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Zusammenfassung

In den letzten Jahren haben Roboter langsam ihren Weg in unseren Alltag
gefunden. Angefangen von Staubsauger-Robotern, die heute schon hinter
uns aufräumen, bis hin zur Vision von Flotten von Robo-Taxis und autonom
fahrenden Fahrzeugen, sind all jene Roboter dafür geschaffen, im Einklang

mit und in einer für uns Menschen gestalteten Umgebung zu operieren. Im Gegen-
satz zu den herkömmlichen und in der Industrie gebräuchlichen Robotern, die in
einer Welt operieren, welche extra für sie konzipiert wurde, benötigen flexible,
mobile Roboter ein genaues Verständnis ihrer Umwelt um sicher und zuverlässig
operieren zu können. Wir bezeichnen diese Art von Wissen über die Umgebung
als semantisches Szenenverständnis. Dieses Verständnis dient auf der untersten
Ebene der Interpretation der rohen Sensordaten und liefert für andere Aufgaben
nützliche Informationen über den Zustand der Umgebung. Zu diesen Aufgaben
gehören u.a. das Ausweichen vor Hindernissen, die Lokalisierung des Roboters in
der Welt, die Kartierung einer unbekannten Umgebung, die Planung von Trajek-
torien und die Manipulation von Objekten.

Der Fokus dieser Arbeit liegt auf der Schätzung eines semantischen Szenen-
verständnis für mobile Roboter. Da diese Roboter für ihre Mobilität in der Regel
eine batteriebetriebene Energieversorgung benötigen, müssen die verwendeten Al-
gorithmen laufzeittechnisch, sowie energetisch effizient sein. Effizient bedeutet,
dass im Ansatz alle zur Verfügung stehenden Informationen schnell genug genutzt
werden können, um in Echtzeit zu operieren und das bei sowohl leistungs- als auch
resourcentechnisch limitierten Computern. Wir nähern uns diesem Ziel auf drei
verschiedenen Wegen. Erstens verwenden wir bei allen in dieser Arbeit vorgestell-
ten Algorithmen Hintergrundwissen über die zu lösende Aufgabe, um unsere Algo-
rithmen schneller auszuführen und gleichzeitig genauere Ergebnisse zu erhalten.
Zweitens nutzen unsere Ansätze die spezifischen Besonderheiten des jeweiligen
Sensors, für eine effizientere Verarbeitung aus. Drittens stellen wir eine Software-
Infrastruktur vor, um die genannten Ansätze zum Szenenverständnis auf realen
Robotern umzusetzen, wobei kommerziell erhältliche Hardware-Beschleuniger für
die Aufgabe genutzt werden, um eine gute Skalierbarkeit zu ermöglichen. Aus
diesem Grund ist jede in dieser Arbeit vorgestellte Methode in der Lage, schneller
als die Frequenz des Sensors zu operieren, sowohl beim Einsatz von Kameras als
auch von Lasersensoren.
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Alle Teile dieser Arbeit wurden auf internationalen Konferenzen oder als
Zeitschriftenartikel veröffentlicht, die einem Peer-Review-Verfahren unterzogen
wurden. Darüber hinaus führte diese Arbeit zur Veröffentlichung eines groß an-
gelegten Datensatzes und eines öffentlich nutzbaren Benchmarks, um ihre An-
sätze zum semantischen Szenenverständnis zu entwickeln, auszutauschen und zu
vergleichen. Darüber hinaus wurden vier Open-Source-Bibliotheken für unter-
schiedliche Sensormodalitäten veröffentlicht.
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Abstract

Over the last few years, robots have been slowly making their way
into our everyday lives. From robotic vacuum cleaners picking up
after us already working in our homes, to the fleets of robo-taxis and
self-driving vehicles lurking on the horizon, all of these robots are

designed to operate in conjunction with, and in an environment designed for us,
humans. This means that unlike traditional robots working in industrial settings
where the world is designed around them, these mobile robots need to acquire
an accurate understanding of the surroundings in order to operate safely, and
reliably. We call this type of knowledge about the surroundings of the robot
semantic scene understanding. This understanding serves as the first layer of
interpretation of the robot’s raw sensor data and provides other tasks with useful
and complete information about the status of the surroundings. These tasks
include the avoidance of obstacles, the localization of the robot in the world, the
mapping of an unknown environment for later use, the planning of trajectories,
and the manipulation of objects in the scene, among others.

In this thesis, we focus on semantic scene understanding for mobile robots.
As their mobility usually requires these robots to be powered by batteries, the
key characteristics they require from perception algorithms are to be computa-
tionally, as well as energy efficient. Efficient means that the approach can exploit
all the information available to it to run fast enough for the robot’s online oper-
ation, both in power- as well as compute-constrained embedded computers. We
approach this goal through three different avenues. First, in all of the algorithms
presented in this thesis, we exploit background knowledge about the task we are
trying to solve to make our algorithms fast to execute and at the same time,
more accurate. Second, we instruct the approaches to exploit peculiarities of the
particular sensor used in each application in order to make the processing more
efficient. Finally, we present a software infrastructure that serves as an example
of how to implement said scene understanding approaches on real robots, exploit-
ing commercially available hardware accelerators for the task, and allowing for
scalability. Because of this, every method presented in this thesis is capable of
running faster than the frame rate of the sensor, both when using cameras or
laser sensors.
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All parts of this thesis have been published in proceedings of international
conferences or as journal articles, undergoing a thorough peer-reviewing process.
Furthermore, the work presented in this thesis resulted in the publication of a
large-scale dataset and benchmark for the community to develop, share, and
compare their semantic scene understanding approaches, as well as four open-
source libraries for this task, using multiple sensor modalities.
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Chapter 1

Introduction

Robots have been a part of modern society for quite a long time. The
first patent for a manufacturing robot was filed over 65 years ago, in
1954, by George Devol [73]. This patent was filed for a robot that
could transfer objects between two points in the environment within

a distance of less than 3m, controlled by paper tape with hole-punches in it to
control levers through solenoids. Since the 1980’s, and following Takeo Kanade’s
invention of the direct-drive arm, which put motors straight into the joints of the
arm making them faster and more accurate, robots have quickly and increasingly
become a key part of industrial production requiring highly repetitive and precise
tasks. So why aren’t robots ubiquitous in our every day lives already?

The answer to this question is what motivates every single approach presented
in this thesis. To operate safely in the environment, a robot requires an accurate
understanding of its surroundings, which allows it to plan paths and actions, and
move safely and efficiently without colliding with obstacles, in order to fulfill its
purpose. In the case of the aforementioned industrial setting, the knowledge of
the environment is given by the programmer by designing the environment to fit
the robot. This does not mean that the world around the robot is static, but it
means, for example, that the state, and therefore the layout of the world can be
extracted directly from the current position in a state machine. Figure 1.1 shows
an industrial robot working in a welding and stacking application. Here, the
environment is designed around the robot, which is put into a cage, and given
pre-defined paths to operate at each time-step, which assumes a static world.
This static world assumption is enforced by both, the physical barrier, as well as
laser barriers which stop the robot on its tracks when triggered. Furthermore,
Figure 1.1 also shows a robot vacuum cleaner moving in an environment that
was designed for humans. This does not only mean that the robot operates in a
different environment, but also that the robot is mobile, which is a key difference
between both.
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Figure 1.1: Mobile robots operating alongside humans in unstructured environments have wildly
different perceptual needs from the successful industrial robots we have been using for decades.
Left: Universal Robots UR-10 robot operating within an industrial welding application. Here,
the environment is made artificially static while the robot is moving by surrounding it with a
cage and a slew of laser safety barriers that trigger an emergency stop. Right: robot vacuum
cleaner in a human inhabitable environment. Fencing a vacuum cleaner with laser emergency
stops would not only be unfeasibly expensive but also undesired since the purpose of robots
working in our homes is convenience. In the depicted scene, and due to a miscalculation in its
measurement of the world around it, the vacuum cleaner knocked over a chair and got stuck
over it. These are the types of scenarios we aim to avoid, since these robots are supposed to
operate when we are not home, and this type of behavior is potentially very dangerous.

Mobile robots that need to operate in an environment designed for humans,
such as the inside of our homes or city roads, require a form of semantic scene
understanding about the environment through their slew of different sensors.
These are sensors such as bumpers switches, odometers, inertial measuring units,
and more relevantly to this thesis, contactless sensors such as radar, cameras, and
light detection and ranging (LiDAR). In the 1960’s, and parallelly to the industrial
robotics movement, the problem of providing computers with a vision system
that could interpret visual cues and explain them was also tackled. In 1966,
Seymour A. Papert and Marvin Minsky were assigning projects to undergraduate
students at MIT and proposed the “Summer Vision Project” [125], were the
summer workers were supposed to construct a significant part of a visual system.
They postulated that it was a good task for the summer project because it can
be segmented into sub-problems, which allow individuals to work independently.
They were not wrong about the second part since this is still the way we currently
tackle the task. However, the fact that large international research communities
such as robotics and computer vision are still working on the problem represents
a miscalculation of the timeline by several orders of magnitude.
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1. Introduction

In order to avoid the same type of miscalculation in this thesis, we do not
tackle the entirety of the robotic vision problem that concerns us as a whole. In-
stead, we focus on how we can make several approaches that are already proven
to work for a particular perception subtask, and find what we can modify to
them in order to make them efficient enough for online operation in a mobile
robot. While there is a whole field called computer vision which is responsible
for solving the task proposed by Minsky and Papert, in the mobile robotics com-
munity we are interested in making the algorithms they develop efficient enough
to run on our resource-constrained machines and fast enough to react to the
changing environment. Naturally, this is not as dissociated as mentioned, and
there is significant knowledge exchange between fields, with robotics researchers
contributing seminal works to the other fields as well. In this thesis, however,
we focus on the problem of efficiency in order to create algorithms that can run
quickly and provide accurate results in low-power and low-compute hardware that
can be mounted on a moving and sometimes even flying platform. Therefore, all
of the approaches presented in this thesis follow one or several of the following
premises in order to achieve this necessary efficiency: (i) use background knowl-
edge about the task’s domain in order to help the task, (ii) exploit properties of
the sensor being used for each particular domain in order to process the data more
efficiently, and (iii) pay close attention to the law of diminishing returns when
adding compute or memory as a resource available to the algorithm, rather than
chasing the last percent point in an evaluation metric. This is a concept from
economy [158] that refers to a point at which the level of gains is less than the
amount of resources invested, and which due to the aforementioned constraints
needs to be constantly observed in our algorithmic design.

This thesis is divided into three parts. Part I focuses on the problem of
scene understanding using camera images, and we present three algorithms that
exploit background knowledge to do perception in agricultural fields and city en-
vironments efficiently, accurately, and on resource-constrained hardware. Part II
focuses on the problem of scene understanding using LiDAR sensors. We present
a large-scale dataset for the task, as well as two algorithms to solve it which also
focus on efficiency. Finally, in Part III, we propose one possible way in which soft-
ware for mobile robotics perception can be organized and developed and present
our open-source frameworks based on this design paradigm. We implemented
the presented frameworks with the main goal to allow for the deployment of our
vision pipelines in dedicated, low-power hardware accelerators frequently used in
the robotics community. This allows non-experts in computer vision to use our
algorithms in a “plug and play” fashion on their robots, while also being able to
effortlessly adapt them to their tasks.
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1.1. Main Contributions

1.1 Main Contributions

The main contributions of this thesis are efficient algorithms to perform different
semantic scene understanding tasks and can run online on mobile robots. These
algorithms serve as the first layer of processing after the sensor data enters the
robot’s computer and extract semantic information about the environment that is
used downstream by other processes in the robotics software suite. Some examples
of these downstream consumer tasks are: localization, mapping, obstacle avoid-
ance, path planning, manipulation, surveillance, and monitoring, among others.
Because of this, all of the perception algorithms presented in this thesis need to
run fast on embedded hardware that is mounted on the robot. In Chapter 2,
since the state of the art for most semantic scene understanding tasks is based
in one way or another on deep neural networks, we also provide an introduction
to them. Having a basic understanding of deep neural networks (DNN), and in
particular convolutional neural networks (CNNs) is key in order to understand
and evaluate our contributions. The fact that these deep neural networks are
usually computationally expensive to run collides with our need for runtime effi-
ciency, which motives our efforts to exploit knowledge about the underlying data
distribution to aid the otherwise end-to-end pipeline proposed in the literature.

Part I of this thesis focuses on efficient semantic scene understanding using
solely camera images. The first approach presented in Chapter 3 targets crop
vs. weed classification in agricultural fields. This approach exploits an extra
spectral cue from the near-infrared (NIR) spectrum, which contains useful in-
formation for agricultural tasks, for example, to extract region proposals for a
posterior classification of the extracted regions, which makes the system more
efficient and able to run online. Opposite to this, but still in the agricultural
domain, Chapter 4 presents an approach to perform crop vs. weed semantic seg-
mentation but without expensive to obtain NIR cues, and which relies solely on
RGB images. Through the inclusion of extra input channels calculated from the
RGB values, which can encode knowledge about the task at hand, we are able
to bring back feature design into deep learning. This allows the architecture to
be lightweight enough to run online on embedded hardware. Finally, Chapter 5
targets instance segmentation for city environments, which is relevant for au-
tonomous driving. In this case, we also exploit background information about
locally-connected areas in the image to operate in a lower-resolution grid, which
makes the approach efficient,which makes this approach similar to both of the
previous ones, albeit in a different domain.

Part II focuses on efficient semantic scene understanding but using solely point
clouds obtained from LiDAR scans, which is of utmost relevance in the context
of autonomous driving. In Chapter 6, we present SemanticKITTI, the first large-
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scale dataset for semantic and panoptic segmentation of sequential LiDAR scans,
with over 40 000 scans containing point-wise annotations for 28 classes. This
dataset enabled both, the state of the art analysis as well as the developments
presented in the subsequent chapters. Chapter 7 presents a thorough comparison
of state-of-the-art approaches to semantic segmentation of point clouds. It also
presents an efficient projective semantic segmentation architecture, which exploits
an efficient proxy representation as an index to search for neighboring information
and set a new state of the art for the task. Building on this work and exploiting
the panoptic labels included in SemanticKITTI, in Chapter 8 we present the first
two baselines to the panoptic segmentation of automotive LiDAR, as well as a
novel, single-stage pipeline which achieves comparable results, albeit at a fraction
of the runtime. As we mentioned several times already, this is key for robotics,
and is particularly true for autonomous vehicles.

Finally, Part III presents an effective way to implement our semantic scene
understanding frameworks, as well as an overview of how to use and extend their
functionalities. Although Chapter 9 does not present a new research contribution
per se, we believe it is mission-critical for researchers to write and share good
code that they can scale, share, and also re-use, allowing us to make better
science as a community effort. This is key for the independent validation of
published results, as well as research findings. Thus, we present here our open-
source developments that have also received a considerable uptake in the robotics
community. Furthermore, in Chapter 10 we present four example use-cases of
our open-source frameworks that allowed researchers in robotics to easily bring
semantic information into their pipelines.

Overall, this thesis presents seven different contributions, ranging from the
extraction of semantic information in agricultural fields and city environments
using RGB images, to the release of a large scale dataset for LiDAR-only semantic
and panoptic segmentation, along with two new state-of-the-art approaches for
both tasks. Finally, we also presented three open-source frameworks for semantic
scene understanding in robotics, and we explain their composition so that this
document can serve as a starting point for the reader to start implementing on
top of them or even to implement their own from scratch, according to their
needs.
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1.2 Publications
Parts of this thesis have been published in the following peer-reviewed conference
and journal articles, or are currently under review:

• A. Milioto, P. Lottes, and C. Stachniss. Real-time blob-wise sugar beets
vs weeds classification for monitoring fields using convolutional neural net-
works. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 2017

• A. Milioto, P. Lottes, and C. Stachniss. Real-time Semantic Segmentation of
Crop and Weed for Precision Agriculture Robots Leveraging Background
Knowledge in CNNs. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2018

• P. Regier, A. Milioto, P. Karkowski, C. Stachniss, and M. Bennewitz. Clas-
sifying Obstacles and Exploiting Knowledge about Classes for Efficient Hu-
manoid Navigation. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (HUMANOIDS), 2018

• A. Milioto, L. Mandtler, and C. Stachniss. Fast Instance and Semantic
Segmentation Exploiting Local Connectivity, Metric Learning, and One-
Shot Detection for Robotics. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), 2019

• A. Milioto and C. Stachniss. Bonnet: An Open-Source Training and De-
ployment Framework for Semantic Segmentation in Robotics using CNNs.
In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2019

• L. Zabawa, A. Kicherer, L. Klingbeil, A. Milioto, R. Topfer, H. Kuhlmann,
and R. Roscher. Detection of single grapevine berries in images using fully
convolutional neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2019

• A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast and
Accurate LiDAR Semantic Segmentation. In Proceedings of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2019

• X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stach-
niss. SuMa++: Efficient LiDAR-based Semantic SLAM. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2019

• J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss,
and J. Gall. SemanticKITTI: A Dataset for Semantic Scene Understanding
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of LiDAR Sequences. In Proc. of the IEEE/CVF International Conf. on
Computer Vision (ICCV), 2019

• A. Milioto, J. Behley, C.S. McCool, and C. Stachniss. LiDAR Panoptic
Segmentation for Autonomous Driving. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2020. Under Review.

• J. Behley, A. Milioto, and C. Stachniss. A Benchmark for LiDAR-based
Panoptic Segmentation based on KITTI. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2020. Under Review.

• P. Regier, A. Milioto, C. Stachniss, and M. Bennewitz. Classifying Obsta-
cles and Exploiting Class Information for Humanoid Navigation Through
Cluttered Environments. The Int. Journal of Humanoid Robotics (IJHR),
17(02):2050013, 2020

The following are publications I was involved in during my doctorate, but
which are not part of this thesis:

• K. Franz, R. Roscher, A. Milioto, S. Wenzel, and J. Kusche. Ocean eddy
identification and tracking using neural networks. In Proc. of the IEEE Int.
Geoscience and Remote Sensing Symposium (IGARSS), 2018

• P. Lottes, J. Behley, A. Milioto, and C. Stachniss. Fully convolutional
networks with sequential information for robust crop and weed detection in
precision farming. IEEE Robotics and Automation Letters (RA-L), 3:3097–
3104, 2018

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Joint
Stem Detection and Crop-Weed Classification for Plant-specific Treatment
in Precision Farming. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018

• X. Chen, T. Laebe, A. Milioto, T. Roehling, O. Vysotska, A. Haag, J. Behley,
and C. Stachniss. OverlapNet: Loop Closing for LiDAR-based SLAM. In
Proc. of Robotics: Science and Systems (RSS), 2020

• P. Lottes, J. Behley, N. Chebrolu, A. Milioto, and C. Stachniss. Robust
joint stem detection and crop-weed classification using image sequences for
plant-specific treatment in precision farming. Journal of Field Robotics
(JFR), 37:20–34, 2020

• R. Sheikh, A. Milioto, P. Lottes, C. Stachniss, M. Bennewitz, and T. Schultz.
Gradient and log-based active learning for semantic segmentation of crop
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and weed for agricultural robots. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2020

• A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck,
F. Fleckenstein, A. Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes,
A. Milioto, D. Nardi, S. Nardi, J. Pfeifer, M. Popović, C. Potena, C. Pradalier,
E. Rothacker-Feder, I. Sa, A. Schaefer, R. Siegwart, C. Stachniss, A. Wal-
ter, W. Winterhalter, X. Wu, and J. Nieto. Building an Aerial-Ground
Robotics System for Precision Farming. IEEE Robotics and Automation
Magazine (RAM), 2020

• F. Langer, A. Milioto, A. Haag, J. Behley, and C. Stachniss. Domain Trans-
fer for Semantic Segmentation of LiDAR Data using Deep Neural Networks.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2020. Under Review.

1.3 Collaborations
Some work presented throughout this thesis was performed in collaboration with
colleagues at the Photogrammetry and Robotics laboratory at the University
of Bonn, where I conducted all of my research work. The work presented in
Chapter 3 and Chapter 4 of was done with the collaboration of Philipp Lottes,
who provided the data from his recordings during the Flourish Project [90], using
the Bosch DeepField Bonirob UGV. These works, albeit of my authorship, were
supported by him through helpful discussions.

The work presented in Part II was mostly performed in collaboration with
Jens Behley, who is a post-doctoral researcher at the laboratory. Besides being
of invaluable help throughout my doctorate, Jens provided me with the labels for
the LiDAR tasks. This meant both, labeling data by hand, as well as coordinating
a team of student assistant labelers for the good part of a year, with the help of
Martin Garbade.

Finally, all works presented in Chapter 10 as possible applications of my
algorithms were lead by other doctoral students. My contribution in these works
was mostly to collect the training data, train the models, provide the model
architectures and weights to infer the semantic labels, and/or help set up the
framework on the robot, as well as providing ideas on how to make the approaches
communicate with the machine learning pipeline in an efficient way, which is my
main interest. This is why this chapter is presented as an illustration of the
usefulness of my three open-source frameworks, and not as a research contribution
done specifically by me.
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Chapter 2

Basic Techniques

We motivated in Chapter 1 why it is key for mobile robots to have
semantic scene understanding capabilities. We also discussed dif-
ferent types of semantic scene understanding as we introduced
the work developed in each chapter, and said that all of the state-

of-the-art approaches to these tasks are in one way or another based on deep
convolutional neural networks. This is also the case for all of the algorithms
presented throughout this thesis, and therefore a basic understanding of them is
key to understanding our contributions, which is why we focus this chapter on
achieving that task.

It is very important to notice that before convolutional neural networks started
to be used in practice for perception tasks in the last decade, a battery of other
approaches existed to approach each specific task, and if this is the case, they
will be properly referenced in each chapter’s related work section. Those ap-
proaches, which took decades to develop, will not be ignored. However, the fact
that neural networks can approximate any function to arbitrary accuracy [62]
given that enough neurons are available, makes them attractive to tackle a wide
variety of perceptual problems. This is, of course, added to the fact that over the
last decade, the interconnected world has allowed us to amass an unprecedented
amount of data, which can be used to train these algorithms to model these type
of functions which we cannot, ourselves, describe mathematically. That being
said, just because neural networks theoretically “can” represent any mathemati-
cal function, it doesn’t mean that they can easily be trained to learn to represent
said function. Therefore, in recent years, traditional computer vision approaches
have made a come-back to assist this process, which is a recurrent topic through
this thesis.

Note that the terms “neuron”, as well as “neural network” also have analo-
gous definition in biology. We will not go into detail about the analogy between
biological neurons and neural networks and the artificial ones we use, and for

9



Figure 2.1: A simple neuron with two inputs, one output, and one non-linearity, calculating
o = f(i1w1 + i2w2 + b). f(·) is the non-linearity of the neuron, while w1, w2, and b, in red, are
its parameters.

simplicity, from now on, whenever we refer to a neuron we refer to the artificial
kind. In the following sections, we proceed to introduce what neural networks
are, as well as a suite of techiques usually referred to as “deep learning”, which
allow us to train them to fullfil our desired tasks.

Before we can go into what a neural network is, we need to define its most
basic unit: the neuron. Figure 2.1 shows a simple neuron which takes two inputs,
multiplies them by its internal weights, adds a bias, and applies a non-linear
function, before returning the output. This means that the output of the neuron
is of the form:

o = f(i1w1 + i2w2 + b), (2.1)

with i1 and i2 being the inputs to the neuron, w1, w2, and b its parameters, and
f(·) its non-linearity. Such non-linearity can take a variety of different forms,
with each one producing different properties in the output, and being adequate
for different types of problems. Some examples of non-linearities, among many
others, are:

• Sigmoid(x) = 1
1+e−x ,

• ReLU(x) = max(0, x),

• LeakyReLU(x) = max(αx, x),

• Tanh(x) = ex−e−x

ex+e−x , etc.

By tuning it weights and bias, and because of its non-linearity, which in all
these cases is non-parametric, although parametric ones exist, we can represent
a simple non-linear function. However, the representational capability of this
simple neuron is very limited, and it is the composition of such neurons what
makes neural networks powerful in their representation capabilities, as we will
see in the following section.
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Figure 2.2: A simple feed-forward neural network with two inputs i1 and i2, two hidden neurons
h1 and h2, and one output neuron o.

2.1 Fully-Connected Neural Networks

As we said in the previous section, the power of neural networks to represent
complex, non-linear functions comes from the composition of these very simple
units called neurons. Therefore, a neural network is defined as a collection of
neurons interconnected using a certain topology. The simplest topology is the
“feed-forward” neural network, such as is the one shown in Figure 2.2. Here,
each of the neurons is of the type defined in Figure 2.1, and the topology is
defined as a directed acyclic graph, such that there is no way to start at a neuron
hx and walk a path in the topology that brings me back to said hx. Several other
types of topologies exist, but are outside the scope of this basic introduction, and
are not used in this thesis.

This forward connection pattern allows us to define the path from the inputs
to each output as a composition of functions, which will be useful during the
training. This means that the output can be calculated as:

o(h1, h2) = f(wo
1 h1 + wo

2 h2 + bo),with (2.2)
h1(i1, i2) = f(wh1

1 i1 + wh1
2 i2 + bh1), and (2.3)

h2(i1, i2) = f(wh2
1 i1 + wh2

2 i2 + bh2). (2.4)

To illustrate how such network weights can be adjusted to fit a desired func-
tion, we will use the simple feed-forward network defined in Figure 2.2, but the
networks can be arbitrarily large and complicated, with thousands of inputs, hun-
dreds of hidden layers, and thousands of outputs, which looks a lot more densely
connected such as the network shown in Figure 2.3. This figure shows a network
with 5 hidden layers, and 5 neurons in each. The number of hidden layers in a
neural network is usually called its depth. Analogously, the number of neurons
in one of these layers is called the layer width. These are concepts that show up
in several points in this thesis, so it is worth to make a mental note of them.
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Figure 2.3: A more densely populated feed-forward neural network with ten inputs i1 to i10, 25
hidden neurons in 5 hidden layers, and 3 output neurons o1 to o3. In this representation, the
intensity of the line represents the value of the weight, rather than giving it an explicit w value
which would clutter the plot. Note that it is simple to change the number of inputs to any
particular neuron (or its connectivity to the previous layer), by simply setting the corresponding
weight to zero. We will discuss more about this later.

2.2 Training Neural Networks

Now that we know how a fully-connected, feed-forward neural network is set up,
we can focus on actually making it represent the function that we are trying to
model. This means adjusting its weights and biases, making it give the desired
output for a set of input vectors for which we know the desired behavior. To
achieve this, we define a cost, or loss function L, which depends on the task
we are trying to solve, and we show the network what the output should be for
every input vector, through the minimization of this cost. For the purpose of
this illustration we assume that the output o from Equation (2.2) is regressing
a continuous variable, and we use a mean-squared-error (MSE) loss to evaluate
how far we are from the result at each step. Therefore, we obtain opred from each
input vector i = (i1, i2) using Equation (2.2), and compare it with the desired
output ogt by using the loss:

LMSE(w,b, i) =(ogt − opred(w,b, i))2, (2.5)

where w and b are the vectors representing the model weights and biases. For
our particular case, w = (wo

1, w
o
2, w

h1
1 , wh1

2 , wh2
1 , wh2

2 ), and b = (bo, bh1 , bh2).

12



2. Basic Techniques

2.2.1 Gradient Descent

As Equation (2.5) shows, the three things we can change in order to make the
loss smaller are (i) the inputs i, (ii) the network’s neuron weights w, and/or (iii)
its biases b. Since the input is fixed by us, the only way to decrease the loss is
by modifying w and b.

The function described by the neural network is a composition of non-linear
functions and results in a non-convex loss landscape. This means that the loss
will likely have saddle-points and a large number of local-optima, making global
optimization impossible. Therefore, when using neural networks the loss is mini-
mized by using a variant of gradient descent, which given the non-convex nature
of the problem, will converge to one of the multiple local-optima. Gradient de-
scent is an optimization technique which walks the loss landscape locally and
iteratively in the opposite direction of the gradients, which is the direction that
minimizes the loss. Mathematically, this means that at each step of this iterative
procedure, each of the network’s weights w and biases b are updated by the rules:

wt+1 =wt − λ
∂L

∂w

∣∣
wt
, and (2.6)

bt+1 =bt − λ
∂L

∂b

∣∣
bt
, (2.7)

where ∂L
∂w

∣∣
wt

and ∂L
∂b

∣∣
bt

are the partial derivatives of the loss with respect to each
w and b respectively evaluated at the current point in the loss landscape, and λ is
the learning rate, which defines the speed at which gradient descent walks the loss
surface, and is the most important hyper-parameter to select when training neural
networks. The entire process starts with the selection of a random initialization
of w and b, followed by multiple iterations of Equation (2.6) until convergence to
one of the multiple function minima.

2.2.2 Backpropagation

As shown in Equation (2.6), at each iteration of the optimization through gradi-
ent descent, we need the gradients of the loss with respect to each wi in w and
bi in b. When dealing with neural networks, the process of obtaining such gradi-
ents is called “backpropagation” [157], which achieves this task efficiently, when
compared with a naive calculation of the gradients with respect to each wi and
bi individually. The backpropagation algorithm works efficiently in feed-forward
neural networks because it computes the gradient of L with respect to each wi

and bi one layer at the time by using the chain rule, walking backwards the same
operations that it did forward. This avoids redundant calculations of interme-
diate terms that would be re-calculated if using a naive implementation of the
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gradient calculation. It is this backward-walk style calculation which gives back-
propagation its name, since it literally propagates the errors backwards. This
reusing of intermediate calculations which provides an efficiency gain over the
naive implementation is an example of dynamic programming.

To demonstrate how backpropagation works, we will calculate one of the gra-
dients of the weights in the network defined in Figure 2.2. Let’s calculate the
gradient of Equation (2.5) with respect to the first weight in the first neuron of
the hidden layer wh1

1 . With LMSE = (ogt− opred)
2, we can calculate the derivative

with respect to wh1
1 by applying the chain rule:

∂LMSE

∂wh1
1

=
∂LMSE

∂opred

∂opred
∂h1

∂h1

∂wh1
1

. (2.8)

Expanding the first term:

LMSE = (ogt − opred)
2, therefore (2.9)

∂LMSE

∂opred
=

∂(ogt − opred)
2

∂opred
= −2 (ogt − opred). (2.10)

Now expanding the second term:

opred = f(wo
1 h1 + wo

2 h2 + bo), therefore (2.11)
∂opred
∂h1

=
∂f(wo

1 h1 + wo
2 h2 + bo)

∂h1

= wo
1 f

′(wo
1 h1 + wo

2 h2 + bo), (2.12)

where f ′(·) is the derivative of the non-linearity applied to the argument, regard-
less of the non-linearity used. Finally, expanding the third term:

h1 = f(wh1
1 i1 + wh1

2 i2 + bh1), therefore (2.13)
∂h1

∂wh1
1

=
∂f(wh1

1 i1 + wh1
2 i2 + bh1)

∂wh1
1

= i1 f
′(wh1

1 i1 + wh1
2 i2 + bh1). (2.14)

Piecing everything back together using Equation (2.10), Equation (2.12), and
Equation (2.14) we get to the required gradient:

∂LMSE

∂wh1
1

= −2 (ogt−opred)w
o
1 f

′(wo
1 h1+wo

2 h2+bo) i1 f
′(wh1

1 i1+wh1
2 i2+bh1), (2.15)

which we can use to backpropagate the error and update wh1
1 using gradient

descent. Note that because we walk the graph backwards, Equation (2.15) is not
really the way this gradient is calculated. Instead, Equation (2.8) is calculated
sequentially, pre-multiplying from the left, and forgetting the previous buffers as
we walk back through the graph. This also means that some variables that can
be reused, are reused, as stated at the beginning of this section, in a dynamic
programming paradigm.
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Figure 2.4: Difference between a neuron with a global receptive field (top), and a neuron with
a local receptive field (bottom), in this case with a receptive field of 5× 5.

2.3 Neural Networks for Image Processing

Up to now we have focused exclusively on inputs which were 1-dimensional vec-
tors. E.g., in Figure 2.2, the input vector belonged to IR2 , and in Figure 2.3,
it belonged to IR10. However, the focus of this entire thesis is acting on either
images, or image-like representations of LiDAR point clouds.

Although it is technically possible to reshape the input images from shape
H × W × 3 into vectors in IRH×W× 3, two problems arise from training fully-
connected neural networks on this type of data. First, for even a small size
image, e.g., 320× 240 RGB pixels, which is a reasonable size for a lot of robotic
applications, the initial layer of a network like the one in Figure 2.3, in which
each neuron observes each input, would have over 1M parameters just in the
first hidden layer. Second, each neuron in the network will be assigning equal
importance to every portion of the image, ignoring the fact that closer pixels in
the image are more closely correlated than further ones, and making relatinships
between far away pixels that can confuse the training. Two solutions can be
applied to solve this problem, both of which involve constraining the connectivity
of each neuron with its previous layer, in two different ways, but equality depicted
in Figure 2.4.
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Locally-Connected Neural Networks. The easiest way to solve this prob-
lem is by simply dropping connections between a layer and its previous one. In
Figure 2.3 we explained that we could drop connectivity by just zeroing the cor-
responding weights to the connection. While mathematically equal, in practice,
this is done by avoiding the operation alltogether, since multiplying by zero would
be a waste of computation. This partially solves the problem of having too many
parameters in the first layer. It also addresses the problem of giving the same
importance to points which are close to the ones that are far away. However,
one caveat still remains: most of the high frequency features in an image can
be detected at any position in the image, which means that we will likely learn
duplicated kernels which detect the same feature but at different positions in the
image. Furthermore, and an object for which we desire to observe the same fea-
ture, for example, a window in any part of the image, or the wheel of a car, will
not be guaranteed to trigger with the exact strenght, even if the kernels which
are duplicated through the effect previously mentioned are very similar. This
desired property is called translation equi-variance, which means that a certain
property in the image will trigger the same activation no matter where it is in the
image. This means that not only the feature is detected with the same strength,
but also its spatial relationship to other features is preserved, which allows deeper
layers of the neural network to combine them to recognize more complex patterns
composed of multiple image properties and their spatial relationships.

Convolutional Neural Networks. To solve the problems of locally con-
nected layers not guaranteeing translation equivariance, LeCun et al. [87] pro-
posed to force a set of units which act at different receptive fields of the image
to share the same weights, forming 2-dimensional activation planes. This effec-
tively turns the locally-connected layer into a convolution, which is the basis of
all modern neural networks operating on images. Furthermore, this idea of shar-
ing weights along some dimentions of the inputs, forming translation equivariant
activation maps has been applied to other domains, and now sets the state of the
art in speech recognition, text parsing, language translation, among many other
tasks.

We believe the reader is now equiped with the tools necessary to understand
both, how each one of our approaches work, and where our contributions lie
within them.
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Part I

Scene Understanding using
Camera Images
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Chapter 3

Crop vs. Weed Classification for
Agricultural Robots

One of the most relevant use cases of perception in robotics in the
last years has been in the field of agriculture robotics, to eliminate,
or at least reduce, the amount of chemicals vested into the fields.
Agrochemicals can have several side-effects on the biotic and abiotic

environment and may even harm human health. In conventional weed control,
the whole field is treated uniformly with a single herbicide dose, spraying the soil,
crops, and weeds in the same way. An alternative, more sustainable way to tackle
this task is through mechanical weeding. Another alternative is selective spraying
only the areas most affected by weeds, or even on a per-plant basis. This, how-
ever, is an incredibly labor-intensive task, making the practice considerably more
expensive to execute than its monodose counterpart. Furthermore, as progress
makes countries increasingly industrialized, finding labor for these types of tasks
is quickly becoming a challenging endeavor.

This is where robots have the potential to make a measurable impact since
the automation of this procedure has the potential of reducing costs, as well as
drastically reducing the amount of manual labor required to perform a per-plant
treatment. To achieve this, robots working in fields must acquire precise knowl-
edge about the spatial distribution of the weeds and plants in the environment.
One way to collect this data is through unmanned aerial vehicles (UAVs) in com-
bination with unmanned ground vehicles (UGVs) equipped with vision sensors.
This, however, requires an automatic classification system that can analyze the
image data online and label the crops as well as the weeds in the acquired im-
ages. One could even go a step further and use the autonomous ground vehicle
to execute the mechanical or laser-based elimination of individual weed plants
directly.
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In this chapter, we address the problem of classifying image content into crops
and weeds. By exploiting georeferenced locations of the UAV or UGV used to
collect the images, the location for each plant can be determined using a bundle
adjustment procedure. Through a detection on a per-plant basis of sugar beets
(crops) and typical weeds, we can select relevant information for the farmers or for
instructing the agricultural UGV operating on the field. Given the 3D information
and pixel-wise labeling of the images obtained with our approach, we can directly
provide the location of every weed to a ground robot or a selective spraying tool
used on a traditional GNSS-controlled tractor.

Figure 3.1: Illustration of our approach. Top: Original RGB and NIR images. Middle: NDVI-
based mask and connected blob segmentation. Bottom: Classified blobs and pixel-wise overlay
to original image.
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3.1 Vision-based Crop vs. Weed Classification

In this section, we focus on the vision-based classification task of identifying sugar
beet plants and weeds. To this end, we rely on RGB and near infra-red imagery of
agricultural fields (see Figure 3.1 for an example). We use modern convolutional
neural networks and deep learning pipelines to separate the plants based on their
appearance. Our approach is an end-to-end approach, i.e., there is no need to
define features for the classification task by hand. Our considered value crop is
the sugar beet, which is an important crop in Northern Europe.

In most of the previous work on this topic [19, 38, 79, 100, 130, 181], instruc-
tions to extract features useful for the classification task need to be provided
by an expert in the field. The main contribution of this work is a vision-based
classification system to separate value crops from weeds using convolutional neu-
ral networks, where no hand-crafted features are used. The only preprocessing
step we perform separates vegetation from the background such as soil, etc. We
then only focus on the image regions containing vegetation. These sub-images
are scaled to a standard size and fed into the neural network. As we show in
this work, there is no need for the network to be especially deep to provide high-
quality classification results for this task, and as a result, the amount of training
data that is required to train the CNN is comparably small, in the order of a
few hundred images. Furthermore, the network can be executed in real-time in
edge-inference hardware small and efficient enough to fit in a UGV, and even a
UAV, which is the main requirement to be useful for selective weeding.

We need to achieve a high recall on the weed classification to enable the robot
to remove a high number of weeds on the field. We compute the coordinates
relative to the robot’s coordinate system to synchronize the removal with the
extraction/spraying systems. This means that we are relaxed on the boundaries
of the plants as long as we can direct the removal tools to the right position
within our desired accuracy without harming the valuable crops. This allows for
certain hypotheses that make a computationally cheap and fast blob approach
suitable while still achieving state-of-the-art performance, such as: doing most of
the training of the classifier and weed removal in early stages of the crop growth,
and relaxing on the precision of the boundaries of the vegetation at the pixel level.
As we can see in the last image of Figure 3.1, where the output classification is
overlayed with the input image, a combination of the NDVI thresholded segmen-
tation with a blob segmentation and classification gives a solid almost pixel-wise
representation of the output mask, due to the masking done by the preprocessing,
making this algorithm not only faster but also very similar in output quality as
the pixel-wise approach, which is both computationally more complex and more
time expensive to label.
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3.1. Vision-based Crop vs. Weed Classification

Figure 3.2: From left to right: RGB and NIR images, NDVI transform, and mask obtained by
a conservative threshold in the NDVI image.

We divide our classification pipeline into three main steps. First, we perform a
vegetation detection to eliminate irrelevant soil information from the images using
multispectral images containing RGB and near infra-red information. Second,
we describe the detected vegetation with a binary mask and perform a blob
segmentation to extract patches containing singular crops or weeds. Finally, we
classify each patch with a convolutional neural network that we train in an early
growth stage to avoid overlapping crops and weeds in the data, and that we can,
later on, re-train in a supervised or semi-supervised manner to adapt to other
types of crops, or other stages of the crop growth. The blob approach makes the
network run fast for both the forward pass and the retraining of the classifier,
which makes it able to run on a flying platform using readily available single-board
computers such as the NVIDIA Jetson platform.

In sum, we make the following four key claims: Our approach (i) does not
require any hand-crafted features and thus can be implemented quickly, (ii) can
provide accurate weed classification in real sugar beet fields with an accuracy of
more than 95% in a field with plants in similar growth stage, (iii) can be retrained
efficiently to reuse the learned features for other data types or later growth stages,
and (iv) is lightweight and fast, which makes it suitable for online operation in a
moving and even a flying robot.

In the following subsections, we discuss each step of the pipeline in detail.

3.1.1 Vegetation Detection
To feed the CNN with interest regions, we perform a pre-processing step based on
the extra NIR cue. The goal of this pre-processing step is to separate the relevant
vegetation content of every image I taken by the robot from the soil beneath it,
for which we need to apply a mask of the form:

IV(i, j) =

{
1, if I(i, j) ∈ vegetation
0, otherwise

, (3.1)

with the pixel location (i, j).
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As we can see in Figure 3.2, separating vegetation from soil in a plain RGB
image is difficult task even for a human observer. Luckily, an approach exploit-
ing the high reflectance of chlorophyll in the near infra-red spectrum has been
thoroughly studied by Rouse et al. [155] prompting us to use the Normalized
Difference Vegetation Index (NDVI), which is a normalized ratio of the NIR and
red bands. If we apply this index pixel-wise we obtain a distribution that is more
suited for a thresholded segmentation than the original image, which we can later
apply as our mask, as we can also see in Figure 3.2. Namely, using the NDVI to
create the mask we have:

INDVI(i, j) =
INIR(i, j)− IR(i, j)
INIR(i, j) + IR(i, j)

(3.2)

Such transformation is used successfully to solve this very problem by Lottes
et al. [99], and improved by Potena et al. [136] by adding a low cost convolu-
tional neural network to a mapping obtained by permissive thresholding in the
post NDVI segmentation operation. In our experiments, we use the thresholded
segmentation of the NDVI-transformed image, similar to Lottes et al. [99], to
separate the plants from the soil. An example is shown in Figure 3.2.

A threshold-based classification based on the NDVI can also lead to individual
pixel outliers, or small groups of pixels. These are mostly caused by lens errors
as chromatic aberration, which leads to a slightly different mapping of the red
and the near infra-red light on the camera chip. We eliminate most of these
effects through basic image processing techniques such as morphological opening
and closing operations to fill gaps and to remove noise at contours, which is done
with a 5×5 disk kernel, a 1× opening followed by a 1× closing; and removal of
tiny blobs which share less than a minimum amount of vegetation pixels, which
depends on the Ground Sampling Distance and therefore it varies with the UAV
distance to the ground.

3.1.2 Blob-wise Segmentation
Given the vegetation mask, we search for vegetation blobs. Each vegetation blob
is given through a connected component of the vegetation pixels in the image
(see Figure 3.3). We create an individual image patch of a certain size (64×64
pixels in our current setup) for each detected blob in the vegetation mask. Here,
we first compute the bounding box of the contour of the blob and apply an affine
transformation to it to translate the blob into the center of the image patch and
scale it to the desired size.

These image patches serve as input for our classification approach. Thus, the
CNN can learn a representation based on such patches, which mostly describe
whole plants or leaves. Through centering the blobs within the image patches we
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achieve translation invariance and through scaling the detected blobs we reduce
the influence of the plant size, which can vary significantly even for plants growing
in the same field.

Figure 3.3: Blob selection from connected regions.

3.1.3 Classification using Convolutional Neural Networks
The advantage of using Convolutional Neural Networks for image classification,
compared to traditional machine learning-based approaches, is that they can learn
features describing complex non-linear relations between dependent and indepen-
dent variables by themselves, when given enough data. This is not only useful
for achieving a high classification accuracy in a specific dataset, but also to later
transfer that knowledge to other domains. Therefore, we can train the network
with a high number of plants from different species under different weather and
lighting conditions and then use the feature extractors to cheaply train other
classifiers for unseen species.

The main ideas behind weight sharing and CNNs were introduced by Le-
Cun et al. in [86] and [87], and more recently brought back to public interest by
Krizhevsky et al. [78] where they exploited an efficient GPU implementation of
the convolution to break the ImageNet challenge benchmark[34] at the time by
an astounding 10% difference over their closest competitor, making them widely
popular. They make the assumption that in image data, neighboring pixels are
more correlated than pixels far away, therefore introducing the concept of lo-
cal connectivity, allowing for less neuron wiring, which yields not only in better
results but also in less training and execution time. Today, deep convolutional
neural networks are undoubtedly the most widely used approach for image clas-
sification, with its more novel flavors achieving top-5 classification errors in the
test set of ImageNet as low as 3.57% [60], and 3.08% [169], outperforming the
average human classification error which is around 5% on this data.
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The original architecture used by Krizhevsky [78] is comparably shallow, i.e.,
it has fewer layers, when measured against today’s state-of-the-art image classi-
fication networks, but we use a similar one to solve our classification problem,
because it proves to have enough expressiveness to describe our decision bound-
aries and has the advantage that it is cheap to train and run in compact and
low-power consumption hardware such as the one in a UGV, or UAV.

3.1.4 Selection of the Network Architecture
The network has to be complex enough to be able to describe the decision bound-
ary between classes, but not too expressive as to overfit to our training data. This
characteristic is set by the depth of the network, i.e., the number of convolutional
layers, as well as its width, which represents the number of kernels in each con-
volutional layer or the number of neurons in the fully-connected ones. To choose
our network size, we iterate starting with networks of a small number of filters
per layer and only one convolutional layer and one fully connected, and grow
the network until we are almost able to overfit to a small sample of our dataset.
After this, we further increase the expressiveness by adding more kernels to each
convolutional layer and more neurons to the fully connected ones, and we train
it again using our full training dataset. To avoid the bigger network to overfit to
our training data we use a method called “dropout” [164]. This prevents neurons
from learning complex feature co-adaptations by randomly dropping some of them
during training, making the network generalize better, which we corroborate by
getting a good performance in our cross-validation data. It is important to notice
that the versions of dropout used in convolutional and fully connected layers are
different. For convolutional layers, whole channels represent activation maps of
each feature, and therefore a special spatial dropout is employed, which drops
entire feature maps, rather than individual neurons. We also have to be careful
to set an upper boundary in the network’s complexity, due to our constraint of
real-time capability, meaning that the network needs to be both lightweight and
of a complexity that is low enough to run fast in an embedded platform that we
can fit in a flying vehicle. We are careful when choosing the depth and size of
each layer to enforce this restriction.

Finally, we want our classifier to represent a vector containing a probability
distribution of the input patch being a plant and a weed. For this, we use output
neurons with a softmax activation function, which convert the output of the
network to a pseudo-probability distribution that works well for this purpose.

From this, we design a network like the one in Figure 3.4. This architecture
is composed by 3 convolutional layers (2 of kernel size 5×5 and the last one of
3×3 kernels), all of them using the Rectified Linear Unit for the non-linearity,
which proves to speed up training considerably, and followed by 2×2 max-pooling
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Figure 3.4: Detailed architecture used for the blob-wise classification.

for dimensionality reduction. These 3 convolutional and max-pooling layers are
followed by 2 fully connected layers with 512 neurons each, which results in a
512-dimensional vector to be fed into the softmax layer that outputs the pseudo
probability distribution we want as an output.

It is important to note that even though the network is shallow compared
to the ones used by [60, 169], it is more complex and than those normally used
for plant discrimination problems [136]. However, due to the blob approach, the
network does not need to examine every pixel of the original input image, and it
only runs one time per segmented patch, speeding up the process considerably.

3.1.5 Retraining for Different Crop Growth Stages
As the plants grow, they not only change their size but also their shapes and
texture, which means that we may not get the best results if the growth stage is
very different. In this case, the features extracted from the convolutional and fully
connected layers may still be useful, so we can try to retrain the last layer of the
network, which is the classifier, by feeding the network with a sample of labeled
data in the new growth stage. We will show that even though the classifier is
still usable without retraining, this technique can yield significant improvements,
and can be done in a fast way due to the need to only train a linear classifier
and in a small subset of the new data. This allows the farmer to provide a few
training samples, and for the re-training of the classification layer to happen in
the embedded hardware mounted on the platform.

3.2 Relationship to Object Detectors
The framework proposed in this work follows the same core ideas as the pro-
hibitively expensive original RCNN method [49], performing a region-proposal
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extraction, followed by a classification CNN. However, since the extra NIR in-
formation present in the input data allows us to quickly and accurately generate
the blob proposals, this type of approach becomes feasible for online operation.
This provides a good example of how domain-specific data can be exploited to
improve on deep learning approaches, even without designing features to be used
for the classification, since this vegetation segmentation can be exploited for an
incredibly wide variety of plant species.

3.3 Experimental Evaluation
The experiments are designed to show the accuracy and efficiency of our method
and to support the claims that our classifier is able to (i) learn feature represen-
tations by itself and thus be implemented quickly, (ii) learn an accurate decision
boundary to accurately discriminate plants and weeds with an accuracy of over
95%, being able to eliminate a majority of weeds with a minimal number of mis-
classified crops when tested in a similar growth stage; (iii) quickly improve after
retraining by using the previously learned features and adapting the last layer to
a small subset of labeled new data; and (iv) run in real-time.

We implement the whole approach presented in this work relying on the
Google TensorFlow [1] library. This allowed an outsider to the field of plant
classification to perform the full implementation of the approach and its evalua-
tion in slightly over two months, not including the acquisition time of the training
and evaluation datasets, which supports our claim (i) that due to the self-learning
of feature descriptors and the simplicity of the overall pipeline, the approach can
be implemented quickly.

3.3.1 Training of the Network

To train the network we use a dataset which we will call “Dataset A”, from Ta-
ble 3.1. We split the dataset in 3, leaving 70% of it available to us for training,
15% for validation and 15% for test after the whole pipeline was designed and
trained, and therefore show how the network generalizes to unseen data. This
dataset was captured with the plants in an early growth stage and it is quite
balanced in its plants/weeds relation. We compare it with Dataset B from Ta-
ble 3.1, which was captured 2 weeks later, in a more advanced growth stage, and
we analyze the performance of the network. Both datasets were captured using a
JAI camera in nadir view capturing RGB+NIR images. For a typical robot-based
monitoring scenario, not every image from the camera needs to be classified, and
one image per second is sufficient. Thus, we take images at 1Hz, setting the
upper bound for testing our real-time classification capabilities to 1FPS.
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Parameter Dataset A Dataset B
no. images 867 1 102

no. patches 7 751 28 389
no. crops 2 055 2 226
no. weeds 5 696 26 163

Pc/Pw 0.36 / 0.64 0.08 / 0.92
avg. patch/image 9 25

Table 3.1: Information about the datasets.

Model Cores Architecture TFLOPs RAM
Titan Xp 3 840 Pascal 12 12GB

Jetson TX2 SoC 256 Pascal 1.5 8GB
GTX 940MX 384 Maxwell 0.84 2GB

Intel i7 - - 0.04 -

Table 3.2: Hardware used for inference.

A commonly used technique for augmenting datasets is to apply affine trans-
formations to the training portion of the dataset, for the network to learn some
type of invariance. In our case, all the plants are previously scaled to patches of
64x64 pixels, aiming for scale and translation invariance, and we further apply
64 even rotations to try to learn rotationally invariant features. After this, we
perform a per image normalization, which allows us to increase the robustness to
illumination changes.

Then we run the training using a cross-entropy cost function, which we mini-
mize by using stochastic gradient descent in batch sizes of 100. During training,
we reduce the learning rate by a third every 2 epochs to converge better the cost
function’s minima, and we run until convergence is achieved.

The training takes 3 days on a low-cost NVIDIA GeForce GTX 940MX, which
is not a top-notch graphics card and it is actually less powerful than a currently
available embedded platform like the Jetson TX2 which runs on a drone. This
is critical if re-training is necessary, as we show later. If we use state-of-the-art
GPU’s for training, the process is cut short by an order of magnitude, not only
because of the difference in the floating operations per second but also because
the whole pipeline can be stored in GPU memory avoiding a bottleneck in the
copying operations from system memory to GPU memory before each calculation.
In Table 3.2 we show these differences. This further supports our claim (i) that
the system can be implemented quickly, given the short training time even in a
low-cost GPU.
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3.3.2 Performance of the Classifier

This experiment is designed to support our claim (ii) which states that we learn
an accurate decision boundary to accurately discriminate plants and weeds with
an accuracy of over 95%, being able to eliminate a majority of weeds with a
minimal number of misclassified crops.

We now analyze the accuracy of the learned classifier and we evaluate its in-
variance to the crop growth. We tested the accuracy of our classifier in the test
set which only contains unseen data of dataset A, and its accuracy in the test set
of dataset B, when trained in A. We can see the results in Table 3.3:

Dataset Test set A Test set B
Accuracy 97.3% 89.2%

Table 3.3: Accuracy of the classifier trained in train set of A, and evaluated in Test set of A
and B.

As we can see, we have a very high overall accuracy in the unseen data from
dataset A, because it is from the same crop growth stage as the data the the
network has seen while it was being trained, and the performance of the classifier
drops when used 2 weeks later. However, the overall accuracy does not say much
about the quality of the classifier, especially in cases like dataset B, that are
highly unbalanced. Since the main goal of our classifier is to detect weeds to
proceed to their elimination, in Table 3.4 we show the obtained precision and
recall for the detection of weeds in both datasets.

Dataset Dataset A Dataset B
True Positives 829 16 353

True Negatives 290 1406
False Positives 27 94

False Negatives 16 2 020
Weed precision 96.84% 99.42%

Weed recall 98.10% 89.00%

Table 3.4: Quality comparison of the classifier for the weed class trained in A.

It is important to note that due to the nature of our problem it is mission-
critical to have high precision in the weed classifier, because a large number of
false positives means that plants get classified as weeds and thus get eliminated,
especially in the case of mechanical treatment. This is not the case for selective
spraying, but spraying plants with herbicides defeats the purpose of the system
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anyway. It is also desirable to have a high recall to eliminate the most weeds we
can, but not eliminating crops is of critical importance.

Taking this into consideration, we can see from Table 3.4 that even if the
recall of the weed detector decreases two weeks later, the precision is very high,
allowing us to not eliminate valuable crops erroneously, fulfilling our demands for
the system, and supporting our claim (ii).

3.3.3 Retraining the Network
This experiment is designed to validate claim number (iii), i.e., that our system
can be easily and cheaply retrained to adapt to new growth stages.

As stated in the previous section, even though the precision of the weed detec-
tor was still very high two weeks later in the growth stage, the recall fell consid-
erably, meaning that a good number of weeds were not being removed from the
field. To fix this problem, we can cheaply retrain the last layer of the classifier,
re-utilizing the feature vectors extracted by the convolutional filters learned from
dataset A. We show the results it yields in Table 3.5, where we can see that both
precision and recall have improved, making the system not only eliminate fewer
crops erroneously but also eliminate more weeds, which is the main purpose of it.
In Table 3.6 we can also assess the general accuracy of the retrained classifier.

Dataset Trained in A Retrained in B
True Positives 16 353 17 927

True Negatives 1 406 1 190
False Positives 94 60

False Negatives 2 020 696
Weed precision 99.42% 99.66%

Weed recall 89.00% 96.26%

Table 3.5: Quality comparison of the classifier for the weed class in test set of B, before and
after retraining.

Dataset Trained in A Retrained in B
Accuracy 89.2% 96.1%

Table 3.6: Accuracy in dataset test set of B before and after retraining on small subset (15%)
of training set of B.

What is most important to point out is that, while the full classifier takes 3
days to train in the cheap GPU, the retraining achieves remarkable improvements
in only 20 minutes. This is done by feeding the training with a balanced sub-
sample (15%) of dataset B containing the same number of weeds and plants.
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This supports our claim that our system can be easily and cheaply adapted
to new growth stages where plants have significantly changed their appearance.

Figure 3.5: Architecture used for the blob-wise classification, with the size of each layer specified
and the amount of floating operations needed per pass.

3.3.4 Runtime
This experiment is presented to validate claim (iv), i.e., that our system can run
in real-time on a flying platform. In Figure 3.5, we show another representation of
the network, in which we can also see how many variables each layer contains, and
how many floating operations it takes to pass through it. The final architecture
needs 1.4 G floating-point operations to do a full forward pass, which means that
we can roughly calculate how long it will take to do a full pass depending on
the FLOPs of the hardware. This results in Table 3.7. It is important to note
that we left out the most powerful GPU because it is non-realistic to think that
we would put a desktop workstation in a small flying drone with the purpose of
inference, and it is also highly unlikely in a ground robot.

Another aspect we can see from Figure 3.5 is that the architecture is using
a total number of 10 M 32-bit floating point parameters. This means that we
can have a full network size of 40 MB, which is something that our embedded
hardware can store easily.

In Table 3.8, we analyze how long it would take in average to do a forward pass
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Hardware Theoretical time Actual time
Jetson TX2 SoC 1ms ±1ms

Geforce GTX 940MX 2ms 7± 1ms
i7 Processor 40ms 50± 10ms

Table 3.7: Average and standard deviation running time per blob, depending on the hardware.

in all patches from a raw image, depending on the dataset. This highly depends
on the growth stage, as we can see from the fact that dataset B has more patches
per image, meaning that there are more plants and weeds present in the field,
which makes sense. In this table, we see that even with 25 images per image,
which is our worst case, we are still very relaxed in our real-time constraint, by a
margin of 5 in the case of our outdated GPU and a margin of 10 in the state of
the art SoC, fulfilling our efficiency claim. This means that we can either analyze
images at a higher frame rate, or fly higher, covering more crops, if the resolution
of the camera is good enough to capture them from a distance. We also show that
for our purposes, it is worth it to lose constant time complexity of the algorithm
towards linear time because due to the upper bound of the number of patches
contained in each raw image, we are actually gaining in performance.

Dataset Dataset A Dataset B
avg patches per image 9 25

GEForce940Mx(7 ms/patch avg) 63 ms 175 ms
Jetson TX2(4 ms/patch avg) 36 ms 100 ms

Table 3.8: Average runtime per image.

As a final comment about runtime, we should consider that for each raw input
image containing n vegetation blobs we segment we get a patch array of size n.
Since our neural network platform allows us to run forward passes in batch, we
can gain a considerable increase in performance if we send the whole batch of
blobs to the GPU RAM at the same time, rather than queuing all operations
sequentially.

The presence of low cost, lightweight, power-efficient hardware that can run
this classifier in remarkably low time with great performances, make this approach
a great alternative for online use in moving robotic platforms working in dynamic
environments. This supports our claim number (iv) that our system can run in
real-time in a UAV or a UGV.
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3.4 Related Work

The ability to estimate semantic information from sensor data is an impor-
tant capability for autonomous and semi-autonomous systems operating in the
fields [100]. Robotic approaches for monitoring key indicators of crop health have
become a popular research topic. Geipel et al. [47], Khanna et al. [75], and Pfeifer
et al. [131] estimate the crop height as well as the canopy cover using UAV im-
agery. These works rely on bundle adjustment procedures to compute terrain
models and subsequently perform a vegetation segmentation to estimate the crop
height based on the obtained 3D information.

Several approaches have been developed for vision-based vegetation detection
by using RGB as well as multispectral imagery of agricultural fields [54, 57,
176]. Hamuda et al. [57] present a survey about plant segmentation in field
images by analyzing several threshold- as well as learning-based methods. Torres
Sanchez et al. [176] investigate an automatic and adaptive thresholding method
for vegetation detection based on the Normalized Difference Vegetation Index and
the Excess Green Index (ExG). They report a vegetation detection rate of around
90 − 100%. In contrast, Guo et al. [54] apply a learning-based approach using
a decision tree classifier for vegetation detection. They exploit spectral features
using different color spaces based on RGB images to perform a prediction on a
per-pixel basis.

In the context of leaf image classification and segmentation, researchers have
investigated using hand-crafted features and structural operators [181, 79, 19, 38].
Wang et al. [181] segment leaf images by using morphological operators and
shape features and apply a moving center hypersphere classifier to infer the plant
species. Kumar et al. [79] start from segmented images of leaves. They extract
curvature features and compare them with a given database to find the best match
with a labeled type. To cover a variety of leaf shapes, Cerutti et al. [19] apply a
deformable leaf model and use morphological descriptors to classify their species.
Elhariri et al. [38] compare a random forest classifier and a linear discriminant
analysis based approach in their work for classifying 15 plant species by analyzing
leaf images. They extract statistical features from the HSV color space of leaf
images as well as gray level co-occurrence matrices to exploit additionally shape
and vein (leaf structure) information. Hall et al. [56] conducted a study on
features for leaf classification. They compared the classification performance
based on classical hand-crafted and ConvNet features by using a random forest
classifier. They simulated varying conditions on the public Flavia leaf dataset
and conclude that CNN features support the performance and robustness of the
classification results, which further motivates our approach.

We avoid the time-consuming process of designing features and exploit a CNN
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approach to completely learn a representation of the data, which is suitable for
discriminating sugar beets and weeds in image patches.

In the field of machine learning, several approaches have been applied to clas-
sify crops and weeds in the imagery of a plantation [44, 53, 130, 129, 58, 100,
102, 84]. Perez Ortiz et al. [129] propose an image patch-based weed detection
system. They use pixel intensities of multispectral images and geometric informa-
tion about crop rows to build features for the classification. They achieve overall
accuracies of 75− 87% for the classification by analyzing the performance of dif-
ferent machine learning algorithms. Perez Ortiz et al. [130] use a support vector
machine classifier for crop/weed detection in RGB images of sunflower and maize
fields. They exploit statistics of pixel intensities, textures, shape, and geometrical
information as features. Guerrero et al. [53] propose a weed detection approach
for image data containing maize fields. Their method allows identifying the weeds
after its visual appearance changed in image space due to rainfall, dry spell, or
herbicide treatment. Garcia et al. [44] propose an approach for separating sugar
beets and thistle based on narrowband multispectral image data. They apply a
partial least squares discriminant analysis for the classification and obtain a recall
of 84% for beet and 93% for thistle by using only four of the narrow bands at 521,
570, 610, and 658 nm. Haug et al. [58] present a method to detect carrot plants
in weeds by using RGB and NIR-images without needing a pre-segmentation of
the scenes into vegetation blobs. They perform a prediction on pixel level on a
sparse grid in image space and report an average accuracy of around 94% on an
evaluation set of 70 images where both, intra- and inter-row overlap is present.
Lottes et al. [100, 102] design a crop and weed classification system for ground
and aerial robots. The work exploits NDVI and ExG indices to first segment the
vegetation in the image data and then applied a random forest classifier to the
vegetative parts to further distinguish them into crops and weeds. Latte et al. [84]
use color space features and co-occurrence matrices to classify images captured
on crop fields containing several plant types. They apply an artificial neural net-
work classifier and obtain an accuracy of around 84% on average. Their results
show that using statistical moments of the HSV distribution improves the overall
classification performance.

Also, deep learning methods have recently been employed to obtain plant
statistics and distinguish value crops and weeds in the fields [116, 24, 105, 136].
Mortensen et al. [116] apply a deep CNN for classifying different types of crops
to estimate individual biomass amounts. They use RGB images of field plots
captured at 3m above the soil, and report an overall accuracy of 80% evaluated
on a per-pixel basis. Chen et al. [24] propose a visual system with the purpose
of obtaining a robust count of fruits in the field under dramatic lighting changes,
and with heavy occlusions from neighboring foliage. They first use a CNN for
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blob region proposal, then they use a counting algorithm based on a second
CNN to estimate the fruit count in each region, and they finally apply a linear
regression model to get the final count. McCool et al. [105] address the crop and
weed segmentation problem by using an end-to-end ensemble of CNNs. They
obtain these lightweight CNNs through the compression of a pre-trained, more
descriptive and complex model, and report an accuracy of 93.9%, processing
images at little over 1 FPS. Potena et al. [136] present a perception system based
on RGB+NIR imagery for crop and weed classification using two different CNN
architectures. A shallow network performs the vegetation detection and then
a deeper network further distinguishes the detected vegetation into crops and
weeds. They perform a pixel-wise classification followed by a voting scheme to
obtain predictions for detected blobs in the vegetation mask. They obtain a
performance of around 97% for the vegetation detection, which is comparable to
a threshold-based approach based on the NDVI, and 98% for the crop and weed
classification in case the visual appearance has not changed between the training
and testing phases.

Our approach uses RGB-NIR imagery and CNNs and can reach an accuracy
of 97% with low running times even in embedded hardware that can be fitted
in a moving robotic platform. We achieve 97% precision and 98% recall for the
classification of the weeds when the classifier is used in a similar growth stage as
the one it was trained in. We are also able to obtain 99% recall and 89% precision
for weeds in later growth stages without retraining. Finally, we show that we can
jump from 89% to 97% in recall for weeds if we retrain the classifier with new
data from the current growth stage in a fast way. All of this allows our system
to do statistics and selective weed removal in a very quick and accurate manner.

3.5 Conclusions
We have mentioned that UAVs and UGVs for precision farming must be able to
distinguish the crops on the field from the weeds. In this chapter, we addressed the
problem of detecting sugar beet plants and weeds using an RGB+NIR camera
over real fields. We developed a classification system based on convolutional
neural networks. Our approach is purely vision-based exploiting 4-channels and
does not require geometric priors such as that the sugar beets must be planted
in crop rows. In addition to that, the CNNs are an end-to-end approach such
that no manual features must be defined. The input to the CNNs are blobs of
vegetation and provide a classification output for such blobs. This renders the
approach fast such that the system can be executed online. quickly in the order
of 2 months. We implemented our approach and thoroughly evaluated it using
image data recorded on a real farm in different sugar beet fields and illustrate
that our approach allows for accurately identifying the weeds on the field.
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Chapter 4

Crop vs. Weed Semantic
Segmentation using RGB-Only
Data

In Chapter 3 we formulated that herbicides and other agrochemicals which
are frequently used in crop production can have several side-effects on our
environment, and thus, one big challenge for sustainable approaches to agri-
culture is to reduce the amount of agrochemicals that needs to be brought

to the fields. In the approach presented in that chapter, as well as in a large
number of approaches in the literature, additional spectral cues such as near
infra-red information are necessary. This is especially true for those approaches
that should yield a high classification performance.

Often, these techniques also rely on a pre-segmentation of the vegetation (see
Section 3.1.1) and/or on a large set of hand-crafted features. Several approaches
have been developed for vision-based vegetation detection by using RGB as well
as multispectral images, e.g., [54, 57, 98, 177]. Often, popular vegetation indices
such as the Normalized Difference Vegetation Index (NDVI) or the Excess Green
Index (ExG) are used to separate the vegetation from the background by ap-
plying threshold-based approaches. We see a major problem with these kinds of
approaches in terms of transferability to other fields, i.e., when the underlying
distribution of the indices changes due to different soil types, growth stages, illu-
mination, and weather conditions. Figure 4.1 visually illustrates frequent failure
cases: First, a global threshold, here estimated by Otsu’s method [123], does
not properly separate the vegetation if the plants are in a small growth stage,
i.e., when the vegetation is underrepresented. This problem can be solved with
adaptive thresholding, by tuning the kernel size and a local threshold for small
plants. Second, the adaptive method fails, separating components that should be
connected, when using the tuned hyperparameters in another dataset where ei-
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Figure 4.1: Example image of dataset A (left column) and dataset B (right column). Top row:
RGB image. Middle row: Vegetation mask obtained by applying a global threshold learned by
Otsu’s method, which fails for underrepresented vegetation. Bottom row: Vegetation detected
by adaptive thresholding, which oversegments big plants. Failure cases are depicted in red.

Figure 4.2: Left: Bonirob system, used for data acquisition and field deployment. Middle:
RGB image captured during field test. Right: our corresponding classification result with crops
colored green and weeds colored red.

ther the growth stage or the field condition have changed. Thus, we argue that a
learning approach that eliminates this pre-segmentation and solves segmentation
and classification jointly is needed.

Therefore, in this chapter, we address the problem of classifying standard
RGB-only images recorded in the crop fields and identify the weed plants in a
pixel-wise manner, without pre-segmentation of the vegetation. As this work
illustrates, such a strategy enables us to learn a semantic segmentation which
generalizes well over several growth stages as well as field conditions. Further-
more, this approach can operate roughly at the framerate of the camera. This
information can, in turn, be used to perform automatic and targeted weed con-
trol or to monitor fields and provide a status report to the farmer without human
interaction. The main focus is then put into performing RGB-only crop-weed
pixel-wise classification (Figure 4.2) without expensive multi-spectral cues, or
pre-segmentation. This is done with a special interest in computational effi-
ciency for real-time operation on a mobile robot, as well as a generalization to
new, unseen fields.
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4. Crop vs. Weed Semantic Segmentation using RGB-Only Data

Bonn Zurich Stuttgart

Figure 4.3: Example images from different datasets. Every dataset contains different crops
growth stages, weed types, illumination conditions and soil types. Best viewed in color

4.1 Vision-based Crop vs. Weed Segmentation

In this section, we focus on a new approach to crop-weed classification using only
RGB data that relies on convolutional neural networks. We aim at feeding addi-
tional, task-relevant background knowledge to the network to speed up training
and to better generalize to new crop fields. This is a particularly challenging task,
as different locations present different weather, soil, and illumination conditions,
as depicted in Figure 4.3.

We achieve that by augmenting the input to the CNN with additional channels
that have previously been used when designing hand-crafted features for classi-
fication [98] and that provide relevant information for the classification process.
Our approach yields a pixel-wise semantic segmentation of the image data and
can, given the structure of our network, be computed at near the frame-rate of a
typical camera.

Our segmentation pipeline is separated in two main steps: First, we compute
different vegetation indices and alternate representations that are commonly used
in plant classification and support the CNN with that information as additional
inputs. This turns out to be specifically useful as the amount of labeled training
data for agriculture fields is limited. Second, we employ a self-designed semantic
segmentation network to provide a per-pixel semantic labeling of the input data.
The following two subsections discuss these two steps of the pipeline in detail.

In sum, we make three key claims, which are the following: Our approach is
able to (i) accurately perform pixel-wise semantic segmentation of crops, weeds,
and soil, properly dealing with heavily overlapping objects and targeting a large
variety of growth stages, without relying on expensive near infra-red information;
(ii) act as a robust feature extractor that generalizes well to lighting, soil, and
weather conditions not seen in the training set, requiring little data to adapt to
the new environment; (iii) work in real-time on a regular GPU such that operation
at near the frame-rate of a regular camera becomes possible.
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4.1. Vision-based Crop vs. Weed Segmentation

4.1.1 Input Representations

In general, deep learning approaches make as little assumptions as possible about
the underlying data distribution and let the optimizer decide how to adjust the
parameters of the network by feeding it with enormous amounts of training data.
Therefore, most approaches using convolutional neural networks make no modi-
fications to the input data and feed the raw RGB images to the networks.

This means that if we want a deep network to accurately recognize plants and
weeds in different fields, we need to train it with a large amount of data from
a wide variety of fields, lighting and weather conditions, growth stages, and soil
types. Unfortunately, this comes at a high cost and therefore we propose to make
assumptions about the inputs to generalize better given the limited training data.

To alleviate this problem, we provide additional vegetation indexes that have
been successfully used for the plant classification task and that can be derived
from RGB data. In detail, we calculate four different vegetation indices which
are often used for the vegetation segmentation [108, 133]: Excess Green (ExG),
Excess Red (ExR), Color Index of Vegetation Extraction (CIVE), and Normal-
ized Difference Index (NDI). These indices share the property that they are less
sensitive to changes in the mentioned field conditions and therefore can aid the
classification task. They are computed straightforwardly as:

IExG = 2 IG − IR − IB (4.1)
IExR = 1.4 IR − IG (4.2)
ICIVE = 0.881 IG − 0.441 IR − 0.385 IB − 18.78745 (4.3)

INDI =
IG − IR
IG + IR

(4.4)

Along with these four additional cues, we use (i) further representations of
the raw input such as the HSV color space and (ii) operators on the indices
such as the Sobel derivatives, the Laplacian, and the Canny edge detector. All
these representations are concatenated to the channel-wise normalized input RGB
image and build the input volume which is fed into the convolutional network.
In sum, we use the 14 channels listed in Table 4.1, while Figure 4.4 illustrates
how some of these representations look like. We show in our experiments that
deploying these extra representations to the raw inputs help not only to learn
weight parameters which lead to a better generalization property of the network,
but also obtain better performance for separating the vegetation, i.e., crops and
weeds, from the soil, and speed up the convergence of the training process.
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IRGB IExG IExR

IHUE IEDGES ∇yIExG

Figure 4.4: Illustration of some of the used alternate representations.

Table 4.1: Indices and representations used as input by our CNN

Input channels for our CNN
I1 IR
I2 IG
I3 IB
I4 IExG
I5 IExR
I6 ICIVE
I7 INDI

I8 IHUE (from HSV colorspace)
I9 ISAT (from HSV colorspace)
I10 IVAL (from HSV colorspace)
I11 ∇xIExG (Sobel in x direction on IExG)
I12 ∇yIExG (Sobel in y direction on IExG)
I13 ∇2IExG (Laplacian on IExG)
I14 IEDGES (Canny Edge Detector on IExG)

41



4.1. Vision-based Crop vs. Weed Segmentation

Figure 4.5: Detailed encoder-decoder architecture used for the pixel-wise semantic segmenta-
tion. Best viewed in color.

4.1.2 Network Architecture

Semantic segmentation is a memory and computationally expensive task. State-
of-the-art algorithms for multi-class pixel-wise classification use CNNs that have
tens of millions of parameters and therefore need massive amounts of labeled
data for training. Another problem with these networks is the fact that they
often cannot be run fast enough for our application. Current state-of-the-art
CNNs for this task [23, 195] processes around 2 images per second, whereas we
target on a classification rate of at least 10Hz.

Since our specific task of crop vs. weed segmentation has a much narrower
target space compared to the general architectures designed for hundreds or even
thousands of classes, we can design an architecture that meets the targeted speed
and efficiency. We propose an end-to-end encoder-decoder semantic segmenta-
tion network, see Figure 4.5, that can accurately perform the pixel-wise prediction
task while running at 20+ Hz, can be trained end-to-end with a moderate size
training dataset, and has less than 30 000 parameters. We design the architecture
taking some design cues from Segnet [7] and Enet [126] into account and adapt
them to the task at hand. Our network is based on the following building blocks:

Input: We use the representation volume described in Table 4.1 as the input
to our network. Before it is passed to the first convolutional layer, we perform a
resizing to 512× 384 pixels and channel-wise contrast normalization.

Convolutional Layer: We define our convolutional layers as a composite
function of a convolution followed by batch normalization and use the rectified
linear unit (ReLU) for the non-linearity. The batch normalization operation
prevents an internal covariate shift and allows for higher learning rates and better
generalization capabilities. The ReLU is computationally efficient and suitable
for training deep networks. All convolutional layers use zero-padding to avoid
washing out edge information.

Residual Separable Bottleneck: To achieve a faster processing time while
keeping the receptive field, we propose to use the principal building block for our
network, which is built upon the ideas of (i) residual connections, (ii) bottlenecks,
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and (iii) separating the convolutional operations.

Figure 4.6: Building the residual block to replace a [5× 5] layer.

Figure 4.6 illustrates the evolution from a conventional [5 × 5] convolutional
layer to a residual separable bottleneck. The top row of Figure 4.6 shows the
addition of a residual connection, which adds the input of the convolution to
its result. The addition of this residual connection helps with the degradation
problem that appears when training very deep networks which makes them obtain
a higher training error than their shallower counterparts [60].

The middle row of Figure 4.6 adds [1× 1] convolutions that reduce the depth
of the input volume so that the expensive [5× 5] operation does not need to run
in the whole depth. For this, we use 8 × [1 × 1] kernels, which halve the depth
of the input volume, and 16 × [1 × 1] kernels to expand the result, which needs
to match the depth of the input to be added to it. This reduces the number of
calculations per operation of the kernel from 6 400FLOPs to 1 856FLOPs.

Finally, the bottom row of Figure 4.6 shows the separation of each [5 × 5]

convolution into a [5 × 1] convolution followed by a [1 × 5] convolution. This
further reduces the operations of running the module in a [5 × 5] window from
1 856FLOPs to 896FLOPs.

These design choices also decrease the number of parameters for the equivalent
layer to the [5× 5] convolution with 16 kernels from 6 400 to 896 parameters.
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Un-pooling with Shared Indexes: The un-pooling operations in the de-
coder are performed sharing the pooling indexes of the symmetrical pooling op-
eration in the encoder part of the network. This allows the network to maintain
the information about the spatial positions of the maximum activations on the
encoder part without the need for transposed convolutions, which are compara-
bly expensive to execute. Therefore, after each un-pooling operation, we obtain
a sparse feature map, which the subsequent convolutional layers learn how to
densify. All pooling layers are [2× 2] with stride 2.

Output: The last layer is a linear operation followed by a softmax activation
predicting a pseudo-probability vector of length 3 per pixel, where each element
represents the probability of the pixel belonging to the class background, weed,
or crop.

We use these building blocks to create the network depicted in Figure 4.5,
which consists of an encoder-decoder architecture. The encoder part has 13 ×
[5 × 5] convolutional layers containing 16 kernels each and 4 pooling layers that
reduce the input representation into a small code feature volume. This is followed
by a decoder with 12 convolutional layers containing 16 kernels each and 4 un-
pooling layers that upsample this code into a semantic map of the same size of
the input. The design of the architecture is inspired by Segnet’s design simplicity,
but to make it smaller, easier to train, and more efficient, we replace 24 of the 25

convolutional layers by our proposed residual separable convolutional bottlenecks.
The 5×5 receptive fields of the convolutional layers, along with the pooling layers
add up to an equivalent receptive field in the input image plane of 200×200 pixels.
This is sufficient for our application since it is a bigger window than the biggest
plant we expect in our data. The proposed number of layers, kernels per layer,
and reduction factor for each bottleneck module was chosen by training several
networks with different configurations, and reducing its size until we reached the
smallest configuration that did not result in a considerable performance decrease.

4.2 Experimental Evaluation

The experiments are designed to evaluate the accuracy and efficiency of our
method and to support the claims made in the introduction that our classifier is
able to perform accurate pixel-wise classification of value crops and weeds, gener-
alize well, and run in real-time. We implemented the whole approach presented
in this section relying on the Google TensorFlow library and OpenCV to com-
pute alternate representations of the inputs. We tested our results using a Bosch
Deepfield Robotics BoniRob UGV.
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Figure 4.7: Removing the reliance on NIR cues allows images captured by any RGB camera to
be processed by an algorithm, even the ones from a mobile phone.

4.2.1 Training and Testing Data
To evaluate the performance of the network, we use three different datasets cap-
tured in Bonn, Germany; Stuttgart, Germany; and Zurich, Switzerland, see Ta-
ble 4.2. Part of the data from Bonn is publicly available [22]. All datasets contain
plants and weeds in all growth stages, with different soil, weather, and illumina-
tion conditions. Figure 4.3 illustrates the variance of the mentioned conditions
for each dataset. The visual data was recorded with the 4-channel RGB+NIR
camera JAI AD-130 GE mounted in nadir view. For our approach, we use solely
the RGB channels because we aim to perform well with an off-the-shelf RGB
camera, see Figure 4.7, but the additional NIR information allows us to compare
the performance with an approach that exploits the additional NIR information.

Table 4.2: Dataset information

Bonn Zurich Stuttgart
# images 10 036 2 577 2 584

# crops 27 652 3 983 10 045
crop pixels 1.7% 0.4% 1.5%

# weeds 65 132 14 820 7 026
weed pixels 0.7% 0.1% 0.7%

To show the generalization capabilities of the pipeline, we train our network
using only images from Bonn, captured over the course of one month, and con-
taining images of several growth stages. We separate the dataset in 70%-15%-15%
for training, validation, and testing, and we report our results only in the latter,
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Table 4.3: Pixel-wise test sets performance. Trained in 70% Bonn, reporting 15% held-out
Bonn, 100% Stuttgart, and 100% Zurich.

Dataset Network mIoU[%] IoU[%] Precision[%] Recall[%]
Soil Weeds Crops Soil Weeds Crops Soil Weeds Crops

Bonn
IRGB 59.98 99.08 20.64 60.22 99.92 28.97 66.49 99.15 41.79 82.45

IRGB+INIR 76.92 99.29 49.42 82.06 99.88 52.90 84.19 99.33 88.24 97.01
I1...I14 (ours) 80.8 99.48 59.17 83.72 99.95 65.92 85.71 99.53 85.25 97.29

Zurich
IRGB 38.25 96.84 14.26 3.62 96.95 14.96 3.78 96.88 35.35 45.86

IRGB+INIR 41.23 98.44 16.83 8.43 99.68 19.03 9.07 98.46 51.27 54.46
I1...I14 (ours) 48.36 99.27 23.40 22.39 99.90 31.43 23.05 99.36 47.79 88.74

Stuttgart
IRGB 48.09 99.18 21.40 23.69 99.84 21.90 52.43 99.34 42.95 28.95

IRGB+INIR 55.82 98.54 23.13 45.80 99.85 25.28 68.76 98.69 49.10 57.84
I1...I14 (ours) 61.12 99.32 26.36 57.65 99.86 37.58 68.77 99.45 46.90 78.09

as well as the whole of the two other datasets from Zurich and Stuttgart, some
even recorded in different years. We train the network using the 70% part of the
Bonn dataset extracted for that purpose and perturb the input data by perform-
ing random rotations, scalings, shears, and stretches. We use stochastic gradient
descent with a batch size of 15 for each step, which is the maximum we can fit in
a single GPU. Furthermore, we use a weighted cross-entropy loss, to handle the
imbalanced number of pixels of each class, due to the soil dominance, and the
Adam optimizer for the calculation of the gradient steps. Training for 200 epochs
takes roughly 48 hours on an NVIDIA GTX1080Ti.

To show the effect in performance obtained by the extra channels, we train
three networks using different types of inputs: one based solely on RGB images,
another one based on RGB and extra representations, and finally the reference
baseline network using RGB+NIR image data.

4.2.2 Performance of the Semantic Segmentation
This experiment is designed to support our first claim, which states that our ap-
proach can accurately perform pixel-wise semantic segmentation of crops, weeds,
and soil, properly dealing with heavy plant overlap in all growth stages.

In Table 4.3, we show the pixel-wise performance of the classifier tested in
the 15% held out test set from Bonn, as well as the whole datasets from Zurich
and Stuttgart. These results show that the network trained using the RGB
images in conjunction with the extra computed representations of the inputs
outperforms the network using solely RGB images significantly in all categories,
performing comparably with the network that uses the extra visual cue from the
NIR information, which comes with a high additional cost as specific sensors have
to be employed.

Even though the pixel-wise performance of the classifier is important, in order
to perform automated weeding it is important to have an object-wise metric
for the classifier’s performance. We show this metric in Table 4.4, where we
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Table 4.4: Object-wise test performance. Trained in 70% Bonn, reporting 15% held-out Bonn,
100% Stuttgart, and 100% Zurich.

Dataset Network mAcc[%] Precision[%] Recall[%]
Weeds Crops Weeds Crops

Bonn
IRGB 86.34 83.63 81.14 91.99 80.42

IRGB+INIR 93.72 90.51 95.09 94.79 89.46
I1...I14 (ours) 94.74 98.16 91.97 93.35 95.17

Zurich
IRGB 45.51 59.75 19.71 42.52 23.66

IRGB+INIR 68.03 67.41 46.78 65.31 49.32
I1...I14 (ours) 72.08 67.91 72.55 63.33 64.94

Stuttgart
IRGB 46.05 42.32 42.03 46.1 25.01

IRGB+INIR 73.99 74.30 70.23 71.35 53.88
I1...I14 (ours) 76.54 87.87 65.25 64.66 85.15

analyze all objects with an area bigger than 50 pixels. This number is calculated
by dividing our desired minimum object detection size of 1 cm2 by the spatial
resolution of 2mm2/px in our 512×384 resized images. We can see that in terms
of object-wise performance the network using all representations outperforms its
RGB counterpart. Most importantly, in the case of generalization to the datasets
of Zurich and Stuttgart, this difference becomes critical, since the RGB network
yields a performance so low that it renders the classifier unusable for most tasks.

Note that the network using RGB and extra representations is around 30%
faster to converge to 95% of the final accuracy than its RGB counterpart, and
roughly 15% faster than the network using the NIR channel.

4.2.3 Labeling Cost for Adaptation to New Fields
This experiment supports our second claim, which states that our approach can
act as a robust feature extractor for images in conditions not seen in the training
set, requiring little data to adapt to the new environment.

One way to analyze the generalization performance of the approach is to
analyze the amount of data that needs to be labeled in a new field for the classifier
to achieve state-of-the-art performance. For this, we separate the Zurich and
Stuttgart datasets in halves, and we keep 50% of it for testing. From each of
the remaining 50%, we extract sets of 10, 20, 50, and 100 images, and we retrain
the last layer of the network trained in Bonn, using the convolutional layers in
the encoder and the decoder as a feature extractor. We further separate this
small sub-samples in 80%-20% for training and validation and we train until
convergence, using early stopping, which means that we stop training when the
validation error starts to increase. This is to provide an automated approach to
the re-training so that it can be done without the supervision of an expert, since
shipping a graduate student with each robot is not a feasible enterprise.
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Table 4.5: Object-wise test performance retraining in N images of Zurich dataset.

Inputs Nr. Images mAcc[%] Precision[%] Recall[%]
Weeds Crops Weeds Crops

IRGB

10 60.08 58.75 62.22 73.03 57.99
20 71.38 61.38 81.42 76.72 64.58
50 74.08 63.00 85.42 74.14 68.34
100 82.26 65.50 85.59 74.97 69.91

I1...I14
(ours)

10 83.90 69.23 80.73 71.71 76.18
20 85.31 75.85 79.12 67.67 84.01
50 86.25 76.50 85.24 71.55 84.33
100 89.55 85.89 89.52 89.69 86.76

Table 4.6: Object-wise test performance retraining in N images of Stuttgart dataset.

Inputs Nr. Images mAcc[%] Precision[%] Recall[%]
Weeds Crops Weeds Crops

IRGB

10 71.76 93.88 52.59 56.57 81.10
20 72.30 94.40 57.72 51.43 86.35
50 72.97 94.33 59.70 54.11 87.69
100 73.34 95.20 63.26 56.36 87.66

I1...I14
(ours)

10 81.40 89.48 64.42 78.74 79.69
20 81.84 87.83 68.18 81.45 74.61
50 86.75 94.68 71.34 83.22 90.23
100 91.88 95.45 86.58 89.08 91.43

We show the results of the retraining on the Zurich dataset in Table 4.5 and
Figure 4.8, where we can see that the performance of the RGB network when re-
labeling 100 images is roughly the same as the one using all input representations
when the latter is using only 10 images, thus significantly reducing the relabeling
effort. We also show that we can get values of precision and recall in the order of
90% when using 100 images for the relabeling in the case of our network, which
exploits additional channels. In Table 4.6 and Figure 4.8, we show the same for
the Stuttgart dataset, but in this case, the RGB network fails to reach an ac-
ceptable performance, while the accuracy of our approach grows linearly with the
number of images used.

Figure 4.8: Object-wise mean accuracy vs. relabeling effort. Zero images means no retraining.
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4.2.4 Runtime
This experiment supports our third claim, which states that our approach can
be run in real-time, and therefore it can be used for online operation in the field,
running in hardware that can be fitted in mobile robots.

We show in Table 4.7 that even though the architecture using all extra rep-
resentations of the RGB inputs has a speed penalty, due to the efficiency of
the network we can run the full classifier at more than 20 frames per second on
the hardware in our UGV, which consists of an Intel i7 CPU and an NVIDIA
GTX1080Ti GPU. Furthermore, we tested our approach in the Jetson TX2 plat-
form, which has a very small footprint and only takes 15W of peak power, making
it suitable for operation on a flying vehicle, and here we still obtain a frame rate
of almost 15Hz.

Table 4.7: Runtime in different devices.

Inputs FLOPS Hardware Preproc. Network Total FPS

RGB 1.8G i7+GTX1080Ti - 31ms 31ms 32.2

Tegra TX2 SoC - 65ms 65ms 15.2

All 2G i7+GTX1080Ti 6ms 38ms 44ms 22.7

Tegra TX2 SoC 6ms 62ms 68ms 14.7

4.3 Related Work
In the context of crop classification, several supervised learning algorithms have
been proposed in the past few years [58, 101, 98, 105, 110, 116, 137]. McCool et
al. [105] address the crop and weed segmentation problem by using an ensemble
of small CNN’s compressed from a more complex pre-trained model and report an
accuracy of nearly 94%. Haug et al. [58] propose a method to distinguish carrot
plants and weeds in RGB and near infra-red images. They obtain an average
accuracy of 94% on an evaluation dataset of 70 images. Mortensen et al. [116]
apply a deep CNN for classifying different types of crops to estimate their amounts
of biomass. They use RGB images of field plots captured at 3m above ground
and report an overall accuracy of 80% evaluated on a per-pixel basis. Potena
et al. [137] present a multi-step visual system based on RGB+NIR imagery for
crop and weed classification using two different CNN architectures. A shallow
network performs the vegetation detection and then a deeper network further
distinguishes the detected vegetation into crops and weeds. They perform a pixel-
wise classification followed by a voting scheme to obtain predictions for connected
components in the vegetation mask. They report an average precision of 98% in
case the visual appearance has not changed between training and testing.
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In previous works [101, 98], our group presented a vision-based classification
system based on RGB+NIR images for sugar beets and weeds that relies on
NDVI-based pre-segmentation of the vegetation. The approach combines some
appearance and geometric properties using a random forest classifier and obtains
classification accuracies of up to 96% on a pixel level. The works, however, also
show that the performance decreases to an unsuitable level for weed control appli-
cations when the appearance of the plants changes substantially. In Chapter 3,
we presented a 2-step approach that pre-segments vegetation objects by using
the NDVI index and afterward uses a CNN classifier on the segmented objects
to distinguish them into crops and weeds. We showed that we can obtain state-
of-the-art object-wise results in the order of 97% precision, but only for early
growth stages, since the approach is not able to deal with overlapping plants due
to the pre-segmentation step. However, that approach can do the classification
step with no expert knowledge, unlike this work.

Lottes et al. [103] address the generalization problem by using the crop ar-
rangement information, for example from seeding, as prior and exploit a semi-
supervised random forest-based approach that combines this geometric informa-
tion with a visual classifier to quickly adapt to new fields. Hall et al. [56] also
address the issue of changing feature distributions. They evaluate different fea-
tures for leaf classification by simulating real-world conditions using basic data
augmentation techniques. They compare the obtained performance by selectively
using different handcrafted and CNN features and conclude that CNN features
can support the robustness and generality of a classifier.

In this chapter, we also explore a solution to this problem using a CNN-based
feature extractor and classifier for RGB images that uses no geometric prior, and
generalizes well to different soil, weather, and illumination conditions. To achieve
this, we use a combination of end-to-end efficient semantic segmentation networks
and several vegetation indices and preprocessing mappings to the RGB images.

A further challenge for these supervised classification approaches is the neces-
sary amount of labeled data required for retraining to adapt to a new field. Some
approaches have been investigated to address to this problem [35, 142, 183]. Wen-
del and Underwood [183] address this issue by proposing a method for training
data generation. They use a multi-spectral line scanner mounted on a field robot
and perform a vegetation segmentation followed by a crop-row detection. Subse-
quently, they assign the label crop for the pixels corresponding to the crop row
and the remaining ones as weeds. Rainville et al. [142] propose a vision-based
method to learn a probability distribution of morphological features based on a
previously computed crop row. Di Cicco et al. [35] try to minimize the labeling
effort by constructing synthetic datasets using a physical model of a sugar beet
leaf. Unlike most of these approaches, our purely visual approach relies solely on
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4. Crop vs. Weed Semantic Segmentation using RGB-Only Data

RGB images and can be applied to fields where there is no crop row structure,
as our experimental evaluation showed.

4.4 Conclusion
In this chapter, we presented an approach to pixel-wise semantic segmentation of
crop fields identifying crops, weeds, and background in real-time solely from RGB
data. We proposed a deep encoder-decoder CNN for semantic segmentation that
is fed with a 14-channel image storing vegetation indexes and other information
that in the past has been used to solve crop-weed classification tasks. By feeding
this additional, task-relevant background knowledge to the network, we can speed
up training and improve the generalization capabilities on new crop fields, espe-
cially if the amount of training data is limited. We implemented and thoroughly
evaluated our system on a real agricultural robot operating using data from three
different places in Germany and Switzerland. Our results suggest that our system
generalizes well, can operate at around 15 FPS in embedded edge devices, and is
suitable for online operation in the fields.
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Chapter 5

Instance Segmentation in Urban
Environments

As we have mentioned multiple times through this thesis already, per-
ception is one of the main building blocks for robotic applications
that need interaction with real-world, dynamic environments such as
agricultural fields, city roads, or even domestic environments. An ac-

curate understanding of what is present and happening in the scene is absolutely
key for robots to operate safely and in a situation-dependent manner. Seman-
tic information about the environment in the form of object detection, semantic
segmentation, and instance segmentation have been exploited for many robotics
tasks such as mapping [37, 75, 106, 168], visual place recognition [45], manipula-
tion [15, 161], and agriculture [98, 111], Chapter 3, and Chapter 4.

One of four different types of approaches is typically used in this context:
semantic segmentation, object detection, instance or panoptic segmentation. Se-
mantic segmentation (see Figure 5.1, middle) conveniently provides a class label
for each pixel of an image, and therefore enables applications that require accurate
object masks such as removal of dynamic objects for visual odometry. However,
it does not provide an association of the pixels to an object instance. This is
inconvenient for robotic tasks where the location of each object is of interest, for
example, to be used as a visual landmark, for object manipulation or collision
avoidance. Furthermore, performing semantic segmentation is often computa-
tionally demanding. This is especially true if using high-resolution images, which
is often desired for high accuracy and handling objects at a far distance. On the
other side, object detection provides a class label for each object instance jointly
with the regression of the image coordinates of a bounding box that encloses the
object. This approach is popular as it has the advantage of fast inference. Unfor-
tunately, object detection does not provide an object mask, and the correlation
between the object boundaries and the bounding boxes is not trivial.
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Figure 5.1: Desired workflow. Top: Input RGB image. Middle: Semantic segmentation mask.
Bottom: Instance segmentation mask.

The key sub-tasks for semantic scene understanding in robotics are instance
segmentation (see Figure 5.1, bottom) and panoptic segmentation (which com-
bines semantic and instance segmentation as a single task, with a unified met-
ric). Both these tasks provide labels for each object instance, but also provide an
accurate segmentation mask and thus enables a further, task-specific, analysis of
the image content. A typical example in robotics of the type of application that
this enables is the accurate removal of dynamics from the scene to be able to do
simultaneous localization and mapping under the usually required static-world
assumption. This is, of course, also possible with semantic segmentation labels,
but these make obstacle avoidance and obstacle intent prediction harder, or even
impossible, in the usual case that objects in the scene overlap in the camera view.
Furthermore, panoptic segmentation provides class masks for non-object classes
as well. We focus on the latter in Chapter 8, and instead, on this chapter we
focus solely on the former.

The main contribution represented in this chapter is a novel approach that
performs instance and semantic segmentation of the object classes in the scene,
both efficiently and effectively for driving platforms, which need quick reaction
times for safe actuation. We propose a convolutional neural network architecture
that uses superpixel summarization of locally connected regions of an image,
and combines object detection and a metric learning pipeline to speed up joint
semantic and instance segmentation without sacrificing accuracy.
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5. Instance Segmentation in Urban Environments

Our CNN predicts, for each output superpixel, the probability of it being an
instance center, a high-dimensional embedding from a metric learning loss, and
a softmax probability for the semantic segmentation task. This approach allows
us to perform fast upsampling without sacrificing mask accuracy, while at the
same time speeding up the clustering of the embeddings to obtain an individual
instance mask for each object in the scene. Along with Chapter 4, this approach
is another example of how domain-specific priors can be included to improve some
of the aspects of the perception pipeline (such as performance or runtime). As
the reader can notice, this is a recurrent topic throughout this thesis, since as
we approach the limits of what can be done with end-to-end, purely data-driven,
deep learning algorithms, these priors are what make the whole design paradigm
work in the real world.

5.1 Semantic Segmentation using
Neighborhood Information

The main goal of our work is to obtain an accurate instance segmentation masks of
objects from RGB camera images in a timely manner. This enables online decision
making based on the extracted semantics, for tasks such as semantic landmark
extraction, obstacle avoidance, manipulation, intent prediction, path planning,
or visual odometry. As each of these tasks needs a different balance between the
localization of each object and the accuracy of their masks, it is important to have
algorithms that can perform both tasks accurately, while fast enough to process
the camera images at frame-rate speeds. We propose a CNN-based algorithm that
combines detection and segmentation with superpixel summarization, allowing us
to obtain accurate semantic and instance labels for each pixel of an image. As
our approach operates in a low dimensional feature-space grid, it is fast to run
without sacrificing mask or instance performance.

Our method uses a common CNN encoder extracting features from RGB im-
ages at different resolutions, and has three separate decoder heads, see Figure 5.2.
Each decoder head combines and upsamples the multi-resolution features into a
low-dimensional grid, which makes the processing fast. We explain these three
output grids extensively, and we call the value at a certain (x, y) position of this
grid a “grid element”. Such an element addresses all corresponding feature values
at that spatial position. The three heads predict: (i) a semantic segmentation
mask which maps each grid element to a softmax pseudo-probability distribution
over the desired semantic classes; (ii) a high-dimensional embedding for each grid
element, which is to be close in Euclidean similarity for elements belonging to the
same instance, and distant otherwise; and (iii) the confidence of each grid element
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5.1. Semantic Segmentation using Neighborhood Information

Figure 5.2: Our architecture. The different resolution features are skipped to all decoders in
their respective output stride (OS). Each decoder predicts a volume of lower resolution than
the input, in this case of OS8, reducing the number of pixels to cluster by a factor of 64.
After the decoders predict the semantic mask and the centers and embeddings are joined into
individual instances, the superpixels are used to upsample the results. The encoder shown is
Darknet53 [144].

being an object center. Parallelly, the input is processed by a fast GPU-based
superpixel algorithm [147] based on SLIC [2], which is able to upsample each
“grid element” into the locally connected pixels in the original resolution output.

Our approach can be summarized in three main steps. First, a CNN backbone
summarizes the image as a set of features of different resolution, and three task
decoders upsample these features into task grids of lower resolution than the
input. These decoders contain the semantic segmentation, center confidences, and
embeddings respectively for each of the groups of input pixels that are mapped
to it. Second, and in parallel with the CNN, a fast superpixel extraction [147]
of the original image is performed resulting in a mapping used to upsample the
decoder grids. Finally, post-processing is performed to map each embedding to
an individual object center and extract the instances, previous to upsampling
using the mappings from step two.

5.1.1 Joint Semantic and Instance Segmentation CNN

Our CNN structure is composed of four main components: (i) a fully convolu-
tional encoder which extracts features at different resolutions for the decoders,
(ii) a decoder which infers a downsampled semantic segmentation softmax dis-
tribution over the semantic classes, (iii) a decoder which infers the confidence
of each superpixel being an object center, and (iv) a decoder which infers a 32-
dimensional embedding for each superpixel using a discriminative metric loss. All
four components are trained jointly using a weighted sum of the three task losses.
In the following subsections, we introduce each of these modules in detail.

56



5. Instance Segmentation in Urban Environments

5.1.1.1 Encoders

We use two different convolutional backbone architectures for the multi-resolution
feature extraction with different levels of descriptiveness, defined by their size and
the number of layers. On the computationally expensive side of the spectrum,
we use Darknet 53 [144] (DN53), which is a ResNet [60] inspired architecture and
has proven to work well for the object detection task as a part of the YOLOv3
architecture. This architecture also obtains top-1 accuracy on the validations set
of ImageNet-1K [34] of 77.2%, which is the current state of the art, and higher
than ResNet101, which is 50% slower to run. This makes it a well-suited feature
extractor for our backbone. On the other side of the descriptiveness spectrum, we
use a MobilenetsV2 [159] (MNv2) encoder, which has an order of magnitude less
parameters than Darknet 53 and is designed to maximize efficiency for running on
mobile devices. This backbone achieves a top-1 ImageNet accuracy of 72%. This
is lower than the more expensive Darknet 53 but is the current state of the art for
real-time applications. Since the publication of this work, newer mobile-oriented
models have been released [64], but because they were searched through neural
architecture search to run fast on mobile CPUs, their GPU performance is poor,
so we stand with our decision to use MobilenetsV2. Before attaching the decoders,
we pre-train both backbones on ImageNet to accuracy, using the standard output
stride (OS) of both backbones of 32, which means that the last layer will be
downsampled 32 times from the original image size. Our framework allows the
extraction of any feature resolution of the model to skip to the decoder, and to
modify the output stride of the final layer by using dilated convolutions [23], to
be able to segment small objects at the expense of extra calculations. We use two
different encoders to show that the gains of our approach are similar regardless of
the architecture used, meaning that once a better feature extractor is designed,
our method can be used on top of it.

5.1.1.2 Semantic Segmentation Decoder

All three decoders have the same architecture, but their last layer is passed
through a different activation function. Furthermore, during training, they are
optimized with different losses. On top of the encoder, we attach a module that
upsamples the last layer’s features and concatenates them to their matching skip
resolution in the encoder (see Figure 5.2). After the concatenation we use a [1×1]

convolution that squashes the upsampled features with the skipped ones, and 2
layers of [3 × 3] convolutions to combine them and learn task-specific parame-
ters. This is done iteratively until the output volume matches the size of the grid
needed to perform the superpixel upsampling. For the semantic segmentation
head, the output depth is the number of classes, and the activation function is

57



5.1. Semantic Segmentation using Neighborhood Information

Figure 5.3: Instance labels and their corresponding 32-dimensional embeddings randomly pro-
jected to 3 dimensions to show them in RGB. Best viewed in color.

a softmax ŷc =
elogitc∑
c e

logitc , where logitc is the unbounded output in the slice corre-
sponding to class c. This gives a pseudo-probability distribution per grid-element,
which is optimized using a weighted cross-entropy loss:

Lsemantic = −
C∑
c=1

wc yc log
(
ŷc
)
, (5.1)

wc =
1

log (fc + ϵ)
, fc =

1

P

P∑
p=1

1 if p = c

0 if p ̸= c
, (5.2)

where wc which penalizes class c according to the inverse of its frequency in the
ground truth, bounded by a parameter ϵ which is set to 1.02 in all our experiments.

5.1.1.3 Embedding Decoder

The objective of this branch is to provide a high-dimensional embedding (with
32 dimensions in our case) that has a low Euclidean distance to all other grid ele-
ments of the same instance, and a high Euclidean distance to all other instances.
Figure 5.3 shows this in action by randomly projecting all 32-dimensional embed-
dings into 3D space so that each embedding can be mapped to an RGB value (for
illustrative reasons). The embedding branch is analog to the semantic segmenta-
tion branch, in terms of upsampling, concatenating, squashing, and adding extra
convolutional layers, but the main difference lies in the lack of an activation
function. For this layer, instead of a softmax activation, we use the unbounded
logits, which we call ê. Following [16], we define three hinged losses to achieve
this purpose. In all equations, K is the number of instances, Pk is the number of
grid elements in instance k, ∥·∥ is the L2-norm, and [x]+ means the positive part
of x, meaning max(0, x), which hinges the loss. The first loss is the attraction
loss

Lattract =
1

K

K∑
k=1

1

Pk

Pk∑
p=1

[
∥êk,c − êk,p∥ − δa

]+
, (5.3)
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5. Instance Segmentation in Urban Environments

which defines that all pixels of the same instance should have a low Euclidean
distance to the embedding in its center. Following De Brabandere [16], this loss
is hinged, which means that the embeddings that are already “close enough” to
the center embedding do not receive a loss. This allows the embeddings to move
around improving training and inference stability. This is modulated by the
parameter δa, set to 0.1 for all our experiments. Note that in [16], the distance is
calculated to the mean of the embedding due to the lack of the concept of object
center. The second loss is the repelling loss:

Lrepel =
1

K(K − 1)

K∑
kA=1

K∑
kB=1

kA ̸=kB

[
δr − ∥êkA,c − êkB ,c∥

]+ (5.4)

This loss pushes the object centers from different instances away from each other
in embedding space. Analogously to the attraction loss, this loss is hinged to allow
the embeddings to move around when they are “far enough”. This is modulated
by δr, which is set to 1.0. The third loss

Lreg =
1

K

K∑
k=1

∥êk,c∥, (5.5)

penalizes the norm of all embeddings in the object centers to improve stability,
making the embeddings stay close to the origin, and has no further meaning for
the approach. We combine the three loss functions as a weighted sum and use it
to backpropagate through the embedding decoder, as well as the encoder as:

Lembed = α Lattract + β Lrepel + γ Lreg, (5.6)

with α = β = 1.0 and γ = 0.001.

5.1.1.4 Instance Center Decoder

The last decoder head is the object center confidence head, which is analogous
to the other two in terms of architecture design. This branch predicts, for each
grid element, the confidence of it being the center of an object. In this de-
coder, the output volume is of depth 1, followed by a sigmoid activation of
shape ŷ = σ(logit) = 1/(1 + e-logit). This branch is optimized by a weighted
cross-entropy loss between the output and the object center targets. However,
because the number of grid elements is orders of magnitude larger than the av-
erage amount of objects in each image, the easy background elements overwhelm
the loss. Therefore, we follow Lin et al. [92], and add an extra focal loss term
modulated by γ, in Equation (5.7). This γ modulation makes the loss of easy
background examples lower to circumvent the overwhelming of the loss.
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Lcenters =

−α (1− ŷ)γ log (ŷ) if y = 1

−(1− α) ŷγ log (1− ŷ) if y = 0
(5.7)

In our experience, the object loss does not converge unless this term is added.
Another important parameter for the confidence head is the initialization of the
bias of the last layer before the sigmoid. Usually, models for binary classification
are initialized to output positive or negative class with equal probability, and
therefore, in the presence of imbalance as extreme as our task, the loss is domi-
nated by the easy negatives causing instabilities. Following [92], we initialize the
last bias of this decoder to b = − log((1−π)/π), where π is a prior calculated from
the class imbalance. For all experiments, we use π = 0.1, α = 0.01 and γ = 2,
which are obtained as the parameter which gives the lowest cross-validation error.

5.1.2 Postprocessing
Once the CNN has predicted all three heads, we perform a fast post-processing
step to obtain the final output. First, we mask the embeddings and object cen-
ters with the semantic segmentation grid from the first head, to separate the
embeddings and centers of each class from each other and the background, see
Figure 5.2. Then we extract all grid elements that have center confidence over 0.7
and extract the center of mass of all connected components in this binary mask.
This step is necessary because the center of an object is not a perfectly defined
concept, and therefore the CNN usually outputs blobs instead of single elements
for each instance. We also perform an elimination of “duplicated” cluster centers,
which are the centers that have embedding distances lower than δa from Equa-
tion (5.3). These steps are analogous to the non-maximum suppression step in
object detectors, where several anchors detect an object, and only one is kept by
setting a threshold in the intersection over union.

Once we extract all the centers of objects, we mask their 32-dimensional em-
beddings as well as all the embeddings of the grid elements belonging to a certain
class, and we calculate a similarity matrix between all elements in the class and
all the centers. The next step calculates the maximum similarity object center for
each element and filters the ones that have a distance greater than δa, to eliminate
elements that were incorrectly assigned by the semantic head. This procedure as-
signs a unique id to each instance in a class and groups all their elements and
is repeated for all classes. The final step in the post-processing is to upsample
each grid element for both the clustered instances and the semantic mask into
the original size output space, which is done using the one-to-many mapping ex-
ploiting the neighborhood color information from the superpixels, see Figure 5.2.
We explain how we obtain this mapping in the following section.

60



5. Instance Segmentation in Urban Environments

5.1.3 Superpixel Extraction for Locally Consistent
Upsampling

Our approach upsamples the low-resolution output grids of the CNN using an
over-segmentation grid of the input in superpixels, improving over simple bi-
linear upsampling without sacrificing runtime. These superpixels need to be
small enough to capture the “connectivity” of real-world objects, avoiding under-
segmentation, but as big as possible to maximize the reduction of the size of the
CNN output. This makes both, the inference and the clustering of the instances,
faster. Thus, this size is a compromise which depends on the sizes of objects
in the data, and is selected by evaluating the under-segmentation error in the
training set of our data, the Cityscapes dataset [30].

For an image size H × W and a superpixel size k, the SLIC algorithm
starts with a grid of size H/k×W/k of evenly distributed cluster centers c. The
approach then iteratively (i) obtains the nearest neighbor cluster center using a
distance

δs = ∥ILab(i)− ILab(c)∥+ α ∥Ixy(i)− Ixy(c)∥ (5.8)

for each pixel i, only looking in the clusters present in a 2K×2K neigborhood; and
(ii) updates the cluster centers to become the mean of the newly associated cluster
pixels. This is done until convergence, or until a limit number of iterations is met.
Thanks to its definition as a selective nearest neighbor search followed by cluster
center update, SLIC is highly parallelizable. The gSLICr implementation used
in our approach performs the nearest neighbor search in CUDA using one thread
per pixel, as well as the cluster update using a kernel to do the accumulation of
the energy values, and a separate one for the reduction which returns the updated
clusters. This allows for a segmentation that runs around 83 times faster than
its CPU counterpart. Due to the rigid nature of the output of all CNNs, if we
want to use the extracted superpixels to improve the boundary consistency of the
output masks using a one-to-many mapping, we need all of the cluster centers in
the over-segmentation to remain in a grid-like structure. Therefore, we perform
one iteration of the algorithm to get the boundary information of each locally
consistent area, but without updating the cluster centers. This yields a grid in
a structure that has a close resemblance with the regular grid with which the
algorithm was initialized.

5.2 Experimental Evaluation
The experiments are designed to show the efficiency and performance of our joint
semantic and instance segmentation approach, and to support the claims that
our method is capable of performing both tasks in parallel, accurately, and faster
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Input Semantic (Ours) Semantic (GT) Instance (Ours) Instance (GT)

Figure 5.4: Examples of results on the validation set for our MobilenetsV2 backend using a
decoder output grid downsampled 16 times (decoder OS 4).

“Motorcycle” “Person”

Instances Centers
Original size Downsampled grid

Figure 5.5: Procedure to get from original sized labels to downsampled versions using the label
at the center of mass of each superpixel.

than previous approaches. We implemented the whole approach presented in this
work relying on Pytorch.

5.2.1 Training Data
For our experiments, we use the Cityscapes dataset [30], which contains 5 000

annotated images with fine annotations of 30 semantic classes, 8 of which con-
tain instance labels, plus 20 000 images containing coarse annotations. For our
experiments, we use the 8 classes containing fine pixel-wise instance information:
“person”, “rider”, “car”, “truck”, “bus”, “train”, “motorcycle”, and “bicycle”,
and we treat the remaining pixels as background, both for the semantic as well
as the instance task, see Figure 5.4 for examples of the images in the dataset.
To train our architecture, we choose a downsampling rate based on two crite-
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Table 5.1: Performance on validation set by encoder and output stride

Encoder Decoder Instance Semantic Runtime (avg.)
OS mAP@50% mAP IoU Spix CNN Cluster FPS

Baseline using Darknet 53 1 46.9% 24.3% 65.4% - 138 ms 240 ms 2

Ours using Darknet 53 1 46.7% 22.3% 65.4% - 141 ms 36 ms 5.5
4 46.5% 21.9% 63.7% 4 ms 73 ms 9 ms 12

Ours using Mobilenets V2 1 46.2% 21.9% 62.3% - 48 ms 36 ms 11
4 45.2% 21.1% 60.4% 4 ms 19 ms 9 ms 31

ria: maximizing the superpixel size to decrease the output stride of the decoders,
making the clustering of the instance elements faster, and at the same time, min-
imizing the under-segmentation error. For all experiments, we use an image size
of 1024× 512 and the best performing superpixel size in our experiments was 4,
which allows us to reduce the number of pixels in the post-processing by 16, as
well as reduce the inference time of the CNN. We train our networks downsam-
pling the targets using the superpixels extracted from the inputs. This is if an
image and its corresponding semantic and instance label are of size H × W ,
and the superpixels are of size k, the output grids and the used targets for each
loss are of size H/k × W/k and each target grid element is the label at the
center of mass of its corresponding superpixel, see Figure 5.5. We train the whole
architecture end-to-end starting with the encoder pre-trained on ImageNet, as
stated in Section 5.1.1.

5.2.2 Performance
This experiment is designed to show that our algorithm can efficiently segment
and classify individual objects from camera images, without sacrificing accuracy.

Table 5.1 shows the results of training in the 2,975 training set images with
fine, pixel-wise annotations, and validating the results in 500 held out images from
different cities. The first row shows the results of training an architecture with
a strong, state of the art backbone (DN53) and inferring only the semantic and
embedding branch, without the embedding centers or superpixel upsampling, and
applying an all-to-all clustering of the instance pixels afterward. The subsequent
rows show our approach inferring the cluster centers with different backbones,
and decoder output strides. The results show two interesting effects. First, even
though the baseline with no superpixel upsampling or center inference performs
slightly better than our best performing architecture (row 0 vs. 1), this costs
almost 3 times more to run, due to the expensive post-processing in the absence
of the inferred cluster centers. Second, when using decoder OS 4, which means
upsampling with superpixels of size k = 4, the models perform similarly to their
non-upsampled counterparts but run 2 times faster in the case of the Darknet
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Table 5.2: Comparison with other state-of-the-art real-time semantic segmentation methods.

IoU Segnet*[7] ERFNet*[151] ENet*[126] Ours MNv2 Ours DN53
Car 89.2% 93.4% 91.0% 88.6% 94.1%
Bus 43.1% 60.8% 49.3% 77.3% 73.2%

Truck 38.1% 52.2% 39.3% 57.4% 62.1%
Motorc. 35.7% 49.8% 41.6% 38.9% 45.8%

Train 44.1% 53.7% 50.5% 61.9% 62.4%
Bicyc. 51.8% 64.2% 59.8% 48.6% 53.9%
Person 62.7% 78.5% 71.3% 60.2% 61.3%
Rider 42.8% 59.7% 49.6% 50.6% 57.3%
Mean 50.9% 64.0% 56.5% 60.4% 63.7%
FPS 16 50 76 31 12

Methods with * perform the semantic task exclusively, not predicting instances.

Table 5.3: Comparison with other state-of-the-art instance segmentation methods.

Model AP AP@50% FPS
DeepWatershed[8] 19.4% 35.3% -

FSUfAD[121] 21.0% 38.6% 21
Mask-RCNN [59] 26.2% 49.9% 2

PANet[94] 31.8% 57.1% 2
Mask-RCNN* [59] 32.0% 58.1% 2

PANet*[94] 36.4% 63.1% 2
Ours MNv2 21.1% 45.2% 31
Ours DN53 21.9% 46.5% 12

Methods with * were pretrained with COCO [91] dataset.

based model, and almost 3 times faster for the Mobilenets based one.
Table 5.2 and Table 5.3 show a comparison to other state-of-the-art methods

for semantic segmentation and instance segmentation, respectively. Table 5.2
shows that our algorithm performs the semantic segmentation task on par with
other state-of-the-art, real-time methods, but with the burden of having to infer
the instances as well. Table 5.3 shows that our approach performs better than
other state of the art methods, but slightly under-performs the best benchmark
submissions such as MaskRCNN [59] and PANet [94], which are roughly 15 times
slower to run.

5.3 Related Work
Several methods for instance segmentation have been proposed over the last years,
most of them based on some CNN backbone for feature extraction but using
different types of decoders. Such approaches can be grouped according to how
they exploit different decoder architectures.
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One group of approaches works with region proposals coming from an object
detection pipeline and a posterior mask segmentation between foreground and
background. This has the advantage that these approaches can deal with an
arbitrary object number and usually provide accurate results. State-of-the-art
examples are Mask-RCNN [59] or PANet [94]. Such type of pipeline is particularly
useful in application-specific use cases where obtaining region proposals is easy,
for example in the approach presented in Chapter 3. However, there are two main
disadvantages of these types of proposal-based, two-stage pipelines. First, they
are usually slow, and second, the relationship between the object mask and its
bounding box may not be straight-forward. This may render the computation
of the object mask hard in some cases. Furthermore, most of these approaches
infer the segmentation of the foreground class in each bounding box proposal in a
reduced resolution, relying on bilinear upsampling to map it back to the original
image size. This sacrifices the accuracy of the object boundaries.

The second group of approaches relies on recurrent neural networks and at-
tention mechanisms [148, 152]. They take a single image as an input and output
instance masks, one by one in a counting-like manner. This is sometimes reported
as biologically inspired, but these approaches do not offer the best accuracy and
runtime.

The last group of approaches to instance segmentation is based on metric
learning strategies [8, 16, 41, 121, 128]. They rely on predicting a discrimina-
tive high-dimensional embedding for each pixel, followed by clustering of pixel
embeddings into individual instances. Some methods in this context rely on
a previously executed, semantic segmentation of the input into the individual
semantic classes, and subsequently predict an embedding [16] or an energy func-
tion [8] that allows to separate the pixels inside each semantic class mask into
individual instances. The required semantic segmentation usually comes from a
separate, and computationally expensive CNN and, thus, except for a few excep-
tions, these approaches cannot run in real-time on a robot, and their accuracy
has an upper bound that is given by the performance of the pre-segmentation
CNN. Alternative approaches [41, 121], try to predict both, the class labels, as
well as the instance embeddings at the same time. There is, however, no concept
of “objectness” in these types of pipelines, which makes the posterior clustering
of the embeddings difficult and computationally demanding.

Our approach overcomes this limitation by adding the inference of the object
centers’ confidence such as in one-shot object detection pipelines, which in turn
allows us to speed up the post-processing by avoiding the expensive all-to-all
similarity matrix calculation. Furthermore, we exploit fast GPU-based superpixel
summarization, which exploits the local connectivity of pixels in objects, and
allows us to further reduce the number of computations needed to calculate the
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similarity matrix between the embeddings in each semantic class and the centers
of clusters. This is key for achieving semantic analysis at the camera frame-rate.

5.4 Conclusion
In this chapter, we presented a novel approach for joint semantic and instance seg-
mentation in an efficient manner. Our main contribution is a CNN architecture
based on one-shot object detection and metric learning that can perform the se-
mantic and instance segmentation tasks simultaneously in real-time. We achieve
this by performing a fast GPU-based superpixel over-segmentation, which allows
us to exploit local connectivity of neighboring pixels and reduce the complexity
of our algorithm, while still obtaining high-resolution masks. Our one-shot object
detection based pipeline jointly predicts the confidence of each superpixel being
the center of an object, its semantic class, and a high-dimensional embedding
which allows us to assign each individual occupied superpixel to an instance cen-
ter. This allows us to achieve three important algorithmic qualities. Firstly, given
the over-segmentation grid and the regression of the instance centers as object
confidences, we avoid the selection of the number of cluster centers for the k-
means clustering of the embeddings, and instead we can just count the regressed
instance centers over some desired confidence level. Secondly, by exploiting the
neighborhood information we both reduce the number of pixels to cluster, allow-
ing us to use bigger images, and avoid stranded pixels at test time. Finally, the
one-shot architecture combined with the neighborhood summarization makes the
extraction of the instances faster when compared to two-stage as well as other
metric learning-based methods.
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Part II

Scene Understanding using
LiDAR Sensors
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Chapter 6

Large-Scale Supervised Learning
of LiDAR data

Semantic scene understanding is an integral part of any self-driving car’s
software stack. Particularly, fine-grained understanding provided by se-
mantic, as well as panoptic segmentation is necessary to distinguish driv-
able and non-drivable surfaces and to reason about functional properties,

like parking areas and sidewalks, as showcased in Chapter 5. Currently, such un-
derstanding, represented in so-called high definition maps, is mainly generated
in advance using surveying vehicles. However, self-driving cars should also be
able to drive in unmapped areas and adapt their behavior if there are changes in
the environment. Most self-driving cars currently use multiple different sensors
to perceive the environment. Complementary sensor modalities enable to cope
with deficits or failures of particular sensors. Besides cameras, light detection
and ranging (LiDAR) sensors are often used as they provide precise distance
measurements that are not affected by lighting.

Publicly available datasets and benchmarks are crucial for empirical evalua-
tion of research. They mainly fulfill three purposes: (i) they provide a basis to
measure progress since they allow to provide results that are reproducible and
comparable, (ii) they uncover shortcomings of the current state of the art and
therefore pave the way for novel approaches and research directions, and (iii) they
make it possible to develop approaches without the need to first painstakingly
collect and label data. While multiple large datasets for image-based semantic
and instance segmentation exist, such as the ones used in Part I [30, 119, 22],
publicly available datasets with point-wise annotation of three-dimensional point
clouds at the time this work was done were comparably small, as shown in Ta-
ble 6.1. It is important to notice that since the release of our benchmark, multiple
other LiDAR datasets have been released which also exploit the sequentiality of
the data for autonomous driving [18, 74, 167], highlighting the topic’s relevance.
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#scans1 #points2[M] #classes3 annotation sequential

SemanticKITTI 23k/20k 4 549 25 (28) point-wise 3

Oakland3d [118] 17 1.6 5 (44) point-wise 7

Freiburg [165, 13] 77 1.1 4 (11) point-wise 7

Wachtberg [13] 5 0.4 5 (5) point-wise 7

Semantic3d [55] 15/15 4 009 8 (8) point-wise 7

Paris-Lille-3D [156] 3 143 9 (50) point-wise 7

Zhang et al. [192] 140/112 32 10 (10) point-wise 7

A2D2*[48] 38k 5 772** 38 point-wise 7

PandaSet*[160] 16k 1 920 37 point-wise 3

KITTI [46] 7k/7k 1 799 3 bounding box 7

Waymo* [167] 230k 40 710 4 bounding box 3

NuScenes* [18] 40k 1 360 23 bounding box 3

Lyft L5* [74] 46k 9 960 9 bounding box 3

Table 6.1: Overview of other point cloud datasets with semantic annotations. Ours is by far the
largest dataset with sequential information. 1Number of scans for train and test set, 2Number
of points is given in millions, 3Number of classes used for evaluation and number of classes
annotated in brackets. Datasets marked with * post-date our work. Furthermore, in datasets
marked with **, only the points which overlap with camera FOV are semantically segmented.

To close the gap between the data starvation for machine learning algorithms
using LiDAR and researchers in the field, we took the effort to produce this
type of data and proposed SemanticKITTI. SemanticKITTI is a large sequential
dataset showing unprecedented detail in point-wise annotation with 28 classes,
which is suited for various tasks. Furthermore, for 8 of the potentially-moving
classes, such as car, person, etc., we also provide different labels for moving and
non-moving instances, as well as temporally consistent instance IDs. This allows
to perform, besides semantic segmentation, also temporally consistent panoptic
segmentation, as ventured by Hurtado et al. [69].

In this chapter, we will mainly focus on laser-based semantic as well as panop-
tic segmentation. The dataset is distinct from other laser datasets as we provide
accurate scan-wise annotations of sequences. Overall, we annotated all 22 se-
quences of the odometry benchmark of the KITTI Vision Benchmark [46] con-
sisting of over 43 000 scans. Moreover, we labeled the complete horizontal 360◦
field-of-view of the rotating laser sensor. Figure 6.1 shows example scenes with
our semantic segmentation labels, and Figure 6.2 shows examples of the consis-
tent instance annotation.

This large dataset has stimulated the development of novel algorithms, as it
makes it possible to investigate new research directions, and puts evaluation and
comparison of these novel algorithms on a more solid ground [9].
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6. Large-Scale Supervised Learning of LiDAR data

Figure 6.1: Our dataset provides dense annotations for each scan of all sequences from the
KITTI Odometry Benchmark [46]. Here, we show multiple scans aggregated using pose infor-
mation estimated by a SLAM approach.

Figure 6.2: Our dataset also provides the instance annotations over a sequence of scans: on the
left is the semantic annotation and on the right is the instance annotation shown. Note, same
colors at different timestamps correspond to the same instance id. Along with the semantic
labels, this allows for temporally-consistent panoptic segmentation. Best viewed in color.
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6.1. The SemanticKITTI Dataset

6.1 The SemanticKITTI Dataset

Our dataset is based on the odometry dataset of the KITTI Vision Benchmark [46]
showing inner-city traffic, residential areas, but also highway scenes and country-
side roads around Karlsruhe, Germany. The original odometry dataset consists
of 22 sequences, splitting sequences 00 to 10 as the training set, and 11 to 21

as the test set. For consistency with the original benchmark, we adopt the same
division for our training and test set. Moreover, we do not interfere with the orig-
inal odometry benchmark by providing labels only for the training data. Overall,
we provide 23 201 full 3D scans for training and 20 351 for testing, which, even
after the release of multiple other datasets, is still the largest dataset publicly
available for LiDAR-only semantic and panoptic segmentation. Furthermore, it
is the only one including entire complex sequences, including loop closures, and
multiple passes of an area, which enables the study of how semantics affect the
Simultaneous Localization and Mapping (SLAM) process [27].

We decided to use the KITTI dataset as a basis for our labeling effort since
it allowed us to exploit one of the largest available collections of raw point cloud
data captured in a car. We furthermore expect that there are also potential
synergies between our annotations and the existing benchmarks and this will
enable the investigation and evaluation of additional research directions, such as
the aforementioned usage of semantics for laser-based odometry estimation [27].

Compared to other datasets, as shown in Table 6.1, we provide labels for se-
quential point clouds generated with a commonly used automotive LiDAR, i.e.,
the Velodyne HDL-64E. Other publicly available datasets, like Paris-Lille-3D
[156] or Wachtberg [13], also use such sensors, but only provide the aggregated
point cloud of the whole acquired sequence or some individual scans of the whole
sequence, respectively. Since we provide the individual scans of the whole se-
quence, one can also investigate how aggregating multiple consecutive scans in-
fluences the performance of the semantic segmentation and use the information
to recognize moving objects.

We annotated 28 classes, where we ensured a large overlap of classes with
the Mapillary Vistas dataset [119] and Cityscapes dataset [30] and made mod-
ifications where necessary to account for the sparsity and vertical field-of-view.
More specifically, we do not distinguish between persons riding a vehicle and the
vehicle but label the vehicle and the person as either bicyclist or motorcyclist.

We furthermore distinguished between moving and non-moving vehicles and
humans, i.e., vehicles or humans gets the corresponding moving class if they
moved in some scan while observing them, as shown in the lower part of Fig-
ure 6.5. For all of these, we also assigned a temporally consistent instance id. All
annotated classes and their statistics are listed in Figure 6.3, and the statistics
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Figure 6.3: Semantic Segmentation label distribution. The number of labeled points per class
and the root categories for the classes are shown. For movable classes, we also show the number
of points on non-moving (solid bars) and moving objects (hatched bars).
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Figure 6.4: Instance label distribution. Left: number of (sequence-wise) objects. Right: number
of (scan-wise) instances. The hashed bars correspond to the training data. The large number
of scan-wise annotations in relation to the number of objects indicates that many objects are
seen over an extended period of time.

of the instance labels are present in Figure 6.4. In summary, we have 28 classes,
where 6 classes are assigned the attribute moving or non-moving as well as an
instance id, and one outlier class is included for erroneous laser measurements
caused by reflections or other effects.

The dataset is publicly available through a benchmarking website and we
provide only the training set with ground truth labels and perform the test set
evaluation online. We furthermore will also limit the number of possible test set
evaluations to prevent overfitting to the test set [175]. In the said website, two
benchmarks are available: a semantic segmentation benchmark and a panoptic
segmentation benchmark. In summary, our main contributions are:

• We present a point-wise annotated dataset of point cloud sequences with an
unprecedented number of classes and unseen level-of-detail for each scan.

• We provide temporally-consistent instance annotations for all traffic partic-
ipants including vehicles, pedestrians, bicyclists, and motorcyclists for the
KITTI Odometry Benchmark.

• We provide two benchmarks for semantic and panoptic segmentation which
allow researchers in the field to test their approaches in a hidden test set,
which is also consistent with the split of a well-established odometry bench-
mark, allowing for synergies between these [27, 46]
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Figure 6.5: Single scan (top) and multiple superimposed scans with labels (bottom). Also
shown is a moving car in the center of the image resulting in a trace of points.

6.2 Semantic Segmentation

6.2.1 Labeling Process

To make the labeling of point cloud sequences practical, we superimpose mul-
tiple scans above each other, which conversely allows us to label multiple scans
consistently. To this end, we first register and loop close the sequences using an
off-the-shelf laser-based SLAM system [12]. This step is needed as the provided
information of the inertial navigation system (INS) often results in map inconsis-
tencies, i.e., streets that are revisited after some time have different height. For
three sequences, we had to manually add loop closure constraints to get correctly
loop closed trajectories, since this is essential to get consistent point clouds for
annotation. The loop closed poses allow us to load all overlapping point clouds
for specific locations and visualize them together, as depicted in Figure 6.5.
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We subdivide the sequence of point clouds into tiles of 100m by 100m. For
each tile, we only load scans overlapping with the tile. This enables us to label
all scans consistently even when we encounter temporally distant loop closures.
To ensure consistency for scans overlapping with more than one tile, we show all
points inside each tile and a small boundary overlapping with neighboring tiles.
Thus, it is possible to continue labels from a neighboring tile.

Following best practices, we compiled a labeling instruction and provided
instructional videos on how to label certain objects, such as cars and bicycles
standing near a wall. Compared to image-based annotation, the annotation pro-
cess with point clouds is more complex, since the annotator often needs to change
the viewpoint. An annotator needs on average 4.5 hours per tile, when labeling
residential areas corresponding to the most complex encountered scenery, and
needs on average 1.5 hours for labeling a highway tile.

We explicitly did not use bounding boxes or other available annotations for
the KITTI dataset, since we want to ensure that the labeling is consistent and
the point-wise labels should only contain the object itself.

We provided regular feedback to the annotators to improve the quality and
accuracy of labels. Nevertheless, a single annotator also verified the labels in a
second pass, i.e., corrected inconsistencies and added missing labels. In summary,
the whole dataset comprises 518 tiles and over 1 400 hours of labeling effort have
been invested with additional 10−60 minutes verification and correction per tile,
resulting in a total of over 1 700 hours.

6.2.2 Dataset Statistics
Figure 6.3 shows the distribution of the different classes, where we also included
the root categories as labels on the x-axis. The ground classes, road, sidewalk,
building, vegetation, and terrain are the most frequent classes. The class motor-
cyclist only occurs rarely, but still more than 100 000 points are annotated.

The unbalanced count of classes is common for datasets captured in natural
environments and some classes will be always under-represented since they do not
occur that often. Thus, an unbalanced class distribution is part of the problem
that an approach has to master. Overall, the distribution and relative differences
between the classes is quite similar in other datasets, e.g., Cityscapes [30].

6.2.3 Evaluation Metrics
In semantic segmentation of point clouds, we want to infer the label of each
three-dimensional point. Therefore, the input to all evaluated methods is a list
of coordinates of the three-dimensional points along with their remission, i.e.,
the strength of the reflected laser beam which depends on the properties of the
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surface that was hit. Each method should then output a label for each point of
a scan, i.e., one full turn of the rotating LiDAR sensor.

To assess the labeling performance, we rely on the commonly applied mean
Jaccard Index or mean intersection-over-union (mIoU) metric [40] over all classes,
given by

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc

, (6.1)

where TPc, FPc, and FNc correspond to the number of true positive, false positive,
and false negative predictions for class c, and C is the number of classes.

As the classes other-structure and other-object have either only a few points
and are otherwise too diverse with a high intra-class variation, we decided to not
include these classes in the evaluation. Thus, we use 25 instead of 28 classes,
ignoring outlier, other-structure, and other-object during training and inference.

Furthermore, we cannot expect to distinguish moving from non-moving ob-
jects with a single scan, since this Velodyne LiDAR cannot measure velocities like
radars exploiting the Doppler effect. We, therefore, combine the moving classes
with the corresponding non-moving class resulting in a total number of 19 classes
for training and evaluation. This is the metric and list of classes used in the sin-
gle scan semantic segmentation task of the semantic segmentation benchmark.
Another benchmark task for multi-scan semantic segmentation is provided which
differentiates between moving and non-moving objects.

6.3 Panoptic Segmentation

6.3.1 Labeling Process

For annotation of the instances that allow the panoptic segmentation task, we
employ a semi-automatic process using different strategies to generate temporally
consistent instance annotation. Our goal is to label the same instance through
the whole sequence with the same instance ID – even for instances that move.
For static objects, the data association can be simply performed by considering
the location of the segment after performing a pose correction using a SLAM
system [12]. For moving objects, we have to account for the motion of the object
as well as the motion of the sensor at the same time.

Overall, our dataset provides 28 classes (including 6 classes to distinguish
moving from non-moving classes) from which we select the traffic participants as
thing classes for the panoptic segmentation, i.e., car, truck, other-vehicle, motor-
cycle, bicycle, person, bicyclist, and motorcyclist. The remaining classes are stuff
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Figure 6.6: Example of under- (left) and over-segmentation (right) generated by our semi-
automated clustering approach.

classes for the panoptic segmentation, i.e., road, sidewalk, parking, other-ground,
building, vegetation, trunk, terrain, fence, pole, and traffic-sign.

For static thing classes, we first cluster all points for each individual class
using a fast grid-based segmentation approach [14] to handle a large number
of points efficiently. We then split the aggregated point cloud into tiles of size
100m by 100m using the pose information by our SLAM system [12]. For each
tile, we use a two-dimensional grid with cell size 0.1m by 0.1m, which allows us
often to separate even close parking cars. Next, all points are inserted into the
corresponding grid cells using their x and y-coordinates. Finally, only grid cells
with points exceeding a height threshold of ∆ > 0.5m are combined using a flood
fill algorithm to combine neighboring grid cells into segments.

For moving thing classes, we generate clusters for each scan individually using
a distance-based clustering as this provided more reliable results and could be also
used to associate instances between consecutive scans. First, we search for each
point in a radius of 0.5m for the nearest neighbor, and cluster points together
that share neighbors. To find associations with the previous 4 scans, we use a
slightly larger radius of 1.0m to find neighbors between two different timestamps.
If we find enough neighbors with the previous segments at different timestamps,
we associate them together and assign the same instance ID.

The described clustering leads inevitably to over- and under-segmentation,
shown in Figure 6.6, but also to wrong or missing associations between consecutive
timestamps. We correct these issues manually using an own point labeling tool,
which provides tools to create, join, and split instances. Overall, the manual
correction for all 22 sequences took roughly 70 h of additional labor.
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6.3.2 Dataset Statistics

Figure 6.4 provides an overview of the number of instances and the actual number
of bounding boxes per class. We show in the upper part the sequence-wise counts
of instance annotations, i.e., we count each object only once even if it is seen
multiple times by the sensor. The lower part of the figure shows the accumulated
scan-wise counts of instances, where we count the instances without considering
the temporally consistent instance ID.

The bulk of the instances correspond to cars, which are naturally occurring in
city-like environments and also correspond to the normal statistics in autonomous
driving scenarios. Usually, an autonomous car will also encounter some classes
far fewer than other classes or situations. They are usually denoted as the “long
tail” problem, referring to the underrepresented entities in a given distribution.
This adds complexity to the task, since panoptic segmentation approaches, which
are designed to tackle this scenario must be able to deal with such skewed class
distributions.

6.3.3 Evaluation Metrics

In panoptic segmentation, each point pi not only caries a class label yi ∈ Y , where
|Y| is the number of classes, but also can have an instance ID ni, where ni = 0

denotes no specific instance.
To measure the quality of this joint assignment, we briefly recapitulate the

recently proposed panoptic quality (PQ) metric [76]. Let S, Ŝ denote segments,
i.e., sets of points in our specific case, sharing an class and instance ID. Here,
we assume that the stuff classes, e.g., vegetation, simply get instance ID ni = 0

corresponding to no specific instance assigned.
Furthermore, let IoU(S, Ŝ) = (S ∩ Ŝ)(S ∪ Ŝ)−1 denote the intersection-over-

union of these two sets. Let the set of true positive matches TPc be the pairs
of predicted segments Ŝ that overlap at least with 0.5 IoU with a ground truth
segment S, TPc = {(S, Ŝ) | IoU(S, Ŝ) > 0.5}. Likewise, let FPc the set of
unmatched predicted segments Ŝ and FNc the set of unmatched ground truth
segments S.

With the above definitions, the class-wise PQc is given by

PQc =

∑
(S,Ŝ)∈TPc

IoU(S, Ŝ)
|TPc|+ 1

2
|FPc|+ 1

2
|FNc|

. (6.2)

The panoptic quality metric is computed for each class independently and av-
eraged over all classes, which makes the metric insensitive to class imbalance [76],
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i.e.,

PQ =
1

|Y|
∑
c∈Y

PQc. (6.3)

For images, Porzi et al. [134] proposed to alter the metric to account for stuff
classes having only a single segment since no pixels (or, in our case, points) have
an instance ID. In such a case, the IoU-based criterion could often lead to an
unmatched prediction. To account for stuff classes, Porzi et al. use

PQ†
c =

{
IoU(S, Ŝ) , if c is a stuff class

PQc , otherwise.
(6.4)

Consequently, we denote by PQ† the average over the class-wise modified PQ†
c as

defined in Equation (6.3).
Furthermore, the quality of the semantic segmentation is also measured using

the mean intersection-over-union (mIoU), which also enables the comparison with
other approaches in the semantic segmentation benchmark. This metric is defined
as follows:

mIoU =
1

|Y|
∑
c∈Y

|{i | yi = c} ∩ {j | ŷj = c}|
|{i | yi = c} ∪ {j | ŷj = c}|

, (6.5)

where yi corresponds to the ground truth label of point pi and ŷi to the prediction.
This is the same metric described in Section 6.2.3 and used in its benchmark, and
is also relevant for this task. This is especially true for the stuff classes.

We make use of all the metrics mentioned in the panoptic segmentation bench-
mark and provide a hidden test set evaluation with a limited number of submis-
sions. Both the semantic as well as the panoptic segmentation benchmark can
be found at https://www.semantic-kitti.org.

6.4 Related Work
Relevance of Open Datasets and Benchmarks

The progress of computer vision has always been driven by benchmarks and
datasets [175], but the availability of especially large-scale datasets, such as Ima-
geNet [34], was even a crucial prerequisite for the advent of deep learning. More
task-specific datasets geared towards self-driving cars were also proposed. No-
table is here the KITTI Vision Benchmark [46] since it showed that off-the-shelf
solutions are not always suitable for autonomous driving.

The Cityscapes dataset [30] is the first dataset for self-driving car applications
that provides a considerable amount of pixel-wise labeled images suitable for deep
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learning. The Mapillary Vistas dataset [119] surpasses the amount and diversity
of labeled data compared to Cityscapes.

Semantic Segmentation of Point Clouds

Also in point cloud-based interpretation, e.g., semantic segmentation, RGB-D
based datasets enabled tremendous progress. ShapeNet [20] is especially note-
worthy for point clouds showing a single object, but such data is not directly
transferable to other domains. Specifically, LiDAR sensors usually do not cover
objects as densely as an RGB-D sensor due to their lower angular resolution, in
particular in the vertical direction.

For indoor environments, there are several datasets [163, 153, 66, 5, 32, 107, 88,
33] available, which are mainly recorded using RGB-D cameras or synthetically
generated. However, such data shows very different characteristics compared to
outdoor environments, which is also caused by the size of the environment, since
point clouds captured indoors tend to be much denser due to the range at which
objects are scanned. Furthermore, the sensors have different properties regarding
sparsity and accuracy. While laser sensors are more precise than RGB-D sensors,
they usually only capture a sparse point cloud compared to the latter.

For outdoor environments, datasets were recently proposed that are recorded
with a terrestrial laser scanner (TLS), like the Semantic3d dataset [55], or us-
ing automotive LiDARs, like the Paris-Lille-3D dataset [156]. However, the
Paris-Lille-3D provides only the aggregated scans with point-wise annotations
for 50 classes from which 9 are selected for evaluation. Another recently used
large dataset for autonomous driving [178], but with fewer classes, is not publicly
available.

The Virtual KITTI dataset [43] provides synthetically generated sequential
images with depth information and dense pixel-wise annotation. The depth in-
formation can also be used to generate point clouds. However, these point clouds
do not show the same characteristics as a real rotating LiDAR, including defects
like reflections and outliers.

Recently, almost all major self-driving car companies release datasets provid-
ing besides camera also LiDAR data, including Waymo [167], Lyft [74], Audi [48],
Argo [21], and Aptiv [18]. While all datasets provide also the annotations for ob-
ject instances by bounding boxes, only a few datasets provide point-wise semantic
annotation [9, 48].
In contrast to these datasets, our dataset combines a large number of labeled
points, a large variety of classes, and sequential scans generated by a commonly
employed sensor used in autonomous driving, which is distinct from all publicly
available datasets, also shown in Table 6.1.
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Panoptic Segmentation of Point Clouds

Shortly after Kirillov et al. [76] proposed panoptic segmentation and a metric
to measure the performance of approaches providing such labels, the established
datasets for semantic segmentation of image data, i.e., Cityscapes [30], Microsoft’s
Common Objects in Context (COCO) [91], and Mapillary’s Vistas [119] adopted
the metric and added an evaluation for this task. The last version of the Joint
COCO and Mapillary Recognition Challenge workshop at ICCV also featured a
panoptic segmentation track.

Due to the availability of the data, we witnessed a wide adoption and interest
for panoptic segmentation in the computer vision community [29, 76, 93, 132, 134,
186]. While there have also been approaches for RGB-D data [63, 132], it is only
recently that approaches which operate on LiDAR data have surfaced [69], using
SemanticKITTI, because before it was published there was no real annotated
data available that provided point-wise semantic labels and instance information
at the same time.

By providing now instance annotations together with an online evaluation on
a hidden test set, we close the gap to the aforementioned established image-based
dataset and provide means to evaluate panoptic segmentation using an automo-
tive LiDAR. We hope that the availability of labeled LiDAR scans for panoptic
segmentation opens the door for more research in the direction of LiDAR-based
panoptic segmentation.

6.5 Conclusion
We presented SemanticKITTI, a large-scale dataset showing unprecedented scale
in the point-wise annotation of point cloud sequences. We provide the labels
that allow for training large deep learning models for the tasks of semantic and
panoptic segmentation, as well as a hidden test set evaluation benchmark server
to evaluate said approaches. In subsequent chapters, we will see application cases
of both semantic and panoptic segmentation, both using this data.
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Chapter 7

LiDAR Semantic Segmentation

As mentioned in all previous chapters, scene understanding is a key
building block of autonomous robots working in dynamic environ-
ments. To obtain the required scene understanding, robots are of-
ten equipped with multiple sensors that allow them to leverage the

strengths of each modality. Combining multiple complementary sensing modal-
ities allows for covering the shortcomings of individual sensors such as cameras,
laser scanners, or radars. This is particularly critical in the context of autonomous
driving, where a failure of one modality can have significant monetary, or even
lethal, consequences if not properly covered by another redundant modality.

An important task in semantic scene understanding is the task of semantic
segmentation, which, as we know by now, assigns a class label to each data point
in the input modality, i.e., to a pixel in case of a camera or to a 3D point obtained
by a LiDAR. While the best approach to the task would use a combination of
both, LiDAR and camera images, it is an interesting research enterprise to see
how far LiDAR-only perception can be pushed, if the car was required to navigate
under the complete absence of the other modality, e.g., if a sensor is down, or some
weather or environmental condition blinds it operation completely. Therefore, in
this chapter, we explicitly address semantic segmentation for rotating 3D LiDARs
such as the commonly used Velodyne scanners.

One of the main problems limiting the development of LiDAR-only seman-
tic segmentation models for autonomous driving was the fact that there was no
large-scale openly available dataset for the task. As we discussed in Chapter 6, we
eliminated this barrier by taking the initiative and providing the data ourselves,
with a labeling effort of over a person-year. The majority of state-of-the-art meth-
ods currently available for semantic segmentation on point cloud data either do
not have enough representational capacity to tackle the task, or are computation-
ally too expensive to operate at frame-rate on a mobile GPU. Furthermore, since
most were designed to receive uniformly sampled point clouds from explicit sur-
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faces, they tend to perform poorly on non-uniform data such as a single LiDAR
sweep. This makes them not suitable to aid the task of supporting autonomous
vehicles, since offline processing is not possible for most tasks pertaining to au-
tonomous vehicles, such as affordance analysis of the scene, localization, obstacle
avoidance, etc. Presenting a new approach that addresses these shortcomings is
the purpose of this chapter.

The main contribution of this work is a new method for accurate, fast, LiDAR-
only semantic segmentation. We achieve this by operating on a spherical projec-
tion of the input point cloud, i.e., a 2D image representation, similar to a range
image, and therefore exploit the way the points are detected by a rotating LiDAR
sensor. Our method infers the full semantic segmentation for each pixel of the
image using any CNN as a backbone. This yields an efficient approach but can
lead to issues caused by discretization or blurry CNN outputs. We effectively re-
solve these issues via a reconstruction of the original point with semantics without
discarding any points from the original point cloud, regardless of the used resolu-
tion of the image-based CNN. This post-processing step, which also runs online,
operates on the image representation and is tailored towards efficiency. We can
calculate nearest neighbors in constant time for each point and exploit GPU-based
calculations. This allows us to infer full semantic segmentation of LiDAR point
clouds accurately and faster than the frame rate of the sensor. Since the approach
runs with any range image-based CNN backbone, we call it RangeNet++. This
highlights that the post-processing cleaning approach not only augments (++)
our own network architectures, RangeNet53, and Rangenet21, but also any other
range-image-based method. See Figure 7.1 for an example.

7.1 Efficient Semantic Segmentation of LiDAR
Point Clouds

The goal of our approach is to achieve accurate and fast semantic segmentation
of point clouds, in order to enable autonomous machines to make decisions in a
timely manner. To achieve this segmentation, we propose a projection-based 2D
CNN processing of the input point clouds and utilize a range image representation
of each laser scan to perform the semantic inference. We use in the following the
term range image for the spherical projection of the point cloud, but each pixel,
which corresponds to a horizontal and vertical direction, can store more than only
a range value (e.g. can also hold coordinates, normals, remissions, etc.). The
projection is followed by a fast, GPU-based, k-Nearest-Neighbor (kNN) search
over the entire point cloud, which allows us to recover semantic labels for the
entire input cloud. This is particularly critical when using small resolution range
images since the projection would otherwise lead to a loss of information.
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Figure 7.1: Velodyne HDL-64E laser scans from KITTI dataset hidden test set [46] with se-
mantic information from our approach, RangeNet53++. Top: Sequence 13. Bottom: Sequence
20. Best viewed in color, each color represents a different semantic class

Our approach is divided into four steps, shown in Figure 7.2. These four
steps are discussed in detail in the following subsections: (a) a transformation
of the input point cloud into a range image representation, (b) a 2D fully con-
volutional semantic segmentation, (c) a semantic transfer from 2D to 3D that
recovers all points from the original point cloud, regardless of the used range im-
age discretization, and (d) an efficient range image-based 3D post-processing to
clean the point cloud from undesired discretization and inference artifacts, using
a fast, GPU-based kNN-search operating on all points.

In sum, we make three key claims: Our approach is able to (i) accurately
perform semantic segmentation of LiDAR-only point clouds, surpassing the state
of the art significantly, (ii) infer semantic labels for the complete original point
cloud, avoiding to discard points regardless of the level of discretization used in
the CNN, and (iii) work at the frame rate of a Velodyne scanner on an embedded
computer that can easily fit in robots or in a vehicle.
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Figure 7.2: Block diagram of the approach. Each of the arrows corresponds to one of our
modules.

Figure 7.3: Our fully convolutional semantic segmentation architecture. RangeNet53 is inspired
in a Darknet53 Backbone [144].

7.1.1 Range Image Point Cloud Proxy Representation
Several LiDAR sensors, such as the Velodyne sensor record the raw input data
in a range image-like fashion. Each column represents the range measured by an
array of laser range-finders at one point in time, and each row represents different
turning positions for each of those range-finders, which are fired at a constant rate.
However, on a vehicle moving at high speeds, this rotation does not happen fast
enough to ignore the skewing generated by the vehicle motion. This leads to a
sort of “rolling shutter” behavior more commonly observed in cameras. To obtain
a more geometrically consistent representation of the environment for each scan,
we must consider the vehicle motion, resulting in a point cloud which no longer
contains range measurements for each pixel, but contains multiple measurements
for some others. In order to obtain an accurate semantic segmentation of the full
LiDAR point cloud, our first step is to convert each de-skewed point cloud into a
range representation. For this, we convert each point pi = (x, y, z) via a mapping
Π : R3 7→ R2 to spherical coordinates and finally to image coordinates, as defined
by (

u

v

)
=

(
1
2
[1− arctan(y, x) π−1] w

[1− (arcsin(z r−1) + fup) f−1] h

)
, (7.1)

where (u, v) are said image coordinates, (h,w) are the height and width of the
desired range image representation, f = fup + fdown is the vertical field-of-view
of the sensor, and r = ||pi||2 is the range of each point, which is the Euclidean
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distance to the origin of coordinates of the sensor. This procedure results in a list
of (u, v) tuples containing a pair of image coordinates for each pi, which we use
to generate our proxy representation. Using these indexes, we extract for each pi,
its range r, its x, y, and z coordinates, and its remission, and we store them in the
image, creating a [5× h× w] tensor. Because of the de-skewing of the scan, the
assignment of each points to its corresponding (u, v) is done in descending range
order, to ensure that all points rendered in the image are in the current field of
view of the sensor. We furthermore save this list of (u, v) pairs to gather and
clean the semantics of the resulting point cloud, as we describe in Section 7.1.3
and Section 7.1.4.

7.1.2 Fully Convolutional Semantic Segmentation

To obtain the semantic segmentation of this range image representation of the
point cloud we use a 2D semantic segmentation CNN, which is modified to fit
this particular input type and form factor. Similarly to Wu et al. [184], we use an
encoder-decoder hour-glass-shaped architecture, which is depicted in Figure 7.3.
These types of deep hour-glass-shaped segmentation networks are characterized
by having an encoder with significant downsampling, which allows the higher
abstraction deep kernels to encode context information while running faster than
non-downsampling counterparts. In our case, this downsampling is 32 (see Fig-
ure 7.3). This is later followed by a decoder module which upsamples the “feature
code” extracted by the convolutional backbone encoder to the original image res-
olution, adding also convolutional layers to refine these results. At the same
time, after each upsampling we also add skip connections between different lev-
els of output stride (OS) of the encoder and sum them to the corresponding
output stride feature volume in the decoder, illustrated by the black arrows, to
recover some of the high-frequency edge information that gets lost during the
downsampling process. After this encoding-decoding behavior, the last layer of
the architecture performs a set of [1× 1] convolutions. This generates an output
volume of [n × h × w] logits, where n is the number of classes in our data. The
last layer during inference is a softmax function over the unbounded logits of the
form

ŷc =
elogitc∑
c e

logitc
(7.2)

This gives a probability distribution per pixel in the range image, where logitc
is the unbounded output in the slice corresponding to class c. During training,
this network is optimized end to end using stochastic gradient descent and a
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weighted cross-entropy loss L:

L = −
C∑
c=1

wc yc log
(
ŷc
)
, (7.3)

where the term wc =
1

log (fc + ϵ)
(7.4)

penalizes the class c according to the inverse of its frequency fc. This handles
imbalanced data, as is the case for most datasets in semantic segmentation, e.g.,
the class “road” represents a significantly larger number of points in the dataset
than the class “pedestrian”.

To extract rich features for our encoder backbone, we define our RangeNet
architectures by modifying the Darknet [144] backbone architecture in a way that
makes it usable for our purposes. This backbone was designed with general image
classification and object detection tasks in mind and is very descriptive, achieving
state-of-the-art performance in several benchmarks for these tasks. However, it
was designed to work with square aspect ratio RGB images. The first necessary
modification to the backbone is to allow the first channel to take images with
5 channels. As we are dealing with a sensor that has an array of 64 vertically-
placed laser range-finders producing in the order of 130 000 points per scan, this
leaves us with a range image of around w = 2048 pixels. To retain information in
the vertical direction, we therefore only perform downsampling in the horizontal
direction. This means that in the encoder, an OS of 32 means a reduction in w of
a factor of 32, but 64 pixels still remain intact in vertical direction h. To evaluate
how well our post-processing recovers the original point cloud information, in
Section 7.2 we analyze input sizes of [64×2048], [64×1024], and [64×512], which
produce feature volumes at the end of the encoder of size [64× 64], [64× 32], and
[64× 16] respectively.

7.1.3 Point Cloud Reconstruction from Range Image
The common practice to map from a range image representation to a point cloud
is to use the range information, along with the pixel coordinates and the sensor
intrinsic calibration to realize a mapping Π∗ : R2 7→ R3. However, since we are
generating the range image from a point cloud originally, as first introduced in
Section 7.1.1, this could mean dropping a significant number of points from the
original representation. This is especially critical when using smaller images in
order to make the inference of the CNN faster. E.g., a scan with 130 000 points
projected to a [64× 512] range image will represent only 32 768 points, sampling
the closest point in each pixel’s frustum. Therefore, to infer all the original points
in the semantic cloud representation, we use all the (u, v) pairs for all the points
pi obtained during the initial rendering process and index the range image with
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semantic segmentation (2D) semantic segm. (re-projection)

Figure 7.4: Illustration of the label re-projection problem. Both the fence and the car in the
range image (left) were given the proper semantic label, but during the process of sending the
semantics back to the original points (right), the labels were also projected as “shadows”.

the image coordinates that correspond to each point. This can be performed
extremely fast in the GPU before the next post-processing step takes place, and
it results in a semantic label for each point that was present in the entire input
scan, in a loss-less way.

7.1.4 Efficient Point Cloud Post-processing
Unfortunately, the benefits of the expedite semantic segmentation of LiDAR scans
through 2D semantic segmentation of range images does not come without its
drawbacks. The encoder-decoder hour-glass-like CNNs provide blurry outputs
during inference, which is also a problem for RGB and RGBD semantic seg-
mentation systems. Some methods, such as SqueezeSeg [184] use a conditional
random field over the predictions in the image domain after the 2D segmentation
to eliminate this “bleeding” of the output labels. Using the softmax probabilities
of each pixel as unary potentials for the CRF, and penalizing jumps in signal and
Euclidean distance between neighboring points. Even though this helps in 2D, it
does not fix the problem after the re-projection to three-dimensional space, since
once the labels are projected into the original point cloud, two or more points
which were stored into the same range image pixel will get the same semantic
label. This effect is illustrated in Figure 7.4, where the labels of the inferred
point cloud present shadows in objects in the background due to the blurry CNN
mask, and the mentioned discretization. Moreover, if we wish to use smaller
range image representations to infer the semantics, this problem becomes even
stronger, resulting in shadow-like artifacts of the semantic information in objects
of different classes.

To solve this problem, we propose a fast, GPU-enabled, k-nearest neighbor
(kNN) search operating directly in the input point cloud. This allows us to find,
for each point in the semantic point cloud, a consensus vote of the k points in
the scan that are the closest to it in 3D. As it is common in kNN search, we also
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Algorithm 1: Efficient Projective Nearest Neighbor Search for Point
Labels

Data: Range Image Irange of size W × H,
Label Image Ilabel of predictions of size W × H,
Ranges R for each point p ∈ P of size N ,
Image coordinates (u, v) of each point in R.

Result: Labels Lconsensus for each point of size N .
1 Let be rangelu = {i | l ≤ i ≤ u} the range from l to u.

/* Get S2 neighbors N′ for each pixel */
2 foreach (u, v) ∈ range1W × range1H do
3 foreach (i, j) ∈ range1S × range1S do
4 N′[v ·W +u, j ·S + i] = Irange[u+ i, v+ j]

5 end
6 end

/* Get neighbors N for each point */
7 foreach (u, v) ∈ C do
8 foreach (i, j) ∈ range1S × range1S do
9 N [v ·W +u, i ·S+j] = N′[v ·W +u, i ·S+j]

10 end
11 end

/* Fill in real point ranges */
12 foreach i ∈ range1N do
13 N [i, ⌊(S · S − 1)/2⌋] = R(i)

14 end
/* Label neighbors L′ for each pixel */

15 foreach u ∈ range1W , v ∈ range1H do
16 foreach (i, j) ∈ range1S×range1S do
17 L′[v · W + u, i · S + j] = Ilabel[u + i, v + j]

18 end
19 end

/* Get label neighbors L for each point */
20 foreach (u, v) ∈ C do
21 foreach (i, j) ∈ range1S×range1S do
22 L[v ·W +u, i ·S+ j] = L′[v ·W +u, i ·S+ j]

23 end
24 end

/* Distances to neighbors D for each point */
25 foreach i ∈ nrange1N do
26 foreach j ∈ nrange1S·S do
27 D[i, j] = |N [i, j] − R(i)|
28 end
29 end

/* Compute inverse Gaussian Kernel */
30 Let N (u | µ, σ) be a Gaussian with mean µ and std.

deviation σ.
31 foreach (i, j) ∈ range1S×range1S do
32 G′[j · S + i] = N (i | 0, σ) · N (j | 0, σ)

33 end
34 Let be Gmax = max

{
G′[i] | i ∈ range1S·S

}
the

maximium of G′

35 foreach i ∈ range1S·S do
36 G[i] = 1 − Gmax · G′[i]
37 end

/* Weight neighbors with inverse Gaussian kernel */
38 foreach i ∈ range1N do
39 foreach j ∈ range1S·S do
40 D[i, j] = D[i, j] · G[j]

41 end
42 end

/* Find k-nearest neighbors S for each point */
43 foreach i ∈ range1N do
44 S[i] = {j | |{n ∈ range1S·S | D[i, n] <

D[i, j]}| ≤ k}
45 end

/* Gather votes. */
46 foreach i ∈ range1N do
47 n = 1

48 foreach j ∈ S[i] do
49 if D[i, j] > δcutoff then
50 Lknn[i, n] = C + 1

51 end
52 else
53 Lknn[i, n] = L[i, j]

54 end
55 n = n + 1

56 end
57 end
58 foreach j ∈ range[1 : k] do
59 if Lknn[i, j] ≤ C then
60 V [i, Lknn[i, j]] = V [i, Lknn[i, j]] + 1

61 end
62 end

/* Find maximum consensus. */
63 foreach i ∈ range1N do
64 Lconsensus[i] = arg maxc Lknn[i, c]

65 end

set a threshold for the search, which we call cutoff, setting the maximum allowed
distance of a point considered a near neighbor. The distance metric to rank the
k closest points can be the absolute differences in the range or the Euclidean
distance. Note that we also tried to use the remission as a penalization term, but
it did not help in our experience. For the remainder of this section, we explain the
approach considering the usage of the absolute range difference as the distance,
but the Euclidean distance works analogously, albeit being slower to compute.

We explain the steps of our algorithm, described in Algorithm 1, referring
to the corresponding line numbers. Our approximate nearest neighbor search
uses the range image representation to obtain, for each point in the [h,w] range
image, an [S, S] window around it in the image representation, with S being
a value found empirically through a grid-search in the validation set. This op-
eration is performed through the “im2col” primitive, which is internally used
by most parallel computing libraries to calculate a convolution, and therefore di-
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rectly accessible through all deep learning frameworks. This results in a matrix of
dimension [S2, hw], which contains an unwrapped version of the [S, S] neighbor-
hood in each column, and each column center contains the actual pixel’s range
(lines 2–4). As not all points are represented in the range image, we use the
(u, v) tuples for each pi obtained during the range image rendering process, and
extend this representation to a matrix of dimension [S2, N ], containing the range
neighborhoods of all the scan points (lines 5–7). As this is done by indexing the
unfolded image matrix, the centers of columns do not represent the actual range
values anymore. Thus, we replace the center row of the matrix by the actual
range readings for each point. The result of this is a [S2, N ] matrix which con-
tains all the range readings for the points in the center row, and in each column,
its unwrapped [S, S] neighborhood (lines 8–9). This is a key checkpoint in the
algorithm because it allows us to find in a quick manner a set of S2 candidates to
consider during the neighbor search for each point, in parallel. This allows our
algorithm to run orders of magnitude faster than other nearest neighbor search
approaches such as the popular FLANN methods [117], which work in unordered
point clouds, by exploiting the arrangement of the scan points in the sensor. This
key structural difference allows us to run in real-time even for large point clouds.

The following two steps are analogous to this unwrapping (lines 10–15), but
instead of obtaining the ranges of the neighbor candidates, it contains their labels.
This [S2, N ] label matrix is later used to gather the labels for the consensus voting,
once the indexes for the k neighbors are found. At this point in the algorithm, we
are able to calculate the distance to the actual point for each of the S2 candidates.
If we subtract the [1, N ] range representation of the LiDAR scan from each row of
the [S2, N ] neighbor matrix, and point-wise apply the absolute value, we obtain a
[S2, N ] matrix where each point contains the range difference between the center
of the neighborhood, which is the query point, and the surrounding points (lines
16–18). The fact that we are using a small [S, S] neighborhood search around
each point allows us to make the assumption that the absolute difference in the
range is a good proxy for the euclidean distance, since points that are close in
(u, v) coordinates will only have a similar range if their actual distance in 3D
space is similar. This is tested empirically in our experimental section, allowing
us to make the distance calculation more efficient, and obtaining the same result
for the post-processing.

The next step is to weight the distances by an inverse Gaussian kernel, which
penalizes the bigger differences in the range between points that are distant in
(u, v) more. This is done by the point-wise multiplication of each column with
the unwrapped kernel (lines 19–27).

After this, we need to find the k closest points for each column containing the
S2 candidates, which is done through an “argmin” operation (lines 28–29). This
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allows us to get the indexes for the k points in the S neighborhood with the least
weighted distance.

The last step in our search is to check which ones of those k points fit within
the allowed threshold, which we called cutoff, and accumulate the votes from
all the labels of the points within that radius. This is performed through a
“gather add” operation, which generates a [C,N ] matrix, where C is the number
of classes, and each row contains the number of votes in its index class (lines
30–41). A simple “argmax” operation over the columns of this matrix returns a
[1, N ] vector, which contains the clean labels for each point in the input LiDAR
point cloud, and serves as the output of our approach (lines 42–43).

It is important to notice that, given the independence of all the points inside
the loops in Algorithm 1, each of the main components can be represented either
with a parallel computing primitive or in a highly vectorized way, both of which
are directly implementable in a GPU, using off-the-shelf, high abstraction deep
learning or data science frameworks.

This algorithm requires setting four different hyperparameters: (i) S which
the size of the search window, (ii) k which is the number of nearest neighbors,
(iii) cutoff which is the maximum allowed range difference for the k, and (iv)
σ, which is the standard deviation for the inverse Gaussian. The values for
the hyperparameters are calculated empirically through a data-driven search in
the validation set of our training data, and a brief analysis is provided in the
experimental section.

7.2 Experimental Evaluation
The experimental evaluation is designed to evaluate if our claims about our ap-
proach are valid. These claims are that our approach: (i) outperforms the state of
the art in the task of semantic segmentation of LiDAR scans, (ii) infers the entire
point cloud while recovering the high-frequency information in the un-projection
step, and (iii) runs online in an embedded computer at sensor frame-rate.

Dataset. We train and evaluate our approach on our large-scale dataset
described in Chapter 6, which provides dense point-wise annotations for the entire
KITTI Odometry Benchmark [9, 46]. The dataset is comprised of over 43 000

scans from which over 21 000 from sequences 00 to 10 are available for training
and the remaining scans from sequences 11 to 21 are used as the test set. We
used sequence 08 as the validation set for hyperparameter selection and trained
our approach on the remaining training sequences. Overall, the dataset provides
22 classes from which 19 classes are evaluated on the test set via our benchmark
website.
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Hyperparameter selection. All hyperparameters for RangeNet models
are selected and evaluated on the validation set (sequence 8). For all backbone
training, we use a learning rate of 0.001, with a decay of 0.99 every epoch, and
train for 150 epochs. For all CNN backbones, convergence was achieved in less
than 150 epochs. For all the state-of-the-art methods, the hyperparameters were
also selected on the validation set.

Metrics. To assess the labeling performance, we use the commonly applied
mean Jaccard Index or mean intersection-over-union (IoU) metric, mIoU, over all
classes [40] given by Equation (6.1).

To better assess the performance with respect to the precision of the predic-
tion, we propose an additional evaluation metric which we call border-IoU. This
metric is defined in the same way as the standard IoU, but only applies within the
subset of points defined by an extra parameter, which considers how far a point
is to the self-occlusion of the sensor, which is manifested in a change in the label
in the range image. This metric is designed to show how much our algorithm can
help the “shadow-like” wrong label projections in the semantic point clouds.

7.2.1 Performance of RangeNet++ in Comparison to the
State of the Art

The first experiment is designed to support our claim that our approach over-
performs the state of the art in the task of scene semantic segmentation of LiDAR
point clouds. Table 7.1 shows the difference between our RangeNet backbones,
using 21 and 53 layers (RangeNet21 and RangeNet53, respectively), and 13 other
baseline methods. Note that all approaches that surpass the performance of our
approach [114], post-date our work, and many of them [3, 187, 31] are based on it.
Figure 7.5 shows a visual comparison of the projected results of RangeNet++ with
the state of the art at the time this work was published in November 2019 [114].

The superior performance of our RangeNet baselines, even without our clean-
ing, for all the input resolutions of shows that it is a solid baseline to benchmark
our efficient kNN cleaning. Table 7.2 also shows that our method, RangeNet++,
which includes our kNN post-processing consistently beats its unprocessed Range-
Net counterpart, showing the efficacy of our kNN search. The kNN cleaning is
consistently better for all but one class, unlike the CRF, which is a conclusion
reached by the original SqueezeSeg [184] work as well, even when the overall IoU
is higher.
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Table 7.1: IoU [%] on test set (sequences 11 to 21). RangeNet21 and RangeNet53 represent the
new baselines with augmented Darknet backbones (21 and 53 respectively), and the versions
with (++) are treated with our fast point cloud post-processing based on range. Methods
marked with * post-date our work by at least 6 months.

Approach Size meanIoU Scans/sec
Pointnet [139]

50K pts

14.6 2
Pointnet++ [141] 20.1 0.1
SPGraph [81] 20.0 0.2
SPLATNet [166] 22.8 1
TangentConv [171] 35.9 0.3

SqueezeSeg [184]

64× 2048px

29.5 66
SqueezeSeg-CRF [184] 30.8 55
SqueezeSegV2 [185] 39.7 50
SqueezeSegV2-CRF [185] 39.6 40
RangeNet21[Ours] 47.4 20

RangeNet53
[Ours]

64× 2048px 49.9 13
64× 1024px 45.4 25
64× 512px 39.3 52

RangeNet53++
[Ours+kNN]

64× 2048px 52.2 12
64× 1024px 48.0 21
64× 512px 41.9 38

RandLANet* [65] 50K pts 53.9 21
LatticeNet* [154] all pts 52.9 7
PolarNet* [193] variable 54.3 16
SqueezeSegV3* [187] 64× 2048px 55.9 6
SalsaNext* [31] 64× 2048px 54.5 83
3DMininet* [3] 64× 2048px 55.8 28
KPConv* [174] variable 58.8 3

Table 7.2: IoU [%] on test set (sequences 11 to 21) for both unprocessed and postprocessed
RangeNet53 models. We show that regardless of the resolution, the post-processed counterpart
consistently outperforms the raw output of the segmentation CNN.
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PointNet [139]

SPGraph [81]

SPLATNet [166]

PointNet++ [141]
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RangeNet53

Ground truth

road sidewalk car

buildingterrainvegetation other-objecttrunk

parking pole

unlabeled

motorcycle

Figure 7.5: Examples of inference for all methods. The point clouds were projected to 2D using
a spherical projection to make the comparison easier. All images show results on the same scan
from the validation set. Best viewed in color.

7.2.2 Filter Parameter Influence
The second experiment shows the influence of the k and S parameters in the
validation set. For each of the 4 parameters k, S, σ, and cutoff we chose a
wide range of values and evaluated the result of post-processing the inference
results of the RangeNet53 backbones for all input resolutions. Figure 7.6 shows
a normalized result of the IoU in the validation set for each parameter set, for
various k and S and the “argmax” of σ and cutoff. The results also show that we
can obtain similar results using small kernels and the absolute range difference,
as a proxy for the Euclidean distance. This supports our statement that range
difference is a good proxy for the actual distance if points in the image are close.
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Figure 7.6: Hyperparameter search post-processing for both range (top row) and Euclidean
distance (bottom row) using RangeNet53++, and different input resolutions. All experiments
used cutoff = 1.0m.

7.2.3 Post-Processing Influence

The third experiment is designed to support investigate if our algorithm improves
the reconstruction of the semantics of the entire point cloud even for smaller
range image resolutions. For this, we use our border-IoU metric, which only
considers points that are a certain number of points away from a change in label.
In Figure 7.7 we show the value of the IoU and the value of the border IoU for
different distances to the border. Note that our post-processing approach does not
only improve the IoU score by a couple of % points, but it significantly improves
the border IoU score for low values of the distance to the border parameter. This
means that our approach is especially useful to help in cases of label “bleeding”
or “shadowing” described in Section 7.1.4. Another important conclusion is that
there are only marginal differences between using the faster to compute range
difference and the actual Euclidean distance, through-out the entire spectrum of
border distances, and in the IoU, which support our statement that it is a good
approximation.
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Figure 7.7: Border IoU (bIoU) and IoU as a function of the distance to label change. This plot
shows that our post-processing improves the IoU, and significantly improves the borderIoU,
which means that it recovers blurry mask and discretization errors better.

7.2.4 Runtime

The fourth experiment is designed to show that the approach can run in its total-
ity online in a moving platform, using a single GPU at the frame rate of the laser
scanner. Table 7.3 shows the runtime for the backbone, different post-processing
distance functions (for the best parameters), and the total time required. As ex-
pected, the range-based post-processing is faster to calculate, since each distance
calculation requires a subtraction and an absolute value, compared to 3 squares,
2 sums, and 1 square root. Therefore, since the difference in performance is neg-
ligible, we use the sum of our CNN backbone plus this range processing time for
our total runtime, which we evaluate in two different types of hardware.

Table 7.3: Runtime of RangeNet53++. Sensor frame rate is 10FPS.

Hardware Resolution (px) Processing time (ms) FPSCNN Range Euclid Total

Quadro P6000
64× 512 19

7 11

26 38
64× 1024 40 47 21
64× 2048 75 82 12

Jetson AGX
64× 512 45

35 52

80 13
64× 1024 87 122 8
64× 2048 153 188 5
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7.3 Related Work

Semantic segmentation for autonomous driving using images made an immense
progress in recent years due to the advent of deep learning and the availability of
increasingly large-scale datasets for the task, such as CamVid [17], Cityscapes [30],
or Mapillary [119]. Together, this enables the generation of complex deep neural
network architectures with millions of parameters achieving high-quality results.
Prominent examples are Deeplab V3 [23] and PSPNet [195].

Despite their impressive results, these architectures are too computationally
expensive to run in real-time on an autonomous system, which is a must for
autonomous navigation exploiting semantic cues. This spawned the creation of
more efficient approaches such as Bonnet [113], ENet [126], ERFNet [151], and
Mobilenets V2 [159], which leverage the law of diminishing returns to find the
best trade-off between runtime, the number of parameters, and accuracy. These,
however, are designed for images and not for LiDAR scans.

Transferring these results to LiDAR data has, so far, been hindered by two
factors: (i) the lack of publicly available large-scale datasets for the task of se-
mantic segmentation in autonomous driving and (ii) how prohibitively expensive
to run most LiDAR semantic segmentation models are.

To tackle the problem of the lack of data, Wu et al. [184, 185] used the
provided bounding box of the KITTI dataset [46]. They also leveraged simulation
to generate realistic-looking scans from a game engine. We have released the first
large-scale dataset with full semantic segmentation of LiDAR scans [9], in which
all scans of the KITTI odometry dataset [46] were densely annotated, i.e., over
43 000 scans, with over 3.5 billion annotated points. Without the data-starvation
barrier, this work investigates which of the current state-of-the-art algorithms
can be exploited and adapted for point cloud in the autonomous driving context.

Leveraging large datasets for other contexts [32, 55], several deep learning-
based methods for 3D semantic segmentation were recently developed, such as
PointNet [139], PointNet++ [141], TangentConvolutions [171], SPLATNet [166],
SuperPointGraph [81], and SqueezeSeg [184, 185].

One of the problems of dealing with point cloud data directly is the lack of
a proper ordering, which makes learning order-invariant feature extractors ex-
tremely challenging. Qi et al. [139, 141] use as inputs the raw, un-ordered point
clouds and apply symmetrical operators that are able to deal with this ordering
problem. For this purpose, max pooling is used by PointNet [139] to combine the
features and generate permutation-invariant feature extractors. This, however,
is a limiting factor for PointNet, causing it to lose the ability to capture spatial
relationships between features. This limits its applicability to complex scenes.
PointNet++ [141] tackles this problem by using a hierarchical approach for fea-
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ture extraction. By exploiting individual PointNets in a local vicinity, it captures
short-range dependencies and then applies this concept hierarchically to capture
global dependencies.

Tatarchencko et al. [171] take a different approach to handle unstructured
point clouds. They propose TangentConvolutions that apply CNNs directly on
surfaces, which can only be achieved if neighboring points are sampled from
the same surface. In this case, the authors can define a tangent convolution
as a planar convolution that is applied to the projection of the surface at each
point. This assumption is, however, violated in case of a rotating LiDAR and the
generated distance-dependent sparsity of the point cloud.

Su et al. [166] approach the representational problem differently in SPLAT-
Net, by projecting the points in a high-dimensional sparse lattice. However,
this approach does not scale well both in terms of computation and memory con-
sumption. To alleviate this, bilateral convolutions [71] allow them to apply theses
operators exclusively on occupied sectors of the lattice.

Landrieu et al. [81] manage to summarize the local relationships in a similar
fashion to PointNets by defining a SuperPoint Graph. This is achieved by creating
so-called SuperPoints, which are locally coherent, geometrically homogeneous
groups of points that get embedded by a PointNet. They create a graph of
SuperPoints that is an augmented version of the original point cloud and train a
graph convolutional network to encode the global relationships.

In the case of rotating LiDAR segmentation, the number of points per scan
is in the order of 105. This scale prevents all of these aforementioned methods
from running in real-time, limiting their applicability in autonomous driving.
In contrast, we propose a system that provides accurate semantic segmentation
results, while still running at frame-rate of the sensor.

Leading the charge in online processing, SqueezeSeg and SqueezeSegV2, by
Wu et al. [184, 185], also use a spherical projection of the point cloud, enabling
the usage of 2D convolutions. Furthermore, a light-weight fully convolutional
semantic segmentation is applied along with a conditional random field (CRF) to
smooth the results. The last step is an un-discretization of the points from the
range image back into the 3D world. Both are capable of running faster than the
sensor rate, i.e., 10Hz, and we use them as the basis of our approach.

Several limitations needed to be addressed in order to provide full semantic
segmentation with this framework. First, the projection needed to be extended to
include the full field-of-view of the LiDAR scan, since the SqueezeSeg framework
only uses the frontal 90 degrees of the scan, where the objects of the original
KITTI dataset labels are annotated by bounding boxes. Second, the SqueezeNet
backbone is not descriptive enough to infer all the 19 semantic classes provided
by our dataset [9]. Third, the CRF needed to be replaced, by our efficient, GPU-
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based nearest neighbor search acting directly on the full, unordered point cloud.
This last step enables the retrieval of labels for all points in the cloud, even if they
are not directly represented in the range image, regardless of the used resolution.

7.4 Conclusion
In this work, we presented a fast and accurate framework for semantic segmenta-
tion of point clouds recorded by a rotating LiDAR sensor. Our main contribution
is a novel deep-learning-supported approach that exploits range images and 2D
convolutions, followed by a novel, GPU-accelerated post-processing to recover
consistent semantic information during inference for entire LiDAR scans. Our
experimental evaluation suggests that our modified 2D deep CNN operating on
range images outperforms the current state of the art in semantic segmentation of
LiDAR point clouds. Moreover, our efficient, GPU-enabled post-processing can
further improve on these results by recovering important boundary information
lost during the de-skewing of the laser scans, the lossy discretization into a proxy
representation, and the inference through an hour-glass-shaped CNN. Overall,
our approach outperforms the state of the art both in accuracy and runtime,
taking a step forward towards sensor redundancy for semantic segmentation for
autonomous vehicles and robots. Since the publication of our benchmark pre-
sented in Chapter 6, as well as the work presented in this chapter [114], a slew of
other works using raw point clouds as well as projective methods have been de-
veloped [65, 154, 193, 187, 31, 3, 174]. All of them fall into one of three categories
(or all): they find different ways to project the data into the proxy represen-
tation, they use a different loss function that is a better proxy for the task of
semantic segmentation, or they make architectural changes to exploit the vari-
able sparsity of the data in their favor. Regardless of the category, these are all
signals that indeed, the development of novel methods to semantic segmentation
of LiDAR-only point clouds were stagnant due to the lack of openly available
large-scale labeled data. Furthermore, the fact that some works are already bas-
ing their improvements on this work [3, 187, 31] highlights the usability of the
approach, as well as the ease of use of the open-source library where we released
it: http://www.github.com/PRBonn/lidar-bonnetal.
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Chapter 8

LiDAR Panoptic Segmentation

As highlighted by the last two chapters, perception and scene under-
standing are key components for building fully autonomous cars that
can drive safely even in unknown parts of the world. A multitude
of sensors such as cameras, LiDARs, and radars offering redundant

views of the world are part of the hardware stack of these vehicles. Image-based
perception has been steadily becoming more capable due to advances in deep
learning [85] and convolutional neural networks. LiDARs are often used sensors
because they produce accurate distance measurements, even in scenarios where
other sensors fail, like at night.1 However, challenges caused by the characteristics
of the LiDAR data, such as its distance-dependent sparsity, consequently call for
different solutions.

Panoptic segmentation [76] is a recently proposed task unifying semantic seg-
mentation of so-called stuff classes and instance-specific thing classes jointly.
Specifically, stuff refers to uncountable classes, such as vegetation, or road, but
also countable classes that are not critical to distinguish individually when per-
forming a specific task, such as is the case for buildings while driving. Opposite to
this, things represent interesting countable classes for the task the robot performs,
such as driving participants (i.e., cars, pedestrians, etc). Therefore, this task pro-
vides a unified understanding of the scene components, leading towards scene
understanding capturing the complete picture. See Figure 8.1 for an illustration.

Recently, many approaches to this task using images were proposed [76, 89,
93, 115, 134, 186]. In this work, we investigate the task of panoptic segmenta-
tion using solely LiDAR scans and present an approach for solving this task, as
shown in Figure 8.1. First, we propose using state-of-the-art methods to indepen-
dently solve the tasks of semantic segmentation and object detection providing
3D bounding boxes, and merging the predictions. This approach is computation-
ally too expensive and thus not suited for real-world deployment, but provides
a strong baseline for an online approach. Then, we propose a single-stage ap-
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instancessemantics
Figure 8.1: Our approach provides a panoptic segmentation for point clouds from a rotating
automotive LiDAR. Thus, we assign each point a semantic label (right part), and instance IDs
(left part).

proach that jointly solves the semantic and instance segmentation of things, as
well as the semantic segmentation of stuff, which comprises the task of panoptic
segmentation.

8.1 Efficient Panoptic Segmentation of LiDAR
Point Clouds

Similarly to Chapter 5, we propose a single-stage architecture that learns both in-
stance and semantic embeddings using a shared encoder, in order to jointly infer
panoptic segmentation labels. The instance decoder provides an offset prediction
for each point that points towards the object center, which allows us to segment
individual instances. In turn, the semantic embeddings are used to extract point-
wise semantic labels and aid the clustering of object centers. Furthermore, we
propose a novel upsampling method that allows us to use large output strides,
enabling better runtime performance. Combined with a category-based loss, we
achieve high panoptic quality for the panoptic task [11] of SemanticKITTI [9] than
an approach combining state-of-the-art projective semantic segmentation [114]
and state-of-the-art object detection [82]. Lastly, our experiments show that
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our single-stage approach runs at a fraction of the time compared to two two-
stage approaches, which is paramount for moving vehicles. In summary, our
contributions are: (i) a single-stage approach for LiDAR panoptic segmentation
that achieves state-of-the-art performance at a fraction of the processing time
of two-stage approaches, (ii) a novel upsampling strategy exploiting the distance
information provided by the LiDAR point clouds leading to better panoptic qual-
ity and increased runtime efficiency, and (iii) the novel combination of semantic
and geometric embeddings with learned point-wise radii for metric learning-based
instance clustering.

8.1.1 Baseline Two-Stage Approaches

Since panoptic segmentation for LiDAR point clouds in the context of autonomous
driving is a novel task which is made possible by the data presented in Chapter 6,
we need to find strong baselines in the literature that can be adapted to compare
against our novel, single-stage approach.

To this end, we propose a combination of state-of-the-art semantic segmenta-
tion approaches on SemanticKITTI, KPConv [174] and RangeNet++ [114], with a
state-of-the-art object detector, namely PointPillars [82] to provide instance-level
information. To extract the instance information, we use the oriented bounding
boxes of the object detector, i.e., bounding boxes for cars, pedestrians, and cy-
clists trained on the KITTI detections benchmark [46], and extract the instance
ID for points inside the bounding boxes. By combining the predictions of the
semantic segmentation, and assigning the instance ID of each bounding box to
each point inside of it, we obtain a panoptic segmentation. Note that we only
assign instance IDs to points from the thing classes, e.g., a car point classified as
road or parking is not assigned an ID.

We used pre-trained models or publicly available predictions for KPConv [174]
and RangeNet++ [114], which were trained on SemanticKITTI. PointPillars had
to be trained from scratch using the provided implementation1, modifying the
configuration of the object detector such that it provides region proposals and
bounding boxes for the full 360-degree field-of-view of the LiDAR sensor. These
networks were run independently for semantic segmentation and object detection
and then merged to generate a panoptic segmentation. Neither approach can,
therefore, run at the frame rate of the LiDAR, i.e., 10 Hz, having computational
budgets that are not suitable in a self-driving car. Furthermore, the PointPillars
detector [82] requires training separate networks, one for the class car and one
for pedestrian combined with cyclist, which accentuates the problem further. We
provide an evaluation of the performance and runtime in our experimental section.

1See the github repository at https://git.io/Je25l.
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Figure 8.2: Architecture layout for the single-stage, projective panoptic segmentation approach.
For detailed samples of inputs, intermediate representations, and outputs see Figure 8.3

To move a step closer to a multi-task network that can run in real-time on a
self-driving car, we propose a single-stage approach based on RangeNet++ [114],
which is not the best performing approach on the semantic segmentation task,
but was the best real-time at the time this work was created and submitted, in
February 2020.

8.1.2 Proposed Single-Stage Approach
We present a novel, single-stage, and real-time capable panoptic segmentation ap-
proach using a shared encoder with a semantic and instance decoder. We leverage
the geometric information of the LiDAR scan to perform a novel, distance-aware
tri-linear upsampling, which allows our approach to use larger output strides than
using transpose convolutions leading to substantial savings in computation time.
Our experimental evaluation and ablation studies for each module show that
combining our geometric and semantic embeddings with our learned, variable
instance thresholds, a category-specific loss, and the novel trilinear upsampling
module leads to higher panoptic quality.

Figure 8.2 illustrates our network architecture. First, the point cloud obtained
by the LiDAR scanner is projected to a range-image-like representation contain-
ing the range, (x, y, z) point coordinates, and remission of each point by virtue
of a spherical projection of the de-skewed scans caused by the ego-motion of the
vehicle. Then, we extract features at different resolutions, or output strides (OS),
using a shared backbone, which is trained with all the losses through backprop-
agation. At the same time, we construct a point cloud pyramid which samples
points from the image representation of the latter at exactly the location where
the downsampling, stride 2 convolutions are applied in the backbone. This helps
us recover the features with higher accuracy during the upsampling process.

Following the backbone and image pyramid, we use two separate decoders,
bringing back the backbone features to the original image resolution, which also
contain convolutional layers that learn task-specific functions. The first decoder
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extracts a semantic embedding êp that allows us to predict classes and categories,
as well as an error estimate for the embeddings, used in the clustering. The sec-
ond decoder extracts, for each point, an offset to the center of the instance. It
also predicts an error estimate for the offsets, used later in the clustering (Sec-
tion 8.1.2.6). Both decoders use a novel range-image-based trilinear upsampling,
which we explain in detail in Section 8.1.2.3. Finally, the instance extractor uses
the center offsets and the semantic embeddings to assign an instance id to each
point in the thing classes and categories, before unprojecting the points to 3D.
Figure 8.3 shows an example of the input range image, the semantic embedding
êp as a random projection from 32 dimensions to 3 displayed as RGB, the center
offsets ôp showing each one of the offsets in x, y, and z as RGB colors, and the
final outputs based on semantic and geometric embeddings.

8.1.2.1 Projection

The first step in the projective panoptic segmentation pipeline is to project the
points using a spherical projection (Figure 8.3, top). To this end, we transform all
(x, y, z) 3D points into a set of (u, v) 2D image coordinates using Equation (7.1).

Analogously to Chapter 7, this generates a (5, H,W ) volume which represents
the point cloud as an image with channels (range, x, y, z, remission). For a point
cloud of size N , we generate an index matrix of size (N, 2) containing all the (u, v)
image coordinate pairs, which we use later when transferring back the predictions
to 3D, as explained in Section 8.1.2.7. Since the backbone is extracted from the
RangeNet++ model in Chapter 7, the projection follows the same procedure.

8.1.2.2 Backbone and Point Cloud Pyramid

Relevant works for projection-based LiDAR semantic segmentation are Squeeze-
Seg [184, 185] and RangeNet++ [114], the latter being the first approach of this
type used to tackle SemanticKITTI. These approaches exploit the way the sensor
acquires the points using a rotating array of laser beams and use a 2D segmen-
tation CNN on a spherical projection of the input point cloud.

Both of these approaches downsample periodically on the width dimension by
using strided convolutions. This generates feature volumes of OS 1, 2, 4, 8, 16,
and 32, which are later skipped to the decoder to recover high-frequency signals
lost in downsampling, aiding the upsampling process, which uses either bilinear
upsampling or transposed convolutions. However, neither of these approaches
exploit the fact that the inputs contain useful metric information as they down-
sample, to aid the upsampling. In this work, instead, each time we apply strided
convolutions, we store a downsampled version of the point cloud which contains
the points at the centers of the locations where the kernels were applied. This can
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Input: Spherical Projection

Intermediate: Semantic Embeddings (êp)

Intermediate: Center Offsets (ôp)

Output: Stuff + Things Classes

Output: Stuff + Things Categories

Output: Thing Instances

Figure 8.3: Example input, intermediate results, and outputs of our panoptic segmentation.
Best viewed in color.

be used to recover useful geometric information during the upsampling in the de-
coder that allows us to improve the accuracy of the final output. The foundation
of our architecture and shared feature extractor for both the instance head and
the semantic head branch is DarkNet53 [114, 144], as in Chapter 7. The reason
to pick this architecture for the backbone is two-fold. First, it is well established
that the DarkNet53 architecture is very efficient for GPU deployment [144]. Sec-
ond, it allows us to do a direct comparison to the semantic segmentation-only
method trained in Chapter 7, which did not have the extra burden of extracting
instances.

8.1.2.3 Decoders
After the point cloud range image is processed by the backbone and the sampled
pyramid is generated, we pass the features through two different decoders that
complement each other to solve the task of panoptic segmentation. One decoder
predicts the instance centers, and the other one the semantics of the scene. Both
decoders follow the same structure, illustrated in Figure 8.2.

106



8. LiDAR Panoptic Segmentation

After upsampling the feature volume, we concatenate the upsampled features
with the matching resolution from the backbone as a skip connection followed by
a convolutional block. These blocks also learn the task-dependent weights that
separate the tasks. This is done recursively until the input resolution is met, and
the task-dependent heads are applied.

++

+ +

+ +

Ours (frustum)

= +

= + + +

Bilinear Interpolation (2D grid)

Trilinear Interpolation (cubic lattice)

= ( x x ) + ( x x )

( x x ) + ( x x )+

Figure 8.4: Upsampling methods graphically. The black dot corresponds to the desired inter-
polated feature value, while the colored dots represent the values to interpolate from. Top:
Bilinear upsampling. Center: Trilinear Interpolation. Bottom: Ours. The vertex values are
obtained in the range image domain, but their distances to the query point are calculated in
3D as their real Euclidean distance. Then the interpolated feature value is a linear combination
of four the closest feature values in the lower resolution grid (which define the frustum), with
the coefficients calculated as an inverse of the distance to the point, normalized by the total
distance.
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In contrast to prior works [114, 184, 185], which upsample the backbone fea-
tures using transposed convolutions or bilinear upsampling, exploiting closeness
in the image, we implement a differentiable trilinear upsampling layer, which
exploits the fact that our inputs are 3D point clouds and not camera images.
As in bilinear upsampling, for each point in the resolution that is currently up-
sampled, we find the 4 corresponding points in the coarser grid using the point
cloud pyramid. However, since our image is actually another representation in
memory of a point cloud, the real information of vicinity between the points and
its coarser corresponding points is known to us through their real (x, y, z) coor-
dinates, besides their image (u, v) coordinate. This allows us to approximate a
trilinear upsampling by using the real 3D Euclidean distances rather than the 2D
image ones. Even though this is technically not a strict trilinear upsampling due
to the absence of a cubic lattice, our approach uses the real 3D distances. Thus,
it more closely resembles the trilinear upsampling than bilinear interpolation, as
shown in Figure 8.4. We now proceed to explain how our interpolation compares
with the two standard ones presented.

Bilinear interpolation. Bilinear interpolation uses the information of vicin-
ity in image coordinates for points lying in a 2D grid to interpolate the value of
feature f at an off-grid location. This follows the formula

f(u, v) =

[
v1 − v

v − v0

]⊤ [
f(u0, v0) f(u1, v1)

f(u0, v1) f(u1, v0)

] [
u1 − u

u− u0

]
(u1 − u0)(v1 − v0)

, (8.1)

where (u, v) represents the 2D coordinates of the point for which we want to
interpolate the feature value, and u0, v0 are the limit coordinates of the anchor
points we interpolate from. This is very useful (and fast) for decoders in image
segmentation, since image vicinity is the only information available. In contrast,
our images are 2D representations of known 3D points. Therefore, it is possible
to know the real vicinity for each off-grid point to interpolate. As shown in the
bottom plot of Figure 8.4, a query point which is closest to the top left corner in
(u, v) does not necessarily mean real 3D vicinity, with the point being closer to the
one represented in the top right corner instead. As an intuition, Figure 8.4 shows
how the bilinear upsampling works geometrically, with the interpolation being a
linear combination of the 4 closest grid points, and the coefficients corresponding
to the normalized area of the opposite rectangle. This makes the interpolated
feature value closest to the value at the closest 2D (ux, vx) coordinate.

Trilinear interpolation. In contrast, this type of interpolation uses the real
3D similarities to each of the discrete feature locations in a cubic lattice. This
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follow the formula

f(x, y, z) =

=

(z1 − z)

[
y1 − y

y − y0

]⊤ [
f(x0, y0, z0) f(x1, y0, z0)

f(x0, y1, z0) f(x1, y1, z0)

][
x1 − x

x− x0

]
(x1 − x0)(y1 − y0)(z1 − z0)

+

+

(z − z0)

[
y1 − y

y − y0

]⊤ [
f(x0, y0, z1) f(x1, y0, z1)

f(x0, y1, z1) f(x1, y1, z1)

][
x1 − x

x− x0

]
(x1 − x0)(y1 − y0)(z1 − z0)

,

(8.2)

where (x, y, z) represents the 3D coordinates of the point for which we want to
interpolate the feature value, and x0, y0, z0 are the limit coordinates of the anchor
points we interpolate from, in a cubic lattice. Following the same intuition as
with bilinear interpolation, Figure 8.4 shows a geometrical interpretation of the
trilinear upsampling method. Analogously to the 2D case, the points are inter-
polated as a linear combination of the function at the closest feature locations,
and the coefficients represent the opposite, normalized volume to the grid point.
Although this is more accurate to interpolate point cloud information like the
one we use, we don’t have a function that operates in a perfect cubic lattice,
so instead we introduce a method that emulates this behavior operating in each
range image frustum instead.

Proposed interpolation. Our interpolation works by generating a frustum
for each point, generated by its four neighbors in the image, similarly to the 2D
case. However, after the four points are selected, we calculate the four real Eu-
clidean distances between the points and the feature locations in the coarser grid.
These querry points come from the image pyramid built. Then the interpolation
follows the formula

f(p) =
∑3

i=0

(
f(pi)

∏3
j=0,i̸=j ∥p − pj∥

)∑3
i=0

(∏3
j=0,i̸=j ∥p − pj∥

) (8.3)

where p = (x, y, z) represents the 3D coordinates of the point for which we want
to interpolate the feature value, and p0, p1, p2, p3 are the coordinates of the
anchor points we interpolate from. The latter define the frustum used, starting
from the sensor.

Figure 8.4 shows a geometric representation of this upsampling as well, where
we see that the interpolated value is also a linear combination of the grid features,
and the coefficients are calculated by the normalized product of all the opposite
Euclidean distances. Intuitively, this product of segments represents the diagonal
of the opposite volume. It is important to notice that it properly captures the
vicinity in 3D of the interpolated points, as shown in the example in Figure 8.4,
where bilinear upsampling would have failed.
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Figure 8.5: Influence of clustering radius. Left: Wrong clustering due to fixed radii. Right:
Correct clustering using the learned radii depending on point difficulty.

8.1.2.4 Instance Decoder

This decoder has the responsibility to predict a 3D offset ôp = [∆x,∆y,∆z]T

for each point xp = [xp, yp, zp]
T on the range image belonging to one of the things,

from its center c = [xc, yc, zc]
T . This is similar to Neven et al. [120], which pre-

dicts a 2D offset to the center for instance segmentation, and Qi et al. [140],
which predicts 3D offsets for point cloud object detection. Since we are using
range image representations of 3D point clouds, our approach sits in the middle,
predicting 3D offsets given an image representation. After the offsets are pre-
dicted, each point in the thing mask (from the semantic segmentation) predicts a
center coordinate, which is used to cluster the instances. This is done using the
region-based clustering method described in Section 8.1.2.6.

The offsets ôp are learnt through an L2 loss of the form:

LCENTER =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[ôp − (xp − ci)]
2, (8.4)

where I is the number of instances in the batch, and Pi is the number of points
in the instance i. During inference, the predicted center for each point can then
be calculated as ĉp = x̂p − ôp.

To use a region-based clustering method, an intra-cluster radius needs to be
defined. For the center embedding ĉp, the radius is the maximum Euclidean
distance that we allow two points in the same instance to predict. In theory,
this radius could be fixed and chosen by cross-validation, but research shows that
different points have different levels of accuracy [120], resulting in either over-
or under-segmentation. Using a learned, adaptive radius for each point instead
can help solve this problem, as shown in Figure 8.5. Therefore, we add three
convolutional blocks on top of the offset encoder that predict this radius ϵ̂p for
each point, estimating the radius as the Euclidean distance between the offset
prediction and its ground truth, for each point, during the training, i.e,

LCENT ERR =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[
ϵ̂p – ∥ôp – (xp – ci)∥

]2
. (8.5)
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The intuition behind using the training offset error as the ground truth for
this variable radii is not to estimate the uncertainty of each prediction, which
would not be possible since the training error is usually significantly lower than
the test time error. Instead, we are interested in learning the relative difficulty
of different points belonging to the same instance. Figure 8.5 shows an example
where the point in the fender is significantly more inaccurate than the point in
the center of the car, requiring a larger radius to be properly assigned to this car’s
cluster. This is fixable by simply using a larger radius for all points, but this leads
to under-segmentation in many cases in our dataset, preventing us from a proper
understanding of the scene. Therefore, at inference time we use this learned
tolerances as relative thresholds for each point, but adjust the overall scale by
a constant factor to account for the difference between training and validation
error. This factor is the ratio between the latter.

8.1.2.5 Semantic Decoder

This decoder predicts a 32-dimensional semantic embedding for each point in
the range image representation. From this embedding, two [1× 1] convolutional
heads are used to predict classes and categories. In order to train the network to
predict both, we use a cross-entropy loss for the classes and an analogous one for
the categories, of the form:

LSEM = −
C∑
c=1

wc yc log
(
ŷc
)
, (8.6)

where wc =
1

log (fc+ϵ)
is a class-wise weight calculated as a function of the inverse

class-frequency fc, and ϵ limits the largest possible weight for a class. In practice,
the category prediction does not need its own head or loss. However, our experi-
ments show that adding a separate head, along with a category loss, improves the
category segmentation, effectively mapping semantically similar classes together
in embedding space.

To aid the instance segmentation head center predictions, we also add an
auxiliary loss that applies directly to the embeddings from the semantic head.
Figure 8.3 shows a random projection from the 32-dimensional embeddings to 3

dimensions, plotted as RGB values for illustration purposes. It is possible to see
that not only the embeddings are different from class to class, but also between
different instances of the same class. This loss uses metric learning to cluster
all pixel embeddings êp of the same instance close to each other, and pushing
all mean embeddings of different instances away from each other. This is done
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through an attraction and a repulsion loss, of the form:

LATTRACT =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

(
êi,p − ˆ̄ei

)2 (8.7)

LREPEL =
1

I(I − 1)

I∑
iA=1

I∑
iB=1

iA ̸=iB

1(
ˆ̄eiA − ˆ̄eiB

)2 . (8.8)

where êi,p is the embedding for pixel p of instance i, and ˆ̄ei is the mean embedding
of all points in instance i.

Analogously to the center offsets, we also predict an error radius for each pixel
embedding that is later used for the adaptive clustering, following an analogous
loss to the center offset error loss:

LEMBED ERR =
1

I

I∑
i=1

1

Pi

Pi∑
p=1

[
ϵ̂p −

∥∥êi,p − ˆ̄ei

∥∥ ]2, (8.9)

8.1.2.6 Instance Extractor

To obtain all individual instance IDs, we employ an iterative procedure. First,
we sample a thing point from the semantic prediction and obtain its distance in
feature space to all other points in the same class. We propose two alternative
features to do this through the instance and the semantic decoders. Using the
instance decoder, the features represent the prediction of the center of the instance
ĉi = xp− ôp. Using the semantic decoders, the features used are the embeddings
of each point êi,p. In both cases, we then use the predictions of the error for each
pixel as the clustering radius to consider points as belonging to the same instance
as the initially sampled point. We then assign the instance ID to all points within
the radius, remove these points from the pool, and start over with a new sampled
point, until all points are consumed. In our ablation study, shown in Section 8.2.2,
we compare all features and the usage of the learned radius vs. a statically defined
threshold chosen by cross-validation.

8.1.2.7 Point Cloud Extraction and Post-Processing

After the segmentation of the point cloud as a range image, recovering all labels
for the N original points in the point cloud is desired. However, if N > HW ,
unprojecting the image using the intrinsic calibration of the sensor does not re-
construct all points. This is why the reprojection of the labeled points to the
3D world is, instead, performed by keeping an (N, 2) shaped list of (u, v) image
indexes that can use the label image as a lookup table to recover the labels and
IDs for all N points.
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8.2 Experimental Evaluation
In the first part of the experiments, we compare our panoptic segmentation ap-
proach with state-of-the-art approaches on our SemanticKITTI dataset, a large-
scale LiDAR dataset providing instance and semantic segmentation annotations
described in Chapter 6, as well as a panoptic segmentation benchmark. We then
provide ablations studies to show the importance of different design decisions of
our approach, such as the use of semantic and center embeddings jointly, the
inclusion of the novel trilinear upsampling module, and the category loss.
Implementation details. In all the following experiments, we use the following
parameters, when not otherwise stated. All networks in the single-stage approach
were trained following the same training schedule, using Adam optimizer with a
learning-rate of 0.001, a warm-up ramp of 1 epoch, momentums (0.9, 0.99), a
learning-rate decay of 0.99 per epoch, training for 200 epochs. To integrate all
losses, we tested GradNorm [28], but yielded no significant improvement over the
simple addition of all losses.
Dataset. We evaluate our approach on our SemanticKITTI dataset, which
provides point-wise semantic as well as temporally consistent instance annotations
for all scans of the KITTI odometry split [46]. The dataset provides 23 201
scans for training, and the remaining 20 351 scans are used for evaluation on
a benchmark server. We use sequence 08 from the training data comprised of
4 071 scans for validation purposes. The dataset contains overall 28 classes from
which the vehicle classes and classes representing humans have point-wise instance
annotations.
Evaluation Metrics. In order to compare the semantic segmentation branch
with other approaches in the semantic segmentation benchmark, we calculate the
mean intersection over union (mIoU) over all classes, defined in Equation (6.1),
and for the panoptic task we use the metrics defined in the benchmark, in Equa-
tion (6.3), and Equation (6.4).

SemanticKITTI also defines an ontology assigning each class to a category,
e.g., truck, car, other-vehicle belong to the category vehicle [11]. These cate-
gory definitions are useful for autonomous driving, e.g., identifying humans as an
alternative to the more fine-grained person or bicyclist classes. Therefore, alter-
natively to the class-wise metrics, we also evaluate all approaches with respect to
categories.

8.2.1 Comparison to the State of the Art
The first experiment evaluates the performance of our single-stage approach in
comparison with the two-stage approaches proposed as baselines for the panoptic
task defined in Section 6.3.3.
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Method FPS mIoU PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

KPConv [174] +
PointPillars [82] 1.9 58.8 44.5 52.5 54.4 80.0 32.7 38.7 81.5 53.1 65.9 79.0

RangeNet++ [114]
+ PointPillars [82] 2.4 52.4 37.1 45.9 47.0 75.9 20.2 25.2 75.2 49.3 62.8 76.5

Ours (without cat-
egory loss) 11.8 51.0 35.3 44.3 45.0 76.5 19.1 24.1 76.7 47.2 60.2 76.4

Ours (with cate-
gory loss) 11.8 50.9 38.0 47.0 48.2 76.5 25.6 31.8 76.8 47.1 60.1 76.2

Table 8.1: Comparison of test set results on SemanticKITTI using stuff (St) and thing(Th)
classes. All results in [%].

Method FPS mIoU PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt

KPConv [174] +
PointPillars [82] 1.9 84.8 70.0 71.5 79.2 87.3 54.3 62.1 86.7 77.8 87.8 87.7

RangeNet++ [114]
+ PointPillars [82] 2.4 78.8 63.6 65.9 74.3 83.8 43.8 52.3 82.2 73.5 85.3 84.6

Ours (without cat-
egory loss) 11.8 77.4 59.9 62.6 71.4 81.7 37.7 47.2 78.0 71.0 83.4 83.5

Ours (with cate-
gory loss) 11.8 77.8 65.8 68.1 77.2 83.5 53.6 63.8 82.5 71.9 84.0 84.0

Table 8.2: Comparison of test set results on SemanticKITTI using stuff (St) and thing(Th)
categories. All results in [%].

Table 8.1 shows the results in terms of class-wise performance on the test
set. Likewise, Table 8.2 shows the performance in respect to the categories. Our
proposed single-stage approach gets superior performance in comparison with the
two-stage approach using RangeNet++ [114]. However, it is worse than the best
performing KPConv [174], which achieves 44.5 panoptic quality and can be mainly
attributed to better semantic segmentation, albeit at a higher computational cost.

We also show in the results the difference between using the category loss
and head, vs. a lookup table between class prediction and corresponding cate-
gory. Interestingly, these results show that the category loss helps to improve
the panoptic quality performance for thing classes, but leads to worse results for
the semantic segmentation quality as shown by a drop in mIoU.

The main motivation for our single-stage approach is the improved computa-
tional efficiency in comparison to the aforementioned two-stage approaches. In-
stead of using multiple different networks, we can use a single multi-task network,
which also profits from sharing the encoder between different tasks. Figure 8.6
shows the runtime performance in relation to the panoptic quality. Clearly, our
single-stage approach is considerably faster than the two-stage approaches. Here,
we assume that the separate object detectors runs in parallel (314 ms for pedes-
trian/cyclist and 105ms for car) after the semantic segmentation (200ms for KP-
Conv and 95ms for RangeNet++) resulting in 514ms and 409ms respectively.
Our single-stage approach with trilinear upsampling takes 85ms on average.
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Figure 8.6: Runtime of the evaluated approaches. Green area represents the zone of approaches
faster than the rate of the sensor.

OS Method mIoU PQ PQ† FPS
32 Transpose convolution 46.4 30.8 41.9 11.1
8 Transpose convolution 48.5 31.2 42.6 4.2
32 Ours (trilinear) 50.7 36.5 46.1 11.8

Table 8.3: Influence of upsampling method evaluated on validation set with respect to panoptic
quality and runtime.

8.2.2 Ablation Studies
We also validate that our contributions lead to an increase in performance with
respect to panoptic quality through ablation studies. Note that here we evaluate
all approaches on the validation set. The first experiment (Table 8.3), shows the
influence of the upsampling method to regain spatial resolution in the decoder
after the backbone downsampling. We can see that using our trilinear evaluation
leads to considerable gains in class and computational performance, allowing for
more downsampling without sacrificing accuracy or speed.

The next experiment (Table 8.4), shows the influence of features used for
clustering instances. We can see that the best method using a single head is
through the prediction of the center instances, rather than the semantic em-
beddings. However, combining both yields an increase in the performance of the

Center Embedding Learnt Radius RQTh PQ
3 23.7 34.4
3 3 26.7 35.8

3 18.0 32.8
3 3 20.0 33.3

3 3 3 28.2 36.5
Table 8.4: Features used for clustering of things on validation set with respect to recognition
and panoptic quality.
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clustering, which is appreciated by an increase in the recognition quality of things.
Furthermore, we compare the clustering using each feature with the learned radii
vs. the best static threshold, found by cross-validation, and we show that learning
a point-wise radius helps the performance of the approach.

Figure 8.7: Qualitative examples of predictions by our single stage approach on sequence 13
(city driving, test set), and sequence 20 (highway driving, test set). Left: Semantics. Right:
Instances.
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8.3 Qualitative results
Figure 8.7 shows examples of the proposed panoptic segmentation using our single
stage approach, both for the cases of urban and highway driving. These show
how the results of the approach look like, for readers who are not acquainted with
panoptic segmentation metric numbers. Interactive demos are available with the
code, along with prediction files and trained models.

8.4 Related Work
We aim to provide a broad overview of closely related instance and semantic
segmentation approaches for point clouds, but we also discuss closely related
RGBD and image-based approaches.
Semantic Segmentation. For semantic segmentation of point clouds, a vari-
ety of approaches have been proposed. Voxel-based methods transform the point
cloud into a voxel-grid and apply convolutional neural networks with 3D con-
volutions for object classification [104] and semantic segmentation [68]. Both
approaches were among the first investigating such models and allow for directly
exploiting architectures and insights known from image-based methods.

To overcome the limitations of the voxel-based representation, such as the
inherent higher memory consumption with increasing voxel grid resolution, ap-
proaches either upsample voxel-predictions [172] using a conditional random field
(CRF) or use a different representation, such as more efficient spatial subdi-
visions [51, 77, 150, 182, 191], graphs [81, 173], splats [166], or points di-
rectly [39, 52, 67, 72, 139, 141, 149, 174]. Opposite to these spatial partition
approaches, methods exploiting the organization of the generated measurements
by a rotating automotive LiDAR sensor [184, 185] or approaches using a cylin-
drical or spherical projection [114] of the point cloud showed promising results on
the KITTI Vision Benchmark and its extension SemanticKITTI [9]. Compared
to the aforementioned point cloud-based approaches, these techniques can use
larger backbones [144] and realize more efficient neighbor searches by exploiting
the organization of the data from the sensor directly [114].

We base our single-stage approach on the latter style, and we present a novel
range-image-based tri-linear upsampling method in our decoders that exploits
the image representation of neighbor information but uses the actual distances
between points from the point cloud pyramid to upsample features spatially.
Furthermore, we exploit a category loss that exploits the knowledge of a useful
dataset ontology to improve the accuracy of the results.
Instance Segmentation. For image-based instance segmentation, there are
mainly two types of approaches: detection-based [59, 63, 188] and clustering-
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based [29, 112, 120, 16]. Detection-based approaches, pioneered by Mask R-
CNN [59], first locate objects using an object detector and then segment the
object inside the bounding box. Clustering-based approaches, pioneered by Bra-
bandere et al. [16], use metric learning to find an embedding, which facilitates
the clustering of pixels from an instance. Often, this also involves the prediction
of a seed pixel or point, like the center of an object [29, 112, 120], from which the
clustering is seeded.

Also, point cloud instance segmentation has been explored. The approach of
Wang et al. [179] extracts point-wise features using a PointNet, which are used
to generate a similarity matrix, a confidence map, and a semantic segmentation,
then used to cluster instances by the similarity scores. The two-stage approach
of Hou et al. [63] regresses bounding boxes for objects and uses then information
from point clouds, but also image information to generate an instance mask for
each bounding box. In contrast, the single-stage approach of Yang et al. [188]
directly estimates a fixed number of bounding boxes and associates each bound-
ing box with a point-wise mask separating the object from the background. Yi
et al. [189] use object-like proposals instead of bounding boxes, which are then
used to generate bounding boxes, segmentation masks, and classification into
object classes.
Panoptic Segmentation. Recently, the task of panoptic segmentation [76],
i.e., jointly predicting a semantic segmentation of stuff classes and instance seg-
mentations for things gained significant interest using images [29] or RGBD
data [63, 132, 180]. Panoptic segmentation metrics were also adopted by sev-
eral of the major image datasets [30, 91, 119]. Most recently, even the images of
KITTI were given the panoptic treatment in [115], providing a panoptic dataset
and benchmark that is analogous to our SemanticKITTI, albeit for RGB images.

The approach of Pham et al. [132] uses a PointNet-based network to pro-
vide semantic class probabilities, but also instance embeddings. These are then
used by a conditional random field [80] to predict instance labels and semantic
labels for an RGBD scan. Similarly, Wang et al. [180] use an encoder with two
decoders to generate semantic and instance features using PointNets for RGBD
data, combining these with an associative segmentation module that uses se-
mantics to generate instance IDs and vice versa. Finally, Hurtado et al. [69],
extend the panoptic task in SemanticKITTI in combination with multi-object
tracking, adding the time dimension to the problem to generate the new task of
multi-object panoptic tracking (MOPT).

In contrast to prior work, we propose a single-stage, end-to-end trainable, and
real-time capable approach using point clouds generated by a rotating automotive
LiDAR. Our approach combines a suite of practices that improve panoptic quality.
This includes the combination of semantics and geometry for instance clustering,
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a learned point-wise threshold for said clustering, a new trilinear upsampling for
range images in the decoders, and a joint class plus category loss.

8.5 Conclusion
In this work, we propose a novel approach for single-stage LiDAR-based panoptic
segmentation which achieves high panoptic quality while still running over the
frame rate of the sensor. Our approach uses a shared encoder and two decoders
to infer the semantics of the environment and the offsets of each point to the
center of the object it belongs to. By combining the semantic predictions with
the inferred centers from the instance offset head we obtain semantic labels for all
“stuff” classes, as well as instance IDs for all “thing” instances. Our experiments
show that our approach achieves results that are on par with, but faster than the
best performing real-time approach on SemanticKITTI. Our ablations studies
also show that the addition of the novel range-image-based trilinear upsampling
module allows our approach to using larger output strides than approaches using
transpose convolutions, resulting in faster runtime without sacrificing accuracy.
Furthermore, we show that the combination of our geometric and semantic feature
embeddings helps increase the performance of the approach in terms of recognition
quality. This is also the case for our learned point-wise radii, which adapts the
clustering threshold for points of different difficulty. Finally, the addition of
a category loss makes category-based results more robust. This means that if
we get a class wrong, we will more likely confuse it with an instance of the
same category, which is desired behavior. The code for this approach is available
as open-source software at http://www.github.com/PRBonn/lidar-bonnetal.
This approach, along with its availability as open-source software, provides the
self-driving software stack with accurate semantic scene understanding of the
finest level of detail, with both semantics and instances considered. Furthermore,
because it also achieves this quickly and efficiently, the approach can run on
hardware mounted on the car, enabling a wide variety of downstream tasks,
from localization and mapping to obstacle avoidance, among others mentioned
all throughout this thesis.
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Part III

Effective and Efficient Deep
Learning Software for Robotics
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Chapter 9

A Robotics Software Suite for
Semantic Understanding

Perception is an essential building block for most robots. In Part I
and Part II of this thesis, we argue that autonomous systems need
the capability to analyze their surroundings in order to safely and ef-
ficiently interact with the world, and we provide a suite of methods to

achieve this. Furthermore, we stated that augmenting the robot’s camera data
(as well as other modalities such as LiDAR) with the semantic categories of the
objects present in the scene has the potential to aid localization [4, 6, 135], map-
ping [75, 168], path planning and navigation [36, 194], manipulation [15, 161],
precision farming [98, 111, 110] as well as many other tasks and robotic applica-
tions. Semantic segmentation is one of the topics which we covered thoroughly
throughout this thesis since it provides a pixel-accurate category mask for a cam-
era image or an image stream. The fact that each pixel in the images is mapped
to a semantic class allows the robot to obtain a detailed semantic view of the
world around it and aids to understand the scene.

Most methods which represent the current state of the art in semantic seg-
mentation use fully convolutional neural networks, as we have presented in this
thesis. The success of neural networks for many tasks from machine vision to
natural language processing has triggered the availability of many high-quality
open-source development and training frameworks such as TensorFlow [1] and
PyTorch [127]. Even though these frameworks have simplified the development
of new networks and the exploitation of GPUs dramatically, it is still non-trivial
for a novice to build a usable pipeline from training to deployment in a robotic
platform. Even for practitioners in the field, it is not trivial to decide how to get
started in order to make deep learning pipelines scale. This leads to wasted time
and resources through problems such as old model weights whose architectures
change and therefore can no longer be used, difficult on-robot inference, repro-
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Figure 9.1: Sample predictions from Bonnet. Left: Raw RGB images. Right: Overlay with
semantic segmentation label from CNN prediction. From top to bottom: Cityscapes dataset
[30], person segmentation inferring a photo from our research group, trained on COCO [91],
Crop-Weed agricultural dataset [22]. Best viewed in color.

ducibility impossibility, and other problems. Furthermore, companies such as
NVIDIA and Intel have furthermore developed custom accelerators such as Ten-
sorRT or the Neural Compute SDK. Both use graphs created with TensorFlow,
Caffe, or PyTorch as inputs and transform them into a format in which inference
can be accelerated by custom inference hardware. As with the other frameworks,
their learning curve can be steep for a developer that actually aims at solving
a robotics problem but which relies on the semantic understanding of the envi-
ronment. Last but not least, source code from computer vision research related
to semantic segmentation is often made available, which is a great achievement.
Each research group, however, uses a different framework, and as we already men-
tioned, adapting the trained networks to an own robotics codebase can sometimes
take a considerable amount of development time.

Therefore, we saw the need for a tool that allows a developer to easily train
and deploy semantic segmentation networks for robotics. Such a tool should
allow developers to easily add new research approaches into the robotic system
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while avoiding the effort of re-implementing them from scratch or modifying the
available code until it becomes at least marginally usable for the research purpose.
This is something that we experienced ourselves and observed in the community
too often.

Therefore, in this chapter, we shift the focus away from application-oriented
improvements through algorithmic design. Instead, we focus on the design of
a software architecture that makes deep learning easily accessible to roboticists.
The main contribution showcased in this chapter is a stable, easy to use, software
tool with a modular codebase, which implements semantic segmentation using
CNNs. It solves training and deployment on a robot. Thus, we do not propose
a new CNN algorithm or architecture here. Instead, we provide a clean and
extensible implementation to make this technology easily usable in robotics and
to enable a larger number of people to use CNNs for semantic segmentation on
their robots. Our tool allows the scientific robotics community to save time on the
CNN implementations, enabling researchers to spend more time to focus on how
such information can aid robot perception, localization, mapping, path planning,
obstacle avoidance, manipulation, safe navigation, etc.

We show this with different example use cases from the community, where
robotics researchers with no expertise in deep learning were able to, using Bonnet,
train and deploy semantics in their systems with minimal effort. Bonnet relies
on TensorFlow for our graph definition and training but provides the possibility
of using different backends with a clean and stable C++ API for deployment. It
allows for the possibility to transparently exploit custom hardware accelerators
that become commercially available, without modifying the robotics codebase.

Although we do not propose a new scientific method, we believe that this
work has had a strong positive impact on the robotics community. Bonnet has
a considerable user base and won “Best Demo Award” at the Workshop on Mul-
timodal Robot Perception at ICRA 2018. Our open-source software is available
at https://github.com/PRBonn/bonnet.

9.1 Bonnet
In this section, we present our semantic segmentation tool called Bonnet with a
Python training pipeline and a C++ deployment library. The C++ deployment
library can be used standalone or as a ROS node. We provide three sample ar-
chitectures focusing on realtime inference, based of ERFNet [151], see Figure 9.2,
InceptionV3 [170], and MobilenetsV2 [159] as well as pre-trained weights on four
different datasets. Our codebase allows for fast multi-GPU training, for easy ad-
dition of new state-of-the-art architectures and available datasets, for easy train-
ing, retraining, and deployment in a robotic system. It furthermore allows for
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Figure 9.2: Example of an encoder-decoder semantic segmentation CNN implemented in Bon-
net. It is based on the non-bottleneck idea behind ERFNet [151]. Best viewed in color.

transparently using different backends for hardware accelerators as they become
available. This all comes with a stable C++ API.

The usage of Bonnet is split into two steps. First, training the models to in-
fer the pixel-accurate semantic classes from a specific dataset through a Python
interface which is able to access the full-fledged API provided by TensorFlow
for neural network training. Second, deploying the model in an actual robotic
platform through a C++ interface which allows the user to infer from the trained
model in either an existing C++ application or a robot using the ROS operating
system. Figure 9.3 shows a modular description of this division, from the ap-
plication level to the hardware level, which we explain in detail in the following
sections. Note that for a reasonable number of use-cases, a developer using Bon-
net can avoid coding more or less completely. By simply providing own training
data, a new application can be deployed in a robot by simply fine-tuning one of
the models and deploying using the ROS node.

In sum, we provide (i) a modular implementation platform for training and
deploying semantic segmentation CNNs in robots; (ii) three sample architectures
that perform well for a variety of perception problems in robotics, while working
roughly at sensor framerate; (iii) a stable, easy to use, C++ API that also allows
for the addition of new hardware accelerators as they become available; (iv) a
way to promptly exploit new datasets and network architectures as they are
introduced by computer vision and robotics researchers.

9.2 Bonnet Training
The training of the models is performed through the methods defined through
the abstract classes Dataset and Network, see Figure 9.3. These handle the pre-
fetching, randomization, and pre-processing of the images and labels, and the
supervised training of the CNNs, respectively.
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Figure 9.3: Abstraction of the codebase. Python interface is used for training and graph
definition, and C++ library can use a trained graph and infer semantic segmentation in any
running application, either linking it or by using the ROS node. Both interfaces communicate
through the four configuration files in yaml format and the trained model weights.

In order to train a model using our tool, there is a sequence of well-defined
steps that need to be performed, which are:

• Dataset definition, which is optional if the dataset is provided in one of our
defined standard dataset formats.

• Network definition, which is also optional if the provided architecture fits
the needs of the addressed semantic segmentation task.

• Hyper-parameter tuning.

• GPU training, either through single or multiple GPUs. This step can be
performed either from scratch or from a provided pre-trained model.

• Graph freezing for deployment, which optimizes the models to strip them
from training operations and provides an optimized model format for each
supported hardware family.
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9.2.1 Dataset Definition

The abstract class Dataset provides a standard way to access dataset files, given
a desired split for it in training, validation, and testing sets. The codebase con-
tains a general dataset parser, which can be used to import a directory containing
images and labels that are split into our standard dataset format. This parser
can also be used as a guideline to implement a different parser, for an own or-
ganization of the dataset files. The definition of each semantic class, the colors
for the debugging masks, the desired image inference size, and the location of
the dataset are meant to be performed in the corresponding dataset’s data.yaml
configuration file, of which there are several examples in the codebase. Once the
dataset is parsed into the standard format, the abstract class Network knows
how to communicate with it in order to handle the training and inference of the
model. Besides the handling of the file opening and feeding to the CNN trainer,
the abstract dataset handler performs the desired dataset augmentation, such as
flips, rotations, shears, stretches, and gamma modifications. The dataset han-
dler runs on a thread different from the training, such that there is always an
augmented batch available in RAM for the network to use, but also allows the
program to use big datasets in workstations with limited memory. The selection
of this cache size allows for speed vs. memory adjustment, which depends on the
system available to the trainer.

9.2.2 Network Definition

Once the dataset is properly parsed into the standard format, the CNN archi-
tecture has to be defined. We provide three sample architectures and provide
pre-trained weights for different datasets and different network sizes, depending
on the complexity of the problem. Other network architectures can be easily
added, given the modular structure of our codebase, and it is the main purpose
of the tool to allow the implementation of new architectures as they become avail-
able. For this, the user can simply create a new architecture file, which inherits
the abstract Network class and defines the graph using our library of layers. If
a novel layer needs to be added, it can be implemented using TensorFlow opera-
tions. The abstract class Network, see Figure 9.3, contains the definition of the
training method that handles the optimization through stochastic gradient de-
scent, inference methods to test the results, metrics for performance assessment,
and the graph definition method, which each architecture overloads in order to
define different models. If a new architecture requires a new metric or a differ-
ent optimizer, these can be modified simply by overloading the corresponding
method of the abstract class. The interface with the model architecture is done
through the net.yaml configuration file, which includes the selection of the archi-
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tecture, the number of layers, number of kernels per layer, as well as some other
architecture-dependent hyper-parameters such as the amount of dropout [61], and
the batch normalization [70] decay.

The interface with the optimization is done through the train.yaml configu-
ration file, which contains all training hyper-parameters, such as learning rate,
learning rate decay, batch size, the number of GPUs to use, and some other
parameters such as the possibility to periodically save image predictions for de-
bugging, and summaries of the weights and activations histograms, which take
a lot of disk space during training, and are only useful to have during hyper-
parameter selection. There are examples of these configuration files provided for
the included architectures in the codebase.

It is important to notice that since the abstract classes Network and Dataset
handle most cases well with their default implementation, no coding is required to
add a new task and train a model unless for special cases. However, if a complex
dataset is to be added or a new network implementation is desired, Bonnet allows
for its easy implementation.

9.2.3 Hyper-parameter Selection
Once the network and the dataset have been properly defined, the hyper-para-
meters need to be tuned. We recommend doing the hyper-parameter selection
through random-search, as single GPU jobs, which can be performed by start-
ing the training with different configuration files (net.yaml, train.yaml), with all
summary options enabled, and then choosing the best performing model for a
final multi-GPU training until convergence. The tool is designed in this way for
more simplicity, and because the hyper-parameter selection jobs can be sched-
uled easily with an external job-scheduling tool. Hyper-parameters that can be
configured are: the number of images to cache in RAM, the amount and type
of data augmentation, the decays for batch normalization [70], the regularization
through weight-decay and dropout [61], the learning rate and momentums for the
optimizer, the type of weighting policy for dealing with unbalanced classes in the
dataset, the γ for the focal loss [92], the batch size, and number of GPUs.

9.2.4 Multi GPU training
Once the most promising model is found, the training can be done with this
hyper-parameter set using multiple GPUs to be able to increase the batch size,
and hence, the speed of training. Changing the number of GPUs used for train-
ing is as simple as changing the setting in the train.yaml configuration file, but
we recommend scaling the hyper-parameter set found following the procedure
described by Goyal et al. [50] for better results. The multi-GPU training, as
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Figure 9.4: Multi-GPU training. Example using two GPUs, but scalable to all GPUs available
in workstation.

described in Figure 9.4, is performed by synchronously averaging the gradients
obtained by a single stochastic gradient descent step in each GPU. For this, all
model parameters are stored in the main memory and they are transferred to each
GPU after each step of averaged gradient update. This is handled by the abstract
network’s training method, and it is transparent to the user. The accuracy and
mean intersection over union (IoU, see Equation (6.1)) are periodically reported
and the best performing models in the validation set are stored. We store both
the best accuracy and the best intersection over union model, for posterior use
in deployment.
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Another important work to make GPU training more efficient is the intro-
duction of the concept of “checkpointed gradients” [25], which allows fitting big
models in GPU memory in sub-linear space. This is done by checkpointing nodes
in the computation graph defined by the model, and recomputing the parts of the
graph in-between those nodes during backpropagation. This makes it possible to
calculate the network gradients in the backward pass at reduced memory cost,
without increasing the computational complexity linearly. Our tool allows us to
use the implementation of the checkpointed gradients, and therefore, besides al-
lowing for bigger batches due to the multi-GPU support, it also allows for bigger
per-GPU batches.

9.2.5 Graph Freezing for Deployment

Once the trained model performs as desired, the tool exports a log directory
containing a copy of all the configuration files used, for later reference, and two
directories inside containing the best IoU and best accuracy checkpoints. To de-
ploy the model and use it with different back-ends, such as TensorRT, we need to
“freeze” the desired model. Freezing removes all of the helper operations required
for training and unnecessary for inference, such as the optimizer ops, the gradi-
ents, dropout, and calculation of train-time batch normalization momentums.
The abstract network provides a method which handles this procedure and cre-
ates another directory with four frozen models: the model in NCHW format
(also called “channel-first” in the literature, referring to the memory alignment
of the batch), which is faster when inferring using GPUs; the model in NHWC
format (also called “channel-last”), which can be faster when using CPUs; an
optimized model, which tries to further combine redundant operations, and an
8-bit quantized model for faster inference. This method also generates a new
configuration file called nodes.yaml, which contains important node names, such
as the inputs, code, and outputs as logits, softmax, and argmax. This allows for a
more automated parsing of the frozen model during inference and automatically
remembering the names of the inputs and outputs. We provide a Python script
for this procedure, which takes a training log directory as an input and outputs
all the frozen models and their configuration files in a packaged directory that
contains all files needed for deployment. We also provide other applications to
test this model in images and videos, in order to observe the performance qualita-
tively for debugging and to serve as an example for serving using python, in case
this is desired. It is key to notice that since the whole process can be performed
in a host PC, the device PC on the robot only needs the dependencies to run the
inference, such as our C++ library.
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#inc lude <bonnet . hpp>
#inc lude <opencv2/ core / core . hpp>
#inc lude <s t r i ng>

in t main ( ) {
// path to f r o z en d i r
std : : s t r i n g path = ”/path/ f r o z en /pb ” ;
// t f f o r Tensorf low , t r t f o r TensorRT
std : : s t r i n g backend = ” t r t ” ;
// gpu or cpu ( or s p e c i a l i z e d )
std : : s t r i n g dev = ”/gpu : 0 ” ;

// Create the network
bonnet : : Bonnet net ( path , backend , dev ) ;
// I n f e r image from di sk
cv : : Mat image , mask , mask_color ;
image = cv : : imread (”/ path/ to / image ” ) ;
net . i n f e r ( image , mask ) ;
// I f necessary , c o l o r i z e ( l i k e Fig . 1 )
net . c o l o r (mask , mask_color ) ;

}

Figure 9.5: C++ code showing simplicity of semantic segmentation CNN inference in C++
application, using Bonnet tool as a library.

9.3 Bonnet Deployment

For the deployment of the model on a real robot, we provide a C++ library with
an abstract handler class that takes care of the inference of semantic segmenta-
tion, and allows for each implemented back end to run without changes in the
API level. The library can handle inference from a frozen model that is gener-
ated through the last step of the Python interface. Bonnet handles the inference
through the user’s selection of the desired back end, execution device (GPU,
CPU, or other accelerators), and the frozen model to use. There are two ways to
access this library. One is by linking it with an existing C++ application, using
the two provided standalone applications as a usage example. The second one is
to use the provided ROS node, which already takes care of everything needed to
do the inference, such as de-bayering the input images, resizing, and publishing
the mask topics, so that no coding is needed. List. 9.5 contains an example of
how to build a small “main.cpp” application to perform semantic segmentation
on an image from disk using our C++ library.
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Table 9.1: Pixel-wise metrics for sample architectures.

Dataset Arch. Input Size #Param #Ops. mIoU mAcc.

Cityscapes
ERFNet 1024x512 1.8M 66B 62.8% 92.7%

Mobilenets 768x384 6.9M 72B 63.5% 93.7%
Inception 768x384 4.3M 47B 66.4% 94.1%

COCO
Inception

640x480
4.3M

48B 87.1% 97.8%
Persons 320x240 12B 83.4% 96.9%

Synthia ERFNet
512x384

1.8M
24B 64.1% 92.3%

960x720 85B 71.3% 95.2%
Crop-Weed ERFNet 512x384 1.1M 9B 80.1% 98.5%

9.4 Sample Use Cases Shipped with Bonnet

In order to show the capabilities of Bonnet, we provide three sample architec-
tures focusing on real-time inference. The three models included are based on
ERFNet [151], InceptionV3 [170], and MobilenetsV2 [159], with minor modifica-
tions, which running the architectures in TensorRT. This framework supports a
large subset of all TensorFlow operations and makes the networks much faster to
run, as we show in Table 9.2.

Table 9.1 shows the performance of the sample architectures on four diverse
and challenging datasets, two for scene parsing, one for people segmentation, and
one for precision agriculture purposes, for which we provide the trained weights.
Because each problem presents a different level of difficulty and uses images of a
different aspect ratio, we show the performance of the model for different number
of parameters and number of operations by varying the number of kernels of each
layer of the base architecture and the size of the input.

Since Bonnet is meant to serve as a general starting point to implement differ-
ent architectures, we advise referring to the code in order to have an up-to-date
measure of the latest architecture design performances.

Table 9.2 shows the runtime of the ERFNet based model, with varying com-
plexity and input size. It shows how much the inference time can be improved
by using custom accelerators for the available commercial hardware. This further
supports the importance of allowing the user to transparently benefit from its use
with no extra coding effort, as well as providing a modular C++ backend that
allows the support of other backends as they become available.

133



9.5. Conclusion

Table 9.2: Mean runtime of the ERFNet-based architecture for different datasets, sizes, and
backends.

Dataset Input Size Back-end GTX1080Ti Jetson TX2

Cityscapes
512x256

TensorFlow 19ms (52FPS) 170ms (6FPS)
TensorRT 10ms (100FPS) 89ms (11FPS)

1024x512
TensorFlow 71ms (14FPS) 585ms (2FPS)
TensorRT 33ms (30FPS) 245ms (4FPS)

640x480
TensorFlow 27ms (37FPS) 321ms (3FPS)

COCO TensorRT 15ms (65FPS) 128ms (8FPS)
Persons

320x240
TensorFlow 21ms (47FPS) 200ms (5FPS)
TensorRT 7ms (142FPS) 80ms (14FPS)

Synthia
512x384

TensorFlow 20ms (50FPS) 223ms (4FPS)
TensorRT 11ms (100FPS) 127ms (8FPS)

960x720
TensorFlow 61ms (16FPS) 673ms (1FPS)
TensorRT 27ms (37FPS) 362ms (3FPS)

Crop-Weed 512x384
TensorFlow 9ms (111FPS) 132ms (8FPS)
TensorRT 4ms (250FPS) 99ms (10FPS)

9.5 Conclusion
In this chapter, we presented Bonnet, an open-source semantic segmentation
training and deployment tool for robotics research. Bonnet eases the integration
of semantic segmentation methods for robotics. It provides a stable interface al-
lowing the community to better collaborate, add different datasets and network
architectures, and share implementation efforts as well as pre-trained models.
This tool has sped up the deployment of semantic segmentation CNNs on re-
search robotics platforms in our lab, and for our students. We provide three
sample architectures that operate at frame-rate and include pre-trained weights
for diverse and challenging datasets for the robotics community.

9.6 Outlook: Extension to Other Tasks
Since the release of Bonnet, we have switched our internal developments to
PyTorch [127], since its dynamic graph software philosophy allows for a more
“pythonic” execution of the training as well as the deployment. This makes it
more flexible for non-standard tasks that diverge from standard fully-feedforward
networks, such networks dealing with variably-sized inputs and outputs, sequence
data of different sequence length, or containing recursion and/or loops. Long after
our development switch, Tensorflow 2.0 was released, also allowing for impera-
tive execution, but at the time we had already been using PyTorch for a year.
Since the switch made us re-write our entire pipeline, we decided to extend the
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train.yaml backbone.yamldata.yaml

C++
Library
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Dataset
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Python Apps ROS 
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C++
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CPU GPU

decoder.yaml
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(task specific)

Figure 9.6: Abstraction of the new codebase. Python interface is used for training and graph
definition for all tasks, and C++ library can use a trained graph and infer semantic segmen-
tation in any running application, either linking it or by using the ROS node. Both interfaces
communicate through the four configuration files in yaml format and the trained model weights.
The difference with Bonnet is that the Backbone can be shared between different tasks, and
pretrained on Imagenet [34] as it is standard transfer-learning practice.

framework to more tasks, rather than just semantic segmentation. In Bonnetal,
which is our latest deep learning framework, we exploit the fact that CNN fea-
tures learned for the classification task on large datasets tend to translate very
well to other tasks, such as object detection, semantic and instance segmentation,
etc [143]. To this end, we generalize the modular pipeline depicted in Figure 9.3
to follow the design in Figure 9.6

The new software framework also provides a deployment pipeline for all tasks
implemented, both as a C++ library as well as in ROS nodes. This framework
can be found at: http://github.com/PRBonn/bonnetal.
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Chapter 10

Example Applications

Throughout this thesis, we have argued that semantic scene under-
standing has the potential to help multiple tasks in robotics, such as
manipulation, obstacle detection and avoidance, remote monitoring,
localization and mapping, path planning, precision agriculture, etc.

In this chapter, we focus on particular use cases of research using the methods
presented in this thesis to solve real-world problems. The approaches presented
in this chapter use either Bonnet or Bonnetal if they use images as input, which
was presented in Chapter 9. On the other hand, if the approach being depicted
uses LiDAR point clouds as input, the open-source Lidar-Bonnetal pipeline to
perform inference of semantics for LiDAR, presented in Chapter 7 is used.

In the following sections we give an overview of the task and how semantics
extracted from one of our approaches were able to help achieve the goal in a
better, or a faster way (or both). These examples applications include:

• precision agriculture, in Section 10.1

• path planning, in Section 10.2

• simultaneous localization and mapping (SLAM) using RGBD sensors, in
Section 10.3, and

• SLAM using LiDAR sensors, in Section 10.4.
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Figure 10.1: Berry detection and counting in wineyards. Left: Input RGB image from DSLR.
Right: Overlay of semantic mask of regions containing berries from Bonnetal.

10.1 Berry Counting
Yield estimation and forecasting are of special interest in the field of grapevine
breeding and viticulture. The number of harvested berries per plant is strongly
correlated with the resulting quality. Therefore, early yield forecasting can enable
a focused thinning of berries to ensure a high-quality end product. In this section,
we present an effort to perform berry counting [190] lead by Laura Zabawa as a
part of her Ph.D. work at Heiner Kuhlmann’s group, and in which Bonnetal is a
key component. We only provide a brief overview to highlight how our semantics
helped, and more information can be found in the relevant publication [190].

Traditionally yield estimation is done by extrapolating from a small sample
size and by utilizing historic data. Moreover, it needs to be carried out by skilled
experts with much experience in this field. Berry detection in images offers a
cheap, fast, and non-invasive alternative to the otherwise time-consuming and
subjective on-site analysis by experts. We apply fully convolutional neural net-
works on images acquired with the Phenoliner, a field phenotyping platform. We
count single berries in images to avoid the error-prone detection of grapevine clus-
ters. Clusters are often overlapping and can vary a lot in the size which makes the
reliable detection of them difficult. We address especially the detection of white
grapes directly in the vineyard. The detection of single berries is formulated as a
classification task with three classes, namely “berry”, “edge” and “background”.
A connected component algorithm is applied to determine the number of berries
in one image. We compare the automatically counted number of berries with the
manually detected berries in 60 images showing Riesling plants in vertical shoot
positioned trellis (VSP) and semi minimal pruned hedges (SMPH). We are able
to detect berries correctly within the VSP system with an accuracy of 94.0% and
for the SMPH system with 85.6%. Figure 10.1 shows an example of how Bonnetal
is used to perform a pre-segmentation of the berries.
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Figure 10.2: Room parsing for efficient path planning in children-inhabitated environments.
Left: Humanoid robot using information from semantics to plan. Right: Camera view with
semantic overlay of different toys in the scene from Bonnet.

10.2 Path Planning
Humanoid robots are often supposed to share their workspace with humans and
thus have to deal with objects used by humans in their everyday life. In this
section, we present our novel approach [145] to humanoid navigation through
cluttered environments, which exploits knowledge about different obstacle classes
to decide how to deal with obstacles and selects appropriate robot actions. This
effort was led by Peter Regier as a part of his doctorate work at Maren Bennewitz’s
group, and Bonnet was a key component for training and inferring the semantic
segmentation CNN online with edge-compute hardware. We only provide a brief
overview to highlight how our semantics helped, and more information can be
found in the relevant publications [145, 146].

To classify objects from RGB images and decide whether an obstacle can be
overcome by the robot with a corresponding action, e.g., by pushing or carrying
it aside or stepping over or onto it, see Figure 10.2, we train and exploit a CNN
from Bonnet. Based on associated action costs of the observed objects in the
scene, we compute a cost grid containing newly observed objects in addition to
static obstacles on which a 2D path can be efficiently planned. This path encodes
the necessary actions that need to be carried out by the robot to reach the goal.
Using our CNN the robot can robustly classify the observed obstacles into the
different classes and decide on suitable actions to find efficient solution paths.
Our system finds paths also through regions where traditional motion planning
methods are not able to calculate a solution or require substantially more time.
We finally implemented the framework in ROS and tested it in various scenarios
with a Nao robot as well as in simulation with the REEM-C robot. Furthermore,
the labels for training the CNN using Bonnet were scraped from the internet
querying images of toys with alpha background, which allowed us to generate a
semi-synthetic dataset of 10 000 semantic segmentation images which worked well
enough for the affordance estimation task in the real world.
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Figure 10.3: Person segmentation for RGBD SLAM. Left: Semantic overlay of image areas
containing people from Bonnet. Right: Result of the static reconstruction of the environment.

10.3 RGBD Localization and Mapping
Most approaches to RGBD simultaneous localization and mapping assume, as a
part of their set of heuristics about the world, that the environment surrounding
the robot is static, which is often violated in the real world. The current trend
in the state of the art is to identify specific categories of dynamic elements using
CNNs, and eliminate them from the observation of the environment. In this work,
led by Emanuele Palazzolo as a part of his doctoral thesis [124], we compared
purely geometric approaches to perform the static vs. dynamic segmentation and
the aforementioned CNN-based one. Therefore, we implemented an algorithm
based on Dr. Palazzolo’s SLAM system in tandem with semantic segmentation
of people using a pre-trained people segmentation CNN from Bonnet’s library of
pre-trained models.

Given that the people vs. background semantic segmentor is included in Bon-
net, and that the SLAM system used CUDA, the included TensorRT accelerator
and library access within Bonnet was a perfect fit for a quick implementation.
With little more work than the one depicted in List. 9.5 in order to exploit the
depth channel available to improve the segmentation, the SLAM system was able
to consume solely the static areas of the image.

The experiments suggested that, indeed, the results of the approach are sig-
nificantly better than consuming the entirety of the frame which also includes dy-
namic objects, especially when these occupy a large portion of the input frames.
It is important to notice, however, that this is only true if all of the dynamic
objects are both part of the label ontology for which CNN was trained (in this
case just people), as well as accurately segmented. This leads to two types of
problems. First, it does not address moving objects outside the label ontology
for which the CNN was trained. In this work, this was solved by adding a ge-
ometric approach using residuals to extract unrecognized dynamics, which is a
key contribution of Dr. Palazzolo’s dissertation. Second, just because an object
is potentially-dynamic does not mean it is not useful for registration, should the
object be still for the entirety of the sequence, which we address in Section 10.4.
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Figure 10.4: Results of a semantic mapping approach [27] using the semantic predictions from
RangeNet++ in Lidar-Bonnetal. Left: Semantic mapping using all classes, which generates
blurred, elongated objects. Right: Semantic mapping using only non-movable classes, which
also removes non-moving objects just because they are potentially movable. This hurts the
registration process. Middle: Our approach. The integration of the movable classes is down-
weighed, as well as its contribution to the registration cost, resulting in the best model.

10.4 Semantically-augmented LiDAR
Odometry

When driving in a real-world environment, besides geometric information about
the mapped environment, the semantics of the environment play a key role if we
want to enable intelligent navigation behaviors. In most realistic environments,
this task is particularly complicated due to dynamics caused by moving objects,
which can corrupt the mapping step or derail localization. In this section, we
highlight the extension of a recently published surfel-based mapping approach
exploiting three-dimensional laser range scans by integrating semantic informa-
tion to facilitate the odometry estimation and mapping process. This effort was
led by Xieyuanli Chen resulting in our approach SuMa++ approach [27]. In this
work, we extracted the semantic information using a RangeNet++ model directly
inferring in spherically projected LiDAR sweeps. This computed semantic seg-
mentation results in point-wise labels for the whole scan, allowing us to build a
semantically-enriched map with labeled surfels. This semantic map enables us to
reliably filter moving objects, but also improve the projective scan matching via
semantic constraints. This problem was already mentioned in Section 10.3 and
its effect is shown in Figure 10.4 - left. In this work, instead of simply removing
all potentially movable objects, which leads to a map losing a lot of useful texture
for registration as in Figure 10.4 - right, we use the semantic labels to change
the integration parameters of each surfel into the map, and its contribution to
the ICP cost by using a map that assigns a lower weight to potentially moving
classes. This allows us to use their texture if they are static, while still removing
the dynamic ones from both the map, as well as the registration process, in the
same way a robust kernel would, shown in the Figure 10.4 - middle.
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Our experimental evaluation on challenging highways sequences from KITTI
dataset with very few static structures and a large amount of moving cars show
the advantage of our semantic SLAM approach in comparison to a purely geo-
metric, state-of-the-art approach. For more details about this approach, refer to
its relevant publication [27].

10.5 Conclusion
By showing these four rather diverse examples of real, practical use-cases of the
predictions obtained by the models in Bonnet, Bonnetal, and LiDAR-Bonnetal,
we have showcased real-world examples of all our semantic pipelines in action,
being exploited downstream by other researchers in different fields. We strongly
believe that the reproducibility and reusability of our research is key to keeping
the field going forward at a steady pace, and thus, to make better science. This
is why we strongly stand by our decision to open-source our models in a stable,
easy-to-use manner. This means, open-sourcing the code as more than just a
collection of throw-away scripts just because you have to, but rather as part of a
stable framework that other practitioners can plug and play into their working
pipelines. Naturally, this is likely too ambitious an enterprise, and our desire for
full reusability is probably not fulfilled 100%, but as researchers and scientists,
we need to strive to take the field in this direction. This becomes increasingly
clear as while writing the last lines of this doctoral thesis, and thinking about
the new generations of doctoral students in our laboratory who will be responsi-
ble for maintaining the software code-bases left behind. Bonnet, Bonnetal, and
LiDAR-Bonnetal have incurred a significant amount of effort in their develop-
ment, in order to make it easily accessible to other researchers, as well as to our
undergraduate and graduate students, and we believe that, albeit not perfect,
they provide a significant step in the right direction.
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Chapter 11

Conclusion

As mobile robots become a part of our everyday lives, it is key for them
to have an accurate understanding of their surroundings in order to
operate safely and efficiently. This is true for the seemingly harmless
cleaning robots already mopping and dusting away in our houses, to

the scarier self-driving vehicles that are soon to be populating our city streets and
highways, as well as for the agricultural robots that will handle our food. One
thing that all of these systems have in common is that in order to operate safely
they require the acquisition of this understanding in a fast and accurate manner,
and using on-device processing, in order to reduce the latency between changes
in the environment and action execution.

In this thesis, we have presented a number of approaches to achieve this level
of required efficiency in multiple domains, ranging from the task of recognizing
weeds in crop fields for precision agriculture, as well as analyzing driving scenes
to move around in our cities autonomously.

In Part I we presented three approaches to semantic scene understanding using
camera images. All of them exploit background knowledge about the application
domain in order to reduce the amount of computation needed for the solution of
the task. In Chapter 3 we presented an approach that allows us to perform selec-
tive weeding in crop fields, by extracting regions of interest efficiently through an
extra visual cue in the NIR spectrum, and classifying them into crops and weeds.
This pre-segmentation step makes the approach fast to run when compared with
traditional object detection pipelines which extract proposals either through se-
lective search or through a separate region-proposal neural network. This is one
of the ways in which domain expertise helps the robot’s perception system achieve
its goal efficiently, even when the regions are later classified by a neural network
trained in an end-to-end fashion, with no feature design. However, this type of
approach relies on an, albeit frequently used in precision agriculture, expensive to
obtain extra NIR visual cue. In order to allow the robot to perform the recogni-
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tion task with any low-cost, commercial RGB camera, in Chapter 4, we propose
an RGB-only approach to the same task. Here, we replace the expensive infra-
red cue by a suite of different mappings of the RGB input design by an expert.
We showed through thorough experiments that these extra mappings allow us
to perform both the segmentation and the classification tasks jointly. Besides
this, we also showed that these extra channels make the approach more robust to
changes in the environment, even when inferring in a different country, increasing
the generalization capabilities, and reducing the amount of new data required for
re-training if at all necessary. Moving from our crop fields towards our urban
environments, in Chapter 5 we propose an approach to jointly perform semantic
as well as instance segmentation of road scenes, which also exploits background
information for the sake of algorithmic efficiency. However, obtaining useful cues
for urban environments is not as straight-forward as it is in crop fields, so in this
case, we try to exploit the geometry of the scene. In order to do this, we use the
fact that connected regions in the image which are neighboring and have similar
texture likely belong to the same object. This way, we are able to pre-segment our
input into a lower-dimensional grid, without losing the accuracy in the boundaries
of the prediction, making our approach just as accurate as its general counter-
part, but several times faster to run. As we have mentioned before, all of these
types of algorithmic decisions made were not just with the goal of making our
approaches more accurate. Sometimes, as is the case with Chapter 5, we aim to
achieve roughly the same level of accuracy as the state-of-the-art approaches, but
running much faster, allowing us to deploy the algorithms in real mobile robots
running in real environments, rather than just reporting numbers on a table.

In Part II, we presented approaches that tackle similar problems, albeit us-
ing a different sensor modality. Here, we focus on the efficient semantic scene
understanding of LiDAR-obtained point clouds, which is of current and future
relevance in the context of autonomous driving. First, in Chapter 6 we present
our large-scale semantic and panoptic segmentation dataset and benchmark eval-
uation for LiDAR point clouds, called SemanticKITTI. This large scale dataset,
along with its evaluation server, serves the main purpose of providing a platform
in which researchers in the community can, not only develop their deep learning
approaches but also compare the results in a standardized way, with a proper
hidden test set. In the following chapters, we present initial approaches to tackle
both these tasks in an efficient manner, so that they can run on hardware that
can be easily fitted to a car. In Chapter 7 we propose an approach that over-
comes the variable sparsity problem present in LiDAR scans by using a range
image-like projection of the point cloud, for the task of semantic segmentation.
This approach succeeds where others fail, mostly due to the fact that it does not
require the point clouds to be sampled uniformly from a surface, and because its
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11. Conclusion

2-dimensional nature makes it efficient, allowing us to use larger models. How-
ever, this does not come without drawbacks. The 2-dimensional representation
of the data causes blurry predictions and shared frustums to bleed wrong labels
into the original point cloud. Therefore, we proposed an efficient re-projection
algorithm based on an approximate, GPU-enabled, k-nearest neighbor search,
that runs in a couple of ms per scan. Building on this work and exploiting the
panoptic labels included in SemanticKITTI, in Chapter 8 we also presented the
first two baselines to the panoptic segmentation of LiDAR point clouds, as well as
a novel, single-stage approach achieving comparable results, albeit at a fraction of
the computational cost. As we mentioned already, this is of utmost importance
in robotics, and particularly for autonomous vehicles that need to react quickly
to changes in the scene while driving at high speeds.

Finally, in Part III we presented a software design paradigm for semantic
scene understanding which we follow internally for our development, and which
serves as a starting point for future generations to develop their own solutions.
Furthermore, we also released three open-source frameworks for semantic scene
understanding which follow this design philosophy.

11.1 Open Source Contributions
Besides our many peer-reviewd paper publications, many of the algorithms pre-
sented in this thesis can be accessed in the open-source frameworks we released:

• The work in Chapter 4 is available as a part of Bonnet, which is also the
framework presented in Chapter 9. This framework is available online at:
http://github.com/PRBonn/bonnet,

• The work in Chapter 5 is a part of Bonnetal, which is also presented as
Section 9.6 as Bonnetal, and is available at: http://github.com/PRBonn/
bonnetal,

• The dataset presented in Chapter 6, along with both benchmarks is avail-
able online at: http://semantic-kitti.org,

• The API to access said dataset, visualize the labels, and evaluate the perfor-
mance on the validation set before submission to the benchmark is available
online at: http://github.com/PRBonn/semantic-kitti-api,

• The code for Chapter 7 and Chapter 8 is on our last open-source framework:
http://github.com/PRBonn/lidar-bonnetal.
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11.2. Future Work

11.2 Future Work
There is no better way to create a future work section than to state the things
for which there was a lot of will, but not a lot of time to do, and which we would
love to see realized.

First of all, the approaches presented in this thesis were supervised learning
approaches. This means that they all required human-labeled data in order to be
trained. One of the most interesting research avenues that are yet to be explored
in depth is how self-supervised learning can be used for the applications that were
described in this thesis. Although multiple works have been proposed that exploit
redundancies in the data (e.g., predicting the depth from RGB images, and train-
ing with data extracted from an RGBD sensor), not much work has been done
in the extraction of semantics. For this, the sequential data provided in Chap-
ter 8 is a very good starting point, since this sequentiality can provide much of
the needed redundancy to make self-supervised learning work in the context of
LiDAR and autonomous driving. Going fully self-supervised, or even completely
un-supervised, however, is clearly another long-term research endeavor. Regard-
less of this, labeled data is required for the validation of the approaches, so the
dataset released in Chapter 6 will likely be relevant for many years to come, even
as we make the transition towards self-supervision.

Second, one of the most important and immediate research avenues is the
use of the mentioned sequential data to improve the results of the semantic and
panoptic segmentation of LiDAR for autonomous driving. This is an area of
untapped potential and where we suspect industry is ahead of the curve, given
the massive amount of sequential data they collect, although some movement
in that direction has started to happen [69]. In order to democratize this, we
need university researchers tackling this problem, and providing this data was
one of the ways in which we made our contribution to the field. Now it is time
to actually put it to work.

Finally, one of the most worrying topics during the entire time we worked on
the LiDAR data was the lack of transferability of the CNN-extracted features
to be used with a different LiDAR sensor, when trained with one particular
setup. This was address in our work under submission [83], where we adapted
the features to a new sensor domain with a lower resolution and different field of
view and position in the car in an unsupervised way, but it is likely an area of
untapped potential that is waiting to be awakened, and where quick progress can
likely be made.
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