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Introduction

This thesis consists of three self-contained essays in econometrics and statistics. It discusses method-
ological topics in semiparametric statistics as well as dynamic panel data models. In the first part, I
focus on relaxing assumptions with respect to the model structure in the considered semiparametric
model. The main goal is to provide an estimation technique that enables an applied researcher to answer
research questions having at hand a reasonable amount of observed data points. Therefore, I provide
reliable testings procedures that lead to trustworthy inference results. In the second part, I consider a
well known dynamic panel data model. In order to estimate the model parameters I refine an existing
likelihood approach and contrast it with a second likelihood approach. The idea of this project is to give
a comprehensive overview of the estimation possibilities with likelihood approaches for this panel data
model.

In chapters 1 and 2 the smooth minimum distance (SmoothMD) approach proposed by Lavergne and
Patilea [56] is considered in the context of a partially linear model. The motivation for the SmoothMD
estimator is that models nonlinear in parameters that are based on conditional moment restrictions
can render inconsistent parameter estimates when the generalized method of moments (GMM) is used
for estimation. The reason is that the conditional moment restrictions, that identify the model, imply
an infinite number of unconditional moment restrictions if the conditioning variables have a support
with infinite cardinality. GMM relies only on a finite number of instruments and, thus, might lead to
inconsistent estimates. See Dominguez and Lobato [29]. Therefore, there have recently been proposed
several approaches that account for conditional equations at the outset to obtain more efficient estimators.
All these approaches share a common feature. The sensitivity to user-chosen parameters, that remains
largely unknown. This is one key motivation for the alternative estimator of Lavergne and Patilea [56].

CHAPTER 1 is joint work with Alois Kneip und Valentin Patilea. We consider a semiparamet-
ric partially linear model in the spirit of Robinson [70] with Box-Cox transformed dependent variable.
Transformation regression models are widely used in applied econometrics to avoid misspecification and
a partially linear semiparametric model is an intermediate strategy that tries to balance advantages
and disadvantages of a fully parametric model and nonparametric models. We combine both estimation
strategies to allow for a more flexible model structure. Our study seems to be the first consideration of
this model. The model parameters are estimated by the SmoothMD approach. The main difference to
the estimator of Lavergne and Patilea [56] is that due to the structure of the partially linear model we
need to estimate the regressand and the regressors of the model. We show that the SmoothMD estimator
can handle the estimation bias stemming from these estimates and consider the asymptotic behavior
under general conditions. In addition, new inference methods are proposed. A simulation experiment
illustrates the performance of the methods for finite samples. Finally, we show the usefulness of the pro-
posed estimator by applying it to investigate the returns of social and cognitive skills in a labor market
context.

CHAPTER 2 considers again the semiparametric partially linear model in the spirit of Robinson [70]
but without transformation of the dependent variable as in chapter 1. In addition, we allow for endogenous
covariates. Apart from the estimator of Robinson [70] there exist other approaches, consider for instance
Li [57] and Li and Stengos [59], that provide consistent and asymptotically normally distributed estimates.
Here, it is proposed to employ again the SmoothMD estimator. This seems to be counterintuitive as the
considered model is linear in parameters. However, we will show that the SmoothMD estimator captures
a part of the estimation bias of the estimated regressand and regressors. This is in contrast to the existing
approaches and a simulation study suggests that the SmoothMD estimator improves results especially
for inference in finite samples.

CHAPTER 3 is based on work with Jörg Breitung. We consider dynamic panel data models with
individual fixed effects and compare the transformed maximum likelihood approach of Hsiao et al. [48]
and the factor analytical approach proposed by Bai [17]. This is interesting as the first approach considers
the model in differences whereas the latter approach focuses on the model in levels. In addition, we extend
the factor analytical approach to models with additional exogenous covariates.
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Chapter 1

Smooth minimum distance inference for

semiparametric partially linear regressions with

Box-Cox transformation

1.1. Introduction

The data consists of independent copies of a response variable Y and a random covariate vector(
XT ,ZT

)T ∈ Rp × Rq.1 To model the relationship between the response and the covariate vector, we
consider a transformation partially linear mean regression model given by

T (Y, λ) = XTβ +m(Z) + ε, (1.1)

where T (·, λ) is a known function depending on an unknown finite-dimensional parameter λ, m(·) is an
unknown function and

E[ε |X,Z] = 0. (1.2)

We impose no further assumption on the conditional distribution of ε. In particular, we allow for het-
eroscedasticity of unknown form. The vector Z contains only continuous variables, but the components of
X need not be continuous. Let β0 and λ0 denote the true values of the parameters. Our transformation
partially linear model extends the standard partially linear model which corresponds to the case where
the true value λ0 of λ is known. See Robinson [70]. It seems to be the first extension of this kind under
the general condition (1.2).

The transformation function T (Y, λ) is usually assumed to be strictly increasing in Y . In the literature,
many different parametric transformation functions have been proposed. In this study we consider T (·, λ)
to be the Box-Cox transformation, though our analysis extends to other parametric transformations with
similar properties. The transformation proposed by Box and Cox [22] is defined as

T (Y, λ) =

{
Y λ−1
λ , λ 6= 0

log(Y ) , λ = 0.

To use this transformation, one should have positive responses Y . Hence, in the following it will implicitly
be assumed that Y is positive. The Box-Cox transformation is widely used in applications. It has become
standard in the statistical and econometric literature and is discussed in various textbooks, e.g. Amemiya
[6], Greene [33], Horowitz [46], Showalter [75], Wooldridge [81]. Furthermore, there exist several empirical
studies that employ the Box-Cox transformation. See, for instance, Berndt et al. [19], Heckman and
Polachek [40] or Keane et al. [50]. For an overview of the Box-Cox transformation consider Horowitz [46]
and Sakia [71]. The reason for applying the Box-Cox transformation is to increase the flexibility and
avoid misspecification of the model. In economic applications the dependent variable is frequently log-
transformed, see for example Acemoglu et al. [1] and Autor and Handel [16]. However, in general one does
not have guarantees that this transformation leads to the correct model. If the regression specification
is true for some different transformation, employing the log-transformation for fitting the regression
model might give misleading estimation and inference results. Specifying the transformation up to a

1Herein, vectors are column matrices and for any matrix A, AT denotes its transpose.
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parameter and estimating the parameter together with the regression parameters leads to more reliable
results at the cost of having to estimate only one additional parameter. In addition, the common log-
transformation is nested in the Box-Cox transformation and, thus, can be confirmed by a statistical test.
Of course, one could aim to extending the framework and considering that the transformation belongs
to a nonparametric family of transformations. See, for instance, Horowitz [45] and Zhou et al. [82] for
such high-level assumptions on the transformation. However, such more general approaches pay the price
of more stringent independence assumptions on the error term ε. Moreover, checking whether a given
transformation, such as the log-transformation, is validated by the data becomes much more challenging.
For all these reasons the extension of our framework to the case of nonparametric transformations will
remain beyond the scope of this study. Despite its popularity, even in a purely parametric framework,
estimation and inference in a Box-Cox transformation model is a difficult statistical problem and is usually
based on quite restrictive assumptions on the conditional law of the response. See for instance chapter 5
of Horowitz [46] for an illuminating discussion. The problem becomes even more complex in case of the
semiparametric regression (1.1) where one only assumes the minimal identification condition (1.2).

The semiparametric partially linear specification of the conditional mean of the response is quite
appealing as it allows a linear dependency on a subvector X of covariates, which could include discrete
variables, and meanwhile allows a nonparametric additive effect of the covariates Z. These features could
help practitioners faced with a large cross-sectional data set with independent observations including many
candidate explanatory variables, who, on the basis of economic theory or past experience with similar
data, feel able to parameterize only some of them.

There are many studies in the literature, where Z in (1.1) is either assumed to be a scalar nonstochastic
design variable, or Z is a stochastic vector and of arbitrary fixed dimension. The dimension of Z might
influence the estimation accuracy as we will see in the following. It is well-known that, given model
(1.1) with the true transformation, an ordinary least squares (OLS) regression of T (Y, λ0) on X alone
consistently estimates β0, provided that X and m(Z) are orthogonal. However, this orthogonality
condition cannot be expected to hold true in most situations, and thus in general this OLS estimator is
biased, as usually happens with OLS in the presence of nonorthogonal omitted variables. See e.g. White
[80]. Consistent estimation of β0 in the presence of an unknown function m(·) is possible, however. For
instance, one may consider a nonparametric estimator of e(x, z) = E[T (Y, λ0) | X = x,Z = z]. When
X and Z do not overlap, the derivative of this estimator with respect to x, denoted by ex, yields a
consistent estimate of β0 under quite general conditions; see, e.g., Robinson [70]. Unfortunately, the
estimators ê(x, z) and êx are not

√
n-consistent, êx converging even slower than ê(x, z). Moreover, the

greater the dimensions of X and Z, the further both estimators fall short of
√
n-consistency.

Robinson [70] proposed an alternative and more effective approach. Given the true value λ0, under
the condition (1.2), one gets E[Y ∗ | Z] = E[X | Z]Tβ + m(Z), where Y ∗ = T (Y, λ0). Next, one can
rewrite the model as

Y ∗ − E[Y ∗ | Z] = (X − E[X | Z])Tβ + ε, E[ε|X,Z] = 0.

The estimator of β0 proposed by Robinson [70] is then a feasible version of the unfeasible OLS estimator of
Y ∗−E[Y ∗ | Z] on X−E[X | Z]. The regressand and regressors E[Y ∗ | Z] and E[X | Z] being unknown,
they need to be estimated by some nonparametric procedure. Robinson [70] proposed to estimate them
by the Nadaraya-Watson (NW) estimator. He showed that, under suitable regularity assumptions and
conditions on the kernel and the bandwidth, the OLS estimator with response Y ∗ − E[Y ∗ | Z] and
covariate vector X −E[X | Z] yields a

√
n-consistent, asymptotically normally distributed and efficient

estimator if the conditional expectations given Z are replaced by their kernel estimates. The quite
straightforward way to build efficient estimators made the partially linear model quite a popular. Versions
of this model have also been studied by Engle et al. [31], Heckman [42], Shiller [73] and Wahba [79].
For an overview consider Härdle et al. [37] and Li and Racine [58]. In order to avoid the trimming
introduced by Robinson [70] to ensure that the estimate of the density of Z, fz(Z), stays away from
zero, Li [57] considered as starting point the unfeasible OLS regression of (Y ∗ − E[Y ∗ | Z])fz(Z) on
(X − E[X | Z])fz(Z). Premultiplying by the density of Z does not break the consistency of the
unfeasible OLS estimator since E[fz(Z)ε | X,Z] = fz(Z)E[ε | X,Z] = 0. Next, Li [57] proposed to
build OLS estimates using standard kernel estimators instead of the unfeasible response and covariates.
This new estimator is still

√
n-consistent and asymptotically normally distributed. Moreover, Li [57]

relaxed the condition on the bandwidth with the consequence that the smoothing requires higher order
kernels only if the dimension of Z is larger than 5, instead of larger than 3 as required in Robinson [70].

The least squares approach fails when the response variable is a transformation depending on an
unknown parameter. This is well-known in parametric Box-Cox transformation regression models, and is
inherited by our semiparametric extension introduced in equation (1.1). However, the model we consider
herein belongs to the large class of models defined by conditional moment restrictions. Therefore, we
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propose to estimate the finite dimensional parameters λ and β of model (1.1) combining the estimation
strategy of Li [57] with the smooth minimum distance (SmoothMD) estimator proposed by Lavergne and
Patilea [56].

The motivation for the SmoothMD estimator is that models nonlinear in parameters like (1.1) that are
based on conditional moment restrictions as condition (1.2) can render inconsistent parameter estimates
when the generalized method of moments (GMM) is used for estimation. The reason is that the condi-
tional moment restrictions, that identify the model, imply an infinite number of unconditional moment
restrictions if the conditioning variables have a support with infinite cardinality. However, GMM relies
only on a finite number of instruments and, thus, in general consistency of GMM relies on additional
assumptions. See Dominguez and Lobato [29]. This problem has been pointed out for the Box-Cox
transformation by Foster et al. [32] and Shin [74] in the linear case. See also Horowitz [46]. More recent
work focuses on accounting for conditional equations at the outset to obtain more efficient estimators.
Some methods rely on increasing the number of considered unconditional estimating equations (or in-
struments) with the sample size, such as the sieve minimum distance (SMD) approach of Ai and Chen
[3], or generalizations of GMM and empirical likelihood (EL) by Donald et al. [30] and Hjort et al. [43].
Carrasco and Florens [24] use a regularization approach to generalize the GMM approach to a continuum
of estimating equations. Other EL-type estimators use nonparametric smoothing to estimate conditional
equations, such as Antoine et al. [13], Kitamura et al. [52], and Smith [76, 77]. All these approaches share
one common feature. The estimators’ sensitivity to the user-chosen parameter (number of estimating
equations, regularization parameter, or smoothing parameter) remains largely unknown. This is one key
motivation for the alternative estimator of Lavergne and Patilea [56], the SmoothMD estimator. The
asymptotic representation of their estimator is established as a process indexed by a tuning parame-
ter, the user-chosen parameter, which can vary within a wide range including values independent of the
sample size.

Let us briefly recall the SmoothMD approach. Consider a general conditional moment restrictions
model

E[g(U ;θ) |W ] = 0, (1.3)

where g(·) is a given function, U is a vector of observed variables, W is a subvector of U and θ is
the finite-dimensional parameter of interest. The components of W need not be continuous random
variables. It is assumed that there exists a θ0 such that E[g(U ;θ0) | W ] = 0 and θ0 is unique with
this property. The SmoothMD approach is based on an equivalent rewriting of equation (1.3) under the
form of a suitable unconditional moment. For this purpose, let ω(·) be a symmetric function of W with
positive Fourier transform. The typical example we have in mind is ω(W ) = exp

{
−W TDW

}
where D

is some positive definite matrix. Typically, D is a diagonal matrix with diagonal elements playing the
role of standardizing constants. Lavergne and Patilea [56] list many other possible choices for ω(·). Then
condition (1.3) is satisfied if and only if

Q(θ) = E[g(U1;θ)g(U2;θ)ω(W1 −W2)] = 0,

where U1 and U2 are independent copies of U (and W1 and W2 are the corresponding subvectors).
Whenever E[g(U ;θ) | W ] 6= 0, one has Q(θ) > 0. Finally, the SmoothMD estimator is defined as the
minimum of a sample based approximation of Q(θ). The SmoothMD estimator is

√
n-consistent and

asymptotically normal. Meanwhile, estimators based on instruments may be inconsistent if their number
is kept fixed, as pointed out by Dominguez and Lobato [29]. Hence, the SmoothMD estimator bridges a
gap between Dominguez and Lobato’s method, which does not require a user-chosen parameter, and the
competing SMD estimator and EL and GMM-type methods that rely on smoothing. Indeed, Lavergne
and Patilea [56] obtained their asymptotic results uniformly with respect to the diagonal of the matrix D
in an interval with the right endpoint allowed to grow to infinity. Then, a diagonal element of D could
be viewed as the inverse of a kernel smoothing bandwidth tending to zero at a suitable rate.

In the context of our model defined in (1.1), we have to extend the SmoothMD approach to the case

where the model contains an infinite-dimensional nuisance parameter. Let W =
(
XT ,ZT

)T ∈ Rp × Rq

and U =
(
Y,W T

)T
. Moreover, let θ =

(
λ,βT

)T
and

g(U ;θ, γ,η) =
(
T (Y, λ)− E[T (Y, λ) | Z]− (X − E[X | Z])Tβ

)
fz(Z)− γ. (1.4)

Here, η is an infinite-dimensional nuisance parameter containing the three unknown functions of Z
appearing in the definition of g(U ;θ, γ,η) and γ ∈ R is an intercept nuisance parameter. Then, our
transformation partially linear mean regression model could be written under the form of a conditional
moment equation E[g(U ;θ, γ,η) |W ] = 0. The true value of the intercept γ is known to be equal to zero.
However, this artificial parameter will be helpful to diminish the amplitude of the variance coming from
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the nonparametric estimators of the unknown functions in the asymptotic representation of the estimator

of θ0 =
(
λ0,β

T
0

)T
. The generalized SmoothMD approach we propose is based on the equivalence

E[g(U ;θ, γ,η) |W ] = 0 ⇐⇒ Q(θ, γ) = E[g(U1;θ, γ,η1)g(U2;θ, γ,η2)ω(W1 −W2)] = 0,

where U1 and U2 are independent copies of U (and W1 and W2 are the corresponding subvectors).
Whenever, E[g(U ;θ, γ,η) | W ] 6= 0, one has Q(θ, γ) > 0. Next, the idea is to define the SmoothMD
estimator as the minimum of a sample based version of Q(θ, γ). To take advantage of the structure of
our model, we propose to define our SmoothMD estimator using a profiling approach. Given the i.i.d.
sample U1, . . . ,Un and nonparametric estimates η̂1, . . . , η̂n of the values of the nuisance parameter, for
each λ, we define the map

(γ,βT )T 7→ Q̂n

((
λ,βT

)T
, γ
)

=
1

n2

∑
1≤i,j≤n

g(Ui;θ, γ, η̂i)g(Uj ;θ, γ, η̂j)ω(Wi −Wj),

which is quadratic with an explicit unique minimum (γ̂(λ), β̂(λ)T )T . Thus, we define a profile SmoothMD
estimator of λ0 as

λ̂ = arg min
λ
Q̂n

((
λ, β̂(λ)T

)T
, γ̂(λ)

)
,

and, with at hand the estimate λ̂, eventually we calculate β̂(λ̂), the semiparametric SmoothMD estimate
of β0. Let us point out that our SmoothMD approach could also be used in classic particular cases.
Indeed, the model of Robinson [70] is nested in the model (1.2) in the sense that it corresponds to the

situation where the transformation parameter λ is known. In this case our β̂(λ) is an alternative to
Robinson [70]’s estimator for which we require weaker technical conditions. The classical linear model of
Box and Cox [22], as well as any parametric extension, could also be estimated by SmoothMD, without
any further assumptions on the law of ε. In that case the smoothing with respect to Z is unnecessary as
the model does not contain any unknown function.

In addition, we can estimate the transformation partially linear model if we have endogeneity in X,

i.e. E[ε |X] 6= 0 but E[ε | Z] = 0. In order to be able to estimate the model we need to find a vector W̃

such that E[g(U ;θ, γ,η) | W̃ ] = 0. Here, one needs a vector of instruments V that is correlated with X

but E[ε | V ] = 0 such that W̃ =
(
V T ,ZT

)T
. See Li and Stengos [59] and chapter 2 for a discussion in

the standard model of Robinson [70] with known λ0. If we have endogeneity in Z the estimation problem
becomes more delicate and cannot be conducted in the way we propose in this chapter. This problem is
left for future research.

The remainder of the chapter is organized as follows. In section 1.2, we present our new estimation
method and establish identification of the model parameters. In section 1.3, we develop our uniform-
in-bandwidth theory, including consistency and

√
n−consistency of our estimator. In section 1.4, we

investigate a distance-metric procedure for testing restrictions on parameters. In section 1.5, we study
the finite sample behavior by a simulation study and apply the estimator to a real data sample. Our
estimator performs well in our experiments and our tests yield accurate levels and good power in moderate
samples. Section 1.6 concludes. Technical assumptions are stated in section 1.7.

1.2. The semiparametric SmoothMD approach

In this section we formally define our semiparametric estimator. First, we investigate two issues. On
the one hand, we prove identification of the true value θ0 = (λ0,β

T
0 )T of the parameter of interest. Next,

we discuss the recommendation appearing in the literature for normalizing the response variable. This
issue is specific to the Box-Cox transformation, though similar problems occur with other families of
transformations. Finally, we define our semiparametric SmoothMD estimator.

We use the following notation throughout the remaining of the chapter. For dl, dc ≥ 1, let Rdl×dc
denote the set of dl × dc A matrices with real elements. Let 1dl (resp. 0dl) denote the vector with all
components equal to 1 (resp. 0), 0dl×dc the dl × dc−null matrix and Idl×dl the identity matrix with
dimension dl × dl. For a matrix A, ‖A‖ is the Frobenius norm and ‖A‖Sp the spectral norm. Below,
D = diag(d) is some positive definite diagonal matrix with d ∈ D ⊂ Rp+q+ being a diagonal vector with
strictly positive components. Herein, D is a compact set and our asymptotic results are derived uniformly
with respect to d ∈ D.
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1.2.1. Identification

Let −∞ < λmin < λ0 < λmax <∞, with λmin < 0 and λmax > 0. For any λ ∈ Λ = [λmin, λmax], let

(γ(λ),β(λ)T )T = arg min
γ∈R,β∈Rp

E[g(U1;θ, γ,η1)g(U2;θ, γ,η2)ω(W1 −W2)], (1.5)

with g(U1;θ, γ,η1) and g(U2;θ, γ,η2) being independent copies of g(U ;θ, γ,η) defined in equation (1.4)

with U =
(
Y,W T

)T
, W =

(
XT ,ZT

)T
, θ = (λ,βT )T and

η = (fz(·), E[T (Y, λ) | Z = · ], E[X | Z = · ]T )T .

With all this in hand we can now state the following identification result.

Lemma 1.1. Suppose that Assumptions 1.1 and 1.2 hold true and max(|λmin|, λmax) < ∞. Let γ(λ)
and β(λ) be defined as in equation (1.5). Then, γ(λ0) = 0 and β(λ0) = β0 and

P
(
E
[
(T (Y, λ)− E[T (Y, λ) | Z])fz(Z)− γ − (X − E[X | Z])Tβfz(Z) |X,Z

]
= 0
)
< 1,

for all γ ∈ R and θ = (λ,βT )T ∈ Λ× Rp such that (γ,θT )T 6= (0,θT0 )T . Moreover, for any ε > 0,

inf
λ∈Λ, |λ−λ0|≥ε

inf
d∈D

E
[
g
(
U1; (λ,β(λ)T )T , γ(λ),η1

)
g
(
U2; (λ,β(λ)T )T , γ(λ),η2

)
× exp

{
−(W1 −W2)TD(W1 −W2)

}]
> 0. (1.6)

1.2.2. Box-Cox transformation and standardized responses

Let us note that

lim
λ↑∞

yλ − 1

λ
= 0 if 0 < y < 1 and lim

λ↓−∞

yλ − 1

λ
= 0 if y > 1.

In classical estimation approaches for parametric regression models with Box-Cox transformed re-
sponse, this is likely to induce instability for the estimation of the parameter λ. See, e.g., Khazzoom [51],
Powell [69] and Showalter [75] for a discussion of this well-known issue. In order to avoid such problems,
the common recommendation is to standardize the response by some constant, say s, such that

P (Y/s < 1) > 0 and P (Y/s > 1) > 0.

The constant s could be for instance the mean of Y or the geometric mean of Y .2 With finite samples,
the practitioner would first estimate such a constant using the sample and next would normalize the
responses. The same type of problems might occur in our semiparametric extension of the Box-Cox
transformation model. For this reason, we will replace our function g(U ;θ, γ,η) by a family of functions
s−λg(U ;θ, γ,η) indexed also by s in some interval on the positive half-line that we will let depend on the
sample size. This change of the family of functions is equivalent to changing Y to Y/s in the definition
(1.4), and a rescaling of the parameters β and γ.

By the profiling-based construction of our SmoothMD estimator, the replacement of the response Y
by Y/s matters only for computing λ̂. Clearly, the identifiability property established in Lemma 1.1 is
preserved. In the following we provide asymptotic results that are uniform with respect to s in order to
allow for a data-driven choice of s, such as for instance the sample geometric mean of the response.

1.2.3. The estimator

Given an independent sample
(
Y1,X

T
1 ,Z

T
1

)T
, . . . ,

(
Yn,X

T
n ,Z

T
n

)T
from

(
Y,XT ,ZT

)T ∈ R × Rp+q,
let us define

Ŷn(λ) =
(

(T (Y1, λ)− Ê[T (Y1, λ) | Z1])f̂z(Z1), . . . , (T (Yn, λ)− Ê[T (Yn, λ) | Zn])f̂z(Zn)
)T
∈ Rn,

2The geometric mean is defined as Gn =
n∏

i=1
Y

1/n
i = exp

{
1
n

n∑
i=1

log(Yi)

}
. Let ymax be the largest and ymin the smallest

observed value. We get that ymax
Gn

=
n∏

i=1

(
ymax
yi

)1/n
> 1 and ymin

Gn
=

n∏
i=1

(
ymin
yi

)1/n
< 1 as long as ymax > ymin. The

reasoning for y is similar.
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and

X̂n =
(

(X1 − Ê[X1 | Z1])f̂z(Z1), . . . , (Xn − Ê[Xn | Zn])f̂z(Zn)
)T
∈ Rn×p.

For 1 ≤ i ≤ n, η̂i = (f̂z(Zi), Ê[T (Yi, λ) | Zi], Ê[Xi | Zi]T )T are nonparametric estimates of ηi =
(fz(Zi), E[T (Yi, λ) | Zi], E[Xi | Zi]T )T . For the unknown values we use the kernel estimates

f̂z(Zi) =
1

nhq

n∑
j=1

K

(
Zi −Zj

h

)
, Ê[T (Yi, λ) | Zi]f̂z(Zi) =

1

nhq

n∑
j=1

T (Yj , λ)K

(
Zi −Zj

h

)
,

and

Ê[Xi | Zi]f̂z(Zi) =
1

nhq

n∑
j=1

XjK

(
Zi −Zj

h

)
.

Here K(·) is a multivariate kernel function and h is the bandwidth. Let Ωn be the n × n− symmetric
matrix with elements

Ωn,ij = exp{−(XT
i −XT

j ,Z
T
i −ZTj )D(Xi −Xj ,Zi −Zj)}, 1 ≤ i, j ≤ n.

Typically, the components of the vector d defining the diagonal matrixD are proportional to the standard
deviation of the components of the vectors (XT

i ,Z
T
i )T . The definition of Ωn,ij allows also to take into

account discrete components of X. For finite support discrete covariates, one could set some large value
for the corresponding diagonal element of D, which in practice would be equivalent to an indicator of
the event that the observations i and j have the same value for that covariate.

We can now define, for any λ, the estimates of (γ(λ),β(λ)T )T ∈ R1+p introduced in equation (1.5).
For any s > 0, let

Q̂n

((
λ,βT

)T
, γ; s

)
= n−2s−2λ

(
Ŷn(λ)− γ1n − X̂nβ

)T
Ωn

(
Ŷn(λ)− γ1n − X̂nβ

)
.

For fixed s and λ, consider the generalized least-squares problem

min
γ,β

Q̂n

((
λ,βT

)T
, γ; s

)
. (1.7)

The solution of this problem does not depend on s−λ and has the form of standard generalized least-
squares estimators:

γ̂(λ,β(λ)) =
1

1TnΩn1n
1TnΩn

(
Ŷn(λ)− X̂nβ(λ)

)
,

and

β̂(λ) =
(
X̂TnDnX̂n

)−1

X̂TnDnŶn(λ),

with

Dn = Ωn −
1

1TnΩn1n
Ωn1n1TnΩn ∈ Rn×n. (1.8)

Next, plugging (γ̂(λ, β̂(λ)), β̂(λ)T )T into the problem (1.7), for given s, we define the SmoothMD
estimator of λ0 as

λ̂ = λ̂(s) = arg min
λ∈Λ

s−λŶn(λ)T B̂n s−λŶn(λ), (1.9)

with

B̂n = Dn − DnX̂n
(
X̂TnDnX̂n

)−1

X̂TnDn ∈ Rn×n.

Note that, by construction,

Dn1n = B̂n1n = 0n and B̂nX̂n = 0n×p.

Finally, the SmoothMD estimator of β0 is β̂(λ̂). We close this section showing that our estimator is
well-defined.

Lemma 1.2. If Assumptions 1.1.3 and 1.2 hold true, then, for each n ≥ 1,

1. the matrices Ωn and X̂TnDnX̂n are positive definite with probability 1. In particular, 1TnΩn1n > 0

and X̂TnDnX̂n is invertible with probability 1.

2. the matrix B̂n is positive semi-definite with probability 1.
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Remark 1. The matrix Dn is defined in equation (1.8) and has dimension n× n. Therefore, it becomes
difficult to work with this matrix when the sample size is large. However, it is not necessary to estimate
the matrix Dn itself but it suffices to estimate X̂TnDn and Ŷn(λ)TDn to be able to calculate β̂(λ) and λ̂.
In section 1.5 we show that the estimator can be applied for n > 100, 000.

1.3. Consistency and asymptotic normality

The estimator λ̂(s) depends on the fixed value s, a value that could, in practice, be data driven and
calculated from the sample. For this reason, our asymptotic results are stated uniformly with respect
to s. In the simulations we will use the geometric mean, exp

{
1
n

∑n
i=1 log(Yi)

}
, for s. Our asymptotic

results are also stated uniformly with respect to the diagonal of the matrix D. This ensures that we can
use a data driven estimate of D proportional to the empirical standard deviation of X or Z.

Let’s introduce some more notation: for each λ ∈ Λ, let

Yn(λ) = ((T (Y1, λ)− E[T (Y1, λ) | Z1])fz(Z1), . . . , (T (Yn, λ)− E[T (Yn, λ) | Zn])fz(Zn))
T ∈ Rn,

and
Xn = ((X1 − E[X1 | Z1])fz(Z1), . . . , (Xn − E[Xn | Zn])fz(Zn))

T ∈ Rn×p.

Moreover,

Bn = Dn − DnXn
(
XTnDnXn

)−1 XTnDn ∈ Rn×n,

with Dn defined in equation (1.8). Again, by construction Bn1n = 0n and BnXn = 0n×p. With all this
in hand we can now state consistency of our estimator.

Theorem 1.1 (Consistency). Assume that Assumptions 1.1, 1.2 and 1.3 hold true. Let s0 be some
normalizing value such that P (Y/s0 < 1) > 0 and P (Y/s0 > 1) > 0 and let Sn be an arbitrary oP(1)
neighborhood of s0. Then

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣λ̂− λ0

∣∣∣ = oP(1) and sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∥∥∥β̂(λ̂)− β0

∥∥∥ = oP(1).

In Theorem 1.1 we require that h ∈ Hc,n, where Hc,n = [cminn
−α, cmaxn

−α], with 0 < α < 1/q and
cmin, cmax are positive constants. This implies that nhq → ∞ and h → 0 for n → ∞ which is in line
with Robinson [70] and Li [57].

Next, we prove asymptotic normality of our estimator. For this purpose, we first derive the asymptotic
linear representation of λ̂ and β̂(λ̂) from which the

√
n−asymptotic normality follows. In the following

result, we show that λ̂ and β̂(λ̂) are asymptotically not equivalent to the infeasible estimators of λ0 and
β0 one would obtain when the infinite-dimensional parameter η is given and the intercept γ is equal to
0. This is in contrast to the results of Li [57] and Robinson [70]. The reason is that they can use the
fact that E[Xn,i | Zi] = 0 when controlling higher order terms. In our case, we weight the observations
by Ωn,ij such that E[Xn,iΩn,ij | Zi] 6= 0 for i 6= j. This is also the reason why we need to ask for q < 4
instead of q < 6 as in Li [57]. Therefore, we require that h ∈ Hsc,n, where Hsc,n = [cminn

−α, cmaxn
−α],

with α ∈ (1/4, 1/q).
The results are again obtained uniformly with respect to the elements on the diagonal of the matrix

D that determines Ωn and with respect to the scaling factor s that could be used for numerical stability,
as mentioned in Section 1.2.2. In addition, let Kh(·) = h−qK(·/h) and, for any 1 ≤ i, j ≤ n, let

Kh,ij = Kh(Zi −Zj).

Proposition 1.1 (Asymptotic representation). Assume that the conditions of Theorem 1.1 hold true.
Moreover, Assumption 1.4 holds true. Then, uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn,

λ̂−λ0 = −
[
∂

∂λ
Yn(λ0)T Bn

∂

∂λ
Yn(λ0)

]−1
∂

∂λ
Yn(λ0)T Bn

[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+oP(n−1/2) = OP(n−1/2),

and

β̂(λ̂)− β0 =
(
XTnDnXn

)−1 XTnDn
[
(εfz)n −

(
ε̂|zf̂z

)
n

+
∂

∂λ
Yn(λ0)

(
λ̂− λ0

)]
+ oP(n−1/2) = OP(n−1/2),

where (εfz)n = (ε1fz(Z1), . . . , εnfz(Zn))T and
(
ε̂|zf̂z

)
n

=

(
1
n

n∑
k=1,k 6=1

εkKh,1k, . . . ,
1
n

n∑
k=1,k 6=n

εkKh,nk

)T
.
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Note that the asymptotic representation of λ̂ does not depend on s0, i.e. the choice of s0 does not
influence the asymptotic behavior of λ̂. This result is in line with the result of Powell [69].

In the following we state asymptotic normality of our estimator. Therefore, we use the notation
Ωn,ij(d) = Ωn,ij and

Dn(d) = Ωn(d)− 1

1TnΩn(d)1n
Ωn(d)1n1TnΩn(d),

to make the dependence of Ωn on d explicit. Note that with

ΩX
n,ij(d) = ΩX

n,ij = exp{−(Xi −Xj)
Tdiag(d1, . . . , dp)(Xi −Xj)} and

ΩZ
n,ij(d) = ΩZ

n,ij = exp{−(Zi −Zj)Tdiag(dp+1, . . . , dp+q)(Zi −Zj)}, 1 ≤ i, j ≤ n,

Ωn,ij(d) = ΩX
n,ij(d)ΩZ

n,ij(d). Furthermore, we define, for 1 ≤ i ≤ n,

τi(d) :=

((
∂

∂λ
Yn,i −

1

E [1TnΩn(d)1n]
E

[
∂

∂λ
YTnΩn(d)1n

])
,−
(
XTn,i −

1

E [1TnΩn(d)1n]
E
[
1TnΩn(d)Xn

]))T
,

where ∂
∂λYn,i(λ) =

(
∂
∂λT (Yi, λ)− E[ ∂∂λT (Yi, λ) | Zi]

)
fz(Zi) and Xn,i = (Xi − E[Xi | Zi])fz(Zi). In

addition, let

ΦX
n,ij(d) = ΩX

n,ij(d)− E
[
ΩX
n,ik(d) |Xi

]
.

With all this in hand we can state the following Theorem.

Theorem 1.2 (Asymptotic normality). Assume that the conditions of Proposition 1.1 hold true. Then,
uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn,

√
n
(

(λ̂, β̂(λ̂)T )T − (λ0,β
T
0 )T

)
= −V (d)−1

 1√
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦX
n,ij(d) |Xj ,Zj

]+ oP (1) ,

converges in distribution to a tight random process whose marginal distribution is zero-mean normal with
covariance function V (d1)−1∆(d1,d2)V (d2)−1 where

V (d) =

(
E
[
n−2 ∂

∂λYn(λ0)TDn(d) ∂
∂λYn(λ0)

]
−E

[
n−2 ∂

∂λYn(λ0)TDn(d)Xn
]

−E
[
n−2XTnDn(d) ∂

∂λYn(λ0)
]

E
[
n−2XTnDn(d)Xn

] )

and ∆(d1,d2) = E
[
V ar [εjfz(Zj) |Xj ,Zj ] τi(d1) τk(d2)TΩZ

n,ij(d1)ΩZ
n,kj(d2)ΦX

n,ij(d1)ΦX
n,kj(d2)

]
.

Due to the estimation error coming from the estimation of η we need ΦX
n,ij(d) to state the asymptotic

variance of our estimators. If η was known ΦX
n,ij(d) should be replaced by ΩX

n,ij(d).

We can estimate the covariance matrix by V̂ (d1)−1∆̂(d1,d2)V̂ (d2)−1, where

V̂ (d) =

(
n−2 ∂

∂λ Ŷn(λ̂)TDn(d) ∂
∂λ Ŷn(λ̂) −n−2 ∂

∂λ Ŷn(λ̂)TDn(d)X̂n
−n−2X̂TnDn(d) ∂

∂λ Ŷn(λ̂) n−2X̂TnDn(d)X̂n

)
and

∆̂(d1,d2) = n−3

(
∂

∂λ
Ŷn(λ̂),−X̂n

)T
Dn,inf (d1)Φ̂n(d1)Σ̂nΦ̂T

n (d2)DTn,inf (d2)

(
∂

∂λ
Ŷn(λ̂),−X̂n

)
.

(1.10)

Here, Φ̂X
n and Φ̂n are the n× n− symmetric matrices with elements

Φ̂X
n,ij(d) = ΩX

n,ij(d)− 1

n

n∑
k=1

ΩX
n,ik(d), 1 ≤ i, j ≤ n

Φ̂n,ij(d) = Φ̂X
n,ij(d)ΩZ

n,ij(d), 1 ≤ i, j ≤ n

and Dn,inf (d) = In×n −
1

1TnΩn(d)1n
Ωn(d)1n1Tn .

Σ̂n = diag
(
V̂ ar [ε1fz(Z1) |X1,Z1] , . . . , V̂ ar [εnfz(Zn) |Xn,Zn]

)
is an estimator of the error variance.

One can use a nonparametric estimator for the conditional variance or alternatively use an estimate of the

10



error terms to approximate the conditional variance in the spirit of the Eiker-White variance estimator.
Consistency of the above estimators is straightforward to establish.

Remark 2. It is also possible to estimate the unknown parameters λ and β without the intercept nui-
sance parameter γ. In that case Dn is replaced by Ωn in the estimation of λ and β. The estimator is than
still
√
n−consistent and is asymptotically normally distributed. In the variance V (d1)−1∆(d1,d2)V (d2)−1

Dn is replaced by Ωn and τi(d) by τ̃i(d) =
(
∂
∂λYn,i(λ),−XTn,i

)T
. When estimating the variance Dn,inf

has to be replaced by In×n and Dn by Ωn. However, when the model parameters are estimated with
intercept nuisance parameter γ the impact of estimating η on the asymptotic variance becomes small. In
the proof of Theorem 1.2 it was established that

(
(λ̂, β̂(λ̂)T )T − (λ0,β

T
0 )T

)
= −V (d)−1

(
1

n

n∑
j=1

εjfz(Zj)E [τi(d) Ωn,ij(d) |Xj ,Zj ]

− 1

n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ik(d)ΩX
n,ij(d) | Zk

])
+ oP

(
n−1/2

)
.

The second sum 1
n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
in the asymptotic representation of (λ̂, β̂(λ̂)T )T

is due to the estimation of η. If we would know η this sum would not be present. In the following we

consider E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
. If we could replace the index k by j in ΩZ

n,ik we would get that

E
[
τi(d)ΩZ

n,ijΩ
X
n,ij | Zk

]
= E

[
τi(d)ΩZ

n,ijΩ
X
n,ij

]
= 0p+1,

such that the second sum would not be present as well. Of course this is not possible. However, here we
consider d as a vector with elements playing the role of standardizing constants. If the elements of d are

the inverse of a kernel smoothing bandwidth tending to zero at a suitable rate E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
tends to zero for n→∞. The exact rate is over the scope of this study, but we will show in the simulation
section that even in case of d being a vector of constants it seems that we can forget about the second part
in the asymptotic representation. The estimator is labeled SmoothMD* in the simulation section. If we
do not consider the second part in the asymptotic representation the variance is estimated by replacing
Φ̂n,ij(d) with Ωn,ij(d).

Note that the constant γ is necessary in order to be able to remove the second part in the representation
as E

[
τ̃i(d)ΩZ

n,ijΩ
X
n,ij | Zk

]
= E

[
τ̃i(d)ΩZ

n,ijΩ
X
n,ij

]
6= 0p+1.

1.4. Testing based on SmoothMD for parameter restrictions

In section 1.3 we established consistency and asymptotic normality of our estimator. The asymptotic
behavior of our estimator is not influenced by the standardization with s but the asymptotic variance
is affected by the estimation of η. In addition, the behavior of our estimator is, even asymptotically,
influenced by the vector d. When developing a test theory we should take that influence into account in
order to get reliable results. That’s what we do in the following.

1.4.1. Testing the transformation parameter

When it comes to testing parameter restrictions in the semiparametric partially linear regression
model with Box-Cox transformation we might be mainly interested in testing if λ is zero or not and if
the components of β are zero. However, we will consider here a more general approach to allow for more
complex hypotheses as well. We separate the discussion into two parts. In the first part, we consider
only restrictions for λ and in the second part we consider restrictions for β with and without restricting
λ.

Suppose we want to test the restriction for λ given by

H0 : λ0 = λR. (1.11)

In order to test this restriction, we can use the distance metric statistic proposed by Lavergne and Patilea
[56]. Adapted to our case and for testing (1.11) we consider the distance

DMλ =
1

n
Ŷn(λR)T B̂nŶn(λR)− 1

n
Ŷn(λ̂)T B̂nŶn(λ̂).
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The distance metric is based on the object that is minimized to get the estimate for λ, see equation
(1.9). However, the test statistic is not standardized by s−λ as we need this only for the estimation of λ.

Let

An =

(
∂
∂λYn(λ0)T

−XTn

)
Dn
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
.

Therefore, we can now state the following Proposition.

Proposition 1.2. Assume that the conditions of Proposition 1.1 hold true. Then, uniformly with respect
to h ∈ Hsc,n, d ∈ D and s ∈ Sn,

DMλ − (1,0Tp )V (d)−1n−3/2Ann
−3/2AT

nV (d)−1(1,0Tp )TE

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]
= oP(1),

under H0 and P(n−1DMλ > c)→ 1 for some c > 0 if H0 does not hold.

The process (1,0Tp )V (d)−1n−3/2Ann
−3/2AT

nV (d)−1(1,0Tp )TE
[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
is asymp-

totically tight and for each d behaves asymptotically as a chi-square times
(1,0Tp )V (d)−1∆(d,d)V (d)−1(1,0Tp )TE

[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
, see Johnson et al. [49]. The dis-

tribution of the distance metric statistic is, thus, in general non-pivotal. Determining critical values
requires the estimation of (1,0Tp )V (d)−1∆(d,d)V (d)−1(1,0Tp )TE

[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
, which

can rely on the estimators stated in (1.10).

1.4.2. Testing the slope coefficients

In the next part we consider restrictions for β. Suppose we want to test r linear restrictions for β
given by

H0 : Rβ0 = c, (1.12)

where R is a r× p− matrix of full rank and c ∈ Rr. In order to test the restrictions, we need to find the
restricted estimators for β0, β̂R(λ), and λ0, λ̂R. We minimize

n−2s−2λ
(
Ŷn(λ)− X̂nβ

)T
Dn
(
Ŷn(λ)− X̂nβ

)
s.t. Rβ = c,

with respect to β and get that

β̂R(λ) = β̂(λ)−
(
X̂TnDnX̂n

)−1

RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1 (
Rβ̂(λ)− c

)
.

The restricted estimator for λ0 is then given by

λ̂R = λ̂R(s) = arg min
λ∈Λ

s−λ
(
Ŷn(λ)− X̂nβ̂R(λ)

)T
Dn s−λ

(
Ŷn(λ)− X̂nβ̂R(λ)

)
. (1.13)

With all the estimators in hand we can now define our distance metric statistic for testing (1.12).

DMβ =
1

n

(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)T
Dn

(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)
− 1

n
Ŷn(λ̂)T B̂nŶn(λ̂).

The distance metric is based on the object that is minimized to get the restricted estimate for λ, see
equation (1.13). Once again the test statistic is not standardized by s−λ as we need this only for the
estimation of λ. Let,

Bn,R = Bn + DnXn
(
XTnDnXn

)−1
RT

(
R
(
XTnDnXn

)−1
RT
)−1

R
(
XTnDnXn

)−1 XTnDn,

and

VR(d) =

(
E

[
n−2 ∂

∂λ
Yn(λ0)TBn,R

∂

∂λ
Yn(λ0)

]−1

, E

[
n−2 ∂

∂λ
Yn(λ0)TBn,R

∂

∂λ
Yn(λ0)

]−1

E

[
∂

∂λ
Yn(λ0)TDnXnB+

n

])
,

where

B+
n =

(
XTnDnXn

)−1 −
(
XTnDnXn

)−1
RT

(
R
(
XTnDnXn

)−1
RT
)−1

R
(
XTnDnXn

)−1
.
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Therefore, we can now state the following proposition.

Proposition 1.3. Assume that the conditions of Proposition 1.1 hold true. Then, uniformly with respect
to h ∈ Hsc,n, d ∈ D and s ∈ Sn,

DMβ

−n−3/2AT
n

(
(0p×1, Ip×p)

T
E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
(0p×1, Ip×p)

− VR(d)TVR(d)E

[
n−2 ∂

∂λ
Yn(λ0)TBn,R

∂

∂λ
Yn(λ0)

]
+ V (d)−1(1,0Tp )T (1,0Tp )V (d)−1E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

])
Ann

−3/2 = oP(1),

under H0 and P(n−1DMβ > c)→ 1 for some c > 0 if H0 does not hold.

The process in Proposition 1.3 is asymptotically tight and for each d behaves asymptotically as a
weighted sum of p+ 1− r independent chi-squares, where the weights are the positive eigenvalues of

(0p×1, Ip×p)
T
E
[
n−2XTnDnXn

]−1
RT

(
RE

[
n−2XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
(0p×1, Ip×p) ∆(d,d)

− VR(d)TVR(d)∆(d,d)E

[
n−2 ∂

∂λ
Yn(λ0)TBn,R

∂

∂λ
Yn(λ0)

]
+ V (d)−1(1,0Tp )T (1,0Tp )V (d)−1∆(d,d)E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]
,

see Johnson et al. [49]. Determining critical values requires the estimation of the last display. We can use
the estimators stated in (1.10) and for all other components we simply replace the unknown expressions
by their sample equivalence, e.g. estimate Bn,R by

B̂n + DnX̂n
(
X̂TnDnX̂n

)−1

RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1

R
(
X̂TnDnX̂n

)−1

X̂TnDn.

1.4.3. Testing the transformation parameter and the slope coefficients

Finally, we consider the combined restrictions for β and λ. Suppose we want to test

H0 : Rβ0 = c and λ0 = λR.

In contrast to the hypothesis stated in (1.12) we do not need to estimate λ̂R. Therefore, the distance
metric statistic is for this case given by

DMβ,λ =
1

n

(
Ŷn(λR)− X̂nβ̂R(λR)

)T
Dn

(
Ŷn(λR)− X̂nβ̂R(λR)

)
− 1

n
Ŷn(λ̂)T B̂nŶn(λ̂).

In addition, DMβ,λ does not converge to the same expression as DMβ as λR is fixed. Therefore, we state
the following proposition.

Proposition 1.4. Assume that the conditions of Proposition 1.1 hold true. Then, uniformly with respect
to h ∈ Hsc,n, d ∈ D and s ∈ Sn,

DMβ,λ

−n−3/2AT
n

(
(0p×1, Ip×p)

T
E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
(0p×1, Ip×p)

+ V (d)−1(1,0Tp )T (1,0Tp )V (d)−1E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

])
Ann

−3/2 = oP(1),

under H0 and P(n−1DMβ,λ > c)→ 1 for some c > 0 if H0 does not hold.

The process in Proposition 1.4 is asymptotically tight and for each d behaves asymptotically as a
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weighted sum of p− r independent chi-squares, where the weights are the positive eigenvalues of

(0p×1, Ip×p)
T
E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
(0p×1, Ip×p) ∆(d,d)

+ V (d)−1(1,0Tp )T (1,0Tp )V (d)−1∆(d,d)E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]
,

see Johnson et al. [49]. Determining critical values requires the estimation of the last display. We can use
the estimators stated in (1.10) and for all other components we simply replace the unknown expressions
by their sample equivalence.

Remark 3. The Propositions of section 1.4 are also valid if the unknown parameters λ and β are esti-
mated without the intercept nuisance parameter γ. In that case Dn is replaced by Ωn in the statements.
Moreover, when estimating the unknown variance Dn,inf has to be replace by In×n.

The usual chi-square distribution might appear when we use an efficient estimator reaching the semi-
parametric efficiency bound, i.e. we would need an optimal weighting matrix and d tending to zero. If
this is possible and how the weighting matrix would need to look like is left for future research.

1.5. Small sample study and real data application

In this section we consider the small sample behavior of our estimator. We conduct several simulation
experiments to consider bias and standard deviation for the estimated parameters. In addition, we
conduct hypothesis tests as discussed in section 1.4. We begin with a consideration of the simulation
setup. We then state our simulation results and, finally, close the section with a real data application.

1.5.1. Simulation setup

During the simulation, we consider four different models. The models are given by

Model 1: T (Y, λ0) = Xβ0 + m(Z) + ε, m(Z) = exp{Z}
1+exp{Z} + 1

3 with Z ∼ N(1, 1), λ0 = 0 and β0 = 1,

X = − 2
3Z + u with u ∼ N(0, 1) and ε =

√
1+X2

2 ũ with ũ ∼ N
(
0, 1

13

)
.

Model 2: T (Y, λ0) = Xβ0 + m(Z) + ε, m(Z) = exp{Z}
1+exp{Z} + 3 with Z ∼ N(1, 1), λ0 = 0.5 and β0 = 1,

X = − 2
3Z + u with u ∼ N(0, 1) and ε ∼ N

(
0, 1

9

)
.

Model 3: T (Y, λ0) = Xβ0 + m(Z) + ε, m(Z) = exp{Z}
1+exp{Z} − 1 with Z ∼ U(−3,−1), λ0 = −1 and β0 = 1,

X = 2
3Z + u with u ∼ U(−1, 1) and ε ∼ U

(
−
√

1/9,
√

1/9
)

.

Model 4: T (Y, λ0) = X1β10 +X2β20 +m(Z1, Z2)+ε, m(Z1, Z2) = 1
3 +Z1 +Z2 +Z1Z2 with Z1, Z2 ∼ N(0, 1),

λ0 = 0, β10 = 1, X1 = − 1
3 (Z1 + Z2)+u with u ∼ N(0, 1), X2,l

i.i.d.∼ Ber(0.2) and β2,l
i.i.d.∼ U(−1, 1)

for l = 1, . . . , 30 , ε ∼ N
(
0, 1

9

)
.

The main difference of the models is the transformation parameter λ. Model 1 and Model 4 have
λ0 = 0, whereas Model 2 has λ0 = 0.5 and Model 3 λ0 = −1. To ensure that Y > 0 in Model 3 we draw
the random variables from uniform distributions. In all other models positivity of Y is ensured as well.
Model 1 has heteroskedastic error terms which is captured by the developed theory. Model 4 contains 30
dummy variabels, X2, which take the value 1 with probability 20%.

The estimators are computed by employing a normal kernel for K(·). Z is standardized componen-
twise by the corresponding standard deviations and h ∝ n−1/3.5. This bandwidth choice satisfies the
assumptions of Theorem 1.2. The components of d defining the diagonal matrix D in Ωn are set equal
to the componentwise standard deviations of X and Z when X is continuous. In case of the dummy
variables X2 an indicator of the event that the observations have the same value is employed. For Model
4 we ensure in the simulations that for every observation there exist at least 4 observations with the same
dummy variable combination.

In the estimation we define a grid for values of λ that are considered during the optimization. This
optimization grid for λ is given in our simulation by the grid [λ0− 0.8, λ0 + 0.8] with step size 0.001. We

minimize G−λn Ŷn(λ)T B̂n G−λn Ŷn(λ) over the defined grid to get λ̂ and β̂(λ̂), where Gn =
n∏
i=1

Y
1/n
i is the

geometric mean.
In the simulation we compare the proposed estimator where γ is employed with the estimator that does

not use γ. As explained in section 1.3 both estimators converge asymptotically to a normal distribution.
Due to the fact that the estimator with γ reduces the influence on the variance coming from the estimation
of η it is interesting to consider both estimators.
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We consider bias and standard deviation of the estimators as well as power and size of the distance
metric statistics proposed in section 1.4. In addition, we test by a simple Z-Test if the estimated param-
eters are significantly different from the true value. Therefore, we employ the variance estimator stated
in equation (1.10) for both estimators with the necessary adjustments for the estimator without γ. To
estimate the error variance we employ the Eiker-White variance estimator. In order to see the influence
of the estimated η on the variance we consider all tests also without taking the estimation error of η into
account. Therefore, we replace Φ̂n by Ωn in the variance estimator.

In addition, the Nonlinear two-stage Least Squares (NL2SLS) estimator for the Box-Cox model in-
troduced by Amemiya and Powell [8] is considered as competitor. In order to be able to employ this
estimator it is assumed that the function m(·) is known and, thus, m(Z) can be added as additional
regressor. The instruments are, therefore, given by Wi = (1,Xi,X

2
i ,m(Zi),m(Zi)

2). We consider the
Z-Test for the NL2SLS estimator as well where we employ the Eiker-White variance estimator again.

1.5.2. Simulation results

Table 1.1 states the results for bias and standard deviation for λ and β in Model 1. All three estimators
have comparable results for bias and the bias decreases with sample size for β, whereas it is the lowest
for n = 500 for the SmoothMD estimators in case of λ. Surprisingly, the standard deviation is also
comparable for all three estimators even though m(·) is given for the NL2SLS estimator.

Table 1.2 states the results for bias and standard deviation for λ, β1 and β2, one representative
parameter out of the 30 parameters in β2, in Model 4. All three estimators have comparable results for
bias and the bias decreases with sample size for all three parameters. In contrast to the results for Model
1, the standard deviation is smaller in case of the NL2SLS estimator for β1 and β2. This result should
be expacted as m(·) is given for the NL2SLS estimator. The standard deviations for the SmoothMD
estimators with and without γ are as in Model 1 nearly the same.

Table 1.1: Bias and Standard Deviation of the estimators for λ and β in Model 1.

s Bias St. dev.

n 250 500 1000 250 500 1000

λ estimator

SmoothMD with γ Gn 0.003 0.0001 0.001 0.042 0.03 0.021

SmoothMD without γ Gn 0.002 0.0001 0.001 0.041 0.029 0.02

NL2SLS Gn −0.003 −0.001 0.0001 0.042 0.029 0.02

β estimator

SmoothMD with γ Gn −0.001 −0.001 0.0004 0.036 0.025 0.017

SmoothMD without γ Gn −0.001 −0.001 0.0004 0.035 0.024 0.017

NL2SLS Gn −0.002 −0.001 0.0002 0.035 0.024 0.016

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The grid for λ is [λ0−0.8, λ0 + 0.8]. For all simulations 2000 Monte Carlo samples were used.
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Table 1.2: Bias and Standard Deviation of the estimators for λ, β1 and β2 in Model 4.

s Bias St. dev.

n 250 500 1000 250 500 1000

λ estimator

SmoothMD with γ Gn 0.0001 −0.0002 −0.0001 0.015 0.01 0.008

SmoothMD without γ Gn 0.0001 −0.0002 −0.0001 0.015 0.01 0.008

NL2SLS Gn −0.0004 −0.0002 −0.0002 0.014 0.01 0.005

β1 estimator

SmoothMD with γ Gn −0.002 −0.002 −0.001 0.036 0.023 0.017

SmoothMD without γ Gn −0.002 −0.002 −0.001 0.036 0.023 0.017

NL2SLS Gn 0.0004 −0.0001 −0.0001 0.025 0.015 0.011

β2 estimator

SmoothMD with γ Gn 0.004 −0.001 −0.0002 0.133 0.065 0.042

SmoothMD without γ Gn 0.004 −0.001 −0.0002 0.133 0.065 0.042

NL2SLS Gn −0.001 0.002 −0.0006 0.091 0.046 0.028

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all continuous variables and for the dummy variables an indicator of the event that the observations have
the same value is employed. The grid for λ is [λ0 − 0.8, λ0 + 0.8]. For all simulations 2000 Monte Carlo samples were
used.

Table 1.3: Empirical Level for distance metric statistics of the estimators for λ and β in Model 2.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 10.3 8.15 7.8 12.75 10.65 11.45

SmoothMD* with γ Gn 10.15 7.95 7.7 12.75 10.6 11.45

SmoothMD without γ Gn 9.55 7.0 6.0 12.45 10.85 10.35

SmoothMD* without γ Gn 3.75 1.75 1.15 6.35 3.45 2.85

Test for β

SmoothMD with γ Gn 10.4 8.25 7.95 12.55 11.1 11.9

SmoothMD* with γ Gn 10.2 8.3 7.7 12.55 11.3 11.1

SmoothMD without γ Gn 9.7 6.85 6.7 12.55 10.2 11.2

SmoothMD* without γ Gn 3.7 1.75 1.45 6.5 3.7 2.9

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.
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Table 1.3 states the empirical level for distance metric statistics of the estimators for λ and β in Model
2. Here we state the results for the SmoothMD estimator with correctly estimated variance as well as
with variance estimate that does not account for the estimation of η. In this setup the results of the
SmoothMD estimators with and without γ differ. In addition, the estimation of η has an influence on
the results of the SmoothMD estimator without γ. If we do not consider the additional variance term
coming from the estimation of η in the estimation of the variance the tests have the wrong size. This
does not happen for the SmoothMD estimator with γ. As explained in section 1.3 the constant γ reduces
the influence of the estimation error on the variance. For the first three estimators the empirical levels
converge to the nominal levels if the sample size increases and β seems to need a larger sample size than
λ to get close to the nominal level.

Table 1.4 states the empirical level for the Z-Tests for λ, β1 and β2 in Model 4. The fact that we do
not consider the estimation error has almost no influence on the results. In addition, both SmoothMD
versions lead to similar results. However, in order to get close to the nominal level the sample size needs
to be large as only for n = 1000 the SmoothMD estimators get close to the nominal level. The NL2SLS
estimator gives more convincing results for smaller sample sizes. Note that the dummy variable coefficient
β2 seems to require a larger sample size than the other two parameters to get close to the nominal level
when employing the SmoothMD estimators.

Table 1.4: Empirical Level for Z-Tests of the estimators for λ, β1 and β2 in Model 4.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 8.4 7.1 5.5 15.45 13.5 10.55

SmoothMD* with γ Gn 8.5 7.1 5.45 15.3 13.45 10.55

SmoothMD without γ Gn 9.6 8.15 5.2 16.45 12.6 11.65

SmoothMD* without γ Gn 9.45 8.1 5.2 16.4 12.6 11.75

NL2SLS Gn 9.6 7.6 6.0 16.8 12.5 11.1

Test for β1

SmoothMD with γ Gn 11.8 8.55 6.4 18.25 14.05 11.75

SmoothMD* with γ Gn 11.8 8.55 6.45 18.25 14.05 11.8

SmoothMD without γ Gn 11.75 8.9 6.4 18.35 14.8 12.1

SmoothMD* without γ Gn 11.75 8.95 6.45 18.35 14.8 12.1

NL2SLS Gn 8.25 4.95 5.1 13.95 10.4 10.35

Test for β2

SmoothMD with γ Gn 13.6 8.25 7.05 20.7 15.65 12.7

SmoothMD* with γ Gn 13.7 8.25 7.05 20.75 15.55 12.75

SmoothMD without γ Gn 13.75 8.35 6.65 20.6 14.55 12.25

SmoothMD* without γ Gn 13.7 8.35 6.65 20.6 14.55 12.25

NL2SLS Gn 7.65 6.55 4.7 13.45 13.05 9.55

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all continuous variables and for the dummy variables an indicator of the event that the observations have
the same value is employed. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. β2 is one representative parameter out of the 30 parameters in β2. For all simulations 2000 Monte
Carlo samples were used.
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Figure 1.1: Power function of the distance metric statistic
for λ of Model 3 with n = 250.

Figure 1.2: Power function of the distance metric statistic
for λ of Model 3 with n = 1000.

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. Only the SmoothMD
estimators that take the additional variance part due to the estimation of η into account are considered. For all
simulations 2000 Monte Carlo samples were used. The nominal level is 10%.

Figures 1.1 and 1.2 state the power functions of the distance metric statistic for λ in Model 3 with
n = 250 and n = 1000. In case of n = 250 the power function is skewed and the power for values larger
than −1 is small. In addition, the power function is smaller than the nominal value at −0.85 and −0.7.
For the SmoothMD estimator without γ the power function is larger than for the SmoothMD estimator
with γ at values larger than −1. These issues disappear for the larger sample size n = 1000.

Figures 1.3 and 1.4 state the power functions of the distance metric statistic for β in Model 2 with
n = 250 and n = 500. As in Figure 1.1 the power function for n = 250 is skewed but the effect is less
distinct. However, the power function is smaller than the nominal value at 0.8. For the SmoothMD
estimator without γ the power function is larger than for the SmoothMD estimator with γ at values
smaller than 1 for both sample sizes. For n = 500 the skewness is less pronounced and the power function
has no values lower than the nominal value. The main conclusion from both power functions is that the
samples size should not be too small so that the tests have a reasonable power.

Figure 1.3: Power function of the distance metric statistic
for β of Model 2 with n = 250.

Figure 1.4: Power function of the distance metric statistic
for β of Model 2 with n = 500.

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. Only the SmoothMD
estimators that take the additional variance part due to the estimation of η into account are considered. For all
simulations 2000 Monte Carlo samples were used. The nominal level is 10%.
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Before we consider a real data application we close the discussion with Figures 1.5 and 1.6. The figures
state the estimated m(Z) for Model 1 with n = 250 and for Model 3 with n = 500. For the estimation
the NW estimator with same kernel and bandwidth as for the SmoothMD estimator was used. No matter
if the SmoothMD estimator with or without γ is employed the results are very accurate. In practice one
can of course use cross validation to choose the bandwidth or employ the local linear estimator instead
of the NW estimator.

Figure 1.5: Estimated m(Z) for Model 1 with n = 250. Figure 1.6: Estimated m(Z) for Model 3 with n = 500.

Notes: For the estimation the NW estimator with normal kernel and h ∝ n−1/3.5 is employed. The 25% and 75%
quantiles as well as the mean are reported. For all simulations 2000 Monte Carlo samples were used.

1.5.3. Real data application

We consider in this section an application of our estimator to investigate the returns of social and
cognitive skills in the labor market. For this purpose we apply the proposed transformation partially
linear estimator to a dataset studied in Deming [28]. In particular, we consider regression (4) and (5) in
TABLE I of Deming [28] that is based on the National Longitudinal Survey of Youth 1979 (NLSY79).
The NLSY79 is a nationally representative sample of youth aged 14 to 22 in 1979 conducted in the US.
The survey was conducted yearly from 1979 to 1993 and biannually from 1994 through 2012. Deming
[28] estimates the model

log(wageijt) = α+ β1 · COGi + β2 · SSi + β3 · COGi × SSi + β4 ·NCOGi
+CT

ijtρ+ δj + ζt + εijt,
(1.14)

where COG, SS and NCOG denote measures of cognitive, social and noncognitive skills. The model
includes controls C for race-by-gender indicators, indicators for region and urbanicity as well as age
(indexed by j) and year (indexed by t) fixed effects.

In his paper Deming [28] develops a theoretical model that is written in levels instead of logs as
in equation (1.14). Nevertheless, he estimates the log-linearized model in his paper to follow standard
practice in the literature, as he argues. Results for the model in levels are stated in an online appendix.
Therefore, it makes sense to use the Box-Cox transformation for wage and estimate the transformation
paramter λ together with the remaining model parameters to decide whether the model in logs or in
levels is more appropriate.

Furthermore, we consider an unknown functional form for cognitive and social skills to see if the linear
form β1 ·COG+β2 ·SS+β3 ·COG×SS used by Deming [28] is reasonable. The transformation partially
linear model is, thus, given by

T (wageijt, λ) = m(COGi, SSi) + β ·NCOGi +CT
ijtρ+ δj + ζt + εijt, (1.15)

where m(·) is an unknown function.
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As proxy for cognitive skills the Armed Forces Qualifying Test (AFQT) is employed. Deming [28]
uses raw scores from Altonji et al. [4] and normalizes them to have mean 0 and standard deviation 1.
The social skill measure is constructed from the following four variables of the NLSY79:

1. Self-reported sociability in 1981 (extremely shy, somewhat shy, somewhat outgoing, extremely out-
going)

2. Self-reported sociability in 1981 at age 6 (retrospective)

3. The number of clubs in which the respondent participated in high school

4. Participation in high school sports (yes/no).

Each variable is normalized to have mean 0 and standard deviation 1. The social skill measure is the
average of this four normalized variables (also normalized to standard deviation 1). In addition to social
and cognitive skill measures Deming [28] includes a noncognitive skill measure in his regression. He uses
the Rotter Locus of Control and the Rosenberg Self-Esteem Scale which are also used by Heckman et al.
[41]. In the following discussion we use these variables to estimate the models stated in (1.14) and (1.15).

Deming [28] uses a weighted log-linearized OLS estimator to estimate the returns of cognitive and
social skills on wage and excludes respondents under the age of 23 or who are enrolled in school. The
weighting is necessary as in each survey year of the NLSY79 a set of sampling weights is constructed.
These weights provide the researcher with an estimate of how many individuals in the United States each
respondent’s answers represent. We employ these weights in our analysis as well.

Table 1.5 shows the regression results. The first column, (4), provides the results of Deming [28] esti-
mating equation (1.14). The second and third column state the transformation partially linear estimator
of equation (1.15) with and without employing γ. The fourth and fifth column state the transformation
partially linear estimator of equation (1.15) with and without employing γ imposing λ = 0. This is a
standard partially linear model as studied by Robinson [70] and Li [57].

For the inner smoothing of the estimations in column 2-5 we use a normal kernel with h ∝ n−1/3.5.
The components of d defining the diagonal matrix D in Ωn are set equal to the componentwise standard
deviations for all continuous variables. In case of the controls and fixed effects an indicator of the event
that the observations have the same value is employed.

Table 1.5: Labor Market Returns to Cognitive and Social Skills in the NLSY79

Outcome: (log) hourly wage (4) SmoothMD SmoothMD SmoothMD SmoothMD

(in 2012 dollars) with γ without γ with γ, λ = 0 without γ, λ = 0

λ - -0.007 -0.007 - -

[0.005] [0.005]

Cognitive skills 0.189*** - - - -

[0.007]

Social skills 0.043*** - - - -

[0.006]

Cognitive × Social 0.019*** - - - -

[0.006]

Noncognitive skills 0.048*** 0.047*** 0.047*** 0.048*** 0.048***

[0.006] [0.004] [0.004] [0.004] [0.004]

Demographics and age/ X X X X X

year fixed effects

Number of Observations 126191 126191 126191 126191 126191

Notes: The data source is the National Longitudinal Survey of Youth 1979 cohort (NLSY79). (4) denotes the OLS
regression proposed by Deming [28]. In all SmoothMD estimations, h ∝ n−1/3.5. The components of d are set equal to
the componentwise standard deviations for all continuous variables and for controls and fixed effects an indicator of the
event that the observations have the same value is employed. The grid for λ is [−0.1, 0.1] and s = Gn. Cognitive skills are
measured by each NLSY79 respondent’s score on the Armed Forces Qualifiying Test (AFQT) and are normalized to have
mean 0 and standard deviation 1. The AFQT score crosswalk of Altonji et al. [4] is used. Social skill is a standardized
composite of four variables (i) sociability in childhood, (ii) sociability in adulthood, (iii) participation in high school clubs
and (iv) participation in team sports; see the text and Deming [28] for details on construction of the social skill measure.
The noncognitive skill measure is the normalized average of the Rotter and Rosenberg scores in the NLSY. The regressions
also control for race-by-gender indicator variables, age, year, census region and urbanicity. Standard errors are in brackets
and are clustered at the individual level for (4). The remaining standard errors are estimated by the Eiker-White variance
estimator. ***p < .01, **p < .05, *p < .1
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The optimization grid for λ is given by [−0.1, 0.1] with step size 0.001.3 We minimize

G−λn Ŷn(λ)T B̂n G−λn Ŷn(λ) over the defined grid to get λ̂ and the estimates of the remaining coefficients,

where Gn =
n∏
i=1

Y
1/n
i is the geometric mean.

The results in the first column of Table 1.5 show that all by Deming [28] estimated coefficients are
significantly different from 0. In the remaining four columns we cannot state parameter estimates for
cognitive and social skills and the interaction of both as these variables are contained in m(·). However,
the parameter estimates for noncognitive skills are comparable to the estimate from the first column. In
addition, the estimates for λ with and without γ are equal and close to zero which would imply that a
log-transformation of the dependent variable is appropriate. The estimated coefficient for noncognitive
skills is significantly different from 0 in all SmoothMD estimations whereas both estimates for λ are not
significantly different from 0.

In order to check if the linear specification for cognitive and social skills employed by Deming [28]
is reasonable we proceed as follows. We estimate the parameters of the transformation partially linear
model as stated in (1.15) to get the residuals

ε̂ijt = T (wageijt, λ̂)− β̂ ·NCOGi −CT
ijtρ̂− δ̂j − ζ̂t.

We estimate now the unknown function m(·) by smoothing ε̂ with the NW estimator. In addition, we
also regress ε̂ on COG, SS and COG× SS. To see if the linear specification is appropriate we compare
the MSE of the linear and nonlinear estimates. We employ a normal density kernel for the NW estimator
and let h ∝ n−1/6.

Table 1.6 states the results where OLS indicates that we used the linear model to fit the residuals.
The MSE of the linear and nonlinear estimates are identical no matter if we use the SmoothMD estimator
with or without γ to estimate the unknown model parameters. The same holds true for the SmoothMD
estimator with or without γ where λ = 0 is imposed. All results show that the linear representation of
Deming [28] seems to be reasonable.

Table 1.6: MSE of estimated nonlinear part in the transformation partially linear model

SmoothMD SmoothMD SmoothMD SmoothMD

with γ without γ with γ, λ = 0 without γ, λ = 0

OLS NW OLS LL OLS NW OLS LL

MSE 0.282 0.277 0.282 0.277 0.293 0.288 0.293 0.288

Number of Observations 126191 126191 126191 126191 126191 126191 126191 126191

Notes: For the NW estimator a normal kernel with h ∝ n−1/6 is employed. OLS indicates that the linear model is used to
fit the residuals.

In a second step we include years of completed education as additional explanatory variable in the
regression models. In one of his estimations Deming [28] controls for years of education as well. Table
1.7 states the regression results for all considered models. The first column, (5), provides the results of
Deming [28] estimating equation (1.14) with years of completed education as control. The results show
that all by Deming [28] estimated coefficients are significantly different from 0. However, the coefficients
become smaller compared to the first specification. In addition, the coefficient of the interactive effect is
only significant at the 10% level. In the remaining four columns the parameter estimates for noncognitive
skills are comparable to the estimate from the first column. In addition, the estimates for λ with and
without γ are equal and close to zero which would imply that a log-transformation of the dependent
variable is appropriate. The estimated coefficient for noncognitive skills is significantly different from 0
in all SmoothMD estimations whereas both estimates for λ are not significantly different from 0.

Table 1.8 states the MSE of the estimated nonlinear part in the transformation partially linear models.
The MSE of the linear and nonlinear estimates are identical no matter if we use the SmoothMD estimator
with or without γ to estimate the unknown model parameters. The same holds true for the SmoothMD
estimator with or without γ where λ = 0 is imposed. All results show that the linear representation of
Deming [28] seems to be reasonable.

3We evaluated subsamples of the dataset before we conducted the final estimation. The estimated λ’s in the subsamples
are contained in the employed grid.
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Table 1.7: Labor Market Returns to Cognitive and Social Skills in the NLSY79 controlling for education

Outcome: (log) hourly wage (5) SmoothMD SmoothMD SmoothMD SmoothMD

(in 2012 dollars) with γ without γ with γ, λ = 0 without γ, λ = 0

λ - 0.002 0.002 - -

[0.005] [0.005]

Cognitive skills 0.126*** - - - -

[0.008]

Social skills 0.029*** - - - -

[0.006]

Cognitive × Social 0.011* - - - -

[0.006]

Noncognitive skills 0.040*** 0.037*** 0.037*** 0.037*** 0.037***

[0.006] [0.004] [0.004] [0.004] [0.004]

Demographics and age/ X X X X X

year fixed effects

Years of completed education X X X X X

Number of Observations 126191 126191 126191 126191 126191

Notes: The data source is the National Longitudinal Survey of Youth 1979 cohort (NLSY79). (5) denotes the OLS
regression proposed by Deming [28]. In all SmoothMD estimations, h ∝ n−1/3.5. The components of d are set equal to
the componentwise standard deviations for all continuous variables and for controls and fixed effects an indicator of the
event that the observations have the same value is employed. The grid for λ is [−0.1, 0.1] and s = Gn. Cognitive skills are
measured by each NLSY79 respondent’s score on the Armed Forces Qualifiying Test (AFQT) and are normalized to have
mean 0 and standard deviation 1. The AFQT score crosswalk of Altonji et al. [4] is used. Social skill is a standardized
composite of four variables (i) sociability in childhood, (ii) sociability in adulthood, (iii) participation in high school clubs
and (iv) participation in team sports; see the text and Deming [28] for details on construction of the social skill measure.
The noncognitive skill measure is the normalized average of the Rotter and Rosenberg scores in the NLSY. The regressions
also control for race-by-gender indicator variables, age, year, census region, urbanicity and years of completed education.
Standard errors are in brackets and are clustered at the individual level for (5). The remaining standard errors are estimated
by the Eiker-White variance estimator. ***p < .01, **p < .05, *p < .1

Before we close the section we plot the estimated labor market returns to cognitive and social skills of
model (1.15) with and without controlling for years of completed education. The returns are estimated
with the NW estimator employing a normal kernel with h ∝ n−1/6. Figures 1.7 and 1.8 state the results.
Note that the mean was subtracted. The return increases no matter if the social or cognitive indicator is
increased. However, the cognitive effect seems to be stronger. In addition, if we control for education it
seems that being too social might sometimes lower the wage a bit. Nevertheless, both plots confirm that
the linear model used by Deming [28] is reasonable.

Table 1.8: MSE of estimated nonlinear part in the transformation partially linear model controlling for education

SmoothMD SmoothMD SmoothMD SmoothMD

with γ without γ with γ, λ = 0 without γ, λ = 0

OLS NW OLS LL OLS NW OLS LL

MSE 0.288 0.283 0.288 0.283 0.284 0.280 0.284 0.280

Number of Observations 126191 126191 126191 126191 126191 126191 126191 126191

Notes: For the NW estimator a normal kernel with h ∝ n−1/6 is employed. OLS indicates that the linear model is used to
fit the residuals.
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Figure 1.7: Estimated Labor Market Returns to Cognitive
and Social Skills in the NLSY79.

Figure 1.8: Estimated Labor Market Returns to Cognitive
and Social Skills in the NLSY79 controlling for education.

Notes: The coefficients are estimated by the SmoothMD estimator with γ. For the NW estimator a normal kernel with
h ∝ n−1/6 is employed.

1.6. Conclusion

In this paper we introduced the semiparametric partially linear model with Box-Cox transformed
dependent variable. We employed the SmoothMD estimation technique to ensure identification based on
conditional moment restrictions. This is new as in the literature typically either a transformation model
or a semiparametric partially linear model is studied and estimation is based on GMM methods.

We established consistency as well as
√
n-asymptotic normality. In addition, we proposed a distance

metric statistic to test the model parameters. A Monte Carlo experiment showed the usefulness of the
proposed estimator in small samples as well as an application to a real data sample.
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1.7. Assumptions

Assumption 1.1. Data Generating Process

1. The observations
(
Yi,X

T
i ,Z

T
i

)T
, 1 ≤ i ≤ n, are i.i.d. copies of

(
Y,XT ,ZT

)T ∈ R × Rp × Rq.
Moreover, the response Y is bounded away from zero with probability 1, i.e. there exists a constant
c > 0 such that P(Y > c) = 1.

2. The covariate vector Z admits a bounded density with respect to the Lebesgue measure in Rq. The
covariate vector X is split in two subvectors Xc ∈ Rpc and Xd ∈ Rpd with 0 ≤ pc, pd ≤ p and
pc + pd = p. The subvector Xc admits a bounded density with respect to the Lebesgue measure in
Rpc . The subvector Xd takes values in a finite set.

3. The (p+ q) diagonal components of the matrix D belong to the set D = [dL, dU ]× · · · × [dL, dU ] ⊂
Rp+q+ , with some fixed 0 < dL < dU <∞.

The assumption that the discrete components of X take values in a finite set is a technical condition
that simplifies the proofs without significant restriction of the generality for the applications.

Assumption 1.2. Identification

1. E
[
‖X‖2

]
<∞ and V ar [X − E[X|Z]] has full rank.

2. The true value β0 ∈ Rp is not equal to 0p.
3. The continuous random subvector Xc is such that, for any b ∈ Rpc , b 6= 0pc , the variable XT

c b is
continuous with the support equal to the whole real line.

4. Whenever λ 6= λ0, for any z in the support of Z and xd in the support of the discrete subvector
Xd, the set of values of the map

xc 7→ E [T (Y, λ)− T (Y, λ0) |Xc = xc,Xd = xd,Z = z] , xc ∈ Rpc ,

is infinite.
5. We have that E

[
(Y ∨ 1)4(Cλ+|λ0|)

]
<∞, where max(|λmin|, λmax) < Cλ.

Note that V ar
[
(XT ,ZT )T

]
has necessarily full rank, by Assumption 1.2.1 and the fact that Z admits

a density. Indeed, for any u ∈ Rp and v ∈ Rq such that (uT ,vT )T 6= 0p+q, we can write

V ar
[
uTX + vTZ

]
= E

[
V ar

[
uT (X − E [X | Z]) | Z

]]
+ V ar

[
uTE [X | Z] + vTZ

]
.

If u 6= 0p,

V ar
[
uTX + vTZ

]
≥ E

[
V ar

[
uT (X − E [X | Z]) | Z

]]
= uTE [V ar [X − E [X | Z] | Z]]u = uTV ar [X − E [X | Z]]u > 0,

where the last inequality is guaranteed by Assumption 1.2.1. When u = 0p, we obtain

V ar
[
uTX + vTZ

]
= V ar

[
vTZ

]
= vTV ar [Z]v > 0,

where the last inequality holds because v 6= 0q and V ar [Z] has necessarily full rank provided Z admits
a density.

Assumption 1.3. Consistency

1. The kernel K(·) is the product of q univariate kernel functions K̃ of bounded variation. Moreover,

K̃ is a symmetric function with integral equal to one and
∫
R
t2K̃(t)dt <∞.

2. The functions fz(·), (mfz)(·), E[‖X‖2 | Z = · ]fz(·) and supλ∈Λ(∂2/∂λ2)E[T (Y, λ) | Z = · ]fz(·)
have Hölder continuous partial derivatives of order four.

3. The bandwidth h belongs to a range Hc,n = [cminn
−α, cmaxn

−α], with 0 < α < 1/q and cmin, cmax
positive constants.

4. It holds true that E
[
‖X‖4

]
<∞, E [‖Z‖] <∞ and E

[(
(Y ∨ 1)Cλ log (Y ∨ e)4

)4
]
<∞.

Assumption 1.4. Asymptotic Normality

1. V ar
[
∂
∂λT (Y, λ0)

]
> 0.

2. The bandwidth h belongs to a range Hsc,n = [cminn
−α, cmaxn

−α], with α ∈ (1/4, 1/q) and cmin,
cmax positive constants.

3. E
[
ε2 |X,Z

]
= σ2(X,Z) is in L1 ∩ L2.

4. E
[
ε4
]
<∞ as well as E

[
m(Z)4

]
<∞.
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Appendix

Appendix A: Main proofs

Proof of Lemma 1.1.

It is quite clear that, by construction, γ(λ0) = 0 and β(λ0) = β0. In order to ensure global identifi-
cation, we extend the proof in Shin [74]. For any (γ, λ,βT )T we have that

P
(
E
[
(T (Y, λ)− E[T (Y, λ) | Z]) fz(Z)− γ − (X − E[X | Z])Tβfz(Z) |X,Z

]
= 0

)
= P

(
E [T (Y, λ)− T (Y, λ0)|X,Z]−XT (β − β0) = E[T (Y, λ) | Z]− E[T (Y, λ0)|Z]

+ γf−1
z (Z)− E[X | Z]T (β − β0)

)
.

Hence, it suffices to prove that the last probability could not be equal to 1 when (γ,θT )T 6= (0,θT0 )T .
Note that

E[T (Y, λ) | Z]− E[T (Y, λ0) | Z] + γf−1
z (Z)− E[X | Z]T (β − β0),

does not depend on X anymore but only on Z.
If λ = λ0 the result follows immediately from the full rank condition in Assumption 1.2.1. Indeed, by

the variance decomposition formula and Assumption 1.2.1, for any a ∈ Rp, a 6= 0p,

aTV ar [X − E[X|Z]]a = E
[
V ar

[
aT (X − E[X|Z]) | Z

]]
> 0.

This implies

aTV ar [fz(Z) (X − E[X|Z])]a = E
[
f2
z (Z)aTV ar [(X − E[X|Z]) | Z]aT

]
= E

[
f2
z (Z)V ar

[
aT (X − E[X|Z]) | Z

]]
> 0.

Thus, fz(Z)(X − E[X | Z]T )T (β − β0) cannot be equal to a constant almost surely, as is necessarily
the case when λ = λ0. Next, consider the case λ 6= λ0. Without loss of generality, we could assume that
λ > λ0.

1. Consider the case β 6= β0 and let introduce the event notation

E =
{
E [T (Y, λ)− T (Y, λ0) |X,Z]−XT (β − β0)

= E[T (Y, λ) | Z]− E[T (Y, λ0)|Z] + γf−1
z (Z)− E[X | Z]T (β − β0)

}
.

Taking conditional expectation given Z on both sides, we deduce that necessarily γ = 0. Thus it
suffices to investigate the probability of the event

E ′ =
{
E [T (Y, λ)− T (Y, λ0) |X,Z]−XT (β − β0)

= E[T (Y, λ) | Z]− E[T (Y, λ0)|Z]− E[X | Z]T (β − β0)
}
.

Note that the right hand side equality does not depend on X. We distinguish two sub-cases. First,
the case where the components of (β − β0) corresponding to Xc are equal to zero. Thus, the
linear combination XT (β − β0) does not include any of the continuous components of X. In this
case, for any value of Z, the support of XT (β − β0) is finite and independent of the value of Xc.
Then Assumption 1.2.4 guarantees that the probability of the event E ′ could not be equal to 1.
Next, consider the case where XT (β − β0) includes continuous components of X. In this case,
by Assumption 1.2.3, the support of the variable XT (β − β0) is the whole real line and, by the
monotonicity of λ 7→ T (y;λ) for each value y > 0, E [T (Y, λ)− T (Y, λ0)|X,Z] ≥ 0 almost surely,
the statement follows again.

2. Consider the case γ 6= 0 and β = β0. In this case

fz(Z) (E [T (Y, λ)− T (Y, λ0) |X,Z]− E [T (Y, λ)− T (Y, λ0) | Z]) = γ.

Taking expectation on both sides, we deduce that necessarily γ = 0.
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3. Consider the case (γ,βT )T = (0,βT0 )T . Then necessarily

E

[
T (Y, λ)− T (Y, λ0)|X,Z

]
= E[T (Y, λ)|Z]− E[T (Y, λ0)|Z] almost surely.

Once again the right hand side does not depend on X, and thus the probability of the event E
could not be equal to 1 because of Assumption 1.2.3.

Therefore, the first statement follows. Consider now the second statement of the Lemma. First, note
that the maps λ 7→ γ(λ), λ 7→ β(λ) and

λ 7→ E
[
g
(
U1; (λ,β(λ)T )T, γ(λ),η1

)
g
(
U2; (λ,β(λ)T )T, γ(λ),η2

)
exp

{
−(W1 −W2)TD(W1 −W2)

}]
,

λ ∈ Λ are continuous. Indeed, it will become clear from the following that infd∈D E[ω(W1 −W2)] > 0.
Next, we have

γ(λ) =
1

E[ω(W1 −W2)]
E
[(
T (Y1, λ)− E[T (Y1, λ) | Z1]− (X1 − E[X1 | Z1])Tβ

)
fz(Z1)ω(W1 −W2)

]
,

and

β(λ) = E
[
(X1 − E[X1 | Z1])(X2 − E[X2 | Z2])T fz(Z1)fz(Z2)ω(W1 −W2)

]−1

E [(X1 − E[X1 | Z1])fz(Z1) ((T (Y2, λ)− E[T (Y2, λ) | Z2]) fz(Z2)− γ(λ))ω(W1 −W2)] ,

which are clearly continuous. The continuity of the third map follows by Lebesgue Dominated Conver-
gence Theorem. Finally, by the same inverse Fourier Transform argument used by Lavergne and Patilea
[56] we get that

E [g (U1;θ, γ,η1) g (U2;θ, γ,η2)ω(W1 −W2)] =
π−(p+q)/2√
d1 · · · dp+q

×
∫
Rp+q

∣∣∣E [E[g (U ;θ, γ,η) |X,Z] exp
{

2iwT
(
XT ,ZT

)T}]∣∣∣2 exp
{
−wTD−1w

}
dw.

Next, let θ(λ) = (λ,β(λ)T )T . For any x, z, the map λ 7→ E[g (U ;θ(λ), γ(λ),η) | X = x,Z = z] is
continuous. By Lebesgue Dominated Convergence Theorem, the map

λ 7→
∫
Rp+q

∣∣∣E [E[g (U ;θ(λ), γ(λ),η) |X,Z] exp
{

2iwT
(
XT ,ZT

)T}]∣∣∣2 exp
{
−wTdiag(dL, . . . , dL)−1w

}
dw,

is continuous, and thus attains its minimum on the compact set Λ\ [λ0−ε, λ0 +ε]. The minimum value is

necessarily positive. Since (d1 · · · dp+q)−1/2 exp
{
−wTDw

}
≥ d−(p+q)/2

U exp
{
−wTdiag(dL, . . . , dL)−1w

}
,

the last statement in the Lemma follows.

Proof of Lemma 1.2.

1. First, we note that for any u ∈ Rp and v ∈ Rq such that (uT ,vT )T 6= 0p+q, and any c ∈ R,

P
(
uTX + vTZ = c

)
= 0. (1.16)

This is a consequence of the fact that V ar
[
(XT ,ZT )T

]
has full rank, by Assumption 1.2. Given a

sample
(
XT

1 ,Z
T
1

)T
, . . . ,

(
XT
n ,Z

T
n

)T
, and a vector a = (a1, . . . , an) ∈ Rn, using the inverse Fourier

Transform, we could write

aTΩna =
π−(p+q)/2√
d1 · · · dp+q

∫
Rp+q

∣∣∣∣∣∣
n∑
j=1

aj exp
{

2iwT
(
XT
j ,Z

T
j

)T}∣∣∣∣∣∣
2

exp
{
−wTD−1w

}
dw,

where D = diag(d1, . . . , dp+q) with d1, . . . , dp+q ∈ [dL, dU ]; see Assumption 1.1.3. Then, necessarily

n∑
j=1

aj exp
{

2iwT
(
XT
j ,Z

T
j

)T}
= 0, ∀w ∈ Rp+q. (1.17)
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Equation (1.16) indicates that, with probability 1, equation (1.17) admits the unique solution
a = 0n ∀w ∈ Rp+q. This means that, with probability 1, the matrix Ωn is positive definite.
Next, we use the following Cauchy-Schwarz4 inequality for matrices: let A ∈ Rn×p1 such that ATA
is invertible and let B ∈ Rn×p2 . Then

BTB −BTA(ATA)−1ATB is positive semi-definite.

Moreover, the equality BTB = BTA(ATA)−1ATB is equivalent to the relationship
B = A(ATA)−1ATB. For any non null vector u ∈ Rp, taking

B = Ω1/2
n and A = Ω1/2

n 1n,

we deduce that Dn is positive semi-definite and thus uT X̂TnDnX̂nu ≥ 0. (Herein, Ω
1/2
n is the

positive definite square root of Ωn.) Meanwhile, by elementary matrix algebra, we deduce that, for
any a ∈ Rn,

aTDna = 0 ⇔
(
aTΩna

T
) (

1TnΩn1n
)

=
(
aTΩn1n

)2
.

Then, the Cauchy-Schwarz inequality indicates that aTDna = 0 if and only if a = a1n for some
scalar a 6= 0. Thus, uT X̂TnDnX̂nu = 0 if and only if X̂nu = a1n for some a 6= 0. By Assumption

1.2, the probability of such an event is equal to zero. Thus, X̂TnDnX̂n is almost surely invertible.
Note that we could also write

Dn =

[
In×n −

1

1TnΩn1n
1n1TnΩn

]T
Ωn

[
In×n −

1

1TnΩn1n
1n1TnΩn

]
,

and deduce the positive semi-definiteness of Dn from the positive definiteness of Ωn.

2. We could rewrite B̂n under the form

B̂n =

[
In×n − X̂n

(
X̂TnDnX̂n

)−1

X̂TnDn
]T

Dn
[
In×n − X̂n

(
X̂TnDnX̂n

)−1

X̂TnDn
]
,

and deduce its positive semi-definiteness from the positive definiteness of Dn.

Proof of Theorem 1.1.

Let
M̂n(λ) = n−2Ŷn(λ)T B̂n Ŷn(λ),

such that
s−2λM̂n(λ) = n−2s−λŶn(λ)T B̂n s−λŶn(λ),

and, thus, λ̂ = arg min
λ∈Λ

s−2λM̂n(λ). Next, let

Mn(λ) = n−2Yn(λ)T Bn Yn(λ).

By construction,
Mn(λ) = Qn((λ,βn(λ)T )T , γn(λ)),

where
Qn((λ,βT )T , γ) = n−2 (Yn(λ)− γ1n − Xnβ)

T
Ωn (Yn(λ)− γ1n − Xnβ) ,

and

γn(λ) =
1

1TnΩn1n
1TnΩn (Yn(λ)− Xnβ(λ)) ,

and
βn(λ) =

(
XTnDnXn

)−1 XTnDnYn(λ).

Let
Q((λ,βT )T , γ) = E

[
Qn((λ,βT )T , γ)

]
, λ ∈ Λ,β ∈ Rp, γ ∈ R.

4A similar so-called Cauchy-Schwarz inequality was proposed by Lavergne [55]. To justify the statement, it suffices to
notice that BTB −BTA(ATA)−1ATB = ΓTΓ with Γ = B −A(ATA)−1ATB.
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Next, let c > 0 be a lower bound of the support of Y . Then, necessarily c < s0 and we could work on the
event c ≤ inf Sn, that is s stays away from zero. In order to prove the uniform consistency it will suffice
to prove

sup
h∈Hc,n

sup
d∈D

sup
λ∈Λ

∣∣∣M̂n(λ)−Mn(λ)
∣∣∣ = oP(1), (1.18)

sup
h∈Hc,n

sup
d∈D

sup
λ∈Λ

∣∣∣Qn((λ,βn(λ)T )T , γn(λ))−Qn((λ, β̂(λ)T )T , γ̂(λ))
∣∣∣ = oP(1), (1.19)

sup
d∈D

sup
λ∈Λ

sup
β∈Rp

sup
γ∈R

∣∣Qn((λ,βT )T , γ)−Q((λ,βT )T , γ)
∣∣ = oP(1), (1.20)

and to show that λ0 is a uniformly well-separated minimum value of λ 7→ s−2λ
0 Q((λ,β(λ)T )T , γ(λ)), that

is for any ε > 0,
inf

λ∈Λ,|λ−λ0|≥ε
inf
d∈D

s−2λ
0 Q((λ,β(λ)T )T , γ(λ)) > 0, (1.21)

with (γ(λ),β(λ)T )T defined in equation (1.5).
For the uniform convergence (1.18), we first decompose∣∣∣M̂n(λ)−Mn(λ)

∣∣∣ ≤ ∣∣∣n−1Yn(λ)T
(
B̂n − Bn

)
n−1Yn(λ)

∣∣∣+ 2

∣∣∣∣n−1
[
Ŷn(λ)− Yn(λ)

]T
B̂nn−1Yn(λ)

∣∣∣∣
+ n−1

[
Ŷn(λ)− Yn(λ)

]T
B̂nn−1

[
Ŷn(λ)− Yn(λ)

]
≤
∥∥∥B̂n∥∥∥

Sp

(
2
∥∥∥n−1

[
Ŷn(λ)− Yn(λ)

]∥∥∥ ∥∥n−1Yn(λ)
∥∥+

∥∥∥n−1
[
Ŷn(λ)− Yn(λ)

]∥∥∥2
)

+
∥∥n−1Yn(λ)

∥∥∥∥∥B̂n − Bn
∥∥∥

Sp

∥∥n−1Yn(λ)
∥∥ .

Next, from Lemma 1.3 and 1.7 we obtain that

sup
h∈Hc,n

sup
d∈D

∥∥∥B̂n∥∥∥
Sp

= OP(n) and sup
h∈Hc,n

sup
d∈D

∥∥∥B̂n − Bn
∥∥∥

Sp
= oP(n).

Moreover, by Lemma 1.12
sup
λ∈Λ

∥∥n−1Yn(λ)
∥∥ = OP(n−1/2),

and by Lemma 1.13

sup
h∈Hc,n

sup
λ∈Λ

∥∥∥n−1
[
Ŷn(λ)− Yn(λ)

]∥∥∥ = oP(n−1/2).

Therefore, the uniform convergence (1.18) follows. Similarly, by a suitable decomposition and elementary
matrix algebra calculations

Qn((λ,βn(λ)T )T , γn(λ))−Qn((λ, β̂(λ)T )T , γ̂(λ))

=
(
γ2
n(λ)− γ̂2(λ)

)
n−21TnΩn1n

+ n−2
(
βn(λ)TXTnΩnXnβn(λ)− β̂(λ)TXTnΩnXnβ̂(λ)

)
+ 2n−2

(
γn(λ)1TnΩnXnβn(λ)− γ̂(λ)1TnΩnXnβ̂(λ)

)
− 2n−2

(
γn(λ)1TnΩnYn(λ)− γ̂(λ)1TnΩnYn(λ)

)
− 2n−2

(
Yn(λ)TΩnXnβn(λ)− Yn(λ)TΩnXnβ̂(λ)

)
= OP(1)× sup

h∈Hc,n
sup
d∈D

sup
λ∈Λ

(∥∥∥β̂(λ)− βn(λ)
∥∥∥+ |γ̂(λ)− γn(λ)|

)
.

By the results of Sherman [72], the rate OP(1) is uniform with respect to d and λ. See also below for an

example of application of the results in Sherman [72]. The uniform convergence of
∥∥∥β̂(λ)− βn(λ)

∥∥∥ and

γ̂(λ) − γn(λ) follows by the same type of matrix algebra calculations and uniform rates of convergence
for U−processes. Thus, the uniform convergence (1.19) holds true.
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Next, by the properties of Euclidean families, see Nolan and Pollard [67] and Sherman [72], the families
of functions

{g (u1;θ, γ,η1) g (u2;θ, γ,η2) exp
{
−(w1 −w2)TD(w1 −w2)

}
: θ = (λ,βT )T ∈ Λ× Rp, γ ∈ R,d ∈ D},

and {g2 (u;θ, γ,η) : θ ∈ Λ × Rp, γ ∈ R} are Euclidean for a squared envelope. Thus, decomposing
Qn((λ,βT )T , γ) is a U−process plus the sum of the diagonal terms, and using Corollary 4 of Sherman
[72], the uniform convergence (1.20) holds true.

By construction, condition (1.6) in Lemma 1.1 is equivalent with

inf
λ∈Λ,|λ−λ0|≥ε

inf
d∈D

s−2λ
0

(
Q((λ,β(λ)T )T , γ(λ))− n−1E

[
g2
(
U ; (λ,β(λ)T )T , γ(λ),η

)])
> 0.

Since the family {g2 (u;θ, γ,η) : θ ∈ Λ × Rp, γ ∈ R} has an integrable envelope, the expectation in the
last display is finite. Thus, we deduce (1.21) and λ0 is a uniformly well-separated minimum.

Finally, to derive the uniform consistency of λ̂, we adapt the steps in the proof of Theorem 5.7 of
Van der Vaart [78]. First, for any sequence sn ∈ Sn, n ≥ 1, and λ̂ = λ̂(sn) defined as in equation (1.9),

0 ≤ s−2λ̂
n M̂n(λ̂) ≤ s−2λ0

n M̂n(λ0)

= s−2λ0
0 Mn(λ0) + s−2λ0

n

(
M̂n(λ0)−Mn(λ0)

)
+
(
s−2λ0
n − s−2λ0

0

)
Mn(λ0)

= s−2λ0
0 Qn((λ0,βn(λ0)T )T , γn(λ0)) + oP(1)

≤ s−2λ0
0 Qn((λ0,β(λ0)T )T , γ(λ0)) + oP(1)

= s−2λ0
0 Q((λ0,β(λ0)T )T , γ(λ0)) + oP(1) = oP(1),

(1.22)

uniformly with respect to h and d. (Note that λ̂ depends on sn, but also on d and h.) For the last
inequality in the last display we use the fact that, by definition, βn(λ) and γn(λ) minimize Qn((λ,βT )T , γ)
with respect to β and γ given λ.

Meanwhile, from (1.18), (1.19) and (1.20) and the fact that Sn is a oP(1) neighborhood of s0 that is
contained in the support of Y , for any sn,∣∣∣s−2λ̂

n M̂n(λ̂)− s−2λ̂
n Q((λ̂, β̂(λ̂)T )T , γ̂(λ̂))

∣∣∣
≤
∣∣∣s−2λ̂
n M̂n(λ̂)− s−2λ̂

n Qn((λ̂,βn(λ̂)T )T , γn(λ̂))
∣∣∣

+ s−2λ̂
n

∣∣∣Qn((λ̂,βn(λ̂)T )T , γn(λ̂))−Qn((λ̂, β̂(λ̂)T )T , γ̂(λ̂))
∣∣∣

+ s−2λ̂
n

∣∣∣Qn((λ̂, β̂(λ̂)T )T , γ̂(λ̂))−Q((λ̂, β̂(λ̂)T )T , γ̂(λ̂))
∣∣∣

≤ sup
s∈Sn

sup
λ∈Λ

s−2λ × sup
h∈Hc,n

sup
d∈D

sup
λ∈Λ

∣∣∣M̂n(λ)−Mn(λ)
∣∣∣

+ sup
s∈Sn

sup
λ∈Λ

s−2λ × sup
h∈Hc,n

sup
d∈D

sup
λ∈Λ

∣∣∣Qn((λ,βn(λ)T )T , γn(λ))−Qn((λ, β̂(λ)T )T , γ̂(λ))
∣∣∣

+ sup
s∈Sn

sup
λ∈Λ

s−2λ × sup
d∈D

sup
λ∈Λ

sup
β∈Rp

sup
γ∈R

∣∣Qn((λ,βT )T , γ)−Q((λ,βT )T , γ)
∣∣

= oP(1).
(1.23)

Next, by property (1.21), for any ε > 0 there exists ζ > 0 (depending on ε, but also on the endpoints of
the sets Sn and Λ) such that the probability of the event

En =

{
inf

λ∈Λ,|λ−λ0|≥ε
inf
d∈D

inf
s∈Sn

s−2λQ((λ,β(λ)T )T , γ(λ)) > s−2λ0
0 Q((λ0,β(λ0)T )T , γ(λ0)) + ζ = ζ

}
,

tends to 1. Moreover, the event {
sup

h∈Hc,n
sup
s∈Sn

sup
d∈D

∣∣∣λ̂(s)− λ0

∣∣∣ ≥ ε} ,
is contained in the event{

inf
h∈Hc,n

inf
s∈Sn

inf
d∈D

s−2λ̂(s)Q((λ̂(s),β(λ̂(s))T )T , γ(λ̂(s))) > ζ

}
∩ En.
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By (1.22) and (1.23), the probability of the intersection event tends to zero. Now the proof for λ̂ is
complete.

Consider now the convergence of β̂(λ̂). Given the uniform convergence of
∥∥∥β̂(λ)− βn(λ)

∥∥∥ and the

continuity of λ 7→ β(λ), it suffices to obtain the convergence of ‖βn(λ)− β(λ)‖ uniformly over oP(1)
neighborhoods of λ0. By construction,

0 ≤ s−2λ
n Mn(λ) = s−2λ

n Qn((λ,βn(λ)T )T , γn(λ))

≤ s−2λ
n Qn((λ,β(λ)T )T , γ(λ)) = s−2λ

n Q((λ,β(λ)T )T , γ(λ)) + oP(1),
(1.24)

uniformly with respect to sn, λ, h and d. Moreover, since Q((λ0,β(λ0)T )T , γ(λ0)) = 0, we have

Q((λ,β(λ)T )T , γ(λ)) = oP(1), (1.25)

uniformly over oP(1) neighborhoods of λ0. Meanwhile, by (1.20), for any sn and any λ,∣∣∣s−2λ
n Mn(λ)−s−2λ

n Q((λ,βn(λ)T )T , γn(λ))
∣∣∣

= s−2λ
n

∣∣Qn((λ,βn(λ)T )T , γn(λ))−Q((λ,βn(λ)T )T , γn(λ))
∣∣

≤ sup
s∈Sn

sup
λ∈Λ

s−2λ × sup
d∈D

sup
λ∈Λ

sup
β∈Rp

sup
γ∈R

∣∣Qn((λ,βT )T , γ)−Q((λ,βT )T , γ)
∣∣

= oP(1).

(1.26)

Next, by the proof of property (1.21) and continuity arguments, for any ε > 0 there exists υ > 0 such
that the probability of the event

Fn =

{
inf

λ∈Λ,|λ−λ0|=oP(1)
inf

‖β−β0‖>ε
inf
γ∈R

inf
d∈D

inf
s∈Sn

s−2λQ((λ,βT )T , γ) > υ

}
,

tends to 1. Finally, note that the event{
sup

λ∈Λ,|λ−λ0|=oP(1)

sup
s∈Sn

sup
d∈D
‖βn(λ)− β(λ)‖ ≥ ε

}
,

is contained in the intersection{
inf

λ∈Λ,|λ−λ0|=oP(1)
inf
s∈Sn

inf
d∈D

s−2λQ((λ,βn(λ)T )T , γn(λ)) > υ

}
∩ Fn,

which, by (1.24), (1.25) and (1.26), has a probability tending to zero. Now the proof is complete.

Proof of Proposition 1.1.

As λ̂− λ0 = oP(1) uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn, we get that

0 = n−1s−λ̂Ŷn(λ̂)T B̂n
∂

∂λ

{
n−1s−λ̂Ŷn(λ̂)

}
= n−1s−λ0Ŷn(λ0)T B̂n

∂

∂λ

{
n−1s−λ0Ŷn(λ0)

}
+

[
∂

∂λ

{
n−1s−λ0Ŷn(λ0)

}T
B̂n

∂

∂λ

{
n−1s−λ0Ŷn(λ0)

}
+ n−1s−λ0Ŷn(λ0)T B̂n

∂2

∂λ2

{
n−1s−λ0Ŷn(λ0)

}
+R1,n(λ̃, λ0; s)

](
λ̂− λ0

)
,

where λ̃ = cλ̂+ (1− c)λ0 for some c ∈ (0, 1). We have that suph∈Hsc,n supd∈D sups∈Sn |R1,n(λ̃, λ0; s)| =
oP(1), see Lemma 1.16.

Note that ∂
∂λ{n

−1s−λ0Ŷn(λ0)} = s−λ0 ∂
∂λ{n

−1Ŷn(λ0)} − log(s)s−λ0n−1Ŷn(λ0). First, we show that

n−1s−λ0Ŷn(λ0)T B̂n
∂

∂λ

{
n−1s−λ0Ŷn(λ0)

}
− n−1s−λ0

0

(
Yn(λ0)−

(
ε̂|zf̂z

)
n

)T
Bns−λ0

0

∂

∂λ

{
n−1Yn(λ0)

}
= oP

(
n−1/2

)
,

(1.27)
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uniformly with respect to s, d and h. We start by showing that

n−1s−λ0Ŷn(λ0)T B̂nn−1s−λ0
∂

∂λ
Ŷn(λ0)

− n−1s−λ0
0

(
Yn(λ0)−

(
ε̂|zf̂z

)
n

)T
Bnn−1s−λ0

0

∂

∂λ
Yn(λ0) = oP

(
n−1/2

)
,

uniformly with respect to s, d and h. By the property X̂Tn B̂n = XTnBn = 0n, we could equivalently prove
that

n−1s−λ0

(
Ŷn(λ0)− X̂nβ0

)T
B̂nn−1s−λ0

∂

∂λ
Ŷn(λ0)

− n−1s−λ0
0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T
Bnn−1s−λ0

0

∂

∂λ
Yn(λ0) = oP

(
n−1/2

)
, (1.28)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. To obtain (1.28), we decompose the difference
in a sum of the following four terms:

Rn1 = n−1s−λ0

([
Ŷn(λ0)− X̂nβ0

]
− [Yn(λ0)− Xnβ0] +

(
ε̂|zf̂z

)
n

)T
B̂nn−1s−λ0

∂

∂λ
Ŷn(λ0),

Rn2 = n−1
(
s−2λ0 − s−2λ0

0

)(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T
B̂nn−1 ∂

∂λ
Ŷn(λ0)

Rn3 = n−1s−λ0
0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T [
B̂n − Bn

]
n−1s−λ0

0

∂

∂λ
Ŷn(λ0),

and Rn4 = n−1s−λ0
0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T
Bnn−1s−λ0

0

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)
.

Note that
B̂n = STn

(
In×n − PSnX̂n

)
Sn and Bn = STn (In×n − PSnXn)Sn,

where PSnX̂n and PSnXn are the orthogonal projectors on the subspaces generated by SnX̂n and SnXn,
that is

PSnX̂n = SnX̂n
(
X̂TnDnX̂n

)−1

X̂TnSTn and PSnXn = SnXn
(
XTnDnXn

)−1 XTnSTn ,

with
Sn =

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n .

P
Ω

1/2
n 1n

is the projector on the subspace generated by the vector Ω
1/2
n 1n, that is

P
Ω

1/2
n 1n

=
1

1TnΩn1n
Ω1/2
n 1n1TnΩ1/2

n .

Here, Ω
1/2
n is the positive definite square root of Ωn. Deduce that

|Rn2| ≤
∣∣s−2λ0 − s−2λ0

0

∣∣ ∥∥∥Ω1/2
n n−1

[
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

]∥∥∥
×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,

|Rn3| ≤ s−2λ0
0

∥∥∥Ω1/2
n n−1

[
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

]∥∥∥
×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
PSnXn − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,
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and

|Rn4| ≤ s−2λ0
0

∥∥∥Ω1/2
n n−1

[
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

]∥∥∥
×
∥∥∥(In×n − PΩ

1/2
n 1n

)
(In×n − PSnXn)

(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)∥∥∥∥
Sp

.

The uniform rate oP
(
n−1/2

)
as in equation (1.28) follows for Rn2, Rn3 and Rn4 from the fact that the

spectral norm of a product of projectors is at most equal to 1, the spectral norm of PSnXn −PSnX̂n tends

to zero, sups∈Sn
∣∣s−2λ0 − s−2λ0

0

∣∣ = oP(1) as well as sups∈Sn s
−2λ0 = OP(1) and from Lemmas 1.14, 1.15

and 1.19. For the term Rn1, we could write

|Rn1| ≤ s−2λ0

∥∥∥Ω1/2
n n−1

(
[Yn(λ0)− Xnβ0]−

(
ε̂|zf̂z

)
n
−
[
Ŷn(λ0)− X̂nβ0

])∥∥∥
×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,

and use Lemmas 1.15 and 1.18 and again the facts that the spectral norm of a product of projectors is
at most equal to 1 and sups∈Sn s

−2λ0 = OP(1) to deduce that it is of rate oP
(
n−1/2

)
, uniformly with

respect to s, d and h. Now the proof of the property (1.28) is complete. Next, we show that

n−1s−λ0Ŷn(λ0)T B̂nn−1 log(s)s−λ0Ŷn(λ0) = oP

(
n−1/2

)
,

uniformly with respect to s, d and h. By the property X̂Tn B̂n = 0n, we could equivalently prove that

n−1s−λ0

(
Ŷn(λ0)− X̂nβ0

)T
B̂nn−1 log(s)s−λ0

(
Ŷn(λ0)− X̂nβ0

)
= oP

(
n−1/2

)
, (1.29)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. By a similar decomposition as in the proof of
(1.28) we get that

n−1s−λ0

(
Ŷn(λ0)− X̂nβ0

)T
B̂nn−1 log(s)s−λ0

(
Ŷn(λ0)− X̂nβ0

)
−n−1s−λ0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T
Bnn−1 log(s)s−λ0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)
= oP

(
n−1/2

)
.

We obtain

n−1s−λ0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)T
Bnn−1 log(s)s−λ0

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)
= oP

(
n−1/2

)
,

from Lemmas 1.14 and 1.19 and the facts that the spectral norm of a product of projectors is at most
equal to 1 and sups∈Sn s

−λ0 = OP(1) as well as sups∈Sn log(s)s−λ0 = OP(1) such that (1.29) follows.
(1.27) follows now from (1.28) and (1.29). Next, we show that

n−1 ∂

∂λ

{
s−λ0Ŷn(λ0)

}T
B̂nn−1 ∂

∂λ

{
s−λ0Ŷn(λ0)

}
− n−1s−λ0

0

∂

∂λ
Yn(λ0)TBnn−1s−λ0

0

∂

∂λ
Yn(λ0) = oP (1) ,

(1.30)

uniformly with respect to s, d and h. We start by showing that

n−1s−λ0
∂

∂λ
Ŷn(λ0)T B̂nn−1s−λ0

∂

∂λ
Ŷn(λ0)

− n−1s−λ0
0

∂

∂λ
Yn(λ0)TBnn−1s−λ0

0

∂

∂λ
Yn(λ0) = oP (1) ,

(1.31)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. To obtain (1.31), we decompose the difference
in a sum of the following four terms:

32



R̃n1 = n−1s−λ0

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)T
B̂nn−1s−λ0

∂

∂λ
Ŷn(λ0),

R̃n2 = n−1
(
s−2λ0 − s−2λ0

0

) ∂

∂λ
Yn(λ0)T B̂nn−1 ∂

∂λ
Ŷn(λ0)

R̃n3 = n−1s−λ0
0

∂

∂λ
Yn(λ0)T

[
B̂n − Bn

]
n−1s−λ0

0

∂

∂λ
Ŷn(λ0),

and R̃n4 = n−1s−λ0
0

∂

∂λ
Yn(λ0)T Bnn−1s−λ0

0

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)
.

It follows now that∣∣∣R̃n1

∣∣∣ ≤ s−2λ0

∥∥∥∥Ω1/2
n n−1

(
∂

∂λ
Yn(λ0)− ∂

∂λ
Ŷn(λ0)

)∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,

∣∣∣R̃n2

∣∣∣ ≤ ∣∣s−2λ0 − s−2λ0
0

∣∣ ∥∥∥∥Ω1/2
n n−1 ∂

∂λ
Yn(λ0)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,

∣∣∣R̃n3

∣∣∣ ≤ s−2λ0
0

∥∥∥∥Ω1/2
n n−1 ∂

∂λ
Yn(λ0)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
PSnXn − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

,

and∣∣∣R̃n4

∣∣∣ ≤ s−2λ0
0

∥∥∥∥Ω1/2
n n−1 ∂

∂λ
Yn(λ0)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)
(In×n − PSnXn)

(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)∥∥∥∥
Sp

.

The uniform rate oP (1) as in equation (1.31) follows for R̃n1, R̃n2, R̃n3 and R̃n4 from the fact that the
spectral norm of a product of projectors is at most equal to 1, the spectral norm of PSnXn −PSnX̂n tends

to zero, sups∈Sn
∣∣s−2λ0 − s−2λ0

0

∣∣ = oP(1) as well as sups∈Sn s
−2λ0 = OP(1) and from Lemma 1.15. Now

the proof of (1.31) is complete. In order to proof (1.30) it remains to be shown that

n−1 log(s)s−λ0Ŷn(λ0)T B̂nn−1s−λ0
∂

∂λ
Ŷn(λ0) = oP (1) , (1.32)

and
n−1 log(s)s−λ0Ŷn(λ0)T B̂nn−1 log(s)s−λ0Ŷn(λ0) = oP (1) , (1.33)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. We obtain (1.32) and (1.33) by a similiar
reasoning as in the proof of (1.29). The details are omitted. Now the proof of (1.30) is complete.
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Next, we show that

n−1s−λ0Ŷn(λ0)T B̂n
∂2

∂λ2

{
n−1s−λ0Ŷn(λ0)

}
= oP (1) , (1.34)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. Note that ∂2

∂λ2 {n−1s−λ0Ŷn(λ0)} = s−λ0n−1 ∂2

∂λ2 Ŷn(λ0)−
2 log(s)s−λ0n−1 ∂

∂λ Ŷn(λ0) + log(s)2s−λ0Ŷn(λ0). We start by showing that

n−1s−λ0Ŷn(λ0)T B̂ns−λ0n−1 ∂
2

∂λ2
Ŷn(λ0) = oP (1) , (1.35)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. Once again we can equivalently consider

n−1s−λ0

(
Ŷn(λ0)− X̂nβ0

)T
B̂ns−λ0n−1 ∂

2

∂λ2
Ŷn(λ0) = oP (1) , (1.36)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. To obtain (1.36), we consider∣∣∣n−1s−λ0

(
Ŷn(λ0)− X̂nβ0

)T
B̂ns−λ0n−1 ∂

2

∂λ2
Ŷn(λ0)

∣∣∣
≤ s−2λ0

(∥∥∥Ω1/2
n n−1

([
Ŷn(λ0)− X̂nβ0

]
− [Yn(λ0)− Xnβ0] +

(
ε̂|zf̂z

)
n

)∥∥∥
+
∥∥∥Ω1/2

n n−1
[
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

]∥∥∥)

×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PSnX̂n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp
×
∥∥∥∥n−1Ω1/2

n

∂2

∂λ2
Ŷn(λ0)

∥∥∥∥
Sp

.

The uniform rate oP (1) as in equation (1.36) follows from the fact that the spectral norm of a product of
projectors is at most equal to 1, sups∈Sn s

−2λ0 = OP(1) and from Lemmas 1.14, 1.15, 1.18 and 1.19. Now
the proof of property (1.35) is complete. (1.34) follows now together with (1.32) and (1.33). Therefore,
the proof of the first part of the first statement in the Proposition is complete.

In addition we have that

sup
d∈D

∥∥∥∥n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)− E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]∥∥∥∥ = OP(n−1/2),

by Lemma 1.5, where the expectation tends to a positive constant. Furthermore, it follows from the fact
that the spectral norm of a product of projectors is at most equal to 1 and from Lemmas 1.14, 1.15 and
1.19 that

sup
d∈D

∣∣∣∣n−2 ∂

∂λ
Yn(λ0)TBn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)∣∣∣∣ = OP

(
n−1/2

)
,

such that (λ̂− λ0) = OP
(
n−1/2

)
uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. Therefore, the

proof of the second part of the first statement in the Proposition is complete.

We consider now

β̂(λ̂) =
(
X̂TnDnX̂n

)−1

X̂TnDnŶn(λ̂) =
(
n−2X̂TnDnX̂n

)−1

n−1X̂TnDnn−1Ŷn(λ̂).

Once again we can write that

n−1X̂TnDnn−1Ŷn(λ̂) = n−1X̂TnDnn−1Ŷn(λ0) +

(
n−1X̂TnDnn−1 ∂

∂λ
Ŷn(λ0) +R2,n(λ̃, λ0)

)
(λ̂− λ0),

where λ̃ = cλ̂+(1−c)λ0 for some c ∈ (0, 1). We have that suph∈Hsc,n supd∈D sups∈Sn |R2,n(λ̃, λ0)| = oP(1),
see Lemma 1.17. In addition, we get that(

n−2X̂TnDnX̂n
)−1

n−1X̂TnDnn−1Ŷn(λ0) =
(
n−2X̂TnDnX̂n

)−1

n−1X̂TnDnn−1
(
Ŷn(λ0)− X̂nβ0 + X̂nβ0

)
= β0 +

(
n−2X̂TnDnX̂n

)−1

n−1X̂TnDnn−1
(
Ŷn(λ0)− X̂nβ0

)
.
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In the first step we show that

n−1X̂Tn Dn n−1
(
Ŷn(λ0)− X̂nβ0

)
− n−1XTnDn n−1

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)
= oP(n−1/2) (1.37)

uniformly with respect to d ∈ D and h ∈ Hsc,n. We have that

n−1X̂TnDn n−1
(
Ŷn(λ0)− X̂nβ0

)
− n−1XTnDn n−1

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)
= n−1X̂TnDn n−1

((
Ŷn(λ0)− X̂nβ0

)
−
(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

))
+ n−1

(
X̂n − Xn

)T
Dn n−1

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)
.

It follows that∥∥∥n−1X̂TnDn
(
n−1

(
Ŷn(λ0)− X̂nβ0

)
− n−1

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

))∥∥∥
Sp

≤
∥∥∥Ω1/2

n n−1X̂n
∥∥∥

Sp
×
∥∥∥(In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥Ω1/2

n n−1
((

Ŷn(λ0)− X̂nβ0

)
−
(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

))∥∥∥ ,
and∥∥∥∥n−1

(
X̂n − Xn

)T
Dn n−1

(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)∥∥∥∥
Sp

≤
∥∥∥Ω1/2

n n−1
(
X̂n − Xn

)∥∥∥
Sp
×
∥∥∥(In×n − PΩ

1/2
n 1n

)∥∥∥
Sp
×
∥∥∥Ω1/2

n n−1
(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)∥∥∥ .
The uniform rate oP

(
n−1/2

)
as in equation (1.37) follows from the fact that the spectral norm of a

product of projectors is at most equal to 1 and from Lemmas 1.8, 1.14, 1.18 and 1.19.

In the next step we show that

n−1X̂TnDnn−1 ∂

∂λ
Ŷn(λ0)(λ̂− λ0)− n−1XTnDnn−1 ∂

∂λ
Yn(λ0)(λ̂− λ0) = oP(n−1/2), (1.38)

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. We have that

n−1X̂TnDnn−1 ∂

∂λ
Ŷn(λ0)(λ̂− λ0)− n−1XTnDnn−1 ∂

∂λ
Yn(λ0)(λ̂− λ0)

= n−1X̂TnDnn−1

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)
(λ̂− λ0)

+ n−1
(
X̂n − Xn

)T
Dnn−1 ∂

∂λ
Yn(λ0)(λ̂− λ0).

It follows that∥∥∥∥n−1X̂TnDn n−1

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)∥∥∥∥
Sp

≤
∥∥∥Ω1/2

n n−1X̂n
∥∥∥

Sp
×
∥∥∥(In×n − PΩ

1/2
n 1n

)∥∥∥
Sp
×
∥∥∥∥Ω1/2

n n−1

(
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Yn(λ0)

)∥∥∥∥
Sp

,

and∥∥∥∥n−1
(
X̂n − Xn

)T
Dnn−1 ∂

∂λ
Yn(λ0)

∥∥∥∥
Sp

≤
∥∥∥Ω1/2

n n−1
(
X̂n − Xn

)∥∥∥
Sp
×
∥∥∥(In×n − PΩ

1/2
n 1n

)∥∥∥
Sp
×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Yn(λ0)

∥∥∥∥
Sp

.

The uniform rate oP
(
n−1/2

)
as in equation (1.38) follows from the fact that the spectral norm of a product

of projectors is at most equal to 1, from Lemma 1.8 and 1.15 and the fact that (λ̂ − λ0) = OP
(
n−1/2

)
uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. In addition, it follows from Lemmas 1.5 and 1.7
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that ∥∥∥∥(n−2X̂TnDnX̂n
)−1

−
(
n−2XTnDnXn

)−1
∥∥∥∥ = oP (1) .

Furthermore, we get that∥∥∥n−1XTnDnn−1
(
Yn(λ0)− Xnβ0 −

(
ε̂|zf̂z

)
n

)∥∥∥
Sp

= OP

(
n−1/2

)
,

and ∥∥∥∥n−1XTnDnn−1 ∂

∂λ
Yn(λ0)(λ̂− λ0)

∥∥∥∥
Sp

= OP

(
n−1/2

)
,

from Lemmas 1.8, 1.14, 1.15, 1.19 and (λ̂ − λ0) = OP
(
n−1/2

)
uniformly with respect to s ∈ Sn, d ∈ D

and h ∈ Hsc,n. Therefore, the second statement follows.

Proof of Theorem 1.2.

Let

Vn(d) =

(
∂
∂λYn(λ0)TDn(d) ∂

∂λYn(λ0) − ∂
∂λYn(λ0)TDn(d)Xn

−XTnDn(d) ∂
∂λYn(λ0) XTnDn(d)Xn

)
and

An =

(
∂
∂λYn(λ0)T

−XTn

)
Dn
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
.

We get from Proposition 1.1 that(
(λ̂, β̂(λ̂)T )T − (λ0,β

T
0 )T

)
= −Vn(d)−1An + oP

(
n−1/2

)
.

Furthermore, it follows from Lemma 1.5 that(
(λ̂, β̂(λ̂)T )T − (λ0,β

T
0 )T

)
= −V (d)−1n−2An + oP

(
n−1/2

)
.

Both results hold uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. Note that V (d) is invertible
as E

[
n−2XTnDnXn

]
tends to a positive definite matrix and E

[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
to a positive

constant, see Lemma 1.5. We consider now An and start with XTnDn
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
. Recall that

XTnDn
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
= XTnΩn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− 1

1TnΩn1n
XTnΩn1n1TnΩn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
.

It follows from the results of Lemma 1.5 that

sup
d∈D

∥∥∥∥ 1

1TnΩn1n
XTnΩn1n −

1

E [1TnΩn1n]
E
[
XTnΩn1n

]∥∥∥∥
Sp

= OP(n−1/2),

and together with the results of Lemmas 1.3, 1.14 and 1.19 we get that

sup
d∈D

∥∥∥∥∥ 1

1TnΩn1n
XTnΩn1n

1

n2
1TnΩn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− 1

E [1TnΩn1n]
E
[
XTnΩn1n

] 1

n2
1TnΩn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)∥∥∥∥∥
Sp

= oP(n−1/2).
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In the next step we consider

1

n2
XTnΩn(εfz)n =

1

2n2

∑
1≤i 6=j≤n

(Xn,iεjfz(Zj)Ωn,ij + Xn,jεifz(Zi)Ωn,ji) +
1

n2

n∑
i=1

Xn,iεifz(Zi).

It’s easy to check that ∥∥∥∥∥ 1

n2

n∑
i=1

Xn,iεifz(Zi)

∥∥∥∥∥ = oP(n−1).

In addition, we have that E [Xn,iεjfz(Zj)Ωn,ij ] = 0 and E [Xn,iεjfz(Zj)Ωn,ij |Xi,Zi] = 0 as well as

E [Xn,iεjfz(Zj)Ωn,ij | Yj ,Xj ,Zj ] = εjfz(Zj)E [Xn,iΩn,ij |Xj ,Zj ] .

Therefore, we get by applying Hoeffding’s decomposition that

sup
d∈D

∥∥∥∥∥∥ 1

n2
XTnΩn(εfz)n −

1

n

n∑
j=1

εjfz(Zj)E [Xn,iΩn,ij |Xj ,Zj ]

∥∥∥∥∥∥ = OP(n−1).

By Lemma 1.14 it suffices to consider d = diag(dU, . . . ,dU) such that the uniform result in the last
display follows. By the same reasoning we get that

sup
d∈D

∥∥∥∥∥∥ 1

n2
1TnΩn(εfz)n −

1

n

n∑
j=1

εjfz(Zj)E [Ωn,ij |Xj ,Zj ]

∥∥∥∥∥∥ = OP(n−1).

In the next step we consider

1

n2
XTnΩn

(
ε̂|zf̂z

)
n

=
1

n2

∑
1≤i 6=j≤n

Xn,i
(
ε̂|zf̂z

)
n,j

Ωn,ij +
1

n2

n∑
i=1

Xn,i
(
ε̂|zf̂z

)
n,i
.

It’s easy to check that ∥∥∥∥∥ 1

n2

n∑
i=1

Xn,i
(
ε̂|zf̂z

)
n,i

∥∥∥∥∥ = oP(n−1/2).

In addition, we have that

1

n2

∑
1≤i 6=j≤n

Xn,i
(
ε̂|zf̂z

)
n,j

Ωn,ij =
1

n2

∑
1≤i 6=j≤n

Xn,i
1

n

n∑
k=1,k 6=j

εkKh,jkΩn,ij

=
1

n3

∑
1≤i 6=j 6=k≤n

Xn,iεkKh,jkΩn,ij

+
1

n3

∑
1≤i 6=j≤n

Xn,iεiKh,ijΩn,ij

= An(h) +Bn(h).

In the following we compute the mean and use the Hoeffding decomposition for the U–process An(h).
The kernel of An(h) is not symmetric in its arguments. However, we could apply the usual symmetrization
idea. Thus, by abuse, we will proceed as if the kernel of the U−statistic we handle is symmetric. For
instance, for a second order U−statistic defined by a kernel h(Ui,Uj), we could replace it by the symmetric

kernel 1
2 [h(Ui,Uj) + h(Uj ,Ui)] from which we get the same U−statistic. Here, Ui =

(
Yi,X

T
i ,Z

T
i

)T
.

In addition, we have that the kernel of An(h) is Euclidean for a squared integrable envelope. See
Lemma 22 in Nolan and Pollard [67] and Lemma 2.14 in Pakes and Pollard [68]. Therefore, we can in
the following repeatedly apply Corollary 7 and the Maximal Inequality of Sherman [72]. All remainder
terms are controlled by Assumption 1.3.2.

Recall that by assumption E [εk |Xk,Zk] = 0. Therefore, we get that E [An(h)] = 0 as well as

E [Xn,iεkKh,jkΩn,ij | Up, p ∈ {i, j}] = 0.
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Furthermore we get that

E [Xn,iεkKh,jkΩn,ij | Uk] = εkE
[
Xn,iKh,jkΩ

X
n,ijΩ

Z
n,ij | Zk

]
= εkE

[
Xn,iE

[
Kh,jkΩ

Z
n,ij | Zk,Zi,Xj

]
ΩX
n,ij | Zk

]
= εkE

[
Xn,i

(
fz(Zk)ΩZ

n,ik +OP(h2)
)
ΩX
n,ij | Zk

]
= εkfz(Zk)E

[
Xn,iΩZ

n,ikΩ
X
n,ij | Zk

]
+ εkE

[
Xn,iΩX

n,ij

]
OP(h2).

It follows from the results that the first order U–process of the Hoeffding decomposition of An(h) is
of order OP(n−1/2) uniformly with respect to h and d.

We consider now the three second order U−processes of the Hoeffding decomposition of An(h). We
get that

E [Xn,iεkKh,jkΩn,ij | Ui,Uj ] = 0.

In addition,

E [Xn,iεkKh,jkΩn,ij | Ui,Uk] = Xn,iεkE
[
Kh,jkΩ

X
n,ijΩ

Z
n,ij | Ui,Zk

]
= Xn,iεkE

[(
fz(Zk)ΩZ

n,ik +OP(h2)
)
ΩX
n,ij | Ui,Zk

]
= Xn,iεkfz(Zk)ΩZ

n,ikE
[
ΩX
n,ij |Xi

]
+ Xn,iE

[
ΩX
n,ij |Xi

]
OP(h2).

The last conditional expectation that we need to consider is given by

E [Xn,iεkKh,jkΩn,ij | Uj ,Uk] = εkKh,jkE [Xn,iΩn,ij | Uj ]
= h−qhqKh,jkτ(Uj ,Uk).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given by
the kernel hqKh,jkτ(Uj ,Uk), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ(·, ·). (Herein, ‖ · ‖∞ denotes
the uniform norm.) We take p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α.
Since K(·) is of bounded variation and symmetric, without loss of generality we could consider that K(·)
is nonincreasing on [0,∞). In this case, 0 ≤ K(·/h) ≤ K(·/h) with h = supHsc,n =: cmaxn

−α. Hence,
using Jensen’s inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72]
by a universal constant times

Eβ/2
[
K2

(
Zj −Zk
cmaxn−α

)
τ2(Uj ,Uk)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by
a constant times n−αβq/2. Consequently, the uniform rate of the U−process obtained conditioning on
Uj ,Uk is n−1 × OP(nαq{1−β/2}). As 1/2 − αq(1 − β/2) > 0 under our assumptions we get that n−1 ×
OP(nαq{1−β/2}) = oP(n−1/2). From all the results it follows that the second order U−processes of the
Hoeffding decomposition of An(h) are of order oP(n−1/2) uniformly with respect to h and d.

Finally, we need to consider the third order U−process. We get that

Xn,iεkKh,jkΩn,ij = h−qhqKh,jkτ1(Ui,Uj ,Uk).

We can again use the Maximal Inequality of Sherman [72] to argue that this process is of order oP(n−1/2)
uniformly with respect to h and d. The details are omitted.

It remains to consider Bn(h). One can argue in a similar way as for An(h) to get that Bn(h) is of
order oP(n−1/2) uniformly with respect to h and d. The details are omitted.

From all the results it follows now that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
XTnΩn

(
ε̂|zf̂z

)
n
− 1

n

n∑
k=1

εkfz(Zk)E
[
Xn,iΩZ

n,ikΩ
X
n,ij | Zk

]∥∥∥∥∥ = oP(n−1/2).

By the same reasoning we get that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
1TnΩn

(
ε̂|zf̂z

)
n
− 1

n

n∑
k=1

εkfz(Zk)E
[
ΩZ
n,ikΩ

X
n,ij | Zk

]∥∥∥∥∥ = oP(n−1/2).
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Therefore, we get that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
XTnDn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− 1

n

n∑
j=1

εjfz(Zj)E

[(
Xn,i −

1

E [1TnΩn1n]
E
[
XTnΩn1n

])
Ωn,ij |Xj ,Zj

]

+
1

n

n∑
k=1

εkfz(Zk)E

[(
Xn,i −

1

E [1TnΩn1n]
E
[
XTnΩn1n

])
ΩZ
n,ikΩ

X
n,ij | Zk

] ∥∥∥∥∥ = oP(n−1/2).

By the same arguments we get that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2

∂

∂λ
Yn(λ0)TDn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− 1

n

n∑
j=1

εjfz(Zj)E

[(
∂

∂λ
Yn,i(λ0)− 1

E [1TnΩn1n]
E

[
∂

∂λ
Yn(λ0)TΩn1n

])
Ωn,ij |Xj ,Zj

]

+
1

n

n∑
k=1

εkfz(Zk)E

[(
∂

∂λ
Yn,i(λ0)− 1

E [1TnΩn1n]
E

[
∂

∂λ
Yn(λ0)TΩn1n

])
ΩZ
n,ikΩ

X
n,ij | Zk

] ∥∥∥∥∥ = oP(n−1/2).

The details are omitted.

Therefore, we get that

(
(λ̂, β̂(λ̂)T )T − (λ0,β

T
0 )T

)
= −V (d)−1

(
1

n

n∑
j=1

εjfz(Zj)E [τi(d) Ωn,ij(d) |Xj ,Zj ]

− 1

n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ik(d)ΩX
n,ij(d) | Zk

])
+ oP

(
n−1/2

)
= −V (d)−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)
(
ΩX
n,ij(d)−ΩX

n,ik(d)
)
|Xj ,Zj

])

+ oP

(
n−1/2

)
= −V (d)−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)
(
ΩX
n,ij(d)− E

[
ΩX
n,ik(d) |Xi

])
|Xj ,Zj

])

+ oP

(
n−1/2

)
= −V (d)−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦX
n,ij(d) |Xj ,Zj

])

+ oP

(
n−1/2

)
,

uniformly over h ∈ Hsc,n and d ∈ D.

We consider now the behavior of 1
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦX
n,ij(d) |Xj ,Zj

]
in detail by apply-

ing Theorem 19.28 of Van der Vaart [78]. The needed Lindeberg condition follows from our assumptions.
In the following we will show that

sup
‖d1−d2‖<δ

E
[∥∥εjfz(Zj)E [τi(d1) ΩZ

n,ij(d1)ΦX
n,ij(d1) |Xj ,Zj

]
− εjfz(Zj)E

[
τi(d2) ΩZ

n,ij(d2)ΦX
n,ij(d2) |Xj ,Zj

] ∥∥2]→ 0,

(1.39)

whenever δ → 0.
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We get that

E
[∥∥εjfz(Zj)E [τi(d1) ΩZ

n,ij(d1)ΦX
n,ij(d1) |Xj ,Zj

]
− εjfz(Zj)E

[
τi(d2) ΩZ

n,ij(d2)ΦX
n,ij(d2) |Xj ,Zj

]∥∥2
]

= E
[
E
[
ε2
jfz(Zj)

2 |Xj ,Zj
] (
τi(d1)T τk(d1)ΩZ

n,ij(d1)ΦX
n,ij(d1)ΩZ

n,kj(d1)ΦX
n,kj(d1)

− 2τi(d1)T τk(d2)ΩZ
n,ij(d1)ΦX

n,ij(d1)ΩZ
n,kj(d2)ΦX

n,kj(d2)

+ τi(d2)T τk(d2)ΩZ
n,ij(d2)ΦX

n,ij(d2)ΩZ
n,kj(d2)ΦX

n,kj(d2)
)]
.

By the same Fourier transformation arguments as in the proof of Lemma 1.1 and the dominated conver-
gence theorem the statement in (1.39) follows. Therefore,

√
n
(

(λ̂, β̂(λ̂)T )T − (λ0,β
T
0 )T

)
= −V (d)−1

 1√
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦX
n,ij(d) |Xj ,Zj

]+ oP (1) ,

converges in distribution to a tight random process whose marginal distribution is zero-mean normal with
covariance function V (d1)−1∆(d1,d2)V (d2)−1.

Proof of Proposition 1.2.

We have that

n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂) = n−1Ŷn(λ0)T B̂n n−1Ŷn(λ0)

+ 2n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1Ŷn(λ0)

(
λ̂− λ0

)
+

[
n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)

+ n−1Ŷn(λ0)T B̂n n−1 ∂
2

∂λ2
Ŷn(λ0) +R1,n(λ̃, λ0)

](
λ̂− λ0

)2

,

where λ̃ = cλ̂+ (1− c)λ0 for some c ∈ (0, 1). By the same reasoning as in Proposition 1.1 we get that

n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂) = n−1Ŷn(λ0)T B̂n n−1Ŷn(λ0)

+ 2n−1 ∂

∂λ
Yn(λ0) Bn n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)(
λ̂− λ0

)
+ n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

(
λ̂− λ0

)2

+ oP (1/n) ,

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. Therefore, it follows that under H0

n−1Ŷn(λR)T B̂n n−1Ŷn(λR)− n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂)

=
1

n2

(
∂

∂λ
Yn(λ0)T Bn

(
(εfz)n −

(
ε̂|zf̂z

)
n

))2 [
∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]−1

+ oP (1/n)

= (1,0Tp )V (d)−1n−2Ann
−2AT

nV (d)−1(1,0Tp )T
[
n−1 ∂

∂λ
Yn(λ0)TBnn−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n)

= (1,0Tp )V (d)−1n−2Ann
−2AT

nV (d)−1(1,0Tp )TE

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]
+ oP (1/n) .

When H0 does not hold it follows by the same arguments as in the proof of Proposition 1.1 that
n−1DMλ converges in probability to a positive constant.
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Proof of Proposition 1.3.

Under H0 we get that(
Ŷn(λ)− X̂nβ̂R(λ)

)T
Dn
(
Ŷn(λ)− X̂nβ̂R(λ)

)
= Ŷn(λ)T B̂nŶn(λ) +

(
Rβ̂(λ)− c

)T (
R
(
X̂TnDnX̂n

)−1

RT

)−1 (
Rβ̂(λ)− c

)
= Ŷn(λ)T B̂nŶn(λ) +

(
Rβ̂(λ)−Rβ0

)T (
R
(
X̂TnDnX̂n

)−1

RT

)−1 (
Rβ̂(λ)−Rβ0

)
=
(
Ŷn(λ)− X̂nβ0

)T
(
B̂n + DnX̂n

(
X̂TnDnX̂n

)−1

RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1

R
(
X̂TnDnX̂n

)−1

X̂TnDn

)
(
Ŷn(λ)− X̂nβ0

)
=
(
Ŷn(λ)− X̂nβ0

)T
B̂n,R

(
Ŷn(λ)− X̂nβ0

)
,

where

B̂n,R = B̂n + DnX̂n
(
X̂TnDnX̂n

)−1

RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1

R
(
X̂TnDnX̂n

)−1

X̂TnDn.

Therefore, we get by the same reasoning as in the proof of Proposition 1.1 that

λ̂R − λ0 = −
[
∂

∂λ
Yn(λ0)TBn,R

∂

∂λ
Yn(λ0)

]−1
∂

∂λ
Yn(λ0)TBn,R

[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+ oP(n−1/2)

= −VR(d)n−2An + oP(n−1/2),

uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn. Furthermore, we get that

(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)TDn (Ŷn(λ̂R)− X̂nβ̂R(λ̂R)
)

=
(
Ŷn(λ̂R)− X̂nβ0

)T
B̂n,R

(
Ŷn(λ̂R)− X̂nβ0

)
=
(
Ŷn(λ0)− X̂nβ0

)T
B̂n,R

(
Ŷn(λ0)− X̂nβ0

)
+ 2

∂

∂λ
Ŷn(λ0)T B̂n,R

(
Ŷn(λ0)− X̂nβ0

)(
λ̂R − λ0

)
+

[
∂

∂λ
Ŷn(λ0)T B̂n,R

∂

∂λ
Ŷn(λ0) +

(
Ŷn(λ0)− X̂nβ0

)T
B̂n,R

∂2

∂λ2
Ŷn(λ0) +R1,n(λ̃, λ0)

](
λ̂R − λ0

)2

,

where λ̃ = cλ̂R + (1 − c)λ0 for some c ∈ (0, 1). By the same reasoning as in Proposition 1.1 and using

the asymptotic representation of
(
λ̂R − λ0

)
we get that

n−1
(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)T
Dn n−1

(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)
= n−1

(
Ŷn(λ̂R)− X̂nβ0

)T
B̂n,R n−1

(
Ŷn(λ̂R)− X̂nβ0

)
= n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)T
Bn,R n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
+ 2n−1 ∂

∂λ
Yn(λ0)T Bn,R n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)(
λ̂R − λ0

)
+

[
n−1 ∂

∂λ
Yn(λ0)T Bn,R n−1 ∂

∂λ
Yn(λ0)

](
λ̂R − λ0

)2

+ oP (1/n)

= n−1
(

(εfz)n −
(
ε̂|zf̂z

)
n

)T
Bn,R n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− n−2AT

nVR(d)TVR(d)Ann
−2

[
n−1 ∂

∂λ
Yn(λ0)TBn,Rn−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n) ,

uniformly with respect to s ∈ Sn, d ∈ D and h ∈ Hsc,n. We know from the proof of Proposition 1.2
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that

n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂) = n−1
(

(εfz)n −
(
ε̂|zf̂z

)
n

)T
Bnn−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− n−2AT

nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann
−2[

n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n) .

Therefore, we get that

n−1
(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)T
Dn n−1

(
Ŷn(λ̂R)− X̂nβ̂R(λ̂R)

)
− n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂)

= n−1
(

(εfz)n −
(
ε̂|zf̂z

)
n

)T
(Bn,R − Bn) n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− n−2AT

nVR(d)TVR(d)Ann
−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn,R n−1 ∂

∂λ
Yn(λ0)

]
+ n−2AT

nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann
−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n)

= n−2AT
n (0p×1, Ip×p)

T (XTnDnXn)−1
RT

(
R
(
XTnDnXn

)−1
RT
)−1

R
(
XTnDnXn

)−1
(0p×1, Ip×p)An

− n−2AT
nVR(d)TVR(d)Ann

−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn,R n−1 ∂

∂λ
Yn(λ0)

]
+ n−2AT

nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann
−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n)

= n−2AT
n (0p×1, Ip×p)

T
E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1

(0p×1, Ip×p)Ann
−2

− n−2AT
nVR(d)TVR(d)Ann

−2E

[
n−2 ∂

∂λ
Yn(λ0)T Bn,R

∂

∂λ
Yn(λ0)

]
+ n−2AT

nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann
−2E

[
n−2 ∂

∂λ
Yn(λ0)T Bn

∂

∂λ
Yn(λ0)

]
+ oP (1/n) ,

uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn. When H0 does not hold it follows by the
same arguments as in the proof of Proposition 1.1 that n−1DMβ converges in probability to a positive
constant.

Proof of Proposition 1.4.

We can use the arguments as in the proof of Proposition 1.3. The only difference is that we do not
need to taylor

n−1
(
Ŷn(λR)− X̂nβ̂R(λR)

)T
Dn n−1

(
Ŷn(λR)− X̂nβ̂R(λR)

)
,

as λR is fixed. Therefore, we get that under H0

n−1
(
Ŷn(λR)− X̂nβ̂R(λR)

)T
Dn n−1

(
Ŷn(λR)− X̂nβ̂R(λR)

)
− n−1Ŷn(λ̂)T B̂n n−1Ŷn(λ̂)

= n−1
(

(εfz)n −
(
ε̂|zf̂z

)
n

)T
(Bn,R − Bn) n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
+ n−2AT

nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann
−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n) ,
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= n−2AT
n (0p×1, Ip×p)

T (XTnDnXn)−1
RT

(
R
(
XTnDnXn

)−1
RT
)−1

R
(
XTnDnXn

)−1
(0p×1, Ip×p)An

+ n−2AT
nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann

−2

[
n−1 ∂

∂λ
Yn(λ0)T Bn n−1 ∂

∂λ
Yn(λ0)

]
+ oP (1/n)

= n−2AT
n (0p×1, Ip×p)

T
E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1

(0p×1, Ip×p)Ann
−2

+ n−2AT
nV (d)−1(1,0Tp )T (1,0Tp )V (d)−1Ann

−2E

[
n−2 ∂

∂λ
Yn(λ0)T Bn

∂

∂λ
Yn(λ0)

]
+ oP (1/n) ,

uniformly with respect to h ∈ Hsc,n, d ∈ D and s ∈ Sn. When H0 does not hold it follows by the
same arguments as in the proof of Proposition 1.1 that n−1DMβ,λ converges in probability to a positive
constant.
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Appendix B: Preliminary results

Lemma 1.3. Let Assumptions 1.1.1 and 1.1.3 hold. Then

sup
d∈D
‖Dn‖Sp ≤ sup

d∈D
‖Ωn‖Sp ≤ n.

Moreover,

sup
d∈D
‖Bn‖Sp ≤ sup

d∈D
‖Dn‖Sp and sup

h>0
sup
d∈D

∥∥∥B̂n∥∥∥
Sp
≤ sup
d∈D
‖Dn‖Sp .

Proof of Lemma 1.3.

For all vectors d, the matrix Ωn is positive definite, see Lemma 1.2. This implies that its spectral
norm is equal to the largest eigenvalue. On the other hand, for all vectors d, the trace of Ωn is equal to
n. Necessarily, the spectral norm of Ωn is at most equal to n, uniformly with respect to d ∈ D. Next, it
is easy to see that ‖A1‖Sp ≤ ‖A2‖Sp whenever A1 and A2 −A1 are positive semi-definite real matrices.

Using repeatedly this property and the fact that Dn, Bn and B̂n are positive semi-definite (cf. proof of
Lemma 1.2), we deduce the remaining inequalities, that clearly hold uniformly.

Lemma 1.4.

1. For any positive definite real matrices A1 and A2

‖A−1/2
2 −A−1/2

1 ‖Sp ≤
1

2

[
max{‖A−1

1 ‖Sp, ‖A−1
2 ‖Sp}

]3/2 ‖A2 −A1‖Sp.

2. Let A1 and A2 be n× p−matrices such that AT
1A1 = AT

2A2 = Ip×p. Then∥∥A1A
T
1 −A2A

T
2

∥∥
Sp
≤ 2 ‖A1 −A2‖Sp .

Proof of Lemma 1.4.

1. For any positive definite real matrices A1 and A2

‖A1/2
2 −A1/2

1 ‖Sp ≤
1

2

[
max{‖A−1

1 ‖Sp, ‖A−1
2 ‖Sp}

]1/2 ‖A2 −A1‖Sp,

(see for instance Horn and Johnson [44], page 557). Moreover, for any invertible matrices A1 and

A2 we have the identity A−1
2 −A

−1
1 = A−1

2 (A1−A2)A−1
1 . Apply this identity with A

1/2
1 and A

1/2
2

and, using the fact that the spectral norm of a product of two matrices is smaller or equal to the
product of the matrices’ spectral norms, we deduce the statement.

2. We could write∥∥(A1A
T
1 −A2A

T
2 )u

∥∥ =
∥∥A1(A1 −A2)Tu+ (A1 −A2)AT

2 u
∥∥

≤
(
‖A1‖Sp + ‖A2‖Sp

)
‖A1 −A2‖Sp ‖u‖ .

Moreover, ‖A1u‖2 = uTAT
1A1u = ‖u‖2, and thus ‖A1‖Sp = ‖A2‖Sp = 1. Thus, 2 ‖A1 −A2‖Sp

is a bound for the norm of the difference between the orthogonal projectors defined respectively by
A1 and A2.

Lemma 1.5. If the Assumptions 1.1.1, 1.1.3, 1.2.1 and 1.2.5 hold true, E
[
n−2XTnDnXn

]
tends to a

positive definite p× p−matrix and

sup
d∈D

∥∥n−2XTnDnXn − E
[
n−2XTnDnXn

]∥∥
Sp

= OP(n−1/2).

If in addition Assumption 1.4.1 holds true, E
[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
tends to a positive constant

and
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sup
d∈D

∥∥∥∥n−2 ∂

∂λ
Yn(λ0)TDn

∂

∂λ
Yn(λ0)− E

[
n−2 ∂

∂λ
Yn(λ0)TDn

∂

∂λ
Yn(λ0)

]∥∥∥∥ = OP(n−1/2) and

sup
d∈D

∥∥∥∥n−2XTnDn
∂

∂λ
Yn(λ0)− E

[
n−2XTnDn

∂

∂λ
Yn(λ0)

]∥∥∥∥ = OP(n−1/2).

Proof of Lemma 1.5.

First, we investigate the behavior of n−2XTnΩnXn that we decompose.

1

n2
XTnΩnXn =

n− 1

n

1

n(n− 1)

∑
1≤i6=j≤n

Oij +
1

n2

∑
1≤i≤n

(Xi − E[Xi | Zi])(Xi − E[Xi | Zi])T f2
z (Zi),

where Oij = Oij(d) = (Xi −E[Xi | Zi])(Xj −E[Xj | Zj ])T fz(Zi)fz(Zj)Ωn,ij . It is obvious that under
our assumptions the second sum, corresponding to the diagonal terms of the quadratic form XTnΩnXn,
has the rate OP(n−1). On the other hand, for any d ∈ D and any u ∈ Rp, using the Fourier Transform
and the monotonicity of the exponential function, we have

E[uTOij(d)u] = E
[
uT (Xi − E[Xi | Zi])(Xj − E[Xj | Zj ])Tufz(Zi)fz(Zj)Ωn,ij

]
=

π−(p+q)/2√
d1 · · · dp+q

∫
Rp+q

∣∣∣E [uT (X − E[X | Z])fz(Z) exp
{

2iwT
(
XT ,ZT

)T}]∣∣∣2 exp
{
−wTD−1w

}
dw

≥ π−(p+q)/2

d
(p+q)/2
U

×
∫
Rp+q

∣∣∣E [uT (X − E[X | Z])fz(Z) exp
{

2iwT
(
XT ,ZT

)T}]∣∣∣2 exp
{
−wTdiag(dL, . . . , dL)−1w

}
dw

=
d

(p+q)/2
L

d
(p+q)/2
U

E
[
uTOij(diag(dL, . . . , dL)−1)u

]
,

where dU is the upper bound and dL the lower bound of the values on the diagonal of D. Since by
Assumption 1.2.1 the variable uT (X−E[X | Z]) could not be equal to zero almost surely, we necessarily
have E[uTOij(d)u] > 0 and thus, E[Oij(d)] is positive definite. Moreover, it is clear from the last display
that there exists a constant C > 0 such that E[Oij(d)] − CIp×p is positive definite for each d ∈ D. By
the uniform convergence results of Sherman [72],

sup
d∈D

∥∥∥∥ 1

n2
XTnΩnXn − E[Oij(d)]

∥∥∥∥
Sp

= OP(n−1/2).

Next, we derive the convergence of E
[
n−2XTnDnXn

]
. Let us decompose

Dn = Ω1/2
n

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n ,

where

P
Ω

1/2
n 1n

=
1

1TnΩn1n
Ω1/2
n 1n1TnΩ1/2

n .

(Here, Ω
1/2
n is the positive definite square root of Ωn.) Let us define

P 0

Ω
1/2
n 1n

=
1

n−2E [1TnΩn1n]
Ω1/2
n n−11nn

−11TnΩ1/2
n .

It is clear from above that n−2E
[
1TnΩn1n

]
converges at the rate OP(n−1) to a strictly positive limit and

n−21TnΩn1n − n−2E
[
1TnΩn1n

]
= OP(n−1/2), uniformly with respect to d ∈ D. Thus

sup
d∈D

∥∥∥∥∥ 1

(n−2E [1TnΩn1n])1/2
Ω1/2
n n−11n −

1

(n−21TnΩn1n)
1/2

Ω1/2
n n−11n

∥∥∥∥∥ = OP(n−1/2).

Then, it follows that ∥∥∥PΩ
1/2
n 1n

− P 0

Ω
1/2
n 1n

∥∥∥
Sp

= OP(n−1/2).
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Hence, in order to show that asymptotically the spectrum of E
[
n−2XTnDnXn

]
stays away from zero, it

suffices to show that the spectrum of the p× p−matrix E
[
n−2XTnD0

nXn
]

stays away from zero, where

D0
n = Ω1/2

n

(
In×n − P 0

Ω
1/2
n 1n

)
Ω1/2
n .

For any u ∈ Rp we have E
[
n−2uTXTnD0

nXnu
]

= ∆n/E
[
n−21TnΩn1n

]
with

∆n = ∆n(u) = E

[∥∥∥n−1Ω1/2
n 1n

∥∥∥2
]
E

[∥∥∥n−1Ω1/2
n Xnu

∥∥∥2
]
− E

[∣∣∣〈n−1Ω1/2
n Xnu, n−1Ω1/2

n 1n

〉∣∣∣2] .
We aim showing that, for any fixed u ∈ Rp, ∆n/E

[
n−21TnΩn1n

]
stays away from zero, uniformly with

respect to d. This will imply that the limit of E
[
n−2XTnD0

nXn
]

is a positive p× p−matrix. Consider the
second order polynomial

Pn(t) = Pn(t;u) = E

[∥∥∥n−1Ω1/2
n Xnu+ tn−1Ω1/2

n 1n

∥∥∥2
]

= E

[∥∥∥n−1Ω1/2
n Xnu

∥∥∥2
]

+ 2tE
[〈
n−1Ω1/2

n Xnu, n−1Ω1/2
n 1n

〉]
+ t2E

[∥∥∥n−1Ω1/2
n 1n

∥∥∥2
]
≥ 0.

By elementary properties of second order polynomials, the minimal value of Pn(t) is ∆n/E
[
n−21TnΩn1n

]
.

If the minimal value of Pn(t) goes to zero, then necessarily

inf
t
E
[
n−2 (Xnu+ t1n)

T
Ωn (Xnu+ t1n)

]
→ 0,

uniformly with respect to d ∈ D. From the first part of the proof we could deduce that this contradicts
Assumption 1.2.1. Thus, necessarily the spectrum of the p× p−matrix E

[
n−2XTnD0

nXn
]

stays away from
zero. Finally, to derive the rate of uniform convergence of n−2XTnDnXn, we could use again the uniform
convergence results of Sherman [72] after removing the diagonal terms, and next study the part given by
the diagonal terms. The details are omitted.

Next, we derive the convergence of E
[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
. We get that

Dn = Ω1/2
n

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n = STnSn,

where
Sn =

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n .

In addition, let Wn = SnXn
(
XTnDnXn

)−1 XTnDn ∂
∂λYn(λ0). Therefore, it follows that

E

[
n−2 ∂

∂λ
Yn(λ0)TBn

∂

∂λ
Yn(λ0)

]
= E

[∥∥∥∥n−1Sn
∂

∂λ
Yn(λ0)

∥∥∥∥2
]
− E

[
n−2WT

nWn

]
.

Consider now the second order polynomial

Pn(t) = E

[∥∥∥∥n−1Sn
∂

∂λ
Yn(λ0) + tn−1Wn

∥∥∥∥2
]

= E

[∥∥∥∥n−1Sn
∂

∂λ
Yn(λ0)

∥∥∥∥2
]

+ 2tE

[〈
n−1Wn, n

−1Sn
∂

∂λ
Yn(λ0)

〉]
+ t2E

[
n−2WT

nWn

]
≥ 0.

By elementary properties of second order polynomials, the minimal value of Pn(t) is E
[∥∥n−1Sn ∂

∂λYn(λ0)
∥∥2
]
−

E
[
n−2WT

nWn

]
. If the minimal value of Pn(t) goes to zero, then necessarily

inf
t
E

[
n−2 ∂

∂λ
Yn(λ0)T

(
In×n + tDnXn

(
XTnDnXn

)−1 XTn
)
Dn
(
In×n + tXn

(
XTnDnXn

)−1 XTnDn
) ∂

∂λ
Yn(λ0)

]
→ 0,

uniformly with respect to d ∈ D. Note that by the same reasoning as for E
[
n−2XTnDnXn

]
we get that

E
[
n−2uTDnu

]
> 0 for all u ∈ Rp with u 6= 0. Therefore, we could deduce that the upper statement

contradicts Assumption 1.4.1. Thus, necessarily E
[
n−2 ∂

∂λYn(λ0)TBn ∂
∂λYn(λ0)

]
stays away from zero.

Finally, to derive the rates of uniform convergence of n−2 ∂
∂λYn(λ0)TDn ∂

∂λYn(λ0) and n−2XTnDn ∂
∂λYn(λ0),
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we could use again the uniform convergence results of Sherman [72] after removing the diagonal terms,
and next study the part given by the diagonal terms. The details are omitted. Now the proof is complete.

Lemma 1.6. Under the conditions of Theorem 1.1,

sup
h∈Hc,n

1√
n

∥∥∥X̂n − Xn
∥∥∥

Sp
= oP(1).

Proof of Lemma 1.6.

In order to prove the statement we consider

1

n

∥∥∥(X̂n − Xn
)
u
∥∥∥2

,

where u ∈ Rp and ‖u‖ = 1. In the remaining of the proof we set without loss of generality p = 1 to keep
the notation simple, i.e. we consider

1

n

∥∥∥X̂n − Xn
∥∥∥2

.

We have that, for 1 ≤ i ≤ n,

X̂n,i − Xn,i = (Xi − Ê[Xi | Zi])f̂z(Zi)− (Xi − E[Xi | Zi])fz(Zi)

=
1

n

n∑
j=1

(Xi −Xj)Kh,ij − (Xi − E[Xi | Zi])fz(Zi)

= Xi
1

n

n∑
j=1,j 6=i

(Kh,ij − fz(Zi))−
1

n
Xifz(Zi)

+
1

n

n∑
j=1,j 6=i

(E[Xi | Zi]fz(Zi)−XjKh,ij) +
1

n
E[Xi | Zi]fz(Zi).

We start by considering

1

n

∥∥∥∥∥∥∥
X1

1

n

n∑
j=1,j 6=1

(Kh,1j − fz(Z1)) , . . . , Xn
1

n

n∑
j=1,j 6=n

(Kh,nj − fz(Zn))

T
∥∥∥∥∥∥∥

2

=
1

n3

n∑
1≤i6=j≤n

X2
i (Kh,ij − fz(Zi))2

+
1

n3

n∑
1≤i6=j 6=k≤n

X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

= An +Bn.

It is easy to check that suph∈Hc,n |An| = oP(1). We show in the following that

sup
h∈Hc,n

|Bn| = oP(1), (1.40)

as well. Note that n3

(n)3
Bn is a U–process of order 3, where (n)k = n(n− 1) . . . (n− k + 1).

For this U–process we compute the mean and use the Hoeffding decomposition. The kernel of Bn is
not symmetric in its arguments. However, we could apply the usual symmetrization idea. For instance,
for a second order U−statistic defined by a kernel h(Ui,Uj), we could replace it by the symmetric kernel
1
2 [h(Ui,Uj) + h(Uj ,Ui)] from which we get the same U−statistic. Here, Ui =

(
Xi,Z

T
i

)T
. We can

proceed in the same way by considering all 3! permutations of the variables for Bn so that we can apply
the Hoeffding decomposition. Thus, by abuse, we will proceed as if the kernel of the U−statistic we
handle is symmetric. For simpler notation, we use Ei, Ei,j , . . . for the conditional expectations E [· | Ui] ,
E [· | Ui,Uj ] , . . ..

In addition, we have that {(xi, zi, zj , zk) 7→ x2
i (Kh,ij − fz(zi)) (Kh,ik − fz(zi)) : h ∈ Hc,n} is Eu-

clidean for a squared integrable envelope. See Lemma 22 in Nolan and Pollard [67] and Lemma 2.14 in
Pakes and Pollard [68]. Therefore, we can in the following repeatedly apply Corollary 7 and the Maximal
Inequality of Sherman [72]. All remainder terms are controlled by Assumption 1.3.2.
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We start by considering the mean. We get that

E
[
X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

]
= E

[
X2
i (Kh,ij − fz(Zi))Ei,j [(Kh,ik − fz(Zi))]

]
= E

[
X2
i (Kh,ij − fz(Zi))h2γ1(Zi)

]
(1 + o(1))

= h4E
[
X2
i γ1(Zi)

2
]

(1 + o(1)),

where
γ1(Z) = µ(K) · tr{Hz,zfz(Z)},

with
∫
Rq uu

TK(u)du = µ(K)Iq×q. Hz,zfz denotes the matrix of second derivative of fz(·) with respect
to the components of Z ∈ Rq and tr{·} denotes the trace operator. Therefore, it follows that the mean
of Bn is of order oP(1) uniformly with respect to h.

We consider now the three first order U–processes of the Hoeffding decomposition of Bn. We get that,
by the same reasoning as for the mean,

Ei
[
X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

]
= h4X2

i γ1(Zi)
2(1 + oP(1)).

In addition, we get that

Ej
[
X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

]
= h2Ej

[
X2
i (Kh,ij − fz(Zi)) γ1(Zi)

]
(1 + oP(1))

=
(
h2Ej

[
X2
iKh,ijγ1(Zi)

]
− h2E

[
X2
i fz(Zi)γ1(Zi)

])
(1 + oP(1))

= h2E
[
X2
j | Zj

]
γ1(Zj)fz(Zj) +OP(h4) +OP(h2) + oP(h2).

The reasoning when conditioning on Uk is the same. Therefore, it follows together with Corollary 4 of
Sherman [72] that the first order U−processes of the Hoeffding decomposition of Bn are of order oP(1)
uniformly with respect to h.

We consider now the three second order U−processes of the Hoeffding decomposition of Bn. We start
by conditioning on (Ui,Uj) the reasoning for (Ui,Uk) being similar.

Ei,j
[
X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

]
= X2

i (Kh,ij − fz(Zi))Ei [(Kh,ik − fz(Zi))]
= X2

i (Kh,ij − fz(Zi))h2γ1(Zi)(1 + oP(1))

= X2
iKh,ijh

2γ1(Zi)(1 + oP(1))−X2
i fz(Zi)h

2γ1(Zi)(1 + oP(1))

= h2−qhqKh,ijτ(Ui) +OP(h2).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given
by the kernel hqKh,ijτ(Ui), indexed by h ∈ Hc,n, with envelope ‖K‖∞τ(·). (Herein, ‖ · ‖∞ denotes the
uniform norm.) We take p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α.
Since K(·) is of bounded variation and symmetric, without loss of generality we could consider that K(·)
is nonincreasing on [0,∞). In this case, 0 ≤ K(·/h) ≤ K(·/h) with h = supHc,n =: cmaxn

−α. Hence,
using Jensen’s inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72]
by a universal constant times

Eβ/2
[
K2

(
Zi −Zj
cmaxn−α

)
τ2(Ui)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the second U−processes obtained conditioning
by Ui,Uj and Ui,Uk, respectively is n−1 × OP(n−α{2−q+βq/2}). As 1 + α(2 − q + βq/2) > 0 under our
assumptions we get that n−1 ×OP(n−α{2−q+βq/2}) = oP(1).

In addition, we get that

Ej,k
[
X2
i (Kh,ij − fz(Zi)) (Kh,ik − fz(Zi))

]
= h−2qEj,k

[
X2
i h

2qKh,ijKh,ik

]
− 2Ej

[
X2
iKh,ijfz(Zi)

]
+ E

[
X2
i fz(Zi)

2
]
.

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given by
the kernel Ej,k

[
X2
i h

2qKh,ijKh,ik

]
, indexed by h ∈ Hc,n, with envelope Ej,k

[
X2
i ‖K‖2∞

]
. We take p = 1

and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Using Jensen’s inequality, we
could bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal constant times

Eβ/2

[
Ej,k

[
X2
iK

(
Zi −Zj
cmaxn−α

)
K

(
Zi −Zk
cmaxn−α

)]2
]
.
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By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq. Consequently, the uniform rate of the second U−process obtained conditioning
by Uj ,Uk is n−1 × OP(nαq{2−β}). As 1 − αq(2 − β) > 0 under our assumptions we get that n−1 ×
OP(nαq{2−β}) = oP(1). By similar reasoning we can control the remaining two parts. The details are
omitted. Therefore, the second order U−processes of Bn are of order oP(1).

In order to finish the proof of (1.40) it remains to consider the rate for the third order U−process of
Bn. As the reasoning for this part is the same as for the second order U−process we omit the details
here. Therefore, the statement in (1.40) follows.

In the next part we consider

1

n

∥∥∥∥∥
(

1

n

n∑
j=1,j 6=1

(E[X1 | Z1]fz(Z1)−XjKh,1j) , . . . ,
1

n

n∑
j=1,j 6=n

(E[Xn | Zn]fz(Zn)−XjKh,nj)

)T∥∥∥∥∥
2

=
1

n3

n∑
1≤i6=j≤n

(E[Xi | Zi]fz(Zi)−XjKh,ij)
2

+
1

n3

n∑
1≤i 6=j 6=k≤n

(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ik)

= Ãn + B̃n.

It is easy to check that suph∈Hc,n |Ãn| = oP(1). We show in the following that

sup
h∈Hc,n

|B̃n| = oP(1), (1.41)

as well. Note that n3

(n)3
B̃n is a U–process of order 3. For this U–process we compute the mean and use

the Hoeffding decomposition. The kernel of B̃n is not symmetric in its arguments. However, we apply
again the usual symmetrization idea.

In addition, we have that {(xj , xk, zi, zj , zk) 7→ (E[Xi | zi]fz(zi)− xjKh,ij) (E[Xi | zi]fz(zi)− xkKh,ik) :
h ∈ Hc,n} is Euclidean for a squared integrable envelope. See Lemma 22 in Nolan and Pollard [67] and
Lemma 2.14 in Pakes and Pollard [68]. Therefore, we can in the following repeatedly apply Corollary 7
and the Maximal Inequality of Sherman [72]. All remainder terms are controlled by Assumption 1.3.2.

We start by considering the mean of B̃n. We get that

E [(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ik)]

= E [(E[Xi | Zi]fz(Zi)−XjKh,ij)Ei,j [(E[Xi | Zi]fz(Zi)− E[Xk | Zk]Kh,ik)]]

= −E
[
(E[Xi | Zi]fz(Zi)−XjKh,ij)h

2γ2(Zi)
]

(1 + o(1))

= h4E
[
γ2(Zi)

2
]

(1 + o(1)),

where
γ2(Z) = µ(K) · tr{Hz,z (E[X | ·]fz) (Z)}.

Hz,z (E[X | ·]fz) denotes the matrix of second derivative of E[X | ·]fz(·) with respect to the components

of Z ∈ Rq. Therefore, it follows that the mean of B̃n is of order oP(1) uniformly with respect to h.

We consider now the three first order U–processes of the Hoeffding decomposition of B̃n. We get that
by the same reasoning as for the mean

Ei [(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ij)] = h4γ2(Zi)
2(1 + oP(1)).

In addition, we get that

Ej [(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ik)]

= −h2Ej [(E[Xi | Zi]fz(Zi)−XjKh,ij) γ2(Zi)] (1 + oP(1))

=
(
h2Ej [E [Xj | Zj ]Kh,ijγ2(Zi)]− h2E [Xifz(Zi)γ2(Zi)]

)
(1 + oP(1))

= h2E [Xj | Zj ] γ2(Zj)fz(Zj) +OP(h4) +OP(h2) + oP(h2).

The reasoning when conditioning on Uk is the same. Therefore, it follows together with Corollary 4 of
Sherman [72] that the first order U−processes of the Hoeffding decomposition of B̃n are of order oP(1)
uniformly with respect to h.
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We consider now the three second order U−processes of the Hoeffding decomposition of B̃n. We start
by conditioning on (Ui,Uj) the reasoning for (Ui,Uk) being similar.

Ei,j [(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ik)]

= − (E[Xi | Zi]fz(Zi)−XjKh,ij)h
2γ2(Zi)(1 + oP(1))

= XjKh,ijh
2γ2(Zi)(1 + oP(1))− E [Xi | Zi] fz(Zi)h2γ2(Zi)(1 + oP(1))

= h2−qhqKh,ijτ(Ui,Uj) +OP(h2).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given
by the kernel hqKh,ijτ(Ui,Uj), indexed by h ∈ Hc,n, with envelope ‖K‖∞τ(·, ·). We take p = 1 and
β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Using Jensen’s inequality, we could
bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal constant times

Eβ/2
[
K2

(
Zi −Zj
cmaxn−α

)
τ2(Ui,Uj)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the second U−processes obtained conditioning
by Ui,Uj and Ui,Uk, respectively is n−1 × OP(n−α{2−q+βq/2}). As 1 + α(2 − q + βq/2) > 0 under our
assumptions we get that n−1 ×OP(n−α{2−q+βq/2}) = oP(1).

In addition we get that

Ej,k [(E[Xi | Zi]fz(Zi)−XjKh,ij) (E[Xi | Zi]fz(Zi)−XkKh,ik)]

= h−2qXjXkEj,k
[
h2qKh,ijKh,ik

]
−XjEj [E[Xi | Zi]fz(Zi)Kh,ij ]

−XkEk [E[Xi | Zi]fz(Zi)Kh,ik] + E[Xi | Zi]2fz(Zi)2.

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given by
the kernel XjXkEj,k

[
h2qKh,ijKh,ik

]
, indexed by h ∈ Hc,n, with envelope XjXk‖K‖2∞. We take p = 1

and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Using Jensen’s inequality, we
could bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal constant times

Eβ/2

[
X2
jX

2
kEj,k

[
K

(
Zi −Zj
cmaxn−α

)
K

(
Zi −Zk
cmaxn−α

)]2
]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq. Consequently, the uniform rate of the second U−process obtained conditioning
by Uj ,Uk is n−1 × OP(nαq{2−β}). As 1 − αq(2 − β) > 0 under our assumptions we get that n−1 ×
OP(nαq{2−β}) = oP(1). By similar reasoning we can control the remaining three parts. The details are

omitted. Therefore, the second order U−processes of B̃n are of order oP(1).
In order to finish the proof of (1.41) it remains to consider the rate for the third order U−process of

B̃n. As the reasoning for this part is the same as for the second order U−process we omit the details
here. Therefore, the statement in (1.41) follows.

It is obvious that

1

n

∥∥∥(n−1E[X1 | Z1]fz(Z1), . . . , n−1E[Xn | Zn]fz(Zn)
)T∥∥∥2

= oP(1)

and
1

n

∥∥∥(n−1X1fz(Z1), . . . , n−1Xnfz(Zn)
)T∥∥∥2

= oP(1).

Therefore, the statement follows.
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Lemma 1.7. Under the conditions of Theorem 1.1,

sup
h∈Hc,n

sup
d∈D

∥∥∥B̂n − Bn
∥∥∥

Sp
= oP(n).

Proof of Lemma 1.7.

We could once again write

Dn = Ω1/2
n

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n = STnSn,

where
Sn =

(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n ,

and P
Ω

1/2
n 1n

is the projector on the 1−dimensional subspace generated by the vector Ω
1/2
n 1n, that is

P
Ω

1/2
n 1n

=
1

1TnΩn1n
Ω1/2
n 1n1TnΩ1/2

n .

Here, Ω
1/2
n is the positive definite square root of Ωn. Next, we could rewrite B̂n and Bn under the form

B̂n = STn
(
In×n − PSnX̂n

)
Sn and Bn = STn (In×n − PSnXn)Sn,

with PSnX̂n and PSnXn the orthogonal projectors on the subspaces generated by SnX̂n and SnXn, that is

PSnX̂n = SnX̂n
(
X̂TnDnX̂n

)−1

X̂TnSTn and PSnXn = SnXn
(
XTnDnXn

)−1 XTnSTn .

Thus,

B̂n − Bn = STn
(
PSnXn − PSnX̂n

)
Sn.

In view of this decomposition, it suffices to control uniformly the norm of the difference between the
projectors PSnX̂n and PSnXn . Whenever the inverses exist, we decompose

SnX̂n
(
X̂TnDnX̂n

)−1/2

− SnXn
(
XTnDnXn

)−1/2
= SnX̂n

[(
X̂TnDnX̂n

)−1/2

−
(
XTnDnXn

)−1/2
]

+
[
SnX̂n − SnXn

] (
XTnDnXn

)−1/2
.

Meanwhile, for any u ∈ Rp,

uTXTnXnu = nuTV ar [X − E[X | Z]]u+OP(n1/2),

which indicates that the spectral norm of n−1/2Xn converges at the rate OP(n−1/2) to the largest eigen-
value of the variance of X − E[X | Z]. From Lemma 1.6 and the triangle inequality, we deduce that

the spectral norm of n−1/2X̂n converges also to the largest eigenvalue of the variance of X − E[X | Z].
Next, let us write

X̂TnDnX̂n − XTnDnXn =
(
X̂n − Xn

)T
DnXn + XTnDn

(
X̂n − Xn

)
+
(
X̂n − Xn

)T
Dn
(
X̂n − Xn

)
.

Taking spectral norm on both sides and using the bounds of the spectral norms for Dn, n−1/2Xn and
n−1/2X̂n, as well as the uniform bound derived in Lemma 1.6, we deduce that

sup
h∈Hc,n

sup
d∈D

∥∥∥∥ 1

n2
X̂TnDnX̂n −

1

n2
XTnDnXn

∥∥∥∥
Sp

= oP(1). (1.42)

Let δ > 0 and consider the event An = A1n ∩ A2n where

A1n = {n−2XTnDnXn − (δ/2)Ip×p is positive semi-definite},

andA2n is defined in a similar way with Xn replaced by X̂n. From Lemma 1.5, we know that E
[
n−2XTnDnXn

]
tends to a positive definite matrix. From this and equation (1.42), we could fix δ > 0 such that the prob-
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ability of the event An tends to 1. On the event An, using Lemma 1.4 and 1.5 and equation (1.42), we
deduce that

sup
d∈D

∥∥∥n (XTnDnXn)−1/2
∥∥∥

Sp
≤ sup
d∈D

∥∥∥(n−2XTnDnXn
)−1/2 − E[n−2XTnDnXn]−1/2

∥∥∥
Sp

+ sup
d∈D

∥∥∥E[n−2XTnDnXn]−1/2
∥∥∥

Sp

≤
√

2δ−3/2OP(n−1/2) +
√

2/δ,

and

sup
h∈Hc,n

sup
d∈D

∥∥∥∥n(X̂TnDnX̂n)−1/2

− n
(
XTnDnXn

)−1/2
∥∥∥∥

Sp

= oP(1).

Finally, note that

‖Sn‖Sp =
∥∥STn∥∥Sp

≤
∥∥∥(In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

∥∥∥Ω1/2
n

∥∥∥
Sp
≤ n1/2.

Gathering facts and using repeatedly the property ‖A1A2‖Sp ≤ ‖A1‖Sp ‖A2‖Sp, Lemma 1.4 and Lemma
1.6, we deduce that∥∥∥PSnX̂n − PSnXn

∥∥∥
Sp
≤ 2

∥∥∥∥n−1/2Snn−1/2X̂n
[
n
(
X̂TnDnX̂n

)−1/2

− n
(
XTnDnXn

)−1/2
]∥∥∥∥

Sp

+ 2
∥∥∥n−1/2Snn−1/2

(
X̂n − Xn

)
n
(
XTnDnXn

)−1/2
∥∥∥

Sp

= oP(1).

Finally, ∥∥∥B̂n − Bn
∥∥∥

Sp
≤
∥∥STn∥∥Sp

∥∥∥PSnX̂n − PSnX̂n

∥∥∥
Sp
‖Sn‖Sp = oP(n).

Now, the proof is complete.

Lemma 1.8. Assume the conditions of Theorem 1.1 hold true. Then,

sup
d∈D

∥∥∥Ω1/2
n (d)n−1Xn

∥∥∥
Sp

= OP(1), and sup
h∈Hc,n

sup
d∈D

∥∥∥Ω1/2
n (d)n−1

[
X̂n − Xn

]∥∥∥
Sp

= oP(1).

As a consequence

sup
h∈Hc,n

sup
d∈D

∥∥∥Ω1/2
n (d)n−1X̂n

∥∥∥
Sp

= OP(1).

Proof of Lemma 1.8.

We have that ∥∥∥Ω1/2
n (d)n−1Xn

∥∥∥
Sp
≤
∥∥∥Ω1/2

n (d)n−1/2
∥∥∥

Sp

∥∥∥n−1/2Xn
∥∥∥ ,

The first rate follows now from Lemma 1.3 and the fact that by our assumptions the expectation
of ‖n−1/2Xn‖2 is finite. The second rate follows from Lemma 1.3 and 1.6. The third rate is a direct
consequence of the first two rates.

Lemma 1.9. Under Assumption 1.1.1, there exists a constant C, depending on Λ such that

0 ≤ ∂

∂λ
T (Y, λ) ≤ C max

(
(Y ∨ 1)λmin log2 (Y ∨ e) , (Y ∨ 1)λmax log2 (Y ∨ e)

)
.

Proof of Lemma 1.9.

The derivative of T (Y, λ) with respect to λ is given by

∂

∂λ
T (Y, λ) =

{
λ−2

(
Y λ(λ log(Y )− 1) + 1

)
, λ 6= 0

2−1 log2(Y ) , λ = 0.
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The derivative is positive and continuous at λ = 0. Furthermore, the sign of the derivative for λ 6= 0 is
determined by Y λ(λ log(Y )− 1) + 1. We get that

∂

∂λ
{Y λ(λ log(Y )− 1) + 1} = λY λ log2 (Y ) ,

which is positive for λ > 0 and negative for λ < 0. This implies that the first derivative is always positive.
Next, the upper bound is obvious.

Lemma 1.10. Under Assumption 1.1.1, there exists a constant C, depending on Λ such that∣∣∣∣ ∂2

∂λ2
T (Y, λ)

∣∣∣∣ ≤ C max
(
(Y ∨ 1)λmin | log (Y ∨ e) |3, (Y ∨ 1)λmax | log (Y ∨ e) |3

)
.

Proof of Lemma 1.10.

The second derivative of T (Y, λ) with respect to λ is given by

∂2T (Y, λ)

∂λ2
=

{
λ−3

(
Y λλ2 log(Y )2 − 2

(
Y λ(λ log(Y )− 1) + 1

))
, λ 6= 0

3−1 log(Y )3 , λ = 0.

Once again we consider the derivative of the nominator for λ 6= 0. The derivative is given by

∂

∂λ

{
Y λλ2 log(Y )2 − 2

(
Y λ(λ log(Y )− 1) + 1

)}
= log(Y )3λ2Y λ.

This derivative is positive if Y > 1 and negative if Y < 1. The second derivative of T (Y, λ) with respect
to λ is continuous at λ = 0 and positive if Y > 1 and negative if Y < 1. Therefore, it follows that

∂2T (Y, λ)

∂λ2
=

{
> 0 , Y > 1

< 0 , Y < 1,

for all λ. Next, the upper bound is obvious.

Lemma 1.11. Under Assumption 1.1.1, there exists a constant C, depending on Λ such that

0 ≤ ∂3

∂λ3
T (Y, λ) ≤ C max

(
(Y ∨ 1)λmin log (Y ∨ e)4

, (Y ∨ 1)λmax log (Y ∨ e)4
)
.

Proof of Lemma 1.11.

The third derivative of T (Y, λ) with respect to λ is given by

∂3T (Y, λ)

∂λ3
=

{
λ−4

(
Y λλ2 log(Y )2(λ log(Y )− 3) + 6

(
Y λ(λ log(Y )− 1) + 1

))
, λ 6= 0

4−1 log(Y )4 , λ = 0.

Once again we consider the derivative of the nominator for λ 6= 0. The derivative is given by

∂

∂λ

{
Y λλ2 log(Y )2(λ log(Y )− 3) + 6

(
Y λ(λ log(Y )− 1) + 1

)}
= λ3 log(Y )4Y λ,

which is positive for λ > 0 and negative for λ < 0. This implies that the third derivative is always
positive. Next, the upper bound is obvious.

53



Lemma 1.12. Under the conditions of Theorem 1.1,

sup
λ∈Λ

∥∥n−1Yn(λ)
∥∥ = OP(n−1/2).

Proof of Lemma 1.12.

First, note that the functions {y 7→ λ−1(yλ − 1) : y ≥ c > 0, λ ∈ Λ}, with c a fixed lower bound
of the support of Y , are Lipschitz in the index parameter λ. See Lemma 1.9. Deduce that this family
of functions of Y is Euclidean for a to the power of four integrable envelope. See Lemma 2.13 in Pakes
and Pollard [68]. Since the Euclidean property is preserved by multiplication with a fixed function, the
family {(y,z) 7→ λ−1(yλ − 1)fz(z) : y ≥ c > 0, z ∈ Rq, λ ∈ Λ} is also Euclidean for a to the power
of four integrable envelope. See Lemma 2.14 in Pakes and Pollard [68]. The Euclidean property is also
preserved if the functions of Y and Z are centered by their conditional expectation given Z. See Lemma
5 in Sherman [72]. Next, it is also preserved by taking the square of the functions in the family. The
envelope is now squared integrable. See Lemma 2.14 in Pakes and Pollard [68]. Deduce from Corollary
7 in Sherman [72] that

sup
λ∈Λ

∣∣∣∣∣ 1n
n∑
i=1

(T (Yi, λ)− E[T (Yi, λ) | Zi])2f2
z (Zi)

∣∣∣∣∣ = OP(1).

Then the required rate follows.

Lemma 1.13. Under the conditions of Theorem 1.1,

sup
h∈Hc,n

sup
λ∈Λ

∥∥∥n−1
[
Ŷn(λ)− Yn(λ)

]∥∥∥ = oP(n−1/2).

Proof of Lemma 1.13.

It suffices to decompose
Ŷn(λ)− Yn(λ) = R1n +R2n,

with

R1n =
(
T (Y1, λ)

(
f̂z(Z1)− fz(Z1)

)
, . . . , T (Yn, λ)

(
f̂z(Zn)− fz(Zn)

))T
,

and

R2n =
((
E[T (Y1, λ) | Z1]fz(Z1)− Ê[T (Y1, λ) | Z1]f̂z(Z1)

)
,

. . . ,
(
E[T (Yn, λ) | Zn]fz(Zn)− Ê[T (Yn, λ) | Zn]f̂z(Zn)

))T
.

We can now use the same arguments as in Lemma 1.6 to show that

sup
h∈Hc,n

sup
λ∈Λ

∥∥n−1R1n

∥∥ = oP(n−1/2) and sup
h∈Hc,n

sup
λ∈Λ

∥∥n−1R2n

∥∥ = oP(n−1/2).

The Euclidean properties needed follow from a similar discussion as in Lemma 1.12.

Lemma 1.14. Assume the conditions of Proposition 1.1 hold true. Then

sup
d∈D

∥∥∥Ω1/2
n (d) n−1 [Yn(λ0)− Xnβ0]

∥∥∥ = OP(n−1/2).

Proof of Lemma 1.14.

By definition Yn(λ0) − Xnβ0 = (εfz)n = (ε1fz(Z1), . . . , εnfz(Zn))T . Next, for any d, using the
Fourier Transform (see the last part of the proof of Lemma 1.1), we can write

0 ≤ n−2(εfz)TnΩn(d)(εfz)n ≤
d

(p+q)/2
U

d
(p+q)/2
L

n−2(εfz)TnΩn(diag(dU , . . . , dU ))(εfz)n.

Simply calculating the expectation, the last quadratic form in the last display has the rate OP
(
n−1

)
.
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The uniform rate follows.

Lemma 1.15. Assume the conditions of Theorem 1.1 hold true and let Λ0n be an arbitrary oP (1) neigh-
borhood of λ0. Then, for s ∈ {1, 2, 3},

sup
λ∈Λ0n

sup
d∈D

∥∥∥∥Ω1/2
n (d)n−1 ∂

s

∂λs
Yn(λ)

∥∥∥∥
Sp

= OP(1),

and

sup
λ∈Λ0n

sup
h∈Hc,n

sup
d∈D

∥∥∥∥Ω1/2
n (d)n−1

[
∂s

∂λs
Ŷn(λ)− ∂s

∂λs
Yn(λ)

]∥∥∥∥
Sp

= oP(1).

As a consequence

sup
λ∈Λ0n

sup
h∈Hc,n

sup
d∈D

∥∥∥∥Ω1/2
n (d)n−1 ∂

s

∂λs
Ŷn(λ)

∥∥∥∥
Sp

= OP(1).

Proof of Lemma 1.15.

We have that ∥∥∥∥Ω1/2
n (d)n−1 ∂

s

∂λs
Yn(λ)

∥∥∥∥
Sp

≤
∥∥∥Ω1/2

n (d)n−1/2
∥∥∥

Sp

∥∥∥∥n−1/2 ∂
s

∂λs
Yn(λ)

∥∥∥∥ .
The first rate follows now from Lemma 1.3 and the fact that, by our assumptions, the expectation of

sup
λ∈Λ0n

‖n−1/2(∂s/∂λs)Yn(λ)‖2 is finite.

The second rate follows again from Lemma 1.3 and the same arguments as in Lemma 1.6 and 1.13.
The Euclidean properties needed follow from a similar discussion as in Lemma 1.12. The third rate is a
direct consequence of the first two rates.

Lemma 1.16. Assume the conditions of Theorem 1.1 hold true and let Λ0n be an arbitrary oP (1) neigh-
borhood of λ0. Then,

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣ ∂
∂λ

{
n−1s−λŶn(λ)

}T
B̂n

∂

∂λ

{
n−1s−λŶn(λ)

}
− ∂

∂λ

{
n−1s−λ0Ŷn(λ0)

}T
B̂n

∂

∂λ

{
n−1s−λ0Ŷn(λ0)

} ∣∣∣ = oP(1),

and

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣n−1s−λŶn(λ)T B̂n
∂2

∂λ2

{
n−1s−λŶn(λ)

}
−
{
n−1s−λ0Ŷn(λ0)

}T
B̂n

∂2

∂λ2

{
n−1s−λ0Ŷn(λ0)

} ∣∣∣ = oP(1).

Proof of Lemma 1.16.

Note that ∂
∂λ{n

−1s−λŶn(λ)} = s−λ ∂
∂λ{n

−1Ŷn(λ)} − log(s)s−λn−1Ŷn(λ).

We have that

s−2λn−1 ∂

∂λ
Ŷn(λ)T B̂n n−1 ∂

∂λ
Ŷn(λ)− s−2λ0n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)

= s−2λn−1

[
∂

∂λ
Ŷn(λ)− ∂

∂λ
Ŷn(λ0)

]T
B̂n n−1 ∂

∂λ
Ŷn(λ)

− s−2λn−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1

[
∂

∂λ
Ŷn(λ0)− ∂

∂λ
Ŷn(λ)

]
+
(
s−2λ − s−2λ0

)
n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)
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= s−2λn−1 ∂
2

∂λ2
Ŷn(λ̃)T B̂n n−1 ∂

∂λ
Ŷn(λ)(λ− λ0)

+ s−2λn−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

2

∂λ2
Ŷn(λ̃)(λ− λ0)

+
(
s−2λ − s−2λ0

)
n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0),

where λ̃ = cλ+ (1− c)λ0 for some c ∈ (0, 1). Recall that

B̂n = STn
(
In×n − PSnX̂n

)
Sn,

where PSnX̂n is the orthogonal projector on the subspace generated by SnX̂n with

Sn =
(
In×n − PΩ

1/2
n 1n

)
Ω1/2
n ,

and P
Ω

1/2
n 1n

is the projector on the subspace generated by the vector Ω
1/2
n 1n. Deduce that

∣∣∣s−2λn−1 ∂
2

∂λ2
Ŷn(λ̃)T B̂n n−1 ∂

∂λ
Ŷn(λ)(λ− λ0)

∣∣∣
≤ s−2λ|(λ− λ0)|

∥∥∥∥Ω1/2
n n−1 ∂

2

∂λ2
Ŷn(λ̃)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)
(In×n − PSnXn)

(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ)

∥∥∥∥
Sp

.

By the same reasoning we get that∣∣∣s−2λn−1 ∂
2

∂λ2
Ŷn(λ̃)T B̂n n−1 ∂

∂λ
Ŷn(λ0)(λ− λ0)

∣∣∣
≤ s−2λ|(λ− λ0)|

∥∥∥∥Ω1/2
n n−1 ∂

2

∂λ2
Ŷn(λ̃)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)
(In×n − PSnXn)

(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

.

and∣∣∣ (s−2λ − s−2λ0
)
n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)

∣∣∣
≤|s−2λ − s−2λ0 |

∥∥∥∥Ω1/2
n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

×
∥∥∥(In×n − PΩ

1/2
n 1n

)
(In×n − PSnXn)

(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp

×
∥∥∥∥Ω1/2

n n−1 ∂

∂λ
Ŷn(λ0)

∥∥∥∥
Sp

.

It follows now from the fact that the spectral norm of a product of projectors is at most equal to 1,
λ ∈ Λ0n, supλ∈Λ0n

sups∈Sn
∣∣s−2λ − s−2λ0

∣∣ = oP(1) as well as supλ∈Λ0n
sups∈Sn s

−2λ = OP(1) and from
Lemma 1.15 that

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣s−2λn−1 ∂

∂λ
Ŷn(λ)T B̂n n−1 ∂

∂λ
Ŷn(λ)

− s−2λ0n−1 ∂

∂λ
Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)

∣∣∣ = oP(1).
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By similar reasoning, we get that

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣ log(s)s−λn−1Ŷn(λ)T B̂n n−1 ∂

∂λ
Ŷn(λ)

− log(s)s−λ0n−1Ŷn(λ0)T B̂n n−1 ∂

∂λ
Ŷn(λ0)

∣∣∣ = oP(1).

and

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣ log(s)s−λn−1Ŷn(λ)T B̂n log(s)s−λn−1Ŷn(λ)

− log(s)s−λ0n−1Ŷn(λ0)T B̂n log(s)s−λ0n−1Ŷn(λ0)
∣∣∣ = oP(1).

Therefore, the first statement follows. The second statement follows by the same reasoning. The details
are omitted.

Lemma 1.17. Assume the conditions of Theorem 1.1 hold true and let Λ0n be an arbitrary oP (1) neigh-
borhood of λ0. Then,

sup
λ∈Λ0n

sup
h∈Hc,n

sup
s∈Sn

sup
d∈D

∣∣∣n−1X̂TnDnn−1

(
∂

∂λ
Ŷn(λ)− ∂

∂λ
Ŷn(λ0)

) ∣∣∣ = oP(1).

Proof of Lemma 1.17.

We have that

n−1X̂TnDnn−1

(
∂

∂λ
Ŷn(λ)− ∂

∂λ
Ŷn(λ0)

)
= n−1X̂TnDnn−1 ∂

2

∂λ2
Ŷn(λ̃)(λ− λ0),

where λ̃ = cλ+ (1− c)λ0 for some c ∈ (0, 1). We get that

∣∣∣n−1X̂TnDnn−1 ∂
2

∂λ2
Ŷn(λ̃)

∣∣∣
≤
∥∥∥Ω1/2

n n−1X̂n
∥∥∥

Sp
×
∥∥∥(In×n − PΩ

1/2
n 1n

)(
In×n − PΩ

1/2
n 1n

)∥∥∥
Sp
×
∥∥∥∥Ω1/2

n n−1 ∂
2

∂λ2
Ŷn(λ̃)

∥∥∥∥
Sp

.

The statement follows now from the fact that the spectral norm of a product of projectors is at most
equal to 1, λ ∈ Λ0n and Lemma 1.8 and 1.15.

Lemma 1.18. Assume the conditions of Proposition 1.1 hold true. Then,

sup
h∈Hsc,n

sup
d∈D

∥∥∥Ω1/2
n (d)n−1

(
[Yn(λ0)− Xnβ0]−

(
ε̂|zf̂z

)
n
−
[
Ŷn(λ0)− X̂nβ0

])∥∥∥ = oP(n−1/2).

Proof of Lemma 1.18.

By the arguments used for Lemma 1.14, it suffices to consider d = diag(dU , . . . , dU ). Moreover, for
simpler notation, we omit the argument d in Ωn(d). We get that, for 1 ≤ i ≤ n,[

Ŷn,i(λ0)− X̂n,iβ0

]
− [Yn,i(λ0)− Xn,iβ0] +

(
ε̂|zf̂z

)
n,i

=

[
1

n

n∑
k=1

(m(Zi)−m(Zk))Kh,ik +
1

n

n∑
k=1

(εi − εk)Kh,ik

]
− εifz(Zi) +

1

n

n∑
k=1,k 6=i

εkKh,ik

=
1

n

n∑
k=1

(m(Zi)−m(Zk))Kh,ik +
1

n

n∑
k=1,k 6=i

εi (Kh,ik − fz(Zi))−
1

n
εifz(Zi).

Let(
ε
(
fz − f̂z

))
n

=

(
1
n

n∑
k=1,k 6=1

ε1 (fz(Z1)−Kh,1k) , . . . , 1
n

n∑
k=1,k 6=n

εn (fz(Zn)−Kh,nk)

)T
and
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(
mf̂z − m̂fz

)
n

=

(
1
n

n∑
k=1

(m(Z1)−m(Zk))Kh,1k, . . . ,
1
n

n∑
k=1

(m(Zn)−m(Zk))Kh,nk

)T
.

We start by showing that

sup
h∈Hsc,n

sup
d∈D

∥∥∥Ω1/2
n n−1

(
ε
(
fz − f̂z

))
n

∥∥∥ = oP(n−1/2). (1.43)

We get that∥∥∥Ω1/2
n n−1

(
ε
(
fz − f̂z

))
n

∥∥∥2

=
1

n2

∑
1≤i 6=j≤n

(
ε
(
fz − f̂z

))
n,i

(
ε
(
fz − f̂z

))
n,j

Ωn,ij +
1

n2

n∑
i=1

(
ε
(
fz − f̂z

))2

n,i

= An +Bn.

It is easy to check that suph∈Hsc,n Bn = oP(n−1). Furthermore, we get that

An =
1

n2

∑
1≤i 6=j≤n

 1

n

∑
1≤k≤n,k 6=i

εi (fz(Zi)−Kh,ik)

 1

n

∑
1≤l≤n,l 6=j

εj (fz(Zj)−Kh,jl)

Ωn,ij .

We show in the following that

sup
h∈Hsc,n

sup
d∈D
|An| = sup

h∈Hsc,n
sup
d∈D
|An(h)| = oP(n−1). (1.44)

For this purpose, we define (n)k = n(n− 1) . . . (n− k + 1) and decompose An(h) into a sum of four U–
processes, i.e.

An(h) =
(n− 1)3

n3
A1,n(h) +

(n− 1)2

n2
A2,n(h) + 2

(n− 1)2

n2
A3,n(h) +

n− 1

n
A4,n(h),

where

A1,n = A1,n(h) =
1

(n)4

∑
1≤i6=j 6=k 6=l≤n

εi (fz(Zi)−Kh,ik) εj (fz(Zj)−Kh,jl) Ωn,ij

A2,n = A2,n(h) =
1

n(n)3

∑
1≤i 6=j 6=k≤n

εi (fz(Zi)−Kh,ik) εj (fz(Zj)−Kh,jk) Ωn,ij

A3,n = A3,n(h) =
1

n(n)3

∑
1≤i 6=j 6=l≤n

εi (fz(Zi)−Kh,ij) εj (fz(Zj)−Kh,jl) Ωn,ij

and A4,n = A4,n(h) =
1

n2(n)2

∑
1≤i 6=j≤n

εi (fz(Zi)−Kh,ij) εj (fz(Zj)−Kh,ij) Ωn,ij .

For each of these U–processes we compute the mean and use the Hoeffding decomposition. The
kernels of A1,n, A2,n and A3,n are not symmetric in their arguments. However, we could apply the usual
symmetrization idea. For instance, for a second order U−statistic defined by a kernel h(Ui,Uj), we could
replace it by the symmetric kernel 1

2 [h(Ui,Uj) + h(Uj ,Ui)] from which we get the same U−statistic.

Here, Ui =
(
Yi,X

T
i ,Z

T
i

)T
. We can proceed in the same way by considering all 4! permutations of the

variables for A1,n and 3! permutations for A2,n and A3,n so that we can apply the Hoeffding decomposition.
Thus, by abuse, we will proceed as if the kernels of the U−statistics we handle are symmetric.

In addition, we have that the kernels of A1,n, A2,n, A3,n and A4,n are Euclidean for a squared integrable
envelope. See Lemma 22 in Nolan and Pollard [67] and Lemma 2.14 in Pakes and Pollard [68]. Therefore,
we can in the following repeatedly apply Corollary 7 and the Maximal Inequality of Sherman [72]. All
remainder terms are controlled by Assumption 1.3.2.

We start by considering A1,n. Recall that by assumption E [εi |Xi,Zi] = E [εj |Xj ,Zj ] = 0. There-
fore, we get that E [A1,n] = 0 as well as

E [εi (fz(Zi)−Kh,ik) εj (fz(Zj)−Kh,jl) Ωn,ij | Up, p ∈ {i, j, k, l}] = 0.

Note that we need to consider the conditional expectations with respect to all four variables for the first
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order U–process of the Hoeffding decomposition of A1,n as we symmetrized the kernel. It follows from
the results that the first order U–process of the Hoeffding decomposition of A1,n is 0.

We consider now the six second order U−processes of the Hoeffding decomposition of A1,n. There
are two types of such processes. First, the ones that are 0. This is the case when conditioning by the
pairs (Ui,Ul), (Ui,Uk), (Uj ,Ul), (Uj ,Uk) and (Ul,Uk). The second case occurs when conditioning on
(Ui,Uj). We get that

E[εi (fz(Zi)−Kh,ik) εj (fz(Zj)−Kh,jl) Ωn,ij | Ui,Uj ]
= εiεjE [(fz(Zi)−Kh,ik) (fz(Zj)−Kh,jl) | Zi,Zj ] Ωn,ij

= εiεjE [(fz(Zi)−Kh,ik) | Zi]E [(fz(Zj)−Kh,jl) | Zj ] Ωn,ij

= εiεjh
4γ1(Zi)γ1(Zj)(1 + oP(1))Ωn,ij ,

where
γ1(Z) = µ(K) · tr{Hz,zfz(Z)},

with
∫
Rq uu

TK(u)du = µ(K)Iq×q. Hz,zfz denotes the matrix of second derivative of fz(·) with respect
to the components of Z ∈ Rq and tr{·} denotes the trace operator. Therefore, it follows together with
Corollary 4 of Sherman [72] that the second order U−processes of the Hoeffding decomposition of A1,n

are of order OP(n−1n−4α) = oP(n−1) uniformly with respect to h and d.

We consider now the four U−processes of order three obtained by conditioning on any subset of three
of the four vectors Ui, Uk, Uj and Ul. There are two types of such processes. First, the ones that are
0. This is the case when conditioning by (Ui,Ul,Uk) or (Uj ,Ul,Uk). The second case occurs when
conditioning on (Ui,Uj ,Ul) or (Ui,Uj ,Uk), the other one being similar. We get that

E[εi (fz(Zi)−Kh,ik) εj(fz(Zj)−Kh,jl)Ωn,ij | Ui,Uj ,Uk]

= εi (fz(Zi)−Kh,ik) εjE [(fz(Zj)−Kh,jl) | Zj ] Ωn,ij

= εi (fz(Zi)−Kh,ik) εjh
2γ1(Zj)(1 + oP(1))Ωn,ij

= εifz(Zi)εjh
2γ1(Zj)(1 + oP(1))Ωn,ij

− εiKh,ikεjh
2γ1(Zj)(1 + oP(1))Ωn,ij

= εifz(Zi)εjh
2γ1(Zj)(1 + oP(1))Ωn,ij

− h2−qhqKh,ikτ(Ui,Uj)(1 + oP(1)).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given
by the kernel hqKh,ikτ(Ui,Uj), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ(·, ·). (Herein, ‖ ·‖∞ denotes
the uniform norm.) We take p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α.
Since K(·) is of bounded variation and symmetric, without loss of generality we could consider that K(·)
is nonincreasing on [0,∞). In this case, 0 ≤ K(·/h) ≤ K(·/h) with h = supHsc,n =: cmaxn

−α. Hence,
using Jensen’s inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72]
by a universal constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
τ2(Ui,Uj)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the second U−processes obtained conditioning
by Ui,Uj ,Uk and Ui,Uj ,Ul, respectively is n−3/2 ×OP(n−α{2−q+βq/2}). As 1/2 + α(2− q + βq/2) > 0
under our assumptions we get that n−3/2 × OP(n−α{2−q+βq/2}) = oP(n−1) such that the third order
U−processes of the Hoeffding decomposition of A1,n are of order oP(n−1).

Finally, we consider the remaining U−process of order four. This process is given by

εi (fz(Zi)−Kh,ik) εj(fz(Zj)−Kh,jl)Ωn,ij

= εiεj (fz(Zi)fz(Zj)− fz(Zj)Kh,ik − fz(Zi)Kh,jl +Kh,ikKh,jl) Ωn,ij

= εiεjfz(Zi)fz(Zj)Ωn,ij − h−qτ1(Ui,Uj)h
qKh,jl − h−qτ2(Ui,Uj)h

qKh,ik

+ h−2qτ3(Ui,Uj)h
2qKh,ikKh,jl.

Now, we apply again the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process
given by the kernel τ3(Ui,Uj)h

qKh,ikh
qKh,jl, indexed by h ∈ Hsc,n, with envelope ‖K‖2∞τ(·, ·). We take

again p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Hence, using Jensen’s
inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal
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constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
K2

(
Zj −Zl
cmaxn−α

)
τ2
3 (Ui,Uj)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by
a constant times n−αβq. Consequently, the uniform rate of the fourth order U−process is n−2 ×
OP(nαq{2−β}). Since 1 > αq under our assumptions we get that n−2 × OP(nαq{2−β}) = oP(n−1). By
the same reasoning we can control h−qτ1(Ui,Uj)h

qKh,jl and h−qτ2(Ui,Uj)h
qKh,ik. The details are

omitted.

From all the results it follows that

sup
h∈Hsc,n

sup
d∈D
|A1,n| = sup

h∈Hsc,n
sup
d∈D
|A1,n(h)| = oP(n−1).

In the next step we consider A2,n. We get that E [A2,n] = 0 as well as

E [εi (fz(Zi)−Kh,ik) εj (fz(Zj)−Kh,jk) Ωn,ij | Up, p ∈ {i, j, k}] = 0.

In addition, it is easy to see that the second and third order U–processes of the Hoeffding decomposition
of A2,n are of order oP(n−1) if we apply the Maximal Inequality of Sherman [72]. From all the results it
follows that

sup
h∈Hsc,n

sup
d∈D
|A2,n| = sup

h∈Hsc,n
sup
d∈D
|A2,n(h)| = oP(n−1).

As it follows by the same reasoning as for A2,n that

sup
h∈Hsc,n

sup
d∈D
|A3,n| = sup

h∈Hsc,n
sup
d∈D
|A3,n(h)| = oP(n−1).

we omit the details here.

Finally, we get that E [A4,n] = 0 as well as

E [εi (fz(Zi)−Kh,ij) εj (fz(Zj)−Kh,ij) Ωn,ij | Up, p ∈ {i, j}] = 0.

In addition, it is easy to see that the second order U–process of the Hoeffding decomposition of A4,n is
of order oP(n−1) if we apply the Maximal Inequality of Sherman [72]. Deduce that

sup
h∈Hsc,n

sup
d∈D
|A4,n| = oP(n−1).

With all these results (1.44) and, in particular, (1.43) follow.

In the next part we show that

sup
h∈Hsc,n

sup
d∈D

∥∥∥Ω1/2
n n−1

(
mf̂z − m̂fz

)
n

∥∥∥ = oP(n−1/2). (1.45)

We get that∥∥∥Ω1/2
n n−1

(
mf̂z − m̂fz

)
n

∥∥∥2

=
1

n2

∑
1≤i 6=j≤n

(
mf̂z − m̂fz

)
n,i

(
mf̂z − m̂fz

)
n,j

Ωn,ij +
1

n2

n∑
i=1

(
mf̂z − m̂fz

)2

n,i

= Ãn + B̃n.

It is easy to check that suph∈Hsc,n B̃n = oP(n−1). Furthermore, we get that

Ãn =
1

n2

∑
1≤i 6=j≤n

 1

n

∑
1≤k≤n,k 6=i

(m(Zi)−m(Zk))Kh,ik

 1

n

∑
1≤l≤n,l 6=j

(m(Zj)−m(Zl))Kh,jl

Ωn,ij .

We show in the following that

sup
h∈Hsc,n

sup
d∈D
|Ãn| = sup

h∈Hsc,n
sup
d∈D
|Ãn(h)| = oP(n−1). (1.46)
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We decompose Ãn(h) into a sum of four U– processes, i.e.

Ãn(h) =
(n− 1)3

n3
Ã1,n(h) +

(n− 1)2

n2
Ã2,n(h) + 2

(n− 1)2

n2
Ã3,n(h)− n− 1

n
Ã4,n(h),

where

Ã1,n = Ã1,n(h) =
1

(n)4

∑
1≤i 6=j 6=k 6=l≤n

(m(Zi)−m(Zk))Kh,ik (m(Zj)−m(Zl))Kh,jlΩn,ij

Ã2,n = Ã2,n(h) =
1

n(n)3

∑
1≤i 6=j 6=k≤n

(m(Zi)−m(Zk))Kh,ik (m(Zj)−m(Zk))Kh,jkΩn,ij

Ã3,n = Ã3,n(h) =
1

n(n)3

∑
1≤i 6=j 6=l≤n

(m(Zi)−m(Zj))Kh,ij (m(Zj)−m(Zl))Kh,jlΩn,ij

and Ã4,n = Ã4,n(h) =
1

n2(n)2

∑
1≤i6=j≤n

(m(Zi)−m(Zj))
2
K2
h,ijΩn,ij .

For each of these U–processes we compute the mean and use the Hoeffding decomposition. The kernels
of Ã1,n, Ã2,n and Ã3,n are not symmetric in their arguments. However, we could apply the usual

symmetrization idea. Here, Ũi =
(
XT
i ,Z

T
i

)T
. Thus, by abuse, we will proceed as if the kernels of

the U−statistics we handle are symmetric. For simpler formulae, we use the short notation mi,mk, . . .
instead of m(Zi),m(Zk), . . ..

In addition, we have that the kernels of Ã1,n, Ã2,n, Ã3,n and Ã4,n are Euclidean for a squared integrable
envelope. See Lemma 22 in Nolan and Pollard [67] and Lemma 2.14 in Pakes and Pollard [68]. Therefore,
we can in the following repeatedly apply Corollary 7 and the Maximal Inequality of Sherman [72]. All
remainder terms are controlled by Assumption 1.3.2.

We start by considering the expectation of Ã1,n. We get that

E[Ã1,n] = E [(mi −mk)Kh,ik (mj −ml)Kh,jlΩn,ij ]

= E
[
E
[
(mi −mk)Kh,ikΩ

Z
n,ij |Xi, Ũj ,Zl

]
(mj −ml)Kh,jlΩ

X
n,ij

]
.

Next, by Taylor expansion and Dominated convergence

E
[
miKh,ikΩ

Z
n,ij |Xi, Ũj ,Zl

]
= E

[
miE [Kh,ik | Zi] ΩZ

n,ij |Xi,Zj
]

= E
[
mi(fz(Zi) + h2γ1(Zi)(1 + oP(1)))ΩZ

n,ij |Xi,Zj
]

= E
[
mifz(Zi)Ω

Z
n,ij |Xi,Zj

]
+ h2E

[
miγ1(Zi)Ω

Z
n,ij |Xi,Zj

]
(1 + oP(1)).

Similarly,

E
[
mkKh,ikΩ

Z
n,ij |Xi, Ũj ,Zl

]
= E

[
E [mkKh,ik | Zi] ΩZ

n,ij |Xi,Zj
]

= E
[
(mifz(Zi) + h2γ2(Zi)(1 + oP(1))ΩZ

n,ij |Xi,Zj
]

= E
[
mifz(Zi)Ω

Z
n,ij |Xi,Zj

]
+ h2E

[
γ2(Zi)Ω

Z
n,ij |Xi,Zj

]
(1 + oP(1)),

where γ2(Z) = µ(K) · tr{Hz,z (mfz) (Z)}. Hz,z (mfz) denotes the matrix of second derivative of mfz(·)
with respect to the components of Z ∈ Rq. Thus,

E[Ã1,n] = E
[
E
[
(mi −mk)Kh,ikΩ

Z
n,ij |Xi, Ũj ,Zl

]
(mj −ml)Kh,jlΩ

X
n,ij

]
= h2E

[
γ3(Xi,Zj)(mj −ml)Kh,jlΩ

X
n,ij

]
(1 + o(1))

= h2E
[
γ3(Xi,Zj)E [(mj −ml)Kh,jl |Xi,Xj ,Zj ] Ω

X
n,ij

]
(1 + o(1))

= h2E
[
γ3(Xi,Zj)E [(mj −ml)Kh,jl | Zj ] ΩX

n,ij

]
(1 + o(1)),

where γ3(Xi,Zj) = E
[
miγ1(Zi)Ω

Z
n,ij |Xi,Zj

]
− E

[
γ2(Zi)Ω

Z
n,ij |Xi,Zj

]
.
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In the next step we consider E [(mj −ml)Kh,jl | Zj ]. We get that

E [mjKh,jl | Zj ] = mjE [Kh,jl | Zj ]
= mj

(
fz(Zj) + h2γ1(Zj)(1 + oP(1))

)
= mjfz(Zj) + h2mjγ1(Zj)(1 + oP(1)).

In addition, we get that

E [mlKh,jl | Zj ] = E
[
mjfz(Zj) + h2γ2(Zj)(1 + oP(1)) | Zj

]
= mjfz(Zj) + h2γ2(Zj)(1 + oP(1)).

Therefore, we get that

E[Ã1,n] = h2E
[
γ3(Xi,Zj)E [(mj −ml)Kh,jl | Zj ] ΩX

n,ij

]
(1 + o(1))

= h4E
[
γ3(Xi,Zj) (mjγ1(Zj)− γ2(Zj)) ΩX

n,ij

]
(1 + o(1)).

This implies that E[Ã1,n] = oP(n−1) uniformly with respect to h ∈ Hsc,n.

We consider now the first order U–process of the Hoeffding decomposition for Ã1,n. As we symmetrized
the kernel we need to consider the conditional expectations with respect to all four variables. By the
same reasoning as for E[Ã1,n] we get that

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũi

]
= h2E

[
γ3(Xj ,Zi)(mi −mk)Kh,ikΩ

X
n,ij | Ũi

]
(1 + oP(1))

= h2E
[
γ3(Xj ,Zi)E [(mi −mk)Kh,ik | Zi] ΩX

n,ij | Ũi
]

(1 + oP(1))

= h2E [(mi −mk)Kh,ik | Zi]E
[
γ3(Xj ,Zi)Ω

X
n,ij | Ũi

]
(1 + oP(1))

= h4 (miγ1(Zi)− γ2(Zi))E
[
γ3(Xj ,Zi)Ω

X
n,ij | Ũi

]
(1 + oP(1)).

Note that the reasoning for E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũj

]
is exactly the same. In addi-

tion, we have that

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũk

]
= h2E

[
γ3(Xj ,Zi)(mi −mk)Kh,ikΩ

X
n,ij | Zk

]
.

We get that

E
[
γ3(Xj ,Zi)miKh,ikΩ

X
n,ij | Zk

]
= E

[
Kh,ikE

[
γ3(Xj ,Zi)miΩ

X
n,ij | Zi

]
| Zk

]
= mkfz(Zk)E

[
γ3(Xj ,Zk)ΩX

n,ij | Zk
]

+OP(h2),

and

E
[
γ3(Xj ,Zi)mkKh,ikΩ

X
n,ij | Zk

]
= mkE

[
Kh,ikE

[
γ3(Xj ,Zi)Ω

X
n,ij | Zi

]
| Zk

]
= mkfz(Zk)E

[
γ3(Xj ,Zk)ΩX

n,ij | Zk
]

+OP(h2).

Note that the reasoning for E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũl

]
is exactly the same. Therefore,

it follows together with Corollary 4 of Sherman [72] that the first order U−processes of the Hoeffding

decomposition for Ã1,n are of order oP(n−1) uniformly with respect to h.

We consider now the six second order U−processes of the Hoeffding decomposition for Ã1,n. There
are two types of such processes. First, the ones where the two kernels Kh,ik and Kh,jl are both integrated

with respect to one of the variables they contain. This is the case when conditioning by the pairs (Ũi, Ũj),

(Ũi, Ũl), (Ũk, Ũj) and (Ũk, Ũl).
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We get that

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũi, Ũj

]
= E [E [(mi −mk)Kh,ik | Zi] (mj −ml)Kh,jl | Zi,Zj ] Ωn,ij

=
[
mi

(
fz(Zi) + h2γ1(Zi)(1 + oP(1))

)
−
(
mifz(Zi) + h2γ2(Zi)(1 + oP(1))

)][
mj

(
fz(Zj) + h2γ1(Zj)(1 + oP(1))

)
−
(
mjfz(Zj) + h2γ2(Zj)(1 + oP(1))

)]
Ωn,ij

= h4 [miγ1(Zi)− γ2(Zi)] [mjγ1(Zj)− γ2(Zj)] (1 + oP(1))Ωn,ij .

In addition, we get that

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũi, Ũl

]
= E

[
E [(mi −mk)Kh,ik | Zi] (mj −ml)Kh,jlΩn,ij | Ũi, Ũl

]
=
[
mi

(
fz(Zi) + h2γ1(Zi)(1 + oP(1))

)
−
(
mifz(Zi) + h2γ2(Zi)(1 + oP(1))

)]
E
[
(mj −ml)Kh,jlΩn,ij | Ũi, Ũl

]
= h2 [miγ1(Zi)(1 + oP(1))− γ2(Zi)(1 + oP(1))][

mlfz(Zl)Ω
Z
n,ilE

[
ΩX
n,ij |Xi

]
−mlfz(Zl)Ω

Z
n,ilE

[
ΩX
n,ij |Xi

]
+OP(h2)

]
= OP(h4).

The reasoning when conditioning on (Ũk, Ũj) is the same. For the fourth part we get that

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũk, Ũl

]
= E

[
(mi −mk)Kh,ikE

[
(mj −ml)Kh,jlΩn,ij | Zl, Ũi

]
| Ũk, Ũl

]
= E

[
(mi −mk)Kh,ik

(
mlfz(Zl)Ω

Z
n,ilE

[
ΩX
n,ij |Xi

]
−mlfz(Zl)Ω

Z
n,ilE

[
ΩX
n,ij |Xi

]
+OP(h2)

)
| Ũk, Ũl

]
=
(
mkfz(Zk)−mkfz(Zk) +OP(h2)

)
OP(h2) = OP(h4).

Applying the results of Sherman [72], the four U−processes for which the two kernels Kh,ik and Kh,jl

are both integrated with respect to one of their variables have the uniform rate oP(n−1).
Next, we investigate one of the two U−processes of the Hoeffding decomposition obtained by condi-

tioning on the pairs (Ũi, Ũk) and (Ũj , Ũl), the other one being similar. We have

E
[
(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũj , Ũl

]
= (mj −ml)Kh,jlE

[
(mi −mk)Kh,ikΩn,ij | Ũj

]
= (mj −ml)Kh,jlE

[
E
[
(mi −mk)Kh,ikΩ

Z
n,ij |Xi,Zj

]
ΩX
n,ij | Ũj

]
= h2(mj −ml)Kh,jlE

[
γ3(Xi,Zj)Ω

X
n,i,j | Ũj

]
(1 + oP(1))

=: h2−q(1 + oP(1))× hqKh,jlτ(Ũj , Ũl).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given

by the kernel hqKh,jlτ(Ũj , Ũl), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ(·, ·). We take p = 1 and
β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Using Jensen’s inequality, we could
bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal constant times

Eβ/2
[
K2

(
Zj −Zl
cmaxn−α

)
τ2(Ũj , Ũl)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the second U−processes obtained conditioning
by Ũi, Ũk and Ũj , Ũl, respectively is n−1×OP(n−α{2−q+βq/2}). Since β < 1 could be arbitrarily close to
1, we have 2− q + βq/2 > 0, and, thus, n−1 ×OP(n−α{2−q+βq/2}) = oP(n−1).

We consider now the four U−processes of order three obtained by conditioning on any subset of three
of the four vectors Ũi, Ũk, Ũj and Ũl. We start by conditioning on (Ũi, Ũj , Ũl) and (Ũi, Ũj , Ũk), the
other one being similar.
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E[(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũi, Ũj , Ũl]

= E
[
(mi −mk)Kh,ik | Ũi

]
(mj −ml)Kh,jlΩn,ij

=
[
mi

(
fz(Zi) + h2γ1(Zi)(1 + oP(1))

)
−
(
mifz(Zi) + h2γ2(Zi)(1 + oP(1))

)]
(mj −ml)Kh,jlΩn,ij

= h2−qτ(Ũi, Ũj , Ũl)h
qKh,jl(1 + oP(1)).

Now, we apply again the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process

given by the kernel hqKh,jlτ(Ũi, Ũj , Ũl), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ(·, ·, ·). We take
again p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Hence, using Jensen’s
inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal
constant times

Eβ/2
[
K2

(
Zj −Zl
cmaxn−α

)
τ2(Ũi, Ũj , Ũl)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the U−processes obtained conditioning by
Ũi, Ũj , Ũl and Ũi, Ũj , Ũk, respectively is n−3/2 ×OP(n−α{2−q+βq/2}). Since 1/2 + α{2− q + βq/2} > 0
under our assumptions q < 4 and α ∈ (1/4, 1/q) we get that n−3/2 ×OP(n−α{2−q+βq/2}) = oP(n−1).

In addition, we get by conditioning on Ũi, Ũk, Ũl and Ũj , Ũk, Ũl, the other one being similar, that

E[(mi −mk)Kh,ik(mj −ml)Kh,jlΩn,ij | Ũi, Ũk, Ũl]

= (mi −mk)Kh,ikE[(mj −ml)Kh,jlΩn,ij | Ũi, Ũl]
= (mi −mk)Kh,ik

(
mlfz(Zl)Ω

Z
n,ilE

[
ΩX
n,ij |Xi

]
−mlfz(Zl)Ω

Z
n,ilE

[
ΩX
n,ij |Xi

]
+OP(h2)

)
= h2−qτ(Ũi, Ũk, Ũl)h

qKh,ik(1 +OP(h2)).

Now, we apply again the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process

given by the kernel hqKh,ikτ(Ũi, Ũk, Ũl), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ(·, ·, ·). We take
again p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Hence, using Jensen’s
inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72] by an universal
constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
τ2(Ũi, Ũk, Ũl)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the U−processes obtained conditioning by
Ũi, Ũk, Ũl and Ũj , Ũk, Ũl, respectively is n−3/2 ×OP(n−α{2−q+βq/2}). Since 1/2 + α{2− q + βq/2} > 0
under our assumptions q < 4 and α ∈ (1/4, 1/q) we get that n−3/2 ×OP(nαq{1−β/2}) = oP(n−1).

Finally, we consider the remaining U−process of order four. This process is given by

(m(Zi)−m(Zk))Kh,ik(m(Zj)−m(Zl))Kh,jlΩn,ij = h−2qτ(Ũi, Ũj , Ũk, Ũl)h
qKh,ikh

qKh,jl.

Now, we apply again the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process

given by the kernel τ(Ũi, Ũj , Ũk, Ũl)h
qKh,ikh

qKh,jl, indexed by h ∈ Hsc,n, with envelope ‖K‖2∞τ(·, ·, ·, ·).
We take again p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Hence, using
Jensen’s inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72] by an
universal constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
K2

(
Zj −Zl
cmaxn−α

)
τ2(Ũi, Ũj , Ũk, Ũl)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by
a constant times n−αβq. Consequently, the uniform rate of the fourth order U−process is n−2 ×
OP(nαq{2−β}). Since 1 > αq under our assumptions q < 4 and α ∈ (1/4, 1/q) we get that n−2 ×
OP(nαq{2−β}) = oP(n−1).

From all the results it follows that

sup
h∈Hsc,n

sup
d∈D
|Ã1,n| = sup

h∈Hsc,n
sup
d∈D
|Ã1,n(h)| = oP(n−1).
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In the next step we consider Ã2,n. We get that

E[(mi −mk)Kh,ik(mj −mk)Kh,jkΩn,ij ] = E[(mi −mk)Kh,ikE[(mj −mk)Kh,jkΩn,ij | Ũi, Ũk]]

= E
[
(mi −mk)Kh,ik

(
fz(Zk)mkΩ

Z
n,ikE

[
ΩX
n,ij |Xi

]
− fz(Zk)mkΩ

Z
n,ikE

[
ΩX
n,ij |Xi

]
+OP(h2)

)]
= E[(mi −mk)Kh,ik]O(h2) = O(h4).

This implies that E[Ã2,n] = oP(n−1) uniformly with respect to h ∈ Hsc,n.

We consider now the first order U–process of the Hoeffding decomposition for Ã2,n. As we symmetrized
the kernel we need to consider the conditional expectations with respect to all four variables. By the
same reasoning as for E[Ã2,n] we get that

E[(mi −mk)Kh,ik(mj −mk)Kh,jkΩn,ij | Ũi]

= E[(mi −mk)Kh,ikE[(mj −mk)Kh,jkΩn,ij | Zk, Ũi] | Ũi]

= E
[
(mi −mk)Kh,ik

(
mkfz(Zk)ΩZ

n,ikE
[
ΩX
n,ij |Xi

]
−mkfz(Zk)ΩZ

n,ikE
[
ΩX
n,ij |Xi

]
+OP(h2)

)
| Ũi

]
=
(
mifz(Zi)−mifz(Zi) +OP(h2)

)
OP(h2) = OP(h4).

Note that the reasoning when conditioning on Ũj and Ũk is the same. Therefore, we get that the first

order U–processes of the Hoeffding decompositions for Ã2,n are of order oP(n−1).

It is easy to see that the second and third order U–processes of the Hoeffding decomposition for Ã2,n

are of order oP(n−1) if we apply the Maximal Inequality of Sherman [72]. From all the results it follows
that

sup
h∈Hsc,n

sup
d∈D
|Ã2,n| = sup

h∈Hsc,n
sup
d∈D
|Ã2,n(h)| = oP(n−1).

As it follows by the same reasoning as for Ã2,n that

sup
h∈Hsc,n

sup
d∈D
|Ã3,n| = sup

h∈Hsc,n
sup
d∈D
|Ã3,n(h)| = oP(n−1),

we omit the details here. Finally, we get by standard change of variables that

E[Ã4,n] = n−2E[(mi −mj)
2K2

h,ijΩn,ij ] = O(n−2nαq) = o(n−1),

as well as

n−2E[(mi −mj)
2K2

h,ijΩn,ij | Ũi] = OP(n−2nαq),

and

n−2E[(mi −mj)
2K2

h,ijΩn,ij | Ũj ] = OP(n−2nαq).

Using the Hoeffding decomposition and applying Corollary 4 of Sherman [72], we deduce that

n2h2q(Ã4,n − E[Ã4,n]) = OP(n−1) +OP(n−1/2n−αq),

uniformly with respect to h. Deduce that

sup
h∈Hsc,n

sup
d∈D
|Ã4,n| = OP(n−3n2αq) +OP(n−5/2nαq) +OP(n−2nαq) = oP(n−1).

With all these results (1.46) and, in particular, (1.45) follow.

We know from Lemma 1.14 that∥∥∥Ω1/2
n n−2 (εfz)n

∥∥∥ = OP(n−3/2),

such that from all these results the statement follows.
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Lemma 1.19. Assume the conditions of Proposition 1.1 hold true. Then,

sup
h∈Hsc,n

sup
d∈D

∥∥∥Ω1/2
n n−1

(
ε̂|zf̂z

)
n

∥∥∥ = OP(n−1/2).

Proof of Lemma 1.19.

By the arguments used for Lemma 1.14, it suffices to consider d = diag(dU , . . . , dU ). Moreover, for
simpler notation, we omit the argument d in Ωn(d). We get that∥∥∥Ω1/2

n n−1
(
ε̂|zf̂z

)
n

∥∥∥2

=
1

n2

∑
1≤i6=j≤n

(
ε̂|zf̂z

)
n,i

(
ε̂|zf̂z

)
n,j

Ωn,ij +
1

n2

n∑
i=1

(
ε̂|zf̂z

)2

n,i

= An +Bn.

It is easy to check that suph∈Hsc,n Bn = oP(n−1). Furthermore, we get that

An =
1

n2

∑
1≤i 6=j≤n

 1

n

∑
1≤k≤n,k 6=i

εkKh,ik

 1

n

∑
1≤l≤n,l 6=j

εlKh,jl

Ωn,ij .

We show in the following that

sup
h∈Hsc,n

sup
d∈D
|An| = sup

h∈Hsc,n
sup
d∈D
|An(h)| = OP(n−1). (1.47)

For this purpose, we define (n)k = n(n− 1) . . . (n− k + 1) and decompose An(h) into a sum of four U–
processes, i.e.

An(h) =
(n− 1)3

n3
A1,n(h) +

(n− 1)2

n2
A2,n(h) + 2

(n− 1)2

n2
A3,n(h) +

n− 1

n
A4,n(h),

where

A1,n = A1,n(h) =
1

(n)4

∑
1≤i 6=j 6=k 6=l≤n

εkKh,ikεlKh,jlΩn,ij

A2,n = A2,n(h) =
1

n(n)3

∑
1≤i 6=j 6=k≤n

ε2
kKh,ikKh,jkΩn,ij

A3,n = A3,n(h) =
1

n(n)3

∑
1≤i 6=j 6=l≤n

εjKh,ijεlKh,jlΩn,ij

and A4,n = A4,n(h) =
1

n2(n)2

∑
1≤i 6=j≤n

εiεjK
2
h,ijΩn,ij .

For each of these U–processes we compute the mean and use the Hoeffding decomposition. The
kernels of A1,n, A2,n and A3,n are not symmetric in their arguments. However, we could apply the usual
symmetrization idea. Thus, by abuse, we will proceed as if the kernels of the U−statistics we handle are

symmetric. Here, Ui =
(
Yi,X

T
i ,Z

T
i

)T
.

In addition, we have that the kernels of A1,n, A2,n, A3,n and A4,n are Euclidean for a squared integrable
envelope. See Lemma 22 in Nolan and Pollard [67] and Lemma 2.14 in Pakes and Pollard [68]. Therefore,
we can in the following repeatedly apply Corollary 7 and the Maximal Inequality of Sherman [72]. All
remainder terms are controlled by Assumption 1.3.2.

We start by considering A1,n. Recall that by assumption E [εk |Xk,Zk] = E [εl |Xl,Zl] = 0. There-
fore, we get that E [A1,n] = 0 as well as

E [εkKh,ikεlKh,jlΩn,ij | Up, p ∈ {i, j, k, l}] = 0.

Note that we need to consider the conditional expectations with respect to all four variables for the first
order U–process of the Hoeffding decomposition of A1,n as we symmetrized the kernel. It follows from
the results that the first order U–process of the Hoeffding decomposition of A1,n is 0.

We consider now the six second order U−processes of the Hoeffding decomposition of A1,n. There
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are two types of such processes. First, the ones that are 0. This is the case when conditioning by the
pairs (Ui,Ul), (Ui,Uk), (Uj ,Ul), (Uj ,Uk) and (Ui,Uj). The second case occurs when conditioning on
(Uk,Ul). We get that

E[εkKh,ikεlKh,jlΩn,ij | Uk,Ul]
= εkεlE[Kh,ikKh,jlΩ

X
n,ijΩ

Z
n,ij | Zk,Zl]

= εkεlE[E[Kh,ikΩ
X
n,ijΩ

Z
n,ij | Zk,Zj ]Kh,jl | Zk,Zl]

= εkεlE[
(
fz(Zk)E[ΩX

n,ij | Zj ]ΩZ
n,kj +OP(h2)

)
Kh,jl | Zk,Zl]

= εkεlfz(Zk)E[fz(Zl)E[ΩX
n,ij ]Ω

Z
n,kl +OP(h2) | Zk,Zl]

+ εkεlOP(h2)
(
fz(Zl) +OP(h2)

)
= εkεlfz(Zk)fz(Zl)E[ΩX

n,ij ]Ω
Z
n,kl + εkεlfz(Zk)OP(h2)

+ εkεlfz(Zl)OP(h2) + εkεlOP(h4).

Therefore, it follows together with Corollary 4 of Sherman [72] that the second order U−processes of the
Hoeffding decomposition of A1,n are of order OP(n−1) uniformly with respect to h and d.

We consider now the four U−processes of order three obtained by conditioning on any subset of three
of the four vectors Ui, Uk, Uj and Ul. There are two types of such processes. First, the ones that are
0. This is the case when conditioning by (Ui,Uj ,Uk) or (Ui,Uj ,Ul). The second case occurs when
conditioning on (Ui,Uk,Ul) or (Uj ,Uk,Ul), the other one being similar. We get that

E[εkKh,ikεlKh,jlΩn,ij | Ui,Uk,Ul]
= εkεlKh,ikE[Kh,jlΩ

X
n,ijΩ

Z
n,ij | Ui,Zl]

= εkεlKh,ikfz(Zl)Ω
Z
n,ilE[ΩX

n,ij |Xi]

+ εkεlKh,ikOP(h2)

= h−qhqKh,ikτ1(Ui,Uk,Ul)

+ τ2(Uk,Ul)h
−qhqKh,ikOP(h2).

Now, we apply the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process given
by the kernel hqKh,ikτ1(Ui,Uk,Ul), indexed by h ∈ Hsc,n, with envelope ‖K‖∞τ1(·, ·, ·). The reasoning
for hqKh,ikτ2(Uk,Ul) is the same. (Herein, ‖ · ‖∞ denotes the uniform norm.) We take p = 1 and
β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Since K(·) is of bounded variation
and symmetric, without loss of generality we could consider that K(·) is nonincreasing on [0,∞). In this
case, 0 ≤ K(·/h) ≤ K(·/h) with h = supHsc,n =: cmaxn

−α. Hence, using Jensen’s inequality, we could
bound the right-hand side of the Maximal Inequality of Sherman [72] by a universal constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
τ2
1 (Ui,Uk,Ul)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by a
constant times n−αβq/2. Consequently, the uniform rate of the second U−processes obtained conditioning
by Ui,Uk,Ul and Uj ,Uk,Ul, respectively is n−3/2 × OP(nαq{1−β/2}). As 1/2 − αq(1 − β/2) > 0 under
our assumptions we get that n−3/2 × OP(nαq{1−β/2}) = oP(n−1) such that the third order U−processes
of the Hoeffding decomposition of A1,n are of order oP(n−1).

Finally, we consider the remaining U−process of order four. This process is given by

εkKh,ikεlKh,jlΩn,ij = h−2qτ3(Ui,Uj ,Uk,Ul)h
2qKh,ikKh,jl.

Now, we apply again the Maximal Inequality of Sherman [72], page 448, for the degenerate U−process
given by the kernel τ3(Ui,Uj ,Uk,Ul)h

qKh,ikh
qKh,jl, indexed by h ∈ Hsc,n, with envelope ‖K‖2∞τ(·, ·).

We take again p = 1 and β ∈ (0, 1) arbitrarily close to 1 to stand for Sherman’s quantity α. Hence, using
Jensen’s inequality, we could bound the right-hand side of the Maximal Inequality of Sherman [72] by an
universal constant times

Eβ/2
[
K2

(
Zi −Zk
cmaxn−α

)
K2

(
Zj −Zl
cmaxn−α

)
τ2
3 (Ui,Uj ,Uk,Ul)

]
.

By standard changes of variables and suitable integrability conditions, this integral is bounded by
a constant times n−αβq. Consequently, the uniform rate of the fourth order U−process is n−2 ×
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OP(nαq{2−β}). Since 1 > αq under our assumptions we get that n−2 ×OP(nαq{2−β}) = oP(n−1).
From all the results it follows that

sup
h∈Hsc,n

sup
d∈D
|A1,n| = sup

h∈Hsc,n
sup
d∈D
|A1,n(h)| = OP(n−1).

In the next step we consider A2,n. We get that

nE [A2,n] = E
[
ε2
kKh,ikKh,jkΩn,ij

]
= E

[
E
[
ε2
k |Xk,Zk

]
Kh,ikKh,jkΩn,ij

]
= E

[
σ2 (Xk,Zk)E

[
Kh,ikΩ

X
n,ijΩ

Z
n,ij | Zj ,Zk

]
Kh,jk

]
= E

[
σ2 (Xk,Zk) fz(Zk)ΩZ

n,kjE
[
ΩX
n,ij | Zj

]
Kh,jk

]
+ E

[
σ2 (Xk,Zk)Kh,jk

]
O(h2)

= E
[
σ2 (Xk,Zk) fz(Zk)E

[
ΩZ
n,kjE

[
ΩX
n,ij | Zj

]
Kh,jk | Zk

]]
+ E

[
σ2 (Xk,Zk)E [Kh,jk | Zk]

]
O(h2)

= E
[
σ2 (Xk,Zk) fz(Zk)2E

[
ΩX
n,ij

]]
+ 2E

[
σ2 (Xk,Zk) fz(Zk)

]
O(h2)

+ E
[
σ2 (Xk,Zk)

]
O(h4).

Therefore, E [A2,n] = O(n−1).
In addition, we get by a similar reasoning that the first, second and third order U–processes of the

Hoeffding decomposition of A2,n are of order oP(n−1) if we apply the Maximal Inequality of Sherman
[72]. The details are omitted. From all the results it follows that

sup
h∈Hsc,n

sup
d∈D
|A2,n| = sup

h∈Hsc,n
sup
d∈D
|A2,n(h)| = OP(n−1).

In the next step we consider A3,n. We get that E [A3,n] = 0 as well as

E [εjKh,ijεlKh,jlΩn,ij | Up, p ∈ {i, j, l}] = 0.

In addition, it is easy to see that the second and third order U–processes of the Hoeffding decomposition
of A3,n are of order oP(n−1) if we apply the Maximal Inequality of Sherman [72]. From all the results it
follows that

sup
h∈Hsc,n

sup
d∈D
|A3,n| = sup

h∈Hsc,n
sup
d∈D
|A3,n(h)| = oP(n−1).

Finally, we get that E [A4,n] = 0 as well as

E
[
εiεjK

2
h,ijΩn,ij | Up, p ∈ {i, j}

]
= 0.

In addition, it is easy to see that the second order U–process of the Hoeffding decomposition of A4,n is
of order oP(n−1) if we apply the Maximal Inequality of Sherman [72]. Deduce that

sup
h∈Hsc,n

sup
d∈D
|A4,n| = oP(n−1).

From all the results (1.47) follows and, therefore, the statement.
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Appendix C: Additional simulation results

Table 1.C.9: Bias and Standard Deviation of the estimators for λ and β in Model 2.

s Bias St. dev.

n 250 500 1000 250 500 1000

λ estimator

SmoothMD with γ Gn 0.006 0.004 0.002 0.094 0.066 0.047

SmoothMD without γ Gn 0.006 0.004 0.002 0.09 0.063 0.045

NL2SLS Gn −0.0003 0.041 −0.001 0.059 0.041 0.028

β estimator

SmoothMD with γ Gn 0.025 0.014 0.007 0.182 0.125 0.089

SmoothMD without γ Gn 0.024 0.013 0.007 0.173 0.119 0.084

NL2SLS Gn 0.005 0.003 0.0003 0.109 0.074 0.051

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The grid for λ is [λ0−0.8, λ0 + 0.8]. For all simulations 2000 Monte Carlo samples were used.

Table 1.C.10: Bias and Standard Deviation of the estimators for λ and β in Model 3.

s Bias St. dev.

n 250 500 1000 250 500 1000

λ estimator

SmoothMD with γ Gn −0.002 0.002 −0.003 0.146 0.102 0.073

SmoothMD without γ Gn −0.003 0.002 −0.003 0.145 0.101 0.072

NL2SLS Gn −0.003 0.002 −0.002 0.123 0.086 0.06

β estimator

SmoothMD with γ Gn 0.016 0.004 0.007 0.171 0.118 0.084

SmoothMD without γ Gn 0.017 0.005 0.007 0.17 0.117 0.084

NL2SLS Gn 0.013 0.002 0.004 0.145 0.099 0.07

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The grid for λ is [λ0−0.8, λ0 + 0.8]. For all simulations 2000 Monte Carlo samples were used.
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Table 1.C.11: Empirical Level for Z-Tests of the estimators for λ and β in Model 1.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 5.75 6.0 4.55 10.2 11.15 10.75

SmoothMD* with γ Gn 5.95 6.35 4.65 10.75 11.35 11.1

SmoothMD without γ Gn 6.45 6.6 5.4 11.1 12.1 10.9

SmoothMD* without γ Gn 5.1 5.05 4.45 10.05 10.0 9.15

NL2SLS Gn 9.25 7.75 5.95 15.1 13.9 11.55

Test for β

SmoothMD with γ Gn 5.85 4.5 3.85 10.25 9.15 7.9

SmoothMD* with γ Gn 6.3 5.15 4.3 11.55 10.65 8.55

SmoothMD without γ Gn 6.2 4.7 3.95 10.65 9.75 7.9

SmoothMD* without γ Gn 9.2 8.05 7.1 14.85 14.4 12.3

NL2SLS Gn 7.65 6.1 4.45 12.85 12.15 8.6

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 1.C.12: Empirical Level for Z-Tests of the estimators for λ and β in Model 2.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 7.3 5.85 5.5 12.7 10.5 10.25

SmoothMD* with γ Gn 6.7 5.85 5.3 12.5 10.15 10.1

SmoothMD without γ Gn 6.7 5.65 5.1 12.1 10.25 9.95

SmoothMD* without γ Gn 1.1 0.7 0.55 3.3 2.4 1.85

NL2SLS Gn 6.2 5.45 4.8 12.3 10.25 10

Test for β

SmoothMD with γ Gn 7.15 5.25 5.55 11.75 9.95 10.35

SmoothMD* with γ Gn 6.95 5.15 5.5 11.45 9.75 10.2

SmoothMD without γ Gn 6.3 5.25 4.9 11.25 9.9 10.1

SmoothMD* without γ Gn 1.0 2.45 0.75 3.4 2.45 1.95

NL2SLS Gn 6.55 4.95 5.1 12.25 10.95 9.75

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.
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Table 1.C.13: Empirical Level for Z-Tests of the estimators for λ and β in Model 3.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 6.45 5.55 4.85 11.2 9.65 9.5

SmoothMD* with γ Gn 6.95 6.2 5.55 12.05 10.5 10.55

SmoothMD without γ Gn 6.4 5.55 5.0 11.5 10.15 9.7

SmoothMD* without γ Gn 5.3 4.8 3.95 9.65 8.65 8.9

NL2SLS Gn 5.75 5.6 5.15 11.8 10.75 10.05

Test for β

SmoothMD with γ Gn 5.9 5.15 4.95 11.1 9.8 9.25

SmoothMD* with γ Gn 6.4 5.5 5.5 12.15 10.95 10.3

SmoothMD without γ Gn 6.05 5.35 4.9 10.9 9.8 9.1

SmoothMD* without γ Gn 5.1 4.6 4.15 9.7 8.7 8.35

NL2SLS Gn 6.5 5.75 5.45 11.4 10.95 9.15

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 1.C.14: Empirical Level for distance metric statistics of the estimators for λ and β in Model 1.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 7.0 6.8 5.35 11.9 12.7 11.2

SmoothMD* with γ Gn 6.95 7.45 5.35 12.1 13.25 11.65

SmoothMD without γ Gn 6.7 7.1 5.4 12.05 12.8 11.25

SmoothMD* without γ Gn 5.45 5.35 4.6 10.65 10.1 9.3

Test for β

SmoothMD with γ Gn 5.9 4.5 3.9 10.55 9.45 7.9

SmoothMD* with γ Gn 6.5 5.0 4.35 11.75 10.65 8.5

SmoothMD without γ Gn 6.35 4.75 4.0 10.8 9.75 7.85

SmoothMD* without γ Gn 9.3 8.15 7.15 14.95 14.5 12.15

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.
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Table 1.C.15: Empirical Level for distance metric statistics of the estimators for λ and β in Model 3.

s 5% level 10% level

n 250 500 1000 250 500 1000

Test for λ

SmoothMD with γ Gn 12.15 9.55 7.05 14.1 12.6 10.65

SmoothMD* with γ Gn 12.85 10.1 7.85 14.65 12.65 11.0

SmoothMD without γ Gn 12.3 9.55 6.95 14.4 12.7 10.3

SmoothMD* without γ Gn 11.75 8.55 6.35 14.25 11.6 9.55

Test for β

SmoothMD with γ Gn 12.15 9.25 6.55 14.4 12.05 10.3

SmoothMD* with γ Gn 12.6 10.05 7.2 14.6 12.4 10.95

SmoothMD without γ Gn 11.85 8.95 6.7 14.15 11.75 10.7

SmoothMD* without γ Gn 11.45 8.25 6.05 13.7 11.2 9.65

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.

Figure 1.C.9: Power function of the distance metric
statistic for λ of Model 1 with n = 500.

Figure 1.C.10: Power function of the distance metric statistic
for β of Model 1 with n = 250.

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. Only the SmoothMD
estimators that take the additional variance part due to the estimation of η into account are considered. For all
simulations 2000 Monte Carlo samples were used. The nominal level is 10%.
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Figure 1.C.11: Estimated m(Z) for Model 1 with n = 500. Figure 1.C.12: Estimated m(Z) for Model 2 with n = 500.

Notes: For the estimation the NW estimator with normal kernel and h ∝ n−1/3.5 is employed. The 25% and 75%
quantiles as well as the mean are reported. For all simulations 2000 Monte Carlo samples were used.
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Chapter 2

Hypothesis testing and inference in case of

Root-N-consistent semiparametric estimation of

partially linear models

2.1. Introduction

We consider a partially linear mean regression model given by

Y = XTβ +m(Z) + ε, (2.1)

where Y is a scalar response variable,
(
XT ,ZT

)T ∈ Rp × Rq a random covariate vector and m(·) an
unknown function. We assume that the error term ε has mean zero conditional on Z and a random
vector V ∈ Rs, i.e.

E[ε|V ,Z] = 0. (2.2)

The vector V can be considered as a vector of instruments that allows to consider models with endogenous
covariate vector X. Typically, it is for models like (2.1) assumed that E[ε|X,Z] = 0, see Robinson [70]
and Li [57]. However, when X is endogenous this assumption is not met and, thus, an estimator build
on it will most likely be inconsistent. If we have an instrument vector V that is correlated with X and
fulfills (2.2) consistent estimation is still possible. In case X is not endogenous we can just set V = X.
For V it is necessary to require that s ≥ p, see section 2.2.2, as is standard in the instrumental variable
literature.

We impose no further assumption on the conditional distribution of ε. In particular, we allow for
heteroscedasticity of unknown form. The vector Z contains continuous variables, but the components of
X and V need not be continuous. Let β0 denote the true value of the parameter.

To estimate the unknown structural parameter β0 we employ the smooth minimum distance (SmoothMD)
estimator for transformation partially linear models developed in chapter 1. The main difference between
the model in chapter 1 and model (2.1) is that in chapter 1 the transformation of Y is unknown, i.e. the
model is given by

T (Y, λ) = XTβ +m(Z) + ε, (2.3)

where T (·, λ) is the Box-Cox transformation given by

T (Y, λ) =

{
Y λ−1
λ , λ 6= 0

log(Y ) , λ = 0.

In model (2.3), in addition to β, the transformation parameter λ is unknown and needs, thus, to be esti-
mated. To identify the model it is in chapter 1 assumed that E[ε|X,Z] = 0 which rules out endogeneity.
Here, we allow X to be endogenous.1

The SmoothMD estimator in chapter 1 combines estimation techniques from Lavergne and Patilea
[56], Li [57] and Robinson [70]. Given condition (2.2) with V = X Robinson [70] proposed to use the

1Note that the results stated in chapter 1 apply to model (2.1) as well when X is exogenous.
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fact that E[Y | Z] = E[X | Z]Tβ +m(Z). Therefore, we can rewrite model (2.1) as

Y − E[Y | Z] = (X − E[X | Z])Tβ + ε. (2.4)

The estimator of β0 proposed by Robinson [70] is then a feasible version of the unfeasible OLS estimator
of Y − E[Y | Z] on X − E[X | Z]. The regressand and regressors E[Y | Z] and E[X | Z] being
unknown, they need to be estimated by some nonparametric procedure. Robinson [70] proposed to
estimate them by the Nadaraya-Watson estimator. He showed that, under suitable regularity assumptions
and conditions on the kernel and the bandwidth, the OLS estimator with response Y − E[Y | Z] and
covariate vectorX−E[X | Z] yields

√
n-consistent, asymptotically normally and efficient estimators if the

conditional expectations given Z are replaced by their kernel estimates. Robinson [70] used a trimming
procedure to ensure that the estimated density of Z, fz(Z), stays away from zero. To avoid this trimming
Li [57] considered the unfeasible OLS regression of (Y − E[Y | Z])fz(Z) on (X − E[X | Z])fz(Z).
Premultiplying by the density of Z does not break the consistency of the unfeasible OLS estimator since
E[fz(Z)ε |X,Z] = fz(Z)E[ε |X,Z] = 0.

However, when X is endogenous the estimators of Li [57] and Robinson [70] will not be consistent
as E[ε|X,Z] 6= 0. Therefore, Li and Stengos [59] proposed to employ the instrument vector V to get
a consistent estimator. Note that we can rewrite model (2.1) as in (2.4) even if E[ε | V ,Z] = 0 holds
instead of E[ε |X,Z] = 0 with V 6= X. The estimator is based on the moment equations

E
[
fz(Z)(V − E[V | Z])

(
fz(Z) (Y − E[Y | Z])− fz(Z)(X − E[X | Z])Tβ

)]
,

where the number of covariates X are the same as the number of instruments V , i.e. s = p. As before,
the regressors E[V | Z] are unknown and need to be estimated. Li and Stengos [59] use the Nadaraya-
Watson estimator here as well and show that the estimator is

√
n-consistent and asymptotically normally

distributed.
We will show in this chapter that it is possible to apply the SmoothMD estimator to estimate β0 in

model (2.1) even for endogenous X. In addition, we argue that the SmoothMD approach has properties
that might lead to better testing and inference results compared to the estimators of Li [57], Li and
Stengos [59] and Robinson [70]. The reason is that the estimation of E[Y | Z], E[X | Z] and E[V | Z]
introduces a small sample bias. The SmoothMD approach is able to capture a part of this bias so that
we can hope to get a better small sample behavior with respect to hypothesis testing.

The remainder of the chapter is organized as follows. In section 2.2, we present our new estimation
method, establish identification of the model parameter and develop our uniform-in-bandwidth theory,
including consistency and

√
n−consistency of our estimator as well as a testing procedure. Section 2.3

discusses the differences between SmoothMD and the established approaches. In section 2.4, we study
the small sample behavior of our estimator by a simulation study. Section 2.5 concludes. Technical
assumptions are stated in section 2.6.

2.2. The SmoothMD approach

In this section we consider how the SmoothMD approach can be applied in case of endogeneity and
formally define our estimator. First, we develop the new SmoothMD approach and prove identification
of the parameter of interest. Then, we define our SmoothMD estimator and prove consistency and√
n−consistency of the estimator. Finally, we state a testing procedure.

We use the following notation throughout the remaining of the chapter. For dl, dc ≥ 1, let Rdl×dc
denote the set of dl × dc A matrices with real elements. Let 1dl (resp. 0dl) denote the vector with all
components equal to 1 (resp. 0), 0dl×dc the dl × dc−null matrix and Idl×dl the identity matrix with
dimension dl × dl. For a matrix A, ‖A‖ is the Frobenius norm.

2.2.1. SmoothMD in case of endogeneity

In this section we consider the SmoothMD approach as proposed by Lavergne and Patilea [56] and
extend it for our needs. Consider a general conditional moment restrictions model

E[g(U ;θ) |W ] = 0, (2.5)

where g(·) is a given function, U and W are vectors of observed variables, and θ is the unknown finite-
dimensional parameter of interest. The components of W need not be continuous random variables. It is
assumed that there exists a unique θ0 such that E[g(U ;θ0) |W ] = 0. The SmoothMD approach is based
on an equivalent rewriting of equation (2.5) as an unconditional moment. For this purpose, let ω(·) be a
symmetric function of W with positive Fourier transform. We will employ ω(W ) = exp

{
−W TDW

}
,
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where D = diag(d) is some positive definite diagonal matrix with d ∈ D ⊂ Rs+q+ being a diagonal vector
with strictly positive components. D is a compact set. The condition stated in (2.5) is satisfied if and
only if

Q(θ) = E[g(U1;θ)g(U2;θ)ω(W1 −W2)] = 0,

where
(
UT

1 ,W
T
1

)T
and

(
UT

2 ,W
T
2

)T
are independent copies of

(
UT ,W T

)T
. Whenever E[g(U ;θ) |W ] 6=

0 it follows that Q(θ) > 0. Finally, the SmoothMD estimator is defined as the minimum of a sample
based approximation of Q(θ) and yields

√
n-consistent and asymptotically normally distributed estimates

for θ0.
In case of model (2.1), we have to extend the SmoothMD approach to a model that contains an

infinite-dimensional nuisance parameter as in chapter 1. Let W =
(
V T ,ZT

)T
and U =

(
Y,XT ,ZT

)T
.

Moreover, let
g(U ;β, γ,η) =

(
Y − E[Y | Z]− (X − E[X | Z])Tβ

)
fz(Z)− γ. (2.6)

Here, η is an infinite-dimensional nuisance parameter containing the three unknown functions of Z
appearing in the definition of g(U ;β, γ,η) and γ ∈ R is an intercept nuisance parameter. Now, the
partially linear mean regression model can be stated as conditional moment equation by E[g(U ;β, γ,η) |
W ] = 0. The true value of the intercept γ is known to be equal to zero. However, as already discussed
in chapter 1 this artificial parameter will be helpful to diminish the amplitude of the variance coming
from the nonparametric estimators of the unknown functions in the asymptotic representation of the
estimator. The SmoothMD approach we employ to get an estimate for β is given by

E[g(U ;β, γ,η) |W ] = 0 ⇐⇒ Q(β, γ) = E[g(U1;θ, γ,η1)g(U2;θ, γ,η2)ω(W1 −W2)] = 0,

where
(
UT

1 ,W
T
1

)T
and

(
UT

2 ,W
T
2

)T
are again independent copies of

(
UT ,W T

)T
. It follows by construc-

tion that when E[g(U ;β, γ,η) |W ] 6= 0 we have that Q(β, γ) > 0. Therefore, the SmoothMD estimator
is defined as the minimum of a sample based version of Q(β, γ).

Given an i.i.d. sample
(
UT

1 ,W
T
1

)T
, . . . ,

(
UT
n ,W

T
n

)T
and nonparametric estimates η̂1, . . . , η̂n of the

values of the nuisance parameter we define

Q̂n (β, γ) =
1

n2

∑
1≤i,j≤n

g(Ui;β, γ, η̂i)g(Uj ;β, γ, η̂j)ω(Wi −Wj).

The sample based version Q̂n (β, γ) of Q(β, γ) is quadratic with an explicit unique minimum (γ̂, β̂T )T .
Note that the SmoothMD estimators with endogenous and exogenous covariate vector X differ only

in the weighting ω(W1 −W2), i.e. W =
(
XT ,ZT

)T
when X is exogenous and W =

(
V T ,ZT

)T
when

X is endogenous. In contrast to the estimator of Li and Stengos [59] an estimate of E[V | Z] is not
needed.

2.2.2. Identification

In this section we show that the parameters (γ,βT )T in our model are uniquely identified. It follows
by construction that(

0,βT0
)T

= arg min
γ∈R,β∈Rp

E[g(U1;β, γ,η1)g(U2;β, γ,η2)ω(W1 −W2)], (2.7)

where g(U1;β, γ,η1) and g(U2;β, γ,η2) are independent copies of g(U ;β, γ,η) defined in equation (2.6)
and

η =
(
fz(·), E[Y | Z = · ], E[X | Z = · ]T

)T
.

The following statement shows that the minimum in (2.7) is unique such that the model parameters are
uniquely identified.

Lemma 2.1. Suppose that Assumptions 2.1 and 2.2 hold true. Then,

P
(
E
[
(Y − E[Y | Z])fz(Z)− γ − (X − E[X | Z])Tβfz(Z) | V ,Z

]
= 0
)
< 1,

for all γ ∈ R and β ∈ Rp such that (γ,βT )T 6= (0,βT0 )T .

For identification, it is necessary to assume that V ar [E[X|Z,V ]− E[X|Z]] has full rank, see As-
sumption 2.2.1. This ensures that X and V are not independent and also not independent conditional
on Z, otherwise we would get that E[X|Z,V ] − E[X|Z] = E[X|Z] − E[X|Z] = 0p and the full rank
assumption is not met. In addition, the assumption implies that s ≥ p to ensure the full rank condition.
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2.2.3. The estimator

In this section we state our estimation strategy that follows the ideas in chapter 1. Given an indepen-

dent sample
(
Y1,X

T
1 ,Z

T
1 ,V

T
1

)T
, . . . ,

(
Yn,X

T
n ,Z

T
n ,V

T
n

)T
from

(
Y,XT ,ZT ,V T

)T ∈ R×Rp+q+s, let us
define

Ŷn =
(

(Y1 − Ê[Y1 | Z1])f̂z(Z1), . . . , (Yn − Ê[Yn | Zn])f̂z(Zn)
)T
∈ Rn

and X̂n =
(

(X1 − Ê[X1 | Z1])f̂z(Z1), . . . , (Xn − Ê[Xn | Zn])f̂z(Zn)
)T
∈ Rn×p.

For 1 ≤ i ≤ n, η̂i = (f̂z(Zi), Ê[Yi | Zi], Ê[Xi | Zi]T )T is a nonparametric estimate of ηi = (fz(Zi), E[Yi |
Zi], E[Xi | Zi]T )T . For the unknown values we use the kernel estimates

f̂z(Zi) =
1

nhq

n∑
j=1

K

(
Zi −Zj

h

)
, Ê[Yi | Zi]f̂z(Zi) =

1

nhq

n∑
j=1

YjK

(
Zi −Zj

h

)

and Ê[Xi | Zi]f̂z(Zi) =
1

nhq

n∑
j=1

XjK

(
Zi −Zj

h

)
.

Here K(·) is a multivariate kernel function and h is the bandwidth. Let Ωn be the n × n− symmetric
matrix with elements

Ωn,ij = exp{−(V T
i − V T

j ,Z
T
i −ZTj )D(Vi − Vj ,Zi −Zj)}, 1 ≤ i, j ≤ n.

Typically, the components of the vector d defining the diagonal matrixD are proportional to the standard
deviation of the components of the vector (V T

i ,Z
T
i )T . The definition of Ωn,ij allows also to take into

account discrete components of V .
We can now define the estimates of (γ,βT )T ∈ R1+p introduced in equation (2.7). Let

Q̂n (β, γ) = n−2
(
Ŷn − γ1n − X̂nβ

)T
Ωn

(
Ŷn − γ1n − X̂nβ

)
.

Finally, consider the generalized least-squares problem

min
γ,β

Q̂n (β, γ) .

The solution of this problem has the form of standard generalized least-squares estimators:

γ̂(β) =
1

1TnΩn1n
1TnΩn

(
Ŷn − X̂nβ

)
and β̂ =

(
X̂TnDnX̂n

)−1

X̂TnDnŶn,

with

Dn = Ωn −
1

1TnΩn1n
Ωn1n1TnΩn ∈ Rn×n.

The structure of Dn is as in chapter 1, however, Ωn does now depend on V instead of X. In addition, we
do not need the matrix B̂n for estimation as we do not need to estimate the transformation parameter.
Note that again, by construction, Dn1n = 0n.

We close this section showing that our estimator is well-defined.

Lemma 2.2. If Assumptions 2.1.3 and 2.2 hold true, then, for each n ≥ 1, the matrices Ωn and
X̂TnDnX̂n are positive definite with probability 1. In particular, 1TnΩn1n > 0 and X̂TnDnX̂n is invertible
with probability 1.

2.2.4. Consistency and asymptotic normality

In this section we consider the asymptotic behavior of the estimator. Our asymptotic results are
stated uniformly with respect to the diagonal of the matrix D. This ensures that we can use a data
driven estimate of D proportional to the empirical standard deviations of V and Z.

Let’s introduce some more notation:

Yn = ((Y1 − E[Y1 | Z1])fz(Z1), . . . , (Yn − E[Yn | Zn])fz(Zn))
T ∈ Rn,

and
Xn = ((X1 − E[X1 | Z1])fz(Z1), . . . , (Xn − E[Xn | Zn])fz(Zn))

T ∈ Rn×p.
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With all this in hand we can now state consistency of our estimator.

Theorem 2.1 (Consistency). Assume that Assumptions 2.1, 2.2 and 2.3 hold true. Then

sup
h∈Hc,n

sup
d∈D

∥∥∥β̂ − β0

∥∥∥ = oP(1) and sup
h∈Hc,n

sup
d∈D

γ̂(β̂) = oP(1).

In Theorem 2.1 we require that h ∈ Hc,n, where Hc,n = [cminn
−α, cmaxn

−α], with 0 < α < 1/q and
cmin, cmax are positive constants. This implies that nhq → ∞ and h → 0 for n → ∞ which is in line
with Li [57], Li and Stengos [59] and Robinson [70] as well as chapter 1.

Next, we prove asymptotic normality of our estimator. For this purpose, we first derive the asymptotic
linear representation of β̂ from which the

√
n−asymptotic normality follows. In the following result, we

show that β̂ is asymptotically not equivalent to the infeasible estimator of β0 one would obtain when
the infinite-dimensional parameter η is given and the intercept γ is equal to 0. This is in contrast to the
results of Li [57], Li and Stengos [59] and Robinson [70]. The reason is that they can use the fact that
E[Xn,i | Zi] = 0 when controlling higher order terms. In our case, we weight the observations by Ωn,ij

such that E[Xn,iΩn,ij | Zi] 6= 0 for i 6= j. For more details consider section 2.3. This is also the reason
why we need to ask for q < 4 instead of q < 6 as in Li [57]. Therefore, we require that h ∈ Hsc,n, where
Hsc,n = [cminn

−α, cmaxn
−α], with α ∈ (1/4, 1/q).

The results are again obtained uniformly with respect to the elements on the diagonal of the matrix
D that determines Ωn. In addition, let Kh(·) = h−qK(·/h) and, for any 1 ≤ i, j ≤ n, let

Kh,ij = Kh(Zi −Zj).

Proposition 2.1 (Asymptotic representation). Assume that the conditions of Theorem 2.1 hold true.
Moreover, Assumption 2.4 holds true. Then, uniformly with respect to h ∈ Hsc,n and d ∈ D,

β̂ − β0 =
(
XTnDnXn

)−1 XTnDn
[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+ oP(n−1/2) = OP(n−1/2),

where (εfz)n = (ε1fz(Z1), . . . , εnfz(Zn))T and
(
ε̂|zf̂z

)
n

=

(
1
n

n∑
k=1,k 6=1

εkKh,1k, . . . ,
1
n

n∑
k=1,k 6=n

εkKh,nk

)T
.

In the following we state asymptotic normality of our estimator. Therefore, we use the notation
Ωn,i,j(d) = Ωn,i,j and

Dn(d) = Ωn(d)− 1

1TnΩn(d)1n
Ωn(d)1n1TnΩn(d),

to make the dependence of Ωn on d explicit. Note that with

ΩV
n,ij(d) = ΩV

n,ij = exp{−(Vi − Vj)Tdiag(d1, . . . , ds)(Vi − Vj)} and

ΩZ
n,ij(d) = ΩZ

n,ij = exp{−(Zi −Zj)Tdiag(ds+1, . . . , ds+q)(Zi −Zj)}, 1 ≤ i, j ≤ n,

Ωn,ij(d) = ΩV
n,ij(d)ΩZ

n,ij(d). As discussed the structure of Dn is the same as in chapter 1. The only

difference is that we replace ΩX
n,ij(d) by ΩV

n,ij(d) when X is endogenous.
Furthermore, we define, for 1 ≤ i ≤ n,

τi(d) := Xn,i −
1

E [1TnΩn(d)1n]
E
[
XTnΩn(d)1n

]
,

where Xn,i = (Xi − E[Xi | Zi])fz(Zi). In addition, let

ΦV
n,ij(d) = ΩV

n,ij(d)− E
[
ΩV
n,ik(d) | Vi

]
.

With all this in hand we can state the following Theorem.

Theorem 2.2 (Asymptotic normality). Assume that the conditions of Proposition 2.1 hold true. Then,
uniformly with respect to h ∈ Hsc,n and d ∈ D,

√
n
(
β̂ − β0

)
= E

[
n−2XTnDn(d)Xn

]−1

 1√
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦV
n,ij(d) | Vj ,Zj

]+ oP (1) ,

converges in distribution to a tight random process whose marginal distribution is zero-mean normal with
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covariance function E
[
n−2XTnDn(d1)Xn

]−1
∆(d1,d2)E

[
n−2XTnDn(d2)Xn

]−1
with

∆(d1,d2) = E
[
V ar [εjfz(Zj) | Vj ,Zj ] τi(d1) τk(d2)TΩZ

n,ij(d1)ΩZ
n,kj(d2)ΦV

n,ij(d1)ΦV
n,kj(d2)

]
.

Due to the estimation error coming from the estimation of η we need ΦV
n,ij(d) to state the asymptotic

variance of our estimators. If η was known ΦV
n,ij(d) should be replaced by ΩV

n,ij(d).

We can estimate the covariance matrix by
(
n−2X̂TnDn(d1)X̂n

)−1

∆̂(d1,d2)
(
n−2X̂TnDn(d2)X̂n

)−1

,

where

∆̂(d1,d2) = n−3X̂TnDn,inf (d1)Φ̂n(d1)Σ̂nΦ̂T
n (d2)DTn,inf (d2)X̂n. (2.8)

Here, Φ̂V
n and Φ̂n are the n× n− symmetric matrices with elements

Φ̂V
n,ij(d) = ΩV

n,ij(d)− 1

n

n∑
k=1

ΩV
n,ik(d), 1 ≤ i, j ≤ n

Φ̂n,ij(d) = Φ̂V
n,ij(d)ΩZ

n,ij(d), 1 ≤ i, j ≤ n

and Dn,inf (d) = In×n −
1

1TnΩn(d)1n
Ωn(d)1n1Tn .

Σ̂n = diag
(
V̂ ar [ε1fz(Z1) | V1,Z1] , . . . , V̂ ar [εnfz(Zn) | Vn,Zn]

)
is an estimator of the error variance.

One can use a nonparametric estimator for the conditional variance or alternatively use an estimate of the
error terms to approximate the conditional variance in the spirit of the Eiker-White variance estimator.
Consistency of the above estimators is straightforward to establish.

2.2.5. Testing the slope coefficients

In this section we provide a distance metric statistic to test restrictions for β. Let

An = XTnDn
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
.

Suppose we want to test r linear restrictions for β given by

H0 : Rβ0 = c, (2.9)

where R is a r× p− matrix of full rank and c ∈ Rr. In order to test the restrictions, we need to find the
restricted estimator for β0, β̂R. Therefore, we minimize

n−2
(
Ŷn − X̂nβ

)T
Dn
(
Ŷn − X̂nβ

)
s.t. Rβ = c,

with respect to β and get that

β̂R = β̂ −
(
X̂TnDnX̂n

)−1

RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1 (
Rβ̂ − c

)
.

Given the restricted estimator we can now define our distance metric statistic for testing (2.9).

DM =
1

n

(
Ŷn − X̂nβ̂R

)T
Dn

(
Ŷn − X̂nβ̂R

)
− 1

n

(
Ŷn − X̂nβ̂

)T
Dn

(
Ŷn − X̂nβ̂

)
.

The following result shows the validity of the distance metric statistic.

Proposition 2.2. Assume that the conditions of Proposition 2.1 hold true. Then, uniformly with respect
to h ∈ Hsc,n and d ∈ D,

DM − n−3/2AT
nE

[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
Ann

−3/2 = oP(1),

under H0 and P(n−1DM > c)→ 1 for some c > 0 if H0 does not hold.

The process in Proposition 2.2 is asymptotically tight and for each d behaves asymptotically as a

80



weighted sum of p− r independent chi-squares, where the weights are the positive eigenvalues of

E
[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
∆(d,d),

see Johnson et al. [49]. Determining critical values requires the estimation of the last display. We can use
the estimator stated in (2.8) and for all other components we simply replace the unknown expressions by
their sample equivalence.

2.3. Why SmoothMD might be preferable

The motivation for the SmoothMD estimator is that models nonlinear in parameters that are based
on conditional moment restrictions as condition (2.2) can render inconsistent parameter estimates when
the generalized method of moments (GMM) is used for estimation. See Dominguez and Lobato [29].
However, the partially linear model (2.1) is linear in β. Therefore, it seems to make no sense to apply
SmoothMD in this situation as β can also be estimated with the estimators proposed by Li [57] or Li
and Stengos [59].

The reason for applying SmoothMD is that the estimation of η introduces a small sample bias. The
SmoothMD approach is able to capture a part of this bias which should lead to an improved small sample
behavior.

In the following we assume thatX is exogenous such that V = X. Recall that β̂ =
(
X̂TnDnX̂n

)−1

X̂TnDnŶn.

In addition, the estimator of Li [57] is given by β̂Li =
(
X̂Tn X̂n

)−1

X̂Tn Ŷn. Both estimators differ only in

the weighting matrix Dn. This matrix is defined as

Dn = Ωn −
1

1TnΩn1n
Ωn1n1TnΩn.

By construction, we have that X̂Tn1n = 0p. Therefore, the estimator β̂Li is equivalent to β̂ for Ωn = In×n.

Recall from Proposition 2.1 that

β̂ − β0 =
(
XTnDnXn

)−1 XTnDn
[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+ oP(n−1/2).

Furthermore, it was established in the proof of Theorem 2.2 that

√
n
(
β̂ − β0

)
= E

[
n−2XTnDnXn

]−1

(
1√
n

n∑
j=1

εjfz(Zj)E [τi(d) Ωn,ij(d) |Xj ,Zj ]

− 1√
n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ik(d)ΩX
n,ij(d) | Zk

])
+ oP (1) .

The process in the last display is asymptotically tight. The second sum, 1√
n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
,

in the asymptotic representation of β̂ occurs due to the estimation of η. The reason is that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
XTnΩn

(
ε̂|zf̂z

)
n
− 1

n

n∑
k=1

εkfz(Zk)E
[
Xn,iΩZ

n,ikΩ
X
n,ij | Zk

]∥∥∥∥∥ = oP(n−1/2)

as well as sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
1TnΩn

(
ε̂|zf̂z

)
n
− 1

n

n∑
k=1

εkfz(Zk)E
[
ΩZ
n,ikΩ

X
n,ij | Zk

]∥∥∥∥∥ = oP(n−1/2).

(2.10)

In contrast, we get that

sup
h∈Hsc,n

∥∥∥∥∥ 1

n2
XTn
(
ε̂|zf̂z

)
n
− 1

n

n∑
k=1

εkfz(Zk)E [Xn,k | Zk]

∥∥∥∥∥ = sup
h∈Hsc,n

∥∥∥∥ 1

n2
XTn
(
ε̂|zf̂z

)
n

∥∥∥∥ = oP(n−1/2)

(2.11)

as E [Xn,k | Zk] = 0p. Therefore, the asymptotic representation of the estimator proposed by Li [57] is
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given by

√
n
(
β̂Li − β0

)
= E

[
n−2XTnXn

]−1 1√
n

n∑
j=1

εjfz(Zj)Xn,j + oP (1) .

The process in the last display is asymptotically tight.
The main difference between the asymptotic representations of β̂ and β̂Li is that the error due to the

estimation of η has no influence on the representation of β̂Li in contrast to the one of β̂. The reasons are
statements (2.10) and (2.11). However, in finite samples the estimator of Li [57] will be influenced by the

estimation error of η as well. Therefore, employing β̂ might improve the accuracy in case of hypothesis
testing. The simulation results in section 2.4 support the argumentation.

Note that it is possible to estimate β0 without the intercept nuisance parameter γ as well, see the
discussion in chapter 1. In that case Dn is replaced by Ωn in the estimation of β. The estimator is than
still
√
n−consistent and asymptotically normally distributed. In the variance

E
[
n−2XTnDn(d1)Xn

]−1
∆(d1,d2)E

[
n−2XTnDn(d2)Xn

]−1

we replace Dn by Ωn and τi(d) by Xn,i. When estimating the variance, Dn,inf has to be replaced by
In×n and Dn by Ωn.

However, when β0 is estimated with intercept nuisance parameter γ the impact of estimating η on

the asymptotic variance might become small. Consider again 1
n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
. If

we could replace the index k by j in ΩZ
n,ik we would get that

E
[
τi(d)ΩZ

n,ijΩ
X
n,ij | Zk

]
= E

[
τi(d)ΩZ

n,ijΩ
X
n,ij

]
= 0p,

such that the second sum in the asymptotic representation of β̂ would not be present. Of course this is
not possible. However, here we consider d as a vector with elements playing the role of standardizing
constants. If the elements of d are the inverse of a kernel smoothing bandwidth tending to zero at a

suitable rate E
[
τi(d)ΩZ

n,ikΩ
X
n,ij | Zk

]
tends to zero for n→∞. The exact rate is over the scope of this

chapter, but we have seen in the simulations of chapter 1 that even in case of d being a vector of constants
it seems that we can forget about the second part in the asymptotic representation. The estimator is
labeled SmoothMD* in the simulation section. If we do not consider the second part in the asymptotic
representation, the variance is estimated by replacing Φ̂n,ij(d) with Ωn,ij(d).

Note that the previous discussion does not apply to the case without constant γ as

E
[
Xn,iΩZ

n,ijΩ
X
n,ij | Zk

]
= E

[
Xn,iΩZ

n,ijΩ
X
n,ij

]
6= 0p.

2.4. Small sample study

In this section we consider the small sample behavior of our estimator. We conduct several simulation
experiments to consider bias and standard deviation for the estimated parameters. In addition, we
conduct hypothesis tests for β. We begin with a consideration of the simulation setup. Finally, we state
our simulation results.

2.4.1. Simulation setup

During the simulation, we consider six different models. The models are given by

Model 1: log(Y ) = Xβ0 + m(Z) + ε, m(Z) = exp{Z}
1+exp{Z} + 1

3 with Z ∼ N(1, 1), β0 = 1, X = − 2
3Z + u with

u ∼ N(0, 1) and ε =
√

1+X2

2 ũ with ũ ∼ N
(
0, 1

13

)
.

Model 2: log(Y ) = Xβ0 + m(Z1 + Z2 + Z3) + ε, m(Z) = exp{Z}
1+exp{Z} + 1

3 with Z1, Z2, Z3 ∼ N(1, 1), β0 = 1,

X = − 2
9 (Z1 + Z2 + Z3) + u with u ∼ N(0, 1) and ε =

√
1+X2

2 ũ with ũ ∼ N
(
0, 3

35

)
.

Model 3: Y = Xβ0 + m(Z) + ε, m(Z) = exp{Z}
1+exp{Z} − 1 with Z ∼ U(−3,−1) and β0 = 1, X = 2

3Z + u with

u ∼ U(−1, 1) and ε ∼ U
(
−
√

1/9,
√

1/9
)

.

Model 4: Y = Xβ0 + m(Z1 + Z2 + Z3) + ε, m(Z) = exp{Z}
1+exp{Z} − 1 with Z1, Z2, Z3 ∼ U(−3,−1) and β0 = 1,

X = 2
9 (Z1 + Z2 + Z3) + u with u ∼ U(−1, 1) and ε ∼ U

(
−
√

1/9,
√

1/9
)

.
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Model 5: Y = Xβ0 + m(Z1 + Z2 + Z3) + ε, m(Z) = exp{Z}
1+exp{Z} + 1

3 with Z1, Z2, Z3 ∼ N(1, 1), β0 = 1,

X = − 2
9 (Z1 + Z2 + Z3) + V + u with V ∼ N(2, 9), u ∼ N(0, 1), ε ∼ N

(
0, 1

9

)
and Cov(u, ε) = 0.5.

Model 6: Y = Xβ0 + m(Z1 + Z2 + Z3) + ε, m(Z) = exp{Z}
1+exp{Z} + 1

3 with Z1, Z2, Z3 ∼ N(1, 1), β0 = 1,

X = − 2
9 (Z1 + Z2 + Z3) + V + u with V ∼ N(2, 9), u ∼ N(0, 1), ε =

√
4.5
(
ε̃2 − 1/9

)
, where

ε̃ ∼ N
(
0, 1

9

)
and Cov (u, ε̃) = 0.5.

The models differ in the number of covariates Z. In Model 1 and Model 3, m(·) contains only one
covariate, whereas it contains three in all other models. In addition, the error terms ε are heteroscedastic
in Model 1 and Model 2 in contrast to the remaining models. Furthermore, the error terms in Model 6
have a skewed density function as they are χ2-distributed.

The estimators are computed by employing a normal kernel for K(·). Z is standardized componen-
twise by the corresponding standard deviations and h ∝ n−1/3.5. This bandwidth choice satisfies the
assumptions of Theorem 2.2. The components of d defining the diagonal matrix D in Ωn are set equal
to the componentwise standard deviations of X and Z in Model 1 – Model 4 and to the componentwise
standard deviations of V and Z in Model 5 and Model 6 as X is endogenous in the latter models.

In the simulation we compare the proposed estimator where γ is employed with the estimator that
does not use γ. Either of the two estimators converges asymptotically to a normal distribution. Therefore,
it is interesting to consider which one has the better small sample behavior.

We consider bias and standard deviation of the estimators as well as the size of the distance metric
statistics proposed in Section 2.2.5. In addition, we test by a simple Z-Test if the estimated parameters
are significantly different from the true value. Therefore, we employ the variance estimator stated in (2.8)
for both estimators with the necessary adjustments for the estimator without γ. To estimate the error
variance we employ the Eiker-White variance estimator. In order to see the influence of the estimated η
on the variance we consider all tests also without taking the estimation error of η into account. Therefore,
we replace Φ̂n by Ωn in the variance estimator (2.8).

In addition, we consider the estimator of Li [57] for Model 1 – Model 4 and the estimator of Li and
Stengos [59] for Model 5 and Model 6 as competitors. Let

V̂n =
(

(V1 − Ê[V1 | Z1])f̂z(Z1), . . . , (Vn − Ê[Vn | Zn])f̂z(Zn)
)T
∈ Rn×p

with Ê[Vi | Zi]f̂z(Zi) = 1
nhq

∑n
j=1 VjK

(
Zi−Zj
h

)
for all i. Note that s = p in the considered models and

recall that

β̂Li =
(
V̂Tn X̂n

)−1

V̂Tn Ŷn,

where V̂n = X̂n in case of exogenous X. The variance of β̂Li can be estimated by(
V̂Tn X̂n

)−1

V̂Tn Σ̂nV̂n
(
X̂Tn V̂n

)−1

,

where Σ̂n = diag
(
V̂ ar [ε1fz(Z1) | V1,Z1] , . . . , V̂ ar [εnfz(Zn) | Vn,Zn]

)
as in (2.8).

In the estimation of E[X | Z] and E[V | Z] we employ the same kernel and bandwidth as for the
SmoothMD estimator and we use again the Eiker-White variance estimator to estimate the error variance.

2.4.2. Simulation results

Table 2.1 states the results for bias and standard deviation for β in Model 1. All three estimators have
comparable results for bias and the bias decreases with sample size. The standard deviation is largest for
the estimator of Li [57] but decreases with samples size such that it is almost equal to the SmoothMD
estimators for n = 500.

Table 2.2 states the results for bias and standard deviation for β in Model 4. Again, all three
estimators have comparable results for bias and the bias decreases with sample size. In contrast, the
standard deviation is larger as in Model 1 and almost equal for all three estimators. The larger standard
deviation is reasonable as m(·) contains three covariates in Model 4 and only one in Model 1.

Table 2.3 states the results for bias and standard deviation for β in Model 5. The bias for n = 50 is
here a bit larger for SmoothMD than for the estimator of Li and Stengos [59]. However, the bias decreases
with sample size. The standard deviation is almost equal for all three estimators.
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Table 2.1: Bias and Standard Deviation of the estimator for β in Model 1.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ −0.002 −0.001 −0.001 0.062 0.027 0.02

SmoothMD without γ −0.002 −0.001 −0.001 0.063 0.026 0.02

Li 0.001 −0.0001 0.0001 0.068 0.03 0.022

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.

Table 2.2: Bias and Standard Deviation of the estimator for β in Model 4.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ 0.0002 −0.002 −0.001 0.09 0.04 0.02

SmoothMD without γ 0.0002 −0.002 −0.001 0.09 0.04 0.02

Li −0.0001 −0.002 −0.001 0.1 0.04 0.03

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.

Table 2.3: Bias and Standard Deviation of the estimator for β in Model 5.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ 0.02 0.005 0.003 0.06 0.025 0.018

SmoothMD without γ 0.02 0.005 0.003 0.06 0.025 0.018

Li and Stengos −0.004 −0.002 −0.001 0.07 0.027 0.019

Notes: For the SmoothMD estimators and the estimator of Li and Stengos, h ∝ n−1/3.5. The components of d are set
equal to the componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.

Table 2.4: Bias and Standard Deviation of the estimator for β in Model 6.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ 0.0003 0.0002 0.0001 0.097 0.04 0.03

SmoothMD without γ 0.0003 0.0002 0.0001 0.097 0.04 0.03

Li and Stengos 0.001 −0.0002 −0.0001 0.11 0.05 0.03

Notes: For the SmoothMD estimators and the estimator of Li and Stengos, h ∝ n−1/3.5. The components of d are set
equal to the componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.
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Table 2.4 states the results for bias and standard deviation for β in Model 6. The bias is for all three
estimators smaller than in Model 5, the second model with endogenous covariates. However, the standard
deviation is larger as in Model 5. This might be due to the skewed error distribution of Model 6.

In addition, note that the results for SmoothMD with and without γ are close for all considered
models.

Table 2.5: Empirical Level for the Z-Test of the estimator for β in Model 2.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 19.7 7.6 5.85 27.4 13.4 11.5

SmoothMD* with γ 19.6 8.6 6.2 26.55 14.6 12.25

SmoothMD without γ 19.85 7.7 5.9 27.15 13.55 11.6

SmoothMD* without γ 19.7 8.65 6.25 26.4 14.3 12.25

Li 26.75 15.45 11.45 32.5 23.3 18.85

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For SmoothMD the
additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 2.6: Empirical Level for the Z-Test of the estimator for β in Model 3.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 7.8 4.7 4.0 12.55 9.7 8.65

SmoothMD* with γ 8.45 5.4 4.9 13.25 10.9 10.1

SmoothMD without γ 7.9 4.75 3.95 12.6 9.75 8.6

SmoothMD* without γ 8.15 5.45 4.9 13.1 10.8 10.15

Li 9.65 5.95 5.35 14.3 11.5 10.25

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For SmoothMD the
additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 2.7: Empirical Level for the distance metric statistic of the estimator for β in Model 1.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 6.05 3.45 4.0 10.75 7.4 8.9

SmoothMD* with γ 7.0 4.1 4.9 11.8 8.8 10.5

SmoothMD without γ 6.2 3.4 3.95 11.15 7.55 9.0

SmoothMD* without γ 7.15 3.9 4.9 12.3 9.0 10.65

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.
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Table 2.8: Empirical Level for the Z-Test of the estimator for β in Model 6.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 16.1 6.5 5.7 24.2 12.05 11.05

SmoothMD* with γ 15.3 6.5 5.8 22.6 11.9 11.05

SmoothMD without γ 16.3 6.45 5.7 24.05 12.05 11.05

SmoothMD* without γ 14.75 6.65 5.45 21.95 11.7 10.85

Li and Stengos 20.5 11.85 9.7 29.2 19.65 16.6

Notes: For the SmoothMD estimators and the estimator of Li and Stengos, h ∝ n−1/3.5. The components of d are
set equal to the componentwise standard deviations for all variables. The variances are estimated by the Eiker-White
variance estimator. For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For
SmoothMD the additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 2.5 states the empirical level for the Z-Tests for β in Model 2. All four considered SmoothMD
estimators get close to the nominal levels for increasing n. However, the estimator of Li [57] overrejects
for all considered sample sizes. It seems that the results improve for increasing sample size but do not get
close to the results of the SmoothMD estimators. SmoothMD with and without γ lead to similar results.

Table 2.6 states the empirical level for the Z-Tests for β in Model 3. All five considered estimators
get close to the nominal levels for increasing n. However, for n = 50 all estimators overrejct with the
estimator of Li [57] performing worst. SmoothMD with and without γ lead to similar results. Surprisingly,
the SmoothMD with wrongly estimated variance gets closer to the nominal levels than the SmoothMD
with correct variance. Note that the main difference between Model 2 and Model 3 is in the dimension
of Z. From the results it seems that the estimator of Li [57] needs a larger sample size to control the
estimation error of η with the results getting worse the larger the dimension of Z.

Table 2.8 states the empirical level for the Z-Tests for β in Model 6. The stated results are in line with
the ones discussed before. Therefore, it seems that the SmoothMD estimator outperforms the estimator
of Li and Stengos [59].

Finally, Table 2.7 states the empirical level for the distance metric statistic of the estimator for β in
Model 1. The results are convincing, supporting the theoretical statement. SmoothMD with and without
γ lead to similar results.

Figure 2.1: Power function of the Z-Test for β of Model 1
with n = 250.

Figure 2.2: Power function of the Z-Test for β of Model 4
with n = 250.

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
Only the SmoothMD estimators that take the additional variance part due to the estimation of η into account are
considered. For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.
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Figure 2.3: Power function of the Z-Test for β of Model 5
with n = 250.

Figure 2.4: Power function of the Z-Test for β of Model 6
with n = 500.

Notes: For the SmoothMD estimators and the estimator of Li and Stengos, h ∝ n−1/3.5. The components of d are set
equal to the componentwise standard deviations for all variables. The variances are estimated by the Eiker-White
variance estimator. Only the SmoothMD estimators that take the additional variance part due to the estimation of η into
account are considered. For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.

Figures 2.1 and 2.2 state the power functions of the Z-Test for β in Model 1 and Model 4 with n = 250.
We consider here only the estimator of SmoothMD with the correct error variance and the estimator of
Li [57]. In the first case all three estimators perform reasonable well and it seems that the SmoothMD
estimators have a bit larger power. In the second case the estimator of Li [57] overrejects at the true
value whereas the SmoothMD estimators only overreject slightly. It seems that in terms of power the
SmoothMD outperforms the estimator of Li [57] here as well. Note that both SmoothMD versions lead
to similar results.

Figures 2.3 and 2.4 state the power functions of the Z-Test for β in Model 5 with n = 250 and
Model 6 with n = 500. In the first case the power functions for all three estimators are not symmetric
anymore. Furthermore, the estimator of Li and Stengos [59] overrejects at the true value whereas the
SmoothMD estimators only overreject slightly. In the second case the power functions are symmetric and
the SmoothMD estimators reach the nominal value at the true value and the estimator of Li and Stengos
[59] overrejects again.

2.5. Conclusion

In this paper we considered the semiparametric partially linear model studied in Li [57] and Robinson
[70]. We employed the SmoothMD estimation technique to the partially linear model and argued why
SmoothMD might be preferable to the estimators proposed by Li [57] and Li and Stengos [59].

We established consistency as well as
√
n-asymptotic normality. In addition, we proposed a distance

metric statistic to test the model parameters. A Monte Carlo experiment showed the usefulness of the
proposed estimator in small samples.
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2.6. Assumptions

Assumption 2.1. Data Generating Process

1. The observations
(
Yi,X

T
i ,Z

T
i ,V

T
i

)T
, 1 ≤ i ≤ n, are i.i.d. copies of

(
Y,XT ,ZT ,V T

)T ∈ R×Rp×
Rq × Rs, with s ≥ p.

2. The covariate vector Z admits a bounded density with respect to the Lebesgue measure in Rq. The
covariate vectors X and V are split in two subvectors Xc ∈ Rpc and Xd ∈ Rpd , Vc ∈ Rsc and
Vd ∈ Rsd with 0 ≤ pc, pd ≤ p, pc + pd = p, 0 ≤ sc, sd ≤ s and sc + sd = s. The subvectors Xc and
Vc admit bounded densities with respect to the Lebesgue measures in Rpc and Rsc . The subvectors
Xd and Vd take values in finite sets.

3. The (s+ q) diagonal components of the matrix D belong to the set D = [dL, dU ]× · · · × [dL, dU ] ⊂
Rs+q+ , with some fixed 0 < dL < dU <∞.

The assumption that the discrete components of X and V take values in finite sets is a technical
condition that simplifies the proofs without significant restriction of the generality for the applications.

Assumption 2.2. Identification

1. E
[
‖X‖2

]
<∞ and V ar [E[X|Z,V ]− E[X|Z]] as well as V ar

[
(V T ,ZT )T

]
have full rank.

2. The true value β0 ∈ Rp is not equal to 0p.

3. We have that E [Y ] <∞.

Note that Assumption 2.2.1 implies that we need s ≥ p. In addition, we have that

V ar
[
uT (X − E [X | Z])

]
= V ar

[
uT (X − E [X | Z,V ])

]
+ V ar

[
uT (E [X | Z,V ]− E [X | Z])

]
> 0

such that V ar [X − E[X|Z]] has full rank as well. Therefore, it follows from the discussion in chapter 1
that V ar

[
(XT ,ZT )T

]
has full rank.

Assumption 2.3. Consistency

1. The kernel K(·) is the product of q univariate kernel functions K̃ of bounded variation. Moreover,

K̃ is a symmetric function with integral equal to one and
∫
R
t2K̃(t)dt <∞.

2. The functions fz(·), (mfz)(·), E[‖X‖2 | Z = · ]fz(·) and E[Y | Z = · ]fz(·) have Hölder continuous
partial derivatives of order four.

3. The bandwidth h belongs to a range Hc,n = [cminn
−α, cmaxn

−α], with 0 < α < 1/q and cmin, cmax
positive constants.

4. It holds true that E
[
‖X‖4

]
<∞, E [‖Z‖] <∞, E

[
Y 4
]
<∞ and E

[
ε4
]
<∞.

Assumption 2.4. Asymptotic Normality

1. The bandwidth h belongs to a range Hsc,n = [cminn
−α, cmaxn

−α], with α ∈ (1/4, 1/q) and cmin,
cmax positive constants.

2. E
[
ε2 | V ,Z

]
= σ2(V ,Z) is in L1 ∩ L2.

3. E
[
m(Z)4

]
<∞.
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Appendix

Appendix A: Proofs

Proof of Lemma 2.1.

In order to ensure global identification, we employ the approach of chapter 1 that is an extension the
proof in Shin [74]. For any (γ,βT )T we have that

P
(
E
[
(Y − E[Y | Z]) fz(Z)− γ − (X − E[X | Z])Tβfz(Z) | V ,Z

]
= 0

)
= P

(
fz(Z) (E[X | Z]− E[X | Z,V ])

T
(β − β0) = γ

)
.

Hence, it suffices to prove that the last probability could not be equal to 1 when (γ,βT )T 6= (0,βT0 )T .

The result follows immediately from the full rank condition in Assumption 2.2.1. Indeed, by the
variance decomposition formula and Assumption 2.2.1, for any a ∈ Rp, a 6= 0p,

aTV ar [E[X | Z,V ]− E[X|Z]]a = E
[
V ar

[
aT (E[X | Z,V ]− E[X|Z]) | Z

]]
> 0.

This implies

aTV ar [fz(Z) (E[X | Z,V ]− E[X|Z])]a = E
[
f2
z (Z)aTV ar [(E[X | Z,V ]− E[X|Z]) | Z]aT

]
= E

[
f2
z (Z)V ar

[
aT (E[X | Z,V ]− E[X|Z]) | Z

]]
> 0.

Thus, fz(Z)(E[X | Z,V ]− E[X | Z]T )T (β − β0) cannot be equal to a constant almost surely.

Proof of Lemma 2.2.

We follow the proof of Lemma 1.2 in chapter 1. First, we note that for any u ∈ Rs and v ∈ Rq such
that (uT ,vT )T 6= 0s+q, and any c ∈ R,

P
(
uTV + vTZ = c

)
= 0. (2.12)

This is a consequence of the fact that V ar
[
(V T ,ZT )T

]
has full rank, by Assumption 2.2. Given a sample(

V T
1 ,ZT1

)T
, . . . ,

(
V T
n ,Z

T
n

)T
, and a vector a = (a1, . . . , an) ∈ Rn, using the inverse Fourier Transform,

we could write

aTΩna =
π−(s+q)/2√
d1 · · · ds+q

∫
Rs+q

∣∣∣∣∣∣
n∑
j=1

aj exp
{

2iwT
(
V T
j ,Z

T
j

)T}∣∣∣∣∣∣
2

exp
{
−wTD−1w

}
dw,

where D = diag(d1, . . . , ds+q) with d1, . . . , ds+q ∈ [dL, dU ], see Assumption 2.1.3. Then, necessarily

n∑
j=1

aj exp
{

2iwT
(
V T
j ,Z

T
j

)T}
= 0, ∀w ∈ Rs+q. (2.13)

Equation (2.12) indicates that, with probability 1, equation (2.13) admits the unique solution a = 0n
∀w ∈ Rs+q. This means that, with probability 1, the matrix Ωn is positive definite.

The remaining arguments are identical to the arguments in the proof of Lemma 1.2 in chapter 1 and
are, thus, omitted.

Proof of Theorem 2.1.

We start by considering β̂. Recall that β̂ =
(
X̂TnDnX̂n

)−1

X̂TnDnŶn. It follows now from Lemmas

1.3, 1.7, 1.8 and 1.13 in chapter 1 that∥∥∥β̂ − (XTnDnXn)−1 XTnDnYn
∥∥∥ = oP(1)
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uniform with respect to d ∈ D and h ∈ Hc,n. Note that(
XTnDnXn

)−1 XTnDnYn = β0 +
(
XTnDnXn

)−1 XTnDn(εfz)n,

where (εfz)n = (ε1fz(Z1), . . . , εnfz(Zn))T . It follows now from Lemmas 1.3, 1.5 , 1.8 and 1.14 in chapter
1 that ∥∥∥(XTnDnXn)−1 XTnDn(εfz)n

∥∥∥ = oP(1)

uniform with respect to d ∈ D such that

sup
h∈Hc,n

sup
d∈D

∥∥∥β̂ − β0

∥∥∥ = oP(1).

The second result follows by similar arguments.

Proof of Proposition 2.1 .

The result follows by the same arguments as in the proof of Proposition 1.1 in chapter 1. The
proof uses Lemmas 1.18 and 1.19 of chapter 1. In the proof of the two Lemmas we need to replace
Ui = (Yi,X

T
i ,Z

T
i )T by Ũi = (Yi,X

T
i ,Z

T
i ,V

T
i )T for all i = 1, . . . , n when applying the Hoeffding

decomposition. Apart from this replacement the arguments remain the same.

Proof of Proposition 2.2 .

The result follows by the same arguments as in the proof of Theorem 1.2 in chapter 1. Recall from
Proposition 2.1 that

β̂ − β0 =
(
XTnDnXn

)−1 XTnDn
[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+ oP(n−1/2)

uniformly with respect to h ∈ Hsc,n and d ∈ D. It follows now from Lemma 1.5 in chapter 1 that

β̂ − β0 = E
[
n−2XTnDnXn

]−1
n−2XTnDn

[
(εfz)n −

(
ε̂|zf̂z

)
n

]
+ oP(n−1/2)

uniformly with respect to h ∈ Hsc,n and d ∈ D. Following the arguments in the proof of Theorem 1.2 in

chapter 1, where we again replace Ui = (Yi,X
T
i ,Z

T
i )T by Ũi = (Yi,X

T
i ,Z

T
i ,V

T
i )T for all i = 1, . . . , n

when applying the Hoeffding decomposition, we get that

sup
h∈Hsc,n

sup
d∈D

∥∥∥∥∥ 1

n2
XTnDn

(
(εfz)n −

(
ε̂|zf̂z

)
n

)
− 1

n

n∑
j=1

εjfz(Zj)E

[(
Xn,i −

1

E [1TnΩn1n]
E
[
XTnΩn1n

])
Ωn,ij | Vj ,Zj

]

+
1

n

n∑
k=1

εkfz(Zk)E

[(
Xn,i −

1

E [1TnΩn1n]
E
[
XTnΩn1n

])
ΩZ
n,ikΩ

V
n,ij | Zk

] ∥∥∥∥∥ = oP(n−1/2).

Finally, we get that

(
β̂ − β0

)
= E

[
n−2XTnDnXn

]−1

(
1

n

n∑
j=1

εjfz(Zj)E [τi(d) Ωn,ij(d) | Vj ,Zj ]

− 1

n

n∑
k=1

εkfz(Zk)E
[
τi(d)ΩZ

n,ik(d)ΩV
n,ij(d) | Zk

])
+ oP

(
n−1/2

)
= E

[
n−2XTnDnXn

]−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)
(
ΩV
n,ij(d)−ΩV

n,ik(d)
)
| Vj ,Zj

])
+ oP

(
n−1/2

)
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= E
[
n−2XTnDnXn

]−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)
(
ΩV
n,ij(d)− E

[
ΩV
n,ik(d) | Vi

])
| Vj ,Zj

])
+ oP

(
n−1/2

)

= E
[
n−2XTnDnXn

]−1

(
1

n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦV
n,ij(d) | Vj ,Zj

])
+ oP

(
n−1/2

)
,

uniformly over h ∈ Hsc,n and d ∈ D.

We can now consider the behavior of 1
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦV
n,ij(d) | Vj ,Zj

]
in detail by

applying Theorem 19.28 of Van der Vaart [78] as in the proof of Theorem 1.2 in chapter 1. The Lindeberg
condition follows again from our assumptions as well as

sup
‖d1−d2‖<δ

E
[∥∥εjfz(Zj)E [τi(d1) ΩZ

n,ij(d1)ΦV
n,ij(d1) | Vj ,Zj

]
− εjfz(Zj)E

[
τi(d2) ΩZ

n,ij(d2)ΦV
n,ij(d2) | Vj ,Zj

] ∥∥2]→ 0,

whenever δ → 0. Therefore,

√
n
(
β̂ − β0

)
= E

[
n−2XTnDn(d)Xn

]−1

 1√
n

n∑
j=1

εjfz(Zj)E
[
τi(d) ΩZ

n,ij(d)ΦV
n,ij(d) | Vj ,Zj

]+ oP (1) ,

converges in distribution to a tight random process whose marginal distribution is zero-mean normal with

covariance function E
[
n−2XTnDn(d1)Xn

]−1
∆(d1,d2)E

[
n−2XTnDn(d2)Xn

]−1
.

Proof of Proposition 2.2.

Under H0 we get that(
Ŷn − X̂nβ̂R

)T
Dn

(
Ŷn − X̂nβ̂R

)
=
(
Ŷn − X̂nβ̂

)T
Dn

(
Ŷn − X̂nβ̂

)
+
(
Rβ̂ − c

)T (
R
(
X̂TnDnX̂n

)−1

RT

)−1 (
Rβ̂ − c

)
=
(
Ŷn − X̂nβ̂

)T
Dn

(
Ŷn − X̂nβ̂

)
+
(
β̂ − β0

)T
RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1

R
(
β̂ − β0

)
.

By the same reasoning as in Proposition 2.1 we get that

n−1
(
β̂ − β0

)T
RT

(
R
(
X̂TnDnX̂n

)−1

RT

)−1

Rn−1
(
β̂ − β0

)
= n−1

(
(εfz)n −

(
ε̂|zf̂z

)
n

)T
DnXn(

XTnDnXn
)−1

RT
(
R
(
XTnDnXn

)−1
RT
)−1

R
(
XTnDnXn

)−1

XTnDn n−1
(

(εfz)n −
(
ε̂|zf̂z

)
n

)
+ oP (1/n)

uniformly with respect to d ∈ D and h ∈ Hsc,n. Therefore, we get together with the results in Lemma
1.5 of chapter 1 that

1

n

(
Ŷn − X̂nβ̂R

)T
Dn

1

n

(
Ŷn − X̂nβ̂R

)
− 1

n

(
Ŷn − X̂nβ̂

)T
Dn

1

n

(
Ŷn − X̂nβ̂

)
= n−2AT

n

(
XTnDnXn

)−1
RT

(
R
(
XTnDnXn

)−1
RT
)−1

R
(
n−2XTnDnXn

)−1
n−2An + oP (1/n)

= n−2AT
nE

[
XTnDnXn

]−1
RT

(
RE

[
XTnDnXn

]−1
RT
)−1

RE
[
n−2XTnDnXn

]−1
Ann

−2 + oP (1/n)

uniformly with respect to h ∈ Hsc,n and d ∈ D. When H0 does not hold it follows by the same arguments
as in the proof of Proposition 2.1 that n−1DM converges in probability to a positive constant.
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Appendix B: Additional simulation results

Table 2.B.9: Bias and Standard Deviation of the estimator for β in Model 2.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ −0.002 −0.002 0.0001 0.11 0.05 0.03

SmoothMD without γ −0.002 −0.002 0.0001 0.11 0.05 0.03

Li −0.002 −0.002 −0.0002 0.12 0.06 0.04

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.

Table 2.B.10: Bias and Standard Deviation of the estimator for β in Model 3.

Bias St. dev.

n 50 250 500 50 250 500

β estimator

SmoothMD with γ 0.002 0.001 0.001 0.06 0.02 0.02

SmoothMD without γ 0.002 0.001 0.001 0.06 0.02 0.02

Li 0.001 0.001 0.001 0.06 0.02 0.02

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. For all simulations 2000 Monte Carlo samples were used.

Table 2.B.11: Empirical Level for the Z-Test of the estimator for β in Model 1.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 5.85 3.45 4.0 10.85 7.4 8.95

SmoothMD* with γ 6.55 4.15 4.85 11.65 8.75 10.5

SmoothMD without γ 6.0 3.45 3.95 11.2 7.5 9.0

SmoothMD* without γ 6.65 3.9 4.95 12.2 9.0 10.7

Li 10.95 5.95 5.55 16.55 11.1 10.65

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For SmoothMD the
additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

92



Table 2.B.12: Empirical Level for the Z-Test of the estimator for β in Model 4.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 18.5 6.75 5.4 26.15 13.0 10.75

SmoothMD* with γ 17.8 7.2 5.9 24.55 13.55 11.15

SmoothMD without γ 18.4 6.75 5.4 26.15 12.95 10.8

SmoothMD* without γ 17.65 7.15 5.9 24.05 13.45 11.15

Li 22.95 13.35 10.75 31.7 20.7 17.7

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For SmoothMD the
additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 2.B.13: Empirical Level for the Z-Test of the estimator for β in Model 5.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 22.95 8.3 7.05 29.5 13.7 12.4

SmoothMD* with γ 21.6 8.4 7.1 28.15 13.45 12.5

SmoothMD without γ 22.85 8.25 7.0 29.55 13.45 12.35

SmoothMD* without γ 20.9 8.35 7.0 27.5 13.5 12.3

Li and Stengos 24.95 13.3 10.65 32.5 20.65 17.65

Notes: For the SmoothMD estimators and the estimator of Li and Stengos, h ∝ n−1/3.5. The components of d are
set equal to the componentwise standard deviations for all variables. The variances are estimated by the Eiker-White
variance estimator. For SmoothMD* the additional variance part due to the estimation of η is not taken into account. For
SmoothMD the additional variance part is taken into account. For all simulations 2000 Monte Carlo samples were used.

Table 2.B.14: Empirical Level for the distance metric statistic of the estimator for β in Model 3.

5% level 10% level

n 50 250 500 50 250 500

Test for β

SmoothMD with γ 8.05 4.75 4.0 12.9 9.75 8.65

SmoothMD* with γ 8.95 5.4 4.9 14.05 11.15 10.2

SmoothMD without γ 8.15 4.75 3.95 12.95 9.8 8.6

SmoothMD* without γ 8.35 5.5 4.85 13.6 11.0 10.2

Notes: For the SmoothMD estimators, h ∝ n−1/3.5. The components of d are set equal to the componentwise standard
deviations for all variables. The variances are estimated by the Eiker-White variance estimator. For SmoothMD* the
additional variance part due to the estimation of η is not taken into account. For SmoothMD the additional variance part
is taken into account. For all simulations 2000 Monte Carlo samples were used.
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Figure 2.B.5: Power function of the Z-Test for β
of Model 2 with n = 250.

Figure 2.B.6: Power function of the Z-Test for β
of Model 3 with n = 250.

Notes: For the SmoothMD estimators and the estimator of Li, h ∝ n−1/3.5. The components of d are set equal to the
componentwise standard deviations for all variables. The variances are estimated by the Eiker-White variance estimator.
Only the SmoothMD estimators that take the additional variance part due to the estimation of η into account are
considered. For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.
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Chapter 3

Maximum likelihood estimation of dynamic panel

data models with additive fixed effects

3.1. Introduction

We consider the linear dynamic panel data model with fixed effects that is given by

Yit = αi + λt + ρYi,t−1 +XT
itβ + εit, i = 1, . . . , N, t = 1, . . . , T, (3.1)

where Xit ∈ Rk is a vector of explanatory variables and (ρ,βT )T ∈ Rk+1 are the unknown model
parameters. In addition, αi and λt are the unobserved individual- and time-specific effects which are
assumed to be constant for given i over t and vice versa. The model is dynamic as the response variable
Yit is an explanatory variable of Yit+1 and it is a fixed effects model as αi and λt are allowed to be
correlated with Xit. Furthermore, it is assumed that the error term εit has the following structure:
E[εit] = 0, E[εitεjs] = σ2 if i = j and t = s whereas E[εitεjs] = 0 otherwise.

Panel data models are frequently employed in empirical analyses to answer research questions in labor
and health economics as well as finance and macroeconomics. Frequently, economists consider models
with individual specific effects to allow for unobserved heterogeneity, consider for instance Dell et al. [27]
and McArthur and McCord [62]. Therefore, model (3.1) plays an important role in applied research.

However, introducing individual- and/or time-specific effects in dynamic panel data models may lead
to inconsistent parameter estimates when they are correlated with the exogenous variables. This results
in the well known incidental parameter problem, see Neyman and Scott [65] or Nickell [66], that has been
discussed extensively in the literature. The problem could be avoided if we would assume that αi and
λt are not correlated with Xit. This is the so-called random effects model. Nevertheless, if the effects
are correlated with the exogenous regressors the parameter estimates in the random effects model will be
inconsistent.

Let λt = 0. In a linear panel data model without autoregressive part, i.e. ρ = 0, the incidental
parameter problem can be solved by subtracting the individual mean from Yit. This give us

Yit − Y i =
(
Xit −Xi

)T
β + εit − εi, i = 1, . . . , N, t = 1, . . . , T, (3.2)

where Y i = 1/T
∑T
t=1 Yit, Xi = 1/T

∑T
t=1Xit and εi = 1/T

∑T
t=1 εit. It is now possible to estimate

(3.2) by a standard OLS procedure. This estimator is also called the within-group estimator.

When ρ 6= 0 subtracting the individual mean leads to

Yit − Y i = ρ
(
Yit−1 − Y i−1

)
+
(
Xit −Xi

)T
β + εit − εi, i = 1, . . . , N, t = 1, . . . , T, (3.3)

where Y i−1 = 1/T
∑T
t=1 Yit−1. The OLS or within-group estimates of (3.3) are not consistent anymore

for fixed T as Yit−1 − Y i−1 is correlated with the error term εit − εi. When T → ∞ and |ρ| < 1 the
estimates are still consistent. When T increases faster than N it is also possible to get

√
NT consistency,

consider Hahn and Kuersteiner [34] and Alvarez and Arellano [5]. However, it is likely that there still
occurs a bias in small samples.

To circumvent the incidental parameter problem the generalized method of moments (GMM) is fre-
quently applied. There exists a huge amount of studies that propose different GMM versions, see among
others Anderson and Hsiao [11, 12], Amemiya and MaCurdy [7], Arellano and Bond [14], Arellano and
Bover [15], Ahn and Schmidt [2], Blundell and Bond [21], Hayakawa [38] and Han and Phillips [35].
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On the one hand, GMM estimation is easy to compute and provides asymptotically valid inference
under a minimal set of assumptions. In addition, GMM solves the problem of Yit−1 − Y i−1 being
correlated with the error terms εit − εi. On the other hand, GMM estimators suffer from a number
of drawbacks including the poor behavior when the autoregressive parameter is close to unity, see e.g.
Kiviet [53] and Blundell and Bond [21]. In addition, Bekker [18] showed that the asymptotic theory for
GMM estimators possibly breaks down if the number of instruments tends to infinity which is a relevant
scenario if T is large relative to the number of cross section units N .

In this study, we address the incidental parameter problem by employing maximum likelihood esti-
mation techniques. Recently, various variants of maximum likelihood estimators for dynamic panel data
models have been studied, see Hsiao et al. [48], Kruiniger [54], Bai [17], Han and Phillips [36], Moral-
Benito [63] and Hayakawa and Pesaran [39]. Here, we compare the estimators of Hsiao et al. [48] and
Bai [17]1. The main difference between the two approaches is that Hsiao et al. [48] eliminates the fixed
effects by taking first differences whereas Bai [17] models the behavior of the effects. Bai [17] focused
in his paper mainly on the case without exogenous regressors, therefore we will extend his model to the
empirically more relevant case of a model with exogenous explanatory variables.

To keep the discussion simple we will assume that λt = 0 in the remaining of the chapter.2 The
remainder of the chapter is organized as follows. Section 3.2 considers the dynamic model without
exogenous regressors. In particular, the importance of the initial value in short panels is discussed. Section
3.3 allows for exogenous regressors in the dynamic model. In section 3.4 the small sample behavior of
the considered estimators is studied by a Monte Carlo experiment. Finally, section 3.5 concludes.

3.2. Dynamic models without exogenous regressors

In this section we consider the linear dynamic panel data model with individual fixed effects but
without additional exogenous regressors, i.e.

Yit = αi + ρYit−1 + εit, i = 1, . . . , N, t = 1, . . . , T. (3.4)

We compare the estimation strategy of Bai [17] that considers the model in levels with the estimation
strategy of Hsiao et al. [48] that considers the model in first differences. In addition, we discuss the
importance to model the unobserved initial value Yi0 and how this can be done for the two estimation
strategies.

We use the following notation throughout the remaining of the chapter. For dl ≥ 1, let 1dl (resp. 0dl)
denote the vector with all elements equal to 1 (resp. 0) and Idl×dl the identity matrix with dimension
dl × dl.

3.2.1. Maximum likelihood estimation of the model in levels

In this section we will first follow the discussion in the paper of Bai [17], i.e we first assume that the
initial condition Yi0 = 0 for all i. However, we will show that consistency of the estimator fails if this
condition is not met. Therefore, we will provide an estimation strategy when Yi0 6= 0 for all or some i in
the second part of this section.

Initial condition is zero

The parameter of interest is the autoregressive coefficient ρ which is assumed to be a fixed and finite
constant. Before we state the proposed estimator of Bai [17] note that the model can be written in matrix
notation as

B(ρ)Yi = αi1T + εi

Yi = αiΓ (ρ)1T + Γ (ρ)εi,
(3.5)

where Yi = (Yi1, . . . , YiT )T and εi = (εi1, . . . , εiT )T are T × 1 vectors. Furthermore,

B(ρ) =


1 0 ... 0

−ρ 1 ... 0
...

. . .
. . .

...

0 . . . −ρ 1

 and Γ (ρ) = B(ρ)−1 =


1 0 ... 0

ρ 1 ... 0
...

. . .
. . .

...

ρT−1 . . . ρ 1


are T × T matrices.

1We consider it as maximum likelihood approach even though Bai [17] labels it factor analytical approach.
2See Bai [17] and Hsiao [47] page 122 for models with λt 6= 0.
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Bai [17] considers model (3.5) as a factor model with a single factor where Γ (ρ)1T is the factor loading
and αi the factor score. This analogy leads Bai [17] to label this estimation method the Factor Analytical
Approach. This factor structure is identified for T ≥ 3.

In order to be able to state the objective function that needs to be minimized to estimate the unknown

model parameters we define SN = 1
N

N∑
i=1

YiY
T
i and state the following assumptions:

Assumption 3.1.

1. Yi0 = 0 for all i.

2. εit is i.i.d. over i and t with E[εit] = 0 and V ar[εit] = σ2 > 0, where σ2 is finite.

3. α1 . . . , αN are fixed effects and aN = 1
N

N∑
i=1

α2
i . There exists a positive and finite constant a such

that lim
N→∞

aN = a.

In addition, let θ1 = (ρ, σ2, a)T and note that it follows from Assumption 3.1 that

SN
p→ Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T .3

To estimate the unknown parameters Bai [17] considers a discrepancy function between SN and the
limit of SN , i.e.

log
(∣∣Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T

∣∣)+ tr
[
SN

(
Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T

)−1
]
.

This discrepancy function has the same form as the likelihood function for a central Wishart distribution
if we multiply the function by −N/2. Furthermore, it has, up to a constant, the same form as the
likelihood function in case of a random effects model with αi and εi i.i.d. normal.4 Therefore, we will in
the remaining work with the likelihood function, which is given by

L1(θ1) = (2π)−
NT
2

∣∣Γ (ρ)
(
a1T1TT + σ2IT×T

)
Γ (ρ)T

∣∣−N2
exp

{
−N

2
tr
[
SN

(
Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T

)−1
]}

. (3.6)

Taking the log of the likelihood function we get5

`1(θ1) = log (L1(θ1)) = −NT
2

log(2π)− NT

2
log(σ2)− N

2
log

(
1 +

Ta

σ2

)
− N

2
tr
[
SN

(
Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T

)−1
]

= −NT
2

log(2π)− NT

2
log(σ2)− N

2
log

(
1 +

Ta

σ2

)
− 1

2

N∑
i=1

Y T
i B(ρ)T

(
a1T1TT + σ2IT×T

)−1
B(ρ)Yi

= −NT
2

log(2π)− NT

2
log(σ2)− N

2
log

(
1 +

Ta

σ2

)
− 1

2

N∑
i=1

Y T
i (IT×T − ρJT×T )

T (
a1T1TT + σ2IT×T

)−1
(IT×T − ρJT×T )Yi,

3Bai [17] employs 1
N−1

N∑
i=1

YiY
T
i instead of SN . However, both representations lead to the same estimation results.

4For further discussion of dynamic random-effects estimators consider Hsiao [47] Chapter 4.
5We used that |Γ (ρ)| = 1 for all ρ as well as the fact that |Im×m +AAT | = |In×n +ATA| for some m× n matrix A.
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where

JT×T =


0 0 ... 0

1 0 ... 0
...

. . .
. . .

...

0 . . . 1 0


is a T ×T matrix. The estimator θ̂1 = (ρ̂1, σ̂

2
1 , â1)T of θ1 is obtained by solving the first-order conditions

of `1(θ1), which are stated in Appendix A, simultaneously. However, there exists no closed form solution
of the first-order conditions. It is possible to use the Newton-Raphson procedure to find the solution.
Here, we will employ a sequential iterative procedure, see also Hsiao [47] page 45. We define the T × T
matrix QT×T = IT×T − 1

T 1T1TT and get from the first order-conditions the following estimates:

ρ̂1 =

∑N
i=1 Y

T
i J

T
T×T

(
a1T1TT + σ2IT×T

)−1
Yi∑N

i=1 Y
T
i J

T
T×T

(
a1T1TT + σ2IT×T

)−1
JT×TYi

, (3.7)

σ̂2
1 =

1

N(T − 1)

N∑
i=1

Y T
i B(ρ)TQT×TB(ρ)Yi (3.8)

and â1 =
1

NT 2

N∑
i=1

(
Y T
i B(ρ)T1T

)2 − 1

T
σ2. (3.9)

Therefore, we obtain the final estimate θ̂1 by first substituting an initial estimate of ρ into (3.8) so that
we get σ̂2

1 . We can now estimate a by substituting the initial estimate of ρ and σ̂2
1 into (3.9). Finally, we

get ρ̂1 by substituting σ̂2
1 and â1 into (3.7). This process is repeated until it converges.

The true value of θ1 is denoted by θ01. Therefore, we can now state the following corollary.

Corollary 3.1. Assume that Assumption 3.1 holds true. Then, invoking the results of Browne [23],
Amemiya et al. [9] and Anderson and Amemiya [10] we have that

√
N
(
θ̂1 − θ01

)
 N

(
03,M

−1
1

)
when N →∞ and T is fixed, with M1 = 1

NE
[
∂2`1(θ1)

∂θ1∂θT1

]
. In addition,

√
NT

(
θ̂1 − θ01

)
 N

(
03,M

−1
2

)
when N →∞ and T →∞, with M2 = 1

NT E
[
∂2`1(θ1)

∂θ1∂θT1

]
.

The approach of Bai [17] leads to a consistent and asymptotically normally distributed estimator of
θ1. However, the approach depends crucially on the assumption that Yi0 = 0 for all i. Without this
assumption the estimator is not consistent as can be seen from the following discussion. The first order
condition of `1(θ1) with respect to ρ evaluated at θ01 is given by6

∂`1(θ1)

∂ρ |θ1=θ01

=
1

σ2
0

N∑
i=1

T∑
t=1

Yit−1(Yit − ρ0Yit−1)− T 2a0

σ2
0(σ2

0 + a0T )

N∑
i=1

Y i−1(Y i − ρ0Y i−1)

=
1

σ2
0

N∑
i=1

T∑
t=1

Yit−1(εit + αi)−
T 2a0

σ2
0(σ2

0 + a0T )

N∑
i=1

Y i−1(εi + αi)

=
1

σ2
0

N∑
i=1

T∑
t=1

Yit−1(εit − εi) +
Tφ2

σ2
0

N∑
i=1

Y i−1(εi + αi),

(3.10)

where φ2 = σ2
0/(Ta0 + σ2

0). Assume now that T is fixed. Inserting the estimator

6We employ the fact that (Im×m +AAT )−1 = Im×m−A(In×n +ATA)−1AT for some m×n matrix A, see Lütkepohl
[60].
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φ̂2 =

N∑
i=1

T∑
t=1

[
Yit − Y i − ρ0(Yit−1 − Y i−1)

]2
(T − 1)T

N∑
i=1

(Y i − ρ0Y i−1)2

for φ2 in (3.10) yields the nonlinear first order condition

mN (ρ0) =
1

σ2
0

CN (ρ0) +

Nσ̂2
N∑
i=1

Y i−1

(
Y i − ρ0Y i−1

)
σ2

0

N∑
i=1

(
Y i − ρ0Y i−1

)2 ,

where

CN (ρ0) =

N∑
i=1

T∑
t=1

Yit−1

[
Yit − Y i − ρ0(Yit−1 − Y i−1)

]
and σ̂2 =

1

(T − 1)N

N∑
i=1

T∑
t=1

[
Yit − Y i − ρ0(Yit−1 − Y i−1)

]2
.

Indeed, it is not difficult to see that

1

N
CN (ρ0)

p→ −bT (ρ0)σ2
0 , σ̂2 p→ σ2

0 ,

T

N

N∑
i=1

(
Y i − ρ0Y i−1

)2 p→ σ2
0 + Ta0 and

T

N

N∑
i=1

Y i−1

(
Y i − ρ0Y i−1

) p→ bT (ρ0)(σ2
0 + Ta0),

(3.11)

where bT (ρ0) = T−1
∑T−1
t=0

∑t−1
s=0 ρ

s
0. Therefore,

1

N
mN (ρ0)

p→ 0. (3.12)

It is important to note, however, that the result stated in (3.12) crucially depends on the initial
condition Yi0 = 0. If, for example, the process starts at t = −1 such that Yi0 = αi + εi0, the last
statement in (3.11) becomes

T

N

N∑
i=1

Y i−1

(
Y i − ρ0Y i−1

) p→ b(ρ0)(σ2
0 + Ta0) +

(
T−1∑
t=0

ρt0

)
a

and, thus, the estimator is inconsistent for such initial values. The next section provides one possible
solution for this issue.

Initial condition is not zero

In this section the assumption on the starting value Yi0 is relaxed to accommodate models without
Yi0 = 0 for all i. For example, consider the case where the process starts at an arbitrary time period
s ≤ 0 at some arbitrary initial value. Accordingly, the starting value Yi0 may depend on the individual
effect αi. As discussed in the last section, minimizing `1(θ1) with respect to θ1 does not lead to consistent
estimates in such cases. In order to be able to get consistent estimates for an arbitrary initial value, we
impose the following assumptions:

Assumption 3.2. The starting value Yi0 is unobserved with

1. 1
N

N∑
i=1

ρ2Y 2
i0

p→ a∗.

2. 1
N

N∑
i=1

ρYi0αi
p→ τ .

3. εit is independent of Yi0 for all i and t ≥ 1 such that 1
N

N∑
i=1

εitYi0
p→ 0 for all t ≥ 1.
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As we do not assume that Yi0 = 0 anymore we have that Yi1 = αi + ρYi0 + εi1 for all i. The model can
now be written in matrix notation as

B(ρ)Yi = ρe1Yi0 + αi1T + εi,

where e1 = (1, 0, ..., 0)T . It follows now from Assumptions 3.1.2, 3.1.3 and Assumption 3.2 that

SN
p→ Γ (ρ)

[
1+
T

(
a τ

τ a∗

)
1+T
T + σ2IT

]
Γ (ρ)T = Σ(θ2),

where 1+
T = (1T , e1) and θ2 = (ρ, σ2, a, a∗, τ)T . The model implies two factors, one is attached to the

individual effect αi and the other corresponds to the initial value Yi0.

The idea is to adjust the (pseudo) maximum likelihood estimator of Bai [17] and to consider the more
general initial condition by substituting Γ (ρ)

(
a1T1TT + σ2IT×T

)
Γ (ρ)T in (3.6) by Σ(θ2) such that the

resulting objective function is given by

L2(θ2) = (2π)−
NT
2 |Σ(θ2)|−

N
2 exp

{
−N

2
tr
[
SNΣ(θ2)−1

]}
.

Once again we define `2(θ2) = log(L2(θ2)). The inverse of Σ(θ2) is a complicated object that makes it
difficult to solve the first order conditions of `2(θ2) so that we can set up a sequential iterative procedure
as in section 3.2.1. In order to circumvent the problem note that

Σ(θ2) = Γ (ρ)

(
ã∗ τ̃1TT−1

τ̃1T−1 a1T−11
T
T−1 + σ2IT−1×T−1

)
Γ (ρ)T = Σ̃(θ̃2),

where ã∗ = a∗ + 2τ + a+ σ2, τ̃ = τ + a and θ̃2 = (ρ, σ2, a, ã∗, τ̃)T . In addition, we define

L̃2(θ̃2) = (2π)−
NT
2

∣∣∣Σ̃(θ̃2)
∣∣∣−N2 exp

{
−N

2
tr
[
SN Σ̃(θ̃2)−1

]}
and ˜̀2(θ̃2) = log

(
L̃2(θ̃2)

)
. It is now easy to see that minimizing `2(θ2) is equivalent to minimizing˜̀

2(θ̃2). We use ”equivalent” in the sense that the minimum value of `2(θ2) is the same as the minimum

value of ˜̀2(θ̃2). As the structure of Σ̃(θ̃2) is more handy than the structure of Σ(θ2) we are now able to

state the estimates θ̂2 = (ρ̂2, σ̂
2
2 , â2, â

∗
2, τ̂2)T of θ2 and

̂̃
θ2 = (ρ̂2, σ̂

2
2 , â2, ̂̃a∗2, ̂̃τ2)T of θ̃2 respectively. First,

we define the following three objects:

m̂η(ρ) =

∑N
i=1

(
Y T
i B(ρ)T1T−1

)2∑N
i=1 Y

2
i1

, m̂τ̃ (ρ) =

∑N
i=1 Y

T
i B(ρ)T1T−1Yi1∑N

i=1

(
Y T
i B(ρ)T1T−1

)2
and m̂λ(ρ) =

1

N

N∑
i=1

(
Yi1 − m̂τ̃ (ρ)Y T

i B(ρ)T1T−1

)2
,

where

B(ρ) =


−ρ 1 ... 0
...

. . .
. . .

...

0 . . . −ρ 1


is a (T − 1) × T matrix. It follows now from the discussion in Appendix B that ˜̀2(θ̃2) is minimized at
the following values:

ρ̂2 =

∑N
i=1 Y

T
i J

T
T×T Ṽ (θ̃2)−1Yi∑N

i=1 Y
T
i J

T
T×T Ṽ (θ̃2)−1JT×TYi

, σ̂2
2 =

1

N(T − 2)

N∑
i=1

Y T
i B(ρ)TQT−1×T−1B(ρ)Yi,

â2 =
η̂2 − σ2

T − 1
, ̂̃a∗2 =

λ̂2 + τ̃2(T − 1)

σ2 + (T − 1)a

and ̂̃τ2 = m̂τ̃ (ρ)η̂2,
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where

η̂2 =
m̂λ(ρ)m̂η(ρ)

(T − 1)(1− m̂τ̃ (ρ)2m̂η(ρ))
, λ̂2 =

m̂λ(ρ)2m̂η(ρ)

(T − 1)(1− m̂τ̃ (ρ)2m̂η(ρ))

and Ṽ (θ̃2) =

(
ã∗ τ̃1TT−1

τ̃1T−1 a1T−11
T
T−1 + σ2IT−1×T−1

)
.

From the definitions of τ̃ and ã∗ it follows now that

τ̂2 = ̂̃τ2 − â2 and â∗2 = ̂̃a∗2 − 2τ̂2 − â2 − σ̂2
2 . (3.13)

We obtain the estimate θ̂2 now by first substituting an initial estimate of ρ into the expressions of σ̂2
2

and ̂̃τ2 so that we get first estimates of σ2 and τ̃ . We can now obtain â2 by substituting the estimates

σ̂2
2 and η̂2 into the expression of â2. Employing the estimates from the previous steps we get ̂̃a∗2. In the

last step, we get ρ̂2 by substituting σ̂2
2 , â2, ̂̃a∗2 and ̂̃τ2 into the expression of ρ̂2. This process is repeated

until it converges. Finally, we get τ̂2 and â∗2 by employing the expressions stated in (3.13).
The true value of θ2 is denoted by θ02. Therefore, we can now state the following corollary.

Corollary 3.2. Assume that Assumption 3.1.2, 3.1.3 and Assumption 3.2 hold true. Then, invoking the
results of Browne [23], Amemiya et al. [9] and Anderson and Amemiya [10] we have that

√
N
(
θ̂2 − θ02

)
 N

(
05,M

−1
3

)
when N →∞ and T is fixed, with M3 = 1

NE
[
∂2`2(θ2)

∂θ2∂θT2

]
. In addition,

√
NT

(
θ̂2 − θ02

)
 N

(
05,M

−1
4

)
when N →∞ and T →∞, with M4 = 1

NT E
[
∂2`2(θ2)

∂θ2∂θT2

]
.

So far we followed the approach of Bai [17] and worked with the model (3.4) in levels. However, there
exists a second approach studied by Hsiao et al. [48] that considers the model in differences. We will
introduce this approach in the next section.

Remark 4. Bai [17] allows for heteroscedastic error terms, i.e. εit is i.i.d. over i and independent over
t but V ar[εit] = σ2

t . It is shown that for |ρ| < 1 the estimate of ρ is asymptotically normally distributed
even if N,T →∞, with N/T 3 → 0. The second result in Corollary 3.2 does not apply if V ar[εit] = σ2

t as
the number of unknown parameters increases with T . However, as the influence of the initial condition
declines with T →∞ it can be expected that the results of Bai [17] still hold even if Yi0 6= 0.

3.2.2. Maximum likelihood estimation of the model in first differences

In this section we discuss the approach of Hsiao et al. [48] that considers the model in differences
instead of levels. The approach is also labeled Transformed Likelihood Approach. The reason for taking
the differences is that the individual effects αi are eliminated by this operation. Recall that our model
of interest is given by

Yit = αi + ρYit−1 + εit, i = 1, . . . , N, t = 1, . . . , T.

Taking the first differences we get that

∆Yit = ρ∆Yit−1 + ∆εit, i = 1, . . . , N, t = 2, . . . , T, (3.14)

where ∆Yit = Yit − Yit−1 and ∆εit = εit − εit−1. It is now again crucial whether we assume that Yi0 = 0
or not.

Initial condition is zero

Consider the transformed likelihood approach of Hsiao et al. [48] under the initial condition Yi0 = 0
for all i. Therefore, the transformed system is for all i given by

∆Yi1 = Yi1 = αi + εi1

∆Yit = ρ∆Yit−1 + ∆εit, t = 2, . . . , T.
(3.15)
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Here, ∆Yi1 = Yi1 is observed as Yi0 is assumed to be zero. The system of equations stated in (3.15) is
given in matrix notation by

B(ρ)B(1)Yi = αiB(1)1T +B(1)εi.

Note that B(1)Yi = (∆Yi1, . . . ,∆YiT )T and B(1)1T = (1, 0, . . . , 0)T . It now holds true that

B(ρ)B(1)Yi = αiB(1)1T +B(1)εi

⇔ B(1)B(ρ)Yi = αiB(1)1T +B(1)εi

⇔ B(ρ)Yi = αi1T + εi.

Therefore, the transformed system is equivalent to the original system (3.5) and the approaches in levels
and differences will lead to the same results.

Initial condition is not zero

In this section we discuss the transformed likelihood approach when the initial condition is not assumed
to be zero. Recall that the transformed system is given by (3.14) which is a well-defined process for t ≥ 3
but not for t = 2 as ∆Yi1 is not observed in contrast to the discussion in the last section. Therefore, we
need to model ∆Yi2 in a suitable way. Let ∆ε̃i2 =

∑m−1
j=0 ρj∆εi 2−j such that by continuous substitution

of (3.14)

∆Yi2 = ρm∆Yi−m+2 + ∆ε̃i2, i = 1, . . . , N. (3.16)

Hsiao et al. [48] distinguishes the cases where the process in (3.16) has reached stationarity or not and,
thus, states the following assumptions:

Assumption 3.3.

1. |ρ| < 1 and the process has been going on for a long time, i.e. m → ∞, with E[∆Yi2] = 0,

V ar[∆Yi2] = 2σ2

1+ρ and Cov[∆ε̃i2,∆εi3] = −σ2 for all i. Finally, Cov[∆ε̃i2,∆εit] = 0 for all i and
t ≥ 4.

2. The process in (3.16) has started from a finite period in the past not too far back from the first
observed period t = 1 such that E[∆Yi2] = b, V ar[∆Yi2] = cσ2, with c > 0, and Cov[∆ε̃i2,∆εi3] =
−σ2 for all i. Finally, Cov[∆ε̃i2,∆εit] = 0 for all i and t ≥ 4.

For a further discussion of Assumption 3.3 consider Hsiao et al. [48] chapter 3. Even so Assumptions
3.3.1 and 3.3.2 are different it is possible to set up a likelihood approach that is consistent with both
assumptions. In order to do so, it is assumed that

Assumption 3.4.

1. εit is i.i.d. normal over i and t with E[εit] = 0 and V ar[εit] = σ2 > 0.7

Furthermore, we define ∆Yi = (∆Yi2, . . . ,∆YiT )T and ∆Y −i = (0,∆Yi2, . . . ,∆YiT−1)T and ∆εi =
∆Yi − e1b

∗ − ρ∆Y −i , where b∗ = 0 under Assumption 3.3.1 and b∗ = b under Assumption 3.3.2. The
covariance matrix of ∆εi is now given by

Ω(σ2, ω) = σ2



ω −1 0 . . . 0

−1 2 −1
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1

0 . . . 0 −1 2


= σ2Ω̃(ω).

Note that ω = 2/(1 + ρ)2 under Assumption 3.3.1 whereas ω = c under Assumption 3.3.2. Given
Assumptions 3.3 and 3.4 we state the likelihood function that we employ to estimate the parameters
θ3 = (ρ, σ2, b∗, ω)T :

L3(θ3) = (2π)−
NT
2 | Ω(σ2, ω) |−N2 exp

{
−1

2

N∑
i=1

(
∆Yi − e1b

∗ − ρ∆Y −i
)T

Ω(σ2, ω)−1
(
∆Yi − e1b

∗ − ρ∆Y −i
)}

7Hayakawa and Pesaran [39] consider this model assuming heteroscedasticity in the variance over individuals.
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and, thus, the log-likelihood function is given by

`3(θ3) = log(L3(θ3)) = −NT
2

log(2π)− N

2
log(| Ω(σ2, ω) |)

− 1

2

N∑
i=1

(
∆Yi − e1b

∗ − ρ∆Y −i
)T

Ω(σ2, ω)−1
(
∆Yi − e1b

∗ − ρ∆Y −i
)

= −NT
2

log(2π)− N

2
log(σ2(T−1)(1 + (T − 1)(ω − 1)))

− 1

2

N∑
i=1

(
∆Yi − e1b

∗ − ρ∆Y −i
)T

Ω(σ2, ω)−1
(
∆Yi − e1b

∗ − ρ∆Y −i
)
.8

We are now able to state the estimates θ̂3 = (ρ̂3, σ̂
2
3 , b̂
∗
3, ω̂3)T of θ3. First, we define ∆Wi = (e1,∆Y

−
i )

and κ = (T − 1, T − 2, . . . , 1)T . Therefore, we get that

(̂b∗3, ρ̂3)T =

(
N∑
i=1

∆W T
i Ω̃(ω)−1∆Wi

)−1 N∑
i=1

∆W T
i Ω̃(ω)−1∆Yi

σ̂2
3 =

1

N(T − 1)

N∑
i=1

(
∆Yi − e1b

∗ − ρ∆Y −i
)T

Ω̃(ω)−1
(
∆Yi − e1b

∗ − ρ∆Y −i
)

ω̂3 =
T − 2

T − 1
+

1

σ2N(T − 1)2

N∑
i=1

(
∆Yi − e1b

∗ − ρ∆Y −i
)T
κκT

(
∆Yi − e1b

∗ − ρ∆Y −i
)
,

see also Hsiao et al. [48] page 144.

We obtain the estimate θ̂3 again by a sequential iterative procedure. Therefore, we first substitute
initial estimates of ρ, b∗ and σ2 into the expression of ω̂3 so that we get a first estimate of ω. We now
get the estimates ρ̂3 and b̂∗3 by substituting ω̂3 into the expression of (̂b∗3, ρ̂3)T . In the last step, we get

σ̂2
3 by substituting ω̂3, ρ̂3 and b̂∗3 into the expression of σ̂2

3 . This process is repeated until it converges.

The true value of θ3 is denoted by θ03. Therefore, we can now state the following corollary.

Corollary 3.3. Assume that Assumption 3.4 and either Assumption 3.3.1 or 3.3.2 hold true. Then, as
the likelihood function `3(θ3) is well defined, depends on a fixed number of parameters and satisfies the
usual regularity conditions

√
N
(
θ̂3 − θ03

)
 N

(
04,M

−1
5

)
when N →∞ and T is fixed, with M5 = 1

NE
[
∂2`3(θ3)

∂θ3∂θT3

]
. In addition,

√
NT

(
θ̂3 − θ03

)
 N

(
04,M

−1
6

)
when N →∞ and T →∞, with M6 = 1

NT E
[
∂2`3(θ3)

∂θ3∂θT3

]
.9

3.3. Dynamic models with exogenous regressors

In this section we study the empirically more relevant case of a model with k additional exogenous
variables. The exogenous regressors are comprised in the vector Xit = (X1,it, . . . , Xk,it)

T such that the
extended model of (3.5) is given by

Yit = αi + ρYit−1 + βTXit + εit, i = 1, . . . , N, t = 1, . . . , T. (3.17)

In addition, let Xi = (Xi1, . . .XiT )T . The individual effects αi might be arbitrarily correlated with Xi.
This is the main difference between the fixed effects model and the random effects model. In the random
effects model αi and Xi are assumed to be independent which is in contrast to the fixed effects model.

8Consider Hsiao et al. [48] equation (3.7) for the derivation of | Ω(σ2, ω) |.
9The second derivatives of `3(θ3) are stated in Appendix B of Hsiao et al. [48].
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As in section 3.2, we compare the estimation strategy of Bai [17] that considers the model in levels
with the estimation strategy of Hsiao et al. [48] that considers the model in first differences. As discussed
in the last section it is crucial to model the initial value Yi0 to get consistent estimates. Therefore, we
consider here only the case were the initial value is not assumed to be zero.

3.3.1. Maximum likelihood estimation of the model in levels

In this section we follow the ideas of Bai [17] that are related to the approaches stated in section
3.2.1. However, in contrast to the model without additional exogenous regressors we need to model the
dependence between αi and Xi. In addition, we will extend the approach of Bai [17] such that it is
possible to allow for initial values that are not equal to 0. If the process stated in (3.17) has the same
structure for t = 0 we get that

Yi0 = αi + ρYi−1 + βTXi0 + εi0, i = 1, . . . , N.

Therefore, the initial condition Yi0 depends on αi and is, thus, correlated with Xi. This dependence
needs to be modeled to get consistent estimates of the unknown parameters.

Let Zi =
(
1,XT

i1, . . . ,X
T
iT

)T
and assume that the dependence between αi and Xi can be modeled by

a Mundlak-Chamberlain projection, i.e.

αi = c0 + cT1Xi1 + cT2Xi2 + · · ·+ cTTXiT + ξi

= cTZi + ξi,

where c =
(
c0, c

T
1 , . . . , c

T
T

)T
, see Mundlak [64], Chamberlain [25], Chamberlain and Moreira [26] and Bai

[17]. Furthermore, we assume that

Yi0 = h0 + hT1Xi1 + hT2Xi2 + · · ·+ hTTXiT + ζi

= hTZi + ζi,

where h =
(
h0,h

T
1 , . . . ,h

T
T

)T
. In order to state the model in matrix notation we define

X̃i =


ZTi 0TkT+1 0 XT

i1

0TkT+1 ZTi Yi1 XT
i2

...
...

...
...

0TkT+1 ZTi YiT−1 XT
iT


and γ =

(
fT , cT , ρ,βT

)T
, with f = ρh+ c, and get that

Yi = X̃iγ + ρe1ζi + ξi1T + εi.

In order to be able to state the maximum likelihood function that we need to estimate the unknown
model parameters we impose the following assumptions:

Assumption 3.5.

1. εit is i.i.d. normal over i and t with E[εit] = 0 and V ar[εit] = σ2 > 0.

2. ζi is i.i.d. normal over i with E[ζi] = 0 and V ar[ρζi] = σ2
ζ > 0.

3. ξi is i.i.d. normal over i with E[ξi] = 0 and V ar[ξi] = σ2
ξ > 0.

4. Cov[εit, ζi] = Cov[εit, ξi] = 0 for all i and t and Cov[ξi, ρζi] = σξζ .

From the stated assumptions it follows that the covariance matrix of Yi − X̃iγ is given by[
1+
T

(
σ2
ξ σξζ

σξζ σ2
ζ

)
1+T
T + σ2IT×T

]
= Ψ(θ4),

where θ4 = (γT , σ2, σ2
ξ , σ

2
ζ , σξζ)

T . Finally, the likelihood function is given by

L4(θ4) = (2π)−
NT
2 |Ψ(θ4)|−

N
2 exp

{
−1

2

N∑
i=1

(
Yi − X̃iγ

)T
Ψ(θ4)−1

(
Yi − X̃iγ

)}
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and `4(θ4) = log(L4(θ4)). Recall from section 3.2.1 that the inverse of Ψ(θ4) is a complicated object
that makes it difficult to solve the first order conditions of `4(θ4). In order to circumvent the problem
note that

Φ(θ4) =

(
σ̃2
ζ σ̃ξζ1

T
T−1

σ̃ξζ1T−1 σ2
ξ1T−11

T
T−1 + σ2IT−1×T−1

)
= Φ̃(θ̃4),

where σ̃2
ζ = σ2

ζ + 2σξζ + σ2
ξ + σ2, σ̃ξζ = σξ,ζ + σ2

ξ and θ̃4 = (γT , σ2, σ2
ξ , σ̃

2
ζ , σ̃ξζ)

T . In addition, we define

L̃4(θ̃4) = (2π)−
NT
2

∣∣∣Φ̃(θ̃4)
∣∣∣−N2 exp

{
−1

2

N∑
i=1

(
Yi − X̃iγ

)T
Φ̃(θ̃4)−1

(
Yi − X̃iγ

)}

and ˜̀
4(θ̃4) = log

(
L̃4(θ̃4)

)
. It is now easy to see that minimizing `4(θ4) is equivalent to minimiz-

ing ˜̀4(θ̃4). We are now able to state the estimates θ̂4 = (γ̂T4 , σ̂
2
4 , σ̂

2
ξ4, σ̂

2
ζ4, σ̂ξζ4)T of θ4 and

̂̃
θ4 =

(γ̂T4 , σ̂
2
4 , σ̂

2
ξ4,
̂̃σ2

ζ4,
̂̃σξζ4)T of θ̃4 respectively. First, we define the following three objects:

m̂η∗(γ) =

∑N
i=1

(
(Y −i − X̃

−
i γ)T1T−1

)2

∑N
i=1

(
(Yi − X̃iγ)Te1

)2 , m̂σ̃ξζ (γ) =

∑N
i=1(Y −i − X̃

−
i γ)T1T−1(Yi − X̃iγ)e1∑N

i=1

(
(Y −i − X̃

−
i γ)T1T−1

)2

and m̂λ∗(γ) =
1

N

N∑
i=1

(
(Yi − X̃iγ)Te1 − m̂σ̃ξζ (γ)(Y −i − X̃

−
i γ)T1T−1

)2

,

where Y −i = (Yi2, . . . , YiT )T and

X̃−i =


0kT+1 ZTi Yi1 XT

i2

...
...

...
...

0kT+1 ZTi YiT−1 XT
iT

 .

It follows now from similar arguments as in Appendix B that ˜̀4(θ̃4) is minimized at the following values:

γ̂4 =

(
N∑
i=1

X̃T
i Φ̃(θ̃4)−1X̃i

)−1 N∑
i=1

X̃T
i Φ̃(θ̃4)−1Yi, σ̂2

ξ4 =
η̂∗4 − σ2

T − 1

σ̂2
4 =

1

N(T − 2)

N∑
i=1

(Y −i − X̃
−
i γ)TQT−1×T−1(Y −i − X̃

−
i γ), ̂̃σ2

ζ4 =
λ̂∗4 + σ̃2

ξζ(T − 1)

σ2 + (T − 1)σ2
ξ

and ̂̃σξζ4 = m̂σ̃ξζ (γ)η̂∗4 ,

where

η̂∗4 =
m̂λ∗(γ)m̂η∗(γ)

(T − 1)(1− m̂σ̃ξζ (γ)2m̂η∗(γ))
, λ̂∗4 =

m̂λ∗(γ)2m̂η∗(γ)

(T − 1)(1− m̂σ̃ξζ (γ)2m̂η∗(γ))
.

From the definitions of σ̃ξζ and σ̃2
ζ it follows now that

σ̂ξζ4 = ̂̃σξζ4 − σ̂2
ξ4 and σ̂2

ζ4 = ̂̃σ2

ζ4 − 2σ̂ξζ4 − σ̂2
ξ4 − σ̂2

4 . (3.18)

We obtain the estimate θ̂4 now by first substituting an initial estimate of γ into the expressions σ̂2
4

and ̂̃σξζ4. With the estimates of γ and σ2 we get σ̂2
ξ4 and can, thus, calculate ̂̃σ2

ζ4. We can now obtain a

new estimate of γ. This process is repeated until it converges. Finally, we get σ̂ξζ4 and σ̂2
ζ4 by employing

the expressions stated in (3.18).
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The true value of θ4 is denoted by θ04. Therefore, we can now state the following corollary.

Corollary 3.4. Assume that Assumption 3.5 holds true. Then, as the likelihood function `4(θ4) is
well-defined, depends on a fixed number of parameters and satisfies the usual regularity conditions

√
N
(
θ̂4 − θ04

)
 N

(
0k(2T+1)+7,M

−1
7

)
when N →∞ and T is fixed, with M7 = 1

NE
[
∂2`4(θ4)

∂θ4∂θT4

]
.10

In contrast to the models without exogenous regressors asymptotic normality of the estimator follows
without further arguments only when T is fixed. The reason is that the number of estimated model
parameters increases with T .

3.3.2. Maximum likelihood estimation of the model in first differences

In this section we discuss the transformed likelihood approach when the initial condition is not assumed
to be zero. The transformed system of (3.17) is given by

∆Yit = ρ∆Yit−1 + βT∆Xit + ∆εit, i = 1, . . . , N, t = 2, . . . , T, (3.19)

where ∆Xit = Xit −Xit−1. The process stated in (3.19) is a well-defined process for t ≥ 3 but not for
t = 2 as ∆Yi1 and ∆Xi1 are not observed. Therefore, we need to model ∆Yi2 in a suitable way.

Following the discussion in Hsiao et al. [48] we assume that

∆Yi2 = d0 + dT1 ∆Xi2 + dT2 ∆Xi3 + · · ·+ dTT−1∆XiT + υi2

= dT∆Zi + υi2,

where ∆Zi =
(
1,∆XT

i2, . . . ,∆X
T
iT

)T
and d =

(
d0,d

T
1 , . . . ,d

T
T−1

)T
. In order to set up a likelihood

approach that leads to consistent estimates of the unknown model parameters we state the following
assumptions:

Assumption 3.6.

1. υi2 is independent of ∆Zi for all i. In addition, E[υi2] = 0, V ar[υi2] = σ2
υ and Cov[υi2,∆εi3] = −σ2

for all i. Finally, Cov[υi2,∆εit] = 0 for all i and t ≥ 4.

2. εit is i.i.d. normal over i and t with E[εit] = 0 and V ar[εit] = σ2 > 0.

For a detailed discussion of Assumption 3.6 consider Hsiao et al. [48] chapter 4. We define ∆X−i =
(0k,∆Xi2, . . . ,∆XiT−1)T and ∆εi = ∆Yi−e1d

T∆Zi−ρ∆Y −i −∆X−i β. The covariance matrix of ∆εi
is now given by Ω(σ2, ω) = σ2Ω̃(ω), where ω = σ2

υ/σ
2.

Given Assumption 3.6 we state the likelihood function that we employ to estimate the parameters
θ5 = (ρ,βT , σ2,dT , ω)T :

L5(θ5) = (2π)−
NT
2 | Ω(σ2, ω) |−N2 exp

{
− 1

2

N∑
i=1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)T
Ω(σ2, ω)−1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)}
,

where

∆W̃i =


∆ZTi 0 0Tk

0Tk(T−1)+1 ∆Yi2 ∆XT
i3

...
...

...

0Tk(T−1)+1 ∆YiT−1 ∆XT
iT

 .

10The second derivatives of `4(θ4) follow from the derivatives stated in Appendix C by replacing JT×TYi by X̃i and

B(ρ)Yi by Yi − X̃iγ.
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Therefore, the log-likelihood function is given by

`5(θ5) = log(L5(θ5)) = −NT
2

log(2π)− N

2
log(| Ω(σ2, ω) |)

− 1

2

N∑
i=1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)T
Ω(σ2, ω)−1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)
= −NT

2
log(2π)− N

2
log(σ2(T−1)(1 + (T − 1)(ω − 1)))

− 1

2

N∑
i=1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)T
Ω(σ2, ω)−1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)
.

We are now able to state the estimates θ̂5 = (ρ̂5, β̂
T
5 , σ̂

2
5 , d̂

T
5 , ω̂5)T of θ5. We get that

(
d̂T5 , ρ̂5, β̂

T
5

)T
=

(
N∑
i=1

∆W̃ T
i Ω̃(ω)−1∆W̃i

)−1 N∑
i=1

∆W̃ T
i Ω̃(ω)−1∆Yi

σ̂2
5 =

1

N(T − 1)

N∑
i=1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)T
Ω̃(ω)−1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)
ω̂5 =

T − 2

T − 1
+

1

σ2N(T − 1)2

N∑
i=1

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)T
κκT

(
∆Yi −∆W̃i

(
dT , ρ,βT

)T)
,

see also Hsiao et al. [48] page 144.

We obtain the estimate θ̂5 again by a sequential iterative procedure. Therefore, we first substitute
initial estimates of ρ, β, d and σ2 into the expression of ω̂5 so that we get a first estimate of ω. We now

get the estimates ρ̂5, β̂5 and d̂5 by substituting ω̂5 into the expression of
(
d̂T5 , ρ̂5, β̂

T
5

)T
. In the last step,

we get σ̂2
5 by substituting ρ̂5, β̂5, d̂5 and ω̂5 into the expression of σ̂2

5 . This process is repeated until it
converges.

The true value of θ5 is denoted by θ05. Therefore, we can now state the following corollary.

Corollary 3.5. Assume that Assumption 3.6 holds true. Then, as the likelihood function `5(θ5) is
well-defined, depends on a fixed number of parameters and satisfies the usual regularity conditions

√
N
(
θ̂5 − θ05

)
 N

(
0kT+4,M

−1
8

)
when N →∞ and T is fixed, with M8 = 1

NE
[
∂2`5(θ5)

∂θ5∂θT5

]
.11

As in the last section asymptotic normality of the estimator follows without imposing further argu-
ments only when T is fixed. The reason is that the number of estimated model parameters increases with
T . We end the discussion here and conduct in the next section some Monte Carlo simulations.

3.4. Monte Carlo study

In this section we consider the small sample behavior of the discussed estimators with exogenous
regressors. We conduct several simulation experiments to consider bias and standard deviation for the
estimated parameters. In addition, we state size and power of hypothesis tests. We begin with a consid-
eration of the simulation setup that follows the setup in Hsiao et al. [48] and finally state our simulation
results.

3.4.1. Simulation design

Recall that the model with one exogenous variable Xit is given by

Yit = ηi + ρYi,t−1 + βXit + εit.

11The second derivatives of `5(θ5) are stated in Appendix B of Hsiao et al. [48].
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We consider two different distributions for the error terms εit. On the one hand we consider εit ∼ N (0, 1)
independent and identical across i and t. On the other hand we generate εit as

εit =
1√
4

(
ζ2
1it + ζ2

1it − 2
)
, (3.20)

where ζjit ∼ N (0, 1) independent over i, t and j. When εit follows the process in (3.20) the normal
assumption of the error terms for the maximum likelihood estimators in section 3.3 is not met. Therefore,
we can get an idea how crucial the normal assumption is.

The regressor Xit is generated according to

Xit = µi + 0.01t+ ξit,

where ξit = 0.5ξit−1 + uit + 0.5uit−1 with uit ∼ N
(
0, σ2

u

)
. We set ξi−49 = 0 and ui−49 = 0. This ensures

that the process is not to much influenced by the initial value. Due to the same reason we set Yi−49 = 0,
i.e. we discard the first 50 observations such that Yi1 is the first observed value.

Finally, the fixed effects ηi and µi are generated by

µi = e1i +
1

T + 50

T∑
t=−49

uit, e1i ∼ N
(
0, 1− σ2

u/(T + 50)
)

ηi = e2i +
1

T + 50

T∑
t=−49

∆Xit, e2i ∼ N
(
0, 1− 3σ2

u/ (3(T + 50))
)
.

The way we generate µi and ηi ensures that the individual effects are correlated with the exogenous
regressors such that a random effects specification would not lead to consistent parameter estimates.

During the simulation, we consider four different models. The models are given by

Model 1: ρ = 0.4, β = 0.6 and σ2
u = 0.8. In addition, εit ∼ N (0, 1).

Model 2: ρ = 0.8, β = 0.2 and σ2
u = 1.875. In addition, εit ∼ N (0, 1).

Model 3: ρ = 0.4, β = 0.6 and σ2
u = 0.8. In addition, εit follows the process in (3.20).

Model 4: ρ = 0.8, β = 0.2 and σ2
u = 1.875. In addition, εit follows the process in (3.20).

We compare the maximum likelihood estimators with two existing estimators. First, we consider the
IV estimator that is obtained by employing the model in differences, see equation (3.19), and then using

Yit−2 and ∆Xit as instruments. Denote the estimates by ρ̂IV and β̂IV and let

Wi =

(
∆yi2 ∆yi3 . . . ∆yiT−1

∆xi3 ∆xi4 . . . ∆xiT

)T
and Si =

(
yi1 yi2 . . . yiT−2

∆xi3 ∆xi4 . . . ∆xiT

)T
.

With W =
(
W T

1 , . . . ,W
T
N

)T
and S =

(
ST1 , . . . ,S

T
N

)T
the estimated covariance of the IV estimator is

given by12

V̂ arIV = σ̂2
IV

(
STW

)−1 (
ST (IN×N ⊗ V )S

) (
W TS

)−1
, (3.21)

where σ̂2
IV = 1

2N(T−2)

∑N
i=1

∑T
t=3

(
∆Yit − ρ̂IV ∆Yit−1 − β̂IV ∆Xit

)2

and

V =



2 −1 0 . . . 0

−1 2 −1
. . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . −1

0 . . . 0 −1 2


.

Note that V has dimension (T − 2)× (T − 2).
As additional benchmark we compute the GMM estimator suggested by Arellano and Bond [14] where

the full set of instruments (Yi1, . . . , Yit−2, Xi1, Xi2, . . . , XiT ) is used for each of the time periods. In order

12Here, ⊗ denotes the Kronecker product.
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to state this GMM estimator we define

Di =


δi1 0TT+2 . . . 0T2T−2

0TT+1 δi2
...

...
. . . 0T2T−2

0TT+1 . . . 0T2T−3 δiT−2

 ,

with δil = (Yi1, . . . , Yil, Xi1, . . . , XiT ). The GMM estimator of Arellano and Bond [14] is now given by

(
ρ̂GMM , β̂GMM

)T
=

[ N∑
i=1

W T
i Di

][
N∑
i=1

DT
i V Di

]−1 [ N∑
i=1

DT
i Wi

]−1

[ N∑
i=1

W T
i Di

][
N∑
i=1

DT
i V Di

]−1 [ N∑
i=1

DT
i ∆Y +

i

] ,

where ∆Y +
i = (∆Yi3, . . . ,∆YiT )T . The corresponding covariance estimator is given by

V̂ arGMM = σ̂2
GMM

[ N∑
i=1

W T
i Di

][
N∑
i=1

DT
i V Di

]−1 [ N∑
i=1

DT
i Wi

]−1

, (3.22)

where σ̂2
GMM = 1

2N(T−2)

∑N
i=1

∑T
t=3

(
∆Yit − ρ̂GMM∆Yit−1 − β̂GMM∆Xit

)2

.

We consider bias and standard deviation of the estimators. In addition, we test by a simple Z-Test
whether the estimated parameters are significantly different from the true value. In order to get an
estimate for the variances of the estimators we employ (3.21) for the IV estimator, (3.22) for the GMM
estimator, the second derivatives stated in Appendix C for the maximum likelihood estimator in levels
and the second derivatives stated in Appendix B of Hsiao et al. [48] for the maximum likelihood estimator
in differences.

For the sequential iterative procedure of the maximum likelihood estimators we need some starting
values. For the estimator in levels we set fin = 0kT+1, cin = 0kT+1, ρin = ρ̂GMM and βin = β̂GMM ,
where the suffix in denotes the starting value. In addition, we consider for the estimator in differences
din = 0k(T−1)+1, ρin = ρ̂GMM , βin = β̂GMM and σ2

in = σ̂2
GMM .

Results are stated for T ∈ {5, 15, 25} and N ∈ {100, 200, 500}. In all experiments 2000 replications
are used.

3.4.2. Simulation results

Table 3.1 states the results for bias and standard deviation for ρ and β in Model 2. The IV estimator
is biased when T and N are small and the bias is more pronounced when estimating ρ. However, the
results improve for increasing sample size. The GMM estimator performs better than the IV estimator
with some bias for small N when estimating ρ. Nevertheless, both maximum likelihood estimators (MLE)
outperform both mentioned estimators and deliver comparable results. The main difference occurs for
small T where the estimator in levels outperforms the estimator in differences. Table 3.2 states the results
for bias and standard deviation for ρ and β in Model 3. The IV estimator is here not so severely biased
when T and N are small in relation to Model 2. In contrast, the GMM estimator has still some bias
for small N when estimating ρ even though the bias seems to be smaller. Once again, both maximum
likelihood estimators outperform the IV and the GMM estimator and give almost identical results. The
maximum likelihood estimator in differences performs here also comparable to the estimator in levels
when T is small in contrast to the results for Model 2.

Table 3.3 states the empirical level for the Z-Tests for ρ and β for Model 1. Both maximum likelihood
estimators get close to the nominal level no matter if we test ρ or β. The same holds true for the IV
estimator. The GMM estimator performs quite bad when testing for ρ. The null hypothesis is rejected
too often. The results improve when N increases but get worse when T increases for fixed N . Table 3.4
states the empirical level for the Z-Tests for ρ and β for Model 4. The IV estimator gets close to the
nominal level no matter if we test for ρ or β. In contrast, both maximum likelihood estimators reject too
often for small sample sizes when testing for ρ. The results improve for increasing sample size. Recall
that the error terms are not normally distributed in Model 4. Therefore, the results might show that we
need a higher sample size to get close to the nominal level when the assumption on the error distribution
is not met. Note that the IV estimator does not rely on a normal assumption. Again, the GMM estimator
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performs quite bad when testing for ρ. The null hypothesis is rejected too often. The results improve
when N increases but get worse when T increases for fixed N .

Figures 3.1 and 3.2 state the power functions of the Z-Tests for β in Model 2 with N = 200, T = 5
and N = 500, T = 5. For both sample sizes the power functions for all estimators are symmetric. The
maximum likelihood estimators and the GMM estimator deliver comparable results and outperform the
IV estimator. Figures 3.3 and 3.4 state the power functions of the Z-Tests for ρ in Model 3 with N = 100,
T = 5 and N = 100, T = 25. In Figure 3.3 the power functions of the maximum likelihood estimators are
symmetric, attain their minimum at 0.4 and are almost identical. In contrast, the power function of the
GMM estimator is shifted to the left and reaches the nominal level at 0.35, i.e. the estimator is biased.
The power function of the IV estimator is quite flat and is outperformed by the maximum likelihood
estimators. In Figure 3.4 the values of the power functions have increased at all points. In addition, the
power function of the GMM estimator is not shifted any more but the power function does not attain
the nominal level at 0.4. As before, the maximum likelihood estimators outperform the IV estimator.
The main conclusion from Figures 3.3 and 3.4 is that the maximum likelihood estimators give convincing
results for both sample sizes and that the power improves if the sample size increases. In addition, all
figures show that testing for ρ is the statistically more difficult task than testing for β.

Table 3.1: Bias and Standard Deviation of the estimators for ρ and β in Model 2.

T Bias St. dev.

N 100 200 500 100 200 500

ρ estimator

IV 5 0.9341 0.0075 0.018 24.98 1.441 0.193

15 −0.0019 0.0017 −0.0009 0.095 0.065 0.041

25 −0.0007 −0.001 0.0002 0.056 0.041 0.026

GMM 5 −0.0811 −0.0425 −0.0181 0.097 0.071 0.045

15 −0.0399 −0.0213 −0.009 0.023 0.017 0.011

25 −0.0297 −0.0168 −0.007 0.014 0.01 0.006

MLE in levels 5 0.0066 0.0005 −0.0021 0.108 0.068 0.04

15 −0.0014 −0.0003 −0.0003 0.02 0.014 0.008

25 −0.0006 −0.0003 0.0002 0.012 0.008 0.005

MLE in differences 5 0.0154 0.0074 0.0003 0.119 0.078 0.044

15 −0.0011 0.0001 −0.0001 0.02 0.015 0.008

25 −0.0006 −0.0001 −0.0001 0.012 0.008 0.005

β estimator

IV 5 0.0696 −0.0014 0.0016 1.91 0.119 0.019

15 0.0001 −0.0004 0.0001 0.017 0.012 0.007

25 −0.0003 −0.0001 0.0001 0.012 0.008 0.005

GMM 5 −0.0011 −0.0018 0.0001 0.028 0.02 0.012

15 0.0031 0.0013 0.0007 0.011 0.008 0.005

25 0.0042 0.0021 0.0012 0.007 0.006 0.003

MLE in levels 5 0.0014 −0.0006 0.0005 0.028 0.02 0.012

15 −0.0001 −0.0003 0.0001 0.011 0.008 0.004

25 0.0003 −0.0001 0.0002 0.007 0.005 0.003

MLE in differences 5 0.0018 −0.0004 0.0005 0.029 0.02 0.012

15 −0.0001 −0.0004 0.0001 0.011 0.008 0.004

25 0.0003 −0.0001 0.0002 0.007 0.005 0.003

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.2: Bias and Standard Deviation of the estimators for ρ and β in Model 3.

T Bias St. dev.

N 100 200 500 100 200 500

ρ estimator

IV 5 0.0058 0.0027 0.0004 0.164 0.108 0.067

15 −0.0003 −0.0001 0.0007 0.05 0.036 0.023

25 −0.0012 0.0001 −0.0001 0.036 0.026 0.016

GMM 5 −0.0415 −0.0219 −0.0089 0.079 0.057 0.036

15 −0.0246 −0.0131 −0.0048 0.025 0.018 0.011

25 −0.0213 −0.0117 −0.0047 0.017 0.012 0.008

MLE in levels 5 −0.0002 0.0002 0.0002 0.069 0.05 0.031

15 −0.0011 −0.0005 0.0002 0.023 0.016 0.009

25 −0.0006 −0.0006 −0.0001 0.016 0.011 0.007

MLE in differences 5 0.0001 0.0003 0.0002 0.07 0.051 0.032

15 −0.0012 −0.0005 0.0002 0.023 0.016 0.009

25 −0.0008 −0.0006 −0.0001 0.016 0.011 0.007

β estimator

IV 5 −0.0037 0.002 −0.001 0.089 0.059 0.037

15 0.0013 0.0008 −0.0005 0.04 0.028 0.018

25 −0.0006 0.0008 −0.0001 0.029 0.021 0.013

GMM 5 0.0042 0.0043 0.0007 0.07 0.048 0.031

15 0.0096 0.0056 0.0018 0.027 0.019 0.012

25 0.0094 0.0053 0.0021 0.019 0.014 0.009

MLE in levels 5 −0.0019 0.0012 −0.0007 0.07 0.048 0.031

15 0.0001 0.0004 −0.0002 0.027 0.019 0.012

25 −0.0001 0.0002 −0.0001 0.019 0.014 0.009

MLE in differences 5 −0.0019 0.0012 −0.0007 0.07 0.048 0.031

15 0.0002 0.0004 −0.0002 0.027 0.019 0.012

25 0.0001 0.0002 −0.0001 0.019 0.014 0.009

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.3: Empirical Level for Z-Tests of the estimators for ρ and β in Model 1.

T 5% level 10% level

N 100 200 500 100 200 500

ρ estimator

IV 5 5.45 5.05 5.4 9.65 10.65 9.95

15 4.35 5.9 5.1 9.6 10.7 9.9

25 4.65 5.55 4.65 10.3 10.75 9.75

GMM 5 9.6 7.85 6.35 16.35 13.7 11.6

15 17.7 12.55 6.85 26.4 20.85 12.35

25 24.3 16.15 9.1 34.35 25.3 15.45

MLE in levels 5 5.25 4.55 5.4 10.35 9.15 10.95

15 4.8 4.85 4.2 10.05 10.5 8.8

25 4.15 4.7 4.55 9.0 10.6 9.85

MLE in differences 5 5.4 4.55 5.35 9.8 9.05 10.6

15 4.85 4.8 4.25 10.3 10.7 9.15

25 6.2 5.55 4.55 11.0 10.5 9.9

β estimator

IV 5 4.75 5.1 4.95 10.0 10.75 9.95

15 4.7 4.15 4.55 9.45 9.15 9.9

25 5.4 5.15 5.0 10.05 9.95 9.75

GMM 5 6.0 4.95 5.35 12.2 10.75 9.9

15 6.45 6.45 6.1 12.4 11.4 10.4

25 8.55 6.2 6.0 15.4 11.95 11.1

MLE in levels 5 5.55 5.0 4.85 11.1 10.1 10.05

15 4.8 4.85 5.4 9.45 9.6 10.45

25 6.15 4.05 5.25 10.85 9.35 9.75

MLE in differences 5 5.7 5.05 4.85 11.25 10.05 10.1

15 4.65 4.8 5.4 9.4 9.65 10.5

25 6.2 4.05 5.3 10.8 9.35 9.75

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.4: Empirical Level for Z-Tests of the estimators for ρ and β in Model 4.

T 5% level 10% level

N 100 200 500 100 200 500

ρ estimator

IV 5 4.9 6.1 4.35 8.4 10.1 8.35

15 4.85 4.75 4.55 8.75 10.0 9.95

25 4.0 5.3 4.4 7.5 10.9 9.3

GMM 5 17.75 10.6 7.25 25.45 16.75 13.1

15 43.7 26.9 14.4 54.95 38.25 22.4

25 62.2 38.4 18.5 72.7 49.9 28.8

MLE in levels 5 12.3 8.0 6.55 16.8 13.15 12.2

15 5.9 4.85 5.55 10.3 10.45 10.2

25 5.8 5.6 4.85 11.1 10.4 9.5

MLE in differences 5 14.1 9.7 7.85 18.2 15.2 13.05

15 5.5 5.0 5.55 11.2 10.5 10.5

25 6.3 5.5 4.7 11.5 10.4 9.7

β estimator

IV 5 4.65 5.35 4.85 9.6 10.4 10.95

15 4.45 5.15 4.8 8.94 9.75 10.3

25 4.2 5.1 5.5 9.3 11.1 10.5

GMM 5 5.7 5.05 5.1 10.75 10.7 10.5

15 6.3 7.2 4.55 12.15 13.5 9.9

25 8.4 6.3 5.4 15.4 11.7 9.85

MLE in levels 5 5.6 4.6 4.8 10.3 10.2 10.0

15 4.8 5.85 4.4 9.75 12.3 9.5

25 4.3 4.4 4.1 9.5 9.9 9.1

MLE in differences 5 5.3 4.75 4.65 10.2 10.0 10.2

15 4.85 6.0 4.45 9.75 12.3 9.4

25 4.5 4.4 4.1 9.7 9.8 9.0

Notes: For all simulations 2000 Monte Carlo samples were used.
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Figure 3.1: Power function of β in Model 2 with
N = 200 and T = 5.

Figure 3.2: Power function of β in Model 2 with
N = 500 and T = 5.

Notes: For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.

Figure 3.3: Power function of ρ in Model 3 with
N = 100 and T = 5.

Figure 3.4: Power function of ρ in Model 3 with
N = 100 and T = 25.

Notes: For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.

3.5. Conclusion

In this paper we discussed dynamic panel data models in the presence of incidental parameters for
individuals. The transformed maximum likelihood approach was compared with a factor analytical
approach and for the model without additional covariates consistent estimators under mild conditions
on the initial value were proposed. In addition, we extended the factor analytical approach to models
with additional covariates. This estimator controls for the initial value under mild conditions. Monte
Carlo results have also been conducted were the transformed maximum likelihood approach, the extended
factor analytical approach, a GMM estimator and an IV estimator are compared.
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Appendix

Appendix A: Derivatives of the log-likelihood function l1

Following Maddala [61] we get that

(
a1T1TT + σ2IT×T

)−1
=

1

σ2

(
QT×T +

σ2

T (σ2 + Ta)
1T1TT

)
.

Therefore, the likelihood function can be stated as
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.

In addition, recall that B(ρ) = IT×T − ρJT×T . With this representation of the likelihood function we
can now consider the first and second derivatives. The first derivatives are given by
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Finally, the second derivatives are given by
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Appendix B: Derivation of the estimates of the log-likelihood function l2

Let λ = ã∗(σ2 + (T − 1)a)− τ̃2(T − 1) and η = σ2 + (T − 1)a. We get that
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Appendix C: Derivatives of the log-likelihood function l2

It follows from the discussion in Appendix B that
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(ã∗ + η)(ã∗(T − 1) + η − 2τ̃(T − 1))− NT

2λ

−
N∑
i=1

Y T
i B(ρ)TV (θ2)−11T1TTV (θ2)−1V (θ2)−1B(ρ)Yi,

∂2`2(θ2)

∂σ2∂τ
=
N

λ2
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Appendix D: Additional simulation results

Table 3.D.5: Bias and Standard Deviation of the estimators for ρ and β in Model 1.

T Bias St. dev.

N 100 200 500 100 200 500

ρ estimator

IV 5 0.0028 −0.0016 0.0008 0.154 0.108 0.068

15 −0.0005 −0.0003 −0.0001 0.05 0.036 0.022

25 0.0005 0.0001 0.0002 0.036 0.026 0.016

GMM 5 −0.0421 −0.0219 −0.0086 0.078 0.057 0.037

15 −0.0244 −0.0134 −0.0056 0.025 0.019 0.011

25 −0.0216 −0.0113 −0.0048 0.017 0.013 0.008

MLE in levels 5 0.0019 −0.0001 0.0001 0.069 0.048 0.03

15 −0.0007 −0.0005 −0.0005 0.023 0.016 0.01

25 −0.0007 −0.0003 −0.0002 0.016 0.012 0.007

MLE in differences 5 0.0024 0.0001 −0.0001 0.069 0.048 0.03

15 −0.0007 −0.0005 −0.0005 0.023 0.016 0.01

25 −0.0008 −0.0002 −0.0001 0.016 0.012 0.007

β estimator

IV 5 −0.0003 0.0008 −0.0001 0.086 0.061 0.038

15 0.0005 −0.0009 −0.0001 0.04 0.028 0.018

25 −0.0006 0.0001 −0.0001 0.029 0.021 0.013

GMM 5 0.008 0.004 0.0011 0.071 0.048 0.03

15 0.0101 0.005 0.0023 0.027 0.019 0.012

25 0.0098 0.0052 0.0022 0.02 0.014 0.009

MLE in levels 5 0.0018 0.0009 −0.0002 0.071 0.048 0.03

15 0.0005 −0.0002 0.0002 0.026 0.019 0.012

25 0.0001 0.0001 0.0001 0.02 0.014 0.009

MLE in differences 5 0.0018 0.0009 −0.0001 0.071 0.048 0.03

15 0.0005 −0.0002 0.0002 0.026 0.019 0.012

25 0.0002 0.0001 0.0001 0.02 0.014 0.009

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.D.6: Bias and Standard Deviation of the estimators for ρ and β in Model 4.

T Bias St. dev.

N 100 200 500 100 200 500

ρ estimator

IV 5 0.1476 0.246 0.0047 11.63 7.13 0.179

15 −0.0023 −0.0004 −0.0011 0.094 0.065 0.041

25 −0.0003 0.0005 −0.0001 0.054 0.041 0.025

GMM 5 −0.0836 −0.042 −0.016 0.098 0.068 0.045

15 −0.0394 −0.0221 −0.0098 0.023 0.016 0.011

25 −0.03 −0.0166 −0.0072 0.014 0.01 0.007

MLE in levels 5 0.0045 −0.0016 −0.001 0.114 0.071 0.043

15 −0.0007 −0.0009 −0.0006 0.021 0.014 0.009

25 −0.0009 0.0001 −0.0001 0.013 0.009 0.005

MLE in differences 5 0.0128 0.0048 0.0008 0.126 0.083 0.049

15 −0.0003 −0.0005 −0.0003 0.021 0.014 0.009

25 −0.001 0.0002 0.0001 0.013 0.009 0.005

β estimator

IV 5 0.0132 0.0182 −0.0005 0.335 0.506 0.018

15 −0.0004 0.0001 −0.0001 0.016 0.012 0.007

25 −0.0001 −0.0002 −0.0001 0.012 0.009 0.005

GMM 5 −0.0031 −0.0007 −0.0007 0.028 0.02 0.013

15 0.003 0.0017 0.0005 0.011 0.008 0.005

25 0.004 0.0019 0.0009 0.008 0.006 0.003

MLE in levels 5 −0.0005 0.0003 −0.0003 0.029 0.02 0.013

15 −0.0001 0.0001 −0.0001 0.011 0.008 0.005

25 0.0001 −0.0003 −0.0001 0.008 0.006 0.003

MLE in differences 5 −0.0002 0.0005 −0.0003 0.029 0.02 0.013

15 −0.0001 0.0001 −0.0002 0.011 0.008 0.005

25 0.0002 −0.0003 −0.0001 0.008 0.006 0.003

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.D.7: Empirical Level for Z-Tests of the estimators for ρ and β in Model 2.

T 5% level 10% level

N 100 200 500 100 200 500

ρ estimator

IV 5 5.35 5.15 4.6 9.0 8.4 8.85

15 4.2 4.4 5.3 9.3 8.75 10.45

25 4.9 5.6 6.4 9.5 11.2 10.5

GMM 5 18.05 11.35 6.9 27.05 18.1 12.25

15 43.85 25.8 12.2 56.3 36.45 21.55

25 61.1 38.7 19.1 71.8 51.8 28.75

MLE in levels 5 10.95 6.7 4.85 16.35 11.45 8.55

15 5.75 5.7 4.95 10.8 11.75 9.0

25 5.3 4.7 5.0 10.3 9.5 9.85

MLE in differences 5 11.7 7.05 4.85 16.65 10.8 9.25

15 5.1 5.75 4.95 10.4 11.65 8.9

25 5.7 4.8 4.6 10.9 9.7 9.65

β estimator

IV 5 3.85 3.95 4.45 7.05 8.35 8.8

15 5.0 5.1 5.2 10.35 10.0 9.1

25 5.2 4.3 4.4 10.1 9.5 8.4

GMM 5 6.05 5.6 4.3 10.4 10.9 9.65

15 6.3 5.3 6.1 12.9 10.15 11.5

25 8.7 6.8 6.6 14.7 11.7 11.25

MLE in levels 5 5.25 5.2 4.15 9.6 10.25 9.6

15 5.15 4.7 5.85 10.1 9.55 11.2

25 4.5 4.5 4.9 9.3 9.5 9.6

MLE in differences 5 5.15 5.2 4.2 9.85 10.4 9.7

15 5.3 4.65 5.75 10.2 9.8 11.35

25 4.6 4.4 4.9 9.3 9.5 9.5

Notes: For all simulations 2000 Monte Carlo samples were used.
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Table 3.D.8: Empirical Level for Z-Tests of the estimators for ρ and β in Model 3.

T 5% level 10% level

N 100 200 500 100 200 500

ρ estimator

IV 5 5.05 5.3 5.35 11.4 10.5 10.2

15 4.25 4.6 4.9 10.6 9.5 10.55

25 5.75 5.55 4.8 10.9 11.2 10.05

GMM 5 9.7 7.45 6.95 16.4 13.45 12.1

15 16.9 10.7 6.2 27.4 18.4 12.5

25 24.85 16.5 8.95 35.2 25.4 15.3

MLE in levels 5 5.95 6.5 6.15 10.9 12.25 11.55

15 4.95 5.7 4.45 9.95 10.4 9.5

25 5.45 6.1 5.25 10.5 10.7 10.7

MLE in differences 5 6.25 6.45 6.3 10.6 12.3 12.05

15 4.95 5.65 4.6 9.7 10.25 9.55

25 5.6 6.2 5.25 10.6 10.8 10.55

β estimator

IV 5 5.95 5.25 5.0 11.25 9.95 10.2

15 5.2 4.65 5.75 10.05 10.05 10.2

25 5.1 5.7 4.95 9.95 11.2 9.75

GMM 5 6.6 5.0 5.2 11.2 9.85 10.85

15 6.65 7.1 5.0 12.95 12.55 9.95

25 7.65 7.7 5.9 13.35 13.3 10.6

MLE in levels 5 5.9 4.7 5.2 11.35 9.6 10.7

15 5.2 5.1 4.4 9.2 11.0 9.55

25 4.2 5.9 5.3 9.05 10.9 9.85

MLE in differences 5 5.95 4.6 5.25 11.35 9.55 10.7

15 5.25 5.25 4.5 9.35 11.15 9.55

25 4.35 5.9 5.35 9.0 10.8 9.8

Notes: For all simulations 2000 Monte Carlo samples were used.
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Figure 3.D.5: Power function of β in Model 1 with
N = 100 and T = 15.

Figure 3.D.6: Power function of β in Model 1 with
N = 100 and T = 25.

Notes: For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.

Figure 3.D.7: Power function of ρ in Model 4 with
N = 200 and T = 5.

Figure 3.D.8: Power function of ρ in Model 4 with
N = 200 and T = 25.

Notes: For all simulations 2000 Monte Carlo samples were used. The nominal level is 5%.

123



124



Bibliography

[1] Acemoglu, D., Johnson, S., Robinson, J. A., 2001. The colonial origins of comparative development:
An empirical investigation. American Economic Review 91 (5), 1369–1401.

[2] Ahn, S. C., Schmidt, P., 1995. Efficient estimation of models for dynamic panel data. Journal of
Econometrics 68 (1), 5–27.

[3] Ai, C., Chen, X., 2003. Efficient estimation of models with conditional moment restrictions containing
unknown functions. Econometrica 71 (6), 1795–1843.

[4] Altonji, J. G., Bharadwaj, P., Lange, F., 2012. Changes in the characteristics of American youth:
Implications for adult outcomes. Journal of Labor Economics 30 (4), 783–828.

[5] Alvarez, J., Arellano, M., 2003. The time series and cross-section asymptotics of dynamic panel data
estimators. Econometrica 71 (4), 1121–1159.

[6] Amemiya, T., 1985. Advanced econometrics. Harvard University Press.

[7] Amemiya, T., MaCurdy, T. E., 1986. Instrumental-variable estimation of an error-components model.
Econometrica 54, 869–880.

[8] Amemiya, T., Powell, J. L., 1981. A comparison of the Box-Cox maximum likelihood estimator and
the non-linear two-stage least squares estimator. Journal of Econometrics 17 (3), 351–381.

[9] Amemiya, Y., Fuller, W. A., Pantula, S. G., 1987. The asymptotic distributions of some estimators
for a factor analysis model. Journal of Multivariate Analysis 22 (1), 51–64.

[10] Anderson, T. W., Amemiya, Y., 1988. The asymptotic normal distribution of estimators in factor
analysis under general conditions. The Annals of Statistics 16 (2), 759–771.

[11] Anderson, T. W., Hsiao, C., 1981. Estimation of dynamic models with error components. Journal of
the American Statistical Association 76 (375), 598–606.

[12] Anderson, T. W., Hsiao, C., 1982. Formulation and estimation of dynamic models using panel data.
Journal of Econometrics 18 (1), 47–82.

[13] Antoine, B., Bonnal, H., Renault, E., 2007. On the efficient use of the informational content of esti-
mating equations: Implied probabilities and Euclidean empirical likelihood. Journal of Econometrics
138 (2), 461–487.

[14] Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte Carlo evidence and
an application to employment equations. The Review of Economic Studies 58 (2), 277–297.

[15] Arellano, M., Bover, O., 1995. Another look at the instrumental variable estimation of error-
components models. Journal of Econometrics 68 (1), 29–51.

[16] Autor, D. H., Handel, M. J., 2013. Putting tasks to the test: Human capital, job tasks, and wages.
Journal of Labor Economics 31 (S1), 59–96.

[17] Bai, J., 2013. Fixed-effects dynamic panel models, a factor analytical method. Econometrica 81 (1),
285–314.

[18] Bekker, P. A., 1994. Alternative approximations to the distributions of instrumental variable esti-
mators. Econometrica 62, 657–681.

[19] Berndt, E. R., Showalter, M. H., Wooldridge, J. M., 1993. An empirical investigation of the Box-Cox
model and a nonlinear least squares alternative. Econometric Reviews 12 (1), 65–102.

125



[20] Bhargava, A., Sargan, J. D., 1983. Estimating dynamic random effects models from panel data
covering short time periods. Econometrica 51, 1635–1659.

[21] Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic panel data
models. Journal of Econometrics 87 (1), 115–143.

[22] Box, G. E., Cox, D. R., 1964. An analysis of transformations. Journal of the Royal Statistical Society:
Series B 26 (2), 211–243.

[23] Browne, M. W., 1974. Generalized least squares estimators in the analysis of covariance structures.
South African Statistical Journal 8 (1), 1–24.

[24] Carrasco, M., Florens, J.-P., 2000. Generalization of GMM to a continuum of moment conditions.
Econometric Theory 16 (6), 797–834.

[25] Chamberlain, G., 1984. Panel data. Handbook of Econometrics 2, 1247–1318.

[26] Chamberlain, G., Moreira, M. J., 2009. Decision theory applied to a linear panel data model. Econo-
metrica 77 (1), 107–133.

[27] Dell, M., Jones, B. F., Olken, B. A., 2009. Temperature and income: Reconciling new cross-sectional
and panel estimates. American Economic Review 99 (2), 198–204.

[28] Deming, D. J., 2017. The growing importance of social skills in the labor market. The Quarterly
Journal of Economics 132 (4), 1593–1640.

[29] Dominguez, M. A., Lobato, I. N., 2004. Consistent estimation of models defined by conditional
moment restrictions. Econometrica 72 (5), 1601–1615.

[30] Donald, S. G., Imbens, G. W., Newey, W. K., 2003. Empirical likelihood estimation and consistent
tests with conditional moment restrictions. Journal of Econometrics 117 (1), 55–93.

[31] Engle, R. F., Granger, C. W., Rice, J., Weiss, A., 1986. Semiparametric estimates of the relation
between weather and electricity sales. Journal of the American Statistical Association 81 (394),
310–320.

[32] Foster, A., Tian, L., Wei, L., 2001. Estimation for the Box-Cox transformation model without
assuming parametric error distribution. Journal of the American Statistical Association 96 (455),
1097–1101.

[33] Greene, W. H., 2003. Econometric analysis. Pearson Education.

[34] Hahn, J., Kuersteiner, G., 2002. Asymptotically unbiased inference for a dynamic panel model with
fixed effects when both n and T are large. Econometrica 70 (4), 1639–1657.

[35] Han, C., Phillips, P. C., 2010. GMM estimation for dynamic panels with fixed effects and strong
instruments at unity. Econometric Theory 26 (01), 119–151.

[36] Han, C., Phillips, P. C., 2013. First difference maximum likelihood and dynamic panel estimation.
Journal of Econometrics 175 (1), 35–45.
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