fourier transform

Typically the computation of a matrix vector product Fx uses n2

operations, an operation for each of the n2 entries in the matrix F. For
sparse matrices with many zeros its possible to do significantly better
and reduce the number of operations considerably. But the Fourier
matrices does not have any zeros in its original form. The key idea
behind the fast Fourier transform is to introduce zeros by factoring the
Fourier matrix. This is possible if the number of inputs is a power of
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two [Zei12]. F4 from equation 4.5 can be factored into a combination
of F2 matrices [Str06]:

F4 =


1 1

1 i

1 −1

1 −i



1 1

1 i2

1 1

1 i2



1

1

1

1

 . (4.6)

Above F2 appears twice in the center block matrix. Its flanked byF2 =

(
1 1

1 i2

)
two additional matrices which turn the product into the discrete
fourier transform matrix, all three matrices are now sparse. Taking
into account the rotation effect of multiplication by i as shown in
figure 4.2, multiplication of the matrices in equation 4.6 produces F4.
Larger transforms can be brocken down into smaller transforms with
increasing levels of sparsity using the same principle. In this case
much more points follow from w = e2πi/n, and therefore the circle
in figure 4.2 will involve more than just 1, i,−1 and −i. In the case of
F1024 this leads to [Str06]:

F1024 =

(
I512 D512
I512 −D512

)(
F512

F512

)(
even-odd

permutation

)
. (4.7)

Above the F512 blocks can be broken down further [Str06]:
I256 D256

I256 −D256

I256 D256

I256 −D256




F256
F256

F256
F256

 (4.8)


pick , 0, 4, 8, . . .

pick , 2, 6, 10, . . .

pick , 1, 5, 9, . . .

pick , 3, 7, 11, . . .

 =

(
F512

F512

)
. (4.9)

The pick operation refers to the rows of the matrix product on it’s
left. The above result can be inserted into equation 4.7, repeating this
process leads to the full FFT. Using a FFT instead of the full matrix
multiplication requires 0.5nlog2n operations instead of the n2 for the
full matrix multiplication [Str06; Zei12].

4.4 the short time fourier transform

If applied directly the Fourier transform decomposes a signal in its
entirety into frequency domain components. In order to learn some-
thing about the evolution of the signal’s frequency composition over
time, windowing is used, which leads to the STFT.
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4.4.1 Forwards STFT

The Fourier transform maps a signal into the spectral or frequency
domain by decomposing it into a linear combination of sinusoids. In
its regular, the transform requires infinite support of the time signal
to estimate the frequency response. For many real-world applications,
however, including those which we wish to model with Recurrent
Neural Networks (RNNs), this requirement is not only infeasible,
but it may also be necessary to obtain insights into changes in the
frequency spectrum as a function of time or signal index. To do so, one
can partition the signal into overlapping segments and approximating
the Fourier transform of each segment separately. This is the core
idea behind the short-time Fourier transform (STFT), which is used to
determine a signal’s frequency domain representations as it changes
over time.

More formally, given a signal x, we can partition it into segments
of length T , extracted every S time steps. The STFT Fs of x is defined
by [GL84] as the discrete Fourier transform of x, i. e.

X[ω,Sm] = Fs (x)

= F (w[Sm− l]x[l]) =
∞∑

l=−∞ w[Sm− l]x[l]e−iωl
(4.10)

where F denotes the classic discrete fast Fourier transform. Segments
of x are multiplied with the windowing function w and transformed
afterwards.

Historically, the shape and width of the window function has been
selected by hand. To hand the task of window selection to the opti-
mizer, we work with a truncated Gaussian window [Har78],

w[n] = exp
(
−
1

2

(n−N/2

σN/2

)2)
(4.11)

of size N and learn the standard deviation σ. The larger that σ is,
the more the window function approaches a rectangular window; the
smaller the sigma, the more extreme the edge tapering and as a result,
the narrower the window width.

4.4.2 Inverse STFT

Supposing that we are given some frequency signal X; the time signal x̂
represented by X can be recovered with the inverse short time Fourier
transform (iSTFT) F−1

s and is defined by [GL84] as:

x̂[n] = F−1
s (X[n,Sm])

=

∑∞
m=−∞ w[Sm−n]x̂w[n,Sm]∑∞

m=−∞ w2[Sm−n]

(4.12)
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Figure 4.3: Wavelet approximation of a rectangular pulse function with an
increasing number of scales (left). Wavelet coefficients for all
scales (right).

where the signal x̂w is the inverse Fourier transform of X:

x̂w =
1

T

∞∑
l=−∞ X[l,Sm]ejωl (4.13)

and l indexing the frequency dimension of Xm.
Eq. 4.12 reverses the effect of the windowing function, but imple-

mentations require careful treatment of the denominator to prevent
division by near-zero values1. In Eq. 4.12, Sm generally evaluates to
an integer smaller than the window size T and subsequent elements in
the sum overlap, hence the alternative naming of it being an “overlap
and add” method [Grö13].

4.5 wavelets

What if we could work with finite basis functions, instead of having to
window the infinite sine and cosine waves, which make up the Fourier
basis? This leads to the FWT and iFWT. 2 Derived from the French
ondelette the word wavelet was coined to express the notion of a small
wave, which exists only for a limited amount of time. A rectangular
pulse was Fourier transformed in figure 4.1, to explore the fast wavelet
transform the same pulse is again transformed using wavelets in fig-
ure 4.3. As the FWT is a multiscale approach, scales are considered
together. For an input signal of length 512, an FWT produces scale coef-
ficients of length 256, 128, 64, 32, 18, 8, 4 and 2. In figure 4.3 these scales
are concatenated from small to large. In comparison to figure 4.1 the re-
sulting coefficients are much sparser. The Haar wavelets used here are
rectangular functions, which are much better suited to represent the
rectangular pulse than the Fourier basis, which requires many terms to

1 We adopt the common strategy of adding a small tolerance ε = 0.001
2 A PyTorch implementation is available at https://github.com/v0lta/

PyTorch-Wavelet-Toolbox and Jax code at https://github.com/v0lta/jaxlets

https://github.com/v0lta/PyTorch-Wavelet-Toolbox
https://github.com/v0lta/PyTorch-Wavelet-Toolbox
https://github.com/v0lta/jaxlets
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Figure 4.4: Haar analysis fast wavelet transformation matrix on the left fol-
lowed by individual scale processing matrices.

approximate the sharp corners. In machine learning, wavelets form the
core of scatter-nets. Initially introduced as translation-invariant signal
representation [Mal12], optimizable variants have since been proposed
[Cot19; CK19]. Infinitely many wavelets exist. Typically hand-crafted
wavelets are used, recently wavelet optimization has been explored in
the machine learning literature [RG13; WLY20]. Wavelet optimization
will play an important role in the experimental part of this thesis.

4.5.1 The fast wavelet transform

The fast wavelet transform constitutes a change of representation, it
expresses the input data points in terms of a wavelet filter pair by
computing [SN96]:

b = Ax (4.14)

The analysis matrix A is the product of multiple matrices, each decom-
poses the input signal x at an individual scale. Finally multiplication
of the total matrix A with the input-data yields the wavelet coefficients
b. We show the structure of the individual matrices in figure 4.4, on
the left. The full resulting operator is shown on the right. The three
plots on the right of figure 4.4 show a growing identity block matrix
as the fwt moves trough the different scales. After every step, the
data we must process is cut in half. The reoccurring diagonals denote
convolution operations with the filter pair H0 and H1. Overall we
observe the pattern [SN96],

A = . . .

 H0
H1

I


(

H0
H1

)
. (4.15)

We have seen how to construct the analysis matrix A and will now con-
sider inverting this process, overall the inverse fast wavelt transform
(iFWT) can again be thought of as a linear operation,

Sb = x. (4.16)

The synthesis matrix S is constructed using the synthesis filter pair
F0, F1. We show the multi-scale reconstruction matrices in figure 4.5
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Figure 4.5: Haar synthesis backward fast wavelet transformation matrices for
three scales as well as the complete inverse matrix.

x

H1 ↓ 2

H0 ↓ 2

H1 ↓ 2

H0 ↓ 2

bj

bj−1 ↑ 2 F1

↑ 2 F0

↑ 2 F1

↑ 2 F0

x̂

Figure 4.6: Efficient wavelet signal analysis and synthesis following a tree
structure [SN96]. H denotes analysis filters and F stands for
synthesis filters. Up (↑) and down (↓)- sampling by a factor of two
is written as the arrow followed by the factor. Filtering and sam-
pling can be accomplished jointly in deep learning frameworks
by using strided convolutions for analysis and strided transposed
convolutions for synthesis. In place of the dotted arrow, more
scale-levels can be included.

on the left and the complete synthesis matrix structure on the right.
Structurally the synthesis matrices are transposed in comparison to
their analysis counterparts. In general we observe:

S =
(

F0 F1
)( F0 F1

I

)
. . . (4.17)

We have SA = I, which guarantees invertability, which in turn leads
to conditions on the filter pairs H0,H1 as well as F0, F1.

The fast wavelet transform can also be computed using strided
convolutions instead of sparse matrix multiplications. This approach
is shown in figure 4.6. Each block represents a convolution with
stride two. The double indices jk of bjk denote the scale j and time k
positions of each coefficient.

Coefficients bjk can be found by recursively convolving x with the
analysis filters h0 and h1 with a stride of 2. This process is depicted in
Figure 4.6. The depth of the multi-resolution representation depends
on the number of scales [JC01] and is chosen depending on the prob-
lem. As a result of the strided convolution, the number of time steps is
halved after each scale step. By working backwards through the scales,
one can reconstruct x̂ from bjk through transposed convolutions with
the synthesis filters f0 and f1.
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4.5.2 Wavelet properties

Wavelets are typically selected from a library of established wavelets.
The rectangular Haar wavelet which previously appeared in Figure 4.3,
is a common choice. Alternatively wavelets can be arbitrarily designed
by hand by the practitioner. Based on the product filter approach,
designed wavelets must fulfill conditions of perfect reconstruction
and alias cancellation [SN96]. Given filters h and f as well as their
z-transformed counterparts H(z) =

∑
n h(n)z−n and F(z) respectively,

the reconstruction condition can be expressed as

H0(z)F0(z) +H1(z)F1(z) = 2z
l, (4.18)

and the anti-aliasing condition as

H0(−z)F0(z) +H1(−z)F1(z) = 0. (4.19)

For the perfect reconstruction condition in Eq. 4.18, the center term
zl of the resulting z-transformed expression must be a two; all other
coefficients should be zero. l denotes the power of the center. Custom
wavelet designs are often build around these two conditions.





Part II

R E S E A R C H





5
R E L AT E D W O R K

Frequency domain methods play a key role in modern machine learn-
ing. Fast Fourier transforms speed up convolution computations in
CNNs [MHL13]. Furthermore, frequency domain representations can
provide a rich space for feature learning, where complex weights are
optimized [RSA15] or allow linear layer compression trough sparse
representation [LSS13; WLY20]. The Fourier transform’s ability to
separate the contributions at various frequencies makes transformed
signals useful input features. Notable areas of application are for
example speech [Cha+16; Wol17], music [Thi+18] or motion capture
processing [Ene+20].

5.1 recurrent neural networks

Recurrent networks are a very common approach to sequence mod-
eling [GBC16]. Historically the exploding and vanishing gradient
problems long inhibited the use of recurrent neural networks [Hoc91;
Hoc+01; BSF94; GBC16]. The long short term memory cell [HS97b]
mitigates the vanishing gradient problem by introducing the gating
mechanism presented in chapter 2.4.2. Instead of repeated multipli-
cation with a recurrent weight matrix in the backward pass, LSTM

distributes the gradients over a sum [HS97b; SMS15]. Matrix mul-
tiplication changes the norm of the resulting vector if the matrix is
not orthogonal or unitary. Gradient distribution over sums instead
of (matrix)-products avoids this problem. It is most likely no coinci-
dence that very deep residual convolutional neural networks rely on a
sum based mechanism for stability as well [SGS15b; SGS15a; He+16;
Kus+18]. Feedforward-gating, as proposed in [SGS15b], has not be-
come mainstream in architectures such as resnets [He+16]. Perhaps
an indication that summation is more important than gating or that
gating is only required, in cases where matrices are reused over time.

More than 10 years after LSTM was first proposed [HS97b] its most
important variant the gated recurrent unit GRU [Cho+14] appeard.
An in depth discussion can be found in chapter 2.4.3. In order to
process complex Fourier coeffcients in C a complex-valued version
is discussed in [WY18] and chapter 7 of this text. Gates do not solve
exploding gradients, which is why gradient clipping is still neces-
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sary [GBC16]. Ungated unitary or orthogonal RNN-cells can be stable
[ASB16; Wis+16] and do not require gradient clipping[ASB16]. With-
out gates, however, the cell state is unprotected. As a result, it is
susceptible to corruption by input noise [WY18]. Recently convolu-
tional structures have been explored as an alternative to recurrent
connections and gating [BKK18]. A later follow-up paper from the
same authors found that convolutional structures too benefit from
recurrent connections and gating [BKK19].

5.2 complex networks

When working with complex network weights, complex activation
functions [Hir12; MG09], as well as update rules [MG09], are required.

It is not obvious how to best optimize complex networks. Their
optimization has long been discussed in the literature [KM94; LH91;
BP92; Kre09]. Complex gradients exist, when activation and cost func-
tions are complex-differentiable or holomorph. A function f(z) =

u(x,y) + iv(x, z) of variable z = x+ iy is holomorph when [Bor13]

∂xu = ∂yv and ∂yu = −∂xv. (5.1)

Holomorphy is desirable, but holomorph functions are also unbounded
[MG09; Lio79]. Holomorphy can alternatively be described in terms
of Wirtinger-Operators [Bor13][Kre09]

∂ =
1

2
(∂x − i∂y) and ∂ =

1

2
(∂x + i∂y). (5.2)

In the holomorph case we have ∂f(z) = 0 and the derivateve ∂f(z) =
f ′(z). In our experiments, singularities turned out to be a particularly
important problem. It is not always possible to work with unbounded
activations, and therefore very convenient to sidestep holomorphy
and optimize complex networks with respect to their real and complex
parts [Kre09; MG09]. In this case we are working with a complex
pseudoderivative ∂f(z) + ∂f(z) = f ′(z). The chain rule holds still holds
in this case if the real and complex parts are considered seperately
[Kre09]. All activations considered next fall into this category.

For complex CNNs the cRelu allows complex numbers with positive
real and imagniary parts to pass. This early non-holomorph actovation
function appeared in [Gub16],

zReLU(z) =

reiφz if φz ∈ [0,π/2]

0 otherwise.
(5.3)

A plot of its magnitude r in the complex plane is shown in figure 5.1
on the right. The cRelu which considers the real and imaginary parts
separately [Tra+18],

cReLU(z) = ReLU(x) + iReLU(y). (5.4)
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Figure 5.1: Popular Feedforward activation functions in C. The zReLU
[Gub16] allows complex numbers with positive real and imagi-
nary parts to pass. While the cReLU [Tra+18], applies standard-
ReLUs seperately on the real and imaginary parts.

−2 −1 0 1 2
−2

−1

0

1

2

<(z)

=(
z)

|Hirose(z)|

0

0.2

0.4

0.6

0.8

−2 −1 0 1 2
−2

−1

0

1

2

<(z)

=(
z)

|modReLU(z)|

0

0.2

0.4

0.6

0.8

Figure 5.2: Popular activation functions in C. The Hirose activation emplys
the hyperbolic tangent function to bound the radius at 1. The
modReLU activation creates a learnable dead zone around the
origin. Like its real counterpart, the modReLU is unbounded.
Note that both activations preserve phase information.
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An evaluation of both architectures is part of [Tra+18]. The cReLU was
found to perform better. A notable phase-sensitive Relu extension is
the cardioid [VSL17]. Recurrent work usually relies mostly on two
activations. The Hirose activation [Hir13] is defined as

Hirose(z) = tanh(r)eiφz . (5.5)

It is the older choice is an adaptation of the very popular hyperbolic
tangent for complex RNN. The modRelu activation [ASB16],

modReLU(z) = ReLU(r+ b)eiφz , (5.6)

introduces a dead zone around the origin as can be seen in figure 5.2
on the left. It was proposed for use in RNNs, with unitary state transi-
tion matrices. Notably the Hirose and modReLU activations preserve
phase information, it is passed trough the activation unchanged. This
observation is discussed further in capter 7.

Complex recurrent networks are actively investigated. Early work
focused on ways to update complex network weights [KM94; HO99].
Norm preservation stabilizes the training process [ASB16]. Special-
ized training schemes work with additive [HR17] and multiplicative
[Wis+16] updates, to ensure that recurrent weights remain unitary. An
orthogonal line of work considers gated complex cells using complex
cell states [Dan+16b], or fully complex cells [WY18].

Appliactions of complex neural networks include the processing of
fourier coeffcients for motion prediction[WGY20], music recognition
[Tra+18], speech processing [Wis+16], video prediction [FB19; Est+18;
WYB20], medical imaging [Col+19; VSL17], and quantum machine
learning [Bau20; Fra+20].

5.3 fourier networks

The Fourier transform, in particular, is a prominent source of inspira-
tion in machine learning. Early pioneering work combined the Fourier
transform and Elman-cells [Zha01], with a complex weight optimiza-
tion algorithm [KM94]. Research in this direction continued and deep
networks with sinusoidal activations for forecasting tasks appeared
[GA14]. Recently [Sit+20] explored the usage of sinusoidal activation
functions for image and audio processing problems using a multilayer
perceptron (MLP). Using a similar method [Tan+20] finds that Fourier
features enable MLPs to represent and process high-frequency image
components more efficiently.

In the recurrent case [Zha+18] studies cell dynamics and proposes
to model the evolution of RNN cell states using Fourier basis functions.
Fourier features can also serve as input and prediction space [PPL20;
WGY20], for forecasting tasks on periodic data such as power-load,
resource utilization or human motion prediction.
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CNN benefit from efficient implementations based on the FFT. In the
frequency-domain, convolution turns into multiplication. Individual
convolutions can be re-expressed through [Vas+15],

x ∗w = F−1(F(x)�F(w)). (5.7)

Above x is used to denote the input and w a kernel slice. This for-
mulation suggests moving the weights as well as pooling into the
frequency domain as well [RSA15]. However according to [RSA15]
weights are moved back into the time domain, before convolving,
perhaps to sort out the padding. More recently [Pra+17] proposed
training CNN completely in the frequency domain.

Attention or transformer structures appear in mordern nerual net-
works [Wan+18b; Vas+17]. Layers which similarly create non-local
connections can be created using the fast Fourier transform. The main
idea is to compute one-sided FFTs, and utilize cReLUs [Tra+18] to zero
out some coefficients. A onesided inverse fast Fourier transform (iFFT)
will then produce real output values [CJM20].

GANs have been found to create network-specific artifacts is the
images they create [Mar+19]. To detect GAN-generated image content
[DSW20], proposes to use Fourier features to automatically detect
artificially generated pictures.

5.4 wavelet networks

Wavelet features have long been used for in signal pre-processing and
denoiseing purposes [Abi09]. The FWT forms the core of the scattering
transform [Mal12; CCM14], which is an alternative to convolutional
layers for early stage feature processing. Integrating the FWT trans-
form into CNNs [BM13] makes it possible to place bounds on the
effects of image deformations and noise [CK19]. The fixed nature of
the scattering transform limits its utility in machine learning. More
flexible variants [CK19; Cot19], address this shortcoming, in the hope
to improve scatter net classification accuracies.

By treating the wavelet transform and it’s inverse as an autoencoder
[RM18], proposes a soft-constraint for the optimization of quadra-
ture mirror filters. Previously the autoencoder view has also been
used to optimize graph-wavelets [RG13], the optimization-process is
constrained by enforcing vanishing moments within a lifting scheme.

Wavelet features are used in time series forecasting [DAC16; CYD06].
Wavelet neural networks produce forecasts based on multiple resolu-
tions and can be pruned based on predictability measures [DAC16].

5.5 network compression

For audio and image compression, frequency domain approaches
are established best practices [SN96]. Recently an adaptive wavelet
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transform based linear layer has been proposed which reduces the
parameters in convolutional and recurrent neural networks [WLY20].
Other network compression techniques include, pruning [LDS90],
quantization[Kri18] and Huffman coding [HMD16a].

Pruning algorithms require a measure of parameter importance.
Based on the measure the least important parameters are removed.
Hessian matrix approximations [LDS90] have been proposed an impor-
tance measure, alternatively it is possible to remove neurons with small
connection weights and fine-tune the resulting network [Han+15].

Quantization can substantially reduce model sizes by representing
model weights as integers, which require fewer bits to store. Conver-
sion typically utilizes scaling, addition and rounding [Kri18]. Dequan-
tization undoes the scaling, and addition, but the rounding makes it a
lossy compression approach.

After quantization Huffman coding further reduces the network size
on disk [HMD16a]. The reduction comes at the cost of a coding and
decoding step, which adds overhead, whenever the network is stored
or loaded from disk. Since Huffman codes require a fixed limited set of
weights it can only be used on quantized networks. Size reductions of
up to 22% have been reported for an Alex-Net architecture [HMD16a].

For shallow CNNs, wavelet coding can further reduce the huffman
coded network size. When the CNN filters are sufficiently correlated,
the wavelet transform squishes the weight histogram towards zero.
See chapter 9.5.2 for a more detailed report.

Given the multidimensional nature of the tensors used in neural net-
works, generalizations of principal axis methods are useful compres-
sion tools. These can compress CNN [JVZ14a] and lead to a speedup
when a convolution formulation for the compressed parameter-tensor
is defined. Definitions exist for the the CP-decomposition [Leb+14].
Similarly, CNN and RNN see significant size reductions when a tensor
train representation is used [Nov+15; TSN17]. No having to com-
pute dense matrix approximations of the compressed tensor train
factors makes evaluating the compressed networks much more effi-
cient. [Nov+15] provides formulae, which allow direct evaluation of
linear layers represented in the compressed tensor train format.
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6.1 introduction

Deployment of machine learning methods in embedded and real-time
scenarios leads to challenging memory and computational constraints.
We propose to use the short time Fourier transform (STFT) to make
sequential data forecasting using recurrent neural networks (RNNs)
more efficient. The STFT windows the data and moves each window
into the frequency domain. A subsequent recurrent network processes
multi sample windows instead of single data points and therefore runs
at a lower clock rate, which reduces the total number of RNN cell eval-
uations per time step. Additionally working in the frequency domain
allows parameter reductions trough low-pass filtering. Combining
both ideas reduces the computational footprint significantly. We hope
this reduction will help deploying RNNs on VR-devices for human
pose prediction or on embedded systems used for load forecasting
and management.

We show in our work that it is possible to propagate gradients
through the STFT and its inverse. This means that we can use time
domain-based losses that match the (temporal) evaluation measures,
but still apply the RNN in the frequency domain, which we find imparts
several computation and learning benefits. Firstly, representations can
often be more compact and informative in the frequency domain.
The Fourier basis clusters the most important information in the
low-frequency coefficients. It conveniently allows us to integrate a low-
pass filter to not only reduce the representation size but also remove
undesirable noise effects that may otherwise corrupt the learning of
the RNN.

One of the challenges of working with the Fourier transform is that
it requires handling of complex numbers. While not yet mainstream,
complex-valued representations have been integrated into deep con-
volutional architectures [Tra+18], RNNs [ASB16; Wis+16; WY18] and
Hopfield like networks [GO19]. Complex-valued networks require
some additional overhead for book-keeping between the real and
imaginary components of the weight matrices and vector states, but
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tend to be more parameter efficient. We compare fully complex and
real valued-concatenation formulations.

Naively applying the RNN on a frame-by-frame basis does not al-
ways lead to smooth and coherent predictions [Mao+19]. When work-
ing with STFT-windows of data, smoothness can be built-in by design
through low-pass filtering before the iSTFT. Furthermore, by reducing
the RNN’s effective clockrate, we extend the memory capacity (which
usually depends on the number of recurrent steps taken) and achieve
computational gains.

In areas such as speech recognition [Cha+16] and audio process-
ing [DS14], using the STFT is a common pre-processing step, e. g. as
a part of deriving cepstral coefficients. In these areas, however, the
interest is primarily for classification based on the spectrum coeffi-
cients and the complex phase is discarded, so there is no need for the
inverse transform and the recovery of a temporal signal as output. We
advocate the use of the forwards and inverse STFT directly before and
after recurrent memory cells and propagate gradients through both
the forwards and inverse transform. In summary,

• we propose a novel RNN architecture for analyzing temporal
sequences using the STFT and its inverse.

• We investigate the effect of real and complex valued recurrent
cells.

• We demonstrate how our windowed formulation of sequence
prediction in the spectral domain, based on the reduction in
data dimensionality and rate in RNN recursion can significantly
improve efficiency and reduce overall training and inference
time.

Source code for this project is available at https://github.com/v0lta/
Spectral-RNN.

6.2 related works

In machine learning, Fourier analysis is mostly associated with signal-
processing heavy domains such as speech recognition [Cha+16], bio-
logical signal processing [MNT99], medical image [VYL17] and audio-
processing [DS14]. The Fourier transform has already been noted in
the past for improving the computational efficiency of convolutional
neural networks (CNNs) [BL+07; Pra+17]. In CNNs, the efficiency
comes from the duality of convolution and multiplication in space
and frequency. Fast GPU implementations of convolution, e. g.in the
NVIDIA cuDNN library [Nvi20] use Fourier transforms to speed
up their processing. Such gains are especially relevant for convolu-
tional neural networks in 2D [BL+07; Pra+17] and even more so in
3D [Wan+17]. However, the improvement in computational efficiency

https://github.com/v0lta/Spectral-RNN
https://github.com/v0lta/Spectral-RNN
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for the STFT-RNN combination comes from reductions in data dimen-
sionality and RNN clock rate recursion. The Fourier transform has
been used in neural networks in various contexts [Hec92; ZZC08]. Par-
ticularly notable are networks, which have Fourier-like units [GG18]
that decompose time series into constituent bases. Fourier-based pool-
ing has been explored for CNNs as an alternative to standard spatial
max-pooling [RYL18].

Various methods for adjusting the rate of RNN recurrency have
been explored in the past. One example [Lin+96] introduces additional
recurrent connections with time lags. Others apply different clock
rates to different parts of the hidden layer [AHW16; Kou+14], or apply
recursion at multiple (time) scales and or hierarchies [CAB17; Ser+17].
All of these approaches require changes to the basic RNN architecture.
Our proposal, however, is a simple alternative which does not require
adding any new structures or connections.

Among others [MBR17] approached mocap prediction using RNNs,
while [Mao+19] applied a cosine transform CNN combination. In this
paper we explore the combination of the complex-valued windowed
STFT and RNNs on Mackey-Glass, power-load and mocap time series
data.

6.3 complex spectral recurrent neural networks

6.3.1 Network Structure

We can now move RNN processing into the frequency domain by
applying the STFT to the input signal x. If the output or projection of
the final hidden vector is also a signal of the temporal domain, we can
also apply the iSTFT to recover the output y. This can be summarized
by the following set of RNN equations:

Xτ = F({xSτ−T/2, . . . , xSτ+T/2}) (6.1)

zτ = Wchτ−1 + VcXτ + bc (6.2)

hτ = fa(zτ) (6.3)

yτ = F−1({Wpch0, . . . , Wpchτ}) (6.4)

where τ = [0,ns], i. e. from zero to the total number of segments
ns. The output yτ may be computed based on the available outputs
{Wph0, . . . , Wphτ} at step τ. Adding the STFT-iSTFT pair has as two
key implications. First of all, because Xτ ∈ Cnf×1 is a complex signal,
the hidden state as well as subsequent weight matrices all become
complex, i. e. hτ ∈ Cnh×1, Wc ∈ Cnh×nh , Vc ∈ Cnh×nf , bc ∈ Cnh×1

and Wpc ∈ Cnh×nf , where nh is the hidden size of the networks as
before and nf is the number of frequencies in the STFT.

The second implication to note is that the step index changes from
t to τ, which means that the spectral RNN effectively covers S time
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steps of the standard RNN per step. This has significant bearing on
the overall memory consumption as well as the computational cost,
both of which influence the overall network training time. Considering
only the multiplication of the state matrix Wc and the state vector
hτ, which is the most expensive operation, the basic RNN requires
N ·O(n3h) operations for N total time steps. When using the Fourier
RNN with an FFT implementation of the STFT, one requires only

N/S · (O(T log T) +O(n3h)), (6.5)

where the T log T term comes from the FFT operation. The architectural
changes lead to larger input layers and fewer RNN iterations. X is
higher dimensional than x, but we save on overall computation is the
step size is large enough which will make N/S much smaller than N.
We can generalise the approach described above into:

Xτ = F({xSτ−T/2, . . . , xSτ+T/2}) (6.6)

ht = RNNC(Xτ, ht−1) (6.7)

yt = F−1({Wpch0, . . . , Wpchτ}), (6.8)

where instead of the basic formulation outlined above, more sophisti-
cated complex-valued RNN-architectures [Arjovsky; Wis+16; WY18]
represented by RNNC may be substituted. We experiment with a
complex-valued GRU, as proposed in [WY18]. An alternative to a
complex approach is to concatenate the real and imaginary compo-
nents into one (real-valued) hidden vector. The experimental section
compares both methods in Table 6.2.

6.3.2 Loss Functions

In standard sequence prediction, the loss function applied is an L2

mean squared error, applied in the time domain:

Lmse(yt, ygt) =
1

ny

ny∑
l=0

(yt − ygt)
2. (6.9)

We experiment with a similar variation applied to the STFT coeffi-
cients applied in the frequency domain (see Table 6.2) but find that it
performs on par but usually a little bit worse than the time-domain
MSE. This is not surprising, as the evaluation measure applied is still
in the time domain for sequence prediction so it works best to use the
same function as the loss.

6.4 mackey-glass chaotic sequence prediction

Initially we study our method by applying it to make predictions
on the Mackey-Glass series [GES02]. The Mackey-Glass equation is a
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Figure 6.1: Mackey-Glass series predictions in for different RNN methods.
As gradients flow through the STFT we can optimize the width of
the gaussian σ. The learned window width for increasing degrees
of low-pass filtering is shown here. Figure best viewed in colour.

non-linear time-delay differential and defines a chaotic system that is
semi-periodic: We first evaluate different aspects of our model on the
chaotic Mackey-Glass time series [GES02]:

dx

dt
=

βxτ

1+ xnτ
− γx, (6.10)

with γ= 0.1,β= 0.2 and the power parameter to n = 10. xτ denotes
the value from τ time steps ago; we use a delay of τ = 17 and simulate
the equation in the interval t ∈ [0, 512], using a forward Euler scheme
with a time step of size 0.1. During the warm-up, when true values are
not yet known, using a uniform distribution we randomly draw values
from 1+U[−0.1, 0.1]. An example of the time series can be found in
Figure 6.1; we split the signal in half, conditioning on the first half as
input and predicting the second half.

6.4.1 Implementation Details

In all experiments, we use RNN architectures based on real [Cho+14]
and complex [WY18] GRU-cells with a state size of 64 and a Gaussian
window of width 128 initialized at σ = 0.5 unless otherwise stated.
The learning rate was set intially to 0.001 and then reduced with a
stair-wise exponential decay with a decay rate of 0.9 every 1000 steps.
Training was stopped after 30k iterations. Our run-time measurements
include ode simulation, RNN execution as well as back-propagation
time.

6.4.2 Experimental Results and Ablation Studies

Fourier transform ablation; We first compare against two time-based
networks: a standard GRU (time-GRU) and a windowed version (time-
GRU-windowed) in which we reshape the input and process windows
of data together instead of single scalars. This effectively sets the clock
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Table 6.1: Short time Fourier, Windowed and Time Domain results obtained
using GRU cells of size 64. Windowed experiments process multi-
ple samples of data without computing the STFT. Additionally we
compare low-pass filtering the spectrum and downsampling the
time domain windows. All models where trained for 30k iterations.
We downsample and lowpass-filter with a factor of 1/32.

net weights mse training-time [min]

time-GRU 13k 3.8 · 10−4 355

time-GRU-window 29k 6.9 · 10−4 53

time-GRU-window-down 13k 12 · 10−4 48

STFT-GRU 46k 3.5 · 10−4 57

STFT-GRU-lowpass 14k 2.7 · 10−4 56

Table 6.2: Real and complex valued architecture comparison on the mackey-
glass data, with increasing complex cell size. The complex archi-
tectures take longer to run but are more parameter efficient. The
last row shows a complex RNN cell in STFT space without iSTFT
backpropagation.

net weights mse training-time [min]

STFT-GRU-64 46k 3.5 · 10−4 57

STFT-cgRNN-32 23k 2.1 · 10−4 63

STFT-cgRNN-54 46k 1.6 · 10−4 63

STFT-cgRNN-64 58k 1.1 · 10−4 64

STFT-cgRNN-64-LC 58k 210 · 10−4 64

rate of the RNN to be per window rather than per time step. As
comparison, we look at the STFT-GRU combination as described in
Section 6.3.1 with a GRU-cell and a low-pass filtered version keep-
ing only the first four coefficients (STFT-GRU-lowpass). Additionally
we compare lopass filtering to time windowed time domain down-
sampling (time-GRU-window-down). For all five networks, we use
a fixed hidden-state size of 64. From Figure 6.1, we observe that all
five architecture variants are able to predict the overall time series
trajectory. Results in Table 6.1 indicate that reducing the RNN clock
rate through windowing and parameters trough low pass filtering
also improves prediction quality. In comparison to time domain down-
sampling, frequency-domain lowpass filtering allows us to reduce
parameters more aggressively.

Runtime; As discussed in Equation 6.5, windowing reduces the
computational load significantly. In Table 6.1, we see that the win-
dowed experiments run much faster than the naive approach. The
STFT networks are slightly slower, since the Fourier Transform adds a
small amount of computational overhead.
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The window function Figure 6.1 shows the Gaussian width for
multiple filtering scenarios. We observe a gradient signal on the win-
dow function. For more aggressive filtering the optimizer chooses a
wider kernel.

Complex vs. real cell; We explore the effect of a complex valued
cell in Table 6.2. We apply the complex GRU proposed in [WY18], and
compare to a real valued GRU. We speculate that complex cells are
better suited to process Fourier representations due to their complex
nature. Our observations show that both cells solve the task, while the
complex cell does so with fewer parameters at a higher computational
cost. The increased parameter efficiency of the complex cell could indi-
cate that complex arithmetic is better suited than real arithmetic four
Frequency domain machine learning. However due to the increased
run-time we proceed using the concatenation approach.

Time vs. Frequency mse; One may argue that propagating gradi-
ents through the iSTFT is unnecessary. We tested this setting and show
a result in the bottom row of Table 6.2. In comparison to the accuracy
of the otherwise equivalent complex network shown above the sec-
ond horizontal line, computing the error on the fourier coefficients
performs significantly worse. We conclude that if our metric is based
in the time domain the loss needs to be there as well and therefore
require gradient propagation through the STFT.

6.5 power load forecasting

6.5.1 Data

We apply our Fourier RNN to the problem of forecasting power
consumption. We use the power load data of 36 EU countries from
2011 to 2019 as provided by the European Network of Transmission
System Operators for Electricity1. The data is partitioned into two
groups; countries reporting with a 15 minute frequency are used
for day-ahead predictions, while those with hourly reports are used
for longer-term predictions. For testing we hold back the German
Tennet load recordings from 2015, all of Belgium’s recordings of 2016,
Austria’s load of 2017 and finally the consumption of the German
Ampiron grid in 2018.

6.5.2 Day-Ahead Prediction

We start with the task of day-ahead prediction; using 14 days of context,
at 12:00, we are asked to predict 24 hours of load from midnight
onwards (00:00 until 24:00 o’ clock at 12:00 o’clock on the previous
day). We therefore forecast the load from noon until midnight on
the prediction day plus the next day and ignore the values from

1 https://transparency.entsoe.eu/

https://transparency.entsoe.eu/
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Figure 6.2: Day ahead prediction results convergence (left) and prediction
examples (right). We observe that all deep learning approaches
beat the entsoe.eu baseline shown as the red line, which suggests
that their approach could benefit from deep learning.

Network mse [MW]2 weights inference
[ms]

train [min]

time 261 · 105 13k 1360 1472

time-win 8.12 · 105 74k 9.25 15

time-win-
down

8.05 · 105 28k 8.2 15

STFT 7.62 · 105 136k 9.67 19

STFT-
lowpass

7.25 · 105 43k 9.69 18

Table 6.3: 60 day ahead power load prediction using GRUs of size 64. We
downsample and lowpass-filter with a factor of 1/4. We observe
that windowing leads to large training and inference speed-ups.
Our STFT approach performs better in the full spectrum case and
with a reduced input-dimensionality.

the prediction day. We use the same network architecture as in the
previous section. During training, the initial learning rate was set to
0.004 and exponentially decayed using a decay of 0.95 every epoch.
We train for 80 epochs overall. We compare time domain, windowed
time as well as windowed Fourier approaches. The window size was
set to 96 which corresponds to 24 hours of data at a sampling rate of
15 minutes per sample.

In Figure 6.2 we observe that all approaches we tried produce
reasonable solutions and outperform the prediction produced by the
European Network of Transmission System Operators for Electricity
which suggests that their approach could benefit from deep learning.

6.5.3 Long-Term Forecast

Next we consider the more challenging task of 60 day load prediction
using 120 days of context. We use 12 load samples per day from all
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Figure 6.3: A test set sample for showing the 60 day prediction results for all
architectures under consideration. Close up for the last week of
the 60 day prediction.

entenso-e member states from 2015 until 2019. We choose a window
size of 120 samples or five days; all other parameters are left the
same as the day-ahead prediction setting. Table 6.3 shows that the
windowed methods are able to extract patterns, but the scalar-time
domain approach failed. Additionally we observe that we do not re-
quire the full set of Fourier coefficients to construct useful predictions
on the power-data set. The results are tabulated in Table 6.3. It turns
out that the lower quarter of Fourier coefficients is enough, which al-
lowed us to reduce the number of parameters considerably. Again we
observe that Fourier low-pass filtering outperforms down-sampling
and windowing.

6.6 human motion forecasting

6.6.1 Dataset & Evaluation Measure

The Human3.6M data set [Ion+14] contains 3.6 million human poses
of seven human actors each performing 15 different tasks sampled at
50 Herz. As in previous work [MBR17] we test on the data from actor
5 and train on all others. We work in Cartesian coordinates and predict
the absolute 3D-position of 17 joints per frame, which means that we
model the skeleton joint movements as well as global translation.

6.6.2 Implementation Details

We use standard GRU-cells with a state size of 3072. We move the
data into the frequency domain by computing a short time Fourier
transform over each joint dimension separately using a window size
of 24. The learning rate was set initially to 0.001 which we reduced
using an exponential stair wise decay every thousand iterations by a
factor of 0.97. Training was stopped after 19k iterations.
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Figure 6.4: Visualization of input and prediction results using a STFT-RNN
combination and low pass filtering. Input is shown in red and
blue, predictions in green and yellow.

6.6.3 Motion Forecasting Results

Prediction results using our STFT approach are shown in Figure 6.4,
poses drawn in green and yello are predictions, conditioned on the
pose sequences set in blue and red. We observe predictions look
realistic and smooth. In our experiments low-pass filtering helped
us to enforce smoothness in the predictions. Quantitative motion
capture prediction results are shown in Table 6.4. We observe that all
windowed approaches run approximately five times faster than the
time domain approach during inference, a significant improvement. In
terms of accuracy windowing does comparably well, while the STFT
approach does better when the input sampling rate is reduced.

6.7 summary and outlook

In this paper we explored frequency domain machine learning using
a recurrent neural network. We have proposed to integrate the Short
Time Fourier transform and the inverse transfrom into RNN archi-
tectures and evaluated the performance of real and complex valued
cells in this setting, we found that complex cells are more parameter
efficient, but run slighly longer. Frequency domain RNNs allow us
to learn window function parameters and make high-frequency time
sequence predictions for both synthetic and real-world data while
using less computation time and memory. Low-pass filtering reduced
network parameters and outperformed time-domain down-sampling
in our experiments.
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Network mae
[mm]

mse
[mm]2

weights inference
[ms]

train
[min]

time
[MBR17]

75.44 1.45 · 104 29M 115 129

time-
win

68.25 1.47 · 104 33M 18 27

time-
win-
down

70.22 1.41 · 104 30M 18 27

STFT 67.88 1.25 · 104 45M 25 38

STFT-
lowpass

66.71 1.30 · 104 32M 20 31

Table 6.4: 3d-Human motion forecast of 64 frames or approximately one
second. Mean absolute error (mae) is measured in mm. Mean
squared errors are reported in mm2. We downsample and lowpass-
filter with a factor of 1/4. Windowing runs much faster than the
naive time domain approach. Among windowed approaches the
STFT allows more aggressive input size reductions.
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7.1 introduction

This chapter
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Yao. Complex Gated
Recurrent Neural
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Recurrent neural networks (RNNs) are widely used for processing
time series and sequential information. The difficulties of training
RNNs, especially when trying to learn long-term dependencies, are
well-established, as RNNs are prone to vanishing and exploding gradi-
ents [BSF94; HS97a; PMB13]. Heuristics developed to alleviate some of
the optimization instabilities and learning difficulties include gradient
clipping [GBC16; Mik12], gating [Cho+14; HS97a], and using norm-
preserving state transition matrices [ASB16; HR17; Jin+18; Wis+16].

Gating, as used in gated recurrent units (GRUs) [Cho+14] and long
short-term memory (LSTM) networks [HS97a], has become common-
place in recurrent architectures. Gates facilitate the learning of longer-
term temporal relationships [HS97a]. Furthermore, in the presence of
noise in the input signal, gates can protect the cell state from undesired
updates, thereby improving overall stability and convergence.

A matrix W is norm-preserving if its repeated multiplication with a
vector leaves the vector norm unchanged, i. e.‖Wh‖2 = ‖h‖2. Norm-
preserving state transition matrices are particularly interesting for
RNNs because they preserve gradients over time [ASB16], thereby
preventing both the vanishing and exploding gradient problem. To
be norm-preserving, state transition matrices need to be either or-
thogonal or unitary1. Complex numbers have long been favored for
signal processing [Hir13; LA08; MG09]. A complex signal does not
simply double the dimensionality of the signal. Instead, the repre-
sentational richness of complex signals is rooted in its physical rel-
evance and the mathematical theory of complex analysis. Complex
arithmetic, and in particular multiplication, is different from its real
counterpart and allows us to construct novel network architectures
with several desirable properties. Despite networks being complex-
valued, however, it is often necessary to work with real-valued cost
functions and/or existing real-valued network components. Map-

1 Unitary matrices are the complex analogue of orthogonal matrices, i. e. a complex
matrix W is unitary if WWT

= WTW = I, where WT is its conjugate transpose and I
is the identity matrix.

61



62 complex gated recurrent neural networks [WY18]

pings from C → R are therefore indispensable. Unfortunately such
functions violate the Cauchy-Riemann equations and are not complex-
differentiable in the traditional sense. We advocate the use of Wirtinger
calculus [Wir27] (also known as CR-calculus [Kre09]), which makes it
possible to define complex (partial) derivatives, even when working
with non-holomorph or non-analytic functions.

Complex-valued representations have begun receiving some atten-
tion in the the deep learning community but they have been applied
only to the most basic of architectures [ASB16; Gub16; Tra+18]. For
recurrent networks, complex representations could gain more accep-
tance if they were shown to be compatible with more commonly used
gated architectures and also competitive for real-world data. This is ex-
actly the aim of this work, where we propose a complex-valued gated
recurrent network and show how it can easily be implemented with a
standard deep learning library such as TensorFlow. Our contributions
can be summarized as follows:

• We introduce a novel complex-gated recurrent unit; to the best
of our knowledge, we are the first to explore such a structure
using complex number representations.

• We compare experimentally the effects of a bounded versus
unbounded non-linearity in recurrent networks, finding addi-
tional evidence countering the commonly held heuristic that
only bounded non-linearities should be applied in RNNs. In
our case unbounded non-linearities perform better, but must be
coupled with the stabilizing measure of using norm-preserving
state transition matrices.

• Our complex gated network is stable and fast to train; it outper-
forms the state of the art with equal parameters on synthetic
tasks and delivers state-of-the-art performance one the real-
world application of predicting poses in human motion capture
using fewer weights.

For reproduction purposes source code is available at https://github.
com/v0lta/Complex-gated-recurrent-neural-networks.

7.2 related work

The current body of literature in deep learning focuses predominantly
on real-valued neural networks. Theory for learning with complex-
valued data, however, was established long before the breakthroughs
of deep learning. This includes the development of complex non-
linearities and activation functions [GK92; KA01], the computation of
complex gradients and Hessians [Van94], and complex backpropaga-
tion [BP92; LH91].

https://github.com/v0lta/Complex-gated-recurrent-neural-networks
https://github.com/v0lta/Complex-gated-recurrent-neural-networks
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Complex-valued representations were first used in deep networks
to model phase dependencies for more biologically plausible neu-
rons [RS14] and to augment the memory of LSTMs [Dan+16a], i. e. whereby
half of the cell state is interpreted as the imaginary component. In
contrast, true complex-valued networks (including this work) have
not only complex valued states but also kernels. Recently, complex
CNNs have been proposed as an alternative for classifying natural
images [Gub16; Tra+18] and inverse mapping of MRI signals [VYL17].
Complex CNNs were found to be competitive or better than state-of-
the-art [Tra+18] and significantly less prone to over-fitting [Gub16].

For temporal sequences, complex-valued RNNs have also been ex-
plored [ASB16; HR17; Jin+17; Wis+16], though interest in complex
representations stems from improved learning stability. In [ASB16],
norm-preserving state transition matrices are used to prevent van-
ishing and exploding gradients. Since it is difficult to parameterize
real-valued orthogonal weights, [ASB16] recommends shifting to the
complex domain, resulting in a unitary RNN (uRNN). The weights of
the uRNN in [ASB16], for computational efficiency, are constructed as
a product of component unitary matrices. As such, they span only a
reduced subset of unitary matrices and do not have the expressiveness
of the full set. Alternative methods of parameterizing the unitary
matrices have been explored [HR17; Jin+17; Wis+16]. Our proposed
cgRNN builds on these works in that we also use unitary state transition
matrices. In particular, we adopt the parameterization of [Wis+16] in
which weights are parameterized by full-dimensional unitary matrices,
though any of the other parameterizations [ASB16; HR17; Jin+17] can
also be substituted.

7.3 preliminaries

We represent a complex number z ∈ C as z = x + ib, where x =

<(z) and y = =(z) are the real and imaginary parts respectively. The
complex conjugate of z is z̄ = x− iy. In polar coordinates, z can be
expressed as z = |z|eiθz , where |z| and θ are the magnitude and phase
respectively and θz = atan2(x,y). Note that z1 · z2 = |z1||z2|e

i(θ1+θ2),
z1+ z2 = x1+x2+ i(y1+y2) and s · z = s · reiθ, s ∈ R. The expression
s · z scales z’s magnitude, while leaving the phase intact.

7.3.1 Complex Gradients

A complex-valued function f : C → C can be expressed as f(z) =

u(x,y) + iv(x,y) where u(·, ·) and v(·, ·) are two real-valued functions.
The complex derivative of f(z), or the C-derivative, is defined if and
only if f is holomorph. In such a case, the partial derivatives of u and v
must not only exist but also satisfy the Cauchy-Riemann equations,
where ∂u/∂x = ∂v/∂y and ∂v/∂x = −∂u/∂y.
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Strict holomorphy can be overly stringent for deep learning pur-
poses. In fact, Liouville’s theorem [Lio79] states that the only complex
function which is both holomorph and bounded is a constant func-
tion. This implies that for complex (activation) functions, one must
trade off either boundedness or differentiability. One can forgo holo-
morphy and still leverage the theoretical framework of Wirtinger or
CR-calculus [Kre09; MG09] to work separately with the R- and R-
derivatives2:

R-derivative ,
∂f

∂z
|z̄=const=

1

2
(
∂f

∂x
− i
∂f

∂y
), (7.1)

R-derivative ,
∂f

∂z̄
|z=const=

1

2
(
∂f

∂x
+ i
∂f

∂y
). (7.2)

Based on these derivatives, one can define the chain rule for a function
g(f(z)) as follows:

∂g(f(z))

∂z
=
∂g

∂f

∂f

∂z
+
∂g

∂f̄

∂f̄

∂z
where f̄ = u(x,y)− iv(x,y). (7.3)

Since mappings from C → R can generally be expressed in terms
of the complex variable z and its conjugate z̄, the Wirtinger-Calculus
allows us to formulate and theoretically understand the gradient of
real-valued loss functions in an easy yet principled way.

7.3.2 A Split Complex Approach

We work with a split-complex approach, where real-valued non-linear
activations are applied separately to the real and imaginary parts of the
complex number. This makes it convenient for implementation, since
standard deep learning libraries are not designed to work natively
with complex representations. Instead, we store complex numbers
as two real-valued components. Split-complex activation functions
process either the magnitude and phase, or the real and imaginary
components with two real-valued nonlinear functions and then recom-
bine the two into a new complex quantity. While some may argue this
reduces the utility of having complex representations, we prefer this
to fully complex activations. Fully complex non-linearities do exist
and may seem favorable [Tra+18], since one needs to keep track of
only the R derivatives, but due to Liouville’s theorem, we must forgo
boundedness and then deal with forward pass instabilities.

2 For holomorph functions the R-derivative is zero and the C- derivative is equal to
the R-derivative.
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Figure 7.1: Surface plots of the magnitude of the Hirose (m2=1) and mod-
ReLU (b=−0.5) activations.

7.4 complex gated rnns

7.4.1 Basic Complex RNN Formulation

Without any assumptions on real versus complex representations, we
define a basic RNN as follows:

zt = Wht−1 + Vxt + b (7.4)

ht = fa(zt) (7.5)

where xt and ht represent the input and hidden unit vectors at time
t. fa is a point-wise non-linear activation function, and W and V are
the hidden and input state transition matrices respectively. In working
with complex networks, xt ∈ Cnx×1, ht ∈ Cnh×1, W ∈ Cnh×nh , V ∈
Cnh×nx and b ∈ Cnh×1, where nx and nh are the dimensionalities of
the input and hidden states respectively.

7.4.2 Complex Non-linear Activation Functions

Choosing a non-linear activation function fa for complex networks
can be non-trivial. Though holomorph non-linearities using transcen-
dental functions have also been explored in the literature [MG09],
the presence of singularities makes them difficult to learn in a stable
manner. Instead, bounded non-holomorph non-linearities tend to be
favoured [Hir13; MG09], where bounded real-valued non-linearities
are applied on the real and imaginary part separately. This also par-
allels the convention of using (bounded) tanh non-linearities in real
RNNs.

A common split is with respect to the magnitude and phase. This
non-linearity was popularized by Hirose [Hir13] and scales the magni-
tude by a factor m2 before passing it through a tanh:

fHirose(z) = tanh
(

|z|

m2

)
e−i·θz = tanh

(
|z|

m2

)
z

|z|
. (7.6)



66 complex gated recurrent neural networks [WY18]

In other areas of deep learning, the rectified linear unit (ReLU) is now
the go-to non-linearity. In comparison to sigmoid or tanh activations,
they are computationally cheap, expedite convergence [KSH12a] and
also perform better [NH10; MHN13; Zei+13]. However, there is no
direct extension into the complex domain, and as such, modified
versions have been proposed [Gub16; VYL17]. The most popular is
the modReLU [ASB16] – a variation of the Hirose non-linearity, where
the tanh is replaced with a ReLU and b is an offset:

fmodReLU(z) = ReLU(|z|+ b)e−i·θz = ReLU(|z|+ b)
z

|z|
. (7.7)

7.4.3 Real to Complex input and Complex to Real output mappings

While several time series problems are inherently complex, especially
when considering their Fourier representations, the majority of bench-
mark problems in machine learning are still only defined in the real
number domain. However, one can still solve these problems with
complex representations, since a real z has simply a zero imaginary
component, i. e.=(z) = 0 and z = x+ i · 0.

To map the complex state h into a real output or, we use a linear
combination of the real and imaginary components, similar to [ASB16],
with Wo and bo as weights and offset:

or = Wo[<(h) =(h)] + bo. (7.8)

7.4.4 Optimization on the Stiefel Manifold for Norm Preservation

In [ASB16], it was proven that a unitary 3 W would prevent vanishing
and exploding gradients of the cost function Cwith respect to ht, since
the gradient magnitude is bounded. However, this proof hinges on
the assumption that the derivative of fa is also unity. This assumption
is valid if the pre-activations are real and one chooses the ReLU as the
non-linearity. For complex pre-activations, however, this is no longer
a valid assumption. Neither the Hirose non-linearity (Equation 7.6)
nor the modReLU (Equation 7.7) can guarantee stability (despite the
suggestion otherwise in the original proof [ASB16]).

Even though it is not possible to guarantee stability, we strongly
advocate using norm-preserving state transition matrices, since they
do still have excellent stabilizing effects. This was proven experimen-
tally in [ASB16; HR17; Wis+16] and we find similar evidence in our
own experiments (see Figure 7.2). Ensuring that W remains unitary
during the optimization can be challenging, especially since the group
of unitary matrices is not closed under addition. As such, it is not
possible to learn W with standard update-based gradient descent.

3 Since R ⊆ C, we use the term unitary to refer to both real orthogonal and complex
unitary matrices and make a distinction for clarity purposes only where necessary.
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Alternatively, one can learn W on the Stiefel manifold [Wis+16], with
the k+ 1 update Wk+1 given as follows by [Tag11], where λ is the
learning rate, I the identity matrix, and F the cost function:

Wk+1 = (I +
λ

2
Ak)−1(I −

λ

2
Ak)Wk (7.9)

where A = W∇wF
T
− WT∇wF. (7.10)

7.4.5 Complex-Valued Gating Units

In keeping with the spirit that gates determine the amount of a signal
to pass, we construct a complex gate as a Cnh×nh → Rnh×1 mapping.
Like in real gated RNNs, the gate is applied as an element-wise
product, i. e. g� h = g� |h|eiθh . In our complex case, this type of
operation results in an element-wise scaling of the hidden state’s
magnitude. When the gate is 0, it completely resets a signal, whereas
if it is 1, then it ensures that the signal is passed entirely. We introduce
our gates into the RNN in a similar fashion as the classic GRU [Cho+14]:

z̃t = W(gr � ht−1) + Vxt + b, (7.11)

ht = gz � fa(z̃t) + (1− gz)� ht−1, (7.12)

where gr and gz represent reset and update gates respectively and are
defined with corresponding subscripts r and z as

gr = fg(zr), where zr = Wrh + Vrxt + br, (7.13)

gz = fg(zz), where zz = Wzh + Vzxt + bz. (7.14)

Above, fg denotes the gate activation, Wr ∈ Cnh×nh and Wz ∈
Cnh×nh denote state to state transition matrices, Vr ∈ Cnh×ni and
Vz ∈ Cnh×ni the input to state transition matrices, and br ∈ Cnh and
bz ∈ Cnh the biases. fg is a non-linear gate activation function defined
as:

f mod sigmoid(z) = σ(α<(z) +β=(z)), α,β ∈ [0, 1]. (7.15)

We call this the modSigmoid and justify the choice experimentally in
section 7.5.3.

As mentioned previously, even with unitary state transition matrices,
this type of gating is not mathematically guaranteed to be stable. How-
ever, the effects of vanishing gradients are mitigated by the fact that
the derivatives are distributed over a sum [HS97a; Cho+14]. Exploding
gradients are clipped.

7.5 experimentation

7.5.1 Tasks & Evaluation Metrics

We test our cgRNN on two benchmark synthetic tasks: the memory
problem and the adding problem [HS97a]. These problems are de-
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signed especially to challenge RNNs, and require the networks to store
information over time scales on the order of hundreds of time steps.
The first is the memory problem, where the RNN should remember
n input symbols over a time period of length T + 2n based on a dictio-
nary set {s1, s2, ..., sn, sb, sd}, where s1 to sn are symbols to memorize
and sb and si are blank and delimiter symbols respectively. The input
sequence, of length T + 2n, is composed of n symbols drawn randomly
with replacement from {s1, ..., sn}, followed by T − 1 repetitions of sb,
sd, and another n repetitions of sb. The objective of the RNN, after
being presented with the initial n symbols, is to generate an output
sequence of length T + S, with T repetitions of sb, and upon seeing
sd, recall the original n input symbols. A network without memory
would output sb and once presented with sd, randomly predict any
of the original n symbols; this results in a categorical cross entropy
of (n+ 1 log(8))/(T + 2(n+ 2)). For our experiments, we choose n = 8 and
T = 250.

In the adding problem, two sequences of length T are given as input,
where the first sequence consists of numbers randomly sampled from
U[0, 1] 4, while the second is an indicator sequence of all 0 ′s and
exactly two 1 ′s, with the first 1 placed randomly in the first half of
the sequence and the second 1 randomly in the second half. The
objective of the RNN is to predict the sum of the two entries of the
first input sequence once the second 1 is presented in the indicator
input sequence. A naive baseline would predict 1 at every time step,
regardless of the input indicator sequence’s value; this produces an
mean squared error (MSE) of 0.167, i. e. the variance of the sum of two
independent uniform distributions. For our experiments, we choose
T = 250.

We apply the cgRNN to the real-world task of human motion pre-
diction, i. e. predicting future 3D poses of a person given the past
motion sequence. This task is of interest to diverse areas of research,
including 3D tracking in computer vision [YGV12], motion synthe-
sis for graphics [KGP02] as well as pose and action predictions for
assistive robotics [KS16]. We follow the same experimental setting
as [MBR17], working with the full Human 3.6M dataset [Ion+14]. For
training, we use six of the seven actors and test on actor five. We use
the pre-processed data of [Jai+16], which converts the motion capture
into exponential map representations of each joint. Based on an input
sequence of body poses from 50 frames, the future 10 frames are pre-
dicted. This is equivalent of predicting 400ms. The error is measured
by the euclidean distance in Euler angles with respect to the ground
truth poses.

4 Note that this is a variant of [HS97a]’s original adding problem, which draws numbers
from U[−1, 1] and used three indicators {−1, 0, 1}. Our variant is consistent with state-
of-the-art [ASB16; HR17; Wis+16]



7.5 experimentation 69

We also test the cgRNN on native complex data drawn from the
frequency domain by testing it on the real world task of music tran-
scription. Given a music wave form file, the network should determine
the notes of each instrument. We use the Music-Net dataset [THK17],
which consists of 330 classical music recordings, of which 327 are used
for training and 3 are held out for testing. Each recording, sampled at
11kHz, is divided into segments of 2048 samples with a step size of
512 samples. The transcription problem is defined as a multi-label clas-
sification problem, where for each segment, a label vector y ∈ 0, 1128
describing the active keys in the corresponding midi file has to be
found. We use the windowed Fourier-transform of each segment as
network input, the real and imaginary parts of the Fourier transform,
i. e.the odd and even components respectively, are used directly as
inputs into the cgRNN.

7.5.2 RNN Implementation Details

We work in Tensorflow, using RMS-prop to update standard weights
and the multiplicative Stiefel-manifold update as described Equa-
tion 7.10 for all unitary state transition matrices. The unitary state
transition matrices are initialized the same as [ASB16] as the product
of component unitary matrices. All other weights are initialized using
the uniform initialisation method recommended in [GB10], i. e. U[−l, l]
with l =

√
6/(nin +nout), where nin and nout are the input and

output dimensions of the tensor to be initialised. All biases are intial-
ized as zero, with the exception of the gate biases br and bz, which
are initialized at 4 to ensure fully open gates and linear behaviour at
the start of training. All synthetic tasks are run for 2 · 104 iterations
with a batch-size of 50 and a constant learning rate of 0.001 for both
the RMS-Prop and the Stiefel-Manifold updates.

For the human motion prediction task, we adopt the state-of-the-
art implementation of [MBR17], which introduces residual velocity
connections into the standard GRU. Our setup shares these modifi-
cations; we simply replace their core GRU cell with our cgRNN cell.
The learning rate and batch size are kept the same (0.005, 16) though
we reduce our state size to 512 to be compatible with [MBR17]’s 1024

5.
For music transcription, we work with a bidirectional cgRNN encoder
followed by a simple cgRNN decoder. All cells are set with nh = 1024;
the learning rate is set to 0.0001 and batch size to 5.

5 This reduction is larger than necessary – parameter-wise, the equivalent state size is√
10242

2 ≈ 724
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Figure 7.2: Comparison of our cgRNN (blue, nh = 80) with the
uRNN [ASB16] (orange, nh=140) and standard GRU [Cho+14]
(green, nh=112) on the memory (a) and adding (b) problem for
T=250. The hidden state size nh for each network are chosen so
as to approximately match the number of parameters (approxi-
mately 44k parameters total). On the memory problem, having
norm-preserving state transition matrices is critical for stable
learning, while on the adding problem, having gates is important.

7.5.3 Impact of Gating and Choice of Gating Functions

We first analyse the impact that gating has on the synthetic tasks
by comparing our cgRNN with the gateless uRNN from [ASB16]. Both
networks use complex representations and also unitary state transition
matrices. As additional baselines, we also compare with TensorFlow’s
out-of-the-box GRU. We choose the hidden state size nh of each
network to ensure that the resulting number of parameters is approxi-
mately equivalent (around 44k). We find that our cgRNN successfully
solves both the memory problem as well as the adding problem. On
the memory problem (see Figure 7.2(a), Table 7.1), gating does not
play a role. Instead, having norm-preserving weight matrices is key
to ensure stability during the learning. The GRU, which does not
have norm-preserving state matrices, is highly unstable and fails to
solve the problem. Our cgRNN achieves very similar performance
as the uRNN. This has to do with the fact that we initialize our gate
bias term to be fully open, i. e. gr=1, gz=1. Under this setting, the
formulation is the same as the uRNN, and the unitary W dominates
the cell’s dynamics.

For the adding problem, previous works [ASB16; HR17; Wis+16]
have suggested that gates are beneficial and we confirm this result in
Figure 7.2(b) and Table 7.1. We speculate that the advantage comes
from the gates shielding the network from the irrelevant inputs of
the adding problem, hence the success of our cgRNN as well as the
GRU, but not the uRNN. Surprisingly, the standard GRU baseline,
without any norm-preserving state transition matrices works very well
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on the adding problem; in fact, it marginally outperforms our cgRNN.
However, we believe this result does not speak to the inferiority of
complex representations; instead, it is likely that the adding problem,
as a synthetic task, is not able to leverage the advantages offered by
the representation.

The gating function (Equation 7.15) was selected experimentally
based on a systematic comparison of various functions. The perfor-
mance of different gate functions are compared statistically in Table 7.1,
where we look at the fraction of converged experiments over 20 runs
as well as the mean number of iterations required until convergence.
The product as well as the tied and free weighted sum variations
of the gating function are designed to resemble the bilinear gating
mechanism used in [Geh+17]. From our experiments, we find that it is
important to scale the real and imaginary components before passing
through the sigmoid to leverage the saturation constraint, and that
the real and imaginary components should be combined linearly. The
exact weighting seems not to be important and the best performing
variants are the tied 2 and the free; to preserve generality, we advocate
the use of the free variant. We note that over 20 runs, our cgRNN con-
verged only on 15-16 runs; adding the gates introduces instabilities,
however, we find the ability to solve the adding problem a reasonable
trade-off.

Finally, we compare the cgRNN to a free real variant (see last row of
Table 7.1), which is the most similar architecture in R, i. e.normalized
hidden transition matrices, same gate formulation, and two indepen-
dently real-valued versions of Equations 7.13 and 7.14. This real variant
has similar performance on the adding problem (for which having
gates is critical), but cannot solve the memory problem. This is likely
due to the set of real orthogonal matrices being too restrictive, making
the problem more difficult in the real domain than the complex.

7.5.4 Non-Linearity Choice and Norm Preservation

We compare the bounded Hirose tanh non-linearity versus the un-
bounded modReLU (see Section 7.4.2) in our cgRNN in Figure 7.3
and discover a strong interaction effect from the norm-preservation.
First, we find that optimizing on the Stiefel manifold to preserve
norms for the state transition matrices significantly improves learning,
regardless of the non-linearity. In both the memory and the adding
problem, keeping the state transition matrices unitary ensures faster
and smoother convergence of the learning curve.

Without unitary state transition matrices, the bounded tanh non-
linearity, i. e.the conventional choice is better than the unbounded
modReLU. However, with unitary state transition matrices, the mod-
ReLU pulls ahead. We speculate that the modReLU, like the ReLU
in the real setting, is a better choice of non-linearity. The advantages
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Table 7.1: Comparison of gating functions on the adding and memory problems.

memory problem adding problem

gating function frac.conv. avg.iters. frac.conv. avg.iters.

uRNN [Wis+16] no gate 1.0 2235 0.0 -

cg
R

N
N

product σ(<(z)) · σ(=(z)) 0.10 4625 1.0 4245

tied 1 ασ(<(z)) + (1−α) · σ(=(z)) 0.55 4186 1.0 5458

tied 2 σ(α<(z) + (1−α) · =(z)) 0.80 3800 1.0 5070

free σ(α<(z) +β=(z)) 0.75 2850 1.0 5235

free real σ(αz1 +βz2), (z1, z2) ∈ R 0.0 - 1.0 5313

The different gates are evaluated over 20 runs by looking at the fraction of convergence (frac.conv.) and average number of iterations
required for convergence (avg.iters.) if convergent. A run is considered convergent if the loss falls below 5·10−7 for the memory problem
and 0.01 for the adding problem. We find that gating has no impact for the memory problem, i. e. the gateless uRNN [Wis+16] always
converges, but is necessary for the adding problem. All experiments use weight normalized recurrent weights, a cell size of nh = 80,
and have networks with approximately 44k parameters; to keep approximately the same number of parameters, we set nh = 140 for the
uRNN and two independent gates each with nh = 90 for the real free real case.
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Figure 7.3: Comparison of non-linearities and norm preserving state transi-
tion matrices on the cgRNNs for the memory (a) and adding (b)
problems for T=250. The unbounded modReLU (see Equation 7.7)
performs best for both problems, but only if the state transition
matrices are kept unitary. Without unitary state-transition matri-
ces, the bounded Hirose non-linearity (see Equation 7.6) performs
better. We use nh = 80 for all experiments.

afforded upon it by being unbounded, however, also makes it more
sensitive to stability, which is why these advantages are present only
when the state-transition matrices are kept unitary. Similar effects
were observed in real RNNs in [Rav+17], in which batch normaliza-
tion was required in order to learn a standard RNN with the ReLU
non-linearity.

7.5.5 Real World Tasks: Human Motion Prediction & Music Transcription

We compare our cgRNN to the state of the art GRU proposed by [MBR17]
on the task of human motion prediction, showing the results in Ta-
ble 7.2. Our cgRNN delivers state-of-the-art performance, while reduc-
ing the number of network parameters by almost 50%. However this
reduction comes at the cost of having to compute the matrix inverse
in Equation 7.10.

On the music transcription task, we are able to accurately transcribe
the input signals with an accuracy of 53%. While this falls short of
the complex convolutional state-of-the-art 72.9% of [Tra+18], their
complex convolution-based network is fundamentally different from
our approach. We conclude that our cgRNN is able to extract mean-
ingful information from complex valued input data and will look into
integrating complex convolutions into our RNN as future work.
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Table 7.2: Comparison of our cgRNN with the GRU [MBR17] on human
motion prediction.

cgRNN GRU[MBR17]

Action 80

[ms]
160

[ms]
320

[ms]
400

[ms]
80

[ms]
160

[ms]
320

[ms]
400

[ms]

walking 0.29 0.48 0.74 0.84 0.27 0.47 0.67 0.73

eating 0.23 0.38 0.66 0.82 0.23 0.39 0.62 0.77

smo -
king

0.31 0.58 1.01 1.1 0.32 0.6 1.02 1.13

dis -
cus-
sion

0.33 0.72 1.02 1.08 0.31 0.7 1.05 1.12

direct
- ions

0.41 0.65 0.83 0.93 0.41 0.65 0.83 0.96

greeting 0.53 0.87 1.26 1.43 0.52 0.86 1.30 1.47

phoning0.58 1.09 1.57 1.72 0.59 1.07 1.50 1.67

posing 0.37 0.72 1.38 1.65 0.64 1.16 1.82 2.1

pur -
chases

0.61 0.86 1.21 1.31 0.6 0.82 1.13 1.21

sitting 0.46 0.75 1.22 1.44 0.44 0.73 1.21 1.45

sitting
down

0.55 1.02 1.54 1.73 0.48 0.89 1.36 1.57

taking
photo

0.29 0.59 0.92 1.07 0.29 0.59 0.95 1.1

waiting 0.35 0.68 1.16 1.36 0.33 0.65 1.14 1.37

walking
dog

0.57 1.09 1.45 1.55 0.54 0.94 1.32 1.49

walking
to-
gether

0.27 0.53 0.77 0.86 0.28 0.56 0.8 0.88

average 0.41 0.73 1.12 1.26 0.42 0.74 1.12 1.27

Our cgRNN (nh = 512, 1.8M params) predicts human motions which are
either comparable or slightly better than the real-valued GRU [MBR17] (nh=
1024, 3.4M params) despite having only approximately half the parameters.

7.6 conclusion

In this paper, we have proposed a novel complex gated recurrent unit
which we use together with unitary state transition matrices to form a
stable and fast to train recurrent neural network. To enforce unitarity,
we optimize the state transition matrices on the Stiefel manifold,
which we show to work well with the modReLU. Our complex gated
RNN achieves state-of-the-art performance on the adding problem
while remaining competitive on the memory problem. We further
demonstrate the applicability of our network on real-world tasks. In
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particular, for human motion prediction we achieve state-of-the-art
performance while significantly reducing the number of weights. The
experimental success of the cgRNN leads us to believe that complex
representations have significant potential and advocate for their use
not only in recurrent networks but in deep learning as a whole.
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In this chapter, we investigate the problem of video frame prediction.
Previous approaches have used recurrent neural networks [SMS15]
to directly synthesize the predicted image [Xin+15; Shi+17]. These
were trained using a mean squared error loss function in tandem
with learned image synthesis. This approach introduces blur into the
prediction as the network hedges its bets to minimize the error and
smears predictions, to cover as many eventualities as possible.

To address this issue, we focus on single objects that we assume
have been fully pre-segmented. We model their movement separately,
decoupling transformation learning from image synthesis. Our main
contributions are:

• Given a moving pre-segmented object we estimate its centroid,
as well as translational and rotational velocity based on phase
correlation.

• We model the estimated velocities and their changes, e.g. at
image boundaries, using neural networks and

• demonstrate that the frequency-based three pass image transfor-
mation method is able to produce sharp predictions for multiple
time steps by transforming the input according to the estimated
parameters.

The source code of this project is available at https://github.com/
v0lta/Fourier-Motion-Estimation-and-Segment-Transformation.

8.1 related work

Early works on future frame prediction [SMS15] rely on general-
purpose recurrent architectures such as gated recurrent units (GRU) to
encode an input video sequence and use a decoder with an identical
structure to predict future frames. The moving MNIST test-problem
consisting of handwritten digits moving in a box was introduced in
[SMS15]. Later convolutional structures and flow models were inte-
grated into recurrent cells [Xin+15; Shi+17]. All of the aforementioned
methods employ a mean squared error loss function and use learned
weights to synthesize the prediction. Generative adversarial network

77
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(GAN) based formulations include [Wan+18a], but these are computa-
tionally expensive and hard to train. As a step towards a more efficient
approach, we leverage image registration methods to estimate mo-
tion and rotation parameters [RC96; Xie+03; MZE09]. Work similar to
ours couples CNNs and the log polar transform [Est+18] or estimates
image translation by phase correlation [FB19]. Compared to [FB19],
we additionally estimate and predict image rotation using a log-polar
transformation.

8.2 methods for motion estimation

Due to its robustness, we estimate displacement and rotation of im-
ages by computing the normalized cross-correlation in the frequency
domain [RC96]. Based on the two-dimensional discrete Fourier trans-
formations of the current image F1 = F(I1) and that of its predecessor
F2 = F(I2), we compute

C = F−1
( F1 � F2
‖F1 � F2‖

)
, (8.1)

using the Hadamard product �. Afterwards, we find the displace-
ment 4x̂ and 4ŷ by locating the correlation peaks in C. We employ
the same strategy on log-polar transformed images to estimate the
rotation velocity 4θ̂ [MZE09]. We further apply high-pass filtering of
the log-polar transformation [RC96] to increase the accuracy. As we
assume to be working with a pre-segmented object, we compute the
centroid cx, cy by multiplying a normalized image In = I/

∑
I with

the coordinate grids X,Y:

cx =
∑

In �X and cy =
∑

In � Y. (8.2)

8.3 neural network parameter correction

We choose a machine learning approach to correct the motion esti-
mates, with a residual formulation modelling velocity. This leads to
a predictor-corrector setting, where the learned model produces a
correction based on current and previous estimates. More formally,
we evaluate

(4x,4y,4θ)T = (4x̂,4ŷ,4θ̂)T + net(ĉx, ĉy,4x̂,4ŷ,4θ̂, s)T ,
(8.3)

where the network computes the correction applied to the parameter
estimation based on the object centroid, velocity estimations and its
own internal state s. Hats indicate estimates. The sum of network
corrections and estimates are the transformation parameters which
we use to transform the current image into the prediction. The object’s
centroid serves as prior knowledge to guide the motion estimation.
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Figure 8.1: Overview of our estimation, correction and transformation frame-
work. The estimator (est) finds transformation parameters be-
tween the last and current frame based on phase correlation
and computes the object centroid. The parameters are corrected
by the network (net) based on its encoding of the history s, by
computing a residual which is added to the current estimate.
Finally, the transformer (trans) transforms the last image using
the phase-shift property of the Fourier transform to create the
prediction.

Figure 8.1 illustrates our proposed approach. We pick a GRU structure
in Equation 8.3 and update s accordingly.

8.4 fourier domain image transformation

We employ the three pass frequency domain method [Pan99][LOK97]
to transform the current image based on the estimated parameters.
It relies on the Fourier shift theorem for both translation and rota-
tion. Given the desired translation 4x, we compute one-dimensional
Fourier transforms and shift the phase using

It = F−1(F(I) exp (−i2π4xf)) (8.4)

to translate the image in x-direction. f denotes the frequencies and i
the imaginary unit. For a translation of 4y in y, we apply the same
formulation but use the transposed image It instead of I. For a rotation
by angle θ ∈ [−0.25π, 0.25π], we compute the shear parameters a =

tan(θ/2) and b = − sin(θ) [LOK97]. We modify the phase in order to
obtain a shear effect in x-direction using,

Isa = F−1(F(I) exp (−i2πafy)), (8.5)

with the same notation as in Equation 8.4 with y being the y-coordinate.
In the second pass we shear in y-direction by transposing I and using
b instead of a,

Isb = F−1(F(IT ) exp (−i2πbfy))T , (8.6)
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Figure 8.2: Moving MNIST translation prediction. Ground truth (top), our es-
timation correction cell prediction (middle) and a standard GRU
of size 512 (bottom) are shown. Predictions are made using 4 con-
text frames. We observe that our approach produces predictions
which remain sharp, while the much larger GRU cell’s predictions
are blurry.

where we replace the shear parameters a and b. The transpose shifts
x and y coordinates, therefore y appears. Finally, the third pass is a
repetition of the first so that we obtain a full rotation.

8.5 video frame prediction

We evaluate our approach using the popular moving MNIST data set
[SMS15] and its rotating cousin [Shi+17]. We normalize inputs to be
within [0, 1] and choose a GRU for the correction-net in Equation 8.3.
The state size is set to 50, the learning rate to 0.0005 and the batch size
to 550. We stop training after 5000 iterations. In addition, we use the
same parameters to train an off-the-shelf gated recurrent unit with a
state size of 512 as a baseline.

8.5.1 Translation

In the classic MNIST translation setting [SMS15], digits move with
a random velocity on a 64 by 64 pixel canvas and bounce off the
walls. An important limitation of the velocity estimation described in
Equation 8.1 is it’s restriction to pixel-level accuracy. When used in
recurrent operation, this restriction can lead to instabilities: System-
atically underestimating movement may cause it to halt eventually.
Systematic overestimation can lead to acceleration over time. The high
level GRU corrects these errors and handles wall bounces. The state
size of this cell can be comparatively small, because it integrates ve-
locity and centroid information over time instead of entire images.
We compare our approach to a conventional cell without estimation
and image transformation capabilities. This recurrent cell directly syn-
thesizes its prediction of the upcoming frame based on its internal
state. While this low-level approach is more flexible, it suffers from
blurred prediction as well as miss-classification. Results are shown in
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Figure 8.3: Rotating moving MNIST prediction, ground truth (top), our esti-
mation correction transformation cell output (middle) and stan-
dard GRU (bottom).

Table 8.1: Evaluation using 550 prediction and ground truth sequences. The
mean and standard deviation of our predictions are very close to
the ground truth. Our approach performs slightly worse in terms
of mean squared error with significantly fewer parameters and
remains sharp.

mean std gt-mse #weights

Ground truth 0.025 0.137 - -

Ours 0.026 0.135 0.015 32k

GRU 0.036 0.103 0.009 9182k

Figure 8.2. We observe that our results are very hard to distinguish
from the ground truth. Even though the vanilla GRU state is ten times
as large and its architecture is more flexible, the result is blurry and
can suffer from miss-classification. Our higher-level approach prevents
both.

8.5.2 Rotation and Translation

In Equations 8.5 and 8.6, we introduced our Fourier shift approach
to rotation. We have already shown in Figure 8.2 that gradients can
be back-propagated through our frequency-domain image translation
operation. Figure 8.3 demonstrates that this also works for our multi-
step rotation by shearing procedure. We can stack multiple phase
modification transforms within recurrent cells. The Fourier transform
is a unitary operation and our phase modification matrices do not
modify the magnitude and therefore do not change the scaling. This
enables us to run a stable process with multiple transformations per
time step in a recurrent manner. In Table 8.1, we compare mean
standard deviation and mean squared error of the ground truth as
well as our and the GRU-baseline predictions. We observe that our
approach does not significantly alter the mean and standard deviation.
Using the standard GRU leads to slightly better performance in terms
of mean squared error, but its predictions are not naturally distributed,
which significantly lifts the mean and reduces the standard deviation.
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8.6 conclusion

In this paper, we studied a new approach to avoid the smearing effect
which arises when learned image synthesis and mean squared error
functions are combined. By modelling object movement at a higher
level, we prevent our system from spreading out its predictions. Our
approach could be an effective potential replacement for expensive
GAN-based approaches for transformation scenarios, which are used
to achieve the same goal. Object segmentation methods could be
combined with our approach in the future.
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Deep neural networks are routinely used in many artificial intelligence
applications of computer vision, natural language processing, speech
recognition, etc. [KSH12b; He+16; Ren+15], natural language process-
ing [Dev+18] and speech recognition [Han+14; Amo+16]. However, the
success of deep networks has often been accompanied by significant
increases in network size and depth. Network compression aims to re-
duce the computational footprint of deep networks so that they can be
applied on embedded, mobile, and low-range hardware. Compression
methods range from quantization [CBD15; Ras+16], pruning [Han+15;
Lin+18], to (low-rank) decomposition of network weights [Den+14;
Lin+16].

Early methods [Den+14; Han+15] separated compression from the
learning; compression is performed after network training and then
followed by fine-tuning. Such a multi-stage procedure is both compli-
cated and may also degrade performance. Ideally, one should integrate
compression into the network structure itself; this has the dual benefit
of learning less parameters and also ensures that the compression can
be accounted for during learning in an end-to-end manner. The more
direct form of integrated compression and learning has been adopted
in recent approaches [Nov+15; Ioa+17; Yan+15], typically by enforcing
a fixed structure on the weight matrices. Specifically, the structure
must lend itself to some form of efficient projection or decomposition
in order to have a compression effect, e. g. via circulant projections or
tensor train decompositions. Maintaining such a structure through-
out learning, however, can be challenging, especially using only the
first-order gradient descent algorithms favoured in deep learning. Typ-
ically, constrained optimization requires managing active and inactive
constraints, and or evaluating the Karush-Kuhn-Tucker conditions, all
of which can be very expensive. We therefore require alternative ways
to enforce weight structure.

One way to simplify the learning is to fix the projection bases a priori
e. g. to sinusoids, as per the Fourier transform, or rectangular functions,
as per the Walsh-Hadamard transform (WHT) and its derivative the
Fastfood transform [AC09]. The latter has been used to compress the
linear layers of CNNs [LSS13; Yan+15]. As it relies on non-local basis
functions, the Fastfood transform has a complexity of O(n logn) for

83
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projecting a signal of length n. More importantly, however, using fixed
bases limits the network flexibility and generalization power. Since
the choice of basis functions determine the level of sparsity when
representing data, the flexibility to choose a (more compact) basis
could bring significant compression gains.

We advocate the use of wavelets as an alternative for representing
the weight matrices of linear layers. Using wavelets offers us two key
advantages. Firstly, we can apply the fast wavelet transform (FWT),
which has only a complexity of O(n) for projection and comes with
a large selection of possible basis functions. Secondly, we can build
upon the product filter approach for wavelet design [SN96] to directly
integrate the learning of wavelet bases as a part of training CNNs or
RNNs. Learning the bases gives us added flexibility in representing
their weight matrices.

Motivated by these advantages, we propose a new linear layer which
directly integrates the FWT into its formulation so layer weights can be
represented as sparse wavelet coefficients. The compact nature of the
wavelet representation can be considered a built-in form of network
compression. Furthermore, rather than limit ourselves to predefined
wavelets as basis functions, we learn the bases directly as a part of
network training. Specifically, we adopt the product filter approach
to wavelet design. We translate the two hard constraints posed by
this approach into soft objectives, which serve as novel wavelet loss
terms. By combining these terms with standard learning objectives,
we can successfully learn linear layers which using only the wavelet
transform, its inverse, diagonal matrices and a permutation matrix.
As the reparametrisation is differentiable, it can trained end-to-end
using standard gradient descent.

Our linear layer is general; as we later show in the experiments,
it can be applied in both CNNs and RNNs. We focus primarily on
gated recurrent units (GRUs), as they typically contain large and dense
weight matrices for computing the cell’s state and gate values. Our
wavelet-based RNNs are compressed by design and have significantly
fewer parameters than standard RNNs, yet still remain competitive
in performance. Through exploring the use of compressed representa-
tions on individual cell components, we find a good trade-off between
maintaining a large hidden vector state size while reducing the linear
layer parameter count. Our main contributions can be summarized as
follows:

• We propose a novel method of learning FWT basis functions us-
ing modern deep learning frameworks by incorporating the
constraints of the product filter approach as soft objectives. By
learning local basis functions, we are able to reduce the com-
putational cost of the transform to O(n) compared to existing
O(n logn) methods that use fixed non-local basis functions.
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• Based on this method, we propose an efficient linear layer which
is compressed by design through its wavelet-based representa-
tion. This linear layer can be used flexibly in both CNNs and
RNNs and allow for large feature or state sizes without the
accompanying parameter blowup of dense linear layers.

• Extensive experiments explore the effect of efficient wavelet-
based linear layers on the various parts of the GRU cell machin-
ery. Our approach demonstrates comparable or better compres-
sion performance compared to state-of-the-art model compres-
sion methods.

Source code for this project is available at https://github.com/v0lta/
Wavelet-network-compression.

9.1 related work

9.1.1 Structured Efficient Linear Transforms

Our proposed approach can be considered a structured efficient linear
transform, which replace unstructured dense matrices with efficiently
structured ones. There are several types of structures, derived from fast
random projections [AC09], circulant projections [Che+15; Ara+18],
tensor train (TT) decompositions [Nov+15; TSN17; YKT17], low-rank
decompositions [Den+13; Den+14; JVZ14b]

One of the main difficulties in using structured representation is
maintaining the structure throughout learning. One line of work avoids
this by simply doing away with the constraints during the learn-
ing phase. For example, low-rank decompositions [Den+13; Den+14;
JVZ14b] split the learned dense weights into two low-rank orthogonal
factors. The low-rank constraint then gradually disappears during the
fine-tuning phase. The resulting representation is uncontrolled, and
must trade off between the efficiency of the low rank and effectively
satisfying the fine-tuning objective. In contrast, our proposed soft
constraints can be applied jointly with the learning objective, and as
such, not only does not require fine-tuning, but can ensure structure
throughout the entire learning process.

Within the group of structured efficient linear transforms, the one
most similar to the FWT that we are using is the Fastfood trans-
form [LSS13]. The fastfood transform is applied to reparameterize
linear layers as a combination of 5 types of matrices: three random di-
agonal matrices, a random permutation matrix and a Walsh-Hadamard
matrix.

However, these three diagonal matrices are fixed after random
initialization, resulting in a non-adaptive transform. Its fixed nature
limits the representation power. As a remedy, [Yan+15] proposed an
adaptive version in which the three diagonal matrices are optimized

https://github.com/v0lta/Wavelet-network-compression
https://github.com/v0lta/Wavelet-network-compression
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through standard backpropagation. Nevertheless, the approach still
uses a fixed Walsh-Hadamard basis which may limit the generalization
and flexibility of the linear layer. In contrast to the adaptive Fastfood
transform, our method is more general and reduces computational
complexity.

9.1.2 Compressing Recurrent Neural Networks

Compressing recurrent cells can be highly challenging; the recurrent
connection forces the unit to be shared across all time steps in a
sequence so minor changes in the unit can have a dramatic change in
the output. To compress RNNs, previous approaches have explored
pruning [Wen+17; Nar+17], quantization [WLW17] and structured
linear transforms [TSN17; YKT17; Pan+19; Ye+18].

The use of structured efficient linear transforms for compressing
RNNs has primarily focused on using tensor decompositions, either
via tensor train decomposition [TSN17; YKT17] or block-term ten-
sor decomposition [Ye+18]. The tensor decomposition replaces linear
layers with tensors with a lower number of weights and operations
than the original matrix. Tensor train decomposition can compress the
input-to-hidden matrix in RNNs, but requires the restricted setting on
the hyperparameters (e. g.ranks and the restrained order of core ten-
sors) making the compressed models sensitive to parameter selection
[TSN17].

Pan et al. [Pan+19] employ low-rank tensor ring decomposition to
alleviate the strict constraints in tensor train decomposition. However,
these methods need to approximate the matrix-vector operation by
tensor-by-tensor multiplication, where the dense weights and input
vectors are reshaped into higher-order tensors. This requires additional
reshaping time and generates feature-agnostic representations during
training. In contrast, our method shows more flexibility and efficiency
performing on the fast wavelet transform, whose bases satisfy with
wavelet design using soft objectives.

9.2 method

9.2.1 Wavelet Basis Learning

To enforce the constraints discussed in section 4.5.2 in a learnable
setting, we can design corresponding differentiable loss terms. We will
call the sum of these terms wavelet loss. Instead of working in the
z−space, we leverage the equivalence of polynomial multiplication
and coefficient convolution (∗) and reformulate Eq. 4.18 as:

Lpr(θw) =

N∑
k=0

[
(h0 ∗ f0)k + (h1 ∗ f1)k − 02,k

]2
, (9.1)
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where 02 is a zero vector with a two at zl in its center. This formulation
amounts to a measure of the coefficient-wise squared deviation from
the perfect reconstruction condition. For alias cancellation, we observe
that Eq. 4.19 is satisfied if F0(z) = H1(−z) and F1(z) = −H0(−z) and
formulate our anti-aliasing loss as:

Lac(θw) =

N∑
k=0

(
f0,k − (−1)kh1,k

)2
+
(
f1,k + (−1)kh0,k

)2
.

(9.2)

This formulation leads to the common alternating sign pattern, which
we will observe later. We refer to the sum of the two terms in Eqs. 9.1
and 9.2 as a wavelet loss. It can be added to standard loss functions in
the learning of neural networks.

9.2.2 Efficient Wavelet-based Linear Layers

To use the efficient wavelet-based linear layer, we begin by decompos-
ing the weight matrices W as follows:

W = DW−1GΠWB, (9.3)

where D, G, B are diagonal learnable matrices of size n × n, and
Π ∈ {0, 1}n×n is a random permutation matrix, which stays fixed dur-
ing training. We use identity matrices as initialization for D, G, B. W
and W−1 denote the wavelet transform and it’s inverse, which can also
be optimized during training. This approach is similar to [Yan+15],
which relies on the fast Welsh-Hadamard transform. D, G, B and ˝ can
be evaluated in O(n) [ASB16]. The fast wavelet transform requires
only O(n) steps instead of the O(n lnn) used by the non-local fast
Fourier and fast Welsh-Hadamard transforms [SN96, page 29]. This
is asymptotically faster than the transforms used in [Yan+15] and
[ASB16], who work with fixed Welsh-Hadamard and Fourier trans-
forms. Non-square cases where the number of inputs is larger than
n can be handled by concatenating square representations with tied
wavelet weights, see [Yan+15].

We can replace standard weights in linear layers with the decompo-
sition described above, and learn the matrices in Eq. 9.3 using wavelet
loss as defined in Eq. 9.1 and 9.2 jointly with the standard network
objective. Given the network parameters θ and all filter coefficients
θw we minimize:

min(L(θ)) = min[(Lo(θ)) +Lpr(θw) +Lac(θw)], (9.4)

where Lo(θ) the original loss function (e. g.cross-entropy loss) of the
uncompressed network, and Lpr(θw) +Lac(θw) the extra terms for
the learnable wavelet basis.
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Our wavelet-based linear layer can be applied to fully-connected
layers in CNNs and RNNs. For example, suppose we are given a gated
recurrent unit (GRU) as follows:

gr = σ(Wrht−1 + Vrxt + br), (9.5)

gz = σ(Wzht−1 + Vzxt + bz), (9.6)

zt = Wt(gr � ht−1) + Vxt + b, (9.7)

ht = gz � tanh(zt) + (1− gz)� ht−1, (9.8)

where σ(·) and tanh(·) are sigmoid and tanh activation functions, zt
is the candidate hidden layer values, ht is the hidden layer state at
the t-th time, and gr, gz are the reset and update gates, respectively.
We can learn efficient gating units by applying the representation
from Eq. 9.3 to the recurrent weight matrices Wt, Wr and Wz. The
recurrent weight matrices are of size nh × nh and are typically the
largest matrices in a GRU and learning efficient versions of them can
reduce the number of network parameters up to 90%.

9.3 retraining a compressed wavelet layer

We evaluate the effectiveness of our linear layer in both CNNs and RNNs.
For CNNs, we select LeNet-5 on MNIST digit recognition classification
benchmark [LeC+98] as a baseline. For RNNs, we test several GRU
models on sequence learning tasks including the copy-memory and
adding problem [HS97b], sequential MNIST and Penn-Treebank (PTB)
character modelling [MSM93].

9.3.1 MNIST-Digit Recognition

We first apply our efficient wavelet layers to the MNIST digit recogni-
tion problem [LeC+98]. MNIST has 60K training and 10K test images
with a size of 28× 28 from 10 classes. We train using an Adadelta op-
timizer for 14 epochs using a learning rate of 1. The adaptive Fastfood
transform is replaced with our proposed learnable-wavelet compres-
sion layer. In this feed-forward experiment, we apply dropout to the
learned diagonal matrices D, G, B in Eq. 9.3.

We start by randomly initializing the wavelet array, consisting of 6

parameters per filter, with values drawn from the uniform distribution
U1−1. In this case, the initial condition is not a valid product filter so
the wavelet loss is initially very large, as shown in Figure 9.1. How-
ever, as this loss term decreases as the random values in the wavelet
array start to approximately satisfy the conditions of Eq. 4.18 and
Eq. 4.19. Correspondingly, the accuracy also rises. With the random
initialization we achieve a recognition accuracy of 98.33% with only
36k parameters. We visualize the learned filters in Figure 9.2. The alias
cancellation condition causes an alternating sign pattern. Whenever
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Figure 9.1: Wavelet loss sum of a randomly and haar initialized wavelet array.
In both cases, filter values converge to a product filter as indicated
by trend of the wavelet loss towards zero.
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Figure 9.2: Learned wavelet filter coefficients. Coefficients have been initial-
ized at random. After training, the effects of the alias cancellation
constraint are prominently visible. We must have F0(z) = H1(−z)
and F1(z) = −H0(−z) for alias to cancel itself. Inserting (−z) into
the coefficient polynomial leads to a minus sign at odd powers.
Additional multiplication with (−1) shifts it to even powers. Alias
cancellation therefore imposes an alternating sign pattern. When
F0 and H1 share the same sign F1 and H0 do not and vice versa.

Net Error Parameters Reduction

LeNet-5 0.87% 431K -

LeNet-Fastfood 0.71% 39K 91%

LeNet-random 1.67% 36K 92%

LeNet-Wavelet 0.74% 36K 92%

Table 9.1: Experimental results on the MNIST digit-recognition. We work
with a LeNet architecture as proposed in previous work. In com-
parison to the fastfood approach [Yan+15] we obtain compara-
ble performance with slightly fewer parameters. The size of our
learnable-wavelet compression layer is set to 800.
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Figure 9.3: Accuracy and parameters of gated recurrent units with and with-
out a compressed reset gate on the memory problem with T = 60.
Both models start with 1K parameters. As we increase the state
size from 12 to 108, the parameter count rises to 39K for the stan-
dard GRU and to 29K for the compressed version. We observe
that reset gate compression increases parameter efficiency in this
case.

F0 and H1 have the the same sign F1 and H0 do not and vice versa.
As we observe high recognition rates and small wavelet loss values,
we are confident that we have learned valid wavelet basis functions.

Inspired by the Welsh-Hadamard matrix, we also test with a zero-
padded Haar wavelet as a initialization; this should ensure a valid
FWT at all ties. In this case, the initial wavelet loss is very small as
shown in Figure 9.1, as we already start with a valid wavelet that
perfectly satisfies conditions 4.18 and 4.19. However, as learning
progresses, the condition is no longer satisfied, hence the jump in the
loss, before the gradual decrease once again. In Table 9.1, we compare
our result to the Fastfood transform [Yan+15]. Our method achieves a
comparable result with a higher parameter reduction rate of 92% (vs.
91%), which is quite impressive.

9.3.2 RNN-Compression

9.3.2.1 The Copy-Memory and Adding Benchmarks

To explore the effect of our method on recurrent neural networks, we
consider the challenging copy-memory and adding tasks as bench-
marks [HS97b].

The copy memory benchmark consists out of a sequence of 10

numbers, T zeros, a marker and 10 more zeros. The tested cell observes
the input sequence. It must learn to reproduce the original input
sequence after the marker. The numbers in the input sequence are
drawn from Un0 . Element n+ 1 marks the point where to reproduce
the original sequence. We choose to work with n=8 in our experiments
and use a cross entropy loss. Accuracy is defined as the percentage of
correctly memorized integers.
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Adding problem Copy-memory problem

reduced mse-loss accuracy weights ce-loss accuracy weights

GRU - 4.9e-4 99.23% 792K 4.8e-5 99.99% 808K

WGRU zt 3.0e-4 99.45% 531K 2.4e-3 99.1% 548K

WGRU gr 1.1e-4 99.96% 531K 3.7e-5 99.98% 548K

WGRU gz 4.4e-4 97.78% 531K 1.1e-1 21.63% 548K

WGRU gr, gz 0.9e-4 99.85% 270K 3.7e-2 73.63% 288K

WGRU zt, gr 3.0e-4 98.56% 270K 2.4e-3 99.05% 288K

WGRU zt, gz 1.1e-3 92.64% 270K 1.2e-1 12.67% 288K

WGRU zt, gr, gz 1.0e-3 91.64% 10K 1.2e-1 16.84% 27K

Ff-GRU zt, gr, gz 1.3e-3 85.99% 10K 1.2e-1 16.44% 27K

Table 9.2: RNN compression results on the adding and memory problems, exploring the impact of our efficient wavelet-based linear layer at various
locations in the GRU. On the adding problem all tested variants are functional. Compressing the state and reset equations has virtually no
effect on performance. Compressing the update gate leads to a working cell, but cells with a compressed update gate perform significantly
worse. Note that on the adding problem, predicting a sum of 1 regardless of the input leads to an mse of 0.167. On the copy-memory
benchmark, replacing the the state and reset weight matrices with our efficient wavelet version is possible without significant performance
losses. A state size of 512 was used for all models. The expected cross entropy for a random guess is 0.12 with n=8.
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For the adding problem, T random numbers are drawn from U10
out of which two are marked. The two marks are randomly placed in
the first and second half of the sequence. After observing the entire
sequence, the network should produce the sum of the two marked
elements. A mean squared error loss function is used to measure the
difference between the true and the expected sum. We count a sum as
correct if |ŷ− y| < 0.05. We test on GRU cells with a state size of 512.
T is set to 150 for the adding problem. Optimization uses a learning
rate of 0.001 and RMSprop.

We first explore the effect of our efficient wavelet layer on the re-
set gr and update gz equations (Eq. 9.5, 9.6) as well as the state zt
equation (Eq. 9.7). As shown in Table 9.2, We observed that efficient
representations of the state and reset equations has little impact on
performance, while significantly reducing the weights. In the com-
bined case, our method has 2.8× less parameters than dense weight
matrices with only 0.91% accuracy drop in copy memory problem. For
the adding problem, our method achieves a factor of 2.9× reduction
with only 0.67% accuracy drop. When incorporating this into multi-
ple weight matrices, we find that using the efficient representation
is problematic for the update matrix Wz next state computation. We
found that compressing the update gate has a large impact on the
performance, especially the combination with state compression. The
update mechanism plays an important role for stability and should
not be compressed.

Compared to the Fastfood transform [Yan+15], our method is better
at compressing entire cells. It achieves higher accuracy with the same
number of weights both in adding problem and copy memory prob-
lem. For example, in adding problem, our method achieves a higher
accuracy of 91.64% (vs. 85.99%) with the same number of weights,
compared to the Fastfood transform [Yan+15]. Figure 9.3 compares
the relationship of weight growth and accuracy for reset compression
and a standard GRU on the memory problem. We observe that the
compressed case is more efficient.

9.3.2.2 Sequential-MNIST

The sequential MNIST benchmark dataset has previously been de-
scribed in Section 9.3.1. A gray-scale image with a size of 28×28 is
interpreted as a sequence of 784 pixels. The entire sequence is an input
to the GRU, which will generate a classification score. We select a GRU
with a hidden size of 512 as our baseline and an RMSProp optimizer
with a learning rate of 0.001.

Results of our method are shown in Table 9.3. Similar to the results
of Table 9.2, we also observe that having efficient representations
for the state and reset gate matrices work well, but compressing the
update gate adversely impacts the results. Compared to only state
compression, the combination of state and reset compression achieves
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Sequential MNIST

reduced loss accuracy weights

GRU - 6.49e-2 100% 795K

Wave-GRU zt 8.98e-2 98% 534K

Wave-GRU gr 6.06e-2 100% 534K

Wave-GRU gz 1.82 26% 534K

Wave-GRU gr, gz 1.33 46% 274K

Wave-GRU zt, gr 9.48e-2 98% 274K

Wave-GRU zt, gz 1.60 34% 274K

Wave-GRU zt, gz, gr 1.52 36% 13K

WaveGRU-64 zt, gr 0.127 96.4% 4.9K

TT-GRU - - 98.3% 5.1K

Table 9.3: RNN compression results on the sequential MNIST benchmark.
The pattern here reflects what we saw on the adding and copy-
memory benchmarks. Touching the update gate has a negative
impact. All other equations can be compressed. our method
(WaveGRU-64) achieves a comparable performance, compared to
[TSN17].

a higher compression rate of 2.9× (vs. 1.5×), without the accuracy
drop. We also compare to the tensor train approach used in [TSN17].
We apply the efficient wavelet layer only on the reset and state weight
matrices and reduce the cell size to 64. Our approach does reasonably
well with fewer parameters.

9.3.2.3 Penn Treebank Character Modelling

We verify our approach on the Penn-Treebank (PTB) character mod-
elling benchmark [MSM93]. We split the dataset into training, vali-
dation and test sequences, which contains 5,059K training characters,
396K validation characters and 446K testing characters. Given an in-
put sequence of 320 characters, the model should predict the next
character. We work with a GRU of size 512 trained using an Adam
optimizer with an initial learning rate of 0.005. Training is done using
a cross entropy loss in addition to the wavelet loss, and results are
reported using bits per character (bpc), where lower pbc is better.
In Table 9.4, we show results for a temporal convolutional network
(TCN) [BKK18], a vanilla GRU cell as well as state, reset and state reset
compression, which we found to be successfully earlier. We confirm
that our wavelet-based compression method can be used to compress
reset gate and cell state without significant performance loss.
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Penn Treebank Character Prediction

reduced loss bpc weights

TCN - 0.916 1.322 2,221K

GRU - 0.925 1.335 972K

Wave-GRU zt 0.97 1.399 711K

Wave-GRU gr 0.925 1.335 711K

Wave-GRU zt, gr 0.969 1.398 450K

Table 9.4: Results for the best performing architectures on the Penn-Treebank
data set, we compare to a TCN as proposed in [BKK18]. We can
compress the GRU cells state and reset equations without a signifi-
cant drop in performance.

9.4 summary and outlook

We presented a novel wavelet-based efficient linear layer which demon-
strates competitive performance within convolutional and recurrent
network structures. On the MNIST digit recognition benchmark, we
show state of the art compression results as well as convergence from
randomly initialized filters.

We explore RNN compression and observe comparable performance
on the sequential MNIST task. In a gated recurrent unit we can com-
press the reset and state equations without a significant impact on
performance. The update gate equation was hard to compress, in
particular in combination with the state equation. Joint update gate
and reset gate equation compression generally worked better than
update and state compression. We conclude that the update mecha-
nism plays the most important role within a GRU-cell, followed by the
state equation, and finally, the reset gate. Results indicate that selective
compression can significantly reduce cell parameters while retaining
good performance.

Product filters are only one way of wavelet design alternative meth-
ods include lifting or spectral factorization approaches. We look for-
ward to exploring some of these in the future. Efficient implementation
of the FWT on GPUs is no simple matter. We will open our framework
upon acceptance of this paper in the hope that it will spark future
work on highly optimized implementations.

9.5 compression trough wavelet quantization

Quantization of wavelet coefficients plays an important role in image
compression for example in the JPEG 2000 standard [SN96]. This
section explores the combination of weight quantization, Huffman
coding, and wavelet transformations [HMD16b]. If the input data
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Figure 9.4: Accuracy versus scale and file size for a MNIST 4 layer CNN ex-
ample. We observe that the wavelet coefficient are more resistant
to quantization in this case. The shifted peak in the right indicates
that the file size can roughly be cut in half here.

is sufficiently correlated, wavelet transforms can introduce sparsity
into the outputs. Increasing sparsity reduces the network size on
disk, when combined with Huffman-coding, because the histogram of
network weights is shifted towards the center, where Huffman codes
are short.

9.5.1 Quantization

Weights are quantized by rounding to integer values after scaling and
shifting [Pas+19]:

Qw = round(x/s+ p0), (9.9)

above s denotes the scale and p0 the shift. After rounding, the network
weights can be stored as 8 bit integers or Huffman coded for additional
compression. The range of integers which the network weights are
mapped to is controlled by s. Choosing a small s increases the size of
the resulting integers and the distance between these. By decreasing
s two similar floats are less likely to be mapped to the same integer.
A small s typically preserves more information but produces a more
diverse set of integers which will increase the network size after
Huffman coding.

9.5.2 Wavelet compression of a quantized convolutional neural network

In the following experiments, the wavelet transformed networks are
compressed using quantization and Huffman coding. The wavelet
transform is applied along the input and output channels for convolu-
tion filters and along the rows of the fully connected matrices.

After decompression, the performance is recorded. figure 9.4 de-
picts results for a network trained on MNIST consisting out of two
convolutional and two fully connected layers. On the left of figure 9.4,
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we show the evolution of the MNIST digit classification accuracy for
an increasing compression rate s. The blue line shows the wavelet case,
the orange line simple Huffman quantization. The measurements indi-
cate that the wavelet transformed network weights are more robust
to quantization than their un-transformed counterparts. On the right
of figure 9.4 we show file size versus classification accuracy. We find
that wavelet quantization creates a peak on the right, which can be
exploited for compression purposes. In the wavelet case we find a file
size of reduction of roughly 40%, for the four layer CNN.

9.6 summary and outlook

The MNIST wavelet compression experiment discussed above showed
file size reductions for a wavelet compressed network. Follow up
experiments on deeper res-net architectures did not yield the same
results. Probably because in higher layers convolution filters are less
correlated along the input and output filter dimensions, which reduces
the sparsity and thereby the compression efficiency of the wavelet
quantization approach. As shown by the mnist experiments, wavelet
compression can be beneficial for shallower network architectures.



10
C O N C L U S I O N

This thesis combined spectral methods and machine learning in dif-
ferent ways. Time and the frequency domain are linked through the
Fourier and wavelet transforms. The complex nature of Fourier coeffi-
cients and the compression power of the wavelet transform motivated
the design of the new network architectures we saw in the research
part.

10.1 lessons learned

Frequency-based methods have long a long track record as prepro-
cessing tools. Due to their enormous flexibility, neural networks often
did not benefit from additional preprocessing using static linear trans-
forms. Consequently, flexible transforms should be preferred, but
more importantly, additional insights must be built into the learning
system.

10.1.1 STFT learning

The Fourier transform has the useful property of clustering the most
essential information into the low-frequency bands. Low pass filtering,
therefore, allows parameter reductions in some cases. Fewer parame-
ters lead to faster training and evaluation. An important side effect of
the STFT is that it groups input signals into windows. In chapter 6 we
learned how much of a difference this makes for long time series. RNNs
are not infinitely stable and the granularity of time information mat-
ters [Kou+14]. Running at lower clock rates reduces the computational
load and state matrix evaluations. Windowing, therefore, improves
both runtime and gradient stability in our experiments. Finally, pre-
vious work on end to end learning has shown that it is important
to establish gradient signals whenever possible [Cha+16]. We enable
gradient flow trough the STFT, which makes it possible to optimize
window shapes.
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10.1.2 Complex Networks

The Fourier transform produces complex coefficients. A complex re-
current cell to process these was designed in Chapter 7. It described
automatic-gradient descent with complex weights and functions. The
choice of a complex activation and the design of the gating func-
tions took holomorphy and stability considerations into account. The
interplay of unitary state updates and the activation function was
explored. The presented experiments confirmed that unitary state
matrix updates allow unbounded recurrent activation functions. If
the state matrix norm is allowed to grow freely, the activation func-
tion cannot do the same. As new complex gate activation function
chapter 7 introduced the modSigmoid, a mapping from C to R. This
new function leads to functional gates, which maintain cell stability
by combining information from both real and complex parts. It allows
complex memory cells to manage their memory, while keeping the
complex-phase intact, a prerequisite for stability. Overall complex
networks worked well. The complex formulation allowed parameter
reductions. For CNNs [Tra+18] made similar observations.

10.1.3 Video Prediction

Video prediction using image registration and transformation was the
main topic of Chapter 8. Phase based image registration and transfor-
mation methods were integrated into a recurrent cell. The resulting
network transforms input images with a single object into predictions
based on estimated and corrected parameters. The proposed cell does
not suffer from the common smearing problems that standard cells
have.

10.1.4 FWT integration in neural nets

Integration of wavelets into neural networks was the focus of chap-
ter 9. The fast wavelet transform relies on convolutions, this fact
enables us to implement the FWT using the highly optimized convolu-
tion functions of modern machine-learning frameworks. Experiments
showed that the FWT works well within neural networks, especially
for compression purposes. Additional loss functions allow wavelet
optimization, which adds extra flexibility in comparison to previous
approaches.

10.1.5 Choosing a Transform

Choosing a frequency domain representation can be difficult. For
example, faced with the choice of a Fourier or Wavelet transform, it
helps to think about these transforms as bases. The transform with
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basis functions most similar to the data will work best. An image
with many sharp lines and borders will be more easily represented
using wavelets with sharp edges. In this case, a Fourier representation,
which only contains smooth functions, will not lead to a very sparse
representation. The basis functions won’t fit the data very well, and
we will have to use more. This problem is also known as Gibbs
phenomenon [SN96]. Within higher CNN layers or recurrent cells,
representations are not very smooth. Choosing wavelets in Chapter 9

therefore seemed natural.

10.2 reproducibility and open source

Aiding future engineers and scientists with the reproduction and
extension of all experiments described in this text was an important
goal of this thesis project.

In addition to scientific reasons, as a researcher working in pub-
lic institutions, I directly benefited from generous funding through
tax money. To give back to the public that paid for it, the source
code written for this thesis is available under permissive open-source
licenses.

Despite my best efforts, the experimental design and network im-
plementations are not perfect. The training process of randomly initial-
ized neural networks does not always converge to the same solution.
To make results perfectly reproducible all seeds to random number
generators must be recorded, and stochastic code be removed where
recording the seed is not possible. Given time constraints and the
closed stochastic nature of parts of the GPU related training code
making results exactly reproducible was not possible. In addition to
stochasticity, software dependencies should be identical to allow per-
fect reproduction. Key library versions are documented in readme files,
but the code is not dockerized, which would have been the preferred
option.

Despite these shortcomings, all code releases have been carefully
tested and evaluated. I hope that opening and documenting three
and a half years of work will help future scientists working at the
intersection of frequency domain and machine learning.

10.3 future work

Some progress has been made in this thesis, but of course the future
still holds many potential discoveries.

One could, for example, place the convolution structure into a ma-
trix instead of the image vector. This way, it should be possible to draw
on the theory of doubly block circulants [Dav79]. Fourier matrices
diagonalize block circulants efficiently [Dav79]. Having easy access
to convolution operator eigenvalues might make novel orthogonality
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or unitary loss functions possible or enable learning the convolution
weights directly in the eigenspace. The complex eigenvalue-weights
will lead to real filter matrices if a Hermitian pattern is enforced.
Having invertible machine learning layers may be particularly inter-
esting in the context of autoencoders and for interpretable machine
learning-purposes. Furthermore, unitary convolution operators based
on doubly block circulants may enable us to develop CNN which run
on quantum computers.

The phase-based approach presented in chapter 8, currently only
works on videos with a single transformation. To make it work in
more realistic settings, future work could couple it with an object
segmentation algorithm. Multiple registration and transformation
cells would then predict the movement of many objects separately.

Rescaling can be done very accurately in the frequency domain.
Recently pooling papers using the fast Fourier and Wavelet transforms
have appeared [WL18; RSA15]. Using the proposed wavelet learning
approach from chapter 9, it is probably possible to propose an adaptive
wavelet pooling layer, which would add extra flexibility to modern
neural networks. In addition to the product filter loss, orthogonal
wavelet loss functions could be proposed and explored. Orthogonal
FWT layers may form useful additions to the convolutional case.

Quantum computers require complex numbers and unitary matrices
by design, putting chapter 7’s results to use in the design of quantum-
RNN will make for exciting future work. Future complex-valued neural-
networks may also feature holomorph activation functions such as the
Möbius-transform. The Möbius transform is a learnable optimization
function, which could add extra flexibility into the network. However,
all holomorph functions have singularities, which cause instability. A
solution or workaround for these singularities, would clear the path
towards many new complex activation functions.
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