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Abstract

In this thesis, experiments performed in a quantum simulator for the two-dimensional and an
extended Hubbard model are presented. The lowest two hyperfine states of fermionic potassium
atoms are used to realise the model’s spin-1/2 particles. They are probed in an optical lattice
potential, located inside a vacuum chamber and observed using high-resolution imaging. We
prepare a stack of either quasi-two-dimensional or bilayer lattice structures , which we then read out
using radio-frequency tomography with single-plane resolution. We are able to perform localised
magnetisation and density measurements by simultaneous detection of either singly-occupied sites
of both spin states or the doubly-occupied sites relative to the singly-occupied ones.

We have experimentally verified a particle-hole symmetry of the Hubbard model, which maps
density to spin degrees of freedom and also connects the attractive to the repulsive interaction side
of the phase diagram. This mapping was achieved by performing measurements of density-doped
and spin-imbalanced systems at both repulsive and attractive interaction strengths, which led to
the observation of the equivalent of a Mott-insulating behaviour in a spin-imbalanced system with
attractive on-site interactions.

Another result of this work was the first observation of competing magnetic orders in a bilayer
Hubbard model. We prepared this bilayer through an entropy engineering scheme that created
a highly filled two-dimensional band insulator and subsequently split it into two layers using a
superlattice. Varying the tunnelling amplitude between both layers, we observed a crossover of the
dominance of intra- to inter-layer spin correlations. Over different interaction strengths, we have
identified two regimes with the same characteristic behaviour as expected for the low-temperature
phase diagram of the bilayer Hubbard model.
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CHAPTER 1

Introduction

For a physicist, complexity can be a double-edged sword. On the one hand, complexity in a physical
problem usually adds to its richness and increases the general interest its solution could gain. On the
other hand, however, complexity can render the question hard or even impossible to solve. Dealing
with this trade-off between complexity and possible understanding might be at the core of the work
of any physicist. The equation of motion of two masses interacting through gravity can be solved
analytically, however, it is a relatively simple system to begin with and is limited in describing, for
example, the motion of the moon. Adding complexity by introducing another heavy mass, however,
renders this general three-body problem already unsolvable by analytic means alone [2]. Numerical
simulations still provide a suitable solution to most of these analytically unsolvable problems. This
is not the case any more when dealing with quantum physics, where the exponential growth of the
parameter space and computation time with system size critically limits the feasibility of numerical
simulations. The complexity required to describe many-body physics on the smallest energy scales,
therefore, restricts the access we have to its solutions. There have been some successful approaches
to ease this issue.

In solid-state physics, the second quantisation formalism allowed for a simpler description of
the Hamiltonian for quantum many-body problems. Here the Hubbard model [3–6] for a strongly
interacting electron gas in an ionic lattice was successful in describing macroscopic conduction
features in a solid [7]. This rather simple model, allowing electrons to move discretised from
site to site with only on-site interactions, was early on predicted to enable the description of
high-temperature superconductivity [8]. Still, issues like the fermion sign-problem for quantum
Monte-Carlo simulations [9] render the numerical simulation of larger systems with long-range
correlations nearly impossible. A way to reduce the complexity of this computational problem is
the use of symmetries in the system. Luckily the Hubbard Hamiltonian is rich in these symmetries,
which help ease or avoid the sign-problem and allow a simulation in some parameter ranges [10].
One part of this thesis is dedicated to the analysis of one particularly interesting symmetry of the
Hubbard model.

Another road to investigate quantum many-body systems is to simulate or mimic their behaviour
using platforms made out of quantum matter instead of digital computers. This analogue quantum
simulation is at the core of this thesis. Starting with the Hamiltonian we would like to investigate,
we are required to create a system that directly reproduces this Hamiltonian. With such a simulator,
we are able to measure states and energies of a system acting and evolving under the laws of
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Chapter 1 Introduction

quantum physics. It moves the complexity of a nearly impossible numerical calculation to the
technical complexity of control and detection of the quantum matter making up the simulator. In
this regard, it is not a competitor to numerical simulations, but one of two different approaches that
can complement and cross-check each other.

Many different platforms have been shown to be suitable for quantum simulation like trapped ions,
quantum dots, super conducting circuits and more [11]. The choice of a quantum platform depends
heavily on its suitability to simulate the required Hamiltonian. For example, the two-dimensional
Hubbard model has been successfully simulated with neutral atoms in optical lattices in various
groups worldwide [12–17]. In this thesis, I present new results obtained from a setup using fermionic
potassium atoms, that has been build and improved over the last decade [18–24].

While the two-dimensional Hubbard model is fascinating and challenging, it might be missing
crucial ingredients to explain the mechanisms of high-temperature superconductivity [25, 26]. By
extending the Hubbard model with additional terms, we increase the complexity of the physical
problem but might gain insights into the superconducting pairing mechanism. One interesting
extension to the two-dimensional Hubbard model is the introduction of a bilayer structure, where
two lattice layers are coupled with each other. It is assumed to enrich the phase diagram of the
Hubbard model even more, while still maintaining its symmetries. The magnetic correlations
between the spins of two fermions are believed to play an elementary role in the formation of
superconducting pairs [27], so measuring the magnetic correlations in such systems is crucial to
foster our understanding of the underlying physics. In this thesis, I discuss the required experimental
modifications and calibrations to create a quantum simulator for a Hubbard bilayer model and present
the, to our knowledge, first magnetic correlation measurement in a quantum simulator of a cold
Hubbard bilayer.

Following this introduction, the Hubbard model is presented in chapter 2. After starting with the
limit of a single-site connected to a grand-canonical bath and the half-filled two-site system, the
phase diagram of the two-dimensional Hubbard model is discussed. Finally, we extend the Hubbard
model to a bilayer system with distinct new low-temperature phases.

Chapter 3 explores the requirements and tools necessary for a quantum simulator with ultracold
potassium atoms in optical lattices. The experimental setup including the most relevant electro-
optical systems is then described in chapter 4, as well as the tomographic detection of a single
two-dimensional lattice layer.

The aforementioned symmetries of the Hubbard model are the topic of chapter 5. One particu-
larly intriguing particle-exchange symmetry allows the connection of systems with attractive and
repulsive on-site interactions and at the same time between density-doped and spin-imbalanced
systems. By experimentally mapping results of these parameter spaces, we prove the validity of our
quantum simulation of the Hubbard Hamiltonian.

Chapter 6 discusses how we create a Hubbard bilayer system in our experiment and how the
bilayer parameters like inter-layer tunnelling and on-site interaction are characterised. Using these
results, chapter 7 then presents the detection of magnetic correlations in the bilayer in a wide
parameter space and illustrates the two distinct methods for intra- and inter-layer correlation
measurements.

An outlook to possible future work on the topics of this thesis is presented in chapter 8.
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CHAPTER 2

The Hubbard model

TheHubbard model has been used successfully throughout the years to simulate and help understand
the physics of condensed matter systems. It is, therefore, not surprising that this simple-to-describe
but hard-to-solve problem would be an ideal candidate for quantum simulation. This chapter will
introduce the Hubbard model and discuss the approximations and assumptions that are used to
obtain it. Furthermore, we will discuss solvable limiting cases, like the single-site and two-site
limit including potential tilts. The insights gained there will be used in the description of the phase
diagram of the two-dimensional Hubbard model. This basic model is then extended to describe two
interconnected two-dimensional Hubbard planes: the Hubbard bilayer.

2.1 Motivation and Hamiltonian

The Hubbard model presents a simple system which describes the interplay of kinetic energy and
interactions between fermionic particles, leading to insulating and magnetically ordered states [33,
34]. It is also predicted to feature a superconducting phase at low temperature, with the same
underlying mechanisms as in high-temperature superconductors like the cuprates [8]. Since its first
form was written down in 1963 and 1964 [3–6] it has been studied with a variety of computational
methods, from dynamical mean field approaches [35, 36] to tools like numerical linked cluster
expansion (NLCE) [37] and quantum Monte-Carlo (QMC) simulations [38, 39]. A special version of
the latter, the determinant quantum Monte-Carlo (DQMC) method was implemented in a toolset
provided by the group of R.T. Scalettar [40] which was then used in our group to compare and
evaluate experimental output. This is described in detail in [24].

Nevertheless, most of these numerical methods have shortcomings, for example, working only
at zero temperature, at finite size or only giving approximate solutions. Famously, the fermion
sign problem [9] makes it impossible to solve large QMC simulations on classical computers. Here,
quantum simulation with ultracold atoms provides an alternative route, which is described in detail
in the later chapter 3. First, we will explore the Hubbard model itself. A very good reference to start
with is provided in [33, 34], from which some of the following content is adapted and modified.

The Hubbard model describes spin-1/2 particles in a lattice structure, by using creation ĉ†i,σ and
annihilation operators ĉi,σ similar to those in a harmonic oscillator [33, 34]. Here, however, the index
i indicates a discrete position on a lattice with σ indicating the spin of the created or annihilated
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Chapter 2 The Hubbard model

a)

b) c) d)

Reservoir

Figure 2.1: The Hubbard model in two dimensions. a) Orange (blue) circles represent spin-up (-down)
fermionic particles, occupying sites on a discretised lattice structure. b) These particles can move or tunnel
from one site to another, thereby lowering their kinetic energy by −t. We restrict ourselves to the discussion
of nearest-neighbour tunnelling only. c) The maximal occupation number per site is 2, one spin-up and
one spin-down particle, due to the Pauli exclusion principle. These doubly occupied sites, called doubles,
experience an on-site interaction energy U , which is repulsive for U > 0 and attractive for U < 0. d) In the
grand-canonical description used in this thesis, the atom number is not fixed, but determined by the chemical
potential µ, which is the energy increase of adding one additional particle from a reservoir to the system.

particle. These are fermion operators, and therefore they obey anti-commutation relations:{
ĉi,σ, ĉ

†
j,σ

′

}
= δi,jδσ,σ′ (2.1){

ĉ†i,σ, ĉ
†
j,σ

′

}
= 0 (2.2){

ĉi,σ, ĉj,σ′

}
= 0 (2.3)

With this, we define the number operator, that counts the number of particles with spin σ on site i:

n̂i,σ = ĉ†i,σ ĉi,σ. (2.4)

We will employ the single-band approximation which combined with the Pauli-exclusion principle
means that we can only have one particle for each spin on a single lattice site i. We will discuss
this and other approximations in more detail in section 3.2. With these operators we can start to
describe a model which should have three ingredients: a kinetic part Ĥkin describing movement in
the lattice, an interaction term Ĥint which includes that energy can be raised or lowered if particles
interact with each other, and one that determines the overall particle number in the system Ĥchem-pot.
Figure 2.1 illustrates the model with the three terms which we will discuss in the following.

Kinetic term and tunnelling

We first describe the motion of a spin up (↑) particle sitting on lattice site i, going to another site j.
This we can do by first applying the annihilation operator ĉi,↑ on our initial state, and afterwards
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2.1 Motivation and Hamiltonian

create a particle with the same spin on the other site with the operator ĉ†j,↑. The connected kinetic
energy with this event is described by −tij , the tunnelling amplitude. It has a negative value, since
the spatial delocalisation of the particle allows for a reduction in kinetic energy. This tunnelling from
site i can theoretically go to any given site j and might have a position dependent amplitude. We
will, however, limit ourselves to allow only a movement from adjacent sites with a fixed amplitude,
the nearest-neighbour tunnelling t. The full kinetic term now is described by

Ĥkin = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
(2.5)

where 〈i, j〉 indicates that only combinations of i and j are considered with j neighbouring i.

On-site interaction

As a next step we would like to add interactions between the particles of our model. First, one has
to determine the type of interaction combined with a length scale or range. For the Hubbard model
the simplest interaction was chosen, a strictly local interaction, where particles only interact if both
are at the same location, in our case the same lattice site. Since Pauli blocking in combination with
the single band approximation prohibits two particles with equal spin to occupy the same site, this
interaction can only happen between particles with different spin. For attractive (repulsive) on-site
interaction the energy of the state gets lowered (raised) by |U | for each double site-occupancy. This
means that U > 0 describes repulsive interactions, whereas U < 0 leads to attractively interacting
particles. Therefore, the interaction term is written as

Ĥint = U
∑
i

n̂i,↑n̂i,↓. (2.6)

Particle filling and chemical potential

What is now missing is a way to describe how many particles are on the lattice we are investigating.
An elegant way to do this is to use the description of a grand canonical ensemble. In it we look at a
system with a given volume, i.e. the number of lattice sites and let the system be in contact with
a particle reservoir with a certain chemical potential µσ . Note that this chemical potential can be
different for each spin. Removing a particle from the system now has an energy cost of µσ , while
the insertion of it releases this energy. The chemical potential term now will be written as

Ĥchem-pot = −
∑
i,σ

µσn̂i,σ. (2.7)

The Hubbard Hamiltonian

Combining all of these terms we obtain the Hubbard Hamiltonian, which fully describes the model:

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑
i

n̂i,↑n̂i,↓ −
∑
i,σ

µσn̂i,σ (2.8)
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Chapter 2 The Hubbard model

a) b)
Reservoir

Figure 2.2: Single-site limit. a) A single site is connected to a particle reservoir (µ) and a thermal bath (T ).
The measurement basis consists of four states: an empty site |0〉, a singly occupied site of spin-up (down)
|↑〉( |↓〉), called single, or a doubly occupied site |↑↓〉 called double. b) This model can be solved analytically
even with interactions. The total particle occupation number of this site n(µ) is shown for three different
temperatures and repulsive interactions (U > 0). For low temperatures a feature similar to the so called
Mott-plateau appears, where the density stays constant n ≈ 1 around µ = 0. The figure is inspired by [33].

Adding constant energy terms does not influence the dynamics of the evolution or the solution in
general. For a fixed number of lattice sites the grand canonical description allows us to rewrite
the Hamiltonian in a way which will later become more handy, especially considering certain
symmetries of the Hubbard model, which we will discuss in detail in chapter 5.

Ĥ = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
+ U

∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
−
∑
i,σ

µσ
(
n̂i,σ − 1/2

)
(2.9)

This Hamiltonian can be used for one-, two- or three-dimensional systems. We continue with
discussing several configurations in the next sections, but for the majority of this thesis the two-
dimensional Hubbard Hamiltonian will be used. Most of the time we will investigate systems where
the chemical potential for both spins is equal, resulting in an even ratio of spin-up to spin-down
particles, the spin-balanced case. There we simplify further and assign a general chemical potential
without index µ = µ↑ = µ↓.

In the following, two toy models are presented, the single-site limit and the half-filled double-well,
forming the basic building blocks of the Hubbard model and giving insights into the properties of
the many-site models.

2.2 Single-site limit

In order to avoid the computational complexity of large systems and by choosing the minimal
size representation in the grand canonical description, we can start with a volume/site number of
just one site. Alternatively we can set t = 0, such that the only operators in the Hamiltonian in
equation 2.9 are the number operators n̂i,σ , which commute with all terms in the Hamiltonian itself
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2.3 The Hubbard double-well with two interacting fermions

[Ĥ, n̂i,σ] = 0. This means we can treat each site individually, again reaching the single-site limit.
The following discussion was mostly adapted from [33].

All four possible site occupations shown in figure 2.2 are eigenstates to this Hamiltonian, with
the following eigenenergies:

Ĥ |0〉 = (U/4− µ) |0〉
Ĥ |↑〉 = −U/4 |↑〉
Ĥ |↓〉 = −U/4 |↓〉
Ĥ |↑↓〉 = (U/4 + µ) |↑↓〉

With this diagonal form of the Hamiltonian and including a temperature with β = 1/kBT we can
calculate the partition function directly:

Z = Tr
[
e−βĤ

]
= e−β(U/4−µ) + 2e−β(−U/4) + e−β(U/4+µ) (2.10)

Similarly, expectation values of operators like the total number operator n̂ = n̂↑ + n̂↓ can be
computed:

〈n̂〉 = 〈n̂↑ + n̂↓〉 = Tr
[(
n̂↑ + n̂↓

)
e−βĤ

]
Z−1 =

(
2e−β(−U/4) + 2e−β(U/4−µ)

)
Z−1 (2.11)

With it we can investigate the changes of the site occupation while varying the reservoir properties
µ and T and also the interaction U . For repulsive interactions of U/h = 1500Hz the results of the
simulations with different temperatures are shown in figure 2.2 b). This n(µ, T ) = 〈n̂(µ, T )〉 is the
equation of state, that provides access to all thermodynamic variables of the system in equilibrium.
At µ = 0 we observe that on average we have one atom per site, half of the maximum of two
atoms. This fix point is the so-called half-filling, which is also present in the many-site Hubbard
Hamiltonian. Even in the single-site limit, we already observe the emergence of density ordering,
since for temperatures T much lower than the interaction strength U > 0, any double occupancy
is an excitation that is energetically unfavourable. Close to half-filling, we get a density plateau,
which has the size of ∆µ ≈ U . This is the so called Mott regime. As we have focused now on the
density, i.e. the average filling, we investigate how spin ordering arises in the following section.

2.3 The Hubbard double-well with two interacting fermions

The double-well is a model describing two sites, coupled by a tunnelling term t and with on-site
interaction U . Even though this is the bare minimal size for the Hubbard description with particle
hopping, it nevertheless encapsulates many of its aspects, since the tunnelling allows for a de-
localisation of the states, therefore, lowering their kinetic energy.

We start to investigate the upcoming competition of kinetic energy, interactions and later in this
section potential energy differences. In the following we will fix the filling to n = 1 and focus on
the case of a double-well filled with two fermions of opposite spin. There both particles are free
to move on either site, albeit with potential energy cost of U when being on the same one. With
the notation of |occupation left well, occupation right well〉, we can define a complete basis with
|↑↓, 0〉 , |↑, ↓〉 , |↓, ↑〉 , |0, ↑↓〉. Using this basis and allowing a transition between the states through
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Chapter 2 The Hubbard model

Figure 2.3: Eigenenergies of the balanced double-well. Plotted are the solutions to the Hamiltonian
described in equation 2.12. The energy of eigenstates consisting mostly of a superposition of doubly occupied,
i.e. |d+〉 , |d−〉 sites is close to linear in U for |U | � t. The ground state |3〉 is dominated by contributions of
doubles for large attractive interactions U < −t. However, this changes for repulsive interactions U � t,
where the ground state is close to a pure singlet state |s〉 and the difference to the triplet state |t〉 is determined
by the superexchange energy J .

tunnelling we are able to write the Hamiltonian as:

Ĥ =


U −t t 0
−t 0 0 −t
t 0 0 t
0 −t t U

 (2.12)

Diagonalising this matrix, we get the eigenenergies of the Hamiltonian:

λ1 = 0 (2.13)
λ2 = U (2.14)

λ3 = U/2−
√

4t2 + U2/4 (2.15)

λ4 = U/2 +

√
4t2 + U2/4. (2.16)

These eigenenergies are plotted in figure 2.3 as a function of U . For large values of U we can observe
a clear separation of two pairs of states with energy difference of approximately U , which arises
from contributions of the doubly occupied states. Additionally we see that while for repulsive
interactions U > 0 the low energy eigenstates are mostly dominated by the singly occupied sites
without the interaction energy shift U , doubly occupied state contributions are preferred on the
attractive interaction side U < 0. We now introduce the notation of calling these doubly occupied
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2.3 The Hubbard double-well with two interacting fermions

sites doubles in contrast to the singly occupied sites, the singles or the empty ones, the holes. We
start with an initial guess for a new basis of states, with two states consisting of doubles and two of
of singles only:

|d−〉 = (|↑↓, 0〉 − |0, ↑↓〉)/
√
2 (2.17)

|d+〉 = (|↑↓, 0〉+ |0, ↑↓〉)/
√
2 (2.18)

|s〉 = (|↑, ↓〉 − |↓, ↑〉)/
√
2 (2.19)

|t〉 = (|↑, ↓〉+ |↓, ↑〉)/
√
2. (2.20)

Because of their spin symmetry |s〉 is usually called the singlet and |t〉 the triplet state. Solving for
the exact eigenstates of the double-well Hamiltonian we get:

|1〉 = |t〉 (2.21)
|2〉 = |d−〉 (2.22)

|3〉 =
|s〉 − λ3

2t |d+〉√
1 +

(
λ3
2t

)2 (2.23)

|4〉 =
|s〉 − λ4

2t |d+〉√
1 +

(
λ4
2t

)2 . (2.24)

We can see that our initial guess already was correct for two eigenstates |1〉 , |2〉, which are also the
ones with the simplest eigenenergies of λ1 = 0, λ2 = U . The other two, |3〉 , |4〉 are mixtures of
states with singles and states with doubles, with the mixing ratio determined by U/t.

For our discussion about spin-spin correlations, we will focus on U � t. Here it is easy to see
that |3〉 ≈ |s〉 and |4〉 ≈ |d+〉. Additionally we can discard states with energy ≈ U in the following
as high energy excitations. In this limit we approximate the ground state energy to

λ3 =
U

2
−

√
4t2 +

U2

4
=
U

2
− U

2

√
16t2

U2 + 1 ≈ U

2
− U

2

(
8t2

U2 + 1

)
= −4t2

U
. (2.25)

This lowering of the energy by J = 4t2/U can be understood as a second order perturbation to
the singlet state, called superexchange. As shown in figure 2.4, even though a double occupancy is
energetically unfavourable, and thus particle hopping suppressed, the particles can switch places or
just lower their kinetic energy by tunnelling with an intermediate step through a double occupancy.
This is why the ground state is not a pure singlet, but has an admixture of double occupancies.

Following the perturbation approach one can derive this directly by assuming the tunnelling terms
in equation 2.12 (Ĥkin) are a perturbation and that the interaction Hamiltonian Ĥint = U

∑
i n̂i,↑n̂i,↓

is the unperturbed one [34]. The perturbative energy shift of the singlet |s〉 is then calculated as

∆E|s〉 = 〈s|Ĥkin|s〉 ≈ −
∑

|d〉=|↑↓,0〉,|0,↑↓〉

〈s|Ĥkin|d〉 〈d|Ĥkin|s〉
〈d|Ĥint|d〉

. (2.26)
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Chapter 2 The Hubbard model

Figure 2.4: The superexchange. For large repulsive interaction strength U � t direct tunnelling between
the bottom two states with singles only is suppressed due to the high energetic cost of a double occupancy.
By a virtual intermediate step to form an energetically unfavourable double, one can exchange the particles
and lower their kinetic energy by the superexchange energy J . This process does not have to result in the
exchange of particles, while still leading to a temporary delocalisation with a reduction in kinetic energy. The
same argument is valid as well for strong attractive interactions U � t with the virtual coupling between
both states with doubles, here in the upper part of the figure. Figure inspired by [41].

We start the calculation from the simple single term:

〈s|Ĥkin| ↑↓, 0〉 =
1√
2
(〈↑, ↓| − 〈↓, ↑|) (−t |↑, ↓〉+ t |↓, ↑〉) = −

√
2t. (2.27)

It is very important to note that for the triplet |t〉, because of its symmetry, this term would be zero.
Therefore, the triplet does not have an energy shift in this perturbation approach. For both virtual
states 〈d|Ĥint|d〉 = U , so

∆E ≈ −
∑

|d〉=|↑↓,0〉,|0,↑↓〉

(
−
√
2t
)2

U
= −2× 2t2

U
= −4t2

U
= −J. (2.28)

With this pertubative calculation we could reproduce the energy difference value of equation 2.25,
which indicates that the model of virtual hopping is valid for further discussions.

The superexchange allows for particle exchange even with strong repulsive interactions present,
which one would naively assume to be blocked and is present in all Hubbard models with repulsive
interactions. For attractive interactions a similar second order process allows a tightly bound double
to move, again lowering the energy of the state through delocalisation. As we will discuss in
section 2.4, this leads to antiferromagnetic spin ordering (U > 0) and the charge density wave (CDW)
density ordering (U < 0).

The tilted double-well

In the previous section, we discussed the two-site Hubbard model with two fermions of opposite
spin, where both sites have the same potential energy. We now will have a look at what happens if
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2.3 The Hubbard double-well with two interacting fermions

a) b)

2Δ

Figure 2.5: Eigenenergies and ground state composition of the tilted double-well. a) Eigenenergies
of the tilted double-well obtained by solving the Hamiltonian of equation 2.29 with repulsive interactions
U = +4t. For large site imbalance |∆| > U the on-site interaction is not sufficient any more to repel a double
occupancy of the lower site. b) This can be seen in the state decomposition of the ground state |λ1〉, which
has its most significant singles population when |∆| < U/2.

one lifts this degeneracy by introducing a site-dependent potential energy where 2∆ is the total
energy offset between the two sites, see inset of figure 2.5 a). In the following we will focus on two
points. First we will discuss how the ground state composition changes with respect to a varying ∆.
We then investigate how spin correlations form through a modified version of the superexchange
process.

The Hamiltonian will again be our starting point for calculating the eigenstates of a spin-balanced
system at half-filling and is written in the previously used basis |↑↓, 0〉 , |↑, ↓〉 , |↓, ↑〉 , |0, ↑↓〉:

Ĥ =


U + 2∆ −t t 0
−t 0 0 −t
t 0 0 t
0 −t t U − 2∆

 . (2.29)

By the choice of the symmetric offset around a mean potential energy, the energetic shift only
manifests in the double occupancies. In figure 2.5 a) the eigenenergies for U/t = 4 are shown. At
∆ = 0 we can identify the states with the solution to the balanced double-well from the previous
section, with the lowest two being the ones with only small admixture of doubles, close to the singlet
|s〉 and triplet |t〉 state. Once the detuning becomes the dominant energy scale, when |∆| > |U |, the
mostly doubly occupied states clearly separate, having an eigenenergy contribution proportional to
±2∆, in contrast to states with mostly singles that are balanced on both sides. The decomposition
of the ground state, i.e. the state with the lowest energy highlighted in blue, into the basis vectors
is shown in figure 2.5 b) as a function of site imbalance ∆. Here we plotted the absolute value
squared of the ground state amplitudes in the initial basis in which we have defined the Hamiltonian
of equation 2.29. For attractive interactions this distribution is similar, but compressed along the
∆-axis, since the doubles are energetically favourable, and remain dominant until both sites have
nearly the same potential ∆ ≈ 0. These findings will be later used in chapter 6.
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Chapter 2 The Hubbard model

Figure 2.6: Superexchange in a tilted double-well. Even with a site dependent energy offset, the virtual
interaction can occur via two intermediate states which are energetically non-degenerate. Those still allow
for tunnelling, but have to be included in the calculation of the effective superexchange coupling Jeff. The
figure is inspired by [42].

After the potential imbalance∆ has been introduced into the system the single particle tunnelling
has to change to an effective tunnelling teff that includes this site dependent energy offset. This
is similar as for a two-level system with off-resonant coupling, which we will discuss in the next
chapter. We can do this by solving the single particle Hamiltonian

Ĥ =

(
∆ −t
−t −∆

)
, (2.30)

where we used the basis of a particle being on the left |L〉 or right |R〉 site. The resulting difference
in the eigenenergies is the new effective tunnelling

teff =

√
t2 +∆2. (2.31)

With the tunnelling modified, the question arises how the superexchange of two particles of
opposing spin has to be adjusted. For this we use results already obtained in section 2.3, where we
used a perturbation approach to calculate the additional energy shift. The intermediate levels for
the second order process are, however, not degenerate as in figure 2.4 but we have to include the
energy shift of ±2∆, as shown in figure 2.6. Similar to equation 2.28 the effective superexchange
coupling can be obtained as a sum that includes contributions of both intermediate levels [42]:

Jeff =
2t2

U − 2∆
+

2t2

U + 2∆
=

4t2U

U2 − 4∆2 . (2.32)

One has to keep in mind that this comes from a calculation where tunnelling is assumed to be a
perturbation, which is only valid for Jeff � U − 2∆. Even though tunnelling might be greatly
suppressed due to the energy difference, the spins can build correlations mediated through superex-
change.
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2.4 The two-dimensional Hubbard model

2.4 The two-dimensional Hubbard model

The Hubbard Hamiltonian, introduced in equation 2.9, is not restricted to a certain spatial dimension,
for example, it can be exactly solved in the case of a one-dimensional lattice [43]. For this thesis and
our experimental setup, however, we were initially most interested in the two-dimensional Hubbard
model, were the sites are positioned on a square two-dimensional lattice.

The two-dimensional Hubbard model has been studied extensively, for example in the search
for an explanation of the high-temperature superconductivity in cuprates [8]. In this section I will
discuss some of the expected phase diagrams and their properties. We assume a balanced number of
spin up and down particles, the so called spin-balanced case. It is most relevant for solid state physics
where a small spin-imbalance requires huge magnetic fields, which in general are not realised in
real material samples. Exceptions to this, especially in the context of symmetries in the Hubbard
model will be discussed in chapter 5.

We will restrict the model to only allow nearest-neighbour tunnelling and on-site interactions.
This model cannot be solved analytically, only in some special cases like in the single-site limit
discussed previously. Numerical simulations using approximations also struggle to get reliable
results for all parameter ranges or are limited to very small system sizes. However, having introduced
the Hubbard model and two solutions to it, we can use the knowledge gained to discuss some of the
expected properties of the two-dimensional Hubbard model.

The Hubbard model in momentum space

We first want to extend the spatially localised description further to a very large size by changing to
the momentum basis of an extended lattice. The Hubbard Hamiltonian of equation 2.9 is written in
a localised basis of the lattice sites j for the creation and annihilation operators ĉ†j,σ, ĉj,σ . We now
specifically work with a two-dimensional lattice so the site index can be represented as a vector
j = (jx, jy). We define the same operators in the discrete momentum space k of a finite lattice with
N sites [33]:

ĉk,σ =
1√
N

∑
j

e−ik·jaĉj,σ (2.33)

ĉ†k,σ =
1√
N

∑
j

eik·jaĉ†j,σ, (2.34)

where the momentum vector is given by k = (kx, ky), and the principal lattice axes have the same
spacing ax = ab = a and are orthogonal. The kinetic part of the Hamiltonian can now be rewritten
in this new operator basis, as

Ĥkin = −t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
=
∑
k,σ

εkĉ
†
k,σ ĉk,σ, (2.35)

with the dispersion relation

εk = −2t
(
cos(kxa) + cos(kya)

)
. (2.36)
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Figure 2.7: The Hubbard band picture. a) Shows a two spin component lattice where each site is filled
with one spin component (blue). Since all momentum states are now occupied and the band is full it is an
insulating state. An additional particle of opposite spin (orange) will have an increased energy by the on-site
interaction U . However, this shift is present for all sites, so the particle can move freely as if it is in an empty
band. The picture of two bands can be extended to include all particles on singly occupied sites in the lower
so called Hubbard band, whereas a doubly occupied site has one particle in the lower and one in the upper
band, shifted by U . b) If the chemical potential µ now lies in between both bands and the temperature is
lower than their separation, only the lower Hubbard band is filled, and we have an insulating state due to a
completely filled band. c) If the upper band is filled as well, that means we have a double occupancy on each
site, we enter the band insulating regime. This picture of separated bands is only valid in the large interaction
regime U �W .

In a non-interacting system where U = 0 or with a spin polarised population this dispersion
relation is the band structure of the cubic lattice. In a lattice it is reasonable to use the quasi-
momentum q = k in the first Brillouin-zone qx,y ∈ [−π/a, π/a]. We identify the bandwidthW in
terms of the tunnelling energy t and the number of dimensions d:

W = max
k

(εk)−min
k

(εk) = 2t× d = 4t for: d = 2 (2.37)

Figure 2.7 a) shows the state occupation when nearly all lattice sites are occupied with particles of
one spin only. Each momentum state is occupied and due to Pauli-blocking no further particle of
this spin can be present. A redistribution of particles or density movement is not possible, which is
why a completely filled band is insulating. If we now add one particle of the opposite spin, it will
see an empty band, shifted with the on-site interaction energy U . This is true for a lattice where all
lattice sites are occupied by particles of one spin or when the on-site interaction U = 0.

In general interactions distort the exact band structure such that we cannot use this solution for
non-zero interactions. It is, however, useful to introduce the pedagogical concept of the Hubbard
bands, see figure 2.7 b) and c). The lower Hubbard band consists of all singly occupied sites, now
allowing both spins, whereas all doubly occupied sites additionally contribute one particle to the
upper band. If a band is not completely filled as in figure 2.7 a), particles can tunnel and so the
system is in a metallic state. The definition of a metal or a charge in the Hubbard model comes from
the initial motivation for this model, where the fermions on the lattice are representing the charge
carrying electrons. Assuming strong repulsive interactions U �W = 4t both bands separate with
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Figure 2.8: Phase diagram of the half-filled two-dimensional Hubbard model. a) When the temper-
ature kBT is low enough, ordering appears from the hot unordered metallic phase. On the repulsive side
kBT < |U | leads to density ordering by the formation of a Mott insulator. Through the superexchange J
an antiferromagnetically ordered state is energetically favourable, see b). On the attractive side, a magnetic
or spin ordering occurs first, by the formation of doubly occupied sites and holes, both with no effective
magnetisation, in the Preformed Pairs phase. For even lower temperature density ordering appears as well in
the formation of the charge density wave shown in c).

energetic distance of ∼ |U | −W . The filling of these bands is again determined by the chemical
potential µ. For very large µ� U,W the lattice is completely filled with all sites doubly occupied.
Therefore, both bands are full and the system is insulating. This state is called a band insulator. At
strong interactions U � 4t and half-filling, where the site occupation is one, the chemical potential
lies in between both bands. For low temperatures kBT < U particles mostly fill up the lower band,
forming again an insulating state, the so called Mott-insulator. In contrast to the Band insulator,
which is present for all interactions, even attractive ones U < 0, this feature emerges only from
the strong repulsive interaction in the system. The behaviour of Mott insulators was discussed in
condensed mater systems, especially in the transition metal oxides [7] to which the Hubbard model
provides a good explanation. This interplay of interactions and kinetic energy defines the phase
diagram of the two-dimensional Hubbard model.

Phase diagram at half-filling

We will continue our discussion at half-filling (µ = 0) where each site has an average particle
occupation of one n = 〈n̂〉 = 〈n̂↓ + n̂↑〉 = 1. The phase diagram there is shown in figure 2.8. Since
the filling is fixed, any reduction in entropy can only occur in density or magnetic ordering. For
strong repulsive interactions U/t > 4 the atoms in the Mott-insulator distribute such that most
sites are singly occupied. This state is reached once the thermal energy is lower than the energy
cost of a doubly occupied site kBT < U , which can be treated like an excitation. This is a result we
know already from the balanced double-well from section 2.3, where for large U the lowest energy
states |3〉 = |t〉 , |4〉 ≈ |s〉 in figure 2.3 consist mostly of singles. When the temperature is even
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lower than the superexchange energy kBT < J = 4t2/U we additionally expect that the spins
begin to arrange to an antiferromagnet (AFM). Both these conditions are met in figure 2.8 where
the orange shaded region marks the expected AFM, with the highest critical temperature around
U/t = 8. A somehow similar behaviour is expected for attractive interactions U < 0, which we can
understand as well by starting with the double-well picture. For U/t < 4 a doubly occupied site
lowers the energy by U and singly occupied sites can be seen as excitations from the ground state.
Therefore, in the double-well the lowest energy states |2〉 = |d−〉 , |4〉 ≈ |d+〉 in figure 2.3 consist
of a doubly occupied site with a hole. Similar for the extension to a two-dimensional lattice, at
temperatures lower than the interaction strength kBT < |U |, the spin-up and spin-down particles
combine to form doubles and holes. This can be described as a Preformed Pairs phase [44]. Once even
lower temperatures kBT < |J | = |4t2/U | are reached, the density starts to order, such that the
doubly occupied sites can lower their energy through the superexchange. This is optimal when they
arrange in a chequerboard pattern, where doubles are neighbouring only empty sites. This charge
density wave (CDW) is shown as well in figure 2.8. It is interesting to observe a symmetry, while
on the attractive side we go from a density ordered phase, the Mott-insulator, to a spin ordering
with the AFM, the reverse is happening on the attractive side. The preformed pairs phase has spin
ordering since the spins combine to form zero magnetisation on site, while with lower temperature
we enter a density ordered state (CDW). We will discuss this more in chapter 5.

Doping in the Hubbard model

Up until now we looked at the phase diagram at half-filling, where µ = 0. However, a lot of
the interest in the Hubbard model stems from its possibility to explain the superconductivity of
the cuprates, for example YBCO displayed in figure 2.9 a). The pure form of this material has a
half-filled conduction plane, but is not superconducting even at low temperatures [27]. To reach
superconducting conditions, the filling of the conducting plane has to be adjusted by adding or
removing electron donors into the chemical sample. This so called doping of the material leads to an
increase/decrease in electrons per site (charge carrier doping/hole doping) away from half-filling.
The typical phase diagram of such a high-temperature superconductor is shown in figure 2.9 b).

A similar phase diagram is predicted for the two-dimensional Hubbard model with repulsive
interactions. This is, however, still debated, especiallywhether theHubbardmodel at low temperature
could give rise to a d-wave superconducting phase or not [25, 47]. One reason why this is not
settled yet is that, away from half-filling, numerical simulations struggle to produce accurate results.
For example QMC calculations hit the famous minus sign problem [9], leading to a failure of the
computation with exponential growth of the Hilbert-space. Nevertheless there are some great results
form Determinant Quantum Monte-Carlo (DQMC) simulations at finite temperature [38–40], which
will be used in our discussions. Especially in the frame of the results presented in this thesis I would
refer to the work of my colleague Dr. Chun Fai Chan [24].

The way to introduce doping into the system in the grand canonical ensemble is to use a non-zero
chemical potential (µ 6= 0). As discussed in section 2.2, the resulting change in density is described
with the equation of state n(µ, T ), where U is fixed, since it is not an equilibrium parameter of
the reservoir in the grand canonical description. An example is shown in figure 2.10, where we
show the equation of state for repulsive interactions at U/t = 8, calculated with DQMC simulations
at T/t = 0.6. Additionally, the single site occupation probability (singles) and the probability for
doubly occupied sites (doubles) is plotted. One can clearly identify the Mott-plateau, where the
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Figure 2.9: High-temperature superconductors and their phase diagram. In a) the unit cell of the
undoped yttrium-barium-copper-oxide (YBCO), a high-temperature superconductor is shown. Electrons are
only free to move in the copper-oxide (CuO) layers, closely bound to the copper atoms. They are sandwiched
in between isolating layers of copper-oxide chains. One can achieve doping of the CuO layers by changing the
chemical composition of the BaO layers which act like a charge reservoir, i.e. by adding or removing oxygen
[27]. The Hubbard model was proposed to be able to describe the behaviour of charge carriers in these planes
[8]. In b) the phase diagram of the cuprates like YBCO is shown. Through doping it transforms from an
insulating antiferromagnet (AFM) to a d-wave superconductor at low temperatures. Between those phases is
the pseudogap phase, where one assumes that pairing similar to the superconducting one occurs, but no long
range coherence, i.e. phase stiffness is obtained [45]. For even higher doping a normal Fermi-liquid, i.e. metallic
phase appears. The term strange metal comes from the fact that in this phase there are no quasi-particle
excitations, leading to a temperature dependent resistivity outside of the normal metallic behaviour [46].

−10 −5 0 5 10

µ/t

0.0

0.2

0.4

0.6

0.8

1.0

si
te

oc
cu

pa
ti

on

n/2 = 〈n↑ + n↓〉 /2
nD = 〈n↑n↓〉
nS,↑/↓ =

〈
n↑/↓

〉− nD

Figure 2.10: Equation of state obtained through DQMC calculations. Shown are half the averaged
total site occupation n/2 and the averaged probability to measure a double nD or a single nS,↑/↓ on a site,
depending on the chemical potential µ. Here we assumed a spin-balanced cloud, so the singles probability is
independent of the spin state. Around half-filling at µ = 0 a Mott plateau can be observed in the total density.
The simulation used repulsive interactions U/t = 8 and a low temperature of T/t = 0.6.
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Reservoir

Reservoir

Figure 2.11: The bilayer Hubbard model. The two-dimensional model has been extended to another
two-dimensional lattice layer, coupled by the inter-layer tunnelling t⊥. Intra-layer tunnelling is still described
with the tunnelling amplitude t, same as the on-site interactions U . We can additionally allow a different
chemical potential for each layer, i.e. µ1 6= µ2 which would lead to a unequal average filling of the layers.

density stays constant despite changing the chemical potential. This equation of state can be very
powerful, since it allows calculating nearly all thermodynamic variables of the equilibrium system
[48, 49]. From the equation of state shown in figure 2.10 one could for example extract the isothermal
compressibility [50]

κ =
∂n

∂µ

∣∣∣∣
T

. (2.38)

The Mott-plateau then shows as a reduced compressibility κ close to half-filling.

2.5 The Hubbard model extended to a bilayer

As already mentioned in the previous chapter, there is currently an ongoing debate if the two-
dimensional Hubbard model truly sustains a superconducting phase [25], which would be connected
to the high-temperature superconductivity of, for example, the cuprates [47], or whether the bare
two-dimensional Hubbard model needs to be extended. For such an extension, some suggest for
example next-to-nearest-neighbour tunnelling [26], multi-orbital lattices [51] or direct nearest-
neighbour interaction terms [52].

Another possibility is to extend the two-dimensional model to two layers, with tunnelling in-
between those [53, 54]. This was in part motivated by the fact that the conducting copper-oxide
layers in superconductors shown in figure 2.9 a) are also coupled transversely [27], so the extension
from two dimensions to the stacked model was natural. Additionally, in some solid state materials
where charge movement was allowed in either a single layer of the material, or two closely stacked
layers, the bilayer enhanced the superfluid fraction and the transition temperature significantly
compared to the samples without bilayer structure [55]. In the search for superconducting phases,
this model was again extended in some studies, for example inter-layer interaction was introduced
[56], or diagonal intra-layer tunnelling which led to strongly enhanced superconductivity [57].
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2.5 The Hubbard model extended to a bilayer

Here, we are discussing the bilayer model with only intra-layer, nearest-neighbour hopping t,
intra-layer tunnelling t⊥ and on-site interactions U , shown in figure 2.11. The Hamiltonian is
defined as

Ĥ = −t
∑

〈i,j〉,m,σ

(
ĉ†im,σ ĉjm,σ + h.c.

)
− t⊥

∑
i,σ

(
ĉ†i1,σ ĉi2,σ + h.c.

)
+U

∑
i,m

(
n̂im,↑ − 1/2

) (
n̂im,↓ − 1/2

)
−
∑
i,m,σ

µm,σ

(
n̂im,σ − 1/2

)
, (2.39)

where the layer is designated by the indexm = 1, 2. The chemical potential µm,σ can be different
for both planes, allowing for an independent filling in each plane. Later in this thesis we will work
with a spin independent chemical potential that is identical for both planes and then use µm,σ = µ.

To get a better understanding of the physics of the bilayer model and where it differs from the
ordinary two-dimensional Hubbard model we investigate how the new inter-layer tunnelling term
modifies the band structure. To do so we follow the same ansatz as in section 2.4, where we define the
annihilation and creation operators in intra-layer momentum space k. The previous transformation
led us to the rewriting of the intra-layer kinetic term Ĥt of the Hamiltonian:

Ĥt =
∑
k,m,σ

εkĉ
†
km,σ ĉkm,σ = −2t

∑
k,m,σ

[
cos(kxa) + cos(kya)

]
ĉ†km,σ ĉkm,σ. (2.40)

We can also rewrite the inter-layer tunnelling term:

Ĥt⊥
= −t⊥

∑
i,σ

(
ĉ†i1,σ ĉi2,σ + h.c.

)
= −t⊥

∑
k,σ

(
ĉ†k1,σ ĉk2,σ + h.c.

)
(2.41)

Assuming again a non-interacting system U = 0 and combining the equations 2.40 and 2.41 we can
write the Hamiltonian in a matrix [58]

Ĥ =
∑
k,σ

(
ĉ†k1,σ
ĉ†k2,σ

)T (
−2t

[
cos(kxa) + cos(kya)

]
−t⊥

−t⊥ −2t
[
cos(kxa) + cos(kya)

])(ĉk1,σ
ĉk2,σ

)
,

we get the band structure by solving for its eigenvalues:

εk,1/2 = −2t
[
cos(kxa) + cos(kya)

]
± t⊥. (2.42)

In contrast to the result in section 2.4 for the two-dimensional Hubbard model, even for the non-
interacting U = 0 model, separated energy bands are forming through the term ±t⊥. The lower
band (−t⊥) is called the bonding and the higher one (+t⊥) the anti-bonding band. They both have
the same band widthW = 8t. For t⊥ > 4t these bands separate in energy, shown in figure 2.12 a),
similar to the separation of the Hubbard bands for the Mott insulator in two-dimensions. At half-
filling µ = 0 and low temperatures, the complete bonding band would be filled. This leads to an
insulating behaviour, which is called a band insulator, not to be confused with the completely filled
lattice (n = 2) which is a different kind of band insulator. In the limit of t⊥ � t the bilayer can
be approximated as a two-dimensional lattice of double-wells (see section 2.3) perpendicular to
the principal axes of the lattice plane. In this limit we can identify the band insulator as a lattice
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Figure 2.12: The phase diagram of the half-filled bilayer Hubbard model. a) For the non-interacting
case the Band insulator can be understood similar to the Hubbard band description of figure 2.7. For t⊥ > 4t
the bonding and anti-bonding bands separate in energy, so for temperatures low enough only the bond band
will be populated. There, charge transport is suppressed since it would require the breaking of one of the
bonds between the layers. In b) the phase diagram as the result of several simulations is shown [53, 59–62].
The behaviour in the low to intermediate interactions U/t < 4 regions are still under debate, here marked
with striped colours. For interactions U/t > 4 one assumes a transition from a Mott insulator, which is
antiferromagnetically ordered in the layer direction, to a band insulator with AFM dimer formation between
the layers. For the limit of very large interactions U →∞ this transition should happen at t⊥/t ≈ 1.58 [63].

filled with antiferromagnetically bound dimers. Breaking these dimers is energetically unfavourable,
which leads to its insulating character.

There have been several approaches to simulate the interacting bilayer at half-filling [53, 59–62],
and an approximate phase diagram for repulsive interactions U > 0 combining these results is
shown in figure 2.12 b). It is understood best in its limits. If we have a weak interaction strength
U ≈ 0 and a low inter-plane tunnelling amplitude t⊥ ≈ 0 the system is in a simple metallic state.
When interaction is increased we transition to a Mott insulator, which is antiferromagnetically
ordered in the layer for low temperatures. The transition from this intra-layer ordering to the
band insulator of inter-layer dimers is occurring at t⊥ = 4t for the non-interacting system. In the
limit of very strong interactions U → +∞ the system can be described by a Heisenberg model
[63–65]. There, each site is occupied by one spin that cannot move and only interact with its nearest
neighbours via J, J⊥, which we can identify with the superexchange J = 4t2/U in the Hubbard
model. In [63] they observed in their numerical simulation a critical transition point from inter-layer
to intra-layer coupling at J⊥/J ≈ 2.51 which is translated to a critical tunnelling t⊥/t ≈ 1.58.

The competition between the two magnetic coupling mechanisms in the bilayer adds richness
to the intermediate regime of the phase diagram, which we will further investigate in chapter 7.
Similar to the two-dimensional Hubbard model, it is assumed that additional doping could open the
road for understanding the essential mechanisms behind high-temperature superconductivity.
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CHAPTER 3

Quantum simulation with ultracold atoms

Even though great effort has been put forward to tackle the two-dimensional Hubbard model
with approximations and numerical techniques, a lot of questions are still unanswered. Especially
intriguing is the open question whether the Hubbard model sustains a superfluid phase and how a
pairing mechanism underlying this low temperature superfluidity could work. At the same time
proposals to extend the basic Hubbard model further, for example to a bilayer system, are pushed
forward. The numerical simulation of both of these models with statistical sampling in the quantum
Monte-Carlo method (QMC) suffers the so called sign problem [9]. Due to the fermionic exchange
statistics, calculations grow exponentially complex with respect to the required computation time
with the simulated site number N . It was even shown that the sign problem is NP hard [66].
Additionally the Hilbert space of possible states also increases exponentially, so just the storage
of a state in a large Hilbert space can easily require more storage than currently available on any
supercomputer. Therefore, the exact computation of large quantum systems is impossible to perform
with classical hardware.

Richard Feynman realised this arising issue and proposed to use hardware which itself was capable
of processing quantum states directly [67]. This could be done for example with a universally
programmable quantum computer. It would allow to store, process and measure quantum states
and their evolution directly. There exist several machines today which meet these criteria [68, 69],
however, they remain small in their qubit number, and limited in the number of operations that can
be performed without faults or loss of coherence.

Another approach is to build a device optimised to solve only a specified subset of problems, by
creating a quantum system which can be described by the Hamiltonian one wants to investigate.
Through adjusting external parameters defining this Hamiltonian and changing the initial state
before some time evolution, one can directly simulate the result of a computation no current
computer would be powerful enough to obtain. This would then be an analogue quantum simulation
in contrast to one done by an universally programmable quantum computer. Ideally the device used
for this simulation, the quantum simulator, should allow for a lot of control and results should be
easy to measure. Quantum simulators have been realised in a lot of different systems: neutral atoms,
trapped ions, cavity arrays, quantum dots, superconducting circuits, photons or nuclear spins [11].
All of them have advantages and disadvantages to consider: scaling, flexibility, control and readout
or just the possibility to simulate the desired Hamiltonian. Of particular interest in this thesis is the
quantum simulation with neutral atoms, which was successfully used to simulate and investigate
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Figure 3.1:The hyperfine states of 40K a) Level scheme with the main optic transitions of the D1 and the D2

line and the hyperfine energy splitting in units of MHz×h. b) Lifting of the energetic degeneracy of the lowest
two hyperfine states through an external magnetic field B. We use the states |F = 9/2,mF = −9/2〉 and
|F = 9/2,mF = −7/2〉 as spin-up and spin-down, since they cannot energetically relax in spin-changing
collisions. In most experiments we operate at about 200G where transitions are facilitated by RF (frequency
∼ 50MHz) and microwave (frequency ∼ 1.82GHz) transfers. Figures are inspired from [74].

physical effects, for example non-equilibrium universal dynamics in quantum chromodynamics [70],
BEC-BCS crossover physics close to universality [71], the quantum phase transition from superfluid
to insulator [72] or the Bose-Hubbard model [73].
Following the first part of this chapter, we will focus on the quantum simulation of the Hubbard
model with ultracold atoms. For this lattices filled with the fermionic particles of alkali metals like
Lithium 6Li [12–14] and Potassium 40K [15–17] have been successfully used. We will discuss in
the following how to create and shape a system of ultracold atoms such that it can simulate the
Hubbard models previously presented.

3.1 Internal state control

In our experiment we use neutral Potassium 40K atoms to represent the fermionic particles of the
Hubbard model. A good summary of the physical properties of this element is given in [74]. Its
ground state is the 2S1/2 state with a hyperfine splitting into F = 7/2 and F = 9/2, see figure 3.1 a).
In the presence of an external magnetic field the degeneracy of the hyperfine states with different
mF quantum number is lifted. The coupling of the magnetic moments of the hyperfine states to the
magnetic fieldB can be calculated using the Breit-Rabi formula [74], for which the results are shown
in figure 3.1 b). One can identify the linear Zeeman splitting at low field B . 100G, transitioning
to the Paschen-Back regime for high magnetic field strengths B & 500G, where the hyperfine
quantum numbers are not a suitable basis any more. Even though in this thesis we mostly work in
the intermediate regime around 200G, we will use the nomenclature of the hyperfine states.

For the quantum simulation of spin-1/2 particles we can now choose to use the lowest-lying states
|F = 9/2,mF = −9/2〉 := |−9/2〉 and |F = 9/2,mF = −7/2〉 := |−7/2〉. It does not matter that
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3.1 Internal state control

both of them have a similar magnetic moment, since the spin in the Hubbard model does not assume
a real magnetic moment in its description and only requires fermionic particles with two internal
states. Therefore, the choice is arbitrary, but for now we take the energetically lower state as
spin-down |↓〉 := |−9/2〉 and spin-up as |↑〉 := |−7/2〉. The different magnetic moments in strong
magnetic fields lead to a state dependent behaviour in magnetic field gradients. Most states in
F = 9/2 can lower their energy by going to strong fields (high-field-seeker ), while the opposite is
true for the states of F = 7/2 (low-field-seeker ). We will make use of that in section 4.1.2.

To use them as the basis for our quantum simulation we need to have methods to prepare, manip-
ulate and read out the internal states of the atoms. We do so by coupling external electromagnetic
fields to the internal states of the atoms via their electric or magnetic dipole transition elements [75].

The interaction Hamiltonian of an electric field E(r, t) with a dipole moment d = er with the
electric charge e is defined by

Ĥint = −d̂ · E(r, t). (3.1)

The whole system is then described by Ĥ = Ĥ0 + Ĥint with the uncoupled Hamiltonian Ĥ0. Let
the atom be in a plane-wave electric field E(r, t) = êE0 cos(r · k − ωt) with wave vector k and
the unity vector of the field direction ê. If we employ the dipole approximation where we assume
the size of the atom is way smaller than the wavelength of the field and use a two level system with
states |g〉 , |e〉 the coupling term can be written as

Ĥeg = h̄Ω cos(ωt). (3.2)

Here we used the Rabi-frequency Ω, which is defined as

Ω = −eE0

h̄
〈e|r̂ · ê|g〉 . (3.3)

We can transform our initial basis to a rotating framewith angular frequencyω0 describing the energy
difference of both uncoupled states ω0 = (Ee − Eg)/h̄, with Eg = 〈g|Ĥ0|g〉 and Ee = 〈e|Ĥ0|e〉 .
The difference of the laser frequency to the rotating frame frequency is the detuning ∆ = ω − ω0.
With the rotating frame approximation [75] this leads to the coupled Hamiltonian in matrix form

Ĥ ′ = h̄

(
∆ Ω

2
Ω

∗

2 0

)
. (3.4)

The eigenvectors of this matrix are the dressed states |+〉 , |−〉. At ∆ = 0 they are given by

|±〉 = 1√
2
(|g〉 ± |e〉) (3.5)

This representationwill be useful for the description of various coupled two-level systems throughout
this thesis. Its eigenenergies are plotted in figure 3.2 a) as a function of∆ for fixed coupling strengths
Ω = 0 and 4h̄. The coupling opens up an avoided crossing, separating the states by an energy
difference of Ωeffective =

√
Ω2 +∆2.

If we start with an atom in the uncoupled ground state |g〉 and very quickly turn on the coupling
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a) b)

c)

Figure 3.2: Coupled states and state transfer methods. a) The bare ground and excited state is shown in
black and grey respectively. The dressed states appear with a non-zero coupling Ω > 0, and connect to the
bare states in the limit of large detuning∆. b) If one starts with a populated ground state cg = | 〈g|ψ|g〉 |2 = 1
and suddenly turns on resonant coupling, one can observe Rabi-oscillations shown as a solid line. After a time
of t = π/Ω, the so called π-pulse, the whole population is in the excited state. Increasing the detuning leads to
faster oscillations with a smaller amplitude as shown with the dashed line for ∆ = 2Ω. The decomposition of
the dressed state |+〉 into the bare states |g〉 , |e〉 is plotted in c). If one changes∆ slowly one can adiabatically
follow this state and transfer population between those states with extreme efficiency.

Ω to a finite value, we will project the initial state into the dressed states, for example |g〉 =
(|+〉+ |−〉)/

√
2 at ∆ = 0. Through the energy difference Ωeffective between the dressed states and

their respective phase evolution, the populations of ground and excited state will oscillate. The
amplitude of these Rabi-oscillations is dependent on the detuning and maximal when on resonance
∆ = 0. By enabling the coupling for a fixed time only, one can transfer state populations or create
an arbitrary superposition. This is shown in figure 3.2 b) for the time evolution of the excited state
population ce of a state initially in the ground state.

Another way of transferring state populations is done via a Landau-Zener (LZ) sweep, shown in
figure 3.2 c). We start with population only in the ground state |g〉. At very large detuning ∆� Ω
the bare states are close to the dressed states (|g〉 ≈ |+〉), so while turning on the coupling, we
still have mostly population in the lower of the two dressed states. By slowly ramping to a large
negative detuning, the state of the atoms adiabatically follows the dressed state. When turning
off the coupling, we end up in the excited state, since |e〉 ≈ |+〉 for ∆� −Ω. The probability of
transferring the population adiabatically Ptransferred is given by the Landau-Zener formula [76] as

Ptransferred = 1− exp

(
−πΩ

2

2d∆
dt

)
. (3.6)

Therefore, if d∆
dt = ∆̇� Ω2, we get a nearly complete transfer of the state population. However, this
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3.2 From lattice potentials to localised wave functions

formula can also be used for a partial transfers, by deliberately adjusting the rate to be non-adiabatic.
This will be used, for example, in chapter 5. For interacting atoms in a lattice, Landau-Zener sweeps
can lead to incomplete transfers and transfers into higher motional energy bands, if the wrong
direction of the detuning sweep is chosen. This is described in detail in a previous thesis [21] and
was considered in all experiments.

Up until now we described the coupling via the electric dipole moment, the calculation for
a magnetic dipole or higher electric and magnetic moments would remain similar, and mostly
change the selection rules of the possible transfers and their coupling strength. The coupling in the
Hamiltonian 3.4 can be of arbitrary type. This can be seen in equation 2.30, where in the context
of the single particle in a double-well, the tunnelling element t takes the role of the coupling and
the detuning is described by the energy difference of both well sites. Therefore, we can even do
Landau-Zener sweeps in the double-well, by adiabatically changing the energy offset, or even
Rabi-oscillations, as we will see in chapter 6.

For this section we assumed an ideal two level system, however, when discussing optical trans-
itions, spontaneous decay has to be considered. There, any population in an excited state can
spontaneously decay quickly to a lower lying state while emitting a photon in a random direction.
This allows for the absorption of several photons in a short period of time, which can be used to our
advantage. Laser light resonant with the D2 transition (2S1/2→

2P3/2) is used for laser cooling (see
section 4.1.1) or, if the laser linewidth is smaller than the state separation, to image state selectively
the atomic distribution (see section 4.3.1).

With these tools we gain control of the internal states of the 40K atoms in our experiment and we
move on to controlling the position of the atoms by the use of laser light.

3.2 From lattice potentials to localised wave functions

Optical potentials In the previous section we already discussed how an electromagnetic field
can couple to the dipole moment of the superposition of two internal states of an atom. Here we
want to present a way to use high-intensity light fields to create local potentials for the atoms, in
order to trap them or to arrange them into a lattice configuration.

For strong external electric fields E(r, t) the force on the negative charge of the electron and its
positive counterpart in the nucleus can lead to a polarisation, effectively inducing a dipole moment
d(t) in the otherwise neutral atom itself. Here we will present results of the derivation outlined in
[77] and [76].

We assume a complex driving field E(r, t) = êẼ(r) exp(−iωt) + c.c., with complex field amp-
litudes Ẽ and its complex conjugates. The induced dipole is parallel to the unit field vector ê and its
amplitude proportional to the electric field, such that

d(r, t) = αE(r, t), (3.7)

with the complex polarisability α, which is in general dependent on the driving frequency ω. We
implicitly used the dipole approximation again, where the field can still vary spatially, however, we
assume that the electric field is constant over the whole atom. From this we can calculate the time
averaged potential this dipole interaction creates using a similar formula as in equation 3.1, taking
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Chapter 3 Quantum simulation with ultracold atoms

into account that the dipole is induced and not permanent by adding a prefactor of 1/2:

Vdipole(r) = −
1

2
〈d(r, t) · E(r, t)〉t = −Re(α)|Ẽ(r)|2. (3.8)

The product of the two oscillating terms in the second step leads to a DC and a high frequency
component ∝ 2ω, which gets removed by the time average. Here it is important to note that by
definition the complex Ẽ and the real field amplitude E0 are connected as |E0| = 2|Ẽ| [76].

The light intensity in vacuum is given as

I = 2|Ẽ|2cε0 =
|E0|

2

2
cε0, (3.9)

with c as the speed of light and the vacuum permittivity ε0. This leads to a linear dependence of the
dipole potential

Vdipole(r) = −
Re(α)
2cε0

I(r). (3.10)

on the intensity and an absorption rate Γabs connected to the imaginary part of α:

Γabs(r) =
Im(α)

h̄cε0
I(r). (3.11)

We get the complex polarisability as [77]

α =
e2

me

1

ω0 − ω − iωΓω
, (3.12)

with the resonance frequency ω0 and the damping rate Γω . This rate is describes the spontaneous
decay of the excited state |e〉 to the ground state |g〉:

Γω =
ω3
0

3πε0h̄c
3

∑
i=x,y,z

| 〈e|d|g〉 |2. (3.13)

Here, 〈e|d|g〉 ist the transition dipole matrix element. The definition of Γω is only valid for low
excitation rates Γabs i.e. a small population of |e〉. This coincides with our goal of creating spatial
confinement potentials, without changing the internal states of the atoms.

One way to achieve this is to increase the detuning ∆ = ω − ω0 to reduce absorption. However,
this also leads to a smaller potential created, which we would have to counteract with higher light
intensity I . In this limit and by using the rotating wave approximation to neglect high frequency
terms ω0 + ω we can simplify equations 3.10 and 3.11 to [77]

Vdipole(r) =
3πc2

2ω3
0

Γω

∆
I(r), (3.14)

Γabs(r) =
3πc2

2h̄ω3
0

(
Γω

∆

)2

I(r). (3.15)
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a) b)

Figure 3.3: The accordion lattice. a) By interfering two plane waves with wave vectors k,k′ meeting at
an angle of 2γ one obtains a lattice pattern normal to the combined vectors. b) This can be understood as
creating a lattice wave vector k − k′ that determines the lattice spacing a. The interference angle, therefore,
determines the lattice spacing, up to an angle of 2γ = π where a = 2|k|/2π.

We note here that the sign of the detuning determines the sign of the potential created. For an
attractive potential Udipole < 0 the detuning ∆ has to be negative, so the frequency of the laser ω
has to be lower than the resonance frequency ω0, which is called red-detuned. On the other hand,
blue-detuned light with ω > ω0 creates a repulsive potential Udipole > 0. While the dipole potential
scales with Vdipole ∝ I/∆, the absorption rate scales as Γabs ∝ I/∆2. By choosing a laser with
large detuning from the main resonances (D1 and D2 transitions) and a local high intensity we can,
therefore, create conservative trapping potentials for neutral atoms with light.

Lattice potentials Starting with an ideal plane electromagnetic waveE(r, t) = êE0 cos(r·k−ωt)
propagating in the x direction (k = kêx = 2π/λ êx), one would get a homogeneous optical dipole
potential shift for atoms in its path, since the intensity I is constant in space. However, if we
superimpose this with another wave with opposing wave vector k′ = −k we get a locally varying
electric (time-averaged) field intensity, with

I(r) = 2|E0|
2cε0 cos

2 (kx) . (3.16)

Using equation 3.10 we obtain a spatially oscillating potential

Vlatt(x) = V0 cos
2
(πx
a

)
(3.17)

with a periodicity of a = λ/2 = π/k and an amplitude of V0. In one dimension, this would already
create a potential lattice for neutral atoms. Its periodicity is fixed by the wavelength of the light.

The accordion lattice configuration allows for some modification of the lattice site spacing a. For
two plane waves with the same wavelength λ, but wave vectors interfering at an angle 2γ this
periodicity changes significantly:

a =
2π

|k − k|
=

π

sin(γ)|k|
=

λ

2 sin(γ)
, (3.18)

with the direction of the periodic potential parallel to k − k, see figure 3.3. One can see that for the
limit of γ = π/2 this leads back to the result of anti-parallel beams in equation 3.17. To create a
three-dimensional lattice with separated sites, as required for the simulation of the Hubbard model,
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Figure 3.4: Band structure of a one-dimensional lattice. For three different lattice depths V0 the
eigenenergies of the Bloch waves for the first Brillouin zone and up to the second band are presented (0th:
blue, 1st: orange, 2nd: pink). The lattice potential is set to be attractive, simulating a red-detuned lattice laser
frequency.

we have to overlay several of these lattices. To avoid unwanted interference, one has to choose the
polarisation of plane-wave pairs to be orthogonal or use lasers with very different frequencies.

Band structure and Bloch waves To describe a single particle in a periodic potential as the one
we introduced in equation 3.17, we start with the non-interacting, single-particle Hamiltonian

Ĥ0φn,q(x) =

[
− h̄

2

2m
∇2 + Vlatt(x)

]
φn,q(x) = En,qφn,q(x), (3.19)

with m, the mass of the particle. We start here with the one-dimensional description, however,
results can be extended to higher dimensions if we assume to have perpendicular principal lattice
axes, which make the three-dimensional Hamiltonian separable. The eigenstates to this Hamiltonian
with a periodic potential can be found by using the Bloch wave function ansatz φn,q [34, 78]:

φn,q(x) =
1√
L
un,q(x)e

iqx, (3.20)

where n describes the band index and q the quasi-momentum in a crystal. For normalisation we
assumed a lattice with a finite number of sites N and periodic boundary conditions, leading to a
normalisation through the system size L = aN . The Bloch wave function consists of a plane wave
component with quasi wave vector q and a spatially periodic function un,q . This periodic structure
is perfectly suited for a Fourier series expansion of un,q and Vlatt into plane waves with periodicity
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of a, leading to

un,q(x) =
∑
l

ūn,q,l e
i 2πl

a
x (3.21)

Vlatt(x) =
∑
l

V̄latt,l e
i 2πl

a
x. (3.22)

For the lattice potential introduced in equation 3.17 this transformation is simple:

Vlatt(x) = V0 cos
2
(πx
a

)
=
V0
2

+
V0
4
e−i 2π

a
x +

V0
4
ei

2π
a
x. (3.23)

Using these transformations we can rewrite the Bloch waves of equation 3.20

φn,q(x) =
1√
L

∑
l

ūn,q,l e
i
(

2πl
a

+q
)
x (3.24)

and with it the Hamiltonian of equation 3.19

c∑
l=−c

Hl,j ūn,q,l = En,qūn,q,l (3.25)

where

Hl,j =


h̄
2

2m

(
2π
a l + q

)2
+ V0

2 for |l − j| = 0
V0
4 for |l − j| = 1

0 for |l − j| > 1

. (3.26)

Here, c is introduced as the order up to which the functions are expanded, leading to a finite
matrix size. Diagonalising this matrix gives us the eigenenergies of the Bloch waves En,q and their
decomposition into the Fourier components ūn,q,l. Numerical calculations produce the energetic
band structure for any given lattice depth V0, which is usually described in the unit of the recoil
energy Erec = h2/(8ma2). In figure 3.4 the band structure is shown for V0 = 1, 6 and 20Erec. The
separation of the two lowest bands, called the band gap, increases with increased lattice depth. To
simulate the Hubbard Model, we required that only the lowest band is filled, so it is critical that the
band gap is larger than the thermal excitation energy kBT .

Wannier basis and tunnelling Bloch waves give a description of fermionic atoms in a lattice po-
tential in the basis of delocalised wave functions. However, we can construct a different orthonormal
basis out of the Bloch functions, the so called Wannier functions [79]:

wn(x− xi) =
1√
N

∑
q

e−iqxiφn,q(x). (3.27)

They are maximally-localised around the site i and orthogonal to each other.
In the framework of second quantisation and using only the zeroth band (n = 0) we can define a
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Figure 3.5: Deriving the Hubbard parameters with Wannier functions. Since the Wannier functions
are the maximally-localised orthogonal basis for a lattice system, we can use them for the description of the
Hubbard tunnelling of a particle from site i to j by computing the overlap of the Wannier functions on these
sites. As will be shown in the later section 3.4, the on-site interaction can be calculated with the probability
to find a spin-up and a spin-down particle on the same position x, which can be calculated again with the
integration of the Wannier function to the power of four.

fermionic field operator

ψ̂†
i,σ = w0(x− xi)c

†
i,σ, (3.28)

with which we can construct localised wave functions in the lattice frame

ψi,σ(x) = 〈x̂|ψ̂
†
i,σ|vac〉 = w0(x− xi). (3.29)

This is ideal for the description of localised fermions as we introduced for the Hubbard model. In
that model the particles are fixed on the individual sites. They now can be approximated with
Wannier functions on the corresponding lattice sites, see figure 3.5.

Additionally, we can identify the tunnelling matrix element from site i to site j as the normalised
overlap of the two wave functions described by Wannier functions

ti,j = 〈ψj,σ|Ĥ|ψi,σ〉 =
∫
dxψ∗

j,σ(x)Ĥψi,σ(x)

=
1

N

∑
q,q

′

E0,qe
−i(qxj−q

′
xi)
∫
dxφ∗

0,q
′(x)φ0,q(x)︸ ︷︷ ︸

=δ
q
′
,q

=
1

N

∑
q

E0,qe
−iq(xj−xi). (3.30)

This equation is valid for all sites and distances of the tunnelling.

For nearest-neighbour tunnelling only, i.e. when dismissing all other terms that allow direct
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3.2 From lattice potentials to localised wave functions

a) b)

Figure 3.6:The superlattice and its eigensolutions. In the bottom plot of a) and b) the individual potentials
for the short (light grey) and long lattice (dark grey) are plotted with their respective phase difference φSL.
Similar to the experiment we assume a red-detuned (attractive) long lattice V0,long = 12E′

rec and a blue-
detuned short lattice V0,short = 3Erec with half the lattice spacing a = a′/2. Erec and E′

rec are calculated for
the individual lattice parameters, where we note that Erec = 4E′

rec. The resulting potentials are plotted in
black on the upper graphs, for a superlattice phase of φSL = 0 for a) and φSL = π/2 for b). Additionally, the
local probability distribution |ψ(x)|2 of the q = 0 bloch waves are plotted in arbitrary units up to the second
band (0th band: blue, 1st band: orange, 2nd band: pink), offset by their respective energy plotted with dotted
lines. One can see that depending on the phase, we can create arrays of double-wells, or a lattice where each
second site is significantly lower in energy with tightly bound wave functions.

tunnelling to sites further away, it reduces to

ti,i+1 =
1

N

∑
q

E0,qe
−iqa. (3.31)

In equation 2.36 we already discussed how the band structure should be a cosine with periodicity of
2π/a for nearest neighbour tunnelling. As we can see from equation 3.30, higher order tunnelling, for
example next-to-nearest-neighbour tunnelling tNNN, would lead to higher frequency contributions.
Through this result we know that we can Fourier expand the exact structure of the lowest band
in order to extract all higher order tunnelling elements. This allows us to calculate the minimal
potential one has to use in order to restrict the system to only nearest-neighbour tunnelling.

Bi-chromatic lattices and the superlattice Up until now, we discussed mono-chromatic lattices,
that means lattice potentials created with two plane waves of the same wavelength λ. It is, however,
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possible to superimpose several lattices with different wavelengths λ and λ′.

As long as their frequencies are sufficiently far detuned, the interference of their lattice light
fields will oscillate faster than the atom could respond, so the effective potentials of both lattices
just add up. This superlattice will usually not have the same periodicity as the individual lattices,
unless the wavelengths are a multiple of each other λ′ = nλ with n ∈ N and they are identical in
their creation, i.e. angle of interference. If these conditions are matched, the relation for their lattice
spacing results in a′ = na. Combined, they create a periodic potential with a spatial period of a′,
the longest individual lattice period, and therefore the Bloch ansatz of equation 3.24 is still valid.
This will allow us to solve for the eigenstates and eigenenergies, i.e. the band structure and related
terms like the tunnelling amplitudes, as was done in [80].

In this thesis we will make use of such lattices on several occasions, where λ′ = 2λ, therefore
a′ = 2a. The combined lattice potential can be written as

VSL(x) = V0 cos
2
(πx
a

+ φSL

)
+ V ′

0 cos2
(πx
2a

)
(3.32)

and depends on the relative phase of the superlattice φSL. It is, however, not easily possible to get a
laser with high power at any arbitrary wavelength, so choosing the right wavelength for these lattices
can be a challenge. One way is to use existing high power lasers, like the diode pumped Nd:YAG
lasers emitting infrared light at λ′ = 1064 nm [81, 82], and to double the frequency of this light in
a non-linear crystal [83]. This reduces the wavelength to half the initial one λ = λ′/2 = 532 nm,
converting it to visible green light. Both these wavelengths are far detuned from the potassium
D1 (λD1 = 770.1 nm) and D2 (λD2 = 766.7 nm) lines [74] which make them ideal for conservative
trapping potentials. The λ′ = 1064 nm is red detuned from these resonances, leading to a potential
inversely proportional to the intensity. The opposite is true for the blue detuned λ = 532 nm
light. In figure 3.6 both laser intensities and the resulting superlattice potential are shown for two
superlattice phases φSL = 0 (left) and φSL = π/2 (right). The Bloch waves for q = 0 are also plotted,
with an offset according to their energy. One can see how the choice of the superlattice phase
greatly changes the states of the lowest bands, allowing for states with strongly reduced detection
probability on alternating sites (φSL = π/2).

3.3 The local-density approximation

This idealised description of light fields as simplified plane waves is not valid in the lab any more,
where we work with Gaussian beams transported to the experiment via optical fibres. If we focus
a red detuned laser beam down to very small waists (≈ 100 µm), the high intensity in the focus
results in a local potential minimum that can be used to trap cold atoms. It is useful to remember
that the dipole potential is directly proportional to the intensity, as shown in equation 3.14. The
intensity distribution of a focused Gaussian beam in z-direction is given as [84]

I(r, z) =
2P

πW 2(z)
e
− 2r

2

W
2
(z) , (3.33)
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3.3 The local-density approximation

a) b)

Figure 3.7: Inhomogeneous lattice potentials and the local-density approximation. a) Most lattice
laser beams are Gaussian and focused down to small waists W0 to increase the possible lattice depths.
Especially when going to two- or three-dimensional lattices, we have to consider an overall trapping potential
on top of the periodic lattice structure, as shown below. b) To be able to simulate Hubbard physics with an
inhomogeneous system like this we have to make use of the local-density approximation [48], where we
divide the trap into separated sub-systems. When these system are in chemical and thermal equilibrium one
can have a unified description of the chemical potential, by including the trap potential differences.

with r =
√
x2 + y2 and the beam width

W (z) =W0

√
1 +

(
z

z0

)2

. (3.34)

Here P is the overall optical power of the beam,W0 the radial waist in the focus and z0 the Rayleigh
length along the propagation axis.

Since the beams which form the optical lattices have the same Gaussian intensity distribution,
we have to find a way to describe a lattice system with an underlying non-homogeneous potential
Vpot(r), as pictured in figure 3.7 a). Under the local-density approximation (LDA) we assume that
regions within a fixed potential range ∆V can be considered homogeneous systems in thermal and
chemical equilibrium with their surrounding environment, which acts like a reservoir [48]. For this
we form bins with an equal potential width of ∆V centred around Vl = ∆V (l + 1/2) for the index
l. These (quasi-) isopotential regions now form the subsystems for the LDA. In the grand-canonical
ensemble, we assume not only thermal but also chemical equilibrium, which means that particles
redistribute between these systems, until the sum of the local chemical potential µl and the local
confinement potential Vl is constant over all sub-systems:

µ0 = µl + Vl ∀l ∈ N, (3.35)

with the potential in the centre set to zero V0 = 0. This concept is sketched in figure 3.7 and allows
us to describe even non-homogeneous systems with one chemical potential µ0, as long as we can
correctly characterise the underlying potential Vpot(r). Our procedure for this will be outlined in
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section 4.3.5.

3.4 Tunable interactions through Feshbach resonances

The scattering length The interaction between free particles can be described in the framework
of their collision dynamics. Here I will follow the review by Jean Dalibard [85] for the derivation of
the interaction parameters. For this two-body problem, we can investigate the relative motion of
one particle and assume the other one as resting. For particles with the same massm this gives us a
description in terms of the reduced massmr = m/2. The relative motion of the particle is described
by its wave function ψk(r) and the Hamiltonian

Ĥψk(r) =

(
p̂2

mr
+ Vint(r̂)

)
ψk(r) = Ekψk(r), (3.36)

where Vint(r̂) is the interaction potential and Ek = h̄2k2/(2mr) the eigenenergy of the free particle.
We, therefore, have to assure that there exists an effective length of the interaction b and that
Vint(r̂)→ 0 for very large r � b. The solution to an incoming plane wave ψ′

k(r) ∝ e
ik·r scattering

on the atom and then being observed again at great distance r � b will be

ψk(r) ∝ e
ik·r + f

(
k,

k

k
,
r

r

)
eikr

r
, (3.37)

which is a superposition of the unscattered wave and the radially scattered one.
The scattering amplitude f(k,k/k, r/r) is dependent on the momentum of the incident wave

h̄k, the incoming angle k/k and the outgoing direction r/r. If the interaction potential is radially
symmetric Vint(r), we can rewrite equation 3.36 in terms of angular momentum operators L̂2 and
L̂z . This allows us to write the angular dependence of the wave function ψk(r) as a sum of the
spherical harmonic functions Y m

l (θ, φ) with the angular momentum l = 0, 1, 2... and its value
along a quantisation axisml = −l,−l + 1, ..., l. This description can be understood as a transfer
of angular momentum in the collision, which leads to a non-radially symmetric outgoing wave
function. Scattering processes with l = 0, 1, 2, 3 are assigned the letters s, p, d, f. For example if
only l = 0 terms are contributing to the outgoing wave function, it does not have any angular
dependence and has thus undergone pure s-wave scattering.

For the solution of the remaining radial wave function we have to include the effects of the relative
angular momentum by modifying the interaction potential with the so called centrifugal barrier [85]

Ṽint,l = Vint +
l(l + 1)h̄2

2mrr
2 . (3.38)

For particles with low kinetic energy k � 1/b, this barrier cannot be overcome, allowing only
s-wave scattering (l = 0) [86]. All higher order partial waves are reflected by this barrier before
they would be close enough to react to the potential, therefore not contributing to any potential
scattering.

It is important to note that this prohibits interaction at the low energy scale for fermions of the
same state, since the s-wave function does not have the required particle exchange antisymmetry
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3.4 Tunable interactions through Feshbach resonances

for fermions. Therefore, scattering takes place only for fermions with different internal spin states.
For s-wave scattering the isotropic scattering amplitude is given as

f(k) =
e2iη0(k) − 1

2ik
=

1

k cot [η0(k)]− ik
, (3.39)

where η0(k) is the phase shift of the outgoing wave acquired through the interacting potential
and s-wave scattering (l = 0). This phase shift will be of importance, since the exact interaction
potential does not need to be known for further calculations and allows for greater flexibility in
the description of scattering processes and potentials. For a van-der-Waals type potential and low
momentum k � 1/b this can be approximated as [87]

fvdW(k) =
1

−1/a+ r0k
2/2− ik

→ −a for k → 0, (3.40)

with the so called s-wave scattering length a and an effective interaction range r0 ≈ b. Depending
on the interaction potential the scattering length can have any value. Repulsive interactions lead
to positive values a > 0 whereas attractive ones lead to negative scattering lengths a < 0. The
strength of the interaction potential scales with the amplitude of the scattering length |a|.

As we noted previously, equation 3.39 is only dependent on the phase η0(k) acquired through
the scattering potential, not the exact potential itself. We can use the so called contact potential,
which assumes only a point-like interaction (pseudo-) potential Vint = gδ(r) and allows for the
simplification of some calculations. For proper regularisation it has to be written as

Vintψ(r) = gδ(r)
∂

∂r
[rψ(r)] . (3.41)

This potential leads to a scattering amplitude of [85]

fδ(k) = −
a

1− ika
→ −a for k → 0, (3.42)

with scattering length a = gmr/(4πh̄
2). For low kinetic energies we can use this pseudo-potential

as an approximation, which reduces the complexity of scattering calculations tremendously.

Feshbach resonances For two atoms of the same atomic species the interaction potential is
fixed and its resulting s-wave scattering length a can be measured. For a good quantum simulator
we would like to have more flexibility in adjusting the collision properties. This tunability can be
provided by the use of magnetic Feshbach resonances as presented in the review [87] this section is
based on.

In the previous section we introduced the radial interaction potential Vint, which is zero for large
distances, i.e. free atoms. The two colliding atoms, however, can be in many different combinations
of hyperfine states, with different relative energy depending on their Zeeman shift, shown in
figure 3.1. In this multitude of scattering potentials with different internal states we define the one
the scattering atoms occupy as the open channel, and all state combinations with higher energy the
closed channels [88].

In figure 3.8 a) we show two such channels with a van-der-Waals like potential. The molecular
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a) b)

closed channel

open channel 

d-wave

Figure 3.8: Feshbach resonances. a) If an unbound particle approaches another one with a fixed relative
kinetic energy Ekin through the open channel and matches the energy of an internal bound state of a closed
channel, a resonance behaviour changes the phase gained by the scattering event. For the low energy
scattering relevant in this thesis we assume Ekin close to zero, so nearly constant for all small scattering
momenta. Scattering with higher relative angular momentum like d-wave scattering (l = 1) is strongly
suppressed by a centrifugal potential barrier, here marked with a dotted line. b) This phase change leads in
the low energy regime to an effective change of the scattering length a. The resonance behaviour can be
controlled by magnetic field B if the magnetic moment of the closed channel is different to the open channel.
The difference from the resonance to the zero crossing of a is the resonance width ∆B = B(a = 0)−B0.

potential of the energetically higher closed channel can have one or several bound/molecular
eigenstates Ecc. If an atom entering the effective interaction range r0 has the correct kinetic energy
Ekin = Eoc, it might match one of the bound state energies Eoc ≈ Ecc. In this case a resonance
behaviour can occur during the collision, leading to a coupling to the closed channel bound state.
Depending on the energy difference between open and closed channel this can lead to a significant
change in the phase η̃0(k) of the outgoing scattered wave. As we know from equation 3.39, this
directly translates to a change in the scattering amplitude, modifying the collisional properties.

We are usually working in the low kinetic energy limit, where Ekin ≈ 0 and which therefore
can be assumed to be fixed. If the closed channel and the open channel have a different magnetic
moment one can tune their relative energy difference via an external magnetic field. This allows
tuning in and out of resonances where the difference is zero and with it modifying the scattering
phase in the low energy limit, which can be described in terms of a change in the s-wave scattering
length a [88]

a(B) = abg

(
1− ∆

B −B0

)
, (3.43)

where abg is the background scattering length without resonant channel coupling, B0 the resonance
position and the resonance width ∆, which is the distance of the zero crossing a = 0 to the
resonance B0, see figure 3.8 b). Scattering lengths are usually defined in units of the Bohr-radius
a0 = 4πε0h̄/mee

2.
Close to a Feshbach resonance the formation of molecules by three-body collisions, where two
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atoms form a bound molecule and one atom takes away the excess energy can be enhanced, leading
to increased losses of trappable atoms. Losses for scattering events where internal states are changed
and excess internal energy transferred to kinetic energy are also increased. An additional loss
channel related to the collision channel description is the optical coupling to higher bound states
during the collision event, the so called light-assisted collisions [89].

Despite these enhanced loss mechanisms, the Feshbach resonances provide an easy to tune and
very flexible way of manipulating the interaction of ultracold atoms, changing their strength and
even switching from repulsive to attractive interactions.

Determining the on-site interaction in a lattice For the simulation of the Hubbard model the
on-site interaction energy U describes the interaction. Starting with two atoms at the same site i we
can calculate it with the interaction potential Vint and the local probability density of both particles.
The overall interaction energy is given by

U =

∫
d3rd3r′ |ψi,↑(r)|

2Vint(r − r′)|ψi,↓(r
′)|2. (3.44)

We know from the previous section that we can use the contact interaction potential Vint =
4πh̄2a/mrδ(r − r′) and use the Wannier basis to describe the local wave function ψi,σ(r) =
w0(r − ri). This leads to

U =
4πh̄2a

mr

∫
d3rd3r′ |w0(r − ri)|

2δ(r − r′)|w0(r
′ − ri)|

2 =

=
4πh̄2a

mr

∫
d3r |w0(r − ri)|

4, (3.45)

where the on-site interaction is directly proportional to the scattering length a.
It is important to note thatWannier functions are calculated from the non-interacting Blochwaves, so
using them to describe an interacting system is already an approximation. The numerical calculations
used in this thesis were done including higher band contributions to simulate these distortion effects
and other correction factors [21].

We have shown in this chapter how to characterise and describe a two-component Fermi gas in
an optical lattice in terms of the Hubbard parameters and pointed out the restrictions that we have
to apply in order to obtain a quantum simulator for the Hubbard model.
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CHAPTER 4

Experimental setup

In the last chapter I have motivated the use of ultracold fermions in optical lattices for the quantum
simulation of the two-dimensional Hubbard model and possible extensions. The contents of this
chapter are dedicated to describing the setup we use to create an ultracold atomic cloud, the process
of loading these atoms into our lattice configuration and the subsequent detection methods.

4.1 Cooling to quantum degeneracy

This section describes the cooling of the initially heated atomic vapour from more than room
temperature down to a quantum degenerate gas of only several nK to use as the starting point of our
experiments. The experiment this thesis was done on was already set up in 2008, and therefore this
section is mostly a summary of previous PhD theses where the cooling to degeneracy was reached
[18–20]. An exception here is the evaporative cooling on the attractive side of the 202G Feshbach
resonance, discussed in section 4.1.3, which was implemented and optimised during this thesis.

4.1.1 Laser cooling

In the first part of our vacuum apparatus, a sample of enriched potassium is moderately heated to
create a relatively high background pressure of 1×10−9 mbar. The atoms are slightly above room
temperature at about 300K and first need to be cooled down. This is done with laser cooling [75],
using lasers with wavelengths close to the D2 Line, i.e. at around 766.7 nm, see figure 4.1 b). One laser
is optimised for the |F = 9/2〉 → |F ′ = 11/2〉 transition, which we call the cooling transition. The
absorption process for laser cooling should be cyclic, i.e. after a scattering event, the atoms should
quickly be ready to absorb another photon from this source. This happens through spontaneous
emission of a photon in a random direction, bringing the internal state of the atom down to the
original state and resulting in a net momentum transfer, i.e. a force by the initial laser photon.
However, some atoms end up in the |F ′ = 9/2〉 state, which can decay into the |F = 7/2〉 ground
state and then cannot take part in further scattering processes. An additional repumper laser works
on the |F = 7/2〉 → |F ′ = 9/2〉 transition to pump them back into the cooling cycle.

Both of them are red-shifted relative to the bare transition frequency, since they make use of the
Doppler shift to get a directional dependence on the absorption. This means that only atoms flying
towards the laser direction have the light shifted into resonance and can scatter it, thereby only
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Figure 4.1: Magneto-optical trap. a) Through the energy shift in a magnetic quadrupole field, the resonance
condition for incoming excitation light becomes spatially dependent. By correctly choosing the laser detuning
∆ < 0 the resulting effective force from continuous absorption and spontaneous emission leads to both
slowing down and pushing the atoms towards the centre, i.e. cooling and trapping. For simplicity an exemplary
F = 0 and F ′ = 1 system is shown, this can, however, be easily adapted to atoms with larger F and F ′,
since the general dependence for ∆mF = ±1 is the same. b) Optical transitions used in our experiment. The
D2-line transition from F = 9/2→ F ′ = 11/2 is used for the cooler laser. By off-resonant excitation and
two-photon decay the F = 7/2 manifold can be populated, requiring a repumper laser to optically pump the
atom population back to the F = 9/2 ground state. Figure inspired by [75].

absorbing photon momenta that reduce their speed. Using six laser beams coming in from all spatial
axes we can slow down atoms in the region where the beams overlap, which is called an optical
molasses [75]. This, however, does not spatially trap them, so even when slowed down they will, at
some point in time, escape the slowdown region.

By adding a magnetic quadrupole field centred on the crossing laser beams and by choosing the
detuning correctly, we can introduce an additional spatial dependence on the force acting on the
atoms: They will be on resonance only where the laser frequency detuning matches the Zeeman
shift of the hyperfine states. In a quadrupole field and with linear polarisation along the quantisation
axis this happens at two locations where the strength of the field is the same. In one position the
beam is pushing the atoms towards the trap centre and in the other further away. By choosing the
correct circular polarisation we can control this process and only allow the transition that traps
atoms, which is shown in figure 4.1.

With both ingredients of cooling and spatially trapping the atoms we have created a magneto-
optical trap (MOT) that can trap a cloud of approximately 5×108 atoms and cool them down to
a temperature of about 150 µK [19]. Choosing the detuning is a trade-off of two parameters, the
momentum range in which we can trap passing atoms, the so called capture range, and the de-
celerating force in the centre, which determines the temperature of the captured atoms. A larger
detuning allows for a larger capture range, but at the same time reduces the cooling force in the
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a) b)

MW

Figure 4.2: Evaporative cooling. By removing the hottest atoms from a sample, we can lower the average
energy per particle, effectively cooling them. Through their large kinetic energy, the hottest atoms can reach
farthest away from the centre. a) In the magnetic trap this means they also experience the largest magnetic
fields, which are proportional to the trapping potential. By using microwave radiation and slowly sweeping
the microwave frequency νMW they are transferred to high-field seeking states, effectively being pushed out
of the trap. b) In an optical trap we gradually lower the trapping potential such that, in our case assisted by
gravity, the hottest atoms can leave the trap. By this we also change the trapping potential, which can be a
disadvantage since it reduces rethermalisation.

centre. Initially we use a large capture range to collect as many atoms as possible. Then we reduce
the detuning further, leading to a colder, denser cloud. Here, reabsorption of the randomly scattered
photons leads to the build up of light pressure, limiting the density and temperature achievable. A
technique called dark MOT [90], where only a few percent of the cloud are at any given time in the
cooling cycle, leads to even higher densities. To obtain this, the optical power of the repumper laser
is greatly reduced to only one percent of its normal value. While the temperature only changes
slightly in our case, this step increases the atom density greatly, preparing the atomic cloud for the
next stage.

4.1.2 Magnetic transport and forced evaporation

In the relatively high pressure region of the MOT chamber collisions with the background gas can
always heat the atoms and introduce losses. In our experiment they are, therefore, transported to
an ultra-low pressure (<1×10−11 mbar) science chamber. To be able to trap them, we turn off the
quadrupole field of the MOT coils and switch to a Helmholtz configuration for a constant offset
field, defining a spatially uniform quantisation axis. With circularly polarised light, most of the
atoms are then optically pumped into the low-field-seeking states |F = 7/2,mF = −7/2〉 and
|F = 7/2,mF = −5/2〉 of the magnetic hyperfine splitting shown in figure 3.1, where the magnetic
moment is µ = gFmFµB > 0. We then switch the coils back to the Anti-Helmholtz configuration
and with a very high current, turned on rapidly, we create a magnetic trap for the atoms which are
seeking the low field quadrupole centre. The coils are mounted on a mechanical sled, which then
moves the trap with the atoms through a differential pressure tube into the science chamber. To
minimise spin-flip induced (Majorana) losses in the centre of the trap, where the field is zero and
the quantisation axis is not defined, this is done quickly in 0.7 s. The atoms are then loaded into a
Ioffe-Pritchard type trap, which has the advantage of not having a zero-field location in the trapping
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Figure 4.3: Optical evaporation sequence. After having loaded the atoms into the horizontal dipole trap
(DTh), up to three successive, non-adiabatic RF sweeps are used for mixing, i.e. balancing the spins of the
mF = −9/2 andmF = −7/2 states in the F = 9/2 manifold. A dimple laser (DTd) is then used to increase
density and capture the coldest atoms in the centre region. The first evaporation is at a magnetic field of 235G
since we found that the repulsive interactions there reduce the density and help with minimising the loss rate.
After that we switch to strong attractive interactions by ramping the magnetic field to 204G while reducing
the dimple laser power to minimise density changes in the trapped gas. After the second evaporation step we
load into the z-lattices.

region, thus avoiding Majorana losses. Its design is described in detail in [18]. We then employ a
technique called forced evaporative cooling [91], where we exploit the fact that atoms with high
kinetic energy can travel further away from the trap centre, where the magnetic field is stronger,
shown in figure 4.2 a). We can address these atoms with microwave (MW) and radio frequency (RF)
fields, transferring them to the high-field-seeking states of the |F = 9/2〉 manifold, where gF has a
different sign. Since the trapping potential is, therefore, inverted they get expelled from the trap
immediately. This effectively removes atoms locally in the trap and if chosen correctly selects only
the hot atoms with high kinetic energy, reducing the mean temperature in the cloud. At the end of
this step about 1×107 atoms at a temperature of 2.6(2) µK remain in the trap.

4.1.3 Dipole trap and initial spin preparation

In order to cool further, we switch to an all optical trap with a far detuned laser as described in
section 3.2. For this, a Gaussian beam (see section 3.3 and figure 3.7) in the horizontal xy-plane
is tightly focused to the centre of the magnetic trap creating an optical potential the atoms are
transferred to. The beam is shaped to have a large aspect ratio of its widths of about 1:10 in its focus,
with a very small waist in the vertical z-direction of aboutW0,z ≈ 12 µm. Along the propagation
axis, the trapping potential is rather shallow leading to a very elongated and flat cigar-shape of the
trapping potential.

The optical trap is state independent to a very good approximation. To avoid losses through spin-
changing collisions, all atoms are transferred to the lowest hyperfine states |F = 9/2,mF = −9/2〉
and |F = 9/2,mF = −7/2〉 through a Landau-Zener (LZ) sweep, see section 3.1. Since the forced
MW evaporation is spin-dependent, both states are not occupied evenly, with most atoms remaining
in the |F = 9/2,mF = −9/2〉 state [18]. In the previous chapter we already discussed how a non-
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4.1 Cooling to quantum degeneracy

adiabatic Landau-Zener sweep can lead to an incomplete state transfer, as described in equation 3.6.
By choosing the correct sweep rate ∆̇ relative to the RF induced coupling Ω, we can get a transfer
probability of Ptransferred = 0.5 leading to an equal mixing of both spin populations. This technique
is made more robust by applying up to three subsequent, non-adiabatic RF frequency sweeps to
obtain a spin-balanced atom cloud.

A second beam, intercepting the xy-plane at an angle of ≈ 45° and running perpendicular to
the horizontal dipole trap, is used to locally increase the phase-space density. This dimple-beam
helps in the thermalisation of the atomic cloud by increasing the elastic collision rate [92]. Reducing
the depth of the horizontal and the dimple dipole trap (named DTh and DTd respectively) leads to
further evaporative cooling, this time not through forced removal, but with the help of the pull of
gravity, see figure 4.2. By reducing the confinement in this step, we change the cloud compression
and with it the density as well, leading to a reduction in elastic scattering events.

While elastic collisions are needed for the necessary momentum redistribution for thermalisation,
a high density can as well lead to the increased probability of three-body collisions and losses, so
during cooling a good compromise has to be found. One parameter used for this is the phase-space
density, which is the normalised probability density in momentum and position space. The cooling
process has to be optimised such that the temperature reduction by atom loss increases the phase-
space density sufficiently to compensate for the reduction in confinement strength, while avoiding
unnecessary losses [75].

Optical evaporation for systems with attractive interaction During the dipole evaporation
and the following steps large Helmholtz coils create a homogeneous magnetic field along the
z-direction, tuning the scattering length, and therefore the interaction strength of the atoms by
exploiting the Feshbach resonances introduced in section 3.4. These are the so called Feshbach-coils
used to create a magnetic field B close to the mF = −9/2,−7/2 resonance at 202.1 G[74]. The
choice of field during the evaporation usually depends on the lattice configuration we use and the
Hubbard parameters we would like to simulate.

The evaporation sequence for repulsive interactions around 190G is described in other theses
[21, 22]. Here we will focus on the newly optimised sequence for the evaporation with attractive
interactions, shown in figure 4.3, that allow for experiments at fields of B = 204 to 208G. The
temperature and atom number detection is done with absorption images after a time-of-flight (TOF)
measurement, described in [19]. After the magnetic trap and the state transfer to the two lowest
hyperfine states the magnetic field is around B ≈ 235G, where the scattering length is close to its
repulsive background value a = 137 a0, with a0 as the Bohr-radius. The initial optical evaporation
is happening at that field as well, where we cool by decreasing only the DTh power and concentrate
the cold atoms in the dimple potential. Switching to attractive interactions immediately for the
first step would have resulted in a significant increase in density, therefore an enhancement of
three-body losses and other inelastic collisions, resulting in very inefficient cooling.

After this, the kinetic energy is low enough for the atoms to suppress p-wave and higher angular
momentum scattering, suppressing three body losses significantly. We then tune the magnetic field
to B ≈ 203.9G and a scattering length of a = −512 a0 for further evaporation with attractive
interactions. To balance the density and the number of collisions, the dimple dipole trap strength is
reduced at the same time. Now the increase in scattering strength helps with the thermalisation of
the atomic cloud, which is increasingly difficult due to Pauli blocking in the quantum degenerate
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a) b) c)

Figure 4.4: Field dependent atom loss through light-assisted collisions. a) The atom number N after a
time t where the trapping potential with a strong DTh is held constant, averaged over ten measurements.
Blue data was taken with the linewidth broadened laser described in the text at 202.9 G (a = −1370 a0),
orange at 204.2 G (a = −419 a0) and pink at 208.0 G (a = −34.2 a0). Their fitted decay rate γ is compared to
the previous multimode laser in b) and c), where we can see a loss rate reduction by a factor of three.

regime, where T < TF with the Fermi temperature TF = EF /kB [93]. The ramp values are
experimentally optimised to minimise the heating from a change in density, which could lead, for
example, to breathing modes in the cloud. In the final evaporation step both trap beam powers
are reduced simultaneously, resulting in around 2.0×105 atoms per spin state at a temperature of
T/TF ≈ 0.12 with small daily fluctuations. The atomic cloud has an approximately round shape in
the horizontal plane, and is strongly compressed along the vertical z-direction.

Light-assisted collisions close to the Feshbach resonance Asmentioned before, it is absolutely
critical to avoid heating and losses that do not contribute to reducing the phase-space density. During
the optimisation we discovered that the 1 070 nm fibre laser, previously used for creating the dipole
trap beams, induced atom losses when working close to the Feshbach resonance at 202.1 G. A similar
behaviour was reported for a laser with the same specifications i.e. wavelength and notably the
broad bandwidth of >0.5 nm, see footnote 3 on page four in [94]. They attributed these losses to
light-assisted collisions [87], which have narrow resonance features for red-detuned laser light far
from the main optical transition. By switching to a single-mode laser seed from a Mephisto MOPA
20W with only 1 kHz nominal linewidth, amplified with a NKT Photonics fibre amplifier Koheras
Boostik 10W, we could suppress these losses significantly by a factor of 3, see figure 4.4. This was,
however, not a permanent solution as partial back reflection from the uncoated inside of the glass
chamber led to a significant lattice-like standing wave potential for the DTh. During evaporation
it would create separated pockets that are not completely thermalised with each other, reducing
the overall cooling efficiency again. To solve this we increased the linewidth from 1 kHz to about
25GHz by using an electro-optical phase modulator (EOM) and a noise generator signal amplified
by 7 orders of magnitude. This drastically reduced the coherence length such that no standing wave
potential was observed any more, while losses through light-assisted collisions were greatly reduced.
The details of this unusual setup and its characterisation are described in appendix A.
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a) b)
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Figure 4.5: Lattice laser configurations. a) Both the y- and the x-lattice, shown in red, are not perfectly
aligned with the camera/laboratory coordinate system and deviate by a small angle θx and θy . After passing
the glass cell they get retro-reflected, matching their incoming beam angle. Due to spatial constraints set
up by the Ioffe-trap coils, the DTh beam, here in blue, has to enter the glass cell nearly perpendicular. Since
the inner side of the glass cell has no anti-reflective (AR) coating this can lead to partial back-reflection,
highlighting the need for a broadband laser source with short coherence length. In b) the z-lattices are shown
in the vertical zy-plane. The polarising beam splitter (PBS) is designed for operation with 532 nm light, and
acts like a 75:25 non-polarising beam splitter for 1 064 nm light. The waveplate in the lower beam path is
used to rotate the polarisation of the green laser (in orange), while the red laser (in deep blue) polarisation
remains unchanged. Since the beam paths were designed to produce a path length difference∆s ' 0 [21], we
had to add an AR-coated glass plate with 5mm thickness to be able to control the phase of the superlattice.
Additionally the beam path for absorption imaging and potential shaping is shown in pink, including the two
aspheric lenses inside the vacuum chamber.

4.2 Lattice loading and physics phase

This cloud of ultracold, quantum degenerate atoms has to be loaded into a two-dimensional lattice,
while avoiding any potential increase in the temperature of the gas. It will be done in two subsequent
steps, by first using a lattice in z-direction to separate the cloud into quasi two-dimensional pancakes
and afterwards ramping up the in-plane lattices. In this section we will discuss the geometric
lattice configuration, its characterisation and the loading of the atoms into the lattices, which is
also described in [21, 22]. Therefore, a special focus is put onto a new method of loading using a
superlattice, which was implemented and optimised during this thesis.

4.2.1 Lattice geometries

Vertical z-lattices The lattice in z-direction, in the following simply called z-lattice, is an accor-
dion lattice as described in section 3.2 with its beams angled by γ = 14.48° relative to the xy-plane.
Figure 4.5 shows its spatial orientation together with the dipole trap and the xy-lattices.

The z-lattice setup was initially designed for green λgreen = 532 nm laser light from a Coherent
Verdi V10, which forms a repulsive periodic potential for the atoms since it is blue-detuned to the
main optical transitions of potassium [21]. The two lattice beams are created by dividing one source
beam evenly with a polarising beam-splitter (PBS) and subsequently rotating the polarisation of the
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lower beam by 90° to match the upper one. With this method and the careful manufacturing of the
optics mount out of a block of solid aluminium for thermal stability, the optical path length difference
of the upper and lower beam ∆s = |supper − slower| is small. This reduces the magnitude of position
fluctuations due to laser frequency changes, which could induce heating. With equation 3.18 we
calculate the lattice periodicity as az = λgreen/[2 sin(γ)] = 1.064 µm.

During this thesis we added an infrared λred = 2λgreen = 1064 nm laser beam to the second
input port of the PBS. This beam splitter is only optimised for λgreen = 532 nm, but acting as a non-
polarising one for λred = 1064 nm, with a splitting ratio of about γz =1:3 (reflected:transmitted).
Since the beam splitter cube is glued to the aluminium base plate we cannot exchange it easily and
we have to work with imbalanced beam powers for the lattice. This leads to a large proportion
of the laser intensity not forming a lattice potential but acting similarly to a dipole trap beam in
y-direction. We switched to a low order λ/2 wave plate for the green 532 nm light, that does not
affect the infrared polarisation to maximise the interference potential for both wavelengths.

Super-lattice phase Since both lattices use independent input paths, we can employ them
simultaneously and create a superlattice potential in z-direction. At a fixed position r at the centre
of the dipole trap, the phase of the lattice potential created by light with wavelength λ is given by

φλ = 2π
∆s(λ)

λ
, (4.1)

where∆s(λ) is the optical path length difference of the upper and lower beams, which is wavelength
dependent in general. The superlattice phase, as defined in equation 3.32, is then

φSL = φ532 nm − 2φ1 064 nm = 2π

[
∆s(λgreen)

λgreen
− 2∆s(λred)

λred

]
= 2π

δs

λgreen
, (4.2)

and therefore determined by the deviation of the optical path length differences of both wavelengths
δs = ∆s(λgreen) − ∆s(λred). δs was observed to be stable over several weeks, leading to a geo-
metrically fixed offset phase of φSL. Here we assumed that λgreen = λred/2. To allow for fur-
ther tuning of the superlattice phase, we introduce a wavelength detuning to the green light
∆λgreen = λgreen − λred/2. Assuming ∆λgreen/λgreen � 1 we can use following approximation:

φ532 nm =
∆s(λgreen)

λgreen
=

∆s(λgreen)

λred/2

1(
1 + 2∆λgreen/λred

) (4.3)

≈
∆s(λgreen)

λred/2

(
1−

2∆λgreen

λred

)
. (4.4)

Using this in equation 4.2 and with the assumption that the optical path difference ∆s(λgreen) does
not change in that range, we get

φSL =2π

[
2∆s(λgreen)

λred

(
1−

2∆λgreen

λred

)
− 2∆s(λred)

λred

]
(4.5)

=2π
2δs

λred
+ 2π

4∆s(λgreen)∆λgreen

λ2red
. (4.6)
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Figure 4.6: Laser switch for the superlattice phase. In the experiment we require two superlattice
configurations, the symmetric ΦSL = 0 and the asymmetric ΦSL = π/2 one. Since tuning the 1 064 nm laser
by ∼ 30GHz (∼ 60GHz for the 532 nm laser) in a few milliseconds is very hard, we use two different laser
sources, which are shifted in frequency to support these conditions. To avoid a loss in power during the beam
combination, we use a polarising beam splitter (PBS) before the acousto-optical modulator (AOM) and rotate
the polarisation depending on which beam is used. This half-wave shutter is synchronised with the other
beam shutters.

This means that we have a constant phase offset with the first term that depends on δs and is
mostly fixed, but by detuning the wavelength of the lasers with respect to each other we can get an
additional variable phase contribution. However, these path length differences ∆s were initially
designed to be very small [21]. To increase the path length difference we placed a piece of glass
with an anti-reflection coating and a thickness of about 5mm into the upper beam path.

With techniques shown later in this thesis we determine that by increasing the green laser
frequency by δνgreen = c/λgreen − c/(λgreen +∆λgreen) ≈ 60GHz the superlattice phase shifts by
π/2. Putting this into equation 4.6 gives us an estimate of the path length difference to∆s(λgreen) ≈
2.56mm.

In this thesis we work with two superlattice configurations, the first one in which a superlattice
phase φSL = 0 creates a lattice of symmetric double-wells (symmetric/double-well configuration)
and the second one with φSL = π/2 where the lattice with longer lattice spacing a′ = 2a lowers
every other site, binding atoms more tightly there (asymmetric configuration). Both superlattice
configurations are needed in the same sequence, with switching times of less than a second. Since
the mode-hopping free tuning range of lasers is not always as large as 60GHz, we use two different
lasers for the λred = 1064 nm light. Both are Innolight Mephisto Nd:YAG lasers, one as master-
oscillator power-amplifier (MOPA) for the symmetric configuration, which provides enough power
for the in-plane lattices as well, and the other one for the asymmetric configuration with just a
master laser module.

These laser beams have to be combined and launched into the same optical fibre with the same
polarisation. This could be done with a non-polarising beam splitter (1 : 1), which would, however,
result in the loss of half the power in each beam, which is very undesirable. Figure 4.6 shows the
solution implemented during this thesis, where we combine both beam paths with a polarising beam
splitter to one output beam. To switch between the laser sources one has to open or close beam
shutters, which consists of a metallic flag that is rotated in or out of the beam, on the respective
input port and additionally rotate the polarisation of the light. This rotation is done with a half-
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wave shutter : a half-wave plate glued onto a shutter flag. The desired 90° polarisation rotation is
only achieved for the correct polarisation of the input beam. Since after the gluing this cannot
be optimised, we added two half wave plates in front and back of the half-wave shutter to be
able to freely choose the polarisation basis. The switching between both beams and therefore the
superlattice configurations can now be done in less than 10ms.

In-plane lattices The in-plane x- and y-lattices are created by red-detuned λred = 1064 nm
beams that are retro-reflected to be used twice as forward and backward propagating beams. Since
both beams are interfering at an angle of 180°, the lattice spacing is axy = λred/2 = 532 nm. The
decrease in power of the back reflected beam due to losses is described with the ratio of the powers
in forward and backward propagating beam γ = Pbackward/Pforward, which is different for both
beams: γx = 0.84 and γy = 0.77. As shown in figure 4.5 a) both lattices do not intercept at exactly
90° and are slightly tilted relative to the x-axis (θx = −4.85(4)°) and the y-axis (θy = −0.42(6)°)
respectively. This asymmetry relative to the square lattice is, however, only relevant if we have more
than nearest-neighbour hopping, for example diagonal next-nearest-neighbour tunnelling. Since
this is a requirement for the quantum simulation of the two-dimensional Hubbard model as well,
we will work only with lattice depths that prohibit these higher-order tunnellings and therefore can
ignore this detail.

Parametric heating To calibrate the laser power needed to create a desired lattice depth Vlatt
we can use the technique of parametric heating [96, 97]. For this we modulate the laser power that
generates a deep lattice potential with the angular frequency ωPH, leading to a modulation of the
lattice potential itself Vlatt = Vlatt,0 · [1 + A sin(ωPHt)], where A is a small modulation amplitude
A� 1. This modulation leads to a perturbative coupling of the energy states that have a spatial
wave function overlap. In a lattice structure this would be the band structure En,q derived in
section 3.2 and the corresponding Bloch waves. By varying the modulation frequency ωPH we can,
therefore, probe the potential we have created and compare it with band structure simulations to
determine the created lattice potential Vlatt. The eigenfunctions of a deep lattice are represented by
the different bands n and have alternating parity, similar to the solutions of the harmonic oscillator.
For a non-zero coupling, the overall parity has to be even, and therefore the spatially symmetric
modulation of each site can only couple the ground state to each second excited band, i.e. from
lowest (n = 0) to second (n = 2), fourth (n = 4), … excited band.

Band mapping Detecting higher band occupations, as generated by the parametric heating, can
be difficult since the spatial detection probability of a particle on a specific site in general does not
change when it is motionally excited to a higher band. In general the particles have an increased
tunnelling rate due to the larger bandwidth of higher bands and can, therefore, leave the trapping
potential in some cases and get lost. A far more accurate detection technique is adiabatic band
mapping [15, 95]. By adiabatically reducing the lattice potential, the particles in a higher band nx
with quasi-momentum qx will obtain the momentum kx = nx

π
ax

+ qx as free particles. In a so called
time-of-flight (TOF) measurement we let the atoms expand in time tTOF of free fall without the
lattice in a very shallow or no potential. The spatial distribution will closely match the momentum
distribution x = kxt+ x0 if x0 � kxt. An example of parametric heating resonances visible due to
loss of the atoms in higher bands after band mapping is shown in figure 4.7.
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a) c)

b)

3

Figure 4.7: Parametric heating a) For a deep optical lattice, a periodic modulation of the lattice potential
Vlatt with frequency νPH leads, at a single site, to a symmetric contraction and expansion of the confinement
potential. The wave function of an atom at this site is modulated the same way, which can result in coupling
to excited states. This, however, depends on the wave function overlap, symmetry conditions and that the
energy difference to the excited state has to be matched by ∆E = νPH × h as shown in b). Once the higher
bands are populated we can observe them through band mapping [15, 95]. There we ramp down the lattice
potential fast enough such that the populations of the bands do not mix and map to the dispersion relation of
the free particles. In a time-of-flight (TOF) measurement we can then infer the momentum distribution by
measuring the local density after a fixed release time. c) Shows such a measurement for the x-lattice, where
the y-dependence is integrated out and clear resonances appear. Only transitions to even bands are allowed
due to the symmetry constrains. The small resonances close to the 0th → 2nd transition are due to coupling
to the y-lattice band transitions at their respective resonance.

4.2.2 Loading into two dimensions

The main challenge in loading a two-dimensional lattice for quantum simulation is doing so with
minimal increase in temperature and entropy. Therefore, the sequence in which the lattice lasers
ramp up their power for the final configuration requires careful adjustments and optimisation. An
especially critical step is the transition from three dimensions in the dipole trap to the quasi-two-
dimensional clouds in the green z-lattice due to the reduction in dimensionality.

For very strong lattice depths one can approximate the lattice potential with separated harmonic
potentials with harmonic oscillator frequency ω. For increasing lattice depth, ω becomes so large
that the energy required for an excitation to a higher oscillator state h̄ω in that direction cannot
be provided by thermal excitations any more (h̄ω � kBT ) and the system can be described as
two-dimensional in most physical aspects. The slow increase of the blue-detuned, repulsive lattice
intensity up to the final value of 120Erec leads to a reduction of the central trapping potential,
allowing hotter atoms to spill over into the side-arms of the horizontal dipole trap beam where they
get lost. Since the thermalisation rate is reduced in two-dimensions, this further evaporation is most
efficient with a very slow ramp-up time of 3 s. The final evaporation point can be set by the power of
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Figure 4.8: z-superlattice loading sequence To only populate each second z-plane we introduced a new
loading scheme, where after the dipole trap evaporation we load the atoms into the infrared z-lattice (shown in
pink) , which now holds them against gravity. Then we slowly increase the green z-lattice (shown in orange)
forming a superlattice with ΦSL = π/2. The repulsive potential of the blue-detuned 532 nm lattice provides
additional evaporation, especially once the red-detuned 1 064 nm potential is turned off. Before loading
the atoms into the xy-lattices, we use the dipole trap beams DTh and DTd to match the two-dimensional
density distribution to the expected lattice configuration. Finally, after having created the system we want to
investigate, the xy-lattices are ramped up quickly to freeze the density distribution for detection.

the attractive dipole trap beams, allowing to trade a reduced atom number for a lower temperature.
The shape of the two-dimensional clouds can be manipulated as well by the attractive dipole trap

beams just before ramping up the in-plane xy-lattices. This reshaping aims to match the density in
two dimensions to the one expected in the final lattice configuration, as the then necessary density
redistribution is assumed to be the major contribution to heating during lattice loading [98]. Finally,
the xy-lattices are ramped up to a value of 6Erec in a time of usually 500ms, which we could show
results in a fermionic lattice gas in thermal equilibrium [29].

Super-lattice assisted loading After the dipole trap evaporation there is only a fixed number of
atoms in the three-dimensional cloud that can be loaded into the horizontal xy-planes. With an
initial vertical atom cloud size of around 10 µm and lattice spacing of az ≈ 1 µm approximately 12
horizontal planes are loaded, however, not evenly populated. Since these atoms act as a coolant
during the green lattice evaporation step, the initial atom number per plane can also influence the
temperature obtainable in two-dimensions.

By loading the atoms via a superlattice in the asymmetric configuration (φSL = π/2), we can
increase the atom number in every other plane, leaving the intermediate planes empty. The sequence
we implemented during this thesis is shown in figure 4.8 and consists of a first hand-over from
the three-dimensional dipole trap to a purely infrared z-lattice. Subsequently, the green lattice is
ramped up, creating the asymmetric superlattice. The ramping down of the infrared power was
optimised to the final temperature of the atoms and the complete depopulation of the intermediate
planes. The increase of the effective lattice spacing of the occupied planes to 2az ≈ 2 µm also has
other significant advantages, which we will discuss in section 4.3.3.
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4.3 Detection and data analysis

After the atoms have equilibrated in the two-dimensional lattice, the xy-lattices are ramped up to
60Erec and all atomic movement is essentially frozen. We are then able to detect the spatial density
distribution, spin-state occupation and the fraction of doubly occupied sites, the doubles fraction. In
this section we will describe the methods used already in previous theses [21, 22, 24] and introduce
improvements implemented during this work.

4.3.1 In-situ imaging

For the detection of the spatial atomic distribution we use an absorption imaging technique [99–101].
For near-resonant light (∆ ≈ 0) passing a non-transparent medium like our atomic clouds the light
intensity I decays exponentially along the propagation direction z. For a given particle density n
and the corresponding scattering cross section σ the intensity is given through the equation

dI(z)

dz
= −σn(z)I(z). (4.7)

Integration along the z-axis leads to

σ

∫ ∞

−∞
n(z) dz = − ln

(
Iout
Iin

)
= OD, (4.8)

where OD is the optical density. For simplicity, the formula above assumes a homogeneous intens-
ity and density distribution in a certain area perpendicular to the propagation direction. In the
experiment this could be the detection area of a camera pixel.

The scattering cross section σ can be derived with the two-level atom, as described in section 3.1,
with spontaneous decay of the excited state. The excitation probability and therefore σ as well
depend on the laser frequency detuning ∆ = ωL − ω0 to the optical transition frequency ω0. An
atom in the excited state, however, cannot absorb another photon until a spontaneous decay with a
photon emission in a random direction has occurred. This is described by the saturation parameter
s = I/Isat, with the saturation intensity Isat. With it, we can define the scattering cross section

σ =
σ0

1 + (2∆Γ )2 + s
, (4.9)

where Γ is the linewidth of the optical transition and σ0 = 3c2/(2πω2
0) is the bare cross section.

To include imperfections like frequency fluctuations and polarisation misalignment one adds a
scaling factor α for an effective saturation intensity Ieffsat = αIsat and an effective base cross section
σeff
0 = σ0/α. Including this into equation 4.8 and considering the case of a non-homogeneous

density and intensity distribution in xy-plane, we get the description for the integrated column
density

n2D(x, y) =
1

σeff

[
− ln

(
Iout(x, y)

Iin(x, y)

)
+
Iin(x, y)− Iout(x, y)

Ieffsat

]
. (4.10)

By detecting the intensity of light after it has passed the atomic cloud on a CCD camera we get a
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Figure 4.9: In-situ absorption imaging. a) The optical path of the imaging light (in orange) to the atoms
and then further to the CCD camera is shown. The atoms are not perfectly centred in between both aspheric
lenses (NA = 0.5), but slightly shifted to the top. The atomic cloud is then imaged to an intermediate image
plane that gets projected onto the camera chip through a 1:1 optical relay. The camera is positioned such
that, in combination with a cover in the first image plane, only half of the active CCD chip is illuminated. By
rapidly shifting the picture taken into the unexposed regions of the chip, including a covered readout area,
we take three high resolution images in quick succession. The imaging sequence is shown in b). We first use
a Landau-Zener sweep to shelve themF = 9/2 atoms in the F = 7/2 manifold. After the first absorption
picture is taken, all atoms have absorbed enough momentum to leave the trap and we can transfer the shelved
atoms back, image them and after a short time take the bright picture without atoms.

count-per-pixel value C(i, j) ∝
∫
A(i,j) I(x, y) dx dy with the pixel area at position i, j as A(i, j).

This area is determined by the physical pixel size on the camera chip and the magnification of our
imaging system M and was measured to be A(i, j) = (0.564 µm)2 = (1.06 axy)

2. We now can
rewrite equation 4.10 as [102]

n2D(i, j) =
1

σeff

[
− ln

(
Cout(i, j)

Cin(i, j)

)
+
Cin(i, j)− Cout(i, j)

Ceff
sat

]
, (4.11)

where we included all camera specific proportionality factors like quantum efficiency, pixel size
and gain to the value of Ceff

sat. The calibration procedure for Ceff
sat, σ

eff and magnificationM in our
experiment is described in detail in [21, 22].

The optical imaging system we use is sketched in figure 4.9. One of its main features are the high
NA = 0.5 aspheric lenses in the vacuum chamber close to the atoms. They allow for high resolution
imaging of our atomic cloud, with a point-spread function (PSF) radius of PSFHWHM ≈ 1.25 µm ≈
2.5 axy[22, 23]. That means the signal of an atom in the lattice is smeared out over a circle with
diameter of five lattice sites.

The images are taken with an Andor Ixon 888 camera by Oxford Instruments. We use the kinetics
mode, which shifts exposed images into unused regions of the CCD chip, which can then be read
out with low noise later. We usually take two images with local absorption of atoms for Cout(i, j)
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a) b)

c)

LZ sweep

HS1

Figure 4.10: Feshbach resonances in 40K and doubles detection a) A selection of relevant s-wave
Feshbach resonances is shown [22, 103–105] with the background scattering length aBG = 174(7) a0 [106].
Most relevant in this thesis is the |9〉 ↔ |7〉 resonance at (202.13±0.10) G, with which we tune the interaction
of the atoms during optical evaporation, lattice loading and the simulation of Hubbard physics. In yellow the
position of p-wave resonances between |7〉 ↔ |7〉 ((198.3±0.1) G and (198.8±0.1) G) [103, 106] and |9〉 ↔ |5〉
((215±5) G) [89] are marked, that can lead to losses. We use the difference in scattering lengths∆a = a97−a75
to separate the atoms on double occupancies, i.e. doubles. In b) the sequence is detailed where we prepare the
atoms in a |9〉 and |5〉 mixture and then use a narrow frequency HS1 transfer pulse to resolve the energy shift
∆U ∝ ∆a. Calibration data is presented in c), where we used a 1.0 kHz wide pulse to resolve the energy
shift ∆U ≈ 1.8 kHz. In pink the transferred atoms in the first picture are shown, while the shelved and then
imaged atoms are shown in dark blue. Note here that atoms on doubly occupied sites are lost when they are
shelved to the F = 7/2 manifold, and therefore are only detected when transferred with the HS1 pulse. The
left peak at νSD ≈ 46.4115MHz can be identified as the doubles peak and once calibrated the HS1 pulse can
be used in the detection routine.

and one reference picture without atoms for Cin(i, j), 8ms later. Taking two images allows us
for example to image both spin components, i.e. the two lowest hyperfine ground states of one
realisation subsequently. The energy splitting of the states at the imaging field of about 208G is
large enough (≈ 45MHz) to do state selective imaging, since the natural linewidth of potassium is
nearly an order of magnitude smaller than the state separation: Γ/2π = 6.035(11)MHz [74].

Nevertheless, there might be some off-resonant light absorption, leading to wrong signals. By
using a sequence of Landau-Zener sweeps as shown in figure 4.9, we transfer atoms to the F = 7/2
manifold during imaging of the first state, which is extremely far (∼ 1.82GHz) detuned for the
imaging light. The efficiency of one microwave transfer is 99.2(5) %. With this microwave shelving
of one spin state, we can ensure minimal cross imaging of both populations.

4.3.2 Double occupancy detection

An atom on a doubly occupied site (double) in the shelved state introduced in the previous section
can undergo spin-changing collisions, leading to the release of kinetic energy and finally the loss
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of both atoms. Comparing atom numbers with and without this shelving process can give us an
estimate on the fraction of doubly occupied sites, i.e. the doubles-fraction. We need, however, a more
deterministic and reproducible approach for this measurement. Since the on-site interaction U is
dependent on both atoms, changing the state of one of them leads to a change in the interaction
energy∆U = U ′−U . This energy difference has to be included in the RF frequency for resonant state
transfers, like the Landau-Zener sweep, and therefore allows for spectroscopically separating atoms
on singly-occupied sites (singles) and doubly-occupied sites (doubles). The interaction difference is
determined by the scattering length difference ∆a(B) ∝ ∆U , given by the Feshbach resonances
introduced in section 3.4. In figure 4.10 a) we show the relevant Feshbach resonances for the lowest
hyperfine states. For simplicity we will refer to the states in the lowest hyperfine manifold in the
following |x〉 := |F = 9/2,mF = −x/2〉 such that for example |9〉 := |F = 9/2,mF = −9/2〉
and that U97 is the on-site interaction between the states |9〉 and |7〉.

This spectroscopic separation of singles and doubles was previously done in our experiment at
B ≈ 180.2G in a |9〉 , |5〉 mixture with an RF transfer |9〉 → |7〉, see figure 4.10 b) . The interaction
energy difference at that field was ∆U/h = (U95 − U75)/h ≈ 6.6 kHz [21, 22].

HS1 pulse To resolve this small frequency difference we use a specially formed pulse known from
NMR tomography, the hyperbolic secant (HS1) pulse [107], performing an adiabatic Landau-Zener
type sweep with a state transfer in only a very narrow frequency range. It has not only a shaped
amplitude envelope A(t), but also a time dependent frequency ν(t), ramping across a centre value
νHS1 over a frequency range of ∆HS1. The RF waveform of the HS1 is generated as

VHS1(t) = A(t) cos [2πν(t) t] , (4.12)

where

A(t) = A0 sech
[
Ctrunc

(
2t

T
− 1

)]
(4.13)

and

ν(t) = νHS1 +
∆HS1
2

tanh
[
Ctrunc

(
2t

T
− 1

)]
. (4.14)

Here, Ctrunc denotes a truncation parameter that needs to be optimised for the pulse duration T
one has chosen. Similar to the Landau-Zener sweep previously discussed it has close to 100 %
transfer efficiency if the centre frequency of the pulse νHS1 is close to the resonance frequency ν0,
i.e. ∆ = νHS1 − ν0 < ∆HS1 and quickly drops to zero for ∆ > ∆HS1 leading to a flat-top transfer.
This allows for the spectroscopy of narrowly separated states while being robust to small frequency
changes due to magnetic field drifts [21, 22]. The pulse duration T , however, limits the transfer
width of the pulse, such that the spectroscopy of closely spaced frequencies requires longer pulses
and therefore requires also less overall resonance frequency drifts.

Singles-doubles separation at 212.5G For the experiments presented in this thesis we chose
to perform this singles-doubles separation at B ≈ 212.5G, which leads to a frequency separation
of only ∆U/h = (U95 − U75)/h ≈ 1.8 kHz, less than one third of the original separation. This
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required an HS1 pulse with a longer pulse length T = 7ms, with the truncation value optimised
via numerical simulations of Ctrunc = 4.5. A big issue for the spectroscopy of states with such
small frequency separation is the time periodic variation of the magnetic field due to the main
power oscillation frequency of 50Hz and its higher harmonics, mostly at 150Hz. The pulse therefore
was synchronised to the power line oscillations and performed in a time window with minimal
change of magnetic background field. Figure 4.10 c) shows the optimised spectroscopy signal for
∆HS1 = 1000Hz, with the transferred atoms and the microwave shelved remaining atoms numbers.
Two transfer resonances are clearly visible, corresponding to the doubles and singles, both with a
flat-top transfer shape. In the following the pulse frequency width was increased to∆HS1 = 1500Hz
for a more stable and robust transfer.

4.3.3 Radio frequency tomography of a single plane

All previously introduced detection methods manipulate all atoms in the cloud, i.e. act globally.
However, since during the z-lattice loading we not only create one, but up to 12 two-dimensional
clouds in vertical direction, we would also image all of these realisations of the Hubbard model
stacked on top of each other, therefore losing information. To selectively image atoms from only a
single plane we do tomography in a strong magnetic field gradient along the z-direction, which
results in a different energy splitting for each plane that can in turn be addressed by narrow RF
pulses. Both [22] and [21] describe how the magnetic fields were generated, calibrated, optimised
and how the tomography was initially implemented with resonant, fixed frequency π-pulses. In
this section I will summarise the important features of this technique and then detail the new
implementation of HS1 pulses for this tomography and the optimisation required for their use.

Magnetic field generation and control One of the key requirements for tomography is the
precise control of constant magnetic fields and field gradients. For this, several coils are installed
close to the atom position with different purposes. In this description we explicitly leave out the
coils used for the magnetic trap, since we only use them for the cooling to degeneracy and not in
the detection sequence. Details on all coils used except the in-plane gradient coils can be found in
[18]. Previously introduced were the main Feshbach coils, a pair of coils in Helmholtz configuration
that create the large homogeneous background fields defining the quantisation axis in z-direction.
They have a large inductance of about 2.3mH reducing noise but also allowing only relatively slow
ramps, which is why they are named slow Feshbach coils. Controlled by a low noise PID regulation
and a fast feedback circuit to suppress 50Hz noise on the current [22] they have a high field stability
of < 1mG at B ≈ 200G.

For fast changes of the magnetic field a pair of small rectangular coils is used with a slew rate
of up to 0.3G/µs [21]. These are for obvious reasons called the fast Feshbach coils, which can be
operated either in Helmholtz configuration to add or subtract constant fields or in anti-Helmholtz
configuration to generate magnetic field gradients in the z-direction. Two coil pairs in the horizontal
plane, the offset coils of the Ioffe trap in x-direction and a pair of elliptical coils in y-direction shift
the centre of the fast Feshbach coil’s quadrupole field onto the z-axis, therefore allowing precise
alignment of the gradient direction. To cancel or generate horizontal gradients in the absence of the
quadrupole field, two separate gradient offset coils were added which generate in-plane gradients
along the x-y-diagonals [21, 22, 108].
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Single plane RF transfer With the tomography we would like to have access to both the singles
and doubles of one single plane. Considering the interaction energy shift of a doubly occupied site
relative to a singly occupied one, introduced in the previous section, a magnetic field and a state
combination is needed, where this relative energy shift is negligible ∆U ≈ 0. This is the case for
the state combination of |7〉 , |5〉 and |7〉 , |3〉 at a field of ∼ 213.8G, where U75 = U73 [22]. At that
field the RF frequency for a transfer of |5〉 to |3〉 is ν53 = E53/h ≈ 52.197MHz.

With the fast Feshbach coils we generate amagnetic field gradient of ∂|B|/∂z = 33.3(5)G/cm[22]
which translates to a difference in transition frequency of ∼ 640Hz ≈ 10−6 ν53 for the ∼ 1 µm
distanced planes of the green z-lattice. This small frequency separation requires in turn a relative
magnetic field stability of 1 ppm as well. The oscillation of the background field due to the main
power line 50Hz noise is, however, much larger than that. This is partly compensated by the bypass
circuit of the slow Feshbach coils, but not sufficiently. One way to avoid these oscillations with
periodicity of 20ms was to use a very short T ≤ 3.5ms RF-pulse with constant frequency that
induced resonant Rabi-oscillations on one plane only. With some calibration and pulse shaping one
could use them for π-pulses that lead to a near complete transfer of a single plane with less than 5%
transfer of neighbouring planes. For reproducibility this was again synchronised with the power
line oscillations. More details on this slicing technique can be found in [21, 22].

Still, here were some issues, e.g. high sensitivity of the transfer to small field drifts, requiring
constant tracking of the transfer peaks and post selection of less than 1/6-th of the data taken. A
better solution would have been an HS1 pulse as introduced in section 4.3.2. To still minimise the
effects of the background noise with 20ms periodicity, a reasonably short pulse time T = 7ms is
required that still allows a Fourier limited transfer window of ∆HS1 = 1000Hz.

HS1 slicing Since this is still larger than the separation of the planes of the green z-lattice, we
implemented the superlattice assisted z-loading introduced in section 4.2.2 in the course of this
thesis, which only populates each second plane, leaving the other ones empty. This doubles the
atomic cloud separation in frequency space to ∼ 1 280Hz.

Even though the tomography was now possible in theory with HS1 pulse transfer sweeps,
magnetic field drifts and the background field noise made it hard to cleanly separate the signals
of the individual planes. For well reproducible fields one can characterise these drifts and even
the periodic fluctuations if one has the means to synchronise to the 50Hz power line as we do.
To get a high temporal resolution we used short π-pulses with T = 3ms (main transfer during
∆tFWHM ≈ 1ms) in a homogeneous field without any gradient, so we would get an equal RF transfer
behaviour over the global atom cloud. By adding a variable shift to the synchronisation trigger
tsyncline we can detect the 50Hz and 150Hz noise and a background drift γ = ∂|B|/∂t as shown in
figure 4.11. A fit to the resonance frequencies ν(t) in the form of

ν(t) = ν0 + νdrift(t) =ν0 +A50Hz cos (50Hz× 2π t+Φ50Hz) (4.15)
+A150Hz cos (150Hz× 2π t+Φ150Hz) + γ t

reveals that we have an amplitude of the 50Hz (150Hz) oscillations of A50Hz = 242(20)Hz
(A150Hz = 110(18)Hz) with a magnetic field drift of γ = −2.9(12)Hzms−1. By using this fitted
frequency drift νdrift(t) as feed-forward correction in equation 4.14 to replace the constant νHS1 with
one that includes the time dependent drift terms ν̃HS1 = νHS1 + νdrift(t) we can compensate the
measured field drifts and therefore reach a far more optimal condition for narrow state transfer.

58



4.3 Detection and data analysis

a) b)

Figure 4.11: Single plane detection. a) Without very careful shielding there will always be a background
oscillation in the magnetic field with the power line frequency of 50Hz and its third harmonic at 150Hz.
We characterise this magnetic field oscillation by synchronising the detection sequence to the power line
oscillation and after a variable time tsyncline measure the |3〉 → |5〉 resonance frequency with a very short
RF pulse (∆tFWHM ≈ 1ms). By fitting a periodic oscillation with both frequencies to the data shown in
grey, we can describe the expected frequency drift νdrift(t) during a longer transfer pulse. In b) the atom
transfer of such a long transfer pulse is shown with a length of T = 14ms and a transfer frequency width of
∆HS1 = 500Hz. We can resolve the number of singles and doubles over the whole atom cloud with in total
around five planes filled. Since only each second z-plane is populated we see the distance of the atomic layers
of ∼ 1 280Hz. This technique also allows the separate detection of the planes with all of them filled.

This measurement was, however, done on the global atom cloud and did not include the strong
magnetic field gradient created by the fast Feshbach coils. As it turns out these induce a very strong
magnetic field drift, probably due to thermal effects, as the fast Feshbach coils are not water cooled.
Nevertheless, we can optimise this by varying the γ in the feed forward function we add to the
frequency sweep of the HS1 pulse, which we optimised to be γ = 185Hzms−1. These pulses are
generated and uploaded automatically for each experimental realisation using a Keysight 33622A
arbitrary waveform generator (AWG), which is detailed in [109].

With this feed forward compensation of magnetic field changes we are no longer bound to short
pulses, but we successfully used pulses with times up to T = 20ms. The longer available time span
and the drift cancellation allow us to use even smaller transfer windows ∆HS1 = 500Hz as shown
in figure 4.11. We, therefore, are not only reliant on the superlattice loading of every second plane,
but if wanted to we could even resolve a fully populated green z-lattice.

4.3.4 Singles-doubles and spin-spin detection sequences

Combining the presented detection methods allows us to detect the in-situ density distributions
of singles and doubles of one spin of an atomic cloud in a two-dimensional lattice plane, i.e. one
representation of the two-dimensional Hubbard model. This is especially useful when examining
density distributions of spin-balanced ensembles, since then 〈n↑〉 = 〈n↓〉 so we can extrapolate
the average local density distributions of all possible occupation states. One has to be careful
in preparing the sequence such that all of these components can work together, for example by
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microwave shelving
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doubles singles bright
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singles-doubles separationsingle plane slicing

microwave shelving
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spin up spin down bright
dual single plane slicing

singles/doubles detection

spin up/spin down detection
spin changing collisions

doubles removal

HS1

Figure 4.12: Sequences for spin-spin or singles-doubles detection. Shown are both detection sequences
used in this thesis. They are adjusted such that one can switch between them by just changing the order of
some RF sweeps and by turning on and off RF pulses, without the need for any change in magnetic fields or
timings. We can use these sequences for both measuring repulsive (188 to 195G) and attractive interactions
(204 to 209G). To avoid ramping over the |9〉 ↔ |7〉 Feshbach resonance at ∼ 202.2G we first transfer to a
|9〉,|5〉 mixture and then ramp to the detection field at 212.5G. For the spin up/spin down detection we also
remove all doubly occupied sites by going to a |9〉,|3〉 mixture, which allows spin changing collisions to |7〉
and |5〉, with all excess energy transferred to kinetic momentum, removing these atoms from the trap.

choosing the right magnetic field for slicing, where no on-site shift is present (∆U = 0).
Especially the doubly occupied sites have to be considered, since being tightly bound in the deep

lattice increases their on-site interaction strength, such that losses due to two-body scatterings can
occur. These two-body losses are greatly enhanced close to s-wave Feshbach resonances, but also in
the close vicinity of p-wave resonances as indicated in figure 4.10, where their suppression due to the
low kinetic energy is not sufficient any more. Additional losses can occur because of spin changing
collisions, for example when the atom pair is in the states |9〉,|3〉 which can decay into |7〉,|5〉 by
exchanging 1h̄ in angular momentum, absorbing the difference in energy as kinetic momentum and
leaving the trap. We can utilise this to intentionally remove all double occupancies, and then use a
different detection sequence to image the singles distribution of both spin components. For this
we need the slicing to work for both spin components at the same time. We do this by combining
two HS1 functions with different centre frequencies corresponding to ν53 and ν97 and uploading
the combined waveform to the AWG. Being able to detect both spin components of one plane is
essential for investigating spin imbalanced systems or detecting magnetic correlations.

The two sequences discussed are sketched in figure 4.12. Since they both use the same magnetic
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a) b)

Figure 4.13: Trap frequency and beam waist calibration. a) Trap frequency measurements in y-direction
for two different x-lattice depths. By increasing the lattice depth, the frequency of the centre of mass (COM)
oscillation increases (from 25.45(12) to 36.55(16) Hz). Using a fit to the damped oscillation (in dark blue) we
can extract the frequency νx,y that we can then compare in b) to expected trap frequencies simulated (in
pink) with the equations 4.17 to 4.20. By measuring the change in trap frequency perpendicular to the beam
direction and relative to its power we can manually adjust the waist parameters of the simulations. The beam
waists used for the simulation in the figure are displayed as well and have an estimated uncertainty of 2.5 µm.

fields for detection, we can switch quickly between the two modes by changing the order and by
turning off/on a few RF pulses.

4.3.5 Potential mapping with the local density approximation

With the introduced detection method we can, for a fixed set of parameters t and U , obtain a local
density distribution of the doubles nD(r) = 〈n↑n↓〉 and the singles nS,↑/↓(r) = 〈n↑/↓〉 − 〈n↑n↓〉.
To compare this with theoretical predictions we need to find the local chemical potential µ(r) and
for a thermally equilibrated system a global temperature T . For a known local potential Vpot(r) we
can use the local-density approximation (LDA) discussed in section 3.3 to get the relative chemical
potential of our system, with only one free parameter µ0 defined by the atom number and the
temperature. In this section we will summarise [21, 22, 24] how to obtain this local potential Vpot(r)
and use it to compare the data to theory.

Full potential calculation There are two terms to consider when calculating the local potential
Vpot,i of a lattice beam i = x, y, zr, zg (zr for the infrared z-lattice and zg for the green one). First,
the lattice potential created by a spatially varying intensity distribution and second, the zero-point
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energy of the local lattice sites, similar to the energy offset of the lowest harmonic oscillator state
ωih̄/2. For this we need to obtain the parameters defining the spatial distribution, i.e. the wave
vector ki given by the lattice angle θi and the lattice waist at the focus positionW0,i, see figure 3.7.
We also need to know whether the potential is attractive or repulsive for the atoms. The waist is
assumed to be constant, since the Rayleigh length z0 is orders of magnitude larger than our system
size. For the lattice potential two beams are overlapped and any power imbalance can be described
with the power ratio of the beams γi. For retro-reflected beams this is less than the ideal value of
one due to losses in the optical path mainly caused by the vacuum glass cell. The parametric heating
technique as shown in figure 4.7 can give us the pure lattice potential Vlatt,i and with the knowledge
of γi the complete potential can be calculated.

For the second term we can approximate the sinusoidal lattice with a harmonic potential at the
centre of each well. This leads to ωwell,i ≈ (4Erec,iVlatt,i/h̄

2)1/2 and therefore a zero point energy of
ωwell,i h̄/2 ≈ (Vlatt,iErec,i)

1/2. The full potential for all four lattice beams is given by

V (x, y) = Vpot,x(x, y) + Vpot,y(x, y) + Vpot,zr(x, y) + Vpot,zg(x, y), (4.16)

with the individual contributions of each of the four lattices:
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Here we used that the green and infrared z-lattice share the same lattice angle θz . Note that the
prefactor for the lattice term reflects whether the lattice is repulsive or attractive. Also, since the
z-lattices are not parallel to the xy-plane but crossing it, they have to be described with an elliptical
beam profile whereas in-plane lattice beams have an approximately constant intensity distribution
along their propagation axis.

Trap frequency measurement In the centre of the trap one can approximate its potential with a
two dimensional harmonic oscillator potential, described by the harmonic oscillator frequencies of

62



4.3 Detection and data analysis

a) b)

Figure 4.14: Potential mapping and the equation of state fit. a) Local density distribution for singles
(upper picture) and doubles (lower picture) of a single plane averaged over ten measurements. The centre
region features a large doubles density, which shows as a reduced density in the singles picture. The narrow
and low density ring of singles is expected for the calculated attractive interactions of U/t = −1.74 with
t(6Erec) = 224Hz. The white dashed lines indicate equipotential lines from the trap potential calculation
calibrated with the measurement shown in figure 4.13. We can use this calculated potential to map the densities
to isopotential regions. The averaged densities in these regions can be fitted with numerical calculations, for
example DQMC, as shown in b). The four free parameters for the fit to the data shown as solid line are the
temperature T/t = 1.89(6), the central chemical potential µ0/t = 5.72(6) and the global density scaling
parameters σdoubles = 1/0.48(2) and σsingles = 1/0.82(2). The data in a) and b) have already been scaled
accordingly to give the reader a sense of the real ratio between both occupation probabilities.

both axes ωx/y = νx/y × 2π. In a dipole trap we can measure these trap frequencies by loading only
a very small number of atoms ∼ 2 × 103, applying a small momentum kick and then extracting
their spatial oscillation frequencies νx/y . In a lattice this macroscopic motion is suppressed, but by
blocking one of the retro-reflected beams and increasing this laser’s intensity by a factor of four,
motion along this direction is again possible, while the overall trap potential still approximates the
real lattice configuration. We displace the cloud slightly from the centre with the magnetic field
gradient coils [24] and then measure the centre-of-mass sloshing motion, as shown in figure 4.13.
Through the fit of the equation of motion of a damped oscillator we get the trap frequency νx/y .
Repeating this measurement for different lattice powers and comparing the resulting trap frequencies
to the harmonic centre of the full trap potential simulation of the equations 4.17 to 4.20, we can
extract the waists of all lattices and are now able to simulate the full local potential. This method
also allows the description of small beam misalignments by fitting a larger effective waist [21].
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Potential mapping for the equation of state With the knowledge of the local potential V (x, y)
we can use the LDA and assign equipotential regions. In a lattice filled with atoms, the chemical
potential of all these regions is now defined by a single parameter, the central chemical potential
µ0 = µ(r) + V (r), see section 3.3. By fitting the measured densities averaged over equipotential
regions with data simulated using DQMC calculations, we can extract µ0 and T , as shown in
figure 4.14. Since U can be calculated, the only additional free parameters needed are global density
scaling factors, accounting for example for losses in the detection sequence or imperfect tomography
of the z-plane. We note that the chemical potential is mostly determined by the maximum of the
singles at half filling, where µ = 0. At that point, several simulation methods work best which
leads to a very robust scaling determination. In contrast to that, temperature effects are most
prominent in the regions with lower filling. This separation of features reduces cross-dependence of
the fit parameters and allowed for the measurement of the equation of state of the two-dimensional
Hubbard model [50]. Through the determination of the chemical potential, several measurements
with different atom numbers, i.e. central chemical potential µ0 can be combined, resulting in
experimental data with enough accuracy to deduce thermodynamic variables like entropy [49] and
compressibility [110] for different repulsive interactions.

4.4 Potential engineering with a spatial light modulator

By mapping the spatial position to a chemical potential, we can use the inhomogeneity of the trap to
our advantage. This comes with the cost of potentially very small isopotential regions further away
from the trap centre. Being able to arbitrarily shape the lattice potential could circumvent this, by
creating a homogeneous lattice potential. This could allow the observation of macroscopic, i.e. long
range physical effects and the averaging of very large data regions, increasing the data quality.
There are, however, a lot more uses for the ability to locally manipulate potentials, for example, for
transport measurements by creating constrictions [111], periodically modulated potentials [112,
113] or tilted potentials for atom movement [114]. Other research with potential shaping focuses
on homogeneous box traps [115–117], optical tweezers for few atom control [118, 119] or even the
direct creation of three dimensional lattices for Rydberg atoms [120].

For our experiment we looked at proposals to use potential shaping to redistribute the entropy
of a system to obtain very cold samples [121, 122]. There, one generally creates two trap regions
A and B with different local potentials VA and VB > VA. After loading an atomic cloud into that
system, it exhibits a chemical potential µA > µB . Since the entropy per particle S/N is dependent
on the chemical potential, we can choose the potentials such that region B potentially has a lot
higher entropy per particle (S/N)B > (S/N)A and any atom moving from region A to B could
remove entropy from region B. Therefore, region B acts as an entropy reservoir for region A. For
the two-dimensional Hubbard model the entropy distribution at a fixed temperature and repulsive
interactions as a function of chemical potential is shown in figure 4.15. To obtain, for example,
cold systems with a region at half-filling where n = 1, an entropy reservoir with very low density
n� 1 would be ideal. Even though it is not yet completely understood how entropy is transported
and how a redistribution would work on a microscopic level, recently such a scheme was realised,
leading, among other things, to the coldest yet measured two-dimensional Hubbard system with
T/t = 0.25 [123, 124].

This section summarises some of the previous conceptual and experimental work on this experi-
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a) b) c)

Figure 4.15: Entropy cooling and potential shaping. a) Shown in blue is the density equation of state
n for a repulsive system with U/t = 8 at TkB/t = 0.8, and the entropy per lattice site s as a function of
chemical potential µ, simulated with NLCE [37]. As one can see we have a local minimum in entropy close to
half filling µ = 0 due to the charge excitation gap of the Mott insulator [49]. For the consideration of entropy
redistribution and loading of the system, a different quantity is relevant. We start with a fixed atom number
N in the dipole trap and a fixed total entropy S, which should remain constant for adiabatic changes to the
system, like loading into a lattice. Therefore, the entropy per particle S/N = s/n is most relevant and shown
in orange. While particles close to the band insulator µ� t cannot store any entropy, particles in the low
density region could potentially carry a lot of entropy. For an efficient entropy cooling scheme we, therefore,
would like to have a large low-density region where particles can store a lot of entropy. Such a potential is
plotted in b), where an added potential in grey creates a homogeneous centre region with a flat potential, and
an outer ring for the bath region. By adjusting the size of the regions or the total atom number loaded, we
can control the approximate filling of each region. c) shows such a shaped potential created with a digital
micro-mirror device (DMD) in our experiment.

ment to implement a spatial light modulator (SLM) for local potential manipulation [125, 126], but
will focus on the optical setup which was completely reworked and optimised during this thesis.

SLM optical setup To shape potentials we use the optical dipole force of far-detuned laser light,
with all the advantages discussed in the previous sections. Here we could either use blue- or red-
detuned laser light resulting in the addition or subtraction of a local potential. For creating a stepped
potential as shown in figure 4.15 b) less light is required for adding a repulsive potential compared
to an attractive one, since the harmonic trapping potential offers already the general shape we
desire. We therefore choose to use blue-detuned laser light. This especially requires less light in
the centre of the trap, where the low entropy region might be even more sensitive to intensity
fluctuations, which could induce heating. For optical access to the atoms a beam splitter was placed
in the imaging path below the science chamber, shown in figure 4.9.

The initial setup with a Liquid Crystal on Silicon (LCoS) SLM, which modulates the light phase
pixel-wise, was exchanged to a digital micro-mirror device (DMD), the DMD DLP 6500 from Texas
Instruments. It consists of an array of small square mirrors which can be tilted along one diagonal
axis. There are two possible states the mirrors can be in, with angles of ±12°, hence the digital
nature of this SLM. If all or many mirrors are on, it additionally acts like a blazed grating, therefore
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Figure 4.16: SLM optical setup. The optical setup of the digital micro-mirror device (DMD) acting as a
spatial light modulator (SLM) was initially set up in [125, 126] and completely reworked during this thesis.
The Gaussian beam out of the single mode fibre gets enlarged by the first telescope, before hitting the DMD.
The incoming angle is adjusted to fulfil the blazing condition. The pattern the DMD creates is then projected
through a 4f -lens system with two achromatic lenses, before being imaged at the atoms through the optical
microscope shown in detail in figure 4.9. Translation stages and a piezo-actuated beam splitter mount are
essential for the alignment of the system described in the text. For generating and monitoring the created
potential a small CCD camera behind a 1:2 relay is used.

one has to match the incident angle such that the beams off the grating rows interfere constructively
for maximal pattern intensity, which is called the blazing condition. We project the image of the
mirror array via two lens pairs onto the atom plane. Hereby, the last two lenses are shared with
the imaging light path after having been overlapped with a beam splitter. This setup is shown in
figure 4.16, including the necessary improvements to the previous version of the setup [126], which
we will discuss later in this section.

DMD pattern creation The image in between the lens pairs is projected onto a small CCD camera
after a beam splitter cube. This allows for direct monitoring of the image projected onto the atoms
without any physical changes to the optical setup.

The potentials we want to project are all continuous in space, and therefore we have to translate
them to the digital nature of the SLM. This can in part be done by choosing a suitable magnification
that leads to the imaging of several DMD pixels to a lattice site. In our case ∼ (3.4)2 ≈ 12 pixels
get mapped to one single lattice site. Since the projection of the pattern onto the atoms has a worse
resolution than the much more optimised imaging system, small patterns on less than a site level
get smeared out and we can use pixel clusters to have more intermediate intensity steps available.

The error diffusion algorithm builds and extends the idea of pixel binning and is another method
of mapping a gray-scale picture onto a digital pattern [127, 128]. There, the cost of wrongly assigning
a pixel value due to the digital nature of the DMD is distributed to the next pixels, allowing for a
smooth image generation. Its implementation in the experiment is described in detail in [126]. Here
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a) b)
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Figure 4.17: Errors in the potential pattern generation. a) If the projection of the DMD onto the feedback
camera is not aligned well enough, the point-spread-function (PSF) will be malformed. For the asymmetric
PSF shown in the small picture in the top, where we turned on single pixels on the DMD chip, the feedback
routine fails to generate the required local correction. The stripes in the potential visible in the bottom picture
are the result of ten feedback iterations with a wrong projection alignment. b) Another source of imaging
and feedback errors were previously unnoticed higher diffraction orders of the DMD that were also projected
onto the imaging camera providing the feedback. A flat potential created as shown in the centre bottom
displays an irregular noise pattern in the top left part of the potential. By blocking the centre of the second
lens the unwanted higher order diffraction becomes clearly visible as shown in the bottom right. We can
get rid of this by placing an iris on the first lens, as shown in figure 4.16. An unsmoothed image of a real
potential created after removing all these feedback errors is shown in figure 4.15 c).

it is important to note that the DMD only allows to change the local reflectivity, so any light pattern
generated depends on the light that is put onto the DMD first. Therefore, we first take an image of
the Gaussian input beam with the small monitor camera, and scale the pattern we want to create
with its inverse, thereby taking into account that a DMD pixel in the centre of the beam has a larger
effect on the pattern generation compared to one on the outer edge.

A feedback algorithm was put into place by my colleague Dr. Chun Fai Chan that compares the
image taken by the small camera to the desired one and adds the difference to the pattern used as
the input to the error diffusion algorithm. To compare the DMD pattern and the camera picture a
three-point calibration of rotation and position is done regularly [126].

We learned that for this feedback routine to work, the optical system projecting the DMD pattern
onto the feedback camera has to be optimised very well. It is especially sensitive to astigmatism and
coma, since these effects lead to an asymmetry of the point spread function (PSF) of a single pixel.
Running the three-point calibration and the feedback algorithm with imaging errors like that results
in the appearance of stripes, see figure 4.17 a). By properly aligning the 4f -lens system, passing
each lens centred and perpendicular, the PSF is symmetric and the feedback algorithm converges.

Still, we observed a persistent pattern on the feedback-optimised picture, see left image in
figure 4.17 b). We found out that the DMD acts, dependent on the pixel pattern that is shown, as a
grating with varying periodicity. Therefore, there exist several diffraction orders apart from the one
we optimised on with the blazing condition. The picture to the right shows the pattern observed
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when the centre of the second lens is blocked and the desired zeroth diffraction order cannot pass
any more, as shown in the schematic above. We solve this by adding an iris to the first lens and
blocking all orders but the one we want. The final result can be seen in figure 4.15 c) which is a
picture of the DMD generated light pattern taken by the feedback camera.

Projection onto the atoms and alignment This pattern has to be cast onto the atoms as
accurately as possible. For this we use the z-camera, which is focused on the desired atom plane.
However, due to the different wavelengths used for absorption imaging (769 nm) and potential
shaping (∼ 728 nm), the focus point is shifted. The shift is calculated with the optics software OSLO
to −5.45mm, by which we have to shift the camera position.

We align the system by removing both lenses of the 4f -system and using the DMD as a mirror.
The collimated Gaussian beam should then pass the optical path up to the z-camera without much
clipping. Afterwards, we insert the lens closer to the atoms and align its focus position on a stage
such that the focus point size is minimised on the camera. By shifting the lens back and forth from
the centre position, we can additionally check the angle it passes the imaging system with and
iteratively correct it. We then position a mirror in the focus after the lens we just put in and align it
such that the beam gets perfectly back-reflected to the optical fibre. The second lens is then inserted
and aligned to keep the back-reflection on the fibre. Last, we project a pattern of only a few pixels
on the DMD, and align its position to get the projected image plane into the focus of the camera.
We optimise the angle with the electronically controlled beam splitter mount to minimise optical
aberrations. Additionally, the angle influences the position where the potential shaping beam hits
the glass cell, so we have to take care to avoid large dust particles, seen as large distortions of a
pattern. Then the small CCD camera for feedback can be mounted and aligned. For fine adjustment
of the generated image pattern, we shift the centre position of the DMD pattern on the DMD chip
itself, since it occupies only about one fifth of the whole chip.

Calibration of the generated potential depth When creating a digital pattern with the DMD,
we optimise the overall shape and relative intensity of each pixel. In a next step we have to now scale
the overall light intensity going onto the DMD such that the resulting light pattern creates the desired
absolute potential shift for the atoms. For this calibration we use the small CCD monitor camera as
well. Each pixel on the camera has a possible output C(x, y) in the range of 0 to 255 counts (8bit).
For the generation of the spatial shape of the target potential Vtarget(x, y), we scale the potential by
setting its maximum value to Cmax = β × 255 counts. A usual parameter is β = 0.5, which allows
us to use a large dynamic range for the feedback optimisation process. The initial spatial profile
of the Gauss mode on the DMD is taken using a fixed laser power, controlled by PID regulation to
a photo-diode voltage UPD. The exposure time for the monitor camera was chosen such that the
initial Gaussian profile is not saturating the camera. Then the scaled down potential is created using
the feedback loops described above. What is missing for the experimental scaling calibration is the
actual potential the atoms see Vactual(x, y) for a certain regulated intensity and a prepared pattern.
We get this information by scanning the regulation set point Uset with an inverted trap potential
shaped pattern on the DMD, until the potential is actually compensated, and therefore the atom
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Figure 4.18: Potential shaping laser and wavelength dependent losses. a) The light for the potential
shaping is generated using a titanium-sapphire (TiSa) laser, pumped by a 532 nm Coherent Verdi V18. The
output intensity is regulated with an AOM before being coupled into a fibre. b) We measured the wavelength
dependent losses by using the DMD to make a large homogeneous region in the trap centre. In blue (orange)
the doubles (singles) density is shown in arbitrary units, averaged over five measurements per data point.
Any reduction in the doubles density always seems combined with a small increase in the singles density,
probably as the sample is getting much hotter due to density redistribution after the doubles get lost. We
choose a wavelength of λDMD ≈ 727.24 nm, where a maximum of doubles indicates a relative loss minimum.

density is flat at Uset = Ucomp. From this we can calculate a scaling factor

αDMD =
Vmax

Ucomp ∗ β ∗ 255 counts
(4.21)

which we can use for any potential by scaling Ucomp with the respective Vmax.

Laser light generation and wavelength determination A titanium-sapphire (TiSa) laser, a
Sirah Matisse CS pumped by a Verdi V18, is used for the generation of the potential shaping light.
Its wavelength is tunable over a range of approximately 700 to 950 nm with output powers of more
than one watt. The optical setup including the launch into an optical fibre is shown in figure 4.18.
The initial choice of 730 nm was motivated by the sufficiently large detuning to the D2 line (∼ 39 nm)
and the availability of laser diodes at that wavelength. The switch to the TiSa became necessary as
the tapered amplifier diode we used was discontinued and no replacement was available.

One disadvantage of blue-detuned light is the increased possibility of photo-association processes
also called light-assisted collisions, where colliding atoms close to a Feshbach resonance can use the
excess photon energy to form a bound molecule with one excited atom [129]. Atoms in these bound
states usually decay with a large increase in kinetic energy, resulting in a loss from the trap. While
red-detuned light needs to match exact resonance frequencies, as discussed quickly in section 4.1.3,
this is not true any more for blue-detuned light, since the excess energy to match the resonance
condition can be transformed into kinetic motion. However, other experiments with ultracold
potassium reported the existence of specific wavelengths, where these losses are suppressed [104].
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a) b)

Figure 4.19: Atom feedback for potential generation. For creating a universally applicable local scaling
map R(x, y) as described in the text, we use the local doubles density as a feedback parameter. For attractive
interactions U < 0 and close to half-filling they scale nearly linear relative to a change in local chemical
potential. a) From the top left picture down to the bottom right one the averaged doubles density of 15
measurements is displayed. One can see that the initial potential is greatly deformed when reaching the
atoms. Reasons can be diffraction and absorption in the optical path. After the last iteration the potential is
already relatively smooth and more even, as the doubles density RMS error plotted in b) also shows.

Without further examining the physical process, we wanted to minimise these losses by tuning
the wavelength of the laser while using an arbitrary potential on the atoms. The average detected
atom number relative to the wavelength can be seen in figure 4.18 b), where clear atom number
maxima, i.e. loss minima can be observed, for example, at ∼ 727.24 nm. These minima depend on
the scattering potential and its bound channels and, therefore, also on the magnetic field one uses.
The measurement should be repeated for different magnetic fields individually.

Atom distribution to potential feedback In some cases very large potentials are required and
small relative imperfections in the generated potential Vactual(x, y)/Vtarget(x, y) can in some regions
be very large in absolute potential difference ∆V = Vactual(x, y) − Vtarget(x, y) � t leading to
spatial density inhomogeneities ∆n(x, y) = n(x, y)− n̄. Under the assumption that these effects
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are caused by absorption for example and scale linearly, one could imagine a localised scaling map

R(x, y) =
Vrequired(x, y)

Vtarget(x, y)
(4.22)

that could be used to adapt the initially generated pattern to compensate for the local imperfections.
As an optimisation quantity we use our atoms and an iterative feedback procedure that decreases

(increases) the SLM pattern in places where the doubles density is below (above) average∆n(x, y) <
0 (∆n(x, y) > 0) as is shown in figure 4.19. For attractive interactions, the doubles density is
relatively linear near the half filling point µ = 0, see figure 4.14 and, therefore, ideal to use as a
feedback quantity in the algorithm. For the optimisation in figure 4.19 we used a Gaussian filter
with 4 pixel radius and 15 density measurements averaged per iteration.

From the optimised potential after the iterative feedback Vrequired(x, y) we can extract the scaling
map R(x, y). Calibrating this once allows using this localised scaling map for any other potential
Vrequired(x, y) = R(x, y)× Vtarget(x, y), as long as the scaling map is large enough, meaning it has
a smaller size than the one the feedback ran on. This works surprisingly well, partially validating
the theory that the local defects scale linearly with intensity.

71





CHAPTER 5

Simulating a Mott insulator using attractive
interaction

Exact solutions to the Hubbard model at low temperatures are still out of reach at the moment.
Therefore, a lot of effort has been directed to find suitable ways to simplify the model even further
[34, 44, 130, 131]. One path towards this goal is the use of symmetries in the Hubbard model, which
additionally might provide more insight to its physics. In this chapter we will discuss the most
relevant symmetries and provide an experimental validation of a very versatile one through our
quantum simulator [30].

5.1 Symmetries of the Hubbard model

In the discussion of the effects of interaction and emerging order in the Hubbard model in chapter 2
one could note the similarities between repulsive (U > 0) and attractive (U < 0) interactions. The
superexchange mechanism with its relevant energy J = 4t2/U for example leads to antiferromag-
netic (AFM) spin ordering for repulsive interactions as well as to the chequerboard pattern of the
charge-density-wave (CDW) at attractive interactions. This is illustrated best in the phase diagram
at half-filling µ = 0 shown in figure 2.8, which implies the existence of some sort of symmetry in
the Hubbard model.

The simplicity of the Hubbard Hamiltonian should allow us to describe these symmetries. We
will start with the most trivial of them and at the end of this section answer the question about a
symmetry connecting the attractive to the repulsive Hubbard model.

Spin-exchange symmetry Some symmetries we will discuss are discrete symmetries, where a
system description/Hamiltonian stays invariant under an exchange transformation. One example is
a transformation interchanging the spin of the creation and annihilation operators, the spin-exchange
(SE) transformation :

SE : ĉi,↑ ↔ ĉi,↓; ĉ†i,↑ ↔ ĉ†i,↓

ĉi,↓ ↔ ĉi,↑; ĉ†i,↓ ↔ ĉ†i,↑, (5.1)

73



Chapter 5 Simulating a Mott insulator using attractive interaction

which directly results in

n̂i,↓ = c†i,↓ci,↓ ↔ c†i,↑ci,↑ = n̂i,↑. (5.2)

By transforming the individual terms of the Hubbard Hamiltonian in equation 2.9, we can observe
how this transformation acts on the model:

−t
∑
〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ

)
↔− t

∑
〈i,j〉,σ

(
ĉ†j,σ ĉi,σ + ĉ†i,σ ĉj,σ

)
(5.3)

+U
∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
↔+ U

∑
i

(
n̂i,↓ − 1/2

) (
n̂i,↑ − 1/2

)
(5.4)

−
∑
i,σ

µσ
(
n̂i,σ − 1/2

)
↔−

∑
i

[
µ↑
(
n̂i,↓ − 1/2

)
+ µ↓

(
n̂i,↑ − 1/2

)]
. (5.5)

While the tunnelling and the interaction terms are invariant under this transformation, the chemical
potential term is modified, since the transformation does not also exchange the chemical potential
for the individual spin components.

For the further discussion we separate the spin dependent chemical potential into two parts: a
spin independent mean chemical potential µ = (µ↑+µ↓)/2 and the difference in chemical potential
for both spins h = (µ↑ − µ↓)/2, which is called an effective Zeeman shift. It is a useful parameter to
describe a spin-imbalance, i.e. n↑ 6= n↓ and is zero for the spin-balanced case. Using this to rewrite
equation 5.5 and applying the previous transformation

−
∑
i,σ

µσ
(
n̂i,σ − 1/2

)
= −

∑
i

[
µ
(
n̂i,↑ + n̂i,↓ − 1

)
+ h

(
n̂i,↑ − n̂i,↓

)]
(5.6)

↔ −
∑
i

[
µ
(
n̂i,↑ + n̂i,↓ − 1

)
− h

(
n̂i,↑ − n̂i,↓

)]
, (5.7)

we see that the spin-exchange only acts on the spin dependent chemical potential term, where then
h↔ −h, and not on the spin independent one.

Therefore, the full Hamiltonian transforms as

Ĥ(t, U, µ, h)
SE←→ Ĥ(t, U, µ,−h). (5.8)

It is important to understand that due to the mapping of the Hamiltonian, its eigenstates and their
time evolution transforms as well onto new eigenstates of the Hubbard Hamiltonian, where the
sign of the effective Zeeman shift h is flipped. In contrast to that, no change will be observed if both
spins are populated evenly, i.e. h = 0.

Spin SU(2) symmetry For a spin-balanced filling h = 0 the spin-exchange transformation
maps onto exactly the same Hamiltonian. There, the Hubbard Hamiltonian has an SU(2) rotational
symmetry. To see this we define the on-site spin operator Ŝi = (Ŝx

i , Ŝ
y
i , Ŝ

z
i ) with

Ŝz
i =

(
n̂i,↑ − n̂i,↓

)
/2 (5.9)
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and the ladder operators

Ŝ+
i = Ŝx

i + iŜy
i = ĉ†i,↑ĉi,↓ (5.10)

Ŝ−
i = Ŝx

i − iŜ
y
i = ĉ†i,↓ĉi,↑. (5.11)

At h = 0, the global spin operators Ŝz =
∑

i Ŝ
z
i and Ŝ =

∑
i Ŝi commute with the Hubbard

Hamiltonian [
Ĥ, Ŝz

]
=
[
Ĥ, Ŝ2

]
= 0, (5.12)

which shows the existence of a rotational invariance e.g. a SU(2)-symmetry of the Hubbard model.
This can be understood as that for a spin-balanced system, the measurement results does not depend
on the spin basis one chooses. This basis can even be actively rotated by RF pulses without affecting
the physical results, which will be a precondition for some measurements in chapter 7.

Particle-hole exchange symmetry I Another discrete symmetry in the Hubbard model can be
described by the exchange of the annihilation and the creation operator of both spins:

PH 1 : ĉi,σ ↔ ĉ†i,σ. (5.13)

The number operators for both spins σ, therefore, transform with

n̂i,σ = c†i,σci,σ ↔ ci,σc
†
i,σ = 1− c†i,σci,σ = 1− n̂i,σ, (5.14)

where we used the anti-commutation relation of equation 2.1. Under this transformation, the
individual site occupation is inverted, since the maximal population of a site is one for each spin.
This is usually referred to as a particle-hole (PH) transformation. There are two particle-hole
transformations in the Hubbard model, the second one being discussed later in this section.

In the spin-1/2 Hubbard model doubles nD = 〈n̂↑n̂↓〉 will be exchanged with holes nH , while
the singles occupation nS,σ = 〈n̂σ − n̂D〉 changes its spin σ. To show this we will use that the basis
for the site occupation is complete nS,↑ + nS,↓ + nD + nH = 1:

nD = 〈n̂↑n̂↓〉 ↔ 〈n̂↑n̂↓ − n̂↑ − n̂↓ + 1〉
= 〈−n̂D − n̂S,↑ − n̂S,↓ + 1〉 = nH (5.15)

nS,↑ = 〈n̂↑ − n̂D〉 ↔ 〈1− n̂↑ − n̂H〉
= 〈1− n̂S,↑ − n̂D − n̂H〉 = nS,↓ (5.16)

Applying this transformation to the kinetic term of the Hubbard Hamiltonian and again utilising
the anti-commutation relation of equation 2.1, one easily sees that it remains invariant under it. The
same is true for the interaction term, where we use equation 5.14 for the transformation:

+U
∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
↔ +U

∑
i

(
1− n̂i,↑ − 1/2

) (
1− n̂i,↓ − 1/2

)
= +U

∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
. (5.17)
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We use the chemical potential definitions introduced previously, with a spin independent chemical
potential µ and an effective Zeeman shift h. This term then transforms as

−
∑
i

[
µ
(
n̂i,↑ + n̂i,↓ − 1

)
+ h

(
n̂i,↑ − n̂i,↓

)]
↔ −

∑
i

[
µ
(
−n̂i,↑ − n̂i,↓ + 1

)
+ h

(
−n̂i,↑ + n̂i,↓

)]
= −

∑
i

[
−µ
(
n̂i,↑ + n̂i,↓ − 1

)
− h

(
n̂i,↑ − n̂i,↓

)]
. (5.18)

Therefore, it maps again onto a valid Hubbard Hamiltonian, with a change in the sign of both the
effective Zeeman shift h and the spin-independent chemical potential µ:

Ĥ(t, U, µ, h)
PH 1←−−→ Ĥ(t, U,−µ,−h). (5.19)

Note that this is the motivation of the special formulation of the Hamiltonian, introduced without
explanation in section 2.1, where we added a constant energy offset.

To further highlight the connection between h and the spin-imbalance in the singles densities
nS,σ and between the chemical potential µ and the general filling, mostly determined by the doubles
nD and holes densities nH , we can rewrite the chemical potential term

−
∑
i

[
µ
(
n̂i,↑ + n̂i,↓ − 1

)
+ h

(
n̂i,↑ − n̂i,↓

)]
= −

∑
i

[
µ
(
n̂i,D − n̂i,H

)
+ h

(
n̂i,S,↑ − n̂i,S,↓

)]
,

(5.20)

from which the symmetry relations can be accessed directly. In this equation we can identify the
doping ñ = 〈n̂D − n̂H〉 and the magnetisation m = 〈n̂↑ − n̂↓〉 = 〈n̂S,↑ − n̂S,↓〉 as the relevant
measurement values of the system, which we will use in the following.

This symmetry can directly be seen in the equation of state, especially if one plots it including the
holes density nH , as shown in figure 5.1. It is of much practical use to anchor the chemical potential
in experimental data through finding the symmetry point of the singles density and setting µ = 0
there. This is very robust, since it does not depend on the shape of the density distribution, which is
defined mostly by temperature and true even for spin-imbalanced (h 6= 0) systems.

Particle-hole exchange symmetry II All of the transformations discussed above do not connect
or change the interactions in the system under transformation. There is, however, a second particle-
hole transformation [34, 44] with the operators of only one spin modified:

PH 2 : ĉi,↑ ↔ ĉi,↑

ĉi,↓ ↔ (−1)ix+iy ĉ†i,↓ (5.21)

where the prefactor with the two-dimensional site index i = (ix, iy) leads to an alternating sign per
lattice site. The number operators for both spins transform as

ni,↑ ↔ ni,↑

ni,↓ ↔ 1− ni,↓. (5.22)
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a) b)

Figure 5.1: Particle-hole exchange symmetry I. a)The transformationPH 1 interchanges doubly occupied
sites (doubles) with empty sites (holes) and the spin of the singly occupied sites (singles). Additionally, it
transforms the parameters of the Hubbard model with µ↔ −µ and h↔ −h. For a spin-balanced Hubbard
model (h = 0) this can be directly observed in the density equation of state, shown in b). The holes are plotted
as well in dark blue, even though in the experiment we can only indirectly infer them from the other densities.
The mirror symmetry of the singles density around half-filling at µ = 0 is a direct consequence of it, even for
spin-imbalanced systems h 6= 0.

Then, the mapping of singles, doubles and hole densities through this transformation are given as

nS,↑ = 〈n̂↑ − n̂↑n̂↓〉 ↔ 〈n̂↑ − n̂↑ + n̂↑n̂↓〉 = nD

nS,↓ = 〈n̂↓ − n̂↑n̂↓〉 ↔ 〈1− n̂↓ − n̂↑ + n̂↑n̂↓〉 = 〈1− n̂S,↓ − n̂S,↑ − n̂↑n̂↓〉 = nH . (5.23)

This means that spin-up singles get transformed into doubles, spin-down singles into holes and vice
versa, see figure 5.3 a) as well.

In the interaction term this transformation leads to the expected sign change of U :

+U
∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
↔ −U

∑
i

(
n̂i,↑ − 1/2

) (
n̂i,↓ − 1/2

)
. (5.24)

Additionally, the roles of the chemical potential µ and the effective Zeeman shift h are interchanged
when transforming the chemical potential of equation 5.20

−
∑
i

[
µ (n̂D − n̂H) + h

(
n̂i,S,↑ − n̂i,S,↓

)]
↔ −

∑
i

[
µ
(
n̂i,S,↑ − n̂i,S,↓

)
+ h (n̂D − n̂H)

]
. (5.25)

The full Hamiltonian transforms as

Ĥ(t, U, µ, h)
PH 2←−−→ Ĥ(t,−U, h, µ), (5.26)

and is, therefore, mapped onto another Hubbard Hamiltonian with the opposite interaction and
an exchange of the values of h and µ. This means that the roles of density doping ñ = nD − nH
and magnetisationm = n↑ − n↓ are switched, i.e. a system initially spin-balanced h = 0 but doped
transforms into a spin-imbalanced system at half-filling µ = 0. Additionally it connects the repulsive
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Chapter 5 Simulating a Mott insulator using attractive interaction

Figure 5.2: The symmetries of the Hubbard model. Shown are the symmetries discussed in this chapter
and their effect in the h-µ parameter space. While SE and PH 2 are mirror symmetries about the µ-axis and
the dotted diagonal, PH 1 is a point symmetry with respect to the origin. There are two SU(2) symmetries as
well, the spin SU(2) symmetry at h = 0 and the pseudo-spin SU(2) symmetry at µ = 0, connected through
the PH 2 transformation. At their intersection lies the SO(4) = SU(2) × SU(2) symmetry.

and attractive side of the phase diagram, while interchanging density with spin ordering.

Pseudo-spin SU(2) symmetry If the particle-hole symmetry PH 2 holds, then the spin SU(2)
rotational symmetry should transform under it as well. Transforming the spin operator Ŝi and its
ladder operators Ŝ+

i , Ŝ−
i gives us their pseudo-spin equivalent ηi : Si ↔ ηi. It is, therefore, given as

η̂zi =
(
n̂i,D − n̂i,H − 1

)
=
(
n̂i,↑ + n̂i,↓ − 1

)
↔
(
n̂i,↑ − n̂i,↓

)
/2 = Ŝz

i (5.27)

η̂+i = (−1)ix+iy ĉ†i,↑c
†
i,↓ ↔ ĉ†i,↑ĉi,↓ = Ŝ+

i (5.28)

η̂−i = (−1)ix+iy ĉi,↑ci,↓ ↔ ĉ†i,↓ĉi,↑ = Ŝ−
i . (5.29)

It can be shown that for µ = 0 (h = 0 for the spin SU(2) symmetry) this indeed creates another SU(2)
symmetry of the Hubbard model, the pseudo-spin symmetry [130]. The η̂ operator was introduced as
a creator for quasi-particles (η-pairs) with possible off-diagonal long-range order, which is necessary
for superconductivity [132].

Figure 5.2 sketches this and the previously discussed symmetries in the h-µ parameter space. At
h = µ = 0 it features a point where both symmetries exist simultaneously, resulting in a SO(4) =
SU(2) × SU(2) symmetry [131].

Mapping of phases in parameter space This particle-hole symmetry is very useful for numerical
simulations, like QMC, which struggle to work in some parameter regions [33]. There, one calculates
the properties or states of a system within a parameter region known to work correctly and reliably
and then transforms the results, which transforms the parameters of the simulation as well. A
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a) b)
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magnetisation doping

charge density wave (CDW)antiferromagnet (AFM)

Figure 5.3: Particle-hole exchange symmetry II and its mapping of phases. a) The second particle-hole
transformation PH 2 transforms spin-up singles to doubles and spin-down singles to holes. This not only
transforms local site occupations and the Hubbard parameters µ↔ h and +U ↔ −U , but many body states
as well, for example shown in b) the antiferromagnet at repulsive interactions changes to the charge-density
wave with attractive interactions. c) In general all phases and other features of the Hubbard model will have a
corresponding feature under the transformation, which might be easier to detect, depending on the quantum
simulator one uses [44].

method that fails to converge for doped systems could be calculated with an effective Zeeman shift,
i.e. a spin-imbalance, at the inverse interaction and then one could use the transformation to acquire
the desired results.

There were, however, some early suggestions to use this not only for numerical, but for experi-
mental quantum simulations as well [44]. Quantum simulators also only have access to a limited
range of temperatures and interactions or dopings and magnetisations. For example, previous
experiments with spin-imbalanced Fermi gasses simulating the attractive two-dimensional Hubbard
model reached an effective Zeeman-shift of only h/t = 0.21(1) for cold temperatures [14, 133].

The particle-hole symmetry PH 2 would enable the use of the optimal parameter space for each
quantum simulator to additionally simulate the physics of the transformed Hubbard Hamiltonian.
This concept can be illustrated, for example, for the antiferromagnetic (AFM) ordering at half-
filling that is a low temperature feature of the repulsive Hubbard model and the high temperature
superconductors as well. When measured, it should show signs of an alternating spin ordering,
with most sites occupied with one spin only. If, however, a quantum simulator reaches colder
temperatures for attractive interactions, one could measure the physics of the charge-density-wave
(CDW) which is the phase the AFM is transformed into through the particle-hole transformation, see
figure 5.3. The CDW would consist of doubles and holes, again ordered in a chequerboard fashion,
but having only little local magnetic order. As shown in figure 5.3, this symmetry should also map
not yet observed phases, like the d-wave superconducting phase, which would map to a d-wave
antiferromagnet on the attractive side (U < 0).
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Chapter 5 Simulating a Mott insulator using attractive interaction

a) b)

Figure 5.4: Preparing the attractive Hubbard model. a) Measured density equations of state n(µ, Tfixed)
for different attractive interaction strengths U < 0 are shown. The blue (orange) circles represent the
measured singles (doubles) density averaged over several measurements. The solid line shows the fit, which
was used to extract the centre chemical potential µ0, the global density scaling parameters σS/D and the
temperature T , plotted in b). The observed higher temperature for increased interaction strength could be
due to losses close to the Feshbach resonance as shown in figure 4.4. The temperature minimum is located at
weak interactions of U/t = −1.83.

With our quantum simulator we have the possibility to access both complementary parameter
spaces with low temperature samples and are therefore in the unique position to experimentally
test and validate this symmetry.

5.2 The simulation of the spin-imbalanced Hubbard model

Previous results produced in our experiment worked predominantly with repulsive interactions [28,
29, 49, 50, 110]. This was due to our focus on the detection of antiferromagnetic spin ordering at
cold temperatures and the heating caused by light assisted losses close to the Feshbach resonance
at 202.1 G, as discovered during this thesis, see section 4.1.3. With the design and implementation
of a linewidth broadened laser, described in appendix A, we were able to prepare ultracold lattice
systems with attractively interacting fermions, as I will describe in this section. Furthermore, I will
introduce techniques to create spin-imbalances in our system and detect them.

Preparing an attractive Hubbard simulation Following the initial evaporation with attractive
interactions, the z-lattice is loaded at a field of 204.5 G. After that the magnetic field is ramped to
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5.2 The simulation of the spin-imbalanced Hubbard model

its final simulation value Bsim in the range of 204 to 209G in 200ms. For this, the fast Feshbach
coils subtract a variable magnetic field from the large offset field given by the slow Feshbach
coils. By turning off the current in the fast Feshbach coils one can quickly ramp to 212.5 G for the
detection. The fixed field during the loading ensures that even for the weakly interacting atomic
cloud close to 209G the thermalisation and the final evaporative cooling in the z-lattice is working
well. Additionally, it ensures that all further lattice loading starts with approximately the same
atom number and temperature. The slow change in the magnetic field minimises heating due to the
density change with reduced interaction strength.

Figure 5.4 shows the measured equation of state with varying magnetic fields and therefore
interactions. They range from U/t ' −0.9 at 208.2 G to U/t ' −12.3 at 204.1 G for an in-plane
lattice with 6Erec and a resulting tunnelling amplitude of t/h = 224Hz. All of this data is fitted
with results of DQMC simulations, with the Hubbard parameters T, µ0 and the global density scales
σS/D as free fit parameters.

One can observe the expected strong reduction in the peak value of the singles densities at half-
filling µ = 0 for stronger attractive interactions. The most significant change, however, is visible
in the temperature which rises from the lowest temperature T/t = 0.85(1) at weak interactions
U/t ' −1.83 up to T/t = 2.42(5) at very strong attraction U/t ' −12.3. One reason for this
could be the increased heating through scattering losses, which are still significant in the close
vicinity of the Feshbach resonance, see figure 4.4. To reach colder temperatures, we can lower the
dipole trap power during the z-lattice ramp-up, which then allows for a lower final evaporation
potential. The resulting trade-off between atom number and temperature has to be chosen such that
the chemical potential in the centre is still above half-filling, i.e. µ0 > 0, otherwise the DQMC fit
might fail since it is missing the singles peak symmetry feature it relies upon.

Creating spin-imbalanced systems At the end of the forced evaporative cooling in the magnetic
trap, and just after being loaded into the optical dipole trap, the population of the two lowest hyperfine
states is strongly imbalanced. For further evaporation in the optical trap we usually mix these spin
populations with several non-adiabatic Landau-Zener sweeps, to reach a 1:1 distribution of spin-up
to spin-down particles, as explained in section 4.1.3. The population transfer in these pulses is given
with the Landau-Zener formula in equation 3.6 and can be adjusted by the sweep rate ∆̇ = ∆ν/T ,
where ∆ν ≈ 2MHz is the usual RF frequency sweep range and T = 2ms the pulse duration.

For the creation of a spin-imbalanced population after the evaporation, we reduce the number
of spin-mixing pulses to only a single one and vary its sweep range for a fixed pulse duration. By
reducing the sweep range the transfer becomes more adiabatic and more efficient, so the initial
imbalance is only slightly reduced. Nonetheless, one has to remember that the mixing pulses are
used before the final evaporation, during which we reduce the atom number by nearly two orders of
magnitude. When the spin-imbalance gets too large, rethermalisation and with it cooling becomes
inefficient since collisions between particles of the same spin are suppressed.

To detect this spin-imbalance we switch to the detection of spin-up and spin-down singles. We use
the same mapping of the local chemical potential µ previously explained and compare it to DQMC
calculations with different effective Zeeman shifts h, which becomes a further free fit parameter.
For measuring an imbalance in the spin components and determining h via a fit, we have to be
able to accurately determine the local ratio of both spin state populations. However, this is difficult
if both densities are scaled individually with σS↑, σS↓, since, as we know from the first particle
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Figure 5.5: Creating a spin-imbalanced system. To introduce a spin-imbalance in the atom populations,
we change the frequency ramp speed of the spin mixing Landau-Zener RF sweep ∆̇. Equation 3.6 shows how
the ramp speed of the RF sweep determines the transfer efficiency. In the usual configuration a spin-balanced
mixture is created by several pulses with ∆̇ ≈ 1MHz/ms. The singles density, shown as circles in the
plots, are fitted with DQMC simulation results at U = +7.6, indicated with solid lines. These fits allow
for the extraction of, among other things, the effective Zeeman shift h. For a slower ramp speed like the
∆̇ = 0.29MHz/ms on the right plot, the variance in atom number, temperature and imbalance grows larger.
Therefore, averaging all data like shown here is not ideal any more, as can be seen in the deviation of the data
to the fit in the high chemical potential region.

hole symmetry PH 1 introduced in the previous section, both singles densities have approximately
the same shape. An individual scaling factor for each spin component separately could not be
distinguished from a real imbalance of the populations. However, since losses in detection are
usually mostly present for doubles and the dual slicing efficiency for the spin singles is nearly equal
(within 3 %), we can use a common slicing scaling factor σ = σS↑ = σS↓ for both singles densities.

In figure 5.5 some spin-spin measurements are shown for different sweep rates ∆̇, creating an
imbalance of both populations. As one can see from the high singles densities, this data was taken
with a repulsive experimental sequence, here at 189G and a lattice depth of 5.8Erec resulting in
U/t = +7.6. For a fixed sweep rate ∆̇, the extracted h values fluctuate in between measurements,
partially due to their dependence on the varying efficiency of the final evaporation. Nevertheless
we are able to fit each individual measurement separately and extract h, µ0 and T , similar as for
the spin-balanced data. This allows for the binning the results, i.e. averaging measurements with
similar h, reducing the uncertainty on h in the combined data.

It is important to realise that while the local magnetisationm = n↑ − n↓ can vary, the effective
Zeeman shift h is global and independent of the position in the trap, when the atoms are in thermal
equilibrium. This can be seen with the definition of the local chemical potential in equation 3.35,
which we now write spin dependently

µ0,σ = µl,σ − Vl, (5.30)
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a) b)

Figure 5.6: Post-selective data binning in h. Since the final spin-(im-)balance of the atom cloud strongly
fluctuates, each measurement is first fitted using DQMC simulation results and sorted into bins with nearly
equal h. The data of these bins is then averaged, retaining the extracted chemical potential information and
the result again compared to simulation. a) For repulsive interactions (blue data points) the temperature
increases with stronger spin-imbalance, as one would expect, since the cooling should become more inefficient.
This is, however, not true for attractive interactions (orange data points), where we observe a decrease in
temperature. This might be due to the increased number of singly occupied sites, which have a potentially
higher entropy per particle than the doubly occupied ones. b) For both interactions the central chemical
potential µ0 is reduced with higher spin-imbalance. Since the DQMC fit is not reliable for data with µ0 < 0
we are limited in the obtainable effective Zeeman field h for a fixed set of evaporation parameters .

where σ =↑, ↓ is again an index for the spin, and l represents the individual equipotential region.
The trap potential Vl is spin independent, so we can write

hl =
µl,↑ − µl,↓

2
=
µ0,↑ − µ0,↓

2
, (5.31)

which is constant for all l, since µ0,σ is constant for each spin individually.

Temperature changes with induced spin-imbalance As already hinted, by changing the
spin-imbalance, we directly influence the evaporative cooling process, and therefore should see a
decrease in temperature for a larger spin-imbalance. This is true for repulsive interaction, where we
get a nearly linear increase in temperature for increasing |h|, as shown in blue in figure 5.6 a). This,
however, is not true any more for measurements at attractive interactions, as can be seen in the
orange data points. Initially, the temperature drops, and then stays constant for strong effective
Zeeman shifts h/t > 4. These measurements were done at U/t = −7.6.

An explanation for this counter-intuitive behaviour could lie in the entropy which is stored in the
close to band-insulating centres for attractive systems. As shown in figure 4.15, regions with a high
doubles fraction have a very small entropy per particle S/N . Therefore, they cannot absorb much
of the initially present total entropy, while the high central filling still reduces the atom number.
The imbalance leads to a smaller doubles fraction, increasing the number of singles substantially
which then can store a lot of entropy. The spin-imbalance also leads to a reduction of the central
chemical potential µ0 as shown in figure 5.6 b) for repulsive and attractive interactions. This limits
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the spin-imbalance, i.e. effective Zeeman shift we can measure, since the DQMC fit is not able to
give reliable results for µ0 < 0.

5.3 Testing and validating the particle-hole symmetry

The particle-hole symmetry PH 2 introduced in section 5.1, in the following only referenced as the
particle-hole symmetry and transformation, promises the possibility to extend the capabilities of
any quantum simulator of the Hubbard model significantly, by providing an alternative route to
measure physical properties or phases of interest [44]. This is, however, only true if the quantum
simulator reproduces the true Hubbard model without additional terms. Things that would destroy
this symmetry are, for example, diagonal next-nearest-neighbour tunnelling [33] and higher band
population or non-binary state occupation (three or more hyperfine states occupied). Testing the
particle-hole symmetry in our system, therefore, can be seen as a probe on how accurate and clean
our quantum simulation of the Hubbard model actually is.

With the tools described in section 5.2, we now have the possibility to access spin-imbalanced
systems with both attractive and repulsive interactions, while being able to measure the density
equation of state for different chemical potentials as well. We can access the density doping ñ =
nD − nH for spin-balanced systems, where h = 0, by detecting singles and doubles simultaneously.
By switching the detection to both spin-up and spin-down singles, we obtain the local magnetisation
m = nS,↑ − nS,↓.

Transforming spin-balanced systems at half-filling The easiest point in parameter space
to check the particle-hole symmetry is at half-filling with spin-balanced populations, since there
µ = h = 0, and therefore µ ↔ h is automatically fulfilled. The transformation still modifies the
interaction U ↔ −U and exchanges the site occupations, see equation 5.23. Since we cannot
directly measure hole densities, we focus on the exchange of nS,↑ ↔ nD, which we are able to
detect in the same run. These data points for varying interaction strength at half-filling (µ = 0)
in a spin-balanced system (h = 0) are shown in figure 5.7. The data presented is taken from the
measurements with the lowest obtained temperatures at the individual interaction strengths and
combines old data with repulsive interaction strengths [50] with newly measured, temperature
optimised data similar to the measurements shown in figure 5.4. The exchange symmetry, mirroring
the densities about U = 0 is clearly visible, and highlighted by DQMC calculations with a similar
temperature range of 0.625 < kBT/t < 2.2. Even though this temperature range is rather large,
the data agrees very well with the predictions and allows the connection of repulsive to attractive
interactions in the Hubbard model.

Transformations away from half-filling and spin-balanced systems Next we would like to
check whether, apart from the sign change ofU , the chemical potential and the effective Zeeman shift
change roles as well. A system which is not at half-filling, i.e. µ 6= 0, has to have a spin-imbalance
h 6= 0 after the transformation (µ↔ h). To do so we choose an interaction strength absolute value
of |U |/t = 7.6, at which we can both prepare repulsive U/t = +7.6 and attractive U/t = −7.6
systems at low temperatures.

For the accurate measurement of doping we ideally work with a spin-balanced sample, since by
measuring the singles of one spin, we can infer the other spin component as well. This in turn allows
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Figure 5.7: Particle-hole symmetry with varying interactions. At half-filling (µ = 0) and with a spin-
balanced population (h = 0), the transformation exchanges the population of spin-up singles (squares) and
doubles (circles), while also changing the sign of the interaction U . The data points with the lowest obtained
temperatures for each interactions were chosen, with the temperature colour coded, ranging from kBT/t =
0.75 to 2.20. Here the measurements confirm the symmetry predictions. In grey the theory calculations are
shown for temperatures between kBT/t = 0.625 to 2.20. Especially for cold temperatures kBT/t < 1.5 the
data lies on the outer edge of this shaded region, indicating very good agreement with theory. This figure
was presented in [30], while all data with repulsive and vanishing interaction strength U/t ≥ 0 taken from
previous experiments [50].

us to more accurately determine the doubles density, fixing its global scaling factor σD . Therefore
we will compare a spin-balanced sample (h = 0) with density doping (µ 6= 0) to a spin-imbalanced
one (h 6= 0) at half-filling (µ = 0).

In figure 5.8 b) measurement data of spin-imbalanced systems with repulsive interactions U/t =
+7.6 are shown. For each measurement the Hubbard parameters h, µ, T and the global scaling
factor for both singles densities σ were extracted with a fit to DQMC data, and then rebinned in h,
as explained in the previous section. As can be seen from figure 5.6, the temperature T changes with
varying the spin-imbalance as well. To counteract this we adjust the final evaporation depth for the
more spin-imbalanced measurements and select only data with temperatures of kBT/t = 1.4± 0.1.

As previously explained, we use the singles density of the spin-imbalanced data at half-filling
µ = 0 and compare it to the spin-balanced attractive density data, which is shown in figure 5.8 a).
The configuration where both the initial and the transformed state occupation are directly observable
is nS,↑ ↔ nD . To use the information of the spin-down densities nS,↓ as well, we can use the spin-
exchange transformation SE introduced in the first section of this chapter, where nS,↓ ↔ nS,↑ and
h↔ −h. This means by changing the sign of the effective Zeeman shift we can use the spin-down
particles as if they were spin-up particles, and compare them with the particle-hole transformation
equivalent. This is done in figure 5.8 c), where the spin-imbalanced repulsive data of both singles
densities (shown in orange and dark blue) is overlapped with the measured doubles density (black
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a) b)

c)

Figure 5.8: Interchanging the chemical potential with the effective Zeeman shift. a) The density
equation of state n(µ, Tfixed) for a spin-balanced system h = 0 and attractive interactions U < 0. From a fit to
DQMC data a temperature of kBT/t = 1.53(3) is extracted. b) shows the singles densities of spin-imbalanced
systems h 6= 0 with repulsive interactions U > 0. Half-filling µ = 0 is indicated with a white plane and
larger size of the data points lying on it. The data was binned in h and pre-selected on temperature within
kBT/t = 1.4± 0.1. Both repulsive minority and majority spin components at µ = 0 are then overlaid with
the doubles density in c), using a shared axis for µ (attractive spin-balanced) and h (repulsive at half-filling).
This data was presented in [30].
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a) b)

Figure 5.9: Simulating a Mott insulator using attractive interactions. a) With the same methodology
used in figure 5.8 we compare the density doping ñ = nD − nH at repulsive interactions U/t = +8.2 and
h = 0 with the magnetisationm = nS,↑ − nS,↓ at attractive interactions U/t = −7.6 and µ = 0. Through
a fit to the data with repulsive interactions a temperature of kBT/t = 0.76(6) is extracted. The individual
attractive interaction measurements were fitted, binned in h and pre-selected in a temperature range of
kBT/t =1.5±0.1. The slope of both curves is extracted by a linear fit to four surrounding data points which are
then plotted in b) as the compressibility κ(ñ) = ∂ñ/∂µ and the static spin susceptibility χS(m) = ∂m/∂h
with a shared x-axis ofm and ñ. With the quantitative agreement of both curves, reproducing the minimal
compressibility feature of the Mott insulator, we can claim to have simulated the Mott insulator with a
quantum simulator with attractive interactions. This data was presented in [30].

circles) at attractive interactions U/t = −7.6. The axes have the same unit, however, they describe
the variables connected through the symmetry h↔ µ. We see an excellent quantitative agreement
of the data and can, therefore, confirm the validity of the particle-hole symmetry for our system.

Mott insulator in a quantum simulator with attractive interaction To go a step further, we
want to test the symmetry mapping of the phase diagram in figure 5.3. For most of the parameter
space of h and µ we are able to simulate the Hubbard model with temperatures of kBT/t ≈ 1.5,
which is more than sufficient to study the Mott insulator. This feature of the repulsive Hubbard
model has been examined extensively in several experiments [50, 134–137]. Close to half-filling
µ = 0 and for large interaction strengths U � t most sites are occupied with one atom, i.e. a
single, since the formation of doubles is energetically unfavourable. Adding further atoms into the
system, i.e. increasing the doping ñ comes with an energy cost, which is represented as a significant
increase in chemical potential, largest at half-filling itself. This energy cost, associated with the
on-site interaction, is quantified with the isothermal compressibility κ = ∂ñ/∂µ, which has a
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pronounced minimum at half-filling [50]. When the filling approaches the band insulator (ñ = +1),
Pauli blocking leads to another incompressible phase, which is mirrored close to the empty lattice
(ñ = −1).

For a system with attractive interactions there is no incompressible Mott phase close to half-filling,
since the formation of doubles lowers the overall energy. However, the particle-hole symmetry
indicates that there should be a similar, incompressible feature in the static spin susceptibility
χS = ∂m/∂h, since ñ ↔ m and µ ↔ h, so κ ↔ χS . To test the equivalence of both quantities
through the particle-hole symmetry we measure the magnetisationm = nS,↑−nS,↓ as a function of
the effective Zeeman shifth. In figure 5.9 a) the results of thismeasurement atU/t = −7.6 are plotted
in orange. Similar to the previous measurement, the individual spin-imbalanced measurements were
preselected to a temperature range of kBT/t = 1.45± 0.10, in order to avoid the strong decrease
in temperature with bigger spin-imbalance. In the same plot we add the results of a measurement of
the density doping ñ(µ) = n(µ)− 1 at U/t = +8.2 in dark blue. Both show a flattened slope close
to µ = 0 or h = 0.

By numerically calculating the slope of both curves we extract the spin susceptibility χS and
the compressibility κ which are plotted in figure 5.9 b) with interchanged axis descriptionsm↔ ñ
and χS ↔ κ. The quantitative agreement of the data shows that we indeed could reproduce a
feature of the repulsive Hubbard model, the incompressible Mott phase, by simulating it with a
spin-imbalanced system with attractive interactions.

This highlights the versatility of the particle hole symmetry in quantum simulation and might be
a potential route to overcome detection or preparation issues specific to individual experiments. As
shown in figure 5.3, a d-wave AFM phase at attractive interactions and non-zero magnetisation is
predicted. Using the excellent detection capabilities for magnetic order reported by several quantum
gas lattice experiments [29, 123, 136, 138–140] one could, similarly to what we showed here, detect
this feature and hence, investigate the corresponding d-wave superconducting phase still currently
under debate [141].
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CHAPTER 6

Creating and characterising a Hubbard bilayer
quantum simulator

Early on, the two-dimensional Hubbard model was proposed to feature a superconducting phase,
connected to high-temperature superconductivity [8]. However, recently some arguments were
made against that claim [25], resulting in a continued search towards extensions of the Hubbard
model that could in turn sustain a superconducting phase. One proposal is the bilayer Hubbard model
[53] introduced in section 2.5. In this chapter I will present the experimental changes incorporated
in our system to simulate the bilayer Hubbard model and the required calibration of its parameters
like inter-plane tunnelling t⊥ or on-site interaction U .

6.1 Tuning the superlattice phase with a 30GHz frequency lock

To create a bilayer the z-superlattice is used in symmetric configuration (φSL = 0) to form double-
wells in the vertical direction. Together with the xy-lattices they then form a spatial lattice potential
that creates the desired bilayer structure.

Since it is critical to be able to control the potential difference between both connected planes,
i.e. the potential imbalance ∆ in the double-well in z-direction and to avoid heating by a fluctuating
superlattice phase φSL we need to devise a mechanism to fix and dynamically manipulate the phase
by locking the frequencies of both superlattice lasers. This locking mechanism needs to have a
large tuning range to adjust φSL and with it the potential imbalance ∆, have a robust, repeatable
operation with little noise and must allow fast tuning for dynamical control.

The task is complicated by the experimental construction of the accordion z-lattice with very
little path length difference for both beams. This requires large frequency shifts in order to perform
small superlattice phase changes. To change the superlattice phase from φSL = 0 to π/2 we
estimated that the frequency of the green 532 nm laser would have to shift by approximately 60GHz.
Additionally, the lasers we used for this superlattice, the Coherent Mephisto (νred) and the Coherent
Verdi V10 (νgreen), have several limitations in their available tuning range and their ability to change
frequencies fast. Initial measurements indicated that the symmetry point φSL = 0, where we
would like to prepare the bilayer, would be achieved at a difference frequency of approximately
|δνgreen| = |νgreen − 2νred| ≈ 25GHz. We, therefore, aimed at a laser lock with a maximal beat
frequency of 30GHz.
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PM beamsplier

seed for linewidth broadened laser
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fibre-to-fibre
connectors NPBS
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Figure 6.1: Optical setup for frequency doubling and beating. 1 064 nm light from the Mephisto is feed
to a fibre-coupled frequency doubling crystal. The created 532 nm light is then sent to another optical table,
where it is overlapped with a few milliwatts of light from the Verdi V10 on a non-polarising beam splitter
(NPBS). The combined light is then sent to a fast photo-diode to detect the frequency difference via the optical
beat note. Note that before the frequency doubling, some light is split-off to act as a seed for the linewidth
broadened laser, described in appendix A.

6.1.1 Optical up-conversion and beat detection

A direct way to compare the frequencies of both lasers is by doubling the frequency of the Mephisto
laser νred and then superimposing it with light from the Verdi V10 with frequency νgreen, which
produces an optical beat note, oscillating with the frequency difference |δνgreen|. To detect this beat
frequency of up to 30GHz we use the fibre coupled photo-diode DXM30AF produced by Thorlabs.
Coupling both lasers into the same single mode fibre additionally guarantees perfect overlap of both
spatial modes.

The optical setup for creating this beat note is shown in figure 6.1. Light from the Mephisto laser,
that generates the xy-lattices as well, is coupled into a fibre which leads to a following fibre based
polarisation maintaining beam splitter to provide∼78mW of power. By passing a periodically poled
lithium niobate (PPLN) crystal with temperature adjusted phase matching, its frequency is doubled
[142]. With the crystal we use (Global Fiberoptics, Ltd.) and the stated input power, a frequency-
doubled output of about 2mW is achieved at a crystal temperature of 69.5 °C. The light is then
transported to another optical table and combined with the Verdi light, taken from the transmitted
residual power after the first mirror in its beam path. With the polarisation adjusted by a half-wave
plate it is then overlapped with the frequency doubled light on a 70:30 non-polarising beam splitter.
In front of the final fibre coupler we then achieve 1.1mW frequency-doubled Mephisto light and
2.4mW light from the Verdi. The coupling process, however, is not efficient and only 0.3mW reach
the photo diode after a single mode fibre which is still sufficient for all further purposes.

6.1.2 High frequency signal processing

The DXM30AF photo diode is specified for 750 to 1 650 nm and not amplified, but still has a respect-
able responsivity of around 0.2 A/W at 532 nm [143]. Since the relative power of both beams is
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Figure 6.2: Microwave beat note down-conversion and signal processing. a) The high frequency
signal of the optical beat note is quickly down-converted using a voltage controlled oscillator (VCO) and a
frequency doubler. This converts the microwave frequencies of 20 to 30GHz down to more processable RF
frequencies, that get subsequently amplified. b) We observed internal resonances for certain VCO control
voltages UVCO, which lead to a loss of the beat note signal. In grey a signal trace away from any resonance is
shown and a clear signal at about 260MHz is observed for UVCO = 0V. Tuning to one of these resonances at
UVCO = 0.51V should shift this beat note to about 900MHz, however, no signal is detected there. In black
one feature of this signal processing resonance is shown, a low frequency noise region at about 20MHz,
seemingly saturating the amplifiers. c) Adding low- and high-pass filters before the amplification removes
the effects of most of these resonances. The last high-gain amplifier, however, still picks up signals from the
microwave-evaporation around 1.2 GHz, as pictured in the blue trace. The orange curve shows the signal
after adding a second low-pass filter before this amplification stage, leading to a sufficient suppression of the
microwave evaporation frequencies while the beat-signal at ∼900MHz is still clearly visible. We therefore
aim to lock the down-converted signal in a frequency range of 200 to 800MHz.
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not balanced and through working outside of the specified wavelength regime, we expect to get
a microwave (MW) beat signal power of PMW, beat ≤ −40 dBm at a 50Ω load. To make use of this
very high frequency signal it first needs to be down-converted to more moderate RF frequencies
< 1GHz. This is usually done by frequency mixers with the use of a local oscillator (LO) with
tunable frequency νLO. By shifting νLO one can make sure that the down-converted frequency
νRF = νMW, beat − νLO stays in the RF frequency range for further processing.

Mixer and MW sources spanning the whole optically detectable beat range of 0 to 30GHz are
not available within a reasonable budget, so by evaluating early superlattice phase measurements,
we decided on a fixed detection range of 20 to 30GHz for which the signal processing would be
optimised. This was achieved by a combination of evaluation boards for the HMC733 and HMC264
chips produced by Analog Devices, Inc. The HMC733 is a voltage controlled oscillator (VCO) with
a buffer amplifier providing a tunable frequency νVCO in the range of 10 to 21GHz with relatively
constant output power of ∼3 dBm [144]. This signal is then sent to the active sub-harmonically
pumped mixer HMC264, where it is amplified, frequency-doubled and mixed with the photo diode
signal [145]. Since this mixer only operates at νLO = 2× νVCO = 20 to 30GHz, the VCO only needs
to operate within νVCO = 10 to 15GHz achieved with control voltages UVCO between 0 to 10V. The
output of the VCO additionally needs to be attenuated by 5 dB to not oversaturate the pre-amplifier
in the mixer. This is shown in figure 6.2 a) including the following filter and amplification stages.

At the mixer output and by choosing the right VCO frequency we detect the down-converted beat
signal with about ∼−55 dBm at 400MHz. With a nominal conversion loss of −9 dB and including
additional losses at the various connectors this agrees with our estimated photo diode output power.
To filter out the high frequency signals of the LO νLO and the VCO νVCO after the mixer, a low-pass
filter with a cut-off frequency of 780MHz is added. The filter used, VLFX-780+ from Mini-Circuits,
is specified to more than 20GHz, effectively suppressing all MW signals still present.

The remaining down-converted signal then gets amplified by around 24 dB with a low noise
amplifier PHA-13LN. In tests we observed for particular VCO frequencies some sort of resonance
behaviour where a large amount of low frequency noise was introduced, which led to the suppression
of the desired signal, see figure 6.2 b). By adding a high-pass filter SHP-250 with a cut-off frequency
of 250MHz before the amplification we could eliminate this behaviour and use the whole VCO
frequency range without loss of signal.

Since the signal strength is still just about 1mW (−30 dBm) we amplify it further by more than
40 dB with a single ZKL-1R5+ amplifier. This high-gain module works up to 1.5 GHz and can pick
up the 1.2 to 1.278GHz microwave signal used for the forced evaporation in the magnetic trap,
discussed in section 4.1.2. We remove it with an additional SLP-850 low-pass filter directly in front
of the amplifier as can be seen in figure 6.2 c).

With this setup we are able to detect a beat signal of the two lasers with frequency difference
νMW, beat = 20 to 30GHz and through down-conversion, filtering and amplification obtain a signal
within the frequency range of 200 to 800MHz with more than 10 dBm RF-power.

6.1.3 Regulation and characterisation of the lock performance

To stabilise the relative frequencies of these lasers we use a frequency offset lock technique [146].
In this method one mixes a part of the laser beat signal, that has a frequency dependent phase
shift added, with parts of the unmodified signal. This results in a DC voltage that can act as an
error signal, with its zero-crossings used as lock-points with a fixed frequency difference. Even
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Figure 6.3: Closed feedback loop of the frequency lock. a) By splitting the down-converted beat signal
and delaying one of its paths before recombining it, one creates an error signal which we use for the laser lock
[146]. The proportional (P) and integral (I) regulation signal are feed back to the Verdi V10, closing the feedback
loop. b) By adjusting the VCO frequency through the VCO control voltage UVCO (in orange) we can ramp the
frequency difference of both locked lasers δνgreen. With the conversion factor δνgreen/UVCO ≈ 1GHz/V this
corresponds to a frequency change of 5.5 GHz in 40ms. The error signal in blue shows no sudden changes or
drops in amplitude, which would indicate mode or frequency jumps.

after locking to one of the zero crossings of the error signal, we can tune the absolute frequency
difference by tuning the MW VCO frequency which is subtracted from the original signal in the
down-conversion process.

The setup we use is shown in figure 6.3 a). After an initial SHP-100+ high-pass filter to remove
remaining low frequency noise introduced by the amplification and RF pick-up the signal is divided
into two equal parts by a power splitter. The ZFSC-2-1-S+ is specified for a range of 5 to 500MHz
[147], however, in tests also operated above these values. One part is then sent through a delay line
consisting of an RF cable, which introduces a time delay τ relative to the original signal. Under the
approximation that the signal propagation speed is independent of the frequency of the signal, τ is
constant. The phase delay φdelay, by contrast, is frequency dependent

φdelay = 2πνRFτ. (6.1)

By combing both signals in a frequency mixer, we get a (low frequency) DC interference term
whose power is dependent on their phase difference ∆φ = φdelay − φ0, where φ0 is the phase of the
signal that is not sent through the delay line. This signal is oscillating in frequency space, therefore
close to a zero crossing we are able to use it as an error signal for a locking feedback loop with an
approximately linear frequency response.

By adjusting the length of the delay line one can modify the periodicity and also control the
frequency range where the error signal can be used as a feedback. Long delay lines would give
very tight locks with large slopes at the zero crossings of the error signal. However, since the
relevant frequency scale for the superlattice phase is in the order of several hundreds of megahertz,
we are more concerned with a large capture range of the lock, allowing for high ramp speeds
during frequency changes and an overall better stability. We achieve this with a delay line length of
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only 15 cm, giving an error signal zero crossing at νRF ≈ 380MHz, with a capture range of about
±200MHz. To filter any remaining high-frequency components a further SLP-90+ low-pass is
added.

The error signal is then fed into a laser lock that amplifies it and has a separate integrated (I)
and a proportional (P) regulation signal output with variable gain. These can be used to adjust the
frequencies of the lasers we want to stabilise onto each other. Since the Coherent Mephisto laser
is very frequency stable with little noise, we decide on regulating only the frequency of the Verdi
V10. This is possible through two piezos built into the lasing cavity. One is used for large frequency
changes, with which we achieved a mode hop free tuning range of up to 7GHz through careful
adjustments of the laser parameters. With a piezo-capacitance of ∼450 nF it is rather slow. For fast
feedback the other piezo with a capacitance of only 25 nF and a nominal 20 kHz bandwidth is used.
We are, however, limited by the bandwidth of the piezo controllers we use to amplify the regulation
signals to the required range of 0 to 100V. We use the I-feedback signal with the slow piezo for
large frequency changes and the P-feedback signal for fast changes and noise reduction.

By adjusting the feedback amplitude and bandwidth we lock the down-converted RF frequency
νRF = δνgreen−νVCO to the zero-crossing of the error signal at about 380MHz. By changing the VCO
frequency νVCO, the relative frequency of both lasers δνgreen can be tuned. This is done with a control
voltage UVCO, that for the voltage range 0 to 10 V changes the frequency output approximately
linear from 10 to 15GHz. The computer controlled analogue set voltage is discretised in time in
100 µs-steps. For fast changes these control voltage steps lead to jumps in the VCO frequency which
could result in a loss of laser frequency lock. To avoid this, we built an active low-pass filter which
includes an amplification by a factor of two to match the voltage range. This third order low-pass
has a cut-off frequency of∼5 kHz and smooths the temporal response to the expected 100 µs voltage
changes efficiently. It has the additional advantage that we are able to perform clean sweeps of the
superlattice phase φSL to perform smooth adiabatic Landau-Zener transfers, as we will show in the
following sections.

There is a mechanical resonance of the lasing cavity at around ∼400Hz that leads to frequency
jitter of the 532 nm light with about 5MHz peak-to-peak amplitude. We can reduce it with the
fast feedback in the lock, however, we realised this comes at the cost of stability for fast and large
frequency changes. The lock was optimised for these ramps, one of which can be seen in figure 6.3 b),
where the lasers followed the change in VCO frequency of about 5.5 GHz in 35ms, translating to a
possible ramp speed of ∼157MHz/ms. For further tuning of not only the relative, but the absolute
frequencies of both lasers we can tune the Mephisto master laser via the crystal temperature over a
range of more than 30GHz and adjust the Verdi, such that locking over the whole VCO controlled
range is possible.

6.2 Characterisation of the superlattice

With the control gained over the frequency difference δνgreen of both z-lattice lasers, we can now
create a superlattice with tunable phase φSL. Due to the construction of the z-lattices it is not directly
possible to calculate the correlation between both of these quantities, i.e. φSL(δνgreen), instead this
has to be determined experimentally. This is in contrast to retro-reflected superlattices sharing the
same beam path, where the distance to the retro-reflecting mirror in combination with δνgreen fixes
the superlattice phase [80].
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Figure 6.4: Parametric heating of the z-superlattice. By modulating the light intensity of both z-lattice
lasers, atoms can transition to higher bands and then leave the trap. Both band-mapped results left and
right are at Vlatt,z,green = 100Erec, but differ in green z-lattice depth. By comparing the loss features with
numerical simulations, shown in the centre, the superlattice phase φSL is determined. Since at the start the
green z-lattice is completely filled, atoms initially are not only in the lowest, zeroth band, but in this case also
partially occupy the second excited band. This is important since it also modifies the possible transitions due
to overlap and symmetry constraints. While in a monochrome lattice the zeroth to second band are strongly
coupled, see figure 4.7, this transition is suppressed in this superlattice configuration, while the transition to
the third band is prominent.

Here I will discuss several methods that we used to characterise the superlattice phase. These
methods were created and used in that chronological order, always improving on the last one in
specific tasks or with a higher final resolution, zooming in on the symmetry point at φSL = 0.
Additionally we will use some of these methods to determine the inter-layer tunnelling t⊥ and the
on-site interaction U and compare it to numerical simulations.

6.2.1 Parametric heating of the bi-chromatic lattice

One calibration tool for monochromatic lattices is the parametric heating, where we extract the
energy band separation by periodic modulation of the lattice strength, as described in section 4.2.1.
These energy differences are then compared with numerical lattice simulations to extract the
conversion factor of optical power to lattice depth.

Modulating the superlattice in a similar fashion gives again insights into the band structure.
Especially when we first calibrate the lattice depths of both z-lattices individually and are then, with
known lattice depths, able to extract the superlattice phase φSL as the only free parameter.
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For this both lattice laser intensities are modulated with the same signal source, leading to a
periodic change of the whole superlattice potential. By varying the modulation frequency νPH, we
can identify heating resonances that we compare with numerical simulations. As shown in figure 6.4,
these resonances are visible over a large range of modulation frequencies, here for two configurations
with the same superlattice phase φSL but with different lattice depths. The interpretation of these
resonances is, however, not as straight forward as expected, as is illustrated in the centre plot of
figure 6.4. For large lattice depths the Bloch waves of the lowest bands are localised on alternating
lattice sites. This means that the wave functions of some bands do not overlap, and therefore no
transfer can be achieved. In addition to this, the parametric heating requires the same spatial
symmetry of both wave functions that are coupled, as discussed in section 4.2.1, making it hard to
determine the correct band transition frequencies. Furthermore, for a given configuration initially
all lattice sites in z-direction are potentially populated, leading to two sets of resonances, one which
does not start from the lowest band in the system.

Apart from that, there are other constraints to this method. The parametric heating method
ideally works with a spatially symmetric, periodic contraction and relaxation of the individual site
potentials, leading to an overlap of only Bloch bands with the same spatial symmetry. Yet, depending
on the superlattice phase φSL, an overall power modulation of the superlattice does not necessarily
lead to a spatially symmetric potential modulation. Additionally the superlattice consists of two
separate lasers and therefore their power has to be modulated simultaneously, ideally using the
same modulation source. This modulation signal, however, has not the same modulation amplitude
gain on both laser power controls. Both of these issues lead to a sometimes ambiguous phase
determination. The technique also relies on the precise calibration of the individual lattice depths
of the green 532 nm and red 1 064 nm laser. Any error in the initial calibration directly distorts the
extracted φSL. Also, when working close the symmetry points of φSL = 0 or π/2, small changes in
the superlattice phase do not influence the band structure sufficiently for a fine calibration. Therefore
we used this method for an initial rough calibration of φSL(δνgreen), but switched to more reliable
techniques for further evaluation.

6.2.2 Band mapping in a merged vertical lattice

For a more precise phase calibration around the symmetry point φSL = 0, we use a technique where
we adiabatically merged the separated double-wells along the z-axis into a single site, i.e. reducing
the superlattice to a mono-chromatic lattice. During the green z-lattice loading we only populate
each second plane, as described previously. In the frozen xy-lattice, we slowly increase the power
of the red 1 064 nm lattice forming double-wells along the z-axis. The atoms still cannot tunnel in
this double-well, therefore they are in a localised state on one side of the double-well. By slowly
reducing the lattice depth of the green 532 nm lattice, we map the state of the atoms in the initially
separated wells to the energy states of the red 1 064 nm lattice only. One has to remember that the
number of states/bands does not change during this adiabatic process, and therefore the nth band in
the superlattice maps to the nth band in the red 1 064 nm lattice. For example if φSL 6= 0 and the
populated well is in the beginning lower in potential energy than the second one, it is in the lowest
band of the double-well and after merging in the lowest band of the red 1 064 nm lattice as well.
For the inverted configuration with the atoms in the energetically higher well, they would map
to the first excited or an even higher band. The symmetric configuration φSL = 0 has to be at the
cross-over where both lowest bands are equally populated.
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a) b)

Figure 6.5: Band mapping of a merged superlattice. a) Initially only every second z-layer is populated,
here depicted on the right well of a double-well potential. Depending on the superlattice configuration,
especially the superlattice phase φSL, they, therefore, potentially occupy not the lowest, but a higher band. By
removing the green z-lattice potential we transfer the atoms in the superlattice into a monochromatic lattice.
If this process is adiabatic the band populations stays constant (here starting in the second excited band) and
can be detected through a band mapping technique, explained in section 4.2.1. b) Close to the symmetric
configuration, i.e. φSL ≈ 0, the atoms occupy either the lowest or the first excited band. By extracting the
parameters from the clear limits of the superlattice phase scan range, indicated here with arrows, we can fit a
Gaussian (double Gaussian) distribution to get the population of the zeroth (first) band. The crossing of their
relative population indicates the symmetric superlattice configuration, where φSL = 0.

We then extract the population of the bands via the band mapping technique described in
section 4.2.1. The time-of-flight expansion happens here along the z-direction. For the detection
we use an imaging path along the y-direction, described in [18, 19, 21, 22], where we have less
magnification and spatial resolution compared to the normal z-imaging.

The timing for the lattice power ramps is more critical as well, since the force of gravity quickly
distorts the shape of the expanding cloud in TOF. Some measurement results are displayed in
figure 6.5, showing merged bands up to the second excited band. There the frequency difference
was adjusted manually by tuning the Mephisto crystal temperature over a large range.

To find the exact symmetry point and without manipulating the crystal temperature, we use
the superlattice frequency lock described in the beginning of the chapter. We aim to adjust the
superlattice phase, such that after merging the atoms are in between the lowest (zeroth) and the first
excited band, indicating the symmetric configuration φSL = 0. Varying the VCO control voltage
UVCO allows us to tune the frequency difference δνgreen over several gigahertz without mode jumps.
To extract the populations of the zeroth and the first band in the crossover region, we first integrate
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Figure 6.6: Splitting the population of a double-well. a) We merge the superlattice into the red z-lattice
with a small phase imbalance, to prepare all atoms in the lowest band. Once the green z-lattice is turned
off, the Verdi laser frequency is shifted in 100ms with the superlattice lock to a different VCO frequency.
Depending on the superlattice phase established, the atoms distribute over both lattice sites when the green
z-lattice is ramped up again. b) Working with attractive interactions, most atoms will initially form doubles
and remain so depending on the potential difference during the second ramp up. For φSL = 0, however, these
doubles split up into a spin singlet, with one atom in each lattice site. Therefore, we detect this symmetry
point by the peak in single occupancies, even for a global atom cloud.

the measured atomic densities along the axis perpendicular to z. Far away from the crossover point,
the zeroth band can be approximated by a Gaussian peak due to the limitations of the imaging and
the band mapping along gravity. Similarly, the first band consists of a dual Gaussian peak. We
extract the curve parameters from a fit to density distributions in both limits, where we can be sure
to have only population in either band. We can then use their shape to fit the relative population in
the crossover region of both bands as well. There, only the amplitude of the dual Gaussian peak
and the single Gaussian peak are free fit parameters measuring the relative band population. The
resulting hand-over is seen in figure 6.5 b). The smooth crossing is nicely visible and an exact
symmetry point can be seen.

By inverting this method we cross-check the results without time of flight. We first merge the
double-well at a superlattice phase where all the atoms are populating the lowest band of the now
red 1 064 nm z-lattice. Since we work at attractive interactions at about U/t = −1.8 before freezing
the xy-lattice, most of the sites are occupied with doubles. With the green z-lattice turned off, we
now shift the VCO frequency and with it the laser frequency difference δνgreen. Slowly increasing
the laser power again effectively splits the single-well into a double-well, the direct inverse process
of the previous merging. Figure 6.6 a) sketches the sequence used. Since this process is adiabatic
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as well and tunnelling in xy-direction still suppressed, we can describe it as a preparation of the
ground state in a tilted double-well. Close to the symmetric double-well configuration, where the
potential imbalance is ∆ = 0, the two-particle ground state transits to form mostly singles in both
sites, as shown in figure 2.5. We observe this by scanning the laser frequency difference δνgreen,
which is shown in figure 6.6 b). The effective reduction of double occupancies in the global cloud by
simultaneous increase of singles is a clear signal for the symmetry point and perfectly agrees with
the merging measurements. We are, therefore, able to very quickly determine the symmetry point
without single plane slicing in less than 15 measurements.

This optimisation required the shift of the absolute Verdi frequency by several tens of gigahertz in
total. Therefore, the frequency of the small Mephisto, which creates a superlattice with φSL ≈ π/2
used for the second plane evaporation described in section 4.2.2, has to be shifted as well. Hence,
we re-optimised the small Mephisto’s frequency and with it the second plane evaporation. To do so,
we ramped down the small Mephisto’s power during the green z-lattice loading to such a low level
that we barely kept some atoms during this evaporation step. Varying the Mephisto frequency we
observed a clear maximum in retained atoms during this evaporation step. Since the lattice potential
at the sites holding the atoms is deepest at the asymmetric superlattice configuration, we know
this maximum indicates the frequency difference δνgreen,small for which φSL(δνgreen,small) ≈ π/2.
The observed frequency difference between both Mephisto lasers is ∆νred = νred,small − νred,big ≈
28.2GHz. The frequency change of a green laser required to go from the φSL = π/2 configuration
to φSL = 0 would, therefore, be twice of it, matching the previously stated estimation of ∼60GHz.

6.2.3 Second plane removal and phase sweeps

With the method introduced in the previous section, shown in figure 6.6, we are able to create a first
kind of bilayer consisting of disconnected double-wells. The measurement in figure 6.6 b) however
does not yield any information on the sign of a chemical potential difference between both sides
of the double-wells, since we do not observe the population of each site separately. We want to
change this by selectively removing the atoms in one of the bilayer planes, which in turn gives us
information about the remaining layer population without single-plane slicing. In further steps the
removal of each second plane could additionally allow local density measurements with slicing of a
single plane with a large frequency separation of ∼1.280 kHz.

For this we use a similar scheme as for the selective z-lattice loading shown in figure 4.8, where
we initially populate only every second z-plane. In contrast to that, after the splitting process, the
atoms are in a deep xy-lattice and cannot redistribute. This is necessary to prevent information loss,
for example on the double occupancies relative to singles. So after the preparation of a bilayer and
the freezing of all motion by increasing the lattice depths we use the small Mephisto laser to again
create a superlattice with phase φSL ≈ π/2, lowering the potential at each second z-plane. When
ramping down the green z-lattice power, the atoms on the planes not affected by the red z-lattice of
the small Mephisto are projected onto higher bands, where tunnelling is not completely suppressed.

It is, however, not sufficient to now turn off the green z-lattice power alone, due to the additional
confinement created by the xy-lattices, preventing the atoms from leaving the lattice system. With
the fast Feshbach coils we create a strong magnetic field gradient in z-direction, which is used to
increase the force pulling the atoms along gravity out of the trapping area. To support this process
further, we reduce the frozen xy-lattice depth to Vx,y = 30Erec. At this lattice depth, the in-plane
tunnelling rate is only t/h = 2.0Hz, leading to an average tunnelling timescale of 500ms. By
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Figure 6.7: Second plane removal in frozen lattice. After a handover from a purely green z-lattice to
a superlattice in asymmetric configuration with φSL = π/2, every second plane has a significantly lower
potential. During this and the following steps, tunnelling in xy-direction is completely suppressed. Switching
of the green z-lattice power projects the atoms of every second plane, here marked as blue spheres, into
high bands in the lattice structure, allowing movement along the z-axis. They, however, cannot leave the
trap due to the confining potential created by the xy-lattices. By reducing the xy-lattice power to 30Erec
for 50ms and additionally applying a magnetic field gradient with the fast Feshbach coils in anti-Helmholtz
configuration, these atoms are pulled out of the trap. While these atoms are lost, the rest is retained with an
efficiency of more than 95%.

choosing the time span of the second plane removal step sufficiently low at 50ms we still assume the
atoms are motionally frozen in place. The full removal sequence is shown in figure 6.7. Finally, the
infrared z-lattice depth is chosen such that it manages to retain the atoms just from the desired plane,
while not also trapping atoms from the plane we want to remove. To adjust this, we choose two VCO
control voltages UVCO at both sides of the symmetry phase point and observe the number of doubles
and singles retained as a function of the lattice power, finding an suitable value of Vz,red = 35Erec.
Since the superlattice used to initially load every second plane of the z-lattice and the superlattice
configuration in the second plane removal have the same phase φSL ≈ π/2, the atoms kept during
this removal step are the ones which were in the planes we initially populated.

Double-well preparation through phase sweeps With this technique we are able to follow a
method to deterministically populate a single double-well, initially presented in [119] and discussed
in detail in [41, 148]. There, they started with a double occupancy on the site with lower potential
in a very tilted double-well. Initially the inter-site tunnelling between the sites was low, so this
state had near perfect overlap with the ground state of this imbalanced system. By increasing the
tunnelling and adiabatically changing the potential imbalance ∆ of the double-well, they could

100



6.2 Characterisation of the superlattice

a)

b) c)

Figure 6.8: Double-well state preparation through a superlattice phase sweep. a) Starting with mostly
doubly occupied sites in every second z-plane and a frozen xy-lattice, we hand over to a superlattice close
to symmetric configuration with the planes populated by atoms lower in potential than their counterpart.
Lowering the barrier in between the double-wells leads to increasing tunnelling and the creation of an array of
tilted double-wells with most atoms in the energetic ground state. By adiabatically sweeping the superlattice
phase via the lock frequency the atoms stay in the ground state. By freezing and removing every second
plane, we measure the ground state occupation probability at the one side of the double-well. b) and c)
show the result in singles (doubles) in orange (blue) for such a sweep with varying superlattice phase, which
can be translated to a potential imbalance ∆. While b) shows the measurement for attractive interactions
at a (simulated) high tunnelling rate of t⊥/h = 846.3Hz, the data in c) was taken with repulsive on-site
interaction and a very slow tunnelling rate of t⊥/h = 115Hz. A fit is performed with the two-particle and
single particle solution to a tilted double-well with varying ∆, as discussed in section 2.3. Since the energy
scale relevant for the physics is ∆/t⊥, the choice of tunnelling amplitude directly influences the scaling of
superlattice phase or lock frequency to potential imbalance∆/t⊥. Close to the symmetry point∆ = φSL = 0,
here at UVCO = 3.6(1)V, the doubles prominently split up into singles on each site, visible here in the fit
contribution shown as red line.
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deterministically prepare the ground state of the balanced double-well, where ∆ = 0. They then
remove the atoms of one well site for detection.

We follow this idea by preparing not a single double-well, but several planes consisting of
individual double-wells, where the superlattice phase φSL determines the double-well potential tilt
∆. Figure 6.8 a) sketches the sequence discussed in the following. Initially the lattices are loaded
on every second z-plane with attractive interactions and most, but not all atoms form doubles.
Increasing the power of the infrared z-lattice one creates the superlattice, consisting of disconnected,
tilted double-wells. After decreasing the green z-lattice depth, the barrier between both sites is
lowered and tunnelling not prohibited anymore. By adiabatically sweeping the superlattice phase
φSL, the atoms are prepared in the ground state of the tilted double-well, with a potential imbalance
∆ determined by the final phase reached. After removing every second plane only the atoms in the
initially populated sites remain. Since the individual double-wells are not connected, we assume
that they are independent and image the whole atom cloud without single-plane resolution, but with
singles-doubles separation. By doing so we effectively measure the projection of the ground state
Ψ with a single or a double on the site we start with, i.e. either | 〈↑right |Ψ〉 |

2 or | 〈↑right↓right |Ψ〉 |
2.

The denomination of left and right can be chosen at free will, in the following I will denote the right
site as the one we start from. Here we have to consider that there is a significant part of double-wells
with only one atom to start with, so we have to account for the single particle ground state as well
as the ground state of two particles with opposing spin.

Figure 6.8 b) shows the measurement results for varying VCO control voltage UVCO. One can
clearly observe the gradual transfer of doubles population to the double-well site that gets removed,
and which is, therefore, not observed in the measurement. Close to the symmetry point some doubles
break up into two singles on each site, seen as a small increase in singles. This shape is mostly
defined by the barrier height between both sites, generated with the green z-lattice and determining
the horizontal tunnelling rate t⊥ and the on site interaction U . It is important to note that both
free parameters in the analytical solution of the double-well scale with the tunnelling, ∆/t⊥ and
U/t⊥. Therefore, any change in t⊥ mostly changes the scaling of the x-axis in these plots. This
measurement was done at 207.15G in a |7〉 |9〉 mixture, and therefore with attractive interactions.
By switching to a |5〉 |9〉 mixture via another Landau-Zehner RF sweep we can investigate the
behaviour with repulsive interactions as well, as shown in Figure 6.8 c). The tunnelling rate t⊥ was
numerically calculated for the different barrier heights in each plot. The solid lines in both figures
show a combined fit to the solutions of the single-particle and the dual-particle with opposing spin
calculations. It determines again the symmetry point where φSL = 0, showing no difference to the
other two methods already presented. In theory we could extract the interaction strength U or the
scaling of UVCO to potential imbalance ∆ from this fit by fixing one of the two, but not both at the
same time since they are directly scaling with each other. The next two subsections will show how
to independently calibrate both and additionally t⊥ using different methods.

6.2.4 Induced inter-layer Rabi-oscillations

The three methods introduced before are all capable of determining at which VCO control voltage
UVCO the superlattice is in the symmetric configuration φSL = 0, meaning where both layers of the
bilayer have the same potential ∆ = 0. For other parameters like the tunnelling amplitude and
the potential imbalance ∆(UVCO) for φSL 6= 0, we relied on numerical calculations. Being able to
detect the atom number population of only one side of the double-well, enables another method to
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a) b)

Figure 6.9: Induced Rabi-oscillations to extract t⊥. a) Close to the symmetric configuration, Rabi-
oscillations are induced between both lattice sites. After removing the second plane the atom number is
detected, here shown as orange points. The oscillation frequency νrabi = 1.787(15) kHz is extracted through
a sinusoidal fit. b) As explained in section 2.3 this frequency can be connected to the effective tunnelling
amplitude t⊥, eff(∆) = (∆2 + t2⊥)

1/2 = νrabi/2× h, with ∆ the potential imbalance between the double-well
sites/superlattice layers. By measuring t⊥, eff and varying the superlattice lock frequency with the VCO, we
extract the tunnelling rate t⊥, the VCO voltage UVCO where we obtain the symmetric superlattice phase
φSL(UVCO) = 0 and the scaling conversion from VCO voltage to potential imbalance, which in this case is
∆/UVCO = 385(28)Hz/V× h. This scaling factor is strongly dependent on the exact z-lattice depths used to
create the superlattice.

calibrate both the tunnelling amplitude t and ∆(UVCO) [41, 119, 148].
Similar to the phase sweep measurement discussed in the previous section, we start again by

loading only every second plane, this time, however, with a spin polarised cloud where all atoms
are in the |9〉 state and then freeze out all motion by quickly ramping up the lattice powers. A
superlattice with φSL close to the symmetry point is created by increasing the infrared z-lattice,
while still suppressing the tunnelling all directions. We then rapidly ramp down the green z-lattice
depth from Vz,green = 110Erec to a Vz,green between 28 to 13Erec, where tunnelling is possible
again. There the system can be described similar to the coupled state Hamiltonian in equation 3.4
and 2.30, using the dressed states |±〉 = (|L〉 ± |R〉)/

√
2, where |L〉(|R〉) is the state with one

particle in the left(right) site. These states are separated in energy by the effective tunnelling
amplitude teff = (t2 + ∆2)1/2, see equation 2.31. By ramping down the barrier separating both
sites of the double-well in less than 200 µs, the initial state gets projected into the new basis with
|ψ(τ = 0)〉 = |R〉 = (|+〉 − |−〉)/

√
2. Since both dressed states are separated in energy by teff the

probability of finding an atom at the right site after the time τ passed is oscillating as well:

pright(τ) = |〈R|ψ(τ)〉|
2 = cos2 (teff × τ/h̄) . (6.2)

In the experiment we measure this by freezing the atomic motion after a time τosc and then again
selectively removing each second plane. By varying τosc we can extract the effective tunnelling
amplitude teff for different superlattice configurations using the VCO control voltages UVCO and
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Figure 6.10: Inter-layer tunnelling amplitude t⊥ as a function of green lattice depth. Two data
sets are shown to check the universality of this calibration and are compared to numerical simulations in a
double-well potential. Both sets were taken several days apart but agree well with the numerical simulations.
The error bars represent statistical errors and do not include systematic errors, which are assumed to be more
prominent at the limits of the calibration range.

adjusting the z-lattice depths, both in green and infrared. In figure 6.9 a) such an oscillation on the
detected atom number is depicted, including a damped sinusoidal fit to the data, showing a rather
high oscillation frequency of 1.461(22) kHz. For stronger potentials, i.e. higher lattice depths of the
green and red z-lattice, the lattice potentials can differ significantly across the xy-space of the atom
cloud. This leads to locally varying double-well parameters, with varying barrier heights, wave
function overlap, and therefore different tunnelling frequencies. Thus we choose to only evaluate
the Rabi-oscillations at the centre of the cloud, where we aim to perform the bilayer experiments.
Nevertheless, one has to keep this inhomogeneity in mind, which limits the range where we can use
this calibration method to low and intermediate lattice depths.

From a single fitted frequency we cannot yet extract the true tunnelling amplitude, since it reflects
an effective tunnelling rate and the potential imbalance ∆ is still unknown. By evaluating the
oscillations for different superlattice phases with a changing VCO control voltage UVCO, as plotted in
figure 6.9 b), we are able to fit the effective tunnelling amplitude νeff = teff/h to the data, extracting
both t and ∆(UVCO) for a single configuration of lattice depths. These measurements are, however,
very sensitive to the mode stability of the superlattice, in particular the frequency mode of the Verdi
which we tune via the laser lock. Additionally, the amplitude of the oscillations is greatly reduced
further away from the symmetry phase of the superlattice, so the range where this method works is
limited in our experiment. Consequently the fitted parabola width is not as accurate and ∆(UVCO)
can only be determined with some systematic error. At the same time the minimum in oscillation
frequency can be extracted well, resulting in a good calibration of t⊥ for all superlattice parameters
used in further experiments.

As can be seen in figure 6.10, these values agree within ∼5 % of the numerically calculated
values determined by the overlap of the localised wave functions, which will be the estimate on the
systematic error of this calibration.
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Figure 6.11: On-site interaction U calibration by RF-spectroscopy. In a frozen lattice with Vlatt,xy =
60Erec, the atoms are loaded into a superlattice with φSL ≈ 0 creating slightly tilted double-wells. Atoms
transferred with a RF-pulse are then directly measured (blue circles) while the remaining ones (orange circles)
are first MW shelved. Double occupancies that are shelved into higher hyperfine states are lost due to
spin-changing collisions, allowing us to separate the resonances of doubles, left peak in the sum, with the
singles, right peak. Even though tunnelling between the two sites of the double-well is allowed, leading
to efficiency loss in the transfers, we can extract the energy difference of the doubles between initial and
final interaction shift ∆U . This shift can be correlated with the known scattering length difference ∆a, see
figure 4.10, from with we can calculate the on-site interaction U of the initial and final state. The on-site
interaction also depends on the xy-lattice depth, in this case with Vlatt,z,red = 120Erec and Vlatt,z,green = 20Erec.
For experiments with lower xy-lattice depth and xy-tunnelling enabled, this has to be scaled according to
previously created lattice calculations [21, 22].

6.2.5 Interaction strength calibration

The on-site interaction strength U depends on the scattering length a(B) and the spatial integral
over the absolute value of the single-particle wave function to the power of four, see equation 3.45.
The exact calculation of the interacting, localised wave function and with it the on-site interaction
is, however, not trivial. For the monochromatic lattice there are good approximations that were
previously used on this experiment to determine U [21, 22], yet they cannot be directly applied to
the bilayer.

Here we introduce a method, where the singles-doubles spectroscopy resolving the interaction
shift for doubles ∆U is used to determine the interaction U for a certain mixture of hyperfine states.
If the z-lattice is orthogonal to the xy-plane, which we assume, the integral of the wave function
can be separated into an in-plane part, multiplied with the inter-layer, i.e. double-well, component.
Since we know from previous calculations how the in-plane wave function scales with changing
xy-lattice depth [21, 22], it is sufficient to calibrate U for a fixed, large xy-lattice depth, where
horizontal tunnelling is suppressed, and then subsequently rescale this result to the experimental
xy-tunnelling amplitude required. We choose a certain set of z-lattice depths creating a superlattice
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with a phase φSL close but not equal to zero. Similar to the initial preparation of the superlattice
phase sweep measurement in section 6.2.3, we would like to start in the slightly tilted double-well,
containing a still significant amount of double occupancies. There, enough atoms experience the
on-site shift, resulting in a good signal, while the localised wave function in z-direction is very close
to the one at the symmetric superlattice configuration. By doing RF spectroscopy in this setting, we
resolve the difference in the interaction energies ∆U of the initial hyperfine state combination and
the one we transfer the atoms to.

We know the Feshbach resonances for K40, see figure 4.10, and with it the scattering length
difference ∆a between both state combinations. Since ∆U ∝ ∆a, we are able to calculate the
interaction strengthU for the hyperfine states involved. Such a spectroscopic measurement is shown
in figure 6.11, where the atoms were in a superlattice with Vlatt,z,red = 120Erec, Vlatt,z,green = 20Erec,
but not allowed to move horizontally with Vlatt,xy = 60Erec. At 194.825G the measured interaction
strength difference of ∆U/h = 1.07 kHz corresponds to an interaction strength of U97/h =
3.66 kHz. For a situation with tunnelling in the xy-plane, for example at Vlatt,xy = 6Erec and an intra-
layer tunnelling rate of t/h = 224Hz, this has to be scaled down to U97 = 1.21 kHz× h = 5.39 t
due to the lower confinement in the horizontal direction. Using this to calibrate our numerical
simulations we calculate the interaction strength in the relevant parameter space of Vlatt,z,green = 13
to 28Erec for a fixed infrared lattice depth of Vlatt,z,red = 120Erec.

6.3 From band insulator to bilayer

Now with the z-superlattice fully under control, we are ready to create a bilayer Hubbard system, as
discussed in section 2.5. Through the calibrations done in the previous section we can determine all
system parameters of the bilayer Hubbard Hamiltonian of equation 2.39. To reach low temperatures
in such a system, we aim to use an entropy cooling scheme [121], where we extract the entropy of a
low potential region, filling it nearly exclusively with doubles. Having created such a low entropy
two-dimensional band insulator, one can proceed to transform this into a system at half-filling, by
adiabatically doubling the lattice site number.

It was proposed in 2011 to use a superlattice to create a low temperature, antiferromagnetic, two-
dimensional Hubbard system [149]. It was suggested to freeze the in-plane lattice, then adiabatically
transform the single sites into double-wells, effectively splitting the doubles into spin-singlets. In a
next step, these singlets would then be connected by unfreezing the lattice again, ideally creating a
very low temperature system with large antiferromagnetic ordering. One advantage of this method
would be that by creating the singlets an initial magnetic order would have been established already
in the first step, even though it was not fully detailed how the singlets would then coherently align
with their neighbours. Perhaps and more significantly, no density reordering would be required.
It was shown numerically that any particle movement in the lattice to accommodate for chemical
potential changes effectively heats the system [98]. In a publication in 2018 it was reported that a
state engineering scheme that started with a band insulator and simply doubled the available lattice
site number by lowering a potential barrier showed significant heating during the redistribution
ramp, increasing the entropy per particle by an order of magnitude [124].

In this work, we use an entropy and quantum state engineering scheme, which does not re-
quire density redistribution. Instead of transforming a two-dimensional band insulator to a two-
dimensional antiferromagnetic Mott insulator, we separate the band insulator into two coupled
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a) b)

Figure 6.12: Loading a band insulator in a two-dimensional lattice. a) Ten picture average of the local
singles and doubles density after loading into the xy-lattice. The SLM is used to modify the local chemical
potential, creating a centre region, which is not affected by the SLM light, and an outer region with strongly
increased potential with very low atom density. This low-density region acts as an entropy reservoir, to create
a low-entropy central band-insulating region, well separated from the outside atoms. b)The averaged densities
using the naive chemical potential mapping Vpot without the additional SLM potential. If the additional
potential is based on the isopotentials of the original potential map, this presentation method still averages
again over isopotential regions, even with the SLM potential included. Here visible are two maxima on the
singles, indicating half filling, and the (over-)compensation region between Vpot = 0.5 to 2.0 kHz.

planes, creating a bilayer. In the following I will discuss the initial creation of the two-dimensional
band insulator and two methods on how to melt it into a bilayer system close to half-filling.

6.3.1 Preparing a repulsive single-layer band insulator

As explained in section 4.4 one can create two distinct regions in the atom filled trapA and B, where
B stores more entropy per particle, allowing for a lower relative entropy region A. To employ such
a scheme a large difference in entropy per particle is desirable, see figure 4.15, with one choice for
A being a very low chemical potential centre, filled with doubles, with an outside region extracting
entropy.

This is done using the spatial light modulator (SLM) and ∼727 nm light, which is blue detuned for
the atoms, locally increasing the chemical potential. We use a similar shape as shown in figure 4.15,
which is constructed to compensate the harmonic trapping potential, creating a homogeneous
potential ring in an outside region which will act as the entropy reservoir. In the centre region
the lowest chemical potential is required, so no potential is added there, and the harmonic trap
confinement is unchanged. This has the additional benefit that where the doubles density is highest,
light assisted collisions are strongly suppressed due to the lack of blue detuned laser light. The
potential shaping light is added during the xy-lattice loading step, to allow an easy density reordering
while the atoms are still strongly delocalised and the tunnelling amplitude t is large. Through
experimental optimisation we found out that it is best to increase the SLM laser power exponentially,
with the xy-lattice beams being ramped in a sine squared shape. While initially assumed that
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a flat outside potential, where the SLM light compensates the harmonic confinement would be
ideal for entropy extraction, it turns out that by increasing the power to slightly over three times
the compensation value we can improve the doubles fraction even more. This could be due to a
compression effect in the central cloud at a time where the atoms are already localised. It has the
beneficial effect that the potential at the boundary between the centre region and the reservoir on the
outside is so large, that these regions are essentially disconnected. To increase the doubles fraction
in the centre even further, this loading into a band insulator is done with attractive interactions
at a magnetic field of 207.15G in a |7〉 |9〉 mixture. In our system and with t/h = 224Hz this
configuration leads to U/t ≈ −1.72.

After the lattice loading, we hold for further 100ms to ensure the density equilibrated in the SLM
potential before we freeze the in-plane motion by setting the xy-lattice depth to 60Erec. Figure 6.12
shows the density distribution in this frozen state, with 95 % of all sites occupied by doubles. Since
we use the original local chemical potential map Vpot(x, y) = Vpot(r) to create the compensation
potential, it is very natural to evaluate these density distributions in the same way we did for
the equation of state, see figure 4.14. This naively bins the densities in the equipotential regions
the system would have without the compensation potential. It also allows for a determination of
evaluation regions by the use of chemical potential differences in the unmodified potential. For
example, we directly see that the core region was designed to go from the centre potential Vc up
to a difference of V (r) − Vc = 0.5 kHz × h. In the experiment, this corresponds to an elliptical
area with an extend of about 100 and 80 lattice sites along the x and y-axis. The potential is over-
compensated up to the harmonic potential of V (r) − Vc = 2 kHz × h. Both these parameters
were used in the experiments in this and the following chapter. At the edge of the centre region
V (r)− Vc = 0.5 kHz× h the doubles and singles density is close to zero. This is useful once we
allow horizontal tunnelling again by decreasing the xy-lattice depth, since we can separate both the
core and the reservoir region through the use of very steep potential barriers.

Once the xy-lattice is frozen, the potential shaping light can be turned off. Similar to the double-
well splitting and the double-well phase sweep calibration the atoms need to be transferred into the
infrared z-lattice. This is again done by first ramping up the infrared z-lattice power to Vlatt,z,red =
120Erec creating a superlattice in z-direction. The phase is chosen such that it is close to the
symmetric configuration φSL ≈ 0, creating tilted double-wells along the z-axis, with all atoms in the
planes with lower chemical potential. By ramping down the green z-lattice power both double-well
sites merge into one, with all atoms in the lowest energy state of this site. Here the atoms still
experience attractive interactions, preventing the occupation of higher energy states during the
ramp due to interaction effects. This process of merging the planes is very similar to the one already
presented in section 6.2.2.

After this transfer is done, the xy-lattice is ramped down to a chosen value of Vlatt,xy in between 5
to 7Erec, where horizontal tunnelling is allowed. Since the local trap potential changed significantly,
the atoms would immediately start to redistribute, strongly heating the system. To avoid this
another pattern is projected with the DMD, especially compensating the trap potential effects of the
infrared z-lattice, and with high potential barriers on the edge of the core region. In the following
experiments these barriers usually had a height larger than 20 times the tunnelling amplitude t and
were tens of sites wide, going from V (r)− Vc = 500 to 700Hz.

We would like to study the physics of the repulsive bilayer Hubbard model, which requires a
change from the attractive loading situation to a repulsive on-site interaction. This can either be done
by transferring to a |5〉 |9〉 mixture using a Landau-Zener RF sweep or by changing the magnetic
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Figure 6.13: Experimental sequence to create a band insulator with repulsive interactions. The
initial xy-lattice loading of every second plane is done with a |9〉 |7〉 mixture at 207.15G, leading to attractive
on-site interaction. After freezing the motion, the green z-lattice sites get merged into the infrared z-lattice.
Following the unfreezing of the xy-lattice the interaction is switched to repulsive by changing the magnetic
field and crossing the Feshbach resonance.

field and with it, via the Feshbach resonance, the scattering length, see figure 4.10. We discovered,
however, that at the field we are working at B = 207.15G, losses occur in the |5〉 |9〉 mixture,
probably due to the |5〉 |9〉 p-wave resonance at ∼215G. Therefore, performing experiments in this
configuration is unfavourable and changing the magnetic field a more sensible choice. We decided
to perform these experiments at a field of B = 194.82G in a |7〉 |9〉 mixture, which enables strong
repulsive interactions, while still avoiding the |7〉 |7〉 p-wave resonances at∼197.7 G. To avoid losses
while crossing the Feshbach resonance at 202.13G, the atoms are transferred shortly in a |5〉 |9〉
mixture, and back again once the final field is reached. This field change is ideally very fast, to
minimise the time spent in the |5〉 |9〉 mixture. While ramping down the field of the slow Feshbach
coils, an increased current in the fast Feshbach coils in Helmholtz configuration compensates the
loss in magnetic field, effectively staying at B = ∼207G. Once the atoms are in the |5〉 |9〉 mixture,
the current in the fast Feshbach coils is reduced to zero in only 600 µs, followed by a |5〉 → |7〉
transfer. Due to the change in interaction and the increase in energy for all double occupancies,
atoms now can access a larger range of chemical potentials. This means atoms occupy more sites at
the slope of the potential barriers separating the core from the outside region. This leads to some
redistribution of the atoms in the core region, lowering the central doubles occupation from 95 to
90 %. The full sequence to create this repulsive band insulator, loaded into the infrared z-lattice is
shown in figure 6.13.

6.3.2 Phase sweep preparation

In this chapter we already showed how we can use a superlattice phase sweep to prepare the ground
state of separated double-wells [119]. This technique should work with a fully connected bilayer
system as well, where we start with a large chemical potential difference between the two planes
2∆ = µ2 − µ1 and then ramp the superlattice phase to a balanced chemical potential where ∆ = 0.
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Figure 6.14: Melting the two-dimensional band insulator into a half-filled bilayer system. a) By first
ramping up the superlattice with a phase imbalance, we load the atoms into a state very close to the ground
state. By adiabatically sweeping the superlattice phase to the symmetric configuration φSL → 0, we aim to
prepare a low entropy state in the balanced bilayer as well. b) By first changing the superlattice phase to
φSL = 0 and then ramping up the z-lattice, we can avoid having to tune one of the lattice lasers while their
light hits the atoms. An intermediate step of Vlatt, z, green = 9Erec is used to have equal loading conditions for
all following lattice configurations, and therefore inter-layer tunnelling rates t⊥.

Here we assume a homogeneous potential in each layer of the bilayer individually, with the index
1, 2 indicating the two different layers. This intra-layer homogeneous potential can be achieved
through the potential shaping light from the SLM.

Starting with the repulsive, two-dimensional band insulator in the infrared z-lattice, the green
z-lattice is ramped to the desired value of Vlatt,z,green in between 13 to 28Erec. With this, one creates
an imbalanced bilayer system. In contrast to the merging into the infrared lattice process that has
happened before, doubles now experience a repulsive on-site interaction, so some atoms might
already populate the layer with a higher chemical potential. If the increase of the green lattice depth
is slow enough, however, this process is adiabatic and by starting with a band insulator in a single
plane, the transformation should create a very low entropy state.

Next, the system has to change to a balanced bilayer system, i.e. φSL = 0. A very critical parameter
here is the phase ramp speed and with it the total time of the sweep. As shown in figure 6.3 the
superlattice offset lock can be shifted half the available lock range in less then 40ms, which allows
us to change from the loading and merging situation to the symmetric superlattice phase φSL = 0 in
a similar timescale. This helps to prevent long hold times in the lattice, when tunnelling is allowed,
and therefore heating occurs. It is important, however, that the ramp is still adiabatic, meaning the
imbalanced low entropy state can transform to a balanced low entropy state without increasing
the entropy. Therefore, the ramp has to be slow enough relative to all relevant timescales in the
system, like the superexchange rate J/h or the coupling between both layers t⊥/h. Still, the exact
timescales for equilibration and the many-body dynamics in the bilayer Hubbard model are not
known, especially since they involve density redistribution and other complex dynamics during the
whole transformation process. Additionally, the change in superlattice phase requires a very large
frequency change of the Verdi laser, usually in the range of about 4GHz. Even though the lock has
been optimised in terms of stability it is not optimal to change the frequency of a lattice laser over
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that range and with that speed, potentially causing stability issues and amplitude changes, heating
up the system during the ramp. Even though we implemented this sequence, shown in figure 6.14 a),
and could confirm that it produced the expected balanced density distribution, a different bilayer
preparation method was investigated, potentially circumventing some of the stability, timescale and
heating issues.

6.3.3 Splitting the band insulator

Another method, shown in figure 6.14 b), is to dynamically split the single layer into a bilayer
system, similar to the symmetry point calibration previously discussed. We start again with a
two-dimensional band insulator in the infrared z-lattice. Since the green z-lattice is turned off
at that moment, changing the Verdi frequency does not impact the atoms. Therefore, after the
merging into the infrared z-lattice is complete, the offset lock frequency is tuned to the balanced
configuration φSL ≈ 0. During this time the atoms stay in the band insulator, where they cannot
move and experience relatively low heating rates since the number of states is limited due to Pauli
blocking. Once the correct frequency is reached, the green lattice depth is increased to the desired
configuration, splitting the single plane into two layers. This is done in two time steps, first with
a ramp to Vlatt,z,green = 9Erec, then to the final lattice value. Finally the lattice depth of both the
horizontal xy-lattices and the green z-lattice is ramped up very quickly to freeze all motion. We
discovered experimentally that for t⊥/h > 500Hz, this has to be much lower than the 1ms usually
used to freeze all motion. To suppress density redistribution, especially from doubles separating to
singles during the lattice ramp up, the freezing timescale was reduced to 200 µs.

The big advantage of this method is that the control of the lattice laser intensity is much more
stable and controllable compared to the frequency and mode control of the Verdi laser. The frequency
change required switching from a tilted configuration during lattice merging to the symmetric one
creating the bilayer is done without green light on the atoms, reducing possible disturbances and
shaking in the potential. Also, no atoms actually have to tunnel to redistribute, since the doubles at
the starting plane get continuously split into a bilayer at half-filling. This also ensures excellent
initial coupling between the planes, since the doubles start in the lowest harmonic oscillator state
along the z-axis. Additionally, we are not limited by the possible superlattice phase ramp speed and
can chose any splitting time with only very little constrains, allowing very fast separations. We,
therefore, chose to only use this method in the further experimental preparation.

After freezing, the improved z-tomography allows us to resolve all single planes of the completely
filled green z-lattice and we can image an individual layer of the bilayer system we prepared. In
figure 6.15 a density measurement of one of these layers, resolving singles and doubles is shown.

Having created a bilayer Hubbard system close to half-filling and having calibrated all its system
parameters, t, t⊥, U, φSL,∆, we now continue to examine the physics of this system.
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Figure 6.15: Density distribution in a bilayer close to half-filling. The density distribution shown are
averaged over 18 pictures of single layer slices, and show the centre region, where the SLM compensates the
potential created mostly by the infrared z-lattice. To do so, an additional potential of locally up to 11 kHz× h
is required. A barrier with 8 kHz×h potential height on the outside of the centre region prevents atoms from
leaving the centre. It is important to note that apart from the centre and the wall no compensation is applied,
and the outside lattice is filled with very hot atoms. The singles density is very homogeneous in the centre
region, whereas the doubles density shows local variations. They are more sensitive to potential changes and
indicate that the central potential is not perfectly compensated. The issues this raises are discussed in the
following chapter. The bilayer Hubbard parameters in this measurement are t⊥/t = 1.79 and U/t = +7.16
with t/h = 174Hz.
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CHAPTER 7

Magnetic correlations in a fermionic Hubbard
bilayer

Magnetic interactions and order are assumed to be the key ingredients in the superconducting
pairing mechanism in high-temperature superconductors [8, 27]. Here, extended, layered Hubbard
models and their inter-layer coupling are gaining more and more interest [53, 54, 58–63, 150–152].
In the bilayer Hubbard model, atoms from each site are coupled to five other sites, four in the
same layer and one in the perpendicular direction at the opposing layer. In the following these
will be called intra- and inter-layer couplings respectively. The relation between both of these can
be described by the ratio t⊥/t, where we again used the intra-layer tunnelling amplitude t as a
general energy scale for the system. As explained in chapter 2, this coupling in combination with
the superexchange mechanism leads to correlations in both directions as well.

In this chapter, I present the correlation measurements of a Hubbard bilayer in our quantum
simulator and the methods we used to obtain them. These results were published in [32]. To our
knowledge it is the first measurement of both inter- and intra-layer correlations in a bilayer Hubbard
model with ultracold atoms, examining a large parameter space of U/t and t⊥/t, additionally
performed at very low temperatures of TkB/t ≈ 1.2.

7.1 Intra-layer spin correlations in the bilayer

I will start by presenting the measurement of intra-layer correlations in this section. We make use of
correlation measurement techniques that were previously employed in our experiment to measure
correlations in the two-dimensional Hubbard model, published in [28, 29]. I will shortly introduce
those two techniques before describing their implementation and the results gained from the bilayer
Hubbard system.

7.1.1 Magnetisation and spin correlations

When discussing magnetic correlations it is useful to first properly introduce some definitions and
measurement values. We start with the local magnetisation operator Ŝ{x,y,z}

i , where the superscript
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a) b)

Rabi-oscillations
RF coupling

phase evolution

Figure 7.1: Local site magnetisation represented on the Bloch sphere a) The spin superposition of a
single atom can be described in the spherical coordinates of the Bloch sphere, see equation 7.2. b) In the
experiment, this Bloch vector is manipulated via two different mechanisms. Coupling the two spin states, for
example through an RF pulse, leads to a rotation around the x-axis with Rabi-frequency Ω. A difference in
energy ∆E for both states of a superposition of |↑〉 and |↓〉 induces a phase evolution of the azimuthal angle
φ. It is to note that due to the Zeeman shift both states are in general non-degenerate since B 6= 0, but for
a homogeneous magnetic field this rotation around the z-axis affects all spins equally and we only gain a
global phase equal for all atoms.

indicates the quantisation axis and i the local site index. In the z-axis it is defined as

Ŝz
i =

(
n̂i,↑ − n̂i,↓

)
/2 =

(
n̂i,S,↑ − n̂i,S,↓

)
/2, (7.1)

as the Hubbard model is defined with spin-1/2 particles. Doubly occupied sites and holes do not
contribute to the magnetisation, which is why we can rewrite the magnetisation with only the
singles operator n̂i,S,σ = n̂i,σ − n̂i,↑n̂i,↓. To describe the wave function of a singly occupied site
and with it its magnetisation, it is useful to introduce the Bloch-sphere representation, illustrated
in figure 7.1 a), which maps any single spin-1/2 particle state ψ onto a unit sphere with polar
coordinates

|ψ〉 = cos (θ/2) |↑〉+ sin (θ/2) eiφ |↓〉 . (7.2)

Measuring the magnetisation in the x- or y-basis would require a change of the measurement basis
set. For our experiment this is not possible since we are not working with a real magnetic moment,
but a superposition of different hyperfine states. Therefore, we are limited to measuring in the ↑, ↓-
i.e. the z-basis.

It is, however, possible to rotate the state on this Bloch sphere through various methods, see
figure 7.1 b). For example, one can manipulate the relative population of spins using RF-coupling to
induce Rabi-oscillations, as discussed in section 3.1. These oscillations in the population of the two
measurement states (↑, ↓) can be described as rotations of the state vector around the x-axis with
the angle α. For an RF pulse with constant power and detuning, this angle is proportional to the
duration τ of the RF pulse α(τ) ∝ τ . By adjusting τ , pulses with a fixed rotation can be created, for
example a pulse with α = θ − θ′ = π/2 will transform |ψ〉 = |↑〉 to |ψ′〉 = (|↑〉+ i |↓〉)/

√
2. This
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7.1 Intra-layer spin correlations in the bilayer

transformation of the state effectively rotates the measurement basis for the magnetisation Ŝ{x,y,z}
i ,

here from the z-basis to the y-basis. In this chapter we will repeatedly make use of these so called
π/2-pulses, for state preparation and measurement purposes.

Another method to induce a rotation of the Bloch vector is to lift the energy degeneracy of the |↑〉
and |↓〉 states (E↑ and E↓). Through the choice of the two lowest hyperfine states with a significant
Zeeman energy splitting, this is given by default in our experiment, see figure 3.1. The state’s relative
phase will then evolve in time according to the Schrödinger equation:

|ψ〉 (τ) = c↑ |↑〉+ c↓ |↓〉 e
−i(E↑−E↓)τ/h̄ . (7.3)

As this does not alter the relative probability amplitudes c↑/c↓, the relative phase evolution equates
to a rotation around the z-axis of the Bloch sphere.

The magnetic or spin correlation of site i with site j is defined as

Cm
ij = 〈Ŝm

i Ŝ
m
j 〉 − 〈Ŝ

m
i 〉 〈Ŝ

m
j 〉 , (7.4)

where the angled brackets indicate the measurement average over the prepared state withm as a
placeholder for the measurement basis x, y or z. Again, it is educational to first understand spin
correlations in a two-site, i.e. double-well system with two particles of opposite spin. If we prepare
the system with a spin-up particle in the first, and a spin-down particle in the second site, we
prepared a classical antiferromagnetic order |↑, ↓〉. However, when using equation 7.4 we see that
the z-correlator of this state Cz

12 = (1/2×−1/2)− (1/2×−1/2) = 0 vanishes. If one examines
the spin singlet state |s〉 = (|↑, ↓〉 − |↓, ↑〉)/

√
2 we immediately see that both 〈Ŝz

1/2〉 = 0. In that
case the spin correlations are non-zero with Cz

12 = −1/4.
An important feature we have shown in chapter 5 is that the states of a spin-balanced (h = 0)

Hubbard system have a spin-SU(2) rotational symmetry. This means that the state is invariant
under a rotation of the measurement frame. Therefore, the spin-correlations in a Hubbard system
should be independent of the measurement axis as well Cx

ij = Cy
ij = Cz

ij and additionally 〈Ŝz
i 〉 = 0.

It is useful to keep these differences between a classically prepared and a quantum mechanical
antiferromagnetic order in mind.

To measure the local magnetisation one requires information of the singly occupied sites of both
spins. In our experiment, we a have the capability to measure the local singles densities of both
hyperfine states of a single vertical layer. However, our resolution is not sufficient to resolve atoms at
the single-site level. The signal we obtain from the point-like source of an atom at site i is described
by the point-spread function (PSF) P (r − ri), which is normalised to one∫

P (r − ri) d
2r = 1 . (7.5)

For our discretised pixel space of our measurement basis this is translated to a sum over the integrated
pixel values, ∑

l

∫
Al

P (r − ri) d
2r = 1 , (7.6)

where the area of the pixel l is denoted as Al.
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a) b)

HWHM

Figure 7.2: Imaging resolution and its limiting effects on detecting spin order. a) The point spread
function P (r) smears out the signal of a single atom over a larger, roughly symmetric circle with diameter of
five sites (FWHM). The signal we detect at a single camera pixel ODl thus has contributions from a multitude
of occupied sites. This is illustrated in b), where we depict the alternating correlators on one axis from a fixed
site i to site j and how their amplitudes are expected to decay exponentially with the correlation length ξ.
Detecting the signal of the alternating spins in an antiferromagnetic order is very complex, as the signal of
sites i and i+ 1, displayed with dotted blue and orange lines, overlaps very strongly.

The PSF can usually be described by an Airy-disk, in our case with a radius of 1.25 µm (HWHM).
With a lattice spacing of a = 532 nm, this translates to a disk diameter of about 5 sites. The signal
of several neighbouring sites with alternating magnetisation is, therefore, mostly washed out, as
illustrated in figure 7.2.

7.1.2 Measuring the uniform magnetic structure factor

To overcome the limited resolution and to detect the signal of antiferromagnetic correlations in
our two-dimensional system, we developed a technique to measure the uniform spin-structure
factor, which was published in [28]. The static spin-structure factor is defined as the discrete Fourier
transformation of the spatial spin correlations:

S(q) =
1

N

∑
i,j

e−iq·rijCz
ij , (7.7)

with the number of lattice sites N and rij = rj − ri as the distance between sites i and j. For
quasi-momentum q = 0 this is simply the averaged sum of all spin correlators of each site in the
evaluated region and is then also called the uniform spin-structure factor :

S(q = 0) =
1

N

∑
i,j

Cz
ij . (7.8)

For a completely uncorrelated system where Cz
ij = 0, ∀i 6= j , the structure factor is given by the

local moment cz00, the on-site fluctuation of the magnetisation:

cz00 =
1

N

∑
i

〈(Ŝz
i )

2〉 − 1

N

∑
i

〈Ŝz
i 〉

2
. (7.9)
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7.1 Intra-layer spin correlations in the bilayer

In general, the correlator czδx δy indicates the averaged correlations of any sites with a distance of
δx and δy in lattice site indices, for example cz01 for nearest-neighbour correlations in y-direction.
For antiferromagnetic correlations the sign of the averaged correlators is alternating czδx δy =

|czδx δy|(−1)
δx+δy .

As previously noted, all states of the spin-balanced Hubbard Hamiltonian have a spin-SU(2)
symmetry, meaning their spin orientation and with it the magnetisation can be rotated without
changing the state. Assuming this holds for a single site as well, its magnetisation measurement
average has to vanish 〈Ŝz

i 〉 = 0. We rewrite the first term of equation 7.9 as〈
(Ŝz

i )
2
〉

=
1

4

〈(
n̂i,↑ − n̂i,↓

)2〉 (7.10)

=
1

4

〈
n̂2i,↑ − 2n̂i,↑n̂i,↓ + n̂2i,↓

〉
(7.11)

=
1

4

〈(
n̂i,↑ − n̂i,↑n̂i,↓

)
+
(
n̂i,↓ − n̂i,↑n̂i,↓

)〉
(7.12)

=
1

4

〈
n̂i,S,↑ + n̂i,S,↓

〉
, (7.13)

where we used the fact that due to the Pauli principle n̂2i,↑ = n̂i,↑ and applied the definition of singles
n̂i,S,σ . Therefore, the local moment is given by one fourth of the site and measurement averaged
singles densities and directly corresponds to the spin-structure factor of an uncorrelated system.

For short-ranged, nearest-neighbour antiferromagnetic correlations cz01 < 0, and hence the
uniform structure factor value S(q = 0) is lower than the one for an uncorrelated system S(q =
0) < cz00. In general we assume a two-fold spatial symmetry about the x- and y-axis cz01 =
cz10 = cz−10 and an exponential decay of the absolute correlation values with distance d, such that
|czij | = |c

z
d| ∝ e−d/ξ with a correlation length ξ, see figure 7.2 b). In a two-dimensional system

with TkB/t ≈ 1 we expect only nearest-neighbour correlations, thus detecting a uniform structure
factor below the local moment directly implies antiferromagnetic correlations.

In [28] we introduced a method to detect these features, even without the imaging capabilities to
resolve single site occupations, which is discussed in detail in [23] and [24]. Here I will present a
short summary.

When measuring the local singles density ρσ(r) of spin σ, we effectively measure the signal of
atoms smeared out through the point-spread function (PSF) P(r):

ρσ(r) =
∑
i

P (r − ri)ni,S,σ , (7.14)

where ni,S,σ is the actual singles distribution of one measurement. We then calculate the naive
magnetisation S̃z(r) by subtracting the measured singles density of the same measurement

S̃z(r) =
[
ρ↑(r)− ρ↓(r)

]
/2

=
∑
i

P (r − ri)
[
ni,S,↑ − ni,S,↓

]
/2

=
∑
i

P (r − ri)S
z
i . (7.15)
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If we were to naively calculate magnetic correlations at real space positions r and r + d following
equation 7.4, we get

C̃z(r,d) =
〈
S̃z(r)S̃z(r + d)

〉
−
〈
S̃z(r))

〉〈
S̃z(r + d)

〉
(7.16)

=
∑
i,j

P (r − ri)P (r + d− rj)
(〈
Sz
i S

z
j

〉
− 〈Sz

i 〉
〈
Sz
j

〉)
(7.17)

=
∑
i,j

P (r − ri)P (r + d− rj)C
z
ij . (7.18)

By integrating the naive, smeared-out correlators C̃z(r,d) over a distance |d| ≤ dmax that is much
larger than the PSF size and the correlation length ξ, we could get a signal that would potentially be
independent of this effect. In our experiment we usually work with dmax/a = 7. The equivalent of
this integration in real space is a sum over the pixels l in our camera space

C̃z
int(r) =

∫
|d|≤dmax

C̃z(r,d) d2d =
∑

l ∀|rl−r|≤dmax

∫
Al

C̃z(r,d) d2d (7.19)

=
∑
i,j

P (r − ri)C
z
ij

∑
l ∀|rl−r|≤dmax

∫
Al

P (r + d− rj) d
2d

︸ ︷︷ ︸
≈1

(7.20)

=
∑
i,j

P (r − ri)C
z
ij , (7.21)

where in the integral approximation we assumed that only contributions of |r − rj | ≤ dmax are
relevant and used equation 7.6. We do so by calculating the sum of the auto-correlation functions
for each pixel. To make this consistent with the integration shown above, one has to multiply the
sum of these auto-correlation functions with the square of the camera pixel size in the experiment
frame a2pixel.

In our experiment, we are usually interested in the averaged correlations over a certain (pixel)
region A containing N sites:

1

N

∑
l∈A

∫
Al

C̃z
int(r) d

2r =
1

N

∑
i,j

Cz
ij

∑
l∈A

∫
Al

P (r − ri) d
2r︸ ︷︷ ︸

≈1

(7.22)

=
1

N

∑
i,j

Cz
ij = S(q = 0) . (7.23)

For practical purposes, one usually divides by the number of pixels in the averaging region A and
uses a scaling factor a2/a2pixel that includes the camera pixel size in the experiment frame and the
lattice spacing. Therefore, if we only perform pixel-wise summations, beginning with the sum of
the auto-correlation functions, a factor of a2 remains and needs to be included in the final value.

With this summation technique we are now able to directly compute the uniform spin-structure
factor S(q = 0) in a fixed area, for example, in an isopotential region. In [28] this was done for a
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7.1 Intra-layer spin correlations in the bilayer

large range of chemical potentials, where we could show the antiferromagnetic nature of the low
temperature state (S(q = 0) < cz00) with a maximum of the correlations at half-filling µ = 0.

This technique has some limitations, as it does not allow to resolve individual spin-correlators
czij . Additionally, once next-to-nearest neighbours cz11 > 0 are included in the correlator sum of
the spin-structure factor, they partially cancel the signal of the nearest-neighbour contributions
cz01 < 0. This is unfortunate, since for long ranging antiferromagnetic order the signal would vanish
S(q = 0)→ cz00. This renders the technique ill suited for low-temperature thermometry.

7.1.3 Spin-spiral technique and the staggered structure factor

In the previous section we measured the spin-structure factor at quasi-momentum wave vector
q = 0. Now we will investigate how the spin-structure factor at q 6= 0 would look like and how to
measure it. To gain an understanding of the influence of q on the magnetic order, we rewrite the
correlator sign between sites i and j of an antiferromagnetic ordered system as a phase factor

Cz
ij = |C

z
ij |(−1)

jx−ix(−1)jy−iy = |Cz
ij |e

irij ·qafm , (7.24)

where im, jm indicate the lattice position on axism and we define the real space distance vector
rij = rj − rj . With the lattice index differences δx = jx − ix and δy = jy − iy this vector can be
directly calculated rij = (δxêx + δyêx)alattice. Using this in equation 7.24 we get

qafm =

(
π/a
π/a

)
, (7.25)

which is in both axes half the lattice wave vector Q = 2π/alattice, placing it at the corner of the first
Brillouin zone of our reciprocal two-dimensional lattice.

The spin-structure factor at that wave vector is called the staggered spin-structure factor :

S(qafm) =
1

N

∑
i,j

e−iqafm·rijCz
ij =

1

N

∑
i,j

(−1)δx+δyCz
ij , (7.26)

where the signs of the correlations are effectively inverted on alternating sites. In a system with
antiferromagnetic order all individual correlators would then have the same sign in this sum. They
would, therefore, all add up, leading to a maximum of the spin-structure factor, in contrast to the
minimum at q = 0. For increasing correlation lengths at lower temperatures the staggered structure
factor would rise monotonically, making it a great and unique indicator for antiferromagnetic
correlations in a system. By comparing this value with numerical simulations it can even act as
thermometer for very low temperatures (TkB/t < 0.5), where the density distribution does not
change with temperature any more.

In [29] we published a method to coherently manipulate the phase of the correlations and detailed
how we applied this to measure correlations in our system. I will present here a short summary of
the technique which is explained in detail in [108]. Additionally, results have been discussed as well
in [24]. To introduce this method it is useful to first look at how to create a classical chequerboard
pattern, starting with a spin polarised, completely filled two-dimensional lattice. The state on each
site is represented with a spin-vector on a Bloch sphere, as was done in equation 7.2. Similar to a
magnetic moment we are able to manipulate these vectors through rotations around the x-axis with
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a)

b)

pulse pulse

magnetic field gradient

= ↑ = ↓

Ramsey sequence idealised

Figure 7.3: Ramsey sequence in a magnetic field gradient a) An array of spin polarised atoms in the
|↑〉 state is rotated into the xy-plane through a π/2-pulse as an equal superposition of (|↑〉+ i |↓〉)/

√
2. The

magnetic field in the experiment lifts the energetic degeneracy of both spins, leading to a phase evolution of
φ in the horizontal plane. When applying a magnetic field gradient, the final phase φi(tSP) is now site and
time dependent. With the correct parameters we create a phase difference of neighbouring sites ∆φ = π,
where each spin is anti-parallel to its neighbour. A second π/2-pulse rotates the Bloch vector out of the
horizontal plane, while maintaining the anti-parallel spin configuration. b) In a magnetic field gradient along
the diagonal of a two-dimensional lattice and with a final projection parallel to z-axis, this Ramsey sequence
creates a classical spin chequerboard pattern out of a spin polarised lattice filling.

RF-Pulses and a coherent phase evolution in a magnetic field around the z-axis. Figure 7.3 a) shows
a Ramsey-type sequence in a magnetic field gradient. The initially spin polarised atoms, here in |↑〉
are rotated in the equatorial plane by a π/2-pulse: |↑〉 → |ψ〉 = (|↑〉 + i |↓〉)/

√
2 . The magnetic

field B(ri) at site i lifts the energetic degeneracy of |↑〉 = |mF = −7/2〉 and |↓〉 = |mF = −9/2〉

∆Ei = Ei,↑ − Ei,↓ = h̄γB(ri) , (7.27)

with the difference of the gyromagnetic ratios for both states γ = γ↑ − γ↓. Over a time tSP this
leads to an evolution of their relative phase φi = γ

∫
B(ri, t) dt, corresponding to a rotation in

the horizontal plane of the Bloch sphere. The phase evolution between two sites i and j is then
described with

φij = φj − φi = γ

∫
B(rj , t)−B(ri, t) dt = γ

∫
∇B(t) · rij dt . (7.28)

Perpendicular to the direction of the magnetic field gradient∇B(t) the relative phase stays constant.
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7.1 Intra-layer spin correlations in the bilayer

After an evolution time tSP in the gradient, a second π/2-pulse rotates the spin vector out of the
horizontal plane again, depending on the absolute phase acquired. If the spin vector is pointing
along (opposite to) the y-axis it gets fully rotated to |↓〉 ( |↑〉). In the direction of the gradient a wave
pattern forms, with wave vector kSP = γ

∫
∇B(t) dt, which we obtain by measuring the population

of both states. This so called spin spiral was previously used in our experiment to measure and
then cancel magnetic field gradients [21, 22]. In our case we deliberately create a magnetic field
gradient in the xy-plane, with the wave vector pointing along the lattice diagonal, see figure 7.3 b).
By choosing the correct evolution time tSP, the created spiral wave vector kSP is set such that sites
directly neighbouring each other gain a relative phase shift of φi i+1 = kSP · ri i+1 = π. This means
that spin vectors on neighbouring sites are oriented anti-parallel and we can create a classical
antiferromagnetic order with kSP = kAFM. It is, however, not SU(2) symmetric and depending on
the absolute phase acquired may even be still in a equal superposition of spin-up and down. The
exact calibration procedure to get the strength and orientation of the magnetic field gradient∇B in
combination with the required evolution time tSP is described in detail in [108] and can be used to
cancel magnetic field gradients in the vertical z-direction as well.

Time evolution of the spin correlators With the spin spiral technique we are able to imprint
phase patterns in a classical spin system. Additionally, it also modifies the phase of the quantum
mechanical spin correlator Cm

ij , as defined in equation 7.4. The evolution of the relative phase of the
magnetic correlation between site i and j in a spin spiral like sequence was shown to be

〈Ŝz
i Ŝ

z
j 〉 → cos(φj − φi) 〈Ŝ

z
i Ŝ

z
j 〉 , (7.29)

where φi is the phase picked up by spins at site i and under the strict precondition that the initial
state is SU(2) symmetric. The proof of this stated transformation is done by using the Heisenberg
picture of operators evolving in time and is shown in [108], together with simulations and limiting
conditions. While the technique is not adding a complex phase to the correlators, it is similar to
measuring the real part of a phase evolution

〈Ŝz
i Ŝ

z
j 〉 → Re

(
eiksp·rij

)
〈Ŝz

i Ŝ
z
j 〉 . (7.30)

Since the SU(2) symmetry implies as well that 〈Ŝz
i 〉 = 0, the correlators Cz

ij evolve exactly the
same. Therefore, after having imprinted a spin spiral with quasi-momentum wave vector qsp the
uniform structure factor is transformed such that

S(q = 0)→ 1

N

∑
i,j

Re
(
eiqsp·rij

)
Cz
ij = Re

(
S(q = −qsp)

)
, (7.31)

or seen inverse, maps S(qsp)→ S(q = 0), imprinting or unwinding a spin correlation pattern. By
measuring the uniform structure factor after using the spin spiral, we are able to directly measure the
real part of the structure factor at qsp. For example at qsp = qafm we would measure the staggered
structure factor, which is per definition real.

In the magnetic field gradient the correlations in the xy-direction evolve with time, which are
then mapped into the z-measurement basis with the second π/2-pulse. If this pulse is omitted the
correlation in z-direction does not change. The required initial SU(2) symmetry of the measured
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a) b)

0

xy-grad coils

fast FB coils

1st BZ

Figure 7.4: Imprinting a wave vector kSP on the spin-structure a) The magnetic field gradient ∇B
parallel to the xy-plane required for imprinting a wave vector is created with two small gradient coils, while
any z-gradient introduced is cancelled through the fast Feshbach coils. Before the spin spiral all gradients are
cancelled using the same coils. For a SU(2) symmetric spin configuration the first π/2-pulse is not required.
b) Varying the evolution time tSP in the magnetic field gradient we control the length of the imprinted wave
vector |kSP|. Having reached the edge of the Brillouin-zone at kSP = kafm the vector is folded back to the
quasi-momentum qSP. By creating kSP = 2kafm this even folds back to qSP = 0, which is used to calibrate the
sequence parameters [108].

state implies that cross correlation terms vanish 〈Ŝx
i Ŝ

z
j 〉 = 〈Ŝ

y
i Ŝ

z
j 〉 = 〈Ŝ

x
i Ŝ

y
j 〉 = 0 [108] and that the

initial spin correlations are independent of the measurement direction. This practically means that
the initial π/2-pulse of the spin spiral is not necessary for the spin-structure factor measurement.
Figure 7.4 shows the implementation of such a spin spiral technique in our experimental sequence
and the evolution of the quasi momentum qSP(tSP) we probe in the structure factor S(qSP).

Spin correlations in two-dimensional Hubbard model We published this technique for
manipulating spin correlations and several measurements of our two-dimensional Hubbard system
in [29]. In light of the following application of this technique to the bilayer, it is insightful to discuss
some results here as well.

Figure 7.5 shows the uniform and staggered spin-structure factor averaged over isopotential
regions of the chemical potential µ. This measurement was performed in a configuration of U/t =
+8.2 with t = 224Hz and without any additional potential shaping, for example with the SLM.
As expected for an antiferromagnetically correlated system, the uniform structure factor S(0) is
consistently lower than the local moment cz00, which lies below the staggered structure factor
S(qafm). For nearest-neighbour correlations only, both structure factors would symmetrically lie
around the local moment, since the nearest-neighbour correlator value is inverted. However, one
observes an asymmetry of the separation |S(qafm)− c

z
00| > |c

z
00 − S(0)| close to half-filling µ = 0.

This indicates that we have a significant contribution of more than nearest-neighbour correlations,
which are note completely inverted at qafm. At half-filling, the staggered structure factor can be
calculated down to very low temperatures and since it is monotonic its measured value can be used
as a thermometer. In this case it indicates a temperature of TkB/t = 0.63(3).

In the same publication we showed how one can use the continuous transformation of the
structure factor to extract all individual averaged correlators czij , which is discussed together with
other results in [24].
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7.1 Intra-layer spin correlations in the bilayer

Figure 7.5: Spin-structure factor in the two-dimensional Hubbard model. This graph shows a meas-
urement we published in [29], where we observed spin correlations in a purely two-dimensional system. Its
results show no measurement of the bilayer system and only illustrate the technique. Similar to the meas-
urement of the equation of state, we map the spatially resolved data to the chemical potential and average
the measured structure factors in isopotential regions. The Hubbard parameters in this measurement were
U/t = 8.2 with t/h = 224Hz. The signal of the singles peak at half-filling is reflected in the local moment
cz00 (pink circles). As expected for antiferromagnetic spin correlations, the uniform structure factor S(0)
(orange circles) stays below the local moment, while the staggered structure factor (blue circles), measured
with the additional imprinted wave-vector qafm is always higher than both. Comparison of S(qafm) at µ = 0
with numerical simulations indicate a system temperature of kBT/t = 0.63(3).

7.1.4 Observation of intra-layer spin correlations in the bilayer

The spin spiral technique was used initially for a purely two-dimensional Hubbard system. One
important requirement for it to work was a spin-balanced atom number population during the initial
lattice loading to enable SU(2) symmetry, which needs to be maintained in the frozen lattice up until
the spin spiral. Additionally, we need to detect both spin singles of one horizontal plane only.

To measure spin correlations in a bilayer system, the same requirements need to be fulfilled.
Especially the single layer detection is challenging, since after the preparation each plane in z-
direction is occupied with atoms. One option is to selectively remove every second plane, as
described in section 6.2.3, to increase the spectroscopic separation of the planes from ∼640Hz
to ∼1.28 kHz. We noticed, however, that this process is slightly spin dependent and introduces a
spin-imbalance of about 5 % potentially destroying the required SU(2) symmetry. By improving the
slicing resolution to less than 500Hz we are able to resolve even the small separation of the layers,
allowing a direct measurement of both spin components of a single layer.

During the preparation and afterwards in the frozen lattice all magnetic field gradients are
cancelled to not inadvertently introduce an additional phase shift to the correlators or introduce
spin dependency during splitting in the z-direction. Directly after having the motion frozen out
by the increased x, y- and z-lattice depth we employ the spin spiral sequence shown in figure 7.4
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Chapter 7 Magnetic correlations in a fermionic Hubbard bilayer

Figure 7.6: Intra-layer spin correlations in a Hubbard bilayer. Both the uniform (orange circles) and
staggered (blue circles) spin-structure factors were measured for varying t⊥/t = 0.22 to 5.16with t = 174Hz.
The on-site interaction U varies with the inter-layer barrier but is centred around U/t ≈ 7.5. The shaded
regions show the results of a DQMC simulation with doped filling of n = 0.8 over a temperature range of
TkB/t = 1.0 to 1.4. The error-bars indicate the standard deviation from the statistics of the measurement
and do not include systematic errors. This measurement was published in [32].

to manipulate the correlator phase. The gradient∇B and the evolution time tSP are chosen such
that qSP = qafm. By turning the second π/2-pulse on and off we measure either the staggered or the
uniform spin-structure factor.

As described in chapter 6, a bilayer system is prepared by loading a two-dimensional band
insulator and splitting it into two layers. Since the initial band insulator is not completely filled
and due to the additional expansion while switching from attractive to repulsive interactions, we
have an averaged filling of n = 0.90 per site just before the splitting. To account for this we scan
the superlattice phase φSL before each measurement to ensure maximal singles density in the layer
we observe, leading to a small imbalance in potential between both layers. Additionally, the local
chemical potential, shaped by the lattices and the SLM light, is not as homogeneous as we would
like, resulting in varying local chemical potential and site filling, as can be seen in the varying
doubles fraction in figure 6.15. Averaging the measurement of the uniform and staggered structure
factor and the local moment over the whole centre region leads to an effective reduction in signal
size, since at half-filling we are centred for all three values at the maximum of a peak and any
averaging around this peak will reduce the final value compared to the peak value itself. This issue
cannot be compensated by experimental adjustments. We choose to account for it by comparing the
experimental data with density doped theoretical DQMC calculations. The doping then simulates
the effect of averaging over a range of local chemical potentials.

Figure 7.6 shows the measured uniform (orange circles) and staggered spin-structure factor (blue
circles) together with the local moment cz00 (pink circles) in a bilayer over varying t⊥/t = 0.22(7)
to 5.16(1) and with t = 174Hz. Shaded regions show the results of DQMC simulation with doped
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7.2 Detecting inter-layer singlet pairs

filling of n = 0.8 over a temperature range of TkB/t = 1.0 to 1.4. All values follow the trend of
the DQMC calculations, therefore, we estimate the temperature of the bilayer system we create to
TkB/t = 1.2(2). Due to the different green z-lattice depths required for the changing inter-layer
tunnelling amplitude t⊥ the interaction U changes as well, from U/t = 8.9(1) at the lowest t⊥
value to U/t = 6.3(1) at the highest. This will be visualised in figure 7.13 at the end of this chapter.
With the inter-layer tunnelling amplitude getting quite large at t⊥/h = 898.5(14)Hz one has to
keep this timescale in mind and adapt all relevant processes like the freezing of motion through
a swift lattice power increase. We observed a strong decrease in double occupancies for large t⊥
when freezing with 1ms. By lowering this time to 200 µs we again had good agreement of singles
densities (local moment) and theory simulations.

At low t⊥ we observe significant correlations, visible in the separation of local moment to the
uniform and staggered structure factor. Their equal distance to the local moment indicates that
we have mostly nearest-neighbour correlations, in contrast to the unequal spacing in figure 7.5.
Therefore, we see only short range correlations, and a detailed investigation in the exact correlator
distribution is unnecessary. Here we introduce our definition of the bilayer intra-layer correlations

Cxy = 2 [S(qafm)− c
z
00] , (7.32)

where we take twice the difference of the staggered structure factor to the local moment to account
for the correlations in both layers. For increasing inter-layer coupling, the correlations as defined
above decrease drastically, up to a point where there seem to be no intra-layer correlations at all. As
discussed in chapter 2.5 this is consistent with a change in the dominant coupling, and therefore the
superexchange mediated correlation direction which is directly described by the ratio t⊥/t. While
we can assume that for nearly completely decoupled bilayers at t⊥/t ≈ 0.22 the system is described
quite well as two weakly coupled, antiferromagnetically ordered Mott insulators this assumption
breaks down for t⊥/t > 1. In order to identify this other regime, we need to gain access to the
correlations between the plane, the inter-layer correlations.

7.2 Detecting inter-layer singlet pairs

In the extreme case of t⊥ � t, the bilayer would consist of a two-dimensional grid of weakly
connected double-well systems and could thus be understood and described by mostly the physics
of double-wells. We will start in this regime and define measures and techniques there, before
investigating how these can be extended to the intermediate range of inter-layer tunnelling and
further down to t⊥ < t.

We begin by defining inter-layer correlations Cz similarly to the intra-layer correlators of equa-
tion 7.4 and 7.32, this time, however, between the two layers m = 1, 2 and averaged over all
sites:

Cz = −
1

N

∑
i

〈Ŝz
i1Ŝ

z
i2〉 − 〈Ŝ

z
i1〉 〈Ŝ

z
i2〉 . (7.33)

The minus sign in front assures positive correlation values for antiferromagnetic order similar to
the definition of Cxy . In this case N is the number of sites in one layer and only half the total
number of sites of the whole bilayer. Similar to before we assume that the system we prepare is
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Chapter 7 Magnetic correlations in a fermionic Hubbard bilayer

naively guessed state localised double-well basis spin symmetry

|d+〉 1√
2
(|↑↓, 0〉+ |0, ↑↓〉) -

|d−〉 1√
2
(|↑↓, 0〉 − |0, ↑↓〉) -

|t〉 1√
2
(|↑, ↓〉+ |↓, ↑〉) +

|s〉 1√
2
(|↑, ↓〉 − |↓, ↑〉) -

single site state on-site interaction Ũ spin symmetry

|↑h↓h〉 U/4 -
1√
2

(
|↑l↓h〉 − |↑h↓l〉

)
U/2 -

1√
2

(
|↑l↓h〉+ |↑h↓l〉

)
U/2 +

|↑l↓l〉 U -

Table 7.1: Spin-symmetry of a half-filled double-well and a dual-band, single-site system. The
naively guessed states of the half-filled, spin-balanced double-well introduced in chapter 2 are listed in the
upper table. An anti-symmetric spin wave function, like the spin singlet |s〉, is denoted with a minus. Note
that only |d−〉 and |t〉 are eigenstates, whereas the energetically lowest and highest ones are a superposition
of |d+〉 and |s〉. The second table below similarly lists the lowest four eigenstates of a single site but with
two harmonic oscillator states available (in a lattice the two lowest bands). We use the notion |σm〉 for an
atom with spin σ, withm indicating the lower (l) or higher band (h) it is in. Due to the different spatial wave
functions, the on-site interaction Ũ varies, with Ũ = U being the on-site interaction for two atoms in the
lowest band. This table was inspired by a similar one in [153].

SU(2) symmetric, and therefore 〈Ŝz
im〉 = 0.

When investigating a spin-balanced single double-well system (N = 1) at half-filling (n = 1),
we observe that again the spin-singlet |s〉 would give the maximal interlayer correlation value of
Cz = −〈s|Ŝ

z
11Ŝ

z
12|s〉 = 1/4. In practice however, this value is never reached since the ground state

of the double-well has admixtures of a doubles state |d+〉 as well, which does not contribute to the
spin correlations Cz = −〈d+ |Ŝ

z
11Ŝ

z
12|d+〉 = 0. Therefore, the correlator value for a spin-balanced

system will always be below 0.25 even for very low temperature states.
To detect the spin correlations in between both layers without simultaneously measuring the

spin-densities of two layers with both spins at in the same run we use and adapt a technique to
measure correlations between two sites, pioneered for bosons in [154] and for fermions in [155].
In the following explanation I summarise and refer for more details to the PhD thesis of Daniel
Greif [153]. The method is based on the continuous transformation of a double-well to a single site,
similar to the merging procedures introduced in section 6.2.2, this time, however, with both sites
potentially occupied and without any potential tilt. To understand this process, we first look at the
possible eigenstates of the initial double-well and the final single-site situation.

For a double-well with one spin-up and one spin-down particle we constructed the eigenstates
through four orthogonal, naively guessed, states see section 2.3 and here again displayed in the
upper part of table 7.1. Since we work with fermions, they have to be anti-symmetric to particle
exchange, which can either stem from their spatial or spin symmetry. Only one of these states is
symmetric under spin exchange, and therefore has an anti-symmetric spatial wave function. In a
double-well with strong repulsive interactions relative to the tunnelling amplitude t⊥ between both
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spin symmetrydouble-well states dual-band single-site states

Figure 7.7: Eigenstates of the double-well and the single site connected inmerging. Adiabatic merging
a double-well into a single site continuously connects the double-well eigenstates on the left with the ones of
a single site, maintaining their spatial and spin symmetry. A numerical calculation of this assuming repulsive
interaction U > 0 was presented in [153], where this figure is adapted from. Note that the energy scales
on the far left and right are not in absolute units and are referenced to the lowest energy state. Assuming
no high energy excitations are present in the double-well configuration, only |t〉 and |3〉 states are present,
which have a distinctive spatial and spin symmetry.

sites U/t⊥ � 1, the energetic ground state (denominated |3〉 in chapter 2) is a superposition of a
spin singlet |s〉 and a small contribution εd(U/t) of |d+〉 and has, therefore, a spatially symmetric
wave function. When merging the double-well into a single site, the number of states available has
to be conserved, in this case this is only possible by including the next higher harmonic oscillator
states. The lower part of table 7.1 lists the eigenstates of the single site including their spin symmetry.
It is notable that the on-site interaction of two particles is proportional to Ũ ∝

∫
|ψ1|

2|ψ2|
2dx, and

therefore varies for the different eigenstates. The non-interacting spatial wave function of a particle
in an harmonic oscillator can be calculated analytically [156] and was used to obtain the estimated
interaction strengths relative to the interaction of two particles in the lowest state U .

In an adiabatic merging process, these states have to continuously transform from the double-well
states to the single-site, dual band states. During this process the spatial and spin symmetries have
to be maintained. Figure 7.7 sketches the connection of these states and their energy spacing, based
on numerical simulations in [153]. The lowest energy states in both situations, i.e. |3〉 and |↑l↓l〉 have
the same spin and spatial symmetry and transform into each other, meaning a spin singlet becomes
a double occupancy with both atoms in the lowest band. In contrast to that, one atom of the spin
triplet state |t〉 ends up in the higher band after merging. This is true for other, not spin-balanced
triplet states like |↑, ↑〉 and |↓, ↓〉 as well, which is anyway expected due to Pauli-blocking not
allowing an identical spin occupying the same state. The two other states in the spin-balanced
double-well are separated in energy by ∆E ≥ U , and can be considered high energy excitations
in our systems with Temperatures T ≈ t� U . Therefore, the doubles fraction in a spin-balanced
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Figure 7.8: Experimental sequence for merging the Hubbard bilayer. After the preparation all sites on
inter-layer connections are rapidly separated through an increase in xy-lattice depth before the reduction in
green z-lattice depth induces the merging process. Only after a significant shift in the superlattice phase φSL
we load the atoms back into the green z-lattice for detection.

double-well at low temperatures most certainly stem from the small doubles admixture εd(U/t) of
|d+〉 to the ground state.

To measure the spin-singlet fraction in a bilayer with mostly decoupled double-wells (xy-lattice
high during splitting) we adiabatically ramp down the central barrier in the double-well until it is
merged into a single site. Then we separate the final states by resolving their on-site interaction
shift Ũ . We do so by reducing the green z-lattice power after having created a bilayer of separated
double-wells t⊥ � t. Since we prepare the bilayer system by splitting a band insulator, we can
assure that each double-well is filled with at maximum two atoms with opposite spin. The critical
timescale for this merging is determined by the superexchange J . With a merging time of 50ms
this is done much slower than the relevant timescale of τ = J⊥/h = 4t2⊥/(Uh). The measured
atom density in the lowest band now directly shows the relative occupation of the ground state |3〉
of the prepared double-well, which is naturally very high due to our preparation scheme. To get
the pure value of spin-singlets in the system, we have to subtract the doubles admixture εd(U/t) of
|d+〉 to the ground state. This is obtained by measuring the doubles density of both planes without
merging, which we then subtract from the lowest band doubles measured after merging.

When working with a bilayer that is prepared with non-zero intra-layer tunnelling t > 0 we first
have to separate the bilayer into an array of disconnected double-wells to perform this technique.
This is done by ramping up the xy-lattice to Vlatt,xy = 30Erec, suppressing any xy-tunnelling, before
merging the double-wells into the infrared z-lattice. It projects the atoms of the now separated
double-wells into the states shown above. By merging and measuring the lowest band doubles
fraction we again obtain the spin-singlet population between both layers. Since now spin correlations
can form in both intra- and inter-layer direction we will refer to these spin singlets as inter-layer
dimers in the bilayer. Here we require that the doubles we detect in the un-merged bilayer and which
stem from the superexchange coupling J or J⊥ are projected into and are part of the double-well
ground state’s doubles admixture. Especially for t⊥/t > 1 we assume this to be true, since J ∝ t2,
and therefore J⊥ � J . Additionally one has to consider that we prepare the bilayer by splitting
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7.2 Detecting inter-layer singlet pairs

Figure 7.9: Narrow singles-doubles spectroscopy after merging. After merging a prepared Hubbard
bilayer with t⊥/t = 2.51(10) one would expect double occupancies in the lowest band and some with one
atom in both the lower and upper band. The HS1 used has a pulse width of 500Hz and we clearly observe
the lower band doubles peak at ∆Ũ = ∆U , here marked by an orange area. We, however, do not observe
the doubles with both bands populated at ∆Ũ = ∆U/2 in the pink area, which indicates that we cannot
measure these with our usual detection scheme.

doubles, which should remain at least partly correlated through the tunnelling which is a fully
coherent process. Nevertheless we have to test this assumption in the region of t⊥/t ≤ 1, which we
will do at the end of this section.

Figure 7.8 shows the sequence that we used to measure the superexchange induced dimer fraction
on the inter-layer links of the bilayer. After the preparation through splitting of a two-dimensional
band insulator we separate the system into an array of double-wells by increasing the xy-lattice
power. When ramping down the green z-lattice we then merge the double-wells into single sites,
resulting in the potential occupation of higher bands. In theory we could detect the double occupan-
cies directly in the infrared z-lattice. The on-site interaction is, however, very sensitive to the wave
function, which means that the ∆U we need to resolve with RF spectroscopy is greatly reduced in
the infrared lattice compared to our standard detection procedure in the green z-lattice. Thus we
will transfer the atoms back into the green z-lattice. This requires that we change the superlattice
phase from the symmetric configuration ΦSL ≈ 0 back to a strongly imbalanced one, before we
reload the atoms into the green z-lattice by ramping up its power. The required shift in the phase is
rather large: with a beat frequency difference to the symmetric configuration of ∆νVCO ≈ 4GHz
it is utilising more than 60% of the available mode-hop free tuning range of the superlattice laser
lock. To support this hand-over, the infrared z-lattice depth is increased from Vlatt,z,red = 120Erec
to 200Erec before the green lattice is ramped up.

Then the standard single plane, singles-doubles detection sequence follows, however, this time
with a special focus on the spectroscopy resolving different interaction shifts ∆Ũ due to different
band combinations. To check this separation we prepared a bilayer with interlayer coupling
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Figure 7.10: Detecting inter-layer dimers after merging. By comparing the average doubles filling (dark
blue circles) of one layer after merging with the total doubles we detect in both layers before merging (light
blue circles), we measure the average population of dimers along the inter-layer bonds as only these merge
into a double we are able to detect. The singles that are measured for low t⊥ after merging (orange circles)
partially have to stem from sites with two atoms, but in different bands.

t⊥/t = 2.51(10), which should initially already have some inter-layer bonds not occupied by dimers,
and therefore higher band population as well. The result of the singles-doubles RF spectroscopy
are shown in figure 7.9. The narrow HS1 pulse with a frequency width of 500Hz allows to resolve
the different ∆Ũ we expect for the merged dimers (∆Ũ = ∆U ) or spin triplets (∆Ũ = ∆U/2).
Nonetheless, we do not see any signal in between the singles and doubles peak in this spectroscopy
scan. While we can still observe the doubles fraction in the lowest band it is not possible for us to
directly asses the population of doubles with one atom in a higher band.

In figure 7.10 the experimental data we took for varying t⊥/t = 0.22(7) to 5.16(1) is shown,
taken with the same parameters as figure 7.6, most importantly t/h = 174Hz and a range of
U/t = 6.3(1) to 8.9(1). Plotted are the average site occupation of singles nS and doubles nD after
merging as well as the summed doubles filling of both layers before merging nD,0. The shaded area
in between the doubles indicates the excess doubles created in merging singlets along the inter-layer
bonds, which increases strongly with rising t⊥ > t. We define the probability to measure a dimer
on one bond as

pdimer = nD − nD,0 . (7.34)

It is to note that the total atom number per site after merging is roughly constant as n =
2 × nS + 2 × nD ≈ 1.8. For low inter-layer coupling, the summed site occupation probability
seems to be larger than one, as we have to assume the singles density is equal for both spins
2× nS + nD ≈ 1.35 > 1. This indicates that some sites with two atoms, one in the lowest, one in
the highest band, are not observed as double occupancies but as singles, as we seemingly cannot
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a) b)

c)

Figure 7.11: Inter-layer spin correlations in a bilayer Hubbard model. a) The inter-layer correlations
Cz shown as orange circles are derived from the data presented in figure 7.10. The shaded regions show the
results of a DQMC simulation with doped filling of n = 0.8 over a temperature range of TkB/t = 1.0 to
1.4. The data agrees well with the simulated values. This measurement was published in [32]. To further
check our results, especially at t⊥ < t, we perform singlet-triplet oscillations in a magnetic field gradient
along the inter-layer axis similar to [154, 155]. The oscillations displayed in b) were obtained with a prepared
bilayer with t⊥ � t to confirm the validity of the method itself. The peak to peak amplitude represents the
amount of singlets induced via superexchange and is comparable in value with the previously used method.
c) At t⊥ � t these oscillations are nearly non existent, agreeing with our previous data and theory. Random
singles on these inter-layer bounds are projected onto both the singlet and triplet state, and are, therefore,
generating a significant offset without oscillations. A more detailed measurement of inter-layer singlet-triplet
oscillations will be presented and discussed in [157]. The error-bars indicate the standard deviation from the
statistics of the measurement and do not include systematic errors.

detect the on-site energy shift of the merged triplet states ∆Ũ = ∆U/2. With this assumption
we can estimate that for the lowest inter-layer tunnelling value approximately 35 % of all sites are
occupied with a merged triplet state.

With the measured dimer probability at the inter-layer bonds known, we can use the inter-layer
spin correlator definition of equation 7.33, which states that a pure spin-singlet/dimer has an inter-
layer correlation value Cz = 1/4. Therefore, by dividing the probability to measure a dimer by four
we get the inter-layer correlator value out of our measurements

Cz =
pdimer
4

=
nD − nD,0

4
. (7.35)

The resulting inter-layer correlations for the previous measurement are shown in figure 7.11 a),
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with the shaded regions indicating the DQMC simulated values for a bilayer with doped filling of
n = 0.8 over a temperature range of TkB/t = 1.0 to 1.4, exactly the same parameters as for the
DQMC theory in figure 7.6. We observe a nice agreement of our measurement data with the values
expected from theory, which predicted the strong increase of inter-layer correlations with increased
coupling of both layers.

To further check whether this method of detecting dimers by subtracting the initial doubles from
the remaining ones is valid for the low inter-layer tunnelling amplitudes t⊥ ≤ t as well, we use
singlet-triplet oscillations [154, 155]. Details of this technique are described again in [153] and I will
only introduce its basics here.

After the preparation of the bilayer system, we freeze the motion of the atoms in all directions
by ramping up the xy- and the green z-lattice to Vlatt,xy = 30Erec and Vlatt,z,green = 36.3Erec
respectively. Through two RF Landau-Zener swaps we change the hyperfine state of one spin
component from |7〉 to |3〉. Any doubles will then consist of both |3〉 and |9〉 atoms and they get
lost out of the trap through spin changing collisions. After having thus removed all doubles, we
bring the atoms back to a |5〉 and |9〉 mixture with another RF sweep. For two singly occupied sites
connected through an inter-layer bond with opposing spin, only two possible states remain, the
spin-singlet |s〉 = (|↑, ↓〉 − |↓, ↑〉)/

√
2 and the spin-triplet state |t〉 = (|↑, ↓〉+ |↓, ↑〉)/

√
2. When

these sites get merged, only the atoms in a singlet form a lowest band double that we can detect.
However, for low t⊥/t < 1 it might be possible that two spins on these bounds are not correlated
and would therefore be projected in an even superposition of singlet and triplet state, for example
|↑, ↓〉 = (|s〉+ |t〉)/

√
2 and we need to distinguish these from singlets created by superexchange.

To do so we utilise the fact that in a magnetic field gradient along the bond (z-) axis the energetic
degeneracy of |↑, ↓〉 and |↓, ↑〉 is lifted. The energetic difference ∆ESTO is twice the one calculated
in equation 7.27, which was for individual spins only. This means that the singlet and triplet states
are not eigenstates any more and will evolve in time. For example two atoms in a spin-singlet
configuration at τ = 0 will evolve in time with

ψ(τ) =

(
|↑, ↓〉 − e−

i∆ESTOτ

h̄ |↓, ↑〉
)
/
√
2 . (7.36)

After a time τ = π/(∆ESTO/h̄) the time evolution leads to an additional minus sign, changing
the singlet to a triplet. With an additional global phase added we can rewrite

ψ(τ) · e+
i∆ESTOτ

2h̄ = e+
i∆ESTOτ

2h̄ (|s〉+ |t〉) /2− e−
i∆ESTOτ

2h̄ (|t〉 − |s〉) /2 (7.37)

= cos(
∆ESTOτ

2h̄
) |s〉+ i sin(

∆ESTOτ

2h̄
) |t〉 . (7.38)

The atoms initially in a pure singlet state, therefore, transform to a triplet and back again. These are
the so called singlet-triplet oscillations.

In our experiment we create the magnetic field gradient in z-direction with the fast Feshbach
coils in anti-Helmholtz configuration. Instead of varying the evolution time at a constant field, we
fix the evolution time to 20ms and vary the strength of the magnetic field gradient. By merging the
sites along the inter-layer bonds we measure the singlet population. This is first done in a configur-
ation where we expect significant dimers, for t⊥ = 5.16 with the results shown in figure 7.11 b).
The oscillations observed have nearly full contrast, with an amplitude of approximately 0.7. The
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Figure 7.12: Crossover between two competing magnetic orders. By directly comparing the measured
inter-layer spin correlations Cz (orange circles) with their intra-layer counterpart Cxy (blue circles) one
observes indeed a smooth crossover between two correlation regimes, as predicted by the DQMC simulations
(shaded areas).

amplitude of the oscillation directly show the amount of singlets created through superexchange,
which agrees very well with the value we got from the simple merging procedure with doubles
subtraction. This confirms again that for similar parameters the simpler technique works very well.

More interesting is the same measurement for very low inter-layer coupling t⊥ = 0.22. There we
do not expect any correlation induced singlets, but only random projections of two uncorrelated
singles into a spin-triplet and a spin-singlet, with an even population of both. This we can actually
observe in the data presented in figure 7.11 c), which show no oscillation, only a constant offset.
The balanced population of singlets and triplets there does not change during the evolution in
the magnetic gradient, similar to a spin rotation of an initially spin-balanced cloud. It therefore
agrees with the simpler merging result as well, confirming the validity of this method in our system.
Further singlet-triplet oscillation measurements and a more detailed analysis will be shown in the
upcoming PhD thesis of my colleague Nicola Wurz [157].

7.3 Competing magnetic orders in the bilayer Hubbard model

Having succeeded in measuring both the intra- and inter-layer correlations of the same initially
prepared system, we are finally able to compare their behaviour qualitatively and quantitatively.
At first we start with using the correlation metrics defined in the previous sections for the amount
of intra-layer Cxy and inter-layer Cz correlations. Both are plotted in figure 7.12 relative to their
change in t⊥/t with t/h = 174Hz. One clearly observes a smooth crossover between two regimes
with different correlation directions. For low inter-layer coupling t⊥ < t the system prefers building
up intra-layer correlations, which are energetically more favourable due to the stronger in-plane
superexchange J > J⊥ and the possibility to correlate one spin to four times as many sites compared
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to the inter-layer coupling. For an intermediate inter-layer coupling t⊥/t ≈ 2.5 these advantages
for the build up of intra-layer correlations slowly decrease and we enter a regime where the system
exhibits correlations in all directions, until with increasing t⊥ nearly all atoms form dimers in
between both layers.

For a comparison of both correlations it is important to note that the maximal amount of correla-
tions one could detect in both directions can be vastly different, depending on system parameters.
In the case of very low temperatures, for example, we would expect an exponential increase in
intra-layer correlations Cxy relative to TkB/t. In contrast to that the inter-layer correlations Cz

are limited to the maximal value of one quarter. We can nevertheless define the relative ratio of
intra- to inter-layer correlations as

R =
Cxy

Cxy + Cz
. (7.39)

Since we have seen that the maxima of both correlation definitions are roughly similar, it is useful
to highlight a central crossing point at R = 0.5 where Cxy = Cz . One has to keep in mind though
that we are not cold enough to directly observe the phases pictured in figure 2.12, like the strongly
correlated antiferromagnetic (AFM) Mott insulator at low t⊥. They are expected at only much
lower temperatures of roughly TkB/t < 0.25, similar to the two-dimensional Hubbard model.
Nevertheless we may interpret the smooth crossover of both regimes, one with a small build-up of
AFM order and the other with strongly coupled dimers as precursor to the real underlying phases.
Especially for very strong interlayer coupling t⊥/t ≥ 5 we are rather close to a real band insulator,
since there the relevant energy scale is t⊥. For a fixed absolute thermal energy TkB/t ≈ 1.2 we
suddenly enter very low relative temperature regimes TkB/t⊥ ≈ 1.2/5 = 0.24� TkB/t.

Figure 7.13 a) shows this correlation ratio R relative to the inter-layer tunnelling amplitude
t⊥/t for three different xy-lattice depths at Vlatt,xy = 7, 6 and 5Erec resulting in t/h = 174, 224
and 290Hz respectively. This variation of the tunnelling amplitude t allows us to measure the
magnetic correlations in the bilayer in three very different parameter configurations, since nearly
all relevant quantities in the Hubbard model like U , T and in the case of the bilayer t⊥ are scaled
with t. Nevertheless the values of R of these three data sets still agree with each other, yielding a
comparable result of an equal correlation point R = 0.5 at t⊥/t ≈ 2.5. While the position of this
point strongly depends on the definition of the measures for correlation Cxy and Cz it shows that
the underlying mechanisms creating the low temperature phases are mostly dependent on the ratio
t⊥/t for the interaction range investigated. This is especially clear once we look at the same data in
a two-dimensional parameter space of U/t and t⊥/t as plotted in figure 7.13 b). Here the colour
of the data-points correspond to the respective R. While this is not a true phase diagram, which
would only be accessible at low temperatures, it directly maps out two regions that already hint at
their underlying phases, namely an AFM Mott insulator at low t⊥/t and a band insulator of dimers
at high t⊥/t.

We, therefore, showed experimentally for the first time the competition of the magnetic orders
of a Hubbard bilayer system in a quantum simulator with ultra-cold atoms at a low temperature
TkB/t ≈ 1.2.
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a) b)

Figure 7.13: Measured correlation ratio in the bilayer Hubbard parameter space. By varying the
intra-layer barrier via the xy-lattice depth during splitting, we realise different intra-layer tunnelling rates
t/h. This scales the effect of other parameters of the bilayer Hubbard Hamiltonian like t⊥ and U such that
with this change we simulate three completely different bilayer Hubbard situations. a) Surprisingly this does
not change the behaviour of the correlation ratio R with respect to t⊥/t. All three curves indicate a similar
point for an equal correlation ratio at t⊥/t ≈ 2.5. b) Especially when plotting R in the two-dimensional
parameter space of t⊥/t and U/t we observe the formation of regions with similar correlation regimes. These
regimes are connected to the underlying low temperature phases of the antiferromagnetic Mott insulator
(predominantly orange) at low t⊥ and the band insulator of dimers (predominantly blue) in the high t⊥
regime respectively. The result was as well published in [32].
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CHAPTER 8

Conclusion and outlook

In this thesis, I have presented the techniques and the experimental setup that we used to simulate
the Hubbard model with ultracold 40K atoms in the two lowest hyperfine states. While summarising
previous work, I have also highlighted my contributions in improving the system experimentally.

This allowed, for example, the study of the Hubbard model with attractive on-site interaction. By
measuring the singles densities of both spins for imbalanced systems and the singles and doubles
densities of doped systems with both repulsive and attractive interaction strengths, we could
experimentally verify the particle-hole symmetry we expect from the Hubbard Hamiltonian. This
proved the validity of our system as a quantum simulator for said model and might enable other
experiments to measure physically relevant variables currently outside their available parameter
ranges.

Additionally, I have described how we employed a superlattice to create a bilayer lattice structure
and how we adjusted the superlattice phase. Characterising the Hubbard parameters like inter-layer
tunnelling and repulsive on-site interaction energy allowed us to simulate the bilayer Hubbard
model over a large inter-layer coupling range. We achieved cold system temperatures through
an entropy engineering scheme: first a two-dimensional band insulator was created through the
use of a spatial light modulator during lattice loading. Then this band insulator was adiabatically
split into two layers by carefully manipulating the superlattice phase and the lattice powers. We
measured intra-layer magnetic correlations through the spin-structure factor using a spin-spiral
technique in combination with a precise layer-selective tomography. Splitting the bilayer into
disconnected double-wells and merging those onto a single site allowed us to detect and quantify
inter-layer spin correlations. We observed the competition of both correlation directions, depending
on the inter-layer tunnelling amplitude, which showed the formation of two regimes with different
magnetisation characteristics. For weakly coupled layers intra-layer antiferromagnetic correlations
started to form, whereas for very strong inter-layer tunnelling we approached a band-insulator of
dimers. This was the first study of the correlation regimes in a Hubbard bilayer using an experimental
quantum simulator.

The physics of the bilayer are still rich and show exciting prospects for new experiments. While
this thesis was written, we have measured the compressibility of the bilayer by generating a potential
tilt with a magnetic field gradient. Through the precise calibration of the magnitude of this potential
gradient, the compressibility was quantified. We observed the insulating character of the band-
insulator of dimers at large inter-layer tunnelling. This measurement will be presented and discussed
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in the upcoming thesis of my colleague Nicola Wurz [157].
There is another interesting question whether there is a critical point for the phase transition of

AFM Mott insulator to band insulator at zero temperature. This could be investigated by observing
the quantum critical fan of the quantum fluctuations in the phase diagram of the quantum mech-
anical correlations for varying temperatures, with the inter-layer tunnelling as the assumed order
parameter [158].

Lowering the temperature in the bilayer further is required for an increased correlation signal
and needed to study long-ranged correlations. Several possible improvements could help in that
task. We could reduce the superlattice phase noise by choosing another source for the 532 nm light,
which should offer a similar tuning range, but with a lower linewidth than the 5MHz of the Verdi.
Recently, another research group successfully used single-pass frequency-doubled fibre lasers with
high power output to perform similar tasks [159].

The potential generated by the spatial light modulator still features a significant spatial variance
when compensating the deep global potential formed by the infrared z-lattice laser in the critical
bilayer preparation step. Spatially smoothing the potential generated, for example with the iris in
the Fourier plane, always leads to a trade-off between the sharpness of the barriers and the reduction
in potential variations. Using an extremely broadband light source for the SLM light with very
short coherence length could reduce fringes from dust particles and other interferences as well
and might be worth considering. Assuming these variations also scale with the magnitude of the
potential compensation that is required to create a homogeneous region, one could also try more
unconventional methods like dynamically varying the power balance of both interfering arms of
the green z-lattice. The resulting strong standing wave component would contribute significantly
to compensate the potential of the red z-lattice, and therefore allow a smoother centre region for
the bilayer preparation.

An additional way of lowering the temperature would be to improve the entropy cooling scheme.
Right now the two-dimensional band insulator is loaded in an attractive interaction regime, with a
subsequent switch to repulsive interaction strengths. This lowers the filling in the process, partially
due to decompression because of the increase in repulsive energy. By loading repulsively and
avoiding the interaction change before the splitting, the sequence would be significantly simplified
while potentially improving the filling, i.e. entropy before splitting.

Closer to the original motivation of investigating the emergence of high-temperature supercon-
ductivity is the idea of studying a self-doped bilayer, following observations in solid-state physics
[160] and promising theoretical simulations [60]. Such a system would still be at half-filling in
total, however, with a significant potential difference between both layers. This creates the doping
required for superconductivity while still enabling the same entropy cooling scheme used in my
thesis.

There are still many open questions for this extended Hubbard model. While it comes indeed, as
noted in the introduction, with the cost of additional complexity for theory and experiment, it is
worth investigating it further to perhaps someday find the answer to one of the biggest mysteries in
solid-state physics, the underlying mechanism of high-temperature superconductivity.
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APPENDIX A

Linewidth broadening of the dipole trap laser

In this section I will discuss the construction and characterisation of a new, linewidth broadened
laser. During the optical dipole trap evaporation we observed strong losses close to the Feshbach
resonance at 202.1 G. As discussed in chapter 4, we assume that they were caused by light assisted
collisions, enhanced through the increased interaction strength. We probably hit several of the
narrow resonances of this process with the 1 070 nm laser light, since the ytterbium fibre laser (IPG
YLM- 20-LP-SC) has a very broad linewidth in the order of 0.5 nm, to avoid the creation of any
interference at the position of the atoms. This can occur due to back-reflection from the inner glass
cell wall to the atoms (single path distance 12mm) or in the glass cell wall itself (thickness 4mm).

The suppression of interference can be described by the visibility of the interference pattern

V =
Imax − Imin
Imax + Imin

, (A.1)

where Imax/min indicates the maximal/minimal measured intensity. The coherence length lc can
then be defined as the full width at half maximum (FWHM) of the self-coherence function, i.e. the
visibility of an interference pattern of light split and recombined with a path length difference ∆l
[161]. The coherence length of the 1 070 nm laser was measured to be as low as lc = 0.92(3)mm
[162], much lower than needed to effectively suppress interference at the trap centre.

To avoid the narrow spectral resonances of the light-assisted collision losses, we would like to have
a laser with some frequency tunability and a more narrow spectral width to fit in between resonances.
At the same time it has to have sufficiently low coherence length to minimise the creation of an
interference pattern during the optical evaporation. The path length of the back reflection inside the
glass cell’s walls is the smallest length scale relevant with ∆l = 2× 4mm = 8mm. This neglects
the refractive index of glass n ≈ 1.5, which would increase this path length even further. For a laser
at wavelength λ0 with a power spectral density distribution shaped as a Gaussian and a FWHM ∆λ,
the coherence length can be calculated as

lc =
4 ln 2
π

λ20
∆λ

, (A.2)

while for a Lorentzian profile this value is reduced by half [161]. To reduce the interference of a
λ0 = 1064 nm laser to at least half of its initial value, we estimate a minimal required linewidth of
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∆λ = 0.062 nm for the worst case of a Gaussian profile. This corresponds to a frequency linewidth
of approximately ∆ν = 16.6GHz. As an additional complication we demand a laser output power
of at least 5W to reach the intensities needed during the optical evaporation.

Since one can use an amplifier to reach the desired output power, getting the wideband source
is the main challenge. We did not find any suitable and affordable laser source that could fulfil
these requirements. Simple sideband modulation or multimode operation with large mode spacing
is also not sufficient, since it only reduces visibility at some interference distances ∆l, but shows
resurgent interference and coherence depending on the number of the frequency components and
their relative spectral separation [163]. A true reduction in coherence length can be achieved by
adding phase fluctuations, which are inherently random. There are specially designed electro-optical
modulators (EOM) which manipulate the phase of light passing a crystal, which work up to very
high modulation frequencies in the microwave regime >10GHz. By modulating these EOMs with
white noise, we might be able to widen the continuous power spectral density profile of a laser,
leading to a true linewidth increase up to the ∆ν > 16.6GHz we need.

Our noise modulation setup is displayed in figure A.1 and uses a very high frequency, fibre-based
EOM in travelling-wave configuration, the EOSPACE PM-0S5-20-PFA-PFA-106 with a frequency
response range up to more than 20GHz. As input laser we use about 80mW Mephisto light at
1 064 nm, since the maximal recommended input power of the crystal is 100mW. After two fibre-to-
fibre couplings and including the insertion loss of the crystal, about 24mW are then used as seed
laser for the Ytterbium fibre amplifier Koheras BOOSTIK HP Y10 10W built by NKT Photonics. Fibre
amplifiers like this one struggle with very narrow laser linewidth seed lasers, due to stimulated-
Brillouin scattering (SBS) potentially destroying the laser. This effect is, however, reduced when
using multiple input frequencies or even linewidth broadened lasers. All literature I found on the
topic of laser linewidth broadening was actually related to the construction of high power fibre
lasers [163–166]. For my thesis, the most relevant publication used white noise with a cut-off at
approximately 500MHz to broaden the linewidth of a high power fibre amplifier seed laser to reduce
stimulated-Brillouin scattering [165]. We would like to do something similar, but with a noise
spectrum frequency range nearly two orders of magnitude larger.

To generate the RF noise spectrum we use a HP 346B calibrated noise source (product continued
as Agilent/Keysight 346B) with excess noise ratio (ENR) of 15dB up to 18GHz [167]. The ENR defines
the increase in noise in a spectral range generated by turning on the device. It is important to
note, that the output power spectrum includes higher frequencies as well, however, with lower
ENR. The output power of this noise source, integrated over its whole frequency range is only
PNS = −56(4) dBm [167], and therefore has to be amplified before we could use it on the EOM. It
was not immediately clear how to theoretically determine the right input power for the modulation
to obtain a smooth linewidth broadening. For a single frequency, one specifies the π-voltage Vπ ,
which defines the modulation signal’s voltage peak-to-peak amplitude required to change the light’s
phase by π (peak-to-peak as well). The EOMwe use is specified to a π-voltage of 2.5 V at 1GHz [168].
This corresponds to a signal power of∼21 dBm on the 50Ω RF input of the EOM. Assuming the same
power is required for our noise signal we would require an amplification of about 75 dB for most
of the frequency range of 0 to >18GHz. We use three Minicircuits ZVA-183X-S+ large bandwidth
amplifiers with a specified amplification of ∼26 dB each over a range of 0.7 to 18GHz, leading to
a naive total power amplification of 78 dB or nearly eight orders of magnitude. Figure A.1 shows
the spectrum we could generate in this configuration. By removing one of the three amplifiers and
comparing it with the initial spectrum we observe the gain of a single amplifier. Then, turning the
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Figure A.1: Linewidth broadening with high frequency noise generation a) The high frequency noise
source HP 346B has a power output of only about −56 dBm over its specified frequency range and is amplified
by three broadband minicircuits ZVA-183X-S+ MW amplifiers. This signal is then used on a EOM with
frequency response of more than 20GHz. A 3 dB attenuator is added for optimal performance. The phase
modulated light is used as a seed laser for a Koheras BOOSTIK HP Y10 fibre amplifier with a maximum output
of 10W, before being sent to a separate optical setup controlling its use in the experiment. In b), the full
high frequency signal used for phase modulation is shown in blue. Important to note here is that the noise
spectrum is continuous, so the power output for each data point has to be interpreted as the integrated value
over the spectrum analyser bandwidth of 3MHz. By removing one of the amplifiers we obtain the orange
signal. The difference to the dark blue signal indicates the expected gain profile over its operating range up to
18GHz. The excess noise ratio (ENR) of the noise generator can be derived by the difference of the orange
signal to the one in pink, which shows the spectrum after the generator has been turned off.
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FSR

Figure A.2: Noise-broadened optical spectrum The effect of the phase modulation is observed using a
Fabry-Pérot interferometer with a free spectral range (FSR) of 54.3(1) GHz. Comparing the unmodulated
signal (in pink) to the one obtained after the EOM (in orange) shows the significantly increased spectral width,
with some remaining unmodulated carrier. After passing the fibre amplifier this carrier cannot be observed
any more (in dark blue) while the rest of the spectrum remains unchanged. All signals were normalised to
one to be comparable. The final power spectral density was fitted with a Gaussian and a Lorentzian shape
(dashed lines). While both seem to qualitatively fit to the signal well, their calculated coherence length would
differ by a factor of two [161].

noise source on and off shows us the excess noise ratio (ENR). While the noise source output extends
to higher frequencies as the one specified, the amplifier limits the overall spectrum to ∼18GHz.
While we assume that we could probably replace the active noise source with a fourth amplifier
and a good 50Ω termination at the input port, the noise source offers an in theory more controlled
application.

In order to characterise the modulation effect onto the laser light, we built a small optical cavity,
consisting of two slightly curved quarter inch mirrors with 98 % reflectivity set on both sides of a
2mm thick ring piezo stack and glued with epoxy. The free spectral range (FSR) of this Fabry–Pérot
interferometer was determined to be 54.3(1) GHz, well suited to measure the spectral widths we
expect. Figure A.2 displays the measured power spectrumwith this cavity, with (in blue) and without
(in orange) the fibre amplifier. The overall shape andwidth only change slightly, we, however, observe
the suppression of the remaining carrier intensity through the fibre amplifier. Fitting a Gaussian
profile (red dashed line), we obtain a spectral FWHM of δν = 25.5(2)GHz or δλ = 0.0963(8) nm.
Fitting a Lorentzian distribution (violet dashed line), would only result in a slightly larger FWHM. By
assuming a Gaussian and not a Lorentzian distribution, we potentially overestimate the coherence
length to be lc,theo = 10.38(8)mm, which was calculated using equation A.2.

To measure the actual coherence length we employ a small Michelson interferometer, with one
mirror on a translation stage and the resulting interference pattern captured by a CCD camera. The
central pattern then is fitted with a two-dimensional Gaussian distribution modulated by a sine to
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Figure A.3: Coherence length characterisation in a Michelson-interferometer We observe the change
in visibility of an interference pattern by varying the position of the mirror in one of the interferometer legs,
which in turn alters the optical path length difference ∆l. The coherence length, defined as the FWHM of the
self coherence pattern is extracted as lc = 6.18(9)mm. This is more than sufficient to suppress interference
from reflections inside the glass walls of the vacuum cell which would occur roughly at the orange bars in
the diagram shown.

extract the visibility depending on the path length difference. The results of this measurement are
shown in figure A.3 b), from which we extract the coherence length as the FWHM lc = 6.18(9)mm.
This is nearly half the value of the coherence length calculated using equation A.2, where we assumed
a Gaussian shaped power spectral density instead of a Lorentzian shaped one. For the latter a factor
two would have to be included, bringing the calculation closer to an agreement with the directly
measured result. Nevertheless, both would significantly suppress interference of light reflected
inside the glass wall, which would occur at the oranges lines drawn in figure A.2, where we assumed
a refractive index of n = 1.5. Hence we showed how we used the seed light of a Coherent Mephisto

laser with a linewidth of ∼1 kHz and >1 km coherence length [169] and added phase noise in the
microwave frequency range to increase its linewidth to 25.5(2) GHz. This linewidth broadening
by more than 7 orders of magnitude reduces the coherence length to only 6.18(9)mm when it is
amplified to 5W and used as the main dipole trap laser in our optical evaporation stage. This laser
configuration suppressed the losses from light assisted collisions significantly, as can be seen in the
measurement in figure 4.4.
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