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Introduction

This thesis consists of three self-contained essays in econometrics and statistics. In these

essays, I am interested in the nonparametric regression models and in developing new

methods for testing various qualitative hypotheses about the trend functions in these

models. Each of the three chapters proposes a novel multiscale testing procedure that is

used either for investigating the properties of one time series (Chapter 1), or for comparison

of the regression curves between multiple time series (Chapters 2 and 3). The underlying

idea of any multiscale test is to consider a number of test statistics (each corresponding

to a different set of values of some tuning parameters) simultaneously rather than to

perform a separate test for each single test statistics, which leads to a well-known multiple

testing problem. All of the proposed tests account for this problem by picking appropriate

critical values, and the main methodological contributions of the current thesis are the

theoretical results that these test all have (asymptotically) correct size and good power

properties. Even though there are many similarities between the chapters, the research

questions are quite distinct. In Chapter 1, the method is designed to determine whether

the trend in one time series is decreasing or increasing, whereas in Chapters 2 and 3 the

testing procedures were designed for comparison of multiple time trends and locating the

differences. Moreover, the difference between Chapters 2 and 3 lies in the models under

consideration: Chapter 2 deals with epidemic time trends in a simple nonparametric

regression and places certain restrictions on the error terms in the observed times series,

whereas Chapter 3 considers a very general model that allows for including covariates and

fixed effects. The first two chapters are also completed by extensive simulation studies

and the applications to the real-life data: temperature time series in Chapter 1 and the

data on the new cases of COVID-19 in Chapter 2.

Chapter 1 is based on a joint work together with Michael Vogt which is published in the

Journal of Royal Statistical Society: Series B (Khismatullina and Vogt, 2020). Chapter 2

is based on a joint work together with Michael Vogt which is forthcoming at the Journal

of Econometrics (Khismatullina and Vogt, 2021). Chapter 3 is based on yet another joint

work together with Michael Vogt. In the following, I will provide a short summary of each

chapter.

CHAPTER 1: In this paper, we develop new multiscale methods to test qualitative hy-

potheses about the function m in the nonparametric regression model Yt,T = m(t/T ) + εt

with time series errors εt. In time series applications, m represents a nonparametric time

trend. Practitioners are often interested in whether the trend m has certain shape prop-

erties. For example, they would like to know whether m is constant or whether it is

increasing/decreasing in certain time intervals. Our multiscale methods allow to test for
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such shape properties of the trend m. In order to perform the methods, we require an

estimator of the long-run error variance σ2 =
∑∞

`=−∞Cov(ε0, ε`). We propose a new

difference-based estimator of σ2 for the case that {εt} belongs to the class of AR(∞)

processes. In the technical part of the paper, we derive asymptotic theory for the pro-

posed multiscale test and the estimator of the long-run error variance. The theory is

complemented by a simulation study and an empirical application to climate data.

CHAPTER 2: The COVID-19 pandemic is still one of the most pressing issues at

present. A question which is particularly important for governments and policy makers

is the following: Does the virus spread in the same way in different countries? Or are

there significant differences in the development of the epidemic? Identifying differences

between countries may help, for instance, to better understand which government policies

have been more effective in containing the virus than others. In this paper, we devise new

inference methods that allow to detect differences in the development of the COVID-19

epidemic across countries in a statistically rigorous way. We derive asymptotic theory for

the proposed methods and we complement the theory by an extensive simulation study. In

our empirical study, we use the methods to compare the outbreak patterns of the epidemic

in a number of European countries.

CHAPTER 3: We develop multiscale methods to test qualitative hypotheses about

nonparametric time trends in the presence of covariates. In many applications, practition-

ers are interested whether the observed time series all have the same time trend. Moreover,

when there is evidence that this is not the case, one of the major related statistical prob-

lems is to determine which of the trends are different and whether we can group the time

series with the similar trends together. In addition, when two trends are not the same, it

may also be relevant to know in which time regions they differ from each other. We design

multiscale tests to formally approach these questions. We derive asymptotic theory for

the proposed tests and show that the proposed test has (asymptotically) the correct size

and has asymptotic power of one against a certain class of local alternatives.



Chapter 1

Multiscale Inference and Long-Run

Variance Estimation in Nonparametric

Regression with Time Series Errors

Joint with Michael Vogt

1.1 Introduction

The analysis of time trends is an important aspect of many time series applications.

In a wide range of situations, practitioners are particularly interested in certain shape

properties of the trend. They raise questions such as the following: Does the observed

time series have a trend at all? If so, is the trend increasing/decreasing in certain time

intervals? Can one identify the intervals of increase/decrease? As an example, consider

the time series plotted in Figure 1.1 which shows the yearly mean temperature in Central

England from 1659 to 2017. Climatologists are very much interested in learning about

the trending behaviour of temperature time series like this; see e.g. Benner (1999) and

Rahmstorf et al. (2017). Among other things, they would like to know whether there is

an upward trend in the Central England mean temperature towards the end of the sample

as visual inspection might suggest.

In this paper, we develop new methods to test for certain shape properties of a non-

parametric time trend. We in particular construct a multiscale test which allows to identify

1675 1725 1775 1825 1875 1925 1975 2025

7
8

9
10

11

Figure 1.1: Yearly mean temperature in Central England from 1659 to 2017 measured
in ◦C.
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local increases/decreases of the trend function. We develop our test in the context of the

following model setting: We observe a time series {Yt,T : 1 ≤ t ≤ T} of the form

Yt,T = m
( t
T

)
+ εt (1.1.1)

for 1 ≤ t ≤ T , where m : [0, 1] → R is an unknown nonparametric regression function

and the error terms εt form a stationary time series process with E[εt] = 0. In a time

series context, the design points t/T represent the time points of observation and m is a

nonparametric time trend. As usual in nonparametric regression, we let the function m

depend on rescaled time t/T rather than on real time t. A detailed description of model

(1.1.1) is provided in Section 1.2.

Our multiscale test is developed step by step in Section 1.3. Roughly speaking, the

procedure can be outlined as follows: Let H0(u, h) be the hypothesis that m is constant

in the time window [u− h, u+ h] ⊆ [0, 1], where u is the midpoint and 2h the size of the

window. In a first step, we set up a test statistic ϕ̂T (u, h) for the hypothesis H0(u, h).

In a second step, we aggregate the statistics ϕ̂T (u, h) for a large number of different time

windows [u−h, u+h]. We thereby construct a multiscale statistic which allows to test the

hypothesis H0(u, h) simultaneously for many time windows [u−h, u+h]. In the technical

part of the paper, we derive the theoretical properties of the resulting multiscale test. To

do so, we come up with a proof strategy which combines strong approximation results for

dependent processes with anti-concentration bounds for Gaussian random vectors. This

strategy is of interest in itself and may be applied to other multiscale test problems for

dependent data. As shown by our theoretical analysis, our multiscale test is a rigorous

level-α-test of the overall null hypothesis H0 that H0(u, h) is simultaneously fulfilled for

all time windows [u−h, u+h] under consideration. Moreover, for a given significance level

α ∈ (0, 1), the test allows to make simultaneous confidence statements of the following

form: We can claim, with statistical confidence 1 − α, that there is an increase/decrease

in the trend m on all time windows [u − h, u + h] for which the hypothesis H0(u, h) is

rejected. Hence, the test allows to identify, with a pre-specified statistical confidence, time

intervals where the trend m is increasing/decreasing.

For independent data, multiscale tests have been developed in a variety of different

contexts in recent years. In the regression context, Chaudhuri and Marron (1999, 2000) in-

troduced the so-called SiZer method which has been extended in various directions; see e.g.

Hannig and Marron (2006) where a refined distribution theory for SiZer is derived. Hall

and Heckman (2000) constructed a multiscale test on monotonicity of a regression func-

tion. Dümbgen and Spokoiny (2001) developed a multiscale approach which works with

additively corrected supremum statistics and derived theoretical results in the context of

a continuous Gaussian white noise model. Rank-based multiscale tests for nonparametric

regression were proposed in Dümbgen (2002) and Rohde (2008). More recently, Proksch

et al. (2018) have constructed multiscale tests for inverse regression models. In the context

of density estimation, multiscale tests have been investigated in Dümbgen and Walther
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(2008), Rufibach and Walther (2010), Schmidt-Hieber et al. (2013) and Eckle et al. (2017)

among others.

Whereas a large number of multiscale tests for independent data have been developed

in recent years, multiscale tests for dependent data are much rarer. Most notably, there

are some extensions of the SiZer approach to a time series context. Park et al. (2004) and

Rondonotti et al. (2007) have introduced SiZer methods for dependent data which can be

used to find local increases/decreases of a trend and which may thus be regarded as an

alternative to our multiscale test. However, these SiZer methods are mainly designed for

data exploration rather than for rigorous statistical inference. Our multiscale method, in

contrast, is a rigorous level-α-test of the hypothesis H0 which allows to make simultaneous

confidence statements about the time intervals where the trend m is increasing/decreasing.

Some theoretical results for dependent SiZer methods have been derived in Park et al.

(2009a), but only under a quite severe restriction: Only time windows [u− h, u+ h] with

window sizes or scales h are taken into account that remain bounded away from zero as

the sample size T grows. Scales h that converge to zero as T increases are excluded. This

effectively means that only large time windows [u− h, u+ h] are taken into consideration.

Our theory, in contrast, allows to simultaneously consider scales h of fixed size and scales

h that converge to zero at various different rates. We are thus able to take into account

time windows of many different sizes. In Section 1.3.4, we compare our approach to SiZer

methods for dependent data in more detail.

Our multiscale approach is also related to Wavelet-based methods: Similar to the

latter, it takes into account different locations u and resolution levels or scales h si-

multaneously. However, while our multiscale approach is designed to test for local in-

creases/decreases of a nonparametric trend, Wavelet methods are commonly used for

other purposes. Among other things, they are employed for estimating/reconstructing

nonparametric regression curves [see e.g. Donoho et al. (1995) or Von Sachs and MacGib-

bon (2000)] and for change point detection [see e.g. Cho and Fryzlewicz (2012)].

The test statistic of our multiscale method depends on the long-run error variance σ2 =∑∞
`=−∞Cov(ε0, ε`), which is usually unknown in practice. To carry out our multiscale test,

we thus require an estimator of σ2. Indeed, such an estimator is required for virtually all

inferential procedures in the context of model (1.1.1). Hence, the problem of estimating σ2

in model (1.1.1) is of broader interest and has received a lot of attention in the literature;

see Müller and Stadtmüller (1988), Herrmann et al. (1992) and Hall and Van Keilegom

(2003) among many others. In Section 1.4, we introduce a new difference-based estimator

of σ2 for the case that {εt} belongs to the class of AR(∞) processes. This estimator

improves on existing methods in several respects.

The methodological and theoretical analysis of the paper is complemented by a simu-

lation study in Section 1.5 and two empirical applications in Section 1.6. In the simulation

study, we examine the finite sample properties of our multiscale test and compare it to the

dependent SiZer methods introduced in Park et al. (2004) and Rondonotti et al. (2007).

Moreover, we investigate the small sample performance of our estimator of σ2 and compare
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it to the estimator of Hall and Van Keilegom (2003). In Section 1.6, we use our methods

to analyse the temperature data from Figure 1.1 as well as a sample of global temperature

data.

1.2 The model

We now describe the model setting in detail which was briefly outlined in the Introduction.

We observe a time series {Yt,T : 1 ≤ t ≤ T} of length T which satisfies the nonparametric

regression equation

Yt,T = m
( t
T

)
+ εt (1.2.1)

for 1 ≤ t ≤ T . Here, m is an unknown nonparametric function defined on [0, 1] and

{εt : 1 ≤ t ≤ T} is a zero-mean stationary error process. For simplicity, we restrict

attention to equidistant design points xt = t/T . However, our methods and theory can also

be carried over to non-equidistant designs. The stationary error process {εt} is assumed

to have the following properties:

(C1) The variables εt allow for the representation εt = G(. . . , ηt−1, ηt, ηt+1, . . .), where ηt

are i.i.d. random variables and G : RZ → R is a measurable function.

(C2) It holds that ‖εt‖q <∞ for some q > 4, where ‖εt‖q = (E|εt|q)1/q.

Following Wu (2005), we impose conditions on the dependence structure of the error

process {εt} in terms of the physical dependence measure dt,q = ‖εt − ε′t‖q, where ε′t =

G(. . . , η−1, η
′
0, η1, . . . , ηt−1, ηt, ηt+1, . . .) with {η′t} being an i.i.d. copy of {ηt}. In particular,

we assume the following:

(C3) Define Θt,q =
∑
|s|≥t ds,q for t ≥ 0. It holds that Θt,q = O(t−τq(log t)−A), where

A > 2
3(1/q + 1 + τq) and τq = {q2 − 4 + (q − 2)

√
q2 + 20q + 4}/8q.

The conditions (C1)–(C3) are fulfilled by a wide range of stationary processes {εt}. As

a first example, consider linear processes of the form εt =
∑∞

i=0 ciηt−i with ‖εt‖q < ∞,

where ci are absolutely summable coefficients and ηt are i.i.d. innovations with E[ηt] = 0

and ‖ηt‖q <∞. Trivially, (C1) and (C2) are fulfilled in this case. Moreover, if |ci| = O(ρi)

for some ρ ∈ (0, 1), then (C3) is easily seen to be satisfied as well. As a special case,

consider an ARMA process {εt} of the form εt −
∑p

i=1 aiεt−i = ηt +
∑r

j=1 bjηt−j with

‖εt‖q < ∞, where a1, . . . , ap and b1, . . . , br are real-valued parameters. As before, we let

ηt be i.i.d. innovations with E[ηt] = 0 and ‖ηt‖q < ∞. Moreover, as usual, we suppose

that the complex polynomials A(z) = 1 −
∑p

j=1 ajz
j and B(z) = 1 +

∑r
j=1 bjz

j do not

have any roots in common. If A(z) does not have any roots inside the unit disc, then

the ARMA process {εt} is stationary and causal. Specifically, it has the representation

εt =
∑∞

i=0 ciηt−i with |ci| = O(ρi) for some ρ ∈ (0, 1), implying that (C1)–(C3) are

fulfilled. The results in Wu and Shao (2004) show that condition (C3) (as well as the

other two conditions) is not only fulfilled for linear time series processes but also for a

variety of non-linear processes.



1.3 The multiscale test | 7

1.3 The multiscale test

In this section, we introduce our multiscale method to test for local increases/decreases of

the trend function m and analyse its theoretical properties. We assume throughout that

m is continuously differentiable on [0, 1]. The test problem under consideration can be

formulated as follows: Let H0(u, h) be the hypothesis that m is constant on the interval

[u− h, u+ h]. Since m is continuously differentiable, H0(u, h) can be reformulated as

H0(u, h) : m′(w) = 0 for all w ∈ [u− h, u+ h],

where m′ is the first derivative of m. We want to test the hypothesis H0(u, h) not only for

a single interval [u−h, u+h] but simultaneously for many different intervals. The overall

null hypothesis is thus given by

H0 : The hypothesis H0(u, h) holds true for all (u, h) ∈ GT ,

where GT is some large set of points (u, h). The details on the set GT are discussed at the

end of Section 1.3.1 below. Note that GT in general depends on the sample size T , implying

that the null hypothesis H0 = H0,T depends on T as well. We thus consider a sequence

of null hypotheses {H0,T : T = 1, 2, . . .} as T increases. For simplicity of notation, we

however suppress the dependence of H0 on T . In Sections 1.3.1 and 1.3.2, we step by step

construct the multiscale test of the hypothesis H0. The theoretical properties of the test

are analysed in Section 1.3.3.

1.3.1 Construction of the multiscale statistic

We first construct a test statistic for the hypothesis H0(u, h), where [u − h, u + h] is a

given interval. To do so, we consider the kernel average

ψ̂T (u, h) =
T∑
t=1

wt,T (u, h)Yt,T ,

where wt,T (u, h) is a kernel weight and h is the bandwidth. In order to avoid boundary

issues, we work with a local linear weighting scheme. We in particular set

wt,T (u, h) =
Λt,T (u, h)

{
∑T

t=1 Λt,T (u, h)2}1/2
, (1.3.1)

where

Λt,T (u, h) = K
( t
T − u
h

)[
ST,0(u, h)

( t
T − u
h

)
− ST,1(u, h)

]
,

ST,`(u, h) = (Th)−1
∑T

t=1K(
t
T
−u
h )(

t
T
−u
h )` for ` = 0, 1, 2 and K is a kernel function with

the following properties:

(C4) The kernel K is non-negative, symmetric about zero and integrates to one. More-
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over, it has compact support [−1, 1] and is Lipschitz continuous, that is, |K(v) −
K(w)| ≤ C|v − w| for any v, w ∈ R and some constant C > 0.

The kernel average ψ̂T (u, h) is nothing else than a rescaled local linear estimator of the

derivative m′(u) with bandwidth h.1

A test statistic for the hypothesis H0(u, h) is given by the normalized kernel average

ψ̂T (u, h)/σ̂, where σ̂2 is an estimator of the long-run variance σ2 =
∑∞

`=−∞Cov(ε0, ε`)

of the error process {εt}. The problem of estimating σ2 is discussed in detail in Section

1.4. For the time being, we suppose that σ̂2 is an estimator with reasonable theoretical

properties. Specifically, we assume that σ̂2 = σ2 + op(ρT ) with ρT = o(1/ log T ). This is

a fairly weak condition which is in particular satisfied by the estimator of σ2 analysed in

Section 1.4. The kernel weights wt,T (u, h) are chosen such that in the case of independent

errors εt, Var(ψ̂T (u, h)) = σ2 for any location u and bandwidth h, where the long-run

error variance σ2 simplifies to σ2 = Var(εt). In the more general case that the error terms

satisfy the weak dependence conditions from Section 1.2, Var(ψ̂T (u, h)) = σ2 + o(1) for

any u and h under consideration. Hence, for sufficiently large sample sizes T , the test

statistic ψ̂T (u, h)/σ̂ has approximately unit variance.

We now combine the test statistics ψ̂T (u, h)/σ̂ for a wide range of different locations u

and bandwidths or scales h. There are different ways to do so, leading to different types

of multiscale statistics. Our multiscale statistic is defined as

Ψ̂T = max
(u,h)∈GT

{∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣− λ(h)
}
, (1.3.2)

where λ(h) =
√

2 log{1/(2h)} and GT is the set of points (u, h) that are taken into consid-

eration. The details on the set GT are given below. As can be seen, the statistic Ψ̂T does

not simply aggregate the individual statistics ψ̂T (u, h)/σ̂ by taking the supremum over

all points (u, h) ∈ GT as in more traditional multiscale approaches. We rather calibrate

the statistics ψ̂T (u, h)/σ̂ that correspond to the bandwidth h by subtracting the additive

correction term λ(h). This approach was pioneered by Dümbgen and Spokoiny (2001)

and has been used in numerous other studies since then; see e.g. Dümbgen (2002), Rohde

(2008), Dümbgen and Walther (2008), Rufibach and Walther (2010), Schmidt-Hieber et al.

(2013) and Eckle et al. (2017).

To see the heuristic idea behind the additive correction λ(h), consider for a moment

the uncorrected statistic

Ψ̂T,uncorrected = max
(u,h)∈GT

∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣ (1.3.3)

and suppose that the hypothesis H0(u, h) is true for all (u, h) ∈ GT . For simplicity,

1Alternatively to the local linear weights defined in (1.3.1), we could also work with the weights
wt,T (u, h) = K′(h−1[u − t/T ])/{

∑T
t=1K

′(h−1[u − t/T ])2}1/2, where the kernel function K is assumed
to be differentiable and K′ is its derivative. We however prefer to use local linear weights as these have
superior theoretical properties at the boundary.



1.3 The multiscale test | 9

assume that the errors εt are i.i.d. normally distributed and neglect the estimation error

in σ̂, that is, set σ̂ = σ. Moreover, suppose that the set GT only consists of the points

(uk, h`) = ((2k − 1)h`, h`) with k = 1, . . . , b1/2h`c and ` = 1, . . . , L. In this case, we can

write

Ψ̂T,uncorrected = max
1≤`≤L

max
1≤k≤b1/2h`c

∣∣∣ ψ̂T (uk, h`)

σ

∣∣∣.
Under our simplifying assumptions, the statistics ψ̂T (uk, h`)/σ with k = 1, . . . , b1/2h`c
are independent and standard normal for any given bandwidth h`. Since the maximum

over b1/2hc independent standard normal random variables is λ(h) + op(1) as h → 0,

we obtain that maxk ψ̂T (uk, h`)/σ is approximately of size λ(h`) for small bandwidths h`.

As λ(h) → ∞ for h → 0, this implies that maxk ψ̂T (uk, h`)/σ tends to be much larger

in size for small than for large bandwidths h`. As a result, the stochastic behaviour of

the uncorrected statistic Ψ̂T,uncorrected tends to be dominated by the statistics ψ̂T (uk, h`)

corresponding to small bandwidths h`. The additively corrected statistic Ψ̂T , in contrast,

puts the statistics ψ̂T (uk, h`) corresponding to different bandwidths h` on a more equal

footing, thus counteracting the dominance of small bandwidth values.

The multiscale statistic Ψ̂T simultaneously takes into account all locations u and band-

widths h with (u, h) ∈ GT . Throughout the paper, we suppose that GT is some subset of

Gfull
T = {(u, h) : u = t/T for some 1 ≤ t ≤ T and h ∈ [hmin, hmax]}, where hmin and hmax

denote some minimal and maximal bandwidth value, respectively. For our theory to work,

we require the following conditions to hold:

(C5) |GT | = O(T θ) for some arbitrarily large but fixed constant θ > 0, where |GT | denotes

the cardinality of GT .

(C6) hmin � T
−(1− 2

q
)
log T , that is, hmin/{T−(1− 2

q
)
log T} → ∞ with q > 4 defined in

(C2) and hmax < 1/2.

According to (C12), the number of points (u, h) in GT should not grow faster than T θ for

some arbitrarily large but fixed θ > 0. This is a fairly weak restriction as it allows the set

GT to be extremely large compared to the sample size T . For example, we may work with

the set

GT =
{

(u, h) : u = t/T for some 1 ≤ t ≤ T and h ∈ [hmin, hmax]

with h = t/T for some 1 ≤ t ≤ T
}
,

which contains more than enough points (u, h) for most practical applications. Condition

(C13) imposes some restrictions on the minimal and maximal bandwidths hmin and hmax.

These conditions are fairly weak, allowing us to choose the bandwidth window [hmin, hmax]

extremely large. The lower bound on hmin depends on the parameter q defined in (C2)

which specifies the number of existing moments for the error terms εt. As one can see, we

can choose hmin to be of the order T−1/2 for any q > 4. Hence, we can let hmin converge to

0 very quickly even if only the first few moments of the error terms εt exist. If all moments
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exist (i.e. q = ∞), hmin may converge to 0 almost as quickly as T−1 log T . Furthermore,

the maximal bandwidth hmax is not even required to converge to 0, which implies that we

can pick it very large.

Remark 1.3.1. The above construction of the multiscale statistic can be easily adapted

to hypotheses other than H0. To do so, one simply needs to replace the kernel weights

wt,T (u, h) defined in (1.3.1) by appropriate versions which are suited to test the hypothesis

of interest. For example, if one wants to test for local convexity/concavity of m, one may

define the kernel weights wt,T (u, h) such that the kernel average ψ̂T (u, h) is a (rescaled)

estimator of the second derivative of m at the location u with bandwidth h.

1.3.2 The test procedure

In order to formulate a test for the null hypothesis H0, we still need to specify a critical

value. To do so, we define the statistic

ΦT = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ

∣∣∣− λ(h)
}
, (1.3.4)

where φT (u, h) =
∑T

t=1wt,T (u, h)σZt and Zt are independent standard normal random

variables. The statistic ΦT can be regarded as a Gaussian version of the test statistic Ψ̂T

under the null hypothesis H0. Let qT (α) be the (1− α)-quantile of ΦT . Importantly, the

quantile qT (α) can be computed by Monte Carlo simulations and can thus be regarded

as known. Our multiscale test is now defined as follows: For a given significance level

α ∈ (0, 1), we reject the overall null hypothesis H0 if Ψ̂T > qT (α). In particular, for any

(u, h) ∈ GT , we reject H0(u, h) if the (corrected) test statistic |ψ̂T (u, h)/σ̂|−λ(h) lies above

the critical value qT (α), that is, if |ψ̂T (u, h)/σ̂| > qT (α) + λ(h).

1.3.3 Theoretical properties of the test

In order to examine the theoretical properties of our multiscale test, we introduce the

auxiliary multiscale statistic

Φ̂T = max
(u,h)∈GT

{∣∣∣ φ̂T (u, h)

σ̂

∣∣∣− λ(h)
}

(1.3.5)

with φ̂T (u, h) = ψ̂T (u, h)−E[ψ̂T (u, h)] =
∑T

t=1wt,T (u, h)εt. The following result is central

to the theoretical analysis of our multiscale test. According to it, the (known) quantile

qT (α) of the Gaussian statistic ΦT defined in Section 1.3.2 can be used as a proxy for the

(1− α)-quantile of the multiscale statistic Φ̂T .

Theorem 1.3.1. Let (C1)–(C13) be fulfilled and assume that σ̂2 = σ2 + op(ρT ) with

ρT = o(1/ log T ). Then

P
(
Φ̂T ≤ qT (α)

)
= (1− α) + o(1).
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A full proof of Theorem 1.3.1 is given in the Appendix. We here shortly outline the

proof strategy, which splits up into two main steps. In the first, we replace the statistic

Φ̂T for each T ≥ 1 by a statistic Φ̃T with the same distribution as Φ̂T and the property

that ∣∣Φ̃T − ΦT

∣∣ = op(δT ), (1.3.6)

where δT = o(1) and the Gaussian statistic ΦT is defined in Section 1.3.2. We thus replace

the statistic Φ̂T by an identically distributed version which is close to a Gaussian statistic

whose distribution is known. To do so, we make use of strong approximation theory for

dependent processes as derived in Berkes et al. (2014). In the second step, we show that

sup
x∈R

∣∣P(Φ̃T ≤ x)− P(ΦT ≤ x)
∣∣ = o(1), (1.3.7)

which immediately implies the statement of Theorem 1.3.1. Importantly, the convergence

result (1.3.6) is not sufficient for establishing (1.3.7). Put differently, the fact that Φ̃T

can be approximated by ΦT in the sense that Φ̃T − ΦT = op(δT ) does not imply that

the distribution of Φ̃T is close to that of ΦT in the sense of (1.3.7). For (1.3.7) to hold,

we additionally require the distribution of ΦT to have some sort of continuity property.

Specifically, we prove that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1), (1.3.8)

which says that ΦT does not concentrate too strongly in small regions of the form [x −
δT , x+ δT ]. The main tool for verifying (1.3.8) are anti-concentration results for Gaussian

random vectors as derived in Chernozhukov et al. (2015). The claim (1.3.7) can be proven

by using (1.3.6) together with (1.3.8), which in turn yields Theorem 1.3.1.

The main idea of our proof strategy is to combine strong approximation theory with

anti-concentration bounds for Gaussian random vectors to show that the quantiles of the

multiscale statistic Φ̂T can be proxied by those of a Gaussian analogue. This strategy is

quite general in nature and may be applied to other multiscale problems for dependent

data. Strong approximation theory has also been used to investigate multiscale tests

for independent data; see e.g. Schmidt-Hieber et al. (2013). However, it has not been

combined with anti-concentration results to approximate the quantiles of the multiscale

statistic. As an alternative to strong approximation theory, Eckle et al. (2017) and Proksch

et al. (2018) have recently used Gaussian approximation results derived in Chernozhukov

et al. (2014, 2017) to analyse multiscale tests for independent data. Even though it might

be possible to adapt these techniques to the case of dependent data, this is not trivial at

all as part of the technical arguments and the Gaussian approximation tools strongly rely

on the assumption of independence.

We now investigate the theoretical properties of our multiscale test with the help of

Theorem 1.3.1. The first result is an immediate consequence of Theorem 1.3.1. It says

that the test has the correct (asymptotic) size.
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Proposition 1.3.1. Let the conditions of Theorem 1.3.1 be satisfied. Under the null

hypothesis H0, it holds that

P
(
Ψ̂T ≤ qT (α)

)
= (1− α) + o(1).

The second result characterizes the power of the multiscale test against local alterna-

tives. To formulate it, we consider any sequence of functions m = mT with the following

property: There exists (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1] such that

m′T (w) ≥ cT

√
log T

Th3
for all w ∈ [u− h, u+ h], (1.3.9)

where {cT } is any sequence of positive numbers with cT → ∞. Alternatively to (1.3.9),

we may also assume that −m′T (w) ≥ cT
√

log T/(Th3) for all w ∈ [u− h, u+ h].

Proposition 1.3.2. Let the conditions of Theorem 1.3.1 be satisfied and consider any

sequence of functions mT with the property (1.3.9). Then

P
(
Ψ̂T ≤ qT (α)

)
= o(1).

According to Proposition 1.3.2, our test has asymptotic power 1 against local alterna-

tives of the form (1.3.9). The proof can be found in the Appendix.

The next result formally shows that we can make simultaneous confidence statements

about the time intervals where the trend m is increasing/decreasing. To formulate it, we

define

Π±T =
{
Iu,h = [u− h, u+ h] : (u, h) ∈ A±T

}
Π+
T =

{
Iu,h = [u− h, u+ h] : (u, h) ∈ A+

T and Iu,h ⊆ [0, 1]
}

Π−T =
{
Iu,h = [u− h, u+ h] : (u, h) ∈ A−T and Iu,h ⊆ [0, 1]

}
,

where

A±T =
{

(u, h) ∈ GT :
∣∣∣ ψ̂T (u, h)

σ̂

∣∣∣ > qT (α) + λ(h)
}

A+
T =

{
(u, h) ∈ GT :

ψ̂T (u, h)

σ̂
> qT (α) + λ(h)

}
A−T =

{
(u, h) ∈ GT : − ψ̂T (u, h)

σ̂
> qT (α) + λ(h)

}
.

The object Π±T can be interpreted as follows: Our multiscale test rejects the null hypo-

thesis H0(u, h) if |ψ̂T (u, h)/σ̂| > qT (α) + λ(h). Put differently, it rejects H0(u, h) for all

(u, h) ∈ A±T . Hence, Π±T is the collection of time intervals Iu,h = [u − h, u + h] for which

our test rejects H0(u, h). The objects Π+
T and Π−T can be interpreted analogously: If

ψ̂T (u, h)/σ̂ > qT (α) + λ(h), that is, if (u, h) ∈ A+
T , then our test rejects H0(u, h) and

indicates an increase in the trend m on the interval Iu,h, taking into account the positive
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sign of the statistic ψ̂T (u, h)/σ̂. Hence, Π+
T is the collection of time intervals Iu,h for which

our test indicates an increase in the trend m. Likewise, Π−T is the collection of intervals

for which the test indicates a decrease. Note that Π±T (as well as Π+
T and Π−T ) is a random

collection of intervals: Whether our test rejects H0(u, h) for some (u, h) depends on the

realization of the random vector (Y1,T , . . . , YT,T ). Hence, whether an interval Iu,h belongs

to Π±T depends on this realization as well. Having defined the objects Π±T , Π+
T and Π−T ,

we now consider the events

E±T =
{
∀Iu,h ∈ Π±T : m′(v) 6= 0 for some v ∈ Iu,h = [u− h, u+ h]

}
E+
T =

{
∀Iu,h ∈ Π+

T : m′(v) > 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E−T =
{
∀Iu,h ∈ Π−T : m′(v) < 0 for some v ∈ Iu,h = [u− h, u+ h]

}
.

E±T (E+
T , E−T ) is the event that the function m is non-constant (increasing, decreasing) on

all intervals Iu,h ∈ Π±T (Π+
T , Π−T ). More precisely, E±T (E+

T , E−T ) is the event that for each

interval Iu,h ∈ Π±T (Π+
T , Π−T ), there is a subset Ju,h ⊆ Iu,h with m being a non-constant

(increasing, decreasing) function on Ju,h. We can make the following formal statement

about the events E±T , E+
T and E−T , whose proof is given in the Appendix.

Proposition 1.3.3. Let the conditions of Theorem 1.3.1 be fulfilled. Then for ` ∈
{±,+,−}, it holds that

P
(
E`T
)
≥ (1− α) + o(1).

According to Proposition 1.3.3, we can make simultaneous confidence statements of

the following form: With (asymptotic) probability ≥ (1 − α), the trend function m is

non-constant (increasing, decreasing) on each interval Iu,h ∈ Π±T (Π+
T , Π−T ). Hence, our

multiscale procedure allows to identify, with a pre-specified confidence, time intervals

where there is an increase/decrease in the trend m.

Remark 1.3.2. Unlike Π±T , the sets Π+
T and Π−T only contain intervals Iu,h = [u−h, u+h]

which are subsets of [0, 1]. We thus exclude points (u, h) ∈ A+
T and (u, h) ∈ A−T which lie

at the boundary, that is, for which Iu,h * [0, 1]. The reason is as follows: Let (u, h) ∈ A+
T

with Iu,h * [0, 1]. Our technical arguments allow us to say, with asymptotic confidence

≥ 1 − α, that m′(v) 6= 0 for some v ∈ Iu,h. However, we cannot say whether m′(v) > 0

or m′(v) < 0, that is, we cannot make confidence statements about the sign. Crudely

speaking, the problem is that the local linear weights wt,T (u, h) behave quite differently at

boundary points (u, h) with Iu,h * [0, 1]. As a consequence, we can include boundary points

(u, h) in Π±T but not in Π+
T and Π−T .

Remark 1.3.3. The statement of Proposition 1.3.3 suggests to graphically present the

results of our multiscale test by plotting the intervals Iu,h ∈ Π`
T for ` ∈ {±,+,−}, that

is, by plotting the intervals where (with asymptotic confidence ≥ 1 − α) our test detects

a violation of the null hypothesis. The drawback of this graphical presentation is that the

number of intervals in Π`
T is often quite large. To obtain a better graphical summary of the
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results, we replace Π`
T by a subset Π`,min

T which is constructed as follows: As in Dümbgen

(2002), we call an interval Iu,h ∈ Π`
T minimal if there is no other interval Iu′,h′ ∈ Π`

T with

Iu′,h′ ⊂ Iu,h. Let Π`,min
T be the set of all minimal intervals in Π`

T for ` ∈ {±,+,−} and

define the events

E±,min
T =

{
∀Iu,h ∈ Π±,min

T : m′(v) 6= 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E+,min
T =

{
∀Iu,h ∈ Π+,min

T : m′(v) > 0 for some v ∈ Iu,h = [u− h, u+ h]
}

E−,min
T =

{
∀Iu,h ∈ Π−,min

T : m′(v) < 0 for some v ∈ Iu,h = [u− h, u+ h]
}
.

It is easily seen that E`T = E`,min
T for ` ∈ {±,+,−}. Hence, by Proposition 1.3.3, it holds

that

P
(
E`,min
T

)
≥ (1− α) + o(1)

for ` ∈ {±,+,−}. This suggests to plot the minimal intervals in Π`,min
T rather than the

whole collection of intervals Π`
T as a graphical summary of the test results. We in particular

use this way of presenting the test results in our application in Section 1.6.

Proposition 1.3.3 allows to make confidence statements for a fixed significance level

α ∈ (0, 1). In some situations, one may be interested in letting α = αT ∈ (0, 1) tend

to zero as T → ∞. This situation is considered in the following corollary to Proposition

1.3.3, whose proof can be found in the Appendix.

Corollary 1.3.1. Let the conditions of Theorem 1.3.1 be fulfilled and let α = αT ∈ (0, 1)

go to zero as T →∞. Then P(E`T )→ 1 for ` ∈ {±,+,−}.

Corollary 1.3.1 can be interpreted as a consistency result: If we let the significance

level α = αT go to zero, then the event E±T (E+
T , E−T ) occurs with probability tending to

1, that is, the trend m is non-constant (increasing, decreasing) on each interval Iu,h ∈ Π±T
(Π+

T , Π−T ) with probability tending to 1.

1.3.4 Comparison to SiZer methods

As already mentioned in the Introduction, some SiZer methods for dependent data have

been introduced in Park et al. (2004) and Rondonotti et al. (2007), which we refer to as

dependent SiZer for short. Informally speaking, both our approach and dependent SiZer

are methods to test for local increases/decreases of a nonparametric trend function m.

The formal problem is to test the hypothesis H0(u, h) simultaneously for all (u, h) ∈ GT ,

where in this section, we let GT = UT × HT with UT being the set of locations and HT

the set of bandwidths or scales. In what follows, we compare our approach to dependent

SiZer and point out the most important differences.

Dependent SiZer is based on the statistics ŝT (u, h) = m̂′(u, h)/ŝd(m̂′(u, h)), where

m̂′(u, h) is a local linear kernel estimator of m′(u) with bandwidth h and ŝd(m̂′(u, h))

is an estimator of its standard deviation. The statistic ŝT (u, h) parallels the statistic
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ψ̂T (u, h)/σ̂ in our approach. In particular, both can be regarded as test statistics of the

hypothesis H0(u, h). There are two versions of dependent SiZer:

(a) The global version aggregates the individual statistics ŝT (u, h) into the overall statistic

ŜT = maxh∈HT
ŜT (h), where ŜT (h) = maxu∈UT

|ŝT (u, h)|. The statistic ŜT is the

counterpart to the multiscale statistic Ψ̂T in our approach.

(b) The row-wise version considers each scale h ∈ HT separately. In particular, for each

bandwidth h ∈ HT , a test is carried out based on the statistic ŜT (h). A row-wise

analogue of our approach would be obtained by carrying out a test for each scale

h ∈ HT separately based on the statistic Ψ̂T (h) = maxu∈UT
|ψ̂T (u, h)/σ̂|.2

In practice, SiZer is commonly implemented in its row-wise form. The main reason is

that it has more power than the global version by construction. However, this gain of

power comes at a cost: Row-wise SiZer carries out a test separately for each scale h ∈ HT ,

thus ignoring the simultaneous test problem across scales h. Hence, it is not a rigorous

level-α-test of the null H0. For this reason, we focus on global SiZer in the rest of this

section.

Even though related, our methods and theory are markedly different from those of the

SiZer approach:

(i) Theory for SiZer is derived under the assumption that HT ⊆ H for all T , where H is

a compact subset of (0,∞). As already pointed out in Chaudhuri and Marron (2000)

on p.420, this is a quite severe restriction: Only bandwidths h are taken into account

that remain bounded away from zero as the sample size T increases. Bandwidths h

that converge to zero are excluded. Our theory, in contrast, allows to simultaneously

consider bandwidths h of fixed size and bandwidths h that converge to zero at different

rates. To achieve this, we come up with a proof strategy which is very different from

that in the SiZer literature: As proven in Chaudhuri and Marron (2000) for the i.i.d.

case and in Park et al. (2009a) for the dependent data case, ŜT weakly converges

to some limit S under the overall null hypothesis H0. This is the central technical

result on which the theoretical properties of SiZer are based. In contrast to this, our

proof strategy (which combines strong approximation theory with anti-concentration

bounds as outlined in Section 1.3.3) does not even require the statistic Ψ̂T to have a

weak limit and is thus not restricted by the limitations of classic weak convergence

theory.

(ii) There are different ways to combine the test statistics ŜT (h) = maxu∈UT
|ŝT (u, h)|

for different scales h ∈ HT . One way is to take their maximum, which leads to the

SiZer statistic ŜT = maxh∈HT
ŜT (h). We could proceed analogously and consider the

statistic Ψ̂T,uncorrected = maxh∈HT
Ψ̂T (h) = max(u,h)∈UT×HT

|ψ̂T (u, h)/σ̂|. However,

as argued in Dümbgen and Spokoiny (2001) and as discussed in Section 1.3.1, this

2Note that we can drop the correction term λ(h) in this case as it is a fixed constant if only a single
bandwidth h is taken into account.
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aggregation scheme is not optimal when the set HT contains scales h of many different

rates. Following the lead of Dümbgen and Spokoiny (2001), we consider the test

statistic Ψ̂T = max(u,h)∈UT×HT
{|ψ̂T (u, h)/σ̂| − λ(h)} with the additive correction

terms λ(h). Hence, even though related, our multiscale test statistic Ψ̂T differs from

the SiZer statistic ŜT in important ways.

(iii) The main complication in carrying out both our multiscale test and SiZer is to deter-

mine the critical values, that is, the quantiles of the test statistics Ψ̂T and ŜT under

H0. In order to approximate the quantiles, we proceed quite differently than in the

SiZer literature. The quantiles of the SiZer statistic ŜT can be approximated by those

of the weak limit S. Usually, however, the quantiles of S cannot be determined an-

alytically but have to be approximated themselves (e.g. by the bootstrap procedures

of Chaudhuri and Marron (1999, 2000)). Alternatively, the quantiles of ŜT can be

approximated by procedures based on extreme value theory (as proposed in Hannig

and Marron (2006) and Park et al. (2009a)). In our approach, the quantiles of Ψ̂T

under H0 are approximated by those of a suitably constructed Gaussian analogue of

Ψ̂T . It is far from obvious that this Gaussian approximation is valid when the data

are dependent. To see this, deep strong approximation theory for dependent data (as

derived in Berkes et al. (2014)) is needed. It is important to note that our Gaussian

approximation procedure is not the same as the bootstrap procedures proposed in

Chaudhuri and Marron (1999, 2000). Both procedures can of course be regarded as

resampling methods. However, the resampling is done in a quite different way in our

case.

1.4 Estimation of the long-run error variance

In this section, we discuss how to estimate the long-run variance σ2 =
∑∞

`=−∞Cov(ε0, ε`)

of the error terms in model (1.2.1). There are two broad classes of estimators: residual-

and difference-based estimators. In residual-based approaches, σ2 is estimated from the

residuals ε̂t = Yt,T − m̂h(t/T ), where m̂h is a nonparametric estimator of m with the

bandwidth or smoothing parameter h. Difference-based methods proceed by estimating

σ2 from the `-th differences Yt,T − Yt−`,T of the observed time series {Yt,T } for certain

orders `. In what follows, we focus attention on difference-based methods as these do not

involve a nonparametric estimator of the function m and thus do not require to specify a

bandwidth h for the estimation of m.

So far, we have assumed that {εt} is a general stationary error process which fulfills

the weak dependence conditions (C3). Estimating the long-run error variance σ2 in model

(1.2.1) under general weak dependence conditions is a notoriously difficult problem. Es-

timators of σ2 often tend to be quite imprecise. To circumvent this issue in practice, it

may be beneficial to impose a time series model on the error process {εt}. Estimating σ2

under the restrictions of such a model may of course create some misspecification bias.
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However, as long as the model gives a reasonable approximation to the true error process,

the produced estimates of σ2 can be expected to be fairly reliable even though they are a

bit biased.

Estimators of the long-run error variance σ2 in model (1.2.1) have been developed for

different kinds of error models. A number of authors have analysed the case of MA(m) or,

more generally, m-dependent error terms. Difference-based estimators of σ2 for this case

were proposed in Müller and Stadtmüller (1988), Herrmann et al. (1992) and Tecuapetla-

Gómez and Munk (2017) among others. Presumably the most widely used error model

in practice is an AR(p) process. Residual-based methods to estimate σ2 in model (1.2.1)

with AR(p) errors can be found for example in Truong (1991), Shao and Yang (2011) and

Qiu et al. (2013). A difference-based method was proposed in Hall and Van Keilegom

(2003).

We consider the class of AR(∞) processes as an error model, which is a quite large

and important subclass of linear time series processes. Formally speaking, we let {εt} be

a process of the form

εt =
∞∑
j=1

ajεt−j + ηt, (1.4.1)

where a1, a2, a3, . . . are unknown coefficients and ηt are i.i.d. with E[ηt] = 0 and E[η2
t ] = ν2.

We assume that A(z) := 1−
∑∞

j=1 ajz
j 6= 0 for all complex numbers |z| ≤ 1 + δ with some

small δ > 0, which has the following implications: (i) {εt} is stationary and causal. (ii)

The coefficients aj decay to zero exponentially fast, that is, |aj | ≤ Cξj with some C > 0

and ξ ∈ (0, 1). (iii) {εt} has an MA(∞) representation of the form εt =
∑∞

k=0 ckηt−k. The

coefficients ck can be computed iteratively from the equations

ck −
k∑
j=1

ajck−j = bk (1.4.2)

for k = 0, 1, 2, . . ., where b0 = 1 and bk = 0 for k > 0. Moreover, they decay to zero

exponentially fast, that is, |ck| ≤ Cξk with some C > 0 and ξ ∈ (0, 1). Notably, the error

model (1.4.1) nests AR(p∗) processes of any finite order p∗ as a special case: If ap∗ 6= 0

and aj = 0 for all j > p∗, then {εt} is an AR process of order p∗. In the sequel, we let

p∗ ∈ N ∪ {∞} denote the true AR order of {εt} which may be finite or infinite. We can

thus rewrite (1.4.1) as

εt =

p∗∑
j=1

ajεt−j + ηt, (1.4.3)

where the AR order p∗ is treated as unknown.

We now construct a difference-based estimator of σ2 for the case that {εt} is an AR(p∗)

process of the form (1.4.3). To do so, we will fit AR(p) type models to {εt}, where we

distinguish between the following two cases:

(A) We do not know the precise AR order p∗ but we know an upper bound p on it. In
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this case, p is a fixed natural number with p ≥ p∗.

(B) We neither know p∗ nor an upper bound on it. In this case, we let p = pT → ∞ as

T →∞, where formal conditions on the growth of p = pT are specified later on.

To simplify notation, we let ∆`Zt = Zt−Zt−` denote the `-th differences of a general time

series {Zt}. Our estimation method relies on the following simple observation: If {εt}
is an AR(p∗) process of the form (1.4.3), then the time series {∆qεt} of the differences

∆qεt = εt − εt−q is an ARMA(p∗, q) process of the form

∆qεt −
p∗∑
j=1

aj∆qεt−j = ηt − ηt−q. (1.4.4)

As m is Lipschitz, the differences ∆qεt of the unobserved error process are close to the

differences ∆qYt,T of the observed time series in the sense that

∆qYt,T =
[
εt − εt−q

]
+
[
m
( t
T

)
−m

( t− q
T

)]
= ∆qεt +O

( q
T

)
. (1.4.5)

Taken together, (1.4.4) and (1.4.5) imply that the differenced time series {∆qYt,T } is

approximately an ARMA(p∗, q) process of the form (1.4.4). It is precisely this point which

is exploited by our estimation method.

We first describe our procedure to estimate the AR parameters aj . For any q ≥ 1, the

ARMA(p∗, q) process {∆qεt} satisfies the Yule-Walker equations

γq(`)−
p∗∑
j=1

ajγq(`− j) =

−ν2cq−` for 1 ≤ ` < q + 1

0 for ` ≥ q + 1,
(1.4.6)

where γq(`) = Cov(∆qεt, ∆qεt−`) and ck are the coefficients from the MA(∞) expansion

of {εt}. Combining the equations (1.4.6) for ` = 1, . . . , p, we get that

Γqa = γq + ν2cq − ρq, (1.4.7)

where a = (a1, . . . , ap)
>, γq = (γq(1), . . . , γq(p))

> and Γq denotes the p × p covariance

matrix Γq = (γq(i − j) : 1 ≤ i, j ≤ p). Moreover, cq = (cq−1, . . . , cq−p)
> and ρq =

(ρq(1), . . . , ρq(p))
> with ρq(`) =

∑p∗

j=p+1 ajγq(` − j). Since the AR coefficients aj as well

as the MA coefficients ck decay exponentially fast to zero, ρq ≈ 0 and cq ≈ 0 for large

values of q, implying that Γqa ≈ γq. This suggests to estimate a by

ãq = Γ̂
−1

q γ̂q, (1.4.8)

where Γ̂q and γ̂q are defined analogously as Γq and γq with γq(`) replaced by the sample

autocovariances γ̂q(`) = (T − q)−1
∑T

t=q+`+1 ∆qYt,T∆qYt−`,T and q = qT goes to infinity

as T → ∞. For our theory to work, we require that q/p → ∞, that is, q needs to grow

faster than p. Formal conditions on the growth of q are given later on.
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The estimator ãq depends on the tuning parameter q, that is, on the order of the differ-

ences ∆qYt,T . An appropriate choice of q needs to take care of the following two points: (i)

q should be chosen large enough to ensure that the vector cq = (cq−1, . . . , cq−p)
> is close to

zero. As we have already seen, the constants ck decay to zero exponentially fast and can

be computed from the recursive equations (1.4.2) for given parameters a1, a2, a3, . . . In the

special case of an AR(1) process, for example, one can readily calculate that ck ≤ 0.0035

for any k ≥ 20 and any |a1| ≤ 0.75. Hence, if we have an AR(1) model for the errors

εt and the error process is not too persistent, choosing q ≥ 20 should make sure that cq

is close to zero. Generally speaking, the recursive equations (1.4.2) can be used to get

some idea for which values of q the vector cq can be expected to be approximately zero.

(ii) q should not be chosen too large in order to ensure that the trend m is appropriately

eliminated by taking q-th differences. As long as the trend m is not very strong, the two

requirements (i) and (ii) can be fulfilled without much difficulty. For example, by choosing

q = 20 in the AR(1) case just discussed, we do not only take care of (i) but also make sure

that moderate trends m are differenced out appropriately.

When the trend m is very pronounced, in contrast, even moderate values of q may

be too large to eliminate the trend appropriately. As a result, the estimator ãq will

have a strong bias. In order to reduce this bias, we refine our estimation procedure as

follows: By solving the recursive equations (1.4.2) with a replaced by ãq, we can compute

estimators c̃k of the coefficients ck and thus estimators c̃r of the vectors cr for any r ≥ 1.

Moreover, the innovation variance ν2 can be estimated by ν̃2 = (2T )−1
∑T

t=p+2 r̃
2
t,T , where

r̃t,T = ∆1Yt,T −
∑p

j=1 ãj∆1Yt−j,T and ãj is the j-th entry of the vector ãq. Plugging the

expressions Γ̂r, γ̂r, c̃r and ν̃2 into (1.4.7), we can estimate a by

âr = Γ̂
−1

r (γ̂r + ν̃2c̃r), (1.4.9)

where r is a much smaller differencing order than q. Specifically, in case (A), we can

choose r to be any fixed number r ≥ 1. Unlike q, the parameter r thus remains bounded

as T increases. In case (B), our theory allows to choose any number r with r ≥ (1 + δ)p

for some small δ > 0. Since q/p → ∞, it holds that q/r → ∞ as well, which means that

r is of smaller order than q. Hence, in both cases (A) and (B), the estimator âr is based

on a differencing order r that is much smaller than q; only the pilot estimator ãq relies

on differences of the larger order q. As a consequence, âr should eliminate the trend m

more appropriately and should thus be less biased than the pilot estimator ãq. In order

to make the method more robust against estimation errors in c̃r, we finally average the

estimators âr for a few values of r. In particular, we define

â =
1

r − r + 1

r∑
r=r

âr, (1.4.10)

where r and r are chosen as follows: In case (A), we let r and r be small natural numbers.

In case (B), we set r = (1− δ)p for some small δ > 0 and choose r such that r− r remains
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bounded. For ease of notation, we suppress the dependence of â on the parameters r and

r. Once â = (â1, . . . , âp)
> is computed, the long-run variance σ2 can be estimated by

σ̂2 =
ν̂2

(1−
∑p

j=1 âj)
2
, (1.4.11)

where ν̂2 = (2T )−1
∑T

t=p+2 r̂
2
t,T with r̂t,T = ∆1Yt,T −

∑p
j=1 âj∆1Yt−j,T is an estimator of

the innovation variance ν2 and we make use of the fact that σ2 = ν2/(1 −
∑p∗

j=1 aj)
2 for

the AR(p∗) process {εt}.
We briefly compare the estimator â to competing methods. Presumably closest to our

approach is that of Hall and Van Keilegom (2003) which is designed for AR(p∗) processes

of known finite order p∗. For comparing the two methods, we thus assume p∗ to be known

and set p = p∗. The two main advantages of our method are as follows:

(a) Our estimator produces accurate estimation results even when the AR process {εt}
is quite persistent, that is, even when the AR polynomial A(z) = 1 −

∑p∗

j=1 ajz
j has

a root close to the unit circle. The estimator of Hall and Van Keilegom (2003), in

contrast, may have very high variance and may thus produce unreliable results when

the AR polynomial A(z) is close to having a unit root. This difference in behaviour

can be explained as follows: Our pilot estimator ãq = (ã1, . . . , ãp∗)
> has the property

that the estimated AR polynomial Ã(z) = 1−
∑p∗

j=1 ãjz
j has no root inside the unit

disc, that is, Ã(z) 6= 0 for all complex numbers z with |z| ≤ 1.3 Hence, the fitted AR

model with the coefficients ãq is ensured to be stationary and causal. Even though

this may seem to be a minor technical detail, it has a huge effect on the performance

of the estimator ãq: It keeps the estimator stable even when the AR process is very

persistent and the AR polynomial A(z) has almost a unit root. This in turn results in

a reliable behaviour of the estimator â in the case of high persistence. The estimator

of Hall and Van Keilegom (2003), in contrast, may produce non-causal results when

the AR polynomial A(z) is close to having a unit root. As a consequence, it may

have unnecessarily high variance in the case of high persistence. We illustrate this

difference between the estimators by the simulation exercises in Section 1.5.2. A

striking example is Figure 1.6, which presents the simulation results for the case of an

AR(1) process εt = a1εt−1 + ηt with a1 = −0.95 and clearly shows the much better

performance of our method.

(b) Both our pilot estimator ãq and the estimator of Hall and Van Keilegom (2003) tend

to have a substantial bias when the trend m is pronounced. Our estimator â reduces

this bias considerably as demonstrated in the simulations of Section 1.5.2. Unlike the

estimator of Hall and Van Keilegom (2003), it thus produces accurate results even in

the presence of a very strong trend.

3More precisely, Ã(z) 6= 0 for all z with |z| ≤ 1, whenever the covariance matrix (γ̂q(i−j) : 1 ≤ i, j ≤ p∗+1)
is non-singular. Moreover, (γ̂q(i− j) : 1 ≤ i, j ≤ p∗ + 1) is non-singular whenever γ̂q(0) > 0, which is the
generic case.
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We close this section by deriving some basic asymptotic properties of the estimators

ãq, â and σ̂2. To formulate the following result, we use the shorthand vT � wT which

means that vT /wT → 0 as T →∞.

Proposition 1.4.1. Let m be Lipschitz continuous and suppose that {εt} is an AR(p∗)

process of the form (1.4.3) with the following properties: A(z) 6= 0 for all |z| ≤ 1 + δ with

some small δ > 0 and the innovations ηt have a finite fourth moment. Assume that p, q,

r and r satisfy the following conditions: In case (A), p, r and r are fixed natural numbers

and log T � q �
√
T . In case (B), C log T ≤ p� min{T 1/5, q} for some sufficiently large

C, q �
√
T , r = (1 + δ)p for some small δ > 0 and r − r remains bounded. Under these

conditions, ãq−a = Op(
√
p/T ) as well as â−a = Op(

√
p3/T ) and σ̂2−σ2 = Op(

√
p4/T ).

The proof is provided in the Appendix. As one can see, the convergence rate of the

second-step estimator â is somewhat slower than that of the pilot estimator ãq. Hence,

from an asymptotic perspective, there is no gain from using the second-step estimator.

Nevertheless, in finite samples, the estimator â vastly outperforms ãq since it considerably

reduces the bias of the latter.

1.5 Simulations

1.5.1 Small sample properties of the multiscale test

In what follows, we investigate the performance of our multiscale test and compare it to

the dependent SiZer methods from Park et al. (2004), Rondonotti et al. (2007) and Park

et al. (2009a). We consider the following versions of our multiscale test and SiZer:

TMS: our multiscale test with the statistic Ψ̂T = maxh∈HT
{Ψ̂T (h)−λ(h)}, where Ψ̂T (h) =

maxu∈UT
|ψ̂T (u, h)/σ̂|. Here and in what follows, we write GT = UT ×HT , where

UT is the set of locations and HT the set of bandwidths.

TUC: the uncorrected version of our multiscale test with the test statistic Ψ̂T,uncorrected =

maxh∈HT
Ψ̂T (h), which was already introduced in (1.3.3). The uncorrected test

is carried out in exactly the same way as TMS. The only difference is that the

correction terms λ(h) are removed.

TRW: a row-wise (or scale-wise) version of our multiscale test as briefly mentioned in

Section 1.3.4. This version carries out a test scale-wise, that is, separately for each

scale h ∈ HT based on the statistic Ψ̂T (h). Note: (i) For each h ∈ HT , the test

based on Ψ̂T (h) can be performed in the same way as the multiscale test TMS,

since it is a degenerate version of the latter with the set of scales HT replaced by

the singleton {h}. (ii) It does not matter whether we correct the statistic Ψ̂T (h)

by subtracting λ(h) or not, since λ(h) acts as a fixed constant when only one

bandwidth h is taken into account.
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TSiZer: the row-wise version of dependent SiZer from Park et al. (2004), Rondonotti et al.

(2007) and Park et al. (2009a). We do not consider a global version of dependent

SiZer as such a version was not fully developed in the aforementioned papers.

The simulation setup is as follows: We generate data from the model Yt,T = m(t/T )+εt

for different trends m, error processes {εt} and sample sizes T . The error terms are

supposed to have the AR(1) structure εt = a1εt−1 + ηt, where a1 ∈ {−0.9,−0.5,−0.25,

0.25, 0.5, 0.9}, ηt are i.i.d. standard normal and the AR order p∗ = 1 is treated as known.

To simulate data under the null, we let m be a constant function. In particular, we set m =

0 without loss of generality. To generate data under the alternative, we consider different

non-constant trend functions which are specified below. For each model specification, we

simulate S = 1000 data samples and carry out the tests TMS, TUC, TRW and TSiZer for each

simulated sample.

To implement our multiscale test TMS, we choose K to be an Epanechnikov kernel and

let GT = UT ×HT with

UT =
{
u ∈ [0, 1] : u = 5t

T for some t ∈ N
}

HT =
{
h ∈

[ log T
T , 1

4

]
: h = 5`

T for some ` ∈ N
}
.

We thus take into account all locations u on an equidistant grid UT with step length 5/T

and all bandwidths h = 5/T, 10/T, 15/T, . . . with log T/T ≤ h ≤ 1/4. Note that the

lower bound log T/T is motivated by (C13) which requires that log T/T � hmin (given

that all moments of εt exist). As a robustness check, we have re-run the simulations for

a number of other grids. As the results are very similar, we do however not report them

here. To estimate the long-run error variance σ2, we apply the procedure from Section 1.4

with r = 1, r = 10 and the following choices of q: For a1 ∈ {−0.5,−0.25, 0.25, 0.5}, we set

q = 25. As already discussed in Section 1.4, this should be an appropriate choice for AR(1)

errors that are not too strongly correlated, in particular, for a1 ∈ {−0.5,−0.25, 0.25, 0.5}.
When the errors are very strongly correlated, larger values of q are required to produce

precise estimates of σ2. In the case of AR(1) errors with a1 ∈ {−0.9, 0.9}, we thus set

q = 50. The dependence of our long-run variance estimator on the tuning parameters q,

r and r is explored more systematically in Section 1.5.2. To compute the critical values

of the multiscale test TMS, we simulate 5000 values of the statistic ΦT defined in Section

1.3.2 and compute their empirical (1− α) quantile qT (α). The uncorrected and row-wise

versions TUC and TRW of our multiscale test are implemented analogously. The SiZer test

is implemented as described in Park et al. (2009a). The details are summarized in Section

1.C.1 of the Appendix.

1.5.1.1 Size simulations

The first part of our simulation study investigates the size properties of the four tests TMS,

TUC, TRW and TSiZer under the null that the trend m is constant. To start with, we focus
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Table 1.1: Size of TMS for the AR parameters a1 ∈ {−0.5,−0.25, 0.25, 0.5}.

a1 = −0.5 a1 = −0.25 a1 = 0.25 a1 = 0.5

nominal size α nominal size α nominal size α nominal size α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 250 0.013 0.040 0.086 0.016 0.054 0.106 0.009 0.045 0.094 0.014 0.058 0.106
T = 500 0.013 0.044 0.102 0.008 0.041 0.089 0.013 0.057 0.107 0.014 0.056 0.101
T = 1000 0.011 0.052 0.090 0.007 0.057 0.114 0.011 0.049 0.106 0.007 0.050 0.098

Table 1.2: Size of TMS for the AR parameters a1 ∈ {−0.9, 0.9}.

a1 = −0.9 a1 = 0.9

sample size T sample size T
250 500 1000 2000 3000 250 500 1000 2000 3000

α = 0.01 0.040 0.032 0.017 0.009 0.012 0.003 0.016 0.015 0.021 0.017
α = 0.05 0.137 0.093 0.067 0.061 0.047 0.017 0.038 0.055 0.059 0.057
α = 0.1 0.218 0.160 0.124 0.108 0.098 0.040 0.054 0.095 0.096 0.106

on the multiscale test TMS. Table 1.1 reports the actual size of TMS for the AR parameters

a1 ∈ {−0.5,−0.25, 0.25, 0.5}, which is computed as the number of simulations in which

TMS rejects the null divided by the total number of simulations. As can be seen, the actual

size of the multiscale test TMS is fairly close to the nominal target α for all the considered

AR parameters and sample sizes. Hence, the test has approximately the correct size.

In Table 1.1, we have explored the size of TMS when the errors are moderately autocor-

related. The case of strongly autocorrelated errors is investigated in Table 1.2, where we

consider AR(1) errors with a1 ∈ {−0.9, 0.9}. We first discuss the results for the positive

AR parameter a1 = 0.9. As can be seen, the size numbers are substantially downward

biased for small sample sizes, in particular, for T = 250 and T = 500. As the sample

size increases, this downward bias diminishes and the size numbers stabilize around their

target α. In particular, for T ≥ 1000, the size numbers give a decent approximation to α.

An analogous picture arises for the negative AR parameter a1 = −0.9. The size numbers,

however, are upward rather than downward biased for small sample sizes T and the size

distortions appear to vanish a bit more slowly as T increases. To summarize, in the case of

strongly autocorrelated errors, our multiscale test has good size properties only for suffi-

ciently large sample sizes. This is not very surprising: Statistical inference in the presence

of strongly autocorrelated data is a very difficult problem in general and satisfying results

can only be expected for fairly large sample sizes.

We next compare our multiscale test TMS with TUC, TRW and TSiZer in terms of size.

There is an important difference between TMS and TUC on the one hand and TRW and

TSiZer on the other. TMS and its uncorrected version TUC are global test procedures:

They test H0(u, h) simultaneously for all locations u ∈ UT and scales h ∈ HT . Hence,

they control the size simultaneously over both locations u and scales h. The methods

TRW and TSiZer, in contrast, are row-wise (or scale-wise) in nature: They test the hy-

pothesis H0(u, h) simultaneously for all u ∈ UT but separately for each scale h ∈ HT .
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Table 1.3: Global size comparisons for the significance level α = 0.05.

a1 = −0.5 a1 = 0.5

TMS TUC TRW TSiZer TMS TUC TRW TSiZer
T = 250 0.069 0.065 0.230 0.333 0.049 0.048 0.143 0.289
T = 500 0.054 0.065 0.288 0.448 0.042 0.026 0.187 0.397
T = 1000 0.046 0.051 0.318 0.522 0.052 0.049 0.276 0.509
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Figure 1.2: Row-wise size comparisons for the significance level α = 5% and the sample
size T = 1000. Subfigure (a) corresponds to the case with a1 = −0.5, subfigure (b) to the
case with a1 = 0.5. Each curve in the two subfigures shows the row-wise size (given in
percentage % on the y-axis) as a function of the bandwidth h (specified on the x-axis) for
one of the four tests TMS, TUC, TRW and TSiZer.

Hence, they control the size for each scale h ∈ HT separately.

We conduct some simulation exercises to illustrate this important distinction. To keep

the simulation study to a reasonable length, we restrict attention to the significance level

α = 0.05 and the AR parameters a1 ∈ {−0.5, 0.5}. To simplify the implementation of

TSiZer, we assume that the autocovariance function of the error process and thus the long-

run error variance σ2 is known. To keep the comparison fair, we treat σ2 as known also

when implementing TMS, TUC and TRW. Moreover, we use exactly the same location-scale

grid for all four methods. To achieve this, we start off with the grid GT = UT × HT

with UT and HT defined above. We then follow Rondonotti et al. (2007) and Park et al.

(2009a) and restrict attention to those points (u, h) ∈ GT for which the effective sample size

ESS∗(u, h) for correlated data is not smaller than 5. This yields the grid G∗T = {(u, h) ∈
GT : ESS∗(u, h) ≥ 5}. A definition of ESS∗(u, h) is given in Section 1.C.1 of the Appendix.

For our simulation exercises, we distinguish between global and row-wise (or scale-

wise) size: Global size is defined as the percentage of simulations in which the test under

consideration rejects H0(u, h) for some (u, h) ∈ G∗T . Hence, it is identical to the size

as computed in Tables 1.1 and 1.2. Row-wise size for scale h∗ ∈ HT , in contrast, is

the percentage of simulations in which the test rejects H0(u, h∗) for some (u, h∗) ∈ G∗T .
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Table 1.3 reports the global size of the four tests. As can be seen, the size numbers

of our multiscale test TMS and its uncorrected version TUC are reasonably close to the

target α = 0.05. The global size numbers of the row-wise methods TRW and TSiZer, in

contrast, are much larger than the target α = 0.05. Since the number of scales h in the

grid G∗T increases with T , they even move away from α as the sample size T increases.

To summarize, as expected, the global tests TMS and TUC hold the size reasonably well,

whereas the row-wise methods TRW and TSiZer are much too liberal.

Figure 1.2 reports the row-wise size of the four tests by so-called parallel coordinate

plots [Inselberg (1985)] for the sample size T = 1000. Each curve in the figure specifies the

row-wise size of one of the tests for the scales h under consideration. As can be seen, the

row-wise version TRW of our multiscale test holds the size quite accurately across scales.

The row-wise size of TSiZer also gives an acceptable approximation to the target α = 5%,

even though the size numbers are upward biased quite a bit. The global tests TMS and

TUC, in contrast, have a row-wise size much smaller than the target α = 5%, which reflects

the fact that they control global rather than row-wise size.

1.5.1.2 Power comparisons

In the second part of our simulation study, we compare the tests TMS, TUC, TRW and TSiZer

in terms of power. As above, we use the location-scale grid G∗T and treat the autocovariance

function of the error terms as known when implementing the tests. Moreover, we restrict

attention to the significance level α = 0.05 and the AR parameters a1 ∈ {−0.5, 0.5}. Our

simulation exercises investigate the ability of the four tests to detect local increases in the

trend m. (The same could of course be done for decreases.) The tests indicate a local

increase in m according to the following decision rules: For each (u, h) ∈ G∗T ,

TMS indicates an increase on [u− h, u+ h] ⇐⇒ ψ̂T (u, h)/σ̂ > qT (α) + λ(h)

TUC indicates an increase on [u− h, u+ h] ⇐⇒ ψ̂T (u, h)/σ̂ > qUC
T (α)

TRW indicates an increase on [u− h, u+ h] ⇐⇒ ψ̂T (u, h)/σ̂ > qRW
T (α, h)

TSiZer indicates an increase on [u− h, u+ h] ⇐⇒ ŝT (u, h) > qSiZer
T (α, h),

where qUC
T (α), qRW

T (α, h), qSiZer
T (α, h) are the critical values of TUC, TRW, TSiZer, respec-

tively. Note that the critical values of TRW and TSiZer depend on the scale h as these are

row-wise procedures.

To be able to make systematic power comparisons, we consider a very simple trend

function m. More complicated signals m are analysed in Section 1.C.2 of the Appendix.

The trend function we are considering here is defined as m(u) = c ·1(u ∈ [0.45, 0.55]) · (1−
{ (u−0.5

0.05 }
2)2, where c = 0.45 in the AR case with a1 = −0.5 and c = 1.3 in the case with

a1 = 0.5. The function m is increasing on I+ = (0.45, 0.5), decreasing on I− = (0.5, 0.55)

and constant elsewhere. The two upper panels of Figure 1.3 give a graphical illustration

of m, where the grey line in the background is the time series path of a representative

simulated data sample. As can be seen, m is a small bump around u = 0.5, where c

determines the height of the bump. The constant c is chosen such that the bump is difficult
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Table 1.4: Global power and global spurious power comparisons for α = 0.05.

a1 = −0.5 a1 = 0.5

TMS TUC TRW TSiZer TMS TUC TRW TSiZer
T = 250 Power 0.102 0.086 0.228 0.328 0.096 0.079 0.190 0.295

Spurious power 0.021 0.032 0.109 0.166 0.012 0.017 0.054 0.131

T = 500 Power 0.212 0.166 0.464 0.617 0.186 0.160 0.406 0.587
Spurious power 0.020 0.024 0.137 0.212 0.016 0.016 0.082 0.192

T = 1000 Power 0.575 0.425 0.817 0.901 0.526 0.394 0.780 0.884
Spurious power 0.023 0.024 0.158 0.283 0.020 0.019 0.123 0.252
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Figure 1.3: Row-wise power and row-wise spurious power comparisons for α = 5% and
T = 1000. Subfigure (a) corresponds to the case with a1 = −0.5, subfigure (b) to the
case with a1 = 0.5. The upper panel of each subfigure shows the bump function m with a
representative data sample in the background. The parallel coordinate plot in the middle
panel reports row-wise power. In particular, each curve shows the row-wise power (given
in percentage % on the y-axis) as a function of the bandwidth h (specified on the x-axis)
for one of the four tests TMS, TUC, TRW and TSiZer. The parallel coordinate plot in the
lower panel reports row-wise spurious power in an analogous fashion.
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but not impossible to detect for the four tests. We distinguish between the following types

of power for the tests Tj with j ∈ {MS,UC,RW, SiZer}, where we restrict attention to

increases in m:

(i) global power: the precentage of simulation runs in which the test Tj indicates an

increase on some interval Iu,h = [u− h, u+ h] where m is indeed increasing, that is,

on some Iu,h with Iu,h ∩ I+ 6= ∅.

(ii) spurious global power: the percentage of simulation runs in which the test Tj indicates

an increase on some interval Iu,h = [u− h, u+ h] where m is not increasing, that is,

on some Iu,h with Iu,h ∩ I+ = ∅.

(iii) row-wise power on scale h∗: the percentage of simulation runs in which the test Tj
indicates an increase on some interval Iu,h∗ = [u − h∗, u + h∗] where m is indeed

increasing, that is, on some Iu,h∗ with Iu,h∗ ∩ I+ 6= ∅.

(iv) spurious row-wise power on scale h∗: the percentage of simulation runs in which the

test Tj indicates an increase on some interval Iu,h∗ = [u− h∗, u+ h∗] where m is not

increasing, that is, on some Iu,h∗ with Iu,h∗ ∩ I+ = ∅.

Table 1.4 reports the global power and global spurious power of the four tests. As

can be seen, our multiscale test TMS has higher power than the uncorrected version TUC.

This confirms the theoretical optimality theory in Dümbgen and Spokoiny (2001) [see also

Dümbgen and Walther (2008) and Rufibach and Walther (2010)] according to which the

aggregation scheme of TMS with its additive correction term should yield better power

properties than the simpler scheme of TUC. As expected, the row-wise methods TRW

and TSiZer have substantially more power than the global tests. Indeed, TSiZer is even a

bit more powerful than TRW, which is presumably due to the fact that it is somewhat

too liberal in terms of row-wise size as observed in Figure 1.2. The higher power of the

row-wise procedures comes at some cost: Their spurious global power is much higher

than that of the global tests. For the sample size T = 1000 and the AR parameter

a1 = −0.5, for example, TSiZer spuriously finds an increase in the trend m in more than

28% of the simulations, TRW in more than 15%. The multiscale test TMS (as well as

its uncorrected version TUC), in contrast, controls the probability of finding a spurious

increase. In particular, as implied by Proposition 1.3.3, its spurious global power is below

100 · α% = 5%.

Figure 1.3 gives a more detailed picture of the power properties of the four tests

for the sample size T = 1000. The parallel coordinate plots of the figure show how

power and spurious power are distributed across scales h. Let us first have a look at

the row-wise methods. As can be seen, TSiZer is more powerful than TRW on all scales

under consideration. As already mentioned when discussing the global power results, this

is presumably due to the fact that TSiZer is a bit too liberal in terms of row-wise size.

Comparing the power curves of the two global methods gives an interesting insight: Our



28 | Multiscale Inference and Long-Run Variance Estimation in Nonparametric Regression
with Time Series Errors

multiscale test TMS has substantially more power than the uncorrected version TUC on

medium and large scales. On small scales, in contrast, it is slightly less powerful than

TUC. This again illustrates the theoretical optimality theory in Dümbgen and Spokoiny

(2001) which suggests that, asymptotically, the multiscale test TMS should be as powerful

as TUC on small scales but more powerful on large scales. This is essentially what we see in

the two middle panels of Figure 1.3. Of course, TMS does not have exactly as much power

as TUC on fine scales. However, the loss of power on fine scales is very small compared to

the gain of power on larger scales (which is also reflected by the fact that TMS has more

global power than TUC).

The main findings of our simulation exercises can be summarized as follows: If one

is interested in an exploratory data tool for finding local increases/decreases of a trend,

the row-wise methods TRW and TSiZer both do a good job. However, if one wants to make

rigorous statistical inference simultaneously across locations and scales, one needs to go

for a global method. Our simulation exercises have demonstrated that our multiscale test

TMS is a global method which enjoys good size and power properties. In particular, as

predicted by the theory, it is a more effective test than the uncorrected version TUC.

1.5.2 Small sample properties of the long-run variance estimator

In the final part of our simulation study, we analyse the estimators of the AR parameters

and of the long-run error variance from Section 1.4 and compare them to the estimators of

Hall and Van Keilegom (2003). We simulate data from the model Yt,T = m(t/T )+εt, where

{εt} is an AR(1) process of the form εt = a1εt−1 + ηt. We consider the AR parameters

a1 ∈ {−0.95,−0.75,−0.5,−0.25, 0.25, 0.5, 0.75, 0.95} and let ηt be i.i.d. standard normal

innovation terms. Throughout the simulation study, the AR order p∗ = 1 is treated

as known. We report our findings for the sample size T = 500, the results for other

sample sizes being very similar. For simplicity, m is chosen to be a linear function of

the form m(u) = βu with the slope parameter β. For each value of a1, we consider two

different slopes β, one corresponding to a moderate and one to a pronounced trend m. In

particular, we let β = sβ
√

Var(εt) with sβ ∈ {1, 10}. When sβ = 1, the slope β is equal

to the standard deviation
√

Var(εt) of the error process, which yields a moderate trend

m. When sβ = 10, in contrast, the slope β is 10 times as large as
√

Var(εt), which results

in a quite pronounced trend m.

For each model specification, we generate S = 1000 data samples and compute the

following quantities for each simulated sample:

(i) the pilot estimator ãq from (1.4.8) with the tuning parameter q, the estimator â

from (1.4.10) with the tuning parameters (r, r) and the long-run variance estimator

σ̂2 from (1.4.11).

(ii) the estimators of a1 and σ2 from Hall and Van Keilegom (2003), which are denoted

by âHvK and σ̂2
HvK. The estimator âHvK is computed as described in Section 2.2 of

Hall and Van Keilegom (2003) and σ̂2
HvK as defined at the bottom of p.447 in Section
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2.3. The estimator âHvK (as well as σ̂2
HvK) depends on two tuning parameters which

we denote by m1 and m2 as in Hall and Van Keilegom (2003).

(iii) oracle estimators âoracle and σ̂2
oracle of a1 and σ2, which are constructed under the

assumption that the error process {εt} is observed. For each simulation run, we

compute âoracle as the maximum likelihood estimator of a1 from the time series of

simulated error terms ε1, . . . , εT . We then calculate the residuals rt = εt− âoracle εt−1

and estimate the innovation variance ν2 = E[η2
t ] by ν̂2

oracle = (T − 1)−1
∑T

t=2 r
2
t .

Finally, we set σ̂2
oracle = ν̂2

oracle/(1− âoracle)
2.

Throughout the section, we set q = 25, (r, r) = (1, 10) and (m1,m2) = (20, 30). We in

particular choose q to be in the middle of m1 and m2 to make the tuning parameters of

the estimators ãq and âHvK more or less comparable. In order to assess how sensitive our

estimators are to the choice of q and (r, r), we carry out a number of robustness checks,

considering a range of different values for q and (r, r). In addition, we vary the tuning

parameters m1 and m2 of the estimators from Hall and Van Keilegom (2003) to make sure

that the results of our comparison study are not driven by the particular choice of any

of the involved tuning parameters. The results of our robustness checks are reported in

Section 1.C.3 of the Appendix. They show that the results of our comparison study are

robust to different choices of the parameters q, (r, r) and (m1,m2).

For each estimator â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle and for each model specifi-

cation, the simulation output consists in a vector of length S = 1000 which contains the

1000 simulated values of the respective estimator. Figures 1.4 and 1.5 report the mean

squared error (MSE) of these 1000 simulated values for each estimator. On the x-axis of

each plot, the various values of the AR parameter a1 are listed which are considered. The

solid line in each plot gives the MSE values of our estimators. The dashed and dotted lines

specify the MSE values of the HvK and the oracle estimators, respectively. Note that for

the long-run variance estimators, the plots report the logarithm of the MSE rather than

the MSE itself since the MSE values are too different across simulation scenarios to obtain

a reasonable graphical presentation. In addition to the MSE values presented in Figures

1.4 and 1.5, we depict histograms of the 1000 simulated values produced by the estimators

â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle for two specific simulation scenarios in Figures 1.6

and 1.7. The main findings can be summarized as follows:

(a) In the simulation scenarios with a moderate trend (sβ = 1), the estimators âHvK and

σ̂2
HvK of Hall and Van Keilegom (2003) exhibit a similar performance as our estimators

â and σ̂2 as long as the AR parameter a1 is not too close to −1. For strongly negative

values of a1 (in particular for a1 = −0.75 and a1 = −0.95), the estimators perform

much worse than ours. This can be clearly seen from the much larger MSE values of

the estimators âHvK and σ̂2
HvK for a1 = −0.75 and a1 = −0.95 in Figure 1.4. Figure

1.6 gives some further insights into what is happening here. It shows the histograms

of the simulated values produced by the estimators â, âHvK, âoracle and the corre-

sponding long-run variance estimators in the scenario with a1 = −0.95 and sβ = 1.
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Figure 1.4: MSE values for the estimators â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle in the
simulation scenarios with a moderate trend (sβ = 1).
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HvK, σ̂2

oracle in the
simulation scenarios with a pronounced trend (sβ = 10).

As can be seen, the estimator âHvK does not obey the causality restriction |a1| < 1

but frequently takes values substantially smaller than −1. This results in a very large

spread of the histogram and thus in a disastrous performance of the estimator.4 A

similar point applies to the histogram of the long-run variance estimator σ̂2
HvK. Our

estimators â and σ̂2, in contrast, exhibit a stable behaviour in this case.

Interestingly, the estimator âHvK (as well as the corresponding long-run variance es-

timator σ̂2
HvK) performs much worse than ours for large negative values but not for

large positive values of a1. This can be explained as follows: In the special case of

an AR(1) process, the estimator âHvK may produce estimates smaller than −1 but it

cannot become larger than 1. This can be easily seen upon inspecting the definition

of the estimator. Hence, for large positive values of a1, the estimator âHvK performs

well as it satisfies the causality restriction that the estimated AR parameter should

be smaller than 1.

(b) In the simulation scenarios with a pronounced trend (sβ = 10), the estimators of

4One could of course set âHvK to −(1 − δ) for some small δ > 0 whenever it takes a value ≤ −1. This
modified estimator, however, is still far from performing in a satisfactory way when a1 is close to −1.
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Figure 1.6: Histograms of the simulated values produced by the estimators â, âHvK, âoracle

and σ̂2, σ̂2
HvK, σ̂2

oracle in the scenario with a1 = −0.95 and sβ = 1. The vertical red lines
indicate the true values of a1 and σ2.

Hall and Van Keilegom (2003) are clearly outperformed by ours for most of the AR

parameters a1 under consideration. In particular, their MSE values reported in Figure

1.5 are much larger than the values produced by our estimators for most parameter

values a1. The reason is the following: The HvK estimators have a strong bias since

the pronounced trend with sβ = 10 is not eliminated appropriately by the underlying

differencing methods. This point is illustrated by Figure 1.7 which shows histograms

of the simulated values for the estimators â, âHvK, âoracle and the corresponding long-

run variance estimators in the scenario with a1 = 0.25 and sβ = 10. As can be seen,

the histogram produced by our estimator â is approximately centred around the true

value a1 = 0.25, whereas that of âHvK is strongly biased upwards. A similar picture

arises for the long-run variance estimators σ̂2 and σ̂2
HvK.

Whereas the methods of Hall and Van Keilegom (2003) perform much worse than ours

for negative and moderately positive values of a1, the performance (in terms of MSE)

is fairly similar for large values of a1. This can be explained as follows: When the

trend m is not eliminated appropriately by taking differences, this creates spurious

persistence in the data. Hence, the estimator âHvK tends to overestimate the AR

parameter a1, that is, âHvK tends to be larger in absolute value than a1. Very loosely

speaking, when the parameter a1 is close to 1, say a1 = 0.95, there is not much room
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Figure 1.7: Histograms of the simulated values produced by the estimators â, âHvK, âoracle

and σ̂2, σ̂2
HvK, σ̂2

oracle in the scenario with a1 = 0.25 and sβ = 10. The vertical red lines
indicate the true values of a1 and σ2.

for overestimation since âHvK cannot become larger than 1. Consequently, the effect

of not eliminating the trend appropriately has a much smaller impact on âHvK for

large positive values of a1.

1.6 Application

The analysis of time trends in long temperature records is an important task in climatology.

Information on the shape of the trend is needed in order to better understand long-term

climate variability. In what follows, we use our multiscale test TMS to analyse two long-

term temperature records. Throughout the section, we set the significance level to α = 0.05

and implement the multiscale test in exactly the same way as in the simulation study of

Section 1.5.

1.6.1 Analysis of the Central England temperature record

The Central England temperature record is the longest instrumental temperature time

series in the world. The data are publicly available on the webpage of the UK Met Office.

A detailed description of the data can be found in Parker et al. (1992). For our analysis,

we use the dataset of yearly mean temperatures which consists of T = 359 observations
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Yt,T covering the years from 1659 to 2017. A plot of the time series is given in panel (a)

of Figure 1.8. We assume that the temperature data Yt,T follow the nonparametric trend

model Yt,T = m(t/T ) + εt, where m is the unknown time trend of interest. The error

process {εt} is supposed to have the AR(p∗) structure εt =
∑p∗

j=1 ajεt−j + ηt, where ηt are

i.i.d. innovations with mean 0 and variance ν2. As pointed out in Mudelsee (2010) among

others, this is the most widely used error model for discrete climate time series. We select

the AR order p∗ by the Bayesian information criterion (BIC), which yields p∗ = 2.5 We

then estimate the AR(2) parameters a = (a1, a2) and the long-run error variance σ2 by

the procedures from Section 1.4 with q = 25 and (r, r) = (1, 10). This gives the estimators

â1 = 0.164, â2 = 0.175 and σ̂2 = 0.737.

With the help of our multiscale method, we now test the null hypothesis H0 that m

is constant on all intervals [u − h, u + h] with (u, h) ∈ G∗T , where the grid G∗T is defined

in the same way as in Section 1.5. The results are presented in Figure 1.8. Panel (b)

depicts the minimal intervals in the set Π+
T which is produced by our multiscale test TMS.

The set of intervals Π−T is empty in the present case. According to Proposition 1.3.3, we

can make the following simultaneous confidence statement about the collection of minimal

intervals plotted in panel (b). We can claim, with confidence of about 95%, that the trend

m has some increase on each minimal interval. More specifically, we can claim with this

confidence that there has been some upward movement in the trend both in the period

from around 1680 to 1740 and in the period from about 1870 onwards. Hence, our test in

particular provides evidence that there has been some warming trend in the period over

approximately the last 150 years. On the other hand, as the set Π−T is empty, there is no

evidence of any downward movement of the trend.

Panel (c) presents the SiZer map produced by our multiscale test TMS. For comparison,

the SiZer map of the dependent SiZer test TSiZer is shown in panel (d). To produce panel

(d), we have implemented SiZer as described in Section 1.C.1 of the Appendix, where the

autocovariance function of the errors {εt} is estimated with the help of our procedures

from Section 1.4 under the assumption that {εt} is an AR(2) process. The SiZer maps

of panels (c) and (d) are to be read as follows: Each pixel of the map corresponds to a

location-scale point (u, h), or put differently, to a time interval [u − h, u + h]. The pixel

(u, h) is coloured blue if the test indicates an increase in the trend m on the interval

[u − h, u + h], red if the test indicates a decrease and purple if the test does not reject

the null hypothesis that m is constant on [u − h, u + h]. As can be seen, the two SiZer

maps in panels (c) and (d) have a similar structure. Both our multiscale test and SiZer

indicate increases in the trend m during a short time period around 1700 and towards

the end of the sample. However, in contrast to SiZer, our method allows to make formal

5More precisely, we proceed as follows: We estimate the AR parameters and the corresponding variance
of the innovation terms for different AR orders by the methods from Section 1.4 and then choose p∗

as the minimizer of the Bayesian information criterion (BIC). As a robustness check, we have repeated
this procedure for a wide range of the tuning parameters q and (r, r), which produces the value p∗ = 2
throughout. Moreover, we have considered other information criteria such as FPE, AIC and AICC, which
gives the AR order p∗ = 2 for almost all values of q and (r, r).
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Figure 1.8: Summary of the results for the Central England temperature record. Panel
(a) shows the observed temperature time series. Panel (b) depicts the minimal intervals
in the set Π+

T produced by our multiscale test. These are [1684, 1744], [1839, 2009] and
[1864, 2014]. Panels (c) and (d) present the SiZer maps produced by our multiscale test
and SiZer.

confidence statements about the regions of blue pixels in the SiZer map. In particular, as

the set of blue pixels in panel (c) exactly corresponds to the collection of intervals Π+
T , we

can claim, with confidence of about 95%, that the trend m has an increase on each time

interval represented by a blue pixel in panel (c).

1.6.2 Analysis of global temperature data

We next analyse a data set which consists of annual global temperature anomalies from

1850 onwards. The data are publicly available on the webpage https://cdiac.ess-

dive.lbl.gov/trends/temp/jonescru/jones.html and are plotted in panel (a) of Fig-

ure 1.9. As before, we assume that the data come from the model Yt,T = m(t/T ) + εt,

where m is the trend and {εt} the noise process. We apply our multiscale methods to

test the null hypothesis H0 that m is constant on all time intervals [u − h, u + h] with

(u, h) ∈ GT , where the grid GT is defined as in Section 1.5. We compare our results with
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Figure 1.9: Summary of the results for the global temperature anomalies. Panel (a) shows
the observed temperature time series. Panel (b) depicts the minimal intervals in the set
Π+
T produced by the multiscale test. These are [1905, 1935], [1915, 1945], [1920, 1950] and

[1965, 1995]. Panel (c) presents the SiZer map of our test.

those obtained by Wu et al. (2001) who developed a method for testing the hypothesis

that m is constant on [0, 1] against the alternative that m is an arbitrary monotonic func-

tion. For comparability reasons, we use exactly the same data as in Wu et al. (2001), in

particular, the yearly temperature anomalies from 1856 to 1998. Moreover, we use their

estimate of the long-run error variance σ2 which amounts to 0.01558. As we do not have

an estimate available from Wu et al. (2001) for the autocovariance function of the error

process, we do not consider dependent SiZer in the application example at hand.

The results produced by our multiscale test are reported in Figure 1.9. Panel (b) shows

the minimal intervals in Π+
T and panel (c) the SiZer map of the test. As can be clearly

seen from both panels (b) and (c), the test indicates an increase in the trend m during the

first half of the 20th century followed by another increase during the second half. These

findings are in line with those in Wu et al. (2001) who reject the null hypothesis that m

is constant. In contrast to the test of Wu et al. (2001), however, our multiscale method

does not only allow to test whether the null is violated. It also allows to make formal

confidence statements about where violations occur, that is, about where the trend m is

increasing. In particular, we can claim, with confidence of about 95%, that the trend has

an increase on each interval plotted in panel (b) of Figure 1.9.
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APPENDICES

1.A Proofs of the results from Section 1.3

In this section, we prove the theoretical results from Section 1.3. We use the following

notation: The symbol C denotes a universal real constant which may take a different value

on each occurrence. For a, b ∈ R, we write a+ = max{0, a} and a∨b = max{a, b}. For any

set A, the symbol |A| denotes the cardinality of A. The notation X
D
= Y means that the

two random variables X and Y have the same distribution. Finally, f0(·) and F0(·) denote

the density and distribution function of the standard normal distribution, respectively.

Auxiliary results using strong approximation theory

The main purpose of this section is to prove that there is a version of the multiscale

statistic Φ̂T defined in (1.3.5) which is close to a Gaussian statistic whose distribution is

known. More specifically, we prove the following result.

Proposition 1.A.1. Under the conditions of Theorem 1.3.1, there exist statistics Φ̃T for

T = 1, 2, . . . with the following two properties: (i) Φ̃T has the same distribution as Φ̂T for

any T , and (ii) ∣∣Φ̃T − ΦT

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
,

where ΦT is a Gaussian statistic as defined in (1.3.4).

Proof of Proposition 1.A.1. For the proof, we draw on strong approximation theory

for stationary processes {εt} that fulfill the conditions (C1)–(C3). By Theorem 2.1 and

Corollary 2.1 in Berkes et al. (2014), the following strong approximation result holds true:

On a richer probability space, there exist a standard Brownian motion B and a sequence

{ε̃t : t ∈ N} such that [ε̃1, . . . , ε̃T ]
D
= [ε1, . . . , εT ] for each T and

max
1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣ = o

(
T 1/q

)
a.s., (1.A.1)

where σ2 =
∑

k∈Z Cov(ε0, εk) denotes the long-run error variance. To apply this result,

we define

Φ̃T = max
(u,h)∈GT

{∣∣∣ φ̃T (u, h)

σ̃

∣∣∣− λ(h)
}
,

where φ̃T (u, h) =
∑T

t=1wt,T (u, h)ε̃t and σ̃2 is the same estimator as σ̂2 with Yt,T =

m(t/T ) + εt replaced by Ỹt,T = m(t/T ) + ε̃t for 1 ≤ t ≤ T . In addition, we let

ΦT = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ

∣∣∣− λ(h)
}

Φ�T = max
(u,h)∈GT

{∣∣∣φT (u, h)

σ̃

∣∣∣− λ(h)
}
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with φT (u, h) =
∑T

t=1wt,T (u, h)σZt and Zt = B(t)−B(t− 1). With this notation, we can

write

∣∣Φ̃T − ΦT

∣∣ ≤ ∣∣Φ̃T − Φ�T
∣∣+
∣∣Φ�T − ΦT

∣∣ =
∣∣Φ̃T − Φ�T

∣∣+ op
(
ρT
√

log T
)
, (1.A.2)

where the last equality follows by taking into account that φT (u, h) ∼ N(0, σ2) for all

(u, h) ∈ GT , |GT | = O(T θ) for some large but fixed constant θ and σ̃2 = σ2 + op(ρT ).

Straightforward calculations yield that

∣∣Φ̃T − Φ�T
∣∣ ≤ σ̃−1 max

(u,h)∈GT

∣∣φ̃T (u, h)− φT (u, h)
∣∣.

Using summation by parts, we further obtain that

∣∣φ̃T (u, h)− φT (u, h)
∣∣ ≤WT (u, h) max

1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σ
t∑

s=1

{
B(s)− B(s− 1)

}∣∣∣
= WT (u, h) max

1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣,

where

WT (u, h) =
T−1∑
t=1

|wt+1,T (u, h)− wt,T (u, h)|+ |wT,T (u, h)|.

Standard arguments show that max(u,h)∈GT WT (u, h) = O(1/
√
Thmin). Applying the

strong approximation result (3.C.4), we can thus infer that

∣∣Φ̃T − Φ�T
∣∣ ≤ σ̃−1 max

(u,h)∈GT

∣∣φ̃T (u, h)− φT (u, h)
∣∣

≤ σ̃−1 max
(u,h)∈GT

WT (u, h) max
1≤t≤T

∣∣∣ t∑
s=1

ε̃s − σB(t)
∣∣∣ = op

( T 1/q

√
Thmin

)
. (1.A.3)

Plugging (1.A.3) into (3.C.5) completes the proof.

Auxiliary results using anti-concentration bounds

In this section, we establish some properties of the Gaussian statistic ΦT defined in (1.3.4).

We in particular show that ΦT does not concentrate too strongly in small regions of the

form [x− δT , x+ δT ] with δT converging to zero.

Proposition 1.A.2. Under the conditions of Theorem 1.3.1, it holds that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1),

where δT = T 1/q/
√
Thmin + ρT

√
log T .

Proof of Proposition 1.A.2. The main technical tool for proving Proposition 1.A.2 are
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anti-concentration bounds for Gaussian random vectors. The following proposition slightly

generalizes anti-concentration results derived in Chernozhukov et al. (2015), in particular

Theorem 3 therein.

Proposition 1.A.3. Let (X1, . . . , Xp)
> be a Gaussian random vector in Rp with E[Xj ] =

µj and Var(Xj) = σ2
j > 0 for 1 ≤ j ≤ p. Define µ = max1≤j≤p |µj | together with

σ = min1≤j≤p σj and σ = max1≤j≤p σj. Moreover, set ap = E[max1≤j≤p(Xj −µj)/σj ] and

bp = E[max1≤j≤p(Xj − µj)]. For every δ > 0, it holds that

sup
x∈R

P
(∣∣ max

1≤j≤p
Xj − x

∣∣ ≤ δ) ≤ Cδ{µ+ ap + bp +
√

1 ∨ log(σ/δ)
}
,

where C > 0 depends only on σ and σ.

The proof of Proposition 1.A.3 is provided at the end of this section for completeness.

To apply Proposition 1.A.3 to our setting at hand, we introduce the following notation: We

write x = (u, h) along with GT = {x : x ∈ GT } = {x1, . . . , xp}, where p := |GT | ≤ O(T θ)

for some large but fixed θ > 0 by our assumptions. Moreover, for j = 1, . . . , p, we set

X2j−1 =
φT (xj1, xj2)

σ
− λ(xj2)

X2j = −φT (xj1, xj2)

σ
− λ(xj2)

with xj = (xj1, xj2). This notation allows us to write

ΦT = max
1≤j≤2p

Xj ,

where (X1, . . . , X2p)
> is a Gaussian random vector with the following properties: (i) µj :=

E[Xj ] = −λ(xj2) and thus µ = max1≤j≤2p |µj | ≤ C
√

log T , and (ii) σ2
j := Var(Xj) = 1 for

all j. Since σj = 1 for all j, it holds that a2p = b2p. Moreover, as the variables (Xj−µj)/σj
are standard normal, we have that a2p = b2p ≤

√
2 log(2p) ≤ C

√
log T . With this notation

at hand, we can apply Proposition 1.A.3 to obtain that

sup
x∈R

P
(∣∣ΦT − x

∣∣ ≤ δT) ≤ CδT [√log T +
√

log(1/δT )
]

= o(1)

with δT = T 1/q/
√
Thmin + ρT

√
log T , which is the statement of Proposition 1.A.2.

Proof of Theorem 1.3.1

To prove Theorem 1.3.1, we make use of the two auxiliary results derived above. By

Proposition 1.A.1, there exist statistics Φ̃T for T = 1, 2, . . . which are distributed as Φ̂T

for any T ≥ 1 and which have the property that

∣∣Φ̃T − ΦT

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
, (1.A.4)
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where ΦT is a Gaussian statistic as defined in (1.3.4). The approximation result (1.A.4)

allows us to replace the multiscale statistic Φ̂T by an identically distributed version Φ̃T

which is close to the Gaussian statistic ΦT . In the next step, we show that

sup
x∈R

∣∣P(Φ̃T ≤ x)− P(ΦT ≤ x)
∣∣ = o(1), (1.A.5)

which immediately implies the statement of Theorem 1.3.1. For the proof of (1.A.5), we

use the following simple lemma:

Lemma 1.A.1. Let VT and WT be real-valued random variables for T = 1, 2, . . . such that

VT −WT = op(δT ) with some δT = o(1). If

sup
x∈R

P(|VT − x| ≤ δT ) = o(1), (1.A.6)

then

sup
x∈R

∣∣P(VT ≤ x)− P(WT ≤ x)
∣∣ = o(1). (1.A.7)

The statement of Lemma 3.C.10 can be summarized as follows: If WT can be ap-

proximated by VT in the sense that VT −WT = op(δT ) and if VT does not concentrate

too strongly in small regions of the form [x− δT , x+ δT ] as assumed in (1.A.6), then the

distribution of WT can be approximated by that of VT in the sense of (1.A.7).

Proof of Lemma 3.C.10. It holds that

∣∣P(VT ≤ x)− P(WT ≤ x)
∣∣

=
∣∣E[1(VT ≤ x)− 1(WT ≤ x)

]∣∣
≤
∣∣E[{1(VT ≤ x)− 1(WT ≤ x)

}
1(|VT −WT | ≤ δT )

]∣∣+
∣∣E[1(|VT −WT | > δT )

]∣∣
≤ E

[
1(|VT − x| ≤ δT , |VT −WT | ≤ δT )

]
+ o(1)

≤ P(|VT − x| ≤ δT ) + o(1).

We now apply this lemma with VT = ΦT , WT = Φ̃T and δT = T 1/q/
√
Thmin +

ρT
√

log T : From (1.A.4), we already know that Φ̃T − ΦT = op(δT ). Moreover, by Propo-

sition 1.A.2, it holds that

sup
x∈R

P
(
|ΦT − x| ≤ δT

)
= o(1). (1.A.8)

Hence, the conditions of Lemma 3.C.10 are satisfied. Applying the lemma, we obtain

(1.A.5), which completes the proof of Theorem 1.3.1.

Proof of Proposition 1.3.2

To start with, we introduce the notation ψ̂T (u, h) = ψ̂AT (u, h) + ψ̂BT (u, h) with ψ̂AT (u, h) =∑T
t=1wt,T (u, h)εt and ψ̂BT (u, h) =

∑T
t=1wt,T (u, h)mT ( tT ). By assumption, there exists
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(u0, h0) ∈ GT with [u0 − h0, u0 + h0] ⊆ [0, 1] such that m′T (w) ≥ cT
√

log T/(Th3
0) for all

w ∈ [u0−h0, u0 +h0]. (The case that −m′T (w) ≥ cT
√

log T/(Th3
0) for all w can be treated

analogously.) Below, we prove that under this assumption,

ψ̂BT (u0, h0) ≥ κcT
√

log T

2
(1.A.9)

for sufficiently large T , where κ = (
∫
K(ϕ)ϕ2dϕ)/(

∫
K2(ϕ)ϕ2dϕ)1/2. Moreover, by argu-

ments very similar to those for the proof of Proposition 1.A.1, it follows that

max
(u,h)∈GT

|ψ̂AT (u, h)| = Op(
√

log T ). (1.A.10)

With the help of (1.A.9), (1.A.10) and the fact that λ(h) ≤ λ(hmin) ≤ C
√

log T , we can

infer that

Ψ̂T ≥ max
(u,h)∈GT

|ψ̂BT (u, h)|
σ̂

− max
(u,h)∈GT

{ |ψ̂AT (u, h)|
σ̂

+ λ(h)
}

= max
(u,h)∈GT

|ψ̂BT (u, h)|
σ̂

+Op(
√

log T )

≥ κcT
√

log T

2σ̂
+Op(

√
log T ) (1.A.11)

for sufficiently large T . Since qT (α) = O(
√

log T ) for any fixed α ∈ (0, 1), (1.A.11)

immediately yields that P(Ψ̂T ≤ qT (α)) = o(1), which is the statement of Proposition

1.3.2.

Proof of (1.A.9). Write mT ( tT ) = mT (u0) +m′T (ξu0,t,T )( tT − u0), where ξu0,t,T is an in-

termediate point between u0 and t/T . The local linear weights wt,T (u0, h0) are constructed

such that
∑T

t=1wt,T (u0, h0) = 0. We thus obtain that

ψ̂BT (u0, h0) =

T∑
t=1

wt,T (u0, h0)
( t
T − u0

h0

)
h0m

′
T (ξu0,t,T ). (1.A.12)

Moreover, since the kernel K is symmetric and u0 = t/T for some t, it holds that

ST,1(u0, h0) = 0, which in turn implies that

wt,T (u0, h0)
( t
T − u0

h0

)
= K

( t
T − u0

h0

)( t
T − u0

h0

)2/{ T∑
t=1

K2
( t
T − u0

h0

)( t
T − u0

h0

)2}1/2
≥ 0. (1.A.13)

From (1.A.12), (1.A.13) and the assumption that m′T (w) ≥ cT
√

log T/(Th3
0) for all w ∈
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[u0 − h0, u0 + h0], we get that

ψ̂BT (u0, h0) ≥ cT
√

log T

Th0

T∑
t=1

wt,T (u0, h0)
( t
T − u0

h0

)
. (1.A.14)

Standard calculations exploiting the Lipschitz continuity of the kernel K show that for

any (u, h) ∈ GT and any given natural number `,

∣∣∣ 1

Th

T∑
t=1

K
( t
T − u
h

)( t
T − u
h

)`
−
∫ 1

0

1

h
K
(w − u

h

)(w − u
h

)`
dw
∣∣∣ ≤ C

Th
, (1.A.15)

where the constant C does not depend on u, h and T . With the help of (1.A.13) and

(3.C.41), we obtain that for any (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1],

∣∣∣ T∑
t=1

wt,T (u, h)
( t
T − u
h

)
− κ
√
Th
∣∣∣ ≤ C√

Th
, (1.A.16)

where the constant C does once again not depend on u, h and T . (1.A.16) implies that∑T
t=1wt,T (u, h)( tT − u)/h ≥ κ

√
Th/2 for sufficiently large T and any (u, h) ∈ GT with

[u−h, u+h] ⊆ [0, 1]. Using this together with (1.A.14), we immediately obtain (1.A.9).

Proof of Proposition 1.3.3

In what follows, we show that

P(E+
T ) ≥ (1− α) + o(1). (1.A.17)

The other statements of Proposition 1.3.3 can be verified by analogous arguments. (1.A.17)

is a consequence of the following two observations:

(i) For all (u, h) ∈ GT with

∣∣∣ ψ̂T (u, h)− Eψ̂T (u, h)

σ̂

∣∣∣− λ(h) ≤ qT (α) and
ψ̂T (u, h)

σ̂
− λ(h) > qT (α),

it holds that E[ψ̂T (u, h)] > 0.

(ii) For all (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1], E[ψ̂T (u, h)] > 0 implies that m′(v) > 0

for some v ∈ [u− h, u+ h].

Observation (i) is trivial, (ii) can be seen as follows: Let (u, h) be any point with (u, h) ∈ GT
and [u− h, u+ h] ⊆ [0, 1]. It holds that E[ψ̂T (u, h)] = ψ̂BT (u, h), where ψ̂BT (u, h) has been

defined in the proof of Proposition 1.3.2. As already shown in (1.A.12),

ψ̂BT (u, h) =

T∑
t=1

wt,T (u, h)
( t
T − u
h

)
hm′(ξu,t,T ),
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where ξu,t,T is some intermediate point between u and t/T . Moreover, by (1.A.13), it

holds that wt,T (u, h)( tT −u)/h ≥ 0 for any t. Hence, E[ψ̂T (u, h)] = ψ̂BT (u, h) can only take

a positive value if m′(v) > 0 for some v ∈ [u− h, u+ h].

From observations (i) and (ii), we can draw the following conclusions: On the event

{
Φ̂T ≤ qT (α)

}
=
{

max
(u,h)∈GT

(∣∣∣ ψ̂T (u, h)− Eψ̂T (u, h)

σ̂

∣∣∣− λ(h)
)
≤ qT (α)

}
,

it holds that for all (u, h) ∈ A+
T with [u− h, u+ h] ⊆ [0, 1], m′(v) > 0 for some v ∈ Iu,h =

[u− h, u+ h]. We thus obtain that {Φ̂T ≤ qT (α)} ⊆ E+
T . This in turn implies that

P(E+
T ) ≥ P

(
Φ̂T ≤ qT (α)

)
= (1− α) + o(1),

where the last equality holds by Theorem 1.3.1.

Proof of Corollary 1.3.1

Let α = αT → 0 and let Φ̃T be defined as in the proof of Theorem 1.3.1. It holds that

∣∣P(Φ̃T ≤ qT (αT ))− (1− αT )
∣∣ =

∣∣P(Φ̃T ≤ qT (αT ))− P(ΦT ≤ qT (αT ))
∣∣

≤ sup
x∈R

∣∣P(Φ̃T ≤ x)− P(ΦT ≤ x)
∣∣ = o(1),

where the last equality is due to (1.A.5). From this, it immediately follows that P(Φ̃T ≤
qT (αT ))→ 1. Moreover, since Φ̃T and Φ̂T have the same distribution by construction, we

obtain that

P(Φ̂T ≤ qT (αT ))→ 1. (1.A.18)

Taking into account (1.A.18), Corollary 1.3.1 can be proven in exactly the same way as

Proposition 1.3.3.

Proof of Proposition 1.A.3

The proof makes use of the following three lemmas, which correspond to Lemmas 5–7 in

Chernozhukov et al. (2015).

Lemma 1.A.2. Let (W1, . . . ,Wp)
> be a (not necessarily centred) Gaussian random vector

in Rp with Var(Wj) = 1 for all 1 ≤ j ≤ p. Suppose that Corr(Wj ,Wk) < 1 whenever j 6= k.

Then the distribution of max1≤j≤pWj is absolutely continuous with respect to Lebesgue

measure and a version of the density is given by

f(x) = f0(x)

p∑
j=1

eE[Wj ]x−E[Wj ]2/2 P
(
Wk ≤ x for all k 6= j

∣∣Wj = x
)
.
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Lemma 1.A.3. Let (W0,W1, . . . ,Wp)
> be a (not necessarily centred) Gaussian random

vector with Var(Wj) = 1 for all 0 ≤ j ≤ p. Suppose that E[W0] ≥ 0. Then the map

x 7→ eE[W0]x−E[W0]2/2 P
(
Wj ≤ x for 1 ≤ j ≤ p

∣∣W0 = x
)

is non-decreasing on R.

Lemma 1.A.4. Let (X1, . . . , Xp)
> be a centred Gaussian random vector in Rp with

max1≤j≤p E[X2
j ] ≤ σ2

X for some σ2
X > 0. Then for any r > 0,

P
(

max
1≤j≤p

Xj ≥ E
[

max
1≤j≤p

Xj

]
+ r
)
≤ e−r2/(2σ2

X).

The proof of Lemmas 1.A.2 and 1.A.3 can be found in Chernozhukov et al. (2015).

Lemma 1.A.4 is a standard result on Gaussian concentration whose proof is given e.g. in

Ledoux (2001); see Theorem 7.1 therein. We now closely follow the arguments for the

proof of Theorem 3 in Chernozhukov et al. (2015). The proof splits up into three steps.

Step 1. Pick any x ≥ 0 and set

Wj =
Xj − x
σj

+
µ+ x

σ
.

By construction, E[Wj ] ≥ 0 and Var(Wj) = 1. Defining Z = max1≤j≤pWj , it holds that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ P
(∣∣∣ max

1≤j≤p

Xj − x
σj

∣∣∣ ≤ δ

σ

)
≤ sup

y∈R
P
(∣∣∣ max

1≤j≤p

Xj − x
σj

+
µ+ x

σ
− y
∣∣∣ ≤ δ

σ

)
= sup

y∈R
P
(
|Z − y| ≤ δ

σ

)
.

Step 2. We now bound the density of Z. Without loss of generality, we assume

that Corr(Wj ,Wk) < 1 for k 6= j. The marginal distribution of Wj is N(νj , 1) with

νj = E[Wj ] = (µj/σj + µ/σ) + (x/σ− x/σj) ≥ 0. Hence, by Lemmas 1.A.2 and 1.A.3, the

random variable Z has a density of the form

fp(z) = f0(z)Gp(z), (1.A.19)

where the map z 7→ Gp(z) is non-decreasing. Define Z = max1≤j≤p(Wj − E[Wj ]) and set

z = 2µ/σ + x(1/σ − 1/σ) such that E[Wj ] ≤ z for any 1 ≤ j ≤ p. With these definitions

at hand, we obtain that∫ ∞
z

f0(u)duGp(z) ≤
∫ ∞
z

f0(u)Gp(u)du = P(Z > z)

≤ P (Z > z − z) ≤ exp
(
−

(z − z − E[Z])2
+

2

)
,
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where the last inequality follows from Lemma 1.A.4. Since Wj − E[Wj ] = (Xj − µj)/σj ,
it holds that

E[Z] = E
[

max
1≤j≤p

{Xj − µj
σj

}]
=: ap.

Hence, for every z ∈ R,

Gp(z) ≤
1

1− F0(z)
exp

(
−

(z − z − ap)2
+

2

)
. (1.A.20)

Mill’s inequality states that for z > 0,

z ≤ f0(z)

1− F0(z)
≤ z 1 + z2

z2
.

Since (1 + z2)/z2 ≤ 2 for z ≥ 1 and f0(z)/{1−F0(z)} ≤ 1.53 ≤ 2 for z ∈ (−∞, 1), we can

infer that
f0(z)

1− F0(z)
≤ 2(z ∨ 1) for any z ∈ R.

This together with (1.A.19) and (1.A.20) yields that

fp(z) ≤ 2(z ∨ 1) exp
(
−

(z − z − ap)2
+

2

)
for any z ∈ R.

Step 3. By Step 2, we get that for any y ∈ R and u > 0,

P(|Z − y| ≤ u) =

∫ y+u

y−u
fp(z)dz ≤ 2u max

z∈[y−u,y+u]
fp(z) ≤ 4u(z + ap + 1),

where the last inequality follows from the fact that the map z 7→ ze−(z−a)2/2 (with a > 0)

is non-increasing on [a+1,∞). Combining this bound with Step 1, we further obtain that

for any x ≥ 0 and δ > 0,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ 4δ
{2µ

σ
+ |x|

( 1

σ
− 1

σ

)
+ ap + 1

}/
σ. (1.A.21)

This inequality also holds for x < 0 by an analogous argument, and hence for all x ∈ R.

Now let 0 < δ ≤ σ and define bp = Emax1≤j≤p{Xj − µj}. For any |x| ≤ δ + µ+ bp +

σ
√

2 log(σ/δ), (1.A.21) yields that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ 4δ

σ

{
µ
( 3

σ
− 1

σ

)
+ ap +

( 1

σ
− 1

σ

)
bp

+
(σ
σ
− 1
)√

2 log
(σ
δ

)
+ 2− σ

σ

}
≤ Cδ

{
µ+ ap + bp +

√
1 ∨ log(σ/δ)

}
(1.A.22)

with a sufficiently large constant C > 0 that depends only on σ and σ. For |x| ≥ δ + µ+
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bp + σ
√

2 log(σ/δ), we obtain that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ δ

σ
, (1.A.23)

which can be seen as follows: If x > δ + µ, then |maxj Xj − x| ≤ δ implies that |x| − δ ≤
maxj Xj ≤ maxj{Xj − µj} + µ and thus maxj{Xj − µj} ≥ |x| − δ − µ. Hence, it holds

that

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ P
(

max
1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
. (1.A.24)

If x < −(δ + µ), then |maxj Xj − x| ≤ δ implies that maxj{Xj − µj} ≤ −|x| + δ + µ.

Hence, in this case,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ P
(

max
1≤j≤p

{
Xj − µj} ≤ −|x|+ δ + µ

)
≤ P

(
max

1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
, (1.A.25)

where the last inequality follows from the fact that for centred Gaussian random variables

Vj and v > 0, P(maxj Vj ≤ −v) ≤ P(V1 ≤ −v) = P (V1 ≥ v) ≤ P(maxj Vj ≥ v). With

(1.A.24) and (1.A.25), we obtain that for any |x| ≥ δ + µ+ bp + σ
√

2 log(σ/δ),

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ P
(

max
1≤j≤p

{
Xj − µj} ≥ |x| − δ − µ

)
≤ P

(
max

1≤j≤p

{
Xj − µj

}
≥ E

[
max

1≤j≤p

{
Xj − µj

}]
+ σ

√
2 log(σ/δ)

)
≤ δ

σ
,

the last inequality following from Lemma 1.A.4. To sum up, we have established that for

any 0 < δ ≤ σ and any x ∈ R,

P
(∣∣∣ max

1≤j≤p
Xj − x

∣∣∣ ≤ δ) ≤ Cδ{µ+ ap + bp +
√

1 ∨ log(σ/δ)
}

(1.A.26)

with some constant C > 0 that does only depend on σ and σ. For δ > σ, (1.A.26) trivially

follows upon setting C ≥ 1/σ. This completes the proof.

1.B Proofs of the results from Section 1.4

In what follows, we prove Proposition 1.4.1 from Section 1.4. Throughout the section,

we assume that m is Lipschitz and that {εt} is an AR(p∗) process of the form (1.4.3)

with the following properties: A(z) 6= 0 for all |z| ≤ 1 + δ with some small δ > 0 and

the innovations ηt have a finite fourth moment. As in the previous section, the symbol

C denotes a generic real constant which may take a different value on each occurrence.

Moreover, the notation vT � wT means that vT /wT → 0 as T →∞ and the symbol ‖ · ‖2
denotes the usual Euclidean/spectral norm for vectors/matrices.
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Auxiliary results

To start with, we derive some auxiliary results on the sample autocovariances

γ̂q(`) =
1

T − q

T∑
t=q+`+1

∆qYt,T ∆qYt−`,T .

The first result bounds the L2-distance between the `-th sample autocovariance γ̂q(`) and

its true counterpart γq(`) = Cov(∆qεt,∆qεt−`) uniformly over `.

Lemma 1.B.5. Let 1 ≤ p�
√
T and 1 ≤ q �

√
T . For any 1 ≤ ` ≤ p,

E
[(
γ̂q(`)− γq(`)

)2] ≤ C{ 1

T − q
+
( p

T − q

)2
+
( q
T

)2}
,

where the constant C is independent of `, p, q and T .

Proof of Lemma 1.B.5. The expression γ̂q(`)− γq(`) can be decomposed as

γ̂q(`)− γq(`) =
(
γ̂∗q (`)− γq(`)

)
+Rq,A(`) +Rq,B(`) +Rq,C(`),

where

γ̂∗q (`) =
1

T − q

T∑
t=q+`+1

∆qεt ∆qεt−`

and

Rq,A(`) =
1

T − q

T∑
t=q+`+1

∆qmt∆qεt−`

Rq,B(`) =
1

T − q

T∑
t=q+`+1

∆qεt∆qmt−`

Rq,C(`) =
1

T − q

T∑
t=q+`+1

∆qmt∆qmt−`

with ∆qmt = m( tT )−m( t−qT ). In what follows, we prove that for any 1 ≤ ` ≤ p,

E
[(
γ̂∗q (`)− γq(`)

)2] ≤ C{ 1

T − q
+
( p

T − q

)2}
, (1.B.1)

where the constant C does not depend on `, p, q and T . Applying the Cauchy-Schwarz

inequality and exploiting the Lipschitz continuity of m, we further obtain that

ER2
q,A(`) ≤

( 1

T − q

T∑
t=q+`+1

{∆qmt}2
)( 1

T − q

T∑
t=q+`+1

{∆qεt−`}2
)
≤ C

( q
T

)2
,

where C is independent of `, p, q and T . Analogously, we get that ER2
q,k(`) ≤ C(q/T )2
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for k = B,C. From this and (1.B.1), it immediately follows that

E
[(
γ̂q(`)− γq(`)

)2] ≤ 16
{
E
[(
γ̂∗q (`)− γq(`)

)2]
+ ER2

q,A(`) + ER2
q,B(`) + ER2

q,C(`)
}

≤ C
{ 1

T − q
+
( p

T − q

)2
+
( q
T

)2}
,

which completes the proof.

It remains to verify (1.B.1). To do so, we decompose γ̂∗q (`)− γq(`) as

γ̂∗q (`)− γq(`) = Σq,1(`)− Σq,2(`)− Σq,3(`) + Σq,4(`)−
(

1− T − q − `
T − q

)
γq(`)

with

Σq,1(`) =
1

T − q

T∑
t=q+`+1

{
εtεt−` − Eεtεt−`

}
Σq,2(`) =

1

T − q

T∑
t=q+`+1

{
εtεt−`−q − Eεtεt−`−q

}
Σq,3(`) =

1

T − q

T∑
t=q+`+1

{
εt−qεt−` − Eεt−qεt−`

}
Σq,4(`) =

1

T − q

T∑
t=q+`+1

{
εt−qεt−`−q − Eεt−qεt−`−q

}
and prove that

EΣ2
q,k(`) ≤

C

T − q
(1.B.2)

for 1 ≤ k ≤ 4, where the constant C only depends on the coefficients c0, c1, c2, . . . of the

MA(∞) representation of {εt} and the innovation variance ν2. From this, we get that

E
[(
γ̂∗q (`)− γq(`)

)2] ≤ 25
{ 4∑
k=1

EΣ2
q,k(`) +

(
1− T − q − `

T − q

)2
γ2
q (`)

}
≤ C

{ 1

T − q
+
( p

T − q

)2}
with C independent of `, p, q and T , which shows (1.B.1).

We now turn to the proof of (1.B.2). As the proof is completely analogous for k ∈
{1, . . . , 4}, we restrict attention to k = 1. Since the variables εt have the MA(∞) expansion

εt =
∑∞

k=0 ckηt−k and the autocovariances γε(`) = Cov(εt, εt−`) can be written as γε(`) =
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(
∑∞

k=0 ckck+`)ν
2, it holds that

E
[
εtεt−`εt′εt′−`

]
=
( ∞∑
k=0

ck ck+t′−t ck+` ck+`+t′−t

)
κ+

( ∞∑
k=0

ck ck+`

)2
ν4

+
( ∞∑
k=0

ck ck+t′−t

)2
ν4 +

( ∞∑
k=0

ck ck+`+t′−t

)( ∞∑
k=0

ck ck+`+t−t′
)
ν4

=
( ∞∑
k=0

ck ck+t′−t ck+` ck+`+t′−t

)
κ+ γ2

ε (`) + γ2
ε (t′ − t) + γε(t

′ − t+ `)γε(t
′ − t− `)

with κ = E[η4
0] − 3ν4 and ck = 0 for k < 0. From this, we obtain that EΣ2

q,1(`) =∑3
k=1 EΣ2

q,1,k(`) with

EΣ2
q,1,1(`) =

κ

(T − q)2

T∑
t,t′=q+`+1

( ∞∑
k=0

ck ck+t′−t ck+` ck+`+t′−t

)

EΣ2
q,1,2(`) =

1

(T − q)2

T∑
t,t′=q+`+1

γ2
ε (t′ − t)

EΣ2
q,1,3(`) =

1

(T − q)2

T∑
t,t′=q+`+1

γε(t
′ − t+ `)γε(t

′ − t− `).

Let #{t′ − t = r} be the number of pairs (t, t′) with q + 1 ≤ t, t′ ≤ T such that t′ − t = r

and note that #{t′ − t = r} ≤ T − q for any r. It holds that

|EΣ2
q,1,1(`)| ≤ κ

(T − q)2

T∑
r=−T

#
{
t′ − t = r

} ∞∑
k=0

|ck ck+r ck+` ck+`+r|

≤ κ

T − q

∞∑
k=0

|ck ck+`|
∞∑

r=−∞
|ck+r ck+`+r|

≤
κ{maxj |cj |}2{

∑∞
k=0 |ck|}2

T − q
≤ C

T − q
, (1.B.3)

where C only depends on the parameters c0, c1, c2, . . . of the MA(∞) representation of

{εt}. Moreover,

EΣ2
q,1,2(`) ≤ 1

(T − q)2

T∑
r=−T

#
{
t′ − t = r

}
γ2
ε (r) ≤

{
∑∞

r=−∞ γ
2
ε (r)}

T − q
≤ C

T − q
(1.B.4)

and analogously |EΣ2
q,1,3(`)| ≤ C/(T − q), where C only depends on the MA parameters

c0, c1, c2, . . . and the innovation variance ν2 (noting that γε(k) =
∑∞

j=0 cjcj+kν
2). With

(1.B.3) and (1.B.4), we immediately arrive at (1.B.2).

With the help of Lemma 1.B.5, we can derive the following bounds on E‖γ̂q − γq‖2
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and E‖Γ̂q − Γq‖2, where γ̂q = (γ̂q(1), . . . , γ̂q(p))
> and γq = (γq(1), . . . , γq(p))

> as well as

Γ̂q = (γ̂q(i− j) : 1 ≤ i, j ≤ p) and Γq = (γq(i− j) : 1 ≤ i, j ≤ p).

Lemma 1.B.6. Let 1 ≤ p�
√
T and 1 ≤ q �

√
T . It holds that

E‖γ̂q − γq‖2 ≤ C
√
p
{ 1

T − q
+
( p

T − q

)2
+
( q
T

)2}1/2

E‖Γ̂q − Γq‖2 ≤ Cp
{ 1

T − q
+
( p

T − q

)2
+
( q
T

)2}1/2

with some constant C independent of p, q and T .

Proof of Lemma 1.B.6. The first statement immediately follows from Lemma 1.B.5.

The second statement is obtained by using Lemma 1.B.5 and the bound

‖Γ̂q − Γq‖2 ≤ max
1≤i≤p

( p∑
j=1

∣∣γ̂q(i− j)− γq(i− j)∣∣) ≤ p∑
`=−p

∣∣γ̂q(`)− γq(`)∣∣,
which follows from Gershgorin’s theorem.

The final auxiliary result summarizes some properties of the inverse autocovariance

matrices Γ̂
−1

q and Γ−1
q .

Lemma 1.B.7. Let p→∞ and (1 + δ)p ≤ q �
√
T for some small δ > 0. Then

(i) ‖Γ−1
q ‖2 ≤ C for sufficiently large T with C independent of p, q and T

(ii) ‖Γ̂
−1

q − Γ−1
q ‖2 = Op(p/

√
T )

(iii) ‖Γ̂
−1

q ‖2 = Op(1).

Proof of Lemma 1.B.7. We first prove (i). As γq(`) = 2γε(`) − γε(q − `) − γε(q + `)

with γε(`) = Cov(εt, εt−`), it holds that

Γq = 2Γ−R,

where Γ = (γε(i− j) : 1 ≤ i, j ≤ p) and R = (γε(q + i− j) + γε(q − i+ j) : 1 ≤ i, j ≤ p).

Since the spectral density fε of the AR(p∗) process {εt} is bounded away from zero and

infinity, we can use Proposition 4.5.3 in Brockwell and Davis (1991) to obtain that the

eigenvalues of the autocovariance matrix Γ lie in some interval [cΓ, CΓ] with constants

0 < cΓ ≤ CΓ <∞ that are independent of p. From this, we can infer that

‖Γ−1‖2 ≤ C with some constant C independent of p. (1.B.5)

Moreover, it holds that

‖Γq/2− Γ‖2 = ‖R/2‖2 ≤
p∑

`=−p
|γε(q − `) + γε(q + `)|/2 ≤ Cpξq−p = o(1), (1.B.6)
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where we have used Gershgorin’s theorem and the fact that |γε(`)| ≤ Cξ` with some

ξ ∈ (0, 1). We now make use of the inequality

‖A−1 −B−1‖2 ≤
‖B−1‖22 ‖B −A‖2

1− ‖B −A‖2 ‖B−1‖2
, (1.B.7)

which holds for general invertible matrices A and B and which is a simple consequence

of the fact that A−1 −B−1 = (A−1 −B−1 +B−1)(B −A)B−1. Setting A = Γq/2 and

B = Γ in (1.B.7) and applying (1.B.5) together with (1.B.6), we get that

‖(Γq/2)−1 − Γ−1‖2 ≤
‖Γ−1‖22 ‖Γq/2− Γ‖2

1− ‖Γq/2− Γ‖2 ‖Γ−1‖2
≤ C (1.B.8)

for sufficiently large T with C independent of p, q and T . Statement (i) easily follows

upon combining (1.B.5) and (1.B.8).

We next turn to the proof of (ii). With (1.B.7), we obtain that

‖Γ̂
−1

q − Γ−1
q ‖2 ≤

‖Γ−1
q ‖22 ‖Γ̂q − Γq‖2

1− ‖Γ̂q − Γq‖2 ‖Γ−1
q ‖2

= Op

( p√
T

)
,

since ‖Γ−1
q ‖2 ≤ C by (i) and ‖Γ̂q −Γq‖2 = Op(p/

√
T ) by Lemma 1.B.6. Finally, (iii) is an

immediately consequence of (i) and (ii).

Proof of Proposition 1.4.1

We have to prove the following three statements:

‖ãq − a‖2 = Op

(√ p

T

)
(1.B.9)

‖â− a‖2 = Op

(√p3

T

)
(1.B.10)

σ̂2 − σ2 = Op

(√p4

T

)
. (1.B.11)

We carry out the proof for case (B), that is, we impose the following conditions on the

parameters p, q, r and r: q �
√
T , C log T ≤ p� min{T 1/5, q} for some sufficiently large

C, r = (1 + δ)p for some small δ > 0 and r − r remains bounded as T → ∞. The proof

for case (A) is a simplified version of that for case (B).

Proof of (1.B.9). It holds that

ãq − a = Γ̂
−1

q γ̂q − a = Γ̂
−1

q

[
(γ̂q − γq) + (γq − Γqa) + (Γq − Γ̂q)a

]
= Γ̂

−1

q

[
(γ̂q − γq)− ν2cq + ρq + (Γq − Γ̂q)a

]
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and thus

‖ãq − a‖2 ≤ ‖Γ̂
−1

q ‖2
[
‖γ̂q − γq‖2 + ν2‖cq‖2 + ‖ρq‖2 + ‖(Γq − Γ̂q)a‖2

]
, (1.B.12)

where we have used that γq−Γqa = −ν2cq +ρq. We now make use of the following facts:

(i) By Lemmas 1.B.6 and 1.B.7, it holds that ‖γ̂q − γq‖2 = Op(
√
p/T ) and ‖Γ̂

−1

q ‖2 =

Op(1). (ii) Since cq = (cq−1, . . . , cq−p)
> and |cj | ≤ Cξj for some ξ ∈ (0, 1), it holds that

‖cq‖2 ≤ C
√
pξq−p. Similarly, as ρq = (ρq(1), . . . , ρq(p))

> with ρq(`) =
∑p∗

j=p+1 ajγq(`− j),
we have |ρq(`)| ≤ C

∑p∗

j=p+1 ξ
j ≤ Cξp and thus ‖ρq‖2 ≤ C

√
pξp. (iii) It holds that

‖(Γq − Γ̂q)a‖2 = Op(
√
p/T ), which can be seen as follows:

‖(Γq − Γ̂q)a‖22

=

p∑
i,j,j′=1

{
γq(i− j)− γ̂q(i− j)

}{
γq(i− j′)− γ̂q(i− j′)

}
ajaj′

≤
p∑

j,j′=1

|ajaj′ |
( p∑
i=1

{
γq(i− j)− γ̂q(i− j)

}2
)1/2( p∑

i=1

{
γq(i− j′)− γ̂q(i− j′)

}2
)1/2

≤
(

max
1≤j≤p

p∑
i=1

{
γq(i− j)− γ̂q(i− j)

}2
)( p∑

j,j′=1

|ajaj′ |
)

≤ C
p∑

`=−p

{
γq(`)− γ̂q(`)

}2
= Op

( p
T

)
,

where the last equality follows by Lemma 1.B.5. Plugging (i)–(iii) into (1.B.12), we arrive

at

‖ãq − a‖2 = Op

(√ p

T
+
√
pξq−p +

√
pξp
)

= Op

(√ p

T

)
,

which completes the proof.

Proof of (1.B.10). It suffices to show that ‖âr − a‖2 = Op(
√
p3/T ) for r = (1 + δ)p

with some small δ > 0. By the same arguments as for (1.B.9), we obtain the bound

‖âr − a‖2 ≤ ‖Γ̂
−1

r ‖2
[
‖γ̂r − γr‖2 + ‖ν̃2c̃r − ν2cr‖2 + ‖ρr‖2 + ‖(Γr − Γ̂r)a‖2

]
= ‖Γ̂

−1

r ‖2 ‖ν̃2c̃r − ν2cr‖2 +Op

(√ p

T

)
. (1.B.13)

Straightforward but lengthy calculations yield that ν̃2 − ν2 = Op(
√
p/T ). Moreover, as

proven below,

max
1≤j≤p

|c̃j − cj | = Op

( p√
T

)
, (1.B.14)

which implies that ‖ν̃2c̃r − ν2cr‖2 = Op(
√
p3/T ). Plugging this into (1.B.13) completes

the proof of (1.B.10).

It remains to verify (1.B.14). By assumption, A(z) 6= 0 for all complex |z| ≤ 1 + δ

with some small δ > 0. Hence, A−1(z) has a (unique) series expansion of the form
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A−1(z) =
∑∞

j=0 cjz
j for all |z| < 1 + δ, where the coefficients cj satisfy the integral

representation

cj =
1

2πi

∮
|w|=1

A−1(w)

wj+1
dw for all j ≥ 0. (1.B.15)

Here and in what follows, the symbol
∮
|w|=1 denotes the line integral along the unit circle.

An analogous integral representation can be derived for the estimates c̃j : By classical

time series results, Ã(z) = 1−
∑p

j=1 ãjz
j 6= 0 for all complex |z| ≤ 1 whenever γ̂q(0) > 0.

Since Ã(z) has exactly p (and thus finitely many) roots, it even holds that Ã(z) 6= 0 for

all |z| ≤ 1 + δ̃ with some small δ̃ > 0 whenever γ̂q(0) > 0. Note that δ̃ = δ̃(ã1, . . . , ãp)

is a function of the parameter estimates ã1, . . . , ãp and thus random. As γ̂q(0) > 0 with

probability approaching 1, we can infer that Ã(z) 6= 0 for all |z| ≤ 1 + δ̃ with probability

tending to 1. This in turn implies that with probability tending to 1, Ã−1(z) has a (unique)

series expansion of the form Ã−1(z) =
∑∞

j=0 φ̃jz
j for all |z| < 1 + δ̃, where the coefficients

φ̃j satisfy the integral representation φ̃j = (2πi)−1
∮
|w|=1 Ã

−1(w)/wj+1dw for all j ≥ 0. By

definition, the estimates c̃j are the solution to the recursive equations (1.4.2). Importantly,

this is equivalent to them being the coefficients in the series expansion of A−1(z). Hence,

c̃j = φ̃j for all j ≥ 0 and thus

c̃j =
1

2πi

∮
|w|=1

Ã−1(w)

wj+1
dw for all j ≥ 0 (1.B.16)

with probability tending to 1. Combining (1.B.15) and (1.B.16), we finally obtain that

max
1≤j≤p

|c̃j − cj | = max
1≤j≤p

∣∣∣ 1

2πi

∮
|w|=1

Ã−1(w)−A−1(w)

wj+1
dw
∣∣∣

with probability tending to 1. The right-hand side of this formula can be bounded with

the help of (1.B.9) and straightforward arguments to arrive at (1.B.14).

Proof of (1.B.11). With the help of (1.B.10) and straightforward but lengthy calcula-

tions, it can be shown that ν̂2 = ν2 +Op(
√
p3/T ) and (1−

∑p
j=1 âj)

2 − (1−
∑p∗

j=1 aj)
2 =

Op(
√
p4/T ). The statement (1.B.11) is a simple consequence of these two facts.

1.C Supplementary material for the simulation study of Sec-

tion 1.5

1.C.1 Implementation of SiZer in Section 1.5.1

(a) Computation of the grid G∗T :

To start with, we compute the variance of Ȳ = T−1
∑T

t=1 Yt,T , which is given by

Var(Ȳ ) =
γε(0)

T
+

2

T

T−1∑
k=1

(
1− k

T

)
γε(k).
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Since the autocovariance function γε(·) of the error process {εt} is assumed to be

known, we can calculate the value of Var(Ȳ ) by using the formula γε(k) = ν2a
|k|
1 /(1−

a2
1) together with the true parameters a1 and ν2 = E[η2

t ]. We next compute

T ∗ =
γε(0)

Var(Ȳ )
,

which can be interpreted as a measure of information in the data. For each point

(u, h) ∈ GT , we finally calculate the effective sample size for dependent data

ESS∗(u, h) =
T ∗

T

∑T
t=1Kh(t/T − u)

Kh(0)

with Kh(v) = h−1K(v/h) and set G∗T = {(u, h) ∈ GT : ESS∗(u, h) ≥ 5}.

(b) Computation of the local linear estimator and its standard deviation:

For each (u, h) ∈ G∗T , we compute a standard local linear estimator m̂′h(u) of the

derivative m′(u) together with its standard deviation sd(m̂′h(u)). The latter is given

by sd(m̂′h(u)) = {Var(m̂′h(u))}1/2, where Var(m̂′h(u)) = e>V e with e = (0 1)> and

V = (XTWX)−1(XTΣX)(XTWX)−1.

The matrices X, W and Σ are defined as follows: Σ is a T × T matrix with the

elements

Σst = γε(s− t)Kh

( s
T
− u
)
Kh

( t
T
− u
)
,

W is a T × T diagonal matrix with the diagonal entries Kh(t/T − u) and

X =


1 (1/T − u)

1 (2/T − u)
...

...

1 (1− u)

 .

(c) Computation of the critical values:

For a given significance level α and for each bandwidth h with (u, h) ∈ G∗T , we compute

the term

q(h) = Φ−1
((

1− α

2

)1/(θg))
,

where Φ is the distribution function of a standard normal random variable, g is the

number of locations u with (u, h) ∈ G∗T , and the cluster index θ is defined on p.1519

in Park et al. (2009a). The SiZer test is carried out as follows: For each (u, h) ∈ G∗T ,

the test rejects the null hypothesis H0(u, h) that m is constant on [u − h, u + h] if

|m̂′h(u)/sd(m̂′h(u))| > q(h). More specifically, the test indicates an increase in m on the

interval [u−h, u+h] if m̂′h(u)/sd(m̂′h(u)) > q(h) and a decrease if−m̂′h(u)/sd(m̂′h(u)) >
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q(h).

1.C.2 Power simulations additional to Section 1.5.1.2

In the following simulation exercises, we compare the performance of the tests TMS, TUC,

TRW and TSiZer (i) when m is the blocks signal of Donoho and Johnstone (1995) that was

investigated in detail by Hannig and Marron (2006) in the SiZer context and (ii) when m is

the sine curve m(u) = sin(6πu) that was considered in Park et al. (2009a). We define the

blocks signal exactly as Marron et al. (1998) and Hannig and Marron (2006). Specifically,

we set

m(x) = (0.6/9.2)
{

4ssgn(x− 0.1)− 5ssgn(x− 0.13) + 3ssgn(x− 0.15)

− 4ssgn(x− 0.23) + 5ssgn(x− 0.25)− 4.2ssgn(x− 0.4)

+ 2.1ssgn(x− 0.44) + 4.3ssgn(x− 0.65)− 3.1ssgn(x− 0.76)

+ 2.1ssgn(x− 0.78)− 4.2ssgn(x− 0.81) + 2
}

+ 0.2,

where ssgn(x) = (1 + sgn(x))/2 and sgn(x) is the standard sign function. In both the

blocks and the sine case, we model the error terms as an AR(1) process εt = a1εt−1 + ηt,

where a1 ∈ {−0.5, 0.5} and ηt are i.i.d. normal with E[ηt] = 0 and E[η2
t ] = ν2. In the blocks

example, we set ν2 = (1 − a2
1)/100. This implies that Var(εt) = (0.1)2, which matches

the variance of the i.i.d. errors in the blocks example of Hannig and Marron (2006). In

the sine example, we choose ν2 = (1− a2
1), which implies that Var(εt) = 1. A plot of the

blocks signal is given in the two top panels of Figure 1.C.1. As can be seen, the signal is a

piecewise constant function with several jumps. We could replace this jump function by a

slightly smoothed and thus differentiable version with very steep increases and decreases.

However, as this would leave the simulation results essentially unchanged, we stick to the

original blocks signal.

For both the blocks and the sine example, we simulate a representative data sample of

length T = 1000 and carry out the four tests on the simulated sample for the significance

level α = 0.05. The results are presented by SiZer maps in Figures 1.C.1 and 1.C.2 which

are to be read as follows: Each pixel of the SiZer map corresponds to a location-scale

point (u, h), or put differently, to a time interval [u−h, u+h]. The pixel (u, h) is coloured

blue if the test indicates an increase in the trend m on the interval [u − h, u + h], red if

the test indicates a decrease and purple if the test does not reject the null hypothesis that

m is constant on [u − h, u + h]. Moreover, a pixel (u, h) is coloured grey if the effective

sample size ESS∗(u, h) is smaller than 5, in which case the pixel (u, h) is not included in

the location-scale grid G∗T .

The results for the blocks example are reported in Figure 1.C.1, the left-hand panels

of subfigure (a) corresponding to the case with a1 = −0.5 and the right-hand panels of

subfigure (b) to the case with a1 = 0.5. Let us first have a closer look at subfigure (a). The

top panel depicts the blocks signal with the simulated data sample in the background. The
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other panels show the SiZer maps produced by the four tests TMS, TUC, TRW and TSiZer.

As can be seen, the SiZer maps are fairly similar. In particular, all four tests pick up

the increases and decreases (that is, the upward and downward jumps) in the signal m

quite accurately. The situation is a bit different in subfigure (b), that is, in the case with

a1 = 0.5. Overall, the colour patterns in the four SiZer maps look fairly similar. However,

on closer inspection, the following differences become apparent:

(i) In the SiZer maps of the two row-wise methods TRW and TSiZer, there is a small stripe

of blue pixels around the jump location u = 0.44. Hence, the row-wise methods detect

the small upward jump in the blocks signal at u = 0.44, whereas the global methods

do not pick up this jump.

(ii) In the SiZer map of TSiZer, there are two small stripes of red pixels near the location

u = 0.95 corresponding to scales h with log10(h) between −1.2 and −1.6. Hence, the

row-wise SiZer test TSiZer spuriously finds a decrease in the trend m on a short time

interval around u = 0.95. As a specific example, the pixel (u, h) = (0.93, 0.03)

is coloured red, implying that TSiZer spuriously finds a decrease on the interval

[0.90, 0.96]. Inspecting the grey time series plot in the top panel of subfigure (b),

it indeed looks as if there is a short downward trend in the time series towards the

end of the sample. However, this downward movement of the time series is not due

to an actual decrease in the trend function m. It is rather produced by the autocor-

relation structure in the error terms.

(i) indicates that the row-wise methods TRW and TSiZer tend to be more powerful than

the global tests TMS and TUC. (ii) shows that this gain of power comes at a cost: The

row-wise methods tend to find spurious increases/decreases more often than the global

ones. Hence, the SiZer maps of subfigure (b) nicely illustrate the main findings of our

power simulations in Section 1.5.1.2.

The SiZer maps for the sine example are depicted in Figure 1.C.2. Overall, they convey

a picture very similar to the SiZer maps of the blocks example. The SiZer maps for the

case with a1 = −0.5 show that the increases and decreases of the sine curve m are picked

up appropriately by all four tests. In the case with a1 = 0.5, in contrast, the four tests only

detect the increases and decreases of m in the interior of the support [0, 1]. The increase

of m at the left-hand boundary of the support is not picked up by any of the tests, the

increase at the right-hand boundary is only detected by row-wise SiZer TSiZer, which is

indicated by the small blue area at the right-hand boundary of the SiZer map. This again

illustrates that the row-wise methods tend to be more powerful than the global tests.

1.C.3 Robustness checks for Section 1.5.2

In what follows, we carry out some robustness checks to assess how sensitive the estimators

â and σ̂2 are to the choice of the tuning parameters q and (r, r). To do so, we repeat the

simulation exercises of Section 1.5.2 for different values of q and r. The parameter r, in
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Figure 1.C.1: SiZer maps for the blocks example. The left-hand panels of subfigure (a)
show the results for a1 = −0.5, the right-hand panels of subfigure (b) those for a1 = 0.5.
The two upper panels depict the trend curve m with the simulated data sample in the
background. The other panels show the SiZer maps produced by the four tests TMS, TUC,
TRW and TSiZer.
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Figure 1.C.2: SiZer maps for the sine example. The left-hand panels of subfigure (a) show
the results for a1 = −0.5, the right-hand panels of subfigure (b) those for a1 = 0.5. The
two upper panels depict the sine curve with the simulated data sample in the background.
The other panels show the SiZer maps produced by the four tests TMS, TUC, TRW and
TSiZer.
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contrast, is not varied but set to r = 1 throughout. The reason is as follows: Our estimators

can be expected to perform well as long as the differencing orders r with r ≤ r ≤ r are

sufficiently small. Choosing r as small as possible is thus completely unproblematic (and

indeed most natural). The interesting issue is rather how strongly our estimators depend

on the choice of r. In addition, we consider different choices of the tuning parameters

(m1,m2) on which the estimators of Hall and Van Keilegom (2003) depend. As in Section

1.5.2, we choose m1 and m2 such that q lies between these values. We thus keep the

parameters q and (m1,m2) roughly comparable.

To start with, we consider the simulation scenarios with a moderate trend (sβ = 1).

The MSE values of the estimators â, âHvK, âoracle and σ̂2, σ̂2
HvK, σ̂2

oracle for these scenarios

are presented in Figure 1.4 of Section 1.5.2. These MSEs are re-calculated in Figures 1.C.3

and 1.C.4 for a range of different choices of q, r and (m1,m2). As one can see, the MSEs

in the different plots of Figures 1.C.3 and 1.C.4 are very similar. Hence, the MSE results

reported in Section 1.5.2 for the scenarios with a moderate trend appear to be fairly robust

to different choices of the tuning parameters. In particular, our estimators â and σ̂2 seem

to be quite insensitive to the choice of tuning parameters, at least as far as their MSEs

are concerned.

We next turn to the simulation designs with a pronounced trend (sβ = 10). The

MSE values of the estimators in these scenarios are reported in Figure 1.5 of Section

1.5.2. Analogously as before, we re-calculate these MSEs for different tuning parameters

in Figures 1.C.5–1.C.7. Figure 1.C.6 is a zoomed-in version of Figure 1.C.5 which is added

for better visibility. As can be seen, our estimators appear to be barely influenced by the

choice of q. However, the MSE values become somewhat larger when r is chosen bigger.

This is of course not very surprising: The main reason why the estimator â works well in

the presence of a strong trend is that it is only based on differences of small orders. If

we increase r, we use larger differences to compute â, which results in not eliminating the

trend m appropriately any more. This becomes visible in somewhat larger MSE values.

Nevertheless, overall, our estimators appear not to be strongly influenced by the choice

of tuning parameters (in terms of MSE) as long as these are chosen within reasonable

bounds.
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Figure 1.C.3: MSE values for the estimators â, âHvK and âoracle in the scenario with a
moderate trend (sβ = 1).
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Figure 1.C.4: Logarithmic MSE values for the estimators σ̂2, σ̂2
HvK and σ̂2

oracle in the
scenario with a moderate trend (sβ = 1).
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Figure 1.C.5: MSE values for the estimators â, âHvK and âoracle in the scenario with a
pronounced trend (sβ = 10).
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Figure 1.C.6: MSE values for the estimators â, âHvK and âoracle in the scenario with a
pronounced trend (sβ = 10). The plots are zoomed-in versions of the respective plots in
Figure 1.C.5.
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Figure 1.C.7: Logarithmic MSE values for the estimators σ̂2, σ̂2
HvK and σ̂2

oracle in the
scenario with a pronounced trend (sβ = 10).





Chapter 2

Nonparametric Comparison of Epidemic

Time Trends: the Case of COVID-19

Joint with Michael Vogt

2.1 Introduction

There are many questions surrounding the current COVID-19 pandemic that are not

well understood yet. A question which is particularly important for governments and

policy makers is the following: How do the outbreak patterns of COVID-19 compare

across countries? Are the time trends of daily new infections more or less the same

across countries, or is the virus spreading differently in different regions of the world?

Identifying differences between countries may help, for instance, to better understand

which government policies have been more effective in containing the virus than others.

The main aim of this paper is to develop new inference methods that allow to detect

differences between time trends of COVID-19 infections in a statistically rigorous way.

Let Xit be the number of new infections on day t in country i and suppose we observe

a sample of data Xi = {Xit : 1 ≤ t ≤ T} for n different countries i. In order to make the

data comparable across countries, we take the starting date t = 1 to be the first Monday

after reaching 100 confirmed cases in each country. Considering the dates after reaching

a certain level of confirmed cases is a common practice of “normalizing” the data (see

e.g. Cohen and Kupferschmidt, 2020). Starting on a Monday additionally aligns the data

across countries by the day of the week. This allows us to take care of possible weekly

cycles in the data which are produced by delays in reporting new cases over the weekend.

A simple way to model the count data Xit is to use a Poisson distribution. Specifically,

we may assume that the random variables Xit are Poisson distributed with time-varying

intensity parameter λi(t/T ), that is, Xit ∼ Pλi(t/T ). Since λi(t/T ) = E[Xit] = Var(Xit),

we can model the observations Xit by the nonparametric regression equation

Xit = λi

( t
T

)
+ uit (2.1.1)

for 1 ≤ t ≤ T , where uit = Xit − E[Xit] with E[uit] = 0 and Var(uit) = λi(t/T ). As

usual in nonparametric regression (see e.g. Robinson, 1989), we let the regression function
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λi in model (2.1.1) depend on rescaled time t/T rather than on real time t. Hence,

λi : [0, 1] → R can be regarded as a function on the unit interval, which allows us to

estimate it by standard techniques from nonparametric regression. Since λi is a function

of rescaled time t/T , the variables Xit in model (2.1.1) depend on the time series length

T in general, that is, Xit = Xit,T . To keep the notation simple, we however suppress this

dependence throughout the paper. In Section 3.2, we introduce the model setting in detail

which underlies our analysis. As we will see there, it is a generalized version of the Poisson

model (2.1.1).

In model (2.1.1), the time trend of new COVID-19 infections in country i is described

by the intensity function λi of the underlying Poisson distribution. Hence, the question

whether the time trends are comparable across countries amounts to the question whether

the intensity functions λi have the same shape across countries i. In this paper, we

construct a multiscale test which allows to identify and locate the differences between the

functions λi. More specifically, let F = {Ik ⊆ [0, 1] : 1 ≤ k ≤ K} be a family of (rescaled)

time intervals Ik and let H
(ijk)
0 be the hypothesis that the functions λi and λj are the

same on the interval Ik, that is,

H
(ijk)
0 : λi(w) = λj(w) for all w ∈ Ik.

We design a method to test the hypothesis H
(ijk)
0 simultaneously for all pairs of countries

i and j under consideration and for all intervals Ik in the family F . The main theoretical

result of the paper shows that the method controls the familywise error rate, that is, the

probability of wrongly rejecting at least one null hypothesis H
(ijk)
0 . As we will see, this

allows us to make simultaneous confidence statements of the following form for a given

significance level α ∈ (0, 1):

With probability at least 1 − α, the functions λi and λj differ on the interval

Ik for every (i, j, k) for which the test rejects H
(ijk)
0 .

Hence, the method allows us to make simultaneous confidence statements (a) about which

time trend functions differ from each other and (b) about where, that is, in which time

intervals Ik they differ.

Even though our multiscale test is motivated by the current COVID-19 crisis, its

applicability is by no means restricted to this specific event. It is a general method to

compare nonparametric trends in epidemiological (count) data. It thus contributes to the

literature on statistical tests for equality of nonparametric regression and trend curves.

Examples of such tests can be found in Härdle and Marron (1990), Hall and Hart (1990),

King et al. (1991), Delgado (1993), Kulasekera (1995), Young and Bowman (1995), Munk

and Dette (1998), Lavergne (2001), Neumeyer and Dette (2003) and Pardo-Fernández

et al. (2007). More recent approaches were developed in Degras et al. (2012), Zhang et al.

(2012), Hidalgo and Lee (2014) and Chen and Wu (2018). Compared to existing methods,

our test has the following crucial advantage: it is much more informative. Most existing

procedures allow to test whether the regression or trend curves under consideration are
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all the same or not. However, they do not allow to infer which curves are different and

where (that is, in which parts of the support) they differ. Our multiscale approach, in

contrast, conveys this information. Indeed, it even allows to make rigorous confidence

statements about which curves λi are different and where they differ. To the best of our

knowledge, there is no other method available in the literature which allows to make such

simultaneous confidence statements. As far as we know, the only other multiscale test for

comparing trend curves has been developed in Park et al. (2009b). However, their analysis

is mainly methodological and not backed up by a general theory. In particular, theory is

only available for the special case n = 2. Moreover, the theoretical results are only valid

under very severe restrictions on the family of time intervals F .

The paper is structured as follows. As already mentioned above, Section 3.2 details

the model setting which underlies our analysis. The multiscale test is developed step by

step in Section 3.3. To keep the presentation as clear as possible, the technical details are

deferred to the Appendix. Section 2.4 contains the empirical part of the paper. There, we

run some simulation experiments to demonstrate that the multiscale test has the formal

properties predicted by the theory. Moreover, we use the test to compare the outbreak

patterns of the COVID-19 epidemic in a number of European countries.

2.2 Model setting

As already discussed in the Introduction, the assumption that Xit ∼ Pλi(t/T ) leads to a

nonparametric regression model of the form

Xit = λi

( t
T

)
+ uit with uit =

√
λi

( t
T

)
ηit, (2.2.1)

where ηit has zero mean and unit variance. In this model, both the mean and the variance

are described by the same function λi. In empirical applications, however, the variance

often tends to be much larger than the mean. To deal with this issue, which has been known

for a long time in the literature (Cox, 1983) and which is commonly called overdispersion,

so-called quasi-Poisson models (Efron, 1986; McCullagh and Nelder, 1989) are frequently

used. In our context, a quasi-Poisson model of Xit has the form

Xit = λi

( t
T

)
+ εit with εit = σ

√
λi

( t
T

)
ηit, (2.2.2)

where σ is a scaling factor that allows the variance to be a multiple of the mean function

λi. In what follows, we assume that the observed data Xit are produced by model (3.1.1),

where the noise residuals ηit have zero mean and unit variance but we do not impose any

further distributional assumptions on them.

Poisson and quasi-Poisson models are often used in the literature on epidemic mod-

elling. De Salazar et al. (2020), for example, assume that the observed COVID-19 case

count in country i follows a Poisson distribution with parameter λi being a linear function
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of some covariate Zi, that is, λi = βZi. Pellis et al. (2020) consider a quasi-Poisson model

for the number of new COVID-19 cases. They in particular examine (a) a version of the

model where the mean function is parametrically restricted to be exponentially growing

with a constant growth rate and (b) a version where the mean function is modelled non-

parametrically by splines. Tob́ıas et al. (2020) analyze data on the accumulated number of

cases using quasi-Poisson regression, where the mean function is modelled parametrically

as a piecewise linear curve with known change points.

In order to derive our theoretical results, we impose the following regularity conditions

on model (3.1.1):

(C1) The functions λi are uniformly Lipschitz continuous, that is, |λi(u)−λi(v)| ≤ L|u−v|
for all u, v ∈ [0, 1], where the constant L does not depend on i. Moreover, they are

uniformly bounded away from zero and infinity, that is, there exist constants λmin

and λmax with 0 < λmin ≤ minw∈[0,1] λi(w) ≤ maxw∈[0,1] λi(w) ≤ λmax <∞ for all i.

(C2) The random variables ηit are independent both across i and t. Moreover, for any i

and t, it holds that E[ηit] = 0, E[η2
it] = 1 and E[|ηit|θ] ≤ Cθ <∞ for some θ > 4.

We briefly comment on the above conditions.

• (C1) imposes some standard-type regularity conditions on the functions λi. In par-

ticular, the functions are assumed to be smooth, bounded from above and bounded

away from zero. The latter restriction is required because the noise variance in

model (3.1.1) equals 0 if λi is equal to 0. Since we normalize our test statistics by

an estimate of the noise variance as detailed in Section 3.3, we need this variance

and thus the functions λi to be bounded away from zero.

• (C2) assumes the noise terms ηit to fulfill some mild moment conditions and to

be independent both across countries i and time t. We require the independence

assumptions of (C2) in order to apply the Gaussian approximation results for hy-

perrectangles from Chernozhukov et al. (2017) in our proofs. We in particular need

independence across t, but it would in principle be possible to allow for certain forms

of dependence across i at the cost of a more complicated test procedure and more

involved technical arguments.

• In the current COVID-19 crisis, independence across countries i seems to be a fairly

reasonable assumption due to severe travel restrictions, the closure of borders, etc.

Note that this assumption can in principle be tested, for example, with the help of

the tests in Blum et al. (1961), Sinha and Wieand (1977) and Bakirov et al. (2006).

• Independence across time t is more debatable than independence across countries i,

but it is by no means unreasonable in our model framework: The time series process

Xi = {Xit : 1 ≤ t ≤ T} produced by model (3.1.1) is nonstationary for each i. Specif-

ically, both the mean E[Xit] = λi(t/T ) and the variance Var(Xit) = σ2λi(t/T ) are
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time-varying. A well-known fact in the time series literature is that nonstationarities

such as a time-varying mean may produce spurious sample autocorrelations (see e.g.

Fryzlewicz et al., 2008; Mikosch and Stărică, 2004). Hence, the observed persistence

of a time series (captured by the sample autocorrelation function) may be due to

nonstationarities rather than real autocorrelations. This insight has led researchers

to prefer simple nonstationary models over intricate stationary time series models

in some application areas such as finance (see e.g. Fryzlewicz et al., 2006; Hafner

and Linton, 2010; Mikosch and Stărică, 2000, 2004). In a similar vein, our model ac-

counts for the persistence in the observed time series Xi via nonstationarities rather

than autocorrelations in the error terms.

2.3 The multiscale test

Let S ⊆ {(i, j) : 1 ≤ i < j ≤ n} be the set of all pairs of countries (i, j) whose trend

functions λi and λj we want to compare. Moreover, as already introduced above, let

F = {Ik : 1 ≤ k ≤ K} be the family of (rescaled) time intervals under consideration.

Finally, write M := S × {1, . . . ,K} and let p := |M| be the cardinality of M. In this

section, we devise a method to test the null hypothesis H
(ijk)
0 simultaneously for all pairs

of countries (i, j) ∈ S and all time intervals Ik ∈ F , that is, for all (i, j, k) ∈ M. The

value p = |M| is the dimensionality of the simultaneous test problem we are dealing with.

It amounts to the number of tests that we carry out simultaneously. As shown by our

theoretical results in the Appendix, pmay grow as a polynomial T γ of the time series length

T , where the exponent γ depends on the number of error moments θ defined in (C2) and

on the minimal length of the rescaled time intervals in the family F . Precise conditions

on the exponent γ are given in the statement of Theorem 2.A.1. These conditions show

that γ can be very large provided that the error terms have sufficiently many moments θ.

Consequently, p may be much larger than the time series length T , which means that the

simultaneous test problem under consideration can be very high-dimensional.

2.3.1 Construction of the test statistics

A statistic to test the hypothesis H
(ijk)
0 for a given triple (i, j, k) can be constructed as

follows. To start with, we consider the expression

ŝijk,T =
1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit −Xjt),

where hk is the length of the time interval Ik, 1(·) denotes the indicator function and

1(t/T ∈ Ik) can be regarded as a rectangular kernel weight. Inserting the model equation
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(3.1.1) into the definition of ŝijk,T yields that ŝijk,T = ∆ijk,T +Rijk,T , where

∆ijk,T =
1

Thk

T∑
t=1

1
( t
T
∈ Ik

){
λi

( t
T

)
− λj

( t
T

)}
is the average distance between the functions λi and λj on the interval Ik and

Rijk,T =
1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
σ

{√
λi

( t
T

)
ηit −

√
λj

( t
T

)
ηjt

}

is a remainder term that is asymptotically negligible in the following sense: A simple

application of the law of large numbers for a fixed i gives that (Thk)
−1
∑T

t=1 1(t/T ∈
Ik)
√
λi(t/T )ηit = op(1), which in turn implies that Rijk,T = op(1). Hence, for any fixed

triple (i, j, k), we obtain that

ŝijk,T = ∆ijk,T + op(1),

which means that the statistic ŝijk,T estimates the average distance ∆ijk,T between the

functions λi and λj on the interval Ik.
We next have a closer look at the variance of the statistic ŝijk,T . Under (C2), the

variance of ŝijk,T is given by

ν2
ijk,T := Var(ŝijk,T ) =

σ2

(Thk)2

T∑
t=1

1
( t
T
∈ Ik

){
λi

( t
T

)
+ λj

( t
T

)}
and can be estimated by

ν̂2
ijk,T =

σ̂2

(Thk)2

T∑
t=1

1
( t
T
∈ Ik

)
{Xit +Xjt}.

Here, σ̂2 is an estimator of σ2 which is defined as σ̂2 = |C|−1
∑

i∈C σ̂
2
i , where C = {` : ` = i

or ` = j for some (i, j) ∈ S} denotes the set of countries that are taken into account by

our test and

σ̂2
i =

∑T
t=2(Xit −Xit−1)2

2
∑T

t=1Xit

for each country i. The idea behind the estimator σ̂2
i is as follows: We can write

Xit −Xit−1 = σ

√
λi

( t
T

)
(ηit − ηit−1) + rit (2.3.1)

with

rit = λi

( t
T

)
− λi

( t− 1

T

)
+ σ

{√
λi

( t
T

)
−
√
λi

( t− 1

T

)}
ηit−1.
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By the triangle inequality and since λi is Lipschitz continuous, we have that

|rit| ≤
∣∣∣λi( t

T

)
− λi

( t− 1

T

)∣∣∣+ σ

∣∣∣∣
√
λi

( t
T

)
−
√
λi

( t− 1

T

)∣∣∣∣|ηit−1|

≤ L

T
+

σL

2
√
λminT

|ηit−1| ≤
C(1 + |ηit−1|)

T
, (2.3.2)

where C = max{L, σL/(2
√
λmin)} with L and λmin defined in (C1). From (2.3.1) and

(2.3.2), we can infer that

1

T

T∑
t=2

(Xit −Xit−1)2 = 2σ2

{
1

T

T∑
t=2

λi

( t
T

)}
+ op(1).

Moreover, since T−1
∑T

t=1Xit = T−1
∑T

t=1 λi(t/T ) + op(1), we get that σ̂2
i = σ2 + op(1)

for any fixed i. In Lemma 2.B.8 of the Appendix, we further show that σ̂2 = σ2 + op(1)

under our regularity conditions. Hence, σ̂2 is a consistent estimator of σ2.

We now replace the statistic ŝijk,T by a normalized version whose variance is approx-

imately equal to 1. To achieve this, we simply divide ŝijk,T by its estimated standard

deviation ν̂ijk,T . This results in the expression

ψ̂ijk,T :=
ŝijk,T
ν̂ijk,T

=

∑T
t=1 1( tT ∈ Ik)(Xit −Xjt)

σ̂{
∑T

t=1 1( tT ∈ Ik)(Xit +Xjt)}1/2
, (2.3.3)

which serves as our test statistic of the hypothesis H
(ijk)
0 . In addition to ψ̂ijk,T , we

introduce the auxiliary statistic

ψ̂0
ijk,T =

∑T
t=1 1( tT ∈ Ik)σλ

1/2
ij ( tT )(ηit − ηjt)

σ̂{
∑T

t=1 1( tT ∈ Ik)(Xit +Xjt)}1/2
(2.3.4)

with λij(u) = {λi(u) +λj(u)}/2, which by construction is identical to ψ̂ijk,T under H
(ijk)
0 .

This auxiliary statistic is needed to define the critical values of our multiscale test in what

follows.

2.3.2 Construction of the test

Our multiscale test is carried out as follows: For a given significance level α ∈ (0, 1) and

each (i, j, k) ∈M, we reject H
(ijk)
0 if

|ψ̂ijk,T | > cijk,T (α),

where cijk,T (α) is the critical value for the (i, j, k)-th test problem. The critical values

cijk,T (α) are chosen such that the familywise error rate (FWER) is controlled at level α,

which is defined as the probability of wrongly rejecting H
(ijk)
0 for at least one (i, j, k).
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More formally speaking, for a given significance level α ∈ (0, 1), the FWER is

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cijk,T (α)

)
= 1− P

(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cijk,T (α)

)
,

where M0 ⊆M is the set of triples (i, j, k) for which H
(ijk)
0 holds true.

There are different ways to construct critical values cijk,T (α) that ensure control of the

FWER at level α. In the traditional approach, the same critical value cT (α) = cijk,T (α) is

used for all (i, j, k). In this case, controlling the FWER at the level α requires to determine

the critical value cT (α) such that

FWER(α) = 1− P
(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cT (α)

)
= 1− P

(
max

(i,j,k)∈M0

|ψ̂ijk,T | ≤ cT (α)
)
≤ α. (2.3.5)

This can be achieved by choosing cT (α) as the (1− α)-quantile of the statistic

Ψ̃T = max
(i,j,k)∈M

|ψ̂0
ijk,T |,

where the auxiliary statistic ψ̂0
ijk,T was introduced in (2.3.4) and is equal to ψ̂ijk,T under

the null H
(ijk)
0 by construction.1

A more modern approach assigns different critical values cijk,T (α) to the test problems

(i, j, k). In particular, the critical value for the hypothesis H
(ijk)
0 is allowed to depend

on the length hk of the time interval Ik, that is, on the scale of the test problem. A

general approach to construct scale-dependent critical values was pioneered by Dümbgen

and Spokoiny (2001) and has been used in many other studies since then; see e.g. Rohde

(2008), Dümbgen and Walther (2008), Rufibach and Walther (2010), Schmidt-Hieber et al.

(2013), Eckle et al. (2017) and Dunker et al. (2019). In our context, the approach of

Dümbgen and Spokoiny (2001) leads to the critical values

cijk,T (α) = cT (α, hk) := bk + qT (α)/ak,

where ak = {log(e/hk)}1/2/ log log(ee/hk) and bk =
√

2 log(1/hk) are scale-dependent

constants and the quantity qT (α) is determined by the following consideration: Since

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT (α, hk)

)
= 1− P

(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cT (α, hk)

)
= 1− P

(
∀(i, j, k) ∈M0 : ak

(
|ψ̂ijk,T | − bk

)
≤ qT (α)

)
1Note that both the statistic Ψ̃T and the quantile cT (α) depend on the dimensionality p of the test problem
in general. To keep the notation simple, we however suppress this dependence throughout the paper. We
use the same convention for all other quantities that are defined in the sequel.
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= 1− P
(

max
(i,j,k)∈M0

ak
(
|ψ̂ijk,T | − bk

)
≤ qT (α)

)
, (2.3.6)

we need to choose the quantity qT (α) as the (1− α)-quantile of the statistic

Ψ̂T = max
(i,j,k)∈M

ak
(
|ψ̂0
ijk,T | − bk

)
in order to ensure control of the FWER at level α. Comparing (2.3.6) with (2.3.5), the

current approach can be seen to differ from the traditional one in the following respect:

the maximum statistic Ψ̃T is replaced by the rescaled version Ψ̂T which re-weights the

individual statistics ψ̂0
ijk,T by the scale-dependent constants ak and bk. As demonstrated

above, this translates into scale-dependent critical values cijk,T (α) = cT (α, hk).

Our theory allows us to work with both the traditional choice cijk,T (α) = cT (α) and

the more modern, scale-dependent choice cijk,T (α) = cT (α, hk). Since the latter choice

produces a test approach with better theoretical properties in general (see Dümbgen and

Spokoiny, 2001), we restrict attention to the critical values cT (α, hk) in the sequel. There

is one complication we need to deal with: As the quantiles qT (α) are not known in practice,

we cannot compute the critical values cT (α, hk) exactly in practice but need to approximate

them. This can be achieved as follows: Under appropriate regularity conditions, it can be

shown that

ψ̂0
ijk,T ≈

1√
2Thk

T∑
t=1

1
( t
T
∈ Ik

)
{ηit − ηjt}.

A Gaussian version of the statistic displayed on the right-hand side above is given by

φijk,T =
1√

2Thk

T∑
t=1

1
( t
T
∈ Ik

){
Zit − Zjt

}
,

where Zit are independent standard normal random variables for 1 ≤ t ≤ T and 1 ≤ i ≤ n.

Hence, the statistic

ΦT = max
(i,j,k)∈M

ak
(
|φijk,T | − bk

)
can be regarded as a Gaussian version of the statistic Ψ̂T . We approximate the unknown

quantile qT (α) by the (1−α)-quantile qT,Gauss(α) of ΦT , which can be computed (approx-

imately) by Monte Carlo simulations and can thus be treated as known.

To summarize, we propose the following procedure to simultaneously test the hypoth-

esis H
(ijk)
0 for all (i, j, k) ∈M at the significance level α ∈ (0, 1):

For each (i, j, k) ∈M, reject H
(ijk)
0 if |ψ̂ijk,T | > cT,Gauss(α, hk), (2.3.7)

where cT,Gauss(α, hk) = bk + qT,Gauss(α)/ak with ak = {log(e/hk)}1/2/ log log(ee/hk) and

bk =
√

2 log(1/hk).
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2.3.3 Formal properties of the test

In Theorem 2.A.1 of the Appendix, we prove that under appropriate regularity conditions,

the test defined in (2.3.7) (asymptotically) controls the familywise error rate FWER(α) for

each pre-specified significance level α. As shown in Corollary 3.4.1, this has the following

implication:

P
(
∀(i, j, k) ∈ R : (i, j, k) /∈M0

)
≥ 1− α+ o(1), (2.3.8)

where R = {(i, j, k) ∈ M with |ψ̂ijk,T | > cT,Gauss(α, hk)} is the set of triples (i, j, k) for

which our test rejects the null H
(ijk)
0 and M0 is the set of triples (i, j, k) for which H

(ijk)
0

holds true. Verbally, (2.3.8) can be expressed as follows:

With (asymptotic) probability at least 1− α, the null hypothesis H
(ijk)
0 is vio-

lated for all (i, j, k) ∈M for which the test rejects H
(ijk)
0 .

(2.3.9)

In other words:

With (asymptotic) probability at least 1− α, the functions λi and λj differ on

the interval Ik for all (i, j, k) ∈M for which the test rejects H
(ijk)
0 .

(2.3.10)

Hence, the test allows us to make simultaneous confidence statements (a) about which

pairs of countries (i, j) have different trend functions and (b) about where, that is, in

which time intervals Ik the functions differ.

According to (2.3.8), our test does not produce any false positives with high probability.

In addition, we would like the test not to produce any false negatives either. Put differently,

we would like the test to have high power against deviations from the null. In Proposition

2.A.4 in the Appendix, we derive the power properties of the test against a certain class

of local alternatives. To summarize, we show the following: Let λi = λi,T and λj = λj,T

be functions whose difference λi,T − λj,T converges to zero as T →∞. Moreover, let M1

be the set of triples (i, j, k) such that either

λi,T (w)− λj,T (w) ≥ κT
√

log T/(Thk) for all w ∈ Ik (2.3.11)

or

λj,T (w)− λi,T (w) ≥ κT
√

log T/(Thk) for all w ∈ Ik, (2.3.12)

where {κT } is any sequence of positive numbers which diverges at a faster rate than

{
√

log T
√

log log T/ log log log T}. According to Proposition 2.A.4, it holds that

P
(
∀(i, j, k) ∈M1 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= 1− o(1). (2.3.13)

Hence, the test detects any local deviation from the null of the form (2.3.11) or (2.3.12)

with probability tending to 1.
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2.3.4 Implementation of the test in practice

For a given significance level α ∈ (0, 1), the test procedure defined in (2.3.7) is implemented

as follows in practice:

Step 1. Compute the quantile qT,Gauss(α) by Monte Carlo simulations. Specifically, draw

a large number N (say N = 5000) of samples of independent standard normal

random variables {Z(`)
it : 1 ≤ t ≤ T, 1 ≤ i ≤ n} for 1 ≤ ` ≤ N . Compute the value

Φ
(`)
T of the Gaussian statistic ΦT for each sample ` and calculate the empirical

(1 − α)-quantile q̂T,Gauss(α) from the values {Φ(`)
T : 1 ≤ ` ≤ N}. Use q̂T,Gauss(α)

as an approximation of the quantile qT,Gauss(α).

Step 2. Compute the critical values cT,Gauss(α, hk) for 1 ≤ k ≤ K based on the approxi-

mation q̂T,Gauss(α).

Step 3. Carry out the test for each (i, j, k) ∈M and store the test results in the variable

rijk,T = 1(|ψ̂ijk,T | > cT,Gauss(α, hk)) for each (i, j, k) ∈ M, that is, let rijk,T = 1

if the hypothesis H
(ijk)
0 is rejected and rijk,T = 0 otherwise.

To graphically present the test results, we produce a plot for each pair of countries

(i, j) ∈ S that shows the intervals Ik for which the test rejects the null H
(ijk)
0 , that is,

the intervals in the set Freject(i, j) = {Ik ∈ F : rijk,T = 1}. The plot is designed such

that it graphically highlights the subset of intervals Fmin
reject(i, j) = {Ik ∈ Freject(i, j) :

there exists no Ik′ ∈ Freject(i, j) with Ik′ ⊂ Ik}. The elements of Fmin
reject(i, j) are called

minimal intervals. By definition, there is no other interval Ik′ in Freject(i, j) which is a

proper subset of a minimal interval Ik. Hence, the minimal intervals can be regarded as

those intervals in Freject(i, j) which are most informative about the precise location of the

differences between the trends λi and λj . In Section 2.4, we use the graphical device just

described to present the test results of our empirical application; see panels (d) in Figures

2.3–2.6.

According to (2.3.8), we can make the following simultaneous confidence statement

about the intervals in Freject(i, j) for (i, j) ∈ S:

With (asymptotic) probability at least 1−α, it holds that for every pair of coun-

tries (i, j) ∈ S, the functions λi and λj differ on each interval in Freject(i, j).
(2.3.14)

Hence, we can claim with statistical confidence at least 1−α that the functions λi and λj

differ on each time interval which is depicted in the plots of our graphical device. Since

Fmin
reject(i, j) ⊆ Freject(i, j) for any (i, j) ∈ S, the confidence statement (2.3.14) trivially

remains to hold true when Freject(i, j) is replaced by Fmin
reject(i, j).

The graphical device described above is of course not the only way to present the

test results. Another object which is helpful in summarizing the test results for a given

pair of countries (i, j) is the union of minimal intervals Uij = ∪I∈Fmin
reject(i,j)

I. One can

formally show that the union Uij is closely related to the set U∗ij = {u ∈ [0, 1] : λi(u) 6=
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λj(u)} of time points where the two functions λi and λj differ from each other. For a

precise mathematical statement and the technical details, we refer to Lemma 2.B.9 of the

Appendix.

2.4 Empirical application to COVID-19 data

We now use our test to analyze the outbreak patterns of the COVID-19 epidemic. We

proceed in two steps. In Section 2.4.1, we assess the finite sample performance of our test

by Monte-Carlo experiments. Specifically, we run a series of experiments which show that

the test controls the FWER at level α as predicted by the theory and that it has good

power properties. In Section 2.4.2, we then apply the test to a sample of COVID-19 data

from different European countries. Our multiscale test is implemented in the R package

multiscale, available on GitHub at https://github.com/marina-khi/multiscale.

2.4.1 Simulation experiments

We simulate count data X = {Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T} by drawing the observations

Xit independently from a negative binomial distribution with mean λi(t/T ) and variance

σ2λi(t/T ). By definition, Xit has a negative binomial distribution with parameters q

and r if P(Xit = m) = Γ(m + r)/(Γ(r)m!)qr(1 − q)m for each m ∈ N ∪ {0}. Since

E[Xit] = r(1− q)/q and Var(Xit) = r(1− q)/q2, we can use the parametrization q = 1/σ2

and r = λi(t/T )/(σ2−1) to obtain that E[Xit] = λi(t/T ) and Var(Xit) = σ2λi(t/T ). With

this parametrization, the simulated data follow a nonparametric regression model of the

form

Xit = λi

( t
T

)
+ σ

√
λi

( t
T

)
ηit,

where the noise variables ηit have zero mean and unit variance. The functions λi are

specified below. The overdispersion parameter is set to σ = 15, which is similar to the

estimate σ̂ = 14.82 obtained in the empirical application of Section 2.4.2. Robustness

checks with σ = 10 and σ = 20 are provided in the Appendix.

We consider different values for T and n, in particular, T ∈ {100, 250, 500} and n ∈
{5, 10, 50}. Note that in the application, we have T = 150 and n = 5. We let S = {(i, j) :

1 ≤ i < j ≤ n}, that is, we compare all pairs of countries (i, j) with i < j. Moreover, we

choose F to be a family of time intervals Ik with length hk ∈ {7/T, 14/T, 21/T, 28/T}.
Hence, the intervals in F have length either 7, 14, 21 or 28 days (i.e., 1, 2, 3 or 4 weeks).

For each length hk, we include all intervals that start at days t = 1 + 7(j − 1) and

t = 4 + 7(j − 1) for j = 1, 2, . . . A graphical presentation of the family F for T = 150 (as

in the application) is given in Figure 2.1b. All our simulation experiments are based on

R = 5000 simulation runs.

In the first part of the simulation study, we examine whether our test controls the

FWER as predicted by the theory. To do so, we assume that the hypothesis H
(ijk)
0 holds

true for all (i, j, k) under consideration, which implies that λi = λ for all i. We consider
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Figure 2.1: (a) Plot of the function λ; (b) plot of the family of intervals F .

the function

λ(u) = 5000 exp
(
− (10u− 3)2

2

)
+ 1000, (2.4.1)

which is similar in shape to some of the estimated trend curves in the application of Section

2.4.2. A plot of the function λ is provided in Figure 2.1a. To evaluate whether the test

controls the FWER at level α, we compare the empirical size of the test with the target

α. The empirical size is computed as the precentage of simulation runs in which the test

falsely rejects at least one null hypothesis H
(ijk)
0 .

The simulation results are reported in Table 2.1. As can be seen, the empirical size

gives a reasonable approximation to the target α in all scenarios under investigation, even

though the size numbers have a slight downward bias. This bias gets larger as the number

of time series n increases, which reflects the fact that the test problem becomes more

difficult for larger n. Already for n = 5, the number p of hypotheses to be tested is quite

high, in particular, p = 960, 2 680, 5 560 for T = 100, 250, 500. This number increases

to p = 117 600, 328 300, 681 100 when n = 50. Hence, the dimensionality and thus the

complexity of the test problem increases considerably as n gets larger. On first sight,

it may seem astonishing that the downward bias does not diminish notably as the time

series length T increases. This, however, has a simple explanation: The interval lengths

hk remain the same (7, 14, 21 or 28 days) as T increases, which implies that the effective

sample size for computing the test statistics ψ̂ijk,T does not change. To summarize, even

though slightly conservative, the test controls the FWER quite accurately in the simulation

setting at hand.

In the second part of the simulation study, we investigate the power properties of the

test. To do so, we assume that λi = λ for all i > 1 and that λ1 6= λ, where λ is defined in

(2.4.1). Hence, only the first mean function λ1 is different from the others. This implies
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Table 2.1: Empirical size of the test for different values of n and T .

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.011 0.047 0.093 0.010 0.044 0.087 0.008 0.037 0.075
T = 250 0.009 0.047 0.091 0.009 0.046 0.087 0.008 0.035 0.069
T = 500 0.010 0.044 0.083 0.008 0.048 0.093 0.007 0.035 0.077

that the hypothesis H
(ijk)
0 holds true for all (i, j, k) with i > 1 and j > 1, while H

(ijk)
0

does not hold true for any pair (i, j) with either i = 1 or j = 1. We consider two different

simulation scenarios. In Scenario A, the function λ1 has the form

λ1(u) = 6000 exp
(
− (10u− 3)2

2

)
+ 1000

and is plotted together with λ in Figure 2.2a. As can be seen, the two functions λ1 and λ

peak at the same point in time, but the peak of λ1 is higher than that of λ. In Scenario

B, we let

λ1(u) = 5000 exp
(
− (9u− 3)2

2

)
+ 1000.

Figure 2.2b shows that the peaks of λ1 and λ have the same height but are reached at

different points in time. To evaluate the power properties of the test in Scenarios A and B,

we compute the percentage of simulation runs where the test (i) correctly detects differ-

ences between λ1 and at least one of the other mean functions and (ii) does not spuriously

detect differences between the other mean functions. Put differently, we calculate the

percentage of simulation runs where (i) the set Freject(1, j) is non-empty at least for one

j ∈ {2, . . . , n} and (ii) all other sets Freject(i, j) with 2 ≤ i < j ≤ n are empty. We call

this percentage number the (empirical) power of the test. We thus use the term “power”

a bit differently than usual.

The results for Scenario A (see Figure 2.2a) are presented in Table 2.2 and those for

Scenario B (see Figure 2.2b) in Table 2.3. As can be seen, the test has substantial power in

all the considered simulation settings. It is more powerful in Scenario B than in Scenario

A, which is most presumably due to the fact that the differences |λ1(u)− λ(u)| are much

larger in Scenario B. Moreover, it is less powerful for larger numbers of time series n, which

reflects the fact that the test problem gets more high-dimensional and thus more difficult

as n increases. As one would expect, the power numbers tend to become larger as the time

series length T and the significance level α increase. In Scenario B (mostly for T = 250

and T = 500), however, the power numbers drop down a bit as α gets larger. This reverse

dependance can be explained by the way we calculate power: we exclude simulation runs

where the test spuriously detects differences between the trends in countries i and j with

i, j > 1. The number of spurious findings increases as we make the significance level α

larger, which presumably causes the slight drop in power.
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Figure 2.2: Plot of the functions λ1 (black) and λ (red) in the simulation scenarios A and
B.

Table 2.2: Power of the test for different values of n and T in Scenario A.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.335 0.518 0.597 0.306 0.474 0.545 0.212 0.352 0.418
T = 250 0.615 0.790 0.836 0.580 0.764 0.800 0.470 0.648 0.705
T = 500 0.736 0.905 0.917 0.738 0.884 0.890 0.636 0.799 0.830

Table 2.3: Power of the test for different values of n and T in Scenario B.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.824 0.910 0.903 0.812 0.893 0.890 0.738 0.847 0.857
T = 250 0.991 0.972 0.941 0.991 0.960 0.920 0.991 0.965 0.933
T = 500 0.997 0.973 0.949 0.995 0.961 0.923 0.996 0.969 0.932

2.4.2 Analysis of COVID-19 data

The COVID-19 pandemic is one of the most pressing issues at present. The first outbreak

occurred in Wuhan, China, in December 2019. On 30 January 2020, the World Health

Organization (WHO) declared that the outbreak constitutes a Public Health Emergency

of International Concern, and on 11 March 2020, the WHO characterized it as a pandemic.

As of 2 February 2021, more than 102 million cases of COVID-19 infections have been

reported worldwide, resulting in more than 2 million deaths.

There are many open questions surrounding the current COVID-19 pandemic. A

question which is particularly relevant for governments and policy makers is whether

the pandemic has developed similarly in different countries or whether there are notable

differences. Identifying these differences may give some insight into which government



80 | Nonparametric Comparison of Epidemic Time Trends

policies have been more effective in containing the virus than others. In what follows,

we use our multiscale test to compare the development of COVID-19 in several European

countries. It is important to emphasize that our test allows to identify differences in the

development of the epidemic across countries in a statistically rigorous way, but it does

not tell what causes these differences. By distinguishing statistically significant differences

from artefacts of the sampling noise, the test provides the basis for a further investigation

into the causes. Such an investigation, however, presumably goes beyond a mere statistical

analysis.

2.4.2.1 Data

We analyze data from five European countries: Germany, Italy, Spain, France and the

United Kingdom. For each country i, we observe a time series Xi = {Xit : 1 ≤ t ≤ T},
where Xit is the number of newly confirmed COVID-19 cases in country i on day t. The

data are freely available on the homepage of the European Center for Disease Prevention

and Control (https://www.ecdc.europa.eu) and were downloaded on 2 February 2021.2

As already mentioned in the Introduction, we take the first Monday after reaching 100

confirmed cases in each country as the starting date t = 1. Beginning the time series

of each country on the day when that country reached 100 confirmed cases is a common

way of “normalizing” the data (see e.g. Cohen and Kupferschmidt, 2020). Additionally

aligning the data by Monday allows to take care of possible weekly cycles in the data

which are produced by delays in reporting new cases over the weekend. The time series

length T is taken to be equal to 150, which covers the first wave of the pandemic in all

of the considered countries. The resulting dataset thus consists of n = 5 time series, each

with T = 150 observations. Some of the time series contain negative values which we

replaced by 0. Overall, this resulted in 4 replacements. Plots of the observed time series

are presented in the upper panels (a) of Figures 2.3–2.6. As a robustness check, we have

repeated the data analysis for the longer time span T = 200. The results are reported in

Section 2.E of the Appendix.

To interpret the results produced by our multiscale test, we consider the Government

Response Index (GRI) from the Oxford COVID-19 Government Response Tracker (Ox-

CGRT) (Hale et al., 2020b). The GRI measures how severe the actions are that are

taken by a country’s government to contain the virus. It is calculated based on several

common government policies such as school closures and travel restrictions. The GRI

ranges from 0 to 100, with 0 corresponding to no response from the government at all and

100 corresponding to full lockdown, closure of schools and workplaces, ban on travelling,

etc. Detailed information on the collection of the data for government responses and the

methodology for calculating the GRI is provided in Hale et al. (2020a). Plots of the GRI

time series are given in panels (c) of Figures 2.3–2.6.

2ECDC switched to a weekly reporting schedule for the COVID-19 situation on 17 December 2020. Hence,
all daily updates have been discontinued from 14 December. The downloaded daily data set presents
historical data until 14 December 2020.
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2.4.2.2 Test results

We assume that the data Xit of each country i in our sample follow the nonparametric

trend model

Xit = λi

( t
T

)
+ σ

√
λi

( t
T

)
ηit,

which was introduced in equation (3.1.1). The overdispersion parameter σ is estimated by

the procedure described in Section 3.3.3, which yields the estimate σ̂ = 14.82. Throughout

the section, we set the significance level to α = 0.05 and implement the multiscale test

in exactly the same way as in the simulation study of Section 2.4.1. In particular, we let

S = {(i, j) : 1 ≤ i < j ≤ 5}, that is, we compare all pairs of countries (i, j) with i < j, and

we choose F to be the family of time intervals plotted in Figure 2.1b. Hence, all intervals

in F have length either 7, 14, 21 or 28 days.

With the help of our multiscale method, we simultaneously test the null hypothesis

H
(ijk)
0 that λi = λj on the interval Ik for each (i, j, k) ∈ M. The results are presented in

Figures 2.3–2.6, each figure comparing a specific pair of countries (i, j) from our sample.

For the sake of brevity, we only show the results for the pairwise comparisons of Germany

with each of the four other countries. The remaining figures can be found in Section 2.D

of the Appendix. Each figure splits into four panels (a)–(d). Panel (a) shows the observed

time series for the two countries i and j that are compared. Panel (b) presents smoothed

versions of the time series from (a), that is, it shows nonparametric kernel estimates

(specifically, Nadaraya-Watson estimates) of the two trend functions λi and λj , where

the bandwidth is set to 7 days and a rectangular kernel is used. Panel (c) displays the

Government Response Index (GRI) of the two countries. Finally, panel (d) presents the

results produced by our test: it depicts in grey the set Freject(i, j) of all the intervals Ik for

which the test rejects the null H
(ijk)
0 . The minimal intervals in the subset Fmin

reject(i, j) are

highlighted by a black frame. Note that according to (2.3.8), we can make the following

simultaneous confidence statement about the intervals plotted in panels (d) of Figures

2.3–2.6: we can claim, with confidence of about 95%, that there is a difference between

the functions λi and λj on each of these intervals.

We now have a closer look at the results in Figures 2.3–2.6. Figure 2.3 presents the

comparison of Germany with Italy. The two time series of daily new cases in panel (a)

can be seen to be very similar until approximately day 40. Thereafter, the German time

series appears to trend downwards more strongly than the Italian one. The smoothed

data in panel (b) give a similar visual impression: the kernel estimates of the German

and Italian trend curves λi and λj are very close to each other until approximately day 40

but then start to differ. It is however not clear whether the differences between the two

curve estimates reflect differences between the underlying trend curves or whether these

are mere artefacts of sampling noise. Our test allows to clarify this issue. Inspecting panel

(d), we see that the test detects significant differences between the trend curves in the

time period between day 36 and 91. However, it does not find any significant differences

up to day 36. Taken together, our results provide evidence that the epidemic developed
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Figure 2.3: Test results for the comparison
of Germany and Italy.
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Figure 2.4: Test results for the comparison
of Germany and Spain.

Note: In each figure, panel (a) shows the two observed time series, panel (b) smoothed
versions of the time series, and panel (c) the corresponding Government Response Index
(GRI). Panel (d) depicts the set of intervals Freject(i, j) in grey and the subset of minimal
intervals Fmin

reject(i, j) with a black frame.
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Figure 2.5: Test results for the comparison
of Germany and France.
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Figure 2.6: Test results for the comparison
of Germany and the UK.

Note: In each figure, panel (a) shows the two observed time series, panel (b) smoothed
versions of the time series, and panel (c) the corresponding Government Response Index
(GRI). Panel (d) depicts the set of intervals Freject(i, j) in grey and the subset of minimal
intervals Fmin

reject(i, j) with a black frame.
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very similarly in Germany and Italy until a peak was reached around day 40. Thereafter,

however, the German time series exhibits a significantly stronger downward trend than

the Italian one.

A quite different picture arises when Germany is compared with Spain and France.

As can be seen in Figures 2.4 and 2.5, the test detects significant differences between

the German trend and the trends in Spain and France up to (approximately) day 50.

This indicates that the time trends evolved differently during the outbreak of the crisis.

However, the test does not find any differences in the time period between (approximately)

days 50 and 120. The trends thus appear to decrease in more or less the same fashion

after the first peak was reached. As can be seen in Figure 2.4, the test detects additional

differences between the German and Spanish trends after day 120. This reflects the fact

that the number of daily new cases in Spain picked up again after day 120, foreshadowing

the second wave, whereas the numbers in Germany were still quite stable.

Finally, the comparison of Germany with the UK in Figure 2.6 reveals significant

differences between the time trends in the period from (approximately) day 40 to 120.

Similar to the comparison with Italy in Figure 2.3, this indicates that the trend decayed

in a different fashion in Germany than in the UK after a first peak was reached. However,

we do not find any significant differences between the trends during the onset of the

pandemic.

2.4.2.3 Discussion

Having identified significant differences between the epidemic trends in the five countries

under consideration, one may ask next what are the causes of these differences. As already

mentioned at the beginning of this section, this question cannot be answered by our test.

Rather, a further analysis which presumably goes beyond pure statistics is needed to shed

some light on it. We here do not attempt to provide any answers. We merely discuss some

observations which become apparent upon considering our test results in the light of the

Government Response Index (GRI). For reasons of brevity, we focus on the comparison of

Germany with Italy and Spain in Figures 2.3 and 2.4.

According to our test results in Figure 2.4, there are significant differences between the

trends in Germany and Spain during the onset of the epidemic up to about day 50, with

Spain having more new cases of infections than Germany on most days. After day 50, the

trends become quite similar and start to decrease at approximately the same rate until

around day 120. This may be due to the fact that Spain in general introduced more severe

measures of lockdown than Germany (as can be seen upon inspecting the GRI in panel

(c) of Figure 2.4), which may have helped to battle the spread of infection. Furthermore,

around days 110–120, the measures in Spain were less strict than in Germany, which could

be a reason for the detected differences between the trends towards the end of the sample.

However, a much more thorough analysis is of course needed to find out whether this is

indeed the case or whether other factors were mainly responsible.



2.4 Empirical application to COVID-19 data | 85

Turning to the comparison of Germany and Italy, we found that the German trend

drops down significantly faster than the Italian one after approximately day 40. Interest-

ingly, the GRI of Italy almost always lies above that of Germany. Hence, even though Italy

has in general taken more severe and restrictive measures against the virus than Germany,

it appears that the virus could be contained better in Germany (in the sense that the

trend of daily new cases went down significantly faster in Germany than in Italy). This

suggests that there are indeed important factors besides the level of government response

to the pandemic which substantially influence the trend of new COVID-19 cases.

This brief discussion already indicates that it is extremely difficult to determine the

exact causes of the differences in epidemic trends across countries. Since even similar

countries such as those in our sample differ in a variety of aspects that are relevant for

the spread of the virus, it is very challenging to pin down these causes. One issue that is

often discussed in the context of cross-country comparisons are country-specific strategies

to test for the coronavirus. The argument is that differences between epidemic trends may

be spuriously produced by country-specific test procedures.

Even though we can of course not fully exclude this possibility, our test results are

presumably not driven by different test regimes in the countries under consideration. To

see this, we consider again the comparison of Germany and Italy: The test regimes in

these two countries are arguably quite different. Germany is often cited as the country

that employed early, widespread testing with more than 100 000 tests per week even in the

beginning of the pandemic (Cohen and Kupferschmidt, 2020), while testing in Italy became

widespread only in the later stages of the pandemic. Nevertheless, visual inspection of the

raw and smoothed data in panels (a) and (b) of Figure 2.3 suggest that the underlying

time trends are very similar up to day 36. This is confirmed by our multiscale test which

does not find any significant differences before that day. Hence, the different test regimes

in Germany and Italy towards the beginning of the pandemic do not appear to have an

overly strong effect and to produce spurious differences between the time trends. This

suggests that the differences detected by our multiscale test indeed reflect differences in

the way the virus spread in Germany and Italy rather than being mere artefacts of different

test regimes.
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APPENDICES

2.A Proofs of theoretical results

In what follows, we state and prove the main theoretical results on the multiscale test

developed in Section 3.3. Throughout the Appendix, we let C be a generic positive

constant that may take a different value on each occurrence. Unless stated differently, C

depends neither on the time series length T nor on the dimension p of the test problem.

We further use the symbols hmin := min1≤k≤K hk and hmax := max1≤k≤K hk to denote the

smallest and largest interval length in the family F , respectively.

The first result shows that the multiscale test asymptotically controls the FWER at

level α.

Theorem 2.A.1. Let (C1) and (C2) be satisfied. Moreover, assume that (i) hmax =

o(1/{log T}2), (ii) hmin ≥ CT−b for some b ∈ (0, 1), and (iii) p = O(T (θ/2)(1−b)−(1+δ)) for

some small δ > 0. Then for any given α ∈ (0, 1),

FWER(α) := P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
≤ α+ o(1),

where M0 ⊆M is the set of all (i, j, k) ∈M for which H
(ijk)
0 holds true.

We briefly discuss the conditions (i)–(iii) on hmin, hmax and p. Restriction (i) allows the

maximal interval length hmax to converge to zero very slowly, which means that hmax can

be picked very large in practice. According to restriction (ii), the minimal interval length

hmin can be chosen to go to zero as any polynomial T−b with some b ∈ (0, 1). Restriction

(iii) allows the dimension p of the test problem to grow polynomially in T . Specifically, p

may grow at most as the polynomial T γ with γ = (θ/2)(1−b)−(1+δ). As one can see, the

exponent γ depends on the number of error moments θ defined in (C2) and the parameter

b that specifies the minimal interval length hmin. In particular, for any given b ∈ (0, 1),

the exponent γ gets larger as θ increases. Hence, the larger the number of error moments

θ, the faster p may grow in comparison to T . In the extreme case where all error moments

exist, that is, where θ can be made as large as desired, p may grow as any polynomial

of T , no matter how we pick b ∈ (0, 1). Thus, if the error terms have sufficiently many

moments, the dimension p can be extremely large in comparison to T and the minimal

interval length hmin can be chosen very small.

The following corollary is an immediate consequence of Theorem 2.A.1. It provides the

theoretical justification needed to make simultaneous confidence statements of the form

(2.3.9), (2.3.10) and (2.3.14).

Corollary 1.A.1. Under the conditions of Theorem 2.A.1,

P
(
∀(i, j, k) ∈ R : (i, j, k) /∈M0

)
≥ 1− α+ o(1),
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where R = {(i, j, k) ∈ M with |ψ̂ijk,T | > cT,Gauss(α, hk)} is the set of triples (i, j, k) for

which the test rejects the null H
(ijk)
0 .

The next result specifies the power of the multiscale test against a certain class of local

alternatives. To formulate it, we allow the functions λi,T and λj,T to depend on T , that

is, we consider sequences of functions {λi,T } and {λj,T } rather than fixed functions λi and

λj .

Proposition 2.A.4. Let the conditions of Theorem 2.A.1 be satisfied and let M1 be the

set of triples (i, j, k) ∈M such that either

λi,T (w)− λj,T (w) ≥ κT
√

log T/(Thk) for all w ∈ Ik (2.A.1)

or

λj,T (w)− λi,T (w) ≥ κT
√

log T/(Thk) for all w ∈ Ik, (2.A.2)

where {κT } is any sequence of positive numbers for which κT /`T →∞ with `T =
√

log T
√

log log T/ log log log T . Then

P
(
∀(i, j, k) ∈M1 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= 1− o(1)

for any given α ∈ (0, 1).

Proof of Theorem 2.A.1. The proof proceeds in several steps.

Step 1. Let Ψ̂T = max(i,j,k)∈M ak(|ψ̂0
ijk,T |−bk) with ψ̂0

ijk,T introduced in (2.3.4) and define

ΨT = max(i,j,k)∈M ak(|ψ0
ijk,T | − bk) with

ψ0
ijk,T =

1√
2Thk

T∑
t=1

1
( t
T
∈ Ik

)
(ηit − ηjt).

To start with, we prove that ∣∣Ψ̂T −ΨT

∣∣ = op(rT ), (2.A.3)

where {rT } is any null sequence that converges more slowly to zero than ρT =
√

log T

{log p/
√
Thmin + hmax

√
log p}, that is, ρT /rT → 0 as T → ∞. Since the proof of (2.A.3)

is rather technical and lengthy, the details are provided in Section 2.B.

Step 2. We next prove that

sup
q∈R

∣∣∣P(ΨT ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣ = o(1). (2.A.4)

To do so, we rewrite the statistics ΨT and ΦT as follows: Define

V
(ijk)
t = V

(ijk)
t,T :=

√
T

2Thk
1
( t
T
∈ Ik

)
(ηit − ηjt)
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for (i, j, k) ∈ M and let V t = (V
(ijk)
t : (i, j, k) ∈ M) be the p-dimensional random vector

with the entries V
(ijk)
t . With this notation, we get that ψ0

ijk,T = T−1/2
∑T

t=1 V
(ijk)
t and

thus

ΨT = max
(i,j,k)∈M

ak
(
|ψ0
ijk,T | − bk

)
= max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

V
(ijk)
t

∣∣∣− bk}.
Analogously, we define

W
(ijk)
t = W

(ijk)
t,T :=

√
T

2Thk
1
( t
T
∈ Ik

)
(Zit − Zjt)

with Zit i.i.d. standard normal and let W t = (W
(ijk)
t : (i, j, k) ∈ M). The vector W t is

a Gaussian version of V t with the same mean and variance. In particular, E[W t] =

E[V t] = 0 and E[W tW
>
t ] = E[V tV

>
t ]. Similarly as before, we can write φijk,T =

T−1/2
∑T

t=1W
(ijk)
t and

ΦT = max
(i,j,k)∈M

ak
(
|φijk,T | − bk

)
= max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

W
(ijk)
t

∣∣∣− bk}.
For any q ∈ R, it holds that

P
(
ΨT ≤ q

)
= P

(
max

(i,j,k)∈M
ak

{∣∣∣ 1√
T

T∑
t=1

V
(ijk)
t

∣∣∣− bk} ≤ q)
= P

(∣∣∣ 1√
T

T∑
t=1

V
(ijk)
t

∣∣∣ ≤ cijk(q) for all (i, j, k) ∈M
)

= P
(∣∣∣ 1√

T

T∑
t=1

V t

∣∣∣ ≤ c(q)),
where c(q) = (cijk(q) : (i, j, k) ∈M) is the Rp-vector with the entries cijk(q) = q/ak + bk,

we use the notation |v| = (|v1|, . . . , |vp|)> for vectors v ∈ Rp and the inequality v ≤ w is

to be understood componentwise for v, w ∈ Rp. Analogously, we have

P
(
ΦT ≤ q

)
= P

(∣∣∣ 1√
T

T∑
t=1

W t

∣∣∣ ≤ c(q)).
With this notation at hand, we can make use of Proposition 2.1 from Chernozhukov et al.

(2017). In our context, this proposition can be stated as follows:
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Proposition 2.A.5. Assume that

(a) T−1
∑T

t=1 E(V
(ijk)
t )2 ≥ δ > 0 for all (i, j, k) ∈M.

(b) T−1
∑T

t=1 E[|V (ijk)
t |2+r] ≤ Br

T for all (i, j, k) ∈ M and r = 1, 2, where BT ≥ 1 are

constants that may tend to infinity as T →∞.

(c) E[{max(i,j,k)∈M |V
(ijk)
t |/BT }θ] ≤ 2 for all t and some θ > 4.

Then

sup
c∈Rp

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

V t

∣∣∣ ≤ c)− P
(∣∣∣ 1√

T

T∑
t=1

W t

∣∣∣ ≤ c)∣∣∣
≤ C

{(B2
T log7(pT )

T

)1/6
+
(B2

T log3(pT )

T 1−2/θ

)1/3}
, (2.A.5)

where C depends only on δ and θ.

It is straightforward to verify that assumptions (a)–(c) are satisfied under the conditions

of Theorem 2.A.1 for sufficiently large T , where BT can be chosen as BT = Cp1/θh
−1/2
min

with C sufficiently large. Moreover, it can be shown that the right-hand side of (2.A.5) is

o(1) for this choice of BT . Hence, Proposition 2.A.5 yields that

sup
c∈Rp

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

V t

∣∣∣ ≤ c)− P
(∣∣∣ 1√

T

T∑
t=1

W t

∣∣∣ ≤ c)∣∣∣ = o(1),

which in turn implies (2.A.4).

Step 3. With the help of (2.A.3) and (2.A.4), we now show that

sup
q∈R

∣∣∣P(Ψ̂T ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣ = o(1). (2.A.6)

To start with, the above supremum can be bounded by

sup
q∈R

∣∣∣P(Ψ̂T ≤ q
)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(ΨT ≤ q +
{

ΨT − Ψ̂T

})
− P

(
ΦT ≤ q

)∣∣∣
≤ sup

q∈R
max

{∣∣∣P(ΨT ≤ q +
∣∣ΨT − Ψ̂T

∣∣)− P
(
ΦT ≤ q

)∣∣∣,∣∣∣P(ΨT ≤ q −
∣∣ΨT − Ψ̂T

∣∣)− P
(
ΦT ≤ q

)∣∣∣}
≤ sup

q∈R
max

{∣∣∣P(ΨT ≤ q + rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)
,∣∣∣P(ΨT ≤ q − rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)}
≤ max

`=0,1
sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ P
(∣∣ΨT − Ψ̂T

∣∣ > rT

)



90 | Nonparametric Comparison of Epidemic Time Trends

= max
`=0,1

sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ o(1), (2.A.7)

where the last line is by (2.A.3). Moreover, for ` = 0, 1,

sup
q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
≤ sup

q∈R

∣∣∣P(ΨT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q + (−1)`rT

)∣∣∣
+ sup

q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣+ o(1), (2.A.8)

the last line following from (2.A.4). Finally, by Nazarov’s inequality (Nazarov, 2003 and

Lemma A.1 in Chernozhukov et al., 2017), we have that for ` = 0, 1,

sup
q∈R

∣∣∣P(ΦT ≤ q + (−1)`rT

)
− P

(
ΦT ≤ q

)∣∣∣
= sup

q∈R

∣∣∣P(∣∣∣ 1√
T

T∑
t=1

W t

∣∣∣ ≤ c(q + (−1)`rT )
)
− P

(∣∣∣ 1√
T

T∑
t=1

W t

∣∣∣ ≤ c(q))∣∣∣
≤ C

rT
√

log(2p)

min1≤k≤K ak
≤ CrT

√
log log T

√
log(2p), (2.A.9)

where C is a constant that depends only on the parameter δ defined in condition (a) of

Proposition 2.A.5 and we have used the fact that mink ak ≥ c/
√

log log T for some c > 0.

Inserting (2.A.8) and (2.A.9) into equation (2.A.7) completes the proof of (2.A.6).

Step 4. By definition of the quantile qT,Gauss(α), it holds that P(ΦT ≤ qT,Gauss(α)) ≥ 1−α.

As shown in Section 2.B, we even have that

P(ΦT ≤ qT,Gauss(α)) = 1− α (2.A.10)

for any α ∈ (0, 1). From this and (2.A.6), it immediately follows that

P
(
Ψ̂T ≤ qT,Gauss(α)

)
= 1− α+ o(1), (2.A.11)

which in turn implies that

FWER(α) = P
(
∃(i, j, k) ∈M0 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= P

(
max

(i,j,k)∈M0

ak
(
|ψ̂ijk,T | − bk

)
> qT,Gauss(α)

)
= P

(
max

(i,j,k)∈M0

ak
(
|ψ̂0
ijk,T | − bk

)
> qT,Gauss(α)

)
≤ P

(
max

(i,j,k)∈M
ak
(
|ψ̂0
ijk,T | − bk

)
> qT,Gauss(α)

)
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= P
(
Ψ̂T > qT,Gauss(α)

)
= α+ o(1).

This completes the proof of Theorem 2.A.1.

Proof of Corollary 3.4.1. With the help of Theorem 2.A.1, we obtain that

1− α+ o(1) ≤ 1− FWER(α)

= P
(
∀(i, j, k) ∈M0 : |ψ̂ijk,T | ≤ cT,Gauss(α, hk)

)
≤ P

(
∀(i, j, k) ∈ R : (i, j, k) /∈M0

)
,

which is the statement of Corollary 3.4.1.

Proof of Proposition 2.A.4. To start with, note that

c
1√

log log T
≤ ak ≤ C

√
log T

log log log T
and bk ≤ C

√
log T (2.A.12)

with appropriately chosen constants c and C. We decompose the statistics ψ̂ijk,T into two

parts. In particular, we write ψ̂ijk,T = ψ̂Aijk,T + ψ̂Bijk,T with

ψ̂Aijk,T =
σ
∑T

t=1 1( tT ∈ Ik)
(√

λi
(
t
T

)
ηit −

√
λj
(
t
T

)
ηjt

)
σ̂{
∑T

t=1 1( tT ∈ Ik)(Xit +Xjt)}1/2

ψ̂Bijk,T =

∑T
t=1 1( tT ∈ Ik)

(
λi
(
t
T

)
− λj

(
t
T

))
σ̂{
∑T

t=1 1( tT ∈ Ik)(Xit +Xjt)}1/2
.

As we will prove below, it holds that

min
(i,j,k)∈M1

|ψ̂Bijk,T | ≥ CκT
√

log T with prob. approaching 1 (2.A.13)

for some sufficiently small constant C > 0 and

max
(i,j,k)∈M

|ψ̂Aijk,T | = Op(
√

log T ). (2.A.14)

From (2.A.13) and (2.A.14), it follows that

min
(i,j,k)∈M1

ak(|ψ̂ijk,T | − bk) ≥ min
(i,j,k)∈M1

ak|ψ̂Bijk,T |

− max
(i,j,k)∈M

ak(|ψ̂Aijk,T |+ bk) ≥ C
κT
√

log T√
log log T

(2.A.15)

with probability tending to 1, where we have used the bounds on ak and bk from (2.A.12)

and the assumption that κT /`T → ∞ with `T defined in Proposition 2.A.4. It further

holds that

qT,Gauss(α) ≤ C log T

log log log T
(2.A.16)
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with a sufficiently large constant C, since

P
(

max
(i,j,k)∈M

ak
(
|φijk,T | − bk

)
≤ C log T

log log log T

)
≥ P

(
max

(i,j,k)∈M
ak max

(i,j,k)∈M

(
|φijk,T | − bk

)
≤ C log T

log log log T

)
≥ P

( √
log T

log log log T
max

(i,j,k)∈M
|φijk,T | ≤ C

log T

log log log T

)
= P

(
max

(i,j,k)∈M
|φijk,T | ≤ C

√
log T

)
≥ 1− α,

where the last inequality is a consequence of the fact that the terms φijk,T are normally

distributed random variables and |M| = p ≤ CT γ . From (2.A.15), (2.A.16) and the

assumption that κT /`T →∞, we can finally conclude that

P
(
∀(i, j, k) ∈M1 : |ψ̂ijk,T | > cT,Gauss(α, hk)

)
= P

(
min

(i,j,k)∈M1

ak
(
|ψ̂ijk,T | − bk

)
> qT,Gauss(α)

)
= 1− o(1),

which is the statement of Proposition 2.A.4.

It remains to prove (2.A.13) and (2.A.14). From (2.B.10) in Section 2.B together with

some straightforward arguments, it follows that for any fixed δ > 0,

min
(i,j,k)∈M

{ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit +Xjt)

}
≥ (2− δ)λmin (2.A.17)

max
(i,j,k)∈M

{ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit +Xjt)

}
≤ (2 + δ)λmax (2.A.18)

with probability tending to 1. Since σ̂2 = σ2 +Op(
√

log p/T ) by Lemma 2.B.8, it further

holds that with probability tending to 1,

(1− δ)σ ≤ σ̂ ≤ (1 + δ)σ (2.A.19)

for any fixed δ > 0. Taking into account that for any (i, j, k) ∈ M1, either λi,T (w) −
λj,T (w) ≥ κT

√
log T/(Thk) or λj,T (w) − λi,T (w) ≥ κT

√
log T/(Thk) for all w ∈ Ik, we

can use (2.A.18) and (2.A.19) to obtain that

min
(i,j,k)∈M1

∣∣ψ̂Bijk,T ∣∣ ≥ κT
√

log T

(1 + δ)σ
√

(2 + δ)λmax

= CκT
√

log T

with probability tending to 1. Moreover, with the help of (2.A.17), (2.A.19) and analogous

arguments as for the proof of (2.B.6) in Section 2.B, we can show that

max
(i,j,k)∈M

∣∣ψ̂Aijk,T ∣∣ = Op
(√

log p
)

= Op
(√

log T
)
,
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where the last equation is due to the fact that p = O(T γ) for a fixed γ > 0.

2.B Technical details

In what follows, we provide the technical details omitted in the Section 2.A. To start with,

we prove the following auxiliary lemma.

Lemma 2.B.8. Under the conditions of Theorem 2.A.1, it holds that

∣∣σ̂2 − σ2
∣∣ = Op

(√ log p

T

)
.

Proof of Lemma 2.B.8. By definition, σ̂2 = |C|−1
∑

i∈C σ̂
2
i and σ̂2

i = {
∑T

t=2(Xit −
Xit−1)2}
{2
∑T

t=1Xit}−1. It holds that

1

T

T∑
t=2

(Xit −Xit−1)2 =
σ2

T

T∑
t=2

λi

( t
T

)
(ηit − ηit−1)2 +

{
R

(1)
i,T + . . .+R

(5)
i,T

}
, (2.B.1)

where

R
(1)
i,T =

2σ

T

T∑
t=2

(
λi

( t
T

)
− λi

( t− 1

T

))√
λi

( t
T

)
(ηit − ηit−1)

R
(2)
i,T =

2σ2

T

T∑
t=2

(√
λi

( t
T

)
−
√
λi

( t− 1

T

))√
λi

( t
T

)
ηit−1(ηit − ηit−1)

R
(3)
i,T =

1

T

T∑
t=2

(
λi

( t
T

)
− λi

( t− 1

T

))2

R
(4)
i,T =

2σ

T

T∑
t=2

(
λi

( t
T

)
− λi

( t− 1

T

))(√
λi

( t
T

)
−
√
λi

( t− 1

T

))
ηit−1

R
(5)
i,T =

σ2

T

T∑
t=2

(√
λi

( t
T

)
−
√
λi

( t− 1

T

))2
η2
it−1.

With the help of an exponential inequality and standard arguments, it can be shown that

max
i∈C

∣∣∣ 1

T

T∑
t=2

wi

( t
T

){
g(ηit, ηit−1)− Eg(ηit, ηit−1)

}∣∣∣ = Op

(√ log p

T

)
,

where we let g(x, y) = x, g(x, y) = y, g(x, y) = |x|, g(x, y) = |y|, g(x, y) = x2, g(x, y) = y2

or g(x, y) = xy, and wi(t/T ) are deterministic weights with the property that |wi(t/T )| ≤
wmax < ∞ for all i, t and T and some positive constant wmax. Using this uniform
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convergence result along with conditions (C1) and (C2), we obtain that

max
i∈C

∣∣∣ 1

T

T∑
t=2

λi

( t
T

)
(ηit − ηit−1)2 − 2

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
and

max
1≤`≤5

max
i∈C
|R(`)

i,T | = Op(T
−1).

Applying these two statements to (2.B.1), we can infer that

max
i∈C

∣∣∣ 1

T

T∑
t=2

(Xit −Xit−1)2 − 2σ2

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
. (2.B.2)

By similar but simpler arguments, we additionally get that

max
i∈C

∣∣∣ 1

T

T∑
t=1

Xit −
1

T

T∑
t=1

λi

( t
T

)∣∣∣ = Op

(√ log p

T

)
. (2.B.3)

From (2.B.2) and (2.B.3), it follows that maxi∈C |σ̂2
i − σ2| = Op(

√
log p/T ), which in turn

implies that |σ̂2 − σ2| = Op(
√

log p/T ) as well.

Proof of (2.A.3). Since

∣∣Ψ̂T −ΨT

∣∣ ≤ max
(i,j,k)∈M

ak
∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣
≤ max

1≤k≤K
ak max

(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣
≤ C

√
log T max

(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣,
it suffices to prove that

max
(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣ = op

( rT√
log T

)
. (2.B.4)

To start with, we reformulate ψ̂0
ijk,T as

ψ̂0
ijk,T = ψ̂∗ijk,T +

(σ
σ̂
− 1
)
ψ̂∗ijk,T ,

where

ψ̂∗ijk,T =

∑T
t=1 1( tT ∈ Ik)λ

1/2
ij ( tT )(ηit − ηjt)

{
∑T

t=1 1( tT ∈ Ik)(Xit +Xjt)}1/2
.

With this notation, we can establish the bound

max
(i,j,k)∈M

∣∣ψ̂0
ijk,T − ψ0

ijk,T

∣∣ ≤ max
(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣
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+
∣∣∣σ
σ̂
− 1
∣∣∣ max

(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣
+
∣∣∣σ
σ̂
− 1
∣∣∣ max

(i,j,k)∈M

∣∣ψ0
ijk,T

∣∣,
which shows that (2.B.4) is implied by the three statements

max
(i,j,k)∈M

∣∣ψ̂∗ijk,T − ψ0
ijk,T

∣∣ = Op

( log p√
Thmin

+ hmax

√
log p

)
(2.B.5)

max
(i,j,k)∈M

∣∣ψ0
ijk,T

∣∣ = Op
(√

log p
)

(2.B.6)

∣∣σ̂2 − σ2
∣∣ = Op

(√ log p

T

)
. (2.B.7)

Since (2.B.7) has already been verified in Lemma 2.B.8, it remains to prove the statements

(2.B.5) and (2.B.6).

We start with the proof of (2.B.6). Applying an exponential inequality along with

standard arguments yields that

max
i∈C

max
1≤k≤K

∣∣∣ 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
wi

( t
T

)
ηit

∣∣∣ = Op
(√

log p
)
, (2.B.8)

where wi(t/T ) are general deterministic weights with the property that |wi(t/T )| ≤
wmax < ∞ for all i, t and T and some positive constant wmax. This immediately im-

plies (2.B.6).

We next turn to the proof of (2.B.5). As the functions λi are uniformly Lipschitz

continuous by (C1), it can be shown that

max
i∈C

max
1≤k≤K

∣∣∣ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
λi

( t
T

)
− 1

hk

∫
w∈Ik

λi(w)dw
∣∣∣ ≤ C

Thmin
. (2.B.9)

From this, the uniform convergence result (2.B.8) and condition (C1), we can infer that

max
(i,j,k)∈M

∣∣∣ 1

Thk

T∑
t=1

1
( t
T
∈ Ik

)
(Xit +Xjt)

− 1

hk

∫
w∈Ik

{
λi(w) + λj(w)

}
dw
∣∣∣ = Op

(√ log p

Thmin

)
(2.B.10)

and

max
(i,j,k)∈M

∣∣∣ 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
λ

1/2
ij

( t
T

)
(ηit − ηjt)

−
{∫

w∈Ik λij(w)dw

hk

}1/2 1√
Thk

T∑
t=1

1
( t
T
∈ Ik

)
(ηit − ηjt)

∣∣∣
= Op

(
hmax

√
log p

)
. (2.B.11)
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The claim (2.B.5) follows from (2.B.10) and (2.B.11) along with straightforward calcula-

tions.

Proof of (2.A.10). The proof is by contradiction. Suppose that (2.A.10) does not hold

true, that is, P(ΦT ≤ qT,Gauss(α)) = 1− α+ ξ for some ξ > 0. By Nazarov’s inequality,

P
(
ΦT ≤ qT,Gauss(α)

)
− P

(
ΦT ≤ qT,Gauss(α)− η

)
≤ C

η
√

log(2p)

min1≤k≤K ak

≤ Cη
√

log log T
√

log(2p)

for any η > 0, where the last inequality uses the fact that mink ak ≥ c/
√

log log T for some

c > 0. Hence,

P
(
ΦT ≤ qT,Gauss(α)− η

)
≥ P

(
ΦT ≤ qT,Gauss(α)

)
− Cη

√
log log T

√
log(2p)

= 1− α+ ξ − Cη
√

log log T
√

log(2p) > 1− α

for η > 0 sufficiently small. This contradicts the definition of the quantile qT,Gauss(α)

according to which qT,Gauss(α) = infq∈R{P(ΦT ≤ q) ≥ 1− α}.

Finally, as announced in Section 2.3.4, we formally show that the union of minimal

intervals Uij = ∪I∈Fmin
reject(i,j)

I is closely related to the set of time points U∗ij = {u ∈ [0, 1] :

λi(u) 6= λj(u)} where λi and λj differ. We consider the following scenario:

(a) We let (i, j) be a fixed pair of countries whose trend functions λi and λj do not

depend on T . Hence, unlike in Proposition 2.A.4, we consider fixed rather than local

alternatives.

(b) We suppose that the family of intervals F has the structure

F =
{

[u, u+ h] ⊆ [0, 1] : u = khmin for some k = 0, . . . , h−1
min − 1 and

h = 2`hmin for some ` = 1, . . . , L
}
, (2.B.12)

where hmin is chosen such that h−1
min is a natural number. The family F consists of

the intervals [0, hmin], [hmin, 2hmin], [2hmin, 3hmin], . . . and unions thereof. Note that

we could allow for more general families F . We nevertheless work with the specific

structure (2.B.12) to keep the technical arguments as simple as possible.

We can prove the following lemma in this scenario.

Lemma 2.B.9. Let the conditions of Theorem 2.A.1 be satisfied and let α ∈ (0, 1) be

given. Then

P
(
∆(Uij , U

∗
ij) ≤ CρT

)
≥ 1− α+ o(1),

where ∆(Uij , U
∗
ij) = L{(Uij \U∗ij)∪ (U∗ij \Uij)} is the Lebesgue measure L of the symmetric

difference between the two sets Uij and U∗ij and {ρT } is a null sequence of positive numbers.
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Since ρT converges to 0 as T → ∞, Lemma 2.B.9 essentially says that the difference

between Uij and U∗ij is small (≤ CρT = o(1)) with high probability (≥ 1 − α + o(1)). In

this sense, Uij can be regarded as an approximation of U∗ij .

Proof of Lemma 2.B.9. Let

U∗,int
ij =

{
u ∈ U∗ij : |λi(u)− λj(u)| ≥ κT

√
log T/(Thmin)

}
and define the two collections of intervals

C< =
{
I ∈ F : `(I) = hmin and I ⊆ U∗,int

ij

}
C> =

{
I ∈ F : `(I) = h̄ and J ⊆ I for some J ∈ Fmin

reject(i, j)
}
,

where `(I) denotes the length of the interval I ⊆ [0, 1]. In what follows, we examine the

two sets of time points

U<ij =
⋃
I∈C<

I and U>ij =
⋃
I∈C>

I.

(i) By Proposition 2.A.4, it holds that P(C< ⊆ Fmin
reject(i, j)) → 1, which implies that

U<ij ⊆ Uij with probability tending to 1. Moreover, straightforward arguments yield

that ∆(U<ij , U
∗
ij) ≤ CξT with some null sequence {ξT } and some sufficiently large

constant C.

(ii) By construction, it holds that Uij ⊆ U>ij . Moreover, L(U>ij \ U∗ij) ≤ Ch̄ with prob-

ability at least 1 − α + o(1), since Fmin
reject(i, j) ∩ {I ∈ F : I ∩ U∗ij = ∅} = ∅ with

probability at least 1 − α + o(1) by Theorem 2.A.1. In addition, L(U∗ij \ U>ij ) ≤
L(U∗ij \ U<ij ) ≤ ∆(U<ij , U

∗
ij) ≤ CξT with probability tending to 1 by (i). As a conse-

quence, ∆(U>ij , U
∗
ij) ≤ C max{ξT , h̄} with probability at least 1− α+ o(1).

To summarize, we have found that

P
(
U<ij ⊆ Uij ⊆ U

>
ij

)
= 1− o(1)

and

P
(

max
{

∆(U<ij , U
∗
ij),∆(U>ij , U

∗
ij)
}
≤ CρT

)
≥ 1− α+ o(1),

where we set ρT = max{ξT , h̄} = o(1). Taken together, these two statements imply that

P
(
∆(Uij , U

∗
ij) ≤ CρT

)
≥ 1− α+ o(1).

2.C Robustness checks for Section 2.4.1

In this section, we supplement the simulation experiments of Section 2.4.1 by some robust-

ness checks. Specifically, we repeat the experiments with different values of the overdisper-

sion parameter σ. The larger we choose σ, the more noise we put on top of the time trend,
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that is, on top of the underlying signal. Hence, by varying σ, we can assess how sensitive

our test is to changes in the noise-to-signal ratio. We first repeat the size simulations for

σ = 10 and σ = 20. The results are presented in Tables 2.C.1 and 2.C.4, respectively. As

can be seen, the empirical size numbers are very similar to those for σ = 15 in Table 2.1.

We next rerun the power simulations for σ = 10 and σ = 20, where we consider the two

Scenarios A and B as in Section 2.4.1. The results can be found in Tables 2.C.2, 2.C.3,

2.C.5 and 2.C.6. They show that the test is much more powerful for σ = 10 than for

σ = 20. This is what one would expect, since a higher value of σ corresponds to a higher

noise-to-signal ratio. In particular, the higher σ, the more noisy the data, and thus the

more difficult it is to identify differences between the trend curves. Nevertheless, even in

the very noisy case with σ = 20, our test has quite some power, which tends to increase

swiftly as T gets larger.

Table 2.C.1: Empirical size of the test for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.009 0.043 0.085 0.008 0.039 0.075 0.005 0.023 0.055
T = 250 0.011 0.047 0.095 0.010 0.050 0.094 0.009 0.039 0.079
T = 500 0.009 0.052 0.101 0.013 0.049 0.101 0.010 0.039 0.084

Table 2.C.2: Power of the test in Scenario A for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.836 0.915 0.911 0.833 0.903 0.898 0.777 0.874 0.882
T = 250 0.986 0.971 0.938 0.984 0.956 0.918 0.980 0.961 0.924
T = 500 0.996 0.975 0.946 0.994 0.965 0.927 0.992 0.963 0.918

Table 2.C.3: Power of the test in Scenario B for σ = 10.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.991 0.973 0.946 0.994 0.970 0.935 0.994 0.971 0.940
T = 250 0.993 0.969 0.941 0.993 0.959 0.919 0.991 0.960 0.925
T = 500 0.996 0.976 0.948 0.993 0.966 0.928 0.993 0.962 0.917
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Table 2.C.4: Empirical size of the test for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.011 0.050 0.094 0.010 0.047 0.092 0.009 0.034 0.070
T = 250 0.009 0.047 0.088 0.008 0.044 0.085 0.006 0.032 0.062
T = 500 0.008 0.038 0.081 0.006 0.039 0.079 0.006 0.025 0.060

Table 2.C.5: Power of the test in Scenario A for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.144 0.275 0.352 0.115 0.231 0.304 0.048 0.120 0.163
T = 250 0.244 0.434 0.538 0.204 0.403 0.486 0.133 0.247 0.305
T = 500 0.296 0.563 0.662 0.273 0.511 0.603 0.175 0.338 0.433

Table 2.C.6: Power of the test in Scenario B for σ = 20.

n = 5 n = 10 n = 50

significance level α significance level α significance level α
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

T = 100 0.438 0.636 0.704 0.404 0.598 0.669 0.277 0.449 0.526
T = 250 0.864 0.934 0.927 0.850 0.923 0.915 0.811 0.891 0.898
T = 500 0.960 0.968 0.949 0.961 0.964 0.935 0.945 0.961 0.941
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2.D Additional graphs for Section 2.4.2

Here, we provide the pairwise comparisons between Italy, France, Spain and the UK that

were omitted in Section 2.4.2. The plots have the same format as Figures 2.3–2.6.
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Figure 2.D.1: Test results for the compari-
son of France and Italy.
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Figure 2.D.2: Test results for the compari-
son of the UK and Italy.
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Figure 2.D.3: Test results for the compari-
son of Spain and Italy.
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Figure 2.D.4: Test results for the compari-
son of Spain and the UK.
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Figure 2.D.5: Test results for the compari-
son of Spain and France.
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Figure 2.D.6: Test results for the compari-
son of France and the UK.
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2.E Robustness checks for Section 2.4.2

To check the robustness of the empirical results from Section 2.4.2, we compare the time

trends of the same five European countries (Germany, Italy, France, Spain and the UK)

over a longer time span. Specifically, we take T = 200 as opposed to T = 150 in Section

2.4.2. The analysis is performed in the same way as in Section 2.4.2. The results are

displayed in Figures 2.E.1–2.E.10, which have the same format as Figures 2.3–2.6.

As is clearly visible in the figures, the data for Spain have extremely high volatility

towards the end of the observation period between days 150 and 200. At least partly, this

is presumably due to repeated delays in reporting. Such delays explain why the number

of daily new cases is 0 on multiple occasions followed by a sharp increase of the numbers

on the next day. This spuriously high day-to-day volatility of the data heavily influences

the precision of the estimator σ̂. Specifically, we can expect σ̂ to strongly overestimate the

true underlying σ. Indeed, we get σ̂ = 29.7 when estimating σ with T = 200 compared to

σ̂ = 14.82 with T = 150. Higher values of σ̂ result in lower values of the test statistics,

which leads to more conservative results of the test procedure. As a consequence, Figures

2.E.1–2.E.10 differ drastically from Figures 2.3–2.6 and 2.D.1–2.D.6.

Since the Spanish data between days 150 and 200 are most probably inaccurate and

can thus not be taken at face value3, we exclude Spain from our analysis and repeat the

multiscale test with T = 200 for only four European countries: Germany, Italy, France

and the UK. The results are presented in Figures 2.E.11–2.E.16. As can be seen, the

test is much less conservative and the results are much more consistent with those in

Section 2.4.2. Specifically, for each pair of countries (i, j), the set Freject(i, j) constructed

for the longer time period T = 200 contains very similar intervals as the set Freject(i, j)

constructed for the shorter time period T = 150. Hence, the test finds devations from the

null hypothesis up to day T = 150 on essentially the same intervals, no matter whether

the overall time series length is T = 150 or T = 200. This shows that the test produces

robust results that are barely influenced by the overall length of the time series.

3Note that the high day-to-day volatility is present not only in the data set of the European Center for
Disease Prevention and Control, which underlies our analysis, but also in the data sets provided by the
World Health Organization and by John Hopkins University.
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Figure 2.E.1: Test results for the comparison
of Germany and Italy (T = 200).
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Figure 2.E.2: Test results for the comparison
of Germany and Spain (T = 200).
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Figure 2.E.3: Test results for the comparison
of Germany and France (T = 200).
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Figure 2.E.4: Test results for the comparison
of Germany and the UK (T = 200).
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Figure 2.E.5: Test results for the comparison
of France and Italy (T = 200).
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Figure 2.E.6: Test results for the comparison
of the UK and Italy (T = 200).
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Figure 2.E.7: Test results for the comparison
of Spain and Italy (T = 200).

0 50 100 150 200

0
50

00
15

00
0

25
00

0

(a) observed new cases per day

Spain
United Kingdom

0 50 100 150 200

0
50

00
15

00
0

25
00

0

(b) smoothed curves from (a)

0 50 100 150 200

0
20

40
60

80
10

0

(c) government response index

0 50 100 150 200

N
A

(d) (minimal) intervals produced by our test

days since first Monday after the hundredth case

Comparison of Spain and United Kingdom

Figure 2.E.8: Test results for the comparison
of Spain and the UK (T = 200).
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Figure 2.E.9: Test results for the comparison
of Spain and France (T = 200).
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Figure 2.E.10: Test results for the compari-
son of France and the UK (T = 200).
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Figure 2.E.11: Test results for the compar-
ison of Germany and Italy excluding Spain
(T = 200).
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Figure 2.E.12: Test results for the compari-
son of Germany and France excluding Spain
(T = 200).
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Figure 2.E.13: Test results for the compari-
son of Germany and the UK excluding Spain
(T = 200).
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Figure 2.E.14: Test results for the compar-
ison of France and Italy excluding Spain
(T = 200).
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Figure 2.E.15: Test results for the compar-
ison of the UK and Italy excluding Spain
(T = 200).
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Figure 2.E.16: Test results for the compar-
ison of France and the UK excluding Spain
(T = 200).





Chapter 3

Multiscale Testing for Equality of

Nonparametric Trend Curves

Joint with Michael Vogt

3.1 Introduction

Comparison of several regression curves is a classical topic in econometrics and statis-

tics. In many cases of practical interest, the functional forms of the objective regression

curves are unknown, hence, the parametric approach is not applicable. In this paper,

we propose a novel approach that addresses this particular problem in a nonparametric

context. Specifically, we present a new testing procedure for detecting differences between

the nonparametric trends curves.

In what follows, we consider a general panel framework with heterogeneous trends.

Suppose we observe a panel of n time series Zi = {(Yit,Xit) : 1 ≤ t ≤ T} for

1 ≤ i ≤ n, where Yit are real-valued random variables and Xit = (Xit,1, . . . , Xit,d)
>

are d-dimensional random vectors. Each time series Zi is modelled by the equation

Yit = mi

( t
T

)
+ β>i Xit + αi + εit (3.1.1)

for 1 ≤ t ≤ T , where βi is a d×1 vector of unknown parameters, Xit is a d×1 vector of indi-

vidual covariates or controls, mi is an unknown nonparametric (deterministic) trend func-

tion defined on [0, 1], αi are so-called fixed effect error terms and

Ei = {εit : 1 ≤ t ≤ T} is a zero-mean stationary error process.

An important question in many applications is whether the observed time series have

the common trend. In other words, the researchers would like to know if mi are the same

for all i. Moreover, when there is evidence that this is not the case, one of the major

related statistical problems is to determine which of the trends are different and whether

we can group the time series with the similar trends together. In addition, when two trends

mi and mj are not the same, it may also be relevant to know in which time regions they

differ from each other. In this paper, we introduce new statistical methods to approach

these questions. In particular, we develop a test of the hypothesis that all time trends in
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model (3.1.1) are the same. In this setting, the null hypothesis is formulated as

H0 : m1 = m2 = . . . = mn, (3.1.2)

whereas the alternative hypothesis is

H1 : there exists x ∈ [0, 1] such that mi(x) 6= mj(x) for some 1 ≤ i < j ≤ n.

The method that we propose does not only allow to test whether the null hypothesis

is violated. It also allows to detect, with a given statistical confidence, which time trends

are different and in which time regions they differ. More specifically, for any given interval

[u− h, u+ h] ⊆ [0, 1], consider the hypothesis

H
[i,j]
0 (u, h) : mi(w) = mj(w) for all w ∈ [u− h, u+ h].

Here, we can regard h as a bandwidth, a common tuning parameter in nonparametric

estimation. The given interval I(u,h) = [u − h, u + h] ⊆ [0, 1] is then fully character-

ized by u, its center (a location parameter), and h, the bandwidth. In order to de-

termine the regions where the time trends are different, we consider a broad range of

pairs (u, h) with the property that they fully cover the unit interval [0, 1]. Formally, let

G := {(u, h) : I(u,h) = [u− h, u+ h] ⊆ [0, 1]} be a grid of location-bandwidth points such

that ⋃
(u,h)∈G

I(u,h) = [0, 1].

We then reformulate our null hypothesis (3.1.2) as

H0 : The hypotheses H
[i,j]
0 (u, h) hold true for all intervals I(u,h), (u, h) ∈ G,

and for all 1 ≤ i < j ≤ n.

H
[i,j]
0 (u, h) can thus be viewed as a local null hypothesis that characterizes the behavior of

two trend function only locally, whereas H0 specified in (3.1.2) is the global null hypothesis

that is concerned with the comparison of all of the trends on the whole unit interval.

In this paper, we introduce a method that allows us to test the hypotheses H
[i,j]
0 (u, h)

simultaneously for all pairs (i, j) and for all intervals I(u,h) under consideration. Specif-

ically, we develop a multiscale test for the model (3.1.1). The underlying idea of any

multiscale test is to consider a number of test statistics (each corresponding to a different

set of values of some tuning parameters) all at once rather than to perform a separate

test for each single test statistics. In our case, this means testing many local null hy-

potheses H
[i,j]
0 (u, h) simultaneously which leads to a well-known multiple testing problem.

Our method accounts for this problem by using appropriate critical values that depend

on the scale of the problem, i.e. on the number of hypotheses tested simultaneously and
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the relationship between them. In the paper, we show that the suggested procedure for

obtaining critical values leads to good theoretical properties of the proposed test: it has

the correct (asymptotic) level and an (asymptotic) power of one against a certain class of

local alternatives.

Trend comparison is a common statistical problem that arises in various contexts.

For example, in economics the researchers compare trends in real gross domestic product

across several countries (Grier and Tullock, 1989), in yield over time of US Treasury

bills at different maturities (Park et al., 2009b), or the evolution of long-term interest

rates in a number of countries (Christiansen and Pigott, 1997). In finance, comparison

and subsequent classification of the trends of market fragmentation can be used to assess

the market quality in the European stock market (Vogt and Linton, 2017, 2020). In

climatology, the temperature time series in different geographical areas are investigated in

the context of the regional and global warming trends (Karoly and Wu, 2005). Finally, in

industry, mobile phone providers are interested in finding the differences between the cell

phone download activity in various locations (Degras et al., 2012).

In the statistical literature, the problem of testing whether the observed time series

all have the same trend has been widely studied, and tests for equality of trends or re-

gression curves have been developed in Härdle and Marron (1990), Hall and Hart (1990),

Delgado (1993) and Degras et al. (2012) among many others. Versions of model (3.1.1)

with a parametric trend are considered in Vogelsang and Franses (2005), Sun (2011) and

Xu (2012) among others. In the nonparametric context, Li et al. (2010), Atak et al. (2011),

Robinson (2012) and Chen et al. (2012) studied panel models under the assumption that

the observed time series have a common time trend. However, in many applications

the restriction of including a common time trend in the model is questionable at best.

For instance, when we observe a large number of time series it is reasonable to expect

that at least some of the trends are different from the others. Consequently, it often

makes sense to relax the assumption of a common trend, which leads to more flexible

panel settings with heterogeneous trends. Such models have been studied, for example, in

Degras et al. (2012), Zhang et al. (2012) and Hidalgo and Lee (2014). Degras et al.

(2012) consider the problem of testing H0 in a model that is a special case of (3.1.1)

and does not include additional regressors. Chen and Wu (2018) develop theory for a

very similar model framework but under more general conditions on the error terms.

Zhang et al. (2012) investigate the problem of testing the hypothesis H0 in a slightly

restricted version of model (3.1.1), where βi = β for all i. All of these tests have an

important drawback: they involve classical nonparametric estimation of the trend func-

tions that depends on one or several bandwidth parameters, which imposes a certain limit

on the applicability of such tests since in most cases it is far from clear how to choose

bandwidth parameters in an appropriate way. Contrary to the aforementioned methods,

our multiscale testing procedure allows us to consider a large collection of bandwidths

simultaneously avoiding the problem of choosing only one bandwidth altogether.

Recently, Khismatullina and Vogt (2021) proposed a new inference method that al-
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lows researchers to detect differences between epidemic time trends in the context of the

COVID-19 pandemic. In their paper, the authors present a statistically rigorous proce-

dure that, similarly to ours, not only allows to compare trends across different countries,

but to pinpoint the time intervals where the differences occur as well. Moreover, they

also circumvent the need to pick a bandwidth parameter by using a multiscale testing

approach. However, the model in Khismatullina and Vogt (2021) is only a special case

of the model (3.1.1) which includes neither the covariates Xit, nor the fixed effects αi.

Furthermore, the authors place major restriction on the error terms: in their model, εit

are independent across t. In contrast, our model (3.1.1) can be regarded as a generalized

version of theirs that allows for a wider range of economic and financial applications.

To sum up, the main theoretical contribution of the current paper is the multiscale

testing method that allows to make simultaneous confidence statements about which of the

time trends are distinct and the regions where they differ. We believe that currently there

are no equivalent statistical methods. Even though tests for equality of the trends have

been developed already for a while, most existing procedures allow only to test whether

the trend curves are all the same or not, but they almost never allow to infer which

curves are different and where. To the best of our knowledge, the only two exceptions

are Khismatullina and Vogt (2021), whose contribution is briefly discussed above, and

Park et al. (2009b) who developed SiZer methods for the comparison of nonparametric

trend curves in a significantly simplified version of the model (3.1.1). In addition to

restricted model, Park et al. (2009b) derive theoretical results for their analysis only for

the special case of observing only two time series, whereas in other cases, the algorithm is

provided without detailed proof.

The structure of the paper is as follows. Section 3.2 introduces the model setting

and the necessary technical assumptions that are required for the theory. The multiscale

test is developed step by step in Section 3.3. The main theoretical results are presented

in Section 3.4. Section 3.5 deals with estimating the unknown parameters necessary for

construction of the test statistics. To keep the discussion as clear as possible, we include

in the main text of the paper only the essential parts of the theoretical arguments, and the

technical details and extended proofs are deferred to the Appendix. Section 3.6 concludes.

3.2 The model

Throughout the paper, we adopt the following notation. For a real-valued vector

v = (v1, . . . , vm) ∈ Rm, we write |v| =
(∑m

i=1 v
2
i

)1/2
and |v|q =

(∑m
i=1 v

q
i

)1/q
respec-

tively. For a random vector V, we define it’s Lq, q > 1 norm as ||V||q =
(
E|V|q

)1/q
. For

the particular case q = 2, we write ||V|| := ||V||2.

Following Wu (2005), we define the physical dependence measure for the process L(Ft)
as the following:

δq(L, t) = ||L(Ft)− L(F ′t)||q, (3.2.1)
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where Ft = (. . . , ε−1, ε0, ε1, . . . , εt−1, εt) and F ′t = (. . . , ε−1, ε
′
0, ε1, . . . , εt−1, εt) is a coupled

process of Ft with ε′0 being an i.i.d. copy of ε0. Intuitively, δq(L, t) measures the de-

pendency of L(Ft) on ε0, i.e., how replacing ε0 by an i.i.d. copy while keeping all other

innovations in place affects the output L(Ft).

3.2.1 Setting

As was already briefly discussed in Section 3.1, the model setting is as follows. We observe

a panel of n time series Zi = {(Yit,Xit) : 1 ≤ t ≤ T} of length T for 1 ≤ i ≤ n. Each time

series Zi satisfies the model equation

Yit = β>i Xit +mi

( t
T

)
+ αi + εit (3.2.2)

for 1 ≤ t ≤ T , where βi is a d × 1 vector of unknown parameters, Xit is a d × 1 vec-

tor of individual covariates, mi is an unknown nonparametric trend function defined on

[0, 1] with
∫ 1

0 mi(u)du = 0 for all i, αi is a (deterministic or random) intercept term and

Ei = {εit : 1 ≤ t ≤ T} is a zero-mean stationary error process. As common in nonpara-

metric regression, the trend functions mi in model (3.2.2) depend on rescaled time t/T

rather than on real time t. Using rescaled time is equivalent to restricting the domain

of the functions to the unit interval which in turn allows us to apply the usual asymp-

totic arguments. Discussion about the application of the rescaled time in the context of

nonparametric estimation can be found in Robinson (1989), Dahlhaus (1997) and Vogt

and Linton (2014). The condition
∫ 1

0 mi(u)du = 0 for all i is a necessary identification

condition due the presence of αi. Without imposing this condition, we can freely increase

the functions mi by any (positive or negative) constant ci while simultaneously subtract

the same constant from the intercept term αi:

Yit = [mi(t/T ) + ci] + β>i Xit + [αi − ci] + εit.

The term αi can be regarded as an additional error component. In the econometrics

literature, it is commonly called a fixed effect and is often interpreted as the term which

captures unobserved characteristics of the time series Zi that remain constant over time.

We allow the error terms αi to be dependent across i in an arbitrary way. Hence, by

including them in model equation (3.2.2), we allow the n time series Zi in our panel to be

correlated with each other. Whereas the terms αi may be correlated, the error processes

Ei are assumed to be independent across i. As usual in nonparametric estimation, we also

assume that all the trend functions mi(·) are continuously differentiable on [0, 1]. Technical

conditions regarding the model are discussed further in this section.

Finally, throughout the paper we restrict attention to the case where the number of

time series n in model (3.2.2) is fixed. Extending our theoretical results to the case where

n slowly grows with the sample size T is a possible topic for further research.
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3.2.2 Assumptions

Each process Ei is supposed to satisfy the following conditions:

(C1) For each i the variables εit allow for the representation εit = Gi(. . . , ηit−1, ηit), where

ηit are i.i.d. random variables across t and Gi : RZ → R is a measurable function.

Denote Jit = (. . . , ηit−2, ηit−1, ηit).

(C2) For all i it holds that E[εit] = 0 and ‖εit‖q <∞ for some q > 4.

Assumption (C1) can be translated as the restriction on the error process Ei to be station-

ary and causal (in a sense that εit does not depend on the future innovations ηis, s > t).

The class of error processes that satisfies the condition (C1) is massive, and includes linear

processes, their nonlinear transformation, as well as a large variety of nonlinear processes

such as Markov chain models and nonlinear autoregressive models (Wu and Wu, 2016).

Assumption (C2) is a standard moment condition.

Following Wu (2005), we impose conditions on the dependence structure of the error

processes Ei in terms of the physical dependence measure δq(Gi, t) defined in (3.2.1). In

particular, we assume the following:

(C3) Define Θi,t,q =
∑

s≥t δq(Gi, s) for t ≥ 0. For each i it holds that

Θi,t,q = O(t−τq(log t)−A), where A > 2
3(1/q + 1 + τq) and

τq = {q2 − 4 + (q − 2)
√
q2 + 20q + 4}/8q.

For fixed i and t, Θi,t,q measures the cumulative effect of η0 on (εis)s≥t in terms of

Lq-norm. Condition (C3) assumes that the overall cumulative effect is finite and puts

some restrictions on the rate of decay of Θi,t,q. Assumption (C3) is fulfilled by a wide

range of stationary processes Ei. For a detailed discussion of an assumption (C3), as well

as assumptions (C1)–(C2) and some examples of the error processes that satisfy these

conditions, see Khismatullina and Vogt (2020).

Regarding the independent variables Xit, we assume the following for each i:

(C4) The covariates Xit allow for the representation Xit = Hi(. . . , uit−1, uit) with uit

being i.i.d. random variables and Hi := (Hi1, Hi2, . . . ,Hid)
> : RZ → Rd being a mea-

surable function such that Hi(Uit) is well defined. We denote

Uit = (. . . , uit−1, uit).

(C5) Let Ni be the d× d matrix with kl-th entry ni,kl = E[Hik(Ui0)Hil(Ui0)]. We assume

that the smallest eigenvalue of Ni is strictly bigger than 0.

(C6) Let E[Hi(Ui0)] = 0 and ||Hi(Uit)||q′ <∞ for some q′ > max{2θ, 4}, where θ will be

introduced further in Assumption (C12).

(C7)
∑∞

s=0 δq′(Hi, s) <∞ for q′ from Assumption (C6).
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(C8) For each i it holds that
∑∞

s=t δq′(Hi, s) = O(t−α) for q′ from Assumption (C6) and

for some α > 1/2− 1/q′.

As with the error processes Ei, Xi is guaranteed to be stationary and causal by Assump-

tion (C4). Assumptions (C5) and (C6) are technical conditions that prevents asymptotic

multicollinearity and ensures that all the necessary moments exist, respectively. More-

over, similarly to the restriction on the error processes, we also employ the definition of

the physical dependence measure δq(·, ·) in Assumptions (C7) - (C8), thus, making certain

that the cumulative effect of the innovation u0 on (Xit)t≥0 is finite.

To be able to prove the main theorems in Section 3.3, we need additional assumptions

on the relationship between the covariates and the error process.

(C9) Xit (elementwise) and εis are uncorrelated for each t, s ∈ {1, . . . , T}.

(C10) Let ζi,t = (uit, ηit)
>. Define Iit = (. . . , ζi,t−1, ζi,t) and Ui(Iit) = Hi(Uit)Gi(Jit).

With this notation at hand, we assume that
∑∞

s=0 δ2(Ui, s) <∞.

Assumption (C9) is a slightly relaxed independence assumption: even though we do not

require the covariates Xit to be completely independent with the error terms εit, our

theoretical results depend upon them being uncorrelated. We in particular need this

restriction in order to prove asymptotic consistency for the differencing estimator β̂i of βi

proposed in Section 3.5.1. In principle, it would be possible to relax this assumption even

further, but that would involve much more complicated estimation procedure of βi and

more arduous technical arguments. Assumption (C10) ensures short-range dependence

among the variables in our model. Again, we can interpret this as the fact that the

cumulative effect of a single error on all future values is bounded.

We employ these assumptions to prove the main theoretical results in our paper. For

detailed proofs, we refer the reader to the Appendix.

Remark 3.2.1. The conditions (C4)–(C10) can be relaxed to cover nonstationary regres-

sors as well as stationary ones. For example, (C4) may then be replaced by

(C4∗) The covariates Xit allow for the representation Xit = Hi(t; . . . , uit−1, uit) with uit

being i.i.d. random variables and Hi := (Hi1, Hi2, . . . ,Hid)
> : RZ → Rd is a mea-

surable function such that Hi(t;Uit) is well defined.

The other assumptions can be adjusted accordingly. Our main theoretical results will in

principle still hold in this case, however, the complexity of the technical arguments will

increase drastically. Hence, for the sake of clarity, we restrict our attention only to sta-

tionary covariates Xit.

3.3 Testing procedure

In this section, we develop a multiscale testing procedure for the problem of comparison of

the trend curves mi in model (3.2.2). As we will see, the proposed multiscale method does
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not only allow to test whether the null hypothesis is violated. It also provides information

on where violations occur. More specifically, it allows to identify, with a pre-specified

confidence, (i) trend functions which are different from each other and (ii) time intervals

where these trend functions differ.

3.3.1 Preliminary steps

Testing the null hypothesis H0 : m1 = m2 = . . . = mn in model (3.2.2) is a challenging

task not only because it involves nonparametric estimation of the functions mi(·), but also

due to the presence an unknown fixed term αi and a vector of unknown parameters βi.

It is clear that if αi and βi are known, the problem of testing for the common time trend

would be greatly simplified. That is, we would test H0 : m1 = m2 = . . . = mn in the

model

Yit − αi − β>i Xit =: Y ◦it

= mi

( t
T

)
+ εit,

which is a standard nonparametric regression equation. However, in reality the variables

Y ◦it are not observed since the intercept αi and the coefficients βi are not known. Never-

theless, given the appropriate estimators α̂i and β̂i, we can consider

Ŷit := Yit − α̂i − β̂
>
i Xit = (βi − β̂i)>Xit +mi

( t
T

)
+
(
αi − α̂i

)
+ εit.

Thus, the unobserved variables Y ◦it can be approximated by Ŷit, and in what follows we

show that under some mild conditions on α̂i and β̂i, this approximation is indeed sufficient

for our analysis.

But before we proceed further, we fshow how to construct consitent estimates α̂i and

β̂i. To begin with, we focus on the estimation of the vector of unknown parameters βi.

We construct the estimator β̂i in the following way.

For each i, we consider the time series {∆Yit : 2 ≤ t ≤ T} of the differences

∆Yit = Yit − Yit−1. We can write

∆Yit = Yit − Yit−1 = β>i ∆Xit +

(
mi

( t
T

)
−mi

( t− 1

T

))
+ ∆εit,

where ∆Xit = Xit − Xit−1 and ∆εit = εit − εit−1. Since mi(·) is Lipschitz (by our

assumption that mi(·) is continuously differentiable on [0, 1]), we can use the fact that∣∣mi

(
t
T

)
−mi

(
t−1
T

)∣∣ = O
(

1
T

)
and rewrite

∆Yit = β>i ∆Xit + ∆εit +O
( 1

T

)
. (3.3.1)

Now, for each i we employ the least squares estimation method to estimate βi in

(3.3.1), treating ∆Xit as the regressors and ∆Yit as the response variable. That is, we
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propose the following differencing estimator:

β̂i =
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit∆Yit (3.3.2)

We will show in Section 3.5.1 that β̂i is a consistent estimator of βi with the property

βi − β̂i = OP (T−1/2).

Next, given β̂i, consider an appropriate estimator α̂i for the intercept αi calculated by

α̂i =
1

T

T∑
t=1

(
Yit − β̂

>
i Xit

)
=

1

T

T∑
t=1

(
β>i Xit − β̂

>
i Xit + αi +mi(t/T ) + εit

)
= (3.3.3)

=
(
βi − β̂i

)> 1

T

T∑
t=1

Xit + αi +
1

T

T∑
i=1

mi(t/T ) +
1

T

T∑
i=1

εit.

Note that 1
T

∑T
i=1 εit = OP (T−1/2) and 1

T

∑T
i=1mi(t/T ) = O(T−1) due to Lipschitz con-

tinuity of mi and normalization
∫ 1

0 mi(u)du = 0. Furthermore, 1
T

∑T
t=1 Xit = OP (1)

by Chebyshev’s inequality and β̂i − βi = OP (T−1/2). Plugging all these results to-

gether in (3.3.3), we get that α̂i − αi = OP (T−1/2). Thus, the unobserved variables

Y ◦it := Yit − β>i Xit − αi = mi(t/T ) + εit can be well approximated by Ŷit since

Ŷit = Yit − α̂i − β̂
>
i Xit = Y ◦it +OP (T−1/2).

We now turn to the estimator of the long-run error variance σ2
i =

∑∞
`=−∞Cov(εi0, εi`)

which is necessary for the construction of the test statistics later on. For the moment, we

assume that the long-run variance does not depend on i, that is σ2
i = σ2 for all i. We will

need this further for conducting the testing procedure properly. Nevertheless, we keep the

indices throughout the paper in order to be congruous in notation. We further let σ̂2
i be

an estimator of σ2
i which is computed from the constructed sample {Ŷit : 1 ≤ t ≤ T}. We

thus regard σ̂2
i = σ̂2

i (Ŷi1, . . . , ŶiT ) as a function of the variables Ŷit for 1 ≤ t ≤ T . Hence,

whereas the true long-run variance is the same for all time series, the estimators are

different. Throughout the section, we assume that σ̂2
i = σ2

i + op(ρT ) where the conditions

on ρT will be provided further in Section 3.4. Details on how to construct σ̂2
i are deferred

to Section 3.5.2.

3.3.2 Construction of the test statistics

We are now ready to introduce the multiscale statistic for testing the hypothesis

H0 : m1 = m2 = . . . = mn. For any pair of time series i and j and for any location-

bandwidth pair (u, h), we define the kernel averages

ψ̂ij,T (u, h) =
T∑
t=1

wt,T (u, h)(Ŷit − Ŷjt), (3.3.4)
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where wt,T (u, h) are the local linear kernel weights calculated by the following formula:

wt,T (u, h) =
Λt,T (u, h)

{
∑T

t=1 Λt,T (u, h)2}1/2
, (3.3.5)

where

Λt,T (u, h) = K
( t
T − u
h

)[
ST,2(u, h)−

( t
T − u
h

)
ST,1(u, h)

]
,

ST,`(u, h) = (Th)−1
∑T

t=1K(
t
T
−u
h )(

t
T
−u
h )` for ` = 1, 2 and K is a kernel function. As

common in the nonparametric estimation, we assume that K has the following properties:

(C11) The kernel K is non-negative, symmetric about zero and integrates to one. More-

over, it has compact support [−1, 1] and is Lipschitz continuous, that is,

|K(v)−K(w)| ≤ C|v − w| for any v, w ∈ R and some constant C > 0.

Assumption (C11) allows us to use the usual kernel functions such as rectangular, Epanech-

nikov and Gaussian kernels.

We regard the kernel average ψ̂ij,T (u, h) as a measure of the distance between the two

trend curves mi and mj on the interval I(u,h) = [u − h, u + h]. However, instead with

working directly with the kernel averages ψ̂ij,T (u, h), we replace them by their normalized

and corrected version:

ψ̂0
ij,T (u, h) =

∣∣∣ ψ̂ij,T (u, h)

(σ̂2
i + σ̂2

j )
1/2

∣∣∣− λ(h). (3.3.6)

Here, λ(h) =
√

2 log{1/(2h)} is an additive correction term that balances the significance

of many test statistics that correspond to different values of bandwidth parameters (see

the discussion on this topic and comparison between multiscale testing procedures with

and without this correction term in Khismatullina and Vogt (2020)).

We now aggregate the test statistics ψ̂0
ij,T (u, h) for all i and j and a wide range of

different locations u and bandwidths (scales) h:

Ψ̂n,T = max
1≤i<j≤n

max
(u,h)∈GT

ψ̂0
ij,T (u, h), (3.3.7)

In (3.3.7), GT stands for the set of location-bandwidth pairs (u, h) that was men-

tioned in Section 3.1. We use the subscript T in GT to point out that the choice of

the grid depends on the sample size T . Specifically, throughout the paper, we sup-

pose that GT is some subset of Gfull
T = {(u, h) : u = t/T for some 1 ≤ t ≤ T and

h ∈ [hmin, hmax]}, where hmin and hmax denote some minimal and maximal bandwidth

value, respectively. As was already discussed in Section 3.1, we assume that the set of

intervals {I(u,h) = [u−h, u+h] : (u, h) ∈ GT } covers the whole unit interval. Furthermore,

for our theoretical results, we require the following additional conditions to hold:

(C12) |GT | = O(T θ) for some arbitrarily large but fixed constant θ > 0, where |GT | denotes

the cardinality of GT .
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(C13) hmin � T
−(1− 2

q
)
log T , that is, hmin/{T−(1− 2

q
)
log T} → ∞ with q > 4 defined in

(C2) and hmax < 1/2.

Assumption (C12) places relatively mild restrictions on the grid GT : we allow the grid

to grow with the sample size but only at a polynomial rate T θ with fixed θ. This is

not a severe constraint because under this limitation, we can still work with the full set

of location-bandwidth points GT = Gfull
T which is more than enough for most applied

problems. Assumption (C13) is concerned with the minimal and the maximal bandwidths

that we use for our analysis. Specifically, according to Assumption (C13), we can choose

the minimal bandwidth hmin that converges to zero slower than T
−(1− 2

q
)
log T as the sample

size T goes to infinity. The maximal bandwidth hmax can be picked very large.

Note that the value max(u,h)∈GT ψ̂
0
ij,T (u, h) simultaneously takes into account all in-

tervals I(u,h) = [u − h, u + h] with (u, h) ∈ GT . Thus, it can be interpreted as a global

distance measure between the two curves mi and mj , and the test statistics Ψ̂n,T is then

defined as the maximal distance between any pair of curves mi and mj with i 6= j.

In Section 3.3.3, we show how to test the null hypothesis H0 : m1 = m2 = . . . = mn

using the mutliscale test statistics Ψ̂n,T .

3.3.3 The testing procedure

Let Zit for 1 ≤ t ≤ T and 1 ≤ i ≤ n be independent standard normal random variables

which are independent of the error terms εjs and the covariates Xjs for all 1 ≤ s ≤ T

and 1 ≤ j ≤ n. Denote the empirical average of the variables Zi1, . . . , ZiT by Z̄i,T =

T−1
∑T

t=1 Zit. To simplify the notation, we will omit the subscript T in Z̄i,T in what

follows. Similarly as with ψ̂0
ij,T (u, h), for each i and j, we introduce the normalized and

corrected Gaussian kernel averages

φ0
ij,T (u, h) =

∣∣∣∣ φij,T (u, h)

(σ2
i + σ2

j )
1/2

∣∣∣∣− λ(h), (3.3.8)

where

φij,T (u, h) =
∑T

t=1
wt,T (u, h)

{
σi(Zit − Z̄i)− σj(Zjt − Z̄j)

}
(3.3.9)

with wt,T (u, h) defined in (3.3.5).

Next, in the same way as in (3.3.7), we define the global Gaussian test statistics

Φn,T = max
1≤i<j≤n

max
(u,h)∈GT

φ0
ij,T (u, h) (3.3.10)

and denote its (1− α)-quantile by qn,T (α).

Our multiscale test of the hypothesis H0 : m1 = m2 = . . . = mn is defined as follows:

For a given significance level α ∈ (0, 1), we reject H0 if Ψ̂n,T > qn,T (α).
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Remark 3.3.1. To prove the theoretical results in Section 3.4, we will use the following

fact. By our assumption that the long-run variance σ2
i does not depend on i

(i.e. σ2
i = σ2

j = σ2), we can rewrite the Gaussian normalized kernel averages (3.3.8)

as

φ0
ij,T (u, h) =

1√
2

∣∣∣∑T

t=1
wt,T (u, h)

{
(Zit − Z̄i)− (Zjt − Z̄j)

}∣∣∣− λ(h),

which means that the distribution of the Gaussian test statistics does not depend neither

on the data Zi = {(Yi,Xi) : 1 ≤ t ≤ T )},Zj = {(Yj ,Xj) : 1 ≤ t ≤ T )}, nor on any

unknown quantities such as σ2
i or σ2

j , and thus can be regarded as known. In addition to

exploiting this fact while proving the theoretical results, we will also use it for calculating

(approximately) the quantiles of Φn,T by the Monte Carlo simulations in Section 3.3.5.

However, for the sake of similarity to ψ̂0
ij,T (u, h), in what follows, we will stick to the

definition (3.3.8), which involves the long-run variances σi and σj.

Remark 3.3.2. By construction, the (1−α) Gaussian quantile qn,T (α) depends not only

on the number of times series considered n and the sample size T , but on the choice

of the set of location-bandwidth pairs GT as well. However, we do not explicitly include

this dependence since we believe it will only lead to the unnecessary complication of the

notation.

3.3.4 Locating the differences

Suppose we reject the null hypothesis H0. This fact does not provide us with a lot of

information about the behaviour of the trend functions mi(·). After performing the test

described in Section 3.3.3, we can only make confidence statements that some of the trend

functions are not equal somewhere on [0, 1] (with a given statistical confidence), but we

can not tell which of the functions are different and where they differ. Hence, we need an

additional step in the testing procedure in order to locate those differences.

Formally, for a given pair of time series (i, j) and for any given interval

I(u,h) = [u− h, u+ h] such that (u, h) ∈ GT we consider the hypothesis

H
[i,j]
0 (u, h) : mi(w) = mj(w) for all w ∈ [u− h, u+ h].

We view H
[i,j]
0 (u, h) as the ’local’ null hypothesis because it is concerned with only two

trend functions mi(·) and mj(·) and their equality on a small, ’local’, interval I(u,h) =

[u−h, u+h]. In contrast, we refer to H0 introduced in (3.1.2) as the global null hypothesis.

We define the multiscale test of the hypothesis H
[i,j]
0 (u, h) as follows:

For a given significance level α ∈ (0, 1), we reject H
[i,j]
0 (u, h) if

ψ̂0
ij,T (u, h) > qn,T (α).

For each pair of time series (i, j), denote the set of intervals I(u,h) that consists of the

intervals where we reject H
[i,j]
0 (u, h) at a significance level α by S [i,j](α). We will prove

later in Section 3.4, that we can make the following confidence statements:
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We can state with (asymptotic) probability 1 − α that for all i, j,

1 ≤ i < j ≤ n, we have that mi(·) and mj(·) differ on all of the intervals

I(u,h) ∈ S [i,j](α).

3.3.5 Implementation of the test in practice

In practice, we implement the test procedure described in Sections 3.3.3 and 3.3.4 in the

following way.

Step 1. Fix a significance level α ∈ (0, 1).

Step 2. Compute the (approximated) quantile qn,T (α) by Monte Carlo simulations. Specif-

ically, draw a large number N (say N = 5000) of samples of independent standard

normal random variables {Z(`)
it : 1 ≤ t ≤ T, 1 ≤ i ≤ n} for 1 ≤ ` ≤ N . For each

sample `, compute the value Φ
(`)
n,T of the Gaussian test statistics Φn,T and store

them. Calculate the empirical (1 − α)-quantile q̂n,T (α) from the stored values

{Φ(`)
T : 1 ≤ ` ≤ N}. Use q̂n,T (α) as an approximated value of the quantile

qn,T (α).

Step 3. Carry out the test for the global hypothesis H0 by calculating Ψ̂n,T and checking

if Ψ̂n,T > qn,T (α). Reject the null if it is true.

Step 4. For each i, j, 1 ≤ i < j ≤ n, and each (u, h) ∈ GT , carry out the test for the local

null hypothesis H
[i,j]
0 (u, h) by checking if ψ̂0

ij,T (u, h) > qn,T (α). For each pair of

time series (i, j), find the set of intervals S [i,j](α) that consists of the intervals

where we reject H
[i,j]
0 (u, h).

Step 5. Display the results. One of the possible ways to do that is to produce a separate

plot for each of the pairwise comparisons and draw only the intervals where we

reject the corresponding local null. Formally, on each of the plots that present

the results of the comparison of time series i and j, we display the intervals

I(u,h) = [u−h, u+h] ∈ S [i,j](α), i.e. the (rescaled) time intervals where we reject

H
[i,j]
0 (u, h).

3.4 Theoretical properties of the test

In order to invesitgate the theoretical properties of our multiscale test, we introduce two

auxiliary test statistics. First auxiliary test statistics Φ̂n,T can be regarded as a version of

Ψ̂n,t which is exactly equal to it under the global null:

Φ̂n,T = max
1≤i<j≤n

max
(u,h)∈GT

φ̂0
ij,T (u, h), (3.4.1)



126 | Multiscale Testing for Equality of Nonparametric Trend Curves

where

φ̂0
ij,T (u, h) =

∣∣∣∣ φ̂ij,T (u, h)

{σ̂2
i + σ̂2

j }1/2

∣∣∣∣− λ(h) (3.4.2)

and φ̂ij,T (u, h) =
T∑
t=1

wt,T (u, h)
{

(εit − ε̄i) + (βi − β̂i)>(Xit − X̄i)

− (εjt − ε̄j)− (βj − β̂j)>(Xjt − X̄j)
}
.

Here we denote ε̄i = ε̄i,T := T−1
∑T

t=1 εit and X̄i = X̄i,T := T−1
∑T

t=1 Xit. Note that

under the global null, we have φ̂ij,T (u, h) = ψ̂ij,T (u, h), φ̂0
ij,T (u, h) = ψ̂0

ij,T (u, h) and Φ̂n,T =

Ψ̂n,T , where the first two equalities hold true even under the corresponding local null

H
[i,j]
0 (u, h). Hence, in order to determine the distribution of our main test statistic Ψ̂n,T

under the null, we can simply study the behaviour of Φ̂n,T .

However, Φ̂n,T depends on the covariates Xit whereas the Gaussian version Φn,T that

is used to calculate critical values for our test (defined in (3.3.10)) is independent of them.

This is the reason why we need to introduce additional intermediate test statistic that

does not include the covariates, therefore, connecting Φ̂n,T and Φn,T . This intermediate

test statistics will play an important role in the proof of our main theoretical result.

Formally, for each i, j we construct the kernel averages as

̂̂
φij,T (u, h) =

T∑
t=1

wt,T (u, h)
{

(εit − ε̄i)− (εjt − ε̄j)
}
.

We can view these kernel averages as constructed under the null from the unobserved

variables
̂̂
Y it and

̂̂
Y jt given by the following formula:

̂̂
Y it : = Yit − β>i Xit −

1

T

T∑
t=1

(
Yit − β>i Xit

)
=

= mi

( t
T

)
− 1

T

T∑
t=1

mi

( t
T

)
+ εit −

1

T

T∑
t=1

εit.

The intermediate statistic
̂̂
Φn,T is then defined as

̂̂
Φn,T = max

1≤i<j≤n
max

(u,h)∈GT

{∣∣∣∣ ̂̂φij,T (u, h)(̂̂σ2

i + ̂̂σ2

j

)1/2
∣∣∣∣− λ(h)

}
(3.4.3)

with ̂̂σ2

i being an estimator of the long-run error variance σ2
i =

∑∞
`=−∞Cov(εi0, εi`) which

is computed from the unobserved sample { ̂̂Y it : 1 ≤ t ≤ T}. We thus regard ̂̂σ2

i =̂̂σ2

i (
̂̂
Y i1, . . . ,

̂̂
Y iT ) as a function of the variables

̂̂
Y it for 1 ≤ t ≤ T . As with the estimator

σ̂2
i , we assume that ̂̂σ2

i = σ2
i + op(ρT ) with ρT = o(

√
hmin/ log T ).

The statistics
̂̂
Φn,T can thus be viewed as a version of the statistic Φ̂n,T without the
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covariates. We formally prove that these two statistics are close in Proposition 3.C.12.

Now we can formally state our main theoretical result which characterizes the asymp-

totic behaviour of the statistic Φ̂n,T .

Theorem 3.4.1. Suppose that the error processes Ei = {εit : 1 ≤ t ≤ T} are independent

across i and satisfy (C1)–(C3) for each i. Moreover, let (C4)–(C13) be fulfilled and assume

that for all i, mi(·) is a continuously differentiable function on [0, 1] satisfying the property∫ 1
0 mi(u)du = 0. Furthermore, for all i, i ∈ {1, . . . , n} assume that we have σ2

i = σ2,

σ̂2
i = σ2

i + op(ρT ) and ̂̂σ2

i = σ2
i + op(ρT ) with ρT = o(

√
hmin/ log T ). Then

P
(
Φ̂n,T ≤ qn,T (α)

)
= (1− α) + o(1).

Theorem 3.4.1 is the principal instrument for deriving theoretical properties of our

multiscale test. The full proof of the theorem is provided in the Appendix. Here, we

briefly present the main arguments.

First, we show that the distribution of the intermediate statistics
̂̂
Φn,T introduced in

(3.4.3) is indeed close to the distribution of Φ̂n,T , and therefore, we can approximate the

distribution of Φ̂n,T with the help of
̂̂
Φn,T .

Second, we show that we can replace
̂̂
Φn,T by an identically distributed version Φ̃n,T

which is close to the Gaussian statistics Φn,T defined in (3.3.10). Formally, by the means

of strong approximation theory derived in Berkes et al. (2014) we prove that there exist

statistics Φ̃n,T which are distributed as
̂̂
Φn,T for any T ≥ 1 and which have the property

that

∣∣Φ̃n,T − Φn,T

∣∣ = op(δT ), (3.4.4)

where δT = o(1).

Then, we employ the anti-concentration results derived in Chernozhukov et al. (2015)

in order to show that Φn,T does not concentrate too strongly in small regions of the form

[x− δT , x+ δT ]. Or, in other words, it holds that

sup
x∈R

P
(
|Φn,T − x| ≤ δT

)
= o(1) (3.4.5)

Taking (3.4.4) together with (3.4.5) and the fact that Φ̃n,T has the same distribution aŝ̂
Φn,T yileds that

sup
x∈R

∣∣P(
̂̂
Φn,T ≤ x)− P(Φn,T ≤ x)

∣∣ = o(1).

And finally, by the fact mentioned in the beginning of this proof that the distribution

of the intermediate statistics
̂̂
Φn,T is close to the distribution of Φ̂n,T , we conclude that

sup
x∈R

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ = o(1),
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which immediately implies the statement of Theorem 3.4.1.

Remark 3.4.1. The proof of Theorem 3.4.1 builds on two important theoretical results:

strong approximation theory developed in Berkes et al. (2014) and anti-concentration re-

sults proved in Chernozhukov et al. (2015). These results were already combined together

for the purpose of developing the multiscale test for dependent data in Khismatullina and

Vogt (2020). We can say that our proof can be regarded as a further development of the

proof strategy in Khismatullina and Vogt (2020) where they proposed a similar testing pro-

cedure for investigating properties of the trend function in one time series. We extend

their theoretical result not only by working with multiple time series, but also by including

the covariate terms in the model (3.1.1). Hence, our proof strategy builds on the similar

stones but is much more technically involved.

Now we examine the theoretical properties of the testing procedure proposed in

Sections 3.3.3 and 3.3.4 with the help of Theorem 3.4.1. The following proposition (which

is a direct consequence of Theorem 3.4.1) states that our test has correct (asymptotical)

size.

Proposition 3.4.1. Suppose that the conditions of Theorem 3.4.1 are satisfied. Then

under the null H0, we have

P
(
Ψ̂n,T ≤ qn,T (α)

)
= (1− α) + o(1).

The next proposition characterizes the behaviour of our multiscale test under a partic-

ular class of local alternatives. To formulate this result, we consider a sequence of pairs of

functions mi := mi,T and mj := mj,T that depend on the sample size and that are locally

sufficiently far from each other.

Proposition 3.4.2. Let the conditions of Theorem 3.4.1 be satisfied. Moreover, assume

that for some pair of indices i and j, the functions mi = mi,T and mj = mj,T have

the following property: There exists (u, h) ∈ GT with [u − h, u + h] ⊆ [0, 1] such that

mi,T (w) −mj,T (w) ≥ cT
√

log T/(Th) for all w ∈ [u − h, u + h] or mj,T (w) −mi,T (w) ≥
cT
√

log T/(Th) for all w ∈ [u− h, u+ h], where {cT } is any sequence of positive numbers

with cT →∞. Then

P
(
Ψ̂n,T ≤ qn,T (α)

)
= o(1).

Proof of Proposition 3.4.2 is provided in the Appendix.

Finally, we turn our attention to the local null hypotheses H
[i,j]
0 (u, h). Since we

are testing many hypotheses at the same time, we would like to bound the probabil-

ity of making even one false discovery. For this purpose, we employ the notion of the

family-wise error rate (FWER) which is equal to the probability of making one or more

type I errors. Formally, FWER is defined as:

FWER(α) = P(∃ i, j ∈ {1, . . . , n}, (u, h) ∈ GT : I(u,h) ∈ S [i,j](α) and H
[i,j]
0 (u, h) is true).
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We say that the FWER is controlled at level α if FWER(α) ≤ α. The following result

assures that for our testing procedure, it is indeed the case:

Proposition 3.4.3. Suppose that the conditions of Theorem 3.4.1 are satisfied. Then

FWER(α) ≤ α.

Proposition 3.4.3 is a direct consequence of Theorem 3.4.1. Nevertheless, the detailed

proof of the proposition is provided in the Appendix.

The following corollary is an immediate consequence of Proposition 3.4.3 and gives the

theoretical justification necessary for making simultaneous confidence statements about

the locations of the differences between the trends.

Corollary 3.4.1. Under the conditions of Theorem 3.4.1, for any given α ∈ (0, 1) we

have

P
(
∀ i, j ∈ {1, . . . , n},(u, h) ∈ GT such that

H
[i,j]
0 (u, h) is true : |ψ̂0

ij,T (u, h)| ≤ qn,T (α)
)
≥ 1− α+ o(1).

With the help of Corollary 3.4.1, we are able to make simultaneous confidence state-

ments about which of the trends are different and where:

We can state with (asymptotic) probability 1 − α that for all

i, j ∈ {1, . . . , n}, we have that mi(·) and mj(·) differ on all of the in-

tervals I(u,h) ∈ S [i,j](α).

3.5 Estimation of the parameters

3.5.1 Estimation of βi

As was already mentioned in Section 3.3.1, for each i, we construct a differencing estimator

β̂i of the vector of unknown parameters βi using the first differences:

β̂i =
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit∆Yit (3.5.1)

where ∆Xit = Xit −Xit−1 and ∆Yit = Yit − Yit−1. The asymptotic consistency for this

differencing estimator is given by the following theorem:

Theorem 3.5.1. Under the conditions of Theorem 3.4.1, we have

βi − β̂i = OP

( 1√
T

)
,

where β̂i is the differencing estimator given by (3.5.1).
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Detailed proof of the Theorem 3.5.1 is provided in the Appendix. Here we briefly

outline the main steps of the proof.

After rearranging the terms, we can write

√
T (β̂i − βi) =

( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆mit

+
( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆εit,

(3.5.2)

where ∆mit = mi

(
t
T

)
−mi

(
t−1
T

)
and ∆εit = εit − εit−1.

We look at each part of (3.5.2) separately. First, by Assumption (C6) and applying

Chebyshev’s and Cauchy-Schwarz inequalities we show that

1√
T

T∑
t=2

∆Xit∆mit = OP

( 1√
T

)
.

Then, by similar arguments and applying Proposition 3.D.14, we have that∣∣∣∣∣( 1

T

T∑
t=2

∆Xit∆X>it

)−1
∣∣∣∣∣ = OP (1),

where |A| with A being a matrix is any matrix norm.

These two facts together lead to the fact that the first summand in (3.5.2) isOP (1/
√
T ).

Finally, we turn our attention to the second summand in (3.5.2). We already know

that
∣∣∣( 1
T

∑T
t=2 ∆Xit∆X>it

)−1
∣∣∣ = OP (1). Moreover, by Proposition 3.D.17,

∣∣∣∣ 1√
T

T∑
t=2

∆Xit∆εit

∣∣∣∣ = OP (1).

Hence, we have that

( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆εit = OP (1). (3.5.3)

The statement of the theorem follows.

3.5.2 Estimation of σ2
i

Following Kim (2016), we estimate the long-run variance σi for each of the time

series i using the variant of the subseries variance estimator proposed first by
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Carlstein (1986) and then extended by Wu and Zhao (2007). Formally, we set

σ̂2
i =

1

2(M − 1)sT

M∑
m=1

[
sT∑
t=1

(
Yi(t+msT ) − Yi(t+(m−1)sT ) − β̂

>
i

(
Xi(t+msT ) −Xi(t+(m−1)sT )

))]2
,

(3.5.4)

where sT is the length of subseries and M = bT/sT c is the largest integer not exceeding

T/sT . As per the optimality result in Carlstein (1986), we set sT � T 1/3. For a finite

sample, we choose sT = bT 1/3c. According to Lemma 3.D.11 in Appendix, σ̂2
i is an asymp-

totically consistent estimator of σ2
i with the rate of convergence OP (T−2/3). Recall that

the rate of convergence of σ̂2
i necessary for proving our theoretical results is oP (ρT ) with

ρT = o(
√
hmin/ log T ). Under Assumption (C13), we have that hmin � T

−
(

1− 2
q

)
log T ,

hence,
√
hmin/ log T � T

−
(

1
2
− 1

q

)
/
√

log T . This means that we can for example take

ρT = T
−
(

1
2
− 1

q

)
/
√

log T , which is still a slower rate of convergence than T−2/3. To sum

up, the subseries variance estimator provided by (3.5.4) satisfies the necessary conditions

for Theorem 3.4.1, and thus can be used for the construction of our multiscale statistics

Ψ̂n,T .

3.6 Conclusion

In this paper, we develop a new multiscale testing procedure for multiple time series for

testing hypotheses about nonparametric time trends in the presence of covariates. This

procedure addresses two important statistical problems about comparison of the time

trends. First and foremost, with the help of the proposed method, we are able to test if

all the time trends in the observed time series are the same or not. We prove the main

theoretical results of the paper that the test has (asymptotically) the correct size and has

an (asymptotic) power of one against a specific class of local alternatives. Second, our

multiscale procedure allows us to tell which of the time trends are different and where the

differences are located. For the purpose of pinpointing the differences, we consider many

local null hypotheses at the same time, each corresponding to only a pair of time trends and

a specific time interval. Our method allows us to test all of these hypotheses simultaneously

controling the family-wise error rate, i.e. the probability of wrongly rejecting at least one

true null hypothesis (making at least one type I error), at a desired level α. This result

allows us to make simultaneous confidence statements as follows:

We can state with (asymptotic) probability 1 − α that for every pair of time series

and every interval where our test rejects the local null, the trends of these time series

differ at least somewhere on this particular interval.

For the proof of the theoretical results, the main tools that are used are strong approx-

imation theory developed in Berkes et al. (2014) and the anti-concentration bounds for

Gaussian random vectors verified in Chernozhukov et al. (2015). The proof strategy that
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we employ in our paper has already been used in Khismatullina and Vogt (2020), however,

in that paper the authors proposed a multiscale method for testing qualitative hypotheses

only about one time series. Our method can be regarded as a generalized version of the

test developed in Khismatullina and Vogt (2020) where we not only consider comparison

between various time series, but also add the covariates to the model and propose an

estimation procedure for the unknown parameters.

Regarding future research, this project suggests some interesting issues and topics for

consideration. First, consider the situation that the null hypothesis H0 : m1 = . . . = mn is

violated in the general panel data model (3.1.1). Even though some of the trend functions

mi are different in this case, there may still be groups of time series with the same time

trend. An interesting statistical problem to investigate in the future is how to estimate

the unknown groups (and their unknown number) from the data. Second, as was already

mentioned, it should be possible to extend our theoretical results to the case where the

number of time series slowly grows with the sample size. Further insight can be gained by

broadening the current work in these and possibly other directions.
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APPENDICES

In the Appendix, we provide detailed proofs for the theoretical results from Sections

3.4 and 3.5. We use the following notation: The symbol C denotes a universal real

constant which may take a different value on each occurrence. For a, b ∈ R, we write

a∨ b = max{a, b}. For x ∈ R, x ≥ 0, we write bxc to denote the integer value of x and dxe
to denote the smallest integer greater than or equal to x. For any set A, the symbol |A|
denotes the cardinality of A. The notation X

D
= Y means that the two random variables

X and Y have the same distribution. Finally, f0(·) and F0(·) denote the density and the

distribution function of the standard normal distribution, respectively.

3.A Statistics used in the Appendix

In the proof of Theorem 3.4.1, we use a number of different test statistics, either already

defined in Section 3.3 or first introduced below. Each of these statistics plays an important

role in one or more steps of the proof. In the following list, we present these statistics,

describe how they are constructed and explain in which parts of the proof they are used.

• Our main multiscale test statistic (defined in (3.3.7)):

Ψ̂n,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣ ψ̂ij,T (u, h)

(σ̂2
i + σ̂2

j )
1/2

∣∣∣∣− λ(h)

}
,

with ψ̂ij,T (u, h) =
T∑
t=1

wt,T (u, h)(Ŷit − Ŷjt).

This statistic is our main quantity of interest because the kernel average ψ̂ij,T (u, h)

measures the approximate distance between the trends mi and mj on an interval

I(u,h) = [u− h, u+ h].

• The Gaussian statistic that is used for calculating the critical values for our test

procedure (defined in (3.3.10)):

Φn,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣ φij,T (u, h)

(σ2
i + σ2

j )
1/2

∣∣∣− λ(h)

}
,

with φij,T (u, h) =
∑T

t=1
wt,T (u, h)

{
σi(Zit − Z̄i)− σj(Zjt − Z̄j)

}
.

• Auxiliary test statistic (defined in (3.4.1)) that can be regarded as the version of our

multiscale statistic under the null.

Φ̂n,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣ φ̂ij,T (u, h)

{σ̂2
i + σ̂2

j }1/2
∣∣∣− λ(h)

}
,

with φ̂ij,T (u, h) =

T∑
t=1

wt,T (u, h)
{

(εit − ε̄i) + (βi − β̂i)>(Xit − X̄i)

− (εjt − ε̄j)− (βj − β̂j)>(Xjt − X̄j)
}
.
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Our main theoretical result (Theorem 3.4.1) investigates the distribution of Φ̂n,T .

• Intermediate statistic that is close to Φ̂n,T but is constructed from the kernel averageŝ̂
φij,T (u, h) that are different from φ̂ij,T (u, h) only by the fact that they do not include

the covariates Xit:

̂̂
Φn,T = max

1≤i<j≤n
max

(u,h)∈GT

{∣∣∣∣ ̂̂
φij,T (u, h)

{̂̂σ2

i + ̂̂σ2

j}1/2

∣∣∣∣− λ(h)

}
,

with
̂̂
φij,T (u, h) =

T∑
t=1

wt,T (u, h)
{

(εit − ε̄i)− (εjt − ε̄j)
}
.

We can view these kernel averages as constructed (under the null) from the unob-

served variables
̂̂
Y it that are defined by

̂̂
Y it : = Yit − β>i Xit −

1

T

T∑
t=1

(
Yit − β>i Xit

)
=

= mi

( t
T

)
− 1

T

T∑
t=1

mi

( t
T

)
+ εit −

1

T

T∑
t=1

εit.

The definition of
̂̂
φ0
ij,T (u, h) also includes the auxiliary estimator ̂̂σ2

i of the long-run

error variance σ2
i which is computed from the augmented sample

{ ̂̂Y it : 1 ≤ t ≤ T}. We thus regard ̂̂σ2

i = ̂̂σ2

i (
̂̂
Y i1, . . . ,

̂̂
Y iT ) as a function of the

variables
̂̂
Y it for 1 ≤ t ≤ T . As with σ̂2

i , we assume that ̂̂σ2

i = σ2
i + op(ρT ) with

ρT = o(
√
hmin/ log T ).

• Auxiliary statistic that has the same distribution as
̂̂
Φn,T for each T = 1, 2, . . .:

Φ̃n,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣∣ φ̃ij,T (u, h)

{σ̃2
i + σ̃2

j }1/2

∣∣∣∣− λ(h)

}
,

with φ̃ij,T (u, h) =
∑T

t=1
wt,T (u, h)

{
(ε̃it − ¯̃εi)− (ε̃jt − ¯̃εj)

}
,

where [ε̃i1, . . . , ε̃iT ]
D
= [εi1, . . . , εiT ] for each i and T . In Proposition 3.C.8, using the

strong approximation theory by Berkes et al. (2014), we formally prove that such

statistic exists and has the property of being close to the Gaussian statistic Φn,T .

3.B Auxiliary results

Here, we state some auxiliary results that will be used further in the proof of Theorem

3.4.1.

Definition 3.B.1. For a given q > 0 and α > 0, we define dependence adjusted norm as

||X·||qq,α = supm≥0(m+ 1)α
∑∞

t=m δq(X, t).
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Theorem 3.B.2. Wu and Wu (2016) Assume that ||X·||qq,α <∞, where q > 2 and α > 0,

and
∑T

t=1 a
2
t = T. Moreover, assume that α > 1/2−1/q. Denote ST = a1X1 + . . .+aTXT .

Then for all x > 0,

P(|ST | ≥ x) ≤ C1
|a|qq||X·||qq,α

xq
+ C2 exp

(
− C3x

2

T ||X·||22,α

)
,

where C1, C2, C3 are constants that only depend on q and α.

Theorem 3.B.3. Wu (2007) Let (ξi)i∈Z be a stationary and ergodic Markov chain and

g(·) be a measurable function. Let g(ξ1) ∈ Lq, q > 2,E[g(ξ0)] = 0 and l be a positive,

nondecreasing slowly varying function. Assume that

∞∑
i=n

∣∣∣∣∣∣E[g(ξi)|ξ0]− E[g(ξi)|ξ−1]
∣∣∣∣∣∣
q

= O
(

[log n]−β
)
,

where 0 ≤ β < 1/q and

∞∑
k=1

k−βq

[l(2k)]q
<∞.

Then Sn = g(ξ1) + . . .+ g(ξn) = oa.s.
[√
nl(n)

]
.

Proposition 3.B.6. Wu (2007) Let (εn)n∈Z be i.i.d. random variables, ξn = (. . . , εn−1, εn)

and g(·) be a measurable function such that g(ξn) is a proper random variable for each

n ≥ 0. For k ≥ 0 let ξ̃k = (. . . , ε−1, ε
′
0, ε1, . . . , εk−1, εk), where ε′0 is an i.i.d. copy of ε0.

Let g(ξ0) ∈ Lq, q > 1 and E[g(ξ0)] = 0. For n ≥ 1 we have∣∣∣∣∣∣E[g(ξn)|ξ0]− E[g(ξn)|ξ−1]
∣∣∣∣∣∣
q
≤ 2
∣∣∣∣∣∣g(ξn)− g(ξ̃n)

∣∣∣∣∣∣
q
.

Proposition 3.B.7. Under the conditions of Theorem 3.4.1, for all i ∈ {1, . . . , n} it holds

that

X̄i =
1

T

T∑
t=1

Hi(Uit) = oP (1). (3.B.1)

Proof of Proposition 3.B.7. Take any i ∈ {1, . . . , n}. To prove (3.B.1), we will use two

results from Wu (2007) stated above. First, fix j ∈ {1, . . . , d}. Denote ξt = Uit, ξ̃t = U ′it
and g(·) = Hi,j(·). Then by Assumption (C6), g(ξ0) = Hi,j(Ui0) ∈ Lq′ for q′ > 4 and

E[g(ξ0)] = E[Hi,j(Ui0)] = 0 and we can apply Proposition 3.B.6 (Proposition 3(ii) in

Wu (2007)) that says that for all s ≥ 1 we have:

∥∥E[g(ξs)|ξ0]− E[g(ξs)|ξ−1]
∥∥
q′
≤ 2
∥∥g(ξs)− g(ξ̃s)

∥∥
q′
,
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or, equivalently,

∥∥E[Hi,j(Uis)|Ui0]− E[Hi,j(Uis)|Ui(−1)]
∥∥
q′
≤ 2
∥∥Hi,j(Uis)−Hi,j(U ′is)

∥∥
q′
.

Since this holds simultaneously for all j ∈ {1, . . . , d}, we can use the obvious bound∥∥Hi,j(Uis) − Hi,j(U ′is)
∥∥
q′
≤
∥∥Hi(Uis) − Hi(U ′is)

∥∥
q′

= δq′(Hi, s) and Assumption (C8) to

write

0 ≤
∞∑
s=t

∥∥E[g(ξs)|ξ0]− E[g(ξs)|ξ−1]
∥∥
q′
≤
∞∑
s=t

δq′(Hi, s) = O(t−α),

where α > 1/2− 1/q′.

Now we want to apply Theorem 3.B.3 (Corollary 2(i) in Wu (2007)). As a parameter

β in the theorem we can take any value satisfying assumption 0 ≤ β < 1/q′ because for

every β ≥ 0 we have

∞∑
s=t

∥∥E[g(ξs)|ξ0]− E[g(ξs)|ξ−1]
∥∥
q′
≤
∞∑
s=t

δq′(Hi, s) = O(t−α) = O
(
[log t]−β

)
.

Furthermore, as a positive, nondecreasing slowly varying function l we can take

l(x) = log2/q′−β(x). Then,

∞∑
k=1

k−βq
′

[l(2k)]q′
=

∞∑
k=1

k−βq
′[

log2/q′−β(2k)
]q′

=
∞∑
k=1

k−βq
′

k2−βq′(log 2)2−βq′

=
1

(log 2)2−βq′

∞∑
k=1

1

k2

<∞.

Hence, ST = g(ξ1) + . . . + g(ξT ) = oa.s.[
√
T log2/q′−β(T )], or, equivalently,

X̄i,j = ST /T = oa.s.[log2/q′−β(T )/
√
T ] = oP (1) for each j ∈ {1, . . . , d}. Trivially, this

means that X̄i = oP (1).

3.C Proofs of theoretical properties of the test

Proof of Theorem 3.4.1

The main steps of the proof of the Theorem 3.4.1 are described below. We will build the

proof on the auxiliary results stated in 3.B.

1. First, we introduce the intermediate statistic
̂̂
Φn,T that can be regarded as the ver-

sion of Φ̂n,T where we excluded the regressors Xit from the construction of the kernel
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averages. Next, we show that we can replace
̂̂
Φn,T by an identically distributed ver-

sion Φ̃n,T which is close to the Gaussian statistics Φn,T defined in (3.3.10). Formally,

in Proposition 3.C.8 we prove that there exist statistics Φ̃n,T for T = 1, 2, . . . which

are distributed as
̂̂
Φn,T for any T ≥ 1 and which have the property that

∣∣Φ̃n,T − Φn,T

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
,

where Φn,T is the Gaussian statistic.

2. Second, in Proposition 3.C.10 we demonstrate that Φn,T does not concentrate too

strongly in small regions of the form [x − δT , x + δT ] with δT converging to zero as

T →∞. Or, in other words, it holds that

sup
x∈R

P
(
|Φn,T − x| ≤ δT

)
= o(1)

with δT = T 1/q/
√
Thmin + ρT

√
log T .

3. Then, we make use of Lemma 3.C.10 to show that

sup
x∈R

∣∣P(
̂̂
Φn,T ≤ x)− P(Φn,T ≤ x)

∣∣ = o(1).

This statement directly follows from the previous two steps and the fact that Φ̃n,T

is distributed as
̂̂
Φn,T for any n ≥ 2, T ≥ 1.

4. In the fourth step, in Propositions 3.C.11 and 3.C.12 we formally show that the

introduced intermediate statistic
̂̂
Φn,T is close to Φ̂n,T , i.e. there exists a sequence

of positive numbers γn,T that converges to 0 as T →∞ such that for all x ∈ R

P
(̂̂

Φn,T ≤ x− γn,T
)
−P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
≤ P(Φ̂n,T ≤ x)

≤ P
(̂̂

Φn,T ≤ x+ γn,T

)
+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
,

and

P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
= o(1). (3.C.1)

Note that (3.C.1) does not involve x. Hence, this result is uniform over all x ∈ R.

5. And finally, by the means of Proposition 3.C.13 we prove that

sup
x∈R

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ = o(1),

which immediately implies the statement of Theorem 3.4.1.
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Step 1

The auxiliary statistics Φ̂n,T defined in (3.4.1) is equal to our multiscale statistics Ψ̂n,T

under the null hypothesis, but has the property that it depends on the known covariates

Xit, whereas the Gaussian version Φn,T defined in (3.3.10) is independent of them. This

is the reason why we need to introduce additional intermediate test statistics that do not

include the covariates and connect Φ̂n,T and Φn,T .

We do it in the following way. For each i and j, consider the kernel averages

̂̂
φij,T (u, h) =

T∑
t=1

wt,T (u, h)
{

(εit − ε̄i)− (εjt − ε̄j)
}
.

We can view these kernel averages as constructed (under the null) based on the unob-

served variables
̂̂
Y it and

̂̂
Y jt defined by

̂̂
Y it : = Yit − β>i Xit −

1

T

T∑
t=1

(
Yit − β>i Xit

)
=

= mi

( t
T

)
− 1

T

T∑
t=1

mi

( t
T

)
+ εit −

1

T

T∑
t=1

εit.

The intermediate statistic is then defined as

̂̂
Φn,T = max

1≤i<j≤n
max

(u,h)∈GT

{∣∣∣∣ ̂̂φij,T (u, h)(̂̂σ2

i + ̂̂σ2

j

)1/2
∣∣∣∣− λ(h)

}
(3.C.2)

with ̂̂σ2

i being an estmator of the long-run error variance σ2
i =

∑∞
`=−∞Cov(εi0, εi`) which

is computed from the unobserved sample { ̂̂Y it : 1 ≤ t ≤ T}. We thus regard ̂̂σ2

i =̂̂σ2

i (
̂̂
Y i1, . . . ,

̂̂
Y iT ) as a function of the variables

̂̂
Y it for 1 ≤ t ≤ T . As with the estimator

σ̂2
i , we assume that ̂̂σ2

i = σ2
i + op(ρT ) with ρT = o(

√
hmin/ log T ).

The statistics
̂̂
Φn,T can thus be viewed as a version of the statistic Φ̂n,T without the

covariates. We formally prove that these two statistics are close in Step 4.

Here, we are interested in another matter. Specifically, the main theoretical result

of this step is the fact that there exists a version of the multiscale statistic
̂̂
Φn,T with

the same distributional properties and that is close to the Gaussian statistics Φn,T which

distribution is known. More specifically, we prove the following result.

Proposition 3.C.8. Under the conditions of Theorem 3.4.1, there exist statistics Φ̃n,T

for T = 1, 2, . . . with the following two properties: (i) Φ̃n,T has the same distribution aŝ̂
Φn,T as defined in (3.C.2) for any T , and (ii)

∣∣Φ̃n,T − Φn,T

∣∣ = op

( T 1/q

√
Thmin

+ ρT
√

log T
)
, (3.C.3)
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where Φn,T is a Gaussian statistic as defined in (3.3.10).

Proof of Proposition 3.C.8. For the proof, we draw on strong approximation theory

for each stationary process Ei = {εit : 1 ≤ t ≤ T} that fulfill the conditions (C1)–(C3). By

Theorem 2.1 and Corollary 2.1 in Berkes et al. (2014), the following strong approximation

result holds true: On a richer probability space, there exists a standard Brownian motion

Bi and a sequence {ε̃it : t ∈ N} such that [ε̃i1, . . . , ε̃iT ]
D
= [εi1, . . . , εiT ] for each T and

max
1≤t≤T

∣∣∣ t∑
s=1

ε̃is − σiBi(t)
∣∣∣ = o

(
T 1/q

)
a.s., (3.C.4)

where σ2
i =

∑
k∈Z Cov(εi0, εik) denotes the long-run error variance.

We apply this result for each stationary process Ei = {εit : 1 ≤ t ≤ T} so that each

process Ẽi = {ε̃it : t ∈ N} is independent of Ẽj = {ε̃jt : t ∈ N} for i 6= j.

Furthermore, we define

Φ̃n,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣∣ φ̃ij,T (u, h)(
σ̃2
i + σ̃2

j

)1/2
∣∣∣∣− λ(h)

}

with φ̃ij,T (u, h) =
∑T

t=1
wt,T (u, h)

{
(ε̃it − ¯̃εi)− (ε̃jt − ¯̃εj)

}
.

where σ̃2
i are the same estimators as σ̂2

i with Ŷit = (βi−β̂i)>Xit+mi(t/T )+
(
αi−α̂i

)
+εit

replaced by Ỹit = (βi − β̂i)>Xit + mi(t/T ) +
(
αi − α̂i

)
+ ε̃it for 1 ≤ t ≤ T . Since

[ε̃i1, . . . , ε̃iT ]
D
= [εi1, . . . , εiT ], we have

∑∞
`=−∞Cov(ε̃i0, ε̃i`) =

∑∞
`=−∞Cov(εi0, εi`) = σ2

i .

Hence, by construction, σ̃2
i = σ2

i + oP (ρT ).

In addition, we let

Φ�n,T = max
1≤i<j≤n

max
(u,h)∈GT

{∣∣∣∣ φij,T (u, h)(
σ̃2
i + σ̃2

j

)1/2
∣∣∣∣− λ(h)

}

with φij,T (u, h) =
∑T

t=1wt,T (u, h)
{
σi(Zit − Z̄i)− σj(Zjt − Z̄j)

}
as defined in (3.3.9) with

Zit = Bi(t)− Bi(t− 1). With this notation, we can write

∣∣Φ̃n,T − Φn,T

∣∣ ≤ ∣∣Φ̃n,T − Φ�n,T
∣∣+
∣∣Φ�n,T − Φn,T

∣∣. (3.C.5)

First consider |Φ̃n,T − Φ�n,T |. Straightforward calculations yield that

∣∣Φ̃n,T − Φ�n,T
∣∣ ≤ max

1≤i<j≤n

((
σ̃2
i + σ̃2

j

)−1/2
max

(u,h)∈GT

∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣). (3.C.6)

We have already noted that σ̃2
i = σ2

i + oP (ρT ). Moreover, for all i ∈ {1, . . . , n} we

know that σ2
i 6= 0. Hence,

max
1≤i<j≤n

(
σ̃2
i + σ̃2

j

)−1/2
= OP (1). (3.C.7)
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Next, using summation by parts, (
∑n

i=1 aibi =
∑n−1

i=1 Ai(bi − bi+1) + Anbn with

Aj =
∑i

j=1 aj) we obtain that

∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣

=

∣∣∣∣ T∑
t=1

wt,T (u, h)
{

(ε̃it − ¯̃εi)− (ε̃jt − ¯̃εj)− σi(Zit − Z̄i) + σj(Zjt − Z̄j)
}∣∣∣∣

=
∣∣∣ T−1∑
t=1

Aij,t
(
wt,T (u, h)− wt+1,T (u, h)

)
+Aij,TwT,T (u, h)

∣∣∣,
where

Aij,t =
t∑

s=1

{
(ε̃is − ¯̃εi)− (ε̃js − ¯̃εj)− σi(Zit − Z̄i) + σj(Zjt − Z̄j)

}
.

Note that by construction Aij,T = 0 for all pairs (i, j). Denoting

WT (u, h) =
T−1∑
t=1

|wt+1,T (u, h)− wt,T (u, h)|,

we have

∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣ =

∣∣∣ T−1∑
t=1

Aij,t
(
wt,T (u, h)− wt+1,T (u, h)

)∣∣∣
≤WT (u, h) max

1≤t≤T
|Aij,t|.

(3.C.8)

Now consider max1≤t≤T |Aij,t|. Straightforward application of the triangle inequality pro-

vides the following bound:

max
1≤t≤T

|Aij,t| ≤ max
1≤t≤T

∣∣∣ t∑
s=1

ε̃is − σi
t∑

s=1

Zis

∣∣∣+ max
1≤t≤T

∣∣∣t(¯̃εi − σiZ̄i)∣∣∣
+ max

1≤t≤T

∣∣∣ t∑
s=1

ε̃js − σj
t∑

s=1

Zjs

∣∣∣+ max
1≤t≤T

∣∣∣t(¯̃εj − σjZ̄j)∣∣∣
≤2 max

1≤t≤T

∣∣∣ t∑
s=1

ε̃is − σi
t∑

s=1

Zis

∣∣∣+ 2 max
1≤t≤T

∣∣∣ t∑
s=1

ε̃js − σj
t∑

s=1

Zjs

∣∣∣
=2 max

1≤t≤T

∣∣∣ t∑
s=1

ε̃is − σi
t∑

s=1

(
Bi(s)− Bi(s− 1)

)∣∣∣
+ 2 max

1≤t≤T

∣∣∣ t∑
s=1

ε̃js − σj
t∑

s=1

(
Bj(s)− Bj(s− 1)

)∣∣∣
=2 max

1≤t≤T

∣∣∣ t∑
s=1

ε̃is − σiBi(t)
∣∣∣+ 2 max

1≤t≤T

∣∣∣ t∑
s=1

ε̃js − σjBj(t)
∣∣∣.
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Applying the strong approximation result (3.C.4), we can infer that

max
1≤t≤T

|Aij,t| = oP
(
T 1/q

)
. (3.C.9)

Standard arguments show that max(u,h)∈GT WT (u, h) = O(1/
√
Thmin). Plugging (3.C.9)

in (3.C.8), and taking the result together with (3.C.7) and plugging them in (3.C.6), we

can thus infer that∣∣Φ̃n,T − Φ�n,T
∣∣ ≤ (σ̃2

i + σ̃2
j

)−1/2
max

(u,h)∈GT
WT (u, h) max

1≤i<j≤n
max

1≤t≤T
|Aij,t|

= OP (1) ·O
( 1√

Thmin

)
· oP

(
T 1/q

)
= oP

( T 1/q

√
Thmin

)
.

(3.C.10)

Now consider |Φ�n,T − Φn,T |. Trivially,

∣∣Φ�n,T − Φn,T

∣∣ ≤ max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣ φij,T (u, h)

{σ̃2
i + σ̃2

j }1/2
−

φij,T (u, h)

{σ2
i + σ2

j }1/2
∣∣∣

≤ max
1≤i<j≤n

(∣∣∣(σ̃2
i + σ̃2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2
∣∣∣ max

(u,h)∈GT
|φij,T (u, h)|

)
(3.C.11)

Since σ̃2
i = σ2

i + oP (ρT ) by the note above and σ̂2
i = σ2

i + oP (ρT ) by our assumptions, we

have that

max
1≤i<j≤n

∣∣∣(σ̃2
i + σ̃2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2
∣∣∣ = oP (ρT ). (3.C.12)

Then, φij,T (u, h) =
∑T

t=1wt,T (u, h) (σiZit − σjZjt)−
∑T

t=1wt,T (u, h) (σiZ̄i − σjZ̄j), where

the first part is distributed as N(0, σ2
i +σ2

j ) and the second part is distributed as N
(

0, (σ2
i +

σ2
j )(
∑T

t=1wt,T (u, h))2/T
)

for all (u, h) ∈ GT and all 1 ≤ i < j ≤ n. Note that (
∑T

t=1wt,T (u, h))2 ≤
C ·T by (3.C.33), |GT | = O(T θ) for some large but fixed constant θ by Assumption (C12),

n is fixed. Hence, by the well-known results in probability theory,

max
1≤i<j≤n

max
(u,h)∈GT

∣∣φij,T (u, h)
∣∣ = OP (

√
log T ), (3.C.13)

which together with (3.C.11) and (3.C.12) leads to

∣∣Φ�n,T − Φn,T

∣∣ = oP (ρT ) ·OP (
√

log T ) = oP (ρT
√

log T ). (3.C.14)

Plugging (3.C.10) and (3.C.14) in (3.C.5) completes the proof.
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Step 2

In this step, we establish some properties of the Gaussian statistic Φn,T defined in (3.3.10).

We in particular show that Φn,T does not concentrate too strongly in small regions of the

form [x− δT , x+ δT ] with δT converging to zero.

The main technical tool for proving these results (specifically, Proposition 3.C.10) are

anti-concentration bounds for Gaussian random vectors. The following proposition slightly

generalizes anti-concentration results derived in Chernozhukov et al. (2015), in particular

Theorem 3 therein.

Proposition 3.C.9. Khismatullina and Vogt (2020) Let (X1, . . . , Xp)
> be a Gaussian

random vector in Rp with E[Xj ] = µj and Var(Xj) = σ2
j > 0 for 1 ≤ j ≤ p. Define

µ = max1≤j≤p |µj | together with σ = min1≤j≤p σj and σ = max1≤j≤p σj. Moreover, set

ap = E[max1≤j≤p(Xj − µj)/σj ] and bp = E[max1≤j≤p(Xj − µj)]. For every δ > 0, it holds

that

sup
x∈R

P
(∣∣ max

1≤j≤p
Xj − x

∣∣ ≤ δ) ≤ Cδ{µ+ ap + bp +
√

1 ∨ log(σ/δ)
}
,

where C > 0 depends only on σ and σ.

Proposition 3.C.10. Under the conditions of Theorem 3.4.1, it holds that

sup
x∈R

P
(
|Φn,T − x| ≤ δT

)
= o(1), (3.C.15)

where δT = T 1/q/
√
Thmin + ρT

√
log T .

Proof of Proposition 3.C.10. We write x = (u, h) along with GT = {x : x ∈ GT } =

{x1, . . . , xp}, where p := |GT | ≤ O(T θ) for some large but fixed θ > 0 by our assumptions.

Moreover, for k = 1, . . . , p, we set

Uij,2k−1 =
φij,T (xk1, xk2)

{σ2
i + σ2

j }1/2
− λ(xk2)

Uij,2k = −
φij,T (xk1, xk2)

{σ2
i + σ2

j }1/2
− λ(xk2)

with xk = (xk1, xk2). This notation allows us to write

Φn,T = max
1≤i<j≤n

max
1≤k≤2p

Uij,k = max
1≤l≤(n−1)np

U ′l

where (U ′1, . . . , U
′
(n−1)np)

> ∈ Rn(n−1)p is a Gaussian random vector with the following

properties: (i) µl := E[U ′l ] = {E[Uij,2k] or E[Uij,2k−1]} = −λ(xk2) and thus

µ = max
1≤l≤(n−1)np

|µl| ≤ C
√

log T ,

and (ii) σ2
l := Var(U ′l ) = 1 for all 1 ≤ l ≤ (n − 1)np. We would like to apply

Proposition 3.C.9 (Proposition S.3 in Khismatullina and Vogt (2020)) to (U ′1, . . . , U
′
(n−1)np)

>,
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and for this, we need to check the assumptions therein. First,

a(n−1)np := E
[

max
1≤j≤(n−1)np

(U ′l − µj)/σj
]

= E
[

max
1≤j≤(n−1)np

(U ′l − µj)
]

=: b(n−1)np.

Moreover, as the variables (U ′l − µl)/σl are standard normal, we have that

a(n−1)np = b(n−1)np ≤ C
√

log((n− 1)np) ≤ C
√

log T . With this notation at hand, we

can apply Proposition 3.C.9 to obtain that

sup
x∈R

P
(∣∣Φn,T − x

∣∣ ≤ δT) ≤ CδT [√log T +
√

log(1/δT )
]

= o(1)

with δT = T 1/q/
√
Thmin + ρT

√
log T , which is the statement of Proposition 3.C.10.

Step 3

Lemma 3.C.10. Khismatullina and Vogt (2020) Let VT and WT be real-valued random

variables for T = 1, 2, . . . such that VT −WT = op(δT ) with some δT = o(1). If

sup
x∈R

P(|VT − x| ≤ δT ) = o(1),

then

sup
x∈R

∣∣P(VT ≤ x)− P(WT ≤ x)
∣∣ = o(1).

Applying Lemma 3.C.10 to Φ̃n,T and Φn,T (taking VT = Φn,T and WT = Φ̃n,T ) together

with the results (3.C.3) and (3.C.15) and noting the fact that Φ̃n,T is distributed as
̂̂
Φn,T

for any n ≥ 2, T ≥ 1 immediately leads to

sup
x∈R

∣∣P(
̂̂
Φn,T ≤ x)− P(Φn,T ≤ x)

∣∣ = o(1). (3.C.16)

Step 4

As was already mentioned in Step 1, the statistics
̂̂
Φn,T can be viewed as an approximation

of the statistics Φ̂n,T . Heuristically, the kernel averages
̂̂
φij,T (u, h) are close to the kernel

averages φ̂ij,T (u, h) because of the properties of our estimators β̂i,
̂̂σ2

i and assumptions on

Xit. In the following two propositions we prove it formally.

Proposition 3.C.11. For any x ∈ R and any γ > 0, we have

P
(̂̂

Φn,T ≤ x− γ
)
−P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)
≤ P(Φ̂n,T ≤ x)

≤ P
(̂̂

Φn,T ≤ x+ γ
)

+ P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)
.

(3.C.17)

Proof of Proposition 3.C.11. From the law of total probability and the monotonic
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property of the probability function, we have

P(Φ̂n,T ≤ x) = P
(

Φ̂n,T ≤ x,
∣∣̂̂Φn,T − Φ̂n,T

∣∣ ≤ γ)+ P
(

Φ̂n,T ≤ x,
∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)

≤ P
(

Φ̂n,T ≤ x, Φ̂n,T − γ ≤
̂̂
Φn,T ≤ Φ̂n,T + γ

)
+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)

≤ P
(̂̂

Φn,T ≤ x+ γ
)

+ P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)
.

Analogously,

P(
̂̂
Φn,T ≤ x− γ) ≤ P

(
Φ̂n,T ≤ x

)
+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γ
)
.

Combining these two inequalities together, we arrive at the desired result.

The aim of the next proposition is to determine the sequence of values of γn,T that

may depend on n and T such that the difference between the distributions of Φ̂n,T and̂̂
Φn,T is not too big. In other words,

Proposition 3.C.12. There exists a sequence of positive random numbers {γn,T }T , that

converges to 0 as T →∞, such that

P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
= o(1). (3.C.18)

Proof of Proposition 3.C.12. Straightforward calculations yield that

∣∣̂̂Φn,T − Φ̂n,T

∣∣ ≤ max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣∣∣∣
̂̂
φij,T (u, h)(̂̂σ2

i + ̂̂σ2

j

)1/2 − ̂̂
φij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2
∣∣∣∣∣∣

+ max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣∣∣∣
̂̂
φij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2 − φ̂ij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2
∣∣∣∣∣∣ .

Obviously,

max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣∣∣∣
̂̂
φij,T (u, h)(̂̂σ2

i + ̂̂σ2

j

)1/2 − ̂̂
φij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2
∣∣∣∣∣∣

≤ max
1≤i<j≤n

(∣∣∣(̂̂σ2

i + ̂̂σ2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2
∣∣∣ max

(u,h)∈GT

∣∣∣∣ ̂̂φij,T (u, h)

∣∣∣∣)
and

max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣∣∣∣
̂̂
φij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2 − φ̂ij,T (u, h)(
σ̂2
i + σ̂2

j

)1/2
∣∣∣∣∣∣

≤ max
1≤i<j≤n

((
σ̂2
i + σ̂2

j

)−1/2
max

(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)− φ̂ij,T (u, h)
∣∣∣).
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Furthermore, the difference of the kernel averages
̂̂
φij,T (u, h) − φ̂ij,T (u, h) does not

include the error term (it cancels out) and can be written as

∣∣∣ ̂̂φij,T (u, h)− φ̂ij,T (u, h)
∣∣∣ =

∣∣∣ T∑
t=1

wt,T (u, h)
{

(βi − β̂i)
>(Xit − X̄i)− (βj − β̂j)

>(Xjt − X̄j)
}∣∣∣

≤
∣∣∣(βi − β̂i)

>
T∑

t=1

wt,T (u, h)Xit

∣∣∣+
∣∣(βi − β̂i)

>X̄i

∣∣∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣

+
∣∣∣(βj − β̂j)

>
T∑

t=1

wt,T (u, h)Xjt

∣∣∣+
∣∣(βj − β̂j)

>X̄j

∣∣∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣

Hence,

∣∣̂̂Φn,T − Φ̂n,T

∣∣ ≤ max
1≤i<j≤n

∣∣∣(̂̂σ2

i + ̂̂σ2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2∣∣ max
1≤i<j≤n

max
(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)
∣∣∣

+ 2 max
1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
max

1≤i≤n
max

(u,h)∈GT

∣∣∣(βi − β̂i)> T∑
t=1

wt,T (u, h)Xit

∣∣∣
+ 2 max

1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
max

1≤i≤n

∣∣(βi − β̂i)>X̄i

∣∣ max
(u,h)∈GT

∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣.

(3.C.19)

We consider each of the three summands separately.

We start by looking at the first summand in (3.C.19). Since ̂̂σ2

i = σ2
i + oP (ρT ) and

σ̂2
i = σ2

i + oP (ρT ) by our assumptions, we have that

max
1≤i<j≤n

∣∣∣(̂̂σ2

i + ̂̂σ2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2
∣∣∣ = oP (ρT ). (3.C.20)

Then, we investigate max(u,h)∈GT
∣∣ ̂̂φij,T (u, h)

∣∣. Specifically, we are interested in its dis-

tribution. We know by Proposition 3.C.8 that there exists φ̃ij,T (u, h) that has the same

distribution as
̂̂
φij,T (u, h) for all 1 ≤ i < j ≤ n and all (u, h) ∈ GT .

P
(

max
(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)
∣∣∣ ≤ C) = P

(
max

(u,h)∈GT

∣∣∣φ̃ij,T (u, h)
∣∣∣ ≤ C) .

So instead of looking at the distribution of max(u,h)∈GT
∣∣ ̂̂φij,T (u, h)

∣∣, we now turn our

attention at the distribution of max(u,h)∈GT
∣∣φ̃ij,T (u, h)

∣∣ instead.

In bounding this probability, we can use the strategy from the second part of the proof

of Proposition 3.C.11. For any cT ∈ R (taking x = γ = cT /2) we have

P
(

max
(u,h)∈GT

|φij,T (u, h)| ≤ cT /2
)

≤ P
(

max
(u,h)∈GT

∣∣∣φ̃ij,T (u, h)
∣∣∣ ≤ cT)+ P

(∣∣∣∣ max
(u,h)∈GT

∣∣∣φ̃ij,T (u, h)
∣∣∣− max

(u,h)∈GT
|φij,T (u, h)|

∣∣∣∣ > cT
2

)
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≤ P
(

max
(u,h)∈GT

∣∣∣φ̃ij,T (u, h)
∣∣∣ ≤ cT)+ P

(
max

(u,h)∈GT

∣∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣∣ > cT

2

)
.

Hence,

P
(

max
(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)
∣∣∣ ≤ cT) = P

(
max

(u,h)∈GT

∣∣∣φ̃ij,T (u, h)
∣∣∣ ≤ cT)

≥ P
(

max
(u,h)∈GT

|φij,T (u, h)| ≤ cT /2
)
− P

(
max

(u,h)∈GT

∣∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣∣ > cT

2

)
.

(3.C.21)

By (3.C.14) we have

max
(u,h)∈GT

∣∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣∣ = oP

(
T 1/q

√
Thmin

)
.

Furthermore, φij,T (u, h) is distributed as N(0, σ2
i + σ2

j ) for all (u, h) ∈ GT and all

1 ≤ i < j ≤ n, and |GT | = O(T θ) for some large but fixed constant θ by

Assumption (C12). By the standard results from the probability theory, we know that

max
(u,h)∈GT

|φij,T (u, h)| = OP (
√

log T ).

Since T 1/q/
√
Thmin �

√
log T , we can take cT = o(

√
log T ) in (3.C.21) to get the following:

P
(

max
(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)
∣∣∣ ≤ cT)

≥ P
(

max
(u,h)∈GT

|φij,T (u, h)| ≤ cT
2

)
− P

(
max

(u,h)∈GT

∣∣∣φ̃ij,T (u, h)− φij,T (u, h)
∣∣∣ > cT

2

)
= 1− o(1)− o(1)

= 1− o(1),

which means that

max
(u,h)∈GT

∣∣∣ ̂̂φij,T (u, h)
∣∣∣ = oP (

√
log T ). (3.C.22)

Combining (3.C.20) and (3.C.22) and taking into consideration that n is fixed, we get

the following:

max
1≤i<j≤n

∣∣∣(̂̂σ2

i + ̂̂σ2

j

)−1/2 −
(
σ̂2
i + σ̂2

j

)−1/2
∣∣∣ max

1≤i<j≤n
max

(u,h)∈GT

∣∣ ̂̂φij,T (u, h)
∣∣

= oP (ρT ) · oP (
√

log T )

= oP (1)

(3.C.23)

since by our assumption ρT = O(
√
hmin/ log T ).
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Now we evaluate the second summand in (3.C.19).

First, by our assumptions σ̂2
i = σ2

i + oP (ρT ). Moreover, for all i ∈ {1, . . . , n} we know

that σ2
i 6= 0. Hence,

max
1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
= OP (1). (3.C.24)

Then, by Theorem 3.5.1, we know that

βi − β̂i = OP

( 1√
T

)
. (3.C.25)

Now consider
∑T

t=1wt,T (u, h)Xit. Without loss of generality, we can regard the covari-

ates Xit to be scalars Xit, not vectors. The proof in case of vectors proceeds analogously.

By construction the weights wt,T (u, h) are not equal to 0 if and only if

T (u− h) ≤ t ≤ T (u+ h). We can use this fact to rewrite

∣∣∣ T∑
t=1

wt,T (u, h)Xit

∣∣∣ =

∣∣∣∣ dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h)Xit

∣∣∣∣.
Note that

dT (u+h)e∑
t=bT (u−h)c

w2
t,T (u, h) =

T∑
t=1

w2
t,T (u, h) =

T∑
t=1

Λ2
t,T (u, h)∑T

s=1 Λ2
s,T (u, h)

= 1. (3.C.26)

Denoting by DT,u,h the number of integers between bT (u−h)c and dT (u+h)e incl. (with

obvious bounds 2Th ≤ DT,u,h ≤ 2Th+2) and using (3.C.26), we can normalize the weights

as follows:

dT (u+h)e∑
t=bT (u−h)c

(√
DT,u,h · wt,T (u, h)

)2
= DT,u,h.

According to Theorem 3.B.2 (Theorem 2(ii) in Wu and Wu (2016)), if we define the

weights from the theorem as at =
√
DT,u,h · wt,T (u, h), we can bound the probability as

follows:

P

∣∣∣∣ dT (u+h)e∑
t=bT (u−h)c

√
DT,u,h · wt,T (u, h)Xit

∣∣∣∣ ≥ x


≤ C1

(∑dT (u+h)e
t=bT (u−h)c |

√
DT,u,h · wt,T (u, h)|q′

)
||Xi·||q

′

q′,α

xq′
+ C2 exp

(
− C3x

2

DT,u,h||Xi·||22,α

)
,

(3.C.27)

where ||Xi·||qq,α is the dependence adjusted norm as defined by Definition 3.B.1. Taking
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any δ > 0 and applying Boole’s inequality and (3.C.27) subsequently, we get

P

 max
(u,h)∈GT

∣∣∣ dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h)Xit

∣∣∣ ≥ δ√T


≤
∑

(u,h)∈GT

P

∣∣∣ dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h)Xit

∣∣∣ ≥ δ√T


=
∑

(u,h)∈GT

P

∣∣∣ dT (u+h)e∑
t=bT (u−h)c

√
DT,u,h · wt,T (u, h)Xit

∣∣∣ ≥ δ√DT,u,hT


≤

∑
(u,h)∈GT

[
C1

(
√
DT,u,h)q

′(∑ |wt,T (u, h)|q′
)
||Xi·||q

′

q′,α(
δ
√
DT,u,hT

)q′ + C2 exp

(
−
C3

(
δ
√
DT,u,hT

)2
DT,u,h||Xi·||22,α

)]

=
∑

(u,h)∈GT

[
C1

(∑
|wt,T (u, h)|q′

)
||Xi·||q

′

q′,α(
δ
√
T
)q′ + C2 exp

(
− C3δ

2T

||Xi·||22,α

)]

≤ C1

T θ||Xi·||q
′

q′,α

T q′/2 · δq′
max

(u,h)∈GT

(∑dT (u+h)e

t=bT (u−h)c
|wt,T (u, h)|q′

)
+ C2T

θ exp

(
− C3δ

2T

||Xi·||22,α

)

= C
T θ−q

′/2

δq′
+ CT θ exp

(
−CTδ2

)
.

where the symbol C denotes a universal real constant that does not depend neither on T ,

nor on δ, and takes a different value on each occurrence. Here in the last equality we used

the following facts:

1. ||Xi·||q
′

q′,α = supt≥0(t + 1)α
∑∞

s=t δq′(Hi, s) < ∞ holds true since
∑∞

s=t δq′(Hi, s) =

O(t−α) by Assumption (C8);

2. max(u,h)∈GT

(∑dT (u+h)e
t=bT (u−h)c |wt,T (u, h)|q′

)
≤ 1 because for every x ∈ [0, 1] we have 0 ≤

xq
′/2 ≤ x ≤ 1. Thus, since

∑T
t=1w

2
t,T (u, h) = 1 by (3.C.26) we have

0 ≤ w2
t,T (u, h) ≤ 1 for all t ∈ {1, . . . , T} and all (u, h) ∈ GT , we get

0 ≤ |wt,T (u, h)|q′ = (w2
t,T (u, h))q

′/2 ≤ w2
t,T (u, h) ≤ 1.

This leads to a bound

max
(u,h)∈GT

 dT (u+h)e∑
t=bT (u−h)c

|wt,T (u, h)|q′
 ≤ max

(u,h)∈GT

 dT (u+h)e∑
t=bT (u−h)c

w2
t,T (u, h)

 = 1.

3. ||Xi·||22,α <∞ (follows from 1).

By Assumption (C6), θ− q′/2 < 0 and the term on the RHS of the above inequality is
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converging to 0 as T →∞ for any fixed δ > 0. Hence,

max
(u,h)∈GT

∣∣∣∣ dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h)Xit

∣∣∣∣ = oP (
√
T ),

and similarly,

max
(u,h)∈GT

∣∣∣∣ dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h)Xit

∣∣∣∣ = oP (
√
T ). (3.C.28)

Combining (3.C.24), (3.C.25) and (3.C.28), we get the following:

max
1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
max

1≤i≤n
max

(u,h)∈GT

∣∣∣(βi − β̂i)> T∑
t=1

wt,T (u, h)Xit

∣∣∣
= OP (1) ·OP (1/

√
T ) · oP (

√
T )

= oP (1).

(3.C.29)

Now consider the third summand in (3.C.19). Similarly as before,

max
1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
= OP (1) (3.C.30)

and

βi − β̂i = OP

( 1√
T

)
. (3.C.31)

Furthermore, by Proposition 3.B.7,

X̄i = oP (1). (3.C.32)

Finally, consider the local linear kernel weights wt,T (u, h) defined in (3.3.5). Again, by

construction the weights wt,T (u, h) are not equal to 0 if and only if

T (u−h) ≤ t ≤ T (u+h). We can use this fact to bound
∣∣∣∑T

t=1wt,T (u, h)
∣∣∣ for all (u, h) ∈ GT

using the Cauchy-Schwarz inequality:

∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣ =

∣∣∣∣∣∣
dT (u+h)e∑
t=bT (u−h)c

wt,T (u, h) · 1

∣∣∣∣∣∣
≤

√√√√√ dT (u+h)e∑
t=bT (u−h)c

w2
t,T (u, h)

√√√√√ dT (u+h)e∑
t=bT (u−h)c

12

=
√

1 ·
√
DT,u,h

≤
√

2Th+ 2

≤
√

2Thmax + 2



150 | Multiscale Testing for Equality of Nonparametric Trend Curves

≤
√
T + 2.

Hence,

max
(u,h)∈GT

∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣ = O(

√
T ). (3.C.33)

Combining (3.C.30), (3.C.31), (3.C.32) and (3.C.33), we get the following:

max
1≤i<j≤n

(
σ̂2
i + σ̂2

j

)−1/2
max

1≤i≤n

∣∣(βi − β̂i)>X̄i

∣∣ max
(u,h)∈GT

∣∣∣ T∑
t=1

wt,T (u, h)
∣∣∣

= OP (1) ·OP (1/
√
T ) · oP (1) ·O(

√
T )

= oP (1).

(3.C.34)

Plugging (3.C.23), (3.C.29) and (3.C.34) in (3.C.19), we get that
∣∣̂̂Φn,T − Φ̂n,T

∣∣ = oP (1)

and the statement of the theorem follows.

Step 5

Proposition 3.C.13. Under the conditions of Theorem 3.4.1, it holds that

sup
x∈R

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ = o(1). (3.C.35)

Proof of Proposition 3.C.13. First, we consider those x ∈ R such that

P(Φ̂n,T ≤ x) ≥ P(Φn,T ≤ x). Then by Proposition 3.C.11 for a sequence γn,T > 0

that satisfies the conditions of the Proposition 3.C.12 we have

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ = P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)

≤ P
(̂̂

Φn,T ≤ x+ γn,T

)
+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
− P

(
Φn,T ≤ x

)
= P

(̂̂
Φn,T ≤ x+ γn,T

)
− P

(
Φn,T ≤ x+ γn,T

)
+ P

(
Φn,T ≤ x+ γn,T

)
− P

(
Φn,T ≤ x

)
+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
≤ P

(̂̂
Φn,T ≤ x+ γn,T

)
− P

(
Φn,T ≤ x+ γn,T

)
+ P

(∣∣Φn,T − x
∣∣ ≤ γn,T)+ P

(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
.

Now consider such x ∈ R that P(Φ̂n,T ≤ x) < P(Φn,T ≤ x). Analogously,

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ ≤P(∣∣Φn,T − x

∣∣ ≤ γn,T)+ P
(

Φn,T ≤ x− γn,T
)

− P
(̂̂

Φn,T ≤ x− γn,T
)

+ P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
.

Note that since γn,T → 0, we can use the anti-concentration results (3.C.15) for the
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Gaussian statistic Φn,T : supx∈R P
(∣∣Φn,T − x

∣∣ ≤ γn,T) = o(1). Moreover,

P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
= o(1)

by Proposition 3.C.12 and this probability does not depend on x.

Thus,

sup
x∈R

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ ≤

≤ max

{
sup
x∈R

∣∣∣∣P(Φn,T ≤ x− γn,T
)
− P

(̂̂
Φn,T ≤ x− γn,T

)∣∣∣∣,
sup
x∈R

∣∣∣∣P(Φn,T ≤ x+ γn,T

)
− P

(̂̂
Φn,T ≤ x+ γn,T

)∣∣∣∣
}

+

+ sup
x∈R

P
(∣∣Φn,T − x

∣∣ ≤ γn,T)+ sup
x∈R

P
(∣∣̂̂Φn,T − Φ̂n,T

∣∣ > γn,T

)
=

= sup
y∈R

∣∣∣∣P(Φn,T ≤ y
)
− P

(̂̂
Φn,T ≤ y

)∣∣∣∣+ o(1) + o(1) = o(1).

Proof of Proposition 3.4.2

Proof. To start with, note that for some constant C we have

λ(h) =
√

2 log{1/(2h)} ≤
√

2 log{1/(2hmin)} ≤ C
√

log T . (3.C.36)

Write ψ̂ij,T (u, h) = ψ̂Aij,T (u, h) + ψ̂Bij,T (u, h) with

ψ̂Aij,T (u, h) =
T∑
t=1

wt,T (u, h)
{

(εit − ε̄i) + (βi − β̂i)>(Xit − X̄i)− m̄i,T

− (εjt − ε̄j)− (βj − β̂j)>(Xjt − X̄j) + m̄j,T

}
,

ψ̂BT (u, h) =
∑T

t=1
wt,T (u, h)

(
mi,T

( t
T

)
−mj,T

( t
T

))
,

where m̄i,T = T−1
∑T

t=1mi,T (t/T ).

Without loss of generality, consider the first scenario: by assumption, there exists

(u0, h0) ∈ GT with [u0 − h0, u0 + h0] ⊆ [0, 1] such that

mi,T (w)−mj,T (w) ≥ cT
√

log T/(Th0) (3.C.37)

for all w ∈ [u0− h0, u0 + h0]. Since the kernel K is symmetric and u0 = t/T for some t, it



152 | Multiscale Testing for Equality of Nonparametric Trend Curves

holds that ST,1(u0, h0) = 0 and thus,

wt,T (u0, h0) =
K
( t

T
−u0
h0

)
ST,2(u0, h0){∑T

t=1K
2
( t

T
−u0
h0

)
S2
T,2(u0, h0)

}1/2
(3.C.38)

=
K
( t

T
−u0
h0

)
{∑T

t=1K
2
( t

T
−u0
h0

)}1/2
≥ 0. (3.C.39)

Together with (3.C.37), this implies that

ψ̂Bij,T (u0, h0) ≥ cT
√

log T

Th0

T∑
t=1

wt,T (u0, h0). (3.C.40)

Using the Lipschitz continuity of the kernel K, we can show by some straightforward

arithmetic calculations that for any (u, h) ∈ GT and any natural number `,

∣∣∣ 1

Th

T∑
t=1

K
( t
T − u
h

)( t
T − u
h

)`
−
∫ 1

0

1

h
K
(w − u

h

)(w − u
h

)`
dw
∣∣∣ ≤ C

Th
, (3.C.41)

where the constant C does not depend on u, h and T . With the help of (3.C.41), we

obtain that for any (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1],

∣∣∣ T∑
t=1

wt,T (u, h)−
√
Th

κ

∣∣∣ ≤ C√
Th

, (3.C.42)

where κ = (
∫
K2(ϕ)dϕ)1/2 and the constant C does once again not depend on u, h and

T . From (3.C.42), it follows that
∑T

t=1wt,T (u, h) ≥
√
Th/(2κ) for sufficiently large T and

any (u, h) ∈ GT with [u− h, u+ h] ⊆ [0, 1]. This together with (3.C.40) allows us to infer

that

ψ̂Bij,T (u0, h0) ≥ cT
√

log T

2κ
(3.C.43)

for sufficiently large T .

Furthermore, since ψ̂Aij,T (u, h) = φ̂ij,T (u, h) + (m̄j,T − m̄i,T )
∑T

t=1wt,T (u, h), by the

arguments completely analogous to those for the proof of Proposition 3.C.12, we have

max
(u,h)∈GT

∣∣ψ̂Aij,T (u, h)
∣∣ = Op

(√
log T

)
. (3.C.44)

With the help of (3.C.43), (3.C.44) and (3.C.36) and the assumption that σ̂2
i = σ2

i +op(ρT ),

we finally arrive at

Ψ̂T ≥ max
1≤i<j≤n

max
(u,h)∈GT

|ψ̂Bij,T (u, h)|
{σ̂2

i + σ̂2
j }1/2

− max
1≤i<j≤n

max
(u,h)∈GT

{ |ψ̂Aij,T (u, h)|
{σ̂2

i + σ̂2
j }1/2

+ λ(h)

}
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= max
1≤i<j≤n

max
(u,h)∈GT

|ψ̂Bij,T (u, h)|
{σ̂2

i + σ̂2
j }1/2

+Op(
√

log T )

≥ cT
√

log T

2κ{σ̂2
i + σ̂2

j }1/2
+Op(

√
log T ). (3.C.45)

Since qT (α) = O(
√

log T ) for any fixed α ∈ (0, 1) and cT → ∞, (3.C.45) immediately

implies that P(Ψ̂T ≤ qT (α)) = o(1).

Proof of Proposition 3.4.3

Proof. By Proposition 3.C.13, we have

sup
x∈R

∣∣P(Φ̂n,T ≤ x)− P(Φn,T ≤ x)
∣∣ = o(1). (3.C.46)

By definition of the quantile qn,T (α), it holds that P(ΦT ≤ qn,T (α)) ≥ 1 − α, which

together with (3.C.46) immediately yields

P
(
Φ̂T ≤ qn,T (α)

)
≥ 1− α+ o(1). (3.C.47)

Now for the sake of simplifying notation, denote by M0 the set of quadruples

(i, j, u, h) ∈ {1 . . . , n}2 × GT that has the property that H
[i,j]
0 (u, h) is true. Analogously,

denote byM the full set of quadruples: M := {1 . . . , n}2×GT . Then we can write FWER

as

FWER(α) = P
(
∃(i, j, u, h) ∈M0 : |ψ̂0

ij,T (u, h)| > qn,T (α)
)

= P
(

max
(i,j,u,h)∈M0

|ψ̂0
ij,T (u, h)| > qn,T (α)

)
= P

(
max

(i,j,u,h)∈M0

|φ̂0
ij,T (u, h)| > qn,T (α)

)
≤ P

(
max

1≤i<j≤n
max

(u,h)∈GT
|φ̂0
ij,T (u, h)| > qn,T (α)

)
= P

(
Φ̂T > qn,T (α)

)
≤ α+ o(1),

where the third equality holds true because under H
[i,j]
0 (u, h), ψ̂0

ijk,T = φ̂0
ijk,T by the

observation in the beginning of Section 3.4.

Proof of Corollary 3.4.1

Proof. By Proposition 3.4.3,

1− α+ o(1) ≤ 1− FWER(α)

= P
(
@(i, j, u, h) ∈M0 : |ψ̂0

ij,T (u, h)| > qn,T (α)
)

= P
(
∀(i, j, u, h) ∈M0 : |ψ̂0

ij,T (u, h)| ≤ qn,T (α)
)
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= P
(
∀ i, j ∈ {1, . . . , n}, (u, h) ∈ GT such that

H
[i,j]
0 (u, h) is true : |ψ̂0

ij,T (u, h)| ≤ qn,T (α)
)
,

which gives the statement of Corollary 3.4.1.

3.D Asymptotic consistency of the estimators

3.D.1 Asymptotic consistency of β̂i

Before proceeding to the proof of Theorem 3.5.1, we first prove several auxiliary results.

In order to do that, we define the first-differenced regressors as follows.

∆Xit = Hi(Uit)−Hi(Uit−1) := ∆Hi(Uit).

Similarly,

∆εit = εit − εit−1 = Gi(Jit)−Gi(Jit−1) = ∆Gi(Jit).

We now can prove the following propositions.

Proposition 3.D.14. Under Assumptions (C4) and (C6), ||∆Hi(Uit)||4 <∞.

Proof of Proposition 3.D.14. By Assumption (C6) and the triangle inequality,

||∆Hi(Uit)||4 ≤ ||Hi(Uit)||4 + ||Hi(Uit−1)||4 <∞.

Proposition 3.D.15. Under Assumption (C9), ∆Xit (elementwise) and ∆εit are uncor-

related for each t ∈ {1, . . . , T}.

Proof of Proposition 3.D.15. By Assumption (C9),

E[∆Xit∆εit] = E
[
(Xit −Xit−1)(εit − εit−1)

]
= E[Xitεit]− E[Xit−1εit]− E[Xitεit−1] + E[Xit−1εit−1]

= E[Xit]E[εit]− E[Xit−1]E[εit]− E[Xit]E[εit−1] + E[Xit−1]E[εit−1]

=
(
E[Xit]− E[Xit−1]

)(
E[εit]− E[εit−1]

)
= E[∆Xit]E[∆εit]

Proposition 3.D.16. Define

∆Ui(Iit) := ∆Hi(Uit)∆Gi(Jit).

Under Assumptions (C2), (C3), (C6), (C7) and (C10), we have that∑∞
s=1 δ2(∆Ui, s) <∞.
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Proof of Proposition 3.D.16. By the triangle inequality and the definition of the phys-

ical dependence measure δ2, we have that

δ2(∆Ui, t) = ||∆Ui(Iit)−∆Ui(I ′it)||

= ||∆Hi(Uit)∆Gi(Jit)−∆Hi(U ′it)∆Gi(J ′it)||

= ||Hi(Uit)Gi(Jit)−Hi(Uit−1)Gi(Jit)−Hi(Uit)Gi(Jit−1) + Hi(Uit−1)Gi(Jit−1)

−Hi(U ′it)Gi(J ′it) + Hi(U ′it−1)Gi(J ′it) + Hi(U ′it)Gi(J ′it−1)−Hi(U ′it−1)Gi(J ′it−1)||

≤ ||Hi(Uit)Gi(Jit)−Hi(U ′it)Gi(J ′it)||+ ||Hi(Uit−1)Gi(Jit−1)−Hi(U ′it−1)Gi(J ′it−1)||

+ ||Hi(Uit−1)Gi(Jit)−Hi(U ′it−1)Gi(J ′it)||

+ ||Hi(Uit)Gi(Jit−1)−Hi(U ′it)Gi(J ′it−1)||

= δ2(Ui, t) + δ2(Ui, t− 1)

+ ||Hi(Uit−1)Gi(Jit)−Hi(U ′it−1)Gi(Jit) + Hi(U ′it−1)Gi(Jit)−Hi(U ′it−1)Gi(J ′it)||

+ ||Hi(Uit)Gi(Jit−1)−Hi(U ′it)Gi(Jit−1) + Hi(U ′it)Gi(Jit−1)−Hi(U ′it)Gi(J ′it−1)||

≤ δ2(Ui, t) + δ2(Ui, t− 1)

+ ||
(
Hi(Uit−1)−Hi(U ′it−1)

)
Gi(Jit)||+ ||Hi(U ′it−1)

(
Gi(Jit)−Gi(J ′it)

)
||

+ ||
(
Hi(Uit)−Hi(U ′it)

)
Gi(Jit−1)||+ ||Hi(U ′it)

(
Gi(Jit−1)−Gi(J ′it−1)

)
||

≤ δ2(Ui, t) + δ2(Ui, t− 1)

+
(
δ2(Hi, t− 1) + δ2(Hi, t)

)
||Gi||+

(
δ2(Gi, t− 1) + δ2(Gi, t)

)
||Hi||.

Here U ′it = (. . . , ui(−1), u
′
i0, ui1, . . . , uit−1, uit), U ′i(t−1) = (. . . , ui(−1), u

′
i0, ui1, . . . , uit−1),

J ′it = (. . . , ηi(−1), η
′
i0, ηi1, . . . , ηit−1, ηit), J ′i(t−1) = (. . . , ηi(−1), η

′
i0, ηi1, . . . , ηit−1) are cou-

pled processes with u′i0 being an i.i.d. copy of ui0 and η′i0 being an i.i.d. copy of ηi0.

Therefore,

∞∑
s=1

δ2(∆Ui, s) ≤
∞∑
s=0

δ2(Ui, s) +
∞∑
s=1

δ2(Ui, s− 1)

+
∞∑
s=1

(
δ2(Hi, s− 1) + δ2(Hi, s)

)
||Gi||+

∞∑
s=1

(
δ2(Gi, s− 1) + δ2(Gi, s)

)
||Hi||.

By Assumptions (C2), (C3), (C6), (C7) and (C10), the RHS is finite. Statement of the

proposition follows.

Proposition 3.D.17. Under Assumptions (C1) - (C10),

∣∣∣ 1√
T

T∑
t=2

∆Xit∆εit

∣∣∣ = OP (1).

Proof of Proposition 3.D.17. For this proof, we will need the following notation:

Pi,t(·) := E[·|Iit]− E[·|Ii,t−1],
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κi :=
1

T − 1

T∑
t=2

∆Xit∆εit,

κPi,s :=
1

T − 1

T∑
t=2

Pi,t−s
(
∆Xit∆εit

)
.

Since Pi,t(·) is a projection operator, we have that

||κPi,s||2 ≤
1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣Pi,t−s(∆Xit∆εit
)∣∣∣∣∣∣2

=
1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣E(∆Xit∆εit|Ii(t−s)
)
− E

(
∆Xit,s∆εit,s|Ii(t−s−1)

)∣∣∣∣∣∣2
=

1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣E(∆Xit∆εit|Ii(t−s)
)
− E

(
∆X′it,s∆ε

′
it,s|Ii(t−s)

)∣∣∣∣∣∣2,
where ∆X′it,s∆ε

′
it,s denotes ∆Xit∆εit with {ζi,t−s} replaced by its i.i.d. copy {ζ ′i,t−s}. In

this case E
(
∆X′it,s∆ε

′
it,s|Ii(t−s−1)

)
= E

(
∆X′it,s∆ε

′
it,s|Ii(t−s)

)
. Furthermore, by linearity of

the expectation and Jensen’s inequality, we have

||κPi,s||2 ≤
1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣E(∆Xit∆εit|Ii(t−s))− E(∆X′it,s∆ε
′
it,s|Ii(t−s))

∣∣∣∣∣∣2
≤ 1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣∆Xit∆εit −∆X′it,s∆ε
′
it,s

∣∣∣∣∣∣2
=

1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣∆Hi(Uit)∆Gi(Jit)−∆Hi(U ′it,s)∆Gi(J ′it,s)
∣∣∣∣∣∣2

=
1

(T − 1)2

T∑
t=2

∣∣∣∣∣∣∆Ui(Iit)−∆Ui(I ′it,s)
∣∣∣∣∣∣2

≤ 1

(T − 1)2

T∑
t=2

δ2
2(∆Ui, s)

=
1

T − 1
δ2

2(∆Ui, s)

with U ′it,s = (. . . , ui(t−s−1), u
′
i(t−s), ui(t−s+1), . . . , uit), u

′
i(t−s) being an i.i.d. copy of ui(t−s),

J ′it,s = (. . . , ηi(t−s−1), η
′
i(t−s), ηi(t−s+1), . . . , ηit), η

′
i(t−s) being an i.i.d. copy of ηi(t−s), and

ζ ′it = (u′it, η
′
it)
> and I ′i,t,s = (. . . , ζi(t−s−1), ζ

′
i(t−s), ζi(t−s+1), . . . , ζit). Moreover,

κi − Eκi =
1

T − 1

T∑
t=2

∆Xit∆εit − Eκi

=
1

T − 1

T∑
t=2

E(∆Xit∆εit|Iit)− Eκi
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=
1

T − 1

T∑
t=2

(
E(∆Xit∆εit|Iit)− E(Xit∆εit)

)
=

1

T − 1

T∑
t=2

∞∑
s=0

(
E(∆Xit∆εit|Ii(t−s))− E(∆Xit∆εit|Ii(t−s−1))

)
=

1

T − 1

T∑
t=2

∞∑
s=0

Pi,t−s(∆Xit∆εit) =

∞∑
s=0

κPi,s.

Thus, by Proposition 3.D.16,

||κi − Eκi|| ≤
∞∑
s=0

||κPi,s|| ≤
1√
T − 1

∞∑
s=0

δ2(∆Ui, s) = O

(
1√
T

)

Since Eκi = 0 by Proposition 3.D.15, we conclude that

∣∣∣∣∣∣ 1

T

T∑
t=2

∆Xit∆εit

∣∣∣∣∣∣ = O

(
1√
T

)
.

Therefore, the proposition follows.

Proof of Theorem 3.5.1. Before we begin, we need to introduce some additional nota-

tion that we will use throughout the proof. First, define ∆mit = mi

(
t
T

)
−mi

(
t−1
T

)
. Then,

by Assumption (C4), we can rewrite the first-differenced regressors ∆Xit as

∆Xit = Hi(Uit)−Hi(Uit−1) := ∆Hi(Uit)

with ∆Hi(Uit) := (∆Hi1,∆Hi2, . . . ,∆Hid)
>.

Similarly, by Assumption (C1), we have

∆εit = εit − εit−1 = Gi(Jit)−Gi(Jit−1) = ∆Gi(Jit).

Then, the differencing estimator β̂i can be written as

β̂i =
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit∆Yit

=
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit

(
∆X>itβi + ∆mit + ∆εit

)

= βi +
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit∆mit +
( T∑
t=2

∆Xit∆X>it

)−1
T∑
t=2

∆Xit∆εit.
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Hence,

√
T (β̂i − βi) =

( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆mit

+
( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆εit.

(3.D.1)

We look at the parts that constitute (3.D.1) independently and for clarification pur-

poses, we break the proof into three steps.

For the sake of simplicity, we focus our attention on the individual vector components

and we prove the necessary bounds and inequalities for each of the components separately,

combining them together in the end.

Step 1.

First, we take a closer look at the part of the first summand in (3.D.1), specifically,
1√
T

∑T
t=2 ∆Xit∆mit.

Fix j ∈ 1, . . . , d. By Chebyshev’s inequality, for any a > 0 we have

P

(
1

T

T∑
t=2

|∆Hij(Uit)| > a

)
≤

E
[(∑T

t=2 |∆Hij(Uit)|
)2]

(T − 1)2a2
(3.D.2)

and

E
[( T∑

t=2

|∆Hij(Uit)|
)2]

=
T∑
t=2

E
[
∆H2

ij(Uit)
]

+
T∑

t=2,s=2,
t6=s

E
[
|∆Hij(Uit)∆Hij(Uis)|

]
. (3.D.3)

Note that by the Cauchy-Schwarz inequality for all t and s we have

E
[
|Hij(Uit)Hij(Uis)|

]
≤
√
E
[
H2
ij(Uit)

]√
E
[
H2
ij(Uis)

]
= E

[
H2
ij(Ui0)

]
(3.D.4)

and

∣∣E[Hij(Uit)Hij(Uis)
]∣∣ ≤ E

[
|Hij(Uit)Hij(Uis)|

]
≤ E

[
H2
ij(Ui0)

]
.

Hence,

E
[
∆H2

ij(Uit)
]

= E
[
H2
ij(Uit)

]
− 2E [Hij(Uit)Hij(Uit−1)] + E

[
H2
ij(Uit−1)

]
≤ E

[
H2
ij(Ui0)

]
+ 2E

[
H2
ij(Ui0)

]
+ E

[
H2
ij(Ui0)

]
= 4E

[
H2
ij(Ui0)

]
and the first summand in (3.D.3) can be bounded by 4(T − 1)E

[
H2
ij(Ui0)

]
, where the

expectation is finite due to Assumption (C6).
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Now to the second summand in (3.D.3):

E
[
|∆Hij(Uit)∆Hij(Uis)|

]
≤ E

[
|Hij(Uit)Hij(Uis)|

]
+ E

[
|Hij(Uit−1)Hij(Uis)|

]
+ E

[
|Hij(Uit)Hij(Uis−1)|

]
+ E

[
|Hij(Uit−1)Hij(Uis−1)|

]
≤ 4E

[
H2
ij(Ui0)

]
,

where in the last inequality we used (3.D.4). This means that the second summand in

(3.D.3) can be bounded by 4(T − 1)(T − 2)E
[
H2
ij(Ui0)

]
.

Plugging these bounds in (3.D.3), we get

E

( T∑
t=2

∣∣∆Hij(Uit)
∣∣)2
 ≤ 4(T − 1)E

[
H2
ij(Ui0)

]
+ 4(T − 1)(T − 2)E

[
H2
ij(Ui0)

]
= 4(T − 1)2E

[
H2
ij(Ui0)

]
,

which together with (3.D.2) leads to 1
T

∑T
t=2

∣∣∆Hij(Uit)
∣∣ = OP (1).

Next, by the assumption in Theorem 3.5.1, mi(·) is Lipschitz continuous, that is,

|∆mit| =
∣∣mi

(
t
T

)
−mi

(
t−1
T

)∣∣ ≤ C 1
T for all t ∈ {1, . . . , T} and some constant C > 0.

Hence,

∣∣∣ 1√
T

T∑
t=2

∆Hij(Uit)∆mit

∣∣∣ ≤ 1√
T

T∑
t=2

∣∣∆Hij(Uit)
∣∣ · ∣∣∆mit

∣∣
≤ C√

T
· 1

T

T∑
t=2

|∆Hij(Uit)|

= OP

( 1√
T

)
.

Since it holds for each j ∈ {1, . . . , d} (and d is fixed), it is obvious that

1√
T

T∑
t=2

∆Xit∆mit =
1√
T

T∑
t=2

∆Hi(Uit)∆mit = OP

( 1√
T

)
. (3.D.5)

Step 2.

Now we look at the other part of the first summand in (3.D.1), specifically,(
1
T

∑T
t=2 ∆Xit∆X>it

)−1
. Using similar arguments as in Step 1 and applying Proposition

3.D.14, we can show that

∣∣∣ 1

T

T∑
t=2

∆Hij(Uit)∆Hik(Uit)
∣∣∣ = OP (1),
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for each j, k ∈ {1, . . . , d}, which trivially leads to

∣∣∣ 1

T

T∑
t=2

∆Hi(Uit)∆Hi(Uit)>
∣∣∣ =

∣∣∣ 1

T

T∑
t=2

∆Xit∆X>it

∣∣∣ = OP (1),

where |A| with A being a matrix is any matrix norm.

Furthermore, by Assumption (C5), we know that E[∆Xit∆X>it ] = E[∆Xi0∆X>i0] is

invertible, thus, ∣∣∣∣∣( 1

T

T∑
t=2

∆Xit∆X>it

)−1
∣∣∣∣∣ = OP (1). (3.D.6)

Step 3

Here we turn our attention to the second summand in (3.D.1). We already know that∣∣∣( 1
T

∑T
t=2 ∆Xit∆X>it

)−1
∣∣∣ = OP (1). Moreover, by Proposition 3.D.17,

∣∣∣∣ 1√
T

T∑
t=2

∆Xit∆εit

∣∣∣∣ = OP (1).

Taking these two facts together, we have that

( 1

T

T∑
t=2

∆Xit∆X>it

)−1 1√
T

T∑
t=2

∆Xit∆εit = OP (1). (3.D.7)

Finally, from (3.D.5) and (3.D.6) we get that the first summand in (3.D.1) isOP (1/
√
T ),

and by (3.D.7) the second summand is OP (1). The statement of the theorem follows.

3.D.2 Asymptotic consistency of σ̂2
i

Lemma 3.D.11. Let sT � T 1/3. Then, under Assumptions (C1) - (C10), for each

i ∈ {1, . . . , n} we have

σ̂2
i = σ2

i +OP (T−1/3).

where σ̂2
i is the subseries variance estimate of σ2

i introduced by (3.5.4).

Proof of Lemma 3.D.11. For notational convenience, we let Y ∗it = Yit − β>i Xit. Note

that

Y ∗i(t+msT ) − Y
∗
i(t+(m−1)sT ) = αi +mi

(
t+msT

T

)
+ εi(t+msT )

− αi −mi

(
t+ (m− 1)sT

T

)
+ εi(t+(m−1)sT )

= mi

(
t+msT

T

)
+ εi(t+msT ) −mi

(
t+ (m− 1)sT

T

)
+ εi(t+(m−1)sT )

= Y ◦i(t+msT ) − Y
◦
i(t+(m−1)sT ),
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where Y ◦it is the dependent variable in a well-studied standard nonparametric regression

discussed in Section 3.3.1.

Now, using simple arithmetic calculations, we can rewrite σ̂2
i as

σ̂2
i =

1

2(M − 1)sT

M∑
m=1

[
sT∑
t=1

(
Y ◦i(t+msT ) − Y ◦i(t+(m−1)sT )

)]2

+
1

2(M − 1)sT

M∑
m=1

[
sT∑
t=1

(β̂i − βi)
> (Xi(t+msT ) −Xi(t+(m−1)sT )

)]2
(3.D.8)

− 1

(M − 1)sT

M∑
m=1

[
sT∑
t=1

(
Y ◦i(t+msT ) − Y ◦i(t+(m−1)sT )

) sT∑
t=1

(β̂i − βi)
> (Xi(t+msT ) −Xi(t+(m−1)sT )

)]
,

By Carlstein (1986) and Wu and Zhao (2007), we have

1

2(M − 1)sT

M∑
m=1

[
sT∑
t=1

(
Y ◦i(t+msT ) − Y

◦
i(t+(m−1)sT )

)]2

= σ2
i +OP (T−1/3). (3.D.9)

Furthermore, by our assumption that sT � T 1/3, Assumption (C5) and Theorem 3.5.1,

we have

1

2(M − 1)sT

M∑
m=1

[
sT∑
t=1

(β̂i − βi)>
(
Xi(t+msT ) −Xi(t+(m−1)sT )

)]2

= OP (T−2/3). (3.D.10)

Finally, applying (3.D.9) and (3.D.10) together with the Cauchy-Schwarz inequality, we
obtain

1

(M − 1)sT

M∑
m=1

[
sT∑
t=1

(
Y ◦i(t+msT ) − Y

◦
i(t+(m−1)sT )

) sT∑
t=1

(β̂i − βi)
> (Xi(t+msT ) −Xi(t+(m−1)sT )

)]
= OP (T−1/3).

(3.D.11)

Applying (3.D.9) - (3.D.11) to (3.D.8), the lemma trivially follows.
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Bakirov, N. K., Rizzo, M. L. and Székely, G. J. (2006). A multivariate nonpara-

metric test of independence. Journal of multivariate analysis, 97 1742–1756.

Benner, T. C. (1999). Central england temperatures: long-term variability and telecon-

nections. International Journal of Climatology, 19 391–403.

Berkes, I., Liu, W. and Wu, W. B. (2014). Komlós-Major-Tusnády approximation
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Härdle, W. and Marron, J. S. (1990). Semiparametric comparison of regression curves.

Annals of Statistics, 18 63–89.

Herrmann, E., Gasser, T. and Kneip, A. (1992). Choice of bandwidth for kernel

regression when residuals are correlated. Biometrika, 79 783–795.

Hidalgo, J. and Lee, J. (2014). A CUSUM test for common trends in large heteroge-

neous panels. In Essays in Honor of Peter C. B. Phillips. Emerald Group Publishing

Limited, 303–345.

Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1

69–91.

Karoly, D. J. and Wu, Q. (2005). Detection of regional surface temperature trends.

Journal of Climate, 18 4337–4343.

http://www.bsg.ox.ac.uk/covidtracker
http://www.bsg.ox.ac.uk/covidtracker


Bibliography | 165

Khismatullina, M. and Vogt, M. (2020). Multiscale inference and long-run variance

estimation in non-parametric regression with time series errors. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 82 5–37.

Khismatullina, M. and Vogt, M. (2021). Nonparametric comparison of epidemic time

trends: the case of covid-19. arXiv preprint arXiv:2007.15931.

Kim, K. H. (2016). Inference of the trend in a partially linear model with locally stationary

regressors. Econometric Reviews, 35 1194–1220.

King, E. C., Hart, J. D. and Wehrly, T. E. (1991). Testing the equality of regression

curves using linear smoothers. Statistics & Probability Letters, 12 239–247.

Kulasekera, K. B. (1995). Comparison of regression curves using quasi-residuals. Jour-

nal of the American Statistical Association, 90 1085–1093.

Lavergne, P. (2001). An equality test across nonparametric regressions. Journal of

Econometrics, 103 307–344.

Ledoux, M. (2001). Concentration of Measure Phenomenon. American Mathematical

Society.

Li, D., Chen, J. and Gao, J. (2010). Nonparametric time-varying coefficient panel data

models with fixed effects. The Econometrics Journal, 14 387–408.

Marron, J. S., Adak, S., Johnstone, I. M., Neumann, M. and Patil, P. (1998).

Exact risk analysis of Wavelet regression. Journal of Computational and Graphical

Statistics, 7 278–309.

McCullagh, P. and Nelder, J. (1989). Generalized linear models. Chapman and Hall.
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